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Abstract

Visual defect recognition and its manufacturing applications have been an upcoming

topic in recent AI research as an integral part of the manufacturing process that is be-

coming increasingly automated with the advent of Industry 4.0 and Industry 5.0. While

being a very beneficial solution to this problem, AI-driven Computer Vision Algorithms

and Deep Neural Networks face several issues that may impede their adoption in practical

real-life settings such as a manufacturing shop floor. For instance, defect datasets are of-

ten severely imbalanced and can be additionally burdened with separating classes of high

visual similarity. Another issue arising during an AI classifier’s continuous operation is

the frequent lack of robustness to novel defects appearing for the first time. The aim of

this thesis is to deal with such challenges by providing augmentations to AI solutions,

either on the data or the model level, addressing real-life and benchmark scenarios from

the domain of manufacturing.

The initial focus is Imbalanced Learning. Although various methods of data aug-

mentation have been proposed to mitigate class imbalances, they often fail to cope with

tinier minority classes or have fidelity issues with smaller defects while, at the same

time, needing significant computational resources to train. Also, augmentation based on

vector-based oversampling struggles to produce high-fidelity inputs and is hard to apply

on custom CNN architectures, which often perform better for this type of problem. Our

work presents an image-level oversampling method based on an instance-based image

generator that can be applied to any CNN directly during the training process without in-

creasing the order of training time required. It is based on identifying a small number of

the most uncertain base samples close to the estimated class boundaries and using them

as seeds for augmentation. The resulting images are of high visual quality preserving

small class differences, and they also improve the classifier boundary leading to higher

recall scores than other state-of-the-art approaches.

Aside from class imbalance, lack of real-world data as well as the strict safety con-

strains that need to be imposed to manufacturing AI deployments dictate the need for

handling novel inputs. Such unanticipated inputs can pose a significant risk to cyber-

physical applications as a resulting out-of-context decision could compromise the in-

tegrity of the production process. While recent Machine Learning methods can theoreti-

cally tackle this problem from different angles (e.g., open-set recognition, semi-supervised

learning, intelligent data augmentation), applying them to a real-life setting with a small,

imbalanced dataset and high inter-class similarity can be challenging. This work con-

fronts such a use case aiming at the automation of the visual quality inspection of shaver

shell brand prints from the electronics industry, which is characterized by data scarcity
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and the existence of small local defects. To that end, we introduce a novel data augmen-

tation approach based on the latent space manipulation of StyleGAN, where defect data

is intentionally synthesized to simulate novel inputs that can help form a boundary of the

model’s knowledge. Our approach shows promising results compared to well-established

open-set recognition and semi-supervised methods applied to the same problem, while its

consistent performance across classifier embeddings indicates lower coupling to the final

classifier.

The above mentioned method still requires enough data to train a GAN, which might

not always be possible or cost-effective. Collecting more and more defect data is also

often not a solution as defects occur rarely in production and the ramp-up time of the

AI-driven quality inspector becomes significantly slower. To cope with smaller datasets

we apply an innovative approach based on Neurosymbolic AI. Specifically, we use a Logic

Tensor Network that expresses the outputs of an unsupervised out-of-distribution detec-

tor as symbolic rules and uses them to drive the training of a neural network classifier.

The resulting algorithm shows improved results in comparison to other related methods,

especially in terms of defect recall, meaning that few defects remain undetected even if

completely novel. More specifically, it achieves similar or better recall scores than semi-

supervised and unsupervised methods when handling novel defects, but significantly

outperforms them in defects that were seen during training. Similarly, when compared

to supervised methods, it maintains high performance on known defects but significantly

improves on novel ones. These best-of-both-worlds results are illustrated through higher

F1-scores in the majority of the test datasets of manufacturing products.

Keywords

Artificial Intelligence, Visual Quality Inspection, Smart Manufacturing, Deep Learn-

ing, Defect Recognition, Imbalanced Learning, Data Augmentation, Oversampling, Gen-

erative Adversarial Networks, Open-set Recognition, Neurosymbolic AI
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Πεϱίληψη

Η αναγνώριση οπτικών ελαττωµάτων όπως εφαρµόζεται στον κατασκευαστικό τοµέα είναι

ένα ϑέµα που απασχολεί την τϱέχουσα έρευνα στο πεδίο της τεχνητής νοηµοσύνης, κα-

ϑώς αυτός αποτελεί αναπόσπαστο µέϱος της διαδικασίας παραγωγής που αυτοµατοποιείται

ολοένα και περισσότερο µε την εµφάνιση της Βιοµηχανίας 4.0 και της Βιοµηχανίας 5.0.

Αν και είναι µια πολύ ευεργετική λύση, οι αλγόριθµοι όϱασης υπολογιστών που ϐασίζονται

στη Μηχανική Μάϑηση και τα Βαθιά Νευρωνικά ∆ίκτυα αντιµετωπίζουν πολλά προβλή-

µατα που µποϱεί να εµποδίσουν την υιοθέτησή τους σε πρακτικές εφαρµογές, όπως σε µια

γϱαµµή παραγωγής. Τα σύνολα δεδοµένων που περιέχουν ελαττώµατα δεν έχουν συνήϑως

ισορροπηµένες κλάσεις και πάσχουν κατά τον διαχωρισµό µεταξύ κλάσεων υψηλής οπτικής

οµοιότητας. ΄Ενα άλλο Ϲήτηµα που πϱοκύπτει κατά τη συνεχή λειτουργία ενός ταξινοµητή

µηχανικής µάϑησης είναι η έλλειψη ανθεκτικότητας σε νέα ελαττώµατα που εµφανίζονται

για πϱώτη ϕοϱά. Ο στόχος αυτής της εργασίας είναι να αντιµετωπίσει τέτοιες προκλήσεις

παρέχοντας επαυξήσεις στις λύσεις τεχνητής νοηµοσύνης, είτε σε επίπεδο δεδοµένων είτε

σε επίπεδο µοντέλου, ώστε να µποϱούν να ανταποκριθούν σε πραγµατικές συνθήκες στον

κατασκευαστικό τοµέα.

Η αρχική εστίαση είναι στη Μη Ισορροπηµένη Μάϑηση. Παϱόλο που έχουν προτα-

ϑεί διάφορες µέϑοδοι επαύξησης δεδοµένων για τον µετριασµό των ανισορροπιών κλάσεων,

συχνά αποτυγχάνουν σε ιδιαίτερα ολιγοπληθείς κατηγορίες ενώ, ταυτόχϱονα, χρειάζονται

σηµαντικούς υπολογιστικούς πόϱους για εκπαίδευση. Επίσης, η επαύξηση που ϐασίζεται

σε υπερδειγµατοληψία ϐάσει διανυσµάτων δυσκολεύεται να παϱάγει εισόδους υψηλής ευ-

κρίνειας και είναι δύσκολο να εφαρµοστεί σε προσαρµοσµένες αρχιτεκτονικές ΄Συνελικτικών

Νευρωνικών ∆ικτύων (ΣΝ∆), οι οποίες συχνά αποδίδουν καλύτεϱα για αυτόν τον τύπο προβ-

λήµατος. Η εργασία µας παϱουσιάϹει µια µέϑοδο υπερδειγµατοληψίας στο επίπεδο της

εικόνας που µποϱεί να εφαρµοστεί σε οποιοδήποτε ΣΝ∆ απευθείας κατά τη διάϱκεια της εκ-

παιδευτικής διαδικασίας χωϱίς µεγάλη επιϐάϱυνση του απαιτούµενου χρόνου εκπαίδευσης.

Ξεκινά µε τον εντοπισµό ενός µικϱού αριθµού αϐέϐαιων δειγµάτων κοντά στα εκτιµώµενα

όϱια µεταξύ δύο κλάσεων και ϐασίϹει τη σύνθεση νέων δεδοµένων σε αυτά. Οι εικόνες που

προκύπτουν είναι υψηλής οπτικής ποιότητας διατηρώντας µικϱές διαφορές µεταξύ των κατη-

γορίων και χϱησιµεύουν στο να ϐελτιώσουν τα όϱια του ταξινοµητή, οδηγώντας σε υψηλότερη

ανάκληση σε σχέση µε άλλες προσεγγίσεις.

Εκτός από την ανισορροπία κλάσεων, η αδυναµία συλλογής πολλών δεδοµένων, καθώς

και οι αυστηϱοί περιορισµοί ασφαλείας για τα κυϐεϱνο-ϕυσικά συστήµατα, υπαγορεύουν

τον αποτελεσµατικό χειϱισµό καινοφανών εισόδων. Τέτοιες απρόσµενες είσοδοι µποϱεί να

αποτελέσουν σηµαντικό κίνδυνο, καθώς µια λανθασµένη απόκριση σε αυτές ϑα µποϱούσε να

ϐλάψει την ακεραιότητα της διαδικασίας παραγωγής. Ενώ οι πρόσφατες µέϑοδοι Μηχανικής
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Πεϱίληψη

Μάϑησης µποϱούν ϑεωρητικά να αντιµετωπίσουν αυτό το πϱόϐληµα από διαφορετικές οπ-

τικές γωνίες (π.χ. αναγνώριση ανοιχτού συνόλου, ηµι-εποπτευόµενη µάϑηση, έξυπνη επαύξηση

δεδοµένων), εφαρµόζοντάς τες σε ένα πραγµατικό περιβάλλον µε ένα µικϱό, µη ισορροπη-

µένο σύνολο δεδοµένων και υψηλή οµοιότητα µεταξύ των κλάσεων αποτελεί πϱόκληση. Η

παϱούσα εργασία αντιµετωπίζει µια τέτοια πεϱίπτωση που αϕοϱά στην αυτοµατοποίηση της

οπτικής ποιοτικής επιθεώρησης εκτυπώσεων λογοτύπων σε κελύϕη ξυριστικών µηχανών από

τη ϐιοµηχανία ηλεκτρονικών και χαρακτηρίζεται από σπανιότητα δεδοµένων και ύπαϱξη

µικϱών τοπικών ελαττωµάτων. Για το σκοπό αυτό, εισάγεται µια νέα προσέγγιση επαύξησης

δεδοµένων που ϐασίζεται στον χειϱισµό του λανθάνοντος χώϱου του StyleGAN, µε αποτέλεσµα

τα δεδοµένα ελαττωµάτων να συντίθενται σκόπιµα για την προσοµοίωση νέων εισόδων µε

στόχο τον σχηµατισµό ενός οϱίου γύϱω από την γνωστή κατανοµή εκπαίδευσης του µον-

τέλου. Η προσέγγισή µας δείχνει υποσχόµενα αποτελέσµατα σε σύγκριση µε τις καθιερ-

ωµένες µεθόδους αναγνώρισης ανοιχτού συνόλου και τις ηµι-εποπτευόµενες µεθόδους που

εφαρµόζονται στο ίδιο πϱόϐληµα, ενώ η σταθερή απόδοσή της σε διαφορετικούς χώϱους

χαρακτηριστικών υποδεικνύει χαµηλότερη σύϹευξη µε τη διαδικασία εξαγωγής τους.

Η παραπάνω µέϑοδος εξακολουθεί να απαιτεί αρκετά δεδοµένα για την εκπαίδευση του

StyleGAN, κάτι που µποϱεί να µην είναι πάντα δυνατό ή οικονοµικά αποδοτικό. Η συλλογή

ολοένα και περισσότερων δεδοµένων ελαττωµάτων επίσης συχνά δεν είναι λύση, καθώς τα

ελαττώµατα εµφανίζονται σπάνια στην παραγωγή και ο χϱόνος εγκατάστασης του ευφυούς

επιθεωρητή ποιότητας γίνεται σηµαντικά πιο αϱγός. Για να αντιµετωπίσουµε µικϱότεϱα

σύνολα δεδοµένων εφαρµόζουµε µια καινοτόµο προσέγγιση που ϐασίζεται στη Νευροσυµβο-

λική Τεχνητή Νοηµοσύνη. Συγκεκριµένα, χρησιµοποιούµε ένα ∆ίκτυο Λογικού Τανυστή που

εκφράζει τις εξόδους ενός µη-επιϐλεπόµενου ανιχνευτή ανωµαλιών ως συµβολικούς κανόνες

µε στόχο στη συνέχεια να καθοδηγήσει την εκπαίδευση ενός νευρωνικού δικτύου. Ο αλ-

γόριθµος που πϱοκύπτει δείχνει ϐελτιωµένα αποτελέσµατα σε σύγκριση µε άλλες σχετικές

µεθόδους, ειδικά όσον αϕοϱά στην ανάκληση ελαττωµάτων, πϱάγµα που σηµαίνει ότι λίγα

ελαττώµατα παραµένουν µη ανιχνεύσιµα ακόµη και αν είναι εντελώς καινοφανή. Πιο

συγκεκριµένα, επιτυγχάνει παρόµοια ή καλύτεϱα αποτελέσµατα ανάκλησης από τις ηµι-

εποπτευόµενες και µη εποπτευόµενες µεθόδους κατά τον χειϱισµό νέων ελαττωµάτων, αλλά

παϱάλληλα υπερέχει σηµαντικά σε ελαττώµατα που παϱατηϱήϑηκαν κατά τη διάϱκεια της

εκπαίδευσης. Οµοίως, σε σύγκριση µε τις εποπτευόµενες µεθόδους, διατηϱεί υψηλή από-

δοση σε γνωστά ελαττώµατα, ενώ ταυτόχϱονα δείχνει µεγάλη ϐελτίωση στα καινοφανή. Τα

αποτελέσµατα αυτά γίνονται οϱατά µέσω των υψηλότερων ϐαθµολογιών F1 στην πλειονότητα

των συνόλων δεδοµένων αξιολόγησης.

Λέξεις Κλειδιά
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Εκτεταµένη Πεϱίληψη

Η παϱούσα διατριβή επικεντρώνεται στις εφαρµογές µηχανικής µάϑησης σε ϐιοµηχανικά

περιβάλλοντα και σε συγκεκριµένα πρακτικά προβλήµατα που προκύπτουν λόγω της δυσκολίας

συλλογής δεδοµένων εκπαίδευσης όπως η Ανισορροπία Κλάσεων και η Εµφάνιση Καινο-

ϕανών ∆εδοµένων. Το τεχνολογικό και ερευνητικό περιβάλλον στο οποίο εξετάζονται αυτά τα

προβλήµατα είναι αυτό της Βιοµηχανίας 5.0. Ο όϱος αυτός πϱοκύπτει ως µια επέκταση των

µέχϱι τώϱα τεσσάϱων Βιοµηχανικών Επαναστάσεων και συγκεκριµένα της 4ης Βιοµηχανικής

Επανάστασης (Industry 4.0) η οποία χαρακτηρίζεται από τεχνολογίες όπως το ∆ιαδίκτυο των

Αντικειµένων, τα Κυϐεϱνο-ϕυσικά Συστήµατα, τα Ψηφιακά ∆ίδυµα, τα Μεγάλα ∆εδοµένα η

Τεχνητή Νοηµοσύνη κ.α. Σε αυτό το υπόβαθρο η Βιοµηχανία 5.0 στοχεύει στον συνδυασµό

των ανθρώπινων δυνατοτήτων µε αυτών των ευφυών µηχανών µέσω συστηµάτων προσοµοίω-

σης και συνεργασίας Ανϑϱώπου-Υπολογιστή. [1]

Πιο συγκεκριµένα, η παϱούσα έρευνα επικεντρώνεται στον Αυτόµατο ΄Ελεγψο Ποιότη-

τας Βιοµηχανικών προϊόντων µέσω τεχνικών Μηχανικής Μάϑησης για Υπολογιστική ΄Οϱαση.

Στα πλαίσια της Ποιότητας 4.0 (µέϱους της Βιοµηχανίας 4.0) στόχος είναι η δηµιουϱγία αυ-

τοελεγχόµενων συστηµάτων που µποϱούν να µετρήσουν αυτόµατα την ποιότητα της εξόδου

τους και να αποφασίζουν αυτόνοµα για την αποδοχή ή απόρριψή της. Η Βαθιά Μάϑηση

λόγω της προσαρµοστικότητάς της (π.χ. σε οπτικές αλλαγές στην κλίµακα ή την περιστροφή

της εικόνας) έχει ϐοηθήσει πολύ σε αυτό, αλλά ταυτόχϱονα απαιτεί µεγάλο όγκο δεδοµένων

εκπαίδευσης και δεν είναι ευσταθής σε δείγµατα εκτός της κατανοµής εκπαίδευσης. Μια

λύση που διερευνάται στα πλάισια της Βιοµηχανίας 5.0 είναι η ανάπτυξη συστηµάτων συνερ-

γασίας Ανϑϱώπου-Μηχανής όπου η ανθρώπινη νοηµοσύνη και εµπειρία ϑα αναπληϱώνει τα

µειονεκτήµατα της τεχνητής.

Κατά την ποϱεία της παϱούσας έρευνας στον Αυτόµατο ΄Ελεγχο Ποιότητας ϐιοµηχανικών

προϊόντων µέσω τεχνικών Βαθιάς Μάϑησης διαπιστώθηκαν τϱείς κύϱιες προκλήσεις, οι

οποίες αποτελούν και το επίκεντρο αυτής της εργασίας:

1. H ανεπάϱκεια δεδοµένων εκπαίδευσης, η οποία γίνεται ιδιαίτεϱα αισϑητή σε πϱοϊόντα

µε σϕάλµατα. Αυτό συµϐαίνει διότι τα σϕάλµατα εµϕανίϹονται σπάνια στις γϱαµµές

παϱαγωγής σε σχέση µε τα άϱτια πϱοϊόντα οδηγώντας σε ανισοϱϱοπία µεταξύ των δύο

κλάσεων.

2. Η µεγάλη οπτική οµοιότητα µεταξύ άρτιων και ελαττωµατικών προϊόντων η οποία

δυσχεραίνει σηµαντικά την ικανότητα διάκρισης των ταξινοµητών.

3. Η εµφάνιση καινοφανών ελαττωµάτων κατά τη συνεχή λειτουργία ενός ήδη εκπαιδευµέ-

νου αλγορίθµου µποϱεί να οδηγήσει σε λανθασµένη ταξινόµηση των προϊόντων ώς

άρτια.
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Figure 1. Βασικές Αϱχές και Τεχνολογίες της Βιοµηχανίας 5.0 [2]

Για την αντιµετώπιση της ανισορροπίας κλάσεων αναπτύχθηκε µέϑοδος για την επαύξηση

των δεδοµένων εκπαίδευσης που ανήκουν σε µειονοτικές κλάσεις. Η σύνθεση των δεδοµένων

έγινε µε τεχνικές κατεύθυνσης Παραγωγικών Αντιπαραθετικών ∆ικτύων (ΠΑ∆), µε στόχο να

γίνει υπερδειγµατοληψία παραδειγµάτων στα οποία οι προβλέψεις του ταξινοµητή παρουσιά-

Ϲουν χαµηλή αξιοπιστία. Η επαύξηση τέτοιων δεδοµένων δύναται να παϱέχει µεγαλύτεϱο

όφελος στη διαδικασία εκπαίδευσης. [3]

Για τον χειϱισµό των καινοφανών εισόδων διερευνήθηκαν παρόµοιες τεχνικές, αυτήν την

ϕοϱά µε στόχο την σύνθεση οριακών παραδειγµάτων µε χϱήση StyleGAN. Παϱότι η δι-

αδικασία παραγωγής δεδοµένων που αναπτύχθηκε ξεκινά από τις κατανοµές εκπαίδευσης,

τα οριακά δεδοµένα, χάϱη στη γενικευσιµότητα του StyleGAN, παράγονται στα άκϱα των

κατανοµών αυτών και δηµιουργούν ένα όϱιο µεταξύ γνωστών και καινοφανών εισόδων. [4]

Σαν επέκταση χρησιµοποιήθηκαν τεχνικές Νευροσυµβολικής τεχνητής νοηµοσύνης µε στόχο

την αύξηση της ανθεκτικότητας όταν ϐρίσκονται διαθέσιµα ακόµη λιγότεϱα δεδοµένα εκ-

παίδευσης [5].

΄Οσον αϕοϱά στην οµοιότητα µεταξύ άρτιων και ελαττωµατικών προϊόντων, αυτή συνυπολο-

γίστηκε σε όλες τις παραπάνω µεθόδους. Συγκεκριµένα, χρησιµοποιήθηκαν ΠΑ∆ µε δυνατότητες

πολύ λεπτοµερούς σύνθεσης εικόνων, ενώ, όπου ο όγκος των δεδοµένων το επέτϱεπε, έγινε

εκπαίδευση των τελικών ταξινοµητών απευθείας στο πϱόϐληµα χωϱίς χϱήση µεταϕοϱάς

µάϑησης από προεκπαιδευµένα δίκτυα.

∆ιάταξη της Γϱαµµής Παϱαγωγής και ∆εδοµένα

Το στάδιο του ελέγχου ποιότητας της γραµµής παραγωγής τροποποιείται µε την τοπο-

ϑέτηση κάµεϱας η οποία ϕωτογραφίζει τα πϱοϊοντα µε τη ϐοήθεια συστήµατος που στο-

χεύει στην τοπική οµογενοποίηση της ϕωτεινότητας, για να αποϕευχϑούν σκιές ή ϑάµπωµα.

Πολλοί τέτοιοι σταθµοί µποϱούν να τοποθετηθούν σε κοντινή απόσταση µε έναν άνϑϱωπο-

χειϱιστή υπαύθυνο για όλους. Ενώ ο αλγόριθµος µηχανικής µάϑησης έχει ευθύνη για την

αρχική ταξινόµηση των προϊόντων, σε πεϱίπτωση που ανιχνέυσει πιθανότητα ελαττώµατος,

το πϱοϊόν καταλήγει στον υπεύθυνο χειϱιστή για την τελική απόφαση - αν όντως είναι ελατ-
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(a) Good (b) Double Print (c) Interrupted

Figure 2. ∆είγµατα από τα δεδοµένα της PCL BV

Figure 3. ∆είγµατα από τα δεδοµένα του MVTEC-AD

τωµατικό ή µποϱεί να συνεχίσει στη διαδικασία παραγωγής ως άρτιο. ∆εδοµένου πως ένα

πϱοϊόν έχει χαρακτηριστεί ως άρτιο αυτό εξέρχεται από το σύστηµα χωϱίς ανθρώπινο έλεγχο

(πέϱα από τυχαία δειγµατοληψία). Για αυτόν τον λόγο πϱέπει το σύστηµα να είναι ιδιαίτερα

αυστηϱό µε την ταξινόµηση στην άρτια κλάση. Παϱάλληλα δεν πϱέπει να είναι τόσο αυστηϱό

ώστε να υπερφορτώνει τον χειϱιστή µε άρτια πϱοϊόντα που λανθασµένα έχουν χαρακτηρισθεί

ελαττωµατικά.

Για την ανάπτυξη και αξιολόγηση των µεϑόδων που ακολουθούν χρησιµοποιήθηκαν

δύο σύνολα δεδοµένων: το πϱώτο προέρχεται από την Philips Consumer Lifestyle BV

και απεικονίϹει εκτυπωµένα λογότυπα της εταιϱείας σε ϐϱαχίονες ξυριστικών µηχανών και

το δεύτεϱο είναι το ευρύτερα χρησιµοποιούµενο στην ερευνητική κοινότητα MVTEC, το

οποίο απεικονίϹει διαφορετικά πϱοϊόντα σε ξεχωριστά υποσύνολα δεδοµένων. Από αυτά

επιλέχϑηκαν όσα είχαν ανισορροπίες κλάσεων και µεγάλη οµοιότητα άρτιων και ελαττωµατικών

προϊόντων.

Αντιµετώπιση Ανισοϱϱοπίας Κλάσεων

Πλέον τα ϐαθιά συνελικτικά δίκτυα (ΒΣ∆) είναι η επικϱατέστεϱη µέϑοδος στη ϐιβλι-

ογραφία για αυτόµατο ποιοτικό ελέγχο καθότι συνδυάζουν τα εξής πλεονεκτήµατα:
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1. Επιτυγχάνουν υψηλή ακϱίϐεια καθώς µαθαίνουν τα χαρακτηριστικά εκπαίδευσης δυναµικά

µε ϐάση τα δεδοµένα.

2. ∆εν απαιτούν ειδικές γνώσεις του πϱοϐλήµατος µε αποτέλεσµα να απλοποιούν τον

σχεδιασµό των διαδικασιών (πϱο-)επεξεϱγασίας των δεδοµένων.

3. Μποϱούν πιο εύκολα να αναπϱοσαϱµοστούν σε παϱόµοια πϱοϐλήµατα µε το αϱχικό

(π.χ. ένα πϱοϊόν µε διαϕοϱετική διακόσµηση).

4. Είναι ανϑεκτικά σε οπτικούς µετασχηµατισµούς όπως οι αλλαγές ϑέσης και κλίµακας.

5. Παϱέχουν δυνατότητα µεταϕοϱάς γνώσης από πολυπληθή σε µικϱότεϱα σύνολα δε-

δοµένων.

Παϱόλα αυτά, αν εξαιϱέσει κανείς την µεταϕοϱά δεδοµένων, η εκπαίδευση αυτών των

δικτύων απαιτεί συνήϑως 10
3

έως 10
4

παϱαδείγµατα, ενώ είναι ιδιαίτεϱα ευαίσϑητη στις

ανισοϱϱοπίες του αϱιϑµού παϱαδειγµάτων µεταξύ των κλάσεων.

Για την αντιµετώπιση της ανισορροπίας δεδοµένων έχουν αναπτυχθεί τόσο πιο παραδοσι-

ακές τεχνικές για διανυσµατικά δεδοµένα (SMOTE, Borderline-SMOTE, ADASYN), όσο και

πιο σύγχϱονες τεχνικές επαύξησης µέσω σύνθεσης ολόκληϱων εικόνων από ΠΑ∆. Η επαύξηση

δεδοµένων µέσω ΠΑ∆ µποϱεί να πραγµατοποιηθεί είτε απευθείας (π.χ. µε χϱήση των Wasser-

stein GAN, DCGAN ή StyleGAN) είτε µέσω προσπαθειών καθοδήγησης των εξόδων του ΠΑ∆

(π.χ. µέσω ενισχυτικής µάϑησης - Actor-Critic GAN) για να παϱάγει πιο χϱήσιµες εξό-

δους. Τέλος, ιδιαίτερο ενδιαφέρον παϱουσιάϹει µια νέα µέϑοδος, η DeepSMOTE, ϐασισµένη

σε αρχιτεκτονική κωδικοποιητή-αποκωδικοποιητή που αναπαράγει την διαδικασία SMOTE,

αλλά στο επίπεδο της εικόνας, παράγοντας εικόνες από γραµµικές παρεµβολές µεταξύ των

γνωστών εικόνων εισόδου [6].

Κατά τη διαρκεία της έρευνας διαπιστώθηκε ότι η επίδοση δικτύων εκπαιδευµένων αποκ-

λειστικά στο πϱόϐληµα της αναγνώρισης ελαττωµάτων (χωϱίς µεταϕοϱά µάϑησης) είναι πιο

αποτελεσµατική, κατά συνέπεια ϑα ϐοηθούσε περισσότερο µια τεχνική υπερδειγµατοληψίας

στο επίπεδο των εικόνων. Λαµβάνοντας υπόψιν τις ιδιαιτερότητες του προβλήµατος αναπ-

τύχθηκε µια ϐελτίωση του DeepSMOTE για το συγκεκριµένο πϱόϐληµα που στοχέυει στην

υπερδειγµατοληψία δεδοµένων για την ταξινόµηση των οποίων ο αλγόριθµος είναι αϐέϐαιος

µε στόχο την ϐελτιστοποίηση της ανάκλησης του τελικού ταξινοµητή. Η σύνθεση των δε-

δοµένων γίνεται εϕικτή µέσω της προασαρµογής του BigGAN για λειτουργία σε µικϱά σύνολα

δεδοµένων [7].

Μέϑοδος

Σύνϑεση ∆εδοµένων

Λόγω του µικϱού σε µέγεθος και άνισα κατανεµηµένου σε κλάσεις συνόλου δεδοµένων,

αποϕεύχϑηκε η εκπαίδευση ΠΑ∆ εξαρχής και χρησιµοποιήθηκε η µέϑοδος των Noguchi et

al. [7] η οποία προσαρµόζει ένα µοντέλο BigGAN προεκπαιδευµένο στο ImageNet. Συγ-

κεκριµένα για κάϑε είσοδο I συγκεκριµένες παϱάµετϱοι του ΠΑ∆ προσαρµόζονται ώστε

να παραχθεί µια παραλλαγµένη µοϱϕή Iz δεδοµένου τυχαίου διανύσµατος εισόδου z. Οι
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παϱάµετϱοι του BigGAN που προσαρµόζονται είναι µόνο αυτές του παράγοντα κλίµακας

(scale) και της µετατόπισης (shift) στα στρώµατα νευϱώνων κανονικοποίησης (batch normal-

ization layers). ∆ιαισθητικά αυτό ισοδυναµεί µε την επιλογή χαρακτηριστικών χϱήσιµων για

τα δεδοµένα εκπαίδευσης από ένα υπερσύνολο χαρακτηριστικών που έχει µαθευτεί από το

Imagenet.

Καϑότι τα δεδοµένα που παράγονται µε αυτόν τον τϱόπο µποϱεί να µην απεικονίζουν

ικανοποιητικά µικϱοσκόπικα ελαττώµατα στις εικόνες, χρησιµοποιούνται δύο επιπρόσθε-

τοι µηχανισµοί. Αρχικά µια συνάϱτηση TilePermutations, εµπνευσµένη από τους Satoshi

et al.[8] παϱάγει υϐϱιδικές εικόνες, χωρίζοντας τις αρχικές και συνθετικές εικόνες σε µη

επικαλυπτόµενα τµήµατα και ανασυνδυάζοντάς τα τυχαία. Τέλος ακολουθεί ένα ϐήµα ϕιλ-

τραρίσµατος όπου µόνο ένα υποσύνολο εικόνων µεγέϑους naug επιλέγεται, αποτελούµενο

από τις υϐϱιδικές εικόνες που είναι κοντινότερες στις αρχικές.

Υπολογισµός Αξιοπιστίας Πϱοϐλέψεων

Με σκοπό να ϐελτιστοποιηθεί η υπαρδειγµατοληψία, επιλέχϑηκε η παραγωγή συνθετικών

δεδοµένων να είναι ϐασισµένη σε εικόνες για την ταξινόµηση των οποίων δεν υπάρχει µεγάλος

ϐαθµός σιγουϱιάς µε ϐάση τον υποκείµενο αλγοριθµο. Η υπόθεση είναι ότι αυτή η πιο στο-

χευµένη υπερδειγµατοληψία, εµπνευσµένη από την ϐελτιστοποίηση Borderline-SMOTE του

SMOTE αλλά στο επίπεδο των εικόνων, ϑα προσφέρει µεγαλύτεϱες ϐελτιώσεις στην τελική

διαδικασία µάϑησης.

Παϱότι στη ϐιϐλιογϱαϕία υπάϱχουν πολλοί τϱόποι για να ποσοτικοποιηϑεί η αξιοπιστία

µιας πϱόϐλεψης που αντιστοιχεί σε µία είσοδο, χϱησιµοποιήϑηκε η µέϑοδος των Elsayed et

al. [9] ή οποία δεν απαιτεί µεταϐολές ούτε στη διαδικασία µάϑησης, ούτε στην αϱχιτεκτονική

του δικτύου.

Σύµϕωνα µε αυτήν το όϱιο απόϕασης µεταξύ δύο κλάσεων i και j οϱίϹεται ως το σύνολο

εισόδων για το οποίο ο (ψεύδο-)ϐαϑµός αξιοπιστίας πϱοϐλέψεων για ταξινόµηση σε καϑεµία

κλάση (δηλαδή η έξοδος του στϱώµατος softmax του δικτύου f ) είναι ίσος:

D{i,j} = {x | fi(x) = fj(x)} (1)

Η απόσταση ενός σηµείου x από το όϱιο απόϕασής οϱίϹεται τότε ως η lp νόϱµα της

µικϱότεϱης µετατόπισης που πϱέπει να υποστεί το σηµείο ώστε να υπάϱχει ισότητα των

(ψεύδο-)ϐαϑµών αξιοπιστίας:

df,x,{i,j} = min
δ
∥δ∥p | fi(x + δ) = fj(x + δ) (2)

Καϑότι το πϱόϐληµα ϐελτιστοποίησης είναι µη αναλυτικά επιλύσιµο για µη γραµµική f ,

χρησιµόποιείται το ανάπτυγµα Taylor πρώτου ϐαθµού για να γραµµικοποιηθεί η f οδηγών-

τας στην ακόλουϑη προσέγγιση της απόστασης από το όϱιο:

d̂f,x,{i,j} =
| fi(x) − fj(x) |

∥∇x fi(x) − ∇x fj(x)∥q
(3)

11



Εκτεταµένη Πεϱίληψη

Figure 4. Αϱχιτεκτονικό διάγϱαµµα της µεϑόδου επαύξησης δεδοµένων και της διαδικασίας
εκπαίδευσης του τελικού ταξινοµητή.

Επαύξηση ∆εδοµένων σε Πϱαγµατικό Χϱόνο

ΣυνοψίϹοντας τα παϱαπάνω ϐήµατα πϱοκύπτει η τελική µέϑοδος επαύξησης δεδοµένων

σε πϱαγµατικό χϱόνο που ϕαίνεται και στην Εικόνα 4.

Βήµα#1: Ο ταξινοµητής C εκπαιδεύεται για καθορισµένο αριθµό np εποχών και η απόσ-

ταση από το όϱιο διαχωρισµού άρτιων και µη άρτιων εικόνων προσεγγίζεται για κάϑε εικόνα

εκπαίδευσης σύµφωνα µε την Εξ.2.2.

Βήµα#2: Οι ktop εικόνες εισόδου µε την µικϱότεϱη απόσταση από το όϱιο διαχωϱισµού

επιλέγονται και χϱησιµοποιόυνται ως γεννήτοϱες για την σύνϑεση δεδοµένων.

Βήµα#3: ΥπολογίϹεται ο αϱιϑµός των παϱαγόµενων εικόνων που αντιστοιχεί σε κάϑε εικόνα

γεννήτοϱα naug έτσι ώστε τα δεδοµένα για την τελική εκπαίδευση να είναι ισοϱϱοπηµένα

ανάµεσα σε άϱτια και µη άϱτια και εκτελείται η διαδικασία για την παϱαγωγή των δεδοµένων.

Βήµα#4: Ο πϱοεκπαιδευµένος ταξινοµητής C εκπαιδεύεται επιπλέον για n εποχές στο

επαυξηµένο σύνολο δεδοµένων µε σκοπό να µάϑει ένα ϐελτιωµένο όϱιο διαχωϱισµού.

