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Abstract

Visual defect recognition and its manufacturing applications have been an upcoming
topic in recent Al research as an integral part of the manufacturing process that is be-
coming increasingly automated with the advent of Industry 4.0 and Industry 5.0. While
being a very beneficial solution to this problem, Al-driven Computer Vision Algorithms
and Deep Neural Networks face several issues that may impede their adoption in practical
real-life settings such as a manufacturing shop floor. For instance, defect datasets are of-
ten severely imbalanced and can be additionally burdened with separating classes of high
visual similarity. Another issue arising during an Al classifier’s continuous operation is
the frequent lack of robustness to novel defects appearing for the first time. The aim of
this thesis is to deal with such challenges by providing augmentations to Al solutions,
either on the data or the model level, addressing real-life and benchmark scenarios from

the domain of manufacturing.

The initial focus is Imbalanced Learning. Although various methods of data aug-
mentation have been proposed to mitigate class imbalances, they often fail to cope with
tinier minority classes or have fidelity issues with smaller defects while, at the same
time, needing significant computational resources to train. Also, augmentation based on
vector-based oversampling struggles to produce high-fidelity inputs and is hard to apply
on custom CNN architectures, which often perform better for this type of problem. Our
work presents an image-level oversampling method based on an instance-based image
generator that can be applied to any CNN directly during the training process without in-
creasing the order of training time required. It is based on identifying a small number of
the most uncertain base samples close to the estimated class boundaries and using them
as seeds for augmentation. The resulting images are of high visual quality preserving
small class differences, and they also improve the classifier boundary leading to higher

recall scores than other state-of-the-art approaches.

Aside from class imbalance, lack of real-world data as well as the strict safety con-
strains that need to be imposed to manufacturing Al deployments dictate the need for
handling novel inputs. Such unanticipated inputs can pose a significant risk to cyber-
physical applications as a resulting out-of-context decision could compromise the in-
tegrity of the production process. While recent Machine Learning methods can theoreti-
cally tackle this problem from different angles (e.g., open-set recognition, semi-supervised
learning, intelligent data augmentation), applying them to a real-life setting with a small,
imbalanced dataset and high inter-class similarity can be challenging. This work con-
fronts such a use case aiming at the automation of the visual quality inspection of shaver

shell brand prints from the electronics industry, which is characterized by data scarcity



Abstract

and the existence of small local defects. To that end, we introduce a novel data augmen-
tation approach based on the latent space manipulation of StyleGAN, where defect data
is intentionally synthesized to simulate novel inputs that can help form a boundary of the
model’s knowledge. Our approach shows promising results compared to well-established
open-set recognition and semi-supervised methods applied to the same problem, while its
consistent performance across classifier embeddings indicates lower coupling to the final
classifier.

The above mentioned method still requires enough data to train a GAN, which might
not always be possible or cost-effective. Collecting more and more defect data is also
often not a solution as defects occur rarely in production and the ramp-up time of the
Al-driven quality inspector becomes significantly slower. To cope with smaller datasets
we apply an innovative approach based on Neurosymbolic Al. Specifically, we use a Logic
Tensor Network that expresses the outputs of an unsupervised out-of-distribution detec-
tor as symbolic rules and uses them to drive the training of a neural network classifier.
The resulting algorithm shows improved results in comparison to other related methods,
especially in terms of defect recall, meaning that few defects remain undetected even if
completely novel. More specifically, it achieves similar or better recall scores than semi-
supervised and unsupervised methods when handling novel defects, but significantly
outperforms them in defects that were seen during training. Similarly, when compared
to supervised methods, it maintains high performance on known defects but significantly
improves on novel ones. These best-of-both-worlds results are illustrated through higher

F1-scores in the majority of the test datasets of manufacturing products.

Keywords

Artificial Intelligence, Visual Quality Inspection, Smart Manufacturing, Deep Learn-
ing, Defect Recognition, Imbalanced Learning, Data Augmentation, Oversampling, Gen-

erative Adversarial Networks, Open-set Recognition, Neurosymbolic Al



MepiAnyn

H avayveopion onukov eAdTIoPAToV 0Mog EPApHOETdl 0TOV KATAOKEUAOTIKO TOPEa givatl
éva 9épa mou anacyoAel Vv TpEXouca £psuva oto Tedio TG TEXVNING VONIoouvng, Ka-
9wg autdg aroteAel avanodonaoto PEPog g dadikaciag napaywyng mou autopatonoteitat
ologva Katl TEPLOOOTEPO HE TV gudavion tng Bilounyaviag 4.0 kat g Bopnyaviag 5.0.
Av kat gival pla moAu euepyeTIKY AUor], 01 aAyopiOpotl opaong uroAoyiotev mou Baacidoviat
ot Mnxaviky MadSnon kat ta Babid Neupovikd Aiktua avupetomni¢ouv moAdd mpoBAr)-
pata rou propet va eprodicouv v U100ET01) TOUG OF TIPAKTIKEG £PAPOYES, OMWG O Pd
ypapun napayoyrg. Ta ovvoda dedopévav mou rmepiéyouv sdattopata dev €xouv ouvrdng
100PPOTHEVEG KAAOELS KA1 TTACYXOUV KATA ToV S1ax®wplopd petaiy KAAoewv UWPnAg OITKYG
opowdtntag. 'Eva aAdo {uua mou mpoKUITIEl KATd T ouvexn) Asttoupyia evog tagvount)
pnxavikng pdadnong eivatl n éAAetypn avBekKOTAg 08 véa edattopata mou epgavidoviat
yla npwtn @opd. O otdX0g autng g £pyaociag €ival va avIPEIRITIOEl TETOEG IIPOKALOELG
apEéXoviag £Mmaudr)oelg otig AUOEIS TEXVITG VONOoUVNG, eite oe erinedo Hedopsvav eite
oc eminedo POVIEAOU, OOTE va PIOPOUV vad AVIATIOKPIO0UV 0f MPAYHATIKEG OUVONKEG OTOV
KATAOKEUAOTIKO TOPE.

H apyxwkn eotiaon eivat o Mn Icopporinpévn MaSnon. Ilapddo mou €xouv mpota-
et Bragpopeg nédobdot ermauinong 6eboévav yia ToV PETPIAoHO TRV AVICOPPOITIOV KAACERV,
ouyvd anotuyxavouv oe 18iaitepa OAlyorAnBeig Katnyopieg eve, tautdypova, Xperddoviat
ONHIAVIIKOUG UTTOAOY10TIKOUG IMOPoUg yia exkraidevor). Ermiong, n enavnon rou Pacietat
oe unepderypatoAnyia Bdaoet Sravuopdtov duokoAsvstal va mapdyel £100860Ug UYPNANG €U-
Kpivelag Kat eivat GUOKOAO va epapPOoTEl O TIPOCAPHOOHUEVEG APYITEKTOVIKEG ‘TUVEAKTIK@OV
Neupovikeov Aiktiev (ENA), ot oroieg ouxvd anodibouv kadutepa yia autov Tov TUIo npoB-
Afjpatog. H epyaocia pag rnapoucialet pia péSodo unepdetypatoAnyiag oto eminedo wng
£1KOVAG TIOU Prtopet va edpappootei oe ortotodrniote ENA areubeiag kKatd ) diapkrela tng eK-
nadeutikng Hradikaoiag xwpig peyadn empBAapuvorn 10U AnaitoUPEVOU XPOVOU eKITAideuong.
HeK1vd 1€ TOV EVIOITIONO €VOG PKPOU aplBpol aféfaiov Seypdtov Kovid otd eKTIHOHEVA
optla petagu uo kAdoewv kat Paocilet t ouvOeor véwv dedopévev oe autd. Ot elkdveg 10U
TMIPOKUITTOUV £ival UPNANG OMUKAG MO10TtNTag S1atnpeviag PKPES 81adpopig petadl tav Katn-
YOpinv Kat Xpnotpuevouy oto va BeATiOoouV ta 6ptla tou tagivourntr), odnyoviag o upnAotepn
avAkANor O OXE0T e AAAEG TIPOOEYYIOETS.

Extog amo v avicopportia kKAacenv, 1 aduvapia ouddoyrng moAAav dedopévav, kabng
Katl ol auotnpoi neplopiopol acpaleiag yla ta KuPepvo-@uUolkAa ouotrpiatd, UIIayopeUouv
TOV ATIOTEAEOPATIKO XEIPIOPO Kawvopavav e100dwv. TEtoleg ampoopeveg €icobot prmopel va
anotedécouv onpaviko Kivuvo, kabwg pia AavBaopévn anokplon oe autég Sa propovoe va

BAdyet v akepaotta g dadikaoiag napayeyns. Eve ot mpoopateg péSodor Mnxavikng
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Hepidnyn

MdSnong prnopouv Je@pnTiKA va AVIIHEIITICOUV autd 10 TIPOPANpa arno S1apopeTikEG Ort-
TIKEG YOVIEG (TT.X. avayvePp1lon avoiXtou CUVOAOU, NH-0nteuoevr) Ladnon, éSurvn enauinon
b6edopevav), epappodovidg 1eg oe €va IPAYRATIKO Tep1BAAAov pe éva PKPO, U1 100pPOTI-
Hévo ouvodo debopévav Katl uwnAn opoldtnta petady Twv KAAcewv aroteAel pokAnorn. H
apovoad epyacia avipet®nidel pia t€1old mePII®Oor] oV a@opd OtV aUTOPATOIIOon TS
OITTIKAG [TO10TIKIG EMOEOPNONG EKTUTIWOEMV AOYOTUTIOV 0 KEAUPI) SUPIOTIKOV PUNXAVOV Artd
) Bropnyavia nAEKIPovVIKOV Kal Xxapakinpidetat ard oraviotnua dedopéveov kat Urapdn
HIKP®V TOMK®V eAattopdtov. T'a 1o oKomo autd, €10ayetal fia véd IIPOCEYY10T] rauinong
dedopévav rmou Baoidetal otov xe1plopod tou Aaviavoviog xwpou tou StyleGAN, pe anotéAeopa
ta debopéva sdattopdiov va ouviibevial oKOma yla TV IIpoooHoino: VEQV €10006av e
OTOXO0 TOV OXNHATIOHO £VOG OPlou YUP® arod TV YVROTI] KAtavopr| eKnaideuong tou pov-
tedou. H mpoogyyion pag Seixvel umooxopeva amnoteAéopata o€ OUYKPLon HE Ti§ Kabiep-
opéveg 1eBodoUg avayvmplong avolXtou OUVOAOU Kdl TIG Nit-enorteuopeveg pefodoug rmou
epappodoviatl oto 1610 mpoPAnua, eve 1 otabepr] anodoon g 0e H1APOPETIKOUG XDPOUG
XAPAKTNPIOTIKGOV UTTOSEIKVUEL XapunAotepr ouleudn pe ) Siabikaoia eSaywyng toug.

H napanave pédodog eSakodoubei va amattetl apretd dedopéva yia v exnaidevor) tou
StyleGAN, kdtt rou propet va pnv eivatl mavia duvatod 1) owkovopika anodotiko. H cuddoyn
oloéva Katl neploootepeVv Hedopévav edattopdtev emiong ouyxva dev eival Auon, kabwg ta
edattopata epgavidovial ondavia oty nmapaymyn Kdl 0 Xpovog £yKATAOTACNS TOU €UPUOUG
emBenpnT] MooINTAg Yivetal onpavilkd mo apyos. Ia va avupetomnicovpe pikpotepa
ouvola debopévav epapodoulie [11a KAlvoTolo IPooeyylor rmou Baociletal ot NeupooupBo-
Awkn Texvnt) Nonpoouvn. Zuykekpipéva, xprotpornotovpe éva Aiktuo Aoyikou Tavuotr) rou
ERPPAleL T1G £§060UG £VOG UN-EMIPBAETOPEVOU AVIXVEUTY] AVOUAAIOV 0§ CUPBOAIKOUG KAVOVEG
He otoxX0 Ot ouvexela va kabodnyroetl v ekmaidsuon evog veupwvikoy diktuou. O ai-
yop1Bpog rou mpokurttet deixvel PeAtiwpéva arnotedéopata o€ OUYKPLOn Pe AAAEG OXETIKEG
1ebodoug, €161kA 600V AQOPA OTNV AVAKANON €AATIOUAT®OV, TPAYHA TOU onpaivetl ot Atya
eAauiopata mapapévouv | aviyveuolpa akopn kat av eivat eviedog kawvogavr). ITwo
OUYKEKPIPEVA, EMITUYXAVEL TTAPOPNOold 1] KAAUTEPA ATIOTEAEOPATA AVAKANONG amod T nut-
ETTOMTEUOIEVEG KAl 11T EMOITIEVOHEVEG EDODOUG KATA TOV XEIPIONO VEDV EAATIONAT®OV, AAAd
napdAAnda UTEPEXEL ONPAVIIKA O AATIOPATA MTOU Tapatnpndnkav Katd i diapkrela tmg
exnaibevong. Opoiwg, oe OUYKPLON JE TI§ EMOMTeEUoeveg nebBodoug, Siatnpel vynir ano-
doon oe yvwotd sdattopata, eve tautdyxpova deiyvel peydin Bedtioon ota kawodavn. Ta
arotedéopata autd yivoviat opatd Péo® teov upnidtepev Badbpoloyiwv F1 oty mAetovotta

10V ouvodwv Sedopévav agloddynorng.

A&gterg KAe1ba

Texvnu) Nonpoouvrn, Ontikog 'EAeyxog Ilootntag, Eugurg Biopnyxavoroinon, Babia
Md&9non, Avayvopion EAattopdatev, Mn loopporinuévn MadSnorn, Enavgnon Asbopévav, Y-
epderypatoAnyia, ITapayoyikda Avurnapadstika Aiktua, Avayvopiorn Avotytou Zuvolou, Neu-

pooupBoAikn Texvnir) Nonpoouvn
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Extetapévn IepiAnyn

H napouoa 81atpiBr) EMUKEVIPOVETAL OTIS EPAPIIOYES NNXAVIKEG PA9nong o€ Blopnxavika
eP1BAAAOVIA KAl 08 CUYKEKPIPEVA TIPAKTIKA IIPOBATIATA TTOU IIPOKUITIOUV AOY® TG SUoKoAiag
ouAloyng debopévav exknaibevong onwg n Avicopportia KAdoswv kat 1 Epgdavion Kawo-
@avev Asdopévev. To TeXVOAOYIKO Kal peuvnTIKO Tiep1BaAlov oto oroio e§etadovial autd ta
nipoBAnpata ival autod g Blopunxaviag 5.0. O 0pog autog MPOKUITTEL OG }1A EMEKTACT] TOV
BEXPL TOpa teooapwv Blounyavikov Enavaoctdosmv kat ouykekpipéva g 4ng Blopunyavikng
Enavaoctaong (Industry 4.0) n oroia yapaxktnpidetat amno texvoAloyieg orwg 1o Atadiktuo tev
Avukepévav, 1a Kufepvo-guoikd Zuotpata, ta Wnelaka Aidupa, ta Meydla Asdopéva n
Texvntr Nonpoouvr K.a. e auto 1o urnoBabpo n Biopnyxavia 5.0 otoxevet otov cuvbuaoud
TRV avBpemvav SUvatotIioV PE AUTOV TV EUGUOV UNXAVOV HEC0® CUCTNHATOV IIPOCOH0I®-
ong Kat ouvepyaoiag Av9porou-Yrodoyiotn. [1]

[Tio ouykekplpéva, 1 mMaPoUod £PEUVA EMMKEVIPp®VETAL otov Autopato 'EAeywo I[Towotn-
tag Blopnxavikev nipoidviev péon texvikeov Mnyavikng Mdadnong yia YoAoyiotikr) ‘Opaor).
Yta mAaiowa g IMowdtntag 4.0 (pépoug tng Brounyaviag 4.0) otoxog eivat i) dnuovpyia auv-
TOEAEYXOPEVOV OUCTNIATOV ITOU PITOPOUV va HEIPHO0UV aUToOPATd TNV mootnta g £§6dou
TOUG Kal va arnodaoilouv autovopa yla v anodoyr) 1) anoppyn tmg. H Babia MadSnon
AOY® NG IIPOCAPIOCTIKOTNTAG TG (IT.X. O OMUIKEG adAayEég oty KATHAKA 1] TV MEPLOTPOPHT
G £1KOvag) €xel fondroet oAU oe autd, aAdd tautoxpova arattel peyddo oyko dedopévav
exknaidevong kat dev eival evotabng oe delfypata ektog g Katavopng exknaibevong. Mia
Auor mou Siepeuvartatl ota rAdiowa tng Biopnyaviag 5.0 sivat n avarnugn cuotnudtoy cuvep-
yaoiag Aviporiou-Mnxavr|g 6rou 1 avip®Itvr) vonpoouvn Kat eprnelpia 9a avaminpovet ta
HE0VEKTPATA NG TEXVNTHG.

Katda v nopeia tng mapouvoag €épeuvag otov Autopato ‘Edeyyo [Towdtntag Bropnxavikov
npoidviov péowm texvikwv Babiag MdadSnong dwarmotwbnkav tpeig KUPLlEG IIPOKANOELS, Ol

OTTO1EG ATIOTEAOUV Kal TO EIIKEVIPO AUTNG TG £pyaoiag:

1. H avendpxeia 6ebouévov exrnaibevong, 1 oroia yiverat ibiaitepa aiodntr) oe mpoiovia
pe opdApata. Auto cupfaivel 61011 ta opalpata gp@avifovial oravia otlg YPapHeg
MAPAY®YNS O OXEOT HE Td ApTia mpoiovia odnyoviag os avidoppornia puetalt twv SUo

KAdoswv.

2. H ueyafln omuxn ouowwinta ueralv dpuev xai sfatteopanxdv mpoidviev n oroia

duoyepaivel onpavika mv Kavotnta §1aKp1ong TV Tagivountov.

3. H eugavion xawopavedv efattoudiov Katd I ouvext) Asttoupyia evog 118n eknaideupé-
vou aAyopiBpou propet va odnyroet oe AavBaopévn tadvopnon twv mpoioviev og

apta.
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Figure 1. Baowég Apxég kat Texvofoyieg ng Biounyaviag 5.0 [2]

[a v avupetomon g avicopportiag KAdoewv avarttuxOnke pédodog yia v enauvinon
1oV Sedopévev eknaidsuong ou avikouv oe pelovotikeg kKAaoelg. H ouvbeon tov bedopévav
gylve e texVvikeég Kateubuvong Ilapayoyikev Avurnapadetuikov Aiktuev (ITAA), pe otdxo va
yivel untepdetypatoAnyia rapadetypdtov ota oroia ot rpoBAEWPEeLg TOU TASIVOUNTH TIAPOoUo1d-
Jouv xapnAn adoruotia. H ermauvdnon téroiwv debopévav duvatal va mapexel peyaiutepo
ogpeAog otn Sladikaoia exknaidevong. [3]

[Ma tov Xe1p1opo 1oV Kawvopavev 1008wV SlepeuvnOnKav mapopoleg TEXVIKEG, AUTV TV
@OpPA pE OTOXO Vv ouvBeon oplakmv mapadetypdatev pe xpnon StyleGAN. Ilapott n 6t-
adikaoia nmapaywyng dedopévav mou avartuxOnke SeKvd amo 11§ Katavopég ekmnaidevong,
ta oplaka dedopéva, xdapn ot yevikeuowpotnta tou StyleGAN, nmapayoviat ota dxkpa tov
KATAvVoP®V aut®v Katl Snpioupyouv éva 0p1lo Petadl yVRoTev Kal Kawvopavev e100dmv. [4]
Zav enéKtaon Ypnopornot)fnkav texvikeég NeupooupBoA1KI G TEXVITG VONIIOOUVIG 1€ OTOXO
Vv avdnon g avlekukomtag otav Ppiokovrat diabéopa akopn Aryotepa dedopéva ex-
naidevong [5].

'‘Ocov a@opd otV Opo1dTHTA HETAdy APTI®V KAl EAATIOUATIKGOV ITPOIOVIOV, AUT] GUVUITOAO-
YiOInKe o€ 0Agg TIG TAPATAVE PEBO60UG. ZUyKeKkpiéva, Xprotporno)Onkav [MAA pe Suvatotnteg
TTOAU AETTTOPEPOUG OUVOEDTG EIKOV®OV, VR, OTTOU O OYKOG TV OeSO1IEVOV TO ETMETPETTE, £YIVE
exrnaibeuon v tedkov taivopntev areubeiag oto mpoBAnpa XwpEig XPron HEtapopdg

padnong anod nposknaldsupéva dikrua.

Awatafn tng Fpappng Mapaywyng kat AeSopéva

To otadio tou eAéyyxou modTTaAg NS YPAPHLG MAPAY®YHS TEOIIOIOLEiTal PE TV TOIo-
9énon kapepag n omnoia eotoypadidel ta mpoiovia pe ) PorPeia CUCTHPATOG TTOU OTO-
XEUEL OTIV TOITIKI] OJIOYEVOTION 0T TG PATEVOTITIAG, Vid Va aTtopeUuXJouv oK1EG 1) dapnaopa.
[ToAAoi tétolo1 otaBpoi priopouv va 1orobstnBouv oe KOVIVI) arootacn pe évav avipwro-
Xeptotr) urtaubuvo yia odoug. Eve o adyopiBpog pnxavikng padnong €xet eubuvn yua v
APXKY] TASIVOUIOT] TRV IPOIOVIRV, OF IEPIMTIOOT MOV aviXVEUOoel Tifavotnta AaTtOpRatog,

10 TIPOIOV KATAANYEL OTOV UTIEUOUVO XEP10TH Yid TV TEAIKI] aropaot) - av Ovieg gival eAat-

8



Abstract

(a) Good (b) Double Print (c) Interrupted

Figure 2. Asiyuata ano ta debouéva g PCL BV
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Figure 3. Asiyuata ano ta debopéva tov MVTEC-AD

TOPATIKO 1] propet va ouveyioel ot Sadikaocia mapayeyng og aptio. Asdopévou rnwg éva
IPOTOV £XE1 XAPAKTIPIOTEL WG APTIO AUTO £EEPXETAL ATO TO CUCTNIA XWPIG avOpdItvo €Aeyxo
(épa amo wxaia derypatoAnyia). T'a autdv 1ov Adyo mpéret 1o ouotnua va givat 1dlaitepa
auotnpo pe Ty tagvournorn oty dptia kKAdorn. MapddAnlda Sev mpéret va givatl tooo auvotnpod
WOTE va UTIEPPOPTAOVEL TOV XEIPLOTI] PE APTIa ITPoiovia rou AavBaopéva €Xouv Xxapaktnptobet
£AATIOUATIKA.

Ta wmv avanodn kat aflodoynon v pedodeov rmou akodoubouv xprotporolfnkav
6U0 ouvoda Gedopévev: 1O TP®TO IMpogpyetal ard v Philips Consumer Lifestyle BV
KAl areikovifel eKTunopéva Aoyoturnia g etaipeiag oe Bpayioveg EUPOTIKGOV Pnxavev Kat
10 8eUtepo elval 1o eupUtepda XPIOIHOIIOIOUHIEVO OV EPEUVITIKY Kowotnta MVTEC, to
ortoio areikovifel Srapopetika mpoidvia oe LeX®Plotd uroouvoda dedopévav. Amd autd
ermAexdnKav ooa eiyav avicopportieg KAAOE®V Katl PEYAAL OPO10TTA APTIOV KAl EAATIOUATIKGOV

PoioVIGV.

Avtipetomon Avicopponiag KAaocswov

IMA¢ov ta Pabid ouvedikuka Siktua (BZA) sivar n ermukpatéotepn pédodog ot BiBAl-

oypagia yla autdpato rmolotko eAéyxo kabott ouvbudalouv ta &g rmAeovekrpata:



Extetapévn [epidnyn

1. Emutuyxdavouv uynAr) akpifeia kabog pabaivouv ta xapakinploukd eknaideuong Suvapikd

pe Baon ta edopéva.

2. Aev anattouv £1861KEG YVAOOELS TOU ITPOPBANPATOg PE AMOTEAEOA VA ATTAOIIOI0UV TOV

oxeblaopo v Sadikaoiov (rpo-)enegepyaoiag tov debopévav.

3. Mropouv 1110 €UKOAd VA avaripocapilootouV og Ttapopiola poPAfpata pe 10 apXiko

(ri.X. éva mpoiov pe dragpopetikn Srakoounon).
4. Eivail av9eKTuKA 0g OMIIKOUG PETAOXIATION0US OTteg o1 adAayeg 9€ong Katl KATpakag.

5. Iapéxouv duvatdinta PETAQoPAg yveaong aro mMoAunAndrn os pikpotepa oUuvola Oe-

dopévav.

IMapoda autd, av e§aipéoel Kaveig v petapopd dedopévav, n eKmaibeuon autOv TV
Situev arnattei ouvhdwg 10% ¢og 10* mapadeiypata, eve eival aitepa evaiodntn otig
avioopportieg tou aptdpou napadelypdtov pPetadl 1oV KAACE®V.

[Ma v aviipetomor g avicopportiag dedopévav £xouv avartuyBet 16co mo napadoot-
AaKEG TEXVIKEG Yia diavuopatika 6edopéva (SMOTE, Borderline-SMOTE, ADASYN), 6co kat
10 OUYXPOVEG TEXVIKEG EMAUENONG HEOK OUVOEOTG OAOKAN PGV e1KOVGV aro ITAA. H ertavgnon
dedopévav péon IAA pnopet va paypatoron et eite aneubeiag (.. 1€ xpron tov Wasser-
stein GAN, DCGAN 1] StyleGAN) eite péow npoonabeiwv kabodrynong tov e§odwv tou ITAA
(r.X. péow esvioxuukng pddnong - Actor-Critic GAN) yla va mapdyet rmo xprotpeg €€o-
b6oug. TéAog, 161aitepo evdrapépov mapouotaletl pia véa pedodog, n DeepSMOTE, Baociopévn
0€ APXIIEKTOVIKT] KOSTKOIIOTL)-ATTIOKOO KOO Tr) IOV avartapayet v diadikacia SMOTE,
adAd oto erninedo g £1kOvVag, TIAPAYovIag £1KOVEG ard YPAPMIKEG rapeBoAég petady v
YVOOT®V £1KOVQV 100800 [6].

Karta ) Stapkeia ing épeuvag Sramotdbnke ot 1) enidoorn S1KTUeV eKNTAISEUPEVOV ATIOK-
AgloTikA 010 IPOPANHA NG AvVAYVOPLoNG AATIONATOV (X0plg petapopd padSnong) eivat mo
ATIOTEAEOPATIKI], KATA ouvenelda Ya fornbouoe meploocoTePO Pid TEXVIKI UnepdetyplatoAnyiag
oto erminedo TV ekOvev. AapbBdvoviag unoywv tig 181attepotnieg 10U mpoBAratog avar-
TUuxOnke pa PeAtioon tou DeepSMOTE yia to ouyKeKpilpévo IPOBAnNIa mou oTtoyEUEL OtV
unepbetypatodnyia Sedopévav yia v tadivopnon v oroiev o alyopibpog sivat afépaiog
He otoxo Vv PBedtiotoroinon g avakAnong tou teAkou tadivount). H ouvBeon tov Se-
dopévmv ylvetat epiktr) péow g poacappoyng tou BigGAN yia Aettoupyia os pikpd ouvola

bedopévav [7].
Mé9o6og

Zuvison Aedopévav

Ab6y® TOoU MKpoU oe PEYeO0g KAl Avioa KATAVERNHPEVOU 08 KAAOELG ouvoAou Sedopévav,
arogeuyInke 1 ekraibeuon TTAA e§apxris kat xpnotporofnke n pédodog twv Noguchi et
al. [7] n omoia mpooappodetl éva poviedo BigGAN mposkniaideupévo oto ImageNet. Zuy-
KeKpéva yia Kade €i00b0 I ouykekppéveg mapdpetpol tou ITAA mpooappodovial Oote

va napaxOet pa tapaddaypévr poper) I, Sedopévou tuyaiou daviopatog eioodou z. Ot
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Abstract

napapetpot 1ou BigGAN mou mpooappodoviat eivat povo autég TOU MAapayovia KAIparag
(scale) kat tng petatoruong (shift) ota orpopata veupdvev kavovikornoinong (batch normal-
ization layers). Ataio0nukda autd 1ooduvapel pe v mMAOYr XapaKInPloTK®OV XP1OTHROV yid
1a edopéva exknaibeuong Ao £va UTIEPOUVOAO XAPAKINPIOTIKGOV IOV £Xel Pabeutel amo 1o
Imagenet.

Ka96tt ta debopéva mmou mapdyovial pe autdv Tov TPOII0 UIOPEl va PNV Arelkovi¢ouv
IKAVOTIONTIKA HPIKPOOKOTITIKA €AATIONATA OTIS E1KOVEG, XPNOlporolouvial 6Uo ermmnpoode-
101 pnyaviopoi. Apxika pa ouvaptnon TilePermutations, sprmveuopévn ano toug Satoshi
et al.[8] mapdyetl UPPIOIKEG e1kOVEG, XWPI{OVTAG TIS APXIKEG KAl OUVOETIKEG EIKOVEG O I
ermKaAAuTiopeva Tphpata Kat avacuvduddovidg ta tuxaia. TéAog akoAoubel éva Pripa @iA-
TPapiocpatog OIou Povo €va UMOCUVOAO E1KOVMV HEYES0UG Mgy EMMAEYETAL, ATTOTEAOUHEVO

ano t1g UPPIBIKEG E1IKOVEG TTOU £1val KOVIIVOTEPES OTIS APXLIKEG.

YrnioAoyiopog Afromiotiag IIpofAswpewv

Me oxkor6 va BeAtiotornon et n untapderypatoAnyia, ermAEx9nKe 1 mapay®yr] cUVOETIK®OV
bebopévav va eivatl faotojiévr) og 1KOVEG Yid TNV TASIVOHN O TRV OIT0iRV HeV UTTAp)XEl PeyAadog
Babuog oryouplag pe Baon tov unokeipevo aidyopiBpo. H unobeor) eivat 6t autn 1) mo oto-
Xeupévn unepdetypatoAnyia, eprveucpévn arno v Bedtiotonoinon Borderline-SMOTE tou
SMOTE alAd oto eminedo 1oV £1KOVGV, da MPooPepel Peyadutepeg BEATIOOEIS OtV TEAIKT)
Stadikaoia padSnong.

IMapot ot BiAoypagia undpyxouv roAdoi tporot yia va rocotkortoindei n a§loruotia
pag rpoPAsyng rou avuotoixet oe pia eicodo, xpnotponow)dnke 1 pédodog twv Elsayed et
al. [9] 1 ortoia dev anattel petafoleg oute oty dradikacia Padnong, oUTe OtV APXITEKTOVIKI)
Tou d1KkTUoU.

ZUp@®va Pe autrv 1o 6p10 aro@aong Petasu 6Uo kAdoewv i Kat j opifetal wg 10 oUvolo
€10066V y1a 1o o1toio o (YPeudo-)Badpog adoruotiag npoPAéwenv yia tadivopnon oe kadepia

KAdon (6ndabdr) n €§odog Tou orpopatog softmax tou Siktvou f) eivat icog:

Dy = {x | fi(x) = fj(0} (1)

H anoéotaon evég onpeiou x and 10 0plo anodgacng opifetat 101e @g 1 I, vopua ng
HKPOTEPNG HETATOINIONG TMOU IIPETIEL VA UTIOOTEL TO ONPEI0 OOTE va UMAPYXEL 100TNTd TV

(peubdo-)Badpmv adloruotiag:

dx(ij) = rrl6111||(‘5||p | filx + 6) = fi(x + 6) 2)

Ka96tt 10 mpoPfAnnua BeAtioronoinong ivat pin avaAuTikd erMAUCIHO Yid 1 YPAaPRPiKy f,
Xpnotwponoteitat 1o avarrtuypa Taylor ipotou Babpov yia va ypappkorniowOei 1 f odnywv-

1ag otV aKoAoudn IPOCEYY1oT] 1§ Art0oTactg Ao 10 0P10:

a | fi(x) = fi(x) |
(i) IV.ufi(x) = Vofi(0l,

11
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Figure 4. Apytextovind Swaypauua g uedodouv enavénong deboucvav kar g dadukaoiag
exmaibevong tou teflikou tadlvount.

(6b)

(8)

Enauinon Acdopéivov oe Mlpaypatiré Xpovo

Zuvoyifovtag ta mapandave Prypata pokurttet 1 teAdikn pédodog erauinong debopévav

0€ TIPAYPATIKO Xpdvo 1ou @aivetal kat oty Ewkova 4.

Brjpa#1: O taSvounmg C eknaidevetat yia Kabopiojévo apldpo rn, enoxmv Kat 1 anoo-
1ao1 Ao 10 0p1o SlAaXOPIOPOoU APTI®V KAl U] APTIeV EIKOVAV IMPooeyyidetatl yla kade sikova

exmnaidevong ovpgava pe v E5.2.2.

Bripa#2: Ot kyop £1KOVEG €£10060U He TV PIKPOTEPT) ATOOTAoT] aro 10 6p1o Slax®peiopou

EIMAEYOVTAL KAl XPIOIHOII0I0UVIAL O YEVVITOPES Yia tv ouvdeorn Sedopévmv.

Brjpa#3: Yroloyiletal o apt9pog tov napayopevey EIKOVEV IIOU avilotolXel oe Kade elkova
YEWIT0PA Mgy €101 wote ta debopéva yia v tedikr) eknaidsuon va eivat 10oppornuéva

avdpeoa oe dptia Kat pn) dptia Kat ektedeital ) 6iadikaoia yia v nmapayoyr] v dedopévav.

Brjpa#4: O npoeknaideupévog taivountis C exknaidevetal ermrmdéov yia n €moxeg oto

eraunpévo ouvodo Sedopévmv pe orord va padet éva Bedtiwpévo dpto Staxwpilopou.

