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Hepiindn

Awmotdvetar 6Tt xaxol .wotpomixol axtvoBontéc (yeauuxés tnyéc), t6oo TM ahhd
xaon TE néhwong, evioybouv onuavtixd T paBlOEXTOUTH ToUS 6Ty ToToUETOUVTOL EGW-
TEPXE XUAVBEIXMDY GUVOP®Y TIOU AmoTEAOUVTOL amd TAaopovixd (plasmonic) xehbgn 1
OO CWANVOELDEIS UETUETLPAVEIES, OL OTIOIEG UTOPOUV VO XATUOKEVAG TOUV UE UALXY TTOU
gyouv yenotwonomlel oe mpornyolueveg epyacieg. Tétoleg dieyépoelg emTpémouy Ty
OVOAUTIXT) AVTYETWTLOT) TOU TEOBAAUATOC, EVEH TURIAANAL TROGPEPOLY CTUAVTIXT| (QU-
o) SldoUnom Yo T GUUTERLPOEE TV BLATACEnmY. O TopaUeTEIXOC YOpog e€eTdleTon
EXTEVAS, UE OXOTO TNV E€aYWYT| TWV BEATIOTWY BOULXMY YO UALXDY YOQUXTNELO TV
xde e€etalouevng Sudtadng. XTIC TEPIOOOTERES and Tig BEATIOTES OyEdLdoELS, 1) Vo
Tou exmouToL eivon TETOLL (MOTE VoL TPOCUPUOLEL TNV aAANAETiBEaoT HeTAl) TOAATADY
ELOEPYOUEVWY YOl EEEPYOUEVLY PLIUMY, UE ATOTEAEOUA TNV ETUTELET LOY VRV OUOLOXO-
TEVUUVTIXOVY 1) BLTOAXGY Oy ATV axTvoBoAlag, SLapopeTind yia xdle TOAWOT.
To mapatnpolueva yopaxtneto Txd oxtivoBoriog xdlde emieyuévng oyedlaong emfe-
Bowcdvovtan We yerion hoyiouxol tpocouoinone (COMSOL Multiphysics). Ot mopou-
otoouevee unepaxtivoBoroloec (superradiating) SiotdEelc petapépouy Ty €vvola Tng
pwTovixrc utepoxtivofoliog (superradiance) otny xAaoxy| nhextpoduvVaLXT, AELOTOL-
OVTOC TO AVATTUCGOUEVY EBWANL TWV TNYOV Yl TNV ETUTEVEN LOYUEWY EXTOUTOV X0l
YLt TIG 500 TOADOELG TAUTOYPOVA, TUEA TO YEYOVOS OTL TEQLAUPBAVOUY U6VO EVal EVERYO
ototyeio. Ot axtvoolieg mou TopatneodvTon Oyt HOVo elvor LodELeg, ahhd GUYVE UTEE-
TEPOUV eXElVeV Tou €youv avageplel OE TEOMYOUUEVEG EQYAGIES, EVEM OL XUAVORIXES
YEWUETPIES Topouatdalouy UxedTepn evonoincior ot un Tomxd QouvOUEVa Xl lvol gu-
AONOTEPEC OTNY XATACKEUT] GE GUYXQLOT UE TIC TUPAdOGLoXES TAaouovxég xepaieg. Ot
TOEATEVE WOLOTNTES XNoTOOV TIC TEOTEWVOUEVES OLoTdiels emuuntée, xodme unopo-
OV va yenotdomonloly w¢ UTEEATO00TIXS GTotyela oe TANIMEA OTTIXWY EQPUPUOY GV,
TOU EXTEIVOVTOL OO TO GYEDLAOUO G TOLYELOXEQULMY Xl TNV ACUQUATY UETAUPORS EVER-
YEWS 0TO PaxEwvo Tedlo Ewg TN xATUoXELY| BloctoUnThpwy xot oY NUSTWY AVIAOYIXNS
enelepyaoiac ofuatog Pactopéva oty toAwor. Emimiéoy, 1 napoloa epyacio unope-
{ vo emextodel ye TNV TEOCUAXN U YRUUULXOTATWY GTIC XUAVORIXES UETUETLPAVELES,
TPOXEWEVOU VOl XATACHEVAC TOVY G TOLYElol WVAUNG UE Uetwpévn evancinaia oo Yopufo.

Aé€eic - Khewdid: Hiextpopoyvnuny| dewpla, Pwtovinr, Aviictpogn oyedlouon,
Meroemgpdveiee, Navoowhiveg, Hhextpoporyvntinég odniemidpdoeic, Aclpuatn ueto-
popd 1oy vog.



Abstract

Poor isotropic emitters (line sources), of both TM and TE polarization, are found
to substantially enhance their radiative power when located internally to cylindri-
cal boundaries involving plasmonic shells or tubular metasurfaces that can be con-
structed using materials that have been utilized in previous works. Such excitations
allow for the analytical treatment of the problem while also providing important
physical intuition for the behavior of the setups. The parametric space is extensively
searched, in order to extract the optimal structural and textural characteristics of
each studied configuration. In most of the optimal designs, the placement of the
antenna tailors the interference between multiple in-going and out-going modes to
give strong omnidirectional or bipolar patterns, different for each wave polarization.
The observed radiation characteristics of each of the selected designs are validated
using a commercial electromagnetic solver (COMSOL Multiphysics). The reported
superradiating setups carry over the concept of photonic superradiance to classi-
cal electromagnetics by utilizing the developed source images in achieving powerful
emissive responses for both polarizations concurrently, despite incorporating just a
single active element. Not only are these responses on par with, or even greater
than the ones reported in previous works but the cylindrical geometries also are less
sensitive to nonlocal effects and are easier to fabricate compared to traditional plas-
monic antennas. The aforementioned properties make the proposed configurations
desirable, since they can be employed as ultra-efficient components in a plethora of
optical applications spanning from array design and far-field wireless power transfer
to radiative biosensing and polarization-enabled analog signal processing. Moreover,
this work can be extended by adding nonlinearities to the cylindrical metasurfaces
so as to construct memory elements having suppressed vulnerability to noise.

Keywords: Electromagnetic theory, Photonics, Inverse design, Metasurfaces, Nan-
otubes, Electromagnetic interactions, Wireless power transfer.
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Kegpdiowo 1

Extetopevn Ilepiindn ota
EAAN VxS

1.1 3xonog tng Epyaciog

Yty nopovoa Epyooia, yeketdviar Siodidotate nAEXTeoUayVATIXES DLUTAEE TOU
amotehoVTAL amd xUAVOEWE cUvopa xou dieyelpovton amd yeouuxés tnyés TM xou
TE nélwong. Buyxexpyléva, o oxondg pog elvon 1 e0peoT Twv BEATIOTOV DOPXOY
XL UAIXWY YUEUXTNELOTIXWY TWV UTO PEAETY] YEWUETPWWY TOU 00nYolv oe parydola
aUENON TNG EXTEUTOPEVNS oY VoS TNE TNYNS OTO Haxpvd Tedlo, o€ oyéon ue Ty Loy
mou auTH exméunel 6tav Poloxeton POV TNG oTov XEVH Ywpo. Me Tov TpdTO QUTO,
Beloxouue unepaxtivoforoloeg (superradiating) NAEXTEOUAY VITIXES DLUTAEELS.

hollow
cylinder

coupled
nanotubes

Yyfua 1.1: Abo avTimpoomTeuTinég SLaTdEElS Tou yenoyloTo|dnxay Yo Thy evioyuor
e axtvoPollag e mnync. OpiCovtar amd xuAvdpxd clvopa ECHTEPXAS axTivag
r = g xu e&otepxnc r = a. (o) Evoc un ovunayfc x0Avdpog e xéhugog and A6
ue uryadix dinhextowxt) otadepd €. () Eva {ebyoc ouleuyuévwy vovoomhivemy pe
uryaduer| emupavetond ayoyyotnta o. H mnyr torodeteltan 610 xevo.

AVO avVTITPOCWTEVTIXES amd TIC BlaTdEels auTég gaivovtar oto MNy. 1.1. ¥to Xy.
1.1(a), amewxovileton évac un ouunayic x0Avdpog 6mou ecwtepxd (0 < r < g) e-

12



1.2. ANAAYTIKH AYYH TOQN [IPOBAHMATQN

tvan xevog xon 10 x€AUPOC Tou amoTEAELTAL amd LALXO LY adIn G OYETIXAG OINAEXTEIXHC
otodepdc €. Avtiotoya oto Xy. 1.1(F"), n dudtaln anoteleltar and U0 xLAVOEXES
UETATLPAVEIEG OXTIVOY ¢ Xl @ oVTOTOLY O, UE KOV ULyaduer) orywylpotnTo 0. Autég
%o GAAEG TOPOUOLEG DLUTALELS HEAETOVTAL OTNY gpyaoia. e xdle mepintwon, 1 Tnyn
Torovetelton o ywplo Ye xevod ywpeo, Kote va yivetan plo dixono ohyxplon Tng exme-
UTOUEVNC Loy VOGS Ue TNV Loy ) Tou exmtéunet 1) Ty Y 6tav Peloxetar uévn tne. Emmhéoy,
n mny7 tornoVdeteiton oTov oplldvTio dlova, o andotacn L and tov dfova oupuetplog
e Yewpetplog, 1 1oodUvaua o XUAVOEXES ouvteTaypéves otn Véon (1, ¢) = (L, 0).
Emniéov, 1 Ol€yepor elvon HOVOYRWUATIXT, UE UHXOS XOUATOS A.

1.2 Avolvtixn Adon tov HpoBAnudtwy

Ebtvar yveoté 6t ov ypauuxéc mnyéc TM mohwone Yo mopdyouy nhextod nedio mou
€yeL wovo z ouviotwoo B, ye Bdon 1o cbhotnua alévewy mou gaiveton oto My. 1.1
Avtiotowya, o TE mnyéc Yo mopdyouv yayvntxod nedlo H = H, 2. T'a tov Adyo
T, VewpoLpe To Yéyedog F' otnv avdhuon yog, Yy To onolo toylel 6Tt F1 = F,
otic TM nepintidoeig xou F' = H, otig avtiotoyeg TE. Eivar yvwotéd éti 1o tedlo mou
exTéUnETaL amb T TNYH %atd T 2 devduvon wolton pe [1]:

+oo
Fl.= Z H'® (ko max(L, r))J, (ko min(L, ))e"?, (1.1)

n=—oo

6mou H® eivan n ouvdptnon Hankel B efdouc xou J 1 ouvdptnon Bessel. Anéd tnv
&\, to avtiototyo péyedoc eEwtepind e Bidtadne (a < r < +00), diveton amd:

—+00

Foa= Y CoHP (kor)e™?, (1.2)

n=—0oo

omou ot O, elvon dyveoTol uryadxol cuVTEAEGTES, ol omolot unopolv va Peedolv o-
TO TNV EQUOUOYY| TWV CUVORLIXWY CUVUNX@Y. MUYXEXQOWEVA OE uiot ETLQAVELL OTNY
omofo elvar xddeto 1o povadiuio Sidvuoua 7, oylel 6t 1o X (Ey —E_) = 0 %o
nx (Hy —H_) = Jg, énouv Jg = 0 oy nepintwon Sinhextoxdy, eved Jg =
—on x (N x E) oty neplntwon YETUETLPUVELDY.

[o Ty €0peom NG EXTEUTOUEVNS LGX\’)og’(cxvo'c HOVEOU UAXOUS 2 AOYW TNG XUALY-
Spinric yewuetpiog), egapuéloupe to Yedpnuo Poynting oe évay xOxho axtivag r > a

Tou Tephelel TV TNy

2w 1

P= / (§E X H*) - Prde, (1.3)
0

Emicyouue o xOxhog autdg v EYEL ATELRT] oxTiVa, (OTE VO EXPETAAAEUTOVUE TNV o-
OUUTTWTIXH ExpacT) Ty ouvapthoewy Hankel yio peydia opiopota [2] xodde o to
Yeyovog 6Tt 670 axpvé medlo, 1) exmeunouevn axtivoBolio ouumeptpépetan (Tomind)
w¢ eninedo xua |E| = no|H|. YTrmoloylovtoc to ohoxhipwua yoo F = Fj. xou
F = Flaq an6 uc oyéoec (1.1) xou (1.2), xatahiyouye otny napoxdtew oyéorn, mou
OUVOEEL TNV EXTEUTOUEVT] Lo 0 Tapousiol TNE BIdTadNe UE TNV oYY TOU EXTEUTEL 1) TNYN
otav Bploxeton uévn tng:

Prad <= 2
i :n;m|cn| : (1.4)

13



KE®AAAIO 1. EKTETAMENH ITEPIAHUH YTA EAAHNIKA

H oyéon auth| anotedel Ty uetpwr Hog yiot Ty epyacior autr xou emtdupolue vor Ty
UEYIOTOTOW|COUUE, WOTE Vo XATaAEOVUE o€ uTEpaxTvoBololoeg Blatdiels. Enopévae,
optlouye to péyevoc:

P = m?X{Prad/Rnc} (15)

YLl TIC OLUTAEELS UE €VOL UOVO XUAVOEIXG GUVORO EVE YLA TLO TOAUTAOXES BLUTAEELS UE
000 GUVop, OTWS auTEC Tou Ly. 1.1, yiveton plo emnAcov BeAtiotomoinom pe don o
EOWTEPIXO GUVOPO, BNANDY):

pmm(zqﬂfx{p}. (1.6)
To 800 autd peyédn mapovoldlovion 6GTO UTOAOLTO TNG EQYACIAC (S CUVARTHCELC TNG

eCwTepG oxXTIVAG @ X TOU UAXOU, WOTE Vo TpoxOPouy GUUTERGOUATO Yol T1 CU-
UTEQLPOQPE. TNG EXACTOTE OLETAENG.

1.3 Téiesia Ayoyipnor KOAwvspot

H npddtn npog perétn Sudtaln amoteheitan and évay téhewa aydyo (PEC) x0iwdpo
oxtivog a xan Ty TyY) TonodeTnuévn oe andctaon L > a and tov dZova Tou xUAivopou.
H Behtiwon tne exneunduevng 16y 00¢ Praq/Pine 010 eninedo (a/A, L/a) ¢aivetar 6to
Yy. 1.2

0.1 0.5 1 15 1.9 0.1 05 1 15 1.9
a/\ a/\

() ®)

Eyfuo 1.2: H oyetx| exneunduevn 1oy 0¢ Praa/Pine 0Ty nepintonon TéAeta oy ytou
®xLAVOPOU axTivag a cuVPTACEL TNG NAEXTEXTNS axTivag @ /A non TG XUVOVIXOTIOUNUEVNC
Véone e mnyrc L/a. (o) TM xbporta, (8) TE xOpota.

