EoNIKO METTYOBIO ITOATTEXNEIO

Y XOAH HAEKTPOAOTON MHXANIKON KAI MHXANIKON YTIOAOTIESTON
EPrAYTHPIO YTTIOAOTISTIKON X YSTHMATON

Fine-Grained Container Orchestration and Scheduling On
Kubernetes Clusters

AIITAOMATIKH EPTAYIA

TOoL

I'ewpyilov Xtegpavdaxn

EnBAEnwv: Tedpyioc Mxodyuag
Kodnyntic E.M.IL

Advva, PeBpoudptog 2025

P2
55

9
=
AR WL
X S 2
NI
v HE

¢
1 $=?
r

Edvixé Metodfio Ilohuteyvelo

Yyon| Hhextpohdywv Mryavixddv xan Mnyoavixodv Troloylotdv
Touéac ITAnpogopixic
Epyaotipto Troloyiotixody LuctTnudtny

Fine-Grained Container Orchestration and Scheduling On

Kubernetes Clusters

AIIAOMATIKH EPTrAYIA

ToL

Il'ewpyilov Xtegpavdxn

ETEL@)\E’TE(;)V: Fedpyroc I'vodyog

Kodnyntic E.M.IL

Evyxpldnxe and v teiuedr) e€etaotn enitponh) v 1" @ePpouapiov, 2025.

Tedpyloc I'oduag
Kodnyntic E.M.IL Kodnyntic E.M.IL

Nextdproc Koloenc Awoviotoc Ivevpotxdtog

Koadnyntic E.M.IL

Advva, PeBpoudptog 2025

T'EQPIIor YTE®ANAKHY
Amhopotovyoc Hhextpordyoc Mryovinde
xaw Mnyovixog Trohoyiotov E.M.IL

Copyright (©) — All rights reserved Georgios Stefanakis, 2025.
Me emi@OIaEn ToVTOC BLXADOUATOC.

Arnayopebeton n aviypagt), anodrixeuon xou Slovopr] Tne tapovoug epyaciag, €€ oAoxhipou Y TUAUITOS aUTAS, Yid
gunopd oxond. Emtpéneton 1 avatinwot), amodixeuct) xou diovour| Yot oxomd Uurn xepdooxomuxd, EXTOUdEVTIXAC
1) EEELYNTXAC PUOTE, UTO TNY TpoUnO¥eaT Vo avapépeTan 1) YY) TPOEAEUOTC %ol Vo BLTNEElTon TO POV UAVUUAL.
Epwtiuata mou agopolv 1t yerion tne epyaciog yio xepdooxomxd oxond mpénel vo aneudivovTol Teog Tov
CUYYPUPEA.

Ou amderc xa o CUUTEPAOUATO TTOU TEPLEYOVTOL GE AUTO TO EYYRUPO EXPRELOUY TOV GUYYEAUPEX ot EV TRETEL
va epunvevdel 6Tt avuinpoownedouy Ti¢ enionueg Yéocig Tou Edvixod Metodfiou Iloduteyvelou.

ITepiindm

Yg uépeg pag, N mohouoppla TV e@aproydy tou @uioievoivtal oto Cloud elvan extevic, nepthauBdvovtog
and egapuoyéc udmhic eniBoone (high-performance computing) éwe apyltextovixéc hoyiouxol Bacioyéves oe
pxpoimneeoiec, avolloels dedopévev (data analytics) xa poée (pipelines) pnyavixfc péinone. Kadde to utor-
oyotxd povtéro tou Cloud enexteiveton ouveywe oe xdile cUyypovo Touéa ThAnpoopixhc, N avdyxn Beitinong
¢ enldoone xon e adlonoinomg Twy TdpwV TLWV LUTOBOUNY TV XEVTpwY dedouévwy (datacenters) xadic tatan
Wiaktepa xplowun, oyt LOVo Yiol Tov TEAXO YeNoTN aAAd XL and TNV dnodm TN EVERYELUXNAC Xol OLXOVOULXTC
anodotwdtnrac. H xiPwtionoinon (containerization) twv egappoydvy anoteel pio otpatnynd Bertiotonoinong
TIOU TPOCPEPEL TOAAG TAEOVEXTHUOTOL OE OYEON UE TNV TPOYEVECTERT Eovixonoinon (virtualization) Bootouévn
oe emPrénovta cvothuata (hypervisors), 6mwe QopNTOTNTA, AVUTOEAYWYETNTY, YounhoTteEn emBdpuvor eni-
doong xou anathoelc wWvhiung, xadde xau tayUtepn extéheon xou xhudxwon. O KuBepvAtne (Kubernetes) etvau
EVOLC OVOLYTOU XMOXOL EVOPY MO TRWTAC Yial TNV EXTEREDT), Sloryelplon xou xAudxwor containerized epapuoydyv oe
napaywyd nepBdiiovta. Ilapdro mou n avaPBdduion e enildoong oe oyéorn ue To Tapadoclaxd UG THUATA
eovixomoinong etvan eupavrc, oL evopynoTewtés Yevixd dev Booilovtan o Aentopept] dedouéva ToOpmY Yol TNV
dpouordynon xou Ty extéleot eqapuoydv. O Kubernetes houfdvel unddn wévo amhoixole deixtee, 6nwe to
poptio oTOV eNEgepYUT T XU TN UVHUY, YEYOVOC Tou oY VA odnyel oe un BélTioTeg amopdoelg Bpodoldynong
X0l pouvopEva cUYXEOUETNE HETAED GUYLTEEYOVTLWY eQappoyYdY. O ndpoyot utnpeoidv Cloud avoyvwetlouv autd
To {ftnua xon oLy vé Yuotdlouy anodotixt] aEloTonom TwWV TOPWY TEOXEWEVOU VoL BLATNECOUY TNV AmolTOVUEVT
xhdor Howbtnrae Tanpeoiog (QoS) nou éyer Intndel and tov nehdtn.

Yty mopoloa Simhwpatixd] epyacia, evtoniloupe melpapotind Tic Tpoavapepleices TpoxArioelc e oTdYo
oyedlaon evog o amodoTo) UNYoVIoUoU Sloyeiplong TopwY Tou evonuotdvetol oto Kubernetes. A&omolotye
To onpeta enéxtaong tou Kubernetes yio npoypoppatiotéc, xaddde xou didpopa epyoheio napaxohotinone cus -
patog xan benchmarking, ¢ote vo dnuovpyrooupe BlagopeTixéc ToMTXéS dpouoldynone mou Paoctlovial oe
TREOQIN EQUPUOYDV Xou OE PETPES CUCTHUATOS, ot avtileoyn pe v Baouxr Aettoupyio Tou BpouoloynTy Tou
hoPdver unddm uévo) CPU xan tn uviun. Katoypdpoupe tar yopaxtneto Tixd Tev ELEpYOUEVOY EQUOUOYOY
Bdoel yoaunhol emmédou UETEXOY CUOTAUNTOS, OTWE ToyUTNTA UETAPORAS BEQOUEVGY Amd Xl TEOS TNV UVAUT
(Memory Bandwidth), evtohéc avd xOxho (Instructions per Cycle - IPC), aoctoyiec cache emmnédou L2 xou
L3 (L2 & L3 Cache Misses), xou e@oappélovye ano@doelc Spopordynone uéow Tou eEATOMXEVUEVOL Uac dpo-
poroynty (scheduler). Xtn cuvéyeia, 0flOAOYOUUE TNV OMOTEAECHATIXGTNTA TNS AJOYG UAS oLYXPVOVTAS TNV
emPBEABUVOT) TWV EQUOULOYDY TELY X0t HETE TNV e@apuoyT) Tou scheduler tou vAomoioaue. Aledyouyue netpdpota
yenowonoudvtog didgopa benchmarks mou TpocouowdIVOUV pEOMOTIXG GEVAQLAL XATATOVNONG TOU GUC THUATOS
X0l AmOBEYOOUUE TOV avTixTumo Tng Abong yag otny npdBiedm napeuBordy xou otn Behtiwon g cuvolixrg
enidoong Tou cLCTHUATOC.

AgZeig-KAedid — Tnohoylotind Négog, KiBwtionoinor, Kubernetes, Aiayelpion Ildpwv, Behtiotonolnon
Endoone, Metplaouds HopepBordrv, Apogordynon Egopuoydyv, Aoxpéc Enidoong.

Abstract

Nowadays, the diversity of workloads that are hosted on the Cloud is extensive, ranging from high-performance
applications to microservice software architecture, data analytics and machine learning pipelines. As the
Cloud paradigm is constantly expanding in every modern field of computation, the need to improve the per-
formance and resource utilization of datacenter infrastructure becomes crucial, not only for the end-user, but
also from a power and cost efficiency perspective. Containerization of applications is one such optimization
strategy that offers many advantages over the preceding hypervisor-based virtualization, such as portabil-
ity, reproducibility, lower performance overhead and memory requirements, faster deployment and scaling.
Kubernetes is an open-source container orchestrator for deploying, managing and scaling containerized ap-
plications in production environments. While the performance upgrade over traditional clusters is apparent,
orchestrators generally do not rely on fine-grained resource information for scheduling and executing applica-
tions. Additionally, they often lack awareness of the application’s internal characteristics. Kubernetes is only
aware of simplistic metrics such as CPU and memory load, often leading to sub-optimal scheduling decisions
and interference phenomena between co-located workloads. Cloud Service Providers are aware of this issue
and are willing to compromise resource utilization to uphold the Quality of Service class requested by the
customer.

In this thesis, we experimentally identify the formerly described challenges in an attempt to design a more ef-
ficient resource management mechanism that integrates with Kubernetes. We leverage Kubernetes’ extension
points for developers, as well as different system monitoring and benchmarking tools and create sophisticated
scheduling policies that utilize application profiling in contrast to the baseline CPU and memory affinity en-
abled policy of the default scheduler. We profile incoming applications based while observing low-level system
metrics, e.g. Memory Bandwidth, Instructions per Cycle, L2 and L3 Cache Misses, and apply scheduling
decisions with our custom scheduler. Afterwards, we evaluate the effectiveness of our solution by comparing
the slowdown of the applications prior and after deploying our custom solution. We conduct experiments
using numerous benchmarks that introduce realistic scenarios of stress on the system and demonstrate the
impact of our solution in foreseeing resource contention and improving overall system performance.

Keywords — Cloud Computing, Containerization, Kubernetes, Resource Management, Performance Op-
timization, Interference Mitigation, Application Scheduling, Benchmarking

Euyaplotieg

Oéhw va euyoploThow and TNV xoEdld Pou To TpoowTxd Tou Epyastnelou TnoloyloTixwy Xuctnudtwy
(CSLab), xa xvplwe tov ddaxtopixd gortnth Iwdvvn Ianaddon xoaw tov xadnynth Tedpylo Ixodya, Tou o
€dwoay TNV guxaplal Vo aoyoAnte pe autd to Wiaitepa evBlapépoy xa amantnTixd €pyo. Xwpelc TNV Yvmon, Ty
xadodriynon xan Ty vroo el Toug, dev Va elyo Ty duvatodTnTa Vo eYPodive T6c0 oTo avtixeluevo, oUTe va
Bpw AMoeig yior {ntiuata mou opywd éuotaloy abloavonTa.

Yo €& ypdvia golitmoric pou oto IloAuteyvelo, €yw ouvdder ohndvéc @uhlec pe avlp®dnouc mou oyame
xou Yowpdle Wiaitepa. Zhooue oléYaoTtee oTYHES, CUVERYUOTAXOME, TEpdoaue Hall YiopTée xou SUoXOMES,
dnuovpyHoae avapvioels mou Yo pépw mdvta pall pou. 3ag euyaploTéd TOAD Yiol TNV aéploTr cLVAULGUNUOTIXY
UTOG TARLEN, XL TNV EUTVELUGT] TTOU OV BWoUTE Var ey Oyl UOVO YVewoLoxd, ol xon we dvipntog.

Téhog, Yo Hieha va euyoploThow toug Yovelg pou Béa xou Anudtern, xow v adeppn pou, Koteplva. Ilopd
TIC EVTAOELS X0 TIC BLUQWVIES Yog, 1) OLXOYEVEL PO Bev oTopdtnoe noté va Ye otnelletl, va ye ouyBoulelet, va
ue evlpappivel xou vo dely Vel oty xou UTOPOVA, amOTEADVTAC ToV To otaepd UGV e {whe pou. Toug
0@eihe 6,TL €y noTapépel uéypl oTLYUNS, xou xapla AEEN SeV TEPLYPAPEL TNV EUYVWUOCUVY OV Yid EXEIVOUC.

Yregavinne I'edpyiog, Pefpouvdplog 2025

11

Contents

Contents

List of Figures

1

Extetopévn Ilepiindn ota EAANvId

1.1 Ewoywywéc Evoleg . . . o . o o o e e
1.2 Byewuxc MeMETEC L L
1.3 O Evopynotpwtic Kubernetes oo o
1.4 Tpoxhfoeic Awyelpione Hoépwv oe Yvothpata Tdniic Enidoong
1.5 Maestro - 'Evac Awyepiotic [lopwy yio Kuberneteso oL
1.6 Iewpopotied AWTUEN o o
1.7 Amotlumom L
1.8 XulAtnon xow Mehhovtind 'Epyo o oo
Introduction

2.1 Cloud Computing o o e e e e
2.2 Virtualization Techniques
2.3 Container Orchestration and Kubernetes
2.4 Resource Utilization Concerns in Datacenters
2.5 Thesis Overview L e

Related Work
3.1 Enterprise Solutions for Cloud Resource Management
3.2 Academic Work on Efficient Resource Allocation in the Cloud

The Kubernetes Container Orchestrator

4.1 Container Orchestration e
4.2 Cluster Architecture e

4.2.1 Control Plane Components e

4.2.2 Node Components v it e e
4.3 Workloads e e
4.4 Services, Load Balancing, and Networking oL,
4.5 STOTAZE . .« v v ot e e
4.6 Resource Management Lo
4.7 The Kubernetes Scheduler e
4.8 Kubernetes Interface Standardso
4.9 Frameworks for Developers

Performance of High Performance Computing Systems

5.1 Performance Degradation Factors in HPC Workloads
5.2 The Noisy Neighbor Effect
5.3 Estimating Performance Bottlenecks on Multicore Architectures.

13

13

15

— O O W

—_ =
ot

17
17
18
19
19
21

23
23
24

27
27
27
27
29
29
31
32
33
37
39
40

Contents

6 Maestro: Fine-Grained Scheduling and Resource Allocation in Kubernetes 49
6.1 OVerview 49
6.2 Application Components L e 51

6.2.1 Controller Manager e 52
6.2.2 Daemon e e e e e 53
6.2.3 Scheduler 53
6.3 WorkloadAware Scheduling Algorithm 54
6.4 Deployment and Configuration L L 56

7 Experimental Setup and Motivational Analysis 59
7.1 Baseline Hardware and Virtual Machine Configuration 59
7.2 Collecting and Monitoring System Metrics oo 59

7.2.1 Intel® Performance Counter Monitor 59
7.2.2 Prometheus, Grafana, Node Exporter, cAdvisor 60
7.3 Benchmark Suites 60
7.4 Workload Classification e 61
7.4.1 Packed-Friendly 61
7.4.2 Spread-Friendly 61
7.4.3 Isolation-Friendly 62
TA44 Agnostic 62

8 Evaluation 67
8.1 Classification of SpreadFriendly - PackedFriendly Workloads 67
8.2 Single Node Experiment L 68

8.2.1 Workload Collocation of Heterogeneously Labeled Applications 68
8.3 Multi Node Experiment L e 72
8.3.1 Node CPU Utilization Percentage 72
8.3.2 Additional WorkloadAware Scheduler Plugin Features 72

9 Conclusion and Future Work 73
9.1 DISCUSSION v o o e e e e e 73
9.2 Future Work e 73

10 Bibliography 75

14

List of Figures

1.1.1 E€éNén twv Teyvohoydv Emovixomolnongo oo oo oo
1.3.1 Baowéc Yuviotdoec Evoc Kubernetes Cluster o o o oo
1.3.2 Resource Requests xou Limits evoc Pod
1.5.1 Apyttextovixt| tou unyoviopob Maestroo Lo
1.6.1 Metpuég enldoong 800 cuveyduevwy exterécewy tou benchmark in-memory-analytics pe

00 VAuaTo. LNy mpdTn extéleon ta vipata elvar xotoveunuévo ato diodéowo NUMA nodes,

HEWDVOVTAC To anoutovpevo memory bandwidth xou Simhacidlovtac ta instructions per cycle. .
1.7.1 PackedFriendly vs. PackedFriendly (1)
1.7.2 PackedFriendly vs. PackedFriendly (2)
1.7.3 SpreadFriendly vs. SpreadFriendly (1) L
1.7.4 SpreadFriendly vs. SpreadFriendly (2)
1.7.5 PackedFriendly vs. SpreadFriendly (1)
1.7.6 PackedFriendly vs. SpreadFriendly (2)
1.7.7 PackedFriendly vs. SpreadFriendly (3)
1.7.8 PackedFriendly vs. Agnostic (1) L
1.7.9 PackedFriendly vs. Agnostic (2). L
1.7.1®preadFriendly vs. Agnostic (1) o
1.7.18preadFriendly vs. Agnostic (2) L
1.7.12Agnostic vs. Agnostic e e
1.7 10y XeVTpWUEVH ATOTEAEGUATO « « . .« v v v v v e e e e

2.2.1 Evolution of Virtualization
2.4.1 Hybrid Cloud Server Architecture.

4.2.1 Kubernetes Components oo e e e e
4.2.2 The Controller Manager and the Operator Pattern
4.6.1 Resource Requests and Limits of a Pod 0
4.6.2 Kubelet’s Memory Manager Workflow 0.
4.7 1 Lifecycle of a Pod
4.8.1 The CRI specification defines the interface between the kubelet and the container runtime . .
4.9.1 Custom Operators Within a Kubernetes Cluster
4.9.2 Scheduling Framework Extension Points
4.9.3 Kubernetes Cluster with FPGA Device Plugin Installed

6.2.1 Maestro Architecture L

7.4.1 Performance metrics of two consecutive executions of in-memory-analytics with two threads.
On the first run, the threads are distributed to the sockets, reducing the memory bandwidth
needed and doubling the instructions executed per cycle.

8.2.1 PackedFriendly vs. PackedFriendly (1) L
8.2.2 PackedFriendly vs. PackedFriendly (2) o
8.2.3 SpreadFriendly vs. SpreadFriendly (1)
8.2.4 SpreadFriendly vs. SpreadFriendly (2)

O O Ot

11
12
12
13
13
13
13
13
14
14
14
14
14
15

List of Figures

8.2.5 PackedFriendly vs. SpreadFriendly (1) 69
8.2.6 PackedFriendly vs. SpreadFriendly (2) L 69
8.2.7 PackedFriendly vs. SpreadFriendly (3) 69
8.2.8 PackedFriendly vs. Agnostic (1)o e 70
8.2.9 PackedFriendly vs. Agnostic (2) L 70
8.2.1@BpreadFriendly vs. Agnostic (1) L 70
8.2.18preadFriendly vs. Agnostic (2) 70
8.2.12Agnostic vs. Agnostic L e 71

8.2.1Aggregated Results

16

List of Figures

17

List of Figures

18

Chapter 1

Extetoapevn Iepiindn oto EAAN VX

1.1 Ewoayowywxec 'Evvoleg

H vumohoylotiny) végoug elvon pior avaduduevr teyvohoylo mou emextelveton cLVEY W 0 xde LoVTEPVO Topéd
e mhnpogopfic. To végog (cloud) opileton, olugpuva ye 1o Edvixéd Ivotitotto Ipotinwy xa Teyvoloyioug
(NIST) twv HITA, w¢ éva povtého Tou ETUTEETEL TNV TPGOPooT) o€ €vol GUVORO dlopolpal GUEVKY XaL dlauop-
PAOCLIWY UTOAOYIG TIXDY TOpwY, dlardéotuwy péow tou dadixtoou [15]. To cloud mopéyel autolc toug tdpoug
HE WxEd BlayElpto Td xHGTOG Amd TNV TAELEA TOU TEAXOU YEeNoTh XL EAAYLOTY BLddpaoT] UE TOV THPOY O UTNpE-
oy végoue (Cloud Service Provider - CSP). To végoc anoteleiton and and éva dixtuo xévipwy Sedopévev
(datacenters), x&de éva and to onoio oteydlel yhddee SloacuVIESEUEVOUC UTONOYLOTES, Ol OTIoloL UTOPOVUY VL
yenouoromdoly yiot THY EXTOVNOT BLPORKY EPYUOLAY, OTWE TNV BLVOUY] EQUOUOY MY, TAATPOPUMY, X0l UTNEE-
oy oo dladixtuo. Xe avtideon pe to péypl Tdpa xohepwPévo LovTéro TN enl TOTOU GTEYUOTNC UTONOYLO TLXWYV
cuo TNty (on-premise computing), Evog opyYAVISHOC UTopEl Vol EXYETUANEVTEL TOU EVEALXTOUS, XAl BVOLYTOUS
OE XAUAXOOY) SLHEGILOUE TTOPOUS TOU VEQOUC YId TS UTOAOYLO TIXEC TOU AVAYXES, EAUYLO TOTOLOVTOS TO XOGTOG
ouvthpnomne xou avoddulone puotxy eEunnpetntdy (servers) otig utodopéc Tou. Emnhéov, to vépog diadétel
gvéhixta "pay-as-you-go" oynuata TOAGYNONG, YEYOVOS TOU UELDVEL TIC TROXATUBO0MXES EMEVOUOELC TWV Op-
YOVIOUOY Xl TOUS BLVEL TNV SuvatdTNTA Vo ENEXTEVOUY TOUC TOPOLS TOUS Xutd To doxolv. O teyvoloyieg
ELXOVLXOTIOMNONC UTOAOYLOTIXWY CLUOTNUATWY Tou Topéyel to cloud elvar o Adyoc mou mhéov ypnoudonoieiton
XOTA *OPOV OE PEYAANS XALUAXOC EQUPUOYES, ol Ylol qUTOV Tov AGYO 1 owo Ty Bloyelplon twv Slotéciuwmy
UTIOAOYLO TIXWVY TOPWY OTOTEREL plol EMTOXTING vy X,

H vnoloyiotinf) vépoug Suaxpivetan oe tplo x0ptar povtéha unnpeotdv: Aoyiouixd we YTrneeoia (SaaS), énou
oL ypfiotes éxouv mpbofact ot epapuoyvés ywelc eyxatdotaon B doyeipion, Ihatpdoua we Trneeoio (Paal),
TOU EMTEENEL OTOUS TPOYQRUUUATIOTEG VoL BNUIOVEYOUY X0l VoL AVATTUCC0UY EQUOUOYES OE UTODOWUY| VEPOUS, ol
Trodouh we YTrnpeoia (IaaS), 1 onola TEOCPEPEL EXOVIXOTOMNUEVOUS LTONOYLOTIXOUE TTOPOUS, BTG ELXOVIXES
unyovée (VMs) xou anodnrevtuxd yopo. H ewovixonoinon (virtualization) armotehel Baoixd pnyovioud e
UTOAOYLO TG VEQOUG, XoddG EMITEETEL TNV EXTENEGT) TOMATALY ELXOVIXOY UNYAVOY TEVE GE €Vay QuUOLXO e&-
umneetnt. To hypervisor-based virtualization napéyel amoudvwon petal TwV EQAUPUOY OV, AAAE CUVETEYETOL
umié x6cT0¢ o anodnreuTind Yweo xau enidoon. Avtideta, n texvoloyio Twv xovtévep (containers) npoo-
pépeL pLol ehappelTepn ADOT), ETTEENOVTOS TNV EXTEAECT] TOMATAGDY EQPUOUOY®Y GTOV (Blo TUEHVA AELTOUEYLIXOV
CUCTAUATOG, Xwelc TNV avdyxT Yo EeXweloTo exovixd unydvnua. Ot containers etvar mo anodotixol ot eniboon
X0l XOOTOC, BLEUXOAUYOVTOC TN PORNTOHTNTA TWV EQUQUOYOY Xl TNV AUTOUATOTOINGT] TNG BLAVOUNE TOUG.

H evopyfotpwon maxétwy (container orchestration) avopépeton otnv autopatonoinomn e avdntuing, e
xhdxwong (scaling) xou tne Sroryeipiong e@oapuoydy mou extelotvtal ot xovtéivep (containerized applications)
péoo og évo obumheyuo eCutneetntdv (cluster). O evopynotpwtic oMNAeTdpd pe To nepBdAlov extéleone
xovtévep (container runtime) xou Sioyeiptletan epyaoiec dnwe v exxivion, v evnuépwon, T uetaxivnon,
TNV XAUAXWOT) XU THY APAlPECT] XOVTELVED.

O KuBepvitne (Kubernetes) eivon évog avoxtold xoddwa evopynotewtic xovtéivep (container orchestrator)
ToL €xeL YIVEL TO TPOTUTIO Yl EPUPUOYES MEYEANS xhpaxoc [9]. Extéc and tic Pacixéc Aettovpylee extéleone

1

Chapter 1. Extetopévn Iepihndn ota EAAnvid

(deployment), xhudxwone (scaling) xou Sioyelpione xoviéwvep, autopoatonolel xplowes Aettoupylee ot eninedo
umodoprc, 6mwe T avoxdhudm vrnpeoidv (service discovery), v e€looppdmnon optiou (load balancing),
™ Suayelpion amodnxeuticod yopou (storage management), tnv avolpeon evnuepioewy (rollbacks) xou tnv
autoepanein (self-healing) twv epappoydv. Av xou to Kubernetes eivor Behtiotonomuévo yio Ty extéheon
EQUPUOYOV UE OPYLTEXTOVIXY WixpoUnneeoudy (microservices), 1 evehi&io Tou emTpéTEL TNV EXTEREDT DLPOPLV
EQOPUOYAY, T avolloelg dedouévwy (data analytics), poéc unyavixic uddnone (machine learning pipelines)
X0l ETULOTNUOVIXES EQapuoYEC VPNAHC enidoong (scientific high-performance workloads).

To Kubernetes napéyet enlong enextdowes, @hixéc npoc toug mpoypapuatiotés (developer-centric) Siemopée
(frameworks), 7oL ETUTEENOVY TNV EVOWUETWOY EQUOUOYMV YIOL TEOCUPUOOUEVES OTAUTAOELS, UTG TNV HOp®Y
enextdoewy (plugins) e 3N undpyoucac Aertovpyixdtntag evoc Kubernetes cluster. Autéc ol enextdoeig
nephadvouy) Snuloupyia Tpocapuocévne Aoyixrc dpodordynone egappoy®y (custom scheduling logic),
NV EOAYWYY) TPOCUPPOCUEVLY dedopévmv (custom resources) otov API server xou v maparywy?f twy avtio-
Touywv clients, xadode xou) yefon eEwtepindy cuoxeunv (device plugins) mou emtpénouv GToOUE Bloy PO TES
var adlontololy egetdixeuuévo LS, dtwe povidee eneepyooioc ypapixav (GPUs), yéoa oo xovtévep Touc.
ITapého nmou to Kubernetes eivon éva toAmhoxo cOotnue, anouteiton nepoutépw €peuva yia T Bektiotonoinon
e xoatavouric topwy CPU xou uviune otic epopuoyéc. Ilpog to mopdyv, Basiletar oe tumxd nocootd yefong
pviune xou CPU tev unyovnudtev (worker nodes), to onoio dev elvon névta oxplPr]. Autd ymopel vo odnyvioel oe
avTaywvlopd vl thpoug (resource contention) xou meploptopé entdoone (throttling), tpoxahdvtag voBértioT
en{doomn extéleone (sub-optimal performance). O npoxadopiouévoc scheduler dev haufBdvel ndvta Bértioteg
ano@doelg, xadde dev Baciletar oty xatdotacy Tou cluster oe mpoyuaTNd YpOVO 1 OTA YOEAXTNPIO TXE TLV
epopuoyov. Emmiéov, to Kubelet (daemon nou tpéyet oe xdde node) dev Siordétel évay eehyuévo pnyoviowd
YO TNV ATOXAELD TIXT| TAURAY (ETOT TOPWY OTIS EQUOUOYES, OBNYDVTUC OE AVTUAYWVIOUS YA XOLVOYENOTOUE TOPOUS
xou TeEhxd og unofdduion tne enidoone.

