S
Pz
&

s 4 KON
/%"
NPOMHOEVS
A Si==e|
N VP POPOS

t,

EONIKO METYOBIO ITOATTEXNEIO

Y XOAH HAEKTPOAOION MHXANIKON KAI MHXANIKON YTTIIOAOTIZTON

TOMEAY. TEXNOAOI'TAY. ITIAHPO®OPIKHY. KAI TIIOAOT'TXTON
EPrasTHPIO MIKPOTHOAOITETON KAI WHIIAKON Y YSTHMATON

Machine Learning-Driven Workload Clustering and
Placement for Heterogeneous DRAM/NVM Memory
Systems

Mehetn xou vhomoinon

AIITAQMATIKH EPI'AYIA

TOL

Iwdvvn Péxouou

EnBAenwyv: Anuftpioc Sodvienc
Koadnyntic E.M.IL

Ad¥va, Iodviog 2025

Edvixé Metoofio Ilohuteyvelo

Yyon Hhextpohdywv Mryovixddv xan Mnyoavixodv Troloylotdv
Touéac Teyvoroyiac ITAnpogopinric xou YTohoyiotedy
Epyaotipio Mixpobnohoylotdv xan Uneloxay Suotnudtwy

Machine Learning-Driven Workload Clustering and
Placement for Heterogeneous DRAM/NVM Memory
Systems

Mehétn xou vhomoino

AIITAQMATIKH EPT'AYIA

ToLv

Iwdvvrn Péxopovu

EnBAenwyv: Anuftpioc Sodvienc
Koadnyntic E.M.IL

Evyxeldnxe and tnv teiueln e€etaotinn emtpony| v 24" Touviou, 2025.

AnpAtetoc Xodvtene Swthplog Z0oNC TFedpyioc ZepPBdxng
Kadnyntic E.M.IL Enixovpoc Kadnyntic E.M.IL Kodnyntic ILIL

Ad¥va, Iodviog 2025

PokKoOMOs IQANNHE
Amhopotovyoc Hhextpordyoc Mryovinde
xan Mryovixog Trohoyiotwv E.M.IL

Copyright (© — All rights reserved Iwdvvne Péxopoc, 2025.
Me emipOhagn TovToC SIXUOUATOS.

Arnayopebeton 1 avtiypagn, amodfxeuon xou davouy| tne mopoloas epyaoiag, €€ OhoXAAEoL B TUAUATOS
QUTAS, YLl EUTopd oxomd. Emtpéneton 1 ovatdnworn, anodfixeuoy xou diovour| Yol oxond pn xep-
80000, EXTAUOEVTIXNG 1} EPEUVNTIXNG PUOME, UTO TNV TEoLNOVEST Vol AvVapPERETAL 1) TINYY) TROEAEUOTS
xon va Statnpeiton to mopoy prvupa. Epwthuata mou agopolv) yerion tne spyaciog yia xepdooxonixd
oxond mpEmel vor anevivVoVTaL TEOS TOV GUYYEPEA.

Or andelc xou To CUUTERACHUATI TTOL TEPLEYOVTOL OE AUTO TO EYYRUPO EXPEAloUY TOoV CUYYPAPEX Xou BEV
TeéneL va epunveutel 6Tl avtinpocwnebouy Ti¢ enlonue Yol Tou Edvixob Metodfiou Ilohuteyvelou.

ITepiindm

Ta cbyypova LTOAOYIG TN UG TAUAUTA AVTIUETWTILOUV ONOEVOL XalL TEPLOGOTEPO TO TEOBANUA TOU TEpL-
0ploUol NG Uviung, émou ol Tay0TNTEC TpdoPaong oty uviur dev cupfadilouy pe T BeATIOoE oToug
ene€epyaotéc. AuTtoc o EpLoploUds ETNEEGLEL dEVNTIXG TNV ATOBOOT) TWV EQPUPIOY Y TOU ATALTOVY EVIOVT
XENoTN UVAUNG, %o TOVTAS Amopol TNTES XUVOTOUES ADGELS YLot TNV AmodoTixY dlaryelplor Tewv diadéoiumy
mopwv uviunc. Mia mohkd umooyouevn mpocéyyion elvan 1 YeNoN ETECOYEVHV UPYLTEXTOVIXOY UVAUNG
Tou cuYdLALouv TNy Tapadoatax) DRAM ue véeg teyvohoyleg un mtntng uviung, onwg 1 Intel Optane.
Qotéo0, 1 anodotny| aélonolnon TETOLWY UG TNUATKY anottel EEUNTVEC GTEATNYIXES TAEVOUNONG QOPTILY
gpyoaolog xou XATAVOUNG UVAUNG.

H napodoo pehétn digpeuvd) yeNom TeXvxedy pnyoavixric uddnone yio v tagwvoéunon @optiwy ep-
yooiog pe Bdon to yopoxtneloTind Toug ot eninedo uvAung xou encéepyaoth. Anuovpyeiton évo olivolo
dedouévev Yéow e avdhuaorng didgpopwy benchmarks, e€dyovtag xplowec yetpixéc anddoong mov oyeti-
Covtau pe to ebpog Lwvng tne uvAung xou tn Yeron e CPU. X1 cuvéyel, exnoudebovton Sidpopa
povtéha emBAendpevng udinong, énwe To Random Forest, To K-Nearest Neighbors xou to Naive Bayes,
HE OXOTO TNV XATNYOoploToinom Twy poptiny epyasiog ot npoxadoplouéves xhdoeic. Emniéoy, epopudlov-
Tol TEYVIXES ETUAOYHC YUPUXTNELOTIXWY Xal Uelwong Slao tdoewy, onwe 1 Avdlvon Kipliwv Zuviotwony
(PCA), yio ™ Bertiwon tng andBoong xon NS EpUNVEUCIUOTNTAS TWY UOVTEAWY.

AgZeig KAewdid — Etepoyevic Mvrun, Intel Optane, Mnyovixyy Mdadnon, Tallvounon Poptiwv
Epyaoioc, Avdiuon Kopiwv Yuviotwony, Katavour| Ildpwy

Abstract

Modern computing systems increasingly face memory bottlenecks, where memory access speeds fail to
keep pace with processor advancements. This limitation hinders the performance of memory-intensive
applications, necessitating innovative solutions to efficiently manage memory resources. One promising
approach is the integration of heterogeneous memory architectures that combine traditional DRAM
with emerging non-volatile memory technologies such as Intel Optane. However, leveraging such
architectures effectively requires intelligent workload classification and memory allocation strategies.

This study explores the application of machine learning techniques to classify workloads based on their
memory and computational characteristics. A dataset is constructed by profiling various benchmarks
and extracting key performance metrics related to memory bandwidth and CPU utilization. Several
supervised learning models, including Random Forest, K-Nearest Neighbors, and Naive Bayes, are
trained on this dataset to categorize workloads into predefined classes. Feature selection and dimen-
sionality reduction techniques, such as Principal Component Analysis (PCA), are employed to enhance
model performance and interpretability.

Keywords — Heterogeneous Memory, Intel Optane, Machine Learning, Workload Classification,
Principal Component Analysis, Resource Allocation

vii

Euyaplotieg

O Hdeho va exppdon Tig epuéc wou euyoptotice otov xadnynt x. Anurteio Xolvten, o onoloc wou
€dwoe TNY suxalplal VoL EQYAOTE TV OE AUTY T1) SITAWUATIXY EpYacia 6To epyaoThpto Mixpolnohoyiotdv
xar Unelaxady Luotnudtov. H euniotooivn mou pou €delée frav xadoptotixn yiot Ty évopén autic e
npoonddetac xou yior TNy eEEMEN pou otov topéa. Euyapiotd enione tov unodripio Siddxtopo Moavidin
Kotoopayxdxn yia tny xadodrynon xou tn cuveytlouevn unocthelr Tou xatd Tn Bldpxelo TG EXTOVNoNG
e epyaoiog. H Bordeid tou unhple noAbtiun xau 1) eunetpla tou oto avixelyevo ye foridnoe vo avantdiw
TIC WOEEC OL XL VO ONOXANROOW TNV epyaoio ue emTuylaL.

Euyopiotd v oxoyéveld pou yur Ty aydmn xa ™ othellh toug xad’ 6An Tt didpxela tne mopelac
pou. Téhog, euyaplotdd Toug Gihoug pou i Ty Ndw othen 1 omolo pe Borinoe vo mopauelve
ETUXEVTPWUEVOS XAl VO EETERAOEL TG TPOXANOELS TNE BOUAELAS HOL.

ix

Contents

ITepirndm v
Abstract vii
Evyopioticg ix
Contents xi
Figure List Xiv
Table List xvi
Extetopnévn EAAnvixy] Ilepiindn 1
Blooyoyh « o o e 1
Yyetod Bifhoypaglor. . . o o 2
Oewenuxd TmOBadeo . . v . o 3
MrrIImnuoed MVAUN . . . 0o o 3

Intel’s Optane DIMM e 3
Y0yxplon ATOBOONG 4
Memkind APT L 4
Movtéha Mrnyavoeic Mddnong oo oo 4
Medodohoyio xan Hewpopotinedy ASLONOYNON .« .« o o o oo o o 5
Avdhuon Ilpogik xan Xopauelowds L Lo 5
Katnyoptomolnom oo 6
Ipocéyyion Enontevduyevne Mddnong oo 7

Melwon AWOTUONG + v v v v v e e e e e 9
Movtéha Mnyovixhc Mdadnone yio HpdBredn Katnyoptonolnoneo o oo oL . 10
A&ohoynon pe Xerion Ahyopldpou Baciouévou oe Katnyopleg o o oo o oo 11
Ipotewvdpevog Ahyopripog Tomodétnong Bdoet Khdoewy oo o000 000 L 12
Ahyoprdpor Tomodetnomg . . . o o o oL 12
Yuvohxdg Xpdvog Extéheong o o oL 13
IlpocBdoeic Avdyvwong xouw Eyyeaphc . . o o o oo oo 13

Xehon MvAunc - . o o o o 14
Hopdntowua Xedvou Extéleone Epyaoiogo oo 15
Iepiindm tov Anotekeoudtwy AZoAdynone oo 16
Yuunepdopoto xon Mehhovtix AOVAEWd L Lo 17

1 Introduction 19
2 Related Work 21
3 Theoretical Background 23
3.1 Persistent Memoryo e e e 23

xi

Contents

3.1.1 Non-Volatile Memory e 23
3.1.2 Intel’s Optane DIMM i it 24

3.2 Memkind APL. e 25
3.3 Machine Learning Models L 27
3.3.1 Accuracy Metric for Machine Learning Models 27
3.3.2 Decision Tree o e 27
3.3.3 Random Forest 29
3.3.4 K-Nearest Neighbors (KNN) 30
3.3.0 Naive Bayes e 31
3.3.6 Support Vector Machine (SVM) L 32
3.3.7 Principal Component Analysis (PCA) 32

4 Proposed Methodology 35
4.1 OVerview e 35
4.2 Profiling and Characterisation L o e 36
4.3 Profiling Results o 39
4.3.1 Execution Time oL e 39
4.3.2 Instructions Per Cycle (IPC) 40
4.3.3 L3 Cache Performance 41
4.3.4 Memory Bandwidth L 43
4.3.5 Memory Accesses (Optane Only) 45
4.3.6 Observations e e 45

4.4 Classification L 46
4.4.1 Memory Intensive Class e 46
4.42 Read Intensive Class 0 o 46
4.4.3 Write Intensive Class L 46
4.44 CPU Intensive Class o o0 ittt e e e e 47
4.4.5 Summary of Classification Criteria 47

4.5 Machine Learning Models for Classification Prediction 47
4.5.1 Supervised Learning Approach, 47
4.5.2 Dimensionality Reduction 0 o 49
4.5.3 Machine Learning Models o oL, 49
4.5.4 Training and Testing Procedure L. 49

4.6 Evaluation using a Class-Based Algorithm 50
4.6.1 Proposed Class-Based Placement Algorithm 50
4.6.2 Benchmark Arrival Distributions 0oL, 52
4.6.3 Placement Algorithms L 52
4.6.4 Performance Measurements e 53

5 Experimental Evaluation 55
5.1 Hardware Setup e e e e 55
5.2 Dataseto e e e 56
5.3 Classification Modeling e 56
5.3.1 Feature Reduction using Random Forest 56
5.3.2 Dimensionality Reduction using PCA 56
5.3.3 PCA Visualization and SVM Classification 60
5.3.4 Training and Evaluation with the Original Dataset 61
5.3.5 Model Training with the Reduced Features Dataset 61
5.3.6 Model Training with the PCA-Reduced Dataset 61
5.3.7 Summarized Results 62

5.4 Evaluation of Results using a Class-Based Algorithm 63
5.4.1 Total Execution Time 63
5.4.2 Read and Write Accesses 64
5.4.3 Memory Utilization L 65

xii

Contents

5.4.4 Task Execution Time Degradation 67
5.4.5 Summary of the Evaluation Results 69
6 Conclusion and Future Work 71
Bibliography 73

xiii

Contents

xiv

Figure List

3.1.1
3.3.1
3.3.2
3.3.3
3.3.4

4.1.1
4.3.1
4.3.2
4.3.3
4.3.4
4.3.5
4.3.6
4.3.7
4.4.1
4.6.1

59.3.1
5.3.2
5.3.3
5.3.4
9.3.5
5.4.1
5.4.2
5.4.3
0.4.4
5.4.5
5.4.6

5.4.7

Memory Hierarchy Pyramid 24
Decision Tree Model o 28
Random Forest Model 29
K-Nearest Neighbors Model 30
Support Vector Machine Modelo L o 32
Overview of the proposed methodology. 35
Execution times of benchmarks on DRAM vs. Optane. 39
IPC of benchmarks on DRAM (gray) vs. Optane (blue). 40
L3 cache hit ratio of benchmarks on DRAM (gray) vs. Optane (blue). 41
L3 cache misses (KB) per second of benchmarks on DRAM (gray) vs. Optane (blue). . 42

Memory read bandwidth (MB/s) of benchmarks on DRAM (gray) vs. Optane (blue). . 43

Memory write bandwidth (MB/s) of benchmarks on DRAM (gray) vs. Optane (blue).. 44
Total memory accesses (read and write) on Optane. 45
Diagram of the benchmark classification criteria. 48
Diagram of Class-Based Placement Algorithm. 51
PCA Visualization of the Dataset and SVM Classification 60
Box plots of accuracy on the Original Dataset 61
Box plots of accuracy on the Reduced Dataset 61
Box plots of accuracy on the PCA-Reduced Dataset 62
Box plots of accuracy of the models and datasets 62
Comparison of total execution time across placement algorithms. Left: aggregated
total times. Right: scaling behavior with increasing number of tasks. 64
Comparison of Read Access patterns. Left: aggregated Read Accesses. Right: how
accesses scale with increasing number of tasks.o oo L. 64
Comparison of Write Access patterns. Left: aggregated Write Accesses. Right: how
accesses scale with increasing number of tasks. oL 65
Memory Utilization (10 Tasks) across DRAM and PMEM for Random, Round Robin,
and Class-Based Placement Algorithms. 66
Memory Utilization (20 Tasks) across DRAM and PMEM for Random, Round Robin,
and Class-Based Placement Algorithms. 66
Memory Utilization (30 Tasks) across DRAM and PMEM for Random, Round Robin,
and Class-Based Placement Algorithms. 67
Task Execution Time Degradation. Execution times are normalized to DRAM-only

execution. The top plot corresponds to 10 tasks, the middle to 20 tasks, and the
bottom to 30 tasks. e e e 68

XV

Figure List

xvi

Table List

3.1

4.1
4.2
4.3
4.4
4.5

5.1
5.2
5.3
5.4
3.5
5.6

DRAM and Optane Read/Write Latency and Bandwidth [9] 25
Rodinia Benchmarks e e e e e 36
Parsec Benchmarks e e e e 36
EEMBC Benchmarks 37
GAP Benchmarks 37
Metrics measured during benchmark runs on DRAM and Optane. 38
Hardware Specifications of the Experimental System 55
Dataset (Features and Labels) o 57
Reduced Dataset after Random Forest Feature Selection 58
Dataset after PCA Dimensionality Reduction 59
PCA Coefficients e e e 60
Mean accuracy values for all the evaluation scenarios. 62

xvii

Table List

xviii

Extetopevn EAAnvixn Tlepiindm

Eiwcaywyn

To cOyypova uToAoYLE TS cuoTHUOTY avTpeTwRlouY onuavTixés TpoxoEl anodoong AdYw TOU TEpl-
optopol tne wvAune (memory bottleneck), éva xplowwo {htnua 6mou 1 taydTnta npdofacne ot dedopéva
and N uviun dev umopel va cupPadioet ye v unoloyloTxy oyl Twv eneepyactodv. Kodde ol eneé-
gpyoaotég ouveyiCouv va e€ellocovtar, Yivovtar Tay0TEpOL xou To amodoTixol, SUKS oL Teploploldol aTnv
TpdoBoon ot Uviun amote olV oNUAVTIXG EUTOBLO Yiot TNV entiteLEn BéATIoTNG anddoang. Autdc o eplop-
lopog mpoxdntel eneldn § DRAM, 1 xdplor nTnTin gviun mou yenoylomoLe(tal oTo TEPLOGOTERA GUC THUOTA,
dev €yel auérioel TNy TayUTNTE TNS U ToVv (Blo puiud 6mwg ol enedepyaoTtéc. ¢ anoTéAeoya, EQUPUOYES
nou Baotllovton oe cuyVH TedaBacn ot WVAUT veloTavton Xoduc TEPROELC Kol UELWHEVY ATOBOTIXOTNTA.

Mia mdavi Aoom yio TV aVTIHETOTLOT TOU TEOBAAUNTOE auTol elval 1 adENoT NG GUVOMXAC YWENTXOTY-
TOG TNE WVAUNG EVOC UG TAUATOG HE TN YP1IOT) TTLO OLXOVOIXKY TEXVOROYLMY Uviung, 6mwe 1 Intel Optane.
H Optane nopéyetl évay amodotixd 1pdmo enéxtaons e dladéoung uviung, wotdco Ta YopoXTNELo TXd
anddoofc e dagépouy and v Toapadostaxy DRAM, eldxd 6cov agopd v xaduotépnon (latency)
xat to epoc Lodvne (bandwidth). Ernopévee, amonteiton o anodotind otpatnyw doyelpione mou va
Behtiotomotel T yehon té6co e DRAM 660 xou tne Optane oty (Bia apyttextovixr. O owotoc yopox-
TNELOUOC TWV ERYUCLOY X0 1) EEUTVT XaTovouT| Sedouévwy pmopolv va Bondnicouy otny eniteuén udmirg
An6Bo0NC EXUETAAAEUOUEVOL T GUVBLG TIXT YeNoT TV BUo TOMWV UVAUNC.

Io v anodotixy| adlomoinom evog etepoyevols cuUoTAUATOS UvAuNg, elvon amapoaitnto vo xoatavondel o
TEOTOC Ue TOV 0molo BLAPOPETIXES eQapoYEéc aAANAemBpolY Ue Toug Sotéoiuoug tépoue pvrung. Ou
EQapUOYEC TaPOLGLALOUY TOIAEC CUUTERLPORES, UE XATOIEC VoL EfvOl TEQLOGOTERO UVNUOVIXE EVTUTIXES,
eved dhheg va Baoilovton xuplwe otny unohoylotnt| oy d. H duvatdtnra tadivéunone twy epyaotdy Bdoet
TWV TRPOTUTWY TPOCRACNE O UVART ETITEETEL XOADTERES aTEATNYIXES XaTavopre, doahilovtoc 4Tl o
xploweg yio TNV anddoom egopuoyés hAaudvouy toug tayUTtepoug dlardéaipoug tdpoug UvAuTg.

Ly mopoloa HEAETY, YPNOHLOTOLOUVTOL TEYVIXES Unyovixric wddnone yia Ty Tadlvounoy Twy EQApUOYOY
ue Bdom TN cuumERLPOEd TOUS GOOV APoRd TN YoM TNG UVAUNG ot TNG umohoyloTxig toyog. Méow
TOU YAEaXTNELoHOU SLopdpwy EpYaotidy o TNg eEaywyNc Xplony UETEX)Y anddoong, dnulovpyeital
éva oOvoho Bedopévwy to omolo yenolponoleltal yio TNV eXTOSEUOY) ETOTTEVOUEVKDY LOVTEAWY UNYAVLXAC
uddnone. O otdyoc elvan 1) avdmtuén plog pedodoroyiag mou unopel vo ta€ivouel e axpifela Tic eqopuoyég
xatt voL tapéyel YeRoUES TANPOQPOPIES OYETIXE UE TG AmaUTACELS TOUG 6N WVAUT. Auty 1 todivounon urnopel
vor xodoBNYNOEL GTEATNYIXES Bloyelptong UVAUNG, BEATIOVOVTAC T CUVOAXY AMOBOTIXOTNTO ETEPOYEVV
ARYLTEXTOVIXY UVAUTC.

H mpotewdyevn npocéyylon nepthatBAvel TOV Yopaxtnplopd €pYAOLMY ToL exterolvTal T660 o DRAM
600 xou oe Optane, Ty e€aywYn OYETUOV YAPUXTNELO TIXWY AOB0GNG Xk TN YN0 LOVTERWY Unyovixic
pdinong yior TRy TavoUnoY TV eQapUoY®y ot tpoxoloplouéves xatnyoplec. Emmiéov, epapudlovtan
TEYVIXEC ETUAOYNG YUPUXTNELOTIXGY Xt Uelwone Blaotdoewy yio TN Bektiwon e axplBeloc tne toé-
wounong xan Tt yelwon e urohoylo g moiumhoxdtntoag. Ta exmoudevpéva povtéra aglohoyolvTol
oe TOMATAG oevdpta Yl vor eE€TAOTEL N AMOTEAECUATIXOTNTA TOUSC OTN BLEXELOT| DAPOPETIXDY TUTWY

EQPUPUOY V.

Extetopévn ENnvuoc Ilepihndn

Yxetxn BiBAtoypapia

H epgdvion tev uBpldxdy cus tpdtwy pvhune tou cuvdudlouy Ty udminc tayvtntac DRAM ye tig un
TINTXES UVAPES VYMATC xwenTixdtnTag, énwe 1 Intel Optane Persistent Memory (PMEM), éyel mpoxohé-
OEL ONUAVTIXG EVOLIPEROV Yol TG TEXVIXESG Suvopxc Blayelplone pviunc. Eva peydho chvolo gpeuvidv
€xeL e€etdoel T duvouxr] Toto¥ETnoN Twv BedoUEvey ot TETol cLUSTHUNTA UE 0TdYO TN BelTioTomolnoy
e am6doone o Tne aflomoinone Twv TépmV.

Ou mepiocdtepeg undpyouoeg mpooeyyioele otn Syelplon UBEWIXAC UVAUNG ETXEVIPWVOVIWL OTH
petoxivnon xou tonodétnor dedopévey, eite oTo ENINEdO aAvTIXEWWEVWY elte 010 Eninedo oeAi-
Sag. Autéc ol pédodol e€aptidvton oe peydho Badud amnd tov npopih extéAeonc xatd To YpbVo EXTENEONC,
YioL VoL Tapaxohou3oouy 1 GUUTERLPOEA TN TEOCPACNE OTH UVAUN Xl YENOULOTOLO0Y TIC GUAREYOUEVES
TANEoopleg Yior VoL xar}odNYoOUY TG AMOPACELS CYETIXA UE TO TOV MEETEL VAL TOTOVETOUVTOL To BESOUEVAL
- gite oty DRAM vy ypryoprn npbdcBao, eite oty PMEM vy yeyolltepn ywentixdtnto. Av xa
elvon amoteheopatixéc ot Behtindon TNg amdd00TC TOU GUC THUATOS, AUTEC OL OTEUTNYIXES CUY VA GUVETY-
yovton VYNA6 %66 T0¢ TaEaXoh0UINCNE XAl UTOPEL VoL AMATOUY GUY VI ToEOXONOVINGT XAl HETAVAC TEVGT)
TV dedopévwy, xdTL Tou unopel vo avalpéoel xdmoto and to ogén e anddoone tne DRAM.

Yy xatnyopla TNC TOTMOVETNOMNG AVTIXELLEV®Y, 0 BLYELRIO TC UVNuNG Topaxohovdel tn cuumep-
LPOPAL TWYV UELOVOUEVKY BOUNDY BEBOUEVWY 1 TWV XATAVOUWY UVAUNG YLd Vo TEOodLoploel TNV xoAUTERT,
TonovETNoN evTog LPBEWBLXGY cusTNUdTewY uvhune. Mia npocéyyion eiodyel évay dlopovy xal oanodoTixd
unyoviowd tonodétnong avixeiévwy ot dpoppnoel; DRAM-NVM, ue otéyo t yelwon g xuxho-
poplag eyyeap®y otn un TTNTix uvApn xou T Bedtinon g anddoong ywels onuavtixég oAlayéc oTig
droyerptlopevee poutivee [1]. Mio dhhn uédodoc mpoteiver pio mohtx xotavopfic tou xadodnyeiton and
TNV om6d00T, 1) onola eMAEYEL BUVOIXE TOUG TUTOUS UVAUNG UE Bdom TNV avouevouevy enidpact otnv
an6doon [2]. Mo otpatnyd oe eninedo aviixewévou, tou Baciletor TNy AvTIoTOlION AVTXEWEVLY
%At TN BLdipxela TOL YPOVOU EXTENEGTC XU TNV TOMOVETNGN UE YVOGT Tou ebpoug Lwvng, €xel eniong
anodetydel 6Tt evioylel onuavTnd Ty anddoon oe UPeBIéC Slapoppioeic DRAM-PMEM [3]. Emniéoy,
peEAéTEC IOV YENOLWOTOWVY epyaAela TEoplk ot TEayUaTiX6 LAXS amodetxviouy éti 1 fedtioTonolnoy tne
Tono¥Etnong Sedopévwy ot TEPUBIANOVTA ETEQOYEVEY UVNIWY UTOREL VO TROGQEREL ONUAVTIXG XERDT TOCO
otV andédoon 6oo xou 6NV EVEpYELUXT| arnodoTdtnTa [4].

Avtideta, ol mpoceyyioec ToroVETnong oehidwy Aettovpyolv oto eninedo tou AeltoupY ol cUGTH-
patog xan Boaotlovtow oe mopoxohobdnon ceMdwv Yl v aviyveuorn mpotinwy medoBacng. Mia
npocéyylon mEoTelvel éval VEo, OMoTIXG Thaiolo yiol UBELBIXEC aPYLTEXTOVIXES UVAUNG, oLVOLALovTaC
duvopLxT] TOTOVETNOY BESOUEVRV UE HOVIHOUC OweolE Xol TEPLODLXY) UOVIUTY ATOUXEUCT], TROXEWWEVOL VL
Behtiotonotoetl TNV anddoon o€ eQappoYES LPYNAGY EMBOCEDY. AUTH 1) TEY VXY UEWVEL TOUS ETOVIA-
Borvouevoue UTOAOYLOROUC X EVLEYVEL T SUVORXT amodoTixdTnTa Tou cuoTiuatog [5]. Mia SN pehétn
Topouctdlel évay Suvouixd olyoprduo tornodétnong cehidny yio UBEWE custiuate DRAM-DCPMM,
BehtloTomoldVTAS TIg TOMTIXES PVAUNG Yior Vo BEATIOOEL T0G0 TNy anddooy 6G0 Xou TNV EVERYELNXN
anodotxdtnta [6]. Emnhéov, éxer pehetndel 1 enidpaon tne tonodétnone twv cehidwy nivaxa oe cuoTH-
HOTOL XAOXWTAS UVAUNG, UE Wa TpoTelvouevTr UEdodo yia Ty amodotixt| Sluyelplon Twv ceAldwy mivaxa
petooevavtoe Tie duvapixd petold DRAM xou NVMM [7]. Mia nepoutépw Uelétn elodyel éva oyhuo
drayelplong oeMBwY Yl cLGTAUATE TOMAATAGY ETUTEDKY Uviung mou enextelvel Ty unoathplEn NUMA,
Behtiotonowdviag Ty tonodétnon celldwy pe Bdon t6c0 TV TomixdTnTa TPdSPacne 660 xou To eninedo

pviunc [8].

