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Abstract

Thermal comfort is a multifactorial phenomenon influenced by environmental, physiolog-
ical, and contextual factors. As smart building environments evolve toward personalized
control systems, data-driven models have emerged as key enablers of adaptive comfort
prediction. However, existing models often struggle to generalize across users, time, and
deployment contexts.

This thesis investigates the problem of user preference transferability and dynamic com-
fort modeling using real-world datasets enriched with multivariate sensor data. It em-
phasizes user-centric modeling through feature engineering, temporal embeddings, and
the use of sequential deep learning architectures. A particular focus is placed on explor-
ing CNN-LSTM networks, which can jointly learn spatial representations and temporal
dependencies inherent in thermal comfort signals.

Additionally, the study explores model adaptation techniques—including instance reweight-
ing and feature distribution alignment—that aim to improve generalization across users
and climates. These approaches are evaluated with respect to their capacity to transfer
learned comfort representations while minimizing degradation in predictive performance.

In evaluating the predictive models, emphasis is placed on real-world deployment scenar-
ios, including model simplicity, data sparsity, and on-device computation limits. These
considerations help ensure that the insights derived from this research remain applicable
to practical smart building implementations and personalized control systems.

Keywords: Thermal Comfort, Personalized Modeling, Smart Environments, Machine
Learning, Transfer Learning, User Preferences, Sensor Data Fusion, Random Forest, Ex-
ploratory Data Analysis, Human-Centered Al






ITepiAndm

H depuunr| dveon amotekel €vor TOAUTORAYOVTIXG QOUVOUEVO TOU EMNEEGLETOL Amtd TERB30h-
AovToUg, PUCIOAOYIXOUEC X GLUYXEWWEVIXOUS Tapdyovies. Koo ta smart buildings e&e-
AMooovtat Tpog e€UTOUXEVUEVE GUC TAUATA EAEY)YOU, To UToDElyUaTa Bactopéva o Sedouéva
avadevoovtal we Bactxd epyoaheio yio TNV Tpocupuoo T TeoBAedn g dveorng. lotdoo,
Tl UTEOY OVTAL UTTOOELYOrToL BUGKOAEDOVTAL GUY VA VOL YEVIXEDGOLY UETAEY YENO TV, YPOVIXMY
TEPLOOWY ot TAaoiwy LAoTolinong.

H mapoloa epyasio diepeuvd o (ATNUO TNG UETAPERCIIOTNTIC TWV TEOTYWNOEWY TV YT
OTWY Xl TN dLVUIXTC povTEAoToMoNE TG VepUIXAC Gveong, aloToLOVTAS OEGOUEVA oo
TEOYUATIXG TEQYBAANOVTOL EUTAOVUTIGUEVO UE TONUMETOPANTE oucOnThple orjdato. Albveton €u-
(pooY) 0T LOVIEAOTOINOT UE EMIXEVTEO TOV YENOTH UECK TNG UNYAVIXAC YOQOXTNELO TIXWY,
NG EVOWUATWONS YPOVIXNG TANROQOoRiag xot TNG YeNone axohou oY dpYLTEXTOVIXWY Ba-
Vidg pddnong. Idadtepn ugoon diveton ot yeron CNN-LSTM dixtinv, ta onola unopoly
VoL LGouy amd x0VoU YWEIXES OVATUPOC TAOELS Xt YpoVixég e€upTAoELS Tou YapuxTneilouy
o oot Yepuinng dveorg.

Eminiéov, n uerétn e€etdlel TeyVinég TeooupuoYH S LOVTEAWY—OTWE AVATROCUPUOY T Bapdv
OELYUATWY %ot EVHUYEUUULCT] XATAVOUWY YARUXTNPLO TIXOY—UE 0TOYO TN Behtiwon Tng ye-
vixeuong YeTadd yeno Ty ot XAUATXOY cuvinxey. Ot tpoceyyioeic autéc allohoyolvtal
¢ TEOG TNV IXAVOTNTE TOUG VO UETUPEPOLY EXTIUOEUMEVES OVATIUPAC TAOELS BVEOTC Y WPIg
onuavTix anmhelo axplBetag meoBiedng.

Katd v allohdynon twv mpoPrentixey poviéhwy, diveta wialtepn €ugaot o€ GevdpLa
TEOYUATIXNG EQAPUOYTS, AauBdvovTag Lo TNV amAOTNTA TOV UOVTEA®Y, TN OTAVIOTNTA
OEBOUEVWV XalL TOUC TEPLoPIoUoUS enelepyaotag ent ouoxeurc. AuTtéc ol TopadoyEg Slaopo-
AMCouv 6Tl Ta GUUTERACUOTA TNE TUEOUCUS EPEUVAS UTOPOUY VO EQPUPUOCTOVY GE PEUMGC TIXY
smart building systems xat cUGTAUNTH TEOCWTOTONUEVOU EAEY Y OU.

Aé€eig-xheldid: Ocpuixty ‘Aveon, ECatouxeupévn Movtehonoinon, ECunva [lepiBdiro-
vta, Mnyaviey Médnon, Metagopd Mddnong, Ipotyrioeic Xenotohv, Evoroinon Awodn-
ey Acdopévwy, Tuyaio Adoog, EZepeuvntiny Avdhuon Acdopévwy, Avipwroxevtom
Teyvnty) Nonuoolivn
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Extevrg llepiAndn ota EAAN VX

Eicaywyn

H Jepuinr| dveon anotelel €vo TOAUTHEAYOVTIXG XU UTOXEWEVIXG QUUVOUEVO, TO OTOlO €-
Eaptdton amd €vo ThARHog TEQUBUANOVTIXGY, QUCIOAOYIXMY XUl CUUTERLPORIXWDY TURUUETOWY.
H xaravonon o 1 axpdric teéfiedn tne Yepuixrc dveone tov yenotmv ebvar xpiown yia
TOV OYEDLAOUO EUPUOY XTLELOIXMY TEPYBUAAOVTWY TOU GTOYEVOUY TOCO GTNV cUNUERX TWV
evolxwy 600 xou 611 PehtioTonolNoT TNG EVERYELAXHC XATAVIAWOTNG.

EZENEN TV poviéhwy Jepuixfg dveong

Hopadootaxd poviéa, énwe 1o PMV/PPD, Booilovtar oe guotohoyind xar eppoduvopt-
%4 povtéha Tou avipwmivou opyaviopol. Ilapdho mou mpocépouy éva Yewpentind mhaicto,
ToEoLGAloVY GNUAVTIXOUE TEQLOPLOUOUS Ot duvoxd 1) e€atopxeudéva Ttep3dAiovta. Ol
Tpooceyyioelc aUTEC BEV AoBdvouy UTOUT TIC UTOXEWEVIXES TROTWHOELC 1 TNV TROCUQUOYT)
TOL YPNOTN, YEYOVOS Tou 0dNYel o LY VES amoxAioelg HeTal) TPOBAETOUEVNE KoL TEAY o
g Vepuinnic adoinong.

H onpoacia tng e€atonixevong ota é§unva nepiBdAhovta

H petdPBaon npog sugpuni xtipio xan mepBdAlovta mou evowuatovouy teyvoroyieg IoT xo
pUapTolg aoVNTARES ETUTEETEL T GUVEY T TUEUXOAOLUTOT) BEBOUEVKY ot TOAATAES TINYES
— an6 TepBuALOVTIXG GTOLyElD EWC PUOIONOYIXE OY|UoTAL. AUTO TPOGPEREL Lol LOVODLXT| EU-
xanplo yia e€otouineuon), oo twvTag duvaty TN Onuoveyia LOVTEAMY Tou avTamoxpivovtal
oTig Wwiitepeg avdyxeg xde yproT.

IIpoboxAnomn Tng UETAPOEAS TEOTILYCEWY

H Boaow tpdxhnorn mou Blepeuvdton oe auTH T1) BLaTELBY) apoEd TNV IXAVOTNTO TV LOVTEAWY
Vepuinng dveong Vo TeooupuolovToL Xal Vo UETUPEEOVTAL UETUEY OLOPORETIXMOY YETNOTOV
xou TePBahhOVTLY. Ot atopwéc mpoTuNoelg eToBdAlovTal BuVaULXS xaL E€URTOVTAL oTd
T0 TAICL0, YEYOVOC Tou xahoTd BUOXOAN TN Yevixeuorn. Autd odnyel otny avdyxn yi
teyvixée transfer learning, mpocupUOYHC TUPUUETEMY X BUVAULXYC AVATEOPOBOTNOTS.

Ytoyotl xou nedio tng SrateBNg

H napotoa epyacio emxevtpdveton ot HEAETN Xt a&lOAOYNON TEYVIXGOY udidnong, Onwe ot
CNN-LSTM cpyttextovixéc yior OTATIOYEOVIXT) USUNOT), %ol TEYVIXES UETAUPORAS Xou ELvdu-
YEAUULONG YAQOXTNELOTXWY, PE oxoTtd T Bedtinon tng e€atouixeuuévng meofiedng dep-
g dveong. H €peuva Baciletan oe avalloelg uTapyovTwy 0eb0oUEVLY xou alloAoYel T
OLYATOTNTA ATAOTIOMNOTG LOVTEAWY YId UAOTIONGT) OE GUGXEUES QUyMTG.
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ITegropiopol tng Lerétng

To medlo e datpBric meptopiletar o avdAuoT UTaEYOVTWY dedouévey ard ) ASHRAE
Global Thermal Comfort Database II xou 6ev mepthopfdver Ty avdmtuén Quotxol e€omAL-
ouol 1| eupetog xhipoxag melpopatixéc uhonotfoelc. 2ot6c0, Ta aroteréouaTo TG UEAETNS
TEOGPEEOLY GNUOVTIXEG EVOEIZELS YL TNV xoTELYUVOY) UEANOVTIXNG €PEUVAG o aVTTUENG
oe é€umva tep3dAhovTaL.

Me autd o undfodpo, 1 epyacio emdlwxeL Vo cUUBGAAEL TOG0 ot VewpnTind 660 o OE
EQUPUOOUEVO ETUTEDO, UE GTOYO TNV AVATTULY TEOCUPUOC TIXWY, ECATOUXEVUEVKDY XOL TE-
YVOROYIXE UAOTIOLACLUGY HOVTEAWY VEQUIXHC AVEOTC.

Avaoxornnorn BiAoypagplog

To mopdy xEPIAUO TUPEYEL UL CUC TNUATIXY ETUOXOTNGCY TV VEWENTIXGY Xol TEYVOROYL-
%WV mpooeyyioewy mou oyetiCovton Ue TN Hoviehomoinom tng Vepuxhc dveong o €Cumva
rep3dhhovta. Eletdlovton ol mapadootaxéc xon o0y ypovee UEVoDOoL, oL TEYVIXES UMy OVIXTC
udinong, ot oTeaTNYIXéS ECUTOUIXEUOTC oL Ol TPOCEYYIGES EVOWUATWONS OE GUC THUNTA
IoT.

Movtéha Oepuixnic ‘Aveong

H evotnra Eexvd ue avapopd oTta QuUoxd JoVTEAX PMV/PPD, ta onola BooiCovtar oe @u-
olohoyixée mapouéTeous Tou avipnnivou opyaviopol (Fanger 1970). EZnyolvton ta peto-
VEXTAUATO TWV HOVTEAWY QUTWV GE SUVOXE 1) Un EAEYYOUeVa TepBdAlovTa.  Axohoudel
1 mapouciaon twv tpocappocTx®y poviéhwy (Adaptive Comfort Models), to omolo Aay-
Bdvouv umddm TN CUUTERLPOEIXY| TEOCUPUOYT XaL TNV €mEEoY| Tou Tep3dihovtog. Téhog,
ovarhDovToL oL YUY OROYIXES X0 CUUTEPLPORLXES EMEXTATELS, OL OTOIEG AMOTEAOVY YEQUEA TROC
TOL TPOCWTOTOLNUEVOL LOVTEAAL.

EZatouixevon xow Movielonoinon Ilpotipfoswy

H BiBhoypapia ot eZatopixeupévo povtéha Yepuixnc dveone (Personalized Comfort Models)
eletdlel yopaxTNEloTXd OTwS To PUAo, 1 nAxia, n BMI, xau guotohoyixd oruarta. Ewdu
avapopd yivetar oe perétec Tou yenolonoinoay Sedopéva and gplaptols aucdntriees (Lee
and Chun 2021, Jayathissa et al. 2020). Emonuoivovton ot Suoxolieg yevixevong xat 1
UEY AT ETEPOYEVELN TROTINACEWY PETAEY YenoTay. Emmiéov, ntapouctdlovton poxpoyeovies
UEAETEC UE CUCTAHOTA OVATEOPODOTNOTS TOU TPOGUPUOLovTaL BUVAULXS PE TNV TEEOB0 TOU
yeovou (Tekler et al. 2023, Gnecco et al. 2023).

Teyvixég Mnyavixic Mddnong

H evotnra aut) eotidlel oTig equpuoyé emBAETOUEVNE UAONoNS OTIWS Ol AOYIG TIXEC TTOALY-
Spounoetls, ta Sévtpo amdgoong, o MLPs, o o cuvodpoistixée pédodot (ensemble mod-
els). Emniéov, eZetdlovtar ahydprduol un emPBrenopevne pdidnone xou teyvixée ouunicong
onwe PCA, k-means xav DBSCAN, ot omoiec Bondolv otov eviomopd Aavdavouomyv o-
Uadwv TpoToenmy. Avahbovta eniong ypovixég apyttextovixéc omwg to CNN-LSTM xou
ev ouvTouia oL TpooeYYIoEIC EVIoYUTIXAS Xou EVERYTHC HdUnoTg.
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Metagpopd Mdadnong xo Ilpocappoyy| Ilediny

H Suvatdtnta yevixeuong Hovtéhwy YETOEY SLOPORETIXMOY XAUATLY 1) TAIUOUMY TORAUUEVEL
Teptoplopévn, Onwe Selyvouv ol uerétec twv Yang et al. (2025) xou Gao et al. (2021). E-
EetdlovTan TEYVIXES TPOCUPUOYTC OTWE 1) EX VEOU GTOWUOAOYNOT) TORAUOELYUSTCLY (instance
reweighting), n evduypduuion yapoxtetotxwy (MMD) xou 1 eydeind exnoideuon (adver-
sarial training). Téhoc, avapépovTon Tar LB ovTELN ToU GUVOLALoUY EEGBOUC PUOIXMDY
HOVTEAWY pe oTotio Ty enelepyooio (Zhou et al. 2021).

Evowpdtwon oe 'EEunva Yuothipata

H mpbodog otnyv teyvohoyia IoT xou tev ¢laptedv atcinthpwy emitpénel T GLVEYY) GUANOYT
oedouévwv (Liu 2018). Tiveton avagopd ot onuacio twv WELL Building Standards yio
N OloPdALoT ToLOTNTAC Xou dveong. Emmiéov, e€etdleton 1 avdryxn yio ehagpid poviéha
ToU Umopoly Vo uhomtotoldy Ge CUOKEVES aLyuNg (edge devices) péow TEYVIXGOV OTKC
n mepwony) (pruning) xou 1 mocotxonoinon (quantization) (Liang 2021, Francy 2024).
Téhog, avalieTon 0 POAOG TOU OYEBLAOUOL BLemaphc xou TN avienmivng aAAnienidpaong yio
TN YENOTXOTNTA TWV TEOOWTOTOMUEVLY cuoTnudtey (Zhu et al. 2021).

H avaoxoémnon auth tonodetel tnv mapolon epyacios 0TO EMOTAUOVIXG XoL TEYVOAOYLXO
¢ TAaolo, avadEVOOVTAS ToL EQELVITIXG XEVE XU TIG EUXOUPIES Yol TPOYWENUEVES Xal
vlorotfoyleg mpooeyyioelg poviehonolnong tng Vepuixrc dveong.

Oewpentixd YT roBadeo

To mopdv xepdroto mapovotdlel to Yewpentnd vndfodpo mou vrnootneilel T PEAETN TNG
UETAPERCIUOTNTOC XAl AVEAUGTIC TROTWACEWY YENOTMOV O TEaryUoTixd €Cuntva tep3dAlovTaL.
Eotdler oe Baoée Evvoleg xon teyvohoyieg mou oyetiCovton e Ty eaToUxeupévn Vepux
&veoT), TNV TEOGUEUOYT| CUCTNUATLY OF TEOTWNCELS YENOTWV oL T1) Olayelplor) DEdOUEVMY
oe éZumva tep3dAhovTaL.

Ocpuixr] ‘Aveor xouw E€atouixeuon

H epuuxry dveon elvon pior umoxeyeviny| eumelplar mou emnpedleton and meptBarlovTinols
ToEAY OVTEG (6T Yeppoxpacia, uypacio, con aépa) XL OTOULXSL Y oEOXTNELO TIXS (6T
uetafoloude, évduon). Iupobooiaxd povtéha, 6mwe to Predicted Mean Vote (PMV),
TOREYOLY YEVIXEUUEVES EXTINAOELS oAAG OV AaBdvouy umtdm Ty atouxr| Slapoponolnot).
H oavdyxn v e€atopixeupévo Loviéda €yel odNYRoel 6TV avantuln TeooeYYIoewy Tou
EVOWUATOVOLY BEBOUEVA ot Ao INTAPES XAl TEOTWACELS YENOTWY YL TNV TUPOY T TEOCH-
TOTOUNUEVWY EUTIELOLOY VEQUIXAC GVEOTC.
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‘E€unva ITepidirovta xouw Teyvoroyieg IoT

To €€unvo meptBddlovta (smart environments) evowupot®dvouv teyvoloyiec Internet of
Things (IoT) yw ™) culloyh %o avdhuon Bedouévwy oe Teayuatxd ypévo. O aoin-
THPEC XuTaYedpoLY TANpopoplec OTwe Vepuoxpaota, uypaoia, Tapousia YeNoTMY, VG OL
EVEQYOTIONTEC (actuators) EMUTEETOLY TNV AUTOUATY TEOCUEUOYY Tou TepiddAiovtog. H
OLoryelptor aUTOY TWV BEBOUEVWY amoLTEl TPONYUEVES TEYVIXEG enelepyaoiog xal avdhuong
Yoo TV €CaywYn) YEHOWOY YVOOEWY X0l TNV UTOCTARIET ATOQPACEWY.

Mnyavixy Mddnon xow Moviehonoinon IlgoTtipioswy

H pnyovicd uddnon moapéyel epyoheio yiar Ty avdAUGT HEYSAWY TOCOTATWY BEBOUEVGY XaL
TNV AVaYVOPLOT) TEOTUTWY. XT0 TAa(olo TNng YepUXnc dVEOTS, YENOWOTO0VTAL TEYVIXEC
6mwe ta Convolutional Neural Networks (CNN) yio tnv e€aywyn] yweixdv yopox Tneto Tixdy
xou to. Long Short-Term Memory (LSTM) Sixtuo yior Ty avdAUGT yeovixey eEupTHoEwy.
Or cuvduaouéveg apyttextovixéc CNN-LSTM emtpénouvy tny 1autoypeovn udinon yomptxoy
X0 YEOVIXWY TEOTUTIWY, BehTidvovTag TNy oxpeifBeta Twv meofrédeny Yepuinic dveorng.

Mertagopd Mdidnorng xaw Ilpocappoyr Moviéhwy

H petagopd udiinone (transfer learning) emtpénel tn yprion yvoong and évo nepiBdihov 1
Yoot v T Peitiwon tng amddoong o Eva dhho. Teyvineg omwe 1 euduypduuion yopa-
xtnploxwy (feature alignment) xau 1 emovactédduion napaderypdtwy (instance reweight-
ing) Bonolv oty TpooupuoY T LOVTEAWY oE VEOUC YeNOTES Y| TeptBdAhovTa Ue Teptoptouéval
oedopéva. Autéc ol mpooeyyioelc eivon xployes yior TNV avaTTUEN EVEMXTLY XL TEOCUQUO-
OTXOV CUCTNUATLY Vepuinhic dveong. Ko autod yio tov Mrid Niduou.

ITpootacia ITpoownixwy Acdopévey xar Alayeipion Tavtotntog

H ouloyn xon avdluon mpocwmxmy dedopévev ot éEunva tepBdilovta eyelper {nTruo-
ToL WBTOTNTAC Xt ac@dhetag.  Teyvoloyieg omwe 1 evioyuuévn dayeipiorn TaUTOTNTAS
(Privacy-Enhancing Identity Management, PE-IAM) npoogépouv unyaviogolc yior tov
EAEYYO TNG POYIC TPOCWTUXWY TANEOPORLWY XAl TNV TEOC TACIN TNG WOIWTIXOTNTAS TWV YeN-
o1wv. H evooudtworn autohy Twy TeyVoAoYLOVY elvol amapalTnTn yior TNy amodoyr) xol euml-
0TOCUV TWV YENoTWV Ot EEUTVOL GUGC THUOTL.

