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ITepiAndm

H Sadoy e AMdn amogdoeny utd ofeBatdtnTo anoTeAel amanTnTiXf TEOXANGCT| O TOAMES EQPUPUOYEC,
xaL oL xhaowxeg pedodol Pedtiotomoinomng cuyvd OeV UTopoUV Vo BLAYELRIG TOUY TNV TOAUTAOXOTY-
TO TNG QUVOIXTG O TOYUC TIXWY CUCTNUATWY, 0ONYMVTAS O UTORBEATIOTO EAEYYO. MTNV Topolou
Amiwpoatind Epyaoto pehetdton n evowudtwon mdoavotindy teolAédeny e Bdor ta povtéha oudyu-
one otov Ipofientind ‘Ereyyo yio ) Bertiowon e AMPng ano@doenmy ot Yepinms Topatnefotua,
O TOYAUO TIXY GUO TYUUTAL.

Yuyxexpéva, avortioooupe to thaiowo Diffusion—Informed Model Predictive Control (D-1
MPC' ), to onolo evowuat®dvel Tic Woyupéc miavotixés TeoBhélelc Twv povtéhwy didyuone oTov
IpoPrentixd ‘Eheyyo. H mpocéyyior pog napdyet évo 6OVORO TROGOUOIOOEWY TG eEEMENS TOU
CUCTAUATOC TPOG EAEYYO, PEOW EVOC UOVTEAOU OLEYUCTC oL OTY CUVEYELN EQUOUOLEL DLAPOPES
mopoharyég HpofBhentinod EAEYyou: VIETEQUIVIOTINOS EAEY YOS, OTOYACTINOC EAEY YOG, EAEYYOC UE
0EVTEA OEVURIWY G TOAATAL OTAOLL X0 EAEY YOG EUTAOUTIOUEVOS UE EUPETIXEC.

Acelyvouue Ty arotekeopatixotnTa Tou D-I MPC' ot éva oevdplo evepyetant|s e€L00peomNTixg
%(EEBOGXOTIAG UE YPNOT) EVOS GUOTAUATOS ATOVHUEVCTIS EVEQYELIG OTNY OYORH NAEXTEIXYC EVERYELIS
¢ Néag Topxne. To D-I MPC unepéyel cuotruotind towv vhortotioeny Ipofientinod Eréyyou
mou otnpilovtar ot xhaowd TEOBAeTTXd LovTERA Xt EvavTt PE¥6dwY eVioyuTixc Udinong ywelc
uovTtélo, xat emmAéov TpooeyYilel TNV anddooT) WEATMY UAOTOOEWY oL UTOVETOUY TEAEIEC TTpO-
BAédec otn Bdixacia BeATioTonoinong.

A€&eig-xherdid: Movtéha Adyuone, HpdBiedn Xoovooepwy, HpoBhentinde ‘Eieyyog, llocoti-
xomoinon ABefodtnrac, Aévtpa Xevaplwv, Mnyavua Madnon, Boadid Mdinor, Evieyutuc) Mddn-
on, Ayopéc Evépyelac.



Abstract

Sequential decision-making under uncertainty is a difficult task in many real-world applications,
and standard optimization methods often fail to capture complex stochastic dynamics, leading to
suboptimal control. This thesis investigates the integration of diffusion-based probabilistic fore-
casting in Model Predictive Control (MPC) to enhance decision-making in partially observable,
stochastic systems.

In this Thesis, we develop Diffusion-Informed Model Predictive Control (D-I MPC'), a uni-
fied framework that integrates powerful diffusion-based probabilistic forecasting into MPC. Our
approach generates an ensemble of future trajectories for the evolution of the system, using a
diffusion model and then applies several MPC variants: deterministic MPC, stochastic MPC,
multi-stage scenario tree-based MPC, and heuristic-augmented MPC.

We demonstrate the effectiveness of D-I MPC on an energy-arbitrage task with a bat-
tery energy storage system in the New York day-ahead electricity market, where it consistently
outperforms MPC implementations driven by classical forecasters and model-free reinforcement-
learning baselines, and additionally it performs closely to idealized implementations that use
perfect forecasts in their optimization processes.

Keywords: Diffusion Models, Time Series Forecasting, Model Predictive Control, Uncertainty
Quantification, Scenario Trees, Machine Learning, Deep Learning, Reinforcement Learning, En-
ergy Markets.



Euyaplotieg

Oa fdeha va evyoptotiow Vepud tov Kodnynth . Ilétpo Mopayxd, o omolog pou €dwoe tnyv
guxaupior Vo aoyohnie pe €va 1650 evBLapEpoy xou oUYyeovo Véua xou ue uTooTARIEE xo) OAN TN
odpxeta TN Epeuvdc wou. Euyaplot erlong tov Enixoupo Kadnynt x. Iodvvn Kopdwvrn yia
oLVETH| X0OTYNGY| TOL %o TI TOAUTIIES GUUPBOVAES TOU UOU TPOGEPERE, TOGO YO TNV EPELVAL TNG
TopoVoug epyaciog, 660 ot YLl T0 UEANOV oL,

OcpUéc EUYUPLOTIEC OPEIA® XAl GTNY OXOYEVELX LOU: GTOUC YOVEIC UOU Xal TOV aBERP(PO UOU YLl TNV
ouéploTn oTARLEN Xou TNV To TN 0TI BUVATOTNTES WOV, Xl GTOUC TUMTOUBES OV Yo TNV oty dmn) xou
T pEoVTida Tou Wou TPocEpepay Oha awTd Tar yeovia. H cupfolr Toug Ytav xodoptotixnd yio TV
ETUTLY ] OAOXATIPOOT) TWV GTOUDWY [UOV.

Ytéhog Zapigpng
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CHAPTER 1. EKTENHY ITEPTAHVH ¥TA EAAHNIKA

1.1 Ewaywyn
1.1.1 To IIpdBAnua tne Andne Anogdoeswy uvnd ABeLodtnTo

H onwovpylo vorjuovwy unyavey arnacyohel v avlpwrdtnta and to apyola yeovie. H ehin-
vt pudoloyia TepLEyel TANUOEA LOTOPLOY YIal TETOL UNY VXS OVTA, 0TS 0 WHDOC TOU YEAXIvVOoU
yiyavta Tdhou mou gpoupoloe tnv Kertn xaw ov awtduatol tpinodeg tou Hyaiotou mou unnpe-
Tovoav Toug Yeolc. Lny totoplo, PUAGGoPOL xou epeLpETeC 6Twe o Apyitac o Topavtivog xon o
Hpwv o Ake€avdpvoc oyediacay autopata mou polvtoy (ovtavd ovio 1 extehovoay cUVIETES
Aertovpyiec. H enlonun xadiépwon tne Teyvntric Nonuooivrg (TN) wc EMOTNUOVIXO TEDLO EYLve
000 ythietieg uetd, To 1956 otn Adoxedn Tou Ntdptuoud (Dartmouth), émou xadiep@inxe o bpog
“Teyvnth Nonuootvn” (“Artificial Intelligence”) ané tov Tlov Maxdpd. Yta npdta Bhuatd g,
n TN neproplotnne oe cuufoiixéc pueddooug, mpooradmvtag vo pyundetl ) Aoy Tou avip®rou
optlovtac xavovee.

Or meplopiopol aUT®Y TV TEOCEYYICEWY OE TEUYUUTIXES EQUPUOYES, AOYW TN UETABANTOTNTOS
xou of3eBondTnTag Tou TEAYUUTIX00 XOoUoU, od\ynoay otny avdnTtuln tne Mnyoavixrc Mdédnong
(MM) xon tne Badide Médnone (BM). Autd ta oustiuata emttpénouy tn pddnon and dedouévor
avtl va tpoypapuatiCovtar pntd. Ilpwtee epapuoyéc g Teyvnthc AToy 1o Tedyeouue Tou Toilel
vTdua Tou ‘Aptoup Xdupoveh xar To Perceptron tou ®poavx Poélevumhatt. H MM Zexivnoe va
elehlooeton paydata Tig dexaetieg Tewv 1980 xon 1990 xou cuveyilel pe exdetind pudud. 1o npdo-
parta, To evolapépov e Tidleton ota Meydha M'hwoowd Movtéha (LLMs) xot ta Movtéla Audyvorng
(Diffusion Models) mou €youv @épet enavdotaon oy TopaywY T QUOLXTC YAGOGAC xat BESOUEVLY
uminc molotnTag, avtioTorya.

Yhuepa, n TN, n MM xo nn BM Bploxouv egapuoyr oe mohhd xodnueptvd custidota, and tny
OVAY VOPLOT| TROCWTWY XAl TNV ETECERY UGN PUOLXAC YADCOUS, Ewg xat TNV ECuTVn Afbn amogdoewy
O€ TOAUTAOXO OTOYUACTIXG CUCTAUATA, OTE T DIXTUN EVEQYELUC XOL OL YENUATOTLOTOTIXES Y OPEC.
Ye tétown mepi3dhhovta, 1 TN unopel va enelepydleton tepdoTioug GYX0OUC BEBOUEVLY XL Vvl
avary vwptlel xpupd potifa, ta omolo ennpedlovtar amd ToAATA0UE TOEAYOVTES, TOU Elvol adUVITO
vor oUANANEYoOY and Ty avipenmivr dwlonon A ta mapadootaxd woviéha. Autd €yel odnyNoeL
o€ ONUAVTIXES EQapROYES TwV wovTéhwy e TN otnv npdPAiedn ypovooelp®y, 6mou Ta yovTéla
eXTUOEVOVTOL VI VO TROPAETOUY UEANOVTIXES TWES BACLOUEVO OF LOTOPXES TAURPATNPEHOELS, XoMS
xou 01N Bedtiotonoinon cuoTnudTtwy péow g Evioyutinic Mdédnorng (Reinforcement Learning),
6mou evguelc Tpdxtopes (agents) padaivouy vor hopfdvouy amoTeAeoUATIXES BIIBOYIXEC AMOPAGELS
Yo Ty emitevn evog GTOYOUL.

YTa TEoyoTid oo THUNTA, 1) Suvox elvon ocUViETY xon of3EBoun xan 1) CEMEY| Toug emnpedleTo
xVplewg amd oToYAcTIX0UE ToEdyovTes. Eqopuoyéc dnwg 1 dlayeipton evepyelag, oL YeNUATOTIOTWTL-
%G GUVAAAAYES X0 TAL UTOVOU OYUATOL ATALTOUY A TOUG TEAXTOPES VoL ho3dvouy Btadoyixég
amo@doelg Bdoet Yepinmy xat JopuBwdnY ToEATNEAoEWY, YWElg TNV TARRN YVOGOT TNG dUVOULXNS
Tou oUoTAHATOC. AUTEC oL TEpINTOGEL povtelomotolvTan Ue Mepixde Hapatneroa HepBdilovta
(Partially Observable Environments), 6nou n Afn onogpdoewy Bocileton oe ehhinelc mhnpogopiec.

To mopadootond povtéha npdBredng ypeovooelpmy, dtne ta auvtotaivdpouxd (autoregressive)
UOVTEAQ, YENOWOTOLO0VTAL EVREWS UE aEXETY emTUY AL 26TO00, 1) EYYEVAC TOUC AMAOTNTA (ouxvd
UTOVETOUV YROUUXOTNTO KOl orocowétmoc) TepLopllEl TNV AMOTEAEOUATIXOTNTA TOUG 0T GUAANYN
TOANOTAOXWY HOTBWY oTa Bedouévwy Tou TpaypaTxol xdouou. Movteha Mnyavixre Mdidnone,
omoe ta EnavolauBavopevo Nevpwvind Aixtuo (RNNs) xon tor Aixtua Maxpdc Bpayunpdieoune
Mviune (LSTMs), o€onotolyv Ty TOAUTAOXOTNTA TWV VEUROVIXMY SIXTOWY YL VO OVTENOTIOL-
couv xoh0Tepa Tar tepimhoxa dedoueva. TTpdogata, Tor uovTELL BLdyuong ETOEXVIOUY EVIUTIWGLUXES
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OLVATOTNTES OTY) LOVIEAOTOINGT CUVIETLY XATAVOUDY BEBOUEV®Y, XUNOTWVTAG TO XATIAANAAL VLot
v mhovotiny| TEOBAEYN YPOVOCELRNOY, 00NYMVTISC OE axdun UEYOAUTERT oxp{Beta.

Yy Evioyuti| Mddnon, ot mpdxtopec podatvouy BEATIOTEC TOAMTIXES UECW AAANAETLOPACEWY
UE To TEPBIAAOY Yiol TNV ETUTELET EVOG OTOYOU. Y€ UEQIXWE TURUTNENOHIA TEPYSGANOVTA, Ol ATOQd-
oeig mpémel va Baotlovton og ateheic mAnpogopiec. Ou mpooeyyioeic Evioyutuic Mdinone Xwelg
Movtého (Model-Free RL) padaivouv ancuvieiac and tnv eumeipion Twv oAANAETIORACENY, YwplC
TN povtelornolnon tne duvouxrc tou mepBdihovtoc.  To mheovéxtnud toug elvon 1 amhoTNTA
xol 1) duVATOTNTA EVEElNG EQPUPUOYTHC, XS OEV AmAUTOLY TEOTEQRN YVMOOTN TNG SUVOUXAC 1 TOV
UTOAOYLOTIXO (POPTO XATUOXEVHC EVOC POVTEAOU TOU CUCTANNTOS. §26T6C0, Yiol Vo GUYXAVOUY
OE UMOTEAECUATIXES OUUTEQLPORES, CUVATLG amouToLY TepdoTIO pLiUd OAANAETLOPICEWY UE TO
TepBdrrov. Evey ov ahyopripor Evioyutinic Mddnong Xwplc Movtého unopoldv va npooeyyicouv
N BEATIOTN CUUTERLPORA, xat VewENTixd Vo TV emTOyoUV Ue enapxeic enavahripelc exnaideuong
xou mohumhoxotnte, 1 Evioyuuxd Mdidnon Baowouévn oe Movtého (Model-Based RL) amodidet
xohOTtepa ot Abya Brjdato exnaideuong, xomg EVOWUAT®VEL To Brua expdiinong evog ovtélou Tng
SLVOIXAC TOL TEEBAAAOVTOG, TO oTtolo UTopEl Var YENOYIOTOLEL Yior Vo OYEBIALEL TIG XIVHOELS TOU
07O UEANOV, OBNYWVTAS OE TayUTERT oUYXALOT ot emiuunty cuutepLpopd. £26T6G0, N axplBrg Lov-
Telomoinon g duvauixic etvan 8UOXOAT), Edxd oe TEEBAANOVTO UYNADY BIICTACEWY X0l PERIXHC
TEATNENOWOTNTAC.

H evowpdtwon woyvpwy miavotixdy poviéhwy meofiedne oe cuotidata Mng amogpdoenmy
umopel va Pehtiwosl onuavTxd Ty anédoor) o offefona mepBdArovTa.  XpenouomolwvTog Lov-
Téha BLdyvong Yo TNV TEOBAEPT YPOVOCEROY, Ol TEAXTOPES UTOPOVY VoL BTUIOURYHCOUY PEUALC-
T oevdplor Yo TNy e€EAEN TOU CUOTAUATOC, HOTE VA GYEDBLICOLY TIC EVERYELEC TOUC, Topousia
oBefadotnroc. H evowudtwon avtdv twv mavotxov mpofiéhewy oe alyopiduouc eréyyou,
odnyel oe olevopéc anogdoeic mou AauBdvouv unddn To ploxo xou aUEAVEL TNV ATOBOTIXOTNTA
NG exmoddeuong EPOcoV alloTolel TIG TPy OUEVES TROYLEC.

1.1.2 Xxomndg xow Xuvelocpopeg tne AnAopatixns Epyacioag

H moapodoo dimhwpotiny epyoasta SIEpELVA TNV EVOWUAT®OT THavoTix®y LovTéAwy TedBiedne Ba-
OloUEVWY OE PovTEAN DLdyuong o alyopliuoug Sadoyixig APng amogdoewy, Ue TEAXG GXOTO TNV
Topoy 1) evOg o¥eVapol Xl amOTEAECUATIXNO) UOVTEROU Yol EVALY TEAXTORO OE PERIXMG TURUTTEY O
ooy oo TS TEPBAANOVTA. MEGHK EXTETUUEVODY TERUUATOY, ATOBEWVUOUNE TNV ATOBOTIXOTNTO TOU
mpotewoduevou mhatctou. Emimhéoyv, atohoyolue tig yedddoug mou mpoteivoude 6to TEOBANUL TG
evepyYelaxhc eSIGOPPOTNTIXAC XEEOOOHOTING, VLol VO UTOG TNEIEOUUE TNV EQUOUOCULOTNTO XAl ATOTE-
AECUUTIXOTNTE TOUG O ToAUTAOXA, af3¢Batol CUGTAUNTH TOU TEUYUATIXOU XOOUOU.
O xdpLeg cuveloopéc tng epyaotog elvau:

1. Ipocopuoyy| povTéAwy Sldyuong Yo TEOBAEYT YPOVOOEIRMOY O UEPIXOS TUEATNENOYLA GTO-
YOO TG BUVAUIXE GUG TAUOTA, HE OXOTO T dnptovpyia mdavoTixmy TeoBiédewy.

2. AVAmTUET VIETEQUIVIO TIXY X0 G TOY O TIXGY aAYopliuwy BeATioTonoinomng mou yenottonotoly
OELYUATOANTTIXES TEOYLEC amd TEOPAETTING Yoviého mou Pooileton oe Hoviéha Bidyuong Ue
oxom6 To BEATIOTO EAEYYO.

3. Ipdbtaocm evog aryopiduou Bertiotonoinong Bactopévou ot dévtpa cevapiny yia T fehtioto-
TolNoT TWV SPAGEWY TOU TEAXTORN UEGK LIS DOUNE TTIOU ORYAVGVEL LEpapytxd TNV aSefoudtnTa,
TEOCPEROVTAS T1) BuvaTOTNTA AMdng amogdoewy e enlyvmorn ploxou.
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4. Ipbtacm evéog alyopituou Tou YenoloToLel Lol EVPETIXT VLol TNV EUUEST| ETEXTACT) TOL TEAOUG
Tou opiCovta Behtiotonoinong, Yo o Yoxponpd¥ecuo GYEBLIGUO.

5. Emideiln e amoteAEoUaTIXOTNTIC TOV TROTEWVOUEVWY HEDOBMY UECW UG ONOXATIPWUEVNC
uelétne mepintwong (case study) otnv evepyelaxt| e€l00pROTNTIXH XEEOOOXOTILA, AVUBELXVIOV-
To¢ BEATUDOELS OTY GUUTIERLPORY TWV TRUXTOPMY GE GYECT UE XAUOLXES ueVddouC TEOBAEdNS
xaon Evioyvtiic Mdédnone Xwelc Movtého.

6. Mépoc g €peuvdc pag €yet yiver dextéd i dnuoaieuan oto ouvédplo EUSIPCO 2025 [9].

1.2 Oeswpentixd TroBadpo

1.2.1 Baoweg 'Evvoieg Badide Mdanong xow Xpovooeipwy
Badiwd Mdadnon

H Bohid Mdinon (BM) anotehel vnocivoro tne Mnyoavixie Mddnong (MM) xou yenowuonotel
Bohd vevpwvind dixtua (DNNSs) (vevpwvixd dixtua ue TOAAEC GTPMOEIC VEUPMVWY) Yo TN LOV-
tehomolnon cUVIETwY dedouévey. AuTd Tor dixTuN ATOTEAOUVTOL UTO TOAAAUTAL GUVOEBEUEVA G TRM-
HOTOL VELRPOVWY, Tou eMeCeRydlovTal UEYIAOUS OYXOUS BEBOUEVWY Yo Vo uddouy GyEoelc oTa Oc-
dopeva autd. To Bordid veupwvind dixtua amoTeAOUVTOL Umd CAANAOLYIES YROUULXDY UETUCY UL
TIOPAOY xou U1 Yeouixée ouvapTroel evepyomoinone. Katd v npodinon npog to eunpoc (forward
propagation), xdie otpdua petacynuatiCel Ty lcod6 Tou GE ULa VEO AVOTUEdo TACT), EVE XATA TNV
omoYodiddwon (backpropagation), to dixtuo unohoyilet Tic xAiong Tng cLVEETNONE (KOG TOUS KC
Teog xdie Bdpog xou To EVIUEPWVEL, UE 00T TN oTadtaxY| BeAtinoTn Tng anédoong Tou YovTéAou.

To perceptron [10], évo and ta mpdTa poviéha vevpwvxmy dwtiny (Ppavx Pélevumiarrt,
1958), arotehel ™ Bdom yia mo olvieteg apyttextovineg. ‘Eva veupwmwixd dixtuo amoteheiton and
OLUCLVOEUEVOL O TEOUOTO VELPMVWY, OTIOU Xdde VEUPMVIS EQUEUOLEL Ulol CUVEPTNOT EVERYOTOINGTG
oto dipolopa TwV BePapnuévey ELloOdWY Tou, elodyovTag ETol un-yeouuxétnta.  Ta mo xoiwvd
ebvon tar Blxtua TEdoC TEOPOBHTNONC (feedforward networks), émou to OEDOUEVA PEOLY TPOC
utor xatedduvon. O olydperduoc omododiddoone (backpropagation) etvon o Baoixdg TpéTOC EX-
Taldevong xou Aertoupyel unohoyilovtog To o@dhua YeTald TG TEOBAEYNC xou TNG TEOYUATIXAS
Tinc xou mpocopuéloviag T Bdpn TwY CUVBECEWY Yio Vo TO ehaytoTomooel. ‘Evo amhé Bix-
o Tpbothog TEo@oddTNoNC TEpthapfBdvel évar oTpwua €l06dou (To omolo hauPdver dedopévar),
éva TARdog xpUP®Y GTEOUATWY (oL EE8YOUV YapUXTNEIOTIXG YLor To. BEBOUEV) Xot EVOL OTEMUL
e€6dou (mapdyel ta amotehéopota, m.y., Todwvopnoe 1 mpoPiéde). H exnaidevorn Baocileton
otov ahybpripo KatdBaone Auvvauxot (t.y., Ltoyactxf KatdBoon Auvopixosd - SGD) yio v
eloryloTonolnon wog ouvdptnong anwiewg (t.y., MSE, Cross-Entropy).

To Luvehxtind Nevpwvind Aixtua (Convolutional Neural Networks - CNNs) [11], edixd oye-
BLOOUEVOL YOl TNV OVALY VEPLOT) YWELXDY OYECENMY OE dEBOUEVL (TT.Y., EIXOVEC), YENOoLLoToLY (GikTeo
(nupﬁvsg) Yoo TNV EEAYOYT) YUEAXTNELOTIXWY OIS oxUéC xan upec. Baowéc Aettoupyleg Toug el-
vat 1 ouvEMEN (convolution), to padding (yio drathpnon o tdoewy) xat to pooling (yio peiwon
ToL YwEWwoL Yeyédoug xat anoguyt uteprpocopuoyhc). Ta e€aydueva yopaxTnEloTXd elodyovTa
o€ TAHPWS GUVOEBEUEVA CTPOUATA YELPOVLY Yo TNV TEAXT epyaocio (T.y., Tagvounan 1 mohiv-
Opopnon).

To EnovahopBovéoueva Nevpwvind Aixtua (Recurrent Neural Networks - RNNs) [12,13] éyouv
oyedlooTeL eldnd Yo axohovdaxd dedopéval, TS YPOVOTELRES, OTIOL TPONYOUUEVES Elcodot (Top-
eMIov) emnpedlouv Tic yerhovTinég e€60ouc. O muprvac tne hertoupyiog Twv RNNs eivor 1 avabpopt-
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X1 evnuépwon e xpugric toug xatdotaone (hidden state) oe xdde ypovixd Bruc. otdoo, To
RNNs avtetwniCouv mpoBinua pe poxponpdleouec e€apthoelc Adyw Tou mpofifuatog tng e&-
apdvione xhiong (Vanishing Gradient problem) adhd xou e éxpnéne xhione (Exploding Gra-
dient problem). Ta Aixtua Moxpdc Bpoyunpddeounc Mviunc (Long Short-Term Memory -
LSTMs) [14] enextetvouv o RNNs e ) yprion pnyoviopody ye toke (gating mechanisms) (mohn
elo6bov, TOAN Mjing, mOAN €€600u) yior va puduilouy TN POY TANEOPOELDY, ETTEETOVTAS TNV
anoteheopotixt| “anodrixeuon” paxponpdieouwy e€aptioewmy. To Gated Recurrent Units (GRUs)
amhonotoLy T opyttextovixt Twv LSTMs, cuyywveboviag opiopéves TOAEC X0l UELOVOVTAC TNV UT-
oloyloTix) mohumhoxotnta. Téhog, ol Transformers ot omolol yenoyonooly unyaviopois Tpoco-
yhe (attention mechanisms), emitpénouy tny moEdAAnhn enelepyooio oxohoUIIOY Xat ETLTUY YEVOLY
eCoupeTiny) anddoon oty TEOBAEYN YEOVOOELRMY.

Ov Autoencoders [15] eivon povtédo un emPBrenopevne udidnone mou padoivouv uio cUUTLES-
uévn avomopdotaon (latent representation) twv 8edopévmv ewoddou, and v omola Unopolv va To
Vo aTaoxeUdoouy.  Atoteholvton amd évay xwdorowunty| (encoder) mou cuumélel tor dedouéva
XL EVOLY OTTOXGOLXOTIOMTA (decoder) mou to avoxotaoxeudlet. O otdyoc ¢ exnaidevong ebvon 1
eAOLYLOTOTOMMOT TG AmWAELS ovaxataoxeunc (reconstruction loss), cuvidng yenoyonowwytag To
Méoco Tetparywvixd Xgdhuo (MSE).

Ot Transformers [16] épepoav enavdotaon oty LOVIEAOTOMGOT 0XOAOLILDY YENOLULOTOUVTOC
UMY OVIOHOUE TTROGOY NS (attention mechanisms). Mmnopolv va enedepydlovial OAOXATPES 0XONOUL-
Vieg Bedouévwy Tautdypova, Aovovtag To TedPAnua e hing (forgetting). O unyoaviouods auto-
npocoyc (self-attention) utoloyilel Tic oyéoeic petall Ghwvy TV Yécewv oTny oxolovdia elcddov,
EMTEETOVTOC OTO UOVTEAO VoL G TodUICEL T1) ONUOVTIXOTNTO TWV GTOLYEIWY 0NV TROBAed.

Xpovooelpeg

Xpovooetpd ebvon o axohoudiar dedoUEvev Tou petpriinxay 1 tapatnefinxoay ot dladoyxd YeovIxXd
onuela. Baowd yopoxtneiotixd Toug eivon 1 Sdtaln oTo yedvo, xou xdie mopatienon uropel vo
e€aptdron omd Tic mponyolueves. Ahho yopaxtnplotixd eivan ) Tdon (Trend), Snhadh n paxpo-
npddeoun adinon A ueiwon twy dedopévwyv, 1 Enoyixétta (Seasonality), mou avagpépeton oe éva
emovahopfovouevo potifo oe ua teplodo, xon 1 Mtoowdtnta (Stationarity), 6mov ta otaTiIoTIXG
YoeaxTNEto Tixd (.., 1 uéan T xou 1 StoxdpoveT) Topauévouy oToepd Ue TV Tépodo Tou YEo-
vou. Ot ypovooelpéc umopoly emlong vo elvon LovoueToBAnTéS (piu HOVO UETABANTY avd yeoVixo
onueio) 1 mohupeToBAnTéc (ToAamAéS pueTaAnTéc).

H mpoenelepyaoio Twv dedouévwy civan éva xplowo Bruc oty avdiuon xar TedBAedr ypovo-
oepwv. IlephouBdver tov xodapiopd dedopévwy (Bloyeipion EAMTOV TYMY, oaxpolwy TYMY Xou
YoplBou), TV eQopuoYh TEYVIXOY xhudxwone (scaling) émwe min-max ¥ standard scaling yio
tunonoinon twv dedouévwy, xau To stationarization yi tnv agolpeon tdoewv (m.y., Yéow Oi-
agpopotoinong - differentiation). To feature engineering etvon évor Gvoho TeyVIXGY TOL BelTir-
VOUV TNV amOd00T TV LOVTIEAWY dNuovpymvTag tpdcleteg uetoffAntes, oénwe lag features, rolling
statistics xou ypovixd yapoxtnetotixd (time-based features) (m.y., nuépa tne efdouddoc). Axdun,
ToL QoouaTiXd yapoxtnetotixd (spectral features), 6nwe autd mou mpoxdnTouy amd tov eryopo
Metaoynuatioud Fourier (FFT), divouv TANEOQOELOL YLl TS GUYVOTNTES Xl ToL TERLOOWE Lo TiBa oTig
ypovooelpéc. Téhog, 1 amoclVUesT, YpOVOTELRHOY (decomposition) OtoywplCet Wit ypovooelpd oe
Tplo Boowd cuototxd: v téon (Trend), tnv enoyéta (Seasonality) xon ta unérowna (Resid-
uals). Ta tehevtaio avuinpoownebouy Tig anpdfBientes xar averyntes 1 YopuBddelc dlaxuudvoelg
UETE TNV aolpeon TNG TAONE XL TNG ETOYIXOTNTAC.
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1.2.2 Tlopaywywxd Movieha yia Xpovooelpeg

To Iaporywywd Movtéha (Generative Models) etvan pio xatnyoplo povtéhev Mrnyovixhe Médnone
Tou podafvouy TNV xatavour| THavOTNTIC TWV BEBOUEVLV EXTUIBEVOTC, ETITRETOVTAS TOUS VoL ONuL-
oupYoLV Véa dedopéva ou potdlouv pe o apyxd [17]. ‘Evo napayomyixd poviého urnopel vo nept-
Yeopel we yiot oamd xotvol xotavopr tiavotntoc p(x) yia dedopéva x, 1 wg und cuviixn wovtélo
p(x|c) av e€aptdron amd mpdoietec TAnpogoplies (covariates ¢). H Snuiovpyio Sedopévmv tpoxintel
ue detypotohndlo and v xatovour) tou yadaiver To povtéio.

Av xou 1 Ammiopatixr) Epyooio emxevtpdveton ot Movtéha Aidyuone, elvor onpovtind vo
avapepoLy xdmota omd Tor VEUEALOON ToQOY WYIXY HOVTERL:

Movtéha MiEnc I'vaovociavadv (Gaussian Mixture Models - GMMs)

To GMMs [18] vrnodétouv 6Tt tor Bedopéva moapdyovton amd €va pelyua ToAGY I'xaovctovey
xatovouy. H miavotnta evoe onuelou z oe éva GMM pe K ocuviot@oeg diveton o¢:

K
p(x|0) = > mN (|, Tn),
k=1

omou T, etvon Tar Bdien Tou uelyuotog, xan N (x|, Xp) elvon 1 I'xaovotovy| xatovour| tng k-ootic
ouviotwoac. H exnoideuon toug yivetar pe tov ahybprduo Expectation-Maximization (EM) [19].

Kpugpd Mapxofiavd Movtéla (Hidden Markov Models - HMMs)

To HMMs avormaplo todv axohoudioxd Se8oUEVOL YeNOLLOTOLMVTOS XPUPES (U1 TURUTNPHOWIES) XATo-
otdoeic. ‘Eva HMM opileton ond éva oivoho xpupdv xataotdoewy (hidden states), miovéotnree
ueTdPoong (transition probabilities) UETUEY XUTAOTACEWY, THAVOTNTES EXTIOUTNG (emission proba-
bilities) mopatnehoewy and xdde xpuer xatdo oo, xou THAVOTNTES APy UMY XaTacTdoewy (initial
probabilities).