IMopd Ty moLAlo xou WEWOTNTH AUTOY TWV TEYVIX®Y, potpdlovton £va xolvo onuelo: T BeltioTomolnon
e tonodétnone twv dedouévwr. Avtideta, auth 1 epyaoio aoyohelton we pLor dlapopeTin| xou AySTERO
e€epeuvnuévn TTuy Y e Sayelplone LPBEWBC UYAUNG - TNV TOTTOVETN O] BLERYACLOV | EPYACLOV.

Me Bdon Tic diadéoweg mAnpogopies, xouio mponyoluevn epyacio dev €yel mpotelvel éva mAalolo Tono-
Yétnong mou vo expetadieveTan T tagvounon ue Bdon Tt unyovixh uddnom yio voo xododnynoel Ty
Tomo¥E€TNoN TWV EPYUCLMY OE BlapopeTixols TOToUC Pviung ot éva UBEWxd cbotnua. XNy nopoloo
TRoGéYYLoY, oL gpyacieg avahbovton Wia Popd xatd T Bldpxela Plog EAEYYOUEVNS QAoNE eXTUdEVDTS, XaL
oTN oLVEYEL YpENoLpoToLElToL Evoc TAEWVOUNTAS XoTd T dldpxeta exTENEONS Yio var TpofBAéel Tar yapox-
e Td TpdoPacne ot wvAUN Toug (T.Y., EVIOVES avaryvaoels, éviovee eyypapéc). Me Bdon avtéc

Ocwpentind TroBadpo

Tic mpofiédelc, ol epyaociec tonodetodvtar oty DRAM 7 tpv PMEM, ywpelc va amateiton ouveyic
nopoxohovinon 1 YeTaVAc TEUCT) BEBOUEVLY.

Avtn) 1 oTpaTNYIX PELOVEL GNUAVTIXE TO XOGTOG EXTENEOTS, XoddS BEV EiVal ATUPOLTNTO VoL THPOXONOU-
YolvToL GUVEYMS OL TPOCBACES OTN UVAUN 1) VoL UETOVOUVTOL GENBES o avTIXE(UEVO xoTd TN Bidpxeia
e extéleone. Emniéov, 1 yetodohoyio mopéyel uior ehappld xon xAHaxoOUEVY]) TROCEYYLON YIoL CUCTY-
HaToL TOU EXTENOVY TOARES GUVTOUES EPYATIES, OTOL TO XOGTOC TNE TUEUXOAOVTUNONE XU UETAVAGC TEVOTC
Oedopévmv unopel va eival omary0peuTIXS.

Yuvodilovtag, eved €yel yivel onuovted épeuva ot dayelpion LPBEWBC Uviung péow tne Tomovétong
AVTIXEWEVOY X GEMBWY, auTh 1 epyacio elodyel yio véa pédodo yaunhold x6GTOUG TOU EMUXEVTPMVETAL
oty tonodétnon epyaoloy pe Bdon v tadivéunon péow unyavixnc udinone - mpoc@épovtag T6co
XA WOOTNTOL 600 X0t BEATIOUEVT] 0&LoToINoT TOPWY YLoL CUCTAULATO TOANATAWY EQYOCLAOV.

Oewentixd YTrolBadeo

Mn-IItnTier; MvAun

H un-nonoed uviun (PMEM) ouvdudler yapoxtnplotind e DRAM xau tev anodnueutixdv govidemy
(SSDs), npoopépovtac LPnNAY TaybTnTa Ye Slatrenon dedopévmy Yetd and amwhelo pedpotog. Kolimtel
10 %ev6 petall tne DRAM xou twv SSDs, emitpénovtac toyitepn npdoBaot xou YounAoTeRT) XaTavEAWo
evépyetag. Teyvoloyiec 6nwe oo ReRAM, PCM, STT-RAM xou 3D XPoint éyouv avantuydel yioo tnv
vhomoinoy tng.

H NVM unogel va ypnowonomndel eite wg amodnxeutnde yodpog elte wg evariaxtixy tne DRAM. Q¢
anodrxeuom, npocpEpel Yok xaducTépnon xaL YUUNAY XUTAVEADGT), dhAd EYEL TEPLOPLOUEVT, OVTOYT
oe wOxhoug eyypaprc. €2g xbplar uvAuT, TopExel VPMNAGTERY TUXVOTNTA XoL OYEDOY UNBEVIXT| OTATIXT
XATOVIAWOT Loy VoS, ahhd pewwpévo edpog Lmvne xou Yeyalltepo ypedvo mpdofBacne o oyéom Ue N
DRAM.

Katayxwentéc

Kevph Mviun
(L1, L2, L3)

Kopia MvAun (DRAM)

Ewoéva 1: Iepapyla MyvAung

Intel’s Optane DIMM

H Intel Optane DC Persistent Memory (PMEM) elvor 1 mpdtn eunopixd Stodéoiun xAgoxoOuevn
NVDIMM. Xe avtideon pe ta SSDs, cuvdéeton aneudeiog otov dlavio pviung e CPU, uewdvovtag
v xaduotépnon xou avédvovtag to ebpog Lovne. Ebvar Swndéoiun oe ywenuxdtntee 128GB, 256GB xa
512GB o ypnowonoteitan oe enelepyaoctéc Intel Xeon Cascade Lake.

Ot Optane DIMMs yenowonololv 1o npwtéxoiro DDR-T, napbduolo ye to DDR4, ahhd pe yetofAnty
xaduotépnot. AdETouy EVOLUATOUEVO EAEYXTH Yla UeTdPpoon dleudivoewy xat e€lcoppdmnon @iopdc.

Extetopévn ENnvuoc Ilepihndn

Aev anoutoly avavéwon dedouévev énwe 1 DRAM, odAd epgaviCouy adinom tev eyypapoy Aoyw Tou
ueyédoug mpooPacng twv 256 byte.

YOyxpion Anoddoong

Asitovpyia | Kaduotépnon (ns) | Ebpog Zodvne (GB/s)

DRAM (Avéyvwor) 81 39.4
DRAM (Evyypagpn) 86 13.9
Optane (Avdyvwon) 305 6.6
Optane (Eyypoqpt) 94 2.3

Mivaxag 1: Kaduotépnon xa Edpoc Zadvne DRAM xaw Optane [9]

H Optane eivoaw mo apyh ond 1 DRAM, ahld mpoopépet Satripnon dedouévwy, uPnAn tuxvdtnTo xon
YounA6TERO A6GTOC.

Memkind API

To Memkind elvon o BiBhioden avoutod xhdixa and v Intel tou npocpépel euéhixto xau anodotxd
TAGOLO XUTAVOUNC UWVAUNG YLd EQUPUOYES TTOU YPNOULOTOLOVY BLdPopous TOTOUC UVAUNG, OTWE TTNTIXY XL
persistent uvAun. YTrootnpilet xotavour uviune and tnyéc 6mwe DRAM xau Intel Optane DC Persistent
Memory, ye vPnAf anédoon xon younhé UTOAOYIOTIXG POETO.

To Memkind enextelvel ti¢ ouvapthoelg g Yhwooac ISO C, emtpénovtag otoug yeroteg va xadopilouv
Tov TOmo pviune yia xdde Aettoupyla:

e void *memkind_malloc(memkind_t kind, size_t size): Aecopelel size bytes uviune tomou
kind.

e void *memkind_calloc(memkind_t kind, size_t num, size_t size): Aecopelel uvAiun yia
num avtixelpeva Twv size bytes, apyxonomnuévn oe undevixd.

e void *memkind_realloc(memkind_t kind, void *ptr, size_t size): Al\dlel to péyedog
e v mou delyvel o Seixtng ptr.
e void memkind_free(memkind_t kind, void #*ptr): Amnodeopelel Tn pvnun mou delyvel o delx-
e ptr.
H Bihodxn npoogépel eniong cuVapTAGELS Yiol TN dNUIoVEYio xo XATACTROPY) TOTWY YVAUNG:
e int memkind_create_kind(memkind_memtype_t memtype_flags, memkind_policy_t

policy, memkind_bits_t flags, memkind_t *kind): Anwoupyel éva kind mou Jdeouelel
HVAUN HE CUYXEXPWEVO TUTO UVAUNG, TONTIXY) BEéoUeuong xan onuoles.

e int memkind_destroy_kind(memkind_t kind): Kotoaoteépel éva kind mou elye dnuiouvpyndet
pe memkind_create_kind().

Movtéha Mnyavixrc Mdadnong
Axoloudolv ta povtéda unyavixic udinong mou yenoulomolhdnxay otny topodod epyacia:

o Aévipo Andgaocng (Decision Tree): To povtého dévipou anbpaone dnuovpyel éva dévtpo
onou xdde xoufoc mephauPdver plor cuvinixn evog YapaxTnELoTIXOD ot Tar POAAA TOU BEVTEOUL
nepthaBavouy T TEAXES XATNYORIEC TWV BEBOUEVMV.

e Tuyoio Adooc (Random Forest): To tuyaio 8dooc anoteheiton and Torld dévtpa andgoong,
6mou oL TpoPAéPelc Toug cuvdudlovtal Léow Pmpogoploc Yia Ty addnomn tne axpeifBelog xou T Yelwon
TNe unepexTaldevoNC.

Medodohoyio xau Hewpopatinry AZloddynon

e K-IIAnociéotepor I'eitoveg (KNN): O ahybéprdpoc KNN to&ivope! to dedopéva péow g
Ynpogopiog TV XOVILVOTEPWY YEITOVWY EVOS GNUELOV, YENOUOTOLOVTOS TNV OmOCTACTY YL TOV
UTOAOYLOUO TNG OpOLOTNTOG UETAUED TV BESOUEVMY.

e Naive Bayes: O ahyéprdpoc Naive Bayes Booiletan oto Yedpnua tou Bayes yia vo utohoyioel
¢ HAVOTNTES XATNYOPLDY, XEVOVTAC TOV YPHYOPO Ol ATOTEAECUATIXG, LBovixd Yo dedopéva ue
TOMEC dlooTdoELC.

o Mnyovh Atavuopdtwyv YrootheEne (SVM): H SVM Beloxel to xohbtepo eninedo o
BLaWELOHO TV BEBOUEVWV GE XATNYORIES, YEPNOULOTOLOVTAS TURHVES YLot TNV ethuon TeoBAnudtwy
HE U1 YROUMIXT| Bloty WelooTn T,

e Avdivomn Kipiwv Tuvictwooy (PCA): HPCA pewdvel Ty tolunhoxotnta twmv Sedouévmy
HE TNV ETAOYN TOV xVPLOY GUVIGTWOWY TIOU SNULoUEYOLY T ueYahOTERT BlaxlpavoT), BeATdvovTog
™ SUVATOHTNTO AVEAUCTIC X0 ETMLTAYUVOTNG TWV UTOAOYLIOTIXGY SLoBIXAGLOV.

Medodoroyla xou Ietpapatinry AZiohdynon

Auto 1o xepdhano meprypdyel T uedodoroyio Tou yenoulonolElton GE AUTAY TNV EPELVAL YIoL THY XOTY-
yoplomoinon Twv benchmarks pe ypron teyvixdy pnyaviic pdinong xaw ty aloAdynon e xatnyopl-
onolnonc Toug pe évay ahyoplduo ToAATAGY epyooidyv. H pedodoloyia aroteheltar and didpopa Bacixd
o8B, OTWS 1) CUANOYY| BEDOUEVLV, 1) EEAYWOYNH YUPOUXTNPLOTIXMY, 1) XUTNYOPLOTONOT, 1| TEOY VWO XY
povtelomoinom xau 1 a€lordynorn. Kélde otddio nailel onpoavtind pdho oty e€acpdiion tng axpeifBelog xon
NG OUCLICTIXOTNTOC TNG XATNYORLOTONoNG.

To mpito Bua otn yedodoroyia elvon i avdAvom Teoil xot 0 YapaxTnelopos twy benchmarks,
onou xde benchmark ovaidetan yior TNV e€aywYH OYETHOV YARUXTNELOTIXOVY. AUTH Ta YoEUXTNEIGTIXS
nepLypdpouy Tig 1LoTNTeES Tou benchmark, 6mwe petpuéc anddoong, UTOAOYLOTIXY CUUTEPLPOES Xal YpioN
nopwv. Mohic ohoxhnpwiel 1 avdhuon tpogik, To enduyevo Prua elvar 1 xxTNYOELOTOINGCT, 1 omola
nepthapfdvel Ty opadonolnon twv benchmarks oe xotnyopieg ue Bdon ta e€oydueva yopaxTnELoTIXd.

Metd v xatnyoplonoinoy, n épeuva e@upudlel TNV TEOYVWOTIXT) LOVIEAOTOINGCTY], YUe 6TOYO TNV
aVATTUET LOVTEAWY pnyovixfic wdinone mou pnopolv va xodoplcouy autduata TNy xatnyopia evog vEou
benchmark. Aoxwdlovron didpopa povtéra unyovixic wdinong, 6mwe tuyaio 8dorm, o TANCLEoTEROS
veitovae (K-Nearest Neighbors) xou ta poviéha Naive Bayes. O otdyoc elvor va evtomotel to mo
AmOTEAEGUATIXG HOVTENO YO TNV XaTnyoplonoinan, Bactlouevo otnv axp(Beld Tou.

It v epantépe aglohdynon e axpifeloc tne tofvounong, mpotelveton évag ahyoprdpog Tomo-
Yeétnong Baciopnévog otic xatnyopics. O olydprduog autog avodétel TIC EIOERYOUEVES dlep-
yaoleg oe tomo uvhune (DRAM 1y PMEM) ue Bdorn tnv xotnyopio otny onolo avixouy - dnwe auth éyet
TpofAieqiel and To LOVTEAD UnyavXnc WAINoNe - Xou TNV TEEYOVCU XAUTAC TAGY, TOU CUC THUATOS. L TOY0S
elvon 1 €EUTVN XATAVOUT TWV DERYAOLOY MOTE VO 0IOTOLOVVTOL ToL TAEOVEXTAUATA X TOTOU UvAUNG.
H anédoor tou mpotewduevou alyopituou cuyxpiveton pe authv Baouxdv ahyopluwmy ypovorpoypouuo-
TIOUOU, TPOXEWEVOU Vo aElohoyNIEl 1 ATOTEAEGUOTIXOTNTE TOL Xal 1) ETBRUCY| TOU GTY GUVORLXTY 0mOdOCT
TOU GUCTHUATOG.

Avdéivom ITpogilh xaw Xapaxtnelopog

H avdhuon mpogih xaw o yopoxtnpiopdés Twv benchmarks omotehel 1o Jeuehcddec otddlo Tng
pedodoroylag, émou xdde benchmark ovahOeton Sie€odund yior TNV e€aywY CYETIOV YULUXTNELC TIXWY
mou Yo ypnouonotndody yia tny xatnyoptonoinan. O xbploc 6tdyoc autol Tou otadiou elvon 1) dnutouvpyia
EVOC GUVONOU BEBOUEVMY IOV VoL ATOTUTIVEL Wil eVpeia Towhior cupmepLpopdy benchmarks, Swac@aiilov-
Tog OTL Tl Topary OUEevVaL dedouéva avTixatonTeilouy Bidpopa YapaXTNELOTIXG andd00NC %ol UTOAOYLOTXS

potifa.

INo v xataoxeur) evoe cUVOAOU BEBOUEVWY TOU XAAVUTITEL €vol EVPOC CUUTERLPORV, avATTUYONXE Wia
oouito benchmarks, cuvbudlovtag mpoypdupata and vpicTduevee couiteg benchmarks, énwe o GAP,

Extetopévn ENnvuoc Ilepihndn

Parsec, Rodinia xou« EEMBC. Autéc ou couitec ypnowonowoiviar gupéne yior Tnv a&lohdynon e and-
800N TWY CUCTNUATWY OE BLdPOoPA GEVIPLA.

Me v emhoyn npoypauudtewy and TorAnAéS TNYES, TO OOVOAO BEBOUEVLV ATOTUTLVEL €V EVPD PAGHAL
UTIOAOYLOTIXWY EQYUCLMY, OO ETLOTNROVIXOUE UTOAOYLOMOUE Xl TapdhANAeS E@apuoYEs €m¢ benchmarks
Y10l EVOOUOTWUEVO GUGTHUOTA.

Extéc and 1 ouvduaouévn yeron benchmarks anéd Swgpopetinég couiteg, eworydnoav nouxiie diauop-
QOOELE €l06d0L Yl TNV adENon Tou dplduol TWV EPYUCIOV Xol TNV eVIoYUoY TNC TOWIAOTNTOC TWV
CUUTERLPOPGY. AUTEC Ol TOPUANAYES GYEDLEOTNXAY Yiol VoL TPOAYOUV TN dUoXOM A TWV HOVTEAWY Tok-
VOUNTOY, EVOWPATOVOVTAC €va eUpD Qdoua TEoTOTWY YOG TOPWY, XPOVWY EXTEAECOTC XUl UTOAOYLO-
TV omouthoeny. Auth 1 npocéyyion Swc@ahilel 6Tl To TEAMXS oUVOAO BeBopévwy elval TholGlo o
CUUTERLPOPES, XAVOTMVTIG TO XATIAANAO YLt TNV 0€LOAOYNOT TNG AMOTEAECUATIXOTNTOC TWV HOVTEAWY
unyovixhc pdidnone otnv xoatnyoplonoinor Slpopetintdv TOwv benchmarks.

H oovuita benchmarks exteAéotnxe 80o gopéc: plo ypenowonowwdvtoae to DRAM memory chips xou pio
yenowonoudvtoc uévo tg povadeg Optane DIMMs tne Intel. Autr v pOdulon enétpede wa cuyxpitixy
avdluor tng anddoong twv benchmarks und dlaopeTinée apyitextovinés uvhung. O ypedvog extéreong
xatorypdpnxe yia xéde doxwr, eved to Intel Performance Counter Monitor (PCM) yenowonotidnxe yio
TN CUAAOYT| AETTOUEROY UETEHOEWY AMABOCTC, TUREYOVTAS TANEOPOPIEC GYETIXA UE T1) XPNoN TwV TépwV.
I xdde Soxauy, oL axdhovldec petproel xotarypdpnuay EemweLoTd:

o Xpobvog extéreons: O ouvolxde ypbdvoc oloxifpwaone tou benchmark, vrodewxviovtog
oLVOAXT amdBoan Yot xdde BLULOPPWOT| UVAUNS.

e Evtoléc avd xUxAo (IPC) pe tnv ndpodo tou xedvou: Métpo e yerone e CPU,
delyvovtog tov aptdud Twv eXTEAECUEVWY EVTOADY avd x0xAo pohoylol xad’ 6hn tn Bidpxeia Tng
exTéAeoTg.

o Avalovia emituytedv otnyv cache L3 pe tnv ndeodo tou yedvou: To 1ococtd Twv
npoofdoewv otn uviun cache mou odnyolv oe emtuyio otnv L3 cache, napéyovtag mAnpogopieg
yia T pelwon g xaduotéenong UvAung.

e Actoyleg otnv cache L3 pe tnv ndpodo tou ypdvou: O apriudc Twv TEQITTOoEwY 6Tou
o Bedopéva dev Beédnxav otny cache L3.

e Pudupoc avayvwong pviunc (Read BW) ue tnyv ndpodo tou yeodvou: O pudude e
Tov onolo dBdlovton BedouEva amd TN UviuT), UTOBELXVOOVTAS TNV ATOBOTIXOTITA TWYV AVOLY VWCEWY
XoTd TNV exTEAEDT).

e Puduoc evyypagrc wvAune (Write BW) we tnv ndpodo tou ypodvou: O pududc
eYYpapic SeBoUEVKLY TN UViUY), BelYVOVTaC TNV AmoBOTIXOTNTA TWV EYYEUPMY XUTA TNV EXTEAEOT).

¢ Juvoluxég npocfdoeic avdyvwone wvAune: O ocuvokixde aprdudc npooBdoewy avdyv-
womne Uvhung xatd Ty extéheon oto Optane. Autd to pétpo dev epapudleton oto DRAM.

¢ Juvoluxég npocBdoelg evyyeaphs wvAUNG: O cuvolixde aptdudc tpooPdoewy eyypapnc
pviAune oto Optane. Autéd to pétpo dev epapudleton oto DRAM.

Avtéc ol yetprioeig mopéyouv TOAUTIHES TANEOGOplEC OYeTd PE TNV anddoor twv benchmarks unéd
OLUPOPETIXES APYLTEXTOVIXES UVAUNG, ETLTEETOVTOG Uidt OAOXANPOUEVY] XUTAVONCT TNES YPHONS TWV TOPWY
xa TN urohoylotixic oupneplpopds. To elaydueva yopoxtnelotxd eivan amapaitnto yior T dnuiovpyia
oxEUBAV HOVTEAWY unyovixig pdinong, xavey va to€ivopoly benchmarks pe Bdon 1o yapoxtneiotind
anédoonc TouC.

Katnyoplonoinon

INo v xatnyoplonoinon twv benchmarks xou tnv npoetowacio Tou cuvoAoU BedoPévwy Yo ToL LOV-
Tého pnyavixhc uddnone, xadopllovton cuyxexpévo dpta BAoel TwV UETPXOVY anddoaorng, Wialtepa g
ywenuxétnrog uvhune (Read BW xan Write BW) xau tne yenowonoinone CPU. Autd ta bpio fordoiv

Ipocéyyion Enontevduevne Mdadnong

oty xatnyoptononoyn twv benchmarks oe pla and tic téooepic xotnyoplec: Memory Intensive, Read
Intensive, Write Intensive xou CPU Intensive.

Ynueiwon: Ou yetpixéc xou to 6plol Tou avapépovtal oty dladixaoior xatnyoplonoinong apopoly Tig
exteléoelc Twv benchmarks oty mhatgoépua Optane, xodoe ta yopaxtnelotxd anédoone otnv Optane
Aoy xodopLoTIXG YLl TOV TPOGDLOPLOUS AUTMY TWVY 0plLV.

H xatnyoplonoinor twv benchmarks otic téooepic xatnyoplec cuvodilovtar we e&nc:

e Memory Intensive: Benchmarks ue Read BW »ou Write BW xou tar 800 mdves and to emtpentd
6plo. Auté 1o bplo oplletan we to pod e Yewpnuxrc péytome Tiwic. O xodopiopdc Tou oplou
070 Wod g uéylotng tunc Read xow Write BW Aaufdver unodn dtu xdmoio benchmarks evoéyeton
VO YENOWOTOLOUY T1) XWENTXOTNTA UVAUNS OTO TAAREC TNS SUVOHLXG UOVO Yla UERPOC TOU YEOVoU
exTéAEONC. 2E AUTES TIC TMEPLITAOELS, XATE T1) BLAPXELL TOU UTOAOLTOU YpOVOU EXTEAEGNC, 1) YETO\-
pomoinom Tne UvAuNg uropel va petwdel onuavtixd 1 axdurn xou va napopeivel adpovic. Iopdha autd,
oUTd Tol TPoYpedupaTa eaxohovdolyv va eupaviCouv onpovti {ATNoT wviung xatd T Teptddoug
LPNAAC Yenowdomonong, yeyovog mou dixonoloyel TNy xatnyoplonoinoy Toug we memory intensive.

¢ Read Intensive: Ilepihaufdver to benchmarks ota onolo to Read BW unepBaiver o xadopiopévo
6plo, adAd o Write BW eivou oyetxd younhéd. Avutd to benchmarks emixevtpdvovton otic avary-
VOOEG UVAUNG, TEAYUA TOU CNUALVEL OTL ANALTOUY ONUAVTIXT POY| AVaYVWOTNS, 0hAd BEV EYYEAPOUY
MEYSAEC TOCOTNTES DEDOUEVODY TN VAU

e Write Intensive: Ilepihoufdver ta benchmarks 6mou to Write BW unepfalvel to 6plo, €ve
10 Read BW napapéver oyetind younhé. Autd ta benchmarks yopoxtneiCovron amd wio udmin
CUYVOTNTO AELTOURYLOY EYYEUPNG OTH UVAUY), ATULTOVTUS ONUAVTIX o1 EYYeopnQ.

e CPU Intensive: Benchmarks nou 8ev mhnpolv xavéva amd Ta TUPATEVE XELTHELO XL YETOL-
pomotoby xupiwe Ty CPU. Ta CPU Intensive benchmarks emxevtpddvovtar neplocdtepo o€ UTOA-
oyloTixd xadixovta xou epgovilouv vdpnidtepo IPC and ta benchmarks dAhwv xatnyoplddv, evéd 1
¥enon wvAung toug telvel va eivan younhdteen.

Avutd Ta xpLtriplal EMITEETOLY TNV xoTNyopLonoinon xdde benchmark pe Bdomn tn yeron pviung xaw CPU,
Onuovpy®vTag €va oUVOAO BeBopévmvy e eTxétec mou umopel v yenowlonoindel v Ty exmaidevon
HOVTEAY Unyavixic udinone yia v mpdéBAiedm e cupmeplpopds véwy benchmarks.

ITpocéyyion Ernontevopevng Mdadnong

Topa mou éyel onuouvpyndel éva chvoro Bedouévwy e eTixétec BacloUEVO OTNY XATNYOoplOToNoY TWV
benchmarks oe diaxpitéc xatnyopiec (Memory Intensive, Read Intensive, Write Intensive, xou CPU
Intensive), to enduevo Bua eivon 1 eQoipULoYT LOVTENWY Unyavixhc wdinone yio Ty npdBredm e xatn-
yoplag Véwy, adpatwv benchmarks. Auth n Swbixacio mepilopuBdvel Ty exnaidevon EnONTEVOUEVELV
HOVTEAWY Ny VXS UEUNoNG YENOLLOTOLMVTIS TO GUVOAO BEBOUEVLV UE ETIXETES, axohoudoluevn amd
v o€loAOY Mo TN anod0oMS TOUC.

"Evog yeydhog opidudg yapaxtnelo Tixey nepthouBdvetor 6to ohvolo dedouévev Yo va afloloyndel av ta
HOVTENA UToEoUY VoL EVTOTGOUY 0waTd Tig xatnyopieg Twv benchmarks aveaptiteg TwV cUYXEXPUEVLV
YOEAXTNELO TIXY TIOL YENOWOTOoVVTOL. L€ éval dAho oevdplo, N xatrnyoplonolnon urnopel vo e€aptdton and
OLUPOPETIXG YUPUXTNELO TIXE TEQEOL OO T YWENTIXOTNTO UVAUNG, OTOLTOVTAS LA TILO EVENXTY) TEOGEYYLOT).
Avti va Baociotel anoxheiotixd oe éva npoxadoplouévo chvoho Bactxmy UeTpnwy, 1 uedodoloyia tou npo-
telvetan o€ aUTV TNV €peuva elvol oy EBLACUEVY VoL AELTOVEYEL OE BLUPOPETIXEC UNOTIOLACELS, EMITRETOVTAS
TROCUPUOCTIXOTNTA OE BLdPOpES epyaoieg xatnyoplomoinomg.