Αποτελέσµατα

Στόχος της προτεινόµενης προσέγγισης είναι να περιοριστεί όσο το δυνατόν ο αριθµός

ελαττωµατικών προϊόντων που εσφαλµένα ταξινοµούνται ως άρτια. Για τον λόγο αυτό η

σηµαντικότερη µετϱική είναι αυτή της ανάκλησης από την πλευϱά των ελαττωµατικών δε-

δοµένων. ∆εδοµένου ενός ταξινοµητή C, δεδοµένων αξιολόγησης X , µε ετικέτα εκπαίδευσης

l(x), όπου οι ετικέτες των ελαττωµατικών κλάσεων δίνονται στο Ld = {double print, interrupted},

αυτή ορίζεται ως εξής:

BinaryRecall =
|x ∈ X : C(x) ∈ Ld ∧ l(x) ∈ Ld |

|x ∈ X : l(x) ∈ Ld |
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Abstract

Η συγκεκϱιµένη µετϱική επηϱεάϹεται επίσης λιγότεϱο από την ανισοϱϱοπία δεδοµένων

σε σχέση π.χ. µε την ακϱίϐεια (accuracy), παϱόλα αυτά για να υπάϱχει και έλεγχος των

ψευδώς ϑετικών πϱοϐλέψεων, εξιολογούνται και οι µετϱικές AUROC, Precision και F1.

Συνολικά, για κάϑε συγκρινόµενη µέϑοδο εκτελέστηκαν 30 µετρήσεις µε χϱήση 5-

πλης διασταυρωµένης επικύρωσης, ενώ παϱάλληλα έγινε και ϐελτιστοποίηση των υπερ-

παραµέτρων κάϑε µεθόδου. Οι µετρήσεις που παρουσιάζονται είναι ο µέσος όϱος των παρα-

πάνω µαϹί µε τα 95% διαστήµατα εµπιστοσύνης.

Method Bin. Recall % AUROC % Precision % F1 %

Resnet50 85.85 ± 1.50 98.85 ± 0.12 94.41 ± 3.27 89.59 ± 1.27

Resnet50+SMOTE 95.84 ± 0.52 98.87 ± 0.13 84.53 ± 3.01 89.61 ± 1.57

Resnet50+ADASYN 95.49 ± 0.99 99.07 ± 0.11 85.14 ± 3.45 89.67 ± 1.69

Custom CNN 95.84 ± 0.39 99.20 ± 0.19 97.53 ± 0.81 96.67 ± 0.56

Custom CNN+LW 96.07 ± 0.39 99.09 ± 0.19 98.34 ± 0.33 97.19 ± 0.43
StyleGAN 91.20 ± 2.20 99.01 ± 0.14 99.17 ± 0.41 94.95 ± 1.38

DeepSMOTE 93.58 ± 1.07 99.23 ± 0.15 96.93 ± 0.80 95.22 ± 0.87

Ours 97.27 ± 0.76 99.34 ± 0.07 96.82 ± 1.27 97.03 ± 0.98

Table 1. Αξιολόγηση στα δεδοµένα εικόνων ξυϱιστικών µηχανών της PCL BV

Μια αρχική ενδιαφέρουσα παϱατήϱηση σχετικά µε τον Πίνακα 1 είναι ότι το ϱηχό συνε-

λικτικό δίκτυο που εκπαιδεύεται εξαρχής στο πϱόϐληµα έχει καλύτεϱη επίδοση απέναντι σε

δίκτυα µε µεταϕοϱά µάϑησης ακόµα και όταν χρησιµοποιούν τεχνικές υπαρδειγµατοληψίας

διανυσµάτων (SMOTE, ADASYN κλπ.). Τεχνικές επαύξησης στο επίπεδο της εικόνας όπως

το StyleGAN και το DeepSMOTE δεν κατάϕεϱαν να ϐελτιώσουν την επίδοση του ϱηχού συνε-

λικτικού δικτύου, πιθανότατα, όπως ϕαίνεται και στην Εικόνα 5, λόγω της αδυναµίας τους να

παράγουν αρκετά λεπτοµερείς εικόνες ελαττωµατικών προϊόντων. Η προτεινόµενη µέϑοδος,

χάϱη στην εισαγωγή των επιπλέον ϐηµάτων σχετικά µε την επιλογή σηµαντικών εικόνων και

την χϱήση τους στη σύνθεση εικόνων επαύξησης, κατάϕεϱε τόσο να παϱάγει εικόνες υψηλής

ευκρίνειας, όσο και να ϐελτιώσει σηµαντικά την ανάκληση του τελικού ταξινοµητή. Παϱότι η

προτεινόµενη µέϑοδος υπολείπεται σε άλλες µετϱικές όπως η F1, αυτό δεν είναι πϱόϐληµα

καθότι η ϑυσία είναι αρκετά µικϱή για την επίτευξη υψηλής ανάκλησης.

Και στο MVTEC-AD (Πίνακας 2) η προτεινόµενη µέϑοδος επέτυχε την υψηλότερη ανάκληση

σε όλες της περιπτώσεις. ∆υστυχώς, λόγω και του µικϱού πληθυσµού αυτών των συνόλων

δεδοµένων, η στατιστική σηµαντικότητα του αποτελέσµατος δεν ήταν δυνατόν να επιτευχ-

ϑεί σε όλες τις περιπτώσεις. Ιδιαίτερα στα δεδοµένα τύπου Grid οι διακυµάνσεις µεταξύ

κάϑε πειραµατικής εκτέλεσης ήταν σηµαντικές. Παϱόλα αυτά, στα σύνολα δεδοµένων Metal

Nut, Pill και Carpet η διαφορά ήταν είτε στατιστικά σηµαντική είτε πολύ κοντά σε αυτό.

Σε αντίθεση µε τα πειράµατα του Πίνακα 1 εδώ επιτυγχάνεται ϐελτίωση και στις µετϱικές

Precision και F1. Πιθανότατα και πάλι λόγω του µικϱού πληθυσµού των δεδοµένων, υπ-

άρχουν µεγαλύτεϱα οϕέλη από την επαύξηση των δεδοµένων. Το µικϱό µέγεθος των συνόλων

δεδοµένων επίσης δεν επέτρεψε την ικανοποιητική εκπαίδευση των µεϑόδων StyleGAN και

DeepSMOTE που χρειάζονται περισσότερα δεδοµένα για να µποϱούν να συνθέσουν νέες

εικόνες.

Η ϐασική υπόθεση της προτεινόµενης µεθόδου είναι ότι χάϱη στην επαύξηση δεδοµένων

ϐασισµένη στις εικόνες που ϐρίσκονται πιο κοντά στο όϱιο ταξινόµησης ϑα µετατοπίσει αυτό

το όϱιο ώστε να επιτυγχάνεται καλύτεϱη ανάκληση. Αυτό ϕαίνεται τόσο από τα αποτελέσ-
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Figure 5. Συνϑετικές εικόνες που παϱάχϑηκαν από τις υπο εξέταση µεϑόδους

Figure 6. Ακϱίϐεια ταξινοµητή στα οϱιακά δεδοµένα που επιλέγονται ως γεννήτοϱες για
την σύνϑεση των δεδοµένων επαύξησης (Αϱιστεϱά). Οι k µικϱότεϱες αποστάσεις πϱος το όϱιο
διαχωϱισµού των κλάσεων πϱιν και µετά την εκπαίδευση στο επαυξηµένο σύνολο δεδοµένων
για k=15 (∆εξιά)
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Dataset Method Binary Recall % AUROC % Precision % F1 %

Grid

Resnet50 30.30 ± 5.59 73.29 ± 3.48 42.4 ± 5.57 34.36 ± 5.95

Resnet50 + SMOTE 35.60 ± 5.71 74.67 ± 4.34 48.27 ± 3.38 43.55 ± 3.48

Resnet50 + ADASYN 42.57 ± 8.38 74.26 ± 4.04 42.93 ± 4.59 35.93 ± 6.68

Custom CNN 70.90 ± 10.93 90.71 ± 5.49 80.23 ± 9.97 74.50 ± 10.50

Custom CNN + LW 69.24 ± 12.25 89.80 ± 6.09 75.38 ± 12.3 71.55 ± 12.15

Ours 71.21 ± 9.92 91.22 ± 5.12 91.43 ± 6.86 78.45 ± 8.36

Carpet

Resnet50 81.89 ± 3.70 97.07 ± 0.41 87.80 ± 3.33 84.20 ± 2.27

Resnet50 + SMOTE 88.69 ± 1.53 97.21 ± 0.46 79.56 ± 2.11 83.66 ± 0.94

Resnet50 + ADASYN 84.18 ± 2.71 97.25 ± 0.45 83.96 ± 3.78 83.42 ± 1.28

Custom CNN 87.77 ± 7.62 98.94 ± 0.49 89.73 ± 1.23 87.48 ± 4.75

Custom CNN + LW 91.11 ± 6.06 98.90 ± 0.51 88.02 ± 1.78 88.92 ± 3.72

Ours 92.22 ± 3.32 99.86 ± 0.11 92 ± 1.60 91.9 ± 1.97

Metal

Nut

Resnet50 84.03 ± 3.46 96.90 ± 0.79 95.33 ± 1.70 88.99 ± 1.97

Resnet50 + SMOTE 88.30 ± 3.71 97.32 ± 0.51 90.32 ± 1.33 89.07 ± 1.62

Resnet50 + ADASYN 84.09 ± 3.71 97.01 ± 0.72 95.38 ± 1.63 89.02 ± 2.09

Custom CNN 82.92 ± 5.36 97.49 ± 1.15 98.33 ± 1.33 89.55 ±3.87

Custom CNN + LW 82.92 ± 5.36 97.49 ± 1.15 98.33 ± 1.33 89.55 ± 3.87

Ours 92.63 ± 3.15 98.32 ± 1.22 98.75 ± 1.00 95.49 ± 2.12

Pill

Resnet50 71.52 ± 6.29 92.70 ± 1.63 84.84 ± 1.63 76.65 ± 4.29

Resnet50 + SMOTE 90.02 ± 2.62 91.76 ± 1.82 60.7 ± 1.57 72.34 ± 1.41

Resnet50 + ADASYN 78.62 ± 4.16 91.87 ± 1.70 82.29 ± 1.54 80.08 ± 2.41

Custom CNN 88.71 ± 2.18 98.35 ± 0.60 93.48 ± 2.03 90.94 ± 1.76

Custom CNN + LW 88.71 ± 2.18 98.35 ± 0.60 93.48 ± 2.03 90.94 ± 1.76

Ours 92.29 ± 3.79 98.80 ± 0.58 96.25 ± 1.63 94.11 ± 2.68

Table 2. Αξιολόγηση στα σύνολα εικόνων από το MVTEC-AD

µατα των Πινάκων 1 και 2, όσο και από το γϱάϕηµα σύγκρισης των αποστάσεων από το

όϱιο στην Εικόνα 6. Ενδιαφέρον παϱουσιάϹει το γεγονός ότι οι ελάχιστες αποστάσεις είναι

µικϱές σχετικά µε την µεγάλη διαστατικότητα του χώϱου, κάτι που πιθανόν να υποδεικνύει

πυκνή συγκέντρωση των απεικονίσεων του δικτύου κοντά στα όϱια. Φυσικά η µετατόπιση

που αναϕέϱουµε γίνεται από τη µη άρτια κλάση πϱος την άρτια, µε αποτέλεσµα συχνά να

συνεπάγεται κάποια ϑυσία στην ακϱίϐεια της άρτιας κλάσης. Τέλος, ένας περιορισµός της

µεθόδου είναι ότι σε πεϱίπτωση που οι κλάσεις είναι εύκολα διαχωρίσιµες και τα όϱια µεταξύ

των κλάσεων πιο αραιοκατοικηµένα, δεν ϑα παϱέχει κάποια ϐελτίωση.

Χειϱισµός Καινοϕανών ∆εδοµένων

΄Οπως έχουν δείξει οι Hendrycks et al. [10], συχνά τα Βαθιά Συνελικτικά ∆ίκτυα εί-

ναι ιδιαίτερα ευαίσθητα σε σφάλµατα πρόβλεψης όταν πϱόκειται για καινοφανή δεδοµένα

ακόµα και όταν αυτά προέρχονται από µικϱής έκτασης αλλαγές σε δεδοµένα που υπάρχουν

στο σύνολο εκπαίδευσης. ΄Ενα σχετικό παϱάδειγµα ϐλέπουµε στην Εικόνα 7. Ακόµα και

εξειδικευµένες στην ανίχνευση οπτικά οϱατών ελαττωµάτων ηµι-επιϐλεπόµενες ή µη επι-

ϐλεπόµενς τεχνικές αντιµετωπίζουν προβλήµτα όταν π.χ. ένα γνωστό ελάττωµα ϐρίσκεται σε

µια εντελώς καινούργια ϑέση σε µια εικόνα εισόδου [11].

Στην ϐιϐλιογϱαϕία υπάϱχουν διάϕοϱες κατηγοϱίες µεϑόδων για τον χειϱισµό καινοϕανών

δεδοµένων:

• Ταξινοµητές µίας κλάσης (One-class SVMs, Isolation Forests, Local Outlier Fac-

tor) οι οποίοι προσπαθούν να σχηµατίσουν ένα όϱιο που να ξεχωρίζει τα δεδοµένα µίας
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Figure 7. Προβλήµατα ανθεκτικότητας σε νέες εισόδους. Η πάνω σειϱά περιέχει διακοπ-
τόµενες σε µικϱό ϐαθµό εικόνες που αντίστοιχές τους υπάρχουν στα δεδοµένα εκπαίδευσης και
ταξινοµούνται σωστά. Αντίθετα εικόνες µε µεγαλύτεϱης έκτασης ελαττώµατα που είναι καινο-
ϕανείς δεν ταξινοµούνται σωστά (κάτω σειϱά).

κλασης (στην πεϱίπτωσή µας αυτήν µε τα άρτια πϱοϊόντα) από όλα τα άλλα πιθανά δε-

δοµένα εισόδου.

• Ηµι-επιϐλεπόµενες µέϑοδοι (GANomaly, DFKDE, DFM) οι οποίες εκπαιδεύονται µόνο

µε δεδοµένα της άρτιας κλάσης και µαθαίνουν να µοντελοποιόυν µόνο αυτή και χωρί-

Ϲουν τα δεδοµένα σε άρτια και µη ανάλογα µε κάποια µετϱική απόστασης από την

κλάση που έχουν µάθει.

• Μέϑοδοι επαύξησης δεδοµένων (OSRCI, OpenGAN) οι οποίες προσπαθούν να συνθέ-

σουν (συνήϑως µε χϱήση κάποιου ΠΑ∆ ή κωδικοποιητή-αποκωδικοποιητή) καινοφανή

δεδοµένα τα οποία παρέχονται στην διαδικασία εκπαίδευσης µέσω µιας επιπρόσθετης

κλάσης.

• Μέϑοδοι αναγνώρισης "ανοιχτού συνόλου" (W-SVM, PISVM) χρησιµοποιούν την Θεω-

ϱία Ακϱαίων Τιµών για να µοντελοποιήσουν ακϱιϐέστεϱα τα άκϱα των κατανοµών των

γνωστών κλάσεων και να τις ξεχωρίσουν από το "ανοιχτό σύνολο" που αποτελείται από

εισόδους άγνωστες κατά την εκπαίδευση.

Μέϑοδος

Η µέϑοδος που αναπτύχθηκε είναι και αυτή στα πλαίσια της επαύξησης δεδοµένων.

Σε σύγκριση µε µεθόδους όπως οι OSRCI και OpenGAN, χρησιµοποιείται µία νεότεϱη,

µεγαλύτεϱης ευκρίνειας και πιο γενική αρχιτεκτονική, το StyleGAN v3, το οποίο επίσης

παϱέχει αυξηµένες δυνατότητες καθοδήγησης και ελέγχου της σύνθεσης εικόνων. Αυτή η

δυνατότητα καθίσταται εκµεταλλεύσιµη µέσω της Σηµασιολογικής Παϱαγοντοποίησης (Se-

mantic Factorization - SeFa) η οποία ανακαλύπτει κατευθύνσεις στους λανθάνοντες χώϱους
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Figure 8. Αϱχιτεκτονικό διάγϱαµµα της διαδικασίας εκπαίδευσης µε παϱαγωγή συνϑετικών
δεδοµένων µέσω Semantic Factorization και ϕιλτϱάϱισµά τους µέσω ψηϕοϕοϱίας

εισόδου του StyleGAN κατά µήκος των οποίων µεταβάλλονται σηµασιολογικά πλούσια στοιχεία

της εικόνας. Με τη ϐοήθεια αυτής και ενός σταδίου ϕιλτραρίσµατος ϐασισµένο σε ψηφο-

ϕορία, στόχος είναι να παϱαχϑούν εικόνες που να οριοθετούν τις κατανοµές εισόδου και να

τις ξεχωρίζουν από το "ανοιχτό σύνολο". Αυτές οι οριακές εικόνες προστίθενται στα δεδοµένα

εκπαίδευσης ως µια επιπρόσθετη κλάση (ϐλ. Εικόνα 8).

Σηµασιολογική Παϱαγοντοποίηση στο StyleGAN

Η Σηµασιολογική Παϱαγοντοποίηση (SeFa) [12] προσπαθεί να επιτύχει µια αναλυτική

λύση του προβλήµατος ανακάλυψης σηµασιολογικά πλούσιων κατευθύνσεων στον λανθάνοντα

χώϱο εισόδων του StyleGAN. Το κύϱιο πλεονέκτηµά της σε σύγκριση µε παρόµοιες µεθό-

δους που απαιτούν διαδικασία µάϑησης µε δεδοµένα είναι ότι είναι υπολογιστικά πολύ

γϱηγοϱότεϱη αϕού ϐασίζεται αποκλειστικά σε παϱαγοντοποίηση πινάκων (Singular Value

Decomposition - SVD).

∆εδοµένου ενός γεννήτορα ΠΑ∆ G που απεικονίϹει σηµεία z του Rd
σε εικόνες του

συνόλου I: I = G(z), το αρχικό του στϱώµα νευϱώνων G1(z) µποϱεί να γϱαϕτεί ως G1(z) =
Az+b όπου ο A περιέχει τα ϐάϱη των νευϱώνων. ΄Υστεϱα από αλγεβρικούς µετασχηµατισµούς

οι Shen et al. [12] καταλήγουν στο εξής πϱόϐληµα ϐελτιστοποίησης για την εύϱεση των k

σηµασιολογικά πλουσιότεϱων κατευθύνσεων N∗ = {n1, ..., nk}:

N∗ = arg max
n1,...,nk

k∑
i=1

∥Ani∥
2

Το παϱαπάνω µποϱεί να λυϑεί µέσω της µεϑόδου των πολαπλασιαστών Lagrange και

συνεπώς της εύϱεσης των ιδιοδιανυσµάτων που αντιστοιχούν στις k µεγαλύτεϱες ιδιοτιµές

του AT A.
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Στην υπό εξέταση πεϱίπτωση εϕαϱµόϹουµε την τεχνική SeFa σε διαϕοϱετικά στϱώµατα

του StyleGAN που ελέγχουν χαϱακτηϱιστικά όπως η υϕή, η πεϱιστϱοϕή κλπ. Ξεϕεύγοντας

ολοένα και πεϱισσότεϱο από τα δεδοµένα εισόδου και ακολουϑώντας αυτές τις κατευϑύνσεις

είναι δυνατό να παϱάξουµε οϱιακές εικόνες αναϕοϱικά µε τις δυνατότητες σύνϑεσης του

ΠΑ∆.

Φιλτϱάϱισµα Συνϑετικών ∆εδοµένων µέσω Μηχανισµού Ψηϕοϕοϱίας

΄Εχοντας τη δυνατότητα για σύνϑεση εικόνων που πϱοέϱχονται από τις σηµασιολογικά

πλούσιες κατευϑύνσεις, χϱειάϹεται και ένα κϱιτήϱιο ανοµοιότητας µε τα δεδοµένα εισόδου

που να επιτϱέπει την επιλογή των οϱιακών εικόνων. Για τον σκοπό αυτό χϱησιµοποιήϑηκε ένα

σύνολο ταξινοµητών-ψηϕοϕόϱων V1, V2, V3 που χϱησιµοποιόυν χαϱακτηϱιστικά που έχουν

εξαχϑεί από τις εικόνες µέσω των δικτύων Resnet50, VGG ’16, και Inception v3 αντίστοιχα

και ακολουϑούνται από ένα ϱηχό νευϱωνικό δίκτυο µαϹί µε το οποίο έχουν εκπαιδευτεί

ακϱιϐώς στα ίδια δεδοµένα µε τον τελικό ταξινοµητή (ϐλ. Εικόνα 8). Κάϑε ψηϕοϕόϱος εξάγει

µια πϱόϐλεψη για κάϑε συνϑετική εικόνα. Η διαϕωνία µεταξύ των ψηϕοϕόϱων υπολογίϹεται

στη συνέχεια ως ο αϱιϑµός των διαϕοϱετικών µεταξύ τους πϱοϐλέψεων. Η υπόϑεση είναι

ότι στις γνωστές εικόνες οι ψηϕοϕόϱοι ϑα τείνουν να συµϕωνούν, ενώ στο "ανοιχτό σύνολο"

όπου ϑα τϱαϐούν τυχαία όϱια διαχωϱισµού των κλάσεων ϑα διαϕωνούν. Για αυτόν τον λόγο

επιλέγονται τελικά οι συνϑετικές εικόνες που πϱοκαλούν τις µεγαλύτεϱες τιµές διαϕωνίας.

Αποτελέσµατα

Για την αξιολόγηση της µεθόδου χρησιµοποιήθηκε το σύνολο δεδοµένων της PCL. Λόγω

του µικϱού αριθµού κατηγοριών ελαττωµάτων, δηµιουϱγήϑηκαν νέες τεχνητές κατηγορίες

που προσοµοιώνουν πιθανά σφάλµατα στη γϱαµµή παραγωγής όπως γραµµικά χαράγµατα,

ελλείψεις γραµµάτων στην επιγραφή, λεκέδες διαφορετικών χρωµάτων, περιστροφές αρισ-

τερά/δεξιά 90 µοιϱών και περιστροφές 180 µοιϱών.

Για την σύγκριση των µεϑόδων χρησιµοποιήθηκαν οι µετϱικές AUROC, F1, η ανάκληση

εικόνων από τις γνωστές (Closed-set Recall) και τις καινοφανείς (Open-set Recall) κατη-

γορίες. ΄Οµοια µε προηγουµένως, ο σηµαντικότερος στόχος είναι η ελαχιστοποίηση των

σϕαλµάτων που ταξινοµούνται ως άρτια ενώ στην πραγµατικότητα είναι ελαττωµατικά και

µετρούνται µέσω των δύο ανακλήσεων. Οι µετϱικές AUROC και F1 αποσκοπούν στο να

επιβεβαιώσουν ότι ο αλγόριθµος έχει ικανοποιητική επίδοση στην ταξινόµηση πραγµατικά

άρτιων προϊόντων ως άρτια και κατά συνέπεια δεν επιϐαϱύνει τον χειϱιστή µε πολλούς περιτ-

τούς χειροκίνητους ελέγχους. Για ταξινοµητές που απαιτούν διανυσµατικά δεδοµένα χρησι-

µοποιούµε τϱεις διαφορετικούς προεκπαιδευµένους εξαγωγείς χαρακτηριστικών µε αρχιτεκ-

τονικές Resnet50, VGG16 και Inception v3. Στον Πίνακα 3 ϕαίνονται οι πιο υποσχόµενες

µέϑοδοι από όσες ελέγχϑηκαν µε τις µετϱικές F1 και την µέση ανάκληση (µέσος όϱος

ανάκλησης κλειστού και ανοιχτού συνόλου).

Σε ότι αϕοϱά τους εξαγωγείς χαρακτηριστικών, ο Resnet50 για όλες σχεδόν τις µεθόδους

είχε χαµηλή ανάκληση στο ανοιχτό σύνολο, ενώ ο VGG επέτυχε 0.9208 ανάκληση ανοιχτού

συνόλου απλά µε ένα ϱηχό νευρωνικό δίκτυο (VGG + MLP) χωϱίς να χϱειαστεί κάποιον ει-

δικό µηχανισµό για το ανοιχτό σύνολο. Αποδίδουµε αυτήν την διαφορά στο µικϱότεϱο πεδίο
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Method F1-score p-value Ravg p-value

DFM 0,8347 0,0011 0,9150 0,0187

OpenMax + VGG 0,9389 0,0005 0,9320 0,0004

PISVM + VGG 0,9533 0,0011 0,9556 0,0158

PISVM + Inception 0,9577 0,0024 0,9448 0,0006

MLP + VGG 0,9633 0,0029 0,9264 0,0144

Proposed + VGG 0,9796 — 0,9756 —

Table 3. Σύγκριση των µετϱικών F1 και Ανάκλησης για τις πιο υποσχόµενες µεθόδους χειρισ-
µού καινοφανών εισόδων στις εικόνες από ϐϱαχίονες ξυριστικών µηχανών της PCL BV.

υποδοχής (receptive field) του VGG που τον καθιστά πιο ευαίσθητο σε µικϱές λεπτοµέρειες

στην εικόνα [13]. Παϱότι στις περισσότερες µεθόδους ανίχνευσης ανοιχτού συνόλου τα εξ-

αγώµενα χαρακτηριστικά παίζουν σηµαντικό ϱόλο στην τελική ανάκληση, η προτεινόµενη

µέϑοδος κατάϕεϱε να πετύχει υψηλά ποσοστά ανεξαϱτήτως εξαγωγέα χαρακτηριστικών, µε

λιγο καλύτεϱο τον VGG ’16.

Οι µέϑοδοι ηµι-επιϐλεπόµενης µάϑησης, ενώ έχουν καλές επιδόσεις στο ανοιχτό σύνολο,

δεν καταϕέϱνουν να αναγνωρίσουν εύκολα εικόνες του κλειστού συνόλου λόγω τόσο του ότι

έχουν εκπαιδευτεί µόνο µε άρτιες εικόνες, όσο και λόγω της µεγαλύτεϱης οµοιότητας µεταξύ

ελαττωµατικών και άρτιων προϊόντων στα αρχικά (µη-συνϑετικά) δεδοµένα. Για τον τελευταίο

λόγο υπολείπονται και οι µέϑοδοι επαύξησης δεδοµένων οι οποίες δεν καταφένουν να συν-

ϑέσουν δεδοµένα αρκετά όµοια µε τα άρτια µε αποτέλεσµα να µην ϐοηθούν στην διαδικασία

µάϑησης. Το µειονέκτηµα αυτό αντιµετωπίζεται από την προτεινόµενη µέϑοδο χάϱη στη

µεγαλύτεϱη εκφραστικότητα και γενικευσιµότητα του StyleGAN σε σχέση µε παλιότερες

αρχιτεκτονικες ΠΑ∆. Από τις µεθόδους σύγκρισης ξεχωρίζουν κυϱίως η PISVM µε χαρακ-

τηριστικά που έχουν εξαχθεί µε το Inception v3, καθώς και η ηµι-επιϐλεπόµενη DFM, οι

οποίες έχουν σταθερές επιδόσεις σε όλες τις καινοφανείς κλάσεις κοντά στην προτεινόµενη

µέϑοδο.

Από την άλλη πλευϱά, στα µειονεκτήµατα της προτεινόµενης µεθόδου συγκαταλέγονται

τόσο η µεγάλη σε διάϱκεια διαδικασία εκπαίδευσης του StyleGAN, όσο και η παραγωγή

µεγάλων ποσοτήτων συνθετικών δεδοµένων που ϕιλτράρονται ως µη χϱήσιµα από την δι-

αδικασία ψηφοφορίας. Περισσότερη έρευνα σε πιο ελαϕϱιές αρχιτεκτονικές ΠΑ∆ που προσ-

ϕέρουν όµως δυνατότητα ελέγχου, όσο και στην αποτελεσµατικότερη παραγωγή µειωµένου

όγκου συνθετικών δεδοµένων ϑα ήταν σκόπιµες για τη ϐελτίωση της µεθόδου και πιθανώς τη

γενίκευσή της σε µικϱότεϱα σύνολα δεδοµένων.

Ενίσχυση της Ανθεκτικότητας του Ταξινοµητή µε Νευροσυµβο-

λική Τεχνητή Νοηµοσύνη

΄Οπως υπογραµµίστηκε η επαύξηση δεδοµένων ϐασισµένη σε StyleGAN απαιτεί τόσο

αυξηµένους υπολογιστικούς πόϱους όσο και επαϱκή δεδοµένα εκπαίδευσης. Για να αν-

ταποκριθούµε σε σύνολα όπως το MVTEC-AD, που έχουν µόνο λίγες εκατοντάδες πα-
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ϱαδειγµάτων, µεϱικές ϕοϱές και δεκάδες για κάποιες κλάσεις, προτείνουµε µια Νευρο-

συµβολική προσέγγιση, η οποία και αποδεικνύεται αρκετά ανθεκτική σε νέα ελαττώµατα.

Ο στόχος της Νευροσυµβολικής ΤΝ [14] είναι να συγχωνεύσει δύο υπάρχοντες κλάδους της

τεχνητής νοηµοσύνης, συγκεκριµένα την συµβολική τεχνητή νοηµοσύνη και την στατιστική

µηχανική µάϑηση, ελπίζοντας να συνδυάσει τα οϕέλη και των δύο προσεγγίσεων σε µια νέα

γενιά µεϑόδων ΤΝ [15]. Η συµβολική ΤΝ ϐασίζεται σε χειροποίητους κανόνες που εκφράζον-

ται µέσω λογικών τύπων και οντολογιών, ενώ η Στατιστική Μηχανική Μάϑηση χαρακτηρίζεται

από µεθόδους όπως τα νευρωνικά δίκτυα που µαθαίνουν απευθείας από δεδοµένα. Ενώ η

συµβολική ΤΝ µποϱεί να λάϐει αυτοµατοποιηµένες αποφάσεις γρήγορες και επεξηγήσιµες,

απαιτεί σηµαντική προσπάθεια από εµπειρογνώµονες του τοµέα που αϕοϱά (π.χ. ιατρική

διάγνωση), οι οποίοι καλούνται να συγκεντρώσουν και να κωδικοποιήσουν τη συµβολική

γνώση σε οντότητες, σχέσεις µεταξύ οντοτήτων και τους κανόνες που διέπουν αυτές τις σχέ-

σεις. Επιπλέον, τα προκύπτοντα συστήµατα χειρίζονται αµφίσηµα ή ϑοϱυϐώδη δεδοµένα,

όπως αυτά προκύπτουν σε πραγµατικές συνθήκες λειτουργίας, µε άκαµπτο τϱόπο. Αντι-

ϑέτως δεδοµένο-κεντϱικές και στατιστικές προσεγγίσεις, όπως τα Βαθιά Νευρωνικά ∆ίκτυα,

χειρίζονται επιτυχώς τέτοια δεδοµένα µε αποτέλεσµα να έχουν ϐϱει ουσιαστική εφαρµογή

σε τοµείς όπως η όϱαση υπολογιστών και η επεξεργασία ϕυσικής γλώσσας. Ωστόσο, αν-

τιµετωπίζουν άλλα προβλήµατα όπως η αδιαφάνεια αναϕοϱικά µε τις εσωτεϱικές τους λει-

τουργίες και ως εκ τούτου η έλλειψη αξιοπιστίας, η έλλειψη ευρωστίας σε κυϐεϱνο-επιϑέσεις

και άγνωστες εισόδους [16][17], καθώς και η απαίτηση πολλών δεδοµένων εκπαίδευσης

και η ευαισθησία σε ανισορροπίες δεδοµένων [4]. Σε αυτή την εργασία χρησιµοποιούµε

την Νευροσυµβολική ΤΝ για την αύξηση της γενίκευσης ενός στατιστικού ταξινοµητή, έτσι

ώστε να καθίσταται πιο ανθεκτικός σε καινοφανείς εισόδους, δηλαδή νέους τύπους ελατ-

τωµάτων παραγωγής. Ειδικότερα εκµεταλλευόµαστε την έγχυση συµβολικών κανόνων µέσω

των ∆ικτύων Λογικού Τανυστή, οι οποίοι συµβαδίζουν µε τις αποφάσεις ενός γενικότεϱου µη

επιβλεπόµενου ανιχνευτή καινοφανών δεδοµένων, στη συνάϱτηση απώλειας ενός επιβλεπό-

µενου ταξινοµητή προσαρµοσµένου στο συγκεκριµένο υπό εξέταση πϱόϐληµα. Ενώ από

µόνος του ο ταξινοµητής χωϱίς επίβλεψη παϱάγει πολλά ψευδώς ϑετικά στοιχεία, ο συν-

δυασµός του µε τον µη επιβλεπόµενο ταξινοµητή µέσω της Νευροσυµβολικής ΤΝ έχει ως

αποτέλεσµα αυξηµένες δυνατότητες αναγνώρισης καινοφανών εισόδων.

Μέϑοδος

Χϱησιµοποιώντας τη Νευροσυµβολική τεχνητή νοηµοσύνη, και συγκεκριµένα τα ∆ίκ-

τυα Λογικού Τανυστή (LTN), ϕιλοδοξούµε να συνδυάσουµε τα οϕέλη των µεϑόδων µάϑησης

χωϱίς επίβλεψη µε αυτά των εποπτευόµενων µεϑόδων. Ενώ οι πϱώτες αποδίδουν καλά

στο γενικότεϱο πϱόϐληµα της ανίχνευσης καινοφανών εισόδων, οι επιβλεπόµενες µέϑοδοι

µποϱούν να µάϑουν πολύ καλά πώς να αναγνωρίζουν τα συγκεκριµένα ελαττώµατα που εµ-

ϕανίζονται στο σύνολο δεδοµένων εκπαίδευσης. Παϱάλληλα µε τις προαναφερθείσες προκλή-

σεις κατά την αυτοµατοποίηση του οπτίκου έλεγχου ποιότητας, η γνώση των ειδικών σχετικά

µε το τι συνιστά ελάττωµα δεν µποϱεί να κωδικοποιηθεί πλήϱως σε ξεκάθαρους κανόνες,

κάτι που αποτελεί άλλο ένα εµπόδιο στις συµβολικές και νευροσυµβολικές προσεγγίσεις.

