EOviko Metoofio IToAvteyveio

Yyoir] Hiektpoddywv Mnyovikov
Kot Mnyavik®v Y ToAoy1iotodv
Topéag Teyvoroyiag [TAnpo@opikng kot Y ToAOyIoTOV

’,
=
X

OEV$

. F s
0 ‘\\,‘\\
I
%\;{“\:} ‘073)
7 “npomp £lS
1%1“!!??0?0’

')

Mehétn Amodoong Xvotnuatmv Lakehouse

Data Lakehouse Performance Study

AIIIAQMATIKH EPTAXIA

KOQNXTANTINOX XIAEPHX

Empiénov : Anunrprog Toovpdkog
Avarinpomc Kabnyntg E.M.IL.

AbBnva, Iovviog 2025

EOviko Metoofio IToAvteyveio

Yyoir] Hiektpoddywv Mnyovikov
Kot Mnyavik®v Y ToAoy1iotodv

Topéag Teyvoroyiag [TAnpo@opikng kot Y ToAOyIoTOV

A
g’"\ N
h/nn? <
N Sihi==E|
nvpPPoro

|

Merétn Amodoong Xvetnuatov Lakehouse

Data Lakehouse Performance Study

AIIIAQMATIKH EPTAXIA

KOQNXTANTINOX XIAEPHX

EmBiénov: Anuntprog Toovpdiog
Avaminpomc Kabnyntg E.M.II.

Eykpinke amd v tpyuein e€etaotikn emtponn v 23n lovviov 2025.

Anptprog Toovpdkog Nektaprog Kolopng T'edpyrog 'kovpog
Avorinpotig Konynmg EMII. Kabnynmg E.M.IL. AvomAnpotg Kabnynmg E.M.IL.

AbBnva, Iovviog 2025

KOQNXTANTINOX XIAEPHX
Amhopotovyog Hiektporldyog Mnyavikdg kot Mnyavikog Ymoroyiotev E.MLIT

Copyright © KONXTANTINOZX XIAEPHZ, 2025.
Me gmpoiaén mavtog sikaumdpatoc. All rights reserved.

AmaryopeleTaL 1) avTIypor], 0o KeELOT Kot S10VOUT TS TAPOVSUS EPYACIAG, €& OAOKANPOL 1 TUN-
LOTOG QUTAG, Yot EUTOPIKO okomd. Emtpéneton 1 avatdnwon, amodnikevon kot Stovoun yio. okomd
L1 KEPOOGKOMIKO, EKTALOEVTIKNG 1 EPEVVITIKNG GVONGC, VIO TNV TPoUTOOEGN VO avapEPETaL 1) TNy
npoélevong kot va dratnpeitan to Tapodv unvope. Epotipata mov apopoldv) xpion e epyaciog
Y10 KEPOOOKOTIKO GKOTO TPEMEL VA, ameLBVVOVTAL TTPOG TOV GLYYPUPEQ.

O1 amOYELS KO TOL GUUTEPAG AT TTOV TEPIEXOVTOAL GE AVTO TO £YYPAPO EKPPALOVV TOV GUYYPUPEN Kol

dgv mpémet va epunvevdel 0TL avtimpoocwnevovy Ti enionpeg Béoeig tov EBvikod Metoofiov [Tolvte-
YVeiov.

IHepiinyn

KaBag opyaviopol viobetodv odoéva ko mepiocdtepo apyitektovikég lakehouse yio v avdivon
LEYAA®DV JEOOUEVMV, EIVAL ATAPOITNTO VO KATOVOTGOVLE TV GUUTEPIPOPA TOVG, KAOMG KOl TOVG EV-
dgxoOLEVOLS GLUPIPBOGHOVE TOV GUVETAYETAL 1] ¥PTIOT) TOVS. ZKOTOG TG TAPOVCAS EPYACING Eivar 1 o
POVGIOOT LG OAOKAN POUEVTG LEAETNC TG atdOoon ¢ OV dradedopévmy cvotnpdtov lakehouse, Tov
Delta Lake kot tov Apache Hudi, pe épugaocmn 1600 oty eneéepyacia kot moptideg (batch processing)
000 Ko otV eneEepyacio porg (stream processing). Méow g dradikaciog a&lordynong, Oa cuykpi-
voupe ta Delta Lake kot Hudi évovtt tumikdv viomomoemv AMpvov dE00UEVMV, Ol OTOlEG OmOTE-
Aovvtar amd Evo omAd eninedo amobKEVOTG TO OTOI0 EXEPMOTATOL OO [0, UNYOVT AVAAVOTG, OTNV
nepintmon pag, o HDFS kot to Apache Spark. Ta lakehouses amotelobv enektdosig twv Mpvov de-
SOUEV@V, GUVETMS 051000V TOL BETIKA YOPOKTNPLOTIKE TOVG, EVD TOVTOYPOVO ELGAYOVV VEEG SLUVOTO-
mreg, omwg ACID cvuvarliayés, emPoin kot eEEMEN oyfuatog (schema enforcement and evolution),
KoODG KOl UNYOVIGHOVG S10KLPEPVIIONG OESOUEVAOV, LE GKOTO TNV OVTILETOTION TOV VOIOTAUEVOV
mpofAnudtov tov Mpuvav dedopévov. Iapdiinia, evoopatdvouy Bertictomomoelg Onwe Tagvo-
unomn, data skipping kot partition pruning, pe okomd TV TEPAUTEP® PEATIOGT TOVG. XTNV TOPOVGA
UEAETT), TOPOLGLALOVTOL TO, TAPOUTAV® YOPAKTNPIOTIKE Ko, LEG® LETPGE®V ATOJ00T|G, 0EI0A0YEITAL
TO KOTA OGO PEATIOVOLY TNV amdI0oN 1M, OTNV TEPITTO®ON YEPOTEPNG ATOS0GNC, €AV Ol TPOGOETES
Aertovpycdtneg dikaoloyovv) xpnon tov lakehouses.

PAR2:ATel VAT

Meydha Agdopéva, Alpveg Asdopévav, Enelepyacia katd aptideg, Enelepyacia Porig, Delta Lake,
Apache Hudi.

Abstract

As organisations increasingly adopt lakehouse architectures to support big data analytics, understand-
ing the performance trade-offs of utilising enhanced storage layers instead of standard data lake ar-
chitectures is essential. This masters dissertation aims to present a comprehensive performance eval-
uation of two leading data lakehouse solutions, Delta Lake and Apache Hudi, focusing on both batch
and stream processing workloads. Through the benchmarking process, we compare Delta Lake and
Hudi against standard data lake implementations, which consist of a simple storage layer queried by
an analytics engine, in this case, HDFS and Apache Spark. Being built on top of data lakes, lakehouses
leverage their strengths, while simultaneously, introducing new features, such as ACID transactions,
schema enforcement, schema evolution and data governance mechanisms, to address the issues data
lakes face. Additionally, they introduce optimisations, such as indexing, data skipping, and parti-
tion pruning, to further improve them. Throughout this thesis, we present these features and through
benchmarks, evaluate how they improve performance and whether the added functionalities justify
the use of lakehouses, even in cases where they may underperform.

Key words

Big Data, Data Lakes, Batch Processing, Stream Processing, Delta Lake, Apache Hudi.

Ilgpreyopeva (Contents)

Hepitnyn

Abstract

Hepreyépeva (Contents)

Kataroyog Zynparmv (List of Figures)

Kataroyog Atoocnacpatov Koowae (List of Code Listings)

Evpemipro Xovropevoemyv (Abbreviation Index)o

0. Extevig Mepidnyn

0.1
0.2
0.3
0.4
0.5
0.6

Afpveg Agdopévoy . . . L L.
Data Lakehouses
[Mepopotikny Awdtoén

EncEepyaocio katd [Taptideg (Batch Processing)

Ene&epyacio Pong (Stream Proc
SoumePAoHOTO

Keipevo ota ayylka

1. Introduction

1.1

€SSING)

Use of Data Lakes in Organisations o v v v v v v v v v
1.1.1 The Standard DataLake
1.1.2 The Two-Tier Architecture
1.1.3 The Problems of Current Data Lake Solutions

1.2 Data Lakehouses: A Solution to the Challenges
1.2.1 MetadataLayer

1.22 OpenFile Formats

1.2.3 SQL Performance Optimisations

1.3 The Aim and Scope of this Thesis
2. Experimental Setup Lo
2.1 Hardware e e
2.2 Hadoop Distributed File System
23 Apache Spark
24 Deltalake.
2.5 ApacheHudi
2.6 Delta Lake and Apache Hudi Design
2.6.1 Transaction Coordination

2.6.2 Metadata Management

11

13

15

17
17
18
18
19
20
20

25

2.6.3 Data Update Strategies 35

3. Batch Processing 37
3.1 TPC-DS Benchmark Suite 37
3.1.1 Dataset e e e e e 37

3.2 QUETICS . v v v o e e e e e e e 39
32,1 Simple e e e 39

3.2.2 Complex (TPC-DS Queries) v v v v v it e et 40

3.3 Experimentation Process 41
3.3.1 Benchmark Metrics 41

3.3.2 Configuration Changes 41

34 Results. e 43
34.1 Phasel e 43

342 Phase2 45

343 Phase3 49

344 Phased 51

3.5 Conclusions e e e 54

4. Stream Processing L 55
4.1 Dataset e e e e e e e e e 55
4.1.1 Medallion Architecture 55

4.1.2 Organisation of the Dataset Using the Medallion Architecture 56

42 QUETICS . . v o o v e e e e e e e 57
42.1 Filtering e 57

4.2.2 Windowed Aggregations oo 57

4.3 Experimentation Process 58
43.1 Benchmark Metrics 58

4.4 Results. o 58
4.4.1 BronzeLayer e 59

442 SilverLayer. e 59

443 GoldLayer 60

4.5 Conclusions e e 63

5. Summary and Future Directions oL 65
5.1 Future Directions e 66
5.1.1 Dynamic Workloads and Datasets 66

5.1.2 Multi-Engine Support and Query Federation 66

5.1.3 Traditional RDBMS 66

5.1.4 Machine Learning Applications 66
Biphoypagio (References) 67
Hopaptpo (Appendix) 69
A. TPC-DS Queries e e 69

10

Katdhoyog Zynpnatov (List of Figures)

0.1

ApYITEKTOVIKEG GUGTNUATOV SLXEIPIONG LEYAA®DY OEOOUEVMV. AVOTOPOY®YT KoL ETE-
Eepyooio amd [Armb21]. L

ZyMNUOTO 6TO AYYMKO KEipeVo

1.1

3.1
3.2

33

34

3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.12

3.13

3.14

3.15

3.16

3.17

Evolution of data management platform architectures to the standard data lake, the
two-tier model (a-c) and the data lakehouse model (d). Reproduced and edited from

The TPC-DS dataset schema. Reproduced from [Tran21]..

Phase 1:
dataset.
Phase 1:
dataset.
Phase 2:
dataset.
Phase 2:
dataset.
Phase 2:
dataset.
Phase 2:
dataset.
Phase 2:
dataset.
Phase 2:
dataset.
Phase 3:
dataset.
Phase 3:
dataset.
Phase 3:
dataset.
Phase 3:
dataset.
Phase 3:
dataset.
Phase 3:
dataset.
Phase 4:
dataset.
Phase 4:
dataset.

Simple query execution times using 2 workers (2 executors) and a 30 GB

12

4.1
4.2
4.3
4.4
4.5
4.6
4.7

4.8

4.9

The medallion architecture. Reproduced and edited from Databricks. 56
Bronze Layer: Throughput for increasing inputrates. 59
Silver Layer: Throughput for increasing inputrates. 59
Gold Layer: Filtering queries throughput with a 90,000 records/sec input rate. 60
Gold Layer: Filtering queries throughput with a 100,000 records/sec input rate. . . . 60
Gold Layer: Filtering queries throughput with a 110,000 records/sec input rate. . . . 61
Gold Layer: Windowed aggregation queries throughput with a 40,000 records/sec

IPUtTate. o o e e e e 61
Gold Layer: Windowed aggregation queries throughput with a 50,000 records/sec

MPUtTate. e e e e e e 62
Gold Layer: Windowed aggregation queries throughput with a 60,000 records/sec

MPUETAte. o o e e e e e e 62

Kataroyoc Anocnaopatov Kmowka (List of Code Listings)

3.1 Simple Query I (Squery 1). 39
3.2 Simple Query 2 (Squery 2). e 39
3.3 Simple Query 3 (Squery 3). 39
34 Simple Query 4 (Squery 4). e 39
3.5 Simple Query 5 (Squery 5). 39
3.6 Simple Query 6 (Squery 6). 39
4.1 FilteringQuery 1. e 57
4.2 Filtering Query 2. e e e e e 57
4.3 Windowed AggregationQuery 1. 57
4.4 Windowed Aggregation Query 2.l 57
4.5 Windowed Aggregation Query 3. 57
4.6 Windowed Aggregation Query 4. 58
4.7 Windowed Aggregation Query 5. 58
Al TPC-DSQuery 9. o e e 69
A2 TPC-DSQuery 11. e 70
A3 TPC-DSQuery 28. e 71
A4 TPC-DSQuery33. 72
A5 TPC-DS Query 35. 74
A.6 TPC-DSQuery 38. 75
A7 TPC-DSQuery 61. 75
A.8 TPC-DSQuery 64. e 76
A9 TPC-DSQuery 72. o o 79
A.10 TPC-DS Query 75. . . . o o o e e e 79

13

Evpemipro Xvvrougvoemv (Abbreviation Index)

Abbreviation Meaning

Al

BI
CSv
DFS
ELT
ETL
HDFS
IoT
ML
MVCC
OLAP
POSIX
RDBMS
SUT

Artificial Intelligence

Business Intelligence

Comma Separated Values
Distributed File System

Extract Load Transform

Extract Transform Load

Hadoop Distributed File System
Internet of Things

Machine Learning

Multi Version Concurrency Control
Online Analytical Processing
Portable Operating System Interface
Relational Database Management System

System Under Test

15

Kepaiaro 0

Extevig Ilepiinyn

0.1 Aipveg Agoopévev

H avayxn yo tv amodotikn dtayeipion peydAwv 6edopévav 0dMyncee Gty GLOTACT TOV AUVOV
dedopévav, Kobmg dev NTav mAéov duvatd va keAvebel amd ta mpoyevéstepa cuatnpato. Ot AMpveg
dedopévav givar amobetnpla dedopévov, PacIoGUEVO GE GUOTAUOTO OTOBNKEVONG YOUNAOD KOGTOVG,
T OO0l VAOTOLOVVTOL LLE OPYLTEKTOVIKY EMPOANG CYNUATOG KATd TNV avdyvoon (schema-on-read).
Amofnkevovv aveneEépyacta dedoUEVH GE AVOLYTES LOPQES apyeimv, Omwsc CSV, Apache Parquet pe-
Ta&0 dAhov [Armb21]. O1 800 kupiopyec vAomomoelg Mpvmv dedopuévay givar pe Bdor tnv copPatikn
OPYITEKTOVIKT] KOL TNV OPYLTEKTOVIKT 000 EMTESMV.

H ovpfoatiki viomoinon anoteAeital gite amd KATO10 KATAVEUNLEVO GUGTILLO OO0 KELONC, OTTMG
to HDFS [Data25], eite amd kdmwoia vrodop| omobkevone 6To VEPOG, 6€ GUVOLUGHO LE KATOLoL |-
yovi avéAvong dedopévav, 0mmg o Apache Spark [Amaz25]. Avth 1 opyITEKTOVIKT TPOGPEPEL EVEL-
Ela oTig Mpveg 6e00UEVOV OGOV 0POPA TNV KALLOKOGILOTNTO, KAOMC uropei vo epappootei opldvtia
eméxtaon (scale out) pe v TpocHnkn TEPIEGOTEP®V KOUP®V, EVA TAVTOYPOVO. EIVOL TLO GLUPEPOVTH
MG TPOG TO KOGTOG GE GYECT) LE TNV YPNOT| EVOC KEVIPIKOV dtakopioth. H yprion avorytdv poppov op-
¥elov cuvemdyeTal ypiyopn amodnkevon vémv dedopévav, e gveMéia opydvmoong Kotd TepinTmon,
KaBhg Kot eveMEio otV (PNON 0 CLVOVOCUO LE SLUPOPETIKES UNYOVES AVAALGNG KOl GLGTHILOTO.
H guxorio 60levéng kabiotd TV petapopd 0ed0UEVOV GE GAA TAOTEOPLLO TOAD TLO EVKOAT GE GU-
YKPLOT UE TPOYEVESTEPEG ADGELS, EVM 1) JUXEIPIOT TOV LETACYNUOTICUOV OEO0UEVAOV A UNYAVES
OVAADOTG LELDVEL TIG OGVVETEIEG OTIG LOPPEG OEOOUEVMV EVTOG TNG VNG,

2TV apYITEKTOVIKT dVO EMTES®V, TO OedoUEVA apyIKE amoBnKevovTaL TNV ATV OESOUEV®Y Kot
OTNV GUVEYELN £Va. LIKPO DTTOGHVOAD TV OedOUEVMV PeTaoynIaTileTal Kot omodnkeveTo o€ i omo-
Onkn dedopévav yia yprion oty vroot)piEn AMyng aropdcewv [Armb21]. Avti 1 apyITEKTOVIKN
glvar TAéov kupiapyn [Armb21], kabmg mapéyel v gveMéio TV MUVOY dEGOUEVOV GE GLVOVACUO
LE TNV TO1OTNTO Kot StakvBEpvnon 6£dopEV@V Tov €yyvovvTot ot amodnkeg dedopévav. To vtochvoro
TOV 0E00UEVAOV OV TEPLEYOVTAL TNV ATOONKY, ATOTEAEITOL OO VYNANG TOLOTNTOG ENEEEPYOTUEVA
dedopéva ta omoia ivar £TOUO Yo PTOT| OO EPAPUOYEG, EVD HECH TV MPLUOY UNYAVICHDV TPO-
GTOGL0G TOV CLVOVTAOVTOL OTIG ATOBNKES, EYYLATAL 1] ACPAAELD TV SESOUEVOV.