Aedopévou 6Tt TOMAES amd TS YETEIXES XOPTOYPAPNONS CUANEYOVTOL G DEBOUEVA YPOVOTELPMY, 1| UéoT
T x&Ve UETPMAC YENOWOTOLE(TOL (C AVTITPOCKTEUTIXG YapoxTneloTixd. Evd ta mAren ypovixd Oi-
ayeduporto Yo Unopodouy Vo TOEEYOUV TO AETTOUEREL TANPOQOPIES, 1 EVOWUATWOY TOUC duEca oTa
HOVTERA unyovixhc uddnong Bo amoutoloe TERITAOXES OPYLITEXTOVIXES IXOVES VoL ETEEepY AL OVTAL OXONOU-
Yioxd dedopéva. H ypron yéowv tudv amhonoiel v viomoinom, eve eaxohovdel vo xatorypdpetl Tig
YEVES TAOELS OTY) CUPTEELPOPS Twv benchmarks.

Extetopévn ENnvuoc Ilepihndn

Méon Ty Tou
e0pou TMvNng avdyvwong xaL eYyYedpng
elvor peyohOtepn amd to Yewpentind uéyioto

"Oye

Moévo to gupoc {dvne avdryvwong
elvow peyohltepo and to dplo

Memory
Intensive

‘O

Moévo 1o gupog LdVne eYypaprc
elvon yeyohbtepo amd to dplo

Read
Intensive

Write

Intensive Intensive

Ewéva 2: Adypopua twv xpitneiwy xatnyoplotoinong twv benchmarks.

Ta yapaxtnelotixd mou e€dyovtal Yl TV xatnyoplonoinom elvou:
o XopaxTtnetoTixd Touv eZdyovion xaTd TNV exTEAEcT o DRAM:
— Xpbvog extéleong

— Méon T twv eviohdv avé Koxdo (IPC)

Méon Ty tou nocootol emtuylac L3 cache

— Méon uuy| v anotuywwy L3 cache avd deutepdhento

Méon | tou pudpol avdyvwone uviune (Read BW)
— Méon Ty tou puduol eyypagphc uviune (Write BW)
o XopaxTneloTixd Tov eEdyovion xaTd TNV exTEAect o Optane:
— Xpbvog extéleong
— Méon Ty twv eviohdv avé Koxdo (IPC)
— Méon nuy| tou tocootol emtuyloc L3 cache
— Méon tr twv anotuyidv L3 cache avd deutepdiento
— Méon T tou puluol aviyvwone uviune (Read BW)
— Méon Ty tou puduol eyypagphic uviune (Write BW)
— ZUVOMXES AVAYVOGELS UVAUNG
— DUVOMXES EYYPOUPES UVAUNG

Adyo tou vdPNAol dELUOD BLHCTACEWY TOU GUVOAOU YopaXTNELOTIXGDY, EQappolovTal TEXVIXEC Uelwong
dudoTaong yio vo Bertiwdel 1 anddoor Twv LoviEAWY.

Melwon Adotaone

Meiwon Aldotaong

Aedouévou OTL Tor povTéAA Unyavixhic udinong amodiBouy xahitepa pe dedouéva younhotepns dldoTaong,
epapudletal pelwon Sidotoone yia vo petwdel 0 YMOPOC YUpaXTNELOTIXWY TPLY TNV eXToBEVOY TWV UOV-
TEhwV. Autd elvon WBlaftepo onuovTixd eMed] TOMAG amd ToL Ay XS YUEaxXTNELOTIXE elvol dAANAOGUCYE-
T OUEVA, ATl TOU UTOREL VO UELDTEL TNV ATOTEAEOUATIXOTNTA OPLOUEVWY UOVTEAMV.

INo va emtevydel autd, yenowonoieitar to yoviého Random Forest yia va mpoodlopiotel 1 onuaocio
TRV YOROXTNELO XDV OTY) SLodxaaiol dLTH. LUYXEXQUEVE, ETLAEYOVTOL TOL IO GNUOVTIXG YORAXTNELC TLXd
€toL Hote 1 cUVBLAOUEYY Toug omuacia Vo xoAOnTel To T0% TS CUVORXAG OTUOVTIXOTNTOC TWY YopoX-
e Y. Auto Bondd oty SlITHENOY TWYV TLO GNUAVTIXWY TANPOPORLLY EVE) ATopEITTOVTOL ALYOTERO
ONUAVTIXE YOEUXTNELC TIXG.

SUYHEXPUEVAL, TO TTLO CTUOVTIXG. YoRoXTNELOTXE oV evToTio TnXay ity To e0pog {hVNg avdyvwong aTny
DRAM, ot actoyiec tne xpuphic wviune L3 xaw to glpoc Lidvne avdyveone xou eyypaphc otnv Optane.
Auté elvon onuavtind, xodde 300 and autd ta téooepa yopaxtnploTind (to evpoc Ldvne avdyvwong
xou eyypophic oty Optane) yenowonomidnxoy oo xprthptar TaEVOUNONS Yo TNV XUTNYOELOTOINoY TV
benchmarks e Memory-intensive, CPU-intensive xaw dhhec xatnyopiec. Autd xatadeixviel TNy omote-
AeopatixdtnTa g Yedddou, xodng xatdpepe pe emtuyla vo anoppidel un oyetnég mhnpoople xou va
BLTNENOEL TOL TILO ONUAVTIXG YOEAXTNELO TIXG.

I mepoutépe pelwon, egapudleton n Avdivon Kopiwy Suviotwody (PCA) ota emheyuéva onpovtind
yapoxtnpiotind. H PCA npoPdher ta Sedopéva oe évav younhdtepne Sdotaons yopo, dlatnedvios)
pEYLoTn BlaxduoveoT Tev Sedopévey. Xe auth) TNV TepinTwor, 1 Sl TACY] YELWVETAL OE B0, ATAOTOLWVTOS
TO TEOBANUA %Ok EMLTEENOVTOC GTO LOVTEAA VO ATOBMOOUV XOADTERA UE ALYOTEROL YORAXTNELOTIXA.

Metd v egoppoyh e Avdivone Kopwy Xuvictwodv (PCA), to clvoro dedopévov pewddnxe oe
dVo Swotdoelg. Autéd enétpede Wa ouPY) OTTIXT AVATOREOTACT TWY XATHYOELY Twv benchmarks ctov
petwuévo yoeo (Ewéva 3). To mapaxdter oyfua deiyver tnv anewdvion PCA, énou xdde onueio av-
Tinpoownevel éva benchmark. To ypdua twv onpeiwy urodetxviel TNy xotnyopio Toug xa etvol EPQAVES
671 ta benchmarks xotavépovtol oe Blaxpltéc neployEc PG 0TOV BBLAGTATO YWEO.

Class

@ CPU-intensive
\Write-Intensive
] @ Memory-intensive
g Read-Intensive ® wt

Principal Component 2

-3 -2 -1 0 1 2 3
Principal Component 1

Ewdva 3: Onuxonoinon PCA tou Xuvérov Aedopévwv xan Taivounon SVM

Extetopévn ENnvuoc Ilepihndn

Ané 1o ypdonua, unopolue mapotneeitar 6TL oL BlapopeTixéc xatnyoplec oyadonotobvton e EeYwELoTES
neployéc. Auth 1 xatoavopr unodniovel éti ta benchmarks tng (Blog xatnyopioc popdlovion mapodpoLa
Yo TNELOTLIXE 1o ouTd Tor woTiPBo elvon eugavy) ato yedgnuo PCA. To yovtého SVM, dtav epopudotnxe
OTOV PEIWUEVO BBLACTATO YOpOo, Undpece edxoha VoL YopdEel yoauuxd dpta HETAED TwV xaTnyoptdy. Ou
xoAG xardoplopévee meployéc xahoTOUV EUXORGTERO Yiot TOV TOELVOUNTY Vo Blaxpivel Ti¢ xaTnyoplec Ue
Bdion tor e€orybpevar Yopax TNELoTIXG.

Avtéc ol mapatnerioelg delyvouv 6t to PCA xatdgpepe va anotundoel emtuyde tny unoxelyevn dour
TV BeBoUEVWV O HOALE BV0 BlooTtdoels xon 6T To Hoviého SVM oanodidel xohd 0ToV Bloywelops TeV
benchmarks otic avtiotoiyec xatnyopiec touc. Autd moapéyet v €voelln bt xau dhha HovTéN, OTwS
to Random Forest, to KNN xou to Naive Bayes, mdavétata Yo anoddoouv xohd ye auth) peiwon
dlaoTdoewy, xong To dedopéva Peloxovion Théov oe Evay Ywpo oL Sloxplvel capde TG SLPOPETIXES
xatnyoplec.

Movtéha Mnyavixne Mdadnong yia ITpéBAedn Katnyopronoinong
[o owt)) perétn, emhéydnxay to e€¥g enonteudueva Lovtéha pdinong:

e Random Forests: O oprdudc tewv dévipwy frav 1000, ye to xpLthpto dladpeons vo elvat To 2, xou
T0 eAdyLoTo uéyetog xépPou va eivon 1.

e K-Nearest Neighbors (KNN): H Ty tov k opiotnxe oc 4, Ypnollonoudvios To UEtpo ando-
taong Minkowski, xou 8ev eqapudotnxe Bdpog.

¢ Naive Bayes

Avutd o povtéha emhéy oy yior TNV iXxavoTnTd Toug Vo xewpilovton omoTEAEGUITIXG EpYACIES XATNYO-
ptomoinong xan ebval xaAd TEOCUPUOCUEVA GTNY ETONTEVOUEVY], XaTryoplononon. I va Slacpaiictolv
a€LomoTA anoTEAEoUOTA, 1 TARENG Sladxacior exmaldevong xou doxey emovorauPdveton 10 @opég yia
xdde Sloywplonwd Tou cLVOAOU BedouEvev xan exmaldevone. Autd yetpidlel Ty enidpoom Tng TUYUOTY-
Tag oTNV eMAOYY| TV dedopévwy. Ou Tehnéc YeTpiéc a&loAOYNoNE TEOXVTTOUY omd TOV YECO 6O TWV
anoteleopdtwy ot dhec tig emavolfderc. Kdde enovdhindn yenowomnolel évay Blaywplopd tou GUVEAOU
dedopévev pe 35 delypota exmaidevone xaw 10 Selypoto Soxiumy.

To npdyto Briua tepihduBave TNy exnalBeUon TV LOVIEAWY YENOWLOTOLOVTIC TO 0pY X6 GUVORO BEBOUEVLV.
H anddoon aflohoyhinxe ypnowwonoudvtag wovo tn wetpur e oxpifBetac. Aol yenowonotiinxe to
Random Forest yio tn yelwon tou cuvohou BeBOUEVKDY, T LOVTEAN EMAVEXTAUOEDTNXAY OTO UELWUEVO
OUVOAO YORUXTNELOTIXWY. 2T cLVEXEL, epopudotnxe PCA yia) pelwon g Sidotaong tou cuvéiou
dedouévev oe 800, xou T LOVTEAN ETOVEXTOUOEVTNXAY 6TO PElwPEVO Yéow PCA olvolo Bedouévmv.

Ta povtéra aftohoyHinxay, dnhady, oe Tplo SaupopeTtind oevdpia: To apyx6d cUVORO Bedopévwy, TO
OUVOAO BEBOUEVLV HE TOL ONUAVTIXG YOEUXTNELOTIXA Xat TO GUvoho dedouévwy uewwuévo uéow PCA. O
uéooc 6poc axpifelag Yo xdde éva amd autd Tor oevdpla utoloylotnxe xou To anoteAéopata cuvoilovron
OTOV TOPOXATE TivoXa.

Yevdpro H Random Forest KNN Naive Bayes
Apyixd EOvoro Aedopévwy 82% 58% 60%
YOvoho Lnuavtixdv XopoxtheloTindy 87% 68% 79%
Y0voho Mewwyévo péow PCA 79% 2% 81%

IMivoxag 2: Méoec tiée axpifelag yio dha tar oevdpla a€lohdynong.

Ta anoteréopata tou Iivaxa 2 amoxolintouy apxetéc onuavixég tdoel. Hpwtov, To yovtého Random
Forest elye otodepd xol| anddoo, emtuyydvovtae axpiBeia 82% oto apyxd clvolo dedouévwv, 1 onola
auiRdnxe oe 87% YETE TNV EMAOYY ONUAVTIXWY YUPOXTNELOTIXOY XL TOPEUELVE LYNAH oto 7T9% uetd
™ pelwon yéow PCA. Avtieta, to povtého KNN opyixd mopgoucioce duoxohiec oto apyixd clvoro

10

AZohbynon pe Xprion Ahyoplduou Baotopévou oe Koatnyopieg

dedopévwy pe axplBeta 58%, odAd 1 anddoch tou Behtydnxe onuavtind oe 68% 6tav yenoiponotidnxoy
HOVO TaL OMUAVTIXG YopoXTNELOTIXG Xou Tepantépe ot 72% Wetd tn pelwon péow PCA. Opolwe, to Naive
Bayes onuelwoe Behtiwon and 60% cto apywmd clvoro dedopévwv oe 79% ye Ty emhoyy onuavTixdy
YOUPOXTNELOTIXADY X oTN cuvéyewr ot 81% pe 1 pelwon péow PCA.

Avutéc o mopatnperoelg Selyvouy OTL 1 UEIWST) TOU YWEOU YURUXTNELOTIXAOY - 0pYXd UECK TNS EMAOYNC
TWV THO OYETIXWY YOPUXTNELOTIXMY XL 0T CUVEYEL U€ow TNe eqopuoyic Tou PCA - éyt puévo Bondd
otnVv eEANEWPn Un OYETUGDY TANEOPOELY GANG X0t BEATIGVEL GNUOVTIXE TNV omOGd00T TWV HOVTEAWY TOU
elvar o evaioUnta oe dedouéva LPNirc dotatxotnTag. Eludtepa, n alloonuelwtn Bertinon yio ta
KNN xou Naive Bayes unodnimvel 6Tt auty| 1) u€3080¢ Ueltriong XATAPERVEL VO AMOTUTCEL ATOTEAECUATING.
TN Sour| TV DEBOUEVLV.

1.04 -
[|

0.8 —] E;I i
g]
® 0.6 [] o
[
: 1
o
¢

0.4

0.2+ T

0.0 r T u T - - + . -

RF RF RF KNN KNN KNN NB NB NB
(Reduced) (PCA) (Reduced) (PCA) (Reduced) (PCA)

Ewéva 4: Aworypdpparto box plot tng axplBetag Twv OVTEAWY Xl TwV GUVOALY dedoUévwmy.

Me Bdon tig nopouciacuéveg Tyég axpifelog, N xahdtepn anddoon emtelydnxe and to poviého Random
Forest oto cOvoho 8eBouévwy e o onpavtid yopoxtnelotixd, pe oxpifela 87%. Xuvende, To Loviého
Random Forest exnotdeugévo 6T0 GOVONO BEDOUEVLV UE TA ONUAVTING YopoxTNELoTiXd Yol Yenotporoindel
yior TEpTER AELOAGYNON PE TOV ToAuepYaotaxd akydprdpo.

AZiohoynom pe Xpnon Alyopidpouv Baociopévou oe Katnyopieg

Ye auth] TV evoTNTa, emBIOXETAL 1) aflOAGYNOY TNC AMOTEAECHATIXOTNTOG TNG Uedodoloylog xatnyo-
ptononong Bdoel ¥Adoewv mou avartiydnxe ota mponyolueva xe@dhaia. It Tov oxomd autd, meo-
copoldveton €va teplBdAhov tohudiepyaaiog, émou molkanAd benchmarks extelodvion Tavtdypova oTo
clOTNUA.

Anurovpyeiton piot oupd and benchmarks, ye xdde benchmark va etodyetan oto choTHUA GUUGLVA HE Uiat
xatovopr] xoduotéenong. Aoxuydlovton BlopopeTinég xatavoués xoduotépnong, aptiuol Toautdypovev
dlepyaolody ot ahyderduol Totodétnong, dote va afloloyniel TApws 1 CUUTEPLPOEE TOU CUCTAUATOC.

Meto€l tov otpatnyix®y tonodétnong nmou a&lohoyolvta, wia Pociletor oty xotnyoplonoinorn xatd
xhdoelC OTwe auTh Tpoéxude and To povtého unyavixic wdinone. Auth n tpocéyyior tonodetel Tic dlep-
yooleg é€unva, pe Bdon TNV TEOBAETOUEVY] CUUTIERLPORE TOUC WE TEOS Toug Topous. Emmiéov, uhomololv-
Ton Sudpopol Bacixol ahydprduol TotodETnong yia Adyoug cUyxelone, 0TS Tuyala TontoYETnoy xal Tono-
¥étnon tonou round-robin.

11

Extetopévn ENnvuoc Ilepihndn

ITpotewopevog Ahyodprdnog Tornodeétnong Bdost KAdoewy

O Alyoéprduog Torodétnong Bdoer Khdoewv oyedidotnxe yio Ty anodotixy| diayelpion twy diepyaotay,
AopBdvovtag unddm to yopoxtneloTxd wviune xdde mpoypdupatoc. O alyodprdpog autde aflonolel Ty
XATNYOPLOTOINGT] TWV TROYEUUUATWY 0TS auTh TEoéxUPe and TO HOVTEAO TOU TETUYE TN WEYOAUTEEN
axpiBeta. Kdbe diepyaoio tadivopeiton ot pla omd tig 4 xotnyoplec.

Agot tadivopndoly, ol diepyaoies avatiVevtar eite otn uviun DRAM eite ot uviun PMEM, pe Bdon
TOL YOPOXTNPLOTIXG TOUC X0l TLS AMOUTHOELS TOV xdUe tonou puviune. H Aoy tonodétnone axoroudel éva
oUVOAO XoVOVLY, PE 0TdY0 TN PeYLoTONOiNoT TNG amddoong Tou GUGTHUNTOS PEow NG EELG0REOTNONG
™e Xprione wvhune xou e adlonolnong twv TAeovexTnudtwy xdde THToL PvAunc.

O ahydpriuoc oaxohovdel €va GOVOND LERURYNUEVDY XAVOVWY X0 EXTEAEL TOV TRMTO XAVOVIL TTOU LXAVOTOLE-
Tou:

o Av 7 diepyacia exel Tagivoundel wg CPU-Intensive, t6te avatideton oty PMEM.
o Av 1 diepyaocio éyer talivoundei we Memory-Intensive, téte avatidetor oty DRAM.

o Av o apiudc Twv evepydv diepyacidy oty PMEM unegBoivel autév tng DRAM, 7 diepyacio
avatidetow oty DRAM yia tnyv e€looppénnon tou goptiou.

o Av 0 optdude twv evepydv depyaoidv oty DRAM unepBaivel avtév tne PMEM, 7 Siepyooia
avatidetow oty PMEM.

o Av o apududg Tov evepy oy Siepyaotdyy oe PMEM xou DRAM elvan {cog, téte 1) amdgaon Booileto
otov t0no e diepyaotac:

— OuRead-Intensive Siepyooiec avatidevioa otny PMEM, xadd¢ auty| Sioyeipileton xahbtepa
Tig avaryvooelg xat dtotneetl T DRAM yua mio anoutnuxée diepyaoiec.

— Ou Write-Intensive dicpyaociec avatidevtor oty DRAM, 7 onolo npocpépet xahbtepn ond-
80CT) OTIC EYYPUPES.

ANyoprdpor Tornodétnong

Yn perétn auth, aflohoyolvton Tévte SapopeTixol ahydptduol Tontodétnong, xoévac and Toug omoloug
oyeddoTnXE Yior var avodéTel epyaoie o évay povo tomo pvhiune - elte DRAM eite PMEM. Ou adyopl-
Yuol Slopépouv oToV TEOTO PE ToV omolo avadétouv Tic gpyaoieg Ye Bdon TIC OMAUTACES UVAUNG TWV
TpoypopudTwy. O topaxdte otpatnyxés Tonovétnong afloloyolvTaL:

¢ 'OAa ot DRAM: Yto oevdpio autd, dha ta npoypdupata avatidevton oty DRAM, aveloptitwg
TWV ATUTACEWY UVAUNG TOUC.

e ‘O)o. cto PMEM: 'O)a ta npoypdyupata avatidevtan oto PMEM (Optane), aveZdptnto ond e
AmAUTHOELS UVAUNG TOUC.

o Tuyaia Avddeorn: v nepintwon autr, ol epyooieg avatilevron tuyaia eite oty DRAM eite
oto PMEM.

e Round Robin: H pédodoc tonodétnone Round Robin evahidooeton avdueoa otny avddeon
epyaotdv oty DRAM xou to PMEM pe xuxhixé tpoémo.

o Alyoprdpog Baoiouévog oe Katnyopieg: O odydprduoc tonodétnong Paoloyévog oe
xaTnyopleg.

To neipdpota dedriydnoay yenoylomoldvtag Teelc dlapopeTinés xatavoués xoduotéonone - Onoro-
woeyn (Uniform), Kavovixy, (Gaussian) xo Poisson - npoxeévou va npocopouwdoty dtapope-
Tixd mpdTuna ApiEng diepyaotwy. Kdbe évag and toug névte alyopituoug xatavourc exteléotnxe und
AUTES TLC XATAVOUES, UE AMOTEAEOUN CUVONXA 15 mepopatinés Soxipés. e xdle melpopatind oevdpLo,
wo toptido omd 10, 20 1) 30 benchmarks ewodyetan 610 cOoTHA CUUPWVOL UE TNV AVTICTOLYY) XATAVOUT
xoduo TéPNOoNC.

12

Yuvolxoe Xpbdvoe Extéreonc

Yuvolxog Xpovog Extéleong

Ye auto to melpopa, cuyxelvoude Toug yedvoug extéleone UeTald OV TwV ahyoplluny xatavouns,
hopBdvovtog Tov YEco 6p0 TV ANOTEAECUATWY TOU TEoexuday amd TIC OLUPOPETIXEC XATUVOUES XO-
Yuotépnong.

Total Time (seconds)

= ORAM
B OPTANE

30001 &= Ranpom

3 ROUND ROBIN
3 CLASS BASED
2500

2000

1500

1000

10 20 30
Number of Tasks

Yuvolxoc Xpévoe Extéheong yia Aagopetinoig
Alyoplduouc Torodétnone.

s
@ RANDOM
- ROUND ROBIN
- CLASS BASED

3000

2500 e

Total Time (seconds)

2000 52" a

1500

1000
10 20 30
Number of Tasks

Yuvolxoe Xpovoe Extéheong oe Tuvdptnon ye tov
Apiud twv Epyoouov.

Ewéva 5: X0yxplon tou cuvohixol ypdvou extéheonc Yetoll tewv oalyoplduwy tonodétnone. Aplotepd:
SUYXEVTPOTOL cUVORLXOL Ypdvol. Ae&id: Xuuneptpopd xAwdxwons Le Ty avénon tou aptduol Twv
EPYUTLOV.

ITpooBdoeig Avayvwong xou Eyypaprc

‘Evog oxdun onuovtixdg delxtng anédoong elvar o aptduods Twv TeooBAcewy ot UVAUTY - CUYXEXPWIEVA,
TOGO CLY VY TEUYUATOTOLOVVTOL avayVWGoELS Y eyypagéc oty PMEM. Autéc ou mpoofdoeic ennpedlouv
ONUOYTIXE TGO TOV YPOVO EXTEAEONS OGO XAl T1) UAXPOY POV AVUEXTIXOTNTO TNG UVAUNG, Wilaitepa AOYw
NG YUUNAOTEPNG TayUTNTAS XU TNE PELWéVne avToyhc ot eyypagéc e PMEM oe clyxpion pe
DRAM.

Read Acceses (*1e+06)

- ORAM
B OPTANE
[RANDOM
=3 ROUND ROBIN
[CLASS BASED

2

20
Number of Tasks

Yuvohwée poofdoeic Avdyvwong avdueoa oe
Alyopiduouc Tonodétnone.

a
B RANDOM _mem
@ ROUND ROBIN

O CLASS BASED et

@
o

Read Acceses (*1e+06)

20
Number of Tasks

IlpooBdoeic Avéyvwong vs Apiduoe Epyaoidv

Ewéva 6: X0yxpion Ipotinwy Ipdofaone Aviyveone. Aptotepd: de ot IpooBdoeic Khpoxdvovton
pe v Avénon tou Aptdpol Epyactddv.

13

Extetopévn ENinvoc Heplindn

100
- DRAM
B OPTANE

~=- DRAM

-B- OPTANE
= RANDOM @ RANDOM
=3 ROUND ROBIN @ ROUND ROBIN
[CLASS BASED O CLASS BASED

es (*1e+06)

Acceses (*1e+06)

d
-]

10

10
20 30 10
Number of Tasks

Suvoluxée IlpooBdoeic Eyypapnc avdueoa oe IpooPdoeic Eyypaghc vs Aptdudc Epyaoidv.
Alyoplduouc Torolétnone.

Ewoéva 7: Boyxpion Ipotinwv HpdoBaone Eyypapric. Aptotepd: Yuyxevtpwuévee IpoofBdoeig
Evypogprc. Aegid: Iloe ol lpooPdoeic Khypaxdvovton ye ty AGZnom tou Aptduol Epyaotdv.

Xpnon Mvfung

H Xprion MvAung mopéyel plo o AETTOUERY XUTAVONOY) TOU OGO UMOTEAECUNTIXG TO CUOTNUA EXUET-
odheteton T dardéoun ywenuxdmta pviune téco ot DRAM éco xou oty PMEM xatd) Sidpxeia
e extéheonc. Autde o deintne ywplletan oe téooepa cuvotatxd: Edpoc Zavne Avdyvewone DRAM,
Etpoc Zavne Eyypagpric DRAM, Edgoc Zdvng Avéyvewone PMEM xoa Ebpoc Zdvne Eyypagric PMEM.

DRAM DRAM PMEM PMEM
Read BW Write BW Read BW Write BW

ROUND ROBIN ‘ ‘ ‘

Ewoéva 8: Xefion Mviune (10 Epyoaoiec) avdpeso oe DRAM xow PMEM yio Ahyopituouc
Tonodétnone Tuyalo, Kuxhixr xaw Bacioyévn oe Khdoeic.

14

IMopdntwpa Xedvou Extéreone Epyoctiag

DRAM DRAM PMEM PMEM
Read BW Write BW Read BW Write BW

RANDOM ‘ ‘
ROUND ROBIN ‘ ‘
CLASS BASED ‘ ‘

Ewoéva 9: Xerion Mvrung (20 Epyoaoiec) avdpeco oe DRAM xoaw PMEM yio Alyopiduouc
Tonotétong Tuyaia, Kuxhur xaw Baciopévn oe Kidoeic.

DRAM DRAM PMEM PMEM
Read BW Write BW Read BW Write BW

" ‘ ‘ ‘ ‘
e ‘ ‘ ‘ .
T ‘ ‘ ‘ ‘

Ewéva 10: XpAon Mvhunc (30 Epyaoiec) avdpeoo oe DRAM xou PMEM v Ahyopidupoug
Tonotémong Tuyaia, Kuxhuh xaw Baciopévn oe Kidoeic.

IMopdntwpa Xpoévouv Extéleong Epyaciac

To Hopdntwua Xpdvou Extéreone Epyaoiouc napéyel pia Aemtopepn dmodmn tou mide xdde ahydpriuog
tonodétnone ennpedlel TNV omOBOCT] TWY UEHOVWUEVKY EQYUOLOY GE GYECT UE TOV WOOVIXO TOUC YpOVO
extéleone ot DRAM.

15

Extetopévn ENnvuoc Ilepihndn

Task Degradation
o

L e

RANDOM ROUND ROBIN CLASS BASED

Task Degradation

o

| =

RANDOM ROUND ROBIN CLASS BASED

Task Degradation

°
4 o

| =

RANDOM ROUND ROBIN CLASS BASED

Ewéva 11: Tapdntwpa Xeévou Extéieone Epyaotac. Ou ypdvol extéheong elvon xavovixomonuévol wg
mpoc Vv extéleon uovo pe DRAM. H avdtepn ypaguxr napdotacn aviiotoryel oe 10 epyaoieg, 7
peoata oe 20 epyaoieg, xou 1 xatdteen o 30 epyaoiec.

