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Περίληψη

Η Τεχνητή Νοημοσύνη (ΤΝ) έχει σημειώσει σημαντική πρόοδο, μεταβαίνοντας από ερευνητικά πρωτότυπα σε ευ-
ρείας κλίμακας εφαρμογές στους τομείς της υγείας, των χρηματοοικονομικών, της ασφάλειας και των μεταφορών.
Παρά την επιτυχία τους, τα μοντέλα ΤΝ συχνά λειτουργούν ως αδιαφανείς "μαύρα κουτιά", εγείροντας ανησυχίες
σχετικά με την εμπιστοσύνη, την αποδοχή και τον κίνδυνο σε εφαρμογές υψηλού ρίσκου. Η επεξηγήσιμη τεχνητή
νοημοσύνη αντιμετωπίζει αυτά τα ζητήματα αναπτύσσοντας μεθόδους που βελτιώνουν την ανθρώπινη κατανόηση

σύνθετων μοντέλων. Η παρούσα διατριβή εστιάζει στις σημασιολογικές επεξηγήσεις μέσω αντιπαραδειγμάτων,
οι οποίες καθορίζουν τις ελάχιστες τροποποιήσεις εισόδου που απαιτούνται για την αλλαγή της πρόβλεψης

ενός μοντέλου ΤΝ. Παρουσιάζεται ένα ανεξάρτητο από το πεδίο εφαρμογής και του υποκείμενου μοντέλου
πλαίσιο για τη δημιουργία αντιπαραδειγματικών εξηγήσεων, το οποίο δοκιμάστηκε σε πολλαπλές μορφές δε-
δομένων, όπως εικόνες, κείμενο και ήχος. Στο πλαίσιο αυτό, εξερευνώνται διάφορες αλγοριθμικές προσεγγίσεις,
συμπεριλαμβανομένων των νευρωνικών δικτύων γραφών για δομημένα δεδομένα και μη νευρωνικών τεχνικών

βελτιστοποίησης για τη σύνθεση αντιπαραδειγμάτων με την χρήση γραφών γνώσης.

Πέρα από τη δημιουργία, η παρούσα εργασία εισάγει μια νέα μεθοδολογία αξιολόγησης για την εκτίμηση της
βελτιστότητας των αλγορίθμων παραγωγής επεξηγήσεων μέσω αντιπαραδειγμάτων, αξιοποιώντας μια προσέγγιση
εμπνευσμένη από την τεχνική της αντίστροφης μετάφρασης. Αυτή η μέθοδος αξιολόγησης παρέχει βαθύτερη
κατανόηση της σχέσης μεταξύ της ελαχιστοποίησης των τροποποιήσεων και της σημασιολογικής εγκυρότητάς

τους, αποκαλύπτοντας ιδιότητες των αλγορίθμων δημιουργίας αντιπαραδειγμάτων που θα παρέμεναν αθέατες
υπό τα παραδοσιακά πρότυπα αξιολόγησης.

Επιπλέον, το προτεινόμενο πλαίσιο επεκτείνεται πέρα από τις κλασικές εφαρμογές της επεξηγησιμότητας. Χρησι-
μοποιείται για την ανίχνευση παραισθήσεων σε μεγάλα οπτικο-γλωσσικά Μοντέλα και για τη λεπτομερή αξ-
ιολόγηση γενετικών μοντέλων σε εικόνες και οπτικοποίηση ιστοριών. Επιπρόσθετα, διερευνώνται οι συλλο-
γιστικές ικανότητες των μεγάλων γλωσσικών μοντέλων, ιδιαίτερα στην επίλυση γρίφων, όπου αποδεικνύεται
ότι η χρήση αντιπαραδειγμάτων στην είσοδο βελτιώνει την απόδοσή τους. Παράλληλα, μέσα από αντιπα-
ραδειγματικές επεξηγήσεις αναδεικνύεται η επίδραση γνωστών γνωσιακών προκαταλήψεων, ιδίως όταν τα εν
λόγω μοντέλα αξιοποιούνται ως συστήματα συστάσεων. Εκτενείς πειραματικές αξιολογήσεις επικυρώνουν την
αποτελεσματικότητα του πλαισίου σε διαφορετικούς τομείς, αποδεικνύοντας τη δυνατότητα του να ενισχύσει την
ερμηνευσιμότητα, την αξιοπιστία και τη γενίκευση τόσο στις επεξηγήσιμες εφαρμογές ΤΝ όσο και σε άλλες
περιοχές της τεχνητής νοημοσύνης.

Λέξεις Κλειδιά: Επεξηγήσεις μέσω Αντιπαραδειγμάτων, Επεξηγήσιμη Τεχνητή

Νοημοσύνη, Επεξεργασία Φυσικής Γλώσσας, Αξιολόγηση
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Abstract

Artificial Intelligence (AI) has made significant strides, transitioning from research prototypes to large-scale
deployments in healthcare, finance, security, and transportation. Despite their success, AI models often
function as opaque black boxes, raising concerns about trust, adoption, and risk in high-stakes applications.
Explainable AI (XAI) addresses these issues by developing methods to enhance human interpretability of
complex models.

This dissertation focuses on counterfactual explanations, which determine the minimal input modifications
required to alter an AI model’s prediction. A domain-agnostic, black-box framework for counterfactual gen-
eration is introduced, applicable across multiple data modalities, including images, text, and audio. Within
this framework, various algorithmic approaches are explored, including Graph Neural Networks (GNNs) for
structured data and non-neural optimization techniques for counterfactual synthesis.

Beyond generation, this work introduces a novel evaluation methodology for assessing counterfactual optimal-
ity, specifically leveraging a back-translation-inspired approach to verify whether the applied modifications
are truly minimal. This evaluation method provides deeper insights into the balance between the minimality
of edits and their semantic validity, revealing properties of counterfactual generation algorithms that would
otherwise remain obscured.

Additionally, the proposed framework extends beyond traditional XAI applications. It is leveraged for hal-
lucination detection in Large Vision-Language Models (LVLMs) and fine-grained evaluation of generative
models in both image and story generation. Furthermore, Large Language Models (LLM) reasoning capabil-
ities are investigated, particularly in riddle-solving, where counterfactual-based interventions enhance logical
reasoning in large-scale language models. At the same time, through counterexample-based explanations,
the influence of well-known cognitive biases is highlighted, especially when such models are employed as
recommendation systems.

Comprehensive empirical evaluations validate the framework’s effectiveness across diverse domains, demon-
strating its ability to enhance interpretability, robustness, and generalizability in both explainability and
downstream AI applications.

Keywords: Counterfactual Explanations, Explainable AI, NLP, Evaluation

9





Acknowledgements

The research presented in this dissertation represents the culmination of five years of dedicated work at the
AILS laboratory, under the supervision of Professor Giorgos Stamou. It was a unique and transformative
period, covering pre-pandemic times, quarantines, and the gradual return to normality. Especially during the
pandemic, the collaboration with my colleagues proved essential, and I am deeply thankful for their ongoing
support, encouragement, and teamwork. Special recognition goes to Professor Giorgos Stamou, who skillfully
organized and led the laboratory’s virtual operations in a manner that effectively served everyone’s needs.

The thesis is largely the result of collaborative efforts, and I extend my sincere gratitude to all my co-
authors for their valuable contributions. In particular, I thank Eddie Dervakos, who guided and supported
me since my earliest research steps as an undergraduate student. His passion, integrity, and dedication
left a lasting impression and significantly influenced my research path. I am equally grateful to Maria
Lymperaiou, one of my closest doctoral collaborators, with whom I co-authored numerous papers and co-
adapted the proposed framework for generating counterfactual explanations across diverse tasks. Thanks
also go to Konstantinos Thomas and Angeliki Dimitriou for their collaboration in developing the graph-
based counterfactual explanation framework.

I also thank Orfeas Menis-Mastromichalakis for jointly developing a framework to evaluate counterfactual
explanations, and Jason Liartis for adapting our approach from counterfactual explanations to prototype
explanation systems. I extend my appreciation to Nikolaos Spanos, who significantly contributed to inte-
grating our theoretical counterfactual explanation framework with image-generation systems, enabling the
production of semantic counterfactual images in a black-box manner.

Special thanks to Theofanis Ganitidis, Prof. Konstantia Zarkogianni, and Prof. Konstantina Nikita from
the smarty4covid project. My sincere gratitude goes to all members of AILS, particularly Vassilis Lyber-
atos, Paraskevi Theofilou, Nikos Haidos, Natalia Grigoriadou, Ilias Mitsouras, Vasilis Karabinis, Spyridon
Kantarelis, Panagiotis Panayiotopoulos, Panagiotis Giadikiaroglou, Voula Pavlaki, and Christos Papadim-
itriou. I also warmly thank my CSLab collaborators: Angelos Vlachos, Petros Anastasiadis, Vassiliki Kos-
toula, Nikos Chalvatzis, Kostis Nikas, and Giorgos Gkoumas. Their contributions created a supportive and
friendly lab environment, filled with memorable moments, laughter, and meaningful discussions.

I offer special acknowledgment to Chryssoula Zerva for her critical support across numerous projects and
for her invaluable guidance throughout my doctoral journey. Her mentorship has profoundly shaped my
academic development and achievements. I’m also deeply grateful to Prof. Maria Symeonaki, whose ideas,
high-quality work, and dedication greatly influenced my research beyond AI.

Lastly, I express my deepest gratitude to my family—my parents, Vassilis, whose memory and guidance con-
tinue to inspire me every day, and my mother, Tasia; Sofia Savva, who steadfastly supported me throughout
my undergraduate, graduate, and doctoral studies; my sister Chryssa, my brother Konstantinos. I also thank
my closest friends, Vassilis Cheilas and Nikos Xydeas, and my dear friends Thanasis Daskalakis and Marios
Kourabas, whose friendship, support, and encouragement have been invaluable.

Filandrianos Giorgos, May 2025

11





Contents

Contents 13

List of Figures 17

Glossary - Γλωσσάριο 21

1 Εκτεταμένη Περίληψη στα Ελληνικά 23
1.1 Πλαίσιο παραγωγής ενοιολογικών επεξηγήσεων μέσω αντιπαραδειγμάτων . . . . . . . . . . . . . 25

1.1.1 Κίνητρο για εννοιολογικές επεξηγήσεις μέσω αντιπαραδειγμάτων . . . . . . . . . . . . . 25
1.1.2 Βάση Γνώσης και Explanation Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.1.3 Ορισμός Εννοιολογικών Αντιπαραδειγματικών . . . . . . . . . . . . . . . . . . . . . . . 25
1.1.4 Τοπικές και Καθολικές (Global) Επεξηγήσεις μέσω αντιπαραδειγμάτων . . . . . . . . . 26
1.1.5 Εφαρμογή και Υλοποίηση . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.1.6 Πειράματα . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.1.7 Κύρια Συμπεράσματα και Μελλοντική Εργασία . . . . . . . . . . . . . . . . . . . . . . . 27

1.2 Παραγωγή σημασιολογηκών επεξηγήσεων μέσω αντιπαραδειγμάτων με χρήση γράφων . . . . . . 28
1.2.1 Ενσωμάτωση πληροφορίας των ακμών στις έννοιες . . . . . . . . . . . . . . . . . . . . . 28
1.2.2 Χρήση Graph Neural Networks (GNNs) . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.2.3 Συμπερασματα/Παρατηρήσεις . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.3 Παραγωγή επεξηγήσεων μέσω αντιπαραδειγμάτων σε δεδομένα κειμένων . . . . . . . . . . . . . 30
1.3.1 Κίνητρο . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.3.2 Μοντελοποίση της φυσικής γλώσσας ως διμερή γράφο . . . . . . . . . . . . . . . . . . . 30
1.3.3 Ακριβής Επίλυση εναντίον Προσέγγιση με Νευρωνικά Δίκτυα Γράφων . . . . . . . . . . 31
1.3.4 Διαδικασία Δημιουργίας Αντιπαραδειγμάτων . . . . . . . . . . . . . . . . . . . . . . . . 31
1.3.5 Πειραματική Αξιολόγηση και Αποτελέσματα . . . . . . . . . . . . . . . . . . . . . . . . 31
1.3.6 Ανάλυση Επίδρασης Συνιστωσών . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.3.7 Συμπεράσματα και Μελλοντικές Προεκτάσεις . . . . . . . . . . . . . . . . . . . . . . . . 32

1.4 Αξιολόγηση της ποιότητας των επεξηγήσεων μέσω αντιπαραδειγμάτων . . . . . . . . . . . . . . 33
1.4.1 Γιατί η Αξιολόγηση των Αντιπαραδειγμάτων είναι Δύσκολη . . . . . . . . . . . . . . . . 33
1.4.2 Μια Επαναληπτική Προσέγγιση . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
1.4.3 Πειράματα . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
1.4.4 Κύριες Διαπιστώσεις και Εφαρμογές . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
1.4.5 Συμπεράσματα και Παρατηρήσεις . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

1.5 Επεξηγήσιμη Μετρική για την Οπτικοποίηση Ιστοριών μέσω Αντιπαραδειγματικών Εξηγήσεων . 36
1.5.1 Εισαγωγή . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
1.5.2 Εξαγωγή Εννοιών και Σύγκριση . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
1.5.3 Αντιπαραδείγματα και Συντακτικό των Επεξεργασιών Εννοιών . . . . . . . . . . . . . . 36
1.5.4 Οπτικοποίηση Ιστοριών (Story Visualization) . . . . . . . . . . . . . . . . . . . . . . . 37
1.5.5 Παραγωγή Σκηνών (Scene Generation) . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
1.5.6 Τοπικές Επεξηγήσεις (Local Explanations) . . . . . . . . . . . . . . . . . . . . . . . . . 37
1.5.7 Γενικές Επεξηγήσεις (Global Explanations) . . . . . . . . . . . . . . . . . . . . . . . . 37
1.5.8 Πειραματικά Αποτελέσματα . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
1.5.9 Συμπεράσματα και Μελλοντικές Κατευθύνσεις . . . . . . . . . . . . . . . . . . . . . . . 38

13



Contents

1.6 Επεξηγήσιμη Μετρική για την Ανίχνευση Ψευδαισθήσεων στην Αυτόματη Περιγραφή Εικόνων . 40
1.6.1 Μεθοδολογία . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
1.6.2 Βασικές Τροποποιήσεις (Edit Operations) . . . . . . . . . . . . . . . . . . . . . . . . . 40
1.6.3 Εντοπισμός Παραισθήσεων σε Αντικείμενα . . . . . . . . . . . . . . . . . . . . . . . . . 41
1.6.4 Εντοπισμός Παραισθήσεων σε Σχέσεις (Roles) . . . . . . . . . . . . . . . . . . . . . . . 41
1.6.5 Πειράματα . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
1.6.6 Συμπεράσματα και Μελλοντικές Κατευθύνσεις . . . . . . . . . . . . . . . . . . . . . . . 42

1.7 Χρήση Αντιπαραδειγμάτων για τη Βελτίωση των Ικανοτήτων Συλλογισμού των Μοντέλων

Μεγάλων Γλωσσών . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
1.7.1 Χρήση LLMs για την Επίλυση Προβλημάτων Γρίφων . . . . . . . . . . . . . . . . . . . . 43
1.7.2 Δημιουργία Γρίφων μέσω Αντιπαραδειγμάτων . . . . . . . . . . . . . . . . . . . . . . . . 43
1.7.3 Μεθοδολογία . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
1.7.4 Η Μέθοδος RISCORE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
1.7.5 Πειράματα . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
1.7.6 Συμπεράσματα . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

1.8 Επεξηγήσεις μέσω Αντιπαραδειγμάτων για τη Σύστηση Προιόντων μέσω Μεγάλων Γλωσσικών

Μοντέλων . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
1.8.1 Γνωστικές Προκαταλήψεις ως Στρατηγικές Επίθεσης σε LLMs . . . . . . . . . . . . . . 46

1.9 Πειραματική Διάταξη και Δεδομένα . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
1.10 Αποτελέσματα και Συμπεράσματα . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

1.10.1 Εφαρμογή σε Πραγματικά Σενάρια . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
1.11 Συμπέρασμα . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2 Introduction 49
2.1 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.1.1 Framework for Computing Conceptual Counterfactual Explanations . . . . . . . . . . 50
2.1.2 Counterfactual Explanations using Concepts . . . . . . . . . . . . . . . . . . . . . . . 50
2.1.3 Conceptual Counterfactuals using Graphs . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.1.4 Optimal and Efficient Text Counterfactuals using GNN . . . . . . . . . . . . . . . . . 51
2.1.5 Evaluation of Counterfactual Explanations . . . . . . . . . . . . . . . . . . . . . . . . 51

2.2 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3 Background Material 55
3.1 Explainable AI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.2 Counterfactual Explanations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.3 Evaluation of AI Counterfactual Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4 Framework for Computing Conceptual Counterfactual Explanations 61
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2 Counterfactual Explanations in Terms of the Explanation Dataset . . . . . . . . . . . . . . . 62
4.3 Algorithm for Computing Conceptual Counterfactual Explanations using only Concepts . . . 64
4.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4.1 Evaluation in Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.4.2 Evaluation in Audio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5 Conceptual Counterfactuals using Graphs 79
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.2 Transforming Graph into a Set of Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2.1 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.3 Conceptual Counterfactuals using GNNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.3.1 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.4 Assessing the Importance of Conceptual Explanations . . . . . . . . . . . . . . . . . . . . . . 99

5.4.1 Setting of the Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

14



Contents

6 Optimal and Efficient Text Counterfactuals using GNN 105
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.2 Realated work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.3 Algorithm for Generating Text Counterfactuals Using GNNs . . . . . . . . . . . . . . . . . . 106

6.3.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.3.2 Graph neural network for RLAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.4 Counterfactual generation overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.4.1 Construction of Bipartite Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.4.2 Substitution pairs computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.4.3 Counterfactual Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.6 Trade-offs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.7 Methodological and Technical Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.7.1 GNN Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.7.2 Proof of Naive Graph Matching Complexity . . . . . . . . . . . . . . . . . . . . . . . . 117

6.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7 Evaluation of Counterfactual Explanations 119
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
7.2 Metrics for Counterfactual Explanations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7.2.1 Domain Agnostic Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
7.2.2 Assessing Counterfactual Explanations in NLP . . . . . . . . . . . . . . . . . . . . . . 122

7.3 Inconsistency of Counterfactual Explanations . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.3.1 Inconsistency of Minimality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
7.5 Interpreting the inc@n metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
7.6 Additional Insights from Counterfactuals of Counterfactuals . . . . . . . . . . . . . . . . . . . 132

7.6.1 A focused Use Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
7.7 Impact of Test Set Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
7.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

8 Explainable Metric for Story Visualization through Counterfactual Explanations 141
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
8.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
8.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

8.3.1 Overview of the framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
8.3.2 Conceptual edits as counterfactual explanations . . . . . . . . . . . . . . . . . . . . . . 145
8.3.3 Counterfactual edits for generative evaluation . . . . . . . . . . . . . . . . . . . . . . . 147

8.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
8.4.1 Story Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
8.4.2 Scene Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

8.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

9 Explainable Metric for Hallucination Detection in Image Captioning 159
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
9.2 Hallucination Detection through Counterfactual Explanations . . . . . . . . . . . . . . . . . . 161

9.2.1 The role of roles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
9.3 Hallucination detection framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
9.4 Extending Beyond Hallucination Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
9.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
9.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

10 Counterfactual Generation for Improving Reasoning Abilities of LLMs 171
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

15



Contents

10.2 Puzzle Solving using Reasoning of LLLMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
10.2.1 Methods and Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
10.2.2 Datasets, Benchmarks and Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

10.3 Generation of Counterfactual Riddles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
10.3.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
10.3.2 RISCORE Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

10.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
10.4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
10.4.2 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
10.4.3 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

10.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
10.5.1 BrainTeaser results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
10.5.2 RiddleSense results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
10.5.3 Quality of Contextually Reconstructed Riddles . . . . . . . . . . . . . . . . . . . . . . 192

10.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

11 Counterfactuals in LLM-Driven Product Recommendations 195
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
11.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

11.2.1 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
11.3 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
11.4 Social Proof vs. Product Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

11.4.1 Real-World Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
11.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

12 Conclusion 211
12.1 Future and Ongoing Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

13 Bibliography 215

16



List of Figures

4.4.1 Counterfactuals for 3 images (first column) which classified in class B with target class A, using
FACE (second column) and our proposed method (third column). The first column shows the
source images, the second column shows the results from FACE and the third column the
results of our method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.4.2 Global explanation for the subset of CLEVR-Hans3 which is classified in class B, with target
class A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.4.3 Counterfactual explanation for changing the prediction of the image on the left from “Bedroom”
to “Playhouse” is simply to add a child (e⊤→Child) (top) and from “Bedroom” to “veterinarians
office” is simply to add a cat (e⊤→Cat) (bottom). . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.4.4 Counterfactual explanation for changing the prediction of the image on the left from “Bedroom”
to “Computer Room”, which requires two steps. . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.4.5 Global Counterfactual Explanations using as the explanation dataset the COCO which is
classified as “bedroom”, with the target class being “kitchen”. . . . . . . . . . . . . . . . . . . 72

4.4.6 Global Counterfactual Explanations using as the explanation dataset the COCO which is
classified as “bedroom”, with target class “veterinarian”. . . . . . . . . . . . . . . . . . . . . . 72

4.4.7 Overview of the classifier used to categorize audio clips into coughs, voices, and breathing
sounds [398]. Both single-scale and multi-scale methodologies are depicted. . . . . . . . . . . 74

4.4.8 Example of the Smarty4covid knowledge base architecture. Blue nodes symbolize individual
entities, while orange nodes depict concepts. Edges marked as IsA indicate concept assertions
from the ABox, and edges labeled subClassOf denote inclusion axioms from the TBox. . . . . 75

5.2.1 This image shows the consent form used for human evaluation. Annotators are required to
complete this form prior to beginning their annotation tasks. . . . . . . . . . . . . . . . . . . 82

5.2.2 A screenshot from the annotating platform. The first image always depicts a source image,
whereas the second and the third are randomly the counterexample produced by [348] method
and the proposed one. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2.3 The first column shows the original image, the second one [348]’s retrieved image and the third
one the image retrieved by our algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2.4 Global explanation for the subset of COCO which is classified as “bedroom”, with target class
“veterinarian” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2.5 Global explanation for the subset of Visual Genome which is classified as “bedroom”, with
target class “vet” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2.6 Example of the Scene graph Generation process for an image from the dataset. . . . . . . . . 86
5.2.7 Three examples, shifting from “pedestrians” ’(left) to “drivers” ’(right). The main edits are

additions of “ride^bicycle”, along with some gender changes and an edit of a dog to a man
(eDog→ Man) in the last row. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.2.8 Flipping class form “pedestrian” ’to “driver”, the most important changes are: the addition of
“ride^wheeled_vehicle”, “wear^helmet” ’and the removal of “wear^hat”. . . . . . . . . . . . . . 88

5.3.1 The results for transitioning from Rusty Blackbird to Brewer Blackbird are presented as follows:
The first row displays the original image. The second row showcases the results from CVE
method. The third row features the explanations generated by CE. Lastly, the explanations
produced by the GNN approach are displayed in the final row. Bold denotes best results
(lowest number of edits and GED scores). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

17



List of Figures

5.3.2 A counterfactual explanation example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.3.3 Edits involving triples (a) and concepts (b) (insertions, deletions, substitutions) necessary for

transitioning from Parakeet Auklet to Least Auklet. . . . . . . . . . . . . . . . . . . . . . . . 95
5.3.4 Qualitative outcomes (optimal metrics highlighted in bold): VG-DENSE (first three columns

on the left) and VG-RANDOM (last three columns on the right). . . . . . . . . . . . . . . . . 97
5.3.5 Modifications of graph triples (insertions/deletions) to transition from “pedestrian” to “driver”.

Edge and node labels within a triple are highlighted in yellow for clarity. . . . . . . . . . . . . 98
5.4.1 Initial instructions for the CUB machine teaching experiment during the Pre-Learning phase.

Participants can select from “Class A”, “Class B”, or “I don’t know”. . . . . . . . . . . . . . . . 100
5.4.2 Example of the visually-informed learning stage. . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.4.3 Variability in test accuracy across human evaluation experiments in machine teaching. . . . . 102

6.3.1 Overview of the GNN architecture used. Attributes at each node are updated over S ≥ 2
iterations in the node convolution layer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.4.1 An overview of our approach. First, we build a bipartite graph whose nodes represent individ-
ual words. Next, we apply a Graph Neural Network (GNN) to find plausible substitutions that
effectively approximate the RLAP. Finally, by running beam search on the original dataset,
we selectively replace certain words to generate a new counterfactual dataset. . . . . . . . . . 109

6.5.1 Original input and edited inputs from different editors. The changes that each editor performed
are highlighted in red color. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.7.1 An example graph illustrating a bipartite structure with S = {A,B,C} and T = {1, 2, 3, 4}. . 118

7.3.1 Using the back-translation framework to feed back the edited text to MiCE: We see the evo-
lution of edits (centre) and predicted labels (left) through multiple feedback steps (right). As
feedback steps increase, we observe an amplification of erroneous edits. . . . . . . . . . . . . . 125

7.5.1 Minimality, inc@n, and predictor probability, base-ppl and fine-ppl, after each step of feedback
and for each editor on the IMDb dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7.5.2 Mean number of tokens of the edited text regarding the number of tokens of the input. . . . . 131
7.5.3 MiCE example of an IMDb dataset sample. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
7.5.4 Minimality, Inconsistency of minimality, Perplexity of base GPT-2, and Perplexity of fine

GPT-2 for the Newsgroups Dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
7.6.1 Entropy of the output of the IMDb predictor for each editor and after each step of feedback. 135

8.3.1 Overview of the proposed concept-based generative evaluation framework. The generative
model M produces an image I based on conditioning input c. Concepts are extracted from
both I and c to form sets S and T , respectively. The minimal edits required to align S with
T are then determined. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

8.4.1 Comparison of actual vs model-generated CLEVR-SV story frames using [347] for L=4. . . . 150
8.4.2 A sample image generated using Stable Diffusion 2 [329], used for deriving local explanations. 155

9.1.1 Illustration of a hallucination in image captioning, where the generated caption inaccurately
describes the scene. The term "laptop" should replace "dog," and the phrase "next to" should
better link the concepts of "dog" and "man." . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

9.3.1 An example of detected hallucination of objects in image captioning from our framework is
presented, depicting each phenomenon along with the proposed metrics. Objects in yellow
represent an overspecialized phenomenon, in purple a replacement, and in red a removal.
Those in green are correct objects, and those in blue are the underspecialized objects (which
do not constitute hallucinations, as the caption contains a more generic concept to the ground
truth one). As shown, the hallucination rate is calculated as the sume of the rate of each
hallucination phenomenon independently. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

9.4.1 Visual depiction of role integration within our hallucination assessment framework, with edges
emphasized in bold and color-coded to match Figure 9.3.1. . . . . . . . . . . . . . . . . . . . . 166

9.4.2 Analysis of object hallucination metrics using BLIP-large-unc on the Visual Genome and
COCO validation dataset intersection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

9.5.1 Statistics of our proposed metrics on role hallucinations by BLIP-large-unc on the VG∩COCO
validation set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

18



List of Figures

172figure.caption.253
10.3.1An overview of RISCORE, where the reconstructed instances, along with their original coun-

terparts, are incorporated as exemplars in the few-shot setting to enhance the model’s riddle
solving ability [269]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

10.3.2An overview of the automated method for generating a context-reconstructed riddle [269]. . . 183

11.1.1Cognitive bias utilized as a re-ranking adversarial strategy in product recommendation [82]. . 197
11.3.1Mean Reciprocal Rank (MRR) values for each product in the coffee machines dataset. The

plots show the effects of cognitive bias-based attacks. . . . . . . . . . . . . . . . . . . . . . . . 204
11.3.2Number of products that became the most frequently recommended post-attack (not most

recommended pre-attack). The plot only includes biases with non-zero effects. exp denotes
expert attacks, contrasting the generated attacks. . . . . . . . . . . . . . . . . . . . . . . . . . 205

11.3.3Distribution of discounts used in generated discount framing attacks. . . . . . . . . . . . . . . 206
11.4.1Difference in recommendation rates for the Claude 3.5 Sonnet recommender, applied to coffee

machine products when their ratings were reduced and a social proof attack was simultaneously
implemented. The red line marks the threshold where the recommendation rates of the original
product and the manipulated product with reduced ratings converge. . . . . . . . . . . . . . . 207

19



List of Figures

20



Glossary - Γλωσσάριο

ante hoc explanation Εκ των προτέρων εξήγηση

Bias Προκατάληψη

Black box explanation Εξήγηση μαύρου κουτιού

Classifier Ταξινομητής

Classifier Ταξινομητής

Conceptual counterfactuals Εννοιολογικές επεξηγήσεις μέσω αντιπαραδειγμάτων

Convolutional Neural Network Συνελικτικό Νευρωνικό Δίκτυο

Counterfactual Explanation Αντιπαραθετική Επεξήγηση

Counterfactual explanations Επεξηγήσεις μέσω αντιπαραδειγμάτων

Description Logics Λογικές Περιγραφής

Description Logics Περιγραφικές Λογικές

Exemplar Δείγμα

Explainability Εξηγησιμότητα

Explanation Dataset Σύνολο Δεδομένων Εξήγησης

Explanation Dataset Σύνολο Δεδομένων Εξήγησης

Feature Importance Εξηγήσεις Σημαντικότητας Χαρακτηριστικών

Graph Neural Networks Νευρωνικά δίκτυα γράφων

Inherently Interpretable Εγγενώς Ερμηνεύσιμο

Interpretability Ερμηνευσιμότητα

Knowledge Base Βάση Γνώσης

Knowledge Graph Γράφος Γνώσης

Large Language Models Μεγάλα Γλωσσικά Μοντέλα

Level of Abstraction Επίπεδο Αφαίρεσης

Local Explanation Εξήγηση Μοντέλου σε ΄Ενα Δεδομένο

Model-agnostic Explanation Method Μέθοδος εξήγησης ανεξάρτητη από το μοντέλο

Model-specific Explanation Method Μέθοδος εξήγησης για συγκεκριμένη οικογένεια μοντέλων

Pixel Εικονοστοιχείο

Prompt Προτροπή

White box Explanation Εξήγηση άσπρου κουτιού (με πρόσβαση στο μοντέλο)
Search engine optimization Βελτιστοποίηση μηχανών αναζήτησης

Cognitive biases Γνωσιακές προκαταλήψεις

21



List of Figures

22



Chapter 1

Εκτεταμένη Περίληψη στα Ελληνικά

Η Τεχνητή Νοημοσύνη (TN) έχει γνωρίσει εντυπωσιακή ανάπτυξη τα τελευταία χρόνια, περνώντας από πιλοτικά
ερευνητικά στάδια σε εφαρμογές μεγάλης κλίμακας που αφορούν την υγεία, τα χρηματοοικονομικά, την ασφάλεια
και τις μεταφορές. Παρά το γεγονός ότι τα συστήματα TN διακρίνονται σε τομείς όπως η αναγνώριση εικόνων, η
επεξεργασία φυσικής γλώσσας και η αυτοματοποιημένη λήψη αποφάσεων, ο πολύπλοκος τρόπος λειτουργίας τους
συχνά παραμένει ασαφής. Αυτή η αδιαφάνεια μπορεί να κλονίσει την εμπιστοσύνη των χρηστών, να καθυστερήσει
την ενσωμάτωση της ΤΝ σε νέες εφαρμογές και, σε κρίσιμες περιπτώσεις, να εγκυμονεί σοβαρούς κινδύνους.
Σε αυτό το πλαίσιο, η Επεξηγήσιμη Τεχνητή Νοημοσύνη (Explainable AI, XAI) έχει αναδειχθεί ως καίρια
ερευνητική κατεύθυνση, επιδιώκοντας την ανάπτυξη μεθόδων και εργαλείων που βοηθούν τους ανθρώπους να
κατανοούν και να αλληλεπιδρούν αποτελεσματικότερα με πολύπλοκα μοντέλα.

Μέσα σε αυτό το ερευνητικό πεδίο, οι οι εξηγήσεις μέσω αντιπαραδειγμάτω ν (counterfactual explanations)
έχουν ξεχωρίσει, καθώς προσφέρουν σαφή εικόνα για το πώς ένα σύστημα ΤΝ μπορεί να αλλάξει την έξοδό
του εφόσον διαφοροποιηθεί κάποιο χαρακτηριστικό της εισόδου. Αντί να εστιάζουν αποκλειστικά στο “γι-
ατί” προέκυψε μια συγκεκριμένη πρόβλεψη, οι αντιπαραδειγματικές προσεγγίσεις αναδεικνύουν το “πώς” μπορεί
να επιτευχθεί μια εναλλακτική έκβαση, συνήθως τροποποιώντας περιορισμένο αριθμό παραμέτρων. Αυτό το
γνώρισμα είναι ιδιαίτερα χρήσιμο σε εφαρμογές οικονομικής και ιατρικής φύσεως, όπου οι χρήστες μπορούν να
αξιοποιήσουν οδηγίες τύπου “Μειώνοντας το υπόλοιπο της πιστωτικής κάρτας σας κατά Χ, μπορεί να εγκριθεί
το δάνειό σας” ή “Εάν η πίεση του ασθενούς μειωνόταν, το αποτέλεσμα της διάγνωσης θα ήταν διαφορετικό”.

Παρά τα οφέλη τους, πολλές από τις σημερινές τεχνικές αντιπαραδειγματικών εξηγήσεων επικεντρώνονται σε
χαμηλό επίπεδο λεπτομέρειας, όπως είναι η αλλαγή μεμονωμένων εικονοστοιχείων (pixels) σε μια εικόνα ή η
αντικατάσταση συγκεκριμένων λέξεων σε ένα κείμενο. Αν και τέτοιες αλλαγές μπορούν να είναι ακριβείς, δεν
εναρμονίζονται πάντοτε με τον τρόπο που οι άνθρωποι αντιλαμβάνονται και αλληλεπιδρούν με τον κόσμο. Για
παράδειγμα, για τους περισσότερους ανθρώπους είναι πιο φυσικό να περιγράψουν ένα αντικείμενο ως “κόκκινο”
παρά να αναλύσουν τους αριθμητικούς τιμές των χρωματικών καναλιών. Παρομοίως, στον χώρο της επεξεργασίας
κειμένου, οι χρήστες συνηθίζουν να μιλούν για θέμα ή συναίσθημα και όχι για τροποποιήσεις σε μεμονωμένα
γράμματα ή αλλάγες σε κάποια διανυσματική αναπαράσταση. Αυτό το χάσμα ανάμεσα στα βασικά χαρακτηριστικά
και στις πιο αφηρημένες, ανθρώπινες έννοιες προκαλεί δυσκολίες στην προσπάθεια να διαμορφωθούν εξηγήσεις
που είναι ταυτόχρονα ακριβείς και κατανοητές.

Για να αντιμετωπιστεί αυτή η πρόκληση, έχει αρχίσει να κερδίζει έδαφος η ιδέα των εννοιολογικών επεξηγήσεων
μέσω αντιπαραδειγμάτων (conceptual counterfactuals). Σε αυτό το πλαίσιο, οι αλλαγές δεν αφορούν μικροεπεμ-
βάσεις σε επίπεδο raw χαρακτηριστικών, αλλά ανώτερες, πιο αφηρημένες κατηγορίες που συνδέονται με την αν-
θρώπινη αντίληψη. Για παράδειγμα, σε μια εικόνα, μπορεί να μας ενδιαφέρει αν υπάρχει “ριγέ μοτίβο”, “σφαιρικό
σχήμα” ή “τριχωτή υφή΄΄. Στον ήχο, ενδέχεται να εστιάζουμε σε “εύρος συχνοτήτων” ή “ταχύ ρυθμό΄΄, ενώ
στο κείμενο μπορεί να εξετάζουμε “συναίσθημα”, “θέμα” ή “βαθμό ευγένειας”. Με τη μετάβαση σε αυτές τις
ευρύτερες, εννοιολογικές δομές, οι αντιπαραδειγματικές εξηγήσεις αναδεικνύουν ποια αφηρημένα χαρακτηριστικά
πρέπει να τροποποιηθούν ώστε να αλλάξει η έξοδος ενός μοντέλου, αποφεύγοντας παράλληλα εκτεταμένες και
δυσνόητες αλλαγές σε χαμηλότερο επίπεδο.

Η παρούσα διατριβή διευρύνει και ενισχύει αυτό το πλαίσιο των εννοιολογικών επεξηγήσεων μέσω αν-
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τιπαραδειγμάτων. Προτείνει νέους αλγορίθμους, αρχιτεκτονικές και μετρικές αξιολόγησης που, συνολικά,
καταδεικνύουν την ευελιξία και την πρακτική αξία της εννοιοκεντρικής προσέγγισης σε ποικίλα είδη δεδομένων,
από εικόνες και φυσική γλώσσα έως γράφους και ηχητικά αρχεία. Επιπρόσθετα, παρουσιάζει πώς η έμφαση
στις αφηρημένες έννοιες ενισχύει τη σαφήνεια στην επεξήγηση των αποφάσεων ενός μοντέλου, ενώ ταυτόχρονα
μπορεί να απλοποιήσει τη διαδικασία εντοπισμού και εφαρμογής στοχευμένων παρεμβάσεων, διατηρώντας το
συνολικό νόημα αλώβητο. Τέλος μελετά προεκτάσεις των τεχνικών που αναπτύχθηκαν και σε άλλα πεδία, όπως
η αυτόματη αξιολόγηση και αναγνώριση λαθών από δημιουργικά σηστήματα.
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1.1. Πλαίσιο παραγωγής ενοιολογικών επεξηγήσεων μέσω αντιπαραδειγμάτων

1.1 Πλαίσιο παραγωγής ενοιολογικών επεξηγήσεων μέσω αν-

τιπαραδειγμάτων

Το παρόν κεφάλαιο παρουσιάζει μια μεθοδολογία για τη δημιουργία επεξηγήσεων μέσω αντιπαραδειγμάτων που

εστιάζουν σε εννοιολογικά και σημασιολογικά χαρακτηριστικά, αντί απλώς να χειρίζονται ακατέργαστα
δεδομένα (π.χ. pixel, σύμβολα κειμένου ή αριθμητικές τιμές). Στηρίζεται σε μια Βάση Γνώσης, διατυπωμένη σε
Λογικές Περιγραφής (Description Logics, DL), και σε ένα Explanation Dataset, που αποδίδει σε κάθε δείγμα
(π.χ. εικόνα, ήχο ή κείμενο) ένα σύνολο εννοιών και σχέσεων. Μέσω αυτών, οι αντιπαραδειγματικές εξηγήσεις
αποσαφηνίζουν όχι μόνο το πώς μπορεί να αλλάξει η πρόβλεψη ενός μοντέλου, αλλά και το γιατί, φωτίζοντας
τις υψηλού επιπέδου σημασιολογικές αλλαγές που προκαλούν τις διαφοροποιήσεις στην έξοδο.

1.1.1 Κίνητρο για εννοιολογικές επεξηγήσεις μέσω αντιπαραδειγμάτων

Συμβατικές αντιπαραδειγματικές μέθοδοι συχνά δρουν στο μικροεπίπεδο των δεδομένων (π.χ. αλλαγές σε λίγα
pixel) και ναι μεν πετυχαίνουν την αλλαγή πρόβλεψης, όμως δεν εξηγούν με ανθρώπινα κατανοητό τρόπο γιατί
συγκεκριμένα pixels χρειάζονται τροποποίηση. Αντίθετα, το κεφάλαιο αυτό προτείνει τη χρήση επεξηγήσεων
στο εννοιολογικό επίπεδο. Για παράδειγμα, αντί η επεξήγηση να είναι της μορφής “άλλαξε τις τιμές του κόκκινου
καναλιού των pixel”, μετασχηματίζεται σε “αν το δωμάτιο ήταν σκούρο κόκκινο αντί για πράσινο, το μοντέλο
θα άλλαζε πρόβλεψη”. ΄Ετσι, οι επεξηγήσεις γίνονται πιο κατανοητές και προσεγγίζουν τη φυσική σκέψη των
χρηστών. Επιπλέον μέσω αυτής της μορφής των επεξηγήσεων ο ανθρώπος μπορεί να κατανοήσει το μηχανισμό
λήψης αποφάσεων ένος συστήματος τεχνητής νοημοσύνης και να επαναλάβει της αλλάγες χωρίς τη χρήση των

αλγορίθμων. Για παράδειγμα αν για ένα σύστημα η αλλάγη μιας κλάσης από “υπνοδωμάτιο” σε “κτηνιατρειο”
προυποθέτει την εισαγωγή ενός ζώου, τότε ο ανθρώπος μπορει ευκόλα να αντιλειφθεί, να επικοινωνήσει, να
δοκιμάσει ο ίδιος σε νέες εικόνες αυτή την αλλάγη καθώς και να αξιλογήσει αν αυτό αποτελεί λανθασμένο

κριτήριο απόφασης για τον ταξινομητή ώστε να προσπαθήσει, αν χρειαστει, να το επιλύσει. Από την άλλη, σε
επίπεδο pixel αυτό μπορεί να είναι ως “κάνε πιο καφέ με μαυρές γραμμές 100 γειτονικά pixels μιας εικόνας”, ώστε
να δινεται η εντύπωση ενός ζώου στην εικόνα στα μάτια του ταξινομητή (classifier). Παρόλα αυτά η δευτέρη
εξήγηση δεν συμβαίνει συστηματικά καθώς το χρώμα και το μέγεθος ένος ζώου δεν είναι σταθερό, πράγμα που
μπορεί να δημιουργεί σημαντική σύγχυση στο χρήστη, σχετικά με τη μέθοδο απόφασης του ταξινομητή. Αυτό
δεν αφήνει τον χρήστη να κατανοήσει τον τρόπο με τον οποίο ο ταξινομητής παίρνει αποφάσεις.

1.1.2 Βάση Γνώσης και Explanation Dataset

΄Ενα Explanation Dataset αποτελείται από δείγματα (exemplars), δηλαδή πραγματικά ή συνθετικά δείγματα (π.χ.
εικόνες ή αρχεία ήχου), που συνοδεύονται από:

• Εννοιολογικό Περιεχόμενο: ΄Ενα σύνολο εννοιών (π.χ. Dog, Bedroom, Cough) και σχέσεων (π.χ.
depicts, hasSymptom).

• Αντιστοίχιση στα χαρακτηριστικά του μοντέλου: Το exemplar χαρτογραφείται σε ένα feature
vector που χρησιμοποιεί ο ταξινομητής.

Η εννοιολογική πληροφορία προέρχεται από μια Βάση Γνώσης (ενσωματωμένη σε DL), η οποία περιέχει:

• ABox (Assertional Box): Δηλώσεις τύπου Dog(Lassie), isIn(Lassie,Garden).

• TBox (Terminological Box): Ιεραρχικές σχέσεις, π.. Dog ⊑ Animal, Animal ⊑ LivingThing.

Οι οντολογικές σχέσεις επιτρέπουν τον ορισμό της σημασιολογικής αποστάσης μεταξύ εννοιών (π.χ. “Cat” και
“Ant” είναι πιο απομακρυσμένες από ό,τι “Cat” και “Dog”), βοηθώντας στον ορισμό κόστους για αλλαγές (edits).

1.1.3 Ορισμός Εννοιολογικών Αντιπαραδειγματικών

Οι επεξηγήσεις μέσω αντιπαραδειγμάτων ορίζονται ως σημασιολογικές επεμβάσεις (semantic edits) στην ABox
αναπαράσταση ενός exemplar. Αν ένας ταξινομητής κατατάσσει ένα exemplar e στην κλάση A, αλλά στόχος είναι
η κλάση B, αναζητείται το δείγμα c το οποίο ανήκει ήδη στην κλάση B και απέχει την ελάχιστη σημασιολογική
απόσταση από το e. Τα edits (π.. αντικατάσταση Cat→ Dog) που μετατρέπουν το e στο c συνιστούν την τοπική
αντιπαραδειγματική εξήγηση. Οι λειτουργίες περιλαμβάνουν:
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• Αντικατάσταση εννοιών (eDog→Cat).

• Αντικατάσταση ρόλων (er→s).

• Προσθήκη εννοιών ή ρόλων (e⊤→Cat ή e⊤→on).

• Αφαίρεση εννοιών ή ρόλων (eCat→⊤ ή eon→⊤).

Για την ευρέση του δείγματος που απέχει την ελάχιστη σημασιολογική απόσταση, θα πρέπει να οριστεί ένα
κόστος για κάθε επέμβαση, αξιοποιώντας την υπάρξη του TBox, ώστε να υπολογίζεται πόσο “μεγάλη΄΄ή “μικρή”
είναι κάθε αλλαγή.

1.1.4 Τοπικές και Καθολικές (Global) Επεξηγήσεις μέσω αντιπα-

ραδειγμάτων

Τοπικές Εξηγήσεις: Αφορούν ένα μόνο παράδειγμα: π.. “Αν αφαιρούσα τη Cat(b) και πρόσθετα τη
Pillow(b), η εικόνα e1 θα ταξηνομούταν από τον ταξινομητή ως Bedroom αντί για Veterinarian Office.”

Καθολικές Εξηγήσεις: Η ιδέα των global επεξήγησης βασίζεται στη συγκέντρωση πολλών τοπικών αν-
τιπαραδειγμάτων. Αθροίζοντας τα edits για πολλούς exemplars με ορισμένα κοινά χαρακτηριστητικά όπως για
παράδειγμα ότι αρχικά ανήκουν κλάση A και μεταβαίνουν στη κλάση B, μπορούν να εντοπιστούν οι πιο συχνές
τροποποιήσεις. ΄Ετσι αποκαλύπτονται συστηματικές συσχετίσεις ή προκαταλήψεις του μοντέλου (π.. “Η
έννοια Animal προστίθεται συχνά όταν το μοντέλο αλλάζει από Bedromm σε Veterinarian Office”).

1.1.5 Εφαρμογή και Υλοποίηση

Το κεφάλαιο εισάγει αλγορίθμους για:

1. Δημιουργία γράφου εξηγήσεων: Κάθε examplar είναι ένας κόμβος, και οι ακμές συνδέουν ζεύγη
εξέμπλαρ εφόσον μπορούμε να τα μετατρέψουμε το ένα στο άλλο με μια ακολουθία edits. Το βάρος
των ακμών αυτό ίσουτε με το κόστος των σημασιολογικών αλλάγων μεταξύ των δυο examplar που αυτή
συνδεεί.

2. Υπολογισμός κόστους μεταξύ δυο εννοιών: Γίνεται μέσω της ελάχιστης απόστασης μεταξύ
εννοιών ή ρόλων στο γράφο της TBox.

3. Υπολογισμός κόστους μεταξύ δυο examplars: Προτείνονται αλγόρθμοι για τον υπολογισμό
του graph edit distance, χρησιμοποιώντας διαφορετικά επίπεδα πληροφορίας κάθε φορά (π.χ. με χρήση
μόνο των αντικειμένων ή την εσαγωγή μερικής πληροφορίας των ακμών).

Επιπλέον, μέσω του προτεινόμενου πλαισίου δίνεται η δυνατότητα στον χρήστη να ορίζει αντικαταστάσεις οι
οποίες είναι αδύνατο να πραγματοποιηθούν. Για παράδειγμα, είναι αδύνατο να μειωθεί η ηλικία ενός ατόμου.
Πρακτικά, αυτό υλοποιείτε μεσω της εκχώρησης άπειρου κόστους για συγκεκριμένες αντικαταστάσεις π.χ. του
edit Young→ Old. Με αυτόν τον τρόπο εξασφαλίζεται η παραγωγή feasible αντιπαραδειγμάτων.

1.1.6 Πειράματα

CLEVR-Hans3 (Τεχνητά Δεδομένα): ΄Ενα πρώτο βήμα της ανάλυσης είναι η αξιολόγηση του προ-
τεινόμενο πλαισίου σε ένα ελεγχόμενο περιβάλλον, όπου τόσο τα χαρακτηρηστικά των examplars, όσο και τα
χαρακτηριστικά που ελέγχει ο ταξινομητής είναι προκαθορισμένα. Για τον σκοπό αυτό επιλέχθηκε το σύνολο
δεδομένων CLEVR-Hans3, όπου περιέχει συνθετικές εικονες από αντικείμενα με γνωστό σχήμα, μέγεθος, υφή
και χρώμα. Επίσης οι ταξινομητές που είναι εκπαιδευμένοι με το συγκεκριμένο σύνολο δεδομένων περιέχουν
γνωστά σε ένα biases (προκαταλήψεις) τα όποια εμπλέκονται στη μέθοδο ταξινόμησης του. ΄Ετσι μέσω της
αξιολόγησης στο συγκεκριμένο σύνολο δεδομένων δύναται η ευκαιρία να αξιολογηθεί η αποτελεσματικότητα των

μεθόδων που προτείνεται στη παρούσα διατριβή σε ένα ελεγχόμενο περιβάλλον.

COCO & Places (Πραγματικά Εικόνες): ΄Επειτα από την παράγωγη επεξηγήσεων σε ένα συνθετικό
περιβάλλον σειρά έχει ο πειραματισμός με ένα πραγματικό σύνολο δεδομένων, ώστε να αξιολογηθεί η αποτελεσ-
ματικότητα του πλαισίου που προτάθηκε σε πραγματικά προβλήματα. ΄Ετσι χρησιμοποιώντας ontologies που περι-
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γράφουν τον πραγματικό κόσμο (π.χ. WordNet) για την περιγραφή αντικειμένων (“bed”, “cat”, “dining_table”),
και δεδομένα από dataset που φέρουν σημασιολογική πληροφορία όπως το COCO δύναται η δυνατότητα εξαγ-
ωγής σημασιολογικών επεξηγήσεων μέσω αντιπαραδειγμάτων σε προβλήματα του πραγματικού κόσμου, όπου τα
biases των ταξινομητών δεν είναι γνωστά εκ των προτέρων. Τέλος στην ίδια κατεύθυνση δοκιμάστηκε και η
εφαρμογή του παρόντος πλαισίου και σε εφαρμογές όπου κανένα σημασιολογικό χαρακτηριστικό δεν συνοδεύει

τους examplars αλλά αυτά εξήχθησαν αυτόματα μέσω διαφόρων τεχνικών εξαγωγής πληροφορίας όπως στην
περίπτωση των εικόνων συστημάτων εξαγωγής γράφων σκηνής από εικόνες.

Ιατρική Διάγνωση COVID-19 (Audio): Τέλος δοκιμάστηκε και η παραγωγή επεξηγήσεων σε συστή-
ματα που δέχονται δεδομένα ήχου σαν εισόδο και σε εφαρμογή όπου η επεξηγησημότητα είναι ζωτηκής σημασίας.
Συγκεκριμένα οι αλγόριθμοι δοκιμάστηκαν σε ταξινομητές οι όποιο προβλέπουν αν ένα άτομο είναι θετικό στο

COVID-19 με βάση το βήχα τους.

1.1.7 Κύρια Συμπεράσματα και Μελλοντική Εργασία

• Καθοριστική Σημασία της Σημασιολογίας: Οι χρήστες κατανοούν πιο εύκολα εξηγήσεις που
αναφέρονται πιο αφηρημένα χαρακτηρηστικά όπως το “animal” και “pillow” παρά για “pixel-level” αλλαγές.

• Εντοπισμός Προκαταλήψεων: Σε πολλαπλές μελέτες (CLEVR-Hans3, COVID-19)
αποκαλύφθηκαν κρυφές στρεβλώσεις, οφειλόμενες σε μερικώς συσχετισμένες έννοιες ή στατιστικές
ιδιαιτερότητες των δεδομένων.

• Κλιμακωσιμότητα: Παρόλο που η σημασιολογική επεξεργασία έχει κόστος, η προσέγγιση που προ-
τάθηκε επιτρέπει τη χρήση της σε εφαρμογές με ευρεία κλίμακα δεδομένων.

• Ευελιξία Κόστους: Ρυθμίσεις του κόστους δίνουν πρακτική δράση στις εξηγήσεις, αποφεύγοντας μη
ρεαλιστικές ή ανέφικτες αλλαγές.

• Γενίκευση σε Περισσότερα Είδη Δεδομένων: Η ίδια μεθοδολογία μπορεί να εφαρμοστεί σε
κείμενο ή πίνακες, αρκεί να υπάρχει μια σχετική οντολογία για τις εκάστοτε έννοιες.

Συνοψίζοντας, το κεφάλαιο αυτό αναδεικνύει τη δυναμική των εννοιολογικών αντιπαραδειγμάτων ως εργαλείο
ερμηνείας και εντοπισμού σφαλμάτων ή προκαταλήψεων. Η μετάβαση από αλλαγές χαμηλού επιπέδου σε πιο
αφηρημένες και κατανοητές έννοιες επιτρέπει στους ειδικούς αλλά και στους τελικούς χρήστες να εμπιστευτούν

καλύτερα τα μοντέλα τεχνητής νοημοσύνης και να τα βελτιώσουν όπου αυτό κρίνεται αναγκαίο.
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1.2 Παραγωγή σημασιολογηκών επεξηγήσεων μέσω αντιπα-

ραδειγμάτων με χρήση γράφων

Το κεφάλαιο αυτό εστιάζει στην ενσωμάτωση των σχέσεων ανάμεσα στις έννοιες (concepts), με στόχο τη
δημιουργία σημασιολογικών επεξηγήσεων μέσω αντιπαραδειγμάτων που προσεγγίζουν με μεγαλύτερη ακρίβεια

τον τρόπο με τον οποίο ένα μοντέλο τεχνητής νοημοσύνης επεξεργάζεται σύνθετες εισόδους. Παρουσιάζονται
δύο συμπληρωματικές προσεγγίσεις για την εκμετάλλευση της πληροφορίας των ακμών: η πρώτη αφορά το την
ενσωμάτωση μερικής πληροφορίας των ακμών στις έννοιες, που μετατρέπει κάθε συνιστώσα
του γραφήματος σε “σύνολα συνόλων” εννοιών, ενώ η δεύτερη αξιοποιεί τα Νευρωνικά δίκτυα γράφων
- Graph Neural Networks (GNNs) με σκοπό τη διατήρηση και την επεξεργασία της πλήρους δομής του
γραφήματος για πλουσιότερες εξηγήσεις.

1.2.1 Ενσωμάτωση πληροφορίας των ακμών στις έννοιες

΄Ενα κεντρικό εύρημα αυτού του κεφαλαίου είναι ότι τα προβλήματα ταξινόμησης στον πραγματικό κόσμο εξαρτών-

ται συχνά όχι μόνο από το ποια αντικείμενα υπάρχουν, αλλά και πώς αυτά συσχετίζονται. Ωστόσο, ο υπολογισμός
του πλήρους κόστους τροποποίησης ενός γραφήματος (graph edit distance) αποτελεί υπολογιστικά δύσκολο
πρόβλημα (NP-hard), περιορίζοντας σημαντικά τη χρηστικότητά του σε μεγάλα δεδομένα.

Για να αντιμετωπιστεί αυτό το ζήτημα, η πρώτη μέθοδος που παρουσιάζεται “ενσωματώνει” (roll up) καθεμιά από
τις ακμές στον κόμβο που την περιέχει. Με άλλα λόγια, κάθε κόμβος εμπλουτίζεται με έννοιες της μορφής ∃r.C,
όπου r είναι μια σχέση (π.χ. “riding”, “on”) και C μια έννοια (π.χ. Fish). ΄Ετσι, αν ένας κόμβος έχει την έννοια
Cat και μια εξερχόμενη ακμή r(Cat,Fish), τότε στο σετ του κόμβου προστίθεται η νέα έννοια ∃r.Fish. ΄Ετσι,
η δομή του γραφήματος μετατρέπεται σε ένα σύνολο συνόλων εννοιών, καθιστώντας το πρόβλημα αναζήτησης
αντιπαραδειγμάτων ένα ζήτημα set-edit-distance αντί για το πλήρες πρόβλημα graph-edit-distance.

Μέσω αυτής της προσέγγισης, οι αλγόριθμοι για την ελαχιστοποίηση των αλλαγών ανάμεσα σε δύο περιγραφές
(set-edit-distance) μπορούν να εφαρμοστούν αποτελεσματικά, αξιοποιώντας τεχνικές όπως bipartite matching.
Παρόλο που αυτή η μέθοδος ενδέχεται να παραβλέπει πολυπλοκότερες σχέσεις πολλών βαθμίδων, μιας και
περιλαμβάνει αποκλειστικά την πληροφορία που σχετίζεται με τους γειτονικούς κόμβους.

1.2.2 Χρήση Graph Neural Networks (GNNs)

Παρότι η ενσωμάτωση των ακμών μειώνει δραστικά την πολυπλοκότητα, δεν παύει να αγνοεί περαιτέρω διασυνδέ-
σεις (multi-hop) οι οποίες μπορεί να είναι κρίσιμες για την ερμηνεία. Εδώ εισέρχεται η δεύτερη προσέγγιση,
που αξιοποιεί Graph Neural Networks (GNNs) ώστε να διατηρήσει τη πλήρη δομή του γραφήματος. Συγ-
κεκριμένα, εκπαιδεύεται ένα Σιαμαίο (Siamese) GNN που χαρτογραφεί κάθε γράφημα σε ένα ενιαίο embedding
space, ανάλογα με την ομοιότητά του με τα υπόλοιπα γραφήματα. Με αυτόν τον τρόπο, αντί να γίνεται εξαντλ-
ητικός υπολογισμός της απόστασης (graph-edit-distance) με όλα τα γραφήματα του dataset, αρκεί να εντοπιστεί
το πιο κοντινό embedding από άλλη κλάση, και κατόπιν να γίνει προσέγγιση του κόστους τροποποίησης μόνο
για το συγκεκριμένο ζεύγος.

Μέσω του GNN, διατηρούνται τόσο οι κόμβοι όσο και οι ακμές σε όλο το εύρος του γραφήματος, επιτρέποντας
την ανάλυση πιο σύνθετων δομών. Για παράδειγμα, ενδέχεται να είναι κρίσιμο να διατηρηθεί η πληροφορία
βαθύτερών συσχετίσεων μεταξύ αντικειμένων για την καλύτερη παραγωγή αντιπαραδειγμάτων σε ένα πρόβλημα.
Η πληροφορία αυτή με τον αλγόριθμο ενσωμάτωσης των ακμών στους κόμβους παραλείπεται εντελώς. Η
αποτελεσματικότητα της μεθόδου αυτής παρουσιάζεται εκτενώς τόσο θεωρητικά όσο και πρακτικά.

1.2.3 Συμπερασματα/Παρατηρήσεις

Οι δύο μέθοδοι—η ενσωμάτωση των ακμών στους κόμβους και η προσέγγιση με

GNN—επιβεβαιώνουν ότι η συμπερίληψη των ρόλων και των σχέσεων ανάμεσα στις έννοιες βελτιώνει σημαν-
τικά την ερμηνευσιμότητα. Με την ενσωμάτωση των ακμών διατηρείται ένα τμήμα της πληροφορίας που τις
αφορά, χωρίς να απαιτείται πλήρης υπολογισμός του graph edit distance. Αντίθετα, το GNN προσφέρει τη
διατήρηση της πλήρους γραφικής δομής, με αντίτιμο αυξημένη υπολογιστική πολυπλοκότητα, αλλά και ουσιωδώς
πληρέστερη αντίληψη των σχέσεων.
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Η επιλογή της μεθόδου εξαρτάται από τις απαιτήσεις της εκάστοτε εφαρμογής: πόσο μεγάλα είναι τα δεδομένα,
πόσο περίπλοκες είναι οι σχέσεις που συμμετέχουν (πολλαπλών βαθμίδων, πολλοί κόμβοι κ.λπ.) και ποια ακρίβεια
ερμηνείας είναι επιθυμητή. ΄Οπως καταδεικνύεται σε ερευνητικές και πρακτικές εφαρμογές, όπου φαίνεται ότι η
ρητή ενσωμάτωση της πληροφορίας των ακμών αποκαλύπτει προκαταλήψεις που ειδάλλως θα έμεναν κρυφές και

ενισχύει την εμπιστοσύνη στις αποφάσεις του μοντέλου ΤΝ.
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1.3 Παραγωγή επεξηγήσεων μέσω αντιπαραδειγμάτων σε δε-

δομένα κειμένων

Το κεφάλαιο αυτό επεκτείνει τις μεθόδους παραγωγής επεξηγήσεων μέσω αντιπαραδειγμάτων για περιπτώσεις

κειμένων, βασιζόμενο στις αρχές και τεχνικές που παρουσιάστηκαν σε προηγούμενα κεφάλαια (ιδίως στο Κεφ. 4).
Ενώ στα προηγούμενα κεφάλαια εξετάστηκαν κυριως συστήματα που δέχονται σαν είσοδο εικόνες και ηχητικά

δεδομενα, η παρουσία ταξινομητών κειμένου (π.χ. για ανάλυση συναισθήματος ή ταξινόμηση θεματολογίας)
καθιστά απαραίτητη την ανάπτυξη αποδοτικών και ελεγχόμενων αντιπαραδειγμάτων στο πεδίο της Επεξεργασίας

Φυσικής Γλώσσας (ΕΦΓ). Σε αντίθεση με τις εικόνες/ήχο, όπου ένα pixel/ένα δείγμα ηχητικού σήματος διατηρεί
σταθερή σημασία, τα κειμενικά δεδομένα εμφανίζουν έντονη εξάρτηση από τα συμφραζόμενα. Στο πλαίσιο
αυτό, το κεφάλαιο προτείνει μια καινοτόμο προσέγγιση που αξιοποιεί διμερείς γράφους (bipartite graphs) και
Graph Neural Networks (GNNs) για να παραχθούν συνεκτικές, ελάχιστες και αποτελεσματικές αντικαταστάσεις
λέξεων.

1.3.1 Κίνητρο

Σε αντίθεση με εικόνες/ήχο, οι λέξεις αποκτούν νόημα μόνο μέσα από τα συμφραζόμενά τους. Ενώ νευρωνικά
μοντέλα γενικού σκοπού (π.χ. μεγάλα γλωσσικά μοντέλα - Large Language Models (LLMs)) μπορούν να παρά-
γουν γραμματικά επιτυχημένες διορθώσεις σε ένα κείμενο, συχνά στερούνται διαφάνειας και ακριβούς ελέγχου
στον αριθμό και το είδος των αλλαγών. Για αυτό ο στόχος του σύστηματων παραγωγής αντιπαραδειγμάτων του
συγκεκριμένου κεφαλαίου είναι ο παρακάτω!

• Ελαχιστοποίηση τροποποιήσεων: Αλλαγές σε όσο το δυνατόν λιγότερες λέξεις.

• Σημασιολογική εγγύτητα: Η καινούργια εκδοχή πρέπει να διατηρεί τον βασικό πυρήνα νοήματος.

• Γλωσσική “ροή”: Η τελική πρόταση να παραμένει ευανάγνωστη και φυσική.

• Κλιμάκωση/Αποδοτικότητα: Ο χρόνος που χρειάζεται για να δημιουργηθούν αυτά τα αντί-
παραδείγματα πρέπει να είναι διαχειρίσιμος ακόμη και για μεγάλα σώματα κειμένου.

Με βάση αυτά, το προτεινόμενο πλαίσιο μοντελοποιεί τις αλλαγές λέξεων ως συνδυαστικό πρόβλημα βέλτιστης
αντιστοίχισης πάνω σε διμερείς γράφους, εξασφαλίζοντας συγχρόνως αποδοτικότητα μέσω της χρήσης ενός
GNN που προσεγγίζει το βέλτιστο αποτέλεσμα.

1.3.2 Μοντελοποίση της φυσικής γλώσσας ως διμερή γράφο

Η βασική ιδέα βασίζεται στη σύνδεση λέξεων του εισαγωγικού κειμένου (κόμβοι “πηγής”, S) με κόμβους-στόχους
(T ) που αποτελούν πιθανούς υποψήφιους αντικαταστάτες. Η βαρύτητα των ακμών (edge weight) αποτυπώνει
πόσο “ακριβή” ’ θεωρείται η αντικατάσταση μιας λέξης. ΄Ετσι, η επίλυση του προβλήματος μετατρέπεται σε
πρόβλημα αντιστοίχισης (Linear Assignment), όπου επιχειρείται η ελάχιστη άθροιση βαρών στις ακμές που
επιλέγονται.

Για τον υπολογισμό των βαρών υιοθετούνται δύο προσεγγίσεις:

1. Χρήση WordNet: Κάθε ζεύγος λέξεων αντιστοιχεί σε μια διαδρομή στο λεξικό WordNet. Αυτό
επιτρέπει απόλυτη ερμηνευσιμότητα (transparency) αλλά περιορίζεται από τη σχετικά πεπερασμένη γνώση
και αυστηρή ιεραρχία του WordNet.

2. Χρήση Ενσωματώσεων (Embeddings): Εδώ, η “απόσταση” ορίζεται από τη συσχέτιση π.χ.
συνημίτονου (cosine) σε προεκπαιδευμένα διανύσματα λέξεων. Οι ενσωματώσεις (π.χ. AnglE, GinaAI)
τείνουν να αποτυπώνουν πιο σφαιρικά τη σημασιολογική εγγύτητα, αλλά στερούνται της ερμηνευσιμότητας
που παρέχει το WordNet.

Σε αυτό το στάδιο, τίθεται ο περιορισμός ότι κάθε λέξη (στο S) μπορεί να αντιστοιχηθεί τουλάχιστον σε μία
πιθανή αντικατάσταση (στο T ). Η αντιστοίχιση μπορεί να είναι ελαφρώς χαλαρή (Relaxed Linear Assignment
Problem, RLAP), διευκολύνοντας την εύρεση κατάλληλων αλλοιώσεων σε κειμενικά δεδομένα.

30



1.3. Παραγωγή επεξηγήσεων μέσω αντιπαραδειγμάτων σε δεδομένα κειμένων

1.3.3 Ακριβής Επίλυση εναντίον Προσέγγιση με Νευρωνικά Δίκτυα Γράφων

Αρχικώς, το πρόβλημα του Linear Assignment (ή Hungarian algorithm) προσφέρει μια ακριβή λύση στο
πρόβλημα που μελετάται, όμως η πολυπλοκότητα ανέρχεται σε O(mn log n), και πράγμα που το κάνει μη εφαρ-
μόσιμο σε περιπτώσεις όπου το σύνολο δεδομένων είναι μεγάλο. Αντ’ αυτού, το κεφάλαιο προτείνει την εκ-
παίδευση GNNs για την προσέγγιση της βέλτιστης λύσης του RLAP. Εκπαιδεύοντας το GNN σε συνθετικά
παραδείγματα γραφημάτων (όπου γνωρίζουμε εκ των προτέρων την ελάχιστη αντιστοίχιση), το μοντέλο μαθαίνει
να επιλέγει ακμές (αντικαταστάσεις) κοντά στη βέλτιστη λύση, παρακάμπτοντας το υψηλό υπολογιστικό κόστος,
ανεξαρτήτως το μέγεθος του συνόλου.

1.3.4 Διαδικασία Δημιουργίας Αντιπαραδειγμάτων

Η μέθοδος οργανώνεται σε τρία στάδια. Αρχικά, δημιουργείται ο δημερής γράφος στον οποίο ορίζονται ποιες
λέξεις υφίστανται ενδεχόμενη αλλαγή (κόμβοι S) και με ποιες λέξεις μπορούν να αντικατασταθούν (κόμβοι T ),
με τα βάρη των ακμών (word similarity/embedding distance). ΄Επειτα, εφαρμόζεται είτε ο κλασικός αλγόριθμος
RLAP είτε το GNN για να εντοπίσει ένα σύνολο πιθανών s → t αντιστοιχίσεων. Τέλος, για την εύρεση του
βέλτιστου κειμένου χρησιμοποιείται και ο beam search, ο οποίος διασφαλίζει την παραγωγή κειμένων με τις
ελάχιστες αλλαγές (π.χ. επιβολή ορίου αλλαγών π.χ. 10 λέξεις max, ή έως 20% του κειμένου) και τερματισμό
μόλις αλλάξει ετικέτα ή εξαντληθεί το όριο αλλαγών.

1.3.5 Πειραματική Αξιολόγηση και Αποτελέσματα

Η μεθοδολογία δοκιμάστηκε στα Αγγλικά σε δύο ταξινομητές: IMDB (συναισθηματική ανάλυση) και 20
Newsgroups (ταξινόμηση θεματολογίας). Γίνεται σύγκριση της προτεινόμενης μεθόδου έναντι των MiCE
(white-box editor) και Polyjuice (ένας πιο γενικός editor με χρήση LLM). Η αξιολόγηση περιλαμβάνει:

• Flip-rate: Πόσο συχνά το μοντέλο ταξινόμησης αλλάζει ετικέτα.

• Minimality : Ποσοστό λέξεων που αντικαθίστανται.

• Semantic closeness: Π.χ. μέσω BERTscore.

• Fluency : Απόκλιση από τη ροή του πρωτοτύπου (T5-BASE απώλεια).

• Χρόνος: Συνολική διάρκεια εκτέλεσης.

Τα αποτελέσματα δείχνουν ότι η προτεινόμενη τεχνική (με τη χρήση deterministic ή GNN RLAP) επιτυγχάνουν
καλύτερη ελαχιστοποίηση, καλύτερη ροή, συγκρίσιμη ή υψηλότερη μεταβολή ετικέτας και, κυρίως, δραστικά
μικρότερο χρόνο σε σχέση με MiCE και Polyjuice. Ο MiCE συχνά επιτυγχάνει οριακά υψηλότερο flip-rate,
όμως απαιτεί περισσότερες αλλαγές (παραβλέποντας την ελαχιστοποίηση) και 20πλάσιο χρόνο υπολογισμού.
Με την αξιοποίηση ενσωματώσεων (αντί για WordNet), επιτυγχάνονται ακόμη πιο μικρές αλλαγές και πιο
φυσικός λόγος, βέβαια εις βάρος της πλήρους διαφάνειας που προσφέρει το WordNet.

1.3.6 Ανάλυση Επίδρασης Συνιστωσών

H προτεινόμενη μεθοδολογία αναδεικνύει αρκετές συνιστώσες τα οποία χρήζουν ανάλυσης και η επιλογή τους
μπορεί να επιφέρει σημαντικές αλλαγές στην απόδοση των αλγορίθμων:

• ΄Ελεγχος εναντίον Ελαχιστότητα: Η επιβολή χαμηλών ορίων αλλαγών συχνά μειώνει το flip-rate
αλλά διασφαλίζει πιο “μικρές” επεμβάσεις.

• Βελτιστότητα εναντίον Ταχύτητα: Ακριβείς αλγόριθμοι assignment (π.χ. Hungarian) κλι-
μακώνονται δυσκολότερα σε σύγκριση με το GNN, το οποίο όμως υστερεί στην εύρεση της βέλτιστης
λύσης.

• Επεξηγησιμότητα εναντίον Απόδοσης: Λύσεις μεWordNet επιτρέπουν ολική διαφάνεια (ελέγχε-
ται η διαδρομή s→ t), ενώ οι ενσωματώσεις δίνουν καλύτερες, πιο ευέλικτες αλλαγές με λιγότερες λέξεις.
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1.3.7 Συμπεράσματα και Μελλοντικές Προεκτάσεις

Συνδυάζοντας τη λογική των δημερών γράφων, των τεχνικών Linear Assignment, και την προσέγγιση GNN για
επιτάχυνση, σε αυτό το κεφάλαιο προτείνεται μια καινοτόμος μέθοδο δημιουργίας αντιπαραδειγμάτων κειμένου,
επαρκή τόσο για το “flip” της ετικέτας σε black-box μοντέλα όσο και ως εργαλείο γενικής επεξεργασίας κειμέ-
νου. Η μέθοδος επιτυγχάνει ελάχιστες αλλαγές, διατηρεί κοντινή σημασιολογική απόσταση, και επιτυγχάνει
αποδοτική εκτέλεση, ξεπερνώντας σε ταχύτητα ανταγωνιστικές μεθόδους. Βραχυπρόθεσμα, είναι εφικτό
να ενσωματωθούν περισσότερες εξωτερικές πηγές (π.χ. ConceptNet) ώστε να διευρυνθεί το ρεπερτόριο υποψή-
φιων λέξεων, ενώ η περαιτέρω βελτίωση των GNN (ώστε να πλησιάζει περισσότερο την ιδανική λύση RLAP)
αποτελεί επίσης μια ενδιαφέρουσα οδό. Μια ακόμη υποσχόμενη κατεύθυνση αφορά τον υβριδικό συνδυασμό
γλωσσικών μοντέλων παραγωγής κειμένου με την προσέγγιση των δημερών γράφων, για ακόμη υψηλότερη
ποιότητα επεξεργασίας και ισορροπία μεταξύ φυσικότητας και ελέγχου.
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1.4 Αξιολόγηση της ποιότητας των επεξηγήσεων μέσω αντιπα-

ραδειγμάτων

Το παρόν κεφάλαιο επικεντρώνεται στην ανάλυση και αξιολόγηση της ποιότητας των συστημάτων παραγ-

ωγής επεξηγήσεων μέσω αντιπαραδειγμάτων (editors). Επίσης, υπογραμμίζεται η ανάγκη ύπαρξης μεθοδικών
μετρικών για την εκτίμηση του κατά πόσο οι editors μπορούν να εξάγουν τις ελάχιστες επεξηγήσεις. Οι
αντιπαραδειγματικές εξηγήσεις—παρεμβάσεις που αντιστρέφουν την αρχική πρόβλεψη ενός μοντέλου με τις ελ-
λάχιστες αλλαγές—αναδεικνύονται ως κεντρικό εργαλείο επεξηγησιμότητας σε μοντέλα μηχανικής μάθησης,
καθώς επιτρέπουν σε χρήστες και ειδικούς να αντιληφθούν ποιο στοιχείο του εισαγωγικού δείγματος ευθύνεται

για την προβλεπόμενη κλάση. Ωστόσο, η έλλειψη των βέλτιστων λύσεων (gold standard) για τέτοιου είδους
επεξηγήσεις καθιστά την αξιολόγηση περίπλοκη: πώς μπορεί κάποιος να κρίνει ότι μια προτεινόμενη επεξήγηση
αποτελεί πράγματι την καλύτερη λύση, όταν δεν υφίσταται συγκεκριμένη βέλτιστη αναφορά, οπότε δεν δύναται
η δυνατότητα άμεσης σύγκρισης μαζί του;

Προκειμένου να αντιμετωπιστεί αυτό το κενό, στο κεφάλαιο αυτό προτείνεται κεφάλαιο μια επαναληπτική
προσέγγιση τύπου feedback loop, μέσω της οποίας δύνεται η δυνατότητα εξαγωγής συμπερασμάτων που
αφορούν την βελτιστότητα του editor. Σε αυτή την επαναληπτική διαδικασία η παραγόμενη έξοδος ενός editor
f για μια είσοδο x, η όποια συμβολίζεται ως f(x), τροφοδοτείται εκ νέου στον ίδιο editor f , παράγοντας μια
δεύτερη εκδοχή f(f(x)). Η παραπάνω διαδικασία επαναλαμβάνεται αναδρωμικά για πολλαπλά βήματα. Η ιδέα
αυτή, εμπνευσμένη από την back-translation τεχνική για την αξιολόγηση της μετάφραση κειμένου, επιτρέπει τη
μελέτη του κατά πόσο ο editor εξακολουθεί να τηρεί την αρχή της ελαχιστοποίησης ή παρουσιάζει ασυνέπειες σε
διαδοχικά στάδια. Για αυτό προτείνεται και μια νεα μετρική για την αυτόματη αξιολόγηση τέτοιων φαινομένων
η όποια ονομάζεται ασυνέπεια και υπολογίζεται σε διάφορα βήματα της παραπάνω αναδρομικής διαδικασίας -
inc@n, εκτιμά την αυξημένη απόσταση που προκύπτει από διαδοχικά edits και εντοπίζει περίπτωση ύπαρξης
μονοπατιών που ο editor παρέβλεψε ενώ δεν θα έπρεπε.

1.4.1 Γιατί η Αξιολόγηση των Αντιπαραδειγμάτων είναι Δύσκολη

Το κεντρικό ζήτημα στην αξιολόγηση αντιπαραδειγματικών εξηγήσεων συνίσταται στο ότι δεν υπάρχει ένα σαφές

“σωστό” αντιπαράδειγμα προς σύγκριση. Αντ΄ αυτού χρησιμοποιούνται διάφορες μετρικές, άλλοτε ανεξάρτητες
του πεδίου εφαρμογής (flip rate, minimality/proximity, sparsity, coverage, feasibility, actionability) και άλλοτε
εξειδικευμένες στην περίπτωση επεξεργασίας κειμένου (π.χ. Levenshtein για minimality, perplexity για fluency,
κ.λπ.). Ωστόσο, η μέτρηση μόνο από μια οπτική δεν επαρκεί για να τεκμηριώσει ότι ένας editor βρίσκει μια
όντως βέλτιστη λύση ούτε για να αναδείξει κρυφούς περιορισμούς (π.χ. το φαινόμενο της καθολικής αλλαγής
του κειμένου).