IMopaywywxd Movtéla Baciouéva oce RNN (RNN-based Generative Models)

To EnavodapBavépeva Nevpwvixd Atxtuo (RNNs) xou or mopaiharyéc toug (LSTM, GRU) [12,14,
20] eotidlouv oY ToEAYWYT YPOVOCELGOY, Xo® urtopoly vo cUAEBoUY ypovixée eEupThoeLc.
Ye xde ypovixd Brua t, 1 xpuet xatdoTtacn hy evnuep®veTal BAOEL TNG TEONYOVUEVNS XUTACTAONS
XL TNG TEEYOLCUS ELGODOL, Xot To eMdeEvo Brua Tng axohouvdiog mpoxUTTel and TO YoVIEAO TOU
RNN yenowonowwsvtog Ty Teé€youco xpugh xatdotaon: Tipr ~ P(Tiy1|he).

Variational Autoencoders (VAEs)

O VAEs [21] eivor ot mbavotixég exdoyéc twv Autoencoders. Trotétouv 6t tor Sedopévo & mopd-
yovtow amd havidvouoee petoBAntéc (latent variables) z péow evic anoxwdixonont pa(x|2), dmou
ot z SerypotoAnmTodvTal omd pla anhf Tpoyevés tepn xotavour| (prior distribution) p(z) (ouvidec
I'xaovotavy)). O otdyog toug eivan va TpooeyyioTel 1 Yetayevéatepn xotavoly| (posterior distri-
bution) pg(z|z) yenowonowdvtoc uwa variational xotavour| ¢,(2|z). Enecidr) o duecoc unoloyiopog
NG TROYRATIXNG METAYEVESTEPNG XaTtavounc py(z|x) elvon avégixtog, ou VAEs peyiotonotolv éva
AATOTERO 6pLO TNE AoyopLduix|C TdovOQdvELdS (log-likelihood) twv oedouevwy, To Evidence Lower
Bound (ELBO), 1o onoio opileton we:

10g p() 2 Berg, oy [l0g po(]2)] = Dicr(gs(2|7)[|p(2))
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O mpwtog 6pog elvon 1 amdhelar avoxotaoxeuhc (reconstruction loss), eved o Sedtepog dpoc Dy,
etvar 1 andxhon Kullback-Leibler, n onoio xavovixomnotel tov Aavidvovto yweo (latent space)
eviopplvovtac TNV ge(z|x) vo mopauéver xovtd otny Tpoyevéotepn xatavoun p(z). T v anote-
Aeopatixy| exnaidevon, yenowwonoeiton to reparameterization trick: z = py(r) + o4(x) - €, dmOU
e ~N(0,1), ETTEENOVTOS TOV UTONOYLOUS TwV xAicewv (gradients) o mpog Tic napopétpoug ™me
¢o(z]x). Ov Denoising Autoencoders [22] exmoudedovton vor avoxortaoxeudlouvy Ty opyixy| €lcodo
ard ot ahhotwpévn (FopuBddn) exdoyt| Tne, tpocgépovtag aviextixdtnta otov YopuBo, dpa xou
euehi&ia oty e€aywyy| YapaxTnEo TXGY o YopuBndr tepiBdhhovTa.

IMopaywywd Avtaywviotixd Aixtua (Generative Adversarial Networks - GANs)

To GANs (23| anoteholvton and évav Fevvitopa (Generator) (G) xou évav Awyweioti (Dis-
criminator) (D) mou avtorywviCovtar oe éva minimax nofyvio. O FevvAtwe mopdyet teyvntd de-
douéva G(z) amd tuyaio 9opufBo 2z, tpoonaddvtag va “Eeyehdoet” Tov Atoyweoth. O Atywetotic
mpoonadel va Staxplvel To Tparyportnd dedopéva ¢ and tor napoydévta G(z). O otdyog exnaidevong
elvou:

winmax V (D, G) = By 108 D(&)] + Earp oy llog (1 = D (G (2))]

Hapbdho mou too GANs unopolv va mapdyouy delypato UPNAAC ToLOTNTOC, 1) EXTUUBEVCT] TOUG UTORE!
vo. efvon oo Tord g 1o vor un cLYXAivel TévTa.

Normalizing Flows

Tao povtéra Normalizing Flows [24] yenowonotody pior axohoudio avTio Toé iy HeTooy NUATIoNOY
OoTE var peTateédouy piar oAy xortavops| (m.y., I'xaouciovy|) otny tohdmhoxn xotovour| Tou epl-
YedipeL Tor BEBOUEVAL.

Enextdoeig Ioapaywyixeny Moviéhwy yia Xpovooeilpég

Téoo 1o GANs 6co xaw or VAEs €youv enextadel yioa tny enelepyacio ypovooeionv. Ilopadety-
uortor Tétowwy povtéhov eivon tor TimeGAN [25] xar TS-GAN [26], to onolo evowpatdvouv RNNs
otov I'evvrtopa xon Tov Aty wpto T yior vor Slaryelplo Touy TNy axohoudaxy| GUCT TwV BESOUEVKV.
Avtiotoa, ov Variational Recurrent Autoencoders (VRAESs) [27] evowpatdvouv ta RNNs og
apyLtexTovixég Variational Autoencoders yio tn goviehomolnon yeovooelpny.

1.2.3 Movtéra Awdyvong xo Egappoyés os Xpovooeipeg

To Movtéha Awdyvone (Diffusion Models) etvan por xatnyopla Taporywynwy HoviéAmy hoviovou-
oGy petoAntoy (latent variables) mou Beioxovton otny ouyur| tng ey voroylag Adyw Tng txavdTnTég
TOUC VO UOVTEAOTIOO0V GUVIETEC XUTUVOUES OEQOUEVLDY UE UEYAAN axpifela.  Eumvevouévo amnd
10€ec NS VeQUOBUVOUIXAC UN-tooppeoTiog (non-equilibrium thermodynamics) »ou NG OTATIOTIXNG
puotxnc [28], opilouv pa MapxofBiovr ahucido wxedy Brudtewy Sidyvone (diffusion steps) yuo va
TpoovETouy otadoxd YopuBo ot BEdOUEVY, XU OTH CUVEYELL UodafvOLY VoL AVTIO TREPOLY QUTH 1|
Sradixasior yior TV avoxortaoxevy toug [29)].

Apyh Acsttovpyiag Twv Moviéhwy Aldyvong

H Aeiroupyla toug Bacileton oe 800 xOpieg dadixaoies:
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1. Eumpéotha Awbikaoia Adyvons (Forward Diffusion Process): H Swaduacia outh npocdétet
o tadLod I'raouctovd Yopufo ota dedouéva oe dladoyixd yeovxd Bhuatat = 1,..., T, xotao-
TeEQovTac TN dopun toug. H opyuh xotavour dedouevwy q(zo), uetaoynuoatileton oTudloxd
oe wa xotovour mou poudlel pe I'vaovotavy xatavour; oto Brua T H petdfoon oe xdie
Bria etvon tpocdéter VopuBo ue Bdon éva ypovodidypauua Staxdpovone (variance schedule)

By
q(xi|mi 1) = N2 /1 = By, Bi])
H cuvohuny| mdavotnro yio tnv axohovdio 21, . .., oy 6ed0UEVOL TOU T BlveTow omo:

T

q(z17]20) = [ [ alwelze-)

t=1

Mioa onuovti WwWiotnTa etvor 1) SuvatoTnTa detydotoAndlag Tou x; oe onolodnmote Brua t
Ao TO T( OE XAELOTH LOPPY):

q(xi|z0) = N (24 Vauzo, (1 — ay)I)
omov oy = 1 — B xou ay = HZ=1 .

2. Avtiotpogpn Awdikaoia (Reverse Diffusion Process): H Swdwooio auty| mapdyet to de-
douéva. Zexwvd omd tuyaio YopuBo, éva Belyua and TNy mpoyevéatepn xotavour (1 omola
uotdlel pe TNV xatavoun Twv ), xou podaiver vo avtioteéget T Eunpdoda Awdixaota
Audyvorng, agopmvtas otadlaxd tov Y6puo Yo Vo avaxoTaoxeUdCel To apyixd Bedouéva
and Tig YopuBwodelg exdoyés Toug. H uetdfBoon po(Ti1 | 74) uovtehomoleiton amd Evar VEUR-
wVIxo dixTuo e TapaUETEouS b:

T
po(zo.r) = p(zr H (Te-1lz4),

6mov po(zi—1)|ze) = N(2e—1; po(xs,t), Lo(as, t)). To vevpwvixd dixtuo podoaivel tic mopoié-
TEOUC NG MEONG TWNAC fg xon TNS dlaxlpovone Mg yia xdde Bruo tng odyvone. O otoyog
elvon va peytotormomndel 1 Aoyapriund mdavopdvela Twy TapoyOUEVWY BEBOUEVGLY, TO 0Tolo
yiveton p€ow g eharytoTonolnomg EVHS dvey oplou Tng cpvnTnh Aoyt TavogdveLag
(ELBO).

Movtéha Adyvong via ITpb6BAedn Xpovooeipnrv

Evo to govtéla Sudyuone yenotpomotinxoy aoyxd yio epupUloyés dnuiovpyiag xat enelepyaoiog
EOVLY, €youy enextalel xaL oe epYasiEC YPOVOOELR®Y, OTwe 1 TEOBAEY, 1) CUUTAYIEWST) EAALTGYV
TGOV xat 1) Toparywyy) oxoloudhaxidy dedopévmy [30]. Eotidlovye ot povtéla ta omola mpoPhé-
TOUV TOAUPETABANTES YPOVOOELRES, OTIOU 0 GTOY0G €lval 1) TEOBAEYN HEAAOVTIXGDY TYLWY DEDOUEVHV
TOV TUEEAJOUCHDY THIGY.

TimeGrad: To TimeGrad [7] eivon éva awtonahvdpouind poviého mou yenotgonotel tor De-
noising Diffusion Probabilistic Models (DDPMs) yio ty mdoavotxy| medBredm nokupetointedv
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yeovooelpny. H oo 0éa elvon 1 wovtehomoinon g und cuviixn xoTavouhc TwV UEANOVTIXGDY
YEOVXGY PNUdTwy SEB0UEVKDY TUPEANIOVTOY DEDOUEVWLYV:

T

QX($tO:T|$1:t0—1,C1:T) = H QX(!Et|$1:t—1,C1;T),
t=to

OmoU ; €lvor TO TOALUETOPBANTO BLdvucuo BedouévwY 6To Bruc t xon cr.p Vol YVOOTEC ouy-
uetoShntéc (covariates), mou povteromoolv emmhéov mhnpogopla, Omwe yeyovota (events), n
omolo emneedlel T poppt| TN yeovooewds. Kdlde mapdywv oto ywouevo poviehonoleiton amd
éva utd ouVITn povtélo dudyuone (conditional diffusion model), pe Tic ypovixée e€opthoelc va
xwoxomoolvTu Yéow Wiog apyttextovixic RNN. To TimeGrad umepéyet évavtt dAAwv uedddwy
o€ OLGPOEaL TEAYUATIXG GUVOAX DEBOUEVWY, aPOL YdEY TN YENoN OLdIXACL®Y OLdYUOTS, EYEL TN
dLVATOTNTA VoL hoviehoTolel Toh) cOVIETES YpoVIXéC eCopTAOELS.

ScoreGrad: To ScoreGrad [8] eivon axdpo éva povtédo mpdBhedne ypovooeipmy Boactouévo oe
otadaoieg dwdyuong, to onolo Vewpel TN dadixacia dLdyuoNg GE GUVEYY| YPOVO YLENOULOTOLWVTOC
Yroyaotinég Awgpopixés Elionoeig (SDEs). H avtioTpogn dadixactio povielonotelton amd o
avtiotpogn SDE. To ScoreGrad ypnotuonotel évay Serypatolintn npofréntn-diopdnts (predictor-
corrector sampler) yio v npdBredn. ‘Eyer emtidyel e€onpetind anoteréopata, e PR XoahDTERN
am6 To TimeGrad, oe didpopa cOVOAYL BEBOUEVWV.

D3VAE (Diffusion, Denoise and Disentanglement BVAE): To D3VAE [31] avtetw-
et v TEOBAedn VopuBWBHOY xaL EAATMV YRPOVOOELOMY YENOWOTOIWVTAS Wat oLULEVYHEVY OL-
adacto Sudyuong yua mopdidupo mhaoiou (context) xou mpdPhedne (prediction). Xenoyonowotv
évay augidpopo Variational Autoencoder (Bidirectional VAE - BVAE) xat éva ootnua (module)
anoVopuPonoinone (denoising score matching) yio ) Behtiwon twv npofrédewv. H cuvdptnon
anoietac tou D3VAE ouvdudler téooepic dpouc: anmhela anoxhioewv KL (ot naporybuevec YopuB-
OELC EXDOCELS TWV YPOVOOELOWY TOU TUPAYEL TO UOVTEAD ToupldloLY GTUTIOTIXG UE TIC TEAYUAUTIXES
SLay UUEVES YPOVOOELRES amb TO GUVOho Bedouévmv), ammhela anotopuforoinong (yla Ty ovoxorto-
oxeur) TV Bedouévmv), ommleta olxhAc ocuoyétione (total correlation loss - yio vor Stoywpilovton
ot Aavidvouses YETUBANTES HOTE Var ovamaplo TOUV AveEdpTNTOL YAURPOXTNELO TIXE TV YPOVOGELRGOY)
xo PEoo TETPAYWVIXG opdipa. O otdyog elvon 1 udidnon cdevapny avamopac Tdoewy Tapoucio
oBeBondtnTog xou 1) SLdoTaoT TV AaviovouceY PETOBANTOV Yio XOADTERT EPUNVEUCLUOTNTA.

‘AXha povtéda mou Baotlovton oe BidyuoT yia ypovooelpég tepthauBdvouy ta Diffusion Schrédin-
ger Bridge (DSB) [32] vy expdidnon mdovotixdv poviérwy, Diffusion Spatio-Temporal Graph
(DIffSTG) [33] v ywpoypovixés ypovooeipée we ypaphuata, xor Graph Convolutional Recurrent
Denoising Diffusion (GCRDD) [34] mou cuvBudlet GUVEAXTIXG SIXTUOL YROUPNUATLY X0t ETAVONO-
Borvopeva BixTuo Yo YwEES Xal YeoVIXEC eCUPTNOELC.

1.2.4 Evioyvtuxr Mddnon xou IlpoBientixdg ‘EAeyyoc
Evioyvtixr MdOnon (Reinforcement Learning - RL)

H Evioyutinry Médnon (Reinforcement Learning - RL) [35] etvan pio npocéyyion nou enttpénet o€
évay pdxtopo (agent) podaiver vo AopPBdver BEATIOTES AmoPdoel AAANAETUOPOVTIC UE TO TERYSEALOY
(environment) tou, extehwviag evépyeteg (actions) ue Bdomn Ty Tpéyouca xatdotaon (state) tou
nepBdAhovtoc xou hopBdvovtog avatpopodotnon (feedback) pe tn popen evéc orjuatoc aviauolBrc
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(reward signal). Ytéyoc Tou npdxtopa eivor v pddet plar todrtie| (policy ), Snhady| wo avtiotolyton
ond XUTUO TACELS OE EVEPYELES, 1) OTOlN PEYIOTOTOLE! TN oWEeLTNY avTopolB3Y (cumulative reward).
H RL Swgpépel and tnv emPrenduevn xou Un-emiPBrenopevn pudinor, xodog 1 expdidnoy mtpoxinTel
oo TIC OUVETELES TV OPUCEWY TOU HECW BOXLUWY.

Mo pordnuartiny| Statdnwon tou meofifuatog tne RL yiveton yéoa and tig Awodixascieg Anogdoe-
v Markov (Markov Decision Processes - MDPs). Baowxol adydprduor yia v mpocéyylon tomv
Nooewv Tétoiwy Teofinudtey eivar o akydperduoc Temporal Difference learning (TD) [36] »ou
10 Q-learning [37]. H evowpdtwon Badidv vevpwvixdv dixtiny odfiynoe atny Badid Evioyutixd
Mérinon (Deep Reinforcement Learning) , ETUTEETOVTOG TNV AVTIIETOTION TEOBANUATWY UE Y MEOUS
AATAOTAGEWY X BEUCEWY TOU £Y0UV TOAES BLoC TACELS.

1.2.5 Baoweég ‘Evvoieg tng RL

Awadixacieg Anogdoswyv Markov (MDPs) H Awdwaocia Andégaone Markov (MDP) ei-
Vo TO pordnuotixd TAalolo Tou TEpLYedgeL T SuVoXY] Tou TERLBAAAOVTOC Xou TNV ETUOEUCT| TOU
TEdxTopa ¢ W Tevtdda (S, A, P, R, ), 6nou:

e S: YUVOAO XOTUCTACEWV.
o A: Y0volo dpdoewv.

o P(s'|s,a): Xuvdptnon mbavétntog petdBaone, 6mou P(s'|s, a) eivon n miovétnta petdBuone
oty xatdotoon s’ and TV s EXTEAOVTAS TN SpdoT a.

o R(s,a,s): Luvdptnon aviopolBhic mou AouBdvetar uetd tn yetdBoon and s ot s’ ye dpdon a.
o v € [0,1]: XuvteheoThc EXTTWONG, 0 0mOlOg PELOVEL TNV 0&l0 TWV HEANOVTIXWY OV TOHOLBMY.

O otdyoc evog mpdxtopa RL etvan vo Beet pa Bédtiotn moltixr 7*(s) mou ueylotonotel Ty ova-
UEVOUEVT] GUVOAXT| OVTOLOLBN:

Gy = Z’YthJrkH-
k=0

Yuvaptioeig A&lag O ouvaptrioelg aglac Tocotxonotovy To "mtdco xah" elvon uio xotdo-
Toom 1 éva (e0yog xaTdoTaomG-0pd0NE OGOV APORd TNV AVUUEVOUEVT] OWEEVTIXT AVTOHUOST.

e H cuvdptnon aliac xatdotaone (V7(s)) diver tnv avopevoyevn owpeutxy avtopoldy| Eex-
VOVTAC o6 TNY XATACTACT) § Yo OXONOLIMVTAC TNV TOATIXT T

Vﬂ(5> = Eﬂ[Gt|St = S]
e H cuvdptnon allac xatdotaonc-dpdons (Q™ (s, a)), ouyvd avagépetar we Q-cuvdptnom, opilet

NV avopeEVOpEVT adpoloTxt| avtopol3y| and TNV eXTERECT TNG 0pAONG @ GTNV XATACTUON §
XL TNV EMAXOAOLYT TOEUXOAOVUNOY) TNG TOMTIXAG T

QW(S,CL) = EW[Gt|St - SaAt = a]
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H e&iowon Bellman mepiypdgel tnv oyéorn YETAL) TWV AVOPEVOUEVGDY UEAROVTIXMY AVTOUOL3MY
eVOC TpdxTopa o éva TEpBdAloy.  Exgpdler ot 1 tpéyouca olia evog Lebyoug xatdoTaonc-
dpdone (Q*(s,a)) eCoptdton and TNV SUEST) aVTUUOLBY EQPUPUOYNS TS SpdoNg TNV XATdoTUOT Xou
™ UEYLOTN avaevouev olion TwV emouevwyY xotaotdoswy. H edioworn Bellman yio tn Bértio
ouvdpTtnon Q* (egappélovtag tn BélTiotn TohTny) eivou:

Q*(Sa CZ) = ES’NP(S’|S,CL) [R(Sa a, Sl) + Y maax Q*(Slv CLI>]-

Ainppa E€epebvnong - ExpetdAlevong 'Eva and ta facind npoirjuota otny Evioyuti-
x1f) Méinon etvan 1 ooppornia yetald eZepedvnone (exploration) xat expetddhevong (exploitation).
H e&epetvnon agopd tn doxiun VEwy Bpdoemy, eve 1 eEXUETIAeVoT) elval 1 ETAOYY| BEACEWY TTOU
0 TpdxTopag ExEl NON SlmoTwoEeL 6Tl elvar o avtanodoTixé. H Behtiotn cuvolud| avtapoldy
mpooeyyileton 1ooppon®VTAC TIC 800 QUTEC TAXTIXEC.

Mepwxor ¢ IMopatnehioipes Atadixaciceg Arogdoewy Markov (POMDPs)  Xe npoy-
MOTLXG OEVARLAL, O TEdXTORAG EYEL TN duVITOTNTA Vo AoPdvel uepixég 1) YopuBwdelg Tapatnenoels.
[Mar autd T tpofArjuarta, yenoyomootvtal ot Mepiae Happatneriowes Aadixaolec Anogdoewy
Markov (Partially Observable Markov Decision Processes - POMDPs), émou o mpdxtopac dotnpet
o xatdotoon nenolinone (belief state) yior v mporypotins, xpuen xatdo Toom.

ErniAvon Awdixaciedyv Anopdoewy Markov

H enfhuon twv MDPs anooxonel otny ebpeon wioag BEATIOTNE TOMTIXAC T* TOU UEYLOTOTOLEL TNV
OVOUEVOUEVY) COEEVTIXT] AVTOOLST.

ITpooceyyioelg yia tnv EniAvorn Avaxpitwy MDPs  Ye dwxpitéc MDPs, nou ol yopeo
XATOGTACEWY X0l OpdoEwy elvan TETEPACUEVOL, €lvor VewpnTixd BuvaTd Vo avamapacTodoly oL
ouvopThoelg a&lag oe Yopy| Tivaxa. §20TO60, o TOME TEOBANUATA, OTOL 0 YOEOS XATACTUCEWY
umopel vo efvar TEpdoTIOE, UMOUTOUVTOL TEOCEYYIOTIXEG AVATUPAOCTACELS Yo TNV TLO ATOBOTIXY
eniAuot| Toug.

Avvapixog Ipoypappatiopos (Dynamic Programming - DP): O yédodol DP [38]
yenowonotoly Ti¢ e€lomoeig Bellman yio va utohoyioouv avadpouxd BéATioteg cuvapTthoeig a&lag
O TIOALTIXEC.

e Policy Iteration: H npocéyyion autr evahhdooetar uetall twv e€rg 600 QAoEwY:

1. AZwohéynon Hohtixhc (Policy Evaluation): Troloyilet t ouvdptnon allag V7 (s) yio
TNV TEEYOUCU TOALTIXY .

2. Behtiwon [Mohtixhc (Policy Improvement): Evnuepdvel tnv tolitixr emAéyovtag, yia
#(80e %xaTdoTAOT), TN OPACT) TOU UEYLOTOTOLEL TNV AVUUEVOUEVT] CWEEUTIXY| AVTAUUOLY.

O alybpriuog emavoropfdveton YEyEL 1 TOATIXY Vo GUYXALVEL 01| BEATIOTY TOMTIX 7.

e Value Iteration: Evruepcvel etavoinmtixd ) cuvdptnon oliog yenoylonowwvtog Ty eéion-
on Pertiototntog Bellman:

V(s) = max P(s'|s,a)[R(s,a,s") + V()]

acA(s) ves
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‘Otav 1 ouvdetnon aglag V*(s) ouyxhiver, n BENTIOTH TOAMTIXT) TROXUTTEL EMAEYOVTOC UTAY-
oto (greedily) oe xdde Briuo ) Bpdon tou emtuyydvel T péytotn oo Yo xdie xotdo Tao.

Médodor Monte Carlo Ot yétdodor Monte Carlo yenoiuonolobvton dtav 6ev UTdEYEL Eval
oldéoipo povtého tou mepiBdihovtog.  Extipolv tn cuvdptnon oliag yenoULOTOWMYTIS G EX-
TWATELL TN PEOT) TUY| TOV TURATNEOVUEVGY ETLOTEOPMY omd delypata enelcodiny. Trdpyouv dVo
TapahAayéc Twv uedodwv Monte-Carlo:

e First-Visit Monte Carlo: Troloyilet tn yéon cwpeutiny aviopol3s H6vo TNV Tt Popd
TOU EMOXENTETOL Lot Xortdotoon ot xdie enetoddlo. Eivor auepiAnmen (unbiased) odhd éyet
wpnAdrepn duaxvpavon (higher variance) Aoyw oflomoinong Ayotepmy detyudTov.

e Every-Visit Monte Carlo: Troloyilel tn péon owpeutint| avtauo3r xdie @opd Tou emoxE-
mreton Wi xatdotaot. ‘Eyel yaunAdtepn daxluavon ahhd evOEyToL VoL ELOYEL HIKPI) HEPOA-
niia (slight bias) edv ot emavolouPovoueveg emoxédelg eviog Tou (Blou emelcodiou dev eivo
ave€dpTNTES.

‘Eva petovéxtnua tov pedédwy Monte Carlo eivor 61t amoutody v oAoxhipwon evog enelcodiou
YLOL VoL EVIERKTCOLY TIC EXTYHAOELS TNS oLVAETNoNG o&iag, YeYovog Tou xaduotepel T uddnon dtav
ToL EMELOOOLOL Elvan YEYdA ot TNV xahoTd adlvatn dtav 1 exnaideuct cuufBaivel oe éva povodind
EMELOOOLO.

Meé9obot Temporal Difference Learning (TD) Ot uédodor TD cuvbudlouv tor tAeovex-
THUOTO TOU BUVAUIXOU TTIEOYROUHATION0) xou Twv Uetddny Monte Carlo. Evnuepwvouy Tig extiuy-
oelg e BAom TNV TEEYoUoA AVTAUUOLBT X0 TNV EXTYOUEVY a&lal TNG EMOUEVNC XATAC TACTC.

e TD(0): Eivar n amholotepn popdy), 6mou 1 cuvipeTnon alluc XoTdoTooNC EVIUEPOVETOL GE
%dde Ypovind BrAU CUUPWVOL UE TOV XAVOVAL:
V(St> — V(St) + Q[Tt + ’YV(SH,l) — V(St)],

6mou 1o 1y + YV (Se41) — V(s¢) ovoudletar o@dhua TD xon o elvon o pudude pdidnone. Ot
evnuepnoelg TD yivovtar o xdle Briua, emtpérnovtag tTnv exudidnon online xou and Al
EMELOOOLAL.

e SARSA (State-Action-Reward-State-Action): Eivou pia pédodoc TD on-policy’ 1 ornofa
Yo T wddnon ouvopthoewy (Q(s, a)) yenotponotel Ty enduevn dpdon (ai+1) TOU TEAYHOTL
eTAEYUNUE UTO TNV TEEYOUCA TOALTIXY):

Q(8t,a1) < Q(5¢,a¢) + alry + 7YQ (8141, ar1) — Q(s¢, ar)]

e Q-learning: Efvou po pédodoc TD off-policy? yio tn uddnor Bértiotwy ouvapthoewy (Q(s, a))
Tou yenotonotel T uéyloTtrn duvath aliot TNV ENOUEVT XUTAG TaoT), aveEdpTNToL o TN BEdoT)
TOU ETUAEYUNXE:

Q(st, ar) <= Q(s1, ar) + afry + 7y max Q(st+1,0") — Q(s, ar)]

o TD(N): Emexteiver tic petédouc TD ypnowwomowdvtag to eligibility traces, ta onoio cuo-
owpebouy credit? yia ntponyolpeves xataotdoete 1 LeVYT) XaTaoTUCEWY-0pdoemy.

'H moltixd mov ypnowonotelton yio v emhoyy| dpdoewy elvor 7 (Bl pe authv mou Bedtiotonoelton xotd Ty
exudinon.

2H moltixd mou ypnoyonotelton Yoot Mdn tov anogdoswy (tou culhéyel dedouéva) propel va dlopépet amd
auUTHY Tou BeATioToNoLE(TOL.

30 6poc credit avagépetar otny “avoryvoplon” | v andédoon “cudivng” ot XATACTACEC 1N EVEQYELEC TOU
ouvéBahay ot wa perhovtiny emPBpdfevon.
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Ilpooceyyioeig yia tv Enilvorn Xuveywyv MDPs  Ytov npaypatixd x6cuo, oL yoeol
XATACTACEWY X0l OPACEWY UTOpEL Vo efvan GUVEYELS, UE TIC XUTAC TACELS Xt EVEQYELEC VAL ovamopio-
TAVTOL WG CGLVEYY| DlVOOUTA S € RPs you a; € RP=. Autd onutovpyel TEoBAYUoT, xodidS oL
Moelg oe pop@r mivaxo dev ebvan eguxtéc. Etot, ol mpooeyyiotéc ouvaptrioewy (function approxi-
mators), 6Twe VEUpmvIxd dixtua, eivor AmOEOUTNTOL YLol T1) YEVIXEUOT) TNG TOMTIXYC 1) TNG CUVERTNOTS
oiog and Tic TopatneNdeicec XoTaG TUOELC Xl EVEQPYEIEC TNE EXTAUOEUCTC O TOPOUOLES, AY VWO TES
xatootdoelg xou evépyelec. H petdfoon oe véeg xataotdoelc oviehomotelton Gy VA ¢

Se41 = T (8¢, ar) + wr(se, ar),

6mou T'(sy, ap) elvan pior VIETEQUIVIOTINY ouVARTNOT LeTdBoong xat wr(se, a;) évac dpog Yoplfou.
Ye ouveyY| Yoo, ot e€lowoelc Bellman exgpdlovton pe oloxhnppato avtl yia adpoloyata. o
Topdderyua 1 e€lowon BérTiototnTag Bellman (Bellman optimality equation) optleTon we:

V*(s) = meafi(/P(s,a, s)[R(s,a,s") +~yV*(s)] ds'.
acA Js

MeéOobotl Behtiotonoinorne ITohtixng (Policy Optimization Methods) ot pédodot
aUTEC TapoETPOTOLOUY ameuleiag TNy moltxy| mp(als) xar tpocupuélouy Tic TapapéTeous § Yo vo
UEYLOTOTOLACOUY TNV avVOUEVOUEVT owpeeutixt) avtapol3r. To dedpnua xhione mtohtinic (policy
gradient theorem) bivel évav TpoTO LTOAOYLGHOU TNC XA(OTE TNG AVOPEVOUEVNC oVTOpOBNC:

VOJ(Q) - Esr\/d”,awﬂg [VQQWG (Sa CL)]

Hopodelypota tétowwy akyopidumy eivar o Deep Deterministic Policy Gradient (DDPG) [39], o
omolog enextelvel aUTr TNV 1€x BlTNEAOVTAC Piot VIETEPUIVIGTIXT ToAtTixr) (Actor) xa évoy xpLtixd
(Critic) mou padaivel tnv cuvdpetnon a&lug dpdong, xot o Proximal Policy Optimization (PPO) [40],
TOU BEATIOTOTOLEL TLO OUOAS TNV TOALTIXT|, YENOHLOTOLOVTOS Wiat “clipped” avTixeiueving cuvdptnon
(omorpénovrocg UEYIAES EVNUERWOTELS no?\LTLxﬁg).

Médodou Actor-Critic Ou alyoprduor Actor-Critic cuvdudlouy 18éeg and Tig yevddoug Bo-
olopéveg oe ofiec (value-based) xar pedodouc xhionc-ntohtixfic (policy-gradient). "Eva dixtuo
“xprtixoV” (critic network) (m.y., éva dixtuo a&lag Qg Y V) a&roroyel tnv amddoon tne moltixrc,
eve €va dixtuo “Opdotn” (actor network) (m.y., éva BixTUO TOMTIXAC Ty) EVIUELMVETOL TEOS TNV
xateduvor mou uTodexviEToL amd Tov xettixd. Ot exTiufoel Tou xpitixol Bondoly otr uelwor
¢ SoxOuavone (variance) tng xAiong moltixnc xau 1 dpeon Bedtiotonolnon tou actor odnyel og
TOMTIXEC PE UPNAOTERES EMOTROPES. AxOUa, TEYVIXES OTWC TO experience replay® xou to target
networks® yenoworoolvta yia T Beitiwon tne otadepdtnTac tne pdinone.