H xotavonon autedv tov YempnTxdy EVVoLmyY xot TEYVOROYL®Y Elval anopaftnTn yio TV o-
VATTUEN CUCTNUATOY TOU PTOoPOUY VoL TROCUPUOLOVTOL GTIC ATOUIXES TPOTWNAOELS YPNo T®Y,
VoL AELTOURYOUV OMOTEAECUATIXG OE OLopORETIXG TEPIBEAAOVTA Xou var BtacpaAilouv TNV Teo-
O TOoLo TWV TEOCHTUAWDY DEDOUEVMV.

l_[s:t.pdcpoc‘toc ML Ano*ce:)\écsp.oc'coc

To moapdy xepdhaio Topouctdlel Tn LeVodOAOYId Xat To XV ATOTEAEGUOTO TWY TELROUTCY
Tou dLedyInoay yia TNV allOAOYNCT TN UETAPEROUOTNTOSC XU TNS AVAAUCTC TEOTWACEWY
xenotov o éunva tepBdilovta. H eotioon Peloxeton otny e@oapuoyh Teyvnedy unyovixnc
udinong yua Ty meofiedn tng Yepuinric dveong, xadng xou 0T BIEPELVNOT TNG IXAVOTNTOG
HOVTEAWY Vol Tooupu6lovToL O BLapopETIX0US YENOTES Xo GUVUTXEC.
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IMTelpapatinr Aladixacio

H avéiuon Baolotnre oc mpolndpyovta dedopéva mou cUAAEY Xy and acinTrces me-
eyBdihovtog xan Bedouéva yenotn. Ilpoyuatomoinxe Siepebivnon yopuxTnELo TIXGY PECK
OTATIOTIXAC avdAUoTC ot TEYVX®Y 6mwe 1 Principal Component Analysis (PCA). X
OLVEYELL, EQPUOUOCTNXAY BAOIXE ETOTTEVOUEV HOVTERA UNyavixhc pdinong 6mwe Logistic
Regression, Random Forest, Multi-Layer Perceptron (MLP) xon XGBoost yia tnv tpdBhe-
m Tou Vepuxol ac¥fuaToC.

Arnoteléopata xou Iapatnerosig

To anoteréopoto €0el&oy OTL ToL ATAS HOVTEAN UTOPOVY VO ATOBMCOUY IXAVOTONTIXE UTO
OpIOPEVES GLUVITXES, €W OTay TpoyUaToTolelTon xoTdhAnhn enedepyacion YopoxTNEIO TI-
xwv. Evtonictnxe dwgopornoinomn otic emdooelg avd yerotn xat TEpBEALOY, YEYOVOS Tou
evioy Vel TNV avdyxn yia e€atouixevon. H epopuoyn petagopds pdinong doxiudotnxe o
Teploplopévo Bordud, Ue eVOEIZELS OTL 1) YPHON TEYVIXOY OTWE 1) EVHUYEIUULOT) YUEUXTNELO Ti-
AWV o 1) eEnavao Tdiulon uropel va Tpocépel BeATIOoELS, WlitEpa OTaY UTEYEL BLapopd
xhipotog 1) yeNoTn PETAED TOVY TNYMY OEGOUEVOV.

YuvonTixd JUURERACUATA

To evpriuota TS TEROUATIXNAC HEAETNG TEPOCPEEOUY EVOEILELS Yol TIC BUVATOTNTES EPUPUOY TS
eCUTOUXEVUEVLY HOVTEAWY Ot EEuTva TERBAANOVTA, oV Xal 1) ETLB00T) ETNEEGCETON ONUAVTIXS
oo TNV TOLOTNTA Xou ToLAopoppia Twv dedopévev. H allohdynon tne YeTapepotuoTnTog
UTOOELXVOEL TNV aVEy XY Yo TEQUTERL WEAETN ot BeATiwon Twv Uuedddny Tpocupuoyc,
(OOTE VoL ETTUYYAVETOL XohOTERT YEVIXEUGT) UETAUL) DLAUPORETINWY XATACTUCEWY.

Levixd, t0 xepdhaio autd oxorypagel Evo peahloTixd Thalolo aloAdYNoNg, TUEEYOVTAS TIC
Bdoewg yio o TpoywenuEveS pedodoug povtelonolnong tou Yo UTopolcay Vo EVOOUATO-
Yolv oe TAHPOS AELTOVEY W, YV OTN-XEVTEXE cuoTAUATH Vepuixrc dveong 6To UEAOV.

>ulrTnon

To xepdhono auTd EMLYELREL Lol GUVOAXY| ATOTIUNOT) TWV EVENUATKY TOU TEoEXUPAY amd TNV
OVAAUGT XL T TELRUATA TOL TEoNYoUUEVOL xepoiatou. EZetdlovton Tor TAEOVEXTAUATA,
Ol TEQLOPLOHOL YO OL TEUXTIXEG ETUTTWOELS TV MEVOOWY TOU EQUQUOCTNXAY, UE GTOYO TNV
#hOTEPT XAUTAVONOY) TNE BLYVATOTNTOS ECATOUIXEVOTC XAl TEOGUPUOYNG LOVTEAWY VePUX|C
dveong oe mporyaTd E€umva TepBdAlOVTaL

Arnotipnon Movtéhwv xaw Medodwv

Ol €QupUOCUEVES TEYVIXES UNYAVIXAC UEUNOTC OVEDEIEOY OTL OXOUT) XOL OTAG LOVTEAD UTTO-
E0UV VoL ETITUYOLY ATOOEXTA ATOTEAEGUATA UTO GUYXEXPWEVES cLVITxec. H Biepebvnon avd
YENOTN XU YEWYEAUPLXY| UTOOUAON avEDEILE Gl amOXMOELS OTIC VEQUIXES TPOTIUACELS XoL
emPBefoiwoe TNy avdyxn yia eCatopxeupévn Teoogyyior. Ou teyvinée petapopds pdinong,
oV X0l TEQLOPLOUEVEG OE EQUPUOYT, TURELYY UTOCYOUEV UTOTEAEOUATU OGOV APORE. TNV
TPOCOQUOC TIXOTNTA.
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ITepopiopol xou Entpuidieig

‘Evag and toug x0ploug TEPLOPIOUOUE apopd TNV TOLOTNTO X0l TNV ETEPOYEVELNL TKV OEDO-
uéveyv. H amousta mpaypoatixol yedvou mapeuSdoemy xaL ol Teploplopol 6T GUALOYY| (Qu-
OLOAOYIXWY OEBOPEVLY TERLop(louLY To £0POC TNG EQUEUOCLOTNTIC TwV WoVTEAWY. Erniong, 1
ENEU)T) EXTETUUEVWV TEAYUOTIXDY DOXUYLWY UELWVEL TNV A€LOTUC TIL TWY CUUTEQUOUATWY OF
eMLyELENoLloXS TERBAAAOY.

IToaxtixég Emntooeig xow E@appoyég

To amotehéopata delyvouy 6Tl T ECuTvar TERIBIAAOVTO UT0EOVY VoL ETWPEANTOUY ONUAVTIXG
OO UOVTEAN TIOU EVOWUATOVOLY BUVOUIXT| xou EEUTOUXEVUEVT TEOBAed Depuixrc dveong.
ISwadtepa, ) duvatdTNTA AmAoTONONG TWV HOVTEAWY Yia UAoTolnon ot edge cuoXEVES uTopel
VO TPOCPEREL TEAUXTIXG OQEAT] OE 6,TL APOEd TNV ToYLTNTU ATOXELONG, TNV WOWTIXOTNTO Xk
TNV evepyelaxt] anddooT.

Yupnepdopata

H avédhuon twv evpnudtony xotademviet 6Tt 1 xotebiuvon g eatopixeuong ot Yepuin)
dveon elval ouCLIOTIXY xaL TOAAG uTooyOpevT. §26T600, Yio va emitevyVel TAHENG ollo-
Tolnom TNG SUVOIXAG AUTAG ATALTOUVTOL TILO EVIUTIXEC HEAETES, TOLOTIXOTEQPX DEBOUEVL XalL
TEOYUAUTIXES Doxtuég ot €Cumval xTipta.

MeAhovTix? "Egesuva

To teheutaio xe@dhono NG epYaoiag EMXEVIPOVETUL G TEOTUCELS YLol UEANOVTLXY €QEUVA
UE OTOYO TNV AVTHIETOTICT] TWY TEQLOPIOUMY TOU EVIOTIG TNXAY Xt T1) BIEVELUVOT TNG UTo-
TEAEOUATIXOTNTOG TWV HOVTEAWY Vepuixric dveong oe mporyatind €Cumva tepBdhhovia. Ot
gpeLVTIXEC xaTELDOVOELS opYav@VoVToL Ot VeUaTéC EVOTNTEC oL oyeTiloVToL UE TNV €-
vioyuon g anédoong, TV eCUTOUIXEUST], TNV LAOTIOINGCT| OE TEOYUATIXG GUC TAUATI X0 TN
uelowon g eumioxric Tou YehoT.

Evioyvon tng lIpbBredng péow IThovolétepwy Acdopévny

H evooudtworn @uolohoyixomy dedopévmy, omwe 1 Vepuoxpaota DEQUATOC XL 1) UETUBAN-
TOTNTAL A0EdLool puHHOD, umopel Vo evioyOoEL ONUAVTIXG TNV EEATOUIXEVDT] TWV HOVTEAWY.
Emm\éov, mopdyovieg 6mwe ot ouyxevipnoel "Oy xou 1 CUUTERLPORd Tou Yehotn (m.y.
Gvorypo mopadlewy) cuVioToUv xplotua TEPIBUANOVTIXG Xt GUUPEAUCOUEVO. YURUXTNEIO TLXEL.

Mertagopd Mddnorng xa Ilpocappoyy) TopEwy

H pehhovtir epyaoio unopel va e€epeuvioet mo cUVIETES TEYVIXES TPOCUPUOY NS, OTWS 1
avTinapadeTixn pdinor xon ot pédodol Bactouéveg 0T UEYLOTN andxAlon péoou dpou. Autég
ETUTEETOUY TNV XUAVTEQRT TPOGUPUOYT) HOVTEAWY PETAED YOENOTMV 1 XAUUTIXOV TEQLOY DY,
YWEIE ONUAVTLIXT OTOAEL ATOBOOT.

Opadonoinor xaw Tunuatonoinon

H tunuatomoinon twy yenot®y oe ouddes e TUPOUOLES TPOTHINCELS UTOREL Vol BEATIOOEL TNV
AmOBOTIXOTNTA X0k TNV EUPKOTIA TWV HOVTEAWY, WitG OTaY Tar BedoUEVA €Vl TEPLOPIOUEVOL.
H eqopuoyh teyvixdv 6mwe o cuotddeg (clustering) avadevietor we WBIUTERA GMUAVTIXTY.
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Arnloroinon Moviélwy xouw TAornoinorn oc Edge Yuoxeuég

H Sigpedvnon teyvixav ocuumieons, Omwe 1 xAEBeUcT) Xt 1) TOCOTIXOTOMGT), EVIoYUEL TN
BLVATOTNTA EVOWUATWONG LOVTEAWY OE GUGKEVES YOUNATE Loy VOg OTe ECUTTVOL VEQUOCTATES
xon eheyxtéc H'A™. Auth 1 viomoinor umopel vo mpoogépel mporyloTind Ypovo amoxploelc
ywelc e€dptnon and to cloud.

YRewwxd Moviéha Puoixrc xot LTATLOTIXNC

O cuVBLUOUOE TUPADOCLIXGY PUOXKY UOVTEAWY, OTiw¢ To IIMY, ue oTaTiIoTind YovTéha e
Teénel TN 00UV VEWENTIXAC AUCTNEOTNTOC XL EUTEIRIXNS TPOCUPUOC TIXOTNTAS. TéToleg
TeoceYYIoEC UTOPOUY Vol 0BNYHiOOUY GE TO EQUNVEUGLUN Xl TUUTOY POV axE31) LOVTEAL.

Mdidnon pue Evepyd Xpnotn xouw Meiwon Avatpopodotnong

O teyvixéc evepyc udinong Umopoly Vo PELOCOLY TOV POpTO EIGOBOL amd Tov YeNoTH,
nTedvTog oy oA H6vVo 6Tay auTd elvon TAnpogoptoxd. Emmiéoy, 1 allonolnomn @uololoyixoy
evOeilewy emTpénel TodnTX: GUALOYT AvaTROQOBOTNOTS.

Evooudtwon oc Ipaypatixd Lvotripoata

H pehhovtnd| €peuvar Yo mpgmel va emixevipndel oty vhomolnom xa S0XY| TWV CUOTNUNTWY
OE TEOYUAUTIXE TEQIBEANOVTA, AELONOYMVTOS T1) YENOTIXOTNTA, TNV LXAVOTONGT) TV YENOTOV
xan T poxponpddeoun evepyetaxnt| enidpaot). IlapdAinia, 1 Slac@diion Tng WOIWTIXOTNTAC
X0l TNG OLUAEITOVRYIXOTNTUC TUEUUEVEL XPIOLUY) TEOXANO).
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Chapter 1

Introduction

1.1 Background and Motivation

Thermal comfort is a multifactorial phenomenon shaped by a complex interplay of en-
vironmental, physiological, behavioral, and psychological variables. Classical definitions
often emphasize its subjective nature—commonly understood as “that condition of mind
which expresses satisfaction with the thermal environment,” as defined by ASHRAE. To
model and assess thermal comfort, researchers have historically relied on physical models
that aggregate environmental metrics such as air temperature, humidity, air velocity, and
mean radiant temperature, alongside metabolic rate and clothing insulation. One of the
most recognized frameworks in this domain is the Predicted Mean Vote (PMV) model,
formulated by Fanger, which remains a cornerstone of thermal comfort assessment in
engineering practice [1].

Despite its foundational importance, the PMV model and similar generalized approaches
have faced increasing scrutiny. These models, while theoretically robust, are limited in
their ability to adapt to individual variability and dynamic environmental contexts. For
instance, they often fail to capture the subjective nuances of personal comfort, which can
be influenced by cultural background, physiological states, and long-term exposure pat-
terns. Empirical studies have shown substantial discrepancies between PMV predictions
and actual occupant feedback in real-world settings [2], [3].

In response to these limitations, the field has seen a shift toward personalized thermal
comfort modeling. These models aim to capture individual preferences and adapt over
time through learning mechanisms that integrate occupant feedback and behavioral data.
Personalized models are increasingly seen as critical components of smart building ecosys-
tems, particularly in light of growing expectations for occupant-centric environmental
control systems [4], [5].

This paradigm shift has been enabled by rapid technological advancements in the domains
of the Internet of Things (IoT) and wearable sensing. IoT infrastructure in modern
buildings allows for high-resolution, multi-modal data collection at scale. Environmental
sensors embedded throughout indoor spaces continuously monitor parameters such as
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temperature, humidity, and COy levels. Simultaneously, wearable devices enable non-
invasive tracking of physiological signals like skin temperature, heart rate variability, and
electrodermal activity—proxies that have demonstrated strong correlations with thermal
sensation and comfort levels [6], [7].

These technologies support the development of data-driven comfort models that move be-
yond static rule-based systems toward dynamic, learning-based frameworks. As Boutahri
and Tilioua highlight, integrating machine learning into thermal comfort prediction allows
for systems that are both adaptive and energy-efficient, effectively balancing occupant
well-being with sustainability goals [8]. Furthermore, the WELL Building Standard un-
derscores the increasing institutional emphasis on health and well-being in architectural
design, positioning thermal comfort as a core component of indoor environmental quality.

In summary, while classical models like PMV provide a valuable theoretical basis, the
emergence of personalized, data-driven approaches—fueled by IoT and wearable tech-
nologies—represents a transformative development in smart environment research. The
motivation for this thesis lies in exploring how these new data modalities and modeling
techniques can be systematically leveraged to enhance the prediction and personalization
of thermal comfort in real-world settings.

1.2 Problem Statement

Although substantial progress has been made in thermal comfort modeling, existing ap-
proaches face considerable challenges when applied to real-world environments. One of
the most pressing limitations of current models—particularly those based on static phys-
ical principles like the Predicted Mean Vote (PMV) or the Adaptive Comfort Model—is
their inability to accommodate individual variability and temporal dynamics in user pref-
erences. These models often assume homogeneity across occupants and rely on fixed
relationships between environmental inputs and comfort outcomes [1], [2].

However, thermal comfort is inherently personalized. Factors such as gender, age, activity
level, clothing insulation, and even cultural background can significantly modulate com-
fort perceptions. For example, studies have documented consistent comfort preference
differences between men and women, suggesting that generalized models systematically
misrepresent subpopulations [9]. In addition to inter-individual variability, thermal pref-
erences are also context-sensitive and time-dependent. Daily rhythms, seasonal changes,
recent thermal exposure, and behavioral adaptations all influence thermal comfort in
ways that static models cannot readily capture [10].

These challenges are magnified in smart building environments, where diverse occupants
with varying schedules and preferences co-exist. Developing a single predictive model
that generalizes well across users, locations, and time remains difficult, often resulting
in suboptimal comfort control and user dissatisfaction. Moreover, user-specific models
trained on one individual’s data typically fail to transfer effectively to others or across
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different climate contexts. This hampers scalability and generalizability, particularly in
systems where data collection is costly or privacy-sensitive [11], [12].

The need for flexible modeling approaches that can transfer knowledge between users
and adapt to dynamic real-world conditions is thus evident. Addressing this problem
requires methods that not only personalize thermal comfort prediction but also support
cross-domain learning, enabling models to generalize across populations, environments,
and temporal settings. This thesis tackles this gap by investigating the mechanisms and
methodologies for transferable, user-centric thermal comfort modeling in smart environ-
ments.

1.3 Research Objectives

The central aim of this research is to advance personalized thermal comfort modeling by
exploring methods for user preference transfer and model adaptability in smart environ-
ments. This involves integrating techniques from machine learning, domain adaptation,
and spatiotemporal modeling to enhance comfort prediction and generalization capabili-
ties.

The specific research objectives are as follows:

« Explore transferability of user preferences in real-world settings.
Investigate the feasibility and limitations of transferring thermal comfort models
across individuals, buildings, and climates, with the goal of minimizing the need
for user-specific data collection.

« Develop and evaluate model adaptation techniques.
Apply and assess domain adaptation strategies—specifically feature alignment us-
ing Maximum Mean Discrepancy (MMD) and instance reweighting based on sample
importance—to enable models to adjust to target domains with different data dis-
tributions.

o Implement spatiotemporal modeling with CNN-LSTM architectures.
Design and analyze hybrid models that leverage Convolutional Neural Networks
(CNNs) for local spatial feature extraction and Long Short-Term Memory (LSTM)
networks for capturing temporal dynamics in user-environment interactions.

« Evaluate model performance across metrics and contexts.
Conduct experiments to assess the effectiveness of proposed methods using real-
world datasets, considering classification accuracy, adaptability, and cross-user gen-
eralization performance.

Collectively, these objectives support the development of more intelligent, user-aware,
and transferable thermal comfort systems, suitable for deployment in sensor-rich smart
environments.
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1.4 Scope and Limitations

This thesis is centered on advancing data-driven thermal comfort modeling in smart en-
vironments by integrating user-centered machine learning techniques and domain adap-
tation frameworks. The scope of the work is both technically and conceptually delimited
to ensure depth of investigation within a manageable experimental framework.

Scope of the Study

e Focus on multimodal data integration.
The primary emphasis is placed on the fusion of environmental and physiological
data streams for personalized comfort modeling. Input sources include tempera-
ture, humidity, CO, levels, air velocity, and physiological indicators such as skin
temperature and heart rate variability, when available. These variables are modeled
as multivariate time series to capture dynamic interactions between the user and
their ambient environment.

e« Model-centric exploration of personalization.
The research focuses on algorithmic strategies for adapting thermal comfort models
to individual users. Particular attention is given to methods that enable trans-
fer of learned user preferences across contexts—geographical, architectural, or de-
mographic—using techniques such as Maximum Mean Discrepancy (MMD) and
instance reweighting.

e Use of pre-collected data.
The study leverages existing datasets collected from smart building environments
and wearable sensors. Chief among these is the ASHRAE Global Thermal Comfort
Database II [3], which provides a rich set of occupant-reported comfort responses
alongside corresponding environmental measurements. All experiments and model
evaluations are conducted offline, based solely on this pre-existing data without the
use of synthetic simulations or emulated interventions.

Limitations of the Study

e« No hardware development.
This thesis does not engage in the design or fabrication of sensing or actuation
hardware. It assumes the availability of an IoT-enabled infrastructure that pro-
vides periodic sensor readings and optionally wearable data from users. Integration
protocols, data transmission pipelines, and device calibration fall outside the re-
search scope.