Ol TOPOTAVE OPYITEKTOVIKES EdMOAV AVOELS 6E TOAAA 0o Ta. TpoPAnata Tov avtipetanilovtay
oTOV TopEN TG emeepyaciog 6e00UEVOV, MGTOGO Ol TOPATAVE® APYLITEKTOVIKEG GUVOOEVOVTAL OO TIC
e&nc maboyéveieg:

o Avaykn yio VAOTOIN oY TEPITAOK®V KOl OKPIP®V 0AVGIOwV emeEepyaciag yio TNV TPOETOUACIOL
dedopévav, ol omoieg ElGayouV vEo COAALOTO.

o 'EXAewyn yopoxInpioTiK®v oxeclok®v Bacemv dedopévav, ommg petadedopéva, ACID cuvol-
Aayéc, Tagwvounon, caching, feAtictomoinon epoTNUAT®V.

o AxataAAnAdTNTa Yio TEPITAOKES EQUPLOYES, OTMS 1 LNYXOVIKT LAOnon.
e AvcoKoAio d1TNPNONG TG CLUVENELNG LETAED TNG MUVNG Ko TG omobn K.

o AvoKOAio PLETAPOPAC TOV SEGOUEVMV TNG ATOONKNG G GAAT TAOTPOPLLO.

17

0.2 Data Lakehouses

Q¢ andvtnon 6t TopaTdve TPOoPANLATA GLGTAONKE Lid VEN OPYLITEKTOVIKT, 1] 0pyLTEKTOVIKT data
lakehouse. Ta lakehouses eivat pia vPP1OKN apyLTEKTOVIKT dlayEiplong SES0UEVMY TOV GUVOLALEL TO
TAEOVEKTNLOTO, TOV AMUVDV SES0UEVOV Kol TV amodnkdv dedopévav. Arotehovv tpdcbdeto enineda
T OTOi0. CLVOEOVTOL GPESH LE TO EMIMESO amobKELONG KAl VAOTOIOUV Sk TOvG HovTéLD amodn-
Kevong 0edopévev, Paciopéva o€ avolktég popeés apyeiomv. To Delta Lake [IBM25] kot to Apache
Hudi [Drem25] amoteAovv dvo dradedopévo cuotnipota lakehouse, ta omoia Ba cuykpivovpe o avth
v dmAopatikn epyacio. H apyitextovikn lakehouse avtipetoniletl to mpofrnuota tov obyypovov
OPYLITEKTOVIKOV AUVOV OEG0UEVOV EIGAYOVTOS T TOPUKAT® YOUPOKTNPIOTIKA:

e Emimedo petadedouévov.

— ACID ocvvolhayégs.

AGQUAEIC TOVTOYPOVEG OVOYVADOELS KO EYYPOPES.

Emipoin oynpatog.

E&EMEN oynuoToc.
"Eleyyog mpocPaong (audit logging).

ZvAdoyn Pondntikdv dedopévev.
o Avorytéc Loppég apyeimv.

— Evkoln petapopd oe SlopopeTIKEC TAATQOPLIES.

- Khapokoodtmro.

e Beltiotonomoeilg SQL gpotpdtav.

Caching.

Toa&vopnon (indexing).

Data skipping.

Partition pruning.

0.3 Iepopotikn Awdtoln

INo ta mepdpota eneEepyaciog KoTd TapTiOES P OLLOTOIOVUE 6 EpYATEG TNV TAATPOpUO okeanos-
knossos, tov GRNET, pe 4 vCPUs, 8 GB pviung RAM kot dicko peyéBovg 30 GB avd epydrn. o
v enelepyacio pong ¥PNOYOTOLOVUE 6 £pYaTeg TNV TAUTPOPLO AWS, DAOTOMUEVOVG [LE EIKOVES
cS.xlarge, 4 vCPUs, 8 GB pvfung RAM kot dioko peyéBovg 200 GB.

Q¢ eninedo omobikevonc, ypnowomotovpe 1o HDFS 3.4.0' kot o¢ pmyavi avéivong to Spark
3.5.12, 10 omoia EMTPETOVY VO GUYKPIVOVLE Tl 50 GLGTAUATA PE dikato TpOTo, KaODC VITosTNPilovy
Kol To 000 YOPIc OUmG Vo gival PEATIGTOTONUEVO Y10l KOVEVO. XPNOUOTOIOVUE TIC TPOETAEYUEVES
pvBuioeig Tov Spark, pe e€aipgon v avénon g pwvaung tov driver e 1 GB kot g pviung Tov
executors g 6 GB ywo va amoguyovpe out-of-memory cQAaApataL.

Ocwv agopd ta lakehouses, ypnoipomotodpe to Delta Lake 3.1.03, ue 11 mpoemileypéveg popi-
oE1C, Kot dnuovpyodpe pio Tposappocévn ékdoon tov Apache Hudi 0.14.14, n omoia mepihapPévet
evnuepopévn ewova tov HBase ovpfotn pe to Hadoop 3. Onwg kot oty mepintwon tov Delta, xpn-
GUOTOI0VUE TIG TPOETMAEYLEVES pLOUICELS.

! HDFS 3.4.0: https://hadoop.apache.org/docs/r3.4.0/

2 Apache Spark 3.5.1: https://spark.apache.org/docs/3.5.1/

3 Delta Lake 3.1.0: https://docs.delta.io/3.1.0/index.html

4 Apache Hudi 0.14.1: https://hudi.apache.org/docs/0.14.1/overview

18

https://hadoop.apache.org/docs/r3.4.0/
https://spark.apache.org/docs/3.5.1/
https://docs.delta.io/3.1.0/index.html
https://hudi.apache.org/docs/0.14.1/overview

@6 [E@ & &G [&

Data Machine Data Machine
Science Learning Science Learning

I | . @1@41

Data Warehouses

Reports Reports

||°: 0,
* ' Datalake

@E’Jrﬂﬂ@ @E’Jrﬂn%

Structured, Semi-structured & Unstructured Data

'01!‘0: 0,
' * ' Datalake

Toow
s lo:

Structured, Semi-structured & Unstructured Data

(a) ZvpPatikny opyrtekTovikn Apvng dedopévay. (b) Apyrtektovikn 600 emTESOV AMPVNG OES0UEVMV.
L4u))- =
Q) | :[I:! ||..@;| @
Data Machine
Bl Reports Science Learning

|
¢ ¢ ' Datalake

@éﬂvi%

Structured, Semi-structured & Unstructured Data

(¢) Apyrtektovikn data lakehouse.

Typa 0.1: ApylteKToviKEC GUGTNUATOV JloyEiptong HeEYOA®mV dedopévav. Avamapoywyr kot eneéep-
yooio amd [Armb21].

0.4 Eneepyooio kata [Haprtioeg (Batch Processing)

INo to mepdpoto eneéepyaciog katd Taptideg ypnopuonolodpe T0 cOvoro dedopévav TPC-DS,
6 anld epotiuata kot 10 mepimhoka epotuota and to TPC-DS. Ta andd epotipata £xovv oKomd
v a&loAdYNoT TOV dV0 GUGTNUATOV Y10 GLYKEKPIUEVES AEITOVPYIEG, EVA TO TEPITAOKE, OTOCKOTOVY
otV a&loAdynon g ikavoTnTag KAOE GLGTILATOS VO OTLLLOVPYHCEL ATOJOTIKO TAGVO EKTEAEGTC TOV
EPOTANOTOG. C2G KVPLAL LOVADO LETPTOTG Y10 TO, TELPAULOTO YPNCILOTOIOVUE TOV XPOVO EKTEAECTC.

H nepapotikn dadikacio anotereitol omd 4 AGEIS. TNV TPAOTN AOCT|, EKTEAOVILE TO EPOTILLOTOL
YPNCLOTOLDVTOS TNV SAUOPP®ST avapopdg 1 onoia amotereitor and 2 gpydreg, o kdbe évag pe 4
vCPUs, 8 GB pviung RAM kot ohvoro dedopévev peyéboog 30 GB. v devtepn @don, emAéyovpie
£VaL AVTITPOCOTEVTIKO VTTOGVVOAO EPOTNHATOV Kot AVEAVOVLE TOVG £pYATES Ao 2 6e 4 Kot 6, DOTE va
0ELOAOYNGOVLLE TV KAMUOKOGUOTNTO TOV KAOE CUGTILITOS. TNV TPITN PACN, XPNOLOTOIDOVIOS TOV

19

WoVIKO aplBpd epyatmv, ektelovdue To mEPapota avEavovtag to péyedog Tov GHVOAOL dESOUEVHOV
amd 30 GB og 60 GB ka1 90 GB, dote va aglohoynoovpe TNV amdd0on Yio cvEavOEVH, GOVOAL. TNV
TETOPTN KoL TEAEVTOiR (Ao, dlapepilovpie Tovg Tivakes Kot epapuolovpe ta&vounon Z-Order, dote
Vo 0EOAO0YNGOLLLE TIG BEATIOTOTOMOELS TOL VTTOSTNPILOVV TO SVO CLGTHLATO.

A76 10 amOTEAEGUATO, TG TPDTNG PACTS, CUUTEPAIVOVE OTL VIO ATAG EpTHMATA, TO Delta éxet
KkaAOTepn emidoon and to Hudi, pe o Spark va €xet ehappmdg Kahdtepn enidoon Kot omd ta 600. Xto, Te-
pimhoka gpotipata to Spark Tak £xel EAappdG KakvTep enidoon, pe o Hudi va amodidel koldtepa
G€ EPMTNLATO LE TOAAEG EVOGEIS TIVAKWV Kal To Delta oe epothata e eKTETAUEVO QIATPAPIGHLO Kot
aggregations. Amo tnv de0TEPN PAGCT), CUUTEPAIVOVLLE OTL, EVD KOl TO 3 GLGTILOTO ETMPEAOVVTOL OO
v oploviia kKAMpdkwon, o Delta kot to Hudi enoeelodvtal oe peyardtepo fabuod, pe KaAdtepeg
emdOcel; amd To Spark 6& KATOEG TEPUTTOOELS. TNV TPiTn QdAoT, OTWS Eival OVOUEVOLEVO, TOPO-
TNPOVLE VYNAOTEPOLG YPOVOLG EKTEAEGTC Y10 OAOL TO. epOTHLOTE KAODS av&hvetal to péyeboc Tov
dedopévav, ®otdco, to Delta kat to Hudi, mapovsialovv pikpotepec anokAioelg amd 1o Spark koo
avéavetol to péyebog. Tédog, oty T€T0pTN OACT], O SOUEPIOUAC KOl 1) TAEVOUNOT] TV OE60UEVMV
EMPEPOVY oONTEG BEATIOOELS, Y100 TA, OTAG AL Kot Ta TEPImTAOKD EpmTHRLATA, e Ta Delta kot Hudi
va. £oVV KOADTEPT EMIO00T G€ GVUYKPLoN pe To Spark 6g TOAAEG TEPTTMOELG.

0.5 Emneepyooia Pofg (Stream Processing)

INo ta Tepdpoto eneéepyaciog pong XPTNOLOTOIOVUE 0EGOUEVO LETOYDV OO TO E0VIKO ¥pMuaTl-
otptlo ¢ Ivdiog. Opyavdvoupe To dedopEva XPNOLLOTOIOVTOG TNV apyitektovikn medallion, 6mov
10 bronze eninedo amaptileton omd aveneEépyaota dedopuéva, To silver enimedo amd dedopéva ota
omoia £yl mpootedel pia mopdymyn othAn Kot TéAog, To gold eminedo, To onoio amaptiletal amd de-
dOULEVA TTOV TTPOEPYOVTAL OTTO TNV EKTEAEGT] KATOLOV EPOTHUATOS. ZUVOAKA EKTELOVE TEWPANOTO LUE T
EpMTAUATO, 2 EpTHATO PIATpOpicpatog kot S windowed aggregation gpmtipata. Qg Kbpla povada
LETPMONG YO TOL TEWPALOTA YPNOLLOTOIOVUE ToV pLOud dieknepaimong (throughput).

H mepapatikn dwadikacio EEKIVA [LE LEPIKE TPOTAPYLKA TEWPAUATO Yo TOV KOBOPIGHd Tov Pum-
oov pubpov deknepaimong (sustainable throughput). O Budoipog pvbuodg dieknepaioong eivat o
péyiotog puoudg pe tov omoio pmopet va eneEepyaletar dedopéva To GOGTNLA YWPIG VO VITAPYEL OVPA
avemeEépyaotmv dedouévav. Bpiokovpe o1t eivar 50,000 cepég ava devtepdiento kat 100,000 yio
TO EPOTHLLATO aggregation Kot GIATPOPIoUATOS OVTIGTOLYO. XPNOLLOTOIOVTOS 6 gpydteg, 0 Kabévag
ue 4 vCPUs kot 8 GB pviung RAM, extedovue To epotpota e puipo 166600 dedopévmy Tov Pid-
oo puduod diekmepainong Kot exiong avéavovtag Kot peidvovtag tov pudpod katd 10,000 cepég avd
OEVTEPOLETTO, DOTE VO AELOAOYNCOVLLE TO GUGTILLOTA OTOV AELTOVPYOLV GTOV UEYIGTO PpLOUO, KOOBMDC
Kol KAT® 1 Téve amd auTov.

AT6 o TEWPAUATO GOUTEPIVOLLLE OTL 6TO bronze eninedo, 1o Spark £yetl KalvTePN €Mid0CT KOOMG
1o Hudi ka1 to Delta cuAléyovv petadedopéva katd v €icodo Tmv dedouévmv. 210 eninedo silver
TAPOTNPOVLE KOl TOA KaADTEPES EMDOCELS amd To Spark, pe HKpoTEPES AmoKAMGELC OUWOC, KAODC Ta
dvo lakehouses cvAréyovv petadedopéva Lovo yio Ty véa othAn. [a ta epoTiHaTe IATpapicUaTOC
KoL To Tpio CLGTAHATO £Y0VV TAPOLOoLN ETO00T Le TO Spark va gival Ehappdg KaAvTepo. [a peyaio-
TEPOVG PLOLLOVG 16050V dedopévav, To Delta tapovsiilel kalvtepn enidoon, eved To Hudi Aettovpyel
KaAOTEPO Yo TOV PLadoipo puBpod dieknepaimong. o ta aggregation epmTHUATO, TOPATPOVLE OTL TO
Spark mapovoidlel ehappdg kaldtepn enidoon, pe eEaipeot) TO EpAOTNUA Yo TV EVPECT EAYIOTOV
KOl TO EPAOTNUO e TOAAG aggregations, OTTOV Yo, LEYOADTEPOVG PLOLOVG €166d0v, To Delta kot To
Hudi éyovv koivtepec emddoELC.