Y10 Xy. 1.2(o) gatvovton tor amoteréoporta yioe Ty TM Siéyepon. THopatnpolue
OTL M) EXTEUTONEVT) 1oy U¢ undeviletar 6Tay 1 mny7 TANGLALEL ToV xOAVORO EVE 1) UEYIOTT
Tir) mou unopet v ptdoet etvan tepimou 1.4, Avtiteta, 6nwe gaiveton amd to Ly.
1.2(f), ot TE mnyéc peyiotonololv tny 1oyd Toug xovtd 6Ttov xOAvEpo, TeETuyaivovTag
T 2P, To anoteréopata autd uropolv vo etahnieuiolv Aovovtag To anholoTepo
TEOBANUA TG oXEBUoNE amd €va MELRO TEAELNL ayWYLMo ETUnEdo e ypron Vewplog
eWWALY, T0 omolo arotelel xahh) mpocéyyion xadaoe d = L —a — 0. H Bedtinon tne

14



1.4. ¥TMIIATEIYX KTAINAPOI

EXTOUTAC OE AUTAY TNV TEpinTwon toolton Ue:
M nv P M M
Y

Pua o [ 1= Jo(2ked), TM
P.. | 1+ Jo(2ked), TE °

omou d = L — a.Ilapatnpolue 6Tt 6vTeg o€ authy TNV TEQITTWOT, 1) EXTEUTOUEVT Loy UG
undeviCeton dtay 1 TM mnyr mAnowdler Tov aywyd eved to avtideto woylel yio Ty TE
Tny", n onola Simhactdler Ty oy ¥ tne. Me dhha Adya, To TM eidwho e€oudetepvel
Vv TyY eve 1o TE eldwho ty evioylel. Emnicov, ueylotonoinvioag Tov dve xAddo
XATOATYOUUE OVTLG OE TWn nepinou {on ye 1.4.

(1.7)

1.4 Xvprayeic KOAwopol

Kodog n yerion téheta ayyipo xUAivdpou Bev odnyel ot apxeTd Loy ueY| axTivoBoANnoT,
ouveyiCoupe TV avalhtnon BérTiotwy dlotdlewy. H enduevn didtaln elvon xon mdAL
OYETXE aTtAY| xou amoTEAELTOL OO EVOY GUUTHYES XUAVORO oxTiVAG @, amd LAIXO UE Ui
Yoo oyetnt| dinhexteu otadepd €. H mnyr| xou mdht tomodeteiton oe andotaon L
omd Tov dEova Tou xuAivopou. ‘Ocov agopd 1 dinkexteixr o tadepd, xordng emudolue
™ PeyloTonoinon e toyvog ota mhaiolo authc g Epyoaoiog, 10 owotd Yo Ytav ot
SrortdEete pog wavixd va uny ebyov anwietee (Imfe] = 0). Tlap” dhat awtd, evieyouévig
1 EMAOYT auTH Vo 001yoloe og apriunTiXd TEOBAUUTA (G UTOPEOLY 1] PEUALS TIXMY

CUVTOVIOU®Y O€ TEPITTOOES ENZ vhixodv xaw vaayv e € = —1. Enouévoe, em-
Aéyoule éva uxeod govtaotxd pépoc (Imfe] = —0.03) yio 6hec TiC TEPITTMOELS TTOU
axoroudolv.
10 10 10 10
5t 5t
5 5
w W
o Of o Of
A~ e ———
0 0
5 5t
-10 : : 5 -10 : : 5
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
a/\ a/\
(o) ®)

Yyfua 1.3: H petpwer| p ond v oyéon (1.5) (oe dB), yio L > a, wg ouvdptnon
e omuxNg oxTivag a/A evog cuumayols XUAVOEOU X0t TOU TEoyUaTiXol Yépous Tng
oyetxhc dinhexteinic tou otadepdc Rele], und Siéyepon: (o) TM ndrwone, (B) TE
TOAWOTG. XENOOTOOVTOL UXQEES ATWAELES (OEC UE Im[e] = —0.03.

Hapatneodue 6Tt xou 6Tig 000 TOAWoEG 1N evioyuon TAéov eivon €wg xou 10 dB,
OEXETY UEYUAUTERY amd TNV TeoNYoUUEYT TepinTtwoT. Ewixdtepa, doov agopd tnv TM
norwon (Xy. 1.3(«)), ot péyiotee Tyée emtuyydvoviar oe diniextexéc (Rele] > 0)
TOEUUETELXES AWPIDES, VLol UXEE OYETIXES oxTivEg a/A. Ané ™V dAAY, otV TERITTW-
on e TE néhwone (By. 1.3(B")) napatnpolue auZnuévn enldoon oTic TAOUOVIXES
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KE®AAAIO 1. EKTETAMENH ITEPIAHUH YTA EAAHNIKA

(Rele] < 0) Swtdiec, eved ouveyllouv vor UTdEYOLY TOEOUOLES TUPUUETEIXES Awpldeg
oe meptntdoelc dtnhextoxdv (Rele] > 0) xuhivopwy.

1.5 Mn Yvunayesic KOAwspol

Me oxond tnv eniteudn oaxdua VPNAOGTEPWY EMBOCENY, ETGTEATEVOUUE TN YEWUETELN
Tou Xy. 1.1(o), tonodetdhvtag v mnyY| oto cowtepxd (0 < L < g). Me tov tpémo
oUTO, 1 BtdTaln “yxahdlel” TV TYT, ONUOVEYOVTUC Ui CUVTOVIOUEVT XOLAOTNTA.
H 9éon tng mnyrc ebvon tétota (ote T0 Eldwho mou mpoxUmTEL Uéoa GTO (EAUPOS
Vo yeytoTonolel Ty exmeunopevy axtvofolia. Mto Xy. 1.4 amewovileton oe dB 7
UETEXY| Pmax 07O eninedo (a/A, Rele]), vnodétovtag tic (Bieg pixpée anwlele 6mwe
mponyouuévws. Ilopatnpolue evioyvon éwe xan 25 dB xa yio Tic 500 TOAGOCE OTIC
TAACHOVIXES GYEDLAOELS. MTIC TEPLTTWOELS AUTES, TapaTnEelTal 1 ovdntuln evog Ce-
Uyoug evanescent puduOY 0To XEAUPOC, OL OTO[OL TO EVEQYOTOLOVY ATOBOTIXOTEQY OO
TOUG TOAXVTWTIXOUS pUIHOUG OTIC DINAEXTEIXES TIEPLTTWOELS [3]. Oocov agopd vy TM
mohwon (Xy. 1.4()), mopatneolue 6V0 TUPUUETEIXES TEQLOYES UPNAWY ETBOCEWY
010 NUETITEDO TwV ThACUOVIXWY GYEddoewY. Ao Ty dAAn, oty TE mélwon (Xy.
1.4(B")), mopatnpolvton 3 TETOlES TEPLOYES, Ol OTOEC Efval TO EXTETUUEVES XOL OVTL-
oTtoLyolv ot LlmAdTepe exmeumoueveg axtvofolies. Téhog, ol mapaueTeés Awpldeg
mou etyav Bpedel yio dinhextpd oto Xy. 1.3 cuveyiCouv va uTdpyoUY Xou €.

5F ‘
i \ 0
-10 E ‘ 5
0.2 04 0.6 0.8
a/\

(®)

Yyfua 1.4: Anoteréopora yior cuunay ) xOMVOpo E0OTEPAG axTiVaG g o eEMTEPXTHC
a. H petpueh pmax omd ty oyéon (1.6) oe dB, cuvaptioel tng ontinic axtivag a/A
X0 TOU Tporypatixol Uépouc e oyetixig dinhexteic otadepdc Rele] und: (o) TM
dieyepon, (B') TE biéyepon. H nnyr| tomodeteiton oto eowtepnd (0 < L < g).

Y10 Xy. 1.5 amewoviCoupe Tn oUYVOTNTU EUPAVIONG TWY THO TETUYNUEVKDY OYE-
SLUCEOY (Pmax > 24 dB) ouvapthcer tou mnhixov g/a. Kotd v avalimon twy
OLUTAEEWY AUTWV, TUPATNEOVUE OTL UPXETEC amd QUTEC EMAEYOUV XEVIPIXT] TEOPOOO-
ofo (L = 0) yu ) Béhuot Aettovpyla touc. Tt 1o Adyo autd, oto Ly. 1.5()
amexoVICOUUE TNV XUTAVOUT| QUTWY TV OYEOEoE®Y. Eivon onuovtind vo onueicoupe
ot Toe omnuelor Tou avtiotoyoly oo TM x0uota TEoXUTTOUY amd TNV APIC TEPOTEEN
mhaopovixf ynotdo tou Xy. 1.5(a) (0.45 < a/A < 0.55), eved to avtiotoya TE yia
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1.5. MH ETMIIATEIY KTAINAPOI

0.65 < a/A < 0.75. Tlapotnpolue 61t ot TM xevtpd tpo@odotolueves BIOTdEeLS o-
Toutolv oy UTEEa XeAO@N Yo BEATIo TN Asttovpyia and Tic avtioToryec TE. Extoc and
TIC XEVTEIXS SlEYEpUEVES OYEDLdoELS, ToXUTTOUY UPMAéS emdooelc 6tav L = g/2 yu
TM xbyata xou L = g yioo TE. O nepintdioeig autée nopousidlovton oto Ly. 1.5(3).
ESo miéov ou TE mnyéc yeetdlovton moyhtepa xehbgn xon 0.3 < a/\ < 0.45, evd ol
TM mnyéc uxpodtepa xehogn xon 0.65 < a/X < 0.75.

24 ‘ ‘ ‘ ‘ ‘ ‘

k BT |

20 —
. |
i
]
o
(] 8k

4k

0

05 055 06 065 07 075 08 085

g/a
(o)

12 |

i BTV

10 —
= 8] 1
S 6t
o
(] 4k

2k

0 L L

05 055 06 065 07 075 08 085

g/a
®)

Eyfuo 1.5 O oprdude twv emtuynuévey (pmax > 24 dB) vrepaxtivoBoholvtomy Sua-
WEewy, ond o By.1.4, cuvopthoer Tou TNAIxou g/a xar v Tic 800 mohGoe. (o)
Kevtpwt| Séyepon (L = 0), () Mn xevrpwt| diéyepon (L = ¢g/2 yio TM xbyata,
L = g ywo TE xOportar).

Y10 onuelo autod, efvar oNUAVTIXG Vol UEAETACOUUE T CUUTEQLPOES U] CUUTOY MY
XUAVOpwV pe uPnhdtepeg amidhetes (Imfe] = —0.3) xadde xou pe eZwtepny| Tpogodoata
(L > a). o Lyfuara 1.6(o) xon 1.6(B") poivovton tor omotehéopotor yior Tic StatdEels
ue vdmiéc amieteg, Yo TM xan TE xOuato avtiotowyo. Hoapotnpolue 61t eve) undpyet
uelwon TV emBOcEWY ot oyéon e To My. 1.5, OTWS avoEVOTAY, Ol TUQUUETEIXES
TEPLOYEC Blatneovy 1 Hop@t| Toug. Emouévwe, ol Blatdlelc etvat apxeTd eVpWoTES OF
Quixd pouvépeva. Emniéov, and ta EynAuoto 1.6(y") xou 1.6(8"), émou napouctdlovton
ToL AmOTEAEOHATA YioL TNV e€WTERINY| BIEYEpaT), xadioTotal Teogavée OTL oL ETBOCELS
elvon youNAOTERES EVE ToL BLory eaUUAToL Efvor ToEOUOLYL UE T Tou My. 1.3.
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15

15

0.2 0.4 0.6 0.8

a/\
(®)
10 - w 10
5

()

Yyfua 1.6: H yetpinh] pmax, o dB, oto eninedo (a/A, Rele]) v (of) udmhotepeg
anwieteg (Imfe] = —0.3) yioo TM xOporta, (B) vdpniotepes andreee (Imfe] = —0.3)
v TE xOporta, (v) e&wtepwl TM Siéyepon (L > a), (§) eZwtepwr) TE diéyepon
(L > a).

1.6 2ulevypévol NavoowAnveg

H endpevn mpog pehétn Sudtaln vl 1 mo AMOTEAEOUATING AVIUECO GE OAEC TIC OTO-
{ec pehetdue otny Epyaocio autrh xou anoteleiton and 600 OUOAEVTOOUS VAVOOWARVES,
oxTiVoIg g o @ %o Y oBIXNG ETLPAVELOXNAC AYOYWOTNTAS 0, OTwe QuiveTon oTo LY.
L.1(B"). Tt vor ebvon BéPanor ) olyxplon Ye Tic Tporyolueves dotdiels dixoun, Vo tpénet
xou A var ouunepthdfBoupe uixpés otodepés amwheleg. Xenowonolviag Tov TUTo
[4]: ong = iked (e — 1), 6mou 1y 1 xupaTxh avtiotaon tou xevol xar d To Ty oC
NG METUETLPAVELUS, UTOPOUUE VoL GUVOEGOUPE TNV oYWYOTNTU EVOS VAVOSWARVIL UE
utor avtiotoryn Sinhextex| otadepd €. Emhéyovtac d/A = 0.1, yw Im[e] = —0.03,
npoxuntet Relon] = 0.019.

oty peletricoude Ouwe 1o (VYOS PETUETIQAVELDY, Va Elye eVOLOPEQOY Vo BoluE
T CUUTEQLPORA EVOC LOVOU Vavoowhiva axtivag a, o omolog dieyelpeton and mnyr| oTo
eowtepd (L < a). Yto Ly. 1.7(«), 6mov mopouctdlovton Tol amoTEAECUNTA VLol TNV
TM nérwor, mapatneolue Ty eniteuln VPNAOY YeyioTwy Ve e TapPaUETEIXES Aw-
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1.7. EINIAEI'MENEY ATATAZEIY

pldec eved e€wTEPIXG AUTWY, 1) TNYT TEoXTixd umhoxdpeton. Ilopduola cuunepdouota
mpoxUTTouY xat and to Ly. 1.7(B") mou avuotoyel oty TE ndérwon. Opwe, otny
TEPIMTWOT AUTH ETTUY Y EvoVToL UPNAEC EMBOCELS OE UEYUADTEQO PEPOC TV TOQUUETOL-
AWV hwpldwy. Elvow mpogaveg 6TL yerion evog uovou vavoowmAva uTtopel var odnyroel
o€ OYEBIOELS Ol OTOlEG Blvouv ETBOOELS avTIOTOLYEG UE QUTEC TNG TEPLTAOXOTERNG
oudtogng tou Uy, 1.1(o).

) 0.2 0.4 0.6 . ) 0.2 0.4 0.6 0.8
a/\ a/\

() (®)

Yyfuo 1.7: Anotehéopata yio €vay VOVOSWAVOL X TIVIG @ %o Uty aBIXAC ETLPAVELIXNS
ayoywotntoe o. H petpwr| p (oe dB) amewoviletan oto eninedo (a/A, Imlon)),
oty nepintwon: (o) TM ndhwong, (B') TE néhwone. Trodétoupe otodepéc youniés
anoieec: Re[ong] = 0.019.