Ωστόσο, µια Νευροσυµβολική προσέγγιση µποϱεί ακόµα να επωφεληθεί από σαϕείς, αλλά
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Abstract

µη καθολικές περιπτώσεις (π.χ., όταν υπάρχουν σαϕείς ενδείξεις ελαττώµατος, αλλά η έκ-

ϕραση αυτών των ενδείξεων µέσω κανόνων δεν µποϱεί να είναι καθολικά εφαρµόσιµη για

κάϑε παϱάδειγµα του συνόλου δεδοµένων λόγω των πολλών και διαφορετικών υποπεριπ-

τώσεων). Αυτές οι προκλήσεις µας οδήγησαν να επιλέξουµε τα LTN καθώς αυτά δεν επιβάλ-

λουν αυστηϱά τους συµβολικούς περιορισµούς τους, επιτρέποντας έτσι µεγαλύτεϱη ευελιξία

στη διατύπωση των συµβολικών κανόνων. Επιπλέον, η γνώση των ξεκάθαρων ελαττωµάτων

αποτυπωµένη σε συµβολικούς κανόνες µποϱεί ακόµα να αξιοποιηθεί για την επιτάχυνση της

εκπαίδευσης σε σύγκριση µε έναν κλασικό αλγόριθµο εποπτευόµενης µάϑησης.

Μια σηµαντική πτυχή των ∆ικτύων Λογικού τανυστή είναι ο τϱόπος µε τον οποίο οι περιορ-

ισµοί µετασχηµατίζονται ώστε να είναι διαφορίσιµοι και να αποτελούν µέϱος της διαδικασίας

εκπαίδευσης. Αυτό επιτυγχάνεται µέσω µιας τεχνικής που ονοµάζεται «γείωση» η οποία είναι

πολύ κοντά στις ασαϕείς λογικές. Πιο συγκεκριµένα, κάϑε µεµονωµένη πρόταση ή γεγονός

κωδικοποιείται µέσω ενός πολυδιάστατου τανυστή, ο οποίος στην πεϱίπτωσή µας αντιστοιχεί

σε διανυσµατικές απεικονίσεις που εξάγονται από τις εικόνες εισόδου. Τα κατηγορήµατα

µποϱούν να εφαρµοστούν σε αυτούς τους τανυστές µε τη µοϱϕή διαφορίσιµων µαθηµατικών

συναϱτήσεων που µποϱούν επίσης να έχουν προσαρµόσιµες παϱαµέτϱους µέσω µάϑησης

όπως τα τεχνητά νευρωνικά δίκτυα. Η εφαρµογή αυτών των κατηγορηµάτων ϑα πϱέπει να

αποδίδει µια πραγµατική τιµή µεταξύ 0 και 1 που αντιστοιχεί στον ϐαθµό αλήθειας του

κατηγορήµατος που εφαρµόζεται σε µία ή πολλαπλές προτάσεις. Με ϐάση αυτό, οι λογικοί

τελεστές µποϱούν να χρησιµοποιηθούν για να συνδυάσουν διαφορετικά αποτελέσµατα κατη-

γορηµάτων. Για παϱάδειγµα, ένα λογικό a ∧ b µποϱεί τώϱα να υπολογιστεί ως aḃ και το

a =⇒ b υπολογίζεται ως
b
a εάν b < a ή 1 αν b > a. Φυσικά, υπάρχουν πολλές διαφορετικές

αντιστοιχίσεις από τη λογική πϱώτης τάξης πϱος τους πραγµατικούς τελεστές, πολλές από

τις οποίες περιγράφονται λεπτοµερώς στο [18]. Αϕού γίνει η λογική πρόταση διαφορίσιµη,

ο ϐαθµός ικανοποίησής της µποϱεί να προστεθεί ως όϱος της συνάϱτησης απώλειας που ϑα

ϐελτιστοποιηθεί κατά τη διάϱκεια της εκπαίδευσης.

Η «γείωση» των συµβολικών κανόνων του LTN σε διαφορίσιµες πραγµατικές συναρτή-

σεις του επιτϱέπει να περιορίσει έναν αλγόριθµο στατιστικής µηχανικής µάϑησης έτσι ώστε

να πληϱοί τους προκαθορισµένους συµβολικούς κανόνες κατά τη ϕάση εκπαίδευσής του.

Ταυτόχϱονα, η αξιοποίηση αυτών των κανόνων προϋποθέτει την κωδικοποίηση της γνώσης

ενός ειδικού σε αντίστοιχη µοϱϕή που, στην πεϱίπτωσή µας, είναι δύσκολο να επιτευχθεί.

Το σενάϱιο παραγωγής που αντιµετωπίζουµε αϕοϱά σε µια ευέλικτη γϱαµµή παραγωγής

µε συχνές αλλαγές στις προδιαγραφές του προϊόντος. Οι αλλεπάλληλες αλλαγές καθισ-

τούν δύσκολο για τους ϕοϱείς παραγωγής να αναπτύξουν αρκετή τεχνογνωσία έτσι ώστε

να καταλήξουν σε ένα πλήϱες σύνολο κανόνων για τον εντοπισµό ελαττωµάτων. Επιπλέον, η

ϕύση των δεδοµένων εικόνας καθιστά δύσκολη τη σύνδεση αυτών των κανόνων µε τις ιδιότητες

των εικόνων. Μια ιδιότητα όπως, για παϱάδειγµα, η οµαλότητα της επιϕάνειας δεν είναι

εύκολο να οριστεί ως συνάϱτηση-κατηγόϱηµα επεξεργασίας εικόνας που ϑα χρησιµοποιηθεί

από το LTN. Για αυτούς τους λόγους χρησιµοποιούµε έναν ταξινοµητή χωϱίς επίβλεψη στον

ϱόλο του ειδικού.

Το κϱιτήϱιο για την επιλογή ενός ταξινοµητή χωϱίς επίβλεψη είναι να έχει καλές ιδιότητες

αναγνώρισης καινοφανών δεδοµένων και µια απλή προσαρµόσιµη υλοποίηση. Ακολουθών-

τας τα αποτελέσµατά µας από την προηγούµενη εργασία [17], επιλέξαµε το Isolation Forest
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(IF), καθώς προσφέρει µια τέτοια υλοποίηση, χρειάζεται περιορισµένη προσαρµογή και έχει

αποδειχθεί ότι αποδίδει καλά σε µια ποικιλία συνόλων δεδοµένων [19]. Παϱά την υψηλή

απόδοση σε άγνωστες εικόνες, το IF δεν είναι τόσο αποτελεσµατικό στις γνωστές κατηγορίες

των δεδοµένων εκπαίδευσης. Για να ξεπεράσουµε αυτό το µειονέκτηµα δηµιουϱγήσαµε τους

κανόνες που περιγράφονται παϱακάτω, όπου ο A είναι ο ϐασικός ταξινοµητής Multi-Layer

Perceptron (MLP) και ο U ο µη εποπτευόµενος ταξινοµητής Isolation Forest. Αυτοί οι

κανόνες επιβάλλουν στο MLP έναν ήπιο λογικό περιορισµό για να ακολουθεί την έξοδο U

όταν προβλέπει ένα ελάττωµα.

SatAgg
{
[∀x(lS(x) = 1 =⇒ A(x) = 1)]∧

[∀x(lS(x) = 0 =⇒ A(x) = 0)]∧

[∀x(U (x) = 0 =⇒ A(x) = 0)]
}

Ο παϱαπάνω τύπος πεϱιέχει δύο πϱόσϑετους πεϱιοϱισµούς που απαιτούνται για την

ταξινόµηση και διασϕαλίϹουν ότι η πϱόϐλεψη A(x) είναι σύµϕωνη µε την ετικέτα εποπτείας

lS(x). ΄Ετσι, ο ϐασικός ταξινοµητής A εκπαιδεύεται µόνο για να ικανοποιεί το σύνολο κανόνων

που πεϱιγϱάϕεται. Η πλήϱης διαδικασία εκπαίδευσης απεικονίϹεται επίσης ως διάγϱαµµα

στο Σχ.8

Figure 9. ∆ιαδικασία εκπαίδευσης του LTN

Αποτελέσµατα

Αναϕοϱικά µε τα αποτελέσµατα στα σύνολα δεδοµένων προϊόντων του MVTEC-AD ϐλέπουµε

διάφορα κοινά µοτίϐα. Πρώτον, δεν αποτελεί έκπληξη το γεγονός ότι το Deep Feature

Modelling (DFM) επιτυγχάνει τα υψηλότερα αποτελέσµατα όσον αϕοϱά την AUROC και την

ακϱίϐεια, καθώς είναι µια ηµι-εποπτευόµενη µέϑοδος που εκπαιδεύεται µόνο στην "άρ-

τια" κατηγορία και εποµένως είναι καλύτεϱη στην αναγνώριση της. Στις δύο µετρήσεις

ανάκλησης, ωστόσο, ϐλέπουµε ότι το LTN ξεπεϱνά το DFM σχεδόν σε όλες τις περιπτώσεις,

µε εξαίρεση την ανάκληση ανοιχτού συνόλου για τα σύνολα δεδοµένων "leather" και "grid".

Στα περισσότερα σύνολα δεδοµένων επιτυγχάνει επίσης υψηλότερη ϐαθµολογία F1 η οποία
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αποτελέι µια πιο σϕαιϱική µέτϱηση της επίδοσης στο συνολικό πϱόϐληµα, εξισορροπώντας

την απόδοση µεταξύ των κατηγοριών άρτιων και ελαττωµατικών προϊόντων, ενώ επηρεάζεται

λιγότεϱο από τις ανισορροπίες κλάσεων.

Dataset Method AUROC Prec. F1-score R_open R_closed

Carpet

MLP 92,89 ± 1,08 95,04 ± 2,58 83,47 ± 2,45 48,13 ± 10,67 74,80 ± 13,30

OCSVM 74,23 ± 2,86 63,01 ± 2,79 72,08 ± 1,70 59,64 ± 6,17 59,26 ± 7,11

IF 86,80 ± 1,58 70,56 ± 2,58 79,39 ± 2,42 86,00 ± 3,01 81,06 ± 4,60

DFM 98,44 ± 0,27 99,45 ± 0,47 84,08 ± 1,26 79,37 ± 4,87 79,59 ± 4,26

WSVM 72,63 ± 2,00 58,81 ± 8,74 58,48 ± 10,11 63,86 ± 15,12 84,20 ± 8,85

LTN 97,47 ± 0,98 88,66 ± 3,66 91,74 ± 2,04 89,68 ± 4,00 99,53 ± 0,72

Capsule

MLP 93,87 ± 1,11 98,66 ± 0,81 78,99 ± 1,64 51,28 ± 5,31 94,20 ± 2,81

OCSVM 71,20 ± 2,71 72,82 ± 2,88 66,18 ± 2,19 57,33 ± 5,34 57,93 ± 5,68

IF 81,25 ± 2,44 75,66 ± 3,03 71,72 ± 2,93 73,46 ± 5,39 67,46 ± 4,31

DFM 98,55 ± 0,61 98,72 ± 0,64 83,02 ± 3,78 83,77 ± 5,03 82,80 ± 8,48

WSVM 72,79 ± 6,09 56.18 ± 2,57 42,96 ± 3,08 67,46 ± 8.32 87,13 ± 6,02

LTN 85,92 ± 11,19 83,19 ± 10,88 66,79 ± 23,35 91,28 ± 8,57 99,80 ± 0,31

Grid

MLP 72,98 ± 2,80 76,20 ± 4,98 81,02 ± 1,01 17,46 ± 3,99 72,53 ± 8,75

OCSVM 41,32 ± 2,87 30,52 ± 2,50 66,82 ± 1,79 26,13 ± 4,88 24,13 ± 9,17

IF 47,65 ± 2,72 33,17 ± 1,84 63,64 ± 1,98 36,80 ± 6,02 35,66 ± 8,97

DFM 93,60 ± 1,20 91,53 ± 2,55 81,23 ± 1,84 68,57 ± 5,97 69,13 ± 5,85

WSVM 40,18 ± 2,25 38,68 ± 5,10 58,52 ± 7,22 47,51 ± 12,15 63,80 ± 12,29

LTN 81,42 ± 6,80 74,28 ± 11,82 84,47 ± 4,78 62,22 ± 13,98 86,13 ± 7,09

Pill

MLP 86,62 ± 1,60 95,82 ± 3,23 65,88 ± 3,60 32,72 ± 13,68 66,06 ± 12,28

OCSVM 58,90 ± 2,01 68,79 ± 1,71 56,98 ± 1,45 53,57 ± 4,82 58,80 ± 11,84

IF 68,28 ± 1,89 72,19 ± 1,78 60,16 ± 2,26 64,13 ± 4,37 58,53 ± 9,86

DFM 98,21 ± 0,35 99,84 ± 0,22 67,84 ± 3,52 70,10 ± 4,16 70,86 ± 9,62

WSVM 62,05 ± 5,00 70,44 ± 3,56 56,28 ± 5,87 54,82 ± 11,92 74,40 ± 8,62

LTN 95,43 ± 2,66 95,91 ± 1,73 88,36 ± 3,43 87,92 ± 6,05 95,33 ± 2,73

Tile

MLP 97,74 ± 0,87 99,38 ± 0,75 87,37 ± 2,86 60,88 ± 10,75 96,20 ± 3,53

OCSVM 66,48 ± 3,35 62,44 ± 2,31 68,22 ± 2,02 55,86 ± 6,56 57,73 ± 7,79

IF 87,77 ± 2,25 71,91 ± 1,69 77,88 ± 1,69 84,40 ± 5,94 82,00 ± 8,21

DFM 99,34 ± 0,17 99,69 ± 0,34 83,65 ± 0,26 73,06 ± 9,41 79,40 ± 13,42

WSVM 65,36 ± 6,65 57,08 ± 5,94 56,64 ± 9,17 54,84 ± 10,17 85,46 ± 5,14

LTN 97,92 ± 1,60 91,13 ± 3,00 93,02 ± 2,68 90,97 ± 7,18 96,86 ± 2,61

Leather

MLP 97,54 ± 0,95 97,97 ± 1,01 86,48 ± 2,32 62,93 ± 8,59 93,93 ± 3,02

OCSVM 70,56 ± 3,60 68,39 ± 2,94 71,16 ± 2,65 64,97 ± 5,99 49,80 ± 6,52

IF 92,93 ± 1,07 79,35 ± 1,91 85,62 ± 1,65 96,35 ± 1,70 95,26 ± 3,14

DFM 99,97 ± 0,01 99,92 ± 0,01 97,60 ± 0,77 97,91 ± 1,07 95,73 ± 1,47

WSVM 60,39 ± 4,61 70,56 ± 7,60 68,98 ± 7,79 49,06 ± 15,13 81,26 ± 4,18

LTN 99,00 ± 1,09 96,42 ± 1,96 95,30 ± 3,44 89,73 ± 12,65 99,66 ± 0,71

Table 4. Comparison of methods on the various MVTEC-AD product datasets

Συνολικά, τα πειραµατικά µας αποτελέσµατα υποδεικνύουν ότι τα δίκτυα λογικού τανυστή

(LTN) και η µοντελοποίηση ϐαθιών χαρακτηριστικών (DFM) υπερέχουν σταθερά σε σχέση µε

άλλες µεθόδους σε πολλές µετρήσεις. Τα LTN υπερέχουν τόσο στην ανάκληση ανοιχτού όσο

και σε κλειστού συνόλου λόγω της ικανότητάς τους να ενσωµατώνουν συµβολικούς κανόνες

στη διαδικασία µάϑησης, παρέχοντας ένα δοµηµένο πλαίσιο που ενισχύει την ικανότητα

του µοντέλου να γενικεύει σε νέα ελαττώµατα. Αυτό το πλεονέκτηµα είναι σηµαντικό σε

περιβάλλοντα παραγωγής όπου τα ελαττώµατα είναι σπάνια και ποικίλα, καθιστώντας τις

παραδοσιακές µεθόδους λιγότεϱο αξιόπιστες. Ο συµβολικός συλλογισµός στα LTN επιτϱέπει

στο µοντέλο να χειρίζεται πιο αποτελεσµατικά διφορούµενα δεδοµένα αξιοποιώντας τη γνώση

του τοµέα που κωδικοποιείται σε λογικούς κανόνες. Αντίθετα, το DFM έχει εξαιρετικά καλή

απόδοση όσον αϕοϱά το AUROC και την ακϱίϐεια, καθώς µαθαίνει πολύ καλά πώς πϱέπει

να µοιάϹει ένα «άρτιο» πϱοϊόν, επιτρέποντας στο µοντέλο να κατανοήσει καλύτεϱα και να

ταξινοµήσει τα άρτια έναντι των ελαττωµατικών δειγµάτων. Ωστόσο, η αντιµετώπιση των ελατ-

τωµάτων από το DFM µε αγνωστικιστικό τϱόπο, που δεν ϐασίζεται σε συγκεκριµένα δείγ-

µατα εκπαίδευσης, συχνά οδηγεί σε χαµηλή απόδοση στον εντοπισµό ελαττωµάτων κλειστού

συνόλου σε σύγκριση µε άλλες µεθόδους που περιλαµβάνουν ελαττώµατα κλειστού συνόλου

στο σύνολο δεδοµένων εκπαίδευσής τους. ΄Οσον αϕοϱά το MLP, αναµενόµενα αποδίδει αρ-

κετά καλά στην αναγνώριση των κλάσεων στις οποίες έχει εκπαιδευτεί, αλλά η απόδοσή του

23



Εκτεταµένη Πεϱίληψη

επιδεινώνεται σηµαντικά στις καινοφανείς κλάσεις (ανοιχτό σύνολο). Μέϑοδοι όπως το One-

Class SVM (OCSVM) και το Isolation Forest (IF) εµφάνισαν περιορισµούς κυϱίως λόγω των

υψηλών ψευδώς ϑετικών ποσοστών τους όταν αντιµετώπιζαν πολύπλοκα και πολύ παρόµοια

οπτικά δεδοµένα κλάσης όπως στο παρουσιαζόµενο περιβάλλον παραγωγής.

Οι ϐελτιωµένες και πιο ισορροπηµένες ϐαθµολογίες ανάκλησης ανοιχτών και κλειστών

συνόλων της προσέγγισής µας που ϐασίζεται σε LTN είναι αποτέλεσµα της ικανότητας του

LTN, µέσω της εισαγωγής συµβολικών κανόνων, να συνδυάζει την ικανότητα του µη εποπ-

τευόµενου ταξινοµητή να ανιχνεύει εισόδους εκτός κατανοµής (υψηλή ανάκληση στο ανοιχτό

σύνολο) και την ικανότητα προσαρµογής στα δεδοµένα του προβλήµατος του ϐασικού στατισ-

τικού ταξινοµητή (υψηλή ανάκληση στο κλειστό σύνολο). Είναι σηµαντικό να σηµειωθεί ότι

τα LTN επιτρέπουν στους συµβολικούς κανόνες να επηρεάζουν το µοντέλο συνεχώς κατά τη

διάϱκεια της εκπαίδευσης και έτσι έχουν µεγαλύτεϱη επίδραση στη συµπεριφορά του. Αυτή η

ικανότητα καθιστά την προσέγγιση LTN ιδανική για ένα σενάϱιο σπανιότητας δεδοµένων όπου

προκλήσεις όπως χαµηλού πληθυσµού ή εντελώς νέες κατηγορίες ελαττωµάτων µετριάζονται

µέσω του συµβολικού σκέλους του LTN, ενώ οι υπάρχουσες κλάσεις µε αρκετά δεδοµένα

αλλά ίσως µεγαλύτεϱη οµοιότητα µε την άρτια κατηγορία αναγνωρίζονται καλύτεϱα από το

στατιστικό σκέλος.

Συνεισϕοϱές

• Για την αντιµετώπιση της ανισορροπίας των κλάσεων αναπτύχθηκε µια νέα µέϑοδος

παραγωγής συνθετικών δεδοµένων ϐασισµένων σε παραδείγµατα που ϐρίσκονται κοντά

στο όϱιο µεταξύ “άρτιας” και “µη-άϱτιων” κλάσεων. Η µέϑοδος αυτή, συνδυάζοντας την

ακϱίϐεια των τεχνικών υπερδειγµατοληψίας και τις συνθετικές δυνατότητες του BigGAN

κατάϕεϱε να επιτύχει ϐελτίωση στην ανάκληση του νευρωνικού δικτύου, µειώνοντας

ταυτόχϱονα τον χϱόνο παραγωγής δεδοµένων σε σχέση µε τις άλλες τεχνικές ϐασισµένες

σε ΠΑ∆.

• Για τον χειϱισµό καινοφανών εισόδων, αναπτύχθηκε µια νέα µέϑοδος ϐασισµένη στην

επαύξηση δεδοµένων µε χϱήση του StyleGAN, ιδιαίτερα προσαρµοσµένη σε σύνολα

δεδοµένων µε µεγάλη οµοιότητα µεταξύ των κλάσεων, όπως αυτά που συναντιούνται

στον ϐιοµηχανικό έλεγχο. Η νέα µέϑοδος ϐασίζεται τόσο στην ευκρίνεια του StyleGAN

όσο και στην δυνατότητα ακριβέστερου και µε λογική σηµασία χειρισµού της παραγ-

ωγής των συνθετικών δεδοµένων. Επίσης σηµαντικό ϱόλο έπαιξε το ϕιλτράρισµα των

παραγόµενων δεδοµένων µέσω της ποσοτικοποίησης του ϐαθµού διαφωνίας διαφορε-

τικών ταξινοµητών που έχουν εκπαιδευτεί στα αρχικά δεδοµένα. ΄Ετσι διασφαλίζεται ότι

τα τεχνητά δεδοµένα αντιπροσωπεύουν το “ανοιχτό σύνολο” και µποϱούν να επαυξή-

σουν επαϱκώς τα αρχικά ώστε να καθιστούν τον τελικό ταξινοµητή πιο ανθεκτικό σε

νέο-εµϕανιϹόµενα δεδοµένα κατά την πεϱίοδο συνεχούς λειτουργίας. Η νέα µέϑοδος

συγκρίθηκε µε τις υπόλοιπες και εµφάνισε ϐελτιωµένα αποτελέσµατα σε πραγµατικό

σύνολο δεδοµένων από την ϐιοµηχανία.

• Τέλος ως συνέχεια της προηγούµενης µεθόδου για επέκταση σε µικϱότεϱα σύνολα δε-

δοµένων στα οποία δεν είναι εϕικτό να εκπαιδευτεί το StyleGAN έγινε χϱήση τεχνικών
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Abstract

Νευροσυµβολικής Τεχνητής Νοηµοσύνης. Συγκεκριµένα, χρησιµοποιήθηκε ένα ∆ίκ-

τυο Λογικού τανυστή που εκφράζει τις εξόδους ενός ανιχνευτή καινοφανών εισόδων

µε περιορισµένη επίβλεψη ως συµβολικούς κανόνες και τους χρησιµοποιεί για να

οδηγήσει την εκπαίδευση ενός νευρωνικού δικτύου. Ο αλγόριθµος που πϱοκύπτει

δείχνει ϐελτιωµένα αποτελέσµατα σε σύγκριση µε άλλες σχετικές µεθόδους, ιδίως όσον

αϕοϱά την ανάκληση ελαττωµάτων, µε την έννοια ότι λίγα ελαττώµατα παραµένουν

απαϱατήϱητα ακόµα και αν είναι εντελώς καινοφανή. Επιπϱοσϑέτως, επιτυγχάνει

παρόµοια ή καλύτεϱα αποτελέσµατα ανάκλησης από ηµι-επιϐλεπόµενες µεθόδους

κατά τον χειϱισµό νέων ελαττωµάτων, ξεπερνώντας τες όµως σε ελαττώµατα που ανήκ-

ουν στις κατανοµές των κλάσεων εκπαίδευσης (κλειστό σύνολο). Σε σύγκριση µε άλ-

λες επιβλεπόµενες µεθόδους, διατηϱεί υψηλή απόδοση σε γνωστά ελαττώµατα, αλλά

ϐελτιώνει σηµαντικά σε νέα. Ο συνδυασµός των πλεονεκτηµάτων αυτών των δύο τύπων

µεϑόδων απεικονίζεται µέσω υψηλότερων ϐαθµολογιών F1 στα περισσότερα από τα

σύνολα δεδοµένων δοκιµής.
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Chapter 1

Introduction

The main focus of this thesis is on machine learning applications in industrial envi-

ronments and on specific practical problems that arise due to the difficulty of collecting

training data such as Class Imbalance and lack of Resilience to Novel Input Data. The

technological and research environment in which these problems are examined is that

of Industry 5.0, a term arises as an extension of the 4th Industrial Revolution (Indus-

try 4.0), characterized by technologies such as the Internet of Things, Cyber-physical

Systems, Digital Twins, Big Data and Artificial Intelligence. Against this background In-

dustry 5.0 aims to combine human capabilities with that of intelligent machines through

simulation systems and Human-AI collaboration. [1]

More specifically, the present work of research focuses on the Automatic Quality Con-

trol of Industrial Products through Machine Learning techniques for Computer Vision. In

the context of Quality 4.0 (part of Industry 4.0) the goal is to create self-evaluating systems

that can automatically measure the quality of their output and decide autonomously on

its acceptance or rejection. Deep Learning, due to its adaptability (e.g. to visual changes

in scale or rotation of the image), has helped a lot in this, but at the same time it requires

a large amount of training data and is not stable to samples outside the training distri-

bution. One solution being explored in the context of Industry 5.0 is the development

of Human-Machine collaboration systems where human intelligence and experience will

compensate for the shortcomings of AI algorithms.

While researching the application of Deep Learning techniques into the Automatic

Quality Control of manufacturing products, three main challenges were identified, which

serve as the focus of this work:

1. The scarcity of training data, which is particularly noticeable in products with

defects. This is because defects occur less often on production lines than good

products, leading to an imbalance between the two classes.

2. The high visual similarity between good and defective products which signifi-

cantly hampers the ability of classifiers to distinguish between them.

3. The appearance of novel defects, that during the continuous operation of an

already trained algorithm can lead to incorrect classification of products as flawless.

To deal with class imbalance, a method was developed to increase training data be-
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Figure 1.1. Fundamental Principles and corresponding Technologies of Industry 5.0 [2]

longing to minority classes. The synthesis of the data was done with techniques aimed

at guiding the output of Generative Adversarial Networks (GANs), with the aim of over-

sampling examples in which the predictions of the classifier show low reliability. The

augmentation of such data may provide greater benefit to the training process. [3]

Similar techniques were explored for handling novel inputs, this time with the aim of

synthesizing boundary examples using StyleGAN. Although the data generation process

developed starts from the training distributions, the boundary data, thanks to the gen-

eralizability of StyleGAN, is generated at the edges of the distributions known at training

time and creates a boundary between known and novel inputs. [4]. As StyleGAN requires

a significant amount of training data, we applied the concept of NeuroSymbolic AI to ad-

dress smaller datasets. The proposed NeuroSymbolic method combines, using symbolic

rules, an unsupervised classifier specialized at detecting novel defects with a supervised

one specialized in performing optimally in the known training distribution.

As for the similarity between good and defective products, this was taken into account

in both of the above methods. In particular, GANs with very detailed image synthesis

capabilities were used, while, where the amount of data allowed, the final classifiers were

trained directly on the problem without using transfer learning from pre-trained networks.

1.1 Machine Learning and AI applications in real-life industrial

Systems

The holy grail of modern AI research is the achievement of Aritficial General Intelli-

gence (AGI). The first steps towards AGI include systems that can perform a variety of

tasks including open-ended learning, innovation and human-like reasoning [21]. Ad-

vances in computer vision including various top-scoring methods on the ImageNet [22]

benchmark and more recent advances such as GPT-3 and GPT-4 [23][24] by OpenAI

or Deepmind’s Gato [25] have inspired a significant wave of progress, especially in the

domain of general-purpose Large Language Models with multi-modal outputs.

34



1.1.1 From Industry 4.0 to Industry 5.0

While the above innovations are definitely exciting, care must be taken when applying

them to real-life domains such as an Industrial Plant, mainly associated with valid con-

cerns over safety and reliability of such systems. For instance, computer vision systems

are known for being sensitive to small differences in input [10], something that might

lead to unexpected wrong decisions during the continuous operation of said systems as

part of a large cyber-physical deployment. Application of AI in industrial environments,

as well as the present thesis, focus therefore more on so-called "Narrow AI" applications.

Narrow AI refers to AI systems that focus on performing well, sometimes achieving even

super-human performance, on a very narrow task such as visual defect classification,

speech recognition, domain specific recommendations or demand forecasting [21]. Nar-

row AI, has undergone widespread adoption in manufacturing, transforming work design,

the allocation of responsibilities, and the socio-economic dynamics of the manufacturing

workplace. While AI systems in manufacturing can provide valuable insights, automate

repetitive tasks, and assist in decision-making processes, human input still remains cru-

cial, especially in scenarios requiring complex judgments or ethical considerations [26]. A

logical consequence is a shift towards the development of synergistic Narrow AI systems

that combine the respective strengths of humans and algorithms. The following sub-

sections contain a short review of the main research and industrial trends and challenges

that brought human-AI to the forefront of industrial AI research.

1.1.1 From Industry 4.0 to Industry 5.0

Stepping into the "Information Age", the rapid development of ICT together with their

democratization through open-source initiatives, have had a significant impact on the

manufacturing domain on a worldwide scale. Ranging from the United States with the

"Advanced Manufacturing Partnership" to China with "Made in China 2025", government

initiatives have sprung up to encourage and facilitate the digitization of industry. The ul-

timate aim of theses initiatives are manifold, with societal goals such as coping with aging

populations and a diminishing workforce to making the industrial sector more competi-

tive, efficient and most importantly environmentally and economically sustainable. [27].

The concept of Industry 4.0, first introduced at the Hannover Industrial Fair in 2011,

represents a significant shift in manufacturing. At its core, Industry 4.0 focuses on en-

hancing operational efficiency and productivity in manufacturing by utilizing intelligent

systems that can automate processes, analyze data in real-time, and make informed

decisions. It emphasizes the integration of advanced technologies such as the Internet

of Things (IoT), cloud computing, artificial intelligence (AI), and Cyber-Physical Systems

(CPS). This paradigm shift has led to the development of smart factories where machines,

systems, and humans are interconnected, opening up the field for seamless communi-

cation and collaboration. However, while Industry 4.0 has primarily focused on techno-

logical advancements, there has been a growing recognition of the need to complement

these technologies with human-centric solutions. This realization has given rise to the

concept of Industry 5.0, which emphasizes the synergistic collaboration between humans

and machines, ensuring that the advancements in technology do not overshadow the
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importance of human input and well-being. [2]

The integration of software devices associated with the collection of data and its pro-

cessing towards decision making has given Industry 4.0 adopters a competitive edge but

together with that also a set of challenges. For instance, as AI algorithms get complicated,

to ensure safety and trustworthiness in the system, system designers, maintainers and

operators need to "peer through the black box", i.e. AI systems need to be transparent

and understandable [28]. Sometimes, these characteristics can be achieved by including

the "human-in-the-loop", so called HIL methods. Such methods could include active or

mutual learning [29]. In the former highly uncertain samples (according to the algorithm)

are sent to a human operator to label and are given increased importance in subsequent

model training rounds, so that the AIs behaviour is improved. For these ideas to be

applied successfully in real-life production contexts, the gap between expert and non-

expert users needs to be bridged. This can be achieved through human-friendly intuitive

interfaces, such as for example spoken dialog systems that help the users interact with

intelligent machines easily while carrying out their task without additional burdens [30].

These challenges and their solutions tie in to the broader concept of Industry 5.0

aiming at adapting the efficiency gains of Industry 4.0 to advance the sustainability and

human-centricity of the industrial process. A prime example is the concept of Operator

5.0 [31], where operators are envisioned to work alongside intelligent systems that help

them complete their tasks, while guarding them from mental and physical stress. Such

a goal can be achieved through the combination of Industry 4.0 technologies, such as

wearable IoT devices measuring physical stress, together with Industry 5.0 AI systems

that formulate production planning collaboratively with humans, taking into account

human mental and physical fatigue.

As a further step towards worker well-being, Industry 5.0 aims to address the needs

defined in the Industrial Human Needs Pyramid [32], which among others includes the

building of trust between humans and machines together on top of workplace safety, lead-

ing eventually to worker self-actualization in a supportive environment. Special robots

named cobots , or collaborative robots, have been built for this purpose and represent

a tangible example of human-machine collaboration. These robots share physical space

with human workers, sense and understand their presence, and can perform tasks inde-

pendently, simultaneously, sequentially, or in a supportive manner [33].

Such semi-autonomous machines can take over physically frustrating and repetitive

tasks, while humans can move to more open-ended tasks - and more conducive to human

fulfilment - that tap into their critical thinking, creativity and interdisciplinary problem-

solving skills. Physical and mental frustration can very often be sources of human error,

thus leaving highly repetitive tasks to intelligent machines such as robots and cobots can

also reduce waste and cost making the manufacturing process more sustainable [34].

Viewing Industry 5.0 from a systemic viewpoint, around the technologies needed to

facilitate, three pillars main pillars can be identified as the main driving forces behind

the design and development of these technologies, namely: Safety, Trustworthiness and

Human-centricity [2].
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Safety: Refers to both mental and physical well-being in the workplace. This includes

technical challenges such as making sure AI decisions in cyber-physical systems are

reliable and controllable, without unexpected responses due to out-of-distribution

or maliciously targeted inputs (cyber-attacks) to endanger worker well-being as well

as the correct functioning of the production process. Under this umbrella fall also

the enhancements to worker well-being through AI systems mentioned previously.

Trustworthiness: Trustworthiness, though closely connected with safety, is relevant to

the controlability as well as the perception of controlability by the AI systems’ users.

Techniques such as explainable AI (XAI) and Active Learning (AL) are key in fostering

trustworthiness and encouraging the widespread adoption of AI in manufacturing

production lines. This means visualizing the AI’s decision process to human oper-

ators so that they can understand the reasoning behind a decision (e.g., through

feature importance scores) and also providing interfaces where users can help im-

prove AI decisions (e.g., by providing the correct label for mislabelled inputs).

Human-centricity: The aim here is to design intelligent systems with human needs,

competencies and desires at the center in order to promote a healthy work environ-

ment where workers can be productive and thrive at the same time [35].

In summary, the transition from Industry 4.0 to Industry 5.0 marks a significant shift

in manufacturing, focusing on a more human-centric approach. A key challenge is en-

suring that advanced technologies, such as AI and robotics, enhance rather than replace

human capabilities, maintaining a balance between automation and human input. De-

veloping intuitive, user-friendly interfaces is crucial to enable seamless human-machine

interactions, ensuring accessibility for all workers, regardless of age, gender, or educa-

tion. Through systematic planning and implementation, Industry 5.0 can leverage the

strengths of both humans and technology, offering numerous opportunities to revolution-

ize manufacturing and create a more sustainable and people-focused industry.