ArnoteAéopata

ZT0X0G 1§ MPOTEWVOUEVNS TIPOCEYYIoNG €ival va meploplotel 000 1o duvatdv o ap1Bpog
EAQTIONATIKOV TIPOTOVI®V oU eodadpéva tadivopouviat g daptia. Ta tov Adyo autd 1)
ONPAavVIIKOTEPT] HEIPIKI] €lval AUTH NG AVAKANONG AT TNV MAEUPA TOV EAATIOHATIKOV de-
dopévav. Asdopévou evog tadivountr) C, dedopévav adlodoynong X, pe eukéta eknaibsuong

l(x), 610U O1 €UKETEG TOV EAATIOPATIKAOV KAdoewv divovtat oto Ly = {double print, interrupted},

autn opiletatl wg e&ng:

[x € X :C(x) € Lqg Al(x) € Ly|
|x € X : l(x) € Ly|

BinaryRecall =

12



Abstract

H ouykexkpipévn petpikr) ennpeddetal emiong Atyotepo amnod myv avicopportia dedopevev
oe oxéon r.X. pe Vv akpifela (accuracy), mapdda autd yia va UTIAPXEL KAl €AEYX0G TOV
Weudng Seukmv rpofAdwemv, eglodoyouviatl Kat ot petpikég AUROC, Precision kat F1.

Zuvodikd, ylia kade ocuykpwvopevn pedodo extedéotkav 30 perprjoelg pe xpnon 5-
mAng S1aotaupePévng emMKUP®ONG, £ved mapdlAnda £ytve KAl PeATioTtornoinon tev urmep-
napaperpev kade pebodou. Ot peTprioelg ou iapouotadovial eivatl 0 PECOG 0pOg TV TTapa-

nave padi pe ta 95% Slaotpata eprmotoouvng.

Method Bin. Recall % AUROC % Precision % F1 %
Resnet50 85.85+1.50 | 98.85+0.12 | 94.41 +3.27 | 89.59 + 1.27
Resnet50+SMOTE 95.84 +0.52 | 98.87 +£0.13 | 84.53 + 3.01 | 89.61 + 1.57
Resnet50+ADASYN | 95.49+0.99 | 99.07 +0.11 | 85.14 + 3.45 | 89.67 = 1.69
Custom CNN 95.84 +0.39 | 99.20+0.19 | 97.53 £ 0.81 | 96.67 + 0.56
Custom CNN+LW 96.07 £ 0.39 | 99.09+0.19 | 98.34+0.33 | 97.19+0.43
StyleGAN 91.20+£2.20 | 99.01 £0.14 | 99.17 £+ 0.41 | 94.95+ 1.38
DeepSMOTE 93.58 + 1.07 | 99.23+0.15 | 96.93 +£0.80 | 95.22 + 0.87
Ours 97.27 +0.76 99.34 +0.07 | 96.82 + 1.27 | 97.03 = 0.98

Table 1. AioAdynon ota deboucva euovov fuplotikov unyavov g PCL BV

Mua apyikr) evdladpépouoa apatprnon oxetka pe tov Iivaka 1 eivat ot 1o pnxo cuve-
AKUKO 6iktuo mou exknatdevstal e§apxrg oto mPORANURa £xel KAAUTePn £miboon anevavtl os
Siktua pe petagopd PAdnong akopa Kat 61av XPnolorolouV TEXVIKEG UItapSetylatoAnypiag
Siavuopatev (SMOTE, ADASYN kArt.). Texvikég enaudnong oto erminedo g e1kovag onwg
10 StyleGAN kat 10 DeepSMOTE 6gev katagepav va Bedtiooouv v enidoorn tou prxou ouve-
AKTIKOU d1kTUO0U, TIBavotata, onwg @aivetal kat otnv Eikova 5, Aoye tng aduvapiag toug va
IAPAYOUV APKETA AEMTIONEPEIG E1KOVEG EAATIONATIKOV TIpoioviov. H mpotewopevr pédodog,
XAp1 OTNV £10AYRDYI] TOV ETMTALOV PNIATOV OXETIKA PE TV €MMAOYT] ONPAVIIK®OV EIKOVOV Kal
TNV XP101] TOUG OTr) 0UVOEOT e1KOVOV £MAUENONG, KATAPEPE TOOO0 VA MAPAYEL EIKOVEG UYNANAS
£UKpivelag, 600 KAl va BeATIOOEL ONIAVIIKA TV AVAKANON Tou teA1kou ta§vountr). [apot
npotevopevn PES0b0g umoAeinetal oe AAdeg PeTPIKEG OTwg 1 F1, auto Sev sivar mipofAnpa
kabot n Yuoia eivat apketd PIKPL yia v EMTEVEH UPnNANG avakAnong.

Kat oto MVTEC-AD ([Tivakag 2) ) ripotetvopevn) 1€9080g eMETUXE TNV UYPNAOGTEPT AVAKANOT)
0oe OAeg NG MEPUTIOOELG. AUOTUX®DG, AOY® KAl TOU PIKPOU MANOUCHPOU aut®V T®V CUVOA®V
6edopévav, 1 OTATIOTIKY] CNPAVIIKOTNTA Tou arotedéopatog dev ftav Guvatdov va emrevy-
Oeil oe OAeg g meputtooelg. ISwaitepa ota Sedopéva turmou Grid o1 Siakupdvoeslg petady
KA9e MEPaAPATIKEG EKTEAEONS NTav onpavtikeg. IlapoAa autd, ota ouvoda Sedopévov Metal
Nut, Pill kat Carpet n diapopd ntav €ite OTATIOTIKA ONPAVIIKI) £ite TTOAU KOVIA O¢ AUTO.
Ye aviiBeon pe ta nepdpata tou Ilivaka 1 €80 ermtuyyavetal BeAtioon Kal otig PETPIKEG
Precision kat F1. ITiBavotata kat naAt Adye 10U pikpou minbuopou tev dedopévav, ur-
ApYouV peyadutepa o@éAn aro tny enavinon v Sedopévav. To mikpo Péyebog 1oV ouvoAav
6edopévav emiong dev emérpeye NV IKAVOIIONTIKY] eKmaidevon tov pedodov StyleGAN kat
DeepSMOTE mou xpetddoviatl mepiooodtepa dedopiéva yla va Propouv va ouvBECOUV VEEG
E1KOVEG.

H Baoikn) urtobeon tng mpotevopevng pebodou sivat ot xapn oty enavgnorn debopévav
Baoctopévn otig e1KOVEG TOU BPIioKOVIAL IO KOVIA Oto Op10 tasivopnong da petatortiost auto

10 OP10 WOTE VA EMMTUYXAVETAL KAAUTEPT avAKANOT. AUTO @aiveratl 1000 arod Td AIOTEAEO-
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Figure 6. Arpifcia talivount ota opiarxa Sedoucva mou emAEYoVTAl GO YEVUNTOPES Yia
mv ovv9eon twv debopusvov eravinong (Aptotepd). Ot k UKPOTEPESG AmOOTAOELS TPOG TO OPLO
Slaxwplopol TV KAAOEGV TPW Kat Ueta v eknaidsvon oto eravlnuévo ouvoio dedopusvov
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Abstract

Dataset Method Binary Recall % | AUROC % | Precision % F1 %

Resnet50 30.30 + 5.59 73.29+3.48 | 42.4+5.57 | 34.36+5.95

Resnet50 + SMOTE 35.60 £5.71 74.67 £ 4.34 | 48.27 £3.38 | 43.55+3.48

Grid Resnet50 + ADASYN 42.57 + 8.38 74.26 +4.04 | 42.93 +£4.59 | 35.93 +6.68
Custom CNN 70.90 + 10.93 90.71 £5.49 | 80.23 +9.97 | 74.50 + 10.50
Custom CNN + LW 69.24 £ 12.25 89.80+6.09 | 75.38+12.3 | 71.55 + 12.15

Ours 71.21 +£9.92 91.22+5.12 | 91.43+6.86 78.45 + 8.36

Resnet50 81.89 +£3.70 97.07 £0.41 | 87.80+3.33 | 84.20 +2.27

Resnet50 + SMOTE 88.69 + 1.53 97.21+0.46 | 79.56 +2.11 | 83.66 +0.94

Carpet Resnet50 + ADASYN 84.18 +2.71 97.25+0.45 | 83.96 +3.78 | 83.42+1.28
Custom CNN 87.77 £ 7.62 98.94 £+0.49 | 89.73+1.23 | 87.48+4.75

Custom CNN + LW 91.11 +£6.06 98.90+£0.51 | 88.02 +1.78 | 88.92 +3.72

Ours 92.22 +3.32 99.86 + 0.11 92 +1.60 91.9+1.97

Resnet50 84.03 + 3.46 96.90 +£0.79 | 95.33+1.70 | 88.99 + 1.97

Resnet50 + SMOTE 88.30 £ 3.71 97.32+£0.51 | 90.32 +1.33 | 89.07 + 1.62

Metal | Resnet50 + ADASYN 84.09 £ 3.71 97.01 £0.72 | 95.38 + 1.63 | 89.02 +2.09
Nut Custom CNN 82.92 + 5.36 97.49+1.15 | 98.33+1.33 | 89.55 +3.87
Custom CNN + LW 82.92 + 5.36 97.49+1.15 | 98.33+ 1.33 | 89.55+3.87

Ours 92.63 +3.15 98.32+1.22 | 98.75+1.00 95.49 +2.12

Resnet50 71.52 £ 6.29 92.70+1.63 | 84.84+1.63 | 76.65+4.29

Resnet50 + SMOTE 90.02 + 2.62 91.76 £1.82 | 60.7+1.57 | 72.34+1.41

pill Resnet50 + ADASYN 78.62 +4.16 91.87+1.70 | 82.29+1.54 | 80.08 +2.41
Custom CNN 88.71 £2.18 98.35+0.60 | 93.48 +2.03 | 90.94 +1.76

Custom CNN + LW 88.71 £2.18 98.35+0.60 | 93.48 +2.03 | 90.94 + 1.76

Ours 92.29 +3.79 98.80 + 0.58 | 96.25 +1.63 94.11 + 2.68

Table 2. Aiojidynon ota ovvojla sudvwv ano 1o MVTEC-AD

pata v IIivakeov 1 kat 2, 600 KAl and 10 ypd@npa oUYKPLlong TOV AMOOTACE®Y Ao 1O
opo oty Ewkova 6. Eviiadépov rmapouctddetl 1o yeyovog Ott o1 eEAAX10TEG AIOOTAoElg eivat
HIKPEG OXETIKA HE TNV PEYAAN H1a0TATIKOTNTA TOU X®POU, KATL ITou rmbavov va UTtoSe1kvUEL
TTUKVI] OUYKEVIP®OT] TRV ATEIKOVIOE®V TOU S1KTUOU Kovid ota opld. PUoIKA 1 PETATOTNOT)
TIOU ava@EPOUE YiveTal amo T {1 aptia KAAoH MPog TV Aptid, HE anotéAsopa ouxvd va
ouvenayetal karnowa duoia oty akpifela g aptiag kKAaong. TéAog, €vag meploplopog mg
pebo6ou eivatl Ot o MEPIMIOOT) TTOU 01 KAAOELS £ival eUKOAA draxwpioteg Kat ta opta petady

1OV KAACERV 0 apAlOKATOIKNUEVA, dev 9a rapéyxel kamoia PeAtioon.

Xepiopog Kawvogpavov Asdopévov

'‘Onwg €xouv Geitet o1 Hendrycks et al. [10], ouxva ta Bafid Zuvedikukda Aiktua ei-
vat 8aitepa guaiobnta oe opdApata npoBAeyng otav MPOKeltal yla Kawvodpavry dedopéva
AKOA KAl OTAV AUTd IPOEPYXOVIAL ATld HIKPHS £Ktaong aAAayeg os Sedopéva ou urapyxouv
oto ouvodo sknaideuong. 'Eva oxetkd napddetypa BAénoupe oy Ewova 7. Axkopa kat
£€e101KEUPEVEG OV AVIXVEUOT] OIMMUIKA 0PATOV EAATIOUATOV NUl-erBAEnOpeveg 1 U erm-
BAeTOPEVG TEXVIKEG AVIIPETOITICOUV TTPOBAT|ITA OTav IT.X. £€vd YVROTO eAdtiopa Ppioketal oe
Ha eviedog katvoupyla 9€or os pia eikova €10660u [11].

Ty BipAoypagia untdpxouv 81a@opeg Katnyopieg 1e908mV yia Tov XE1P1010 KAVOQPAV®Y

bedopévav:

o Tawountég piag wiaong (One-class SVMs, Isolation Forests, Local Outlier Fac-

tor) o1 ortoiot rpoortaBouv va oxnuaticouv éva 0p1o 1ou va Sexwpiet ta Sedopéva piag
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Classifier: Resnet50 + MLP

Pred: DEFECT p//

Pred: GooD )

Figure 7. Ilpo6inuata avdskukomiag os véeg ewoodovg. H mave osgpa mepiéyet draxomn-
TOUEVES O U0 Badio e1x0veg TTOU AVTIOTOLYEC TOUS UTLAPXOoUV ata ebopsva eknaibeuong Kat
tadtvopovvtal owotd. Avtideta iKOveg ue peyadutepng ektaong eAattouara mov sivat Kao-
eaveic 6ev tatvopovvial owotd (KAt® opd).

KAaong (otnv mePinm®or] 1ag authv Je 1a aptia mpoiovia) and 6Aa ta diAa mbava de-

dopéva e10060u.

o Huu-emiBAsnoucveg pedodor (GANomaly, DFKDE, DFM) o1 ortoieg ekmtaidsvoviat povo
pe 6ebopéva ng aptiag KAAong Kat pabaivouv va PovieAoolouy Povo autr Kat Xopi-
fouv 1a 6ebopéva oe aptia Kat P avaloya pPe KAmola HPEIPIKY Arootaong amo v

KAdQoOT TI0U €X0uVv Pdabet.

e Mé9ob6ot emavénong debousvov (OSRCI, OpenGAN) ot oroieg ripoortaBouv va ocuvOe-
oouv (ouvr9wg pe Xpron Kanoiou [TAA 1] KES1KOTIOU T -ATOK®S1KOIION ) KAlvopavn
6edopéva ta oroia napgxoviat oty dadikacia eknaibeuong PEC® P1AG EMMITPOCOETNG

KAdong.

e Mé9ob60ot avayvwpiong "avorytov ouvofov” (W-SVM, PISVM) xprnotporiolovy v Ocw-
pia Akpaiov Tiaov yia va JovieAornojoouv akplBEotepa ta AKpa TOV KATAVOU®OV TV
YVOOTOV KAAOE®V KAt va TG EeX®Pioouv aro 1o "avolytd ouvoldo" rmou artotedeital amno

€10080UG Ayveoteg Katd v exknaidsuorn.

MéSo06og

H pédobog mou avamtuybnke eivatr kat autr] ota miaiowa g erauvinong dsdopévov.
Xe ouykpon pe pebddoug onwg ot OSRCI kat OpenGAN, ypnoporoteital pia veotepn,
HeyaAUtepng €UKPivelag Kat IO YEVIKY] apXlIEKTOVIKY), Tt0 StyleGAN v3, 1o omoio emiong
napéxel auvsnuéveg Suvatdtneg Kabodnynong Kat eAéyxou g ouvleong eKOVeV. AUTH 1)
duvatotnta kabiotatal exkpetaddsvomin péow g Lnuaotodoykng I[Hapayoviornoinong (Se-

mantic Factorization - SeFa) ) oroia avakaAurtel kateubuvoelg otoug AavOAvVovTeG X®POUG
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Figure 8. Apyutektoviko dwaypaupa g diadikaociag eknaibevuong pe tapay@yn ocuvIetikov
beboucvov péow Semantic Factorization kat eLiltpdpiopd ToUg HEO® YNeOoeopIiag

\JL

" -

€10060uU 10U StyleGAN Katd PrKog 1@V oroiev petaBaiAovial onpaclodoyika TAouotia ototXeia
mg ewkovag. Me 1 PBorBela autrg Kal evog otadiou @ldtpapiopatog Paociopévo os Pngo-
popia, otoxog ival va apaxdouv e1kKOVeG ITOU va 0p1oBETOVV TIG KATAVOHEG £10060U Katl va
TG Sexwpidouv arod 1o "avoiyXto ouvoldo". AUTEG 01 0plaKEG E1KOVEG rpootifeviatl ota dedopéva

eknaibeuong og pia ermnpocdetn kAaon (PA. Ewkdva 8).

Znpaocwodoyiky Ilapayovionoinon oto StyleGAN

H Znpaocodoyikr) Napayoviornoinon (SeFa) [12] pooraBel va ermtuyel pia avaAutiky)
AuUon 10U POoBANATOg AVAKAAUYNG ONI1AC10A0Y1KA TAOUOIOV KateuBuvoewmv otov AavBdavovta
Xwpo €1008wv tou StyleGAN. To KUP10 MAEOVEKTNIA NG O OUYKPLON PE rmapopoleg pebo-
6oug mou anattouv Sadikacia padnong pe dedopéva eivatl Ot €ival UMMOAOYIOTIKA TIOAU
YPNYopotepn apou Paocidetal arokAEIOTIKA O TIAPAYOVIONoinon mvakev (Singular Value
Decomposition - SVD).

AsBonévou evog yevvrjopa TTAA G mou anewkoviler onpeia z tou RY oe e1kéveg toU
ouvodou 1: I = G(z), 10 apXKo toU otpopa veupovev Gi(z) prnopet va ypagtei wg G1(z) =
Az+b omou 0 A iepi€xel 1a BApn TV VEUPHVKV. Yotepa arod alyeBpikoug HETaoPATiooug
ot Shen et al. [12] kataArjyouv oto £§rg mpoPAnpa BeAtiotornoinong ya vy Upeon) twv k

ONUACI0AOY1IKA TTAOUCIOTEP®V KateuBuvoewv N* = {ny, ..., ny}:

= arg max Z lAny|[?

ni,..., nkil

To napanave priopet va Audel péow g pedodou twv nodardaciacteov Lagrange kat
OUVETIOG TG £UPEONS TOV 181061aVUCPAT®OV TTIOU AvIloTolXouv ot k peyaAutepeg 1510T1EG
tou ATA.
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Ty uno e§€taon nepimwon epappolovpe v texvikny SeFa oe diagopetikd orpopata
tou StyleGAN 1ou €A&yX0UV XAPAKINEIOTIKA OIS 1] UQPL), 1] IIEPLOTPOPT) KATT. Ee@eUyoviag
0Aog€va Kat IePoooTePO Ao ta Hedopéva £10060U Kal akoAoUud®MVIAg auteg TI§ KAteudUVvoelg
elvat duvatod va mapdafoupe OplaKEg E1KOVEG ava@oplka pe tg duvatdinieg ouvdeong tou
ITAA.

P1Atpaplopa ZuvieTIRAOV Asdopévav péow Mnyxaviopou ¥Wneogopiag

'Exovtag ) duvatomnta ylia ouvdeon €1KOVOV ITOU TIPOEPXOVIAL Ao TG ONHPACI0AOYIKA
mAoUoleg KATeUdUVOELG, XPeladetal Kat éva KPitplo avopoldtntag pe ta dedopéva e10o6ou
TTOU VA ETTITPETIEL TV EMIAOYT TRV 0PLAKAOV EIKOVAV. ['a Tov 0KOIo autd Xprnotponou)9nke éva
oUVoAo TaSvounTOV-PnEoeopwv Vi, Vo, Vi mou Xpnotornoliouy XapaKInPloTiKA [ouU £X0UV
eCay9el anod 1g ewkoveg péowm twv diktuwv Resnet50, VGG ’16, kat Inception v3 avtiotoixa
Kal akoAoudouvtal and &va pnyo Veupmviko diktuo padi pe to ormoio £€xouv ekmaibeutet
axp1pog ota i6ia edopéva pe tov tedko tavounty (BA. Ewdva 8). Kade ywneopopog egayet
pa poPAsywn yia kade ocuvdetiky eikdva. H Srapmvia petadu tov yneoeopwv urtodoyilstat
0T OUVEXELd WG O APIPOG TRV S1aPOPETIK®OV PeTadyu toug rpoPAswenv. H unodeon eivai
OTl OTI§ YVWOTEG EIKOVEG Ol PNPOPopol da Telvouv va cUP@®VOUV, VR OTO "avolXtd oUVoAo"
ortou Sa tpafouv tuxaia opla Saxwplopou v KAdoewv 9a Stapavouv. Ia autdv tov Adyo

EMALYOVTAL TEAKA 01 CUVIETIKEG E1IKOVEG TTOU TIPOKAAOUV TIG PEYAAUTEPES TIHES draprviag.

ArnoteAéopata

Ta v a§lodoynon g pebddou xproyornow)Onke 1o ouvodo dedopévav tng PCL. Adyw
TOU MIKPOU aplfpou KAtnyoplev eAdTiopdtev, dnpioupyndnKkav véeg TEXVNTEG KATYOPIeg
IOU IIPOCOH01OVOUV TiBava odpdApata ot Ypap) napaynyng oneg ypapuika xapaypartd,
eAAElPEIS YPaPPAT®V OtV ermypadr], AeKESEG H1APOPETIKOV XPOPATOV, TIEPIOTPOPES AP1o-
1epa/6e€ia 90 polpwv kat replotpoPég 180 polpv.

[Ma v ouykpon v pedodev xprnotpornonOnkav ot petpikeg AUROC, F1, n avakAnon
elkovav ano 1g yvootreg (Closed-set Recall) kat 1ig kawogpaveig (Open-set Recall) katn-
yopieg. 'Opola pe mponyoupévesg, O ONHIAVIIKOTEPOS OTOX0G £ival 1 €AAX10TOTOINON TGV
OQAAPATOV ITOU TASIVOHOUVIAL OG APTIA £V OINV MPAYHATIKOU|TA £ival EAATIOPATIKA Kat
perpouvial péow twv duo avaxkAnoewmv. Ot perpikég AUROC kat F1 arnookorouv oto va
ermBeBalmoouv 0Tt 0 adyoplBpog €XEl IKAVOIIOINTIKY £Itidoon oty Tadivopnorn mpaypatka
APV NPOIOVI®V MG APTIa KAl KATA CUVETELd Sev ermPBapuvel TOV XE1P10TL) € TTOAAOUG TEPTT-
100G Xepoxivnroug eAéyxous. IMa tadivountég ou anartovv Stavuopatika dedopéva xprnot-
porolovjie Tpetg H1aPpoPeTIKOUG IPOEKIIAISEUPEVOUG £EAYOYEIS XAPAKTNPIOTIKOV H1E APXITEK-
tovikég Resnet50, VGG 16 kat Inception v3. Ztov [Tivaka 3 @aivovtal o1 1o UMTOGYXOHEVES
1€Sodol anod ooeg eAéyxOnkav pe 1§ petpikeg F1 kat v péon avdakAnon (p1€0og 0pog
avAxkAnong KAE10TOU KAl avolXTou CUVOAOU).

e 0Tl agopd toug e§aymyeis Xapakinplotkov, o Resnet50 yia 0Aeg oxedov tig pebodoug
elxe xapnAr avaxkAnorn oto avoixto ouvolo, eve 0 VGG enétuxe 0.9208 avaxkAnorn avoiXtou
OUVOAOU ardd pe €va pnxo veupeviko diktuo (VGG + MLP) xwpig va Xpelaotel KATIO0V €1-

81k6 Pnxaviopo yua to avolXto ouvolo. Amodidoupe autrv tv §1apopd oto PIKPOTEPO TS0
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Method Fl-score p-value Rayg p-value
DFM 0,8347 0,0011 0,9150 0,0187
OpenMax + VGG 0,9389 0,0005 0,9320 0,0004
PISVM + VGG 0,9533 0,0011 0,9556 0,0158
PISVM + Inception | 0,9577 0,0024 0,9448 0,0006
MLP + VGG 0,9633 0,0029 0,9264 0,0144
Proposed + VGG 0,9796 — 0,9756 —

Table 3. Xuykpion towv ueroikov F1 kat Avakjnong yia tig mo UmooyOUEVES Hedoboug X EL0-
UOU Kawo@pavav 1006w otig etkoveg ano Bpayioveg Suptotikodv unyavov g PCL BV.

unioboxng (receptive field) tou VGG mou tov kaB1otd 1o uaiobnto o MKPEG AETTOPEPELES
oy ewkova [13]. Tapotu oug neplocdiepeg PeOOOUG avixveuong avoixtou ouvolou ta 8-
aAy®peva XapaKInplotika raifouv onpaviikd poAo otnv TeAKI) avakAnon, 1) IIPOTELVOLEV)
p£9060¢ Kata@epe va MetuXel UPnAd 1mocootd ave§aptriig e5ayayea XapaKInploTKOV, 1
Atyo kalAutepo tov VGG '16.

O1 péSodot nui-ermPAentopevng padnong, eve £Xouv KaAég eridO0EIS OTO AvolXTO 0UVOAO,
eV KATA@PEPVOUV VA avayveopioouv eUKOAA €1KOVEG TOU KAEI0TOU OUVOAOU AOY® TOCO TOU OTL
£X0UV eKTASeUTEl POVO [ APTIEG E1KOVEG, 000 KAl AOY® NG PEYAAUTEPTG OPO10TNTAG HETASY
EAATIOPATIK®V KAl APTIRV TIPOIOVI®V oTd apX1Ka (un-ouvdetikd) dedopéva. T'a tov tedeutaio
Adyo uroAcsinovial kat ot pédodot enauvinong debopévav o1 oroicg dev Katapevouv va ouv-
Yéoouv 6edopéva apretda opola e ta dptia pe anotédeopa va pnv Bonbouv oty Sadikacia
pé9nong. To pelovéKtNpa autd avipetomidetal and my npotevopevn pédodo xdpn otn
peyadutepn eKPPAOTIKOTNTA KAl yevikeuowpotta tou StyleGAN oe oxéon pe maAiotepeg
apytektovikeg ITAA. Ao g pebodoug ouykplong Sexwpidouv Kupiewg n PISVM pe xapak-
NPLOTIKA TIoU €xouv egaxBel pe 1o Inception v3, kabog kat n nui-ermpPAenopevn DFM, ot
ortoieg £€Xouv otabepég erbO0ElS 08 OAeG TIS KAVOPAVEIG KAAOEIG KOVIA OTNV IIPOTELVOLEVT)
pédSodo.

Amo v AAAn mAeupd, otd PEIOVEKTHATA TG ITPOTEVOpEvnS 1eBodou ouykataAéyoviat
1000 1 peyaldn oe Sidpkela dadikaoia exnaidevong tou StyleGAN, 600 Kal 1 MApaAy®yn
HeydA®v mooot)tev ouvBeTIKOV §edopévev ou @lAtpdapovial @g U Xprowa amo v Oi-
adikaoia ynpodopiag. Ileproocodtepn epsuva oe 110 eAa@piEg apyiteKtovikeg [TAA ou nipoo-
PEPOUV OIS duvaTOTNTA EAEYXOU, 000 KAl OV ATOTEAECHATIKOTEPT MTAPAYOYT] HNEIOPEVOU
OyKOoU ouvOeTik®V Sedopévav da nrav orormpeg ya ) Bedtioon tng pebodou kat mbavaog

YEVIKEUOT] TNG O PIKPOTEPA OUVOAA Hedopévav.

Evioyuon tng Avlertikotntag tou Ta§iwvopntn pe Neupooupbo-
Awrn Texvnt Nonpoouvy
'Onwg unoypappiomxke 1 ernauvinon Sedopéveov Paociopévn oe StyleGAN anattei 1000

AUENPEVOUG UTMOAOYI0TIKOUG TTOPOUS 000 Katl erapkr) dedopéva exkmnaibeuvong. Ta va av-

tarnokplBoupe ot ouvoda onwg 1o MVTEC-AD, 1mou é€xouv povo Alyeg ekatoviddeg ma-
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padelypatov, Pepkeg @opég Kat Serddeg yla kdamoileg KAdoelg, mpoteivoupe pia Neupo-
OUPBOAIKY| IIPOCEYYIOT), 1] OIoia Kal arodelKVUETAl APKETA AVOEKTIKI] Og véd eAattopatd.
O otoyxog g NeupooupBoAikng TN [14] eival va cuyxwveuoel Uo untapxovieg KAAdoug g
TEXVITAS VONII00UVNG, OUYKEKPIIEVA TNV OUPBOALKY| TEXVITI] VONIOOUVH] KAl TV OTATIOTIKY
pnxavikn padnor, eAnidoviag va cuvbudoet ta 0@EAn KAl tov SU0 MPOOEYYIoE®V O 11a Ve
yvevid pedodev TN [15]. H oupBoAikr) TN Baciletal oe XE1pOII01nNT0UG KAVOVEG TTOU EKPPALOV-
a1 PE€0® AOYIKGOV TUM®V KAl OVIOAOY10V, £V 1] Ztatiotiki Mnxavikr) Madnorn xapaktnpidetat
aro pebddoug Onwg ta veupwvika Siktua 1ou pabaivouv areubeiag ano debopéva. Evo 1
oupBoAikr) TN propel va Adfetl autopatornotnpéveg anoPAcelg YP1YopeS Katl EMeSHynotHeg,
arattel onpavikin npoordfela and ePrelPoyvelIoveG TOU TOPEA TTOU Ad@opd (IT.X. 1aTPlKi)
d1ayvmon), ot oroiot KaAouvidl va CUYKEVIPOOOUV Kadl va K®OOIKOIIO)ooUV 1] OUPBOAIKD
YVQOT] O€ OVIOTTEG, OXEOEIG METASU OVIOT|TOV KAl TOUG KAVOVEG TTOU H1EMOUV AUTEG TIG OXE-
oelg. ErumAéov, ta mpoxuntovia ocuotnpata yepidovial apgionpa 11 SopuPwdn Sedopéva,
OTI®G AUTA ITPOKUITIOUV Of IMPAYHATIKEG OUVONKeg Asttoupylag, pe ARApPITo Tporo. Avit-
9¢10g 6£6011€EVO-KEVIPIKEG KAl OTATIOTIKEG IIPOOEYYioelg, onwg ta Babid Nevpovika Aiktua,
Xepidoviatl ermtuxng t€tola Hedopéva e anotédeopa va £Xouv Bpel OUCLAOTIKI] £QAPIOYH
0€ TOJElg OM®WG 1 6PAOT] UTOAOYIOT®V KAl 1] €edepyaocia Quolkng yAwooag. Qotdco, av-
Tpetenidouv diAa mpoBAnpata onwg n adiagdavela ava@opikA HE TIS E0NTEPIKEG TOUG ALl-
TOUPYiES KAl @G €K TOUTOU 11 éAAewyn adloruotiag, 1 éAAelyn eupwotiag oe KuPepvo-ermdLoetg
Kat dyvooteg €10660ug [16][17], kabwg kat n anaitnon moAdov Sedopévav exknaibeuong
Kal n evaiodnoia oe avicopportieg dedopévav [4]. Ze aut v gpyaocia Xpnotponoloups
v NeupooupBodikr) TN yia tnv avdnon g YeEVIKEUOTG £vOG OTATIOTIKOU Ta§lvountr), £1ot
wote va kabiotatal mo avlektikog oe kKawvodaveig e10odoug, SnAadn véoug turoug elat-
TOPATEV Tapayeyns. Edikotepa ekpetaddsudpacte ty £YXUOT OUPBOAKOV KAVOVOV NECK
10V Aiktuev Aoyikou Tavuotr), ot ortoiot ocupBadilouv pe TG arnopAcelg VoG YEVIKOTEPOU Un
EMBAETIOPIEVOU AVIXVEUTH] KAIVOPAVAV SeBOPEVRV, 0T OUVAPTNOL ATIOAEIAS £VOG eTBAETIO-
HEVOU TASIVOUITH] IIPOCAPHIOOHUEVOU OTO CUYKEKPIPEVO UMo e&étaon rmpoPAnpa. Eveo ard
Bovog tou o tadvountig Xwpig eniBAeyn mapayet moAdd weudwg Ystika otoixeia, o ouv-
duaopodg tou pe tov pn eruBAernopevo tadivount) péow g NeupooupBoldikng TN €xel wg

arnotédeopa audnuéveg Suvatdtnieg avayvopiong Kavopavey e1008mv.

Mé£906og

Xpnotporowwviag tm NeupooupBoAK:n TeXvNTr] VONIOOUVH], KAl CUYKEKPIPEvVA ta Alk-
wa Aoywkou Tavuotr] (LTN), gprdodogoupe va ouvbudooupe ta o@éAn tov pedodov padnong
X0pig emiBAleyn pe autd tev enorteuopevav pedodav. Eve ot mpoteg arnodidouv kada
OTO YEVIKOTEPO TIPOPRANpa tng aviyveuong kawvodpavev £1006wv, ol ermBAeniopeveg €Sodot
HIopouV va Padouv oAU KaAd Mg va avayveopidouv ta CUYKEKPIHEVA EAATIONATA TTOU EH-
@avidovtatl oto ouvolro debopévav ekrtaideuong. [MapdAAnda pe 1ig rpoavadepOeioeg IIPOKAT)-
O€1§ KATA TNV AUTOHATOOIN0T) TOU OITTiKOU £AEYXOU ITOI0TNTAG, 1] YV®OI] TRV E01K®OV OXETIKA
He 1o T ouviotd gAdattopa Sev priopei va KodikorowBel mArjpwg os §ekdBapoug Kavoveg,
KATL TI0U arnotedei dAAo €va eprodio otlg CUPBOAIKEG KAl VEUPOOUNBOAIKEG TIPOOEYYIOELG.