0.6 Xvpmepaopato

H apyitextovikn lakehouse giodyel moAAd vEa yopaxTnPloTIKA Kol BEATIGTOTOMGELS e GKOTO
TNV AVIYETMONION TOV KOOV TpoPAnudtov tov Apvav dedopévav. Katd ta nelpdpata encéepya-
clog Kotd Taptideg, mapatnpovpe 6Tt to Delta kot to Hudi emideucvoovy cuykpioteg kot katd me-

20

PITTMOGELG KOADTEPEG EMOOGELG OE GYEON LE TNV TAPASOGIKT Apvn dedoUEVOV, EVD GTA TEPALOTA
eneEepyaciog pong, mopd to yeyovog 6t o Spark mapovsidletl kaAlvtepn enidoon KaTd TNV £(6000 TV
OEJ0UEVOV, KO TOL TPl GLOTNUATA TAPOVGLALOVY GLYKPICLUN ETIO0CT GTA EPMTNLOTO. ZVUTEPAIVO-
vtog, to Delta kot to Hudi emipépouvv eviunmaoiokd amoteAéspota Kafdg emdetkviovy cuykpion
N aKOUN Kot KOAOTEPT EMId0CN OE OYEON UE TIG Alpveg dedopévav. Xe ke mepintmon, To peydro
€0POG YOPOKTNPLOTIKAOV TTOV EI0AYOVV SIKALOAOYEL TNV YPNOT TOVG, AKOUT KOl GE TEPUTTMGELS OOV
Tapovclalovy EAUPPMS XEPOTEPT EMIOOCT.

21

Keipevo otao ayyhMkad

Chapter 1

Introduction

The demand for large scale data management solutions has long been present and has only been exacer-
bated by the exponential growth of the rate at which data is generated, prompted by digital technology
advancements, such as connectivity, mobility, the IoT, and Al. The accumulation of massive volumes
of structured and unstructured data led many enterprises to outgrow traditional data management sys-
tems, such as RDBMSs, which cannot efficiently store or facilitate the processing of data at this scale.
Thus, new solutions were proposed and are still being proposed every day as we continue to navigate
the big data age.

Data warehousing was born out of the need to provide analytical insights by collecting data from
operational databases into centralized warehouses, which then could be used for decision support and
BI. Data in these warehouses would be extracted from multiple sources, transformed and loaded into
the warehouse under a unified schema [Silb11]. These first generation systems faced problems, such
as rising costs, as datasets grew and became increasingly varied and unstructured. They were no
longer able to efficiently store and query the data. To remedy these problems, the second generation
of platforms was introduced, data lakes [Armb21].

Data lakes are big data repositories, based on low-cost storage, that utilise schema-on-read archi-
tecture and hold raw data in generic and open file formats, such as CSV, Apache Parquet etc. While
offloading raw data into lakes solved a few of the challenges that arose with data warehouses, the
problem of data quality and governance was deferred downstream. The need for a system that can
handle large amounts of structured and unstructured data from various sources, while also preserv-
ing data quality and providing a robust data governance structure led to the creation of the current
generation of data lake platforms, the two-tier architecture [Armb21].

In this architecture, data is first loaded into the lake and then a subset of it is ETLed into a down-
stream data warehouse, to be used for important decision support and BI applications. The use of
open formats also made the data directly accessible to a wide range of other analytics engines, namely
query engines and ML systems [Armb21]. Data in this architecture is often stored according to the
medallion architecture, a widely used ETL framework which we will utilise for the stream process-
ing benchmarks and discuss in detail in chapter 4. While this design solved the before mentioned
problems, it also introduced new ones. As a result of data first being ETLed into lakes, and then
ETLed again into warehouses, added complexity, delays, and new failure modes emerge. Moreover,
enterprise use cases have grown to be more and more complex, including advanced analytics such as
machine learning, for which neither data lakes nor warehouses are ideal [Armb21].

25

Bl R ; Data Machine
Reports eports Science Learning

Data Warehouses

!

G a__p 9

ETL 0250 °0

I
288 S ®®® B

Structured, Semi-structured & Unstructured Data

@ [e[@ &

Teoo
o

* ' Datalake

Structured Data

(a) First-generation platforms. (b) Standard data lake architecture.
& FE @ @& & @ K& &
Data Machine Data Machine
Bl Reports Science Learning Bl Reports geiance Learning

gg—1|

Data Warehouses

;"01:!0: 04
* ¢ ' Datalake

S ©E 0 E Soe o B

Structured, Semi-structured & Unstructured Data

1
s 0° 1o0oe 1) A
v ° o . ' ° o1 Data Lake

Structured, Semi-structured & Unstructured Data

(¢) Two-tier data lake architecture. (d) Data lakehouse architecture.

Figure 1.1: Evolution of data management platform architectures to the standard data lake, the two-
tier model (a-c) and the data lakehouse model (d). Reproduced and edited from [Armb21].

1.1 Use of Data Lakes in Organisations

In this section we dive deeper into how data lakes are implemented in organisations to manage big
data. We discuss the characteristics of different implementations of data lakes, including the two-tier
architecture, and how they resolve many of the challenges faced by existing systems as well as the
new problems they create that led to the proposal of a new solution: Data Lakehouses.

26

1.1.1 The Standard Data Lake

The most rudimentary implementation of a data lake involves using either a physical distributed stor-
age solution, such as an HDFS [Data25] cluster, or a cloud store, such as Amazon S3!, Google Cloud
Storage?, Microsoft Azure Data Lake? etc, paired with analytics engines.

The underlying storage layers of data lakes are built on distributed storage solutions, unlike tra-
ditional systems such as data warehouses, which rely on centralised servers. This architecture makes
data lakes significantly more flexible in terms of scalability, as they can scale out, an approach that
is more cost effective and less limited than scaling up, which is unavoidable when using centralised
servers.

Data lake storage platforms act as data agnostic repositories where data can be quickly stored with-
out any specific organizational structure or organised as seen fit for every use case. Data is accessed
through a schema-on-read approach, therefore, only the analytics engines requires new code. This
minimizes data format inconsistencies, as all data transformations occur within the analytics layer.
This storage scheme also makes data lakes platform independent, allowing any analytics engine to
process the data with minimal setup. Integration is only necessary to grant the engine access to the
data lake and no additional work is required to read the data since it is stored using open file formats.

The platform agnostic nature of data lakes also renders migration to different technologies easy.
As mentioned before, using new analytics engines, depending on the organisations needs, requires
minimal integration and data is stored in open file formats, meaning it can be very easily moved to a
different platform without the need to reformat the data.

1.1.2 The Two-Tier Architecture

In this architecture, the data lake replaces the integration layer of the data warechouse architecture and
serves as the single point of truth [Herd20]. More specifically, instead of gathering and integrating data
from multiple sources into a data warehouse under a unified schema, both structured and unstructured
data, is first stored in the data lake and a small subset of it is then ETLed downstream to the data
warehouse, where it can be used for faster and more straightforward BI and reports.

The two-tier data lake architecture is now dominant in the industry, being used by virtually all
Fortune 500 enterprises [Armb21], as it manages to combine most of the benefits and flexibility of a
data lake and the data quality and governance ensured by a data warehouse, for a subset of data used
for BI and reports. The rigid structure of a warehouse ensures that, the small subset of data within the
lake that is conducive to BI and business decisions, contains consistent, high quality, cleansed data.
Besides more efficient BI, data warehouse security mechanisms are more mature compared to those of
the relatively new data lakes, and thus a data warehouse provides an extra layer of protection between
the underlying data lake and external analytics engines.

1.1.3 The Problems of Current Data Lake Solutions

Current data lake solutions are based on either the standard data lake or some combination of a data
lake and a data warehouse downstream, with the two-tier architecture being one of the most widely
used examples of this approach. Although data lakes represent a significant advancement toward ro-
bust big data management systems, they still face several challenges and lack essential functionalities
necessary for the efficient storage and utilization of data. Specifically, modern data lake solutions
suffer from the following limitations:

! Amazon S3: https://aws.amazon.com/s3/, Accessed: 2025-05-13

2 Google Cloud Storage: https://cloud.google.com/storage, Accessed: 2025-05-13

3 Microsoft Azure Data Lake: https://azure.microsoft.com/en-us/products/storage/data- lake-storage,
Accessed: 2025-05-13

27

https://aws.amazon.com/s3/
https://cloud.google.com/storage
https://azure.microsoft.com/en-us/products/storage/data-lake-storage

The Problems of the Standard Data Lake

The standard data lake faces two main problems. The first issue is that in modern data management
systems, data is predominantly consumed by advanced analytics applications, such as machine learn-
ing platforms, however current data lake solutions lack the features necessary to facilitate these use
cases. Schema-less data stored in a lake needs to be cleaned, labelled and organised before being used
by downstream analytics and ML engines, a problem typically addressed by introducing additional
ETL pipelines. Therefore, to build efficient data lakes, the lake architecture requires a redesign of
both storage and functionality [Hai23].

Metadata is essential to improve the performance of analytical workloads and ML models, in terms
of model accuracy and efficiency. In RDBMSs, it is crucial for storing constraints, table relation-
ships, data types, etc. Utilising metadata is also crucial for model training as primary key-foreign key
relationships, join dependencies [Chenl7] and functional dependencies [Kham17] can significantly
reduce training time. ML datasets often include complex data types such as images, audio, and video.
When handling such datasets, extracting metadata from embeddings is essential, as it enables more
efficient organisation and processing. Besides the need to provision embeddings for the data itself, it
is also essential to collect metadata throughout the lifecycle of ML models. This lifecycle includes
multiple stages, such as model training, parameter tuning, and evaluation, during which metadata must
be extracted and modelled. However, data lakes inherently lack the ability to collect and store this
metadata, making ML workflows inefficient at best and non-functional at worst [Hai23].

To address all of these issues, various ETL pipelines involving multiple systems are often built
based on the use case. However, this workaround introduces significant complexity as it requires new
code, intricate data pipelines to link the various platforms and familiarity with a wide range of tools
and systems, making it difficult to maintain [Makr21].

The second problem is the lack of traditional key RDBMS features such as transaction manage-
ment, indexing, and caching, which makes data lakes less suitable and efficient for complex analytical
workloads. Besides lacking metadata, relational data stored in lakes do not adhere to ACID properties,
lack transaction support and offer limited query optimisation. The current workaround is to add a data
warehouse downstream. However, maintaining both a data lake and a data warehouse, and ensuring
consistency between them, introduces significant overhead and architectural complexity [Hai23].

The Problems of the Two-Tier Architecture

As mentioned above, a system consisting of a data lake and a downstream warehouse is the current
workaround for the lack of metadata and traditional RDBMS features in data lakes. This solution
is architecturally complex and increases the cost of ownership significantly as it involves maintain-
ing continuous ETL pipelines and incurring additional storage costs for duplicate data stored in both
the lake and the warehouse. Additionally, commercial warehouses often lock data into proprietary
formats, making migration to other platforms more difficult and costly [Armb21].

Besides the increased maintenance cost, this solution also introduces reliability and data staleness
issues. The flow of information within such a system dictates that the data lake serves as the source
for the warehouse. Updates, deletes or inserts are not directly available to the warehouse and thus,
continuous effort is required to ETL data between the two systems, making keeping them consistent
complex and costly. When dealing with large volumes of data, loading into the warehouse may take
days, causing the data in the warehouse to be stale in comparison to the data in the lake. The reliability
of the platform is also diminished, not only due to potential failures during each ETL stage but also
due to the data quality being compromised by possible bugs, stemming from subtle inconsistencies
between the data storing formats in each system [Armb21].

Lastly, despite the presence of warehouse features such as metadata, ACID transactions, data ver-
sioning and indexing, support for advanced analytics remains limited. In this architecture, warehouses
typically store only a small subset of the data, which is not sufficient for effective machine learning, as
ML models require access to large datasets. ML platforms utilise complex, non-SQL code, making it

28

difficult to read data directly from the warehouse. The lack of direct access to the warehouse’s propri-
etary internal formats, results in the need for additional ETL steps, which we have already concluded
increase complexity and costs [Armb21].

1.2 Data Lakehouses: A Solution to the Challenges

Data lakes continue to evolve by adding new features and functionalities. However, significant gaps
remain, as mentioned in the previous section, that prevent them from fully meeting the demands of
today’s complex big data landscape. To address these problems, a new data management solution has
emerged: the data lakehouse. Data lakehouses are an added layer that is integrated with the storage
layer of a data lake. It introduces a new storage format based on open file formats and supported
by logs and metadata tables. In this section we will discuss some key features of lakehouses and in
the next chapter we will dive deeper into how Delta Lake [IBM25] and Apache Hudi [Drem25], our
SUTs, implement these features.

1.2.1 Metadata Layer

Data lakehouses introduce metadata layers over data lake storage, thus raising the abstraction level
and enabling the implementation of capabilities such as ACID transactions, schema enforcement and
other data quality and governance features [Armb21].

Transaction Support

Data lake storage systems, such as HDFS or cloud stores, provide a low-level object store or filesystem
interface where even simple operations, such as updating a table distributed across multiple files, are
not atomic and isolated [Armb21]. Data lakehouses introduce ACID properties through metadata,
ensuring safe table-level concurrent reads and writes [Mazu23].

Schema Enforcement and Evolution

Similar to the implementation of constraints and table relationships in RDBMSs, lakehouses leverage
the metadata layer to implement and enforce a schema for lake data. Combined with the use of open
data formats, this also enables schema evolution over time, without having to bear the cost of rewriting
an entire table [Mazu23].

Access Control

Finally, metadata layers are a natural place to implement governance features such as access control
and audit logging. With data lakes lacking mature safety features, a metadata layer can enforce access
control by verifying whether a client is authorized to access a specific table before granting creden-
tials to read raw data from the object store. It also ensures that all access events are reliably logged
[Mazu23].

1.2.2 Open File Formats

Lakehouses introduce new table formats through transaction logs and metadata tables, that work on top
of open file formats, such as Parquet. This enables lakehouses to introduce additional features without
locking data into a proprietary format. Therefore, analytical workloads can be run by different engines
including both lakehouse specific and non-specific [Mazu23].

29

Easy Migration

The use of open data formats enables organisations to move data across platforms without the need
for reformatting, while also enabling organisations that already utilise data lakes to easily convert an
existing directory of Parquet files into a lakehouse format and reverse. For example, Delta Lake can
convert a table with zero copies just by adding a transaction log that starts with an entry that references
all the existing files [Armb21].

Scalability

The metadata layer of lakehouses, being built on top of distributed open file formats, enables lake-
houses to introduce necessary warehouse features, needed for complex analytical workloads, without
having to sacrifice the data lake’s ability to efficiently scale out. The transaction logs and metadata
tables are also stored using open file formats, thus making every aspect of lakehouses highly scalable.

1.2.3 SQL Performance Optimisations

Warehouses were incorporated in data lake architectures to introduces RDBMS features and improve
SQL query performance. Besides transactions, schema enforcement etc, lakehouses also introduce
SQL specific optimisations to enhance BI and analytic query performance. These optimisations are
introduced through the following features.

Caching

Transactional metadata layers ensure data quality and consistency, thus enabling lakehouse systems to
cache files from the object store to faster storage devices, such as SSDs and RAM, on the processing
nodes. Utilising transaction logs, it is easy to determine which cached files are still valid for reading.
Moreover, data can be cached in a transcoded format that is more efficient for the query engine to run
on, mirroring similar optimisations that would be used in traditional warehouse engines [Armb21].

Auxiliary Data

Lakehouses maintain data, which help query optimisation, in auxiliary files they have full control
over. Such data include column min-max statistics for each sub file within the same Parquet file used,
which enables data skipping and partition pruning optimisations when the base data is clustered by
particular columns. Data skipping is the utilisation of column data to avoid reading unnecessary data
during query execution, and thus improve performance [Armb21].

Data Layout

Data layout is instrumental to access performance, especially for distributed formats such as Parquet
where tables are split between storage nodes. Lakehouses allow data partitioning using individual
dimensions, a feature which is also supported by data lakes, as well as introducing partitioning based
on space filling curves, such as the Z-order and Hilbert curves, to provide locality across multiple
dimensions [Armb21].

1.3 The Aim and Scope of this Thesis

The aim of this thesis is to evaluate the performance of two data lakehouses compared to a tradi-
tional data lake. Having already made a case for data lakehouses as a compelling solution in big data
management, we are interested in exploring when lakehouses outperform lakes, when they perform
similarly, when they underperform and whether the performance trade-off is justified by the added
benefits of using a lakehouse. More specifically, we will evaluate two of the leading data lakehouse

30

software solutions, Delta Lake and Apache Hudi. We will compare the performance of Hudi over
HDFS queried by Spark [Amaz25], Delta Lake over HDFS queried by Spark and plain HDFS queried
by Spark for batch and streaming workloads. Each software product’s characteristics and why it was
chosen will be discussed in detail in the next chapter.

Based on the claims made by Delta Lake [Aysh24] and Hudi [Hudi24] we expect to see similar or
even better performance to a traditional data lake. Both software products have been created to pair
well with Spark and HDFS and boast features that, besides adding new functionalities to traditional
data lakes, are supposed to improve performance. Therefore, we expect to verify these claims.

The scope of the project is restricted to evaluating the performance of Hudi and Delta Lake, thus
we will try to separate the performance fluctuations attributed to Hudi and Delta Lake from the perfor-
mance fluctuations attributed to the supporting software products, HDFS and Spark, and the perfor-
mance fluctuations attributed to the hardware. Throughout the paper it will be mentioned whenever
these distinctions are made and how they are made. We chose an open source storage solution and
query engine, namely HDFS and Spark, to avoid vendor-specific platforms, that may have software
specific enhancements, which boost performance.