ITepiindn twv Arotelecpdtwv AELoAdynong

H nepapotixn?] o€lohéynor delyvel TNy anoTeAeopatixotnTa Tou npotevopevou AAyopiduou Tono-
Yétnong Baoiwouévou oe Katrnyopieg, o onoloc yenowonotel ta€ivounon yior vo AdBel texunpl-
WPEVES anopdoel; ToToUETNoNE Ue BACT) TO YAPAXTNELO TIXA TWYV EQYUOLOY XL TNV XATAC TOOT TOU CUC T
potoc.

O Alyoprduoc Tonodétnone Baoioyévog oe Katnyopleg ouyxplinxe e téooeplc Baoixolc ahyopituoug
avagopds: Mévo DRAM, Movo PMEM, Tuyaia Avddeor xa Round Robin.

Ye ToAATAG LeTEE xou TELPaATIXG oeVEpLla, 1) Tpocéyyion Baciopévn oe Katnyopiec nopovsioce onuoy-
TIXd TAEOVEXTHUATOL

e Xpoévog Extéreonc: O aryoprduoc Baoiouévog oe Katnyopleg xatéypalde otadepd youniotep-
oug Ypovoug extéheonc oe oyéon ue touc ahyoplduouc Random, Round Robin xaw PMEM-only,
deltepOg WHVO peTd TN eyxatdotoon DRAM-only, n onolo etvon Seath) xan un xhidoxdouun.

o Mvrpeg IlpboBacng: Meiwoe onuavuxd tic npodoPacelc oe PMEM, npotipdvtoc) yeron

16

Yupnepdoparo xou Mehhovtr; Aovheld

DRAM étav Arav xatdhinio, Stnenvtog €tot tn ddpxela {whc tou PMEM xou yewdvovtog tny
xoducTépno.

o Xpron MvAung: O olydprduoc Baoioyévoe oe Koatnyopleg tooppdnnoe amoteleopatind
¥eom NG UvhunNg, TeooupuolovTag TN 6T PORTWOT XoL ToL YoRuXTNEloTIXE TwY epyaotoy. Kadog
0 aptdudc TV epyaolny aviinxe, tpotiunce neptocdtepo T YeYon e DRAM, deiyvovtac é€unvn
dlayelplon mopwy.

o IMTapdntwua Xpdovou Extéreong Epyaocioag: Katéypape otadepd tn wixpdtepn nopahhayt
OTO TOPATTOUO TWV EQYAUCLAY, DLATNEMVTIC OUOLOUOPPY] TNV OmOB00Y TWY EQYACLOV Xal UPNAG
throughput. Autd UTOBNAGVEL XAAUTERY) CUVETELD OTOV TEOYROUUITIONS Xoi To TEolAéduuoug
XeOvoug exTéAeoTg.

Avutd ta anoteréopata emBefoucivouy 6t 0 cuvduaoude Taflvounone pe TonoBETNoT UE YVOUOVO TOUG
Topoug odnyel ot Behtiwpévn anddoo, xuliTepn aflomolnom PVAUNG ot o amodoTixy Xenom uPeldIxwy
ocuoTnudTwy uvhunc. O Alydprduoc Tornodétnone Baoiopévoe oe Katnyoplec oyt poévo Bertiotonolel tnv
anédoaot), aAAd cuuBdidel enione oty adEnom e Bidpxetag {wng TOU CUOTAUATOS XL GTNY ETILYELRNOLAXT)
anodotxdTNTa, XAMoTOVTS TOV LoYUEO LTOPHPLO Lol TEOLY UATIXT| EQURUOY T OF TEQIBAANOVTA ETEPOYEVEV

UYNUAY.

Yvunepdopata xar MeAhovtixr] AouvAsid

H napoloa epyasio napousiace o oAoxANewpévn pedodoloyio yio tny xotnyoplonoinon twv benchmarks
ue Bdom o mpogih yerong uviung xaw CPU, e tov tehind otdyo v a&lonolinom twv LoVTERWY unyovixic
pddnone v v amodotixh xatnyoptonoinon. H pedodoroyla nepihduBave tn cuhhoyn dedopévev yéow
profiling, e€aywyy yopoxTNEIo TXDY, eXTABELOT LOVTEAWY Unyavixic uddnong xa afloAdynon yenol-
pomoLvToC dldpopoug Petenols delxtee anddoone. Eotidooue oe téooepic xhdoeic benchmarks - Mem-
ory Intensive, Read Intensive, Write Intensive xou CPU Intensive - pe Bdon tic yopoxtneio txég yenoeic
uviAung xou CPU xotd tnv extéleon.

H pedodoroyio yenowonoinoe emPBrendueva poviéra unyovixic uddnone, émwe ta Random Forest, K-
Nearest Neighbors (KNN) xou Naive Bayes, to onolo exnandedtnxoay oto dedouéva twv benchmarks,
xodOC XL OE UELWUEVI CUVOAL YoooxTNElo Ty, MEow g avdluong g onuociog Twy YopoxTnelo-
TIXAY, UELOCOUE TOV opliud TV YUpaXTNEIO TIXMY, BLUTNEOVTIS HOVO oUTd Tou YewpolvTay TLo G-
Twd vy Ty xotnyoplonoinon. H Avdhuorn Kopuwy Zuvictwodv (PCA) yenowonoidnxe enione yia
TEPALTER® UEIWOT TNE BLACTACNC TOU YWEOU YULUXTNELO TNV, ETLTRETOVTAS Ual DIOOIACTATY) ATELXOVLOT
xo BEATIOVOVTOG TNV am6800Y TNS XATNYoplonoinong.

H rewpopaten aglohdynon €deie 6L To poviého Random Forest, 6tov exmoudedtnxe 610 uewwuévo ahvoho
YUPOXTNELO TIXGY, Tapouciaoe Ty uPnidtepn axpiBeia (87%), xdvovtde To To BEATIOTO YOVTEND Yl TNV
xatnyoplonoinon auth. To anotéieopa autd avédelle TNV anoTEREoUATIXOTNTA TN EMAOYHS YOEAUXTNELO-
TV xou TN pelwong e dldotaong, xadde xan to 800 autd Briuata Bektivwoay onpovtixd Ty amodoon
Twv yovtéhwyv. Enlong, n anewxdévion péow PCA anédeile 6T ol xhdoeic twv benchmarks ftay xohd di-
AYWELOUEVES OTO UELWUEVO YMRO YORUXTNELO TV, SLEUXOAUVOVTOC TNV OTOTEAECUATIXY XUTNYOELOTONGoT,
oUOUT HOL PE EASYLOTA YOPOXTNELO TIXG.

H aZlohéynon anddoong péow twv Poaoixdy yeteixdyv axpifeloc emBeBainoes Tt tar povtéha unyovixic
pddnone uropolv vo xatnyoplonoticouy pe axpelfBeta to benchmarks, npoc@épovtoc pio Tohhd unocy6-
pevn Ao yia peAhovinée epyaoiec benchmarking xou yio avéluor enbdoewy oe napduola teptBdAlovTa.
Avuty| 1 yedodohoyiny| mpocéyyiom unopel vo yenolleloel we BAcT Yo ATOTEAECUATIXY XATAVOUT| TORWY,
BeATioTOMOINGT CUCTNUATWY XAl AVIAUCY) ETLBOCEWY.

ITopdho mou T amoteréopota TS TAPoLoUS SIMAWPATIXAC epYaciag delyvouv uTocyduevn anddoon TNy
xatnyoplonoinon Twv benchmarks, undpyouv apxetég xotevdivoelg oTIC onoleg auTH 1 Epeuval UTopel va
enextodel xan va Behtiwdel. Oplopéveg mdavéc xateudivoelc oo ueAhovtixt| epyaoia tepthop3dvouy:

o EZcpebvnon EninAéov Movtéhwy: Ilupd to 61t To Random Forest napousiace tnv xohltepn
an6doomn oe auth TNV épeuva, Yo umopoloay Vo eEETaoTOVY ot GAAA HOVTEN Unyovixic uddnong,

17

Extetopévn ENnvuoc Ilepihndn

onwe teyvixée Potde pddnone B vrootnemtnd pnyavhpato Stavuoudtwy (SVM), yio nepoutépw
Behtiwon tng anddoone. Emmiéov, pédodol cuvbuacuol tovtéiwy mou cuvdudlouy ToAKS HovTéra
unopel vo 0dnyrioouy ot xahlteen axplBeta xon aviexTedTnTaL.

o Avayeipton Meyalltepwy Juvohwy Acdopevwyv: Kadoe to péyedoc tou cuvérou
OEdOUEVKY AUEAVETAL, N IXAVOTNTA TV LOVTEAWY Uy avixic Ladnome Vo YEVIXEVOUY xat VoL amodiBouy
anoteheopatixd Yo yivel mo onpavtixn. M nepuntépw €peuva Yo umopoloe vo ECTIECEL GTNY
enéxtaoy authc e pedodoroyiag o peyahitepa xou mo meplmAoxo cUVoRa DEBOUEVWLYV.

¢ Evooupdtwon ‘AN wv Metpuxov Profiling: H tpéyouvca npocéyyion otneiydnxe xuplwg
oTNY WVhAEn xou oty Yenowonoinon CPU. Mehhovtr| epyacta Yo unopodoe vo cuunepthdBel emi-
nAéov petpixéc profiling, 6mwe ov avahoyieg emtuylog cache, xoaduotépnom ¥ xotavdAwon evépyelag,
mou Yo UmopolGUY VO TPOGPEPOLY TLO OAOXATPWUEVES OVOADOELS Xl Vo BEATIOCOUY TNV oxp(fBeta
e Xatnyoptonolnong.

Me TV avTETONLOY AQUTGY TOV UEANOVTIXWY TEOXANCEWY, 1 TPOGEYYIOY] TTOU TUPOUCLICTNXE GE AUTH TN
dimhwpotiny epyaoio Yo ynopoloe vo egeiydel oe éva e€onpetixd anoteleopatind epyaheio yio bench-
marking xou avdAuor emdocEWY OE BLAPOEI UTOAOYLOTIXA TERLBAANOVTA, TPOCPEROVTUC TOGO TEOPBAET-
TES BUVATOTNTEC OO0 %O YENOULO CUUTERAGUATO Yol TNV BEATICTONOMGY] TOU GUG THUATOC.

18

Chapter 1

Introduction

Modern computing systems face significant performance challenges due to the memory bottleneck,
a critical issue where the speed at which data is fetched from memory cannot keep up with the
processing power of CPUs. As processors continue to advance, by becoming faster and more efficient,
the limitations of memory access have become a major obstacle in achieving optimal performance.
This bottleneck arises because DRAM, the primary volatile memory used in most systems, has not
scaled in speed at the same rate as processors. As a result, applications that rely heavily on frequent
memory accesses suffer from latency issues and reduced overall efficiency.

One potential solution to overcoming the memory bottleneck is to expand the memory capacity of
a system using more affordable memory technologies, such as Intel Optane. Optane provides a cost-
effective way to increase available memory, but its performance characteristics differ from traditional
DRAM, particularly in terms of latency and bandwidth. Therefore, an efficient strategy is required
to optimize the use of both DRAM and Optane memory within the same system. Proper workload
classification and intelligent data allocation can help maximize performance while taking advantage of
the expanded memory capacity.

To efficiently utilize a heterogeneous memory system, it is crucial to understand how different ap-
plications interact with memory resources. Applications exhibit varying behaviors, with some being
more memory-intensive, and others relying heavily on computational power. The ability to classify
workloads based on memory access patterns allows for better memory allocation strategies, ensuring
that performance-critical applications receive the fastest available memory resources.

In this study, machine learning techniques are employed to classify applications based on their memory
and computational behavior. By profiling various workloads and extracting key performance metrics,
a dataset is constructed to train supervised learning models. The goal is to develop a methodology
that can accurately categorize applications and provide insights into their memory demands. This
classification can guide memory management strategies, improving the overall efficiency of hybrid
memory systems.

The proposed approach involves profiling workloads running on DRAM and Optane memory, extracting
relevant performance features, and using machine learning models to classify benchmarks into prede-
fined categories. Feature selection and dimensionality reduction techniques are also applied to improve
classification accuracy and reduce computational complexity. The trained models are evaluated across
multiple scenarios to assess their effectiveness in distinguishing different workload types.

This thesis is structured as follows: Chapter 3 provides an overview of the theoretical background
related to memory systems and machine learning. The proposed methodology is described in Chapter
4, detailing the profiling process, dataset creation, and machine learning models used. Chapter 5
presents the experimental results, analyzing the performance of the classification models and their
implications. Finally, conclusions and potential directions for future work are discussed in Chapter 6.

19

Chapter 1. Introduction

20

Chapter 2

Related Work

The emergence of hybrid memory systems that combine high-speed DRAM with high-capacity but
slower non-volatile memories such as Intel Optane Persistent Memory (PMEM) has generated consid-
erable interest in dynamic memory management techniques. A large body of research has explored
dynamic placement of data in such systems to optimize performance and resource utilization.

Most existing approaches to hybrid memory management focus on data movement and placement,
either at the object level or the page level. These methods rely heavily on runtime profiling to
monitor memory access behavior, and use the collected information to guide decisions about where
data should reside - either in DRAM for fast access or in PMEM for capacity. Although effective in
improving system performance, these strategies often incur high profiling overhead and may require
frequent monitoring and migration of data, which can negate some of the performance benefits of
DRAM.

On the one hand, in the category of object placement, the memory manager monitors the be-
havior of individual data structures or memory allocations to determine optimal placement within
hybrid memory systems. One approach introduces a transparent and efficient mechanism for object
placement in DRAM-NVM configurations, aiming to reduce write traffic to non-volatile memory and
improve performance without significant changes to managed runtimes [1]. Another method proposes
a performance-guided allocation policy that dynamically selects memory types based on the expected
impact on performance [2]. An object-level strategy based on runtime object matching and bandwidth-
aware placement has also been shown to significantly enhance performance in hybrid DRAM-PMEM
setups [3]. Additionally, studies that utilize profiling tools on real hardware demonstrate that data
placement optimization in heterogeneous memory environments can yield substantial gains in both
performance and energy efficiency [4].

On the other hand, page placement approaches operate at the operating system level and rely on
page-level monitoring to detect access patterns. One approach proposes a novel holistic framework for
hybrid memory architectures, combining dynamic data placement with persistent heaps and periodic
persistence to optimize performance in high-performance computing applications. This technique
reduces redundant computations and enhances overall system efficiency [5]. Another research presents
a dynamic page placement algorithm for hybrid DRAM-DCPMM systems, optimizing memory policies
to improve both throughput and energy efficiency [6]. Additionally, the impact of page table placement
in tiered memory systems has been studied, with a proposed method for efficiently managing page table
pages by dynamically migrating them between DRAM and NVMM [7]. A further study introduces a
page management scheme for multi-tiered memory systems that extends NUMA support, optimizing
page placement based on both access locality and memory tier [8].

Despite the variety and maturity of these techniques, they share a common focus: optimizing data
placement. In contrast, this work addresses a different and underexplored aspect of hybrid memory
management - process or task placement.

21

Chapter 2. Related Work

According to the current understanding, no prior work has proposed a placement framework that
leverages machine learning-based classification of tasks to guide their placement across memory types
in a hybrid system. In the presented approach, tasks are profiled once during a controlled training
phase, and then a classifier is used at runtime to predict their memory access characteristics (e.g.,
read-intensive, write-intensive). Based on these predictions, tasks are assigned to DRAM or PMEM,
without requiring continuous monitoring or data migration.

This strategy significantly reduces runtime overhead, since there is no need to trace memory accesses
continuously or to move pages and objects during execution. Furthermore, the methodology provides
a lightweight and scalable approach for systems running many short-lived tasks, in which the cost of
profiling and data migration may be prohibitive.

In summary, while significant research has been conducted on hybrid memory management via object
and page placement, this work introduces a new, low-overhead method focused on task placement
driven by machine learning classification - offering both scalability and improved resource utilization
for multi-tasking systems.

22

Chapter 3

Theoretical Background

In this chapter, the theoretical background for the key topics explored in this thesis will be presented.
The chapter begins by discussing Persistent Memory and Intel’s Optane technology, which are trans-
forming modern computing systems by enabling faster and more reliable data storage solutions. This
will include an exploration of how these technologies differ from traditional memory and the advantages
they offer.

Next, the chapter will delve into the Memkind API, a critical tool for memory management, particularly
in systems utilizing persistent memory. The Memkind API enables efficient memory allocation and
optimization, which is essential for developers to manage heterogeneous systems that include both
DRAM and Optane memory.

Finally, the chapter will introduce several popular machine learning models used for training in this
thesis. These models include Random Forests (RF), K-Nearest Neighbors (KNN), Naive Bayes, and
Principal Component Analysis (PCA) with Support Vector Machines (SVM). A brief overview of
each model’s algorithmic approach, strengths, and typical applications will be provided, laying the
foundation for their application in data analysis and the evaluation of memory-optimized systems.

This theoretical background will provide the necessary context to understand the integration of per-
sistent memory technologies and machine learning algorithms, setting the stage for the practical ex-
ploration that follows.

3.1 Persistent Memory

3.1.1 Non-Volatile Memory

Persistent memory, also referred to as non-volatile or storage-class memory, represents an emerging
technology that combines key attributes of both DRAM and non-volatile storage like solid-state drives
(SSDs). In computer systems, there is a significant hierarchical gap between DRAM and storage
disks, creating a substantial bottleneck that limits the number of memory accesses achievable per
unit of time. Persistent memory aims to bridge this gap by integrating features from both memory
hierarchies, offering the speed and accessibility of DRAM with the durability and data retention of
traditional storage. This type of memory maintains data even when power is lost, providing the
persistence of storage devices along with the higher speed, lower latency, and greater bandwidth
traditionally associated with volatile memory. Persistent memory represents a significant shift in data
storage, as it supports rapid access and high performance while ensuring data survival across power
cycles [10]. This duality positions it between volatile DRAM, which is fast but loses data without
power, and traditional non-volatile storage, which retains data but typically operates at lower speeds.

Many technologies have been developed for the fabrication of these memory types, with some dis-
tinguished by exceptional advancements, such as resistive RAM (ReRAM), Phase Change Memory

23

Chapter 3. Theoretical Background

(PCM), Spin-Transfer Torque RAM(STT-RAM) and 3D XPoint [11].

Registers

Cache
(L1, L2, L3)

Main Memory (DRAM)

Figure 3.1.1: Memory Hierarchy Pyramid

There have been proposals for using this memory as a storage device and as an alternative to DRAM,
offering potential advantages in both roles.

Given its advantageous features, such as low access latency, minimal power consumption, and high
endurance cycles, compared to the existing storage devices, NVM is expected to serve as secondary
storage memory alongside SSDs and hard disk drives (HDDs) [10]. The consideration of NVM as a
storage device is further underscored by its inherent limitation in access endurance [11], which impacts
its overall reliability and performance over time. Thus, optimizing its use is essential in order to reduce
the number of read and write accesses.

However, Non-Volatile Memory can provide a scalable and power-efficient solution as a primary memory
alternative to DRAM. This solution is based on the attractive characteristics of NVM, such as its
higher density and nearly zero static power consumption. It also can provide a byte-addressable
interface rather than a block-based accesses. While NVM technologies are offering greater capacity at
comparable or lower costs than DRAM, they may exhibit lower bandwidth and access time. These
characteristics of NVM could result in a significant performance difference between next-generation
systems utilizing NVM and conventional systems based on DRAM for many applications [12].

3.1.2 Intel’s Optane DIMM

Optane DIMM is the first scalable NVDIMM available for commercial use. Unlike current storage
solutions, including Optane SSDs that use external interfaces such as PCle, the Optane DIMM offers
reduced latency, increased read bandwidth, and uses an address-based memory interface rather than
a block-based NVMe interface. Compared to DRAM, it features higher density and persistence. At
launch, Optane DIMM is available in three capacities: 128 GB, 256 GB and 512 GB [13].

Similar to traditional DRAM DIMMs, the Optane DC PMM is located on the memory bus and connects
to the integrated memory controller (iMC) in the CPU. The Optane DC PMM is introduced alongside
Intel’s second-generation Xeon Scalable processors, codenamed Cascade Lake. In this setup, each
CPU has two iMCs, with each iMC supporting three channels. As a result, a single CPU socket can
accommodate up to six Optane DC PMMs, allowing for a maximum of 6 TB of Optane DC memory.

To ensure data persistence, the iMC operates within the asynchronous DRAM refresh (ADR) domain.
Intel’s ADR feature guarantees that CPU stores reaching the ADR domain will survive a power loss,
meaning they will be saved to the NVDIMM within a hold-up time of less than 100 microseconds. It’s
important to note that the ADR domain does not encompass the processor caches, so data will only
remain persistent once it has been stored in the iMC.

The iMC interacts with the Optane DC PMM through the DDR-T interface. This interface shares

24

3.2. Memkind API

a mechanical and electrical design with DDR4 but utilizes a different protocol that accommodates
variable latencies, as the access latencies of Optane DC memory are not deterministic. Similar to
DDR4 (which includes ECC), it features a 72-bit data bus and transfers data in cache-line (64-byte)
increments for CPU load and store operations.

When a memory access request is made to the NVDIMM, it is received by the on-DIMM controller.
This central controller manages most of the processing needed for the NVDIMM and facilitates access
to the banks of Optane DC media.

Once an access request reaches the controller, the address undergoes internal translation. Like SSDs,
the Optane DC PMM carries out internal address translation for wear leveling and bad block man-
agement. The address indirection table (AIT) translates the DIMM physical address to an internal
address for the Optane DC media device. The AIT is stored in the Optane DC media, but a copy of
the AIT entries is maintained in the on-DIMM DRAM.

Once the request is translated, the actual access to the storage media takes place. Since the access
granularity of Optane DC media is 256 bytes, the controller translates 64-byte load/store operations
into larger 256-byte accesses. This leads to write amplification, as smaller writes initiated by the CPU
are processed as read-modify-write operations on the Optane DC memory by the controller.

Unlike DRAM, Optane DC memory does not require constant refreshing for data retention, which
results in lower power consumption when idle. The Optane DC PMM features two configurable power
budgets: the average power budget, which governs the power allowance for continuous workloads, and
the peak power budget, which sets the maximum power usage during burst traffic. Both of these
budgets can be adjusted by the user [9].

The performance of Intel Optane PMEM can be challenging to measure accurately due to the inherent
characteristics of its persistence. Unlike traditional volatile memory, which loses data when power
is removed, Optane technology retains data even without a power supply, complicating performance
assessments.

Numerous studies have attempted to measure the latency and bandwidth of Intel Optane memory,
often yielding varied results due to different methodologies and testing environments. While latency
measurements can fluctuate significantly based on factors like system configuration, workload charac-
teristics, and benchmarking tools, bandwidth results tend to show more consistency across different
studies.

Operation | Latency (ns) | Bandwidth (GB/s)

DRAM (Read) 81 39.4
DRAM (Write) 86 13.9
Opatne (Read) 305 6.6
Optane (Write) 94 2.3

Table 3.1: DRAM and Optane Read/Write Latency and Bandwidth [9]

Some reported numbers are 305 ns for random loads, compared to 81 ns for DRAM on the same
platform and 169 ns for sequential loads. Write latency is challenging to measure due to hardware
limitations. A study measured it at 94 ns for Optane DC and 86 ns for DRAM. For bandwidth, it
has been reported that the maximum reading bandwidth is 6.6 GB/s, whereas the writing bandwidth
cannot surpass 2.3 GB/s [9].

3.2 Memkind API

Memkind, an open-source library developed by Intel, provides a flexible and efficient memory allocation
framework designed for applications that utilize diverse memory types, such as volatile and persistent

25

Chapter 3. Theoretical Background

memory. This library allows developers to allocate and control memory from various sources, catering
to the unique requirements of their applications.

The library offers APIs that facilitate memory allocation from sources such as DRAM (volatile mem-
ory), Intel Optane DC Persistent Memory (persistent memory), and other advanced memory technolo-
gies. Applications can either specify the desired memory type or rely on Memkind to automatically
select the most suitable source based on predefined criteria.

Memkind is designed for high performance and minimal overhead, utilizing advanced memory allocation
algorithms based on jemalloc along with specific optimizations to minimize latency and maximize
throughput. By harnessing the distinct features of various memory types, such as the low-latency
access of persistent memory, it boosts the overall performance of applications.

Memkind proves especially advantageous for applications that benefit from multiple memory types,
including in-memory databases, big data analytics, high-performance computing, and other memory-
intensive tasks. By leveraging Memkind, developers can efficiently manage memory resources, enhance
performance, and take full advantage of the distinct capabilities offered by different memory technolo-
gies.

Memkind is designed to work seamlessly with existing memory management APIs and libraries, sup-
porting standard memory allocation functions such as malloc() and free(). This compatibility allows
for straightforward integration with minimal code modifications [14].

The ISO C programming language standard offers a user-level interface commonly used for memory
management in numerous applications, either directly or indirectly. This interface includes the
familiar set of APIs:

e void *malloc(size_t size): The malloc function allocates space for an object whose size is
specified by size and whose representation is indeterminate [15].

e void *calloc(size_t nmemb, size_t size): The calloc function allocates space for an array
of nmemb objects, each of whose size is size. The space is initialized to all bits zero [15].

e void *realloc(void *ptr, size_t size): The realloc function deallocates the old object
pointed to by ptr and returns a pointer to a new object that has the size specified by size. The
contents of the new object shall be the same as that of the old object prior to deallocation, up
to the lesser of the new and old sizes. Any bytes in the new object beyond the size of the old
object have unspecified values [15].

e void free(void #*ptr): The free function causes the space pointed to by ptr to be deallocated,
that is, made available for further allocation. If ptr is a null pointer, no action occurs. Otherwise,
if the argument does not match a pointer earlier returned by a memory management function,
or if the space has been deallocated by a call to free or realloc, the behavior is undefined [15].

The memkind library adapts these APIs by prefixing their names with "memkind " and extending
the interface to include an additional argument: the "kind" of memory. The specifics of what this
argument represents will be covered later, but this design allows for a plug-in architecture that can
evolve alongside advancements in hardware and policy features. Notably, the "kind" of memory dictates
both the selection of hardware and the application of policies to the allocated memory [16].

The functions outlined in this section define a heap manager with an interface based on the ISO C
standard APIs. However, unlike the standard APIs, the user is required to specify the type of memory
as the first argument in each function.

e void *memkind_malloc(memkind_t kind, size_t size): Allocates size bytes of uninitialized
memory of the specified kind. The allocated space is suitably aligned (after possible pointer co-
ercion) for storage of any type of object. If size is 0, then memkind malloc() returns NULL [17].

e void *memkind_calloc(memkind_t kind, size_t num, size_t size): Allocates space for
num objects each size bytes in length in memory of the specified kind. The result is identical to

26

3.3. Machine Learning Models

calling memkind malloc() with an argument of num * size, with the exception that the allocated
memory is explicitly initialized to zero bytes. If num or size is 0, then memkind calloc() returns
NULL [17].

e void *memkind_realloc(memkind_t kind, void *ptr, size_t size): Changes the size of
the previously allocated memory referenced by ptr to size bytes of the specified kind. The
contents of the memory remain unchanged up to the lesser of the new and old sizes. If the new
size is larger, the contents of the newly allocated portion of the memory are undefined. Upon
success, the memory referenced by ptr is freed and a pointer to the newly allocated memory is
returned [17].

e void memkind_free(memkind_t kind, void *ptr): Causes the allocated memory referenced
by ptr to be made available for future allocations. This pointer must have been returned by
a previous call to memkind _malloc(), memkind_ calloc() or memkind _realloc(). Otherwise, if
memkind _free(*kind*, *ptr*) has already been called before, undefined behavior occurs. If ptr
is NULL, no operation is performed. In cases where the kind is unknown in the context of the
call to memkind free() NULL can be given as the kind, but this will require an internal lookup
for correct kind [17].