Hpoywedue TP 0TNY O amodOTIXY And TIC BIATALELS, AUTY TWV OUOXEVTPLY UE-
TATLPAVELDY, GTIC omoleg 1 mnyT) Tonoveteiton uetall Twv dVo cuvopwy g < L < a.
Me Tov tpémo autd, dnuovpyeiton pla xothdTNTa GUYVTOVIGUOU, UEca GTNY omola 1) T
v toroVeteiton Ye ToOTO TéTOW WOTE oL moAlamhol puduol Tou avamTiGCOVTUL Vol
oudPdrrouy Yetind. To anoteréopouta Tou Myuatog 1.8 6TL mpdrypott, WASUE yia Tig
ueyaAUTERES EMBOTELS, uE Bedtinon Tng toylog uéypl xou 3 té&elg yeyédoug. Tlopatn-
polle xat oTic BVo mohdaoele (Xy. 1.8(o) yioo TM, Xy. 1.8(8") yw TE) tnv Onoapén
EXTEVOV TUROPETOLXDY TEQLOY WY OTIC OToleg eMTUYYdvovTal Toh) LPniéc embooelc,
T6G0 Yl OINAEXTEXEC 600 Xou Yo TAacUovixé Slatdéelc. Xtny TM mepintwon mog’
Ol T, oL HEYLOTES TWES elvan Ao wxpdTepeg and Tic avtloToryec otny TE noiwon,
EVR OloTneelTan UL TEPLOY NG MTAOXRIoUUTOS TNG TNYYS Yid TAUCUOVIXEG OYEDIAOELS
uenc eEwtepnic NhextexAc axtivag a/A.

1.7 EmAieyueveg Awatdielc

Kodog ot xahltepee emdodoelc emtuyydvovton oTig Sltdéelc Ye (elyog VOvoomAVA,
Vo fitay eVOLopEEOY Var ETAECOUPE TIC XOAUTERPEG OYEDIAOELS Xt Yid TIC 000 TOADOELS
(TM xon TE) xon yior Sinhextowxd (Im[omg] > 0) xow mhaopovixd (Imfong] < 0) vhixd.
Hopatnewvtac to Xy. 1.8, PAénovye 6T yior a/A = 0.62 elvor Suvortdy va tethyoupe
eCUEETIUG YEY AT EXTIEUTOUEVT] Loy D Xt Yol TIC 600 TOAWOELS OAAS xou Yial Toug BU0
TOmoug LAY. ‘Ocov agopd TNV TWr Tou QovTacTXo) PEPOUC TNG oy WYWOTNTOC,
ATOPEVYOUUE VO YENOLIOTIOOOUPE TWES Tou [Boloxovtar oTa dxea Tou BLICTAUATOS
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KE®AAAIO 1. EKTETAMENH ITEPIAHUH YTA EAAHNIKA

Tm[ono)

Yyfua 1.8: Anoteréopata yio éva (EUY0G OUOXEVTEWY, GULEUYUEVLY VOVOCWHAAVKY,
OXTIVV g XOL @ XAl ULy OOLXAG ETUPAVELNXT|G Oy WYLLOTNTAS O, UE TNV TNYY| AVIUESA TOUG
(9 < L < a). H petpwh pmax (0e dB), napovcidleton oto eninedo (a/A, Im[ong)),
oty nepintwon: (o) TM néhwong, (B') TE néhwone. Trodétoupe otadepés youniéc
anoheec: Re[ong] = 0.019.

[—40, 40], ondte emréyoupe Im[ony| = £20. Xto Xy. 1.9 anewxoviletou n adEnon tng
EXTEUTIOUEVNG toYVOC OTIC TEPITTWOELS auTéC oo eninedo (g/L, L/a). Hapatnpmdvtog
Tor Olarypdppato autd, BAEntoupe 6T o TE mnyég mpotiuoly va Beloxovtar xovid ota
obvopa 7 = g | 7 = a. Ané v &N, oo TM mnyéc mpotwolv va anéyouv To (Blo
ond autd. To anotéheopa autd unopet vo e&nynidel pe yeron tne Yewplag el0®AOY,
OTWE AVUPEQOUE XL OTNY TEQIMTWON Tou TEAELX oy OYUoU xUAivopou. Ewdwodtepa, o
TEPUTTWOEL LVYNANC aywyoTnTag émou mpocouotdleton 1 PEC repintworn, ta TM
eldwha e€oLdETEPWMVOLY TNV TNYT Xdde auTh TAnowdlel To olvopo, eve ta TE tny
EVIOYUOLV.

270 onuelo autd, Eyel onuacio Vo UEAETHOOUUE OPIGHEVA TEYVIXE YUEUXTNELO TS
TV ETMASYHEVODY OLITAEEMY, CUYXEXQWEVO T CUUTERLPORS TOUG OE DIEYEPOELS UETO-
Bokhouevou urxoug x0Uatog xadg xon To Tapary OUEVAL dlory doTa axTvoBoAtag 6To
eninedo xy.

[ Tov oxomé autd, oto Xy. 1.10 mopouctdloupe TN EXTEUTOUEVT oYY OTIG TEQL-
TTwoeg Tou Xy. 1.9. Emmiéov, €youue HEAETHOEL X0 TN GUUTERLPORE TWV AV TIG TOLY (VY
SotdEewy ye avinuévee anwheec (Refon] = 2.8) xadde xou Tic TepimTdoelc Tng un
Bértiotne O Awong. Ao tny mapatrhenon tou Xy. 1.10 xadloTotar mpogavéc 6Tl o
ONEC TIC TEPLTTWOELS LUTHEYEL €Val GUVTOVIOUOS 0TO BEATIoTO omnuelo Asttoupylac Ag,
600V apopd T PEATIOTEC OYEDLdOE (Le Wixpéc amidhelee xou BlEYEPUEVES amd ™y
TEOTLIOVUEVT né)\won). ‘OTeg avaevoTay, oL ATMAEIES HELOVOUY TNY 0Z0TNTO TOU GU-
VTOVIOUOU %ot TN U€yloTn Tiwr. Emmiéov, mapoatnpolue 6Tt ol TAACUOVIXES SLUTAEELS
€YOUV TNV WBLOTNTAU VO EVIOYVOLY X0t TNV TOAWGCT Yo TNV orola dev elvor BeATio TomoL-
nuévec. To avtiveto woylet yio Tig dinhextewéc datdéelc. To yeyovog auvtd Vo gavel
X0 OO TOL TOROY OUEVAL OLOrY POt o TLVOBOAlAG TOU TEOXUTTOLY amd TNV AVahUTIXN
AOOT) ahAG Xo o6 TTROCOUOUMCELS.

Ipoxewévou va perethcouvue Ty altpoudiony| xotovouy| Tng 1oy 0og GTO UoXEVO
medlo yio Tig 4 emAeyuéveg umepaxTivoBoholoeg dlatdielg, opiCouue évar aliuoutiond

20



1.7. EINIAEI'MENEY ATATAZEIY
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Yyfuo 1.9 H oyetnr| exneundyevn woy0c Prad/Pue (0g dB), oto eninedo twv na-
coapétowy (g/L,L/a) v a/A = 0.62. (o) Imf[on,] = 20, TM nélwon, ()
Im[one] = —20, TM ndérwon, (Y) Im[one| = 20, TE néhwon, (§) Im[one] = —20, TE
oo, Ou umhe otawpol detyvouv ta onueia TV BEATIOTOVY OYEBLEICEMY.

e€aptduevo Tpogik toyvoc p(y) Tou omoiou 1 Yéon T oto ddotnua [0, 27] 1ot
ue ™y oyt 1oy V< Prad/ Pinc, ONhadY:

Prad o 1 2
-Pinc B 27T 0

p(p)de. (1.8)

Me eqapuoyy| Tou VYewpruatog Poynting, ye tov (8lo 1pém0 TOL TEQLYEAPTNXE GTNY
oy N AUTAS TNE EXTETOREVNS TeptAndng, TpoxUnTel OTL:

+o0 2

Y iCue

n=—oo

p(p) = (1.9)

Y10 Xy. 1.11 éyoupe anewovioel T0 péyedog autd 0 TOMXO DLEYEUUUA, Yot TIC (BLEC
oxpoe datdec pe 1o Xy. 1.10. IMapatnedvtog tar Slarypdupoto auTd, ivor copeég
OTL Ta Oty pdpota axtivoBoliag o€ 3 and Tic 4 BEATioTeg Blatdlels elvon elte opoloxo-
TevduvTXd elte Bimohxd. Autd Bev elvon amdppoLla WaC XEVTEIXHAS TPo(odoctac, xadie
L # 0. Avudétoc, otic dotdelc autéc ol alidoudiaxés apUoVIXES aviTeRNS TAENG
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Yyfuo 1.10: H oyetnd exneundpevn oy 1wy eMAEYUEVODY OYEBEOEWY Prad/ Pne (o€
dB) cuvapticet Tou xavovixomomuévou urixoug x0patoc A/ Ay, Yopw and to BEATIoTo
onueio Aettoupyla A = A, otic teptntwoelg tou: (o) Xy. 1.9(), (B) Ly. 1.9(8"), (v)
Yy. 1.9(Y"), (¥) Ly. 1.9(3").

In| > 2 xotamélovron HECO OTNY XOLAOTNTA oTNY omola BploxeTon 1 TNYT, EV® ToL-
oypova ot puduol n < [1] aAknhemdpolv BEATIOTO UE Tol TOLYOUATY, 0ONYWVTUS OF
eCaPETIXG oY UPA ouoloxaTeEVIUVTIXT 1) BiohxT| axTvoBoAdC TEOS TO UaxpEvo Tedlo.
BAénouye eniong 6Tt ol TAacUovixég BLaTdEelC eVIoyLouY xou T U BEATIO TN TOAWGCT) UE
omAd Srorypdpotor oxtvofollag, avtideto and autd Twv BEATIOTWY oyedidoswy. [log’
Ol auTd, 1 yewUeTplo Tou Xy, 1.11(Y") elvon 1 uovodixh Tou TEPLEYEL Xou UEYOAITERNS
TAENG apUOVIXES 0TO EEWTEPIXO TED(O.

To omoteréopator auTd efvar ONUAYTIXG VoL ETOANUEUTOUY UECEW TEOGOUOIWOEWY,
OoTe Vo EMBELUMOOLUE TNV 0pYOTNTA AUTOY TWY TOA) ATAGY DLy PUUUATOY oXTIVO-
Bollag mou tehxd mpoxdnTouy. I'a Tov o%0Td AUTd, TEOCOUOUBVOUNE TIC DITAEELS UE
yeron tou COMSOL Multiphysics [5], ot mopdryoude Ty xortovouy| Twv mediwy xdie
TOAWOTG.

Y10 Xy. 1.12 mopoucidlovtal To amOTEAEGUATO KV TEOCOUOUMGEWY Yiol T1) B1dTaln
Tou Xy. 1.9(Y). Buyxexpwéva, oto Xy. 1.12(a) napouvotdleton 1) xotovouy| Tou nediou
bty 1 Ty n ebvan eheddepn, oto 1.12(B") dtav undpyet pbvo 1o ecwtepnd Glvopo, 6To
1.12(y") étav UTIBEYEL LOVO TO EEWTEQIXO, EVE TEAOC 1) TAHENG DLATULT TOOGOUOLVETAL
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210 e T'E, Optimal with losses 330 210 = TE optimal with losses 330
TE optimal under TM TE optimal under TM
——TE optimal with losses under TM = TE optimal with losses under TM
240° 300° 240° 300°
2700 270O
(¥) (®)

Yyfuo 1.11: To alipouthoxd mpogih woyboc p () and tn Xyéon (1.9) (oe dB), oe
TOAXO Bidrypoupo cuvapTHoEL TN alouthaxAc YwVIaS @, Yio TIC GYEDACES omd Ta:
(o) Xy 1.9(«), (B") Ly. 1.9(B), (v) Ey. 1.9(y"), (8") Ey. 1.9(3") xon tic avtiototyeg
OLUTAEELC UE UEYOADTERES UMMAELES, XATW X0t Ad TIC BUO TOADCELS.

oto My. 1.12(8"). Eivou mpogavéc ot 1 mifeng, Behtiotonomuévn didtaln odnyet
oe porydola adENoT TNS EXTEUTOUEVNS axTvoPfoliag, T8Ene ueyédoug pueyolbtepng amod
TIC MEQIMTWOELC YPHONS EVOC UOVO Guvopou xan Tng eheliepne mnyrc. Emmiéov, To
Sudrypoppor axtvoBoliog tou Xy. 1.12(8") emfBefodver o avtiotoryo Yewentixd tou
Sy. 1.11(3).

210 Xy. 1.13, €youye TEOCOUOLWOEL TNV XATAVOWUY| TOU TEBIOL Yia TNV TEPITTWO
tou Xy. 1.9('), t6o0 unéd v Bértiotn TM nélwon (nhextewd medio E.), 1600 xou
uné TE néhwon (poyvnuxd medio H,). Iapotnpdviac ta Yy, 1.13(o) o 1.13(B"),
ouumepatvoupe 6Tt 1 BEATIOTN TOAWOT 00Nyel oe Bimohxd dudypauua, eve  TE oe o-
HotoXaTELIUVTIXG, OTWS oxELBie TpoPAendTay ond 1o Ly. 1.11(B"). Emmiéov, BAénou-
UE OTL 1) BEATIO TN TOAWOT 001NYEl 0 TOAD UEYUAUTERES TYES axTVOBOAGC OTO HoXEWVO
medio, and TN un PerTioT.
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KE®AAAIO 1. EKTETAMENH ITEPIAHUH YTA EAAHNIKA
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Yyfua 1.12:  Anotedéoyato TpocopoldoEwy Yo pla amo Tig emheypéveg, TE-
OLEYEPUEVES, DIAexToiéC YewpeTpleg. H amdAutn Tiur tou mparypatixol pépoug ng
Hovadixic cuvioTwoac Tou payvnuxoL mediou |Re[H(x,y)]|, oc dB, oto eninedo zy,
oty mepintwon tou Ly. 1.9(y"), otav: (o) n mnyr elvon eheddepn oto xevd, (B') unde-
YEL LOVO TO E0WTERXG 6UVORO, (Y') UTdpyEL Hovo To eEwTepind oUvopo, (8) undpyet N
TAENG, BehTio TOTOMNUEVY BLdTaLT.