Model-Free évavti Model-Based Evioyutixrc Mdadnong O npooeyyiceic RL urnopoiv
vou xatnyoplorotndoly xou Ue 3dom To av 0 TedxTopac £YEL TPOCBACT) GE €Val LOVTEAO TNG BUVAUIXNC
Tou mepBdAhovTog:

o Evioyutixy Médnon Baotopévn oe Movtého (Model-Based RL): O mpdxtopac podaiver 1
Olord€TeL €val LOVTEADO TOU GUOTAUATOS GTO OTtolo ETBEA (Bn)\oc&’] éva JovTtélo mou mpooeyyilel
¢ ouvapTthoelg uetdBaone P(s']s, a) xon avtapoBric R(s,a)). pe autdy tov tpém0 umopel va
TEOGOUOUOVEL UEANOVTIXES TROYIEC TWV XATUOTACEWY TOU GUOTAUNTOS X Vol OYEDIALEL TIg

1 Amodfxeuon xon avamopoy wYH TEONYOUREVKY EUTELRLOV UE GTdY0 TN Pelwon Tne cuoyétione Petold Twy
>Xphon xaduotepruévey (lagged) ovtiypdponv Tomv dixtimy yio mo oo uddnon

28



CHAPTER 1. EKTENHY ITEPTAHVH ¥TA EAAHNIKA

evépyelég Tou. To mheovéxtnua authc Tng mpocéyylong elvan 1) emiteudn xahfc amédooNng Ue
OpauaTXd AyoTEpES emavalfelc exmaideuone. 2otdco, n duoxoiia Tou mpofifuatoc RL
uetatomlleTar amd TNV EXPAINCT WaC XUAAC TOMTIXAC TNV exUdUnon evOc xohol LovTélou.

o Evioyutiy Mdinon Xwpeic Movtého (Model-Free RL): Avtideta, o pédodor Model-Free
RL 8e podaivouv entd (explicitly) éva povtédo yio to mepBdiiov. Modaivouv ameudeiog
™ ouvdptnon o&iag (V(s) f Q(s,a)) ¥ tnv mohwny| (m(als)) and tic ahhnhemdpdoels e To
TepBdrrov. Qotooo, cuvAing anuntoly Yeydro TAYOG GAANAETLOPACEWY UE TO TEQUBAAAOY
YL voe tpoceyyloouy BEATioTeg TOMTIXEG, EdWd o clvieTa epBdilovTa, xadog TEEmel va
udouv amd TIC CGUVETELEG TOV ORAOCEWY TOUS YIO VAL XATUVOHGOUY T SUVOLXT).

H emhoyt| avdueoa oe Model-Free xou Model-Based RL e€aptdton amd tnv mohumhoxdtnta TOU
TEPYBEANOVTOC, TN BUVAUTOTNTU ATOXTNOTS EVOS XUAOU WOVTEAOU TOU GUCTAUATOS X0 TOV OYXO TWV
0EDOUEVLY Bladéotumy Yio ahANAETOpUOT).

ITpoBAentixoc 'EXeyyog (Model Predictive Control - MPC)

O HpoPrentixde Ereyyoc (Model Predictive Control - MPC) etvan pia pédodoc eréyyou cuotr-
udtev mou BaciCeton o€ Eva oVTERD TNG BUVOUIXTS TOU CUCTAUATOS Yo Vo TeoBAEYEL Tn e ovTxy
eZ€MEN oE évay TETEPACUEVO Ypovixd opilovta. Xe xde ypovixd Briua, o alyopriuoc MPC emikiel
évor TpdBhnua PéTioTou eAéyyou avolytol Bedyou® (open-loop optimal control), npoodlopilov-
Tog TNV oxohoudia Twy Spdoewy ehéyyou (control actions) mou BehtioTonolel pior aVTIXEWUEVIXT
cLVdETNON (objective function), eve TOUTOYEOVA IXAVOTIOLEL T1) DUVAULXT] TOU CUC THUATOS XL TOUG
TEQPLOPLOUOUE TOU.

Emmiéov, 1o xevipind yoapoxtneotixd tou MPC eivon 1 apyt| Tou xvoluevou opilovta (reced-
ing horizon principle): and v unohoylouevn BérTioTn axohoudio eréyyou, uovo 1 TewTY Spdo
£QoPUOLETOL GTO GUGTIUO X0l GTO EXOUEVO YPoVixd Brua, 1 Stadixacio BeATioTonolnong enavohay-
Bdvetan, Ye TNV xatdoToon otny onola PeTEBN To cloTNU Vo elvon 1) VEo aipyix) cuVUTXTN Yol TOV
emouevo optlovta. Auth 1 emavainmtxy| fehtiotonolnon napéyel otadepdtnTa, Xong 0 EASYXTAS
oyeddlel amd TNV apyY| TG EVERYELES TOU OTay houfdvel VEEC TapATNENOELS, UEWWVOVTOS ETOL TIG
OLATOROLYEC.

Baowd Ytowyeia tov MPC  H yevu| popgr) tou MPC éyel tola Baowd péen:

1. Movtehonoinoy Yvotrpatog: To MPC amoutel éva ontd poviého Tou GUOTAUAUTOS
yoo Ty medPAedn tne e&éhhc Tou. To MPC umopel va egopuoctel 1660 o cuoTiuata
OLoXELTOL YPOVOU OGO XL GE GUCTAUOTO GUVEYOUC YPOVOU.

o I éva chotnua Sonettol ypdvou, 1) duvaixy expedleton ouvidwe Ue eEloOaEl OL-
aoptyv (difference equations):

w(k+1) = f(x(k),u(k), d(k)),

émou z(k) elvon to Bidvuopo xatdotaong, u(k) elvon o didvuoua eldBoV-ENEYYOU X
d(k) dnidver Swatopayéc 0To cloTNUA.

5% tov Bértioto éheyyo avolytol Bedyou, 1 BéTiotn axoloudia dpdoewy utoroyiletar ex Twv Tpotépwy Pdoet
povtéhou Tou cucThAuatog xan epappoletar ywels yprion avatpogodotnone (feedback) yia tnv mpooapuoy Ty
HEAAOVTIX®Y BpdoEWY.
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o [l éva cloTnuo CUVEYOUC YEOVOU, 1) SUVOULIXY| TEQLYPAPETOL OO BLaPOPIXES EELOWOELS
(differential equations):

2(t) = f((t), u(t), d(t)),
6mou z(t) eivon to Sudvuopa xatdotaong, u(t) to Sidvuoua eléyyou xou d(t) ou Si-
oToROLYEC.

2. ITpoPBAedm: Xpnowonoldvtag 10 YJOVTIEAO TOU GUOTAUATOS Xon TNV opyixy (Tpéyouca)
xotdotaon x(t), o ahyoprdpoc MPC npofiénel 0 UEAAOVTIXT) TEOY IS TOU GUC TAUOTOS AV
oe évav menepaopévo opilovta medPiedmne wixoue N (4 T o€ ouveyn ypdvo), wote va uT-
oloyioel Tnv axoloudio EAAOVTIXGDY BRAOEWY EAEYYOU.

3. BeAtiotornoinon pe Kivodpevo Opilovta: Ye xdle ypovixd Brjua t, o MPC emhlet
éva TEOPANUa BERTIoTOL EAEYYOL Yl Vo Bpel TNy axoioutia ehéyyou U mou Behtiotonotel pla
aVTIXEWEVIXT] cLVEETNoT J Tdvw oTov opilovTa TEOBAEdNS, UG TN BUVOULXT TOU HOVTEAOU
TOU GUOTAUATOS ol TOUG TEpLoptopols autol. Mohig urnoloyiotel 1 BédTiotn axohoudiu
Spdocwv {u*(k|t)}, povo n npdtn Spdon epopudleton 6T0 GUOTNUA. XTO ETOUEVO YPOVIXO
Brua t + 1, 1 véa xatdotaon mopatnpeeital, xar 0AOXANEO TO TEOPANUA TOu ETAVETUL Covd
oTOV VEO, UETATOTIOUEVO optlovta TpoBAednc.

Egoappoyéc tou ITpofBAentinod EXéyyouv To MPC ypnowonoeiton oe mohholc topeic
NG UNYOVIXAG, OTIG YLl TURAOELY MO OE YMUXES EYXUTAOTACELS, 0TI POUTOTIXY|, OTNV 00YYNOoN
OYNUdTLY xon 6T dixtua evépyetag. H ixavotntd tou va mpocapudleton 6TiC HETOBOAES TOU ENEY -
T€0L Lo TAUATOS ToV XANoTd Wiot TOAD Onuoghyy emhoyry o Tohkég egapuoyés. Ilupadetyuata
EQOPUOYWY EVOL 1) TEOGUEUOYY X0 O EAEYYOS POWY, VEQUOXPAOLDY Kol CUVUECEWY OF YNUXES
dlepyooiec, 6TOV OYedAoUS XIVNONC OE POUTOTIXY XAl AUTOVOUN OYAUATO, Xot TNV EELCOPEOTNOT
CUCTNUTLY NAEXTEXAC EVEQYELNS, CUUTERLAUBAVOUEVNG TNG EVOWUATWONG UVAVEMCULWY TNY WY
EVEQYELAS OL OTIOlES ELOAYOLY LOYVEES DLOXUUAVOELS GTO GUGTNUAL.

1.3 Ilpozteivopevn Mebodohoyia

1.3.1 Opiouéc IpoBArjpuatog xow ITvdavotixy I1pdBAedn
Kivnteo

Y€ TOMEC EQUPOUOYES TOU TEAYHATIXO) XOOUOU, BLAbOYIXES AMOPICELC TEETEL Vo AaufdvovTon uTtd
ouvirixeg offefondtnrog, Pactousveg oe pepinn 1) YopuPndn mAnpogopla. To yehhov Tou CUCTY-
HoTog eV elvar TAEWS YVOOTO, ahhd TpofBiédeic i autd umopoly va yivouv e xdmolo Podud
Beoudtnrac. H mopoloo epyoasio epeuvd Ty evowudtoon twy povtéhwy didyvong (diffusion mod-
els) yio miovotixh mpdBAedn ypovooeipmy oe alyoplduous Bedtiotonoinong yior T Stadoyixn A
anogdoewy, 6nwe o Hpofientinde ‘Ereyyoc (Model Predictive Control - MPC). Xtdyoc eivor 1
Behtiwon g dadixaciag Afdng amopdoewy, ewdind oc cuoThAuata Ue of3Bonor Buvor oL UPNATC
OLIC TAONC, YENOHIOTOWVTIS TS TPOPBAEPELS TWV UOVTEAWY BLdyUONE WS EVOL OTOYAOTIXO HOVTEAD
TOU CUG THUATOC.

Opiopoc IpoPBAjuatog

Yo meplocoTERA TEOBAAUATY A PN ATOPAOEWY OTOV TEAYUATIXG XOCHO, 1 TEAYHUTIXT XATACTION
(true state) tou Tep3dhhovTog, dnAady) OAeg ot amapolTnTEG TANEOYOopie yior T AN BéATioTwY
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AMOPACEWY, OEV EIVOL HETENOUT). LUVETKS, oL ahyoprdpol AMng anogpdoenmy Bacilovton o YopuPn-
oelc 1 uepwég mopatnenoec. To mpdPinua RL da mpénel va wovreiomoiniel we wa Mepinng
HopatneRoun Awdixacio Atogdoewy Markov (Partially Observable Markov Decision Process -
POMDP). Mo POMDP ogileton anéd wa 7-dda (S, A, T, R, 2, O, ), énou:

o S: O ywpog twv (xpucpo’w) AATACTACEWY TOL TEPYSEALOVTOC.
o A: To cOvoho TwV Slatéotuwy BpdcEWY TOU TEAXTOPA.

o T :5xA— A(S): H ouvdptnon petdBoaong xatdotaone, n onoto diver v miovotnto
UeTdPBoong oty xotdotoon s’ ond Ty s ue Spdon a.

e R:5xA— R: H ouvdptnon avtoapoBric, n onola divel v dueon avtagos R(s,a) pe
Bdon v (un mapatnEolUEV) XaTdoTaoN S Xou TNV ETAEYUéVN Bpdon a.

e (2: To clvoho OAWY TKV THAVOY TUEUTNENCEWY.

e O:5%xA— A(Q): Houvdptnon napathenone, n onota xadopilet tnv mbavétnto O(o|s’, a)
Mg tne mapathenong o étay To TEPBAANOV PETUPulvEL GTNV XATAGTAO s’ ue 7 dpdion a.

e 7€ [0,1): O ouvteheotic éxntwone (discount factor).

Ye xde ypovin) otiyur| t, to mepiBdhhov PoloxeTtan o wa xpupt| xatdotaon s.. O mpdntopag
hoBdiver pa mopartienom o € € (mou Topéyel peptxr) TANpopopia Yol TNV XaTdoTAoT), ETAEYEL UL
0pdion a; € A, xou To Tep3dhhov petoaivel oE Uiol VEU XATAOTUON Siq1, EVE OLVEL OTOV TRAXTORN
ULOL VEOL TURATARNON 041 XOU GHUEST) AVTOUOLBT 7.

H npotetvouevn pedodoroyia eotidlel oe mpoArjuata 6Tou To cUCTAHA BeV Efval TANPMS TaEUTY-
ENOLO xou 1) BUVAULXY| TOU UTopEl Vo BloxpLlel GE VIETEQUIVIOTIXG Xl GTOYUOTIXO PEROS, OTIOU TO
oTOoYaoTIXG PEpog elehiooeTan aveldpTnTa amd TIC BEJOELS TOU TEAXTOPX X0l TO VIETEPULVIGTIXG
uépoc. Apa 1 mopatrenon o Utopel va avahudel oe BUO GUVIGTOOEG:

Ot = <0td7 0§>7

6Tou of €IV 1) VIETEQUVIO TIXT] GUVIOTAOON (TT.)., XUTdoTooN pépTioNe ulag unatopiouc mou ennpedle-

ToL GUECH AmO TIC EVEQYEIEC TOU npdxropoc) xaL 07 €bval 1 OTOYAOTINY CUVIOTKOOU (Tc.X., THES
EVEPYELNC TOU 0XOMOUDOUY TONITAOXES, OTOY UG TIXES DUVOIXEG).

[ Tov oyedlaoud Twv Bpdoewy Tou TEdxTopd, Yenotuonoteiton éva LovTéro Yo vo TpofBhédel
TN GTOYAGTIXY CUVLOTOON TNG TEOYLAS TWY HEANOVTIXGY Topatneroenmy. AuTéc ol Tpoyiéc yenol-
UOTOLOVVTAL YLoL TOV UTIOAOYLOUO TN BéATIoTNG oxohoudiog Bpdoewy yio TN UeyioTomoinom Tng
OVUUEVOUEYNS OwEeLTIXc avtopodhic. H pédodog mou mpoteivouue ypernowonotel pyovtélo mpol-
Aedng yeovooepwy Bactouéva oe didyvor, étwe to TimeGrad, yio v medfiedn e e€éMing Tou
OTOY O TIXOV PEQOUC TWV TapaTneroenmy. Autd mapéyel 6Tov TEdxTopa Eval LOVTENO Tou haufdvel
unodn v afefordTnTa xou Utopel va evowpatwiel oe alyoprduoug eréyyou 6mwe o MPC.

ITvyavotixn IlpéBredn yio POMDPs

YV mpocéyylot pog, 1 miavotixd) TeoBAedn TNC OTOYACTIXAC CUVICTWOUS TMOV TURUTNENCEWY
(dnhadh, Tou o) mporypatonoteltar and éva povtého TpdBAedNC Ypovooep®y Bactouévo oe dBLdyuon
(diffusion-based time series forecasting model), cuyxexpéva to TimeGrad. To TimeGrad po-
Yofver Tnv deopeupévn xatovour TiavoTNToC TV UEANOVTIXWY CTOYUC TIXWOY TOQUTNENOEWY OE-
BOUEVWY TWY LOTOPXWY BEBOUEVLY. AEBOUEVOL EVOC LOTOPIXOU TUPUTNPHOEWY 0F 4 1, TO TimeGrad
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TEOGEYYILEL TNV XUTAVOUT TWV UEAOVTIXOVY TGV ot évay opilovta mpofiedne k = ko, ..., N o¢

e€hc:

N
H q(0310 1) = ] polojlhan),
k=ko k=ko

6mou py ebvar M xotavour teoBiedne mou padaiver to wovtéro (0 elvon oL TaEUETEOL TOU HOV-
Téhov), xou hy_1 ebvan N xpueh xatdotoon evog RNN mou xewdonotel onuavtixéc nhnpogoples omd
TEONYOVUEVES TOQATNEHOELS.

Evtéc tou miawsiov POMDP, ou mdoavotinég mpofAédels yenoylomolodvton Yo Ty eVpEST) TOU
BEhTioTou EAEYYOU TOU GUOTAUATOS. Ev@ 1) VIETEQUIVICTIXNG CUVIOTMOON TNG TURATARNONG OLETETAL
OO YVWOTY| BUVOLXTY), 1) GTOYACTIXY CUVLOTOOA EXTHdTL Yenotwonowwvtog to TimeGrad. O
OUVBLAOUOC TG VIETEPUIVIOTIXAC CUVIGTWONS (o) ue ™ oToyaoTiX cuvioTwoa (0f) odnyolv
OTNV OMNXT ToRUTNEHON;

O = <0Z, 6Z>
Auth 1 axoloudio TEOBAETOUEVLY TUQAUTNEHOEWY EVOWUATOVETOL OTI] CUVEYELL OF oAYOpLIUOUS
ehéyyou, 6mwe o MPC xou oL 6ToyacTinég Tou TUpoAAXYES, Yol TOV TPOGOLOPLoNs NG BEATIOTNG
oxohoudiog BEACEMY TOU UEYLIGTOTOLEL TNV UVUUEVOUEVY] CWEEVTIXT avTopOoLST).

1.3.2 IlpoBientixdg 'Eieyyog ue Moviéha Awdyvorng (D-I MPC)

Nreteppiviotixdoc MPC pe Movtéla Awdyvone (Deterministic MPC with Diffu-
sion Models)

To mpdto Bua eivan 1 evonudtomon tou povtéhou npdfiedne Bootouévou oe didyvon (TimeGrad)
oe €va vIeTEpUVIoTING ahybprduo MPC yio Tov umtohoyloud tng Béhtiotng axohouvdiog eréyyou
OTO UEPIXWC thxpoc‘mpﬁowo Tcsptﬁd()\)\ov.

Ye xdie ypovxd Bruc andgouong, dedouévou evog mapadipou TapaTnenUelomy Oroxaonxd)v
CUVLGTWOWY 0f, 07, . . ., 0}, To TimeGrad mopdyel pa xomxvow] M npoﬁ)\ea[)sow {okJrl 7. Yl To
ETOUEVO YPOVIXO ﬁnpoc Autd tor Selyyoata CUYXEVTPOVOVTOL YENOWOTOWWVTOS EVOY GTATIOTING
TEAEOTH, OTWG 0 SWIUECOC 1) 0 UEGOG 6p0G, Yo Vo TaporyOel plar onueton| TedBAedN:

Op = F(0g,...,0}) = medlaun{okJrl M
H cuvolixf Tapathpnon Tou ETOUEVoL PAUATOC g = (0f, 1, 05 1) xotaoxeudletor utohoyilovrog
XL TO VIETEQUVIOTIXG PEPOC Of 1 PETY TNV ETLAOYH WoC Bpdong ay.

Xpnowomousvtog autov Tov TEAEoTH TedBAedNC ue automahvdpouixd Teémo (autoregressively),
ToEAYETAL Wit TEOBAETOUEVY) TROYLA TopaTNEOEWY Yol Evay YeAhovTixd opiCovta N Brudtwy. To
vTetepuviotind npofBinua MPC, étav exivdel and to ypovixd onuelo ky xou Pertiotonoet yia N
Bruata utpootd, optleton wg e€ng:

N+ko—1

maximize Z R(0g, ai)

k=ko
subject to op, ..., 0,1 are observed,

6k+1:f(007...,0k)7 fork:kio—l,...,N—f—k‘g—Q,
ap € A(sg), fork=ky,...,N+ky—1.
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E8¢, R(0y, ar) cuuBohilet tny avtapolft) mou AauBdveton xotd TV EQupuoy T Tne dpdong ay ue Bdon
Vv mpoPlendpevn mapatrhonon Oy. Me ) ouyxévipwon (aggregation) moAhamhédv mAVOTIXOV
TpoPrédewy oe pla (Uéow Sdueonc 1y péone tunic), N Slyeipton tne offefardtnrog yivetar anoxAeto-
Tixd oo eninedo g mpoPredng. Kotd cuvérela, to npdBinua BeAtiotonoinong tou MPC yivetan
VTIETEPUVIO TIXG, xodw¢ Pocileton o€ plar povo TeoBAETOUEVT TEOY LA UEANOVTIXMY TURATIENCEWY.

Ytoyaoctixdg MPC ue Movtéha Awdyvong (Stochastic MPC with Diffusion Mod-
els)

Mo voe Angdel TAfeng unddn 1 offeBardtnto oty e€€MEN TG 1N TORUTNEOVUEVNE G TOY A TIXNS
CLUVLOTWOOC AT T Bidpxeta TNE BeATioToTolnoNg, enexteivoups Tov xAaoixé MPC evonuotdvoy-
TG TOMTAES TEOYIEC TEOBAEdG. Xe auTr TNV EXBOY T, 1) XATAVOUY| TWV UEAAOVTIXGY GTOY UG TIXWY
TOEATNEHOEWY EvowpataveTon pntd (explicitly) oto mpdBinua Behtiotonoinone. Ilpoteivouue dvo
nopahhoryéc tou Ltoyactxob MPC (SMPC): pio mou yenowonotel npocopouwdcelc Monte Carlo
xau pio Tou yenowonotel TpoPAEelc opyavwuéves oe Uar Sopr) SEVTou.

SMPC pe Ilpocopowwoeig Monte Carlo Xtov Monte Carlo SMPC, 1 offeBardtnta pov-
tehomotelton ue TN Serypatohndla M aveldptnTwy TEOYLOY omd TNV xotavour] TedBAsdng tou
TimeGrad. T'iw xd&de oevdpo ¢ € {1,..., M}, n pelovuxy oToyasTix GUVLGTOO0 ToEdYEToL
avadpopxd yio xdde onueto Tou opilovta medPredne k = ko, ..., N + ko — 1 o¢:

0" ~ pp(0f ).

[ xdde oevdplo 4, ) TAfENG TEoPAetduevy TopaTHENoT 6TO Yeovixd Brua k + 1 elvou:

o) = (o1, 00\,

61OV oﬁH unohoyileTon VIETEPUIVIOTIXG Ao TIC YVWOTES BUVOUIXES Tou cuoThpaToc. H cweeutin

aVTOOLBY xaTd UAxog TG 1-00THC TEOYLAS, UE Bdor Tig epapuoloueves dpdoels, oplleTal we:

N+ko—1 . ‘ .
JO = Z R(0, ay), where 60 = (0%, 6.
k=ko

To npoPinuo Bertiotonoinone SMPC avalntd v axorovdia dpdoewv {ak,,. .., an1r—1} TOU
UEYLOTOTOLEL TNV AVUUEVOUEVT) CLRELTIXY avTopolfT] 1 ontola tpoceyYlleTar amd 1 UECT) CWEEVTIXY
avtopol3r) Ohwy Twv M cevdplwmy:

1
imi _E J®
maximize 2

subject to og, ..., 0,1 are observed,
op ~ po(0f i), k=ko, ..., N+ky—1, Vi,
GkEA, k:ko,...,N—i—ko—l.
Auth 1 exdoyn) evowuatdvel T ofefoudtnTo o 0hdxANEo Tov opilovta TpoBiedng, AauBdvovTag

undm todamhéc npoypatonotfoets (realizations) tpoytdv. Autéd odnyel oe mo olevopd Eleyyo,
x0¢ 1 oTOYACTIXT BuVoUXT) AoBdveTon UTOYT xaTd TN Sadtxacio BelTioTonoinong.
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1.3.3 Aévtpa Yevapinwv pe Movtéla Awdyvone (DST)

"Evag axdua tpdmoc v evowpatwooude Ty ofeBatotnta oTic tpofAédeic enextelvovtag tov MPC
elvan ypnoulomot@vtag dévtpa oevapiwy (scenario trees). Autd to 8¢vtpa avamapto TOVY T HENNOV-
T offefondTnTar Ue Btaxeltd povondTior o douy| 0EvTpou, Ue xdlde xouBo va dnawmvel por Tiov
TpUYUoTOTOMON TNG oToYao TG Btadwactag o éva oTddo.  Eivon onuavtixd va tnpodvton ol
Teplopiopol non-anticipativity, kote ov anogdoeic va BaciCoviar ubvo oe mAnpogoplec mou etvan
olordéolec Péypt To TEEYOV G TAdL0.

Medodor Kataoxeurc Aévtpwy Yevapinv pe Movtéla Awdyvong

A. Kataoxeuy ue Opadonoinor Ilpog to Eunpodg (Forward Clustering) To 8évtpo
OnuioupYeiton 6Tdd0 TEog GTAd. e xdde x6pfo, To poviého didyuong mapdyet M mpoPAédelg
Yo To emopevo Brua.  Autéc o mpofiédelc opoadonoolvtar (.., ue tov olyoprduo K-means),
xou to xevtpoeéc (centroid) xde ouddoc amotelel tov avtimpbownd te. H mdoavétnro mpory-
uatomoinong xdie xoufBou xaopileton and T0 TOGOGTO TV BELYUATWY TOL avixouy ce autdv. [a
var amogeuy Vel 1) exdetinn eméxtact Tou 6EVTEou, UTOPEl Vo YIVETOL TEPIXOTY TOU BEVTPOL XuTd T1
Sradixacio Snutoupylag Tou (on-line), yio tapdderypo Swutnpdvtog tor L mo mdovd oevdpla oe xdie
otddo. H uédodog eCacpalilel Toug meptoptoole non-anticipativity pe @uoixé tpémo xatd TNy
xortaoxeut), xadoe ol poPBAédels yia xdde xouBo-naudi (child-node) Booilovton pdvo otic napotnet-
OEIC X0 TIC TRUYUUTOTOOELS TV XOUPwv tpoyévwy. H daduacta teptypdgetor otov Ahyodpriuo
1.

B. Kataoxeu pe Iepapyixr) Opadonoinom Ilpocg ta ITicw (Backward-Hierarchical
Clustering) Apynd, hapBdvovton M mhpelg Tpoytég yia 6Ao tov opilovta. To dévtpo xataoxeu-
dleton amd Ta QoM Tpog TN plla, OpUdOTOWMVTOS ETAVELANUUEVA TIg TopayUeloeg Tpoylég ot
uetoluevee ypovixée avohloelc (temporal resolutions). Xto teheutadlo otddlo, ot M tpoytéc
opadonotovvtal o Kp ouddeg. Xto mponyolueva GTdoL, Ol TEOYLES TV OHABMY GUYYKOVELOY-
TOL XOU ETOVO-OUUOOTOLO0VTOL, OLc@UACoVTaC OTL Tot GUVOAX TWV TEOYUOY UOVO GUVEV(YVOVTOL,
ToTé deV dlaywpllovTar, SlTnEMVTAS Tov TEploptold non-anticipativity. "Evag Bedyog tonou Lloyd
Behtiotonotel Ty opadonoinot emALYoVTaG TO TANDOG TV CUGTAOWY AUTOUATA, YWELS TNV avdryXm
avdalpetwy xotwehidy (thresholds). H pédodoc meprypdpeton atov Alyodpriuo 2.

Enilvon tou IlpoBAjuatog Behtiotonoinong

Metd Vv xatacxeur| Tou 6évipou, emAVETL TO oaxdAouTo TOAUCTABLXG TEOBANUA XTOYAGTIXOV
MPC (SMPC):

T-1
maximize g g P R(o’;, a?)
{af'} t=0 neN;

. n _ n o n ¢n
s.t. op given, o), = f(ot,at ,ftH),
a; = ay" Vn,m with same history up to ¢,
a; € A.
E8k, N, eivan 1o 6Ovolo tov x6uPwy oto otddio ¢, e mbavdtnta P, nopatipnon o} xat anbdpoo

ay. H un-mpocdoxio emBdiieton e€lomVOVTAS TIC AMOPUCELS 4y OE OAAL TOL GEVAQLN TTOL UoLdlovTo
ToVv (B0 Yovixd xoufo.
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MPC Evioyvpévog pe Evpetixr (Heuristic-Augmented MPC)

Mo vae EemepaocTel 0 eyyevic Teploplodc Tou memepacuévou opiCovta otov tuxd MPC, mpotel-
voupe tov HA-MPC (Heuristic-Augmented MPC). Auth 1 mpooéyylon eVowpaTdVEL pio EURETIX
oto Tépag Tou 0plloVTA TOL TANPOPOEEL Y10l TO AVOUEVOUEVO CWEEELTIXG XE€PBOC UETA ToV opilovTa
TEOPBAEYNC, EMITEENOVTAC TO UaXPOTEOVECUO CYEBIACUO.

H evpetny| Bacileton oe éva mpofhentind poviéro (m.y., LSTM), to onolo exmudedeton va
TEOPBAETEL TN BEATIOTY) TEPUATIXT TUPATARTON o‘ﬁiko_lz

opt _ ~S ~S
ONtkg—1 = LSTM, <0k0:N+k0—1a 0N+k0:N+kO+L—1>

H mpocéyyion eivon emduuntd xar o eQopuoyéc mou anaitoly 0 AN yeYopwmy omo@doemy,
xadog 1 extipnon e PérTiotng TeppaTindc xatdoTaong unopel va emiteédel uxpdtepo optllovta
BehtioTonoinong.

To mpofBinua Bertiotonoinong tou HA-MPC Satunoveton wg:

N+ko—1 9
. . S ~S opt
maximize g R(Ok, ak) -7 HON-Hco—l - ON+I€071‘ ’
ALy reee AN+kg—1
k=ko
subject to 0g,01,...,0,—1 Observed,

6k+1:‘F(087"'7OZ>7 k:k07"'7N+k0_17
&kEA, k=ky,...,N+ky— 1.

O ouvteheotic v xadopilel av o meptoploude Teppatixhc xatdotaong eivor auotnedc (hard con-
straint) (7 = 00) 1 6yt (soft constraint) (y < o0).

Me v evowudtwon tng evpetixric, To H-A MPC enexteivel éppeca (implicitly) tov opiovta
TeOPBAedNC, emTEENOVTUC amogdoelc Tou haufBdvouv utoln téco Ta Peayunpdlecua 6Go xal To
UoxpoTEOVEoUA ATOTEAEGUOTAL.

Evioyutix MdOnon Xweic Movtého (Model-Free Reinforcement Learning)

[o Ty allohdynon TV TEOTEVOUEVLY PedodwY, vhorojoaue xar teyvixéc RL yowplc yovtéio.
Eletdoaue Tpec moparhayéc mpoxtopwy oc POMDPs, mou diagépouv otny avanopdotaon tng
XATAGTACTS TOU TERIBAAAOVTOC!

o Ioecath Koatdotaon: O npdxtopac éyel (un pealotind) mpbdofoon oTic TeoyHoTiéS UENNOV-

Tixég Tég evog opllovtar 8¢ = |0, 0f 144 k|-

e Koatdotaon LSTM: 'Eva dixtuo LSTM yenowomnotel éva mAfidog and napatneficels oi—mi1:
yioe var udder war ecwtepiny| avarapdotacn hy = LSTM,, (0t7H+1:ta ht,l). H xatdotaocn tou
TedxTopa elvan 1) Tapdiiieon) TS TEEYOUCIC TAURATARNONG KE TNV XpueT xatdotact Tou LSTM
St — [Ot7 ht .

o Katdotaon TimeGrad: n xpuer| xatdotaon tou RNN tou TimeGrad hf¢ diver tnv xotdo-
TooT) TOU TEPYBAANOVTOG: Sy = [ot, htTG], omou:

h;FG = TimeGradRNNy (Of,HH:ta htﬂ)
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1.4 Ileipopatixd ArtoteAéopato

1.4.1 Aecdopéva xou Egoppoy?

H npotewvoéuevn yedodoroyio, Diffusion-Informed MPC, a€ioloyeitoan 6To oevdplo tng evepyetoxrc
e€looppomnTiniic xepdooxomiag (energy arbitrage) otnv nueprota oyopd NhexTEIXAc EVERYELC TNG
Néag Topxng mou eréyyeton and tov opyavioud NYISO (New York Independent System Opera-
tor). Xe autd to mhaiolo, 0 oToYOC elvon 0 Eheyyog évoc Xuothuatoc Anodixevone Evépyetag pe
Mraropie (Battery Energy Storage System - BESS) [41] yio va peytotonomdel to poxponpdieoyo
#€p00¢, houfdvovTag BlaboyIXéS amoPdoElc ayopanwhnolog utd TNV oaBefoutdTnTo TV UEANOVTIXWY
TIWY EVEPYELOC.

