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IlepiAnypn

H napouoa epyacia mpoteivel alyopiBpoug cuppoppwong oto miaioio tng Evepyng Ex-
pabnong Autopdt®yv, ot 0rtoiot aglorolouV YVOOoelg ard MPonyouevoUS YUPoUg ekpabnong
ya ) BeAtioon g anodoukotntag oty avadnnorn avunapadetypateov. H épngaon diverat
otnv agloAdynon ToU AVIKTUIIOU TG OTOX00£TN0NG TV VEOEKPIAONIEVOV KATAOTACE®V U1ag
unoBeong. Tpelg TPOmOooelg UapXoviov aiyopibpeov—ing pebodou W, tng pebodou Wp
kat g pebodou Random Wp—§okipdotnkav rapdadAnla pe pia véa ipoogyylon, ) pébodo
Stochastic State Coverage. Ta melpapatikd anotedéopata deixvouv Ott 1) TPOITOION O NG
pebobou Wp umepéxel g apXKhg g ekdoxrng. Avtibeta, ol tpororo)oelg g pebodou
W kat tng pebodou Random Wp, kabag kat n veompotabeioa pébodog, €dwoav pikid a-
noteAéopata, Xwpig oapry ouvodikr] PeAtimon oe O0Aa ta oevapla. H peldéin autr) Seiyvet
0Tl 11 OTOX00ETNON TOV VERV KATAOTACER®V H1ag Urndbeong propei va Pedtiooet v anodoorn
1OV 0KV ouppopdmong. MeAAOVIIKY) epyacia PITOPEl va £0TIACEL OtV S1EPEUVNOT TOV
OUVONK®V UIO T1G OIOieg EMTUYXAVOVIAl KAAUTEPA AOTEAEoPATd, KAOWG KAl OtV avAartugn

VEQV aAyopifpev ou akoAouBouv rapopola PooEyylon.

Aégerg KAeba

Expabnon Moviédev, Evepyr) Expdbnon Autopdtev, 'EAleyxog Aoyiopikou, 'Edeyxog
[TpwtokoAAwv, 'EAeyxog Zuppoppwong






Abstract

This thesis proposes conformance testing algorithms, in the context of Active Automata
Learning, that leverage knowledge from previous learning rounds to improve the efficiency
of counterexample search. The focus is on evaluating the impact of targeting the newly
learned states of a hypothesis. Three modifications of existing algorithms—the W Method,
the Wp Method, and the Random Wp Method—were tested alongside a novel approach,
the Stochastic State Coverage Method. Experimental results show that the modification
of the Wp Method outperforms its original version. In contrast, the modifications of the W
Method and the Random Wp Method, as well as the newly proposed method, yielded mixed
results, with no clear overall improvement across all scenarios. This study shows that
targeting the new states of a hypothesis may improve conformance testing performance.
Future work can focus on exploring the circumstances under which better results can be

achieved, as well as on the development of new algorithms that follow a similar approach.

Keywords

Model Learning, Active Automata Learning, Software Testing, Protocol Testing, Con-

formance Testing
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To repalalo autd mapouctddel ouvonuikd ota EAAnvika 1o ouvodo g Sutdopatiknig

epyaoiag.
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Elcayayn)

H expdbnon poviédev (Model Learning) eivat o topéag g €motping UrioAoylot@v 1oy
QOYOAEITAl PIE TV KATAOKEUT] HOVIEA®V OUCTNHAT®OV PEC® TNG TAPATHPNONG THS CUNIIEPTL-
@opdg toug. E1d1kotepa, n evepyr] ekpddnon avtopdtev (Active Automata Learning) avtui-
petemidetl o und pabnon ocvotnpa (SUL) wg éva paupo Kouti Kat tou JEtel epwtpata pe
axkoloubBieg e10060u, kabBodnywviag ) dadikacia pddnong. O TEA1KOG OTOX0G TG EKPAON-
01G EVEPY®V AUTOHRATOV £1val 1] KATAOKEUT] P1a§ PNXAVNG IIEMEPACHEVOV Kataotdoewv (FSM)
ou eivat 10oduvapn pe 1o SUL. Alagopetikoi adyopiBpot priopouv va npotabouv avaloya
e tov turo g FSM rou ermAéyetatl yia 1o teAko poviédo. H nmapovoa diatpiBr) aoyxoAeitat
e toug aAyopibpoug nmou kataokeuadouv pnyaveég Mealy.

Ot aAyopiBpot evepyrg ekpabnong avtopdi®v Asettoupyouv pe Bdon to mAaiolo tou e-
Adaxiota enapkoug daokdadou (Minimally Adequate Teacher), mou potaBnke 1o 1987 ano
v Angluin [4]. To MAT eivat £éva pavieio oU PIOPEL va Aravinoel 0€ EpROTHATA 100duva-
piag, 6nAadn av éva debopévo autopato sivat 1ooduvapo pe to SUL. Av 1o autoparo sivat
1ooduvapo pe 1o 1o SUL, o 6aokadog aravidet ‘vat’, eve av dev eivat, TapeXel KATIOA AKOo-
Aoubia e10060u OU Hl1aPoOPOITOlE TO CUYKEKPIPEVO autopato arnd to SUL, rmou ovopddetat
avunapadetypa.

Me autodv tov 1porio, 1 Sadikaocia ekpdabnong propel va xmwpiotet oe 6Uo Slakpitd pepn :
10 PEPOG NG KATAOKEUTG UTTODECE®V , TO OTToi0 Xe1piletal o aAyopiBpog ekpabnong, Kat to
HEPOG NG EMKUPKONG UTIoBEcE®V (epatnpa ooduvapiag), 1o oroio xepidetat o Saokalog.
T v npdgn, dev undpyxet £évag 8aokaldog rmou va £xet téAela yvoor) tou SUL, orote o 6aoka-
Aog mpooeyyidetat pe pebodoug eAcyxou cuppopgrong (Conformance Testing). Ot 11€6080t
eAéyxou ouppodppmong rpoortabouv va arodeifouv v 1w0oduvapia g undBeong pe to SUL
Kataokeudadoviag pla ooutta Soxkip®v, 1 oroia eivatl éva ouvoAo £100dwv yia to ocuotnuda,
Kdl pOTOVIag 1000 v unobson 0co kat 1o SUL pe kaBe nepinmtoon Sokiprg tou g oouitag
doxuwv. Av bev PBpebel kapia acupgwvia petaiy v §Uo cuotnudtewv, tote Sewpouvial
ooduvapa, eve av Bpebel pia acupgevia, ToTe 1) MEPIMI®OL SOKIUNG TOU TNV IIPOKAAECE
arote)el 1o avurapadetypa.

H épeuva yua v ekpdabnon PovieAVv ermkevipdvetat, petay aAAev, otV eAax10toro-
inon 1tou oUvoAIKOU ap1Bpou gpetudtev npog 1o SUL, 1600 katd tn SidpKela 10U PEPOUg
KATAOKEUTNG UTIOOEOE®V 000 KAl KATd 11 S1dpKela TOU PEPOUG EMKUPMOTG UTofEoemv. Q-
otooo, £xel anoderyBel [13, 1] 6Tt 0 apiBpdg OV EPATNHATOV KATA TNV EMKUPXON TG U-
moBeong eivatl o Kupiapxog mapdyoviag OTt0 TOU CUVOAIKOU aplfjiol eV EPRTHATOV ITOU
artootéddovtal oto SUL. Qg ek toUTOU, 10 evilapEPOV £xel petatoriotel otr BeAtiotonoinon
1OV aAyopifpev eAEyXOU CUPHROPPKONS.

Mua ouvénela tou mAatciou MAT eivat o011 6Aa ta pabnolakd mepapata Aetoupyouv
0g KUKAOUG KATAOKEUTG UTOBECEOV Kal emKUP®Oong urobéoewv. 'Onwg 9a dei§oupe ota e-
mopeva Kepaldala, o1 IEPIOCOTEPOL AAyOP101101 EAEYXOU CUPHOPPXOONG AVIIHETOITI{OUV KAOE
UnoBeon G ave§APNTO AVIKEIPEVO KAl HEV EMavaypnolorolouyv mAnpopopieg amnd ponyo-
Upevoug yupoug pabnong. H mapouoa epyacia diepeuvad niwg 1 TpOONOinor oplopévey au-
1OV IOV SNPOPIAGV aAyopiBueVv MOTE va EVoOPATOVOUV AN Popopieg anod Siipopoug yupoug

ennpeadel v anodotKOTA TOV EPATNHATOV TOUG, 1610g 000V apopd Tov apldpd TV epn-
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mpdtev ou artootédAoviat oto SUL.
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OcwpnTiro YnoBaOpo / Emrupwon YnoOeong

O 0KOIT0g AUTHg NG £VOTNTAg £ival va apouctactouV ot d1dpopeg 11€00601 Tou £xouv
XpnotporownBel yia v vdoroinorn g emKrUpeong unobeong (equivalence query) oto mAa-
1010 TV aAyopiBpwv evepyng ekpdabnong avtopdtev, Kabmg Katl va avadeixBouv oplopéva

XAPAKINPEIOTIKA Kal S1apopEg Ot IIPOOEYYIoEIS TOUG.

IIpoanattoupeva

Mia pnxavr) Mealy eivat pia e€aéa M = (S, Sp. I, O, 6, ), érou S eivatl 1o cUVOAO TRV
KAtaotaoemv, Sy €ival 1 apy1Kn Kataotaor, I eivat 1o aAgdaBnro e10660u, O eival 1o aApabnto
e€obou, & : S X I — S eival ) ouvdaptnon petdBaong kat A : S X I — O eivatl 1 ouvaptnon
e€obou. H ouvdptnon petdBaong avuoroiyiel pia katdotaorn kat éva oupBolo 10660u otnv
EMOPEVI KATAOTAOT], EVO 1] OUVAPTNOon €§0860U avtiotolyidel pia Katdaotaon Kat éva cUPBoAo
£10060uU 010 avtiotoixo oupBoAo e€66ou. To oUVoAo VAV TV duvatev akoAoubiOv £10060U

oupBoAietat pe I' kat 10 6UVOAO OAGV TV duvatov akodoubiwv e&6dou pe OF.

Tuxaiog 'EAeyxog

O twuyaiog éAeyxog rieptdapBavet ) detypatoAnyia tuxaiov akoAoudiov amnod to I, orou I
etvat 1o aAgabnro €10060u, KAl T XPNOIN AUTOV G MePUTIOoelS eAéyyxou. IlepltdapBavet
g twyaisg Sadpouég (random walks), Orou 10 PAKog TV akKoAoubidv €10060U akoAouBOet
YEDUETPIKI) Katavopr, Kat 1g tuyaieg Aé€elg (random words), 610U T0 NrKoOG 1V AKOAOUB1GV

€10060U gival opo1opopdpa Katavepnpévo 08 KATIO0 TIPOKAB0pIoPEVo £UPOG.

KdaAuvyn MetaBacewv / Emdoyn pe MetaAAagerg

H 1é606o0g Transition Coverage [2] Aettoupyel Snpioupymviag éva Peyddo cUVoAo eAEY-
X0V Eervaviag pe pia tuxaia dadpopr) péow tou unodeiypatog Kat ermALyovIag emavairn-
KA pia petaBaon tou poviédou v oroia mpoorabel va mpooeyyiost amo wmy pexovoa
Katdotaor. Télog, ektedeital akopn pia tuxaia diadpoprn. Agou mapaxBdei 1o ouvoldo e-
AEYX®V, €va UTIOOUVOAO TRV MEPUTIOOE®V EAEYXOU EMMAEYETAL AMANOTA, PE BAOT TO TTOCOCTO
KAAUYNG petaBaosmv TIou poodEpet 1 KABe mepinmiwor.

Ot ouyypageig yevikeuouv 1) péBodo, mapatnpoviag ot 1 KAAuyn petabdoswv dev -
tvat 1o povo €idog KAAUYNG IOU PUIopei va 0ploTel KAl 0Tl PUIOPOUV va XPNotornotnouv
dlapopetikd Kpunpla KAAuyng pe xpnon tedcotwv uetadiaéne (mutation operators). Ot
tedeotég petdAdadng 6éxovial wg eicodo pia pnxavr Mealy kat tapdyouv éva oUvolo pe-
taAdaypévav poviedov. Ot epuTt®oelg eAEYX0U ToU eTNAEYOVTAL Yid TO TEAIKO oUVOAO eivat
AUTEG TTOU TIPOOPEPOUV 11 PEYIOTN KAAUWDN, dnAadn autég mou Siakpivouv ta meploocotepa
petadAaypéva povigda.

Eivat eukolo va ernaAnBeubei ot o1 tedeotég petdAdalng eivat o yevikoi ard v KaAu-
yn petaBdoswv. Mropei va opiotei tedeotnig petdAdaing rmou addddet v €§odo piag ou-
YKekppévng petaBaong. H exktédeon authg tng petaBaong HUImopei va €Viortiosl T0 TOAU
évav petadAaypévo poviedo. ‘Apd, 1) ETMAOYT MEPUTIOOERDV EAEYXOU PACEL AUTOU TOU TEAEOT)

petadAadng eivat 10oduvapn pe v ermdoyn Pdoet kKAAuyng petabdoswv.
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Ixnpa 1: Awaypapua porig mg emifoyng Baotouévng oe uetaiiageis [2].

'Eva mAeovékinpa autng tng pebodou eivatl o1l propei va Xprolpornojoel yvoorn Tou
niebiou, dndabr] ouykekpipévoug tedeotég petdAdading, yia va evrortioet avurapadsiypata

o ArtodotKd.

H M£60o6og W

H 1€0606og W [5] xpnowonotel o ouvoAda: to ocuvolo W, mou ovopadetal ouvoo xa-
paxwmpiopuov, dndadr) éva ouvolo akoAoubidv £10660u ou Srakpivouv petaiy kabe feuyoug
Kataotacewv tou SUL, kat 1o ouvolo P, 10 omoio eival éva ocuvolo rAaAuyng petaBacewv
tou S. YmoBétel éva avwtato 0plo m otov apldpo tev kataotdoemv n tou SUL kat opidet
10 ouvodo I[m —n] = [Jg "I, émou I eivat 1o adpabnro £10660ou. To oUvolo eAEyxXOuU IOU
Kataokeuadel ) péBodog eival to ouvoAo akodoubiwv €10660u P-Z = P-I[m —n] - W, émou -
gival o 1eAe0TNS OUVEVROTG.

Ouoclaotikd, ot 100801 TIOU AVAKOUV 0T0 0UVOAO KAAUYng petaBdoenv P xprotpomnolo-
uviat wote kKabe akpr) va Stavubel toudayxiotov pia gopd, KA, yia v KATaotaon oty oroia
odnyel kaBe axpr|, xpnotpornolovvial ot £i00601 Tou cuvodou Z wkote va Siakpivoviat ot
KATaotaoets.

H 1pébobog W kat ot mapardayég g arodeikviouv coduvapia €0g 1o 0pto m. Auto
onpaivet ott, av 1o urnodetypa Sev armotuxel 0T0 OUVOAO €AEYXOU, TOTE £ite gival 100dUvapo
pe v SUL, eite to SUL £xel auotnpd mePIO00TEPES ATIO M KATACTACEIS.

H pébodog W eival avurpooerneutiko napddsiypa tov aiyopibpev tunou Ilpdo6aon-
Bnjua-Tavromoinon (Access-Step-Identify). Ilpokettat yia aAyopiOpoug dokipov cuppopde-
ong v omnoiwv 1 Asttoupyia prnopel va dwaipebel oe Tpia pépn: 10 PEPOS MPAoEaong, 6IoU
ETTITUYXAVETAL TIPO0BAOCT) O 1110 CUYKEKPIHEVT KATAOTAOT], T0 P1EPOS Bruarog, Orou eloayetat
pila akolouBia £€10660u yia petdBaon oe véa KATAOTAOL), KAl TO PEPOG TAUTOMOINONG, OIOU
eloayetat pia Srakpiuiky] akoAoubia yla tnv avayveplon g kataotaong. 'Exet mapatnpnOet
0Tl 0 POVOG TPOTTIoG PBedtivong T®V adyopibpev autng g Katmyopiag eival n BeAtioon tou

Bépoug tavtomoinong, Tou Paociletal otg draxkpliikég akoloubieg ou xprnotponoouviat [7].
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H Mepirn M£0odog W (M£€0o&og Wp)

H pepikr) pé6odog W (Wp-method) [16] eivat pia BeAtioon g pebodou W. Avti va xpnot-
porotet 1o Xovdp1ko ouvoldo xapaktnpilopou W, n pébodog Wp xpnotpornotet Aerttopepéotepa
ouUvolAa tautoroinong W; yia kdBe katdotaor s; tou SUL. Eekiva pe tnv entaAnBeuorn ot ot
Kataotdoeilg tou SUL eival tautornoinoieg oto unodeypda, eve rmapdlAnda KATtaokeUudadet
1a ouvola W;. Autd pmopouv va Xpnotpornonfouv PEIAyevesTEPA Yid TTI0 ATTOdOTIKY| £ITA-
ArBevon g woduvapiag tev petaBaocewv tou unodeiypatog pe avtég tou SUL.