31

Chapter 2

Experimental Setup

In this chapter we will discuss the experimental setup used for the benchmarks, both the hardware and
the software utilised. We will introduce our SUTs and explain how the lakehouse features we analysed
in the previous chapter are implemented internally.

2.1 Hardware

For the batch processing part of this thesis, we perform our experiments with 6 workers on okeanos-
knossos, GRNET’s cloud service, with 4 vCPUs, 8 GB of RAM and 30 GB of disk space each. For the
stream processing part of this work, we utilise 6 workers on AWS c5.xlarge instances, with 4 vCPUs,
8 GB of RAM and 200 GB of disk space each.

2.2 Hadoop Distributed File System

HDFS is an open source, scalable and fault-tolerant DFS specifically designed to store and manage
large volumes of data. It partitions data into blocks and distributes them across nodes in a cluster
composed of commodity hardware, while also relaxing a few POSIX requirements for storage systems
to enable streaming access to data. HDFS is commonly used as a foundational storage layer for data
lakes, as it provides reliable and highly available storage, even in the event of hardware failures. It is
designed for horizontal scalability, meaning it can scale out efficiently through the addition of more
nodes to the cluster. For our experiments, we utilise HDFS 3.4.0', chosen not only for its robust
features mentioned above but also due to its independence from any specific lakehouse architecture,
which makes it a flexible and neutral storage layer suitable for our purposes.

2.3 Apache Spark

Spark is an open source, distributed computing framework designed for fast and large scale data pro-
cessing. It provides a unified engine capable of handling machine learning, graph processing, batch
and streaming workloads. By allowing in-memory computation and optimised execution plans, it sig-
nificantly enhances performance. Spark is widely used for big data analytics as it supports multiple
programming languages, such as Scala, Python, Java and R, and integrates with various storage sys-
tems including HDFS and cloud storage systems. We utilise Spark 3.5.12, for our experiments because
it allows as to compare our lakehouse formats fairly, as it supports both, while not being specially op-
timised for either. We use the default configuration for Spark, without any manual tuning except
increasing the driver memory size to 1 GB and executor memory to 6 GB to avoid out-of-memory
errors.

! HDFS 3.4.0: https://hadoop.apache.org/docs/r3.4.0/
2 Apache Spark 3.5.1: https://spark.apache.org/docs/3.5.1/

33

https://hadoop.apache.org/docs/r3.4.0/
https://spark.apache.org/docs/3.5.1/

2.4 Delta Lake

Our first SUT is Delta Lake, an open source lakehouse platform designed to run on top of an existing
data lake to improve its reliability, security, and performance. Delta introduces ACID transactions,
scalable metadata, unified streaming and batch processing. It addresses common challenges in stan-
dard data lake design with features like schema evolution, time travel, and versioned data. It leverages
a transaction log to track changes to data over time, in order to maintain data integrity and enable effi-
cient query execution. For our experiments we utilise Delta Lake 3.1.0°, with the default configuration
as it is intended to support a diverse range of workloads without workload specific tuning.

2.5 Apache Hudi

Our second SUT is Apache Hudi, another open source data lakehouse platform, built on a high per-
formance open table format intended to bring database functionality to data lakes. Similar to Delta
Lake, it is a unified batch and stream processing engine that introduces features such as schema evolu-
tion, ACID transactions and rollbacks. Hudi employs a combination of storage formats and indexing
techniques, to enable efficient query execution. For our experiments, we package our own version of
Hudi 0.14.1% to include a new image of HBase that is compatible with Hadoop 3, since we use HDFS
3.4.0. HBsae is necessary as Hudi uses HFiles as the base format for its metadata table. Similarily to
Delta, we use the default configuration.

2.6 Delta Lake and Apache Hudi Design

In this section, we examine the design decisions made for both SUTs: Delta Lake and Apache Hudi.
Each lakehouses adopts its own approach to implementing metadata management, data update strate-
gies, transactions atomicity and isolation. An overview of these design choices and their respective
implementations in each system is presented in Table 2.1.

Table Metadata Transaction Atomicity Isolation Levels
Transaction Log and Serializability,
Delta Lake &) Atomic Log Appends) Z] y)
Metadata Checkpoints Strict Serializability
Transaction Log and
Apache Hudi g Table-Level Lock Snapshot Isolation

Metadata Table

Table 2.1: Lakehouse system design features.

In the following subsections, we provide a detailed analysis of each design decision, highlight-
ing aspects where Delta and Hudi adopt similar approaches as well as where their implementations
diverge.

2.6.1 Transaction Coordination

Both systems implement transactions that span all records within a single table but do not support
transactions across multiple tables. They use multi version concurrency control (MVCC) to manage
transactions and a metadata structure determines which file versions are associated with a given table.
When a transaction begins, it reads this metadata structure to obtain a snapshot of the table and then

3 Delta Lake 3.1.0: https://docs.delta.io/3.1.0/index.html
4 Apache Hudi 0.14.1: https://hudi.apache.org/docs/0.14.1/overview

34

https://docs.delta.io/3.1.0/index.html
https://hudi.apache.org/docs/0.14.1/overview

performs all read operations based on that snapshot. To commit, the transaction atomically updates the
metadata structure. Delta Lake depends on the atomic guarantees of the underlying storage system,
while Hudi enforces atomicity through table-level locks implemented in ZooKeeper, Hive MetaStore,
or DynamoDB [Jain23].

To ensure isolation between transactions, both Delta Lake and Hudi employ optimistic concur-
rency control. Before committing, each transaction undergoes a validation process to detect con-
flicts with concurrently committed transactions. Hudi enforces snapshot isolation by confirming that
a transaction does not attempt to write to any files that have already been modified by committed
transactions that were not in the transaction snapshot. Transactions always read from a snapshot of
committed transactions as of the time the transaction began and are permitted to commit only if no
conflicting writes have occurred during their execution. Delta also verifies no data read by a trans-
action is altered by concurrently committed transactions that were not in the transaction snapshot,
thus providing serializability, meaning the outcome of concurrent transactions is equivalent to some
serial execution of those transactions, though not necessarily in the order of which they appear in the
transaction log [Jain23].

2.6.2 Metadata Management

Lakehouse systems leverage the higher data read rates of object storage by storing metadata in files
kept alongside the actual data files. Since metadata files are much fewer than data files, listing and
reading them, instead of listing data files directly from storage, results in faster query planning times.
In the tabular format, utilised by Delta Lake and Hudi, metadata for a lakehouse table is stored in a
separate, dedicated table. Hudi uses a specialised metadata table, while Delta uses a transaction log
and checkpoints, composed of Parquet and JSON files. Transactions do not write to the metadata table
directly, but instead they generate log records, which are periodically compacted into the table using
the merge-on-read approach [Jain23].

There are two different metadata access schemes used to gather the necessary data needed to plan
queries, single node planing and distributed planning. Delta and Hudi queries are typically planned in
a distributed fashion, as a batch job must scan the metadata table to find all files required for a query
[Jain23].

2.6.3 Data Update Strategies

Lakehouses employ two strategies for data updates, Copy-On-Write (CoW) and Merge-On-Read
(MoR), with differing trade-offs between read and write performance. The CoW strategy locates
files containing records that need to be updated and rewrites them to new files with the updated data.
This method results in slower writes but offers improved read performance, as data is constantly up to
date. The MoR strategy does not rewrite files during updates. It instead logs record-level changes in
auxiliary files and defers the reconciliation until query execution. This improves write performance
but can negatively impact read performance due to the additional overhead of merging data at query
time [Jain23].

The Delta MoR implementation uses auxiliary “tombstone” files that mark records in data files.
At query time, these tombstoned records are filtered out. Record updates are implemented by tomb-
stoning the existing record and writing the updated record into Parquet/ORC files. By contrast, the
Hudi implementation of MoR stores all the record-level inserts, deletes and updates in row-based
Avro files. On query time, Hudi reconciles these changes while reading data from the Parquet files.
It is worth noting that Hudi, by default, deduplicates and sorts ingested data by keys, thus incurring
additional write latency even when using MoR [Jain23].

35

Chapter 3

Batch Processing

Batch processing is one of the two main methods of processing data in modern big data management
systems. It refers to the execution of a series of jobs where data is collected, entered, and processed
in groups or batches rather than individually. The processing is typically scheduled and may be per-
formed at set intervals, leading to higher latency but suitability for large volumes of data [Benj20]. By
dividing large tasks into smaller units, this approach leverages distributed computing to achieve higher
performance and scalability. It is usually utilised for advanced analytics and complex queries when
accuracy and data volume are more important than latency. In this chapter we perform experiments
to evaluate how the addition of Delta or Hudi to a data lake impacts performance for batch processing
workloads.

3.1 TPC-DS Benchmark Suite

The TPC-DS benchmark suite is a widely adopted standard for evaluating decision support systems. It
is designed to model the operations of a retail decision support system. Specifically, it emulates com-
plex decision support and business intelligence batch workloads for analytical systems that process
large amounts of data, typically deployed on big data management platforms, such as data warehouses
and data lakes. TPC-DS includes a relational dataset based on a retail business model, comprising mul-
tiple fact and dimension tables, along with a diverse set of queries categorized into four broad classes:
reporting queries, ad hoc queries, iterative OLAP queries, and data mining queries. The above char-
acteristics make TPC-DS an ideal benchmarking tool for assessing the query performance, scalability
and system efficiency of data lake systems under large, analytical batch workloads [Tran21].

In the following subsection, we analyse the TPC-DS dataset in greater detail. In subsection 3.2.2,
we examine the TPC-DS queries more closely and present which were chosen for our experimentation
process and the reasons behind the selection.

3.1.1 Dataset

TPC-DS emulates the business model of a large retail company with multiple brick and mortar stores
that also sells goods through catalogs and the internet. Along with tables to model the associated sales
and returns, it includes simple inventory and promotion systems. It organises data with a snowflake
schema that consists of 17 dimension tables and 7 fact tables. Fact tables contain the surrogate keys
of the referenced dimension tables along with some quantitative metrics, while dimension tables hold
the descriptive information for the related fields in the fact table. Specifically, the schema includes
two fact tables modelling product sales and returns for the store, the catalog and the internet and one
fact table modelling the inventory for the catalog and internet sales. In Figure 3.1 we can see the ER
diagrams that comprise the TPC-DS dataset schema. The fact tables are shaded in gray.

37

Date_Dim Store
S 4
T — /
[N —
\ N Item
\ Ny "‘ﬂStore Salesl—-{ Time_Dim |
\ \\ / o //(
\ Promotion

Customer_

\ }/ Customer_
\ Address

Demographlcs

Household
Demographlcs

\

P
T
Income_

Band

I
\

Customer

(a) Store Sales ER Diagram

M Catalog_Page
— CaII Center ,/ M
\\

\ \ \ﬁm_)- ‘ACatanq Sales}—-|T|me Dim |

| =~
\\ - AR *| Ship_Mode |

Household_
Demographics

Income_
Band

(c) Catalog Sales ER Diagram

Date Dim|v—\\\

.
[h i

| T
A
[N

{ Web_Site
k

B \

o [item }:“_\ \
i S~

\\\/

~

A Warehouse
;-{Time Dim

/ Promotlon F\ e
\ —= Web Sales
] Web Page — \-{ Ship_Mode

~—a

Customer_ »

. Household
Demographics byt
- A -

Demographics

e
7

-

v
Income_
Band

(e) Web Sales ER Diagram

Date_Dim| | Store |
T 7
i \¥‘*__; /
\ ——
\ Item - [Store_ Relis Time_Dim |
\ T
\ Reason g

Customer_
Demog ra p hlcs

Household_
Demographics

Customer
Address

Income_
Band

Customer

(b) Store Returns ER Diagram

Date Dlmlt ‘f“atalog Page\

\ - CaII Genter /

M'\>{Catalog_Returnsl—-{ Time_Dim |
A~

\\
\\
\ 4
\ // \
\ Reason //

Customer
Address

\

Customer
Demo ra hICS

Income_
Band

Customer

(d) Catalog Returns ER Diagram

Date_Dim F\\
i

\ \"\\\\ | /,| Warehouse
\ T g
Voo ltem b 4 Time_Dim |
\ ~ " Web_Returns ’\ .
Web Page P Shlp Mode
/ /,/; //
| Customer_ |- P Household
, M;l’_alm// Demographlcs
/ // ///
J/ e /‘// —
f / P //,/ //,,/
\' / / ///’/ ://’ -
/// e " Income_
m and
(f) Web Returns ER Diagram

Inventory | Warehouse |
-

.
"

.
.

[Date_Dim|

A
| ltem |

(g) Inventory ER Diagram

Figure 3.1: The TPC-DS dataset schema. Reproduced from [Tran21].

38

3.2 Queries

In this section we present the queries used to evaluate our SUTs. We differentiate between simple and
complex queries. We classify basic SQL queries which perform one single operation, such as filtering,
aggregation, sorting etc, as simple. They are used to evaluate how effectively each system performs
these basic operations. The complex queries are a set of TPC-DS queries we selected that reflect a
diverse group of analytics workloads. These queries incorporate a combination of SQL operations
and are used to assess how effectively our SUTs formulate query plans and perform in real-world use
cases often encountered in decision support and business intelligence systems.

3.2.1 Simple

The first query is a simple select all operation that retrieves all columns from the catalog sales ta-
ble, which is the biggest table of the dataset. The purpose of this query is to evaluate the overhead
introduced by Delta and Hudi during metadata table access.

SELECT * FROM catalog sales
Listing 3.1: Simple Query 1 (Squery 1).

The second query is a select all operation after performing an inner join on the catalog_sales and
customer tables. With this query we evaluate how effectively each system performs joins.

SELECT * FROM customer INNER JOIN catalog sales
ON cs_bill customer sk = ¢ _customer_ sk

Listing 3.2: Simple Query 2 (Squery 2).

The third query is an equality filtering query on the catalog_sales table. The purpose of this query
is to evaluate how effectively Delta and Hudi leverage the metadata table to data skip.

SELECT * FROM catalog sales WHERE cs sold date sk = 2451806
Listing 3.3: Simple Query 3 (Squery 3).

The fourth query is a range filtering query on the inner join of the catalog_sales and customer
tables, applying range filters on one column of each table. This query is an extension of the second and
third queries and its aim is to evaluate how data skipping when filtering can impact join performance.

SELECT * FROM customer INNER JOIN catalog sales
ON cs_bill customer sk = ¢ _customer_ sk
WHERE cs ext wholesale cost < 1920 AND c last name > ’Lao’

Listing 3.4: Simple Query 4 (Squery 4).

The fifth query is an average aggregation query on the catalog _sales table. With this query we
examine whether Delta’s and Hudi’s metadata layers make an impact on aggregation performance.

SELECT AVG(cs _ext wholesale cost), cs sold date sk
FROM catalog sales GROUP BY cs_sold date sk

Listing 3.5: Simple Query 5 (Squery 5).

The sixth and final simple query is a simple sorting query with the purpose of evaluating the effect
of column level metadata on performance.

SELECT * FROM catalog sales ORDER BY cs ext list price
Listing 3.6: Simple Query 6 (Squery 6).

39

3.2.2 Complex (TPC-DS Queries)

The TPC-DS queries address a wide array of complex business problems, utilising a variety of access
patterns, query phrasings and operators. They are categorised across four broad classes that charac-
terise most decision support queries [Tran21]. We select 10 queries in total, from all four classes,
which include diverse query patterns and operators. Following are the four classes in order of size
and the queries selected from each class.

Reporting Queries

These queries are executed periodically to produce reports that answer common, pre-defined questions
about the financial and operational health of a business. Although they generally tend to be static,
minor changes can be made to shift focus to a different date range, geographic location, brand name
etc [Tran21]. From this class we select the following queries:

Query 33: What is the monthly sales figure, based on extended price, for a specific month in a spe-
cific year, for manufacturers in a specific category in a given time zone. Group sales by manufacturer
identifier and sort output by sales amount, by channel, and give total sales.

Query 35: For the groups of customers living in the same state, having the same gender and
marital status who have purchased from stores and from either the catalog or the web during a given
year, display the state, gender, marital status, count of customers, min, max, average, count distinct
of the customer’s dependent count, min, max, average, count distinct of the customer’s employed
dependent count, min, max, average, count distinct of the customer’s dependents in college count.
Display the ”count of customers” multiple times to emulate a potential reporting tool scenario.

Query 61: Find the ratio of items sold with and without promotions in a given month and year.
Only items in certain categories sold to customers living in a specific time zone are considered.

Query 75: For two consecutive years track the sales of items by brand, class and category.