App App

Virtual Machine Virtual Machine

App App App

Traditional Deployment Virtualized Deployment Container Deployment

Figure 1.1.1: E&EMEN twv Teyvoroyidkv Euovixonoinong

O mpoyol vnnpestdv végoug Pacilovta oe cuveyr avaBddmorn tou ulixod (hardware) Twv TANPOPOELIXGOV
UTOBOUDY TOUC, OE CLVBUAOUS UE OTAOIXEC TOMTIXEC DPOUONGYNOTC EPUOUOYWY XA TURAYWENONE TORMY YLoL Vol
ehoyLo TOTOL o0V TO ploxo unokertoupyiag Twv xploly (latency critical) egappoydv. Aedouévng tne parydodog
petatémong meog o cloud, ol ndpoyol ogellouy va Adfouv unddny Toug T ATMoBOTIXOVE TEOTOUS EPOBLAGHOD
TOPWY YOl VoL UEWICOUY TERLTTA XOOTN X0l VAL GUVINENCOUY TNV ENBOOY TV EPUEUOYMY GTO UMOUTOVUEVO £0pOG.
ISwiitepo o8 cuoTAYATA TOAATAGDY enedepyao Tty Hovédwy (multi-core processor systems), 6mou xéde enel-
epyoao T povdda amoptiletoa and évo xépPo pviune (NUMA node), tolhanholc @uotxolc Tuphves xat emineda
xpuphc uvhune (cache), n ouviToEEn epappoYdy dlapdpwy evownactay (multi-tenancy) urnoayopelel didpopeg
mpoxhfoelc. Mepixéc amd auTéC apopolY TNV AGPIAELN TWV GUYUTHPYOUCWY EQUOUOYWY ot TNV eEdhewdmn tne
mdavotnTog Slopporc Sedouévwy, evéd ToAD onuavTxd eivon xou 1 BeAtiotonoinoy twv ndpwv mou divovial oTig
EQAPUOYES, TOCO XUTA TNV exxiVNOY| TOUG, GCO Hol BUVOHLIXE XATA TNV EXTENETT] TOUC OTNY TERITTWOT EUPAVIONS
unoPiBacuol e motdtnrac extéleong. Ou mdpoyol ogeilouy va TnEolv TIc cuugwvieg emnédou unneeciog
(Service-Level Agreement - SLA), ot onolec nepthapBdvouy petpinés enidoone mou éxouv tpocuppovndel, dmng
pudude enelepyaoioc atnudtov (throughput) xou xaduotéenon (latency). H mopaficon twv cuygwyndéviony

2

1.2. Yyetinéc Meléteg

petedv odnyel oe mowvée (SLA penalties) xou unofBiBdler v modtnta euncipiog tou tehxol yerotn. H
nopeUPorf and «YopuBndels yeitove» (noisy neighbors) xon 1 Siexdixnon népwv (resource contention) unopel
vo. 0dnyfioouy oe vnoPdduion tng enldoong, xadiotwvTtag B0oxoAn TN SlATAENON TWY UTOCYOUEVKDV EMITESWY
owbtnrac Trnpeosioc (Quality of Service - QoS). Zuveylbuevn épeuva xou tpdodol otn dlayeiplon TdpwYv, Tov
TREOYPUUHATIONOS Xalk TL TEYVIXES BEATIOTOTONONC Elvoll AmapalTNTES VLol TNV AVTIIETWTLOT) QUTWY TWV TPOXARCEWY
xou T Bertioon tne ouvohinic QoS ota tepBdAhovta végoug. Téhog, 1 cwo Ty dayeipion Twy Tépwv el TEpdo-
Tl onpacta yia uelworn Tou TEpBAAAOVTIXOU AMOTUTOUNTOS Xl TNV ENAYLOTOTOINON TOU XG0 TOUC Asttovpyiag.
H xotavdhwon evépyetog twv x€vtpny dedouévwy, avédveton paydala, Ue ntpoAédelc va gtdoel to enineda cuvo-
i mhextpuic xatavdhnong e Tonwviag éwe to 2026 [4]. T) pelnorn Tou tepBolhoviinod amoTUTOUATOS
X0 TOU ®OGTOUG AelTovpylag, amantolvTon TeYVIXES BeAToTononoNg, OTWS 1) SUVOLXY] XUTAVOUY] TOPWY XAl 1)
EVOWUATOON TN TEYVNTAS VONLOCUYNG YLl ATODOTIXOTERY) SLoryElplon EQUEUOYMY UE AMPOBAETTY YopaX TNELO TIXE
eXTéENEOTC.

Yty napoéuoa dimhwyatixng epyaocto, Yo avahbooupe ta Baoxd yopoxtneloTixd Tou evopynotewt Kubernetes
xou Ta frameworks mou Sodétel yia vo emexTelvoupE TN AELTOURYIXOTNTA TOU PE OXOTO TNV XATUOKELY| EVOC
UNYOVIOHOU BEOHOAOYNONG Xall TAREAY(ENONS TORWY YLl dLopopeTXo) TUTOU equpuoYEs. Ou yapoxtnelcouue
didpopa poptio Soxprc enidoone (benchmarks) ye Bdon to anotdnwpa mov mapovoldlouy oty allonolnom
mopwv xat Yo EAEYEOUUE TNV AMOBOTIXOTNTA TOU UNYAVIOHOD UAC OTNY SPOHOAGYNOT Xl TUpUyWENCT, GUY-
XEXPWEVWY ATOXAEG TGV Topwv ot eninedo CPU xau uvAune. Oo cuyxplvouue tov ypdvo extéheons twv
EQUPUOYWY AUTWYV TELV XU UETA TNV TEOGANYY TOU TEOCUPUOCUEVOL UoC Unyoviopol xou do del€ouye Tt elvon
EQPIXTO VoL ETLTOYOURE XahOTEPOUS YedVouE exTEREOTC YVwp(lovTac TNV QUoT TWY EQPUPUOY®Y Tou emudolue
Vo BpOUONOYHCOVUE.

1.2 Yyetixec Meléteg

Y10 mopdv xepdiato avohbinxay didgpopes PeAéteg xou Epya o €youv die&aydel and axadnuoixols opyaviouole
oM xou amd EMYELENOELS, OYETIXA pe TNV PehtioTonolnon diayelptong mépwy oto cloud.

H enéxtoon Volcano [22] eivon éva cloud-native cvotnpa dwyelpione yio batch workloads, énwe poée unyovixd
uddnom, epopuoyéc HPC, xau big data. To Volcano evenuotdver yevixeuuéva frameworks yia batch eqapuoyéc,
n.x. Tensorflow, Spark, PyTorch, xoauw MPI, evey divel tn duvatdtnta 6Toug YpnoTeg va Bpogohoyioouy autd
To optior UTO Bidopec MOAITIXES, OTwe co-scheduling, fair-share, gang, xou topology-aware scheduling. 'Eva
dAho cVoTnua dpopoldynone epapuoy®y Tou enexteivel Tov KuBepvit, eivan to Koordinator [8], emtpénovtag
™V GUVUTIOEEY TOALTIOMAWY EQUPUOYWY, cuurepthauBavouévewy microservices, eqopuoydyv Al xou big data.
To Koordinator mogéyet évay unyovioud dpogordynong mou Boaoiletar o ewdixéc QoS xAdoeic nou unoc tneilet.
XpNnowomoldvTog To TpocoupUoouévo tedlo koordinator. sh/qosClass yio va oplcoupe Ty motdTnTa UTneesiag
ploc cuyxexplévne epaproYnc, ot cuVBLUCUS Pe To Tpogik Tou cluster mou opiletan oto ClusterColocationPro-
file, unopel va mdpetl mo Aentouepeic anogdoelg Spouordynone. Emmiéov, €yel tnv duvatdtnta vo Tpoxaréoel
UTEpPOETWON Topwv (oversubscription) xou vo avoxtioel népouc un yenowomololuevous and Pods udnihc
TPOTEPAUOTNTAG, TOPEXOVTAC TOUS O EQupUOYES YounAdtepns mpotepondtntag. To Koordinator emmiéov un-
ootnpilel load-aware scheduling, To omolo e€icopponel TV xatavour TV eQUEUOYOY Xatd unixoc dAou Tou
cluster, amotpénoviag LTEEPOPTWOT %ol UTOYENOLWWOTOMOY TopwY Yenolponoldvtac real-time dedouéva, cuk-
heyoueva and toug workers. To cUoTnua TEOCQEREL AENTOUERT EVORYNOTEWOT| TOEWYV X0l ATOUGVKOT) YLoL Vol
eZaogahioel Ty enlBoon TwV EQUPUOYMY.

O ACTiManager [16] eivar évoc Suyelplotic mopwv mou yenotuonotel texvixés Mnyavixic Mddnone yio vo
oayelplleton v xatavopry VMs, Behtidvovtag tnyv oopponio petaflh x60Toug xa enidoong, EmTuyydvovtog
avgnom xépdouc éwe xar 49%. Ou Liu et al. [11] tpdtewvay éva chotnpa Spopohdynone v eqappoyéc TPmihc
Enidoone (HPC) oto Kubernetes, to onolo peidvel tov xpdvo andxpione xatd 35% xou Pedtudvel tnv enidoon
xatd 34% péow pioc apyrtextovixic d0o emmédwy, pe egedixeupévous ahydprdpoue xotavourc epyactdy. To
Escra ané touc Cusack et al. elvou évo cbotnpo mov mpocapudlel Toug TOEPOUE GE YPOVIXE BIUCTAUAUTA TGV
100ms, pewdvovtag T havddvouoa xatdotoon xotd 38% xou auvidvovtag v enidoon xotd 25,4% [2]. O
unyovioude twv Rodriguez et al. ocuvBudlel mpoypauUaTions, AVOTEOYROUUATIOUO XOL OUTOUATY) XAUEXWoT),
HELOVOVTOS TO x60T0C ém¢ H8% ot oyéon pe tov Tpoemheypévo Kubernetes scheduler. Autéc o unyovioude
dev eotidlel u6vo oTn dpopordynomn epyoaotdy, oAl evonpatdvel enlone duvauxy xhwdxwon (autoscaling)
xau enovatonodétnon xovtévep (relocation), enttpénoviog To vo npocopudlel Tov aptdud twv worker VMs oe

3

Chapter 1. Extetopévn Ieptindmn ota EAAnvixd

TRAYHATIXG YPOVO, XAOXOVOVTAS duvoutxd Yo vo avtamoxptdel otn {ATNOM ol GVAXOTUVEUOVTOG XOVTELVER
(OOTE VO PELDGEL TO X6GTOG %o Vo a&lomotioel amodotixdtepa toug dlodéatpoug mopous. O ahydprduor BDI
xar BCDI ané toug Li et al. Behudvouv tn diayeipion I/O oto Kubernetes, pewdvovtac tov ypdvo andxplong
TV egappoy®v xat e€loopponwvioc T yeron CPU xa 8loxou. To JIAGU ané toug Liu et al. Beitudvel
v eniBoor serverless nepBUAAOVTWY, HELOVOVTASC TO X60TOC NS dpouohéynone xatd 81-93% xaw tov ypdvo
exxivnone xatd 57,4-69,3% [13]. To ChainsFormer and toug Song et al. ypnoworotel pnyovixs, pdidnon yia vo
Tpocapudlel TOUG THEOUS BUVIUIXE, UELWDYVOVTUS TOV Xpdvo andxptone xatd 26% xou BEATLOVOVTAC T1 GUVORLXT
enidoon xotd 8% [18]. Téloc, to woviéro uPpWbixfic, dpouohdynong, ue dlooipaldUevn XoTdoTaot, and ToUg
Ungureanu et al., cuvdudlel xevTpind xoL XUTAVEUNUEVO TPOYROUUITIONS, BelTidvovtae Ty eveléio xan TNV
enioomn xatavourc epyootodv [21]. Autéc o teyvixée xatadexviouy v avdyxr yio schedulers mou unepBaivouv
Ti¢ Baowég duvatdtnteg Tou Kubernetes, emtpénovtog duvaix tpocapuoyy| ot BEATIGTOTOMNUEYY YeHion TWV
UTOAOYLOTIXWY TIORWV.

1.3 O Evopynotewtnc Kubernetes

"Evog evopynotew e xovTévep eival utedduvog yia TNy napoywenon toépwy, To deployment, Ty xAUdxwoT) Xl
v yevixn Soyelpion containerized egappoydy oe éva obunheypo and eZutneetntés. O KuBepvitne (Kuber-
netes) efvor 1 mpdTUTY, open-source mhatPdpua Tou eEunnpetel aLTOV Tov oxond. Iouéyel éva dnhwtind API
u€ow Tou onolou o BlayElELoTAC €Yl TNV duvatdTnTa Vo oploel TNy emtuunty xatdotaon tou cluster, yéoo and
apyela dropdppwone (configuration files - manifests) xon telixd vo extelécel egappoyéc oL onoleg xuyaivovtan
an6 deployments egapuoydv peydine xhiyaxos, optia uPnAnc enidoong, xou poée unyovixic uddnone xou big
data. e avtéd T0 xEPIAUO avohbovTal ol PBacixéc cuviotwoes evog Kubernetes cluster xow ol npoemheypéveg
rohtxéc diayelpione mopwv mou mapéyel. Emmiéov, avolbovton xdmolo and ta frameworks mou pmopolv ot
TROYPUUUATIO TES VO EXUETUAAEUTOUY TROXEWEVOU VO XUTAGXEVICOUY ENEXTACEC otV Booixy| AettoupyxdTnta
tou Kubernetes.

"Eva Kubernetes cluster anoteieiton and to control plane xou €va cOvolo worker nodes, 6nou exteholvTow
containerized eqopuoyéc. To control plane duayeipiletar Ty xatdotoon tou cluster o emPBrénet ta Pods, Tic
Baowéc povddeg epyoaoiog twv epoapuoyny. To xbpia otoiyela Tou control plane nepihouBdvouy tov API Server,
o omotog elvan 1 xOpta Ty aAridetog tou cluster xon napéyel éva RESTful API vy tn Sioyelpion twv resources,
To eted, mou anodnxelel TNy xatdotaon xa T puduicelc tou cluster, Tov kube-scheduler, o onoloc avadétel
Pods oe nodes Bdoel dlndéoiuwy noépwy xan Teploptou®y, xou tov kube-controller-manager, mou Asttouvpyel wg
évac ouveyhc Pedyoc eréyyou yio T dathenon e emduuntic xatdotaons Twy topwy. And tnv dhhn, To
nodes mepléyouv to kubelet, éva daemon mou Biayepileton v extéheon twv Pods oe xdde node, xou tov
kube-proxy, mou emtpénel Ty emxowvwvia peto€d Twv unneecuay tou cluster. Auth) dpyitexTovixy| emiTEENEL
oto Kubernetes va diayetplleton duvopixd v extéleot) egoppoydy, eacparilovtac vdmir ddectudtnta xou
anodotixy| alomolnoy TV TépwY.

Yto Kubernetes, ta Baocwxd resources evéc cluster nepthaufdvouv to Pods, to onola elvon o uixpdtepec wovddeg
exteréoipou workload xou amoteholvTan amd évay 1 neplocdTepoug containers mou yotpdlovton anotnxeutixoie
o duetuaxolg mépoug. T'ia Ty ouodt) dayelpiorn twv Pods, yenowonowolvton avotepa enineda eAEYy oL OTwe
to. Deployments, nou e€acgoaiilouvy avomapoywym, scaling xou avtolaon twv eopuoydy, ta StatefulSets yio
dlayelpton xotaoTdoewy Ye Slathpnon TauTtodTATIC Xou amodixeuong, xadde xou too DaemonSets mou diaoparilouv
ot éva ouyxexpiévo Pod exteleltoan oe xdlde node. To Services nailouv xevtpixd pdho ot SixtOwGN TOU
cluster, emtpénovtag tnv emxotvwvia petadd twv Pods xou v npdofact oe epappoyés, axdua xou av to Pods
adhdlouy Bievdivoelg. Ou Baoixol tonol tepthauBdvouy to ClusterIP yia eowtepur) emixoivevia, to NodePort
yia éxdeon oe eEwtepnd dixtua, xou to LoadBalancer yia dioyelpion e€wtepnnc xivnong péow cloud nopdywv.
‘Ocov agopd v anotixevor, to Kubernetes nogéyel Volumes yia npocweivy) anodixevon dedouéveny petagd
container eTovVEXXIVACE®Y, EVE Yia povr anodfixeuon yenotdonotel Persistent Volumes (PVs) xou Persistent
Volume Claims (PVCs). Autd emitpénouv) datfienor dedouévev avedptnto and) didpxela Lwhc twy Pods
xat pmopolv va vhonotndolv yéow StorageClasses mou Biayelpllovton autdpata Toug mdpoug anodrixeuorng,
dlaoarilovtac anodotxdtnta xan aveaptnola and to unoxelyevo chotnua opyeiwy.

O Kubernetes emtpénetl otoug ypfiotes va xadopicouy anautiioei tépwv (CPU, uvAun x.An.) yio xdde container
péoa oe éva Pod, Sacgakilovtog 6Tt oL epopuoyéc Aopfdvouy Toug amapodtnTous Tdpous Yo T1 Aettoupyio Toug.
Ot mépor yweilovton oe "requests", mou avtinpocwnebouv Tov eNdyLoTO EYYUNUEVO TORO oL Vo decueuiel,

1.3. O Evopynotpwthc Kubernetes

(i)
API server -
Cloud
provider Cloud controller
AP manager @
(optional) c-c-m
Controller @
manager om
—’7 eted
Node Node Node (persistence store) =
kubelet
wbelet
e [£)
kubelet, kubelet kubelet, kube-proxy
k-proxy
:)
‘“t?} Scheduler 4
k Control Plane e K-proxy, k-proxy,
< Control plane ——————-

Node

Figure 1.3.1: Boaowéc Yuviottoec Evdc Kubernetes Cluster

xou "limits", mou ¥étouv To avdTato dpto xatavdiwone. O kube-scheduler yenowonotel ta requests yio va
tonovetrioel Pods og xatddhinioug xéuBouc, eved to kubelet emPdihet to limits, anotpénovtag ta containers
and to va umepPolv toug xadoplopévous meptoplopols. Auty 1 Suyelpton Swo@ahiler TNV anoteAeopoTiX
o€LoTolNoT TV TOPWYV Xat ATOTEETEL TNV EEEVTANOY TWV SLdéoUmy LTOBOUMY.

O Kubernetes to€wopei ta Pods oe tpeic xotnyopiec Quality of Service (QoS) Bdoel twv xadopioyévwy re-
quests xau limits twv tdépwv toug. Ta Guaranteed Pods €youv téc0 requests 6co xou limits (oo petagd toug ylo
6houc toug containers, AapBdvovtac Ty vPnidTeEN TPOTEPAIGTNTA Xt TN YounhoTtepn TdavéTnTa é€wone (evic-
tion). Ta Burstable Pods €youv touhdyiotov éva request xaoplopévo, entTpénovtdc TOUS VoL EXUETOAAEDOVTOL
dndéooug mopoug duvouixd. To BestEffort Pods 8ev €youv xodoplouéva requests 1) limits, pe anotéheopa vo
€YOUV TN YUUNAOTEPT TPOTEPOOTNTA X0 VO ELVAL TOL TEATA TOU EXBLOXOVTOL OE TER(MTWoN EMheLdNne mdpwy.

Chapter 1. Extetapévn Ieplindn oto EXAnvixd

The pod - Deployment.yaml

kind: Deployment
apiVersion: extensions/vlibetal
metadata:
name: redis
labels:
name: redis-deployment
app: example-voting-app
spec:
replicas: 1
| W - selector:
matchLabels:
name: redis
role: redisdb
app: example-voting-app
L1l template:
spec:
- - containers:
- - - name: redis
LI image: redis:5.0@.3-alpine
L BESIULCes 3. Will be killed if allocates > 600MB.
o n limits: i The whole Pod will fail
= s 1. The pod memory: G0OMi
effective request cpu: 1
T 171 . requests:
400MiB of Memory ® memory: 300Mi
300Mi + ® cpus 5tom
600 milicores - name: busybox
14 image: busybox:1.28
resources:
limits:
memory: 200Mi
2. Kubernetes assigns cpu: 300m
SUatiia s oot requests: 6. Throttled if uses > 30ms of computing time in 100ms
® memory: 10@Mi
are cpu: 100

A cluster node:

4xvCPUs 16GB RAM

| 4. Will be throttled if uses more than "1 Core"

Full computing time of the node:
4y 5* 1 real me

5. Killed if allocates > 200MB.

1024«
1024+

3

Figure 1.3.2: Resource Requests xou Limits evog Pod

To kubelet elvan To Bacind agent nou tpéyel oe xdde x6uBo Kubernetes xou elvon unebduvo yia Ty extéleon twv
Pods, xad¢¢ xou yior Ty emBoAY) TV TEpLoptopdy tépwy. Xenowwonolel ta cgroups tou Linux yio vo eqapudoet
ehéyyouc oe CPU, uviun xou diepyaotec, e€aoparilovtag 6Tt xdde container Aettoupyel péoa ota dplat TOU
éyouv optotel. Emniéov, o CPU Manager pnopel va exywpel anoxieiotixotc nuprivec CPU oe Pods pe udniég
anoutrioels enidoong, eved o Topology Manager evduypopuilel Ty xotavour TV TORKY YE TNV AEYLTEXTOVLXN
NUMA, pewdvovtag v xaduotépnon npodoPacne otn uviun. Auvtol ol unyoviopol Siac@aiilouvy amodotixn
¥enfion Twv mopwy xou otadepn enidoor Twv e@appoyYy. 201600, ToEoUCIALEL OPIGUEVOUS TERLOPLOUOUE, XaddS
dev emTEENEL ahhaYEG 0T Bladppwon Tou yweig emavexxivnon tou kubelet, yeyovog mou unopel vo Satopdet
o tpéyovta workloads. Eniong, dev unootnpiletl tawtdypova morhamhéc nohtinéc xoatavourc CPU, xdtL nou tov
xohoTd Aydtepo eUENXTO Yia eTepoyevy) workloads mou anautolv SlapopeTIKES OTRATNYIXES, OTKC XATAVOUY| UE
yvopove T NUMA apyitextovins| i anopdvwon nupivwy. Emmkéov, Sev npoocapudler duvauxd tnv xotavopun
TOPWY YETE TNV EXTEAEST, TwV containers, neplopllovTog TV IXAVOTNTO AVTIUETOTLONG ETBRUOUVOEWY XATY TNV
extéheon. AOY® aUTOV TWV TEPLOPLOUWY, UTEEYEL avayXn Yiol To EVENXTOUS olyopituoug dlayelpiong Topwv
TOU UnopoVY Vol TPOGUPUOGTOVY OTLS UETUBUAAOUEVES ATOLTAOELS TWV EQUOUOYOV.

1.4 IlpoxAnoesic Awayeipiong lldopwv oe Xvotrpata YdnAnc
Enidoonc

To unohoyiotind cuothpatea Ui enidoone (high-performance computing systems) elvou oyedioaouéva yia Ty
anodoTiny| eEXTENETT) anmanTNTIXGY PopTiwy. ‘Ouwe, undeyouv SLdpopol TUEdYOVTEC TOU UToPOLY Vo 08N YHOOUV
oTNV XELROTEPELDT) NG AMOBOCHE TOUG, OL OToloL UToPOVY VoL EVTOTLOTOVY, E(TE OTIC BIXTUOXEC BLICUVBETELS
TwV xO0uBwyv Tou cluster, elte cowtepixd oe xde x6ufo, otoug multi-core eneepyactéc toug. O schedulers
twv HPC clusters Spopoloyolv Tic e@opuoyéc pe BAon PN-AENTOUERMOY UETPXDY OTWE TUPHVES, UVAUY, XWPOC

6

1.5. Maestro - 'Evac Auwyeipiotrc IIdpwv yio Kubernetes

dloxou xou swap uviung, x.th. e autd to xepdhato uerethHdnxay Sidpopot napdyovteg mov oyeti{ovtal Ue TV
evanodnoio Twv eQoploY®Y o GUVUTIOEEY Ue dAAES epapuoYEg ot évay xopfo.

H «eni{dpaon tou YopuPddouc yeltovar elvar éva avoamdpeuxto @avouevo otic unodopéc cloud Adyw tng xowvig
¥erong mopwyv xou tng multi-tenant @Oong toug. ‘Otoy TOAMES EQUPUOYES 1) EXOVIXES UNYOVES PLAOEEVOUVTAL
otov {00 server, 1 cuvimopéY Toug umopel vo odnyfoel oe LoPdvon e enidoons. Autd cupBaivel Aoyw
™S SlEXBIUNONG TEPLOPLOUEVWY UTOROYIG TIXMDY THPWY, OTWE 1) XpuPY uviApn tou enclepyactyi. [o napddelyyua,
N TWTOYEOVY POPTWOT| DEBOUEVLY aTtd DLUPORETIXES EQPUPUOYES UTOPEL VoL TPOXAAETEL KUOALYOTY TNG LY
wviune, augdvoviae Tic actoyiee (cache misses) xou emPBpadivovrag Tov Ypdvo extéheons. ‘ANhot napdyovTes Tou
odnyolv ot SloxduaveT e enidoons Twv eQapPoY®Y omoTeEAOVY 0 apliuds AELTOURYLOVY avyVWoNs/eyyYpophc
UVAUNG, ol tpdlelc xivnthc unodlacTtorfic (FLOPS) xou 1 emxowvmvia petald vpdtwy péon locks xou barriers.
O\ mdpoyot unnpeotdyv cloud mpénel va Sloyetpllovton TEOCEXTIXG THY SPOUOAOYNOT XOL TNV XUTAVOUY TOPWV Yid
N pelworn g mapeuolrc xaL TNV THENOT TOV CUUPKOVLOY ETLTEDOU UTNEECLOYV.

Yto mhaioto tng Cloud-Native teyvohoylag, 6nou yenowonolobvtal containers xou unyoviopol evopyfotewong,
€youv dnuoocteutel ToANEG €peuvec Yo TN Bektiotonolnon twy ndépwyv oe multi-tenant negiBdiiovta. O yeréteg
autée xahOmToLVY Sudgopouc Toyels, dmwe N Bathd wddnorn (Deep Learning), to Prounyavixd IoT, to Batch
Processing xou 1 extéheot) etepoyeviv e@opuoy®y oto (Blo cluster [24] [7] [5].