1.1.2 Data Lifecycle in Industrial ML Applications

From its artisanal origins in the Pre-Industrial era, manufacturing has evolved and

adopted many forms through continuous technological innovations both in the physical

and lately also in the digital domain. The increasing importance of data in the production

process has followed the same trend, making modern industrial processes more opti-

mized, tightly controlled and sophisticated than ever. In the pre-industrial years manu-

facturing products were handcrafted and produced on demand, which was usually small,

with knowledge being passed from one generation of artisans to the next or shared inside

guilds. It was not until industrialization and mass production arose, that manufacturing

processes came under closer and more scientific scrutiny. Starting from the monitoring

of a large workforce and the need to predict and meet mass demand, historical data began

being recorded on paper [36]. In the mid-20th century, the need to adapt to a more com-

plex, competitive and globalized economic environment intensified data-oriented efforts
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with statistics-based production management and operations research (e.g. demand pre-

diction, inventory management, intelligent sampling for quality assurance, floor layout

and process optimization, machine failure rates, supply chain optimization). A further

amplification of the importance and amount of data came about with the information age,

where computers were used to systematize the above processes through different systems

and paradigms such as Enterprise Resource Planning (ERP), Customer Relationship Man-

agement (CRM), Supply Chain Management (SCM). Additionally, production and design

simulation tools (e.g., CAD) and increasing machine automation together with the grad-

ual introduction of industrial robots gave manufacturers the capability to meet customer

demand with higher quality and speed at a lower cost [37].

Reaching today’s age, the wide proliferation of technologies such as Big Data and

Artificial Intelligence in the so-called “Smart Factories” have become evident [38]. In a

manufacturing context, “Big Data” refers to large amounts of heterogeneous data pro-

duced from multiple sources throughout the lifecycle of a manufacturing product. It can

also be characterized by the 5Vs [39]: Volume, Velocity (how close to real-time is data

acuisition and processing), Variety (multitude of sources), Veracity (of how good quality

is the data) and most importantly Value, which reflects the impact of data utilization

for desired business outcomes. This data typically originates from a variety of different

sources and can be classified accordingly into categories. Management Data is usually

collected by information systems such ERP or CRM and is mostly related with areas such

as inventory management, demand forecasting etc. This data is usually stored inside the

individual databases for these systems. Equipment Data on the contrary gets collected by

IoT devices and is used for monitoring operating conditions or production equipment per-

formance. IoT technologies are also sources for Product Data, which can include context

of usage, environmental conditions of operation and biometric information of the user.

Finally, User Data and Public Data can be gathered from a variety of widely available

APIs and datasets. The first relates to user preferences and can be found in various

well-known e-commerce and social media websites, while the second exists in public (e.g.

government) datasets and can contain information such as industrial regulations and

standards [36].

The sudden availability of such vast and diverse data presents unique opportunities

as well as challenges for manufacturing businesses aiming to adopt big data technologies

into their business model. Before analyzing these it is worth diving into detail about the

different processing and transformation phases that need to be applied to manufacturing

data to derive the most business value out of it, namely the Data Lifecycle [40]. Typically

a manufacturing data lifecycle consists of the following phases: data collection, transmis-

sion, storage, processing, visualization, and application. Data Collection occurs mainly

through different IoT devices (e.g. smart sensors, RFID) placed either on the product

or the equipment and set to monitor their health status and performance. Additionally,

wearables can be used to monitor employees’ bodily and mental health status. This phase

also includes the collection of user and public data through different APIs or web crawling,

as well as management data provided by ERP or SCM systems. After collection, the data is

typically stored either as structured, relational (DB tables), semistructured (XML, JSON,
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graphs) or unstructured (multimedia, documents) data. Cloud computing technologies

play a big role here, making it easier to provision cost-effective, scalable and elastic stor-

age to meet heightened requirements for data velocity and heterogeneity. Above the Data

Storage layer lies the Data Processing layer, which aims at the extraction of knowledge

for successful business utilization of the data. Initially the data is preprocessed, cleaned

and reduced, meaning that duplicate or redundant data is removed, missing values are

removed or set to a default, low quality data is filtered out etc. After the data is ready it is

processed by the analytics algorithms which usually include Machine Learning (regres-

sion, SVMs, Neural Networks, time-series methods) and Data Mining (clustering, associa-

tion rules, anomaly detection) techniques, often applied at scale in a distributed to system

to make the most out of the available data. The clear communication of processing re-

sults to the end users is carried out in the Data Visualization phase with the assistance of

various graphs and charts as well as virtual reality technologies and smart terminals for

real-time data. As most of the processing, preprocessing and storage of data is performed

on top of large scale distributed systems that could entail substantial complexity such as

federated clouds or fog architectures, Data Transmission can be identified as an impor-

tant and distinct phase of the data lifecycle. It includes reliable and efficient techniques

for transferring large amounts of data with different formats and characteristics across

diverse network and computational components. At the very end of the data lifecycle

are the Data Applications which in addition to providing insights into the data and the

results of its processing, also drive a great deal of automated decision making. These

applications can be useful during different manufacturing processes, such as data-driven

product design, forecasting and deman analysis, quality control, equipment supervision,

failure detection and predictive maintenance.

The recent explosive growth of Big Data and the complexities and challenges in effi-

ciently utilizing it throughout its manufacturing-specific life cycle have led to a number of

initiatives that promote the proliferation of Big Data and IoT technologies in the industrial

sector such as Industry 4.0 in Europe, Industrial Internet of Things in the US, and the

Made in China 2025 [41]. These initiatives aim at providing guidelines for encouraging

the easy adoption of these technologies, especially by SMEs, and creating frameworks

for interoperability and cooperation across companies and related industry sectors. A

notable example is the creation of reference architectures such as IIRA and RAMI 4.0 [42]

that serve as common abstracted templates for building problem specific architectures

with a strong focus on easy integration and interoperability. There have also been efforts

to outline the future research directions and challenges in smart manufacturing, the most

characteristic such effort in the EU being carried out by the BDVA. In their 2018 [43] and

2020 [44] reports they identified several key research directions relevant to Smart Product

Lifecycle, Smart Supply Change Management and the Smart Factory.

Smart Factory research challenges are further split into Data Management and Life-

cycle, Data Processing Architectures, Data Analytics, Data Protection and Security and

Data Visualization challenges [43]. Regarding the management and lifecycle of data, the

integration of diverse cyber-physical systems and the availability of hererogeneous data

produced at different rates are primary concerns. So is the semantic interoperability of
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automation systems, usually achieved by the use of ontologies, aiming at the creation

of a collaborative information sharing environment. Data annotation is also a relevant

direction, it can be performed either on-the-fly or as a seperate processing step and it

is worth investigating different ways in which data (e.g., from sensors) can be put in the

right context (e.g., mapped to a specific product). Handling missing data is another com-

mon issue in the data lifecycle, since for example sensors might be off or fail for a certain

period of time. The challenges of data processing architectures are mainly focused on

where and how data-intensive computations will be performed. Available choices could

be edge servers, HPC infrastructures, clouds or federated clouds depending on require-

ments such as performance, data confidentiality and a company’s limitation of affording

or getting value out of computational equipment. Data analytics is probably the richest

category in research directions to pursue. Prescriptive maintenance is the enhancement

of predictive maintenance in that it tries to discover the causes of failure in a data-driven

manner, instead of just predicting them. Such methods can also be used to assist deci-

sion making at the management level through parametric analysis of business KPIs and

their corresponding risks. Modern ML techniques such as Deep Learning also play a

central role with applications in anomaly/fault detection and classification and quality

inspection. These can be further enhanced by investigating new patterns of data-human

interactions and also by moving some of the processing into embedded systems close to

were the data is produced (e.g., to gain more specialized insights into fault occurences for

one specific machine). Finally a large chapter of data analytics is simulation and digital

twins. Data-driven simulation models can create better opportunities for experimentation

and optimization of different production line/machine/cell configurations, which can be

made even more accurate through the provision of real time data by digital twins. Of

course in a complicated data-rich environment it is only natural for security and privacy

concerns to arise. The variety of communication protocols in IoT systems as well as the

cyber-physical aspect make smart manufacturing infrastructures not only vulnerable to

attack, but also enhance the impact of the attack which can now have impact in the

physical production line. Additionally the increasing reliance on data opens up avenues

of data corruption or malicious manipulation aiming to derail AI and data-driven models

and processes. Another important direction is to establish firm guidelines and protocols

about access and privacy of sensitive data and also apply anonymization in a reliable

but non-instrusive manner. Last but not least data should be clearly and intuitively pre-

sented to all interesting stakeholder, a concern of the Data Visualization domain. The

first category of stakeholders, the workers, should be able to obtain context specific visu-

alizations (e.g, when performing remote maintenance with the help of virtual reality) and

could also be helped in their work by natural language interaction interfaces powered by

NLP. Simulation and smart training environment can also aid their training and familiar-

ization with the modernized smart factory processes. Managers and decision makers also

need better visualization tools to understand the data produced in the smart factory as

well as the AI-based decision making process to spot patterns and gain deeper insights

into the factory’s processes. The integration of heterogeneous data and its presentation

through common visual interfaces can be combined with data navigation and annotation
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techniques, to achieve bi-directional learning between stakeholders and smart processes

through continuous feedback.

1.1.3 Challenges of Real-life Industrial ML Applications

Machine Learning results have been impressive in different research scenarios and

have been successfully used in commercial applications, most notably recommendation

systems and chatbot assistants. However, when it comes to model decisions influencing

happenings in the physical world the requirements become much stricter as the margins

for failure are required to be minuscule. These new constraints placed upon industrial ML

applications create a new set of research challenges mainly focused around the following

areas: Adaptability and Scalability, Data Availability, Data Privacy and Security, Safety,

Human-AI collaboration and Ethics and Compliance [45] [46].

Adaptability and Scalability: ML applications need to be successfully deployed and in-

tegrated into larger cyber-physical systems. For instance Industrial Internet of

Things (IIoT) systems often have a requirement for data to be processed in real-

time as it is gathered from sensors placed on different parts of the production line.

This means that models with fast inference times should be chosen and sometimes

that these models need to be deployed at the "edge", closer to where the data is

produced. Accommodating such pipelines is especially hard in industries that rely

on legacy systems and lack the infrastructure to host real-time data-processing

frameworks and state-of-the-art Deep Learning models with high memory and GPU

requirements.

Data Availability: While most research results feature clear-cut benchmarks and well-

defined datasets, collecting enough and high-quality data in real-life environments

remains a challenge. A typical application where this becomes an issue is visual

quality inspection, where the collection of images is an expensive process requiring

a precise setup that adjusts for lighting differences and keeps precise distances and

angles to produce a homogeneous dataset. Additionally the collection of images

of product defects is hard when defects are rare, needing many production cycles

to complete until enough data is collected. Another typical example is the collec-

tion of real-time data for production planning where concept drift and catastrophic

forgetting can lead to erroneous AI decisions [47].

Data Privacy and Security: Especially when it comes to worker wellbeing monitoring,

industrial ML application will need to collect and process potentially sensitive data,

it is important therefore for the appropriate data anonymization and privacy safe-

guarding techniques to be employed as well as to monitor adherence with the mul-

tiple regulatory frameworks. Security also becomes a risk, not only due to sensitive

data being at risk of being stolen or tampered with, but also the deployment of

ML models risks exposure to a variety of novel attacks such poisoning or inversion

attacks. In these examples a malicious adversary tries either to tamper with input

data to lead the model to wrong decisions (that translate to the selection of wrong
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actions in the cyber-physical system) or to infer sensitive data from a model’s output

by "inverting" its inference process. [48]

Safety: As previously mentioned, AI models whose decisions influence the physical world

have the potential to put human well-being at risk as well as the physical assets

of the factory and the production process. Therefore it is important, apart from

accuracy metrics, to also consider robustness to inputs that originate from a dy-

namic real-life environment and which might not always align with inputs viewed

by the AI during training. A useful technique that can be employed here is simula-

tion, either through virtual environments for reinforcement learning [49], or through

the targeted production of synthetic data that reproduces realistic out-of-training-

distribution scenarios.

Human-AI collaboration: Here the aim is twofold: the first part is to help human deci-

sion makers and operators trust AI decisions (when it is beneficial to trust them of

course) to achieve wider AI adoption. The second part is to create AI systems that do

not aim to replace humans (something that can often be risky, or even impossible),

but that work synergistically with humans and can combine machine precision and

consistency with human open-ended thinking and common sense.

Ethics and Compliance: As AI systems become widespread in modern industry, a num-

ber of regulatory frameworks have been created addressing ethical issues such as

bias, fairness and accountability. Prime examples are the European Union’s AI Act,

which categorizes AI systems according to their risk and accordingly imposes differ-

ent levels of human supervision. [50] Similar regulations have been introduced in

Canada, the United Kingdom and China. [51]

While all of the above challenges touch upon this thesis, our main focus will be on

the (lack of) Data Availability as well as the Safety of AI systems used in visual defect

recognition.

1.2 Automated Visual Quality Inspection in Manufacturing

Quality evaluation is an arduous and repetitive task that would greatly benefit from

automation. Here we focus on visual inspection as it is a common usecase and a good

example for showcasing the effectiveness of machine learning models. The benefits of

an automated approach are that it can be a scalable and elastic form of non-destructive

testing, able to adapt to production volume fluctuation more easily than a fixed number

of human workers. Additionally human error phenomena such as inspector-to-inspector

inconsistency are largely reduced, providing a more objective and consistent criterion

for product quality [52]. Especially given the fact that several modern Deep Learning

techniques already achieve higher performance in computer vision tasks [53].

Automated visual quality inspection has been achieved both by supervised and unsu-

pervised learning methods. The latter are quite common since their independence from
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labelled training data makes them an attractive choice. Often, however, at least the class

of non-defective products needs to be labelled i.e. a semi-supervised scenario. The ideal

would be, of course, to use supervised learning with a fully labelled dataset. Due to the

arduousness of the labelling process and the low volume of defects in production, such

labelled datasets are often small in size and suffer from class imbalance. Supervised

methods, nevertheless are better able to discriminate between small differences between

defective and non-defective products and can also discriminate between different types

of defects [54]. Ultimately the choice will be influence by an organization’s capability to

collect and label the required data and the types of defects, as for example functional vs.

structural vs. cosmetic defect might require different types of ML methods.

Initial attempts at automated defect detection focused on the “hand-crafted” extrac-

tion of features. These were mainly computer vision methods, usually coupled with a

simple classifier like Random Forests or an unsupervised method such as clustering. For

instance [55] used a variation of Otsu’s method for adaptive threshholding to detect ab-

normalities on surface areas (e.g scratches, cracks etc.), achieving quite high accuracy for

ceramic and metallic surfaces. In another case [56], phone screen defects were searched

for - a harder problem due to the high gloss of screen surfaces. A full pipeline was utilized

including image alignment, normalization across noise and lighting conditions and fuzzy

c-means based anomaly detection as a final step. A third alternative is edge detection

which can be achieved by using the wavelet transform [57] to sharpen edges on wood

surfaces and extract defects that disrupt the edge continuity. There is a long list of these

methods in the literature, of which the aforementioned ones are only examples. However

we can already see a common pattern, namely that these algorithms require a lot of effort

to design as they have to normalize the image under different transformations to be able

to effectively compare defective and non-defective images. They are also specialized to

specific types of surfaces. For example, [55] shows a much lower accuracy in detecting

liquid surface contamination, as its method is not designed to cope with intense light

reflection.

To satisfy recent industry trends such as part customization and agile manufactur-

ing, quality inspection methods need to be much more versatile and adaptable. This

is the reason why the interest of the research community has shifted towards the use of

Convolutional Neural Networks (CNNs). These circumvent the need for “hand-crafted” fea-

ture extraction algorithms as their convolutional layers can be trained directly from data

to extract distinguishing features, often managing to achieve invariance against various

conditions such as rotation, translation, lighting and noise. Techniques such as Transfer

Learning also offer the opportunity to reuse knowledge from large pretrained networks on

smaller never seen before datasets. The literature on CNNs for defect detection includes

various different approaches roughly divided into two categories: segmentation-based and

one-off classification.

The aim of image segmentation methods is to first extract simpler candidate defect

areas from a complex image to be used as features for a classification layer. What the

classification layer consists of could range from a dense neural network to a simpler

random forest classifier or even to a semi supervised method such as S4VMs. A common
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network architecture for segmentation – given the availability of pre-segmented training

data - is the U-Net used in [58] to detect small defects in radiographs of aerospace welds.

In that study, instead of using the default dense layer for classification, a Random Forest

classifier is chosen to convert the segmented image areas to pixelwise probabilities of a

defect. A final step includes filtering of the candidate regions using Maximally Stable

External Regions (MSER) [59] and thresholding. This substitution of the last layer with

the simpler (and less overfitting prone) Random Forest was necessary due to the small

amount of defect images in the data – a recurring problem in this defect detection datasets.

Another approach in the automotive parts domain tries to create a single DNN similar to

One-off methods, but stacking segmentation before classification layers [60]. The aim

now is not a binary choice between defect and non-defect but the identification of specific

defect types observed from different views (top, bottom, side) of the image. The topmost

custom segmentation CNN is followed by a “refinement” network, which performs density

slicing, filters the candidate areas and produces the classification output. The resulting

network manages to achieve good results on all defect classes with >95% accuracy and

F1-scores close to 50%.

A dilemma faced in such computer vision tasks is whether to use transfer learning,

i.e. a pretrained model that is fine-tuned on the dataset at hand or a custom model

architecture specific to the problem and trained from scratch. In a printing industry

usecase described in [61], developing a custom shallow CNN model gave better results,

however, significant effort was required to produce a homogeneous training set, especially

in terms of lighting conditions. Transfer learning can also be useful for complex products

such as vehicle parts, where quick retraining and - to some extent - independence from

inputs are highlighted. For instance, [62] achieved best performance on a dataset of

vehicle parts by utilizing a pre-trained VGG16 model further fine-tuned on the quality

inspection dataset.

Still, one-off classification methods tend to avoid any preprocessing overhead and pro-

duce an assessment from just a single image. As a trade-off a larger training dataset is

needed for achieving acceptable results. A good example is [63] where a custom CNN is

used together with data-augmentation to predict different defect classes that appear on

steel strips. The CNN consists of 6 convolutional layers with max pooling along with 2

dense layers leading to 7 output categories, 1 for “non-defect” and 6 defect categories.

Although some initial preprocessing was included in order to isolate the part of the image

containing the examined surface, this can be viewed as a data quality adjustment. In

another usecase, rail defect detection was tackled by an one-off classification approach

in [64]. Different custom architectures were compared, with the best performing one

consisting of 3 convoluational layers with max pooling and 2 dense layers, mapping to

6 defect categories including “non-defect”. More recent approaches have tried sophisti-

cated combinations of methods such Long Short-Term Memory Networks (LSTMs) over

pre-extracted CNN features to detect debris in avionic component ducts [65]. The ob-

ject detection model, YOLO v7, was used for example to detect defective packages to be

extracted from transfer pipelines in shipping [66].

Among the various metrics used to measure classification performance for defect
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detection the two most important ones are recall and precision. Recall should be given the

most attention since false negatives will lead to undetected production defects. Precision,

while secondary, is also important since false positives will require unnecessary human

inspections, a large number of which defeats the purpose of the automated QA approach.

Common metrics based on these two criteria and used in the literature are the F1-score

and the Area Under the Curve (AUC). These metrics are most meaningful when separating

the normal from the anomalous categories, as the differences between defect categories

are usually less consequential.

Choosing the right CNN-based pipeline for defect detection depends on numerous fac-

tors. First and foremost is the availability of labeled data. Segmentation-based methods

might seem to need less data at the cost of a more sophisticated pipeline, however labeled

segmented data is harder to find and more expensive to create. On the other hand one-off

methods need more training examples and suffer more from data imbalance (e.g. in the

case of a rare defect). Techniques such as data augmentation either through applying

predetermined transformation on existing training data or creating new synthetic data

can help ease the disadvantages for both cases.

1.2.1 Data Scarcity

While CNNs are indeed performant and flexible they do require large training sets,

ideally with many samples both from the "good" or "flawless" products and the defective

products as well. In reality, however, collecting this data is often prohibitive due to various

reasons, such as high cost, lack of time or manpower or lack of a scalable automated

setup. A large portion of modern quality inspection research focuses on mitigating this

issue through techniques such as transfer learning, active learning, few-shot learning,

oversampling and the generation of synthetic data for data augmentation.

Transfer Learning

Transfer learning as mentioned in the previous section is a technique for using large

models, that have been trained in large generic datasets such as Imagenet [67] in environ-

ments with enough computational resources (i.e. clusters with multiple CPUs and GPUs).

These models are then reapplied to smaller datasets in different ways, that usually in-

volve targeted readjustments of the base model’s weights. The simplest way to use transfer

learning is to utilize a part of the original model’s architecture, with frozen weights, as

a feature extractor to avoid costly feature engineering [68]. One can also unfreeze the

base model’s weights, all or from selected layers such batch normalization layers, and

perform end-to-end learning with a ready-made architecture and starting from a "good"

weight initialization [69]. Other flavours of transfer learning are domain adaptation and

domain randomization, both of which have had successful applications in vision-based

reinforcement learning.

Domain adaptation is a set of techniques that help a learning model generalize to a

target domain while trained with samples from a different source domain. In the case

of robotic grasping, simulation is the source domain and the real production line is the
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target. Domain adaptation is widely used in computer vision and can be roughly distin-

guished into two categories: feature-level and pixel-level. Feature-level is usually based

on adaptive feature extraction methods such as CNNs, which already have some degree of

transferability between the simulation and reality domains. Also including a domain-level

similarity metric such as maximum mean discrepancy in the loss function when retraining

in the new domain can help enforce domain invariance [70]. Pixel-level domain adaptation

is mainly based on using GANs to restyle simulation images so that they look more simi-

lar to real ones [71]. Both of the above techniques can work well on Deep Reinforcement

Learning algorithms that base their perception and action planning on CNNs. A good

example is GraspGAN [72] which uses simulation with a hybrid adaptation method, com-

bining Domain Adaptation Neural Networks (DANNs) with a novel batch-normalization

technique. The proposed method achieved comparable or better performance to vanilla

DRL with 50 times fewer real-world samples.

Domain randomization methods have also shown good results for vision-based tasks

such as robotic grasping, making simulation-only training feasible. The goal is to train

the agent in a wider set of environmental conditions by introducing randomization in the

simulated environment at training time. Given that the variability of the conditions is

sufficient, the model trained in simulation will be able to generalize in the real world. For

instance [73] uses randomization on the following types of features: addition of distractor

objects of different shapes and sizes, object position and texture, texture of background

objects, camera position, orientation and field of view, number and position of lights and

addition of different types of random noise. The trained model produced comparable

results to real-world training, even though no real-world data was used

Active Learning

Active learning is applicable under the precondition that some labelled samples exist

and that there is a human operator that can help with the learning process by manually

labelling pre-selected instances, which the model is highly uncertain of [74]. This leads to

a training process consisting of training-labelling-retraining cycles that is very dependent

on the quantification of the model’s uncertainty over a specific data instance. The role

of this quantification is to reduce the amount of manual labelling as mush as possible.

Different strategies of selecting the most informative instances for manual labelling have

been suggested including uncertainty sampling, representativeness sampling and sam-

pling of adversarial instances [75]. There are a few successful use cases of active learning

in manufacturing such as [76], where a training database of samples was continuously

enhanced through selective manual labelling during the visual inspection of printed cir-

cuit boards and in the prediction of displacements between chip layers [77], a highly

sensitive process where manual measurements can be disruptive and should be mini-

mized. Active learning can also be combined with other techniques against data scarcity

such as data augmentation. Synthetic data generation was used to reduce the expenses

associated with data collection, combined with feedback from active learning regarding

the desired characteristics of data that benefits the model the most, to detect defects in a
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Figure 1.2. Main categories of few-shot learning methods [20]

dataset of shaver shell prints [26].

Few-shot Learning

While transfer learning manages to reduce the high data requirements for Deep Learn-

ing Models such as CNNs, typically to hundreds of examples, there are cases where the

data available is even less. This is especially prevalent in automated quality inspection

where production defects are rare and some times minority classes remains at the tens

of samples. Few-shot learning is a set of machine learning techniques for dealing with

these low data scenarios [20].

Few-shot learning works on three levels, namely the data level, model and algorithm

levels. Data-level methods aim to augment the data, usually through synthesizing novel

samples with GANs or through applying graphical transformations to existing samples.

Model-based approaches are very similar to transfer learning in that they try to con-

strain the hypothesis space (tunable model parameters) by using prior knowledge (e.g.

pre-training the model on a similar but more general problem and freezing some of its

weights, while leaving some to be fine-tuned on the small dataset). Finally, algorithm-

based methods concentrate on incorporating prior knowledge to the search strategy for

optimal parameters. The above categories are more formally illustrated in Fig.1.2.

H , as depicted in Fig.1.2 is the hypothesis space, or space of the family of models

(e.g. all CNNs of a specific architecture). The optimization algorithm moves through this

space by learning better and better parameters moving from “start” to hl (note that hl

is dependent on the training dataset), which represents the final learned parameters.

ϸest is the estimation error due to learning inefficiency (e.g. overfitting) and ϸapp the

approximation error, due to the limited capacity of the hypothesis space. What FSL is

trying to do is bring “start” closer to h∗ faster than full model training. For example model-

based techniques such as transfer learning try to constrictH toH ′, a smaller hypothesis

space learned from another similar problem with a high chance of including h∗. On the

other hand the “algorithm” category tries to use prior knowledge over the learning rate

and direction of the optimizer so as to decrease the number of model updates. With data
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augmentation, which is our main focus, we are trying to improve the accuracy gained by

the model by adding additional samples and bringing the final stage h′l of the training

closer to h∗.

An approach of few shot learning that differentiates it from transfer learning is meta-

learning [78]. Usually meta-learning approaches are based on learning a distance metric

between classes making them a hybrid between supervised and unsupervised methods.

More specifically, metric-based approaches learn a mapping to an embedding space where

instances of the same class are mapped close together while instances from different

classes are further away, thus roughly forming a cluster for each of the classes. After

the mapping a simple nearest neighbors classifier can be used to determine the class of

a new instance. A typical example of this method are prototypical networks [79].

FSL also includes optimization based methods where gradient step sizes for example

are imported from another problem where training data is abundant. These methods

usually work in two stages, the meta-learning and the task-specific learning. The meta-

learner model could be trained on a different task, or a set of tasks that cumulatively have

enough samples. Thereafter it updates the parameters of the task-specific learner, which

is then fine-tuned on its task of focus. Typical examples are model-agnostic meta-learning

(MAML) [80] and Reptile [81].

Finally, there is another category of methods that are worth mentioning which do not

attempt at all to rely on prior knowledge. Instead, they attempt to build models with

architectures specific for fast learning, such as memory-based architectures [82] and

rapid-adaptation architectures [83].

Various of the above types of methods have been used in the context of Visual Quality

Inspection. For instance, relation networks, a method similar to prototypical networks,

was used on top of pre-extracted CNN features to detect defects on bar surfaces [84].

For the pre-extracted features, attention modules were employed to make surface defects

more salient before passing on to the relation networks. MAML was utilized in [85] to

detect bearings defects, by treating the detection of different defect categories as different

tasks for the meta-learner. A low-parameter model - Resnet-10 - geared towards faster

learning was investigated in [86] to detect defects in lithium batteries. To boost the

size of the inputs and ensure enough diversity in the data various data augmentation

techniques were also included in their pipeline. Protypical networks were used both in

[87] and [88] for fabric and auto-part defect detection respectively. In the former they

were combined with class activation mapping to enhance the contrast of defect locations,

while in the latter they formed part of a custom network with attention mechanisms used

for the same purpose. Attention mechanisms were also part of the approach suggested in

[89] for manufacturing defect detection using the MVTEC-AD dataset [11]. This time the

classifier was a Siamese Network with pair-balanced contrastive loss to account for the

class imbalance between defects and non-defects. [26] compares prototypical networks

with and without data augmentation vs. supervised approaches in low data scenarios

with manufacturing components from Philips Consumer Lifestyle BV and Iber-Oleff -

Componentes Tecnicos Em Plástico, S.A. and finds them competitive. In addition, few

shot learning was enhanced with different sampling strategies for creating and labelling
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the initial support set.

Oversampling

Contrary to few-shot learning where the whole dataset is small in size, what is more

often the case in visual quality inspection in manufacturing is that the defect classes

have very few instances. This is a natural byproduct of a production process working

mostly as expected and rarely outputting defective parts. On the other hand, this makes

the automation of the process harder by complicating the data labelling process and

making it more costly in terms of time, i.e. too many products will need to pass through

the production line before sufficient defective products have been collected. This can be

mitigated through oversampling and its extension, data augmentation. We differentiate

between the two as oversampling happens on the feature level, while data augmentation

on the input data/image level. For oversampling to be applicable, dedicated feature

selection methods should be in place or instead pre-extracted features using transfer

learning can be utilized to obtain lower dimensionality feature vectors.

Imbalanced data is a common issue in many other domains such as tumor classifica-

tion or security attack detection, that are closely related to anomaly detection and where

the minority class is usually of much higher importance to predict correctly [90]. Due to

its ubiquity, a number of methods have been developed to cope with the imbalance at the

feature level. The two most well known ones are SMOTE [91] and ADASYN [92]. In SMOTE

pairs of minority class instances are connected with line segments and over these seg-

ments new instances are sampled so as to hit a target that will make the dataset balanced.

A few variations of SMOTE have been then introduced such as Borderline-SMOTE [93]

that try to focus sampling near the classification boundary, sometimes also oversampling

edge instances from the majority class to create more refined boundaries. ADASYN is a

more sophisticated extension of the same idea, where high-uncertainty samples are those

near the boundary or in sparsely populated regions. These instances are then perturbed

to produce synthetic instances between them and their closest neighbours.

While oversampling methods have existed for a long time and have proven themselves

in different applications, when it comes to image classification with very high-dimensional

inputs they are not effective and require the use of feature-extractors. Another idea

examined in the coming section is to produce synthetic instances at the input level using

modern techniques such as Generative Adversarial Networks (GANs) and Variational Auto-

Encoders (VAEs).

Data Augmentation

Moving oversampling to the image level can take many forms, the simplest of which

is to use simple graphical transformations. The emergence of sophisticated deep gen-

erative methods, however, such as GANs and VAEs can bring enhanced capabilities by

approximating the true distribution of input images and therefore managing to generate

high-fidelity outputs [94]. The major issue here is that GANs and VAEs are even more

data-hungry than traditional deep learning methods. Nevertheless, even if training from
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scratch is not possible, transfer learning can come to the rescue, this time in the con-

text of generation rather than classification. This solution has been explored in current

research and although traditional weight fine-tuning was not enough for small datasets

[95], the fine-tuning of batch normalization layers only produced promising results on

BigGAN [7]. While not perfect, the resulting images retained many useful features for

classification. Further fusing with original raw images also showed some usefulness in a

few-shot learning scenario [8].

Applying data augmentation to automated visual quality inspection can be tricky as

defective images are very much alike to non-defective ones making high-fidelity generation

challenging. Despite that there have been promising applications in the manufacturing

domain. For instance, in a dataset of shaver shell prints, [52] utilized Lightweight GAN

[96], a low resource GAN, to generate high-fidelity augmentation images and improve the

AUROC score of the final classifier. In [97] data augmentation was utilized in a different

way, namely samples were augmented by outputs from an unsupervised anomaly local-

ization classifier in the form of heatmaps highlighting potential defects. These augmented

samples were classified with higher accuracy without the need for additional rebalancing

methods.

1.2.2 Robustness and Trustworthiness of AI Visual Inspection Systems

A further issue that the adoption of AI systems in manufacturing settings faces is

the real and/or perceived lack of robustness. Industry decision makers and regulators

are often sceptical of adopting AI systems in physical environments a they appear as

black boxes, which nobody know if they suddenly come up with a very unexpected and

potentially dangerous decision. This scepticism is of course not without merit and it is

important for the research community to come up with techniques that i) shed light into

the inner workings of AI systems and ii) attempt to make these systems more robust.

Although the subject of this thesis is more related to data scarcity and the robustness

issues that might result from this particular cause, ideas such as Explainable AI (XAI)

and techniques to mitigate cyber-security attacks against Deep Learning algorithms offer

many insights and similarities with techniques aiming at making AI systems more robust

in general.

eXplainable AI (XAI)

As state-of-the-art Deep Neural Networks are starting to surpass human ability in

various specific tasks, their complexity (i.e., number of layers, parameters, complexity of

the loss function) increases to such an extent that they, especially to non-experts, become

black boxes. Interpretability or explainability of Deep Neural networks is the ability to

provide insight into the inner workings of a DNN in a human understandable form [98].

A variety of XAI methods have been developed for computer vision that could be applied

to an Industrial Visual Quality Inspection setting. Usually these methods involve Post-

Hoc explanations, focusing on the reasoning behind the decisions made by the model for

specific instances rather than trying to explain the whole model [99]. One way to achieve
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this is through perturbing certain input feature to gauge their impact on the final output.

Prediction Difference Analysis (PDA) [100] and Meaningful Perturbations [101] are

prime example of such methods, for instance replacing parts of an image with constant

values, noising or blurring the image or regions thereof to measure changes in activations

and/or classification scores. Local Interpretable Model-Agnostic Explanation (LIME) [102]

is a popular model-agnostic method that has also been extended to images. For a partic-

ular instance it generates local perturbations and trains a simple self-interpretable local

model (e.g. a decision tree) on the local perturbations and the original model outputs. Re-

sults from these explainability methods on images are often represented through salience

maps, where the brightness of a pixel is dependent on its importance for the production of

the specific output. Saliency maps can vary from method to method on how they localize

high-salience reqions and measuring the quality of saliency maps is an open research

question [103].

One might attempt to gather more insight from a model by considering knowledge of

its architecture as a given. This is what techniques such as Deep Learning Important

FeaTures (DeepLIFT) [104] and Class Activation Mapping (CAM) [105] try to achieve. In

DeepLIFT, activation differences from a network’s final layers are backpropagated similar

to gradients to match class activations to important parts of inputs or input features.

CAM used the fact that convolutional layers very often make objects present in the image

more salient and their local outputs can be pooled together to extract regions of the

image that highly contribute to the class prediction. Layer activations are combined with

gradient information in GradCAM [106] to produce better localized explanation regions.