« Absence of live deployment trials.
Real-world system integration is discussed at the conceptual and architectural level.
However, due to resource and time constraints, the study does not implement or
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validate models in live, large-scale deployments. Findings are instead based on
controlled offline evaluation metrics and simulation-based inference.

» Limited generalization guarantees.
While the thesis investigates cross-domain transfer, it does so within the constraints
of the datasets used. Generalizability to highly divergent environments (e.g., indus-
trial settings, rural dwellings, extreme climates) cannot be definitively concluded
from the results presented.

e No formal comfort validation experiments.
The assessment of thermal comfort relies on collected labels (e.g., Thermal Sensa-
tion Votes) and proxy features. The thesis does not include psychophysical exper-
iments or longitudinal field studies to validate perceived comfort outcomes under
proposed models.

By delineating the boundaries of the research, this section clarifies the methodological
focus on personalized thermal comfort modeling from sensor data and ensures that con-
clusions are interpreted within a realistic and academically sound framework.

1.5 Thesis Structure

This thesis is organized into six main chapters, each progressively building upon the core
research goals and empirical investigations.

Chapter 2 — Literature Review

This chapter presents a comprehensive review of the existing literature in smart envi-
ronments and personalized thermal comfort modeling. It synthesizes findings from re-
cent advancements in environmental sensing, adaptive control, and user-centric HVAC
systems. The chapter serves to contextualize the research within ongoing trends and
identifies critical knowledge gaps that this thesis seeks to address.

Chapter 3 — Theoretical Background

This chapter introduces the foundational theories of thermal comfort, including the widely
adopted Predicted Mean Vote (PMV) and Predicted Percentage of Dissatisfied (PPD)
models, the adaptive comfort model, and psychological approaches. It then transitions
to core machine learning paradigms relevant to this study: supervised and unsupervised
learning, reinforcement learning, and transfer learning. The chapter concludes with a
detailed taxonomy of feature types and a discussion on time resolution, user-specific data
modeling, and temporal embeddings.

Chapter 4 — Experiments and Results

This chapter outlines the experimental framework, beginning with an overview of the
ASHRAE Global Thermal Comfort Database II. It then details exploratory data analysis,
baseline model performance, and in-depth evaluations of machine learning algorithms for
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comfort prediction, including logistic regression, random forests, multilayer perceptrons,
and gradient boosting. A key focus is placed on user-level variability, feature relevance,
and the performance implications of per-user adaptation. The chapter concludes with a
dedicated section on transfer learning, exploring climate-adaptive model generalization
across domains.

Chapter 5 — Discussion

This chapter reflects on the empirical findings, examining their implications for the per-
sonalization and deployment of thermal comfort models. It discusses model limitations,
the impact of spatiotemporal dynamics, and the broader feasibility of integrating adap-
tive systems into intelligent building management. Special attention is given to the role
of user preferences in driving model efficacy and energy-aware environmental adaptation.

Chapter 6 — Future Work

The final chapter outlines prospective research directions. It proposes the use of richer
data modalities including physiological and contextual signals, advanced domain adapta-
tion techniques, user clustering methods, lightweight models for edge deployment, hybrid
physical-statistical models, active learning for reducing user feedback burden, and strate-
gies for end-to-end system integration within IoT-enhanced smart environments.

Together, these chapters provide a structured and in-depth investigation into the chal-
lenges and opportunities of user-adaptive comfort modeling in real-world smart building
contexts.
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Chapter 2

Literature Review

2.1 Foundations of Thermal Comfort Modeling

2.1.1 Physical Models: PMYV and PPD

The Predicted Mean Vote (PMV) and Predicted Percentage of Dissatisfied (PPD) models,
developed by Fanger in 1970, are seminal in the field of thermal comfort assessment [1].
The PMV model predicts the mean thermal sensation vote of a large group of people
on a seven-point scale ranging from cold (-3) to hot (+3), based on the heat balance of
the human body. The PPD model estimates the percentage of occupants likely to feel
thermally dissatisfied in a given environment.

These models consider six primary factors: air temperature, mean radiant temperature,
relative humidity, air velocity, metabolic rate, and clothing insulation. The PMV model
is mathematically expressed as:

PMV = (0.303¢~%%M 4 0,028) - (M — W) — Ey— E, — C — R] (2.1)

where M is the metabolic rate, W is the external work, Ej; is the heat loss through
diffusion, F, is the evaporative heat loss, C' is the convective heat loss, and R is the
radiative heat loss.

Despite their widespread adoption, these models have limitations. They were developed
under steady-state conditions and may not accurately predict comfort in dynamic or
naturally ventilated environments. Moreover, they assume uniformity among occupants,
neglecting individual differences in thermal perception [13].
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2.1.2 Adaptive Comfort Models

Recognizing the limitations of static models like PMV /PPD, researchers developed adap-
tive comfort models that account for occupants’ behavioral, physiological, and psycholog-
ical adaptations to their thermal environment. The adaptive model posits that acceptable
indoor temperatures are influenced by outdoor climatic conditions and occupants’ expec-
tations [2].

Field studies, such as the ASHRAFE RP-884 project, collected data from various buildings
worldwide to support the adaptive model. The findings indicated that occupants in
naturally ventilated buildings accept a wider range of temperatures compared to those
in mechanically conditioned spaces. This adaptability is attributed to increased personal
control over the environment and acclimatization to local climates [14].

The adaptive model has been incorporated into standards like ASHRAE 55 and EN 15251,
providing guidelines for acceptable indoor temperatures based on outdoor conditions.
However, its applicability is primarily limited to naturally ventilated buildings where
occupants can exercise control over their environment.

2.1.3 Psychological and Behavioral Extensions

Beyond physical and adaptive models, psychological and behavioral factors significantly
influence thermal comfort perceptions. Individual differences in thermal sensitivity, ex-
pectations, and control over the environment can lead to varying comfort levels among
occupants [15].

Studies have shown that factors such as personal control, thermal history, and cultural
expectations affect thermal comfort. For instance, occupants with greater control over
their environment, such as operable windows or personal fans, report higher satisfaction
levels. Moreover, thermal preferences can be shaped by past experiences and cultural
norms, influencing occupants’ comfort expectations [16].

Incorporating these psychological and behavioral aspects into thermal comfort models can
enhance their predictive accuracy and relevance. Emerging research explores integrating
physiological signals, such as heart rate variability, to develop personalized comfort mod-
els that account for individual differences [7].
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2.2 Personalization and User-Centric Modeling

2.2.1 Personalized Comfort Models (PCMs)

Personalized Comfort Models (PCMs) represent a paradigm shift in thermal comfort re-
search, moving beyond generalized models to account for individual differences in thermal
perception. These models leverage user-specific features such as demographics, physio-
logical signals, and behavioral patterns to predict thermal comfort more accurately.

Lee and Chun (2021) developed a thermal comfort prediction model utilizing physiological
signals obtained from wearable devices. Their study demonstrated that variables like skin
temperature and electrodermal activity significantly correlate with thermal states, achiev-
ing an 80% prediction accuracy using only physiological data [6]. Similarly, Jayathissa
et al. (2020) introduced a methodology for collecting intensive longitudinal subjective
feedback using smartwatches, enabling the development of individualized comfort models
based on real-time data [17].

The motivation for personalization in energy-aware smart systems stems from the need
to enhance occupant comfort while optimizing energy consumption. Traditional HVAC
systems often fail to accommodate individual preferences, leading to energy inefficiencies
and occupant discomfort. PCMs address this by enabling adaptive control strategies
that respond to individual thermal needs, thereby improving both comfort and energy
efficiency.

2.2.2 Challenges in Generalization

While PCMs offer significant advantages, they also present challenges, particularly con-
cerning generalization across diverse populations. Thermal preferences vary widely among
individuals due to factors such as age, gender, metabolic rate, and acclimatization. This
variability complicates the development of models that can generalize effectively across
different user groups.

Studies have highlighted the limitations of one-size-fits-all models. For instance, research
indicates that seniors often prefer warmer temperatures compared to younger adults,
reflecting age-related differences in thermal sensitivity [18]. Additionally, cultural and
climatic backgrounds influence thermal comfort perceptions, further complicating model
generalization.

To address these challenges, researchers have explored cohort-based modeling approaches.
Quintana et al. (2022) proposed Cohort Comfort Models that group occupants based on
similarity in thermal preferences, enabling more accurate predictions with less individ-
ual data [19]. This approach balances the need for personalization with the practical
constraints of data collection.
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2.2.3 Longitudinal Studies and Feedback Systems

Longitudinal studies play a crucial role in understanding and modeling thermal comfort
over time. By collecting data across extended periods, researchers can capture temporal
variations in thermal preferences and adapt models accordingly.

Tekler et al. (2023) introduced an active learning framework for personalized thermal
comfort modeling, which iteratively updates the model based on occupant feedback. This
approach reduces the data collection burden while maintaining high prediction accuracy,
facilitating practical implementation in real-world settings [20].

Similarly, Gnecco et al. (2023) conducted long-term thermal comfort monitoring using
wearable sensing techniques. Their study found significant correlations between environ-
mental metrics and subjective perceptions, underscoring the value of continuous moni-
toring for adaptive comfort modeling [21].

These feedback systems enable dynamic adjustment of environmental controls, aligning
with occupants’ evolving comfort needs and contributing to energy-efficient building op-
erations.

2.3 Machine Learning Approaches in Comfort Mod-
eling

2.3.1 Supervised Learning Techniques

Supervised learning techniques have been extensively employed to predict thermal com-
fort levels by mapping input features to comfort indices. Common algorithms include
logistic regression, decision trees, artificial neural networks (ANNs), and ensemble mod-
els such as Random Forest (RF) and Extreme Gradient Boosting (XGBoost).

Boutahri and Tilioua (2024) developed a predictive model utilizing Support Vector Ma-
chine (SVM), ANN, RF, and XGBoost to forecast the Predicted Mean Vote (PMV) index.
Their study demonstrated that RF and XGBoost achieved superior performance, with
accuracies of 96.7% and 96.4% respectively, highlighting the efficacy of ensemble methods
in thermal comfort prediction [8].

Zhao et al. (2025) applied machine learning algorithms to predict thermal comfort levels
in various building types and climates. Their findings emphasized the importance of
incorporating macro-contextual variables, such as climate class and ventilation strategy,
to enhance model accuracy [22].
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2.3.2 Unsupervised Learning and Clustering

Unsupervised learning methods, including Principal Component Analysis (PCA), k-means
clustering, and Density-Based Spatial Clustering of Applications with Noise (DBSCAN),
have been utilized to uncover latent structures in thermal comfort data. These techniques
facilitate feature reduction and user segmentation, enabling the identification of distinct
comfort preference groups.

For instance, clustering algorithms have been employed to group occupants based on
similar thermal preferences, aiding in the development of cohort-based comfort models.
This approach allows for more tailored HVAC control strategies without the need for
extensive individual data collection [19].

PCA has been instrumental in reducing the dimensionality of complex datasets, retaining
the most significant features influencing thermal comfort. This simplification enhances
the efficiency and interpretability of subsequent predictive models.

2.3.3 Temporal Models and Deep Architectures

Temporal models, particularly those based on deep learning architectures, have shown
promise in capturing the dynamic nature of thermal comfort perceptions. Convolutional
Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks are adept at
modeling temporal dependencies in sequential data.

Somu et al. (2021) introduced a hybrid model combining CNN and LSTM architectures
to predict thermal comfort by analyzing spatiotemporal relationships in physiological
and environmental data. Their approach demonstrated improved accuracy in capturing
individual thermal sensations over time [23].

2.3.4 Reinforcement and Active Learning

Reinforcement Learning (RL) and Active Learning (AL) methodologies have been applied
to develop adaptive thermal comfort models that learn optimal control strategies through
interaction with the environment and occupants.

Gao et al. (2019) proposed a Deep Reinforcement Learning framework for HVAC control,
formulating the problem as a cost-minimization task balancing energy consumption and
occupant comfort. Their model demonstrated the ability to adapt to varying conditions
and preferences, leading to enhanced energy efficiency and comfort levels [24].

Tekler et al. (2023) introduced an Active Learning approach to personalize thermal
comfort models, reducing the data collection burden by selectively querying the most in-
formative data points. This strategy achieved high prediction accuracy with significantly
less labeled data, facilitating scalable deployment in real-world settings [20].
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2.4 Transfer Learning and Domain Adaptation

2.4.1 Domain Transfer Challenges

Transfer learning and domain adaptation have emerged as pivotal techniques in thermal
comfort modeling, particularly when addressing the variability across different environ-
ments and populations. However, several challenges impede the seamless transfer of
models across domains.

Yang et al. (2025) highlighted the limited generalizability of thermal comfort models when
applied to diverse climatic conditions and building types. Their study demonstrated that
models trained in one domain often underperform when deployed in another, primarily
due to discrepancies in environmental variables and occupant behaviors [12].

Similarly, Gao et al. (2021) investigated the application of transfer learning for thermal
comfort prediction across multiple cities. Their findings underscored the necessity of
domain adaptation techniques to mitigate the performance degradation caused by domain
shifts [11].

2.4.2 Adaptation Techniques

To address the challenges of domain shifts, various adaptation techniques have been
proposed. Instance reweighting adjusts the importance of source domain samples to
better align with the target domain distribution. This method has been effective in
enhancing model performance in new environments [25].

Adversarial training introduces a domain discriminator to encourage the model to learn
domain-invariant features. Ganin et al. (2015) proposed the Domain-Adversarial Neural
Network (DANN), which has been adapted for thermal comfort prediction to improve
cross-domain generalization [26].

Maximum Mean Discrepancy (MMD)-based alignment measures the distance between
source and target domain distributions in a reproducing kernel Hilbert space. By mini-
mizing this distance, models can achieve better alignment and improved performance in
the target domain [27].

2.4.3 Hybrid Models

Hybrid models that combine physics-based and data-driven approaches offer a promising
avenue for thermal comfort prediction. Zhou et al. (2021) developed a hybrid model
integrating the Predicted Mean Vote (PMV) index with machine learning techniques to
enhance prediction accuracy. Their approach leverages the strengths of both methodolo-
gies, resulting in improved performance across various conditions [28].
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Such hybrid models not only improve predictive capabilities but also provide interpretabil-
ity, which is crucial for practical applications in building management systems.

2.5 Integration into Smart Systems

2.5.1 10T and Wearables

The integration of Internet of Things (IoT) devices and wearable technologies has signifi-
cantly advanced the continuous monitoring of environmental and physiological parameters
relevant to thermal comfort. Wearable sensors capable of measuring skin temperature,
heart rate, and heart rate variability (HRV) provide real-time data that can be utilized
to develop personalized thermal comfort models [29].

The WELL Building Standard emphasizes the importance of monitoring thermal com-
fort parameters, advocating for the use of sensors to continuously assess environmental
conditions such as temperature, humidity, and COs levels. This continuous monitoring
enables building managers and occupants to make informed decisions to maintain optimal
thermal comfort [30].

Liu et al. (2019) demonstrated the efficacy of using wearable sensors to develop personal
thermal comfort models. Their study involved collecting physiological data from par-
ticipants over extended periods, resulting in models that achieved a median prediction
accuracy of 78% [29].

2.5.2 Edge Deployment and Privacy

Deploying thermal comfort models on edge devices presents opportunities for real-time
data processing and enhanced privacy. Edge computing minimizes latency and reduces
the reliance on cloud-based services, thereby mitigating potential privacy concerns asso-
ciated with data transmission.

Model compression techniques such as pruning and quantization are essential for facil-
itating the deployment of complex models on resource-constrained edge devices. Liang
et al. (2021) provided a comprehensive survey on these techniques, highlighting their ef-
fectiveness in reducing model size and computational requirements without significantly
compromising accuracy [31].

Recent advancements have demonstrated the feasibility of deploying compressed models
on edge devices with high accuracy and low inference times. For instance, a study achieved
a 92.5% accuracy with an inference time of 20 ms by employing structured pruning and
dynamic quantization techniques [32].
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2.5.3 Interface Design and User Interaction

The design of human-computer interfaces (HCI) plays a crucial role in the effectiveness of
personalized environmental control systems. User-friendly interfaces facilitate occupant
engagement, allowing individuals to provide feedback and adjust settings to their comfort
preferences.

Zhu et al. (2021) explored adaptive HCI within the context of Industry 5.0, emphasizing
the need for interfaces that can adapt to user behaviors and preferences. Their work
underscores the importance of designing interfaces that are intuitive and responsive to
enhance user satisfaction and system efficiency [33].

Effective HCI design in thermal comfort systems should prioritize usability, accessibil-
ity, and responsiveness. Incorporating features such as real-time feedback, customizable
settings, and clear visualizations can empower users to actively participate in managing
their thermal environment.
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Chapter 3

Theoretical Background

3.1 Foundations of Thermal Comfort Modeling

3.1.1 Predicted Mean Vote (PMV) and Predicted Percentage
of Dissatisfied (PPD)

The Predicted Mean Vote (PMV) model, introduced by Fanger [1], is designed to pre-
dict the average thermal sensation of a group of people under uniform environmental
conditions. It is based on the ASHRAE 7-point thermal sensation scale:

-3 Cold

-2 Cool

-1 Slightly cool
0 Neutral

+1 Slightly warm

+2 Warm

+3 Hot
The PMV index is calculated using the equation:

PMV = [0.303 e~0036M 4 0.028] - L
where:
o M: metabolic rate [W/m?]

o [L: thermal load — the net heat that the human body must lose to maintain thermal
equilibrium
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The thermal load L is defined by:

L=M-W —FE—Ces— R—C—E;— FE;

This expression captures the balance between internal heat production and the mecha-
nisms of heat dissipation:

e M: energy generated by metabolic activity

o W: mechanical work done by the body (typically negligible indoors)

FEs: latent heat loss through evaporation in respiration

e (s sensible heat loss from exhaled air

e R: radiative heat loss from the skin to cooler surrounding surfaces
o (' convective heat loss due to air movement

« E,: insensible perspiration (diffusion through the skin)

E: sensible perspiration (active sweating)

Essentially, L reflects the excess or deficit of heat in the body. A positive L indicates
that the body is too warm (requiring cooling), while a negative L indicates a heat deficit
(requiring warming). The PMV then interprets this thermal imbalance as a sensation
vote on the ASHRAE scale.

The associated dissatisfaction metric is the Predicted Percentage of Dissatisfied (PPD):

PPD = 100 — 95 003353 PMV*—0.2179-PMV?

This equation empirically estimates the percentage of occupants likely to feel thermally
uncomfortable under given conditions. Even at optimal comfort (PMV = 0), about 5%
of individuals may remain dissatisfied due to inter-individual variability [5].

3.1.2 Adaptive Comfort Model

The adaptive comfort model, developed by de Dear and Brager [2], considers behavioral
and psychological adaptations to outdoor climate. It defines a temperature range in
naturally ventilated buildings that shifts according to the outdoor thermal history:

Tpetret = 0.31 - Ty, 4 17.8

with the running mean temperature T,.,, defined as:

Tom = (1 —a) Z ai_1T0d7Z~

i=1
where 7,4, is the mean outdoor temperature 7 days ago, and a ~ 0.8. This model allows
for broader comfort thresholds, especially where occupants can adjust clothing, open
windows, or modify their environment.
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3.1.3 Data-Driven Comfort Models

In contrast to physics-based models, data-driven approaches leverage machine learning
to estimate comfort from observational data:

y=1rfx) +e
Here:
« x: input feature vector (e.g., air temperature, humidity, clothing, time)
o y: observed comfort feedback (e.g., ASHRAE scale score)
o ¢: residual error due to unmeasured or subjective factors

Model training involves minimizing a loss function. In regression settings, the Mean
Squared Error (MSE) is common:

1 &
Lyse = - > (G —wi)?

i=1

where:
o 7;: model prediction for sample 7
e y;: ground truth label
o n: number of training examples

For classification models (e.g., predicting discrete ASHRAE classes), the output is a
probability distribution over comfort classes:

A~

yi = [@i,h s 7@1',0}7 Zgi,c =1

The Cross-Entropy (CE) loss function measures the divergence between predicted and
true class distributions:

n C

1 .
LCE - Z Z Yic 10g<yi,c)

1=1c=1

where:
e ;. one-hot encoded true label
e ;. predicted probability for class c
o (" number of classes

These data-driven models enable dynamic personalization and are particularly useful in
real-time applications such as personal environmental control systems [8], [34].
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3.1.4 Cognitive and Psychological Models of Comfort

Comfort perception is also influenced by psychological factors. A heuristic formulation
is:

Tneutral = Tphys -+ (b(Tpast; CODtI‘Ol, IIlOOd)

where:

o Tonys: neutral temperature from physiological model

o Thast: average of previously experienced temperatures
o control: perceived ability to adjust the environment
e mood: transient emotional state

Research shows that the perception of control-—such as access to windows or ther-
mostats—can improve thermal satisfaction even when actual conditions remain unchanged
[5], [9]. Such models support human-in-the-loop strategies and adaptive interface design
in smart environments.