Yrnidpyxet kat pia wyaia mapaddayr) auvirng g pebodou [15], omou ektedeitat €va tuxaio
UTIOOUVOAO TOU 0UvOAou eAéyyou. 'Exet mapatnpnOei ot Bpioketl avuurtapadeiypata tayxtepa

[3] [13], aAAd Sev amodeikvuetl 10oduvapia OnwG Ol VIETEPIIVIOTIKEG 1EBOBOL.

Evappoviopéva Avayvoplotirda Kataoctaocswv (HSI)

H péBodog HSI [20], oniwg kat ot pebodor W kat Wp, xprotponotet tyv €vvola 10U ou-
VOAOU XapPAKINP1opoU aAdd avayvepidet ot dev eival anapaitntn n Xpron oAOKAnpou tou
ouvodou. Avtibeta, XP1O0II0lEl UTTOOUVOAd AUToU TTOU ovopddovial evappoviopugva ouvoia
tavtonoinong kataotacewv (harmonized state identification sets). Autd ta cuvolda €xouv v
18101ta o1, av unapxetl Siakpiuiky] akoAouBbia yia SUo kataotdaoelg, TOTe autr eivatl mpodepa
Katl tov §Uo ocuvodwv. 'Eva mleovéktnpa g pebodou eival ot epappodetal Kal 08 PEPIKMG
OPIOPEVEG 1T VIETEPHIVIOTIKEG PNYXAVES KAl TEIVEL va TTAPAYEl PIKPOTEPA GUVOAA €AEYXOU OF

oxéon pe ug pebodoug W kat Wp.

IIpokaBoplopéveg Alarpitirég AkoAouBicg (PDS)

Ot nipokaBopiopéveg draxkpiuikeég akodoubieg (Preset Distinguishing Sequences) sivat
aKoAoubieg £10060U TTOU PIMTOPOUV va XPNOIHOTIow00UV yid TNV TAUTOIIoino g IPEX0Ucag
KATAOTAONG TOU OUCTHHATOG Ao OAeg Ti§ urtoAotrieg. Ouolaotikd, 1o o eAdyioto duvatd
oUvoAo xapaktnplopou W arotedeital ano pia povo iporaboplopévr S1akpitikn akoAoubia,
epOoov autr n akoloubia kai povo propet va Siaxkpivel kKABs kataotaorn and KAOs AAArn.
Auotuyag, pia tetola akodoubia dev untapyel oe kabe FSM kat, ©G €K TOUTOU, TEXVIKEG TTOU

Baoidoviat arokAeiotikd otnv vriapén PDS Sev propouv va Xpnopionoinfovv KaboAkda.

IIpocappooTiREG ALaRrpITIREG AROAOUOieg (ADS)

Mia ripooappootikn Stakpitikny akoAoubia (Adaptive Distinguishing Sequence) [19] e-
tvat éva 8évipo anopacemv Pe OTOXO0 TV TAUTOMOINOoT) NG TPEX0U0Ag KATAOoTAong T0U OU-
otjpatog. Aopikd, eivat éva §€vipo tou oroiou ot k6pBot eivatl £i0odol TOU AVILIOTOLXOUV OF
oUVOoAd TBAvVEOV KATAOTACE®V KAl Ol aKPEG ival £50601 TouU mapatnEoOUVIal WG ATIOKPIoEIg
otnv €10060. Alapépetl amno 11§ IPoraBoplopéveg S1aKPITIKEG akoAoubieg oto o1l mapatnpet
Vv £§060 TOU EKAOTOTE EPWIATOS KAl O OUVEXELA artodaacilet oo da eivatl 1o endpevo
oupBolo g axkolouBiag, avii va eivat n akodoubia mpoxkabopilopévn arod v apxn. To
MAEOVEKTNPA NG €ivat to ot pia FSM mou dev mapadéxetal PDS, pmnopel va napadéxetat
ADS. Qotooco, akopun kat pia ADS evdéxetal va pnv undapxet yla opiopéveg FSM, kat apa

bev propet va xpnotporonfel kaboAkda.
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Zxnua 2: AnAn ADS mou bgiyvel nog, ue gioodo ‘a’ kar £odo 0’, avayvwpiletar n karaotaon
qo, €V ue woodoug ‘ab’ kar efodoug ‘10° kar ‘11° avtiotorya, avayvwpi{ovial oL Kataotaoelg
q1 kat qa.

Ia Aoyoug cagrjvelag, mpémnet va avagpepbel ot ot ADS €xouv emiong xprotporonOet

Kdal 010 P€POog expabnong tov aiyopibpev AAL [12].

Y6p161kn IIpocappootiry) Atakpitiky) AKoAouOia (H-ADS)

Ot UBP181KEG TIPOOAPHOOTIKEG Hlakpitikeég akoAouBieg (Hybrid ADS 1) H-ADS) [24] BeAtt-
Gvouv 1ig ADS mpoogépoviag KaPoAkn epappootdtia. Bpioketat pia eAAinig ADS!, g
ortoiag ta UAAa propel va ivat cuvoAd KATaoTtACE®V avil yid Povadikég Kataotdoelg. AUt
1 akoAouBia eprmAoutidetal ot ouvexela e S1akpItikEG akoAoubieg avd (EUY0G KATAOTACERDV,

TIPOKEEVOU va H1akp1Bouv o1 Bavoi UoYn P10l KATACTACEDV.

Atloonpeinto eivat 6t ot ouyypadeig KAvouv eriong Xprjorn autou I0U AMOKAAOUV «U-
roaAgabnar (subalphabets). v rpooridBeia va Bpouv 1mo eUKoAa rapdieva avurapda-
Selypata, Snpioupyouv mpadta MEPUTINOELS EAEYXOU XPNOTHOTIOI®VIAG TO UITOAAPABnto mou
TIPOKUITIEL ATTO TO AVIUTAPASELY LA TOU TTPONYOUEVOU UTIOOEYIATOG KAt EMELTA TEPUTIOOELS
pe 1o mAnfpeg adpabnro. IIpokettal yla v nmpatn epdavion Petadoong yvaong arod mpon-

YOUHEVO TIPOG TO TPEXOV OTAd10 EMKUP®OTG UTTOOEOTG.

EAAuneig IIpoocappootirég Altakpltirég ARoAouOieg (I-ADS)

Ot eMneig ipooappootikeg Sakpitikég akoloubieg (Incomplete Adaptive Distinguish-
ing Sequences 1) I-ADS) [14] otoxeuouv eriong ot 610p0worn 1ev nieploplopev tv ADS. Ot
[-ADS eivat éva ouvoldo arto ADS mou propouv va xpnotpornoinfouv otav 6ev untapxet ADS
ya 1o 6ebopévo ovompa. Oucwaotikdg, ot [-ADS éxouv v i6wa 6opn pe pia ADS, adAa
1a @UAAa toug Sev amatteital va eivatl povadikeg KATAOTACELS" PIToPel va ival Kal oUuvoAa
katactacewv. 'Etot, 6tav katd ) didpkela g Siadikaciag tautonoinong ouvavidtal €010
@UAAO, otédvetal reset oto ocUuotnpa Kat pia akoAoubia rpooBaorng rou odnyei 1o ouotnpa os
£va oUvoAo TBAVAOV APXIKOV KATACTACE®V ITOU UITopouv rmAgov va diakpiBouv. Me auto tov
1po10, oAAEG [-ADS propouv va xpnotporotnfovv anod Kowvou «g pia ADS, aAdda anattouv

reset kKat ermumAéov akoAouBieg ipdoBaong.

lva pnv cuyyéetar pe v texviky) IADS mou éxet 1o i610 6vopa.
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ovvoflo yia pia UTOOETIKY autouarn Unxavn Ue MEVIE Karaotdoelw, amd toug Soucha and
Bogdanov [27].

T
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MéOGobog H

H 1pébodog H [7] [8] drapépet amod tig dAAeg neboddoug anopevyoviag t) Xprorn otabepov
dlakprukov akodoubiwv. Ot cuyypageig adlomolovyv 10 yeyovog Ott Kabe m-rAripeg oUvoAo
eAEyXOU mepiExel S1arPITIKEG akoAoubieg yia kKaBe petdBaor Tou ocuothpatog. Yoot pidouv
ot kaBe TAfPeg oUvodo edéyxou TS mepiéxel 10 oUvodo V - Pref(X™ 1), émou V eivat
éva KAE10T0 @G IMPOg Ta MPOoBEpata cUVOAO KAAUWNG KATAOTACERDV TG Ipodiaypadng kat X
etvat 1o aAgabnro €10060u. Av 1 unobeorn propel va drakpiBel anod v podiaypadr] PEO®
plag akoAouBiag €100860U PeyAAUTEPNG ATIO TO ETTITPEIIONEVO HI)KOG TOU OUVOAOU €AEYXOU,
10TE T0 OUVOAO €AEyXOU TepiEXEL olyoupa touddayiotov 6Uo akodoubieg rou eivatl pobépata
autng, odnyouv v undbeon otny idia katdotaon t, aAAd odnyouv v rpodiaypadn os SUo
O1aPOPETIKEG KATAOTACELS S1, Sp. LUVENMG, AV UTAPXEL pia akodoubia mou diakpivel 10 s
aro 1o Sy, 10t Hlakpivel Kat to t amnod ta S, Se. Me Bdon auth] ) Siartiotwor), IPoteivouv vav
aAyop1Op0 TTOU KATAOKEUALEL €va M-TIAN)PeG OUVOAO €AEYXOU HE TETO0U £idoug Srakpiiikég
aKoAouBieg, TOU 01010V 01 MEPUTINOELG EAEYXOU TelVOUV va elval PMKPOTEPES A0 eKelveg TG

napadootlakng pebddou W.

Mé:Oobog SPY

H 1ébodog SPY [23] amooxkorel ot peiowon tov 61akAad®oemv PEoa 0T0 GUVOAO €AEY-
xou. H diakAabwon cupBaivel 6tav H1adopeTIKEG TIEPUTIOOELS EAEYXOU Po1palovial £€va KOvo
npoBepa. 'Otav oupBaivel auto, T0 oUVOAO eAEyXOU TePLEXEL KATowa rAsovadovia dedopéva,
KaBwg 1 Kowvr] akoAoubia €10060uU 1penel va eravayprotpornonBet oAAég popég. Ot ouy-
YPAPEIG apatnpouv OtL, EPOcov £X0UV 1181 CUVIONEUTET 01 AKOAOUBiEG PETAPOPAG KAl £XOUV

Xpnotporonfel o1 1o oUvVIopeg H1aKPITIKEG AKOAOUOIEG, 0 11OVOG TPOTIOG TIEPATTEP® NEIOONG
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TOU PNKOUG TOU OUVOAOU €A€yXOU eival 1 peiwon tov Stakdadooswv. Andadn, n peiwon
TOU ap1Bpou eMavaypPnolPoIooe®Vv Kovav rpobepatov. Kabiepovouv 1ig ouvOrkeg mou
MPETIEL va TTANpoUVIaAl yia va ermteuxBel autr) n peiwon xopig va xabei n m-mAnpotnta Kat
nipoteivouv pia péBobo mapaywyng ouvodmv eAéyxou mou cuviuddel pikpd unoxkAadia oe

peyadutepeg akoAouBieg, 1€ anotédeopa PikpoOtEPa oUVOAd €AEYXOU.

MéOobog SPY-H

H pé6odog SPY-H [26] emixelpel va ouvdudoel ta mAsovektrjpata teov pebodov SPY kat
H, ®ote va mapaxbouv axkopn pikpotepa ouvola eAéyxou. Z1oxeuel va kavorotel g idieg
ouvOnkeg mou eSaocpadidouv m-mAnpotnta onwg n pébodog SPY, aAdd ermaAnBeuet v mpo-
OTIEAAO1A KATAOTAOT] PEO® S1AKPITIKOV AKOAOUB10)V, OTIMG AUTEG TTOU XP1O1H10II010UVIAl ATtd

) péBodo H.

Movtédo Zuvduaopot E1dirkov (Mixture of Experts)

H 1€06o6og Mixture of Experts [18] emixeipel va ermraxuvetl tnv avadftnor avurapadety-
PAT®V, SERKVOVTAG A0 PIKPOTEPA 0UVOAA €AEYX0OU TTOU £ivatl 1o rmbavo va ta mepiExouy, td
ortoia MPOKUIMTOUV AIld MPONyOUHEVOUS YUPOUS epatndtov tooduvapiag. Autd ta pikpote-
pa ouvola eAéyxou mapdayovial aro ‘€id1koug’ (experts), dnAdadr) ouvaptnoelg ou HExoviat
®g £l0060 pia AéEn kat pia pnyxavry Mealy kat ermotpédouv cuvoAa urtoaddabniev. H pébo-
60¢g propel va evoopatwbel oe orolovdnote ailyoptdpo tunou Access-Step-Identify (omwg
autoi movu meplypddpnKav napanave). Xpnotpomnotet évav ouvéuaopo autov 1oV e1I81KOV Kat
évav alyoplBpo evioyutikrg pabnong yla va mpooappodet Suvapikd v mbavotnta va a-
vadninBel avurapdderypa ota vrtioadpdabnta kabe e1d1kou oe kabe Soxkipr. O TBavotnteg
AUTEG PETAPEPOVTIAL KAl OTOUG ETTOPEVOUS YUPOUG £pOINHATOV 100duvapiag, Kabiotoviag
—Katd v drnoyn tou ouyypapea— v rpotn pébodo mnou aglorotel ocuotnpatika rinpo-

popia aro rmoAAarnid epeinpata woduvapiag.

AALpy Mavteia Icoduvapiag

H AALpy [21] eivar pua BiBA0OnKn yia v evepyr) ekpddnon avtopdtev oe Python, n
ortoia vAorolel Hrapopoug adyopibpoug pavieiov woduvapiag. To ouvolo 1@V vAoroupEvav
aAyopibuev mepldapBavel 1000 PeBOS0UG OTIHRG AUTEG TOU MEPLYPAPNKAV TTAPAIIAVE KAl
£€xouv agloloynBei oe Eexwplotég Hnooievioelg, 0600 KAl EUPETIKEG 1eBO6oug rou Sev £xouv
avadubel exktevg. Ot ouyypadeig TapEXOUV OUVOITTIKEG TIEPLYPAPES Yia AUTEG, aAdd Sev 11

a&loAoyouv Melpapatika.

Mavteio Eotiaong MetaBaoswv (Transition Focus Oracle)

To pavteio Transition Focus Baoietal oe Tuxaio mepinato Kat mapapeIponoleital pe pa
TIAPAETPO €, £101 Oote KAOe €10060¢g va 0dnyel otnv id1a kataotaon pe mbavotnta € Kat o

véa kataotaon pe rmbavotnta 1 — e.
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Mavteio Probably Approximately Correct (PAC)

To pavteio PAC Baoiletat oe tuxaieg Aégetlg. [Mapaperporoeital pe tg mapapérpoug €
Kat 6, ol omoieg kabopidouv Tov apBpno v Soxkipwv Katd 1 dapkela g dadikaoiag
EMKUP®ONG, £I01 MOTE VA EYYUATAL OTL TO HOVIEAO TTOU £Xel pabeutel eival pia e-mpoogyyion

tou SUL pe mmBavotnta touvAayiotov 1 — 6.

Mavteio Mt Baon AavOavouoca Mvijun (Cache Based Oracle)

To pavieio Cache Based agorotei v arobnkeuon gpotmpatev (query caching) rou
vdorotei n AALpy yta SULs, pe okomo v anoduyr) SmAov epetpdiev yla npdbepata
pe 16n nmapatnpnpéveg ektedéoelg. Ta armotedéopata TV epROTNUATOV arobnkevovial o
pla evbpikn dopr, 1 omoia eVNHEP®VETAL KATA TV KATACKEUT] TG UTOOe0ong Kat KATd Tov
¢Aeyxo wooduvapiag. Kabe doxipr) mou nmpaypatorotet 1o pavieio eivat pua Stadpopr) ano
ptla tou Hévipou €wg €va amo ta @UAAQ, pe £va Tuxaio mepnAtnpa CUYKEKPIHIEVOU PHKOUG

va 1npootifetal oto teAog.