Ad-Hoc Queries

These queries express dynamic and impromptu questions, which answer immediate and specific re-
quests for data. Ad-hoc queries differ from reporting queries in that they are generated in real-time to
address specific use cases, without relying on predefined reports [Tran21]. From this class we select
the following queries:

Query 28: Calculate the average list price, number of non empty (null) list prices and number of
distinct list prices of six different sales buckets of the store sales channel. Each bucket is defined by
a range of distinct items and information about list price, coupon amount and wholesale cost.

Query 72: For each item, warehouse and week combination count the number of sales with and
without promotion.

Iterative OLAP Queries

OLAP queries retrieve and analyse multidimensional data, in order to provide insights and facilitate
BI, through aggregations, dimensions, and hierarchies. They allow for the exploration and analysis of
data to discover new and meaningful relationships and trends. While similar to ad-hoc queries they
differ in that, contrary to ad-hoc queries which involve a specific request, OLAP queries comprise a
sequence of simple and complex queries that express dimension and hierarchy [Tran21]. From this
class we select the following queries:

Query 9: What is the ratio between the number of items sold over the internet in the morning (8
to 9am) to the number of items sold in the evening (7 to 8pm) of customers with a specified number
of dependents. Consider only websites with a high amount of content.

Query 11: Find customers whose increase in spending was large over the web than in stores this
year compared to last year.

40

Query 64: Find those stores that sold more cross-sales items from one year to another. Cross-sale
items are items that are sold over the Internet, by catalog and in store.

Data Mining Queries

These queries involve sifting through large volumes of data to produce data content relationships, in
order to predict future trends and behaviours. Data mining queries typically consist of joins and large
aggregations that return large data result sets, which allow businesses to make proactive, knowledge
driven decisions [Tran21]. From this class we select the following queries:

Query 38: Display count of customers with purchases from all 3 channels in a given year.

3.3 Experimentation Process

Our experimentation process consists of four phases. In the first phase, we execute multiple queries
on a baseline system to evaluate the performance of our SUTs based on query type. The baseline
system in this phase comprises 2 workers, each with 4 vCPUs, 8 GB of RAM, and a 30 GB dataset.
These resources are divided between 2 Spark executors. This is the default Spark configuration as,
according to Spark’s documentation, the optimal number of CPU cores per executor is approximately
five. Based on our experiments, we determined that for our systems the optimal distribution of CPU
cores is 4 cores per executor.

In the second phase, we select a representative subset of queries from those used in the first phase
and we conduct experiments to evaluate each system’s scalability by increasing the number of workers.
Using the same baseline configuration, we execute the queries, using 2, 4 and 6 workers to examine
the scalability of our SUTs.

In the third phase, utilising the optimal number of workers determined in the previous phase, we
execute the same subset of queries on datasets of 30 GB, 60 GB and 90 GB to evaluate the performance
of each system with increasing dataset sizes.

In the fourth and final phase, using the optimal number of workers again, we execute a subset
of queries after partitioning the tables and applying Z-Ordering in Delta and Hudi to index the data.
Through this phase, we evaluate how partitioning and multidimensional indexing, which is only sup-
ported in lakehouses, impact query performance.

3.3.1 Benchmark Metrics

The primary metrics used in benchmarking batch processing systems are latency, resource utilisation
and the error rate. We mainly focus on latency, as it directly reflects the responsiveness and efficiency
of each SUT. Throughout our experiments, we observed that the resource utilisation and error rates
across all three systems were largely consistent. Therefore, we will only highlight these metrics in
cases where there are significant deviations.

3.3.2 Configuration Changes

The following table summarises the configurations utilised throughout each phase of the benchmarks,
as they are mentioned in the experimentation process.

41

Workers CPU Cores per Worker RAM per Worker Dataset Size

Phase 1: Benchmarks with the baseline configuration.

2 4 vCPUS 8 GB 30 GB

Phase 2: Benchmarks with increasing number of workers.

2 4 vCPUS 8 GB 30 GB
4 vCPUS 8 GB 30 GB
6 4 vCPUS 8 GB 30 GB

Phase 3: Benchmarks with increasing dataset size.

6 4 vCPUS 8 GB 30 GB
4 vCPUS 8 GB 60 GB
6 4 vCPUS 8 GB 90 GB

Phase 4: Benchmarks with partitioning and Z-Order indexing.

6 4 vCPUS 8 GB 90 GB

Table 3.1: Configuration changes for each phase of the batch processing benchmarks.

3.4 Results

In this section we will present the results of our benchmarks and discuss them. We present our results
in the three phases we already mentioned in the experimentation process.

3.4.1 Phasel

In phase 1 we execute multiple queries on the baseline system in order to evaluate the performance of
our SUTs based on query type. We examine the simple and complex queries separately.

Simple Queries

| Spark M Delta B Hudi
|

e} ™
4 g = g
o n X gg
™M ™ *
~~
Q
2
\-/37 .
g
o 3% e
02, %‘_.—4 |
= ?
= —
3
> 0 D0
53| [\mm.
=)
1 <= :
=)

Query 1 Query 3 Query 5 Query 2 Query 4 Query 6

(a) Simple queries under 4 seconds. (b) Simple queries over 10 seconds.

Figure 3.2: Phase 1: Simple query execution times using 2 workers (2 executors) and a 30 GB dataset.

In query 1, we observe that Delta and Hudi exhibit performance overhead when retrieving the entire
table. This is expected, as accessing and reading the metadata table introduces additional overhead
during the creation of the query plan. The overhead introduced by Delta and Hudi is comparable,
with Delta exhibiting an overhead of approximately 42% and Hudi around 46% relative to Spark’s
execution time.

In query 2, Delta and Hudi’s performance is comparable, with Delta edging Hudi out. However,
both underperform compared to Spark by approximately 36% and 42%, respectively. This is consistent
with the overhead we observed in Query 1, while also reflecting the fact that this query does not
significantly benefit from data skipping or partition pruning.

In query 3, although Delta and Hudi underperform relative to Spark, by 13% and 17% respectively,
they perform noticeably better, against Spark, compared to the previous queries. Delta marginally
outperforms Hudi, however it is important to note that despite the performance improvement, which
is expected for filtering queries, the effectiveness of the metadata, particularly the min max statistics
which would facilitate data skipping and partition pruning, is limited without partitioning.

In query 4, we again observe noticeably better performance, against Spark, compared to queries
1 and 2. However, performance falters compared to query 3, as the join operation in this query limits
the effectiveness of the metadata.

In query 5, Hudi outperforms Delta by a trivial amount, with both outperforming Spark. Since
this query does not benefit from data skipping or partition pruning, the improved performance is likely

43

attributed to more efficient query planning and small file compaction, which enables faster data reads.

In query 6, Delta and Hudi underperform relative to Spark, by 19% and 40% respectively. We
observe that Delta leverages metadata more efficiently to optimise data sorting, whereas Hudi does so
less effectively in comparison.

Complex Queries

B Spark @ Delta B Hudi
50 | |

40.81

Execution Time (sec.)

Query 33 Query 35 Query 61 Query 75 Query 38

(a) Reporting and data mining queries.

150

124.46

113.24
101.43

100

50

Execution Time (sec.)

Query 28 Query 72 Query 9 Query 11 Query 64
(b) Ad-hoc and OLAP queries.

Figure 3.3: Phase 1: Complex query execution times using 2 workers (2 executors) and a 30 GB
dataset.

The complex queries allow us to evaluate how effectively each system generates query plans for work-
loads involving multiple operations and intricate query structures. We observe that Spark marginally
outperforms both Delta and Hudi across all complex queries. When comparing Delta and Hudi, we
observe that although all complex queries involve some combination of filtering, aggregation, parti-
tioning, and unions, there are specific cases in which one outperforms the other.

Hudi appears to handle queries involving union operations more effectively than Delta. Partic-
ularly, queries that perform aggregations and filtering before the union, such as queries 33, 11, and
64. Hudi also performs better in cases where either aggregation or filtering is applied after a union,

44

as demonstrated in queries 72 and 61 respectively. Delta, on the other hand, performs better when
handling filtering and multiple aggregation operations. Specifically, queries with heavy filtering and
case structures, such as query 9 and queries combining filtering with aggregation, such as queries 28
and 35, the latter also involving extensive partitioning and grouping of data. Delta also performs well
when filtering is applied after unions of previously filtered and aggregated data, which is exhibited in
query 75, as well as when filtering is applied before unions, such as in query 38.

3.4.2 Phase2

The subset of queries selected for the subsequent phases includes the simple queries 2 through 6. From
the complex queries, it comprises reporting queries 33 and 61, ad-hoc query 28, OLAP queries 11 and
64, and data mining query 38. In total, it contains 5 simple and 6 complex queries.

Through the phase 1 benchmarks and subsequent selective experimentation, we observe that queries
9, 35, 38, and 75 exhibit similar performance characteristics and scaling behaviour. Although query
75 has longer execution times, its scaling pattern is comparable, thus providing insights similar to
those of queries 9, 35, and 38. Subsequently, we opted for query 38, as it is the only representation
of the data mining queries. Queries 64 and 72 also exhibit similar performance characteristics and
scaling behaviour, therefore, we exclude query 72 and retain query 64 due to its more complex and
diverse structure compared to the other queries in the subset.

In the following subsections we evaluate the scalability of each system after executing the above
subset of queries with 2, 4 and 6 workers. We examine the simple and complex queries separately.

Simple Queries

B Spark @ Delta B Hudi

50

41.33

39.56

Execution Time (sec.)

Query 2 Query 3 Query 4 Query 5 Query 6

Figure 3.4: Phase 2: Simple query execution times using 2 workers (2 executors) and a 30 GB dataset.

45

M Spark @ Delta B Hudi

27.29
|

24.11

Execution Time (sec.)

Query 2 Query 3 Query 4 Query 5 Query 6

Figure 3.5: Phase 2: Simple query execution times using 4 workers (4 executors) and a 30 GB dataset.

M Spark @ Delta B Hudi

21.14
22.13

18.76

Execution Time (sec.)

Query 2 Query 3 Query 4 Query 5 Query 6

Figure 3.6: Phase 2: Simple query execution times using 6 workers (6 executors) and a 30 GB dataset.

As expected, increasing the number of workers improves performance across all three systems. Spark
continues to outperform both Delta and Hudi, except in query 5, while Delta consistently outperforms
Hudi, again with the exception of query 5. Hudi benefits the most from scaling out, narrowing the
performance gap with Delta and even marginally outperforming it in query 3 when using 4 and 6
workers.

46

Complex Queries

B Spark @ Delta B Hudi

140 |

124.46 |-
|

101.43

120
100
80
60

Execution Time (sec.)

40
20

Query 33 Query 61 Query 28 Query 11 Query 64 Query 38

Figure 3.7: Phase 2: Complex query execution times using 2 workers (2 executors) and a 30 GB
dataset.

M Spark B Delta B Hudi

69.1

Execution Time (sec.)

Query 33 Query 61 Query 28 Query 11 Query 64 Query 38

Figure 3.8: Phase 2: Complex query execution times using 4 workers (4 executors) and a 30 GB
dataset.

47

B Spark @ Delta B Hudi

70

|
™
<
o0
L0

60 - 2

Execution Time (sec.)

Query 33 Query 61 Query 28 Query 11 Query 64 Query 38

Figure 3.9: Phase 2: Complex query execution times using 6 workers (6 executors) and a 30 GB
dataset.

Again, as expected, increasing the number of workers improves performance across all three systems.
Both Delta and Hudi benefit from scaling out, which reduces the performance gaps between the two
and also Spark. Delta even outperforms Spark in queries 28 and 11 when the number of workers is
increased to four and six respectively. Similarly, Hudi outperforms Spark in query 64 after scaling
out.

48

3.4.3 Phase3

From the benchmarks of the previous phase, we conclude that using 6 workers results in better per-
formance, which is to be expected as Delta, Hudi and Spark are optimised for distributed processing
and favour scaling out. Therefore, in this phase we utilise 6 workers and 6 executors, while testing
with different dataset sizes. Again, we examine the simple and complex queries separately.

Simple Queries

M Spark @ Delta B Hudi

25

21.14
22.13

18.76

Execution Time (sec.)

Query 2 Query 3 Query 4 Query 5 Query 6
Figure 3.10: Phase 3: Simple query execution times using 6 workers (6 executors) and a 30 GB
dataset.
M Spark B Delta B Hudi
L{\-‘) |
S8
—
o™

Execution Time (sec.)
[\ w
o o

—
()

Query 2 Query 3 Query 4 Query 5 Query 6

Figure 3.11: Phase 3: Simple query execution times using 6 workers (6 executors) and a 60 GB
dataset.

49

M Spark @ Delta B Hudi

40.09 |-

Execution Time (sec.)

Query 2 Query 3 Query 4 Query 5 Query 6

Figure 3.12: Phase 3: Simple query execution times using 6 workers (6 executors) and a 90 GB
dataset.

As anticipated, as the dataset size grows so does the execution time of the queries. However, it is
worth highlighting that Delta and Hudi’s performance gaps compared to Spark decrease as the dataset
grows, with Hudi even outperforming Spark in query 2.

Complex Queries

M Spark B Delta B Hudi

70

58.92 -

60 :

Execution Time (sec.)

Query 33 Query 61 Query 28 Query 11 Query 64 Query 38

Figure 3.13: Phase 3: Complex query execution times using 6 workers (6 executors) and a 30 GB
dataset.

50

M Spark B Delta B Hudi

69.83 |-

Execution Time (sec.)

Query 33 Query 61 Query 28 Query 11 Query 64 Query 38

Figure 3.14: Phase 3: Complex query execution times using 6 workers (6 executors) and a 60 GB
dataset.

B Spark M Delta B Hudi |

77.53

64.66

Execution Time (sec.)

Query 33 Query 61 Query 28 Query 11 Query 64 Query 38

Figure 3.15: Phase 3: Complex query execution times using 6 workers (6 executors) and a 90 GB
dataset.

Again, as the execution times increase along with the dataset size, the performance gaps between
Delta, Hudi and Spark decrease. Delta outperforms Spark in query 38 when using the 60 GB and 90
GB datasets, and while only Delta outperforms Spark in query 28 when using a 30 GB dataset, for
larger datasets, so does Hudi.

3.4.4 Phase4d

In this phase, using 6 workers and a 90 GB dataset, we compare performance after partitioning the
data and indexing them using the Z-Order curve. For each query, we ensure that the data is indexed
based on columns utilised for filtering, partitioning etc. in the query. Otherwise, indexing would
not impact performance and thus, the benchmarks would not provide any insights. Since Delta and

51

Hudi are designed for big data, we select the 90 GB dataset as it is the largest dataset our setup can
accommodate. We examine the simple and complex queries separately.

Simple Queries

B Spark @ Delta B Delta with Z-Order B Hudi B Hudi with Z-Order

40.09

36.6
|

Execution Time (sec.)

Query 2 Query 4 Query 6

(a) Simple queries under 29 seconds.

D
S o
< < =
41 © =
~ ™
Q
(]
w
\-/3
o -
g
=
e
=) o™ 00
2 2 %[\-ch\]
= — —_
8 —
A
1k
0

Query 3 Query 5

(b) Simple queries over 29 seconds.

Figure 3.16: Phase 4: Simple query execution times using 6 workers (6 executors) and a 90 GB
dataset.

For all queries, the application of partitioning and indexing results in performance improvements, in
both Delta and Hudi. In particular, in queries 3, 4 and 6, Delta and Hudi even outperform Spark, which
was not the case prior to the optimisations. Query 6, which performs data sorting, exhibits the most
significant performance boost, with execution time being reduced by 26.2% and 23.6% for Delta and
Hudi respectively. This outcome is justifiable, as the data is already partitioned and indexed, which
significantly improves sorting efficiency.

Filtering queries also benefit considerably, with query 3 demonstrating a 9.7% and 16.8% decrease
for Delta and Hudi respectively. In query 4, where two tables are filtered before being joined, the

52

performance improvements for filtering queries appear to be compounding, with a 18.6% and 17.3%
decrease respectively.

Query 5 also benefits, due to improved data grouping for aggregation after partitioning the data,
resulting in a 12.9% and 14.5% decrease respectively. Finally, query 2 demonstrates performance
improvements of 9.1% and 9.4% for Delta and Hudi, respectively, as a result of partitioning on the
join equality column.

Complex Queries

B Spark @ Delta B Delta with Z-Order I Hudi B Hudi with Z-Order

35 -

28.26
25.45
|

Execution Time (sec.)

Query 33 Query 38 Query 61

(a) Complex queries over 10 seconds.

77.53
69.54
|

80

64.66

Execution Time (sec.)

Query 11 Query 28 Query 64

(b) Complex queries under 5 seconds.

Figure 3.17: Phase 4: Complex query execution times using 6 workers (6 executors) and a 90 GB
dataset.