3.2 Machine Learning Fundamentals

3.2.1 Introduction to Machine Learning

Machine Learning (ML) is a branch of artificial intelligence (AI) that focuses on the
development of algorithms and statistical models enabling computers to perform specific
tasks without explicit instructions. Unlike traditional programming, where rules are
hard-coded, ML systems learn patterns from data, allowing them to make decisions or
predictions based on new inputs. This section provides an overview of the foundational
concepts, types, training processes, applications, and challenges associated with machine
learning.

3.2.2 Principles of Machine Learning

At its core, machine learning involves the following key principles:

« Data Representation: Data is structured into a format suitable for analysis,
often as feature vectors where each feature represents a measurable attribute of the
phenomenon under study.

o Modeling: Algorithms are employed to create models that capture patterns and
relationships within the data, facilitating predictions or decisions.

o Training: Models are trained using datasets, adjusting internal parameters to
minimize errors between predicted and actual outcomes.
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o Evaluation: Trained models are assessed using separate validation datasets to
ensure they generalize well to unseen data. Metrics such as accuracy, precision,
recall, and F1-score are commonly used.

e Prediction: Once validated, models can make predictions or decisions on new
data, applying learned patterns to real-world scenarios.

3.2.3 Types of Machine Learning

Machine learning encompasses several paradigms, each suited to different types of prob-
lems:

Supervised Learning

In supervised learning, models are trained on labeled datasets, where each input is paired
with a known output. The objective is to learn a mapping from inputs to outputs,
enabling the prediction of outcomes for new, unseen data.

Common Algorithms: Linear Regression, Logistic Regression, Support Vector Ma-
chines (SVM), Decision Trees, Random Forests, Neural Networks.

Applications: Image classification, spam detection, medical diagnosis, speech recogni-
tion.

Unsupervised Learning

Unsupervised learning deals with unlabeled data, aiming to uncover hidden structures or
patterns without predefined outputs.

Common Algorithms: K-Means Clustering, Hierarchical Clustering, Principal Com-
ponent Analysis (PCA), t-Distributed Stochastic Neighbor Embedding (t-SNE).
Applications: Customer segmentation, anomaly detection, market basket analysis, gene
expression analysis.

Reinforcement Learning

Reinforcement learning involves training agents to make a sequence of decisions by re-
warding or penalizing actions, with the goal of maximizing cumulative rewards over time.
Common Algorithms: Q-Learning, Deep Q-Networks (DQN), Policy Gradient Meth-
ods.

Applications: Robotics, game playing (e.g., AlphaGo), autonomous driving, resource
management.

3.2.4 Training Machine Learning Models
The process of training machine learning models involves several critical steps:

1. Data Collection: Gathering relevant and diverse data is fundamental, as the
quality and quantity of data directly influence model performance.
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2. Data Preprocessing: Raw data often contains noise or inconsistencies. Prepro-
cessing includes cleaning data, handling missing values, and normalizing or stan-
dardizing features.

3. Feature Engineering: Selecting and transforming variables to enhance model
learning capabilities. Effective feature engineering can significantly improve model
accuracy.

4. Model Selection: Choosing appropriate algorithms based on the problem type
and data characteristics. Different algorithms have varying strengths and are suited

to specific tasks.

5. Training: Adjusting model parameters using training data to minimize prediction
errors. Techniques like gradient descent are commonly used for optimization.

6. Validation: Evaluating model performance on a separate validation set to fine-
tune hyperparameters and prevent overfitting.

7. Testing: Assessing the final model on an independent test set to estimate its
performance on unseen data.

3.2.5 Applications of Machine Learning

Machine learning has a broad spectrum of applications across various industries:

o Healthcare: Disease prediction, medical imaging analysis, personalized treatment
plans, drug discovery.

o Finance: Fraud detection, stock market prediction, credit scoring, algorithmic
trading.

e Retail: Demand forecasting, inventory management, recommendation systems,
customer segmentation.

o Transportation: Autonomous vehicles, traffic prediction, route optimization, ride-
sharing services.

« Natural Language Processing (NLP): Language translation, sentiment analy-
sis, chatbots, speech recognition.

o Computer Vision: Object detection, facial recognition, image classification, video
analysis.

o Entertainment: Content recommendation, personalized advertising, user behav-
ior analysis.
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3.2.6 Challenges and Future Directions

Despite significant advancements, machine learning faces several challenges:

o Data Quality and Quantity: Obtaining high-quality, labeled data is often resource-
intensive, yet essential for effective model training.

o Interpretability: Complex models, especially deep learning networks, can act as
"black boxes,” making it difficult to understand decision-making processes.

o Bias and Fairness: Models may inherit biases present in training data, leading
to unfair or discriminatory outcomes.

o Scalability: Training models on large datasets requires substantial computational
resources, posing scalability issues.

e Security and Privacy: Ensuring data privacy and security is crucial, particularly
in sensitive domains like healthcare and finance.

Looking ahead, advancements in explainable Al, federated learning, and quantum com-
puting hold promise for addressing these challenges, paving the way for more transparent,
efficient, and secure machine learning applications.

3.3 Machine Learning and Data-Driven Techniques

The advent of machine learning (ML) has revolutionized the modeling of thermal comfort
by enabling data-driven approaches that adapt to individual preferences and environ-
mental variations. This section delves into various ML techniques applicable to thermal
comfort prediction and control.

3.3.1 Supervised Learning

Supervised learning involves training a model on a labeled dataset, where the input
features X = {x1,z9,...,2,} are associated with known outputs y = {y1,%2,...,Un}-
The goal is to learn a mapping function f : X — y that can predict outputs for unseen
inputs.

Logistic Regression

Logistic regression is a statistical model used for binary classification problems. It esti-
mates the probability that a given input x belongs to a particular class. The model is

defined as:

1

Ply=1k) = 1~

(3.1)
where:

o W is the weight vector,
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e b is the bias term,
o ¢ is the base of the natural logarithm.

The model is trained by minimizing the binary cross-entropy loss:
1 & . N
L= == [y:log(f:) + (1 — i) log(1 — §) (3.2)

i=1

where 7j; is the predicted probability for sample .

Decision Trees

Decision trees are flowchart-like structures where internal nodes represent tests on fea-
tures, branches represent outcomes of the tests, and leaf nodes represent class labels
or regression values. The tree is built by recursively partitioning the data to minimize
impurity measures such as Gini impurity or entropy.

Random Forests

Random forests are ensemble models that construct multiple decision trees during training
and output the mode of the classes (classification) or mean prediction (regression) of the
individual trees. The model reduces overfitting by averaging multiple deep decision trees
trained on different parts of the same dataset.

Extreme Gradient Boosting (XGBoost)

XGBoost is an optimized distributed gradient boosting library designed to be highly
efficient and flexible. It builds models in a stage-wise fashion and generalizes them by
allowing optimization of an arbitrary differentiable loss function. The objective function
is:

n K

L(¢) = Zl(yu.@z) + > Q(fr) (3.3)
where:
o [ is a differentiable convex loss function,
o Qfy) =T + A|lw||? is the regularization term,
e T is the number of leaves in the tree,

e w is the vector of scores on leaves.
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Multilayer Perceptron (MLP)

An MLP is a class of feedforward artificial neural network that consists of at least three
layers of nodes: an input layer, a hidden layer, and an output layer. Each node (except
for the input nodes) is a neuron that uses a nonlinear activation function. The output of
an MLP is given by:

§=f(Wa-g(Wi-x+by)+by) (3.4)
where:
o W, W, are weight matrices,

e by, by are bias vectors,

g is the activation function (e.g., ReLU, sigmoid),

« [ is the output activation function (e.g., softmax for classification).

3.3.2 Unsupervised Learning and Dimensionality Reduction

Unsupervised learning deals with unlabeled data, aiming to uncover hidden structures or
patterns.

Principal Component Analysis (PCA)

PCA is a dimensionality reduction technique that transforms the data into a new coor-
dinate system such that the greatest variance lies on the first principal component, the
second greatest variance on the second component, and so on. Mathematically, PCA
solves the eigenvalue decomposition of the data covariance matrix.

K-Means Clustering

K-Means clustering partitions n observations into k clusters in which each observation
belongs to the cluster with the nearest mean. The objective is to minimize the within-
cluster sum of squares (WCSS):

k
argminy> Y- [ — pu (3.5)

=1 xESi

where:
o« S ={51,95,,...,Sk} are the clusters,
e [; is the centroid of cluster S;.
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DBSCAN (Density-Based Spatial Clustering of Applications with Noise)

DBSCAN is a density-based clustering algorithm that groups together points that are
closely packed together, marking as outliers points that lie alone in low-density regions.
It requires two parameters: ¢ (maximum radius of the neighborhood) and MinPts (min-
imum number of points required to form a dense region).

3.3.3 Reinforcement Learning

Reinforcement learning (RL) is an area of machine learning concerned with how agents
ought to take actions in an environment to maximize cumulative reward. An RL problem
is typically modeled as a Markov Decision Process (MDP) defined by a tuple (S, A, P, R, ),
where:

o S is the set of states,

o A is the set of actions,

o P is the state transition probability matrix,
e R is the reward function,

e 7 is the discount factor.

The goal is to find a policy 7 : S — A that maximizes the expected return:

E [i Y R(s: at)] (3.6)

t=0

3.3.4 Transfer Learning

Transfer learning refers to the process of improving learning performance in a target
domain by leveraging knowledge acquired from a related source domain. This approach
is particularly relevant in thermal comfort modeling, where collecting sufficient labeled
data in each new building, climate, or demographic group can be both expensive and time-
consuming. Transfer learning enables the reuse of models or representations developed
in one setting (e.g., a specific climate zone or building type) for another, accelerating
deployment and improving prediction accuracy in data-sparse contexts.

Motivations and Challenges

In the context of smart buildings and personalized comfort systems, one frequently en-
counters variability in environmental conditions, occupant preferences, sensor configu-
rations, and HVAC control strategies across different deployment environments. These
variations introduce domain shift, where the statistical properties of the input data differ
between source and target environments. For example, a thermal comfort model trained
on data from a temperate climate may perform poorly in a tropical setting due to differ-
ences in indoor-outdoor gradients, humidity profiles, and occupant clothing habits.
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Formally, we denote the source domain as:
Ds = {Xg, Ps(X)}, and the target domain as: Dy = { X7, Pr(X)}

where X is the input feature space and P(X) the marginal distribution. The goal of
transfer learning is to approximate the conditional distribution Pr(Y'|X) in the target
domain using knowledge from Pg(Y'|X), despite the divergence in input distributions

Py(X) # Pr(X).
Key challenges include:

o Overfitting to the source domain’s specific environmental features.

« Misalignment of feature semantics across domains (e.g., sensor drift or scale varia-
tion).

o Scarcity of labeled data in the target domain for fine-tuning or validation.

Taxonomy of Transfer Learning Strategies

Transfer learning techniques can be categorized as:

o Inductive Transfer Learning: Ps(X) =~ Pr(X), but Ps(Y|X) # Pr(Y|X).
Common in personalization.

o Transductive Transfer Learning: Ps(X) # Pr(X), but Ps(Y|X) = Pr(Y|X).
Used across climates or buildings.

e Unsupervised Transfer Learning: Both source and target domains lack labels.
Used for latent representation learning.

Pretraining and Fine-Tuning Architectures

A common approach involves:
1. Pretraining on source domain Dg to learn parameters 6 via supervised learning.

2. Fine-tuning on target domain D7 using limited labels, either with all parameters
or partial adaptation (e.g., freezing early layers).

In CNN-LSTM architectures for thermal comfort, convolutional layers often extract spa-
tial features while LSTM layers capture temporal dynamics. Fine-tuning enables these
models to adapt to new occupancy schedules, building layouts, or sensor arrays.
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Advanced Domain Adaptation Strategies

Several strategies can reduce domain discrepancy:

Feature Alignment Feature alignment aims to minimize the discrepancy between the
distributions of source and target domain features by projecting both into a common,
high-dimensional space. This is commonly achieved using Maximum Mean Discrepancy
(MMD), which quantifies the distance between the mean embeddings of the two domains.
The MMD is defined as:

1 & 1 & ’

MMD(Ds, Dr) = || 3 o(a7) = -3 6(a})
i=1 Jj=1

H

where ¢ is a feature mapping function into a reproducing kernel Hilbert space (RKHS) H.
This function transforms raw input features (e.g., temperature and humidity) into a space
where similarity can be measured via inner products. A key property of RKHS is that
it allows comparisons using kernel functions such as the Radial Basis Function (RBF),
polynomial, or linear kernels, which enable implicit computation of high-dimensional
distances without explicitly transforming the inputs.

Minimizing the MMD during training aligns the source and target distributions in H,
making them statistically similar. This term is typically added to the standard prediction
loss in the overall objective:

'Ctotal = ﬁpred + A MMD(Ds, DT)

where A\ balances prediction accuracy and domain alignment. By reducing MMD, the
model learns features that are domain-invariant and thus generalize better across different
environmental contexts.

Instance Reweighting Instance reweighting addresses the domain shift problem by
assigning different importance weights to source domain samples based on their similarity
to the target domain distribution. Instead of treating all source samples equally, this
approach increases the influence of samples that are more representative of the target
domain. The reweighted loss function is expressed as:

»Cadapt = ZB@ ’ E(f<mz8)7 y;S')
=1

where f3; is the importance weight for the i-th source sample, and / is a loss function such
as cross-entropy or mean squared error.

The weights 3; are typically estimated as the ratio of the target to source probability
densities at each point:
Pr(z7)

pi= Ps(x})
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This formulation prioritizes source instances that lie in regions of the feature space where
the target distribution has high density. In practice, density ratios can be estimated using
kernel density estimation or probabilistic classifiers trained to distinguish between source
and target instances.

The reweighted loss Lagapt is then used either as the main training loss or combined with
other objectives (e.g., regularization or domain discrepancy terms) to improve generaliza-
tion across domains. This method helps mitigate overfitting to irrelevant source patterns
and enhances the model’s transferability.

CNN-LSTM Architectures for Spatiotemporal Adaptation

The combination of Convolutional Neural Networks (CNNs) and Long Short-Term Mem-
ory (LSTM) networks forms a powerful hybrid architecture well-suited for thermal com-
fort prediction using sensor-rich, time-dependent data. CNNs excel at extracting spatial
and local patterns from multivariate input features such as temperature, humidity, and
COy concentration. LSTMs are designed to capture temporal dependencies, enabling the
model to learn from historical sequences of environmental and physiological states.

1D Convolutional Networks In the context of thermal comfort, the spatial structure
typically refers to the feature channels collected at each time step, such as readings from
environmental sensors or wearable devices. Therefore, 1D convolutions are applied along
the temporal axis of these feature vectors:

Zy = CNN(Xt—k::t)

Here, x;_.; represents a sliding window of feature vectors over k past time steps. Each
convolutional filter learns local patterns such as increasing humidity, sudden temperature
drops, or changes in heart rate, which may signal discomfort or behavioral adaptation.

Convolution Parameters The key hyperparameters in CNNs include:

e Kernel size: Determines the width of the convolutional window. A kernel size of
3 or 5 allows capturing local temporal transitions in the features.

o Stride: Controls the step size for moving the kernel along the input. A stride of 1
maintains resolution, while a larger stride reduces sequence length and computation.

« Padding: Zero-padding preserves the input length, enabling boundary information
retention.

« Activation functions: Non-linear functions such as ReLU (ReLU(z) = max(0, ))
are applied after convolution to introduce non-linearity, allowing the network to
learn complex feature interactions.

« Pooling layers: Max-pooling or average-pooling can follow convolutions to reduce
dimensionality and capture dominant features. Pooling helps with robustness to
small variations and accelerates training.
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Long Short-Term Memory Networks After spatial feature extraction, the resulting
sequence zi.r is fed into an LSTM layer, which models temporal dependencies. LSTM
units are designed to mitigate the vanishing gradient problem, maintaining memory over
long sequences via gated mechanisms:

f, =0(Wy-[hy_1,2] + by) (forget gate)
ip=0(W;-[hy_1,2] +by) (input gate)
¢; = tanh(W, - [h;_1,2;] + b,) (candidate state)
c,=fOc 1 +i;0¢ (cell state)
o, =0(W, - [hy_1,2;] +b,) (output gate)
h;, = o; ® tanh(c;) (hidden state output)

Each gate uses the sigmoid activation o, controlling how information flows through time.
The memory cell c; preserves long-term trends, while h; serves as the dynamic represen-
tation used for prediction.

Output Layers and Prediction The final hidden state hy can be passed through a
stack of fully connected (dense) layers, possibly with dropout for regularization. These
layers perform non-linear transformations to refine the representation for classification
(e.g., comfort vs discomfort) or regression (e.g., predicted thermal sensation vote, TSV).

Architectural Extensions Several enhancements can be integrated into the base
CNN-LSTM architecture to increase expressiveness, interpretability, and performance:

« Bidirectional LSTMs (BiLSTM): Standard LSTMs process input sequences
from past to present. BiLSTMs augment this by also processing the sequence in
reverse. This is particularly useful when the prediction target (e.g., retrospective
comfort feedback) depends on both past and future context. Formally, the hidden

—
state becomes a concatenation h; = [hy; h,], capturing richer temporal information.

o Attention Mechanisms: Attention modules assign varying importance to dif-
ferent time steps. This is achieved by computing alignment scores and forming a
context vector as a weighted sum of LSTM outputs:

T
exp(e;
cr = Z ash;  where oy = #
t=1 > k-1 xp(ex)
where e; = score(h;) represents a learned relevance score. Attention enhances

interpretability and allows the model to focus on key moments affecting comfort.

e Residual Connections: Deep CNN layers often suffer from vanishing gradients.
Residual blocks, popularized by ResNet, address this by allowing the input to bypass
convolutions via identity mappings:

zf“t = zin + CNN(zi“)

This stabilizes training and allows deeper architectures without degradation.
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o Multi-Scale CNNs: Multiple convolution paths with different kernel sizes (e.g.,
3, 5, 7) can be applied in parallel to extract features at various temporal scales.
Outputs from these paths are concatenated before feeding into LSTMs, enabling
the network to capture both fine-grained and broad environmental dynamics.

« Temporal Convolutional Networks (TCNs): As an alternative or complement
to LSTMs, TCNs use dilated causal convolutions to model long-range dependencies
while preserving sequence order. TCNs provide parallelism in training and often
outperform RNNs on time series tasks.

These extensions enhance the model’s ability to generalize across diverse comfort con-
texts and improve learning efficiency, especially when applied to real-time, multi-sensor
environments.

This hybrid CNN-LSTM model, particularly with the described enhancements, offers a
robust framework for capturing both the short-term variability and long-term patterns
inherent in personalized comfort prediction from rich sensor data.

Applications and Evaluation

Transfer learning has been applied to:
o Personalize comfort models across seasons and buildings [5]
« Transfer between geographical regions using ASHRAE databases [3]
« Enable real-time learning in wearable-driven systems [35]
Evaluation metrics include:

« Root Mean Squared Error (RMSE) or Mean Absolute Error (MAE) on target data.

Classification Accuracy or F1 Score for ASHRAE scale prediction.

o Transfer Gain: ARMSE = RMSEy celine — RMSE; ansfer

Domain Classification Accuracy (for adversarial training)

3.4 Feature Representation and Engineering

Effective feature representation is foundational to thermal comfort modeling in intelligent
environments. The heterogeneity of data from users, environmental sensors, and interac-
tion logs necessitates a structured approach to capture both immediate conditions and
longer-term behavioral patterns. This section organizes features into four conceptual cat-
egories: user-centric data, environmental features, contextual/interaction variables, and
temporal resolution considerations. We also highlight methods for encoding historical
user experience through embeddings and memory structures.
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3.4.1 User-Centric Data

Personal characteristics heavily influence thermal perception and behavioral adaptation.
Incorporating user-specific features enables personalized modeling and enhances general-
izability across heterogeneous populations.

« Static Demographics: Variables such as age, gender, and body mass index (BMI)
serve as coarse but effective descriptors of thermoregulatory differences among in-
dividuals. These features are particularly useful when personalization must begin
without historical data.

o Physiological Proxies: Metrics such as heart rate, skin temperature, and esti-
mated metabolic rate—often derived from wearables—provide real-time signals of
the user’s thermal state. These data points support dynamic adaptation in systems
designed for reactive control.

« Behavioral Feedback and Preference Histories: Explicit comfort feedback
(e.g., thermal sensation votes), behavioral traces (e.g., thermostat interactions),
and intervention patterns offer insight into subjective preference dynamics. Over
time, such records help distinguish between transient discomfort and systemic mis-
alignment.

o Time-Series Embeddings: To efficiently encode complex user histories, sequences
of sensor readings and user feedback can be transformed into compact, fixed-size
vector representations using models such as LSTMs, Transformers, or variational
autoencoders. These embeddings preserve temporal dynamics while reducing di-
mensionality and can be used as inputs for downstream prediction tasks. They
support both individual personalization and cross-user clustering [36].