Mavteio KaAvywewg MetaBaoswv K-Babpot (K-Way Transition Coverage Oracle)

To pavieio K-Way Transition Coverage eivatl mapopolo pe to pavieio KaAuyemg pe-
1aBd0e®V TIOU MePyPAPNKE MAPATIAVE. Anpioupyel évav apidpo tuxaiov diabpopov kat
ETMAEYEL AMANOTA £Va UTIOOUVOAO TOUG £101 OOTE va peylotorton et ) KaAuyn petabacenv k-
Babpou. H mapdpetpog k avadépetal otov aplbpod Bnudtev petady tng apXng Kat 1ou 1€Aoug

piag petaBaong.

Mavteio KaAdtyewg Katactaoswv K-Babpou (K-Way State Coverage Oracle)

To pavieio K-Way State Coverage exktedel pia Soxkipn yia kabe k-ouvduaopo 1 k-
napadAayr] KAataotdoemv Katl EEPEUVA TV MEPIOXT] YUP® A0 TV TEAIKY] KATAoTtaon HEo®

€VOG TUXAI0U TIEPITATOU.

Mavrteio I[IpoBepatwv Kataoctaoswv (State Prefix Oracle)

To pavieio State Prefix mpoorniedauvel kaBe katdotaon péowm g akoAoubiag mpooBaong
G KAl €§EPEUVA TV TIEPLOXT] YUP® TNG EKKIVOVIAS £vav aplBpod Tuxaiov meputdtov Pe PrKog
eVI0g rpoxraboplopévou eupoug. Mriopetl ertiong va rnapaperpornoin et €101 dote va e§epeuva
MPWIA TG VEEG KATAOTACELS TNG Unobeong, kabiotoviag autr) ) peBodo ) Seltepn 10U £l

napatnendei va aglomnoiel minpogopia ard mponyoupevoug yUupoug eKPAdnong.

Zulfnon

Ot rieploootepeg 1€00601 Aettoupyouv Sexmplotd yla kabe urobeorn kat ripoortabouv va
Helwoouy 10 PEyebog g mapayopevng SoKINAoTIKLG oouitag nelpapati{Opeves pe drapope-
TIKOUG TPOIOUG €UPEONG KAl XPI|0NG AVAYVOPIOTIKGOV KATAOTACEMV KAl S1aKPITIKOV AKOAOU-

S1av.
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Mia pikpry e€aipeon oe autt) v napatipnor ivat n pébodog H-ADS, n) oroia aglorotet
eriong to avurnapdadelypa g ponyoupevng unobeong yia va avadnitr)ost mo arnodotkda
é€va veéo. Qoto00, 1 TEXVIKL aUtr) @aiveral va €Xel Xp1olponoin0el Imeploootepo G IIPOXELPT
Alon napd ®g avandéornacto PEPoS g pebodou.

Mia GAAn e€aipeor) eivat to pavieio ipobepdatev kataotaoewv g AALpY, 1o oroio propet
va pubpiotel Mote va e§epeuvd MPAOTA TG VEEG KATAOTAOELS TG UIoOeong.

Télog, undpyel n npoogyylon tou Mixture of Experts, n omoia @aivetar va eotiddet
akoun 1neploodtepo otnv 16éa aglornoinong rminpodopiag ard mponyoupevoug yupoug pa-
vieldv wooduvapiag. Eival emiong n povn mpoo€yyion rmou KaAUIttel 0Aa ta Kpupld, Kadwg
EVOOUATOVEL OAA Ta MAEOVEKTIATA TV aAyopiBumv Access-Step-Identify eve tautdypova
a&lorotei 16éeg and aideg pebodoug.

Eivat nipogavég ot bev £xel 600¢et 161aitepn Epgaon otnv avAartudn PnXaviopov Pving
petady Sadoyikav unobéoewv, ot oroiot Ya propovoav evieXOPEVRG VA KATACTHOOUV TV

avadinorn avurapadelypdtov mo anodotiky).
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A§loAoynon Me0odwv YAonoinong Epotnpatwv Icoduvapiag

Ewayoyn

Adyw tng anouoiag evog aAnBivou pavieiou wooduvapiag otn Stadikaocia evepyng eKpdadn-
ONg AUTONAT®V, T EPWINHIATA 1008Uvaliag mPooeyyidovial PHEo® TEXVIKGOV EAEYXOU CUIHOP-
@P®ong. Asdopévou 0Tt 0 XpOvog eKTEAEONG TV SOKINAV Kuplapyel ot diabikaoia ekpabnong,
elval eUPEMG aTodeKTO OTL 0 apP1BPOGg KAl TO PAKOG TV SOKIPIOV MPETEL va €AAX10TOTIO0UVIAL
[3]. Ta 1o Adyo auto, o1 Tep1oooTeEPeg PEBOOO1 EAEYXOU CUPHOPPKHONG E0TIALOUV OTNV Iapa-

YOV HIKPOV OOUTTOV SOKIIAV, T000 o€ TTAN00G 000 Kdl 0 PEPOVOIEVO KOG AKOAOUDIGOV.

Epnepirn A§toAoynon

Extog ano 1 Senpnukn avaduon MOAUAOKOTNTAG TRV PeOOSwV EAEYX0U CUPHOPPKOTS,
elvat kpiopo va adlodoyeital n anddoor| toug eprelpikd. Tétoleg adlodoynoelg paypato-
motlouvial ouvhOwg eite o€ MPAYHATIKA ouotipatad (T.X. TTPOIOKOAAA ETIKOIVOVIAG 1] EAEYKTEG
UAKOU) €ite 0g MPOCOPOI®HEVA OUOTHATA, XPNOIHONoI®VIAg £ite poviéda mou €xouv 16n
Habeutel eite XEYPOVAKTIIKA KATAOKEUAOHEVA POVIEAd ®OG UITOKATACTATA T®V MPAYHATIKOV
UAOTION0E®V. AUTO EMITPETIEL EAEYXOPEVA TIELPANATA KAl AVATIAPAY@YHOTNTA.

Iapot n aAyopOpiky] rnoAuridokotnta napexet Evieldn g avapevopevng 1 xeipote-
png anodoong piag pebodou, ocuvnBwS WG TIPOG TOV APIOPO KATACTACE®V N, HEV ATIOTUTIOVEL
MANP®G 1] SOMIKY 1) CUNMEPLPOPIKT] TTOAUMMAOKOTNTA TOU Poviedou. Emopéveg, ta poviéda
TIPETIEL VA XAPAKINPLOTOUV 1€ TIEPLo00TEPA ATTO TO PEYeDog Toug. Mia o Asmtopepng mpo-
ogyylon roootikornoinong g SuokoAiag evog poviedou eivat to hardness score [3], mou
opietal og:

learn-hardness

hardness score = (1)
test-chance

orou 1o learn-hardness opietal »g:

learn-hardness = (k- n’+n- log m) -(n+m)

ke = pkog tou aA¢pabrTou €10660u

n = ap1Bpog KAtaotdoe®VvV @
m = [p"| + [w"Y|, npooéyyilon tou peyadutepou avurapadetypatog
Kat 1o test-chance divetat ano:
test-chance = (Ipmaxl . klwmaxl)_1 (3)
orou:
P = arg mlilx |pl, p € Prefixes, peyaAutepn akodoubia npocBaong
w™ = arg max |lw|, we W, peyadvtepn Siakpiukr] KatdAnin @
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Enopéveg, o ouvbuaopog tou Seiktn 6uokoldiag (hardness score) evog poviédou kat
TOV PEIPIKOV arddoong piag pebodou eAéyxou ouppopdeong mapexel pid o opalpikn

Katavonorn g anodoong.

Metpikég AfloAdynong

INa va e§aopaAiotei Hikain Kat ave§aptnin OUYKPLOT], Ol IIEPLOCOTEPES PNEALTEG AVAPEPOUV
apnpnpéveg PETPIkEG ou dev Pacidovtal OTov MPAYHATIKO XPOVo eKTEAEoNS. LUvhOelg pe-

Tp1KEG TIEpAapBavouv:
® T0 OUVOAIKO TANB0G exkteAeopEVROV SOKIIGV,
® 10 OUVOAKO TAN00G oUNBOA®V £10060U Ot OAeg T1G BOKIEG,

e 1OV ap1Buod emavapubpicenv (resets) rmou ekdoOnKav pog 1o cuotnpa unod ekpadnon,

Slaitepa otav o1 enavapubpioeig sival Sanavnpég 1) rieploplopéveg [12].

Exktog amd autég TG Paoikeég PETPIKEG KOOTOUG, KAIOlEG PEAETEG ITPOTEIVOUV EMUTAEOV
oeikteg. 'a mapadeypa, o deiking Agpaye Igpceviaye ogp Paviig Astegred (AIIPA) [13] a-
VTIKATOITIPidel TOCO ypriyopa eviortidovial opaipata katd 1) Sidpkela tou eAéyyxou. Opiletat

®0G:

N TC;- AH; 1
+
TC - n 2.-TC

APFD =1 -

orou

AH; = véeg Kataotdoelg rou avakaAupOnkav petady v yupev ekpabnong i — 1 xat i
TC = ouvoAikdg ap1Bog oupBoAGV Katl emavapubpioe®v oe OAn Vv eKPAONOnN KAl TOV EAEYX0

TC; = ap1Op6g ocupBoAGV Kal eravapubpicemv PEXPL TOV YUpo i
(6)

‘AAAeG TIPOTACELG, OIS Ol Beikteg S; KAl Sy [3], Hev elvar amdAutol beikteg arnodoong,
aAAd ypnotporolouvial yia ouyKkplon HPetadu alyopibuev oe éva ouvodo melpapdtev. O
beiktng s1 €ival 1o dBpolopa TV PECKV PNHATEOV TOV EPETNHIATOV CUPHETOXAS TTOU T€0nKav

Katd 1a epetpata woduvapiag oe 0Aa ta nepapata eKpadnong:

s1(comb) = Z meanSteps(comb, m) (7)
meModels

orou :

comb = ouvbuaopog pabnreuopevou - pavieiou
Models = 10 0UVOAO POVIEA®V UTIO eKPAONOT)

meanSteps = pn€oog apldpnog PNPATeV pOTNIATOV CUPHETOXNS KATA TOV EAEYXO

Autog 0 Selking propet va xpnoporon el ylia ouyKplon g anattovpevng \pabnong”

(expabnong) amo éva pavieio wooduvapiag yia €éva ouvolo poviedov. Qotdco, dev apéxet
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mAnpn €kéva g anodoong twv pavieiov, kabwg smnpeddetat amno 6iadovia poviéda Kat
dev arotunwvel kadd v anddoon yia kabéva poviédo Eexmpiotd. Ia napadeypa, av éva
pavieio €xel OAU Kakr] arnodoorn o €va Peyddo HPOVIEAO TOU arattel MOAAEG epwINOoELS,
n enidpacn oto s; PUIOPEl va elval o CNPAVIIKL and TG BeATidoslg os IOAAG pikpdtepa
poviéda. I'’ autd, o Seiktng s; oupmAnpwvetat anod tov Seikiy So.

O 6elking sy eival 1o abpolopa v PECHV PNPATEOV TRV EPETNOE®V CUPETOXS KATA Td
epopata woduvapiag, daipepévo pe ToV PEYIOTO A0 AUTOUSG TOUG PECOUG OPOUS Og OAd
1a nepaparta:

meanSteps(comb, m)

So(comb) = 8
2( ) Z maX gecombos MeanSteps(a, m) ®)

meModels

orou :

Combos = 10 ouvolo cuvSuaopwv PabnieudoPevou - pavieiou

KaBog kabe opog Sratpeital pe 1ov aplBpod ep@THOe@V TOU XEIPOTEPOU EKTEAEDTY], AUTOG
0 8elkIng peTpd Oco Kovid Bpioketat KAOe PoOVIEAO OTOV XEPOTEPO Kal dev emnpeddetal
ano tagelg peyéboug H1aPopetikOV A0V EPRTICE®V Yia T 1dbnon evog povieAou.
Xprnowporoteital g CUPIAfp@RA Otov deiktn S1 yia va Heiget tooo kadd anodidet éva pavieio
tooduvapiag oe oxéor pe AAAd yid £€va CUYKEKPIIEVO OUVOAO POVIEADV.

EmunA¢ov, eival ouvnbeg va €10ayovial TOvEG 08 AUTEG TIG PETPIKEG Yid MEPAPATA TTOU
dev 0AOKANPGOVOVIAL ETUTUXHOG 1] UTEPBAiVOUV Ta Opld TOP®V. XINV MEPINTIOON TOV SEIKTIOV
S1 KAt Sp, auto yiveratl ipooBetoviag 1 otov deikin s yia KABs amotuxnpévo meipapa tou
a&lodoyoupevou alyopiBpou, debopévou ot autd eivat to péyioto duvatd kabe dpou oto

abpotlopa.

Awaxeipion Mn VIETEPPIVIONOU

‘Otav arnotipovial 1) VIETEPHIVIOTIKEG 1EB0S01 AEYXOU OUPNOPPOONG — OTIWG EKEIVEG
rou PBaocidovrat oe tuyaia e€epeUivnon) 1) IApaAy®yn 10080V — eival arapaitnto va ernavaiail-
Bavovtal nelpapata apkreEg opeg wote va AngOet unown n dwakvpavorn. Ma nmapadeypa,
ot Klees et al. [17] nipoteivouv v exktéAeon kabe drapodppwong 30 Popég Kat v avadopda

HEO®V ATIOTEAECPATROV.

IIapapetponoinon

IZnpavuko yua benchmarks rmou ouykpivouv Siadopeg pebo6oug eAEyX0U OUPHOPPOONG
etvat n ikain kat ouvenng pubpor) toug. Ta mapddetypa, Katd ) cUYKPL0n TRV OTPATNY1i-
kov Random Walk kat Random Word, nipéniet va pubpiotouv o1 apAapeIpot Toug €101 OOTE
TO AVAPEVOHPEVO HIKOG T®V SOKIP®V va gival Katd 1mpootyylon ico. Opoing, dAAeg mapdpe-
1pol — oG BAbog avalninong, avapevopevo PrKkog doxkiprg 1 mbavotnta enavapubpiong
— TIPEMEL va eAeyXOoUV OOTE 01 TAPATPOUHEVEG S1aPopEg va TIPOEPXOVIAL Artod Toug 161oug

T0Ug aAyopiBpoug Kat X1 aro H1adoPETIKI) MTAPAPETPOITOiNOT).
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IIeipapatiry Awatadn

Apx1kd, O0Aa ta melpdpata eKeAéotnKav pe ) Xpnon g BiBAobrkng AALpy [21] kat
0Aa 1a pavieia vdoro)Onkav emnekreivoviag v KAdon Bdong pavieiou g BBA10OnNKng.
Ot rieproodtepeg pEBodot rou aglodoyrOnkav vdornor|Onkav wg napaddayég SnpoplAmv pe-
966wV, oniwg 1 péBodog W, 1 1€b6obog Wp kat n Random Wp pébodog. Qotoco, n F1B8A1001Kn
AALpy otepouce vAoroinorn v pebddov Wp kat Random Wp. Qg anotéAeona, 1 pébodog
Wp vdoroinOnke arnd 1o Pndév Kal ouyXwveubnke oto £pyo, 1€ mapdAAnAn BeAtiotomnoinon
ToU K@oKa yla 1 pEbodo W. Emumdéov, n vdonoinon tng LearnLib yia v Random Wp
Method xpnowporno}fnke g avapopd kat petapépbnke otnv AALpy.

Ta mv agloddynon twv adyopibpev, padape pnyavég Mealy rou nipoépyxoviat aro npor)-
youpeva nelpdpata ekpddnong poviéAev arno vlorotnoelg 1adpopev rpatokoddav: TLS [6,
25], MQTT [28], TCP [10] kat DTLS [11, 9]. 'OAa ta nietpapata ekpabnong rmpaypatonoir|on-
Kav pe tov 1610 Aeapvep: tov Aeapvep L* pe ene§epyaoia avurnapadetypdatwv Pieot-Zgnarupe
[22]. Xpnowornor|Pnkav enapkeig rmopotl eKPAdnong, Wote 1 CUVIPLITTIKI MAsloyndia tov
TMIEPAPATOV va OAOKAINPOVETAL EMITUXOG Yia TouAdayxiotov éva pavielo. Ta mepapata ek-
BAbnong mou anotuyxavouv ermBapuvovial HE TTOVY).