H unopéduion g enlBoone Adyw avtaywviopol yia tdépous uropel va gtdoet €mg xau 1o 200% dtav extehobvTal
noAhamAS viuato i Siepyaoies ot tolundpnvoue enelepyaotéc [1]. Autd ogeileton otn Sexdixnom xowdy ndpwv,
OTWC 1) XPLPES PViues TereuTaou emmédou (last-level caches - LLC), ot eheyxtéc uviune (memory controllers),
xat To memory bandwidth. Iapdho mou 1 cuvidnapEn Twv optiwy Bedtidvel TRV aflonoinom Tou LMoY, utopsl
enione va odnyroer oe cofogt emPBedduvon, avaledvtag to 0@éNT), TopaPLldlovtac TIC AmUTACELS TOLOTNTAC
utneectay (QoS) xoun EVOEYOUEVLE OTUTAADYTOG EVERYELDL.

Ou Hutcheson et al., oe plo Snuocicuoy toug, meplypdpouv Tic Blapopéc petalld S0 TOMOUC EQPUPUOYQY,
Tic memory-bound xou tic CPU-bound [6]. Ou eoppoyéc memory-bound neplopilovton and v toydtnTa
petapopds Sedouévev Yetald uviung o enelepyao Ty, Ue anoTéheoua 0 emeEepyYaoTAC VO UEVEL UVEXPETHANED-
To¢, eV oL compute-bound epapuoyéc neploptloviar and TNy UTOAOYLOTIXT oYY TOU ENEEEQYAOTY, ONUIOLEY V-
ToG oLUPOENCT oToLE UToloylopols. Ot mpdteg mepthauPdvouy amhéc npdelg o ueydha olvolo BEBOPEVLV,
onwe avtypapn N npdodeon Slovuoudtwy, eved ol deltepeg apopoly EVTIOVES UTOAOYIOTIXES epyaoies, Onwe 1
napaywyY) Tuyaiwy aprduny. H didxpeiorn auth etvar xplown yio tn BeAtiotonoinoy enldoong, xou otny togoloo ep-
yoola tpotelveton £vog unyaviondc Spopoldynone tou aflonotel auTthAY TNV SLdxplon yia anodoTxdTepr EXTENEDT
gpyaoldy oe cloud nepBdiiovta.

1.5 Maestro - 'Evac Awayeipiotng Ilépwyv yia Kubernetes

e autd T0 (EPGANO avahDOUPE TNV VAOTIOMNOT EVOS EVORYNOTEWTY Xl SPOUONOYNTH EQUOUOYOV (OC EMEXTAUO
v Kubernetes clusters, tov Maestro. To framework autéd emtpénet Sioyelpiotée cluster ahhd xan pehhovtixoig
EPEUVNTEC VAL TIELPUUATIOTOUY UE DLUPORETINES TOMTIXES TORUYWENONES TOPWY OF MO AETMTOUEPES eninedo and
exelvo mou emitpénel o 1 Pooixn Aettoupyotnta Tou Kubernetes. Exuetoiievopaote didgopa frameworks yia
TEOYPOUUOTIGTES YLOL VAL XATACHEVAGOUPE Evay DA T unyovioud yio CPU pinning xou anogdvewon epapuoyny
TV OE CUYXEXPWEVOUC TTOPOUC EMEEEQYAUOTY Xal UVAKNG, OE CUVBUACHS UE €vav Tpocopuoouévo scheduler o
omnolog unopel vo ThpeL amo@doelg Ue PACT TA YOLOXTNELOTIXA TWY EQIOUOYOY XAl TWY TOEWY ToU NdT €Y0UUE
Tapaywenoel oe avtéc. O oyediaoudg Tou framework gpovticaue va elvon emextdoulog €Tl OOTE Vo ETLTEETEL
TNy uloTnolnon o TERIMAOXWY TEYVIXWY BEOUOAGYNONG XAl TOPIYWENONE TOPWY antd UEANOVTIXOUS EPELYNTEC.

Yty evotnro auth] napouctdlovitar 800 mpocopuoouéve. Custom Resource Definitions mou emtpénouv tny
enontelo TV dlardéoluwy UTOAOYLO TIXWY TopwY ot xdie x6ufo Tou cluster, xadde xou TNV TEEoLTH ToELYWENCT
nopwv o€ xdde Pod. Autd e€aogparilet ti ot Soyeipto tég Tou cluster yvwpllouv oe mparypotind ypovo towa Pods
extehovvtan oe auyxexpévoug CPU xou x6uBouc puviung, xadde xou To av oL TépoL ToU YeNottonololy elvol
anoxkewotuxol. Emmiéov, av napatnendel unoBéltiotn xotoavoun 1 neploplodds mépwy, oL SLUYELPLOTEC UTOPOUY
VoL TPOGOPUOGOLY BUVALXE To custom resources péow Tponomoinong Twv oyetxdv manifests.

To npdto custom resource, NodeCPUTopology, meptypdget tn dadeoétnta CPU xaw NUMA twv nodes,
nep apBdvovtoe TAneogopies Yoo hoynole xou pualxols Tuphves, sockets xou apyitextovixy NUMA. O népot

Chapter 1. Extetopévn Ieptindmn ota EAAnvixd

autol BNELOVEYOUVTAL AUTOUUTA XATd TNV exxivnor Tou controller manager, EMTEETOVINC GTOV TEOGUOUOCUEVO
scheduler vo AaufBdver anogdoeic xatavouric uéow Tou custom resource PodCPUBinding.

To debtepo custom resource, PodCPUBinding, neptypdgpel Toug tépouc CPU xau pviung mou éyouv mopoyweniel
oe ouyxexpyéva Pods oto cluster. O Sioyelpiotiic Tou cluster 1) egopuoyéc mou hapBdvouy ano@doel xatovoung
TOPWV UTopoLY Vo eqopudéoouy autd to manifests. Mo onuoavtiny mapduetpoc elvar To exclusivenessLevel,
10 onolo xadopilel to eninedo amoubvwone twv népwv (None, CPU, Core, Socket, NUMA), ue otéy0
Behtiotonoinon g enidoong yia latency-critical egapuoyée.

O Controller Manager etvou unedduvog yio T dlayelpion twv NodeCPUTopology xat PodCPUBinding resources,
ouyypovilovtag TNV Teéyovoa xatdotaot Tou cluster ye tnv emduunty. Emxvpdver xou e@oapudlet deopetoelg
CPU vy Pods, anotpénovtog un éyxupec Slopop@piaelc xou mopdyovtas avtiotoiya ouuBdvta oto API server.

O Daemon extehelton wg DaemonSet xon mopéyer mhnpogoplec CPU tomoloyiag xou unyaviopols déoueuong
TopwY Uéow dVo umnpeeaiec gRPC. Avohopfdver T duvauiny| Swyeipion CPU xou uviung, diacgaiilovtoag
oWOTH xoTavoun Twv dladéoiuwy tépwy ot xdde xéufo.

O Scheduler ypnowonoiel to WorkloadAware plugin yia tn BeAtiotonoinoyn tne xatavouric Pods, AouBdvov-
Tog unYPn To eldog tou @bpTou epyaociaug (CPU-bound, Memory-bound, IO-bound, Best-effort). ITpoogépet
TOMTIXES xuTAVOUTC Onw¢ MaximumUtilization xon Balanced yia euéhixtn Soyelpion Twv dladéoipwy tépwy.

apiVersion: cslab.ece.ntua.gr/vialphal
kind: PodCPUBinding

; metadata:

10

N

finalizers:

- cslab.ece.ntua.gr/pod-cpu-binding-finalizer
name: streamcluster -4-pcb

namespace: benchmarks

spec:
cpuSet:
- cpulD: O
- cpulD: 2
- cpulD: 4
- cpulD: 6

exclusivenessLevel: NUMA

podName: streamcluster -4
status:

nodeName: node-4

resourceStatus: Applied

Listing 1.1: Ilopdderyua PodCPUBinding Manifest

apiVersion: vi
kind: Pod

; metadata:

name: graph-analytics-8

labels:

cslab.ece.ntua.gr/workload-type: cpu-bound

spec:
schedulerName: maestro
containers:
- name: graph-analytics-container

image: graph-analytics:latest
imagePullPolicy: Always
command: ["/root/entrypoint.sh"]
args: ["pr", "--driver -memory", "4g", "--executor -memory", "9g"]
resources:
requests:

cpu: "8"

memory: "14Gi"
limits:

cpu: "8"

memory: "14Gi"

Listing 1.2: Iopdderypo Apopordynong Egapuoync pe Maestro

1.6. Ilewpoportinr Adtoén

Kubernetes Cluster
—» Iuns

..... » consumes @ maestro-system
API Server

------------ >0§0

NodeCPUTopology PodCPUBIinding
A Ly

Maestro Controller Manager

‘:“a Maestro Scheduler
WorkloadAware Plugin

Maestro Daemaon
CPUPInning, Topology gRPC Services

e R =

A

node-1 node-2 node-3 node-4

Figure 1.5.1: Apyttextovixr| tou unyoviopod Maestro

1.6 Ileipopotinny Awdtoagn

Yy mewpopatixd] pog didtoln yenowonoioae téooeple eovixég unyavés we Ubuntu Server 18.04, xatoveun-
pévee oe 8o guoxolc utoloyotéc. To cluster Kubernetes (v1.31.0) dnuouvpyridnxe pe kubeadm, v yio
amoutnTixd workloads mpocVécaue évay toyupdtepo dual-socket worker. H xatoavour| twv CPU xan pvAung éyive
ue otadepd CPU pinning, diacgaiiCovtag tn BérTiot enidoon yia multi-NUMA workloads. Ta yapoxtneiotixd
TV EXOVIXMV UNY VOV THpoLCLELoVTaL GTOV TUPUXETL TVOXAL.

Ta benchmarks mou yenowonololye a&iohoyolv Ty enidoon Tou CUGTAUATIC PAG OE BLPOPETIXS UTONOYIO TIXG
goptia. H oouita CloudSuite emxevtpdvetar otny mpooouolwon npayuatixey cloud epapuoyoy. Ileptloufdvel
to Data Serving, 1o omolo yetpd v enldoon tng NoSQL Bdong dedouévwy Cassandra, to Web Serving, mou
ouvdudlet MariaDB, Memcached xaw Elgg yio tnv npocopolwor evog web server, xow to Media Streaming, nou
yenowonotlel évav Nginx server yio yetddoon Bivieo. Eminiéov, to Graph Analytics extehel avdivon peydhwy

Chapter 1. Extetopévn Ieptindmn ota EAAnvixd

Table 1.1: Awudppnon Ewovixedy Mnyavnudtoy

Host CPU Model VM Name | Sockets | Cores/Socket | vCPUs | Memory (GB) | NUMA Nodes | OS
node-1 1 2 4 16 1 Ubuntu Server 18.04
termilO | Intel Xeon E5645 node-2 1 4 8 16 1 Ubuntu Server 18.04
node-3 1 4 8 16 1 Ubuntu Server 18.04
nfs 1 2 4 8 1 Ubuntu Server 18.04
termi9 Intel Xeon E5645 node-4 2 10 20 64 2 Ubuntu Server 18.04

dedopévev pe Spark xar GraphX, eved to In-Memory Analytics agloloyel olyoplduoug collaborative filtering
ue Apache Spark xou MLIib. To PARSEC éyel oyedaotel yia tnv ollohéynon TOAUTUENVLVY OpYLTEXTOVLXY
(CMPs) xan mepthopPdver mowhio egoppoydy and Swgpopetixole topelc. Metall avtdv, to blackscholes un-
ohoy(lel TES YPNUATOOOVOUXWY ETAOY Y, To canneal BektioTtonolel dpouordynon oe oyediaoud chip, to flu-
idanimate npocoyo®vel peuotd yio animation, xou to ferret extelel avalitnon opoldtntog ot Bdoel EOVWY.
To facesim TPOGOUOLOVEL XWVATELS TIPOCHTOV, VM To X264 xwdixonotel Bivteo pe tov H.264/AVC ahydprduo.
Avutd o benchmarks eotidlouv oe mapodAniiowd, potiBo npdofaone ot UVAUN Xl ATUTACELS GLYYEOVIOHOV,
a€lohoy®vtoe T cuvokixy enidoon mohunlpnvwy enelepyactdv. To STREAM eivaw éva benchmark ewdixd
oyediaopévo yia) pétenor tou Yewpentnol péylotou memory bandwidth evéc ocuothuotoc. Ilepihopfdvel
téooeplc Poaoixéc hettovpyleg o yeydha dravioparto: Copy, Scale, Sum xa Triad. Autéc ot Aettovpylec amopel-
Youv TNy enovaypnoylonoinor dedouévwy and tny cache 1 Toug xatoywenNTéS, YETPWVTAS To raw bandwidth
e xOploc pviung. To STREAM Bondd otnv aviyveuorn mdaveyv bottlenecks oty uvAun nou ennpedlouv tnv
enidoom eQupuoYOY Ye EvTovn Yenon Sedopévwy.

It Ty amotiunom tou unyoviopod Uag, XoTNYOPLOTOOUUE TG EQUPUOYEC o Técoepels Paounés xatnyopleg,
pe Bdomn tov teémo pe Tov onolo aElomololY TOEoUS EMEEEPYAOTH XAl UVAUNG XOTA TNV eXTEAECTIC TOUG, OF
apyrtextovixéc NUMA.

1. Packed-Friendly eqopuoyéc Aettoupyolv xahdTepa 6Tay T VAUXTA TOU TEOYRSUUITOS TOUROUEVOUY OE EVOLY
NUMA x6ufo, pewdvovtag v emxovwvia wetald xépfov. Xapaxtneilovtow and uPniy unohoyiotxy
évtaon xau meptopilovton amd tn duvatdTnta Tou enelepyouoth va extelel aprduntixée medelc, 6nwe TEo-
copotwoelc Monte Carlo xou ahydpripot duvaixold teoypauotiodo.

2. Spread-Friendly eqoppoyéc enwgerolvion and T Slaonopd TV vnudtwy oe todhovc NUMA xéufoug,
Gote vo aflonotfjoouy avinuévo memory bandwidth. Autéc ol egappoyés elvon nupiys memory-bound
X0l UTIOQEEOLY amd YOUNAT) UTOAOYLOTIXT €VTUOT), 0K TREEELS OE UEYIAOUS SlavOoHaTaL.

3. Isolation-Friendly eqappoyéc anodiBouv xohbtepa dtav exteolvton aveldptnTa, Ywelc avTayWwVIoUs Yio
népoug 6mwe CPU, cache xou memory bandwidth. Autéc nepihayBdvouv latency-sensitive epyooiec, dnwg
xpuntoypaplo xan real-time enelepyocio dedouévev.

4. Agnostic e@appoyéc mopouoidlouv mapopoia enidoon aveEdotnta and) Sppliuion Twv Tdpwy Toug.
Eilvou oopponnuéveg peta€d UTOAOYIOTIXNAE XAl UVNHOVIXAC EVTOONS, YEYOVOS OV Tig XooTd XATIAANAES
yior Buvaixd TERLBAANOVTA XATAVOUNS TTOPWY.

INo v xotnyoplonolnon twv eQopUoY®Y, TEoTelveTol €vac dAYOpLIUOC TOU GUYXEIVEL TIC EXTEAECELS TOUG OF
dropopeTinéc Bopoppdoeis xou utoloyiler Tic xoduotephioeic (slowdown). Auth n talivéunor emtpénet T
Behtiotonoinom g extéheong PEow TPOCUPUOCUEVOU TROYPUUUOTIONOU Xl XAToVOUnc topwy, eacpaiilovtag
younhotepo slowdown xon xoAbteen cuvolxy enidoor.

10

1.7. Amotiunon

18 Instructions Per Cycle L2 Cache Hit Ratio
) — Socket 0 60 — Socket 0
—— Socket 1 —— Socket 1
16
55
14
o <50
5 g
$12 2
s 245
S10 £
£ 5
£ 40
08
35
0.6
30
0 10 20 30 0 50 50 70 q 10 20 30 0 50 60 70
Time (Seconds) Time (Seconds)
(a) Instructions Per Cycle (b) L2 Cache Hit Ratio
L2 Cache Misses Per Instruction L3 Cache Hit Ratio
0.007 —— Socket 0
A — Socket1
0.006 %0
0.005
s _8s
g g
£ 0.004 o
£ ki
£ g
& 0.003 £80
H a
3
0.002 2
0.001
—— Socket 0
70F — Socket1
0.000
0 100 00 300 400 500 o 10 20 30 0 50 50 70
Time (Seconds) Time (Seconds)
(c) L2 Cache Misses Per Instruction (d) L3 Cache Hit Ratio
L3 Cache Misses Per Instruction Memory Bandwidth (DRAM)
— Socket 0 1750 Socket 0 DRAM Read
— Socket1 Socket 1 DRAM Read
0.0008 --- Socket 0 DRAM Wi
15001 77 350 S e
@ 1250
s =
S 0.0006 B
é £ 1000
2 S
5 2
& 0.0004 5 750
= g
a3 £ s00
2
0.0002 250
o
0 10 20 0 A 50 60 70
Time (Seconds)
(e) L3 Cache Misses Per Instruction (f) Memory Bandwidth (DRAM)

Figure 1.6.1: Metpuéc enldoong 800 cuveyduevwy exteréocwy Tou benchmark in-memory-analytics ye d0o
VAATOL LTV TEOTN EXTEREST] Tol VipaTa elvan xotaveunuéva ota diadéoiwo NUMA nodes, yewdvovtog to
anartobuevo memory bandwidth xou duthacidlovtac ta instructions per cycle.

1.7 ArmoTiunon

Iapordtey napordétovue Ta amoteAéopata Tou classification mou epopudcoapye ota benchmarks nou avagépope,
EXTENDVTOC TO XETw o6 BLopopeTinéc cuvixes tapoydenomne Tépwy xou cuyxpivovtag Tic xaduoteproelc (slow-
downs) nou napouctdlouv ot x&de Sidtal.

11

Chapter 1. Extetopévn Iepihndn ota EAAnvid

Benchmark Packed-Friendly | Spread-Friendly | Classification
canneal-2 0.78 1.59 Packed Friendly
canneal-4 0.83 1.04 Packed Friendly
canneal-8 0.90 0.96 Packed Friendly
ferret-2 0.87 0.96 Packed Friendly
ferret-4 0.87 0.92 Packed Friendly
ferret-8 1.09 0.84 Spread Friendly
fluidanimate-2 0.80 0.98 Packed Friendly
fluidanimate-4 0.98 1.00 Agnostic
fluidanimate-8 1.15 0.88 Spread Friendly
freqmine-2 0.88 0.94 Packed Friendly
freqmine-4 0.96 0.95 Agnostic
freqmine-8 1.35 1.00 Spread Friendly
ga-2 0.98 0.98 Agnostic

ga-4 1.01 0.98 Agnostic

ga-8 1.68 0.91 Spread Friendly
in-mem-2 0.98 1.02 Agnostic
in-mem-4 0.98 1.01 Agnostic
in-mem-8 1.31 0.96 Spread Friendly
stream-2 0.83 0.94 Packed Friendly
stream-4 1.44 0.94 Spread Friendly
stream-8 1.16 0.97 Spread Friendly
streamcluster-2 0.79 0.98 Packed Friendly
streamcluster-4 0.86 0.98 Packed Friendly
streamcluster-8 0.91 0.85 Spread Friendly

Table 1.2: Katnyoplomoinorn twv Benchmarks oe Tpeig Baowés Katnyoplec

Kotaoxeudooue noAanAd oevdpla cUVOTUEENS EPUPUOYMOY HE DLUPOPETXE YapoxTneloTixd. Acdouévou 6TL Ta
benchmarks SpoporoyAdnxav anéd tov scheduler yoc otov (Blo testing xéuPo, cuyxplvaye tny anddoon Toug xdtw
and TNy enidpoot) TN TEOETAEYUEVNC TopoyweNoNE Topwy Tou kubelet, tic otatxés noltixéc SpreadFriendly
xou PackedFriendly, xou tng emhoyrc mou éxave o Maestro Uotepa and TOV YUPAXTNEWOUS TWV EQUOUOYOV.
Ené€ape wa mowaiio benchmarks pe diapopetind ueyédn eloddwy, extehdvtog ta ue 800, TEGOERO XOL OXTE
threads, wote vo avahbooupe TNV eniBEAoY TWVY TOPAUETEMY EXTEAEONC OTNV GUVORLXT ATOBOTIXOTNTOL.

W vanila M PackedFriendly SpreadFriendly [Maestro W vanila W PackedFriendly SpreadFriendly [Maestro
2,00 2,00

1,50 150
1,00 1,00

0,50 050

canneal-2 ferret-4 canneal-4 stream-2

Figure 1.7.1: PackedFriendly vs. PackedFriendly Figure 1.7.2: PackedFriendly vs. PackedFriendly
(1) (2)

12

1.7. Arnotiunon

W Vanilla W PackedFriendly [SpreadFriendly [Masstro W Vanilla W PackedFriendly [SpreadFriendly [Maestro
2,00 2,00

1,50 1,50
1,00 1,00
0,50 050
0,00 0,00

stream-4 in-mem-8

Figure 1.7.3: SpreadFriendly vs. SpreadFriendly (1) Figure 1.7.4: SpreadFriendly vs. SpreadFriendly (2)

W vanila W PackedFriendly [SpreadFriendly [l Maestro W vanila [PackedFriendly [SpreadFriendly [l maestro
1,50

0,00
fluidanimate-2 in-mem-8 stream-2 stream-4

Figure 1.7.5: PackedFriendly vs. SpreadFriendly (1) Figure 1.7.6: PackedFriendly vs. SpreadFriendly (2)

M vanila [PackedFriendly [SpreadFriendly [l Maestro

1,00

0,50

0,00

stream-2 freqmine-8

Figure 1.7.7: PackedFriendly vs. SpreadFriendly (3)

13

Chapter 1. Extetopévn Iepihndn ota EAAnvid

W Vanilla W PackedFriendly [SpreadFriendly [Masstro W Vanilla W PackedFriendly [SpreadFriendly [Maestro
1,50
1,00
0,50
0,00
canneal-4 fluidanimate-4 stream-2
Figure 1.7.8: PackedFriendly vs. Agnostic (1) Figure 1.7.9: PackedFriendly vs. Agnostic (2)
W vanila W PackedFriendly [SpreadFriendly [l Maestro W vanila [PackedFriendly [SpreadFriendly [l maestro
2,00 2,00
1,50 1,50
1,00 1,00
050 0,50
0,00 0,00
fluidanimate-4 stream-4 stream-4
Figure 1.7.10: SpreadFriendly vs. Agnostic (1) Figure 1.7.11: SpreadFriendly vs. Agnostic (2)

W vanilla M PackedFriendly [SpreadFriendly M Maestro
1,50

1,00

0,00

fluidanimate-4

Figure 1.7.12: Agnostic vs. Agnostic

14

1.8. Xulhmnon xa Merhovtnd ‘Epyo

W vanila W PackedFriendly SpreadfFriendly W Maestro

candferd)
AUt AE e
EUREEIIE)
an4ziu4)
Str2;0a4;
WNEESTE)

B
GaAzs

amazstr
)
gaeLinmeme
MOE;S2

Figure 1.7.13: Tuyxevipouéva Anoteléopata

To dudyopua 1.7.13 mapouotdlel ta cLVOAxd oamotehéopota and OAo To oevdpla mou avahdinxay, cuvodi-
Covtag Tov péco slowdown xan Twv dUo e@uppoydy Yoo xdle pio and tg téooeplg Sopoppnoel. To did-
yeoppa anodetxviel 6Tt o Maestro diatnpel otadepd yaunidtepo uéoo slowdown oe clyxplon Ue TS UTOAOLTES
OTEUTNYLXES TP WENONS TOPWY. LE UPXETES TEPLTTWOOELS, 1) Beltiwon elvor onpavTixy, pe yelwor tTou slowdown
xatd 29%, 20%, 18% xou 17% évavt tou vanilla Kubernetes. To anoteréopato emfBeBarcyvouy étt o Maestro
haBdvel xotd xavova opdéc anogdoelc xotavourc CPU, yewdvovtag tov Ypbvo extéheons uéow teyvixcyv CPU
pinning, isolation, xou xatavourc twv threads ota sockets.

1.8 XulAtnon xouw MeAhovtixd ‘Epyo

Yy napodoa gpyacio, avahbovtal AenTouepds To Qovopeva TS uelwong enidoong xal Tne unoyenolonoinong
népwv oe cvoThdata cloud. To multi-tenant cuothpata avtiyetwnilouy TEoxAioelC 660V aPoRd TNV ATOUOV-
won xau TN Sloryelplon Twv tépwy, YeYovog mou odnyel o un Bétiotn enidoon. O ndpoyol cloud, npoxeiévou
vo Slotnprioouy Ta cuLvNuéva eninedo utneeoudy (SLAS), cuyvéd uroypnotponooty to diadéolo UAGS, xdTt
Tou €yel onuavtxéc mepBolhoviixéc emntoelc. ‘Epeuva Sieldyetar cuveyde yio T Bektiwon TV TORTIXGY
xatovopnc Tépwy, ue atoyo T Peitiwon tne enidoong xou tng amodotixétntag. To Kubernetes, wg o mo di-
aBedouévog evopynoTemTrc containers, dev Aopfdver unddr ta Wiaitepa YopaxtneloTixd xdie podpTou epyasiag,
yeyovée mou meplopllel TNV AMOTEAEGUATIXOTNTA TWY AMOPAoEwy xatavounc. Me tnv ulomnoinon evée mpoocap-
HOOUEVOL UNYOVIGHOU, amodelydnxe GTL Wa amAOTXT) OTEATNYLXY YUEUXTNELOUO) EQUPUOYTC XO XAUTAVOURC TOPWY
unopel vo BeATudoel TNV elBoa EVavTl TV TEOETAEYUEVWY Unyovioloy tou Kubernetes, emituyydvovtog éwe
xou 29% tayOtepn extéheon.

H épeuva autn anotelel udvo t0 np®dto Brpa Teog TNV avdnTuéy eVOC eEEALYUEVOU UNYOVIGHOV XAUTAVOURC TOPWY,
o omnofog Va punogel vo npaypatonolel 1600 oTaTiny 600 xai Suvopixy| xatavour tépwv. ot Bedtiwon Tng xotn-
YOROTOMNONE TWY PORTHY EPYASIAC, UTOPEL VoL EVOWPATOVEL EVag TLo TEONYUEVOS UNYAVIOUOS XATNYORLOTONo S
epappoymv (workload profiling) nov Yo Basileton oe hardware performance counters, low-level system metrics
XL TEYVIXES pMyavixng wdimong. Méow exmaldevong vevpwvinodv dtiwy pe dedouéva and offline profiling,
elvon eQutd vo Tagvopntoldy ol epopuoyéc pe Bdomn ta potifa yerione pvAung, ta cache misses, xodag xan
ouunepLpopd Toug und cuvidrixes cuvinapéne (co-execution). Emmiéov, n aviyveuon @ouvouévwy napeuolndv
o€ TpaypaTixd Ypovo uropel va emitevydel pe evowudtwon online monitoring epyohelwv, énwe Intel PCM xou
eBPF-based tracing, wote vo napdolv amogdoeic oe cevdpla 6w xopecud memory bandwidth ¥ peiworn twv
instructions per cycle (IPC).