Again, all queries exhibit performance improvements after applying partitioning and indexing for
Delta and Hudi. Notably, in query 33, Delta outperforms Spark, contrary to before applying the opti-
misations. Although the performance improvements observed are significant, they are smaller in scale
compared to those observed in the simple queries. This is to be expected, as complex queries involve

53

a variety of operations and utilise multiple table columns, thus benefiting from the optimisations to a
lesser extent.

3.5 Conclusions

Based on the phase 1 benchmarks, we infer that for queries involving simple operations and query
structure, Delta Lake generally outperforms Hudi by a small margin, while both perform slightly be-
low Spark. For more complex queries, Spark outperforms both Delta and Hudi, while the relative
performance between Delta and Hudi depends on the query type. Hudi tends to generate more effi-
cient query plans for queries involving many unions, whereas Delta performs better on queries with
extensive filtering and aggregations.

Big data solutions such as Spark, Delta, and Hudi are designed and optimised for distributed
processing and scaling out. As expected, increasing the number of workers improves performance
across all three systems. However, from the phase 2 benchmarks, we deduce that while all systems
benefit from scaling out, Delta and Hudi exhibit greater performance improvements, reducing the
performance gaps with Spark and in some cases, even outperforming it.

From the phase 3 benchmarks, we conclude that both Delta and Hudi benefit from operating on
larger datasets. While increasing dataset size naturally leads to longer execution times, it also re-
duces the performance gaps between the two systems and Spark. The performance improvements
achieved by the optimisations introduced by Delta and Hudi, such as metadata, file compaction, and
data skipping, outweigh their associated overheads only when the dataset is sufficiently large.

Delta and Hudi introduce many optimisations, one of them being indexing. From the phase 4
benchmarks, we deduce that indexing and partitioning the data is especially effective for the simple
queries, when the columns used for indexing are also used in the query for filtering or partitioning
the data. While slightly less effective for complex queries, the optimisations still provide substantial
performance improvements, enough to fully justify their associated overheads.

54

Chapter 4

Stream Processing

Stream processing is the second of the two main methods of data processing in modern big data man-
agement systems. Stream processing is the continuous ingestion and processing of data as it arrives.
Data items are processed individually and immediately upon arrival, as opposed to being grouped into
batches. This method enables real time responses and low latency analytics required for applications
such as monitoring, fraud detection, live analytics etc [Zhaol7]. Stream processing systems are de-
signed to handle high throughput data streams while maintaining consistency and fault tolerance. By
leveraging distributed computing frameworks, they can scale out to accommodate large volumes of
rapidly incoming data. In this chapter, we conduct experiments to evaluate how the addition of Delta
or Hudi to a data lake impacts the performance of stream processing workloads.

4.1 Dataset

For our experiments, we utilise historical stock market data obtained from the National Stock Ex-
change (NSE) of India. The dataset comprises information on 100 stocks and 2 major indices, the
Nifty 50 and the Nifty Bank. The data spans the period from 02-02-2015 to 08-11-2024 covering
trading days from Monday to Friday. For each trading day, data is recorded at one minute intervals
from 9.15 AM to 15.29 PM, resulting in 375 records per stock per day. Each data record includes a
timestamp, the stock name and OHLCYV values. These values are opening price, high price, low price,
closing price, and trading volume.

4.1.1 Medallion Architecture

In this subsection, we present the data design pattern we adhere to for our stream processing exper-
iments, in order to organise the data within the lake. The medallion architecture, also referred to as
the multi-hop architecture, is suitable for developing incremental ETL pipelines for both streaming
and small batch datasets. This architecture incorporates a series of data layers that denote the quality
of data stored in them, typically comprising three layers: the bronze, the silver and the gold layer
[Data24].

The principal purpose of this data design pattern is to incrementally and progressively enhance
the structure, quality and reliability of the data as it flows through each layer. By progressing data
through layers, organizations can systematically refine and validate datasets, thus making it more
suitable for BI and machine learning applications. The medallion architecture guarantees atomicity,
consistency, isolation, and durability (ACID) as data passes through multiple layers of validations and
transformations before being stored in a layout optimised for efficient analytics. In the he following
sections we examine each layer within the medallion architecture in detail [Data24].

Bronze Layer

In the bronze layer raw data is ingested and maintained in its original format from any combination of
streaming or batch sources including cloud object stores, message buses, federated systems etc. The
data grows over time as new data is appended incrementally. The data within this layer is intended

55

for consumption by ETL pipelines that enrich silver layer tables, not for direct access. It serves as the
single source of truth for the data lake, while also enabling reprocessing and auditing by retaining all
historical data [Data24].

Silver Layer

The silver layer is responsible for cleansing and normalising the data. Its primary purpose is to enhance
data quality by eliminating inconsistencies and structuring data into suitable formats for downstream
processing. In this layer, data is read from one or more bronze or silver tables, validated and then
written to silver tables. The introduction of this layer mitigates failures introduced due to schema
changes or corrupt records in data sources, that would otherwise occur if the data was written directly
from ingestion. When correctly applying the medallion architecture, this layer should always contain
at least one validated, non-aggregated representation of each record. Common operations performed
within the silver layer to enforce data quality include schema enforcement and evolution, handling of
null and missing values, data deduplication, filtering based on business constraints etc [Data24].

Gold Layer

The gold layer contains highly refined views of the data that enable downstream analytics, ML and
data driven applications. Data within this layer is often aggregated and enhanced with joins to align
with business logic. Typically, it is stored in materialised views to optimise query performance for
analytics and reporting purposes. The gold layer consists of semantically meaningful datasets that
corresponds directly to business functions and requirements [Data24].

Improve Data Quality

%% Raw Data @—PHH

o | D
Batch BI

{

— —

[l

Raw Filtered, Cleaned, Business-Level

(/% Integration Augmented Aggregates fdﬁ
3¢ &
ML

Streaming
—

“Landing zone" for raw data, no Define structure, enforce schema, Deliver continuously updated, clean
schema needed evolve schema as needed data to downstream users and apps

Figure 4.1: The medallion architecture. Reproduced and edited from Databricks.

4.1.2 Organisation of the Dataset Using the Medallion Architecture

As mentioned above, the dataset used for our experiments is organised according to the medallion
architecture. The architecture is implemented as follows: in the bronze layer, data is ingested in CSV
format and stored in its raw form in HDFS. In the silver layer, the data is transformed by adding a
derived date column, which is generated by applying the to_date SQL function, and then saved in
Parquet format. Finally, in the gold layer, queries are executed on the data from the silver layer and
the results are stored as gold tables. The following section presents the seven queries executed to
generate the gold tables.

56

https://www.databricks.com/glossary/medallion-architecture

4.2 Queries

Streaming queries can be classified into two types, filtering or transformation operations applied inde-
pendently to each record and aggregations or joins that must be executed within defined time windows,
due to the continuous and unbounded nature of data streams. For our experiments, we have chosen to
focus on filtering and windowed aggregation queries. Transformation queries are excluded, as these
are already performed within the silver layer. Additionally, windowed join queries are omitted due to
their increased complexity, which would require separate, dedicated experimentation. In the next sub-
sections we introduce the two filtering queries and the five windowed aggregation queries we select
to execute.

4.2.1 Filtering

The purpose of the filtering queries is to assess the impact of the Delta and Hudi metadata implemen-
tations on filtering performance, compared to that of a standard data lake. The first filtering query is
an equality filtering query based on the stock name.

silverDF . filter (silverDF .name == "BPCL”)
Listing 4.1: Filtering Query 1.

The second query is an range filtering query based on the low and high values of the data.

silverDF . filter ((silverDF .low < 990) & (silverDF.high > 1000))
Listing 4.2: Filtering Query 2.

4.2.2 Windowed Aggregations

The purpose of the windowed aggregation queries is to evaluate the effectiveness of Delta and Hudi in
executing various types of aggregation operations. The reasoning behind the selection of the window
duration is discussed in detail in section 4.3. The first windowed aggregation query is a sliding window
average on the high value of the data.

silverDF . withWatermark (”timestamp”, “1day”)
.groupBy (window (”timestamp”, “60days”, ”30days”), “name”
.avg(”high”)

Listing 4.3: Windowed Aggregation Query 1.

The second query is a tumbling window average on the high value of the data.

silverDF . withWatermark (”timestamp”, “lday”)
.groupBy (window (”timestamp”, ”60days”), “name”
.avg(”high”)

Listing 4.4: Windowed Aggregation Query 2.

The third query is a tumbling window minimum on the low value of the data.

silverDF . withWatermark (”timestamp”, “1day”)
.groupBy (window (”timestamp”, "60days”), “name”
.min(”low”™)

Listing 4.5: Windowed Aggregation Query 3.
The fourth query is a tumbling window sum on the volume value of the data.

57

silverDF . withWatermark (”timestamp”, “1day”)
.groupBy (window (”timestamp”, “60days”), “name”
.sum(”volume”)

Listing 4.6: Windowed Aggregation Query 4.

The fifth and final query is a tumbling window with multiple aggregations.

silverDF . withWatermark (”timestamp”, “1day”)
.groupBy (window (”timestamp”, ”"60days”), “name”
.agg(avg(”high”), min(”low”), sum(”volume”))

Listing 4.7: Windowed Aggregation Query 5.

4.3 Experimentation Process

We initially conduct a preliminary round of experiments to determine the sustainable throughput for
each query. When a system ingests data at a rate exceeding its processing ability, it begins to accumu-
late backpressure, during which incoming data is queued for processing after the system has completed
handling previously ingested data. As a result, once backpressure is triggered, the processing latency
of subsequently queued data increases. Sustainable throughput refers to the maximum data ingestion
rate a system can handle without experiencing sustained backpressure, which results in continuously
increasing latency [Karil8].

Through our experiments, we determine that the sustainable throughput is 50,000 records per
second for the filtering queries and 100,000 records per second for the windowed aggregation queries.
The sustainable throughput also informed the size of the window in aggregation queries. We select a
60 day window to avoid increased latency and errors arising from excessive parallel query execution,
as well as segmentation faults caused by processing large volumes of data. This duration is long
enough to prevent over-segmenting each batch of data across multiple windows and short enough to
avoid storing excessive amounts of data in memory before the window can be closed and processing
can begin.

After determining these key metrics, the experiments are conducted in the following manner. Us-
ing 6 workers and 6 Spark executors, each with 4 vCPUs and 8 GB of RAM, the queries are executed
at their sustainable throughput and also after increasing and decreasing the ingestion rate by 10,000
records per second. This approach not only enables us to evaluate how each SUT operates at sustain-
able throughput but also allows the evaluation of the performance when the ingestion rate falls below
or exceeds the processing capacity.

4.3.1 Benchmark Metrics

The primary metrics used in benchmarking batch processing systems are latency and throughput.
However, since our experiments are conducted around the sustainable throughput of each query, la-
tency remains relatively stable and does not offer additional insights into system efficiency. Therefore,
system performance is evaluated primarily based on throughput.

4.4 Results

The results of our experiments are presented in three parts, corresponding to the three layers through
which the data flows in our application of the medallion architecture.

58

4.4.1 Bronze Layer

B Spark @ Delta B Hudi

5
10 | | | @\ |
o)
5 3 2 3
[=) 1 <t © s 0
1S B ~ = o |
3] X 0 o Lo 0 Q S %Q
2 0 m«ﬁﬁ [\'\%LO N — N
- 0O o0 I~ =00 L0 < 3
g 08F N~ ST — N = ~ PE
o I~ >~ 0,
|72
e © © 3
g 0.6 :
g 0.
(0]
—
p—
20.4* |
=
=
o 0.2} |
$t
=
=
0

0.6 0.9
Input (records per second)

Figure 4.2: Bronze Layer: Throughput for increasing input rates.

In the bronze layer, Spark consistently outperforms both Delta and Hudi. Data is ingested directly
from CSV files, which are not optimised for distributed processing. Combined with the overhead
introduced by metadata collection during ingestion, it leads to the reduced performance of Delta and
Hudi. Among the two, Delta performs better than Hudji, likely due to Hudi’s more complex and robust
metadata structures, which incur higher ingestion overhead. Additionally, Spark demonstrates better
scalability as input size increases, with the throughput peaking at approximately 90,000 records per
second, compared to around 75,000 for Delta and 65,000 for Hudi. We observe that, after reaching
their peak, further increases to the input rate incurs a decrease in throughput, due to the introduction
of backpressure, which applies additional stress on the systems.

4.4.2 Silver Layer

B Spark @ Delta B Hudi

~ 15* 10 10 0 0 LDO N
£ 2 5 = E =
) o
5] ~ 0 D © <t
<t O ey S

2 °2 R o83 22 X =3
I — =8 — Q0 — SO — D ~ M
2 = - » S = © & = 0o O

1r S © S 3 o o S =
172} ee] 0 0 o —
2 3] &)
1)
Q
(D)
—
N
-
30-5’ .
<
o0
=)
°
$—
=)
s

0

0.6 0.9
Input (records per second)

Figure 4.3: Silver Layer: Throughput for increasing input rates.

59

In the silver layer, while Spark continues to outperform both Delta and Hudi, the performance gaps
between them have narrowed. Data is ingested from Parquet files, enabling Delta and Hudi to better
leverage distributed processing during metadata collection. Metadata collection is limited to the new
column, as metadata from the previous layer is preserved, significantly reducing overhead. Spark
again demonstrates better scalability, with the throughput peaking at approximately 109,000 records
per second. However, Delta exhibits improved scaling compared to the bronze layer, reaching a peak
throughput of 97,000 records per second, followed by Hudi with a peak of 87,000 records per second.
As with the previous layer, throughput declines after reaching the peak input rates due to increased
System stress.

4.43 Gold Layer

In this section, we evaluate how each system performs for different query types, that can be applied
to generate gold tables. We examine the filtering and windowed aggregation queries separately.

Filtering Queries

B Spark @ Delta @ Hudi

109

98,445
98,391
1.01-10°
95,388
96,205
93,495

0.5

Throughput (records per second)

@)
|

Query 1 Query 2

Figure 4.4: Gold Layer: Filtering queries throughput with a 90,000 records/sec input rate.

-10°

1.5

1.05 - 10°
1.06 - 105}
1.07 - 109
1.02 - 10°
1-10°
1.04 - 10°

0.5

Throughput (records per second)

s}
| |

Query 1 Query 2

Figure 4.5: Gold Layer: Filtering queries throughput with a 100,000 records/sec input rate.

60

B Spark @ Delta B Hudi

109 |

14) EEETS 52 o .
: . -
01.2* Oog — A =
Q — A OO,O
2 — —
5] 1 .
o
B
5 0.8} |
5}
5]
Na)
~ 0.6 i
=
=
e 0.4 i
=]
o
E()Qf i
H .

0

Query 1 Query 2

Figure 4.6: Gold Layer: Filtering queries throughput with a 110,000 records/sec input rate.

For the filtering queries, all three systems exhibit comparable performance. Delta and Hudi lever-
age the metadata to apply optimisations such as data skipping, which allow them to filter data more
efficiently than Spark. Hudi achieves the best performance when the input rate aligns with the sus-
tainable throughput. At higher input rates, Delta surpasses both Hudi and Spark, demonstrating better
performance under the stress of backpressure.

Windowed Aggregation Queries

B Spark @ Delta B Hudi

.104\ ! !
L o b- o
0 AN o0 O C\]Oo,\n 0 O R
0 s N S I~ o5 0 & R Ic;ﬁ*m
SN © QL < ¥ S S)
5 O[\ - <t I} @wm
T8 ﬁ*mg ~ < o e %
o - ~ ﬁ.{\—i\—i
ﬁi% <t <t

Throughput (records per second)
w
T

Query 1 Query 2 Query 3 Query 4 Query 5

Figure 4.7: Gold Layer: Windowed aggregation queries throughput with a 40,000 records/sec input
rate.

61

B Spark @ Delta B Hudi

'104 | | |
o) (]
=2} D~ [\)

P~ — I~ Dy D@ L~ [a]
6] 23« DL e 289 =
PR o= = = 3 = <o S < 0%
oy i m = R 0 < o
< XS i 'O 0 © Fps
5 <+ <& ~ <

Throughput (records per second)

Query 1 Query 2 Query 3 Query 4 Query 5
Figure 4.8: Gold Layer: Windowed aggregation queries throughput with a 50,000 records/sec input
rate.
B Spark @ Delta B Hudi
-10*
7 |
0 N T D -
) | 90 <10 = < % 5‘“ — R - B
=0 522 £82 33 o3 2T o
8 0 of 0 30(5[\“ \© 100 ‘—L?r'nu‘mb
: 5 | <t <f < <t < <# g g ﬁ: |
B <
o,
g 4l
Q
Q
£ 3}
Z
S 2|
=]
E
= 1
0

Query 1 Query 2 Query 3 Query 4 Query 5

Figure 4.9: Gold Layer: Windowed aggregation queries throughput with a 60,000 records/sec input
rate.