It also employs the following functions to initialize and manage the necessary configurations for han-
dling the different types of memory.

e int memkind_create_kind(memkind_memtype_t memtype_flags, memkind_policy_t
policy, memkind_bits_t flags, memkind_t *kind): Creates kind that allocates mem-
ory with specific memory type, memory binding policy and flags (see MEMORY FLAGS
section). The memtype flags (see MEMORY TYPES section) determine memory types to
allocate, policy argument is policy for specifying page binding to memory types selected by
memtype _flags. Returns zero if the specified kind is created successfully or an error code from
the ERRORS section if not [17].

e int memkind_destroy_kind(memkind_t kind): Destroys previously created kind object, which
must have been returned by a previous call to memkind _create_kind() [17].

3.3 Machine Learning Models

This section discusses the machine learning models used in the experiments. The models presented
are designed for classification tasks and are among the most commonly used in the field of machine
learning. Before introducing the models, the evaluation metrics used to measure their accuracy and
performance will be presented to provide a clear understanding of how their effectiveness is assessed.

3.3.1 Accuracy Metric for Machine Learning Models

Evaluating the performance of the machine learning models in this study is based solely on the Ac-
curacy metric. Accuracy is defined as the ratio of correctly classified instances to the total number
of instances, and is calculated as follows:

TP+TN

3.1
TP+TN+FP+FN (3:3.1)

Accuracy =

In this equation, TP and T'N represent the true positives and true negatives, while F'P and F'N denote
the false positives and false negatives, respectively. Accuracy provides a straightforward and intuitive
measure of model performance, which is particularly suitable for balanced datasets.

3.3.2 Decision Tree

The Decision Tree model is a versatile classification approach that learns to categorize objects through
inductive analysis of a dataset with known classifications.

27

Chapter 3. Theoretical Background

condition for
attribute z;

condition for
attribute z;

condition for
attribute zx

condition for
attribute xz;

Figure 3.3.1: Decision Tree Model

Each object is described by a set of attributes which capture essential characteristics. When these at-
tributes are sufficiently informative, a decision tree can be constructed to accurately classify all objects
in the training set, often with multiple possible correct trees. However, the true objective of induc-
tion is to extend beyond the training data, enabling the model to correctly classify previously unseen
objects. Achieving this requires the decision tree to identify meaningful patterns and relationships
between an object’s class and its attribute values [18].

A decision tree is composed of test nodes, or attribute nodes, which are connected to two or more
subtrees, and leaf nodes, or decision nodes, which are labeled with a class representing the final
decision. Each test node evaluates a specific attribute of an instance, with the resulting outcome
determining the path to one of the subtrees.

The process of obtaining a solution using decision trees begins with the preparation of a data set
containing previously solved cases. This data set is then divided into two subsets: a training set, used
to induct the decision tree, and a testing set, which is used to evaluate the performance of the model.
The training set helps in building the decision tree, while the testing set helps to assess its key metrics.
When making a decision for an unsolved case, the process starts at the root node of the decision tree
(see Figure 3.3.1). Moving through the attribute nodes (purple nodes in Figure 3.3.1), the branches
are selected based on the matching attribute values of the unsolved case, continuing until the leaf node
is reached (green nodes in Figure 3.3.1), representing the final decision [19].

28

3.3. Machine Learning Models

3.3.3 Random Forest

Random Forest is an advanced ensemble learning method built upon decision trees. It enhances
predictive accuracy, mitigates overfitting, and improves overall model performance by combining the
outputs of multiple trees. By aggregating predictions, Random Forest creates a more robust and
reliable framework, making it widely applicable in machine learning tasks.

Result (1) Result (2) Result (M)

’Majority Voting / Averaging‘

Final Result

Figure 3.3.2: Random Forest Model

A Random Forest consists of multiple decision tree classifiers, where each tree independently predicts
the class of a given input, and the final classification is determined through a majority vote among all
trees [20].

To construct a Random Forest, M decision trees are trained as base learners. Each tree is built
using a distinct bootstrap sample, generated by randomly selecting data points from the training set
with replacement. This process introduces diversity among the trees and helps prevent overfitting.
Furthermore, at each node, a random subset of features is chosen for splitting rather than using all
available features, further enhancing tree diversity [21].

After training, the individual tree predictions are aggregated - through majority voting for classification
and averaging for regression - resulting in a more accurate and stable model compared to a single
decision tree. This ensemble strategy improves generalization and makes Random Forest a powerful
and versatile machine learning algorithm used in various domains.

The performance of the Random Forest model is largely determined by several key parameters:
e Number of trees M: The total number of decision trees in the ensemble.

e Splitting directions per node mitry: The number of possible feature directions considered
when splitting a node in each tree.

e Node size: The minimum number of samples required in a cell before it is no longer split.

According to [22] optimal parameter selection enhances model accuracy. A higher number of trees
(M) generally leads to more accurate predictions without the risk of overfitting. For the number of
splitting directions, a practical approach is to maximize the number of features considered at each
split, constrained only by computational resources. As for node size, a value of 1 is recommended for
classification tasks, while 5 is preferred for regression.

29

Chapter 3. Theoretical Background

Random Forest can be effectively used to identify the most important variables contributing to clas-
sification tasks. By analyzing the decrease in impurity or permutation-based importance, the model
ranks features based on their impact on prediction accuracy. This capability is particularly valuable
in domains where understanding key predictors is essential. Several studies [23] have focused on lever-
aging Random Forest for feature selection, aiming to extract the most influential variables that drive
classification decisions. These approaches help improve model interpretability, reduce dimensionality,
and enhance computational efficiency while maintaining predictive performance.

3.3.4 K-Nearest Neighbors (KINN)

The K-Nearest Neighbor (KNN) algorithm is a widely utilized classification method in statistical
pattern recognition. In this approach, each class is represented by a set of sample prototypes, which
serve as the training dataset of pattern vectors for that class. When classifying an unknown vector,
the algorithm identifies its k nearest neighbors from the prototype set and assigns a class label based
on the majority vote. To minimize ties in overlapping class regions, k is typically chosen as an odd
number. Despite its simplicity and intuitive nature, KNN demonstrates a low error rate in practical
applications [24].

€2

il

Figure 3.3.3: K-Nearest Neighbors Model

In the example shown in Figure 3.3.3, the K-Nearest Neighbors (KNN) model is applied in a two-
dimensional feature space defined by attributes x; and 3. An unknown data point needs to be
classified, and the algorithm identifies its three nearest neighbors (k = 3). Among these neighbors,
two belong to the blue class, while one belongs to the black class. Since KNN follows a majority voting
rule, the unknown point is assigned to the blue class. This demonstrates how KNN classifies new data
based on local patterns, with the choice of k influencing the final decision.

The performance of the K-Nearest Neighbors (KNN) algorithm depends on several key parameters
that influence classification accuracy and generalization. These parameters include:

e Number of neighbors (k): Determines how many nearest neighbors are considered when
classifying a new data point.

¢ Distance metric: The choice of distance function, such as Euclidean, Manhattan, or Minkowski
distance, affects how similarity between points is measured.

¢ Weighting scheme: Neighbors can be weighted equally (uniform weighting) or assigned weights
based on their distance (inverse distance weighting), influencing the classification decision.

To optimize these parameters, cross-validation is an effective technique. By partitioning the dataset
into multiple folds and evaluating different parameter configurations on training and validation sets,
cross-validation helps determine the optimal values, improving model generalization and minimizing
overfitting [25].

30

3.3. Machine Learning Models

In the KNN algorithm, having a large number of features can significantly increase computational
complexity, as the distance between data points must be computed across all dimensions. Since KNN
relies on similarity measures, the presence of many features leads to higher-dimensional space, making
the distance calculations more expensive and potentially slowing down the model. Additionally, if a
significant portion of these features is irrelevant or redundant, they can negatively impact classification
accuracy. This is because irrelevant features introduce noise, reducing the effectiveness of the distance
metric in distinguishing between classes [26].

To overcome these challenges, this thesis proposes two approaches to reduce the number of features:

e Principal Component Analysis (PCA) [26]: This method transforms the feature space into
a lower-dimensional representation while preserving essential information, as discussed in Section
3.3.7.

e Feature Selection using Random Forest: The most important features are selected based
on feature importance scores derived from a Random Forest model, ensuring that only the most
relevant information is retained.

By reducing the feature set through these methods, the computational cost is minimized, and the
model’s performance is enhanced by focusing on the most relevant information.

3.3.5 Naive Bayes

Naive Bayes classifiers are supervised machine learning models used for classification. They work based
on Bayes’ Theorem, which helps calculate the probability of a class given certain features. The key
idea is to use these probabilities to assign data to the most likely category.

Bayes” Theorem states that the probability of a hypothesis A given some B is calculated by dividing
the overall probability of both the hypothesis and the data occurring together by the overall probability
of the data alone [27].

(AN B)

P(A| B) = PP(B) (3.3.2)

Naive Bayes is a simple and fast algorithm that is easy to implement [28]. It does not require a lot of
training data to perform well, making it useful when there is limited information available [29]. Another
key advantage is that it is very fast computationally and it works efficiently with high-dimensional
data, but this is true only if certain assumptions hold [30].

These assumptions are:
e The features are independent of each other.
e The data follows a specific probability distribution, often Gaussian or multinomial [31].

When the first assumption is met, Naive Bayes can handle multi-feature classification by using the

following formula:

PMIIL, P(Xi | Y)
P(X1,Xo,...,X,)

PY | X1,Xa,....X,) = (3.3.3)

Y | X1, Xo,...,X,,) is the probability of class Y given the features X1, Xo, ..., X,.
Y') is the prior probability of the class.
X; | Y) is the probability of feature X; given the class Y.

~—~ o~ o~

X1, X5, ..., X,) is the probability of the features.

31

Chapter 3. Theoretical Background

Assuming the features are independent simplifies the joint probability of the features to the product
of individual probabilities, thereby making the computation more efficient.

Even though the assumptions made are not always completely true in real-life data, the algorithm
often performs well in many real-world applications [31].

3.3.6 Support Vector Machine (SVM)

The Support Vector Machine (SVM) is a supervised learning algorithm commonly applied to both
classification and regression problems. Although it can be used for regression, SVM is particularly
effective for classification tasks.

The primary goal of SVM is to identify the best hyperplane in an N-dimensional space that effectively
divides data points into distinct classes. The algorithm works by maximizing the margin between the
nearest data points of each class.

T2
’ ‘ ’
’ k4 ’
¢ L4 ’
. L4 ’
° ! ’
’ 4 ¢
ooy © ’ ,
‘ ’ ,l ’
’
(, 4 ’
‘. 4 4 4
¢ 4 4
’ 4 ’
’ ’ ’
’ . .
, 4 ,
¢ 4 4 . .
4 4 4 . .
’ ’ ;@ ..
’ ’ ’
. ’ P
’ ’ ’
2 Vi Y2
’ ’ ’ 1
v 4 4
4 . .

Figure 3.3.4: Support Vector Machine Model

SVM uses either a linear or nonlinear separation surface depending on the complexity of the data [32].
For linearly separable data, a straight line or hyperplane is used to separate different classes. However,
for more complex data that are not linearly separable, SVM applies various kernels to transform the
data into a higher-dimensional space. This allows the algorithm to find a linear separation in the
transformed space, even if the data are not linearly separable in the original space. Kernels play
a crucial role in enabling SVM to handle more complex classification tasks. The following kernel
functions are commonly used [33]:

e Linear Kernel: K(z,2') = 27z

¢ Polynomial Kernel: K(z,z') = (272’ +1)¢
e Radial Basis Function (RBF) Kernel: K(z,1') = exp (—y|z — 2/|?)

SVM tends to work pretty well as the number of features increases and can handle high-dimensional
data effectively [34]. However, when the number of classes goes beyond two, it becomes more difficult
to create an accurate model. This is because SVM is designed for binary classification, and extending
it to handle multiple classes requires extra methods like "one-vs-one" or "one-vs-rest" [35].

3.3.7 Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is a common method used to make large datasets simpler by
reducing the number of variables while keeping most of the important information. The main purpose
of PCA is to make complex data easier to understand and analyze. This is especially helpful when
working with datasets that have many variables.

PCA works by transforming the original features into a new set of variables called principal components.
These principal components are linear combinations of the original features and are ordered in terms

32

3.3. Machine Learning Models

of the variance they explain. The first principal component captures the highest variance in the data,
the second captures the second-highest variance, and so on. By selecting only the first few principal
components, it is possible to reduce the number of dimensions while still keeping most of the important
information.

Principal Component Analysis (PCA) offers several benefits when working with large and complex
datasets. Some of its main advantages include:

¢ Reduces Complexity: PCA decreases the number of variables in a dataset while keeping most
of the important information. This makes data easier to analyze [36].

e Improves Visualization : By reducing data to two or three dimensions, PCA helps in creating
visual representations, making it easier to understand patterns in the data [37].

e Speeds Up Computation: A dataset with fewer variables requires less computational power
and runs faster in analysis and machine learning processes [36].

PCA is especially useful when dealing with datasets that have many variables, as it reduces the
complexity of the data without losing too much important information. It is commonly used in fields
such as image processing, material science, and finance , where the data is often high-dimensional [36],
[38], [39].

33

Chapter 3. Theoretical Background

34

Chapter 4

Proposed Methodology

4.1 Overview

This chapter describes the methodology used in this research to classify benchmarks using machine
learning techniques and evaluate their classification using a multitask algorithm. The methodology
consists of several key stages, including data collection, feature extraction, classification, predictive
modeling, and evaluation. Each stage plays an important role in ensuring that the classification is
accurate and meaningful.

The first step in the methodology is the profiling and characterisation of benchmarks, where
each benchmark is analyzed to extract relevant features. These features describe the characteristics
of the benchmark, such as performance metrics, computational behavior, and resource usage. Once
the benchmarks are profiled, the next step is classification. This involves grouping benchmarks
into categories based on their extracted features. After classification, the research applies predictive
modeling to build machine learning models that can automatically determine the class of a new
benchmark. Several machine learning models are tested, including random forests, k-nearest neighbors,
and naive bayes models. The goal is to find the most effective model for classification based on its
accuracy. To further assess the effectiveness of the classification results, a class-based placement
algorithm is introduced. This algorithm assigns incoming tasks to memory types based on their
predicted class - determined by the machine learning model - and the current state of the system.
The goal is to intelligently distribute tasks between DRAM and PMEM in a way that leverages each
memory’s strengths. The performance of this approach is compared against several baseline placement
algorithms to evaluate its efficiency and impact on overall system performance.

The following sections provide a detailed explanation of each stage, outlining the specific techniques
and methodologies used to achieve reliable and accurate benchmark classification.

. DRAM
Clustering
. Benchmark Properties
Training T Dataset
Benchmarks ® —
— s= - _
(> i 5| Dataset | [— . ! | P t
U g L ! Reduction o »| Migorithm VM
¥ ¥
—
Computational =
Tasks
— om)
Tasks' *—
Properties =

Figure 4.1.1: Overview of the proposed methodology.

35

Chapter 4. Proposed Methodology

4.2 Profiling and Characterisation

Profiling and characterisation is the foundational stage in the methodology, where each benchmark is
thoroughly analyzed to extract the relevant features that will be used for classification. The primary
objective of this stage is to create a dataset that captures a wide variety of benchmark behaviors, en-
suring that the resulting data reflects diverse performance characteristics and computational patterns.

To build a dataset that encompasses a range of behaviors, a benchmark suite was developed by com-
bining programs from existing benchmark suites, including GAP, Parsec, Rodinia, and EEMBC. These
suites are widely used to evaluate how well systems perform in various scenarios.

e Parsec: This suite is used to test parallel applications on modern multicore processors [40].

Rodinia: A benchmark suite designed to test heterogeneous systems for parallel programs [41].

EEMBC: Benchmarks that focus on evaluating the performance of embedded systems [42].
e GAP: The GAP suite is used for testing graph-based programs [43].

By selecting programs from multiple sources, the dataset captures a broad spectrum of computational
tasks, from scientific computing and parallel applications to embedded system benchmarks. In addition
to combining benchmarks from different suites, a variety of input configurations were introduced to
increase the number of tasks and amplify the diversity of behaviors. These variations were designed
to challenge the classifiers by incorporating a wide range of resource usage patterns, execution times,
and computational demands. This approach ensures that the resulting dataset is rich in behaviors,
making it suitable for evaluating the effectiveness of machine learning models in classifying different
types of benchmarks.

Benchmark ‘ Input ‘ Description
backprop Elements: 30,000,000 Back propagation on NN
cfd - Fluid dynamics simulation
heartwall Frames: 104, Threads: 2 Heart wall shape tracking
hotspot Rows/Cols: 1024, Time: 100,000, Threads: 2 Thermal simulation
hotspot3D Rows/Cols: 512, Layers: 8, Iterations: 5000 Thermal simulation in 3D
lavaMD Cores: 2, Boxes: 35 Particle simulation
leukocyte Frames: 100, Threads: 2 Leukocyte tracking
lud Matrix size: 15000 LU decomposition
myocyte X: 10,000, Workload: 200, Mode: 1, Threads: 2 Cardiac myocyte simulation
particlefilter | X: 4096, Y: 4096, Z: 100, No. of particles: 10000 Target location estimation
pathfinder Width:100,000, No. of steps: 5,000 Optimal path search
streamcluster | Min k:10, Max k: 100, Dimensions: 256, N: 65,536, | Clustering task

Chunk size: 65,536, Cluster size:1,000, Threads: 4

Table 4.1: Rodinia Benchmarks

Benchmark Input ‘ Description

blackscholes native Solves the Black-Scholes differential equation

bodytrack native Tracks the 3D pose of a human body through an image sequence
canneal native Simulates annealing (SA) of a chip design

dedup native Compresses a data stream with a combination called ’deduplication’

Table 4.2: Parsec Benchmarks

36

4.2. Profiling and Characterisation

Benchmark Input ‘ Description
audiomark - Machine learning performance benchmark
coremark - Measures the performance of CPUs and embedded microcrontrollers

coremark pro
securemark tls
securemark v2

A multi-processor coremark benchmark
Cryptography benchmark
Cryptography benchmark Version 2

Table 4.3: EEMBC Benchmarks

Benchmark Input Description

bfs 150 Iterations: 150 , Vertices: 10%° | Breadth-First Search with 150 iterations

bfs 200 Iterations: 200 , Vertices: 10%° | Breadth-First Search with 200 iterations

bfs 300 Iterations: 300 , Vertices: 10%° | Breadth-First Search with 300 iterations
bec_50 Iterations: 50 , Vertices: 102° Betweenness Centrality with 50 iterations

be_ 70 Iterations: 70 , Vertices: 102° | Betweenness Centrality with 70 iterations

be_ 100 Iterations: 100 , Vertices: 10?° | Betweenness Centrality with 100 iterations

cc_ 150 Iterations: 150 , Vertices: 10%° | Connected Components (CC) 150 times
cc_200 Tterations: 200 , Vertices: 102° | Connected Components (CC) 200 times
cc_300 Iterations: 300 , Vertices: 10%° | Connected Components (CC) 300 times
cc_sv_150 Iterations: 150 , Vertices: 10%° | CC using the Shiloach-Vishkin 150 times [44]
cc_sv_200 Iterations: 200 , Vertices: 10?° | CC using the Shiloach-Vishkin 200 times
cc_sv_300 Iterations: 300 , Vertices: 10?° | CC using the Shiloach-Vishkin 300 times
pr_150 Iterations: 150 , Vertices: 10%° | Page-Rank (PR) with 150 iterations

pr_200 Iterations: 200 , Vertices: 10%° | Page-Rank (PR) with 200 iterations

pr_300 Iterations: 300 , Vertices: 10%° | Page-Rank (PR) with 300 iterations
pr_spmv_75 | Iterations: 75 , Vertices: 102° | PR using sparse matrices with 75 iterations
pr_spmv_ 100 | Iterations: 100 , Vertices: 102° | PR using sparse matrices with 100 iterations
pr_spmv_ 150 | Iterations: 150 , Vertices: 10%° | PR using sparse matrices with 150 iterations
tc_75 Iterations: 75 , Vertices: 10%° Triangle Counting with 75 iterations

tc_100 Iterations: 100 , Vertices: 10%° | Triangle Counting with 100 iterations

tc_ 150 Iterations: 150 , Vertices: 10?2 | Triangle Counting with 150 iterations

sssp_ 75 Iterations: 75 , Vertices: 102 | Single-Source Shortest Paths with 75 iterations
sssp_ 100 Iterations: 100 , Vertices: 1020 | Single-Source Shortest Paths with 100 iterations
sssp_ 150 Iterations: 150 , Vertices: 102 | Single-Source Shortest Paths with 150 iterations

Table 4.4: GAP Benchmarks

The benchmark suite was executed two times: once using the DRAM memory chips and once using
only the sockets mounted by Intel’s Optane DIMMs. This setup enabled a comparative analysis of
benchmark performance under different memory architectures. Execution time was recorded for each
run, while Intel’s Performance Counter Monitor (PCM) was employed to collect detailed performance
metrics, offering insights into resource utilization. For each run, the following metrics were measured

separately:

¢ Execution time: The total time taken for the benchmark to complete, indicating the overall
performance efficiency for each memory configuration.

e Instructions per Cycle (IPC) over time: A measure of CPU utilization, showing the number
of instructions executed per clock cycle throughout the execution.

e L3 Cache Hit Ratio over time: The proportion of cache accesses that result in a cache hit
in the L3 cache, providing insight into how effectively the L3 cache reduces memory latency.

37

Chapter 4. Proposed Methodology

e L3 Cache Misses over time: The number of instances when data was not found in the L3
cache.

e Memory Read Throughput over time: The rate at which data is read from memory, indi-
cating the efficiency of memory read operations throughout execution.

e Memory Write Throughput over time: The rate at which data is written to memory,
showing the efficiency of memory write operations during benchmark execution.

e Total Memory Read Accesses: The total number of memory read accesses during execution
on Optane, highlighting how much the benchmark interacts with the memory. This metric is not
applicable for DRAM, only for Optane.

e Total Memory Write Accesses: The total number of memory write accesses on Optane,
indicating the level of write activity in the benchmark when using persistent memory. This
metric is not applicable for DRAM, only for Optane.

These performance metrics provide valuable insights into how the benchmarks perform under varying
memory architectures, allowing for a comprehensive understanding of their resource usage and compu-
tational behavior. The extracted features are essential for building accurate machine learning models
capable of classifying benchmarks based on their performance characteristics.

Metric ‘ For DRAM ‘ For Optane
Execution time Yes Yes
Instructions per Cycle (IPC) over time Yes Yes
L3 Cache Hit Ratio over time Yes Yes
L3 Cache Misses over time Yes Yes
Memory Read Throughput over time Yes Yes
Memory Write Throughput over time Yes Yes
Total Memory Read Accesses No Yes
Total Memory Write Accesses No Yes

Table 4.5: Metrics measured during benchmark runs on DRAM and Optane.

38

4.3. Profiling Results

4.3 Profiling Results

This section presents the profiling results obtained from executing the benchmark suite on both DRAM
and Intel Optane memory. Each benchmark execution was analyzed based on multiple performance
metrics, and the results are visualized to highlight differences in execution behavior.

4.3.1 Execution Time

Figure 4.3.1 shows the execution time for each benchmark when running on DRAM and Optane. The
difference in execution times reflects the impact of memory technology on performance.

1 DRAM
o = OPTANE
500 -
C)
2 i
£ 400
£
c
S
5 300 !
3
Q
X
w
200 1 |
100 - |
04
00 A 0 50“2*“"@@"0
éxe«\“ RS QS s ‘s” «oF ‘,«s/ ‘\°\eﬂ“° e P e? :_c?‘}
=] DRAM
400 4 [OPTANE
350 4
300 A
C)
g 250 -
£
c
£ 2001
5
3
]
i 150 4
100 -
50
o0
© & N
’;‘}“) X «\B“« «%%“9 (@{o\ ‘590" & b@"‘“ (o *od&e . é“‘ ‘\(\«\
=] DRAM
ol == OPTANE
300 -
T 250 1
[
E
E
= 2004
2
El
g 150
w
100 -
50
04

0 0 o0 ° RN 0 40
A0 0 A xe \p ° XS 1 e\p P
DR PR o v‘“ o s‘, & e 6\0‘* ‘*;9, R ,,,,e? \o‘(
R o4 Q‘ K &

Figure 4.3.1: Execution times of benchmarks on DRAM vs. Optane.

39

Chapter 4. Proposed Methodology

4.3.2 Instructions Per Cycle (IPC)

Figure 4.3.2 presents the IPC values recorded during benchmark execution. IPC variations indicate
different computational intensities of the benchmarks.

audiomark backprop bc_100 bc_50 bc_70

‘u_\\s./\ |
T T 0-, h 0 0
0

: T T T 0- T
5 10 100 200

o

50 1(IJO 50 1(|)0 50 1(|)0 1.;;0
bfs_150 bfs_200 bfs_300 blackscholes bodytrack

o

N
-
o L
r___
O—r !

-
:r:
|

0+, T T T 0, T T 0+ T T T T T T T T
0 10 20 30 0 20 40 0 20 40 60 0 50 100 150 0 200 400
canneal cc_150 cc_200 cc_300 cc_sv_150
1.0 11 1 1 1
0.5 A
T T T T 0+, T — 04 T T 04 T T T 0, T T T
0 200 400 600 0 20 40 0 20 40 0 20 40 60 0 20 40 60
cc_sv_200 cc_sv_300 cfd coremark coremark_pro
14 14 1.5 1 23
1.0 4 2.0 29114 I ‘hﬂ
0.5 1 1.5
0 T T T 0 T T T T T T T T — 11 r T T
0 50 100 150 0 50 100 0 20 40 60 0 20 40 0 100 200 300
dedup heartwall hotspot hotspot3D lavaMD
21 1.35 | 24
W 34 5
] \/_’um . 3
1.251 11 1 N H ' 14/
0 10 20 30 0 20 40 0 50 100 0 50 100 0 50 100
leukocyte lud myocyte particlefilter pathfinder
2.5]
1 154 1.51 24
2.01 . 1.0
1.5 1.0 + 0.5 1
T T T T 0 T T T T T T T T — 0 T T
0 25 50 75 0 100 200 0 25 50 75 0 50 100 0 20 40
pr_150 pr_200 pr_300 pr_spmv_100 pr_spmv_150
119 ‘ 14 14 14 14
0 T T T 0f————1 04 T T 04 T T - 0 T T
0 50 100 150 0 100 0 50 100 0 25 50 75 0 50 100
pr_spmv_75 securemark_tls securemark_v2 sssp_100 sssp_150
14 3] m N 11 14
] %1 W
0 T T T T T T T T 0+ T 0 T T
0 20 40 60 0 100 200 0 100 200 300 0 100 0 100 200
sssp_75 streamcluster tc_100 tc_150 tc_75
1.5
14 1 1+ 14
1.0
04 : , 05 Lt | g e 0-l— . ==
0 50 100 0 50 100 150 0 50 100 150 0 100 200 0 50 100

Figure 4.3.2: TPC of benchmarks on DRAM (gray) vs. Optane (blue).