Katd 1o gpommpa 1coduvapiag kabe yupou ekpdabnong, PETPOVIAl 0l CUVOAKES pepBep-
ONUIT XUEPLEG TIOU TO pavieio wooduvapiag otéAvel oto SUL. Ta mepdpata pe | VIEEpUvi-
OoTIKOUG aAyopiBpoug cuppopewong enavaindOnkav 30 popég, onwg rpoteivel i) Klees et al.
[17]. Extog amo ouvnOiopéveg oTtationikeg (PEoT Tir], TUTIIKY] ATIOKA10L), XP1O10Tow0n-
Kav ot deikteg s; KAl sg g Aichernig, Tappler, and Wallner [3], eAadpwg tporonounpévor.
Ene1dr] o Aeapvep rtav KOwog KAl Ta ¢napagrepi{atiov oetg Kataokeuadoviav pe v idia
1€60do, petpnOnke n péon Ty pePBeponirt Yuepleg, avii Pnpdtov.

O 6eiktng s; opidetal ®g 1o ABpoloHa TV PECHV PEPBEPON T XUEPIEG TTOU £Y1VAV KATA Td

epatpata ooduvapiag oe 6Aa Ta mepapata:

si(alg) = Z avg_MQ(alg, m) 9

m&eModels
O &eixktng sy eivat 10 dOpolopa 1V pEoV PePBepONT XUEPLEG OLAPEPEVO HE T PEYIOTN

and autég otig ouykplotpeg pebodoug:

(10)

sy(alg) = Z avg_MQ(alg, m)

meiihels MAXaealgs ay_MX(a, m)

O1 péootl 6pot umodoyiotnKav povo anod srmrtuxnpéva nepapata. 'Etol s; kat sp a-
MEKOVIZOUV TNV anodoon @V PAavielov oe ermrtuyeig exktedéoelg. Ia 11§ anotuyxaopEveg,
XPNOLHOIO)01KE TTOWVIKOTIOWHPEVE £KO0OO0T TOU Sp: TIPOOoTiBeTAl 0 NECOG APlOOg ATIOTUX IOV
otov ogope. Ia vieteppviotikoug adyopibpioug, 1 mmowr) eivat mavia 1 ava anotuyia yla pn
VIETEPUIVIOTIKOUG, 1] TTo1vr] Statpeital 61a tou aplBpou 1oV S0KIPGOV.

TéAog, uroAdoyiotnke pia €KS00N TOU S) AYVOOVIAG TIS XUEPLEG TOU TeAeutaiou yUupou
ekpadnong. O teAeutaiog yUpog mdavia anotuyxavel va Bpet avurapddetypa kat eSaviAet )
oovuita 1 tov rpoUnoloylopo ekpabnong. Epoocov 1o {ntoviievo ivat ) taxuUtnTtd EVIOoHOoU

avurnapadelypdiov, n apdAeiypn autou Tou yupou divel mo oadr eikova anodoong.
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MovtéAa tou Benchmark

To hardness score tov Aichernig, Tappler, and Wallner [3] xpnotwponou)0nke og deiktng

duokoAiag TOV POVIEA®V.

Zto Zxfpua 4 @aivetal 1o hardness score 6Aov tov poviéd@v benchmark, pe Xp@Uatiky

dlaxkpilon avd npwtdkodAo. It cuddoyn autr, ta povieda TLS @aivetatl va eivatl eUkoAa, eve

ta TCP eivat kupiwg Suokoda. Ta npewtokoAda MQTT kat DTLS napouciadouv d1aBabuioeig

duokoAiag, pe ta povieda DTLS yevika o 6UokoAa.

Model Hardness by Protocol (Log Scale)
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rxnpa 4: Barplot tou hardness score yia ofla ta povtéfa oto ouvofo benchmark

ErumA¢ov, npaypatoro)bnke avaduon cuotadortoinong AapBavoviag unoyn to hard-

ness score, ov apBpo kataotdoswv, 10 PEyebog Tou aidabntou €10060U, T0 PEYAAUTEPO

npobepa kat mv peyadutepn katdAndn. Xto Zxnua 5 @aivetat i oxéon petafu hardness

score Kat aplBpou KAtaotdoemVv, Pe Xpopaia ava ouotada Katl Opavorn avd IP®OTOKOAAO.

Ta poviéda xopidovial oe Tpelg oUOTAdEG, CUVOYIoHIEVEG OTOV TTivaka 4.1 pe Tig peoaieg Tipég

KABe XapaxKtnplotkou.

Opada 0 Ta sukoddtepa poviéda pe €wg 20 kataotdoelg. AnoteAeital Kuping artd MQTT

kat TLS, pe pepika DTLS.

Opada 1 Mcerpla SuokoAda poviéda pe 20-60 kataotdaoelg (évag €§ autov kovia ota 80).

[MeprdapBavel kuping DTLS, kat 6o egaipéoeig ard TCP kat MQTT.

Opada 2 Ta duokoddtepa poviéda, pe 60-120 kataotdoetg. IeptdapBavet ta o SuokoAa

povtéda twv TCP kat DTLS.
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Clusters: Hardness vs Size

> Clusters
Il Cluster 0
1013 I Cluster 1
I Cluster 2
AA
*
11 | A
T 10 A R
g o
= 10°
a Protocols
v *
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T oi07{ Eo % T
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'. " A DTLS
[
1051 &
Chy
[
0 20 40 60 80 100
Size (States)

Zxnpa 5: AvaAvon clustering tov HovtéAov

TFevikd, 10 peyebog tou aAgabritou dev drapépet onpavuxkd petady v ouotddwv. 1o
hardness score kat 1o péyebog kabopidouv v katatagn - ta pikpdtEPa PoviEAa ivatl euko-
Aotepa, ta peyaldutepa GuokoAotepa. To prrog rpobépiatog akoAoubei tyv 16ia tdor, 516t
1a peyadutepa POViEAd @UOIOAOYIKA amaltouv peyadutepeg akodoubieg ipooBaong. TéAog,
Ta €UKOAA HOVIEAA £€XOUV TOAU KOVIEG KATAALNSELS, £V® Ol KATAASEIS HEYAA®OVOUV HE TV
augnorn tou peyEeboug Tou PoVIEAOU. AUTEG Ol TACELS CUP(POVOUV e TOV 0plopod tou hardness

Score.

AAyop18pot

IMa va ekupnBei n enibpacn g mPOTEPAIONOiNoNg VE@V KATACTACEDY OV £vapsn Tou
epWINPatog 1ooduvapiag, xpnotponoindnkav pepika Kabiepopéva pavieia 1coduvapiag og
Baon ouykplong. YAomouw)Onkav mapadAayeg toug Kat petpnodnke n arnodoon toug Xpnotpo-

TO1OVIAG TOUG MAPATIAvVe deiKTeg.

Stochastic State Coverage

To pavrteio Stochastic State Coverage eival mapaAAayr) tou pavieiou State Coverage tng
AALpy. Baowkr) 16¢a eivat va ekivouv tuxaieg diadpopég péxpt prikog max arnod kabe ka-
tdotaon. XtV ap)ikr) €kdoor), ot kataotdoelg ertAéyoviat tuxaia. To mapaddaypévo pavieio
Tadvopel T KAtaotdaoelg og opadeg nAkiag BAcetl tou yupou eKPAONong otov oroio mpo-
otébnkav kat opidel kKatavour) mbavotev rave otg opadseg. H kataotaon ya ) diadpour)

ermAgyeTal pe delypatoAnyia mpwta tng KATavopng Kat £metta opoopopda péoa and v
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ermAeypévn opada. 'Etol, ot mbavointeg npdéoBaong os NAKIaKEG opddeg mpooappodoviat
Katd BouAnorn PEow g KATtavourng.
IMa mapddsiypa, av 9¢doupe n n-ootr] nAkiakn opada va €xel mbavownta n - p, pe

p € [0, 1], tote:

pb1=p
(11)
Prn+1 =Pntp
Auvoviag yua p:
N
Z n-p=1
n=1
p=— (12)
N
n=11
B 2
1 N(N + 1)

Kat €10t np mbavotnta g opddag n etvat n - p.

Me v id1a Aoyikr) SokipaotnKav Tpelg KATavopEg:
e Tpappky: n-p, pe p = m

o Tetpayoviki): n* - p, B P = yov@neD

1
2N—1

e ExOeukr): 2" -p, pue p =

IIpoimoAoyiopog Expadnong

IMa va ektpnBet o anatovpievog poUnoAoylopog eKPAdnong , EKTEAE0TNKAV MElpapata
e 10 tuxaio state coverage pavieio, SEKIVAOVIAG A0 PIKPO IIPOUITOAOYIORO KAl AUEAVOVIAG
Tov Sumdaoclaotika pEXpt Kabe Povieédo amno 1o 1610 mpwTtokoAAo va pabeutel pe eurmotoouvn
(30 ouveyeig popég). 'Otav Bpebnke ave 6p1o, eytve Sixotopog avadrtnon pe ta idia kpurpa.

Me autdv tov 1poro Bpednkav ta eEng:

e Ta poviéda TLS pdbsutnkav Xopis KaBOAoU ep@IaTa CUPHETOXNS, KABMOG 1] ApXKL)

uroBeon nIav owotr).

e Ta povieda MQTT pdBeutnkav pe 1o oAy 10000 epmtrpata CUPHETOXNS O KABe
Yupo.

e Ta TCP (oxeukd Alya, povo 5) napouociacav Siakupavon, opiopéva anartouoav <
50000 gpotipata, ddla €éong 2200000.

e Ta DTLS emniong nmapouciacav Siakupavorn : kanowa ¢éng 500000 epatrjpata, dAAa €0g
70000.

Reversed W / Wp Method

H Reversed W / Wp Method eival anr] apaAdayn v aviiototxov pebodwv, 11e otdoxo

va SiepeuvnBel av urapxel OPeAog otV MPOTEPAIOTNTA IIPOoBacng VERV Kataotdoswv. H
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couita W mapdyetal @g 10 Kapteolavo ywvopevo tou prefix set, tov ocupBolooeipov pexpt
OUYKEKPIIEVO PNKOG Kat tou characterization set. H Wp dnuoupyel 6uo dadopetikeg
oouiteg, addd n 161a Aoyikn epappodetal oy mpatn. Ilpoypappatiotkad, to prefix set ka-
Taokeuddetal pe Vv PoobrKn Kataotdoewv e oslpd nadia—veéa. H Reversed W Method
10 @Tayvel avtiotpoda, véa—tiaiid. Mniopet tapapetporniowBei pe diff _depth, mou opilet
ooa group va avtotpadouv. Ma apdderypa, diff _depth = 3 Bader 1ig 3 tedevtaieg opddeg
npwteg. Ot doxpaopéveg mapardayeg eixav diff _depth = 1,2, 3,6, full kat ovopdotmkav
Reversedl. .. Reversed6 kat Reversed. H napdpetpog exploration 1€0nke oe 2, yia va €ga-

opaliotel 2-mMAnpotnta.

Zroxaotiky tuyaia Wp Method

H Random Wp Method eival mapaddayn tng Wp Method. EmiAéyet tuxaio nmpoBepa ya
va TPOOTIEAACEL KATAOTAOT], PETA eKTeAel TUXAIO TEpIATNA ATIO AUTH), KAl TEAOG EMMAEYEL
axkoAouBia diaxpiong eite amd 10 TOTKO OUVOAO TOU Slakpivel TV KaAtdotaorn eite anod 1o
KaBoA1ko ouvolo.

H Stochastic Random Wp Method ripooB£tet oto rponyouievo 1) AoyiKn NAKIAKLG IIPo-
TEPALOTNTAG: Ol VEEG KATAOTACELS £XOUV PeyaAUtepr) rmbavotnta emioyrg, Staxmpiloviag tig

oe nAklakeg opadeg. Aokipaotnkayv ot ideg mapaddayég pe v Stochastic State Coverage.
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ArnoteAéopata

O Ilivakag 5.8 ouvoyidetl ta amoteAéopata v napadiayev tou Stochastic State Cov-
erage, ITapouotadoviag ta MePloooTeEPA KAl Ayotepa eIMITAEOV epatrpatd, Kabahg Kat ta At-
YOTEPA KA1 TIEPIOCOTEPA ATIOONKEUPEVA EPWTNIATA O O0X€on He TV napaddayr) “Random”.
To oupBolo B SnAwvel OTL 1) PeTPIKY Bev etvatl epappooun. Ma apadetypa, ot mapaddayég
tou pavteiou Stochastic State Coverage ota nelpapata pe 1o mpatokoAdo MQTT &ev mpo-
KAAEOQV ETUTAEOV EPOTIIATA, EMTOPEVOS XPNOToTTIoEITal T0 oUPBoA0 M eme1dr) ) PETPIKY) Hev
UTIOAOY1OTNKE.

Ta amoteAéopata eival piktd. Oplopéveg opadeg POVIEA®V, OIS TA POVIEAC TOU MTPWIO-
kOAdou MQTT kat ta poviéda DTLS pe peyébn 60-120, @aivetal va enwdeAlovvial ano Tig
napaddayég tou Stochastic State Coverage, eve aAleg, onwg ta poviéda TCP kat DTLS pe
peyedbn 10-50, oxu.

O Ilivakag 5.9 ouvoyilel ta amoteAéopara t@v mapaddayev mg pebodou WMethod,
apouotddoviag Ta MEPLoooTEPA Katl AyoTepa EMITAL0V EpPTHATA, KAO®MG Kat ta Atyotepa Kat
meP1000TEPA amobnKeUPEva ep@Tpata oe oXeor pe v napaldayn “Normal”. H anodoon
O0A®V TRV IApadAayov @aivetal mapopold, Pe MIKPES ATTOKAIOELS. ZT1G TEP1o0oTEPEG oadeg
poviédwv, n napaddayr “Normal” uneptepel oe oxéon pe 11§ rapaldayég “Reversed”, pe
e€aipeon 1o mpwtokoAdo MQTT, orou ot mapadrayeég “Reversed” €xouv kadutepr) arodoor.

O ITivakag 5.10 ocuvoyidel ta amotedéopata tov napaldayeov g pebodou WpMethod,
apouotadoviag 1a MePLoooTepa KAl AyOTEPA ETMIMAEOV £pWINHATA, KAO®OG Katl Ta Atydtepa
KAl TIEPLo0OTEPA ATOONKEUPEVA £PWTHPATA O OXEor pe Vv rapaldayn “Normal”. Av kat
n anddoon v nmapaldayov sivatr mapopola, ot mapaldayég “Reversed” umeptepouv otnv
opada twv poviedov MQTT kat ota poviéda DTLS pe peyébn 60-80, xwpig va uotepouv
ONPAvVIKA OT1§ UTIOAOEG Opddeg.

O ITivakag 5.17 ouvoyidet ta anotedéopata tev napadiayov g pebodou Random Wp-
Method, napouoidadoviag ta meploootepa Kat Atyotepa erMIALoV epetpatd, Kabmg Kal td
AlyOtepa Kat meploootepa anobnKeupéva epetpata oe oxeon pe v napaldayr “Normal”.
Ot 1iep1000TEPEG TIAPAAAAYEG £XOUV 0APOS XEPOTEPT ATIOS00T O OXEOT e TV Iapadayr)
“Normal”. Ta nepapata pe to MQTT eivat ta pova rou amodibouv otabepd kaAutepa aro
v napaddayr “Normal”.

Ta anoteAéopata v nepapdiav deixvouv OTl 1] €0Tiaon Ota véad KATACOTACELS Plag U-
moBeong KAt v avadninon avurnapadelypdtov prnopei va odnyrost oe KaAutepn anodoon
O€ OPLOPEVEG TIEPLUITIAOOELG, €AV YiveTal Pe PETPOo, adAd propetl eriong va odnyr ot os Xe1pote-
p1 arodoor) eav yiverat uriepBoAikda erubetikd. Artattoyviat rmo e§eAyéveg mpooeyyioetg yia
v 16¢a autr), Kat eivat anapaint n embe®Pnorn 1@V PoVIEA®V (ote va KatavonBet ylati ot

aAyopiOpot anodidouv onwg anodibouv.
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MeAAovtiky AouAsia

H peddovukr douldeia 9a propouoe va akoloubrjoet TtoAAég kateubuvoelg. H 1€Bodog
Stochastic State Coverage Sa priopouoes va doxkipaotei pe pia eupUtepn nowkidia ouvap-
oe®V mbavotntag , 1 aKOUn Kat Pe Jia ouvdaptnon mbavotntag rmovu pabaivetal katd
dudpketla g pabnong, apopoieg pe v npootyylon Mixture of Experts [18].