1.8 Xvurepdouato

Ev xatoodkeidl, oty Epyacta autr éyel mporyuatonomdel ua extetapévn avalntnon
GUVOUUGHGY DOULXMY X0 UAXOV YORUXTNELO TLXMY ATAGDY XUAVOOIXMY YEWUETELDY TOU
odnyoly oe onuavtx adinon tng exteundevng woyle wlag TM A TE yoouuuhc mn-
YHC, o€ oyéon Ye TNy Loyl Tou auTh exméunel 6tay Poloxetan LoVN Tng oTov eAcliepo
yweo. Ilupatneolue 6t umepoxTivoBoholoeg Blatdlelg Unopoly va Peedoly dtav 1
TNyY| TomoeTelTal ECKOTEPXY EVOC 1) GUUTOYOUS XUAVOEOUL xai PeTal) Buo cuUlELY-
UEVOY UETUETLPAUVELDY. LTIC TEQITTOOELS QUTES, 1) AAANAETBoUOT TOU TOUTOY PE TA
TepBdAhovTa oOvopa odnyel og €wg xou 3 TéEelg ueyédoug evioyuon tng axtivoPo-
holuevne toyloc oto poxevd medlo. To dorypdupota axtivoBoriog twv PEATIOTOVY
OLUTAEEWY TTOU TTEOXVTTOUY UTOPOLY Vo Efvol OUoLoXATEVHUVTIXG 1| DITOALXE, OLoPOPE-
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1.8. ¥TMIIEPAYXMATA

N
1

Yo 1.13: Amoteléouator TPOCOUOWMCEWY Yiot TNV TAACUOVIXT OLdTalr), BEATIOTO-
nonuévn v TM Siéyepon tou Xy. 1.9(f), étav yenowonoweitan: (o) TM mny,
avomoplotwpevo péyedoc |Re(E.(z,y)]| oe dB, (B') TE mnyn, avanapiotduevo péye-
Yog |Re[H.(z,y)]| oc dB.

1
-60

-80 -2

A\

- 0
x/A x/A

(o) ®)

Txd Y xdde toAwon. To yopuxtneloTnd autd xahoTd Tig BlaTdlels AUTES WOaVIXES
Yl xwdixonolnomn Baorn Tne TOAwonNg o€ Eva avahoyixd oyfua enelepyasiog orlaToc.
O emAEYUEVEC TAAOUOVIXES UG OYEDIAOELS €YOUV OLAPORU TAEOVEXTAUOTA ATEVAVTL
oe mopadootoxés TAaopovixée xepolec (Sotdéelc dimer xou bowtie). Ilio ouyxexpt-
MEVAL, EYOUV T1 DUVITOTNTA VoL EVIGYUOLY THUTOYEOVA X0l TIC 000 TOAWOELS, ETULTPETOUY
EUXONOTEQT) XUATACKELT) Xall ETLOEVIOLY UELWUEVT] EVONCUNGIA OF 1) TOTUXG. PUVOUEVAL.

Emniéov, n napolou Epyaota uropet va enextodel yior Ty xotaoxeur SLoatdiewmy ye
YUEUXTNPLO TIXE TTOU AT TOOVTAL OF OLAPORES EPUPUOYES. DUYXEXQUEV, 1) TROCUHXY
Un YeouuuxoTATwy oTic petaemipdvelee Yo Bondoloe otn poviehonolnon ctouyelnv
UVAUNG e auénuévn evpwotio evavtiov tou Yoplfou 6]. Emmiéov, L0l TIETEQUGHEV)
1) dmelen oToLyEloxEpaia (7], amoterolpevn and Tig BEATioteg datdelg autrg e Ee-
yaotog, Yo unopovoe va yenowomoinlel oE EQUPUOYES TOU ATATOUY TNV TRy WYY
CUYXEXQUIEVODY DLy QoUAT®Y oxTVOBOA0G, UE YPNOT ATAGDY, LOOTROTUXMY oxXTvoPo-
ANtV 6Te¢ autols Tou Yewprioaue otny Topoloa Epyaota.
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Chapter 2

Introduction

The concept of superradiant states, namely the coherent radiation from molecules
within the volume of a gas has been first elaborated [8] as the summation of con-
structively interacting spontaneous emissions towards photon production. The prin-
ciples of such a collective emission by atoms, leading to radiating resonances, instead
of exponentially decaying intensities when working independently from each other,
have been summarized in the quantum regime with the use of generic multilevel
systems [9] and beam masers [10]. This effect can be interpreted in an optical man-
ner in electromagnetically dense media [11], mesoscopic systems [12] and on-chip
photonic crystal resonators [13]. Interestingly, the case of superradiance has been
demonstrated in the simple case of two artificial atoms [14], as well as in arrays of
quantum emitters [15] and random clouds of self-assembled quantum dots [16]. One
may also visualize these superradiant regimes by regarding the material molecules
as tiny antennas, operating in-phase with each other; such an interference produces
power proportional to the square of particle population size [17], that pushes the
performance of lasing [18] and imaging [19] to unprecedented levels.

Superradiation can be present even in non-quantum systems, like epsilon-near-
zero plasmonic channels [20], nanofibers [21] and nanowaveguides [22]. Importantly,
similar classical regimes have been detected in photonic crystals [23], materials op-
erating near their band gaps [24] and plasmonic nanocavities [25]. Interfaces where
surface plasmons are hosted constitute a privileged ground for the investigation of
superradiation, since strong local fields are developed. In this way, the placement of
numerous collaborating emitters near the boundaries of metallic nanoparticles [26],
graphene [27] or nanowires [28] can send a large portion of the localized power far
away. Moreover, significant radiation enhancement has been reported by randomly
positioned nanorods in the vicinity of active, conjugately matched layers [29] and
conversion of evanescent waves from poor emitters into propagating ones with the use
of properly shaped hyperbolic metamaterial nanoprisms [30]. Finally, superradiation
has also found extensive biomedical applications, from efficient radio-treatment of
cancer with nanoparticles [31] to enhanced operation of Magnetic Resonance Imag-
ing [32].

Several concepts involving the radiation, absorption and scattering mechanisms
of objects interacting with electromagnetic waves, have been formulated in cylindri-
cal geometries. In particular, nanorods have provided fertile ground towards design-
ing biocompatible components via strong plasmonic fields [33] as well as efficient
hybrid solar cells by tuning the exhibited bandgaps [34]. Moreover, short cylin-
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drical dimers have been employed as optical nanoantennas producing high surface
enhanced fluorescence [35] while ultraviolet lasing is achieved by nanowire arrays in
room temperature [36]. Importantly, two major strategies in materializing transfor-
mation optics cloaks have been experimentally tested between circular boundaries,
where exotic electromagnetic properties are emulated by spheroidal metallic inclu-
sions [37] or concentric cylindrical lattices [38]. Nanotubes, namely, rolled mono-
layers of two-dimensional media, make an additional distinct category of cylindrical
geometries that have been proven excellent candidates as supercapacitor electrodes
for compact energy storage [39] and chemical sensors of high sensitivity [40]. Sim-
ilarly, metasurfaces built on conformal curved films [41] are highly versatile in de-
veloping arbitrarily shaped multi-functional optical instruments [42] while golden
microwedges patterning cylindrical lenses provide rollable substrates for tunable
plasmonic devices [43]. Finally, cylindrical geometries with tunable interfaces can
host a wide range of electromagnetic phenomena such as epsilon-near-zero originated
waveguiding [44] and hyperbolic dispersion [45].

In this thesis, we have considered several cylindrical geometries to increase the
far-field of a poor emitter resulting in electromagnetic superradiation. Starting
from simpler and moving to more complicated structures with circular boundaries,
we report significant enhancement for the radiation of filamentary currents in both
polarizations. Similar aims have been well-served with the use of active quantum
wells [46], hyperbolic resonators [47] and external DC biases [48], [49]. The most
successful results are obtained when placing the free-standing source internally to
plasmonic shells or between two concentric nanotubes, where multiple in-going and
out-going modes optimally interfere with each other. The nanotubes can be well ap-
proximated by optically thin cylindrical layers of dense media like gallium phosphide
or silver in the visible spectrum; they behave as homogenizable rolled metasurfaces.
Several superradiating designs can give emission improvement of up to 3 orders of
magnitude, by developing extremely powerful omnidirectional or bipolar modes dif-
ferent for each wave polarization, both in the far and the near region. The observed
radiation is on par with or even greater than previous relevant works.

Additionally, the designs in which plasmonic materials are employed offer sev-
eral advantages over traditional plasmonic nanoantennas. The most widespread
plasmonic antennas consist of a quantum emitter coupled to either a single metallic
nanorod [50], [51], [52] or a pair of nanorods, through a gap between them [50], [51],
[53]. While these designs can result in significant radiation enhancement, they are
not capable of substantially boosting both excitation polarizations concurrently [51];
on the other hand, our proposed highly-performing setups enhance both TM and
TE waves at the same time, to levels on par with, or greater than those reported
in earlier works. Additionally, our best performers reveal strong omnidirectional
or bipolar patterns, different for each polarization type. Consequently, not only
can our designs be used for emission enhancement but they may also be utilized as
polarization sensors, in an analog signal processing scheme. Furthermore, nanoan-
tennas of the above-mentioned geometries are inherently bulky [54], [55] and their
fabrication can be challenging [50]; in our work, we observe substantial amplification
of the radiative power while also maintaining the geometries as simple as possible,
allowing for a simplified fabrication of the photonic devices. Moreover, bowtie and
narrow-gap dimer antennas can suffer from nonlocal effects, which may significantly
decrease their radiation enhancement [56]. Specifically, in these setups, the source is
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CHAPTER 2. INTRODUCTION

squeezed between sharp tips or nanogaps, resulting in strong field localization and
steep field gradients, which in turn activate nonlocalities. This is not the case for
our designs; the radiation enhancement is not due to extreme field localization at
a geometric singularity but rather due to the constructive interference of low-order
azimuthal modes within the cavity, stemming from a resonant coupling between the
two metasurfaces. Thus, the proposed configurations are naturally less sensitive to
nonlocal effects. Apart from the nanodimer geometries described above, some other
configurations have previously been proposed in the literature for the construction
of plasmonic antennas, using plasmonic nanopatches [57] or ring cavities [58]. How-
ever, while they can achieve significant emission enhancement, they both employ
multiple quantum dots. In contrast, in our designs we use a single weak isotropic
source. As a result, we can ensure coherent emission, owing to the single active part,
while also observing comparable or improved performance using fewer resources.

As far as the chosen excitations (line sources) are concerned, they have served as
well-established models in the study of a variety of problems in the literature, despite
their idealized nature. Some of these cases include, but are not limited to, the design
of cylindrical nanoparticles [59], the study of electromagnetic scattering from a DNG
slab [60], as well as the analysis of the behavior of cylindrical invisibility cloaks [61].
Furthermore, line sources can serve as models for radiators that are two-dimensional
in nature and are widely employed in modern technologies. More specifically, slot
antennas can be modeled as line sources; in cases where the slots are narrow and
long, they behave like a cylindrical wave emitter in the plane perpendicular to the
slot. In a similar fashion, waveguide apertures can also be modeled as 2D cylindrical
radiators. Additionally, line sources are not just an abstraction used for practicality
in two-dimensional analyses; they help us capture the core physical mechanisms that
govern the interaction between the source and the cylindrical geometries through
simple, analytical formulas. Hence, the results obtained using this 2D model can
often be translated and generalized to 3D scenarios or provide valuable intuition for
them. For instance, if we were to use a dipole instead of a line source, the behavior
that would be captured on the transverse plane would be similar to the one observed
in our paper.
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Chapter 3

Theoretical Framework

3.1 Maxwell’s Equations

A detailed description of the operation of photonic devices, and in fact all elec-
tromagnetic phenomena, requires a rigorous formulation of the laws that govern
electromagnetism. Originally developed by James Clerk Maxwell in 1873, the equa-
tions presented below describe the relation between the electromagnetic field and
its sources. These equations read:

0B

D
Vx%:J+%—t (3.2)
V.-D=p (3.3)
V.B-0, (3.4)

where & is the electric field, H the magnetic field, D the electric flow density, B the
magnetic flow density, J the surface current density and o the charge density. All
of the aforementioned quantities are, naturally, functions of space and time (r,t).
Additionally, an equation describing the relation between the sources, known as the
continuity equation,was also developed by Maxwell:

do

V-J%—E—O. (3.5)

The aforementioned set of equations is known as the differential form of Maxwell’s

equations. A representation in integral form also exists but it is not given here since

it will not be utilized in the analysis of the examined structures. It can be proven

that only two of Maxwell’s equations are independent ((3.1), (3.2)), when the time-

dependent case is considered [62]. Therefore, in order for the system of {€, H, D, B}

to be solvable, two additional equations are needed, known as the constitutive rela-
tions:

D = ceo€ (3.6)

where ¢ is the permittivity and g the permeability of vacuum; € and p are called
relative permittivity and relative permeability respectively. These two relative quan-
tities describe the properties of the material in which the electromagnetic field is
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CHAPTER 3. THEORETICAL FRAMEWORK

measured. Generally, they can be functions of space, time or even the fields them-
selves. In anisotropic media, € and p are tensors. However, in this work only linear,
isotropic, homogeneous and non-dispersive media are studied; therefore, ¢ and u are
constants. Moreover, all media studied in this thesis are non-magnetic; consequently,
w=1.

Maxwell’s equations can be further simplified, when time harmonic sources are
considered, i.e. the sources are sinusoidal functions of angular frequency w. In this
case, the produced fields are time harmonic themselves. Any time harmonic field
F (r,t) may be described by the following equation [62]:

F (r,t) = Re[F (r) e“"], (3.8)

where F' (r) is a complex vector called the phasor of F. Working with phasors, it
is easily proven that 0/0t — iw. It is important to note that when the sources are
not monochromatic, the quantity F' (r) is the Fourier transform of F (r,t) [62]. In
any case, Maxwell’s equations are transformed as follows:

V x E =—iwB (3.9)
Vx H=J+iwD (3.10)
V-D=p (3.11)
V-B=0 (3.12)

An additional constitutive relation, called microscopic Ohm’s law, can be considered
in the cases of lossy media, connecting the surface current J and the electric field
E [63]. It reads:

J=0FE, (3.13)

where o is the conductivity (per unit length) of the medium. Substituting (3.13) in
(3.10), a complex relative permittivity ¢’ = € —io/ (weg) may be defined, transform-
ing (3.10) to:

V x H =iwe'soE. (3.14)

In what follows, the prime symbol may be dropped and the complex relative per-
mittivity will be described as e = Rele] + ilm[e].