In the context of data augmentation saliency maps and heatmaps generated from the

above methods can prove useful. In [97], heatmaps from an explainable semi-supervised

defect localizer were combined with raw inputs to improve classification performance in

a setting with data imbalances. However, the extracted information from explainability

methods can also be used to improve robustness, as for instance in [16] where images with

masked super-pixels from the LIME method made the network more robust to poisoning

attacks.

Sensitivity to Small Differences between Inputs, Safety and Security

The fact that Deep Convolutional Neural Networks (DCNNs) are considered black boxes

is most clearly illustrated in [10], where small corruptions in the image inputs can lead

to mistaken predictions. This fact gains in importance when adversarial attacks against

neural networks are also considered. Adversarial corrupted images that are almost identi-

cal to real ones can be created to induce wrong model decisions - also known as poisoning

attack [107]. While several techniques have been suggested to mitigate this kind of at-

tack, such as Gradient Masking [108], Robust Optimization [109] and Adversary Detection

[110], XAI also plays a significant role in identifying these attacks and defending against

them. For example, Similarity Difference And Uniqueness method (SIDU) [111] aims to

provide visual explanations tailored to the detection of poisoning attacks and showed

promising performance against fixation maps on datasets with noisy inputs [112]. Shap-
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ley Additive Explanation Values [113] have also proven useful in filtering out adversarial

inputs in conjunction with traditional anomaly detection methods. Finally an interest-

ing approach are evasion attacks, which try to identify which features are non-robust in

producing predictions and manipulating those to introduce errors [114]. Data augmen-

tation was shown to be effective against this attack by using masked-superpixel inputs

generated by LIME as a from of synthetic data [16].

Vision-based Deep Reinforcement Learning has been an area of particular interest as

the stakes related to these sensitivities are high when AI agents interact with a physical

environment. Most often a simulation environment is used to robustly train Deep RL

agents and reduce their interactions with the real-world as much as possible [70][73].

But even for less risky scenarios such as Visual Quality Inspection these errors can be

quite costly, potentially derailing the production process and causing significant material

waste. For this reason the use of synthetic data can be of high value. Especially given the

fact that defects occur rarely, it is very possible that some defect categories will have not

appeared during the data gathering process for the training set. It is therefore important

to produce simulated inputs that will train Visual Quality Inspection systems in a way that

is as robust as possibly and prepare the algorithm as much as possible for the occurrence

of novel unanticipated defects before it is deployed in the manufacturing environment.

1.3 Contributions and Structure of the Thesis

The structure of this thesis is built around its three main axes of contributions. Firstly,

the problem of class imbalance is tackled, as it is the most common Data Scarcity issue

in Visual Quality Inspection Scenarios. This is followed by an attempt to handle defect

classes for which various constraints (e.g., ramp up time) did not allow the collection of

any samples, and therefore the system used needs to be ready for unexpected inputs that

are not in its training set. As the method developed for this is quite data-hungry and

computationally intensive, to extend into smaller datasets, techniques from the emerging

field of NeuroSymbolic AI were employed. The progress and contributions made along

these three axes are the following:

• To deal with class imbalance a new method was developed to generate synthetic

data based on examples that are close to the boundary between the "good" and

"defect" classes. This method, combining the precision of oversampling techniques

and the synthetic capabilities of BigGAN, managed to achieve an improvement in

the recall of the neural network, while reducing the data generation time compared

to other GAN-based techniques.

• To handle novel inputs, a new method based on data augmentation using Style-

GAN was developed, particularly adapted to datasets with high similarity between

classes, such as those encountered in industrial quality control. The new method

relies on both the high-fidelity generation of StyleGAN and the ability to more accu-

rately and meaningfully guide the synthetic data output. Also an important role was

played by the filtering of generated data by quantifying the degree of disagreement
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of different classifiers trained on the original data. This ensures that the artificial

data represent the “open set” and can augment the initial training set sufficiently

to make the final classifier more robust to novel defects during the continuous op-

eration period. The new method showed improved results on a real dataset from

manufacturing.

• Finally, as a continuation of the previous method to extend to smaller data sets

in which it is not possible to train StyleGAN, NeuroSymbolic Artificial Intelligence

techniques were used. Specifically, a Logic Tensor Network was used that expresses

the outputs of a supervised novel input detector as symbolic rules and uses them

to drive the training of a neural network. The resulting algorithm shows improved

results compared to other related methods, especially in defect recall, in the sense

that few defects remain undetected even if they are completely novel. Additionally,

it achieves similar or better recall results than semi-supervised methods when han-

dling new defects, but outperforms them on defects belonging to the training class

distributions (closed set). Compared to other supervised methods, it maintains high

performance on known defects but improves significantly on novel ones. The com-

bination of advantages of these two types of methods is illustrated by higher F1

scores on most of the test datasets.
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Chapter 2

On-the-fly Image-level Oversampling for Imbal-

anced Datasets of Manufacturing Defects

2.1 Background

Automatically detecting and classifying object defects is an important application of

modern manufacturing AI systems that presents unique challenges, such as severe class

imbalance, high inter-class similarity, and a requirement for high classification perfor-

mance in real-life settings. Addressing these challenges can provide novel insights and

improvements in the general context of imbalanced learning. Class imbalance is an

inherent and very frequent issue in datasets of defects used for automated visual qual-

ity inspection owing to the rarity of defect occurrences in real-life processes [115]. For

instance, in many modern manufacturing processes, a defect may occur in one per thou-

sand manufactured objects making the collection of sufficient data for a balanced dataset

either too costly or in the worst case nearly impossible. Even though defects are rare,

the ability to detect them automatically or in a synergistic way between human and AI

algorithms is of great value, since, it not only reduces costs and worker fatigue but also

frees up human resources to perform more challenging, less repetitive, and more creative

work [116].

Early approaches in automated visual inspection did not run into the problem of

class imbalance as they mainly relied on traditional computer vision methods using pre-

extracted features [117]. These methods were custom-designed using rules derived from

an expert’s domain knowledge and were completely unsupervised, both regarding feature

extraction and rule-based decision-making, with no requirement for collecting training

data. Even later, more flexible methods such as Histogram of Gradients [118] and Viola-

Jones [119] relied on the extraction of custom features tailored to the problem at hand.

However, since the introduction of Deep Convolutional Neural Networks (DCNNs) [22] it

was made possible to achieve good accuracy scores by deriving extracted features directly

from the training data. Despite the new approach requiring the collection of large amounts

of data, in some cases even 10
3

to 10
4

samples, and being very sensitive to class imbalance

[120], it offers several distinct advantages that have made it very popular in the current

research:

1. There is little need for expert domain knowledge during feature extraction or decision-
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making as DCNNs learn mainly from the data. This avoids the development of

complex and error-prone data pipelines.

2. Due to this independence from domain expertise DCNNs can be more easily adapted

to tackle similar problems (e.g., defect inspection of a similar but different product

produced by the same organization), and can also easily accommodate new defect

types, given enough training data, without change to the recognition algorithm.

3. DCNNs can easily adapt to differences in simple visual conditions such as transla-

tion and scale [121].

4. Knowledge extracted from large datasets can be adapted to smaller datasets through

transfer learning, thus, coping to a certain extent with high data requirements.

In visual quality inspection, which is the focus of our work, the most frequent ap-

proach in the current literature, aimed at mitigating class imbalance, is data augmenta-

tion [122] [123]. Traditionally, image defect datasets are augmented via various graphical

transformations, such as scaling, rotation, translation, shearing, blur, illumination, etc.

However, those image-level transformations do not contribute sufficiently to the clearer

separation between different classes, especially when the separation depends on higher-

level features [124]. To overcome the limitations of traditional image processing methods,

Convolutional Variational Autoencoders (CVAEs) [125] have been proposed and used suc-

cessfully in a dataset of metal surfaces [126]. Generative Adversarial Networks (GANs)

[127] is another important tool, which can efficiently address different kinds of imbalances

such as inter-class, intra-class (e.g., person reidentification), and object and pixel level

imbalances for segmentation tasks [128]. A third family of methods is based on Neural

Style Transfer attempting to fuse a “style” image (defect) and a “content” image. Defects

can be generated through global [129] and local [130] style transfer, using extracted de-

fect patches and suitably placing them on the target object. However many of the above

methods still require a significant amount of data (being Deep Learning methods) and

may not be suitable for all datasets depending on their degree of imbalance as well as

the similarity between classes that makes the generation of high-fidelity images difficult.

Such methods are also usually computationally intensive requiring long training times.

Nevertheless, many modern GAN architectures can be controlled through manipulation of

their latent space and therefore can be suitably adapted to specific problems and poten-

tially also made to work with smaller datasets as described in more detail in the Related

Work section.

In our work, we applied data augmentation to mitigate class imbalance in a dataset

of logo print images on top of manufactured shaver shells. Following our early experi-

ments we noticed that custom shallow CNN architectures that are trained end-to-end on

the dataset at hand achieved the most promising performance, therefore we introduced a

data augmentation method compatible with end-to-end training. Our approach’s novelty

lies in using a small sample GAN introduced in [7] in a confidence-aware manner. This

leads the generator to produce synthetic images based on highly uncertain training sam-

ples that lie near the classification boundary. The resulting method achieved promising
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results against recent and established methods based on deep data generation or vector-

based oversampling, while also retaining good computational performance by generating

synthetic images on the fly.

2.2 Related Work

The current work builds upon two areas of research. The first is on using GANs for

generating defects. GANs have proven very reliable in producing high-quality images and

many works have managed to apply them to imbalanced and smaller datasets. We also

build upon advances in assessing the reliability of neural network predictions. This line

of research focuses on ways to obtain confidence estimates of the network’s predictions,

which we aim to utilize to bias our generation process towards low-confidence samples.

2.2.1 GANs in Defect Generation

GANs have been successfully used in many different industrial, biomedical, and other

scenarios to tackle the class imbalance found in defect detection problems. The most

straightforward way to use them is by training them on the same set of data as the final

detector/classifier and then generating data to augment the initial dataset. A step further

is to introduce customizations to control a GAN’s output either through manipulation of

its latent space or the influence of its loss function. A common example of the latter that

is very popular in defect detection is encoder/decoder-based architectures.

Direct Data Augmentation A variety of architectures have been tried for direct aug-

mentation, for instance, TransGAN [131], a transformer-based GAN was used in an

agricultural setting for detecting fruit surface defects [132], as well as CGAN, a class-

conditioned architecture, able to more precisely synthesize classes of defects [133]. A

very popular architecture for these scenarios is Deep Convolutional GAN (DCGAN). In a

comparative study of steel strip defect detection [134], it outperformed models such as

the information-theoretic InfoGAN [135], and has improved accuracy metrics in imbal-

anced datasets from a variety of domains such as fiber layup inspection [136], liver lesion

classification [137] and defect generation [138], often trained with the help of additional

data augmentation via geometric or stylistic transformations. An improved version of

DCGAN, capable of producing more diverse data, Wasserstein GAN (WGAN), was applied

to the detection of weld [139] and decorative sheet [140] defects, however, complicated

defects such as “burn-through” and “crack” welding defects still needed to be synthe-

sized graphically using human prior knowledge. Finally, a more recent and sophisticated

architecture, StyleGAN2-ADA [141], was capable of high-fidelity generation of structural

adhesive defects trained over a small input dataset of fewer than two hundred images

[142], with limited additional augmentation and manual labeling.

Customized Architectures Apart from the direct application of GAN architectures, sev-

eral customized architectures have been developed to specifically tackle defect synthesis.
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For instance, AC-PG GAN is a combination of the Progressive Growing GAN (PGGAN)

[143] and Auxilliary Classifier GAN (ACGAN) [144] aimed at the quality assessment of

photovoltaic modules through electroluminescence images [145]. In the biomedical field

a similar modification towards a conditional PGGAN has yielded improvements for brain

metastases detection in magnetic resonance images [146]. One Class GAN (OCGAN) and

Multi-modal One Class GAN (MMOCGAN) presented in [147] are an attempt to cope with

statistically non-meaningful defect classes by generating samples from the complemen-

tary distribution of the “good” class. Reinforcement Learning (RL) methods have also

been used to guide data generation and increase the intra-class variability of the gen-

erated data, An example is the Actor-Critic GAN (AC-GAN) [148], which aims to identify

sub-classes from a given class in a preprocessing step and then use Actor-Critic RL on

top of the GAN to adjust loss weighting so that augmentation of each sub-class is either

encouraged or inhibited. Finally, enabling generation for even smaller datasets is the Big-

GAN [149] adaptation method described in [7], which proved useful for few-shot learning

in [8] and, though still untried in defect detection, served as a major inspiration for our

work.

Encoder/Decoder Architectures A common type of customized architecture is one

based on encoder/decoder approaches to generation. For example, [150] uses an im-

proved combination of similar encoder/decoder-based generators, namely BEGAN [151]

and Skip-GANomaly [152]. Defect-GAN [153] copes with the lack of defect data by syn-

thesizing defects through unpaired image-to-image translation, thus creating additional

defects using good images. Its encoder/decoder architecture corresponds to a defacement

and restoration process and makes use of a spatial and categorical control map as well as

the injection of adaptive noise to increase image diversity. A similar image-to-image trans-

lation idea is implemented in the surface defect-generation adversarial network (SDGAN)

[154] and in [155] which is built around CycleGAN. A recent and well-performing ap-

proach, DeepSMOTE [6], tries to mimic vector-based oversampling approaches but on

the level of raw images. It uses an encoder-decoder architecture to produce linear in-

terpolations in the image space similar to SMOTE [91]. Although the above method was

not used for defect classification, it served as inspiration for our approach of performing

oversampling on the image level, which we further adapted to the defect classification

problem.

While the proposed methods facilitate both high-fidelity image generation from limited

data and targeted oversampling of important inputs, the approach introduced aims to

combine the two leading to a more efficient and less computationally intensive oversam-

pling method performed at the image level.

2.2.2 Prediction Confidence in Deep Neural Networks

As we saw in the previous sections, DNNs and especially convolutional ones, are

a powerful learning model. This has come at a cost, however, as the growing model

complexity of neural networks - which is also the cause of their better test accuracy -
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introduces more overconfidence in their predictions [156]. In this section, we focus on

the problem of classification. One way to define confidence in a classification setting is

as the maximal value of the last softmax layer, which determines the class of a given

input. Comparing this with the validation accuracy of the network for a given class using

a reliability diagram for different confidence ranges and their corresponding accuracy

scores, [157] found a significant difference in the 110-layer ResNet compared to the better

calibrated but more primitive five-layer LeNet model on the CIFAR-100 dataset.

The main reason for this increasing miscalibration due to increasing model complexity

is that DNNs additionally suffer from a more subtle case of overfitting. Namely, they tend

to overfit the negative log-likelihood loss invisibly. In contrast, their visible generalization

accuracy measured by a 0/1 loss seems to remain stable. This is a sign of unreliability

that has limited DNN use in real-world safety-critical applications.

Many methods have been proposed to counter prediction overconfidence. The first

category of calibration methods tries to adjust softmax outputs as a post-processing step

to resemble the actual confidence probabilities or follow an ordering where a higher value

will correspond to higher true confidence. Histogram Binning [158], Isotonic Regression,

and Bayesian Binning Quantiles (BBQ) [159] are example methods that solve optimiza-

tion problems after the model training to bring softmax output close to their confidence

values as estimated on a validation set. Platt Scaling [160] and its generalizations Matrix

Weighting [156], and Temperature Scaling [161] are applied on the logit layer just before

the softmax aiming to calibrate the weights of the final layer so that outputs are close

to the validation set confidence probabilities. Temperature scaling is the most popular

approach, as it has the benefit of not influencing the ordering of the class predictions and

therefore guaranteeing the exact class prediction as before.

A further category of confidence assessment methods tries to make changes to the

learning algorithm so that the training process is constrained to output reasonable mea-

sures of the model’s true confidence. Most notable is the addition of a penalty term to the

loss function that discourages ordering inconsistencies in the output pseudoprobabilities

[162]. Finally, regularization techniques such as dropout, weight decay, label smoothing

[163] and mixup [164] have also been shown to improve confidence estimates.

Accurately quantifying the prediction confidence of Deep Neural Networks plays an

important role in our approach since it helps us determine which samples need to be

reinforced through data augmentation. As we are less interested in obtaining probabilistic

estimates of confidence and also want to avoid risking a deterioration of the classifier’s

performance by treating the model as a black box, we focus on a less invasive method

introduced for approximating the distance to the classification boundary [9], which does

not require any changes in the network’s architecture or the way it is trained.

2.3 Methods

This work introduces an oversampling method that is applied directly to raw images.

The rationale for our approach is that we want to perform oversampling in a way that

is decoupled from deep feature extraction, making it possible to train the final classifier
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end-to-end on the augmented dataset. It can be seen as a method similar to Borderline-

SMOTE [93] focusing on samples close to the classification boundary, but on the level of

raw images. Aiming to generate images that are most informative for the way the classifier

separates between classes, we rank images according to initial classifier confidence and

use low-confidence ones to guide our generation process.

Figure 2.1. Basic components and dataflows for the proposed oversampling approach.
The sequence of processing steps is outlined with numbers from (1) to (9).

Fig. 4.2 depicts an overview diagram for our proposed approach. It consists of an

initial pre-training stage performed on the original imbalanced dataset. The resulting

weights are used for the estimation of the boundary between classes and the ranking of

instances according to model confidence. After the most informative instances have been

selected from the original dataset they are used as seeds for an instance-based generator,

which produces similar images introducing small variations. After post-processing (tiling

and fusion with original images) and filtering of sub-standard quality images, we use the

generated data to augment the original dataset. The training of the classifier is com-

pleted by fine-tuning the weights of the pre-trained classifier using the newly augmented,

balanced dataset.

In the following subsections, we provide more details on the Synthetic Image Gener-

ation and Confidence Assessment components before fitting everything together to the

final oversampling process.

2.3.1 Synthetic Image Generation

Producing high-fidelity images for fine-grained classification is challenging, however,

state-of-the-art networks such as BigGAN [149] or StyleGAN [165] have been able to

achieve it. Of course, both consist of millions of learnable parameters and require vast

training datasets along with the corresponding computational resources. Instead of train-

ing such a model from scratch, we make use of a technique inspired by [7] and [8], which

aims to perform transfer learning on a pre-trained BigGAN on ImageNet. BigGAN’s gen-

erator G is isolated from the discriminator and its weights are initialized to the values

obtained from ImageNet. Then for each input image I in the dataset, it is fine-tuned to

produce an image Iz, as similar as possible to the original given a random noise vector z as
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input. This fine-tuning includes only the relearning of the scale and shift parameters of

the batch normalization layers. Intuitively this corresponds to selecting only the features

relevant to the target dataset from a super-set of features learned through pre-training

on ImageNet. The loss function for the fine-tuning is as follows:

LG(G, Iz, z) = L1(G(z), Iz) + λpLperc(G(z), Iz) + λzLEM (z, r) (2.1)

L1 is the L1 distance and LEM the earth mover distance, which tries to regularize z as

a Gaussian sample (r ∼ N(0, 1)); Lperc is the perceptual loss and λp, λz are regularization

coefficients. Finally, to generate multiple images from input I, some random noise is

added to the input so that Iz = G(z + ϸ).

Αλγοριθµος 2.1: Generate Synthetic Data

Input: G,LG image generator and loss, Ib base images, ngen aug. target

Output: Iout set of |Ib| · ngen generated images

1: Iout ⇐ {}

2: M ⇐ MinHeap()
3: for i ∈ Ib do

4: for n ∈ range(ngen) do

5: z ⇐Unz (0, 1)
6: ig ⇐ G(i, z,LG)
7: Ip ⇐ TilePermutations(i, ig, {2, 4})
8: for p ∈ Ip do

9: M ⇐ M ∪ {(p, mse(p, i))}
10: end for

11: end for

12: for k ∈ range(ngen) do

13: mk , lk ⇐ argmin
m∈M

[mse(m, i)]

14: M ⇐ M \ {(mk , lk)}
15: Iout ⇐ Iout ∪ {mk}

16: end for

17: end for

In Algorithm 2.1 we use the aforementioned generator as an instance-based generator

that allows us to produce small variations of an input image. In practice, we observed

that it usually produced high-quality defect images. To address the cases where it didn’t

we added additional quality enhancement measures. The most important of those is

provided by the TilePermutations function, whose aim is to produce hybrid images by

splitting its inputs into halves and quadrants and producing all possible combinations

of the split parts (without of course changing their position in the original images). The

resulting hybrid images together with the synthetic images are more populous than the

naug images we need per base image. For this reason, we store all synthetic and hybrid

images in a min-heap M from which we pick the top naug images with the lowest mean

squared error (MSE) compared to the originals.
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2.3.2 Confidence Assessment

To determine which defect instances the classifier is most uncertain of, and can thus

benefit from seeing more similar examples of, the approximation of the distance to the

classification boundary is the most straightforward approach. Of course, confidence

cannot be viewed as a probability, but the relative ordering between distances together

with a threshold can give us a limit of the model’s knowledge boundaries. Contrary to

SVMs, determination of the margin in deep neural networks is a challenging problem,

nevertheless [9] suggests the following approximation, which is used in their calculation

of the Large Margin Loss.

The decision boundary between classes i and j is defined as the set of inputs for which

the confidence for two classes is equal, f being the (confidence) output of the NN:

D{i,j} ≜ {x | fi(x) = fj(x)}

The distance of a point x to the decision boundary is then defined under an lp norm

as the smallest displacement of the point that results in confidence equality:

df,x,{i,j} ≜ min
δ
∥δ∥p s.t fi(x + δ) = fj(x + δ)

The above optimization problem is intractable for a non-linear f , therefore using the

1st order Taylor approximation to linearize f they obtain the following final approximation

for the distance to the margin:

d̂f,x,{i,j} =
| fi(x) − fj(x) |

∥∇x fi(x) − ∇x fj(x)∥q
(2.2)

2.3.3 On-the-fly Image-Level Oversampling

Algorithm 2.2 incorporates the outcomes as per the previous sections into the training

process. The inputs are a CNN architecture C and the training data (X, Y ), as well as the

instance-based GAN G, adapted from BigGAN according to [7] with a loss LG. Further

parameters include np which is the number of pre-training epochs to get sufficiently

updated weight values to assess model confidence and n the number of epochs to train

on the full augmented dataset. ktop indicates the number of most informative images

selected to serve as seeds for the generation process.

After pre-training for np epochs, the distance to the boundary for each training image

is computed according to Eq.2.2. As expected, this approximation does not provide good

results for all images but it works well for images close to the class boundary assigning

them smaller values than clearly classified images that are away from the boundary.

Data instances and their confidence scores are stored in a min-heap out of which the

ktop lowest distance images are extracted to form the base set for the generation. After

determining the number of synthetic images to be generated per base image, needed for

rebalancing the dataset, we pass the base images to the generation process described

in Algorithm2.1. The parameter naug defines the number of images to be generated per

selected base image so that the final dataset is balanced between defects and non-defects
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Αλγοριθµος 2.2: On-the-fly Image-Level Oversampling

Input: C the CNN, X, Y train data, G,LG the GAN and its loss function, ktop size of

generation base, np, n pre-train and train epochs, lg the label for the good class, Ld the

set of defect class labels

Output: C′′ the trained classifier after oversampling

1: M ⇐ MinHeap()
2: C′ ⇐ train(C, X, Y, np)
3: Xgood , Ygood ⇐ {(xi ∈ X, yi ∈ Y ) : yi = lg}
4: Xdefect , Ydefect ⇐ {(xi ∈ X, yi ∈ Y ) : yi ∈ Ld}

5: for x ∈ Xdefect do

6: d̂ =
|C′good(x)−C′defect (x)|

∥∇x C′good(x)−∇x C′defect (x)∥
∞

7: M ⇐ M ∪ {(x, d̂)}
8: end for

9: Ib ⇐ {}
10: naug ⇐ ⌊

|Ygood |−|Ydefect |

ktop
⌋

11: for k ∈ range(ktop) do

12: xk , dk ⇐ argmin
x∈M

(d̂)

13: M ⇐ M \ {(xk , dk)}
14: Ib ⇐ Ib ∪ {mk}

15: end for

16: Xaug, Yaug ⇐ generate(G,LG, Ib, naug)
17: C′′ ⇐ train(C′, X ∪ Xaug, Y ∪ Yaug, n)

and is determined by the integer division of the difference between the number of images

in the good class |Ygood | and the number of total defective images |Ydefect | over the number

of base-images ktop. Note that the number of generated images per individual defect class

might differ; there is only a constraint that the total defects are balanced with the good

images. Depending on how many low-confidence images a defect class has, the more it

needs to be augmented according to our approach. Following the augmentation step, the

pre-trained classifier is trained for a further n epochs to produce a better classification

boundary.

2.4 Results

Throughout our experiments, we show how the presented oversampling method ben-

efits the general defect classification problem, by comparing it both with state-of-the-art

approaches used in defect datasets and image- and vector-level oversampling approaches.

We performed our experiments using a dataset of shaver shell logo print images from a

real production line presented in the section below.

2.4.1 Dataset Information

The dataset used was provided by Philips Consumer Lifestyle B.V. and was collected

from their pad printing process to serve the need for building an automated quality in-

spection system. As described earlier, owing to the infrequency of defects in their process,
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it was hard to gather many defect images leading to an imbalanced dataset.

(a) Good (b) Double Print (c) Interrupted

Figure 2.2. Original Shaver Shell Prints

The dataset consists of JPEG RBG images with dimensions 220 × 360. They are

divided into three classes, one good and two defect classes, namely double prints and

interrupted prints. Representative examples of each class are presented in Figure 4.3.

The number of correctly printed images is 2684, of double prints 244, and of interrupted

prints 598. One important feature to note is that interrupted prints can be very similar

to good prints, making their distinction difficult, as well as the generation of sufficiently

differentiated images from these two classes.

Moreover, to verify the robustness of our method we used four additional datasets

of product defects from the MVTec AD collection [11]. This is a collection of datasets

consisting of surface and object defects. For our evaluation, we chose two products from

each category that exhibited similar defects to the shavers dataset leading to the high

similarity between classes. From the surfaces, we used the carpet and grid datasets and

from the objects the pill and metal nut datasets, samples of which are shown in Fig. 2.3.

Figure 2.3. Samples from the MVTec AD datasets

Table 2.1 shows the number of instances belonging to each class for all datasets used
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as well as their train and test set sizes as determined by the 5-fold cross-validation scheme

described in the next section.

Table 2.1. Number of class instances for the Shavers and MVTec AD product datasets
including train and test sets

Train Test Total

Datasets Good Defects Good Defects Good Defects

Shavers 2147 674 537 168 2684 842

Grid 211 46 53 11 264 57

Carpet 224 71 56 18 280 89

Metal Nut 176 74 44 19 220 93

Pill 214 113 53 28 267 141

2.4.2 Experimental Setup

Our experimental process was designed to compare our approach with three other

families of approaches that have been common in the literature. The first is the attempt to

directly generate data of the highest fidelity possible using a powerful generation method.

We use StyleGAN as a comparison which achieved good results in [166]. The second

type is the use of transfer learning and namely Resnet50 used in many works such as

[167] and [168] for transfer learning, also viewing it in combination with vector-based

oversampling. Thirdly we compare against DeepSMOTE [6], a state-of-the-art approach

of performing SMOTE-like oversampling on the image level. For the non-transfer learning

scenarios, we used as a classifier a customized shallow CNN for this dataset consisting of

a convolutional layer with two parallel filters of (3 × 3) × 16 and (1 × 1) × 16 followed by a

dense and a softmax layer.

The metric monitored was the binary recall from the perspective of the defect classes

(Table 2.2), i.e. the defect class is considered the positive class for measuring recall. We

found this metric most appropriate for a defect classification example as it better suits the

way automated visual inspection is envisioned to work on a real production line. More

specifically, positive predictions (good) usually receive the green light with no or little

manual checking, while negative ones (defects) are put aside to be further examined by

a human operator. Our aim is to minimize the number of defects that are mistakenly

labeled as high-quality products. A more precise definition of Binary Recall, as used in

the current context, can be formulated given the classifier C, test data X , the labeling

function l, and the set of defect labels Ld = {double print, interrupted}, as follows:

BinaryRecall =
|x ∈ X : C(x) ∈ Ld ∧ l(x) ∈ Ld |

|x ∈ X : l(x) ∈ Ld |

Another benefit of this metric is that it does not suffer from the dataset skew as, for

example, accuracy which is dominated by the accuracy in the majority class. One must

also be careful while maximizing binary recall so that not every product image is classified

as a defect. For this reason, we also evaluated the ROC-AUC score which measures class
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separability, though with a relative skew towards the majority class. The ROC-AUC score

was satisfying for all experiments with values greater than 98%.

To complete the picture of the final classifiers’ performance, we include the binary Pre-

cision and F1-scores, again, measured from the perspective of the defect class. Precision

performance will be determined by the percentage of good images that get mistakenly

classified as defects, while the F1-score will attempt to give a balanced account of the

methods’ effects on precision and recall. More precisely, these metrics are calculated

using the same notation as for Binary Recall as follows:

Precision =
|x ∈ X : C(x) ∈ Ld ∧ l(x) ∈ Ld |

|x ∈ X : C(x) ∈ Ld |

F1 − score =
2 × Precision × BinaryRecall

Precision + BinaryRecall

Additionally, we compare a simplistic augmentation using our generation method in

an untargeted fashion against our targeted oversampling approach based on the selection

of the most informational examples (Fig. 2.6). This helps us gain further insight into how

and in which cases targeted oversampling is helpful. We also monitor additional metrics

such as the number of images generated for each defect class and the class-specific

recalls.

The experiments consist of a total of 30 model runs using 5-fold cross-validation on a

single NVidia K80 GPU used for both the training and data generation processes. Binary

Recall scores are presented with their 95% confidence intervals.

Hyperparameter Tuning

For most comparison methods, an exhaustive search was carried out over ranges

around initial well-performing hyperparameters (HPs) determined through trial and error.

The best-performing hyperparameters were chosen over a stratified 5-fold cross-validation

scheme similar to that followed for the showcased experiments resulting in an overall

nested cross-validation (or double-cross) scheme as described in [169] and specified in

pseudo-code in Algorithm 2.3. Specifically, the inner cross-validation produces validation

sets for the selection of HPs and the outer cross-validation produces independent test

sets for out-of-sample evaluation of the methods with the best-performing HPs. From this

scheme, we extract the most frequently selected HP combinations as the recommended

set of HPs to use for each method, which could provide the interested reader with insight

into the dataset from an oversampling perspective.

2.4.3 Experimental Results

As shown in Table 2.2 our method outperforms all state-of-the-art approaches in terms

of binary recall. However, there are several interesting points to note. Firstly, we observe

that the custom CNN architecture outperforms transfer learning and transfer learning

with oversampling approaches because the features are learned end-to-end specifically

for the dataset at hand instead of being adapted from imagenet. Secondly, the impact of
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Αλγοριθµος 2.3: Nested Cross-Validation for Evaluation and Hyper-Parameter Tuning

Input: C the Classifier (possibly including pre-trained embeddings and/or an oversam-

pling method), X the input data (images), Y the input labels, CV the stratified cross-

validation scheme, H the set of possible hyperparameter combinations, rs the random

seed for the current evaluation run

Output: M the complete final metrics per fold and seed, Hf the selected hyperparameter

combinations per fold and seed

1: M ⇐ {}
2: Hf ⇐ {}

3: fold ⇐ 0

4: for Train, Test ∈ CV.split(X, Y, folds = 5, random = rs) do

5: Hm = MinHeap()
6: for H ∈ H do

7: fold += 1

8: Ravg ⇐ 0

9: for TrainHP , TestHP ∈ CV.split(Train, 5, rs) do

10: CH ⇐ train(C, TrainHP , H)
11: mH ⇐ evaluate(CH , TestHP)
12: Ravg ⇐ Ravg +mH .recall
13: end for

14: Ravg ⇐ Ravg/5

15: Hm ⇐ Hm ∪ {(H, Ravg)}
16: end for

17: htop, rtop ⇐ argmax
(h,R)∈Hm

[R]

18: Cf ⇐ train(C, Train, htop)
19: m ⇐ evaluate(Cf , Test)
20: Hf ⇐ M ∪ {(rs, fold, htop)}
21: M ⇐ M ∪ {(rs, fold, m)}
22: end for
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oversampling on the vanilla Resnet50 approach is much larger, than the effect of both

Loss Weighting and our approach on the custom CNN. This can be attributed to greater

margins for improvement in lower recalls, but also to the imperfection of the generation

methods at the image level, which is a much more complicated, high-dimensional process

than generating simple vectors.

Table 2.2. Comparison of oversampling methods on the shaver-shell prints dataset

Method Bin. Recall % AUROC % Precision % F1 %

Resnet50 85.85 ± 1.50 98.85 ± 0.12 94.41 ± 3.27 89.59 ± 1.27

Resnet50+SMOTE 95.84 ± 0.52 98.87 ± 0.13 84.53 ± 3.01 89.61 ± 1.57

Resnet50+ADASYN 95.49 ± 0.99 99.07 ± 0.11 85.14 ± 3.45 89.67 ± 1.69

Custom CNN 95.84 ± 0.39 99.20 ± 0.19 97.53 ± 0.81 96.67 ± 0.56

Custom CNN+LW 96.07 ± 0.39 99.09 ± 0.19 98.34 ± 0.33 97.19 ± 0.43
StyleGAN 91.20 ± 2.20 99.01 ± 0.14 99.17 ± 0.41 94.95 ± 1.38

DeepSMOTE 93.58 ± 1.07 99.23 ± 0.15 96.93 ± 0.80 95.22 ± 0.87

Ours 97.27 ± 0.76 99.34 ± 0.07 96.82 ± 1.27 97.03 ± 0.98

Most interestingly, we observed that the augmentation approaches based on Style-

GAN and DeepSMOTE had an adverse effect on the custom CNN’s performance. This is

mainly attributed to their inability to produce realistic defect images that are close but not

identical to the high-quality images and can also be hinted at by the samples of generated

images shown in Fig 2.4. In fact, on the MVTec AD datasets, which are one order of mag-

nitude smaller in size, these generative methods failed to produce plausible defect images,

most probably due to the documented early overfitting approach of GAN architectures on

small datasets [170]. Therefore they are also not included in Table 4.2. Our generator,

thanks to the additional processing steps introduced manages to usually depict these

kinds of small defects, which occur mostly in the interrupted class of the shaver dataset.

Nevertheless, confusing synthetic images were still occasionally produced in some of the

dataset’s splits leading to a small deterioration in performance, highlighting a possible

limitation of the proposed method.