Qotooo, pia NeupooupBoAikr) IPooEyylon PIopel akopa va enapeAndet anod cageig, aida
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B kaBoAikég neputoetg (Y., otav undpxouv cageig evdeilelg eAattopatog, adda 1 €x-
@paocn autev v evbeifenv Péom kavovev dev propel va eivat kaBoAkd spappooipn ya
Kade mapddetypa 10U ouvolou SebopEvev AOY® TV MOAADV Kal H1aPOPETIKOV UITOTIEPTIT-
TWoE®V). AUTEG 01 TIPOKANOelG pag odrynoav va srudégoupe ta LTN kabog autda Sev ernBal-
Aouv auotnpd 10ug oUPBOAIKOUG MEPIOPIOROUS TOUG, EMMTPENOVIAS £101 PeyaAutepr suedi§ia
ot Hatineorn v oupBoAK®V Kavovey. ErmmAéov, n yvoon tev $ekabapov eAattopdtov
AMOTUTI®WEVH 08 OUPBOAIKOUG KAVOVEG UItopei akopa va agloronei yia tny ermtayuvor) tmg
eknaideuong oe oUYKP1OL HE Evav KAAOIKO aAyopiBo enmomteuopevng padnong.

Mia onpaviiky muxn tov AIKTuev Aoy1KoU Tavuotr) €ivat o Tportog e ToV 0IToio ot Ieplop-
1opol petaoxnpati¢oviatl oote va sivat Sradopioprot Kat va anotedovv pepog g dradikaoiag
ekmnaideuong. Auto ermTUyXAVETAl PEO® P1AG TEXVIKEG ITOU OVOPALETAL «YEI®OT)» 1] Ortoid givat
TTIOAU KOVTd 0T1§ aca@eig Aoyikeg. IT10 ouykekpipéva, KA9e PNEPOVOMEVT TIPOTAOT 1) YEYOVOS
Kodikoroieital p€ow evog oAudidoTatou Tavuotr], 0 OT010g OTNV TEPITITOOT] 1Ag AVIIOTOIXEL
oe 81avuopaTIKEG AMEIKOVIOELS TIOU e§dyovial ard TG £koveg e100dou. Ta ratnyoprjpata
HITOPOUV va £PpAPPOCTOUV 08 AUTOUG TOUG TAVUCTEG HE T Pop@r] diadopioieov padbnpuatikov
OUVAPTOE®V TTIOU UIOPOUV EITIONG VA £XOUV TIPOOAPHOOIIIEG TTAPAPETPOUS NECK PNAadnong
OM®G ta TeXVNTA veupevika diktua. H epappoyn aviov tev kamyopnpdatov 9a mpénet va
arodibel pa mpaypatkr tur petaiu 0 kat 1 mou avuotoixei otov Badbpd adnbesiag tou
KATNyopnatog mou epappodetat o pia 1) roAdardég npotdoelg. Me Bdon autd, ot Aoyikoti
TEAEOTEG PTTOPOUV VA XP1 OO0 00UV yid va ouvudoouv §1adopeTikd anoteAéopatd Katn-
yopnuatev. a napddetypa, éva Aoyiké a A b pnopei tdpa va urnodoyiotei og ab kat to
a = b umnoloyietal ®g g eavb < anlavb>a Puokd, urdpxouv MOAAEG H1APOPETIKEG
avtioTolyioelg anod ) AOYIKI MP®ING TAgNg IPOog TOUG MPAYHIATIKOUG TeAEOTEG, TIOAAEG ard
11§ oroieg meptypagdoviatl Aermtopepws oto [18]. Agpou yivel n Aoyikr rpotaocn Sradopion,
0 Babpog kavoroinong g propet va rpootebel g 0pog g ouvdaptnong anwieiag rov Sa
BeAtiotortonBeil katda ) Siapkela g eknaidevong.

H «yeiworp tov oupBoAdikov kavovev tou LTN os Siadopioieg mpaypatikeg ouvaptn-
O€1G TOU ETUTPETIEL VA TIEPLOPIoEL €vav aAyoplOpo OTaTIOTIKIG PNXAVIKAG Nadnong €10l ®ote
va 1TAnpotl toug PoKkaBoploEvoug cUPBOAIKOUG KAVOVEG KATA Tr (AOoT eKmaidsuong tou.
Tautdxpova, 1n aglornoinon autev TV Kavovev IPoUrtiofEtel v Kadikonoinon g yvaong
€VOG £181KOU 0€ AVTIOTOXN HOP®N IMOU, OV MEPIMI®Or pag, ivat 6UoKoAo va ermteuyOei.
To oevdplo mapay®yng ImoU aVIPEIOIOUNE A@OPd O [l €UELAIKTY YPAPI] TIAPAYDYNG
pe ouxvég adldayég otg mpodiaypadég tou mpoioviog. Ot aAdendAAnldeg addayég kabio-
TOUV GUCKOAO Y1d TOUG (POPEIS MAPAYRDVIS VA AVAITTUEOUV APKETY] TEXVOYVOOia £101 QoTe
va kataAngouv oe éva mArpeg CUVOAO KAVOVRV Y1d TOV evIoropo edattopdtov. Ermréov, n
@Uon TV HedoEvev e1kOVag Kab1otd SUOKOATN T1) OUVOEDT] AUTHV T®V KAVOVAV HE TIG 1810TNTeg
OV eKOVeV. Mia 1810tta 6nwg, yla napddetypa, n opadonta mg ermeaveiag dev eivat
£UKOAO vad 0P10Tel WG OUVAPTNON-KATNYOpnua ernegepyaociag eikovag mou Sa xprnotporonOet
arto o LTN. TMa autoug toug AOYyoug Xp1otHootoupe £vav tasivopntr] Xwpig eniBAeyn otov
pOAo TOU £181KOU.

To KPUIP10 y1a )V £A0YT) £VOG TASIVOUN T X®PIG emiBAewn eivat va £xel Kadeg 1810t teg
avayveplong Kawvodpavev §edopévev Kat pia armir| mpooapiootjin UAomnoinorn. AKoAoUbov-

1ag ta arotedéopatd pag anod v nponyoupevn gpyaocia [17], erudégape to Isolation Forest
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(IF), kaBag TIPpoodEPEL Pid TETOIA UAOTION 0T, XPELAETAL TIEPLOPIOHEVT) TIPOCAPIIOYT] KAl EXEL
artoberxOel otl amodibel kadd oe pia mokidia ouvodwv Sedopévav [19]. Tlapa tnv uynin
anodoorn oe Ayveoteg 1KOVeG, 1o IF dev elval 1000 anoteAeopaTiko OTI§ YVOOTEG KATyopieg
1wV 6edopévav exknaidevong. Ta va Sermepdooupe autod T0 PEIOVERTIA SI10UPYTOAE TOUG
KAvOVveg IOV IEPyPAPOVIAL TTAPAKAT®, Orou 0 A givat o Paocikog tagivourn)g Multi-Layer
Perceptron (MLP) kat o U o un emortteuopevog tadivountig Isolation Forest. Autoi ot
Kavoveg ermBadiouv oto MLP évav 1o AoyiKo meploplopo yia va akoloubei v é§obo U

otav nPoBAETEL €va eAdTIONd.

SatAgg{[Vx(lS(x) =1 = Ax)=1D]A
[Vx(ls(x) =0 = A(x) = 0)]A
[Vx(U(x) =0 = A(x) = 0)]}

O nmapandve turnog meplExel 6U0 MPOOYETOUG TMEPIOPICPOUG TIOU Arattouvial yid v
tagwvopnon kat Staoeadifouv ot i ipoPAeyn A(x) sivatl cUpE®VL He TV eTKETA rorteiag
Is(x). 'Etot, 0 Baoikdg tadivoun g A exknatdevetal Povo yia va 1Kavortolel 10 0UVOA0 Kavovev

rou neptypdopetat. H mAnpng diadikaoia exknaibevong anekovifetat emiong og daypappa

oto ZX.8
MLP (A)
Inference
- Resnet50 e
- TR
1] embeddings (X) A(x)
WA .
;E‘_x_ Training
— L<“(_;;° ._’ .LJ'UF,-l_q_q{ Va(lg(x) =1 = Afx) = 1)]A Feedback
uE)
- Var(lg(r) =0 =% A(x) = 0)]A
Isolation Forest (U) ' [_, Wa(U(z) =0 —> A(z) -“ll} ]
Constraint
Is(x) Loss
Figure 9. Awadicaoia exnaibevong tou LTN
AnotcsAéopata

Avagop1kd pie ta arotedéopata ota ouvoAa dedopévav rpoioviav tou MVTEC-AD BAcroupie
d1apopa kowva potifa. Ilpwotov, Sev amotedel éxmAndn to yeyovog ot to Deep Feature
Modelling (DFM) ermtuyxdvel ta UpnAotepa anotedéopata ooov apopd v AUROC kat v
axkpifela, kabBag eival pa npi-enortteudpevry Pedodog mou eknaidbevetat poévo oty "dp-
Tia" Katyopia Kat eMOpévesg eival KAAUtepn OtV avayveplon tg. Xtig U0 PETproelg
avarAnong, wotooo, PAfrioupe ot to LTN Eemepva to DFM oxeb60v 0 OAeg TG TIEPUTIOOELS,
pe e€aipeon v avakAnon avoltou cuvoAou yla ta ouvolda debopévav "leather” xkat "grid".

Zta nieploootepa ouvoda ebopévav emruyyavet emiong vywndotepn Pabpodoyia F1 n oroia
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Abstract

AaroteAél pa o oQaipikr] PETpnorn g eridoong oto cuvodikod nPdRAnpa, e§looppornviag

Vv arodoor) PEtady TV KATNYOPIHV APTIEV KAl EAQTIOPATIKOV [TPOTOVI®Y, Vo ennpealetat

AlyOtepo aro g avicopportieg KAACERDV.

Dataset | Method AUROC Prec. Fl-score R_open R_closed
MLP | 92,89 £ 1,08 | 95,04 = 2,58 | 83,47 £ 2,45 | 48,13 10,67 | 74,80 13,30
OCSVM | 74,23 + 2,86 | 63,01 2,79 | 72,08 + 1,70 | 59,64 + 6,17 | 59,26 + 7,11
Carpet | IF. | 8680+ 158 | 70,56 + 2,58 | 79,39 + 2,42 | 86,00 = 3,01 | 81,06 + 4,60
DFM | 98,44 = 0,27 | 99,45 + 0,47 | 84,08 + 1,26 | 79,37 + 4,87 | 79,59 + 4,26
WSVM | 72,63 + 2,00 | 58,81 + 8,74 | 58,48 + 10,11 | 63,86 + 15,12 | 84,20 + 8,85
LIN | 97,47 + 0,08 | 88,66 * 3,66 | 91,74 * 2,04 | 89,68 * 4,00 | 99,53 0,72
MLP | 93,87 = 1,11 | 98,66 + 0,81 | 78,99 = 1,64 | 51,28 5,31 | 94,20 * 2,81
OCSVM | 71,20 + 2,71 | 72,82 + 2,88 | 66,18 + 2,19 | 57,33 + 5,34 | 57,93 + 5,68
Capsute| IF | 8125+244 | 7566+303 | 71,72 +2,93 | 7346+ 539 | 67.46 + 4,31
DFM | 98,55 + 0,61 | 98,72 + 0,64 | 83,02 + 3,78 | 83,77 + 5,03 | 82,80 + 8,48
WSVM | 72,79 + 6,09 | 56.18 + 2,57 | 42,96 + 3,08 | 67,46 + 8.32 | 87,13 % 6,02
LIN |85,92 * 11,1983,19 10,88 66,79 * 23,35 | 91,28 * 8,57 | 99,80 0,31
MLP | 72,98 * 2,80 | 76,20 + 4,98 | 81,02 + 1,01 | 17,46 + 3,99 | 72,53 + 8,75
OCSVM | 41,32 + 2,87 | 30,52 + 2,50 | 66,82 = 1,79 | 26,13 = 4,88 | 24,13 = 9,17
Grid IF | 47,65+2,72 | 33,17 + 1,84 | 63,64 = 1,98 | 36,80 + 6,02 | 35,66 + 8,97
DFM | 93,60 + 1,20 | 91,53 + 2,55 | 81,23 + 1,84 | 68,57 + 5,97 | 69,13 + 5,85
WSVM | 40,18 + 2,25 | 38,68 + 5,10 | 58,52 + 7,22 | 47,51 + 12,15 | 63,80 + 12,29
LIN | 81,42 + 6,80 | 74,28 + 11,82 | 84,47 * 4,78 | 62,22 + 13,08 | 86,13 * 7,09
MLP | 86,62 = 1,60 | 95,82 £ 3,23 | 65,88 + 3,60 | 32,72 * 13,68 | 66,06 + 12,28
OCSVM | 58,90 + 2,01 | 68,79 + 1,71 | 56,98 + 1,45 | 53,57 + 4,82 |58,80 + 11,84
pitl IF | 68,28+1,89 | 72,19+ 1,78 | 60,16 + 2,26 | 64,13 + 4,37 | 58,53 + 9,86
DFM | 98,21 + 0,35 | 99,84 + 0,22 | 67,84 + 3,52 | 70,10 + 4,16 | 70,86 + 9,62
WSVM | 62,05 + 5,00 | 70,44 + 3,56 | 56,28 + 5,87 | 54,82 + 11,92 | 74,40 + 8,62
LIN | 95,43 + 2,66 | 95,01 + 1,73 | 88,36 « 3,43 | 87,92 * 6,06 | 95,33 « 2,73
MLP | 97,74 = 0,87 | 99,38 + 0,75 | 87,37 + 2,86 | 60,88 * 10,75 | 96,20 + 3,53
OCSVM | 66,48 + 3,35 | 62,44 + 2,31 | 68,22 + 2,02 | 55,86 + 6,56 | 57,73 = 7,79
Tile IF | 87,77+225 | 71,91+ 1,69 | 77,88 + 1,69 | 84,40 + 5,94 | 82,00 + 8,21
DFM | 99,34 + 0,17 | 99,69 + 0,34 | 83,65 + 0,26 | 73,06 + 9,41 |79,40 + 13,42
WSVM | 65,36 = 6,65 | 57,08 + 5,94 | 56,64 = 9,17 | 54,84 + 10,17 | 85,46 = 5,14
LIN | 97,92 = 1,60 | 91,13 * 3,00 | 93,02 2,68 | 90,97 7,18 | 96,86 * 2,61
MLP | 97,54 = 0,95 | 97,07 = 1,01 | 86,48 2,32 | 62,93 £ 8,59 | 93,93 = 3,02
OCSVM | 70,56 + 3,60 | 68,39 + 2,94 | 71,16 + 2,65 | 64,97 + 5,99 | 49,80 * 6,52
Leather| IF |9293+107 | 7935191 | 85,62 1,65 | 96,35 + 1,70 | 95,26 + 3,14
DFM |99,97 + 0,01 | 99,92 + 0,01 | 97,60 + 0,77 | 97,91 + 1,07 | 95,73 + 1,47
WSVM | 60,39 + 4,61 | 70,56 + 7,60 | 68,98 + 7,79 | 49,06 + 15,13 | 81,26 + 4,18
LTN | 99,00 = 1,00 | 96,42 = 1,96 | 95,30 * 3,44 | 89,73 + 12,65 | 99,66 * 0,71
Table 4. Comparison of methods on the various MVTEC-AD product datasets

ZUVOAIKA, TA TEIPAPATIKA FaAG ATTOTEAECPATA UTTOHEIKVUOUV 0Tl Td §1KTUa AOY1KOU TAVUOT)

(LTN) xat n povtedoroinon Babov xapaxkinpiotikev (DFM) uriepéxouv otabepd os oxéon e

aAAeg 1ebodoug oe TIoAAEG petprjoelg. Ta LTN umnepéxouv 1060 OtV avakAnor avoiXtou 000

KAl 0€ KAE10TOU GUVOAOU AOY® TG 1KAVOTNTAG TOUG VA EVOOUATHOVOUV OUPBOAIKOUG KAVOVEG

ot Swadikaoia padnong, napéxoviag £va Sopnpévo mAAiolo MmouU eVIOXUEL TV KAVOTNTd

TOU PIOVIEAOU Va VEVIKEUEL Of VEA €AATIOUATA. AUTO 10 MAEOVEKINUA £(val ONUAVIIKO OF

riep1Baildovia mapaywyng Ormou ta eAattopaia €ival ondvia Kat rmoikida, kadiotoviag tig

rapadooiakeg peboddoug Ayodtepo adiormoteg. O cupBoAikog cuAdoyiopog ota LTN erutpérnet

010 POVTEAO va xelpiletal o anotedeopatika dipopoupeva dedopéva aglomnoviag t) yvaoor)

ToU Topéa rou Kedikoroleital oe Aoylkoug Kavoveg. AviiBeta, to DFM éxet e€aipeukd Kain

anodoorn 6cov agopa 1o AUROC kat v akpifeia, kabog pabaivel oAU Kadd mmg MPETEL

va potadet éva «aptior mpoiov, EIMTPENOVIAS OTO0 HOVIEAO va KATAVOrOel KAAUTtepa KAl va

TaSVOUI0el Ta APTIA £VAVTL TOV EAATIORATIKGOV Seltypdatev. Qotooo, 1) AVIPETOINOT) TOV eAAT-

topdtov and 1o DFM pe ayvootkiotuko 1porno, nou dev Pacifetal oe ouykekpipéva dety-

pata eknaidsuong, cuyva odnyel oe xapnAn andb0or oTtov eEVIOOHO EAATIONAT®OV KAE10TOU

OUVOAOU Ot oUYKpP1o1 Pe dAAeg peBodoug mou reptAapBavouyv eAaTtOPATA KAE1I0TOU GUVOAOU

oto ouvolo 6edopévav exknaideuor|g toug. ‘Ocov agopda to MLP, avapevopeva anobibet ap-

KeTd KAAd otnv avayvoplon T®V KAAGE®V OTIG OTtoieg £Xel eknatdeutel, aAAd n anodoot| Tou
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emdeIvVOVETAL ONPAVIIKA 0TS Katvodaveig kKAdoelg (avoixto ouvodo). MéSobot orwg 1o One-
Class SVM (OCSVM) kat 1o Isolation Forest (IF) epgdavioav nieplopiopoug Kupieng Aoy® tov
VYnAev Peudwg JETIKOV TT0C00T®V TOUG OTAV AVIIHEIOITI{av MTOAUTAOKA KAt TOAU rapopiola
ortika 6edopéva KAAoNG OTwG OTO TIAPOUo1aopevo ePBAAAOV IAPAYDYS.

O1 BedTiopéveg Kat o 1oopponnpéveg Babpiodoyieg avakAnong avolXtov Katl KAEIOTOV
OUVOA®V TG IMPooeyyong pag rou Paociletat oe LTN eival amotédeopa g 1Kavotntag tou
LTN, péowm g €10aywyng oupBoAK@V Kavovav, va oUviuddel TV 1Kavotnta ToU Y| £I0rT-
TEUOHEVOU TASIVOUNTE] VA aVIXVEUEL E10060UG EKTOG KATAVOUTS (UWnAr] avaKAnorn oto avotyto
OUVO0AO) KAl TV IKAVOTTA TTIPOCAPHOYHS ota Sedopéva tou TpoBAniatog Tou Bacikou otatio-
TIKOU tagivountr] (UWNAr avdakAnor oto KA£10t6 ouvoro). Eival onpavukoé va onpeindei ot
ta LTN empénouv otoug oupBoA1koUg Kavoveg va errpedlouVv 10 PIOVIEAO OUVEX®OG KATA TI)
dlapkela g ekmaideuong Kat £101 £X0UV peyaAutepn enidpact) ot CURIEPIPOPA TOU. AUTth 1)
wKavotnta kadiota v nipooéyyton LTN 18avikr) yia éva oevapio ortaviotntag dedopévav orou
TIPOKAIOELG OTIOG XAPNAOU MANOUOHO0U 1) eVieADG VEEG KATNYOPieg EAATIONAT®OV peTpLddoviatl
péo® 1ou oupBoAikou okedoug tou LTN, eved ot undpyouoeg KAdoelg pe apketa dedopéva
aAAd lowg peyadutepn opowdTnTa HE Vv Aptia Katyopia avayvepidovial kaAutepa ano 1o

OTATIOTIKO OKEAOG.

ZUVELOQPOPESG

e [a IV AVIIPETRINON 1§ AVIOOPPOTIAG T®V KAACE®V avartuyxOnke pua véa pedodog
napayeyng ouvletkov dedopévav factopévev os tapadetypata rmou Ppiokovial Kovid
OT10 0p10 petady “aptiag” Kat “un-aptev”’ kKAdoswv. H pédodog autr), cuvbudloviag tnv
axkpifela OV IEXVIKOV UntepSetyplatoAnyiag Kat t1ig ouvOetikeg duvatotnteg tou BigGAN
KATAQEPE VA ETITUXEL BEATIOON OV AVAKANOT TOU VEUPMOVIKOU S1KTUOU, HEIWVOVIAG
TAUTOXPOVA TOV XPOVO MApAy®yHS 8e80EVRV O OXEOT) Pe TIG AAAEG TEXVIKEG Baoiopiéveg
oe [TAA.

e ['a tov Xe1plopd Kawvodpavav 1066wV, avartuxbnke pa véa pédodog Baoiopévn otnv
enavgnorn dedopévav pe xprion tou StyleGAN, 18iaitepa mpooappoopévn oe oUvoAa
Sebopévav pe peydAn opootta Petady Twv KAACE®V, OMKG autd IOU ouvavilouvidl
otov Blopnxaviko eédeyxo. H véa péSodog Baoidetat 1ooo oty eukpivela tou StyleGAN
000 Kat otV duvatdtnta akpBECTEPOU Katl Pe AOYIKY onpacia Xe1plopou g napay-
@Y1S v ouvBetikov Sedopévav. Emiong onpavuko pddo émaide 1o gidtpdpiopa tev
Mapayopevev 8edopévav NEow TG MmOcoTIKooinong tou Badpou dadwnviag dradope-
TIKGOV Ta§vounov rou €xouv ekrnaideutel ota apyika dedopéva. 'Etot Staopaliletal ou
1a texvntd Hedopéva avurpooIEUouV T0 “avolXtd OUVOAO” Kal PItopouv va emauvir)-
OOUV EMAPK®SG TA APXIKA GOOTE va KAO10ToUV Tov TeAKO ta§ivourntr) mo avOeKTKO ot
véo-epgavifopeva dedopéva kata v nepiodo ouvexoug Asttoupyiag. H véa péSodog
ouyKpiONKe Pe 11§ UndAoreg Kat epdpavioe BeATopéva anotedéopata o mIPayRatiko

ouvolo Sebopévev amnod v Plounxavia.

e TEA0G MG CUVEXELA TG TIPONYOUNEVNS 1EB0S0U Yia EMEKTAOT O PIKPOTEPA GUVOAQ Oe-

dopévev ota oroia Sev eivatl e@ikto va eknaideutet 1o StyleGAN £yive Xpr 01 TEXVIKGOV
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Abstract

NeupooupBoAikng Texvntng Nonpoouvng. Zuykekpipéva, xpnotporornke éva Aik-
TUO AOYIKOU TAvVUoTr ToU eKPpalet TG £§060UG £VOG AVIXVEUTE] KAVOPAVOV £10060V
pe meploplopévn emiBAeyn ©g oUPBOAIKOUG KAVOVEG KAl TOUG XPIOIHOIOLEl yia va
0dnynoet v eknaideuon evog veup®vikou Siktuou. O aAyopiOpog mou MPOKUITIEL
delyvel Bedtiopéva amotedéopata o OUYKPLon pe aAAeg oxeTikeég p1ebodoug, 16iwg 600V
a@opad TV avakAnon €AdTtiopdiov, pe ty évvola ot Atya eAattopata mapapevouy
anapatnPnIa aKopd Kat av sivat eviedwg kawvogpavr). Emnpoodétng, ermtuyyxavet
napopola 1 KaAutepa dAmoteAéopata avaxkAnong and nui-ermPAenopeveg pebodoug
KATA TOV XEPI010 VEQV EAATIONATOV, SEMEPVAVIAG TG OPMG O EAATIOIATA TTIOU AVHK-
OUV 0TI KATAVOPEG TV KAAoewV eKaideuong (KAe10td oUvodo). Le oUyKplon pe dA-
Aeg eruBAenopeveg peBodoug, diatnpel vPnArn anodoon oe yvootrd edattopata, aAid
BeAtidvel onpavukd oe véa. O ouvduaopog IOV MAEOVEKTNHATOV AUTOV TOV 5U0 TUIOV
pedodwv anekovidetal péow uvywnidtepov Babpoloywv Fl ota mepioocdtepa amod ta

ouUvoAa 6edopévav Soxipurg.
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Chapter ﬂ

Introduction

The main focus of this thesis is on machine learning applications in industrial envi-
ronments and on specific practical problems that arise due to the difficulty of collecting
training data such as Class Imbalance and lack of Resilience to Novel Input Data. The
technological and research environment in which these problems are examined is that
of Industry 5.0, a term arises as an extension of the 4th Industrial Revolution (Indus-
try 4.0), characterized by technologies such as the Internet of Things, Cyber-physical
Systems, Digital Twins, Big Data and Artificial Intelligence. Against this background In-
dustry 5.0 aims to combine human capabilities with that of intelligent machines through
simulation systems and Human-AlI collaboration. [1]

More specifically, the present work of research focuses on the Automatic Quality Con-
trol of Industrial Products through Machine Learning techniques for Computer Vision. In
the context of Quality 4.0 (part of Industry 4.0) the goal is to create self-evaluating systems
that can automatically measure the quality of their output and decide autonomously on
its acceptance or rejection. Deep Learning, due to its adaptability (e.g. to visual changes
in scale or rotation of the image), has helped a lot in this, but at the same time it requires
a large amount of training data and is not stable to samples outside the training distri-
bution. One solution being explored in the context of Industry 5.0 is the development
of Human-Machine collaboration systems where human intelligence and experience will
compensate for the shortcomings of Al algorithms.

While researching the application of Deep Learning techniques into the Automatic
Quality Control of manufacturing products, three main challenges were identified, which

serve as the focus of this work:

1. The scarcity of training data, which is particularly noticeable in products with
defects. This is because defects occur less often on production lines than good

products, leading to an imbalance between the two classes.

2. The high visual similarity between good and defective products which signifi-

cantly hampers the ability of classifiers to distinguish between them.

3. The appearance of novel defects, that during the continuous operation of an

already trained algorithm can lead to incorrect classification of products as flawless.
To deal with class imbalance, a method was developed to increase training data be-
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Figure 1.1. Fundamental Principles and corresponding Technologies of Industry 5.0 [2]

longing to minority classes. The synthesis of the data was done with techniques aimed
at guiding the output of Generative Adversarial Networks (GANs), with the aim of over-
sampling examples in which the predictions of the classifier show low reliability. The
augmentation of such data may provide greater benefit to the training process. [3]

Similar techniques were explored for handling novel inputs, this time with the aim of
synthesizing boundary examples using StyleGAN. Although the data generation process
developed starts from the training distributions, the boundary data, thanks to the gen-
eralizability of StyleGAN, is generated at the edges of the distributions known at training
time and creates a boundary between known and novel inputs. [4]. As StyleGAN requires
a significant amount of training data, we applied the concept of NeuroSymbolic Al to ad-
dress smaller datasets. The proposed NeuroSymbolic method combines, using symbolic
rules, an unsupervised classifier specialized at detecting novel defects with a supervised
one specialized in performing optimally in the known training distribution.

As for the similarity between good and defective products, this was taken into account
in both of the above methods. In particular, GANs with very detailed image synthesis
capabilities were used, while, where the amount of data allowed, the final classifiers were

trained directly on the problem without using transfer learning from pre-trained networks.

1.1 Machine Learning and Al applications in real-life industrial

Systems

The holy grail of modern Al research is the achievement of Aritficial General Intelli-
gence (AGI). The first steps towards AGI include systems that can perform a variety of
tasks including open-ended learning, innovation and human-like reasoning [21]. Ad-
vances in computer vision including various top-scoring methods on the ImageNet [22]
benchmark and more recent advances such as GPT-3 and GPT-4 [23][24] by OpenAl
or Deepmind’s Gato [25] have inspired a significant wave of progress, especially in the

domain of general-purpose Large Language Models with multi-modal outputs.
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While the above innovations are definitely exciting, care must be taken when applying
them to real-life domains such as an Industrial Plant, mainly associated with valid con-
cerns over safety and reliability of such systems. For instance, computer vision systems
are known for being sensitive to small differences in input [10], something that might
lead to unexpected wrong decisions during the continuous operation of said systems as
part of a large cyber-physical deployment. Application of Al in industrial environments,
as well as the present thesis, focus therefore more on so-called "Narrow Al" applications.
Narrow Al refers to Al systems that focus on performing well, sometimes achieving even
super-human performance, on a very narrow task such as visual defect classification,
speech recognition, domain specific recommendations or demand forecasting [21]. Nar-
row Al, has undergone widespread adoption in manufacturing, transforming work design,
the allocation of responsibilities, and the socio-economic dynamics of the manufacturing
workplace. While Al systems in manufacturing can provide valuable insights, automate
repetitive tasks, and assist in decision-making processes, human input still remains cru-
cial, especially in scenarios requiring complex judgments or ethical considerations [26]. A
logical consequence is a shift towards the development of synergistic Narrow Al systems
that combine the respective strengths of humans and algorithms. The following sub-
sections contain a short review of the main research and industrial trends and challenges

that brought human-AI to the forefront of industrial Al research.

1.1.1 From Industry 4.0 to Industry 5.0

Stepping into the "Information Age", the rapid development of ICT together with their
democratization through open-source initiatives, have had a significant impact on the
manufacturing domain on a worldwide scale. Ranging from the United States with the
"Advanced Manufacturing Partnership" to China with "Made in China 2025", government
initiatives have sprung up to encourage and facilitate the digitization of industry. The ul-
timate aim of theses initiatives are manifold, with societal goals such as coping with aging
populations and a diminishing workforce to making the industrial sector more competi-
tive, efficient and most importantly environmentally and economically sustainable. [27].

The concept of Industry 4.0, first introduced at the Hannover Industrial Fair in 2011,
represents a significant shift in manufacturing. At its core, Industry 4.0 focuses on en-
hancing operational efficiency and productivity in manufacturing by utilizing intelligent
systems that can automate processes, analyze data in real-time, and make informed
decisions. It emphasizes the integration of advanced technologies such as the Internet
of Things (IoT), cloud computing, artificial intelligence (AI), and Cyber-Physical Systems
(CPS). This paradigm shift has led to the development of smart factories where machines,
systems, and humans are interconnected, opening up the field for seamless communi-
cation and collaboration. However, while Industry 4.0 has primarily focused on techno-
logical advancements, there has been a growing recognition of the need to complement
these technologies with human-centric solutions. This realization has given rise to the
concept of Industry 5.0, which emphasizes the synergistic collaboration between humans

and machines, ensuring that the advancements in technology do not overshadow the
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importance of human input and well-being. [2]

The integration of software devices associated with the collection of data and its pro-
cessing towards decision making has given Industry 4.0 adopters a competitive edge but
together with that also a set of challenges. For instance, as Al algorithms get complicated,
to ensure safety and trustworthiness in the system, system designers, maintainers and
operators need to "peer through the black box", i.e. Al systems need to be transparent
and understandable [28]. Sometimes, these characteristics can be achieved by including
the "human-in-the-loop", so called HIL methods. Such methods could include active or
mutual learning [29]. In the former highly uncertain samples (according to the algorithm)
are sent to a human operator to label and are given increased importance in subsequent
model training rounds, so that the Als behaviour is improved. For these ideas to be
applied successfully in real-life production contexts, the gap between expert and non-
expert users needs to be bridged. This can be achieved through human-friendly intuitive
interfaces, such as for example spoken dialog systems that help the users interact with

intelligent machines easily while carrying out their task without additional burdens [30].

These challenges and their solutions tie in to the broader concept of Industry 5.0
aiming at adapting the efficiency gains of Industry 4.0 to advance the sustainability and
human-centricity of the industrial process. A prime example is the concept of Operator
5.0 [31], where operators are envisioned to work alongside intelligent systems that help
them complete their tasks, while guarding them from mental and physical stress. Such
a goal can be achieved through the combination of Industry 4.0 technologies, such as
wearable IoT devices measuring physical stress, together with Industry 5.0 Al systems
that formulate production planning collaboratively with humans, taking into account

human mental and physical fatigue.

As a further step towards worker well-being, Industry 5.0 aims to address the needs
defined in the Industrial Human Needs Pyramid [32], which among others includes the
building of trust between humans and machines together on top of workplace safety, lead-
ing eventually to worker self-actualization in a supportive environment. Special robots
named cobots , or collaborative robots, have been built for this purpose and represent
a tangible example of human-machine collaboration. These robots share physical space
with human workers, sense and understand their presence, and can perform tasks inde-

pendently, simultaneously, sequentially, or in a supportive manner [33].

Such semi-autonomous machines can take over physically frustrating and repetitive
tasks, while humans can move to more open-ended tasks - and more conducive to human
fulfilment - that tap into their critical thinking, creativity and interdisciplinary problem-
solving skills. Physical and mental frustration can very often be sources of human error,
thus leaving highly repetitive tasks to intelligent machines such as robots and cobots can

also reduce waste and cost making the manufacturing process more sustainable [34].

Viewing Industry 5.0 from a systemic viewpoint, around the technologies needed to
facilitate, three pillars main pillars can be identified as the main driving forces behind
the design and development of these technologies, namely: Safety, Trustworthiness and

Human-centricity [2].
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Safety: Refers to both mental and physical well-being in the workplace. This includes
technical challenges such as making sure Al decisions in cyber-physical systems are
reliable and controllable, without unexpected responses due to out-of-distribution
or maliciously targeted inputs (cyber-attacks) to endanger worker well-being as well
as the correct functioning of the production process. Under this umbrella fall also

the enhancements to worker well-being through Al systems mentioned previously.