Again, the performance of all three systems is comparable. Spark outperforms both Delta and Hudi
across most scenarios, with the exception of query 3, which is a tumbling window minimum ag-
gregation, where it is outperformed by both for all input rates. Additionally, in query 5, which is
a tumbling window with multiple aggregations, Delta surpasses Spark and Hudi once the input rate
exceeds 50,000 records per second. Overall, Delta generally demonstrates better performance than
Hudi, except in query 3, where Hudi achieves better results.

62

4.5 Conclusions

Based on the benchmarking results, we conclude that Spark generally outperforms Delta and Hudi
during ingestion, as the additional overhead introduced by metadata collection, by Delta and Hudi,
impacts their performance. Between the two, Delta generally outperforms Hudi, which can be at-
tributed to Hudi’s more complex metadata management structures that result in larger overheads.

All three systems exhibit similar performance in filtering queries, with Spark performing slightly
better. Under high input rates, Delta appears to be performing better than both Spark and Hudi, while
Hudi performs better when the input rate matches the sustainable throughput.

In aggregation queries, Spark generally outperforms both Delta and Hudji, with the exception of the
tumbling window minimum aggregation, where both Delta and Hudi outperform Spark consistently
and the tumbling window with multiple aggregations, where Delta exceeds the performance of both
Spark and Hudi once the input rate surpasses 50,000 records per second.

63

Chapter 5

Summary and Future Directions

Lakehouses were introduced as a solution to the problems of current data lake architectures. Standard
data lakes are not well suited to advanced analytics and machine learning due to their lack of features,
such as data cleaning, labelling, and organisation, which leads to the need for complex ETL pipelines.
Additionally, the lack core RDBMS features such as transactions, indexing, and caching, makes them
inefficient for complex workloads containing inconsistent and dirty data [Hai23].

The use of two-tier architecture increases complexity and costs due to continuous ETL pipelines,
duplicate storage, while also complicating migration to other platforms due to the reliance on propri-
etary formats. This architecture also introduces data staleness, as updates in the lake are not immedi-
ately visible in the warehouse. ETL delays and format inconsistencies reduce reliability, as new bugs
and failure modes are introduced through the pipelines. Moreover, upstream warehouses only contain
a small subset of the data lake data, which is not sufficient for effective machine learning applications,
thus requiring additional ETL steps that complicate integration and raise costs [Armb21].

Lakehouses address the above issues through the introduction of a metadata layer over lake stor-
age, the reliance on open file formats and SQL specific optimisations to bridge the gap between data
lakes and RDBMS based solutions. By leveraging the metadata layer, lakehouses implement ACID
transactions, schema enforcement and data quality assurances, through the implementation of con-
straints and table relationships, as well as governance features, such as access control and audit log-
ging [Armb21]. Lakehouse’s reliance on open file formats preserves the ability to integrate lakehouse
specific and non-specific systems [Mazu23], while also preserving the ease of migration that charac-
terises data lakes. The combined use of open file formats and metadata facilitate schema evolution
over time, without bearing the cost of rewriting entire tables [Mazu23]. Finally, through SQL specific
optimisations, such as data caching, auxiliary data collection, which enables features such as data
skipping and partition pruning and data layout improvements, such as indexing, lakehouses enhance
BI and analytic query performance.

Based on the batch processing benchmarks, we conclude that the performance of Delta and Hudi
is comparable to that of Spark querying a plain data lake. Both systems scale effectively, both in terms
of the cluster scaling out and handling growing datasets. Interestingly, for larger datasets, Delta and
Hudi even outperform Spark. Lakehouse specific optimisations, such as data skipping and partition
pruning, especially when used with indexed data, significantly impact performance, enabling Delta
and Hudi to consistently outperform Spark.

From the results of the stream processing benchmarks, we conclude that, while Spark generally
outperforms Delta and Hudi during ingestion, primarily due to the additional overhead associated with
metadata management, all three systems demonstrate comparable performance during query execu-
tion.

Overall, Delta Lake and Hudi yield impressive results, exhibiting performance comparable to cur-
rent solutions. The extensive range of features, designed to address common challenges and optimise
conventional use cases, justifies their adoption, even in scenarios where they may slightly underper-
form.

65

5.1 Future Directions

In the final section we explore further research that could be conducted as a continuation to this thesis.

5.1.1 Dynamic Workloads and Datasets

An area not addressed in this thesis is the handling of unclean or inconsistent datasets. Lakehouse
features, such as schema enforcement and schema evolution, could be benchmarked and compared
against traditional data cleansing approaches, such as ETL pipelines or batch cleaning. Similarily,
benchmarking the systems with dynamic workloads, characterised by data skews or fluctuating batch
sizes, could provide further insights into how each system operates under stress conditions and back-
pressure.

5.1.2 Multi-Engine Support and Query Federation

Contemporary big data management architectures often involve assembling complex platforms com-
prising different engines and data sources. This has lead to the emergence of query federation sys-
tems, which unify individually operating platforms, under a common schema, enabling querying both
relational and non-relational data, using an SQL interface. Presto! and Trino® are widely adopted
examples of such solutions, already offering connectors for Delta Lake, Hudi, as well as Apache Ice-
berg?, another widespread lakehouse format. To further support interoperability, Delta Lake has even
introduced the Universal Format (UniForm)*, which enables Hudi and Iceberg to read Delta tables.

Furthermore, Delta and Hudi support integration with a variety of batch and stream processing
engines, including Apache Storm> and Apache Flink®, the latter being deeply integrated with Hudi.
Benchmarking lakehouse systems with different engines could provide more granular insights about
the most effective platform combinations depending on the use case.

5.1.3 Traditional RDBMS

Lakehouse systems incorporate a wide range of features traditionally supported by RDBMSs, such
as ACID transactions, indexing and other SQL specific optimisations. Through continuous develop-
ment and improvement, RDBMSs, such as PostgreSQL’, have evolved to be able to handle big data
workloads effectively. As a result, benchmarking lakehouse architectures against big data optimised
RDBMSs could help assess their relative interchangeability and suitability for different use cases.

5.1.4 Machine Learning Applications

Throughout this thesis, we have repeatedly mentioned the characteristics that make lakehouses better
suited for ML workloads compared to traditional data lake architectures. Delta and Hudi can serve
as a reliable storage layer with systems such as TensorFlow® and PyTorch’, in order to evaluate how
lakehouses, with features that guarantee data quality and governance, compare to traditional ETL
pipelines for ML.

! Presto: https://prestodb.io/

2 Trino: https://trino.io/

3 Apache Iceberg: https://iceberg.apache.org/

4 Delta Lake’s UniForm: https://docs.delta.io/latest/delta-uniform.html
5 Apache Storm: https://storm.apache.org/

6 Apache Flink: https://flink.apache.org/

7 PostgreSQL: https://www.postgresql.org/

8 TensorFlow: https://www.tensorflow.org/

o PyTorch: https://pytorch.org/

66

https://prestodb.io/
https://trino.io/
https://iceberg.apache.org/
https://docs.delta.io/latest/delta-uniform.html
https://storm.apache.org/
https://flink.apache.org/
https://www.postgresql.org/
https://www.tensorflow.org/
https://pytorch.org/

Biproypagia (References)

[Amaz25] Amazon, “What is Apache Spark?”, https://aws.amazon.com/what-is/apache-spark/,

[Armb21]

[Aysh24]

[Ben;j20]

[Chen17]

[Data24]

[Data25]

[Drem25]

[Hai23]

[Herd20]

[Hudi24]

[IBM25]

2025. Accessed: 2025-06-12.

Michael Armbrust, Ali Ghodsi, Reynold Xin and Matei Zaharia, “Lakehouse: A New
Generation of Open Platforms that Unify Data Warehousing and Advanced Analytics”, in
Proceedings of the 11th Annual Conference on Innovative Data Systems Research (CIDR
’21), January 2021.

Avril Aysha, “Delta Lake vs Data Lake - What’s the Difference?”,
https://delta.io/blog/delta-lake-vs-data-lake/, May 2024. Accessed: 2025-06-11.

Sarah Benjelloun, Mohamed El Mehdi El Aissi, Yassine Loukili, Younes Lakhrissi, Safae
Elhaj Ben Ali, Hiba Chougrad and Abdessamad El Boushaki, “Big Data Processing:
Batch-based processing and stream-based processing”, in Proceedings of the 4th
International Conference On Intelligent Computing in Data Sciences (ICDS’ 20), pp. 1-6,
2020.

Lingjiao Chen, Arun Kumar, Jeffrey Naughton and Jignesh M. Patel, “Towards linear
algebra over normalized data”, Proc. VLDB Endow., vol. 10, no. 11, pp. 1214—1225,
August 2017.

Databricks, “What is the medallion lakehouse architecture?”,
https://docs.databricks.com/aws/en/lakehouse/medallion, 2024. Accessed: 2025-05-
27.

Databricks, “What is Hadoop Distributed File System (HDFS)?”,
https://www.databricks.com/glossary/hadoop-distributed-file-system-hdfs, 2025.
Accessed: 2025-06-12.

Dremio, “What Is Apache Hudi?”, https://www.dremio.com/wiki/apache-hudi/, 2025.
Accessed: 2025-06-12.

Rihan Hai, Christos Koutras, Christoph Quix and Matthias Jarke, “Data Lakes: A Survey
of Functions and Systems”, [EEE Transactions on Knowledge and Data Engineering,
vol. 35, no. 12, pp. 12571-12590, 2023.

Olaf Herden, “Architectural Patterns for Integrating Data Lakes into Data Warehouse
Architectures”, in Proceedings of the 8th International Conference on Big Data Analytics
(ICBDA °20)’, pp. 12-27, Springer International Publishing, December 2020.

Apache Hudi, “Apache Hudi Documentation: Use Cases.”,
https://hudi.apache.org/docs/0.14.1/use_cases, 2024. Accessed: 2025-06-11.

IBM, “What is Delta Lake?”, https://www.ibm.com/think/topics/delta-lake, 2025.
Accessed: 2025-06-12.

67

[Jain23]

[Karil8]

[Kham17]

[Makr21]

[Mazu23]

[Silb11]

[Tran21]

[Zhao17]

68

Paras Jain, Peter Kraft, Conor Power, Tathagata Das, lon Stoica and Matei Zaharia,
“Analyzing and Comparing Lakehouse Storage Systems”, in Proceedings of the 13th
Annual Conference on Innovative Data Systems Research (CIDR °23), January 2023.

Jeyhun Karimov, Tilmann Rabl, Asterios Katsifodimos, Roman Samarev, Henri Heiskanen
and Volker Markl, “Benchmarking Distributed Stream Data Processing Systems”, in 2018
1IEEFE 34th International Conference on Data Engineering (ICDE), pp. 1507-1518, 2018.

Mahmoud Abo Khamis, Hung Quoc Ngo, XuanLong Nguyen, Dan Olteanu and
Maximilian Schleich, “Learning Models over Relational Data Using Sparse Tensors and
Functional Dependencies”, ACM Transactions on Database Systems (TODS), vol. 45, pp.
1-66, 2017.

Nantia Makrynioti and Vasilis Vassalos Vasilis, “Declarative Data Analytics: A Survey”,
IEEE Transactions on Knowledge and Data Engineering, vol. 33, no. 6, pp. 2392-2411,
2021.

Dipankar Mazumdar, Jason Hughes and JB Onofre, “The Data Lakehouse: Data
Warehousing and More”, arXiv:2310.08697 [cs.DB], 2023.

Abraham Silberschatz, Henry F. Korth and S. Sudrashan, Database System Concepts, pp.
889-891, McGraw-Hill, New York, 6th edition, 2011.

Transaction Processing Performance Council (TPC), TPC-DS Standard Specification,
June 2021. Version 3.2.0.

Xinwei Zhao, Saurabh Garg, Carlos Queiroz and Rajkumar Buyya, “Chapter 11 - A
Taxonomy and Survey of Stream Processing Systems”, in Software Architecture for Big
Data and the Cloud, pp. 183-206, Morgan Kaufmann, Boston, 2017.

https://arxiv.org/abs/2310.08697

Iopdptnpa (Appendix) A

TPC-DS Queries

Listing A.1: TPC-DS Query 9.

select case when (select count(*)

casc

case

case

then

else

when

then

else

when

then

else

when

then

else

from store sales

where ss _quantity between 1 and 20) > 25437

(select avg(ss_ext discount amt)
from store sales

where ss quantity between 1 and 20)

(select avg(ss_net_profit)
from store sales

where ss_quantity between 1 and 20)

end bucketl ,

(select count(*)

from store sales

where ss_quantity between 21 and
(select avg(ss_ext discount amt)
from store sales

where ss _quantity between 21 and
(select avg(ss net profit)

from store sales

where ss quantity between 21 and
end bucket2,

(select count(*)

from store sales

where ss _quantity between 41 and
(select avg(ss_ext discount amt)
from store sales

where ss_quantity between 41 and
(select avg(ss_net profit)

from store sales

where ss_quantity between 41 and
end bucket3 ,

(select count(*)

from store sales

where ss_quantity between 61 and
(select avg(ss_ext discount amt)
from store sales

where ss _quantity between 61 and
(select avg(ss_net _profit)

from store sales

where ss quantity between 61 and

40)

40)

40)

60)

60)

60)

80)

80)

80)

> 22746

> 9387

> 10098

69

70

end bucket4 ,
case when (select count(*)
from store sales
where ss_quantity between 81 and 100) > 18213
then (select avg(ss_ext discount amt)
from store sales
where ss_quantity between 81 and 100)
else (select avg(ss_net profit)
from store sales
where ss_quantity between 81 and 100)
end bucketS5
from reason
where r_reason_sk = 1;

Listing A.2: TPC-DS Query 11.
with year total as (
select ¢ _customer_ id customer_id
,c first name customer first name
,c_last name customer_last name
,c _preferred cust flag customer preferred cust flag
,c_birth country customer_ birth country
,c login customer login
,c_email address customer_email address
,d year dyear
,sum(ss_ext list price —ss_ext discount amt) year total
,’s’ sale type
from customer
,store sales
,date dim
where ¢ _customer sk = ss customer_ sk
and ss _sold date sk = d date sk
group by c¢_customer_id
,c_first_name
,c_last name
,c_preferred cust flag
,c_birth country
,c_login
,c_email address
,d _year
union all
select ¢ _customer_id customer id
,c first name customer first name
,c_last name customer_ last name
,c _preferred cust flag customer preferred cust flag
,c_birth country customer_ birth country
,c login customer login
,c_email address customer_email address
,d year dyear
,sum(ws_ext list _price —ws_ext _discount _amt) year total
,’w’ sale type
from customer

,web_sales
,date dim
where c¢_customer_ sk = ws_bill customer_ sk
and ws_sold date sk = d _date sk
group by c¢_customer_id
,c_first name
,c_last name
,c_preferred cust flag
,c_birth country
,c_login
,c_email address
,d _year
)
select
t s secyear.customer_ id
,t s secyear.customer_ first name
,t s secyear.customer last name
t s secyear.customer_email address

from year total t s firstyear
,year total t s secyear
,year total t w_firstyear

,year total t w_secyear

where t s secyear.customer id = t s firstyear.customer_ id
and t s firstyear.customer id = t w_secyear.customer_id
and t s firstyear.customer_id = t w_firstyear.customer_id
and t s firstyear.sale type s’
and t w_firstyear.sale type = "w’
and t s secyear.sale type = ’s’
and t w_secyear.sale type = 'w’
and t s firstyear.dyear = 2001
and t s secyear.dyear = 2001+1
and t_w_firstyear.dyear = 2001
and t w_secyear.dyear = 2001+1
and t s firstyear.year_ total > 0
and t w_firstyear.year total > 0
and case when t w_firstyear.year total > 0

then t w_secyear.year total/t w_ firstyear.year total
else 0.0 end
case when t s firstyear.year total > 0
then t s secyear.year total/t s firstyear.year total
else 0.0 end
order by t s secyear.customer_ id
,t_s secyear.customer_first name
,t s secyear.customer last name
,t s secyear.customer_email address
limit 100;

Listing A.3: TPC-DS Query 28.
select *

from (select avg(ss_list price) Bl LP
,count(ss list price) Bl CNT

71

72

,count(distinct ss_list price) Bl CNTD
from store sales
where ss_quantity between 0 and 5
and (ss_list price between 11 and 11+10
or ss_coupon_amt between 460 and 460+1000

or ss_wholesale cost between 14 and 14+20)) BI,

(select avg(ss _list price) B2 LP
,count(ss list price) B2 CNT
,count(distinct ss list price) B2 CNTD

from store sales

where ss _quantity between 6 and 10

and (ss_list price between 91 and 91+10
or ss_coupon_amt between 1430 and 1430+1000
or ss_wholesale cost between 32 and 32+20)) B2,