Tt peMOVTNH €pEUVAL, 1) EVOWUETOOTN EVOS EVIGYLTIXOU pnyaviopol udinone (reinforcement learning) pnopet
Vo ETUTEEPEL TNV TPOCOPUOCTIXY ovaxoTavou Twv tépwv We Bdorn o dedopéva mapaxololinone xotd thy
extéleom, Behtidvovtoag duvoxd Ty enidoon Twv @épTwy epyaocioc. Emmiéov, Yo unopoloe vo yeketniel
7 avdntuén evée lightweight agent evtéc twv Kubernetes nodes, o onolog Yo culiéyel younhol emmédou
petenoelg xan Yo emixotvwvel ue tov scheduler yio npocapuoyés o mpayUaTind Yeovo. AUTH 1 apLTEXTOVIXN

15

Chapter 1. Extetopévn Ieptindmn ota EAAnvixd

unopel vo avoamtuyVel oe cloud-native mepiBdhhovta, ywele ™y avdyxn eEwWTEPIXOY TEOYPUUUATOLY, TS TO
Intel PCM otoug hypervisors. H o€ionoinon autdv tev teyvixdy propel va fondfoetl toug cloud providers va
HELDOOUV T OTIALTEAT] UTOAOYLOTIXGDY TOPWY, ENAYLOTOTOLWVTAC TUPIAANAC TO TEQIBUAAOVTIXG AmOTONWUA UECK
o omodoTXNg xaTavounc PpdpTwy epyacioc ota datacenters.

16

Chapter 2

Introduction

2.1 Cloud Computing

The Cloud is an emerging technology that is constantly expanding in every modern field of computation.
As defined by the National Institute of Standards and Technology (NIST), Cloud Computing is a model
for enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable computing
resources (e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned and
released with minimal management effort or service provider interaction [15]. The cloud consists of a network
of datacenters, each housing thousands of interconnected computers designed to perform various tasks. These
datacenters enable users to access a wide range of applications, platforms, and services over the Internet.
In contrast with the preceeding paradigm of On-Premise Computing, organizations can leverage scalable,
flexible, virtualized resources over the Internet for their computational needs, eliminating the cost and main-
tenance complexity of physical servers in their own facilities. Furthermore, it promotes "pay-as-you-go"
pricing schemas, which can result to smaller upfront investments while limiting and scaling resources based
on their current demand. Flexible pricing and resource elasticity along with on-demand, broad network ac-
cess, scalability and virtualization are the essential characteristics of the cloud paradigm. As the adoption of
Cloud Computing has become a norm on a large-scale enterprise level, the improvement of resource sharing
is a logical next step.

Taxonomy of Cloud Services

Cloud Computing primarily comprises three types of services: Software as a Service (SaaS), Platform as a
Service (PaaS), and Infrastructure as a Service (IaaS).

e SaaS (Software as a Service): Consumers can utilize the provider’s applications via the web, allowing
access to software without installation or maintenance, and enabling seamless updates and scalability.
SaaS applications are typically delivered on a subscription basis, offering flexibility and convenience
across various devices.

e PaaS (Platform as a Service): Built on cloud infrastructure, PaaS provides consumers with tools
and services for developing and deploying applications using supported platforms and programming
languages. It offers a higher-level platform, such as Google App Engine and Microsoft Azure, enabling
developers to create customized applications without managing the underlying cloud infrastructure.

e TaaS (Infrastructure as a Service): IaaS provides consumers with virtual computing resources,
including Virtual Machines (VMs) (e.g., Amazon EC2), storage (e.g., Amazon S3), and other essential
computing capabilities. This model allows consumers to deploy and run arbitrary software, including
applications and operating systems, on these virtual resources, offering significant flexibility and control.

17

Chapter 2. Introduction

2.2 Virtualization Techniques

Prior to the existence of virtualization, organizations used physical servers (bare-metal machines) to run their
applications. However, this lead to under-utilization of computing resources and made it difficult to move
applications between different environments. Virtualization refers to a set of software technologies that allow
software to run on virtual hardware.

Hypervisor-Based Virtualization

Traditional virtualization enables multiple Virtual Machines (VMs) to run on a single physical server. Each
VM acts like a complete machine with its own operating system running on virtual hardware, on which the
user has the flexibility to adjust computational resources such as CPU, memory and storage. This allows
better scalability, portability and reduced hardware costs. Furthermore, the separate operating systems create
clear boundaries between the applications, making VMs the industry standard for application multi-tenancy
on the cloud.

Containerization

A container is a virtual runtime environment that operates on top of a single operating system kernel,
emulating an operating system rather than the underlying hardware. While containers often run within a
VM, they do not require the provisioning of an operating system. Containers improve the sharing of hardware
resources by eliminating the hypervisor infrastructure layer.

A container engine is a managed environment for deploying containerized applications. The container engine
allocates cores and memory to containers, enforces spatial isolation and security, and provides scalability by
enabling the addition of containers. Docker [3] is a container platform that provides solutions for most layers
of the container technology stack. These layers include the container engine, scheduling, orchestration, image
management, and configuration management. Due to Docker’s widespread adoption and comprehensive range
of solutions, the platform has become synonymous with container technology.

App App App App

Virtual Machine Virtual Machine

App App App

Traditional Deployment Virtualized Deployment Container Deployment

Figure 2.2.1: Evolution of Virtualization

Hybrid Container Architecture

A hybrid container architecture is an architecture combining virtualization by both virtual machines and
containers, i.e., the container engine and associated containers execute on top of a virtual machine. Use of
a hybrid container architecture is also known as hybrid containerization, and it’s the most common practice
for cloud servers.

Advantages of Containers Over Virtual Machines

e Hardware Costs: Containers enhance hardware utilization by allowing co-located software to fully
utilize the concurrency of multi-core architectures. By eliminating the overhead of virtual machines,

18

2.3. Container Orchestration and Kubernetes

such as excessive storage and resource usage, containers offer a lightweight and cost-effective solution
for efficient application deployment.

e Scalability: A single container engine can efficiently manage large numbers of containers, enabling
additional containers to be created as needed.

e Spatial Isolation: The Linux kernel features cgroups and namespaces allow us to provide each
container with its own resources (e.g., core processing unit, memory, and network access) and container-
specific namespaces.

e Performance: Compared to VMs, containers increase performance (throughput) of applications be-
cause they do not emulate the underlying hardware.

e Storage: Compared to virtual machines, containers are more lightweight in terms of storage, as the
applications within containers can share binaries and libraries, reducing duplication and saving space.

e Security: When dealing with a cybersecurity compromise, the container engine is able to restore the
container to its healthy state while applying various security software rules on every hosted container.

2.3 Container Orchestration and Kubernetes

Container Orchestration refers to automating the deployment, scaling and management of containerized
applications within a cluster. The orchestrator interacts with the container runtime and handles tasks like
launching, updating, moving, scaling, and removing containers.

Kubernetes [9] is an open-source container orchestrator that has become the standard for enterprise-level
applications. Beyond its core functions of deploying, scaling, and managing containers, it automates critical
infrastructure tasks like service discovery, load balancing, storage management, rollbacks, and self-healing.
While Kubernetes is optimized for deploying microservices, its flexibility allows users to deploy a wide range
of applications, including data analytics and machine learning pipelines, as well as scientific high-performance
workloads, among many others.

Kubernetes also ships with highly extensible, developer-centric interfaces that enable developers to integrate
their custom business requirements in their clusters. These extension points include implementing custom
scheduling logic, creating custom resources on the API server and their respective clients, as well as device
plugins which enable the cluster administrator to leverage vendor-specific hardware, such as GPUs, within
their containers.

Although Kubernetes is a highly complex system, further research is needed to optimize the allocation of CPU
and memory resources to applications. It currently relies on typical memory and CPU usage percentages
of worker nodes, which are not always accurate. This can result in resource contention and throttling of
applications, leading to sub-optimal performance. The default scheduler’s decisions are not always optimal,
as they are not based on the real-time state of the cluster or the specific runtime characteristics of the
applications being scheduled. Additionally, the daemon running inside each worker node lacks a sophisticated
mechanism for assigning exclusive resources to applications, causing them to compete for shared resources
and interfere with each other, ultimately degrading performance.

2.4 Resource Utilization Concerns in Datacenters

Cloud Service Providers (CSPs) traditionally rely on continuous hardware upgrade of their IT facilities, in
combination with simplistic scheduling and resource allocation policies to minimize the risk of their applica-
tions under-performing. Nowadays, such practice is considered unsustainable especially given the rapid shift
from on-premise to cloud environments and slowingly recessing technology scaling [14]. Having to handle a
very large amount of diverse workloads, CSPs should consider carefully how to provision resources in order
to reduce unnecessary cost, while keeping performance within the required margin. While the breakthrough
of multi-core processors enabled the CSPs to co-locate multiple tenants’ services in the same host machine,
reducing the need to aggressively invest in new hardware, there is still a lot to improve regarding resource
utilization on multi-core systems.

19

Chapter 2. Introduction

Datacenter Server Architecture

Applications Applications Applications Applications Application
— T — — Software
Binaries / Binaries / Binaries / Binaries / Layer
Libraries Libraries Libraries Libraries
Container 3 Container 4 Container
: : + : Virtualization
: ' Container Engine Layer
: ; : : : Infrastruct
Guest OS Guest OS : Linux OS / : irastriictire
: : : Kernel : Layer
VM 1 VM 2 VM 3 VM
: : : H Virtualization
: Hypervisor (Type 1) : Layer
Core Core Core Core
i-Cache ‘ d-Cache i-Cache | d-Cache i-Cache \d-Cache i-Cache ‘ d-Cache
L2 Cache L2 Cache L2 Cache L2 Cache
{ L3 Cache Physical
: Hardware
‘ System Bus Layer
Multicore : : : :
Processor Memory f:ontroller ‘] I/O Cor:troller ‘ | : | | : |
| Main Memory] ‘ 1/0 Device ‘ | | | |

Figure 2.4.1: Hybrid Cloud Server Architecture

Figure 2.4.1 provides a detailed illustration of the architectural layers of a datacenter machine with a single
multi-core socket. Each multi-core processor is directly linked to a dedicated memory node, and each physical
core has its own isolated memory space for Level 1 (L1) and Level 2 (L2) caches. In the diagram, the L1
cache is split into the instruction cache (i-Cache), which holds program instructions, and the data cache
(d-Cache), which stores the data needed for execution. All physical cores within the socket share a common
Level 3 (LLC) cache. Additionally, if Simultaneous Multi-Threading (SMT) is enabled, each physical core
may counsist of two logical cores (also known as threads or CPUs), which share the core’s L1 and L2 caches.

A cloud server typically operates within a Non-Uniform Memory Access (NUMA) architecture, where multiple
sockets are each linked to their own memory node. In this setup, each processor in a NUMA node has faster
access to its local memory compared to the memory attached to other processors in different NUMA nodes as
the cross-node communication through the interconnect bus is significantly slower than local memory access.
This architecture is critical for optimizing performance in workloads that require large amounts of memory
and high processing power, such as in-memory databases and high-performance computing (HPC) tasks.
Cloud Service Providers like Amazon Web Services (AWS), Google Cloud Platform (GCP), and Microsoft
Azure offer computing instances that comprise of one, two, or four NUMA nodes depending on the instance
type and workload requirements.

Multi-Tenancy, Workload Consolidation and Shared Resources

The term Multi-Tenancy refers to the resource sharing between multiple organizations (tenants) within the
infrastructure of a specific Cloud Service Provider, and the associated complexity and challenges that emerge.
Since any resource object is reusable in the Cloud infrastructure, CSPs have to carefully secure them and

20

2.5. Thesis Overview

eliminate any possible vulnerability that might occur, such as data leakage, while minimizing cost and keeping
up with the customer’s requirements. While security concerns are, and should be, one of the most important
considerations, CSPs have to optimize their available resources to avoid under-utilization of their machines
and reduce financial, as well as environmental cost. This includes being able not only to efficiently provision
the requested services, but also to dynamically scale the amount of resources allocated to each tenant at
runtime.

Workload Consolidation, is an effective method to achieve multi-tenancy in the cloud, enabling the CSP to
place multiple workloads in the same server, increasing resource utilization. The constraints on performance
metrics, such as throughput and latency, are stated in the Service-Level Agreement which is associated with
each tenant, and their violation results in SLA penalties, and client dissatisfaction.

Quality of Service and Service-Level Agreement Guarantees

Quality of Service (QoS) refers to the performance level of a service as perceived by the user. In the context
of Cloud Computing, QoS encompasses various performance metrics such as availability, latency, throughput,
and reliability. Ensuring high QoS is crucial for Cloud Service Providers to meet customer expectations and
maintain competitive advantage.

Despite these efforts, challenges remain in consistently meeting SLA guarantees, particularly in multi-tenant
environments where resources are shared among multiple customers. Interference from "noisy neighbors" and
resource contention can lead to performance degradation, making it difficult to maintain the promised QoS
levels. Ongoing research and advancements in resource management, scheduling, and optimization techniques
are essential to address these challenges and improve the overall QoS in cloud environments.

Kubernetes classifies each running Pod into a specific QoS class that is inferred from the resource requests
and limits of the Containers within the Pod. The three QoS classes of Kubernetes, Guaranteed, Burstable,
and BestEffort guide the orchestrator to make the least destructive decisions when evicting applications due
to node pressure. While this is a valid approach for prioritizing applications and guaranteeing resources to
the Pods, it often leads to under-utilization and false scheduling decisions, as the CPU and memory utlization
are naive indicators and do not always reflect the real utilization state of the cluster.

Energy Consumption and Cost Efficiency

While cloud systems offer a range of benefits, their resource utilization and environmental impacts raise
concerns. A key concern is the substantial energy consumption of data centers, which are fundamental to cloud
infrastructure. Globally, data centers consume an estimated 460 terawatt-hours (TWh) of electricity, and
this figure is projected to double by 2026, reaching a consumption level equivalent to Japan’s total electricity
use [4]. The inefficient allocation of resources within cloud environments can worsen this already significant
energy demand, contributing to higher operational costs and a larger carbon footprint. For example, data
centers in Ireland, a growing hub for this sector, consumed 17% of the country’s total electricity in 2022, a
figure expected to double by 2026, potentially reaching 32% of national electricity consumption driven by
data center expansion and increasing AI applications [4]. A huge need emerges for optimization tools and
techniques, such as rightsizing and runtime optimization, to ensure efficient resource utilization and mitigate
the environmental impact of cloud systems [20]. Moreover, the integration of AI and automation is crucial
for enhancing efficiency and enabling proactive optimization strategies. Transitioning to a sustainable cloud
ecosystem requires a collective effort to prioritize resource efficiency and minimize the environmental burden
associated with these powerful technologies.

2.5 Thesis Overview

In this thesis, we address the fundamental challenges of resource sharing during the co-execution of workloads
on cloud systems. In chapter 2, we list related academic and enterprise work on cloud resource optimization.
Following a detailed introduction on Kubernetes and its extension points for developers, in chapter 3, we
enumerate, different performance degradation factors in HPC workloads and provide suggested methods
to profile incoming applications based on their intrinsic characteristics, in chapter 4. In chapter 5, we
techincally describe the different components of our custom solution and the scheduling and resource binding

21

Chapter 2. Introduction

algorithms that were implemented. In chapter 6 we present the experimental setup we created to develop,
test, and monitor our custom Kubernetes solution for scheduling and allocating CPU and memory resources
on workloads, based on the workload family the are classified as. In chapter 7, we evaluate our solution
on our setup, by conducting single and multi-node experiments, while testing different scheduling strategies
and features that were implemented. In the final chapter 8, we summarize the current work’s findings and
suggest possible corrections and extensions that would make our mechanism more efficient and more eligible
for production cloud-native environments.

22

Chapter 3

Related Work

Running latency-critical workloads in multi-tenant cloud environments requires efficient resource manage-
ment strategies, especially when considering scalability and performance requirements. Kubernetes, a widely
adopted container orchestration platform, provides a default scheduling mechanism, but its capabilities of-
ten fall short in scenarios requiring fine-grained resource allocation, dynamic scaling, and interference-aware
scheduling. This chapter reviews notable advancements in this area, including Kubernetes-based enterprise
schedulers like Volcano and Koordinator, as well as academic research on fine-grained scheduling policies,
autoscaling mechanisms, and load-aware optimization strategies.

3.1 Enterprise Solutions for Cloud Resource Management

Volcano

Volcano [22] is a cloud-native batch system built on Kubernetes designed for high-performance workloads,
including machine learning, bioinformatics, and big data applications. It provides powerful batch scheduling
capabilities that Kubernetes lacks. Volcano integrates with generalized domain frameworks like TensorFlow,
Spark, PyTorch, and MPI, allowing users to run applications without needing significant modifications.
Volcano supports diverse scheduling policies such as co-scheduling, fair-share, gang scheduling, and topology-
aware scheduling. It also provides enhanced job management, supports multiple runtimes like Singularity
and GPU accelerators, and offers robust monitoring with logging, metrics, and dashboards. Volcano is an
incubating project of the Cloud Native Computing Foundation (CNCF) and has been adopted by numerous
companies and institutions worldwide. It is designed to optimize the performance of compute-intensive jobs
by converting them to Kubernetes workloads that are scheduled in batches.

Koordinator

Koordinator is a scheduling system that enhances Kubernetes by enabling the efficient co-location of diverse
workloads including microservices, Al, and big data applications, aiming to improve resource utilization and
workload performance [8]. It provides a QoS-based scheduling mechanism allowing different types of pods
to run on the same node, and uses an independent field, koordinator.sh/qosClass, to define pod service
quality. The ClusterColocationProfile blueprint facilitates the injection of Koordinator QoS and priority
into Pods without modifying existing controllers. Koordinator also supports resource oversubscription to
maximize utilization by reclaiming unused resources from high-priority pods for low-priority pods, with the
SLO Controller dynamically adjusting the overcommitment ratio based on node status.

Koordinator also features load-aware scheduling that balances pod distribution across nodes, preventing
under- or over-utilization by using real-time node metrics collected by the koordlet, a daemon running on
each node. The system provides fine-grained resource orchestration and isolation to ensure the performance of
latency-sensitive workloads while running batch jobs. The koordlet component is crucial for resource profiling,
interference detection, and QoS management. Koordinator also has a flexible job scheduling mechanism for

23

Chapter 3. Related Work

supporting specialized workloads. The system is designed to be compatible with Kubernetes and can be used
as a sidecar without invasive modifications. Furthermore, Koordinator includes monitoring, troubleshooting,
and operational tools.

3.2 Academic Work on Efficient Resource Allocation in the Cloud

Several custom mechanisms have been developed to overcome the limitations of the default Kubernetes
scheduler, which often results in suboptimal resource allocation and performance. These custom solutions
leverage Kubernetes’ extension points to implement more advanced scheduling algorithms that consider a
broader range of factors such as I/O load, CPU utilization, and resource contention. These extension points,
including the Filter (Predicates) and Scoring (Priorities) phases, allow for the integration of custom logic into
the scheduling process, to address issues such as disk I/O bottlenecks, imbalanced CPU and disk I/O usage,
and the need for more nuanced workload distribution. For example, the presentation on fine-grained cgroup
resource scheduling in Kubernetes by Wang and Kan at the 2020 KubeCon and CloudNativeCon, shows that
implementing cgroup based resource management can result in a 30% increase in insert TPS for MySQL
workloads, a 10% increase in select TPS for MySQL workloads, and a 20-30% increase in QPS for Java/Go
web applications with a 20% reduction in time consumption [23]. Below we will present a brief overview of
academic work on fine-grained resource allocation and scheduling based on more sophisticated metrics and
decision methods.

Virtual Machine Based Resource Management in the Cloud

Psomadakis et al. have proposed ACTiManager, a practical, interference-aware resource manager for cloud
environments [16]. It operates without requiring offline application profiles and is transparent to applica-
tions. It has a two-tiered architecture, with ACTiManager.external handling VM allocation across servers
and ACTiManager.internal managing fine-grained resource allocation within servers. ACTiManager charac-
terizes VMs in a "quiet neighborhood" to build interference and healthy state models using Support Vector
Machines and Principal Component Analysis techniques, respectively. It prioritizes applications using gold
and silver pricing models and makes decisions that maximize datacenter profit. Experimental results show
that ACTiManager is able to achieve a very good balance in metrics, excelling over alternative policies in the
majority of configurations and achieving profit increases ranging from 12% to 49%.

Fine-Grained Scheduling Policies in Kubernetes Clusters

Liu et al. have explored fine-grained scheduling policies for containerized High Performance Computing
(HPC) workloads within Kubernetes clusters [11]. The authors note that while containerization and Kuber-
netes are widely used in cloud computing, they are not optimized for the performance requirements of HPC
applications. They argue that current scheduling methods do not consider application-specific information
or the benefits of multi-container deployments for HPC workloads. The authors’ motivation is to develop an
optimized management framework that improves the performance of HPC workloads by enabling fine-grained
deployment and leveraging containerization and orchestration technologies.

To achieve this goal, they present a two-layer scheduling architecture, comprised of an application man-
ager and a resource manager. In the application layer, a Scanflow [12] agent determines the wrapping
granularity (number of workers and nodes) of the HPC workload based on application characteristics. In
the infrastructure layer, an MPI-aware plugin and a task-group scheduling scheme are implemented within
a containerized platform scheduler. This approach allows for partitioning each job into a suitable multi-
container deployment according to the application profile. The results of their experiments showed that the
proposed fine-grained scheduling policies outperform baseline policies, reducing overall response time by 35%
and improving makespan by 34%. The authors also demonstrate that their policies provide better usability
and flexibility for HPC workloads compared to other frameworks.

Fine-Grained Sub-Second Resource Allocation with Dynamic Telemetry

Escra, introduced by Cusack et al., is a container orchestration system that performs fine-grained, event-based
resource allocation across multiple nodes [2] by dynamically adjusting container resources on sub-second

24

3.2. Academic Work on Efficient Resource Allocation in the Cloud

intervals. The Resource Allocator uses windowed statistics of unused runtime and throttles to update per-
container limits, as often as every 100ms. The goal is to keep container limits just above usage. Additionally,
Escra uses kernel hooks in the memory allocation function to catch containers before they are killed for
exceeding their memory limits. If a container exceeds its memory limit, it can request more memory from
the controller. The Resource Allocator decides how to allocate additional memory based on node state
and application needs. If there is available memory, it can be allocated to the container. If the node is
under memory pressure, a memory reclamation process is launched. This approach ensures that resources
are right-sized to current demands, rapidly reacting to CPU throttles or out-of-memory (OOM) events, and
avoiding performance degradation caused by inaccurate predictions. Escra achieves an average 38% decrease
in latency and a 25.4% increase in throughput compared to statically allocated applications while zeroing
Out-Of-Memory Killed (OOMKilled) events across all experiments.

While serveral studies have focused on fine-grained performance optimization through container-based re-
source scheduling algorithms, they often lack features such as autoscaling and rescheduling in order to miti-
gate interference phenomena. In contrast, the mechanism proposed by Rodriguez et al. integrates scheduling,
rescheduling, and autoscaling to achieve a more comprehensive approach to resource management in cloud
environments [17].

The core of the mechanism by Rodriguez et al. consists of three key objectives: optimized initial container
placement, autoscaling of worker VMs, and container rescheduling. The initial placement of containers is
optimized to minimize the number of worker VMs needed while fulfilling the memory and CPU requirements
of the containerized applications. This involves efficiently scheduling containers onto the available resources.

The mechanism also includes autoscaling the number of worker VMs at runtime based on the cluster’s current
workload. This involves both scaling out, which increases the capacity to meet resource demands and reduce
container waiting times, and scaling in, which relocates applications to consolidate them and shut down
underutilized VMs to reduce infrastructure costs. A rescheduling mechanism further supports the efficient
use of resources by consolidating applications onto fewer VMs when possible. This helps to avoid unnecessary
scaling out operations and encourages scaling in, thus optimizing overall resource utilization.

The implementation of this mechanism involves Kubernetes scheduler plugins and was evaluated on an Aus-
tralian national cloud infrastructure. The results of their experiments showed that the proposed approaches
can reduce costs by up to 58% compared to the default Kubernetes scheduler. The authors also noted that
the binding autoscaler, combined with either a binding or non-binding rescheduler, consistently leads to the
lowest costs and, in most cases, the lowest scheduling durations. The study underscores the importance of
having heuristics that aim to avoid unnecessary scaling out operations, such as considering instances that
are currently being provisioned as potential hosts before provisioning a new node. This integrated approach
allows specific resource management policies to be plugged into the system.

10-Aware Scheduling

While Kubernetes supports CPU and memory affinity enabled scheduling policies, it lacks I/O pressure
awareness, introducing bottlenecks in I/O intensive workloads. The Balanced-Disk-IO-Priority (BDI) algo-
rithm and the Balanced-CPU-Disk-1IO-Priority (BCDI) algorithm, proposed by Li et al., are two promising
solutions that aim to improve I/O balance and reduce response times [10]. BDI focuses on improving disk
1/0 balance across nodes by dynamically by sensing I/0 load using Prometheus. By monitoring the real-time
disk I/O of nodes, BDI can make more informed scheduling decisions, thus avoiding I/0 bottlenecks. BDI
achieved a reduction in the standard deviation of disk I/O on cluster worker nodes, going from 31.884 to
3.949, and reduced node application average response time from 15.14 to 5.88. The BCDI algorithm addresses
load imbalances on a single node by balancing both CPU and disk I/O usage, ensuring that no single node is
overloaded in terms of either resource type. BCDI achieved a reduction in the sum of the distance between
disk I/O and CPU usage of each node from 81.696 to 40.888. Both algorithms act in the Post-Scoring phase
to influence scheduling decisions based on real-time resource usage, in contrast to the default Kubernetes
scheduler, which relies on static resource requests.

25

Chapter 3. Related Work

Fine-Grained Scheduling on Serverless Environments

JIAGU by Liu et al., is another approach that focuses on optimizing resource utilization in serverless com-
puting environments by decoupling prediction and decision-making to reduce scheduling latency [13]. JIAGU
introduces pre-decision scheduling with a capacity table that stores pre-calculated performance predictions,
allowing for fast scheduling decisions. JIAGU also implements dual-staged scaling to efficiently manage re-
sources under load fluctuations, by decoupling resource releasing and instance eviction, thus avoiding cold
start overheads. JTAGU achieved a 54.8% improvement in deployment density over commercial clouds (with
Kubernetes), 81.0%-93.7% lower scheduling costs, and a 57.4%—69.3% reduction in cold start latency com-
pared to existing QoS-aware schedulers.

Resource Provisioning for Microservices

ChainsFormer, proposed by Song et al., is a framework for microservices that focuses on chain latency-aware
resource provisioning [18]. It dynamically scales CPU and memory resources by analyzing microservice
inter-dependencies to identify critical chains and nodes. ChainsFormer uses online telemetry data to capture
system state, and employs machine learning (ML) and reinforcement learning (RL) models to adapt to system
variances, reducing the need for manual intervention. It first identifies the critical chain using a calling graph
and a decision tree to find the critical node that has a significant impact on microservice performance.
ChainsFormer utilizes RL for efficient decisions regarding vertical and horizontal scaling. Compared to other
approaches, ChainsFormer does not require a centralized graph database, which enhances its scalability.
ChainsFormer was evaluated on Kubernetes using realistic applications and traces. Experimental results
show that ChainsFormer can reduce response time by up to 26% and improve processed requests per second
by 8% compared with other techniques.