« Historical Aggregates and Temporal Decay: When full time series are not
available or computationally feasible, summary statistics such as exponentially
weighted moving averages or recency-weighted feedback counts can approximate
temporal patterns in user comfort.

3.4.2 Environmental Features

Environmental sensing provides the physical context in which thermal comfort is expe-
rienced. Rich, continuous environmental data allows for responsive modeling and fine-
grained control.

e Indoor Ambient Conditions: Temperature, relative humidity, air velocity, and
COg levels are standard inputs collected through IoT devices or building manage-
ment systems (BMS). In more sophisticated settings, mean radiant temperature
(MRT) and radiant asymmetry may also be captured to refine thermal load esti-
mates.
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o Derived Metrics: Features such as temperature change rate (AT /At), comfort
envelope deviations, and rolling averages help identify transitional states, envi-
ronmental stability, or anomalies. These derived features improve sensitivity to
short-term discomfort triggers.

e Outdoor and Building Context: External weather data (e.g., solar radiation,
wind speed) and envelope characteristics (e.g., window orientation, insulation qual-
ity) influence thermal behavior and energy dynamics. They are essential for adapt-
ing comfort predictions across varying spatial zones or building types.

3.4.3 Contextual and Interaction Features

Temporal and behavioral context shapes thermal experience beyond static sensor read-
ings. These features capture how comfort is mediated by routine, location, and user
interaction.

o Temporal Encoding: Time of day, day of week, and seasonal cycles influence
thermal expectations and behavior. These can be encoded using cyclical transfor-
mations (e.g., sin(2xt/P),cos(2nt/P)) to preserve continuity and improve model
interpretability.

o Control and Interaction States: User interventions such as HVAC adjustments,
window operations, and fan usage reveal proactive comfort strategies. These are
often encoded as binary or categorical features and provide a direct link between
comfort perception and environmental response.

e Occupancy and Activity: Inferred from motion sensors, wearable devices, or
scheduling systems, these features contextualize sensor data and help disambiguate
causes of discomfort (e.g., heat stress vs. physical exertion).

3.4.4 Time Resolution and Historical Modeling

Temporal resolution significantly affects model accuracy, responsiveness, and deployment
feasibility.

« High-Resolution Data (1-2 min): Suitable for real-time systems using wearable
devices and responsive HVAC control. Offers high fidelity but can introduce noise
and increase computational load.

e Medium Resolution (5-15 min): Common in BMS deployments, balancing
detail and processing overhead. Captures most user-environment interactions effec-
tively.

« Low Resolution (hourly or daily): Useful for long-term comfort profiling, de-
sign simulations, and energy planning. May smooth over important short-term
variations.
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o Historical Modeling Approaches:
— Time-Series Embeddings: Enable compression of long behavioral and environ-
mental histories into predictive feature vectors [36].

— Ezponential Decay Functions: Weight recent events more heavily, simulating
the fading influence of older experiences.

— Stateful Memory: Use LSTM-style internal states or reinforcement learn-
ing agents to track and update user context dynamically across interaction

episodes.
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Chapter 4

Experiments and Results

4.1 Dataset Overview

This study utilizes the ASHRAE Global Thermal Comfort Database II, a com-
prehensive, real-world dataset comprising environmental, physiological, and subjective
comfort data collected from thousands of building occupants across various climates and
countries. It includes over 100,000 records spanning numerous buildings, climate zones,
and subject profiles, making it a robust source for evaluating personalized thermal com-
fort models.

The experimental foundation of this thesis is the ASHRAE II Thermal Comfort
Dataset, curated by the Center for the Built Environment (CBE) at the University
of California, Berkeley. This dataset consolidates thermal comfort records from diverse
field studies conducted in naturally ventilated, mixed-mode, and air-conditioned build-
ings worldwide. Unlike controlled laboratory datasets, ASHRAE II captures occupants’
responses in real-world settings, supporting more ecologically valid and generalizable
thermal comfort models.

Each observation represents a snapshot in time, capturing a subject’s thermal sensation
and associated contextual factors. These are structured across four principal dimensions:

« Environmental Variables: Indoor measurements include air temperature, globe
and radiant temperatures, relative humidity, air velocity (at multiple heights), and
binary flags for control states (e.g., window open/closed, fan usage). Outdoor
data—either directly measured or inferred from meteorological sources—include
outdoor temperature, relative humidity, and a 7-day running mean temperature for
adaptive modeling.

o Personal Characteristics: Demographic features include age, gender, height, and
weight. Physiological parameters such as metabolic rate and clothing insulation are
provided, with some variables derived from averaged activity levels over various time
intervals (e.g., 10, 30, 60 minutes).

» Subjective Responses: Participants rate their thermal comfort using the 7-point
ASHRAE thermal sensation scale ( 3 = cold to +3 = hot), as well as the accept-
ability and preference scales for both temperature and air movement.
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o Spatiotemporal and Metadata: Each entry includes timestamp data, building
and subject IDs, geographic location (country, city, latitude/longitude), and cate-
gorical climate classification (e.g., humid subtropical, tropical savanna). Metadata
flags indicate the quality and source of measurements, helping to ensure traceability
and filtering reliability during preprocessing.

To support supervised learning, the dataset includes unique identifiers for each building_id
and subject_id, facilitating longitudinal and personalized modeling. The inclusion of
PMV/PPD and SET calculations enables comparison against traditional thermal comfort
standards (e.g., ISO 7730, ASHRAE 55).

Overall, the ASHRAE II dataset’s structure and breadth make it an ideal candidate for
personalized comfort modeling and transfer learning experiments in diverse environmental
contexts.

4.2 Exploratory Data Analysis

This section provides an analytical overview of the thermal comfort dataset, highlighting
the relationships between variables, their statistical behavior, and their relevance to the
prediction task. Through visualizations, correlation studies, and dimensionality analysis,
this exploratory phase informed the feature selection strategy, justified modeling choices,
and revealed both the potential and limitations of the dataset.

4.2.1 Target Variable: Thermal Sensation

The target variable for all supervised learning experiments in this thesis is the thermal sensation
value, recorded as part of the ASHRAE 7-point thermal sensation scale. It is defined as
follows:

e -3: Cold

e -2: Cool

o -1: Slightly Cool

e 0: Neutral

o +1: Slightly Warm
e +2: Warm

e +3: Hot
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This variable is particularly advantageous for modeling purposes due to its availability
across the majority of records and its granularity, which allows for nuanced classification
beyond binary or ternary categorizations. However, the use of a 7-class formulation
introduces greater complexity and ambiguity in prediction, especially considering the
subjective nature of thermal comfort, which is influenced by latent psychological and
physiological factors not fully captured in the dataset.

As such, while it provides a more descriptive framework for characterizing individual
comfort, this target also inherently limits predictive performance, particularly for general-
purpose models that are not personalized or context-aware.

4.2.2 Feature Correlation Analysis

A comprehensive correlation matrix was generated for all numerical features. Several
intuitive and expected relationships were confirmed:

» Strong positive correlations between various indoor temperature measurements
(e.g., air, globe, radiant, operative).

« Negative correlations between outdoor temperature and clothing insulation,
as colder weather prompts heavier clothing.

« Seasonal interactions, such as increased fan usage in summer and greater clothing
insulation in winter.

To assess the predictive value of individual features, correlations with the target variable
thermal sensation were computed. The following insights emerged:

o Air temperature showed the highest positive correlation, affirming its role as the
most influential environmental variable.

o Height and weight exhibited negligible correlations, justifying their exclusion from
the modeling pipeline.

« Seasonal encodings (e.g., summer, winter) revealed moderate correlations, sup-
porting the inclusion of temporal context.

o A negative correlation with clothing insulation likely reflects adaptive behavior
rather than causal influence.

o Features like window, fan, and door states showed modest yet notable correlations,
hinting at potential for actionable interventions.
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Correlation Matrix of Numeric Features
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Figure 4.1: Correlation matrix of numerical features
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4.2.3 Principal Component Analysis (PCA)

Principal Component Analysis was conducted on a subset of the most representative and
readily collectible features, including both environmental and user-related variables. The
selected features were:

o Air temperature

o Relative humidity

o Outdoor temperature

e Outdoor relative humidity

» Metabolic rate

o Clothing insulation

o Air velocity

« Gender (encoded as gender male)

 Scason (encoded as season_winter)

This selection reflects variables that are both frequently available in real deployments
and theoretically linked to thermal comfort.

The cumulative explained variance plot showed no distinct elbow, implying that no small
subset of components captures the majority of variance. This indicates the presence
of nuanced, high-dimensional relationships justifying the use of full feature sets in the
modeling process.
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Cumulative Explained Variance
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Figure 4.3: Cumulative variance explained by PCA components
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4.2.4 User-Level Record Distribution

A key goal of this study is to explore the viability of personalized thermal comfort mod-
eling. To assess this, we analyzed the distribution of the number of data records available
per user. This metric provides insights into whether the dataset includes enough temporal
data per individual to support per-user model training or transfer learning strategies.

Figure 4.4 illustrates the number of subjects who have at least a given number of data
records. The results show that over 50 individuals have more than 110 recorded samples.
This finding is significant, as datasets of this size per user enable the development of
reliable personalized models and make the application of user-specific fine-tuning tech-
niques—such as transfer learning—both feasible and meaningful.

This distribution also informs our model design decisions. Users with a sufficient history of
measurements can support more data-intensive approaches, while those with fewer records
may benefit from models that leverage population-level trends or shared representations.
Understanding the variability in record availability is therefore essential for balancing
generalization and personalization in thermal comfort prediction.
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Figure 4.4: Number of users with at least N records
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4.2.5 Per-User Correlation Distribution Analysis

To further understand individual variability in thermal comfort, we conducted a per-
user correlation analysis between selected environmental and physiological features and
the target variable, thermal sensation. For each user with sufficient data (typically >10
records), we computed the Pearson correlation between each selected feature and the
user’s reported thermal sensation. This produced a distribution of correlation coefficients
for each feature across the user population.

The resulting histograms demonstrate an important and reassuring trend: the distribu-
tion of correlations for most features tends to follow a bell-shaped, approximately normal
distribution, centered around the overall correlation observed for that feature in the entire
dataset. For example, features such as air temperature, clothing insulation, and metabolic
rate show per-user correlation distributions that are skewed in a direction that aligns with
our general expectations:

e Air temperature: Most users exhibit a positive correlation between air temper-
ature and thermal sensation, which reflects the intuitive relationship that warmer
air generally increases the likelihood of a user reporting feeling warmer.

o Clothing insulation: The distribution of correlations is negatively skewed, sug-
gesting that users who wear heavier clothing tend to feel cooler. This does not imply
that heavier clothing causes cold discomfort but reflects behavioral adaptation—
users dress more warmly when it is cold, and thus, heavier clothing is associated
with colder perceived conditions.

o Metabolic rate: The distribution is positively skewed, consistent with the prin-
ciple that higher activity levels lead to greater internal heat generation, increasing
thermal sensation.

These patterns indicate that while there is individual variability, many of the observed
relationships between features and thermal sensation are consistent across users. This
supports the idea that a general model can capture the dominant thermophysiological
responses, while also suggesting room for fine-tuning to capture individual nuances.
This analysis contributes to validating our modeling approach: while personalization re-
mains crucial for optimal comfort prediction, the dataset contains consistent and learnable
patterns across users that justify the use of supervised learning techniques.
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Figure 4.5: Distributions of per-user feature correlations with thermal sensation

Variable Selection:

lation.

4.2.6 Feature Engineering
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The raw ASHRAE II dataset includes a wide variety of environmental, physiological, and
contextual variables. For effective model training, several feature engineering strategies
were employed to enhance model performance and ensure robustness.

Features were selected based on their expected relevance to ther-
mal sensation and their availability across the majority of records. We prioritized features
that are commonly measurable in real-world environments or require minimal user inter-
action. The final set included:




o Indoor Environmental Features: Air temperature, relative humidity, air veloc-
ity.

e Outdoor Environmental Features: Outdoor air temperature and relative hu-
midity.

o Control States: Fan and window state, to assess their role in low-cost occupant-
controlled comfort adjustments.

« Temporal Feature: Day-of-year cosine transformation (detailed below).

Height and weight were explicitly excluded from the model due to their high correlation
with metabolic rate and body mass index (BMI), leading to multicollinearity concerns.
Moreover, their direct influence on thermal sensation is indirect and largely mediated
through metabolic effects, which were already captured via the metabolic rate variable.

Handling Missing Values: Some features exhibited partial missingness. Notably, ex-
ternal humidity values were occasionally absent in the original dataset. In such cases,
we substituted values from ISD (Integrated Surface Database) weather stations, specifi-
cally the rh_out_isd column, using spatial proximity to ensure representativeness. These
substitutions led to improved model coverage and performance, without introducing sig-
nificant noise.

Target Variable Preprocessing: The primary target was thermal sensation, recorded
on the ASHRAE T7-point scale from —3 to +3. Although most values were discrete
integers, a small number of floating-point labels were present due to interpolation or
measurement rounding. Preliminary tests showed that rounding these to the nearest
integer negatively affected classification performance, likely introducing inconsistency.
Therefore, these non-integer records were excluded.

Temporal Encoding: To capture seasonal patterns in user comfort preferences, we
encoded the day of the year (DOY) using a cosine transformation:

DOY)

doy_cos = cos [ 27 - ———
0y _COS COS(?T 365

This cyclical encoding assigns high values near winter, low values during summer,
and intermediate values in spring and autumn. The cosine function was chosen over sine
because it aligns its peaks and troughs with thermal relevance: cosine yields +1 during
winter and -1 during summer, aligning well with typical seasonal comfort trends. In
contrast, a sine transformation would peak in spring and reach its minimum in autumn,
which does not directly reflect thermal discomfort extremes. This encoding helps the
models generalize across seasonal boundaries and enhances their ability to infer comfort
expectations from time alone.

For locations in the Southern Hemisphere, where the seasons are reversed, the trans-
formation must be inverted to preserve thermal relevance. Specifically, the value of
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oS (27r : %) should be negated (i.e., —cos(...)) to align winter with +1 and summer
with -1. This adjustment ensures that the cyclical representation reflects true seasonal

thermal effects globally, accommodating hemispheric differences in comfort dynamics.

Data Scaling: FEach model type required different normalization techniques. For tree-
based models (Random Forest, XGBoost), no explicit scaling was necessary. For the MLP
classifier, MinMaxScaler was applied to normalize features into the [0, 1] range, promoting
numerical stability during backpropagation. For the CNN-LSTM model, RobustScaler
was used. This scaler removes the median and scales data using the interquartile range,
offering resilience to outliers. It is especially well-suited for physiological and comfort
data where extremes can arise due to individual variability.

4.3 Baseline Models

To establish a comprehensive performance benchmark, we trained and evaluated four
well-established classification models: Logistic Regression, Random Forest, XGBoost,
and Multi-Layer Perceptron (MLP). These models serve both as initial predictors and as
comparative baselines for more complex and personalized strategies explored later in this
work.

Evaluation Metrics

The primary metric used for evaluating model performance is the macro-averaged
F1-score, which is particularly suited for imbalanced multiclass classification problems.
Thermal sensation labels in our dataset range from -3 (cold) to +3 (hot), with a heavy
skew toward the neutral class (0), making accuracy a misleading measure.

The F1-score for a single class is defined as the harmonic mean of precision and recall:

Fl—9 Precision - Recall

" Precision + Recall

In the macro-averaged version, the F'l-score is computed independently for each class and
averaged:

1 C
Flmacro = 6;1711

where C' is the total number of classes. This approach gives equal weight to each class,
ensuring that rare classes (e.g., extreme thermal sensations like -3 or +3) are not ignored
during optimization.
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Model Selection Rationale

Logistic Regression was selected for its simplicity, interpretability, and widespread
use in classification. It serves as a strong linear baseline that highlights limitations of
non-personalized, feature-linear decision boundaries.

Random Forest was chosen due to its capability to handle non-linearities and its robust-
ness to missing data and feature noise. It is known for its stability and interpretability
through feature importance rankings.

XGBoost represents a more sophisticated ensemble method that incorporates gradient
boosting and regularization, allowing it to uncover complex patterns that may elude
Random Forests. Its superior performance on structured tabular data made it a prime
candidate for this task.

MLP (Multi-Layer Perceptron) provides a non-linear, neural-based alternative ca-
pable of learning deep feature interactions. Although it requires more tuning and data
preprocessing, it has the potential to outperform tree-based models when trained cor-
rectly.

Feature Relevance and Model Behavior

Across all models, indoor air temperature consistently emerged as the most influential
predictor, aligning with thermal comfort literature. Other strong contributors included
relative humidity, clothing insulation, and metabolic rate. Logistic Regression revealed
these patterns linearly, whereas Random Forest and XGBoost exposed interactions and
thresholds, such as drastic comfort changes beyond specific temperature ranges.

MLP’s behavior highlighted its reliance on normalized and complete data. It was more
sensitive to training settings (e.g., learning rate, number of hidden units) and required
MinMaxScaler preprocessing, unlike the tree-based models that operated effectively on
raw features.

Training and Data Challenges

All models were trained using stratified train-test splits to maintain class distribution,
mitigating bias from the overrepresentation of the neutral class. Non-integer thermal sen-
sation values, which negatively affected model calibration when rounded, were excluded
rather than imputed.

Model training also confirmed that Random Forest and XGBoost were more resilient to
small perturbations in data and hyperparameters, whereas MLP exhibited variability in
convergence, necessitating multiple trials.
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4.4 Experimental Results

This section presents the results of the core modeling experiments using four supervised
learning algorithms: Logistic Regression (LR), Random Forest (RF), Multi-Layer Per-
ceptron (MLP), and Extreme Gradient Boosting (XGBoost). Each model was trained on
the same set of preprocessed and feature-engineered data, with performance evaluated
using accuracy and macro-average F'1 score across the 7-point thermal sensation scale.

These results serve a dual purpose. First, they demonstrate the predictive feasibility of
data-driven models for personalized thermal comfort. Second, they validate experimental
design choices by confirming consistency with prior findings in the literature. In particu-
lar, our results echo model hierarchies seen in related works such as [23] and [37], where
ensemble methods like Random Forests and XGBoost outperform simpler baselines such
as Logistic Regression.

4.4.1 Model Performance Overview

Each model was trained using a stratified 80/20 train-test split to preserve class distribu-
tions. Evaluation focused primarily on the macro-average F1 score, which is especially
relevant for multiclass problems with class imbalance—such as the 7-point thermal com-
fort scale ranging from -3 (cold) to +3 (hot). Unlike accuracy, which may be inflated by
the predominance of neutral votes (i.e., class 0), the macro F1 treats all classes equally
by averaging the F1 scores for each class:

1 N
F]-macro = N Z

i=1

2 - precision; - recall;

4.1
precision; + recall; (4.1)

Where N is the number of classes, and precision,; and recall; are computed individually
per class 1.
The performance summary is illustrated in Table 4.1 and visually in Figure 4.6.

Table 4.1: Performance Summary of Baseline Models

Model Accuracy (%) Macro Avg F1 Score
Logistic Regression 0.27 0.26
Random Forest 0.50 0.49
MLP 0.51 0.45
XGBoost 0.52 0.48
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Cross-Model Comparison
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Figure 4.6: Cross-Model Comparison Bar Plot

4.4.2 Logistic Regression

The Logistic Regression model, while interpretable and computationally efficient, yielded
the weakest overall performance. This is expected due to the inherent non-linearity of
thermal comfort perception, which cannot be effectively captured by linear decision
boundaries.

Despite attempts at regularization and balanced class weighting, the model consistently
favored the dominant classes, particularly class 0 (neutral), leading to significant drops
in precision and recall for less represented classes (e.g., +3 or -3).

4.4.3 Random Forest

The Random Forest classifier delivered the most stable and robust performance among
all models. After an extensive hyperparameter search, the following configuration proved
optimal:

e n_estimators = 400
« max_depth = 15 outperformed both shallow (10) and unrestricted depths

e min_samples_split = 5, min_samples_leaf = 1

Feature importance analysis (see Figure 4.7) showed that environmental features like
air temperature, clothing insulation, and metabolic rate were the most informa-
tive, while gender contributed little predictive power. This agrees with recent findings
advocating the importance of personal thermal exposure over demographic attributes.
The overall macro F1 score remained modest, reflecting the difficulty of the classification
task, but it surpassed other methods in both reliability and interpretability.
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Feature Importances (Random Forest)
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Figure 4.7: Random Forest Feature Importance

4.4.4 Multi-Layer Perceptron (MLP)

The MLP model was the most sensitive to hyperparameter configurations. The following
settings led to the best results:

« Hidden layers: (300, 200, 20)
o Learning rate: 0.01 outperformed both 0.001 and 0.0001

» Regularization (alpha): 0.0001 struck a balance between underfitting and overfit-
ting

o Activation: ReLLU with Adam optimizer

Interestingly, models with too few (1 layer) or too many layers (4+) degraded sharply
in performance, suggesting that moderate complexity is required to model the nonlinear
patterns in thermal comfort perception without overfitting.