3.2 The Helmholtz Equation

The Helmholtz Equation is the differential equation that describes waves in the
frequency domain (or in the Fourier domain). It can easily be derived from Maxwell’s
equations. In particular, considering a source-free medium, with the properties
discussed in the previous section (i.e. V-E =0, V- H = 0), and by taking the curl
of (3.9) and (3.14), we obtain:

(V2+EHF =0, (3.15)

where F = E, H and k = w+/e is the wavenumber of the medium. In all problems
presented in this thesis, the cylindrical coordinate system is utilized; i.e. F =
F(T790az) =k, (T,QO,Z)’I’;‘—{—F@(T,QO,Z)@—FFZ (T’,(,O,Z)é:’, where 7 = /2% + ¢, ¥ =
tan~! (y/x). Tt is easily proven that for the z component of the fields, the following
relation holds:

(V2+K*)F, =0. (3.16)
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3.3. BOUNDARY CONDITIONS

The above equation is known as the scalar Helmholtz Equation. It is of particular
importance in our study since in each considered setup two types of excitation will
be studied; TM excitation (E = 2E,, H, = 0) and TE excitation (H = 2H,,
E,. = 0). In each scenario, the z components will be obtained by solving (3.16),
while the other remaining components will be found using (3.9) and (3.10).

It becomes evident that a solution to (3.16) needs to be developed. To this end,
we let F, = 1. Moreover, we notice that the solutions shall be independent of z
(0/0z = 0), since the structures studied are all infinite along the z-axis. Conse-
quently, ¢ is a function of (r, ) and (3.16) becomes:

10 0 1 02 9
(;E <TE> + T—Qa—@Q ‘|‘k ) ¢(T7 90) - 0' (317)

By the method of separation of variables (a detailed analysis is given in Appendix
A), we obtain solutions of the form:

U (1, 0) = Rn(r)e™?, (3.18)

where n is an integer since the field is 27 periodic with respect to ¢. Furthermore,
R,.(r) is a solution to the Bessel equation:

(r% Q%) + (kr)? — n2> R,(r) = 0. (3.19)

The general solution R, (r) of the above equation is a linear combination of either
the Bessel function J,(kr), the Neumann function Y,,(kr), the Hankel function of
the first kind H." (kr) or the Hankel function of the second kind H.”(kr) [62].
The solution that is selected each time is governed by the respective boundary
conditions that we impose. Specifically, HnZ)(kr) = Ju(kr) — iY,(kr) represents
cylindrical waves traveling outwards (when an exp (+iwt) time dependence is used),
while H,(ll)(k:r) = Jn(kr) 4 iY,(kr) represents cylindrical waves traveling inwards
(using the aforementioned time dependence). Both J,(kr) and Y, (kr) are used to
describe standing cylindrical waves. Naturally, the general solution ¢ of (3.16) will
be a superposition of all eigensolutions ,:

“+o00

Y (r,p) = Z cnRy, (1) €% e, € C. (3.20)

n=—oo

3.3 Boundary Conditions

Now that the form of the general solutions of the wave equation for both types of
polarization has been established, we will examine the boundary conditions which
are used to determine the unknown coefficients c,,.

Let us consider two media (Medium 1 and Medium 2), separated by an interface,
as shown in Fig. 3.1. The unit vector 7 is perpendicular to the interface and
directed from Medium 1 to Medium 2. Let us also assume that in the general
case, a surface current Jg exists on the boundary. The two independent boundary
conditions (regarding the electric and magnetic field respectively) can be found by
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-

Medium 2

Figure 3.1: An interface between two different media (Medium 1 and Medium 2).
The unit vector nv is normal to the interface.

a proper application of (3.9) and (3.10) (in integral form) [64]. The one concerning
the electric field reads:
M X (EQ — El) = 0, (321)

while the one concerning the magnetic field is given by:
L X (H2 — Hl) = Js. (322)

Note that the vector i x F', where F' is a vector field, is the tangential component
of F' to the surface on which 7 is normal. Therefore, we notice that the tangential
component of the electric field is continuous, while the tangential component of the
magnetic field is discontinuous, owning to the surface current Jg that may exist on
the boundary.

In some of the structures studied in this thesis, the interface between the two
media will be a metasurface of complex surface conductivity o. In this case, the de-
veloped surface current on the metasurface is proportional to the local electrical field
[65]; specifically, Js = —ofr x (R x E), functioning as a voltage-controlled current
source. Consequently, the condition describing the discontinuity of the magnetic

field now reads:
nx (Hy— Hy)=—-onx(nxE). (3.23)

Having established the boundary conditions that will be utilized in the calculation
of the unknown coefficients, we will now proceed to study the fields produced by the
type of source used in all examined problems, the infinite TM/TE line source.

3.4 The Infinite Line Source

We consider an infinite line source of TM or TE type that is parallel to the z axis
and positioned at ' = 2’& + ¢'§ in free space, as shown in Fig. 3.2. Essentially, the
line source is a thin wire, assumed to be infinite. In the case of TM-type (or electric
current) sources, there is an electric current I, (measured in A) along the wire and
the produced electric field is parallel to the z axis. On the contrary, TE-type (or
magnetic current) sources have a magnetic current /,,, (measured in V) and produce
a magnetic field parallel to the z axis. One could say that the magnetic current
source is the dual of the electric one, since the former is fed by a magnetic current
and produces a magnetic field parallel to it while the latter is fed by an electric
current and produces a respective electric field.
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3.4. THE INFINITE LINE SOURCE

y4

(x.y)

TM/TE

7 8%

Figure 3.2: An infinite line source of TM/TE type, parallel to the z axis, positioned
at v = 2'& + y'y. The electromagnetic field is calculated at the observation point
r =22+ yy.

Regarding the fields that are radiated by the line source, these can easily be
found for each respective type of source [64]. Specifically, a TM line source produces
the following electric field:

konole
o L

where kg is the wavenumber of vacuum and 7y its wave impedance. In a similar
fashion, the magnetic field radiated from a magnetic line source is given by:

kol
4no

H? (kolr — 7)), (3.24)

TE __ 2
inc — —*

H (kolr — 7). (3.25)

Although we mostly examine cylindrical structures (hence the cylindrical coordinate
system is heavily utilized), it is important to note that the electromagnetic field of
the line source can also be expressed in the cartesian coordinate system with a
Sommerfeld integral [66]:

HY (kolr — 7)) =

00+ —r(B)ly—y/| —iBla—a)
/ 16 ¢ dg, (3.26)

where k (8) = /B2 — k&. Although this expression is not useful when cylindrical
configurations are considered, it can be useful for computing the radiation of a line
source in the vicinity of planar surfaces. We will utilize it later in this thesis to
analyze the behavior of a line source near a planar metasurface, where the above
representation will be crucial in understanding the physics behind said behavior.
Nevertheless, the calculation of such integrals poses significant mathematical chal-
lenges (as a result of the two poles at § = +ky).

In this thesis, we are primarily concerned about the power radiated into infinity
in each examined structure. Therefore, it is essential to calculate the power radiated
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CHAPTER 3. THEORETICAL FRAMEWORK

by a single, free-standing line source, in order to find the enhancement in power that
each configuration is able to produce. In what follows, the power (per unit length
z) emitted from a line source that is alone in free space will be indicated as P.
P, can be found by applying Poynting’s theorem over a circle of infinite radius r,
centered at the origin:

T—00

2 1
P,. = lim (§E X H*> - Prdy, (3.27)
0

where * indicates complex conjugation. The above integral can be easily evaluated,
when the following points are taken into account. Firstly, note that the total power
emitted by a line source will be the same independent of where it is positioned.
Therefore, without loss of generality we can assume that the source is placed at the
origin. Secondly, since the radius of the circle is infinite, we can use the asymptotic
expansions of the Hankel functions for large arguments. In this case, we obtain the
far-field equations. It can be proven that in the far-field region, the electromagnetic
waves behave locally like plane waves [64]. Consequently, the complex Poynting

vector in the far-field region is equal to:
2 2
N=lpxm = B Hm,

2 219 2

The Hankel function of the second kind and order zero, has the following asym-
potic expansion for large arguments x — oc: H(gz) (r) =2 e *\/2i/ (7z) [2]. This

(3.28)

expression is indicative of the cylindrical wave nature of the H,(f) function; it rep-
resents a wave traveling outwards (e™'*) with its amplitude decreasing as 1/+/z.
Additionally, by inspection of (3.28), one observes that the power radiated from an
infinite line source in the far-field region is invertly proportionate to 72, as in all
cylindrical waves.

By substituting (3.28) in (3.27), using the aforementioned asymptotic expansion
and integrating over the circle, we obtain the following expressions for the radiated
power:

inc 8 ’ inc 8770 .

However, in this thesis we are only interested in the enhancement of power that is
observed in each proposed structure, relative to a free-standing line source. There-
fore, we are only interested in the relative quantity Prq/Pinc, where Pyq is the total
power radiated from the structure, when illuminated by a line source identical to the
free-standing one, with the latter producing P,,.. As a result, the quantity Praq/Pinc
will be independent of the electric or magnetic current used. Consequently, we pick
the currents so that EIM and HIE are of unitary amplitude; by inspection of (3.24)
and (3.25), we select I, = (1V/m) x 4/ (kono) and I, = (1A/m) x 4ny/ko. Taking
this into account, in what follows, the incident power P,,. will be given by:

konoI? kol?
PT™ _ 0Tlo4e TE _ Mim (3.29)

2 2
P = = (1V/m)?, PIP =1 (1A/m)*. (3.30)
komno ko

3.5 Calculation of the Relative Power

Up to this point, we have established the basic theoretical framework, upon which we
have constructed the general solutions to the wave equation in cylindrical coordinates
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3.5. CALCULATION OF THE RELATIVE POWER

and have calculated the power emitted from a line source that is alone in free space.
In the final section of this chapter, we will describe the form of the configurations
that will be examined in the rest of the thesis and introduce the metric that will be
used in evaluating their performance.

In Fig. 3.3, we present two representative radiation-enhancing structures. Specif-
ically, in Fig. 3.3(a), we show a hollow cylinder of internal radius ¢ and external
radius a filled with a material of complex relative permittivity e, while in Fig. 3.3(b)
we depict two concentric nanotubes at r = g, a with the same complex surface con-
ductivity o. Both the setups are infinite along the 2 axis and excited by free-standing
line sources positioned along axis (r,¢) = (L,0) that can be either of TM (electric
field E parallel to z axis) or TE (magnetic field H parallel to z axis) type. Both
of them produce cylindrical waves that oscillate with wavelength . All examined
structures will be of similar kind; cylindrical geometries excited by a line source
positioned at (r,¢) = (L,0) in vacuum.

hollow
cylinder

coupled
nanotubes

Figure 3.3: Two representative radiation-enhancing structures excited by TM/TE
line sources. Both are defined by cylindrical boundaries of internal radius g and
external radius a. (a) A hollow cylinder with dielectric shell of relative complex
permittivity €. (b) A pair of coupled nanotubes with complex surface conductivity
0. The source must be positioned into vacuum.

As discussed in the previous section, we are interested in the relative power
Praa/ Pie of each structure, where P,q is the total power radiated by the setup and
P, is the power emitted from the source when being alone in free-space. Therefore,
we need to calculate the electromagnetic field in the region external to the structures
(r > a in Figs. 3.3(a) and 3.3(b)). In order to conveniently determine the fields in
this region, we need to expand (3.24) and (3.25) in cylindrical eigenfunctions. The
notation F' will be utilized for the respective z-directed field: electric field F = ET™
for TM waves, magnetic field F' = HI® for TE waves. This can be done using the
addition theorem of Hankel functions [64]. Specifically, (3.24) and (3.25) can be

35



CHAPTER 3. THEORETICAL FRAMEWORK

written as [1]:

o0
Fne =Y HP (kymax(L,r)).J, (ko min(L,r))e™?, (3.31)

n=—oo

where the fields are chosen to have unitary amplitude for the reasons described in
the previous section. In each of the regions of the examined structures, the fields
are expanded using the proper eigensolutions (i.e. the proper Bessel functions).
Regarding the external region specifically, the total fields are given by:

+o00
Faa= Y C.HY (kgr)e™?, (3.32)

where (), are complex coefficients determinable by the boundary conditions. The
above solution is selected so as to describe a cylindrical wave radiating outwards.
Now that the form of the radiating field outside the structure has been given,
we can calculate the total radiated power P,.q in the same way that we calculated
the incident one; by applying the Poynting theorem over a circle of infinite radius
centered at the origin (as in (3.27)). Again, the asymptotic form of H? for large
arguments will be used, yielding Frq (r — 00) = .1 C,1/2i/ (rhkor)e HForeine.
It is evident that for both polarizations, the solution will be proportional to the

following integral:
2

I= i f(r, @) de, (3-33)

where f (r,p) = |Fraa (r — 00, ¢) |*r.
Specifically, by substituting (3.28) in (3.27), we obtain PIM = [/(2n) and

rad

PTE = Iny/2. The integrand function f (r, ), using the proper asymptotic form of
the Hankel function: H (z) = \/2/ (whor)e~{@=nm/2=7/4) 9] 'is expanded as:

+oo +oo

2 .
— :(n—m) * _i(n—m)
f(r,p) = e E g i C,Cre v (3.34)

n=—oo m—=—0o0

Interchanging the orders of integration and summation, we obtain the following
expression for I:

+o0 +0o0

2 (n—m * o i(n—m
[:W—kO >yl >cncm/0 eln=medy. (3.35)

n=—00 m=——0o0

Using the orthogonality property of complex exponentials:

27
- 2T, n=m
i(n—m)e — )
/0 e de { 0 ntm’ (3.36)
we arrive at:
4 IR
I = /f_o E |C’n|2. (3.37)

Consequently, the radiated power for TM polarization will be given by PL} =
(2/ (komo)) S272° __|C,/?, while in the TE-excited scenario the total emitted power

n=—oo
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3.5. CALCULATION OF THE RELATIVE POWER

is equal to PTE = (2n9/ko) S27°° __|C,|2. By inspection of (3.30), it becomes evident

rad n=—00
that in both cases, the relative power is easily found as:

Prad: f ‘C ‘2 (338)
Pinc ne—o0 "

Moving forward, our major objective will be to find structural and textural
combinations for the considered layout so that the relative power P,.q/Pi. takes
substantial values, even for a single positioning of the dipole into a vacuum area. In

other words, we aim at evaluating the quantity:
p = max {Prad/Pinec} (3.39)

for 0 < L < +00, as long as the (TM or TE) exciting current is surrounded by air.

The proposed metric expresses the ability of the structure, built around the
free-standing source, to efficiently transfer the emitted power to infinity. Therefore,
we are searching for smart designs that, when put next to poor emitters, boost
substantially their radiating power. In what follows, the complex coefficients C,
will be found by the boundary conditions (a more detailed analysis can be found in
Appendix B) and the relative power will be obtained by (3.38). Then, the parametric
space will be extensively searched, so as to arrive at substantial values of p.