IMepuypapr] Acdopévmy

To dataset mou ypnowonoooue datideton dnuodota amd tov NYISO xan mepiéyet totopd Oc-
douéva Ty nhextexnc evépyetag (Locational Based Marginal Prices - LBMP) ovd dpor %o
Cwvrn, xohomTovtag €41 ypovia. Ot avalloelg TV dedouévwy tou tapadétouue avohutixd oto Ke-
pdhono 5.2 €derov:

o Xpovixéc E€aptrioeic xou Mot{Ba: Ot ypovoaoeipée mapouatdlouy meptodixdtnta (xuplng nuepn-
oloug x0xhoug), petaBhnTy| tdon xou enoyixy| e€dptnon (seasonal dependencies).

o Yrtatiotxd Xtotyelo: Trdoyouy onuavTES DLUXUHAVOELS TYIMY, dpo Xt EUXALRIES XEPBOUG.

o Koatavouy) Tywv xa Extoneg Tigg (Outliers): O xoatavopée Twv THudy epgoviCouy Yetinr
hoyotnta (skewness), 6mou ol diduecol eivan younhotepot amd Toug pécoug dpoug. Ot axpoieg
Téc (outliers) eivon povo uPniée, ouvenwe axpBr| yovtéha npdfBiedne eivan amopaitnTa Yo
TNV EXUETAAAEUCT| TOV.

o Yuoyctioelc: Tdpyouv toyvpéc Jetnéc ouoyetioelc YETAL) TV TYLWDY XAl TWV EVEQYELOXWY
POPTILY OTIC TEPLOCOTERPES TEPLOYES, UTOONAMVOVTUS TNV oVEYXT| Yo TOAVUETUBANTY LoVTEAN

TeoBAede.

e Autoouayétion (Autocorrelation) xou Mepuixr) Autocuoyétion (Partial Autocorrelation): Ou
Yeopixée Topao THoELS EDELEay Loy LpT Nueprola Teptodixotnta (xopugéc avd 24 Bruata), xa-
Vade xou Beoyunpdleoues ahhd xou haxpompoieoues e0pTACELS TOU BELYVOUY TS ToL GEGOUEVY
€Y OLY TOANUTTAOXOTNTA OTN) OOUN TOUC.

o 'Eleyyoc ADF (Augmented Dickey-Fuller Test): To anoteléoparta goavépwooy 6Tt oL Ypovo-
OEREC TWOV elvon oTATIXES (stationary) oe uxed mopddupa, ATl Tou efval YEVIXE EUVOIXO
Yio TO LOVTEAQL.

o Kuhibpevee Yrotiotxée (Rolling Statistics): H avdluon é8eile opodéc petofforéc otov
XUALOUEVO UECO OpO o TNV TUTLXY ATOXALCT], EVIOYVOVTNG TO CUUTEQUCHA OTL Ol YQOVO-
oelpég ebvan oTdoleg og Uixpd mopdupa, ahhd xon TNV THEOLGTN AVWHUUALLDY TTOU CTUELDYOUY
TNV ovay®n Yol TOAUTAOXOL MOVTERQL.

o Iotoypduuota: EmfPefaiwoay To Jetind skewness Twv xatovoumy To:v TGV xot €deiay 6Tt
Ol XUTOVOUES OTIC TEPLOCOTEPES TEPLOYES Elvon Lovotpomixéc (unimodal).
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AZwolb6ynom IlpoBAEdewy tou TimeGrad

To povtého TimeGrad [7] yenotponothdnxe yioo v mpdBredn 27 CUOYETIOUEVWY YPOVOCELRMY
(Twéc evépyetog xon goptiewv). Metd ond mpooextiny pviuion mopapétewy, o TimeGrad €deiie
eConpeTinn ooxpifeta mpoBAedmg yia pehhoviinég wplaieg Tég €mg xon Yo 10 nuépeg 6to uéhhov (240
Brvata). Eva napdderyua tov mdavotixdy npofiédewy gaiveton oty Emoéva 1.1, Axduo, utepéyel
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Figure 1.1: Qpialec mioavotinéc mpoPrédeic tou TimeGrad yia opilovteg 3 nuepmyv.

EVOVTL OAOV TV XAACIXGY TEOBReTT®Y xou povtéhwv Batide pddnone (AR, ARIMA, SARIMA,
VAR, CNN, LSTM) oe éhec ti¢ yetpixée ofloréynone (MSE, RMSE, MAE, MAPE, CRPS), énwc
patvetar xou oty Ewdva 1.2, Enuewdvouye nwe to TimeGrad nogéyet mioavotinég npoBrédeic avti
Y10 ONUELIXES, TEOCPEROVTAC TOADTIUN TANEOPOpia Yiot TNV ofefondtnto Twv TREoBrédewy.
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Predictions vs Ground Truth for day 7 - col 24

600

V//' 7 A\
4 0/

475

450 — SARIMA

Time

Figure 1.2: X0yxpion twv emddoewv tou TimeGrad oe optlovta 3 nuepdv pe GAAEC *AUCIXES
UEVOBOUC %ol TIC TEAYUATIXES THIES EVEQYELNG OE €val OYETIXG VopUBMOES TUAUA TWV BEDOUEVLY.

1.4.2 IlepBdriov Ilpocopoiwong

To mepddiiov mpocopolwong Tou mpdxtopa oplotnxe we pa Mepas Hapoatnerown Awduactio
Anogdoewv Markov (POMDP), ¢ote vo povielonotfoet ) hettovpyia evég Luothuatoc Amo-
Wxevone Evépyetoc e Mnatopiec (BESS) oto dixtuo nhextpixrc evépyelac. To TimeGrad yenot-
vomotetton yior TNV ooy Y| TEOBAETOUEVLY TH®Y Ot 0plloVTA TRV TUEQHV.

Ye xde ypovixd Brua k, To mepBdilov Bploxeton o pLor xpU@T XUTACTACT S xou OLVEL plal
Tapathonon o = (0f, of), émou:

o 0% H VIETEQUIVIOTIXNY CUVIOTGON, ToU elvon 1 xotdotaon obptione tne urataploc (State of
k PU Y ] Y 1 gopTone e ¢ e
Charge - SoC), xou e€ehicoetan GUUPWYAL UE YVOOTY| BUVOULXTY.

e 0;: H otoyaoctnf) cuvioTt®oo, mou amotekeiton amd TIC TWES NAEXTEIXNC EVEQYELIC, TV
omolwv 1 duvopxt| etneedleton and af3Bououg TopEdyYOVTES TNG aYoRdC.

Bdoet tov mapatneotlevmy TANRo(Qoptiy, o TedxTopa emAEYEL wia dpdon a € A. H napatripnon
uetafaiver wg e€nc:
SoCpy1 = SoCy, +nay, pe SoCryq € [0,1],

pry1 = Prices(k + 1),

6mou n = 0.95 eivan ) anddoom @opTIoNg/expdpTiong tne unataplag. O yweog dpdoewy ay, opileto
oMo TA ASLTOUEYWXE OpLor TNG Umatopiog:

|: . { SOCk } . { 1-— SOCk }:|
ap € |—min Umazy — ¢ ., MIN § Umag, —
n n
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OTOU Upay = 0.25 elvan 1 u€yiotn pot| evépyelag. H pmatapla €yel ouvohxr yowentxotnta 192.000
Wh.
H ovropoBn oe xdde ypovind Brua vnoroyileto we:

R(ok, ar) = Revenue(og, ax) — Degradation(og, a,)

omou 1o Revenue mpoxOntel and tnv ayopd 1 TOANOT EVEQYELNS OTNY TURATNEOVUEVY] TUUT, X0l TO
x60t0¢ Degradation unoloy{leton pe Bdon to Bdtoc Exgbptione (Depth-of-Discharge - DoD) »au
™) Oudpxeta Lwne tne unartopioc. To poviého tne unatopiog elvor epmveuouévo and tny epyooio [41].

IMepapatind Anoteréopata tou Ilpotetvopevou Alyopiduouv D-I MPC

O ahybprduoc Diffusion-Informed MPC (D-I MPC), o onoioc evowyotwver to TimeGrad oe
alyoplduouc MPC, a&tohoyriinxe extevic oto mepBdhhov Yoo Tn Sloryeipiorn VO GUGTHUATOC
arodixevong evépyetog unatopioc (BESS) oty ayopd nhexteixrc evépyetoc.

IMpoPBrentixog 'Ereyyog (MPC) O vretepuviotinée MPC ye TimeGrad ypnowonotel pua
TEOBRETOUEVT TpOYLE TWMY Yo Vo BehtioTonooet Tic evépyeteg tou BESS (gbption/expdotion)
oe évay mencpacpévo opilovta. O ahydprduoc emavaoyedidlel T EVEQYELEC XAUMUEQLVE, Yol Vol
TpocapuoleTon oTig Véeg TWES xou TpofBiédelc. Eva otiypdtuno Bedtiotonoinong tou ahyopituou
gofveton oty Ewdva 1.3. To Bacixd cuunepdopota amd Tor TELOHUOTA TOU EXTEAECUUE Elvou:

e Eniteuln Xtoyou: To BESS ayopdlet evépyeia 6tav ol Tipég etvon younhéc xan ToUAdeL OTay
elvar LPNAéc, odNYOVTAC OE *EEDOC.

o Ilepiopiopol Poptiong/Exgdptione: To clotnua xatavéUer T QOpTION XoU THY EXPOETLOY GE
TOMATAL BALATO AOYW TWV QUOIXMY TEQLOPLOUMY TNG UTATopluC.

e Boayunpddeoun Behtiotonoinon: Evoc Bacwdg meploptonds, 6mmg avapépinxe ot oTig
mponyolueveg evotneg, elvar 6T To MPC telvel va amogoptilel mhfpwe Ty umatopio 670
TéNoC TOoL 0p(COVTA YIoL VO UEYIGTOTOLACEL TO GUECO XEEDOC, Oy VOWVTUS TO UoxeoTpd¥eouo
x€pdoc (uetd To mépac Tou opilovia).

Stoyaoctixodg IpoBAentixég "Eleyyog (Stochastic MPC) O Xtoyootxég MPC

(SMPC) evowyatdvel Ty offefardtnto ancvieiog otn BeATioToNoiNGY), YENOYLOTOWYTOS TNV XUTO-
voun TiavoOTNTUS TWV UEAANOVTIXGY TV evépyetag. Ta war apyixr vhomoinor, yenoiwonow|dnxe
ula uovo Teoytd amd TNy xotavour| teoBiédewy Tou TimeGrad. 'Eva nopdderyuo Beitiotonolinong
Tou akyoplduou gaivetar oty Ewodva 1.4. Tapadétouye ta xOpio anoTeAéoUUTA Ao TO TELRAUATAL

o Avtipetomon ABefadtnrac: O SMPC haufdver vnddn tn otoyaoctixy @Oon Ty Yehhov-

TIXOV THOV.

o TroBéhtiotec Evépyeiec: H yprion uoévo wag teoytde odnyel oe unoflértiote evépyeleg,
x0¢ To YovTého epunvelel To VopuUBo we euxaupior x€pdoug. AuTtd EXBDNADVETAL UE CUYVES
amo@doeLg cpépuong/sxcpo’puong Tou 0ev glval hoyixéc.

o Yuvéneia TimeGrad: Ilopd tov Vépufo, n axpeifeia tou TimeGrad emtpéner oto SMPC
vor tapdryel o hoyr) axohouvdior eVepYELdY, xahoTdvToag Tov ahyderduo yerowo étav 1
TOEOY WY T) TOAATAGY TEOYLOV OEV elvor EQUXTH.
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Figure 1.3: Ytpatnywr| dpdocwy mou oyedidlel o aryopripoc MPC yia opilovta 3 nuepmdv.

o Ilencpaopévoc Optlovtag: ‘Onwe xou to vieteppuviotnxd MPC, 1o SMPC obnyel oe mhren
EXPOPTION TNC Unataplag oto Téhog Tou 0pllovTd, oyVoWYTIC TO XEE00C UETA TO TEPUC TOU
optlovTa.

ITooBAentixdg ‘Eieyyog pe Ilpocopoiwoeig Motne-Carlo (Monte-Carlo SMPC)
To MC-SMPC napéyet ebpwoto €heyyo, Aaufdvovtag urnodn tnv afefoudtnto g meofiedne ot
oldcacior Behtiotonolnong, YeNoWoToLOVTIS TOMATAES TEOYLES TV Amd TNV XUTAVOUY| TOU
TimeGrad. 'Eva Yo Peitiotonoinone tou ahyoplduou diveton otnv Ewdva 1.5. Ta Baowd
CUUTERACUOTA TWY TEWUUATWY EBelay Tar e€Ng:

e Evioyupévn Evpwotio: BeAtlotonowdviag oe todég tpoyiéc tou uélovtog (m.y., 100), to
MC-SMPC oyedidlel dpdoeic mou elvan o avlexTixéc.

e Meiwon Gopifou: Metpidlet to TedBANUa TV YopuBwdny Teofiédewy, xadne BeitioTonor-
OVTOG TV avopevopevn Ty (extidouevn and tov péoo 6po) o VépuBoc autoavoupeita,
OBNYWVTAC OE THO CTOEREC OTRATNYIXEC.

e Trohoyiotnd Kéotog: To tiunua tng yeriotng authc tng eVpwotng uevddou etvon 1 audnuévn
UTIOAOYLOTIXT] TOAUTAOXOTTTOL

o Ilepropoude Ilenepacuévou Opilovta: Hapouola pe Tic tponyolueveg uedodoug, o TepLopLo-
uo¢ tou opilovta BedtioTomolnomne Topauével dhuTtoc.
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Figure 1.4: Xrpatnyr dpdocwy mou oyedidlel o aryopriuog SMPC yio opllovta 3 nuepdv.
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Figure 1.5: Ytpatnywr| dpdoewy mou oyedidlel o alyoprduoc Monte Carlo SMPC vy optCovta 3
NUEPMV.
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ITpoBAentixéc 'Eleyyog Baciouévog oe Aévipa Xevaplwy (Scenario Tree-Based
MPC) O MPC nov Booileton oc Aévtpo Xevaplwy mpoo@épel pior Sounuévn Tpoceyylon yio
T Oayelpion TS oBeBudTNTAC, SLUXOLTOTOIWVTAS TNV XATOVOUY TWV UEAAOVTIXGY TMY OF €va
0evTpo. ‘Eva otiywotuno tng Bertiotonoinong gaiveton otny Ewodva 1.6. Ta anotercopata Twy
TELRAUATOVY €0etlay Tar eCHC:

e Non-anticipativity: Ot amogdoeic eAéyyou oe xde x6ufo tou dévipou AuuPdvovTar uévo
ue Bdomn Toug TEOYOVOUS TOU, BNAAdY YE TNV TANEOoYopia Tou EYElL TpayUoToTOINUEl W TNV
TEEYOUoU OTUYUY.

e Behtuotonoinon Avayevouevou Képdoug: O alydprduog BertioTtonolel to otaduoyévo wg
Teo¢ TNV TavoeTNTo GUEOLGUN TWV GUECLY avToOBOY 68 GAoUS TOUS XOUBoug TOL BEVTPOU.

o Elpwotn Ytpatnyw|: Kot ot 600 napahhayég Tou alyopiuou mopdyouy amodoTixs oTeatryt-
x| Yo TOV TEAXTORA.

o Ilcpopioude Henepaouévou OpiCovta: To povtéda dev dovavtar vo BeATIoTOTOCOUY Yo
Bruato uetd To Tépac Tou opilovta.

Day 3 Results
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Scenario 2 SoC
Scenario 3 SoC

50
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Figure 1.6: Xtpotnyws| dpdoewy mou oyeddlel o alydprduoc Forward-Clustering Scenario Tree-
Based MPC yia opilovta 3 nuepv.

ITeoBAentixéc 'Eleyyog Evioyvuévog pe Evpetixy (Heuristic-Augmented MPC)
O H-A MPC ypnowonotel pla eupeTixs) cuvdptnon 6to téhog Tou opilovta mpoBiedng, n omola
eXTWE TN BEATIOTY TEpUOTIX XotdoTaoT. ‘Onwe atveton xon otny Ewdvo 1.7 1 Bértiotn axohouvdio
EL0ODWY BEV XATAANYEL GTNY TOANCT OANG TNE eVEpYELUC 0TO TP Tou opilovTa, aAAd dlaTneelTo
xdmoto goptio xadog avauevetor 6T Yo elvon Yoo UEANOVTIXG.
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o Amir) Eugetuar): Avil vo yonoylomolicoude o xowvn] eVpe Tt 1) omotar Bor ypetaldtay TOAAY
OEDOMEVAL YLoL VO EXTIUNOEL TO AVOUEVOUEVO %EEDOC XA BUVITAC TEPUATIXNAC XAUTACTUONS,
EXTWGUE YOVO TN BEATIOTY TEAMXT| XAUTACTAON.

e To LSTM rnou npofAénet tnyv BEATIOTNG TEAXT xoTdoTooT EYEL UEYAAN oxplBEta.

e Yuvenric Behtiwon: To H-A MPC Bektidver otodepd, av xan ehappds, T dtadixactio Behti-
otornoinong tou Tumixol MPC, anodewviovtag 6TL €yel Tn duvatdtnTa va fehtiwoet tov MPC
hovde TEPLOGOTERD GE dARES EQuPUOYES (e xpoTERD opilovta 1 teptocdtepo Hopufo).
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Figure 1.7: Ytpoatnywr dpdocwy mou oyedidlet o ahyopriuoc Heuristic-Augmented MPC Opti-
mizer yio oplCovta 3 NUEEHY.

1.4.3 X0yxpion pe Khaocowuxég Medddoug IlpoBAedng

[ty nepontépw a&lohbdynon tne mpocéyyionc wog (Diffusion-Informed MPC) ) ouyxpivoue
évavtt avtioToywv viomotioewy MPC xadodnyoluevee ouwe amd xhaoixd povtéla mpoBiedng
(AR, ARIMA, SARIMA, VAR, CNN, LSTM) xot napatnerioope nwe 1 uédodde yag diver onuayv-
TIXG XOADTEQO ATOTEAECUOTAL.

o Trnepoyrhy D-I MPC: o ahyoprdyog D-I MPC' mpoc@éper mohl mo oVevapd €leyyo amd

Oheg TIC xhaooxég uedodoug TEOBAEYNE TOU BOXIUACUUE, UE TAEOVEX TN 38.8% évavti ™me
%xh0OTEPNS (AACOINC UEVOBOL, WS TTROG T HEoT avTopoLBT) 0TO TERYBAANOY TTOU BOXLUACTIXAY.
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o Avarotereopotindtnia Moviéhwy Badide Mddnong: Tlapdro mou towovtéha Bodhidic pdinong
(CNN, LSTM) eiyoav xakUtepec petpixés opdluatoc npdBiedne (prediction accuracy), n ané-
6007 Toug otV xoodrynon tou MPC ftav xatdTepn and o amhd aUTOTOAVOROUXS OV-
Tého. Autéd ogelleton 0TO YEYOVOS OTL OTNY TpooTdlEld Uelwong Tou opdhpatog TedBiedng,
To povtéda Bahde udidnong Euodoy vor TeoBAETOUY T OXEOTATU TWY YPOVOCELRMY THIWY
EVEQYELOG UE XATOIES YPOVIXEC AMOXAIGELS, Ol oToleg elvan xploeg yio T AN amopdoewmy
otV evepyetoy| e€looppomnTixy) xepdooxotia. Avtriétng, Aoyw Tou eldouc Tne eQupuoyN,
ETELDT) TOL OXEOTATO AUTE €YUV LoYUET| Yeovixt| e€dpTnoT, eivan o edxolo va tpofAepioly
oo UTOTAAVOPOUIXE LOVTEA.

o Ynuaota Aentouepoilc ITpdfBredmne: H oxpiBric mpdPredn twv Aemtoucpetdy otny TpoyLd Tng
XATAGTAONC, OIS TwV ONUEWY XoUTNC, EYEL TOV To oNUavTiXS poho. To povtéla tpdBiedng
Ypovooelp®Y Bactouéva ot dladixaoleg didyvong, omwe To TimeGrad, éyouv Tnv xavéTnTa
VoL ToRdyouv oA AETTOMERELS TPOYIES, AOYW TN EYYEVOUS TOAUTAOXOTNTAS TOUG, ot WG
amotéheoua ebvan Wovixd yior Ty xadodrynorn tou MPC, odnyovtag o xohltepo EAeyyo.

1.4.4 X0yxeion pe Ilpooceyyioeig Evioyvtixng Mdadnong

H olyxpion tne npocéyylorc pog xau e pedodouc Evioyutinic Médnone Xwpic Movtého (model-
free RL), amodewcviet 6tu ot pédodol udinone Bootouévec oe HOVTENO UTEREYOUY GNUOVTIXG OTAY
elvan Sadéotpor axeBr LOVTEAN Yia TO GUGTIUAL.

o Ynuavtiny Trepoyr) D-1 MPC: H xolbtepn vhornoinon model-free RL, ye mAvien yvoon twyv
EMOUEVOV 12 Tporyuatixdy TV (Un-peakiotixd oevdpto), anédwoe 69.5% yelpdtepa and
Ot pog Pévodo. Autéd unoypouuilel To TACOVEXTNUO TNS XPHONG EVOS XUAOU UOVTENOU (6T
70 TimeGrad) yw ) BeAtioTonoinon twv ano@dcenmy.

o Eupwotio xar Euxohio phutong: H puédodog pag eivon mo e0pwotn xow ToA) euxohdTeRT 0T
evduLon (tuning). Mg Beetoly xahéc TaPAUETEOL Yiot TO HOVTEAD BidyuUoTg, ot TpofBiédelc
TOU TUPAUEVOUY GUVETELS, doa 1) Sadtxacio extaldeuong elvon ToAD mo ebxohn xou otadepn.

o Ilpoxiroeic Model-Free RL: H exnaideuon elvon eConpetind 60oxohn, xon amontel tepdoTio
oo enavokfbewy oe oivieteg egopuoyéc (oTny Tepintwot yog ypeetootixaue 15.000.000
emovahAPelc) Adyw TOU YEYAAOU YOEOU TURUUETROV.

o Ilpoxtd Znthpato: Eve ot dewpla ot uédodor RL Xwpelc Movtého punopoly vo npooeyyi-
ooLY 11| BEATIOTN GUUTERLPORE PETE O JPXETEC EMAVAAAPELS, TO TEAXTIXG KOG TOC OE YPOVO
X0l UTOAOYLO TIXOUS TOPOUC Elvar UEYA0. YE GeVApLa OTOU Eval axEUBEC HOVTENO GUO TAUATOS
ebvon Sodéotuo, ol mpooeyyioelc mou Pasilovtan o YovTéla TEOG(PECOUY TOAD TO ATOBOTIXY)
CUUTIERLPORAS YLaL TOV TREXTORAL.

1.5 Xvunepdopata xaw MeAhoviixn Epyacia

1.5.1 Xvunepdopata

Yy napovoa Aimhwuatint| Epyaoia avartiloue xarvotoueg mpooeyyiong yio tn Afdn anogpdoewy
und afefordTnTa o oToyaoTIXd cuoThuata. Ou mpooeyyicel auTég evowpatvouy TiavoTIXd
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wovtéha medPAiedne Baotouéva oe Badixacieg didyuone oe alyoptduoug IlpoBhentinol Eréyyou
(MPC), ue oxond tov éAeyyo cOVIETWY TOAUSLECTATODV GTOYUOTIXWY GUCTNUETWY.

Meéoo ané extetapéva mewpduota, delaue 0T 1) uéVodoc pac, Diffusion-Informed MPC, emituy-
YOveL oNUovTIXG XUADTERES ETIOOOEL GE GUYXELON UE Tapadootaxés Tpooeyyioels. Autéd ogelleTto
OTNV EYYEVT] OVOTNTA TV UOVTEAWY Oldyuong va podaivouy ue axpifelor tepimhoxes xatavoues
miavotntag. Emmiéoy, ol tapurdoryéc Tou ahyoplduou uag Tpoc€yylooy ToAD TIG WAVIXES UNOTOL -
oelc (ypnotpomolnvTog Télela Lovtéla TeoBhednc), urtodewviovtog 6Tt 1 LéBodog poc Bektiotonoln-
o€ TOV AEYYO TOU TEAXTOPN OYEDOV TOCO UMOTEAECUATIXG OGO OL Wbavixol ahyopLriuot.

Emmiéov, n uédodog yog, emédelle mAcovéxTnua évavtt Slapdpwy viotojoewy RL Xwplc Mov-
ého. H OSapopd autrh vroypouuiler ta ogéln g xerong evog xahol uovtélou meoBhedng yia
Behtiotonolnon dtay autd elvar drodécipo. Eva axdua TAcovEXTNUL TNE TEOGEYYIONG g Efva 1) EL-
cwo Tl xou 1 euxohdtepn pUdULoT, ot avtileon ue T ypovoBopa EXTAUBEUCT) XL EVPECT) TUPUUETEWY
Twv Yetddnv RL Xwelc Movtého.

1.5.2 MeAlovtixr, Epyoaocia
Mepuéc perrovtixée xoteudivoelg mou Tnydlouy amd TNy €EeUVd uag ivou:

1. E¢urnvotepo Khddepo Aévtpou Yevaplowv: Tapdho mou ta Aévtpa Xevopiwyv Atdyuone odn-
youv ot po otevapr| dadixacio BeAtioTonolnong, unopel va yivel Tepaitépn EpEuva Yid TOV
UETPLOOUO TOV EMUNTOOEWY TOU XAABEUATOC Tou BévTipou. Autd ornuaiver Tnv elepedvnom
UEVOBWY XxhodEUaTog (THoviS UE YENON EUPETIXADV) TOU TEOGupu6LoVToL BUVOUIXE GTO TR0
YOUEVOL OEVEPLAL.

2. TPewdwéc Apyrtextovinéc Evioyutinic Mddnong: Mo dhkn pehhovtiny xatedduvor mepth-
ouBdver T onuovpyio UBEBKGY TeooeyYioewy RL mou cuvbudlouy To TAEOVEXTAUATA TOGO
TWV TEYVIXGV Y0plC LOVTERD 0G0 xot TV TEYVX®OY Tou BaciCovtal ot povtého, omwe Dyna-
Style pedodol, 6mou €va LOVTERD YENOWOTOLEITOL YLol TOV EUTAOUTIOUO TGV EUTEIQXMOY Yo
exnafdevor, 1| Twv Q-learning TeYVIXOY TOU YENCILOTOOLY €VoL OVTERD YLoL TNV EXTUNON
TOU X60TOUC PETA ToV opilovta (cost-to-go).

3. Egapuoyy| xan og dAha HepBdhhovta: T'a nepiocdtepeg eVOEILEC TNG ATOTEAEOUATIXOTNTOG
xo NG PEVOB0U Hag, UTOPOUUE Vo EEEPEUVACOUUE ETUTAEOV TEQLTTAOOELS EQPUPUOYNC, OTWS
0 éheyyog €Eunvey dixtiwy (smart grid), n autévoun odhynon N n Bektiotonoinon yenuo-
TOOLXOVOUIXGY YopTopuiaxiny (financial portfolio optimization).

4. Yiyxeton Awgdowy Movtéhov Awdyvone oe MPC: Evé to TimeGrad mogelye éva toyupd
wovtéro mpofiedng, Va Aroav evdiagpépov va e€epeuvniel 1 amodooT ot GAADY HOVTEALY
OLdyUOMG Yol YPOVOOELRES.

5. Evooudtowon Aviyvevone Avouaiidv (Anomaly Detection): Ye yehhovuxy épeuva Yo uno-
EOUOOUE ETLONG VO DIEPEUVACOUUE TNV EVOWOUATOON HOVTIEAWY OLdyuong yia TNV oviyveuon
avepoley. Autd mdaveg Yo 0dnyroel o o axpi3r) oyedlacuo.

6. Evowudtoon Aedouévwv I'eyovotwv (Event Data): Eva oxoupo yehhovtind Briua eivon
ouumepiANdm %o ALY TNYOV BeBOUEVWY, TS TANEo@opieg xoupol xa ewnoelc. Autol ol
eEwTEPIXOL TOPYOVTES TUPEYOLY TONITIIES TANEOPOPIEC OYETXY UE TIG UTPOBAETTEG GUUTER-
LPOPES TOU CUCTHUATOS Xt Uopoly Vo Tpoctedolv 6To UOVTEND BLdyuong UeE T1 UopY)
Savuoudtwy-cuvinuay (condition-vectors or covariates).
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2.1 The Evolution of Artificial Intelligence and Machine
Learning

The concept of creating intelligent machines has ancient roots, dating back thousands of years
to philosophers who explored the nature of intelligence and consciousness. This human interest
materialized in early autonomous machines known as automatons, a term derived from ancient
Greek, meaning “acting of one’s own will”. Greek mythology has a plethora of tales about
mechanical beings, such as the bronze giant Talos, who patrolled the island of Crete, and the
self-moving golden tripods crafted by Hephaestus to serve the gods. Moving from the tales
to engineering, the philosopher Archytas of Tarentum is known to have designed a wooden,
steam-powered pigeon capable of flight, in the 4th century BCE. Philo of Byzantium created
the “Automate Therapaenis” (Automatic Maid), in 3rd century BCE, a human-sized automaton
that could automatically pour wine and water from two containers. More popular inventions are
credited to Heron of Alexandria in the 1st century CE, with various works, such as Aeolipile (a
steam-powered rotating spheres), automatic doors, and even robotic theatrical plays that were
mimicking humans.

The formal establishment of Artificial Intelligence (AI) as a field of study occurred two
millennia later, in 1956, at the Dartmouth Summer Research Project on Artificial Intelligence.
This conference is widely regarded as the birth of Al. It was during this event that McCarthy
invented the term “Artificial Intelligence”. Early Al research was mainly centered on symbolic
methods and problem-solving algorithms, aiming to mimic human reasoning through explicit
rules. Figure 2.1 depicts the pioneers gathered at this event.

Figure 2.1: In the back row from left to right are Oliver Selfridge, Nathaniel Rochester, Marvin
Minsky, and John McCarthy. In front on the left is Ray Solomonoff; on the right, Claude
Shannon. The identity of the person between Solomonoff and Shannon remained a mystery for
some time. Source: [1]
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Since its beginning, Al has evolved rapidly. Researchers, recognizing the limitations of such
rule-based systems in handling the wariability and uncertainty of real-world scenarios, devel-
oped Machine Learning (ML) and Deep Learning (DL), which enables systems to learn from
data rather than being explicitly programmed. Examples of early ML applications are Arthur
Samuel’s checkers-playing program [42] in 1959 and Frank Rosenblatt’s Perceptron [10] in 1958.
However, these early models had limitations in handling complex, non-linear problems, leading
to a period of reduced interest.

Neural networks gained interest again in the 1980s and 1990s, thanks to theoretical advance-
ments and increase in computational power. A pivotal moment happened in 2012, when the deep
convolutional neural network AlexNet showcased state-of-the-art performance in image classifi-
cation [43]. Even more impressive breakthroughs took place in the subsequent decade, with the
rise of Large Language Models (LLMs) that revolutionized natural language generation and un-
derstanding, and the rise of Diffusion Models which show remarkable capabilities in generating
high-quality data.