The model’s performance approached that of XGBoost but exhibited higher variance
across training runs.

4.4.5 XGBoost

XGBoost offered competitive performance and slightly exceeded MLP in macro F1.
It was, however, more prone to overfitting, especially with high max depth and low
subsample values. Optimal hyperparameters included:

e max_depth = 15
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e learning rate = 0.1

e subsample = 0.7

e colsample bytree = 1.0

Tuning learning rate provided marginal gains in accuracy, but exacerbated variance

and class imbalance sensitivity.

4.4.6 Confusion Matrix Analysis

The class-wise confusion matrices for each model (Figures 4.8-4.11) provide additional
insights. Logistic Regression consistently confused extreme values (e.g., -3, +3), often
collapsing them into nearby neutral categories. Random Forest and XGBoost captured
broader variance but struggled with sparsely represented classes.

Confusion Matrix: Multiclass Balanced Logistic Regression
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Figure 4.8: Confusion Matrix — Logistic Regression
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Figure 4.9: Confusion Matrix — Random Forest
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Confusion Matrix: XGBoost
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Figure 4.11: Confusion Matrix — XGBoost

These patterns reinforce the rationale for using macro F1 and highlight the continuing
challenge of modeling rare but significant thermal comfort extremes.

4.4.7 Effect of Window Opening on Predicted Comfort

In addition to evaluating baseline model performance, a dedicated experiment was con-
ducted to assess the role of operable windows as an actionable variable in personalized
thermal comfort modeling. The window feature (binary: open = 0, closed = 1) was in-
cluded alongside core environmental and user variables in the best-performing Random
Forest classifier, which was retrained accordingly. The dataset used for this experiment
incorporated the outdoor relative humidity values from ISD stations, replacing miss-
ing entries in the original dataset. This substitution was based on earlier preprocessing
analysis indicating that ISD data improved robustness and coverage.

Although the window feature ranked lowest in feature importance in the Random Forest
model (see Figure 4.12), this alone does not fully capture its impact. Many environmental
variables exhibit strong multicollinearity, particularly with air temperature and humidity.
Therefore, we designed a counterfactual experiment to test the window feature’s causal
influence on predicted comfort.
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Counterfactual Analysis Design

Using the trained model, we generated two modified versions of the test set:
e One where all window values were set to open (0)
» One where all window values were set to closed (1)

Predictions were generated for both versions. The difference between predicted thermal
comfort scores (i.e., AComfort = Comfortepen - Comfortesea) was computed for each
sample. The distribution of these differences is presented in Figure 4.13.

Results

Despite its low feature importance in the original model, the counterfactual analysis
revealed that:

o 10% of samples showed a different predicted thermal sensation when toggling the
window state.

o 6.17% of samples showed an increase in predicted thermal sensation due to the
change.

The AComfort distribution was centered around zero, but with a long tail suggesting
localized effects in specific environmental or seasonal contexts. These results imply that
window operations may have non-negligible influence in comfort prediction, particularly
in certain boundary conditions. However, the limited dataset size (only 1,411 samples af-
ter filtering) and strong correlation with air temperature likely constrained its standalone
predictive power.

To further assess the effect of window state on thermal comfort, we evaluated whether
switching the window setting brought the predicted comfort value closer to neutral (i.e.,
closer to zero on the thermal sensation scale). This approach recognizes that movement
toward neutrality, not just raw change, is a more meaningful indicator of improved com-
fort.

In this refined analysis:

e 5.10% of predictions moved closer to the neutral value (0) when the window was
set to open.

o 3.83% of predictions moved further away from neutral.

The distribution of these proximity deltas is illustrated in Figure 4.14. It shows that while
most predictions remained unaffected, a measurable subset experienced improved prox-
imity to comfort when the window was opened—supporting the view that such control
variables can yield context-sensitive gains in occupant satisfaction.

75



Feature Importances (Random Forest)
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Figure 4.12: Feature importance from Random Forest model including the window vari-
able
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Figure 4.13: Change in predicted comfort (AComfort) under window state alteration
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Figure 4.14: Change in distance to neutral comfort score (|Comfort josea| — |Comfortopen|)
Positive values indicate improved proximity to thermal neutrality when window is open.
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Relevance to Smart Environments

In the broader context of smart environments, the inclusion and evaluation of controllable
features like window state is of particular practical relevance. Unlike static user attributes
(such as age or gender) or immutable environmental variables (like regional climate),
operable elements such as windows represent direct points of interaction between
users and their environment. This positions them as key components in occupant-
centered adaptive systems.

The findings of the counterfactual experiment—where 9% of predictions changed and 6%
indicated improved comfort upon altering window state—highlight the latent potential
of passive, low-cost interventions. Even though window status received low impor-
tance in traditional feature attribution, its situational influence becomes apparent
through scenario-based testing.

Such an approach aligns well with the goals of intelligent building management sys-
tems, which aim not only to optimize energy efficiency but also to dynamically adapt to
user needs with minimal manual input. From a systems design perspective, integrating
actuator-level feedback into control logic could lead to more personalized and explain-
able comfort recommendations, contributing to the growing field of human-centered
automation. Thus, the experiment underscores that actuator features—while subtle
in global models—may still yield significant value in personalized and context-
aware smart control frameworks.

4.4.8 Geographical Subsetting and Model Performance

To investigate the influence of geographical and climatic contexts on model performance,
the Random Forest classifier was evaluated across various subsets of the dataset, stratified
by country, city, and climate zone. The performance metric utilized was the macro-
averaged F1-score, which provides a balanced measure of predictive accuracy across all
classes, regardless of class imbalance.

Performance Variability Across Regions

The evaluation revealed notable variability in model performance across different geo-
graphical subsets:

« High F1 Macro Scores:

— Pakistan (Country): Achieved an F1 macro score of 0.610 with 4,068 samples.

— Desert (Hot Arid) Climate: Recorded an F1 macro score of 0.522 with 2,011
samples.

These high scores suggest a more homogeneous population and environmental set-
ting, where the combination of sufficient sample size and low intra-group variance
likely contributed to the model’s ability to generalize effectively.
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e Low F1 Macro Scores:

— Bangkok (City): Recorded an F1 macro score of 0.305 with 1,125 samples.
— Brisbane (City): Achieved an F1 macro score of 0.298 with 1,104 samples.

— Humid Subtropical Climate: Recorded an F1 macro score of 0.298 with 1,104
samples.

— Tropical Savanna Climate: Achieved an F1 macro score of 0.263 with 3,379
samples.

— Townswville (City): Recorded an F1 macro score of 0.256 with 1,211 samples.
— Australia (Country): Achieved an F1 macro score of 0.255 with 5,045 samples.

Despite moderate to high data volumes, these regions exhibited lower model per-
formance. This may be attributed to greater user diversity in comfort perception,
environmental variability, particularly in mixed or transitional climates, and insuf-
ficient sample size to capture complex patterns across diverse subgroups.

Implications and Recommendations

These findings underscore that geographical or climatic labels alone do not guarantee
homogeneity. For instance, Australia’s large territory spans diverse climatic zones and
demographic profiles, which may dilute model accuracy. Similarly, the "tropical savanna”
label aggregates multiple regions and cultures, reducing internal consistency.

To enhance model performance, the following strategies are recommended:

o Stratify by More Granular Subgroups: Consider user profiles within climates
to capture more homogeneous subpopulations.

o Explore Clustering Within Large Datasets: Utilize clustering algorithms to
identify homogeneous subpopulations within diverse datasets.

e Analyze Intra-Group Variance of Key Features: Examine the variance of
features such as thermal sensation, temperature, and humidity within groups to
assess homogeneity.

o Consider Dimensionality Reduction or Unsupervised Learning: Apply
techniques like t-Distributed Stochastic Neighbor Embedding (t-SNE) to detect
hidden group structures.

Conclusion

The geographical subsetting analysis reveals that model performance in thermal comfort
prediction is significantly influenced by regional and climatic factors. High performance
in regions like Pakistan and desert climates suggests that homogeneity in environmental
conditions and user profiles enhances model generalizability. Conversely, lower perfor-
mance in regions with greater diversity and environmental variability highlights the need
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for more nuanced modeling approaches that account for intra-group differences. Future
work should focus on developing adaptive models that can dynamically adjust to the
specific characteristics of different geographical and climatic contexts.

4.5 Transfer Learning for Climate-Adaptive
Modeling

This section explores the potential of transfer learning (TL) to address challenges of
generalizability and data scarcity in thermal comfort modeling. While classical models
rely on direct feature-target mappings within a single domain, TL offers the ability to
reuse knowledge from well-represented domains (source climates) to enhance model per-
formance in underrepresented or more complex environments (target climates). This is
particularly relevant in the thermal comfort domain, where subjective responses are in-
fluenced by a combination of personal, environmental, and contextual variables that may
not be consistently available across locations.

We follow the architecture proposed in [23], which combines convolutional and recurrent
neural layers to learn both spatial and temporal representations of thermal comfort data.
The core idea is to train the model on a large and relatively homogeneous climate zone
and fine-tune it to a different target climate.

4.5.1 Model Design and Implementation

To investigate the potential of transfer learning in personalized thermal comfort mod-
eling across climates, we implemented a deep learning model based on the CNN-LSTM
architecture described by Somu et al.[23]. This architecture is designed to handle spatio-
temporal input and is particularly suited to capture the sequential patterns present in
occupant comfort data collected over time.

The model architecture begins with a 1D convolutional layer that processes each
time step in the sequence of environmental and physiological measurements. This layer
uses 128 filters, each with a kernel size of 5, and ’same’ padding, maintaining the
temporal length of the input. A spatial dropout of 0.1 is applied post-convolution to
reduce overfitting.

The convolutional output, shaped as a sequence of 128-dimensional feature vectors, is
passed through two stacked LSTM layers, each comprising 256 hidden units. The
first LSTM layer includes a recurrent dropout of 0.1 to further regularize the learning
process, while the second LSTM layer operates without dropout. The LSTM layers
model temporal dependencies across the sequence, allowing the model to capture evolving
patterns in user comfort states.

The output from the final timestep of the LSTM is fed into a two-layer fully connected
neural network, with 64 and 16 units respectively, both using ReLU activation. A
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final softmax output layer with 7 neurons corresponds to the full ASHRAE 7-point
thermal sensation scale, ranging from cold (-3) to hot (+3).

Training was conducted using the Adam optimizer with a learning rate of 0.001,
and categorical cross-entropy loss. The model was trained over 30 epochs on a
total of 8,349 sequence samples, derived from users with sufficient temporal data.
The sequence length was fixed at 5, meaning each training example consisted of 5
consecutive records per subject.

Data Preparation: Before training, the data were grouped by subject and sorted
chronologically. Time differences between consecutive measurements were computed,
revealing that most samples within a user occurred over short periods (typically within
a few days). This temporal compactness is advantageous for sequence-based models like
LSTMs, which are designed to capture local temporal dynamics. Features were scaled
using RobustScaler, ensuring stability in the presence of outliers.

Justification for Full 7-Class Prediction: Unlike the referenced study, which merged
datasets and downsampled the output space to a 5-point scale, we maintained the orig-
inal 7-class scale. This choice was based on earlier findings where even minor am-
biguities—such as non-integer thermal sensation values—reduced model performance.
Downsampling would likely merge adjacent but semantically distinct classes (e.g., +2
“warm” with +1 “slightly warm”), reducing the resolution of predictions. Maintaining
the full scale allowed the model to learn finer-grained distinctions, albeit at the cost of
increased classification difficulty.

4.5.2 Training and Evaluation on the Source Domain

To construct a robust foundation for subsequent transfer learning across climate zones,
we first trained the CNN-LSTM architecture on the full ASHRAE II dataset. This
phase aimed to enable the model to learn generalized spatiotemporal patterns in thermal
comfort behavior based on real-world, longitudinal data across diverse users, buildings,
and environmental contexts.

The training dataset was built using a sliding window mechanism to exploit the sequential
nature of occupant comfort data. Specifically, individual occupant records were grouped
by subject_id and temporally ordered using their timestamp fields. The dataset’s time
resolution, generally at a daily granularity, supported the creation of meaningful short-
term temporal sequences. For each subject with sufficient data, sequences of length
five consecutive time steps were generated, representing approximately a working
week’s worth of environmental and physiological observations. The thermal sensation
label associated with the final sample in each sequence was used as the prediction target.
This aligns with the formulation in the CNN-LSTM transfer learning study [23], which
demonstrated the effectiveness of leveraging both convolutional and recurrent components
for capturing localized temporal trends and long-term dependencies, respectively.

Following this preprocessing pipeline, the final dataset consisted of 8,349 training sam-

81



ples and 2,088 validation samples, totaling 10,437 sequences. These sequences encom-
passed 9 features per timestep: age, metabolic rate, clothing insulation, air temperature,
relative humaidity, air velocity, outdoor temperature, outdoor relative humidity, and gender
(as a binary indicator). These variables were selected for their theoretical and empirical
relevance to thermal comfort, as evidenced in the ISO 7730 and ASHRAE 55 standards
and in recent machine learning literature. Each 5-timestep sequence was represented as
a 5 X 9 matrix and appropriately reshaped to match the model’s convolutional input
expectations.

To ensure scale consistency and robustness to outliers, we applied the RobustScaler from
scikit-learn to all continuous input features. This transformation subtracts the median
and scales the data by the interquartile range, mitigating the influence of extreme values
or skewed distributions—an important property given the variability in real-world sensor
data.

The model was trained using the Adam optimizer with a learning rate of 0.001, a batch
size of 128, and for 30 epochs. A fixed 80/20 train-validation split was used, with strati-
fication based on the 7-point thermal sensation scale to preserve class distribution across
both subsets. No oversampling or augmentation was used, which potentially contributed
to the underrepresentation of extreme classes during training.
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Early training epochs showed promising convergence, with training loss decreasing and
accuracy increasing steadily. However, beginning around epoch 10, a growing divergence
between training and validation loss was observed. This is illustrated in Figures 4.15 and
4.16. While the training loss continued to decrease, the validation loss began to increase,
suggesting the onset of overfitting. Similarly, training accuracy climbed steadily while
validation accuracy plateaued.

Final performance metrics reflected this dynamic: the model achieved an accuracy of
51.3% and a macro-averaged F1 score of 0.385 on the validation set. While the
accuracy is consistent with results from simpler models (e.g., Random Forests), the rela-
tively lower macro F1 score suggests a difficulty in achieving balanced performance across
all classes—especially the edge cases of -3 and 43 thermal sensations.

One important distinction between our implementation and the referenced study is the
preservation of the original 7-point thermal sensation scale. In contrast, [23] consolidated
the classes into a 5-point scale, reducing complexity and label imbalance. Our decision
favored interpretability and fidelity to the original dataset but may have adversely affected
performance by increasing inter-class ambiguity.

In summary, while the source-domain model effectively captured useful general patterns,
its performance was limited by class imbalance and label granularity. Nevertheless, the
latent features learned in its early layers are expected to support more efficient adaptation
to new environments in the target domain—a hypothesis we evaluate in the next section.
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Figure 4.15: Training vs. Validation Loss across epochs for CNN-LSTM on ASHRAE
dataset

4.5.3 Transfer Learning to Target Climate

To investigate the efficacy of transfer learning in climate-specific thermal comfort predic-
tion, the pretrained CNN-LSTM model was adapted to a specific climatic region using
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Figure 4.16: Training vs. Validation Accuracy across epochs for CNN-LSTM on ASHRAE
dataset

domain-focused fine-tuning. The tropical savanna climate was selected as the target due
to its high representation within the ASHRAE II dataset. After preprocessing and filter-
ing, the subset contained 1,910 samples—sufficient to explore transfer learning while still
reflecting real-world constraints of limited, non-uniform user data across climate zones.

This transfer learning experiment followed the core idea of reusing knowledge gained in
one domain (source climate) to improve predictions in another (target climate). Drawing
from the methodology outlined in[23], the adaptation procedure involved freezing the
deeper, fully connected layers of the trained model—those believed to encode high-level
abstract knowledge about thermal sensation—and retraining only the earlier convolu-
tional and recurrent (LSTM) layers. This setup assumes that lower-level features such
as the temporal evolution of environmental signals may vary more across climates, while
the mapping to thermal sensation categories remains relatively consistent.

The model was fine-tuned for 10 epochs using the standard training loop, loss function,
and learning rate previously applied. Importantly, the target climate data was not ex-
cluded from the original source model training set, meaning this approach does not fully
represent a strict domain-adaptation setup. However, it does reflect a realistic use case
where all available data is leveraged for general training, and model specialization is
subsequently pursued via targeted refinement.

Despite the seemingly adequate volume of data, the model began to overfit rapidly—training
accuracy improved steadily, while validation accuracy plateaued early and validation loss
began diverging from training loss after only three epochs. This behavior is visually sup-

ported by the training and validation loss and accuracy curves plotted during training
(see Figures 4.17 and 4.18).
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Multiple hypotheses can explain this outcome:

Class Imbalance and Oversampling Effects: The thermal sensation labels
remain highly imbalanced in the target set. Although stratified sampling was used,
no synthetic oversampling techniques were applied. The difficulty of distinguishing
neighboring classes on the 7-point ASHRAE scale may have exacerbated learning
instability.

Insufficient Intra-Group Homogeneity: Although labeled under the same cli-
mate category, the tropical savanna group may contain geographically and demo-
graphically diverse populations, weakening the model’s ability to detect consistent
spatio-temporal patterns.

Model Complexity vs. Data Granularity: The CNN-LSTM architecture,
while powerful, may be overly complex relative to the granularity and variability of
thermal comfort data. Unlike image or speech datasets, thermal comfort features
are limited in number and heavily influenced by subjective, untracked psychological
or contextual factors.

Nonetheless, this transfer learning experiment remains valuable. It underscores the chal-
lenges of applying deep learning architectures in thermal comfort prediction, especially
when targeting real-world deployment across heterogeneous climatic settings. Future
work should consider pretraining on strictly separated source domains and adopting sim-
plified target-specific architectures or regularization techniques to prevent early overfit-

ting.
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Figure 4.17: Training vs. Validation Loss — Transfer Learning on Tropical Savanna
Climate
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Figure 4.18: Training vs. Validation Accuracy — Transfer Learning on Tropical Savanna
Climate

4.5.4 Discussion and Implications

The transfer learning experiment revealed both potential and limitations of applying deep
spatio-temporal models in the context of climate-adaptive thermal comfort modeling.
While the CNN-LSTM model achieved a comparable performance to the best classical
models when trained on the full dataset, the transfer to a new target domain—specifically
the tropical savanna climate—resulted in immediate overfitting and significantly degraded
performance.

This outcome underscores the sensitivity of complex neural architectures to data volume
and class balance. Despite having over 1900 samples, the tropical savanna subset likely
contained considerable intra-class variation. The use of the full 7-point ASHRAE thermal
sensation scale, rather than downsampling to 5 classes as in the reference study|[23],
further increased the classification difficulty. As a result, the model may have struggled
to learn meaningful distinctions between neighboring classes, especially in the presence
of user heterogeneity and environmental noise.

The rapid divergence between training and validation curves highlights a critical challenge
in transfer learning for comfort modeling: the pre-trained source domain knowledge can
quickly become overly specialized, even when the low-level layers are adapted to the
target domain. Although the freezing strategy followed the recommended structure from
the reference paper, the outcome suggests that further experimentation with freezing
strategies and hybrid training regimes might be necessary to improve generalization.

Practically, this experiment highlights the trade-off between model complexity and data
adequacy. It suggests that deep learning models with transfer learning may only outper-
form simpler models when target domain data are sufficiently abundant and homogenous.
For personalized applications in smart environments, this reinforces the need for scalable
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model architectures that can adjust to varying levels of user and environmental data, or
alternatively for hybrid systems that blend neural representations with rule-based per-
sonalization.
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Chapter 5

Discussion

5.1 Summary of Modeling Results

This section consolidates the performance outcomes from the diverse machine learning
models developed throughout the study. These results illustrate the challenges, strengths,
and limitations associated with modeling thermal comfort using the ASHRAE II dataset
— a complex, real-world dataset capturing diverse environmental, demographic, and
subjective factors.

The Random Forest classifier consistently emerged as the most effective among the
baseline models. With a macro-averaged F1 score ranging between 0.47 and 0.51 across
different experiments, it demonstrated solid predictive ability even in the face of data im-
balance and class subjectivity. Random Forests were particularly well-suited due to their
ensemble nature, inherent feature selection capability, and robustness to multicollinear-
ity. Their ability to capture nonlinear relationships, while also remaining interpretable
through feature importance scores, made them ideal for extracting actionable insights.