Distributed-Agent Scheduling

Finally, a hybrid shared-state scheduling framework, proposed by Ungureanu et al., combines distributed
scheduling agents with a master agent that synchronizes the cluster state [21]. This approach uses a scheduling
correction (SC) function to process unscheduled and unprioritized jobs, addressing issues like collocation
interference and priority preemption. This framework employs a lock-free optimistic concurrency to resolve
conflicts between service agents (SAs), ensuring optimal scheduling based on the synchronized cluster state
and the SC function’s processing of task execution time for each pod. The hybrid shared-state scheduler
addresses limitations in other Kubernetes schedulers, such as issues with node over /under-utilization and node
failures, and offers better support for inter-pod affinity/anti-affinity, taints/tolerations, baseline scheduling,
and priority preemption.

These custom scheduling mechanisms underscore the need for more advanced schedulers that go beyond the
default Kubernetes capabilities. These solutions can dynamically adapt to changing conditions and optimize
resource allocation for better performance and cost-effectiveness.

26

Chapter 4

The Kubernetes Container Orchestrator

4.1 Container Orchestration

A Container Orchestrator automatically provisions, deploys, scales, and manages containerized applications
within a cluster of worker nodes. It offers a declarative API, typically through manifests (configuration files),
enabling cluster administrators to define the desired state of the cluster. The orchestrator then automatically
executes the necessary actions to achieve and maintain this state.

With the rise of containerized microservices in software development, cloud-based applications have greatly
benefited from Kubernetes, that has become the de facto industry-standard when it comes to container
orchestration. Because of its ability to run containers, it gives the end-user the ability to deploy diverse
workloads, including large-scale app deployments, high-performance computing, machine learning, and Big
Data workloads.

In this section, we will provide a detailed overview of the key components of a Kubernetes cluster and the
default resource management policies it offers. Furthermore, we will explore numerous extension points for
developers the platform provides, which we will utilize to create our custom scheduler and resource allocator.

4.2 Cluster Architecture

A Kubernetes cluster is composed of a control plane and a set of worker machines, known as nodes, which
run containerized applications. Each cluster requires at least one worker node to host and execute Pods, the
fundamental units of application workloads. The control plane oversees the worker nodes and manages the
Pods within the cluster. In production environments, the control plane typically spans multiple machines,
and clusters often consist of several nodes to ensure fault tolerance and high availability.

4.2.1 Control Plane Components

The Control Plane consists of one or more nodes and is responsible for managing the overall state of the
cluster. The main source of truth of what resources (e.g. Deployment, DaemonSet, Job) are applied in the
cluster is the API Server, where the cluster-wide state management takes place. The API Server provides a
RESTful API that enables the cluster administrator to manage the deployed resources, either by interacting
directly with the API, using a CLI tool like kubectl, or by applying configuration manifest files.

kube-apiserver

The API Server is the primary component of a Kubernetes cluster. It exposes a RESTful API that enables
administrators to query, configure, and manage Kubernetes objects (resources). The API Server is the source
of truth of all the resources that have been applied within the cluster. It also serves as the communication
hub for other critical components, such as the scheduler and kubelet, which monitor events published by the
API Server and take action accordingly.

27

Chapter 4. The Kubernetes Container Orchestrator

N

API server

‘ Cloud
@ @ '’ provider Cloud controller
- manager
. ccm API
0

(optional)

Controller
manager

Node

kubelet

/
2 R % kube-prox;
o E kubelet Kubelet kubelet proxy

sched
o 0
SI?} bk Scheduler
k Control Plane k-proxy, k-proxy, k-proxy,

Control plane ——————-

D—-—
Node Node (persistence store)
api

5

COEEO0O0

\

Node

Figure 4.2.1: Kubernetes Components

etcd

etcd is an open-source, distributed key-value database and the standard storage system used in Kubernetes.
It is responsible for storing not only metadata about the Kubernetes objects such as Pods, Services, and
Deployments, but also the actual cluster state and configuration.

kube-scheduler

The Kubernetes scheduler is a control plane process which assigns Pods to Nodes. The scheduler determines
which Nodes are valid placements for each Pod in the scheduling queue according to constraints and available
resources. The scheduler then ranks each valid Node and binds the Pod to a suitable Node. Multiple
schedulers may be used within a cluster and kube-scheduler is the default implementation.

kube-controller-manager

The Controller Manager (also called kube-controller-manager) is a control plane process that acts as a
continuous control loop in a Kubernetes cluster. The controller monitors the current state of the cluster
via event streams from API Server, and works to reconcile it with the desired state defined by the cluster
administrator through manifests.

The Controller Manager packages controllers that correspond to the default API resources. Each controller
(e.g. the DaemonSet controller that manages indentical Pods running as daemons on each worker) utilizes
the Operator Pattern to reconcile the objects that are applied on the API server (the DaemonSet manifests
applied by the administrator) and bring the cluster to the desired state. These controllers use Informers,
a programming interface that allows an application to retrieve objects from the API Server and listen to
create/update/delete events, enabling them to take action upon these events.

28

4.3. Workloads

Control plane

(!

Kube controller manager

©

Reconcile() 5 Kube controller 1

(e.g. deployment controller)

©

Control loop Reconcile()
(infinite loop)

> Kube controller 2
(e.g. job controller)

- v (other control plane controllers)

Figure 4.2.2: The Controller Manager and the Operator Pattern

Understanding how the default Controller Manager of Kubernetes works is key as on a later chapter we
will introduce our custom Controller Manager that reacts on events occuring on our own Custom Resource
Definitions (CRDs). The Controller Manager we developed is an important component of our custom resource
allocator, as we will discover later.

4.2.2 Node Components
kubelet

The kubelet is the primary node agent that runs on each node. It can register the node with the API server,
and ensures that containers scheduled to its Node are running and healthy.

The kubelet works in terms of a PodSpec. A PodSpec is a YAML or JSON object that describes a Pod. The
kubelet takes a set of PodSpecs that are provided through various mechanisms (primarily through the API
server) and manages their execution and lifecycle. The kubelet doesn’t manage containers which were not
created by Kubernetes.

kube-proxy

The kube-proxy of each node is a network proxy for facilitating Kubernetes networking services. The
kube-proxy handles network communications inside or outside of the cluster, relying either on the operating
system’s packet filtering layer, or forwarding the traffic itself.

4.3 Workloads
Pod

Pods are the smallest deployable units of computing in Kubernetes. A Pod is a group of one or more
containers, with shared storage and network resources, and a specification for how to run the containers. A
Pod’s contents are always co-located and co-scheduled, and run in a shared, isolated context. The isolation
is achieved using Linux cgroups, namespaces, and potentially other facets of isolation - the same things that
isolate a container.

All containers within a Pod are co-located and co-scheduled, operating in a shared context, with common
resources and dependencies. Pods can include init containers that run during startup to set up necessary

29

Chapter 4. The Kubernetes Container Orchestrator

conditions before the main application containers begin execution.

Generally, Kubernetes manages Pods through higher-level workload resources like Deployments and State-
fulSets, which handle Pod replication, scaling, and lifecycle management, ensuring applications are resilient
and scalable.

apiVersion: vi
kind: Pod

; metadata:

name: example-pod

labels:
app: demo

spec:

containers:

- name: demo-container
image: nginx:1.25.2
ports:

- containerPort: 80
resources:
requests:

memory: "64Mi"
cpu: "250m"
limits:
memory: "128Mi"
cpu: "500m"
Listing 4.1: Pod Manifest Example
Deployment

A Deployment is a higher-level resource that manages the lifecycle of applications by overseeing ReplicaSets
and the Pods within them. It enables declarative updates, allowing users to define the desired state of
an application, including the number of replicas, the container image version, and update strategies. The
Deployment controller ensures that the actual state matches the desired state by creating or removing Pods as
needed, facilitating seamless rollouts and rollbacks of application versions. This mechanism provides robust
scaling, self-healing capabilities, and efficient management of stateless applications, ensuring high availability
and reliability in dynamic environments.

apiVersion: apps/vl
kind: Deployment

3 metadata:

name: example-deployment
labels:

app: demo

spec:

replicas: 3
selector:

matchLabels:

app: demo

template:

metadata:

labels:
app: demo

spec:

containers:

- name: demo-container
image: nginx:1.25.2
ports:

- containerPort: 80

Listing 4.2: Deployment Manifest Example

ReplicaSet, StatefulSet, DaemonSet

In Kubernetes, ReplicaSets, StatefulSets, and DaemonSets are controllers designed to manage specific work-
load requirements. A ReplicaSet ensures a defined number of identical, stateless Pods are running, automat-

30

4.4. Services, Load Balancing, and Networking

ically creating or deleting Pods to match the desired count. It is often used indirectly through Deployments,
which add update and rollback capabilities. In contrast, a StatefulSet manages stateful applications requiring
unique identities, persistent storage, and ordered deployment or scaling—ideal for databases and distributed
systems. Lastly, a DaemonSet ensures a copy of a Pod runs on every node (or selected nodes) in the cluster,
making it suitable for tasks like logging, monitoring, or networking services that need node-level presence.
These controllers provide scalability, persistence, and reliability, addressing diverse application needs in dis-
tributed environments.

apiVersion: apps/vl
kind: DaemonSet
metadata:
name: fluentd-elasticsearch
namespace: kube-system
labels:
k8s-app: fluentd-logging
spec:
selector:
matchLabels:
name: fluentd-elasticsearch
template:
metadata:

labels:
name: fluentd-elasticsearch

spec:

tolerations:

- key: node-role.kubernetes.io/control-plane
operator: Exists
effect: NoSchedule

containers:

- name: fluentd-elasticsearch
image: quay.io/fluentd_elasticsearch/fluentd:v2.5.2
resources:

limits:
memory: 200Mi
requests:
cpu: 100m
memory: 200Mi
volumeMounts:
- name: varlog
mountPath: /var/log
volumes:

- name: varlog

hostPath:
path: /var/log

Listing 4.3: DaemonSet Manifest Example

In a later chapter, we will discover how our custom resource allocation mechanism utilizes the Deployment
and DaemonSet workloads to create a distributed communcation between the Controller Manager of our
CRDs and the daemon that’s running inside each worker node in order to pin and isolate the Pods on specific
CPU resources.

4.4 Services, Load Balancing, and Networking

Kubernetes provides robust networking and service management through Services, which abstract access to
a group of Pods, ensuring stable communication despite dynamic Pod lifecycles. Services support types like
ClusterIP for internal access, NodePort for exposing services externally via node IPs, and LoadBalancer for
integrating external load balancers. Kubernetes assigns each Pod a unique IP, enabling direct communication
without Network Address Translation (NAT). Additionally, Ingress manages external HTTP and HTTPS
traffic, offering load balancing and SSL termination, enabling scalable and resilient application networking.

31

Chapter 4. The Kubernetes Container Orchestrator

ClusterIP, NodePort, LoadBalancer, ExternalName

There are several types of Services, each serving a specific purpose:

e ClusterIP: This is the default Service type, providing a stable internal IP address accessible only
within the Kubernetes cluster. It facilitates internal communication between services without exposing
them externally.

e NodePort: This Service type exposes the Service on a static port on each node’s IP address, allow-
ing external traffic to access the Service. While it provides external access, it is generally used for
development or testing due to limited security and scalability.

e LoadBalancer: This Service type integrates with cloud providers to provision an external load bal-
ancer that distributes incoming traffic across the Pods. It is commonly used for production workloads
requiring reliable external access.

e ExternalName: This Service type maps a Service to a DNS name, allowing Kubernetes to return a
CNAME record with the external name. It is useful for integrating external services into a Kubernetes
cluster without complex configurations.

apiVersion: vl 1 apiVersion: vi

kind: Service 2 kind: Service
metadata: 3 metadata:
name: clusterip-service 1 name: loadbalancer -service
spec: 5 spec:
type: ClusterlIP 6 type: LoadBalancer
selector: 7 selector:
app: my-app 8 app: my-app
ports: 9 ports:
- port: 80 10 - port: 80
targetPort: 8080 11 targetPort: 8080

Listing 4.4: ClusterIP Listing 4.6: LoadBalancer

apiVersion: vil

kind: Service
metadata: i 1 apiVersion: vi
name: nodeport-service . kimds Service
SEECE 3 metadata:
type: NodePort 1 name: externalname-service
selector: - spec:
SPPIARIYELADD) 6 type: ExternalName
ports: 7 externalName: example.com
- port: 80 o
targetPort: 8080
nodePort: 30080 Listing 4.7: ExternalName
Listing 4.5: NodePort
4.5 Storage

By default, container storage is ephemeral, meaning that data is lost when a container restarts or terminates.
Volumes address this limitation by offering a shared storage space accessible to all containers in a Pod,
ensuring data persistence across container restarts and facilitating inter-container communication through
shared files.

Persistent Volumes (PVs) are storage resources provisioned independently of Pods, offering a decoupled and
persistent storage solution within the cluster. Administrators can set up PVs manually or enable dynamic
provisioning through StorageClasses, which automate the creation of storage based on predefined parameters.
This abstraction allows users to request storage without needing to understand the underlying infrastructure,
promoting a clear separation between storage provisioning and consumption.

32

4.6. Resource Management

Users interact with PVs by creating PersistentVolumeClaims (PVCs), which specify the desired storage
capacity and access modes. The Kubernetes control plane then matches these claims to available PVs, binding
them accordingly. This mechanism ensures that storage resources are efficiently allocated and managed,
providing a consistent and reliable storage experience for applications running within the cluster.
apiVersion: storage.k8s.io/vl

kind: StorageClass

metadata:
name: nfs-csi

5 provisioner: nfs.csi.k8s.io

parameters:

server: nfs

share: /kubecluster
reclaimPolicy: Delete
volumeBindingMode: Immediate
mountOptions:

- nfsvers=4.1

Listing 4.8: NFS StorageClass

apiVersion: vi
kind: PersistentVolumeClaim
metadata:
name: benchmarks-logs-pvc
namespace: benchmarks
spec:
accessModes:
- ReadWriteMany
resources:
requests:
storage: 5Gi
storageClassName: nfs-csi

Listing 4.9: PersistentVolumeClaim

In listings 4.8 and 4.9 how Kubernetes dynamically provisions storage using a StorageClass and a Persis-
tentVolumeClaim (PVC). The StorageClass defines the storage backend (NF'S in this case) and parameters
for provisioning, while the PVC requests storage with specific requirements, such as size and access mode.
Once the PVC is bound to a provisioned volume, it can be mounted by a Pod as a persistent storage location,
ensuring data durability across container restarts.

4.6 Resource Management

When defining a Pod, users can optionally specify the resource requirements for each container within it
(figure 4.1). The most commonly specified resources are CPU and memory (RAM), although other resources
can also be defined based on the third-party devices that are installed in the cluster.

Resource requests and limits play a crucial role in efficient resource allocation and enforcement. Resource
requests indicate the minimum amount of a resource that a container requires. The kube-scheduler uses this
information to determine which node has sufficient available resources to host the Pod. In contrast, resource
limits define the maximum amount of a resource that a container is allowed to consume. These limits are
enforced by the kubelet, which prevents a container from exceeding its specified allocation. Additionally, the
kubelet guarantees that the requested resources are reserved exclusively for the container, ensuring predictable
performance and minimizing resource contention.

Resource Types
CPU

CPU is a measurable resource that represents the computational power required by a container. CPU re-
sources are specified in millicores, where 1000m equals one logical core. Containers can request a specific
amount of CPU, ensuring that the Kubernetes scheduler places them on nodes with sufficient capacity. Ad-
ditionally, limits can be set to cap CPU usage, preventing any single container from monopolizing processing

33

Chapter 4. The Kubernetes Container Orchestrator

power. When a container exceeds its allocated CPU limit, it is throttled rather than terminated, and it is
subject to under-performing.

Memory

Memory, measured in bytes, represents the working set required by a container to operate effectively. Unlike
CPU, memory usage cannot be throttled; therefore, exceeding a container’s memory limit results in its termi-
nation and restart. Kubernetes allows specifying both requests and limits for memory, ensuring predictable
allocation and preventing resource contention. Requests guarantee a minimum memory allocation, while lim-
its define the upper boundary, enabling efficient utilization of cluster resources without risking out-of-memory
errors.

The pod - Deployment.yaml

kind: Deployment
apiVersion: extensions/vlbetal
metadata:
name: redis
labels:
name: redis-deployment
app: example-voting-app
spec:
replicas: 1
Ll selector:
matchLabels:
name: redis
role: redisdb
app: example-voting-app
[I | template:
spec:
- - containers:
- - - name: redis
ST image: redis:5.0@.3-alpine
L BESOUCRs: 3. Will be killed if allocates > 600MB,
- - limits:) The whole Pod will fail
- L 1. The pod memory: G0OMi
effective request cpu: 1
™17 requests:
400MiB c-tl Memory ® memory: 30 ami
300Mi +)
) @ cpu: 500m
600 milicores - name: busybox
500m + image: busybox:1.28
resources:
limits:
memory:
2, Kubernetes assigns cpu: 2 !
Lad nares pepcorr. requests: 6. Throttled if uses > 30ms of computing time in 100ms
1024+ 0.1= ® memory: 10@Mi
1024+ 0.5 = 512 share cpu: 10@m

A cluster node:

4x vCPUs 16GB RAM

>PaMi | 5. Killed if allocates > 200MB.

Figure 4.6.1: Resource Requests and Limits of a Pod

Pod Quality of Service - QoS

Quality of Service (QoS) classes are assigned to Pods based on their specified resource requests and lim-
its. These classes guide the system in resource allocation and eviction decisions, especially during resource
constraints. Kubernetes defines three QoS classes to manage resource prioritization and ensure application
reliability within the cluster.

e Guaranteed: A Pod is classified as Guaranteed if every container within it has both memory and
CPU limits and requests set, with each limit equal to its corresponding request. This ensures that the
Pod receives the highest priority, making it the least likely to be evicted during resource shortages.

e Burstable: Pods that do not meet the Guaranteed criteria but have at least one container with a
memory or CPU request fall under the Burstable class. These Pods have reserved resources but can
also utilize excess capacity when available, offering a balance between resource assurance and flexibility.

34

4.6. Resource Management

e BestEffort: Pods where no containers have specified memory or CPU requests or limits are classified
as BestEffort. These Pods are the first to be considered for eviction under resource constraints, as they
have no guaranteed resource reservations.

Pod Scheduling and Eviction

Pod scheduling is the process of assigning newly created Pods to suitable Nodes within the cluster. The
kube-scheduler, Kubernetes’ default scheduler, evaluates each Pod’s resource requirements, constraints, and
policies to determine the optimal Node for deployment. Pod eviction refers to the removal of Pods from
Nodes, which can occur due to various factors, including resource contention, Node maintenance, or policy
enforcement. Kubernetes prioritizes Pods for eviction based on their assigned Quality of Service (QoS) classes
and Pod Priority. Pods with lower priority or BestEffort QoS are more susceptible to eviction under resource
pressure, ensuring that critical applications maintain their required performance levels.

Kubelet Resource Management

The kubelet of each node ensures that containers have the necessary resources to operate effectively while
enforcing the resource constraints declared in the Pod’s specification. It utilizes a Linux kernel feature named
cgroups which applies restrictions on running processes, for resources such as memory, CPU, block I/O and
huge pages.

The kubelet mainly modifies the following cgroups controllers for the managed Pods:

e Memory Controller (memory): Manages memory usage by setting limits (memory.max, memory.min)
and enforcing guarantees. If the container consumes all of its entitled memory, the Pod terminates with
an OOMKilled (Out-Of-Memory Killed) error.

e CPU Controller (cpu): Applies CPU limits for processes requesting CPU resources. cpu.weight
(or cpu.shares) describes how much CPU time will the container get in comparison to other contain-
ers. Additionally, cpu.max (a combination of the older cpu.cfs_quota_us and cpu.cfs_period_us)
applies a hard limit on how much computing time a process is entitled within a CFS period. The
container’s performance might be degraded (throttled) due to resource contention. When Static CPU
Manager Policy is enabled, the kubelet also allocates specific CPUs to Guaranteed Pods, by setting the
cpuset.cpus of the cpuset controller 1.

e PIDs Controller (pids): Restricts the number of processes using pids.max to prevent resource
exhaustion caused by runaway processes.

Furthermore, the container runtime utilizes another Linux kernel feature called namespaces. Namespaces
are a feature of the Linux kernel that partitions kernel resources such that one set of processes sees one
set of resources while another set of processes sees a different set of resources. Containers are isolated into
their set of namespaces, such as user, PID, network, mount and IPC namespaces ensuring they are running
independently of the rest of the system.

Kubernetes employs a suite of resource managers within the kubelet to optimize node-level resource allocation,
particularly for workloads with specific requirements for CPUs, devices, and memory. The two most important
resouce management modules of the kubelet are the CPU Manager and the Topology Manager.

CPU Manager

The CPU Manager is a component of the Kubelet responsible for managing CPU resource allocation to
containers within a node. It offers two primary policies: the default none policy, which does not perform
any special CPU pinning, and the static policy, which provides enhanced CPU affinity and exclusivity for
certain workloads.

Static Policy Options The static policy can be fine-tuned using several options to serve to specific
workload requirements:

lhttps://martinheinz.dev/blog/91

35

https://martinheinz.dev/blog/91

Chapter 4. The Kubernetes Container Orchestrator

e full-pcpus-only: Allocates only full physical cores, avoiding sharing between containers and reducing
the noisy neighbors problem. Pods failing to meet this requirement are marked as Failed with an
SMTAlignmentError.

e distribute-cpus-across-numa: Ensures CPUs are evenly distributed across NUMA nodes when more
than one node is required, minimizing bottlenecks and improving parallel performance for workloads
relying on synchronization primitives.

e align-by-socket: Allocates CPUs aligned at the socket boundary instead of the NUMA boundary, re-
ducing performance degradation caused by cross-socket resource allocation. This option is incompatible
with the Topology Manager’s single-numa-node policy.

e distribute-cpus-across-cores: Spreads virtual cores (hardware threads) across multiple physical
cores to reduce contention and improve performance for workloads sensitive to CPU sharing. This may
be less effective under high system loads.

e prefer-align-cpus-by-uncorecache: Allocates CPUs within the same uncore cache block (LLC) to
optimize cache usage and reduce inter-cache latency, improving performance for workloads sensitive to
cache contention.

While providing fine-grained control over CPU allocation through its static policy and configurable flags, the
CPU Manager has several limitations. Firstly, its configuration cannot be adjusted on the fly, requiring a
kubelet restart to apply changes, which can disrupt running workloads. This prevents dynamic adaptation to
varying workload requirements. Additionally, the CPU Manager does not support multiple allocation policies
simultaneously, making it unsuitable for clusters running heterogeneous workloads that might benefit from
different strategies, such as NUMA-aware distribution for one application and core isolation for another.
Furthermore, the CPU Manager lacks the ability to dynamically adjust resource allocations for containers
after they are scheduled, leaving no mechanism to mitigate performance degradation on runtime. These
limitations make the CPU Manager less flexible for heterogeneous workloads with evolving resource needs,
motivating us to develop a more flexible resource allocator that solves the described limitations.

Topology Manager

The Topology Manager in Kubernetes is a component of the kubelet that attempts to achieve optimal re-
source allocation by aligning CPU, memory, and device assignments with the underlying hardware topology,
particularly in systems with NUMA architectures. By coordinating resource allocation, it enhances appli-
cation performance and reduces latency for workloads sensitive to resource locality. The Topology Manager
supports various policies, such as none, best-effort, restricted, and single-numa-node, which determine
the strictness of resource alignment.

The Topology Manager coordinates with the Memory Manager to ensure resource alignment across NUMA
nodes. It retrieves topology hints, such as "10" for a single NUMA node or "11" for a multi-NUMA group,
based on available memory. After finalizing hints, memory is pre-allocated, and cgroups are updated via the
CRI API to enforce resource assignments efficiently.

36

4.7. The Kubernetes Scheduler

Node Map
(a part of MM)

retrieve the counters (free memory)

Topology Memory Manager
Manager (MMm)

Admit(...)

> GetTopologyHints(...)

»
>

Compute NUMA node affinity for a container:

« adequate amount of memory at single NUMA node 0 => attach hint "10"
+ adequate amount of memory at multi-NUMA group => attach hint "11"

(and so forth)

Hints (10, 11, etc.)

Allocate(...)

A 4

consider memory pre-allocation
in Memory Maps

A 4

AddContainer(...)

A 4

update cgroups (cpuset.mems)
using CRI API

v

Figure 4.6.2: Kubelet’s Memory Manager Workflow

4.7 The Kubernetes Scheduler

The Kubernetes Scheduler runs as part of the control plane and watches for newly created Pods that have
no node assigned. By filtering the Nodes, the scheduler comes up with a set of feasible nodes that meet
the Pod’s requirements. The Pod’s containers can have different resource requirements, and the scheduler
is responsible for selecting the optimal node to run it. If none of the nodes are suitable, the Pod remains
unscheduled until the scheduler is able to place it.

The scheduler finds feasible nodes for a Pod and then runs a set of functions to score the feasible nodes and
picks a node with the highest score among the feasible ones to run the Pod. The scheduler then notifies the
API server about this decision in a process called binding.

37

Chapter 4. The Kubernetes Container Orchestrator

{API server} {etcd} {Scheduler} kubelet container runtime
s | ; | | A
; submit manifest E I E E
| : : ' —Submission
] persist : : ‘ 0
i >D , i]
s | L. : 5 : : -
E E watch unassigned pods s : E M
] r : p- ')
, : . [pop pod from : :
5 ; : queue : ;
' i : irun filter : ;
; : : plugins . ;
e | e a | |
E / : [1 feasible lreturn node Y H
‘ . ' node?] : :
z e e o e | s |
' ' : [>1 feasible run scoring ' ; -Scheduling
, : : nodes?] :I plugins H .
E E E return node with s E
, , : highest score . H
: L bind pod 1o returned node : : ;
; persist I ; ' ; ;
: 'U , 1]
: e ey ; : ' '
h F7 7 2 5 7 A S T > ' i
, - ; : T] -
’ l ' watch bound pod ! C g -
' i T T > i
' E E ' create container(s)‘ E
3 2 0 D 7U
E L . update pod status ., [Sommmmmmmmoeneee |
: > _ ; ; _ Execution
h persist : | h
»> ' i
: Cromomnnnaaaeee l E .
] R e L R e >T
: : : i : . J

Figure 4.7.1: Lifecycle of a Pod

Factors that need to be taken into account for scheduling decisions include individual and collective resource
requirements, hardware / software / policy constraints, affinity and anti-affinity specifications, data locality,
inter-workload interference, among others.

1. QueueSort: This stage defines an ordering function to sort pending Pods in the scheduling queue.
Only one queue sort mechanism can be enabled at a time.

2. PreFilter: This stage pre-processes or validates information about a Pod or the cluster before filtering.
It can also mark a Pod as unschedulable.

3. Filter: Equivalent to predicates in a scheduling policy, this stage filters out nodes that cannot run the
Pod. Filters execute sequentially, and a Pod is marked unschedulable if no nodes satisfy all filters.

4. PostFilter: Invoked when no feasible nodes are found, this stage can make Pods schedulable by
modifying the scheduling decision. If any part of this stage marks a Pod as schedulable, remaining

38

4.8. Kubernetes Interface Standards

steps are skipped.