Today, AI, ML, and DL are integral parts of various everyday applications, from well-known
examples like facial recognition, natural language processing, and recommendation systems, to
intelligent decision-making in many problems. In real-world scenarios, which usually involve
complex stochastic systems, like energy grids or financial markets, Al has the ability to process
large datasets and identify multi-factor hidden patterns which are impossible to be captured
by human intuition or traditional modeling. This has led to great applications in time series
forecasting, where models are trained to predict future values based on historical data, and in
system optimization, with Reinforcement Learning (RL), where intelligent agents learn to make
efficient sequential decisions to achieve a goal.

2.2 Forecasting and Decision-Making Under Uncertainty

In real-world systems, the underlying dynamics are complex and uncertain, therefore the future
evolution is influenced mostly by stochastic factors. Applications such as energy management,
financial trading, and autonomous systems require agents to make sequential decisions based on
partial and noisy observations, without full knowledge of the system dynamics.

Traditional Time Series Forecasting Traditional time series forecasting models, such as
autoregressive models, have been widely used, with some success. However, their inherent sim-
plicity (for example, they often assume linearity and stationarity), limits their effectiveness in
capturing the complex patterns of real-world data. Machine Learning models like Recurrent
Neural Networks (RNNs) and Long Short-Term Memory (LSTM) networks, utilize the complex-
ity of neural networks to improve the ability of modeling the intricate patterns. However, they
typically yield point forecasts, since they are trained using the MSE loss, and do not account
for the uncertainty. To address this, one can output quantiles or use Bayesian LSTMs (for
example [44]), but they still struggle with multi-modal futures and complex dependencies.

More recently, diffusion models have emerged and showcase incredible potential in modeling
complex data distributions. This makes them highly suitable to probabilistically forecast time
series, leading to even further improvements in accuracy.

Reinforcement Learning in Partially Observable Environments Reinforcement Learn-
ing (RL) provides a framework for agents to learn optimal policies through interactions with
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an environment, in order to achieve a goal. In the real-world, the environment is partially
observable, meaning that the agent must make decisions based on incomplete information.

Model-Free Reinforcement Learning (MFRL), directly learns from experience without cre-
ating an explicit model the environment’s dynamics. The primary advantage of this learning
method lies in simplicity and applicability, as MFRL algorithms do not require prior knowl-
edge, or the computational burden of building an accurate model of the environment dynamics.
However, a big drawback is that they usually require huge numbers of training interactions to
converge to effective behaviors.

Model-Based Reinforcement Learning (MBRL) enhances the efficiency of RL by incorporating
a step of learning a model of the environment’s dynamics. These models can then be used for
planning, reducing the complexity. However, accurately modeling the dynamics is a significant
challenge, especially in high-dimensional and stochastic settings.

Model Predictive Control is a receding-horizon control algorithm that uses a predictive model
of the system to optimize a sequence of future control inputs at each time step. Only the first
input in the optimized sequence is applied before the process repeats using new observations,
enabling adaptive, feedback-based planning in partially observable and uncertain environments.

Probabilistic Forecasting in Decision-Making The integration of advanced probabilis-
tic forecasting models with decision-making frameworks can significantly improve performance
in uncertain environments. Using state-of-the-art diffusion models for time series forecasting,
agents can generate realistic scenarios in order to plan their actions in the presence of uncertainty.
Incorporating these probabilistic forecasts into control and planning algorithms enhances robust-
ness, provides risk-aware decisions, and increases training efficiency by utilizing the generated
trajectories.

2.3 Contributions of This Thesis

This thesis explores the integration of diffusion-based probabilistic forecasting models with se-
quential decision-making frameworks to provide a robust and efficient model for an agent in
partially observable stochastic environments. The main contributions are:

1. Adapting diffusion models for time series forecasting in partially observable stochastic
dynamical systems to provide probabilistic predictions.

2. Developing deterministic and stochastic optimization algorithms that utilize sampled tra-
jectories from the diffusion-based forecaster for robust control.

3. Proposing a scenario tree-based optimization algorithm to optimize actions over a struc-
ture that hierarchically organizes the uncertainty, having potential for risk-aware decision-
making applications.

4. Formulating an algorithm that introduces a heuristic to implicitly extend the end of the
optimization horizon, for more long-term planning.

5. Demonstrating the effectiveness of the proposed frameworks through a case study in energy
arbitrage, showcasing improvement over using classical forecasting, and model-free RL
algorithms.

6. Part of our research, has been accepted for publication at the EUSIPCO 2025 [9].
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2.3.1 Organization of the Thesis

Chapter 3 provides a survey of fundamental works and models in deep learning, time series

forecasting, generative models, diffusion models, and reinforcement learning.

Chapter 4 formalizes the class of problems that this thesis targets and defines the proposed

theoretical frameworks for integrating diffusion forecasting with model-based RL.

Chapter 5 presents experimental results and evaluations of our methods against alternative

approaches in the case study of energy arbitrage.

Chapter 6 summarizes the key findings the thesis, and discusses directions for future research.
Figure 2.2 presents an overview of the major ML areas covered in this thesis: from deep learn-

ing, through generative modeling, to reinforcement learning and its use in sequential decision-

making. Finally, our approach combines diffusion-based probabilistic forecasting with sequential

decision-making algorithms.

Machine Learning

\

[Supervised Learning} [Unsupervised Learning] [Reinforcement Learning]

Deep Learning GMMs Generative Models Model-Free RL Model-Based RL

LN
[DNNs] [CNNS} [RNNs] Do edls |

[Probabilistic Forecasting] [Model Predictive Control]

A
Diffusion-Informed
Model Pred|ct|ve Control

[Deterministic MPC] [Stochasnc MPC} [Scenarlo Tree MPC Heuristic MPC

Figure 2.2: Overview of the Machine-Learning areas discussed in this thesis ending at the method
we propose.
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3.1 Deep Learning

Deep learning is a subset of machine learning that uses deep neural networks (neural networks
with many layers) to model complex patterns in data. These neural networks, often referred to
as deep neural networks (DNNs), are composed of multiple layers of interconnected nodes, called
neurons, that process information for various tasks by learning from large amounts of data. Deep
learning aims to mimic how the human brain processes information. Deep neural networks are
composed of sequences of linear mappings and nonlinear activation functions. During forward
propagation, each layer transforms its input into a new representation, while during backprop-
agation, the network computes gradients of a loss function with respect to every weight, and
updates them, in order to perform better in the given task.

3.1.1 Perceptron and Deep Neural Networks

The perceptron, introduced by Frank Rosenblatt in 1958 [10], is one of the earliest models of a
neural network. It serves as the foundation for more complex architectures, including modern
deep learning models. A perceptron consists of a single layer of neurons, each of which computes
a weighted sum of inputs and applies an activation function to determine the output.

Inspired by the biological structure of the human brain, neural networks consist of inter-
connected layers of neurons (nodes). Each neuron applies an activation function to its input
to produce an output for the successive neurons. The most common type of neural networks is
feedforward networks, where data flows in one direction, from the input layer to the output layer,
meaning that neurons in one layer do not connect to neurons in the same or previous layers.
Backpropagation is the most common algorithm for training feedforward neural networks. The
steps are to calculate the error between the network’s output (prediction) and the actual target
output (from the dataset), and then to adjust the weights of the connections between neurons
in order to ultimately minimize this error.

A simple feedforward neural network consists of three main components. The input layer
receives the data, which can take the form of vectors or matrices representing features or obser-
vations. The hidden layers process the input and automatically extract relevant and meaningful
features for the data by minimizing a cost function. Finally, the output layer produces task-
specific outputs, such as classifications or predictions.

Representation of a DNN: Mathematically, a neuron is represented as:

y=1rf (Zwi$i+b) ;
i=1

where z; are the inputs received from the previous layer, w; are the weights that determine
the importance of each input, b is a bias term that extends the linear transformation to an
affine transformation, f is the activation function introducing non-linearity to capture complex
patterns, and y is the neuron’s output. An illustration of a neuron can be seen in Figure 3.1.

A collection of neurons on the same level constitutes a layer in a neural network, as shown
in Figure 3.2. The output of a layer can be represented in matrix form as

Y = f (W(l—l) N A G b(l—l)) :
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Figure 3.1: A neuron with n inputs z;, their associated weights w;, and the summation node X.
The activation function f processes the weighted sum of the inputs and produces the output y.
Inspired by [2].

where (™ is the input vector to layer I (stacked outputs of the previous layer), W1 is the

weight matrix for layer [ (representing all the weights from layer [ — 1 to layer [), b¢~Y is the
bias vector (stacked bias weights from layer [ — 1 to layer [), and y is the output vector of the
layer (stacked outputs of the neurons of layer /). The network can have any number of hidden
layers allowing it to model more or less complex relationships in the data.

Figure 3.3 visually represents a neural network, showing how the input layer, hidden layers,
and output layer work together, with each node in the network representing a neuron. The
information flows from layer to layer, with weights determining the strength of connections
between neurons.

Types of Activation Functions: The weighted sum of inputs for each neuron is passed
through an activation function to inject non-linearity, enabling the network to capture complex
patterns in data. Below are some of the key activation functions used in neural networks:

1. Linear Activation Function:
flx)=x

A neural network with linear activation functions would result in a purely linear model.
2. Rectified Linear Unit (ReLU):
f(z) = max(0, z)

ReLU outputs zero for negative inputs and a linear response for positives. Intuitively,
the multiple layers using a ReLLU activation function aim to separate the data space into
subspaces defined by polyhedra and then solve the task (e.g. classification).

3. Leaky ReLU:

f(z) = max(ax, z)

This is a variant of ReLLU that ensures neurons continue to learn even when receiving
negative inputs, using a small positive constant a.
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Figure 3.2: A representation of the neural network layer computation. The output of layer [,
denoted as hW, is computed by applying an activation function f to the weighted sum of the
previous layer’s output A=Y through the weight matrix W =1 plus a bias term b(¢~Y. Inspired
by [3]

4. Sigmoid Function:
1
=

This function compresses the real input into the range (0, 1), which can help interpret the
output as a probability.

5. Hyperbolic Tangent (tanh) Function:

et —e®

er 4 e ¢

flx) =

The tanh function maps inputs into the range (—1,1).

6. Softmax Function: N

e 7
n T
Zj:l e
This function transforms an n-dimensional input vector into a probability distribution and
is useful in multi-class classification scenarios.

f(@)i =

Figure 3.4 shows a visual representation of the activation functions mentioned.

Neural Network Training and Learning The goal of a deep learning model for a supervised
learning task is to find its parameters 6 that minimize the empirical risk:

7O = S L(f(@0), ),
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Figure 3.3: Visualization of a Feedforward Neural Network with Input, Hidden, and Output

Layers. Each node represents a neuron, and the connections illustrate the flow of information.
Source: [3].

where f(z;;0) is the output of the neural network for input xz;, and L(+, ) is a loss function which
measures the discrepancy between the predictions y; and the ground truth y;. Some common
loss functions include the Mean Squared Error (MSE):

1 A
Lyse = n Z(?/z — ),
i=1
the Binary Cross-Entropy (BCE):

1 & . X
Lycr = 0 ; [yi log gj; + (1 — y;) log(1 — yi)]7

and the Cross-Entropy (CE) loss for multi-class classification:

n C
Lcg = —% Z Z Yi,e 10g(Jic)-

i=1 c=1

The training of a network is usually based on gradient optimization methods. For instance,
a gradient descent update is:

z(t+1) = z(t) — aV f(z(t)),

where a > 0 is the learning rate. In practice, stochastic gradient descent (SGD) is used to
update the parameters based on mini-batches of training data. The efficient computation of the
gradient VyJ(6) in multi-layer networks is achieved using the backpropagation algorithm, which
usess the chain rule. For a neuron with output y = f(z) where z = ). w;x; + b, the chain rule
gives

oJ  0J0y 0z

ow;, 0Oy dz 0w,
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Figure 3.4: Linear Activation Function (Top Left), ReLU Activation Function (Top Right),
Leaky ReLU Activation Function (Middle Left), Sigmoid Activation Function (Middle Right),
Tanh Activation Function (Bottom Left), and a bar chart representation of Softmax Activation
Function (Bottom Right).
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The backpropagation procedure involves the forward pass to compute the network output for
each data sample, the loss computation given an output and the corresponding ground truth,
and the backward pass where gradients are propagated from the output back through each layer,
to update the network parameters, as shown in Figure 3.5.
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Figure 3.5: Neural Network Architecture with Forward and Backward Pass

3.1.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs), introduced by [11], are specialized neural networks
designed to recognize spatial dependencies within data. Especially for image processing tasks,
CNNs were designed to automatically take into account pixels in the neighborhood of each
pixel through convolution, thus handling spatial structures. They adjust the weights of filters
(kernels) during training to learn important local patterns in the data, such as edges, textures,
and shapes, in a process named feature extraction.

Convolution: The convolution operation is used for feature extraction by applying a filter
(kernel) over the input tensor. Suppose we have an input image I of dimensions m; X mg X m,,
where my and my are the height and width, and m, is the number of channels. We apply a filter
K of dimensions n; x ny X n., where n. = m.. The convolution operation is given by:

ny Ny  Ne

Fli,jl = I *xK)y, = ZZZny, Ii+z—-1,j+y—1,z],

z=1 y=1 z=1

where F[i, j] is the (7, j)-th entry of the feature map, and Kz,y,z] and Ii+2—1,j+y— 1, 2]
represent the kernel and input image at specific positions, respectively. After applying the
convolution, an activation function is used on the result to introduce non-linearity. For example,
applying the ReLLU activation function:

Fli, j] + max(0, F[i, j]).
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Padding: To maintain the spatial dimensions or prevent the convolution from focusing only
on the central regions, padding is applied. For example, with zero-padding, a row and column
of zeros are added on all sides of the input tensor, allowing the kernel to scan the borders of the
image.

Pooling: Pooling is a downsampling operation that reduces the spatial size of the feature
maps, preserving dominant features. Max pooling selects the maximum value within a local
region. For example, for a 2 x 2 patch:
. 2 2 . :
yli, j] = mafcmale[@ +z—1,7+y—1]
= y=

Pooling makes the network computationally efficient and reduces overfitting by aggregating the
features in various regions.

Fully Connected Layer: After several convolution and pooling layers, the output feature
maps are flattened into a single vector, which is passed through fully connected layers. This
layer combines the output into a new vector, representing the final classification or regression.
The fully connected layer is computed as:

y=f(W -vec(F)+0b),

where W is the weight matrix, vec(F’) is the flattened feature map vector, b is the bias, and f
is the activation function. For the hidden layers, a common choice for the activation functions
is the ReLU, while for the output layer, if classification is the task, the softmax function is

commonly used:

e

o(z) = Zj e

Y

where z; is the output for class i, and o(z;) gives the probability distribution over all possible
classes.
An example of a convolutional neural network architecture, can be seen in Figure 3.6.

3.1.3 Recurrent Neural Networks (RNNs)

RNNs, introduced at [12,13], are designed for sequential data, such as time series or natural
language, where previous inputs influence future outputs. The fundamental concept of RNNs is
that their hidden state is recursively updated. Specifically, at each time step ¢, the hidden state
h; is updated based on the current input x; and the previous hidden state h;_:

he = f(Wh - he—y + Wy - + by),

where W), and W, are weight matrices, b, is a bias vector, and f is a non-linear activation
function, often tanh or ReLLU. The output of the RNN at each time step, denoted g, is computed
as:

Yy = g(Wy : ht + by)a

where W, is the output weight matrix, b, is the bias term, and g is an activation function tailored
to the task. For classification, ¢ is typically the softmax function, whereas for regression tasks,
a linear activation is used. Figure 3.7 illustrates the architecture of a typical RNN.

29



CHAPTER 3. BACKGROUND AND RELATED WORK

512 512 512 ¥
conv4

256 256 256\
i 64 64 conv3
64@& conv2

convl

Figure 3.6: Example architecture of a Convolutional Neural Network. Source: [4]
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Figure 3.7: Recurrent architecture with nodes representing hidden states, inputs, outputs, and
transformations.

Long Short-Term Memory Networks: Long Short-Term Memory (LSTM) networks [14]
extend the capabilities of RNNs by addressing the vanishing' and exploding? gradient problems.
LSTMs use gating mechanisms to regulate the flow of information through the network. The
output 7; of an LSTM at each time step is computed in a similar manner to RNNs:

Y = Q(Wy ~he + by)a

'The wanishing gradient problem occurs when gradients become extremely small during backpropagation
through many time steps (due to the repeated multiplication of small derivatives), making it difficult for the
network to learn long-term dependencies.

2The exploding gradient problem occurs when gradients become excessively large (due to the repeated multi-
plication of small derivatives), leading to unstable weight updates.
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where ¢ is often a softmax or linear activation (depending on the task) and various gates control
the flow of information:

fi =Wy [hi—q, ] + by) (forget gate),
iy =o(W; - [he—1, z¢] + b;) (input gate),
Cy = tanh(We - [hy_1, 2] + be) (cell state update),
Ci=f,0C1+i,0C (new cell state),
op = oWy - [h_1, 2] + bo) (output gate),
hi = 0y © tanh(C}) (new hidden state),

where ® denotes element-wise multiplication.

The forget gate, f;, determines how much of the previous cell state (C;_;) should be retained.
If f; is close to 1, the corresponding information is preserved. If f; is close to 0, the information
is discarded. The input gate, i;, decides how much of the new candidate information (C,) is
added to the cell state. This controls how new information flows into the LSTM. The candidate
cell state, C;, represents new information generated based on the current input (z;) and the
previous hidden state (h;_1). The tanh activation function ensures these values are within the
range [—1,1]. The new cell state, Cy, is computed by combining the old cell state, scaled by
the forget gate, and the candidate cell state, scaled by the input gate. This mechanism allows
the LSTM to selectively retain past information and incorporate new observations. The output
gate, o, controls how much of the updated cell state contributes to the new hidden state. The
hidden state, h;, combines the cell state and output gate. The cell state is passed through a
tanh activation function, and the output gate determines what part of this processed state is
output as the hidden state. The final output, y;, depends on the hidden state and the activation
function (¢), which may be a softmax or linear activation, depending on the task. A typical
LSTM cell is illustrated in Figure 3.8, and a LSTM network consists of multiple LSTM cells
connected serially and possible has more than one layer. A LSTM variant is the Bi-LSTM, which
consists of two LSTM networks that parse information in opposite ways, in order to capture more
complex dependencies.

Gated Recurrent Unit: Another popular variant of RNNs is the Gated Recurrent Unit
(GRU), introduced by [20], which simplifies the architecture of LSTMs by combining certain
gates. The update and reset gates of GRUs, denoted z; and r; respectively, are computed as:

2= 0 (W - [he-r,] + D) (update gate),
re = o(W, - [he—1, 2] + by) (reset gate),
hy = tanh(W - [ry © hy_y, ] + b) (candidate hidden state),
hi=1—=2)0h1+20 hy (new hidden state),

where W, W, are the weight matrices, b,, b, are bias vectors, and o is the sigmoid activation
function. The candidate hidden state h; is then calculated as:

iLt = tanh(W : [Tt ® ht—17 th] + b),

where ® denotes element-wise multiplication. The output of the GRU is derived similarly to
that of RNNs and LSTMs, using the hidden state h; and the output weight matrix W,:

Yy = g(Wy . ht + by)
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Figure 3.8: Representation of a typical LSTM cell structure. Inspired by [5].

The update gate, z;, determines the extent to which the previous hidden state (h;_) is
retained. A value close to 1 means most of the past information is kept, while a value close to
0 means the new hidden state depends more on the current input. The reset gate, r;, controls
how much of the past hidden state (h;_;) contributes to the candidate hidden state (h;). When
ry is close to 0, the network "forgets" most of the previous state and focuses on the current
input. The candidate hidden state, iLt, is computed using the reset gate, past hidden state, and
current input. It represents the potential new state for the GRU. The new hidden state, h;, is a
weighted combination of the previous hidden state and the candidate hidden state, controlled by
the update gate. Specifically, (1 — 2;) ® h;_; represents the part of the old state that is retained,
while z ® h; integrates the newly computed information. A typical GRU cell is illustrated in
Figure 3.9.

3.1.4 Autoencoders

Autoencoders [15] are unsupervised learning models that aim to learn a meaningful represen-
tation of the input data, from which they can reconstruct this input. They consist of two
components: the encoder and the decoder. The encoder maps the input data x into a com-
pressed latent representation z, capturing its most essential features. This transformation is
expressed as:

z2=f(We-x+0),

where W, and b, are learnable parameters, and f is a nonlinear function. The decoder recon-
structs the input from z using:
T = g(Wd . Z+bd),
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Previous hidden state Current hidden state

Figure 3.9: Typical Gated Recurrent Unit (GRU) architecture. Inputs h'~! and 2! denote the previous
hidden state and the current input to the GRU respectively. Outputs h! and 3’ denote the current
hidden state and a processed output (such as softmax of h?) respectively. The red dashed box denotes
the Update Gate and the blue dashed box denotes the Reset Gate. The Reset Gate output is denoted
by r¢, the Update Gate output is given by z;, while the candidate hidden state is ?Lt.

where ¢ is another nonlinear function that transforms the latent representation back into the
original input space.

The autoencoder is trained to minimize the reconstruction loss, which is the difference be-
tween the original input = and its reconstruction . The loss function is usually the mean squared

error (MSE):
1 )
L=— >l — |,
i=1

where n is the number of samples in the dataset. By minimizing this loss, the autoencoder
learns to encode the input into a lower-dimensional latent space that retains the most useful
information for reconstruction.

Variational Autoencoders: Autoencoders have been extended to solve specific problems.
For instance, variational autoencoders (VAEs) [21] are the probabilistic version of Autoencoders,
where the encoder learns to map the input to parameters of a prior probability distribution, en-
abling the decoder to generate new data samples by sampling the distribution and mapping the
samples back to the original space. We will discuss VAEs extensively later, as their concepts are
fundamental for diffusion models, which is a central component of this thesis. Denoising autoen-
coders |22] are trained to reconstruct the original input from a corrupted version, making them
robust to noise and capable of feature extraction in noisy environments. Sparse autoencoders
enforce sparsity in the latent representation by using regularization terms. Autoencoders are
also used in anomaly detection, where reconstruction errors can disclose deviations from normal
patterns. Figure 3.10 visualizes the typical architecture of an Autoencoder.

Transformers: Transformers, introduced in [16], revolutionized sequence modeling by using
attention mechanisms. Transformers can process entire sequences, improving efficiency and scal-
ability. A self-attention mechanism computes relationships between all positions in the input
sequence. Given an input sequence X = [z1,x9,...,T,], the self-attention generates represen-
tations, which account for the contexts, by weighing the relevance of other elements to each
position.
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encoder

latent

Figure 3.10: Structure of an autoencoder neural network. The left section represents the encoder,
and the right section represents the decoder. Source: [3].

The self-attention mechanism operates through queries (@), keys (K), and values (V'), which
are matrices derived from the input. The output is computed as

. QKT
Attention(Q, K, V') = softmax V,
Vg
where dj, is the key dimensionality, used for scaling to stabilize training. Multi-head attention
extends this mechanism by projecting inputs into multiple subspaces, allowing the model to
focus on diverse features. The architecture also utilizes positional encodings to account for the
sequential nature of the data.
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3.2 Time Series

3.2.1 Definitions and Practices

Time series data is a sequence of data points measured at successive points in time. A main
characteristic is its temporal ordering, where each observation can depend on the previous ones.
Other characteristics are Trend, which refers to a long-term increase or decrease in the data,
Seasonality, which indicates a repeating pattern over a period, and Stationarity, which is a
property where the statistical characteristics, such as mean and variance, remain constant over
time. Furthermore, time series can be classified as wunivariate, where only a single variable
is observed over time, or multivariate, when each point consists of multiple time-dependent
variables.

Time Series Data Preprocessing Data preprocessing is an important step in time series
analysis and forecasting, like in every task in Data Science. It prepares the data for modeling and
enables algorithms to learn patterns and relationships more effectively. Time series data often
contains noise, outliers, and missing values, which can lead to issues such as biased estimates,
decreased predictive accuracy, loss of temporal context, misleading trends, model instability, and
difficulty in interpretation and modeling in general. Thus, cleaning and transforming the data
are essential steps to improve a model’s performance.

The first step is Data Cleaning and handles issues like missing data, outliers, and noise, which
make time series analysis hard. They can cause biased model estimates, reduce the predictive
ability of models, and disrupt temporal dependencies. Some techniques for addressing these
problems are missing values imputation, outliers detection and correction, and smoothing noisy
data to preserve only the meaningful patterns.

Scaling techniques such as min-max or standard scaling help to standardize data. They are
particularly useful for algorithms that are sensitive to input scales, such as neural networks.
These techniques mitigate the bias caused by scale differences, resulting in more robust models.

Many time series models assume stationarity, where statistical properties remain constant
over time. Stationarization is the process that removes trends to make the series stationary
through transformations, such as differencing: y; = y; — y;—1, where y; is the differenced series,
representing the change between consecutive time points.

Feature engineering is another data preprocessing technique that enhances model perfor-
mance by creating additional variables, from raw data, that capture essential patterns in the
time series. Lag features, such as vy, 1, y;_2, etc, capture temporal dependencies. Rolling
statistics, like rolling means and standard deviations, smooth short-term fluctuations to high-
light trends. Time-based features, such as the day of the week or month, make it easier for models
to locate temporal relationships. Spectral features, like applying Fast Fourier Transform (FFT)
on windows of the time series, reveal frequency components of the data, which is particularly
useful for identifying periodic patterns and cyclical trends.

Decomposition breaks a time series into three components: trend, seasonality, and residuals.
The trend represents the long-term progression of the time series, that is the overall direction
that the data is moving in. The seasonality component represents repeating patterns (cycles)
in the data that occur at specific intervals (for example daily, weekly, monthly, or yearly).
These patterns can be caused by factors such as weather seasons, holidays, work related cycles,
etc. Finally, the residual (or noise) component captures the irregular variations in the data,
that remain after removing the trend and seasonality components. These variations can be
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considered unpredictable and represent the unexplained part of the time series. Mathematically,
decomposition is defined as:

y; = Trend; + Seasonality; + Residual,

3.2.2 Classical Models for Time Series Prediction

Before discussing modern, more complex models for time series analysis, we first consider some
foundational classical models that are simple, yet widely used in predictive tasks.

Beginning with the Autoregressive (AR) model, it is a time series model that predicts the
future values of the series based on the past values. Mathematically, it is defined as:

Yo = C+ Or1y—1 + QaYr—o + - - + Opyr—p + €,

where ¢, represents white noise. The parameters ¢i, @9, ..., ¢, are the coefficients of the lagged
terms, and c is a constant. AR models are effective at capturing linear dependencies in time
series data, as the prediction is an affine transformation of the previous values, and are suitable
for applications in finance. The parameters of the model are estimated using the method of least
squares. Given a training dataset, the goal is to minimize the sum of squared residuals:

Residual = y; — (¢ + p1yp—1 + -+ + Opy—p) -

The Moving Average (MA) model, in contrast to the AR model, incorporates past forecast
errors to model the current value of the time series. The model is given by:

Yy =c+ e+ 0161+ Osepo + -+ 0460y,

where €, represents white noise, and 6, 6s, . .. , 0, are coefficients that measure the impact of past
error terms on the current value g;. This way, it smooths out short-term variations in the data,
and emphasizes on longer-term trends and patterns. MA models are applied in signal processing
and economics. Training MA models is done by estimating the coefficients 6y, 0,,...,60, by
maximizing the likelihood of the observed data under the assumption that the residuals are
Gaussian white noise using optimization techniques like the Expectation-Maximization (EM)
algorithm or gradient-based methods.

The Autoregressive Integrated Moving Average (ARIMA) model extends the AR and MA
models to handle non-stationary data, through the "Integrated" part. Mathematically we have:

Yt =C+ O1Yi—1 + Qoo+ -+ OpYp—p + € + 01601 + oo + - - + Og6 g,

where ¢, is white noise, ¢; are the autoregressive coefficients, and 6#; are the moving average
coefficients. To address non-stationarity, ARIMA applies differencing to the data, transforming
it into a stationary form, as discussed earlier. In essence, ARIMA models combine the autore-
gressive component (AR), which captures dependencies on past values, with the moving average
component (MA), which captures dependencies on past forecast errors, and uses the integration
component (I) to make the data stationary so the former components operate efficiently. These
models are widely used for forecasting in various fields such as finance and environmental sci-
ences. Training ARIMA models involves estimating the AR (¢) and MA (0) coefficients and the
differencing order (d). The first two parts are estimated through maximum likelihood estimation
(MLE), and differencing, along with statistical tests like the Augmented Dickey-Fuller test, are
applied iteratively to confirm stationarity.
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The Seasonal ARIMA (SARIMA) model extends the ARIMA model by incorporating sea-
sonal parts. Mathematically it is formulated as:

v = ARIMA(p, d, q) x Seasonality(P, D, Q, s).

Here, p, d, and q refer to the autoregressive order, the degree of differencing, and the moving
average order, respectively. The seasonal components are denoted as P, D, @), and s, where P
is the seasonal autoregressive order, D the seasonal differencing order, () the seasonal moving
average order, and s the length of the seasonal cycle. The ARIMA parameters are p, which
defines the number of lag observations the model considers for prediction, d, which is number
of differencing operations in order to make the series stationary, and ¢, which determines the
size of the moving average window, which captures dependencies on past forecast errors. The
seasonal components enable the model to account for patterns that repeat over a specific cycle
s. For example, if data exhibits daily seasonality and the time stamps have a period of 1 hour,
s would be set to 24. The training process for SARIMA models is similar to that of ARIMA,
with additional seasonal parameters P, D, (), s to estimate. Seasonal differencing (D) is applied
first to remove seasonal trends, and then standard differencing (d) follows. SARIMA models are
effective for time series with strong seasonal patterns.

3.2.3 Deep Learning Time Series Models

After examining classical models for time series, we will focus on deep learning methods. Unlike
the traditional models, deep learning provides more flexibility and adaptability in capturing
complex temporal patterns, non-linear dependencies and features due to the models’ inherent
complexities. The following models were thoroughly examined in Section 3.1, so we will briefly
discuss them in the context of time series analysis and forecasting.

Although typically used for spatial data, Convolutional Neural Networks (CNNs) [11] can
effectively model temporal dependencies in time series data. In this context, the convolution op-
eration extracts local patterns from a time series, such as short-term trends or seasonal patterns.
For example, for a 1D time series x;, the convolutional layer computes:

K
2t =0 (Zwk *Tyk—1 T b) )

k=1

where wy, are the filter weights, K is the kernel size, and o is an activation function. By stacking
multiple convolutional layers, CNNs can capture increasingly complex patterns over multiple
time scales. They are useful for tasks such as multivariate time series forecasting and anomaly
detection.

Recurrent Neural Networks (RNNs) [12,13] are designed to process sequential data by main-
taining a hidden state h; that evolves over time based on the current input x; and the previous
state:

h; = f(ht—hxt)'

Traditional RNNs, however, have a hard time modeling long-range dependencies due to the
vanishing gradient problem. This problem is caused by the repeated multiplication of small
gradients during backpropagation, leading to very small updates, and as a result, the network
is inefficient in learning long-term dependencies. To address this, Long Short-Term Memory
(LSTM) networks [14] and Gated Recurrent Units (GRUs) [20] introduce gating mechanisms
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that control the influence of past states and new information to the current state, enabling the
model to maintain relevant features over extended sequences.

Attention mechanisms [16] revolutionize time series analysis as they allow models to selec-
tively focus on the most relevant parts of the sequence. In self-attention, the relationship between
two time steps t and t’ is captured through an attention score:

v — eXP(QtT ky)
tt! — )
Zt’ eXp(thkt’)

where q; (query) and ky (key) are learned representations. Transformers are built upon this
concept and they model dependencies across the entire sequence efficiently. This capability
makes them ideal for long-term forecasting tasks and other complex temporal applications.