Ot vldorotrioetlg g pebodou W/Wp kat tov mapaldaywv g egaptovial oAl and tov
TPOTIO JE TOV OTT010 KATAOKEUALOVTAL TA TOITKA Katl Ta KaBoAikd ouvola xapakinpiopou. @a
gixe evdiapépov va Sovpe g arnodidouv o1 adyopiOpol kat ot mapaddayeg toug pe diagpopa
OUVOAd XAPAKINPLOHNOU.

Mua dAAn ¥éa Sa frav va doxipadovial vedtepeg Kataotaoelg, adAd va yiverat auto
UTIO Kamola ouvOnkrn avdaloya pe tig 1610t1eg 10U ypadou urnobéoswv. Ta mapaderypa,
Slarmotwbnke katd ) Sidpkela v nepapdrev Ot £av pia katdotaorn sink éumnawve oy
UTnoOeoT), TOTE TIAPEPEVE Yid TO UTIOAOLIO TOU Ielpdpatog ekpabnong. Emopéveg, Sa sixe
vonpa va rpoorabrjooupe va MapaAeipoulie ta EpOTHIATA TTOU OTOXEUOUV OF QUTL)V.

Ta 161a ouykpitika arnotedéopata 9a Propovoay emiong va EKTEAECTOUV Pe H1apOopeETIKOUG
aAyopiBpoug pabnong aro tov L* 1) pe Sagopetikeg pebddoug enetepyaoiag avurtapadetry-
parov. Emudéov, Sa propovocav va mpotabouv pavieia ooduvapiag ta oroia dev eival
AN P®G artoouvdedepéva amnd tov adyopifpo pabnong aAld tov yvepi{ouv Kat Xpnotpornoto-
UV Ta XAPAKINP10TIKA TOU yia va Bpiokouv aviinapadsiypata ypnyopotepa.

TéAog, oto mveupa tng 61adoong g yvwong aro mponyouHevous yUpoug pdabnong oe
peAdovukoug, da frav evéiadepov va aroderxBouv, 1 va Jewpnbouv amodedetypéveg peta
and KAroloug yupoug, 1810tnteg tou ypddou umnobeong Kat va xpnotpornoifouv yia va

KaBodnyroouv ) dadikaocia pabnong.






Chapter E

Introduction

Model learning [29] is the field of computer science that deals with constructing mod-
els of systems by observing their behavior. Active Automata Learning (AAL) in particular
treats the System Under Learning (SUL) as a black box and queries it with input se-
quences, guiding the learning process. The final goal of active automata learning is to
construct a finite state machine (FSM) that is equivalent to the SUL. Different algorithms
have been proposed depending on the type of FSM that is chosen for the final model. This
work is concerned with algorithms that construct Mealy machines.

Active automata learning algorithms operate on the Minimally Adequate Teacher (MAT)
framework, proposed by Angluin [4]. The MAT is an oracle that can answer equivalence
queries, that is, whether a given automaton is equivalent to the SUL. If the automaton
is equivalent to the SUL, the teacher is supposed to answer “yes”, whereas if it isn’t, it
is supposed to provide some input sequence that differentiates that automaton from the
SUL, called the counterexample.

That way, the learning process can be divided into two distinct parts: the hypothesis
construction part, which is handled by the learning algorithm, and the hypothesis valida-
tion part (equivalence query), which is handled by the teacher. In practice, there doesn’t
exist a teacher that has perfect knowledge of the SUL, so the teacher is approximated by
conformance testing methods.

Conformance testing methods attempt to prove equivalence of the hypothesis to the
SUL by constructing a test suite, which is a set of inputs for the system, and querying
both the hypothesis and the SUL with each test case of the test suite. If no discrepancy
is found between the two systems, then they are considered equivalent, whereas if one
discrepancy is found, then the test case that caused it is the counterexample.

Model learning research focuses, amongst other things, on minimizing the total num-
ber of queries to the SUL, both during the hypothesis construction part as well as during
the hypothesis validation part. However, it has been shown [13, 1] that the number of
queries during hypothesis validation is the dominant factor in the total number of queries
sent to the SUL. Therefore, focus has shifted into optimizing the conformance testing
algorithms.

An implication of the MAT framework is that all learning experiments operate in rounds
of hypothesis construction and hypothesis validation. As will be shown in the coming

chapters, most conformance testing algorithms treat each hypothesis as an independent
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object and do not reuse information from previous learning rounds. This thesis investi-
gates how modifying some of these popular algorithms to incorporate information across
rounds affects their query efficiency, particularly in terms of the number of queries sent
to the SUL.

Overview The next chapter presents existing conformance testing methods used for val-
idating hypotheses in active automata learning, compares these methods with respect to
their key characteristics, and introduces our own proposal for improving them. In Chap-
ter 3, we turn our attention to the topic of benchmarking, highlighting the motivations
behind it as well as the challenges that it poses. Chapter 4) details the experimental setup,
describing the models used in the learning process, the conformance testing methods -
—both existing and newly proposed—- that were evaluated, and the metrics employed for
benchmarking. Finally, in Chapter 5, we present and analyze the experimental results,
organizing them by conformance testing method and model group. The thesis concludes

with a chapter discussing potential directions for future work.
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Hypothesis Validation

The aim of this section is to showcase the various methods that have been employed
for implementing the hypothesis validation (equivalence query) part of active learning al-

gorithms and to highlight some of their characteristics and differences in the approaches.

2.1 Preliminaries

A Mealy machine is a tuple M = (S, Sy, I, O, 6, ), where S is the set of states, Sy is
the initial state, I is the input alphabet, O is the output alphabet, 6 : SX I — S is the
transition function and A : SXI — O is the output function. The transition function maps
a state and an input symbol to the next state, while the output function maps a state and
an input symbol to the output symbol. The set of all possible input sequences is denoted

by I and the set of all possible output sequences is denoted by O*.

2.2 Random Testing

Random testing involves sampling random sequences from I*, where I is the input
alphabet, and using them as test cases. Random testing includes random walks, where
the length of the input sequences is geometrically distributed and random words, where

the length of the input sequences is uniformy distributed in some predefined range.

2.3 Transition Coverage / Mutation-Based Selection

Transition Coverage [2] conformance testing works by generating a large test suite by
starting with a random walk through the hypothesis model and repeatedly choosing a
transition of the model and attempting to reach it from the current state. Finally, another
random walk is executed. Having generated the test suite, a subset of the total test cases
is chosen greedily, depending on the transition coverage that each test case provides.

The authors of this method actually generalize it, by noticing that transition coverage
is not the only kind of coverage that can be defined and that different coverage criteria
can be used by using mutation operators. Mutation operators take a Mealy machine as

input and produce a set of mutants as output. The test cases that are chosen for the final
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test suite are those that achieve the highest coverage; that is, those that distinguish the

most mutants.

hypothesis ‘H
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Figure 2.1: Flow diagram of mutation-based selection [2].

It is easy to verify that mutation operators are more general than transition coverage. A
mutation operator can be defined that alters the output of a specific transition. Executing
a transition can identify at most one mutant. Therefore, selecting test cases based on
this mutation operator is equivalent to selecting based on transition coverage.

A merit of this method is that it can use domain specific knowledge, that is, specific

mutation operators, to search for counterexamples more efficiently.

2.4 The W-method

The W-method [5] utilizes two sets: the W-set, called a characterization set, that is
a set of input sequences that distinguish between any two pairs of states in the SUL ,
and the P-set, that is a transition cover set of S. It assumes an upper bound m on the
number of states n in the SUL and defines the set I[m — n] = |Jg" "I, where I is the
input alphabet. The test suite that the method constructs is the set of input sequences
P-Z=P-I[m—-n]-W, where - is the concatenation operator.

In essence, the inputs that belong to the transition cover set P are used so that every
edge is taken at least once, and, for the state where each edge leads, the inputs that
belong to the set Z are used to distinguish between the states.

The W-method and its variants prove equivalence up to the bound m. This means
that, if the hypothesis does not fail the test suite, then either it is equivalent to the SUL,
or the SUL has strictly more than m states.

The W-method is a prime example of what are called Access-Step-Identify algorithms.
These are conformance testing algorithms whose operation may be divided into three
parts: the access part, where a target state is accessed, the step part, where some input

sequence is sent in order to reach a new state, and the identify part, where a distinguish-



2.5 The partial W-method (Wp-method)

ing sequence is sent in order to identify the current state. It has been observed that the
only way to improve the algorithms that fall under this category is to improve the identify

part, which is based on the distinguishing sequences that are used [7].

2.5 The partial W-method (Wp-method)

The partial W-method (Wp-method) [16] is an improvement to the W-method. Instead
of utilizing the coarse characterization set W, the Wp-method makes use of finer identifi-
cation sets W; for every state s; in the SUL. It starts by checking that the states of the SUL
are identifiable in the hypothesis, at the same time constructing the identification sets
W;. These can later be used to more efficiently check for the equivalence of the transitions
of the hypothesis with the transitions of the SUL.

There is also a randomized variant of this method [15], where a random subset of the
test suite is executed. This has been observed to be faster at finding counterexamples [3]

[13], but it does not prove equivalence as the deterministic methods do.

2.6 Harmonized State Identifiers (HSI)

The HSI method [20], like the W and Wp methods, uses the notion of the characteriza-
tion set but also finds that it is not necessary to use the whole set. Instead, it uses subsets
of this set called harmonized state identification sets. These sets have the property that,
if a separating sequence for two states exists, then this sequence is a prefix of both of
the harmonized state identification sets of the two states. The merits of this method is
that it is applicable to partially defined non-deterministic state machines and it tends to

produce smaller test suites than the W and Wp-methods.

2.7 Preset Distinguishing Sequences (PDS)

Preset distinguishing sequences are input sequences that can be used to identify the
current state of the system from all others. Essentially, the most minimal characterization
set W possible consists of one preset distinguishing sequence, since this sequence alone
can differentiate every state from every other state. Unfortunately, this sequence may
not exist for every FSM and, as a result, techniques solely based on the existence of PDS

cannot be universally used.

2.8 Adaptive Distinguishing Sequences (ADS)

An adaptive distinguishing sequence [19] is a decision tree whose aim is to identify
the current state of the system. Structurally, it is a tree whose nodes are inputs that
correspond to a set of possible states and whose edges are outputs observed as responses
to the input . It differs from preset distinguishing sequences in that it observes the output
of the current query and correspondingly decides what the next symbol of the sequence

will be, instead of the sequence being determined from the beginning. Its merit is the fact
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a/0 a/l

b/0 b/1

Figure 2.2: Simple ADS showing how, with input “a” and output “0”, the state qg is identi-
fled, whereas with inputs “ab” and outputs “10” and “11” respectively, the states q, and
qo are identified.

that, an FSM that does not admit a PDS may admit an ADS. However, an ADS still may

not exist for some FSMs, deeming it not universally usable.

For the sake of clarity, it should be mentioned that ADSs have also been used in the

learning part of AAL algorithms [12].

2.9 Hybrid ADS (H-ADS)

Hybrid adaptive distinguishing sequences (H-ADS) [24] improve on ADSs by being
universally usable. An incomplete ADS is found!, whose leaves may also be sets of states
instead of singleton sets. This sequence is later augmented with pairwise separating

sequences in order to distinguish between the potential states.

It is noteworthy that the authors also make use of what they name “subalphabets”.
In an effort to find peculiar counterexamples faster, they generate test cases using the
subalphabet given by the previous hypothesis’ counterexample first, and then generate
test cases using the whole alphabet. This is the first instance of knowledge sharing

between previous and current hypothesis validation.

2.10 Incomplete Adaptive Distinguishing Sequences (I-ADS)

Incomplete adaptive distinguishing sequences [14] also aim to rectify the shortcomings
of ADS. I-ADSs are a set of ADSs that can be used when an ADS does not exist for the
given system. Essentially, I-ADSs have the same structure as an ADS, but the leaf nodes
are not required to be singleton states; they may also be sets of states. So, when, in the
process of distinguishing a state, such a leaf node is encountered, a reset is sent to the
system and an access sequence such that the system is led to a set of possible initial
states that can be distinguished. In that way, multiple I-ADSs can be utilized as an ADS

but with resets and extra access sequences required.

not to be confused with the technique 2.10 that shares the same name.
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2.11 H

The H-method [7] [8] differentiates itself from other methods by avoiding fixed distin-
guishing sequences. The authors leverage the fact that every m-complete test suite has a
distinguishing sequence for each transition of the system. They argue that every complete
test suite TS contains the set VPref(X™ "*1), where V is a prefix-closed state cover of the
specification and X is the input alphabet, and that, if the hypothesis can be distinguished
from the specification by an input sequence that is longer than what the test suite allows,
then the test suite surely contains at least two sequences that are prefixes of the former,
lead the hypothesis to the same state t but lead the specification to two different states
S1,S2. As a result, if a sequence distinguishes s; from ss, then it distinguishes t from
s1, S2. Based on this insight, they propose an algorithm that constructs an m-complete
test suite with this kind of distinguishing sequences, whose test cases tend to be shorter
than those of the traditional W method.

2.12 SPY

The SPY method [23] attempts to reduce test branching. Test branching occurs when
different test cases in the test suit share a common prefix. When this happens, the test
suite contains some redundancy, in the sense that the input that consists the common
prefix has to be reused multiple times. The authors of the method realize that, the only
way to further reduce the length of a test suite, if the transfer sequences are already
shortened and the shortest distinguishing sequences are used, is to reduce the number
of branches in the test suite. That is, reduce the number of times a common prefix is

used. They establish the conditions which must be satisfied to reduce test branches while
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also retaining m-completeness and develop a test suite generation method that combines

short branches into longer test sequences and finally results in shorter test suites.

2.13 SPY-H

The SPY-H method [26] attempts to combine the merits of the SPY method and the
H method in order to construct even smaller test suites. It aims to satisfy the same
conditions that guarantee m-completeness as the SPY method, but it verifies the reached

state by using distinguishing sequences like those used by the H method.

2.14 Mixture of Experts

The Mixture of Experts method [18] attempts to speed up the search for counterexam-
ples by first searching in smaller test suites that are more likely to contain them, drawn
from previous rounds of equivalence queries. These smaller test suites are generated by
“experts”, functions that take a word and a Mealy machine as input and generate sets of
subalphabets. The method is embeddable to any Access-Step-Identify algorithm (like the
ones described above). It employs a mixture of these experts and uses a reinforcement
learning algorithm to dynamically adjust the probability of searching for counterexamples
in each expert’s subalphabets with each test case. These probabilities are carried on to
next rounds of equivalence queries, making it the first method, to the author’s knowledge,

to systematically make use of cross-equivalence query information.

2.15 AALpy Equivalence Oracles

AALpy [21] is an active automata learning python library that implements a num-
ber of equivalence query algorithms. The set of implemented algorithms consists both
of methods like the ones described previously, which have been evaluated in separate
publications, as well as heuristic methods that haven’t been extensively analyzed. The

authors provide summaries for them in but they do not benchmark them.

2.15.1 Transition Focus Oracle

The Transition Focus oracle is a random walk based oracle that is parametrized by a
parameter ¢, so that each input loops to the same state with probability € and leads to a

new state with probability 1 — e.

2.15.2 Probably Approximately Correct (PAC) Oracle

The PAC oracle is a random word based oracle. It is parametrized by parameters e
and 6, which define the number of test cases during conformance testing, such that it
guarantees that the learned model is an e-approximation of the SUL with a probability of
at least 1 — 6.



2.15.3 Cache Based Oracle

2.15.3 Cache Based Oracle

The Cache Based oracle utilizes the query caching that is AALpy implements for SULs,
so as to avoid duplicate queries for prefixes with observed traces. The membership query
results are encoded in a tree structure which is updated during hypothesis construction
and equivalence checking. Each test case that the oracle poses is a path from the tree

root to one of the leaves, with a random walk of specific lenght appended at the end.

2.15.4 K-Way Transition Coverage Oracle

The K-Way Transition Coverage oracle is similar to the Transition Coverage oracle
discussed above. It generates a number of random walks and greedily selects a subset of
them so that the k-way transition coverage is optimized. The parameter k refers to the

number of steps between the start and the end of a transition.