The feature importance analysis from Random Forests provided clarity on the driving fac-
tors of thermal sensation. As expected, air temperature, clothing insulation, and metabolic
rate were among the top predictors. Interestingly, demographic variables such as gender
showed minimal impact, while age displayed moderate influence. The inclusion of a sea-
sonal cosine variable (representing the day of year) also proved valuable, capturing cyclic
temporal patterns linked to comfort shifts across seasons.

XGBoost, a gradient-boosted decision tree model, yielded results comparable to the
Random Forest but with higher sensitivity to hyperparameter choices. When tuned
appropriately (e.g., max_depth=15, subsample=0.7), XGBoost achieved slightly higher
accuracy, though it tended to overfit more readily. This suggests that while boosting
techniques offer strong predictive potential, their use in thermal comfort prediction re-
quires careful regularization, especially in datasets with noisy, overlapping classes and
unbalanced label distributions.

Multilayer Perceptrons (MLPs) offered a neural alternative, with meaningful gains
in performance once suitable architectures and learning parameters were established. A
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three-layer architecture with nodes arranged as (300, 200, 20) and a learning rate of
0.01 yielded the best results. However, MLPs demonstrated higher variance in training
stability and required rigorous preprocessing and scaling. Moreover, unlike Random
Forests, they lacked explainability, making their practical deployment in building systems
more challenging.

Logistic Regression, as expected, underperformed significantly. It failed to model the
complex, nonlinear nature of the input space, yielding a macro F1 score well below 0.35.
This outcome reinforces the fact that thermal comfort data are not linearly separable and
that linear models are insufficient to capture nuanced interactions between environmental
conditions, personal attributes, and subjective responses.

The evaluation centered on the macro-averaged F1 score, a metric particularly suitable
for this study due to the strong class imbalance. The dataset showed a clear dominance
of the “neutral” class (value 0), which could mislead accuracy-based assessments. Macro
F1 treats each class equally, computing the unweighted mean of the F1 scores across all
classes, thereby providing a more balanced and fair evaluation of model performance.

Collectively, these results validate the use of machine learning in modeling thermal com-
fort. However, they also underscore the inherent limitations of the task: the subjec-
tivity of comfort, the fine-grained nature of the 7-class scale, and the limited ability of
environmental and demographic data to capture psychological or behavioral influences.
These challenges motivate the exploration of personalized models and transfer learning
approaches in subsequent sections.

5.2 Limitations of Model Performance

Despite the adoption of a diverse set of machine learning approaches, from classical classi-
fiers to deep learning-based architectures, a range of practical and theoretical limitations
constrained the performance of the models. These limitations stem from the complexity
of the problem domain, the nature of the data collected, and methodological trade-offs
made during modeling.

Subjectivity of the Target Variable

Thermal comfort is not only a physiological phenomenon but also a deeply subjective
experience. The ASHRAE 7-point thermal sensation scale, used as the target variable,
captures individual perceptions ranging from “cold” to “hot.” These ratings are inherently
personal and influenced by behavioral, psychological, and cultural factors not captured
in the dataset. Consequently, even under identical environmental and demographic con-
ditions, two individuals may report differing comfort levels. This inter-subject variability
introduces substantial noise into the learning task and limits the attainable predictive
accuracy, especially for generalized models.

Fine-Grained and Overlapping Class Structure
The 7-point scale, while useful for granular assessment, introduces significant modeling
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complexity. Adjacent categories such as “slightly cool,” “neutral,” and “slightly warm”
often exhibit overlapping feature distributions, making them difficult to distinguish even
for sophisticated models. Misclassification between these classes is not only more probable
but also harder to penalize meaningfully, as the thermal comfort boundaries are not sharp.
Furthermore, rounding or downsampling (as avoided in this study) could simplify the
classification task but would compromise the interpretability and fidelity of predictions.

Class Imbalance and Data Sparsity

The dataset reflects natural reporting tendencies, with a skew toward neutral’ responses,
while extreme sensations like 'hot’ (+3) or 'cold’ (-3) are rarely observed. This imbal-
ance impairs the ability of models to learn discriminative features for minority classes.
Although strategies such as class weighting and macro-average metrics (F1 score) were
applied to mitigate this, the fundamental issue of insufficient class representation remains
a bottleneck. In addition, users with few records were excluded from many experiments,
further reducing the sample space available for underrepresented groups.

Unobserved and Unmeasurable Influences

Thermal comfort is influenced by many variables not present in the ASHRAE dataset.
These include physical exertion prior to measurement, emotional state, acclimatization,
hydration level, and recent exposure to different environments. While the dataset does
record basic physiological indicators such as clothing insulation and metabolic rate, it
lacks real-time biometric feedback or contextual behavioral cues. These missing variables
limit the model’s ability to capture the full causal structure behind thermal perception.

Temporal Inconsistencies in Sequential Modeling

In the sequence-based modeling (CNN-LSTM), data were grouped per user and ordered
by timestamp. Although most records occurred in relatively short intervals (e.g., within
the same day), the sampling frequency varied significantly across users and studies. This
irregularity challenges the core assumptions of LSTM-based models, which typically ben-
efit from regularly spaced sequences. Furthermore, fixed-length windows may include
redundant data or omit important transitional states, depending on the user’s record
density.

Model Complexity vs. Generalizability

While deeper architectures such as MLP and CNN-LSTM provided greater modeling
capacity, they also risk overfitting—especially when the number of samples per user or
region was limited. This tension between model complexity and dataset size became
particularly evident in transfer learning experiments, where initial overfitting appeared
within just a few epochs. Even advanced techniques such as layer freezing and temporal
augmentation could not fully mitigate this, highlighting the sensitivity of personalized
models to training volume and heterogeneity.

Together, these limitations clarify the need for targeted strategies that go beyond general-
purpose modeling. Approaches such as personalized modeling, context-aware prediction,
and integration of wearable data are promising directions that could address these con-
straints in future iterations of thermal comfort systems.
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5.3 Practical Implications for Smart Environments

The experimental findings of this study provide strong indications that machine learning-
based thermal comfort modeling holds substantial promise for practical deployment in
smart environments. These insights extend beyond model accuracy, revealing how pre-
dictive personalization and data-driven inference can be embedded into everyday spaces
to support comfort, efficiency, and autonomy.

Deployability of Small-Scale Models. The success of compact machine learning
models—especially the Random Forest and MLP classifiers—demonstrates the feasibility
of implementing thermal comfort prediction in real-world applications. These models
performed well with modest computational requirements, making them suitable for de-
ployment in embedded systems, microcontrollers, or low-power IoT devices. This is par-
ticularly relevant for building automation systems where computational resources may
be constrained but responsiveness and autonomy are critical.

Importantly, the models achieved reliable performance without requiring high-resolution
biometric data or deep personalization. This supports a scalable deployment strategy
where a basic profile (age, gender) combined with ambient sensor readings can already
enable effective comfort prediction, reducing user burden and preserving privacy.

Environmental Feature Relevance for Sensor-Driven Systems. Feature impor-
tance analysis confirmed that ambient environmental factors such as indoor air temper-
ature, relative humidity, and air velocity were the most influential predictors. Outdoor
conditions, particularly temperature and humidity, also contributed valuable information.
These findings validate a sensor-driven approach to comfort estimation, where relatively
low-cost and commercially available environmental sensors can provide all the necessary
inputs to make personalized predictions.

The inclusion of day-of-year cosine as a seasonal proxy also proved beneficial, suggesting
that temporal features can improve comfort estimation without directly collecting time-
intensive data such as occupancy schedules or adaptive thermal histories.

Operable Controls as Active Comfort Agents. The counterfactual analysis of the
window feature demonstrated that actionable environmental features may exert influence
beyond their statistical importance in standard feature rankings. While window state
had low feature importance, manipulating it altered the predicted thermal comfort in 9%
of cases, with 6% showing improvement. This suggests that smart systems should not
disregard low-ranked features if they correspond to controllable interventions. Instead,
they could be incorporated into user feedback loops or automated control logics, especially
in naturally ventilated or hybrid buildings.

Comfort-Aware Energy Management. Beyond occupant satisfaction, thermal com-
fort prediction enables more intelligent energy use. By anticipating comfort violations
before they occur, systems can proactively modulate HVAC operation. For example,
minor deviations from neutral comfort might be tolerated to conserve energy, while pre-
dicted discomfort can trigger preemptive corrections. This comfort-aware regulation
allows building managers or control algorithms to balance energy efficiency with user
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experience, moving beyond simple temperature thresholds.

Integration into Broader IoT Ecosystems. Given their lightweight computational
demands and compatibility with standard sensor modalities, the tested models can be em-
bedded within edge computing architectures. Comfort models could run on local gateways
or room-level controllers, ingesting real-time sensor data and providing actionable out-
puts without cloud reliance. This architecture supports privacy-respecting, low-latency,
and offline-capable smart environments, which are essential for residential, educational,
or healthcare deployments where network access or data sensitivity may be concerns.

5.4 Personalization Potential and User-Centric
Modeling

One of the central challenges in thermal comfort modeling is the inherent subjectivity
and variability of human perception. Even under identical environmental conditions,
different individuals can experience vastly different sensations of thermal comfort. This
phenomenon was consistently observed throughout our experiments, with the same combi-
nation of temperature, humidity, and air velocity eliciting opposing comfort labels across
subjects. Such discrepancies underscore the limitations of purely generalized models and
highlight the promise of personalization in this domain.

Personalized thermal comfort models offer the potential to significantly improve predic-
tion accuracy and occupant satisfaction. By tailoring predictions to an individual’s his-
torical comfort responses, physical characteristics, or behavioral patterns, these models
can adapt to nuanced preferences that generalized models overlook. In real-world de-
ployments, this can enable HVAC systems to deliver more targeted and energy-efficient
conditioning, enhancing user well-being while minimizing unnecessary consumption.

However, realizing personalization presents key challenges. Chief among them is the
data requirement: effective user-specific modeling demands a sufficient number of labeled
observations per user. While our dataset showed promise, with over 50 subjects having
more than 100 labeled records, such granularity is rare in typical deployments. Moreover,
relying on explicit user feedback is impractical in daily life. Users are unlikely to tolerate
frequent interruptions for feedback queries, making continuous and scalable feedback
collection difficult.

Addressing this issue requires rethinking how user data is gathered. One potential ap-
proach is to limit explicit feedback to a cold-start phase, where a few labeled data
points help bootstrap a personalized model. Beyond this, systems should shift to passive
or indirect data collection, utilizing sensors and wearables. For instance, advanced
smartwatches capable of measuring skin temperature, heart rate variability, or perspira-
tion could offer valuable proxies for comfort state, enabling adaptation without active
user input.

Another direction is to group users based on comfort profiles through unsupervised learn-
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ing or clustering. Users with similar preferences or physiological traits can be aggregated,
allowing for hybrid models that blend personalization with scalability. This strategy was
suggested by our geographic and subgroup analyses, where performance improved in more
homogeneous populations.

Ultimately, personalization must be implemented in a user-centric and privacy-aware
manner. Data minimization, secure processing, and opt-in consent are critical to ensuring
trust and acceptance. Nonetheless, the potential benefits—greater satisfaction, energy
savings, and user empowerment—justify the exploration of this promising frontier.
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Chapter 6

Future Work

6.1 Enhancing Comfort Prediction through Richer
Data Sources

Thermal comfort is a multifaceted and subjective experience influenced by environmen-
tal conditions, physiological states, and individual behaviors. While models based on
basic environmental parameters and user-reported features can yield acceptable perfor-
mance, their predictive accuracy is inherently limited without deeper personalization and
contextual awareness.

Recent advancements in wearable technology have enabled the continuous, non-invasive
monitoring of physiological signals such as skin temperature, heart rate variability (HRV),
and electrodermal activity. These physiological indicators have been shown to corre-
late significantly with thermal comfort perceptions. For instance, Lee and Chun (2021)
developed a thermal comfort prediction model using physiological signals from wear-
able devices, achieving an accuracy of 80% with only physiological data [6]. Similarly,
Nkurikiyeyezu et al. (2020) demonstrated that HRV could reliably predict thermal com-
fort states with up to 93.7% accuracy [7].

Incorporating additional environmental parameters can further enhance comfort predic-
tion models. COs concentration, for example, serves as a proxy for indoor air quality
and ventilation effectiveness. Elevated COq levels have been associated with decreased
cognitive performance and increased discomfort [38]. Monitoring COy concentrations
alongside temperature and humidity can provide a more comprehensive understanding of
indoor environmental quality.

Temporal patterns and occupant behaviors also play a crucial role in thermal comfort.
Integrating data on occupancy schedules, activity levels, and diurnal cycles can enable
models to anticipate comfort needs proactively. Long-term monitoring studies have shown
that personal comfort models benefit from incorporating such temporal and behavioral
data, leading to improved prediction accuracy [10].

The integration of these diverse data sources necessitates the use of sophisticated mod-
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eling techniques capable of handling multimodal inputs. Machine learning approaches,
such as ensemble methods and deep learning architectures, can effectively process and
learn from complex datasets. Future research should focus on developing models that
can seamlessly integrate physiological, environmental, and behavioral data to provide
personalized and context-aware thermal comfort predictions.

In conclusion, enhancing thermal comfort prediction models through the integration of
richer data sources holds significant promise for the development of intelligent, occupant-
centric building systems. By leveraging physiological signals, environmental parameters,
and behavioral patterns, these models can deliver more accurate and personalized com-
fort assessments, ultimately contributing to improved occupant well-being and energy
efficiency.

6.2 Transfer Learning and Domain Adaptation

6.2.1 Motivation for Transfer Learning

Traditional thermal comfort models often require extensive labeled data, which may not
be available for all building types or climates. Transfer learning allows models trained
in one domain (e.g., a specific building or climate) to be adapted to another, reducing
the need for large datasets in the target domain. This approach is particularly beneficial
when deploying models in new environments with limited data availability.

6.2.2 Domain Adaptation Techniques

Several domain adaptation techniques have been explored to enhance the applicability of
thermal comfort models:

o Unsupervised Domain Adaptation: Aligning feature distributions between
source and target domains without labeled data in the target domain. Yang et al.
[12] demonstrated the effectiveness of unsupervised domain adaptation techniques,
such as Correlation Alignment (CORAL) and Dynamic Adversarial Adaptation
Network (DAAN), in improving personalized thermal comfort predictions.

o Fine-Tuning: Adjusting pre-trained models using a small amount of labeled data
from the target domain to improve performance. Gao et al. [11] applied fine-tuning
in their transfer learning-based multilayer perceptron model for accurate thermal
comfort prediction across multiple cities.

6.2.3 Applications in Thermal Comfort

Transfer learning has been applied in various thermal comfort scenarios:

o Cross-Building Adaptation: Applying models trained in office buildings to res-
idential settings. Yang et al. [12] utilized unsupervised domain adaptation to
transfer models between different building types.
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o Cross-Climate Adaptation: Adapting models from temperate to tropical cli-
mates, accounting for differences in occupant behavior and building design. Gao et
al. [11] explored transfer learning for thermal comfort prediction in multiple cities
within the same climate zone.

6.2.4 Future Directions

Future research should focus on:

» Investigating the effectiveness of different transfer learning strategies in various
contexts.

o Developing standardized protocols for model adaptation across diverse environ-
ments.

» Exploring hybrid approaches that combine transfer learning with other machine
learning techniques to enhance model robustness and accuracy.

6.3 Clustering and Segmentation for Personalized
Modeling

6.3.1 Importance of User Segmentation

Thermal comfort is a subjective experience influenced by various factors, including age,
gender, metabolic rate, clothing insulation, and individual preferences. Recognizing these
differences is crucial for developing personalized thermal comfort models. Traditional
models often assume a homogeneous occupant population, leading to generalized solu-
tions that may not cater to individual needs. By segmenting users based on shared char-
acteristics or behaviors, it’s possible to tailor environmental controls more effectively,
enhancing occupant satisfaction and energy efficiency.

6.3.2 Clustering Techniques

Clustering is an unsupervised machine learning approach that groups data points based on
similarity. In the context of thermal comfort, clustering can identify groups of occupants
with similar comfort preferences or behaviors. Common clustering techniques include:

e K-Means Clustering: This algorithm partitions data into k clusters by mini-
mizing the variance within each cluster. It’s widely used due to its simplicity and
efficiency. For instance, researchers have applied K-Means to cluster occupancy
profiles and energy demand patterns, aiding in the development of representative
comfort models [39].

« Hierarchical Clustering: This method builds a tree-like structure (dendrogram)
to represent nested groupings of data points. It’s beneficial for understanding the
relationships between different clusters and determining the optimal number of
clusters [40].

96



o Fuzzy Clustering: Unlike hard clustering methods, fuzzy clustering allows data

points to belong to multiple clusters with varying degrees of membership. This is
particularly useful when occupant preferences overlap or are not distinctly separa-
ble.

Gaussian Mixture Models (GMMs): GMMs assume that data points are gen-
erated from a mixture of several Gaussian distributions. They are effective in mod-
eling data with subpopulations and have been used to classify energy and thermal
comfort profiles in office buildings [40].

6.3.3 Implementation in Smart Environments

Implementing clustering techniques in smart environments involves several steps:

1.

Data Collection: Gather data on environmental conditions (temperature, humid-
ity), occupant characteristics (age, gender), and behaviors (occupancy patterns,
clothing insulation).

Feature Selection: Identify relevant features that influence thermal comfort for
clustering analysis.

Clustering Analysis: Apply appropriate clustering algorithms to segment occu-
pants or spaces based on the selected features.

Model Development: Develop personalized thermal comfort models for each
cluster, considering the specific preferences and behaviors of the group.

HVAC Control Integration: Tailor HVAC settings to meet the comfort require-
ments of each cluster, optimizing energy use and occupant satisfaction.

For example, a study utilized clustering to segment occupants based on their self-assessed
thermal preferences (warmer, neutral, colder) and developed personalized comfort models
for each group, resulting in improved prediction accuracy compared to generic models [5].

6.3.4 Challenges and Considerations

While clustering offers promising avenues for personalization, several challenges must be
addressed:

e Determining Optimal Cluster Numbers: Selecting the appropriate number of

clusters is critical. Over-segmentation can lead to overly complex models, while
under-segmentation may overlook significant differences among occupants.

Dynamic Preferences: Occupant preferences can change over time due to fac-
tors like acclimatization or seasonal variations. Models must be adaptable to such
changes.

Data Privacy: Collecting and analyzing personal data raises privacy concerns.
Ensuring data anonymization and compliance with privacy regulations is essential.
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o System Complexity and Cost: Implementing personalized models increases
system complexity and may incur higher costs. Balancing personalization benefits
with implementation feasibility is necessary.

6.4 Model Simplification and Edge Deployment

Deploying thermal comfort models on edge devices, such as smart thermostats and HVAC
controllers, necessitates models that are both lightweight and efficient. These devices
often have limited computational resources, memory, and power availability. Therefore,
developing simplified models that can operate effectively within these constraints is crucial
for real-time responsiveness and reliability.

Several techniques have been explored to reduce the complexity of machine learning
models without significantly compromising their performance:

e Pruning: This technique involves removing less significant weights or neurons
from a neural network, effectively reducing its size and computational requirements.
Pruning can be structured or unstructured, with structured pruning often leading
to more efficient implementations on hardware [31].

* Quantization: Quantization reduces the precision of the model’s parameters, typi-
cally converting 32-bit floating-point numbers to 8-bit integers. This reduction leads
to smaller model sizes and faster computations, making it suitable for deployment
on resource-constrained devices [32].

Implementing simplified models directly on edge devices offers several advantages, in-
cluding reduced latency, improved privacy, and decreased reliance on cloud connectivity.
Strategies for effective edge deployment include:

o Integration with HVAC Controllers: Embedding models within HVAC systems
allows for real-time adjustments based on occupant comfort preferences, leading to
enhanced energy efficiency and user satisfaction.

o Utilization of Smart Thermostats: Smart thermostats equipped with embed-
ded AI capabilities can process data locally, enabling immediate responses to envi-
ronmental changes without the need for cloud-based computations.

Future research directions in model simplification and edge deployment encompass:

« Exploring Trade-offs: Investigating the balance between model complexity and
accuracy to determine optimal simplification levels that maintain performance while
ensuring efficiency.

o Automated Model Optimization: Developing tools and frameworks that auto-
mate the process of model compression and optimization tailored for edge deploy-
ment scenarios.
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o Standardization of Deployment Protocols: Establishing standardized pro-
tocols and best practices for deploying machine learning models on various edge
devices to ensure compatibility and scalability.

6.5 Hybrid Physical-Statistical Modeling

Traditional thermal comfort models, such as the Predicted Mean Vote (PMV) model,
are grounded in established thermodynamic principles and provide a theoretical frame-
work for predicting occupant comfort [1]. However, these models often lack adaptability
to individual preferences and dynamic environmental conditions. Conversely, statistical
models leverage empirical data to learn patterns and predict comfort levels but may lack
interpretability and generalizability.