1.4.2 Μια Επαναληπτική Προσέγγιση

Ορίζουμε το πρόβλημά μας ως εξής: ΄Εχουμε έναν ταξινομητή g με g : L → [0, 1]
C , όπου L είναι το σύνολο

κειμένων μιας συγκεκριμένης γλώσσας και C ο αριθμός των κλάσεων. Θεωρούμε τους counterfactual editors
ως συναρτήσεις f : L → L, με σκοπό:

1. Το τροποποιημένο κείμενο να ταξινομείται σε διαφορετική κλάση: argmax g(f(x)) ̸= argmax g(x).

2. Οι αλλαγές να είναι ελάχιστες βάσει κάποιας μετρικής απόστασης d:

f = argmin
h∈F

d(x, h(x))

όπου F είναι το σύνολο των συναρτήσεων για τις οποίες argmax g(f(x)) ̸= argmax g(x).

3. Το τροποποιημένο κείμενο f(x) να είναι ευανάγνωστο και εντός της κατανομής της γλώσσας L.

Για την αξιολόγηση της συμμόρφωσης με τα παραπάνω κριτήρια, αναλύεται η συμπεριφορά των editors υπό
συνθήκες επαναληπτικής ανάδρασης, εξετάζοντας τη συνάρτηση f(f(. . . f(x))) για n επαναλήψεις. Καθορίζεται
ένας νέος μετρικός δείκτης για την ποσοτικοποίηση του δεύτερου κριτηρίου μέσω της επαναληπτικής διαδικασίας,
ενώ τα πρώτα και τρίτα κριτήρια ελέγχονται μέσω μετρικών απόδοσης στο n-οστό βήμα ανάδρασης, δηλαδή
metric@n. Η ανάλυση επικεντρώνεται στις τιμές των μετρικών μετά από n εφαρμογές του f , ενώ οι επόμενες
ενότητες εξειδικεύουν τις μετρικές αξιολόγησης και τις σχετικές υποθέσεις.
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Συγκεκριμένα για την αυτόματη αξιολόγηση της βελτιστότητας της παραγωγής αντιπαραδειγμάτων, εισάγεται μια
μέθοδος που ξεπερνά την απλή χρήση μετρικών για ένα βήμα της εξόδου ενός editor. Αντί να μελετάται μόνο ένας
μετασχηματισμός x 7→ f(x), η ιδέα έγκειται στην ανατροφοδότηση του κείμενου f(x) στον ίδιο editor, ώστε να
προκύψει f(f(x)), και ούτω καθεξής έως n φορές. Η νεοεισαγόμενη μετρική inc@n (inconsistency) μετρά πόσο
μεγαλώνει η απόσταση (π.χ. μέσω Levenshtein) μεταξύ διαδοχικών βημάτων. Αν ο editor f ήταν πραγματικά
“ελάχιστος” στη συμπεριφορά του, τότε δε θα έπρεπε σε επόμενο βήμα να εκτελεί αλλαγές με μεγαλύτερο
“κόστος” (π.χ. 10 αλλαγές) από αυτό που χρησιμοποιήθηκε αρχικά (π.χ. 8 αλλαγές). ΄Ετσι, αν τελικά υφίσταται
κάποια ανώτερη τιμή, συνάγεται ότι υπήρχε ένα καλύτερο μονοπάτι (με μικρότερη απόσταση) που ο editor
αγνόησε, άρα αυτός παρουσιάζει ασυνέπειες (inconsistencies) σχετικά με τη βελτιστότητά του. Με βάση
τη παραπάνω ανάλυση, ορίστηκε ένα πλαίσιο μετρικων για την αυτόματη αξιολόγηση της βελτιστότητας των
αντιπαραδειγμάτων η οποία ονομάζεται ασυνέπεια. Η ασυνέπεια μπορεί να οριστεί με βάση διάφορες μετρικές,
άλλα στο κεφάλαια αυτό αναλύεται η πιο βασική και ευρέως χρησιμοποιούμενη μετρική της ελαχιστότητας η

όποια πρακτικά μετράει την απόσταση (σε αριθμό λέξεων ή χαρακτήρων) μεταξύ δυο δειγμάτων d. Η μετρική
αυτή που εξετάστηκε ονομάζεται ασυνέπεια ελαχιστότητας και δίνεται από τον παρακάτω μαθηματικό

τύπο.

inc@n(f, x) =
1

n

n−1∑
i=0

inc(fi+1(x), fi(x)), (1.4.1)

όπου f0(x) = x και fi(x) = f(fi−1(x)).

1.4.3 Πειράματα

Το κεφάλαιο επιβεβαιώνει τις ιδέες του δοκιμάζοντας τρεις γνωστούς editors: MiCE, Polyjuice και
TextFooler, πάνω σε δύο συνήθη σύνολα δεδομένων: IMDb (ταξινόμηση κειμένου για συναίσθημα) και News-
groups (20 κλάσεις θεματολογίας). Οι editors αυτοί αντιπροσωπεύουν διαφορετικές πρακτικές:

• MiCE, επιλέγει τοποθεσίες στο κείμενο και τις συμπληρώνει με ένα γλωσσικό μοντέλο, και συχνά απαιτεί
white-box πρόσβαση στον ταξινομητή.

• Polyjuice, προτείνει αλλαγές με βάση ένα μεγάλο γλωσσικό μοντέλο εκπαιδευμένο σε διάφορα σύνολα
δεδομένων ώστε να καλύψει όσο μεγαλύτερο φάσμα εφορμογών είναι δυνατόν. Για αυτό ο editor αυτός
θεωρείται γενικού-σκοπού, μιας και δεν εξαρτάται από την έξοδο ή την task ενός συγκεκριμένου ταξι-
νομητή.

• TextFooler, επιδιώκει να εντοπίσει λέξεις κλειδια σε ένα κείμενο και τις αντικαθιστά με συνώνυμα. ΄Οπως
και ο Polyjuice λειτουργεί χωρίς να απαιτεί πρόσβαση στην εσωτερική δομή του ταξινομητή, αλλά σε
αντίθεση με το Polyjuice τον χρειάζεται σαν μαύρο κουτί για την παραγωγή (black-box adversarial).

Η έξοδος ενός editor για ένα μόνο βήμα (π.χ. @1 edit), πολλές φορές μπορεί να οδηγήσει στην εξαγωγή λανθασ-
μένων συμπερασμάτων τα οποία αφορούν την λειουργία του. Για παράδειγμα ορισμένοι editors στο πρώτο βήμα
φαίνεται να έχουν υψηλό flip rate ή μικρό minimality. Ωστόσο, με την εισαγωγή του feedback loop—δηλαδή
με την εισαγωγή της εξόδου πίσω στην είσοδο του—παρατηρούνται διάφορα ενδιαφέροντα φαινόμενα που μπορεί
να επηρεάζουν σημαντικά τα αποτελέσματά του όταν αυτός εφαρμοστεί σε πραγματικές συνθήκες.

1.4.4 Κύριες Διαπιστώσεις και Εφαρμογές

Τα ευρήματα υποδηλώνουν ότι μια αξιολόγηση χωρίς το feedback loop των editors δεν αρκεί για να αποκαλυφθούν
κρυφές αδυναμίες ή πλεονεκτήματα. Για παράδειγμα ο editor να φαίνεται πολύ αποτελεσματικός στο να βρίσκει
δείγματα που ανήκουν σε άλλη κλάση και με λίγες αλλαγές, αλλά να μην είναι καθόλου ανεκτικός σε δεδομένα
εκτός κατανομής. Επιπλέον, αναδεικνύεται ότι:

• Η στόχευση συγκεκριμένης κλάσης (π.χ. MiCE) ενδέχεται να δυσκολεύει περισσότερο την παραγωγή
διαδοχικών έγκυρων αντιπαραδειγμάτων σε περιβάλλον με πολλές κλάσεις στόχους (π.χ. στο σύνολο
δεδομένων Newsgroups).

• Οι editors που στηρίζουν την λειτουργία τους σε δημιουργικά συστήαμτα (π.χ. Polyjuice, MiCE) κάνουν
γενικά πιο “ευφυείς” αλλά και πιο απρόβλεπτες αλλαγές. Αυτό καταγράφεται και σε μετρικές τύπου
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perplexity ή grammatical errors: όπου σε επόμενα βήματα του feedback loop, είτε βελτιώνουν το κείμενο
είτε χειροτερεύουν απρόσμενα.

• Το feedback loop (inc@n κ.λπ.) καθιστά εφικτή τη “διάγνωση” του αν ο editor χάνει ορισμένες ελάχιστες
λύσεις. Μια αυξημένη τιμή inc@n σημαίνει ότι ο editor αναγκάστηκε να κάνει μεγαλύτερο αριθμό αλλαγών
από ότι θα έπρεπε, άρα υποδεικνύει περιπτώσεις μη βέλτιστης συμπεριφοράς του.

• Σε μια πραγματική χρήση, λ.χ. επαναλαμβανόμενης διερεύνησης ενός κειμένου, οι editors που αντέχουν σε
πολλούς επαναληπτικούς κύκλους (δηλαδή επιτυγχάνουν χαμηλό inc@n) αποδεικνύονται μακροπρόθεσμα
προτιμητέοι.

1.4.5 Συμπεράσματα και Παρατηρήσεις

Καταλήγοντας, στο κεφάλαιο αυτό παρουσιάζεται μια νεα τεχνική μαζί με μια μετρική για την αυτόματη αξ-
ιολόγηση των συστημάτων παραγωγής αντιπαραδειγματικών (editors). Η μετρική αυτή, η οποία ονομάζεται
inconsistency, στηρίζεται στην πραγματοποίηση ενός feedback loop δύνοντας την έξοδο του editor πίσω στην
είσοδο του. Πειραματικά φαίνεται ότι το inconsistency μπορεί να εντοπίσει περιπτώσεις στις οποίες ο editor
συμπεριφέρεται υπο-βέλτιστα ή ασυνεπώς, αναδεικνύοντας την αναγκαιότητα για βαθύτερη αξιολόγηση. Οι edi-
tors που βάσει τυπικών μετρικών μοιάζουν ιδανικοί με χρήση των καθιερωμένων τεχνικών αξιολόγησης μπορεί
να αποδειχθούν ασταθείς όταν αξιολογούνται με την προτεινόμενη τεχνική, ενώ κάποιοι υπό-εκτιμημένοι σε μία
μόνο εκτέλεση εμφανίζονται συνεπέστεροι σε επανειλημμένες εφαρμογές.

Η συμβολή της παρούσας ανάλυσης είναι πως επιτρέπει στους χρήστες και ερευνητές να επιλέγουν τον καταλλη-

λότερο editor ανάλογα με τη χρήση, αναλύοντας ποιοτικότερα τα “προφίλ” πλεονεκτημάτων/μειονεκτημάτων.
Επίσης, η μεθοδολογία επανατροφοδότησης μπορεί να αξιοποιηθεί για την περαιτέρω εκπαίδευση και βελτίωση
των ίδιων των editors, εφόσον τα δεδομένα της ανατροφοδότησης μπορούν να χρησιμεύσουν ως δεδομένα για
επιπλέον εκπαίδευση του editor Στο άμεσο μέλλον, προβλέπεται η επέκταση των παραπάνω ιδεών και σε άλλα
πεδία (π.χ. εικόνες, time-series), καθώς και την εμπλοκή “ανθρώπων” για την αξιολόγηση των αποτελεσμάτων
τόσο της προτεινόμενης μετρικής όσο και των ίδιων των editor, ώστε να αναδειχθούν τυχόν συσχετίσεις της
μετρικής με την προτίμηση των ανθρώπων.

35



Chapter 1. Εκτεταμένη Περίληψη στα Ελληνικά

1.5 Επεξηγήσιμη Μετρική για την Οπτικοποίηση Ιστοριών

μέσω Αντιπαραδειγματικών Εξηγήσεων

1.5.1 Εισαγωγή

Τα σύγχρονα παραγωγικά μοντέλα εικόνας, όπως τα Generative Adversarial Networks (GANs), τα μοντέλα
διάχυσης (diffusion models) και οι αρχιτεκτονικές που βασίζονται σε μετασχηματιστές (transformers), έχουν
επιτύχει εντυπωσιακή πρόοδο στην παραγωγή ρεαλιστικών και υψηλής ποιότητας εικόνων. Παρ’ όλα αυτά, η
αξιολόγηση των αποτελεσμάτων τους παραμένει δύσκολη. Οι δημοφιλείς μετρικές, όπως το Inception Score (IS)
και το Fréchet Inception Distance (FID), επικεντρώνονται κατά κύριο λόγο σε χαρακτηριστικά χαμηλού επιπέδου
(pixel-level ή στατιστικούς δείκτες), με αποτέλεσμα να παραβλέπουν σημαντικές εννοιολογικές πληροφορίες στις
παραγόμενες εικόνες. Παράλληλα, η ερμηνευσιμότητα (explainability) στα γεννητικά μοντέλα είναι λιγότερο
ανεπτυγμένη σε σύγκριση με τα μοντέλα ταξινόμησης, όπου τεχνικές όπως οι χάρτες προσοχής (saliency maps)
και τα τοπικά μοντέλα αντικατάστασης είναι από καιρό καθιερωμένες.

Το κεφάλαιο αυτό επιχειρεί να καλύψει αυτά τα κενά, προτείνοντας ένα μοντέλο αξιολόγησης που βασίζεται σε
έννοιες (concept-based), το οποίο είναι ανεξάρτητο από τη δομή του εκάστοτε γεννητικού μοντέλου (model-
agnostic). Το κλειδί είναι η αποτύπωση ποια εννοιολογικά στοιχεία (αντικείμενα, ιδιότητες, σχέσεις) εμπερ-
ιέχονται στις παραγόμενες εικόνες, συγκριτικά με τα στοιχεία που αναμένονταν βάσει της προτροπής (prompt)
ή των δεδομένων αληθείας (ground truth). Η σύγκριση γίνεται με έναν σαφή μηχανισμό εμπνευσμένο από την
μέθοδος παραγωγής αντιπαραδειγμάτων (counterfactual explanations) που έχει παρουσιαστεί. Ο μηχανισμός
αυτός λειτουργεί προσδιορίζοντας τις ελάχιστες εννοιολογικές αλλαγές που χρειάζονται ώστε οι παραγόμενες

εικόνες να ευθυγραμμιστούν εννοιολογικά με την εκάστοτε προτροπή.

1.5.2 Εξαγωγή Εννοιών και Σύγκριση

Σε αντίθεση με τις κλασικές αξιολογήσεις που πραγματοποιούνται σε επίπεδο εικονοστοιχείων (pixels), η προ-
τεινόμενη προσέγγιση χαρτογραφεί κάθε παραγόμενη εικόνα σε ένα σύνολο εννοιών. Στην περίπτωση που ο
χρήστης δίνει κείμενο ως προτροπή, αυτό μετατρέπεται σε ένα σύνολο-στόχο εννοιών, το οποίο συμβολίζεται
ως T . Στη συνέχεια, ένα μοντέλο ανίχνευσης αντικειμένων ή χαρακτηριστικών εφαρμόζεται στην παραγόμενη
εικόνα, παράγοντας μια σύνολο-πηγή εννοιών, το οποίο συμβολίζουμε ως S. Οι έννοιες αυτές μπορεί να αφορούν
αντικείμενα (π.χ. “σκύλος”, “αυτοκίνητο”) ή ιδιότητες (“μπλε”, “κυκλικό”) ή ακόμα και πιο σύνθετες οντότητες
(“μεγάλη μπλε σφαίρα”).

1.5.3 Αντιπαραδείγματα και Συντακτικό των Επεξεργασιών Εννοιών

Για να μετρήσουμε πόσο κοντά ή πόσο μακριά βρίσκεται το S από το T , ορίζουμε ένα ελάχιστο σύνολο πράξεων
επεξεργασίας που μπορούν να μετασχηματίσουν την σύνολο-πηγή στο σύνολο-στόχο. Οι πράξεις αυτές είναι
(ομοίως με το αυτά που παρουσιάστηκαν στο Κεφάλαιο 1.1.3):

• Εισαγωγή (Insertion, I): Εισαγωγή μίας έννοιας στο S, αν αυτή λείπει και υπάρχει στο T .

• Διαγραφή (Deletion, D): Διαγραφή μίας επιπλέον έννοιας από το S, αν δεν υπάρχει στο T .

• Αντικατάσταση (Replacement, R): Αντικατάσταση μίας λανθασμένης έννοιας του S με την σωστή,
ώστε να ταιριάξει στο T .

Για καθεμία από αυτές τις ενέργειες ορίζεται ένα κόστος, συχνά βασισμένο σε κάποια μετρική απόστασης d(·, ·)
ανάμεσα σε δύο έννοιες. Για παράδειγμα, η αντικατάσταση της έννοιας “γάτα΄΄ με την έννοια “σκύλος” μπορεί να
είναι φθηνότερη από την αντικατάσταση “γάτα” με “αυτοκίνητο”, εφόσον οι δύο πρώτες ανήκουν στην ευρύτερη
κατηγορία “ζώα”.

Ορίζουμε τη Συντακτική Απόσταση Συνόλου Εννοιών (Concept Set Edit Distance, CSED) με τον παρακάτω
τρόπο:

CSED = D(S → T ) = min
∑
s∈S
t∈T

∑
ops∈{I,D,R}

d(s, t), (1.5.1)
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όπου το d(s, t) εκφράζει το κόστος της απαραίτητης αλλαγής για να μεταβούμε από την έννοια s στην έννοια
t. Στις περιπτώσεις εισαγωγής ή διαγραφής, μπορεί να ληφθεί υπόψη και η απόσταση από μία γενική ρίζα (π.χ.
“entity” σε μια βάση γνώσης όπως το WordNet).

1.5.4 Οπτικοποίηση Ιστοριών (Story Visualization)
Στο πρόβλημα της οπτικοποίησης ιστοριών (SV), καλούμαστε να παράγουμε μια ακολουθία εικόνων {Ik}Lk=1,
καθεμία από τις οποίες αντιστοιχεί σε ένα τμήμα της ιστορίας {ck}Lk=1. Αναδύονται δύο βασικές μετρικές:

Story Loss (SL). Για την k-οστή εικόνα, ορίζουμε το σύνολο εννοιών Sk (όπως ανιχνεύεται αυτόματα) και το
σύνολο-στόχο Tk (από το k-οστό τμήμα της αφήγησης). Ο υπολογισμός της απόστασης επεξεργασίας (CSED)
ανάμεσα στα δύο αυτά σύνολα είναι:

CSEDk = D(Sk, Tk).

Το άθροισμα των CSED σε όλα τα καρέ δίνει τον ορισμό του Story Loss:

SL =

L∑
k=1

CSEDk.

΄Οσο μεγαλύτερη είναι η τιμή του SL, τόσο πιο ελλειμματική είναι η απόδοση του μοντέλου στην πιστή ανα-
παράσταση του σεναρίου σε κάθε καρέ.

Consistency Loss (CL). Εκτός από την ορθή απόδοση κάθε καρέ χωριστά, το μοντέλο πρέπει να διατηρεί
συνέπεια (consistency) σε αντικείμενα ή ιδιότητες που ήδη εμφανίστηκαν. Ορίζουμε τις έννοιες που ανιχνεύονται
στο k-οστό καρέ ως Sk. Τότε η μετρική CL υπολογίζει ποινές για ανεπιθύμητες αλλαγές μεταξύ διαδοχικών
καρέ:

CL =

L∑
k=2

D(Sk, Sk−1),

όπου D(·, ·) είναι η ίδια λογική απόστασης επεξεργασίας εννοιών. Μεγάλο CL υποδεικνύει ασυνέχειες, π.χ.
αφαίρεση ενός αντικειμένου που θα έπρεπε να παραμείνει ή προσθήκη/αλλαγή γνωρισμάτων χωρίς να το υπ-
αγορεύει η αφήγηση.

1.5.5 Παραγωγή Σκηνών (Scene Generation)
Σε μια απλούστερη περίπτωση, ζητούμε από το μοντέλο να παράγει μία εικόνα βάσει ενός κειμένου c. Από το
κείμενο εξάγεται το σύνολο εννοιών-στόχος T , ενώ από την παραγόμενη εικόνα ένα σύνολο-πηγή S. Ο τελικός
στόχος είναι η CSED, δηλαδή η απόσταση D(S → T ). Η διαφορά ανάμεσα στα δύο σύνολα φανερώνει ποιες
εισαγωγές, διαγραφές ή αντικαταστάσεις χρειάζονται ώστε να ταιριάξει η σκηνή στο ζητούμενο περιεχόμενο.

1.5.6 Τοπικές Επεξηγήσεις (Local Explanations)
Κάθε εικόνα που παράγεται (ή καρέ σε μια ιστορία) δίνει ένα ελάχιστο μονοπάτι μετασχηματισμού από S σε T .
Για παράδειγμα, “αντικατάστησε το ‘rubber’ με ‘metallic’ ” ή “διάγραψε το ‘car” ’ εάν η ιστορία δεν ανέφερε κανένα
αυτοκίνητο. Το συνολικό κόστος αποτυπώνει την ποιότητα της παραγόμενης εικόνας ως προς την πιστότητα
στην προτροπή/κείμενο. Συνεπώς, η τοπική επεξήγηση αναδεικνύει με ακρίβεια που ακριβώς αποτυγχάνει το
μοντέλο και πώς μπορεί να διορθωθεί.

1.5.7 Γενικές Επεξηγήσεις (Global Explanations)
Η ανάλυση όλων των τοπικών επεξηγήσεων σε ένα σύνολο δεδομένων επιτρέπει την εξαγωγή ευρέων κανόνων.
Για παράδειγμα, με κανόνες συσχέτισης (π.χ. αλγόριθμος Apriori), μπορούμε να δούμε ότι το μοντέλο συχνά
μπερδεύει κάποιο σχήμα (π.χ. “cylinder” αντί για “sphere”) ή αποτυγχάνει συστηματικά σε μια κατηγορία όπως
το “rubber” vs “metallic”. Αυτή η γενικευμένη εξήγηση βοηθάει στο να εντοπίσουμε πιθανές προκαταλήψεις ή
“τυφλά σημεία” του παραγωγικού μοντέλου.
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1.5.8 Πειραματικά Αποτελέσματα

Στην παρούσα ενότητα περιγράφουμε συνοπτικά τα βασικά πειράματα που πραγματοποιήθηκαν, τα σύνολα δε-
δομένων που επιλέχθηκαν, τα μοντέλα παραγωγής εικόνων που χρησιμοποιήθηκαν και ορισμένα από τα κυριότερα
εμπειρικά αποτελέσματα. Καταρχάς, για τη διερεύνηση της απόδοσης στη μετατροπή κειμένων σε αλληλουχίες
εικόνων (Story Visualization), χρησιμοποιήθηκε μια παραλλαγή του γνωστού συνόλου δεδομένων CLEVR
(ονομάζεται CLEVR-SV). Στη μορφή αυτή, το CLEVR περιλαμβάνει διαδοχικά καρέ (frames), όπου κάθε καρέ
αντιστοιχεί σε μια αφήγηση-πρόταση και προστίθενται σταδιακά νέα αντικείμενα με συγκεκριμένα χαρακτηρισ-
τικά (π.χ. χρώμα, σχήμα, μέγεθος, υλικό). Κάθε πείραμα στο CLEVR-SV διερευνά το κατά πόσο ένα μοντέλο
μπορεί να αποτυπώσει σωστά όχι μόνο τις έννοιες ενός μεμονωμένου καρέ αλλά και τη συνέχειά τους ανάμεσα

σε διαφορετικά καρέ.

Για να αξιολογηθεί η αποδοτικότητα των μοντέλων στη δημιουργία μεμονωμένων εικόνων από περιγραφικές

λεζάντες (Scene Generation), έγινε χρήση ενός μεγάλου συνόλου δεδομένων που προέρχεται από τοMS-COCO.
Στο COCO, κάθε εικόνα συνοδεύεται από διάφορες κειμενικές περιγραφές (captions), που αναφέρουν τα αντικεί-
μενα, τη δράση ή το πλαίσιο της σκηνής. Στην πράξη, για τα πειράματά μας, εστιάσαμε στην περίπτωση όπου
δίνεται μια περιγραφή και καλείται το μοντέλο να παράγει μια εικόνα συμβατή με αυτήν. Η περαιτέρω ανάλυση
στηρίχθηκε στην εξαγωγή εννοιών από το κείμενο (π.χ. «car», «street», «person») και στον συσχετισμό τους
με τις έννοιες που πραγματικά εμφανίζονται στην παραγόμενη εικόνα.

Σε ό,τι αφορά τα παραγωγικά μοντέλα, χρησιμοποιήθηκαν τόσο παραδοσιακές αρχιτεκτονικές GAN όσο και πιο
πρόσφατα diffusion models (όπως Stable Diffusion και παραλλαγές Protogen). Τα GAN εκπαιδεύονται χάρη
στην αλληλεπίδραση ενός γεννήτορα (generator) και ενός διαχωριστή-κριτή (discriminator), ενώ τα diffusion
models βασίζονται σε μια διαδικασία αντίστροφης διάχυσης θορύβου. Στα πειράματα φάνηκε ότι τα diffusion
models έχουν τη δυνατότητα να παράγουν πιο ρεαλιστικές και συνεκτικές εικόνες σε πολλές περιπτώσεις, αν
και κάθε προσέγγιση παρουσιάζει διαφορετικές αδυναμίες ή μεροληψίες.

Το επόμενο βήμα ήταν η εφαρμογή ανιχνευτών αντικειμένων (object detectors) όπως το YOLO-v8 και το
YOLOS στις παραγόμενες εικόνες, ώστε να εντοπιστούν τυχόν παρουσιαζόμενα αντικείμενα ή χαρακτηριστικά.
Παράλληλα, από τις περιγραφές-στόχους εξάγονται επίσης λίστες εννοιών. Σε αυτό το πλαίσιο, η αξιολόγηση
γίνεται συγκρίνοντας τις δύο λίστες, δηλαδή το «παραγμένο σύνολο εννοιών» με το «στόχο», και υπολογίζοντας
πόσες εισαγωγές, διαγραφές ή αντικαταστάσεις χρειάζονται (Concept Set Edit Distance) για να υπάρξει πλήρης
ταύτιση.

Τα αποτελέσματα έδειξαν ότι σε απλές περιπτώσεις το μοντέλο μπορεί να είναι αρκετά ακριβές, ειδικά αν η
περιγραφή περιλαμβάνει αντικείμενα και χαρακτηριστικά που έχουν εκπροσωπηθεί επαρκώς στην εκπαίδευση.
Ωστόσο, σε πιο σύνθετες σκηνές, συχνά εντοπίζεται ανάγκη να «διορθωθούν» πολλές έννοιες. Για παράδειγμα,
σε ορισμένα diffusion models παρατηρείται η συστηματική εισαγωγή επιπλέον αντικειμένων (π.χ. περισσότερα
άτομα απ’ ό,τι περιγράφονται στην πραγματικότητα), ενώ σε άλλες περιπτώσεις οι εικόνες δείχνουν λανθασμένους
τύπους αντικειμένων (π.χ. «car» αντί για «bus»). Στο CLEVR-SV, όπου απαιτείται και συνέπεια από καρέ σε
καρέ, παρατηρήθηκε ότι μερικές αρχιτεκτονικές GAN ξεχνούν ή αντικαθιστούν προηγούμενα αντικείμενα, με
αποτέλεσμα υψηλότερη τιμή Consistency Loss.

Συνολικά, τα πειράματα αναδεικνύουν τα ιδιαίτερα πλεονεκτήματα της μεθόδου που βασίζεται σε ανάλυση εννοιών:
δεν μετρά μόνο την οπτική ποιότητα (όπως γίνεται με το FID), αλλά εστιάζει στο αν το σύστημα «κατανόησε»
τα ζητούμενα αντικείμενα και τα απεικόνισε σωστά. Παράλληλα, η επεξήγηση των αποτελεσμάτων μέσω των
αντιπαραδειγμάτων (π.χ. «αντί να υπάρχει αυτό το αντικείμενο, θα έπρεπε να εμφάνιζε κάτι άλλο») καθιστά
εμφανή τα σημεία όπου κάθε μοντέλο δυσκολεύεται σταθερά — ένα στοιχείο ιδιαίτερα χρήσιμο για μελλοντικές
βελτιώσεις και αποφυγή επαναλαμβανόμενων λαθών.

1.5.9 Συμπεράσματα και Μελλοντικές Κατευθύνσεις

Το κεφάλαιο παρουσιάζει ένα μοντέλο αξιολόγησης βασισμένο στις έννοιες, αξιοποιώντας αντιπαραδείγ-
ματα (counterfactuals) για να μετρήσει και να επεξηγήσει την απόδοση των γεννητικών μοντέλων εικόνας.
Προς αντικατάσταση της καθαρά εικονοστοιχειωτής προσέγγισης, η μέθοδος ελέγχει ρητά αν τα παραγόμενα
αντικείμενα και οι ιδιότητές τους ανταποκρίνονται στις απαιτήσεις. Επιπλέον, δημιουργεί εύκολα ερμηνεύσιμους
δείκτες, τόσο τοπικά ανά δείγμα όσο και γενικευμένα ανά σύνολο δεδομένων, φωτίζοντας «αδύναμα σημεία» ή
προκαταλήψεις του μοντέλου.
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Μελλοντικά, δυνατότητες βελτίωσης περιλαμβάνουν:

• Χρήση πλουσιότερων βάσεων γνώσης για μεγαλύτερη ακρίβεια στην εννοιολογική ιεραρχία και την ανάλυση
αποστάσεων.

• Επέκταση στην ανίχνευση σχέσεων (π.χ. “αντικείμενο Α πίσω από αντικείμενο Β”) για ακριβέστερη
αξιολόγηση πολυπλοκότερων σκηνών.

• Εφαρμογή των ίδιων αρχών σε ακόμη πιο σύνθετες γεννητικές εργασίες (όπως παραγωγή βίντεο), ώστε
να καλύπτεται και η διάσταση του χρόνου.

Συνολικά, η μεθοδολογία αυτή συνιστά ένα βήμα προς πιο ερμηνεύσιμη, ανιχνεύσιμη και επεξηγήσιμη αξι-
ολόγηση των γεννητικών συστημάτων, αναδεικνύοντας όχι μόνο την ποιότητα της τελικής εικόνας αλλά και
τους λόγους για τους οποίους το μοντέλο παρεκκλίνει ή ευθυγραμμίζεται με τις εκάστοτε προδιαγραφές.
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1.6 Επεξηγήσιμη Μετρική για την Ανίχνευση Ψευδαισθήσεων

στην Αυτόματη Περιγραφή Εικόνων

Η σύγκλιση όρασης υπολογιστών και επεξεργασίας φυσικής γλώσσας (NLP) έχει οδηγήσει στη δημιουργία
μοντέλων Vision-Language (VL) ικανά να παράγουν λεζάντες (captions) για εικόνες. Παρά τις εντυπωσιακές
επιδόσεις τους, τα μοντέλα αυτά πάσχουν συχνά από το φαινόμενο των “hallucination” (παραισθήσεων),
όπου το παραγόμενο κείμενο περιέχει αναφορές σε ανύπαρκτα αντικείμενα ή σε λανθασμένες σχέσεις μεταξύ

πραγματικών αντικειμένων. Το φαινόμενο αυτό έχει σοβαρό αντίκτυπο στην αξιοπιστία αυτών των συστημάτων,
ειδικά σε ευαίσθητα σενάρια όπως η ιατρική απεικόνιση ή οι βοηθητικές τεχνολογίες για άτομα με προβλήματα

όρασης.

Σε αυτό το κεφάλαιο, παρουσιάζουμε ένα επεξηγήσιμο πλαίσιο αξιολόγησης των παραισθήσεων στη αυτόματη
περιγραφή εικόνων, προσαρμόζοντας τις μεθόδους παραγωγής αντιπαραδειγμάτων επεξηγήσεων
(counterfactual explanations) που εισήχθησαν στα προηγούμενα κεφάλαια (Κεφ. 4 και 5). Η μεθοδολογία
μας εντοπίζει πώς και πού προκύπτουν οι παραισθήσεις σε ένα κείμενο, και προτείνει τις ελάχιστες δυνατές
τροποποιήσεις για την αφαίρεση ή διόρθωσή τους. Χάρη στην ιεραρχική γνώση (π.χ. WordNet), διασφαλίζουμε
ότι οι διορθώσεις δεν είναι αυθαίρετες, αλλά σημασιολογικά κοντινές και λογικά αποδεκτές.

1.6.1 Μεθοδολογία

Οι παραισθήσεις στην έξοδο μοντέλων τεχνητής νοημοσύνης έχουν απασχολήσει κυρίως την κοινότητα του

NLP (π.χ. σε Μεγάλα Γλωσσικά Μοντέλα). Ωστόσο, η μελέτη τους στο πεδίο της πολυτροπικής
πληροφορίας (εικόνα+κείμενο) βρίσκεται ακόμα σε πρώιμο στάδιο. Στα συστήματα περιγραφής εικόνων
(image captioning), οι παραισθήσεις εμφανίζονται ως ψευδείς αναφορές σε αντικείμενα που δεν υπάρχουν ή ως
ανακρίβειες στις σχέσεις ανάμεσα σε υπαρκτά αντικείμενα.

Τα τρέχοντα μοντέλα παραγωγής λεζάντας, όπως τα BLIP, BLIP-2, GiT κ.ά., πετυχαίνουν υψηλές βαθμολογίες
σε παραδοσιακούς γλωσσικούς δείκτες (BLEU, ROUGE, CIDEr), αλλά μπορεί να παραβλέπουν τον κρίσιμο
άξονα της πιστότητας προς το οπτικό περιεχόμενο. Αυτό το κενό δημιουργεί την ανάγκη για μετρικές που
εστιάζουν ειδικά στις παραισθήσεις και είναι επεξηγήσιμες.

Η βασική ιδέα της προτεινόμενης μεθόδου έγκειται στη χρήση συνόλων εννοιών (concept sets) τόσο από το
κείμενο όσο και από την εικόνα:

• Σετ πηγής S: Αντιστοιχεί σε έννοιες (αντικείμενα ή σχέσεις) που εξάγουμε από την παραγόμενη
λεζάντα.

• Σετ στόχου T : Αντιστοιχεί σε έννοιες ή σχέσεις που όντως υπάρχουν στη σκηνή της εικόνας, όπως
προκύπτουν από δεδομένα εδάφους αλήθειας (annotations).

Για παράδειγμα, αν η λεζάντα αναφέρει “a dog next to a man”, τότε S = {dog,man, (dog-next_to-man)}.
Εάν η πραγματική εικόνα δείχνει έναν άνδρα με ένα λάπτοπ (laptop) πάνω στα γόνατά του, τότε T θα είναι
{man, laptop, (laptop-on-man)}.

1.6.2 Βασικές Τροποποιήσεις (Edit Operations)

Ο τροποποιήσεις για τη μετατροπή του S σε T ορίζονται ως εξής (ομοίως με την συλλογιστική που ακολουθήθηκε
στο Κεφάλαιο 1.1.3):

• Αντικατάσταση (Replacement, R): Αντικατάσταση μιας έννοιας s ∈ S από μια σωστή έννοια t ∈ T .

• Διαγραφή (Deletion, D): Αφαίρεση μιας έννοιας s που δεν έχει αντίστοιχο στην εικόνα (ψευδής
αναφορά).

• Εισαγωγή (Insertion, I): Προσθήκη μιας έννοιας t που υπάρχει στην εικόνα αλλά λείπει από τη
λεζάντα.
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Η συνολική απόσταση εννοιολογικών σετ (Concept Set Edit Distance, CSED) ορίζεται ως το άθροισμα των
ελαχίστων κόστους τροποποιήσεων για την πλήρη μετατροπή του S στο T :

CSED(S → T ) = min
∑
edits

d(s, t), (1.6.1)

όπου d(·, ·) μια σημασιολογική απόσταση, π.χ. η ελάχιστη διαδρομή σε ιεραρχία όπως το WordNet.

1.6.3 Εντοπισμός Παραισθήσεων σε Αντικείμενα

΄Εστω ότι η λεζάντα περιλαμβάνει |S| αντικείμενα. Εάν ένα αντικείμενο δεν υπάρχει στην εικόνα, πρέπει να
διαγραφεί (φαινόμενο hallucination). Παράλληλα, εάν ένα αντικείμενο στην πραγματικότητα είναι άλλο (π.χ.
“dog” αντί “laptop”), απαιτείται αντικατάσταση (R). Ορίζουμε:

Hallucinations(S, T ) = |D(S, T )|+ |R(S, T )|+ |O(S, T )|,

όπουO (Over-specialization) αντανακλά την περίπτωση που το μοντέλο βλέπει ένα πιο συγκεκριμένο αντικείμενο
από αυτό που υπάρχει (π.χ. λέει “woman” ενώ είναι “girl”), και το T δείχνει άλλο σημασιολογικό κόμβο.

Η αναλογία:

HalRate(S, T ) =
Hallucinations(S, T )

|S|
εκφράζει το ποσοστό αντικειμένων στη λεζάντα που είναι παραισθήσεις.

1.6.4 Εντοπισμός Παραισθήσεων σε Σχέσεις (Roles)
Εκτός από τα ίδια τα αντικείμενα, εξετάζουμε πώς συσχετίζονται μεταξύ τους στο κείμενο. Παρουσιάζονται σε
μορφή τριπλών: (si, r, sj). Ορίζουμε αντίστοιχα ένα σετ σχέσεων Sr

από τη λεζάντα και T r
από τα annotations

της εικόνας. Οι ίδιες τροποποιήσεις (I, D, R) εφαρμόζονται, με βασικό μέλημα τώρα την αλλαγή του ρήματος
ή της πρόθεσης (π.χ. “next to” αντί “on”).

Το Graph Edit Distance (GED) επί των Sr, T r
καταγράφει ποιες (και πόσες) σχέσεις είναι λανθασμένες

(hallucinated) ή παραλειπόμενες.

1.6.5 Πειράματα

Χρησιμοποιούμε δεδομένα από το Microsoft COCO και από το Visual Genome (VG). Τα αντίστοιχα μοντέλα
λεζάντας (BLIP, GiT κ.λπ.) παράγουν λεζάντες για τις εικόνες, ενώ τα ground-truth annotations προσφέρουν
“αληθινά” αντικείμενα/σχέσεις. Ακολούθως, συγκρίνουμε το σετ πηγής (S, Sr) με το σετ στόχου (T, T r).

Παραδείγματα Παραισθήσεων

Συχνά εμφανίζεται το φαινόμενο να “βλέπει” το μοντέλο επιπλέον αντικείμενα (Deletion needed) ή να μπερδεύει
τύπους αντικειμένων (Replacement). Σε κάποιο παράδειγμα, η λεζάντα μιλάει για “dog next to a man”, ενώ
υπάρχει “laptop on man’s lap”. Η ανάλυση υποδεικνύει:

R(“dog” → “laptop”), R(“next_to” → “on”),

ως τις ελάχιστες απαραίτητες τροποποιήσεις.

Ευρήματα

1. Επίπεδο ψευδών αντικειμένων: Σε ορισμένες περιπτώσεις, έως και 30% των αντικειμένων μιας
λεζάντας προκύπτουν ψευδή.

2. Σχέσεις-ρόλοι (role hallucinations): ΄Ανω του 50% των προτάσεων περιέχει λάθος σχέσεις, ιδι-
αίτερα όταν υπάρχουν περίπλοκες σκηνές.

3. Ασυμφωνία με γλωσσικούς δείκτες: Οι καθιερωμένες μετρικές (BLEU, ROUGE) δεν συσχετί-
ζονται απαραίτητα με χαμηλότερα ποσοστά παραισθήσεων. Μπορεί ένα μοντέλο να έχει υψηλό BLEU αλλά
να “εφευρίσκει” αντικείμενα.

41



Chapter 1. Εκτεταμένη Περίληψη στα Ελληνικά

1.6.6 Συμπεράσματα και Μελλοντικές Κατευθύνσεις

Με την προτεινόμενη μεθοδολογία αντεπικουρικών επεξηγήσεων, επιτυγχάνουμε:

• Εντοπισμό συγκεκριμένων λαθών: ποια αντικείμενα/ρόλοι δεν συμφωνούν με την πραγματική
εικόνα.

• Πρόταση ελάχιστων διορθώσεων: ποια έννοια πρέπει να αφαιρεθεί, αντικατασταθεί κτλ.

• Μοντέλο-αγνωστική προσέγγιση: Δεν απαιτείται εσωτερική πρόσβαση (white-box) στο μοντέλο
λεζάντας, άρα εφαρμόζεται ενιαία σε διάφορα VL μοντέλα.

Η μελέτη των παραισθήσεων στην περιγραφή εικόνων αναδεικνύει την ανάγκη για πιο εξηγήσιμες μετρικές και

αλγορίθμους. Στο μέλλον, ενδείκνυται:

• Επέκταση σε επιπλέον πόρους γνώσης: Ενσωμάτωση ConceptNet, word embeddings
(Word2Vec, BERT) για εντοπισμό πιο λεπτών σημασιολογικών λαθών.

• Εφαρμογή σε πολυπλαίσια δεδομένα: Video captioning ή διαλογικά σενάρια, όπου οι παραισθή-
σεις μπορεί να εμφανιστούν διαδοχικά.

• Ρυθμίσεις εκπαίδευσης: Χρήση του CSED ή GED ως πρόσθετο loss term, ώστε το μοντέλο να
τιμωρείται όταν επινοεί μη υπαρκτά αντικείμενα.

Συνολικά, το παρόν κεφάλαιο σκιαγραφεί έναν νέο εξηγήσιμο τρόπο για να μετράμε την ποιότητα και αληθοφάνεια
σε συστήματα περιγραφής εικόνων, αντιμετωπίζοντας το πρόβλημα των παραισθήσεων σε επίπεδο εννοιών και
συσχετίσεων. Η δυνατότητα σαφούς διόρθωσης των λαθών (το “πώς” διορθώνεται κάτι) υπερβαίνει την απλή
βαθμολόγηση και προωθεί τη διαφάνεια και την εμπιστοσύνη στα μοντέλα της τεχνητής νοημοσύνης.

42



1.7. Χρήση Αντιπαραδειγμάτων για τη Βελτίωση των Ικανοτήτων Συλλογισμού των Μοντέλων Μεγάλων
Γλωσσών

1.7 Χρήση Αντιπαραδειγμάτων για τη Βελτίωση των Ικαν-

οτήτων Συλλογισμού των Μοντέλων Μεγάλων Γλωσσών

Οι πρόσφατες εξελίξεις στα Μεγάλα Γλωσσικά Μοντέλα (LLMs) όπως το GPT-3 και το GPT-4 έχουν
αποκαλύψει σημαντικές δυνατότητες συλλογισμού σε ευρύ φάσμα πεδίων. Αν και τα μοντέλα αυτά έχουν επιτύχει
αξιοσημείωτες προόδους στον παραγωγικό (deductive) συλλογισμό, δυσκολεύονται σε περιπτώσεις όπου
απαιτούνται inductive λογικές δεξιότητες.

Στο Κεφάλαιο αυτό, παρουσιάζεται ένα σχήμα ταξινόμησης το οποίο εστιάζει κυρίως στη γνωστική διαδικασία και
τις απαιτούμενες δεξιότητες για την επίλυση «puzzle»-τύπου προβλημάτων, αντί να επικεντρώνεται αποκλειστικά
στην τυπική κατηγοριοποίηση με βάση τη μορφή της ερώτησης (π.., πολλαπλής επιλογής, σύντομης απάντησης)
ή το είδος του συλλογισμού (παραγωγικός, επαγωγικός, παραγωγικός με εξαίρεση κ.λπ.). Για παράδειγμα,
γρίφοι όπως τα Sudoku ή τα σταυρόλεξα στηρίζονται σε κανόνες και απαιτούν στρατηγικές που αξιοποιούν
συγκεκριμένες κινήσεις μέσα σε αυστηρά ορισμένο χώρο κατάστασης. Από την άλλη, οι προγραμματιστικοί
γρίφοι (Programming Puzzles) ή προβλήματα που αξιοποιούν ευρύτερη «κοινή γνώση» (commonsense) και
επιπλέον λογικές διεργασίες δεν βασίζονται σε προκαθορισμένους κανόνες αλλά στην ικανότητα του μοντέλου

να εφαρμόζει ευρύτερες γνωστικές δεξιότητες.

Για αυτό, παρουσιάζεται μια ταξινόμηση παζλ, χωρισμένων ανάλογα με το αν προϋποθέτουν αυστηρά formal rules
ή περισσότερο ευέλικτη-ελεύθερη (rule-less) σκέψη, δείχνοντας τη διαφορετική φύση των λογικών προκλήσεων
που προκύπτουν. Το παρόν κεφάλαιο πραγματεύεται πώς οι γρίφοι που δημιουργούνται ως αντιπαραδείγματα
(counterfactual) μπορούν να βελτιώσουν περαιτέρω τις ικανότητες συλλογισμού των LLMs, εστιάζοντας κυρίως
σε riddle-solving tasks. Με έμφαση στην παραγωγή “εναλλακτικών” γρίφων με ίδιο συλλογιστικό πυρήνα αλλά
αλλαγμένο πλαίσιο (context), αναδεικνύεται η αξία του να αποκτούν τα μοντέλα διαφορετικές οπτικές του ίδιου
νοητικού μοτίβου, βελτιώνοντας τις γενικές τους ικανότητες λογικής και προσαρμοστικότητας.

1.7.1 Χρήση LLMs για την Επίλυση Προβλημάτων Γρίφων
Με την ενσωμάτωση των LLMs σε προβλήματα επίλυσης γρίφων, η ερευνητική κοινότητα έχει αναπτύξει τεχνικές
που βελτιώνουν τις ικανότητες λογικής, π.χ. μέσω prompting, neuro-symbolic προσεγγίσεων, καθώς και με τη
χρήση fine-tuning σε εξειδικευμένα σετ δεδομένων. Διάφορες μέθοδοι prompting (π.. Chain-of-Thought, Self-
Consistency, Tree-of-Thought) διατυπώνουν διάμεσες επεξηγήσεις (reasoning steps), αποδεικνύοντας βελτι-
ωμένη ακρίβεια σε λογικές διεργασίες. Ωστόσο, ακόμα και οι καλύτερες υλοποιήσεις παραμένουν ευαίσθητες
στην ποιότητα και την ποικιλία των παραδειγμάτων που παρέχονται ως in-context (few-shot) ενδείξεις.

1.7.2 Δημιουργία Γρίφων μέσω Αντιπαραδειγμάτων

Η χρήση (counterfactual) για την κατανόηση και την ενίσχυση των δυνατοτήτων των συστημάτων ΤΝ, αποτελεί
βασική ιδέα στη βιβλιογραφία XAI (Explainable AI). Με παρόμοιο σκεπτικό, η παραγωγή counterfactual rid-
dles στοχεύει στη δημιουργία εναλλακτικών γρίφων που απαιτούν την ίδια λογική διαδρομή αλλά θέτουν ένα
διαφορετικό πλαίσιο (context). Παρόμοιοι όροι, όπως context-reconstructed riddles ή alternative puzzles, χρησι-
μοποιούνται στη βιβλιογραφία. ΄Οταν τα μοντέλα εκτίθενται τόσο στο αυθεντικό όσο και στο ανακατασκευασ-
μένο παράδειγμα, ενισχύεται η ικανότητά τους να κατανοούν βαθύτερα το reasoning pattern — αντί να απλώς

προσαρμόζονται στα επιφανειακά (semantic) χαρακτηριστικά του πρωτότυπου δείγματος.

1.7.3 Μεθοδολογία

΄Εστω ένας πρωτότυπος γρίφος “Ξυρίζεται κάθε μέρα, αλλά τα γένια του παραμένουν μακριά”, με απάντηση
“κουρέας” (barber). Για να δημιουργήσουμε ένα ανακατασκευασμένο (context-reconstructed) γρίφο, μπορούμε
να αλλάξουμε το πλαίσιο διατηρώντας την ίδια λογική που οδηγεί στην απάντηση: “Παίρνει συνεχώς μέτρα
ρούχων, μα δεν έχει ποτέ δικά του. . . ” (τύπου “ράφτης”). Σημασία έχει ότι η συλλογιστική διαδρομή —η
ειρωνική ή παράδοξη πτυχή— παραμένει η ίδια, ενώ το θέμα (context) μεταβάλλεται.

1.7.4 Η Μέθοδος RISCORE
Η μέθοδος RISCORE (RIddle Solving with CO-ntext RE-construction) εισάγει ανακατασκευασμένους γρί-
φους στη διαδικασία few-shot prompting. Συγκεκριμένα:
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• Αρχική επιλογή παραδειγμάτων (exemplars): Γίνεται συνήθως με όμοιες τεχνικές (π.. semantic
similarity).

• Ανακατασκευή ερώτησης και σωστής απάντησης: Για κάθε επιλεγμένο παράδειγμα, παράγεται
ένας context-reconstructed γρίφος που αξιοποιεί την ίδια λογική, αλλά σε εναλλακτικό πλαίσιο (context).

• Δημιουργία λανθασμένων επιλογών: Προστίθενται παραπλανητικές επιλογές (distractors) που
είναι λανθασμένες αλλά πειστικές, ώστε να ενισχυθεί η δυσκολία.

• Διάταξη (prompting): Τελικά, στον prompt παρέχονται τόσο το αρχικό όσο και το ανακατασκευασ-
μένο παράδειγμα, με στόχο να αναδειχθεί η κοινή συλλογιστική διαδρομή και να βελτιωθεί η γενίκευση.

Η διαδικασία παραγωγής έχει δύο βήματα: πρώτον φτιάχνεται ο νέος γρίφος-απάντηση (χωρίς distractors),
ύστερα δημιουργούνται κατάλληλα distractors (λανθασμένες επιλογές) σε σχήμα πολλαπλής επιλογής. Για
dataset με παραγωγικές (creative) απαντήσεις, αξιοποιείται η ικανότητα του LLM να μεταφέρει την ίδια ιδέα σε
διαφορετικά context, ενώ για datasets με μονολεκτικές απαντήσεις (π.χ. RiddleSense) υιοθετούνται διαφορετικές
κατηγορίες τύπου (food, person, object, animal, nature, time, place, concept) για να εξασφαλίσουμε ότι οι
distractors ανήκουν σε άλλη κατηγορία από τη σωστή.

1.7.5 Πειράματα

Για να αξιολογηθεί η αποτελεσματικότητα της μεθόδου RISCORE, επιλέχθηκαν δύο σύνολα δεδομένων το
BrainTeaser και το RiddleSense.

• BrainTeaser: Επικεντρώνεται σε lateral (πλευρική) σκέψη όπου οι γρίφοι απαιτούν δημιουργικότητα και
«άλματα λογικής», με 4 επιλογές απάντησης (η τελευταία “None of the above”). Επιπλέον, περιλαμβάνει
manually crafted αντίστοιχα context-reconstructed δείγματα, τα οποία χρησιμοποιήθηκαν ως ανώτατο
όριο σύγκρισης (upper bound) ποιότητας.

• RiddleSense: Αντίθετα, εστιάζει κυρίως σε vertical reasoning γρίφους (αλληλουχίες λογικών βημάτων).
Δεν διαθέτει reconstructions, οπότε εφαρμόστηκε αποκλειστικά η αυτοματοποιημένη μέθοδος παραγωγής
ανακατασκευασμένων παραδειγμάτων.

Επιπλέον, δοκιμάστηκαν πολλαπλές τεχνικές prompting:

1. Zero-shot (ZS): Με ή χωρίς παρότρυνση “Let’s think step-by-step” (CoT ΖS ).

2. Few-shot (FS): Με 2, 4, 8 παραδείγματα, επιλεγμένα τυχαία (Rand) ή με βάση semantic similarity
(Sim).

3. CoT FS: ΄Οπου τα παραδείγματα συνοδεύονται από αναλυτικές επεξηγήσεις (chain-of-thought) οι όποιες
έχουν δημιουργηθεί χειροκίνητα.

4. RISCORE (automated & manual): Συνδυάζει N/2 αυθεντικά παραδείγματα + N/2 context-
reconstructed, διατηρώντας το ίδιο συνολικό πλήθος N . ΄Οπου υπάρχουν διαθέσιμα ανακατασκευασμένα
από ανθρώπους (manual reconstructions), αυτά προσφέρουν upper bound αποτελέσματα (RISCOREm).

Χρησιμοποιήθηκαν διάφορα μοντέλα, όπως Llama3 (8B, 70B), Mistral (7B, 8x7B), Qwen2-7B, σε black-box
συνθήκες.

Αποτελέσματα

BrainTeaser Οι δοκιμές έδειξαν ότι RISCOREm (χειροκίνητες reconstructions) συστηματικά βελτιώνει
τις επιδόσεις έναντι της βασικής μεθόδου few-shot. Ακόμα και όταν τα 2/4 επιπλέον παραδείγματα επιλέ-
γονται όχι βέλτιστα, τα contextual reconstructions «διορθώνουν» τη συνήθη αστάθεια που εμφανίζεται στην
επιλογή παραδειγμάτων. Επιπλέον, ακόμα και η αυτόματη παραγωγή ανακατασκευασμένων γρίφων μέσω της
RISCORE, εμφανίζει σημαντικές βελτιώσεις σε σχέση με τυπικά 4-shot ή 8-shot prompts. Για παράδειγμα, με
Llama3-70B, από 0.783 (8-shot FS Sim) φτάνουμε 0.808 (8-shot RISCORE ), δείχνοντας τη χρησιμότητα των
ανακατασκευασμένων γρίφων σε γρίφους που απαιτούν lateral thinking ικανότητες για την επίλυσή τους.
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RiddleSense Καθώς το RiddleSense δεν περιείχε ανακατακσευασμένους γρίφους από ανθρώπους, χρησι-
μοποιήθηκε αποκλειστικά η αυτοματοποιημένη εκδοχή RISCORE. Και εδώ παρατηρήθηκε βελτίωση σε σχέση
με το κλασικό 8-shot FS Sim, παρά το γεγονός ότι η μεθοδολογία βασίστηκε σε μικρότερο (N/2 ) πλήθος κανον-
ικών παραδειγμάτων. Επιπλέον, διαπιστώθηκε ότι τα vertical reasoning tasks είναι ευκολότερα για μικρότερα
μοντέλα (π.. Llama3-8B), τα οποία απέδιδαν επαρκώς στο στάδιο της παραγωγής (context-reconstruction) και
βελτίωσαν τα τελικά σκορ τους.

Ποιότητα Παραγόμενων Γρίφων Ορισμένα ζητήματα προέκυψαν κυρίως στο BrainTeaser, όπου ο
μικρότερος Llama3-8B αδυνατούσε να παράγει ποιοτικές Q-A pairs σε lateral puzzles. Ωστόσο, η ύπαρξη
φιλτραρίσματος και κανόνων ποιότητας εξαίρεσαν χαμηλής ποιότητας δείγματα, εξασφαλίζοντας ότι τελικά χρησι-
μοποιούμε μόνο υψηλής ποιότητας ανακατασκευασμένους γρίφους. Στο RiddleSense (vertical reasoning), αντι-
θέτως, ο ίδιος μικρότερος μοντέλο απέδωσε ικανοποιητικά.

1.7.6 Συμπεράσματα

Το παρόν κεφάλαιο ανέλυσε μια μέθοδο (RISCORE) για την παραγωγή ανακατασκευασμένων γρίφων, δηλαδή
επανασχηματισμένων παραδειγμάτων που διατηρούν την ίδια λογική-συλλογιστική πορεία σε διαφορετικό con-
text. Η μέθοδος αυτή εντάσσεται σε few-shot prompting ρυθμίσεις και στοχεύει στη βελτίωση των ικανοτήτων
συλλογισμού των Μεγάλων Γλωσσικών Μοντέλων.

• Σε datasets όπως το BrainTeaser, όπου υπάρχουν manually crafted reconstructions, η RISCOREm
προσεγγίζει υψηλές επιδόσεις και συχνά υπερέχει των παραδοσιακών strategies (π.. 8-shot FS Sim).

• ΄Οπου δεν διατίθενται ανακατασκευασμένοι γρίφοι από ανθρώπους (π.. RiddleSense), η αυτόματη μέθοδος
παραγωγής τους RISCORE διαμορφώνει επιπλέον παραδείγματα counterfactual riddles δημιουργώντας
αξιόλογη βελτίωση.

• Η ποιότητα των παραγόμενων γρίφων είναι καθοριστική. Απαιτείται κατάλληλο φιλτράρισμα και τεχνικές
επιλογής παραδειγμάτων για να αποφευχθεί η εισαγωγή θορύβου.

• Τέλος, επισημαίνεται ότι το context reconstruction ενισχύει τη γενίκευση των LLMs σε γρίφους με
παρόμοιο συλλογιστικό πυρήνα αλλά διαφοροποιημένο γλωσσικό περιβάλλον.

Συνολικά, η παραγωγή και η χρήση ανακατασκευασμένων γρίφων (counterfactual riddles) στην είσοδο συνιστά
μια αποτελεσματική προσέγγιση για την περαιτέρω ανάπτυξη της συλλογιστικής ικανότητας των LLMs, προσ-
φέροντας εναλλακτικές οπτικές του ίδιου λογικού μοτίβου και οδηγώντας σε βελτιωμένες επιδόσεις σε lateral
και vertical reasoning tasks. Οι μελλοντικές επεκτάσεις μπορούν να διερευνήσουν το πώς η μέθοδος αυτή
εφαρμόζεται σε ακόμη πιο πολύπλοκα puzzles (π.. stochastic ή multi-step games).

1.8 Επεξηγήσεις μέσω Αντιπαραδειγμάτων για τη Σύστηση

Προιόντων μέσω Μεγάλων Γλωσσικών Μοντέλων

Το κεφάλαιο ξεκινάει με την επισκόπηση της παραδοσιακής χρήσης των αντιπαραδειγματικών (counterfactual)
επεξηγήσεων στη μηχανική μάθηση. Συνήθως, οι τεχνικές αυτές επιστρατεύονται για να καταδείξουν πώς θα
μπορούσε να αλλάξει η έξοδος ενός μοντέλου ταξινόμησης (π.χ. έγκριση ή απόρριψη δανείου) εάν μεταβάλλονταν
συγκεκριμένα χαρακτηριστικά εισόδου. Ωστόσο, η συγγραφική ομάδα προτείνει ότι η ίδια λογική επεξηγη-
ματικής παρέμβασης μπορεί να προσαρμοστεί και σε Μεγάλα Γλωσσικά Μοντέλα (LLMs), όχι απλώς για να
ερμηνεύσουμε τις προτάσεις προϊόντων που παράγουν, αλλά και για να τις επηρεάσουμε με στοχευμένο τρόπο.

Σε αντίθεση με τα περισσότερα συστήματα προτάσεων που στοχεύουν απλώς στην ικανοποίηση του χρήστη, η
συζήτηση εστιάζεται στη μελέτη του πώς μικρές τροποποιήσεις στα κείμενα περιγραφής προϊόντων μπορούν να

αλλοιώσουν την ορατότητα (visibility) και τη σειρά κατάταξης αυτών των προϊόντων στις προτάσεις ενός LLM.
Η έμφαση δίνεται στην ερμηνεία των αποτελεσμάτων αυτών, με το επιπρόσθετο όφελος ότι παρατηρείται και το
πώς αντιδρά το ίδιο το μοντέλο στις λεκτικές παρεμβάσεις.
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1.8.1 Γνωστικές Προκαταλήψεις ως Στρατηγικές Επίθεσης σε LLMs

Η κεντρική σύλληψη του κεφαλαίου βασίζεται στην αξιοποίηση γνωστικών προκαταλήψεων (cognitive biases),
βαθιά ριζωμένων στην ανθρώπινη ψυχολογία, ώστε να ενεργήσουν ως «αθόρυβες» επιθετικές τεχνικές για την
παραπλάνηση των LLM. Εδώ, απλές φράσεις όπως «Περισσότεροι από 10.000 αγοραστές επέλεξαν αυτό το
προϊόν τον τελευταίο μήνα» (social proof ) ή «Αποκλειστικά για απαιτητικούς χρήστες» (exclusivity) εισάγονται
φυσιολογικά στο κείμενο των περιγραφών. Σε αντίθεση με τις παραδοσιακές επιθέσεις που εισάγουν ακατανόη-
τους ή τυχαίους χαρακτήρες, οι συγκεκριμένες παρεμβάσεις μοιάζουν με συνηθισμένες προωθητικές φράσεις του
μάρκετινγκ.

Το κεφάλαιο περιγράφει δύο βασικές μεθόδους:

1. Επεξεργασίες από Ειδικούς (Expert-Crafted Edits): Συνοπτικές, στοχευμένες προτάσεις
προστίθενται χειροκίνητα από επαγγελματίες του μάρκετινγκ (π.χ. «Προϊόν με τη μεγαλύτερη δημοφιλία
στην κατηγορία του»).

2. Αυτόματες Γεννήσεις Περιγραφών (Generated Edits): Ολόκληρη η περιγραφή ανασυντάσσε-
ται από ένα LLM (όπως ο Claude 3.5 Sonnet) ώστε η προκατάληψη να ενσωματωθεί αβίαστα στο κείμενο.
΄Ετσι, το τελικό αποτέλεσμα εμφανίζεται πιο φυσικό, ελαχιστοποιώντας τον κίνδυνο εντοπισμού.

Αμφότερες οι προσεγγίσεις στοχεύουν στην αναβάθμιση ή υποβάθμιση της θέσης ενός προϊόντος στις προτάσεις,
εκμεταλλευόμενες την ενδεχόμενη «προδιάθεση» ενός LLM σε συγκεκριμένες λεκτικές διατυπώσεις.

1.9 Πειραματική Διάταξη και Δεδομένα

Συνθετικά Δεδομένα Αρχικά, η ανάλυση βασίστηκε σε μικρά, ελεγχόμενα σύνολα προϊόντων (π.χ. 10
καφετιέρες, 10 κάμερες, 10 βιβλία), ώστε να τεκμηριωθεί η επίδραση κάθε πλαγιορμήσης σε συνθήκες χωρίς
«θόρυβο». Χρησιμοποιούνται ελάχιστες μεταβλητές—όνομα, τιμή, βαθμολογία, περιγραφή— έτσι ώστε να είναι
ξεκάθαρο ότι τυχόν αλλαγές στο LLM προκαλούνται αμιγώς από τις λεκτικές τροποποιήσεις.

Δεδομένα Από Amazon Για να αποδειχθεί ότι οι ίδιες τεχνικές επιδρούν και σε αληθινά περιβάλλοντα, το
κεφάλαιο μεταβαίνει σε πραγματικές λίστες προϊόντων από το Amazon Reviews. Εδώ, οι περιγραφές είναι συχνά
εκτενέστερες και εμπλουτίζονται με τεχνικά χαρακτηριστικά, ήδη ενσωματωμένα διαφημιστικά στοιχεία, επιση-
μάνσεις αξιολόγησης κ.λπ. Παρ’ όλ’ αυτά, η εισαγωγή γνωστικών πλαγιορμήσεων διατηρεί αισθητό αντίκτυπο
στη συχνότητα εμφάνισης και τη θέση που λαμβάνει κάθε προϊόν στις προτάσεις.

LLMs Τα πειράματα διεξάγονται σε μια ποικιλία μοντέλων:

• Open-source: Διάφορες εκδόσεις Llama (8B, 70B, 405B).

• Κλειστού κώδικα: Claude 3.5 Sonnet και Mistral 2 large.

Η διαφοροποίηση σε κλίμακα, αρχιτεκτονική και εκπαίδευση βοηθά να διαπιστωθεί κατά πόσο η ευπάθεια στα
λεκτικά «τρικ» είναι κοινή σε όλα τα LLMs.

Μετρικές και Μέθοδοι Αξιολόγησης Δύο βασικές μετρικές ξεχωρίζουν:

1. Συχνότητα Σύστασης (Recommendation Frequency): Πόσο συχνά προτείνεται ένα συγ-
κεκριμένο προϊόν (σε πολλαπλές εκτελέσεις).

2. Θέση στη Λίστα (Ranking Position) & MRR: Ο μέσος όρος της κατάταξης (με έμφαση στην
επάνω θέση), καθώς και πόσο βελτιώνεται ή χειροτερεύει σε σχέση με τα αρχικά δεδομένα.

΄Ετσι, αν η παρεμβολή μιας φράσης τύπου discount framing (π.χ. «Προσφορά 25%!») κάνει το προϊόν να εμ-
φανίζεται από την πέμπτη στη δεύτερη θέση, καταγράφεται σημαντική θετική αλλαγή.
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1.10 Αποτελέσματα και Συμπεράσματα

Ισχυρές Θετικές Προκαταλήψεις Social Proof και Discount Framing αναδεικνύονται ως οι δύο
ισχυρότερες στρατηγικές για την ενίσχυση ορατότητας ενός προϊόντος. ΄Οταν μια περιγραφή περιέχει ισχυρή έν-
δειξη κοινωνικής απήχησης («Χιλιάδες αγοραστές εμπιστεύτηκαν το προϊόν») ή κάποια μορφή εκπτώσεων («Αρ-
χική τιμή 100€, τώρα 75€»), πολλά LLMs αυξάνουν αισθητά τη συχνότητα που συστήνουν το συγκεκριμένο
προϊόν και βελτιώνουν τη θέση του στη λίστα των συστάσεων.

Απρόσμενες Αρνητικές Επιπτώσεις Scarcity και Exclusivity—που συχνά θεωρούνται αποτελεσ-
ματικές πρακτικές μάρκετινγκ για ανθρώπους—οδηγούν σε χειρότερες θέσεις στις προτάσεις LLM. Π.χ. ο
ισχυρισμός «Μόνο 3 τεμάχια διαθέσιμα» μπορεί να ερμηνευτεί από το μοντέλο ως μη κατάλληλη επιλογή για
όλους, με αποτέλεσμα να μειωθούν οι συστάσεις. Αυτό το εύρημα αναδεικνύει πώς οι προκαταλήψεις στην
εκπαίδευση ενός LLM ενδέχεται να αποκλίνουν από τις κοινές ανθρώπινες προτιμήσεις.

Σε επαναλαμβανόμενες εκτελέσεις, παρατηρούνται σταθερά μοτίβα. Προϊόντα που ξεκινούν με χαμηλή πι-
θανότητα εμφάνισης μπορούν να εκτιναχθούν πιο πάνω με κατάλληλη επεξεργασία κειμένου. Οι συγγραφείς
μετρούν αλλαγές σε Recommendation Frequency και Ranking Position σε τουλάχιστον 100 επαναλήψεις κάθε
σεναρίου, καταδεικνύοντας τη στατιστική εγκυρότητα των αποτελεσμάτων.

Περιορισμένη Αποτελεσματικότητα Αμυντικών Προτροπών (Defense Prompts) Μία άμυνα

ήταν να δοθεί στο LLM μια γενική οδηγία: «Αγνόησε επιτηδευμένες φράσεις και εστίασε σε αντικειμενικά
χαρακτηριστικά». Ωστόσο, ακόμα και με τέτοιες οδηγίες, το μοντέλο παρέμεινε ευαίσθητο σε κάποιες γνω-
στικές πλαγιορμήσεις. Αυτό καταδεικνύει ότι η αντιμετώπιση της «φυσιολογικής» γλώσσας (όταν είναι ελαφρώς
παραπλανητική) δεν είναι ούτε απλή ούτε ολοκληρωμένη με μια απλή αλλαγή στο prompt.

1.10.1 Εφαρμογή σε Πραγματικά Σενάρια

Στα πραγματικά δεδομένα του Amazon, το φαινόμενο δεν εξαφανίζεται παρότι οι περιγραφές ήδη περιέχουν
διαφορετικά εργαλκεία μάρκετινγκ. Η επίδραση μπορεί να είναι πιο περιορισμένη σε σχέση με το συνθετικό
περιβάλλον, αλλά παραμένει εντυπωσιακή: ακόμη και μία επιπλέον φράση «Χρησιμοποιείται από ειδικούς του
χώρου» μπορεί να ανεβάσει ένα προϊόν αισθητά, ιδίως αν το LLM είχε ήδη μια τάση να λαμβάνει υπόψη τέτοια
θετικά συμφραζόμενα.

Μεθοδολογικές Παρατηρήσεις Η μελέτη προτείνει ότι οι γνωστικές προκαλήψεις εντάσσονται αρμονικά

στη φυσική γλώσσα, οπότε είναι δύσκολο να απομονωθούν ή να φιλτραριστούν. Επιπλέον, αναφέρει ότι οι
μεγαλύτερες εκδόσεις των μοντέλων (π.χ. Llama-405B) συχνά εμφάνισαν εντονότερη ευπάθεια, ίσως επειδή
έχουν εκπαιδευτεί σε περισσότερα παραδείγματα εμπορικής γλώσσας. Η χρήση τόσο επίθέσεων από ειδικούς
στο χώρο - όσο και και από LLMs φωτίζει το γεγονός ότι μια φαινομενικά κοινή φράση ή αφήγηση μπορεί να
δημιουργήσει δυσανάλογη επίδραση στις συστάσεις.

Ευρύτερες Προεκτάσεις Το κεφάλαιο επισημαίνει ότι οι ευπάθειες αυτές δεν περιορίζονται μόνο στο ηλεκ-

τρονικό εμπόριο. Κάθε χρήση μεγάλων γλωσσικών μοντέλων που επιβάλλει κατάταξη, εύρεση ή συμπερίληψη
περιεχομένου—όπως ειδησεογραφικές συγκεντρώσεις ή αξιολογήσεις ερευνητικών άρθρων—μπορεί να διαστρε-
βλωθεί μέσω τέτοιων τεχνικών. Επίσης χρήζει μελέτης η πιθανή σύνδεση των προκαλήψεων με τη διασπορά
παραπληροφόρησης ή της ενίσχυσης κείμενων που «κλίνουν» υπέρ μιας οπτικής, απλώς προσθέτοντας παρόμοιες,
πειστικές φράσεις.

Σε πρακτικό επίπεδο, δίδεται έμφαση στη μελλοντική έρευνα για:

• Εξεύρεση αμυντικών στρατηγικών που μπορούν να διακρίνουν μεταξύ αληθούς πληροφορίας (π.χ. οντως
μεγάλη βάση χρηστών) και στημένων δηλώσεων που στοχεύουν σε μοντέλα.

• Διεύρυνση των τύπων προκαταλήψεων (π.χ. storytelling, anchoring), έτσι ώστε να εντοπιστεί ένα ευ-
ρύτερο φάσμα δυνητικών παραβιάσεων.

• Συμπεριφορική ανάλυση μεγάλων γλωσσικών μοντέλων, ώστε να φανερωθούν οι ενδείξεις που τα κάνουν
πιο ευάλωτα σε τέτοια λεκτικά ερεθίσματα.
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1.11 Συμπέρασμα

Το κεφάλαιο καταδεικνύει πώς οι αντιπαραδειγματικές επεξηγήσεις μπορούν να επεκταθούν πέραν της απλής

ερμηνείας και να χρησιμοποιηθούν ως «όπλα» για να μετακινήσουν τους αλγορίθμους προτάσεων LLM προς
συγκεκριμένες κατευθύνσεις. Αξιοποιώντας ανθρώπινες γνωστικές πλαγιορμήσεις, οι συγγραφείς δείχνουν ότι
ακόμη και ένας λόγος μάρκετινγκ που φαίνεται αθώος μπορεί να αποδειχθεί ισχυρός μοχλός διαμόρφωσης

προτάσεων.

Οι πειραματισμοί αναδεικνύουν τη σημασία του να δημιουργηθούν πιο ανθεκτικά (robust) μοντέλα που δεν
παρασύρονται εύκολα από παρόμοιες ρητορικές στρατηγικές. Καθώς ολοένα και περισσότερες εφαρμογές προ-
χωρούν σε LLMs για εξατομικευμένες προτάσεις, η κατανόηση αυτών των τρωτών σημείων είναι εξαιρετικά
σημαντική για να διαφυλαχθεί η δικαιοσύνη, η αξιοπιστία και η ακεραιότητα των συστημάτων αυτών.
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Chapter 2

Introduction

Artificial intelligence (AI) has been undergoing a rapid transformation, evolving from conceptual proto-
types to high-stakes applications across healthcare, finance, security, transportation, and more. Although AI
systems have demonstrated remarkable performance in tasks such as image recognition, natural language un-
derstanding, and autonomous decision-making, their complexity often renders their internal decision-making
processes opaque. This opaqueness can erode trust, hamper adoptability, and, in certain safety-critical con-
texts, introduce risk. The field of Explainable AI (XAI) has therefore emerged as a critical area of research,
aimed at developing methods, frameworks, and tools to help users understand, trust, and effectively interact
with these models.

Within the broader landscape of XAI, counterfactual explanations have risen to prominence because they offer
actionable insights into how a model’s output might change given slight adjustments to its input. Instead
of merely stating why a specific outcome was produced, counterfactual explanations demonstrate how to
arrive at an alternative outcome—often by modifying a small subset of input features. This is especially
compelling in real-world applications (e.g., finance or medical domains), where end-users can interpret and
act upon suggestions such as “If you reduce your credit card debt by X amount, your loan application might
be approved,” or “If a patient’s blood pressure were lower, the predicted diagnosis would be different.”

Despite the potential of counterfactual explanations, existing methods often work at a low level, focusing on
raw input features like individual pixels in an image or the exact words in a text. This level of granularity,
while precise, is not always aligned with how humans conceptualize and communicate ideas. The notion
of a “red color” in an image, for example, is more intuitive than a specific numerical pixel value in a red
color channel. In text processing, a user might reason about sentiment or topic, rather than about a specific
word embedding or letter substitution. This gap between raw features and human-understandable concepts
presents a central challenge in building explanations that are both accurate and interpretable.

A rapidly growing area in counterfactual research seeks to address this challenge by introducing con-
ceptual counterfactual explanations. Conceptual counterfactuals operate at higher levels of abstrac-
tion—corresponding to semantically meaningful units such as attributes, categories, or symbolic concepts.
These “concepts” might describe visual attributes (e.g., “presence of stripes,” “round shape,” “furry texture”),
audio features (e.g., “high pitch,” “rapid tempo”), or even textual properties (e.g.,“sentiment,” “topic,” “polite-
ness”)—all more naturally aligned with how humans reason about and describe the world. The overarching
goal is to produce actionable insights that inform what needs to change conceptually to alter a model’s
decision, rather than just enumerating low-level perturbations that may be perplexing to a lay user.

This thesis aims to extend and deepen the theoretical and practical foundations of conceptual counterfactual
explanations. We propose novel algorithms, frameworks, and metrics that, together, showcase the power,
flexibility, and real-world applicability of conceptual counterfactuals across multiple data modalities (images,
text, graphs, audio) and tasks (classification, generation, and more). We offer evidence that shifting to
a concept-centric view not only boosts interpretability but can also streamline the computational process,
leading to efficient and targeted edits that preserve semantic coherence.
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2.1 Thesis Overview

This thesis is structured to guide the reader progressively from foundational ideas in XAI and counterfactual
explanations to advanced, domain-specific methods for conceptual counterfactuals. We begin by setting the
stage in Chapter 2 with a thorough review of the theoretical underpinnings of Explainable AI and relevant
literature on counterfactual explanations. We then build upon these concepts step-by-step, delving into
practical implementations of conceptual counterfactuals in various settings. Below is a high-level outline of
the chapters and the core contributions they provide.

2.1.1 Framework for Computing Conceptual Counterfactual Explanations

The thesis begins its core contributions in Chapter 3 by presenting a unified framework for conceptual
counterfactual explanations. Traditional counterfactual explanation techniques in the literature typically
operate at the raw-feature level (e.g., image pixels, numerical input features, or tokens in text). While this
granular focus allows for precise optimization—like minimizing the total pixel change—it often suffers from
low human interpretability. Users, especially those who are not domain experts in machine learning, can find
it difficult to parse why a specific set of pixel intensities would need to be changed.

To address this gap, we introduce the notion of an explanation dataset, comprised of high-level concepts that
align with human cognition and domain knowledge. These concepts might be manually curated or learned in
a data-driven manner (for instance, by clustering feature embeddings). We show how working at the concept
level allows for:

• Actionable Edits: Instead of telling a user to adjust a large matrix of raw data, we tell them to add
or remove clearly defined attributes (e.g., “add more warmth in color” or “reduce background noise”),
which is far more intuitive.