2.15.5 K-Way State Coverage Oracle

The K-Way State Coverage oracle runs a test case for every k-combination or k-
permutation of states and explores the surroundings of the final state via a random

walk.

2.15.6 State Prefix Oracle

The State Prefix oracle accesses each state using its access sequence and explores its
surroundings by initiating a number of random walks withing a certain length range. It
can also be parametrized so that it first explores the new states of the hypothesis, making
this method the second one that has been observed to utilize information from previous

learning rounds.

2.16 Discussion

The table 2.1 summarizes the above methods based on some of their most notable
characteristics. The columns of the table are named after the characteristic and the rows
are named after each method. Checkmarks and black boxes are used to denote whether
the method has the characteristic or not, respectively.

The plethora of blackboxes in the “Cross-EQ” column shows that most methods work
on a per-hypothesis basis and attempt to reduce the length of the generated test suite
by experimenting with different ways of searching for and using state identifiers and
distinguishing sequences.

One slight exception to this observation is the H-ADS method that also makes use of
the previous hypothesis’ counterexample to search for a new one more efficiently, although
this technique seems to have been employed as a hack rather than an integral part of the
method.

Another exception is AALpy’s State Prefix oracle, which can be set to first explore the

hypothesis’ new states.
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Method Universal
Random Walks
Random Words

Transition Coverage
Mutation Selection
‘W-Method
‘Wp-Method
PDS
ADS
H-ADS
1I-ADS
H
SPY
SPY-H
Mixture of Experts
Transition Focus
PAC
Cache Based
K-Way Transition Coverage
K-Way State Coverage
State Prefix

7

M-complete | Domain Specific Knowledge | Subalphabets | Cross-EQ
[ ] [ ] [ ] ]
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Table 2.1: Summary of methods and their characteristics.

Finally, there is the Mixture of Experts approach, which seems to focus even more on
the idea of using information drawn from previous rounds of equivalence queries. It is
also the only approach to tick every box, given that it has all merits of Access-Step-Identify
algorithms and also uses ideas from other methods.

It is evident that not much work has been done on employing some kind of memory
mechanism between hypotheses that could potentially make the search for counterexam-

ples more efficient.
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Benchmarking Equivalence Query Methods

3.1 Introduction

Due to the lack of a true equivalence oracle in the process of active automata learning,
equivalence queries are approximated using conformance testing techniques. Since the
execution time of test cases dominates the learning process, it is widely acknowledged that
the number and length of test cases used for conformance testing should be minimized
[3]. For this reason, most conformance testing algorithms focus on generating small test

suites, both in terms of the number of test cases and their individual lengths.

3.2 Empirical Evaluation

Beyond analyzing the theoretical complexity of conformance testing methods, it is
crucial to evaluate their performance empirically. Such evaluations are typically carried
out either on real-world systems (e.g., communication protocols or hardware controllers)
or on simulated systems, using previously learned or manually constructed models as
stand-ins for actual implementations. This allows for controlled experimentation and
reproducibility.

While algorithmic time-complexity provides insight into the expected or worst-case
performance of a method, usually with respect to the number of states n in the system, it
does not fully capture the structural or behavioral complexity of the model. As a result,
models must be characterized using more than just their size. A more nuanced approach
to quantifying model difficulty is the hardness score [3], which is defined as:

learn-hardness

hardness score = (3.1)
test-chance

where the learn-hardness is:

learn-hardness = (k n?+n- log m) -(n+m)
It = length of the input alphabet

n = number of states

m = |p™¥| + [w™¥, Approximation of the longest counterexample

(3.2)
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and the test-chance is given by:

max |\ — 1
test-chance = (Ipmaxl - K |) (3.3)
where:
P = argmaxp|p| : p € Prefixes, Longest access sequence (3.4)
3.4
w™™ = argmax,Jw| :weW, Longest distinguishing suffix

As such, inspecting the hardness score of a model alongside the performance metrics
of a conformance testing algorithm provides a more comprehensive understanding of the

algorithm’s performance.

3.3 Evaluation Metrics

To ensure fair and system-independent comparisons, most benchmarks report ab-
stract metrics that do not rely on wall-clock execution time. Commonly used metrics

include:
e the total number of test cases executed,
e the total number of input symbols across all test cases, and

e the number of resets issued to the system under learning, particularly when resets

are expensive or limited [12].

In addition to these basic cost metrics, some studies propose their own measures.
For instance, the Average Percentage of Faults Detected (APFD) [13] reflects how quickly

faults are found during testing. It is defined as:

n TC;- AH; 1
+

APFD =1 - (3.5)
TC - n 2-TC
where
AH; = number of new states discovered between learning rounds i — 1 and i
TC = total number of symbols and resets executed in learning and testing (3.6)

TC; = number of symbols and resets executed up until round i

Other proposals, such as the s; and sy scores [3], are not absolute measures of
performance, but are used as a metric to compare algorithms to one another with respect
to a set of experiments. The s; score is the sum of the average membership queries’ steps

posed during equivalence queries, over all of the learning experiments.

si1(comb) = Z meanSteps(comb, m) (3.7)

meModels

where:



3.4 Handling Non-Determinism

comb = the learner - tester combination
Models = the set of models under learning

meanSteps = the average number of membership queries’ steps during testing

This score can be used to compare the learning budget that an equivalence oracle
requires to learn a set of models. However, it doesn’t provide a comprehensive view of
the performance of the oracles, because it is sensitive to outliers and does not capture
well the performance of the oracles on each model. For example, if an oracle has worst
performance when learning a large model that requires a lot of queries to be learned,
the impact of this bad performance on the s; score can be greater than the impact of
performing better when learning a lot of smaller models. That’s why the s; score is

complemented by the sy score.

The sy score is the sum of the average membership queries posed during equiva-
lence queries divided by the maximum of those averages recorded in all of the learning

experiments.

meanSteps(comb, m)

sp(comb) = Z (3.8)

e s MAXaeCombos meanSteps(a, m)

where:

Combos = the set of learner - tester combinations

Because each term of the sum is divided by the number of queries of the worst per-
former, this score effectively measures how close each model is to the worst performer
and is not affected by the differences in order of magnitute in queries needed to learn a
model. It can be used as a complement to the s; score to show how well an equivalence
oracle performs in comparison to other equivalence oracles when learning a specific set

of models.

Furthermore, it is common to introduce penalties in these metrics for experiments
that fail to complete successfully or that exceed resource limits. In the case of the s;
and sy scores, this is done by adding 1 to the sy score for each failed experiment of the
algorithm being evaluated, given that this is the maximum possible value of each term in

the sum.

3.4 Handling Non-Determinism

When benchmarking non-deterministic conformance testing algorithms—such as
those relying on randomized exploration or input generation—it is necessary to repeat
experiments multiple times to account for variability. Klees et al. [17], for example,

suggest running each configuration 30 times and reporting average outcomes.
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3.5 Parameterization

Benchmarks that aim to compare the performance of different conformance testing al-
gorithms must take care to configure them in a fair and consistent manner. For example,
when comparing “Random Walk” with “Random Word” strategies, one must tune their re-
spective parameters so that the expected length of generated test cases is approximately
equal. Similarly, other parameters—such as the depth of search, the expected length of
test cases or the reset probability—should be controlled to ensure that any performance
differences observed are attributable to the algorithms themselves rather than to differing

configuration.
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Experimental Setup

This chapter covers the measures that are were used for the benchmarks, the models
that were learned during the learning experiments and the equivalence oracles that were
put to the test.

4.1 Experimental Setup

To begin with, all experiments were conducted using the AALpy library [21] and all of
the oracles were implemented by extending the base oracle class of the library. Most of the
methods tested were implemented as variations of popular methods like the W Method,
the Wp Method and the Random Wp Method. However, the AALpy library lacked imple-
mentation of the Wp Method and the Random Wp Method. As a result, the Wp method
was implemented from scratch and merged into the project, taking the opportunity to
optimize the code for the W Method as well. Moreover, the LearnLib implementation of
the Random Wp Method was used as a reference and ported to AALpy.

In order to evaluate the algorithms, Mealy automata from a variety of protocols were
learned, specifically TLS [6, 25], MQTT [28], TCP [10], and DTLS [11, 9]. All of the learning
experiments were conducted with the same learner, specifically the L* learner with Rivest-
Schapire counterexample [22] processing. Enough learning resources were used, such
that the vast majority of learning experiment ends successfully for at least one oracle.
The learning experiments that fail were accordingly penalized.

During the equivalence query of each learning round, the total membership queries
that are posed from the conformace testing algorithm to the SUL are measured. The learn-
ing experiments of stochastic conformance testing algorithms were repeated 30 times, as
proposed by Klees et al. [17]. Aside from common statistical metrics, like the expected
value and the standard deviation, the s; and sy scores, proposed by Aichernig, Tappler,
and Wallner [3], were used, slightly modified. Because the learner is the same for all
experiments and the characterizing sets are constructed with the same method for all
conformance testing algorithms, the mean number of steps was not computed but rather
the average number of membership queries.

The s; score is the sum of the average membership queries posed during equivalence

queries, over all of the learning experiments.
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s1(alg) = Z avg_MQ(alg, m) (4.1)

meModels
The sy score is the sum of the average membership queries posed during equiva-

lence queries divided by the maximum of those averages recorded in all of the learning

experiments.

So(alg) = Z avg MQ(alg. m) (4.2)

meModels MaXaealgs avg—MQ(a’ m)

The averages required for the computation of the scores were computed over the
successful experiments. As such, the s; and s; scores reflect the performance of the
oracles on successful learning experiments. In order to account for failures, a penalized
version of the sy score was used, where the average number of failures of each algorithm
is added to its score. For deterministic algorithms, the penalty is always 1 for each
failure, whereas for non-deterministic algorithms, it is the number of failures divided by
the number of trials.

Finally, a variant of the s; score was calculated ignoring the queries of the last learning
round. The last learning round, by its nature, fails to find a counterexample, because
no counterexample exists, and therefore exhausts the test suite or learning budget of the
oracle. The only way to reduce the number of queries in the last round is to construct a
smaller test suite or limit the learning budget. Given that this thesis is concerned with the
faster discovery of counterexamples when one exists, excluding the last learning round

queries will provide better insight to the performance of the oracles.

4.2 Benchmark Models

The hardness score proposed by Aichernig, Tappler, and Wallner [3] and presented in

equation 3.1 was used as a measure of how difficult the models are to learn.

Figure 4.1 shows the hardness score of all of the models in the benchmark set, colored
by protocol. In this set of benchmark models, the TLS protocol seems to contain easy
models, while the TCP protocol mostly hard models. The MQTT and DTLS protocols
contain models of varying difficulty, but the DTLS models seem to be harder in general.

Moreover, a cluster analysis was done on the models, taking into consideration their
hardness score, number of states, length of input alphabet, longest prefix and longest
suffix. Figure 4.2 shows the hardness scores of models in relation to the number of
states, colored by cluster and marked by protocol. The models fall into three clusters,

summarized also in table 4.1, where the median of each feature is contained.

Cluster O Cluster O is the set of the easiest models to learn that have no more than
20 states. This set of models comprises mainly the MQTT and TLS protocol, but also

contains some DTLS models.
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Figure 4.1: Barplot showing the hardness score of all of the models in the benchmark set

Table 4.1: Cluster Summary

Hardness Sizes Inputs Longest Prefix Longest Suffix
Cluster

] 7.413247e+05
1 3.860247e+09 22 10 7
2 1.054145e+14 68 11 10 6
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Cluster 1 Cluster 1 is the set of modestly hard models to learn that have size between
20 and 60 states, with an outlier having close to 80. This set of models comprises mainly

DTLS models and two outliers, one from the TCP and one from the MQTT protocol.

Cluster 2 Cluster 2 is the set of the hardest models to learn that have size between 60

and 120 states. This set of models contains the hardest models of the TCP and DTLS

protocols.
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Figure 4.2: Cluster analysis of the models

In general, it seems that the alphabet size doesn’t vary much in the clusters. The
hardness score and size seem to determine the cluster, with the smallest models tending
to be easier and the largest models harder. The prefix length follows the same trend,
but this can be explained by the fact that larger models naturally have longer access
sequences for their state. Finally, the easy models have extremely short suffixes and the
suffixes seem to grow the larger a model is. These trends agree with the definition of the

hardness score given in equation 3.1.

4.3 Algorithms

In order to measure the impact of starting the equivalence query by checking the
new states first, some established equivalence oracles were used as baselines. Variations
of those oracles were implemented and have their performance measured against them,

using the scores mentioned before.
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4.3.1 Stochastic State Coverage

The Stochastic State Coverage oracle is a modification to AALpy’s State Coverage
oracle. The basic idea of the algorithm is to start a number of random walks up to
a maximum length from every state in the automaton. In the original version of the
algorithm, the states are accessed randomly. The Stochastic State Coverage oracle splits
the states into age groups, depending on the round of learning that they were added in,
and to define a probability distribution function over these age groups. The state for
the random walk is chosen by sampling the probability distribution function and then
sampling uniformly the states from the age group that was chosen. That way, the priority
that is given to each age group can be tuned by the probability distribution function.

For example, suppose that one desires to tune the oracle such that the i-th age group
of states has probability i - p of being accessed, for some p € [0, 1]. This can also be

defined recursively as:

pb1=p
(4.3)
Pn+1 =Pntp
Then, one can solve for the probability p:
N
Z n-p=1
n=1
1
p=—% 4.4)
n=11
B 2
P=N (N+1)

and the probability for the n-th age group is n - p.

Based on this idea, three different versions of the Stochastic State Coverage oracle were
tested, each with a different probability distribution function. The probability distribution
functions that were tested are:

e Linear, where the probability of the n-th age group is n- p, for p = m

e Quadratic, where the probability of the n-th age group is n? - p, for p = m

e Exponential, where the probability of the n-th age group is 2" - p, for p = 2N—1_1

Learning Budget

An estimate of the required learning budget, in terms of membership queries during
equivalence checking, was acquired. This was done by performing some learning exper-
iments using the uniformly random state coverage oracle, starting from a low learning
budget and doubling it until each model in the given protocol could be learned with con-
fidence; that is 30 times in a row. Once an upper bound was found, a binary search
between the upper bound and the upper bound halved was performed with the same

criteria.
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This way, it was found that the TLS models could be learned with no learning budget at
all, since the initial hypothesis that was constructed was also correct. The MQTT models
could all be learned with no more than 10000 membership queries during each round
of equivalence checking. The TCP models, despite there being only 5 of them, had more
variance; some of them could be learned with no more than 50000 queries whereas other
required up to 2200000 queries. Finally, the DTLS models, being great in number, also
showed some variance, some of them requiring up to 500000 queries, whereas others no
more than 70000.

4.3.2 Reversed W / Wp Method

The Reversed W / Wp Method is a simple modification of the corresponsing methods,
with the goal of providing a hint of whether there is any gain in checking the new states
of a hypothesis first. The test suite that the W Method constructs is the product of the
prefix set, the set of strings up to a certain length and the characterization set. The
test suite that the Wp method constructs is a bit different, being comprised by two test
suites that are constructed differently, but the same logic applies to its first test suite.
From a programming perspective, the prefix set is constructed using the states in the
order that they were added in the hypothesis automaton, old to new. The Reversed W
Method constructs the prefix set in the opposite order, new to old. It can be further
parameterized such that only part of the test suite is constructed from new to old, by the
diff _depth parameter. So, for example, a diff_depth parameter of 3 means that the 3
latest age groups of states were put first, while the rest of the test suite retains its order.
The variants that are were put to the test use parameters diff _depth = 1,2, 3, 6, full and
are respectively named Reversedl..Reversed6 and Reversed. The exploration parameter

for the oracles was set to 2, so they guarantee 2-completeness.

4.3.3 Stochastic Random Wp Method

The Random Wp Method is a variant of the Wp Method. It randomly selects a prefix
from the prefix set in order to access some state. Afterwards, a random walk is executed
from the state and, finally, a characterizing sequence is randomly chosen either from the
local set of characterizing sequences; that is the set of sequences that can distinguish
the specific state that was reached after the random walk, or from the global set of
characterizing sequences.

The Stochastic Random Wp Method is a variant of the Random Wp Method that, sim-
ilar to the Stochastic State Coverage method, assigns higher probability of being sampled
to new states of the hypothesis, by splitting them into age groups. The same variants

with the Stochastic State Coverage algorithm were put to the test.
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Experimental Results

This chapter presents the results of the experiments that were conducted. The results

are presented first by method and its variations and then by protocol.
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5.1 Stochastic State Coverage Variants
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Figure 5.1: The s; and sy scores of the Stochastic State Coverage oracle with different
probability distribution functions.
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Figure 5.2: The s; and sy scores of the Stochastic State Coverage oracle with different
probability distribution functions, zoomed in.