It is important to note that in terms of AUROC, our method does not provide a signif-

icant improvement as it does with binary recall. The purpose of monitoring the AUROC

metric, as mentioned in the experimental results section, is to ensure that while our

method improves recall in the defect classes, it does not, at the same time, significantly

sacrifice performance in the good class. Let us also note that since AUROC considers the

dataset as a whole it makes it difficult for improvements in recall to be reflected since they

are overshadowed by the performance in the majority class, which is more similar across

the different methods.

Of particular interest is the effect of the proposed method on the Precision and F1

metrics in this dataset of high inter-class similarity. As explained in the experimen-

tal results section, our on-the-fly oversampling method was designed to optimize recall,

which in the case of datasets with high inter-class similarity might come at the expense

of precision i.e. mistakenly classifying more good images than before as defects. This is

also illustrated by the method’s performance in the precision metric which is lower than
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all other methods utilizing a custom CNN classifier. Consequently, its F1-score, while

second highest, is overcome by the Custom CNN with Loss Weighting. The sacrifice of the

F1 metric, however, is only 0.16, with largely overlapping confidence intervals between

the two methods, showing a small sacrifice in the overall problem performance.

Figure 2.4. Artificially generated defect images

On the MVTec AD datasets, confidence-aware oversampling managed to provide the

biggest improvements upon the end-to-end trained network, achieving the best recall

scores in all cases. However, establishing statistical significance through confidence

intervals was harder in this case, due to the very low number of defects in the test sets (see

Table 2.3). As a consequence of the low number of defect samples, mispredicting just a few

images has a pronounced impact on the overall binary recall score, which unfortunately

presents a limitation of the evaluation scheme of our method when faced with smaller

minority classes. Still, the improvement in the Metal Nut dataset was significant in

comparison with most methods, while in the pill and carpet datasets, there are some

indications of improvement. The grid dataset was harder for all methods producing results

with very high variability between individual run scores.

Contrary to the shaver’s dataset performance in the precision and F1 scores is consis-

tently the highest across the four MVTec AD products - in the Metal Nut and Pill datasets

being also statistically significant. We attribute this difference in the corresponding per-

formances as measured on the original Shavers dataset, again, to the smaller amount

of data which benefits significantly from the addition of the augmented images resulting

in more precise boundaries from the perspective of both classes. For this reason, our

image-level oversampling method has a more global effect on the classifiers’ performance,

not suffering from the trade-offs appearing in the more populous shavers dataset.

To understand the proposed method in more depth, Fig. 2.5 shows the changes

in classifying augmented images and in the top-15 minority instance distances to the

boundary before and after augmentation. There is an indication that boundaries shift

69



Chapter 2. On-the-fly Image-level Oversampling for Imbalanced Datasets of Manufacturing Defects

T
a
b
le

2
.3

.
C

om
p
a

rison
of

oversa
m

p
lin

g
m

eth
od

s
on

th
e

M
V

T
ec

A
D

p
rod

u
ct

d
a

ta
sets

D
a
t
a
s
e
t

M
e
t
h

o
d

B
i
n

a
r
y

R
e
c
a
ll

%
A

U
R

O
C

%
P
r
e
c
i
s
i
o
n

%
F

1
%

G
r
i
d

R
e
s
n

e
t
5
0

3
0

.3
0
±

5
.5

9
7
3

.2
9
±

3
.4

8
4
2

.4
±

5
.5

7
3
4

.3
6
±

5
.9

5

R
e
s
n

e
t
5
0

+
S

M
O

T
E

3
5

.6
0
±

5
.7

1
7
4

.6
7
±

4
.3

4
4
8

.2
7
±

3
.3

8
4
3

.5
5
±

3
.4

8

R
e
s
n

e
t
5
0

+
A

D
A

S
Y
N

4
2

.5
7
±

8
.3

8
7
4

.2
6
±

4
.0

4
4
2

.9
3
±

4
.5

9
3
5

.9
3
±

6
.6

8

C
u

s
t
o
m

C
N

N
7
0

.9
0
±

1
0

.9
3

9
0

.7
1
±

5
.4

9
8
0

.2
3
±

9
.9

7
7
4

.5
0
±

1
0

.5
0

C
u

s
t
o
m

C
N

N
+

L
W

6
9

.2
4
±

1
2

.2
5

8
9

.8
0
±

6
.0

9
7
5

.3
8
±

1
2

.3
7
1

.5
5
±

1
2

.1
5

O
u
r
s

71.21
±

9.92
91.22

±
5.12

91.43
±

6.86
78.45

±
8.36

C
a
r
p
e
t

R
e
s
n

e
t
5
0

8
1

.8
9
±

3
.7

0
9
7

.0
7
±

0
.4

1
8
7

.8
0
±

3
.3

3
8
4

.2
0
±

2
.2

7

R
e
s
n

e
t
5
0

+
S

M
O

T
E

8
8

.6
9
±

1
.5

3
9
7

.2
1
±

0
.4

6
7
9

.5
6
±

2
.1

1
8
3

.6
6
±

0
.9

4

R
e
s
n

e
t
5
0

+
A

D
A

S
Y
N

8
4

.1
8
±

2
.7

1
9
7

.2
5
±

0
.4

5
8
3

.9
6
±

3
.7

8
8
3

.4
2
±

1
.2

8

C
u

s
t
o
m

C
N

N
8
7

.7
7
±

7
.6

2
9
8

.9
4
±

0
.4

9
8
9

.7
3
±

1
.2

3
8
7

.4
8
±

4
.7

5

C
u

s
t
o
m

C
N

N
+

L
W

9
1

.1
1
±

6
.0

6
9
8

.9
0
±

0
.5

1
8
8

.0
2
±

1
.7

8
8
8

.9
2
±

3
.7

2

O
u
r
s

92.22
±

3.32
99.86

±
0.11

92
±

1.60
91.9

±
1.97

M
e
t
a
l

N
u
t

R
e
s
n

e
t
5
0

8
4

.0
3
±

3
.4

6
9
6

.9
0
±

0
.7

9
9
5

.3
3
±

1
.7

0
8
8

.9
9
±

1
.9

7

R
e
s
n

e
t
5
0

+
S

M
O

T
E

8
8

.3
0
±

3
.7

1
9
7

.3
2
±

0
.5

1
9
0

.3
2
±

1
.3

3
8
9

.0
7
±

1
.6

2

R
e
s
n

e
t
5
0

+
A

D
A

S
Y
N

8
4

.0
9
±

3
.7

1
9
7

.0
1
±

0
.7

2
9
5

.3
8
±

1
.6

3
8
9

.0
2
±

2
.0

9

C
u

s
t
o
m

C
N

N
8
2

.9
2
±

5
.3

6
9
7

.4
9
±

1
.1

5
9
8

.3
3
±

1
.3

3
8
9
.5

5
±

3
.8

7

C
u

s
t
o
m

C
N

N
+

L
W

8
2

.9
2
±

5
.3

6
9
7

.4
9
±

1
.1

5
9
8

.3
3
±

1
.3

3
8
9

.5
5
±

3
.8

7

O
u
r
s

92.63
±

3.15
98.32

±
1.22

98.75
±

1.00
95.49

±
2.12

P
i
ll

R
e
s
n

e
t
5
0

7
1

.5
2
±

6
.2

9
9
2

.7
0
±

1
.6

3
8
4

.8
4
±

1
.6

3
7
6

.6
5
±

4
.2

9

R
e
s
n

e
t
5
0

+
S

M
O

T
E

9
0

.0
2
±

2
.6

2
9
1

.7
6
±

1
.8

2
6
0

.7
±

1
.5

7
7
2

.3
4
±

1
.4

1

R
e
s
n

e
t
5
0

+
A

D
A

S
Y
N

7
8

.6
2
±

4
.1

6
9
1

.8
7
±

1
.7

0
8
2

.2
9
±

1
.5

4
8
0

.0
8
±

2
.4

1

C
u

s
t
o
m

C
N

N
8
8

.7
1
±

2
.1

8
9
8

.3
5
±

0
.6

0
9
3

.4
8
±

2
.0

3
9
0

.9
4
±

1
.7

6

C
u

s
t
o
m

C
N

N
+

L
W

8
8

.7
1
±

2
.1

8
9
8

.3
5
±

0
.6

0
9
3

.4
8
±

2
.0

3
9
0

.9
4
±

1
.7

6

O
u
r
s

92.29
±

3.79
98.80

±
0.58

96.25
±

1.63
94.11

±
2.68

70
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from the minority classes closer to the majority classes so that generated images that

were misclassified before augmented training are now learned by the model. Of course,

this shift in the distances is varied and cannot easily be correlated with performance

increases, due to the complexity of the deep learning process and the approximate nature

of the distance calculation method. It is important to note that distances both before

and after augmentation are low in magnitude considering the high dimensionality of the

feature space, hinting at the existence of highly populated boundaries. The goal of our

method is to push those boundaries slightly so that they are biased toward the minority

class - whose recall is more important - while perhaps, as in the case of the Shavers

dataset, sacrificing prediction accuracy over the majority class - which is desirable given

that the performance sacrifice is limited. This small shift could be significant exactly

because the boundaries are densely populated due to high-class similarity. In the case of

the MVTec AD datasets, this process leads to an overall improvement of class separability

as highlighted by the increases in both precision and recall.

Figure 2.5. Label accuracy of augmented images, before and after augmented training
(Left). Top-k distances to classification boundary before and after augmented training for
k=15 (Right)

In terms of the specific hyperparameters (HPs) of our approach defined as inputs to

Algorithm 2.2, after comparing the final classification performance of different combina-

tions we chose 20 epochs for pretraining and 30 epochs with early stopping for training on

the augmented dataset as the best-performing way to split the 50 total epochs needed to

reach a stable loss plateau. We also determined the best value for ktop to be 15 images. In

all other approaches, the training epochs for the classifier were 50 with early stopping, so

that all comparison classifiers have time to reach their loss plateaus and equal to the total

amount of training epochs used in our approach. The number of augmentation examples

produced for the comparison methods was always the required amount for every class to

71
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have as many instances as the good class, resulting in a balanced dataset. The ranges

of HPs examined and the final recommended HPs for the Shavers dataset are shown in

Table 2.4. For the image generation of StyleGAN and DeepSMOTE, we used the settings

suggested for small datasets in the respective papers ([165], [6]).

Table 2.4. Table of searched and recommended final hyperparameters per examined
method for the shavers dataset

Method Searched HP Recommended

HP

SMOTE type ∈

{None, borderline1, borderline2},
k ∈ [2, 20], m ∈ [0, 22]

type =

borderline2

k = 2, m = 20

ADASYN k ∈ [2, 20] k = 5

Custom

CNN

batch-size ∈ {4, 8, ..., 64},
lr ∈ {10

−5, 10
−4, ..., 10

−2},
dropout ∈ {0.2, 0.3, ..., 0.8}

batch-size = 4

lr = 10
−4

dropout = 0.4
Ours top-k ∈ [5, 50],

pre-eps ∈ {5, 10, .., 45}

top-k = 15

pre-eps = 20

Finally, in terms of computation time, the introduced method was much quicker by

approximately 3× the training time without augmentation (∼ 30 minutes for a full run),

while other image-level approaches such as StyleGAN and DeepSMOTE took more than

20h to train. This is because our method uses a small base set of images for generation

and the time taken is linearly proportional to the number of base images. It is also built

on top of a lightweight transfer learning method for GANs, while DeepSMOTE needs to be

trained from scratch and StyleGAN’s fine-tuning is more time-consuming due to its vast

number of parameters.

Fig. 2.6 shows more closely how our oversampling method helps the classifier’s learn-

ing process in the shavers dataset. We compare binary and class-specific recalls by using

our generation method in a uniform way with the whole training set as seeds and se-

lecting the seed set based on a distance-to-boundary confidence measure. What stands

out is that the majority of the images close to the decision boundary belong to the inter-

rupted class which is most similar to the good class. Basing the augmentation off of those

images is also what brings the largest gains in recall performance. In the double print

category, such gains are not visible, in fact, performance slightly deteriorates. This hints

at a limitation of our method consistently producing performance gains over a range of

imbalanced learning scenarios as it has been primarily designed for problems with high

inter-class similarity.

2.5 Summary

In this chapter, we introduced a novel method for performing oversampling at the

image level in the context of defect detection. Data generation is now performed more

efficiently based on images that are estimated to be close to the classification boundary.

72



2.5 Summary

Figure 2.6. Comparison between simple augmentation and confidence-based oversam-
pling - 6 different instances of 5-fold CV on the shavers dataset
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The high-fidelity images generated helped improve the classification results over a dataset

containing defects of varying perceptibility. The runtime and computational costs of

generating synthetic data were also greatly reduced compared to other state-of-the-art

approaches.

We believe that future advances in instance-based or few-shot image generation can

greatly help improve our work by producing images of higher fidelity and variability from

a small selected seed set of low-confidence images. Further opportunities for improve-

ment lie in the way original and synthetic images are fused, which could potentially

be performed in a smoother way than tiling using a few-shot learning-based fusion

method. Finally, it is worth investigating how to produce linear interpolations between

low-confidence samples through a suitable encoder/decoder architecture.
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Chapter 3

Enhancing Robustness to Novel Visual Defects

through StyleGAN Latent Space Navigation: A

Manufacturing Use Case

3.1 Background

Quality Inspection, a key component of all production systems, has been following the

trend of digitalization introduced by Industry 4.0 through the connection of digital sensors

on the shop floor to state-of-the-art statistical and Artificial Intelligence (AI) algorithms

running on the cloud and edge infrastructure [171]. The capabilities to collect information

through sensors in real-time, in a non-destructive manner as well as the capabilities

to store and process the large volumes of complexly interrelated data generated by the

continuous operation of the shop floor through Machine Learning and Deep Learning has

made it possible to develop sophisticated platforms that provide global view and control of

quality in the factory [172]. Our work focuses on the specific case of visual inspection of

the finished part, which is necessary when it comes to painting and decorating products.

To that end, current AI research has provided many Image Processing, Computer Vision,

and, lately, Deep Learning techniques that can meaningfully process rich image signals

[173]. However, full automation of the Visual Quality Inspection can still be improved.

In this work we examine a real-life manufacturing use case of automatically assessing

the quality of brand prints on shavers produced by Philips Consumer Lifestyle B.V. While

working on this use case we identified three significant challenges:

1. Typical insufficiency of training data, especially regarding rarely-occurring produc-

tion defects.

2. High visual similarity between flawless and defective products might not be easily

recognizable by an AI algorithm.

3. Occurrence of unanticipated defects during the continuous operation phase, which

can lead to wrong AI decisions since they lie outside of the algorithm’s training

domain.

While the main focus in this section is on the last issue, the first two challenges, and

especially high inter-class similarity, are not taken into account by most existing deep
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learning robustness methods. However, they play an essential role in selecting suitable

algorithms and evaluating the results in the problem of defect classification.

After carefully examining the suitability of different methods for identifying defects

that were not anticipated during the AI model’s training, a novel approach to open-set

recognition for defect detection is proposed which relies on data augmentation and is

more tailored to the defect classification problem and its aforementioned challenges. The

presented method is based on the state-of-the-art GAN architecture of StyleGAN v3 [174],

chosen due to its high fidelity, degree of generalization, and advanced manipulation ca-

pabilities. The latter are then leveraged through a computationally efficient closed-form

factorization method [12] that discovers the most impactful directions for image genera-

tion in the GAN’s latent space. After generating images along these directions, a novel

criterion is applied for deciding if a synthetic image can be considered “unknown" relative

to the used classifier and thus added to the augmented training set. The intended effect

of this method is to introduce images that lie at the edge of the known classes and can

define our classifier’s area of competence. Consequently, any image that occurs at test

time and is mapped outside this area can be considered unknown. The proposed method

could potentially also be utilized in other areas where small visual anomalies need to be

detected, such as civil infrastructure inspection or biomedical image processing.

3.2 Use Case and Dataset

The examined use case features a human-AI collaboration scenario, where products

are first examined by the AI system to identify en masse potentially defective products that

are then examined by a human operator who makes the final decision whether to discard

or keep the product. The same scenario is also presented with an enhanced role for the

operator in the form of active learning in [26]. The associated product image dataset

provided by Philips Consumer Lifestyle B.V. was collected from the factory’s pad printing

process to serve the need for building an automated quality inspection system. The images

in the dataset have been collected from the real-life production process before automation

was introduced and have been manually labeled by multiple quality inspectors working

in the factory to ensure correct labeling before their use in AI training. As is often the

case, manufacturing defects are rare and this resulted in an imbalanced dataset. In the

current context, we do not focus on solving the imbalance issue, nevertheless, we take it

into account during the evaluation of our experimental results so that they represent a

realistic scenario.

The collected dataset in digital form consists of RGB images in PNG format with

dimensions 220 × 360. They are divided into three classes, one with flawless products,

and two defect classes, namely double prints and interrupted prints. Representative

examples of each class are presented in Fig. 4.3.

The number of correctly printed images is 2684, of double prints 244, and of inter-

rupted prints 598. One important feature to note is that interrupted prints can be very

similar to flawless prints, making their distinction difficult as well as the generation of

sufficiently differentiated images from these two classes. The full collected dataset is split
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(a) Flawless (b) Double Print (c) Interrupted

Figure 3.1. Original Shaver Shell Prints

into approx. 70% of the images to be used for training and 30% of images to be used for

performance evaluation of the trained algorithm.

To additionally evaluate robustness, novel defects (unseen in the training set) were

created synthetically to simulate possible unexpected defects that might occur during

Automated Visual Quality Inspection, namely:

• Line Interruptions, which could result from preexisting scratches on the printing

pad.

• Missing Letters, which could be due to a defect in the printer head

• Discoloration, due to the corruption/mixing of the sprayed color

• Horizontal and Vertical Flips due to a wrong setting of the printer head

Synthetic images of the first three categories can be found in Fig. 3.2. Images from

these categories are merged with the test set in the same proportion to flawless images as

the original defects (approx. 3 flawless to 1 defective), to represent a realistic imbalance

scenario that could potentially occur in the production line. Therefore, the final test

set, over which all methods are evaluated, contains 800 flawless images and 250 images

with known defects, augmented with 250 novel defect images randomly and uniformly

generated from one of the synthetic classes above.

(a) Line Scratches (b) Missing Letter (c) Discoloured

Figure 3.2. Synthetic “Unexpected" Defects

3.3 Related Work

Two branches of recent AI research aimed at the development of systems robust to

out-of-distribution samples and also applicable in Visual Quality Inspection are open-

set recognition (OSR) and semi-supervised anomaly detection. Traditionally, classifiers
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have been evaluated on closed set problems, where the classes in the test domain are

identical to those in the training data. However, practical use cases often require the

classification of so-called “unknown unknowns" [175] corresponding to unmodelled as-

pects of the problem domain, which tend to confuse learning algorithms. OSR attempts

to minimize the risks associated with these unknowns while preserving performance in

the training classes. We identified three categories of OSR methods that could apply to

our use cases, the current literature on which is mentioned below: Statistical OSR, OSR

for Deep Learning, and Data Augmentation.

On the other hand, semi-supervised approaches view the problem over a binary lens,

trying to model the flawless class and identify visual deviations as anomalies. Despite

lacking the granularity of multi-class classification methods [176], they are beneficial to

cases where the “closed set" consists only of the flawless class, and all defects belong

to the “open set". It was demonstrated in [177], that these methods achieve comparable

but lower performance on some metrics to open-set recognition, even though finding

appropriate decision thresholds to address the aforementioned class-similarity problem

can be tricky.

3.3.1 Open-set Recognition

OSR can be applied in two ways: by separating unknown from known instances in a

binary way and then performing the usual multi-class classification task or by maintain-

ing classification accuracy for known instances by grouping unknown ones in a newly

added background class [178]. The OSR problem was formally defined by [179] as they

attempt to minimize open space risk, where the open space O refers to the space away

from the mass of known instances. The risk of labeling such an instance as a member of

a known class is defined with the help of an indicator function f as:

RO(f ) =

∫
O

f (x)dx∫
SO

f (x)dx

Where f (x) = 1 if an open-space instance is defined as known and is 0 otherwise and

SO is the total space including both open and closed-set instances. Subsequently, OSR

is posed as an optimization problem of minimizing the open space risk RO together with

the empirical risk Rϸ depending on the recognition function f from measurable space H

with training data V and a regularization coefficient λr :

arg min
f ∈H

{ROf + λrRϸ(f (V ))}

Regarding specific implementations, OSR can be further subdivided into three families

of methods: Statistical, Deep Learning, and Data Augmentation-based OSR.

Statistical Methods

Most statistical methods for OSR make use of Extreme Value Theory (EVT) [180], a

branch of statistics that has been successfully applied to areas such as financial and en-
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vironmental risk management and anomaly detection (e.g., intrusion detection in security

monitoring [181]. The goal of EVT is to label a sample as extreme through modeling a

distribution’s tails and subsequent application of appropriate thresholds. In most OSR

applications, EVT is used over the distribution of classifier scores.

Scheirer et al. [179], combined Support Vector Machines (SVMs) with EVT by defining

and adjusting an extra hyperplane to divide known classes and open space, thus bounding

open-space risk. One of the most significant contributions of this research was the

Compact Abating Probability (CAP), which requires that the probability of an instance

belonging to a specific class decreases in all directions leading from the training space to

the open space. Their algorithm was named the “1 vs. set machine".

Weibull SVMs (W-SVM) is an attempt by [182] to extend the “1 vs. set machine"

using score calibration based on the Weibull distribution (a common choice in EVT for

modeling distribution tails) and nonlinear boundaries. The scores to be calibrated are a

combination of a One-class SVM [183] using an RBF kernel for differentiating between

open/closed set instances and a multiclass SVM to classify amongst known classes. This

approach has been widely used in fingerprint recognition [184] and intrusion detection

[181].

A further development in this direction was the Probability of Inclusion SVM (PI-SVM)

by [185], which models the posterior probability of inclusion for each class and rejects

unknown samples based on an appropriate threshold value. This modeling happens

via an RBF kernel SVM using a “1-vs-all" approach, where classification scores from

instances close to the positive class limit are used to fit a Weibull distribution. Instances

are assigned to whichever class their probability of inclusion after Weibull calibration is

highest and above a certain threshold. They are marked as unknown if they are below

the threshold for all candidate classes.

OSR and Deep Learning

Similarly to the calibration of SVM scores, EVT has been used over Deep Neural

Network (DNN) scores to minimize open space risk. Initial approaches for OSR on DNNs

focused on thresholding the softmax output of a network [186], which squeezes the activa-

tions of the last layer between 0 and 1, providing a pseudo-probabilistic output. However,

due to its steep form, the softmax function will not only misclassify an out-of-distribution

sample but also likely assign its prediction a high confidence score, making thresholding

on the softmax score problematic. A possible solution is using a background or garbage

class [187]. Even though this worked well in the benchmarked pedestrian datasets, it

was insufficient for other real-world use cases with practically infinite open-space risk.

A further step is creating a softmax-like layer with an extra class output introduced in

Openmax [188] and aiming to redistribute scores between closed and open-set classes

while retaining the benefits of softmax. OpenMax operates on distances to mean acti-

vation vectors (MAV) exported from the final layer of the DNN before the softmax. After

determining the highest per-class distances, it uses EVT to fit a Weibull distribution on top

of them. After thresholding, it leads to a CAP adhering distribution with rejected samples
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being assigned to the unknown class after the overall final scores are normalized. Unfor-

tunately, OpenMax is constrained by the underlying feature representation of the original

network architecture, which might not necessarily drive toward better representations for

the differentiation of unknown instances.

Data Augmentation

Attempts to directly learn open-set feature representations have been largely based on

data augmentation techniques, based on the notion that training the model on synthetic

open-set instances will produce representations that will remain robust at test time. To

that end, generative adversarial networks (GANs) have been utilized in works such as [189]

and [190]. GANs consist of two antagonistic networks: the generator (which produces

images similar to the training data from a small noise input vector) and the discrimina-

tor (that tries to differentiate between real and synthetic samples). During adversarial

training, the generator becomes increasingly better at fooling the discriminator.

G-Openmax [189] is a GAN-augmented extension of Openmax working under the as-

sumption that open-set classes are usually closely related to the original training classes.

The synthetic instances created as additional input to the Openmax augmented network

training data result from linear latent space interpolations between samples belonging

to different classes. While this technique improves upon OpenMax in handwritten digits

and characters datasets, it does not make a difference in more realistic use cases.

Aiming to improve upon G-Openmax [190], propose Open-Set Recognition with Coun-

terfactual Images (OSRCI), augmenting the training set with counterfactual images. These

are generated by posing GAN latent space traversal as an optimization problem where the

nearest noise vector to a class’s latent representations for whom the generator output

is misclassified, serves as the seed for generating a counterfactual image. This idea is

closely related to the CAP notion. [191] similarly propose an adversarial sample genera-

tion (ASG) method. Finally, OpenGAN [192] uses a vector encoding semantic information

together with inter-class interpolation in the latent space to drive the generation of novel

images.

3.3.2 Semi-supervised Defect Detection

Semi-supervised anomaly detection is a close relative to OSR. It is most useful when

images for the normal class are available with none or very few anomalous samples.

This is very often the case in manufacturing production lines. Therefore, we use various

models to compare their performance to open-set recognition techniques. Methods that

apply to visual inspection most commonly rely on image reconstruction pipelines and

generative models and are usually based on encoder-decoder, GAN, and, more recently,

normalizing flow architectures [193].

The idea behind image reconstruction methods is to train an encoder-decoder-like

architecture to reconstruct only normal images. When defects are seen at test time, their

reconstruction will not be as accurate, leading to a measurable (e.g., using the Struc-

tural Similarity Index) difference between flawless and anomalous image reconstructions.
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Variants of this approach have been applied in use cases such as the inspection of civil

infrastructure [194], the production of hot-rolled strips [195], and railway rail insulator

patches [196]. GANs have also been widely used in this scheme. For instance, [197]

introduced GANomaly, which adds another encoder on top of its encoder-decoder GAN-

based reconstruction pipeline. The output of this new encoder is compared to the latent

space representation of the original encoder to determine whether the image contains a

defect.

An additional approach to semi-supervised visual defect detection is based on cal-

culating appropriate distance-based distributions and thresholds on top of pre-extracted

embeddings from large datasets such as Imagenet. Deep Feature Kernel Density Estima-

tion (DFKDE) [198] follows the pre-trained backbone network with Principal Component

Analysis and Gaussian Kernel Density Estimation, while Deep Feature Modelling (DFM)

[199] also applies PCA followed by fitting a mixture of Gaussian on the features with

lowered dimensionality, as extracted from the flawless class images.

3.3.3 OSR in Manufacturing Defect Detection

Although semi-supervised learning has been widely applied to manufacturing quality

inspection problems, few research works study open-set recognition settings. This is also

partly due to the proliferation of datasets fitting the semi-supervised setting, such as

MV-TEC and Kollektor SDD [198]. Despite the defect detection problem being a binary

classification task in many use cases, open-set recognition can offer more flexibility with

the ability to distinguish between different defect classes and open-set instances. One

such work is presented in [200], which applied a CNN with a distance or clustering-based

approach in an embedded space to a wafer map inspection scenario.

3.3.4 GAN Inversion and Latent Space Traversal

Attempts to control the output of GANs are directly related to OSR data augmenta-

tion methods as they can be leveraged to produce realistic novel image data. This is the

domain of GAN Inversion Research which also enables the targeted traversal of a GAN’s

input space in a meaningful and sometimes interpretable way. The initial goal of GAN in-

version is to map an image that is relevant to the GAN’s training domain, backwards to a

latent space noise vector that when provided as input to the GAN produces an accurately

reconstructed version of the image [201]. Of course, such a task is made more difficult

with modern complicated, but also very realistic GAN architectures such as PGGAN [202],

BigGAN [203] and StyleGAN [204]. Towards that end many supervised, unsupervised and

optimization-based methods have been introduced, each with its unique trade-offs. Su-

pervised methods attempt to learn a mapping from the generated images to their latent

space origin vectors hoping to extend it to non-synthetic images as well, but often intro-

ducing bias towards the sampled synthetic images used to form the training set, while

optimization-based methods try to minimize a reconstruction loss type constraint by a

directed search of the latent space, which however comes at a higher computation cost

[205].
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An important aspect of GAN inversion is also the latent space that is used. The

first choice is the so-called Z-space which is available to every architecture as the space

of possible inputs. However, architectures such as StyleGAN provide more degrees of

freedom and better disentanglement regarding semantic attributes. One such space is

the W-space which is the result of a fully connected MLP applied to the Z-space inputs to

map them to a more disentangled space [204], characteristic of StyleGAN architectures.

W-space vectors are further processed by the AdaIN layers and are fed at different layer

depths to StyleGAN’s generator architecture. These processed per-layer inputs bundled

together form the W+ space [206]. More elaborate latent spaces such as S-space and

P-space have also been introduced [207], [208], but are out of scope for this research.

The end goal of mapping an image inversely to one of the aforementioned latent spaces

is to provide the capability to traverse this latent space in a way that modifies or edits

semantically meaningful attributes of the image [209], [210]. More specifically, the goal

is to find those direction vectors n for which linear traversals with step a in the form

z′ = z + an produce meaningful changes to the output image. These directions can be

discovered both in supervised and unsupervised manners. For instance, [211][212] gather

many latent space vector/image pairs and tries discovering directions relating to features

like color, rotation, or facial attributes using corresponding pre-trained classifiers, which

of course might not be available for all possible required attributes/datasets. On the other

hand [213] attempts to discover high-impact traversals by applying Principal Component

Analysis (PCA) on the latent space. More recent approaches however try to find closed-

form solutions, such as SeFa [12] which makes use of StyleGAN architecture specifics to

approximate the problem in an analytically solvable manner, with substantial gains in

computation time.

3.4 Proposed Method

Our proposed approach follows the example of the Data Augmentation methods for

open-set recognition described in the previous section. Similarly, it adds an “unknown"

class to the problem, for which synthetic images are generated using GAN manipulation.

Compared to approaches such as OSRCI and OpenGAN, which were described in Section

3.3.1, we use a newer and more expressive GAN architecture namely StyleGAN v3. Style-

GAN produces higher-fidelity outputs, which helps when generating images with high

inter-class similarity such as the flawless and interrupted images from our use case. It

also offers more easily manipulable latent spaces and a variety of different methods for

traversing them. Those two aspects are foundational to our approach which is broadly

described in Fig.4.2.

The three basic components of our approach are the Generation of Synthetic Data, the

Voting-based Filtering, and the Training on the Augmented Dataset. The data generation

process uses a pre-trained StyleGAN model (G) fine-tuned on our use-case dataset. The

StyleGAN generator is then passed onto the Semantic Latent Factorization model which

discovers the semantic directions over which the greatest change in the output occurs.

These directions are then traversed and produce synthetic images corresponding to speci-
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Figure 3.3. Basic components and dataflows for the proposed approach

fied distance points on the latent direction lines. Of course, the images produced through

this process might not be novel but instead belong to one of the original classes, as shown

in Fig. 3.4. However, our rationale is that images originating from points that lie on the

edge of the Generator’s learned latent distributions could be sufficiently unrecognizable by

a classifier to be considered novel or “unknown" and thus be used through augmentation

to form a boundary around the distribution that is known during training time.

Figure 3.4. Images generated from SeFa traversal at given distances. The circled images
are retained as out-of-distribution after filtering.

Data Filtering attempts to identify and collect these extreme images, while discarding

those that are easily recognizable. This is achieved through a vote gathered from three

voter classifiers (Vi ). Each of these classifiers is trained on the same data but using

transfer learning from different pre-trained embeddings so that the problem is learned

from different angles. We measure how novel an image is through the disagreement of
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the voter classifiers i.e., the number of distinct different classes predicted for the image.

The images that cause high enough disagreement are then grouped into the “unknown"

class and added to the original training data. A classifier C is trained on the augmented

set with the additional class. We show that by adding these extreme images to the

training set we make the classifier more resilient to novel inputs that might occur during

testing or continuous real-life operation. The rationale behind this type of augmentation

is that “extreme" images form a boundary between the original classes and the open space

helping out-of-distribution inputs fall into the added “unknown" class.

3.4.1 Semantic Factorization for Latent Space Traversal

Semantic Factorization (SeFa) [12] is an attempt at a closed-form solution to the

problem of discovering semantically meaningful latent space traversals. We leverage

this method for our approach since it is a closed-form and therefore computationally

light, method that performs on par with previous learning-based methods as described

in Section 3.3.4. The method is based on the singular value decomposition of a GAN’s

first layer weight matrix. Assuming a generator G mapping inputs from Rd
to the space

of possible images I, i.e. I = G(z), the first layer output G1(z) can be represented as

an affine transformation of the latent space input z: G1(z) = y = Az + b, where A is the

matrix of first layer weights of G. Then G1(z′) for a sample in direction n, z′ = z + an

starting from a randomly selected z and placed at a distance regulated by the constant

a, was expressed by the authors in terms of G1(z) as G1(z′) = G1(z) + Aan, meaning

the difference between the two outputs are dependent only on the weight matrix A and

therefore reducing the search for k most meaningful semantic directions N∗ = {n1, ..., nk}

to the optimization problem:

N∗ = arg max
n1,...,nk

k∑
i=1

∥Ani∥
2

After the use of Lagrange multipliers, the problem is further reduced to finding the

eigenvectors corresponding to the k largest eigenvalues of the matrix AT A.

In our use case, we apply SeFa to different StyleGAN layers that control style attributes

such as pose, texture, etc., and collect the directions of highest change from all layers

together to later produce synthetic images. The reason for choosing this method, apart

from its computational efficiency (closed from - no learning model needed), is its clear way

of discovering directions of steep change. These directions make it possible to produce

samples that lie at the edge of the generator’s capabilities.

3.4.2 Method Description

In this section more details are provided on the proposed approach as specified in

Algorithms 3.1, 3.2 and 3.3, loosely corresponding to the main components in Fig. 4.2.

Algorithm 3.1 describes the process for generating synthetic images. A pre-trained

StyleGAN generator G is provided, as well as a list of layer IDs (LG) that correspond to the

latent spaces that can be explored e.g., Z-space, W-space, etc. The generation process is
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followed per input class belonging to the closed-set classes C. The first step is to use Se-

mantic Factorization (SeFa) to produce the set of most semantically significant directions

and the layers to which they belong. The number of directions used is defined by the

number of semantics NSEM that is passed as a parameter. For each dimension/semantic

a number of NSAM points are sampled from its associated latent space in the StyleGAN

generator architecture to serve as a starting point for a traversal. How far away one can

go from the starting point is bounded by dmin and dmax , while the number of steps s de-

fines the number of intermediate images generated and saved across the chosen semantic

direction. The outputs of the generation procedure are the total images gathered from the

executed traversals.