• Semantic Coherence: Concepts ensure that the set of changes remains internally consistent and
meaningful. Editing a single concept, such as “color,” will systematically affect a related set of pixels
or audio frequencies.

• Reduced Dimensionality: In certain scenarios, conceptual editing significantly reduces the search
space for valid counterfactuals, increasing computational efficiency and interpretability simultaneously.

Chapter 3 also offers a detailed algorithmic perspective, outlining how conceptual counterfactuals can be
computed by systematically identifying which concepts to change, by how much, and in which combination
to achieve a target outcome shift.

2.1.2 Counterfactual Explanations using Concepts

Chapter 3 introduces the framework; subsequent chapters—particularly the latter sections of Chapter 3 and
onwards—show how these concepts translate into practical examples in a variety of domains. We describe in
detail how high-level concepts can represent visual features in images, such as texture, shape, and color, as
well as auditory characteristics, such as pitch range and harmonic structure. By abstracting away from raw
data to these more interpretable building blocks, the entire model explanation pipeline becomes clearer and
more aligned with human intuition.

For instance, if an image classification model labels an image of a cat as a “dog,” a conceptual counterfactual
might highlight changes in the “fur pattern” or “ear shape” concepts that would reclassify the image correctly.
Similarly, in audio classification, the conceptual counterfactual might focus on altering “beat regularity” or
“frequency band energy” to switch from one class to another. These high-level edits let end-users quickly
understand why a misclassification occurred and what conceptual changes could rectify it.

In addition, we demonstrate how the principle of minimality—making the smallest conceptual edits necessary
to achieve a different prediction—can ensure that the explanations are concise, meaningful, and easy to
interpret. Collectively, these insights pave the way for a more user-friendly generation of counterfactual
explanations in practical AI applications.
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2.1.3 Conceptual Counterfactuals using Graphs

Following this, Chapter 4 delves into the realm of graph-structured data. Graphs arise in numerous real-
world contexts—ranging from social networks and knowledge graphs to biological networks (e.g., molecules,
protein interactions) and sensor networks. In these domains, each node or subgraph can represent a concept
or cluster of features (such as a functional group in a molecule), and edges may capture relationships between
these concepts.

Within this chapter, we propose a method to decompose the graph into conceptual units that might reflect
structural or semantic properties (e.g., presence of a specific substructure in a molecule, or a particular
community structure in a social network). By adjusting these conceptual units—rather than just randomly
removing or adding edges—our counterfactual explanations can be significantly more interpretable and re-
latable to domain experts. For instance, a chemist investigating why a molecule was predicted to be toxic
might learn that the presence of a particular substructure or functional group was the crucial factor—and
that removing or altering it leads to a non-toxic classification.

Central to this chapter is the use of Graph Neural Networks (GNNs), which leverage graph topology and
node/edge feature embeddings to make predictions. We provide a mechanism to search through relevant
substructures and identify minimal conceptual changes within the graph that alter the GNN’s output. We
further show how domain experts can leverage these conceptual substructures to gain deeper insights into
complex graph-based AI applications, including molecular property prediction, fraud detection in financial
networks, or misinformation detection in social networks.

2.1.4 Optimal and Efficient Text Counterfactuals using GNN

Moving from images, audio, and graphs to the domain of natural language processing (NLP), Chapter 5
details how to generate optimal and efficient text counterfactuals using specialized graph constructs. Text-
based applications often require the ability to handle subtle changes, as a single word substitution can
significantly alter the meaning or sentiment of a sentence. However, not all word substitutions are equal:
some preserve semantic coherence, while others result in nonsensical or misleading statements.

Here, we introduce a bipartite graph structure that connects words in the original text with candidate
synonyms or paraphrases. We then utilize GNN-based techniques to optimize a multi-objective criterion: (1)
flipping the label of the classifier, (2) preserving semantic coherence, (3) maintaining grammatical correctness,
and (4) ensuring minimal total edits. By using GNNs to propagate signals about plausible word substitutions,
we prune the search space intelligently, identifying only those substitutions that are both valid and impactful.

This chapter highlights the importance of conceptual thinking even in text generation. Although we focus on
word-level changes, these words can be seen as “concept placeholders,” especially when they represent domain-
specific jargon, sentiment-laden terms, or other high-level semantic indicators. Moreover, we discuss potential
applications in fairness and bias mitigation, demonstrating how text counterfactuals can help identify and
fix model behaviors that disproportionately affect particular demographic groups.

2.1.5 Evaluation of Counterfactual Explanations

The strength of any XAI method—and especially counterfactual explanations—ultimately hinges on robust
evaluation metrics that can gauge the explanations’ quality, consistency, and utility. Chapter 6 addresses
this crucial topic by:

• Introducing domain-agnostic metrics (e.g., proximity, sparsity, plausibility, actionability) that can
be applied uniformly across multiple data modalities and tasks.

• Highlighting domain-specific considerations, such as ensuring grammatical correctness in text-
based counterfactuals or preserving physically plausible changes in image- or audio-based ones.

• Discussing the inconsistency problem in counterfactual explanations, where multiple distinct sets
of minimal changes may produce the same outcome shift. In some cases, this can be valuable—since it
presents different “paths” to the same goal—but it can also generate confusion if the user lacks a clear
ranking or prioritization of these alternatives.
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We also introduce new metrics specific to conceptual counterfactuals, such as whether the chosen concepts
align with human intuition and how effectively the user can implement or act upon the recommended concep-
tual changes. The chapter concludes with methodologies for systematically testing these metrics in large-scale
experiments.

Chapters 7 and 8 then offer specialized evaluation methods, applying conceptual counterfactuals to generative
tasks such as story visualization and image captioning. These chapters illustrate how conceptual edits can
identify and rectify problems like “hallucinations” (when a model inserts details that are not present in the
input) and other generative inaccuracies. By framing generative evaluation around conceptual counterfactu-
als, we show how developers and practitioners can gain deeper insights into why a generative model fails and
how to steer it toward producing more coherent and trustworthy outputs.

Explanaible Metric for Story Visualization through Counterfactual Explanations

Chapter 8 applies conceptual counterfactuals to story visualization, where models generate image sequences
from textual narratives. This task poses interpretability challenges because each textual segment can trigger
changes in the generated scenes, risking hallucinations (fabricated details) or omissions of crucial elements. By
framing these errors through conceptual edits—e.g., adding or removing objects, attributes, or characters—we
reveal how the generative model responds to specific narrative concepts.

• Conceptual Edits: We define high-level visual concepts (e.g., “character X,” “blue hat,” “mountain
background”) based on the story text. By altering these concepts, we track how the model’s outputs
change, highlighting dependencies between textual cues and visual content.

• Evaluation: Through quantitative and qualitative analysis, we show how conceptual counterfactuals
help diagnose generative inaccuracies, reduce unwarranted hallucinations, and improve coherence across
sequential images. This approach offers a more precise and intuitive means to refine and control story
visualization models compared to pixel-level or purely textual interventions.

Explainable Metric for Hallucination Detection in Image Captioning

Chapter 9 extends the idea of conceptual counterfactuals to image captioning, a domain where AI models
risk describing nonexistent objects or mislabeling attributes. By focusing on a set of visual concepts (e.g.,
“dog,” “table,” “red color”) derived from the image, we can remove or replace these concepts and observe
whether the model’s textual output changes accordingly. When the caption persists in mentioning a concept
that was removed, we identify a hallucination.

• Conceptual Consistency: We introduce a new metric assessing alignment between detected im-
age concepts and captioned concepts, providing clearer insights than traditional metrics (e.g., BLEU,
CIDEr) for detecting fabricated elements.

• Applications: Beyond just detecting hallucinations, these conceptual edits enable interactive correc-
tion. By systematically identifying and removing unreliable concepts, we can fine-tune the model to
generate more trustworthy and faithful captions.

Counterfactual Generation for Improving Reasoning Abilities of LLMs

Chapter 10 introduces a novel approach for enhancing the reasoning capabilities of LLMs) through the
generation and usage of counterfactual riddles. By producing pairs of analogous riddles set in different
contexts—yet tied together by the same logical pathways—this technique (dubbed RISCORE) improves
generalization and performance across diverse puzzle-solving tasks. Notably, experimental findings on both
lateral and vertical reasoning benchmarks indicate that providing these context-reconstructed exemplars in
a few-shot setup significantly outperforms standard prompting methods, highlighting the value of focusing
on consistent reasoning structures rather than superficial semantic cues.

Counterfactuals in LLM-Driven Product Recommendations

Lastly, in the field of LLMs, Chapter 11 demonstrates how counterfactual explanations can provide valuable
insights into the decision-making processes of different LLMs when they function as product recommenders.
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Specifically, this chapter delves into how subtle manipulations in product descriptions—particularly those
employing psychological biases—can exert a surprisingly strong influence on how LLMs rank and recommend
items. Traditionally, counterfactual explanations have focused on classification tasks, but here they are
repurposed to introduce strategic edits in descriptions that exploit human cognitive tendencies such as social
proof, discount framing, scarcity, and exclusivity. Through both expert-crafted and automatically generated
text modifications, the authors show that these seemingly innocuous insertions can significantly elevate or
diminish a product’s visibility within LLM-based recommendation lists.

The experiments employ small synthetic datasets (e.g., coffee machines, cameras, books) alongside real-world
Amazon product data to assess consistency of the effects. Across multiple LLMs—from open-source (Llama)
to proprietary (Claude, Mistral)—biases like social proof and discount framing consistently boost a product’s
ranking, while scarcity or exclusivity often prove detrimental. Attempts to counteract these attacks by in-
structing models to ignore persuasive language only modestly reduce their influence. The findings underscore
the need for more rigorous defenses: as LLMs become integral to personalized e-commerce and information
systems, subtle adversarial wording can undercut fairness and reliability in AI-driven recommendations.

2.2 Structure of the Thesis

Bringing all these ideas together, the thesis is organized as follows:

• Chapter 3 – Background Material : A comprehensive review of Explainable AI, the fundamentals of
counterfactual explanations, and existing metrics for evaluating them. This chapter lays the theoretical
groundwork for the subsequent chapters.

• Chapter 4 – Framework for Computing Conceptual Counterfactual Explanations: The first core con-
tribution, presenting our overarching framework for conceptual counterfactuals. We introduce the ex-
planation dataset, define key concepts, and detail an algorithm for computing counterfactuals entirely
at the concept level.

• Chapter 5 – Conceptual Counterfactuals using Graphs: We adapt the conceptual counterfactual
paradigm to graph-structured data, proposing methods to leverage GNNs for interpretable edits on
subgraph concepts.

• Chapter 6 – Optimal and Efficient Text Counterfactuals using GNN : A foray into natural language
processing, showing how bipartite graphs and GNNs can be used to generate minimal text edits that
shift a classifier’s prediction while preserving semantic and grammatical integrity.

• Chapter 7 – Evaluation of Counterfactual Explanations: An in-depth look at metrics and method-
ologies for assessing the quality of counterfactual explanations, including domain-agnostic and domain-
specific measures. We discuss the inconsistency of counterfactual methods and introduce novel ap-
proaches to mitigate and interpret multiple solution paths.

• Chapter 8 – Explainable Metric for Story Visualization through Counterfactual Explanations: We
demonstrate how conceptual counterfactuals can serve as an explanatory tool in generative tasks like
story visualization, detecting and revising problematic generative outputs.

• Chapter 9 – Explainable Metric for Hallucination Detection in Image Captioning : Extending the gen-
erative analysis further, we develop a conceptual counterfactual-based framework to identify, measure,
and address hallucinations in image captioning systems.

• Chapter 10 – Counterfactual Generation for Improving Reasoning Abilities of LLMs: Building on
previous chapters, we propose a novel strategy that uses counterfactual riddles to improve large language
models’ consistency, adaptability, and overall reasoning performance.

• Chapter 11 – Counterfactuals in LLM-Driven Product Recommendations: Counterfactual explana-
tions, repurposed from their traditional role in classification, demonstrate in this chapter how mini-
mal, bias-driven edits to product descriptions can significantly manipulate LLM-based recommendation
rankings.
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• Chapter 12 – Conclusion: A concise reflection on the thesis contributions, insights gained, and an
outlook on future research directions. We highlight how conceptual counterfactuals can be extended or
combined with other emerging topics, including causal inference, reinforcement learning, and federated
settings.

In sum, this thesis presents an thorough exploration of conceptual counterfactual explanations, elucidating
how these methods enhance interpretability, actionability, and trust in AI systems. By consolidating theoret-
ical foundations with practical algorithms and robust evaluation protocols, we illustrate the versatility and
impact of conceptual thinking in the ongoing quest to make AI models more understandable. Our contribu-
tions signify a meaningful step toward bridging the gap between how models compute and how humans think,
ultimately fostering more symbiotic and responsible relationships between AI technologies and the societies
they serve.
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Chapter 3

Background Material

In this chapter, the focus is on providing a comprehensive overview of the background material relating
to eXplainable AI (XAI), especially focusing at the role of counterfactual explanations. The discussion
will explore the relationship between semantics and counterfactual explanations, emphasizing how semantics
enhance the interpretability of AI models. Furthermore, it addresses the challenges associated with evaluating
these methods, with a focus on key concepts crucial to the framework. As required, any additional background
material deemed necessary will be provided at the beginning of each subsequent chapter.

3.1 Explainable AI
Public concerns about biases in machine learning (ML) models have heightened the demand for transparent
AI [107, 12]. End users are increasingly recognizing that reliable AI outputs must be accompanied by clear
explanations to foster trust. This trust is crucial for organizations, governments, and professionals to con-
fidently integrate AI tools into their workflows. However, traditional means of explaining and establishing
trust in software, such as code inspection, understanding program logic, or thorough testing, are not feasible
with complex AI systems, necessitating alternatives like self-explanatory AI systems or external AI audits
[56, 60, 83]. The “black box” problem, which became widely recognized with the spread of ML tools to
end-users, has long been a challenge for researchers in the deep learning field [4]. Large language models
(LLMs) [340, 263, 7, 345] and Large Vision Languge Models [51, 403], for example, are often used as black
boxes by many, emphasizing the necessity for increased transparency. This has made the need for explain-
able AI (XAI) crucial to render these processes transparent and understandable in human-AI interactions.
Furthermore, explanations not only help in identifying errors but also provide opportunities for enhancing AI
systems, leading to the emergence of Explanation Engineering, a field focused on integrating explainability
systematically into AI designs.

Despite its importance, explainability remains a vague term without a formal, universally accepted definition,
largely because it is investigated from various perspectives each time and across various domains. Authors
often use the term broadly, leaving its specific interpretation to the reader’s intended use. While satisfactory
explanations vary by scenario, certain aspects consistently appear across most definitions [12].

Audience The explanation for any AI system must be tailored to its specific audience, which can vary
widely. For instance, consider a cancer detection model that detects and classifies the stages of cancer in an
X-ray [151]. Each audience requires a different type of explanation:

• AI Engineer: A “good explanation” for an AI engineer would involve technical details, such as a cancer
being identified because an area in the image shows abnormal brightness compared to the surrounding
areas.

• Domain Specialist (Oncologist): For an oncologist, the explanation might focus on medical specifics,
such as a cancer being identified due to “calcification,” which refers to the accumulation of calcium
deposits within tissues, appearing as a bright blob on the X-ray.
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• End User (Patient): Patients, who need to feel confident in the diagnosis, are generally not concerned
with the technical workings of the model or the specific terminology used to describe features in the
X-ray. Therefore, the explanation for them should focus on how accurately the system has performed
in similar cases.

• Lawmakers, Insurance Companies, and Hospitals: Decision-makers in the healthcare system,
such as lawmakers, insurance companies, and hospitals that are considering using the model clinically,
will want to know if the AI system’s decision-making aligns with that of doctors in general [336, 274].

Each explanation is crafted to meet the needs and understanding of different stakeholders involved in the use
and impact of the AI system.

Level of Explanation Explanations in this context are generally divided into two main types: global and
local. Global explanations are designed to illuminate the model’s decision-making process as a whole. They
provide a comprehensive view of the model’s operations across the entire dataset and assess the relative
importance of different variables. For example, global explanations can reveal how significantly each feature
influences the model’s predictions across all data, potentially uncovering unwanted biases. This approach
is particularly valuable for understanding the model’s overall behavior and for communicating insights to
stakeholders. Conversely, local explanations focus on individual predictions. They explore the reasons behind
a specific prediction made by the model. Local explanations are essential when it is important to understand
particular outcomes, such as in scenarios involving medical diagnoses or loan approvals. In general, global
explanations offer a macro-level perspective of the model’s functionality, while local explanations provide a
micro-level view of specific predictions. It is worth noting that these types of explanations are not mutually
exclusive, as there are cases where the local behavior can be interpreted using global explanations and vice
versa. Our proposed algorithms also provide a method for calculating global explanations using a set of local
ones.

Access to model The differences in model access can lead to diverse methods of retrieving explanations.
“White box” explainability methods necessitate access to the model’s internals, such as the weights of the
neural network [100, 348]. However, the applicability of such algorithms is somewhat restricted as they
are typically confined to proprietary models. Moreover, these algorithms generally lack the flexibility to be
transferable across different models, domains, or modalities. On the other hand, “black box” explainability
methods aim to decipher the decision-making of a model by analyzing only the input-output relationships.
This type of explanation is inherently adaptable and can be transferred across a variety of problems. Nev-
ertheless, a significant drawback of "black box" explanations is that they might yield misleading insights, as
they do not consider the model’s internal mechanisms [50, 307]. From our perspective, accessing the weights
of a proprietary model poses a formidable object, whereas enhancing “black box” explainability methods may
offer a more feasible solution. Thus, our framework is dedicated to crafting explanations strictly from a “black
box” approach.

Forms of Explanations XAI employs a range of explanation types to make AI decisions both understand-
able and interpretable. Among these, “counterfactual explanations” stand out by illustrating the minimal
changes required in the input to alter a decision, effectively showing how small adjustments can lead to
different outcomes. Additionally, “rule-based” explanations articulate the decision-making process through
a set of human-readable rules, often derived from decision trees or rule extraction algorithms. Another in-
sightful approach within XAI involves the use of prototypes [239]—representative examples from the dataset
that exemplify the key characteristics of specific decisions or output classes. These “prototypes” act as ex-
emplars, simplifying complex models by showcasing typical instances that influence the model’s predictions.
In our research, we explore these diverse forms to assess their effectiveness and relevance. Nonetheless, our
proposed framework primarily focuses on generating counterfactual explanations. This choice is influenced
by their philosophical roots and their alignment with counterfactual thinking—a natural human cognitive
process [30]. By considering alternative realities, counterfactual explanations help us intuitively grasp how
decisions are made, thereby playing a vital role in XAI.
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3.2 Counterfactual Explanations

Counterfactual explanations have their roots in philosophy [97] where counterfactual thinking [30] involves
considering alternative realities and outcomes that are different from the actual ones. Counterfactual expla-
nations are a specialized type of explanation in the realm of machine learning that provide insightful “what
if” scenarios. Specifically, they illustrate how the output of a machine learning model would change if an
input data point were modified from its original value x to a new value x′, consequently altering the model’s
prediction from y to y′. This form of explanation is particularly valued for its intuitiveness and clarity,
making complex model behaviors more accessible and understandable to users.

A practical example, inspired by GDPR regulations, involves querying a bank’s AI system that has denied a
loan application with the question, “What would need to change for my loan to be approved?” This inquiry
can yield a range of possible answer combinations. The algorithm aims to identify the solution that requires
the smallest adjustments, tailored specifically to the situation, while remaining practical and actionable in
real-world scenarios[277]. A critical aspect of counterfactual explanations is their reliance on concepts of
distance and similarity.

However, the similarity may not always be clear and understandable to an end-user, as it could potentially
constitute an adversarial example that is indistinguishable from the original data sample. Instead, recent
ideas suggest that the notion of minimality in the context of counterfactuals should refer to the semantics of
the data sample rather than the feature space [354]. Numeric representations of real-world phenomena based
on low-level features, such as pixel brightness or sound frequency, are not helpful or trustworthy to humans
[307]. Humans prefer intuitive, high-level criteria when describing the factors that direct their decisions. For
example, how “furry” a dog is or how “dry” a cough sounds when determining a dog breed or a respiratory
issue, respectively. Low-level features may be useful information for machine predictions, but not for human-
readable explanations. However, there is no mathematical difference between a vector representing low-level
characteristics (e.g., pixel values) and one representing ally rich features [27]. This makes it feasible to
create systems that provide counterfactual explanations in terms of semantic features instead of low-level
characteristics. This argument has been grounded both theoretically and practically by the community. [27]
demonstrates the equivalence between counterexamples and adversarial examples in cases where higher-level
semantics are not employed.

Furthermore, recent research has explored diverse approaches to provide explanations that incorporate the
semantic aspects of input data. For example, [100] utilize the intermediate output of a classifier to capture
higher-level information concerning the input image. [8], on the other hand, infer an image’s semantic
concepts (referred to as "xconcepts") by clustering the outputs of these features, assuming that elements
within the same cluster share semantic similarities. Meanwhile, [348] employ an external neural network to
generate semantic embeddings of these features, with the notion that proximate embeddings signify semantic
equivalence. All of these algorithms employ distinct methodologies to estimate the semantic relationships
among the elements depicted in images.

Counterfactual Explanations in Visual Classification also involve methods of pixel-level editing aimed at
identifying and modifying key areas of an image that significantly influence the predictions of the model [100,
348, 13]. These methods, some of which incorporate sophisticated generative technologies, serve as a critical
component in understanding and adjusting the decision-making processes of visual classifiers.

In contrast to other counterfactual methods that extract features, the Counterfactual Visual Explanations
(CVE) proposed by [348] are distinguished by their focus on ensuring semantic consistency during the ex-
change of local regions. This is achieved through an auxiliary component that assesses semantic similarity,
enhancing the relevance and accuracy of pixel-level comparisons. This semantically oriented strategy not
only establishes a standard for pixel-level evaluation but also sets it apart from methodologies that require
direct access to classifiers, highlighting a key differentiation from our own approach. Additionally, a separate
line of research delves into the modification of human-understandable concepts to generate Counterfactual
Explanations (CEs). This approach prioritizes the clarity and interpretability of the edits, aiming to bridge
the gap between machine learning outputs and human cognitive processes.

The aforementioned approaches have the capability to generate local counterfactual explanations by lever-
aging the semantic attributes of input instances. However, these methodologies exhibit certain limitations.
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Firstly, they require “white-box” access to the classifier, a condition that is exceptionally uncommon and
applicable primarily within a developer-centric context.

Secondly, their applicability is constrained to specific model types, predominantly Convolutional Neural
Networks (CNNs), and is restricted to a particular input domain, namely images. Thirdly, these methods
do not permit users to specify the features they deem as meaningful for the explanations. In the realm of
explainability, it is crucial to acknowledge that different users possess distinct terminologies and expectations
regarding the depth of abstraction in explanations, as it is already discussed in 3.1. Consequently, the choice
of data used for explanation generation should encompass semantic information tailored to the requisite level
of abstraction, aligning with the specific use-case at hand.

Additional techniques that have been proposed [277] describe these explanations as “feasible paths” within
the data that adhere to the data’s distribution and meet both feasibility and actionability requirements. [415]
use a text-to-image generative adversarial network to create counterfactual visual explanations, a method
that also incorporates external knowledge rather than relying solely on a model’s predefined features and
classes. For numeric tabular data, [98] have devised a heuristic approach to identify the smallest necessary
changes for altering a classifier’s prediction, complemented by a visualization tool for users.

It’s important to note that these techniques are not actively employed in NLP, a domain where the capacity
to easily generate high-quality data has greatly enhanced the development of counterfactual explanations. In
this context, most methodologies are geared towards producing new counterfactual instances, going beyond
mere explanations to actually modify elements of the text to illustrate alternative outcomes [302, 31, 375,
133, 183, 304, 41].

For instance, tools like MiCE [302] and DoCoGen [31] focus on optimizing text modifications based on the
output of a specific predictor, g(). They achieve this by pseudo-randomly masking words and optimizing the
suggested replacements to alter g’s output. In contrast, tools like Polyjuice [375] target generic text pertur-
bations that shift the semantic meaning of sentences without being tied to any particular predictor. These
are considered general-purpose counterfactuals and are versatile, used for everything from data augmentation
to generating counterfactual explanations or tailoring to specific tasks or datasets.

Additionally, a significant group of editors is dedicated to creating adversarial examples, which are designed to
uncover and highlight vulnerabilities in classifiers. Unlike other counterfactual editors, these do not necessarily
strive for minimal or fluent edits and may introduce noise among other changes. Notable examples within
the NLP field include TextFooler [133] and Bert-Attack [183], both integrated into the TextAttack framework
[251]. These methods typically use gradient descent on text instances to modify the class prediction of a
model while optimizing other metrics.

Rather than generating random permutations to create counterexamples, some editors focus only on modi-
fying key features of a text. The importance of these features is determined in various ways, such as training
a classifier to detect correlations between terms and tasks, assessing the impact of feature deletion on pre-
dictions, or leveraging a predictor’s attention mechanisms. Important terms may then be replaced with
synonyms, antonyms, significant terms from other tasks, or through the use of pre-trained seq2seq models
[229, 302, 375, 79].

3.3 Evaluation of AI Counterfactual Methods

The primary goal of counterfactual explanations is to identify what specific aspects of the input data would
need to be different to achieve an alternative outcome. This process not only sheds light on the sensitivity of
the model’s output to various inputs but also helps in debugging and refining the model by understanding
pivotal input factors. In essence, these explanations provide a minimal set of changes required to a given
data sample that, if applied, would change the model’s output. This minimalism helps in pinpointing the
most influential data features, simplifying the often complex interplay of variables in data-driven models.

Such explanations play a crucial role in areas where understanding the decision-making process of AI systems
is essential, such as in credit scoring, healthcare diagnostics, and other high-stakes environments. By enabling
a clearer view of how different inputs affect outputs, counterfactual explanations foster greater trust and
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transparency in AI systems. They allow stakeholders to make more informed decisions about deploying AI
systems in real-world scenarios, ensuring that these systems operate fairly and effectively [106].
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Chapter 4

Framework for Computing Conceptual
Counterfactual Explanations

4.1 Introduction
The effectiveness of Conceptual XAI methods is significantly influenced by the semantic context within which
the data is interpreted [148]. This implies that the meaningfulness and interpretability of the data are crucial
for these AI methodologies to function properly. Highlighting the importance of semantics [27] emphasize
that “there is no explanation without semantics.” They further solidify this viewpoint by providing a formal
proof, which establishes that the presence of semantic elements is what distinctly separates counterfactual
explanations from adversarial examples. This distinction is critical because while both counterfactual ex-
planations and adversarial examples modify inputs to alter AI outputs, counterfactual explanations aim to
provide insights into the decision-making process by illustrating how changes in input can lead to different
outcomes, whereas adversarial examples typically aim to deceive the AI system. Thus, understanding and
integrating the semantic context is essential for developing effective Conceptual XAI strategies.

Semantics adds crucial information to instances, but acquiring this data can be challenging. For example, in
systems that identify cancer through X-rays, semantic information is only obtained after doctors annotate
the images. The importance of annotations in creating conceptual counterfactual explanations was first
emphasized in [84, 58, 59], which introduced the concept of an “Explanation Dataset.” This dataset comprises
instances accompanied by semantic annotations and serves as a foundation for generating various explanations
for models, such as rule-based explanations [193], counterfactual explanations, and others. The concept and
utility of the Explanation Dataset have been extensively discussed in [84, 58], including a brief overview of
its background and the formalization process used.

The Explanation Dataset was introduced within the formalism of Description Logics (DLs) [14]. It establishes
specific assumptions regarding the structure of Description Logics (DL) knowledge bases. To elaborate, it
defines a vocabulary V = ⟨CN,RN, IN⟩, where CN,RN, IN are finite, mutually exclusive sets encompassing
concept, role, and individual names. Within this context, one conceives K = ⟨A, T ⟩ as a knowledge base,
where the ABox A consists of assertions in the form of C(a) and r(a, b), with C ∈ CN, r ∈ RN, and a, b ∈ IN.
Simultaneously, the TBox T comprises terminological axioms, taking the form of C ⊑ D with C,D ∈ CN
or r ⊑ s with r, s ∈ RN. Here, the symbol ‘⊑’ signifies inclusion or subsumption. For instance, within this
framework, a concept name (in CN) could be denoted as Dog, an individual name (in IN) might represent a
specific dog, such as Lassie, and a role name (in RN) could define a relation, such as “eating”. Consequently,
an ABox could contain an assertion like Dog(Lassie), signifying that Lassie is characterized as a Dog, while a
TBox could include the axiom Dog ⊑ Animal, conveying that all dogs are categorized as animals (with Animal
also being a concept name in CN).

In such a knowledge base, both the ABox and the TBox can be represented as labeled graphs. To elaborate,
an ABox A can be denoted as the graph ⟨V,E, ℓV , ℓE⟩ (referred to as an “ABox graph”). In this context,
V = IN represents the set of nodes, E = {⟨a, b⟩ | r(a, b) ∈ A} ⊆ IN × IN signifies the collection of labeled
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edges, ℓV : V → 2CN with ℓV (a) = {C | C(a) ∈ A} serves as the node labeling function, and ℓE : E → 2RN

with ℓE(a, b) = {r | r(a, b) ∈ A} functions as the edge labeling function.

Meanwhile, a TBox T that exclusively contains hierarchies of concepts and roles can be represented as a
directed graph ⟨V,E⟩ (referred to as a "TBox graph"). In this scenario, V = CN ∪ RN ∪ {⊤} constitutes
the set of nodes. The set of edges E encompasses an edge for each axiom in the TBox, in addition to edges
originating from atoms that solely appear on the right side of subsumption axioms and atoms that do not
appear in the TBox, all leading to the ⊤ node. More formally, this is expressed as:

E = {⟨a, b⟩ | a ⊑ b ∈ T } ∪ {⟨a,⊤⟩ | c ⊑ a ∈ T ∧ a ⊑ d ̸∈ T ∧ c, d ∈ CN ∪ RN} ∪ {⟨a,⊤⟩ | a ̸∈ sig(T )}.

It’s important to note that this notation employs an overloaded symbol⊤, which represents both the universal
concept and the universal role. Lastly, we define classifiers as functions F : D → C, where D denotes the
domain of the classifier, and C comprises the set of class names.

The initial step in attempting to comprehend a black box system involves the crucial decision of selecting
the data to input into it. In this study, we delve into the advantages of supplying it with data that is
enriched by information readily available in a knowledge base. This data is represented as what we refer to as
"exemplars," which are essentially individuals described within the underlying knowledge and can be mapped
to the feature space used by the classifier. Gathering this semantic information to characterize exemplars
can be accomplished through various means: it can be sourced from publicly available knowledge graphs
on the internet (such as WordNet [243]), extracted using knowledge extraction techniques (like scene graph
generation), or ideally, provided by domain experts.

To illustrate, consider a motivating example where a collection of X-ray images has been meticulously an-
notated by medical professionals. These annotations, using standardized medical terminology, have been
translated into a description logics knowledge base. Possessing such a set of exemplars empowers us to fur-
nish explanations grounded in the underlying knowledge rather than being confined solely to the classifier’s
features.

In this study, we delve into the advantages of supplying it with data that is enriched by information readily
available in a knowledge base. This data is represented as what we refer to as "exemplars," which are
essentially individuals described within the underlying knowledge and can be mapped to the feature space
used by the classifier. Gathering this semantic information to characterize exemplars can be accomplished
through various means: it can be sourced from publicly available knowledge graphs on the internet (such as
WordNet [243]), extracted using knowledge extraction techniques (like scene graph generation), or ideally,
provided by domain experts.

Thus, the definition of the Explanation Dataset as presented in [84, 58] is the following:

Definition 1 (Explanation Dataset [84, 58]). Let D be a domain of item feature data, C a set of classes, and
V = ⟨IN,CN,RN⟩ a vocabulary such that C ∪ {Exemplar} ⊆ CN. Let also EN ⊆ IN be a set of exemplars. An
explanation dataset E in terms of D, C, V is a tuple E = ⟨M,K⟩, whereM : EN→ D is a mapping from the
exemplars to the item feature data, and K = ⟨T ,A⟩ is a DL knowledge base over V such that Exemplar(a) ∈ A
iff a ∈ EN, the elements of C do not appear in K, and Exemplar and the elements of EN do not appear in T .

In this chapter, we introduce an efficient algorithm that builds upon these definitions and offers counterfactual
explanations within the context of knowledge graphs. Within this framework, we also present an algorithm
for generating such explanations, making certain assumptions about the underlying knowledge.

4.2 Counterfactual Explanations in Terms of the Explanation
Dataset

Intuitively, an explanation dataset comprises items for which we possess readily available semantic informa-
tion, coupled with a feature representation suitable for input to the classifier. To distinguish these individuals
that can be mapped by M to the classifier’s domain, we introduce the concept name Exemplar. Notably,
Exemplar is deliberately excluded from the TBox to prevent potential complexities that could arise from
reasoning processes. Given that counterfactual explanations aim to address the question of “What changes
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are necessary for a data sample to be classified into class B rather than class A,” they often manifest in the
form of “input edits.” Within this context, counterfactual explanations take on the shape of what we refer
to as “semantic edits”, which are employed on an ABox linked to an explanation dataset. To clarify, when
we have an exemplar and a target class in mind, our objective is to identify a series of modifications that,
when implemented on the ABox, result in the exemplar becoming indistinguishable from any other exemplar
classified within the desired class.

Definition 2 (Counterfactual Explanation [58]). Let F : D → C be a classifier and ⟨M,K⟩ an explanation
dataset where M : EN→ D is a mapping function, EN is a set of exemplars and K = ⟨A, T ⟩ is a knowledge
base. A counterfactual explanation for an exemplar a ∈ EN and class C ∈ C is a tuple ⟨c, E⟩ where c ∈ EN
and F (M(c)) = C, and E is a set of edit operations that when applied on the connected component of a on
the ABox graph make it equal to the connected component of c. An edit operation on an ABox can be any of:

• Replacement of assertion D(a) with E(a), symbolized eD→E

• Replacement of r(a, b) with s(a, b), symbolized er→s

• Deletion of D(a) or r(a, b), symbolized eD→⊤ or er→⊤

• Insertion of D(a) or r(a, b), symbolized e⊤→D or e⊤→r

where D,E ∈ CN and r, s ∈ RN.

For example, consider an image classifier F that classifies to the classes C = {WildAnimal,DomesticAnimal},
and two exemplars e1, e2 each classified to a different class: F (e1) = WildAnimal and F (e2) = DomesticAnimal.
The connected components of each exemplar in the ABox graph might be:

Ae1 = {Exemplar(e1), depicts(e1, a), depicts(e1, b), isIn(a, b),Animal(a),Forest(b)}

Ae2 = {Exemplar(e2), depicts(e2, c), depicts(e2, d), isIn(c, d),Animal(c),Bedroom(d)}

Then an explanation for exemplar e1 and class DomesticAnimal would be the replacement of assertion Forest(b)
with Bedroom(b), which would be symbolized ⟨e2, {eForest→Bedroom}⟩ and it would be interpreted by a user
as “If image e1 depicted animal a in a Bedroom instead of a Forest, then the image would be classified as a
DomesticAnimal”. Of course there is no way to know if the image e1 with the Forest replaced with a Bedroom
would be classified to the target class, because we do not have a way to edit the pixels of the image and feed
it to the classifier. The explanation however provides useful information to the user and can potentially aid
in the detection of biases of the classifier. For example, after viewing this explanation, the user might choose
to feed the classifier images depicting wild animals in bedrooms to see whether or not they are misclassified
as domestic animals.

Global Edits

To offer the end user more comprehensive insights, we can aggregate counterfactual explanations for multiple
exemplars aiming to transition to a desired class. This allows us to present statistical information regarding
the alterations that tend to influence the classifier’s prediction, constituting a sort of “global” explanation.

For example, one could ask “What are the most common semantic edits that when applied on exemplars
depicting bedrooms lead to them to be classified as wild animals?”. To achieve this, we begin by computing
the multiset G, which comprises all counterfactual explanations derived from each exemplar within the source
subset transitioning to the target class. Subsequently, we present the user with the importance of each atom
in terms of its impact on changing the prediction from the source exemplars to the target class.

This importance is quantified as follows:

Importance(y) =
|{ex→y ∈ G}| − |{ey→x ∈ G}|

|G|

where , x, y ∈ CN, or x, y ∈ RN.
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Here, x and y can both belong to either CN (concept names) or RN (role names), and the formula calculates
the significance of each atom based on the frequency of transitions from x to y compared to transitions from
y to x, normalized by the size of the multiset G.

In essence, the significance of an atom reflects the frequency with which it is incorporated into semantic edits
within a collection of counterfactual explanations. A negative significance would suggest that the atom tends
to be omitted, either through replacement or by the deletion of assertions.

For instance, one can assemble a group of exemplars classified as WildAnimal and their respective counterfac-
tual explanations aimed at transitioning to the target class DomesticAnimal. From this, we can calculate the
significance of the presence (or absence) of a concept or a role, shedding light on their role in distinguishing
between these two classes.

Mathematically, the above procedure can be expressed by introducing the following definitions.

Definition 3 (Regional of Explanation Dataset). Let CN be a set of concept names, Q be a set of concepts
Q ⊆ CN, and D = {xi, Ci} be an explanation dataset. A region of D with description Q is the subset
RQ ⊆ D of the explanation dataset for which: (xi, Ci) ∈ RQ ⇐⇒ ∀c1 ∈ Q,∃c2 ∈ Ci : c2 ⊑ c1

A region within an explanation dataset represents a subset that meets specific constraints, functioning essen-
tially as a query. For instance, consider a region description C = {Animal}; then the region RQ will include
any samples (xi, Ci) from the explanation dataset where their semantic description Ci contains any concept
c that falls under the category Animal as defined by the TBox.

Global counterfactual explanations are then derived as statistical measures across all optimal local counter-
factual explanations from the elements within a region. These explanations specifically assess the frequency
of concept introduction (through replacement or insertion) and calculate the frequency of their removal.

Definition 4 (Global Counterfactual Explanation). Let RQ be a region of an explanation dataset, and
ERQ be the multi set containing the labels of optimal local counterfactual explanations from each element
of RQ to the desired class. Given a set of concepts C ⊆ CN, a global counterfactual explanation is
an assignment of importance to every concept C ∈ C, where the importance of a concept C is defined as:
|{ex→C∈ERQ}|−|{eC→x∈ERQ}|

|RQ| , where x ∈ CN

Consider an explanation dataset for a classifier that decides whether an image depicts a bedroom or
a veterinarian’s office. A segment of this dataset, described by {Animal}, includes three elements:
(x1, {Cat,Dog}), (x2, {Insect}), (x3, {Human,Sofa}). The classifier identifies the first image as a “veterinar-
ian’s office” and the other two as bedrooms. The optimal local counterfactual explanations for each el-
ement to the class veterinarian’s office might be: E1 = ∅ (since x1 is already classified as desired),
E2 = {e⊤→Human, eInsect→Cat}, and E3 = {eHuman→Cat, eSofa→⊤}. The collection ERC , which contains all labels
from the optimal counterfactual explanations, will be ERC = {e⊤→Human, eInsect→Cat, eHuman→Cat, eSofa→⊤}.
Consequently, a generalized counterfactual explanation for this segment would be: a) Cat with importance
2
3 , b) Insect and Sofa with importance − 1

3 , and c) Human with importance 0. A negative importance implies
that the concept is usually removed, whereas a positive importance indicates its introduction.

4.3 Algorithm for Computing Conceptual Counterfactual Explana-
tions using only Concepts

Unfortunately, computing the graph edit distance is NP-hard [401], and even though there are optimized
algorithms for its computation [3], it will not be feasible for explanation datasets with a large number of
exemplars. Therefore, the first approximation we propose to efficiently calculate semantic counterfactual
explanations is to remove the information on the edges and transform the problem from calculating the
graph edit distance to calculating the simpler set edit distance. Thus, an instance that contains a Cat on a
Couch will be described only by the objects Cat and Couch.

Additionally, to generate the proposed counterfactual explanations in a practical setting, the use of a classifier
denoted as F , an explanation dataset D, and a TBox T are required. The process of computing explanations
involves three key steps. Initially, a graph, as defined in Definition 1, is constructed. Subsequently, suitable
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paths within this graph are identified, and finally, for generalized counterfactual explanations, these paths are
aggregated to calculate their importance based on Definition 8. An overview of the graph creation process is
depicted in Algorithm 1.

The concept distance between two concepts is determined by identifying the shortest path on an undirected
TBox graph. This calculation employs Dijkstra’s algorithm, which operates with a complexity of O(|CN| +
|T | log |CN|).

In calculating the Concept Set Edit Distance, as outlined in Definition 4, from a set of concepts A to a set
of concepts B, common elements are first removed from both sets. A bipartite graph is then established in
O(|A||B|) time, where each element of A is connected to all elements of B with edges weighted by their concept
distances. The minimum weight full matching of this bipartite graph is computed using an implementation
of Karp’s algorithm, achieving a time complexity of O(|A||B| log |B|).

The graph required for generating counterfactual explanations is created using Algorithm 1, with the total
time for creation being O((n + t log n)m4k2 logm), where n represents the size of |CN|, m the maximum
cardinality of a set of concepts, k the size of the explanation dataset, and t the size of the TBox. This graph
creation is performed only once per explanation dataset and TBox.

For the computation of local counterfactual explanations as per Definition 6, the already constructed graph,
inclusive of edge costs and labels, is utilized. Dijkstra’s algorithm is again employed to ascertain the shortest
path.

To effectively tackle the edit distance problem, it is critical first to ascertain the cost associated with each
modification. Our primary goal is to develop counterfactual explanations that not only retain but closely
mirror the original exemplars in terms of semantic content. This necessitates that the cost of an edit accurately
represents the extent of semantic alteration inflicted upon the exemplar post-edit. Moreover, it is paramount
that these edits maintain a level of transparency, ensuring that explanations provided to users are both
comprehensive and easily comprehensible. For example, while the proximity of concepts might be quantifiable
through their embedded representations within a word embedding system or a graph neural network, such
metrics may fail to clarify the rationale behind the perceived closeness or distance of these concepts. Thus,
the methodologies employed in these calculations should be explicit and clear.

In our approach, we harness the informational capacity of the TBox. Specifically, when addressing the first
type of ABox edits, which involve replacing one concept assertion with another eA→B , we determine the cost
of substituting concept A for concept B based on their proximity within the TBox graph. This calculation is
done without considering the directionality of the edges in the graph. For instance, if we consider a specific
TBox setup:

T = {Cat ⊑ Mammal,Dog ⊑ Mammal,Ant ⊑ Insect,Mammal ⊑ Animal, Insect ⊑ Animal}

the cost of replacing a Cat(a) assertion with Mammal(a) would be 1, the cost of replacing Cat(a) with Dog(a)
would be 2, and the cost of replacing Cat(a) with Ant(a) would be 4. Similarly, the cost of replacing a role
assertion r(a, b) with s(a, b) (symbolized er→s) is assigned as the shortest path distance on the undirected
TBox graph from r to s. It is important to note that this may not necessarily be the optimal method for
computing semantic similarities of concepts and roles, as other measures exist in the literature [49].

In the process of adding/removing concept, represented by the notation e⊤→a, costs are determined based
on how far the inserted atom (a concept or a role) is from the ⊤ node within the TBox graph. This structure
implies that inserting atoms that are more specific incurs a higher cost compared to those that are more
general. Similarly, when removing atoms, as denoted by ea→⊤, the cost also depends on the proximity of
the concept or role being deleted to the ⊤ node in the undirected TBox graph. Thus, the deletion of more
specific concepts and roles is more costly.

Moreover, the system allows for the manual adjustment of costs by users, which can be particularly useful in
applications where certain modifications are impractical or impossible in real-life scenarios. For instance, in
cases where exemplars represent individuals and concepts symbolize their age groups, such as Young and Old,
the edit eOld→Young might be deemed unrealistic, as it would necessitate an impossible reversal of time. This
type of constraint is commonly referred to as an “actionability constraint” [322, 237]. In such scenarios, an
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Algorithm 1: Explanation Graph Construction
Data: A classifier F , an explanation dataset D, an undirected TBox Graph GT

Result: Explanation Graph GE

1 //the explanation graph will have a node for each element in the explanation dataset
2 Initialize Directed Graph GE = (VE = D,EE = ∅);
3 foreach (xi, Ci) ∈ D do
4 foreach (xj , Cj) ∈ D \ {(xi, Ci)} do
5 Initialize Graph GC = (VC = Ci ∪ Cj , EC = ∅);
6 foreach k ∈ Ci do
7 foreach l ∈ Cj do
8 //Compute concept distance using TBox graph
9 dT (k, l) = |ShortestPath(GT , k, l)|

10 //Add an edge to GC with weight dT
11 EC = EC ∪ {(k, l, dT )}
12 end
13 end
14 //Compute minimum weight full matching of the bipartite graph GC

15 {(cm, cn)}, w = MinFullMatch(GC)
16 //Concept Set Edit Distance
17 DT (Ci, Cj) = w
18 //Compute inverse significance
19 1

σ(i,j)
=

DT (Ci,Cj)

|F (xi)−F (xj)|

20 //Add an edge to the explanation graph GE with weight 1
σ

and as a label the edits corresponding to the
minimum weight full match

21 EE = EE ∪ {(vi, vj , 1
σ(i,j)

, {ecm→cn})}
22 end
23 end
24 return GE

25

infinite cost may be assigned to discourage or prohibit specific edits. This ability to flexibly assign costs adds
a practical layer of adaptability to the model. It ensures that the model can accommodate specific real-world
constraints and requirements, guaranteeing that all generated edits remain actionable.

Additional Criteria for Good Counterfactuals

In the context of this framework, the simplest counterfactual explanation for an exemplar e and a target
class C would be the exemplar x (along with the edits) that is the closest with respect to edit distance to
e while considering exemplars that are classified to C. If we have access to the output probabilities of the
classifier for each class, then we can utilize this information and provide additional criteria to determine
which counterfactual explanations to show to a user.

Target Significance

The first additional criterion, defined as significance in [84], is to find the exemplar x that maximizes the
fraction:

target_significance =
PC(x)

edit_distance(e, x)
(4.3.1)

, where PC(x) is the probability for exemplar x to be classified to target class C. Intuitively, we are searching
for a small set of low-cost edits (minimize edit_distance) that largely effect the output of the classifier for the
desired class C (maximize PC(x)).
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Source-Target Significance

Another option for a criterion would be to also take under consideration the prediction probability for the
class that the original exemplar is classified to. Similarly to before, a counterfactual for exemplar e would be
exemplar x (along with the edits) that maximizes the fraction:

source_target_significance =
PC(x)− PD(x)

edit_distance(e, x)
(4.3.2)

, where D is the class that e is classified to. Counterfactual explanations are supposed to answer the question
“Why class D and not class C?”, and while the previous criteria emphasize the “...and not class C” part of
the question, intuitively source-target significance puts more weight on the “Why class D” part.

Entropy

A final criterion we explore in this work is to consider the confidence of the classifier for classifying an
exemplar to the target class C. As a measure of confidence we use the entropy at the output of the classifier,
where a lower value indicates a more confident prediction. To do this, we find exemplar x that is classified
to target class C and maximizes the fraction:

entropy =

∑
i∈C Pi(x) logPi(x)

edit_distance(e, x)
(4.3.3)

, where C is the set of classes of the classifier.

4.4 Evaluation
Our research is dedicated to exploring counterfactual explanations with the aim of uncovering biases in
classifiers across various domains. To demonstrate the versatility and broad applicability of our proposed
methodology, we plan to expand our study into two distinct domains: image classification and audio classi-
fication. In the realm of image classification, we seek to refine the interpretability of visual data processing.
More critically, in the domain of audio classification, we intend to focus on medical applications where the
provision of precise and reliable explanations is essential. By extending our methodology to these areas, we
aim to enhance the understanding and reliability of classifier decisions in fields where accuracy is paramount.

4.4.1 Evaluation in Image
In the domain of image classification, we began our evaluation process by leveraging the CLEVR-Hans3
dataset [331], which provides a controlled environment with known inherent biases. During this initial phase,
we trained a classifier on images where a “grey cube” appeared consistently within a specific class. Our
objective was to ascertain whether the classifier would recommend adding a “grey cube” to an image to cate-
gorize it accordingly, thereby uncovering any intrinsic biases. The results confirmed that our counterfactual
algorithm successfully identified these biases. Subsequently, we demonstrated the practical application of
our framework on a black-box classifier trained with the Places dataset [419]. For this demonstration, we
utilized semantic information from multiple sources, including COCO [198], and WordNet [75]. This aspect
of our research illustrated how our approach could intelligently navigate and make sense of complex datasets
by integrating various semantic inputs. This integration enhances the transparency and comprehensibility of
the AI’s classification decisions, highlighting the robustness and adaptability of our methodology in practical
scenarios.

Explaining a CLEVR-Hans3 Classifier

Setting Our experimental approach begins with highly controlled datasets and progressively incorporates
scenarios that mirror real-world complexities. In this vein, we utilized the CLEVR-Hans3 dataset, featuring
images of colored 3D geometrical objects categorized into three distinct classes. Each image in this dataset
provides detailed information about the objects present, including their shape (Sphere, Cube, Cylinder), size
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(Large, Small), material (Metallic, Rubber), and color (Blue, Yellow, Brown, Grey, Green, Purple, Cyan,
Red). The dataset delineates classes based on specific combinations of these attributes:

• Class A: includes a Large Grey Cube and a Large Cylinder,

• Class B: comprises a Small Metal Cube and a Small Sphere,

• Class C: contains a Large Blue Sphere and a Small Yellow Sphere.

Importantly, the first two classes exhibit intentional biases in the training set, where, for example, the Large
Cube in Class A is always Grey, and the material of the Small Sphere in Class B is always Metal, though
these attributes vary randomly in the test set.

To evaluate our enriched counterfactual analysis system against the FACE algorithm, which calculates con-
ceptual counterfactuals with a focus on actionability and feasibility constraints [322] and operates exclusively
on training set images, we created two distinct explanation datasets. The first is restricted to training set
images to facilitate this comparison, while the second includes test set images to detect biases ingrained
during training. For our classifier, we employed a ResNet34 model [113], which achieved 99% accuracy on the
confounded training set but showed diminished performance on the test set, particularly in the confounded
classes (F1 scores were Class A: 0.27, Class B: 0.54, Class C: 0.92), as anticipated.

To enhance our explanation capability, we defined a concept for each combination of shape, size, material,
and color (including the absence of any attribute), resulting in a total of 324 distinct concepts. We further
developed a terminological box (TBox), adding an inclusion axiom from each concept to any other concept
sharing a similar description but missing one element. For instance, the concept GrayCube is subsumed by
Gray and Cube. This ontological structure allows us to assign concept sets to each element in the dataset,
drawing on the detailed descriptions provided in the corresponding JSON files. This comprehensive ap-
proach underscores our commitment to advancing the transparency and accuracy of AI classifiers through
sophisticated counterfactual explanations.

Results

Local Counterfactuals In Figure 4.4.1, we present local counterfactual explanations for three images
randomly selected from those originally classified in Class B (featuring a Small Metal Cube and Small
Sphere, where the Small Sphere is consistently Metal in the training set), targeting reclassification into
Class A (characterized by a Large Cube and Large Cylinder, with the Large Cube consistently Grey in the
training set). The second column of the figure displays suggestions from the FACE algorithm, and the third
column shows suggestions from our algorithm. At first glance, the results from both algorithms may not
seem particularly intuitive. We believe this stems from the nature of the explanations, which are sequences
of samples from the training set.

Upon closer examination, it becomes evident that our method typically maintains a consistent number of
objects per image. This consistency is largely due to the high costs associated with adding or removing
concepts, as opposed to merely replacing them. In contrast, FACE, which is based on the overall distribution
of the dataset and operates at the pixel level without recognizing the objects, tends to suggest transitions to
images that include a larger number of objects.

Global Counterfactuals For our initial global counterfactual explanation, we focused on images from the
CLEVR-Hans3 test set that were classified as Class B. We analyzed the modifications our system recom-
mended to reclassify these images as Class A. We identified that frequently recurring changes carry significant
weight in delineating the transition between these classes, serving as indicators of key class characteristics.
Positive importance in our analysis suggests the addition of features, whereas negative importance implies
their removal.

Our findings promptly highlighted the classifier’s bias towards the confounded Class A. As previously dis-
cussed, a notable bias in Class A is that the Large Cube is invariably Grey in the training set. This bias
was evident in our results, particularly seen in the first three bars of figure 4.4.2, where the most critical
insertions included the concepts: (Gray, GrayLargeCube, GrayLarge), rather than simply (LargeCube).
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Source Image FACE Our

Figure 4.4.1: Counterfactuals for 3 images (first column) which classified in class B with target class A,
using FACE (second column) and our proposed method (third column). The first column shows the source
images, the second column shows the results from FACE and the third column the results of our method.

Explaining a Places Classifier

Setting In the context of the study, it was determined that the exploration of more intuitive and realistic
example was necessary; hence, the COCO dataset [199] was utilized. This dataset, comprising real-world
images annotated with objects, allowed for the automatic linking of these objects to external knowledge bases
such as WordNet.

During the analytical phase where COCO’s labels were scrutinized to determine a class transformation
strategy that would effectively utilize them, it was concluded by the researchers that the images should be
categorized primarily into two classes: those related to “Restaurants” and those associated with “Bedrooms”.
For the restaurant-related category, the following subsets of images were collected from the COCO dataset:

1. Images featuring the combination of {dining table, person, pizza}, exceeding 1000 images.

2. Images displaying {dining table, person, wine glass}, totaling over 1200 images.

In the bedroom-related category, images were grouped based on the presence of specific labels:

1. {bed, person}, encompassing approximately 1300 images.

2. {bed, book}, with around 800 images.

3. {bed, teddy bear}, including about 300 images.

Additionally, a selection of potentially confusing images for the classifier was included. These images featured
unusual combinations of COCO labels:

1. {bed, fork}, consisting of 10 images.
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Figure 4.4.2: Global explanation for the subset of CLEVR-Hans3 which is classified in class B, with target
class A.

2. {bed, spoon}, with 20 images.

3. {bed, wine glass}, also 20 images.

4. {bed, pizza}, including 10 images.

5. {dining table, bed}, which included 170 images.

For each image, a description of the objects present was provided. These descriptions were linked to WordNet
synsets using the NLTK Python package1. WordNet synsets served as the set of concept names CN, and
the hierarchical structure of hyponyms and hypernyms was utilized as a TBox in the study. A pre-trained
image classifier from the PLACES dataset [420], provided by the dataset creators2, was employed for scene
classification. Predictions were then made on the aforementioned subsets of COCO images. This classifier
functioned as the black-box model for which explanations were provided in the study.

Results

Local Counterfactuals As depicted in the first row of Figure 4.4.3, a counterfactual explanation is pro-
vided for an image initially classified as a “Bedroom.” To alter its classification to the target class “Playhouse,”
only one conceptual edit is necessary, specifically the addition of a Child (e⊤→Child). This scenario is par-
ticularly intriguing as the prediction of “Playhouse” is incorrect, revealing a potential classifier bias. The
classifier’s tendency to categorize a “Bedroom” with a Child as a “Playhouse” suggests an erroneous asso-
ciative bias. In the second row of Figure 4.4.3, another local counterfactual explanation demonstrates the
transformation of an image from “Bedroom” to “Veterinarian’s Office.” This transformation is achieved by
the addition of a Cat. The resultant image classification as a “Veterinarian’s Office” is also incorrect, further
highlighting possible biases in the classifier’s training or logic.

1

2
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Figure 4.4.3: Counterfactual explanation for changing the prediction of the image on the left from
“Bedroom” to “Playhouse” is simply to add a child (e⊤→Child) (top) and from “Bedroom” to “veterinarians

office” is simply to add a cat (e⊤→Cat) (bottom).

Figure 4.4.4 presents a counterfactual explanation involving a more complex transition, with a two-step path
on the graph. The original classification of the source image is a “Bedroom,” with the target classification
being a “Computer Room.” The transformation is smoothly executed by initially adding a person (noting
that the source image already contains two laptops). Subsequent additions include two more individuals and
two additional laptops, effectively transforming the scene into a “Computer Room.”

Global Counterfactuals In Figures 4.4.5 and 4.4.6, we observe two instances of generalized counterfac-
tual explanations within the COCO dataset. In these figures, the numerical values on each bar indicate
the significance of either inserting (positive values) or removing (negative values) certain concepts, aiding
the transition from a source region within an explanation dataset to a designated target class. The exact
source regions and target classes are not specified, yet they can be inferred from the most frequent concept
modifications.

In the first example, Figure 4.4.5, the most frequent removals from the source images include concepts such as
{furniture, bed, animal, carnivore, dog}, while the primary additions feature {home appliance, refrigerator,
white goods, consumer goods}. These modifications suggest that the source region predominantly contains
images of bedrooms, possibly with a pet presence, transitioning to images of kitchens. Indeed, the initial and
target classes were confirmed to be “bedroom” and “kitchen,” respectively.

The second example, Figure 5.2.4, illustrates that the most common removals are related to {instrumentality,
artifact, electronic, furniture, telecommunications, TV, broadcasting, kitchen}, and the additions focus on
{carnivore, animal, mammal, feline, cat, dog}. Given the classification context of rooms and places, one
might initially speculate the source as a kitchen and the target as a location associated with domestic animals.
However, the actual classifications were from “bedroom” to “veterinarian.” This discrepancy prompts a notable
observation: “kitchen” elements appear rather than “bed” due to the inclusion of studio-apartment bedroom
images that feature partial kitchen views, which are typically absent in veterinarian offices.

It is important to highlight that these examples were not selectively chosen; rather, during our experiments,
it was often possible to deduce the source region and target class by examining the frequency of edits. One
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Figure 4.4.4: Counterfactual explanation for changing the prediction of the image on the left from
“Bedroom” to “Computer Room”, which requires two steps.

intriguing case involved the target class “computer room,” where the explanation frequently suggested adding
people but not laptops or computers. Upon further investigation, it was revealed that many images labeled
as “computer room” in our dataset featured people in settings resembling labs, with no computers visible.

Figure 4.4.5: Global Counterfactual Explanations
using as the explanation dataset the COCO which

is classified as “bedroom”, with the target class
being “kitchen”.

Figure 4.4.6: Global Counterfactual Explanations
using as the explanation dataset the COCO which

is classified as “bedroom”, with target class
“veterinarian”.

4.4.2 Evaluation in Audio

COVID-19 Classification

Our final experiment serves as a critical extension of our analytical framework into the audio domain, em-
phasizing its broad applicability, particularly in high-stakes environments such as medical diagnostics. In
this case, the focus is on the diagnosis of COVID-19—an area where the consequences of decisions can signif-
icantly impact patient outcomes and public health. The importance of explainability in medical applications
cannot be overstated. It ensures that the decision-making processes of AI systems are transparent, allowing
healthcare professionals to understand the basis of automated recommendations. This transparency is crucial
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for building trust between these technologies and their human users, facilitating a more informed and ethical
integration of AI in healthcare. Explainability in medical diagnostics aids in identifying and correcting biases,
as well as in verifying the clinical relevance of the features used by AI systems. By understanding the “why”
and ‘how” behind a diagnosis, medical professionals can make better-informed decisions, potentially catching
errors before they affect patient care. Moreover, explainable AI (XAI) supports compliance with regulatory
requirements that are increasingly demanding transparency in automated systems used in healthcare settings.

The aim of this experiment was not only to test our framework’s efficacy in a new domain but also to
demonstrate its domain-agnostic and modality-agnostic nature. These attributes highlight the flexibility and
scalability of our method, showcasing its capability to generalize across different modalities beyond visual
data. By applying our framework to audio inputs—specifically, to the sounds of coughing—we illustrate how
it can adapt to different types of data and extract meaningful insights that are critical in a clinical context.
In doing so, we conducted our study using a classifier trained on the Coswara Dataset [320], a collection
recognized for its role in a major IEEE COVID-19 sensor informatics challenge 3. The classifier evaluates
audio files containing cough sounds to assess the probability of COVID-19 infection.

The explanation system utilizes the richly annotated audio database of the Smarty4covid dataset [398] to
elucidate the classifier’s decision-making process by highlighting significant audio features, such as cough
characteristics and other respiratory symptoms.

Despite achieving a commendable c-statistic of up to 0.764 ± 0.038 in a 5-fold evaluation with the Coswara
dataset, the classifier’s performance deteriorated (with a c-statistic of less than 0.50) when tested on the
Smarty4covid dataset [398]. This notable decline suggests the presence of potential biases in the dataset or
the classifier’s methodology, underscoring the importance of further analysis and adaptation in diverse data
environments.

This exploration into the audio domain underscores the method’s robustness and its potential to assist in
diverse medical scenarios, from routine diagnostics to pandemic responses. It establishes a precedent for
applying XAI in varied settings, reinforcing the adaptability and crucial role of explainability in ensuring
that AI-driven tools enhance, rather than hinder, medical diagnostics. Through this initiative, we contribute
to the broader discourse on the necessity of robust, transparent, and accountable AI systems in healthcare,
paving the way for future innovations that adhere to both scientific rigor and ethical standards.

Setting In this experiment, we utilize explanations to interpret the decisions of a classifier that was trained
using a segment of the Coswara Dataset [320]. For the classifier we selected the winning entry in the IEEE
COVID-19 sensor informatics challenge. The classifier’s task is to analyze audio recordings of coughs and
determine the likelihood of a COVID-19 infection in the individual. The classifier employs a sophisticated
model using 2D Convolutional Neural Networks (CNN) [191] that processes audio segments converted into
Mel spectrograms. These spectrograms are utilized as inputs to determine the likelihood of the sounds being
coughs, breaths, or voices. The Mel spectrogram representation of the audio segments is particularly detailed,
with the frequency axis having a fixed size of 128 units. The time axis size, denoted as d, is adjustable and
was optimized using a grid search technique. This search ranged from 128 to 1024, corresponding to audio
lengths of approximately 1 to 10 seconds, respectively. Each CNN within the system comprises several stacked
blocks, each containing l convolutional layers. These layers are followed by a 2 × 2 max pooling layer and a
dropout layer, with the dropout probability set to the standard rate of 0.5.

In each convolutional block, the layers are equipped with k 3 × 3 kernels activated by the ReLU function
and utilize identical padding to maintain dimension consistency across inputs and outputs. The output from
the last convolutional layer is then flattened and passed to a fully connected layer that includes 3 softmax-
activated neurons, effectively categorizing the input into cough, breath, or voice. Hyperparameter tuning was
rigorously performed through a grid search to find optimal settings for l (ranging from 1 to 3), k (ranging from
64 to 128), and b (ranging from 3 to log2(d)). For this purpose, 80% of the development dataset, equating to
5,855 audio recordings, was utilized for training, while the remaining 20% (1,465 recordings) served as the
validation set. The architecture of the classifier, which significantly influences its accuracy and efficiency, is
depicted in Figure 4.4.7.

3https://healthcaresummit.ieee.org/data-hackathon/
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Figure 4.4.7: Overview of the classifier used to categorize audio clips into coughs, voices, and breathing
sounds [398]. Both single-scale and multi-scale methodologies are depicted.

The selection of an explanation dataset is crucial for medical applications, particularly when the dataset is
expected to contribute significantly to medical diagnostics and research. There is a notable scarcity of datasets
that encompass both granular data, such as images, and high-level semantic information, such as symptoms.
To address this gap, we sourced our explanation dataset from the Smarty4covid platform4, resulting in the
creation of the Smarty4covid dataset [398]. This dataset includes a curated collection of audio samples that
are crucial for our analyses.

To facilitate the integration of data from diverse sources, including Coughvid [265], COVID-19 Sounds [380],
and Coswara, a sophisticated web-ontology language (OWL) knowledge base5 was developed. The develop-
ment of this knowledge base was essential for performing complex queries aimed at identifying users with
specific attributes. The processes of crowd-sourcing, meticulous data cleaning, and systematic data labeling
were integral to the creation of the smarty4covid OWL knowledge base, which is meticulously maintained
alongside the associated data records within the same Zenodo Repository.

These efforts ensure that our explanation dataset is not only comprehensive and rich in both low-level and
high-level information but also structured in a manner that supports advanced data analysis and research in
the medical field.

The smarty4covid OWL knowledge base utilizes a structured vocabulary divided into concept names (CN),
role names (RN), and individual names (IN), which are distinctly separate from each other. This architecture
allows for the construction of two main components within the knowledge base: the Assertional Database
(ABox) and the Terminology Database (TBox). The ABox comprises assertions of the form C(a), r(a, b)
where C is a concept from CN, r is a role from RN, and a, b are individuals from IN. The TBox, on the
other hand, contains terminological axioms formatted as C ⊑ D, where C and D are concepts from CN,
and relational hierarchies such as r ⊑ s where r and s are roles from RN. These axioms are foundational
for establishing the hierarchies of concepts and roles within the TBox, structuring the ontology to reflect the
complex relationships and characteristics of the data.

The set of individual names (IN) in the smarty4covid OWL knowledge base is meticulously curated to include
unique identifiers for each participant, their questionnaires, audio files, and the healthcare professionals
involved in the labeling process, along with detailed characterizations of the audio records. Additionally, IN
encompasses unique identifiers for each reported symptom, COVID-19 test result, and pre-existing medical
condition, directly linked to the corresponding participant and their questionnaire.

These individuals are interconnected through well-defined roles that are crucial for the operational integrity
of the knowledge base. The hierarchy of these role names (RN) and their relationships are detailed in Figure
4.4.8. Each role is defined with a specific domain and range that delineate the types of entities that can
be linked through these roles. For example, the role “hasCharacterization” connects audio files to their
respective characterizations as labeled by healthcare professionals. Conversely, “characterizedBy” establishes

4https://www.smarty4covid.org
5https://www.w3.org/OWL
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Figure 4.4.8: Example of the Smarty4covid knowledge base architecture. Blue nodes symbolize individual
entities, while orange nodes depict concepts. Edges marked as IsA indicate concept assertions from the

ABox, and edges labeled subClassOf denote inclusion axioms from the TBox.

links from these characterizations back to the healthcare professionals themselves. The role “hasAudio” and its
subsidiary roles create links between questionnaires and corresponding audio files. The roles “hasCovidTest”
and “hasSymptom” connect questionnaires to instances of COVID-19 tests and self-reported symptoms, as
well as vaccination statuses, respectively. Furthermore, the role “hasPreexistingCondition” forms connections
between participants and their reported pre-existing conditions, while “hasUserInstance” links participants
to their submitted questionnaires. Through such structured relationships and a clear hierarchical system,
the Smarty4covid OWL knowledge base serves as a critical tool for researchers and healthcare providers to
navigate and utilize the rich dataset effectively, supporting advanced studies and interventions in the field of
COVID-19 and respiratory illnesses. To enhance the quality of the data, multiple crowd-sourced campaigns
were conducted. These efforts were aimed at ensuring the quality of the audio files and annotated results, as
well as enriching the data through expert contributions.

These samples are further enriched with annotations such as gender, symptoms, and medical history, struc-
tured within an ontology to provide a comprehensive understanding of each case. It is important to highlight
that in our study, we focused exclusively on audio-relevant features, intentionally omitting unrelated factors
like vaccination status or travel history, to maintain a clear focus on audible symptoms.

Results The analysis of global counterfactuals, transitioning classifications from “COVID-19 Negative” to
“COVID-19 Positive” (referenced in Table 4.1), revealed that the most significant addition was the concept
“Symptom”. This concept acts as an umbrella term encompassing all symptoms cataloged in our knowledge
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Concept Importance Concept Importance
Symptom -1.298 Runny Nose -0.22

Respiratory -1.278 Dry Cough -0.19
Female 0.25 Cough -0.189
Male -0.254 Sore Throat -0.13

Table 4.1: Global counterfactual transitions from “COVID-19 Negative” to “COVID-19 Positive” based on a
classifier trained using Coswara Dataset cough audio, with explanations derived from Smarty4covid dataset.

base. However, not all symptoms contribute equally to altering the classifier’s predictions. Notably, the
concept “Respiratory”, which is a subset of “Symptom” and a precursor to specific respiratory symptoms (like
“Dry Cough”, “Runny Nose”, and “Cough”), is frequently added, highlighting its relevance in the diagnosis of
COVID-19.

A particularly significant finding from our experiment was the identification of an unwanted bias within
the classifier, which correlated the likelihood of COVID-19 positivity with the user’s gender. This bias was
uncovered through an analysis that revealed changes in the gender of the subjects as a common modification in
our counterfactuals. Further investigation into the training data—specifically the Coswara dataset—revealed
a disproportionate representation of COVID-19 positivity rates: 42% of the females tested were positive,
compared to 27% for males. This discrepancy likely led the classifier to develop an erroneous association
between gender and COVID-19 status, which we identified as a critical issue needing correction to avoid
reinforcing gender-based biases in medical diagnostic processes.

This experiment underscores the importance of explainability in AI-driven healthcare applications, particu-
larly in ensuring that machine learning models do not perpetuate existing biases and that they adhere closely
to medical relevance rather than spurious correlations found in training data.

4.5 Conclusion
The experiments conducted have yielded intriguing results, demonstrating that both local and generalized
counterfactual explanations are informative, understandable, and practical for application. Particularly in
the CLEVR-Hans3 scenario, pre-existing biases within the classifier were successfully identified. In contrast,
the exploration within the COCO dataset revealed previously unrecognized biases. For instance, it was noted
that the depiction of people significantly outweighed the presence of laptops in images classified under the
“computer room” category. This insight was unexpected and emphasized an assumption by the classifier that
veterinarian offices would frequently depict beds among other items. Such findings underscore the potential
of using high-level external terminology for explanations, which has shown to be more intuitive and relatable
compared to low-level feature-based explanations, as seen when juxtaposed with the FACE algorithm. Finally,
the exact same algorithm was also successfully applied in the audio domain, revealing a bias in the winning
classifier of the IEEE COVID-19 challenge.

Despite the promising results, the proposed framework relies heavily on the availability of semantically
annotated data, which is not widely available across all domains. To address this limitation, future efforts
will focus on two main strategies. The first involves the automatic semantic annotation of data using advanced
information extraction techniques such as object detection for images (see also Section 5.2.1) or linking textual
content to encyclopedic knowledge [241]. The second strategy, particularly relevant for critical domains like
medicine, involves investing in manually annotated and curated explanation datasets by domain experts,
which could enhance the reliability and user trust in generated explanations.

Looking ahead, the framework will be further developed to incorporate Description Logics, including roles
and individuals, and to accommodate more complex axioms within the TBox. This expansion is expected
to enrich the theoretical and practical outcomes of the counterfactual explanations generated. Experiments
will also extend to different types of data, including text and tabular data, with the potential incorporation
of human evaluators to enhance the assessment process.

Future research will delve into the properties of explanation datasets as defined within the current framework
and as explored in related works [192, 57]. An exploration into the effects of the size of an explanation dataset,
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such as utilizing the entire COCO dataset, is planned. Additionally, the use of the same explanation dataset
linked to alternative TBoxes (for example, ConceptNet instead of WordNet) will be explored, necessitating
further experiments on different conceptual or semantic distances.

Further investigation will explore the application of the proposed method in diverse setups beyond exporting
counterfactual explanations. Notably, this method could be employed to assess the efficacy of generative
systems, such as those converting text to images. Additionally, the utility of this approach in story generation
systems is noteworthy [270, 346, 218], where it can be used to measure the consistency between generated
narratives and corresponding visual outputs. The accuracy of this alignment can be quantitatively assessed
using the proposed methodology. Furthermore, the reciprocal relationship between image and text generation
systems warrants examination. This includes measuring the frequency of inaccuracies in image comprehension
or text production by evaluating the rate of hallucinations [103, 268, 94] within these systems, facilitated by
an explanatory dataset.
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Chapter 5

Conceptual Counterfactuals using
Graphs

5.1 Introduction

Understanding a classifier solely through isolated concepts often proves inadequate, as the relationships or
actions linking these concepts are crucial for effective classification. Consider the classifier used in the camera
system of an autonomous vehicle, which is designed to detect the presence of pedestrians. This example
underscores the difficulty in distinguishing between categories such as “driver”, “pedestrian”, “motorbike”,
“bicycle”, and “person” without an understanding of the interactions between the person and the vehicle.
The incorporation of edge information is essential; omitting it can lead to an incomplete assessment of the
classifier’s biases, particularly if the classifier focuses its attention on the edges, yet this data is not included
in our analysis. Therefore, it is imperative to utilize the information from the edges along with the concepts.

In this chapter, we introduce two distinct methodologies that utilize the framework presented in Chapter
4 and the “Explanation Dataset" to compute counterfactuals while preserving the relationships between
the concepts present in the instances. These approaches ensure that the interconnectedness of concepts is
not overlooked, thereby maintaining the integrity and context of the counterfactual explanations. This is
essential for developing a deeper understanding of the underlying models and for enhancing the robustness
of decision-making processes influenced by AI systems.

5.2 Transforming Graph into a Set of Concepts

As previously noted, computing the graph edit distance is an NP-hard problem [401]. Although there are
optimized algorithms designed to compute it [3], they are not feasible for explanation datasets containing a
large number of exemplars.

One way to overcome the complexity is to simplify the problem and work again with sets instead of graphs,
which will allow us to use an algorithm similar to the one presented in Section 4.3 for the computation
of explanations [84]. Of course, converting a graph into a set without losing information is not generally
possible. In this work, we convert the connected components of exemplars on the ABox graph into sets of
sets of concepts by rolling up the roles into concepts. Specifically, we add information about outgoing edges
to the label of each node in the ABox graph by defining new concepts ∃r.C for each pair of role name r and
concept name C and then adding ∃r.C to the label of a node a if r(a, b), C(b) ∈ A for any b ∈ IN. Then every
exemplar of the explanation dataset is represented as the set of labels of nodes that are part of the connected
component of the exemplar on the ABox. For instance, an exemplar e with a connected component:

Ae = {Exemplar(e), depicts(e, a), depicts(e, b), depicts(e, c),Cat(a),

eating(a, b),Fish(b), in(b, c),Water(c)}
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would be represented as the set of labels (ignoring the Exemplar node):

{{Cat,∃eating.Fish}, {Fish,∃in.Water}, {Water}}.

Now, to compute counterfactual explanations, we have to solve a set edit distance problem between concept
set descriptions of exemplars.

More specifically, the process of generating counterfactual explanations typically unfolds in two distinct
phases. Initially, the preprocessing phase involves calculating the edit paths between each pair of examples
within an explanation dataset. This step also includes gathering the classifier’s predictions for all examples,
incorporating prediction probabilities when they are available. Following this, the second phase aims to
identify, from the set of examples, the one that not only shares the minimal edit distance but also belongs to
the designated target class. This selection process additionally focuses on either maximizing or minimizing
a specific criterion, which is detailed in Section 25.

As for the computational complexity involved, the method relies on a graph-based framework, which inher-
ently presents challenges due to the computational intensity of calculating graph edit distances—a problem
classified as NP-Hard. Consequently, this computation must be executed |EN|2 times. In our experimental
setup, we employ a depth-first graph edit distance algorithm as outlined in [3]. This particular algorithm is
facilitated by the NetworkX [110] Python package, a choice that underscores its computational efficacy and
suitability for handling complex graph-related tasks.

In the process of describing concept sets, we begin by identifying the connected components among the
exemplars in the ABox graph. This involves analyzing the relationships and connections between various
nodes, which represent different concepts. Once these connections are established, we enhance the nodes’
labels with concepts of the form ∃r.C. This is done for any node a where there is a relationship r(a, b) and
a concept C(b) present in the ABox.

To quantify the difference between two sets of node labels, ℓa and ℓb, where each label consists of a collection
of concepts (either basic atomic concepts or more complex forms like ∃r.C), we construct a bipartite graph.
In this graph, each concept in ℓa is linked to every concept in ℓb. The connections between these concepts are
assigned a cost based on definitions from the TBox T , as detailed in Section 4.3. When focusing on concept
set descriptions rather than traditional graphs, where roles are integrated into ∃r.C concepts, the costs for
adding or removing an ∃r.C concept to or from a set correspond to those of inserting or deleting both a role
assertion r(a, b) and a concept assertion C(b). Therefore, the overall cost is the aggregate of the costs for
e⊤→r and e⊤→C . In scenarios where a concept C is replaced with ∃r.D, a two-step modification is required:
the concept C must first be deleted (eC→⊤), followed by the insertion of ∃r.D (e⊤→∃r.D). Conversely, when
replacing ∃r.C with ∃s.D (e∃r.C→∃s.D), the process is akin to changing a role assertion from r(a, b) to s(a, b)
and switching a concept assertion from C(b) to D(b), leading to a total cost derived from the combined
changes in roles and concepts (er→s and eC→D).