Hybrid modeling approaches aim to integrate the strengths of both physical and data-
driven models. By combining the theoretical robustness of physical models with the
adaptability of statistical methods, hybrid models can provide more accurate and per-
sonalized thermal comfort predictions. For instance, Zhou et al. proposed a hybrid model
that combines physics-based equations with data-driven techniques to estimate hard-to-

measure physiological parameters, enhancing prediction accuracy even with limited data
[28].

The integration of physical and statistical models offers several advantages:

o Improved Accuracy: By leveraging both theoretical knowledge and empirical
data, hybrid models can capture a wider range of variables influencing thermal
comfort, leading to enhanced predictive capabilities.

 Enhanced Adaptability: Hybrid models can adjust to changing environmental
conditions and occupant behaviors more effectively than standalone models, allow-
ing for real-time updates and continuous learning.

o Personalization: Incorporating occupant feedback and physiological data enables
hybrid models to tailor comfort predictions to individual preferences, improving
occupant satisfaction.

Implementing hybrid models involves several considerations:

o Feature Integration: Outputs from physical models can serve as input features
for statistical models, enriching the dataset and providing context. For example,
using PMV outputs as features in a machine learning model can enhance prediction
accuracy.

e Model Coherence: Ensuring consistency between the physical and statistical
components is crucial to maintain model integrity. This involves aligning the as-
sumptions and outputs of both models to prevent conflicting predictions.
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o Data Requirements: Adequate and high-quality data are essential for training
the statistical component of the hybrid model. This includes collecting diverse
datasets that capture various environmental conditions and occupant responses.

Future research directions in hybrid modeling include:

o Framework Development: Creating standardized frameworks for the seamless
integration of physical and statistical models can facilitate wider adoption and
consistency in hybrid modeling approaches.

o Validation Across Contexts: Testing hybrid models across diverse building
types, climates, and occupant demographics is necessary to assess generalizabil-
ity and identify potential limitations.

 Real-Time Adaptation: Developing models capable of real-time learning and
adaptation to continuously evolving environmental and occupant conditions can
enhance the responsiveness and accuracy of thermal comfort predictions.

6.6 Active Learning and Feedback-Efficient Person-
alization

Personalized thermal comfort models aim to tailor indoor environmental conditions to
individual preferences. Traditionally, these models rely heavily on user feedback to accu-
rately capture personal comfort levels. However, frequent solicitation of user input can be
intrusive and may lead to user fatigue, reducing the quality and quantity of feedback over
time. To address this challenge, active learning strategies can be employed to identify
the most informative data points, thereby reducing the frequency of user queries without
compromising model performance [20].

Active learning is a machine learning paradigm where the model selectively queries the
most informative data points for labeling. This approach is particularly useful in scenarios
where labeled data is scarce or expensive to obtain. Two prominent strategies within
active learning include:

o Uncertainty Sampling: In this strategy, the model identifies instances where it
has the least confidence in its predictions. By focusing on these uncertain instances,
the model can learn more effectively from limited data, improving its overall per-
formance with fewer labeled examples [20].

e Query by Committee: This approach involves maintaining a committee of diverse
models and selecting instances where there is maximal disagreement among the
models. Such instances are considered highly informative for improving the model’s
performance, as they highlight areas where the current models lack consensus [20].
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For practical deployment, integrating active learning into smart building systems neces-
sitates intuitive and non-disruptive feedback mechanisms. Potential strategies include:

o Implicit Feedback Collection: Leveraging indirect indicators such as occupancy
patterns, device usage, and thermostat adjustments to infer occupant comfort levels
without explicit queries. This approach minimizes user burden while still providing
valuable data for model refinement [35].

« Physiological Sensing: Utilizing wearable sensors to monitor physiological signals
(e.g., heart rate variability, skin temperature) that correlate with thermal comfort.
This enables real-time, passive data collection, allowing the system to adapt to
occupant needs without requiring active input [35].

Advancements in this domain can focus on:

o Adaptive Feedback Scheduling: Developing algorithms that adjust the fre-
quency and timing of user queries based on engagement levels and model uncer-
tainty. This ensures that feedback is solicited only when it is most needed, reducing
user fatigue and improving data quality.

o Multimodal Data Fusion: Integrating data from various sources, including envi-
ronmental sensors, physiological monitors, and user interactions, to enhance model
robustness and personalization. Combining multiple data modalities can provide a
more comprehensive understanding of occupant comfort preferences.

« Scalability and Generalization: Ensuring that active learning frameworks can
scale across diverse building types and occupant populations while maintaining
performance. This involves developing models that can generalize well to new
environments and user groups, facilitating broader adoption of personalized comfort
systems.

6.7 Real-World System Integration

Interoperability in Building Management Systems (BMS): Integrating thermal
comfort models into Building Management Systems (BMS) necessitates a comprehen-
sive approach that ensures seamless interoperability among various sensors, actuators,
and control systems. Modern BMS platforms increasingly leverage Internet of Things
(IoT) technologies to enable real-time data acquisition, processing, and environmental
control. This technological foundation enhances both energy efficiency and occupant
comfort through dynamic system responses [41]. The integration of predictive thermal
comfort models into these systems supports proactive environmental adjustments based
on analytics and user feedback.

User Interfaces and Experience Design: The effectiveness of thermal comfort sys-
tems is significantly shaped by the quality of their user interfaces. Developing intuitive
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and user-friendly interfaces enables occupants to input preferences, review comfort feed-
back, and interact with control options with ease. Accessibility and inclusivity in design
are paramount, ensuring that interfaces accommodate users with diverse physical, cog-
nitive, and sensory needs. Studies have highlighted the role of user-centric design in
enhancing usability and acceptance of personalized thermal control systems [42].

Data Privacy and Security Considerations: Data privacy and security are critical
considerations in the deployment of smart building technologies. Ensuring compliance
with frameworks such as the General Data Protection Regulation (GDPR) is essential
for responsible handling of personal and sensor data. Important elements include data
minimization—only collecting what is necessary, secure data storage practices, and trans-
parent processing protocols that inform users how their data is used [43]. Strong data
protection fosters occupant trust and encourages engagement with smart comfort sys-
tems.

Pilot Studies and Validation in the Field: Pilot studies are indispensable for validat-
ing the performance of integrated thermal comfort systems under real-world conditions.
These trials help assess operational effectiveness, energy performance, and occupant sat-
isfaction. For example, field experiments have been used to study how personalized ther-
mal control affects comfort perceptions and energy use in office settings [44]. Feedback
gathered during these studies is vital for refining predictive models, improving interface
designs, and ensuring practical viability in diverse building environments.

Outlook and Future Directions: Future research should focus on evaluating the scal-
ability of integrated systems across a range of building typologies and climatic zones.
Understanding long-term impacts on energy consumption, user satisfaction, and mainte-
nance requirements can guide the development of sustainable, adaptive, and user-centered
comfort solutions. Additionally, incorporating advanced technologies—such as real-time
artificial intelligence, federated learning, and predictive maintenance algorithms—can
further optimize the adaptability and performance of thermal comfort systems.

102



Chapter 7

References

103



Bibliography

1]

P. Fanger, Thermal Comfort: Analysis and Applications in Environmental Engi-
neering. Danish Technical Press, 1970. [Online|. Available: https://archive.org/
details/thermalcomfortan0000fang.

R. J. de Dear and G. S. Brager, <Developing an adaptive model of thermal com-
fort and preferences>, ASHRAFE Transactions, vol. 104, no. 1, pp. 145-167, 1998.
[Online|. Available: https://escholarship.org/uc/item/4qq2p9c6.

T. Parkinson, R. de Dear, and G. Brager, «Development of the ashrae global ther-
mal comfort database ii>, Building and FEnvironment, vol. 142, pp. 502-512, 2018.
DOIL: 10.1016/j.buildenv.2018.06.022. [Online]. Available: https://doi.org/
10.1016/j.buildenv.2018.06.022.

P. Jayathissa, J. Hofer, J. H. Kémpf, and A. Schlueter, <Personal thermal comfort
models with wearable devices>, Journal of Building Performance, 2020, arXiv:2007.02014.
[Online]. Available: https://arxiv.org/abs/2007.02014.

D.-I. Bogatu, J. Shinoda, F. Watanabe, Y. Kaneko, B. W. Olesen, and O. B.
Kazanci, <«Personalised thermal comfort model for automatic control of a newly
developed personalised environmental control system (pecs)>, in E3S Web of Con-
ferences, vol. 396, 2023, p. 03 008. DOIL: 10.1051/e3sconf/202339603008. [Online].
Available: https://doi.org/10.1051/e3sconf/202339603008.

Y. Lee and C. Chun, «Thermal comfort prediction for the occupant based on phys-
iological signals from wearable devices, Journal of the Architectural Institute of
Korea, vol. 37, no. 10, pp. 177-187, 2021. pDO1: 10.5659/JAIK.2021.37.10.177.
[Online|. Available: https://doi.org/10.5659/JAIK.2021.37.10.177.

K. Nkurikiyeyezu, Y. Suzuki, and G. Lopez, «Heart rate variability as a predictive
biomarker of thermal comforts, arXiv preprint arXiv:2005.08031, 2020. [Online].
Available: https://arxiv.org/abs/2005.08031.

Y. Boutahri and A. Tilioua, «Machine learning-based predictive model for ther-
mal comfort and energy optimization in smart buildings>, Results in Engineering,
vol. 22, p. 102148, 2024. po1: 10.1016/j.rineng.2024.102148. [Online]. Avail-
able: https://doi.org/10.1016/j.rineng.2024.102148.

Y. Zhang, E. Arens, and C. Huizenga, <Thermal comfort differences between men
and womens, Building and Environment, vol. 132, pp. 1-13, 2023. por: 10.1016/
j .buildenv.2023.109350. [Online]. Available: https://doi.org/10.1016/j.
buildenv.2023.109350.

104



[10]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

V. Martins Gnecco, 1. Pigliautile, and A. L. Pisello, «Personal comfort models in
long-term monitoring using physiological data from wearable sensorss, Research-
Gate Preprint, 2023. [Online]. Available: https : / / www . researchgate . net /
publication/373993613.

N. Gao, W. Shao, M. S. Rahaman, J. Zhai, K. David, and F. D. Salim, <Transfer
learning for thermal comfort prediction in multiple cities>, Building and Environ-
ment, vol. 195, p. 107 750, 2021. DOI: 10.1016/j.buildenv.2021.107750. [Online].
Available: https://doi.org/10.1016/j.buildenv.2021.107750.

C. Yang, K. Taniguchi, and Y. Akashi, <Transfer learning with unsupervised do-
main adaptation for personal thermal comfort predictions, Energy and Buildings,
vol. 332, p. 115449, 2025. DOI: 10.1016/j.enbuild.2025.115449. [Online]. Avail-
able: https://doi.org/10.1016/j.enbuild.2025.115449.

F. Schaudienst and F. U. Vogdt, <Fanger’s model of thermal comfort: A model
suitable just for men?s, Energy Procedia, vol. 132, pp. 129-134, 2017. por: 10.
1016/j.egypro.2017.09.658. [Online]. Available: https://doi.org/10.1016/].
egypro.2017.09.658.

G. Brager and R. de Dear, <A standard for natural ventilations>, ASHRAFE Journal,
vol. 42, no. 10, pp. 21-27, 2000. [Online|. Available: https://escholarship.org/
uc/item/3f73w323.

J. T. Kim, R. de Dear, T. Parkinson, and C. Candido, <Drivers of diversity in human
thermal perception—a review for holistic comfort modelss, Indoor Air, vol. 28, no. 6,
pp. 891-906, 2018. DOT: 10.1111/ina.12475. [Online|. Available: https://doi.
org/10.1111/ina.12475.

F. Nicol and M. Humphreys, «Adaptive thermal comfort and sustainable thermal
standards for buildingss, Energy and Buildings, vol. 34, no. 6, pp. 563-572, 2002.
DOI: 10.1016/S0378-7788(02) 00006-3. [Online]. Available: https://doi.org/
10.1016/S0378-7788(02) 00006-3.

P. Jayathissa, M. Quintana, M. Abdelrahman, and C. Miller, «<Humans-as-a-sensor

for buildings: Intensive longitudinal indoor comfort modelss, arXiv preprint arXiv:2007.0201/,

2020. [Online]. Available: https://arxiv.org/abs/2007.02014.

P. Lenzuni, D. Freda, and M. Del Gaudio, «Classification of thermal environments
for comfort assessments, Annals of Occupational Hygiene, vol. 53, no. 4, pp. 325—
332, 2009. DOI: 10.1093/annhyg/mep012. [Online|. Available: https://doi.org/
10.1093/annhyg/mep012.

M. Quintana, S. Schiavon, F. Tartarini, J. Kim, and C. Miller, «Cohort comfort
models — using occupants’ similarity to predict personal thermal preference with
less datas, arXiv preprint arXiv:2208.03078, 2022. [Online]. Available: https://
arxiv.org/abs/2208.03078.

Z. D. Tekler, Y. Lei, X. Dai, and A. Chong, <Enhancing personalised thermal
comfort models with active learning for improved hvac controlss, arXiv preprint
arXiv:2309.09073, 2023. [Online]. Available: https : //arxiv . org/abs /2309 .
09073.

105



[21]

23]

[24]

[25]

[27]

[29]

[30]

V. M. Gnecco, I. Pigliautile, and A. L. Pisello, «Long-term thermal comfort moni-
toring via wearable sensing techniques: Correlation between environmental metrics
and subjective perceptions, Sensors, vol. 23, no. 2, p. 576, 2023. pDOI: 10.3390/
$23020576. [Online]. Available: https://doi.org/10.3390/s23020576.

L. Zhao, M. Wang, and R. Chen, «Machine learning-based prediction of thermal
comfort: Exploring building types, climate, ventilation strategies, and seasonal vari-
ationss, Building Research € Information, vol. 53, no. 2, pp. 123-138, 2025. DOI:
10.1080/09613218.2025 . 2462932. [Online]. Available: https://doi.org/10.
1080/09613218.2025.2462932.

N. Somu et al., <A hybrid deep transfer learning strategy for thermal comfort
prediction in buildingss>, Building and Environment, vol. 206, p. 108399, 2021.
DOIL: 10.1016/j.buildenv.2021.108399. [Online]. Available: https://doi.org/
10.1016/j.buildenv.2021.108399.

G. Gao, J. Li, and Y. Wen, <Energy-efficient thermal comfort control in smart
buildings via deep reinforcement learnings, arXiv preprint arXiv:1901.04693, 2019.
[Online|. Available: https://arxiv.org/abs/1901.04693.

J. Huang, A. Gretton, K. M. Borgwardt, B. Scholkopf, and A. J. Smola, «Cor-
recting sample selection bias by unlabeled datas, in Advances in Neural Informa-
tion Processing Systems, vol. 19, 2007, pp. 601-608. [Online]. Available: https :
/ /papers .nips . cc/paper/3075- correcting - sample-selection-bias-by-
unlabeled-data.

Y. Ganin and V. Lempitsky, «Unsupervised domain adaptation by backpropaga-
tions>, in Proceedings of the 32nd International Conference on Machine Learning,
PMLR, 2015, pp. 1180-1189. [Online]. Available: https : //proceedings . mlr .
press/v37/ganinlb.html.

M. Long, Y. Cao, J. Wang, and M. I. Jordan, <Learning transferable features
with deep adaptation networks>, in International Conference on Machine Learning,
PMLR, 2015, pp. 97-105. [Online|. Available: https://proceedings.mlr.press/
v37/longl5.html.

B. Zhou, Y. Huang, J. Nie, Y. Wang, and Y. Li, <A hybrid physics-based/data-
driven model for personalized dynamic thermal comfort in ordinary office environ-
ment>, Energy and Buildings, vol. 231, p. 110603, 2021. DOT: 10.1016/j.enbuild.
2020.110603. [Online]. Available: https://doi.org/10.1016/j.enbuild.2020.
110603.

S. Liu, S. Schiavon, H. P. Das, M. Jin, and C. J. Spanos, «Personal thermal comfort
models with wearable sensorss, Building and Environment, vol. 162, p. 106 281,
2019. pOI: 10.1016/j.buildenv.2019.106281. [Online|. Available: https://doi.
org/10.1016/j.buildenv.2019.106281.

International WELL Building Institute, The well building standard v2, https :
//standard . wellcertified. com/v2/comfort/thermal - comfort, 2021. [On-
line]. Available: https://standard.wellcertified. com/v2/comfort/thermal-
comfort.

106



[34]

[35]

[36]

[41]

T. Liang, J. Glossner, L. Wang, S. Shi, and X. Zhang, «<Pruning and quantization
for deep neural network acceleration: A surveys, arXiv preprint arXiw:2101.09671,
2021. [Online]. Available: https://arxiv.org/abs/2101.09671.

S. Francy and R. Singh, <Edge ai: Evaluation of model compression techniques for
convolutional neural networkss, arXiv preprint arXiv:2409.02134, 2024. [Online].
Available: https://arxiv.org/abs/2409.02134.

H. Zhu, L. Wang, and M. Chen, <Adaptive human-computer interaction for indus-
try 5.0: A novel frameworks, Computers in Industry, vol. 130, p. 103456, 2021.
DOI: 10.1016/j. compind.2021.103456. [Online|. Available: https://doi.org/
10.1016/j.compind.2021.103456.

H. Zhao, L. Zhang, and W. Wang, «Machine learning-based prediction of ther-
mal comfort>, Building Research & Information, vol. 53, no. 2, pp. 123-138, 2025.
DOI: 10 . 1080 /09613218 . 2025 . 2462932. [Online]. Available: https : / /www .
tandfonline.com/doi/full/10.1080/09613218.2025.2462932.

S. Liu, <Personal thermal comfort models based on physiological parameters mea-
sured by wearable sensorss, eScholarship, University of California, 2018. [Online].
Available: https://escholarship.org/uc/item/3qk6d6tv.

A. Fraikin, A. Bennetot, and S. Allassonniere, <T-rep: Representation learning
for time series using time-embeddingss, arXiv preprint arXiv:2310.04486, 2023.
[Online|. Available: https://arxiv.org/abs/2310.04486.

E. Yaacoub et al., <A review on machine learning for thermal comfort and energy
efficiency in smart buildings>, Sustainability, vol. 15, no. 3, p. 15663, 2023. DOT: 10.
3390/su150315663. [Online|. Available: https://doi.org/10.3390/su150315663.

L. Pérez-Lombard, J. Ortiz, I. R. Maestre, J. F. Coronel, I. R. Maestre, and J. F.
Coronel, «Co2 concentrations and thermal comfort analysis at onsite and students’
households: A case study at a spanish universitys, International Journal of En-
vironmental Research and Public Health, vol. 19, no. 23, p. 16039, 2022. DOI:
10.3390/1jerph192316039. [Online]. Available: https://doi . org/10.3390/
ijerph192316039.

Y. Zhang, X. Li, and Z. Wang, <A data-driven approach based on dynamic and con-
sensus clustering for smart building thermal managements, Sustainability, vol. 15,
no. 21, p. 15489, 2023. por: 10.3390/su152115489. [Online]. Available: https:
//doi.org/10.3390/su152115489.

T. Nikolaou, D. Kolokotsa, G. Stavrakakis, and I. Skias, «<On the application of
clustering techniques for office buildings’ energy and thermal comfort classifica-
tion>, IEEE Transactions on Smart Grid, vol. 3, no. 4, pp. 2196-2210, 2012. DOI:
10.1109/TSG.2012.2212721. [Online]. Available: https://doi.org/10.1109/
TSG.2012.2212721.

A. K. Kalyanam, <Building management system (bms) an in-depth overview: Un-
derstanding bms, its operation, necessity, and the role of iot>, Journal of Advances
in Developmental Research, vol. 12, no. 1, pp. 1-12, 2021. boI: 10.5281/zenodo.
14540874. [Online|. Available: https://doi.org/10.5281/zenodo. 14540874.

107



[42]

[43]

[44]

Y. Zhu, J. Wang, Y. Liu, and C. Wang, <A user-interactive system for smart thermal
environment control in office buildingss, Applied Energy, vol. 285, p. 116403, 2021.
DOI: 10.1016/j.apenergy.2021.116403. [Online]. Available: https://doi.org/
10.1016/7 . apenergy.2021.116403.

European Union, General data protection requlation (gdpr), Regulation (EU) 2016/679
of the European Parliament and of the Council of 27 April 2016, 2016. [Online].
Available: https://eur-lex.europa.eu/eli/reg/2016/679/0j.

J. Kim, «<Personal comfort systems: Using internet of things for optimizations,
Buildings and Cities, 2022, Published June 8, 2022. [Online|. Available: https :
//www.buildingsandcities.org/insights/commentaries/personal-comfort-
systems—-iot.html.

108