Trustworthiness: Trustworthiness, though closely connected with safety, is relevant to
the controlability as well as the perception of controlability by the Al systems’ users.
Techniques such as explainable Al (XAI) and Active Learning (AL) are key in fostering
trustworthiness and encouraging the widespread adoption of Al in manufacturing
production lines. This means visualizing the AI’s decision process to human oper-
ators so that they can understand the reasoning behind a decision (e.g., through
feature importance scores) and also providing interfaces where users can help im-

prove Al decisions (e.g., by providing the correct label for mislabelled inputs).

Human-centricity: The aim here is to design intelligent systems with human needs,
competencies and desires at the center in order to promote a healthy work environ-

ment where workers can be productive and thrive at the same time [35].

In summary, the transition from Industry 4.0 to Industry 5.0 marks a significant shift
in manufacturing, focusing on a more human-centric approach. A key challenge is en-
suring that advanced technologies, such as Al and robotics, enhance rather than replace
human capabilities, maintaining a balance between automation and human input. De-
veloping intuitive, user-friendly interfaces is crucial to enable seamless human-machine
interactions, ensuring accessibility for all workers, regardless of age, gender, or educa-
tion. Through systematic planning and implementation, Industry 5.0 can leverage the
strengths of both humans and technology, offering numerous opportunities to revolution-

ize manufacturing and create a more sustainable and people-focused industry.

1.1.2 Data Lifecycle in Industrial ML Applications

From its artisanal origins in the Pre-Industrial era, manufacturing has evolved and
adopted many forms through continuous technological innovations both in the physical
and lately also in the digital domain. The increasing importance of data in the production
process has followed the same trend, making modern industrial processes more opti-
mized, tightly controlled and sophisticated than ever. In the pre-industrial years manu-
facturing products were handcrafted and produced on demand, which was usually small,
with knowledge being passed from one generation of artisans to the next or shared inside
guilds. It was not until industrialization and mass production arose, that manufacturing
processes came under closer and more scientific scrutiny. Starting from the monitoring
of a large workforce and the need to predict and meet mass demand, historical data began
being recorded on paper [36]. In the mid-20th century, the need to adapt to a more com-

plex, competitive and globalized economic environment intensified data-oriented efforts
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with statistics-based production management and operations research (e.g. demand pre-
diction, inventory management, intelligent sampling for quality assurance, floor layout
and process optimization, machine failure rates, supply chain optimization). A further
amplification of the importance and amount of data came about with the information age,
where computers were used to systematize the above processes through different systems
and paradigms such as Enterprise Resource Planning (ERP), Customer Relationship Man-
agement (CRM), Supply Chain Management (SCM). Additionally, production and design
simulation tools (e.g., CAD) and increasing machine automation together with the grad-
ual introduction of industrial robots gave manufacturers the capability to meet customer
demand with higher quality and speed at a lower cost [37].

Reaching today’s age, the wide proliferation of technologies such as Big Data and
Artificial Intelligence in the so-called “Smart Factories” have become evident [38]. In a
manufacturing context, “Big Data” refers to large amounts of heterogeneous data pro-
duced from multiple sources throughout the lifecycle of a manufacturing product. It can
also be characterized by the 5Vs [39]: Volume, Velocity (how close to real-time is data
acuisition and processing), Variety (multitude of sources), Veracity (of how good quality
is the data) and most importantly Value, which reflects the impact of data utilization
for desired business outcomes. This data typically originates from a variety of different
sources and can be classified accordingly into categories. Management Data is usually
collected by information systems such ERP or CRM and is mostly related with areas such
as inventory management, demand forecasting etc. This data is usually stored inside the
individual databases for these systems. Equipment Data on the contrary gets collected by
IoT devices and is used for monitoring operating conditions or production equipment per-
formance. IoT technologies are also sources for Product Data, which can include context
of usage, environmental conditions of operation and biometric information of the user.
Finally, User Data and Public Data can be gathered from a variety of widely available
APIs and datasets. The first relates to user preferences and can be found in various
well-known e-commerce and social media websites, while the second exists in public (e.g.
government) datasets and can contain information such as industrial regulations and
standards [36].

The sudden availability of such vast and diverse data presents unique opportunities
as well as challenges for manufacturing businesses aiming to adopt big data technologies
into their business model. Before analyzing these it is worth diving into detail about the
different processing and transformation phases that need to be applied to manufacturing
data to derive the most business value out of it, namely the Data Lifecycle [40]. Typically
a manufacturing data lifecycle consists of the following phases: data collection, transmis-
sion, storage, processing, visualization, and application. Data Collection occurs mainly
through different IoT devices (e.g. smart sensors, RFID) placed either on the product
or the equipment and set to monitor their health status and performance. Additionally,
wearables can be used to monitor employees’ bodily and mental health status. This phase
also includes the collection of user and public data through different APIs or web crawling,
as well as management data provided by ERP or SCM systems. After collection, the data is

typically stored either as structured, relational (DB tables), semistructured (XML, JSON,
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graphs) or unstructured (multimedia, documents) data. Cloud computing technologies
play a big role here, making it easier to provision cost-effective, scalable and elastic stor-
age to meet heightened requirements for data velocity and heterogeneity. Above the Data
Storage layer lies the Data Processing layer, which aims at the extraction of knowledge
for successful business utilization of the data. Initially the data is preprocessed, cleaned
and reduced, meaning that duplicate or redundant data is removed, missing values are
removed or set to a default, low quality data is filtered out etc. After the data is ready it is
processed by the analytics algorithms which usually include Machine Learning (regres-
sion, SVMs, Neural Networks, time-series methods) and Data Mining (clustering, associa-
tion rules, anomaly detection) techniques, often applied at scale in a distributed to system
to make the most out of the available data. The clear communication of processing re-
sults to the end users is carried out in the Data Visualization phase with the assistance of
various graphs and charts as well as virtual reality technologies and smart terminals for
real-time data. As most of the processing, preprocessing and storage of data is performed
on top of large scale distributed systems that could entail substantial complexity such as
federated clouds or fog architectures, Data Transmission can be identified as an impor-
tant and distinct phase of the data lifecycle. It includes reliable and efficient techniques
for transferring large amounts of data with different formats and characteristics across
diverse network and computational components. At the very end of the data lifecycle
are the Data Applications which in addition to providing insights into the data and the
results of its processing, also drive a great deal of automated decision making. These
applications can be useful during different manufacturing processes, such as data-driven
product design, forecasting and deman analysis, quality control, equipment supervision,
failure detection and predictive maintenance.

The recent explosive growth of Big Data and the complexities and challenges in effi-
ciently utilizing it throughout its manufacturing-specific life cycle have led to a number of
initiatives that promote the proliferation of Big Data and IoT technologies in the industrial
sector such as Industry 4.0 in Europe, Industrial Internet of Things in the US, and the
Made in China 2025 [41]. These initiatives aim at providing guidelines for encouraging
the easy adoption of these technologies, especially by SMEs, and creating frameworks
for interoperability and cooperation across companies and related industry sectors. A
notable example is the creation of reference architectures such as IIRA and RAMI 4.0 [42]
that serve as common abstracted templates for building problem specific architectures
with a strong focus on easy integration and interoperability. There have also been efforts
to outline the future research directions and challenges in smart manufacturing, the most
characteristic such effort in the EU being carried out by the BDVA. In their 2018 [43] and
2020 [44] reports they identified several key research directions relevant to Smart Product
Lifecycle, Smart Supply Change Management and the Smart Factory.

Smart Factory research challenges are further split into Data Management and Life-
cycle, Data Processing Architectures, Data Analytics, Data Protection and Security and
Data Visualization challenges [43]. Regarding the management and lifecycle of data, the
integration of diverse cyber-physical systems and the availability of hererogeneous data

produced at different rates are primary concerns. So is the semantic interoperability of
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automation systems, usually achieved by the use of ontologies, aiming at the creation
of a collaborative information sharing environment. Data annotation is also a relevant
direction, it can be performed either on-the-fly or as a seperate processing step and it
is worth investigating different ways in which data (e.g., from sensors) can be put in the
right context (e.g., mapped to a specific product). Handling missing data is another com-
mon issue in the data lifecycle, since for example sensors might be off or fail for a certain
period of time. The challenges of data processing architectures are mainly focused on
where and how data-intensive computations will be performed. Available choices could
be edge servers, HPC infrastructures, clouds or federated clouds depending on require-
ments such as performance, data confidentiality and a company’s limitation of affording
or getting value out of computational equipment. Data analytics is probably the richest
category in research directions to pursue. Prescriptive maintenance is the enhancement
of predictive maintenance in that it tries to discover the causes of failure in a data-driven
manner, instead of just predicting them. Such methods can also be used to assist deci-
sion making at the management level through parametric analysis of business KPIs and
their corresponding risks. Modern ML techniques such as Deep Learning also play a
central role with applications in anomaly/fault detection and classification and quality
inspection. These can be further enhanced by investigating new patterns of data-human
interactions and also by moving some of the processing into embedded systems close to
were the data is produced (e.g., to gain more specialized insights into fault occurences for
one specific machine). Finally a large chapter of data analytics is simulation and digital
twins. Data-driven simulation models can create better opportunities for experimentation
and optimization of different production line/machine/cell configurations, which can be
made even more accurate through the provision of real time data by digital twins. Of
course in a complicated data-rich environment it is only natural for security and privacy
concerns to arise. The variety of communication protocols in IoT systems as well as the
cyber-physical aspect make smart manufacturing infrastructures not only vulnerable to
attack, but also enhance the impact of the attack which can now have impact in the
physical production line. Additionally the increasing reliance on data opens up avenues
of data corruption or malicious manipulation aiming to derail Al and data-driven models
and processes. Another important direction is to establish firm guidelines and protocols
about access and privacy of sensitive data and also apply anonymization in a reliable
but non-instrusive manner. Last but not least data should be clearly and intuitively pre-
sented to all interesting stakeholder, a concern of the Data Visualization domain. The
first category of stakeholders, the workers, should be able to obtain context specific visu-
alizations (e.g, when performing remote maintenance with the help of virtual reality) and
could also be helped in their work by natural language interaction interfaces powered by
NLP. Simulation and smart training environment can also aid their training and familiar-
ization with the modernized smart factory processes. Managers and decision makers also
need better visualization tools to understand the data produced in the smart factory as
well as the Al-based decision making process to spot patterns and gain deeper insights
into the factory’s processes. The integration of heterogeneous data and its presentation

through common visual interfaces can be combined with data navigation and annotation
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techniques, to achieve bi-directional learning between stakeholders and smart processes

through continuous feedback.

1.1.3 Challenges of Real-life Industrial ML Applications

Machine Learning results have been impressive in different research scenarios and
have been successfully used in commercial applications, most notably recommendation
systems and chatbot assistants. However, when it comes to model decisions influencing
happenings in the physical world the requirements become much stricter as the margins
for failure are required to be minuscule. These new constraints placed upon industrial ML
applications create a new set of research challenges mainly focused around the following
areas: Adaptability and Scalability, Data Availability, Data Privacy and Security, Safety,
Human-AI collaboration and Ethics and Compliance [45] [46].

Adaptability and Scalability: ML applications need to be successfully deployed and in-
tegrated into larger cyber-physical systems. For instance Industrial Internet of
Things (IIoT) systems often have a requirement for data to be processed in real-
time as it is gathered from sensors placed on different parts of the production line.
This means that models with fast inference times should be chosen and sometimes
that these models need to be deployed at the "edge", closer to where the data is
produced. Accommodating such pipelines is especially hard in industries that rely
on legacy systems and lack the infrastructure to host real-time data-processing
frameworks and state-of-the-art Deep Learning models with high memory and GPU

requirements.

Data Availability: While most research results feature clear-cut benchmarks and well-
defined datasets, collecting enough and high-quality data in real-life environments
remains a challenge. A typical application where this becomes an issue is visual
quality inspection, where the collection of images is an expensive process requiring
a precise setup that adjusts for lighting differences and keeps precise distances and
angles to produce a homogeneous dataset. Additionally the collection of images
of product defects is hard when defects are rare, needing many production cycles
to complete until enough data is collected. Another typical example is the collec-
tion of real-time data for production planning where concept drift and catastrophic

forgetting can lead to erroneous Al decisions [47].

Data Privacy and Security: Especially when it comes to worker wellbeing monitoring,
industrial ML application will need to collect and process potentially sensitive data,
it is important therefore for the appropriate data anonymization and privacy safe-
guarding techniques to be employed as well as to monitor adherence with the mul-
tiple regulatory frameworks. Security also becomes a risk, not only due to sensitive
data being at risk of being stolen or tampered with, but also the deployment of
ML models risks exposure to a variety of novel attacks such poisoning or inversion
attacks. In these examples a malicious adversary tries either to tamper with input

data to lead the model to wrong decisions (that translate to the selection of wrong
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actions in the cyber-physical system) or to infer sensitive data from a model’s output

by "inverting" its inference process. [48]

Safety: As previously mentioned, Al models whose decisions influence the physical world
have the potential to put human well-being at risk as well as the physical assets
of the factory and the production process. Therefore it is important, apart from
accuracy metrics, to also consider robustness to inputs that originate from a dy-
namic real-life environment and which might not always align with inputs viewed
by the Al during training. A useful technique that can be employed here is simula-
tion, either through virtual environments for reinforcement learning [49], or through
the targeted production of synthetic data that reproduces realistic out-of-training-

distribution scenarios.

Human-AI collaboration: Here the aim is twofold: the first part is to help human deci-
sion makers and operators trust Al decisions (when it is beneficial to trust them of
course) to achieve wider Al adoption. The second part is to create Al systems that do
not aim to replace humans (something that can often be risky, or even impossible),
but that work synergistically with humans and can combine machine precision and

consistency with human open-ended thinking and common sense.

Ethics and Compliance: As Al systems become widespread in modern industry, a num-
ber of regulatory frameworks have been created addressing ethical issues such as
bias, fairness and accountability. Prime examples are the European Union’s Al Act,
which categorizes Al systems according to their risk and accordingly imposes differ-
ent levels of human supervision. [50] Similar regulations have been introduced in
Canada, the United Kingdom and China. [51]

While all of the above challenges touch upon this thesis, our main focus will be on
the (lack of) Data Availability as well as the Safety of Al systems used in visual defect

recognition.

1.2 Automated Visual Quality Inspection in Manufacturing

Quality evaluation is an arduous and repetitive task that would greatly benefit from
automation. Here we focus on visual inspection as it is a common usecase and a good
example for showcasing the effectiveness of machine learning models. The benefits of
an automated approach are that it can be a scalable and elastic form of non-destructive
testing, able to adapt to production volume fluctuation more easily than a fixed number
of human workers. Additionally human error phenomena such as inspector-to-inspector
inconsistency are largely reduced, providing a more objective and consistent criterion
for product quality [52]. Especially given the fact that several modern Deep Learning
techniques already achieve higher performance in computer vision tasks [53].

Automated visual quality inspection has been achieved both by supervised and unsu-

pervised learning methods. The latter are quite common since their independence from
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labelled training data makes them an attractive choice. Often, however, at least the class
of non-defective products needs to be labelled i.e. a semi-supervised scenario. The ideal
would be, of course, to use supervised learning with a fully labelled dataset. Due to the
arduousness of the labelling process and the low volume of defects in production, such
labelled datasets are often small in size and suffer from class imbalance. Supervised
methods, nevertheless are better able to discriminate between small differences between
defective and non-defective products and can also discriminate between different types
of defects [54]. Ultimately the choice will be influence by an organization’s capability to
collect and label the required data and the types of defects, as for example functional vs.
structural vs. cosmetic defect might require different types of ML methods.

Initial attempts at automated defect detection focused on the “hand-crafted” extrac-
tion of features. These were mainly computer vision methods, usually coupled with a
simple classifier like Random Forests or an unsupervised method such as clustering. For
instance [55] used a variation of Otsu’s method for adaptive threshholding to detect ab-
normalities on surface areas (e.g scratches, cracks etc.), achieving quite high accuracy for
ceramic and metallic surfaces. In another case [56], phone screen defects were searched
for - a harder problem due to the high gloss of screen surfaces. A full pipeline was utilized
including image alignment, normalization across noise and lighting conditions and fuzzy
c-means based anomaly detection as a final step. A third alternative is edge detection
which can be achieved by using the wavelet transform [57] to sharpen edges on wood
surfaces and extract defects that disrupt the edge continuity. There is a long list of these
methods in the literature, of which the aforementioned ones are only examples. However
we can already see a common pattern, namely that these algorithms require a lot of effort
to design as they have to normalize the image under different transformations to be able
to effectively compare defective and non-defective images. They are also specialized to
specific types of surfaces. For example, [55] shows a much lower accuracy in detecting
liquid surface contamination, as its method is not designed to cope with intense light
reflection.

To satisfy recent industry trends such as part customization and agile manufactur-
ing, quality inspection methods need to be much more versatile and adaptable. This
is the reason why the interest of the research community has shifted towards the use of
Convolutional Neural Networks (CNNs). These circumvent the need for “hand-crafted” fea-
ture extraction algorithms as their convolutional layers can be trained directly from data
to extract distinguishing features, often managing to achieve invariance against various
conditions such as rotation, translation, lighting and noise. Techniques such as Transfer
Learning also offer the opportunity to reuse knowledge from large pretrained networks on
smaller never seen before datasets. The literature on CNNs for defect detection includes
various different approaches roughly divided into two categories: segmentation-based and
one-off classification.

The aim of image segmentation methods is to first extract simpler candidate defect
areas from a complex image to be used as features for a classification layer. What the
classification layer consists of could range from a dense neural network to a simpler

random forest classifier or even to a semi supervised method such as S4VMs. A common

43



Chapter 1. Introduction

network architecture for segmentation - given the availability of pre-segmented training
data - is the U-Net used in [58] to detect small defects in radiographs of aerospace welds.
In that study, instead of using the default dense layer for classification, a Random Forest
classifier is chosen to convert the segmented image areas to pixelwise probabilities of a
defect. A final step includes filtering of the candidate regions using Maximally Stable
External Regions (MSER) [59] and thresholding. This substitution of the last layer with
the simpler (and less overfitting prone) Random Forest was necessary due to the small
amount of defect images in the data - a recurring problem in this defect detection datasets.
Another approach in the automotive parts domain tries to create a single DNN similar to
One-off methods, but stacking segmentation before classification layers [60]. The aim
now is not a binary choice between defect and non-defect but the identification of specific
defect types observed from different views (top, bottom, side) of the image. The topmost
custom segmentation CNN is followed by a “refinement” network, which performs density
slicing, filters the candidate areas and produces the classification output. The resulting
network manages to achieve good results on all defect classes with >95% accuracy and
F1-scores close to 50%.

A dilemma faced in such computer vision tasks is whether to use transfer learning,
i.e. a pretrained model that is fine-tuned on the dataset at hand or a custom model
architecture specific to the problem and trained from scratch. In a printing industry
usecase described in [61], developing a custom shallow CNN model gave better results,
however, significant effort was required to produce a homogeneous training set, especially
in terms of lighting conditions. Transfer learning can also be useful for complex products
such as vehicle parts, where quick retraining and - to some extent - independence from
inputs are highlighted. For instance, [62] achieved best performance on a dataset of
vehicle parts by utilizing a pre-trained VGG16 model further fine-tuned on the quality
inspection dataset.

Still, one-off classification methods tend to avoid any preprocessing overhead and pro-
duce an assessment from just a single image. As a trade-off a larger training dataset is
needed for achieving acceptable results. A good example is [63] where a custom CNN is
used together with data-augmentation to predict different defect classes that appear on
steel strips. The CNN consists of 6 convolutional layers with max pooling along with 2
dense layers leading to 7 output categories, 1 for “non-defect” and 6 defect categories.
Although some initial preprocessing was included in order to isolate the part of the image
containing the examined surface, this can be viewed as a data quality adjustment. In
another usecase, rail defect detection was tackled by an one-off classification approach
in [64]. Different custom architectures were compared, with the best performing one
consisting of 3 convoluational layers with max pooling and 2 dense layers, mapping to
6 defect categories including “non-defect”. More recent approaches have tried sophisti-
cated combinations of methods such Long Short-Term Memory Networks (LSTMs) over
pre-extracted CNN features to detect debris in avionic component ducts [65]. The ob-
ject detection model, YOLO v7, was used for example to detect defective packages to be
extracted from transfer pipelines in shipping [66].

Among the various metrics used to measure classification performance for defect
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detection the two most important ones are recall and precision. Recall should be given the
most attention since false negatives will lead to undetected production defects. Precision,
while secondary, is also important since false positives will require unnecessary human
inspections, a large number of which defeats the purpose of the automated QA approach.
Common metrics based on these two criteria and used in the literature are the F1-score
and the Area Under the Curve (AUC). These metrics are most meaningful when separating
the normal from the anomalous categories, as the differences between defect categories
are usually less consequential.

Choosing the right CNN-based pipeline for defect detection depends on numerous fac-
tors. First and foremost is the availability of labeled data. Segmentation-based methods
might seem to need less data at the cost of a more sophisticated pipeline, however labeled
segmented data is harder to find and more expensive to create. On the other hand one-off
methods need more training examples and suffer more from data imbalance (e.g. in the
case of a rare defect). Techniques such as data augmentation either through applying
predetermined transformation on existing training data or creating new synthetic data

can help ease the disadvantages for both cases.

1.2.1 Data Scarcity

While CNNs are indeed performant and flexible they do require large training sets,
ideally with many samples both from the "good" or "flawless" products and the defective
products as well. In reality, however, collecting this data is often prohibitive due to various
reasons, such as high cost, lack of time or manpower or lack of a scalable automated
setup. A large portion of modern quality inspection research focuses on mitigating this
issue through techniques such as transfer learning, active learning, few-shot learning,

oversampling and the generation of synthetic data for data augmentation.

Transfer Learning

Transfer learning as mentioned in the previous section is a technique for using large
models, that have been trained in large generic datasets such as Imagenet [67] in environ-
ments with enough computational resources (i.e. clusters with multiple CPUs and GPUs).
These models are then reapplied to smaller datasets in different ways, that usually in-
volve targeted readjustments of the base model’s weights. The simplest way to use transfer
learning is to utilize a part of the original model’s architecture, with frozen weights, as
a feature extractor to avoid costly feature engineering [68]. One can also unfreeze the
base model’s weights, all or from selected layers such batch normalization layers, and
perform end-to-end learning with a ready-made architecture and starting from a "good"
weight initialization [69]. Other flavours of transfer learning are domain adaptation and
domain randomization, both of which have had successful applications in vision-based
reinforcement learning.

Domain adaptation is a set of techniques that help a learning model generalize to a
target domain while trained with samples from a different source domain. In the case

of robotic grasping, simulation is the source domain and the real production line is the
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target. Domain adaptation is widely used in computer vision and can be roughly distin-
guished into two categories: feature-level and pixel-level. Feature-level is usually based
on adaptive feature extraction methods such as CNNs, which already have some degree of
transferability between the simulation and reality domains. Also including a domain-level
similarity metric such as maximum mean discrepancy in the loss function when retraining
in the new domain can help enforce domain invariance [70]. Pixel-level domain adaptation
is mainly based on using GANSs to restyle simulation images so that they look more simi-
lar to real ones [71]. Both of the above techniques can work well on Deep Reinforcement
Learning algorithms that base their perception and action planning on CNNs. A good
example is GraspGAN [72] which uses simulation with a hybrid adaptation method, com-
bining Domain Adaptation Neural Networks (DANNs) with a novel batch-normalization
technique. The proposed method achieved comparable or better performance to vanilla
DRL with 50 times fewer real-world samples.

Domain randomization methods have also shown good results for vision-based tasks
such as robotic grasping, making simulation-only training feasible. The goal is to train
the agent in a wider set of environmental conditions by introducing randomization in the
simulated environment at training time. Given that the variability of the conditions is
sufficient, the model trained in simulation will be able to generalize in the real world. For
instance [73] uses randomization on the following types of features: addition of distractor
objects of different shapes and sizes, object position and texture, texture of background
objects, camera position, orientation and field of view, number and position of lights and
addition of different types of random noise. The trained model produced comparable

results to real-world training, even though no real-world data was used

Active Learning

Active learning is applicable under the precondition that some labelled samples exist
and that there is a human operator that can help with the learning process by manually
labelling pre-selected instances, which the model is highly uncertain of [74]. This leads to
a training process consisting of training-labelling-retraining cycles that is very dependent
on the quantification of the model’s uncertainty over a specific data instance. The role
of this quantification is to reduce the amount of manual labelling as mush as possible.
Different strategies of selecting the most informative instances for manual labelling have
been suggested including uncertainty sampling, representativeness sampling and sam-
pling of adversarial instances [75]. There are a few successful use cases of active learning
in manufacturing such as [76], where a training database of samples was continuously
enhanced through selective manual labelling during the visual inspection of printed cir-
cuit boards and in the prediction of displacements between chip layers [77], a highly
sensitive process where manual measurements can be disruptive and should be mini-
mized. Active learning can also be combined with other techniques against data scarcity
such as data augmentation. Synthetic data generation was used to reduce the expenses
associated with data collection, combined with feedback from active learning regarding

the desired characteristics of data that benefits the model the most, to detect defects in a
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Figure 1.2. Main categories of few-shot learning methods [20]

dataset of shaver shell prints [26].

Few-shot Learning

While transfer learning manages to reduce the high data requirements for Deep Learn-
ing Models such as CNNs, typically to hundreds of examples, there are cases where the
data available is even less. This is especially prevalent in automated quality inspection
where production defects are rare and some times minority classes remains at the tens
of samples. Few-shot learning is a set of machine learning techniques for dealing with
these low data scenarios [20].

Few-shot learning works on three levels, namely the data level, model and algorithm
levels. Data-level methods aim to augment the data, usually through synthesizing novel
samples with GANs or through applying graphical transformations to existing samples.
Model-based approaches are very similar to transfer learning in that they try to con-
strain the hypothesis space (tunable model parameters) by using prior knowledge (e.g.
pre-training the model on a similar but more general problem and freezing some of its
weights, while leaving some to be fine-tuned on the small dataset). Finally, algorithm-
based methods concentrate on incorporating prior knowledge to the search strategy for
optimal parameters. The above categories are more formally illustrated in Fig.1.2.

‘H, as depicted in Fig.1.2 is the hypothesis space, or space of the family of models
(e.g. all CNNs of a specific architecture). The optimization algorithm moves through this
space by learning better and better parameters moving from “start” to h; (note that h;
is dependent on the training dataset), which represents the final learned parameters.
€est is the estimation error due to learning inefliciency (e.g. overfitting) and ey, the
approximation error, due to the limited capacity of the hypothesis space. What FSL is
trying to do is bring “start” closer to h* faster than full model training. For example model-
based techniques such as transfer learning try to constrict H to H’, a smaller hypothesis
space learned from another similar problem with a high chance of including h*. On the
other hand the “algorithm” category tries to use prior knowledge over the learning rate

and direction of the optimizer so as to decrease the number of model updates. With data
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augmentation, which is our main focus, we are trying to improve the accuracy gained by
the model by adding additional samples and bringing the final stage h; of the training
closer to h*.

An approach of few shot learning that differentiates it from transfer learning is meta-
learning [78]. Usually meta-learning approaches are based on learning a distance metric
between classes making them a hybrid between supervised and unsupervised methods.
More specifically, metric-based approaches learn a mapping to an embedding space where
instances of the same class are mapped close together while instances from different
classes are further away, thus roughly forming a cluster for each of the classes. After
the mapping a simple nearest neighbors classifier can be used to determine the class of
a new instance. A typical example of this method are prototypical networks [79].

FSL also includes optimization based methods where gradient step sizes for example
are imported from another problem where training data is abundant. These methods
usually work in two stages, the meta-learning and the task-specific learning. The meta-
learner model could be trained on a different task, or a set of tasks that cumulatively have
enough samples. Thereafter it updates the parameters of the task-specific learner, which
is then fine-tuned on its task of focus. Typical examples are model-agnostic meta-learning
(MAML) [80] and Reptile [81].

Finally, there is another category of methods that are worth mentioning which do not
attempt at all to rely on prior knowledge. Instead, they attempt to build models with
architectures specific for fast learning, such as memory-based architectures [82] and
rapid-adaptation architectures [83].

Various of the above types of methods have been used in the context of Visual Quality
Inspection. For instance, relation networks, a method similar to prototypical networks,
was used on top of pre-extracted CNN features to detect defects on bar surfaces [84].
For the pre-extracted features, attention modules were employed to make surface defects
more salient before passing on to the relation networks. MAML was utilized in [85] to
detect bearings defects, by treating the detection of different defect categories as different
tasks for the meta-learner. A low-parameter model - Resnet-10 - geared towards faster
learning was investigated in [86] to detect defects in lithium batteries. To boost the
size of the inputs and ensure enough diversity in the data various data augmentation
techniques were also included in their pipeline. Protypical networks were used both in
[87] and [88] for fabric and auto-part defect detection respectively. In the former they
were combined with class activation mapping to enhance the contrast of defect locations,
while in the latter they formed part of a custom network with attention mechanisms used
for the same purpose. Attention mechanisms were also part of the approach suggested in
[89] for manufacturing defect detection using the MVTEC-AD dataset [11]. This time the
classifier was a Siamese Network with pair-balanced contrastive loss to account for the
class imbalance between defects and non-defects. [26] compares prototypical networks
with and without data augmentation vs. supervised approaches in low data scenarios
with manufacturing components from Philips Consumer Lifestyle BV and Iber-Oleff -
Componentes Tecnicos Em Plastico, S.A. and finds them competitive. In addition, few

shot learning was enhanced with different sampling strategies for creating and labelling
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the initial support set.

Oversampling

Contrary to few-shot learning where the whole dataset is small in size, what is more
often the case in visual quality inspection in manufacturing is that the defect classes
have very few instances. This is a natural byproduct of a production process working
mostly as expected and rarely outputting defective parts. On the other hand, this makes
the automation of the process harder by complicating the data labelling process and
making it more costly in terms of time, i.e. too many products will need to pass through
the production line before sufficient defective products have been collected. This can be
mitigated through oversampling and its extension, data augmentation. We differentiate
between the two as oversampling happens on the feature level, while data augmentation
on the input data/image level. For oversampling to be applicable, dedicated feature
selection methods should be in place or instead pre-extracted features using transfer
learning can be utilized to obtain lower dimensionality feature vectors.

Imbalanced data is a common issue in many other domains such as tumor classifica-
tion or security attack detection, that are closely related to anomaly detection and where
the minority class is usually of much higher importance to predict correctly [90]. Due to
its ubiquity, a number of methods have been developed to cope with the imbalance at the
feature level. The two most well known ones are SMOTE [91] and ADASYN [92]. In SMOTE
pairs of minority class instances are connected with line segments and over these seg-
ments new instances are sampled so as to hit a target that will make the dataset balanced.
A few variations of SMOTE have been then introduced such as Borderline-SMOTE [93]
that try to focus sampling near the classification boundary, sometimes also oversampling
edge instances from the majority class to create more refined boundaries. ADASYN is a
more sophisticated extension of the same idea, where high-uncertainty samples are those
near the boundary or in sparsely populated regions. These instances are then perturbed
to produce synthetic instances between them and their closest neighbours.

While oversampling methods have existed for a long time and have proven themselves
in different applications, when it comes to image classification with very high-dimensional
inputs they are not effective and require the use of feature-extractors. Another idea
examined in the coming section is to produce synthetic instances at the input level using
modern techniques such as Generative Adversarial Networks (GANs) and Variational Auto-
Encoders (VAEs).

Data Augmentation

Moving oversampling to the image level can take many forms, the simplest of which
is to use simple graphical transformations. The emergence of sophisticated deep gen-
erative methods, however, such as GANs and VAEs can bring enhanced capabilities by
approximating the true distribution of input images and therefore managing to generate
high-fidelity outputs [94]. The major issue here is that GANs and VAEs are even more

data-hungry than traditional deep learning methods. Nevertheless, even if training from
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scratch is not possible, transfer learning can come to the rescue, this time in the con-
text of generation rather than classification. This solution has been explored in current
research and although traditional weight fine-tuning was not enough for small datasets
[95], the fine-tuning of batch normalization layers only produced promising results on
BigGAN [7]. While not perfect, the resulting images retained many useful features for
classification. Further fusing with original raw images also showed some usefulness in a
few-shot learning scenario [8].

Applying data augmentation to automated visual quality inspection can be tricky as
defective images are very much alike to non-defective ones making high-fidelity generation
challenging. Despite that there have been promising applications in the manufacturing
domain. For instance, in a dataset of shaver shell prints, [52] utilized Lightweight GAN
[96], a low resource GAN, to generate high-fidelity augmentation images and improve the
AUROC score of the final classifier. In [97] data augmentation was utilized in a different
way, namely samples were augmented by outputs from an unsupervised anomaly local-
ization classifier in the form of heatmaps highlighting potential defects. These augmented
samples were classified with higher accuracy without the need for additional rebalancing

methods.

1.2.2 Robustness and Trustworthiness of Al Visual Inspection Systems

A further issue that the adoption of Al systems in manufacturing settings faces is
the real and/or perceived lack of robustness. Industry decision makers and regulators
are often sceptical of adopting Al systems in physical environments a they appear as
black boxes, which nobody know if they suddenly come up with a very unexpected and
potentially dangerous decision. This scepticism is of course not without merit and it is
important for the research community to come up with techniques that i) shed light into
the inner workings of Al systems and ii) attempt to make these systems more robust.
Although the subject of this thesis is more related to data scarcity and the robustness
issues that might result from this particular cause, ideas such as Explainable Al (XAI)
and techniques to mitigate cyber-security attacks against Deep Learning algorithms offer
many insights and similarities with techniques aiming at making Al systems more robust

in general.

eXplainable AI (XAI)

As state-of-the-art Deep Neural Networks are starting to surpass human ability in
various specific tasks, their complexity (i.e., number of layers, parameters, complexity of
the loss function) increases to such an extent that they, especially to non-experts, become
black boxes. Interpretability or explainability of Deep Neural networks is the ability to
provide insight into the inner workings of a DNN in a human understandable form [98].
A variety of XAl methods have been developed for computer vision that could be applied
to an Industrial Visual Quality Inspection setting. Usually these methods involve Post-
Hoc explanations, focusing on the reasoning behind the decisions made by the model for

specific instances rather than trying to explain the whole model [99]. One way to achieve
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this is through perturbing certain input feature to gauge their impact on the final output.