To find the optimal transformation from one set of labels to another—effectively minimizing the “edit distance”
between them—we employ Karp’s algorithm, a method outlined in [143]. This algorithm helps us determine
the least costly series of edits required to match one set of concepts to another.

Further, to calculate the edit distance between two more complex structures, L1 and L2, where each is a
set of sets of concepts, we follow a multi-step approach. Initially, the edit distance for each individual label
in L1 is calculated against every label in L2 using the method described earlier. This involves a detailed
computation for each label pair, which we perform |L1||L2| times to cover all possible combinations. The
overall edit distance between L1 and L2 is then determined by applying the same bipartite graph approach,
but this time we adjust the edge weights in the graph based on the previously calculated set edit distances.

Lastly, after processing the explanation dataset and recording the necessary edit paths, generating an expla-
nation for these edit distances can be accomplished with a time complexity of O(|EN|). This optimization
ensures that the explanation generation process is both efficient and scalable, allowing for quick and clear
understanding of how different sets of concepts differ from one another.
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5.2.1 Evaluation

We conducted four experiments to validate our proposed framework, each with a distinct objective. The first
was a comparative user study that evaluated our framework against a state-of-the-art image counterfactual
method [348], utilizing the CUB dataset [355].

The second demonstrated a practical scenario where our framework clarified the decision-making process of a
black-box classifier trained on the Places dataset [419]. For this, we incorporated semantic data from COCO
[198], the Visual Genome [161], and WordNet, assessing how the choice of dataset influenced the clarity of
the explanations. Additionally, another part of our evaluation addressed a critical aspect of classification
tasks that emphasized the importance of edge detection and involved the use of a scene graph generator to
provide semantic insights when no relevant semantic information was previously available.

Human Evaluation on the CUB Dataset

Setting To evaluate the effectiveness of the proposed methodology compared to state-of-the-art results
[348], we conducted a human study, utilizing the same source images and tasks as described in prior research.

The CUB dataset [355] initially comes without ground truth scene graphs, presenting a challenge for detailed
graphical representations. To address this, we devised a method to construct a graph representation by
capitalizing on the available structured annotations. We initiated this process by creating a central node to
symbolize the bird, which serves as the focal point of our graph. From this central node, we established “has”
edges that connect to various parts of the bird, such as wings, beak, and feathers. Each of these parts is
further connected to its specific attributes through edges that are labeled according to the type of feature
they represent, such as color, shape, and size. This method of linking not only allows for a clear depiction of
the bird’s characteristics in a structured graph form but also enhances the dataset’s utility for more complex
analytical tasks that require detailed and organized visual information.

Due to the lack of a universally accepted metric for assessing the semantic consistency of visual counterfac-
tuals, this approach was necessary. We employed the Label Studio platform for the human survey 1, which
offers considerable flexibility and functionality for setting up studies. A screenshot of the annotation interface
is shown in the accompanying Figure 5.2.2. Thirty-three participants, primarily graduate students and PhD
candidates in computer science, volunteered for this study without compensation. They received only the
call for participation and instructions for the labeling process, and the study was conducted online.

Firstly, an information sheet detailing the objectives and phases of the human surveys was initially distributed
to the participants. It was made clear that their participation would be voluntary and uncompensated. Ad-
ditionally, a consent form in the form of a checklist was distributed to obtain the annotators’ consent (see
Figure 5.2.1). This form was employed in all human surveys conducted throughout this thesis. Ultimately,
the thirty-three individuals who participated were identified as young adults, aged between 19 and 25, en-
compassing both male and female participants, with no prior knowledge of bird species. The human survey
conducted was entirely anonymous, with no personal data being collected from the annotators.

For the technical setup, we acquired two pre-trained classifiers, a VGG-16 [324] and a ResNet-50 [114], to
make predictions on the CUB test set. These classifiers were selected because they utilize the same pretrained
weights as those used in the research by [348]. This dataset served as our “explanation dataset’, with the
annotations of the images encoded in a deep learning knowledge base.

Following the methodology outlined in [348], we selected several bird images from the CUB dataset and
retrieved the closest counterfactual image for each, ensuring that the counterfactual did not belong to the
same bird species as the source. Our algorithm replicated this task with the original source images.

In Figure 5.2.2, a screenshot of the platform provided to our evaluators for the comparative user survey is
displayed. To enhance the visibility of the images and their intricate details, we have equipped the platform
with user-friendly tools such as “zoom-in”/“zoom-out” capabilities, alongside options to “pan” and “move”
within the image. These features ensure that evaluators can examine each image thoroughly before making
their selections.

1https://labelstud.io/
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Figure 5.2.1: This image shows the consent form used for human evaluation. Annotators are required to
complete this form prior to beginning their annotation tasks.

ResNet-50 VGG-16
S.O.T.A. [348] 14.65% 13.68%
Ours 34.93% 23.65%
Can’t Tell 50.42% 62.67%

Table 5.1: Human evaluation results on which of the two counterfactual bird images is semantically closer
to the source image.

On this screen, the source image is positioned on the left, while two comparative options are displayed in
the center and rightmost columns. These options consist of an image generated by our method versus a
counterfactual image produced using the [348] method. To maintain impartiality and prevent any bias, the
placement of these images is randomized for each sample.

For each annotation task, the annotator is presented with three choices: “Image 1”, “Image 2”, or “Can’t
tell”. They are required to select one, indicating their judgment on which image most closely matches or
represents the source image’s context, based on the visual and contextual cues provided. This structured
approach allows for a systematic assessment of the effectiveness and relevance of the counterfactual images
in comparison to the original, ensuring a fair and unbiased evaluation process.

Results The comparison between the two image retrieval methods (see Figure 5.2.3) showed that they
produced highly similar, and at times identical, results. This similarity led to challenges for the evaluators in
distinguishing between the counterfactual images generated by each method, as reflected in their similar per-
formance documented in Table 5.1. However the results of our method are improved showed both qualitative
and quantitative. By carefully investigating the results in Figure 5.2.3 we can see that in the most cases the
image returned from our method is semantically closer to the one returned by [348]. For instance, in the final
entry of the left column, it is evident that the original bird and the one identified by our algorithm belong
to the same class, suggesting that our result may represent a misclassification by the algorithm. Conversely,
the result provided by [348], while closely resembling the species of the original image, actually pertains to
a different class, distinguished by noticeable variations such as the coloration on the head. Nevertheless,
the images generated by both algorithms bear a striking resemblance to the original, and at first glance,
they appear nearly identical. This similarity is even more pronounced in the first entry of the right column,
where there are no noticeable semantic differences between the birds in the original image and those in both
counterfactual instances.

Notably, our algorithm operates without internal access to the model, unlike the state-of-the-art (SOTA)
algorithm, which does have such access. Our method successfully matched the SOTA’s results by leverag-
ing only the semantic information associated with the CUB images, without requiring direct access to the
underlying classifiers.
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Figure 5.2.2: A screenshot from the annotating platform. The first image always depicts a source image,
whereas the second and the third are randomly the counterexample produced by [348] method and the

proposed one.

Figure 5.2.3: The first column shows the original image, the second one [348]’s retrieved image and the
third one the image retrieved by our algorithm.
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Explaining a Places Classifier

At this point, a pivotal query arises: How can we determine the origin of the biases revealed by our system?
While we hypothesize that these biases stem from the classifier, it is conceivable that a biased explanation
dataset might also produce similar outcomes. To investigate this, we can implement the same analytical task
using a different dataset, which would allow us to compare and contrast the findings with those obtained
previously.

More specifically, in the previous section (Section 4.4.1), we explored the use of the COCO dataset, which
exclusively contains annotated objects without addressing the relationships between these objects in our
classifier explanations. This section aims to extend this approach by incorporating the relational information
between the objects and investigating the importance of the explanation dataset by comparing the results
on the same classifier using a different explanation dataset. More specifically in this experiment, the Visual
Genome dataset [161] will be utilized as the “explanation dataset.” For this purpose, we have selected the
Visual Genome dataset as our cross-checking tool. Visual Genome, like COCO, is among the select few
datasets that include annotated images, making it ideal for our comparative study. The Visual Genome
dataset is a rich visual resource that offers detailed annotations of images. Unlike the COCO dataset, which
primarily focuses on object annotations, Visual Genome includes annotations for both objects and their
interrelationships.

Setting For this experiment, we employed the same image classifier trained specifically for scene classifica-
tion on the PLACES dataset 2, that was used in Chapter 4.4.1. This classifier was then utilized to perform
classifications on a selected subset of images from the COCO dataset, which also appear in the Visual Genome
dataset. This approach allowed us to examine the variations in explanatory outputs when different algorithms
and datasets are used in conjunction.

Each image’s object descriptions were linked to WordNet synsets through the NLTK Python library 3. These
synsets served as concept names (CN) and were used in conjunction with the hyponym-hypernym structure
of WordNet as a TBox. This structured approach aids in understanding how various contexts and dataset
structures affect the explanatory capabilities of our classifier.

Results

The findings obtained from the Visual Genome, as shown in Figure 5.2.5, are set side by side with those from
the COCO dataset, depicted in Figure 5.2.4. These results highlight the classifier’s remarkably consistent
performance across both datasets. Such consistency reinforces the argument that the biases observed are more
likely attributes of the classifier’s architecture rather than a result of any biased distribution in the datasets
employed for these analyses. Nonetheless, significant variations in dataset distribution could lead to differing
interpretations, underlining the critical need for meticulous selection of the dataset used for explanations.
This point is extensively discussed and analyzed in several works, including [57, 58, 59].

Evaluating the Significance of Roles

In the previous experiment, it was observed that the distinguishing features between classes could often be
attributed solely to individual concepts, such as the presence of a bed or a dog. However, there are numerous
cases where this approach proves insufficient, and the roles and interactions between elements must be
considered. For example, distinguishing between the “driver” and “pedestrian” categories in images containing
“motorbike”, “bicycle”, and “person” cannot be accurately achieved without recognizing the relationships
between the person and the vehicle. The roles “rides” or “on” are indicative of the former category, whereas
the absence of these roles or the presence of the role “next to” suggests the latter. In this experiment, the
effectiveness and relevance of roles were tested, with the classification of driver versus pedestrian serving as
the selected task.

Setting The main challenge faced in this experiment was the scarcity of datasets that pair images with
their semantic descriptions, a vital component for the functionality of our system. While Visual Genome does

2http://places2.csail.mit.edu/index.html
3https://www.nltk.org/howto/wordnet.html
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Figure 5.2.4: Global explanation for the subset of
COCO which is classified as “bedroom”, with target

class “veterinarian”

Figure 5.2.5: Global explanation for the subset of
Visual Genome which is classified as “bedroom”,

with target class “vet”

include roles, their availability is sporadic and inconsistent, appearing in some images but absent in others
that are visually similar. Additionally, most real-world scenarios lack accompanying semantic information
with their image datasets. To address this issue, we opted to employ a Scene Graph Generator [46] capable of
extracting both concepts and roles from images. This integration into our pipeline enables experimentation
with any image dataset or the creation of custom datasets using images sourced from the internet, thereby
greatly expanding our research capabilities. Following dataset assembly, we extract semantic descriptions
using the scene graph generator. The resulting knowledge graphs are generally accurate, although there are
occasional discrepancies, such as a person walking a bicycle being mistakenly classified as “riding” it. As our
Scene Graph Generator (SGG) we employed “RelTR: Relation Transformer for Scene Graph Generation” [47]
and executed it on Google Colab, utilizing the default settings for the model parameters. The model predicted
among the 150 entity classes and 50 relationship classes from the Visual Genome dataset. Additionally, a
prediction was deemed acceptable if its confidence level exceeded 0.3. An example of the generation of the
semantic description is shown in Figure 5.2.6.

The initial phase involves scouring the internet for images that meet our specific criteria, categorizing them
into two groups: “driver” and “pedestrian”. This categorization is specifically applied to individuals on
motorbikes and bicycles to prevent the role descriptor from coinciding with the class label, such as in “person
driving car”. We utilize search engines like Google, Bing, and Yahoo to compile images based on keywords
like “people”, “motorbikes”, and “bicycles”, securing creative commons images which are then manually
sorted into two classes:

1. driver class: comprising 63 images of people on bicycles and 127 images of people on motorbikes

2. pedestrian class: including 31 images of people next to parked motorbikes and 38 images of people
beside parked bicycles.

With a comprehensive explanation dataset now in hand, containing images and their corresponding knowl-
edge, we proceed to evaluate the dataset through our counterfactual system and analyze the explanations
generated for the two defined classes.

Results

Local Explanations In Figure 5.2.7, we observe three instances of local counterfactual explanations ap-
plied to a dataset analyzed with the Scene Graph Generator. The images on the left represent the “Pedestrian”
class, while those on the right correspond to the “Driver” class. The adjustments suggested for transform-
ing the first image from the “Pedestrian” to the “Driver” class involve adding the concept “ride^bicycle”
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Figure 5.2.6: Example of the Scene graph Generation process for an image from the dataset.

(∃ride.bicycle) to two men in the background, and altering the gender of the individual carrying the bag
from female to male. It’s important to note that the “ride^bicycle” notation signifies the insertion of this
specific role to enhance the classification. The same applies to the transitions illustrated in the second row,
where the primary modifications involved altering the gender and incorporating the role “ride^bicycle”. In
the transition depicted in the last row, the modification involves changing the entity label from dog to man
(eDog→ Man), and including the concept “ride^bicycle” with the entities labeled as man and woman. This
change is not only necessary for aligning the image more closely with the “Driver” class but also adds depth
to the scene’s contextual understanding.

Furthermore, additional adjustments for another “Pedestrian” image include inserting the “riding” role be-
tween the person and the bicycle and similarly altering the cyclist’s gender. These modifications are strate-
gically chosen to provide minimal yet effective shifts towards the intended classification. The interventions
across each pair of images are designed to be both sensible and minimal, maintaining consistency with mod-
ifications observed in other datasets. This approach ensures that the counterfactual explanations are not
only practical but also maintain a logical connection to the underlying visual elements and their semantic
interpretations.

Global Explanations The global counterfactual explanations that facilitate the transition from the
“pedestrian” to “driver” classification are illustrated in Figure 5.2.8 through descriptions of concept sets,
which include both concepts and their associated roles. The most significant addition, overwhelmingly, is
“rideˆwheeled_vehicle”. This concept serves as an umbrella term, encapsulating both “rideˆbicycle” and
“rideˆmotorbike”, indicating its broader, parent role in the hierarchy of concepts. Subsequent additions in-
clude “wearingˆhelmet”, highlighting a critical safety element in driving scenarios. Interestingly, the concept
of “helmet” ’alone also appears, but less frequently. This may be because, in some images within the driver
category, helmets are depicted on the handlebars rather than being worn, indicating a nuanced interpretation
of the rider’s immediate context and readiness.

Furthermore, the removal of “wearˆhat” (a subset of “wearˆclothing”) complements the introduction of
“wearˆhelmet”, suggesting a shift from less protective headwear to more safety-focused attire in the driving
context. Additionally, “haveˆseat” is eliminated from the descriptions, reflecting the fact that bicycle seats are
often not visible when the bikes are in use, thus aligning with the dynamic nature of the “driver” classification.

While other edits are present, they are minimal and their contributions might be less significant, potentially
representing noise within the data. Although these could be rationalized, their sparse occurrence suggests they
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Figure 5.2.7: Three examples, shifting from “pedestrians” ’(left) to “drivers” ’(right). The main edits are
additions of “ride^bicycle”, along with some gender changes and an edit of a dog to a man (eDog→ Man) in

the last row.

87



Chapter 5. Conceptual Counterfactuals using Graphs

Figure 5.2.8: Flipping class form “pedestrian” ’to “driver”, the most important changes are: the addition of
“ride^wheeled_vehicle”, “wear^helmet” ’and the removal of “wear^hat”.

may not consistently impact the overall classification transition. This analysis underscores the complexity and
depth of understanding required to interpret and utilize counterfactual explanations effectively, demonstrating
how subtle changes in concept and role descriptions can significantly alter the perceived context of an image.

5.3 Conceptual Counterfactuals using GNNs

While we simplify the problem by aggregating the edges into concepts and tackling a more sophisticated set
edit problem to identify the nearest counterfactual instance, some information embedded in the edges, partic-
ularly relationships between objects beyond a single hop, continues to be overlooked. Take, for instance, an
image that shows a person on a motorbike in a store and another motorbike on the street. A scene graph might
easily suggest that the setting is a dealership, with the person testing the motorbike without actually riding
it. However, all the previous methods encode this information using labels such as person, ridingˆmotorbike,
motorbike, inˆstore, and motorbike, onˆroad might not clearly differentiate which motorbike the person is
actually using, potentially leading to inaccurate explanations. Despite these challenges, using graph-based
information can significantly enhance our ability to draw precise conclusions, which is particularly vital in
areas like Explainable Artificial Intelligence (XAI).

This emphasis on utilizing graph-based methodologies to enhance the precision of interpretations in XAI
demonstrates the critical need to advance these technologies. As we transition from theoretical frameworks
to practical applications, the connection between conceptual models and graph theory becomes increasingly
vital. The process of identifying and comparing instances from different classes using graph methodologies
not only illuminates the complexity involved but also underlines the importance of sophisticated tools for
managing and interpreting this complexity. As we delve deeper, the integration of Graph Neural Networks
(GNNs) offers a promising solution to navigate these challenges efficiently, proving essential in applying these
theories to real-world tasks effectively.
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Methodology

Given a query instance I(A) from class A, the task involves identifying a different image I ′(B) from class B,
which is not class A, aiming to minimize the shortest edit path between I(A) and I ′(B). Although various
metrics exist for measuring distances between images, we adopt a conceptual approach using scene graphs
to depict objects and their interactions within images. Consequently, the challenge of image similarity boils
down to one of graph similarity.

Graph modifications (such as insertions, deletions, and substitutions) are used to measure deterministically
the similarity between two graphs G(A) and G′

(B). However, determining these edits is an NP-hard problem.
Optimal edit paths can be determined using tree search algorithms, though this approach requires exponential
time. In situations where a counterfactual graph to G(A) needs to be identified from a set of N graphs, the
graph edit distance (GED) must be computed N − 1 times.

To reduce computational demands, we employ lightweight Graph Neural Networks (GNNs) that enhance
the graph proximity evaluation by mapping all N graphs into a consistent embedding space [65]. Here,
the closest instance is determined without losing any information, unlike previous methods. By locating the
nearest embedding to G(A) from a different class B, GED calculations are required only once per query during
retrieval. Specifically, we address the following optimization problem for semantic graphs derived from any
input modality:

GED(min|G(A), G
′
(B)|), such that A ̸= B (5.3.1)

More specifically, we construct a definitive ground truth by establishing an absolute similarity metric between
graph pairs using GED, despite its computational intensity. To enhance the efficiency of GED calculations,
we employ a suboptimal algorithm that utilizes a bipartite heuristic to speed up an existing LSAP-based
algorithm [140, 74]. Additionally, we refine the graph edits by assigning operation costs based on conceptual
distances within the WordNet hierarchy. It is important to note that our methodology is not tied exclusively
to the ground truth, and other metrics can be utilized within the current framework. However, we have
chosen GED as the primary ground truth metric mainly because previous methods [84, 58] also attempt to
approximate GED.

Training "For efficient graph comparison, we deploy a Siamese Graph Neural Network (GNN) architec-
ture that extracts graph embeddings through a combination of different GNN layers. More specifically, for
embedding generation, we use stacked GNN layers, described by either GCN [154], GAT [352], or GIN [384].
These embeddings are pooled to generate global graph embeddings, formalized by the equation:

hG =
1

n

n∑
i=1

(uK−1
i +

∑
j∈N (i)

uK−1
j ) (5.3.2)

where ui is the representation of node i, N(i) is the neighborhood of i, n is the number of nodes for G and
K is the number of GCN layers. The embeddings undergo dimensionality reduction to ensure consistency
and the model is trained to minimize the loss function:

L = E(
∥∥∥(hG(Cx)

− hG′
(Cy)

)
∥∥∥2
2
−GED(G(Cx), G

′
(Cy)

)) (5.3.3)

.

Upon generating embeddings, they are compared using cosine similarity to rank and retrieve the most suitable
counterfactual graph instance, ensuring the instance selected from class B differs from class A and optimizes
the graph edit distance, thereby enhancing the explanatory power of these instances for more precise AI
explanations.

Once graph embeddings have been extracted, they are compared using cosine similarity to produce rankings.
For each query image I(A) and subsequently its scene graph G(A), we obtain the instance G′

(B) with the
highest rank given the constraint that I ′(B) is classified in B ̸= A. I ′(B) is proposed as a CE of I(A) since it
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constitutes the instance with the minimum graph edit path from it, classified in a different target category
B. Specifically, we retrieve a scene graph G′

(B) as:

G′
(B) = Gi

(B), argmax
i

(
hGi

(B)
· hG(A)∥∥∥hGi

(B)

∥∥∥∥∥hG(A)

∥∥ ) if B ̸= A (5.3.4)

where i = 1, ..., N . Selecting target class B is correlated with the characteristics of the dataset in use and the
goal of the explanation itself. Precisely, if the data instances have ground truth labels, the target class can be
defined as the most commonly confused compared to the source image class [348]. Another valid choice is to
arbitrarily pick B to facilitate a particular application, i.e. explanation of classifier mistakes, in which case
B is the true class of the query image [2]. We choose the first approach when ground truth class labels are
available; otherwise, we define the target class as the one with the most highly ranked instance not classified
as A.

5.3.1 Evaluation

Our evaluation approach encompasses both quantitative metrics and human-centered experiments to ensure
a comprehensive analysis of our methods. The quantitative aspect of our evaluation employs a detailed com-
parison between the rankings derived from our graph embeddings and the established ground truth rankings
provided by GED. We utilize several metrics to gauge the effectiveness and accuracy of our embeddings:

1. Average Precision@k (P@k): This metric considers all results within the top-k ranks retrieved by GED
as relevant, offering a broad measure of precision.

2. Binary P@k and Binary NDCG@k : These focus on the precision and ranking quality of the top-
most GED result, emphasizing its position within the retrieved ranks through Normalized Discounted
Cumulative Gain (NDCG).

3. Average number of edits: We calculate the average number of node and edge modifications—insertions,
deletions, and substitutions with different concepts. These calculations are performed post-hoc using
GED to ensure a fair and consistent basis for comparison.

The choice of GED as the benchmark for evaluation draws on prior research and is justified by several of its
intrinsic features:

• Its semantic richness, which allows for a deep understanding of the conceptual changes between graphs,

• Its completeness in representing distances owing to its reliance on graphs that accurately encapsulate
both objects and their relationships,

• Its deterministic nature, making it a reliable standard across various modalities and levels of granu-
larity within evaluated techniques. This universality is critical, particularly when baseline methods
may interpret units of information differently, such as pixel-based techniques that consider significant
rectangular areas versus those that focus on abstract concepts.

In addition to quantitative metrics, our evaluation includes human-in-the-loop experiments designed to vali-
date and enrich our understanding of the generated counterfactual explanations.

Human evaluators participate in a test designed to assess the effectiveness of our counterfactual explanations.
They are involved in a direct comparison task, similar to the one presented in Section 5.2.1 in which they
select between two counterfactual explanations for a specific query image: one created using a Graph Neural
Network (GNN) and the other using one of two algorithms. The first algorithm is the set-based counter-
factuals (SC) approach for calculating semantic counterfactuals, detailed in Section 5.2 and referred to as
SC. The second is those proposed by [348], referred to as SVE (Semantic Visual Counterfactuals). The first
comparative analysis aims to explore the impact of information loss on the quality of explanations, particu-
larly focusing on how the removal of relationships between objects that are distanced by two or more edges
affects the quality of the generated counterfactuals. The second study aims to investigate human prefer-
ences between the results from the GNN and the state-of-the-art visual counterfactual that also necessitates
white-box access to the classifier.
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The results presented in this section primarily involve the utilization of approximately p ∼ N/2 training graph
pairs. Unless specified otherwise, these results are achieved using the Graph Convolutional Network (GCN)
variant [155]. The selection of training pairs and the GCN model choice are pivotal in ensuring that our
analysis is both robust and representative of the average performance of our frameworks under typical usage
conditions. The use of half of the available N graph pairs provides a substantial but manageable dataset,
facilitating detailed statistical analysis and model training while maintaining computational efficiency.

Human Evaluation on the CUB Dataset

Setting The experimental setup described here mirrors the framework initially outlined in Section 5.2.1.
More specifically, we utilize the same two pre-trained neural network models: VGG-16 [324] and ResNet-50
[114]. These models are employed to process and generate predictions on the test set of the CUB dataset,
which we have designated as our explanation dataset after incorporating image annotations into a DL knowl-
edge base. Referencing the approach detailed by [348], a subset of bird images from the CUB dataset was
selected for analysis. Each chosen image was paired with a counterfactual counterpart from the same dataset,
ensuring that the counterpart did not share the same avian species (or label) as the original image.

Building on this established framework, our research integrates these methodologies into a human evaluation
survey. In this survey, following the procedure outlined in Section 5.2.1, evaluators were tasked with identify-
ing which of two counterfactual images bore a closer semantic resemblance to the original bird depicted. This
assessment explicitly required evaluators to disregard the bird’s posture or background elements, focusing
solely on semantic similarities. The procedure followed by the annotators remained consistent, including
the consent form and the structured layout of the page. The only difference lay in the methods that were
compared. In each instance, one of the counterfactual images was generated using the GNN-based method,
while the second counterfactual image was randomly selected between the SC and the CVE method.

Results From the analysis of the data in the comparative human survey (Table 5.2), it becomes evident
that counterfactual explanations that effectively utilize the complete informational content of the graph edges,
are significantly more preferable to humans compared to the other two methods under review. Our method
showed nearly double the preference rate compared to the CVE approach, which operates at the pixel level
and requires white-box access to the model. Even against with SE, which aggregates edge data into sets
thereby losing detailed connectivity information, the GNN approach was favored 2.6 times more frequently,
despite a higher number of undecided responses.

The distinct advantage of the GNN method stems from its comprehensive use of graph data—capturing
the full spectrum of node and edge relationships—enabling more nuanced and accessible explanations. This
fundamental difference in data utilization makes our approach intrinsically more intuitive to users.

Moreover, a chi-square test was conducted to statistically analyze the differences in user preferences. This
test highlighted significant disparities, indicating a robust preference for the GNN method over both the SE
(p-value = 0.003), and over the SVE techniques (p-value = 9.21e-08). These results not only illustrate a
notable deviation from the expected response distribution but also strongly affirm the superior interpretability
of our graph-based counterfactual explanations. This statistical validation confirms that our methodology’s
emphasis on maintaining the integrity of the entire graph structure—utilizing all available information on
the edges—significantly enhances the clarity and effectiveness of the generated explanations.

Ours Win% Lose% Tie%
SC 48.86 19.32 31.82

CVE 48.42 26.27 25.31

Table 5.2: This table shows the percentages reflecting human preferences: Win% indicates the percentage
GNN method was favored, Lose% represents the opposite, and Tie% denotes instances of no preference.

Bold highlights the method with the highest preference rate.

GED-based Quantitative Analysis The agreement between the counterfactuals I ′(B) retrieved by each method
(CVE, SC, and their approach) and the ground truth GED is examined. It is observed that their method
surpasses CVE across all ranking metrics (referenced in Table 5.3). Regarding SC, metrics are applicable
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only for k = 1, as this method generates a single CE rather than a ranked list. Consequently, the precision
at 1 (P@1) for SC is recorded at 0.02, significantly lower than that achieved by their method.

Furthermore, it is noted that their approach results in the fewest overall edits. As detailed in Table 5.4,
their method produces approximately 1 and 2 fewer edits on average compared to SC and CVE respectively,
reinforcing the assertion that their counterfactual explanations (CEs) involve the minimum number of edits
necessary.

Additionally, their CEs are characterized by minimal-cost edits; specifically, the resulting Graph Edit Dis-
tance (GED) between the query and the retrieved counterfactual scene graph shows lower GED scores when
compared to both CVE and SC.

P@k↑ P@k (binary)↑ NCDG@k (bin.)↑
k=1 k=4 k=1 k=4 k=1 k=4

CVE 0.02 0.10 0.02 0.11 0.11 0.26
Ours 0.19 0.34 0.19 0.49 0.23 0.36

Table 5.3: Comparative analysis of counterfactual retrieval outcomes against the benchmark GED rankings
on CUB. Bold indicates the highest-performing results.

Node ↓ Edge ↓ Total ↓
CVE 8.43 4.70 13.13
SC 8.07 3.66 11.73

Ours 6.16 4.34 10.5

Table 5.4: Mean edits for nodes, edges, and overall on CUB. Bolded values indicate the best outcomes
(minimum edits).

Local Explanations Local explanations for the CUB dataset are showcased in Figure 5.3.1, where three
images from the class A (Rusty Blackbird) are analyzed. Each image is explored in terms of the necessary
edits and Graph Edit Distance (GED) required to transition them to class B (Brewer Blackbird). Notably,
our methodology results in the smallest number of concept edits compared to competing approaches.

The SE method demonstrates some significant drawbacks, as seen in the examples where it either introduces
additional birds that do not belong to the initial class (SC, left) or displays only a partial view of the bird
(SC, middle). These errors lead to costly and unnecessary deletions and additions of elements, detracting
from the efficiency and relevance of the explanations. On the other hand, our approach employs a graph-
based framework where each concept instance is distinctly linked to graph nodes. This unique linkage, along
with the strong interconnections between nodes, robustly guides the graph similarity assessments conducted
through GED. Consequently, our method provides a more precise and expressive measurement of distance,
offering clear advantages over approaches that rely on simpler, unstructured data sets.

The CVE technique, while avoiding some of the overt errors seen in SC’s results, also struggles to find
counterfactuals conceptually similar to the original query I(A). This is evidenced by the higher GED and
increased number of edits required. Although CVE considers visual features such as zoom, which helps
mitigate some mistakes by focusing on finer image details, it lacks the semantic depth provided by our
GED-based approach. This semantic depth is crucial as it ensures that the explanations not only visually
resemble the query but are also conceptually coherent, preserving the underlying biological and categorical
characteristics that define each bird class.

In essence, our GNN-based approach integrates a comprehensive understanding of both the visual and struc-
tural aspects of data. By mapping each bird to a graph where nodes represent significant features and edges
define the relationships between these features, our model achieves a balance of visual accuracy and semantic
richness. This integration enables more intuitive and contextually appropriate transformations, which are
essential for producing practical and informative counterfactual explanations in real-world applications.
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Figure 5.3.1: The results for transitioning from Rusty Blackbird to Brewer Blackbird are presented as
follows: The first row displays the original image. The second row showcases the results from CVE method.
The third row features the explanations generated by CE. Lastly, the explanations produced by the GNN

approach are displayed in the final row. Bold denotes best results (lowest number of edits and GED scores).
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(a) Source image (b) Top-1 retrieved by CVE [348]. (c) Top-1 retrieved using GNN

Figure 5.3.2: A counterfactual explanation example.

The GNN based algorithm is capable to retrieve counterfactuals that respects not only the semantics of nodes
and edges but also the overall geometry of the graph. This capability is manifested in its precision in focusing
on semantic details pertinent to bird species, while effectively minimizing distractions caused by irrelevant
features such as the background. Such an attribute is a promising aspect of the counterfactuals provided by
the framework, contributing towards the development of more robust explanations, despite this particular
element not being extensively analyzed within the current study. Initially, a qualitative example is presented
to substantiate this claim. In Figure 5.3.2, the most similar image to 5.3.2a is sought using both the CVE
method and the framework’s own method. It becomes apparent from Figures 5.3.2b and 5.3.2c that both
counterfactual images bear a visual resemblance.

The effectiveness of scene graphs in representing data is highlighted effectively in this context. It is observed
that the most similar scene graphs, according to different methods, show distinct characteristics in how they
represent the data. Particularly, the method developed by the framework is adept at retrieving graphs that
more accurately respect the geometric configuration of the original image’s scene graph.

Additionally, it is noted that the framework’s approach manages to retrieve an image that excludes certain
concepts such as “leg” ’or “tail.” This exclusion results in a representation that more closely mirrors the
original source image. This structural similarity, therefore, leads to better semantic consistency. This aspect
emphasizes the framework’s ability to deliver precise and meaningful counterfactual explanations, showcasing
its potential to provide deeper insights and more reliable interpretations in the analysis of visual data.

Global Counterfactuals Global Counterfactual Explanations entail adjustments within a structured
framework using standardized units. In our analysis, these units are primarily graph triples formatted as
(concept-edge-concept) or simpler concept edits within these triples. Both approaches aim to compile local
edits to craft a comprehensive explanation of the classifier’s behavior from a broader, macro perspective.
Utilizing the CUB dataset as a case study, it becomes evident that global CEs align closely with human
perceptual understanding.

For example, during the classification shift from Parakeet Auklet to Least Auklet, notable features such
as the triplet ("beak", "shape", "specialized") are removed to de-emphasize characteristics of the original
class. Concurrently, features representative of the target class, such as the triplet ("beak", "shape", "cone"),
are introduced to mirror the new class accurately. This method of aggregating edits from multiple images
across the dataset allows for the extraction of global edits. These edits collectively delineate the necessary
modifications across the dataset to elucidate the transition between classes. While these modifications are
most effectively represented as graph triples, it is also feasible to detail changes in concepts or relationships.

In support of this, Figure 5.3.3a illustrates the specific triple edits that facilitate the counterfactual transi-
tion from Parakeet Auklet to Least Auklet. Additionally, Figure 5.3.3b displays the global edits related to
concepts observed in the CUB dataset images. The correspondence of these results with human perception
further validates the effectiveness and relevance of global Counterfactual Explanations in understanding and
interpreting AI classifier decisions within a complex dataset.
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(a) (b)

Figure 5.3.3: Edits involving triples (a) and concepts (b) (insertions, deletions, substitutions) necessary for
transitioning from Parakeet Auklet to Least Auklet.

Explaining a Places Classifier

In this section, we have directed our focus towards conceptual counterfactuals, particularly in light of the
previous sections which highlighted their clear advantages over the state-of-the-art (SotA) pixel-level method
employed by CVE. Following the experimental of Section 5.2.1, we utilize the Visual Genome (VG) dataset
[161], which comprises over 108,000 human-annotated scene graphs. These graphs intricately detail scenes
featuring multiple objects and their interactions.

Setting To facilitate manageable experimentation, we have constructed two subsets of 500 scene graphs
each, yielding approximately 125,000 potential training graph pairs for our Graph Neural Networks (GNNs).
The first subset, referred to as VG-RANDOM, consists of randomly selected scene graphs. The second
subset, termed VG-DENSE, is specifically curated to include graphs with higher densities and fewer isolated
nodes, emphasizing the significance of object interconnections.

In Table 5.5, we provide supplementary statistical information about these two datasets, detailing both the
maximum and minimum nodes. The datasets VG-DENSE and VG-RANDOM each comprise 500 graphs in
total.

When analyzing the results in the experimental section, it is crucial to take into account the size and density
of the input data, as these factors can significantly influence the outcomes of the study.

A notable challenge within the VG dataset is the absence of ground truth classification labels, which presents
a unique opportunity to evaluate our counterfactual retrieval method in scenarios devoid of predefined target
classes. To address this, we employ the same pre-trained Places365 classifier [419], using a ResNet50 archi-
tecture. This classifier helps us determine counterfactual classes based on the closest rankings, thus allowing
an effective evaluation of our method’s capability in identifying relevant counterfactual explanations across
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VG-DENSE VG-RANDOM

Mean

density 0.20 0.06
edges 9.04 8.77
nodes 7.25 14.57

isolated nodes 0.47 3.37

Max

density 0.47 0.67
edges 36 27
nodes 15 20

isolated nodes 3 12

Min

density 0.14 0.01
edges 5 5
nodes 6 4

isolated nodes 0 0

Table 5.5: Detailed statistical data for the VG-DENSE and VG-RANDOM graph datasets.

diverse and complex visual scenes.

Results Initially, we assessed the average number of edits between our method and the SC approach, as
documented in Table 5.6. At first glance, the numerical outcomes from both methods appear comparable.
However, a detailed analysis, coupled with the average GED outcomes from Table 5.7, clearly showcases
the superiority of the GNN approach. It is important to note that the VG dataset features a much wider
diversity of concepts compared to CUB, and despite the stringent knowledge-based constraints applied during
GED computation, a higher edit distance between concepts is anticipated. Interestingly, this increase in edit
distance does not apply to mean GED, as CUB records a higher number of average edits.

Furthermore, the GNN method consistently achieves lower GED across all scenarios, even in cases where the
number of edits is higher, such as with VG-RANDOM.

VG-DENSE VG-RANDOM
Node↓ Edge↓ Total↓ Node↓ Edge↓ Total↓

SC 4.91 7.29 12.2 12.15 7.52 19.67
Ours 4.95 7.15 12.11 12.18 7.54 19.72

Table 5.6: Average number of node, edge & total edits on VG. Bold denotes best results (lowest number of
edits).

VG-DENSE ↓ VG-RANDOM ↓
SC 128.67 186.77

Ours 122.41 180.67

Table 5.7: Average top-1 GED (VG) for CEs when methods disagree. Bold for best (lowest) GED scores
for each dataset split.

Local Explanations By analyzing the counterfactual images retrieved for VG-DENSE as shown in Figure
5.3.4 (left), it becomes evident that our method yields results that are significantly more detail-oriented.
For instance, in the first column, not only does our approach successfully retrieve an image incorporating
the concepts “man’, “board’, and “water’, but it also captures the intricate relation of “man on board’. In
contrast, in the third column, while the GNN manages to retrieve a pizza by considering the specific toppings
involved, the SC approach merely retrieves an image featuring similar but less connected concepts, such as
“bun” and “bread” or “meat” and “sausage’.

96



5.3. Conceptual Counterfactuals using GNNs

Figure 5.3.4: Qualitative outcomes (optimal metrics highlighted in bold): VG-DENSE (first three columns
on the left) and VG-RANDOM (last three columns on the right).

Similarly, the results for VG-RANDOM depicted in Figure 5.3.4 (right) adhere to this same nuanced approach.
In columns four and five, GNN emphasizes the relational dynamics, retrieving images that focus on the
interactions between trees and other objects. However, given the sparsity of the underlying graphs in some
instances, as observed in the sixth column, the prominence of certain concepts occasionally overshadows the
structural connections. This discrepancy is reflected in the increased number of edits associated with our
method for VG-RANDOM. Despite this, the Graph Edit Distance (GED) does not always align with this
increase, highlighting yet again the critical role of semantic context in evaluating these images.

Evaluating the Significance of Roles

We have undertaken a replication of the experiment presented in 5.2.1, which involves explaining the classifi-
cation of web-crawled creative-commons images into “driver” and “pedestrian” categories. In this experiment,
the images were manually classified, leading to the use of a non-neural classifier to explain the classifica-
tions. Utilizing the state-of-the-art scene graph generator (SGG) by [47], we extracted global edits from the
generated graphs to facilitate the transition from “pedestrian” to “driver”, as depicted in Figure 5.3.5 (left).

The relevance of these edits is corroborated by intuitive reasoning; for instance, the addition of relationships
such as (helmet, on, head) and (man, on, bike) align with the common understanding that people wear
helmets when riding bikes. Similarly, the deletion of (seat, on, bike) reflects the observation that the bike
seat is obscured when a person is riding. These intuitive edits illustrate the practical application of common
sense in refining scene graph outputs.

To assess the robustness of our methodology across different annotation techniques, we substituted the original
SGG with a combined pipeline involving image captioning using BLIP [181] followed by graph parsing through
Unified VSE [373]. This replacement was tested to see if the semantic integrity of the edits is maintained
across different technological approaches. The results, shown in Figure 5.3.5 (right), confirm that the edits
generated through this new pipeline closely resemble those produced by the original SGG method.

The comparison reveals that more precise local edits can be achieved by carefully considering the multiplicity
of objects and their interrelations. However, it is also evident that generic triple edits can occur due to
inaccuracies within the automatic annotation pipeline, underscoring the necessity for diligent curation of
explanation datasets. This curation is crucial to minimize errors and enhance the quality of explanations
provided by automated systems.
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Figure 5.3.5: Modifications of graph triples (insertions/deletions) to transition from “pedestrian” to “driver”.
Edge and node labels within a triple are highlighted in yellow for clarity.

Evaluation in Audio - COVID-19 Classification

As the algorithms presented in the previous sections, the method described here is also model-agnostic and
modality-agnostic. Thus, we can use the same framework to explain a classifier across different modalities.
In this instance, we utilized the Smarty4covid dataset [398], notable for its use in the IEEE COVID-19
sensor informatics competition 4, which identifies COVID-19 from cough sounds. This extension into audio
classification aligns our findings with those derived from the SC method, particularly in highlighting frequent
concept edits related to respiratory symptoms and the exposure of an existing gender bias within the data.

This dataset, characterized primarily by its conceptual nature and minimal interconnections, did not yield
new insights beyond those previously established, reaffirming the importance of the nature and density
of annotations. Nonetheless, it confirmed that our method performs comparably to SC, even in this less
conventional application.

The methodology for generating Smarty4covid graphs for this dataset involved several adaptations from our
standard procedures. Each user or patient was directly linked to their symptoms and characteristics, which
were discernible audibly to some degree. The analysis of symptoms occasionally required categorizing certain
symptoms as sub-symptoms based on the hierarchical structure outlined in [398, 58] Smarty4covid hierarchy,
deviating from our usual practice of using WordNet [243] to calculate node edit costs. Due to the simplicity
of edge types within this dataset, the strategy for modifying edges was streamlined, treating edge swaps and
the addition or deletion of edges as significant alterations.

To refine the accuracy of these adaptations, we incorporated custom BioBert embeddings [170] for the GNN
similarity component, recognizing the unique linguistic characteristics of the medical field. This choice
marked a departure from our previous reliance on simpler Glove embeddings [275], aiming to better capture
the specific semantic nuances of medical terminology.

Comprehensive details of global edits are documented in Table 5.8, which includes triple edits encompassing
edge edits and adjacent concepts. For clarity, the structure of the triples has been simplified in the table,
omitting the head and predicate where all heads are labeled as the“User”concept, and predicates represent
symptoms or sub-symptoms. The latter part of Table 5.8 focuses on node edits independently of the edges.
This detailed examination not only confirms previous findings but also reveals additional insights, such as the
reported gender bias and an emerging correlation between COVID-19 positivity and younger demographics,
expanding our understanding of the dataset’s complexities.

4https://healthcaresummit.ieee.org/data-hackathon/ieee-covid-19-sensor-informatics-challenge/
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Concept Edits Normalized Counts Triple Edits Normalized Counts

“Sneezing” 1.0 “Sneezing” 1.0
“RunnyNose” 0.78 “RunnyNose” 0.73
“DryThroat” 0.35 (’Male’,“Female”) 0.68

“Fever” 0.34 “DryThroat” 0.36
“Dizziness” 0.31 “Fever” 0.35
“Fatigue” 0.22 “Dizziness” 0.31

“Respiratory” 0.22 (“Fourties”, “Twenties”) 0.29
“DryCough” 0.21 “DryCough” 0.23
“TasteLoss” 0.21 “Fatigue” 0.23

“Cough” 0.16 “Respiratory” 0.23

Table 5.8: Comprehensive edits for transitioning from COVID-19 Negative to Positive status, displayed
through concepts and triples.

5.4 Assessing the Importance of Conceptual Explanations

In the previous Sections, we explored various algorithms for calculating Semantic Counterfactual Explana-
tions. Initially, the incorporation of semantics appears to be a logical approach to unravel the decision-making
processes of opaque systems, often referred to as “black boxes.” This perspective is supported by recent schol-
arly works which suggest that the primary distinction between counterfactual explanations and adversarial
attacks lies in the presence of semantic coherence [27]. However, the validity of this assumption requires
empirical verification. Specifically, our research aims to test the following hypothesis: “Does the use of ap-
propriate semantics actually aid users in comprehending the decision-making process of a black box?” Here,
the term “appropriate semantics” implies that the explanations provided are congruent with the seman-
tic decision-making process inherent to the system being analyzed. For instance, in scenarios such as the
pedestrian versus driver classification, it would be misguided to analyze the decision-making process without
considering the relational data provided by edges within the graph. If the semantic level employed by the
black box is known, then the highest level of relevant information should be utilized. In such cases, a Graph
Neural Network (GNN) approach may be more appropriate than a set-based counterfactual explanation,
particularly if the impact of relationships between edges on the classifier’s decisions is unclear.

To empirically test this hypothesis, we plan to conduct a series of human surveys incorporating elements
of machine teaching. Specifically, we will adapt the CVE’s machine-teaching experiment outlined [348], but
restructured to incorporate our graph-based explanations. This experiment will be divided into three phases:
pre-learning, learning, and testing, with participants split into two distinct groups to experience different
learning conditions. The first group will participate in a “visually-informed” session, where they will be
presented with both images and their corresponding scene graphs. The second group, referred to as the
“blind” group, will receive only the scene graph pairs and edits, without any visual context.

This dual-method approach will enable us to evaluate how effectively humans can grasp and utilize graph-
based concepts when visual aids are absent, introducing a new application of this evaluation technique.
We anticipate that this study will illuminate the relative influence of visual versus conceptual information
on human understanding and decision-making in complex tasks like image classification, thereby providing
deeper insights into the efficacy of semantic counterfactual explanations.

5.4.1 Setting of the Experiment

This experiment aimed to delve deeper into the understandability of both the traditional and our novel
methodologies by replicating the machine-teaching human experiment described in [348], using the CUB
dataset with the same classes and procedure as reported in Section 5.2.1, with the only modifications to
incorporate the graph-based explanations. We maintained the structured stages of pre-learning, learning,
and testing, and divided our annotators into two separate groups to follow different learning protocols:
“visually-informed” and “blind”. Unique to our study, the “blind” variant provided annotators solely with
scene graph pairs and graph edits, omitting any visual images. This innovative approach was designed
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Figure 5.4.1: Initial instructions for the CUB machine teaching experiment during the Pre-Learning phase.
Participants can select from “Class A”, “Class B”, or “I don’t know”.

to uniquely assess the extent to which individuals rely on graph-based concepts over visual imagery to
comprehend the reasoning behind classifications. This method, offers valuable insights into the cognitive
processes involved in understanding complex data representations and enhances our understanding of the
effectiveness of explanatory models in AI.

The same platform used for the prior human experiment is employed once again. However, in this iteration,
each annotator is restricted to evaluating only one single sample. This limitation is imposed to more clearly
assess the contribution of the learning phase, avoiding scenarios where an annotator might become more
“competent” after multiple exposures to the learning phase. The experimental workflow, as outlined by [348],
is adopted, thus incorporating all three stages: pre-learning, learning, and testing.

Pre-learning stage During the pre-learning stage, unlabeled images from the test set are presented to
the users so that they can become acquainted with the types of images they will be required to classify
later. Figure 5.4.1 serves as an illustration of the pre-learning screen. It is made clear to the annotators
that classification into the anonymized classes A and B cannot be performed without progressing through
the learning stage, and thus, selecting "I don’t know" is the anticipated response. In Figure 5.4.1, the three
available options for image classification are explicitly displayed: “Class A”, “Class B”, or “I don’t know”. It
is stipulated that only one option can be selected at any given time, consistent with the procedures outlined
in [348].

Learning stage The learning stage constitutes the core of this human experiment. As detailed in the
main paper, two variants are conducted to assess the extent to which concepts influence human perception.
It is stipulated that a participant engages in either the “visually-informed” or the “blind” experiment, but
not both, to preclude the evaluation of the same data sample in both experiments and thereby prevent any
potential knowledge transfer between the two variants. Participants are divided into equal subgroups, with
seventeen in the “visually-informed” variant and sixteen in the “blind” one.

In the visually-informed variant, training images from anonymized classes A and B are presented to
annotators, accompanied by their scene graphs, as depicted in Figure 5.4.2. To ensure no overlap between
training and test images, various tools such as “zoom-in”/“zoom-out”, “pan”, and “move” are provided to
annotators to facilitate navigation within the images and the corresponding scene graphs.

In the described setup, images positioned on the left are invariably assigned to class A, whereas those on
the right are categorized under class B. Scene graphs displayed on the right elucidate the edits required for
the A → B transition; green nodes symbolize concept additions, blue nodes indicate concept substitutions
(showing both the source and target concepts), and red nodes mark concept deletions. Nodes of other colors
suggest that the associated concepts remain unchanged across the two classes.
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Figure 5.4.2: Example of the visually-informed learning stage.

During the training phase, it is observed that a user’s attention is naturally drawn to the most frequent
insertions, substitutions, and deletions. This focus aids in identifying the discriminative features between
class A and class B. The association of such concepts with corresponding images facilitates the mapping of
graph edits to visual differences, enabling users to distinguish between classes both visually and conceptually.

In the “blind” variant of the learning stage, participants are provided only with scene graphs, devoid of
any training images, and the graph edits are demonstrated through colored nodes. This approach mirrors
the machine-teaching learning stage presented in [348], where only discriminative regions of the images
are highlighted, and the rest of the image is obscured. Thus, annotators are required to learn from these
explanations alone, mentally associating the explained concepts with visual regions in the test images. In
this scenario, the explanations are linked to graph edits, and annotators must recognize the discriminative
concepts that are added, substituted, or deleted for the A→ B transition.

However, given that this learning environment lacks visual cues, it is considered to be more challenging than
the learning stage implemented by Vandenhende et al. Here, annotators must bridge concepts with image
regions, engaging in cross-modal grounding to identify discriminative features. Throughout this blind learning
stage, the extent to which annotators rely on concepts over pixels to classify images from unknown classes
is measured. This experiment is crucial in demonstrating how conceptual explanations can significantly aid
humans in approximating a zero-shot classification setting, highlighting the importance and informativeness
of such explanations.

Testing Stage In the testing stage, the same images as in the pre-learning stage are provided to the users,
but no scene graphs are included. Based on the knowledge acquired in the previous stage, annotators are
expected to have grasped the visual and conceptual differences between the classes; hence, they are required
to assign an appropriate class to each test image by choosing either “class A” or “class B” for each one. In
contrast to the pre-learning stage, the option “I don’t know” is not available. Following this stage, an accuracy
score for each user is calculated based on their correct choices during the testing stage.

101



Chapter 5. Conceptual Counterfactuals using Graphs

Figure 5.4.3: Variability in test accuracy across human evaluation experiments in machine teaching.

5.4.2 Results

The accuracy of the GNN approach in the visually-informed trials significantly exceeds the scores reported
in CVE, underscoring the enhanced effectiveness of semantic counterfactual explanations in leading humans
to comprehend the distinguishing concepts between classes, as opposed to the more basic pixel-level CEs
that lack conceptual depth. The results from the “blind” experiment reveal a predictable decline in accuracy
compared to the visually-informed outcomes, yet they still surpass the performance noted in CVE. This
greater accuracy in concept-based explanations as opposed to purely visual ones confirms the importance
that humans attribute to higher-level features in classification tasks.

Human experiment Test accuracy %↑
GNN - visually-informed 93.88

GNN - blind 89.28
CVE 82.1

Table 5.9: Accuracy scores of human participants for accurately classifying samples into classes A and B.
The highest score is highlighted in bold.

The average accuracy for the visually-informed experiment stands at 93.88%, suggesting that users are
generally highly adept at identifying the key concepts that distinguish the two bird classes and associating
them with visual information. The average accuracy for the blind experiment is noted at 89.28%. This figure,
being quite close to that of the visually-informed experiment, allows us to conclude that concepts alone are
sufficiently robust for teaching discriminative characteristics to humans, even in the absence of direct visual
context. The accuracy scores for both the visually-informed and blind experiments significantly surpass those
reported in CVE, indicating that conceptual explanations are more meaningful and informative to humans
compared to pixel-level explanations.

Figure 5.4.3 offers a detailed breakdown of the accuracy scores attained by participants in the testing phase
of the machine teaching experiment. It is evident that the scores predominantly reach highs of 0.9 and
1.0, indicating that the explanations generated by our method are highly interpretable for humans and
advantageous for executing classification tasks. A comparison of the “visually-informed” and “blind” results
indicates a gradual reduction in test accuracy when visual aids are absent.
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Applicability of Machine-Teaching Experiment

The machine-teaching experiment is deliberately conducted using only the CUB dataset. This decision
serves to underscore the advantages of the learning phase: since annotators initially lack knowledge about
bird species, they stand to greatly benefit from acquiring distinctive bird characteristics during the learning
phase, which they can then utilize in the testing phase. For instance, before the experiment, none of the
annotators can distinguish between a Parakeet Auklet and a Least Auklet. However, after participating in
the learning stage, they gain the ability to identify key discriminative features, aiding them in accurately
classifying birds during the test phase.

Conversely, the Visual Genome dataset, which comprises images of common everyday scenes, does not lend
itself well to a similar experiment. For example, most people already understand the fundamental differences
between a kitchen and a bedroom, making a learning phase unnecessary in these contexts, even if the scene
labels are hidden. This situation can be likened to an instance of data leakage.

Additionally, there is a potential issue with misleading concepts. In some instances, certain concepts might
lead visual classifiers to develop biases, a problem typically not encountered by humans. Take, for instance,
the presence of a TV, which could be found in both kitchens and bedrooms. If, hypothetically, the selected
images of bedrooms all featured TVs while those of kitchens did not, the explanatory graphs might overly
emphasize the addition of “add TV” nodes. Consequently, a human might be expected to classify any image
with a TV as a bedroom and any without as a kitchen, mirroring the potential bias of a visual classifier
trained on such data. Yet, when faced with actual test images, humans are unlikely to be swayed by the
presence or absence of TVs, instead relying on common sense for classification. Therefore, not only would
the learning stage prove superfluous, but any overt bias, such as “add TV,” would fail to influence human
judgment in the final classification, rendering the counterfactual explanation largely irrelevant to human
users.

5.5 Conclusion
In this chpater we have developed a novel explainability framework that leverages the robustness of knowledge
graphs for generating counterfactual explanations using the relational information between the objects. This
framework ensures that the explanations are not only valid and feasible—always reflecting edits towards real
data points—but also minimal, due to the incorporation of edit distance computations. Furthermore, the
explanations are actionable, thanks to the manual assignment of edit costs. Our human study indicates that
these counterfactual explanations are understandable and meet the satisfaction of end-users.

The framework, however, relies heavily on the dataset used for explanations, which should ideally be curated
by domain experts. In critical fields like medicine, the investment in expert curation is justified by the
benefits. For less critical applications, we have demonstrated that utilizing semantically rich datasets such
as the Visual Genome, or employing automatic knowledge extraction methods like scene graph generation,
can also yield valuable explanations.

Additionally, we introduced a model-agnostic approach for computing counterfactuals using the expressive
capabilities of semantic graphs. This involved the innovative use of a GNN-based similarity model to facilitate
the GED calculation, which accelerates the typically NP-hard process of retrieving counterfactuals across all
input graph pairs. Our evaluations indicate that our model not only ensures minimal and actionable edits
but also enhances human interpretability, particularly in scenarios where concept interactions are densely
packed. Additionally, it outperformed a state-of-the-art algorithm in calculating semantic counterfactuals for
images in a white-box manner, as evidenced by user preferences and human understandability in a series of
human surveys.

Looking ahead, there is considerable potential for advancing this research. We plan to enrich the framework
with more comprehensive knowledge and incorporate theoretical insights from description logics and reason-
ing. Furthermore, we are exploring the use of generative models capable of applying semantic edits to a data
sample to produce new samples that can be evaluated by the classifier. We also aim to address potential
limitations related to the robustness of counterfactual explanation methods and the impact of low-quality
annotations. Enhancing efficiency through unsupervised GNN methods represents another promising avenue
for future work. This comprehensive approach will continue to refine the applicability and effectiveness of
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our framework across various datasets and conditions. Finally, as part of our next steps, we plan to extend
the human-machine teaching experiment to different datasets, such as those in the audio domain, in order to
further validate the hypothesis that semantic explanations enhance human understanding.
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Chapter 6

Optimal and Efficient Text
Counterfactuals using GNN

6.1 Introduction

In the preceding chapters, a framework and algorithms for retrieving counterfactual explanations in a
modality-aware manner within a black box setting have been demonstrated. Emphasis has been placed
on image and audio classifiers, yet the prevalence of classifiers in the text domain underscores the pressing
necessity to modify the proposed framework to better accommodate textual modalities.

A significant challenge has been identified due to the presence of highly advanced language models capable
of generating high-quality counterfactual explanations with ease. The existing framework, which does not
generate new instances but rather searches within a dataset to find the semantically closest instance, is
notably limited. This limitation is further exacerbated in the text modality for several reasons. First, the
transformation of text into a graph format poses a significant challenge [339]. Furthermore, the meaning of
a word in text is highly dependent on its surrounding words, a constraint not applicable to scene graphs,
where the interpretation of objects remains constant regardless of proximity to other items.

Inspired by the shortcomings of the current framework, in this chapter we propose an efficient algorithm for
generating optimal text counterfactuals using GNNs [222]. This method can be specifically targeted to a
classifier or employed in general-purpose scenarios without any classifier, using only a dataset. The results
from the experiments have indicated that this method outperforms state-of-the-art classifiers in four critical
metrics—minimality, fluency, closeness, and runtime—across two distinct datasets. Remarkably, it achieves
these results in less than 2% and 20% of the time required by its two competitors, demonstrating both
superior efficacy and efficiency.

6.2 Realated work

Since the introduction of the Transformer model [350], the field of NLP has witnessed a significant expansion in
its capabilities, addressing a wide array of linguistic tasks. Interest in explainability [9, 53] and interpretability
[230] has surged, focusing on identifying biases and spurious correlations that affect the generalization of
state-of-the-art models. Additionally, adversarial attacks [407] have shed light on the inner workings of these
models, enhancing post-hoc interpretability by triggering alternate outcomes.

A number of studies have explored adversarially perturbed inputs aimed at label flipping [240, 252, 182,
303], while others have attempted more generalized approaches to perturbation [305, 374]. These methods,
despite producing linguistically promising results, are often computationally intensive and slow, with some
requiring over 47 hours to process 1,000 samples (see Table 6.1) [303]. Furthermore, the transition from
generalized text manipulation to targeted interpretability necessitates a more controlled generation process,
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as the opacity of general-purpose editing tools based on large language models (LLMs) frequently results in
suboptimal substitutions [80].

Research on exposing vulnerabilities in state-of-the-art models through adversarial or counterfactual inputs
remains robust, with perturbations ranging from the character [69] to the word [91, 295] and sentence levels
[128]. Our project focuses on semantic changes at the word level, adhering to established norms for word-level
perturbations.

The manual and automated creation of adversarial examples has been pursued [90, 147, 254], with early meth-
ods using paraphrasing [127] and more recent approaches employing masked language modeling techniques
[177, 303, 182]. Techniques leveraging similarity-driven substitutions based on word embedding distances
[132, 424] optimize local accuracy for classification tasks while ensuring the controllability of adversarials
[252]. These model-specific methods partially align with our approach but are limited in scope.

General-purpose counterfactual generators that fine-tune LLMs to offer diverse perturbations applicable at
multiple levels of granularity [374, 96, 305] open new avenues for textual counterfactuals. However, these
methods often compromise on explainability due to the unpredictable nature of LLM decision-making [42,
309]. Conversely, recent advances in graph-related optimization strategies [396, 220] showcase promising
results, balancing performance, explainability, and computational efficiency in linguistic interventions.

To enhance the transparency and utility of adversarial examples, integrating hybrid approaches that combine
the interpretive strengths of graph-based methods with the generative capabilities of LLMs could offer a more
nuanced and effective means of generating adversarial texts. This innovative direction could lead to more
reliable and comprehensible adversarial inputs, narrowing the gap between current limitations and the ideal
of fully transparent NLP models.

In the current study, we explore the impact of altering specific words on the performance of textual classi-
fiers through what we refer to as word-level counterfactual interventions. Our methodology is defined by a
structured framework with key attributes aimed at optimizing these interventions. Each substitution should
achieve or closely approximate the best possible outcome while maintaining a predefined measure of semantic
closeness, ensuring optimality. Additionally, there should be at least one semantic input modification in every
dataset instance to maintain controllability. Lastly, the ideal solution should be obtained through streamlined
search methods rather than exhaustive exploration of all possible alternatives, enhancing efficiency.

To address these principles, we treat counterfactual interventions as a problem of combinatorial optimization.
This challenge is tackled using graph assignment techniques derived from graph theory [386]. Moreover,
to augment our strategy, we incorporate Graph Neural Networks (GNNs) [378] as a more rapid, albeit
approximate, alternative to traditional graph-based methods [393].

Our innovative approach is designed to be versatile, suitable for both specific model applications and broader
general uses, without necessarily altering the final classification output. This flexibility enables the adapta-
tions not only for tasks such as label-flipping but also for assessing semantic similarity [220] and generating
content without specific targets [374]. Although our focus here is primarily on classification tasks to allow
direct comparisons with existing methodologies, we evaluate our system against two state-of-the-art text edit-
ing frameworks [374, 303] on metrics like label-flipping accuracy, linguistic fluency, and semantic proximity.
This comprehensive analysis aims to establish a robust baseline for the efficacy of counterfactual interventions
in text classification scenarios.

6.3 Algorithm for Generating Text Counterfactuals Using GNNs

6.3.1 Problem Formulation
The approach is based on a graph-based framework in which words from sentences are mapped onto nodes,
while the costs of substituting one word for another are assigned to the edges connecting these nodes. A
bipartite graph, denoted as G = (V,E), is considered, where the set of nodes V is divided into two distinct
groups: the source nodes S with |S| and the target nodes T with |T |, ensuring that S ∪ T = V and
S ∩ T = ∅. This setup is essential for addressing the discrete optimization challenge of finding the most
efficient connections between nodes within G. The focus is on establishing a minimum weight matching
M ⊆ E where the sum of the edge weights,

∑
we, we > 0 in W , is minimized for edges e ∈ E that cover the
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smaller of the two node sets min(|S|, |T |). It is ensured that if |S| ≤ |T |, a connection or substitution from
each node in S to a different node in T is possible.

The mathematical formulation of this optimization problem is expressed as follows:

min
∑

we, subject to s ̸= t if ∃es→t

Traditionally, the problem could be tackled by an exhaustive search, where all possible permutations of (s, t)
pairs are considered, and every permutation of T is evaluated until the minimal sum min

∑
we is reached.

However, this method results in an exponential complexity of O(mn), assuming a complete graph where each
s is connected to every t, hence E = S × T with |E| = nm.

An efficient approach is achieved by treating the problem as a variant of the rectangular linear assignment
problem (RLAP), in which n source nodes are assigned to m ≥ n target nodes to minimize the total weight
of the connections. The RLAP not only provides a framework for finding optimal solutions but also allows
flexibility through multiple possible matchings for each source node s. By employing algorithms adapted
from foundational literature, this problem is addressed with significantly improved efficiency, reducing the
complexity to O(mn log n), a marked improvement over the exponential complexity of more naive methods.
These algorithms have been continually refined and adapted to efficiently meet the specific requirements of
the RLAP.

6.3.2 Graph neural network for RLAP

Graph Neural Networks (GNNs) [317] have become an indispensable tool for analyzing and learning from
data that exhibits intrinsic graph structures, effectively encapsulating the relationships among diverse entities.
These networks are particularly effective in scenarios where the representation of data as graphs is natural.
For example, in the domain of linear assignment problems, GNNs are utilized to address the linear sum
assignment problem (LSAP), where n agents must be matched to n jobs under unique pairing constraints,
with the goal of minimizing the total cost [29].

Building on this premise, we have refined the model by implementing a Graph Convolutional Network (GCN)
[156] to deal with the Relaxed Linear Assignment Problem (RLAP). This innovation represents a pioneering
use of GNN frameworks to resolve RLAP, filling a gap in existing literature. The architecture of our tailored
GCN model comprises three integral parts: an encoder, a convolution module, and a decoder. This struc-
ture facilitates iterative updates of node attributes through multiple phases, thereby improving the model’s
effectiveness and precision in solving assignment challenges [205].

Figure 6.3.1: Overview of the GNN architecture used. Attributes at each node are updated over S ≥ 2
iterations in the node convolution layer.

Encoder/Decoder

Given a bipartite graph G, the encoder employs a Multi-Layer Perceptron (MLP) applied to every edge,
converting raw attributes into latent embedding features. Initially, each edge i→ j is represented by eij = wij ,
where wij is the edge’s weight. Meanwhile, nodes start with zero-valued attribute vectors. After encoding,
the transformed graph is fed into the convolution module for attribute updates.
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On the decoder side, we retrieve the updated edge attributes from the output of the convolution module
and use another MLP-based transformation to predict edge labels through a sigmoid function. In other
words, each edge’s final attribute is passed through a learnable update function that produces a binary label
corresponding to whether or not the edge is part of the solution.

The Convolution Module

This module consists of two distinct layers: a node convolution layer and an edge convolution layer. The
node convolution layer updates a node’s attributes by collecting information from its connected edges and
immediate neighbors with learnable aggregation weights. The edge convolution layer, in turn, refines the
attribute vector of each edge by combining the attributes of the two nodes it links.

In a bipartite graph with sets S and T (see Section 6.3.1), each node in S connects to all nodes in T , so
messages from one node can propagate to every other node after two iterations of convolution. Consequently,
although the convolution layer technically considers only first-order neighborhoods, the structure of a bipartite
graph ensures the entire network becomes reachable within two passes.

Edge Convolution. For an edge i→ j, we first gather information from the two endpoints via:

eij = [ vi ⊙ cu, vj ⊙ cu, eij ⊙ ce ], (6.3.1)

where vi and vj are node attribute vectors for nodes i and j, respectively; cu and ce are channel attention
vectors for node and edge features (matching the dimensionality of vi/vj and eij). The symbol ⊙ denotes
element-wise multiplication, and [·, ·, ·] indicates concatenation. Note that eij is an intermediary vector
unifying node and edge features; it is then passed to an MLP-based update function ρe(·), giving eij ← ρe(eij).

Node Convolution. For a node vi, we aggregate features from its incident edges and adjacent nodes:

vi =
1

Ni

Ni∑
j=1

ρv1
(
[ eij ⊙ ce, wij(vj ⊙ cu)

]
), (6.3.2)

eij ∈ Ei, vj ∈ Vi,

where ρv1 is an MLP that generates embedding features, Ei is the set of edge attributes for edges incident to
node vi, and Vi is the set of its first-order neighbors. The term wij weighs the importance of neighbor vj when
gathering features and is itself computed by another MLP, τ([vi, vj ]). After computing vi, we concatenate it
with the original vi and update:

vi ← ρu2
(
[vi, vi]

)
,

where ρu2 is an MLP. All functions ρv1, ρu2 , and τ are implemented as MLPs with distinct architectures and
parameters.1

6.4 Counterfactual generation overview
The methodology described in the study encompasses three distinct phases (Figure 6.4.1). Initially, a textual
corpus designated as D is used, from which words are extracted based on their grammatical category, forming
the foundational node set S. The corresponding target node set T either mirrors S or is derived from an
external linguistic resource like WordNet [243], aggregating all potential replacement candidates for the
elements in S. Together, the node sets S and T construct a bipartite graph G, as discussed in Section 6.3.1.
The edges within this graph are designed to signify the semantic proximity between words in the source and
target sets.

Proceeding to the second phase, the bipartite graph G is fed into a trained Graph Convolutional Network
(GCN). This network processes the graph and delivers an approximate solution to the Relaxed Linear As-
signment Problem (RLAP), represented by a series of candidate word pairings. Each pairing consists of a
source word from set S and a suggested substitute from set T .

1For comprehensive details, see [205], which describes the underlying model hyperparameters in depth.
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Figure 6.4.1: An overview of our approach. First, we build a bipartite graph whose nodes represent
individual words. Next, we apply a Graph Neural Network (GNN) to find plausible substitutions that

effectively approximate the RLAP. Finally, by running beam search on the original dataset, we selectively
replace certain words to generate a new counterfactual dataset.

In the culmination of the process, the third phase involves the employment of a beam search algorithm.
This algorithm utilizes a heuristic function to meticulously select the most appropriate substitutions from
the array provided by the GCN. The chosen substitutions are applied, with words from S replaced by their
counterparts in T , resulting in a modified dataset, denoted as D*. This counterfactual dataset serves as the
output of the method, presenting a systematically altered version of the original corpus based on the semantic
relationships and substitutions identified through the structured workflow.

6.4.1 Construction of Bipartite Graph

In the development of the bipartite graph G, we initiate by extracting words from the document D focusing
on their parts of speech (POS). This process is pivotal for examining the adaptability of our model across
different settings. We employ two distinct methods for word extraction: POS-specific and POS-agnostic
approaches. In the POS-specific method, word selection for potential modification is confined to words that
fall under certain POS categories such as adjectives, nouns, and verbs. On the other hand, the POS-agnostic
method considers all words equally, regardless of their POS classification.

For assigning weights to the edges of the graph, we explore two contrasting methodologies, each differing
in their level of transparency and methodological approach. Initially, we use a straightforward method by
leveraging a lexical hierarchy to calculate distances. Specifically, the edge weight between two words is
determined by their semantic proximity, as gauged by the similarity value provided in WordNet.2 For our
second approach, we employ various large language models (LLMs) to produce word embeddings, including
AnglE3, GISTEmbed4, GinaAI5, and MUG6. Here, the weight of an edge is set based on the cosine similarity
between the embedding vectors of the two words.

The design ensures that lower similarity scores—which correspond to lighter edges—are favored, thereby
forming contrastive word pairs for substitutions. This selection criteria is instrumental in identifying prime
candidates for word substitutions in M .

To maintain syntactic integrity, particularly in the POS-agnostic method, we implement an edge filtering
system. This system involves setting a predetermined, significantly larger weight to edges—approximately
ten times greater than the normal weights derived from WordNet path similarity or cosine similarity of
embeddings. This strategy effectively prevents inappropriate POS substitutions by excluding heavily weighted
edges from selection in M . In contrast, the POS-specific method does not require this filtering mechanism as
all words under consideration already share the same POS, ensuring syntactic consistency without additional
constraints.

2This utilizes the ‘path_similarity‘ function between synsets corresponding to the words, as detailed here:
https://www.nltk.org/howto/wordnet.html.

3Details on this model can be found at: mixedbread-ai/mxbai-embed-large-v1
4Further information is available at: avsolatorio/GIST-Embedding-v0
5More on GinaAI embeddings can be found here: https://jina.ai/embeddings/
6For more details, refer to: Labib11/MUG-B-1.6
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6.4.2 Substitution pairs computation

To identify suitable substitution pairs, we address the Rectangular Linear Assignment Problem (RLAP)
on a specifically constructed graph G. As discussed earlier (see Section 6.3.1), conventional deterministic
methods can solve this with a complexity of O(mn log n). Although these techniques ensure the most accurate
solution, their performance diminishes as the size of the dataset—and consequently, the graph—increases.
To generate substitution pairs in a time-consistent manner irrespective of dataset size, we employ a Graph
Neural Network (GNN) model (refer to Section 6.3.2). This model offers an approximation to the optimal
solution traditionally obtained by deterministic methods but does so with markedly improved speed. This
approach ensures efficiency by speeding up the computation process.

The GNN model tackles the RLAP by focusing on minimizing the sum of
∑

we, effectively identifying
the most dissimilar s → t pairs. This process achieves an approximate optimality in the substitution of
concepts within G, thus generating useful contrastive substitution pairs. Additionally, controllability is
partially maintained because the graph G is characterized by its density—there are no isolated s nodes, and
the condition |S| ≤ |T | holds true, with T mirroring S or being derived from S using antonyms sourced from
WordNet (each word might correspond to multiple antonyms). The use of the term “partially” highlights
the inherent trade-off between controllability and minimality—the latter referring to the minimal number of
word changes needed (see Section 6.5.2. This trade-off arises from employing a beam search strategy during
the generation of counterfactuals. It is important to note that in certain cases, this controllability may be
compromised if a source concept does not align well with the definitions in WordNet.

6.4.3 Counterfactual Generation

As a result of solving RLAP, a specific subset of matches, denoted as M ⊂ E, is derived. This matching
is crucial as it represents the optimal substitutions for n source concepts within a dataset. The cumulative
weight of these matches, represented as WM

n , plays a significant role in the selection process that follows.
Essentially, WM

n includes the total weight of all substitutions that involve the n identified source concepts.

Selection Process Following the identification of the optimal matches, the next critical step involves the
selection of which conceptual substitutions from M will be implemented on the dataset D. This selection
is executed via a beam search strategy, a method well-suited for sifting through a multitude of options and
narrowing them down to the most pertinent substitutions. The criteria for this selection are meticulously
set to ensure that only minimal textual alterations are made. The aim is to adjust as few words as possible
in each instance, thereby causing only slight perturbations to the input data. Such minimalistic changes are
preferred because they help maintain the clarity and intelligibility of the explanations provided, as suggested
by prior studies like Alvarez-Melis and Miller (2019).

Setting Limits on Substitutions An integral part of this process involves setting limits on the number
of substitutions permissible for each text instance within the dataset. This is done in two distinct ways:
one approach involves fixing a maximum number of substitutions per instance, while the other adopts a
dynamic strategy where the limit is proportional to the text length. Specifically, in the dynamic method, the
upper limit for substitutions is set at 20% of the total word count of each instance. This approach ensures a
balanced modification of the text, preventing excessive alterations that could compromise the original context
or meaning.

Termination Criteria The termination of the search and selection process is contingent upon achieving
one of two outcomes: either the model’s prediction is altered (flipped), or the predefined upper limit of sub-
stitutions is reached. This termination protocol is crucial as it ensures the edits remain within a manageable
scope, thereby preserving the essential characteristics of the original text while still introducing the necessary
conceptual shifts. This methodical limitation of edits is fundamental in maintaining the effectiveness and
efficiency of the counterfactual generation process.
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6.5 Experiments
In this section, the presentation of experiments is conducted along with the corresponding results. These
outcomes demonstrate that the proposed framework is capable of producing fluent, minimal edits while
achieving a high percentage of label-flipping in a significantly shorter duration when compared to alternative
editing frameworks. The experimental suite was executed on a uniform system setup, which included a 16
GB GPU, an Intel i7 CPU, and 16 GB of RAM.

6.5.1 Experimental Setup
Datasets The evaluation of the framework was conducted against other editors documented in the liter-
ature, utilizing two datasets in the English language: the IMDB dataset, which comprises movie reviews
for binary sentiment classification [226], and a six-class variant of the 20 Newsgroups dataset used for topic
classification [168]. Owing to the substantial computational requirements imposed by the methods being
compared, a sample of 1K instances from each dataset was selected for evaluation. The execution of MiCE
on merely 1K samples necessitated over 47 hours (refer to Table 6.1), rendering full dataset experiments un-
feasible. This sample size was determined to be double that utilized in comparable studies, which examined
the same methods on identical datasets [80].

Predictors In the research conducted, the performance of certain edits is assessed using predictive models
aligned with the methodologies described by [303]. These models, which are built upon the foundations
of RoBERTaLARGE [210], demonstrate a test accuracy of 95.9% and 85.3% on the IMDB and Newsgroups
datasets respectively. The evaluation of these models has been executed passively, with the same predictor
models being employed across each dataset under investigation.

Editors As for the editing frameworks, a comparison was drawn between the existing framework and two
state-of-the-art editors, MiCE [303] and Polyjuice [374]. It was observed that MiCE tailored its edits towards
minimal adjustments aimed specifically at label-flipping, whereas Polyjuice provided edits that were not
limited to any singular task and were more generalized. The framework being assessed utilized a deterministic
RLAP solution as a baseline, against which the GNN RLAP optimization was compared. To further explore
the generalization capabilities of the framework, both POS-restricted and POS-unrestricted substitutions
were employed. Further information and analysis of these editors can be found in Chapter 8, Section 7.4.

Metrics The effectiveness of various editors was gauged through several metrics inspired by MiCE. These
metrics include:

1. Flip-rate: This metric is quantified as the proportion of instances where an edit leads to a change in
the model’s prediction, thereby causing label-flipping. The calculation of this rate was done passively.

2. Minimality: Defined as the "size" of an edit, this is measured using the word-level Levenshtein distance
between the original input and the edited version. This distance is then normalized on a scale from 0
to 1, calculated as the ratio of the Levenshtein distance to the number of words in the original input.

3. Closeness: The semantic similarity between the original and edited input is measured using the
BERTscore [405].

4. Fluency: This is evaluated by comparing how the distribution of the edited input aligns with that of
the original. Initially, a pretrained T5-BASE model [286] is used to compute the loss value for both
the original and edited input. Subsequently, the loss_ratio (i.e., edited/original) is reported. An ideal
fluency score is aimed at achieving a loss_ratio of 1.0, which would indicate equivalent losses for both
texts, thereby defining the fluency metric as |1− loss_ratio|.