5. PreScore: An informational stage used to prepare data or perform pre-scoring tasks before scoring
nodes.

6. Score: This stage assigns scores to nodes that pass the filtering phase. The node with the highest
weighted score is selected.

7. Reserve: This stage notifies the system when resources are reserved for a Pod. It includes an Unreserve
step, triggered in case of failure during or after reservation.

8. Permit: This stage can either delay or prevent a Pod from being bound to a node.
9. PreBind: This stage executes any required preparation work before binding a Pod to a node.

10. Bind: Responsible for binding a Pod to a node, this stage executes sequentially. Once a binding is
complete, remaining steps are skipped. At least one binding mechanism is mandatory.

11. PostBind: An informational stage invoked after a Pod has been successfully bound.

The kube-scheduler is a plugin-based application, meaning that it bundles serveral scheduling plugins that
implement one or more of the above extension points. The kube-scheduler utilizes a range of default plug-
ins to handle scheduling decisions, each designed to address specific requirements. For instance, plugins like
Imagelocality and NodeResourcesFit prioritize nodes based on image availability and resource require-
ments, while TaintToleration and NodeAffinity enforce constraints related to taints, tolerations, and
node affinity rules. Others, such as PodTopologySpread and InterPodAffinity, ensure even workload dis-
tribution and affinity /anti-affinity compliance. Plugins like VolumeBinding and NodeVolumeLimits handle
storage constraints, and PrioritySort and DefaultPreemption define sorting and preemption mechanisms.
These plugins are enabled on the initialization of any cluster and they encapsulate the scheduling policies
that are applied by default.

To configure the different stages of scheduling, the user may pass a scheduler configuration manifest as a
command line argument to the scheduler. The KubeSchedulerConfiguration manifest contains information
about scheduling profiles, including enabled plugins, plugin configurations, and arguments to customize the
scheduling behavior.

For example, in the scheduler configuration below, we have defined two scheduling profiles, the
default-scheduler which has all the default plugins enabled, and the no-scoring-scheduler, which dis-
abled all plugins that implement the Score extension point.

apiVersion: kubescheduler.config.k8s.io/vl
kind: KubeSchedulerConfiguration
profiles:
- schedulerName: default-scheduler
- schedulerName: no-scoring-scheduler
plugins:
preScore:
disabled:
- name: 'x*'
score:
disabled:
- name: 'x*'

Listing 4.10: KubeSchedulerConfiguration Example Manifest

Kubernetes enables developers to create their own scheduler plugins by utilizing the Scheduling Framework.
We will describe in depth how our scheduler plugin works in a later chapter.

4.8 Kubernetes Interface Standards

Kubernetes uses several interface standards to ensure flexibility and compatibility with different systems.
These standards allow Kubernetes to work with a variety of tools for containers, networking, and storage
without requiring major changes to its core components.

39

1

2)

10

Chapter 4. The Kubernetes Container Orchestrator

The Container Runtime Interface (CRI) provides a way for Kubernetes to communicate with different
container runtimes. This means Kubernetes can manage containers using different technologies, as long
as they follow the CRI standard. Examples of CRI implementations include containerd and CRI-0. This
flexibility allows Kubernetes to support emerging container technologies without needing to rewrite its code.

v
CRI :
cnntalnerm .
container

Figure 4.8.1: The CRI specification defines the interface between the kubelet and the container runtime

For networking, Kubernetes uses the Container Network Interface (CNI). The CNI standard allows
administrators to use various networking solutions to connect pods and manage network policies. Popular
CNI implementations include Calico, Flannel, and Cilium. These plugins help provide networking features
such as IP address management, routing, and security policies.

In terms of storage, Kubernetes integrates the Container Storage Interface (CSI) to manage storage
systems. The CSI standard lets Kubernetes work with different storage providers without requiring changes
to its core code. Examples of CSI drivers include Amazon AWS EBS CSI Driver, Google Compute Engine
Persistent Disk CSI Driver, and Ceph CSI. This makes it easier to use various storage backends, whether
they are cloud-based or on-premises, while maintaining compatibility with Kubernetes.

In our setup, we use the csi-driver-nfs plugin to persist data on an NFS server.

4.9 Frameworks for Developers

While Kubernetes offers a wide range of features out of the box, cluster operators might need some more
advanced, hardware-specific functionality to integrate with their system. Kubernetes is designed to be highly
customizable by providing development tools for interacting and extending the API server, creating custom
scheduling policies, installing and advertisting custom hardware resources such as GPUs and FPGAs, and
placing custom CSI and CNI plugin implementations. In this section we will analyze in depth the most
significant extension points for developers and the ones we utilized to create our custom resource allocation
mechanism.

Custom Resource Definitions - CRDs

Custom Resource Definitions (CRDs) enable Kubernetes users to define and manage their own resources,
extending the Kubernetes API to support domain-specific objects. By creating a CRD, developers can
introduce new resource types that behave like native Kubernetes objects. Once registered, these custom
resources can be managed using familiar Kubernetes tools, such as kubectl and YAML manifests. That way,
organizations are able to define abstractions tailored to their workloads and manage them in a declarative
manner, just as they would manage their Deployments, StatefulSet, and so on.

apiVersion: apiextensions.k8s.io/vl
kind: CustomResourceDefinition
metadata:
name: crontabs.stable.example.com
spec:
group: stable.example.com
versions:
- name: vl
served: true
storage: true

40

4.9. Frameworks for Developers

schema:
openAPIV3Schema:
type: object
properties:
spec:
type: object
properties:
cronSpec:
type: string
image:
type: string
replicas:
type: integer
scope: Namespaced
names :
plural: crontabs
singular: crontab
kind: CronTab
shortNames:
- ct

Listing 4.11: CustomResourceDefinition Example

The CustomResourceDefinition described in 4.11 will create a new RESTful endpoint on the API server of the
cluster under /apis/stable.example.com/v1l/namespaces/*/crontabs/.... This allows cluster adminis-
trators to create and manage custom resources of the specified schema. For example, the following manifest
defines a custom resource that matches the above definition:

apiVersion: "stable.example.com/v1"

kind: CronTab

metadata:
name: my-new-cron-object

5 spec:

cronSpec: "¥ * * * x/5"
image: my-cron-image

Listing 4.12: Custom Resource Manifest Example

Operator Pattern and Frameworks

Unlike the resources available in the API server by default, custom resources that are installed through
CRDs do not have a corresponding controller that reconciles the cluster state with the applied manifests.
Kubernetes’ operator pattern concept lets you extend the cluster’s behaviour without modifying the code
of Kubernetes itself by linking controllers to one or more custom resources. Operators are clients of the
Kubernetes API that act as controllers for a Custom Resource. Custom controllers follow the Operator
Design Pattern, listening on create/update/delete events for the custom resources of the API server and
taking the required actions that brings the cluster’s state to the desired one.

41

Chapter 4. The Kubernetes Container Orchestrator

J

Kube desired state Operator desired state
Deployment Job Custom resource Custom resource
(kind: memcached) (kind: etcd)

@ . Reconciliation :

Deployment controller Job controller Custom controller Custom controller
(memcached operator) (etcd operator)

©

©
©

Kube current state Operator current state /
Kube desired state

2
&

®
®

Deployment service, etc. Deployment service, etc.

Container Container (deploys memcached) (deploys etcd)

(app/microservices) (batch program)

Figure 4.9.1: Custom Operators Within a Kubernetes Cluster

Kubebuilder is a framework developed by the Kubernetes Special Interest Group (SIG) for building Ku-
bernetes APIs and controllers. It provides scaffolding, code generation, and integration with Kubernetes
conventions. Kubebuilder supports advanced features such as webhook validation, admission controllers,
API versioning, and custom reconciliation loops, enabling the development of scalable and production-ready
extensions. It is built on top of the Kubernetes controller-runtime library, ensuring compatibility with
native Kubernetes APIs. In this thesis, Kubebuilder was used to implement the controller manager, the appli-
cation that manages the creation and lifecycle of our custom resources, automating the process of allocating
specific resources to our Pods.

Scheduling Framework

The scheduler of Kubernetes is implemented with a pluggable architecture and consists of a set of "plugin"
APIs that are compiled directly into the scheduler, as described before. The framework enables developers
to follow the same plugin-based architecture and build their own scheduler flavors with custom scheduler
plugins that meet their specific needs.

The Scheduling Framework defines several extension points, both in the scheduling cycle (stages that corre-
spond to the decision making of the scheduler), as well as the binding cycle (stages related to the binding
of resources to the Pod). Together, a scheduling cycle and binding cycle are referred to as a "scheduling
context".

42

4.9. Frameworks for Developers

New pods gated

l:> Extensible API

Pod Scheduling Context

(\ 0 N (A
Pick a Pod from g Reserve a .
New pods go scheduling % Node for the Bind Pod to
through queue = Pod in Cache Node
PreEnqueue 2
plugins

PreFilter
PreScore
Normalize
Score
WaitOnPermit
PostBind

PreBind

{
1
1
1

PreEnqueue

Scheduling Cycle /

Binding Cycle

- N

Figure 4.9.2: Scheduling Framework Extension Points

The scheduling workflow comprises of different extension points (stages) that run in the following order:

e QueueSort: The plugin sorts Pods in the scheduling queue by providing a function to determine the
processing order. Only one QueueSort plugin can be enabled at a time.

PreFilter: The plugin pre-processes Pod information and verifies cluster or Pod requirements before
proceeding. An error returned by this plugin aborts the scheduling cycle.

Filter: The plugin filters out nodes that do not meet the Pod’s requirements. Nodes are evaluated in
sequence, and once marked infeasible, subsequent plugins are skipped for that node.

PostFilter: The plugin is executed when no feasible nodes are found, and it attempts to make the
Pod schedulable by actions such as preempting lower-priority Pods.

PreScore: The plugin prepares data needed by Score plugins to rank nodes. Errors in this phase abort
the scheduling cycle.

Score: The plugin ranks feasible nodes based on predefined metrics and scoring rules. Node scores are
combined and weighted to determine the final placement.

NormalizeScore: The plugin adjusts raw scores generated by Score plugins to ensure uniform scaling
and ranking. Errors during this phase abort the scheduling cycle.

Reserve: The plugin temporarily reserves resources on a selected node to avoid conflicts. It also
handles cleanup in case of failure through the Unreserve phase.

Permit: The plugin can approve, deny, or delay Pod binding, adding conditions that must be met
before proceeding. Delays may include timeouts, reverting to deny if not resolved.

PreBind: The plugin performs tasks required before binding, such as provisioning volumes or setting
configurations. Errors during this phase cause the Pod to return to the scheduling queue.

Bind: The plugin handles the actual binding of a Pod to a Node. It skips subsequent plugins once a
Pod is successfully bound.

PostBind: The plugin executes tasks after a Pod has been successfully bound, such as resource cleanup
or status updates. This marks the end of the binding cycle.

Users can configure the KubeSchedulerConfiguration manifest to enable or disable default, as well as
custom scheduler plugins, based on their requirements.

43

Chapter 4. The Kubernetes Container Orchestrator

Device Plugins

Device plugins in Kubernetes provide a mechanism for advertising and managing specialized hardware re-
sources, such as GPUs, FPGAs, and network adapters, to the kubelet. These plugins enable Kubernetes to
discover and allocate hardware devices in a consistent and extensible manner without requiring changes to
the core Kubernetes codebase.

Device plugins run as gRPC services on each node, registering themselves with the kubelet. They report the
available resources and monitor their health. The kubelet then makes these resources available for scheduling
by exposing them as extended resources in the Node API. Pods can request these resources using resource
requests and limits, ensuring that workloads are assigned to nodes with the required hardware capabilities.

This approach decouples hardware-specific logic from Kubernetes, making it easier to integrate new types
of devices. For example, GPU vendors like NVIDIA provide device plugins to enable seamless scheduling
and monitoring of GPU workloads. Administrators can deploy and manage these plugins as DaemonSets,
simplifying operations in large clusters.

\

; > Pod that depends
! on 1DFFT

Device Plugin Device Plugin

- alf|p

2 prile, N oAb
oFPGAr> 1DFFT °- > Loopback

fa’|$|\7 .1 -.

Kubernetes

Manifest \ / e J

Figure 4.9.3: Kubernetes Cluster with FPGA Device Plugin Installed

44

Chapter 5

Performance of High Performance
Computing Systems

5.1 Performance Degradation Factors in HPC Workloads

High-Performance Computing (HPC) systems are designed for the efficient execution of complex and demand-
ing workloads. However, various factors can lead to performance degradation, resulting in longer execution
times and reduced efficiency. Identifying and understanding these factors are critical for optimizing resource
utilization and improving overall system performance. Performance bottlenecks in HPC clusters can occur
both within the cluster multicore nodes and in the cluster interconnects. While cluster schedulers typically
consider coarse-grained resource demands such as the number of nodes, processors, physical memory, swap
space, and disk space, they often lack mechanisms to address the sensitivity of jobs to resource contention

[1]-

5.2 The Noisy Neighbor Effect

The "Noisy Neighbor Effect" is an inevitable consequence of shared infrastructure and multi-tenancy on the
Cloud. When multiple applications or virtual machines are hosted inside the same physical server, the co-
location of them may lead to increased performance degradation of the others. Furthermore, an application
might be prone to performance degradation when co-executed with other workloads. This phenomenon occurs
due to contention of limited processing resources of the physical host. One example is cache contamination,
where two or more applications simultaneously load their data into the cache, competing with each other for
the finite cache capacity of the processor. This results in applications having a "polluted" cache workspace
where the blocks fetched from memory might be replaced by blocks of other co-running processes, leading to
increased cache misses and degraded execution times.

In addition, when considering that in the cloud, applications may be activated or deactivated at arbitrary
times, an increased variation in the performance of applications is observed. It is obvious that this effect
heavily depends on the nature of the applications, e.g. if the program instructions are dominated by the
memory read/write operations or the number of floating point operations (FLOPs) in the processor, or if
there is aggressive data sharing and heavy utilization of communication primitives such as locks and barriers,
between the threads. However, CSPs should carefully schedule and select resources for co-running applications
to mitigate interference and meet the SLA requirements.

When it comes to Cloud-Native technology, where containerization and orchestration of workloads is utilized,
numerous works have been published that attempt to tackle the problem of resource optimization in multi-
tenant clusters. Research on scheduling and optimizing various workloads has been conducted across different
domains, including Deep Learning, Industrial IoT, Batch Processing, and heterogeneous applications running
within the same cluster [24] [7] [5].

45

Chapter 5. Performance of High Performance Computing Systems

5.3 Estimating Performance Bottlenecks on Multicore Architec-
tures

Slowdown in Workload Execution

Performance degradation due to resource contention can reach as high as 200% when multiple threads or
processes run concurrently on a multicore CPU [1]. This degradation stems from competition for shared
resources such as last-level caches, memory controllers, system request queues, and prefetch bandwidth.
While workload consolidation improves hardware utilization, it can also lead to performance degradation.
Severe performance degradation can negate the benefits of consolidation, violate customer QoS constraints,
cause unacceptable application slowdowns, and potentially waste energy despite power savings. Traditional
methods for estimating performance degradation, such as analytical modeling based on the performance
counter values of the utilized processor, heuristic models, and trial-and-error methods, have limitations in
effectively handling the complexities of modern CPUs.

Machine learning has emerged as a promising alternative for modeling performance degradation on multicore
systems. Machine learning excels at discovering complex relationships between various factors and filtering
out irrelevant ones. This capability makes it well-suited for analyzing the numerous performance events
available on modern CPUs to identify those correlated with sharing-induced degradation. Instead of per-
turbing workload execution or requiring prior knowledge of the applications, performance degradation can
be estimated online using performance counter values obtained from the consolidated workload. This ap-
proach allows for real-time assessment of degradation without the need for isolation or disruption of ongoing
execution.

Contentiousness and Sensitivity

Tang et al. [19] aim to characterize workloads based on the interference phenomena they impose or suffer
from by introducing two properties, Contentiousness and Sensitivity respectively.

Contentiousness refers to an application’s potential to cause performance degradation in co-running applica-
tions due to its demand for shared resources. It can be measured by quantifying the performance degradation
experienced by other applications when co-scheduled with the target application. Factors contributing to
contentiousness include high cache line requests per millisecond (LLC Lines In/ms), indicating heavy memory
bandwidth usage.

Sensitivity, on the other hand, denotes an application’s potential to suffer performance degradation due to
interference from co-running applications. It is measured by quantifying the performance degradation the
application experiences when co-scheduled with contentious applications. Sensitivity is influenced by the
application’s reliance on shared resources and its data reuse patterns.

Contentiousness and sensitivity are distinct characteristics of an application and are not strongly correlated.
An application can be highly contentious but not sensitive to contention, and vice versa. For instance,
streaming applications are considered contentious due to their high memory bandwidth usage, but they may
not be significantly affected by cache contention. However, they are highly sensitive to memory bandwidth
contention.

This distinction arises because contentiousness is directly related to the pressure an application exerts on
shared resources, while sensitivity is determined by its dependence on those resources. The degree of pressure
and reliance can vary significantly depending on the specific resource and the application’s characteristics.
For example, an application may occupy a substantial portion of the last-level cache (LLC) but not experience
a high miss rate if its working set fits within the cache. In this scenario, the application would be considered
contentious due to its high cache usage but not necessarily sensitive to contention as long as its cache needs
are met. Similarly, an application may generate many prefetch requests but derive minimal benefit from
them. This indicates high prefetcher usage but low reliance, meaning the application is contentious in terms
of prefetcher utilization but not highly sensitive to contention.

Understanding the contention characteristics of an application requires a holistic view of the entire memory
subsystem, as contention can occur in various components beyond just the LLC, including memory bandwidth,

46

5.3. Estimating Performance Bottlenecks on Multicore Architectures

prefetchers, and memory controllers.

Memory Bound and Compute Bound Applications

Hutcheson et al. describe the differences between two types of workloads, memory-bound and compute-
bound, in an attempt to analyze performance in HPC workloads [6]. Memory-bound applications are limited
by the speed at which data can be transferred to and from memory. In these situations, the processor is
often idle because it is waiting for the memory controller to fulfill its requests, thus the processor cannot use
its full computational potential. These types of applications typically involve low computational intensity,
where the number of operations performed per memory access is minimal. For example, applications that
perform simple vector operations, like copying, adding, or scalar operations on large arrays of data, are often
memory-bound because the processor can perform the operations much faster than the memory controller can
provide the data. In contrast, compute-bound applications are limited by the rate at which the processor can
perform arithmetic operations. This occurs when the processor cannot keep up with the rate at which data
is delivered by the memory subsystem, resulting in a computational bottleneck. Compute-bound problems
often involve a large number of computations on a limited amount of data. Examples of compute-bound tasks
include random number generation and dynamic programming, where extensive calculations are performed on
relatively small datasets. The distinction between these two types of applications is crucial for optimization,
as it allows programmers to identify the limiting factor in their algorithms.

In this thesis, we propose a scheduling mechanism inspired by the classification of workloads into memory-
bound and compute-bound categories. Our approach leverages offline profiling of various benchmarks to
characterize applications based on the performance bottlenecks they impose. We will co-execute different
categories of workloads and observe how our resource allocator performs compared to the default behavior
of the cluster. This profiling-driven approach seeks to improve scheduling efficiency and overall performance
in multi-tenant cloud environments.

47

Chapter 5. Performance of High Performance Computing Systems

48

Chapter 6

Maestro: Fine-Grained Scheduling and
Resource Allocation in Kubernetes

6.1 Overview

In this thesis, we introduce a framework that enables cluster administrators and future researchers to experi-
ment with fine-grained resource allocation policies, aiming to improve workload performance while optimizing
hardware utilization. We leverage Kubernetes’ extensible architecture to create a mechanism for workload
pinning and isolation across CPU and memory resources in a declarative manner. We describe the design
and implementation of our framework, including a controller manager for our custom resources, a node-level
daemon that interacts with the API server and Linux kernel to enforce manifests, and a custom scheduler
plugin that schedules Pods and applies resource bindings based on the workload type. Our framework is
designed to be extensible, enabling the implementation of more sophisticated resource allocation policies in
the future for enhanced resource optimization and cost-efficiency.

Custom Resource Definitions

We introduce two supervisory Custom Resource Definitions (CRDs) that provide detailed information about
the available CPU and memory resources on each node, as well as the resource allocations associated with
each Pod. This ensures that the cluster and the administrators are always aware of which Pods are running
on specific CPUs and memory nodes, as well as the exclusivity of their resource allocations. Furthermore,
if workloads are observed to be throttled or suboptimally placed, administrators can dynamically reallocate
them to other resources by modifying the applied manifests.

NodeCPUTopology

A NodeCPUTopology custom resource describes the available CPUs and NUMA nodes of each cluster node.
This includes logical cores, physical cores, sockets, as well as NUMA architecture information. Listing 6.1
shows the NodeCPUTopology of a node in our cluster. It describes a node with four logical cores and two
physical cores, contained in one NUMA node.

NodeCPUTopology resources of all the nodes in our cluster are automatically created on the startup of the
controller manager we developed. Our custom scheduler is aware of all the available CPU resources of
each node by querying the API server, and is able to make resource binding decisions by consuming the
PodCPUBinding API, which we describe in the following section.

apiVersion: cslab.ece.ntua.gr/vialphal
kind: NodeCPUTopology

3 metadata:

labels:
node-role.kubernetes.io/control-plane: ""
name: node-1-cputopology

49

8

Chapter 6. Maestro

: Fine-Grained Scheduling and Resource Allocation in Kubernetes

spec:

nodeName :

topology:
cpus:

numaNodes
llOll .
cpus:

1
2
3
status:
internallIP:

resourceStatus:

node -1

100.92.105.6
Fresh

PodCPUBinding

Listing 6.1: NodeCPUTopology Manifest Sample

The PodCPUBinding is a custom resource that describes the CPU and memory resources allocated to a specific
Pod that’s running within the cluster. Listing 6.2 shows a PodCPUBinding manifest that can be applied both
by the cluster’s administrator, as well as an application that is able to make resource allocation decisions.

apiVersion:

kind:

metadata:
finalizers:

cslab.ece.ntua.gr/vialphal
PodCPUBinding

- cslab.ece.ntua.gr/pod-cpu-binding-finalizer

name :
namespace:
spec:
cpuSet:
cpulD:
cpulD:
cpulD:
cpulD:

>N O

6

exclusivenessLevel:

benchmarks

streamcluster -4-pcb

NUMA

podName: streamcluster -4
16 status:
17 nodeName: node-4

resourceStatus:

The field exclusivenessLevel allows users to specify different levels of resource isolation for the requested

Applied

cores and memory nodes.

e None — The Pod does not hold exclusive access to any of the requested resources.

Listing 6.2: PodCPUBinding Manifest Sample

50

6.2. Application Components

e CPU, Core, Socket, NUMA — The Pod exclusively reserves the specified resource type, ensuring that
any other Pods requesting resources at the same exclusiveness level are rejected by the controller
manager.

This feature proves particularly effective for latency-critical workloads, which often benefit significantly from
running in isolation on dedicated resources.

As we will describe in depth in a later section, the controller manager of our mechanism is the entry-point of
every applied CPU binding. The PodCPUBinding controller is responsible for validating the custom resource
and communicating with the Pod running the node via a gRPC service to command the resource allocation
that was manifested.

6.2 Application Components

Kubernetes Cluster
—>» [uns

..... » consumes @ maestro-system
API Server

0 2 o

NodeCPUTopology PodCPUBInding
LY

Maestro Controller Manager &aesltrodsizhedulslr .
orkloadAware Plugin

Maestro Daemon
CPUPInning, Topology gRPC Services

-----------------------------)

Y
A

node-1 node-2 node-3 node-4

Figure 6.2.1: Maestro Architecture

o1

Chapter 6. Maestro: Fine-Grained Scheduling and Resource Allocation in Kubernetes

Figure 6.2.1 displays the different components of Maestro, and how they communicate with each other. The
three main components, the controller manager, the daemon and the scheduler consume the cluster’s API
server to remain aware of all the custom resources that have been applied. Additionally, the DaemonSet’s
Pods are run on every node in the cluster, and the controller manager consumes the gRPC services that they
expose in order to communicate with the Linux kernel of each node.

6.2.1 Controller Manager

The Controller Manager, developed in Go with the Kubebuilder framework, is an application that follows
the same principles as the kube-controller-manager, for our Custom Resource Definitions. The controller
manager packages both NodeCPUTopology and PodCPUBinding controllers. When a custom resource cre-
ate/update/delete event occurs on the API server, the corresponding controller is triggered and attempts to
fulfill the applied manifest’s request, bringing the cluster’s current state to the desired one.

A key functionality of the controller manager is validating and processing PodCPUBinding manifests. When
a manifest is applied or updated, the controller manager validates it against the NodeCPUTopology of the
node and its currently available resources. If the manifest contains invalid configurations, the controller
manager prevents the resource binding from being applied. It also generates events that users can inspect
using commands such as kubectl describe or kubectl get events.

$ kubectl describe pcb

Name : streamcluster -4-pcb
3 Namespace: benchmarks
Labels: <none>
Annotations: <none>
API Version: «cslab.ece.ntua.gr/vlialphal
Kind: PodCPUBinding
Metadata:

Creation Timestamp: 2024-12-27T19:18:55Z
Finalizers:
cslab.ece.ntua.gr/pod-cpu-binding-finalizer

Generation: 1
Resource Version: 18805247
UID: 2b8821a2-4d34-4ccc-8251-e7bfb0545da0l
Spec:
Cpu Set:
Cpu ID: 0
Cpu ID: 2
Cpu ID: 4
Cpu ID: 6
Exclusiveness Level: Core
Pod Name: streamcluster -4
Status:
Node Name: node -4
Resource Status: Applied
Events:
Type Reason Age From Message

Normal Validated 13s podcpubinding -controller CPU binding is validated
Normal Applied 8s podcpubinding-controller Applied CPUSet [0 2 4 6], MemSet [O]

Listing 6.3: Successful PodCPUBinding

$ kubectl describe pcb

Name : streamcluster -4-pcb
3 Namespace: benchmarks
Labels: <none>
Annotations: <none>
API Version: «cslab.ece.ntua.gr/vlialphal
Kind: PodCPUBinding
Metadata:

Creation Timestamp: 2024-12-27T19:18:55Z

Finalizers:
cslab.ece.ntua.gr/pod-cpu-binding-finalizer

Generation: 3

Resource Version: 18805528

52

6.2. Application Components

UID: 2b8821a2-4d34-4ccc-8251-e7bfb0545da0
5 Spec:
Cpu Set:
Cpu ID: 0
Cpu ID: 2
Cpu ID: 4
Cpu ID: 26
Exclusiveness Level: Core
Pod Name: streamcluster -4
Status:
Node Name: node -4
Resource Status: InvalidCPUSet
Events:
Type Reason Age From Message
Warning InvalidCPUSet 1s podcpubinding-controller CPUs [0 2 4 26]

do not exist in node node-4-cputopology

Listing 6.4: Failed PodCPUBinding

Additionally, when a PodCPUBinding is created, the Finalizer cslab.ece.ntua.gr/pod-cpu-binding-finalizer

is attached to it. This ensures that when a resource is deleted, the finalizer attempts to release the resources
that were assigned to the Pod.