Sequence-to-Sequence (Seq2Seq) architectures are designed for mapping an input sequence
directly to an output sequence. These models consist of an encoder, which maps the input
sequence into a context vector c, and a decoder, which generates the forecasted sequence from
c (on the initial space). The combination of attention mechanisms and Seq2Seq models is very
powerful, as the total model dynamically weighs the importance of different time steps, and
learns representations for time series data in a more robust manner.

3.2.4 Methods for Time Series Forecasting

One-Step vs. Multi-Step Forecasting Time series forecasting methods can be classified
based on the prediction horizon.

One-step forecasting focuses on predicting the value at the next immediate time step, given
the current and past observations. The benefits of this approach are that it is simple, as the model
is trained to predict only one step ahead, and it generally provides more accurate predictions
because the prediction horizon is very short, so the model does not require a too complex
structure to achieve good results. However, the major drawback of one-step forecasting is its
limited scope. The method only provides a single future point, which is limiting for many
applications, since longer-term forecasts are usually required (for example in tasks like weather
prediction and demand planning). Furthermore, repeatedly applying one-step forecasting to
generate multi-step predictions is neither computationally efficient, due to multiple inference
processes, nor accurate, because of error accumulation.

On the other hand, multi-step forecasting aims to predict a sequence of future values. There
are two primary approaches to achieving this: recursive forecasting and direct forecasting. Re-
cursive forecasting, also known as iterative method, involves using the model to recursively
extend the predictions for the desired horizon, by predicting the next step ¢ + 1, then feeding
this prediction back into the model to predict t 42, and so on. As discussed before, this method
is consistent, as same model is applied for each prediction, however, recursive forecasting is prone
to error propagation, as each successive prediction depends on the previously predicted values.
This leads to rapid degradation in accuracy and uncertainty, as the prediction horizon increases.
In contrast, direct forecasting involves training a model to predict multiple future time steps
simultaneously. Instead of generating one prediction at a time, the model outputs the entire
forecast horizon (yiy1,Yei2, ..., Yen) in a single step. By predicting all future steps directly,
this method avoids the issue of error propagation, which is inherent in recursive approaches.
However, the complexity of training a direct model is significantly higher, as the model must
learn patterns for multiple time steps simultaneously. This also increases computational costs.
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Furthermore, a model trained for a specific horizon may not generalize well for other prediction
horizons, and in that case, it requires retraining.

Probabilistic Forecasting Contrary to single point estimation, probabilistic forecasting pre-
dicts a range of possible outcomes, along with probabilities or confidence intervals. For a given
future time step t + h, the model outputs a probability distribution P(y,. | X;), where x; rep-
resents the past observed data. The main advantage of probabilistic forecasting is its ability
to quantify uncertainty. This is crucial for applications where the environments are uncertain
and decisions must account for risk, such as financial markets or energy grid management. For
example, instead of predicting energy demand, probabilistic models provide confidence intervals
on ranges of possible future outcomes, allowing planners to prepare for best-case, worst-case and
average-case scenarios. Additionally, probabilistic forecasting is generally more robust in volatile
environments. The significant disadvantage of probabilistic models is that they are often more
complex to train compared to point estimating models, as they deal with distributions instead
of single values, leading to higher computational costs.

Evaluation Metrics for Time Series Forecasting FEvaluating time series forecasting mod-
els requires metrics that assess the accuracy and reliability of predictions.

The mean absolute error (MAE) measures the average absolute difference between predicted
values 7; and actual values y;:

1 n
MAE = — Yt — Yil-
" ; | |
MAE is simple to compute and interpret and is less sensitive to outliers compared to squared-
error metrics.
The mean absolute percentage error (MAPE) expresses the forecast error as a percentage of
the actual values:

100% <~ |y — 9
no |y
MAPE is scale-independent, but has limitations when actual values y; are close to zero, as the
percentage error can become very large or undefined.
The mean squared error (MSE) calculates the average of squared differences:

n

1 X
MSE = 5 Z(yt — yt)z.

t=1

MSE is particularly useful when models are needed to avoid large deviations, but its high sen-
sitivity to outliers can sometimes make model training inefficient.
The root mean squared error (RMSE) is the square root of the MSE:

n

1 X
RMSE = | ~ > (e — 90>

t=1

RMSE has the same advantages and drawbacks as MSE but is in the same units as the predicted
variable, which is more interpretable.
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The symmetric mean absolute percentage error (SMAPE) expresses forecast accuracy as a
percentage:

SMAPEZIOO%Z Tl 710
no = |y + [5:])/2

It is symmetric, penalizing over- and under-predictions equally. However, it may return high
values when actual values y; are near zero.

The mean absolute scaled error (MASE) is a scale-independent metric that compares forecast
errors to a naive forecasting model:

1 n o5
MASE = —— Zt? Y — Uil .
N s Y — e

For probabilistic models, the Continuous Ranked Probability Score (CRPS) [45] is a standard
metric. CRPS evaluates the accuracy of predicted probability distributions by comparing them

to observed values: -

CRPS(F,y) = / (F(z) - 1(z > y)) da
where F(z) is the cumulative distribution function (CDF) of the predicted distribution and y
is the observed value. CRPS generalizes the MAE to probabilistic forecasts, providing a single
score that accounts for both the accuracy and certainty of the predicted distribution. This
makes CRPS an essential metric for evaluating probabilistic forecasting models, as it measures
how well the predicted distribution aligns with the observed outcomes. The CRPS can be
understood as the probabilistic analog of the Mean Absolute Error. While MAE assesses the
absolute difference between a point prediction y and the true value y, CRPS evaluates the
entire forecasted distribution against the observed outcome. It captures two aspects of a good
probabilistic forecast: The forecast assigning high probability to values close to ground truth y
and the forecast’s spread reflecting the actual uncertainty in the prediction.

To understand CRPS intuitively, we have F'(x) representing the forecasted probabilities up
to a certain value x and 1(z > y) is the "truth" expressed as a step function. The difference
F(z) — 1(z > y) quantifies the error at each x, where if F'(x) overestimates or underestimates
the probability near the true value y, the error is larger. Squaring and integrating this error over
all possible values of x yields the CRPS. A smaller score indicates better alignment between the
forecasted distribution and the observed value.

For example, let us consider a forecasted normal distribution N (u, 0?). If the actual value
y is close to the mean p, and the standard deviation o appropriately captures the uncertainty,
the CRPS will be low. Else, if y lies far from p, or if ¢ is too large or too small (meaning poor
calibration), the CRPS increases. In Figure 3.11, the left plot shows this normal distribution
with the forecast mean at 1 and the true value y marked in red. If the actual value y is close
to the mean u, and the standard deviation o appropriately captures the uncertainty, the CRPS
will be low. This indicates that the forecasted distribution accurately represents the observed
value, as the forecast assigns high probability to values near the ground truth y. However, if y
lies far from p, or if o is too large or too small, the CRPS increases. The right plot shows the
cumulative density function (CDF) F(x) of the forecast. The shaded areas represent the errors
CRPS metric. To have a good (low) CRPS metric across the values of the time series, p needs
to lie close to y at each time step, in order for the area to be as low as possible, and the spread
o needs to be appropriate so that the combined error of all predictions is as low as possible.
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Figure 3.11: Illustration of the Continuous Ranked Probability Score (CRPS). The left plot
shows the normal distribution of the forecast, with the true value marked in red. The right plot
shows the cumulative density function (CDF) with shaded areas representing the error metric.
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3.3 Generative Models for Time Series

Generative models are a class of machine learning models that learn the probability distribution
of data. After training, these models can generate new data that are similar to the original data,
by sampling the learned probability.

Kevin P. Murphy explains in [17] that a generative model can be described as a joint proba-
bility distribution p(x), for x € X', where X is the space of the data distribution. If the model is
conditioned on additional information, called covariates ¢ € C, it is referred to as a conditional
generative model of the form p(x|c). There are various kinds of generative models that will be
analyzed. Common training methods are maximum likelihood estimation (MLE), variational
inference and adversarial learning. Once trained, these models can sample from the learned
distribution and generate data that look similar to the real data. In the following sections we
will discuss the most important generative models and their contributions.

3.3.1 Gaussian Mixture Models (GMM)

We begin with Gaussian Mixture Models (GMMSs) [18], which are of the most classical and fun-
damental methods that model data distributions, due to their flexibility and interpretability.
GMDMs assume that data is generated by sampling from a mixture of several Gaussian distribu-
tions. Mathematically, the likelihood of a data point x under a GMM with K components is
represented as:

K
p(x(0) = > mN (x|, i),
k=1

where , represent the mixture weights (with Y1, m, = 1), and N (x|ux, S) is the Gaussian
distribution for the k-th component with mean pu; and covariance ;. The mixture weights
determine how much each Gaussian component contributes to the overall distribution. The
model is trained using the Expectation-Maximization (EM) algorithm [19], alternating between
estimating the probability that each data point belongs to each Gaussian (E-step) and then
updating the model parameters (M-step).

3.3.2 Hidden Markov Models (HMM)

Hidden Markov Models (HMMs) [46] are statistical models used to represent sequential data
where the system is assumed to have hidden (unobservable) states. An HMM is defined by
the following components: a set of N hidden states {si,ss,...,sy}; transition probabilities
A = {a;;}, where a;; = p(s;+1 = j|s; = i) denotes the probability of transitioning from state s; to
s;; emission probabilities B = {b;(0)}, where b;(0) = p(o¢|s: = j) is the probability of observing
o; given the hidden state s;; and initial state probabilities 7 = {m;}, where m; = p(s; = 1)
represents the probability that the initial state is s;. The joint probability of a sequence of
observations O = {01, 0, ...,0r} and hidden states S = {s1, sq,..., 7} can be expressed as:

T
p(O, S) = 7T51b81 (01> aStflaStbSt(Ot)'

t=2

The parameters of an HMM can be estimated using the Baum-Welch algorithm [47], a variant
of the Expectation-Maximization (EM) algorithm, which iteratively optimizes the likelihood of
the observed data.
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3.3.3 RNN-based Generative Models

Recurrent Neural Networks (RNNs) (and their variants like LSTM and GRUs) [12, 14, 20] are
suitable for time series generation. Given an initial hidden state hy, the RNN generates a
sequence Xi,Xs,...,X7, where at each time step ¢, the hidden state is updated based on the
previous hidden state and the current input:

h; = f(ht—hXt)-

The next step in the sequence is then sampled conditionally on the current hidden state:

X411 p(Xt+1|ht)-

RNN-based generative models capture long-term dependencies and account for the sequential
nature of data, thus are efficient for tasks like time series forecasting, music generation and
language modeling. We mention in a following section how RNNs are combined with Variational
Autoencoders to generate time series data.

3.3.4 Variational Autoencoders (VAEs)

Variational Autoencoders (VAEs) |21] use neural networks and variational inference to model
complex distributions. VAEs make the assumption that the data x is generated from latent vari-
ables z via a decoder py(x|z) and these latent variables can be sampled from a prior distribution
p(z) which typically is a simple distribution like the normal. The goal is to approximate the
posterior pg(z|x), which describes how the latent variables z are distributed given the observed
data x, using a variational distribution g,4(z|x), through a neural network.

One important challenge that variational inference models have (which is also a challenge for
diffusion models and will be discussed again later) is that directly computing the true posterior
pe(z|x) is intractable because applying Bayes’ Rule to find the posterior requires computing the
marginal likelihood of the data, py(x). The true posterior describes how likely a latent variable
z is given a data point x and is expressed through Bayes’ rule as:

, | x) = Pe(x | 2)po(2)
o(z | x) po(x)

And the marginal likelihood of the data x is the summation over all latent variables z of the
likelihood of the data x given the latent variable z weighted by the prior p(z):

po(x) = /pe(X\Z)p(z) dz.

The last integral is intractable in practice because it involves integrating over all possible values
of the latent variable z, which becomes computationally prohibitive for high-dimensional or
complex models. Directly computing it is infeasible for most models, thus VAEs use a variational
distribution g4(z|x) (with tunable parameters ¢) to approximate the true posterior py(z|x). The
parameters of ¢,(z|x) are optimized to make the approximation as close as possible to the true
posterior. VAEs aim to maximize the marginal likelihood py(x). However, since computing py(x)
is intractable, they instead optimize a lower bound on it, the Evidence Lower Bound (ELBO).
The logarithm of the marginal likelihood is:

log pg(x) = log / po(x|z)p(z) dz.
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Using the variational distribution g4(z|x), we can rewrite this as:

= lo X|z)p(z)dz = lo X|Z zqqﬁ(Z\X) Z =
log po(x) =1 g/pe( |2)p(z) dz = 1 g/pe( [2)p( )q¢(z|x)d

po (X, z)}
gy (2[x)

po(x, )
zlog/q z|x dz = logE,, (s1x [
¢( | )Q¢(Z|X) 40 (2]x)

The logarithm is a concave function, therefore we can use Jensen’s inequality:

po(x, Z)}

95 (2]x)

po(x,2)
gy (2[x)

log py(x) = log Eq, (/x) { } > Eg, (1% {bg

We can rewrite the RHS term as:

po(x,2) - po(X | z)pe(2)
q¢<z\x>] = Bastai {1 4o(2]x)

Po(z) ]

=E,. (z1x) [logpe(x | 2)|+E,, (2x {log
| = Euan o (x| 2+ 1oz L2

Eqy (21%) {log

Where, if we view the last term as an integral, we get:

—pe(Z) = Z|X) 10 p@(z> 7z = — Z|X Z
B | 108 200 [ g falton 2202 s = — D (au(ah) ()

This term, Dgr(qs(z|x)||pe(z)), represents the Kullback-Leibler (KL) divergence between the
variational posterior and the true posterior. The KL divergence measures the “distance” between
the variational posterior and the prior. So, the inequality gives us the Evidence Lower Bound
(ELBO) denoted £, which we aim to maximize:

log pp(x) 2 B, (ap) [l0g po(x | 2)] = Dir(ge(2[x)[|po(2)) = L0, ;%).

The first term, E,, (x) [logpe(x|z)], encourages the model to reconstruct the observed data
well by maximizing the likelihood of the data given the latent variables and the second term,
KL(qy(z|x)||p(z)), regularizes the latent space by ensuring that the variational posterior g,(z|x)
does not deviate too far from the prior distribution p(z).

Maximizing the ELBO is a tractable problem when it is done using the variational approx-
imation ¢,(z|x). Furthermore, the efficient training of VAEs relies on the reparameterization
trick which allows gradients to propagate through the stochastic latent variables z. Instead
of sampling z directly from g4(z|x), which would break the computation graph for gradient-
based optimization (because the operation is stochastic and non-differentiable with respect to
the parameters ¢), the reparameterization trick rewrites the sampling process as a deterministic
transformation of a noise variable. Specifically, for a Gaussian posterior, we sample € ~ N (0, 1)
and express:

7 = ly(x) + 04(x) -6, €~ N(0,I)

This trick allows gradients to flow through p4 and o, enabling the training via backpropagation.
thus enabling backpropagation.

3.3.5 Generative Adversarial Networks (GANs)

Generative Adversarial Networks (GANs) [23] are composed of two neural networks that compete
with each other: the generator G and the discriminator D. The generator GG takes as input a
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random noise vector z ~ p(z), where p(z) is usually a simple prior distribution like a normal
N(0,1), and generates a sample G(z) which is supposed to look like the real data x ~ pgata(X).
The discriminator D takes a sample (real or generated) and returns a probability that the
sample is real. The training of a GAN is a two-player minimax game where the generator
aims to “fool” the discriminator, while the discriminator tries to correctly classify the real and
generated samples. The training objective is:

m(}n max Expaara(x) 108 D(x)] + Epop(n [log (1 — D (G(2)))] .

In this formulation, the discriminator’s goal is to maximize the likelihood of correctly classifying
real samples X ~ Pgata as real and to minimize the likelihood of classifying generated samples G(z)
as real. On the contrary, the generator’s goal is to minimize log (1 — D (G (z))), meaning it tries
to “fool” the discriminator into classifying the generated samples as real. The desired outcome is
to train the generator to create realistic samples that the discriminator cannot distinguish from
the real ones.

The important challenge in training is that the behavior of the networks can be unstable and
hard to predict. Work [48] examines the equilibria of GAN.

3.3.6 Normalizing Flows

Normalizing Flows |24] is another flexible and powerful method to model complex probability
distributions. The idea is to use a series of invertible transformations in order to transform a
simple base distribution (like a Gaussian) into the complex data distribution. These models
start with a latent variable zy ~ p(z), sampled from a simple distribution and apply a sequence
of invertible transformations fi, fa, ..., fx to obtain zx = fx o fx_10---0 fi(29).

This way, normalizing flows allow the exact evaluation of the likelihood. The probability
density function of zx under the transformed distribution is:

B Ofrt afrt| K oft
pla) = plow) et ...\det 2| =t T e 52
af. !

0z 1
der each transformation. Normalizing flows can efficiently model complex, high-dimensional
distributions with exact likelihoods and easy sampling.

The Jacobian determinant ‘det ‘ shows how the volume of probability mass changes un-

3.3.7 Generative Adversarial Networks for Time Series

Generative Adversarial Networks can be extended for time series analysis with models like
TimeGAN [25] and TS-GAN [26]. These models incorporate recurrent neural network com-
ponents in both the generator and discriminator to handle sequential data.

In TimeGAN, the generator G' generates time series data x; attempting to mimic the real
data x;, while the discriminator D tries to distinguish between real and synthetic sequences.
Additionally, an embedding network maps the data into a latent space while preserving the
sequence’s temporal relations. The generator, in a similar manner as normal GANs, learns
to generate realistic sequences while at the same time the embedding network is responsible
to keep the temporal coherence. The loss function of TimeGAN has two components. The
Adversarial Loss L,q,, which pushes the generator to produce data similar to the real data, like
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standard GANs, and the Supervised Reconstruction Loss Lgypervised, Which pushes the generator
to be accurate in the latent space reconstruction by preserving the temporal dependencies in the
generated sequences. The total objective is a weighted sum of the loss terms:

['total = 'Cadv + )\‘Csuperviseda

where the hyperparameter A controlls the trade-off between the two losses. In a similar manner,
TS-GAN use RNNs for both the generator and discriminator to generate and classify sequential
data.

3.3.8 Variational Recurrent Autoencoders (VRAE)

Variational Recurrent Autoencoders (VRAEs) [27] are extended VAEs that handle time series
data by combining RNNs with variational inference. A VRAE maps (encodes) a sequence
X1,...,X7 to a latent space using a recurrent encoder, and then reconstructs the sequence
(mapping back to the original space) using a recurrent decoder. The latent variables z are
sampled from a variational posterior ¢,(z|x) in order to condition the decoder. The VRAE loss
function consists of two main components:

Lyran = By, (a0 [l0g po(x|2)] — Dkr(gs(2[x)[p(2)).

The first term, reconstruction loss, encourages the model to reconstruct the input sequence and
the second term, the KL divergence, regularizes the latent space, ensuring that the variational
posterior g4(z|x) does not deviate too far from the prior p(z), exactly as VAEs do. This way,
VRAESs can incorporate uncertainty in time series modeling.
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3.4 Diffusion Models

Diffusion Models are a class of latent variable generative models that have gained popularity
in recent years for their incredible ability to model complex data distributions. Inspired by
non-equilibrium thermodynamics and statistical physics, they define a Markov chain of diffusion
steps to slowly add random noise to data and then learn to reverse this process to reconstruct
the data. This concept will be thoroughly discussed in the following sections which analyze some
of the fundamental works on Diffusion Models.

3.4.1 Deep Unsupervised Learning using Nonequilibrium Thermody-
namics

This class of models, introduced in [28], is inspired by principles from statistical physics and
nonequilibrium thermodynamics. The core idea is to model the generation process as the inverse
of a diffusion process that gradually destroys structure in the data by adding noise.

As illustrated in Figure 3.12, the forward diffusion is like the dispersal of color in water, while
the learned reverse process attempts to reconstruct the original structure from noise.

Figure 3.12: The analogy between a diffusion process and the dispersal of color in water.

Figure 3.13 provides a summary of the diffusion processes: the top arrow shows the forward
process that adds noise, and the bottom arrow shows the reverse process learned by the model.

Forward diffusion process

Starting from a sample x(©) drawn from the true data distribution ¢ (X(O)), the training process
iteratively applies a small Gaussian perturbation at each time step t = 1,...,7T, forming a

Markov chain:
T

g, . xDx@) = T x ),
t=1
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Diffusion
Process

A

Data Uniform
Distribution Distribution

‘\/

Inverse
Process

Figure 3.13: Tllustration of the diffusion and inverse processes in generative modeling.

where each transition adds Gaussian noise:

a(xPxY) = N /1= B0, BiD).

Here, §; is a variance schedule controlling how much noise is added at each step. Ast — T, the
samples x() approach an isotropic Gaussian distribution.

Reverse process

The goal is to learn the reversal of this diffusion process, in order to be able to transform noise
back into data. This reverse process is also a Markov chain, defined as:

T
p9<X(0)7 B 7X(T)) = p(X(T)) Hp@(x(t_1)|x(t))7
t=1

where p(x(™)) should be a standard Gaussian and each reverse step is parameterized by a neural
network that predicts the mean and variance of the transition:

pg(x(t71)|x(t)) — ./\/'(x(tfl);ug(x(t),t), ZQ(X(t),t)).

Training objective

Computing the exact likelihood py(x(?)) is intractable, since it requires to integrate over all the
latent variables x(V, x® ... x(™):

po(x©) = /pg(X(l), x@ L x™yax®D),

Therefore, the algorithm optimizes a variational lower bound (the evidence lower bound - ELBO):

log pp(x'”) = log/pe(x(o),x(l), Cx Ty ax )

= po(x®, ..., xD) (1) (T) 15 (0)Y 75 (1:T)

pe(X(O:T»
= log Eq(x(er)\x(O)) [m

pe(X(O:T))
2 Eq(x(l:T)|x(O)) |:10g W 5
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where the last step follows from Jensen’s inequality. This inequality defines the evidence lower
bound (ELBO) on the data log-likelihood:

po(x@ ... xM)
(xM, ... x(D|x(O)

log ps(x©) > E, |log
q

This corresponds to minimizing the KL divergence between the true forward process and the
learned reverse process.
Reparameterization

During training, the reverse transitions are often reparameterized in terms of the noise € added
at each step. The neural network is trained to predict either the clean signal x(©), the mean pg,
or directly the noise €:

x® = Jax@ + V1 —ae, €~ N(0,1),
where a; = [Ti_, (1 — Bs).
Proof. The definition of the forward diffusion process is:
x) = \/1—7@)((“1) + \/Eﬁt, e~ N(0,1)

We define: t
(6 ::1_/8t7 ; ::Has
s=1

Then we can write:

x® = /T = BxtD 4 \/Eet -
= \/1 — B <\/1 — x4 v/ 5t—1€t—1> +/ Bier =

= atat_lx(t_2) _’_\ at(l — (lt_l)ft_l + v 1-— ateé

v~

X~N(0,a¢(1—ar—1)I) YNN(O‘,(rlfat)I)

And since we add two independent random variables that follow Gaussian distributions, the
resulting random variable is:

Z =X + Y ~ N(O, O'g( -+ 0'12/) = N(O, at(l — Cltfl)]: -+ (1 — CLt)I) = N(O, (1 — at(ltfl):[)

Therefore:
x = Jaa, xt2 + \/Zl —aay_1)e, €~ N(0,1)
Continuing this pattern:

X(t) = \/@_tx(o) =+ v 1-— O_[tE, € ~ N(O, I)

This closed-form expression allows us to sample x) directly from x(© without simulating all
intermediate steps. O

79



CHAPTER 3. BACKGROUND AND RELATED WORK

Entropy and information bounds

The work also introduces entropy in the context of diffusion models, to quantify the amount of
uncertainty (or disorder) present in the data as the diffusion process evolves. During the forward
diffusion process, each step adds Gaussian noise to the data, increasing its entropy.

Mathematically, the total conditional entropy accumulated over the forward process can be
expressed as:

H

T
(D) =3 H, (xVx),
t=1

where H,(x®|x*~1) denotes the entropy introduced at each diffusion step due to the added
noise. The entropy is related to the following:

¢ Quantifying Information Loss: As entropy increases, the original information is pro-
gressively lost. By measuring the total entropy added, we can quantify how much infor-
mation needs to be recovered in the reverse process.

e Designing the Reverse Process: The reverse diffusion process aims to reconstruct the
original data from noise. Knowing the entropy added at each step helps in designing neural
networks to reverse this process by estimating the necessary information to be retrieved.

e Thermodynamic Consistency: Diffusion models draw inspiration from nonequilibrium
thermodynamics, and the change of entropy during the forward and reverse processes
should align with thermodynamic principles in order to maintain the physical plausibility
of the model.

3.4.2 Denoising Diffusion Probabilistic Models

Denoising Diffusion Probabilistic Models (DDPMs) [29] are latent-variable generative models
that learn complex data distributions by reversing a noising process. Figure 3.14 illustrates the

forward and reverse diffusion processes. They introduce latent variables x1, ..., x7 of the same
o(zr— 1|33T po(Ti— 1|$t 3?0\1‘1
Complete
; Clear
Gaussian
. Image
Noise
J?T\l‘T 1 $t|$t 1 $1|$0

Figure 3.14: Forward and Reverse Diffusion Process Markov Chain.

dimensionality as the data xg ~ ¢(Xg), and define the joint probability distribution of all the
variables:

T
po(Xo.r) := p(xr H (xe—1 | x¢),
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where p(x7) = N(0,I), and each learned reverse step is

pe(Xt—l | Xt) = N(Xt—l; Me(Xnt), Ee(xnt))«

The forward diffusion process is a fixed Markov chain that gradually adds Gaussian noise to the
data:

q(X1.1 | X0) HC] X | X)), q(%e [ Xo1) ZN(\/ L — B x¢-1, 5t1)-

Here {3;} is a variance schedule that guides the diffusion process by defining the amount of noise
added in in time step. As t — T, q(x;) approaches N (0, I).

Training Objective

Directly maximizing the data likelihood log py(x¢) is intractable, since it requires integrating
over all latent variables x.7:

po(X0) = /pe(Xo;T) dxy.7.

This integral spans a high-dimensional space, since typically hundreds or thousands of latent
variables of the same dimensionality as the data are used, and each reverse transition py(x;_1 |
x;) is parameterized by a neural network. As a result, computing this marginal exactly is
computationally prohibitive.

To overcome this, DDPMs optimize a variational lower bound (ELBO) on the negative log-
likelihood using a fixed forward process q(x1.7 | Xo) and a learned reverse process pg(xo.r). The
bound is:

E, [_ lOgPG(X(l)] <E,

— log p(x7) Zl PolXi-s |Xt>] — L

Xt|Xt 1)

If we assume each reverse transition has fixed covariance Xp(x;,t) = 021, then the ELBO con-
tribution at step t can be written as

Ly = E‘I(thl:t\xo) [log q(xt ’ thl) - logPG(thl | Xt):|

= Byt | Bt ) | 108 400 | x01) = Tog po(xe1 | %) |

/

-~

KL (q(x:|%;1) || po(xi-11%1))
= By | KL (g0 [x0-1) | poxec1 [2)) -

Since
q(xe | xe-1) = N (1g, Bq),  po(xem1 | xe) = N (1o, o),
with p, = fu(x¢,%0), Xy = Bl and Xy = 021, the KL divergence has the closed-form

det 29

qor s, —d +tr(25"Sg) + (11g — 10) "S5 (g — p10) |-

KL(N (g 5) || A0, ) = 5 [log

Here d is the data dimension. Only the final term depends on 6; the others are constants w.r.t.
0. Moreover, ¥, = (1/02)I, so
_ L.
(g — 1) " 25" (g — po) = -2 |f2e(x2, %0) — po(xe, ).
t
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Ignoring #-independent constants, each L; reduces to
1 .
Lo oc 5 By lin(xi, %o0) = ol DI
0i
Summing over t = 1,...,T yields the weighted-squared-error form in the ELBO:

T T
1 .
L= ZLt - Z Eq[HNt(XtaXO) —Me(Xt,t)”Q} + (const.).
t=1

207
=1

Closed-Form Forward Sampling

Because the forward process is constructed from Gaussian transitions, we can express the
marginal g(x; | Xo) in closed form, in the same way we did in Section 3.4.1:

Q(Xt | XO) = N (Xt7 \/d_tXOa (]- - @t)]) ’
where ay =1 — 3, and oy = HZ:1 a. Using this, we can sample x; directly from xg:
x; = Vayxg+V1—ae, €~N(0,I).

This reparameterization enables efficient training using stochastic gradient descent, since it al-
lows computing expectations over ¢ using samples of (xo, ¢, €) without sequentially calculating
the full chain.

Reverse Process Parameterization

In practice, the reverse variances o7 are fixed (e.g. 3; or Bt), and the network is tasked with
predicting the noise € at each step. Recall that the ELBO contribution at timestep ¢ reduces
(up to constants) to

Lia o¢ Eqgf|lfue(xs,%0) — po(x:,)[1%],
where the true posterior mean is
. 1 — —
Nt(Xt,Xo) = ﬁ(xt - \/fiiaf)v X =V X+ V19— aqe.
t

The authors choose the model mean

1
MG(Xht) = \/O{_t<Xt - \/f‘—iiat eg(Xt,t>>,

so that substituting into the squared-error gives

2
i = pll = P fle = o).

Absorbing the factor 32/[a;(1 — ay)] into the proportionality yields the noise-prediction loss:
= — 2
L, x EXO’E[HE —ep(vVarxo + V1 — e, t)H }

Once €y is trained, sampling x;_; uses the reparameterization trick:

1 B
Xi—1 = \/_a—t<Xt — \/ﬁ EQ(Xt,t)> + oy Z, z ~ N(O,[),

which remains fully differentiable with respect to 6.
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Training Procedure
In each training iteration:
1. Sample a data point xo ~ ¢(xo).
2. Sample a timestep ¢ ~ Uniform{1,...,T}.
3. Sample € ~ N (0, 1) and construct x; = \/auxo + /1 — ase.
4. Optimize the objective ||€ — €5(x;, 1)’ using gradient descent.

This process minimizes the variational bound without needing to compute the intractable marginal
likelihood directly.

3.4.3 Score-Based Generative Modeling via Stochastic Differential Equa-
tions

Song et al. [6] present a continuous-time framework for generative modeling based on Stochastic

Differential Equations (SDEs). Instead of discrete noise steps, they perturb data through a

continuous diffusion process and then reconstruct samples by reversing that process with a

learned score function.

Figure 3.15 illustrates how a clean image is gradually transformed into Gaussian noise via a
continuous-time SDE over ¢ € [0, T7.

Forward SDE (data — noise)

x(0) dx = f(x,t)dt + g(t)dw

li li
N ééér 1unctiori

@ dx = [fx,8) ~ ()7 log (o) -+ (0)d

Reverse SDE (noise — data)

Figure 3.15: Sample trajectory under the SDE (forward and reverse) [6].

Forward and Reverse SDEs

The forward diffusion is governed by:
dx = f(x, t)dt + g(t) dw,

where w is Brownian motion. This process progressively corrupts data into noise.
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The reverse-time SDE, which “undoes” this diffusion, is given by:
dx = [f(x,t) — g(t)*Vxlog pi(x)] dt + g(t) dw,

where Vy log py(x) is the score function, which is the gradient of the log-density at time ¢.

Score Estimation and Sampling
A neural network sy(x,t) is trained to approximate the score using score matching:
IE25~Uniform(0,T),x~pt A(t) “vx IOg Dt (X> — So (Xa t) ”2] )

where \(t) = g(t)? weights the loss appropriately over time. Once sy is trained, sampling
proceeds by numerically solving the reverse SDE starting from x7 ~ N(0, ).