Αλγοριθµος 3.1: Generate Synthetic Open-set Data

Input: G StyleGAN image generator, C = {c1, c2, ..., ck} closed-set classes, NSEM # seman-

tic directions, NSAM # samples per direction, t truncation factor, (dmax , dmin, s) direction

bounds and step, LG list of layer IDs

Output: IS synthetic traversal images

1: Iout ⇐ {}

2: for c ∈ C do

3: {l, n}i=1:NSEM ⇐ SeFa(Gc,LG), where ∀i, l ∈ LG

4: for j ∈ range(NSEM ) do

5: nz ⇐ dim(nj)
6: G′ ⇐ Gc

lj
7: for k ∈ range(NSAM ) do

8: z ⇐Unz (0, 1)
9: for d ∈ range(dmin, dmax , s) do

10: z′ ⇐ z + d · nj

11: img ⇐ G′(c, z′, t)
12: IS ⇐ IS ∪ {img}
13: end for

14: end for

15: end for

16: end for

Following Fig. 4.2 the next step in the process is the filtering of synthetically generated

images to keep potential candidates for populating the “unknown" class. The filtering is

based on a set of voter classifiers (in our case V1, V2, V3) which are trained on the same

training set as the final classifier C in Fig. 4.2. Each of these classifiers uses different pre-

trained embeddings, namely Resnet50, VGG ’16, and Inception v3 embeddings. For each

sample in the set of synthetic images XS the predicted classes Cpred from each classifier are

gathered and their disagreement is measured as the number of distinct elements in the set

of the predicted classes, namely its cardinality. All images are ranked by being inserted

into a min-heap according to their disagreement score and the top ngen images are kept

for data augmentation. The reasoning behind using voting for filtering is that all trained

classifiers will be able to agree in areas near the training samples but might draw arbitrary

boundaries in the so-called open space, away from the training samples. This means that
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if we filter for images that are embedded in areas where the classifiers disagree, we will get

the open-space images that are needed for populating the newly created “unknown" class.

Of course, the optimal choice of the number and architectures of the voter classifiers may

play a role and are a fruitful direction for future research. As a minimum for introducing

the idea, we chose three significantly different architectures, as many as the training

classes in our problem, so that we can get informative disagreements scores. For example,

had we used 10 voters, it would still be impossible to get a disagreement score higher than

3.

Αλγοριθµος 3.2: Filter Synthetic Open-set Data

Input: DC = {XC, yC} the input closed set dataset, XS the synthetic open set images,

V = {V1, V2, ..., Vn} voting classifiers, ngen augmentation target

Output: IF the filtered synthetic open-set images

1: IF ⇐ {}
2: M ⇐ MinHeap()
3: for Vi ∈ V do

4: Vi ⇐ train(Vi , DC)
5: end for

6: for xi ∈ XS do

7: Cpred ⇐ {}

8: for Vj ∈ V do

9: c ⇐ Vj(xi)
10: Cpred ⇐ Cpred ∪ {c}
11: end for

12: Di ⇐ card(Cpred)
13: M ⇐ M ∪ {i, Di}

14: end for

15: for k ∈ range(ngen) do

16: mk , dk ⇐ argmin
m∈M

[D(m)]

17: M ⇐ M \ {(mk , dk)}
18: IF ⇐ IF ∪ {mk}

19: end for

Finally, Algorithm 3.3 puts together all steps into a process of assembling an aug-

mented training set that will render the learned classifier robust to novel defect types

that have not yet occurred in its training set. Apart from the parameter used to call the

generation and filtering procedures outlined previously, several parameters have to be set

to ensure the right number of generated images is produced. We have already seen NSEM

as the number of top semantics extracted by SeFa. This parameter is the first one need-

ing to be fixed and is at the moment determined empirically by visual inspection of how

many directions produce images that differ substantially as the distance from the seed

sample increases. The maximum traversal distance d is also chosen in the same manner.

Afterwards, parameters MR1
and MR2

should be chosen. These “redundancy multipliers"

ensure that a sufficient number of images are generated so that after filtering the aug-

mentation target can be reached and the augmented data is sufficiently novel concerning
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the training data. Thus, data generation is seen as a lossy process that will not generate

many truly novel images. In our use case, we observed around 2-3% of generated images

as having the highest disagreement score, so we generated 40-50 times the size of the

original data to finally achieve a balanced training set of closed- vs. open-set samples. MR1

is used as a multiplier for the number of samples per direction and MR2
for the number of

images generated from each per-sample traversal. The aim is to have MR1
·MR2

· card(DC)
images after generation so that we end up with approximately card(DC) (the size of the

closed-set training set) synthetic images after filtering. These final synthetic images will

be grouped into a new “unknown" class and added to the original training set to perform

the training of the robust classifier.

Αλγοριθµος 3.3: OSR method based on Data Augmentation

Input: C the CNN used for classification, G,LG the pre-trained StyleGAN generator and

its layer IDs, C = {c1, c2, ..., ck} closed-set classes, O = {ck+1} the open-set class, DC =
{XC, yC} the input closed set dataset, V = {V1, V2, ..., Vn} voting classifiers, MR1

, MR2
the

redundancy multipliers, NSEM # semantic directions for generation, d maximum traversal

distance, t data gen. truncation factor

Output: C′ the CNN trained on the augmented dataset

1: G′ ⇐ train(G, DC)
2: num_samples⇐

MR1
·card(DC)
NSEM

3: step ⇐ 2d
MR2

4: IS ⇐ generate(G′,C, NSEM , num_samples, t, (d,−d, step),LG)
5: IF ⇐ filter(DC, IS,V, card(DC))
6: Xaug, Yaug ⇐ (IF , {ck+1}

card(DC))
7: C′ ⇐ train(C, {X ∪ Xaug, Y ∪ Yaug})

3.5 Results

3.5.1 Experimental Setup

To compare our methods against some of the most promising ones from the related

work in Section 3.3, we looked across four metrics: the Area Under the Receiving Op-

erating Characteristic (AUROC) curve, the F1-Score, and the Binary Recalls from the

perspective of the defect class for closed-set and open-set defects, as well as their av-

erage. For evaluation, we chose binary metrics to have a uniform comparison between

OSR and Semi-supervised methods, the latter not distinguishing between specific defect

classes. This also aligns with our use case, where samples marked as “defects" or “un-

known" will both be examined by human operators before being discarded, so the actual

decision is whether a given sample is OK or needs a human check. The recall metric

for defect classes is particularly important since it indicates what percentage of defects

move through the system unnoticed by being marked as flawless. Regarding this metric,

we also distinguish between open and closed set classes to allow us to discover potential

trade-offs between the two types of classes. Finally, the F1-score and AUROC metrics

showcase whether the models have a reasonable performance in the flawless class and
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overall problem. For instance, some methods might achieve perfect recall by marking too

many flawless images as defects, making them inefficient for a practical setting, since

they will substantially increase the work of human operators, especially given that the

majority of products passed through the system are not expected to be defective.

Moreover, for OSR classifiers operating on pre-extracted features, we compare across

three of the most prevalent CNN architectures, namely Resnet50, VGG ’16, and Inception

v3, since the characteristics of the feature space greatly influence the models’ discrimi-

nation capabilities. The baseline for our approach is a Multi-Layer Perceptron (MLP) op-

erating on one of the above embeddings in a one-vs-all fashion. Additional baselines are

provided through well-established anomaly detectors, namely One-Class SVM (OCSVM)

[183], Isolation Forest (IF) [214] and Local Outlier Factor (LOF) [215].

Finally, we present a more fine-grained view of the performance of the most promising

classifiers from each method category in Fig. 3.6 to examine the influence of each new

class’s features on the underlying algorithm’s uncertainty profiles. We also choose the F1

metric as the ultimate performance indicator, containing both open- and closed-set per-

formance information, and compare our approach against the most promising approaches

including a statistical significance test.

The results are the average outcomes of 30 independently seeded runs for each mea-

surement. They were performed in an environment with 4 CPU cores of 2.3GHz, 16GB of

RAM, and access to an NVidia K80 GPU.

3.5.2 Examined Methods

As presented in the results section, we divided our compared methods into three cate-

gories according to their implementation requirements. The first group (I-VII) is methods

operating on vector data for which we used pre-extracted features from Convolutional

Neural Networks (CNN) trained initially on Imagenet (Resnet50, VGG16, and Inception

v3). The second group consists of semi-supervised methods that learn only from the non-

defective (VIII-X), followed by data augmentation techniques (XI-XII). Next, we describe

how each of these methods has been applied to our use case:

I. MLP We used a single hidden layer architecture with 100 neurons leading to a 3-class

classification head, both for the open and closed-set cases, and the ’adam’ optimizer.

We assessed the performance in both open and closed set cases based on whether

a defective instance was assigned to any defect class.

II. SVM Despite being categorized as an unsupervised one-class classification method,

OCSVM allows a small proportion of outlier instances in training, corresponding to

the parameter ν. We fill out this proportion using the known defect instances in the

training set. Otherwise, OCSVM works like a usual SVM but only forms a boundary

for separating the good class from the rest of the instances. In our experiments, we

used ν = 0.3 and an RBF kernel.

III. Isolation Forest The idea behind isolation forests is the linear splitting of the fea-

ture space by individual trees until a point is “isolated" in a tree leaf. The anomaly
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score assigned by the forest is an accumulation of how quickly each tree manages

to separate the anomaly from the rest of the dataset. For the training of the IF we

additionally use closed-set defect samples similar to OCSVM, setting the contam-

ination factor (which again corresponds to the proportion of total defects to good

images equal to 0.3). We also set the number of isolation tree estimators to 100.

IV. Local Outlier Factor A density-based anomaly detection method that is again trained

on both the good and defect classes using a contamination factor of 0.3. The main

idea behind LOF is that it compares the local point density of a given point to that

of k of its neighbors and labels those with lower relative densities as anomalies. We

chose k = 20 neighbors based on the Euclidean distance.

V. W-SVM As mentioned in the Related Work section, W-SVM is an ensemble of one-

class and multi-class SVMs, whose scores are combined and calibrated using the

Weibull distribution according to EVT. We used an RBF kernel and a 0.1 probability

threshold for rejecting samples as an open set for the experiments.

VI. PI-SVM A more sophisticated extension of W-SVM is trying to model the probability

of inclusion for each class using only in-class samples and EVT. The model was

parameterized in a similar way to W-SVM.

VII. OpenMax OpenMax operates on the penultimate layer of a DNN to accommodate

an “unknown" class and recalibrates scores using EVT. We used a tail size of ten

samples to fit the Weibull distribution and an α = 3 corresponding to the total

number of classes whose scores are recalibrated. In our case, we have very few

(three) original classes, so we recalibrate all of them. For the DNN, we use the same

MLP on top of pre-trained embeddings as above.

VIII. GANomaly A short description of functionality is provided in the Related Work.

We used a latent vector size of 100 dimensions along with wadv = 1, wcon = 50,

and wenc = 1 for the coefficients of the adversarial, contextual and encoder loss

coefficient defined in [197].

IX. DFKDE This method consists of a backbone network to extract deep features followed

by Principal Component Analysis (PCA) and Gaussian Kernel Density Estimation

([198]). In our use case, we use the 16 principal components explaining the most

variance along with the euclidean distance and a 0.5 score threshold for anomaly

classification.

X. DFM This approach tries to fit a Gaussian distribution or mixture of Gaussians to a

DNN’s features after a DNN has been trained on a specific classification task and

PCA has been applied to the feature vectors to reduce their dimensionality and thus

improve computational speed. ([199]). In our use case, we train the model only on

good images and use a Resnet50 backbone with a 0.97 variance retaining threshold

for the PCA and the feature reconstruction score to rank anomalies.
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XI. OSRCI Data augmentation through counterfactual images described in the Related

Work. In terms of parameters, we followed [190] using a 20-dimensional latent

space and a classifier architecture of two convolutional layers followed by two fully

connected layers.

XII. OpenGAN Similar technique to OSRCI (see Related Work), using latent space inter-

polations between classes. A Resnet18 backbone is used for the feature extractor

and Gaussian Kernel Density estimation for the final classifier.

Characteris-

tics

Methods

Pre-

Extracted

Features

Multi-

class

Synthetic

Data

#Hyper-

parameters

Memory

Usage

Requires

GPU

Execution

Time

MLP ✓ ✓ Low Low Low

One-class SVM ✓ ✓ Low Medium Low

Isolation Forest ✓ ✓ Low Low Low

Local Outlier Fac-

tor

✓ ✓ Low Low Low

WSVM ✓ ✓ Medium High Low

PI-SVM ✓ ✓ Medium High Medium

OpenMax ✓ ✓ Medium Medium Low

Ganomaly High Medium ✓ High

DFKDE Medium Medium Low

DFM Medium Medium Low

OSRCI ✓ ✓ High Medium ✓ High

OpenGAN ✓ ✓ High Medium ✓ High

Table 3.1. Qualitative comparison summary of the characteristics of the examined meth-
ods, according to their provided functionality, implementation and computational infrastruc-
ture requirements.

A comparison summary of the implemented methods is shown in Table 1. In short,

methods requiring pre-extracted features are low in terms of computational demands and

hyperparameters, with the exceptions of SVM-based methods that need to load the whole

dataset in memory. Semi-supervised methods are slightly more intensive computationally

and in terms of hyperparameters but offer no multi-class functionality. An exception is

Ganomaly which is closer to the data augmentation methods with high computational

and hyperparameter requirements due to the adversarial training. Finally for pure data

augmentation methods the creation and storage of the synthetic data should be taken

into account.

3.5.3 GAN Training

To train the StyleGAN v3 generator used in our approach we had to choose between

training a conditional model that would be able to generate images from all three classes

and training three individual, unconditional models for each class. As shown in Fig.

3.5 the latter option yielded lower Frechet Inception Distance (FID) scores, at the cost,
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however, of training three models instead of one. In the training process for each network

we followed the guidelines provided in [174] for smaller datasets, based on finetuning the

pre-trained network on FFHQ with a 256x256 image size.

Figure 3.5. Progression of FID while training candidate generator models. “all_classes"
is the class-conditional model. The double and interrupted class models start from a pre-
trained model of the “flawless" class for k_img=80.

Moreover, due to the class imbalance, we first trained a model on the majority class

(flawless) for 80k images. This model was then fine-tuned for all three classes until

reaching a minimum (dip) in the FID score. While the conditional model achieved a

minimum FID of 75.54, the individually trained models were able to reach FID scores

below 40, by retaining FID improvements over more iterations. Training three models

instead of a conditional one is of course more computationally expensive and could be

prohibitive for problems with many classes. However, it was particularly beneficial in our

use case where the high inter-class similarity requires lower FID scores.

3.5.4 Hyperparameter Tuning

To ensure that all comparisons and proposed methods were sufficiently tailored to the

presented use case, hyperparameter tuning using grid search was performed to select the

best hyperparameters from empirically sensible intervals as shown in Table B1.

For the more computationally expensive Deep Learning methods such as OSRCI and

OpenGAN, we parameterized them following the given guidelines for parameterization for

the datasets CIFAR-10 and Flowers102 respectively. For the proposed approach using

StyleGAN v3 and Semantic Factorization, most hyperparameter tuning was focused on

the number of images generated and the length of the semantic directions (max_dist). The

number of semantics and the images generated per semantic traversal were both empiri-

cally set to 10. The chosen number of semantics represents the most important semantics

as outlined by SeFa, which we threshold to include those that are visually meaningful.

The number of images per traversal is empirically not that important since usually the
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Method Parameter Values Chosen

MLP hidden layer size [50, 100, 250, 500] 100

One-class SVM
kernel [rbf, poly-3, poly-5] rbf

nu [0.1, 0.2, 0.3, 0.4, 0.5] 0.3

Isolation Forest
estimators [50, 100, 250, 500] 100

contamination [0.1, 0.2, 0.3, 0.4, 0.5] 0.3

Local Outlier Factor
neighbors [10, 20, 50, 100] 20

contamination [0.1, 0.2, 0.3, 0.4, 0.5] 0.3

PI-SVM
kernel [rbf, poly-3, poly-5] rbf

P-threshold [0.05, 0.1, 0.15, 0.2] 0.1

WSVM
kernel [rbf, poly-3, poly-5] rbf

P-threshold [0.05, 0.1, 0.15, 0.2] 0.15

OpenMax
tail size [10, 25, 30, 50] 10

alpha [1, 3, 5, 10] 3

Ganomaly

latent dim. [50, 100, 250, 500] 100

w_bec [0.5, 1, 10, 50] 1

w_rec [0.5, 1, 10, 50] 50

w_enc [0.5, 1, 10, 50] 1

DFKDE
principal components [8, 16, 32, 64] 16

anomaly threshold [0.4, 0.5, 0.6] 0.5

DFM
PCA threshold [0.9, 0.91, ..., 0.99] 0.97

anomaly threshold [0.4, 0.5, 0.6] 0.5

OSRCI latent dim. [10, 20, 50, 100] 20

OpenGAN

num_images [250, 2500] 250

iters [60000] 60000

norm [batch, instance] instance

Proposed

mult_coeff [1.5, 2, 3, 4] 4

max_dist [12, 15, 20] 15

num_voters [3, 9, 15] 3

Table 3.2. Hyperparameter selection intervals.

remaining images after filtering occur at the edges of the traversals and will be gener-

ated no matter the number set. We also considered different numbers of voters which

did not impact our current voting scheme based on disagreement, however, examining it

in conjunction with alternative voting schemes could lead to optimizations regarding the

number of required synthetic images before filtering and is a fruitful direction for future

research.

3.5.5 Experimental Results

Tables 1 to 3 show the results for pre-extracted feature-dependent methods across

the three base networks. An immediate observation is that Resnet50 features achieve

lower AUROC and F1 scores for most classifiers, with few exceptions, such as the Lo-

cal Outlier Factor. On the other hand, it is surprising that the baseline method with

VGG embeddings scores over 95% on those metrics and achieves a 0.9208 open-set recall

without using open-set mechanisms. Although explaining the differences attributed to

different base networks is difficult due to the complexity of their architectures, we spec-
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Resnet

Method AUROC F1 Rc Ro Ravg

MLP 0,7414 0,8462 0,8800 0,2386 0,5593

One-class SVM 0,8353 0,7924 0,6245 1,0000 0,8122

Isolation Forest 0,8764 0,8213 0,6920 1,0000 0,8460

Local Outlier Factor 0,9121 0,8451 0,7285 1,0000 0,8642

WSVM 0,8596 0,7659 0,7385 0,8274 0,7830

PI-SVM 0,6709 0,8375 0,8628 0,1684 0,5156

OpenMax 0,6973 0,7737 0,9165 0,5834 0,7500

Proposed 0,9952 0,9650 0,8670 0,9772 0,9221

Table 3.3. Evaluation of OSR methods over pre-extracted Resnet50 features, including
AUROC, F1-score, Binary Recall on the closed set classes (Rc), and Binary Recall on the
open set classes (Ro) and lastly Ravg =

Rc+Ro
2

.

ulate that it could be explained by the difference in their receptive fields [13]. Resnet50

and Inception v3 have larger receptive fields than VGG16 which could make them more

efficient in recognizing large objects but could also lead them to miss small details such

as those found in interrupted prints or small discolorations. These facts make evident the

importance of trying out different types of classifier embeddings when trying to optimize

open-set performance. For this reason, we chose the three main, and most common in

the literature, approaches for building CNNs namely Resnet, VGG, and Inception, which

also have receptive fields of differentiated sizes, that could lead to significantly different

results.

In general, some of the best-performing combinations are VGG with the baseline MLP,

PI-SVM, W-SVM, and OpenMax and Inception with PI-SVM and OpenMax. Another in-

teresting observation is that one-class classifiers achieve perfect recall Ro on open-set

instances irrespective of the underlying embeddings. However, this comes with a signif-

icant decrease in closed-set recall Rc. Across all cases the embeddings seem to have a

larger influence than the open-set mechanisms, as, for instance, highlighted by PISVM

achieving a very high open-set recall on VGG embeddings (95.56%) but performing very

low on Resnet50 embeddings (16.48%). In comparison, the proposed method shows con-

sistency across different embeddings and between closed- and open-set recall, while at

the same time maintaining high performance in AUROC and F1 scores, meaning that few

flawless products will end up falsely marked as potential defects.

Table 4 contains results from semi-supervised and data-augmentation-based meth-

ods. Semi-supervised methods are trained on a subset of the flawless class instances

and evaluated over a test set with data from all classes. In this case, all classes can be

considered open-set since they are unknown at training time. However, we still evaluate

it separately in defects of the original dataset and on simulated open-set defects. Between

the two, there is a marked difference in performance for all methods, which we attribute

to the approximate nature of simulated defects. Across all methods, DFM has the high-

est values across all metrics. We note that semi-supervised methods achieve a lower

closed-set recall (Rc) than the methods presented in Tables 1-3, which is expected since
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VGG

Method AUROC F1 Rc Ro Ravg

MLP 0,9777 0,9633 0,9320 0,9208 0,9264

One-class SVM 0,8767 0,8256 0,7060 1,0000 0,8530

Isolation Forest 0,8731 0,8598 0,8607 0,8664 0,8635

Local Outlier Factor 0,9090 0,8430 0,7095 1,0000 0,8548

WSVM 0,9022 0,8088 0,8122 0,9631 0,8877

PI-SVM 0,9902 0,9533 0,9111 1,0000 0,9556

OpenMax 0,9630 0,9389 0,9707 0,8932 0,9320

Proposed 0,9965 0,9796 0,9560 0,9952 0,9756

Table 3.4. Evaluation of OSR methods over pre-extracted deep VGG ’16 features.

Inception

Method AUROC F1 Rc Ro Ravg

MLP 0,9325 0,9117 0,8695 0,6754 0,7724

One-class SVM 0,8771 0,8258 0,7080 1,0000 0,8540

Isolation Forest 0,9051 0,8389 0,7565 1,0000 0,8783

Local Outlier Factor 0,9149 0,8498 0,7030 1,0000 0,8515

WSVM 0,9106 0,6797 0,9200 0,8856 0,9028

PI-SVM 0,9834 0,9577 0,9040 0,9856 0,9448

OpenMax 0,9409 0,9289 0,9500 0,8464 0,8982

Proposed 0,9954 0,9752 0,9490 0,9884 0,9687

Table 3.5. Evaluation of OSR methods over pre-extracted Inception v3 features.
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Method AUROC F1 Rc Ro Ravg

Ganomaly 0,8242 0,8930 0,6100 0,9460 0,7780

DFKDE 0,9848 0,7401 0,7700 0,9720 0,8710

DFM 0,9909 0,8347 0,8500 0,9800 0,9150

OSRCI 0,7884 0,6813 0,9900 0,8540 0,9220

OpenGAN 0,9399 0,8858 0,8483 0,6860 0,7672

Proposed + VGG 0,9965 0,9796 0,9560 0,9952 0,9756

Table 3.6. Evaluation of semi-supervised and data-augmentation-based methods

closed-set defects are considered by these methods as “unknown" at training time. This

could also explain the lower F1 scores. However, their AUROC scores tend to be higher

(e.g., 98.48% for DFKDE and 99.09% for DFM), possibly due to their better-calibrated

probability outputs.

In regards to methods based on data augmentation, OSRCI, shows high defect recall

scores with lower AUROC and F1, hinting at a potential marking of many flawless in-

stances as defects. On the other hand, OpenGAN is more stable across these metrics

despite slightly lower recalls. Overall, the inability of these more sophisticated methods

to outperform previous ones could be attributed to the difficulty of generating differen-

tiated data for use cases where instances from different classes are very similar to each

other such as defect detection. The relative improvement shown by the proposed method

could be attributed in part to StyleGAN’s higher expressive and generalization capabili-

ties compared to earlier GAN architectures, but also to our novel voting-based filtering

mechanism.

To also shed more light on the open-set performance we present conducted measure-

ments using a fine-grained boxplot of the class-specific accuracies, against 5 selected

high-performing methods representing each method type (semi-supervised, SVM-based,

data augmentation, etc.) (Fig. 3.6). We note that horizontal and vertical flips and dis-

colorings are well-recognized by all top-performing methods. In line defects and missing

letters, we see MLP and Openmax on VGG features and OSRCI having more difficulties

as well as more variable results. Generally from the existing OSR approaches, PISVM

on Inception features performs more stably across all classes, on par with DFM and the

proposed approach.

Finally, Table 5 compares the F1-score and average recall of the most promising

methods, also evaluating the statistical significance of their differences to the proposed

approach using a paired t-test. We chose the F1-score as the ultimate measure of com-

parison since it is evaluated on a set containing both “novel" and “known" examples, that

could realistically occur in a production environment, and is also less sensitive to class

imbalances. In contrast to the recall metrics presented, the F1-score includes information

on the methods’ performance on flawless images. As an illustrative example, a hypothet-

ical method marking every image as a defect would have perfect open-set and closed-set

recalls, but its F1-score would be low due to every flawless image being misclassified.

The F1-score is therefore also evaluated as an attempt to provide a more balanced and
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Figure 3.6. Box plot of open-set class-specific accuracy scores for highest performing
methods per type.

all-around picture of the methods’ performance.

In summary, it is important to observe how the three main challenges of automated

visual quality inspection, identified in the introductory section, manifest themselves

throughout our experimental process and how they are addressed. Firstly, the lack of

collectible defect data is evident in the number of interrupted and especially double print

images in the examined dataset. Although we do not address the resulting class imbal-

ance directly, we can observe that methods that have been pre-trained on a large and

diverse dataset (e.g., StyleGAN trained on a dataset of celebrity faces, Resnet50 trained

on Imagenet, etc.) can cope with class imbalance in the “known" classes. Class imbal-

ance has also been taken into account when evaluating, both by generating equally many

“unknown" defects as “known" ones and by using the Recall metric which is not affected

by the majority of images belonging to the flawless class. Secondly, the high inter-class

similarity proved especially problematic for the data augmentation and semi-supervised

methods, which most likely had trouble either generating sufficiently differentiated de-

fects or recognizing very small defects without being given training samples. Our choice

of StyleGAN as a generator was key in tackling this issue, as due to its more sophisticated

architecture it could generate images with small differences with high fidelity. Last but not

least, a satisfactory solution to the third challenge, the robustness to novel defects, was

achieved, however, the improvement would not have been possible without considering

and successfully addressing the two previous challenges.
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Method F1-score p-value Ravg p-value

DFM 0,8347 0,0011 0,9150 0,0187

OpenMax + VGG 0,9389 0,0005 0,9320 0,0004

PISVM + VGG 0,9533 0,0011 0,9556 0,0158

PISVM + Inception 0,9577 0,0024 0,9448 0,0006

MLP + VGG 0,9633 0,0029 0,9264 0,0144

Proposed + VGG 0,9796 — 0,9756 —

Table 3.7. Comparison against the best performing OSR methods over their F1-score and
Recall averaged from both open- and closed-set samples with statistical significance scores.

3.6 Summary

In this work, we introduced a novel data-augmentation method to make defect recog-

nition classifiers more robust against novel defects unseen in the training set. Applied to

a real-life manufacturing use case along with methods from the relevant literature ranging

from SVM-based approaches to semi-supervised methods it achieved high performance as

well as consistency across different classifier embeddings. This could be attributed to the

fidelity and variability of synthetic images that can be generated from StyleGAN as well as

to the steerability of its latent space. An important feature is the treatment of novelty data

generation through latent space traversals as an imperfect process that needs to undergo

a filtering step. To that end, a simple voting scheme was introduced to isolate images

that cause high confusion between voting classifiers and add them to the augmented

dataset in the form of an “unknown" class. Despite its high performance, the proposed

method is still subject to improvements. Its main drawbacks are the high training times

required by StyleGAN, even when transferring knowledge from a pre-trained model, as

well as the large amount of redundant data generated, which is then discarded by the

filtering process. These open up two avenues for future work, namely the investigation of

more lightweight but still steerable GAN architectures and the more efficient extraction of

confusing samples from the latent space.
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Chapter 4

Robust Novel Defect Detection with Neurosym-

bolic AI

4.1 Background

Quality inspection in production systems is advancing with digitization, integrating

sensors and AI algorithms. Visual inspection, crucial for tasks like painting, benefits

from AI techniques in image processing and computer vision. However, fully automating

visual quality inspection faces significant challenges. In our previous work on assessing

brand prints on finished shaver shells [17], we identified three main challenges: insuf-

ficient training data, high visual similarity between flawless and defective products, and

unanticipated defects during operation. Traditional methods like Convolutional Neural

Networks (CNNs) often fail in these applications due to their dependency on extensive

labeled data and their limited ability to handle novel defect types. For instance, [11] high-

lighted that sometimes unsupervised and semi-supervised anomaly detection methods

missed defects due to the variability in defect appearance and position, demonstrating

the limitations of traditional machine learning models in real-world manufacturing sce-

narios. Additionally, it has been shown that achieving robustness remains a significant

challenge for conventional methods, which are not designed to identify novel samples even

when they result from small image corruptions to known samples [10]. In this section,

we propose a Neurosymbolic approach to defect detection, which also proves to be quite

robust to novel defects.

The aim of Neurosymbolic AI [14] is to fuse two existing branches of AI, namely Sym-

bolic AI (or sybmolism) and Statistical Machine Learning (or connectionism), so as to

combine the benefits of both approaches into the next generation of AI [15]. Symbolic

AI relies on hand-crafted rules expressed through Logic Formulas and Ontologies, while

Statistical Machine Learning is mainly characterized by neural networks that learn from

data. While Symbolic AI makes automated decisions fast and explainable, it requires

significant effort from domain experts to gather and codify the symbolic knowledge con-

sisting of entities, relationships and rules governing those relationships. Additionally, the

resulting systems handle ambiguous or noisy, real-world data inflexibly. On the other

hand, bottom-up statistical approaches, such as (Deep) Neural Networks, deal with these

problems quite well having found substantial real-world application, most notably in the
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domains of Computer Vision and Natural Language Processing. Nevertheless, they come

with their own set of issues, such as opaqueness to their inner workings and therefore

lack of explainability and trustworthiness, lack of robustness to adversarial attacks and

unknown inputs [16][17], as well as data inefficiency and sensitivity to data imbalances

[4]. In this work we use Neurosymbolic AI to increase the generalizability of a statistical

ML classifier, and make it more robust to novel inputs (i.e., novel production defects).

Specifically we take advantage of the infusion of symbolic rules via Logic Tensor Networks

to enhance a fine-grained problem-specific supervised classifier with the capabilities of a

more general unsupervised classifier. While alone the unsupervised classifier generates

many false positives, its combination with the original classifier through Neurosymbolic

AI results in increased open-set recognition capabilities.

4.2 Related Work

4.2.1 Neurosymbolic AI

Neurosymbolic AI has been applied in various application scenarios, introducing new

learning capabilities in different domains, such as common-sense reasoning [216], visual

scene understanding [217][218] and scientific Discovery [219]. While there exist many

taxonomies of Neurosymbolic AI methods, the most notable and extensive one being [220],

the two categories we consider most fundamental are the ones described in [221], namely

Learning for Reasoning and Reasoning for Learning.

The first group of methods are extensions of existing symbolic reasoning methods that

utilize empirical machine learning either to make sense of unstructured data or to speed

up their reasoning process. For instance, Neuro-Symbolic Concept Learner (NS-CL) [222]

uses a CNN-based visual perception module followed by a semantic parsing module and

a symbolic reasoning module to make sense of visual scenes. Additionally, there are

approaches that use statistical machine learning methods to automate the building of

logical rules in a data-driven manner, such as methods extending Markov Logic Networks

[223] [224] and differentiable Inductive Logic Programming [225]. In the Natural Language

Processing (NLP) domain, IBM toolkit’s Neural Unification for Logic Reasoning over Natural

Language [226] uses transformers to help detect logical contradictions between a natural

language corpus and a natural language query.

The second group of the taxonomy, Reasoning for Learning, uses neural classifiers as

the basis for learning, that are assisted through the incorporation of symbolic knowledge,

either in the form of knowledge transfer ([227], [228]) or in the form of constraining/reg-

ularization. Two important constraining approaches that are very relevant to this work

are Logic Tensor Networks (LTN) [18] and the Symbolic Probabilistic Layer (SPL) [229].

The Semantic Probabilistic Layer (SPL) introduces a fully independent layer that can be

added on top of an existing network architecture (e.g., Resnet50) enforcing external logical

constraints. In this layer simple logical formulas are encoded as Ordered Binary Decision

Diagrams (OBDDs) which in turn are transformed to differentiable Probabilistic Circuits

(PCs). It is important to note that even though this transformation is calculated quickly in
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practice, its worst case can be exponential. The incorporation of this final layer leads to a

readjustment of the conversion of logits to probabilities so that, for instance, prohibitive

logical constraints output a pseudo-probability of 0, while the rest of the probability mass

in readjusted. SPL guarantees strict consistency with the symbolic rules and has low

sample complexity. However, it only works with simple logical propositions and does not

incorporate first-order logic.

Logic Tensor Networks (LTN) is one of the most established loss-based regularization

methods. LTNs use grounding, a technique that maps first-order logic propositions to

real-valued tensors and corresponding mathematical operations. These tensors have to

be of different sizes depending on the input datatype and their elements are between 0 and

1 corresponding to their truth value (similar to fuzzy logic). The end result of this process

is a real-valued equation of tensor variables (these depend on the algorithm inputs or on

features of the inputs) whose result is the degree of truth of the initial logical proposition.

This new equation is differentiable and can be used as a term in the loss function that

will guide weight updates in a Neural Network during back-propagation. LTNs have been

used in a variety of real-life domains such as manufacturing [230] and maintain high

accuracy also guaranteeing a high degree of satisfiability of the constraints as well as

lower sample complexity. However, complete satisfiability of the symbolic constraints is

not guaranteed.

Specifically in the domain of defect detection, Neurosymbolic AI has been used to

improve transparency and explainability in cantilever beam defect detection [230] and

to drive diagnosis of automotive production faults [231]. In [232] convolutional neural

networks perform localization and recognition on video inputs gathered from real-life food

product labelling production lines. Their predictions are then used by a knowledge-base-

aided symbolic component to support decision making over the state of the production

system. In our work we will be applying Neurosymbolic AI with a different but comple-

mentary purpose, namely to enable neural network classifiers to expand their capabilities

to novel defects.