It is important to note that p is not equal to the radiation efficiency, as defined
in antenna theory [67]. Instead, it can (and should) be larger than unity, since
the denominator Py in (3.39) refers to the field (3.31) produced by the source
when being alone in free-space without taking into account the radiation-enhancing
structure.
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Chapter 4
PEC and Solid Rods

4.1 Infinite PEC Planes and PEC Cylinders

Now that we have established the theoretical framework needed for the evaluation
of the performance of each proposed device, we are ready to start examining var-
ious configurations, starting from the simplest possible scatterer, a PEC cylinder.
However, before moving to the case of the PEC Cylinder, it would be meaningful to
solve an even simpler problem in order to obtain insight that will be useful for the
rest of this thesis. Specifically, we would like to compute the power radiated from a
line source positioned above an infinite PEC plane, as shown in Fig. 4.1.

TM/TE

I

vacuum

Figure 4.1: An infinite line source, positioned at distance d above an infinite PEC
plane.

This problem can easily be solved by using image theory [64]. The images of each
type of source into the PEC plane are presented in Fig. 4.2. More specifically, we
observe that in order to satisfy the boundary condition § x E = 0 at the interface,
one needs to consider a source fed by an opposite current in the TM case, while
in the TE case a source fed by a current identical to that of the original source is
needed. Both images are positioned at y = —d. It should be noted that the fields
obtained in the two geometries of 4.2 is valid only in the upper half-plane, while
the fields in the lower half-plane are zero, since it is occupied by a perfect electric
conductor.

Once again, to calculate the total radiated power, we will find the fields in the
far-field region and then apply Poynting’s theorem. However, in the considered
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(rv (ﬂ) y b (r' (ﬂ)

vacuum

Figure 4.2: The developed images of the line source shown in Fig. 4.1, with respect
to the infinite plane PEC. The left part depicts a TM source and the right part a
TE source.

case the total power is concentrated solely on the upper half-plane (0 < ¢ < 7);
therefore, we need to integrate over a semi-circle of infinite radius, centered at the
origin (Prag = foﬂ N - 7rdy). Regarding the fields let us consider a point (r,¢), R
the distance of the point from the original source and R’ the distance of the point
from the image source. When r — oo, the following approximation can be derived
[64]: R =r —dsinp, R =r+dsinp. Then, by considering the asymptotic form of
the Héz) function, we obtain a far-field expression for the z components of the fields
in the upper half-plane [64]:

 ikor i | —isin(kedsing), TM waves
Fraa=c \ 27kor { cos (kodsingp), TE waves (4.1)
Using the local plane wave behavior in the far-field in the expression of the complex

Poynting vector (3.28), we arrive at the following expression:

i sin® (kodsin @) dp, TM waves

. (4.2)
T Jy cos? (kodsin @) dp, TE waves

The above integrals may be calculated by utilizing an integral representation of the
Jo function [2]:
1 ™
Jo(z) = —/ cos (z cos p) dy, (4.3)
0

7

after using proper trigonometric formulas in the integrand functions: sin?z =
1 —cos’z = (1 —cos(2z)) /2. The resulting formula for the relative power is the
following:

P _
rad A { 1 — Jo(2kod), TM waves (4.4)

P.. | 1+ Jo(2kod), TE waves

This formula captures the essence of the behavior of the images. Specifically, we

notice that when the source is placed exactly on top of the interface (d = 0), the TM

radiated power nullifies, while the TE radiated power is doubled (and maximized);

this happens because the TM image is fed by an opposite current, while the TE
image is fed by the current of the original source.

At this point we are ready to study the performance of a simple design consisting

of a PEC cylinder of radius a, with the source positioned at distance L from its center
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CHAPTER 4. PEC AND SOLID RODS

(L > a), as shown in Fig. 4.3. Conclusions of particular importance can be derived
using (4.4) for d = L — a. Indeed, (4.4) constitutes a good approximation for the
PEC Cylinder case, when a/\ > 1 and L — a; if the source is in the vicinity of the
PEC interface. it ”"senses” the cylinder as an infinite planar surface.

vacuum

Figure 4.3: A PEC cylinder of radius a, centered at the origin. The source is
positioned at distance L from the cylinder’s center.

In Fig. 4.4(a), we depict the relative power P,.q/ Py emitted by the TM source on
the (a/\, L/a) plane for the previous geometry. We observe a small enhancement of
approximately 1.4. Additionally, we notice that P,,q = 0 when the source approaches
the surface of the cylinder. Both of these facts can be explained by (4.4); Paq = 0
when L —a — 0 since Jy(0) = 1 and P,,q is maximized and equal to approximately
1.4 at the first point of minimization of Jy. On the other hand, Fig. 4.4(b) shows
the relative power P,.q/Puc of a TE-polarized source on the same map. We notice
that in this case, the maximum value of the total radiated power is double the
incident one. In fact, this happens when the TE source is positioned directly on top
of the PEC interface. Once again, (4.4) offers valuable insight; when L —a — 0, the
aforementioned formula predicts that Praq/Pue = 1+ Jo(0) = 2.

4.2 Solid Rods

It becomes evident that PEC structures cannot significantly enhance the radiated
power of a line source. Therefore, we need to turn to other structural alternatives.
Our next configuration is similar to that of the PEC cylinder; we now consider
a solid cylinder of radius a, filled with a medium of complex relative permittivity
e = Rele] +ilmle], as shown in Fig. 4.5. Once again, the source is positioned outside
the cylinder, at distance L from its center. This thesis is primarily concerned with
operating the devices at the optimal regime which results in maximal total radiation;
thus, we need to consider lossless cases (Im[e] = 0). However, in what follows small
losses are used to avoid numerical issues that may arise in certain cases. Specifically,
the use of lossless ENZ materials or materials with ¢ = —1 may lead to unrealistic
resonances that we would like to avoid. Therefore, we employ a small and constant
imaginary part (Imfe] = —0.03) for the relative permittivity, in all of the cases that
follow.
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1 15 1.9
a/\
(b)

Figure 4.4: The relative power P,.q/Pi. for a PEC cylinder of radius a represented
with respect to the electrical size a/\ and normalized position of the source L/a.
(a) TM waves, (b) TE waves.

vacuum

Figure 4.5: A solid cylinder of radius a, filled with a material of complex relative
permittivity € = Rele] + ilm[e], centered at the origin. The source is positioned at
distance L from the cylinder’s center.

In what follows, the performance of the structures will be evaluated using (3.39),
by comparing the total enhancement of the radiated power for each feasible posi-
tioning of the source, for various combinations of materials and sizes of the cylin-
drical structure. It becomes evident that numerical convergence issues may now
arise; specifically, we must select a sufficient number of terms n so as to achieve the
desirable convergence. However, if the number of terms is too large, significant com-
putational power may be needed. Therefore, n needs to be large enough to reach
convergence, but not too large. Finding the optimal number of terms n requires
testing, but a general rule one can follow is selecting n so that it is larger than the
maximum optical size of the device used. In the case of the solid cylinder where
L > a, the maximum optical size of each possible structure is 2w L/\. Therefore, if
a < L < Lyax, one should select n > [27 Lyax/A].

Unlike the PEC case, where only the size of the structure was of interest, apart
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CHAPTER 4. PEC AND SOLID RODS

from the positioning of the source, now we have one extra variable to consider; the
relative permittivity €, and specifically its real part. To properly capture the perfor-
mance of the geometry depicted in Fig. 4.5, we employ both plasmonic (Rele] < 0,
capacitive behavior) and dielectric (Re[e] > 0, inductive behavior) materials. The
range of Rele] is selected so that it is large enough that allows for a detailed study
of the performance while also being realistic for materials in the optical frequency
range. Therefore, we choose to study cases in which —10 < Re[e] < 10. Addition-
ally, the optical radius of the rod a/A should not be too small, so that we can observe
its influence, but not too large either (@ > \). Therefore, the range 0.2 < a/\ < 0.8
is chosen. As far as the position L of the source is concerned, we should investigate
cases where it effectively interferes with the cylinder; therefore, we set 1 < L/a < 3.

In Fig. 4.6, we present the metric p = maxy{Praq/Pnc} (in decibels), on the
(Rele], a/A) map, in the case of a line source placed at distance L from the center
of a solid cylinder of radius a and complex permittivity ¢ = Re[e] — 0.03i, for
both polarizations separately. Specifically, in Fig. 4.6(a), where TM waves are
studied, we notice improved performance, compared with the corresponding PEC
case from Fig. 4.4(a). Indeed, p > 2 scores occur on the whole parametric plane
while sharp peaks with p = 10 appear along hyperbolic parametric paths in dielectric
cases. Moreover, in Fig. 4.6(b), where the TE-excited setups are depicted, one
observes a significant improvement in performance when plasmonic (Re[e] < 0)
designs are considered, while the behavior is similar to the TM case in dielectric
(Rele] > 0) setups. Therefore, we notice that plasmonic TE configurations exploit
the constructive interaction of images better than Fig. 4.4(b). It is evident that
the radiation enhancement p in the presence of a solid cylinder is not very large.
Therefore, other structural alternatives should be investigated.

10 ‘ ‘ 10 10 ‘ ‘ 10
5¢ 5
5 5
"W W
g 0 o O
~ o= e ———
0 0
5 5
-10 : : 5 .10 : : 5
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a/\ a/\

(a) (b)

Figure 4.6: The metric p from (3.39) (in decibels), with L > a, represented with
respect to the optical size a/A of a solid cylinder and the real part of its relative
permittivity Rele], in the case of: (a) TM polarization, (b) TE polarization. Small
constant losses are assumed: Im[e] = —0.03.
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Chapter 5

Hollow Radiators

Moving the search for the optimal radiators forward, we will now consider structures
where the source is essentially embraced by the cylindrical structure. In this way,
the modes developed within the resulting cavity can constructively interfere, leading
to substantial radiation enhancement.

Towards this goal, we employ the structure presented in Fig. 5.1, where a hollow
cylinder of internal radius g and external radius a is used. The shell is filled with
a material of complex relative permittivity €, whose imaginary part will once again
be constant (Im[e] = —0.03) and equal to the value employed in the previous design
(solid rod) for the reasons discussed in the previous chapter and in order to have a
fair comparison between the solid rods and hollow cylinders. The source is placed
within the cavity (0 < L < g), for the reasons described in the previous paragraph.

hollow
cylinder

Figure 5.1: A hollow cylinder of internal radius ¢ and external radius a, whose shell
is filled with a material with complex relative permittivity €. The source is placed
inside the cavity (0 < L < g).

5.1 Maximal Radiation Maps

Compared to the previous chapter, we now have one extra variable to consider in
the optimization scheme; the internal radius g of the hollow cylinder. Therefore,
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our metric p needs to be modified. Specifically, p is now further maximized with
respect to g; thus, we introduce a new metric:

max — . 5.1
p ) An} (5.1)

In Fig. 5.2, we present the results for the hollow cylinder, for both TM and TE
waves, on the (Rele],a/\) map. As a product of a double optimization (with respect
to both L/g and g/a), the processing power required to produce the final results is
now increased. However, convergence is now achieved with significantly less terms,
since our devices are smaller, having a total optical length of 2wa/\ < 1.67.

Figure 5.2: Results for a hollow cylinder of internal radius g and external radius a.
The metric ppax (p further maximized with respect to g), in decibels, represented
across the (a/A, Rele]) map, in the case of: (a) TM waves, (b) TE waves. In both
cases the source is placed internally to the hollow cylinder (0 < L < g).

In Fig. 5.2(a), we show the corresponding results in the case of a TM-polarized
line source. We notice a huge enhancement compared to the previous cases (up
to 25dB), which is achieved in two specific parametric regions corresponding to
plasmonic (Rele] < 0) designs. In these cases specifically, a pair of evanescent
modes is developed within the shell, which activate it more efficiently than the
oscillating modes observed in dielectric cases [3]. Indeed, while the magnitude of
the fields in the latter scenario is bounded by twice the magnitude of a single wave,
exponentially varying fields can obtain much larger values and significantly boost
emission. In Fig. 5.2(b), where TE waves are concerned, one observes 3 plasmonic
hotspots (instead of 2) that correspond to significant radiation enhancement. In
fact, these parametric regions are larger in size and correspond to a greater ppax
compared to the ones in Fig. 5.2(a). Remarkably, the hyperbolic parametric regions
first observed for dielectric cases in 4.6 are present in this case as well, appearing at
similar a/A.

5.2 Distribution of High Performers

At this point, it would be meaningful to investigate the influence of the two implicit
optimization parameters (L/g, g/a) on the performance of our devices. Specifically,
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we would like to observe at which L and g the highest enhancement occurs.
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Figure 5.3: The number of successful (pmax > 24 dB) superradiating designs, from
Fig. 5.2, as a function of the internal radius g of the hollow cylinder over its external
one a, for both polarizations. (a) Centered excitation (L = 0), (b) Off-centered
excitation (L = g/2 for TM waves, L = g for TE).

Suprisingly, a substantial number of our most promising (pmax > 24 dB) designs
occur when L = 0. Therefore, in Fig. 5.3(a), we have selected all of these designs
and have calculated their frequency of appearance in various g/a. It is important to
note that the points corresponding to TM waves are obtained from the left plasmonic
cluster of Fig. 5.2(a) (0.45 < a/\ < 0.55), while the ones corresponding to TE
polarization require much larger optical radii a/A\ (0.65 < a/A < 0.75). This is
to be expected, since TE electric fields interact with the transverse size 2a of the
structures which should not be too small; in contrast, TM electric fields oscillate
along the infinite z direction and do not require larger a/A. Additionally, we notice
that TM-excited, centrally-fed setups need thicker shells to operate, while TE ones
require thinner shells.

Apart from the centrally-fed (L = 0) high performers, there are also cases where
significant enhancement is developed with asymmetrical excitation. The frequency
of these designs is shown in Fig. 5.3(b). Remarkably, high performance is reached
when L = ¢g/2 for TM-excited configurations and when L = ¢ for TE-excited ones.
In this case, TE designs require moderately-size cylinders (0.3 < a/A < 0.45), which
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in turn leads to thicker shells. Furthermore, the source is placed very close to the
interface; this is to be expected, since this positioning enables it to constructively
interfere with the developed images into the plasmonic shell, resulting in substantial
emission enhancement. On the other hand, TM-illuminated setups now require
larger optical radii (0.65 < a/A < 0.75) and the source is positioned so that all the
developed images into the thin shell contribute to the field enhancement.

5.3 Higher Losses and External Illumination

15

15

10

10

(©)

Figure 5.4: The metric ppax (p further maximized with respect to g), in decibels,
represented across the (a/\, Rele]) map for: (a) moderate losses (Im[e] = —0.3) in
TM waves, (b) moderate losses (Im[¢] = —0.3) in TE waves, (c) external illumination
(L > a) under TM waves, (d) external illumination (L > a) under TE waves.