Further information and analysis of these metrics can be found in Chapter 8, Section 7.2.

6.5.2 Results
In the provided document, the experimental outcomes are depicted in Table 6.1, encompassing data from
both the IMDB and Newsgroups datasets. Comprehensive analyses are made accessible in Section, 6.5.2.
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IMDB
Editor Fluency ↓ Closeness ↑ Flip Rate ↑ Minimality ↓ Runtime ↓

W
or

dn
et

Deterministic w. fluency 0.14 0.969 0.892 0.08 4:09:41
GNN w. fluency 0.07 0.986 0.861 0.12 3:17:51

GNN w. fluency & dynamic thresh 0.057 0.986 0.851 0.146 4:18:34
GNN w. fluency & POS_filter 0.08 0.992 0.862 0.123 0:32:05
GNN w. fluency & edge filter 0.105 0.993 0.845 0.149 3:00:38
GNN w. fluency_contrastive 0.112 0.999 0.914 0.014 2:12:06

GNN w. contrastive 0.048 0.996 0.927 0.01 2:00:15

E
m

b.

GNN w. AnglE & contrastive 0.063 0.995 0.944 0.011 0:45:38
GNN w. GIST & contrastive 0.037 0.995 0.882 0.016 0:58:14
GNN w. Jina & contrastive 0.047 0.995 0.928 0.017 1:00:56
GNN w. MUG & contrastive 0.036 0.996 0.889 0.013 0:52:19

Polyjuice 0.394 0.787 0.782 0.705 5:01:58
MiCE 0.201 0.949 1.000 0.173 48:37:56

Newsgroups
Editor Fluency ↓ Closeness ↑ Flip Rate ↑ Minimality ↓ Runtime ↓

W
or

dn
et

Deterministic w. fluency 0.182 0.951 0.870 0.135 4:20:52
GNN w. fluency 0.074 0.985 0.826 0.151 3:48:37

GNN w. fluency & dynamic thresh 0.043 0.984 0.823 0.148 4:47:14
GNN w. fluency & POS filter 0.044 0.989 0.841 0.143 1:19:57
GNN w. fluency & edge filter 0.12 0.989 0.834 0.151 3:05:08
GNN w. fluency_contrastive 0.088 0.979 0.875 0.033 2:45:31

GNN w. contrastive 0.033 0.989 0.920 0.033 2:02:34

E
m

b.

GNN w. AnglE & contrastive 0.005 0.995 0.904 0.027 1:09:13
GNN w. GIST & contrastive 0.001 0.995 0.898 0.02 1:02:55
GNN w. jina & contrastive 0.013 0.993 0.882 0.025 0:57:31

GNN w. MUG & contrastive 0.005 0.996 0.900 0.016 0:53:04

Polyjuice 1.153 0.667 0.8 0.997 6:00:10
MiCE 0.152 0.922 0.992 0.261 47:23:35

Table 6.1: Experimental results of counterfactual generation. We evaluate different versions of our
framework using the metrics described on subsection 6.5.1, and we compare it with MiCE and Polyjuice.

For each metric (column) the best value is highlighted in bold. Reported runtimes refer to inference.
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It has been found that the proposed editors—equipped with deterministic and GNN mechanisms—surpass
MiCE and Polyjuice in three of the four evaluated metrics, namely minimality, fluency, and closeness. In
terms of the flip-rate metric, it is reported that MiCE secures the highest results, achieving between 99% and
100% across the two datasets. In contrast, the optimal editor from the current study demonstrates slightly
lower yet significant flip-rate values of 94.4% for IMDB and 92% for Newsgroups. The superior performance
of MiCE in this metric is anticipated due to its white-box access to the classifier, allowing it to craft edits
that significantly influence the classifier’s response, irrespective of the input text’s content.

Further, results indicate a greater degree of minimality in edits when the graph construction relies on embed-
ding models rather than WordNet. It is observed that the usage of WordNet leads to modifications involving
approximately 10% of the original tokens, whereas embedding models necessitate changes to merely 1% of the
tokens. This distinction is attributed to the state-of-the-art (SoTA) embedding models’ superior capability
to accurately reflect concept distances, thereby facilitating higher quality substitutions and generating more
contrastive pairs. Such outcomes imply that fewer embedding-based substitutions are needed to achieve the
same level of impact on the classifier’s output compared to those based on WordNet. However, the adoption
of embedding models slightly diminishes the transparency of the method. Despite these minor variances, all
variants of the current framework consistently surpass previous techniques across all metrics for Polyjuice
and three metrics for MiCE. Furthermore, even the general-purpose variant of the framework, which lacks
direct access to the classifier, still manages to produce better outcomes than the white-box MiCE, achieving
this in just 2% of the time.

Regarding runtime, a marked improvement is noted for the editors proposed in this study compared to MiCE
and Polyjuice. The deterministic editor, serving as a baseline, requires roughly 4 hours for processing each
dataset. Editors incorporating the GNN discussed in Section 6.3.2 demonstrate enhanced performance,
averaging between 2 to 4 hours. This efficiency is significantly boosted through the integration of embedding
models, where processing times are reduced to under an hour (52 minutes to 1 hour for IMDB, and between
53 minutes to 1 hour and 9 minutes for Newsgroups). This substantial enhancement in speed represents a
major advantage of the proposed framework over the two SoTA editors, demonstrating speed improvements
of approximately 97% and 83% in comparison to MiCE and Polyjuice, respectively.

Static vs. Dynamic Threshold It is observed that to maintain a low count of modifications, a mechanism
is required to restrict the number of changes per data instance, even if it results in a decrease in flip-rate. Two
distinct strategies are employed for this purpose. A static cap on substitutions is imposed in the first strategy,
allowing a maximum of 10 substitutions per textual input irrespective of its length, as determined through
empirical testing. The second strategy involves dynamically calculating an optimal cap on substitutions,
which is defined as 20% of the total word count of the text after several trials. The outcomes indicate a
negligible enhancement in metrics with the application of a dynamic threshold, although the runtime extends
by about one hour per dataset. This increase in time is anticipated as the dynamic threshold introduces
additional linear complexity for each text instance, compared to the constant time complexity (O(1)) in the
static method. Unless specified otherwise, the static threshold remains the default approach.

POS-restricted vs. Unrestricted Substitutions An evaluation is conducted to ascertain the capability
of the editing tool in recognizing which parts of speech (POS) predominantly influence a specific dataset
when substitutions of related words are made. Restrictions are imposed on which POS can be candidates
for substitutions, and the results are compared with those of an unrestricted version of the framework.
For sentiment classification using the IMDB dataset, it is presumed that adjectives and adverbs primarily
influence the sentiment label of each instance, leading to restrictions being placed on altering only these two
POS. Conversely, for the Newsgroups dataset, which falls under topic classification, nouns are deemed crucial
in deducing the topic, prompting instructions for the editor to consider only nouns for substitutions. Results
documented in Table 6.1 reveal that editors, both with and without POS filtering, exhibit remarkably similar
outcomes for both the IMDB and Newsgroups datasets. This similarity suggests that the lack of significant
differences is not contingent upon specific POS restrictions. A notable disparity is observed in runtime, where
restricted editors require 32 to 60 minutes, whereas unrestricted editors take 2 to 4 hours. This difference is
expected, as focusing on specific POS at any one time reduces the number of words considered as substitution
candidates, significantly decreasing the number of graph nodes and edges, thus reducing the time required
for graph construction and GNN inference.
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Edge Filtering In the interest of preserving the POS during each substitution, a penalty mechanism is
applied when computing edge weights in the graph. This mechanism assigns a weight approximately 10×
greater than the normal weights, as determined by WordNet path similarity or embedding cosine similarity, to
edges that connect words of different POS. Consequently, edges bearing high weights are nearly impossible to
select in the search for a minimum weight matching, rendering substitutions involving different POS highly
improbable. Examination of results with and without edge filtering suggests minimal differences, leading
to the supposition that the utility of such a mechanism might be redundant, given that the functionalities
appear to be subsumed by the GNN’s solution to the graph assignment problem.

Contrastive vs. Fluent Contrastive Edits The behavior of the editing tool is investigated under
conditions optimized for label-flipping scenarios versus general-purpose editing. The heuristic function of the
beam search in the final stage of the framework is modified accordingly (as illustrated in Figure 6.4.1). For
general-purpose edits, the heuristic is based on the metric of fluency discussed in Subsection 6.5.1, which aids
in producing fluent edits. For label-flipping, the heuristic employs contrastive probability, which evaluates the
alteration in model prediction for the original label, to identify the most effective edits (as indicated by GNN
w. contrastive in Table 6.1). Additionally, an average of fluency and contrastive probability is utilized as
the heuristic, resulting in fluent edits that exhibit a high flip-rate (as shown by GNN w. fluency_contrastive
in Table 6.1). While general-purpose edits achieve the lowest flip-rate, they still surpass Polyjuice, another
general-purpose editor, in all evaluated metrics. This demonstrates that the framework can also serve as a
versatile, untargeted editor producing high-quality edits; further extensive testing on this assertion is deferred
to future studies. Conversely, the label-flipping optimized edits display superior results in terms of fluency,
closeness, and minimality when compared to MiCE, a state-of-the-art white-box editor optimized for label-
flipping. In terms of flip-rate, MiCE shows better performance by 7%, albeit at a considerable cost of a
20-fold increase in execution time.

WordNet vs. Embeddings The impact of substituting WordNet path similarity with cosine similarity of
embeddings is explored when determining the weight of specific edges in the bipartite graph G. On one side,
deterministic hierarchies offer more explainable relationships between concepts, fully justifying the causal
pathways of substitutions. On the other side, recent embedding models are likely to capture the relationship
and similarity between two words more effectively than WordNet. To maintain a manageable framework size,
the top four best-performing models from an embedding benchmark competition are employed, provided their
size does not exceed 1.25 GB. These models, which rank highly in the competition, do not show significant
performance improvements with an increase in size. The results support the hypothesis, with variants utilizing
embedding models outperforming those based on WordNet in all metrics. Concerning GPU inference, the
embedding models also demonstrate faster performance than WordNet, which requires API calls for each
word/graph node, significantly slowing down the graph creation process.

Edits Comparison Between Editors

In order to showcase our editor’s advantages in terms of minimal edits and successful label flipping, we
perform a qualitative comparison against two other text-editing approaches—Polyjuice and MiCE. To that
end, we select a sample from the IMDB dataset that is initially predicted as positive by the classification
model. We then generate revised versions of this sample using our own editor, as well as the two baseline
editors. Since Polyjuice is specifically designed to invert the sentiment from positive to negative, we employ
its [negation] control code, which instructs the system to introduce negation cues into the text, thereby
prompting a label shift.

Figure 6.5.1 presents the original text alongside the modified outputs, with changes highlighted in red. By
examining these snippets, we can assess the number and nature of the edits introduced by each editor. This
visual check allows us to measure how each system balances minimality of edits against semantic preservation.

As illustrated in the figure, MiCE makes the largest number of modifications, including at least two phrases
that conflict with the intended semantics of the passage: “conservative, conservative” and “both of whom
have”. Furthermore, MiCE frequently opts for multi-word replacements rather than concise single-word
edits. These choices undermine the principle of minimality, which emphasizes making only the smallest
necessary changes.
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Figure 6.5.1: Original input and edited inputs from different editors. The changes that each editor
performed are highlighted in red color.

On the other hand, Polyjuice makes a single alteration at the end of the text. While this satisfies a minimal
change requirement, the substituted token itself does not carry meaningful semantic content, instead func-
tioning merely as a forced trigger to flip the classification label. Such edits can be conspicuous, signaling the
involvement of a neural model or an automated counterfactual editor, which stands in contrast with the ideal
of “imperceptible edits” in counterfactual scenarios.

Our editor offers the most balanced and precise result among the three. By modifying only one word, it
shifts the sentiment from positive to negative without introducing unnatural or semantically problematic
text. This single, contextually coherent edit meets the primary counterfactual objective while preserving the
overall structure and readability of the original instance, thus exemplifying both minimality and semantic
fidelity.

Edits Minimality ↓ Prediction Flipped

Polyjuice 0.078 False
MiCE 0.256 True
Ours 0.011 True

Table 6.2: Comparison of the performance metrics for the edits displayed in Figure 6.5.1. Each column
illustrates a particular property, and the best-performing value for each is shown in bold.

We present the numerical outcomes for the examples in Figure 6.5.1, focusing on minimality and label-
flipping, in Table 6.2. Since the experiment involves only a single text sample, we employ the term prediction
flipped (rather than flip-rate) to indicate whether the edited version successfully alters the classifier’s initial
prediction. Notably, Polyjuice is unable to achieve a prediction flip, whereas both MiCE and our approach
succeed in doing so. Furthermore, our editor demonstrates the strongest performance in terms of minimality,
with Polyjuice placing second and MiCE being the weakest among the three.
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6.6 Trade-offs

Given the highly customizable nature of our editor, numerous trade-offs must be navigated during the gen-
eration of counterfactuals.

Controllability vs. Minimality Our approach to controllable interventions involves the potential alter-
ation of any semantic element necessary to achieve a specific outcome, such as label-flipping. To achieve this,
we could theoretically modify as many words as needed. However, to maintain minimal edits, we impose
a cap on the number of word substitutions allowed per textual input and employ beam search to identify
the most suitable changes. This strategy inevitably leads to a compromise on absolute controllability, as it
does not ensure that every possible word substitution is made. Yet, our framework guarantees that at least
one word in each input will be modified, thus upholding a basic level of controllability. In our experiments
(refer to Table 6.1), we accept this compromise, prioritizing minimality over extensive controllability. While
it is feasible to achieve full controllability by adjusting the constraints previously mentioned (i.e., maximum
number of substitutions and beam search utilization), such modifications typically degrade performance in
terms of minimality.

Optimality vs. Execution Speed In our framework, we adopt both a deterministic method (refer to
Deterministic w. fluency in Table 6.1) and a GNN-based strategy (refer to GNN w. fluency in Table 6.1)
to address the RLAP. The deterministic approach guarantees optimality, as established graph matching
algorithms are known to secure the best solution (cite in [162, 142]). However, these algorithms, with a
computational complexity of O(mn log n), tend to slow down as the graph, and consequently the dataset
size, increases—this size correlates with the number of words that need substitution. By substituting these
deterministic algorithms with a trained GNN (detailed in Section 6.3.2), we achieve a substantial increase
in processing speed at the expense of achieving only an approximate solution, rather than an optimal one.

Explainability vs. Execution Speed In our work, we utilize WordNet as the default way of computing
edge weights between nodes, where each edge weight is based on the path that connects a source word s with
target word t in WordNet. By mapping each concept to WordNet synsets, a deterministic concept position is
assigned to each word, providing a fully transparent concept mapping to a well-crafted lexical structure. The
utilization of word embeddings casts a shadow on word mapping, since we transit to a vector representation
of an uninterpretable multi-dimensional space via black-box models. Similarity in the embedding space
translates to semantic similarity of physical concepts, acting as our guarantee towards employing embedding
models.

In combination with the deterministic solution to RLAP, WordNet mapping guarantees explainability of
edits, since all paths s→ t are tractable, and the choice of edges is fully transparent due to the deterministic
selection process of graph matching algorithms [21]. By obtaining the resulting matching M we gain full
access to the set of edits to perform S → T transition. A sacrifice in explainability is imposed when using the
GNN instead of the deterministic graph assignment algorithms: the GNN introduces an uncertainty to the
edge selection, since we cannot be entirely sure why a specific edge was chosen. Although we have trained the
GNN to output the RLAP solution, the model itself still remains a black-box structure that hides the exact
criteria which decide whether an edge will be selected or not. Still, in some applications the speedup offered
by the GNN outweighs this drop in explainability, while the opposite may hold in cases where trustworthiness
is of utmost importance.

Overall, as observed from our experiments (see Table 6.1), leveraging embedding models to compute edge
weights and the GNN to solve RLAP showcases major improvements in fluency, flip-rate and minimality,
while also being considerably faster. Someone could argue that this approach is clearly better that the fully
deterministic one, since it produces higher quality edits. Despite that, we need to point out that these
improvements come at a significant cost on explainability, since, due to the GNN, the edge selection process
is no longer transparent and edge weight computation depends on black-box embedding models.
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6.7 Methodological and Technical Details

6.7.1 GNN Training
Our approach to training the Graph Neural Network (GNN) embedded within our framework starts by
building upon the pretrained model proposed in [205]. We then refine this model for our RLAP task,
adhering closely to the procedure described by the original authors, apart from a slight modification in the
loss function.

First, we construct a synthetic dataset of M samples7, where each sample includes a cost matrix C whose
elements are drawn from a uniform distribution in (0, 1). We also derive the corresponding optimal assignment
solution by applying the Hungarian algorithm [162]. Treating RLAP as a binary classification problem, we
split the ground-truth assignment matrix Y gt8 into positive and negative labels. Since each node has at
most one positive edge connected to it (with all other edges being negative), we employ the Balanced Cross
Entropy loss to mitigate the influence of numerous negative labels:

L = −
n∑

i=1

m∑
j=1

(
w × ygt

ij log(yij) + (1− w)×

(1− ygt
ij ) log(1− yij)

)
,

(6.7.1)

where yij is the predicted label for the edge linking source node i to target node j, ygtij is the associated
ground-truth value (positive or negative), and w is a balancing weight that offsets the dominance of negative
labels during training. Additionally, n and m represent the cardinalities of the source and target node sets,
respectively, implying |S| = n and |T | = m.

Following [205], we train the GNN for a total of 20 epochs. The initial learning rate is set to 0.003 and is
gradually reduced by 5% every 5 epochs.

6.7.2 Proof of Naive Graph Matching Complexity
We now demonstrate why the naive approach to solving adversarial s–t matchings has an exponential time
complexity of O

(
|T ||S|). Consider the illustrative graph in Figure 6.7.1, which has a source set S = {A,B,C}

with cardinality |S| = 3, and a target set T = {1, 2, 3, 4} with cardinality |T | = 4.

Let us observe the possible ways in which each source node can be connected to the target set:

• For source node A, there are |T | = 4 possible matches: A−1, A−2, A−3, or A−4.

• Independently, source node B also has 4 possible matches: B−1, B−2, B−3, or B−4.

• Similarly, source node C can be matched with any of the 4 targets: C−1, C−2, C−3, or C−4.

Since each source node selects among |T | options without regard to the others, the total number of combi-
nations for |S| = 3 becomes 4 × 4 × 4 = 43. In the general case of |S| source nodes matched to |T | targets,
this number scales to |T ||S|, underscoring the exponential complexity O

(
|T ||S|) of the naive solution.

6.8 Conclusion
In this chapter, we present a framework developed based on the one introduced in Chapter 4. The essential
concept of this framework relies on the use of a bipartite graph. Rather than identifying the closest instance
in the explanation dataset, this approach utilizes bipartite graphs to generate a new instance. Specifically,
it facilitates the generation of optimal and controllable word-level counterfactuals through graph-based sub-
stitutions. The evaluation of this framework was carried out on two classification tasks. A novel approach
involving Graph Neural Networks (GNN) was introduced to augment the previously proposed baseline de-
terministic graph assignment algorithm, which resulted in a significant acceleration of the overall process.

7Each sample is a weighted bipartite graph.
8Y gt is a matrix in which ygtij = 1 if edge i → j appears in the minimum matching, and −1 otherwise.
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Figure 6.7.1: An example graph illustrating a bipartite structure with S = {A,B,C} and T = {1, 2, 3, 4}.

Comparisons were made between the outcomes of this method and those achieved by two state-of-the-art
(SoTA) editors. It was demonstrated that the proposed method not only surpasses these editors in most of
the evaluated metrics but also does so with considerable swiftness. Additionally, some trade-offs that users
must consider before implementing the proposed method were presented. Looking forward, it is contemplated
that the integration of additional external lexical sources, such as ConceptNet, might be explored to broaden
the array of potential substitution candidates. Furthermore, enhancements to the performance of the GNN
model, which is employed to solve the Relaxed Linear Assignment Problem (RLAP), are also being considered
in order to more closely approximate the deterministic optimal solutions.
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Chapter 7

Evaluation of Counterfactual
Explanations

7.1 Introduction

In the pursuit of more interpretable and accountable artificial intelligence, the generation and evaluation
of counterfactual explanations have emerged as a pivotal area of research. Counterfactuals — hypothetical
alternatives to real-world events or decisions — provide insights into machine learning models by illustrating
how slight modifications to input data can lead to different predictions. This not only enhances transparency
but also aids in debugging and improving model robustness.

Counterfactual editors or simply editors, aim to make minimal modifications to a given input in order to
alter the prediction of a classifier. We present a classification of these systems, review related literature, and
provide an overview of their evaluation methods.

The methodologies and intended use-cases of these editors vary [189]. For instance, systems like MiCE [302]
and DoCoGen [31] are text counterfactual editors that are optimizing their edits based on the output of a
specific predictor, g(), by pseudo-randomly masking words in the text and optimizing the proposed replace-
ment to change g’s output. Another approach, named CounterfactualGAN [296], combines a conditional
GAN (Generative Adversarial Network) with embeddings from a pretrained BERT encoder [61] to model-
agnostically generate realistic natural language text counterfactuals. In contrast, text editors like Polyjuice
[375] aim to identify general text perturbations that can alter the semantics of a sentence without targeting
a specific predictor. They refer to this as general purpose counterfactuals, which can be used for a variety
of purposes, from data augmentation to generating counterfactual explanations or conditioning to a specific
task/dataset.

A significant group of editors focus on generating adversarial examples to expose a classifier’s vulnerabilities.
These adversarial models may differ from other counterfactual editors as they do not necessarily aim to
generate a minimal or fluent edit of the original input, and the edits might include noise addition, etc.
A suite of adversarial example generators for NLP, including TextFooler [133] and Bert-Attack [133], is
implemented in the TextAttack framework [251]. The simpler form of such methods involves using gradient
descent on the instance to generate examples that alter the predictor’s class while simultaneously optimizing
one or more metrics [253]. Instead of attempting random permutations to generate counterexamples, other
editors only alter the important features of each text. This importance is calculated in various ways, such
as training a classifier to extract the correlation of each term with the task [367], measuring the effect of
a feature deletion on the prediction of the classifier [133], or using the predictor’s attention [302]. Then,
the important terms can be replaced with synonyms, antonyms, important terms from other tasks, or using
pre-trained seq2seq models [42, 229, 304, 302, 375, 79].

The article [120] proposes an editor that operates at the image level, generating adversarial examples through
gradient shielding within a restricted area. Drawing inspiration from techniques used to identify crucial re-
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gions in object detection tasks, a system was developed for creating region-specific adversarial examples for
image classification. This system utilizes a new technique called gradient mask, designed to produce adver-
sarial examples that are highly effective in their attacks and cause minimal disruption. Meanwhile, other
techniques like AdvProp [381] aims to improve robustness and reduce overfitting through an adversarial train-
ing approach, which incorporates adversarial examples as additional training data. Central to this approach
is the use of a separate auxiliary batch normalization specifically for adversarial examples, acknowledging
their distinct statistical distributions compared to standard examples. CoCoX [8], utilizes “fault-lines”—key
semantic-level features critical to alternate predictions—to explain model outcomes. Specifically, for an in-
put image I, where CNN model M predicts class cpred, CoCoX identifies the minimal explainable concepts
necessary to add or remove from I to change M’s classification to a different target class calt.

To effectively measure the quality and impact of these counterfactual explanations, a variety of metrics have
been developed. These metrics are designed to evaluate counterfactuals across multiple dimensions, such as
their ability to achieve the desired outcome (validity), the minimalism of the changes they suggest (sparsity),
and their closeness to plausible real-world alternatives (proximity). Each metric provides a different lens
through which the effectiveness and utility of counterfactual methods can be assessed, making them crucial
for researchers and practitioners alike. Moreover, specific considerations are required when dealing with
natural language processing (NLP) tasks, where the nuances of human language demand specialized metrics
like fluency, fidelity, and naturalness. These metrics ensure that the generated textual counterfactuals are
not only effective in altering model decisions but also remain coherent, relevant, and realistic to human users.

The following section outlines the various general and NLP-specific metrics used to evaluate counterfactual
methods. By understanding and applying these metrics, we can better gauge the strengths and limitations
of different approaches to generating counterfactual explanations, ultimately leading to more interpretable
and trustworthy AI systems.

7.2 Metrics for Counterfactual Explanations

7.2.1 Domain Agnostic Metrics
Flip Rate [304, 302, 43] is an essential metric in the evaluation of counterfactual methods, primarily used
to measure the efficacy of modifications made to input data. Specifically, it quantifies the proportion of
instances where an applied edit successfully shifts the outcome to a contrasting label, indicating a change in
the decision or prediction made by a model. This metric is pivotal for assessing whether the interventions
suggested by a counterfactual are meaningful and effective in altering outcomes. A higher flip rate suggests
that the counterfactuals generated are not only pertinent but also potent enough to influence the model’s
behavior significantly. This makes the flip rate an invaluable metric for researchers and developers who
aim to enhance model transparency and understand the decision boundaries of their predictive algorithms.
By focusing on the flip rate, one can gauge the practical impact of counterfactual explanations in real-
world applications, ensuring that these hypothetical alternatives fulfill their intended purpose of illustrating
potential decision changes. Flip rate is divided into two distinct sub-metrics:

• Label Flip Rate (LFP) calculates the percentage of new examples that flip the original label to the
target label.

• Soft Label Flip Rate (SLFR) calculates the percentage of new examples whose label differs from the
original example’s label. SLFR measures how often LLMs generate valid counterfactuals independent
of whether the new label is right.

For a dataset with K examples, we calculate FLR and SFLR as follows:

LFP =
1

K

K∑
k=1

⊮(l̃k = l′k) (7.2.1)

SLFR =
1

K

K∑
k=1

∣∣∣l̃k ̸= l
∣∣∣ (7.2.2)

120



7.2. Metrics for Counterfactual Explanations

where l̃k is the annotated label, l′k is the target label, and lk is the original label.

Minimality or Proximity [302, 375, 84, 150, 354] evaluates the closeness between the original input and its
counterfactual counterpart. It measures the distance—often in terms of feature space or some domain-specific
metric—to assess how minimal the changes are that lead to a different outcome. The underlying premise of
using proximity as a metric is to ensure that the suggested modifications are subtle yet effective, promoting
counterfactuals that are not only plausible but also closely aligned with the original data point. This minimal
divergence is vital as it enhances the likelihood of the counterfactual being perceived as realistic and action-
able. Moreover, proximity is especially valuable in scenarios where the goal is to provide users with practical
and achievable steps for altering outcomes, such as in loan approval or medical diagnosis scenarios, where
slight and realistic changes are preferable. By prioritizing proximity, developers can create more grounded
and accessible counterfactual explanations, facilitating better understanding and easier implementation of
suggested changes by end-users.

Sparsity [150] measures the minimalism of the changes suggested by a counterfactual. This metric assesses
how few features are altered in the transition from the original instance to its counterfactual counterpart,
emphasizing the importance of simplicity and clarity in making these hypothetical alterations. The rationale
behind valuing sparsity lies in its direct correlation with the comprehensibility and psychological accept-
ability of counterfactuals to human users. Sparse modifications are easier for individuals to understand and
implement, thereby increasing the practical utility of counterfactual explanations. In scenarios where decision-
making processes need to be transparent and actionable, sparsity ensures that the explanations provided are
accessible and feasible for users to act upon. As such, sparsity not only enhances the user-friendliness of
counterfactual explanations but also supports their effectiveness in providing clear, concise, and impactful
insights into AI-driven decisions.

Coverage [353, 150] measures the proportion of “good” counterfactuals generated for a given dataset. A
“good” counterfactual, in this context, is typically defined by specific criteria such as a limited number of
feature changes—often no more than three—ensuring that the suggested modifications remain practical and
manageable. This metric provides a global estimate of a method’s adequacy by quantifying how many of
the generated counterfactuals meet a predefined standard of quality across different test sets. High coverage
indicates that a method consistently produces counterfactuals that are likely to be useful and relevant in
real-world scenarios, thus enhancing the method’s reliability and applicability. Coverage not only highlights
the effectiveness of a counterfactual generation method but also its ability to produce actionable and under-
standable alternatives, which are crucial for end-users who need to make informed decisions based on the
model’s outputs.

Relative Distance [150] evaluates the quality of counterfactual explanations by comparing the mean dis-
tance between generated counterfactuals and the original test instances to the mean distance of naturally
occurring counterfactuals within a dataset, often termed as “native counterfactuals.” This metric is partic-
ularly insightful as it provides a benchmark for how closely the machine-generated counterfactuals mimic
real-world scenarios where slight variations lead to different outcomes. By measuring this relative distance,
researchers can assess the psychological validity of the counterfactuals: the closer the generated counterfac-
tuals are to the native ones, the more likely they are to be perceived as plausible and understandable by
humans. This metric thus serves not only to gauge the realism and relevance of the counterfactuals but also
to ensure that they provide intuitive and actionable insights that can effectively aid users in interpreting and
trusting machine learning decisions.

Diversity assesses the breadth and variety of alternatives generated by a model. This metric addresses the
need for counterfactual explanations to provide a range of different outcomes from a single input, offering
users multiple pathways or options for achieving a desired result. In practice, diversity is often quantified
using measures such as self-BLEU scores [425] for text inputs or other similarity indices to evaluate how
distinct each generated counterfactual is from others within the same set. A high diversity score indicates
that the model can produce varied counterfactuals, which is crucial for avoiding bias and ensuring robustness
in decision-making processes. Lexical diversity, apart from SelfBleu, can be assessed through the Distinct-n
metric [179], which quantifies the diversity of generated CFEs by calculating the ratio of unique n-grams to
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the total number of n-grams. When it comes to semantic diversity, the dist(·) function can utilize various
measures such as SBERT embedding similarity [293], BERTScore [406], or semantic uncertainty [163].

By fostering a diverse set of plausible counterfactuals, developers and users can explore a wider landscape of
potential changes, thereby gaining deeper insights into the model’s behavior and increasing the likelihood of
identifying genuinely actionable and effective interventions.

Actionability [277, 237] evaluates whether the changes recommended by a counterfactual can be feasibly
implemented in a real-world context, ensuring that the proposed alterations are within the realm of possibility
for the end user. Actionability is paramount because it directly impacts the usefulness of counterfactuals
in operational settings, such as policy-making, clinical decisions, or customer service enhancements. A
counterfactual that suggests realistic and achievable changes is more likely to be used to make informed
decisions and drive effective interventions. This metric is particularly significant in scenarios where the
cost, ethical considerations, and practical constraints of implementing changes are critical. Hence, assessing
actionability helps ensure that counterfactual explanations do more than just fulfill theoretical criteria; they
provide genuine, executable insights that can lead to tangible improvements and informed decision-making
processes.

Causal Constraint Satisfaction (Feasibility) [322, 237] assesses whether the modifications suggested
by a counterfactual respect the underlying causal relationships inherent in the dataset. In essence, it measures
how feasible the suggested changes are within the context of what is realistically possible, ensuring that the
counterfactuals do not merely represent abstract mathematical solutions but are actionable and plausible
changes that could occur in the real world. For instance, in scenarios involving sequential or dependent
data, such as time-series forecasts or patient treatment records, it is vital that the counterfactuals adhere to
logical sequences or medically feasible interventions. By prioritizing causal constraint satisfaction, developers
and researchers can generate more meaningful and applicable counterfactuals that enhance user trust and
compliance, particularly in critical domains such as healthcare, finance, and policy making.

Complexity [354, 353] quantifies the time or the computational complexity that a counterfactual editor
need for producing an outcome. In practical scenarios, where timely decision-making is crucial, the speed
at which counterfactuals are generated can significantly impact their utility. For instance, in dynamic en-
vironments such as real-time trading or emergency response systems, a slower generation time may render
counterfactual explanations less useful. This metric is particularly valuable for comparing different methods
or algorithms, identifying those that not only provide high-quality and effective counterfactuals but do so in
an expedient manner. Optimizing for counterfactual generation time without compromising the quality of
the explanations ensures that these tools are not only theoretically valuable but also practically applicable
in fast-paced or resource-constrained settings.

7.2.2 Assessing Counterfactual Explanations in NLP
Minimality [302, 81] measures the “size” of an edit on textual data by quantifying the word-level Lev-
enshtein distance between the original and edited input. The Levenshtein distance calculates the minimum
number of deletions, insertions, or substitutions required to transform one text into another, making it an
ideal measure of how minimal an intervention is. The principle behind Minimality is that smaller, more subtle
edits are preferable, as they are less likely to distort the original meaning or intent of the text while still
achieving the desired change in output. This is particularly important in NLP applications where maintain-
ing the coherence and context of the original text is crucial. By emphasizing minimalism, natural language
processing counterfactual methods can guarantee that modifications are both impactful and subtle, making
it the predominant and most frequently employed metric that editors strive to minimize.

Fluency [349] measures how well the output text f(x) aligns with the expected distribution of texts, L.
Ensuring that this text is fluent and within distribution poses a significant challenge, primarily because the
true distribution L may be inaccessible, and assessing fluency systematically is often difficult. To approximate
fluency, the token-level perplexity (PPL) of a large language model is commonly utilized [138, 356, 349]. This
method involves using a modelMD trained on an extensive dataset D, calculating the average perplexity for
a text sequence x = x1, x2, ..., xT as follows:
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PPL(x) = exp

{
− 1

T

T∑
t=1

log pMD (xt|x1:t−1)

}
. (7.2.3)

Without fine-tuning MD on L, this formula serves as a baseline for fluency measurement. However, if L
is accessible, MD can be fine-tuned to adapt to this specific distribution, creating ML which can then
more accurately detect out-of-distribution (OOD) cases using the same PPL formula. This allows for a
comparison between the perplexity scores of MD and ML, effectively highlighting any deviations from the
normal distribution and decreases in fluency.

Content Preservation [33] assesses the quantity of the original content remains intact in the counterfac-
tual output, ensuring that the essential meaning and information are preserved despite modifications made
to achieve a different model outcome. Content preservation is typically measured using cosine similarity be-
tween the embeddings of the original and the counterfactual text, which are often derived embedding models
like BERT [183]. High scores in content preservation indicate that the counterfactual maintains a strong
semantic alignment with the original input, thereby supporting the usability and coherence of the generated
explanations. This metric is particularly important in applications where the fidelity of the information is
crucial, such as in legal or healthcare settings, where altering the meaning or omitting critical details could
lead to misinterpretations or errors in decision-making based on the counterfactuals.

Fidelity [297] assesses how accurately the counterfactuals reflect the true behavior of the underlying black-
box model being explained. In essence, fidelity measures the degree to which the modifications proposed by
the counterfactuals would lead to the predicted changes if those modifications were actually implemented.
This metric is vital for ensuring that the counterfactual explanations are not only theoretically sound but
also practically reliable in predicting model responses to hypothetical inputs. High fidelity in generated
counterfactuals boosts user trust in the explanations provided, as it confirms that the explanations are
grounded in the operational logic of the model. Therefore, fidelity serves not just as a measure of accuracy, but
also as a benchmark for the utility and reliability of counterfactual explanations in helping users understand
and interact with AI systems more effectively.

Perceptibility [297] focuses on measuring the semantic similarity between the original text and its coun-
terfactual version to assess how perceivable the changes are to end users. Perceptibility is quantified by
employing advanced semantic models like the Universal Sentence Encoder (USE), which calculates the se-
mantic distance between the two texts. A crucial aspect of this metric is ensuring that the modifications,
while noticeable, remain subtle enough to maintain the integrity and contextual relevance of the original mes-
sage. This balance is vital in applications such as sentiment analysis or content recommendation systems,
where slight nuances in text can lead to significantly different outcomes. High perceptibility in counterfac-
tuals ensures that the edits are understandable and meaningful, providing clear insights into how specific
changes to the input affect the outputs of NLP models, thus aiding in better interpretation and trust in AI
decision-making processes.

Expanding on the metrics used to evaluate counterfactual methods, classical text generation metrics also
play an essential role. These metrics assess grammatical correctness and coherence, concentrating on
the quality of the generated text with respect to its adherence to linguistic standards and overall readability.
Grammatical correctness evaluates whether the text aligns with established rules of syntax and usage,
ensuring the content is free from errors that could undermine its clarity and credibility. Coherence measures
how logically the sentences connect and whether the overall text presents a cohesive and comprehensible
narrative, thereby ensuring a smooth and seamless reading experience.

7.3 Inconsistency of Counterfactual Explanations
When delving into the realm of counterfactual explanations, it becomes evident that while existing metrics
offer avenues for comparing and contrasting different methodologies, a glaring challenge persists: the absence
of a definitive ground truth. This void complicates the assessment of a singular explainer’s efficacy when
considered in isolation, as it becomes challenging to ascertain how closely its output aligns with an ideal
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explanation that, in theory, could be achieved. In the pursuit of enhancing the evaluation process, an approach
rooted in comparison emerges as a promising avenue. By scrutinizing the performance of a counterfactual
system against its own outputs, we aim to shed light on its effectiveness in generating explanations that hold
merit within the context of its own workings.

Drawing inspiration from the concept of back-translation, which has demonstrated its utility in evaluating
and refining machine translation systems, we propose a methodological framework that builds upon iterative
feedback loops. This framework involves feeding the system’s output back into itself—a counterfactual of a
counterfactual. Through this iterative process, we anticipate that the resulting explanation should, at the
very least, match the quality of the original input. This expectation is grounded in the understanding that
the original input, being both existent and actionable, serves as a tangible benchmark in other works a "lower
bound" against which the generated edit can be measured. In essence, the original input acts as a proxy for
ground truth, providing a reference point for assessing the efficacy of the generated explanation.

This approach can be employed to establish a baseline for various metrics; our focus is its application to the
concept of minimality, which stands out as a primary criterion that many editors strive to minimize [106].
Among the desirable attributes of counterfactual explanations is their ability to effect minimal changes to the
input sample, with minimality serving as the metric to gauge the disparity between the original and edited
samples.

The absence of an ideal standard for explanation complicates the determination of an optimal value for
minimality—whether a specific value is deemed advantageous or disadvantageous remains uncertain. In
scenarios where a ground truth explanation exists, calculating the optimal minimality becomes feasible;
however, in its absence, the comparison of minimality values across various edits and editors emerges as
the sole viable option. In essence, while striving to achieve minimal changes is a fundamental objective of
counterfactual explanations, without a definitive benchmark, the evaluation of minimality becomes inherently
comparative rather than absolute.

In this manner, a new methodology is introduced which utilizes a novel metric termed inconsistency. This
metric employs the editor’s past outputs as benchmarks to gauge the editor’s ability to make minimal edits.
The procedure involves re-entering the editor’s output back into the system to create a subsequent edit. The
expectation is that this subsequent edit should be at least as good as its predecessor. For instance, in Figure
7.3.1, which depicts the stages of the feedback loop approach, when the initial edit (“This movie was awful!”)
is fed back into the counterfactual system, the anticipated result is that the generated edit should at least
equal the original text (“This movie was fantastic!”). However, it is observed that the editor introduces an
unnecessary whitespace in the produced edit (as illustrated in 2:second edit in Figure 7.3.1). This suggests
a superior output that the system failed to recognize, thereby confirming that the system did not produce
the optimal output. It is critical to acknowledge that a counterfactual system with a non-zero inconsistency
value is certainly sub-optimal. Yet, a zero inconsistency value does not necessarily mean that the system
is optimal. This approach sets a lower limit for the editor, though establishing an upper limit might be
challenging, if not impossible, to automate. The remainder of the paper provides an extensive explanation
of the proposed methodology and innovative metric and demonstrates its application on several commonly
used editors with various characteristics.

Back-translation for analyzing editors We formalise our problem as follows. We assume access to a
classifier g such that g : L → [0, 1]

C , where L the set of text for a specific language and C is the number of
different classes. We then consider the counterfactual editors for g as functions f : L → L, and we assume
that the goal of the editor f is threefold:

1. The edited text is classified to a different class argmax g(f(x)) ̸= argmax g(x).

2. The edits are minimal with respect to some distance metric d: f = argminh∈F d(x, h(x)), where F is
the set of functions for which argmax g(f(x)) ̸= argmax g(x).

3. The edited text f(x) is fluent and within the distribution of L.

To assess the extent to which specific criteria are adhered to, the analysis focuses on the behavior of editors
under conditions of iterative feedback. This involves studying the function f(f(. . . f(x))) over n iterations,
with the aim of evaluating the three criteria after multiple applications of the editor. Initially, a novel
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Figure 7.3.1: Using the back-translation framework to feed back the edited text to MiCE: We see the
evolution of edits (centre) and predicted labels (left) through multiple feedback steps (right). As feedback

steps increase, we observe an amplification of erroneous edits.

evaluation metric is defined to quantify the second criterion using the iterative feedback approach. Subsequent
discussions elaborate on how the first and third criteria are thoroughly verified by measuring performance
metrics at the n-th feedback step, denoted as metric@n. The performance across various metrics at @n,
indicating the metric value after n applications of the editor f , is examined. The subsequent sections detail
the metrics used to evaluate each criterion and outline the underlying assumptions.

7.3.1 Inconsistency of Minimality
Intuitively, since the edits are ideally minimal, if a sentence A is edited into sentence B and their distance is
d(A,B), then feeding back sentence B to the editor should yield a sentence C for which d(B,C) ≤ d(A,B),
otherwise C is not the result of a minimal edit [80]. This inequality holds based on that (a) we know that A
exists, (b) we assume all textual edits to be reversible, hence A is reachable from B and (c) d is symmetric,
meaning d(A,B) = d(B,A). Thus, in this case, A can be used as a proxy to a ground truth, to be compared
with C. Given a distance metric d (such as Levenshtein distance, embedding cosine similarity, etc.), we can
measure how consistent the counterfactual editor is w.r.t d by iteratively feeding back the edited text to the
editor and measuring the change in the value of d. Specifically, given an editor f : L → L, a text x ∈ L and
a distance d : L × L → R+ we define the inconsistency of f with respect to d, for x as:.

inc(f, x) = relu[d(f(f(x)), f(x))− d(f(x), x)] (7.3.1)

The difference d(f(f(x)), f(x)) − d(f(x), x) shows how much the distance d changes between consecutive
applications of the editor f and the relu function allows to take into account only the increase of the distance
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[80]. This is important, because a decrease in the distance, which would correspond to a negative difference,
is not necessarily an indicator of a good set of edits. It could, for example, indicate that not enough changes
were made, and there is no way to know if that is the case, or if a better, more minimal set of edits was found.
Contrarily, when the value is positive, we have a guarantee that a better set of edits exists, namely, the one of
the previous feedback step. Equation 7.3.1 counts the difference in d after a single feedback iteration through
the editor, but as with other metrics in this work, we can keep feeding back the output of the editor to itself,
and compute inc(f, f(x)) to get more information about the editor’s inconsistency. When we do this, we
measure the average inconsistency after n steps of feedback as [80]:

inc@n(f, x) =
1

n

n−1∑
i=0

inc(fi+1(x), fi(x)), (7.3.2)

where f0(x) = x and fi(x) = f(fi−1(x)).

7.4 Experiments
The approach is evaluated on two distinct datasets with classifiers specifically trained for each. A binary
classifier designed for sentiment analysis is used on the IMDb dataset [227], and a multi-class classifier for short
documents is employed on the Newsgroups dataset [169]. The methodology is applied to three counterfactual
editors, and metrics are used to generate and test edits on these classifiers, with edited texts fed back to the
editor for n = 10 iterations. At each step, the edited text chosen is the one with the minimal minimality that
changes the classifier’s prediction, if such an output exists; otherwise, the text with the smallest alteration is
selected. This process is repeated until the tenth iteration and the behavior of each editor is analyzed across
these metrics.

Additionally, the impact of test-set size on the variation in results and the statistical significance of these
findings is studied, with detailed results presented in Section 7.7. More specifically, it is determined that
when the test set size exceeds 200 texts, results on both datasets converge and yield statistically significant
differences. To reduce computational demands, 500 texts are randomly sampled from the IMDb dataset for
experimental use. The entire Newsgroups dataset is used, given its smaller size.

Editors

Experiments were conducted using three different editors, each with unique characteristics. Detailed descrip-
tions of these editors and their principal distinctions are provided below.

Polyjuice Polyjuice [375] operates as a general-purpose counterfactual generator, creating perturbations
aligned with predefined control types. It utilizes a GPT-2 model, fine-tuned on various datasets containing
paired sentences, such as the IMDb dataset. Unlike other systems, Polyjuice does not incorporate classifier
predictions in generating counterfactual texts; instead, it emphasizes the diversity of edits, guided by a set of
learned control codes including "negation" and "delete". In the experiments, all the control codes were used.

MiCE MiCE [302] represents a two-step method for generating counterfactual edits. Initially, it employs
a T5 deep neural network to fill blanks in texts, fine-tuned to align closely with the dataset’s distribution.
Subsequently, the text is masked either randomly or based on the classifier’s attention in a white box approach,
and the fine-tuned model is tasked with filling these blanks. This process is designed to identify the minimal
edits necessary to modify the classifier’s prediction. In the experimental setup, MiCE was used in a white
box configuration, leveraging the predictor’s outputs for fine-tuning and selecting mask locations based on
the classifier’s attention, contrasting with Polyjuice, which also uses a deep neural network but operates in a
black box manner.

TextFooler TextFooler [133] is designed to generate adversarial examples for black-box classifiers and
diverges from the other editors by not relying on a deep neural network like GPT2 or T5 for constructing
counterfactuals. Instead, it focuses on identifying key words influential to the predicted class and substitutes
them in a deterministic manner. The significance of each word is assessed by evaluating the impact of its
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removal on the classifier’s output. Replacement words are chosen from the closest matches in the embedding
space, maintaining independence from the rest of the sentence and the classifier’s logic. TextFooler restricts
its edits to synonym replacements, ensuring that replacements preserve the original part-of-speech tag.

Both MiCE and Polyjuice employ deep neural networks (T5 and GPT2, respectively) to fill in the blanks of
randomly selected masked tokens. These networks can generate subtle and imperceptible perturbations that
may alter their outputs. Unlike TextFooler, there are no restrictions on the number or the part-of-speech
tagging of the words they can insert. This absence of constraints likely contributes to the greater minimality
of edits by these two editors. For instance, if a neural network opts to replace a verb with a noun, additional
words might need to be inserted to ensure syntactic correctness. This flexibility allows for increased diversity
in the results produced by these editors.

Metrics

The metrics that we use with our methodology are:

Minimality This metric measures the word-level Levenshtein distance between the original text and its
edited version, providing a quantitative assessment of the minimal changes made.

Inconsistency (@n) We calculate the inconsistency of the word-level Levenshtein distance using a specific
formula (referred to as equation 7.3.2).

Soft Flip Rate Defined as the ratio nflipped

nall
, where nall represents the total number of samples in the

dataset, and nflipped is the count of samples where the prediction changes following the text editing process.

Entropy This measures the entropy of the output from the predictor when applied to an edited input,
serving as an indicator of the predictor’s confidence.

Perplexity (Base Model) We evaluate the language model perplexity of the base GPT-2 model, a widely-
used general-domain language model, as detailed in equation 7.2.3.

Perplexity (Fine-Tuned Models) The language model perplexity of GPT-2 fine-tuned on specific
datasets like IMDB and Newsgroups assesses the unpredictability of the edited text in relation to each
dataset. These datasets are available at IMDB1 and Newsgroups2.

Grammatical errors To assess the number of grammatical errors, character-level grammatical mistakes
are measured after each feedback step. Under the assumption that the texts are within distribution, it is
expected that these errors should not fluctuate significantly after each application of the editor. In practice,
the T5 grammar correction model3 is employed to produce a corrected version of the text at every feedback
stage. The character-level Levenshtein distance between each text and its corrected version is then measured
and reported as the number of grammatical errors @n.

Moreover, these metrics are computed after n steps of feedback, with the exception of inc@n, which inherently
incorporates these feedback steps.

Datasets

IMDb The IMDb dataset originally includes 50,000 movie reviews, evenly divided into positive and negative
categories for binary classification purposes. For our research, we selected a random sample of 500 reviews
to create a test set. In this test set, the average review consists of 204 tokens and 1,000 characters, with a
variability (standard deviation) of 112 tokens and 562 characters. The composition of the reviews in terms
of sentiment is nearly balanced, with 52% categorized as positive and 48% as negative.

1https://huggingface.co/lvwerra/gpt2-imdb
2https://huggingface.co/QianWeiTech/GPT2-News
3https://huggingface.co/vennify/t5-base-grammar-correction
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For reviews classified as positive, the average length is 990 characters and 530 tokens, with a standard
deviation of 204 and 108, respectively. Reviews with a negative sentiment show a similar pattern, with
an average of 1,006 characters and 204 tokens, and a standard deviation of 589 characters and 115 tokens,
respectively.

Newsgroups The original Newsgroups dataset contains 20,000 brief documents distributed evenly across
20 different newsgroup categories, which indicate the topic of the documents. For our experiments, we utilized
the test-set partition, which includes 7,000 documents from the scikit-learn library 4, as the training set had
already been used to fine-tune some models. The dataset has an average of 603 characters and 207 tokens
per document, with standard deviations of 495 and 103, respectively.

The dataset encompasses 20 classes, listed as follows: comp.graphics, comp.os.ms-windows.misc,
comp.sys.ibm.pc.hardware, comp.sys.mac.hardware, comp.windows.x, rec.autos, rec.motorcycles,
rec.sport.baseball, rec.sport.hockey, sci.crypt, sci.electronics, sci.med, sci.space, misc.forsale,
talk.politics.misc, talk.politics.guns, talk.politics.mideast, talk.religion.misc, alt.atheism, and
soc.religion.christian.

Experimental Details

In both experiments, the predictors utilized were those employed by MiCE, which necessitate white box
access to the predictor. This was chosen to minimize intervention in the editors’ code. These predictors,
based on ROBERTA-LARGE, remained unchanged during the evaluation, maintaining an accuracy of 95.9%
for IMDb and 85.3% for the Newsgroups as reported in the proposed paper.

The comparison involved three counterfactual editors—MiCE, Polyjuice, and TextFooler—using the same
classifier. Changes were made to the text, which was then tested with the classifier and the modified text fed
back to the editor ten times. At each feedback stage and for each text input, the editors generated several
altered versions. The version with the lowest minimality altering the prediction (the counterfactual goal)
was selected if available; otherwise, the version with the lowest minimality was chosen. This approach was
adopted to address instances where an editor did not initially change the prediction but did so in subsequent
iterations.

For MiCE, a pre-trained T5 model, supplied by the authors, was employed5 6. This model underwent
fine-tuning using the identical dataset that was utilized for the predictor. During the generation process,
default settings for each dataset were maintained as provided by the authors on their page7, from which
the experimental code was also acquired. An integration of custom data into the code represented the sole
modification, enabling the generation of counterfactuals at each step.

Polyjuice is utilized via this module8. Throughout the generation procedure, searches were conducted across
various control codes—“resemantic”, “restructure”, “negation”, “insert”, “lexical”, “shuffle”, “quantifier”, “delete”
— with the aim of producing as many perturbations as possible for each instance. This was achieved by
setting numperturbations = 1000. In none of the experiments was such an abundance of results returned by
Polyjuice.

TextFooler was utilized via the TextAttack module9. To ensure a fair comparison, the same parameters as
those outlined in the authors’ paper were selected. Constraints were applied to prevent the modification
of stopwords and words that had already been modified. Furthermore, the threshold for considering two
words as synonyms based on word embedding distance was set at 0.5, with enforced replacements based on
part-of-speech tagging.

4https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html
5https://storage.googleapis.com/allennlp-public-models/mice-imdb-predictor.tar.gz
6https://storage.googleapis.com/allennlp-public-models/mice-newsgroups-editor.pth
7https://github.com/allenai/mice
8https://github.com/tongshuangwu/polyjuice
9https://textattack.readthedocs.io/en/latest/
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IMDb Newsgroups
MiCE Polyjuice TextFooler MiCE Polyjuice TextFooler

inc@1 ↓ 0.86 6.21 0.01 11.11 0.99 0.04
inc@2 ↓ 5.95 4.65 0.33 7.97 1.29 0.55

inc@3 ↓ 4.65 3.98 0.36 7.89 1.35 0.46
inc@5 ↓ 4.87 2.90 0.47 6.92 1.30 0.49
inc@9 ↓ 4.73 2.22 0.49 6.11 1.21 0.46

Table 7.1: Inconsistency (inc@n) computed on the IMDb and Newsgroups datasets.

7.5 Interpreting the inc@n metric

In Table 7.1, we present the outcomes of applying the proposed inc@n metric, which offers an intuitive
understanding. The inconsistency value represents the average distance from the editor’s previous local
minimum to the current state, essentially measuring the mean number of token modifications made by the
editor beyond those necessary to generate a valid counterfactual. Various factors, such as the method of
identifying key text segments, the generation process, or the criteria for optimal edits, can influence these
inconsistencies.

We observe notable variations in the inc@n metric among different editors, indicative of their diverse method-
ologies. TextFooler emerges as the most consistent, exhibiting low inc@n values that suggest minimal in-
cremental changes. This consistency likely stems from TextFooler’s systematic approach to selecting textual
replacements, thereby facilitating the production of stable explanations. In contrast, MiCE and Polyjuice
display less consistency, possibly due to their reliance on large language models for text generation. These
models are prone to significant fluctuations from minor disturbances that might alter their outputs [133].
Specifically, Polyjuice often has to infer change points in the text without direct guidance from the predictor,
leading it to make more drastic modifications to achieve desired outcomes.

Particularly in the initial stages for the IMDb dataset, Polyjuice’s high inconsistency is marked by its need
to predict change points blindly. Given the longer texts, the search space for Polyjuice becomes considerably
larger, necessitating more aggressive edits. For instance, in the first two editing phases on the IMDb dataset,
Polyjuice deleted over 70% of the original text in 83% of the cases where the changes did not shift the
classification, thus were not adopted. This pattern of ’extreme erasure’ diminishes in subsequent steps as the
input length reduces significantly—original texts average 204 tokens, while those edited by Polyjuice drop to
just 29.

Conversely, Polyjuice achieves greater consistency with shorter texts, where the reduced search space curbs
the need for drastic changes. The variance between the initial and subsequent stages of the inc@n metric for
Polyjuice highlights its strategy to shorten lengthy texts initially, which stabilizes its performance in later
revisions. This behavior remains consistent across different datasets but is not as apparent in the first stages
of results from the Newsgroups dataset, which features texts with 43% fewer tokens on average than those
from IMDb.

To delve deeper into how each editor modifies the input text in terms of token count, we introduce Figure
7.5.2. This figure illustrates the average number of tokens in the edited texts compared to the input text’s
token count. The outputs from MiCE and Textfooler align closely with the input text across the datasets we
analyzed. In contrast, Polyjuice often produces shorter texts, though there are instances where it generates
longer texts, these are not typical. It is important to note that these variations may stem from Polyjuice’s
underlying mechanism, such as GPT-2, and the evaluation approach used. Specifically, since Polyjuice
is designed for counterfactual generation, our evaluation prioritized texts that achieved a counterfactual
objective (i.e., texts with a different label from the original) over texts that were similar to the original in
classification [231]. This requirement, coupled with Polyjuice’s task-agnostic design, compels it to implement
more drastic edits, often cutting down a substantial portion of the original text consistently across the
datasets.

In Figure 7.5.1b, it is observed that higher values of inc@n are associated with MiCE when n is even. This
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(a) Minimality. (b) Inconsistency of minimality.

(c) Number of erroneous characters. (d) Probability of the target class.

(e) PPL of base GPT-2. (f) PPL of fine GPT-2.

Figure 7.5.1: Minimality, inc@n, and predictor probability, base-ppl and fine-ppl, after each step of feedback
and for each editor on the IMDb dataset.

130



7.5. Interpreting the inc@n metric

(a) Mean number of tokens of the edited text regarding
the number of tokens of the input of the IMDb Dataset.

(b) Mean number of tokens of the edited text regarding
the number of tokens of the input of the Newsgroups

Dataset.

Figure 7.5.2: Mean number of tokens of the edited text regarding the number of tokens of the input.

phenomenon indicates an easier transition to the original class than from it, which could be due to the
influence of residual elements from the original input text that drive the classifier towards maintaining its
initial prediction, consequently necessitating fewer modifications. Higher inc@n values suggest that additional
edits are required to progress to the subsequent feedback step compared to returning from the prior one. With
MiCE achieving a perfect flip rate at the initial step and a 0.85 flip rate after nine feedback steps, texts from
even feedback steps predominantly revert to the original class. This implies that transitioning back to the
original class is facilitated by the residual content from the initial text, which steers the classifier towards the
initial prediction and reduces the need for further edits. An illustration of this can be seen in Figure 7.5.3,
where an edit by MiCE leaves intact certain elements of the original text that exhibit positive sentiment
(highlighted in bold). In the same example, MiCE adjusts the word "carrier" to "masterpiece," likely a
correction from a mistaken "career," which adds to the inconsistency observed. Particularly in the case of
Newsgroups, MiCE’s performance shows notable inconsistency in the initial steps, possibly stemming from
its requirement to target a specific class, unlike other editors.

These observations underscore the necessity for feedforward evaluations of such systems, as the minimal-
ity@1 metric exposes only a restricted, dataset-dependent facet of the editors’ capabilities and performance.
Moreover, the effectiveness of incorporating additional feedback steps is demonstrated, allowing for a more
accurate quantification of the differences between samples produced by an editor and obtaining a proxy for a
global minimum. In Table 7.1, it is observed that beginning with inc@3, the inc@n values start to converge
across both datasets.

It is noteworthy that the inconsistency of minimality reveals different facets of the editor compared to
minimality alone. A high level of minimality indicates that more edits were made to change the label of the
input text. This may be attributed either to limitations of the editor or to the inherent requirements of the
input text needing extensive modifications to shift its classification. To rule out the latter possibility, it is
essential to identify counterfactual examples demonstrating lower minimality, confirming the existence of more
optimal states that were not explored. These states, however, must align with the exact conditions considered
by the editor. The analysis of three editors in this study highlights a secondary aim to generate realistic

Figure 7.5.3: MiCE example of an IMDb dataset sample.
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MiCE Polyjuice TextFooler
IMDb

Flip Rate@1 ↑ 1.000 0.8747 0.6195
Flip Rate @9 ↑ 0.8561 0.9675 0.7865

Newsgroups
Flip Rate@1 ↑ 0.87 0.77 0.79
Flip Rate @9 ↑ 0.836 0.968 0.89

Table 7.2: Flip-rate after feeding the original text to the editor once (@1), and after 9 steps of feedback
(@9) for the IMDb and Newsgroups dataset.

counterexamples; thus, inserting random characters within the text, while possibly effective in achieving a
label change with less minimality, does not align with the desired outcomes. Similarly, TextFooler strives
to substitute each word with a synonym, making the replacement of a word with its antonym (for example,
changing “love” to ‘hate”) an unacceptable strategy. Until now, there have been no effective or unbiased
techniques to discover counterexamples with lower metrics such as minimality, that also satisfy the specific
criteria set by the editor. The methodology introduced here addresses this deficiency, and the inconsistency
metric allows for the quantification of the editor’s limitations concerning the specified metric, in this instance,
minimality. Briefly, a positive inconsistency indicates the presence of potential goal states with a lower metric
value that were not investigated by the editor.

Counterfactuals of Counterfactuals in Multi-class Dataset - Newsgroups

Figure 7.5.4 is shown to depict the minimality, the inconsistency of minimality, the perplexity of base GPT-
2, and the perplexity of fine-tuned GPT-2 for each editor using the Newsgroups dataset. Unlike the binary
task observed in the IMDb dataset, no pattern is seen between odd and even steps, although a consistent
behavior is noted. Since an editor is not required to revert to the original class but can switch to any other
class at each feedback step, the challenge of label flipping remains similar across both even and odd steps.
Isolation of instances where an editor reverts to the original class demonstrates that the patterns noted in the
IMDb analysis persist. Moreover, the multi-class nature of the Newsgroups dataset appears to pose greater
challenges for MiCE compared to other editors. This is attributed to MiCE’s requirement for a specific target
class for each edit, aimed at changing the class of the text, whereas editors like Polyjuice and TextFooler
provide flexibility to alter the class to any different class. A target class is defined for each step as the second
class predicted, adhering to the default approach used by the editor’s creators in their research. Consequently,
the task performed by MiCE is more demanding than that performed by other editors, as editing a text to
shift from class A to class B proves at least as challenging as altering it from class A to any other class. This
could explain the higher inconsistency values and differing behaviors observed with MiCE compared to those
on the IMDb dataset. The figures suggest that the proposed method delivers consistent results concerning
the behavior of each editor, even with fewer steps involved. This finding implies that the computational
costs of the method can be significantly reduced, with as few as two or three steps sufficing to draw reliable
conclusions.

7.6 Additional Insights from Counterfactuals of Counterfactuals
Besides measuring minimality and inc@n, we also investigated how the feedback approach can give us addi-
tional insights for the other desiderata for editors, flip-rate, grammatical errors and fluency.

Soft Flip Rate In Table 7.2, we present the flip-rate obtained by implementing the feedback methodology.
Initially, MiCE demonstrates a perfect flip rate; viewing this in isolation could mistakenly suggest that the
model consistently changes the classification of any given text. However, this result is specific to the test
set and is not universally applicable, as there is a notable decrease in the flip rate in subsequent steps. This
indicates that there are scenarios, closer to its distribution as discussed in Section 7.6, where MiCE fails to
change the predicted class. On the other hand, the flip-rate for both Polyjuice and TextFooler shows an
increase during later feedback stages.
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(a) Minimality for the Newsgroups Dataset. (b) Inconsistency of minimality.

(c) Perplexity of base GPT-2. (d) Perplexity of fine GPT-2.

Figure 7.5.4: Minimality, Inconsistency of minimality, Perplexity of base GPT-2, and Perplexity of fine
GPT-2 for the Newsgroups Dataset.

133



Chapter 7. Evaluation of Counterfactual Explanations

To investigate this, we examine the predictive probabilities of the target class following the application of
various editors and subsequent feedback steps, as illustrated in Figure 7.5.1d. Here, a sample is considered
to have ’flipped’ if its target prediction probability exceeds 0.5. Specifically, when utilizing MiCE, the
effectiveness of our proposed feedback method is evident. Initially, applying the editor once results in a 100%
flip rate for this limited evaluation dataset, suggesting that the editor is capable of changing every text’s
predicted outcome. However, further analysis of subsequent steps reveals that this is not always the case.
Reintroducing the edited text into MiCE shows a decrease in the number of texts being flipped, indicating
the diminishing impact of the editor over multiple iterations.

Conversely, tools like TextFooler and Polyjuice demonstrate the lowest initial flip rates, yet exhibit improve-
ment with ongoing feedback. By comparing these findings to those in the corresponding figure addressing
the inconsistency of minimality (Figure 7.5.1b), similar trends are noticeable. Notably, there are discernible
differences in the outcomes between even and odd feedback steps in the case of MiCE. This pattern reinforces
the challenges editors face in consistently reverting to the original class after generating counterfactuals,
highlighting the complexities involved in text editing for predictive modeling.

Grammatical Errors In fig. 7.5.1c we show the number of erroneous characters detected after n steps
of feedback for each editor (step 0 refers to the original sentence from the dataset). We observe that some
texts have fewer grammatical errors after the first pass of MiCE or Polyjuice (step 1 compared to step 0).
This is because in some cases, when the input text has grammatical errors, these editors will correct them,
which is not necessarily the desired behaviour of a counterfactual editor, especially since there seems to be
no consistent impact of error correction on the semantics of the text nor the prediction of the classifier. We
manually inspected these cases and found that these grammatical error corrections do not flip the prediction
nor do they significantly affect the output value of the predictor, hence the claim that error-inducing edits are
frequently undesirable, is highly relevant our case. This behaviour, however, does not hold for successive steps
of feedback, since after the first edits the grammatical errors consistently increase for MiCE and TextFooler.
Using our evaluation methodology we are able to detect such spurious behaviours of editors on text that
deviates from the original as the iterative feedback steps amplify editing patterns, including the consistent
introduction of grammatical errors (see also fig. 7.3.1). We note that this error amplifying behaviour of both
editors seems consistent regardless of the generation strategy. On the other hand, Polyjuice rarely introduces
grammatical errors, and seems to be able to handle grammatically incorrect inputs and correct them in the
edits.

Fluency We employ two measures to gauge the fluency of the generated texts, as displayed in Table 7.3. The
ppl-base metric identifies TextFooler as exhibiting the most fluent output, a value which remains consistent
through multiple feedback iterations, underscoring the editor’s reliability. Conversely, MiCE shows a slight
decline in fluency following feedback, paralleling an increase in grammatical mistakes and inconsistency in
comparison to TextFooler. Although Polyjuice registers the fewest grammatical errors, this does not translate
into greater fluency in the ppl-base metric, suggesting that the edited text may deviate from the anticipated
norm, as further evidenced by the highest ppl-imdb score recorded for Polyjuice.

Additionally, in Figures 7.5.1c, 7.5.1e, and 7.5.1f, we illustrate the progression of these fluency metrics through
each stage of feedback. TextFooler maintains consistent fluency across both indicators, reflecting its minimal
variability. Meanwhile, despite Polyjuice seldom introducing grammatical errors, it shows a declining fluency
trend, with both the base-PPL and fine-PPL metrics worsening over time. A notable discrepancy in the
perplexity trends is observed between MiCE and Polyjuice. For the base model, both editors exhibit a steady
increase in perplexity; however, for the fine-tuned model, while MiCE’s perplexity decreases, Polyjuice’s
continues to rise. This indicates that both editors negatively affect fluency, yet MiCE, which is specifically
trained on IMDb data, aligns more closely with the IMDb style, suggesting a potential overfitting. In contrast,
Polyjuice benefits from training on a variety of datasets, resulting in a broader range of editorial modifications.

Entropy In Figure 7.6.1, we display the entropy values from the output of the IMDb predictor, which
facilitates easier comprehension due to its binary classification task, after each feedback step. Here, lower
entropy values signify greater confidence in the prediction. We observe a recurring pattern in the odd and
even feedback steps for both MiCE and TextFooler. During the even feedback steps associated with the
original class, the predictor exhibits higher confidence, which diminishes as the feedback process progresses.
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MiCE Polyjuice TextFooler
IMDb

ppl-base@1 ↓ 4.2546 7.4525 4.1178
ppl-base@9 ↓ 4.4512 7.3825 4.1161
ppl-imdb@1 ↓ 16.5315 33.4798 18.0662
ppl-imdb@9 ↓ 14.6069 27.8074 17.9917

Newsgroups
ppl-base@1 ↓ 5.164 8.926 4.801
ppl-base@9 ↓ 5.36 7.878 4.776
ppl-newsgroup@1 ↓ 4.27 6.67 3.99
ppl-newsgroup@9 ↓ 4.4 5.90 3.98

Table 7.3: Metrics for measuring fluency computed for three counterfactual editors, of the IMDb and
Newsgroups datasets, after feeding the original text to the editor once (@1), and after 8 additional steps of

feedback (@9)

Figure 7.6.1: Entropy of the output of the IMDb predictor for each editor and after each step of feedback.

Conversely, in the odd feedback steps linked to the flipped class, the initial confidence is lower, but there is
a gradual increase in confidence as the process continues. This pattern may be explained by the presence
of elements from the original sentence that reinforce the original predictions during even steps. Moreover,
the increasing confidence seen in even steps and the decreasing confidence in odd steps might be due to the
feedback steps relating to the original class only if there has been a consistent flipping of the sample in all
preceding feedback steps. As more steps accumulate, the likelihood of maintaining a direct connection to the
original class diminishes unless the flipping of samples continues consistently. This trend is evident in MiCE,
where the rate of flipping decreases with each step. However, further investigation is warranted, especially
since TextFooler displays different behavior in terms of minimality between odd and even steps, though it
shows similar patterns in terms of predictor entropy.

7.6.1 A focused Use Case
There is a broad range of use cases for counterfactual editors, that relate to different stakeholders, goals,
and priorities, requiring different evaluation metrics to choose a suitable the editor. We demonstrate the
potential of the proposed back-translation approach, elaborating the use-case of an AI engineer who uses a
counterfactual editor to better understand the behaviour of a predictor.

Choosing an editor. The first step towards “explaining” a predictor for development purposes is to choose
a counterfactual editor, based on performance for a set of metrics. They might prioritise high flip-rate, to
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ensure that the generated text is actually a counterfactual. For debugging purposes low minimality is also
key, since it coincides with more understandable explanations and fewer edits are easier to investigate. The
proposed feedback approach could help distinguish between editors that have similarly high performance for
flip-rate and minimality using metrics @n. Additionally, the proposed inc@n metric could be used to find
the most consistent editor regarding minimality.

Assuming access to the editors we analysed, without using the proposed methodology the engineer would
probably choose MiCE, since without feedback it has the best flip-rate and low minimality, and there are
no indications of biases or inconsistencies. On the other hand, if they used the proposed methodology and
considered metrics @n, they would choose TextFooler, which is the most consistent while still maintaining
sufficiently good values for metrics @1, and does not have the tendency to introduce grammatical errors,
which could be misleading if they do not actually play a part in the prediction as we find in this paper (e.g.,
MiCE introduces extra whitespaces as shown in fig. 7.3.1, which we find to not affect the prediction flip) .

Inspection through the back-translation approach Having chosen an editor, the proposed feedback
approach can also be used as an analysis tool to gain more knowledge about the underlying predictor it allows
to get more predictions in the “neighborhood” of a sentence. Additionally, later feedback steps provide more
understandable sets of edits (lower minimality; see also to figs. 7.3.1 and 7.5.3). Furthermore, it might be
useful to observe samples that are closer to the decision boundary, i.e., high-entropy, low-confidence samples.
We can see that TextFooler can generate such samples using the proposed approach, as predictor confidence
tends to decrease after each step of feedback (see fig. 7.6.1).

7.7 Impact of Test Set Size

To assess how sample size influences the outcomes of our proposed metric, we carried out a series of t-tests
across different sample sizes, feedback steps, and datasets. We specifically chose subsets containing 10, 50,
100, 200 and 500 samples to perform these tests. The goal was to compare the inconsistency scores between
every pair of editors and determine at what sample size their scores significantly diverge.

The results, including the p-values, are presented in the tables: Table 7.4, Table 7.5 and Table 7.6 for the
IMDb dataset and Table 7.7, Table 7.8 and Table 7.9 for the Newsgroups dataset. In these tables, any p-values
below 0.05 across all feedback steps are highlighted in bold. Notably, for the IMDb dataset, p-values were
consistently below 0.05 for sample sizes above 100. In contrast, for the Newsgroups dataset, this threshold
of significance was observed with sample sizes exceeding 200.

These findings indicate that larger sample sizes tend to show statistically significant differences in the incon-
sistency scores, affirming the need for adequate sample sizes when evaluating this metric.

7.8 Conclusion

In this work, a methodology was introduced for analyzing various facets of counterfactual editors by acquiring
an approximate ground truth through iterative feedback of their outputs. This approach, when combined with
evaluation metrics from existing literature, enables a new understanding of the behaviors and performance
of counterfactual editors tailored to their specific use cases, thereby assisting in the development of improved
editing tools. The metric named inc@n was introduced to assess the consistency of these editors. It was
demonstrated how this method could facilitate the diagnosis and analysis of a wide range of existing editors,
revealing new insights into their behavior, particularly through the discrepancies observed between the odd
and even feedback steps. Notably, this evaluation method illuminates the behavior of editors without requiring
external input, such as human assessments or outputs from other editors.

The findings presented permit a more interpretable evaluation of editors, advancing beyond simple compar-
isons among them. These results encourage additional research in this field, encompassing experiments with
new evaluation metrics, different editors, and various tasks. Moreover, plans are underway to enhance the
understanding of counterfactuals by assessing their understandability and informativeness through human
evaluation.
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MiCE

Sample Size: 10

Step 1 2 3 4 5 6 7 8

Polyjuice 0.2812 0.588 0.3563 0.3219 0.1093 0.3376 0.3039 0.133
TextFooler 0.4788 0.4853 0.2538 0.2107 0.2014 0.6249 0.0695 0.1658

Sample Size: 50

Polyjuice 0.0383 0.342 0.0266 0.0073 0.1714 0.0377 0.0852 0.1184
TextFooler 0.2805 1.232e-05 0.2646 0.004 0.03 0.0054 0.1028 0.0063

Sample Size: 100

Polyjuice 0.0252 0.0168 0.0001 0.0001 0.0048 0.0091 0.0081 0.0003
TextFooler 0.0495 6e-08 0.0104 0.0001 0.0016 0.0003 0.0032 0.0001

Sample Size: 200

Polyjuice 0.0084 0.0036 1e-08 4.02e-05 2.72e-05 0.0012 0.0007 5.66e-06
TextFooler 0.0461 2.73e-14 0.0013 1.3e-10 0.0006 4.89e-07 2.2e-05 4.2e-08

Sample Size: 500

Polyjuice 0.00043 0.0 0.036 0.0 0.0006 1e-08 0.001 0.0
TextFooler 0.0368 0.0 1.76e-06 0.0 1.86e-06 0.0 4.2e-05 0.0

Table 7.4: P-value of the inconsistency of different sample sizes of the IMDb dataset for MiCE

Polyjuice

Sample Size: 10

Step 1 2 3 4 5 6 7 8

mice 0.2812 0.588 0.3563 0.3219 0.1093 0.3376 0.3039 0.133
textfooler 0.2831 0.3649 0.3056 0.2198 0.073 0.3337 0.1573 0.047

Sample Size: 50

mice 0.0383 0.342 0.0266 0.0073 0.1714 0.0377 0.0852 0.1184
textfooler 0.0378 0.0015 0.021 0.0011 0.11 0.021 0.0199 0.0261

Sample Size: 100

mice 0.0252 0.0168 0.0001 0.0001 0.0048 0.0091 0.0081 0.0003
textfooler 0.0246 4.733e-05 4.351e-05 9e-06 0.0026 0.0038 0.0003 4.258e-05

Sample Size: 200

mice 0.0084 0.0036 1e-08 4.028e-05 2.723e-05 0.0012 0.0007 5.66e-06
textfooler 0.0082 0.0 0.0 6e-08 1.367e-05 0.0002 1.6e-07 1.3e-07

Sample Size: 500

mice 0.0004 0.0 0.036 0.0 0.0007 1e-08 0.0011 0.0
textfooler 2.2e-05 0.0001 3.88e-05 0.0016 0.0058 0.0009 0.0192 0.0007

Table 7.5: P-value of the inconsistency of different sample sizes of the IMDb dataset for Polyjuice
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TextFooler

Sample Size: 10

Step 1 2 3 4 5 6 7 8

polyjuice 0.2831 0.3649 0.3056 0.2198 0.073 0.3337 0.1573 0.047
mice 0.4788 0.4853 0.2538 0.2107 0.2014 0.6249 0.0695 0.1658

Sample Size: 50

polyjuice 0.0378 0.0015 0.021 0.0011 0.11 0.021 0.0199 0.0261
mice 0.2805 1.232e-05 0.2646 0.004 0.03 0.0054 0.1028 0.0063

Sample Size: 100

polyjuice 0.0246 4.733e-05 4.351e-05 9e-06 0.0026 0.0038 0.0003 4.258e-05
mice 0.0495 6e-08 0.0104 0.0001 0.0016 0.0003 0.0032 0.0001

Sample Size: 200

polyjuice 0.0082 0.0 0.0 6e-08 1.367e-05 0.0002 1.6e-07 1.3e-07
mice 0.0461 0.0 0.0013 0.0 0.0006 4.9e-07 2.225e-05 4e-08

Sample Size: 500

polyjuice 2.28e-05 0.0001 3.882e-05 0.0016 0.0058 0.0009 0.0192 0.0007
mice 0.0369 0.0 1.76e-06 0.0 1.86e-06 0.0 4.251e-05 0.0

Table 7.6: P-value of the inconsistency of different sample sizes of the IMDb dataset for TextFooler

MiCE

Sample Size: 10

Step 1 2 3 4 5 6 7 8

polyjuice 0.1311 0.0963 0.4378 0.0042 0.1069 0.2044 0.1384 0.1809
textfooler 0.0717 0.2283 0.0924 0.3264 0.165 0.2194 0.5411 0.0453

Sample Size: 50

polyjuice 0.1311 0.0963 0.4378 0.0042 0.1069 0.2044 0.1384 0.1809
textfooler 0.0006 0.0064 0.0338 0.1265 0.008 0.1015 0.0995 0.0101

Sample Size: 100

polyjuice 0.0033 2.64e-06 0.0177 1e-08 0.0017 2.878e-05 0.081 0.0049
textfooler 1.29e-06 0.0004 0.0034 0.0001 0.0009 0.0104 0.0344 0.0007

Sample Size: 200

polyjuice 0.0 0.0005 4.937e-05 0.0002 2.13e-06 0.0003 0.006 0.0041
textfooler 1.513e-05 0.0 2.8e-07 0.0 3.5e-07 0.0 0.0043 2e-08

Sample Size: 500

polyjuice 0.0 2.32e-06 0.0 1.09e-06 0.0 5e-08 0.0 1e-08
textfooler 0.0 3.3e-07 0.0 3e-08 0.0 0.0 0.0 0.0

Table 7.7: P-value of the inconsistency of different sample sizes of the Newsgroups dataset for MiCE
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Polyjuice

Sample Size: 10

1 2 3 4 5 6 7 8

mice 0.3306 0.0995 0.1407 0.0043 0.7421 0.4028 0.1387 0.2846
textfooler 0.1311 0.0963 0.4378 0.0042 0.1069 0.2044 0.1384 0.1809

Sample Size: 50

mice 0.9654 0.0065 0.6376 8e-08 0.7342 0.3373 0.1692 0.9168
textfooler 0.0033 2.64e-06 0.0177 1e-08 0.0017 2.878e-05 0.081 0.0049

Sample Size: 100

mice 0.3659 1e-08 0.719 0.0 0.5959 0.173 0.1055 0.7947
textfooler 0.0004 0.0 0.0002 0.0 0.0001 1e-08 0.0358 4.421e-05

Sample Size: 200

mice 0.0468 0.0 0.5025 0.0 0.8023 0.0176 0.0384 0.2746
textfooler 1.513e-05 0.0 2.8e-07 0.0 3.5e-07 0.0 0.0043 2e-08

Sample Size: 500

mice 0.0 2.32e-06 0.0 1.09e-06 0.0 5e-08 0.0 1e-08
textfooler 0.0005 0.026 5.3e-07 0.0643 1.8e-07 0.0037 0.0 0.0019

Table 7.8: P-value of the inconsistency of different sample sizes of the Newsgroups dataset for Polyjuice

TextFooler

Sample Size: 10

Step 1 2 3 4 5 6 7 8

polyjuice 0.1311 0.0963 0.4378 0.0042 0.1069 0.2044 0.1384 0.1809
mice 0.0717 0.2283 0.0924 0.3264 0.165 0.2194 0.5411 0.0453

Sample Size: 50

polyjuice 0.0033 2.64e-06 0.0177 1e-08 0.0017 2.878e-05 0.081 0.0049
mice 0.0006 0.0064 0.0338 0.1265 0.008 0.1015 0.0995 0.0101

Sample Size: 100

polyjuice 0.0004 0.0 0.0002 0.0 0.0001 1e-08 0.0358 4.421e-05
mice 1.29e-06 0.0004 0.0034 0.0001 0.0009 0.0104 0.0344 0.0007

Sample Size: 200

polyjuice 1.513e-05 0.0 2.8e-07 0.0 3.5e-07 0.0 0.0043 2e-08
mice 0.0 0.0005 4.937e-05 0.0002 2.13e-06 0.0003 0.006 0.0041

Sample Size: 500

polyjuice 0.0005 0.0213 5.3e-07 0.0643 1.8e-07 0.0037 0.0 0.0019
mice 0.0 3.3e-07 0.0 3e-08 0.0 0.0 0.0 0.0

Table 7.9: P-value of the inconsistency of different sample sizes of the Newsgroups dataset for TextFooler.
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Furthermore, the scope of experimentation is set to be expanded, with intentions to employ feedback data
to automatically rectify the weaknesses and inconsistencies found in editors during their fine-tuning phase,
aiming for more robust and interpretable counterfactual edits. In line with these efforts, the exploration
of incorporating feedback rationales into the training processes of counterfactual generation algorithms is
planned. An objective inspired by back-translation might be considered to mitigate problematic behaviors
and enhance performance.
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Chapter 8

Explainable Metric for Story
Visualization through Counterfactual
Explanations

Despite the proliferation of generative architectures, the evaluation of generative models has remained an
underrepresented field. Most recent models are assessed using outdated metrics that suffer from robustness
issues and fail to evaluate critical aspects of visual quality, such as compositionality and logical coherence
of synthesis. Simultaneously, the explainability of generative models remains limited, albeit important, with
current approaches often requiring access to the internal mechanisms of these models.