4.2.2 Open-set Recognition

In the proposed approach we will use Neurosymbolic AI as a means towards Open-

Set Recognition (OSR). OSR is about classifying instances in the open-set, meaning the

set of classes the classifier has not seen any instances of during training. Contrary,

the closed-set contains classes the classifier has been trained on. The OSR problem

was formally defined by [233] as an attempt to minimize misclassification risk in the

open space. There is a variety of OSR implementations, such as Statistical Methods

(e.g., WSVMs [182]), Semi-supervised Deep Learning (e.g. Deep Feature Modelling (DFM)

[198]), but broadly the OSR problem can also be addressed by general anomaly detection

techniques (e.g., Isolation Forest). In the context of defect detection it has been mostly

applied in the semiconductor industry. For instance, in [200], a CNN with a distance and

clustering-based approach was applied to a wafer map inspection scenario to detect wafer

map products deviating from the training set. Also applied on wafer maps, Optimal Bin
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Embedding [234] relies on extracting meaningful embeddings that aim to increase cluster

quality and differentiation between the open and closed sets. Another approach based

on specialized embedding extraction is introduced in [235] which uses a Submanifold

Sparse Convolutional Network architecture to extract a latent representation serving as

input to a Gaussian Mixture Model (GMM) outlier detector. We address a very similar

Open-set recogntition problem, but for data-scarce scenarios that need to leverage OSR

techniques over the use of predefined embeddings (e.g., Resnet50) with transfer learning.

The advantage of addressing such scenarios is the lower demands on data collection in

a domain where collecting sufficient defects is difficult and detrimental to the ramp-up

time of a Visual QA system on new products.

Existing solutions in Neurosymbolic AI and Open-set Recognition (OSR) offer valu-

able capabilities for defect detection but also exhibit notable limitations(also see the Ex-

perimental Results, Section 4.4.2). Neurosymbolic methods such as Logic Tensor Net-

works (LTNs) [18] and the Symbolic Probabilistic Layer (SPL) [229] introduce symbolic

constraints to enhance trustworthiness and safety, yet they rely heavily on well-defined

logical rules which, if strictly enforced such as in SPL, would struggle with ambiguous

or noisy data common in manufacturing. Similarly, traditional OSR methods, including

One-Class SVM (OCSVM) and Weibull-calibrated SVM (WSVM) [182], aim to minimize

misclassification risk but often fail in dynamic environments due to high false positive

rates when applied to complex visual data. Unsupervised methods like Isolation Forest

(IF) [236] are effective in identifying novel defects but tend to produce many false positives

[19], which might be exacerbated in cases such as ours due to the lack context-specific

knowledge to differentiate benign variations from actual defects. Semi-supervised meth-

ods such as Deep Feature Modeling (DFM) [198], although effective in recognizing known

defects, often require extensive fine-tuning and are less effective with limited labeled

data. These limitations underscore the need for innovative approaches, like the proposed

Neurosymbolic AI framework, which combines the strengths of symbolic reasoning and

statistical learning to improve defect detection robustness and generalizability.

4.3 Methods

4.3.1 Problem Setting

The specific setting of the real-life problem we are examining regarding the quality

assessment of shaver shell prints is as follows. A camera system is placed on the produc-

tion line and specific measures are taken to enforce uniform lighting conditions to avoid

shadowing and gloss. The images taken are saved in a local server running a machine

learning defect recognition model. The outputs of this model are "GOOD" and "Maybe

Defect". "GOOD" products are moved on to the next production stage, although they can

be occasionally sampled for manual Quality Assessment (QA). Potential Defects are sent

to human operators to finally determine if the product is indeed defective or just a false

positive. As it will be explained in the results section this system is designed to be safe

in terms of defect recall, meaning it is very strict in what constitutes a "GOOD" product,
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since products marked as such can pass through QA mostly without human supervision.

This also leads to an increased number of false positives which are OK, as long as they do

not over-burden human operators. A diagram detailing the above is shown in Fig.4.1(a).

(a) QA workflow (b) Robustness problem

Figure 4.1. Figure 1(a) is a high-level depiction of the visual quality assessment workflow.
Potential defects identified by the AI are also examined by a human before being discarded,
while products labelled "GOOD" by the AI pass QA. Figure 1(b) shows how the AI system
using supervised learning based on Resnet50 runs into issues when encountering novel
defects that, despite looking more severe, are incorrectly labelled.

The challenge in this setting is collecting enough defect images to create the training

dataset. As all images come from real-life production and defects are usually rare, not

all types of possible defects can show up during collection. Therefore, the system should

also be robust to novel defects it has never seen before. However, as we realised using

a vanilla Resnet50 Multi-Layer Perceptron (MLP) classifier this is not always the case.

As illustrated in Fig.4.1(b), the system learns to recognize small interruptions that have

many samples in the training set. Nevertheless, when faced with a much larger and more

obvious, but otherwise novel interruption such as a missing letter, it fails to recognize

it. This is what led us to investigate augmenting the ML algorithm with techniques

such as One-class Learning, Open-set Recognition, Semi-supervised Learning and most

importantly Neurosymbolic AI and Logic Tensor Networks.

4.3.2 Why Logic Tensor Networks?

By using Neurosymbolic AI, and specifically LTNs, for the problem setting described

in Section 4.3.1, our ambition is to combine the benefits of unsupervised learning meth-

ods with the specificity of supervised methods. While the former can generalize to any

anomalous output, the latter can learn very well how to recognize the particular defects

that occur in the training dataset. As mentioned in Section 4.1, visual defect detection

and classification is a problem with very particular challenges, which obstruct its full

automation. Additionally, expert knowledge about what constitutes a defect cannot be

fully encoded into clear-cut rules, which is another hindrance to symbolic and Neurosym-

bolic approaches. However, a Neurosymbolic approach can still benefit from clear-cut,

but non-universal cases (e.g., when there are clear indications of a defect but the ex-
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pression of these indications through rules cannot be universally applicable due to its

many edge-cases). These challenges led us to choose LTNs for this problem. LTNs do not

strictly enforce their symbolic constraints, thus allowing their user to be more lax with

formulating the symbolic rules. Moreover, the knowledge of clear-cut defects can still be

leveraged to speed-up training compared to a classical supervised learning algorithm.

An important aspect of Logic Tensor Networks is how constraints are transformed to

be differentiable and part of the end-to-end training process. This is achieved through a

technique called "grounding" which is very close to fuzzy logics. More specifically each

individual proposition or fact is encoded through a multidimensional tensor, which in our

case corresponds to vector embeddings extracted from the input images. Predicates can

be applied to these tensors in the form of differentiable mathematical functions which

can also have learnable parameters such as Artificial Neural Networks. The application

of these predicates should yield a real value between 0 and 1 which corresponds to the

degree of truth of the predicate applied to one or multiple propositions. Building on top

of that, logical operators can be used to combine different predicate results. For example,

a logical a ∧ b can now be calculated as aḃ and a =⇒ b is calculated as
b
a if b < a

or 1 if b > a. Of course there are many different mappings from first-order logic to real

operators, many of which are described in detail in the LTN paper [18]. After making

the logical propositional differentiable, their degree of satisfaction can be added as a loss

function term to be optimized during training.

4.3.3 Our approach

LTN’s "grounding" of symbolic rules to their real-valued logic equivalents enable it

to constrain a statistical machine learning algorithm to closely adhere to pre-defined

symbolic rules during its training phase. At the same time, utilizing these rules requires

the encoding of expert knowledge in a corresponding form which, in our case, is difficult

to achieve. The production scenario described in Section 4.3.1 is supposed to operate in a

flexible and agile manufacturing production line. Such production lines are characterized

by a large degree of customization leading to frequent changes in product specifications.

This constant flux makes it hard for production operators to develop enough expertise to

come up with a complete set of rules for defect detection. Additionally, the nature of the

image data makes it hard to link these rules with properties of images. A property such as,

for example, surface smoothness is not straightforward to define as an image processing

function/predicate to be used by the LTN. For these reasons we use an unsupervised

classifier as the "expert".

The criterion for choosing an unsupervised classifier is for it to have good novelty

recognition properties and a simple adaptable implementation. Following our results from

previous work [17] we chose the Isolation Forest, as it offers a scalable implementation,

needs limited fine-tuning and has been shown to perform well in a variety of datasets

[19]. Despite its high performance on unknown images, IF is not that effective in the

known classes from the training set. To overcome this shortcoming we created the rules

outlined below, where A is the base MLP classifier and U the unsupervised Isolation Forest
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classifier. These rules enforce upon the MLP a soft logical constraint to follow the output

of U when it predicts a defect.

SatAgg
{
[∀x(lS(x) = 1 =⇒ A(x) = 1)]∧

[∀x(lS(x) = 0 =⇒ A(x) = 0)]∧

[∀x(U (x) = 0 =⇒ A(x) = 0)]
}

The formula above contains two additional constraints needed for classification that

ensure that the prediction A(x) is consistent with the supervision label lS(x). Thus, the

base classifier A is only trained to satisfy the rule-set outlined. The complete training

process is also illustrated as a diagram in Fig.4.2

Figure 4.2. Training Workflow with LTN using embeddings for empirical learning and sym-
bolic rules derived from an Isolation Forest’s predictions. The symbolic rules are "grounded"
and embedded into the loss function to guide training.

4.3.4 Datasets

The dataset provided by Philips Consumer Lifestyle B.V. consists of RGB images col-

lected from the factory’s pad printing process for building an automated quality inspection

system. It contains images of flawless products as well as two types of defects: double

prints and interrupted prints. The dataset has been manually labeled by multiple quality

inspectors to ensure accuracy. Manufacturing defects are rare, resulting in an imbal-

anced dataset, which was taken into account during evaluation. The images are 220×360

pixels in size, and the dataset is divided into training and testing sets.

Representative examples of flawless products, double prints, and interrupted prints

are shown in Figure 4.3(a)-(c). The training set comprises approximately 70% of the

images, while the remaining 30% are used for performance evaluation.

To assess robustness, synthetic images simulating novel defects were created, includ-
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(a) Good (b) Double Print (c) Interrupted

(d) Line Scratches (e) Missing Letter (f) Discoloured

Figure 4.3. Original ((a)-(c)) and Synthetic Test ((d)-(f)) Samples from the Shavers Dataset

ing line interruptions, missing letters, discoloration, and flips. These synthetic defects

were merged with the test set in proportion to the original defects, resulting in a realistic

imbalance scenario for evaluation.

The final test set contains 800 flawless images and 250 images with known defects,

augmented with 250 novel defect images randomly generated from the synthetic classes.

Synthetic examples of unexpected defects are depicted in Figure 4.3(d)-(f). This compre-

hensive dataset allows for the evaluation of machine learning algorithms in a realistic

manufacturing defect detection scenario.

Moreover, we additionally assessed our method on six additional datasets of product

defects from the MVTec AD collection [11]. This is a collection of datasets consisting of

surface and object defects. For our evaluation, we chose products with many different

defect classes available, so that in each run we could keep two randomly-chosen defect

classes in the training set (the same number as in the shavers dataset) and use the rest

as open-set defects. To that end, we used the carpet, capsule, grid, pill, tile and leather

datasets, samples of which are shown in Fig. 4.4.

Figure 4.4. Product categories’ samples from the MVTEC-AD datasets
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4.4 Results

4.4.1 Experimental Setup

To evaluate our method, we compared it with promising ones from the areas of Open-

set Recognition (One-class SVM - OCSVM, Weibull SVM - WSVM) and Unsupervised (Iso-

lation Forest - IF) and Semi-supervised (Deep Feature Modelling - DFM) anomaly detec-

tion, as well as a Multi-Layer Perceptron (MLP) baseline. All methods used pre-extracted

Resnet50 embeddings. We focused on four key metrics: Area Under the Receiving Oper-

ating Characteristic (AUROC) curve, the overall test-set Defects Precision, F1-Score, and

Binary Recalls for closed-set and open-set defects. We chose binary metrics for uniform

comparison across supervised and Semi-supervised methods, aligning with our use case

where both "defects" and "unknown" samples are examined by human operators. The

recall metric for defect classes (open and closed-set) is crucial, its complement indicating

the percentage of defects missed by the system. We distinguish between open and closed

set classes to uncover potential trade-offs. F1-score and AUROC metrics assess models’

performance in the flawless class and the overall problem, ensuring efficient performance

without excessive marking of flawless images as defects. Defect precision is also mon-

itored, as a low score in this metric suggests overburdening the human operator with

defect false positives. Results represent averages from 30 independently seeded runs,

conducted on a system with 4 CPU cores, 16GB RAM, and an NVidia K80 GPU. 95%

confidence intervals are also give for each metric.

4.4.2 Experimental Results

According to our experimental setup we first present the results for the shavers dataset

in Table 4.1 and then proceed to the MVTEC-AD products which are shown collectively

in Table 4.2. The best scores for each metric are highlighted in bold, while second-best

scores are shown in gray. It is important to mention again that from our usecase’s

perspective the most important metric is closed-set recall since this concerns the most

common defects, and we want to make sure as few of them as possible pass through the

system in Fig. 4.1(a) unnoticed. The second most important metric is open-set recall as

this shows our system’s robustness to novel defects that are rarer but might still appear

in the production line. The purpose of the other metrics (AUROC, Precision, F1-score)

is to check that the trade-offs of achieving high closed-set and open-set recall scores are

acceptable.

Dataset Method AUROC Prec. F1-score R_open R_closed

Shavers

MLP 74,94 ± 1,27 94,11 ± 2,36 87,67 ± 0,50 24,55 ± 1,45 91,63 ± 2,60

OCSVM 83,02 ± 0,44 65,05 ± 0,72 79,55 ± 0,42 100,00 ± 0,0 62,66 ± 1,80

IF 87,10 ± 0,41 69,08 ± 0,68 82,40 ± 0,45 100,00 ± 0,0 70,46 ± 1,88

DFM 99,13 ± 0,19 84,22 ± 1,35 99,64 ± 0,14 90,33 ± 3,02 84,99 ± 2,25

WISVM 81,99 ± 2,80 60,91 ± 1,80 75,84 ± 1,31 86,71 ± 2,86 77,89 ± 1,49

LTN 97,80 ± 0,40 93,34 ± 1,16 92,79 ± 1,01 60,69 ± 8,15 98,96 ± 0,54

Table 4.1. Comparison of methods on the Shavers dataset

The first method we assess is the MLP on top of Resnet50 embeddings which achieves
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high precision, indicating that when it predicts a defect, it is usually correct. However,

its recall for open defects is very low, suggesting it may miss some instances of open-set

defects. This is the baseline issue we want to address. We see that other dedicated

methods such as One Class SVM and Isolation Forest achieve perfect scores in the open-

set, however their performance in the closed-set is lacking as they are not explicitly trained

on the training set itself. Deep Feature Modelling (DFM), which is trained on good images

only, outperforms other methods in terms of AUROC and F1-score. This shows a very

good ability to recognize good images, and it also achieves high open-set performance.

Our newly introduced LTN approach achieves high AUROC, Precision and F1-scores,

being consistently very close to DFM and the MLP, indicating its ability to accurately

classify flawless products. It most importantly demonstrates the highest recall for closed

defects, being by 8% higher than the second-best MLP. Its open set recall is comparatively

low but we still see that the addition of Neurosymbolic AI to the MLP baseline brings a

substantial - almost threefold - increase in this metric.

Dataset Method AUROC Prec. F1-score R_open R_closed

Carpet

MLP 92,89 ± 1,08 95,04 ± 2,58 83,47 ± 2,45 48,13 ± 10,67 74,80 ± 13,30

OCSVM 74,23 ± 2,86 63,01 ± 2,79 72,08 ± 1,70 59,64 ± 6,17 59,26 ± 7,11

IF 86,80 ± 1,58 70,56 ± 2,58 79,39 ± 2,42 86,00 ± 3,01 81,06 ± 4,60

DFM 98,44 ± 0,27 99,45 ± 0,47 84,08 ± 1,26 79,37 ± 4,87 79,59 ± 4,26

WSVM 72,63 ± 2,00 58,81 ± 8,74 58,48 ± 10,11 63,86 ± 15,12 84,20 ± 8,85

LTN 97,47 ± 0,98 88,66 ± 3,66 91,74 ± 2,04 89,68 ± 4,00 99,53 ± 0,72

Capsule

MLP 93,87 ± 1,11 98,66 ± 0,81 78,99 ± 1,64 51,28 ± 5,31 94,20 ± 2,81

OCSVM 71,20 ± 2,71 72,82 ± 2,88 66,18 ± 2,19 57,33 ± 5,34 57,93 ± 5,68

IF 81,25 ± 2,44 75,66 ± 3,03 71,72 ± 2,93 73,46 ± 5,39 67,46 ± 4,31

DFM 98,55 ± 0,61 98,72 ± 0,64 83,02 ± 3,78 83,77 ± 5,03 82,80 ± 8,48

WSVM 72,79 ± 6,09 56.18 ± 2,57 42,96 ± 3,08 67,46 ± 8.32 87,13 ± 6,02

LTN 85,92 ± 11,19 83,19 ± 10,88 66,79 ± 23,35 91,28 ± 8,57 99,80 ± 0,31

Grid

MLP 72,98 ± 2,80 76,20 ± 4,98 81,02 ± 1,01 17,46 ± 3,99 72,53 ± 8,75

OCSVM 41,32 ± 2,87 30,52 ± 2,50 66,82 ± 1,79 26,13 ± 4,88 24,13 ± 9,17

IF 47,65 ± 2,72 33,17 ± 1,84 63,64 ± 1,98 36,80 ± 6,02 35,66 ± 8,97

DFM 93,60 ± 1,20 91,53 ± 2,55 81,23 ± 1,84 68,57 ± 5,97 69,13 ± 5,85

WSVM 40,18 ± 2,25 38,68 ± 5,10 58,52 ± 7,22 47,51 ± 12,15 63,80 ± 12,29

LTN 81,42 ± 6,80 74,28 ± 11,82 84,47 ± 4,78 62,22 ± 13,98 86,13 ± 7,09

Pill

MLP 86,62 ± 1,60 95,82 ± 3,23 65,88 ± 3,60 32,72 ± 13,68 66,06 ± 12,28

OCSVM 58,90 ± 2,01 68,79 ± 1,71 56,98 ± 1,45 53,57 ± 4,82 58,80 ± 11,84

IF 68,28 ± 1,89 72,19 ± 1,78 60,16 ± 2,26 64,13 ± 4,37 58,53 ± 9,86

DFM 98,21 ± 0,35 99,84 ± 0,22 67,84 ± 3,52 70,10 ± 4,16 70,86 ± 9,62

WSVM 62,05 ± 5,00 70,44 ± 3,56 56,28 ± 5,87 54,82 ± 11,92 74,40 ± 8,62

LTN 95,43 ± 2,66 95,91 ± 1,73 88,36 ± 3,43 87,92 ± 6,05 95,33 ± 2,73

Tile

MLP 97,74 ± 0,87 99,38 ± 0,75 87,37 ± 2,86 60,88 ± 10,75 96,20 ± 3,53

OCSVM 66,48 ± 3,35 62,44 ± 2,31 68,22 ± 2,02 55,86 ± 6,56 57,73 ± 7,79

IF 87,77 ± 2,25 71,91 ± 1,69 77,88 ± 1,69 84,40 ± 5,94 82,00 ± 8,21

DFM 99,34 ± 0,17 99,69 ± 0,34 83,65 ± 0,26 73,06 ± 9,41 79,40 ± 13,42

WSVM 65,36 ± 6,65 57,08 ± 5,94 56,64 ± 9,17 54,84 ± 10,17 85,46 ± 5,14

LTN 97,92 ± 1,60 91,13 ± 3,00 93,02 ± 2,68 90,97 ± 7,18 96,86 ± 2,61

Leather

MLP 97,54 ± 0,95 97,97 ± 1,01 86,48 ± 2,32 62,93 ± 8,59 93,93 ± 3,02

OCSVM 70,56 ± 3,60 68,39 ± 2,94 71,16 ± 2,65 64,97 ± 5,99 49,80 ± 6,52

IF 92,93 ± 1,07 79,35 ± 1,91 85,62 ± 1,65 96,35 ± 1,70 95,26 ± 3,14

DFM 99,97 ± 0,01 99,92 ± 0,01 97,60 ± 0,77 97,91 ± 1,07 95,73 ± 1,47

WSVM 60,39 ± 4,61 70,56 ± 7,60 68,98 ± 7,79 49,06 ± 15,13 81,26 ± 4,18

LTN 99,00 ± 1,09 96,42 ± 1,96 95,30 ± 3,44 89,73 ± 12,65 99,66 ± 0,71

Table 4.2. Comparison of methods on the various MVTEC-AD product datasets

Regarding the results in the MVTEC-AD datasets we see various common patterns.

Firstly, it is not surprising that DFM achieves the highest results in terms of AUROC

and Precision since it is a semi-supervised method trained only in the "good" class and

is therefore better at recognizing it. On the two Recall metrics however we see that

the LTN outperforms DFM in almost all cases with the exception of open-set recall for

leather and grid. In most datasets it also achieves a higher F1-score which more closely

approximates a global measure for the overall problem, balancing performance in the
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"GOOD" and "DEFECT" classes while being less affected by class imbalances.

Overall, our experimental results indicate that Logic Tensor Networks (LTNs) and Deep

Feature Modeling (DFM) consistently outperform other methods across multiple metrics.

LTNs excel in both open-set and closed-set recall due to their ability to incorporate sym-

bolic rules into the learning process, providing a structured framework that enhances

the model’s ability to generalize to novel defects. This advantage is significant in manu-

facturing environments where defects are rare and diverse, making traditional methods

less reliable. The symbolic reasoning in LTNs allows the model to handle ambiguous data

more effectively by leveraging domain-specific knowledge encoded in logical rules. In con-

trast, DFM performs exceptionally well in terms of AUROC and precision since it learns

very well what a "good" product should look like, enabling the model to better understand

and classify normal versus defective samples. However, DFM’s treatment of defects in an

agnostic way, not based on concrete training samples, often leads to under-performance

in the detection of closed-set defects compared to other methods that include closed-set

defects in their training set. Regarding the MLP, it expectedly performs quite well on rec-

ognizing the classes it has been trained on, but its performance significantly deteriorates

in the unseen open-set classes. Methods like One-Class SVM (OCSVM) and Isolation For-

est (IF) showed limitations mainly due to their high false positive rates when faced with

complex and highly similar visual class data as in the presented manufacturing setting.

OCSVM defines a boundary around known classes [237], which fails to adapt to the often

small variability in defect appearance in the high dimensional visual feature space of this

particular problem, leading to a high rate of false positives. Similarly, IF’s non-parametric

nature [19] makes it effective at identifying anomalies but results in many benign varia-

tions being misclassified as defects due to its lack of contextual understanding.

The improved and more balanced open and closed-set recall scores of our LTN-based

approach are a result of LTN’s capability, through the infusion of symbolic rules, to com-

bine the unsupervised classifier’s ability to detect out-of-distribution inputs (high R-open)

and the problem-specific training of the base statistical classifier (high R-closed). It is im-

portant to note that LTNs allow the symbolic rules to influence the model continuously

during training and thus have a larger effect on its inference behaviour. This capabil-

ity makes the LTN approach ideal for a data-scarce scenario where challenges (see also

Section 4.1) such as lowly-populated or completely novel defect classes are mitigated via

the symbolic part of the AI, while existing classes with enough data but perhaps higher

similarity to the good class are better recognized by the neural part.

4.5 Summary

In general we can conclude that the use of Neurosymbolic AI through LTNs can have

a significant benefit on the base classifier’s recall both in the open and closed cases,

leading to fewer defects making it to market. It also maintains competitive scores in

the recognition of good images meaning human operators will not be over-burdened by

examining lots of false positives. In comparison to semi-supervised methods which are

more commonly used in this setting, it maintains comparable overall recognition perfor-
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mance, but what we consider most important, is that it consistently holds higher recall

scores and is therefore more trustworthy for a real-life system. Of course Neurosym-

bolic AI is a very young field and there are still many areas to be researched. As the

most important next steps to enhance this work we consider the experimentation with

different symbolic rules derived from other unsupervised and semi-supervised methods

or expressed through image-processing function predicates. Another parameter to vary

is the arrangement and way of expressing the symbolic constraints which could possibly

lead to different outcomes in the Neurosymbolic learning process. Finally, reasoning-

for-learning Neurosymbolic methods that enforce strict constraints such as the Semantic

Probabilistic Layer (SPL) can also be considered.

Still this work represents a promising and practical solution that can be readily ap-

plied to real-life settings. Additionally, Neurosymbolic AI can be adapted for various other

applications beyond defect detection in manufacturing. In healthcare, for instance, these

methods could enhance diagnostic systems by combining medical images with patient

data for more accurate disease identification. Similarly, in finance, they could improve

fraud detection by interpreting complex transaction patterns in conjunction with natu-

ral language data. These advancements could significantly impact multiple industries,

setting a new standard for AI applications.
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Conclusions

The present thesis has attempted to tackle some core issues in adopting and deploying

AI applications in real-life manufacturing production lines. First of all, the introduced

novel method for image-level oversampling aimed at alleviating data imbalance in visual

quality inspection systems was a significant step in efficiently generating synthetic data by

focusing on images that are near the classification boundary. The high-fidelity synthetic

images produced by this method have demonstrated promising performance in identifying

defects, particularly in datasets where defects vary in perceptibility. Moreover, this was

achieved at a significantly lower computational and runtime cost compared to other state-

of-the-art methods.

As a next step, another novel data-augmentation method was developed, aimed at

making defect classifiers more robust against previously unseen defects. Applied in a real

manufacturing setting, the method outperformed existing approaches, thanks to the high

fidelity and variability of synthetic images generated using StyleGAN. A key feature is the

filtering of novelty data generated through latent space traversals, where a voting scheme

identifies highly confusing images to be labeled as "unknown." Despite its effectiveness,

the method faces challenges such as relatively high data volume requirements, lengthy

training times and redundant data generation, pointing to future research opportunities

in developing more efficient GAN architectures and better data extraction techniques.

For these reasons, and most importantly to address smaller datasets, the incorpo-

ration of Neurosymbolic AI into our defect detection framework has shown significant

benefits when transferring novel defect detection to smaller datasets such as MVTEC-

AD. This has been showcased through the improvement of recall rates while competitive

recognition performance was maintained. The potential applications of Neurosymbolic AI,

especially in outlier and novel input detection in small datasets extend beyond manufac-

turing, with promising opportunities in healthcare, finance, and other industries where

accurate and reliable AI-driven decision-making is essential.

The proposed methods for handling novel defects at operational runtime are also

highly relevant in the context of Industry 4.0 and the emerging Industry 5.0 paradigms,

where the integration of advanced AI technologies into manufacturing processes is criti-

cal for achieving higher levels of automation, precision, and customization. Industry 4.0

emphasizes the use of interconnected systems and smart technologies to create more ef-

ficient and flexible production environments. Our work contributes to this by enhancing
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the robustness of defect detection systems, which are essential for maintaining high stan-

dards of quality in automated manufacturing. By improving the reliability and accuracy

of these systems, our method supports the goals of Industry 4.0, enabling manufacturers

to detect and address defects more effectively, thus reducing waste and improving overall

product quality.

As we move towards Industry 5.0, where the focus shifts to human-centric manu-

facturing and the collaboration between humans and intelligent machines, the need for

more advanced and adaptable AI systems becomes even more critical. Our approaches to

image-level oversampling and novel defect detection align with the principles of Industry

5.0 by enabling machines to better assist human operators in identifying and addressing

defects. The use of high-fidelity synthetic images helps ensure that defect detection sys-

tems are not only accurate but also consistent, reducing the likelihood of false negatives

that would lead to unidentified defects while keeping a low level of false positives that

could burden human operators.

Our research also highlights the potential for future advancements in AI, particularly

in the areas of instance-based or few-shot image generation, which could further enhance

the fidelity and variability of synthetic images. These advancements would allow for the

generation of more diverse and realistic images from a small set of low-confidence sam-

ples, improving the robustness of defect detection systems. Additionally, exploring new

methods for fusing original and synthetic images could lead to more seamless integration

and better overall performance.

In conclusion, our work presents practical and innovative solutions for enhancing vi-

sual quality inspection in manufacturing, with broader implications for various industries

as they adopt the principles of Industry 4.0 and Industry 5.0. The advancements made in

this research contribute to the ongoing development of more intelligent, adaptable, and

human-centric AI systems that are poised to play a key role in the future of manufacturing

and beyond.
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English to Greek Glossary of Terms

Machine Learning

Μηχανική Μάϑηση

Deep Learning

Βαϑιά Μάϑηση

Computer Vision

Υπολογιστική ΄Οϱαση

Artificial Intelligence (AI)

Τεχνητή Νοηµοσύνη (ΤΝ)

Industry 4.0

4η Βιοµηχανική Επανάσταση

Industry 5.0

Βιοµηχανία 5.0

Quality 4.0

Ποιότητα 4.0

Generative Adversarial Networks (GANs)

Παϱαγωγικά Αντιπαϱαϑετικά ∆ίκτυα (ΠΑ∆)

Neurosymbolic Artificial Intelligence

Νευϱοσυµϐολική Τεχνητή Νοηµοσύνη

Out-of-Distribution (OOD)

∆είγµατα Εκτός Κατανοµής Εκπαίδευσης

Class Imbalance

Ανισοϱϱοπία Κλάσεων

Data Augmentation

Επαύξηση ∆εδοµένων

Training Data

∆εδοµένα Εκπαίδευσης

Oversampling

Υπεϱδειγµατοληψία
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Novelty Detection

Ανίχνευση Καινοϕανών Εισόδων

Cyber-Physical Systems

Κυϐεϱνο-ϕυσικά Συστήµατα

Digital Twin

Ψηϕιακό ∆ίδυµο

Big Data

Μεγάλα ∆εδοµένα

Human-Machine Collaboration

Συνεϱγασία Ανϑϱώπου-Μηχανής

Human-in-the-Loop (HITL)

΄Ανϑϱωπος στο Βϱόχο (Human-in-the-Loop)

Deep Convolutional Neural Networks (CNNs)

Βαϑιά Συνελικτικά Νευϱωνικά ∆ίκτυα (ΒΣN∆)

SMOTE (Synthetic Minority Over-sampling Technique)

Συνϑετική Τεχνική Υπεϱδειγµατοληψίας Μειονοτικών Κλάσεων (SMOTE)

Borderline-SMOTE

Παϱαλλαγή της SMOTE που επικεντϱώνεται σε δείγµατα κοντά στα όϱια ταξινόµησης

ADASYN (Adaptive Synthetic Sampling)

Πϱοσαϱµοστική Συνϑετική ∆ειγµατοληψία

Wasserstein GAN (WGAN)

ΠΑ∆ µε Απόσταση Wasserstein

DCGAN (Deep Convolutional GAN)

Βαϑύ Συνελικτικό Παϱαγωγικό Αντιπαϱαϑετικό ∆ίκτυο

Actor-Critic GAN

Παϱαγωγικό Αντιπαϱαϑετικό ∆ίκτυο µε αϱχιτεκτονική Actor-Critic

DeepSMOTE

Τεχνική επαύξησης εικόνων µέσω γραµµικών παρεµβολών στο επίπεδο χαρακτηρισ-

τικών (ϐασισµένη σε αρχιτεκτονική Κωδικοποιητή-Αποκωδικοποιητή)

BigGAN

Παϱαγωγικό Αντιπαϱαϑετικό ∆ίκτυο Μεγάλης Κλίµακας

ImageNet

∆ιάσηµο µεγάλο σύνολο δεδοµένων εικόνων για εκπαίδευση αλγοϱίϑµων µηχανικής

όϱασης
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Binary Recall

Ανάκληση ∆υαδικής Ταξινόµησης

AUROC (Area Under the Receiver Operating Characteristic Curve)

Εµϐαδόν Κάτω από την Καµπύλη ROC

Precision

Ακϱίϐεια (Θετικών Πϱοϐλέψεων)

F1 Score

Μέτϱο F1 (Αϱµονικός Μέσος Ακϱίϐειας και Ανάκλησης)

Cross-Validation

∆ιασταυϱωµένη Επικύϱωση

Hyperparameter Optimization

Βελτιστοποίηση Υπεϱπαϱαµέτϱων

MVTEC-AD

∆ηµόσιο σύνολο δεδοµένων ανίχνευσης ελαττωµάτων στη ϐιοµηχανία

Decision Boundary

΄Οϱιο Απόϕασης (Ταξινόµησης)

Open-set Recognition

Αναγνώϱιση Ανοιχτού Συνόλου — Η ικανότητα ενός συστήµατος ταξινόµησης να εν-

τοπίζει δείγµατα που δεν ανήκουν σε καµία από τις γνωστές κατηγορίες εκπαίδευσης.

Latent Space

Λανϑάνων Χώϱος

Semantic Factorization (SeFa)

Σηµασιολογική Παϱαγοντοποίηση — Μέϑοδος ανάλυσης λανθάνουσας αναπαράστασης

µέσω παϱαγοντοποίησης ιδιοτιµών για την ανεύϱεση σηµασιολογικά πλούσιων κατευ-

ϑύνσεων µεταϐολής εικόνων.

Singular Value Decomposition (SVD)

Παϱαγοντοποίηση ΙδιαϹουσών Τιµών

One-Class Classifier

Ταξινοµητής Μίας Κλάσης

Extreme Value Theory (EVT)

Θεωϱία Ακϱαίων Τιµών

Logical Tensor Networks (LTN)

∆ίκτυα Λογικού Τανυστή — Πλαίσιο Νευροσυµβολικής ΤΝ που εισάγει λογικούς κανόνες

σε µοϱϕή διαφορίσιµων συναϱτήσεων, οι οποίες ενσωµατώνονται στη διαδικασία εκ-

παίδευσης ενός στατιστικού µοντέλου.
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Grounding

Γείωση — ∆ιαδικασία αντιστοίχισης των λογικών προτάσεων σε πραγµατικές (διαφορίσιµες)

συναρτήσεις που µποϱούν να χρησιµοποιηθούν σε αλγορίθµους ϐελτιστοποίησης.

Fuzzy Logic

Ασαϕής Λογική — Λογική που επιτϱέπει ϐαϑµούς αλήϑειας µεταξύ 0 και 1 αντί για

δυαδικές τιµές (0 ή 1), και χϱησιµοποιείται για να εκϕϱάσει αϐεϐαιότητα ή ασάϕεια.

Out-of-Distribution (OOD)

Εκτός Κατανοµής (ΕΚ) — ∆εδοµένα εισόδου που δεν αντιπροσωπεύονται από την

κατανοµή των δεδοµένων εκπαίδευσης, συχνά συνδεδεµένα µε το πϱόϐληµα της γενίκευσης.

Multi-Layer Perceptron (MLP)

Πολυεπίπεδο Perceptron — Αϱχιτεκτονική νευϱωνικού δικτύου πλήϱως συνδεδεµένων

στϱωµάτων, συχνά χϱησιµοποιούµενη για εποπτευόµενες εϱγασίες ταξινόµησης.
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