Probability Flow ODE

The probability flow ODE is an equivalent deterministic process that matches the marginals of
the SDE:

— = f(x,1) — 39(t)* Vi log ps(x).
This ODE, shown also in Figure 3.16 allows exact likelihood estimation and can be integrated

using ODE solvers, which is more efficient than stochastic SDE sampling.

Data Forward SDE Prior Reverse SDE Data

da = f(z,t)dt + g(t)dw 4)-@— dz = [f(z,1) - F )V, logpy(z)] dt + g(t)dw

Figure 3.16: Probability flow ODE equivalent to the reverse SDE [6].

Predictor—Corrector Sampling

To improve sample fidelity, the authors propose a Predictor—Corrector (PC) sampler:
e Predictor: takes a small step along the reverse SDE.
e Corrector: applies several Langevin dynamics steps using the learned score sy.

This combination reduces discretization errors and leads to higher-quality samples than using
either method alone.
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Conditional Sampling and Control

The framework naturally allows conditional generation by augmenting the reverse SDE with an
extra term:

Vi logpi(x | y),
which decomposes as V log pi(x) + Vx log pi(y | x), enabling guided generation.

3.5 Diffusion Models for Time Series Forecasting

While diffusion models are traditionally used for image synthesis tasks, their application has
expanded to time series tasks like forecasting, imputation and generation.

We will focus on multivariate time series forecasting which means to predict future values,
based on the current and past data. This task is more complex for multiple, correlated variables.
Diffusion models, due to their flexibility in capturing complex relations in data with multiple
dimensions, outperform the traditional generative methods. In this section, we discuss several
diffusion-based models for time series forecasting, focusing on TimeGrad.

3.5.1 Problem Formulation

Following the survey paper [30], multivariate time series are denoted as X° = {29, 29, ... 2%},
where 29 € RP are the observations for time point 7 (initial, unperturbed data). The forecasting
goal is to predict future values X = {zf,,...,27}, based on some context window X =
{9, 29,..., 29 _}. The joint probability distribution for forecasting is defined as:

T
q(ng:T | x(l):to—l) = H Q(‘r? | I?:to—l)'
t=to

3.5.2 TimeGrad Model

TimeGrad [7] is an autoregressive model that utilizes Denoising Diffusion Probabilistic Models
(DDPMs) [29] to forecast multivariate probabilistic time series. This method combines autore-
gressive models with the flexibility of diffusion models and achieved state-of-the-art performance
in capturing temporal dependencies of high-dimensional data, with complex distributions, in time
series forecasting tasks.

Method

The core idea of TimeGrad is to model the conditional distribution of future time steps given
past data and the covariates (possible additional information). The model can be expressed as:

T

QX(XtO:T|X1:t0—1;CI:T) = H QX(Xt|X1:t—1aCI:T)7
t=to

where x; is the multivariate vector at time step ¢ and c¢;.7 are some known covariates across time
points. TimeGrad models each factor in the product using a conditional denoising diffusion
model. The temporal dependencies are encoded using a RNN-based architecture:

h;, ; = RNNy(concat(x;_1,¢;), h;_s),
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where h;_; is the hidden state and c; is the covariate at time ¢. This allows to sample the next
step autoregressively:

p9<Xt|ht71) ~ Q(Xt | X1:4—1, C1;T)

With 6 representing the weights of both the RNN and the DDPM, which are being optimized
simultaneously in the training process.

Training

Training is performed by sampling random windows of time series data and splitting them into
context and prediction windows. The training algorithm is:

1. Sample timestepn ~ 1,..., N

[\]

. Sample € ~ N (0, 1)
3. Form &y = \/a,x; + /1 — Gye€

4. Train to reduce the loss function.

The objective is the minimization of the negative log-likelihood over the prediction window,

given the context window:
T

Z—Inge(Xt|ht—1)~

t=to

The loss function, follows the DDPM’s logic:

]Ext,e,n [HE - 69(\/ Xt + v 1- Ol €, ht—la n)”ﬂ = Ext,e,n [HE - Ee(ft, ht—lyn)HQ] )

where € is the noise sampled from a standard Gaussian distribution, and n is the noise level.
The noise index is encoded with Fourier positional embeddings and €4 is a neural network’s
prediction of the noise for each time step.

Inference

Once €y and the RNN have been trained, TimeGrad generates future forecasts autoregressively
as follows.

1. Initialize: At the last observed time ¢ty — 1, compute the hidden state

ht()—l = RNN9 (Xl:to—la Cl:t0—1>~

2. For each forecast step t =tq,...,T":

(a) Sample initial noise:
XEN) ~ N(0, I),
where N is the total number of noise-levels used in training.

(b) Annealed Langevin Dynamics (Predictor—Corrector).
Forn=N,N—-1,... 1
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i. Predictor step: Perform one reverse-diffusion update

(nx) (n) Bn 59(Xt h; 1, n) + \/%Z, Z NN((]:])?

e v
where a,, = [[;_,(1 — ;) and 0, is the fixed reverse variance.
ii. Corrector step: Apply K steps of Langevin dynamics to refine the sample:

Xgn,kJrl) _ Xgn’k) "‘7759()(( ’ ht 1, N ) + /2 nu, u NN(07I)7

for k =0,..., K — 1, with step-size 7, and initialize xgn’o) = xgn*). Set X,En_l) =
(n,K)
x,".

(¢c) Finalize sample. After completing n = 1, we obtain X; = XE ), which is the forecast

for time ¢.
(d) Update hidden state. Incorporate the new forecast into the RNN:

h, = RNNe(ﬁt, Ct, htfl)-

3. Repeat for all tg < t < T. The result is a set of trajectories {X;,.r}. By running this
procedure multiple times (with different random seeds), we obtain an ensemble of sample
paths that approximate the joint predictive distribution.

This Predictor—Corrector algorithm, which alternates between a single reverse-diffusion “pre-
dictor” step and multiple Langevin “corrector” steps, reduces discretization errors and yields
high-quality probabilistic forecasts.

Results

TimeGrad outperforms various state-of-the-art models on almost all real-world datasets it was
tested on: Exchange, Solar, Electricity, Traffic, Taxi, and Wikipedia. The evaluation metric is
the Continuous Ranked Probability Score (CRPS), which measures the quality of probabilistic
forecasts (see Section 3.2.4 for more information and intuitive explanation).

Table 3.1 shows a comparison of CRPS scores between TimeGrad and several classical mod-
els (VAR, VAR-Lasso, GARCH) and modern deep learning models (Vec-LSTM, GP-Copula,
Transformer-MAF). TimeGrad outperforms the other methods on most datasets including the
ones that are high-dimensional (Electricity and Traffic), showcasing its flexibility, scalability and
ability to model complex temporal dependencies.

3.5.3 ScoreGrad

ScoreGrad [8] is another diffusion-based model for time series forecasting, which extends the
diffusion process to continuous time using Stochastic Differential Equations (SDEs). The reverse
process for ScoreGrad is modeled by a time-reversed SDE:

dxt = [f(xta k) - g(k)zvxt log Qk(xt ‘ ht>:| dk + g(k)dw7
where the conditional score V, log gx(x; | hy) is approximated by a neural network sq(zy, by, k):
2
Lt(e) = Ek,xf),xfc |:6(k) ||59<£L’§€, ht7 k) - th lOg q(i[f? ‘ 33'6)” :| :

ScoreGrad applies a predictor-corrector sampler [6] for forecasting, which refines the time-
reversed SDE sampling process.

87



CHAPTER 3. BACKGROUND AND RELATED WORK

Table 3.1: Test set CRPSsum comparison (lower is better) of models on six real-world datasets.
TimeGrad |7] establishes state-of-the-art performance across most datasets.

Method Exchange Solar Electricity Traffic Taxi Wikipedia
VAR 0.005 0.83 0.039 0.29  0.292 3.4
VAR-Lasso 0.012 0.51 0.025 0.15 - 3.1
Vec-LSTM 0.008 0.391 0.025 0.087  0.506 0.133
Transformer-MAF 0.005 0.301 0.021 0.056  0.179 0.063
TimeGrad 0.006 0.287 0.021 0.044 0.114 0.048

Model Architecture

ScoreGrad has two main modules. The Time Series Feature Ezxtraction module extracts features
from historical time series data up until time step ¢t — 1 and at each time step, a feature vector
F, is updated:

F, = R(thlaxtfly thl),

where R can be any sequential model such as RNNs and GRUs. The Conditional SDE-Based
Score Matching module, at each time step ¢, utilizes the conditional score function Vy log p(x;|F;)
to model the reverse-time SDE:

dx; = [f(x1,t) — g(t)*Vxlog p(x:[Fy)]dt + g(t)dw,

where f(x,t) and g(t) are the drift and diffusion coefficients, respectively, and w is a Wiener
process. The conditional score function is implemented using a neural network inspired by
WaveNet and DiffWave [49, 50].

Training

The training process involves optimizing a continuous form of the score matching loss. For each
time step £, the loss is defined as:

L4(0) = Eq, [Mts)Exorx, xor [150(Xe,s Fi,ts) — Vi, log p(xe, [x00)[13]] -

where A\(Z,) is a weighting function and ¢, is randomly sampled from the interval [0, 7] and the
total loss is the average of the loss values across all time steps:

Sampling and Prediction

The prediction is derived by iteratively sampling from the reverse-time SDE. Beginning with an
initial sample x7, from the target distribution, ScoreGrad solves the reverse SDE (with numerical
solvers), applying a Predictor-Corrector method to iteratively refine the sample and yield the
predicted value x;.
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Results

ScoreGrad was evaluated on the same six real-world datasets as TimeGrad using the CRPS
evaluation metric. The authors examined three types of SDEs: VP SDE (Variance Preserving
SDE — designed so that the variance of the data is preserved through the forward diffusion
process), VE SDE (Variance Exploding SDE — the variance of the data increases significantly
(explodes) over time as noise is added in the forward diffusion process), and sub-VP SDE (a
hybrid approach that aims to preserve variance, similar to VP SDEs, but with a noise schedule
limited by the VP process). ScoreGrad achieved state-of-the-art results on these datasets, slightly
better than TimeGrad, shown in Table 3.2.

Table 3.2: Comparison of CRPS scores for ScoreGrad 8] and other methods on real-world
datasets. Lower is better.

Method Exchange Solar Electricity Traffic Taxi Wikipedia
VAR 0.005 0.840 0.038 0.291 - -
Lasso-VAR 0.011 0.521 0.026 0.153 - 3.142
VES 0.006 0.896 0.883 0.362 - -
GARCH 0.023 0.884 0.193 0.376 - -
KVAE 0.014 0.339 0.050 0.108 - 0.095
Vec-LSTM (lowrank-Copula) 0.007 0.319 0.064 0.103  0.326 0.241
Vec-LSTM (ind-Scaling) 0.008 0.391 0.025 0.087  0.506 0.133
GP-Scaling 0.009 0.368 0.022 0.079  0.183 1.483
GP-Copula 0.007 0.337 0.025 0.078  0.208 0.086
Transformer-MAF 0.005 0.301 0.020 0.056  0.179 0.063
TimeGrad 0.006 0.287 0.020 0.049 0.114 0.050
ScoreGrad (VP SDE) 0.006 0.268 0.019 0.043  0.102 0.041
ScoreGrad (VE SDE) 0.007 0.277 0.019 0.037  0.104 0.046
ScoreGrad (sub-VP SDE) 0.006 0.256 0.019 0.041 0.101 0.043

3.5.4 Diffusion, Denoise and Disentanglement BVAE (D3VAE)

Although the ideas and methods of D3VAE [31] will not be examined in this thesis, it is worth
mentioning. D3VAE addresses the challenges of predicting noisy and short time series by using a
coupled diffusion process for both the context and prediction windows. It utilizes a bidirectional
variational autoencoder (BVAE) and a denoising score matching module to improve predictions.
The model’s training goal is to minimize a combination of four losses: KL divergence, denoising
score matching, latent disentanglement and the mean squared error between the prediction and
actual values:

L= ?/JDKL(C](%OIT) ’ pe(l’f)OZT)) + ALpsm + YLre + Lvsk.

Model Architecture The structure of D3VAE consists of four main components.
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Coupled Diffusion Process D3VAE uses a forward diffusion process that adds Gaussian
noise to both the input and output time series simultaneously:

T

Q(X1;T|X0) = HQ(Xt|Xt—1), Q(Xt|Xt—1) = N(Xt; A B X1, 5tI)

t=1

where Xj is the original input time series, and [, is a variance schedule controlling the level of
noise. The same process is applied to the target series Y, using a variance schedule /.

This process augments with noise both imput and target series, thus allowing the model to
learn robust representations in the presence of uncertainty.

Bidirectional Variational Autoencoder (BVAE) D3VAE employs BVAE as the re-
verse process to reconstruct the clean target series from the noisy diffused one. The latent
variable Z is modeled in a multivariate way and follows the generative process:

po(Y|Z) = po(Y+|Z)po(ev|Z)
where Y, is the ideal clean part of the generated target series, and ey represents the noise. The

VAE can capture complex temporal dynamics and maintain tractability.

Denoising Score Matching The diffusion process introduces noise that degrades the
quality of the generated target series. To resolve this, D3VAE uses denoising score matching
(DSM), which cleans the generated sequences by minimizing the difference between the noisy
generated data and the clean data:

Lpsm(¢t) = Ep, (v, ) (1Y = Yo+ 03 Vy, E(Y4; Q)]

where Y, is the noisy generated series at time ¢, and F(Yy;() is an energy function. This way,
the model moves the generated data closer to the clean target.

Latent Variable Disentanglement An extra step to enhance the interpretability and
stability of the forecasts, D3VAE disentangles the latent multivariate variables Z. This is done
by minimizing the total correlation (TC), which is a measure of the dependency between different
dimensions of the latent space:

TC(zi) = Dx1(ps(z:)||Ps(2:)),  Po(zi) = Hqu(zi,j)

By doing so, D3VAE makes different dimensions of the latent space correspond to different
temporal patterns, like trend or seasonality.

Training Objective
As mentioned, the training loss consists of four components:
L =1 Dxi(¢(Y)|Ipo(Ye)) + A~ Losw(C,t) + - Lre + Luse (Y, Yo)

where Lyisg represents the mean squared error between the generated and true target series, and
¥, A, v are trade-off parameters balancing the different loss components.
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3.5.5 Other Diffusion-Based Time Series Models

The work [30] discusses three additional models for time series forecasting. Although their ideas
will not be applied to this work, we mention them briefly.

Diffusion Schrédinger Bridge (DSB)

DSB [32] applies a Schrodinger bridge framework to diffusion processes for multivariate time
series forecasting. This way it aims to learn a probabilistic time series model by constructing
a bridge between two distributions over time, similar to the diffusion process. The Schrodinger
bridge formulation can help learn complex temporal dependencies, due to its flexibility. DSB
showcased state-of-the-art performance in tasks like long-term traffic and energy demand fore-
casting.

Diffusion Spatio-Temporal Graph (DiffSTG)

DiffSTG [33] extends diffusion models for spatio-temporal time series, in order to handle time
series data with spatial dependencies. Using a spatio-temporal graph (STG) to represent the
data, DiffSTG can model spatial and temporal dependencies via graph diffusion. This model
is particularly useful for applications where spatial relationships between time series variables
are important, and the results show that DiffSTG has state-of-the-art results in traffic and air
quality datasets.

Graph Convolutional Recurrent Denoising Diffusion (GCRDD)

GCRDD [34] combines graph convolutional networks (GCNs) and recurrent neural networks
(RNNs) within the diffusion process to model multivariate time series with temporal and spatial
dependencies. The model applies denoising diffusion in a graph-structured latent space. The
GCN captures spatial relations and the RNN captures temporal dependencies. GCRDD also
achieves state-of-the-art forecasting accuracy.
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3.6 Reinforcement Learning

3.6.1 Introduction to Reinforcement Learning
Definitions and Overview

Reinforcement Learning (RL) is an approach that enables an agent to learn by interacting with
its environment. An agent is the decision-making entity that interacts with the environment
acting on it, based on the environment’s current state. The environment is everything that the
agent interacts with. It is the external system that provides the system’s state for the agent,
gets acted upon by the agent and responds by providing a new state and information about
the agent’s actions (a reward signal that will be discussed thoroughly later). The environment’s
response can be either deterministic; the same action on the same state always returns the same
outcome, or stochastic; the same action in the same state could result in different outcomes if
some context is different [35]. An example of an entirely determinictic environment is a game of
chess; the rules are fixed and there is no randomness involved, so a legal move by a player (agent)
given a piece configuration (state) will result in one and only new piece configuration (new state),
whereas an example of a stochastic environment would be the navigation of a robot in a room
with slippery floor or moving obstacles; even if the robot makes the same series of actions in
two different times, the new states it gets in return may vary. In general, the goal of RL is to
make optimal decisions through trial and error or using a model of the system’s (environment’s)
dynamics, by maximizing the quality of its actions, which is encoded as a numerical reward
signal. RL agents learn from the consequences of their actions rather than from a set of labeled
data.

Reinforcement learning is distinct from supervised and unsupervised learning. In supervised
learning, a model learns from a set of labeled examples, each one of them consisting of a situation
and the corresponding correct action, which is then used by the model to learn to generalize to
new situations. RL differs in that it does not rely on labeled examples; the agent must learn
from the feedback it receives by acting on the environment. Unsupervised learning, mainly aims
to find patterns or structures in unlabeled data. While RL also does not use explicit labels, its
objective is not to learn hidden structures in data but to maximize a reward signal based on
the agent’s actions. Thus, reinforcement learning is often regarded as a third machine learning
paradigm.

History of Reinforcement Learning

The field of Reinforcement Learning has emerged from the combination of two distinct research
areas. The one significant area is behavioral psychology, where the mechanisms of learning
through interaction with the environment were first explored. The "Law of Effect," proposed
by Thorndike [51], provided a foundation on how consequences shape behavior, suggesting that
satisfying outcomes associate actions and situations, through feedback.

Independently, the optimal control area was developing mathematical techniques for sequen-
tial decision-making. The concept of dynamic programming, introduced by Bellman [38] in the
mid-20th century, was a powerful approach to solving problems where the goal is to find an
optimal sequence of actions over time, particularly when a model of the system’s behavior is
available. Initially it focused on control, however the iterative nature of dynamic programming
later led to learning-based approaches..

A crucial step in the evolution of RL was the formalization of the learning problem within
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the framework of Markov Decision Processes (MDPs). This served as a common language
and mathematical structure for understanding agent-environment interaction. Building upon
this foundation, the first RL algorithms were developed towards the end of the 20th century.
Temporal Difference learning (TD learning), introduced by Sutton [36], allowed the agents to
learn predictions from experience by examining the difference between successive estimates.
Q-learning, developed by Watkins and Dayan [37], provided a method for learning optimal
action-value functions solely from interaction, without requiring a model of the environment.

Field progress led to the need of handling increasingly complex problems with large state and
action spaces. Function approximation techniques, mostly developed during the 1980s and 1990s,
played a critical role in addressing this. However, the breakthrough with the largest impact in
tackling high-dimensional spaces, was deep learning in the 21st century. The integration of
deep neural networks with RL techniques led to Deep Reinforcement Learning, with remarkable
capabilities in domains which were previously considered intractable, such as mastering video
games and controlling sophisticated robots [52].

Learning from Interaction

As introduced in the definitions, the fundamental idea in reinforcement learning is learning from
interaction. RL models try to mimic the way humans and animals learn from their environments.
The RL agent interacts with an environment in a loop: the agent analyzes the state of the
environment, takes an action and then receives feedback in the form of a reward signal and
the new state it transitioned to. The agent’s goal is to learn a policy, a mapping from states
to actions, that maximizes the cumulative reward over time, which translates to the agent
approximating its goal.

A nice way to formalize a RL problem, as discussed briefly previously, is using Markov
Decision Processes (MDPs). The MDPs are mathematical models that describe the dynamics
of the environment with respect to states, actions and rewards. This formalization enables
the agent to consider the long-term reward of its actions, which is necessary to act optimally.
Through trial and error, the agent explores different actions by traversing the MDP, in order to
discover the ones that yield the highest rewards. Delayed reward is the idea that an action may
not only affect the immediate reward but also the future states and rewards.

In many real-world scenarios, the agent does not have access to the complete state of the
environment; rather, it receives partial, noisy observations that capture part of the system
dynamics. Partially Observable Markov Decision Processes (POMDPs) provide a framework
for formulating such problems, extending classical MDPs. In a POMDP, the agent receives
observations that are probabilistically related to the true, hidden state, and maintains a belief
state, which is a probability distribution over the possible states. This belief is updated with
new observations, allowing the agent to handle both immediate uncertainties and the evolution
of the system. The goal of the agent becomes optimizing its policy over the belief states.

3.6.2 Core Concepts of Reinforcement Learning
Exploration vs. Exploitation

A challenge in reinforcement learning is balancing exploration and exploitation. FExploration
means to try new actions to discover their potential rewards, while exploitation refers to selecting
the actions that the agent has already found to be most rewarding. For maximizing the total
reward, the two strategies must be balanced. Too much exploration leads to suboptimal behavior,
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as the agent continually tries unexplored actions instead of exploiting known good actions.
Conversely, too much exploitation prevents the agent from discovering better actions that it has
not tried yet.

Agents, Environments, and Interactions

In reinforcement learning, the interaction between an agent and its environment is formalized
within the framework of a Markov Decision Process, as discussed before. The environment is
characterized by a continuous or discrete set of possible states, denoted as S, and a corresponding
set of available actions, A. The state space S encompasses all possible configurations that the
environment can be in, and each state should contain complete information about the current
situation, for an agent to make a decision (this is an idealized assumption of the MDP formu-
lation. The Partial Observable MDP framework gives a solution for real world environments).
The action space A comprises all actions the agent can make at any given state. In practice, the
available actions may depend on the particular state, so we often denote the set of admissible
actions in state s by A(s).

At each discrete time step ¢, the agent receives an observation of the environment, which,
under full observability, is the state s; € §. Based on this state, the agent selects an action
a; € A(sy) according to its policy m. This policy, which may be either deterministic (where each
state maps to a specific action, 7(s) = a) or stochastic (where 7(a|s) represents the probability
of choosing action a given state s), is the guiding principle for decision-making.

After executing the chosen action a;, the environment transitions to a new state s;,; fol-
lowing the transition probability function P(s;i1 | Si,a¢). In deterministic environments, this
transition is a fixed mapping, whereas in stochastic environments it is characterized by uncer-
tainty. Simultaneously, the agent is provided with a scalar reward r, = R(s;, as), which reflects
the immediate benefit (or cost) of taking action a; in state s;.

The ultimate objective of the agent is to maximize its cumulative reward over time, called
return. Mathematically, the return G; from time ¢ onward is defined as

Gi =71+ + Voo + 0 = Z’Ykrt-i-k‘v
k=0

where ~ € [0, 1] is the discount factor, determining the relative importance of immediate versus
future rewards. This way, the agent learns to balance its actions over time, accounting for both
short-term and long-term gains.

Policies

A policy m(a|s) defines the agent’s strategy, mapping states to actions. A policy can be either
deterministic, where each state is mapped to a specific action, m(s) = a, or stochastic, which
provides a probability distribution over actions for each state, m(a|s) = P(a|s). The goal is to
find an optimal policy 7* that maximizes the expected return.

Value Functions

Value functions estimate how good a state (or state-action pair) is, regarding the expected
cumulative reward. Value functions can be perceived from two —ultimately equivalent— angles.
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The first way to view them is the State-Value Function V7 (s), which gives the expected return
starting from state s, following policy 7:

V7™(s) = E;[Gt|st = s].

The second way is the Action-Value Function Q7 (s, a), which gives the expected return starting
from state s, taking action a and then following policy 7

Q" (s,a) = E;[Gi|sy = s,a; = a).

The Bellman equation is fundamental in RL as it provides a recursive relationship for these value
functions. For the state-value function V™, the Bellman equation is:

Vi(s)= Y m(als) (R(s, a)+v > P(s]s, a)V”(s’)) ,

acA(s) s'eS

where s’ is the next state after taking action a from state s. This can equivalently be written in
expectation form as:

V7 (s) = Eqnr(ls), s'~P(|s,a) [R(s, a)+ -y V”(s')] )

Similarly, for the action-value function Q™ (s, a), the Bellman equation is given by:

Q" (s,a) = R(s,a) +~ Z P(s'|s,a) Z m(d[s") Q™ (s, d).

s'eS a’€A(s")

And, in expectation form, it is:

Qﬂ—<87 CL) = Es’~P(~|s,a),a/~ﬂ'(~\s’) [R(Sv CL) +7 Qﬂ(sla CLI)] :

Furthermore, the state-value and action-value functions are related:

Vi(s)= Y m(als)Q(s,a).

a€cA(s)

Challenges of Continuous Spaces in Reinforcement Learning

In many real-world problems the state and action spaces are continuous, thus have infinitely
many possible states and actions. There are various related challenges. First of all, there are
Infinite State-Action Combinations; the agent must approximate the value functions and policies
since storing and computing the values of all state-action pairs is impossible. Furthermore,
there are Optimization Challenges in choosing optimal actions and calculating value functions
for continuous spaces. Another challenge is Exploration, where efficiently exploring continuous
spaces is by far more challenging than exploring discrete spaces due to the infinite number of
possible states and actions. Moreover, achieving Sample Efficiency is also difficult, as the agent
has to learn efficiently from limited experience, since it is infeasible to explore all possible states
and actions. In order to handle these challenges, RL algorithms use function approximation,
policy gradients, actor-critic architectures, etc. Below, we re-define the key concepts of RL, for
continuous spaces this time.
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Agents, Environments, and Interactions for Continuous Spaces

In continuous domains the state space S C RPs and the action space A C RP« are defined
as subsets of Euclidean spaces, where D, and D, denote the dimensionalities of these spaces,
respectively. A state s; € S is represented by a continuous vector that encapsulates the con-
figuration of the environment at time ¢, while an action a; € A is a continuous vector that the
agent selects in order to affect the environment. The reward function ry = R(sy, ay, s¢11) delivers
a scalar feedback based on both the current state s; and the action a; taken, along with the
subsequent state s;.1. The return, defined as

where v € [0, 1] is the discount factor.

Analogous to the discrete case, an agent interacts with its environment in discrete time steps
even when the state and action spaces are continuous. At each time step t, the agent observes
the current state s; € S and selects an action a, from the set of admissible actions A(s;). After
the agent executes the action a;, the environment evolves to a new state according to a stochastic
process that reflects both the predictable dynamics and inherent uncertainties of the system:

str1 = P(sy, ap).
Similarly, the reward obtained from a transition is given by a function R(s,a, S¢41):
rep1 = R(st, ar, Seq1)-

In addition, one may express the probability of transitioning to a particular subset S’ C S as:

P(sg1 €5 | si=s,a, =a) = / P(s,a,s")ds,

/

thus quantifying the uncertainty in the system dynamics over continuous spaces.

Policies in Continuous Spaces

Like in discrete spaces, a policy 7, is a mapping from states to actions. This mapping may be
deterministic, with 7(s) = a where each state s is assigned a specific action a, or stochastic,
where the policy is characterized by a probability density function m(a|s) = p(a|s) over the
action space given a state. In continuous spaces, policy gradient methods are used to directly
optimize the parameters of the policy by following the gradient of the expected return.

Value Functions in Continuous Spaces

Value functions are an estimation of the expected return from a state (or a state-action pair). For
continuous spaces these functions are typically approximated using parameterized function ap-
proximators, such as neural networks. The state-value function V™ (s) is defined as the expected
return starting from state s under policy 7:

VT(s) =E,

o0
k _
§ Yok | e =5,

k=0
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while the action-value function Q™ (s, a) estimates the expected return from taking action a in
state s followed by policy :

oo

k
g Vrek | st = s,a0 = a
k=0

Q" (s,a) =E,

The Bellman Equation in Continuous Spaces

In continuous spaces the Bellman equation is expressed using integrals, instead of summations.
For the state-value function, the Bellman equation can be written as:

V™(s) = /Aw(a|s)/SP(s,a, s'Y[R(s,a,s") +~V7™(s")] ds' da,

representing an expectation over the actions selected by the policy and the subsequent states
produced by the transition function. Similarly, the action-value function satisfies the relation:

Q" (s,a) :/SP(S,CL7 s") |:R(S,CL,S/)+’)//A7T(CLI|S/)QW(S,,(I,) da'| ds'.

For an optimal policy 7*, the Bellman optimality equations become:

a

V*(s) = max/SP(s, a,s')[R(s,a,s") +~yV*(s")] ds’

and:

Q*(s,a) = /SP(s,a, s') [R(s,a, s +7maelxe*(s’,a’)] ds'.

3.6.3 Solving Markov Decision Processes
Approaches to Solve Discrete MDPs

In many reinforcement learning problems the environment is modeled as a Markov Decision
Process (MDP) with discrete state and action spaces. At each discrete time step ¢, the agent
observes the current state s, € S and selects an action a; from the set A(s;), usually depending
on the state. When an action is executed, the environment transitions to a new state s;.1
according to the transition probability function P(s,;1 | S, a;), and the agent receives a scalar
reward r; = R(st, a;). The ultimate goal is to find a policy 7 (a mapping from states to actions)
that maximizes the expected cumulative reward (or return) defined as

0
k
Gt = § Y Ttk
k=0

where v € [0, 1] is the discount factor that governs the trade-off between immediate and future
rewards.

Because the state and action spaces in discrete MDPs are finite, it is possible —theoretically—
to represent the value functions (which estimate the expected return) in tabular form. However,
as the size of the state space grows, even discrete problems can become demanding, thus require
approximate representations and efficient algorithms to search for the optimal policy.
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Key Algorithms for Discrete MDPs

Policy Iteration The classical approach for solving discrete MDPs is dynamic programming
(DP), which makes use of the Bellman equations to recursively compute optimal value functions
and policies. One common method is policy iteration, where the agent iteratively alternates
between evaluating the current policy and then improving it. In the policy evaluation phase,
the value function V™(s) is computed by solving the Bellman expectation equation:

Vi(s) = > wlals) Y P(s'ls,0)[R(s,0) + V(5.

a€A(s) s'eS

which provides the expected cumulative reward following policy w. Once the value function
is determined, the policy is updated by choosing for each state the action that maximizes the
expected return:

7'(s) = arg max P(s'|s,a) [R(s, a) + V”(s')].
acA(s) oy

This two-step process is repeated until the policy converges to an optimal policy 7*.

Value Iteration An alternative DP method is walue iteration, which iteratively updates the
value function using the Bellman optimality equation:

V(s) = max P(s'|s,a) [R(s, a) + ’yV(s’)].

Once the value function V* converges, the optimal policy can be extracted by choosing the action
that achieves the maximum value for each state.

Monte Carlo Methods If a model of the environment is not available, Monte Carlo methods
can be used. They estimate the value function by averaging the observed returns over sample
episodes. For instance, in the first-visit Monte Carlo approach the value of state s is estimated
as

1 N(s)
Vi(s) = NG ;Gti,

where N(s) is the number of episodes in which state s is encountered for the first time, and Gy,
is the return following the first occurrence of s in each episode. An alternative is the every-visit
Monte Carlo method which averages the returns over all visits to state s. A drawback of Monte
Carlo methods is that a full episode is required to update the estimation of the value function.
Thus, in long episodes a huge amount of steps is needed to approach the value function, while in
environments where the whole training lasts one single episode (of infinite period), Monte Carlo
methods are of no use. In the last cases, the following algorithm can be useful.