6.2.2 Daemon

The Daemon is a node-level application deployed as a DaemonSet in the cluster. It exposes two gRPC
services to interact with the controller manager. The Topology service allows the controller manager to
gather information about the underlying CPU and memory architecture of each node, while the CPUPinning
service enforces specific CPU and memory resource allocations for Pods by modifying the host’s cgroups.
The application also periodically reconciles shared resources for non-bound Pods, ensuring consistency and
preventing resource drift, with the reconciliation interval configurable via the DaemonSet arguments.

When an ApplyPinning request is made from the controller manager, the daemon is responsible for modifying
the following cgroups values, based on the CPU pinning arguments and the Pod’s resource requests and
limits:

e cpuset.cpus — Specifies the list of CPUs assigned to the Pod, as defined in the manifest.
e cpuset.mems — The list of memory nodes that the assigned CPUs belong in.

e cpu.cfs_quota_us — Sets a hard limit on the CPU time (in microseconds) that the Pod can use within
a scheduling period.

e cpu.shares — Specifies the relative weight for CPU allocation. Pods with higher shares get more CPU
time when resources are contended.

The GetTopology request returns a structured object with CPU information of each node. Internally, it
executes the 1scpu command and returns CPUs arranged by Socket or by NUMA node. When creating a
NodeCPUTopology resource on the API server, the NodeCPUTopology controller queries the specified node
to populate the resource with CPU-related information and store it on the server. This enabled other API
consumers, such as the custom scheduler to be aware of each node’s underlying CPU architecture and make
more fine-grained scheduling and resource binding decisions.

6.2.3 Scheduler

The Scheduling Framework allows developers to create and bundle custom scheduler plugins tailored to spe-
cific needs. Developers can implement plugins at any stage of the scheduling and binding cycles, introducing
custom logic to influence scheduling decisions. Leveraging this framework, we developed the Workload Aware
plugin, which integrates custom resources to enable fine-grained scheduling and resource binding.

Our scheduler plugin requires the Pod to be scheduled to contain a "Workload Type" label. The supported
workload type labels are the following:

53

Chapter 6. Maestro: Fine-Grained Scheduling and Resource Allocation in Kubernetes

e cslab.ece.ntua.gr/workload-type: cpu-bound
Workloads with performance that depends on the available CPU resources.
e cslab.ece.ntua.gr/workload-type: memory-bound
Workloads with performance that depends on the available memory bandwidth.
e cslab.ece.ntua.gr/workload-type: io-bound
Workloads that have threads with high IO wait time.
e cslab.ece.ntua.gr/workload-type: best-effort
Workloads with very loose performance requirements.

The plugin decides on how to bind CPU resources to the Pods of the above types based on the following
schema:

e MemoryBound: Threads are placed on different memory nodes (sockets).

e CPUBound: Threads are placed on different, non-utilized cores, on the same socket.

e IOBound: Threads are placed on the same physical core, or more cores are utilized if needed.
e BestEffort: Every thread is placed on the same logical core.

The WorkloadAware plugin can be configured to employ different scoring policies and feature flags, making
its scheduling decisions even more configurable.

The two complementary scoring policies that are supported are the following;:
e MaximumUtilization: The plugin tries to maximize the utilization of the resources.
e Balanced: The plugin places the Pods in a balanced way across the cluster.
The extra supported features are the following:
e PhysicalCores: Use only physical cores for allocation (Default exclusivenessLevel value is Core).

¢ MemoryBoundExclusiveSockets: Allocate memory nodes (sockets) exclusively for MemoryBound
workloads (Default exclusivenessLevel value for MemoryBound workloads is Socket).

e BestEffortSharedCPUs: Allow BestEffort workloads to share logical cores.
The Workload Aware plugin implements the following scheduling cycle stages:

e PreFilter: The plugin gathers the custom resources from the API server and initializes the state of
the cycle.

e Filter: The plugin filters out all the nodes that cannot meet the Pod’s resource requirements. Based
on the workload type and the enabled features, the filter step might take into account different resource
levels (CPU, Core Socket, NUMA) when filtering out unfeasible nodes.

e Score: The plugin scores each feasible node based on its current utilization and the selected policy
(Balanced or MaximumUtilization).

e Bind: The plugin discovers CPU resources that meet the Pod’s requirements and binds the Pod to the
nominated node and the decided resources (CPUs, memory nodes).

6.3 WorkloadAware Scheduling Algorithm

In this section we will describe the scheduling algorithm the Workload Aware plugin implements, and how
different scoring policies and enabled features influence its decisions.

Let:

e N be the total number of nodes.

54

6.3. Workload Aware Scheduling Algorithm

e RunningProgramThreads,; denote the number of currently running program threads on node 3.
e LogicalCores; represent the number of logical cores on node i.
e Sockets; represent the number of sockets on node i.

e AllocatableSockets; represent the number of sockets that can accommodate the Pod’s requirements on
node 1.

e AllocatableCores; represent the number of cores that can accommodate the Pod’s requirements on node
i.

e AllocatableCPUs; represent the number of CPUs that can accommodate the Pod’s requirements on
node 1.

MemoryBound Workload

For MemoryBound workloads, the score is calculated as:

AllocatableSockets;
score =
Sockets;

X 100>—‘ + AllocatableSockets;

Where: N
AllocatableSockets; = Z AllocatableSocket; for node ¢,

Jj=1
n
Sockets; = Z Sockets; for node 1.

j=1

CPUBound Workload

For CPUBound workloads, the score is calculated as:

{ (AllocatableCoresi
score =

X 1()0)—‘ + AllocatableCores;
Cores;

Where:

AllocatableCores; = Z AllocatableCore; for node 4,
j=1

n
Cores; = E Core; for node i.

j=1

IO0OBound Workload

For IOBound workloads, the score is calculated as:

[<AllocatableCorcsi
score =

X 100>—‘ + AllocatableCores;
Cores;

Where: .
AllocatableCores; = Z AllocatableCore; for node 4,

j=1

n
Cores; = E Core; for node i.

j=1

55

Chapter 6. Maestro: Fine-Grained Scheduling and Resource Allocation in Kubernetes

BestEffort Workload

For BestEffort workloads, the score is calculated based on whether the feature PhysicalCores is enabled or
not:

o If the feature PhysicalCores is enabled:

[(AllocatableCores;
score =

X 100>—‘ + AllocatableCores;
Cores;

e If the feature PhysicalCores is not enabled:

{ < AllocatableCPUs;
score =

CDUs, X 100)—‘ + AllocatableCPUs;

Where:

n
AllocatableCores; = Z AllocatableCore; for node 4,

j=1

n
Cores; = E Core; for node ¢,

Jj=1

AllocatableCPUs; = Z AllocatableCPU; for node ¢,
CPUs; = Z CPU; for node i.

Policy Adjustment

Since the score is a metric of capacity, if we want to maximize utilization, we should favor nodes with higher
scores. Thus, after calculating the initial score based on workload type, the score may be adjusted based on
the configured policy (args.Policy):

e For MaximumUtilization:

score = math.MaxInt64 — score

e For Balanced, no further action is taken on the score.

Node and Resource Binding of Pod

After deciding on which node the Pod should be scheduled, the WorkloadAware plugin also overrides the
Bind step of the scheduling process. In this phase, the scheduler:

e Binds the Pod to the nominated Node.

e Calculates the Pod resources based on the node’s available resources and creates the PodCPUBinding
object of the scheduled Pod which contains the selected resources, as well as the exclusiveness level,
based on the workload type.

6.4 Deployment and Configuration

The deployment of the mechanisms consists of two stages:
1. Apply the Custom Resource Definitions that were generated by the Kubebuilder framework

2. Modify the DaemonSet and the KubeSchedulerConfiguration manifests to match the desired configu-
ration

56

6.4. Deployment and Configuration

3. Apply the Controller Manager Deployment, the Maestro DaemonSet and the Maestro Scheduler De-

ployment
1 args:
2 - '--node-name=$ (NODE_NAME) '
3 - '--container-runtime=containerd’ # containerd, docker, kind
| - '--cgroups-path=/cgroup'
5 - '--cgroups-driver=systemd' # systemd, cgroupfs

6 - '--reconcile-period=156s"'

7 - '--verbosity=3'

Listing 6.5: Maestro DaemonSet Arguments

1 apiVersion: kubescheduler.config.k8s.io/vl
> kind: KubeSchedulerConfiguration

leaderElection:
4 leaderElect: false
5 profiles:
6 - schedulerName: maestro
7 plugins:
8 preFilter:
9 enabled:
10 - name: WorkloadAware
11 filter:
12 enabled:
13 - name: TaintToleration # Enabled default plugin
14 - name: WorkloadAware
15 score:
16 enabled:
17 - name: WorkloadAware
18 bind:
19 enabled:
20 - name: WorkloadAware
21 disabled:
22 - name: 'x'
23 pluginConfig:
24 - name: WorkloadAware
25 args:
26 policy: MaximumUtilization # MaximumUtilization, Balanced
27 features:
28 - PhysicalCores
29 - BestEffortSharedCPUs
30 # - MemoryBoundExclusiveSockets

Listing 6.6: KubeSchedulerConfiguration for the Maestro Scheduler

o7

Chapter 6. Maestro: Fine-Grained Scheduling and Resource Allocation in Kubernetes

58

Chapter 7

Experimental Setup and Motivational
Analysis

7.1 Baseline Hardware and Virtual Machine Configuration

Our experimental setup consists of four virtual machines running Ubuntu Server 18.04 Bionic Beaver, dis-
tributed across two host machines within the lab’s infrastructure. On these machines, we utilized kubeadm
to setup a Kubernetes v1.31.0 cluster. To support benchmarking scenarios involving co-running applications
with numerous threads, we also deployed a more powerful, dual-socket worker on a second host machine,
termi9.

Our termil0 host consists of 2 sockets, each one of them containing 6 cores with enabled hyperthreading. We
reserve 4 cores (8 vCPUS) from socket-0 for the worker node-2 and 4 cores (8 vCPUS) from socket-1 for the
worker node-3. The CPU pinnings are configured in a way such that a host’s physical core is mapped to a
physical core of a virtual machine. The rest of the termil0 domains (node-1, nfs) are mapped to the rest of
the available cores in a similar fashion.

To conduct benchmarks for workloads that heavily utilize memory resources, possibly on more than one
NUMA node, we extended our cluster’s workers to include a Kubernetes node with 2 memory nodes. On the
host machine termi9, we spawned a virtual machine node-4 with 5 cores (10 vCPUS) from socket-0 and 5
cores (10 vCPUS) from socket-1. The memory of the virtual machine is distributed across the two memory
nodes of the host. The CPU pinnings are configured in a way such that a host’s physical core is mapped to
a physical core of a virtual machine. This configuration will allow us to run memory-bound workloads that
require the use of more than one CPU and memory node.

Table 7.1: Virtual Machine Configurations

Host CPU Model VM Name | Sockets | Cores/Socket | vCPUs | Memory (GB) | NUMA Nodes | OS
node-1 1 2 4 16 1 Ubuntu Server 18.04
termilO | Intel Xeon E5645 node-2 1 4 8 16 1 Ubuntu Server 18.04
node-3 1 4 8 16 1 Ubuntu Server 18.04
nfs 1 2 4 8 1 Ubuntu Server 18.04
termi9 Intel Xeon E5645 node-4 2 10 20 64 2 Ubuntu Server 18.04

7.2 Collecting and Monitoring System Metrics

7.2.1 Intel® Performance Counter Monitor

We deployed Intel’s Performance Counter Monitor (PCM) on each of the host machines, enabling us to
retrieve CPU-related metrics such as DRAM bandwidth, instructions per cycle, L2 and L3 cache misses per
instruction, and other relevant statistics. Intel PCM Sensor Server is a daemon that’s running inside each

59

Chapter 7. Experimental Setup and Motivational Analysis

host machine and retrieves performance counters from the hypervisor’s hardware. It also exposes an HTTP
endpoint that can be consumed by a timeseries database like Prometheus.

7.2.2 Prometheus, Grafana, Node Exporter, cAdvisor

To enable real-time monitoring and visualization of system metrics, we integrated Prometheus, Grafana,
Node Exporter, and cAdvisor into our infrastructure.

Prometheus is employed as the primary time-series database, responsible for collecting and storing met-
rics from various sources. It queries performance data exposed by Intel PCM’s HT'TP endpoint and other
exporters, enabling centralized monitoring and alerting.

Node Exporter is deployed on each host machine to gather detailed system-level metrics, including CPU
usage, memory utilization, disk I/O, and network activity. These metrics provide insights into the overall
health and performance of the virtual machines and host systems.

cAdvisor (Container Advisor) is used to monitor resource usage and performance statistics of containers
running on the cluster’s nodes. It provides visibility into CPU, memory, filesystem, and network metrics at
the container level, making it particularly useful for containerized workloads.

Finally, Grafana is used as the visualization layer, offering interactive dashboards that allow us to analyze
the collected data and monitor trends over time. Grafana seamlessly integrates with Prometheus, enabling
us to build custom dashboards for visualizing system and application performance metrics.

7.3 Benchmark Suites
The CloudSuite Benchmark Suite

CloudSuite is a collection of benchmarks designed to evaluate the performance of cloud systems. They
use software commonly found in cloud environments to mimic realistic workloads. For instance, the Data
Serving benchmark evaluates the performance of the NoSQL database, Cassandra, by populating it with a
10GB table of 1KB records and then subjecting it to different loads. Users can adjust the number of reader
and writer threads used by Cassandra. The Web Serving benchmark uses MariaDB, Memcached, and the
social networking engine Elgg to emulate a web server handling dynamic and static content. Users can scale
this benchmark by modifying the number of users that log in to the server and request pages. The Media
Streaming benchmark utilizes Nginx as a streaming server to host videos with resolutions ranging from 240p
to 720p. A client program requests videos at a specified rate, putting stress on the server. Users can control
the encryption used for requests and define session lists for the client. The Graph Analytics benchmark,
leveraging the Spark framework and its GraphX library, performs graph analysis on a large dataset derived
from Twitter. It supports algorithms like PageRank, Connected Components, and Triangle Count, with the
latter requiring a substantial amount of memory. Finally, the In-Memory Analytics benchmark uses Apache
Spark and MLIib to evaluate the performance of a collaborative filtering algorithm. This benchmark relies
on the MovieLens dataset, which contains user-movie ratings. This setup allows for the measurement of the
time taken to generate movie recommendations, underlining the importance of sufficient memory allocation
for in-memory execution.

The PARSEC Benchmark Suite

PARSEC is specifically designed for evaluating the performance and characteristics of chip multiprocessors
(CMPs). It comprises a diverse set of applications and kernels chosen from a wide range of application
domains, reflecting the shift in computing towards multi-core processors. PARSEC includes benchmarks
like blackscholes, which uses the Black-Scholes PDE to calculate prices for a portfolio of European options;
bodytrack, a computer vision application that tracks human body pose from multiple camera inputs; canneal,
which minimizes routing cost in chip design using simulated annealing; dedup, a data compression kernel
that employs deduplication techniques to compress data streams; facesim, an application that simulates facial
animations based on muscle activation inputs; ferret, which performs content-based similarity searches on
image databases; fluidanimate, an application simulating fluid dynamics for animation purposes; freqmine,

60

7.4. Workload Classification

which employs the FP-growth algorithm to mine frequent itemsets from transaction databases; streamcluster,
an online clustering benchmark that processes streaming data points; swaptions, a financial application that
prices swaptions using the HJM framework and Monte Carlo simulation; vips, an image processing applica-
tion that performs a sequence of operations on images; and x264, a video encoder that uses the H.264/AVC
standard to compress video streams. These applications exhibit different parallelization strategies, memory
access patterns, and communication behavior, providing a comprehensive evaluation platform for CMP archi-
tectures. They use large datasets and are designed to stress the memory hierarchy, interconnection networks,
and synchronization mechanisms of CMPs. The use of state-of-the-art algorithms and techniques ensures
that PARSEC reflects the evolving nature of computing workloads in the multi-core era.

The STREAM Benchmark

STREAM is a benchmark focused on measuring the sustainable memory bandwidth of a computer system.
This benchmark utilizes four vector kernels: Copy, Scale, Sum, and Triad. These kernels operate on large
arrays of data and avoid data reuse in the cache or registers, ensuring that the benchmark remains memory-
bound. The key metric in STREAM is the sustainable bandwidth, expressed in MB/s. This metric is
calculated based on the time taken to complete the kernels and provides valuable insights into the performance
of the memory subsystem. STREAM’s utility lies in its ability to stress the memory system and expose
performance bottlenecks that may not be apparent in benchmarks that are less memory-intensive.

7.4 Workload Classification

7.4.1 Packed-Friendly

Packed-friendly applications can optimize performance by keeping threads localized within a single NUMA
node, minimizing inter-node communication overhead. Packed-friendly workloads are limited by the rate
at which the processor can perform arithmetic operations. This occurs when the processor cannot keep
up with the data delivered by memory, resulting in a computational bottleneck. These applications often
involve a large amount of computation on a limited field of data. Examples include Monte Carlo simulations
for random number generation and dynamic programming. In packed-friendly applications, increasing the
number of arithmetic operations will cause performance to decrease until the program is completely limited
by the computational speed of the processor, regardless of problem size. The benefit of cache memory is
reduced as computational intensity increases, until a main memory call takes less time than processing the
data.

7.4.2 Spread-Friendly

Spread-friendly workloads, on the other hand, prefer their threads to be distributed across many NUMA
nodes. They are applications that are limited primarily by the speed at which data can be transferred to and
from memory, a factor that could be mitigated if the program utilized more than one memory node. In these
situations, the processor is often idle because it is waiting for the memory controller to fulfill its requests,
which is slower than the processor’s computational speed. This commonly occurs in applications with low
computational intensity, where the number of operations performed per memory access is low. An example
of a spread-friendly application would be one that performs simple vector operations on large arrays. The
performance of these applications is highly dependent on memory bandwidth. Factors such as the size of the
data relative to the cache size and the pattern of memory access (sequential vs. random) can significantly
affect whether an application is spread-friendly. When data is accessed randomly, the system is unable to
properly utilize the CPU cache, resulting in a much greater percentage of calls to main memory, and thus, a
lower effective bandwidth.

In 7.4.1 we observe how allocating the threads of Spread-Friendly workloads to different sockets impacts the
performance metrics of the application. On the first execution, both sockets of the worker node are utilized,
which leads to significantly less consumed bandwidth, enabling other processes running on the same NUMA
node to have faster access to their memory addresses. Furthermore, the Instructions Per Cycle (IPC) seem
to double since on the second run, only Socket 0’s cores are enabled.

61

Chapter 7. Experimental Setup and Motivational Analysis

7.4.3 Isolation-Friendly

Isolation-friendly workloads perform best when executed independently, avoiding interference from other
threads or processes. These applications benefit from having dedicated resources, such as CPU cores, cache,
and memory bandwidth, ensuring consistent performance without contention. Unlike spread-friendly or
packed-friendly workloads, isolation-friendly applications do not exhibit significant performance gains when
optimized for NUMA configurations. Instead, their performance is primarily influenced by minimizing re-
source sharing and contention rather than optimizing data locality or memory access patterns. Examples
include latency-sensitive tasks like encryption algorithms, real-time processing systems, and single-threaded
workloads, where predictability and resource exclusivity outweigh the advantages of NUMA-aware placement
strategies.

7.4.4 Agnostic

Agnostic workloads demonstrate negligible performance differences across NUMA configurations, whether
deployed as packed, spread, or in their default (vanilla) configuration. These applications exhibit balanced
computational and memory access patterns that neither saturate processing power nor memory bandwidth,
making them resilient to variations in resource placement. Agnostic workloads often include parallel tasks,
such as batch data processing and rendering pipelines, where independent units of work execute with minimal
synchronization overhead. Due to their flexibility, these workloads are ideal for environments with dynamic
resource allocation or cloud-based infrastructures where NUMA-awareness may not be a primary optimization
concern.

Classification Algorithm
Let:
e W be the currently examined workload

e Ty be the average vanilla execution time for workload W

Tp be the average execution time for W considered as Packed-Friendly

Ts be the average execution time for W considered as Spread-Friendly

The slowdown of an application is given by the following equation:

g Execution Time under Current Configuration (7.4.1)
B Baseline Execution Time o

If we normalize all the execution times of the workload by dividing them with the vanilla execution time Ty,
we obtain the following indicators:

[] Sv =]_

e Sp= %, the slowdown of W when considered as Packed-Friendly

e Sg = 15 the slowdown of W when considered as Spread-Friendly
Tv

We propose a profiling algorithm that leverages these metrics to classify the workload in one of the two
categories. If there isn’t any significant difference between the two metrics, we should decide whether the
workload performs better with the isolation provided by our allocator (Isolation-Friendly) or if it is agnostic
to any kind of isolation policy.

62

7.4. Workload Classification

Algorithm 1: Classify Workload Based on Slowdown Values

Require: s,: Slowdown in Packed-friendly configuration, ss: Slowdown in Spread-friendly configuration,

e: Decision threshold

Ensure: Workload classification (PackedFriendly, SpreadFriendly, IsolationFriendly, Agnostic)

1:

36:
37:

8y + 1.0 {Slowdown in vanilla configuration}
Sp < min(s,, s5) {Best configuration slowdown}
Sw < max(sp, ss) {Worst configuration slowdown}
tag < PackedFriendly if s, = s, else SpreadFriendly
if s, — sp > e then

{Significant difference between configurations}

if |s, — sp| < e then

return tag
else

return tag
end if

: else

{Small difference between configurations}
if s, — sp > e then
{Best configuration significantly better than vanilla}
if s, — sy > e then
{Also worst configuration significantly better than vanilla}

return IsolationFriendly
else
{Best configuration significantly outperforms vanilla}

return tag
end if
else
{Best configuration similar to vanilla}
if |s, — sw| < e then

return Agnostic
else

return Vanilla {Fallback, should not occur}
end if
end if
end if

In the evaluation chapter, we will analyze the performance characteristics of the workloads outlined in Table
7.2, following the classification with our decision tree for the collected execution times. Following the profiling
of our applications, we will employ our custom scheduling and resource allocation mechanism to assign
resources based on the inferred tags. We will demonstrate how our mechanism achieves better slowdown
values by utilizing the offline classification schema we propose.

63

Chapter 7. Experimental Setup and Motivational Analysis

Table 7.2: Benchmark Table Grouped by Suite

Suite Benchmark Internal Name | Summary Algorithm Dataset Comments

Graph Analytics ga Performs graph analytics on | PageRank, A graph dataset gen- | Requires significant

large-scale datasets wusing | Connected erated from Twitter. | memory, especially for
CloudSuite the Spark framework and its | Components, Triangle Count, and
GraphX library. Triangle supports multi-node

Count deployment.

In-Memory Analytics | in-mem Evaluates the performance | Alternating User-movie ratings | Measures the time to
of an in-memory collabora- | Least Squares | datasets provided by | compute movie recom-
tive filtering algorithm using | (ALS) Movielens. mendations, requires suf-
Apache Spark and MLIib. ficient memory alloca-

tion for in-memory exe-
cution.
STREAM STREAM stream Measures sustainable mem- | Copy, Scale, | Array of double with | Uses long vector opera-
ory bandwidth. Sum, Triad its size configured on | tions to eliminate data
compile time. Set to | reuse.
256M elements.

canneal canneal Minimizes routing cost in | Cache-aware Netlist representing | Employs a lock-free

chip design. simulated the chip design. synchronization strategy
annealing based on data race
recovery.

fluidanimate fluidanimate Simulates incompressible | Smoothed Particle data repre- | Emphasizes stability,

PARSEC fluid dynamics. Particle .Ev? senting the fluid. accuracy, ms.a m@m.mmq
drodynamics uses Verlet integration
(SPH) for particle updates.
freqmine fregmine Mines frequent itemsets | Array-based Transaction Parallelized with
from a transaction database. | FP-growth database, such | OpenMP, suscepti-
as click streams or | ble to false sharing.
web documents.

streamcluster streamcluster Performs online clustering | K-means clus- | Stream of data points | Working set size is user-

on streaming data points. tering with varying dimen- | definable, transitions
sionality. from memory-bound to
computationally inten-

sive.

ferret ferret Performs content-based sim- | Multi-probe Image database with | Uses a pipeline model,

ilarity search of feature-rich
data, configured for image
similarity search.

Locality Sen-
sitive Hashing
(LSH), Earth
Mover’s Dis-
tance (EMD)

varying number of
images and queries.

working set size is dom-
inated by the image
database size, considered
unbounded.

64

7.4. Workload Classification

Instructions/Cycle
> 9

°
m

°
>

0.007

0.006

0.005

0.004

0.003

L2 Misses/Instruction

0.002

0.001

0.000

0.0008

0.0006

0.0004

L3 Misses/Instruction

0.0002

Instructions Per Cycle

— Socket 0
— Socket 1

0 10 20 30 20 50 60
Time (Seconds)

5
3

(a) Instructions Per Cycle

L2 Cache Misses Per Instruction

— Socket 0
— Socket 1

=

300 400 500
Time (Seconds)

(c) L2 Cache Misses Per Instruction

L3 Cache Misses Per Instruction

— Socket0
— Socket1

o

10 20 0 20 50 60 70

3
Time (Seconds)

(e) L3 Cache Misses Per Instruction

L2 Cache Hit Ratio

60 — Socket 0
— Socket 1
55
g 50
2
i
f a5
£
h
40
35
30
0 10 20 30 40 50 60 70
Time (Seconds)
(b) L2 Cache Hit Ratio
L3 Cache Hit Ratio
%0
_8s
g
2
&
= 80
£
=
ul
75
—— Socket 0
70 — socket 1
0 10 20 3 0 50 60 70
Time (Seconds)
(d) L3 Cache Hit Ratio
Memory Bandwidth (DRAM)
17501 socket 0 DRAM Read
Socket 1 DRAM Read
== Socket 0 DRAM Write
15000 ___ Socket 1 DRAM Write
@ 1250
2
=
=
£ 1000
)
3
2
g 750
>
5
£ s00
=
250
0

30 20 50 60 70
Time (Seconds)

(f) Memory Bandwidth (DRAM)

Figure 7.4.1: Performance metrics of two consecutive executions of in-memory-analytics with two

threads. On the first run, the threads are distributed to the sockets, reducing the memory bandwidth

needed and doubling the instructions executed per cycle.

65

Chapter 7. Experimental Setup and Motivational Analysis

66

Chapter 8

Evaluation

8.1 Classification of SpreadFriendly - PackedFriendly Workloads

In this section, we will attempt to classify our test benchmarks into two of the main categories of our
allocator mechanism, PackedFriendly and SpreadFriendly. Table 8.1 presents the slowdown values of all the
tested benchmarks, and the classification tag that our algorithm decided.