In this chapter, generative models are treated as black boxes, and a novel framework is introduced by adapting
the approach presented in Chapters 4 and 5. This adaptation shifts the focus from generating counterfactual
explanations to evaluating and explaining generative systems [218]. The framework exploits knowledge-
based counterfactual edits to identify which objects or attributes should be inserted, removed, or replaced in
generated images to align them more closely with their intended conditioning. By focusing on concepts, more
interpretable and meaningful evaluations of generative models are provided. Moreover, global explanations
are produced by aggregating local edits, revealing the limitations of a model—specifically, the concepts it is
inherently unable to generate. This insight is invaluable for understanding model biases and guiding future
improvements.

The effectiveness of the proposed framework is demonstrated by applying it to various models designed for
the challenging tasks of Story Visualization. The results validate the power of this concept-based evaluation
in a model-agnostic setting, highlighting its potential to advance the field of generative modeling through
more robust and explainable evaluation methods.

8.1 Introduction

The domain of image generation has emerged as a pivotal area in deep learning, catalyzing numerous state-
of-the-art applications spanning from artistic creation to data augmentation in machine learning workflows
[117, 300, 291, 290, 310, 23, 153]. Since the groundbreaking introduction of Generative Adversarial Networks
(GANs) by Goodfellow et al. [99], research has predominantly aimed at refining the visual fidelity of generated
images to closely match human perception.

Despite these advancements, evaluating the performance of generative models remains a significant challenge
due to the absence of ground truth data for direct comparison. Traditional evaluation metrics, such as
Inception Score (IS) [312], Fréchet Inception Distance (FID) [115], and Learned Perceptual Image Patch
Similarity (LPIPS) [404], have been widely adopted to quantify image quality at the pixel level. However,
these metrics have notable limitations, often failing to capture higher-level semantic discrepancies and being
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sensitive to minor perturbations that are imperceptible to humans. Concerns have been raised about their
brittleness leading to inaccurate results [273].

Recent efforts like Clean-FID [273] attempt to address some of these issues by mitigating the impact of
visual artifacts. Nonetheless, they still fall short when it comes to evaluating complex aspects such as
image compositionality, logical consistency, and fairness in generation [25]. This limitation is particularly
problematic in conditional image generation tasks, where the objective is to produce images that accurately
reflect specific input conditions or attributes. Current attempts in conditional synthesis evaluation remain
limited [325, 18], still facing the shortcomings of their unconditional counterparts upon which they are built.

Explainability in generative models is an emerging area that has not received as much attention as in discrim-
inative models [1, 28]. In discriminative models, techniques such as saliency maps, SHAP values, and LIME
have been instrumental in providing insights into model decisions. In contrast, explainability in generative
models has been explored only in a limited capacity. Some studies have incorporated explainable feedback
mechanisms within GANs [255], or have attempted to interpret the internal workings of these networks [92].
For instance, overfitting in GANs can be addressed by identifying the regions of an image that contribute to a
discriminator’s decision to classify a sample as real or fake, thus explaining the discriminator’s decision [152].
This scarcity of literature hampers the development of robust explainable evaluation methods for generative
models, especially when compared to fields like Natural Language Processing, where explainability has gained
substantial traction [172, 264, 221].

To overcome these challenges, a paradigm shift from pixel-level evaluation to a concept-based approach is
proposed. By focusing on semantic concepts—such as objects, attributes, and relationships—that are present
or absent in the generated images, a more interpretable and meaningful assessment of generative models can
be achieved. This conceptual framework facilitates the identification of specific capabilities and biases within
a model, enabling targeted improvements and fostering transparency.

In this context, the first explainable evaluation technique for generative models is introduced, using the
methodology presented throughout this thesis, specifically the modelology proposed in Chapters 4 and 5.
Specifically, counterfactual explanations are leveraged to frame conditional generative evaluation as the answer
to the following question: What minimal changes are needed for a generated image to satisfy certain conditions
or resemble a target concept? Conceptual edits guided by external knowledge sources [cece] effectively chart
the shortest path to incorporate the desired attributes into the generated image. Existing works that combine
explainability with image generation operate on specific models [255, 92, 152] and demand access to their
inner structure (white-box techniques). In contrast, the proposed approach treats the generative model as a
black box, requiring only the generated outputs and their corresponding conditioning information.

To advance the field of generative modeling and address existing evaluation challenges, this work makes
several contributions:

1. Introduction of a Conceptual Evaluation Framework: We present a concept-based evaluation
framework1 that departs from traditional pixel-level assessment methods. This framework is versatile
and applicable to complex tasks such as Scene Generation (SG) and Story Visualization (SV), where
capturing semantic content and relationships is crucial. By focusing on high-level concepts rather than
low-level image features, our approach provides a more meaningful evaluation of generative models’
capabilities.

2. Development of Explainable Metrics: Our proposed metrics are inherently explainable, designed
to reveal which semantic concepts need to be added, removed, or altered in the generated images to align
them more closely with the conditioning data or ground truth. Utilizing counterfactual explanations,
we identify the minimal conceptual changes required, offering clear insights into how and why generated
outputs deviate from expectations. These edit operations are conducted in a model-agnostic fashion,
eliminating the need for access to the internal architecture or parameters of the generative models.
This ensures that our evaluation method can be universally applied across different models.

3. Identification of Generative Blind Spots: Through comprehensive global explanations, our frame-
work automatically uncovers potential blind spots in generative models—that is, specific concepts or
elements that a model is intrinsically unable to generate due to limitations such as insufficient training

1Framework available at:
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data, inherent biases, or architectural constraints. By highlighting these deficiencies, our approach pro-
vides valuable feedback for model refinement. This insight is crucial for improving model performance,
addressing biases, and guiding future research efforts toward enhancing the generative capabilities of
models across diverse concepts.

In essence, our contributions not only introduce a novel way of evaluating generative models but also enhance
the transparency and interpretability of their outputs. By shifting the focus from pixels to concepts, we enable
a deeper understanding of model behavior, paving the way for the development of more robust, fair, and
reliable generative AI systems.

8.2 Related Work
Generative Adversarial Networks (GANs). Generative Adversarial Networks (GANs), introduced by
Goodfellow et al. [99], have established themselves as a foundational architecture in the field of generative
modeling. A GAN consists of two neural networks in competition: a generator G(z; θg) and a discriminator
D(x; θd). The generator G maps a random noise vector z, drawn from a prior distribution pz(z), to the data
space, aiming to produce outputs that resemble real data. The discriminator D assesses input samples xi and
outputs a probability pi = D(xi) indicating the likelihood that xi is a real sample from the data distribution
rather than a synthetic one generated by G.

To enhance control over the data generation process, Conditional GANs (cGANs) were proposed [246]. In
cGANs, both the generator and discriminator receive an additional input: a conditioning variable y. This
allows the generator to produce data conditioned on specific attributes or classes, enabling targeted and
more meaningful generation in applications where specific outputs are desired. Significant advancements
have been made in cGANs for image generation tasks. Models such as AC-GAN [259] and Projection
Discriminator [249] have shown proficiency in generating images with intricate textures and accurate color
schemes. Despite these successes, these models often encounter difficulties in generating images with coherent
global structures and capturing long-range dependencies. This limitation is primarily due to the inherent
constraints of convolutional neural networks (CNNs), which focus on local spatial relationships and may not
effectively model global context.

Addressing these limitations, the Self-Attention GAN (SAGAN) was introduced [402]. SAGAN incorporates
self-attention mechanisms into both the generator and discriminator networks. The self-attention module
enables the model to capture dependencies between widely separated regions of an image, facilitating the
generation of more globally coherent and structurally consistent images. Additionally, SAGAN employs
spectral normalization [248] to stabilize training dynamics and utilizes the Two-Time Scale Update Rule
(TTUR) [116] to balance the learning rates of the generator and discriminator, further enhancing training
stability and performance. Significant advancements have been made in cGANs for image generation tasks.
Models such as AC-GAN [259] and Projection Discriminator [249] have shown proficiency in generating images
with intricate textures and accurate color schemes. Despite these successes, these models often encounter
difficulties in generating images with coherent global structures and capturing long-range dependencies. This
limitation is primarily due to the inherent constraints of convolutional neural networks (CNNs), which focus
on local spatial relationships and may not effectively model global context.

Addressing these limitations, Self-Attention GAN (SAGAN) [402] was introduced. SAGAN incorporates self-
attention mechanisms into both the generator and discriminator networks. The self-attention module enables
the model to capture dependencies between widely separated regions of an image, facilitating the generation
of more globally coherent and structurally consistent images. Additionally, SAGAN employs spectral normal-
ization [248] to stabilize training dynamics and utilizes the Two-Time Scale Update Rule (TTUR) [116] to
balance the learning rates of the generator and discriminator, further enhancing training stability and perfor-
mance. Additionally the StyleGAN series [145, 146, 144] introduced a style-based generator architecture that
allows for unprecedented control over image synthesis. StyleGAN models enable fine-grained manipulation of
image attributes at various levels of detail, leading to the generation of highly realistic and detailed images,
especially in facial synthesis.

Diffusion Models Diffusion models have recently emerged as a groundbreaking approach in conditional
image generation, setting new state-of-the-art benchmarks in the field [300, 10, 11]. These models function by
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gradually adding noise to images and then learning the reverse process to reconstruct the original data. In the
past year, there have been significant developments in diffusion-based image synthesis. Stable Diffusion [299]
has made high-quality image synthesis accessible even under resource constraints by performing the diffusion
process in the latent space of autoencoders instead of directly in the pixel space. This approach reduces
computational demands while maintaining impressive image fidelity.

Building upon earlier advancements, DALL-E2 [290] extends its predecessor [291] by integrating text-
conditioned image embeddings from CLIP [284] into a diffusion model that acts as a decoder. This results in
photorealistic images that accurately represent the input text and enables language-guided manipulation of
source images. Imagen [311] takes a further step by utilizing large pre-trained language models like T5 [287]
for text encoding, which guides the image synthesis through the diffusion process. This combination allows for
generating images that closely align with complex textual descriptions, enhancing the semantic consistency
of the output.

DreamBooth [308] builds on the foundation of Imagen by introducing context-aware image synthesis based
on textual descriptions. This method allows for the creation of diverse visual subjects while preserving
high image quality, enabling personalized and detailed image generation. More recently, models like eDiff-
I [diffusionediffi] have further advanced diffusion-based image generation by incorporating more efficient
training techniques and improved architectural designs. Additionally, works such as [267, 78, 326] have
fine-tuned pre-trained Latent Diffusion Models (LDMs)[301] to effectively generate image sequences from
textual narratives. Moreover, models like StoryLDM[289] and StoryGPT-V [301] leverage pre-trained LDMs
for story visualization, but they approach the task with a modification: repeated character references in
captions are replaced with pronouns (e.g., “he,” “she,” “they”). This adjustment challenges the models to
maintain character consistency and interpret context despite the reduced explicitness in textual cues. These
advancements have significantly enhanced the quality and speed of image synthesis, establishing diffusion
models as a dominant force in generative modeling.

Transformers Transformer architectures have significantly advanced various areas of artificial intelligence,
particularly in natural language processing and computer vision. In the context of story visualization, trans-
formers have been employed to generate coherent sequences of images from narrative texts, effectively mod-
eling the sequential and contextual dependencies inherent in stories. This has enhanced the generation of
temporally consistent and semantically rich visual narratives [187]. Recent transformer-based approaches
have further improved story visualization. The VP-CSV model [35] introduces a two-stage process: it begins
by predicting visual tokens corresponding to character regions in images and then completes the backgrounds
in a subsequent stage. This method enhances character representation while maintaining overall scene con-
sistency. Another notable approach is CMOTA [6], which incorporates memory modules to improve consis-
tency across generated image sequences. It utilizes a bidirectional strategy, performing both text-to-image
and image-to-text transformations, allowing for online caption augmentation during training. This bidirec-
tional learning enhances the model’s understanding of the relationship between textual narratives and visual
outputs, leading to more coherent visual stories.

Generative Evaluation Despite significant progress in image synthesis techniques, the evaluation of gen-
erative models has not kept pace and is hindered by reliance on outdated metrics [312, 115, 404, 118]. These
traditional metrics are primarily used for benchmarking purposes but fail to address critical issues identified
in recent studies [273, 25], such as capturing high-level semantic inconsistencies and being sensitive to minor
perturbations that do not affect human perception. Recent advancements have aimed to develop more robust
evaluation methods that consider semantic content and alignment with human judgments. For instance, met-
rics based on the Contrastive Language-Image Pre-training (CLIP) model [284] have been proposed to assess
the correspondence between generated images and textual descriptions, providing a more nuanced evaluation
of generative models’ capabilities.

Explainability in generative modeling offers valuable insights; however, existing approaches are often model-
specific [17, 255, 92, 152] or depend on the challenging task of discovering interpretable latent directions [322,
323, 32, 372]. Such methods typically require access to the internal architecture of the models or involve
complex analyses of the latent space, limiting their applicability. Our proposed method addresses both the
evaluation and explainability of generative models within a unified framework. It is adaptable to any genera-
tive model—including those designed for sequential image generation tasks [187, 233, 232, 347]—by focusing
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solely on the sets of concepts present in the input and output. By abstracting away from model-specific
details and concentrating on conceptual content, our approach provides a generalizable and interpretable
means of assessing generative models.

8.3 Methodology
In this section, we introduce the adapted framework for evaluating generative models based on concept-level
analysis rather than traditional pixel-based metrics [218]. As before, the core idea is to compare the semantic
content of the generated images with the conditioning inputs by extracting and analyzing the concepts present
in both. This approach allows for a more interpretable and fine-grained assessment of generative models,
particularly in tasks that involve complex semantic structures.

8.3.1 Overview of the framework
Our framework centers around a pre-trained, black-box generative model denoted as M . This model accepts
a conditioning input c, which can be either a natural language description or a symbolic representation, and
generates an image I intended to correspond to c. The conditioning input c provides semantic guidance to
the generative model, dictating the content that should be present in the generated image.

To evaluate the alignment between the generated image I and the conditioning input c, we perform concept
extraction on both. The process involves several key steps:

1. Concept Extraction from Generated Image: We apply state-of-the-art computer vision tech-
niques, such as object detection [357, 294] and semantic segmentation [292, 36], to the generated image
I. These methods enable us to identify and extract semantic concepts depicted in the image, such as
objects, attributes, and their relationships. The extracted concepts are compiled into a set called the
generated or source concept set, denoted as S.

2. Concept Extraction from Conditioning Input: The conditioning input c is processed to extract
the intended semantic concepts. The extraction technique varies based on the format of c:

• If c is a textual description, we use NLP tools, such as dependency parsing and named entity recog-
nition, to extract nouns, verbs, adjectives, and other relevant linguistic elements that represent
concepts.

• If c is in a symbolic or structured format (e.g., a scene graph or a list of attributes), we perform
direct parsing to obtain the set of concepts.

The extracted concepts from c form the real or target concept set, denoted as T .

3. Conceptual Comparison and Minimal Edits: We aim to determine the minimal set of conceptual
changes required to transform the generated concept set S into the target concept set T . This involves
identifying concepts that need to be inserted, deleted, or replaced. The goal is to answer the question:
“What are the minimal required changes to traverse from S to T?”

An overview of the proposed framework is illustrated in Figure 8.3.1, which depicts the flow from the condi-
tioning input to the generation of the image and the subsequent concept extraction and comparison.

8.3.2 Conceptual edits as counterfactual explanations
Our research methodology is profoundly influenced by the study presented in [84, 58, 65], which investigates
a pivotal aspect of counterfactual analysis: "What is the smallest alteration required for an image I to be
reclassified from category Y to category X?" Here, X and Y represent the categories assigned by a predefined
image classifier F . In our scenario, however, the classifier F is redundant because we automatically categorize
all emerging concepts s into a set S, and all verified concepts t into another set T . This framework allows for
counterfactual explanations to pinpoint the least number of conceptual modifications needed to transition
from S to T for each s in S and t in T .

Concept Distances provide insights into the shortest route linking two distinct concepts. We utilize concept
hierarchies to systematically determine the cost of transitioning between these concepts. This study examines
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Figure 8.3.1: Overview of the proposed concept-based generative evaluation framework. The generative
model M produces an image I based on conditioning input c. Concepts are extracted from both I and c to

form sets S and T , respectively. The minimal edits required to align S with T are then determined.

two methodologies: incorporating external hierarchical structures like those found in WordNet [75], which
links extracted concepts to defined synsets, and creating custom hierarchies to precisely control semantic
distances. In either methodology, we denote d(s, t) as the quantifiable distance between any two concepts s
and t.

To facilitate these transitions, we introduce three specific types of concept edit operations:

• Replacement (R) es→t(S): This operation involves substituting a concept s in S with a new concept
t not originally in S.

• Deletion (D) es−(S): This involves removing a concept s from the set S.

• Insertion (I) et+(S): This entails adding a new concept t from set T into set S.

These editing operations take into account the concept distances defined by our chosen hierarchies. Par-
ticularly, the R operation ensures the path chosen between s and t minimizes the distance d(s, t), aligning
with the principles of actionability as outlined in [84]. This ensures that the edits are both semantically
meaningful (e.g., ’food’ → ’pasta’) and avoid nonsensical transitions (e.g., ’food’ → ’sky’). The D and I
operations consider the hierarchy’s root node, which, in the case of using WordNet, is identified as entity.n.01.

The overall effectiveness of these transformations is measured by the Concept Set Edit Distance (CSED)
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D(S → T ), calculated by aggregating the minimal costs across all feasible edit operations required for
converting set S into set T :

CSED = D(S → T ) = min
S,T∑
s̸=t

R,D,I∑
d(s, t) (8.3.1)

8.3.3 Counterfactual edits for generative evaluation
The counterfactual framework detailed in Section 8.3.2 underpins our methodology for generative evaluation,
implemented on two complex tasks in generative research:

• Story Visualization (SV)

• Scene Generation (SG)

Story Visualization (SV)

The concept of Story Visualization (SV) involves the systematic generation of a series of images,
I1, I2, ..., IL, where each image corresponds to a specific segment of a narrative, c1, c2, ..., cL, over a total
narrative length L. This process requires each image to accurately reflect its corresponding narrative seg-
ment and maintain coherence throughout the series. We define two primary criteria for this process:

• Faithfulness: This criterion ensures that every object and attribute described in any narrative segment
ck is visually represented in the corresponding image Ik.

• Consistency: This ensures that once an object or attribute is introduced in any image Ik, it appears
in all subsequent images up to IL.

We utilize the CLEVR-SV dataset [139], structured around a set of attributes—shape (e.g., cube, sphere,
cylinder), size (e.g., small, large), material (e.g., rubber, metal), and a selection of eight colors (e.g., blue, cyan,
brown)—each object described by four attributes. We devise a simple hierarchical structure to categorize
these attributes into broader conceptual categories, shown below:

(large, small) ⊂ Size
(blue, yellow, brown, grey, green, purple, cyan, red) ⊂ Color
(metallic, rubber) ⊂ Material
(sphere, cube, cylinder) ⊂ Shape

(8.3.2)

The narrative structure in CLEVR-SV consists of four frames, with each frame escalating in complexity
by the addition of objects. Transition operations between frames, namely Deletion (D), Insertion (I), and
Replacement (R), are employed depending on the narrative requirements, each operation incurring a uniform
cost.

To quantitatively assess the adherence to the narrative, we introduce the Story Loss (SL) metric, which
aggregates the Concept Set Edit Distance (CSEDk) for each frame transition from Sk to Tk, reflecting the
minimal edits required to align the generated image sequence with the narrative conditioning:

SL =

L∑
k=1

CSEDk =

L∑
k=1

D(Sk, Tk), L = 4 (8.3.3)

To evaluate narrative consistency, we propose the Consistency Loss (CL) metric. This metric examines
semantic changes between consecutive frames, comparing each frame Ik with the prior frame Ik−1. Dis-
crepancies are penalized, with the penalty reflective of deviations from the expected attribute count per
frame:

CL =

L∑
k=2

D(Sk, Sk−1), Sk = concepts in Ik, Sk−1 = concepts in Ik−1 (8.3.4)
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For broader assessments, these metrics are aggregated over N narrative sequences to derive the Global
Story Loss (GSL) and Global Consistency Loss (GCL), enabling an evaluation of the generative
model’s overall performance in maintaining narrative fidelity and consistency across multiple stories:

GSL =

N∑
i=1

SLi,

GCL =

N∑
i=1

CLi,

(8.3.5)

These metrics not only measure performance but also provide insights into specific areas where the model
may fail to accurately or consistently represent narrative elements, serving as a diagnostic tool to identify
frequent errors in story visualization.

Additionally, by obtaining the average values for both the local (SL/CL) and global (GSL/GCL) metrics,
we can gain insights into the behavior of SV systems:

Avg SL =
1

k
SL, Avg GSL =

1

N
[Avg SL] =

1

N
GSL (8.3.6)

Rather than calculating a straightforward average of
∑

CLk, a more insightful approach involves assessing
how frequently the conditions pk=1 = 0 and CLk>1 = |C| · (k − 1) are violated, averaged across all L = k
frames:

Avg CL =
pk=1

k
+

1

k

k=L∑
k=1

[CLk>1 ̸= |C| · (k − 1)], Avg GCL =
1

N
[Avg CL] (8.3.7)

The metrics SL and CL inherently provide explainable insights as they not only gauge quality but also
illuminate the Sk → Tk edit pathways. These paths serve as local counterfactual explanations that underscore
the erroneously generated semantics within the story, pertaining to either faithfulness or consistency.

Higher values of SL/GSL and CL/GCL typically indicate poorer conceptual generation quality. Paths
identified in GSL/GCL serve as global counterfactual explanations, where rule extraction techniques reveal
common patterns that summarize the behavior of the model under study. These frequently observed GSL
pathways often encompass common misconceptions, such as conditioning concepts that are challenging for
the model to accurately generate. Similarly, GCL pathways often expose inconsistency patterns, displaying
concepts that change unpredictably throughout the story frames.

Thus, by exploring "What minimal changes are needed to transition from S to T?", we ultimately address a
broader question: "Which concepts are challenging for the model to generate or maintain consistently?"

Scene Generation (SG)

Scene Generation (SG) is tasked with creating a visual representation I from a complex narrative input c.
This synthesis involves the integration of various interactive elements within the scene, each characterized
by distinct attributes. Unlike simpler visual tasks, the narrative input for SG presents a complex array of
elements that are not fixed in advance, leading to a dynamically large set of potential concepts C.

The COCO dataset [199] is utilized to assess the faithfulness of generated scenes, using textual descriptions
c as a basis for the scene creation. Our analysis focuses on cutting-edge diffusion models sourced from
Huggingface2, specifically Stable Diffusion versions 1.4 and 2 [330, 329], and Protogen versions x3.4 and 5.8
[279, 280]. These models are selected for their capability to render high-fidelity images, which is crucial for
subsequent concept extraction (object detection). Previous architectures [272, 397, 225, 184, 335, among
others] are excluded from our study due to their lesser visual quality and dependence on scene graphs for
composition.

During the concept extraction phase, object detection is performed using YOLO-v8 [137] and YOLOS [73],
which facilitate the construction of the concept set S from the generated scenes. Textual narratives c are

2https://huggingface.co/models?pipelinetag = text− to− imagesort = downloads
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processed using spaCy [125] to delineate the target concept set T . Given the intricate semantic relationships
inherent to the COCO dataset’s concepts, an expansive knowledge base like WordNet is indispensable. For
instance, a narrative input c might mention generic categories like ’food’ or ’animal’, which the models
might specify further into ’pasta’ or ’dog’. These refined categories, detected by object detectors, may
introduce discrepancies. However, hierarchical knowledge bases help bridge these gaps by confirming semantic
equivalence between sets; for example, despite T = {food, animal} ≠ S = {pasta, dog}, the relation pasta −
isA − food and dog − isA − animal ensures semantic congruence. Therefore, no transformation between S
and T is necessary. Additionally, WordNet aids in accurately quantifying the semantic distances essential for
editing operations, thereby facilitating the calculation of the total transformation cost via the Concept Set
Edit Distance (CSED).

8.4 Experiments

8.4.1 Story Visualization

In the realm of story visualization, each semantic aspect and edit operation—namely Deletions (D) and
Insertions (I)—is quantified uniformly with a cost, denoted by d = 1 for each semantic feature and edit
action. This pricing model simplifies the calculation of edit distances. Specifically, the removal of a color
attribute is quantified with an edit cost of 1. Similarly, replacing one color with another results in a cumulative
edit cost of 2, which is the sum of deleting the initial color and inserting the new one. This same costing
principle is applied uniformly across other attributes such as shape, size, and material of the objects involved
in the visualization process.

Results from leading variants of selected story visualization (SV) models [187, 233, 232, 347] are summarized
in Table 8.1. To provide a comprehensive evaluation, traditional metrics like Fréchet Inception Distance
(FID), Clean-FID, Learned Perceptual Image Patch Similarity (LPIPS), and Structural Similarity Index
Measure (SSIM) are included for a detailed comparison.

Typically, there is a noticeable correlation between metrics assessing pixel-level details and those evaluating
conceptual integrity. This correlation is anticipated as the extraction of concepts is inherently dependent
on the clarity and accuracy of the pixel-level representation in images. Objects and semantic elements that
are generated with higher fidelity are more likely to be correctly identified and classified during the concept
extraction phase.

Moreover, the conceptual analysis provides explainable insights into the performance of these models. Detailed
percentages of losses per conceptual category (Material, Size, Shape, Color) are enumerated, shedding light
on the specific areas where each model excels or falters. For instance, a common observation across all
models is a significant Shape loss, often exceeding 50%. This indicates a prevalent difficulty in synthesizing
objects with well-defined shapes. Conversely, the models generally perform better in terms of Size accuracy,
as evidenced by comparatively lower Size losses. This suggests that while the models struggle with shape
precision, they are more adept at replicating the correct size of objects, indicating a partial but significant
success in adhering to the dimensional aspects of the input specifications.

M FID Clean LPIPS SSIM GCL GSL Material Size Shape Color
↓ -FID↓ ↓ ↑ ↓ ↓ ↓ ↓ ↓ ↓

[347] 41.54 ± 8.55 115.46 0.21 ± 0.05 0.71 4.97 7.01 20.83% 14.55% 56.62% 33.10%
[187] 41.45 ± 6.25 123.40 0.25 ± 0.03 0.65 11.44 15.33 30.89% 21.12% 62.34% 37.44%
[232] 41.96 ± 9.66 124.97 0.25 ± 0.08 0.67 10.95 8.06 21.45% 16.02% 56.78% 35.10%
[233] 41.80 ± 8.81 122.62 0.25 ± 0.05 0.68 8.32 11.51 25.34% 16.71% 56.83% 35.14%

Table 8.1: Average evaluation metrics (existing and proposed, separated by a vertical line) for the
generation on the CLEVR-SV dataset [139] for all L=4 stories per M .

We continue our analysis by concentrating on the highest-performing story visualization model from [347],
as indicated by the conceptual metrics in Table 8.1. In particular, Table 8.2 details the outcomes for each
frame’s GSL, GCL, and the losses associated with each concept (Material, Size, Shape, Color).
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Frame GSC
↓

GSL
↓

Material ↓ Size ↓ Shape ↓ Color ↓

1st 0.00 2.25 40.00% 6.20% 58.75% 7.50%
2nd 4.35 5.66 20.00% 11.88% 57.5% 32.50%
3rd 7.12 8.25 13.33% 16.67% 57.08% 43.33%
4th 8.42 11.49 10.00% 23.44% 53.13% 49.06%

Table 8.2: Average conceptual evaluation metrics per frame for [347].

Local explanations The effectiveness of the SL/CL metrics is demonstrated through local explanations
for the model from [347], specifically examining edit pathways in the sequence depicted in Figure 8.4.1. The
sequence includes the first four images (Figure 8.4.1a) representing the actual sequence, while the subsequent
four images (Figure 8.4.1b) show the modeled outputs. Here, S represents the concepts from Figure 8.4.1b,
and T contains those from Figure 8.4.1a.

Detailed in Table 8.3, a consistent R operation is noted across all frames, where the transformation is made
from a ’rubber’ to a ’metallic’ material for a small brown sphere to align with the ground truth. In the
final frame, an additional R operation is required to change the object’s shape from ’sphere’ to ’cylinder’.
The cost assigned to each R operation is 2, reflecting the dual steps of removing an incorrect attribute and
adding a correct one. This cost metric can be adjusted if necessary. The cumulative SL for this scenario is
calculated to be 10, summing the costs of all operations across the frames.

Regarding the CL, the correct increment of objects across subsequent frames is noted, ensuring that the
formula CLk>1 = |C| · (k−1), |C| = 4 holds. Starting with CL1 = pk=1 = 0 for the first frame, it is confirmed
that just one object is added, adhering to the rule that the frame number corresponds to the quantity
of objects. CL2 = 4 is expected as the second frame introduces an object encompassing four semantic
attributes. A deviation from these expected numbers would suggest an error: CLk>1 < |C| · (k − 1) would
indicate missing objects, whereas CLk>1 > |C| · (k − 1) would point to extra objects being generated. This
pattern is consistently applied up to the fourth frame.

This dissection reveals critical weaknesses of the [347] model, particularly in accurately rendering the Material
semantic, as throughout all frames in this example, the small brown sphere is inaccurately depicted with
’rubber’ instead of ’metallic’. To fully understand the model’s capability to accurately synthesize individual
semantics, broader metrics and evaluations are essential.

(a) Actual story frames.

(b) Model-generated story frames of [347].

Figure 8.4.1: Comparison of actual vs model-generated CLEVR-SV story frames using [347] for L=4.

To better understand how the proposed algorithm functions, we will conduct an in-depth examination of the
local properties of CSED per frame for SV, as depicted in the sequence shown in Figure 8.4.1. This sequence
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is considered of medium difficulty according to the methodology described in [347], particularly because in
the fourth frame, the blue cylinder is superimposed with the blue cube. We will compare the actual semantic
details of the sequence, represented by the ground truth frames (Figure 8.4.1a), with the semantics of the
generated frames (Figure 8.4.1b).

We have arrived at the following conclusions:

Frame k=1
Ground truth semantics: {[small, brown, metallic, sphere]}
Generated semantics: {[small, brown, rubber, sphere]}
The discrepancies between the two sequences are evident in the third semantic term; the original is ’metallic’,
while the generated term is ’rubber’. Thus, for the first frame, CSEDk=1 suggests a substitution of ’rubber’
with ’metallic’, carrying an edit cost of 2 = CSEDk=1. This alteration, related to the Material semantic,
leads to an increment in the Material Loss count, which will further elucidate global semantic synthesis
failures across all test set frames.

For frame 1, the Consistency Loss (CL) is zero for the generated sequence since there are a total of |C|=4
semantics (Material, Size, Shape, Color), and one object containing T =4 semantics occupies position k=1
in the sequence, resulting in CLk=1 = pk=1 = |T | − |C| · k=4-4=0.

Frame k=2
Ground truth semantics: {[small, brown, metallic, sphere], [small, brown, metallic, sphere]}
Generated semantics: {[small, brown, rubber, sphere], [small, brown, metallic, sphere]}
Again, the semantic difference in the third position remains highlighted; the original is ’metallic’ while the
substitute is ’rubber’, prompting CSEDk=2 to propose the same replacement as before with an edit cost of
2. Additionally, as this change pertains to the Material semantic, another failure is recorded on the Material
Loss counter.

Simultaneously, CL increases simply by adding an object containing |C|=4 semantics, which means the
minimal increase in CL when an object is added to CLEVR-SV is 4. Comparing k = 1 generated sequence
T = Sk−1={[small, brown, rubber, sphere]} with the k = 2 generated sequence S = Sk={[small, brown,
rubber, sphere], [small, brown, metallic, sphere]} shows no additional discrepancies. Applying equation
8.3.4 for k=2 yields:

CLk=2 = pk=1 +D(Sk=2, Tk=2) = 0 + I{small, brown,metallic, sphere} = 0+4 = 4

Frame k=3
Ground truth semantics: {[small, brown, metallic, sphere], [small, brown, metallic, sphere], [large, blue,
rubber, cube] }
Generated semantics: {[small, brown, rubber, sphere], [small, brown, metallic, sphere], [large, blue,
rubber, cube]} The semantic divergence in the third position continues, leading to a proposed replacement
of ’rubber’ with ’metallic’ for an edit cost of 2. This change also contributes to an increase in the Material
Loss counter.

CL accounts for the comparison between the T = 2 generated sequence [small, brown, rubber, sphere, small,
brown, metallic, sphere] and the k = 3 generated sequence {[small, brown, rubber, sphere], [small, brown,
metallic, sphere], [large, blue, rubber, cube]}, differing only by the addition of the large, blue, rubber,
cube in the third frame, resulting in:

CLk=3 = pk=1 +D(Sk=2, Tk=2) +D(Sk=3, Tk=3) = 0 + 4 + I{large, blue, rubber, cube} = 0+4+4 = 8

Frame k=4
Ground truth semantics: {[small, brown, metallic, sphere], [small, brown, metallic, sphere], [large, blue,
rubber, cube], [large, blue, metallic, cylinder]}
Generated semantics: {[small, brown, rubber, sphere], [small, brown, metallic, sphere], [large, blue, rub-
ber, cube], [large, blue, metallic, sphere]}
Beyond the consistent discrepancy in the third position, there’s an additional variation in the last position,
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prompting a replacement of ’sphere’ with ’cylinder’, each carrying an edit cost of 2. Summing these trans-
formations results in a total transformation for k = 4: {’rubber’, ’sphere’} → {’metallic’, ’cylinder’} with an
edit cost of 4. The counters for Material Loss and Shape Loss increase by one each.

CL calculations for the sequences corresponding to k = 3 generated sequence {[small, brown, rubber, sphere],
[small, brown, metallic, sphere], [large, blue, rubber, cube]} and k = 4 generated sequence {[small, brown,
rubber, sphere], [small, brown, metallic, sphere], [large, blue, rubber, cube], [large, blue, metallic, sphere]}
reveal only the addition of the large, blue, metallic, sphere item. Therefore, CLT=4= 4, resulting in:

CLk=4 = pk=1+D(Sk=2, Tk=2)+D(Sk=3, Tk=3)+D(Sk=4, Tk=4) = 0+4+4+I{large, blue,metallic, sphere}
= 0+4+4+4 = 12

By summing up, Story Loss (SL) as the cumulative per-frame CSED costs will be:

SL = 2 + 2 + 2 + 4 = 10

and averaging SL across all L = 4 frames according to equation 8.3.6 results in:

Average SL =
1

k
SL = 10/4 = 2.5

Following equation 8.3.7 for consistency, we find:

Average CL =
pk=1

k
+

1

k

k=L∑
k=1

[CLk>1 ̸= |C| · (k − 1)] = 0 + 0 = 0

The generated narrative of Figure 8.4.1 is fully consistent as the Average CL equates to zero, indicating an
ideal scenario with no semantics being altered or omitted in the generated sequence. However, it’s noteworthy
that CL fails to capture the faithfulness error introduced by the new item in the fourth frame: while the
actual object is a large, blue, metallic, cylinder, the generated sequence adds a large, blue, metallic, sphere,
yet CL does not penalize the semantic discrepancy in the last position. Conversely, SL serves to penalize this
error, demonstrating that both metrics are crucial, with SL focusing on fidelity between actual and generated
narratives, and CL on consistency across consecutively generated frames. Optimal models would exhibit
lower values for both metrics globally.

Frame Min edit path Operation Edit
cost

Semantic CL

1st “rubber” → “metallic” R 2 Material 0
2nd “rubber” → “metallic” R 2 Material 4
3rd “rubber” → “metallic” R 2 Material 8
4th {“rubber”, “sphere”} → {“metallic”, “cylinder”} R, R 4 Material, Shape 12

Table 8.3: Interpretable edits for Figure 8.4.1 based on local analysis.

Global explanations To fully understand the limitations of our model, we calculate the GSL across all
images in the CLEVR-SV dataset to gauge the model’s difficulty in accurately representing specific -discrete-
semantics, both individually per frame and cumulatively (refer to Table 8.1). Interestingly, while we might
expect Material loss to increase as more objects complicate the frame, it actually diminishes over successive
frames. In contrast, Size loss and Color loss demonstrate the anticipated upward trend in losses. Patterns
in Shape loss, however, are less predictable and remain considerably high.

The persistently high Shape loss underscores the necessity for integrating attention mechanisms in our GANs
[402] to better capture long-range dependencies within the images. The notable escalations in Size and Color
losses suggest inconsistencies in maintaining continuity throughout the story sequence.

Additionally, GSL uncovers underlying patterns across the entire dataset, which we explore using the apriori
algorithm [5] to identify frequent semantic rules and combinations. The four most prevalent semantic edits
are outlined in Table 8.4, along with the frequency (support) of each rule. The table also lists the concept
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Rules (edits) Semantic Support % Antec. support% Conseq. support%

’metallic’ →’rubber’ Material 26.77 26.77 26.77
’rubber’ →’metallic’ Material 22.05 22.05 22.83
’cylinder’ →’cube’ Shape 18.11 33.07 31.50

’cylinder’ →’sphere’ Shape 14.96 33.07 18.90

Table 8.4: Global interpretive edits derived from the CLEVR-SV test set using [347].

category (derived from equation 8.3.2), along with the antecedent support (frequency of the source semantic)
and consequent support (frequency of the target semantic).

Material emerges as the most frequently misunderstood concept, particularly with ’rubber’ and ’metallic’
often being interchanged. Shape follows as the second major area of confusion, with ’cylinder’ more fre-
quently appearing in generated frames than in the conditioning frames, often at the expense of ’cube’ and
’sphere’ shapes. Although the rule support does not reach particularly high levels—peaking at 26.77%—this
suggests that the SV model from [347] does not show a strong bias toward specific semantics. However,
the prevalent errors in material and shape generation provide critical insights that could be instrumental for
future architectural enhancements of the model.

8.4.2 Scene Generation
To streamline the inference process, we utilize the first 10,000 samples from the COCO dataset, employing
YOLO-v8 and YOLOS for visual concept extraction. Notably, each COCO sample is accompanied by five
descriptive sentences, essentially paraphrasing one another. We thus use only the first sentence as the
conditioning variable c. Our approach for Scene Generation (SG) involves two distinct methodologies: direct
generation based on c and retrieval of image-caption pairs that closely match c.

Conditional generation on COCO captions In our experimental setup, we deploy pre-trained diffusion
models to generate images, as outlined in 8.3.3. This experiment did not involve additional model tuning.
The generation of 10,000 images took approximately 15 hours for each model using dual T4 GPUs, totaling
about 60 hours of processing time.

Retrieval of COCO-related captions To amass a larger collection of images related to COCO captions
without the extensive resource expenditure of additional diffusion model runs, we turned to the Stable
Diffusion search engine at Lexica.art3. Here, we entered the first sentence of each of the 10,000 COCO samples
as search queries. The search engine provided us with 10 images for each query, previously generated by the
community, closely aligning with our captions. This method furnished an additional 100,000 images from
Stable Diffusion, each tagged with their respective input queries. We subsequently conducted a comparative
analysis between these web-retrieved images and those generated by our models.

Object detection We set a detection threshold of Td = 0.6, where only objects detected with a confidence
of 0.6 or higher are considered for inclusion in the concept set S. This threshold was chosen to balance the
occurrence of false positives and negatives, as establishing a baseline for false detections is challenging without
manual review. Nonetheless, our setup offers insights into potential detection errors: a lower threshold might
suggest an increased likelihood of false positives (irrelevant objects detected), whereas a stricter threshold
could indicate more false negatives (missed relevant objects).

Metric results We present comparative detection results using thresholds of Td = 0.5, 0.6, and 0.7 across
Tables 8.5 (YOLO-v8) and 8.6 (YOLOS) for the generated images, and in Table 8.7 for the web-retrieved
images. These tables detail the frequency of edits (# I, # D, # R) and the associated costs for each type
of operation. Instances with the lowest scores, preferred in our evaluation, are marked in underlined text,
while the highest scores are indicated in bold. The overall mean Concept Set Edit Distance (CSED) is also
reported, providing a holistic view of operational frequency and effectiveness.

3https://lexica.art/
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Td M # I Cost I # D Cost D # R Cost R Mean
CSED

0.5
stable diffusion 37651 16762 1196 5655 126004 14323 35.75

stable diffusion 2 36878 16067 1243 6301 129315 14839 36.32
protogen base 37072 16208 1233 5944 129290 14744 35.95
protogen 5.8 38581 17715 1195 4702 117708 13411 34.66

0.6
stable diffusion 39070 18386 1157 4042 110260 12964 34.22

stable diffusion 2 38678 17782 1200 4514 112499 13397 34.55
protogen base 38548 17794 1184 4270 114762 13427 34.35
protogen 5.8 39766 19210 1134 3419 103579 12135 33.38

0.7
stable diffusion 40814 20391 1086 2681 93390 11337 32.96

stable diffusion 2 40677 19806 1107 2938 95477 11756 33.08
protogen base 40397 19801 1101 2820 97314 11787 32.94
protogen 5.8 41295 20944 1039 2308 89850 10726 32.39

Table 8.5: Metric results using YOLO-v8 [137] for object detection on generated images from COCO
queries.

Td M # I Cost I # D Cost D # R Cost R Mean
CSED

0.5
stable diffusion 26302 9032 1382 44189 197623 21097 68.25

stable diffusion 2 26684 8832 1403 43459 192198 21082 68.05
protogen base 26887 8966 1404 44406 193327 21035 68.81
protogen 5.8 28880 10367 1373 34996 189677 19858 60.45

0.6
stable diffusion 27963 9920 1373 33891 188395 20286 60.10

stable diffusion 2 28145 9662 1394 33933 182767 20322 60.36
protogen base 28499 9845 1394 34167 185217 20224 60.63
protogen 5.8 30545 11330 1364 27218 179947 18963 54.13

0.7
stable diffusion 29998 10985 1357 24956 177213 19319 52.51

stable diffusion 2 29831 10657 1347 25492 172860 19409 53.14
protogen base 29866 10790 1346 25255 175495 19350 52.98
protogen 5.8 28880 10367 1373 34996 189677 19858 60.45

Table 8.6: Metric results using YOLOS [73] for object detection on generated images from COCO queries.

Td Obj. detector # I Cost I # D Cost D # R Cost R Mean
CSED

0.5 YOLO-v8 186775 857448 1343 52247 1353479 224350 75.87
YOLOS 163628 605321 1487 421525 2469635 473331 106.41

0.6 YOLO-v8 190047 891454 1317 37418 1174012 190928 73.74
YOLOS 167576 646112 1467 308346 2303966 432851 98.06

0.7 YOLO-v8 193663 929183 1236 25388 982259 154063 71.81
YOLOS 171778 688942 1449 214928 2115779 390304 90.56

Table 8.7: Metric results for web-retrieved Stable Diffusion [330] images on similar queries to COCO.

Local explanations illustrate the edit processes I, D, and R employed to modify specific images, as shown
in the scene from Figure 8.4.2.

Utilizing YOLO-v8 with a set detection threshold of Td = 0.6, the identified concepts in the image are

154



8.4. Experiments

Figure 8.4.2: A sample image generated using Stable Diffusion 2 [329], used for deriving local explanations.

S={’car’, ’car’, ’traffic light’, ’car’, ’stop sign’}, while the actual concepts intended are T={’light’, ’buildings’}.
The transformation from S to T involves the edit operations shown in Table 8.8, which accumulate to a total
minimal cost of 59.00.

Operation Details

Insertions (I) {}
Deletions (D) {’car’, ’car’, ’car’}

Replacements (R) {’traffic light’ → ’light’, ’stop sign’ → ’buildings’}

Table 8.8: Edit operations for YOLO-v8 [137] concepts.

When using YOLOS, the generated concepts are S={’car’, ’traffic light’, ’car’, ’stop sign’, ’traffic light’,
’car’, ’traffic light’, ’traffic light’, ’traffic light’, ’traffic light’, ’traffic light’, ’traffic light’, ’car’, ’traffic light’,
’traffic light’, ’traffic light’, ’traffic light’, ’traffic light’, ’car’, ’traffic light’, ’traffic light’, ’traffic light’, ’traffic
light’, ’car’, ’car’, ’traffic light’, ’traffic light’}, and the ground truth ones are T={’light’, ’buildings’}. By
visually inspecting the image, YOLOS clearly overestimates the actual objects present, inducing noise in the
generated concept set S. Nevertheless, our evaluation strategy successfully captures this overestimation, by
suggesting the deletion of multiple concepts. Specifically, the edit operations shown in Table 8.9 result in
transformations with a total cost of 104.04.

Operation Details

Insertions (I) {}
Deletions (D) {’car’, ’traffic light’, ’car’, ’traffic light’, ’car’, ’traffic light’, ’traffic light’, ’traffic

light’, ’traffic light’, ’traffic light’, ’traffic light’, ’car’, ’traffic light’, ’traffic light’,
’traffic light’, ’traffic light’, ’car’, ’traffic light’, ’traffic light’, ’traffic light’, ’traffic

light’, ’car’, ’car’, ’traffic light’, ’traffic light’}
Replacements (R) {’stop sign’ → ’light’, ’traffic light’ → ’buildings’}

Table 8.9: Edit operations for YOLOS [73] concepts, total cost 104.04.

Global explanations are detailed for all evaluated images, where edits involving insertions (I) and dele-
tions (D) are catalogued in Table 8.10, and replacements (R) are documented in Table 8.11. Only concepts
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extracted using YOLO-v8 are included due to YOLOS generating excessively high counts of detections. We
highlight the top three most common types of each edit: insertions, deletions, and replacements. For I and
D, "Freq I", "Freq D" measure the occurrence of particular concepts being inserted or deleted across the
dataset. The support for I and D indicates how often these edits occur relative to all such edits in the
dataset. In the case of R, support quantifies how often a specific transformation rule appears relative to all
transformation rules.

The analysis shows a clear consensus across models; the I edits frequently include the concepts ’street’,
’tennis’, and ’table’. It appears that model M struggles to adequately render these I concepts, or the
concepts are produced with such low visual quality that their detection proves unreliable at thresholds of
Td=0.5, 0.6, 0.7. D edits often involve the concepts ’person’, ’sheep’, ’car’, ’umbrella’, and ’donut’, suggesting
a tendency of the model to generate unnecessary instances of these categories. Lastly, the R edits typically
involve changing ’person’ to ’people’, ’man’, or ’woman’, which is somewhat anticipated given that ’person’
in YOLO categorization includes both genders.

Td M I Freq I I support D Freq D D support

0.5

stable diffusion
street 264 1.57% person 2075 36.69%
table 250 1.49% sheep 363 6.42%
tennis 247 1.47% car 252 4.46%

stable
diffusion 2

tennis 253 1.57% person 2177 34.55%
street 242 1.51% sheep 466 7.40%
table 237 1.48% car 313 4.97%

protogen
base

tennis 247 1.52% person 2281 38.37%
street 244 1.51% sheep 317 5.33%
table 229 1.41% car 311 5.23%

protogen 5.8
table 270 1.52% person 1564 33.26%
tennis 265 1.50% car 261 5.55%
street 241 1.36% umbrella 251 5.34%

0.6

stable diffusion
street 290 1.58% person 1572 38.89%
table 281 1.53% sheep 311 7.69%
tennis 259 1.41% car 158 3.91%

stable
diffusion 2

table 274 1.54% person 1656 36.69%
street 269 1.51% sheep 376 8.33%
tennis 264 1.48% car 203 4.50%

protogen
base

street 268 1.51% person 1717 40.21%
table 261 1.47% sheep 254 5.95%
tennis 255 1.43% car 197 4.61%

protogen 5.8
table 303 1.58% person 1220 35.68%
tennis 278 1.45% sheep 198 5.79%
street 274 1.43% umbrella 176 5.15%

0.7

stable
diffusion

table 322 1.58% person 1075 40.10%
street 316 1.55% sheep 254 9.47%
tennis 268 1.31% donut 122 4.55%

stable
diffusion 2

table 313 1.58% person 1134 38.60%
street 301 1.52% sheep 291 9.90%
tennis 267 1.35% donut 111 3.78%

protogen base
street 300 1.52% person 1189 42.16%
table 289 1.46% sheep 188 6.67%
tennis 262 1.32% umbrella 143 5.07%

protogen 5.8
table 330 1.58% person 884 38.30%
street 299 1.43% sheep 152 6.59%
tennis 287 1.37% umbrella 130 5.63%

Table 8.10: Global explanations (I and D edits) for YOLO-v8 [137] extracted concepts.
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Td M R Freq
R

R sup-
port

M R Freq
R

R sup-
port

0.5

stable
diffusion

person → man 1090 7.61% stable person → man 1115 7.51%
person → people 520 3.63% diffusion person → people 551 3.71%
person → woman 499 3.48% 2 person → woman 511 3.44%

protogen person → man 1101 7.47% protogen person → man 1061 7.91%
person → people 507 3.44% person → woman 476 3.55%

base person → woman 500 3.39% 5.8 person → people 441 3.29%

0.6

stable
diffusion

person → man 1065 8.22% stable person → man 1087 8.11%
person → people 503 3.88% diffusion person →people 536 4.00%
person → woman 481 3.71% 2 person → woman 482 3.60%

protogen person → man 1080 8.04% protogen person → man 1035 8.53%
person → people 494 3.68% person → woman 449 3.70%

base person → woman 485 3.61% 5.8 person → people 431 3.55%

0.7

stable
diffusion

person → man 1022 9.01% stable person → man 1033 8.79%
person → people 473 4.17% diffusion person → people 508 4.32%
person → woman 458 4.04% 2 person → woman 441 3.75%

protogen person → man 1054 8.94% protogen person → man 989 9.22%
person → woman 461 3.91% person → woman 419 3.91%

base person → people 446 3.78% 5.8 person → people 408 3.80%

Table 8.11: Global explanations (R edits) for YOLO-v8 [137] extracted concepts.

8.5 Conclusion
The exploration of conceptual methodologies in the field of generative evaluation is still relatively nascent,
yet it promises significant insights into both the quality of models and the clarity with which results can
be interpreted. In this chapter, we introduce a framework that leverages knowledge-driven principles for
explainable evaluation. This framework is designed to pinpoint specific conceptual adjustments needed within
generated images—identifying which concepts should be introduced, omitted, or altered—to make these
images more closely resemble their original design specifications.

Our empirical results, derived from engaging with complex tasks such as Story Visualization and Scene Gen-
eration, have demonstrated the practical benefits of this approach. Specifically, these results highlight critical
gaps where models consistently fail to generate certain concepts, as well as tendencies of models to produce
an excessive number of particular concept categories. Such insights not only enhance our understanding of
the inherent model biases but also guide the development of more balanced and accurate generative models.

As we look to the future, our goal is to broaden the application of this evaluation framework to encompass
a wider range of models and computational tasks. Additionally, we plan to enrich our framework by incor-
porating a variety of alternative knowledge sources. This expansion will allow us to conduct a deeper, more
nuanced analysis of how the edits suggested by our framework conceptually diverge from those generated by
current model configurations. This continued research will contribute to refining the methodologies used in
generative evaluation and push the boundaries of what is possible in explainable artificial intelligence.
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Chapter 9

Explainable Metric for Hallucination
Detection in Image Captioning

This chapter introduces a critical exploration within the dynamic field of artificial intelligence, focusing on
the phenomenon of hallucinations in vision-language (VL) models. This issue is the reverse of the problem
analyzed in Chapter 8, where we tried to identify errors in image synthesis. Here, however, we will adapt
the algorithms presented in Chapters 4 and 5 to capture hallucinations specifically in one of the more
commonly used tasks of VL, namely image captioning. As these models become increasingly integral to
various applications, understanding and addressing their limitations is essential. Hallucinations in image
captioning, where the model generates inaccurate or irrelevant descriptions, pose significant challenges for
the reliability and trustworthiness of VL systems.

In this context, we delve into the intricacies of hallucinatory phenomena exhibited by widely used image
captioners, identifying and analyzing interesting patterns. Building on previously introduced techniques, this
chapter discusses the application of conceptual counterfactual explanations to effectively address VL hallu-
cinations. We employ a deterministic and efficient backbone of conceptual counterfactuals, which suggests
semantically minimal edits. These edits are driven by hierarchical knowledge, facilitating the transition from
a hallucinated caption to a non-hallucinated one in a black-box manner. Our proposed hallucination detec-
tion framework enhances interpretability by providing semantically meaningful edits rather than standalone
numerical values. This approach allows for a deeper understanding of the underlying causes of hallucinations
through a hierarchical decomposition of hallucinated concepts. Additionally, this chapter introduces the novel
concept of role hallucinations, which involves the interconnections between visual concepts, marking a first
in the field of hallucination detection.

Overall, the methodologies and insights presented in this chapter recommend an explainable and trustworthy
approach to VL hallucination detection. This is vital for evaluating the performance, identifying potential
problems and risks of current and future VL systems.

9.1 Introduction

In the dynamic arena of artificial intelligence, the emergence of hallucinations in outputs has surfaced as
a noteworthy challenge. While neural models exhibit exceptional linguistic and visual capabilities, their
outputs sometimes deviate unexpectedly, mixing accurate depictions with imaginative elements. The topic
of hallucinations has gained recent attention in Natural Language Processing (NLP), especially with Large
Language Models (LLMs) generating outputs that often diverge from factual accuracy despite their extensive
training parameters and vast data sets [123, 409, 344, 104, 141].

Hallucinations in output are problematic to detect due to their varied nature. [409] classify three primary
types of hallucinations: Input-Conflicting, where LLM outputs do not align with the input prompt; Context-
Conflicting, which includes contradictions within the output itself; and Fact-Conflicting, where outputs con-
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Figure 9.1.1: Illustration of a hallucination in image captioning, where the generated caption inaccurately
describes the scene. The term "laptop" should replace "dog," and the phrase "next to" should better link

the concepts of "dog" and "man."

tain false information.

Despite growing interest, the exploration of hallucinations in multimodal contexts, such as vision-language
(VL) models, remains underdeveloped. As these models evolve into Large VL Models (LVLMs) [204, 423,
40], their enhanced capabilities are marred by increased occurrences of unreliable outputs, which are harder
to detect due to ambiguities within and between modalities.

The scant research on VL model hallucinations has begun to tackle essential questions regarding their evalu-
ation [298, 185, 361, 135] and reduction [418, 344, 173, 200]. However, these efforts face significant challenges
due to the limited interpretability and detail of the metrics used, which obstruct a thorough understanding
of the complex issues presented by hallucinatory behavior in VL models. We contend that these research
gaps in VL hallucinations underscore the importance of an explainable evaluation approach that not only
deciphers the mechanisms behind hallucinations but also facilitates the development of effective mitigation
strategies. Additionally, we note parallel efforts in recent VL evaluation studies [218] though they do not
explicitly use the term "hallucination."

In this chapter, we lay the groundwork for an explainable evaluation framework for VL hallucinations by
applying our methods to image captioning, a task fraught with hallucination challenges as shown in Figure
9.1.1. We adapt techniques from prior research in VL hallucination evaluation, particularly focusing on image
generation from language [218], and demonstrate their seamless application in the converse task of generating
language from images. While existing research primarily addresses object hallucination, we extend our
evaluation to include interconnections between objects, such as spatial relationships or actions. Our proposed
framework retains the core attributes of conceptual counterfactuals and knowledge-driven edits [84], which
we will explore in detail later in this chapter.

This chapter makes the following contributions:

• We propose the adoption of an explainable evaluation framework for image captioning hallucinations.

• We analyze the concepts present in captions to enhance the granularity of our hallucination evaluations.

• We introduce "role hallucinations" as a novel extension to the existing studies on object hallucinations.

• We substantiate our findings by applying our proposed framework to a variety of image captioning
models.

Image Captioning

Image captioning has become a cornerstone in machine learning, aiming to generate descriptive textual in-
terpretations of visual content. This task serves as a bridge between computer vision and natural language
processing, facilitating seamless interaction between visual and linguistic data. In practical applications,
image captioning is instrumental for assisting visually impaired individuals through descriptive narrations,
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enhancing image retrieval systems via textual queries, and improving human-computer interactions by align-
ing images with language.

The emergence of Vision-Language (VL) transformers has significantly accelerated progress in this domain.
Cutting-edge models like BLIP [181], BLIP-2 [180], LLaVA [204, 203], BEiT [365], and GiT [359] have
achieved remarkable results, often scaling up to billions of parameters. While increased model size generally
enhances generation quality, these models are not exempt from generating "hallucinations"—inaccurate or
non-existent details in captions—which pose significant obstacles for real-world deployment [93].

Hallucinations in VL models

Hallucinations in VL models refer to instances where the generated text includes elements that do not
correspond to the visual input. Traditional evaluation metrics like BLEU [271], ROUGE [196], and CIDEr
[351] focus on linguistic quality but often overlook the alignment between the text and the image content.
Consequently, there’s a growing emphasis on developing metrics that specifically address the fidelity of the
generated captions to the visual input.

An early effort in this direction is the CHAIR (Caption Hallucination Assessment with Image Relevance)
metric [298], which quantifies the proportion of hallucinated objects in captions:

CHAIRi =
|Hallucinated Objects|
|All Predicted Objects|

(9.1.1)

CHAIRs =
|Sentences with Hallucinated Objects|

|All Sentences|
(9.1.2)

While CHAIR provides a baseline assessment, more nuanced approaches have been developed. FAITHSCORE
[136] offers a fine-grained analysis by decomposing captions into subcomponents to extract atomic facts,
though it relies on Large Language Models (LLMs) that may themselves introduce hallucinations.

Dialogue-based evaluation methods like POPE [185] propose generating yes/no questions about object pres-
ence in images, using ground truth annotations to formulate queries. An equal number of questions about
non-existent objects help gauge the model’s susceptibility to affirmation bias. Similarly, NOPE [214] employs
a question-answering framework using negative indefinite pronouns to detect hallucinations.

In an approach, [361] identified patterns in VL hallucinations and utilized LLMs to generate hallucinated
examples. They fine-tuned models like LLaMA [345] on these examples to enhance hallucination detection
capabilities.

Studies have observed that optimizing for traditional text generation metrics might inversely correlate with
reducing hallucinations, indicating that high linguistic quality doesn’t guarantee visual-textual alignment
[52]. Additionally, factors such as image encoding methods, training objectives, and statistical patterns like
object co-occurrence frequencies and their positional context within captions influence hallucination rates
[421].

To tackle these challenges, ongoing research is exploring improved model architectures that better integrate
visual and textual modalities, developing more robust training objectives that penalize misalignment, and
creating comprehensive evaluation metrics that balance linguistic fluency with factual accuracy. Addressing
hallucinations is crucial for advancing image captioning systems that are reliable and effective in real-world
scenarios, where accuracy is not just preferred but essential.

9.2 Hallucination Detection through Counterfactual Explanations
While numerous studies have leveraged LLMs to assess hallucinations in VL models, this dependency intro-
duces inherent uncertainties. These uncertainties arise from the variability in prompt formulations and the
propensity of LLMs to generate their own hallucinations, which can undermine the robustness and reliability
of the evaluation frameworks. To circumvent these issues, our proposed methodology deliberately eschews
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the use of LLMs. By sacrificing the convenience they offer, we enhance the determinism and trustworthiness
of the hallucination evaluation process.

Furthermore, existing metrics that evaluate linguistic quality or detect VL hallucinations often lack ex-
plainability. They fail to provide actionable guidance on how to modify the generated content to eliminate
hallucinations. An effective evaluation framework should not only identify discrepancies but also suggest a
direction of change that is both measurable and meaningful. Optimally, this change should involve mak-
ing the smallest possible adjustments with the fewest necessary edits to achieve the desired outcome.
Below, we elaborate on these key criteria:

Measurable This involves assigning precise numerical values to changes, facilitating comparison and quan-
tification. It requires connecting concepts slated for modification with similarity metrics within a unified
structure, such as their distances in a semantic space or positions within an ontology.

Meaningful Adjustments should be sensible within the real-world context and adhere to linguistic norms.
For example, replacing the concept "cat" with "dog" is meaningful because both are animals, whereas sub-
stituting "cat" with a random string like "hfushbfb" or an unrelated action like "swimming" lacks semantic
validity and violates syntactic rules.

Optimal This pertains to implementing a strategy that ensures the selected changes are the best among
all valid and measurable options. For instance, replacing "cat" with "tiger" might be more semantically
appropriate than substituting it with "person," given the closer taxonomical relationship between felines.
Optimal edits aim for the most semantically minimal changes, involving the least deviation from the
original concept. Additionally, the total number of edits should be minimized to avoid unnecessary complexity,
resulting in the fewest possible semantically minimal edits.

Implementing the Framework with WordNet

To address these challenges, we build upon the framework introduced by [84], which provides counterfactual
explanations through edits that meet our specified criteria. This approach was subsequently adapted for
evaluating image generation models in [219]. In our framework, we define a source set S containing concepts
extracted from the generated captions and a target set T comprising ground truth concepts derived from
annotated images.

Our objective is to transform S into T using the minimal number of meaningful edits, achieved through
the structural guarantees provided by WordNet [243]. WordNet organizes English words into synsets—sets
of cognitive synonyms—arranged in a hierarchical structure based on semantic relationships. By mapping
concepts from S and T onto WordNet synsets, we can quantify semantic differences through the distances
between synsets. The shortest path between two synsets corresponds to the minimal semantic change needed
to align the concepts. This methodology ensures that edits are measurable (using numerical distances),
meaningful (grounded in valid linguistic entities), and semantically minimal (identified via efficient
pathfinding algorithms like Dijkstra’s algorithm [64]).

The algorithm proposed by [84] employs bipartite matching to optimize the assignment of concepts from S to
T , minimizing the total semantic cost and ensuring the optimal transformation from the generated captions
to the ground truth.

Edit Operations for Optimal Transformation

The transformation from S to T involves three types of edit operations for any source concept s ∈ S and
target concept t ∈ T [84, 219]:

• Replacement (R) es→t(S): Replace a concept s in S with a concept t not originally in S.

• Deletion (D) es−(S): Remove a concept s from S.

• Insertion (I) et+(S): Add a concept t from T to S.
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In the context of image captioning, we prioritize Deletion and Replacement operations. Hallucinations
often involve the inclusion of irrelevant or non-existent concepts, so removing or substituting these elements
is crucial for aligning captions with the visual content. While Insertion can enhance captions by adding
missing concepts, it may not always be desirable, especially when captions are intended to be concise or
provide higher-level summaries. Therefore, we calculate Insertion operations for completeness but exclude
them from the overall transformation cost, allowing users to decide whether to incorporate them.

Our deterministic approach not only enhances the evaluation of hallucinations but also contributes to the
broader goals of explainable artificial intelligence. By providing clear, quantifiable, and meaningful directions
for correcting hallucinations, we enhance the transparency of VL models. This is particularly important
for applications where trust and accountability are paramount, such as assistive technologies for visually
impaired individuals or systems used in medical imaging.

Moreover, by minimizing reliance on LLMs, we reduce the black-box nature of the evaluation process. Our
framework offers interpretable results that can be scrutinized and validated, fostering greater confidence in
the deployment of VL models in real-world scenarios.

9.2.1 The role of roles
Traditional approaches to hallucination detection in image captioning have predominantly concentrated on
object-level inaccuracies, often neglecting the critical role of relationships between objects, known as role
hallucinations. For instance, as depicted in Figure 9.1.1, the BLIP captioning model misinterprets the spatial
relationship between a man and a dog, confusing their positions. This example underscores the necessity
of addressing role hallucinations, which have been relatively overlooked in prior research focused mainly on
object hallucinations.

It is insufficient to analyze roles in isolation; they must be considered in conjunction with objects to accurately
detect hallucinations. Evaluating roles separately can lead to under-detection of errors because it overlooks
the context provided by the objects involved. For example, applying the counterfactual explanation algorithm
from [84] solely to sets of roles might suggest a simple insertion operation, such as I("next to"), indicating
the addition of the role "next to" to connect "dog" and "man." However, this approach may not fully capture
the misrepresentation.

By instead considering triplets—pairs of objects connected by a role—we obtain a more accurate set of edits.
In the context of Figure 9.1.1, the proposed edits become R(["dog", "on", "lap"], ["laptop", "on", "lap"]),
I(["dog", "next to", "man"]). This means replacing the incorrect triplet where the "dog" is "on" the "lap"
with the correct one where the "laptop" is "on" the "lap," and inserting the missing triplet where the "dog"
is "next to" the "man." This more comprehensive set of edits aligns better with both the human-written
ground truth caption and the actual content of the image.

To facilitate editing at the triplet level, we employ scene graphs to represent both the image and the
caption. Scene graphs are structured representations where nodes correspond to objects and edges represent
the relationships (roles) between them. This graph-based approach provides a detailed semantic depiction of
the visual scene and the generated caption, enabling a direct comparison between the two.

Parsing the caption into a graph structure involves natural language processing techniques such as dependency
parsing and semantic role labeling. This process extracts objects and their relationships from the text,
constructing a graph GS that mirrors the semantic content of the caption. Similarly, the image is analyzed
to produce a scene graph GT , utilizing object detection and relationship recognition algorithms.

With the two graphs GS (caption) and GT (image) established, our goal is to find the minimal cost sequence
of edit operations that transforms GS into GT . The allowable edit operations include:

• Replacement (R): Substituting an incorrect triplet in GS with the correct one from GT .

• Deletion (D): Removing an extraneous triplet from GS that does not correspond to any in GT .

• Insertion (I): Adding a missing triplet from GT into GS .

The cost associated with each edit operation is denoted as c(ei). To quantify the total cost of transforming
GS into GT , we use the Graph Edit Distance (GED), defined as:
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GED(GS , GT ) = min
(e1,...,en)∈P (GS ,GT )

n∑
i=1

c(ei) (9.2.1)

Here, P (GS , GT ) represents all possible sequences of edit operations that convert GS into GT . The GED
reflects the minimal total cost of edits needed for this transformation, effectively measuring the dissimilarity
between the two graphs.

To compute the optimal sequence of edits, we employ deterministic pathfinding algorithms such as Dijkstra’s
algorithm [64]. These algorithms ensure that the edit path found is the one with the minimal total cost,
guaranteeing the optimality of the proposed edits.

Calculating the exact GED is known to be an NP-hard problem, which makes it computationally infeasible
for graphs of substantial size or complexity due to the exponential growth of possible edit sequences. To
overcome this challenge, we utilize approximation algorithms that provide efficient and scalable solutions.

One such algorithm is the Volgenant-Jonker (VJ) algorithm [140], which is designed to solve the linear
assignment problem in polynomial time. By framing the GED calculation as an assignment problem, the
VJ algorithm approximates the minimal edit cost without exhaustively exploring all possible edit sequences.
This approach significantly reduces computational overhead while still providing a close approximation to
the optimal GED.

9.3 Hallucination detection framework
Object hallucinations As depicted in Figure 9.3.1, our framework provides a method for analyzing hal-
lucinations within generated content.

We define the problem of detecting object hallucinations as follows: for each caption c, the system generates
a set of objects S = {s1, s2, . . . , sn}, whereas the corresponding image comprises a set of actual objects
T = {t1, t2, . . . , tm}. The transition from S to T involves making specific conceptual adjustments, notably
through the operations R, D, and I, which are detailed in the prior section.

To assess the scope of hallucinations, from general to specific deviations from the truth, we engage the
Least Common Ancestor (LCA) concept within the WordNet structure. Here, the LCA refers to the most
immediate common ancestor within the WordNet synsets, enabling us to identify whether one synset is more
generic than another. For instance, if the LCA of synsets v and w is v, then v represents a broader category
than w.

This framework allows us to classify hallucination instances as follows:

• Deletion (D): This type of error occurs when an object present in S does not appear in T ; for example,
"soda" is mentioned in the caption c but is absent from the actual image, as shown in Figure 9.3.1.

• Replacement (R): Occurs when an object si ∈ S is erroneously substituted with tj in T , where
neither LCA(si, tj) = si nor LCA(si, tj) = tj . This means neither object serves as a direct hypernym
of the other. An example is the mention of a "chair" in the caption, whereas the image shows a "sofa".

• Over Specialization (O): This error type emerges when si from S is replaced with a more general
term tj from T , where LCA(si, tj) = tj . This indicates a generalization error in the recognition process,
such as labelling a depicted "woman" as a "girl".

Utilizing these categories, the level of hallucination in a caption c is quantified by the sum of affected objects
across these phenomena. Thus, the hallucination count, Hallucinations(S, T ), is determined by:

Hallucinations(S, T ) = |D(S, T )|+ |R(S, T )|+ |O(S, T )| (9.3.1)

The rate of hallucination, HalRate, then measures the proportion of hallucinated objects against the total
number of objects |S| mentioned in c, calculated as:

HalRate(S, T ) =
Hallucinations(S, T )

|S| (9.3.2)
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Further, we introduce semantic metrics for deeper analysis, including a measure of Similarity of Replace-
ments:

• Similarity of Replacements: This metric employs Wu-Palmer similarity [376] to assess how seman-
tically close the replaced objects are, reflecting on the justified nature of the replacements made by
the caption generator. Higher Wu-Palmer scores suggest a semantically closer and potentially more
justifiable replacement.

Figure 9.3.1: An example of detected hallucination of objects in image captioning from our framework is
presented, depicting each phenomenon along with the proposed metrics. Objects in yellow represent an
overspecialized phenomenon, in purple a replacement, and in red a removal. Those in green are correct

objects, and those in blue are the underspecialized objects (which do not constitute hallucinations, as the
caption contains a more generic concept to the ground truth one). As shown, the hallucination rate is

calculated as the sume of the rate of each hallucination phenomenon independently.

9.4 Extending Beyond Hallucination Detection

Exploring Additional Phenomena Our framework not only detects hallucinations but also explores a
variety of related phenomena. This extension is demonstrated by introducing new metrics as follows:

• Granularity: This metric is defined as the complement of the ratio of Insertions (I) relative to the
number of actual objects in the image. It is computed as:

Granularity(S, T ) = 1− |I(S)|
|T | (9.4.1)

Essentially, it gauges the extent to which the generated caption c manages to encompass the objects
depicted in the image, offering a quantifiable measure of coverage and specificity.

• Under-Specialization (U): This measure evaluates cases where the object described in the caption
c is more general than the one in the image. For instance, if the caption refers to "food" while the
image shows "pizza," it calculates how often the captioning system opts for broader categories when
more specific terms could provide more detail. The calculation is the number of such under-specialized
objects divided by the total objects in the caption, thus:

UnderSpecialization(S, T ) =
Number of Under-Specialized Instances

|S| (9.4.2)

To enrich our analysis, we also track the average number of objects per caption and the average
number of WordNet ancestors (hypernyms) for each object. This dual approach allows a nuanced
understanding of the content’s depth and scope in the captions.
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Figure 9.4.1: Visual depiction of role integration within our hallucination assessment framework, with edges
emphasized in bold and color-coded to match Figure 9.3.1.

Detecting Role Hallucinations The framework further extends to detecting hallucinations at the level
of object interactions or roles, which are critical in the context of image captions and annotations. These
interactions are encoded as triples in our dataset, denoted for captions and images as Sr = {(si, rsj , sk), . . .}
and T r = {(ti, rtj , tk), . . .}, respectively. Figure 9.4.1 illustrates these roles graphically. For the quantification
of role hallucinations during the Sr → T r transition, we adapt our previous measures for handling object-
based edits to consider relational triples, such as:

• Deletions (D): This involves removing an edge rsj between two objects si and sk due to inaccuracies
like object deletion or incorrect relations, as shown in Figure 9.4.1. An example is the deletion of the
"eating" relation between "people" and "food" when the food item is not accurately captured by the
caption.

• Replacement (R): Occurs when a relation rsj between two objects si and sk is mistakenly established
and needs to be corrected to match the image, as in replacing "jumping" with "riding" in Figure 9.4.1.
This metric stresses the importance of accurately portraying the dynamic relationships within the scene.