Prediction Difference Analysis (PDA) [100] and Meaningful Perturbations [101] are
prime example of such methods, for instance replacing parts of an image with constant
values, noising or blurring the image or regions thereof to measure changes in activations
and/or classification scores. Local Interpretable Model-Agnostic Explanation (LIME) [102]
is a popular model-agnostic method that has also been extended to images. For a partic-
ular instance it generates local perturbations and trains a simple self-interpretable local
model (e.g. a decision tree) on the local perturbations and the original model outputs. Re-
sults from these explainability methods on images are often represented through salience
maps, where the brightness of a pixel is dependent on its importance for the production of
the specific output. Saliency maps can vary from method to method on how they localize
high-salience reqions and measuring the quality of saliency maps is an open research
question [103].

One might attempt to gather more insight from a model by considering knowledge of
its architecture as a given. This is what techniques such as Deep Learning Important
FeaTures (DeepLIFT) [104] and Class Activation Mapping (CAM) [105] try to achieve. In
DeepLIFT, activation differences from a network’s final layers are backpropagated similar
to gradients to match class activations to important parts of inputs or input features.
CAM used the fact that convolutional layers very often make objects present in the image
more salient and their local outputs can be pooled together to extract regions of the
image that highly contribute to the class prediction. Layer activations are combined with
gradient information in GradCAM [106] to produce better localized explanation regions.

In the context of data augmentation saliency maps and heatmaps generated from the
above methods can prove useful. In [97], heatmaps from an explainable semi-supervised
defect localizer were combined with raw inputs to improve classification performance in
a setting with data imbalances. However, the extracted information from explainability
methods can also be used to improve robustness, as for instance in [16] where images with
masked super-pixels from the LIME method made the network more robust to poisoning

attacks.

Sensitivity to Small Differences between Inputs, Safety and Security

The fact that Deep Convolutional Neural Networks (DCNNSs) are considered black boxes
is most clearly illustrated in [10], where small corruptions in the image inputs can lead
to mistaken predictions. This fact gains in importance when adversarial attacks against
neural networks are also considered. Adversarial corrupted images that are almost identi-
cal to real ones can be created to induce wrong model decisions - also known as poisoning
attack [107]. While several techniques have been suggested to mitigate this kind of at-
tack, such as Gradient Masking [108], Robust Optimization [109] and Adversary Detection
[110], XAI also plays a significant role in identifying these attacks and defending against
them. For example, Similarity Difference And Uniqueness method (SIDU) [111] aims to
provide visual explanations tailored to the detection of poisoning attacks and showed

promising performance against fixation maps on datasets with noisy inputs [112]. Shap-
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ley Additive Explanation Values [113] have also proven useful in filtering out adversarial
inputs in conjunction with traditional anomaly detection methods. Finally an interest-
ing approach are evasion attacks, which try to identify which features are non-robust in
producing predictions and manipulating those to introduce errors [114]. Data augmen-
tation was shown to be effective against this attack by using masked-superpixel inputs
generated by LIME as a from of synthetic data [16].

Vision-based Deep Reinforcement Learning has been an area of particular interest as
the stakes related to these sensitivities are high when Al agents interact with a physical
environment. Most often a simulation environment is used to robustly train Deep RL
agents and reduce their interactions with the real-world as much as possible [70][73].
But even for less risky scenarios such as Visual Quality Inspection these errors can be
quite costly, potentially derailing the production process and causing significant material
waste. For this reason the use of synthetic data can be of high value. Especially given the
fact that defects occur rarely, it is very possible that some defect categories will have not
appeared during the data gathering process for the training set. It is therefore important
to produce simulated inputs that will train Visual Quality Inspection systems in a way that
is as robust as possibly and prepare the algorithm as much as possible for the occurrence

of novel unanticipated defects before it is deployed in the manufacturing environment.

1.3 Contributions and Structure of the Thesis

The structure of this thesis is built around its three main axes of contributions. Firstly,
the problem of class imbalance is tackled, as it is the most common Data Scarcity issue
in Visual Quality Inspection Scenarios. This is followed by an attempt to handle defect
classes for which various constraints (e.g., ramp up time) did not allow the collection of
any samples, and therefore the system used needs to be ready for unexpected inputs that
are not in its training set. As the method developed for this is quite data-hungry and
computationally intensive, to extend into smaller datasets, techniques from the emerging
field of NeuroSymbolic Al were employed. The progress and contributions made along

these three axes are the following:

e To deal with class imbalance a new method was developed to generate synthetic
data based on examples that are close to the boundary between the "good" and
"defect" classes. This method, combining the precision of oversampling techniques
and the synthetic capabilities of BigGAN, managed to achieve an improvement in
the recall of the neural network, while reducing the data generation time compared
to other GAN-based techniques.

e To handle novel inputs, a new method based on data augmentation using Style-
GAN was developed, particularly adapted to datasets with high similarity between
classes, such as those encountered in industrial quality control. The new method
relies on both the high-fidelity generation of StyleGAN and the ability to more accu-
rately and meaningfully guide the synthetic data output. Also an important role was

played by the filtering of generated data by quantifying the degree of disagreement
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of different classifiers trained on the original data. This ensures that the artificial
data represent the “open set” and can augment the initial training set sufficiently
to make the final classifier more robust to novel defects during the continuous op-
eration period. The new method showed improved results on a real dataset from

manufacturing.

Finally, as a continuation of the previous method to extend to smaller data sets
in which it is not possible to train StyleGAN, NeuroSymbolic Artificial Intelligence
techniques were used. Specifically, a Logic Tensor Network was used that expresses
the outputs of a supervised novel input detector as symbolic rules and uses them
to drive the training of a neural network. The resulting algorithm shows improved
results compared to other related methods, especially in defect recall, in the sense
that few defects remain undetected even if they are completely novel. Additionally,
it achieves similar or better recall results than semi-supervised methods when han-
dling new defects, but outperforms them on defects belonging to the training class
distributions (closed set). Compared to other supervised methods, it maintains high
performance on known defects but improves significantly on novel ones. The com-
bination of advantages of these two types of methods is illustrated by higher F1

scores on most of the test datasets.
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Chapter E

On-the-fly Image-level Oversampling for Imbal-

anced Datasets of Manufacturing Defects

2.1 Background

Automatically detecting and classifying object defects is an important application of
modern manufacturing Al systems that presents unique challenges, such as severe class
imbalance, high inter-class similarity, and a requirement for high classification perfor-
mance in real-life settings. Addressing these challenges can provide novel insights and
improvements in the general context of imbalanced learning. Class imbalance is an
inherent and very frequent issue in datasets of defects used for automated visual qual-
ity inspection owing to the rarity of defect occurrences in real-life processes [115]. For
instance, in many modern manufacturing processes, a defect may occur in one per thou-
sand manufactured objects making the collection of sufficient data for a balanced dataset
either too costly or in the worst case nearly impossible. Even though defects are rare,
the ability to detect them automatically or in a synergistic way between human and Al
algorithms is of great value, since, it not only reduces costs and worker fatigue but also
frees up human resources to perform more challenging, less repetitive, and more creative
work [116].

Early approaches in automated visual inspection did not run into the problem of
class imbalance as they mainly relied on traditional computer vision methods using pre-
extracted features [117]. These methods were custom-designed using rules derived from
an expert’s domain knowledge and were completely unsupervised, both regarding feature
extraction and rule-based decision-making, with no requirement for collecting training
data. Even later, more flexible methods such as Histogram of Gradients [118] and Viola-
Jones [119] relied on the extraction of custom features tailored to the problem at hand.
However, since the introduction of Deep Convolutional Neural Networks (DCNNs) [22] it
was made possible to achieve good accuracy scores by deriving extracted features directly
from the training data. Despite the new approach requiring the collection of large amounts
of data, in some cases even 10° to 10* samples, and being very sensitive to class imbalance
[120], it offers several distinct advantages that have made it very popular in the current

research:
1. There is little need for expert domain knowledge during feature extraction or decision-
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making as DCNNs learn mainly from the data. This avoids the development of

complex and error-prone data pipelines.

2. Due to this independence from domain expertise DCNNs can be more easily adapted
to tackle similar problems (e.g., defect inspection of a similar but different product
produced by the same organization), and can also easily accommodate new defect

types, given enough training data, without change to the recognition algorithm.

3. DCNNSs can easily adapt to differences in simple visual conditions such as transla-

tion and scale [121].

4. Knowledge extracted from large datasets can be adapted to smaller datasets through

transfer learning, thus, coping to a certain extent with high data requirements.

In visual quality inspection, which is the focus of our work, the most frequent ap-
proach in the current literature, aimed at mitigating class imbalance, is data augmenta-
tion [122] [123]. Traditionally, image defect datasets are augmented via various graphical
transformations, such as scaling, rotation, translation, shearing, blur, illumination, etc.
However, those image-level transformations do not contribute sufficiently to the clearer
separation between different classes, especially when the separation depends on higher-
level features [124]. To overcome the limitations of traditional image processing methods,
Convolutional Variational Autoencoders (CVAEs) [125] have been proposed and used suc-
cessfully in a dataset of metal surfaces [126]. Generative Adversarial Networks (GANSs)
[127] is another important tool, which can efficiently address different kinds of imbalances
such as inter-class, intra-class (e.g., person reidentification), and object and pixel level
imbalances for segmentation tasks [128]. A third family of methods is based on Neural
Style Transfer attempting to fuse a “style” image (defect) and a “content” image. Defects
can be generated through global [129] and local [130] style transfer, using extracted de-
fect patches and suitably placing them on the target object. However many of the above
methods still require a significant amount of data (being Deep Learning methods) and
may not be suitable for all datasets depending on their degree of imbalance as well as
the similarity between classes that makes the generation of high-fidelity images difficult.
Such methods are also usually computationally intensive requiring long training times.
Nevertheless, many modern GAN architectures can be controlled through manipulation of
their latent space and therefore can be suitably adapted to specific problems and poten-
tially also made to work with smaller datasets as described in more detail in the Related
Work section.

In our work, we applied data augmentation to mitigate class imbalance in a dataset
of logo print images on top of manufactured shaver shells. Following our early experi-
ments we noticed that custom shallow CNN architectures that are trained end-to-end on
the dataset at hand achieved the most promising performance, therefore we introduced a
data augmentation method compatible with end-to-end training. Our approach’s novelty
lies in using a small sample GAN introduced in [7] in a confidence-aware manner. This
leads the generator to produce synthetic images based on highly uncertain training sam-

ples that lie near the classification boundary. The resulting method achieved promising
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results against recent and established methods based on deep data generation or vector-
based oversampling, while also retaining good computational performance by generating

synthetic images on the fly.

2.2 Related Work

The current work builds upon two areas of research. The first is on using GANs for
generating defects. GANs have proven very reliable in producing high-quality images and
many works have managed to apply them to imbalanced and smaller datasets. We also
build upon advances in assessing the reliability of neural network predictions. This line
of research focuses on ways to obtain confidence estimates of the network’s predictions,

which we aim to utilize to bias our generation process towards low-confidence samples.

2.2.1 GANs in Defect Generation

GANSs have been successfully used in many different industrial, biomedical, and other
scenarios to tackle the class imbalance found in defect detection problems. The most
straightforward way to use them is by training them on the same set of data as the final
detector/classifier and then generating data to augment the initial dataset. A step further
is to introduce customizations to control a GAN’s output either through manipulation of
its latent space or the influence of its loss function. A common example of the latter that

is very popular in defect detection is encoder/decoder-based architectures.

Direct Data Augmentation A variety of architectures have been tried for direct aug-
mentation, for instance, TransGAN [131], a transformer-based GAN was used in an
agricultural setting for detecting fruit surface defects [132], as well as CGAN, a class-
conditioned architecture, able to more precisely synthesize classes of defects [133]. A
very popular architecture for these scenarios is Deep Convolutional GAN (DCGAN). In a
comparative study of steel strip defect detection [134], it outperformed models such as
the information-theoretic InfoGAN [135], and has improved accuracy metrics in imbal-
anced datasets from a variety of domains such as fiber layup inspection [136], liver lesion
classification [137] and defect generation [138], often trained with the help of additional
data augmentation via geometric or stylistic transformations. An improved version of
DCGAN, capable of producing more diverse data, Wasserstein GAN (WGAN), was applied
to the detection of weld [139] and decorative sheet [140] defects, however, complicated
defects such as “burn-through” and “crack” welding defects still needed to be synthe-
sized graphically using human prior knowledge. Finally, a more recent and sophisticated
architecture, StyleGAN2-ADA [141], was capable of high-fidelity generation of structural
adhesive defects trained over a small input dataset of fewer than two hundred images

[142], with limited additional augmentation and manual labeling.

Customized Architectures Apart from the direct application of GAN architectures, sev-

eral customized architectures have been developed to specifically tackle defect synthesis.
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For instance, AC-PG GAN is a combination of the Progressive Growing GAN (PGGAN)
[143] and Auxilliary Classifier GAN (ACGAN) [144] aimed at the quality assessment of
photovoltaic modules through electroluminescence images [145]. In the biomedical field
a similar modification towards a conditional PGGAN has yielded improvements for brain
metastases detection in magnetic resonance images [146]. One Class GAN (OCGAN) and
Multi-modal One Class GAN (MMOCGAN) presented in [147] are an attempt to cope with
statistically non-meaningful defect classes by generating samples from the complemen-
tary distribution of the “good” class. Reinforcement Learning (RL) methods have also
been used to guide data generation and increase the intra-class variability of the gen-
erated data, An example is the Actor-Critic GAN (AC-GAN) [148], which aims to identify
sub-classes from a given class in a preprocessing step and then use Actor-Critic RL on
top of the GAN to adjust loss weighting so that augmentation of each sub-class is either
encouraged or inhibited. Finally, enabling generation for even smaller datasets is the Big-
GAN [149] adaptation method described in [7], which proved useful for few-shot learning
in [8] and, though still untried in defect detection, served as a major inspiration for our

work.

Encoder/Decoder Architectures A common type of customized architecture is one
based on encoder/decoder approaches to generation. For example, [150] uses an im-
proved combination of similar encoder/decoder-based generators, namely BEGAN [151]
and Skip-GANomaly [152]. Defect-GAN [153] copes with the lack of defect data by syn-
thesizing defects through unpaired image-to-image translation, thus creating additional
defects using good images. Its encoder/decoder architecture corresponds to a defacement
and restoration process and makes use of a spatial and categorical control map as well as
the injection of adaptive noise to increase image diversity. A similar image-to-image trans-
lation idea is implemented in the surface defect-generation adversarial network (SDGAN)
[154] and in [155] which is built around CycleGAN. A recent and well-performing ap-
proach, DeepSMOTE [6], tries to mimic vector-based oversampling approaches but on
the level of raw images. It uses an encoder-decoder architecture to produce linear in-
terpolations in the image space similar to SMOTE [91]. Although the above method was
not used for defect classification, it served as inspiration for our approach of performing
oversampling on the image level, which we further adapted to the defect classification
problem.

While the proposed methods facilitate both high-fidelity image generation from limited
data and targeted oversampling of important inputs, the approach introduced aims to
combine the two leading to a more efficient and less computationally intensive oversam-

pling method performed at the image level.

2.2.2 Prediction Confidence in Deep Neural Networks

As we saw in the previous sections, DNNs and especially convolutional ones, are
a powerful learning model. This has come at a cost, however, as the growing model

complexity of neural networks - which is also the cause of their better test accuracy -
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introduces more overconfidence in their predictions [156]. In this section, we focus on
the problem of classification. One way to define confidence in a classification setting is
as the maximal value of the last softmax layer, which determines the class of a given
input. Comparing this with the validation accuracy of the network for a given class using
a reliability diagram for different confidence ranges and their corresponding accuracy
scores, [157] found a significant difference in the 110-layer ResNet compared to the better
calibrated but more primitive five-layer LeNet model on the CIFAR-100 dataset.

The main reason for this increasing miscalibration due to increasing model complexity
is that DNNs additionally suffer from a more subtle case of overfitting. Namely, they tend
to overfit the negative log-likelihood loss invisibly. In contrast, their visible generalization
accuracy measured by a 0/1 loss seems to remain stable. This is a sign of unreliability
that has limited DNN use in real-world safety-critical applications.

Many methods have been proposed to counter prediction overconfidence. The first
category of calibration methods tries to adjust softmax outputs as a post-processing step
to resemble the actual confidence probabilities or follow an ordering where a higher value
will correspond to higher true confidence. Histogram Binning [158], Isotonic Regression,
and Bayesian Binning Quantiles (BBQ) [159] are example methods that solve optimiza-
tion problems after the model training to bring softmax output close to their confidence
values as estimated on a validation set. Platt Scaling [160] and its generalizations Matrix
Weighting [156], and Temperature Scaling [161] are applied on the logit layer just before
the softmax aiming to calibrate the weights of the final layer so that outputs are close
to the validation set confidence probabilities. Temperature scaling is the most popular
approach, as it has the benefit of not influencing the ordering of the class predictions and
therefore guaranteeing the exact class prediction as before.

A further category of confidence assessment methods tries to make changes to the
learning algorithm so that the training process is constrained to output reasonable mea-
sures of the model’s true confidence. Most notable is the addition of a penalty term to the
loss function that discourages ordering inconsistencies in the output pseudoprobabilities
[162]. Finally, regularization techniques such as dropout, weight decay, label smoothing
[163] and mixup [164] have also been shown to improve confidence estimates.

Accurately quantifying the prediction confidence of Deep Neural Networks plays an
important role in our approach since it helps us determine which samples need to be
reinforced through data augmentation. As we are less interested in obtaining probabilistic
estimates of confidence and also want to avoid risking a deterioration of the classifier’s
performance by treating the model as a black box, we focus on a less invasive method
introduced for approximating the distance to the classification boundary [9], which does

not require any changes in the network’s architecture or the way it is trained.

2.3 Methods

This work introduces an oversampling method that is applied directly to raw images.
The rationale for our approach is that we want to perform oversampling in a way that

is decoupled from deep feature extraction, making it possible to train the final classifier
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end-to-end on the augmented dataset. It can be seen as a method similar to Borderline-
SMOTE [93] focusing on samples close to the classification boundary, but on the level of
raw images. Aiming to generate images that are most informative for the way the classifier
separates between classes, we rank images according to initial classifier confidence and

use low-confidence ones to guide our generation process.
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Figure 2.1. Basic components and dataflows for the proposed oversampling approach.

The sequence of processing steps is outlined with numbers from (1) to (9).
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Fig. 4.2 depicts an overview diagram for our proposed approach. It consists of an
initial pre-training stage performed on the original imbalanced dataset. The resulting
weights are used for the estimation of the boundary between classes and the ranking of
instances according to model confidence. After the most informative instances have been
selected from the original dataset they are used as seeds for an instance-based generator,
which produces similar images introducing small variations. After post-processing (tiling
and fusion with original images) and filtering of sub-standard quality images, we use the
generated data to augment the original dataset. The training of the classifier is com-
pleted by fine-tuning the weights of the pre-trained classifier using the newly augmented,
balanced dataset.

In the following subsections, we provide more details on the Synthetic Image Gener-
ation and Confidence Assessment components before fitting everything together to the

final oversampling process.

2.3.1 Synthetic Image Generation

Producing high-fidelity images for fine-grained classification is challenging, however,
state-of-the-art networks such as BigGAN [149] or StyleGAN [165] have been able to
achieve it. Of course, both consist of millions of learnable parameters and require vast
training datasets along with the corresponding computational resources. Instead of train-
ing such a model from scratch, we make use of a technique inspired by [7] and [8], which
aims to perform transfer learning on a pre-trained BigGAN on ImageNet. BigGAN’s gen-
erator G is isolated from the discriminator and its weights are initialized to the values
obtained from ImageNet. Then for each input image I in the dataset, it is fine-tuned to

produce an image I, as similar as possible to the original given a random noise vector z as
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input. This fine-tuning includes only the relearning of the scale and shift parameters of
the batch normalization layers. Intuitively this corresponds to selecting only the features
relevant to the target dataset from a super-set of features learned through pre-training

on ImageNet. The loss function for the fine-tuning is as follows:

LG(G’ I, Z) = LI(G(Z)! Iz) + ﬂprerc(G(z)’ IZ) + ﬂZLEM(Z! r) (2.1)

L, is the L1 distance and Lgy the earth mover distance, which tries to regularize z as
a Gaussian sample (r ~ N(0, 1)); Lperc is the perceptual loss and A, A, are regularization
coefficients. Finally, to generate multiple images from input I, some random noise is
added to the input so that I, = G(z + ¢).

Aaroriemor 2.1: Generate Synthetic Data

Input: G, L; image generator and loss, I, base images, nge, aug. target
Output: I, set of |I| - ngen, generated images

1: Iout = {}

2: M < MinHeap()

3: forie€ I, do

4 for n € range(nge,) do

5 z & U™(0,1)

6: ig = G(i,z, Lg)

7 I, & TilePermutations(i, iz, {2, 4})

8 forpel, do

9 M < M U {(p, mse(p, i))}

10: end for

11: end for

12: for k € range(ngen) do

13: my, e & argmin[mse(m, )]
meM

14: M <= M\ {(my, L)}

15: Tout & Ioue U {myc}

16: end for

17: end for

In Algorithm 2.1 we use the aforementioned generator as an instance-based generator
that allows us to produce small variations of an input image. In practice, we observed
that it usually produced high-quality defect images. To address the cases where it didn’t
we added additional quality enhancement measures. The most important of those is
provided by the TilePermutations function, whose aim is to produce hybrid images by
splitting its inputs into halves and quadrants and producing all possible combinations
of the split parts (without of course changing their position in the original images). The
resulting hybrid images together with the synthetic images are more populous than the
Ng,y images we need per base image. For this reason, we store all synthetic and hybrid
images in a min-heap M from which we pick the top ng,y images with the lowest mean

squared error (MSE) compared to the originals.
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2.3.2 Confidence Assessment

To determine which defect instances the classifier is most uncertain of, and can thus
benefit from seeing more similar examples of, the approximation of the distance to the
classification boundary is the most straightforward approach. Of course, confidence
cannot be viewed as a probability, but the relative ordering between distances together
with a threshold can give us a limit of the model’s knowledge boundaries. Contrary to
SVMs, determination of the margin in deep neural networks is a challenging problem,
nevertheless [9] suggests the following approximation, which is used in their calculation
of the Large Margin Loss.

The decision boundary between classes i and j is defined as the set of inputs for which

the confidence for two classes is equal, f being the (confidence) output of the NN:

Dy = {x | fi(x) = fi(0)}

The distance of a point x to the decision boundary is then defined under an I, norm

as the smallest displacement of the point that results in confidence equality:
drx (i) = méin||6||p s.t fi(x + 6) = fi(x + 6)

The above optimization problem is intractable for a non-linear f, therefore using the
1st order Taylor approximation to linearize f they obtain the following final approximation
for the distance to the margin:

| JiC) = () |

Aprefiy) = 2.2)
PV i) = Vil

2.3.3 On-the-fly Image-Level Oversampling

Algorithm 2.2 incorporates the outcomes as per the previous sections into the training
process. The inputs are a CNN architecture C and the training data (X, Y), as well as the
instance-based GAN G, adapted from BigGAN according to [7] with a loss L. Further
parameters include n, which is the number of pre-training epochs to get sufficiently
updated weight values to assess model confidence and n the number of epochs to train
on the full augmented dataset. Iy, indicates the number of most informative images
selected to serve as seeds for the generation process.

After pre-training for n, epochs, the distance to the boundary for each training image
is computed according to Eq.2.2. As expected, this approximation does not provide good
results for all images but it works well for images close to the class boundary assigning
them smaller values than clearly classified images that are away from the boundary.
Data instances and their confidence scores are stored in a min-heap out of which the
kiop lowest distance images are extracted to form the base set for the generation. After
determining the number of synthetic images to be generated per base image, needed for
rebalancing the dataset, we pass the base images to the generation process described
in Algorithm2.1. The parameter ng,, defines the number of images to be generated per

selected base image so that the final dataset is balanced between defects and non-defects
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Anaroriemoz 2.2: On-the-fly Image-Level Oversampling

Input: C the CNN, X,Y train data, G, Lg the GAN and its loss function, k., size of
generation base, n,, n pre-train and train epochs, [; the label for the good class, Ly the
set of defect class labels
Output: C” the trained classifier after oversampling
M < MinHeap()
C' < train(C, X, Y, ny)
Xgoody Ygood — {(xi eXy € Y) Ui = lg}
Xdefect’ Ydefect = {(xi €X, yi € Y) ‘Ui € Ld}
for x € Xgefect do

a2 (om0 Cge )

IV Co0a 09—V x oot N

M <= MU {(x, )}
end for
I = {}
Mg & LlYgoodL—ulj:aefeal ]
: for k € range(k,,) do
Xie, dye & argmin(d)

xXeM
13: M < M\ {(Xk, dk)}
14: I, I,V {mk}
15: end for
16: Xaug. Yaug & generate(G, Lg, Ip, Nayg)
17: C" & train(C’', X U Xqug, Y U Yaug, 1)

© ®» N O RN

— =
M 7o

and is determined by the integer division of the difference between the number of images
in the good class |Yy0q| and the number of total defective images |Yqefect| over the number
of base-images kyop. Note that the number of generated images per individual defect class
might differ; there is only a constraint that the total defects are balanced with the good
images. Depending on how many low-confidence images a defect class has, the more it
needs to be augmented according to our approach. Following the augmentation step, the
pre-trained classifier is trained for a further n epochs to produce a better classification

boundary.

2.4 Results

Throughout our experiments, we show how the presented oversampling method ben-
efits the general defect classification problem, by comparing it both with state-of-the-art
approaches used in defect datasets and image- and vector-level oversampling approaches.
We performed our experiments using a dataset of shaver shell logo print images from a

real production line presented in the section below.

2.4.1 Dataset Information

The dataset used was provided by Philips Consumer Lifestyle B.V. and was collected
from their pad printing process to serve the need for building an automated quality in-

spection system. As described earlier, owing to the infrequency of defects in their process,
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it was hard to gather many defect images leading to an imbalanced dataset.

(a) Good (b) Double Print (c) Interrupted

Figure 2.2. Original Shaver Shell Prints

The dataset consists of JPEG RBG images with dimensions 220 X 360. They are
divided into three classes, one good and two defect classes, namely double prints and
interrupted prints. Representative examples of each class are presented in Figure 4.3.
The number of correctly printed images is 2684, of double prints 244, and of interrupted
prints 598. One important feature to note is that interrupted prints can be very similar
to good prints, making their distinction difficult, as well as the generation of sufficiently
differentiated images from these two classes.

Moreover, to verify the robustness of our method we used four additional datasets
of product defects from the MVTec AD collection [11]. This is a collection of datasets
consisting of surface and object defects. For our evaluation, we chose two products from
each category that exhibited similar defects to the shavers dataset leading to the high
similarity between classes. From the surfaces, we used the carpet and grid datasets and

from the objects the pill and metal nut datasets, samples of which are shown in Fig. 2.3.

Figure 2.3. Samples from the MVTec AD datasets

Table 2.1 shows the number of instances belonging to each class for all datasets used

64



2.4.2 Experimental Setup

as well as their train and test set sizes as determined by the 5-fold cross-validation scheme

described in the next section.

Table 2.1. Number of class instances for the Shavers and MVTec AD product datasets
including train and test sets

Train Test Total
Datasets | Good Defects | Good Defects | Good Defects
Shavers 2147 674 537 168 2684 842

Grid 211 46 53 11 264 57
Carpet 224 71 56 18 280 89
Metal Nut | 176 74 44 19 220 93
Pill 214 113 53 28 267 141

2.4.2 Experimental Setup

Our experimental process was designed to compare our approach with three other
families of approaches that have been common in the literature. The first is the attempt to
directly generate data of the highest fidelity possible using a powerful generation method.
We use StyleGAN as a comparison which achieved good results in [166]. The second
type is the use of transfer learning and namely Resnet50 used in many works such as
[167] and [168] for transfer learning, also viewing it in combination with vector-based
oversampling. Thirdly we compare against DeepSMOTE [6], a state-of-the-art approach
of performing SMOTE-like oversampling on the image level. For the non-transfer learning
scenarios, we used as a classifier a customized shallow CNN for this dataset consisting of
a convolutional layer with two parallel filters of (3 X 3) X 16 and (1 X 1) X 16 followed by a
dense and a softmax layer.

The metric monitored was the binary recall from the perspective of the defect classes
(Table 2.2), i.e. the defect class is considered the positive class for measuring recall. We
found this metric most appropriate for a defect classification example as it better suits the
way automated visual inspection is envisioned to work on a real production line. More
specifically, positive predictions (good) usually receive the green light with no or little
manual checking, while negative ones (defects) are put aside to be further examined by
a human operator. Our aim is to minimize the number of defects that are mistakenly
labeled as high-quality products. A more precise definition of Binary Recall, as used in
the current context, can be formulated given the classifier C, test data X, the labeling

function [, and the set of defect labels Ly = {double print, interrupted}, as follows:

[x € X :C(x) e Lg Alix) € Lyg|
|x € X : U(x) € Ly|

BinaryRecall =

Another benefit of this metric is that it does not suffer from the dataset skew as, for
example, accuracy which is dominated by the accuracy in the majority class. One must
also be careful while maximizing binary recall so that not every product image is classified

as a defect. For this reason, we also evaluated the ROC-AUC score which measures class
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separability, though with a relative skew towards the majority class. The ROC-AUC score
was satisfying for all experiments with values greater than 98%.

To complete the picture of the final classifiers’ performance, we include the binary Pre-
cision and F1-scores, again, measured from the perspective of the defect class. Precision
performance will be determined by the percentage of good images that get mistakenly
classified as defects, while the F1l-score will attempt to give a balanced account of the
methods’ effects on precision and recall. More precisely, these metrics are calculated

using the same notation as for Binary Recall as follows:

[x € X : C(x) € Lqg A l(x) € Lyq|

Precision =
|x € X : C(x) € Lyl

2 X Precision X BinaryRecall

F1 — score =
Precision + BinaryRecall

Additionally, we compare a simplistic augmentation using our generation method in
an untargeted fashion against our targeted oversampling approach based on the selection
of the most informational examples (Fig. 2.6). This helps us gain further insight into how
and in which cases targeted oversampling is helpful. We also monitor additional metrics
such as the number of images generated for each defect class and the class-specific
recalls.

The experiments consist of a total of 30 model runs using 5-fold cross-validation on a
single NVidia K80 GPU used for both the training and data generation processes. Binary

Recall scores are presented with their 95% confidence intervals.

Hyperparameter Tuning

For most comparison methods, an exhaustive search was carried out over ranges
around initial well-performing hyperparameters (HPs) determined through trial and error.
The best-performing hyperparameters were chosen over a stratified 5-fold cross-validation
scheme similar to that followed for the showcased experiments resulting in an overall
nested cross-validation (or double-cross) scheme as described in [169] and specified in
pseudo-code in Algorithm 2.3. Specifically, the inner cross-validation produces validation
sets for the selection of HPs and the outer cross-validation produces independent test
sets for out-of-sample evaluation of the methods with the best-performing HPs. From this
scheme, we extract the most frequently selected HP combinations as the recommended
set of HPs to use for each method, which could provide the interested reader with insight

into the dataset from an oversampling perspective.

2.4.3 Experimental Results

As shown in Table 2.2 our method outperforms all state-of-the-art approaches in terms
of binary recall. However, there are several interesting points to note. Firstly, we observe
that the custom CNN architecture outperforms transfer learning and transfer learning
with oversampling approaches because the features are learned end-to-end specifically

for the dataset at hand instead of being adapted from imagenet. Secondly, the impact of
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Anaroriemor 2.3: Nested Cross-Validation for Evaluation and Hyper-Parameter Tuning

Input: C the Classifier (possibly including pre-trained embeddings and/or an oversam-
pling method), X the input data (images), Y the input labels, CV the stratified cross-
validation scheme, H the set of possible hyperparameter combinations, rs the random
seed for the current evaluation run
Output: M the complete final metrics per fold and seed, Hy the selected hyperparameter
combinations per fold and seed

1. M« {}

2: Hf <={}

3: fold &0

4: for Train, Test € CV.split(X, Y, folds = 5, random = rg) do

5 H,, = MinHeap()
6 for H € H do
7: fold +=1
8 Rayg &= 0
9 for Traingp, Testyp € CV.split(Train, 5, rs) do
10: Cy & train(C, Traingp, H)
11: my < evaluate(Cy, Testyp)
12: Ravg & Rapg + myg.recall
13: end for
14: Ravg & Ravg/5
15: Hy, & Hp U {(H, Rayg)}
16: end for
17: hiop. Tiop & argmax|R]
(h,R)eHp,
18: Cr < train(C, Train, hyp)
19: m < evaluate(Cy, Test)

20:  Hy & MU {(rs, fold, hyop)}
21: M < M U {(rs, fold, m)}
22: end for
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oversampling on the vanilla Resnet50 approach is much larger, than the effect of both
Loss Weighting and our approach on the custom CNN. This can be attributed to greater
margins for improvement in lower recalls, but also to the imperfection of the generation

methods at the image level, which is a much more complicated, high-dimensional process

than generating simple vectors.