Benchmark Packed-Friendly | Spread-Friendly | Classification
canneal-2 0.78 1.59 Packed Friendly
canneal-4 0.83 1.04 Packed Friendly
canneal-8 0.90 0.96 Packed Friendly
ferret-2 0.87 0.96 Packed Friendly
ferret-4 0.87 0.92 Packed Friendly
ferret-8 1.09 0.84 Spread Friendly
fluidanimate-2 0.80 0.98 Packed Friendly
fluidanimate-4 0.98 1.00 Agnostic

fluidanimate-8 1.15 0.88 Spread Friendly
freqmine-2 0.88 0.94 Packed Friendly
freqmine-4 0.96 0.95 Agnostic

freqmine-8 1.35 1.00 Spread Friendly
ga-2 0.98 0.98 Agnostic

ga-4 1.01 0.98 Agnostic

ga-8 1.68 0.91 Spread Friendly
in-mem-2 0.98 1.02 Agnostic

in-mem-4 0.98 1.01 Agnostic

in-mem-8 1.31 0.96 Spread Friendly
stream-2 0.83 0.94 Packed Friendly
stream-4 1.44 0.94 Spread Friendly
stream-8 1.16 0.97 Spread Friendly
streamcluster-2 0.79 0.98 Packed Friendly
streamcluster-4 0.86 0.98 Packed Friendly
streamcluster-8 0.91 0.85 Spread Friendly

Table 8.1: Benchmark Slowdown and Classification

From the classification, we can conclude that most PARSEC benchmarks turned out to be PackedFriendly,
except the eight-threaded ones. This might occur because our worker consists of two sockets with five
physical cores each. When executed under PackedFriendly configuration, the benchmark threads are placed
on already allocated physical cores, within the same socket, introducing self-interference. This resulted in
worse execution times than the SpreadFriendly configuration. This behaviour is proof that the profiling of

67

Chapter 8. Evaluation

a workload is legitimate on a specific hardware configuration and it might differ when being executed on
other hardware. The execution duration might depend on hardware-specific attributes such as cache line
size, available NUMA nodes and physical cores, as well as other factors.

8.2 Single Node Experiment
8.2.1 Workload Collocation of Heterogeneously Labeled Applications

We conducted co-execution scenarios combining benchmarks of different suites and classification tags. While
the Maestro scheduler would be able to make even more performant and cost-effective solutions on a multi-
node environment, we gave emphasis on a single-node experimental setup. This approach was chosen be-
cause it represents the scenario which is most likely to exhibit the greatest performance degradation. All
co-executions were deployed on node-4 of our cluster to ensure that even benchmarks with high CPU require-
ments could fit within a single host.

For each co-execution scenario, we evaluated four configurations: the default Kubernetes behavior (Vanilla),
both benchmarks labeled as PackedFriendly, both benchmarks labeled as SpreadFriendly, and scheduling
with Maestro. To assess performance, we measured the slowdown introduced relative to the isolated vanilla
execution time of each application, calculated as:

Tco—executed
S = —-———————

ﬂsolated, vanilla

We conducted multiple runs for each test and computed the average slowdown for every co-running bench-
mark across all four configurations. The results demonstrate that Maestro consistently outperforms the vanilla
configuration, effectively reducing slowdown in most cases. The bar plots below illustrate co-executions of
two benchmarks with different number of program threads (e.g., stream-4 represents the STREAM bench-
mark with four threads) and the average slowdown they impose running alongside eachother, when running
concurrently under different allocation strategies.

PackedFriendly vs. PackedFriendly

W vanila M PackedFriendly SpreadFriendly [Maestro W vanila W PackedFriendly SpreadFriendly [Maestro

1,50 150

0,50 050

0,00 000

canneal-2 ferret-4 canneal-4 stream-2

Figure 8.2.1: PackedFriendly vs. PackedFriendly Figure 8.2.2: PackedFriendly vs. PackedFriendly
(1) (2)

Maestro outperforms vanilla Kubernetes, reducing co-execution slowdown by 16% and 10%. When Packed-
Friendly workloads are considered SpreadFriendly, their performance is degraded even more where the co-
execution slowdown increases by 32% and 36% respectively. This highlights that misclassifying Packed-
Friendly workloads into a different category can result in resource contention, causing longer execution times
and reduced performance.

68

8.2. Single Node Experiment

SpreadFriendly vs. SpreadFriendly

M vanilla W PackedFriendly SpreadFriendly M Maestro M vanilla W PackedFriendly SpreadFriendly B Maestro
2,00 2,00

1,00 1,00

0,00 0,00
ga-8 stream-4 ga-8 in-mem-8

Figure 8.2.3: SpreadFriendly vs. SpreadFriendly (1) Figure 8.2.4: SpreadFriendly vs. SpreadFriendly (2)

Maestro outperforms vanilla Kubernetes, reducing average slowdown by 14% and 28%. Additionally, scenario
8.2.4 involves 16 program threads running on the same worker. In a multi-node cluster, the scheduler would
distribute workloads across different nodes to enhance isolation, leading to ideal execution times that closely
align with those observed in vanilla Kubernetes.

PackedFriendly vs. SpreadFriendly

M vanila M PackedFriendly SpreadFriendly M Maestro M vanilla M PackedFriendly SpreadFriendly B maestro
150 1,50

1,00 1,00

050 050

fluidanimate-2 in-mem-8 stream-2 stream-4

Figure 8.2.5: PackedFriendly vs. SpreadFriendly (1) Figure 8.2.6: PackedFriendly vs. SpreadFriendly (2)

W vanilla M PackedFriendly SpreadFriendly B Maestro

stream-2 freqmine-8

Figure 8.2.7: PackedFriendly vs. SpreadFriendly (3)

Figures 8.2.5 and 8.2.7 illustrate two scenarios comparing execution times between Maestro and the vanilla
configuration that outperform vanilla by 11% and 5% respectively. While Figure 8.2.7 shows that stream-
2 performs slightly better when both benchmarks are classified as PackedFriendly, freqmine-8 experiences a

69

Chapter 8. Evaluation

significant performance hit, leading to increased overall slowdown. Despite this, Maestro consistently delivers
the best execution times for both applications. Figure 8.2.6 shows a scenario where Maestro achieves the
same execution times as the vanilla configuration, while PackedFriendly configuration achieves better results,
because of stream-2 unexpectedly good performance under this configuration. This highlights the need for
more sophisticated application profiling that is able to detect these anomalies.

PackedFriendly vs. Agnostic

W vanila M PackedFriendly SpreadFriendly [Maestro W vanila W PackedFriendly SpreadFriendly [Maestro

1,00 1,00

0,50 050

0,00 0,00
canneal-4 fluidanimate-4 stream-2 ga-4

Figure 8.2.8: PackedFriendly vs. Agnostic (1) Figure 8.2.9: PackedFriendly vs. Agnostic (2)

After evaluating Agnostic applications in both PackedFriendly and SpreadFriendly configurations, we ob-
served that they perform better when treated as PackedFriendly. Based on this observation, we configured
Maestro to handle them as PackedFriendly, yielding promising results that outperformed vanilla Kubernetes
by 8% and 18% in Figures 8.2.8 and 8.2.9, respectively.

SpreadFriendly vs. Agnostic

M vanila M PackedFriendly SpreadFriendly M Maestro W vanilla M PackedFriendly SpreadFriendly B maestro
2,00 2,00

1,50 1,50

0,50 0,50

fluidanimate-4 stream-4 stream-4 ga-2

Figure 8.2.10: SpreadFriendly vs. Agnostic (1) Figure 8.2.11: SpreadFriendly vs. Agnostic (2)

Figure 8.2.10 shows a scenario where Maestro slightly outperforms vanilla while PackedFriendly and Spread-
Friendly configurations have a performance hit by 16% and 39% respectively. Scenario in Figure 8.2.11 shows
that Maestro has slightly worse performance compared to PackedFriendly.

70

8.2. Single Node Experiment

Agnostic vs. Agnostic

W vanilla W PackedFriendly SpreadFriendly [l Maestro
1,50

0,50

0,00
fluidanimate-4 ga-4

Figure 8.2.12: Agnostic vs. Agnostic

In this scenario Maestro would have the same behaviour as scheduling two PackedFriendly workloads. Both
benchmarks seem to take a performance hit when considered SpreadFriendly, and Maestro barely manages to
beat vanilla Kubernetes by 3%. This is an expected behavior of Agnostic workloads as they seem to perform
almost the same as the vanilla configuration.

Aggregated Results

Figure 8.2.13 presents the aggregated results from all the scenarios discussed earlier, summarizing the average
slowdown of both applications across the four configurations. The plot demonstrates that Maestro consistently
achieves a lower average slowdown (calculated as the mean slowdown of both workloads) compared to the
other three allocation strategies tested. Significant scenarios where Maestro greatly outperforms vanilla
Kubernetes include slowdown reduction by 29%, 20%, 18% and 17%. We can conclude with confidence that
Maestro can generally make correct CPU allocation decisions and can almost always reduce execution time
by applying CPU pinning and isolation, as well as program thread distribution across sockets.

W vanila W PackedFriendly SpreadFriendly B Maesiro

canZiferd)
can4;sfrd)

Jaerend
can4;iud;
ElEER
fUATSTEA]
SArga0
GaamIg,

@
=
T

&

PA2 SA1 8A2 AA

Figure 8.2.13: Aggregated Results

71

Chapter 8. Evaluation

8.3 Multi Node Experiment

8.3.1 Node CPU Utilization Percentage
The Node CPU Utilization percentage is calculated using the formula:

>~ Running Program Threads

Node CPU Utilization =
ode CPU Utilization Node Logical CPUs

x 100% (8.3.1)

8.3.2 Additional Workload Aware Scheduler Plugin Features
PhysicalCores

The PhysicalCores feature allows Maestro to schedule workloads onto physical cores rather than hyper-
threaded logical cores. This capability reduces interference caused by hyper-threading, leading to improved
performance for compute-bound workloads. Benchmarks categorized as PackedFriendly particularly benefit
from this feature, as it minimizes contention and ensures stable execution times.

MemoryBoundExclusiveSockets

MemoryBoundExclusiveSockets feature optimizes scheduling for memory-intensive workloads by ensuring
they are assigned exclusive access to sockets with sufficient memory bandwidth. This feature is critical
for SpreadFriendly workloads, which perform better when distributed across nodes or sockets to minimize
memory contention. Maestro leverages this feature to enhance performance for workloads that require high
memory access rates.

BestEffortSharedCPUs

When scheduling applications unprioritized Quality of Service class, their threads could be packed onto a
single logical CPU, leaving more isolated space for latency-critical workloads. When enabled, this feature
packs BestEffort workloads when needed, increasing the overall CPU utilization percentage of the node.

72

Chapter 9

Conclusion and Future Work

9.1 Discussion

In this thesis, we describe in detail the phenomena of performance degradation and underutilization of
resources on cloud systems. Every workload that can be deployed on multi-tenant clustered systems is
susceptible to challenges related to hardware utilization and resource isolation, resulting in sub-optimal
performance. Furthermore, in an effort to meet Service-Level Agreements, Cloud Providers often resort
to hardware underutilization, which can result in significant environmental costs over time. Continuous
research is being conducted in an attempt to come up with more efficient scheduling and resource allocation
policies that consider advanced metrics beyond simple total utilization. Kubernetes, the most widely-adopted
container orchestrator, lacks awareness of the specific characteristics of the executed workloads, preventing it
from making allocation decisions tailored to each application. In a multi-tenant environment, some workloads
might benefit from resource isolation and exclusive computational resources, whereas others might achieve
better performance when distributed across multiple NUMA nodes. Additionally, certain workloads may face
bottlenecks due to factors like 1/O load, making the allocation of isolated resources inefficient and potentially
wasteful. Achieving maximum performance for latency-critical workloads while minimizing node utilization
percentage is key to optimizing performance and cost-efficiency in cloud environments. Numerous alternatives
to Kubernetes’ naive scheduling and resource allocation mechanisms have been proposed in the literature.
These include offline profiling of workloads using machine learning techniques and real-time low-level system
monitoring to enable more informed and effective allocation decisions.

In this work, we explore the developer tools the Kubernetes community provides, in an attempt to design
a lightweight and extensible framework that enables future researchers and developers to experiment with
fine-grained allocation policies. Leveraging Custom Resource Definitions and the Operator Pattern, along
with other tools and languages, we introduce a declarative approach for specifying resource requirements for
Pods running within a Kubernetes cluster. We collected representative benchmarks from different suites and
applied our offline profiling algorithm to classify them in one of four categories. After that, we employed our
custom scheduler and resource allocator to run them in a single node in order to evaluate their co-execution
performance, by utilizing execution durations, as well as low-level system metrics such as memory bandwidth,
instructions per cycle, LLC cache misses, and other relevant indicators. With a very simplistic profiling
and allocation strategy, Maestro, our custom mechanism, consistently outperformed the vanilla Kubernetes
scheduler and kubelet’s default allocation strategy in nearly all tested scenarios, achieving speedups of up to
29%. The performance efficiency offered by our scheduler, combined with the flexibility of different scheduling
policies and configurable options—such as disabling SMT and allocating full sockets for memory-intensive
workloads—can lead to lower resource utilization while maintaining optimal performance.

9.2 Future Work

While several promising benchmark results were observed, the mechanism we implemented was an initial step
towards the development of a comprehensive workload-aware scheduling and resource allocation mechanism.

73

Chapter 9. Conclusion and Future Work

Such software should be able to conduct both online and offline application profiling, enabling static and dy-
namic resource allocation strategies, effectively mitigating unpredictable interference phenomena. Workload
characterization, a topic that is heavily being researched, can be achieved with various methods, and can be-
come a lot more sophisticated by incorporating low-level system metrics and hardware performance counters.
Profiling requires an additional pre-deployment step, during which workload characteristics are gathered by
executing the application in a controlled lab environment and analyzing them using a well-trained neural
network. Multiple reinforcement learning (RL) and deep learning (DL) algorithms have been proposed that
might be suitable for optimizing cloud-native container orchestration in Kubernetes clusters.

We developed API extensions that enable our resource allocator to have a cluster-wide supervisory view of
the nodes’ CPU and memory resources, and the workloads that are bound to them, a feature that was not
implemented in Kubernetes’ core until now. These APIs could be the cornerstone of a more sophisticated
resource allocator that do not only apply static resource allocation but can also modify the resources given to
a specific Pod when performance degradation is detected. This could be achieved with sophisticated healthy-
state machine learning models that detect interference on runtime and are able to make resource re-binding
decisions. Online metrics extraction could be implemented using PCM metrics, as we have already described.
Furthermore, research has to be made on how such software, that require low-level hardware access could be
implemented in a cloud-native manner. The goal is to enable seamless deployment on any Kubernetes cloud
provider without requiring the setup of external daemons outside the Kubernetes cluster.

Cloud Service Providers should prioritize the adoption of state-of-the-art resource management systems, not
only to maximize financial efficiency but also to minimize the environmental impact caused by resource
overutilization. Further research has to be conducted on how to improve node utilization in an effort to
minimize aggressive installation of new hardware within datacenters, as well as the energy consumption they
impose. Balancing the requested Quality of Service of the deployed workloads with efficient utilization is a
complex topic in multi-tenant systems and requires great knowledge of low-level hardware concepts, such as
cache locality and NUMA-aware computing. Fine-grained, workload-aware orchestration strategies must be
employed to address the challenges of resource sharing during the co-existence of workloads on cloud systems,
while promoting environmental sustainability.

74

Chapter 10

Bibliography

(1]

2]

[3]
[4]

[5]

(6]

7]

18]

[11]

[12]

Blagodurov, S. and Fedorova, A. “In search for contention-descriptive metrics in HPC cluster envi-
ronment”. en. In: Proceedings of the 2nd ACM/SPEC International Conference on Performance en-
gineering. Karlsruhe Germany: ACM, Mar. 2011, pp. 457-462. 1SBN: 978-1-4503-0519-8. DOI: 10 .
1145 /1958746 . 1958815. URL: https://dl.acm. org/doi/10.1145/1958746 . 1958815 (ViSited
on 06/29/2024).

Cusack, G. et al. “Escra: Event-driven, Sub-second Container Resource Allocation”. In: 2022 IEEE
42nd International Conference on Distributed Computing Systems (ICDCS). Bologna, Italy: IEEE,
July 2022, pp. 313-324. 1SBN: 978-1-66547-177-0. DOI: 10.1109/ICDCS54860.2022.00038. URL: https:
//ieeexplore.ieee.org/document/9912180/ (visited on 06/29,/2024).

Docker. URL: https://wuw.docker.com.

Electricity 2024. Tech. rep. International Energy Agency, 2024. URL: https://www.iea.org/reports/
electricity-2024.

Fu, Y. et al. “Progress-based Container Scheduling for Short-lived Applications in a Kubernetes Clus-
ter”. In: 2019 IEEE International Conference on Big Data (Big Data). Los Angeles, CA, USA: IEEE,
Dec. 2019, pp. 278-287. 1sBN: 978-1-72810-858-2. DOI: 10.1109/BigData47090.2019.9006427. URL:
https://ieeexplore.ieee.org/document/9006427/ (visited on 09/30,/2024).

Hutcheson, A. and Natoli, V. “Memory Bound vs . Compute Bound : A Quantitative Study of
Cache and Memory Bandwidth in High Performance Applications”. In: 2011. URL: https://api .
semanticscholar.org/CorpusID:14832325.

Kaur, K. et al. “KEIDS: Kubernetes-Based Energy and Interference Driven Scheduler for Industrial
IoT in Edge-Cloud Ecosystem”. In: IEEE Internet of Things Journal 7.5 (May 2020), pp. 4228-4237.
ISSN: 2327-4662, 2372-2541. DOI: 10.1109/JI0T.2019.2939534. URL: https://ieeexplore. ieee.
org/document/8825476/ (visited on 09/30,/2024).

Koordinator. URL: https://koordinator. sh.

Kubernetes. URL: https://kubernetes.io.

Li, D., Wei, Y., and Zeng, B. “A Dynamic I/O Sensing Scheduling Scheme in Kubernetes”. en. In:
Proceedings of the 2020 4th International Conference on High Performance Compilation, Computing
and Communications. Guangzhou China: ACM, June 2020, pp. 14-19. 1SBN: 978-1-4503-7691-4. DOI:
10.1145/3407947.3407950. URL: https://dl.acm.org/doi/10.1145/3407947.3407950 (visited on
06/29,/2024).

Liu, P. and Guitart, J. Fine-Grained Scheduling for Containerized HPC Workloads in Kubernetes
Clusters. arXiv:2211.11487 [cs]. Nov. 2022. URL: http://arxiv.org/abs/2211.11487 (visited on
06/29/2024).

Liu, P. et al. “Scanflow-K8s: Agent-based Framework for Autonomic Management and Supervision
of ML, Workflows in Kubernetes Clusters”. In: 2022 22nd IEEE International Symposium on Cluster,
Cloud and Internet Computing (CCGrid). Taormina, Italy: IEEE, May 2022, pp. 376-385. ISBN: 978-
1-66549-956-9. DOI: 10.1109/CCGrid54584 . 2022 . 00047. URL: https://ieeexplore. ieee . org/
document/9826110/ (visited on 12/29/2024).

75

https://doi.org/10.1145/1958746.1958815
https://doi.org/10.1145/1958746.1958815
https://dl.acm.org/doi/10.1145/1958746.1958815
https://doi.org/10.1109/ICDCS54860.2022.00038
https://ieeexplore.ieee.org/document/9912180/
https://ieeexplore.ieee.org/document/9912180/
https://www.docker.com
https://www.iea.org/reports/electricity-2024
https://www.iea.org/reports/electricity-2024
https://doi.org/10.1109/BigData47090.2019.9006427
https://ieeexplore.ieee.org/document/9006427/
https://api.semanticscholar.org/CorpusID:14832325
https://api.semanticscholar.org/CorpusID:14832325
https://doi.org/10.1109/JIOT.2019.2939534
https://ieeexplore.ieee.org/document/8825476/
https://ieeexplore.ieee.org/document/8825476/
https://koordinator.sh
https://kubernetes.io
https://doi.org/10.1145/3407947.3407950
https://dl.acm.org/doi/10.1145/3407947.3407950
http://arxiv.org/abs/2211.11487
https://doi.org/10.1109/CCGrid54584.2022.00047
https://ieeexplore.ieee.org/document/9826110/
https://ieeexplore.ieee.org/document/9826110/

Chapter 10. Bibliography

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Liu, Q. et al. Jiagu: Optimizing Serverless Computing Resource Utilization with Harmonized Efficiency
and Practicability. arXiv:2403.00433 [cs]. Mar. 2024. DOI: 10.48550/arXiv.2403.00433. URL: http:
//arxiv.org/abs/2403.00433 (visited on 12/29/2024).

Lo, D. et al. “Heracles: improving resource efficiency at scale”. en. In: ACM SIGARCH Computer
Architecture News 43.3S (Jan. 2016), pp. 450-462. 1SsN: 0163-5964. DOIL: 10.1145/2872887 . 2749475.
URL: https://dl.acm.org/doi/10.1145/2872887.2749475 (visited on 02/01/2025).

Mell, P. M. and Grance, T. The NIST definition of cloud computing. en. Tech. rep. NIST SP 800-145.
Edition: 0. Gaithersburg, MD: National Institute of Standards and Technology, 2011, NIST SP 800—
145. pOI: 10.6028/NIST.SP.800-145. URL: https://nvlpubs.nist.gov/nistpubs/Legacy/SP/
nistspecialpublication800-145.pdf (visited on 09/25/2024).

Psomadakis, S. et al. “ACTiManager: An end-to-end interference-aware cloud resource manager”. en.
In: Proceedings of the 20th International Middleware Conference Demos and Posters. Davis CA USA:
ACM, Dec. 2019, pp. 27-28. 1SBN: 978-1-4503-7042-4. DOIL: 10.1145/3366627 .3368114. URL: https:
//dl.acm.org/doi/10.1145/3366627.3368114 (visited on 06/29/2024).

Rodriguez, M. A. and Buyya, R. Containers Orchestration with Cost-Efficient Autoscaling in Cloud
Computing Environments. arXiv:1812.00300 [cs]. Dec. 2018. DOI: 10.48550/arXiv.1812.00300. URL:
http://arxiv.org/abs/1812.00300 (visited on 12/29/2024).

Song, C. et al. ChainsFormer: A Chain Latency-aware Resource Provisioning Approach for Microser-
vices Cluster. arXiv:2309.12592 [cs]. Oct. 2023. DOL: 10 . 48550/ arXiv . 2309 . 12592. URL: http:
//arxiv.org/abs/2309.12592 (visited on 12/29/2024).

Tang, L., Mars, J., and Soffa, M. L. “Contentiousness vs. sensitivity: improving contention aware runtime
systems on multicore architectures”. en. In: Proceedings of the 1st International Workshop on Adaptive
Self-Tuning Computing Systems for the Ezxaflop Era. San Jose California USA: ACM, June 2011, pp. 12—
21. 1SBN: 978-1-4503-0708-6. DOI: 10.1145/2000417 .2000419. URL: https://dl.acm.org/doi/10.
1145/2000417.2000419 (visited on 06/29/2024).

The State of Cloud Optimization 2024. Tech. rep. Intel Granulate, 2024. URL: https://granulate.
io/lp/state-of-cloud-optimization-2024/.

Ungureanu, O.-M., Vladeanu, C., and Kooij, R. “Kubernetes cluster optimization using hybrid shared-
state scheduling framework”. en. In: Proceedings of the 3rd International Conference on Future Networks
and Distributed Systems. Paris France: ACM, July 2019, pp. 1-12. 1sBN: 978-1-4503-7163-6. DOI: 10.
1145/3341325.3341992. URL: https://dl.acm.org/doi/10.1145/3341325.3341992 (visited on
06/29/2024).

Volcano. URL: https://volcano.sh/en/.

Wang, Q. and Kan, J. Practice of Fine-grained Cgroups Resources Scheduling in Kubernetes. Nov. 2020.
Yeung, G. et al. “Horus: Interference-Aware and Prediction-Based Scheduling in Deep Learning Sys-
tems”. In: IEEE Transactions on Parallel and Distributed Systems 33.1 (Jan. 2022), pp. 88-100. ISSN:
1045-9219, 1558-2183, 2161-9883. DOI: 10.1109/TPDS. 2021 .3079202. URL: https://ieeexplore.
ieee.org/document/9428512/ (visited on 09/30,/2024).

76

https://doi.org/10.48550/arXiv.2403.00433
http://arxiv.org/abs/2403.00433
http://arxiv.org/abs/2403.00433
https://doi.org/10.1145/2872887.2749475
https://dl.acm.org/doi/10.1145/2872887.2749475
https://doi.org/10.6028/NIST.SP.800-145
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
https://doi.org/10.1145/3366627.3368114
https://dl.acm.org/doi/10.1145/3366627.3368114
https://dl.acm.org/doi/10.1145/3366627.3368114
https://doi.org/10.48550/arXiv.1812.00300
http://arxiv.org/abs/1812.00300
https://doi.org/10.48550/arXiv.2309.12592
http://arxiv.org/abs/2309.12592
http://arxiv.org/abs/2309.12592
https://doi.org/10.1145/2000417.2000419
https://dl.acm.org/doi/10.1145/2000417.2000419
https://dl.acm.org/doi/10.1145/2000417.2000419
https://granulate.io/lp/state-of-cloud-optimization-2024/
https://granulate.io/lp/state-of-cloud-optimization-2024/
https://doi.org/10.1145/3341325.3341992
https://doi.org/10.1145/3341325.3341992
https://dl.acm.org/doi/10.1145/3341325.3341992
https://volcano.sh/en/
https://doi.org/10.1109/TPDS.2021.3079202
https://ieeexplore.ieee.org/document/9428512/
https://ieeexplore.ieee.org/document/9428512/

	Contents
	List of Figures
	Εκτεταμένη Περίληψη στα Ελληνικά
	Εισαγωγικές Έννοιες
	Σχετικές Μελέτες
	Ο Ενορχηστρωτής Kubernetes
	Προκλήσεις Διαχείρισης Πόρων σε Συστήματα Υψηλής Επίδοσης
	Maestro - Ένας Διαχειριστής Πόρων για Kubernetes
	Πειραματική Διάταξη
	Αποτίμηση
	Συζήτηση και Μελλοντικό Έργο

	Introduction
	Cloud Computing
	Virtualization Techniques
	Container Orchestration and Kubernetes
	Resource Utilization Concerns in Datacenters
	Thesis Overview

	Related Work
	Enterprise Solutions for Cloud Resource Management
	Academic Work on Efficient Resource Allocation in the Cloud

	The Kubernetes Container Orchestrator
	Container Orchestration
	Cluster Architecture
	Control Plane Components
	Node Components

	Workloads
	Services, Load Balancing, and Networking
	Storage
	Resource Management
	The Kubernetes Scheduler
	Kubernetes Interface Standards
	Frameworks for Developers

	Performance of High Performance Computing Systems
	Performance Degradation Factors in HPC Workloads
	The Noisy Neighbor Effect
	Estimating Performance Bottlenecks on Multicore Architectures

	Maestro: Fine-Grained Scheduling and Resource Allocation in Kubernetes
	Overview
	Application Components
	Controller Manager
	Daemon
	Scheduler

	WorkloadAware Scheduling Algorithm
	Deployment and Configuration

	Experimental Setup and Motivational Analysis
	Baseline Hardware and Virtual Machine Configuration
	Collecting and Monitoring System Metrics
	Intel® Performance Counter Monitor
	Prometheus, Grafana, Node Exporter, cAdvisor

	Benchmark Suites
	Workload Classification
	Packed-Friendly
	Spread-Friendly
	Isolation-Friendly
	Agnostic

	Evaluation
	Classification of SpreadFriendly - PackedFriendly Workloads
	Single Node Experiment
	Workload Collocation of Heterogeneously Labeled Applications

	Multi Node Experiment
	Node CPU Utilization Percentage
	Additional WorkloadAware Scheduler Plugin Features

	Conclusion and Future Work
	Discussion
	Future Work

	Bibliography