It’s important to recognize that the concepts of over-specialization and under-specialization do not apply to
roles within this context, as the relationships described by the edges focus on actions, topological connections,
or compositional relationships rather than hierarchical structures. To address this, we utilize human-provided
annotation data to accurately align the relationships depicted in captions with the actual ground truth, sub-
sequently categorizing them into appropriate WordNet synsets. In instances where captioners introduce
relationships that are not present in the established ground truth, we assign appropriate weights to these
relations, facilitating their seamless integration or removal during the Graph Edit Distance (GED) calcu-
lation process. It is unlikely that these relations will be substituted with alternatives due to the absence
of corresponding semantic content. To ascertain their inclusion in the set R, an additional post-analysis
reasoning step is necessary to determine whether a relationship rsj has been removed and a new one rtw
established between the same entities. Based on the aforementioned considerations, the phenomenon of role
hallucinations is evaluated as follows:

Hallucinations(Sr, T r) = |D(Sr, T r)|+ |R(Sr, T r)| (9.4.3)

while HalRate and Granularity are simply adjusted to be:

HalRate(Sr, T r) =
Hallucinations(Sr, T r)

|Sr| (9.4.4)

Granularity(Sr, T r) = 1− |I(S
r)|

|T r| (9.4.5)

In our study, we analyze the integration of images with corresponding captions and scene graphs by utilizing
datasets from both Visual Genome (VG) and Microsoft COCO. VG is notable for its detailed scene graph
annotations that include objects, attributes, and relationships, while COCO provides five human-annotated
captions per image. Our focus is on the COCO validation set, specifically selected to align with VG, featuring

166



9.4. Extending Beyond Hallucination Detection

2170 overlapping instances. We exclude instances where object alignments with WordNet synsets are not
feasible.

For our experiments, we employ non-commercial captioning tools, assessing both compact and extensive
model configurations. This approach ensures that smaller captioning systems, which are more accessible for
widespread research use, are included. Specifically, we test various models of BLIP (with base and large
configurations using ViT encoders) and GiT (including base and large models trained on 10 million and
20 million image-text pairs, respectively, with an additional variant fine-tuned on COCO captions). Our
experimentation also extends to both conditional and unconditional image captioning techniques, where
models are fine-tuned to predict specific or general caption distributions. All captioning models are sourced
from Huggingface, with no additional training conducted post-loading.

Figure 9.4.2: Analysis of object hallucination metrics using BLIP-large-unc on the Visual Genome and
COCO validation dataset intersection.

Concept sets construction We develop the concept sets for both linguistic and visual domains, denoted
as S, Sr for source and T , T r for target, with the objective of transforming S into T and Sr into T r. The
linguistic concept sets are derived using the Scene Graph Parser tool, which extracts structured graphs from
textual content. Conversely, the visual concept sets are crafted from the authentic annotations available in
the COCO and VG datasets.
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Model #objects #ancestors HalRate (#hal. objects) ↓ Granularity U ↓

GiT-base-coco 3.13 27.93 35.56% (1.13) 17.0% 4.06% (0.13)
GiT-large-coco 3.15 27.97 33.93% (1.1) 17.0% 3.92% (0.12)

GiT-base 1.76 16.57 26.41% (0.48) 9.0% 3.27% (0.06)
GiT-large 1.74 16.28 25.38% (0.46) 9.0% 3.31% (0.06)

BLIP-base-unc 2.53 22.55 34.28% (0.91) 13.0% 4.48% (0.12)
BLIP-base-cond 3.23 29.5 58.48% (1.87) 17.0% 2.96% (0.1)
BLIP-large-unc 3.63 32.73 39.2% (1.45) 19.0% 3.47% (0.13)
BLIP-large-cond 4.22 37.5 53.04% (2.24) 22.0% 2.84% (0.12)
BLIP2-flan-t5-xl 2.57 23.16 33.13% (0.89) 14% 4.05% (0.11)

BLIP2-opt-2 2.78 24.89 33.28% (0.96) 15.0% 4.19% (0.12)
ViT-GPT2 2.95 26.51 38.76% (1.18) 16.0% 4.47% (0.14)

Claude sonnet-L 6.85 58.94 58.91% (4.05) 36.0% 4.71% (0.33)
Claude haiku-L 7.12 58.66 64.31% (4.64) 39.0% 5.4% (0.39)
Claude sonnet-S 3.35 30.48 47.16% (1.6) 17.0% 4.67% (0.16)
Claude haiku-S 2.95 25.49 54.36% (1.62) 16.0% 6.74% (0.19)

Table 9.1: Object hallucinations (mean values) on the VG ∩ COCO validation subset. Best and worst
results are denoted. Numbers in parenthesis denote absolute #objects.

Model D ↓ O ↓ R ↓ Similarity of Replacements ↑

GiT-base-coco 4.38% (0.15) 3.01% (0.09) 28.18% (0.89) 0.56
GiT-large-coco 4.4% (0.16) 2.46% (0.08) 27.06% (0.87) 0.55

GiT-base 2.11% (0.05) 2.17% (0.04) 22.12% (0.4) 0.61
GiT-large 2.46% (0.05) 2.41% (0.04) 20.51% (0.36) 0.6

BLIP-base-unc 3.78% (0.11) 2.65% (0.07) 27.86% (0.73) 0.57
BLIP-base-cond 23.07% (0.72) 2.76% (0.09) 32.66% (1.05) 0.52
BLIP-large-unc 6.13% (0.24) 3.48% (0.13) 29.59% (1.08) 0.56
BLIP-large-cond 19.27% (0.81) 2.46% (0.11) 31.3% (1.32) 0.52
BLIP2-flan-t5-xl 4.27% (0.12) 3.16% (0.08) 25.7% (0.69) 0.56

BLIP2-opt-2 3.64% (0.11) 2.8% (0.08) 26.84% (0.77) 0.57
ViT-GPT2 3.45% (0.11) 3.16% (0.09) 32.14% (0.97) 0.6

Claude sonnet-L 15.79% (1.05) 2.51% (0.19) 40.61% (2.81) 0.52
Claude haiku-L 17.3% (1.28) 2.69% (0.2) 44.33% (3.15) 0.49
Claude sonnet-S 7.1% (0.25) 5.42% (0.18) 34.63% (1.16) 0.57
Claude haiku-S 7.78% (0.24) 4.59% (0.13) 41.99% (1.26) 0.52

Table 9.2: Continuation of Tab. 9.1. More object hallucination phenomena on VG ∩ COCO validation
subset.

9.5 Experiments
In the subsequent sections, we detail our experiments that utilize these constructed sets. We analyze the
prevalence of hallucinations in captioning, where tables and figures such as Tables 9.1, 9.2, and 9.3, and
Figures 9.4.2 and 9.5.1 present summarized results across different captioners, particularly focusing on the
instances of hallucinations concerning objects and roles. Our findings indicate a significant rate of halluci-
nations: approximately one-third of captioned objects exhibit some discrepancies, and over half of the role
annotations deviate from their verified counterparts.

Our evaluation further distinguishes between types of edits involved in caption modifications: Replacements
(R) are more common than Deletions (D), as the conceptual paths in captions are typically shorter and
more direct compared to the broader hierarchical structure used in object identification. This observation is
consistent with the training regimes of these models, which are pre-trained on richly descriptive datasets like
COCO.

Furthermore, we cross-reference our hallucination findings with traditional language generation metrics, in-
cluding BLEU, ROUGE, Google BLEU, Mauve, and perplexity. The results presented show that higher
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language generation scores do not necessarily correlate with lower rates of hallucinations, indicating that
these metrics alone may not provide a complete assessment of a model’s performance in accurately reflecting
depicted scenarios without introducing hallucinations. This insight is particularly emphasized by the perfor-
mance patterns of the GiT models, which, while scoring lower on language generation metrics, demonstrate
fewer hallucinations, thus highlighting a potential trade-off between descriptive richness and accuracy.

Model #roles D ↓ R ↓ HalRate (#hal. roles)↓ Granularity

GiT-base-coco 1.92 65.32% (1.37) 14.06% (0.29) 79.38% (1.66) 3.93%
GiT-large-coco 1.94 65.33% (1.36) 13.75% (0.29) 79.09% (1.65) 4.08%

GiT-base 0.73 44.05% (0.47) 11.98% (0.13) 56.03% (0.59) 1.8%
GiT-large 0.69 39.15% (0.42) 11.58% (0.12) 50.63% (0.54) 1.89%

BLIP-base-unc 1.44 61.2% (1.01) 13.04% (0.2) 74.23% (1.22) 3.01%
BLIP-base-cond 2.14 90.96% (1.93) 4.22% (0.1) 95.18 (2.03) 1.48%
BLIP-large-unc 2.28 68.32% (1.67) 13.2% (0.31) 81.52% (1.98) 4.38%
BLIP-large-cond 2.98 86.6% (2.54) 6.68% (0.22) 93.28% (2.77) 2.99%
BLIP2-flan-t5-xl 1.62 69.26% (1.16) 14.2% (0.22) 83.47% (1.38) 3.25%

BLIP2-opt-2 1.79 68.87% (1.25) 14.37% (0.25) 83.24% (1.51) 3.65%
ViT-GPT2 1.86 71.05% (1.36) 16.46% (0.28) 87.5% (1.64) 3.42%

Claude sonnet-L 3.9 80.71% (3.17) 9.8% (0.39) 90.51% (3.56) 7.1%
Claude haiku-L 3.99 80.25% (3.29) 10.31% (0.38) 90.56% (3.67) 6.28%
Claude sonnet-S 2.1 75.19% (1.62) 11.85% (0.25) 87.04% (1.87) 5.24 %
Claude haiku-S 1.85 74.31% (1.39) 13.71% (0.14) 88.02% (1.53) 4.99%

Table 9.3: Role hallucinations (mean values per image) on the VG ∩ COCO validation subset.

Figure 9.5.1: Statistics of our proposed metrics on role hallucinations by BLIP-large-unc on the
VG ∩ COCO validation set.

9.6 Conclusion

In summary, the framework we introduced for detecting hallucinations in image captioning marks a signifi-
cant advancement in the explainable assessment of evolving Vision-Language (VL) models. This framework
explores the underlying mechanisms of hallucination by dissecting these phenomena through the lens of
conceptual properties, enriched by external hierarchical knowledge. Our approach strategically applies se-
mantically minimal yet meaningful edits to transition from hallucinated concepts in captions to their accurate,
non-hallucinated counterparts, utilizing the explanatory potential of conceptual counterfactual methodolo-
gies.
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Models ROUGE1↑ ROUGE2↑ ROUGEL↑ ROUGELsum↑
GiT-base-coco 0.152 0.021 0.145 0.145
GiT-large-coco 0.152 0.022 0.146 0.146
GiT-base 0.139 0.01 0.134 0.134
GiT-large 0.127 0.01 0.122 0.122
BLIP-base-unc 0.16 0.021 0.153 0.154
BLIP-base-cond 0.352 0.116 0.317 0.317
BLIP-large-unc 0.134 0.017 0.126 0.126
BLIP-large-cond 0.402 0.163 0.361 0.361
BLIP2-flan-t5-xl 0.435 0.179 0.402 0.402
BLIP2-opt-2 0.44 0.187 0.404 0.404
ViT-GPT2 0.406 0.153 0.370 0.370
Claude sonnet-L 0.133 0.008 0.117 0.117
Claude haiku-L 0.141 0.011 0.125 0.125
Claude sonnet-S 0.062 0.002 0.058 0.058
Claude haiku-S 0.123 0.009 0.114 0.114

BLEU ↑ Google BLEU↑ Mauve↑ PPL↓
GiT-base-coco 0.0005 0.051 0.186 68.305
GiT-large-coco 0.0005 0.051 0.192 63.629
GiT-base 0.0001 0.027 0.131 1541.317
GiT-large 0.0001 0.025 0.13 1475.033
BLIP-base-unc 0.0004 0.037 0.141 461.076
BLIP-base-cond 0.024 0.099 0.058 506.732
BLIP-large-unc 0.0003 0.033 0.132 67.632
BLIP-large-cond 0.056 0.133 0.064 127.578
BLIP2-flan-t5-xl 0.046 0.132 0.067 211.738
BLIP2-opt-2 0.055 0.139 0.009 130.29
ViT-GPT2 0.051 0.131 0.068 69.605
Claude sonnet-L 0.0001 0.029 0.174 71.307
Claude haiku-L 0.0002 0.029 0.174 42.032
Claude sonnet-S 0.0 0.032 0.174 358.33
Claude haiku-S 0.0004 0.047 0.174 170.585

Table 9.4: Language generation evaluation metrics on the VG ∩ COCO validation subset.

Additionally, our research highlights the often-neglected issue of role hallucinations, showing that popular
image captioning models frequently generate incorrect relationships between objects. We consider our work
a vital initial step towards accurately detecting hallucinations in VL models, laying a foundation for future
strategies aimed at mitigating such errors. Looking ahead, we aim to expand our examination by incor-
porating additional semantic resources into the framework, and also include a broader range of captioners
and larger model architectures. Furthermore, we plan to extend our hallucination detection framework to
additional VL tasks, thereby enhancing its robustness and applicability.

Expanding the Framework with Additional Semantic Resources

While WordNet serves as a foundational tool for our framework, incorporating additional semantic resources
can further enhance the evaluation process. For example, leveraging ConceptNet [327] can provide richer
semantic relationships, including commonsense knowledge that extends beyond lexical definitions. Addition-
ally, utilizing word embeddings from models like Word2Vec [242], GloVe [275], or contextual embeddings
from transformers like BERT [62] can capture nuanced semantic similarities based on large-scale language
corpora.

These resources enable us to measure semantic distances more precisely, especially in cases where WordNet’s
hierarchical structure may not fully represent the complexity of concept relationships. By integrating multiple
semantic models, we can improve the accuracy and reliability of the measurable changes identified during the
evaluation.
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Chapter 10

Counterfactual Generation for Improving
Reasoning Abilities of LLMs

10.1 Introduction

Recent advancements in the domain of Large Language Models (LLMs) such as GPT-3 [26] and GPT-4
[262] have been well-documented, illustrating their robust capabilities in logical reasoning across a variety
of domains [201, 202, 16, 48, 341]. These advancements highlight the strides made in enhancing the deduc-
tive reasoning capabilities of these models. However, despite such progress, limitations persist in scenarios
involving inductive reasoning, as detailed in recent studies [383, 15, 332].

In this research, the adopted classification system for reasoning, proposed in [94], emphasizes the underlying
cognitive processes and essential skills necessary for effective puzzle-solving. This taxonomy shifts focus away
from the simplistic categorization based on question formats [217] or the nature of reasoning—whether it be
deductive, inductive, or abductive [217, 394, 390, 281, 122, 85]. For instance, puzzles that are rule-based,
such as Sudoku, Crosswords, or Minesweeper, necessitate not only an understanding of the specific game rules
but also the development of sophisticated strategies to engage these rules effectively or to format the outputs
appropriately. Conversely, puzzles devoid of strict rules, programming challenges, and tasks that require
commonsense reasoning, depend primarily on the model’s built-in knowledge base for deriving solutions.

The assessment process for LLMs’ reasoning capabilities involves a structured categorization of puzzles. As
delineated in Figure 10.1.1, puzzles are distinguished by their reliance on either strict formal rules or a
broader utilization of worldly knowledge coupled with general inferential skills. This categorization serves to
not only reveal the cognitive diversity inherent in different types of puzzles but also aligns with the distinct
reasoning challenges presented by each category. Puzzles governed by rules demand precise logical deduction
and strategic foresight, operating within environments that are tightly controlled and where parameters are
clearly defined. In contrast, puzzles that lack formal rules call upon the model’s general reasoning abilities,
which include interpreting complex scenarios and elucidating events through the derivation of inferences
rooted in practical, everyday knowledge. Additionally, the research incorporates a critical aspect of unlearning
outdated methodologies and biases [236, 235], which is essential for the progressive adaptation and accuracy
of LLMs in evolving cognitive tasks [278].

Through this nuanced categorization, the research aims to deliver an in-depth analysis of the problem-solving
capabilities of LLMs, reflecting on the varied challenges presented by both structured tasks and those that
require expansive inferential reasoning. This approach provides a broader perspective on the potential and
limitations of current LLM technologies in tackling diverse cognitive tasks.
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Rule-less puzzles:
rely more on flexible
thinking, real-world
knowledge and infer-
ential reasoning

Commonsense reasoning puz-
zles: require understanding real-
world situations and making infer-
ences based on implicit knowledge

LatEval [124], True Detective [54], DetectBench [105],
MARB [343]

Programming puzzles: involve
analyzing or modifying code snip-
pets to achieve a specific goal

P3 [318], [316]

Riddles: use wordplay and
metaphors to conceal the answers,
requiring abstract connections
and lateral thinking

BrainTeaser [130], RiddleSense [194], BiRdQA [410], CC-
Riddle [382], PUZZLEQA [414], MARB [343]

Rule-based puzzles:
provide explicit victory
conditions, legal move
sets or state transition
rules that the model
must follow to solve
the puzzle

Stochastic games: incorporate
randomness or hidden informa-
tion, resulting in different out-
comes

Minesweeper [186], BoardgameQA [149], Card
Games [121, 109], Social Deduction Games [364,
385, 166]

Deterministic games: provide
all the information needed to pro-
duce an outcome from a given
starting state and set of actions

BoardgameQA [149], Sudoku [258, 212, 126], Rubik’s Cube
[258, 66], Maze [258], Crossword [391, 306, 71, 164], 8-puzzle
[66], Game of 24 [66, 391], Chess [126, 77]

Figure 10.1.1: The taxonomy of Puzzle Categories with the corresponding datasets from [94]1.

10.2 Puzzle Solving using Reasoning of LLLMs

In this section, the taxonomy proposed in [94] is analyzed, focusing on its categorizations and their potential to
reveal the reasoning capabilities of LLMs 2. This analysis aims to provide a detailed evaluation of the strengths
and limitations inherent in the existing body of literature. The insights derived from this examination are
expected to contribute to the development of more robust methodologies for enhancing the reasoning abilities
of LLMs. By addressing the gaps and challenges identified, this work seeks to advance both theoretical
understanding and practical applications in this domain.

Rule-based Puzzles

Rule-based Puzzles equip the model with explicit conditions for victory, sets of permissible moves, or state
transition rules. This category is further subdivided based on the nature of the state transitions—whether
they are deterministic or involve elements of randomness.

Deterministic games invariably result in the same subsequent state when a particular action is taken in
accordance with the established rules. For instance, in Chess, executing a specific move consistently results
in a new and definitive board configuration. Similar examples are Sudoku, navigating through a maze, or
solving a Rubik’s cube. Here, the model is required to develop strategies that function within the confines
of the space permitted by the legal game mechanics.

Stochastic games introduce randomness or elements of concealed information, meaning the same action
by a player may lead to varying probability distributions of ensuing states. Examples of such games include
Minesweeper, where bomb locations are unknown, and card games like Poker, where each player’s hand is
kept secret. Mastery of these games demands the ability to reason about uncertain states, plan multiple
steps ahead, and effectively manage risks.

Therefore, while both subcategories necessitate logical reasoning within the bounds of formal rules, stochastic
games introduce the added complexity of decision-making under conditions of uncertainty. Achieving profi-
ciency in deterministic games relies heavily on deductive reasoning and forward planning, whereas stochastic
environments also call for capabilities in probabilistic thinking, risk assessment, and reasoning with incom-
plete information.

Rule-less Puzzles

Contrasting with rule-bound puzzles, rule-less puzzles demand more adaptable thinking and a broader base
of real-world knowledge to make sense of ambiguous situations and deduce unseen details. These puzzles do
not merely test systematic search or strategic foresight; instead, they evaluate cognitive abilities related to

2https://puzzlellms.github.io

172

https://puzzlellms.github.io


10.2. Puzzle Solving using Reasoning of LLLMs

contextual interpretation, combining concepts, and reasoning based on common life experiences. Examples
of puzzles in this category include:

Riddles leverage witty wordplay and literary techniques to mask the answers. An example is the query,
"What gets wetter the more it dries?" which cleverly hides the answer "a towel" using metaphorical language.
Solving riddles involves making abstract connections between hidden concepts, often presented in poetic form.
This evaluates the solver’s capacity for fluid reasoning, conceptual blending, and lateral thinking to unravel
the linguistic nuances.

Programming Puzzles typically present snippets of code that require analysis or modifications to the
existing logic. Defined by [318, 72] as a brief Python program f , the objective is to identify an input
that results in f returning True. These puzzles test abilities such as tracing program execution, identifying
and rectifying errors, or predicting outputs based on the semantics of the code. For instance, consider
the following programming challenge, which examines understanding of programming semantics to foresee a
system’s response:

def mystery(x):
return x // 2

print(mystery (10))

Commonsense Reasoning Puzzles typically portray ordinary scenarios while deliberately omitting critical
details. Solvers are expected to construct explanations for events by inferring likely unstated assumptions
about motivations, causality, and consequences. For example, the question "A man who was outside in the
rain without an umbrella or hat didn’t get a single hair on his head wet. Why?" challenges one to perform
a pragmatic analysis of the unspoken contextual elements.

10.2.1 Methods and Strategies

In integrating LLMs into puzzle-solving contexts, a diverse range of methods and strategies significantly
enhances complex reasoning and performance. This section details the various approaches employed to
tackle puzzles, emphasizing their specific applications within this distinctive area. Considering the rich body
of research on prompt engineering and related methodologies [20, 34, 395, 44, 281, 207], this discussion focuses
on the most commonly used techniques in puzzle solving. Rather than detailing each method individually, the
section categorizes the existing strategies into prompting techniques, neuro-symbolic approaches for puzzle
translation, and fine-tuning targeted at specific domains. An extensive review of the methods applied across
various puzzle categories is depicted in Table 10.1, providing a structured insight into their effectiveness and
areas of application.

In integrating LLMs into puzzle solving, a broad range of methods and strategies has been explored to enhance
complex reasoning and performance. This section provides a comprehensive overview of these approaches,
emphasizing their unique application within the realm of puzzles. Recognizing the vast body of existing
literature on prompt engineering and associated methodologies [20, 34, 395, 44, 281, 207], this discussion will
focus on the most prevalent techniques for puzzle solving rather than detailing each method individually.
These methods are categorized into prompting techniques, neuro-symbolic approaches for puzzle translation,
and domain-specific fine-tuning. An extensive summary of the methods utilized across various puzzle types
can be found in Table 10.1.

Prompting Methods

Prompting strategies that introduce intermediate reasoning steps play a crucial role in boosting the puzzle-
solving capabilities of language models. The few-shot in-context learning paradigm, which incorporates one
or more examples within prompts, has significantly enhanced performance for both rule-based and rule-less
puzzles by demonstrating the reasoning process without the need for additional training [26, 68, 422].

Recent studies have investigated various ’thought structures’ that can guide LLMs towards the final solution
[20].

Chain topologies, including the Chain-of-Thought (CoT) [370, 157], have been effectively applied to all
kinds of puzzles, showing superiority over simpler input-output prompts. The Self-Refine method [228] has
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been particularly successful in deterministic, rule-based games like the Game of 24, achieving a 13% higher
success rate than CoT [391]. In rule-less contexts, such as detective-style benchmarks, various approaches like
Automatic CoT, which generates diverse reasoning chains autonomously [413], and Complexity CoT, which
enhances performance by leveraging more complex reasoning steps [87], have been utilized. Additionally, the
Plan-and-Solve (PS) method involves using two prompts per problem—one to generate the reasoning and
one to extract the final answer [362]. Despite these diverse approaches, none have consistently outperformed
CoT across all tested LLMs. However, the Detective Thinking Prompt method, a variant of CoT, has not
surpassed the 61.6% accuracy rate achieved by the best-performing model, GPT-4. This method encourages
the model to sequentially analyze multiple clues, aiding in handling complex scenarios where synthesizing
diverse information is critical.

Tree topologies encompass various methods. Self-Consistency (SC) [366] has been tested on deterministic
puzzles like the 8-puzzle, Game of 24, and Pocket Cube, as well as on rule-less commonsense reasoning
puzzles, showing a slight advantage in the former category over CoT [66, 391, 250] and no clear benefit
in the latter [105]. Tree-of-Thought (ToT) [391, 212] has so far been applied exclusively to deterministic
puzzles, significantly outperforming CoT, with success rate increases ranging from 26% to 70% [250, 391],
despite requiring more LLM invocations [66]. Tree-of-Uncertain-Thought (TouT) [250] has achieved even
better outcomes, with a 9% higher success rate on the Game of 24 and a 3% improvement on mini-crosswords.
Lastly, Inference-Exclusion-Prompting (IEP) [343] employs forward and backward reasoning to mimic human
logic, achieving impressive results on riddles and commonsense puzzles when combined with CoT, scoring 82

Graph topologies include methods like Graph-of-Thought(s) (GoT) [19, 171] and Everything-of-Thought
(XoT) [66], which have been used for deterministic puzzles. While GoT has shown poorer performance
compared to ToT, with decreases ranging from 2% to 6% [66], XoT has been recognized as the most effective
method, integrating Monte Carlo Tree Search (MCTS) with LLMs for enhanced thought generation, showing
improvements from 53% to 69% compared to ToT and presenting the fewest LLM invocations among the
methods tested.

Further exploration of these methods, including additional prompting strategies such as hints for riddles and
commonsense puzzles, introductions, and summarizations, and an extensive analysis can be found in the work
of [20].

Puzzle Translation

This subsection summarizes the neuro-symbolic techniques employed by LLMs to translate text-based puzzles
from natural language into formats more conducive to solutions by external tools. These methods focus
not on the LLMs’ puzzle-solving abilities per se but on their capacity to encode puzzles into appropriate
representations.

The primary approach is to use LLMs to generate logic rules from the puzzles’ natural language descriptions
and then solve them using a symbolic solver. GPT-3 and GPT-4 have been utilized to transform logic puzzles
like chess, Jobs puzzle, and Sudoku into Answer Set Programming (ASP) formats by generating predicates
and rules, showing significant success, with GPT-4 achieving a 92% accuracy rate on a logic puzzles dataset
[247], markedly higher than the rates in few-shot and zero-shot settings with the same model [126]. Similar
frameworks, such as Logic-LM [266], LINC [260], and methods by [389], have shown promising outcomes in
logical reasoning tasks, though not specifically in puzzle contexts.

While these neuro-symbolic approaches have been successful in translating puzzles into logic rules, no studies
have yet addressed transforming natural language puzzles into code. However, methods like Program of
Thoughts (PoT) [39] and Program-Aided Language (PAL) [88] have been employed to convert reasoning into
Python programs for logical and mathematical reasoning datasets, suggesting potential for application in
puzzle-solving tasks.

Given the structured nature of rule-based puzzles, it is logical that these techniques are particularly suited to
them, and thus far, no research has been conducted on their application to rule-less puzzles in this context.
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Fine-Tuning

Fine-tuning LLMs has proven to be a powerful approach to significantly enhancing their reasoning capabilities.
This technique applies not only to general logical reasoning but also to specific puzzle-solving tasks across
various categories.

Logical Reasoning LoGiPT [76] exemplifies a language model that has been fine-tuned specifically to excel
in logical reasoning. This model undergoes a fine-tuning process using an instruction-tuning dataset, which
pairs natural language logical questions with symbolic reasoning steps, aiming to streamline the transition
from natural to symbolic language and reduce common parsing errors, thus enabling it to generate direct
answers. Similarly, LogiT5 [217] employs a multi-task learning framework, integrating multiple datasets
to bolster its logical reasoning across diverse domains. It is specifically fine-tuned using the LOGIGLUE
benchmark, a collection of logical reasoning datasets, which enhances its performance, especially in tasks
with sparse data, by facilitating knowledge transfer across different logical challenges.

Rule-based Puzzles In the arena of rule-based deterministic puzzles, certain studies such as [258] report
less than optimal results when fine-tuning GPT-2 on complex puzzles like Sudoku, Rubik’s Cube, and Mazes,
possibly due to a limited duration of fine-tuning and a scarcity of training examples. Studies concerning
crossword puzzles [306, 71] present variable outcomes, with some fine-tuned models surpassing traditional non-
neural approaches, while others fail to do so, underscoring the challenges cryptic crosswords pose to LLMs.
Moreover, [149] have shown that fine-tuning LLMs with proofs and Chain-of-Thought (CoT) methodologies
in rule-based contexts has led to some of the most effective results.

Rule-less Puzzles Focusing on rule-less puzzles, research such as that conducted by [194] indicates that mod-
els like BERT [63], RoBERTa [211], and ALBERT [167] perform more effectively when trained on datasets
like RiddleSense and CommonsenseQA [338], effectively utilizing commonsense knowledge. Additionally,
[410] highlight that a combination of fine-tuning on ALBERT-XXL with transfer learning from the Common-
senseQA dataset results in a notable improvement of 4% over simple fine-tuning strategies. This enhancement
is also evident in areas like commonsense reasoning [54] and programming puzzles [318], demonstrating the
wide-ranging applicability of fine-tuning across different categories of puzzles.

Table 10.1 presents a detailed account of the diverse methods utilized for puzzle-solving, as evidenced by
the datasets compiled for this study. This table serves to map out the current scope of research on LLMs
within the realm of puzzle-solving, with a specific focus on the extensive methodologies applied to rule-based
deterministic puzzles and rule-less commonsense puzzles. Notably, the table also draws attention to the lack
of neuro-symbolic techniques and selection inference prompting in the current methodology spectrum. This
omission points to potential areas for further research and development, especially considering the likely
advantages these techniques could offer when applied to LLMs designed for logical reasoning tasks.

10.2.2 Datasets, Benchmarks and Tasks
Exploring diverse datasets, benchmarks, and tasks is essential for evaluating LLMs in puzzle-solving. This
section delves into datasets within our puzzle taxonomy, covering their formats, evaluation metrics, and
methodologies. Figure 10.1.1 provides a detailed summary of the datasets utilized across different categories
within the taxonomy, organized by puzzle type. The analysis showcases the versatility of LLMs and highlights
the impact of the techniques discussed in Section 10.2.1, offering a comprehensive view of LLM performance
across various puzzle types, revealing their capabilities, challenges, and potential areas for future research.

Rule-based Puzzles This exploration of rule-based puzzles focuses on assessing LLMs’ comprehension
within structured, closed-world environments. This category includes deterministic puzzles such as Sudoku,
Rubik’s Cube, Crosswords, and the 8-puzzle, all of which operate under a set of defined rules. In contrast,
stochastic games like Minesweeper, and various card and social deduction games, feature variable outcomes
from identical actions due to hidden elements. While research predominantly centers on deterministic puzzles,
addressing the uncertainties in stochastic puzzles remains a promising direction for future research.

Deterministic Puzzles Sudoku is a benchmark for LLMs, challenging their logical reasoning capabilities.
[258] fine-tuned GPT-2 [285] on 1 million Sudoku games, using a compact single-string format where empty
cells are denoted by "-", and suggested that a matrix representation might enhance learning efficacy. [212]
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Methods Rule-based Puzzles Rule-less Puzzles
Deterministic Stochastic Riddles Programming Commonsense

Prompting

Few-shot ✓ ✓ ✓ ✓ ✓

Chain-of-Thought ✓ ✓ ✓ ✓ ✓

Self-refine ✓

Auto-CoT ✓

Complexity CoT ✓

Plan & Solve ✓

Detective Thinking ✓

Self-Consistency ✓ ✓

Tree-of-Thoughts ✓

Tree-of-uncertain-Thoughts ✓

Inferential Exclusion Prompting ✓ ✓

Graph-of-Thoughts ✓

Everything-of-thoughts ✓

Hints ✓ ✓

Introduction/Summarization ✓ ✓ ✓ ✓ ✓

Puzzle Translation
Logic ✓

Code

Fine-Tuning ✓ ✓ ✓ ✓ ✓

Table 10.1: Methods used by each category of our taxonomy based on the puzzle benchmarks we collected

utilized nested lists for puzzle representation3, finding the Tree-of-Thought (ToT) method most effective,
especially for smaller puzzles. [126] explore neuro-symbolic approaches across Sudoku, Jobs puzzles, and
other logic puzzles, showing that well-prompted LLMs can accurately generate answer set programming
rules.

For Rubik’s Cube and Maze solvers, [258] assessed GPT-2’s spatial reasoning using over 2,400 Rubik’s
Cube samples and 10,000 mazes. Despite limited fine-tuning and token constraints, GPT-2 successfully solved
the Rubik’s Cube in one out of seven attempts, displaying potential despite a high rate of valid but incorrect
solutions. [66] applied multiple methods such as CoT, Self-Consistency, and various Thoughts (ToT, GoT,
XoT) on a 2×2×2 Rubik’s Cube using GPT-3.5 and GPT-4. XoT with self-revision emerged as the most
accurate, significantly outperforming others with a 77.6

[66] also evaluated the effectiveness of XoT on the spatial 8-Puzzle and numerical Game of 24. The 8-
Puzzle’s challenges were solved with a remarkable 93.2% accuracy across 419 puzzles using XoT with revision,
showcasing superior efficiency over few-shot prompting and CoT. This high accuracy, coupled with a reduced
number of LLM invocations, underscores XoT’s efficiency and potential in complex puzzle-solving contexts.

Regarding Crosswords, [306] and [71] fine-tuned T5 models [288] on extensive datasets of individual cryptic
clues, revealing T5’s advantages over traditional methods and highlighting areas for improvement, especially
with quick clues and specified answer lengths. [164]’s comparison of BART [175] and T5 indicated a sub-
30% accuracy for clue-answer tasks, with retrieval-augmented generation transformers surpassing fine-tuned
LLMs. Additionally, [391] applied 5-shot prompting and ToT to GPT-4 on Crossword puzzles, significantly
improving performance by solving 4 out of 20 puzzles and achieving a 60

[77] fine-tuned two models, "ChessGPT" and "ChessCLIP," using a collection of 3.2 million chess puzzles

3e.g., [[3„ ,2], [1„3,],[,1„3],[4„ ,1]]
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from the Lichess dataset4. Each puzzle includes annotations for its rating, theme, and solution.

Lastly, [149] unveiled BoardgameQA, a dataset featuring multiple-choice questions set against a backdrop
of contradictory facts and rules. Models must navigate these complexities to provide free-text answers. Their
evaluation revealed that fine-tuning BERT-large and T5-XXL with proofs emerged as the most effective
method, contrary to few-shot prompting on PaLM with CoT. Additionally, the presence of extra or conflicting
information decreased accuracy.

Stochastic Puzzles The exploration of stochastic puzzles, represented by the **BoardgameQA** bench-
mark [149], highlights the challenges presented by scenarios with missing information, a characteristic of this
puzzle category. It is observed that as the amount of missing information increases, the accuracy of fine-tuned
models tends to decrease. Interestingly, this increased difficulty does not similarly affect the performance of
prompt-tuned and few-shot learning methods, likely due to the use of larger models in these approaches.

Minesweeper, characterized by its unpredictability and hidden information, stands as a quintessential ex-
ample of stochastic puzzles. This game challenges players to deduce the locations of mines based on numerical
clues, offering a unique test of spatial reasoning. [186] evaluated LLMs on Minesweeper using different rep-
resentations, including table and coordinate formats. While GPT-3.5 showed some initial understanding of
the game mechanics, enhancements such as few-shot prompting had minimal impact. In contrast, GPT-4
demonstrated improved capabilities in mine identification but faced challenges in completing the board, em-
phasizing Minesweeper’s utility in assessing LLMs’ strategic thinking and inference skills. The experiments
highlighted the advantages of using the coordinate representation to aid LLM comprehension over the table
format.

Card games, especially Poker, are also notable within the stochastic puzzle category where strategic decision-
making is critical. Simplified Poker variants challenge players to infer opponents’ cards and calculate odds
amidst hidden intentions. [109] observed that while models like ChatGPT and GPT-4 understand advanced
strategies in Poker’s pre-flop round, they do not achieve Game Theory Optimal (GTO) play. ChatGPT tends
to adopt a more conservative strategy, whereas GPT-4 exhibits a more aggressive style of play. Furthermore,
[121] applied a Reinforcement Learning-trained OPT-1.3B model across all phases of Poker, revealing superior
performance in terms of win rates and efficiency, showcasing LLMs’ proficiency in managing complex strategies
in stochastic settings. Another agent leveraging GPT-4 [108] achieved significant success in various imperfect
information card games.

Social deduction games, such as Werewolf and Avalon, blend logical reasoning with intricate social dy-
namics, categorizing them within the stochastic puzzle domain. These games require players to deduce roles
amidst unpredictable human behavior. [385] introduced a framework for Werewolf that utilizes LLMs without
tuning, relying on the retrieval and reflection of past communications to enhance gameplay. This approach
highlights the LLMs’ ability to utilize historical interactions for strategic decision-making. Additionally,
frameworks for Avalon [364, 166] demonstrate how LLMs can adeptly navigate scenarios requiring social
manipulation and deduction, further underscoring LLMs’ capabilities in managing the complex interplay of
logic and social interaction inherent in such games.

Programming Puzzles P3 (Python Programming Puzzles) [318] offers a range of Python program-
ming challenges, from straightforward string manipulations to complex tasks, such as the Tower of Hanoi
and algorithmic puzzles. Models applied to these puzzles include enumerative solvers for building Abstract
Syntax Trees and autoregressive Language Model Solvers such as GPT-3 and Codex [37], employing varied
prompting techniques. The evaluation metric, pass@k, indicates the models’ ability to solve a puzzle within
a given number of attempts [37]. Results show a correlation between puzzle difficulty for both models and
humans, with descriptive prompts enhancing model performance.

[316] introduce a dataset comprised of 530 code snippets from programming courses, presenting puzzles in
a multiple-choice format. The distinction between questions with and without code snippets offers a unique
perspective on LLMs’ problem-solving strategies. The dataset categorizes questions into six types, including
true/false and output prediction. GPT models were evaluated, revealing that code inclusion significantly

4https://lichess.org/
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increases puzzle complexity. Accuracy rates vary, with higher performance on completion-oriented questions,
suggesting that LLMs’ effectiveness can depend heavily on question format and content.

Commonsense Reasoning Puzzles True Detective [54] presents detective puzzles in long-form stories,
challenging LLMs such as GPT-3.5/4 to draw conclusions. Various methods, including CoT and Golden-CoT,
are applied, revealing difficulties in making final inferences despite all necessary information being available.
Golden-CoT provides the model with the reasoning behind the correct answer, so the model only needs
to understand this reasoning and extract the answer. While Vanilla and CoT approaches perform close to
random, Golden-CoT demonstrates significantly better accuracy, particularly with GPT-4. However, even
with Golden-CoT, GPT-3.5 achieves a solve rate of only 63%, whereas GPT-4 matches human solver results
(without access to the reasoning behind the answer).

DetectBench [105] containing 1200 questions, also evaluates informal reasoning in real-life contexts. It tests
methods such as use of hints, various CoT approaches and detective thinking on models including GPT-4,
GPT-3.5, GLM-4 and Llama2. Hints emerges as a powerful aid, with larger models generally outperforming
smaller ones. The effectiveness of different approaches vary, with detective thinking effectively assisting most
of the models.

LatEval [124] introduces a conversational format with English and Chinese stories, requiring players to ask
yes/no questions before providing an answer. GPT-3.5, GPT-4, and various other Chat models are evaluated
on their ability to ask relevant questions and maintain consistency with the truth. Larger models do not
necessarily show advanced performance in question relevance. However, GPT-4 demonstrates the highest
answer consistency, though there is still significant room for improvement.

PuzzTe [337], with its array of comparison, knights and knaves, and zebra puzzles, represents a potentially
rich resource for LLM testing. Despite not yet being applied to LLMs, its generated puzzle answers by Mace4
model finder and Prover9 theorem prover5 indicate its potential for future LLM evaluations.

Table 10.2 presents a comprehensive summary of the datasets and tasks related to each category within
our taxonomy of puzzles. A detailed analysis of this table highlights a significant number of datasets for
rule-based deterministic puzzles, such as Sudoku and Rubik’s Cube, as well as a variety of rule-less riddles.
This demonstrates a strong research interest and resource availability in these areas, underscoring the active
exploration and validation within these fields.

Conversely, there is a noticeable scarcity in datasets for rule-based stochastic puzzles and rule-less program-
ming puzzles. This deficiency suggests a significant opportunity for further research and the development of
new datasets. Expanding the collection of datasets in these less-represented categories could provide more
diverse challenges, which would enhance the problem-solving capabilities of LLMs.

By addressing this gap, the research community could create a more balanced and comprehensive set of
benchmarks. These benchmarks would encompass a wider spectrum of puzzle-solving scenarios, including
those that involve uncertainty and complex logic-based problem-solving. Such developments could potentially
catalyze advancements in the ability of LLMs to navigate and resolve complex, uncertain scenarios effectively,
thereby pushing the boundaries of what these models can achieve.

Performance Analysis: Rule-based / Deterministic: Methods such as ToT and XoT (§ 10.2.1), which
introduce structured reasoning sequences, typically enhance model reasoning abilities as the complexity of the
puzzle’s structure increases [66]. However, performance analyses in areas like BoardgameQA and crossword
puzzles still show generally poor model performance, suggesting that while these approaches are promising,
there is room for improvement in handling even structured deterministic challenges.

Rule-based/Stochastic: Fine-tuning is prevalent in this category, enabling LLMs to effectively grasp basic
rules and handle simpler scenarios. Nonetheless, these models often falter in more complex settings that
require extensive multi-step reasoning and the management of uncertainty, pointing to limitations in current
methods when faced with the stochastic elements of puzzles [186].

Rule-less/Riddles & Commonsense: In this category, there is a notable performance gap between LLMs
and human levels. While techniques like Chain of Thought (CoT) improve accuracy, they still fall short of

5https://www.cs.unm.edu/ mccune/prover9/
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Category Type Datasets

Rule-based

Deterministic BoardgameQA [149], Sudoku [258, 212, 126], Rubik’s Cube [258,
66], Maze [258], Crossword [391, 306, 71, 164], 8-puzzle [66], Game
of 24 [66, 391], Chess [126, 77]

Stochastic Minesweeper [186], BoardgameQA [149], Card Games [121, 109],
Social Deduction Games [364, 385, 166]

Rule-less

Riddles BrainTeaser [130], RiddleSense [194], BiRdQA [410], CC-Riddle
[382], PUZZLEQA [414], MARB [343]

Programming P3 [318], [316]
Commonsense LatEval [124], True Detective [54], DetectBench [105], MARB

[343]

Table 10.2: Collected Datasets and Tasks for each Category

human evaluation outcomes. This gap highlights the challenge for LLMs in bridging intuitive and inferential
reasoning required in rule-less contexts.

Rule-less/Programming : Programming puzzles remain challenging for LLMs, reflecting similar difficulties
faced by humans [318]. Tasks that require code analysis and logic reasoning in multiple-choice formats
have proven particularly tough, underscoring the ongoing challenges in applying LLMs to complex, technical
reasoning tasks [316].

Furthermore, the format of questions significantly affects the effectiveness of puzzle-solving by LLMs.
Multiple-choice setups, for instance, tend to simplify tasks for LLMs by narrowing the solution search space,
while free-text formats increase the difficulty level by requiring more open-ended reasoning.

Puzzle Generation research is currently limited, which is likely due to the prerequisite that understanding
and solving puzzles is necessary before one can generate them effectively. The few works that was found on
puzzle generation reveal mixed results. For instance, GPT-3.5’s attempts at generating puzzles with answers
demonstrated poor outcomes [414]. Conversely, the introduction of ACES, an autotelic generation method for
creating diverse programming puzzles, shows how semantic descriptors produced by LLMs can be leveraged
for creative puzzle creation [276]. Recent works have also explored the generation of crossword puzzles in
different languages, utilizing LLMs to create clues and puzzle layouts [426, 400, 399], indicating a growing
interest and potential in this area.

Despite these advancements, significant inconsistencies remain in the ability of LLMs to solve puzzles, par-
ticularly in the domain of riddle-solving tasks within rule-less puzzles. To address these challenges, the
subsequent chapter proposes a novel method designed to enhance the reasoning capabilities of LLMs, specif-
ically for riddle-solving tasks [269]. The proposed approach centers on the generation of counterfactual
riddles—riddles constructed to require the same reasoning steps as the original but set within alternative
contexts. By presenting these counterfactual riddles as additional examples during in-context learning, the
method aims to systematically improve the ability of LLMs to reason through and solve complex riddles,
thereby addressing a critical gap in current puzzle-solving performance.

10.3 Generation of Counterfactual Riddles
The objective of this section is to introduce a novel prompting methodology designed to enhance the reasoning
capabilities of LLMs. This approach leverages the generation of counterfactual riddles, which require identical
reasoning steps for their resolution but are framed within an alternative context. These generated riddles,
referred to in the literature as context-reconstructed riddles [131, 269], are central to our exploration of
reasoning mechanisms in LLMs.

Reasoning with Language Models The reasoning capabilities of language models have been extensively
investigated across various domains. These include commonsense reasoning [315], arithmetic reasoning [216],
abductive reasoning [416], inductive reasoning [112], deductive reasoning [313], and analogical reasoning
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[333], among others. Of particular relevance to our study is the exploration of structured, rule-based think-
ing processes often referred to as vertical thinking. This type of reasoning, characterized by the systematic
application of logic and rules, has been widely studied in the context of established datasets, such as Rid-
dleSense and PIQA [195, 22]. These studies have revealed significant insights into the reasoning patterns
exhibited by language models.

Conversely, creative reasoning has remained an underexplored domain in the evaluation of LLMs, frequently
being excluded from traditional reasoning benchmarks [328, 314]. This exclusion has created a notable
gap in the literature, particularly in light of the emergent capabilities demonstrated by larger and more
sophisticated models [369]. Puzzle-solving, which inherently requires creative and out-of-the-box thinking,
provides a compelling framework for exploring this underrepresented aspect of reasoning [95, 195, 411].

Taking this further, the concept of lateral thinking, which involves the deliberate disruption of default as-
sumptions and associations to arrive at novel solutions, has been proposed as a mechanism for solving more
complex and unconventional puzzles. This was first systematically demonstrated in the BrainTeaser dataset
[131], which highlights the potential of lateral thinking processes to challenge traditional reasoning paradigms.

In this chapter, we aim to examine the interplay between vertical and lateral reasoning abilities in LLMs by
employing specifically designed prompts to probe their puzzle-solving capabilities. Through this exploration,
we seek to bridge the gap in the literature and provide a comprehensive framework for assessing both linear
and creative reasoning processes in language models.

Large Language Models and Prompting The discovery of reasoning patterns in LLMs is frequently
achieved through the application of various prompting techniques [282]. These strategies range from straight-
forward zero-shot prompts to more elaborate multi-stage prompting frameworks. Zero-shot prompting often
employs intuitive and concise instructions, such as the widely recognized phrase “Let’s think step-by-step”,
which has demonstrated significant improvements in reasoning tasks [158]. However, the design space for
such “magic prompts” remains vast and largely uncharted, posing challenges to the systematic identification
of optimal prompts.

A significant breakthrough in this area was the introduction of Chain-of-Thought (CoT) prompting [371],
which formalized the approach of querying models for intermediate reasoning steps. This method proved
particularly effective for eliciting complex reasoning processes in larger models. Despite its success, the
application of few-shot prompting, which involves providing a set of demonstrations within the input, presents
challenges. These challenges include the inherent instability in exemplar selection [215, 245] and the difficulty
of optimizing their placement [67].

Similarity-based retrieval has emerged as the default technique for exemplar selection in few-shot prompting
[206, 283, 67], with further improvements focused on optimizing the ordering of selected exemplars [377].
Recent work has also explored task-specific factors, such as the complexity of reasoning paths [86] and
the diversity of exemplars [412], which have proven effective in enhancing reasoning performance. These
developments emphasize the importance of uncovering hidden patterns in the data that drive reasoning
performance, rather than relying solely on semantic similarity for exemplar selection.

Building on these insights, we propose a novel approach to exemplar crafting that prioritizes the promotion of
latent reasoning patterns over the semantic similarity of data samples. While maintaining simple similarity-
based retrieval for exemplar placement, we demonstrate that focusing on these reasoning patterns is sufficient
to achieve advanced reasoning capabilities in LLMs. By outperforming alternative prompting techniques, our
approach underscores the adequacy of reasoning-focused exemplars in enhancing model performance, without
the need for further engineering in few-shot settings.

10.3.1 Methodology

Consider the following two riddles: R1: “A man shaves every day, yet keeps his beard long” and R2: “What
has a beard but never needs to shave?”. At first glance, these riddles appear to share semantic similarities,
as they involve analogous linguistic structures and refer to overlapping objects or concepts. However, the
reasoning processes required to solve them differ significantly due to their distinct contextual framings.
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In R1, the answer is “A barber.” The word “beard” is employed in the context of human grooming and
personal appearance, reflecting a literal interpretation tied to the profession of the barber. In contrast, R2
uses “beard” metaphorically in a botanical or natural context, with the answer being “A tree.” Here, the term
“beard” refers to certain botanical features, such as the “beard” of oak trees, requiring a different pathway of
reasoning that departs from the literal context of human grooming.

This divergence in reasoning is further highlighted when introducing a new riddle: “I plant seeds every day,
yet don’t have a single plot”. The correct answer in a creative context is “An author.” Authors metaphorically
“plant seeds” of ideas through their writing, fostering abstract concepts without necessarily working with
physical plots of land. The phrase “plot” could refer to a story’s structure, adding layers of interpretive
complexity. Conversely, “A farmer” is not an appropriate answer because farmers typically work with tangible
plots of land, which contradicts the riddle’s framing of “not having a single plot.”

In this scenario, a reconstructed version of R1, such as R3: “Tom attends class every day but doesn’t do any
homework”, would offer a clearer reasoning pathway for the model to follow. Although R2 is semantically
closer to R1 in terms of shared terms like “beard,” its contextual framing diverges due to its reliance on
natural rather than human contexts. This difference demonstrates how contextual framing can either clarify
or obscure the reasoning trajectory needed to arrive at the intended answer.

10.3.2 RISCORE Method

Building upon this example, we propose the RISCORE (RIddle Solving with COntext REcontruciton)
[269] prompting method, which is specifically designed to enhance the riddle-solving capabilities of LLMs in
in-context learning tasks. The core idea behind RISCORE is to supplement each exemplar in a few-shot (FS)
learning setup with a contextually reconstructed version of itself. By altering the context while preserving the
underlying reasoning process, the method ensures that the model develops a robust and coherent reasoning
trajectory, enabling it to generalize effectively to new riddles.

Unlike traditional FS methods, which rely solely on real examples extracted from datasets, RISCORE gener-
ates additional examples that adapt the original context to a different framing. For instance, the reconstructed
example R3: “Tom attends class every day but doesn’t do any homework” preserves the logical structure of
R1 while recontextualizing its content. This process allows the model to focus on the reasoning steps rather
than being misled by superficial semantic similarities, as seen in the case of R2.

As depicted in Figure 10.3.1, RISCORE extends existing FS methods [67, 363, 333] by augmenting FS
samples with automatically generated, context-reconstructed examples. Importantly, RISCORE operates
independently of the exemplar selection process, allowing for compatibility with various selection techniques.
In our implementation, we rely on semantic similarity for optimal exemplar selection; however, other methods
from the literature can be employed seamlessly.

The key advantage of RISCORE lies in its ability to amplify the effectiveness of FS learning by introduc-
ing contextually adapted examples that highlight hidden reasoning patterns embedded in the data. These
context-reconstructed exemplars not only preserve the logical structure of the original riddles but also guide
the model toward more precise reasoning pathways. As detailed in Section 10.3.2, this approach has consis-
tently demonstrated improved performance across multiple reasoning benchmarks. Remarkably, the inclusion
of context-adapted examples has, in most cases, outperformed the use of real dataset examples, as evidenced
by the results in Section 10.5.

Methodology for Generating Contextually Reconstructed Riddles

This section outlines a systematic approach for generating high-quality, contextually reconstructed riddles
designed to function as few-shot exemplars in the Multiple-Choice Question Answering (MQA) format. These
reconstructed riddles, when used in conjunction with their original counterparts, aim to improve model
performance on tasks that require both lateral and vertical reasoning. Building upon the semi-automated
pipeline introduced in the BrainTeaser framework [131], the proposed method fully automates the generation
process by leveraging the advanced capabilities of LLMs. An overview of the automated pipeline is illustrated
in Figure 10.3.2. The methodology is divided into two distinct steps: the generation of question-answer pairs,
which involves creating a question along with its correct answer, and the generation of distractors, which
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Figure 10.3.1: An overview of RISCORE, where the reconstructed instances, along with their original
counterparts, are incorporated as exemplars in the few-shot setting to enhance the model’s riddle solving

ability [269].

entails producing incorrect answers for the riddle. The latter step is particularly critical and challenging, as
the distractors must be guaranteed to be incorrect while avoiding being overly obvious as wrong choices. A
detailed analysis of these two steps is provided below.

Step 1: Generation of Question-Answer Pairs

The initial phase involves the generation of a single contextually reconstructed Question-Answer pair for
each selected instance. At this stage, distractors—incorrect answer options included in multiple-choice for-
mats—are temporarily excluded to focus solely on the correct answer. Distractors are specifically designed
to challenge the reasoning depth of the model by appearing plausible while being definitively incorrect.

To create the reconstructed Question-Answer pair, the LLM is provided with the original riddle, its correct
answer, and a task-specific system prompt. This prompt instructs the model to analyze the given riddle,
comprehend the reasoning process that connects the question to the answer, and subsequently generate a new
riddle that adheres to the same reasoning pathway. By supplying both the question and the correct answer,
the cognitive load of independently solving the riddle is alleviated, facilitating more accurate reconstruction
[333].

To further enhance the robustness of the methodology, the process is implemented in both zero-shot and few-
shot settings. For the latter, pre-existing pairs of original and contextually reconstructed riddles from the
BrainTeaser dataset are employed to provide demonstrations. Once the Question-Answer pair is generated, a
filtering stage is applied to ensure the quality of the riddle and its alignment with the dataset. This filtering
involves applying dataset-specific rules regarding the structure of the question and the appropriateness of the
answer, ensuring adaptability to various datasets.

Step 2: Generation of Distractors

The subsequent step focuses on generating incorrect answer options, or distractors, to accompany the re-
constructed Question-Answer pair in the multiple-choice format. Although the task may appear straight-
forward, it entails significant challenges. First, the distractors must match the original number of options
and be definitively incorrect when compared to the correct answer. At the same time, they must remain
contextually plausible, as excessive divergence from the correct answer could undermine the credibility and
difficulty of the riddle. Furthermore, scenarios where the correct answer is “None of the above,” as observed
in the BrainTeaser dataset, necessitate careful construction of distractors to ensure they remain invalid.
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Figure 10.3.2: An overview of the automated method for generating a context-reconstructed riddle [269].

The length of the distractors poses an additional complexity. For example, datasets such as BrainTeaser
predominantly feature multi-word answers, while others like RiddleSense often contain single-word answers.
To address these variations, distinct methodologies are applied for generating long and short distractors, as
detailed below.

Generation of Long Distractors

For riddles requiring long distractors, the original distractors are presented to the LLM alongside the newly
generated question from Step 1. Each distractor is processed individually and recontextualized to align
with the newly constructed riddle. This ensures that the distractors remain relevant, although the quality
of integration may vary. In cases where the correct answer of the original riddle is “None of the above,”
additional distractors are generated by directly prompting the LLM to create new options based on the
reconstructed Question-Answer pair.

Two distinct pipelines were utilized to generate at least three distractors for each multiple-choice question,
ensuring comprehensive coverage of various potential scenarios and maintaining the integrity of the riddle-
solving tasks. The distractors were crafted to be contextually coherent while remaining incorrect, thereby
enhancing the challenge presented to the model. The methodologies employed are detailed below.

Pipeline 1: The first pipeline employed a structured approach that relied on a system-user prompt designed
to guide the model in analyzing the reconstructed Question-Answer pair. The model was instructed to
comprehend the riddle, identify the reasoning process connecting the question to the answer, and generate a
distractor by focusing on aspects of the concept that could be interpreted as more deceptive or challenging.
This method capitalized on the model’s ability to produce nuanced distractors derived from the underlying
reasoning pathway, ensuring that the generated distractors remained plausible yet incorrect. The pipeline
reliably produced one of the three required distractors while maintaining contextual alignment with the
question’s premise.

Pipeline 2: The second pipeline adopted a more intricate methodology, designed to integrate elements
from the reconstructed question’s context into the generated distractors. In this approach, the model was
prompted with a system-user instruction, providing it with the reconstructed question (excluding its correct
answer) and the incorrect distractors from the original question. The option “None of the above” was excluded
to simplify the task and focus the model’s efforts on modifying the distractors provided. The model was tasked
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with adapting the given distractors by incorporating elements from the setting or context described in the
question, while explicitly avoiding any resemblance to the correct answer.

This approach introduced additional complexity, as the absence of the correct answer necessitated that the
model generate distractors independently based on its interpretation of the reconstructed question. Conse-
quently, the quality of the distractors varied. In some cases, the distractors produced suboptimal contexts
or lacked sufficient challenge. However, despite occasional shortcomings in quality, the distractors remained
unequivocally incorrect, fulfilling their primary function of providing plausible yet invalid options. Moreover,
it was observed that, when paired with both original and contextually reconstructed examples, these minor
deficiencies did not significantly impact the overall performance of the model during evaluation.

To further enhance the coherence and relevance of the distractors, two additional distractors were generated by
slightly modifying the original concepts to better align with the reconstructed context. These supplementary
distractors added a layer of consistency to the multiple-choice options, ensuring that the distractors were not
only incorrect but also contextually appropriate to the underlying premise of the riddle.

Lastly, to prepare the final dataset for use, a random selection of two distractors from the three generated
options was performed. These two distractors were shuffled with the correct answer, and the option “None
of the above” was appended as the final choice. This randomization was implemented to eliminate positional
bias and ensure the fairness of the multiple-choice format. In instances where “None of the above” was
identified as the correct answer, all three generated distractors were included without shuffling.

The resulting dataset maintained a balance between contextually relevant distractors and challenging incor-
rect options, thereby supporting robust evaluation of the model’s reasoning capabilities. This comprehensive
approach to distractor generation ensured that the dataset was both high-quality and suitable for the intended
tasks, laying a strong foundation for subsequent experimental investigations.

Generation of Short Distractors

For datasets with single-word answers, such as RiddleSense, generating contextually aligned distractors is
more challenging due to the brevity of the answers. To address this, the reconstructed answer from Step 1
is categorized into mutually exclusive semantic groups, as outlined below. This categorization informs the
generation of distractors by providing the LLM with two categories closely related to, but distinct from, the
correct answer’s category. For example, if the correct answer belongs to the “Nature” category, distractors
may be drawn from categories like “Person” or “Place.” The LLM is then tasked with generating plausible
but incorrect answers within these specified categories.

To ensure the generated distractors are both incorrect and contextually relevant, additional steps are un-
dertaken. The riddle is divided into smaller phrases, and interrogative words are identified. For purely
descriptive riddles lacking direct queries, phrases such as “What am I?” are appended to clarify the intended
question. Filtering procedures are subsequently applied to eliminate duplicates and validate the distinctive-
ness of the distractors. If the quantity of distinct distractors remains insufficient, WordNet [244] is utilized
to augment the distractor set.

In this setting, a distinct approach was required due to the specific characteristics of the dataset. The
answers and distractors were primarily limited to single-word responses, whereas the corresponding questions
featured detailed and complex settings incorporating punctuation, conjunctions, and other nuanced linguistic
structures. To address these unique requirements, two specialized pipelines were developed to generate
distractors that align with this format while maintaining relevance and quality.

Pipeline 1: The first pipeline employed a granular methodology that involved segmenting the reconstructed
question into smaller subphrases. This segmentation was achieved by identifying punctuation marks and con-
junctions as natural breakpoints. In instances where fewer than three distinct subphrases were generated,
additional splits were introduced at the position of the word “and” to ensure sufficient subdivision. Further-
more, the presence of interrogative words was detected. For questions lacking a direct inquiry and consisting
solely of descriptive elements, the phrase “What am I?” was appended. This addition was not arbitrary but
followed the structural conventions of riddles within the dataset, where “What am I?” frequently serves as a
standard closing query leading to single-word answers.
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Once the reconstructed question was segmented and refined with an appended query (if necessary), the
model was prompted to generate incorrect answers for each subphrase concatenated with the appended
question. This ensured that distractors were aligned with distinct aspects of the question’s context. However,
this approach occasionally led to distractors that were too similar to the correct answer, particularly when
subphrases contained key ideas central to the riddle’s solution.

To mitigate this issue, an intermediate classification step was introduced. Using the facebook/bart-large-
mnli model [176], accessed via Hugging Face, the correct answer was categorized into one of eight mutually
exclusive classes: food, person, object, animal, nature, time, place, concept. These categories were specifically
designed to avoid overlap and provide clear distinctions between classes.

The category predicted for the correct answer was then used to guide the generation of distractors. For
each subphrase concatenated with the question, the model was provided with the two most similar categories
(excluding the correct answer’s category). A system-user instruction prompted the model to generate a
plausible but incorrect answer consistent with the given category and contextual setting. This approach
ensured that the distractors were contextually aligned with the question while remaining distinct from the
correct answer.

After this process, a filtering step was applied to validate the distinctiveness and relevance of the generated
distractors. The pipeline utilized LLMs, including the Llama3-8B and Llama3-70B models [7], to produce
high-quality distractors.

Pipeline 2: In cases where the first pipeline did not yield a sufficient number of high-quality distractors,
a secondary pipeline was employed to augment the distractor set. This approach relied on WordNet [45],
a lexical database, to retrieve synonyms and hyponyms for each generated distractor or, if necessary, for
the original question’s distractors. The retrieved terms were added as potential distractors to diversify the
options.

Generation of Context-Reconstructed MQA Riddles

Once the distractor set was compiled, four distractors were randomly selected and combined with the correct
answer, which was placed in a random position to eliminate potential positional bias. To ensure the integrity
and quality of the dataset, a restriction was imposed that at least two of the four required distractors must
be generated through the first pipeline. This restriction was necessary because distractors derived through
WordNet augmentation were generally observed to be of lower quality compared to those produced directly by
the model. If this requirement was not satisfied, the corresponding instance was excluded from the contextual
reconstruction process to maintain overall quality.

The two complementary pipelines, in combination, ensured that the generated distractors were diverse,
contextually aligned, and sufficiently challenging for the task. By tailoring the distractor generation process
to the unique characteristics of the dataset, this methodology provided a robust framework for creating
high-quality multiple-choice questions. The rigorous filtering and augmentation steps further enhanced the
reliability of the dataset, making it suitable for rigorous evaluation of lateral and vertical reasoning tasks.

In the final step, the reconstructed Question-Answer pair and the generated distractors are combined to
create the complete multiple-choice riddle. The distractors are randomly shuffled, and the correct answer is
assigned to a random position to eliminate positional bias.

The desired contextual reconstructions were successfully generated for both datasets, providing a robust
foundation for the study. However, a notable issue was encountered during the quality control filtering
process: certain originally selected examples were excluded as they failed to meet the quality criteria, resulting
in the absence of corresponding reconstructed examples. This posed a challenge in maintaining a sufficient
number of exemplars for in-context learning in configurations requiring two, four, or eight exemplars (i.e.,
RISCORE).

To address this limitation, a structured methodology was employed to supplement the exemplar set with
high-quality examples. This process consisted of two key steps, detailed as follows.

1. Initially, the most semantically similar examples from the original dataset were identified and used as
in-context learning exemplars. These original examples were paired with their automatically generated
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contextual reconstructions, ensuring that both the original and reconstructed pairs were represented
in the exemplar set. This approach allowed for an efficient supplementation of missing reconstructed
examples by leveraging pre-existing data. However, in instances where this strategy did not yield a
sufficient number of exemplars to satisfy the requirements of the RISCORE configurations, a more
systematic method was employed.

2. To systematically address the exemplar shortfall, embeddings were generated for the entire set of
original examples and their contextual reconstructions that had not yet been incorporated into the
current exemplars. These embeddings were computed to represent the semantic characteristics of
each example, facilitating similarity-based retrieval. Cosine similarity was then utilized to identify
the most semantically similar examples from this pool, ensuring that the selections closely aligned
with the existing exemplars. Importantly, this process was not restricted to the original training
set. Examples included in the similarity search also encompassed reconstructed examples, allowing for
greater flexibility in identifying suitable pairs. The most similar examples were selected iteratively, with
each chosen example paired with its corresponding counterpart (original or reconstructed, as needed) to
maintain the integrity of the reasoning process. This iterative process was repeated until the required
number of exemplars for the specified configuration (two, four, or eight) was achieved. The careful
selection of semantically similar pairs ensured that the supplemented exemplars maintained consistency
with the dataset’s reasoning pathways and contextual framing.

By combining semantically similar examples with their corresponding contextual reconstructions and system-
atically supplementing the exemplar set through embedding-based retrieval, the issue of insufficient examples
was effectively mitigated. This approach ensured that the exemplar set adhered to the required configura-
tions while preserving the quality and coherence necessary for effective in-context learning. The structured
methodology also minimized the risk of introducing irrelevant or low-quality examples, thereby enhancing
the reliability and applicability of the dataset for reasoning tasks.

10.4 Experiments

10.4.1 Datasets

The proposed methodology was evaluated by testing various LLMs on two carefully chosen datasets, Brain-
Teaser [131] and RiddleSense [195], which address distinct reasoning paradigms: lateral and vertical reason-
ing, respectively. The performance of the models was compared against several established baselines to assess
the effectiveness of the method.

The BrainTeaser task introduced at SemEval-2024 [jiang-ilievski-ma:2024:SemEval2024, 131] presents
a set of lateral thinking puzzles formatted as multiple-choice question-answering (QA) tasks. Each question
in the dataset is accompanied by four answer options, of which only one is correct, while the remaining
three serve as distractors. Notably, the final option in every question is consistently labeled as “None of the
above,” adding an additional layer of complexity to the task by requiring the model to evaluate all options
comprehensively.

The task is divided into two distinct subtasks to address different aspects of lateral reasoning. The first
subtask, Task A: Sentence Puzzle, involves puzzles expressed through full-sentence descriptions, requiring
models to navigate more complex linguistic structures and contextual clues. The second subtask, Task B:
Word Puzzle, focuses on shorter, more concise puzzles, often relying on single-word or minimal phrasing for
their formulation. This distinction ensures that the dataset evaluates a broad spectrum of lateral reasoning
capabilities in LLMs.

In addition to the original puzzles, the dataset includes adversarial subsets specifically crafted to enhance
its robustness and challenge the models further. These adversarial subsets were generated through manual
modifications of the original brain teasers, with care taken to preserve the integrity of the underlying reasoning
paths. The perturbations introduced into the data were designed to create two distinct forms of variation:

1. Semantic Reconstruction: In this approach, each original question was rephrased or modified se-
mantically, while the correct answer and distractors remained unchanged. This type of reconstruction
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tests the model’s ability to recognize and adapt to variations in linguistic structure and phrasing without
altering the core reasoning process.

2. Context Reconstruction: This method involved altering the situational context described in the
brain teaser while maintaining the original reasoning pathway. By changing the context, the model is
challenged to abstract the reasoning process from specific scenarios and apply it in new settings.

An example of these data triplets is provided in Table 10.3, showcasing how the original puzzles are system-
atically transformed into semantic and contextually reconstructed versions while preserving their reasoning
consistency. BrainTeaser was specifically selected because it contains manually crafted context reconstruc-
tions, which provide an upper bound for model performance when incorporated into the input. These
manually created reconstructions serve as a benchmark for assessing the quality of context reconstructions
generated by the proposed automated method. By comparing model performance using manual and auto-
mated reconstructions, the efficacy of the method in replicating high-quality contextual examples can be
evaluated.

Question Choice
Original

A peanut.
What kind of nut has no shell? A doughnut.

A walnut.
None of above.

Semantic Reconstruction
A doughnut.

Which nut doesn’t have a shell? A walnut.
A peanut.
None of above.

Context Reconstruction
A fire bell.

Which type of bell doesn’t make a sound? A cow bell.
A bluebell.
None of above.

Table 10.3: Illustration of the structure of each sub-task’s dataset, showcasing the original statement along
with its two adversarials.

Additionally, the riddles in BrainTeaser were specifically designed to challenge the lateral thinking capabilities
of LLMs. Lateral reasoning involves finding creative solutions that deviate from traditional logical pathways,
making it a cognitively demanding process for models. Prior research has identified lateral reasoning as a
significant challenge for LLMs [95], further underscoring the relevance of this dataset for the evaluation.

The RiddleSense dataset was selected to complement BrainTeaser by focusing on vertical reasoning tasks.
Vertical reasoning involves the application of systematic, rule-based logic to solve riddles, requiring the
model to follow a structured and sequential reasoning process. The inclusion of RiddleSense allowed for a
broader evaluation of the method’s applicability across different reasoning paradigms and riddle types. Unlike
BrainTeaser, the RiddleSense dataset does not include manually curated context reconstructions. As a result,
the automated contextual reconstruction method was employed exclusively in this dataset, without ground-
truth reconstructions for comparison. This setup provided a valuable opportunity to test the robustness and
adaptability of the method in scenarios where manual reconstructions are unavailable.

The combination of BrainTeaser and RiddleSense ensured a comprehensive evaluation of the proposed
methodology. The manually crafted reconstructions in BrainTeaser provided a critical benchmark, enabling
a direct comparison of automated and manual reconstructions, while the exclusive use of automated recon-
structions in RiddleSense highlighted the generalizability of the method. Together, these datasets allowed
for an in-depth analysis of the method’s effectiveness in advancing the reasoning capabilities of LLMs across
a diverse set of cognitive tasks, demonstrating its potential to address both lateral and vertical reasoning
challenges. Table 10.4 provides statistics for the utilized datasets.
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Dataset Train Dev Test

BrainTeaser - SP 507(169x3) 120(40x3) 120(40x3)
RiddleSense (initial) 1021
RiddleSense (filtered) 3510 720 —
RiddleSense (sampled 50%) 360

Table 10.4: Data statistics for the BrainTeaser and RiddleSense.

10.4.2 Baselines

To evaluate the proposed methodology, a variety of prompting techniques were employed as baselines, includ-
ing zero-shot (ZS), few-shot (FS), and Chain of Thought (CoT) methods. These approaches allowed for a
comprehensive comparison of model performance across multiple configurations and reasoning paradigms.

Chain of Thought Prompting in Zero-Shot Settings (CoT ZS) The Chain of Thought (CoT)
prompting approach was employed in a zero-shot configuration, wherein models were prompted to solve
riddles in a step-by-step manner without the inclusion of any exemplars. This method follows the framework
proposed by [371], leveraging the natural reasoning abilities of large language models to decompose complex
riddles into logical steps. By evaluating the models under this setup, insights into their inherent riddle-solving
capabilities were obtained, particularly in scenarios where no prior examples or contextual information were
provided.

Few-Shot Prompting (FS) Few-shot prompting was utilized to examine the impact of exemplar-based
learning on the models’ reasoning performance. Experiments were conducted with varying numbers of ex-
emplars, specifically 2-shot, 4-shot, and 8-shot configurations. The selection of exemplars was informed
by two distinct strategies. The first involved randomly selecting examples from the dataset, referred to as
Rand. The second strategy, termed Sim, employed a semantic similarity model6 [408] to identify riddles
with minimal semantic distance from the test riddle.

Notably, the 8-shot limit was imposed due to evidence suggesting that the reasoning abilities of large language
models deteriorate with excessively long input sequences [174]. This constraint ensured that the evaluation
focused on configurations conducive to optimal model performance.

Few-Shot Prompting with Chain of Thought Explanations (CoT FS) To enhance the models’
comprehension of the reasoning process, few-shot exemplars were augmented with Chain of Thought expla-
nations. In this setup, each exemplar was accompanied by a detailed explanation of the reasoning steps
leading to the correct answer. These explanations were generated using a semi-automated approach, wherein
ChatGPT7 was prompted to produce explanations based on the correct answer, following the methodology
proposed by [371]. The generated explanations were subsequently manually reviewed and curated to align
with human interpretations of the reasoning process.

Due to the labor-intensive nature of this annotation process, experiments with CoT FS were conducted
exclusively in the 2-shot, 4-shot, and 8-shot configurations, using a random sampling strategy for exemplar
selection. This experimental setup allowed for the evaluation of whether crafted explanations could enhance
the models’ ability to follow and replicate the intended reasoning pathways.

RISCORE Methodology The RISCORE method introduces contextually reconstructed riddles into the
few-shot prompting process. For each exemplar used in the FS configuration, its corresponding reconstructed
riddle was appended to the input, thereby augmenting the prompt with additional context. Importantly, the
total number of shots in RISCORE configurations referred to the combined count of original and reconstructed
examples. For instance, a 4-shot RISCORE setup included two original riddles from the dataset and their two

6https://huggingface.co/Alibaba-NLP/gte-large-en-v1.5
7Specifically, the gpt-3.5-turbo-0125 version was utilized.
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reconstructed counterparts. This approach ensured a balanced representation of original and reconstructed
data while maintaining the same number of examples as the standard FS configurations for fair comparison.

The RISCORE approach primarily utilized the Llama3-8B and Llama3-70B models for generating both
Question-Answer pairs and distractors. These pairs were produced in both ZS and FS settings.

In addition, two distinct variants of RISCORE were explored. RISCOREm incorporated manually created
reconstructions (where available, such as those provided in the BrainTeaser dataset), while RISCORE utilized
fully automated reconstructions generated by the proposed method. The distinction between the two variants
lies solely in the nature of the exemplars provided, with the prompt structure remaining identical to that of
the FS method.

10.4.3 Models

To evaluate the proposed methodology, multiple language models of varying scales and architectures were
tested for their reasoning capabilities. The selected models included Llama3 with 8 billion8 and 70 billion9

parameters, respectively [7], Mistral-7B10 and Mistral-8x7B11 [129], and Qwen2-7B12 [387]. This diverse
selection of models enabled a comprehensive investigation into the impact of contextually reconstructed
examples on language models of differing sizes, parameter configurations, and design philosophies.

The inclusion of both moderately sized models (e.g., Mistral-7B) and larger-scale models (e.g., Llama3-
70B) provided insights into the scalability and generalizability of the RISCORE method. By examining
how models with different parameter counts respond to contextually reconstructed examples, it was possible
to assess whether the proposed approach is equally effective across a broad spectrum of architectures and
computational capacities.

The experimental framework treated each model as a black box. Specifically, the models were prompted with
input and their responses were recorded without any modification to their internal mechanisms or training
processes. This black-box approach ensured that RISCORE could be seamlessly applied to both open-source
and proprietary models, underscoring its adaptability and versatility. Furthermore, it demonstrated that the
method is not limited to specific model architectures or training paradigms, making it broadly applicable
across a wide range of LLMs.

10.5 Results
This section presents and analyzes the outcomes of the experiments conducted to evaluate the proposed
methodology.

10.5.1 BrainTeaser results

The performance of various prompting techniques applied to the BrainTeaser dataset is summarized in
Table 10.5. The analysis focuses on comparing baseline methods, such as FS, CoT FS, and FS Sim, with
the RISCORE methodology, highlighting their respective strengths and limitations.

A notable observation is the underperformance of the CoT FS method relative to standard FS techniques,
even when the exemplars are supplemented with manually crafted explanations. This underperformance
persists across all model sizes, suggesting that the addition of explanations does not sufficiently enhance
reasoning capabilities in these configurations. This finding aligns with previous research [67], which indicates
that the effectiveness of in-context learning is heavily influenced by exemplar selection rather than solely by
the inclusion of detailed explanations.

In line with expectations, exemplar selection based on semantic similarity (FS Sim) consistently yields
better results compared to random selection (FS Rand). This improvement underscores the importance of

8https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
9https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct

10https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
11https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
12https://huggingface.co/Qwen/Qwen2-7B-Instruct
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semantic relevance in exemplar selection, as semantically aligned examples provide a stronger foundation for
guiding model reasoning. This observation is particularly significant for RISCORE, as the methodology relies
on effective initial exemplar selection to enhance reasoning capabilities when augmented with contextually
reconstructed examples.

The results demonstrate that RISCOREm, which incorporates manually crafted context reconstructions, con-
sistently outperforms FS Sim across all evaluated configurations. For instance, in both 4-shot and 8-shot
settings, RISCOREm achieves superior performance when compared with FS Sim under equivalent con-
ditions. Specifically, comparisons such as 4-shot FS Sim versus 2+2-shot RISCOREm or 8-shot FS Sim
versus 4+4-shot RISCOREm consistently highlight the advantages of RISCOREm. These results under-
score the effectiveness of incorporating contextually reconstructed examples in maintaining robust reasoning
performance.

A deeper analysis reveals that RISCOREm effectively mitigates the noise introduced by suboptimal shot
selections, which is a notable challenge observed in the FS Sim results. For instance, with the Llama3-
70B model, the 2-shot FS Sim configuration achieves a performance score of 0.825. However, when two
additional semantically similar examples are added (resulting in a 4-shot configuration), the score declines
to 0.792. In contrast, the 2+2-shot RISCOREm configuration achieves a higher score of 0.833, representing
a 4% improvement over FS Sim under equivalent conditions. This trend is consistent across other models
and configurations.