The s; and s, scores of the Stochastic State Coverage oracle with the different proba-
bility distribution functions are presented in Fig. 5.1.

The scores are very similar for all of the probability distribution functions and it is
not easy to make a distinction between them. The differences become more evident after
zooming in, as shown in Fig. 5.2.

All of the scores seem to favour the “Random” variant, which suggests that, out of
the four variants, it is the preferred one to choose when learning a wide variety of mod-
els. Specifically, the s; score shows that the “Random” variant is expected to perform
the least number of queries and the penalized s, score shows that it is also the most
resilient to failures. Nonetheless, the not penalized s, scores remain close for all variants.

Thoroughly inspecting the results, reveals more information.
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Figure 5.3: The s; and sy scores of the Stochastic State Coverage oracle with different
probability distribution _functions for TLS, zoomed in.

TLS The TLS-specific results in Fig. 5.3 show nothing interesting because the models
are so small that they are learned in the first round. Therefore, all conformance testing
algorithms perform exactly the same. For the same reason, they do not actually affect the
overall results. The penalized score is not shown since all of the models were learned in

the first round successfully.
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Figure 5.4: The s; and sy scores of the Stochastic State Coverage oracle with different
probability distribution _functions for MQTT, zoomed in.

MQ@TT The MQTT-specific results in Fig. 5.4 show that the “Linear” and “Exponential”
variant performs the best, followed by the “Quadratic” variant. The same trend shows
both in the s; as well as the s, scores. These scores indicate that the variants perform the
least amount of queries in general and are less likely to be the worst performers. While

the percentage of saved queries during the whole learning process is of order:

165400 — 164400 1000
AQ = =|AQ= ———— =0.6% (5.1)
165400 165400

The percentage of saved queries that could actually be saved is:
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5400 — 4400 1000
AQ="— """ 5 |AQ=—— = 18.5% (5.2)
5400 5400

Table 5.1: The number of failures for the MQTT models for the Stochastic State Coverage
oracle with different probability distribution functions.

Model Size Random Linear Square Exp.

hbmqtt__two_client_will_retain 17 0 0 0 2

Table 5.2: MQTT models’ statistics regarding number of states.

Statistic Value

Min 3
Median 10
Max 18

The penalized s score for the “Exponential” variant deems it slightly worse than the
“Linear” one. While this variant seems to be more prone to failing, it seems to have failed
only twice out of 30 trials for 32 models, which isn’t a lot. Table 5.1 shows the model
that caused it to fail. Cross referencing this table with Table 5.2 shows that the model is
among the largest ones.
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Figure 5.5: The s; and sy scores of the Stochastic State Coverage oracle with different
probability distribution functions for TCP, zoomed in.

TCP The TCP-specific results in Fig. 5.5 show that the “Linear” variant has the best s;
score, while the “Random” variant has the best sy score, however being close to the rest
of the variants. Given how the “Linear” variant has the best s; score, it seems to be the
best performer overall.

The percentage of queries saved with respect to the “Random” variant is around:

AQ 12.7x 10°-11.8 x 10° = lag 0.9 20, 5.3)
= = — = (0 .
12.7 X 105 12.7
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Table 5.3: The number of failures for the TCP models for the Stochastic State Coverage
oracle with different probability distribution functions.

Model Size Random Linear Square Exp.
tcp_server_windows_trans 38 10 5 15 13
TCP_Linux_Client 15 1 7 13 6
tcp_server_ubuntu_trans 57 12 12 11 13
TCP_Linux_Server 57 14 8 8 7
tcp_server_bsd_trans 55 9 9 7 8

whereas the percentage of extra queries of the worst case, that is the “Exponential”

variant, with respect to the “Random” variant is around:

16.1 x 10° — 12.7 x 10° 3.4
AQ = =|AQ = — =26.7% (5.4)
12.7 x 105 12.7

All of the variants seem to suffer from a considerable amount of failures, as shown in

the penalized s score. The details of the failures are shown in Table 5.3.
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Figure 5.6: The s; and sy scores of the Stochastic State Coverage oracle with different
probability distribution functions for DTLS, zoomed in.

DTLS Finally, the DTLS-specific results favour the “Random” variant over the other
ones. The penalized s, score shows that the “Quadratic” and “Exponential” variants fail
more often than the “Linear” and the “Random”. The least and greatest amount of extra

queries with respect to the “Random” variant is:

1.5%x 10% — 1.435 x 10°
Q A5 %100 (5.5)
1.6 x 10% — 1.435 x 10°
AQ = =|AQ =11.4% 5.6
9 1.435 x 106 9 2 (5.6)

However, since the DTLS models that were used for the experiments were a lot and

varied in size; that is, the number of states, they were also inspected size-wise.
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Figure 5.7: Stochastic State Coverage scores for DTLS models of sizes 10 - 20.

Sizes 10 - 20 The results for sizes 10 - 20 are shown in Fig. 5.7. The “Random”
variant remains the top performer in both scores. Notably, it is the only variant that does
not fail at all. Among the other variants, the “Linear” one performs the best. The least

and greatest increase in queries with respect to the “Random” variant is:

AQ_15.5><1o4—9.5><1o4:> AQ = 6 — 63.1% (5.7)
= 9.5 x 10 “95 7 -
AQ= 19.5x10"-9.5x10* AQ =22 _ 105.2% (5.8)

= 9.5 x 10° “95 77 '

Table 5.4: The number of failures for the DTLS models of size 10-20 for the Stochastic State
Coverage oracle with different probability distribution functions.

Model Size Random Linear Square Exp.
scandium_latest_psk 13 0 0 0 0
scandium_latest_ecdhe_cert_nreq 17 0 0 0 0
openssl-1.1.1b_all_cert_req 19 0 15 16 19
scandium_latest_ecdhe_cert_none 13 0 0 0 0
pion_psk 14 0 0 0 0
scandium-2.0.0_psk 16 0 0 0 0
scandium_latest_ecdhe_cert_req 15 0 0 0 0
openssl-1.1.1b_all_cert_none_nreq 14 0 1 1 0
mbedtls_all_cert_req 17 0 0 0 0
nss-3.6.7_dhe_ecdhe_rsa 10 0 0 0 0
mbedtls_all_cert_none 12 0 0 0 0

Inspecting the failures in Table 5.4 , it can be noticed that there is an outlier model

that causes the vast majority of the failures of the non “Random” variants.
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Sizes 20 - 30 The results for sizes 20 - 30 are shown in Fig. 5.8. Similar to the

previous results, the “Random” variant remains the top performer in both scores and

counts no failures. Among the other variants, the “Quadratic” one has the lowest s;

score, while the “Linear” one has the lowest penalized sy score.

36 x 10* - 19 x 10* 17
AQ = =|AQ = — =89.4%
9 19 x 10% 9= 1o 7
_ 42.5x10*-19x 10* 23.5

A
9 19 x 104

=|AQ = == = 123.6%

(5.9)

(5.10)

Table 5.5: The number of failures for the DTLS models of size 20-30 for the Stochastic State

Coverage oracle with different probability distribution functions.

Model Size Random Linear Square Exp.
ctinydtls_psk 25 0 0 0 2
gnutls-3.5.19_psk_rsa_cert_nreq 29 0 0 0 2
etinydtls_psk 22 0 4 13 15
openssl-1.1.1b_all_cert_nreq 22 0 26 29 27
etinydtls_ecdhe_cert_none 22 0 12 15 16
etinydtls_ecdhe_cert_req 27 0 11 14 13
mbedtls_all_cert_nreq 20 0 0 0 0
ctinydtls_ecdhe_cert_none 25 0 0 3 2

Inspecting the failures in Table 5.5, it can be seen that, while there is no singular

outlier, there is a subset of models that disproportionately cause the failures of the non

“Random” variants.
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Figure 5.9: Stochastic State Coverage scores for DTLS models of sizes 40 - 50.

Sizes 40 - 50 The results for sizes 40 - 50 are shown in Fig. 5.9. This group contained

only one model of size 45, therefore the results are not very informative. However, it is

the case that all non “Random” variations perform better than the “Random” variation,

be it by a small margin, and are just as successful.
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Figure 5.10: Stochastic State Coverage scores for DTLS models of sizes 60 - 80.

Sizes 60 - 80 The results for sizes 60 - 80 are shown in Fig. 5.10. In this group, the

non “Random” variants perform better than the “Random” one, with the top performer

being the “Exponential” variant, followed by the “Quadratic” and the “Linear” one. The

penalized sy score shows that the “Exponential” variant is the least resilient to failures.

The percentage of queries saved with respect to the “Random” variant is:

AQ =

_ 240000 - 115000
240000

= |AQ

_ 240-115
240

=52%

(5.13)
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240000 — 195000
AQ =

240 - 195
>lAg=" 2

=18.7% (5.14)
240000 240

Table 5.6: The number of failures for the DTLS models of size 60-80 for the Stochastic State
Coverage oracle with different probability distribution functions.

Model Size Random Linear Square Exp.
pion_ecdhe_cert_req 66 0 0 0 0
pion_ecdhe_cert_nreq 66 0 0 0 0
pion_ecdhe_cert_none 66 0 0 0 0
jsse-12_rsa_cert_none 79 5 9 8 29

Inspecting the failures in Table 5.6 shows that again there is an outlier model that
causes the vast majority of the failures of all of the models, especially of the “Exponential”

one.
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Figure 5.11: Stochastic State Coverage scores for DTLS models of sizes 100 - 120.

Sizes 100 - 120 The results for sizes 100 - 120 are shown in Fig. 5.11. The “Ran-
dom” variant scores the highest s; score and sy score, but the lowest penalized s, score,
meaning it is the least likely to fail. The “Linear” variant is the top performer, scoring the
lowest s; score and the lowest sy score. All of the non “Random” variants perform better

than the “Random” but they all tend to fail more, especially the “Exponential” variant.

_ 9%x10°-8.75x% 10°
- 9 x 105

9x10°-7x10°
AQ = PSS =|AQ =22% (5.16)

_ 9-8.75

AQ = |AQ =2.7% (5.15)
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Table 5.7: The number of failures for the DTLS models of size 100-120 for the Stochastic
State Coverage oracle with different probability distribution functions.

Model Size Random Linear Square Exp.
jsse-12_rsa_cert_req 113 1 7 7 24
jsse-12_rsa_cert_nreq 105 7 9 15 30

The details of the failures are shown in Table 5.7. The least and greatest percentage

of queries saved with respect to the “Random” variant is:

Table 5.8: Stochastic State Coverage variants performance summary

Protocol Greatest Extra | Least Extra ‘ Least Saved ‘ Greatest Saved
TLS 0% 0% 0% 0%
MQTT [ | [ | 0.6 % 18.5%
TCP 26.7 % [ | [ ] 7 %
DTLS 11.4 % 4.5 % [ ] [ |
DTLS 10 20 105.2 % 63.1 % [ ] [ |
DTLS 20 30 123.6 % 89.4 % [ ] [ |
DTLS 40 50 50 % 30 % [ ] [ |
DTLS 60 80 [ | [ | 18.7 % 52 %
DTLS 100 120 [ | [ | 2.7 % 22 %

Table 5.8 summarizes the results of the Stochastic State Coverage variants, showcas-
ing the greatest and least extra queries, as well as the least and greatest saved queries
with respect to the “Random” variant. The B symbol indicates that the metric is not ap-
plicable. For example, the variants of the Stochastic State Coverage oracle in the MQTT
protocol experiments did not cause any extra queries, therefore the ®m symbol is used
because the metric was not computed.

The resuls are mixed. Some groups of models, like the MQTT protocol models as well
as the DTLS models of sizes 60-120, seem to benefit from the Stochastic State Coverage
variants, while others, like the TCP and the DTLS models of sizes 10-50, do not.
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Figure 5.12: The s; and sy scores of the W Method and of the Reversed W Method, zoomed
in.

The s; and s, scores for the WMethod variants are presented in below in Fig. 5.12. It
seems that, overall, the “Normal” variant of the W method performs better. We inspect

the protocol-specific results to gain more information.
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Figure 5.13: The s; and sy scores of the W Method and of the Reversed W Method for TLS,
zoomed in.

TLS Similar to the state coverage methods, Fig. 5.13 show that the TLS protocols are
again learned in just one round and therefore the difference conformance testing algo-

rithms all perform the same.

MQTT The MQTT-specific results in Fig. 5.14 seem to favour the “Reverse” variant of
the W method, as both the s; and sy scores are lower, though by a margin. Specificaly,
the variant with parameter diff_depth = 2, 3, 6, which means that the prefixes of the first
2,3,6 age group come first respectively, performs the best. This is consistent with the
fact that all of the stochastic state coverage variants outperformed the uniformly random
one in the MQTT protocol.



Chapter 5. Experimental Results

53000 - 52000 1
52000 - 48500 520 - 485

S2 Scores (zoomed)

es (zoomed) 31.900

- 53000
31875
2.790 -
31.850
- 52000
8 31.825
2.780 - s
- 51000 &
8 31.800
3
— z 31775
- 50000
31750
- 49000
2.760 - 31725
I I I I 31700 - - -

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee
orac\es Orac\e

S1
Score

S1 without last round

eeeeee

Figure 5.14: The s; and sy scores of the W Method and of the Reversed W Method for
MQTT, zoomed in.
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Figure 5.15: The s; and sy scores of the W Method and of the Reversed W Method for TCP,
zoomed in.

TCP The TCP-specific results in Fig. 5.15 favour the “Reversed1” and “Reversed2” vari-
ants, which have the lowest s; and sy scores. It is interesting to note that, the variants give
too much priority to the newer states end up exhibiting worse performance. The greatest

savings and losses of queries, by the “Reversed1” and “Reversed” variants, respectively

are:
402500 — 395000 4025 — 3950
AQ = >|AQ= —/— 2 - 1.8% (5.19)
402500 4025
412500 — 402500 100
AQ = =|AQ = —— =2.48% (5.20)
402500 4025
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Figure 5.16: The s; and sy scores of the W Method and of the Reversed W Method for DTLS,
zoomed in.

DTLS Finally, the DTLS-specific results in Fig. 5.16 favor the “Normal“ variant of the W
Method, as it performs better in both scores. Due to the high variety of sizes in the DTLS

models, we present more specific results grouped by size.
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Figure 5.17: W Method scores for DTLS models of sizes 10 - 20.

Sizes 10 - 20 The results for sizes 10 - 20 are shown in Fig. 5.17. All of the variants
perform the same. This may be due to how the counterexamples are distributed in the
test suite. It is interesting to note that, inspecting the s; scores without the last round
queries shows that the performance of the different variants during the learning process
is not the same, but rather the “Reversed” use less queries, creating a difference that is
made up at the end, either because of a larger final test suite or because of more learning

rounds.
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Figure 5.18: W Method scores for DTLS models of sizes 20 - 30.

Sizes 20 - 30 The results for sizes 20 - 30 are shown in Fig. 5.18. The “Normal” vari-
ant outperforms the “Reversed” variants, with the exception of the variant with parameter
diff _depth = 1. The s; score ommiting the last round shows that the “Normal” vari-
ant tends to find counterexamples faster than all other variants. The least and greatest

amount of extra queries with respect to the “Normal”
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Figure 5.19: W Method scores for DTLS models of sizes 40 - 50.

Sizes 40 - 50 The results for sizes 40 - 50 are shown in Fig. 5.19. This group
contains only one model so the results are not very informative. Be that as it may, all of
the variants perform the same overall, with the “Reversed” variants requiring less queries

in the intermediate rounds.
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Figure 5.20: W Method scores for DTLS models of sizes 60 - 80.

Sizes 60 - 80 The results for sizes 60 - 80 are shown in Fig. 5.20 and are identical
to the results for sizes 40 - 50. The “Reversed” variants require less queries in the

intermediate rounds.
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Figure 5.21: W Method scores for DTLS models of sizes 100 - 120.