Table 2.2. Comparison of oversampling methods on the shaver-shell prints dataset

Method Bin. Recall % | AUROC % Precision % F1 %

Resnet50 85.85+1.50 | 98.85+0.12 | 94.41 +£3.27 | 89.59 + 1.27
Resnet50+SMOTE 95.84 +0.52 | 98.87 +0.13 | 84.53 +3.01 | 89.61 + 1.57
Resnet50+ADASYN | 95.49+0.99 | 99.07+0.11 | 85.14+3.45 | 89.67 + 1.69
Custom CNN 95.84 +£+0.39 | 99.20+0.19 | 97.53 +0.81 | 96.67 + 0.56
Custom CNN+LW 96.07 £0.39 | 99.09+0.19 | 98.34 +0.33 | 97.19+0.43
StyleGAN 91.20+2.20 | 99.01+0.14 | 99.17+0.41 | 94.95+ 1.38
DeepSMOTE 93.58 + 1.07 | 99.23 +0.15 | 96.93 +0.80 | 95.22 + 0.87
Ours 97.27 +0.76 99.34 + 0.07 | 96.82 + 1.27 | 97.03 +0.98

Most interestingly, we observed that the augmentation approaches based on Style-
GAN and DeepSMOTE had an adverse effect on the custom CNN’s performance. This is
mainly attributed to their inability to produce realistic defect images that are close but not
identical to the high-quality images and can also be hinted at by the samples of generated
images shown in Fig 2.4. In fact, on the MVTec AD datasets, which are one order of mag-
nitude smaller in size, these generative methods failed to produce plausible defect images,
most probably due to the documented early overfitting approach of GAN architectures on
small datasets [170]. Therefore they are also not included in Table 4.2. Our generator,
thanks to the additional processing steps introduced manages to usually depict these
kinds of small defects, which occur mostly in the interrupted class of the shaver dataset.
Nevertheless, confusing synthetic images were still occasionally produced in some of the
dataset’s splits leading to a small deterioration in performance, highlighting a possible
limitation of the proposed method.

It is important to note that in terms of AUROC, our method does not provide a signif-
icant improvement as it does with binary recall. The purpose of monitoring the AUROC
metric, as mentioned in the experimental results section, is to ensure that while our
method improves recall in the defect classes, it does not, at the same time, significantly
sacrifice performance in the good class. Let us also note that since AUROC considers the
dataset as a whole it makes it difficult for improvements in recall to be reflected since they
are overshadowed by the performance in the majority class, which is more similar across
the different methods.

Of particular interest is the effect of the proposed method on the Precision and F1
metrics in this dataset of high inter-class similarity. As explained in the experimen-
tal results section, our on-the-fly oversampling method was designed to optimize recall,
which in the case of datasets with high inter-class similarity might come at the expense
of precision i.e. mistakenly classifying more good images than before as defects. This is

also illustrated by the method’s performance in the precision metric which is lower than
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all other methods utilizing a custom CNN classifier. Consequently, its F1-score, while
second highest, is overcome by the Custom CNN with Loss Weighting. The sacrifice of the
F1 metric, however, is only 0.16, with largely overlapping confidence intervals between

the two methods, showing a small sacrifice in the overall problem performance.
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Figure 2.4. Artificially generated defect images

On the MVTec AD datasets, confidence-aware oversampling managed to provide the
biggest improvements upon the end-to-end trained network, achieving the best recall
scores in all cases. However, establishing statistical significance through confidence
intervals was harder in this case, due to the very low number of defects in the test sets (see
Table 2.3). As a consequence of the low number of defect samples, mispredicting just a few
images has a pronounced impact on the overall binary recall score, which unfortunately
presents a limitation of the evaluation scheme of our method when faced with smaller
minority classes. Still, the improvement in the Metal Nut dataset was significant in
comparison with most methods, while in the pill and carpet datasets, there are some
indications of improvement. The grid dataset was harder for all methods producing results
with very high variability between individual run scores.

Contrary to the shaver’s dataset performance in the precision and F1 scores is consis-
tently the highest across the four MVTec AD products - in the Metal Nut and Pill datasets
being also statistically significant. We attribute this difference in the corresponding per-
formances as measured on the original Shavers dataset, again, to the smaller amount
of data which benefits significantly from the addition of the augmented images resulting
in more precise boundaries from the perspective of both classes. For this reason, our
image-level oversampling method has a more global effect on the classifiers’ performance,
not suffering from the trade-offs appearing in the more populous shavers dataset.

To understand the proposed method in more depth, Fig. 2.5 shows the changes
in classifying augmented images and in the top-15 minority instance distances to the

boundary before and after augmentation. There is an indication that boundaries shift
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Table 2.3. Comparison of oversampling methods on the MVTec AD product datasets

Dataset Method Binary Recall % | AUROC % | Precision % F1 %

Resnet50 30.30 = 5.59 73.29+3.48 | 42.4+5.57 | 34.36+5.95

Resnet50 + SMOTE 35.60+£5.71 74.67 £4.34 | 48.27 +3.38 | 43.55+3.48

Grid Resnet50 + ADASYN 42.57 + 8.38 74.26 +4.04 | 42.93+4.59 | 35.93 +6.68
Custom CNN 70.90 + 10.93 90.71 £5.49 | 80.23 £9.97 | 74.50 + 10.50
Custom CNN + LW 69.24 + 12.25 89.80+6.09 | 75.38 £+12.3 | 71.55+ 12.15

Ours 71.21 +9.92 91.22+5.12 | 91.43+6.86 78.45 + 8.36

Resnet50 81.89 + 3.70 97.07 £0.41 | 87.80£3.33 | 84.20 +2.27

Resnet50 + SMOTE 88.69 + 1.53 97.21+0.46 | 79.56 £2.11 | 83.66 + 0.94

Carpet Resnet50 + ADASYN 84.18 +2.71 97.25+0.45 | 83.96 £3.78 | 83.42 +1.28
Custom CNN 87.77 £ 7.62 98.94+0.49 | 89.73+1.23 | 87.48+4.75

Custom CNN + LW 91.11 £ 6.06 98.90+0.51 | 88.02 +£1.78 | 88.92 + 3.72

Ours 92.22 + 3.32 99.86 + 0.11 92 +1.60 91.9 +1.97

Resnet50 84.03 + 3.46 96.90+0.79 | 95.33+1.70 | 88.99 + 1.97

Resnet50 + SMOTE 88.30 £ 3.71 97.32+£0.51 | 90.32 £ 1.33 | 89.07 + 1.62

Metal | Resnet50 + ADASYN 84.09 +£3.71 97.01+£0.72 | 95.38 £ 1.63 | 89.02 +2.09
Nut Custom CNN 82.92 + 5.36 97.49+1.15 | 98.33+1.33 | 89.55 +3.87
Custom CNN + LW 82.92 + 5.36 97.49+1.15 | 98.33+1.33 | 89.55+ 3.87

Ours 92.63 +3.15 98.32 +1.22 | 98.75+1.00 95.49 +2.12

Resnet50 71.52 +6.29 92.70+1.63 | 84.84 +1.63 | 76.65+4.29

Resnet50 + SMOTE 90.02 + 2.62 91.76 £1.82 | 60.7+1.57 | 72.34+1.41

pill Resnet50 + ADASYN 78.62 +4.16 91.87+1.70 | 82.29+1.54 | 80.08+2.41
Custom CNN 88.71+2.18 98.35+0.60 | 93.48 £2.03 | 90.94 + 1.76

Custom CNN + LW 88.71+2.18 98.35+0.60 | 93.48 £2.03 | 90.94 + 1.76

Ours 92.29 + 3.79 98.80 £ 0.58 | 96.25 +1.63 94.11 + 2.68
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from the minority classes closer to the majority classes so that generated images that
were misclassified before augmented training are now learned by the model. Of course,
this shift in the distances is varied and cannot easily be correlated with performance
increases, due to the complexity of the deep learning process and the approximate nature
of the distance calculation method. It is important to note that distances both before
and after augmentation are low in magnitude considering the high dimensionality of the
feature space, hinting at the existence of highly populated boundaries. The goal of our
method is to push those boundaries slightly so that they are biased toward the minority
class - whose recall is more important - while perhaps, as in the case of the Shavers
dataset, sacrificing prediction accuracy over the majority class - which is desirable given
that the performance sacrifice is limited. This small shift could be significant exactly
because the boundaries are densely populated due to high-class similarity. In the case of
the MVTec AD datasets, this process leads to an overall improvement of class separability

as highlighted by the increases in both precision and recall.
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Figure 2.5. Label accuracy of augmented images, before and after augmented training
(Left). Top-k distances to classification boundary before and after augmented training for
k=15 (Right)

In terms of the specific hyperparameters (HPs) of our approach defined as inputs to
Algorithm 2.2, after comparing the final classification performance of different combina-
tions we chose 20 epochs for pretraining and 30 epochs with early stopping for training on
the augmented dataset as the best-performing way to split the 50 total epochs needed to
reach a stable loss plateau. We also determined the best value for ky,, to be 15 images. In
all other approaches, the training epochs for the classifier were 50 with early stopping, so
that all comparison classifiers have time to reach their loss plateaus and equal to the total
amount of training epochs used in our approach. The number of augmentation examples

produced for the comparison methods was always the required amount for every class to
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have as many instances as the good class, resulting in a balanced dataset. The ranges
of HPs examined and the final recommended HPs for the Shavers dataset are shown in
Table 2.4. For the image generation of StyleGAN and DeepSMOTE, we used the settings
suggested for small datasets in the respective papers ([165], [6]).

Table 2.4. Table of searched and recommended final hyperparameters per examined
method for the shavers dataset

Method Searched HP Recommended
HP
SMOTE type € | type =
{None, borderlinel, borderline2}, borderline2
k e€[2,20],m € [0,22] k=2,m=20
ADASYN | k€ [2,20] k=5
Custom batch-size € {4,8, ..., 64}, batch-size = 4
CNN l.€{1075,107%,...,1072%}, l.=10"*
dropout € {0.2,0.3,...,0.8} dropout = 0.4
Ours top-k € [5, 50], top-k = 15
pre-eps € {5, 10, .., 45} pre-eps = 20

Finally, in terms of computation time, the introduced method was much quicker by
approximately 3X the training time without augmentation (~ 30 minutes for a full run),
while other image-level approaches such as StyleGAN and DeepSMOTE took more than
20h to train. This is because our method uses a small base set of images for generation
and the time taken is linearly proportional to the number of base images. It is also built
on top of a lightweight transfer learning method for GANs, while DeepSMOTE needs to be
trained from scratch and StyleGAN'’s fine-tuning is more time-consuming due to its vast
number of parameters.

Fig. 2.6 shows more closely how our oversampling method helps the classifier’s learn-
ing process in the shavers dataset. We compare binary and class-specific recalls by using
our generation method in a uniform way with the whole training set as seeds and se-
lecting the seed set based on a distance-to-boundary confidence measure. What stands
out is that the majority of the images close to the decision boundary belong to the inter-
rupted class which is most similar to the good class. Basing the augmentation off of those
images is also what brings the largest gains in recall performance. In the double print
category, such gains are not visible, in fact, performance slightly deteriorates. This hints
at a limitation of our method consistently producing performance gains over a range of
imbalanced learning scenarios as it has been primarily designed for problems with high

inter-class similarity.

2.5 Summary

In this chapter, we introduced a novel method for performing oversampling at the
image level in the context of defect detection. Data generation is now performed more

efficiently based on images that are estimated to be close to the classification boundary.
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Figure 2.6. Comparison between simple augmentation and confidence-based oversam-
pling - 6 different instances of 5-fold CV on the shavers dataset
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The high-fidelity images generated helped improve the classification results over a dataset
containing defects of varying perceptibility. The runtime and computational costs of
generating synthetic data were also greatly reduced compared to other state-of-the-art
approaches.

We believe that future advances in instance-based or few-shot image generation can
greatly help improve our work by producing images of higher fidelity and variability from
a small selected seed set of low-confidence images. Further opportunities for improve-
ment lie in the way original and synthetic images are fused, which could potentially
be performed in a smoother way than tiling using a few-shot learning-based fusion
method. Finally, it is worth investigating how to produce linear interpolations between

low-confidence samples through a suitable encoder/decoder architecture.
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Chapter B

Enhancing Robustness to Novel Visual Defects
through StyleGAN Latent Space Navigation: A

Manufacturing Use Case

3.1 Background

Quality Inspection, a key component of all production systems, has been following the
trend of digitalization introduced by Industry 4.0 through the connection of digital sensors
on the shop floor to state-of-the-art statistical and Artificial Intelligence (Al) algorithms
running on the cloud and edge infrastructure [171]. The capabilities to collect information
through sensors in real-time, in a non-destructive manner as well as the capabilities
to store and process the large volumes of complexly interrelated data generated by the
continuous operation of the shop floor through Machine Learning and Deep Learning has
made it possible to develop sophisticated platforms that provide global view and control of
quality in the factory [172]. Our work focuses on the specific case of visual inspection of
the finished part, which is necessary when it comes to painting and decorating products.
To that end, current Al research has provided many Image Processing, Computer Vision,
and, lately, Deep Learning techniques that can meaningfully process rich image signals
[173]. However, full automation of the Visual Quality Inspection can still be improved.
In this work we examine a real-life manufacturing use case of automatically assessing
the quality of brand prints on shavers produced by Philips Consumer Lifestyle B.V. While

working on this use case we identified three significant challenges:

1. Typical insufficiency of training data, especially regarding rarely-occurring produc-

tion defects.

2. High visual similarity between flawless and defective products might not be easily

recognizable by an Al algorithm.

3. Occurrence of unanticipated defects during the continuous operation phase, which
can lead to wrong Al decisions since they lie outside of the algorithm’s training

domain.

While the main focus in this section is on the last issue, the first two challenges, and

especially high inter-class similarity, are not taken into account by most existing deep
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learning robustness methods. However, they play an essential role in selecting suitable
algorithms and evaluating the results in the problem of defect classification.

After carefully examining the suitability of different methods for identifying defects
that were not anticipated during the Al model’s training, a novel approach to open-set
recognition for defect detection is proposed which relies on data augmentation and is
more tailored to the defect classification problem and its aforementioned challenges. The
presented method is based on the state-of-the-art GAN architecture of StyleGAN v3 [174],
chosen due to its high fidelity, degree of generalization, and advanced manipulation ca-
pabilities. The latter are then leveraged through a computationally efficient closed-form
factorization method [12] that discovers the most impactful directions for image genera-
tion in the GAN’s latent space. After generating images along these directions, a novel
criterion is applied for deciding if a synthetic image can be considered “unknown" relative
to the used classifier and thus added to the augmented training set. The intended effect
of this method is to introduce images that lie at the edge of the known classes and can
define our classifier’s area of competence. Consequently, any image that occurs at test
time and is mapped outside this area can be considered unknown. The proposed method
could potentially also be utilized in other areas where small visual anomalies need to be

detected, such as civil infrastructure inspection or biomedical image processing.

3.2 Use Case and Dataset

The examined use case features a human-Al collaboration scenario, where products
are first examined by the Al system to identify en masse potentially defective products that
are then examined by a human operator who makes the final decision whether to discard
or keep the product. The same scenario is also presented with an enhanced role for the
operator in the form of active learning in [26]. The associated product image dataset
provided by Philips Consumer Lifestyle B.V. was collected from the factory’s pad printing
process to serve the need for building an automated quality inspection system. The images
in the dataset have been collected from the real-life production process before automation
was introduced and have been manually labeled by multiple quality inspectors working
in the factory to ensure correct labeling before their use in Al training. As is often the
case, manufacturing defects are rare and this resulted in an imbalanced dataset. In the
current context, we do not focus on solving the imbalance issue, nevertheless, we take it
into account during the evaluation of our experimental results so that they represent a
realistic scenario.

The collected dataset in digital form consists of RGB images in PNG format with
dimensions 220 X 360. They are divided into three classes, one with flawless products,
and two defect classes, namely double prints and interrupted prints. Representative
examples of each class are presented in Fig. 4.3.

The number of correctly printed images is 2684, of double prints 244, and of inter-
rupted prints 598. One important feature to note is that interrupted prints can be very
similar to flawless prints, making their distinction difficult as well as the generation of

sufficiently differentiated images from these two classes. The full collected dataset is split
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(a) Flawless (b) Double Print (c) Interrupted

Figure 3.1. Original Shaver Shell Prints

into approx. 70% of the images to be used for training and 30% of images to be used for
performance evaluation of the trained algorithm.

To additionally evaluate robustness, novel defects (unseen in the training set) were
created synthetically to simulate possible unexpected defects that might occur during

Automated Visual Quality Inspection, namely:

e Line Interruptions, which could result from preexisting scratches on the printing

pad.
e Missing Letters, which could be due to a defect in the printer head
e Discoloration, due to the corruption/mixing of the sprayed color
e Horizontal and Vertical Flips due to a wrong setting of the printer head

Synthetic images of the first three categories can be found in Fig. 3.2. Images from
these categories are merged with the test set in the same proportion to flawless images as
the original defects (approx. 3 flawless to 1 defective), to represent a realistic imbalance
scenario that could potentially occur in the production line. Therefore, the final test
set, over which all methods are evaluated, contains 800 flawless images and 250 images
with known defects, augmented with 250 novel defect images randomly and uniformly

generated from one of the synthetic classes above.

(a) Line Scratches (b) Missing Letter (¢) Discoloured

Figure 3.2. Synthetic “Unexpected” Defects

3.3 Related Work

Two branches of recent Al research aimed at the development of systems robust to
out-of-distribution samples and also applicable in Visual Quality Inspection are open-

set recognition (OSR) and semi-supervised anomaly detection. Traditionally, classifiers
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have been evaluated on closed set problems, where the classes in the test domain are
identical to those in the training data. However, practical use cases often require the
classification of so-called “unknown unknowns" [175] corresponding to unmodelled as-
pects of the problem domain, which tend to confuse learning algorithms. OSR attempts
to minimize the risks associated with these unknowns while preserving performance in
the training classes. We identified three categories of OSR methods that could apply to
our use cases, the current literature on which is mentioned below: Statistical OSR, OSR
for Deep Learning, and Data Augmentation.

On the other hand, semi-supervised approaches view the problem over a binary lens,
trying to model the flawless class and identify visual deviations as anomalies. Despite
lacking the granularity of multi-class classification methods [176], they are beneficial to
cases where the “closed set" consists only of the flawless class, and all defects belong
to the “open set". It was demonstrated in [177], that these methods achieve comparable
but lower performance on some metrics to open-set recognition, even though finding
appropriate decision thresholds to address the aforementioned class-similarity problem
can be tricky.

3.3.1 Open-set Recognition

OSR can be applied in two ways: by separating unknown from known instances in a
binary way and then performing the usual multi-class classification task or by maintain-
ing classification accuracy for known instances by grouping unknown ones in a newly
added background class [178]. The OSR problem was formally defined by [179] as they
attempt to minimize open space risk, where the open space O refers to the space away
from the mass of known instances. The risk of labeling such an instance as a member of

a known class is defined with the help of an indicator function f as:

 Jofoax
Jo, S0dx

Where f(x) = 1 if an open-space instance is defined as known and is O otherwise and

Ro(f)

So is the total space including both open and closed-set instances. Subsequently, OSR
is posed as an optimization problem of minimizing the open space risk Ry together with
the empirical risk R, depending on the recognition function f from measurable space H

with training data V and a regularization coefficient A,:

arg min{Rqf + A,R.(f(V))}

feH

Regarding specific implementations, OSR can be further subdivided into three families
of methods: Statistical, Deep Learning, and Data Augmentation-based OSR.
Statistical Methods

Most statistical methods for OSR make use of Extreme Value Theory (EVT) [180], a

branch of statistics that has been successfully applied to areas such as financial and en-
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vironmental risk management and anomaly detection (e.g., intrusion detection in security
monitoring [181]. The goal of EVT is to label a sample as extreme through modeling a
distribution’s tails and subsequent application of appropriate thresholds. In most OSR
applications, EVT is used over the distribution of classifier scores.

Scheirer et al. [179], combined Support Vector Machines (SVMs) with EVT by defining
and adjusting an extra hyperplane to divide known classes and open space, thus bounding
open-space risk. One of the most significant contributions of this research was the
Compact Abating Probability (CAP), which requires that the probability of an instance
belonging to a specific class decreases in all directions leading from the training space to
the open space. Their algorithm was named the “1 vs. set machine".

Weibull SVMs (W-SVM) is an attempt by [182] to extend the “1 vs. set machine"
using score calibration based on the Weibull distribution (a common choice in EVT for
modeling distribution tails) and nonlinear boundaries. The scores to be calibrated are a
combination of a One-class SVM [183] using an RBF kernel for differentiating between
open/closed set instances and a multiclass SVM to classify amongst known classes. This
approach has been widely used in fingerprint recognition [184] and intrusion detection
[181].

A further development in this direction was the Probability of Inclusion SVM (PI-SVM)
by [185], which models the posterior probability of inclusion for each class and rejects
unknown samples based on an appropriate threshold value. This modeling happens
via an RBF kernel SVM using a “1-vs-all" approach, where classification scores from
instances close to the positive class limit are used to fit a Weibull distribution. Instances
are assigned to whichever class their probability of inclusion after Weibull calibration is
highest and above a certain threshold. They are marked as unknown if they are below

the threshold for all candidate classes.

OSR and Deep Learning

Similarly to the calibration of SVM scores, EVT has been used over Deep Neural
Network (DNN) scores to minimize open space risk. Initial approaches for OSR on DNNs
focused on thresholding the softmax output of a network [186], which squeezes the activa-
tions of the last layer between O and 1, providing a pseudo-probabilistic output. However,
due to its steep form, the softmax function will not only misclassify an out-of-distribution
sample but also likely assign its prediction a high confidence score, making thresholding
on the softmax score problematic. A possible solution is using a background or garbage
class [187]. Even though this worked well in the benchmarked pedestrian datasets, it
was insufficient for other real-world use cases with practically infinite open-space risk.
A further step is creating a softmax-like layer with an extra class output introduced in
Openmax [188] and aiming to redistribute scores between closed and open-set classes
while retaining the benefits of softmax. OpenMax operates on distances to mean acti-
vation vectors (MAV) exported from the final layer of the DNN before the softmax. After
determining the highest per-class distances, it uses EVT to fit a Weibull distribution on top

of them. After thresholding, it leads to a CAP adhering distribution with rejected samples
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being assigned to the unknown class after the overall final scores are normalized. Unfor-
tunately, OpenMax is constrained by the underlying feature representation of the original
network architecture, which might not necessarily drive toward better representations for

the differentiation of unknown instances.

Data Augmentation

Attempts to directly learn open-set feature representations have been largely based on
data augmentation techniques, based on the notion that training the model on synthetic
open-set instances will produce representations that will remain robust at test time. To
that end, generative adversarial networks (GANs) have been utilized in works such as [189]
and [190]. GANs consist of two antagonistic networks: the generator (which produces
images similar to the training data from a small noise input vector) and the discrimina-
tor (that tries to differentiate between real and synthetic samples). During adversarial
training, the generator becomes increasingly better at fooling the discriminator.

G-Openmax [189] is a GAN-augmented extension of Openmax working under the as-
sumption that open-set classes are usually closely related to the original training classes.
The synthetic instances created as additional input to the Openmax augmented network
training data result from linear latent space interpolations between samples belonging
to different classes. While this technique improves upon OpenMax in handwritten digits
and characters datasets, it does not make a difference in more realistic use cases.

Aiming to improve upon G-Openmax [190], propose Open-Set Recognition with Coun-
terfactual Images (OSRCI), augmenting the training set with counterfactual images. These
are generated by posing GAN latent space traversal as an optimization problem where the
nearest noise vector to a class’s latent representations for whom the generator output
is misclassified, serves as the seed for generating a counterfactual image. This idea is
closely related to the CAP notion. [191] similarly propose an adversarial sample genera-
tion (ASG) method. Finally, OpenGAN [192] uses a vector encoding semantic information
together with inter-class interpolation in the latent space to drive the generation of novel

images.

3.3.2 Semi-supervised Defect Detection

Semi-supervised anomaly detection is a close relative to OSR. It is most useful when
images for the normal class are available with none or very few anomalous samples.
This is very often the case in manufacturing production lines. Therefore, we use various
models to compare their performance to open-set recognition techniques. Methods that
apply to visual inspection most commonly rely on image reconstruction pipelines and
generative models and are usually based on encoder-decoder, GAN, and, more recently,
normalizing flow architectures [193].

The idea behind image reconstruction methods is to train an encoder-decoder-like
architecture to reconstruct only normal images. When defects are seen at test time, their
reconstruction will not be as accurate, leading to a measurable (e.g., using the Struc-

tural Similarity Index) difference between flawless and anomalous image reconstructions.
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Variants of this approach have been applied in use cases such as the inspection of civil
infrastructure [194], the production of hot-rolled strips [195], and railway rail insulator
patches [196]. GANs have also been widely used in this scheme. For instance, [197]
introduced GANomaly, which adds another encoder on top of its encoder-decoder GAN-
based reconstruction pipeline. The output of this new encoder is compared to the latent
space representation of the original encoder to determine whether the image contains a
defect.

An additional approach to semi-supervised visual defect detection is based on cal-
culating appropriate distance-based distributions and thresholds on top of pre-extracted
embeddings from large datasets such as Imagenet. Deep Feature Kernel Density Estima-
tion (DFKDE) [198] follows the pre-trained backbone network with Principal Component
Analysis and Gaussian Kernel Density Estimation, while Deep Feature Modelling (DFM)
[199] also applies PCA followed by fitting a mixture of Gaussian on the features with

lowered dimensionality, as extracted from the flawless class images.

3.3.3 OSR in Manufacturing Defect Detection

Although semi-supervised learning has been widely applied to manufacturing quality
inspection problems, few research works study open-set recognition settings. This is also
partly due to the proliferation of datasets fitting the semi-supervised setting, such as
MV-TEC and Kollektor SDD [198]. Despite the defect detection problem being a binary
classification task in many use cases, open-set recognition can offer more flexibility with
the ability to distinguish between different defect classes and open-set instances. One
such work is presented in [200], which applied a CNN with a distance or clustering-based

approach in an embedded space to a wafer map inspection scenario.

3.3.4 GAN Inversion and Latent Space Traversal

Attempts to control the output of GANs are directly related to OSR data augmenta-
tion methods as they can be leveraged to produce realistic novel image data. This is the
domain of GAN Inversion Research which also enables the targeted traversal of a GAN’s
input space in a meaningful and sometimes interpretable way. The initial goal of GAN in-
version is to map an image that is relevant to the GAN’s training domain, backwards to a
latent space noise vector that when provided as input to the GAN produces an accurately
reconstructed version of the image [201]. Of course, such a task is made more difficult
with modern complicated, but also very realistic GAN architectures such as PGGAN [202],
BigGAN [203] and StyleGAN [204]. Towards that end many supervised, unsupervised and
optimization-based methods have been introduced, each with its unique trade-offs. Su-
pervised methods attempt to learn a mapping from the generated images to their latent
space origin vectors hoping to extend it to non-synthetic images as well, but often intro-
ducing bias towards the sampled synthetic images used to form the training set, while
optimization-based methods try to minimize a reconstruction loss type constraint by a
directed search of the latent space, which however comes at a higher computation cost
[205].
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An important aspect of GAN inversion is also the latent space that is used. The
first choice is the so-called Z-space which is available to every architecture as the space
of possible inputs. However, architectures such as StyleGAN provide more degrees of
freedom and better disentanglement regarding semantic attributes. One such space is
the W-space which is the result of a fully connected MLP applied to the Z-space inputs to
map them to a more disentangled space [204], characteristic of StyleGAN architectures.
W-space vectors are further processed by the AdalN layers and are fed at different layer
depths to StyleGAN’s generator architecture. These processed per-layer inputs bundled
together form the W+ space [206]. More elaborate latent spaces such as S-space and
P-space have also been introduced [207], [208], but are out of scope for this research.

The end goal of mapping an image inversely to one of the aforementioned latent spaces
is to provide the capability to traverse this latent space in a way that modifies or edits
semantically meaningful attributes of the image [209], [210]. More specifically, the goal
is to find those direction vectors n for which linear traversals with step a in the form
7z = z + an produce meaningful changes to the output image. These directions can be
discovered both in supervised and unsupervised manners. For instance, [211][212] gather
many latent space vector/image pairs and tries discovering directions relating to features
like color, rotation, or facial attributes using corresponding pre-trained classifiers, which
of course might not be available for all possible required attributes/datasets. On the other
hand [213] attempts to discover high-impact traversals by applying Principal Component
Analysis (PCA) on the latent space. More recent approaches however try to find closed-
form solutions, such as SeFa [12] which makes use of StyleGAN architecture specifics to
approximate the problem in an analytically solvable manner, with substantial gains in

computation time.

3.4 Proposed Method

Our proposed approach follows the example of the Data Augmentation methods for
open-set recognition described in the previous section. Similarly, it adds an “unknown"
class to the problem, for which synthetic images are generated using GAN manipulation.
Compared to approaches such as OSRCI and OpenGAN, which were described in Section
3.3.1, we use a newer and more expressive GAN architecture namely StyleGAN v3. Style-
GAN produces higher-fidelity outputs, which helps when generating images with high
inter-class similarity such as the flawless and interrupted images from our use case. It
also offers more easily manipulable latent spaces and a variety of different methods for
traversing them. Those two aspects are foundational to our approach which is broadly
described in Fig.4.2.

The three basic components of our approach are the Generation of Synthetic Data, the
Voting-based Filtering, and the Training on the Augmented Dataset. The data generation
process uses a pre-trained StyleGAN model (G) fine-tuned on our use-case dataset. The
StyleGAN generator is then passed onto the Semantic Latent Factorization model which
discovers the semantic directions over which the greatest change in the output occurs.

These directions are then traversed and produce synthetic images corresponding to speci-
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Figure 3.3. Basic components and dataflows for the proposed approach
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fied distance points on the latent direction lines. Of course, the images produced through
this process might not be novel but instead belong to one of the original classes, as shown
in Fig. 3.4. However, our rationale is that images originating from points that lie on the
edge of the Generator’s learned latent distributions could be sufficiently unrecognizable by
a classifier to be considered novel or “unknown" and thus be used through augmentation

to form a boundary around the distribution that is known during training time.

d=10.0 d=15.0

Figure 3.4. Images generated from SeFa traversal at given distances. The circled images
are retained as out-of-distribution after filtering.

)

d=0.0 d=5.0

Data Filtering attempts to identify and collect these extreme images, while discarding
those that are easily recognizable. This is achieved through a vote gathered from three
voter classifiers (V;). Each of these classifiers is trained on the same data but using
transfer learning from different pre-trained embeddings so that the problem is learned

from different angles. We measure how novel an image is through the disagreement of
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the voter classifiers i.e., the number of distinct different classes predicted for the image.
The images that cause high enough disagreement are then grouped into the “unknown"
class and added to the original training data. A classifier C is trained on the augmented
set with the additional class. We show that by adding these extreme images to the
training set we make the classifier more resilient to novel inputs that might occur during
testing or continuous real-life operation. The rationale behind this type of augmentation
is that “extreme" images form a boundary between the original classes and the open space

helping out-of-distribution inputs fall into the added “unknown" class.

3.4.1 Semantic Factorization for Latent Space Traversal

Semantic Factorization (SeFa) [12] is an attempt at a closed-form solution to the
problem of discovering semantically meaningful latent space traversals. We leverage
this method for our approach since it is a closed-form and therefore computationally
light, method that performs on par with previous learning-based methods as described
in Section 3.3.4. The method is based on the singular value decomposition of a GAN’s
first layer weight matrix. Assuming a generator G mapping inputs from R4 to the space
of possible images 7, i.e. I = G(z), the first layer output G;(z) can be represented as
an affine transformation of the latent space input z: G;(z) = y = Az + b, where A is the
matrix of first layer weights of G. Then G;(2’) for a sample in direction n, z’ = z + an
starting from a randomly selected z and placed at a distance regulated by the constant
a, was expressed by the authors in terms of G1(z) as G1(Z’) = G1(z) + Aan, meaning
the difference between the two outputs are dependent only on the weight matrix A and
therefore reducing the search for k most meaningful semantic directions N* = {nq, ..., ny}

to the optimization problem:

N* = arg max Z lAny|[?

After the use of Lagrange multipliers, the problem is further reduced to finding the
eigenvectors corresponding to the k largest eigenvalues of the matrix ATA.

In our use case, we apply SeFa to different StyleGAN layers that control style attributes
such as pose, texture, etc., and collect the directions of highest change from all layers
together to later produce synthetic images. The reason for choosing this method, apart
from its computational efficiency (closed from - no learning model needed), is its clear way
of discovering directions of steep change. These directions make it possible to produce

samples that lie at the edge of the generator’s capabilities.

3.4.2 Method Description

In this section more details are provided on the proposed approach as specified in
Algorithms 3.1, 3.2 and 3.3, loosely corresponding to the main components in Fig. 4.2.

Algorithm 3.1 describes the process for generating synthetic images. A pre-trained
StyleGAN generator G is provided, as well as a list of layer IDs (L) that correspond to the

latent spaces that can be explored e.g., Z-space, W-space, etc. The generation process is
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followed per input class belonging to the closed-set classes C. The first step is to use Se-
mantic Factorization (SeFa) to produce the set of most semantically significant directions
and the layers to which they belong. The number of directions used is defined by the
number of semantics Nggy that is passed as a parameter. For each dimension/semantic
a number of Ngap points are sampled from its associated latent space in the StyleGAN
generator architecture to serve as a starting point for a traversal. How far away one can
go from the starting point is bounded by dn;, and dpng, While the number of steps s de-
fines the number of intermediate images generated and saved across the chosen semantic
direction. The outputs of the generation procedure are the total images gathered from the

executed traversals.