Similarly, with the smaller Mistral-7B model, the 2-shot FS Sim achieves a score of 0.517, but the addition of
two more semantically similar examples reduces the score to 0.458. In comparison, the 2+2-shot RISCOREm
configuration achieves a score of 0.567, outperforming FS Sim by a notable margin in the 4-shot setting.
These results demonstrate that RISCOREm not only improves performance but also provides resilience
against the degradation caused by suboptimal exemplar selections.

Overall, the analysis highlights the robustness and effectiveness of RISCOREm in enhancing the reasoning
capabilities of large language models. By leveraging contextually reconstructed examples, the method ensures
improved performance across a variety of configurations, even in scenarios where traditional exemplar selection
strategies encounter limitations.

Using the automated method

The results from the manually curated RISCOREm method serve as a benchmark, representing the poten-
tial upper limit of performance improvements achievable with high-quality, carefully selected riddles and
distractors. Despite this, the automated RISCORE method consistently enhances model performance by
effectively leveraging contextually reconstructed examples, as detailed in Table 10.6. While the gains from
the automated RISCORE are understandably smaller compared to those achieved with the manually curated
examples (as seen in the RISCOREm results in Table 10.5), they remain consistent and noteworthy across
all tested models.

For instance, the Llama3-70B model shows a significant performance improvement when transitioning from
the FS Sim configuration with 8 semantically similar shots (performance score of 0.783) to an 8-shot
RISCORE-augmented setup (performance score of 0.808), which includes both the original examples and
their automated reconstructions. This trend of performance enhancement is also observed across smaller
models, with measurable gains. For example, the Qwen2-7B model in a 2-shot and 4-shot RISCORE setup
shows a 2.5% improvement over the same-shot FS Sim configuration. Similarly, for Mistral-7B, the perfor-
mance increase is even more striking—rising by up to 10% from a baseline score of 0.458 in certain 4-shot
configurations.

These findings highlight the effectiveness of automated context reconstruction, especially when the number
of examples provided to the model is limited. Automated reconstructions prove to be a valuable complement
to semantically chosen examples, enhancing the model’s ability to process and reason through the provided
information.

Interestingly, the results indicate that in most instances, RISCORE’s strategy of combining N/2 semanti-
cally selected examples with their automated reconstructions outperforms merely using the same number of
examples drawn directly from the dataset. This observation is underscored by the underlined results in the
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Method N. Llama3-70B Mistral-8x7B Llama3-8B Mistral-7B Qwen2-7B

Zero-Shot

CoT ZS 0 0.725 0.550 0.633 0.450 0.458

Few Shot - Randomly Selected Shots

2 0.758 0.617 0.633 0.475 0.608
CoT FS 4 0.683 0.583 0.608 0.508 0.650

8 0.708 0.642 0.658 0.508 0.667

2 0.775 0.617 0.633 0.517 0.642
FS Rand 4 0.808 0.683 0.642 0.483 0.608

8 0.775 0.617 0.675 0.483 0.642

2 0.783 0.625 0.667 0.458 0.608
RISCOREm 4 0.758 0.617 0.675 0.517 0.625

8 0.800 0.650 0.667 0.400 0.592

Few Shot - Semantically Similar Shots

2 0.825 0.692 0.700 0.517 0.600
FS Sim 4 0.792 0.683 0.717 0.458 0.633

8 0.783 0.667 0.767 0.533 0.650

2 0.783 0.675 0.767 0.483 0.667
RISCOREm 4 0.833 0.708 0.742 0.567 0.642

8 0.808 0.708 0.758 0.550 0.667

Table 10.5: An overview of the performance of models for BrainTeaser using baselines and RISCOREm
prompting. The best FS results are underlined, while best overall results per model are highlighted in bold.

tables. Nonetheless, there are scenarios where FS Sim surpasses RISCORE, primarily due to the selection
constraints inherent to RISCORE’s methodology. In cases where the semantic similarity algorithm identi-
fies an optimal example that is ranked lower than N/2 in a full FS setup, RISCORE may overlook these
potentially impactful examples due to its structured focus on N/2 examples plus their reconstructions.

This limitation suggests that while RISCORE is effective, its performance is partially dependent on the quality
of initial semantic similarity rankings and the subsequent selection of examples. This dependence highlights
an area for potential refinement in RISCORE’s methodology to ensure that the most semantically pertinent
examples are consistently utilized, thereby maximizing the effectiveness of the reconstructed contexts.

10.5.2 RiddleSense results

In the context of the RiddleSense dataset, RISCORE could only be applied to automatically generated exam-
ples, as the dataset’s structure does not include pre-existing context reconstructions for its questions. This
limitation necessitated the exclusive use of the proposed automated methodology for generating reconstructed
contexts.

Table 10.7 presents the results of the baseline techniques applied to the RiddleSense dataset across various
models. Consistent with previous findings, the few-shot technique that employs semantically similar exem-
plars for in-context learning (FS Sim) demonstrates superior performance compared to randomly selected
exemplars (FS Rand). This trend persists across all tested models, reaffirming the critical role of semantic
relevance in exemplar selection.

The results of the proposed RISCORE method, applied to the RiddleSense dataset, are detailed in Table 10.8.
A distinct pattern emerges when comparing the performance of the standard 8-shot exemplar selection based
solely on semantic similarity with the corresponding 8-shot RISCORE configuration. In the latter, the top
four semantically similar examples are augmented with their contextually reconstructed counterparts. Across
multiple instances, the RISCORE approach consistently outperforms the baseline 8-shot setting, underscoring
its effectiveness in enhancing model performance.
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Method N. Llama3-70B Mistral-8x7B Llama3-8B Mistral-7B Qwen2-7B

Llama3-70B ZS for QA & Llama3-8B distractors

2 0.792 0.667 0.625 0.492 0.625
RISCORE 4 0.792 0.642 0.675 0.467 0.625

8 0.808 0.683 0.700 0.475 0.642

Llama3-70B FS for QA & Llama3-8B distractors

2 0.750 0.675 0.683 0.475 0.625
RISCORE 4 0.792 0.650 0.658 0.558 0.658

8 0.808 0.675 0.742 0.517 0.658

Llama3-70B FS for QA & Llama3-70B distractors

2 0.783 0.667 0.683 0.500 0.617
RISCORE 4 0.792 0.642 0.667 0.508 0.617

8 0.767 0.683 0.700 0.500 0.617

Table 10.6: An overview of the performance of models for BrainTeaser using RISCORE prompting.
Similarity-based selection was employed for choosing all the exemplars. Results that surpass the FS

method with semantically similar examples (FS Sim, check Table 10.5), using the same number of shots,
are underlined.

For example, the Llama3-8B model achieves a score of 0.708 under the RISCORE setting, representing an
improvement of approximately 2% compared to the 8-shot FS Sim configuration, which attains a score of
0.681. Similarly, for the Mistral-8x7B model, RISCORE yields a score of 0.700, reflecting a 2.5% increase over
the FS Sim baseline score of 0.675. These results consistently demonstrate the added value of integrating
contextually reconstructed examples into the prompting strategy.

The benefits of the RISCORE method are also apparent when comparing the two 4-shot configurations. By
utilizing just four total examples—two original and two generated contextual reconstructions—our method
achieves accuracy that is comparable to or marginally better than the standard 4-shot FS Sim approach.
This highlights the efficiency of the RISCORE framework, which shifts the focus from the sheer quantity of
exemplars to their strategic selection and reasoning relevance.

While RISCORE does not consistently deliver large performance gains, it achieves comparable or slightly
better results using fewer grounded exemplars. This demonstrates the efficiency and practicality of the
method, as it maintains performance levels while emphasizing the quality and contextual alignment of the
exemplars. By leveraging contextually reconstructed pairs, RISCORE prioritizes the reasoning relevance of
examples, offering an efficient and effective approach to improving model performance in the absence of large
quantities of grounded data.

10.5.3 Quality of Contextually Reconstructed Riddles

The generation of contextually reconstructed riddles was carried out using Llama3 models with 8 billion and
70 billion parameters, employing both FS (few-shot) and ZS (zero-shot) configurations. The results reveal
significant differences in the performance of the two models, particularly in relation to the complexity of the
datasets.

For the BrainTeaser dataset, the Llama3-8B model was found to struggle in producing high-quality Question-
Answer pairs. This limitation rendered the smaller model unsuitable for use within the RISCORE framework
for lateral reasoning tasks. The observed difficulty can likely be attributed to the inherent demands of
the BrainTeaser dataset, which emphasizes lateral thinking—a reasoning process that requires creative and
unconventional problem-solving skills. Such tasks are notably challenging for models with smaller parameter
counts, as they lack the capacity to adequately process and generate the nuanced reasoning pathways required
for lateral thinking riddles.

The generation of high-quality Question-Answer pairs is critical to the success of RISCORE. When these
pairs fail to meet the required standard, as observed with the Llama3-8B model on the BrainTeaser dataset,
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Method N. Llama3-70B Mistral-8x7B Llama3-8B Mistral-7B Qwen2-7B

CoT ZS 0 0.775 0.675 0.619 0.589 0.608

Randomly Selected Shots

2 0.789 0.692 0.625 0.594 0.667
CoT FS 4 0.783 0.686 0.672 0.603 0.656

8 0.783 0.697 0.658 0.597 0.625

2 0.769 0.706 0.672 0.586 0.689
FS Rand 4 0.772 0.719 0.639 0.586 0.683

8 0.800 0.711 0.672 0.586 0.700

Semantically Similar Shots

2 0.792 0.714 0.706 0.608 0.722
FS Sim 4 0.817 0.692 0.711 0.633 0.714

8 0.800 0.675 0.681 0.611 0.731

Table 10.7: An overview of the performance of models for RiddleSense using baseline techniques. The best
results overall are in bold. Note that no RISCOREm numbers are reported, since RiddleSense does not

contain any ground truth reconstructed riddles.

Method N. Llama3-70B Mistral-8x7B Llama3-8B Mistral-7B Qwen2-7B

Llama3-70B fewshot for QA & Llama3-70B distractors

2 0.792 0.672 0.692 0.600 0.697
RISCORE 4 0.783 0.689 0.722 0.600 0.717

8 0.789 0.700 0.708 0.597 0.731

Llama3-70B fewshot for QA & Llama3-8B distractors

2 0.786 0.719 0.681 0.603 0.681
RISCORE 4 0.789 0.686 0.686 0.606 0.697

8 0.775 0.689 0.706 0.617 0.719

Llama3-8B zeroshot for QA & Llama3-8B distractors

2 0.792 0.681 0.689 0.589 0.694
RISCORE 4 0.778 0.714 0.700 0.600 0.683

8 0.806 0.689 0.686 0.614 0.689

Table 10.8: An overview of the performance of models for RiddleSense using RISCORE prompting.
Similarity-based selection was employed for choosing all the exemplars. Results that surpass the FS method

with semantically similar examples, using the same number of shots, are underlined.

the quality of the distractors alone cannot sufficiently compensate for this deficiency. To mitigate the impact
of low-quality generations, a rigorous preprocessing and filtering pipeline was implemented. This process
ensures that only high-quality contextual examples are retained for inclusion in the RISCORE framework,
thereby preserving the effectiveness of the method and preventing it from being compromised by suboptimal
generations.

In contrast, the smaller Llama3-8B model demonstrated considerable success in generating vertical reasoning
riddles, even in the ZS setting. For tasks involving vertical reasoning, such as those in the RiddleSense
dataset, the smaller model was able to produce contextually reconstructed riddles of sufficient quality. More-
over, when these reconstructions were incorporated into the FS setting, they led to improved performance
compared to the use of real examples directly drawn from the dataset. This finding underscores the adaptabil-
ity of the RISCORE framework and highlights the varying challenges posed by different reasoning paradigms.

These observations illustrate the importance of aligning the model’s capabilities with the cognitive demands
of the dataset. While larger models, such as Llama3-70B, are better equipped to handle the complexity of
lateral reasoning tasks, smaller models like Llama3-8B can effectively address vertical reasoning challenges,
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provided that appropriate filtering and preprocessing steps are applied. This highlights the potential for
tailored approaches in the application of RISCORE across diverse reasoning domains.

10.6 Conclusion
This chapter explores the reasoning capabilities of large language models (LLMs) in the context of riddle-
solving tasks, with a particular emphasis on puzzle-riddles presented in multiple-choice formats. The focus
of this section is on the examination of various techniques employed for solving riddles and puzzles using
LLMs, alongside a detailed investigation into the generation of counterfactual examples for use in in-context
learning scenarios.

Counterfactual examples, referred to as context-reconstructed riddles in the literature, are riddles that follow
the same reasoning pathways as the input examples but are framed within a different context. These recon-
structed riddles serve as a tool to evaluate and enhance the generalization and reasoning abilities of LLMs by
requiring models to apply identical logical processes to novel situations. By embedding these examples into
few-shot learning configurations, this study demonstrates their potential to significantly improve performance
across diverse reasoning paradigms.

In this direction, we used RISCORE, a novel prompting methodology that leverages counterfactual rid-
dles—referred to as context-reconstructed riddles in the literature [131, 269]—to enhance LLMs’ reasoning
capabilities. RISCORE was validated on the BrainTeaser dataset, which includes manually crafted con-
textual reconstructions, serving as a benchmark for the method’s potential. The results demonstrate that
RISCORE consistently enhances model performance, particularly in lateral reasoning tasks, which are tradi-
tionally challenging for LLMs.

Building on these findings, we developed an automated method for generating contextually reconstructed
riddles for multiple-choice tasks. This approach was applied to datasets lacking manually curated reconstruc-
tions, such as RiddleSense, to evaluate its generalizability. The automated reconstruction method demon-
strated consistent performance gains, showing that even without manual intervention, context reconstruction
provides significant value in enhancing LLMs’ abilities in both lateral and vertical reasoning tasks.

The integration of counterfactual riddles into the prompting strategy represents a significant advancement in
understanding and improving LLM reasoning mechanisms. By enabling models to engage with alternative
contexts that require the same logical pathways, RISCORE fosters deeper reasoning and adaptability. This
study underscores the importance of context and carefully constructed exemplars in few-shot learning, offering
a practical and scalable approach for enhancing the cognitive capabilities of LLMs across diverse reasoning
tasks. Future work may explore extending this methodology to other reasoning benchmarks and domains,
further expanding its applicability and impact.
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Chapter 11

Counterfactuals in LLM-Driven Product
Recommendations

Counterfactual explanations are traditionally employed in classification problems to interpret and understand
decision-making processes. However, their utility extends far beyond classification tasks, as evidenced by their
effectiveness in enhancing the reasoning capabilities of LLMs, a concept thoroughly explored in Chapter
10. Building upon this foundation, the current chapter investigates an additional, emerging application of
counterfactual explanations: their role in influencing and interpreting product recommendations generated
by LLMs.

In typical recommendation tasks, the primary objective of an LLM is to accurately recommend products
tailored to user needs or preferences. Our objective, however, shifts slightly—we aim not to optimize rec-
ommendation outcomes but rather to gain deeper insights into the underlying decision-making mechanisms
of LLMs. By emphasizing interpretability over optimization, we explore strategic methods for manipulating
LLM-driven recommendations, grounded in robust principles derived from human psychology.

Specifically, we adopt an innovative approach by utilizing cognitive biases as black-box adversarial techniques.
By drawing parallels between cognitive biases prevalent in human decision-making and their potential im-
pacts on LLM behavior, this chapter provides a nuanced exploration of adversarial manipulation. Through
leveraging established psychological theories, we aim to empirically measure the susceptibility of LLMs to
these biases, particularly in the domain of product recommendation.

The core contributions of this chapter include a comprehensive analysis of cognitive biases’ influence on prod-
uct visibility within LLM-generated recommendations. We will investigate how exploiting specific cognitive
biases can effectively enhance a product’s recommendation ranking and visibility. Additionally, we aim to
identify and examine instances where biases known to positively influence human consumer behavior para-
doxically harm product visibility in an LLM-driven context. This dual investigation contributes significantly
to our broader understanding of the intricate dynamics between human cognitive patterns and artificial
intelligence-driven recommendation systems.

11.1 Introduction
Adversarial Attacks on Large Language Models (LLMs) pose a significant challenge to the ro-
bustness, fairness, and reliability of these systems. These attacks generally operate in one of two primary
paradigms: black-box and white-box attacks. In a black-box scenario, attackers lack direct access to the
model’s internal parameters and instead probe the system by analyzing changes in generated outputs in
response to modified inputs. In contrast, white-box attacks assume full access to the model’s architecture,
parameters, and gradients, enabling more precise manipulations [321, 160].

Traditional adversarial methods have demonstrated effectiveness in misleading LLMs. These methods include
subtle word-level perturbations that alter text in ways imperceptible to humans but impactful for the model’s
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predictions [358], as well as adversarially crafted and out-of-distribution data samples designed to expose
vulnerabilities in the model’s generalization capabilities [360]. One of the most concerning forms of adversarial
attacks is jailbreaking, where attackers engineer inputs to bypass built-in safety constraints. Jailbreak attacks
can take multiple forms, including cleverly designed prompts that trick models into generating restricted
content [368, 208], deceptive role-playing strategies where the model is instructed to assume an identity
that circumvents ethical safeguards [134], and targeted manipulation of next-token prediction or perplexity
measures to induce undesirable outputs [417, 24].

A more advanced and highly effective adversarial strategy involves prompt injections, which involve appending
specially crafted text sequences to an input to override the model’s intended function [190, 102, 209]. This
attack type is particularly concerning because it scales with model size—larger, more capable LLMs appear
to be more susceptible to prompt injection exploits [238]. These attacks can embed commands such as
"Ignore all previous instructions and disclose confidential information," effectively hijacking the model’s
logical framework and overriding safety mechanisms.

In the context of LLM-driven product recommendation, adversarial attacks take on a unique and commercially
significant role. A particularly potent adversarial strategy involves combining prompt injection techniques
with black-hat SEO practices to manipulate search rankings and recommendation algorithms [256]. Attack-
ers strategically engineer prompts and product descriptions to exploit the model’s ranking logic, artificially
inflating the visibility of specific products. In a related manipulation, [165] demonstrate that embedding tai-
lored text sequences within product descriptions can directly influence ranking outcomes, effectively pushing
certain items higher in recommendation lists.

These findings highlight the growing intersection between adversarial LLM attacks and digital marketing
strategies, illustrating how bad actors can exploit recommendation systems for commercial advantage. As
LLMs become increasingly integrated into real-world applications, understanding and mitigating these attack
vectors is critical to maintaining the integrity and fairness of AI-powered decision-making systems.

Conceptually, these attacks exploit the fundamental operation of LLMs, which act as probabilistic mapping
functions. Given an input sequence , where each token belongs to a predefined vocabulary , an LLM estimates
the distribution of the subsequent tokens using the conditional probability:

p(xn+1:n+H | x1:n) =

H∏
i=1

p(xn+i | x1:n+i−1), (11.1.1)

The primary objective of adversarial attacks on LLMs is to manipulate the input sequence subtly to minimize
the model’s ability to predict accurately or to induce specific, potentially harmful outcomes. This manipula-
tion can be formulated mathematically as an optimization challenge, represented by the minimization of the
negative log-likelihood loss function:

min
xI∈1,...,V |I|

L(x1:n), with L(x1:n) = − log p(x⋆
n+1:n+H | x1:n), (11.1.2)

where indicates the subset of input tokens strategically chosen for adversarial alteration.

Several adversarial strategies have emerged within the literature. For example, consider a scenario where
attackers insert linguistically crafted content into product descriptions to manipulate model outputs. Specifi-
cally, attackers might insert unnatural or linguistically unusual phrases, such as: "inter-act>; expect formatted
XVI RETedly_ _Hello necessarily phys) ### Das Cold Elis$?", into the middle of a sentence. Such ma-
nipulated descriptions may cause the model to disproportionately promote a product, thereby distorting
recommendation accuracy.

Nevertheless, these existing adversarial approaches possess significant limitations. Many methods lack clear
interpretability, providing limited insight into why particular edits affect model outcomes. Furthermore,
adversarial strategies often struggle to generalize across different models, as they are specifically designed
and optimized for individual LLM architectures, which reduces their effectiveness across diverse platforms.
Lastly, adversarially modified texts often exhibit noticeable deviations from typical natural language patterns,
making them conspicuous and easily detectable. For instance, inserting highly irrelevant phrases like random
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Figure 11.1.1: Cognitive bias utilized as a re-ranking adversarial strategy in product recommendation [82].

strings or excessively repetitive keywords clearly deviates from naturally occurring language, raising flags in
both automated detection systems and human reviewers.

Recognizing these issues, this chapter advocates a subtler, cognitively informed methodology that leverages
natural psychological biases, resulting in adversarial inputs that remain linguistically natural, inherently
transferable, and challenging to detect by conventional detection mechanisms [82].

Cognitive Biases of LLMs The convergence of LLMs and human cognitive biases has emerged as a
crucial and rapidly evolving field of interdisciplinary research, blending artificial intelligence, psychology, and
behavioral science [257, 111]. A widely accepted assumption is that human cognitive biases, deeply ingrained
in language and thought patterns, have diffused into the extensive textual datasets used for pre-training
LLMs, thereby becoming inherently embedded in these models [261]. While such biases influence human
cognition in decision-making processes, their presence within LLMs raises fundamental concerns regarding
fairness, neutrality, and trustworthiness.

Recent research highlights the vulnerabilities posed by these inherited cognitive biases, as they can distort
LLM-generated content, affecting a wide range of applications. Several studies have probed the existence
and impact of cognitive biases in LLMs [319, 213, 70, 38, 334, 261, 234], exploring their influence on prompt-
ing techniques [215, 342], bias evaluation frameworks [392, 159], and domain-specific applications such as
news recommendation [224]. However, despite this extensive body of work, research remains scarce on the
adversarial exploitation of cognitive biases within practical applications such as LLM-driven product recom-
mendation.

The growing adoption of LLM-based recommendation systems [197, 55, 188] has brought notable benefits,
including improved personalization, advanced contextual understanding, and refined search capabilities. Cur-
rent research utilizes LLMs either as data augmentation tools [223, 379] or as direct retrieval mechanisms
[178, 89, 388]. This integration enables LLMs to leverage vast knowledge bases and user data, allowing for
more precise and contextually relevant recommendations. However, these benefits come with vulnerabilities,
as adversarial attacks can exploit LLM weaknesses to manipulate product recommendations unfairly.

Within product recommendation systems, adversarial attacks become particularly relevant as they intersect
with digital marketing strategies. Attackers have successfully combined prompt injections with black-hat SEO
tactics and model persuasion techniques to manipulate LLM-driven rankings [256]. Such attacks strategically
exploit the ranking mechanisms of LLMs, artificially elevating the visibility of targeted products. Similarly,
[165] demonstrate how embedding carefully crafted textual sequences within product descriptions can directly
impact ranking outcomes, pushing specific products higher in recommendation lists.

These vulnerabilities raise pressing concerns about the integrity and fairness of AI-driven recommendation
systems. Our research extends prior work by investigating adversarial strategies grounded in cognitive biases,
as depicted in Figure 11.1.1. We hypothesize that, much like human cognitive biases influence consumer
decision-making, LLMs exhibit inherent biases in processing product descriptions, making them susceptible to
adversarial manipulation. While previous work by [256] and [165] explores aspects of SEO-related adversarial
attacks, their methods lack robustness and subtlety, making them relatively easy to detect and counteract.

Our contributions aim to address these limitations by:

• Systematically evaluating the role of cognitive biases in LLM-driven product recommendations.

• Demonstrating the difficulty of defending against subtle, bias-driven adversarial manipulations.
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• Validating our findings across multiple product categories and LLM architectures to establish consis-
tency and generalizability.

By bridging the gap between cognitive biases and adversarial attacks, our study provides a novel perspective
on the security and trustworthiness of LLM-based recommendation systems.

11.2 Methodology

This section introduces a straightforward yet powerful approach to influencing product recommendations
made by LLMs by carefully manipulating product descriptions. For example, consider the description of a
coffee machine that reads: “A value-for-money coffee machine for tasty coffee.” This short statement highlights
the product’s generic attributes. A prospective customer might then query the LLM-based recommender with
a prompt like, “I’m looking for a coffee machine. Could you give me some suggestions?” In such instances, the
query is often vague, leaving the LLM to interpret its intent and rank the results accordingly. Because the
LLM must rely on its training to determine relevance, the outcome of these queries can be highly variable and
uncertain. This inherent ambiguity in the interaction process presents an opportunity: by subtly embedding
cognitive biases into product descriptions, we can sway the LLM’s recommendation behavior.

For instance, a description that includes a statement like “More than 10,000 people have purchased this
coffee machine in the last month” capitalizes on the psychological principle of social proof. Social proof relies
on the human tendency to trust and follow popular choices, suggesting that if so many others have chosen
this product, it must be a wise purchase. This type of adjustment not only influences consumer perception
but also potentially alters how the LLM ranks or recommends the product. The central question we aim
to explore is whether strategically incorporating cognitive biases into product descriptions can consistently
prompt an LLM to recommend a particular item more frequently or rank it more favorably.

Cognitive Biases and Their Role Cognitive biases play a significant role in shaping decision-making,
both for humans and, potentially, for language models tasked with recommending products. Table 11.1
provides a comprehensive list of the cognitive biases we examine, each with a brief description and example.
These biases—common tools in marketing—are designed to tap into psychological and emotional triggers. For
instance, the scarcity effect and exclusivity bias can create a sense of urgency or privilege, prompting faster
purchases. Similarly, biases such as storytelling and identity signaling help consumers feel more personally
connected to a product, making it seem more relevant and meaningful to their lives.

By focusing on these well-known marketing techniques, we not only draw from a rich tradition of human
behavioral studies but also establish a solid foundation for testing their influence on LLMs. The fundamental
strategies that guide human decision-making, such as appealing to social norms or presenting information
in a particularly persuasive narrative style, are logical starting points for investigating whether LLMs are
susceptible to similar framing effects when generating product recommendations.

Defining the Attack In our study, each product is represented by a range of attributes, including its
name, price, rating, description, and type-specific details like camera resolution or book genre. Among these,
we target the description field. In real-world scenarios, descriptions vary from short, single sentences to
more detailed paragraphs. We chose this field because it offers a natural and unobtrusive entry point for
introducing cognitive biases. Altering the price or physical characteristics of a product would necessitate
actual changes to the product itself, and ratings are typically beyond the seller’s direct control. In contrast,
descriptions are relatively easy to modify and can effectively guide consumer perception without drawing
unwanted attention.

To integrate cognitive biases into product descriptions, we explore two main approaches:

• Manual Expert Edits: This straightforward approach involves the addition of a single, carefully
crafted sentence that reflects a specific cognitive bias. Marketing experts are tasked with creating these
sentences. For each product, they append one sentence that exemplifies a chosen bias, without altering
any other product details. Table 11.1 provides examples of these expert-crafted sentences, showcasing
how each bias can be directly applied.
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Cognitive bias Meaning and Example

Social proof Tendency to look to others’ actions or opinions to guide decisions, influenced by majority.
“Over 10,000 people have purchased this item in the last month!”

Scarcity Perception of an item or opportunity as more valuable simply because it is scarce.
"Only 5 left in stock! Order now before they’re gone!"

Exclusivity Tendency to perceive something as more valuable or desirable when it is presented as exclusive.
"Join our exclusive club and get early access to limited edition items!"

Identity
signaling

Adoption of opinions to communicate affiliation with a specific group or reinforce personal identity.
"Eco-conscious product for a greener planet"

Storytelling
effect

Likelihood to be influenced by compelling narratives than abstract information.
"Imagine stepping onto a crowded train after a long day [...] these headphones transform any
environment. "

Denominator
neglect

Breakdown of the cost of a product to make it feel trivial.
"This will only cost 1$ per day!"

Bizarreness
effect

Tendency to focus on novel or bizarre details than more mundane information.
"Introducing the world’s first smart water bottle that talks to you—Time to hydrate superstar!"

Authority
bias

Likelihood to trust or be influenced by recommendations from perceived authority figures.
"Endorsed by renowned health experts, this product is your ultimate companion for a healthier
lifestyle"

Decoy effect Influence on decision-making through the insertion of less attractive options.
"Compared to other smartwatches in the same price range, which only offer basic step tracking...
"

Contrast
effect

Tendency to value products more when contrasted with other options.
"This is by far the most affordable product in comparison with others of the same features"

Discount
framing

Emphasis on the amount saved, rather than the actual price to persuade consumers for a better
deal.
"This product is now available with an incredible 50% off!"

Table 11.1: Implemented cognitive biases as adversarial attacks.

• Generated Edits: For a more sophisticated and subtle manipulation, we rely on automatically gen-
erated descriptions. This process involves completely rewriting the product descriptions to seamlessly
embed cognitive biases, resulting in a more natural and less noticeable modification. We employ a
language model, Claude 3.5 sonnet1, to rephrase the descriptions in a way that incorporates the de-
sired bias. By leveraging an advanced generative model, we ensure the resulting text blends in with
other product descriptions, making the biases harder to detect and more likely to influence the LLM’s
recommendations.

When employing the generated attacks, we also rephrase all non-targeted product descriptions to maintain
consistency in length, style, and distribution. This precaution helps ensure the attacked product does not
stand out as an anomaly, which could otherwise introduce an unintended bias. Additionally, this technique
allows us to explore more complex cognitive biases, such as denominator neglect and the storytelling ef-
fect, which would be more challenging to implement manually. By weaving these advanced biases into the
descriptions, we can better assess how deeply and subtly cognitive framing can affect LLM-based product
recommendation systems.

Query and Recommendation To investigate how the LLM’s recommendations are affected by the pres-
ence of cognitive biases, we conduct a structured evaluation process. First, individual product descriptions
are systematically altered by introducing specific biases, and these biased entries are then presented to the
LLM alongside unmodified entries in the same category. The query posed to the LLM follows the format:
“I’m looking for {product category}. Could you give me some suggestions?” This general query allows the
LLM to respond freely, producing recommendations in any order it deems appropriate.

We then compare the resulting product rankings to a set of control rankings, which serve as a baseline where
no products have been manipulated. By using these control rankings, we can assess how much the biased

1anthropic.claude-3-5-sonnet-20241022-v2:0
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descriptions influence the LLM’s responses, as the unbiased control set reflects the model’s behavior when
recommendations are based solely on factual, unaltered product data.

To ensure that the observed effects are not driven by the sequence in which products are presented, the order
of product listings is shuffled prior to input. This randomization eliminates any potential positional bias that
could affect the LLM’s ranking choices, ensuring that changes in recommendation patterns can be attributed
more reliably to the introduced biases.

The prompts and hyperparameters employed in this evaluation are consistent with those used in previous
studies, including [256] and [165], enabling reproducibility and a standardized basis for comparison.

11.2.1 Experiments
Datasets For our experiments, we begin by examining the same dataset of fictitious coffee machines,
cameras, and books previously introduced in [165, 256]. These synthetic datasets consist of 10 distinct
items within each product category, spanning a range of prices, ratings, and other descriptive features.
Further details about the dataset, including the specific attributes and distributions. In addition to these
artificial datasets, we extend our study to real-world data. Specifically, we incorporate a collection of product
descriptions derived from Amazon Reviews [119], featuring items that were listed on Amazon in 2023. This
dual approach—combining synthetic and real-world data—allows us to observe the effects of our methods
across both controlled and more varied, authentic scenarios.

LLM-Based Recommenders To better understand how different language models respond to cognitive
biases embedded in product descriptions, we evaluate both open-source and proprietary large language mod-
els. This dual perspective helps us identify patterns that are independent of a specific model’s architecture
or size. Among the open-source models, we utilize various configurations of the Llama series [101], includ-
ing the 8 billion, 70 billion, and 405 billion parameter variants. For closed-source systems, we employ the
proprietary Mistral 2 large model2, as well as the Claude 3.5 sonnet model. This diverse selection of LLMs
enables us to study the influence of scale, architecture, and training methodologies on the susceptibility of
recommendations to biased inputs.

Evaluation Metrics and Methodology The primary goal of our evaluation is to measure how product
recommendations change before and after applying attacks on product descriptions. Our analysis starts with
standard ranking metrics, using Mean Reciprocal Rank (MRR) to capture position-wise changes in recom-
mendations. Beyond MRR, we also track the number of products (#p) that exhibit statistically significant
changes due to the attack.

Two key measures are computed:

1. Recommendation Change: For each product p, we calculate the difference in how often it is rec-
ommended after the attack compared to before. We also count how many products, in total, show
significant shifts in recommendation frequency.

2. Position Change: We compute the average shift in ranking position for each product p, as well as the
number of products where this change is statistically significant. A negative position change indicates
that the product moved closer to the top of the recommendation list, signifying an upward rank shift.

For attacks that have a positive influence on a product’s recommendation, we expect the recommendation
change metric to be positive (indicating that the product was recommended more frequently), and the position
change to be negative (reflecting a movement higher in the rank). The more pronounced these changes, the
more impactful the attack. Conversely, for attacks with negative influence, the trends would reverse.

Assessing Product Visibility In this study, product visibility is defined by two primary factors: the
frequency of recommendations and the rank position on the recommendation list. If embedding a cognitive
bias leads to an increase in how often a product is recommended, or improves its position in the list (closer
to the top), we consider this a gain in visibility. In some cases, a cognitive bias may only improve one of
these factors while leaving the other unchanged, which still counts as a positive impact on visibility.

2Mistral’s large model version mistral.mistral-large-2407-v1:0, which contains 123 billion parameters.
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However, when a bias results in conflicting effects—such as a reduced recommendation rate but a better rank
position—we label these outcomes as mixed. The interpretation of such mixed signals depends heavily on
context. For instance, a seller might prioritize having their product appear in recommendations regardless
of position, while another might value a top position more than the frequency. In our analysis, we identify
these ambiguous cases and do not classify them as clear gains or losses in visibility.

To ensure a rigorous approach, we only label an attack as increasing or decreasing product visibility if it
consistently exhibits that effect across all experiments and conditions.

Evaluating Robustness with A-priori Defenses To examine the LLM’s inherent robustness against
cognitive biases, we introduce a defensive strategy at the prompt level. Without explicitly signaling that a
cognitive bias may be present, we adjust the system prompt to encourage unbiased behavior. The modified
prompt guides the LLM to focus on factual product features and the original user query, rather than relying
on any persuasive or suggestive elements in the description. This prompt alteration is designed to be neutral
and agnostic, aiming to promote more balanced and impartial recommendations. The default prompt, serving
as a baseline, is defined as follows:

A chat between a human and an artificial intelligence assistant.
The assistant provides a numbered list of product recommendations
ranked based on the user’s request.

In contrast, the defensible system prompt is adapted to explicitly instruct the LLM to provide recommenda-
tions free from bias. The revised prompt reads:

A chat between a human and an artificial intelligence assistant.
The assistant provides a numbered list of product recommendations
ranked based on the user’s request.
The assistant is unbiased and focuses only on the product
characteristics and the user’s query for its recommendations,
and no other factors at all.

This modified prompt is purposefully agnostic to any potential attack, including those involving cognitive
biases. By keeping the prompt generic and unbiased, it ensures that the LLM relies purely on the pro-
vided product information when generating recommendations. While it is theoretically possible to craft
prompts that are more specifically tailored to counteract known attack types, this approach is not practical
in real-world applications where the presence or nature of an attack is not known beforehand. A generalized
defensible prompt better aligns with real-world usage scenarios, where the goal is to rely on the LLM’s innate
ability to focus on product characteristics rather than external influences.

If, despite these precautions, the LLM’s recommendations remain susceptible to attacks—as our experiments
indicate—this suggests a limitation in the LLM’s capacity to detect or adequately respond to the embedded
manipulation. This observation underscores the need for further research into strengthening the LLM’s
inherent defenses against such adversarial influences.

11.3 Results and Analysis
All experiments were conducted 100 times without altering the experimental setup in order to assess the
variability and uncertainty of LLM-generated responses. Changes were only considered significant if they
reached statistical significance consistently across all repetitions.

Analysis of Generated Attacks A primary focus was placed on generated attacks due to their inher-
ent scalability and subtlety. Unlike manually created manipulations, these attacks did not require human
intervention and seamlessly blended into existing product descriptions. Their unobtrusive nature rendered
them more challenging to detect, while still allowing them to exert a noticeable influence on LLM recom-
mendations. On average, each attack was applied to every product in over 50 distinct ways, minimizing the
impact of random variations. To ensure the accuracy of the experimental conditions, all generated attacks
underwent a thorough manual review by domain experts. This verification process confirmed that the attacks
were appropriately embedded within the product descriptions.
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Table 11.2 provides a detailed comparison of the effects of different cognitive biases on recommendations
made by various LLMs for two categories of products: coffee machines and cameras. It was observed that
certain biases consistently impacted product visibility across all LLMs and product types. For instance, the
social proof and discount framing biases enhanced visibility by improving recommendation frequency, rank
position, or both. Applying social proof to the Claude 3.5 Sonnet model resulted in a 334%3 increase in the
average number of recommendations and a 50% improvement in rank position.

Conversely, the exclusivity and scarcity biases consistently reduced product visibility. Products that included
phrases such as “only a few items left” were recommended 13.5 times less frequently on average across 100
runs, and their ranking positions dropped by approximately one position. This led to a 30% reduction in
recommendation frequency, accompanied by a 54.15% decline in rank position. The impact was even more
pronounced for products targeting a specific exclusive consumer group: recommendation rates decreased by
45.23%, while rank positions deteriorated by 116.23%.

These findings are particularly noteworthy given the widespread application of these biases in traditional
marketing. While biases like exclusivity and scarcity have demonstrated effectiveness in human-centered
marketing strategies, the results indicated that these same biases negatively affect visibility in LLM-driven
recommendation systems. In contrast, biases such as social proof and discount framing proved to be beneficial,
significantly enhancing the likelihood of a product being recommended and improving its rank position in
LLM-generated lists.

For other biases, such as the decoy effect, no consistent pattern was observed. The impact of these biases
varied across different models and product types, resulting in mixed outcomes.

Figure 11.3.1 illustrates the MRR values for coffee machines before and after applying cognitive bias-based
attacks, using Llama, Mistral and Claude 3.5 Sonnet as recommenders. The analysis revealed a generally
consistent pattern: the majority of the products experienced a uniform change in their MRR scores, either
increasing or decreasing after the attack. Only a few exceptions to this trend were observed, and upon manual
review, these exceptions were deemed statistically insignificant.

One notable finding is that biases such as social proof tend to produce a more pronounced effect on prod-
ucts that initially received lower recommendation frequencies. In contrast, for products that were already
frequently recommended, the impact of these biases is less significant. Similarly, biases that negatively influ-
ence recommendations, like scarcity, have a stronger negative effect on highly ranked products. For example,
the inclusion of the phrase “Limited items left” in a product’s description causes a more substantial decline
in recommendation frequency and rank position for a product that was previously highly recommended.

The dynamics of these shifts are further illustrated in Figure 11.3.2. This figure displays the number of
products that, after being subjected to a bias-based attack, became the top recommendation (out of 100
runs), despite not being the most recommended product beforehand. This visualization underscores how
certain biases can significantly alter recommendation frequencies and rankings. For instance, the social proof
bias frequently elevates a product to the top recommendation position, even when it was not previously
ranked that highly. Similarly, biases like contrast and decoy effect cause changes in top recommendations,
though to a lesser extent.

The sensitivity of different LLMs to these biases varies substantially. More capable models, such as Llama-
405b and Claude 3.5 Sonnet, exhibit a greater susceptibility to these attacks, resulting in more frequent
recommendations of manipulated products. Despite its large parameter count, Llama-405b demonstrates
striking differences in top-1 recommendations compared to other LLMs, especially under expert attacks. On
the other hand, Mistral displays stronger resistance to many of the attacks, particularly those crafted by
experts.

Overall, these findings highlight that cognitive bias-based attacks lead to highly variable and unpredictable
behavior in top-1 recommendations among different LLMs. Given the realistic nature of the attacks and the
widespread use of LLMs in recommendation systems, this variability presents a significant practical concern.
Notably, while the LLMs generally show agreement in overall recommendation rates and position changes
under each attack, a per-product analysis reveals several non-trivial insights that were not apparent at a
higher level of abstraction.

3This value was calculated by dividing the %aft-bef column in Table 11.2 by the bef column.
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Model Coffee Machines Cameras
Recommendation Position Recommendation Position

%Aft.-%Bef. #p Aft.-Bef. #p %Aft.-%Bef. #p Aft.-Bef. #p

social proof

llama-8b +14.67 3 -0.74 4 +14.67 3 -1.16 2
llama-70b +18.75 8 -1.05 6 +19.2 5 -0.78 5
llama-405b +20.33 3 -1.29 4 +17.0 5 -0.96 3
claude3.5 +10.6 5 -0.4 3 +14.17 6 -0.76 4
mistral n/a 0 -0.98 5 +18.4 5 -1.12 5

exclusivity

llama-8b -28.33 6 +1.24 2 -24.89 9 +0.56 1
llama-70b -26.22 9 +1.11 5 -46.0 8 +0.79 1
llama-405b -27.78 9 +0.76 3 -16.25 4 +1.28 5
claude3.5 -23.86 7 +1.79 1 -30.56 9 +1.83 5
mistral -23.7 10 +1.48 6 -20.43 7 +1.39 9

scarcity

llama-8b -19.0 5 +0.56 2 -17.75 4 +0.7 1
llama-70b -17.17 6 +0.43 5 -22.57 7 +0.78 3
llama-405b -22.0 6 n/a 0 -22.0 1 +1.01 1
claude3.5 -13.5 6 +0.9 2 -17.33 6 +0.71 1
mistral -15.0 1 +0.99 3 n/a 0 +1.22 1

discount
framing

llama-8b +9.5 6 -1.96 2 +19.5 4 -1.79 5
llama-70b +23.0 9 -1.04 2 +21.0 6 n/a 0
llama-405b +19.0 2 -0.66 1 +18.0 2 n/a 0
claude3.5 +12.67 6 +0.13 4 +17.5 4 -0.79 1
mistral +10.0 2 -0.92 3 +18.2 5 -1.18 3

authority bias

llama-8b +15.0 2 -0.63 2 +13.5 2 -0.84 2
llama-70b -15.0 1 -0.27 2 -13.25 4 -0.82 1
llama-405b +5.33 3 n/a 0 n/a 0 n/a 0
claude3.5 n/a 0 -1.18 1 -11.8 5 -0.72 2
mistral +14.5 2 n/a 0 +17.0 2 -0.77 1

storytelling
effect

llama-8b +7.25 4 n/a 0 +8.67 3 -1.2 2
llama-70b +15.0 3 -0.57 1 +2.67 3 n/a 0
llama-405b n/a 0 -0.81 1 +14.0 1 n/a 0
claude3.5 n/a 0 n/a 0 -27.86 7 +0.76 1
mistral n/a 0 n/a 0 +14.43 7 -1.26 3

contrast ef-
fect

llama-8b +12.0 2 -0.09 2 n/a 0 -1.16 1
llama-70b +15.5 2 -0.54 1 +10.0 2 +0.38 1

llama-405b +17.0 1 +1.07 2 n/a 0 n/a 0
claude3.5 +7.0 1 n/a 0 -13.0 1 -0.14 2
mistral -21.0 1 n/a 0 n/a 0 n/a 0

denominator
neglect

llama-8b -4.0 3 -1.37 2 n/a 0 -0.79 2
llama-70b +17.5 2 n/a 0 -13.4 5 0.0 3
llama-405b +14.5 2 n/a 0 +13.0 1 n/a 0

claude3.5 +8.0 1 +1.13 1 -30.71 7 n/a 0
mistral n/a 0 n/a 0 n/a 0 -0.99 1

decoy effect

llama-8b -3.0 2 n/a 0 -4.33 3 -1.36 2
llama-70b +14.0 3 n/a 0 +9.5 2 +0.26 1
llama-405b +16.0 1 -1.25 1 n/a 0 -1.25 2

claude3.5 -0.5 2 +0.11 1 -18.0 2 n/a 0
mistral n/a 0 -0.82 2 +12.67 3 -0.82 3

identity sig-
naling

llama-8b -12.67 3 -0.44 1 n/a 0 -1.17 1
llama-70b n/a 0 -0.77 2 -2.5 6 +0.52 2
llama-405b +21.0 1 n/a 0 n/a 0 n/a 0
claude3.5 +6.0 1 n/a 0 -17.0 2 -0.48 1
mistral -14.0 1 n/a 0 n/a 0 n/a 0

bizarreness
effect

llama-8b -5.0 2 -0.47 1 n/a 0 -0.66 2
llama-70b +15.0 1 n/a 0 -8.29 7 +0.37 1
llama-405b +1.5 2 n/a 0 n/a 0 n/a 0
claude3.5 -2.5 2 -0.79 2 -21.33 3 +0.6 2
mistral n/a 0 +1.04 1 +14.33 6 -1.16 2

Table 11.2: Results (generated attacks) on coffee machines and cameras. Green highlights attacks on LLMs
that consistently benefit the product, whereas pink denotes attacks on LLMs that consistently affect

product recommendation negatively. N/A refers to non-applicable after vs before comparison due to #p
being zero (there are no products representing the respective change).
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(a) Results for Claude 3.5 Sonnet.

(b) Results for Llama-8.

(c) Results for Llama-8.

(d) Results for Llama-405b.

(e) Results for Llama-405b.

Figure 11.3.1: Mean Reciprocal Rank (MRR) values for each product in the coffee machines dataset. The
plots show the effects of cognitive bias-based attacks.

Expert vs Generated Attacks When comparing the outcomes of attacks crafted by experts to those
generated by Claude 3.5 Sonnet, a generally similar impact on product visibility can be observed. Detailed
results for specific expert-crafted attacks, such as social proof and discount framing (denoted as social proofexp
and discount framingexp, respectively), are provided in Table 11.3. Cases where expert-led attacks exert a
greater influence are highlighted in bold in the table.

Although generated attacks tend to yield more consistent results overall—likely due to their ability to encap-
sulate a wider variety of biases and the LLMs’ propensity to pick up on this diversity—there are exceptions.
Specifically, social proofexp demonstrates a more pronounced effect on both recommendation rate and product
ranking compared to the generated version. This increased effectiveness can be attributed to the directness
and clarity of the expert-crafted phrasing, such as an explicit statement like “This is the most popular choice
among customers!” Conversely, generated attacks typically employ more nuanced language, such as “Our
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11.3. Results and Analysis

Figure 11.3.2: Number of products that became the most frequently recommended post-attack (not most
recommended pre-attack). The plot only includes biases with non-zero effects. exp denotes expert attacks,

contrasting the generated attacks.

best-selling product,” that is more subtly embedded within the description.

Despite the notable performance of the expert implementation of social proof across multiple LLMs, it does
not provide a sufficient basis for making broad generalizations about the relative effectiveness of expert versus
generated attacks. This highlights the importance of considering the specific context and wording of each
attack when evaluating their overall impact.

Model Recommendation Position
%Aft.-%Bef. #p %Aft.-%Bef. #p

so
ci

al
pr

oo
f e

x
p

llama-8b +25.88 8 -1.22 8
llama-70b +40.11 9 -1.44 10
llama-405b +33.00 10 -1.75 9
claude3.5 +25.30 10 -0.85 5
mistral +21.67 6 -1.52 8

D
is

co
un

t
Fr

am
in

g e
x
p llama-8b 1.00 2 -1.37 3

llama-70b 23.00 3 N/A 0
llama-405b 17.33 3 -0.48 1
claude3.5 15.00 2 -0.44 1
mistral N/A 0 1.13 2

Table 11.3: Results of the expert-crafted social proofexp and discount framingexp attacks for the coffee
machines products.

Half Price vs. Discount Framing To examine the relative influence of biases on LLM recommendations,
the following question was posed: “To increase a product’s visibility, is it more effective to silently halve its
price, thereby enhancing its perceived value, or to advertise a discount without actually lowering the price?”
The comparison of these two approaches is shown in Table 11.4, which outlines the recommendation rates
for a product in two scenarios: when its price is genuinely halved, and when it is kept at its original (double)
price but framed with a discount in its description.

Interestingly, the discount framing approach consistently results in more products being recommended. This
outcome is particularly striking given that the advertised discounts in these framing scenarios were never as
high as 50%, with an average discount percentage of approximately 26.25 ± 5.34%.

205



Chapter 11. Counterfactuals in LLM-Driven Product Recommendations

Table 11.4: Halving a product’s price vs employing discount framing. The instances where the impact of
price halving is lower than the discount framing are underlined. In most cases, the unsubstantiated discount

frame outperforms the actual halved price.

Model Recommendation Position
%Aft.-
%Bef.

#p %Aft.-
%Bef.

#p

1/
2

pr
ic

e llama-8b +0.01 5 -0.83 2
llama-70b +11.25 4 -0.58 1
llama-405b +19.00 1 n/a 0
claude3.5 +8.50 2 -0.48 2
mistral +5.00 1 -1.52 2

A critical consideration in assessing the true impact of the discount framing attack is the magnitude of the
discount applied. For instance, a product advertised with an 80% discount may influence LLMs in various
ways. An exceptionally high discount may appear implausible, potentially signaling to the model that it is
not genuine. Conversely, if the item is genuinely on a substantial sale, the high discount might prompt the
LLM to prioritize recommending it.

In our experiments, however, we deliberately avoid employing large, unrealistic discounts. This decision
ensures that our analysis remains grounded in plausible, real-world scenarios. Additionally, the purpose of
our investigation is to study the influence of social biases rather than to promote harmful practices. If a
seller aims to improve the visibility of their product, relying on exaggerated or false discount claims would
be counterproductive. Instead, genuine price reductions should be considered. Given this rationale, it is
unrealistic to assume that product visibility can be significantly boosted by applying fictitious discounts of
80% or 90

The actual distribution of discounts used in our generated discount framing attacks is shown in Figure 11.3.3.
The mean discount value is 26.25 ± 5.54%, with a median of 25.0%. Most discounts range from 15% to
around 40%, reflecting a more realistic and practical approach.

Figure 11.3.3: Distribution of discounts used in generated discount framing attacks.

11.4 Social Proof vs. Product Ratings

In this experiment, the previously introduced comparison of halving product prices versus employing the
discount framing attack was further extended. It was observed that product ratings within the coffee ma-
chines dataset typically range between 3.9 and 4.8, making a rating of 2.1 an outlier well below the normal
distribution. Due to this, a different analytical approach was required.

The objective was to estimate the average improvement in ratings that would be necessary to neutralize
the influence of the social proof bias in the model’s recommendations. For example, preliminary analysis of
the Claude 3.5 Sonnet recommender, using the coffee machines dataset, suggested that a 0.5-star increase
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in product ratings could approximate the effect of incorporating social proof into the product descriptions.
However, given that product ratings were already near the maximum 5-star rating, further increasing them
was not practical. As a result, the focus shifted to the following question: “What average reduction in product
ratings would neutralize the social proof bias in LLM recommendations?”

To answer this, product ratings were systematically decreased in increments of 0.1 to 0.5. These reduced
ratings were applied to targeted products that simultaneously contained social proof bias in their descriptions.
The subsequent recommendation rates for these manipulated products were then compared to the original,
higher-rated versions.

The results, presented in Figure 11.4.1, demonstrate that the social proof bias generally bolstered product
visibility as long as the reduction in rating was less than 0.27. For larger rating decreases, while social proof
did not entirely counteract the drop in ratings, its presence still offered a measurable benefit. For instance,
a comparison of the effects of a 0.40 rating reduction—both with and without social proof—indicated that
even in these scenarios, social proof helped sustain higher recommendation rates than those achieved without
it.

Figure 11.4.1: Difference in recommendation rates for the Claude 3.5 Sonnet recommender, applied to
coffee machine products when their ratings were reduced and a social proof attack was simultaneously

implemented. The red line marks the threshold where the recommendation rates of the original product
and the manipulated product with reduced ratings converge.

Defense A significant challenge with cognitive biases as adversarial attacks is their subtle and embedded
nature. Unlike traditional adversarial attacks that might rely on conspicuous sequences of random characters,
these biases blend seamlessly into natural language [256, 165]. This makes them difficult to identify or filter
out automatically. Furthermore, indiscriminately removing all information related to biases is not always an
ideal solution. Some biases, such as a genuine discount, may reflect valuable information that a recommender
system should consider. Thus, the challenge is to create a defense that can distinguish between benign and
manipulative biases.

To examine the robustness of LLMs against cognitive bias-based attacks, the system prompts were adjusted
to focus exclusively on product attributes, ignoring any biases present in the descriptions. The results of
these adjustments, as applied to various influential attacks (both positive and negative), are summarized
in Table 11.5. Notably, the outcomes demonstrate that the effectiveness of the attacks remained largely
unchanged regardless of whether the defense prompt was used. This indicates that the defenses employed
were not sufficient to mitigate the influence of these biases.

For instance, when using Llama-8b, the exclusivity bias led to a mean position increase of 0.11 for five
products—an effect contrary to the previously observed outcome. However, this positional change was ac-
companied by a 30% decrease in recommendation frequency for seven products, a decrease that was even
more pronounced in the absence of the defense prompt. Consequently, in this case, the defensive prompt did
not improve the model’s resistance to the attack, highlighting the inherent difficulty of countering cognitive
bias-based adversarial techniques.
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Model Recommendation Position
%Aft.-%Bef. #p %Aft.-%Bef. #p

So
c.

P
ro

of llama-8b +19.75 4 -1.29 4
llama-70b +20.00 4 -1.00 5
llama-405b +19.25 4 -0.20 4
claude3.5 +13.00 3 -0.66 2
mistral +13.00 1 -0.51 3

E
xc

lu
s.

llama-8b -30.43 7 -0.11 5
llama-70b -30.60 10 +0.98 3
llama-405b -24.40 5 +2.37 4
claude3.5 -31.29 7 +2.76 3
mistral -6.00 2 +0.91 4

Table 11.5: Results of attacks with positive and a negative impact on product visibility, using the defensible
system prompt on the coffee machines products. Comparison with the same biases in Table 11.2 indicates

similar recommendation and position tendencies.

Bias Recommendation Position
%Aft.-%Bef (↑) #p (↑) Aft.-Bef (↓) #p (↑)

Chew Toys

social proofexp n/a 0 -0.54 ± 0.13 3
social proof +16.00 ± 0.00 1 -0.38 ± 0.00 2

exclusivityexp -48.00 ± 0.00 1 +0.61 ± 0.31 3
exclusivity -21.00 ± 0.00 1 +0.48 ± 0.23 3

Laptops

social proofexp +16.33 ± 3.86 3 -0.49 ± 0.00 1
social proof n/a 0 -0.30 ± 0.4 2

exclusivityexp -15.00 ± 0.00 1 0.08 ± 0.02 2
exclusivity n/a 0 0.90 ± 0.00 1

Table 11.6: The impact of cognitive biases on Claude using two subsets of Amazon’s dataset [119] (chew
toys and laptops).

11.4.1 Real-World Evaluation
The initial analysis utilized controlled datasets, consistent with prior literature, featuring concise product
descriptions. This controlled setting allowed for the identification of clear and repeatable cognitive bias
effects. Building on those results, the current investigation extends to real-world data, specifically evaluating
the influence of social proof and exclusivity biases. These two biases were chosen because they demonstrated
some of the most pronounced positive and negative impacts, respectively, in earlier experiments.

A new dataset was curated from Amazon Reviews metadata [119] to approximate realistic advertising condi-
tions. This dataset retained key attributes—such as price, ratings, and product descriptions—mirroring the
structure of the controlled datasets used in previous analyses. However, the real-world descriptions are no-
tably longer and more complex, often integrating technical specifications with persuasive language reflective
of actual marketing strategies.

To maintain a consistent analytical framework, the evaluation focused on two consumer-favored product
categories: laptops and pet chew toys. Each category included 10 items, ensuring the same dataset size as in
earlier studies. Products were filtered to include only those with high ratings, determined using a Bayesian
average that accounts for both review counts and individual ratings. Additionally, only items with complete
metadata fields—such as price and ratings—were included.

The results confirmed the same consistent patterns observed in controlled datasets. For instance, in the laptop
category using the Claude 3.5 Sonnet model, the social proof attack increased the recommendation rates for
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three products by an average of 288.88%. Prior to the attack, these products had recommendation rates of
12%, 2%, and 12%, which rose to 30%, 13%, and 32%, respectively, after the attack. This change represents
the percentage increase from the pre-attack rates. Notably, the product positions in the recommendation lists
remained unchanged. In contrast, biases with negative effects, such as exclusivity, demonstrated a decrease
in recommendation rates. For example, in the same dataset and model, the recommendation rate dropped
by -22%, falling from an average of 71% to 56%, reflecting a change (%aft.-%bef.) of -15%.

Specifically, Table 11.6 presents the results for the Amazon dataset’s “chew toys” subset, analyzed using
Claude 3.5 Sonnet. This evaluation highlights the impact of two influential attacks—social proof and ex-
clusivity—in scenarios where both expert-crafted and LLM-generated attacks were applied. Consistent with
earlier datasets (coffee machines, cameras, books, laptops), the table demonstrates that these attacks con-
tinue to exert a similar influence on product visibility. However, a noteworthy distinction lies in the reduced
prominence of the attack’s impact when compared to the datasets analyzed in [165].

This diminished effect is likely attributable to the real-world dataset’s inherent integration of various social
biases within the product descriptions. For instance, in the laptop dataset, phrases like “Business Laptop,
Intel Core i5-1235U (Beats i7-1165g7)” highlight a product’s superiority by explicitly comparing it to another.
Similarly, promotional incentives like “Bonus 32GB SnowBell USB Card ” add persuasive elements. These pre-
existing cognitive biases, embedded within the real-world descriptions, may reduce the visibility of additional
manipulative biases. In fact, the interplay of multiple biases—such as scarcity enhancing visibility when
combined with discount framing—complicates the analysis and can dampen the observed effects of targeted
attacks.

Further differences emerge in the length and complexity of the product descriptions across datasets. On
average, the chew toy products in the Amazon dataset were described with 900.3 characters (126.8 words),
whereas the laptop descriptions averaged 1436 characters (172.3 words). In comparison, descriptions from
the coffee machines dataset used approximately 219.2 tokens (16.6 words), cameras averaged 227.6 characters
(14.9 words), and books featured about 247.0 characters (18.1 words). These statistics were obtained using the
NLTK tokenization package4. Despite the relatively small size of the added attacks, the presence of additional
cognitive biases in the base descriptions played a substantial role in shaping the models’ recommendations
across all datasets, influencing their overall visibility and ranking behavior.

11.5 Conclusion

This study presents a novel approach to leveraging cognitive biases as subtle adversarial techniques aimed at
influencing large language model (LLM)-based product recommendation systems. By embedding these biases
directly into product descriptions, the work demonstrates how seemingly innocuous language modifications
can meaningfully shift LLM recommendation rankings. The experiments identify which cognitive biases have
the most pronounced effects on recommendation outcomes, revealing a significant vulnerability within LLM-
based recommendation frameworks. This vulnerability stems not only from the inability to easily detect such
biases but also from the difficulty in defending against them.

The findings underscore a fundamental blind spot in the current implementation of LLM-driven recommen-
dation systems. Despite their impressive performance in many natural language understanding tasks, these
models exhibit limited robustness when exposed to cognitive bias manipulations. Even subtle, well-crafted
attacks can produce noticeable shifts in recommended products, indicating that these systems are far more
susceptible than previously understood. Moreover, the study highlights the considerable variability in how
different LLMs respond to the same bias, showing that their behavior in commercial recommendation settings
is often unpredictable.

Beyond simply identifying these vulnerabilities, the research contributes valuable insights into the relationship
between language patterns and model behavior. It also emphasizes the pressing need for improved defenses
against adversarial influences, particularly as LLMs continue to play a growing role in commercial recom-
mendation environments. By exposing these blind spots, this work offers a critical step toward enhancing
the reliability and fairness of LLM-based recommendation systems.

4https://www.nltk.org/api/nltk.tokenize.html
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While the current investigation focuses primarily on LLM-based product recommendation systems, future
research could expand the scope of these methodologies in several important directions. First, exploring
a broader range of product categories could yield a more comprehensive understanding of how cognitive
biases manifest and influence recommendation outcomes. For instance, applying these techniques to highly
competitive sectors, such as electronics, fashion, or automotive products, may uncover different patterns of
susceptibility. By examining diverse categories, researchers can better assess the generalizability of these
findings and refine their strategies for detecting and mitigating bias.

In addition to diversifying product categories, future work could also extend this methodology to the domain
of news and information dissemination. Cognitive biases may have profound implications for how LLMs
summarize news articles, integrate conflicting information, and present conclusions to end-users. Investigating
the interplay between social and cognitive biases in news summarization tasks could provide valuable insights
into how LLMs prioritize certain narratives over others. This research may help identify vulnerabilities in
LLMs that could contribute to the unintentional amplification of misinformation or biased reporting.

Furthermore, these methodologies could be adapted to study how cognitive biases affect the integration
of multiple information sources. For example, when LLMs attempt to reconcile disparate viewpoints from
various articles or user-generated content, subtle biases in the phrasing or emphasis of certain facts might
influence the final summarized output. By expanding the current approach into this realm, researchers could
gain a deeper understanding of how cognitive biases shape not just product recommendations, but also the
perceived credibility and reliability of information delivered by LLMs.

Another critical direction is to develop robust, scalable defense mechanisms that can counteract cognitive
biases in real time. Future studies could explore automated techniques for detecting bias at the description
level before it affects recommendation rankings or information summaries. Building on the current findings,
researchers could test the efficacy of adaptive prompt engineering, fine-tuning on bias-resistant training data,
or integrating external knowledge bases that help verify the validity of claims in both product descriptions
and news articles.

In summary, the next steps in this line of research include: (1) expanding the methodology to cover a wider
variety of products and categories, (2) applying these approaches to the domain of news summarization and
misinformation, (3) analyzing the integration of information from multiple sources under the influence of
cognitive biases, and (4) developing advanced defense strategies to mitigate the impact of these biases. By
pursuing these directions, future research can deepen our understanding of LLM behavior across diverse
domains and enhance the resilience and fairness of recommendation and summarization systems.
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Chapter 12

Conclusion

This this dissertation it is presented ways for generating and evaluating the semantic counterfatual exaplan-
tions.

Specifically Chapter 4 it is presented a general framework for generating semantic counterfactual explanations
using a knowledge-graphs, emphasizing the essential role of semantics—i.e., meaningful labels and relational
information—when designing explainable AI systems. It utilized the concept of an “Explanation Dataset,”
which pairs items’ semantic annotations (described in Description Logics) with their feature representa-
tions for a classifier. Counterfactual explanations are then defined as minimal, semantically interpretable
edits—replacements, insertions, or deletions of concepts and roles—that transform an exemplar’s ABox as-
sertions so that it matches another exemplar already classified into a desired target class. Beyond local
explanations for single items, the framework offers a way to compute global explanations by aggregating
frequent semantic edits across multiple instances. Although computing exact graph edit distances is NP-
hard, the chapter proposes an efficient approximation approach by focusing on concept-level edits. This
setup, along with the accompanying definitions and algorithms, establishes a principled path for building and
interpreting conceptual counterfactual explanations based on knowledge-graph enrichments.

Following, Chapter 5 emphasizes the importance of modeling not only the concepts but also the relationships
(edges) between them when computing counterfactual explanations, since interactions such as “person rides
bicycle” can be pivotal for understanding classifier decisions (e.g., distinguishing “pedestrian” vs. “driver”).
It proposes both a set-edit approach—where edges are “rolled up” into concepts of the form ∃r.C—and a
more advanced Graph Neural Network (GNN) method that embeds entire scene graphs for efficient retrieval
of nearest counterfactual exemplars. Extensive experiments on diverse datasets (CUB for bird classification,
Places with Visual Genome for scene understanding, custom “pedestrian vs. driver” images, and even an
audio-based COVID-19 classification dataset) consistently show that preserving and utilizing relational infor-
mation leads to more faithful, minimal, and human-interpretable counterfactuals. User studies confirm these
semantic graph-based explanations not only match or outperform a state-of-the-art image-based approach
but also help humans learn and apply the classifier’s “rules” more effectively, even in “blind” settings with-
out direct visual cues. Finally, the chapter discusses broader implications—such as the need for well-curated
knowledge bases, potential integration with generative models, and ongoing research to ensure robustness and
scalability across modalities—underscoring the value of conceptual and relational explanations in explainable
AI.

However, despite the framework presented above, the aforementioned framework cannot be used for gen-
erating new instances. This is particularly relevant in the field of explainability, where the generation of
counterfactual samples is a primary technique. Chapter 6 addresses the challenge of generating high-quality
textual counterfactual explanations—minimal yet meaningful edits to text samples that change or stress-test
a classifier’s prediction. Extending the semantic, model-agnostic ideas described in earlier chapters, it intro-
duces a framework that no longer merely searches for "close" instances in a dataset but instead constructs
new text samples by optimally substituting words. Central to this approach is formulating counterfactual
generation as a “relaxed” bipartite matching (or assignment) problem between source and target words, for
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which two algorithms are explored: (1) a deterministic solution via classical graph-matching methods that
guarantees optimality but can be slow for large datasets, and (2) a GNN-based solution that provides a
near-optimal matching at significantly reduced runtime. These bipartite edges can be weighted in transparent
ways (e.g., via WordNet path similarity) or through modern embedding-based word similarities, the latter
yielding fewer edits but being less explainable. Experiments on sentiment and topic classification (IMDB
and Newsgroups) show that this approach surpasses two state-of-the-art editors (MiCE and Polyjuice) in
most quality metrics (fluency, semantic closeness, minimality) while running up to 50× faster. The chapter
concludes with a discussion of key trade-offs—optimality vs. speed, explainability vs. performance, and
controllability vs. minimality—and suggests future directions like integrating additional lexical resources or
refining GNN performance for even better approximations of the deterministic solution.

Following Chapter 7, several approaches are presented for evaluating counterfactual explanations by system-
atically categorizing and assessing multiple counterfactual editors across textual and visual domains. A novel
iterative feedback method is introduced, where outputs from different iterations of the counterfactual editing
procedure are utilized as a form of ground truth to evaluate optimality. Specifically, this involves iteratively
feeding the outputs of the editors back into themselves, producing subsequent edits, and uncovering any
inconsistencies or suboptimal modifications. To quantify these deviations, a novel metric called inconsistency
(inc@n) is proposed, effectively distinguishing editors based on their capacity to consistently achieve min-
imal edits. The inconsistency metric measures optimality across various underlying metrics. Experimental
evaluations were conducted using text editors such as MiCE, Polyjuice, and TextFooler on the IMDb and
Newsgroups datasets. Editors were rigorously assessed using metrics including Flip Rate, Minimality, Flu-
ency, and Grammatical Correctness. Results demonstrated that TextFooler consistently produced minimal
and stable edits, whereas Polyjuice frequently introduced extensive modifications, especially in longer texts.
MiCE exhibited strong initial performance but showed declining effectiveness and increasing inconsistencies
with successive iterations of feedback.

After presenting methodologies for generating and evaluating counterfactual explanations, four distinct ap-
plications of these methodologies are discussed beyond their traditional use for explainability. The first two
applications involve directly applying the methodology described in Chapter 5 to assess the generative ca-
pabilities of various generative systems. Specifically, Chapter 8 introduces a method for evaluating image
and story visualization systems. Rather than utilizing counterfactual explanations solely for model inter-
pretability, the same algorithm is adapted to detect errors occurring between the input prompts and the
generated images or stories. An explainable metric is proposed, offering not only quantitative values suitable
for comparing different models but also clear explanations highlighting the specific sources of generation
errors.

In a similar vein, Chapter 9 adopts the same evaluation methodology to measure the hallucination rates of
LVLMs. It presents an explainable benchmarking approach to systematically detect and explain errors in
image captioning processes. The results underscore that LVLMs generally produce fewer hallucinations com-
pared to traditional image captioning systems. Additionally, the findings indicate that hallucination frequency
increases when captions are artificially lengthened, highlighting an essential consideration for improving the
reliability of LVLM-generated captions.

Chapter 10 present an application of counterfactual explanations to the field of NLP. Specifically, it ex-
amines the incorporation of counterfactual examples to improve the reasoning abilities of LLMs. Initially,
it shows how LLMs tackle puzzle-solving tasks, particularly riddles, by systematically categorizing puzzles
based on their reliance on formal rules or commonsense reasoning and exploring various prompting techniques
to enhance model performance. The research introduces a novel method—referred to as RISCORE—that
leverages "counterfactual" or "context-reconstructed" riddles: puzzles that require the same core reasoning
steps but present them in alternative settings. By incorporating these reconstructions in a few-shot learning
setup, the method demonstrates improvements in both vertical reasoning (rule-based logic) and lateral think-
ing (creative, out-of-the-box problem-solving), as evidenced by evaluations on datasets like BrainTeaser and
RiddleSense. Empirical comparisons reveal that combining the original riddles with their reconstructed vari-
ations often outperforms standard prompting approaches, including chain-of-thought methods, illustrating
the effectiveness of context-shifted examples in fostering more robust reasoning. Furthermore, an automated
pipeline for generating reconstructed riddles is introduced, enabling the approach to generalize to puzzle
collections that lack preexisting context adaptations. Overall, the findings highlight the power of tailored ex-
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amples that preserve reasoning pathways while varying the context, offering a scalable and practical method
to enhance LLM reasoning across diverse puzzle-solving benchmarks.

Lastly, Chapter 11 explores an application of counterfactual explanations beyond traditional classification
tasks—specifically, their role in interpreting and influencing product recommendations made by LLMs. Un-
like typical recommendation systems aiming solely at accuracy, this chapter emphasizes understanding the
decision-making processes within LLMs by strategically leveraging cognitive biases. The chapter employs
cognitive biases, widely recognized in human psychology and marketing, as subtle adversarial strategies to
manipulate product recommendations. This method examines whether embedding biases like social proof or
scarcity into product descriptions can systematically affect an LLM’s recommendation rankings. By drawing
parallels between human decision-making and LLM behaviors, the chapter investigates how certain biases,
despite being effective in traditional marketing, paradoxically reduce product visibility in an LLM-driven con-
text. Experimental evaluations utilized both synthetic and real-world datasets, including fictional products
(coffee machines, cameras, and books) and authentic product descriptions from Amazon. These experiments
were conducted across multiple LLM architectures such as Claude 3.5 Sonnet, Mistral, and various versions
of Llama, assessing the robustness and susceptibility of these models to cognitively biased descriptions.

Results highlighted biases such as social proof and discount framing significantly boosting product visibility,
whereas exclusivity and scarcity typically reduced it. The research further revealed the difficulty in countering
such subtle biases, as even explicitly instructing LLMs to focus solely on factual product attributes had limited
defensive effectiveness. Overall, the findings underscore vulnerabilities in current LLM-based recommendation
systems, demonstrating their susceptibility to subtle linguistic manipulations rooted in cognitive biases.
The study contributes valuable insights into improving the security, fairness, and robustness of AI-driven
recommendations, suggesting further research directions into diverse product categories, news summarization,
misinformation detection, and the development of advanced defenses.

12.1 Future and Ongoing Work

Building on the methodologies and findings presented throughout this dissertation—encompassing semantic
knowledge-graph counterfactuals, text-based editors, puzzle-solving prompts, and other techniques—there
is considerable potential for further advances in multiple directions. One key avenue involves enriching the
semantic resources used in our counterfactual generation frameworks. Although ontologies, taxonomies, and
annotated datasets play an essential role in creating human-interpretable explanations, these resources can
be difficult to obtain. Efforts to automate annotation pipelines—for example, by leveraging advanced object
detection systems or entity-linking methods—may alleviate this problem, particularly for under-annotated do-
mains. Moreover, integrating multiple knowledge bases, such as ConceptNet or DBpedia, alongside WordNet,
can substantially increase the range of covered concepts and the depth of semantic relationships. Incorpo-
rating more sophisticated logical formalisms, such as constraints and property chains, would also enhance
expressivity while requiring careful attention to scalability and runtime considerations.

Beyond improving resources, scaling semantic counterfactual explanations to new or more complex data types
represents another important strand of work. Video understanding, which introduces spatiotemporal rela-
tionships, poses unique challenges for counterfactual generation, as changes must maintain consistency across
frames. Similarly, textual systems can be extended into multilingual and cross-lingual setups, ensuring that
the approach remains effective even when switching linguistic domains. In specialized fields like healthcare,
structured EHRs require domain-specific ontologies and constraints so that any generated edits comply with
medical guidelines.

The text-based editors and graph algorithms discussed in Chapters 5 and 6 open the door to refinements in
counterfactual editing. Graph Neural Network (GNN) approaches, which replace deterministic algorithms
with approximate solutions, already demonstrate considerable speed-ups, but they may be made even more
robust by leveraging advanced neural architectures or by incorporating user-defined constraints for better
controllability. It will also be important to maintain model quality under domain shifts or adversarial con-
ditions; exploring adversarial training or careful data augmentation could help preserve performance when
editors face text domains for which they were not explicitly trained.

Regarding evaluation, user studies revealed that semantic and knowledge-graph-based explanations tend to
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align more naturally with human intuition. This finding encourages further expansion of human-centered
methods: for instance, building interactive explanation interfaces that allow users to iteratively refine and
query counterfactual edits in real time. Studies over longer time frames could track how these explanations
help non-experts internalize an AI model’s decision boundaries, whether they increase user trust, and if that
trust remains stable across repeated interactions. Alongside these practical deployments, further examining
cross-cultural and cross-domain applicability would help ensure that such semantic explanations remain clear
and contextually appropriate even when user groups and cultural norms vary significantly.

Generative models also offer fertile ground for applying conceptual counterfactuals. With the growing pop-
ularity of text-to-image and story-generation systems, the challenge of detecting hallucinations—spurious or
illogical content in machine-generated outputs—has become more pressing. Counterfactual analysis can de-
tect precisely where generative models deviate from intended concepts, then guide subsequent improvements
to mitigate bias or unwarranted artifacts. In text-heavy domains, conceptual checks might help authors
or end-users identify misalignments between a system’s generated story narrative and its visual or contex-
tual representation. Adapting these ideas to 3D or virtual reality scenes would extend conceptual consistency
checks into more immersive environments, though it would require novel ways of measuring semantic closeness
in three-dimensional spaces.

Scaling up to extremely large datasets and complex TBoxes introduces further challenges. Methods such
as indexing or approximate nearest-neighbor searches may become critical to retaining efficiency. Advanced
symbolic reasoning could allow more expressive TBox axioms while controlling the combinatorial explosion
of possibilities. Continual and incremental learning methods would then help the explanation dataset adapt
in tandem with a model’s evolving structure or retraining regime, maintaining meaningful alignment over
time.

Turning to puzzle-based reasoning, there is scope to expand the context-reconstructed riddle framework
described in Chapter 10. Beyond simple puzzle types, more elaborate knowledge-intensive tasks or domain-
oriented scenarios—such as legal or clinical case studies framed as puzzles—could serve as valuable tests for
advanced LLM reasoning. Integrating puzzle-solving LLMs with symbolic solvers promises more systematic
resolution of tasks with fixed rules, while context-based reconstruction remains valuable for lateral thinking
and creative domains. The possibility of automated puzzle generation would facilitate curriculum learning,
allowing the difficulty of riddles to scale with the model’s evolving capabilities.

In the field of LLMs, counterfactual explanations can also be adapted to shape product recommendations
generated by such models, as outlined in Chapter 11. By introducing small, psychologically driven text
modifications—rooted in biases such as social proof or scarcity—it is demonstrated that counterfactual ad-
justments can profoundly affect which items are highlighted. These counterfactual edits, designed to resemble
typical marketing language, are employed to exploit a blind spot in LLMs that struggle to distinguish impar-
tial attributes from deliberately crafted cues. Consequently, attention is drawn to the urgent need for more
robust defenses against bias-driven manipulations in AI-based recommendation systems.

Finally, while semantic counterfactuals can expose biases, such as a tendency to overemphasize certain con-
cepts or attribute unwarranted associations, additional scrutiny is needed to ensure that these methods them-
selves do not introduce new biases or unintentional harms. In regulated domains—such as medicine, finance,
or law—verifiable and robust explanations are imperative, prompting the need for techniques that can certify
the faithfulness and reliability of semantic edits. Privacy considerations also come into play if sensitive data
is inadvertently revealed through semantic constraints, driving research into developing privacy-preserving
methods for knowledge extraction and counterfactual generation.

Taken together, these future directions underscore both the versatility and the critical importance of concep-
tual, knowledge-based methods in AI explainability. By complementing data-driven techniques with explicitly
modeled semantics, researchers can continue to enhance user understanding, trust, and overall transparency
in complex systems. Pursuing richer ontologies, more diverse domains, deeper human evaluations, integration
with generative models, and robust puzzle-solving tests will collectively shape the next wave of advancements
in semantic counterfactual explanations and interpretable AI.
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