Up to this point, we have studied the performance of cylindrical radiators with
low losses (Im[e] = —0.03). Therefore, it would be interesting to see the effects
of higher dissipation in the performance of the hollow cylinders. To this end, in
Fig. 5.4(a), we have repeated the calculations of Fig. 5.2(a), however this time
we have considered losses that are ten times higher (Im[e] = —0.3). We notice that
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substantial enhancement (pmax = 15 dB) can be achieved; nevertheless, performance
is significantly lower than the low-loss counterpart of Fig. 5.2(a). Similar conclusions
can be drawn from Fig. 5.4(b), where the TE case is considered. It is important to
note that the high-scoring plasmonic parametric regions of Figs. 5.2(a) and 5.2(b)
remain unaltered, a feature that demonstrates the robustness of our designs in the
presence of Ohmic effects. Additionally, the hyperbolic paths noticed in dielectric
designs retain their values for the performance metric pya.x, despite the increased
losses.

In Fig. 5.4(c), we switch back to low losses (Im[e] = —0.03), but this time
we calculate ppax in the case of external (L > a) TM illumination. Remarkably,
one observes that the resulting maximization map is very similar to Fig. 4.6(a),
where the TM-excited solid rod was considered; as a result, we conclude that the
modulation of the inner radius g does not significantly alter the performance of
externally-excited TM setups. On the other hand, in Fig. 5.4(d), where the TE case
is considered, we notice the presence of many bright spots in plasmonic (Re[e] < 0)
designs, corresponding to higher scores than the ones in Fig. 5.2(b).

In any case the performance of both the high-loss and externally excited setups
is significantly lower than the corresponding low-loss, internally excited cases for the
both polarizations (TM/TE).
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Chapter 6

Radiating Nanotubes

We have previously observed that positioning the source internally to cylindrical
boundaries can lead to substantial enhancement of the outgoing radiation. For this
reason, our next proposed structure will be comprised of two concentric metasurfaces
of radii r = g and r = a respectively, with identical complex conductivity ¢ while the
source will be positioned in the domain in-between the two nanotubes (¢ < L < a),
as shown in Fig. 6.1.

coupled
nanotubes

Figure 6.1: A pair of concentric nanotubes of radii g and a respectively, having iden-
tical surface conductivity o. The source is positioned between the two metasurfaces
(g < L<a)

Such positioning of the source serves an important purpose. Specifically, it is
ideally placed in a resonant cavity created by the two metasurfaces, where it can
mutually interract with both of them. As a result, the constructive interference
between the azimuthal harmonics developed therein leads to the greatest enhance-
ments observed in this work. In the following sections, it will become evident that
the coupled nanotubes geometry offers the best performance out of all the studied
radiators.
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6.1. THE CASE OF THE SINGLE NANOTUBE

6.1 The Case of the Single Nanotube

Before moving on to the study of the coupled nanotubes, it would be interesting
to study the behavior of a simpler structure, that employs only on metasurface of
radius a, with the source positioned inside 0 < L < a. Additionally, it is important
to note that in these cases, the solution is derived using the boundary condition for
the discontinuity of the ¢ and z components of the magnetic field H, due to the
presence of a surface current J; = —o7 X (# x E), induced by the tangential electric
field.

Furthermore, in order to have a fair comparison with the previously studied
setups, the losses (Re[o]) are chosen using the following formula connecting the
conductivity and permittivity for very thin dielectric slabs [4]:

d
ony = QWiX(E - 1), (6.1)

where 1) is the impedance of vacuum and d the thickness of the slab. Using d = 0.1\
and the losses employed previously (Im[e] = —0.03), we obtain Re[ony] = 0.019. As
far as the imaginary part is concerned, this is picked so as to correspond to the
response of realistic materials illuminated by visible radiation [4].

Im[an()]

0.4 0.6 0.8
a/\

(b)

Figure 6.2: Results for a single nanotube of radius a and complex surface conduc-
tivity o. The metric p (in decibels) depicted on the (a/A, Im[on]) plane, in the case
of: (a) TM polarization, (b) TE polarization. Small constant losses are assumed:
Re[omno] = 0.019.

In Fig. 6.2, we present the results for the case of the internally-excited single
nanotube. We notice that despite its simplicity, the structure can significantly boost
radiation, delivering significantly better results than a solid cylinder. In both Fig.
6.2(a) and 6.2(b) (regarding TM and TE waves respectively), we notice the pres-
ence of quasi-periodic strips corresponding to highly-performing designs, for both
dielectric (Im[on] > 0) and plasmonic (Im[or] < 0) materials. Outside of these
periodic domains, there are parametric regions where both TM and TE emitters are
practically blocked. This effect is less intense in TE-excited setups, where higher
scores can be achieved on average.
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CHAPTER 6. RADIATING NANOTUBES

The nature of the highly-scoring parametric strips can be captured analytically
in the case of centrally-fed (L = 0) setups, which are commonly the result of opti-
mization, as observed in previous chapters. By maximizing the radiated power with
respect to Im[omn] and expanding for small a/\ we obtain:

. 2Yy (koa) /™
Im[a ] — ]c()aJ[)(kO(l)‘I{O(I‘:Oa)‘2 7TM waves (6 2)
Mo __ 2vi(koa)/m TE waves .
]C()aJl(k()(l)u{l(ko‘l)‘2 !

6.2 The Case of the Coupled Nanotubes

We now move on to the most highly-performing cylindrical configuration studied in
this thesis, the pair of coupled nanotubes. In Fig. 6.3, we depict the metric pyax (p
further maximized with respect to g) on the (Im[on], a/\) plane, assuming the same
small constants losses used in the previous case. In this case however, the source is
free to move within the resonant cavity created by the two cylindrical metasurfaces
(9 <L <a).

Tm[ono)

Figure 6.3: Results for concentric nanotubes of radii g, a and complex surface
conductivity o, with the source placed between them (¢ < L < a). The metric
Pmax (in decibels) depicted on the (a/A, Im[ong]) plane, in the case of: (a) TM
polarization, (b) TE polarization. Small constant losses are assumed: Re[ong| =
0.019.

In Fig. 6.3(a), where the TM-excited setups are studied, we notice significantly
improved performance compared to Fig. 6.2(a). Specifically, the achieved scores
are significantly higher while the parametric domains on which high performance is
observed are more extensive. However, a significant blockage of outgoing radiation
occurs for small (a/X < 0.4), plasmonic (Im[ong] < 0) designs. In order to approx-
imately capture the nature of this effect, we consider a centrally-fed system with
g = a/2. The condition for maximal radiation, assuming thin tubes (a/\ << 1),
now reads:

Al ln(l{:ga) — AO
koa [ B In®(koa) — By In(koa) — By)’

(6.3)

o] =
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6.3. SELECTED OPTIMAL DESIGNS

where Ay, A1, By, B1, By are positive constants, not shown here for brevity. This
formula nullifies at In(kpa) = Ag/A; = In(0.457) and exhibits a singularity at
In (koa) = (31 + / B} +4BOBQ) /(2B;) = In(1.047) while Im[o7n] remains neg-
ative between these two points.

In Fig. 6.3(b), we depict the results corresponding to TE excitation. It is
evident that the most substantial performance is recorded, greater than all other
competing setups. In particular, the radiated power is up to 3 orders of magnitude
higher than the power of a free-standing source, for several textural and structural
combinations. Additionally, no blockage effect can be observed, contrary to the
suffocation of the source in the cases of Fig. 6.2(a), 6.2(b) and 6.3(a). As far as the
most successful superradiating paired nanotube configurations are concerned, they

can be either dieletric or plasmonic, appearing around two specific optical radii,
namely at a = 0.21) and a = 0.62)\.

6.3 Selected Optimal Designs

Up to now mainly optimizations are executed as indicated in (3.39) and the def-
inition of pnax; tight parametric sweeps have been performed with respect to the
structural and textural characteristics for each of the considered setups. Therefore,
it would be interesting to examine specific designs that deliver huge radiation en-
hancement and identify the influence of geometrical, material and source features
on their operation. By inspection of Fig. 6.3, we pick highly performing superra-
diating setups corresponding to a = 0.62), since that optical size gives significant
Pmax for both polarizations in coupled concentric nanotubes. As far as the surface
conductivity is concerned, we avoid extreme values and select dielectric or plasmonic
nanotubes with Im[o7,] = £20 that correspond to the mean of the respective ranges
of Fig. 6.3 for each type of material.

201
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Figure 6.4: The response of various materials in the visible frequency range (300
nm < A < 500 nm), according to (6.1). We consider the homogenized behavior,
dictated by (6.1), for media filling a thin slab of thickness d = 55 nm.

It would be meaningful to describe the kinds of materials that can have this
specific response at optical frequencies. The simplest case would be to use a ho-
mogeneous flake layer of a dielectric or plasmonic medium. The resulting surface
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CHAPTER 6. RADIATING NANOTUBES

conductivity will be given by (6.1). In Fig. 6.4, we represent the complex conduc-
tivities obtainable in various media, excited by sources in the visible spectrum (300
nm < A < 500 nm). We notice that gallium phosphide layers can mimic metasur-
faces with conductivities having high positive imaginary part and minuscule real
part. Silver on the other hand can exhibit a similar behavior, while retaining its
metallic nature. Furthermore, in the cases of designs that can tolerate high losses,
amorphous silicon layers may be used for dielectric setups, while golden slabs are
suitable for plasmonic ones.

Alternatively, similar characteristics for the conductivity may be achiebed by
patterning surfaces with various nanostructures and operating them under resonant
regimes. More specifically, one ca use hafnium oxide nanoposts fabricated using
atomic layer deposition [68] or discretized metatoms optimally coupled to work
under visible light with suppressed losses [69]. Furthermore, silicon metasurfaces
comprising nanoblocks constructed at a single lithographical step can reach high
efficiency in optical frequencies [70] while monolithic MEMS reflectarrays can achieve
extremely low-losses in the microwave regime [71].

In Fig. 6.5, we represent the radiation enhancement P,.q/ P, across the implicit
optimization map for each of the four selected designs (a = 0.62), Im[on] = £20,
TM waves, TE waves). The horizontal axis indicates how far from the internal nan-
otube the source is placed g/L and the vertical axis shows the respective relative
distance L/a from the external one. It is important to note that the these ratios
of distances g/L, L/a take values strictly between 0 and 1 and each combination of
them corresponds to source placements between the cylindrical metasurfaces. Addi-
tionally, one observes that the peak performing configurations lie along hyperbolic
parametric strips. Such a feature offers extra degrees of freedom in the photonic
design process of superradiating nanotubes. In Fig. 6.5(a) and Fig. 6.5(b), we
notice that the optimal setups have almost the same L/a; this is not the case if TE
waves (Figs. 6.5(c), 6.5(d)) are considered, where the relative position of the source
with the external boundary changes dramatically in proportion to the nature (di-
electric/plasmonic) of the employed medium. Indeed, the TM-excited setups prefer
to leave larger gaps between the source and the two boundaries; on the contrary, the
optimal source placements under TE illumination are very close to the nanotubes.
Specifically, the emitter is positioned close to the external nanotube in the optimized
structure of Fig. 6.5(c) and near the internal one in that of Fig. 6.5(d). That hap-
pens because dipoles in the vicinity of dense media (either dielectric or plasmonic)
enhance the radiated power once they are normal to the interface.

6.4 Images of a Line Source above a Metasurface

In order to interpret the behavior of the source between the two boundaries in the
optimal designs, we employ image theory once again. In the case where the source
is placed in the vicinity of a cylindrical boundary, it senses it as an infinite plane; for
this reason, we will study the behavior of a line source placed at distance d above
an infinite metasurface of complex surface conductivity o, as shown in Fig. 6.6.

The incident field, utilizing the integral representation of the Hé2)(k:or) function,
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Figure 6.5: Relative radiating power P,.q/ P (in decibels) depicted on the implicit
optimization plane (g/L, L/a) for a/A = 0.62. (a) Im[ony] = 20 (dielectric), under
TM waves, (b) Im[ony] = —20 (plasmonic), under TM waves (c¢) Im[on] = 20
(dielectric), under TE waves, (d) Im[on,] = —20 (plasmonic), under TE waves. The
blue crosses mark the selected optimal designs.
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Figure 6.6: A line source of either TM or TE polarization, positioned at distance d
above an infinite metasurface of complex surface conductivity o.
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dg, (6.5)

inc

B ikoV /+O<> e~ ly=dlr(B) p—iBz
a 47T770 —00 '%(ﬂ)

where [ is an electric current (in A), V' is a magnetic current (in V) and x(f8) =
2 2)1/2
(6% —kg) "

In this scenario, the reflected and transmitted waves can be described using
effective image sources, as in the PEC case. Using our intuition, we expect that for
the case of the transmitted wave in the lower half-space, an image source should be
placed at y = —d. On the other hand, the reflected wave will be given by an effective
image placed at y = d. Furthermore, we expect these to not behave as images in
the traditional sense; as a result of the integration, their excitations will naturally
be functions of the spectral variable 8 and to calculate their contribution we will
have to calculate the corresponding improper integral. Therefore, the transmitted
components will be given by:

e [T
while the reflected ones are obtained from:

Enforcing the boundary conditions for the continuity of the tangential component of
the electric field and the discontinuity of the tangential component of the magnetic
field, we arrive at the following expressions for the TM images:

: 25(6)

G 26(8) + ikoono (6.10a)
" —ik’oO"l]o

I"(p) = 27 (B) + koo (6.10b)

while for the TE ones:

, B 2k

Vi(p) = %O_io_nw(ﬂ)‘/, (6.11a)
vy = ——omrB) (6.11b)

2ko — ionok()

Observing these equations, we notice that when ¢ — oo (PEC case), we arrive at
the expression for the image currents of the PEC case, previously studied in this
thesis. Therefore, it is safe to assume that in the vicinity of dense media, image
theory holds and the conclusions made in the previous section are valid.
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6.5 Wavelength Dispersion and Spatial Variation

At this point, it would be interesting to study the performance characterictics of the
selected optimal setups. Specifically, we would like to study their behavior under
excitations of varying wavelength as well as the spatial distribution of the radiated
far-field.

In Fig. 6.7, we present the relative emitted power P,q/ Py (in dB) as a function
of the normalized wavelength \/\g, where A is the optimal operation point, for the
four selected designs from Fig. 6.5. Additionally, in each of the aforementioned
scenarios, we investigate the effects of significant losses (Re[ong] = 2.8) and the
response of the systems when subjected to the opposite polarization. One readily
observes a sharp resonance at A\ = A\ for all cases in which the nanotubes are illumi-
nated by waves of the favorable polarization; naturally, when losses are introduced
this effect is significantly diminished. However, in Fig. 6.7(c), where the dielectric,
TE-excited setup is considered, a noticeably less sharp response can be observed.
However, in Fig. 6.7(c), where the dielectric, TE-excited setup is considered, a
noticeably less sharp response can be observed. Furthermore, it is evident that non-
optimally polarized radiation is essentially blocked by dielectric designs operating
around A = ) (Figs. 6.7(a), 6.7(c)); such a feature may be critical when designing
polarization sensors. On the contrary, plasmonic ones (Figs. 6.7(b), 6.7(d)) are less
polarization-sensitive and can boost both TM and TE radiation, even though they
are optimized for only one type of waves. Finally, oscillations of the response occur
owning to the periodic excitation which leads to the emergence of secondary peaks
outside of the considered band, as revealed by Fig. 6.7(b).