4.3. Profiling Results

4.3.3 L3 Cache Performance

Figures 4.3.3 and 4.3.4 depict the L3 cache hit ratio and L3 cache misses per second, respectively.
These metrics illustrate how well benchmarks utilize the cache.

audiomark backprop bc_100 bc_50 bc_70
0.90 4 0.5 0.50 4 0.50 0.50
.25 1 0.25 A .25 -
ossll 1 ool : I —— :
0 5 10 0 50 100 0 100 200 0 50 100 0 100
bfs_150 bfs_200 bfs_300 blackscholes bodytrack
0.75 0.75 0.75 1 091 W 09
0.50 0.50 0.50 0.81 0.8
0.251 0.25 0.251 071 0.71
0 20 0 20 40 0 25 50 0 100 0 200 400
canneal cc_150 cc_200 cc_300 cc_sv_150
1.
0_75-‘ I l I 0.75 A \ AA 0.75 A M A 0.75 4 \ 4 0 1 ’
0.50 0.50 A 0.50 0.50 A 0.5
0.25 0.25 4 0.25 A 0.25 A
0 250 500 0 20 40 0 20 40 0o 25 50 0 50
cc_sv_200 cc_sv_300 cfd coremark coremark_pro
1.0 1.0 1.0
u u 0.8 094
0.5 0.5+
0.6 4 0.8 A 0.8
0 100 0 50 100 0 25 50 0 20 40 0 200
dedup heartwall hotspot hotspot3D lavaMD
0.8 1 0.90 0.95 1 075 | | 097
0901 0.50
0.6 L . 0-851] . . 0831 , 084 . .
0 20 0 20 40 0 50 100 0 50 100 0 50 100
leukocyte lud myocyte particlefilter pathfinder
000 075 ors] P,M_ PPN A . 05 m
0.50 4 '
0.85 A]
| : : : : 0.50 L, : 061, : d 061 . .
0 50 0 100 200 0 50 0 50 100 0 20 40
pr_150 pr_200 pr_300 pr_spmv_100 pr_spmv_150
1.0 1.0 1.0 1.0 1.0 M
0.5 ‘ 0.5 0.5 w 0.5 \NJJ 0.5
0 100 0 100 0 50 100 0 50 0 50 100
pr_spmv_75 securemark_tls securemark_v2 sssp_100 sssp_150
1.0 J
\,,\AIJ rvndatimadepiotia | 0.95 W 0.75 0.75 4
0.75 A 0.90
0.5 1 | 0.50 -
0.85 4 0.50
T T T 0.50 + T T T T T 0.25 1, T T
0 25 50 0 200 0 200 0 100 0 100 200
sssp_75 streamcluster tc_100 tc_150 tc_75
0.75 4 0.75 4 0.75 A 0.75 A 0.75 -
0.50 050 4 b Pmmin s 0-304 0501 0.501
0.254 T T T . T T 0251 T T 0251 T T T 0251 T T
0 50 100 0 100 0 100 0 100 200 0 100

Figure 4.3.3: L3 cache hit ratio of benchmarks on DRAM (gray) vs. Optane (blue).

Chapter 4. Proposed Methodology

audiomark backprop bc_100 bc_50 bc_70
03 7 200 4
200 A
024 200 200
0.1 “ [rEr A B SO L prorteriourirtore—tarlortirive [e)
T T : 05 : ; 0+ . T 04y T T 04y .
0 5 10 0 50 100 0 100 200 0 50 100 0 100
bfs_150 bfs_200 bfs_300 blackscholes bodytrack
1.0
50 o 50 50 24
0.5
04, , oA ol : : o LAldbbLiLLULLLL
0 20 0 20 40 0 25 50 0 100 0 200 400
canneal cc_150 cc_200 cc_300 cc_sv_150
10 A 200 4 200 | 100
100 1
L e Y /ot S S sestnl I 1S 0l—/ .
0 250 500 0 20 40 0 20 40 0 25 50 0 50
cc_sv_200 cc_sv_300 cfd coremark coremark_pro
100 - 100 0.75 L0
50 0.50 0.5
W W 0.25 1
0+ T 0 T T 047 : T T T : T T
0 100 0 50 100 0 25 50 0 20 40 0 200
dedup heartwall hotspot hotspot3D lavaMD
1.5 4 0.50
1.0 0.50 A 501
0.50 104 0o
051 0.251 0251 ugmprbimints | 03] '
0 20 0 20 40 0 50 100 0 50 100 0 50 100
0.50 leukocyte lud myocyte particlefilter pathfinder
' 50 -
1.0 A 54
0.25 ' 27
0.5 A N
T T 07 . T Dol v 0+ : T 0 : T
0 50 0 100 200 0 50 0 50 100 0 20 40
pr_150 pr_200 pr_300 pr_spmv_100 pr_spmv_150
100 A 100
100 A 100 + 100 -
0-.—I T 0'.—’ T 0-—J. T T 01— T 0-—1. T T
0 100 0 100 0 50 100 0 50 0 50 100
pr_spmv_75 securemark_tls securemark_v2 sssp_100 sssp_150
14
100 A
1 J
50 A 100
ol— ; 0 M h o Lottty | | _amerenreey o L
0 25 50 0 200 0 200 0 100 0 100 200
sssp_75 streamcluster tc_100 tc_150 tc_75
200 200 4 200
100 4 10 4
oLt |] . o . o 0d] ,
0 50 100 0 100 0 100 0 100 200 0 100

Figure 4.3.4: L3 cache misses (KB) per second of benchmarks on DRAM (gray) vs. Optane (blue).

42

4.3. Profiling Results

4.3.4 Memory Bandwidth

Figures 4.3.5 and 4.3.6 illustrate the read and write bandwidths measured during execution. These
metrics indicate how memory-intensive each benchmark is.

audiomark backprop bc_100 bc_50 bc_70
5000 - 20000 A
100 4 20000 - 20000
0+ : ; 0+ T T 0+ : T 04 T T 0+ T
0 5 10 0 20 40 0 100 200 0 50 100 0 100
bfs_150 bfs_200 bfs_300 blackscholes bodytrack
20000 - 20000 20000 1000 1 1000
0+ T 0+ : T 0+ T T 0+ T T 04 T T
0 20 0 20 40 0 25 50 0 50 100 0 200 400
canneal cc_150 cc_200 cc_300 cc_sv_150
1000
20000 20000 20000 200001
0+ ; : 0+ . . 0+ . . 0+ . . 04 :
0 200 400 0 20 40 0 20 40 0 25 50 0 50
cc_sv_200 cc_sv_300 cfd coremark coremark_pro
10000 A
20000 A 20000 + 50 4 200 A
0+ T 0+ T T 0+ . T 0+ : : 0+ T
0 50 0 50 100 0 25 50 0 20 40 0 200
dedup heartwall hotspot hotspot3D lavaMD
1000 - 100 1 1001 1000 200
0+ . 05 . . 0+ ; ; 0+ : T 0+ . :
0 20 0 20 40 0 50 100 0 50 100 0 50 100
leukocyte Jud myocyte particlefilter pathfinder
10000 10001 5000 -
50 1000 1
0+ T 0+ T T 0+ T 0+ : : 0+ . T
0 50 0 100 200 0 50 0 50 100 0 20 40
pr_150 pr_200 pr_300 pr_spmv_100 pr_spmv_150
20000 1 20000 { 20000 4 20000 20000
0+ T T 0+ T 0+ T T 0+ T T 0+ T T
0 25 50 0 50 0 50 100 0 50 100 0 50 100
pr_spmv_75 securemark_tls securemark_v2 sssp_100 sssp_150
, i 10000 A
20000 100 100 1 10000 +
0+ T , 0+ T 0+ ; 0+ T 0+ T T
0 50 100 0 200 0 200 0 100 0 100 200
sssp_75 streamcluster tc_100 tc_150 tc_75
20000 A
10000 ~ 25000 A 25000 25000
0+ T 0+ T 0+ T 0+ T T 0+ T T
0 100 0 100 0 100 0 100 200 0 50 100

Figure 4.3.5: Memory read bandwidth (MB/s) of benchmarks on DRAM (gray) vs. Optane (blue).

43

Chapter 4. Proposed Methodology

audiomark

50 -

M

0 5 10
bfs_150

T

0 20
canneal

=

0 200 400
cc_sv_200

Mw

0 50
dedup

20
leukocyte

WMW

0 50
pr_150

5000 A

r'___.

0 25 50
pr_spmv_75

50
sssp_75

100

| A 01 s samtet, i il

0 100

backprop bc_100 bc_50
5000 -
10000 1 10000 +
0+ T T 0+ T T 0 T T
0 20 40 0 100 200 0 50 100
bfs_200 bfs_300 blackscholes
10000 - 10000 1000 A
0 T T 04y T T 0+ T T
0 20 40 0 25 50 0 50 100
cc_150 cc_200 cc_300
10000 10000 - 10000 -
0y T T 0 T T 0+ T T
0 20 40 0 20 40 0 25 50
cc_sv_300 cfd coremark
] 200
5000 10000 ﬂ H
0+ T T 07 r T 0+ T T
0 50 100 0 25 50 0 20 40
heartwall hotspot hotspot3D
100 A]
[\M"w«wf“"*"” 301 [20ne ’ \1
0+ T T 0+ T T 0+ T T
0 20 40 0 50 100 0 50 100
Jud myocyte particlefilter
2000 10000
10000 -
0+ r T 0+ T 0 ‘PL—
0 100 200 0 50 0 50 100
pr_200 pr_300 pr_spmv_100
5000 -
10000 A 10000 A
0+ r 0+ T T 04 T T
0 50 0 50 100 0 50 100
securemark_tls securemark_v2 sssp_100
J 100 |
100 5000 -
0-r 7 0+4x T 0 l. ¥ bk,
0 200 0 200 0 100
streamcluster tc_100 tc_150
2000 A
10000 10000
ol o= : ol
0 100 0 100 0 100 200

10000 -

1000 A

bc_70

| R—
0 100
bodytrack

| T PR p——
0 200 400
cc_sv_150

————

200

0 50

coremark_pro

L E—

0 200
lavaMD

50 100

1000 A

pathfinder

0 20 40
pr_spmv_150

—

0 50 100

sssp_150

Fowecoprprovmpropess

0 l(I)O 260
tc_75

| —

0 50 100

Figure 4.3.6: Memory write bandwidth (MB/s) of benchmarks on DRAM (gray) vs. Optane (blue).

44

4.3. Profiling Results

4.3.5 Memory Accesses (Optane Only)

Since total memory accesses were only recorded for the Optane execution, Figure 4.3.7 presents the

total memory read and write accesses observed.

106 4

105 4

10 4

103 4

102 4

Acceses (*1e+06)

10! 4
100 4
1014

1072-
A
o (R A0 0 10 0 :‘\“2‘5

o ® O &

X 2 oo 2°° OF

a\“\\o“\v"‘m R g g R o \a&,,d\“ B «
B

3 READS
E= WRITES

D O L P
33 d,:" cc} c"‘}

10° 4

105 4

10 4

10° 4

102 4

10! 4

Acceses (*1e+06)

10° 4
10—1 B

1024
O L0 & R @ o
P R e R
202 s e
e o o""‘\a‘ & x\e“«‘ © ‘\0‘9‘9 A4
«

[READS
E3 WRITES

O WO e @ < gt
S RS L ¥ A€ 8
8 o© of & o
¥ o va&c\ v,(ﬁ

10° +

105 4

104 4

103 4

1024

Acceses (*1e+06)

10! 4

100 4

1014

10-2 4
0 0 L0 N
AR A o AR S 2
&S 7 PSP 5‘,«\“ SRR o0 &
7 0 B

B &
o« * B s \)‘“;O\‘ e?

0 READS
= WRITES

O B (® O ® O O ®
ANBRRE S ISP S 'S

Figure 4.3.7: Total memory accesses (read and write) on Optane.

4.3.6 Observations

The profiling results show that Intel Optane generally has smaller memory bandwidth compared to
DRAM, leading to slower execution times. However, it is observed that some benchmarks exhibit
relatively close execution times on both memory systems, while others show significant differences,

Chapter 4. Proposed Methodology

with execution times being more than three times slower on Optane.

For the benchmarks with large execution time differences, it is found that they tend to have smaller
TPC values and higher memory read and/or write bandwidths. These benchmarks are more sensitive
to the reduced bandwidth of Optane, resulting in substantial slowdowns. In contrast, benchmarks
with smaller execution time differences tend to have higher IPC values and lower memory bandwidth
utilization, indicating they are less affected by the differences between DRAM and Optane.

These observations help differentiate between benchmarks that are heavily memory-bound and those
that are more CPU-bound, providing essential insights for the classification process in the subsequent
stages of the methodology.

4.4 Classification

To classify the benchmarks and prepare the dataset for machine learning models, specific thresholds
are defined based on the profiling metrics, particularly memory bandwidth (Read BW and Write BW),
and CPU utilization. These thresholds help to categorize the benchmarks into one of the four classes:
Memory Intensive, Read Intensive, Write Intensive, and CPU Intensive.

Note: The metrics and thresholds mentioned in the classification process refer to the ones when
the benchmarks were executed on Optane, as the performance characteristics on Optane were key to
defining these thresholds.

4.4.1 Memory Intensive Class

The Memory Intensive class is defined by benchmarks where both memory read and write band-
widths (Read BW and Write BW) exceed a certain threshold. This threshold is set at the mean value
of the Read BW and Write BW metrics, compared to half of the theoretical maximum. Specifically,
a benchmark is categorized as Memory Intensive if both its Read BW and Write BW are above this
threshold.

This criterion is used because benchmarks in this class are expected to heavily utilize the memory
system, leading to significant memory throughput and high cache misses. By setting the threshold at
half of the maximum Read and Write BW, we take into account that some benchmarks may utilize the
memory bandwidth at full capacity only for a portion of their execution time. In these cases, during
the remaining execution time, the memory bandwidth utilization may drop significantly or even be
idle. However, these programs still exhibit significant memory demand during the periods of high
utilization, which justifies their categorization as memory intensive.

4.4.2 Read Intensive Class

The Read Intensive class includes benchmarks that have a Read BW higher than the defined thresh-
old, but a relatively low Write BW. These benchmarks focus on memory reads, meaning they require
significant read throughput, but do not write large amounts of data to memory. Therefore, the defin-
ing characteristic for this class is that the Read BW must exceed the threshold, while the Write BW
remains lower than that threshold.

This classification is useful for identifying benchmarks that are more focused on reading data from
memory, which places specific demands on the memory hierarchy, especially in systems with large
datasets or high memory read requirements.

4.4.3 Write Intensive Class

The Write Intensive class consists of benchmarks where the Write BW exceeds the threshold, while
the Read BW remains relatively low. These benchmarks are characterized by a higher frequency of
memory write operations, requiring significant write throughput. Like the Read Intensive class, the

46

4.5. Machine Learning Models for Classification Prediction

Write Intensive class benchmarks place heavy demands on the memory system, but their focus is on
writing data rather than reading it.

The threshold for this class ensures that only benchmarks with a substantial memory write load are
categorized as Write Intensive, distinguishing them from those that are primarily focused on reads or
computational tasks.

4.4.4 CPU Intensive Class

Finally, the CPU Intensive class includes benchmarks that do not meet the criteria for the previous
three classes. These benchmarks are characterized by either low memory bandwidth utilization (both
Read BW and Write BW are below the threshold) or high CPU usage, resulting in high instructions
per cycle (IPC). CPU Intensive benchmarks focus more on computational tasks, and exhibit higher
IPC than benchmarks in other classes, while their memory usage tends to be lower.

These benchmarks can either have low memory bandwidth utilization or have high IPC values, meaning
their performance is primarily determined by the CPU rather than memory operations. This class
serves as a catch-all category for benchmarks that do not heavily rely on memory but instead push
the CPU to its limits.

4.4.5 Summary of Classification Criteria
The thresholds for classifying benchmarks into the four categories are summarized as follows:

e Memory Intensive: Benchmarks with both Read BW and Write BW above the threshold
defined as the mean of these values compared to half of the maximum observed Read and Write
BW.

¢ Read Intensive: Benchmarks with Read BW above the threshold but Write BW below it.
e Write Intensive: Benchmarks with Write BW above the threshold but Read BW below it.

e CPU Intensive: Benchmarks that do not meet any of the above criteria and primarily utilize
the CPU.

These criteria enable the classification of each benchmark based on its memory and CPU usage pat-
terns, creating a labeled dataset that can later be used for training machine learning models to predict
the behavior of new benchmarks.

4.5 Machine Learning Models for Classification Prediction

Now that a labeled dataset has been created based on the profiling and classification of benchmarks
into distinct categories (Memory Intensive, Read Intensive, Write Intensive, and CPU Intensive), the
next step is to apply machine learning models to predict the class of new, unseen benchmarks. This
process involves training supervised machine learning models using the labeled dataset, followed by
evaluating their performance.

4.5.1 Supervised Learning Approach

In this research, supervised machine learning techniques are employed to classify benchmarks into their
respective categories based on the features extracted during the profiling stage. The input features
correspond to a known class label. The models are trained using this labeled dataset to learn the
relationship between the features and class labels, allowing for predictions on new, unseen data.

A large number of features is included in the dataset to evaluate whether the models can correctly
identify the benchmark classes regardless of the specific features used. In another scenario, classification
might depend on different features beyond memory bandwidth, requiring a more flexible approach.
Instead of relying solely on a predefined set of key metrics, the methodology proposed in this research

47

Chapter 4.

Proposed Methodology

is designed to work across different implementations, allowing for adaptability in various classification

tasks.

Since many of the profiling metrics are collected as time-series data, the mean value of each metric
is used as a representative feature. While full temporal graphs could provide more detailed insights,
incorporating them directly into machine learning models would require complex architectures capable
of processing sequential data. Using mean values simplifies implementation while still capturing the

Mean values of
Read BW AND Write BW

are bigger than half of their max value

No

Only Read BW is bigger
than the threshold

No

Only Write BW is bigger
than the threshold

Intensive

overall trends in benchmark behavior.

The features extracted for classification are:

Write
Intensive

Read
Intensive

Figure 4.4.1: Diagram of the benchmark classification criteria.

e Features extracted when running on DRAM:

— Execution time

Mean value of L3 cache hit ratio
Mean value of L3 cache misses per second
Mean value of read bandwidth

Mean value of write bandwidth

Mean value of Instructions per Cycle (IPC)

e Features extracted when running on Optane:

Execution time

Mean value of L3 cache hit ratio
Mean value of L3 cache misses per second

Mean value of read bandwidth

Mean value of Instructions per Cycle (IPC)

Memory
Intensive

4.5. Machine Learning Models for Classification Prediction

— Mean value of write bandwidth
— Total memory read accesses
— Total memory write accesses

Due to the high dimensionality of the feature set, dimensionality reduction techniques are applied to
improve the performance of the models.

4.5.2 Dimensionality Reduction

Since machine learning models perform better with lower-dimensional data, dimensionality reduction is
applied to reduce the feature space before training the models. This is particularly important because
many of the original features are correlated, resulting in a reduction of the effectiveness of some models.

To achieve this, the Random Forest model is used to determine the feature importance in this process.
Specifically, the most important features are selected such that their combined importance accounts
for 70% of the total feature importance. This helps to retain the most relevant information while
discarding less important features.

For further reduction, Principal Component Analysis (PCA) is applied to the selected important
features. PCA projects the data onto a lower-dimensional space, retaining the maximum variance in
the data. In this case, the dimensionality is reduced to two dimensions, which simplifies the problem
and allows the models to perform better with fewer features.

4.5.3 Machine Learning Models
For this study, the following supervised learning models were selected:

¢ Random Forests: The number of trees used was 1000, with the splitting criterion set to 2, and
the minimum node size set to 1.

¢ K-Nearest Neighbors (KNN): The value of k was set to 4, using the Minkowski distance
metric, and no weighting was applied.

¢ Naive Bayes

These models are chosen for their ability to handle classification tasks effectively, and they are well-
suited supervised classification.

4.5.4 Training and Testing Procedure
The training and testing process follows these steps:

1. Split the dataset into training and testing sets and train a Random Forest model on the initial
training data.

2. Identify the most important features that collectively contribute to 70% of the total feature
importance using the trained Random Forest model.

3. Apply Principal Component Analysis (PCA) to further reduce the selected features to two di-
mensions.

4. Train the selected models (Random Forest, K-Nearest Neighbors and Naive Bayes) using the
original feature set.

5. Evaluate the models on the test set using the specified evaluation metrics.

6. Split the dataset and train the selected models again using the reduced feature set obtained from
feature importance selection.

7. Evaluate the models.

49

Chapter 4. Proposed Methodology

8. Split the dataset and train the selected models again using the reduced dataset produced by the
PCA.

9. Evaluate the models.

10. Compare all models and feature reduction approaches, selecting the best-performing configura-
tion based on the evaluation metrics.

To ensure reliable results, the entire training and testing process is repeated 10 times for each dataset
split and training. This mitigates the impact of randomness in data selection. The final evaluation
metrics are obtained by averaging the results across all iterations.

Each iteration uses a dataset split of 35 training samples and 10 testing samples.

4.6 Evaluation using a Class-Based Algorithm

In this section, we aim to evaluate the effectiveness of the class-based categorization methodology
developed in the previous chapters. To achieve this, a multitasking environment is simulated, where
multiple benchmarks are executed concurrently on the system.

A queue of benchmarks is generated, with each benchmark being introduced into the system according
to a delay distribution. Different delay distributions, numbers of concurrent routines, and placement
algorithms are tested to thoroughly assess the system’s behavior.

Among the placement strategies evaluated, one is based on the class-oriented categorization produced
by the machine learning model. This approach places tasks intelligently based on their predicted re-
source behavior. Additionally, several baseline placement algorithms are implemented for comparison,
including random placement and round-robin placement.

This experimental setup provides insights into the benefits of intelligent workload placement in het-
erogeneous memory systems and highlights the advantages of class-based placement in dynamic mul-
titasking scenarios.

4.6.1 Proposed Class-Based Placement Algorithm

The Class-Based Placement Algorithm was designed to efficiently manage tasks by considering the
memory characteristics of each program. This algorithm leverages the classification of programs as
determined by the model that has achieved the highest accuracy. Each task is classified into one of
the following categories:

e CPU-Intensive
¢ Memory-Intensive
¢ Read-Intensive
o Write-Intensive

Once classified, tasks are assigned to either DRAM or PMEM based on their characteristics and
the specific requirements of each memory type. The placement logic follows a set of rules designed
to maximize system performance by balancing memory usage and exploiting the strengths of each
memory type. Below is the reasoning behind the task assignment:

e CPU-Intensive tasks are always assigned to PMEM. CPU-Intensive tasks generally require
minimal memory bandwidth, as their operations are primarily dependent on the processor’s com-
putation. PMEM (Optane) provides lower bandwidth compared to DRAM, but this is sufficient
for tasks that do not demand high memory throughput. Assigning CPU-bound tasks to PMEM
ensures that DRAM resources are preserved for more memory-demanding tasks. This allocation
also avoids hindering the CPU-intensive tasks with slower memory access, as their performance
is more dependent on computational power than memory speed.

50

4.6. Evaluation using a Class-Based Algorithm

CPU
Intensive
N/ Yes
Memory
Intensive

N(/ Yes

The number of active
PMEM tasks exceeds the number
of active DRAM tasks

Yes \No

The number of active
DRAM tasks exceeds the number
of active PMEM tasks

Yes \\Io

Read
Intensive

W

Figure 4.6.1: Diagram of Class-Based Placement Algorithm.

e Memory-Intensive tasks are always assigned to DRAM. Memory-intensive tasks require high
memory throughput to operate efficiently. DRAM is significantly faster than PMEM, especially
for tasks that involve frequent and large-scale memory reads and writes. These programs benefit
from the high bandwidth and low latency provided by DRAM, which enables them to execute
more rapidly. By assigning memory-intensive tasks to DRAM, we ensure that they are not
bottlenecked by slow memory access and maximize their performance.

e Read-Intensive tasks are assigned based on the current system load: Read-intensive tasks
involve frequent memory reads. While DRAM offers superior performance for read operations,
PMEM handles reads more efficiently than writes and is therefore a suitable candidate when
DRAM resources need to be preserved. To optimize memory utilization, read-intensive tasks are
initially assigned to PMEM, reserving DRAM for tasks with more demanding memory require-
ments. However, if PMEM is currently experiencing a higher load, these tasks will instead be
assigned to DRAM to maintain system balance and avoid overloading a single memory type.

e Write-Intensive tasks are assigned based on the current system load: Write-intensive tasks
frequently update memory, requiring a memory type that can handle high write speeds. While
DRAM is better suited for write-heavy workloads compared to PMEM, the algorithm considers
the current memory load. If DRAM is heavily used, write-intensive tasks can be directed to
PMEM, as long as the PMEM resources are not overloaded. In this way, the algorithm ensures
that write-intensive tasks do not suffer from delays due to resource contention, balancing the
system’s performance based on available memory resources.

The algorithm follows a set of prioritized rules and executes the first rule that is satisfied:
o If the task is classified as CPU-Intensive, it is assigned to PMEM.

o If the task is classified as Memory-Intensive, it is assigned to DRAM.

o1

Chapter 4. Proposed Methodology

e If the number of active tasks in PMEM exceeds those in DRAM, the task is assigned to
DRAM to balance the load.

e If the number of active tasks in DRAM exceeds those in PMEM, the task is assigned to
PMEM.

e If the number of active tasks in both PMEM and DRAM is equal, the decision is based on the
task type:

— Read-Intensive tasks are assigned to PMEM, as it handles read operations better than
writes and preserves DRAM for more demanding tasks.

— Write-Intensive tasks are assigned to DRAM, which offers superior write performance.

The goal of the algorithm is to optimize both performance and resource utilization. It ensures
that each task is assigned to the most appropriate memory resource based on its specific characteristics.
This helps prevent any memory resource from becoming a bottleneck, improving system efficiency and
maximizing throughput by leveraging the strengths of both DRAM and PMEM.

4.6.2 Benchmark Arrival Distributions

To simulate a realistic multitasking environment, various statistical distributions are used to model the
arrival times of benchmarks into the system. Specifically, three types of distributions are considered:

e Uniform Distribution
¢ Gaussian (Normal) Distribution
e Poisson Distribution

For all distributions, the mean arrival time is set to 1 minute, reflecting the average execution time
observed across all benchmarks. A variance of 30 seconds is applied to introduce natural variability
and simulate non-uniform arrival patterns.

In each experimental scenario, a batch of 10, 20, or 30 benchmarks is introduced into the system
according to the respective delay distribution. This setup allows for testing under different workload
intensities and timing conditions.

The use of diverse distributions ensures a comprehensive evaluation of the placement algorithms’
robustness and adaptability under varying system loads and arrival patterns.

4.6.3 Placement Algorithms

In this study, five different placement algorithms are evaluated, each designed to allocate tasks to a
single memory type - either DRAM or PMEM. The algorithms differ in how they assign tasks based
on the memory demands of the programs. The following placement strategies are evaluated:

e All in DRAM: In this scenario, all programs are assigned to DRAM, regardless of their memory
requirements. This simple placement approach does not take into account the different memory
demands of the tasks, making it a baseline for comparison.

e All in PMEM: All programs are assigned to PMEM (Optane), independent of their memory
demands. Like the "All in DRAM" approach, this method ignores the task classification and
assigns all tasks to PMEM. This serves as another baseline to evaluate the performance when
only one memory type is used for all tasks.

¢ Random Assignment: In this case, tasks are randomly assigned to either DRAM or PMEM.
There is no consideration of the specific memory requirements or characteristics of the tasks.
This method serves as a control to evaluate how well a random distribution of tasks performs
compared to the other, more optimized methods.

52

4.6. Evaluation using a Class-Based Algorithm

¢ Round Robin: The Round Robin placement method alternates between assigning tasks to
DRAM and PMEM in a cyclic manner. After each task is assigned, the placement assigns the
next task to the opposite memory type. This method ensures that both DRAM and PMEM are
used evenly across all tasks, providing a balanced approach to memory resource allocation.

e Class-Based Algorithm: The Class-Based Placement Algorithm classifies tasks based on their
memory needs and assigns them to the appropriate memory type. CPU-Intensive tasks are
assigned to PMEM, Memory-Intensive tasks to DRAM, and Read and Write Intensive tasks are
assigned based on the current load and characteristics of the memory types. This algorithm aims
to optimize system performance by using the strengths of each memory type for the corresponding
tasks.