(select avg(ss list price) B3 LP
,count(ss list price) B3 CNT
,count(distinct ss_list price) B3 CNTD

from store sales

where ss _quantity between 11 and 15

and (ss _list price between 66 and 66+10
or ss_coupon_amt between 920 and 920+1000
or ss_wholesale cost between 4 and 4-+20)) B3,

(select avg(ss_list price) B4 LP
,count(ss_list price) B4 CNT
,count(distinct ss_list price) B4 CNTD

from store sales

where ss_quantity between 16 and 20

and (ss_list _price between 142 and 142+10
or ss_coupon_amt between 3054 and 3054+1000
or ss_wholesale cost between 80 and 80+20)) B4,

(select avg(ss list price) B5 LP
,count(ss list price) B5 CNT
,count(distinct ss list price) B5 CNTD

from store sales

where ss _quantity between 21 and 25

and (ss_list price between 135 and 135+10
or ss_coupon_amt between 14180 and 14180+1000
or ss_wholesale cost between 38 and 38+20)) BS,

(select avg(ss list price) B6 LP
,count(ss_list _price) B6 CNT
,count(distinct ss_list price) B6 CNTD

from store sales

where ss_quantity between 26 and 30

and (ss_list price between 28 and 28+10
or ss_coupon_amt between 2513 and 2513+1000
or ss_wholesale cost between 42 and 42+20)) B6
100;

Listing A.4: TPC-DS Query 33.

with ss as (
select

i_manufact _id ,sum(ss_ext sales price) total sales

from
store_sales ,
date dim,
customer_ address ,
item
where

i_manufact id in (select
i_manufact id

from
item
where i _category in (’Books’))
and ss_item_sk = 1_item_sk
and ss_sold date sk = d_date_sk
and d year = 1999
and d _moy =3
and ss_addr_sk = ca_address_ sk
and ca_gmt offset = -5
group by i _manufact _id),
cs as (
select
i_manufact id ,sum(cs_ext sales price) total sales

from

catalog sales ,

date_dim,

customer_ address ,

item
where

i_manufact_id in (select

i_manufact_id
from
item
where 1 _category in (’Books’))
and cs_item_ sk = i_item_sk
and cs_sold date sk = d _date sk
and d year = 1999
and d moy =3
and cs_bill addr_sk = ca_address_sk
and ca_gmt offset = =5
group by i _manufact _id),
ws as (
select
i_manufact id ,sum(ws_ext sales price) total sales

from

web_sales,

date dim,

customer_ address ,

item
where

i_manufact_id in (select

i_manufact_id

from

item
where i_category in (’Books’))
and ws_item_sk = 1_item_sk
and ws_sold date sk = d_date sk
and d year = 1999
and d _moy =3
and ws_bill addr_ sk = ca_address_sk
and ca_gmt offset = =5

group by i_manufact id)
select 1 _manufact id ,sum(total sales) total sales
from (select * from ss
union all
select * from cs
union all
select * from ws) tmpl
group by i_manufact id
order by total sales
limit 100;

Listing A.5: TPC-DS Query 35.
select
ca_state ,
cd gender,
cd marital status ,
cd dep _count,
count(*) cntl ,
avg(cd _dep_ count),
max(cd dep count),
sum(cd dep count),
cd dep employed count,
count (*) cnt2,
avg(cd dep employed count),
max(cd _dep employed count),
sum(cd dep employed count),
cd dep college count,
count(*) cnt3,
avg(cd dep college count),
max(cd dep college count),
sum(cd dep college count)
from
customer c,customer_ address ca,customer demographics
where
c.c_current _addr sk = ca.ca address sk and
cd demo sk = c.c _current cdemo_ sk and
exists (select *
from store sales ,date _dim
where c¢.c _customer sk = ss customer sk and
ss_sold date sk = d_date sk and
d year = 1999 and
d qoy < 4) and

(exists (select *
from web_sales ,date dim
where c.c_customer_sk = ws_bill customer_sk and
ws_sold date sk = d _date sk and
d year = 1999 and
d qoy < 4) or
exists (select *
from catalog sales ,date dim
where c¢.c_customer sk = c¢s ship customer sk and
cs_sold date sk = d date sk and
d year = 1999 and
d_qoy < 4))
group by ca_ state ,
cd gender,
cd marital status,
cd _dep _count,
cd dep _employed count,
cd dep college count
order by ca_state ,
cd gender,
cd marital_status ,
cd dep count,
cd dep employed count,
cd dep college count
limit 100;

Listing A.6: TPC-DS Query 38.
select count(*) from (

select distinct c_last name, c_first name, d_date
from store sales , date dim, customer
where store sales.ss sold date sk = date dim.d date sk
and store sales.ss customer sk = customer.c customer sk
and d month seq between 1212 and 1212 + 11

intersect
select distinct c_last name, c_first name, d_date
from catalog sales , date dim, customer
where catalog sales.cs sold date sk = date dim.d date sk
and catalog sales.cs bill customer sk = customer.c customer sk
and d _month _seq between 1212 and 1212 + 11

intersect
select distinct ¢ _last name, c¢_first name , d_ date
from web sales, date dim, customer

where web sales.ws sold date sk = date dim.d date sk
and web sales.ws bill customer sk = customer.c customer_ sk
and d month seq between 1212 and 1212 + 11

) hot cust

limit 100;

Listing A.7: TPC-DS Query 61.

select promotions,total ,
cast(promotions as decimal(15,4))/

75

cast(total as decimal(15,4))*100
from
(select sum(ss_ext sales price) promotions
from store sales

,Store

,promotion

,date _dim

,customer

,customer address

,item
where ss sold date sk = d _date sk
and ss_store sk = s store sk
and ss promo_sk = p promo_sk
and ss_customer_sk= c¢_customer_ sk
and ca_address sk = ¢ _current addr_ sk
and ss_item sk = i_item sk
and ca_gmt offset = =7
and i_category = ’Books’
and (p_channel dmail = Y’

or p_channel email = Y’
or p_channel tv = ’Y’)

and s gmt offset = =7
and d year = 1999
and d moy = 11) promotional sales,

(select sum(ss_ext sales price) total
from store sales
,Store
,date dim
,customer
,customer address
,item
where ss sold date sk = d date sk
and ss _store sk = s store sk
and ss_customer_sk= ¢ customer_ sk
and ca_address sk = ¢ _current addr_ sk
and ss_item_sk = i _item_ sk
and ca_gmt offset = =7
and i_category = ’Books’
and s gmt offset = -7
and d year = 1999
and d moy = 11) all sales
order by promotions, total

limit 100;

Listing A.8: TPC-DS Query 64.
with cs_ui as
(select cs_item sk,
sum(cs_ext list price)
as sale ,
sum(cr_refunded cash+cr reversed charge+cr store credit)
as refund

from catalog sales
,catalog returns
where cs_item sk = cr_item_ sk
and cs_order _number = cr_order_number
group by cs_item_ sk
having sum(cs_ext list price)>2*sum(cr_refunded cash

+cr_reversed charge
+cr_store credit)),

cross_sales as

(select

i_product name product name

,i_item sk item sk

,S_store_name store_name

,$_zip store_zip

,adl.ca street number b_street number
,adl.ca street name b_street name
,adl.ca city b_city

,adl.ca_zip b_zip

,ad2.ca_ street number c_street number
,ad2.ca_street name c_street name
,ad2.ca city c¢_city

,ad2.ca_zip c_zip

,dl.d year as syear

,d2.d year as fsyear

,d3.d year s2year

,count (*) cnt

,sum(ss _wholesale cost) sl
,sum(ss_list price) s2
,sum(ss_coupon_amt) s3

FROM

WHERE

store_sales

,store_returns

,Cs_ui

,date_dim dl

,date dim d2

,date_dim d3

,store

,customer

,customer_demographics cdl
,customer_demographics cd2
,promotion

,household demographics hdl
,household demographics hd2
,customer address adl

,customer address ad2

,income_ band ibl

,income_ band ib2

,item

ss_store_sk = s _store sk AND

ss sold date sk = dl.d date sk AND
ss_customer_sk = c_customer_ sk AND
ss_cdemo_sk= cdl.cd demo sk AND
ss_hdemo_sk = hdl.hd demo_sk AND

77

78

ss_addr_sk = adl.ca address_sk and

ss_item sk = i item sk and

ss_item_ sk = sr_item sk and

ss_ticket number = sr_ticket number and
ss_item sk = cs_ui.cs_item sk and

c¢_current _cdemo sk = cd2.cd demo sk AND

c_current_hdemo_ sk = hd2.hd demo_sk AND

¢ _current _addr sk = ad2.ca address sk and
¢ first sales date sk = d2.d date sk and
¢ first shipto date sk = d3.d date sk and
ss promo_sk = p promo_ sk and

hdl.hd income band sk = ibl.ib_income band sk and
hd2.hd income band sk = ib2.ib_income band sk and
cdl.cd marital status <> cd2.cd marital status and

i color in (’maroon’,’burnished’,’dim’

, steel’,’navajo’,’chocolate’) and

i_current price between 35 and 35 + 10 and
i _current price between 35 + 1 and 35 + 15
group by i_product name
,1_item sk
,S_store_name
,S_Zip
,adl.ca_ street number
,adl .ca_street _name
,adl.ca_ city
,adl.ca zip
,ad2 . ca_street number
,ad2.ca_street _name
,ad2 . ca_city
,ad2.ca_zip
,dl.d year
,d2.d year
,d3.d year
)
select csl.product name
,csl.store name
,csl.store zip
,csl.b street number
,csl.b street name
,csl.b _city
,csl.b_zip
,csl.c street number
,csl.c street name
,csl.c city
,csl.c zip
,csl.syear
,csl.cnt
,csl.sl as sll
,csl.s2 as s21
,csl.s3 as s31
,cs2.s1 as sl12

,€82 .52 as s22
,cs2.83 as s32
,cs2.syear
,cs2.cnt
from cross_sales csl,cross_sales cs2
where csl.item_sk=cs2.item_ sk and
csl.syear = 2000 and

cs2.syear = 2000 + 1 and

cs2.cnt <= csl.cnt and

csl.store name = cs2.store _name and
csl.store zip = cs2.store_zip

order by csl.product name
,csl.store name
,cs2 .cnt
,csl.sl
,cs2.s1;

Listing A.9: TPC-DS Query 72.
select 1_item desc
,Ww_warehouse name
,dl1.d week seq
,sum(case when p promo sk is null
then 1 else 0 end) no_promo
,sum(case when p promo sk is not null
then 1 else 0 end) promo
,count (*) total cnt
from catalog sales

join inventory on (cs_item_ sk = inv_item_ sk)

join warehouse on (w_warehouse sk=inv_warehouse sk)

join item on (i_item sk = cs_item_ sk)

join customer demographics on (cs_bill cdemo sk = cd demo sk)

join household demographics on (cs_bill hdemo sk = hd demo_sk)
join date dim dl on (cs_sold date sk = dl.d date sk)
join date dim d2 on (inv_date sk = d2.d_date sk)
join date dim d3 on (cs_ship date sk = d3.d date sk)
left outer join promotion on (cs _promo sk=p promo_ sk)
left outer join catalog returns
on (cr_item sk = cs item_ sk
and cr_order number = cs_order_number)
where dl1.d week seq = d2.d week seq
and inv_quantity on_hand < c¢s_quantity
and d3.d date > dl.d date + 5

and hd _buy potential = *1001-5000"
and dl.d _year = 2001
and cd _marital status = ‘M’

group by i _item desc ,w_warehouse name,dl.d week seq
order by total cnt desc, i_item desc,

w_warehouse name, d week seq
limit 100;

Listing A.10: TPC-DS Query 75.

79

80

WITH all sales AS (
SELECT d_year
,i_brand_id
,i_class id
,1_category_id
,i_manufact_id
SUM(sales cnt) AS sales cnt
,SUM(sales amt) AS sales amt
FROM (SELECT d year
,1i_brand_id
,1_class id
,1_category_id
,1_manufact_id
,cs_quantity -COALESCE(cr_return_quantity ,0)
AS sales cnt
,cs_ext_sales price “COALESCE(cr_return_amount ,0.0)
AS sales amt
FROM catalog sales JOIN item ON i_item_ sk=cs item sk
JOIN date dim ON d_date sk=cs_sold date sk
LEFT JOIN catalog returns
ON (cs_order number=cr_order number
AND cs item sk=cr_item sk)
WHERE i category=’Sports’
UNION
SELECT d_year
,i_brand_id
,i_class_id
,1_category id
,1_manufact_id
,8s_quantity “COALESCE(sr_return_quantity ,0)
AS sales cnt
,ss_ext sales price “COALESCE(sr _return_amt ,0.0)
AS sales amt
FROM store sales JOIN item ON i item sk=ss item sk
JOIN date dim ON d date sk=ss sold date sk
LEFT JOIN store returns
ON (ss_ticket number=sr_ticket number
AND ss_item sk=sr_item sk)
WHERE i category=’Sports’
UNION
SELECT d_year
,i_brand id
,1_class _id
,i_category id
,i_manufact_id
,ws_quantity “COALESCE(wr_return_quantity ,0)
AS sales cnt
,ws_ext _sales price -COALESCE(wr_return_amt ,0.0)
AS sales amt
FROM web_sales JOIN item ON i_item_ sk=ws_item_sk
JOIN date dim ON d_date sk=ws sold date sk

LEFT JOIN web returns
ON (ws_order number=wr_order number
AND ws_item_ sk=wr_item_ sk)

WHERE i category=’"Sports’) sales detail
GROUP BY d _year, i _brand id, i _class_id,

SELECT

i _category id, i _manufact id)
prev_yr.d _year AS prev_year,
curr_yr.d year AS year,
curr_yr.i brand id,
curr_yr.i_class_id,
curr_yr.i_category_id,
curr_yr.i_manufact id,
prev_yr.sales cnt AS prev_yr cnt,
curr_yr.sales cnt AS curr_yr_cnt,

curr_yr.sales cnt—prev_yr.sales cnt AS sales cnt diff,
curr_yr.sales amt—prev_yr.sales amt AS sales amt diff,
FROM all sales curr_yr, all sales prev_yr

curr_yr.i_brand id=prev_yr.i_brand id
curr_yr.i_class id=prev_yr.i class id
curr_yr.i_category_ id=prev_yr.i category id
curr_yr.i_manufact id=prev_yr.i_manufact id
curr_yr.d year=2002

prev_yr.d year=2002-1

CAST(curr_yr.sales _cnt AS DECIMAL(17,2))/
CAST(prev_yr.sales _cnt AS DECIMAL(17,2))<0.9

ORDER BY sales cnt_ diff ,sales _amt_ diff

limit

100;

81

	Περίληψη
	Abstract
	Περιεχόμενα (Contents)
	Κατάλογος Σχημάτων (List of Figures)
	Κατάλογος Αποσπασμάτων Κώδικα (List of Code Listings)
	Ευρετήριο Συντομεύσεων (Abbreviation Index)
	Εκτενής Περίληψη
	Λίμνες Δεδομένων
	Data Lakehouses
	Πειραματική Διάταξη
	Επεξεργασία κατά Παρτίδες (Batch Processing)
	Επεξεργασία Ροής (Stream Processing)
	Συμπεράσματα

	Κείμενο στα αγγλικά
	Introduction
	Use of Data Lakes in Organisations
	The Standard Data Lake
	The Two-Tier Architecture
	The Problems of Current Data Lake Solutions

	Data Lakehouses: A Solution to the Challenges
	Metadata Layer
	Open File Formats
	SQL Performance Optimisations

	The Aim and Scope of this Thesis

	Experimental Setup
	Hardware
	Hadoop Distributed File System
	Apache Spark
	Delta Lake
	Apache Hudi
	Delta Lake and Apache Hudi Design
	Transaction Coordination
	Metadata Management
	Data Update Strategies

	Batch Processing
	TPC-DS Benchmark Suite
	Dataset

	Queries
	Simple
	Complex (TPC-DS Queries)

	Experimentation Process
	Benchmark Metrics
	Configuration Changes

	Results
	Phase 1
	Phase 2
	Phase 3
	Phase 4

	Conclusions

	Stream Processing
	Dataset
	Medallion Architecture
	Organisation of the Dataset Using the Medallion Architecture

	Queries
	Filtering
	Windowed Aggregations

	Experimentation Process
	Benchmark Metrics

	Results
	Bronze Layer
	Silver Layer
	Gold Layer

	Conclusions

	Summary and Future Directions
	Future Directions
	Dynamic Workloads and Datasets
	Multi-Engine Support and Query Federation
	Traditional RDBMS
	Machine Learning Applications

	Βιβλιογραφία (References)

	Παράρτημα (Appendix)
	TPC-DS Queries