In order to acquire more information regarding the operation of the optimized
superradiating designs of Figs. 6.5, 6.7 it would be interesting to study the spatial
distribution of emitted power around the respective structures. Therefore, we define
the azimuthally-dependent power profile p (¢) so that it is a dimensionless quantity,
whose mean value gives the relative emitted power:

Prad o 1 o
Pinc B 27T 0

p(p)dep. (6.12)

The analytical form of p(¢) can easily be derived using the formulas developed in
Chapter 3 of this thesis. More specifically, using (3.33) and (3.34), we obtain:

o0 2

> i,

n=—oo

p(p) = (6.13)

In Fig. 6.8(a), we represent p(p) for each of the four variants of Fig. 6.7(a) in
polar plots with respect to angle ¢. Surprisingly, one observes that the radiation
pattern corresponding to the optimized radiator of Fig. 6.7(a) is omnidirectional.
This is attributed not to a central placement of the source (L = 0), since the pre-
sented emitter outperforms every single centrally-fed design of similar complexity.
In fact, the interference of the developed waves between the two nanotubes effec-
tively cancels out all the higher-order azimuthal harmonics (e"?, for n # 0) and
boosts exclusively the isotropic one (n = 0). Moreover, the TE-excited radiation is
negligible, which demonstrates the polarization sensitivity of our setup.
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Figure 6.7: Relative radiated power P.q/Py (in decibels) as a function of the
normalized wavelength /g, around the optimal operation point A = g, for the
designs selected from: (a) Fig. 6.5(a), (b) Fig. 6.5(b), (c¢) Fig. 6.5(c), (d) Fig.
6.5(d) and their lossy counterparts, when excited by both wave polarizations. The
losses typically make the resonances less sharp.

In Fig. 6.8(b), where the emitter of Fig. 6.7(b) is examined, we realize that the
optimal response is a dipolar one. Such a feature can be explained in a similar man-
ner as the omnidirectional radiation of Fig. 6.8(a); indeed, all the other modes e
with n # +1 are suppressed. Note that the bipolar radiation pattern is maximized
along the horizontal = axis, since the source is positioned on it creating interference
at this direction. Remarkably, the design reacts isotropically under TE illumination,
leading to significant radiation enhancement which surpasses its TM counterpart in
the vicinity of the vertical y axis. Such a behavior is counterintuitive, since a similar
cancellation of modes (leaving only a strong n = 0 term) holds even for the type of
waves with respect to which the design is not optimized.

In Fig. 6.8(c), we depict the radiation pattern corresponding to the setup of
Fig. 6.7(c). Contrary to the previously examined designs, we notice that more than
one and higher-order terms (|n| > 2) contribute to the far field emission, resulting
in increased robustness in the presence of a perturbed excitation; that is why a
less narrowband response is recorded in Fig. 6.7(c). As far as the TM waves are
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considered, they are treated like the TE fields in Fig. 6.8(a), where the huge response
contrast for different polarizations is once again exhibited. Where it comes to Fig.
6.8(d), we consider the remaining TE-optimized structure of Fig. 6.7(d) and we
notice a powerful isotropic emission as that of Fig. 6.8(a). However, when fed with
the other sort of waves (TM) an enhanced dipolar pattern emerges resembling the
operational characteristics of the emitter of Fig. 6.8(b).
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Figure 6.8: The power azimuthal profile p () from (6.13) (in decibels), presented
on a polar plot with respect to angle ¢ for the designs selected from: (a) Fig.
6.5(a), (b) Fig. 6.5(b), (c) Fig. 6.5(c), (d) Fig. 6.5(d) and their lossy counterparts,
when excited by both the wave polarizations. Strong omnidirectional, dipolar and
multiharmonic azimuthal patterns are obtained.

6.6 Validation with Commercial Software

In order to strengthen the credibility of our theoretical findings, we perform numer-
ical simulations to validate the far-field patterns presented above. To this end, we
employ the COMSOL Multiphysics [5] commercial software.

In Fig. 6.9(a), we present the radiation pattern of the free-standing line source,
simulated using the commercial software. It is evident that the total emitted power
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y/A
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Figure 6.9: Results for a TE-excited, dielectric setup using a commercial software.
The absolute value of the real part of the sole component of the magnetic field
|Re[H.(x,y)]|, in dB, depicted across the xy plane, in the case of Fig. 6.5(c), when:
(a) only the primary excitation dipole radiates, (b) only the internal nanotube is
present, (c) only the external nanotube is present, (d) the optimal design is em-
ployed.

is indeed minuscule. This is also the case in Fig. 6.9(b), where we place the source
in the optimal position of Fig. 6.5(c) but with only the internal boundary present.
Since the dipole is positioned externally (L > g), we notice the poor penetration
into the core combined with negligible radiation to the far-field. In Fig. 6.9(c),
where only the external boundary is present, with the emitter positioned within
the created cavity, we notice that the field is confined inside the cylinder and the
penetration to the outside is poor. Finally, in Fig. 6.9(d), the exact setup of Fig.
6.5(c) is simulated. We notice a substantial radiation to the far-field, with a similar
profile to that of Fig. 6.8(c). The average magnitude of the local signal is very close
to the one indicated by the maximum of the red curve of Fig. 6.8(c) concerning
the same design. In this way, we show how two nanotubes that cannot enhance the
radiated power alone, can act collectively in an extremely successful manner that
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multiplies the power of the source and validates the proposed concept.

0 1 2
x/A

(b)

Figure 6.10: Results for the TM-optimized plasmonic setup of Fig. 6.5(b), using a
commercial software, for: (a) TM excitation, represented quantity |Re[E.(z,y)]| in
dB, (b) TE excitation, represented quantity |Re[H,(z,y)]| in dB.

It would also be interesting to investigate the response of a system that amplifies
both polarizations concurrently. For this reason, we pick the TM- optimized, plas-
monic design of Fig. 6.8(b) and simulate it under both TM and TE excitations. In
Fig. 6.10(a), we present the simulation results for TM polarization (|Re[E.(z,y)]|
in dB). We notice a powerful bipolar pattern, thus validating the theoretical re-
sult of Fig. 6.8(b). Furthermore, the simulation of the TE-excited, TM-optimized
plasmonic setup shown in Fig. 6.10(b), reveals a strong omnidirectional pattern,
also present in Fig. 6.8(b) for the same case. As a result, our conclusions based
on analytical computations of the signal in the far-field have been verified by an
independent commercial software, revealing the validity of our approach.
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Chapter 7

Conclusion

Extensive quests towards structural and textural combinations of simple cylindrical
setups have been performed; they result in significant enhancement of the power ra-
diated from a line source, under both polarizations. Such a choice for the excitation
results in the problems being analytically solvable while also providing important
physical intuition which may be lost when more complex, 3D excitations are con-
sidered. Once the line source is positioned inside plasmonic shells or between a
pair of concentric nanotubes, electromagnetic superradiation is detected for several
designs. In these cases, the mutual interference of the emitter with the surrounding
boundaries can give an emission improvement of up to three orders of magnitude,
compared to the radiation of the free-standing antenna. The performance of the
most promising of these configurations exhibit sharp resonances, particularly be-
fitted to ultra-sensitive filters. Furthermore, the spatial distribution of the power
emitted from the aforementioned cylinders reveals strong omnidirectional or bipo-
lar patterns different for each wave type (TM/TE); such a feature can be utilized
towards polarization encoding for analog information processing. The radiation
characteristics of the proposed designs have been validated using finite element sim-
ulations with the COMSOL Multiphysics [5] commercial software. Furthermore,
our plasmonic structures have several benefits over previously proposed plasmonic
nanoantennas. More specifically, our designs can enhance both polarizations con-
currently, unlike traditional narrow-gap bowtie and dimer antennas while enhancing
radiation to levels comparable to or even higher than the widespread plasmonic
nanoantennas. Moreover, the superradiating setups are less bulky and hence easier
to fabricate while also being less sensitive to nonlocal effects.

In addition to the above mentioned properties, the present work may be extended
to inherit similar setups with desirable features that offer even more fascinating ca-
pabilities. In particular, adding nonlinearities to our cylindrical metasurfaces may
assist in modeling memory elements with suppressed vulnerability to noise [6]. More-
over, one can regard a superradiating finite or infinite grating [7] from the proposed
cylindrical structures operating collectively with each other; progressive changes in
the phase of the current that feeds each element can result in complex wavefronts
since the response from each emitter interferes in a different manner for each di-
rection. In this way, various aims like beamforming, waveshaping and tailoring
the radiation pattern can be well-served by modules that have been optimized in
our study, simply fed by easy-to-find, weak and isotropic sources. Furthermore,
ensembles of cylindrical metamaterial particles, within the framework of effective
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medium theory, have been found to exhibit desirable electromagnetic features, such
as tunable hyperbolic dispersion, double negative and epsilon-near-zero responses
[72], [73]. The present work may be expanded to investigate the collective response
of an ensemble of superradiating cylinders, offering insight into the behavior of the
designs and extended tunability of their electromagnetic features. Finally, it would
be interesting to expand this work to investigate the natural modes of the cylinders,
in the framework of Mie theory. By systematically examining these modal character-
istics, one can unveil additional functionalities and wave manipulation capabilities,
such as selective enhancement, confinement, or directional emission.
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Appendix A

Solution of the Scalar Helmholtz
Equation

In order to solve the partial differential equation (3.17), we will utilize the method
of separation of variables; we select two functions R(r) and F(p) of the two inde-
pendent variables r and ¢ respectively, such that ¢ (r,¢) = R(r)F(y). Plugging
this expression in (3.17), we obtain:

1 1
LR F(o) + R () + RRIVE() = 0 (A1)
where the prime symbol indicates differentiation with respect to r in the case of R

and to ¢ in the case of F. Further algebraic manipulations yield:
1 1
(FROIF) + RF) + PROFE) ) + ZROF () =0 (12)

By multiplying the above equation with 72/(R(r)F(y)), we arrive at:

(R (R0

We notice that the right hand side of (A.3) is independent of both r and ¢. Addi-
tionally, the two terms inside the parentheses in the left hand side are functions of
only one of the two independent variables respectively. Therefore, they should both
be constant. We select:

F//(S0> 5

Flo) = —n". (A.4)

Since the solution we seek needs to be 2m-periodic with respect to ¢, as a result
of the structures being cylindrically symmetric, n should be an integer. Therefore,
the functions F,, will be complex exponentials of the form exp (ing), satisfying the
periodicity condition. Substituting (A.4) in (A.3), we get the following differential
equation that R should satisfy:

r2RI(r) + rR,(r) + ((kr)® — n?) Ru(r) = 0. (A.5)

The above equation is known as the Bessel equation of order n. Its solution is a linear
combination of the Bessel function of the first kind and order n (J,) and the Bessel
function of the second kind and order n (Y;,) [62]. Therefore, the eigensolutions ¢,
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of the scalar Helmholtz equation, when a 2m-periodicity is imposed with respect to
the azimuthal angle ¢, read:

U (r,0) = (ApJu(kr) + B, Y, (kr)) ™, n € Z. (A.6)

To obtain the general solution, we observe that the differential operator L =
(V2 + k?) appearing in (3.16) is linear; therefore, the general solution ¢ may be
found by superimposing all of the eigenfunctions ¢,,. As a result, the solution reads:

U(rp) = > (AnJy(kr) + BY,(kr)) e, (A7)

n=—oo
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Appendix B

Analytical Solution and
Calculation of the Total Field

In this section, we will give a detailed analysis of the analytical methods used to

solve the various boundary value problems. This essential for finding the complex

coefﬁcients C,, used in the evaluation of the radiation enhancement (P,.q/Pn. =
nee o |Cnl?)-

In Appendix A, we have solved the scalar Helmholtz equation in polar coordi-
nates. This equation is satisfied by the z components of the fields. Therefore, when
TM waves are considered we solve it for F,, while in TE-excited setups we solve it
for H,. The critical point is selecting the types of Bessel functions in each region of
the geometry, since various boundary conditions have to be satisfied. Additionally,
the incident (background) field must be superimposed to the chosen eigensolution
in the region the source is placed in, in order to satisfy the boundary condition
(singularity) on the source.

We will now describe the eigensolutions selected in each region. Since the struc-
tures are cylindrically symmetric, we are only concerned with the in-plane position
vector r. In general, we do not want singularities to occur in points where no source
is present. Additionally, we would like the field that is external to the source to have
a form that corresponds to a cylindrical wave, travelling outwards towards infinity.

Let us suppose that r € D, where D C R2 If r = 0 is present in this domain
D, then we cannot select Y, as a solution in D, since Y, (z — 0) — —oo, leading
to a singularity. Therefore, in these internal domains that are of the [0, g] form, a
solution of the following form is selected:

Yo<r<g(kor) = Z Ay, (kor)e™ . (B.1)

n=—oo

Furthermore, in external domains (D = [a,+00)) the Hankel function of second
order is selected, in order to represent a wave travelling to infinity (and thus satisfy
the Sommerfeld radiation condition):

Yo<r<g(kor) = Z A, H, (kor)e™. (B.2)

n=—oo

Finally, in domains of the form D = [g, a], we can directly use A.7, since we do not
have a singularity nor do we need to satisfy a radiation condition.
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Using the above points, we will now give the form of the fields in the most
complex of cases studied, which is depicted in Fig. 3.3(b), where we have three
domains [0, g], [¢,a] and [a,+00] and the source is placed in the second one. We
once again remind the reader that we use F' to denote either E, in the TM case of
H. in the TE one. We have:

+oo
Fogrgg— = Z Al,an(kOT)eiw, <B~3)
+00 )
Fg+§r§a— = Fine + Z (AQ,an(kOT) + BQ,nYn(kOT)) 6171907 <B4)
+o0 )
Frocp =Y CoH,(kor)e™. (B.5)

The fields are developed in a similar manner for other, less complex solutions. In
the TM case, the corresponding magnetic field for each region is found by using
the Faraday equation, while the electric field in the TE case is calculated using the
Ampere-Maxwell equation.

Now, to calculate the unknown coefficients the boundary conditions discussed in
Chapter 3 must be satisfied. After substituting the chosen solutions, we obtain a
linear system of the form:

M,, - x, = by, (B.6)

where M, is a square matrix, x,, is the unknown coefficient vector (for example, in
the three-domain case given above, x,, = [A1,,, Aa,, By, C’n]T) and b is a vector
resulting from the excitation, giving rise to the inhomogeneous system of linear equa-
tions. By solving this linear system, we have completely solved the electromagnetic
problem, having found the fields in each domain of R2.
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