Each of these algorithms will be evaluated based on system performance, memory utilization, and task
execution efficiency. The goal is to understand how different placement strategies affect overall system
performance and resource allocation, and to compare these methods against one another to identify the
most effective strategy for optimizing memory usage in a system that uses both DRAM and PMEM.

4.6.4 Performance Measurements

To evaluate the performance of the different placement algorithms, a set of key metrics are measured
across the 15 runs (3 delay distributions x 5 placement algorithms). These measurements help to
assess how well the system performs under different placement strategies, taking into account the total
execution time, memory accesses, and memory utilization. The following metrics are used:

e Total Execution Time: The total execution time for all tasks under each placement algorithm.
This is a primary metric for evaluating how efficiently the system processes the benchmarks. The
goal is to minimize the execution time to ensure optimal performance.

¢ PMEM Accesses: The number of times PMEM (Optane) memory is accessed during the
execution of the benchmarks. This metric is important to measure how often PMEM is being
used and its efficiency in handling tasks. The goal is to minimize PMEM accesses to reduce
latency and increase overall system performance.

e Memory Utilization: The total utilization of DRAM and PMEM memory during the execution
of the tasks. This includes how much of each memory type is being actively used by the system.
The objective is to maximize memory utilization, ensuring that both DRAM and PMEM are
efficiently leveraged, without overloading either resource.

e Task Execution Time Degradation: The increase in the execution time of tasks when placed
under non-ideal memory configurations. This metric helps to quantify how much slower a task
becomes when not placed in the preferred memory (e.g., a memory-intensive task in PMEM). It
provides insight into the placement algorithm’s impact on individual task performance.

The performance evaluation aims to achieve the following goals:

e Minimize Total Execution Time: The primary goal is to reduce the total execution time,
ensuring that tasks are completed as quickly as possible, regardless of the memory type assigned.

e Maximize Memory Utilization: The goal is to maximize the usage of both DRAM and
PMEM, ensuring that resources are fully utilized without being under- or over-utilized. This
allows the system to maintain high performance while efficiently balancing the workload across
available memory types.

e Minimize PMEM Accesses: PMEM is slower than DRAM, so minimizing the number of
accesses to PMEM is critical for maintaining performance. The fewer accesses to PMEM, the
better the system can utilize its faster memory resources (DRAM), improving overall task exe-
cution efficiency. Additionally, frequent access to PMEM can reduce its lifespan over time. By
minimizing PMEM accesses, we not only improve performance but also extend the operational
lifespan of PMEM, ensuring that the system remains reliable and efficient in the long term.

33

Chapter 4. Proposed Methodology

e Minimize Task Execution Time Degradation: The aim is to reduce the extent to which
tasks slow down due to suboptimal memory placement. By reducing degradation, the algorithm
ensures fairer and more consistent performance across different task types. Minimizing execution
time degradation also leads to increased task throughput, as more tasks can be completed in a
given time frame, ultimately improving the overall efficiency of the system.

These measurements serve as the foundation for evaluating the effectiveness of the placement algo-
rithms. By comparing these metrics across all experimental runs, we can determine which placement
strategy provides the best balance between performance and resource usage.

54

Chapter 5

Experimental Evaluation

This chapter presents the experimental evaluation of the proposed methodology, aiming to assess the
effectiveness of the classification process and to analyze the performance impact of different machine
learning models and feature reduction techniques in a hybrid memory system context.

The evaluation begins with a detailed description of the hardware setup used to execute the benchmarks
and collect profiling data. This includes the system configuration and the characteristics of the DRAM
and PMEM memory modules.

Subsequently, the datasets used for classification are introduced. These datasets were created based on
the profiling results and include labeled benchmark data categorized into performance-related classes.
The categorization process and class definitions are explained in detail.

The next section evaluates the classification accuracy of the machine learning models. The impact
of feature reduction is explored by comparing model performance across three scenarios: the original
dataset, a reduced dataset using feature importance, and a PCA-transformed dataset. The best-
performing model is selected based on accuracy for use in the final algorithm.

Finally, the classification is applied in a multitask scheduling environment using the proposed Class-
Based algorithm. The scheduling performance is assessed through a series of experiments and compared
against several baseline algorithms. The evaluation focuses on total execution time, PMEM accesses,
memory utilization, and task execution degradation, offering insights into the effectiveness of class-
based memory-aware placement.

5.1 Hardware Setup
The experiments were conducted on a system equipped with both DRAM and Intel Optane memory

to evaluate benchmark performance under different memory configurations. The detailed hardware
specifications are presented in Table 5.1.

Component ‘ Specification
CPU 2x40 core Intel Xeon Gold 5218R CPU@2.10GHz
DRAM 4x32GB DDR4 DIMMs

Optane Memory | 6x256GB Optane DC NVDIMMs

Table 5.1: Hardware Specifications of the Experimental System

The system was configured to run each benchmark under two memory setups: one using only DRAM
and another using Intel Optane DIMMs. This allowed for a direct comparison of performance under

35

Chapter 5. Experimental Evaluation

different memory architectures. The profiling process collected various execution metrics, which were
later used for classification.

5.2 Dataset

In this section, we present the dataset with the features and their corresponding classifications. The
benchmarks are categorized into four classes based on the profiling results. The table 5.2 displays the
benchmarks, the 14 features extracted from profiling, and their corresponding classes.

The class assignments were made according to the criteria defined in Section 4.4.5. The dataset will
serve as the foundation for the training and evaluation of the machine learning models in later sections
of the methodology.

5.3 Classification Modeling

In this section, the results of the classification modeling are presented. First, the Random Forest model
was used to identify the most important features. After reducing the dataset to the most important
features, Principal Component Analysis (PCA) was applied to further reduce the dimensions to two.

5.3.1 Feature Reduction using Random Forest

The Random Forest model was trained on the original dataset, and the most important features were
selected. The selected features were those that contributed to 70% of the total importance score.
Notably, the most important features identified were the write bandwidth on DRAM, the L3 cache
misses and the read and write bandwidth on Optane. This is significant because two out of these four
features (read and write bandwidth on Optane) were used in the classification criteria to categorize
the benchmarks into Memory-intensive, CPU-intensive, and other classes.

This demonstrates the effectiveness of the method, as the rejection of irrelevant information and retain
of the most important features is achieved. The reduced dataset, with only the most important
features, is shown in Table 5.3.

5.3.2 Dimensionality Reduction using PCA

Next, PCA was applied to the reduced dataset to further decrease the dimensions to two. This step
allows for better visualization and facilitates model performance improvements. The resulting dataset
with two dimensions is shown in Table 5.4.

The PCA coefficients for the two components are shown below in Table 5.5.

56

Classification Modeling

5.3.

(sjeqer] pue seanyesq) 1eseIR(:g'C O[qeL

QATSURJUT-peSY 12°998 LE'TREL 96'42SE 95°98ETE 20°er 820 €00 LTLLT 120 950 S0SFEOV0E9 FOOTSLILESH 65T e [JAEH
ATSTIAYUT-RaY 66'808 8T'ETO8 £2°9808 2108528 61°¢p g0 €00 8L'E8T 120 ero PTE6SEIER0T TEV6SERIEES 992 99 0T 2
ATSTOYIT-ROY TI'8ER 68°2Z8L $6°L82E VO'TIETE wep 120 €00 90081 120 ero SPEOOPISSL 9SPELITLY6S 18T w 00T 3
ATSTIOYIT-PRaY ov'T6 V0°38TL 8797 2208021 are 2g0 U] ¥6°0T 00 c9'0 OF8L6LS9 STTLECETOLT 091 6 T9)SNIUIRONS
OATSTIONIT-DYIAN £26121 686261 £2'19L6 £9'1ZEST k4al PLO 00 ¢8'86 TLo 01’0 TTVR9S6866 OPPEERLLETT ge1 8T ¢l dsss
PAISUIDIIT-DIIAN 7 eLel 9TELIT €616 £6°CCOET oret cLo 00 9L'801 cLo 0r'o VRLI0ZSY6LT FREVSIGEE6E e g g1 dsss
DAISUOIUI-DIIAN £L739¢1 073907 68'095% LRE1LE 8¢€T PLO 900 0807 €90 c0'0 8298COLI9GT 96TELELITLE €31 19 001~ dsss
aATSUIUL-N dD 61°0 150 £6°62 £6'8¢ 60°0 €60 06G €10 160 06'G SST66ETT SZ06ILSY 18 98¢ gA RmRINIes
oATSUNUL-N D aro 91°0 0082 $T'8¢ 110 160 80°¢ ¥T0 060 80°€ 96V£T8EY 96206087 €8¢ 08¢ SY R WIS
aAIsTOJUT-A10WD Y 9" eLTT 6T°65€7 L81288 8T°T8TZT 96°2T 060 200 9T°EL 68°0 910 870988688E 0998L8LTSTT 09 1 ¢ Amds™ad
aAISTaJIT-A10UID Y 95°6OTT £6°8T6¢ 00°6LES T8°L2TFE 8692 €60 900 69°8L €60 110 2100892819 008E6EREC0T c01 1z 0¢1~ Awmds™ ad
aAIsTaJIT-A10UIATY 699¢TT VEECHT G9°648% 8T°609¢C [ilad 160 200 69°6. 160 110 0PS6EV8TIF TEESTLTIFFL 9L 81 001~ Awmds™ad
aATSURJUT-peSY 67" LTTT feai<ld £6'86L8 96°€5£5T cT'68 €60 900 ¥6'50T 76°0 110 896TOB00TS 09GFLECPLET 231 23 00g~ 1d
aATSURJUT-peSY 62°TETT Prddazd 8€°2197 T8°T6L6T oL 16'0 700 Ve'8L 620 €10 9L0EEGSRITT 098TEFLILIF 981 62 00z~ 1d
ATSURYU]-A10TO]\ T9LIT 16°6PTS 98908 GL'P962T 2€6¢ 060 700 6599 89°0 00 TZ66Z9T0V6 T6SLERSTTES i 9 0c1 d
oATSUNIL-() D) T6'TeT 10°8¢1 76502 Le°eeg 920 ¢80 86T 980 80 0r'g P0908TL8T TST96EVFE €p v Topuyjed
oATSUNIT-() D) [R9%4 80°20€ 6€'18S gerage 050 880 160 720 78°0 101 TLEEREVOTT PPTIEIFE6LI 201 66 Tongapnred
PAISUDII-DILIA 67°€971 oL'LvL 08678 10078 610 980 61 <0 080 781 TELEVVESIT 0ZISEIIE9E €8 9] 9340041
PAISUOIUI-DIIAN LV'E691 PP9901 8L°096€1 £9'6626 09y L¥0 900 00°¢e 80 £9°0 ZIV006EVOPE 9GPT0STLREE 09z 8z Py
aATSUIUL-N dD 10°02 FO'TT 097V a6y aro 160 12T 710 060 3G 09€L8ET9 823E9ST8 78 2 a14203ma]
oATSUNUL-N dD 629 @98 a6er 99°¢g P10 680 44l P10 060 €T CTPL66T9 81280826 0€T 69 avese
ATSTRIUT-N dD) 99T 08T 19T 18'89 110 860 %60 zro 860 ¥6'T TLV00L8T TESTERLE 0€T 8¢ jodsjory
ATSTRIIT-N D) JARS 88'7EE 6V°€1T 10078 ce0 18°0 12T €20 00 16T 9€92SPIEFT 02996FT19Z veT 9 agiodsioy
PATSTRIIT-N D) £E°EP 88'6¢ 7799 7918 ero 68°0 ee'T 810 680 PET T60SFESFT FPG96120T 4 1¢ TreavTeay
PATSTRIIT-0 D) 79228 G802 £6'6LT 9V°202 cE'0 780 981 250 £8°0 LT PRPI96L9T 00ZF66FIT e e dnpop
PATSTRIUT-N D) PI°L0T 08°'7C L6'8Y 02’19 0 980 (VR 110 160 €8'T 9L0LL66T8 0ZE6LEECE g W 01d ™ y{Tewa10>
PATSTIRIIT-() IO 16°€8 LV'ET £L°67 16°TF 610 680 ¥eT 810 680 0€'T TEPITPIE 088881V 4 g Y1euIa100
PATSURJUI-DILIA 180611 88'€69 769889 L€0€8¢ 29’8 £9°0 €10 29'€8 090 L0 8PS6ITZ60F 9L0SE0TELY 89 6 PP
ATSTIOI]-A10TIO]\ ST9ETT 18°T6¢7 TTT9Te YO'TP69T 10°¢T 76°0 200 2029 620 61°0 S90£ET69S6 0STOSTETETE vET L€ 00§ AS” 99
ATSTIOJI]-A10TIO]\ 8L°092T 1¢°182p 92 TFSY 99'L8LF1 [160 €00 289 0L0 91’0 08L6LL695CT FZOPGOFIOTE 71 62 00g 48790
AISURYIL-£10MID]\ 99°€221 66°LL0F PETVEL 1€ 16861 cLel 060 200 988 880 &4l PPIE00TOVS SPESIOPIVEL €L 1 02148790
ATSUDIUL-PRAY 898201 VLELED 86'7L6L 08°G81LT 16°2% 920 900 z€9¢1 020 P10 TEG6OVTLIE TE6IETVRETT 89 1 00892
oATSULIUL-PRIY 08°CETT £6°9007 67 166L CRETELT V61T 1670 200 TL 9T 80 P10 T6V6VLI86E 080L908716 0¢ 8 0022
AISTOYIT-L10WO Y 06°9LTT 86°€TSE L6961 T89691 61T 850 200 Y6211 97°0 €10 802091929 0TLESTFICL 43 9 0G99
ATSTRIIT-N dD) 8VTT 06292 9668 QoEpL Pe1 €90 820 0¢°¢ 920 09°0 0F29ETFOrL 0F6ISLOTEET T8¢ 01e [eotED
PATSTRIUT-N D or°el 8LL 0€°9€¢ 7509 ¥T0 68°0 €T ero 680 0€'T 09068L68% TEE6999LE 187 98 sprendpoq
PATSTRIIT-N) ov°es €912 06221 LE00E 0 780 4 €20 P80 1 TEOTEE0ST TLYETPOCL L¥T 0€1 Sa[OPSPR[
AISTaYIT-£10UIA T 90°98TT T0°6€EE 88°ETER P9'8006T cE'L 4 0] 200 LTy €0 100 PIPLEFOPTY PRELVLLOEOT 99 6 008” s)q
PATSUOIUL-DILIA\ 761821 20°08TE TL6TER PI'H08ST PL9 L¥'0 200 09°¢p 0€°0 100 89VL0LT6ZE FVTLERVLLL 9y 002" s)q
PATSURJUL-DILIA 97°69€T LO'8V8E 89'6£28 VESTLYT 029 050 900 6107 €0 100 96L029L98¢ 0900Z8E6T9 8 g 0ST™s)q
ATSTIIU]-DIIA\ 89'TTCT 16°€612 CE'T9ETT 68'FTL6T 6761 ¢9'0 £0°0 VE'ETT 99°0 100 TP8SFOZTECT SPE6LEEVTIE 891 L1 0L 29
ATSTIOJUT-DYTIA 0L'TPET 69912 6L72hLe1 00°€979T 281 79'0 £0°0 C9'ELT g9'0 600 9S6262V99TT OVELLIFELET 82T 9 0829
PAISUOIIT-DIIAN 811881 020623 C1'96LY1 90°8V80% £0°02 79°0 £0°0 1683 L9°0 010 STI69IPLEIE 9EII6RTOLYY 867 %4 001729
AISURIUI-DIIA PIE6ET 6979627 9L'€8z1 66'1EL £ 860 €20 96'1€ 120 060 89T€660L87 TIELEOSIEL 24 61 doadypeq
oAsUNUL-N dD L0°€ 08'T £9°ce €108 £1'0 @60 19 aro 160 9L'g 9265292 0V8122E A 2l yreworpne
(sueydQ) (sue3dQ) (wvyaa) (wvyaa) (sueydQ) (sueydQ) (sueydQ) (wvya) (wvyaa) (Wvya) sessesoy sossodoy (euwydQ) (INVHA)
sse|) (s/am) ma (s/am) Mg (s/am) Mg (s/aIN) M (€31) sossIN €1 oned NH €1 odi (€>1) sossIN €T oned MH €1 Od1 OIIM. peoy (s) owry, (s) oy, | Sjrewyoueg
wdmhg JO ueoN ﬂvﬂﬂ‘m Jo ueaN wamha Jo ueoN vaw‘m Jo ueaN Jo ueoN JO ueoN Jo ueoN Jo ueoN JO ueoN JO ueoN 1eloLn TeloL 09Xy "09XH

o7

Chapter 5. Experimental Evaluation

Mean of Write Mean of Mean of Read Mean of Write
BW (MB/s) IPC L3 Misses (KB) BW (MB/s) BW (MB/s) Class
(DRAM) (Optane) (Optane) (Optane)
audiomark 35.63 0.13 1.80 3.07 CPU-Intensive
backprop 1253.76 4.23 2295.69 1593.14 Write-Intensive
bc 100 14796.15 20.03 2250.50 1521.48 Write-Intensive
be_50 12742.79 18.52 2166.79 1541.70 Write-Intensive
be_70 14361.35 19.49 2193.91 1511.68 Write-Intensive
bfs 150 8239.68 6.20 2848.07 1369.46 Write-Intensive
bfs_ 200 8319.72 6.74 3180.02 1221.94 Write-Intensive
bfs_ 300 8313.88 7.35 3339.01 1156.06 Memory-Intensive
blackscholes 122.90 0.25 221.65 85.40 CPU-Intensive
bodytrack 36.30 0.14 7.78 12.10 CPU-Intensive
canneal 333.41 1.34 262.90 124.28 CPU-Intensive
cc_ 150 7964.97 21.92 3513.98 1176.90 Memory-Intensive
cc_200 7994.49 24.94 4006.93 1135.80 Read-Intensive
cc_300 7974.98 27.91 4373.74 1078.68 Read-Intensive
cc_sv_150 7342.54 13.75 4077.99 1273.66 Memory-Intensive
cc_sv_200 4841.56 28.45 4281.51 1260.78 Memory-Intensive
cc_sv_300 5162.22 15.01 4591.81 1236.25 Memory-Intensive
cfd 6886.94 8.62 693.88 1190.81 Write-Intensive
coremark 29.73 0.19 13.47 33.51 CPU-Intensive
coremark _pro 48.97 0.44 24.80 107.14 CPU-Intensive
dedup 173.93 0.35 208.75 327.64 CPU-Intensive
heartwall 66.44 0.15 39.88 43.33 CPU-Intensive
hotspot3D 213.49 0.35 334.88 473.17 CPU-Intensive
hotspot 41.61 0.17 1.50 1.66 CPU-Intensive
lavaMD 43.95 0.14 8.65 6.59 CPU-Intensive
leukocyte 44.60 0.12 11.04 20.01 CPU-Intensive
lud 13960.78 4.60 1066.44 1693.47 Write-Intensive
myocyte 549.50 0.19 747.70 1463.49 Write-Intensive
particlefilter 531.39 0.50 302.08 275.10 CPU-Intensive
pathfinder 205.94 0.26 128.01 124.92 CPU-Intensive
pr_150 3706.36 39.32 5149.51 1176.22 Memory-Intensive
pr_200 4612.38 41.72 5422.27 1134.29 Read-Intensive
pr_300 5758.93 39.15 5825.22 1117.49 Read-Intensive
pr_spmv_ 100 5859.65 24.26 4453.24 1156.69 Memory-Intensive
pr_spmv_ 150 5375.00 26.38 5918.33 1165.56 Memory-Intensive
pr_spmv_75 5824.57 22.95 4339.19 1175.46 Memory-Intensive
securemark tls 28.00 0.11 0.16 0.15 CPU-Intensive
securemark _v2 29.93 0.09 0.21 0.19 CPU-Intensive
sssp_ 100 2560.89 13.58 2062.70 1262.73 Write-Intensive
sssp 150 7919.53 15.10 2173.16 1275.24 Write-Intensive
sssp_ 75 9761.23 14.24 1929.89 1219.23 Write-Intensive
streamcluster 464.81 3.12 7222.04 94.46 Read-Intensive
tc_ 100 3257.94 43.41 7822.89 838.12 Read-Intensive
te_150 3085.23 45.19 8013.28 808.99 Read-Intensive
te_75 3525.96 42.02 7581.57 866.71 Read-Intensive

Table 5.3: Reduced Dataset after Random Forest Feature Selection

58

5.3. Classification Modeling

Benchmark ‘ PCA Component 1

PCA Component 2 ‘

Class

audiomark
backprop
bec 100
bc_ 50
bc_ 70
bfs 150
bfs 200
bfs 300
blackscholes
bodytrack
canneal
cc_ 150
cc_ 200
cc_ 300
cc_sv_150
cc_sv_200
cc_sv_300
cfd
coremark
coremark pro
dedup
heartwall
hotspot3D
hotspot
lavaMD
leukocyte
lud
myocyte
particlefilter
pathfinder
pr_ 150
pr_ 200
pr_ 300
pr_spmv_ 100
pr_spmv_ 150
pr_spmv_ 75
securemark tls
securemark v2
sssp_ 100
sssp_ 150
sssp_ 75
streamcluster
tc_100
tc_ 150
tc_75

-2.17
-0.01
1.92
1.65
1.84
0.71
0.68
0.67
-2.04
-2.16
-1.93
1.22
1.39
1.52
1.06
1.35
0.94
0.07
-2.14
-2.06
-1.81
-2.12
-1.65
-2.17
-2.16
-2.15
1.19
-0.65
-1.8
-2.01
1.73
1.92
2.02
1.25
1.58
1.19
-2.17
-2.17
0.13
0.78
0.85
-0.48
2.06
2.12
2.02

-0.21
0.49
1.8
1.6
1.77
1.1
0.91
0.81
-0.19
-0.21
-0.17
0.3
0.07
-0.14
0.41
-0.43
-0.06
1.17
-0.19
-0.15
-0.01
-0.19
0.08
-0.21
-0.21
-0.2
2.54
0.75
-0.02
-0.13
-1.17
-1.2
-1.07
-0.28
-0.72
-0.2
-0.21
-0.21
0.19
0.86
1.15
-1.73
-2.17
-2.31
-2.02

CPU-Intensive
Write-Intensive
Write-Intensive
Write-Intensive
Write-Intensive
Write-Intensive
Write-Intensive
Memory-Intensive
CPU-Intensive
CPU-Intensive
CPU-Intensive
Memory-Intensive
Read-Intensive
Read-Intensive
Memory-Intensive
Memory-Intensive
Memory-Intensive
Write-Intensive
CPU-Intensive
CPU-Intensive
CPU-Intensive
CPU-Intensive
CPU-Intensive
CPU-Intensive
CPU-Intensive
CPU-Intensive
Write-Intensive
Write-Intensive
CPU-Intensive
CPU-Intensive
Memory-Intensive
Read-Intensive
Read-Intensive
Memory-Intensive
Memory-Intensive
Memory-Intensive
CPU-Intensive
CPU-Intensive
Write-Intensive
Write-Intensive
Write-Intensive
Read-Intensive
Read-Intensive
Read-Intensive
Read-Intensive

Table 5.4: Dataset after PCA Dimensionality Reduction

Chapter 5. Experimental Evaluation

Feature ‘ PCA Component 1 ‘ PCA Component 2
Mean value of L3 cache misses / second (Optane) 0.521886078 -0.440656298
Mean value of Write BW (DRAM) 0.461346622 0.592826902
Mean value of Read BW (Optane) 0.495225754 -0.527654660
Mean value of Write BW (Optane) 0.519177876 0.419474491

Table 5.5: PCA Coefficients

5.3.3 PCA Visualization and SVM Classification

After performing Principal Component Analysis (PCA), the dataset was reduced to two dimensions.
This allowed for a clear visual representation of the benchmark classes in the reduced space. The
following figure shows the PCA visualization, with each point representing a benchmark. The color of
the points indicates their class, and it is evident that the benchmarks are well distributed in distinct
regions within the two-dimensional space.

Class
CPU-intensive
Write-Intensive %
Memory-intensive
Read-Intensive

O8O

Principal Component 2

-3 -2 -1 0 1 2 3
Principal Component 1

Figure 5.3.1: PCA Visualization of the Dataset and SVM Classification

From the plot, it is observed that the different classes are grouped together in separate areas. This
distribution suggests that the benchmarks of the same class share similar characteristics, and these
patterns are clearly visible in the PCA plot. The SVM model, when applied to this reduced two-
dimensional space, can easily draw linear boundaries between the classes. The well-defined regions
make it easier for the classifier to distinguish between the classes based on the extracted features.

These observations demonstrate that PCA has successfully captured the underlying structure of the
data in just two dimensions, and the SVM model performs well in separating the benchmarks into
their respective classes. This suggests that other models, such as Random Forest, KNN and Naive
Bayes, will likely perform well with this dimensionality reduction, as the data is now in a space that
clearly distinguishes between the different classes.

60

5.3. Classification Modeling

5.3.4 Training and Evaluation with the Original Dataset

The first step involved training the models using the original dataset. The performance was evaluated
using only the accuracy metric. The accuracy results for each model are presented below.

1.0 T

o
)

\
o

\

E
N

Accuracy

}7

0.2)

0.0 : ; -
RF KNN NB

Figure 5.3.2: Box plots of accuracy on the Original Dataset

5.3.5 Model Training with the Reduced Features Dataset

After using Random Forest to reduce the dataset, the models were retrained on the reduced feature
set. The evaluation metrics for this dataset are shown in the same format below.

1.0 1 — —
0.8 i T
T L]
>
@ 0.6
—
=]
Iy
P4
0.4+
0.2 4
0.0 T T v
RF KNN NB
(Reduced) (Reduced) (Reduced)

Figure 5.3.3: Box plots of accuracy on the Reduced Dataset

5.3.6 Model Training with the PCA-Reduced Dataset

Next, PCA was applied to reduce the dimensionality of the dataset to two, and the models were
retrained on the PCA-reduced dataset. The evaluation metrics for this dataset are also shown below.

61

Chapter 5. Experimental Evaluation

1.0

| -
4‘
i

Accuracy
=]
o
o

0.4+
0.2
0.0 : T :
RF KNN NB
(PCA) (PCA) (PCA)

Figure 5.3.4: Box plots of accuracy on the PCA-Reduced Dataset

5.3.7 Summarized Results

The models were evaluated using three different scenarios: the original dataset, the important features
dataset, and the PCA-reduced dataset.

1.0 -
O [[
"] |]
o
2]
® 0.6 o
c
: 1
v
<
0.4 1
0.2 1 o
0.0 v . . - . . T T .
RF RF RF KNN KNN KNN NB NB NB
(Reduced) (PCA) (Reduced) (PCA) (Reduced) (PCA)

Figure 5.3.5: Box plots of accuracy of the models and datasets

The mean accuracy for each of these scenarios was calculated and the results are summarized in the
table below.

Scenario H Random Forest KNN Naive Bayes
Original Dataset 82% 58% 60%
Important Features Dataset 87% 68% 79%
PCA-Reduced Dataset 79% 2% 81%

Table 5.6: Mean accuracy values for all the evaluation scenarios.

The results in Table 5.6 reveal several noteworthy trends. First, the Random Forest model consistently

62

5.4. Evaluation of Results using a Class-Based Algorithm

performed well, achieving 82% accuracy on the original dataset, which increased to 87% with important
feature selection and remained high at 79% after PCA reduction. In contrast, the KNN model initially
struggled on the original dataset with an accuracy of 58%, but its performance improved significantly
to 68% when only the important features were used, and further to 72% after PCA reduction. Similarly,
Naive Bayes marked an improvement from 60% on the original dataset to 79% with important feature
selection, and then to 81% with PCA reduction.