Aaroriemor 3.1: Generate Synthetic Open-set Data

Input: G StyleGAN image generator, C = {c;, cg, ..., ¢k} closed-set classes, Nggy # seman-
tic directions, Ngay # samples per direction, t truncation factor, (dmax, dmin, S) direction
bounds and step, L list of layer IDs
Output: Is synthetic traversal images

1 Loyt & {}

2: for ce C do

3: {Ln}iz1:Ng,, & SeFa(G¢, Lg), where Vi, l € Lg
4 for j € range(Nsgy) do

5: n, < dim(n;)

6: G < Gli

7 for k € range(Nsay) do

8 z< U™-(0,1)

9 for d € range(dmin, dmax, S) do
10: Z&<=z+d n

11: img & G'(c, Z, t)

12: Is & Is U {img}

13: end for

14: end for

15: end for

16: end for

Following Fig. 4.2 the next step in the process is the filtering of synthetically generated
images to keep potential candidates for populating the “unknown" class. The filtering is
based on a set of voter classifiers (in our case V7, Vy, V3) which are trained on the same
training set as the final classifier C in Fig. 4.2. Each of these classifiers uses different pre-
trained embeddings, namely Resnet50, VGG ’16, and Inception v3 embeddings. For each
sample in the set of synthetic images Xs the predicted classes Cpeq from each classifier are
gathered and their disagreement is measured as the number of distinct elements in the set
of the predicted classes, namely its cardinality. All images are ranked by being inserted
into a min-heap according to their disagreement score and the top nge, images are kept
for data augmentation. The reasoning behind using voting for filtering is that all trained
classifiers will be able to agree in areas near the training samples but might draw arbitrary

boundaries in the so-called open space, away from the training samples. This means that
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if we filter for images that are embedded in areas where the classifiers disagree, we will get
the open-space images that are needed for populating the newly created “unknown" class.
Of course, the optimal choice of the number and architectures of the voter classifiers may
play a role and are a fruitful direction for future research. As a minimum for introducing
the idea, we chose three significantly different architectures, as many as the training
classes in our problem, so that we can get informative disagreements scores. For example,
had we used 10 voters, it would still be impossible to get a disagreement score higher than
3.

Aaroriemor 3.2: Filter Synthetic Open-set Data

Input: Dc = {X¢, yc} the input closed set dataset, Xs the synthetic open set images,
V ={V1, Vs, ..., Vi,} voting classifiers, nge, augmentation target
Output: I the filtered synthetic open-set images
Ir =)
M & MinHeap()
for V; € V do
V; & train(Vy, De)
end for
for x; € X5 do
Cpred — {}
for V; € V do
c < Vi(x)
Cpred = Cpreol U {C}
end for
12: D; & card(Cpreq)
13: M < M U {i, D;}
14: end for
15: for k € range(nge,) do
16: my, djc & argmin[D(m)]
meM
17: M < M\ {(my, di)}
18: Ir & Ir U {ny}
19: end for

© ® N R R8s

— =
= O

Finally, Algorithm 3.3 puts together all steps into a process of assembling an aug-
mented training set that will render the learned classifier robust to novel defect types
that have not yet occurred in its training set. Apart from the parameter used to call the
generation and filtering procedures outlined previously, several parameters have to be set
to ensure the right number of generated images is produced. We have already seen Nggy
as the number of top semantics extracted by SeFa. This parameter is the first one need-
ing to be fixed and is at the moment determined empirically by visual inspection of how
many directions produce images that differ substantially as the distance from the seed
sample increases. The maximum traversal distance d is also chosen in the same manner.
Afterwards, parameters Mg, and Mg, should be chosen. These “redundancy multipliers"
ensure that a sufficient number of images are generated so that after filtering the aug-

mentation target can be reached and the augmented data is sufficiently novel concerning
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the training data. Thus, data generation is seen as a lossy process that will not generate
many truly novel images. In our use case, we observed around 2-3% of generated images
as having the highest disagreement score, so we generated 40-50 times the size of the
original data to finally achieve a balanced training set of closed- vs. open-set samples. Mg,
is used as a multiplier for the number of samples per direction and Mg, for the number of
images generated from each per-sample traversal. The aim is to have Mg, - Mg, - card(D¢)
images after generation so that we end up with approximately card(D¢) (the size of the
closed-set training set) synthetic images after filtering. These final synthetic images will
be grouped into a new “unknown" class and added to the original training set to perform

the training of the robust classifier.

Aaroriemor 3.3: OSR method based on Data Augmentation

Input: C the CNN used for classification, G, L the pre-trained StyleGAN generator and
its layer IDs, C = {c1, Cg, ..., ¢} closed-set classes, O = {ci+1) the open-set class, D¢ =
{Xc. yc} the input closed set dataset, V = {Vi, Vs, ..., V,,} voting classifiers, Mg,, Mg, the
redundancy multipliers, Nsgy # semantic directions for generation, d maximum traversal
distance, t data gen. truncation factor

Output: C’ the CNN trained on the augmented dataset

G’ & train(G, D¢)

Mg, -card(D¢)
num_samples & L ——X

Nsem
Step < A%I—d
Ro
Is & generate(G’, C, Nsgy, num_samples, t, (d, —d, step), L)
Ir < filter(D¢, Is, V, card(Dc))
Xaug: Yaug & (I, {Cpe1 }27IPO))
C < train(C,{X U Xqug. Y U Yaug))

N g W N

3.5 Results

3.5.1 Experimental Setup

To compare our methods against some of the most promising ones from the related
work in Section 3.3, we looked across four metrics: the Area Under the Receiving Op-
erating Characteristic (AUROC) curve, the F1-Score, and the Binary Recalls from the
perspective of the defect class for closed-set and open-set defects, as well as their av-
erage. For evaluation, we chose binary metrics to have a uniform comparison between
OSR and Semi-supervised methods, the latter not distinguishing between specific defect
classes. This also aligns with our use case, where samples marked as “defects" or “un-
known" will both be examined by human operators before being discarded, so the actual
decision is whether a given sample is OK or needs a human check. The recall metric
for defect classes is particularly important since it indicates what percentage of defects
move through the system unnoticed by being marked as flawless. Regarding this metric,
we also distinguish between open and closed set classes to allow us to discover potential
trade-offs between the two types of classes. Finally, the Fl-score and AUROC metrics

showcase whether the models have a reasonable performance in the flawless class and
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overall problem. For instance, some methods might achieve perfect recall by marking too
many flawless images as defects, making them inefficient for a practical setting, since
they will substantially increase the work of human operators, especially given that the
majority of products passed through the system are not expected to be defective.

Moreover, for OSR classifiers operating on pre-extracted features, we compare across
three of the most prevalent CNN architectures, namely Resnet50, VGG ’16, and Inception
v3, since the characteristics of the feature space greatly influence the models’ discrimi-
nation capabilities. The baseline for our approach is a Multi-Layer Perceptron (MLP) op-
erating on one of the above embeddings in a one-vs-all fashion. Additional baselines are
provided through well-established anomaly detectors, namely One-Class SVM (OCSVM)
[183], Isolation Forest (IF) [214] and Local Outlier Factor (LOF) [215].

Finally, we present a more fine-grained view of the performance of the most promising
classifiers from each method category in Fig. 3.6 to examine the influence of each new
class’s features on the underlying algorithm’s uncertainty profiles. We also choose the F1
metric as the ultimate performance indicator, containing both open- and closed-set per-
formance information, and compare our approach against the most promising approaches
including a statistical significance test.

The results are the average outcomes of 30 independently seeded runs for each mea-
surement. They were performed in an environment with 4 CPU cores of 2.3GHz, 16GB of
RAM, and access to an NVidia K80 GPU.

3.5.2 Examined Methods

As presented in the results section, we divided our compared methods into three cate-
gories according to their implementation requirements. The first group (I-VII) is methods
operating on vector data for which we used pre-extracted features from Convolutional
Neural Networks (CNN) trained initially on Imagenet (Resnet50, VGG16, and Inception
v3). The second group consists of semi-supervised methods that learn only from the non-
defective (VIII-X), followed by data augmentation techniques (XI-XII). Next, we describe

how each of these methods has been applied to our use case:

I. MLP We used a single hidden layer architecture with 100 neurons leading to a 3-class
classification head, both for the open and closed-set cases, and the ’adam’ optimizer.
We assessed the performance in both open and closed set cases based on whether

a defective instance was assigned to any defect class.

II. SVM Despite being categorized as an unsupervised one-class classification method,
OCSVM allows a small proportion of outlier instances in training, corresponding to
the parameter v. We fill out this proportion using the known defect instances in the
training set. Otherwise, OCSVM works like a usual SVM but only forms a boundary
for separating the good class from the rest of the instances. In our experiments, we
used v = 0.3 and an RBF kernel.

III. Isolation Forest The idea behind isolation forests is the linear splitting of the fea-

ture space by individual trees until a point is “isolated" in a tree leaf. The anomaly
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score assigned by the forest is an accumulation of how quickly each tree manages
to separate the anomaly from the rest of the dataset. For the training of the IF we
additionally use closed-set defect samples similar to OCSVM, setting the contam-
ination factor (which again corresponds to the proportion of total defects to good

images equal to 0.3). We also set the number of isolation tree estimators to 100.

IV. Local Outlier Factor A density-based anomaly detection method that is again trained
on both the good and defect classes using a contamination factor of 0.3. The main
idea behind LOF is that it compares the local point density of a given point to that
of k of its neighbors and labels those with lower relative densities as anomalies. We

chose k = 20 neighbors based on the Euclidean distance.

V. W-SVM As mentioned in the Related Work section, W-SVM is an ensemble of one-
class and multi-class SVMs, whose scores are combined and calibrated using the
Weibull distribution according to EVT. We used an RBF kernel and a 0.1 probability

threshold for rejecting samples as an open set for the experiments.

VI. PI-SVM A more sophisticated extension of W-SVM is trying to model the probability
of inclusion for each class using only in-class samples and EVT. The model was

parameterized in a similar way to W-SVM.

VII. OpenMax OpenMax operates on the penultimate layer of a DNN to accommodate
an “unknown" class and recalibrates scores using EVT. We used a tail size of ten
samples to fit the Weibull distribution and an a = 3 corresponding to the total
number of classes whose scores are recalibrated. In our case, we have very few
(three) original classes, so we recalibrate all of them. For the DNN, we use the same

MLP on top of pre-trained embeddings as above.

VIII. GANomaly A short description of functionality is provided in the Related Work.
We used a latent vector size of 100 dimensions along with wagy, = 1, Wen = 50,
and wenpe. = 1 for the coefficients of the adversarial, contextual and encoder loss
coefficient defined in [197].

IX. DFKDE This method consists of a backbone network to extract deep features followed
by Principal Component Analysis (PCA) and Gaussian Kernel Density Estimation
([198]). In our use case, we use the 16 principal components explaining the most
variance along with the euclidean distance and a 0.5 score threshold for anomaly

classification.

X. DFM This approach tries to fit a Gaussian distribution or mixture of Gaussians to a
DNN’s features after a DNN has been trained on a specific classification task and
PCA has been applied to the feature vectors to reduce their dimensionality and thus
improve computational speed. ([199]). In our use case, we train the model only on
good images and use a Resnet50 backbone with a 0.97 variance retaining threshold

for the PCA and the feature reconstruction score to rank anomalies.
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XI. OSRCI Data augmentation through counterfactual images described in the Related
Work. In terms of parameters, we followed [190] using a 20-dimensional latent
space and a classifier architecture of two convolutional layers followed by two fully

connected layers.

XII. OpenGAN Similar technique to OSRCI (see Related Work), using latent space inter-
polations between classes. A Resnetl8 backbone is used for the feature extractor

and Gaussian Kernel Density estimation for the final classifier.

Characteris- | Pre- Multi- Synthetic | #Hyper- | Memory | Requires | Execution

tics Extracted| class Data parametersUsage GPU Time
Features

Methods
MLP v v Low Low Low
One-class SVM v v Low Medium Low
Isolation Forest v v Low Low Low
Local Outlier Fac- | v v Low Low Low
tor
WSVM v v Medium | High Low
PI-SVM v v Medium | High Medium
OpenMax v v Medium | Medium Low
Ganomaly High Medium | v High
DFKDE Medium | Medium Low
DFM Medium | Medium Low
OSRCI v v High Medium | v/ High
OpenGAN v v High Medium | v High

Table 3.1. Qualitative comparison summary of the characteristics of the examined meth-
ods, according to their provided functionality, implementation and computational infrastruc-
ture requirements.

A comparison summary of the implemented methods is shown in Table 1. In short,
methods requiring pre-extracted features are low in terms of computational demands and
hyperparameters, with the exceptions of SVM-based methods that need to load the whole
dataset in memory. Semi-supervised methods are slightly more intensive computationally
and in terms of hyperparameters but offer no multi-class functionality. An exception is
Ganomaly which is closer to the data augmentation methods with high computational
and hyperparameter requirements due to the adversarial training. Finally for pure data
augmentation methods the creation and storage of the synthetic data should be taken

into account.

3.5.3 GAN Training

To train the StyleGAN v3 generator used in our approach we had to choose between
training a conditional model that would be able to generate images from all three classes
and training three individual, unconditional models for each class. As shown in Fig.

3.5 the latter option yielded lower Frechet Inception Distance (FID) scores, at the cost,
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however, of training three models instead of one. In the training process for each network
we followed the guidelines provided in [174] for smaller datasets, based on finetuning the

pre-trained network on FFHQ with a 256x256 image size.
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Figure 3.5. Progression of FID while training candidate generator models. “all_classes”
is the class-conditional model. The double and interrupted class models start from a pre-
trained model of the “flawless” class for k_img=80.

Moreover, due to the class imbalance, we first trained a model on the majority class
(flawless) for 80k images. This model was then fine-tuned for all three classes until
reaching a minimum (dip) in the FID score. While the conditional model achieved a
minimum FID of 75.54, the individually trained models were able to reach FID scores
below 40, by retaining FID improvements over more iterations. Training three models
instead of a conditional one is of course more computationally expensive and could be
prohibitive for problems with many classes. However, it was particularly beneficial in our

use case where the high inter-class similarity requires lower FID scores.

3.5.4 Hyperparameter Tuning

To ensure that all comparisons and proposed methods were sufficiently tailored to the
presented use case, hyperparameter tuning using grid search was performed to select the
best hyperparameters from empirically sensible intervals as shown in Table B1.

For the more computationally expensive Deep Learning methods such as OSRCI and
OpenGAN, we parameterized them following the given guidelines for parameterization for
the datasets CIFAR-10 and Flowers102 respectively. For the proposed approach using
StyleGAN v3 and Semantic Factorization, most hyperparameter tuning was focused on
the number of images generated and the length of the semantic directions (max_dist). The
number of semantics and the images generated per semantic traversal were both empiri-
cally set to 10. The chosen number of semantics represents the most important semantics
as outlined by SeFa, which we threshold to include those that are visually meaningful.

The number of images per traversal is empirically not that important since usually the
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Method Parameter Values Chosen
MLP hidden layer size [50, 100, 250, 500] 100
One-class SVM kernel [rbf, poly-3, poly-5] rbf
nu [0.1,0.2,0.3,0.4, 0.5] | 0.3
. estimators [50, 100, 250, 500] 100
Isolation Forest - -
contamination [0.1, 0.2, 0.3, 0.4, 0.5] | 0.3
Local Outlier Factor neighbors [10, 20, 50, 100] 20
contamination [0.1, 0.2, 0.3, 0.4, 0.5] | 0.3
PL-SVM kernel [rbf, poly-3, poly-5] rbf
P-threshold [0.05, 0.1, 0.15, 0.2] 0.1
WSVM kernel [rbf, poly-3, poly-5] rbf
P-threshold [0.05, 0.1, 0.15, 0.2] 0.15
tail size [10, 25, 30, 50] 10
OpenMax
alpha [1, 3, 5, 10] 3
latent dim. [50, 100, 250, 500] 100
w_bec [0.5, 1, 10, 50] 1
Ganomaly
wW_rec [0.5, 1, 10, 50] 50
w_enc [0.5, 1, 10, 50] 1
DFKDE principal components | [8, 16, 32, 64] 16
anomaly threshold [0.4, 0.5, 0.6] 0.5
DFM PCA threshold [0.9, 0.91, ..., 0.99] 0.97
anomaly threshold [0.4, 0.5, 0.6] 0.5
OSRCI latent dim. [10, 20, 50, 100] 20
num_images [250, 2500] 250
OpenGAN iters [60000] 60000
norm [batch, instance] instance
mult_coeff [1.5, 2, 3, 4] 4
Proposed max_dist [12, 15, 20] 15
num_voters [3, 9, 15] 3

Table 3.2. Hyperparameter selection intervals.

remaining images after filtering occur at the edges of the traversals and will be gener-
ated no matter the number set. We also considered different numbers of voters which
did not impact our current voting scheme based on disagreement, however, examining it
in conjunction with alternative voting schemes could lead to optimizations regarding the
number of required synthetic images before filtering and is a fruitful direction for future

research.

3.5.5 Experimental Results

Tables 1 to 3 show the results for pre-extracted feature-dependent methods across
the three base networks. An immediate observation is that Resnet50 features achieve
lower AUROC and F1 scores for most classifiers, with few exceptions, such as the Lo-
cal Outlier Factor. On the other hand, it is surprising that the baseline method with
VGG embeddings scores over 95% on those metrics and achieves a 0.9208 open-set recall
without using open-set mechanisms. Although explaining the differences attributed to

different base networks is difficult due to the complexity of their architectures, we spec-
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Resnet

Method AUROC F1 R, R, Ravg

MLP 0,7414 0,8462 0,8800 0,2386 0,5593
One-class SVM 0,8353 0,7924 0,6245 11,0000 0,8122
Isolation Forest 0,8764 0,8213 0,6920 1,0000 0,8460
Local Outlier Factor | 0,9121 0,8451 0,7285 1,0000 0,8642
WSVM 0,8596 0,7659 0,7385 0,8274 0,7830
PI-SVM 0,6709 0,8375 0,8628 0,1684 0,5156
OpenMax 0,6973 0,7737 0,9165 0,5834 0,7500
Proposed 0,9952 0,9650 0,8670 0,9772 0,9221

Table 3.3. Evaluation of OSR methods over pre-extracted Resnet50 features, including
AUROC, F1-score, Binary Recall on the closed set classes (R.), and Binary Recall on the

open set classes (R,) and lastly Rayg = _RC;R‘)‘

ulate that it could be explained by the difference in their receptive fields [13]. Resnet50
and Inception v3 have larger receptive fields than VGG16 which could make them more
efficient in recognizing large objects but could also lead them to miss small details such
as those found in interrupted prints or small discolorations. These facts make evident the
importance of trying out different types of classifier embeddings when trying to optimize
open-set performance. For this reason, we chose the three main, and most common in
the literature, approaches for building CNNs namely Resnet, VGG, and Inception, which
also have receptive fields of differentiated sizes, that could lead to significantly different
results.

In general, some of the best-performing combinations are VGG with the baseline MLP,
PI-SVM, W-SVM, and OpenMax and Inception with PI-SVM and OpenMax. Another in-
teresting observation is that one-class classifiers achieve perfect recall R, on open-set
instances irrespective of the underlying embeddings. However, this comes with a signif-
icant decrease in closed-set recall R.. Across all cases the embeddings seem to have a
larger influence than the open-set mechanisms, as, for instance, highlighted by PISVM
achieving a very high open-set recall on VGG embeddings (95.56%) but performing very
low on Resnet50 embeddings (16.48%). In comparison, the proposed method shows con-
sistency across different embeddings and between closed- and open-set recall, while at
the same time maintaining high performance in AUROC and F1 scores, meaning that few
flawless products will end up falsely marked as potential defects.

Table 4 contains results from semi-supervised and data-augmentation-based meth-
ods. Semi-supervised methods are trained on a subset of the flawless class instances
and evaluated over a test set with data from all classes. In this case, all classes can be
considered open-set since they are unknown at training time. However, we still evaluate
it separately in defects of the original dataset and on simulated open-set defects. Between
the two, there is a marked difference in performance for all methods, which we attribute
to the approximate nature of simulated defects. Across all methods, DFM has the high-
est values across all metrics. We note that semi-supervised methods achieve a lower

closed-set recall (R.) than the methods presented in Tables 1-3, which is expected since
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VGG

Method AUROC F1 R, R, Rayg

MLP 0,9777 0,9633 0,9320 0,9208 0,9264
One-class SVM 0,8767 0,8256 0,7060 1,0000 0,8530
Isolation Forest 0,8731 10,8598 0,8607 0,8664 0,8635
Local Outlier Factor | 0,9090 0,8430 0,7095 1,0000 0,8548
WSVM 0,9022 0,8088 0,8122 0,9631 0,8877
PI-SVM 0,9902 0,9533 0,9111 1,0000 0,9556
OpenMax 0,9630 0,9389 0,9707 0,8932 0,9320
Proposed 0,9965 0,9796 0,9560 0,9952 0,9756

Table 3.4. Evaluation of OSR methods over pre-extracted deep VGG ’16 features.

Inception

Method AUROC F1 R, R, Ravg

MLP 0,9325 0,9117 0,8695 0,6754 0,7724
One-class SVM 0,8771 0,8258 0,7080 1,0000 0,8540
Isolation Forest 0,9051 10,8389 0,7565 1,0000 0,8783
Local Outlier Factor | 0,9149 0,8498 0,7030 1,0000 0,8515
WSVM 0,9106 0,6797 0,9200 0,8856 0,9028
PI-SVM 0,9834 0,9577 0,9040 0,9856 0,9448
OpenMax 0,9409 0,9289 0,9500 0,8464 0,8982
Proposed 0,9954 0,9752 0,9490 0,9884 0,9687

Table 3.5. Evaluation of OSR methods over pre-extracted Inception v3 features.
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3.5.5 Experimental Results

Method AUROC F1 R. R, Raug

Ganomaly 0,8242 0,8930 0,6100 0,9460 0,7780
DFKDE 0,9848 0,7401 0,7700 0,9720 0,8710
DFM 0,9909 0,8347 0,8500 0,9800 0,9150
OSRCI 0,7884 0,6813 0,9900 0,8540 0,9220
OpenGAN 0,9399 0,8858 0,8483 0,6860 0,7672
Proposed + VGG | 0,9965 0,9796 09560 0,9952 0,9756

Table 3.6. Evaluation of semi-supervised and data-augmentation-based methods

closed-set defects are considered by these methods as “unknown" at training time. This
could also explain the lower F1 scores. However, their AUROC scores tend to be higher
(e.g., 98.48% for DFKDE and 99.09% for DFM), possibly due to their better-calibrated
probability outputs.

In regards to methods based on data augmentation, OSRCI, shows high defect recall
scores with lower AUROC and F1, hinting at a potential marking of many flawless in-
stances as defects. On the other hand, OpenGAN is more stable across these metrics
despite slightly lower recalls. Overall, the inability of these more sophisticated methods
to outperform previous ones could be attributed to the difficulty of generating differen-
tiated data for use cases where instances from different classes are very similar to each
other such as defect detection. The relative improvement shown by the proposed method
could be attributed in part to StyleGAN’s higher expressive and generalization capabili-
ties compared to earlier GAN architectures, but also to our novel voting-based filtering
mechanism.

To also shed more light on the open-set performance we present conducted measure-
ments using a fine-grained boxplot of the class-specific accuracies, against 5 selected
high-performing methods representing each method type (semi-supervised, SVM-based,
data augmentation, etc.) (Fig. 3.6). We note that horizontal and vertical flips and dis-
colorings are well-recognized by all top-performing methods. In line defects and missing
letters, we see MLP and Openmax on VGG features and OSRCI having more difficulties
as well as more variable results. Generally from the existing OSR approaches, PISVM
on Inception features performs more stably across all classes, on par with DFM and the
proposed approach.

Finally, Table 5 compares the Fl-score and average recall of the most promising
methods, also evaluating the statistical significance of their differences to the proposed
approach using a paired t-test. We chose the F1-score as the ultimate measure of com-
parison since it is evaluated on a set containing both “novel" and “known" examples, that
could realistically occur in a production environment, and is also less sensitive to class
imbalances. In contrast to the recall metrics presented, the F1-score includes information
on the methods’ performance on flawless images. As an illustrative example, a hypothet-
ical method marking every image as a defect would have perfect open-set and closed-set
recalls, but its F1-score would be low due to every flawless image being misclassified.

The F1-score is therefore also evaluated as an attempt to provide a more balanced and
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Figure 3.6. Box plot of open-set class-specific accuracy scores for highest performing
methods per type.

all-around picture of the methods’ performance.

In summary, it is important to observe how the three main challenges of automated
visual quality inspection, identified in the introductory section, manifest themselves
throughout our experimental process and how they are addressed. Firstly, the lack of
collectible defect data is evident in the number of interrupted and especially double print
images in the examined dataset. Although we do not address the resulting class imbal-
ance directly, we can observe that methods that have been pre-trained on a large and
diverse dataset (e.g., StyleGAN trained on a dataset of celebrity faces, Resnet50 trained
on Imagenet, etc.) can cope with class imbalance in the “kmown" classes. Class imbal-
ance has also been taken into account when evaluating, both by generating equally many
“unknown" defects as “known" ones and by using the Recall metric which is not affected
by the majority of images belonging to the flawless class. Secondly, the high inter-class
similarity proved especially problematic for the data augmentation and semi-supervised
methods, which most likely had trouble either generating sufficiently differentiated de-
fects or recognizing very small defects without being given training samples. Our choice
of StyleGAN as a generator was key in tackling this issue, as due to its more sophisticated
architecture it could generate images with small differences with high fidelity. Last but not
least, a satisfactory solution to the third challenge, the robustness to novel defects, was
achieved, however, the improvement would not have been possible without considering

and successfully addressing the two previous challenges.
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3.6 Summary

Method Fl-score p-value Rayg p-value
DFM 0,8347 0,0011 0,9150 0,0187
OpenMax + VGG 0,9389 0,0005 0,9320 0,0004
PISVM + VGG 0,9533 0,0011 0,9556 0,0158
PISVM + Inception | 0,9577 0,0024 0,9448 0,0006
MLP + VGG 0,9633 0,0029 0,9264 0,0144
Proposed + VGG 0,9796 — 0,9756 —

Table 3.7. Comparison against the best performing OSR methods over their F1-score and
Recall averaged from both open- and closed-set samples with statistical significance scores.

3.6 Summary

In this work, we introduced a novel data-augmentation method to make defect recog-
nition classifiers more robust against novel defects unseen in the training set. Applied to
a real-life manufacturing use case along with methods from the relevant literature ranging
from SVM-based approaches to semi-supervised methods it achieved high performance as
well as consistency across different classifier embeddings. This could be attributed to the
fidelity and variability of synthetic images that can be generated from StyleGAN as well as
to the steerability of its latent space. An important feature is the treatment of novelty data
generation through latent space traversals as an imperfect process that needs to undergo
a filtering step. To that end, a simple voting scheme was introduced to isolate images
that cause high confusion between voting classifiers and add them to the augmented
dataset in the form of an “unknown" class. Despite its high performance, the proposed
method is still subject to improvements. Its main drawbacks are the high training times
required by StyleGAN, even when transferring knowledge from a pre-trained model, as
well as the large amount of redundant data generated, which is then discarded by the
filtering process. These open up two avenues for future work, namely the investigation of
more lightweight but still steerable GAN architectures and the more efficient extraction of

confusing samples from the latent space.
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Chapter ﬂ

Robust Novel Defect Detection with Neurosym-

bolic Al

4.1 Background

Quality inspection in production systems is advancing with digitization, integrating
sensors and Al algorithms. Visual inspection, crucial for tasks like painting, benefits
from Al techniques in image processing and computer vision. However, fully automating
visual quality inspection faces significant challenges. In our previous work on assessing
brand prints on finished shaver shells [17], we identified three main challenges: insuf-
ficient training data, high visual similarity between flawless and defective products, and
unanticipated defects during operation. Traditional methods like Convolutional Neural
Networks (CNNs) often fail in these applications due to their dependency on extensive
labeled data and their limited ability to handle novel defect types. For instance, [11] high-
lighted that sometimes unsupervised and semi-supervised anomaly detection methods
missed defects due to the variability in defect appearance and position, demonstrating
the limitations of traditional machine learning models in real-world manufacturing sce-
narios. Additionally, it has been shown that achieving robustness remains a significant
challenge for conventional methods, which are not designed to identify novel samples even
when they result from small image corruptions to known samples [10]. In this section,
we propose a Neurosymbolic approach to defect detection, which also proves to be quite

robust to novel defects.

The aim of Neurosymbolic Al [14] is to fuse two existing branches of Al, namely Sym-
bolic Al (or sybmolism) and Statistical Machine Learning (or connectionism), so as to
combine the benefits of both approaches into the next generation of Al [15]. Symbolic
Al relies on hand-crafted rules expressed through Logic Formulas and Ontologies, while
Statistical Machine Learning is mainly characterized by neural networks that learn from
data. While Symbolic AI makes automated decisions fast and explainable, it requires
significant effort from domain experts to gather and codify the symbolic knowledge con-
sisting of entities, relationships and rules governing those relationships. Additionally, the
resulting systems handle ambiguous or noisy, real-world data inflexibly. On the other
hand, bottom-up statistical approaches, such as (Deep) Neural Networks, deal with these

problems quite well having found substantial real-world application, most notably in the
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domains of Computer Vision and Natural Language Processing. Nevertheless, they come
with their own set of issues, such as opaqueness to their inner workings and therefore
lack of explainability and trustworthiness, lack of robustness to adversarial attacks and
unknown inputs [16][17], as well as data inefficiency and sensitivity to data imbalances
[4]. In this work we use Neurosymbolic Al to increase the generalizability of a statistical
ML classifier, and make it more robust to novel inputs (i.e., novel production defects).
Specifically we take advantage of the infusion of symbolic rules via Logic Tensor Networks
to enhance a fine-grained problem-specific supervised classifier with the capabilities of a
more general unsupervised classifier. While alone the unsupervised classifier generates
many false positives, its combination with the original classifier through Neurosymbolic

Al results in increased open-set recognition capabilities.

4.2 Related Work

4.2.1 Neurosymbolic Al

Neurosymbolic Al has been applied in various application scenarios, introducing new
learning capabilities in different domains, such as common-sense reasoning [216], visual
scene understanding [217][218] and scientific Discovery [219]. While there exist many
taxonomies of Neurosymbolic Al methods, the most notable and extensive one being [220],
the two categories we consider most fundamental are the ones described in [221], namely
Learning for Reasoning and Reasoning for Learning.

The first group of methods are extensions of existing symbolic reasoning methods that
utilize empirical machine learning either to make sense of unstructured data or to speed
up their reasoning process. For instance, Neuro-Symbolic Concept Learner (NS-CL) [222]
uses a CNN-based visual perception module followed by a semantic parsing module and
a symbolic reasoning module to make sense of visual scenes. Additionally, there are
approaches that use statistical machine learning methods to automate the building of
logical rules in a data-driven manner, such as methods extending Markov Logic Networks
[223] [224] and differentiable Inductive Logic Programming [225]. In the Natural Language
Processing (NLP) domain, IBM toolkit’s Neural Unification for Logic Reasoning over Natural
Language [226] uses transformers to help detect logical contradictions between a natural
language corpus and a natural language query.

The second group of the taxonomy, Reasoning for Learning, uses neural classifiers as
the basis for learning, that are assisted through the incorporation of symbolic knowledge,
either in the form of knowledge transfer ([227], [228]) or in the form of constraining/reg-
ularization. Two important constraining approaches that are very relevant to this work
are Logic Tensor Networks (LTN) [18] and the Symbolic Probabilistic Layer (SPL) [229].

The Semantic Probabilistic Layer (SPL) introduces a fully independent layer that can be
added on top of an existing network architecture (e.g., Resnet50) enforcing external logical
constraints. In this layer simple logical formulas are encoded as Ordered Binary Decision
Diagrams (OBDDs) which in turn are transformed to differentiable Probabilistic Circuits

(PCs). It is important to note that even though this transformation is calculated quickly in
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practice, its worst case can be exponential. The incorporation of this final layer leads to a
readjustment of the conversion of logits to probabilities so that, for instance, prohibitive
logical constraints output a pseudo-probability of O, while the rest of the probability mass
in readjusted. SPL guarantees strict consistency with the symbolic rules and has low
sample complexity. However, it only works with simple logical propositions and does not
incorporate first-order logic.

Logic Tensor Networks (LTN) is one of the most established loss-based regularization
methods. LTNs use grounding, a technique that maps first-order logic propositions to
real-valued tensors and corresponding mathematical operations. These tensors have to
be of different sizes depending on the input datatype and their elements are between O and
1 corresponding to their truth value (similar to fuzzy logic). The end result of this process
is a real-valued equation of tensor variables (these depend on the algorithm inputs or on
features of the inputs) whose result is the degree of truth of the initial logical proposition.
This new equation is differentiable and can be used as a term in the loss function that
will guide weight updates in a Neural Network during back-propagation. LTNs have been
used in a variety of real-life domains such as manufacturing [230] and maintain high
accuracy also guaranteeing a high degree of satisfiability of the constraints as well as
lower sample complexity. However, complete satisfiability of the symbolic constraints is
not guaranteed.

Specifically in the domain of defect detection, Neurosymbolic Al has been used to
improve transparency and explainability in cantilever beam defect detection [230] and
to drive diagnosis of automotive production faults [231]. In [232] convolutional neural
networks perform localization and recognition on video inputs gathered from real-life food
product labelling production lines. Their predictions are then used by a knowledge-base-
aided symbolic component to support decision making over the state of the production
system. In our work we will be applying Neurosymbolic Al with a different but comple-
mentary purpose, namely to enable neural network classifiers to expand their capabilities

to novel defects.