Sizes 100 - 120 The results for sizes 100 - 120 are shown in Fig. 5.21. The “Normal”
variant outperforms all of the “Reversed” variants. The least and greatest amount of extra

queries with respect to the “Normal” variant is:

560 x 102 — 475 x 103 85

AQ = =|AQ=—— =15.17% (5.25)
560 x 103 560
535 x 10% — 475 x 103 60

AQ = =|AQ=—=11.21% (5.26)
535 x 103 535
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Table 5.9 summarizes the results of the WMethod variants, showcasing the greatest
and least extra queries, as well as the least and greatest saved queries with respect to the
“Normal” variant. The performance of all of the variants seems to be similar, with small
deviations. In most groups of models, the “Normal” variant outperforms the “Reversed”

variants, with the exception of the MQTT protocol, where the “Reversed” variants perform

Table 5.9: WMethod variants performance summary

Protocol Greatest Extra | Least Extra ‘ Least Saved | Greatest Saved
TLS 0% 0% 0% 0%
MQTT [ | [ | 1.9% 6.7 %
TCP 2.48 % [ | [ ] 1.8%
DTLS 2.48 % 1.38 % [ ] [ |
DTLS 10 20 0% 0% 0 % 0%
DTLS 20 30 6.56 % 1.06 % [ ] [ |
DTLS 40 50 0% 0% 0% 0%
DTLS 60 80 0 % 0% 0% 0%
DTLS 100 120 15.17 % 11.21 % [ ] [ |

better.
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Figure 5.22: The s and sy scores of the Wp Method variants zoomed in.

The results for the WpMethod variants are shown in Fig. 5.22. The best overall method
is the “Reversed” variant with parameter diff_depth = 2, scoring the lowest s; and s,
scores. Inspecting the protocol-specific results will provide better insight into the perfor-

mance of the variants.
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Figure 5.23: The s; and sy scores of the Wp Method variants for TLS.

TLS The TLS-specific Fig. 5.23 shows the same scores for every method.
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Figure 5.24: The s; and sy scores of the Wp Method variants for MQTT.

MQ@TT The MQTT-specific Fig. 5.24 shows that the “Reversed” variant scores better,
with the parameter diff_depth = 2, 3,6 being the best performers. This agrees with the
corresponding “WMethod” results shown in Fig. 5.14. The least and greatest percentage

of saved queries is:
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Figure 5.25: The s; and sy scores of the Wp Method variants for TCP.
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TCP The TCP-specific Fig. 5.25 shows the exact same performance for all methods.
As far as the intermediate rounds are concerned, the “Reversed” variants find coun-
terexamples faster than the “Normal” one, with the exception of the one with parameter
diff _depth = 1.
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Figure 5.26: The s; and sy scores of the Wp Method variants for DTLS.

DTLS The DTLS-specific Fig. 5.26 shows some variants of the “Reversed” method to
be the worst performing, specifically those with parameter diff _depth = 6, full, the vari-
ants with parameters diff_depth = 2,3 to be the top performers and finally the variant
with paramter diff_depth = 1 to perform as well as the “Normal” variant. The greatest

percentage of extra queries and of queries saved is:
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Figure 5.27: Wp Method scores for DTLS models of sizes 10 - 20.

Sizes 10 - 20 The results for sizes 10 - 20 are shown in Fig. 5.27. All of the “Re-
versed” variants outperform the “Normal” variant and they get progressively better as the

diff _depth parameter increases. The least and greatest percentage of saved queries is:
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Figure 5.28: Wp Method scores for DTLS models of sizes 20 - 30.

Sizes 20 - 30 The results for sizes 20 - 30 are shown in Fig. 5.28. In this case, the
top performer is the “Normal” variant and “Reversed” variants perform at best just as well
and at worst worse than the “Normal” variant, specifically the variants with parameter

diff _depth = 6, full. The least and greatest percentage of extra queries is:
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Figure 5.29: Wp Method scores for DTLS models of sizes 40-50.

Sizes 40 - 50 The results for sizes 40-50 are shown in Fig. 5.29. The performance of
the variants for this group, constisting of only one model, gets progressively worse as the
diff _depth parameter increases, with the top performer being the “Normal” variant. The

least and greatest percentage of extra queries is.
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Figure 5.30: Wp Method scores for DTLS models of sizes 60-80.

Score

Sizes 60-80 The results for sizes 60-80 are shown in Fig. 5.30. The top performers
of this group is the “Reversed” variant with parameter diff_depth = 2, followed by the
variants with parameters diff_depth = 3, 6, full. The worst performer is the variant with
parameter diff_depth = 1, slightly outperformed by the “Normal” variant. The least and

greatest percentage of saved queries is:
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Sizes 100-120 The results for sizes 100-120 are shown in Fig. 5.31. Here, all of the
variants perform just as well, with the exception of the “Reversed” variants with parameter
diff _depth = 6, full, which are the worst performers. The greatest percentage of extra

queries is:
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Figure 5.31: Wp Method scores for DTLS models of sizes 100 - 120.

Table 5.10: WpMethod variants performance summary

Protocol Greatest Extra | Least Extra | Least Saved | Greatest Saved
TLS 0% 0% 0% 0%
MQTT [ | [ | 2.66 % 10.38 %
TCP 0% 0% 0% 0%
DTLS 0.05 % [ | [ | 0.67 %
DTLS 10 20 [ | | 0.01 % 0.03 %
DTLS 20 30 1.57 % 0.47 % [ | [ |
DTLS 40 50 0.2 % 0.06 % [ ] [ |
DTLS 60 80 [ | | 0.08 % 4.96 %
DTLS 100 120 1.44 % | | [ | [ |

Table 5.10 summarizes the results of the WpMethod variants, showcasing the greatest

and least extra queries, as well as the least and greatest saved queries with respect to the

“Normal” variant. Even though the performance of the variants is similar, the “Reversed”

variants outperform the “Normal” variant in the group of MQTT models and DTLS models

of sizes 60-80, while not performing significantly worse in the other groups.
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Figure 5.32: The s; and sy scores of the Random Wp Method variants.

The results for the Random WpMethod variants are shown in Fig. 5.32. The best
overall method is the “Normal” variant, scoring the lowest s; and sy scores. Inspecting the
protocol-specific results will provide better insight into the performance of the variants.
TLS The TLS-specific Fig. 5.33 shows the same scores for every method.
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Figure 5.33: The s; and sy scores of the Random Wp Method variants for TLS.

MQTT The MQTT-specific Fig. 5.34 show that all variants that check the new states first
offer better performance than the uniformly “Normal” variant, even when accounting for
failed learning experiments. The “Exponential” one is the top performer in both scores,
while the “Quadratic” performs almost identically to the “Linear”. The least and greatest

percentage of saved queries is:
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Table 5.11: The number of failures for the MQTT models for the Stochastic Random Wp
Method variants.

Model Size Random Linear Square Exp.

hbmqtt__two_client_will_retain 17 0 0 1 0

The slightly higher penalized s; score of the “Quadratic” variant is due to one failed
experiment, which was caused by the model shown in Table 5.11, the same model that
caused the “Exponential” variant of Stochastic State Coverage to fail, as noted in table
5.1.
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Figure 5.35: The s; and sy scores of the Random Wp Method variants for TCP.

TCP The TCP-specific Fig. 5.35 shows that the “Normal” variant outperforms all of the
other variants while at the same time having the smaller failure rate. The least and

greatest percentage of extra queries is:

AQ_5.5><1o5—4.5><1o5=> AQ_15 33,39 5.42)
- 4.5 10° “ 45 ? :
9.25x 105 — 4.5 x 10° 4.75
AQ = =|AQ = —— =105.5% (5.43)
4.5 % 105 4.5
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Table 5.12: The number of failures for the TCP models for the Stochastic Random Wp
Method variants.

Model Size Random Linear Square Exp.
tcp_server_windows_trans 38 5 7 11 16
TCP_Linux_Client 15 2 9 17 10
tcp_server_ubuntu_trans 57 0 1 0 7
TCP_Linux_Server 57 0 0 1 8
tcp_server_bsd_trans 55 0 0 (0] 5

Table 5.12 shows the failed experiments.
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Figure 5.36: The s; and sy scores of the Random Wp Method variants for DTLS.

DTLS The DTLS-specific Fig. 5.36 again shows the “Normal” variant outperforming the

rest and being less error prone. The least and greatest percentage of extra queries is:

AQ = 1.3 % 106—1.1><106=> AQ_o.z_18 189% 5.44)

- 1.1 x 10° I T T :

AQ—2X106_1‘1X106=>AQ—O‘9—8181¢7 (5.45)
- 1.1 x 10° 11 '

However, due to the variety of model sizes in the set of DTLS models that were tested,

it is worth examining them closer, grouped by size.

Sizes 10 - 20 The results for sizes 10 - 20 are shown in Fig. 5.37. The “Normal”
variant outperforms the other variants while having the lowest chance of failing. The least

and greatest percentage of extra queries is:

1.75x 10° = 1.3 x 10° 0.45
1.95x 10° — 1.3 x 10° 0.65
AQ = =|AQ = —— = 50% 5.47
9 1.3% 105 9=713 7 (5.47)
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Figure 5.37: Random Wp Method scores for DTLS models of sizes 10-20.

5.13: The number of failures for the DTLS models of size 10-20 for the Random Wp

Method variants.

Model Size Random Linear Square Exp.
scandium_latest_psk 13 0] 0 0] 0
scandium_latest_ecdhe_cert_nreq 17 0] 0 0 0
openssl-1.1.1b_all_cert_req 19 2 21 25 26
scandium_latest_ecdhe_cert_none 13 0] 0 0] 0
pion_psk 14 0 0 0 0
scandium-2.0.0_psk 16 0 0 0 0
scandium_latest_ecdhe_cert_req 15 0 0 0 0
openssl-1.1.1b_all_cert_none_nreq 14 0] 0 7 0
mbedtls_all_cert_req 17 0 0 0 0
nss-3.6.7_dhe_ecdhe_rsa 10 0 0 0] 0
mbedtls_all_cert _none 12 0 0 0 0

Table 5.13 shows the failures of the variants for each model. It is evident that there is

an outlier that causes the vast majority of the failures of the non “Normal” variants and

it is the same outlier as in the case of table 5.4.
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Figure 5.38: Random Wp Method scores for DTLS models of sizes 20-30.
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Sizes 20-30 The results for sizes 20-30 are shown in Fig. 5.38. Similar to the

previous results, the “Normal” variation is the top perfomer and the least error prone.

The least and greatest percentage of extra queries is:

4.25%x 10° -2 x 10° 2.25
AQ = =|AQ = === = 125%
9 2% 10° 9= ?
6.75 X 10° — 2 x 10° 4.75
AQ = =|AQ = — =237.5%
2 x 105 2

(5.48)

(5.49)

Table 5.14: The number of failures for the DTLS models of size 20-30 for the Random Wp

Method variants.

Model Size Random Linear Square Exp.
ctinydtls_psk 25 0 0 2 1
gnutls-3.5.19_psk_rsa_cert_nreq 29 0 0 0

etinydtls_psk 22 0 0 11 6
openssl-1.1.1b_all_cert_nreq 22 2 27 30 29
etinydtls_ecdhe_cert_none 22 0 3 18 14
etinydtls_ecdhe_cert_req 27 0 4 20 15
mbedtls_all_cert_nreq 20 0] 0 0 0
ctinydtls_ecdhe_cert_none 25 0 1 1 4

Table 5.14 shows the failures of the variants for each model. Despite there not being

one particular outlier, there is again a small subset of models that cause the vast majority

of the failures of the non “Normal” variants.
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Figure 5.39: Random Wp Method scores for DTLS models of sizes 40-50.

Sizes 40-50 The results for sizes 40-50 are shown in Fig. 5.39. This group contained

only one model of size 45, therefore the results are not very informative. However, it is

the case that the “Exponential” variant performs the least number of queries, albeit by a

small margin. Be that as it may, it is the most error prone variant, while the “Normal”

variation performed slightly more queries while being successful at all experiments. The

greatest percentage of saved and extra queries is:
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Figure 5.40: Random Wp Method scores for DTLS models of sizes 60-80.

Sizes 60-80 The results for sizes 60-80 are shown in Fig. 5.40. The “Normal” variant
performs the least amount of queries and is almost as error prone than the “Linear” variant

that performs slightly more queries. The least and greatest percentage extra queries is:

16 x 10* — 15 x 10* 1
AQ = = |AQ = — = 6667 5.52
Q 15 x 10* 9 15 ’ oo
AQ—24X104_15X104=>AQ_ 9 _ 60% (5.53)
= 15 x 104 15 .

Table 5.15: The number of failures for the DTLS models of size 60-80 for the Random Wp
Method variants.

Model Size Random Linear Square Exp.
pion_ecdhe_cert_req 66 0 0 0 0
pion_ecdhe_cert_nreq 66 0 0 0] 0
pion_ecdhe_cert_none 66 0 0 0] 0]
jsse-12_rsa_cert_none 79 3 2 14 27

Table 5.15 shows the failures of the variants for each model. All of the failures
are caused by one model, “jsse-12_rsa_cert_none”, which also causes the “Exponential”

variant to fail almost every time.
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Figure 5.41: Random Wp Method scores for DTLS models of sizes 100-120.

Sizes 100-120 The results for sizes 100-120 are shown in Fig. 5.41. The “Linear”
variant is the top performer in both scores but is more error prone than the “Random”

variant as the Table 5.16 shows. The greatest percentage of saved and extra queries is:

6x10°-4.5x 10° 1.5
AQ = = |AQ = — = 25% 5.54
9 6 x 10° 9 6 ’ ( :
8.75x 10° — 6 x 10° 2.75

Table 5.16: The number of failures for the DTLS models of size 100-120 for the Random Wp
Method variants.

Model Size Random Linear Square Exp.
jsse-12_rsa_cert_req 113 1 8 12 29
jsse-12_rsa_cert_nreq 105 3 3 7 23

Table 5.17: Random WpMethod variants performance summary

Protocol Greatest Extra | Least Extra ‘ Least Saved | Greatest Saved
TLS 0% 0% 0% 0%
MQTT [ | [ ] 16.6 % 25%
TCP 105.5 % 33.3% [ | [ ]
DTLS 81.81 % 18.18 % [ | [ ]
DTLS 10 20 50 % 34.61 % [ | [ ]
DTLS 20 30 237.5 % 125 % [ | [ ]
DTLS 40 50 33.9 % [ ] [ | 3.57 %
DTLS 60 80 60 % 6.66 % [ | [ ]
DTLS 100 120 45.83 % [ ] [ | 25 %

Table 5.17 summarizes the results of the Random WpMethod variants, showcasing
the greatest and least extra queries, as well as the least and greatest saved queries with

respect to the “Normal” variant. Most of the variants perform worse than the “Normal” one
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by a large margin. The MQTT experiments are the only ones that consistently outperform

the “Normal” variant.

5.5 Summary

The results of the experiments show that focusing on the new states of a hypothesis
during counterexample search can lead to better performance in some cases, if it is done
moderately, but it can also lead to worse performance, if it is done too aggressively. More
sophisticated approaches to the idea are needed and model inspection to determine why

the algorithms perform the way they do is necessary.
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Future Work

Future work could follow many directions. The Stochastic State Coverage oracle could
be put to the test with a wider variaty of probability functions, or even with a probability
function that is learned during learning, similar in spirit as in the Mixture of Experts
approach [18].

The implementations of the W / Wp Method and its variants depend a lot on how the
local and global characterizing sets are constructed. It would be of interest to see how
the algorithms and their variants perform with different characterizing sets.

Another idea would be to test newer states but to do so under some condition de-
pending on the properties of the hypothesis graph. For example, it was found during
experiments that if a sink state made its way into the hypothesis, then it remained a
sink state for the rest of the learning experiment. Therefore, it would make sense to try
skipping queries that target the sink state.

The same benchmarks could also be run with more learning algorithms than just L* or
with different counterexample processing methods. Moreover, equivalence oracles could
be proposed that are not completely decoupled from the learning algorithm but are aware
of it and utilize its characteristics to find counterexamples faster.

Finally, in the spirit of propagating knowledge from previous learning rounds to future
ones, it would be interesting to prove, or consider proven after some rounds, properties

of the hypothesis graph and use them to guide the learning process.
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List of Abbreviations

ADS
APFD
ASI
EQ
FSM
H-ADS
HSI
I-ADS
MAT
MQ
PAC
PDS
SUL

Active Automata Learning

Adaptive Distinguishing Sequences
Average Percentage of Faults Detected
Access-Step-Identify

Equivalence Query

Finite State Machine

Hybrid Adaptive Distinguishing Sequences
Harmonized State Identifiers

Incomplete Adaptive Distinguishing Sequences
Minimal Adequate Teacher

Membership Query

Probably Approximately Correct

Preset Distinguishing Sequences

System Under Learning
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