These observations indicate that reducing the feature space - first by selecting the most relevant
features and then by applying PCA - not only helps to eliminate irrelevant information but also to
substantially improve the performance of models that are more sensitive to high-dimensional data. In
particular, the marked improvement for KNN and Naive Bayes suggests that this reduction method
effectively captures the underlying structure of the data.

Based on the accuracy values presented, the best performance was achieved by the Random Forest
model on the Important Features Dataset, with an accuracy of 87%. Consequently, the Random Forest
model trained on the Important Features Dataset will be used for further evaluation with the multitask
algorithm.

5.4 Evaluation of Results using a Class-Based Algorithm

This section presents the results of the experimental evaluation, focusing on the performance of the
proposed Class-Based Placement Algorithm in comparison with alternative placement strategies. The
goal is to assess how effectively each algorithm manages task scheduling and memory assignment in a
hybrid DRAM-PMEM environment.

The evaluation considers key performance metrics for each placement strategy. These metrics provide
comprehensive insights into the overall system efficiency, resource usage, and the impact of scheduling
decisions on task performance.

Experiments were conducted using three different delay distributions - Uniform, Gaussian, and
Poisson - to simulate varying task arrival patterns. Each of the five placement algorithms was tested
under these distributions, resulting in a total of 15 experimental runs. For each algorithm, the results
across the different distributions were averaged to produce a representative performance evaluation.
The resulting measurements are illustrated in the following figures.

5.4.1 Total Execution Time

The Total Execution Time is a critical metric for evaluating the efficiency of the placement algorithms.
It measures how quickly the system processes all incoming tasks, with lower values indicating bet-
ter overall performance. In this experiment, we compare the execution times across all placement
algorithms by averaging the results obtained under the different delay distributions. The findings are
illustrated in Figures 5.4.1a and 5.4.1b.

From the bar plots, several observations can be made. As expected, the DRAM-only algorithm
delivers the best execution times across all task volumes, while the PMIEM-only approach results in
the highest execution times due to PMEM’s slower performance.

The Random Assignment and Round Robin algorithms produce intermediate results, balancing
load but not optimizing memory performance characteristics. The proposed Class-Based Placement
Algorithm demonstrates a substantial improvement in execution time over these generic strategies.
Although not outperforming the DRAM-only case, it significantly reduces total execution time com-
pared to Random, Round Robin, and PMEM-only placement.

Additionally, the Class-Based Algorithm scales more gracefully with increasing task counts - the
growth rate of execution time is lower compared to Random, Round Robin, and PMEM-only place-
ment. Notably, the Round Robin algorithm shows a surprising dip in execution time when running 30

63

Chapter 5. Experimental Evaluation

= ORAM
B OPTANE

30001 &= Ranpom

s
3000 ~@ RANDOM
- ROUND ROBIN
o

CLASS BASED

3 ROUND ROBIN
3 CLASS BASED
2500

2500 a7
8 2000
H

ime (sec
1 Time (s

F 1500 £ 2000 2 o

Total Ti
Tot

1000

1500

1000
30 10

10 30

20 20
Number of Tasks Number of Tasks

(a) Total Execution Time for different placement (b) Total Execution Time vs Number of Tasks.
algorithms.

Figure 5.4.1: Comparison of total execution time across placement algorithms. Left: aggregated total
times. Right: scaling behavior with increasing number of tasks.

tasks, reaching performance close to that of the Class-Based Algorithm. This anomaly will be further
discussed after the presentation of all evaluation metrics.

5.4.2 Read and Write Accesses

Another important performance metric is the number of memory accesses - specifically, how often
PMEM is read from or written to. These accesses significantly impact both execution time and

memory longevity, particularly due to PMEM'’s slower speed and lower write endurance compared to
DRAM.

Figures 5.4.2 and 5.4.3 present the Read and Write Access patterns, respectively. Each figure includes
two plots: a bar chart comparing total accesses across placement algorithms, and a line plot illustrating
how accesses scale with the number of tasks.

- DRAM
B OPTANE
= RANDOM
=3 ROUND ROBIN
[CLASS BASED

o
O RANDOM _a
@~ ROUND ROBIN -

O CLASS BASED

2
@

Read Acceses (*1e+06)
Acceses (*1e+06)
a

Read

10 20 30 10 20

Number of Tasks Number of Tasks

(a) Total Read Accesses across placement (b) Read Accesses vs Number of Tasks.
algorithms.

Figure 5.4.2: Comparison of Read Access patterns. Left: aggregated Read Accesses. Right: how
accesses scale with increasing number of tasks.

The results show that the Class-Based Placement Algorithm significantly reduces PMEM read pres-
sure compared to Optane-only, Random, and Round Robin strategies. DRAM-only placement shows
zero PMEM accesses, as expected. Both Random and Round Robin placement exhibit intermediate
behavior between the Optane-only and Class-Based approaches.

For write accesses, a similar trend is observed. DRAM-only placement results in zero PMEM writes,
while Optane-only exhibits the highest write volume. Again, Random and Round Robin strategies fall

64

5.4. Evaluation of Results using a Class-Based Algorithm

- DRAM ~=- DRAM

B OPTANE -B- OPTANE

= RANDOM B RANDOM
=3 ROUND ROBIN @ ROUND ROBIN
[CLASS BASED O CLASS BASED

es (*1e+06)
eses (*1e+06)

Access
Read Acc

10

20 20
Number of Tasks Number of Tasks

(a) Total Write Accesses across placement (b) Write Accesses vs Number of Tasks.
algorithms.

Figure 5.4.3: Comparison of Write Access patterns. Left: aggregated Write Accesses. Right: how
accesses scale with increasing number of tasks.

in between, with the Class-Based Algorithm achieving a significant reduction in PMEM write traffic.
This not only enhances system responsiveness but also helps prolong the PMEM lifespan.

As with read accesses, the Round Robin placement approach shows an unusual stagnation between 20
and 30 tasks, indicating that this behavior will be explained along with the time constancy analysis.

5.4.3 Memory Utilization

Memory Utilization offers a deeper understanding of how effectively the system leverages available
memory bandwidth in both DRAM and PMEM throughout execution. This metric is split into
four components: DRAM Read Bandwidth, DRAM Write Bandwidth, PMEM Read Bandwidth, and
PMEM Write Bandwidth.

For each of the selected placement algorithms - Random, Round Robin, and Class-Based - we assess
utilization at three different task volumes: 10, 20, and 30 tasks. The results are illustrated using pie
charts, where each pie represents the average bandwidth usage over time, normalized to a baseline.
The baseline is defined as 100% utilization, calculated from the average bandwidth observed when all
tasks were forced to execute entirely in DRAM or entirely in PMEM, respectively.

Each pie chart, therefore, provides a relative measure of how much of the maximum potential bandwidth
(in either DRAM or PMEM) was utilized by a particular algorithm during the experiment. This
method enables a fair comparison across memory types and placement policies.

At 10 tasks, we observe that all three placement algorithms exhibit similar memory utilization, hovering
around 50%. This indicates a fairly balanced use of both DRAM and PMEM across the different
strategies. This balanced utilization is expected at lower task counts, where the system’s memory
demand is not yet overwhelming.

As the task count increases, the utilization patterns begin to diverge. The Random placement algorithm
shows a rise in PMEM utilization due to the random assignment of memory-intensive tasks. This
increased reliance on PMEM introduces limitations as the task load grows, which helps explain the
performance challenges associated with this algorithm.

The Round Robin algorithm, in contrast, slightly reduces its DRAM utilization while increasing its
PMEM usage. By 30 tasks, the system shows more stable access patterns, which reflects an efficient
balancing of memory resources. This gradual adjustment suggests that Round Robin can manage the
growing number of tasks by making better use of PMEM, and this is aligned with the decrease in
execution time and task access patterns observed earlier.

65

Chapter 5. Experimental Evaluation

DRAM DRAM PMEM PMEM
Read BW Write BW Read BW Write BW

CLASS BASED ‘ ‘

Figure 5.4.4: Memory Utilization (10 Tasks) across DRAM and PMEM for Random, Round Robin,
and Class-Based Placement Algorithms.

DRAM DRAM PMEM PMEM
Read BW Write BW Read BW Write BW

o ‘ ‘
ROUND ROBIN ‘ ‘
CLASS BASED ‘ ‘

Figure 5.4.5: Memory Utilization (20 Tasks) across DRAM and PMEM for Random, Round Robin,
and Class-Based Placement Algorithms.

66

5.4. Evaluation of Results using a Class-Based Algorithm

DRAM DRAM PMEM PMEM
Read BW Write BW Read BW Write BW

o ‘ ‘
69.8%
ROUND ROBIN ‘ .
CLASS BASED e -

Figure 5.4.6: Memory Utilization (30 Tasks) across DRAM and PMEM for Random, Round Robin,
and Class-Based Placement Algorithms.

|2/

The Class-Based placement algorithm presents the most notable shift. While DRAM utilization in-
creases slightly, PMEM usage decreases as the task load grows. This shift indicates that Class-Based
favors DRAM over PMEM as the workload increases, optimizing memory usage for better system
performance. As the load increases, this strategy adapts by relying on DRAM for more efficient
task management, ensuring that the system operates smoothly and avoids bandwidth saturation in
PMEM. This behavior shows that the Class-Based algorithm is better suited for handling large task
loads compared to the other algorithms, offering a more balanced and optimized memory resource
allocation.

5.4.4 Task Execution Time Degradation

Task Execution Time Degradation provides a detailed view of how each placement algorithm impacts
the performance of individual tasks relative to their ideal execution time on DRAM. To evaluate this,
we use box plots showing the normalized execution time for each task, where normalization is done
against the task’s execution time when run entirely in DRAM.

The box plots in Figure 5.4.7 present the execution time degradation of tasks under three different
placement algorithms - Random, Round Robin, and Class-Based. The execution times are normalized
to the DRAM-only baseline to highlight the deviation each task experiences when not executed in
DRAM.

As the number of tasks increases from 10 to 30, the Random placement algorithm exhibits a noticeable
increase in variance. This indicates that more tasks suffer from higher degradation, likely due to
arbitrary assignment to PMEM even when it negatively impacts performance.

The Round Robin algorithm follows a similar trend, with variance growing from 10 to 20 tasks.
However, at 30 tasks, the variance decreases, aligning with earlier observations in the execution time
and memory access results. This suggests that at higher loads, Round Robin unintentionally achieves
a more balanced use of PMEM and DRAM.

The Class-Based Placement Algorithm consistently shows the lowest execution time variance across all
task counts. The increase in variance as tasks row is minimal, indicating that the algorithm successfully

67

Chapter 5. Experimental Evaluation

Task Degradation
o
o

L e

RANDOM ROUND ROBIN CLASS BASED

Task Degradation

o

| =

RANDOM ROUND ROBIN CLASS BASED

Task Degradation
o
o

°
4 o

| =

RANDOM ROUND ROBIN CLASS BASED

Figure 5.4.7: Task Execution Time Degradation. Execution times are normalized to DRAM-only
execution. The top plot corresponds to 10 tasks, the middle to 20 tasks, and the bottom to 30 tasks.

mitigates performance degradation. This stable behavior reflects the model’s ability to place tasks in
memory types more suited to their profiles, preserving throughput and minimizing execution delays.

We can now interpret the observed behavior of the Round Robin algorithm at 30 tasks. While the
memory utilization results show increased use of PMEM, the Task Degradation plots reveal that Round
Robin maintains a relatively low task throughput. This combination suggests that, in the middle of
the execution, a significant portion of tasks were written to PMEM. However, by chance, many of
these tasks were not highly memory-intensive, resulting in fewer overall accesses despite heavy PMEM
usage.

The seemingly improved total execution time at 30 tasks can therefore be attributed to the fact
that execution time is heavily influenced by the duration of the last few tasks. It appears that,
coincidentally, the final tasks were assigned in a manner similar to the Class-Based algorithm, leading
to better performance in that specific case.

In conclusion, the improved result of Round Robin at 30 tasks is not a reflection of consistently efficient
placement, but rather a fortunate outcome caused by the specific task assignments at the end of the
workload. Unlike the Class-Based algorithm, Round Robin does not provide effective load balancing

68

5.4. Evaluation of Results using a Class-Based Algorithm

throughout the entire execution.

5.4.5 Summary of the Evaluation Results

The experimental evaluation demonstrates the effectiveness of the proposed Class-Based Place-
ment Algorithm, which leverages classification to make informed placement decisions based on task
characteristics and system state.

The Class-Based Placement Algorithm was compared against four baseline algorithms: DRAM-only,
PMEM-only, Random assignment, and Round Robin.

Across multiple metrics and experimental scenarios, the Class-Based approach demonstrated robust
advantages:

o Execution Time: The Class-Based algorithm consistently achieved lower total execution times
compared to Random, Round Robin, and PMEM-only strategies, second only to the DRAM-only
setup which is idealized and not scalable.

e Memory Accesses: It significantly reduced PMEM accesses by favoring DRAM when appro-
priate, thereby preserving PMEM lifespan and reducing latency.

e Memory Utilization: The Class-Based algorithm balanced memory usage effectively, adapting
to load and task types. As the number of tasks increased, it leaned more on DRAM, showing
intelligent resource management.

e Task Execution Time Degradation: It consistently showed the smallest variance in task
degradation, maintaining uniform task performance and high throughput. This implies better
scheduling consistency and more predictable execution times.

These results confirm that combining classification with resource-aware placement leads to improved
performance, better memory utilization, and more efficient use of hybrid memory systems. The
Class-Based Placement Algorithm not only optimizes for performance but also contributes to sys-
tem longevity and operational efficiency, making it a strong candidate for real-world deployment in
heterogeneous memory environments.

69

Chapter 5. Experimental Evaluation

70

Chapter 6

Conclusion and Future Work

This research presented a comprehensive methodology for classifying benchmarks based on their mem-
ory and CPU utilization profiles, with the ultimate goal of leveraging machine learning models for
efficient categorization. The approach involved the data collection through profiling, feature extrac-
tion, training machine learning models, and evaluation using various performance metrics. We focused
on four benchmark classes - Memory Intensive, Read Intensive, Write Intensive, and CPU Intensive -
based on the memory and CPU bandwidth usage characteristics during execution.

The methodology utilized supervised learning models, including Random Forest, K-Nearest Neighbors
(KNN), and Naive Bayes, which were trained on the original benchmark data, as well as reduced feature
sets. Through feature importance analysis, we reduced the number of features, retaining only those
deemed most important for classification. Principal Component Analysis (PCA) was also employed
to further reduce the dimensionality of the feature space, allowing for a two-dimensional visualization
and an improved classification performance.

Our experimental evaluation showed that the Random Forest model, when trained on the reduced
feature set, yielded the highest accuracy (87%), making it the optimal model for this classification
task. This result highlighted the effectiveness of feature selection and dimensionality reduction, as both
processes significantly improved the performance of the models. Additionally, the PCA visualization
demonstrated that the benchmark classes were well-separated in the reduced feature space, facilitating
effective classification even with minimal features.

The performance evaluation through standard accuracy metrics confirmed that machine learning mod-
els could accurately categorize the benchmarks, offering a promising solution for future benchmarking
and profiling tasks in similar contexts. This classification framework could serve as a foundation for
efficient resource allocation, system optimization, and performance analysis.

While the results of this thesis demonstrate promising performance in benchmark classification, there
are several directions in which this research can be expanded and improved. Some potential avenues
for future work include:

e Exploring Additional Models: Although Random Forest performed the best in this study,
other machine learning models, such as deep learning techniques or support vector machines,
could be explored for further performance improvements. Additionally, ensemble methods com-
bining multiple models may lead to better accuracy and robustness.

e Handling Larger Datasets: As the dataset size increases, the ability of machine learning
models to generalize and perform effectively will become increasingly important. Further research
could focus on extending this methodology to larger, more complex datasets.

e Incorporating Other Profiling Metrics: The current approach relied primarily on memory
bandwidth and CPU utilization. Future work could include additional profiling metrics such

71

Chapter 6. Conclusion and Future Work

as cache hit ratios, latency, or power consumption, which could provide more comprehensive
insights and improve classification accuracy.

By addressing these future challenges, the approach presented in this thesis could evolve into a highly
effective tool for benchmarking and performance analysis in diverse computing environments, offering
both predictive capabilities and actionable insights for system optimization.

72

Bibliography

1]

2]
3]

4]
[5]
[6]
7]

8]

19]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Z. Li and M. Wu, “Transparent and lightweight object placement for managed workloads atop
hybrid memories,” in Proceedings of the 18th ACM SIGPLAN/SIGOPS International Conference
on Virtual Execution Environments, 2022, pp. 72-80.

S. Akram, “Performance evaluation of intel optane memory for managed workloads,” ACM Trans-
actions on Architecture and Code Optimization (TACO), vol. 18, no. 3, pp. 1-26, 2021.

M. Jorda, S. Rai, E. Ayguadé, J. Labarta, and A. J. Pefia, “Ecohmem: Improving object place-
ment methodology for hybrid memory systems in hpc,” in 2022 IEEE International Conference
on Cluster Computing (CLUSTER), IEEE, 2022, pp. 278-288.

D. Shen, X. Liu, and F. X. Lin, “Characterizing emerging heterogeneous memory,” ACM SIG-
PLAN Notices, vol. 51, no. 11, pp. 13-23, 2016.

M. S. Marques, “Pnp: Rethinking page placement and persistence mechanisms to support the
new intel optane dc persistent memory,”

M. Marques, “Ambix: Rethinking linux’s page management to support the new intel optane dc
persistent memory,” Memory, vol. 1, p. L3, 2021.

S. Kumar, A. Prasad, S. R. Sarangi, and S. Subramoney, “Radiant: Efficient page table man-
agement for tiered memory systems,” in Proceedings of the 2021 ACM SIGPLAN International
Symposium on Memory Management, 2021, pp. 66—79.

J. Kim, W. Choe, and J. Ahn, “Exploring the design space of page management for {multi-
tiered} memory systems,” in 2021 USENIX Annual Technical Conference (USENIX ATC 21),
2021, pp. 715-728.

J. Izraelevitz et al., “Basic performance measurements of the intel optane dc persistent memory
module,” arXiv preprint arXiv:1903.05714, 2019.

H. Bahn and K. Cho, “Implications of nvm based storage on memory subsystem management,”
Applied Sciences, vol. 10, no. 3, p. 999, 2020.

P. Zuo, Y. Hua, and J. Wu, “{Write-optimized} and {high-performance} hashing index scheme
for persistent memory,” in 18th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 18), 2018, pp. 461-476.

K. Wu, Y. Huang, and D. Li, “Unimem: Runtime data managementon non-volatile memory-
based heterogeneous main memory,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, 2017, pp. 1-14.

J. Yang, J. Kim, M. Hoseinzadeh, J. Izraelevitz, and S. Swanson, “An empirical guide to the
behavior and use of scalable persistent memory,” in 18th USENIX Conference on File and Storage
Technologies (FAST 20), 2020, pp. 169-182.

C. Cantalupo, V. Venkatesan, J. Hammond, K. Czurlyo, and S. D. Hammond, “Memkind: An
extensible heap memory manager for heterogeneous memory platforms and mixed memory poli-
cies.,” Sandia National Lab.(SNL-NM), Albuquerque, NM (United States), Tech. Rep., 2015.
International Organization for Standardization (ISO) and International Electrotechnical Com-
mission (IEC), ISO/IEC 9899:2024 - Information technology — Programming languages — C.
ISO/IEC, 2024.

S. Shirvankar, “Statichmem: Static object placement methodology for heterogeneous memory
systems in hpc,” M.S. thesis, Universitat Politécnica de Catalunya, 2023.

Memkind(3) API [Online| [Accessed: 2025].

73

Bibliography

[18]
[19]

[20]
[21]

[22]
23]

[24]
[25]
[26]

[27]
[28]

[29]

[30]
[31]

[32]

[33]
[34]

[35]

|36]

[37]
138]
[39]

[40]

[41]
[42]

[43]

J. R. Quinlan, “Induction of decision trees,” Machine learning, vol. 1, pp. 81-106, 1986.

V. Podgorelec, P. Kokol, B. Stiglic, and I. Rozman, “Decision trees: An overview and their use
in medicine,” Journal of medical systems, vol. 26, pp. 445-463, 2002.

L. Breiman, “Random forests,” Machine learning, vol. 45, pp. 5-32, 2001.

A. Cutler, D. R. Cutler, and J. R. Stevens, “Random forests,” Ensemble machine learning:
Methods and applications, pp. 157-175, 2012.

G. Biau and E. Scornet, “A random forest guided tour,” Test, vol. 25, pp. 197-227, 2016.

R. Genuer, J.-M. Poggi, and C. Tuleau-Malot, “Variable selection using random forests,” Pattern
recognition letters, vol. 31, no. 14, pp. 2225-2236, 2010.

J. Laaksonen and E. Oja, “Classification with learning k-nearest neighbors,” in Proceedings of
international conference on neural networks (ICNN’96), IEEE, vol. 3, 1996, pp. 1480-1483.

G. Batista, D. F. Silva, et al., “How k-nearest neighbor parameters affect its performance,” in
Argentine symposium on artificial intelligence, Citeseer, 2009, pp. 1-12.

P. Cunningham and S. J. Delany, “K-nearest neighbour classifiers-a tutorial,” ACM computing
surveys (CSUR), vol. 54, no. 6, pp. 1-25, 2021.

J. Joyce, “Bayes’ theorem,” 2003.

F.-J. Yang, “An implementation of naive bayes classifier,” in 2018 International conference on
computational science and computational intelligence (CSCI), IEEE, 2018, pp. 301-306.

Y. Huang and L. Li, “Naive bayes classification algorithm based on small sample set,” in 2011
IEEE International conference on cloud computing and intelligence systems, IEEE, 2011, pp. 34—
39.

I. Rish et al., “An empirical study of the naive bayes classifier,” in IJCAI 2001 workshop on
empirical methods in artificial intelligence, Seattle, WA, USA; vol. 3, 2001, pp. 41-46.

K. P. Murphy et al., “Naive bayes classifiers,” University of British Columbia, vol. 18, no. 60,
pp. 1-8, 2006.

S. Vishwanathan and M. N. Murty, “Ssvm: A simple svm algorithm,” in Proceedings of the 2002
International Joint Conference on Neural Networks. IJCNN’02 (Cat. No. 02CH37290), IEEE,
vol. 3, 2002, pp. 2393—-2398.

A. Patle and D. S. Chouhan, “Svm kernel functions for classification,” in 2013 International
conference on advances in technology and engineering (ICATE), IEEE, 2013, pp. 1-9.

V. Jakkula, “Tutorial on support vector machine (svm),” School of EECS, Washington State
University, vol. 37, no. 2.5, p. 3, 2006.

A. Mathur and G. M. Foody, “Multiclass and binary svm classification: Implications for training
and classification users,” IEEE Geoscience and remote sensing letters, vol. 5, no. 2, pp. 241-245,
2008.

S. Karamizadeh, S. M. Abdullah, A. A. Manaf, M. Zamani, and A. Hooman, “An overview
of principal component analysis,” Journal of signal and information processing, vol. 4, no. 3,
pp- 173-175, 2013.

G. Ivosev, L. Burton, and R. Bonner, “Dimensionality reduction and visualization in principal
component analysis,” Analytical chemistry, vol. 80, no. 13, pp. 49334944, 2008.

P. M. Shenai, Z. Xu, and Y. Zhao, “Applications of principal component analysis (pca) in mate-
rials science,” Princ. Compon. Anal. Appl, pp. 25-40, 2012.

M. Mavungu, “Computation of financial risk using principal component analysis,” Algorithmic
Finance, vol. 10, no. 1-2, pp. 1 20, 2023.

C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec benchmark suite: Characterization
and architectural implications,” in Proceedings of the 17th international conference on Parallel
architectures and compilation techniques, 2008, pp. 72-81.

S. Che et al., “Rodinia: A benchmark suite for heterogeneous computing,” in 2009 IEEFE inter-
national symposium on workload characterization (IISWC), leee, 2009, pp. 44-54.

J. Poovey et al., “Characterization of the eembc benchmark suite,” North Carolina State Uni-
versity, vol. 32, pp. 37-50, 2007.

S. Beamer, K. Asanovi¢, and D. Patterson, “The gap benchmark suite,” arXiv preprint
arXiv:1508.03619, 2015.

?

74

Bibliography

[44] Y. S. U. Vishkin and Y. Shiloach, “An o (log n) parallel connectivity algorithm,” J. algorithms,
vol. 3, pp. 57-67, 1982.

75

	Περίληψη
	Abstract
	Ευχαριστίες
	Contents
	Figure List
	Table List
	Εκτεταμένη Ελληνική Περίληψη
	Εισαγωγή
	Σχετική Βιβλιογραφία
	Θεωρητικό Υπόβαθρο
	Μη-Πτητική Μνήμη
	Intel's Optane DIMM
	Σύγκριση Απόδοσης
	Memkind API
	Μοντέλα Μηχανικής Μάθησης

	Μεθοδολογία και Πειραματική Αξιολόγηση
	Ανάλυση Προφίλ και Χαρακτηρισμός
	Κατηγοριοποίηση
	Προσέγγιση Εποπτευόμενης Μάθησης
	Μείωση Διάστασης
	Μοντέλα Μηχανικής Μάθησης για Πρόβλεψη Κατηγοριοποίησης
	Αξιολόγηση με Χρήση Αλγορίθμου Βασισμένου σε Κατηγορίες
	Προτεινόμενος Αλγόριθμος Τοποθέτησης βάσει Κλάσεων
	Αλγόριθμοι Τοποθέτησης
	Συνολικός Χρόνος Εκτέλεσης
	Προσβάσεις Ανάγνωσης και Εγγραφής
	Χρήση Μνήμης
	Παράπτωμα Χρόνου Εκτέλεσης Εργασίας
	Περίληψη των Αποτελεσμάτων Αξιολόγησης

	Συμπεράσματα και Μελλοντική Δουλειά

	Introduction
	Related Work
	Theoretical Background
	Persistent Memory
	Non-Volatile Memory
	Intel's Optane DIMM

	Memkind API
	Machine Learning Models
	Accuracy Metric for Machine Learning Models
	Decision Tree
	Random Forest
	K-Nearest Neighbors (KNN)
	Naive Bayes
	Support Vector Machine (SVM)
	Principal Component Analysis (PCA)

	Proposed Methodology
	Overview
	Profiling and Characterisation
	Profiling Results
	Execution Time
	Instructions Per Cycle (IPC)
	L3 Cache Performance
	Memory Bandwidth
	Memory Accesses (Optane Only)
	Observations

	Classification
	Memory Intensive Class
	Read Intensive Class
	Write Intensive Class
	CPU Intensive Class
	Summary of Classification Criteria

	Machine Learning Models for Classification Prediction
	Supervised Learning Approach
	Dimensionality Reduction
	Machine Learning Models
	Training and Testing Procedure

	Evaluation using a Class-Based Algorithm
	Proposed Class-Based Placement Algorithm
	Benchmark Arrival Distributions
	Placement Algorithms
	Performance Measurements

	Experimental Evaluation
	Hardware Setup
	Dataset
	Classification Modeling
	Feature Reduction using Random Forest
	Dimensionality Reduction using PCA
	PCA Visualization and SVM Classification
	Training and Evaluation with the Original Dataset
	Model Training with the Reduced Features Dataset
	Model Training with the PCA-Reduced Dataset
	Summarized Results

	Evaluation of Results using a Class-Based Algorithm
	Total Execution Time
	Read and Write Accesses
	Memory Utilization
	Task Execution Time Degradation
	Summary of the Evaluation Results

	Conclusion and Future Work
	Bibliography