4.2.2 Open-set Recognition

In the proposed approach we will use Neurosymbolic Al as a means towards Open-
Set Recognition (OSR). OSR is about classifying instances in the open-set, meaning the
set of classes the classifier has not seen any instances of during training. Contrary,
the closed-set contains classes the classifier has been trained on. The OSR problem
was formally defined by [233] as an attempt to minimize misclassification risk in the
open space. There is a variety of OSR implementations, such as Statistical Methods
(e.g., WSVMs [182]), Semi-supervised Deep Learning (e.g. Deep Feature Modelling (DFM)
[198]), but broadly the OSR problem can also be addressed by general anomaly detection
techniques (e.g., Isolation Forest). In the context of defect detection it has been mostly
applied in the semiconductor industry. For instance, in [200], a CNN with a distance and
clustering-based approach was applied to a wafer map inspection scenario to detect wafer

map products deviating from the training set. Also applied on wafer maps, Optimal Bin
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Embedding [234] relies on extracting meaningful embeddings that aim to increase cluster
quality and differentiation between the open and closed sets. Another approach based
on specialized embedding extraction is introduced in [235] which uses a Submanifold
Sparse Convolutional Network architecture to extract a latent representation serving as
input to a Gaussian Mixture Model (GMM) outlier detector. We address a very similar
Open-set recogntition problem, but for data-scarce scenarios that need to leverage OSR
techniques over the use of predefined embeddings (e.g., Resnet50) with transfer learning.
The advantage of addressing such scenarios is the lower demands on data collection in
a domain where collecting sufficient defects is difficult and detrimental to the ramp-up
time of a Visual QA system on new products.

Existing solutions in Neurosymbolic Al and Open-set Recognition (OSR) offer valu-
able capabilities for defect detection but also exhibit notable limitations(also see the Ex-
perimental Results, Section 4.4.2). Neurosymbolic methods such as Logic Tensor Net-
works (LTNs) [18] and the Symbolic Probabilistic Layer (SPL) [229] introduce symbolic
constraints to enhance trustworthiness and safety, yet they rely heavily on well-defined
logical rules which, if strictly enforced such as in SPL, would struggle with ambiguous
or noisy data common in manufacturing. Similarly, traditional OSR methods, including
One-Class SVM (OCSVM) and Weibull-calibrated SVM (WSVM) [182], aim to minimize
misclassification risk but often fail in dynamic environments due to high false positive
rates when applied to complex visual data. Unsupervised methods like Isolation Forest
(IF) [236] are effective in identifying novel defects but tend to produce many false positives
[19], which might be exacerbated in cases such as ours due to the lack context-specific
knowledge to differentiate benign variations from actual defects. Semi-supervised meth-
ods such as Deep Feature Modeling (DFM) [198], although effective in recognizing known
defects, often require extensive fine-tuning and are less effective with limited labeled
data. These limitations underscore the need for innovative approaches, like the proposed
Neurosymbolic Al framework, which combines the strengths of symbolic reasoning and

statistical learning to improve defect detection robustness and generalizability.

4.3 Methods

4.3.1 Problem Setting

The specific setting of the real-life problem we are examining regarding the quality
assessment of shaver shell prints is as follows. A camera system is placed on the produc-
tion line and specific measures are taken to enforce uniform lighting conditions to avoid
shadowing and gloss. The images taken are saved in a local server running a machine
learning defect recognition model. The outputs of this model are "GOOD" and "Maybe
Defect". "GOOD" products are moved on to the next production stage, although they can
be occasionally sampled for manual Quality Assessment (QA). Potential Defects are sent
to human operators to finally determine if the product is indeed defective or just a false
positive. As it will be explained in the results section this system is designed to be safe

in terms of defect recall, meaning it is very strict in what constitutes a "GOOD" product,
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since products marked as such can pass through QA mostly without human supervision.
This also leads to an increased number of false positives which are OK, as long as they do

not over-burden human operators. A diagram detailing the above is shown in Fig.4.1(a).

Classifier: Resnet50 + MLP
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(a) QA worlkflow (b) Robustness problem

Figure 4.1. Figure 1(a) is a high-level depiction of the visual quality assessment worlcflow.
Potential defects identified by the Al are also examined by a human before being discarded,
while products labelled "GOOD” by the Al pass QA. Figure 1(b) shows how the Al system
using supervised learning based on Resnet50 runs into issues when encountering novel
defects that, despite looking more severe, are incorrectly labelled.

The challenge in this setting is collecting enough defect images to create the training
dataset. As all images come from real-life production and defects are usually rare, not
all types of possible defects can show up during collection. Therefore, the system should
also be robust to novel defects it has never seen before. However, as we realised using
a vanilla Resnet50 Multi-Layer Perceptron (MLP) classifier this is not always the case.
As illustrated in Fig.4.1(b), the system learns to recognize small interruptions that have
many samples in the training set. Nevertheless, when faced with a much larger and more
obvious, but otherwise novel interruption such as a missing letter, it fails to recognize
it. This is what led us to investigate augmenting the ML algorithm with techniques
such as One-class Learning, Open-set Recognition, Semi-supervised Learning and most

importantly Neurosymbolic Al and Logic Tensor Networks.

4.3.2 Why Logic Tensor Networks?

By using Neurosymbolic Al, and specifically LTNs, for the problem setting described
in Section 4.3.1, our ambition is to combine the benefits of unsupervised learning meth-
ods with the specificity of supervised methods. While the former can generalize to any
anomalous output, the latter can learn very well how to recognize the particular defects
that occur in the training dataset. As mentioned in Section 4.1, visual defect detection
and classification is a problem with very particular challenges, which obstruct its full
automation. Additionally, expert knowledge about what constitutes a defect cannot be
fully encoded into clear-cut rules, which is another hindrance to symbolic and Neurosym-
bolic approaches. However, a Neurosymbolic approach can still benefit from clear-cut,

but non-universal cases (e.g., when there are clear indications of a defect but the ex-
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pression of these indications through rules cannot be universally applicable due to its
many edge-cases). These challenges led us to choose LTNs for this problem. LTNs do not
strictly enforce their symbolic constraints, thus allowing their user to be more lax with
formulating the symbolic rules. Moreover, the knowledge of clear-cut defects can still be
leveraged to speed-up training compared to a classical supervised learning algorithm.
An important aspect of Logic Tensor Networks is how constraints are transformed to
be differentiable and part of the end-to-end training process. This is achieved through a
technique called "grounding" which is very close to fuzzy logics. More specifically each
individual proposition or fact is encoded through a multidimensional tensor, which in our
case corresponds to vector embeddings extracted from the input images. Predicates can
be applied to these tensors in the form of differentiable mathematical functions which
can also have learnable parameters such as Artificial Neural Networks. The application
of these predicates should yield a real value between O and 1 which corresponds to the
degree of truth of the predicate applied to one or multiple propositions. Building on top
of that, logical operators can be used to combine different predicate results. For example,
a logical a A b can now be calculated as ab and a = b is calculated as g if b<a
or 1if b > a. Of course there are many different mappings from first-order logic to real
operators, many of which are described in detail in the LTN paper [18]. After making
the logical propositional differentiable, their degree of satisfaction can be added as a loss

function term to be optimized during training.

4.3.3 Our approach

LTN’s "grounding" of symbolic rules to their real-valued logic equivalents enable it
to constrain a statistical machine learning algorithm to closely adhere to pre-defined
symbolic rules during its training phase. At the same time, utilizing these rules requires
the encoding of expert knowledge in a corresponding form which, in our case, is difficult
to achieve. The production scenario described in Section 4.3.1 is supposed to operate in a
flexible and agile manufacturing production line. Such production lines are characterized
by a large degree of customization leading to frequent changes in product specifications.
This constant flux makes it hard for production operators to develop enough expertise to
come up with a complete set of rules for defect detection. Additionally, the nature of the
image data makes it hard to link these rules with properties of images. A property such as,
for example, surface smoothness is not straightforward to define as an image processing
function/predicate to be used by the LTN. For these reasons we use an unsupervised
classifier as the "expert".

The criterion for choosing an unsupervised classifier is for it to have good novelty
recognition properties and a simple adaptable implementation. Following our results from
previous work [17] we chose the Isolation Forest, as it offers a scalable implementation,
needs limited fine-tuning and has been shown to perform well in a variety of datasets
[19]. Despite its high performance on unknown images, IF is not that effective in the
known classes from the training set. To overcome this shortcoming we created the rules

outlined below, where A is the base MLP classifier and U the unsupervised Isolation Forest
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classifier. These rules enforce upon the MLP a soft logical constraint to follow the output

of U when it predicts a defect.

SatAgg{[Yx(Is(x) = 1 = A(x) = DA
[Vx(ls(x) =0 = A(x) = 0)]A
[Vx(U(x) =0 = A(x) = 0)]}

The formula above contains two additional constraints needed for classification that
ensure that the prediction A(x) is consistent with the supervision label Is(x). Thus, the
base classifier A is only trained to satisfy the rule-set outlined. The complete training

process is also illustrated as a diagram in Fig.4.2
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Figure 4.2. Training Workflow with LTN using embeddings for empirical learning and sym-
bolic rules derived from an Isolation Forest’s predictions. The symbolic rules are "grounded”
and embedded into the loss function to guide training.

4.3.4 Datasets

The dataset provided by Philips Consumer Lifestyle B.V. consists of RGB images col-
lected from the factory’s pad printing process for building an automated quality inspection
system. It contains images of flawless products as well as two types of defects: double
prints and interrupted prints. The dataset has been manually labeled by multiple quality
inspectors to ensure accuracy. Manufacturing defects are rare, resulting in an imbal-
anced dataset, which was taken into account during evaluation. The images are 220X 360
pixels in size, and the dataset is divided into training and testing sets.

Representative examples of flawless products, double prints, and interrupted prints
are shown in Figure 4.3(a)-(c). The training set comprises approximately 70% of the
images, while the remaining 30% are used for performance evaluation.

To assess robustness, synthetic images simulating novel defects were created, includ-
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(a) Good (b) Double Print (c) Interrupted
(d) Line Scratches (e) Missing Letter (f) Discoloured

Figure 4.3. Original ((a)-(c)) and Synthetic Test ((d)-(f)) Samples from the Shavers Dataset

ing line interruptions, missing letters, discoloration, and flips. These synthetic defects
were merged with the test set in proportion to the original defects, resulting in a realistic

imbalance scenario for evaluation.

The final test set contains 800 flawless images and 250 images with known defects,
augmented with 250 novel defect images randomly generated from the synthetic classes.
Synthetic examples of unexpected defects are depicted in Figure 4.3(d)-(f). This compre-
hensive dataset allows for the evaluation of machine learning algorithms in a realistic

manufacturing defect detection scenario.

Moreover, we additionally assessed our method on six additional datasets of product
defects from the MVTec AD collection [11]. This is a collection of datasets consisting of
surface and object defects. For our evaluation, we chose products with many different
defect classes available, so that in each run we could keep two randomly-chosen defect
classes in the training set (the same number as in the shavers dataset) and use the rest
as open-set defects. To that end, we used the carpet, capsule, grid, pill, tile and leather

datasets, samples of which are shown in Fig. 4.4.

Figure 4.4. Product categories’ samples from the MVTEC-AD datasets
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4.4 Results

4.4.1 Experimental Setup

To evaluate our method, we compared it with promising ones from the areas of Open-
set Recognition (One-class SVM - OCSVM, Weibull SVM - WSVM) and Unsupervised (Iso-
lation Forest - IF) and Semi-supervised (Deep Feature Modelling - DFM) anomaly detec-
tion, as well as a Multi-Layer Perceptron (MLP) baseline. All methods used pre-extracted
Resnet50 embeddings. We focused on four key metrics: Area Under the Receiving Oper-
ating Characteristic (AUROC) curve, the overall test-set Defects Precision, F1-Score, and
Binary Recalls for closed-set and open-set defects. We chose binary metrics for uniform
comparison across supervised and Semi-supervised methods, aligning with our use case
where both "defects" and "unknown" samples are examined by human operators. The
recall metric for defect classes (open and closed-set) is crucial, its complement indicating
the percentage of defects missed by the system. We distinguish between open and closed
set classes to uncover potential trade-offs. F1-score and AUROC metrics assess models’
performance in the flawless class and the overall problem, ensuring efficient performance
without excessive marking of flawless images as defects. Defect precision is also mon-
itored, as a low score in this metric suggests overburdening the human operator with
defect false positives. Results represent averages from 30 independently seeded runs,
conducted on a system with 4 CPU cores, 16GB RAM, and an NVidia K80 GPU. 95%

confidence intervals are also give for each metric.

4.4.2 Experimental Results

According to our experimental setup we first present the results for the shavers dataset
in Table 4.1 and then proceed to the MVTEC-AD products which are shown collectively
in Table 4.2. The best scores for each metric are highlighted in bold, while second-best
scores are shown in gray. It is important to mention again that from our usecase’s
perspective the most important metric is closed-set recall since this concerns the most
common defects, and we want to make sure as few of them as possible pass through the
system in Fig. 4.1(a) unnoticed. The second most important metric is open-set recall as
this shows our system'’s robustness to novel defects that are rarer but might still appear
in the production line. The purpose of the other metrics (AUROC, Precision, F1-score)

is to check that the trade-offs of achieving high closed-set and open-set recall scores are

acceptable.
Dataset | Method AUROC Prec. F1l-score R_open R_closed
MLP | 74,94 + 1,27 [94,11 + 2,36 87,67 + 0,50 | 24,55 + 1,45 [91,63 + 2,60
OCSVM | 83,02 + 0,44 | 65,05 + 0,72 | 79,55 + 0,42 | 100,00 + 0,0| 62,66 + 1,80
Shavers IF 87,10 + 0,41 | 69,08 + 0,68 | 82,40 + 0,45 | 100,00 + 0,0 | 70,46 + 1,88
DFM |99,13 + 0,19 | 84,22 + 1,35 | 99,64 + 0,14 | 90,33 + 3,02 | 84,99 + 2,25
WISVM | 81,99 + 2,80 | 60,91 + 1,80 | 75,84 + 1,31 | 86,71 + 2,86 | 77,89 + 1,49
LTN [97,80 + 0,40([93,34 + 1,16[92,79 + 1,01 | 60,69 + 8,15 | 98,96 + 0,54

Table 4.1. Comparison of methods on the Shavers dataset

The first method we assess is the MLP on top of Resnet50 embeddings which achieves
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high precision, indicating that when it predicts a defect, it is usually correct. However,

its recall for open defects is very low, suggesting it may miss some instances of open-set

defects.

methods such as One Class SVM and Isolation Forest achieve perfect scores in the open-
set, however their performance in the closed-set is lacking as they are not explicitly trained
on the training set itself. Deep Feature Modelling (DFM), which is trained on good images
only, outperforms other methods in terms of AUROC and F1-score. This shows a very
good ability to recognize good images, and it also achieves high open-set performance.
Our newly introduced LTN approach achieves high AUROC, Precision and F1-scores,
being consistently very close to DFM and the MLP, indicating its ability to accurately
classify flawless products. It most importantly demonstrates the highest recall for closed
defects, being by 8% higher than the second-best MLP. Its open set recall is comparatively
low but we still see that the addition of Neurosymbolic Al to the MLP baseline brings a

substantial - almost threefold - increase in this metric.

This is the baseline issue we want to address. We see that other dedicated

Dataset | Method AUROC Prec. Fl-score R_open R _closed
MLP 92,89 + 1,08 [ 95,04 + 2,58 | 83,47 + 2,45 | 48,13 + 10,67 [ 74,80 + 13,30
OCSVM | 74,23 + 2,86 | 63,01 +2,79 | 72,08 £ 1,70 | 59,64 + 6,17 | 59,26 + 7,11
Carpet IF 86,80 + 1,58 | 70,56 + 2,58 | 79,39 + 2,42 | 86,00 + 3,01 | 81,06 + 4,60
DFM 98,44 + 0,27 | 99,45 + 0,47 | 84,08 + 1,26 | 79,37 + 4,87 79,59 + 4,26
WSVM | 72,63 + 2,00 | 58,81 + 8,74 | 58,48 + 10,11 | 63,86 + 15,12 | 84,20 + 8,85
LTN 97,47 + 0,98 | 88,66 + 3,66 | 91,74 + 2,04 | 89,68 + 4,00 | 99,53 + 0,72
MLP 93,87 + 1,11 | 98,66 + 0,81 | 78,99 + 1,64 | 51,28 + 5,31 | 94,20 + 2,81
OCSVM | 71,20 + 2,71 | 72,82 + 2,88 | 66,18 + 2,19 | 57,33 + 5,34 | 57,93 + 5,68
Capsule IF 81,25+ 2,44 | 75,66 + 3,03 | 71,72 + 2,93 | 73,46 + 5,39 | 67,46 + 4,31
DFM | 98,55 + 0,61 | 98,72 + 0,64 | 83,02 + 3,78 | 83,77 + 5,03 | 82,80 + 8,48
WSVM | 72,79 + 6,09 | 56.18 + 2,57 | 42,96 + 3,08 | 67,46 + 8.32 | 87,13 + 6,02
LTN [85,92 +11,19(83,19 + 10,88|66,79 + 23,35| 91,28 + 8,57 | 99,80 + 0,31
MLP 72,98 +2,80 | 76,20 + 4,98 | 81,02 + 1,01 | 17,46 £+ 3,99 | 72,53 + 8,75
OCSVM | 41,32 + 2,87 | 30,52 + 2,50 | 66,82 + 1,79 | 26,13 + 4,88 | 24,13 + 9,17
Grid IF 47,65 + 2,72 | 33,17 + 1,84 | 63,64 + 1,98 | 36,80 + 6,02 | 35,66 + 8,97
DFM |93,60 + 1,20 | 91,53 + 2,55 | 81,23 + 1,84 | 68,57 + 5,97 | 69,13 + 5,85
WSVM | 40,18 + 2,25 | 38,68 = 5,10 | 58,52 + 7,22 | 47,51 + 12,15 | 63,80 + 12,29
LTN 81,42 + 6,80 (74,28 + 11,82 84,47 + 4,78 [62,22 + 13,98 86,13 + 7,09
MLP 86,62 + 1,60 | 95,82 + 3,23 | 65,88 + 3,60 | 32,72 + 13,68 [ 66,06 + 12,28
OCSVM | 58,90 + 2,01 | 68,79 + 1,71 | 56,98 + 1,45 | 53,57 + 4,82 |58,80 + 11,84
pill IF 68,28 + 1,89 | 72,19 + 1,78 | 60,16 + 2,26 | 64,13 + 4,37 | 58,53 + 9,86
DFM 98,21 + 0,35 | 99,84 + 0,22 | 67,84 + 3,52 | 70,10 + 4,16 | 70,86 + 9,62
WSVM | 62,05 + 5,00 | 70,44 + 3,56 | 56,28 + 5,87 | 54,82 + 11,92 | 74,40 + 8,62
LTN 95,43 + 2,66 [ 95,91 + 1,73 | 88,36 + 3,43 | 87,92 + 6,05 | 95,33 + 2,73
MLP 97,74 + 0,87 | 99,38 + 0,75 | 87,37 + 2,86 | 60,88 + 10,75 | 96,20 + 3,53
OCSVM | 66,48 + 3,35 | 62,44 + 2,31 | 68,22 +2,02 | 55,86 + 6,56 | 57,73 + 7,79
Tile IF 87,77 £ 2,25 | 71,91 + 1,69 | 77,88 + 1,69 | 84,40 + 5,94 | 82,00 + 8,21
DFM |99,34 + 0,17 | 99,69 + 0,34 | 83,65 + 0,26 | 73,06 + 9,41 |79,40 + 13,42
WSVM | 65,36 + 6,65 | 57,08 + 5,94 | 56,64 + 9,17 | 54,84 + 10,17 | 85,46 + 5,14
LTN 97,92 + 1,60 | 91,13 + 3,00 | 93,02 + 2,68 | 90,97 + 7,18 | 96,86 + 2,61
MLP 97,54 + 0,95 [ 97,97 + 1,01 | 86,48 + 2,32 | 62,93 + 8,59 | 93,93 + 3,02
OCSVM | 70,56 + 3,60 | 68,39 + 2,94 | 71,16 £ 2,65 | 64,97 + 5,99 | 49,80 + 6,52
Leather IF 92,93 + 1,07 | 79,35+ 1,91 | 85,62 + 1,65 | 96,35 + 1,70 | 95,26 + 3,14
DFM | 99,97 + 0,01 | 99,92 + 0,01 | 97,60 + 0,77 | 97,91 + 1,07 | 95,73 + 1,47
WSVM | 60,39 + 4,61 | 70,56 + 7,60 | 68,98 + 7,79 | 49,06 + 15,13 | 81,26 + 4,18
LTN 99,00 + 1,09 | 96,42 + 1,96 | 95,30 + 3,44 | 89,73 + 12,65 | 99,66 + 0,71

Table 4.2. Comparison of methods on the various MVTEC-AD product datasets

Regarding the results in the MVTEC-AD datasets we see various common patterns.
Firstly, it is not surprising that DFM achieves the highest results in terms of AUROC
and Precision since it is a semi-supervised method trained only in the "good" class and
is therefore better at recognizing it.
the LTN outperforms DFM in almost all cases with the exception of open-set recall for
leather and grid. In most datasets it also achieves a higher F1-score which more closely

approximates a global measure for the overall problem, balancing performance in the
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4.5 Summary

"GOOD" and "DEFECT" classes while being less affected by class imbalances.

Overall, our experimental results indicate that Logic Tensor Networks (LTNs) and Deep
Feature Modeling (DFM) consistently outperform other methods across multiple metrics.
LTNs excel in both open-set and closed-set recall due to their ability to incorporate sym-
bolic rules into the learning process, providing a structured framework that enhances
the model’s ability to generalize to novel defects. This advantage is significant in manu-
facturing environments where defects are rare and diverse, making traditional methods
less reliable. The symbolic reasoning in LTNs allows the model to handle ambiguous data
more effectively by leveraging domain-specific knowledge encoded in logical rules. In con-
trast, DFM performs exceptionally well in terms of AUROC and precision since it learns
very well what a "good" product should look like, enabling the model to better understand
and classify normal versus defective samples. However, DFM’s treatment of defects in an
agnostic way, not based on concrete training samples, often leads to under-performance
in the detection of closed-set defects compared to other methods that include closed-set
defects in their training set. Regarding the MLP, it expectedly performs quite well on rec-
ognizing the classes it has been trained on, but its performance significantly deteriorates
in the unseen open-set classes. Methods like One-Class SVM (OCSVM) and Isolation For-
est (IF) showed limitations mainly due to their high false positive rates when faced with
complex and highly similar visual class data as in the presented manufacturing setting.
OCSVM defines a boundary around known classes [237], which fails to adapt to the often
small variability in defect appearance in the high dimensional visual feature space of this
particular problem, leading to a high rate of false positives. Similarly, IF’s non-parametric
nature [19] makes it effective at identifying anomalies but results in many benign varia-
tions being misclassified as defects due to its lack of contextual understanding.

The improved and more balanced open and closed-set recall scores of our LTN-based
approach are a result of LTN’s capability, through the infusion of symbolic rules, to com-
bine the unsupervised classifier’s ability to detect out-of-distribution inputs (high R-open)
and the problem-specific training of the base statistical classifier (high R-closed). It is im-
portant to note that LTNs allow the symbolic rules to influence the model continuously
during training and thus have a larger effect on its inference behaviour. This capabil-
ity makes the LTN approach ideal for a data-scarce scenario where challenges (see also
Section 4.1) such as lowly-populated or completely novel defect classes are mitigated via
the symbolic part of the Al, while existing classes with enough data but perhaps higher

similarity to the good class are better recognized by the neural part.

4.5 Summary

In general we can conclude that the use of Neurosymbolic Al through LTNs can have
a significant benefit on the base classifier’s recall both in the open and closed cases,
leading to fewer defects making it to market. It also maintains competitive scores in
the recognition of good images meaning human operators will not be over-burdened by
examining lots of false positives. In comparison to semi-supervised methods which are

more commonly used in this setting, it maintains comparable overall recognition perfor-
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mance, but what we consider most important, is that it consistently holds higher recall
scores and is therefore more trustworthy for a real-life system. Of course Neurosym-
bolic Al is a very young field and there are still many areas to be researched. As the
most important next steps to enhance this work we consider the experimentation with
different symbolic rules derived from other unsupervised and semi-supervised methods
or expressed through image-processing function predicates. Another parameter to vary
is the arrangement and way of expressing the symbolic constraints which could possibly
lead to different outcomes in the Neurosymbolic learning process. Finally, reasoning-
for-learning Neurosymbolic methods that enforce strict constraints such as the Semantic
Probabilistic Layer (SPL) can also be considered.

Still this work represents a promising and practical solution that can be readily ap-
plied to real-life settings. Additionally, Neurosymbolic Al can be adapted for various other
applications beyond defect detection in manufacturing. In healthcare, for instance, these
methods could enhance diagnostic systems by combining medical images with patient
data for more accurate disease identification. Similarly, in finance, they could improve
fraud detection by interpreting complex transaction patterns in conjunction with natu-
ral language data. These advancements could significantly impact multiple industries,

setting a new standard for Al applications.
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Chapter E

Conclusions

The present thesis has attempted to tackle some core issues in adopting and deploying
Al applications in real-life manufacturing production lines. First of all, the introduced
novel method for image-level oversampling aimed at alleviating data imbalance in visual
quality inspection systems was a significant step in efficiently generating synthetic data by
focusing on images that are near the classification boundary. The high-fidelity synthetic
images produced by this method have demonstrated promising performance in identifying
defects, particularly in datasets where defects vary in perceptibility. Moreover, this was
achieved at a significantly lower computational and runtime cost compared to other state-
of-the-art methods.

As a next step, another novel data-augmentation method was developed, aimed at
making defect classifiers more robust against previously unseen defects. Applied in a real
manufacturing setting, the method outperformed existing approaches, thanks to the high
fidelity and variability of synthetic images generated using StyleGAN. A key feature is the
filtering of novelty data generated through latent space traversals, where a voting scheme
identifies highly confusing images to be labeled as "unknown." Despite its effectiveness,
the method faces challenges such as relatively high data volume requirements, lengthy
training times and redundant data generation, pointing to future research opportunities
in developing more efficient GAN architectures and better data extraction techniques.

For these reasons, and most importantly to address smaller datasets, the incorpo-
ration of Neurosymbolic Al into our defect detection framework has shown significant
benefits when transferring novel defect detection to smaller datasets such as MVTEC-
AD. This has been showcased through the improvement of recall rates while competitive
recognition performance was maintained. The potential applications of Neurosymbolic Al,
especially in outlier and novel input detection in small datasets extend beyond manufac-
turing, with promising opportunities in healthcare, finance, and other industries where
accurate and reliable Al-driven decision-making is essential.

The proposed methods for handling novel defects at operational runtime are also
highly relevant in the context of Industry 4.0 and the emerging Industry 5.0 paradigms,
where the integration of advanced Al technologies into manufacturing processes is criti-
cal for achieving higher levels of automation, precision, and customization. Industry 4.0
emphasizes the use of interconnected systems and smart technologies to create more ef-

ficient and flexible production environments. Our work contributes to this by enhancing
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the robustness of defect detection systems, which are essential for maintaining high stan-
dards of quality in automated manufacturing. By improving the reliability and accuracy
of these systems, our method supports the goals of Industry 4.0, enabling manufacturers
to detect and address defects more effectively, thus reducing waste and improving overall
product quality.

As we move towards Industry 5.0, where the focus shifts to human-centric manu-
facturing and the collaboration between humans and intelligent machines, the need for
more advanced and adaptable Al systems becomes even more critical. Our approaches to
image-level oversampling and novel defect detection align with the principles of Industry
5.0 by enabling machines to better assist human operators in identifying and addressing
defects. The use of high-fidelity synthetic images helps ensure that defect detection sys-
tems are not only accurate but also consistent, reducing the likelihood of false negatives
that would lead to unidentified defects while keeping a low level of false positives that
could burden human operators.

Our research also highlights the potential for future advancements in Al, particularly
in the areas of instance-based or few-shot image generation, which could further enhance
the fidelity and variability of synthetic images. These advancements would allow for the
generation of more diverse and realistic images from a small set of low-confidence sam-
ples, improving the robustness of defect detection systems. Additionally, exploring new
methods for fusing original and synthetic images could lead to more seamless integration
and better overall performance.

In conclusion, our work presents practical and innovative solutions for enhancing vi-
sual quality inspection in manufacturing, with broader implications for various industries
as they adopt the principles of Industry 4.0 and Industry 5.0. The advancements made in
this research contribute to the ongoing development of more intelligent, adaptable, and
human-centric Al systems that are poised to play a key role in the future of manufacturing

and beyond.
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English to Greek Glossary of Terms

Machine Learning

Mnxavikr) MaSnon

Deep Learning
Ba9id MdSnon

Computer Vision

YnioAdoyiotikr) ‘Opaon

Artificial Intelligence (AI)
Texvntu) Nonpoouvr (TN)

Industry 4.0
41 Buopnyxavikr Enavaoctaon

Industry 5.0
Buounyavia 5.0

Quality 4.0
ITowotnta 4.0

Generative Adversarial Networks (GANSs)

Hapayeywkda Avunapadetika Aiktua (TTAA)

Neurosymbolic Artificial Intelligence
NeupooupfoAikn Texvn Nonpoouvn

Out-of-Distribution (OOD)
Asiypata Extog Katavoprig Exknaidsuong

Class Imbalance

Avigopportia KAaoewv

Data Augmentation

Enaugnon Asdopévav

Training Data

Aebopéva Exnaibeuong

Oversampling

YriepdetypatoAnyia
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Novelty Detection

Avixveuon Kawogavev E1c06ev

Cyber-Physical Systems
KuBepvo-puokd Zuotpata
Digital Twin
Wnoelako Aiupo

Big Data
Meydada Aedopéva

Human-Machine Collaboration

Zuvepyaoia Aviporou-Mnyxavig

Human-in-the-Loop (HITL)
‘Av9pwriog oto Bpoyo (Human-in-the-Loop)

Deep Convolutional Neural Networks (CNNs)

Badid Zuvedikukd Nevpovikd Aiktua (BZNA)

SMOTE (Synthetic Minority Over-sampling Technique)
Zuvdetiky) Texvikn YniepbetypatoAnypiag Meovotukov Khdacewv (SMOTE)

Borderline-SMOTE

[TapadAayn g SMOTE rou srukevipovetal oe deiypata Kovid ota opla tagivopnong

ADASYN (Adaptive Synthetic Sampling)
[Tpooappootiky Zuvdetikn AetypatoAnyia

Wasserstein GAN (WGAN)
ITAA pe Antootaon Wasserstein

DCGAN (Deep Convolutional GAN)

Badu Zuvedikuiko IMapaynyiko Avurapadetiko AiKTuo

Actor-Critic GAN

[Mapayeyiko Avurntapadetiko Aiktuo pe apyttektovikn Actor-Critic

DeepSMOTE
Texvikn] enaudnong eKOVOV PEOR YPAPIIKOV MapepBoAwv oto erinedo Xapaxkinpio-

TkoV (Baociopévn os apxiiektovikiy Kodikonouti-Anokodikomnounr))

BigGAN
Mapayeyikd Avurniapadstiko Aiktuo MeydaAng KAtpakag

ImageNet
Ataonpo peyalo ouvolo Sedopiévev e1KOVOV Yia eKmaideuorn aAyopidpwv PnXavikng

opaong
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Binary Recall
AvaxAnon Auvadikrg Tadivopnong

AUROC (Area Under the Receiver Operating Characteristic Curve)
Eppadov Kate aro v Kaprmudn ROC

Precision

Axkpifela (Octukav ITpofAsyenv)

F1 Score
Métpo F1 (Appovikog Méoog Akpifetag kat AvaxAnong)

Cross-Validation

AMaoctavpepévn Ermkupaon

Hyperparameter Optimization

BeAtiotoroinon Yroiepriapap€tpev

MVTEC-AD

Annooio ouvolo Sedopévav avixveuong eAATIOUATOV otr) Blopnxavia

Decision Boundary

'Op1o Artogaorg (Ta§vounong)

Open-set Recognition
Avayvopion Avoixtou Zuvodou — H wavotnta evog ouotfjpatog tadivopnong va ev-

tontidet Hetypata rmou Sev avrikouv o Kapia amo 11§ Yveotég Katnyopieg ekrnaidevuong.

Latent Space

Aaviavov Xopog

Semantic Factorization (SeFa)
Znpaotodoyikr) ITapayovionoinon — MéSodog avdAuong Aavbdvouoag avarnapaoctaong
P€0G TTAPAYOVIOIIOiNong 1810TIHMV Y1d TNV AVEUPEST] ONIACIOAOYIKA TAOUOI®V KATEU-

Yuvoemv petafolng ekovev.

Singular Value Decomposition (SVD)

IMapayovrornoinon ISiafouvomv Tiuov

One-Class Classifier

Ta&wopntg Miag KAdong

Extreme Value Theory (EVT)
Bcwpia Akpaiov Tipov

Logical Tensor Networks (LTN)
Aiktua Aoyikou Tavuotr] — [TAaiolo NeupooupBoAikrg TN rou e10ayet AOy1KOUG KAVOVEG
o€ popen S1apopioIiOV CUVAPTNOE®V, Ol OIoiEg evonpatovovial oty dadikaoia ex-

naideuong VoG OTATIOTIKOU POVIEAOU.
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Grounding
[eiwon — Atadikaoia avriotoix1ong tov AOYIKGOV IIPOTACERV OE IIPAYHATIKES (Sladopiotjieg)

OUVaPTNOELg TIOU PITOPOUV va Xpnotporoinfouv o alyopibpoug BeAtiotonoinong.

Fuzzy Logic
Aocagrg Aoy — Aoyikr) mou ermtpénet Badpoug aindeiag petadu 0 xkat 1 avti ya

duadikég Tipég (0 1y 1), kat xprnowonoteital yla va ek@paocet aefaota 1 acageia.

Out-of-Distribution (OOD)
Extog Katavourg (EK) — Aedopéva €1066ou mou Sev avurmpoonreyovial and v

Katavopr tov dedopévav eknaideuong, ouxva ouvdedepéva pie 1o poBAnpa g yevikeuong.

Multi-Layer Perceptron (MLP)
[ToAueninie6o Perceptron — ApXITEKTOVIKI] VEUP®VIKOU S1KTUOU AN P®S OUVOEdepévav

OTPOUAT®V, OUXVA XPTOTOITOI0ULIEVT] V1A ETTOITIEVOIEVEG EPYAOIEG TASIVOINONG.
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