Monte Carlo simulation has two forms. The first-visit variant records, for each state s, the
return following its first occurrence in an episode. The average of these first-visit returns over
many episodes provides an estimate of the state’s value. Formally, if N(s) denotes the number
of episodes in which s appears for the first time at time steps t1,%s,...,tn(), and Gy, is the
corresponding return from ¢; onward, then the first-visit estimate is

1 N(s)
Vi(s) = 0] ZGQ.
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On the other hand, the every-visit method does not restrict attention to only the first occurrence;
instead it averages the returns following each time the state s is visited. If M(s) is the total
count of visits to s across all episodes, at times t;,...,tu(s), then

1 M(s)
V(s) = M) Z Gy,

Both variants converge to the true value function given enough iterations, but each has trade-offs
in bias and variance. The first-visit method tends to be unbiased because each return following
the initial visit to a state within an episode is an independent sample of the expected future
reward from that point, because it is not influenced by any subsequent events in the same episode
that might be correlated with revisiting the state. The drawback of this method is that it suffers
from higher variance as it uses fewer data points for the estimate — only one return per state
per episode. Conversely, the every-visit method, averages the returns following every visit to
a state, typically yields estimates with lower variance, since the more samples used result in
the randomness of individual episodes affecting the estimate less. A potential downside of this
approach is the slight bias it adds. This bias occurs if revisiting a state within the same episode
is not independent of the returns experienced. For example, this occurs when the agent’s policy
changes upon revisiting a state, or if the environment’s dynamics change. Then, averaging all
returns might skew the estimate of the value of initially entering that state. However, in many
practical scenarios, especially where the policy is stationary, this bias is often minimal.

A noteworthy drawback of Monte Carlo methods is their requirement to see the complete
return of an episode before making any update. In tasks with very long—or nonterminat-
ing—episodes, the learning is delayed substantially. When episodes are infinite, Monte Carlo
updates are infeasible, since the return GG; can never be observed. In such occasions, one may
use temporal-difference methods (described below), which update value estimates online without
waiting for an episode to end.

Temporal Difference Learning Temporal difference (TD) learning methods combine the
advantages of dynamic programming and Monte Carlo methods by updating estimates based on
the current reward and the estimated value of the next state. In the simplest form, known as
T'D(0), the state-value function is updated at each time step according to:

V(s) < V(s) +afre + vV (si) — V(se)],

where the difference r; + vV (s¢11) — V(s¢) is called the TD error, and « the learning rate. TD
updates occur at each step and as a result, the method can learn online and from incomplete
episodes (avoiding the high variance), while still converging under appropriate conditions. For
the tabular case (where each state has its own value estimate), convergence to the true value
function is proven under Robbins-Monro learning rate conditions and sufficient exploration. For
on-policy® TD(0) with linear function approximation, convergence to the best linear approxima-
tion is shown under similar learning rate conditions and exploration [53]. However, for off-policy*
TD with linear function approximation, convergence is not guaranteed for simple TD but has
been proven for algorithms like GTD (Gradient Temporal Difference) and TDC (TD with Cor-
rection) under specific conditions [35]. With non-linear function approximation, convergence is
generally not guaranteed and can be unstable.

3The policy being evaluated is the same policy used to generate the data
4The policy being evaluated is different from the policy used to generate the data
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SARSA and Q-learning The idea can be extended to action-value learning with two algo-
rithms. SARSA (named for the quintuple: (s, as,rs, Se41,a:41)), is an on-policy method that
uses the next action actually chosen under the current policy,

Q(st, ar) = Q(s1, ar) + a[ry + 7 Q(s141, argr) — Q(s1, ar)],

thereby learning the value of the policy being executed. QQ-learning treats the next-state action
as the best possible, regardless of the agent’s behavior, so it uses the maximum over all actions
at the next state,

Q(s¢,ar) < Q(s4,a0) + 04{7"15 + max Q(st41,a) — Q(sy, at)]-

This maximization step guarantees that Q-learning converges to the optimal action-value func-
tion under standard assumptions.

Eligibility Traces and TD(\) TD(\) merges one-step TD and Monte Carlo by introducing
eligibility traces, which accumulate credit for past states (or state—action pairs) according to how
recently and frequently they have been visited. In the forward view, the A-return is defined:

GV =(1-1)> A6,
n=1

where ng) is the n-step return. This mixes n-step returns ng), weighting longer returns geo-
metrically by A. In the equivalent backward view, a trace e;(s) is maintained for each state s
and updated by:

ei(s) =y Ne1(s) + 1{s; = s},

and all states are then updated by the same TD error 6; = rp + vV (s141) — V(s¢):
V(s) < V(s) + ad;els) for all s.

The weight A € [0,1] is used to interpolate between pure TD(0) (A = 0) and Monte Carlo
(A =1), in order to trade off bias and variance in the updates.
Approaches to Solve Continuous MDPs

In continuous Markov decision processes, the infinite cardinality of states or actions disallows
exact tabular solutions. Instead, it is necessary to use approximation and gradient—based opti-
mization in order to generalize across similar states and actions.

Recall that the core of solving MDPs is the Bellman expectation equation, which in contin-
uous notation is written as:

V7T(s) = / m(a | s) / P(s,a,s')[R(s,a,s") +yV7(s")] ds' da,
A S
and its pair, Bellman optimality equation:

V*(s) = ma:ic/P(s,a, s)[R(s,a,s") +~yV*(s)] ds'.
ac S
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These equations define the fixed-point conditions that any candidate value function must satisfy
under a given policy 7 or under the optimal policy 7*. As we explained, in continuous domains
we cannot store V' (s) for every s, so a parameterized approximator Vp(s) is used to search for
the parameters 6 that push Vj toward the Bellman target.

In the following paragraphs, we organize the main methods used to solve RL problems de-
scribed with continuous MDPs.

Key Algorithms for Continuous MDPs

Value-Based Function Approximation When states or actions lie in continuous spaces,
it is impossible to store a distinct value or action-value for each state or state—action pair.
The standard solution is to utilize a function approximator, such as a neural network or a linear
combination of basis functions, whose parameters # are used to define an approximate state-value
Vo(s) or action-value Qy(s,a). The parameters of these approximators are found by minimizing
Bellman error in expectation. For the state-value case we have:

0 = argmin Eoo[(Vils) — (R(s.a) + 7 Vals))’].

where Vj aims to approximately satisfy the Bellman equation V(s) = R(s,a) + vyE[V(s)]. In
practice the expectation is replaced by samples (s, a,r, s’) drawn from a simulated model or real
environment trajectories. Analogously, an approximate action-value function Qy(s, a) can be fit
by aiming to approximate targets of the form r 4+ vy max, Qg(s', d’).

Policy Optimization Methods An alternative to value-based fitting is to directly parame-
terize the policy mg(a | s) and adjust 6 to maximize the expected return

J(O) = Erry [Z 7t Tt} :
t=0
The policy gradient theorem shows that

VQJ(Q) = ESNdW,awﬂg [VQQWG (S’ a’)} ’

where d™ is the discounted state-visitation distribution. In continuous action spaces, this ex-
pectation can be estimated by Monte Carlo and used to perform stochastic gradient ascent on

6.

Deep Deterministic Policy Gradient (DDPG) [39] extends this idea by maintaining both a
deterministic policy pe(s) and a critic Qg(s,a). The critic is learned off-policy by minimizing
the mean-squared Bellman error

'C(H) - E(s,a,r,s’)ND [(Q@(Sv CL) - [T + v QQ’(SI’ M¢'(8/)) ])2:| )

where ¢, ¢’ are slowly-updated target networks for stability and D is a replay buffer®. The actor
parameters ¢ are then adjusted by

V¢J ~Esop [VGQG(S’ a) ’a:/%(s) V¢M¢(S)] :

°The replay buffer is a memory that stores past experiences as tuples of (s, a, r, s') allowing for batched updates
and breaking temporal correlations in the data. Learning from this replay buffer is done by classic supervised
machine learning algorithms, where given a state s and action a (as input), the goal is to predict a target value
(related to the Q-value or policy), which a task that can be solved effectively.
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Prozximal Policy Optimization (PPO) [40] improves stability of on-policy policy gradient by
mg(at|st)

and an
014 (at|st)

optimizing a clipped surrogate objective. Defining the probability-ratio r,(0) =

advantage estimate flt, PPO maximizes
LOMP () = B, [min(ry(0) Ar, lip(ri(6),1— .1+ ¢) Ay)),
thereby preventing any single policy update from moving r.(f) outside [1 — €, 1 + €.

Actor—Critic Methods Actor—Critic (A2C) algorithms blend value-based and policy-gradient
ideas. A “critic” network QQy or Vj evaluates the current policy’s performance, while an “actor”
network w4 is updated in the direction suggested by the critic. Both on-policy (e.g. A2C) and
off-policy (e.g. DDPG, SAC) variants exist. The critic’s bootstrapped estimates reduce the vari-
ance of the policy gradient, while the actor’s direct optimization steers behavior toward higher
return.

3.6.4 Model-Free vs. Model-Based Reinforcement Learning

RL approaches can be categorized into model-free and model-based, distinguished by whether or
not the agent learns or has a model of the environment’s dynamics. A model of the environment
gives the agent the ability to predict the next state and the immediate reward given the current
state and action. Model-based RL requires learning this transition function P(s’ | s,a) and the
reward function R(s,a) or R(s,a,s’). Once a (sufficiently accurate) model exists, the agent can
use it to plan sequences of actions by simulating future trajectories. The advantage that model-
based RL has is that by learning the underlying dynamics, the agent can often achieve good
performance with fewer real-world interactions. However, the challenge is to learn an accurate
model, especially in complex or stochastic environments.

In contrast, model-free RL methods do not attempt to explicitly learn the environment’s
model. Instead, they directly learn the value function V'(s) or Q(s,a) or the policy m(a|s) from
experience. The algorithms we analyzed previously (Monte Carlo methods, Temporal Difference
learning, SARSA and Q-learning, and policy gradient methods) refer to model-free RL. Despite
the simplicity of implementation, due to it not requiring to learn a model of the environment,
model-free RL can be surprisingly effective in various problems. However, these methods often
require a large number of interactions with the environment to learn optimal policies, as they
must directly experience the consequences of their actions, in order to understand the underlying
dynamics.

The choice between model-free and model-based RL depends on the complexity of the en-
vironment, the availability of a good model, and the amount of interaction data that can be
collected.

3.6.5 Practical Considerations in Reinforcement Learning

Although in theory, the foundations of RL provide a strong basis for developing intelligent agents,
the actual training of these agents has many practical obstacles. Effective learning and stable
behavior requires carefully choosing several aspects of the learning process.
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Reward Design

The reward signal is fundamental in the learning process, being the primary feedback mechanism
that guides the agent to learn effectively. A well-designed reward function should be relevant to
the desired task, in order to provide signals that encourage the agent to learn how to achieve its
goals. However, reward design can be a difficult task.

One example is using sparse rewards. In settings where the agent receives a non-zero reward
only upon achieving a final goal, the learning process can be extremely challenging, especially in
complex environments with long horizons. The reason is that the agent may struggle to associate
its actions with the eventual success.

Conversely, dense rewards, provide feedback at each step, thus can accelerate learning. How-
ever, the trade-off is that this type of reward may inevitably guide the agent towards suboptimal
behaviors if it is not carefully designed. Various techniques (reward shaping for instance) can be
employed to mitigate this problem, but they carry the risk of introducing undesired local optima
that the agent might converge to. Furthermore, the scale of the reward has a significant role in
the learning stability and speed.

Function Approximation

As previously discussed, many real-world problems involve continuous or very large discrete
state and action spaces, thus handling tabular representations of value functions or policies is
infeasible. Function approximation techniques are essential to generalize from experienced states
and actions to unseen ones. The choice of function approximator, can be a linear combination of
basis functions, a neural network, or another differentiable function, and it impacts the learning
process and the agent’s ability to represent complex relationships. The function approximator
should not only be able to capture the underlying structure of the value function or policy, but
also to avoid overfitting to the training data. Moreover, the stability of learning can be affected
by the choice of function approximator.

Exploration Strategies

The exploration-exploitation dilemma is a central challenge in reinforcement learning, and the
strategy that balances them affects the learning efficiency and the quality. As mentioned earlier,
insufficient exploration leads to the agent converging to a suboptimal policy, while excessive
exploration results in slow learning and suboptimal behavior during the training.

Many exploration strategies have been developed to address this challenge. Simple ap-
proaches like e-greedy exploration [36], where the agent takes a random action with probability
e and the greedy action with probability 1 — €, are used to balance the exploration and ex-
ploitation in a simple and effective way. More sophisticated methods, such as Upper Confidence
Bound (UCB) [36] algorithms, and Thompson Sampling [54], which is a probabilistic strategy
where the agent maintains a belief (probability distribution) over the value of each action and
samples from these distributions to select the next action. Actions with higher sampled values
are more likely to be chosen, thus implicitly balancing exploration of uncertain but potentially
good actions. In continuous action spaces, exploration often involves adding noise to the chosen
action or exploring in the parameter space of the policy.
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Initialization

The initial values of the function approximator’s parameters can have a significant impact on the
learning process. Poor initialization leads to slow convergence, instability, or even converging in
suboptimal regions of the parameter space.

Normalization

Scaling and shifting the input and sometimes output to a standard range (e.g., between -1
and 1, or having zero mean and unit variance) is common practice in machine learning that
can also benefit reinforcement learning. Normalization can improve the stability and speed of
learning, especially in gradient-based optimization with function approximators. Features with
different scales can lead to gradients that are also on different scales, causing oscillations and
slow convergence. By normalizing the state space, its features contribute more equally to the
learning process. Also, normalizing the action space results in the output of the policy network
to be within a suitable range for the environment and can stabilize the training.

Stability of Learning

The process of training, especially when using complex function approximators (such as deep
neural networks), can be inherently unstable. Several factors lead to this, such as the non-
stationary nature of the target functions (the policy and value functions are constantly updated),
correlated updates, and issues with gradient propagation. To mitigate instabilities, various
techniques are used. Experience replay allows the agent to learn from past experiences by
storing transitions in a buffer and sampling them randomly, reducing the correlation between
consecutive updates. Target networks use a delayed copy of the value function or policy network
to compute target values. This stabilizes learning by reducing the feedback loop between the
updating network and the target (the online network’s weights are updated after each training
step to improve its predictions, so using these rapidly changing weights to also define the target
values would create a moving and unstable learning objective). Gradient clipping limits the
magnitude of gradients during backpropagation, which could destabilize the learning process.
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3.7 Model Predictive Control

Introduction to Model Predictive Control

Model Predictive Control (MPC) is a control strategy that relies on a dynamic model of the
system to predict its future evolution over a finite horizon. At each time step, MPC solves
an open-loop® optimal control problem, determining a sequence of future control actions that
optimizes a predefined objective function while satisfying the system’s dynamics and constraints.
A feature of MPC is the receding horizon principle: only the first control action of the calculated
optimal sequence is implemented, and the optimization process is repeated at the next time step,
where the updated system state is the new initial condition. This iterative optimization helps
in managing disturbances, while following the system’s dynamics and constraints.

Core Components of Model Predictive Control

The general MPC version revolves around three concepts: system modeling, prediction, and
optimization with receding horizon.

System Modeling MPC uses an explicit model of the system to predict its future behavior.
The MPC framework works both with discrete-time and continuous-time systems.
For a discrete-time system, the dynamics are usually represented in state-space form:

w(k+1) = f(z(k), u(k), d(k)),

where x(k) is the state vector, u(k) is the control input vector, and d(k) denotes disturbances
in the system. In the case of a linear time-invariant (LTI) system, the system takes the form:

z(k+1) = Az(k) + Bu(k) + Ed(k),

where A, B, E are system matrices.
For a continuous-time system, the dynamics are described by differential equations:

and in the LTT case:
&(t) = Az(t) + Bu(t) + Ed(t).

Prediction Using the model and the current state x(t), MPC predicts the future trajectory of
the system over a finite horizon N (7" in continuous time) for a sequence of future control actions
U=[u(t),u(t+1),...,u(t+N —1)] (u(r) for 7 € [t,t + T') in continuous time). The predicted
state and output trajectories are denoted x(k|t), y(k|t) for discrete time, and z(7|t), y(7|t) for
continuous time, based on information available at time ¢. The control horizon N (or T') defines
how many future control moves the algorithm considers as decision variables to optimize.

50pen-loop control computes a control sequence based on a model and initial state, without feedback during
execution.
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Optimization with Receding Horizon At each time step ¢, MPC solves an optimal control
problem to find the control sequence U that optimizes a functional J over the prediction horizon,
subject to the system dynamics.

For instance, for the discrete-time case, a generic cost functional would be:

t+N—-1

To(@([6),ul) = D C(w(klt), ulklt) + Vi (x(t+ N|t))

k=t

where /(x,u) is a stage cost and Vy(-) is a (optional) terminal cost. The receding-horizon
optimization at time ¢ is:

minimize Jo(z(-[t), u(-]t))
w(t|t),...,u(t+N—1Jt)
subject to (k4 1[t) = f(x(k|t), u(k|t)) Vk=t,...,t+ N —1,
z(klt) e X, u(klt) ed VEk=t,....,t4+N—1,

x(t|t) = x; (current state).

Here f denotes the system dynamics, and X', U are state/input constraint sets. Once the sequence
{u*(k|t)} is calculated by the optimizer, only u*(¢|t) is applied, and at the next time step t+1 the
state is observed again, and the entire finite-horizon problem is solved again over [t 4+ 1,t 4+ N]|.

This receding-horizon scheme provides stability since it allows replanning at every step to
account for disturbances and modeling errors.

Solving the Optimization Problem

The nature of the system model (linear or not), the optimization objective and the constraints
determine the type of optimization problem that needs to be solved at each MPC step.

For instance, the optimization problem for linear systems with quadratic objective functions
and linear constraints, can be formulated as a Quadratic Program (QP). QPs’ property is that
they have a unique global optimum if a solution exists, and can be solved efficiently with well-
known numerical algorithms. Thus linear MPC is suitable for real-time applications.

For nonlinear systems, objective function or constraints, the optimization problem becomes
a Nonlinear Program (NLP). NLPs are usually more challenging to solve. They may have
multiple local optima, and finding one is not guaranteed. Iterative methods are the common
solution approaches. The computational complexity can thus limit the applicability of nonlinear
MPC. Real-time iteration (RTI) schemes have been developed to address these challenges by
performing only a few iterations, in order to find a feasible and sufficiently good solution.

Considering continuous-time MPC, the optimization aims to find an optimal control trajec-
tory over a time interval. This can be approached using methods from optimal control theory,
such as direct methods (e.g., discretization of the control and state trajectories and then solving
a finite-dimensional optimization problem) or indirect methods (e.g., using Pontryagin’s max-
imum principle to derive conditions for optimality). Discretization often leads to large-scale
optimization problems which can be solved using NLP solvers.

Applications of Model Predictive Control

In many engineering domains (chemical plants, robots, vehicles, power grids, etc) Model Predic-
tive Control is used for its ability to anticipate future behavior, while respecting constraints, and
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handle multiple interacting variables in a single optimization. In process plants, MPC adjusts
flows, temperatures and compositions. In robotics and autonomous vehicles, it plans motion by
predicting kinematics and dynamics ahead, resulting in smooth control and obstacle avoidance.
Applications such as adaptive cruise control, lane-keeping and emergency braking also use MPC
to ensure the safety on the road (constraint) while optimizing aspects like fuel consumption and
trip duration. Electric power systems use MPC to balance supply and demand, regulate voltage,
and integrate renewables which are characterized by rapid fluctuations.
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4.1 Motivation

The integration of advanced machine learning models with optimization and control methods is
becoming increasingly popular in modern decision-making systems. In many real-world appli-
cations, sequential decisions must be made under uncertainty, based on sequential observations,
where the future (model of the system) is not fully known, but predictions can be made with
various degrees of confidence. Model-Based Reinforcement Learning techniques have been uti-
lized to solve such problems by assuming a model of the world’s system and making decisions
based on it, while adapting on the observed data.

As discussed in previous sections, diffusion models were initially developed for applications
regarding image generation, with remarkable capabilities in learning complex probability distri-
butions, thanks to their inherent complexity. Thus, they are suitable to model the probability
distribution of the future data points of multivariate time series. These probabilistic forecasts
incorporate the uncertainty of the future which is critical in the task of controlling real-world
stochastic systems that depend on unknown or unobservable parameters. Examples of such
systems, where it is impossible (or really hard) to measure all the parameters that affect the
future, are the Weather, which depends on atmospheric conditions that are influenced by chaotic
factors, some Quantum Systems, where it is impossible to measure accurately all the parameters,
Human Behavior, which is influenced by emotions, social interactions and cognitive biases that
are not measurable and Financial Markets, that are both chaotic and depend on politics and
human psychology.

This thesis investigates the synergy between diffusion models for probabilistic time series
forecasting and sequential decision-making frameworks like Model Predictive Control (MPC),
focusing on their combined ability to enhance optimal decision-making processes. We aim to
overcome the challenges caused by the high-dimensional and uncertain dynamics, by using the
predictions of diffusion models as a stochastic model of the system we try to control, leading to
more informed and robust decisions.
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4.2 Problem Definition

In most real-world decision-making problems, the true state of the environment, which is all the
information an agent would need in order to make optimal decisions, is not directly measurable.
Instead, an agent must use noisy or partial observations as a surrogate to the real state. To
propose our method, we formally model the class of problems that we aim to solve as a discrete-
time Partially Observable Markov Decision Process (POMDP). A POMDP is defined by the
7T-tuple

(S, A, T,R,Q,0,),

where:
e S is the (hidden) state space, representing all possible configurations of the environment.

e A is the set of actions available to the agent.

T:8 x A— A(S) is the state transition function; for any current state s € S and action
a€ A, T(s|s,a) gives the probability of transitioning to state s'.

R:S x A — R is the reward function, which assigns an immediate reward R(s,a) based
on the (unobserved) state s and the chosen action a. In practice, since the true state is
not observable, the reward is computed via a belief function based on the observations.

e () is the set of all possible observations.

e O:S8xA— A(Q) is the observation function; when the environment transitions to a new
state s’ after an action a is taken in state s, the agent receives an observation o € €2 with
probability O(o | s’,a). Note that the observation o may capture both deterministic and
stochastic aspects of the state.

e v € [0,1) is the discount factor, which governs the trade-off between immediate and future
rewards.

At each time step t, the environment is in some (hidden) state s, € S. The agent does not
observe s; directly; instead, it receives an observation o; € €2 that provides partial information
about the state. Based on this observation, the agent selects an action a; € A, which results in
the environment transitioning to a new state s,y according to T(syy1 | ¢, a¢). Simultaneously,
the agent obtains a new observation 0,47 ~ O(- | s441,a;) and an immediate reward r; =
R(oy, ay).

Moreover, the proposed method refers to problems where the system is not fully observable
and where the dynamics are partially deterministic and partially stochastic. At each time step ¢
(or with some delay), the agent receives an observation o; € Q2 that provides partial information
about the hidden state. In our formulation, we assume that the observation o, can be decomposed
into two components:

o = (o], 0}),
where of is the deterministic component of the observation, which is directly affected by the
agent’s actions. For example, in a battery storage application, the state-of-charge (SoC) evolves
deterministically according to the applied control inputs. The o] is the stochastic component
that captures the uncertainty of the system (e.g., energy prices that follow complex, stochastic
dynamics).
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To plan its actions, the agent forecasts the trajectory of future observations, regarding their
stochastic component. In particular, the agent generates forecasts of the form 67 ,,0;,,,...,
and calculates the optimal action sequence a;y1,a;yo,..., that will deterministically lead to
observations 6f+1, 6f+2, ..., completing the observation trajectory 0;i1, 042, .... This trajectory
helps calculate the expected cumulative reward, based on the model of the system, that the
agent aims to maximize, through the action sequence.

In this formulation, we use diffusion-based time series forecasting models, such as TimeGrad,
to predict the evolution of the stochastic part of the observations, providing the agent with an
uncertainty-aware and powerful model that will be integrated into control algorithms like Model
Predictive Control (MPC).
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4.3 Probabilistic Forecasting for POMDPs

In our problem setup, to effectively plan actions under uncertainty, the agent has to estimate
the evolution of the stochastic component of the observations. In our approach, a diffusion-
based time series forecasting model, TimeGrad, provides a probabilistic model of the stochastic
dynamics.

TimeGrad is designed to learn the conditional probability distribution of future stochastic
observation components given historical data. Let o; denote the stochastic part of the observa-
tion at time k. Given a history of stochastic observations of, ;, TimeGrad approximates the

distribution of future values over a prediction horizon k£ = ky, ..., N as follows:
N N
q (OZO:N | Oi:kofl) = H q (OZ | Oi:kfl) ~ H p9(02|hk*1)7 hk = RNN@(O?wht*l)?
k=ko k=ko

where py is the learned forecast distribution (6 denotes the learned parameters), and hy., 1 is
the hidden RNN state that encodes the important information from the past observations.
Within our POMDP formulation, the agent uses these probabilistic forecasts to guide its
control strategy. While the deterministic component of the observation (e.g., battery state-of-
charge) is governed by known dynamics, the stochastic component is estimated using TimeGrad.
The agent combines the known deterministic dynamics, of, with the forecasted stochastic ones,
oy, to construct predicted observations:
This forecasted observation sequence is then integrated into control algorithms, such as Model
Predictive Control (MPC) and its stochastic variants, to determine an optimal action sequence
that maximizes the expected cumulative reward.

112



CHAPTER 4. METHODOLOGY

4.4 Model Predictive Control with TimeGrad

Our first step, is to integrate the diffusion-based forecasting model into a Deterministic Model
Predictive Control framework to calculate the optimal control sequence in the partially observ-
able environment.

At each decision epoch, given a history of observed stochastic components of, 07, ..., 0},
TimeGrad generates a distribution of M forecasts {62&)}5‘11 for the next time step. We aggregate
these samples using a statistical operator, such as the median or the mean, in order to yield a
single point forecast: y

Opy1 = F(0f, ..., 00) = median{éi’g}i_l.
The overall next-step observation ox41 = (0f,,,0;,,), is constructed by calculating the deter-
ministic part of ; as well, after choosing an action ay.

Using this forecast operator in an autoregressive manner, we generate a predicted observation
trajectory for a future horizon of N steps. The deterministic MPC problem, when starting at
time step ko and planning for NV steps ahead, is formulated as follows:

N+ko—1
maximize E R(ék, ak)

Qs O N4kg—1
07" 0
k=ko

subject to o0g,...,0r,—1 are observed,
Orpe1 = Fl(og, ... o), fork=ky—1,...,N+ky—2,
akEA<Sk), for k =ko,..., N + ko — 1.

Here, R(0y,ax) denotes the reward obtained when applying action a; based on the predicted
observation 0. Note that by aggregating multiple probabilistic forecasts into one (via the median
or mean), the approach handles uncertainty solely at the forecast level. Consequently, the MPC
optimization problem becomes deterministic, as it is based on a single predicted trajectory of
future observations.

The following step is to extend this framework to fully account for uncertainty within the
optimization process (using stochastic MPC variants).

113



CHAPTER 4. METHODOLOGY

4.5 Stochastic Model Predictive Control with TimeGrad

To account for the uncertainty in the evolution of the unobserved stochastic component of the
environment during the optimization process, we extend the classical MPC framework by inte-
grating multiple forecast trajectories. In this formulation, the distribution of future stochastic
observations is explicitly incorporated into the optimization problem. We present two variants
of Stochastic MPC (SMPC): one using Monte Carlo simulations and the other using predictions
organized in a tree structure.

4.5.1 SMPC with Monte Carlo Simulations

In Monte Carlo SMPC, we model the uncertainty by sampling M independent trajectories
from TimeGrad’s forecast distribution. For each scenario i € {1,..., M}, the future stochastic
component is generated recursively over the prediction horizon k = ky,..., N + ko — 1 as

OZ’J(F? ~ Do (OZ+1 | hk)'

For each scenario i, the full predicted observation at time k£ + 1 is

NO RN 5,(1)
Opy1 = <0k+17 0k+1>>

where of 41 is computed deterministically from the known system dynamics. The cumulative
reward along the 7th trajectory, based on the actions applied is defined as

TV = 3" R(6), a), where o) = (of, 67"
k=ko
The corresponding SMPC optimization problem seeks the action sequence {ay,, ..., aNk,—1}

that maximizes the average cumulative reward across all M scenarios:

subject to og,...,0,—1 are observed,
on @ Npg(ozﬂ | hk>, k=ko...,N+k —1, Vi,
a, €A, k=ky,...,N+ky—1.

This formulation integrates uncertainty over the entire prediction horizon by considering mul-
tiple trajectory realizations, leading to robust control decisions, accounting for the stochastic
dynamics in the optimization process.

4.5.2 Scenario Tree-Based MPC

Multistage stochastic programming seeks an optimal policy over a finite horizon by discretizing
the future uncertainty into a scenario tree. A scenario tree has for root the last realized random
variable of a stochastic process and nodes at each stage ¢ which represent possible realizations of
the random process up to t. Moreover, the tree branches carry probabilities consistent with an
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assumed distribution of the stochastic process. It is important to mention that the tree respects
the non-anticipativity constraints of the stochastic process, by requiring that decisions made at
stage t can depend only on the stochastic variables realized up to t. By construction, a proper
scenario tree has the following constraints: all scenarios that share the same history up to stage
t coalesce at the same node, so the decision at that node is the same across those scenarios. We
propose two Scenario Tree implementations.

A. Forward Clustering Scenario Tree Construction

In the forward clustering variant, we grow the scenario tree one stage at a time, starting from the
current state and extending into the future. At each node, we call the diffusion model to produce
a set of M forecasts covering the next stage. We then apply a standard K-means clustering to
those M trajectories, and treat each cluster’s centroid as the representative of the branch. The
centroid may be chosen as the arithmetic mean, component-wise median, medoid, or using any
other aggregation operator. The proportion of samples falling into each cluster becomes the
node probability, and each node’s cumulative probability is the product of probabilities along
the path from the root. In order to avoid the exponential expansion of the tree, one should trim
it online, for example by maintaining the L highest-probability children at each level, preserving
the most likely scenarios. This forward scheme is straightforward, and it naturally enforces non-
anticipativity as well, since each node’s descendants are generated only from the information
available up to that node. The forward-clustering procedure is defined in Algorithm 1.

B. Backward-Hierarchical Clustering Scenario Tree Construction

The backward hierarchical variant first samples a full set of M trajectories spanning the entire
decision horizon (consisting of all stages) in one shot. It then builds the tree, starting from the
leaves and ending on the root, by repeatedly clustering those full-length samples at decreasing
temporal resolutions. At the deepest level (end of the stage horizon), the M sampled trajectories
are grouped into Kp (a pre-defined parameter) number of clusters to form the last-stage nodes.
The cluster centroid represents the node’s grouped forecasts, while the branch probability is
defined again as the proportion of samples falling into the group. Next, to form the previous
stage, we merge each leaf-cluster’s trajectories and recluster them into Kp_; groups—ensuring
clusters (and thus decisions) only ever coalesce, never split, maintaining non-anticipativity. This
merging-then-reclustering continues until reaching the root. A Lloyd-style loop optimizes a
clustering objective that balances reconstruction error, within-cluster variance, and between-
cluster separation. In this way, the algorithm chooses both cluster assignments and the number
of clusters without the need of setting arbitrary thresholds. The backward-hierarchical clustering
method is defined in Algorithm 2.
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Algorithm 1: Forward Clustering Scenario Tree Construction

Input:
S: empty tree with root;
O: initial observation history up to current time;
predictor: trained diffusion-based forecaster (e.g. TimeGrad);
D: tree depth (number of stages); K: clusters per stage; M: forecast samples;
H: horizon per stage; F: feature dimension; L: top-L children per node.
Output:
Populated scenario tree S with forecasts, probabilities, and representative paths.
Initialize queue @ < {(S = root, O, 0)}, node counter = 0;
while Q # () do
(node, O, ¢) < Dequeue(Q);
// Assign unique identifier to node
node.id <— node _counter; node counter+-+;
// 1f desired depth reached then stop expanding the current path

if /> D then
L continue

// Generate M stochastic forecasts

{FOM - — predictor.sample(O, M), F© e REXF

Reshape forecasts into X € RMx*(H-F).
Cluster forecasts with K-means — cluster labels {/;};
// Compute representative forecast and probabilities
for k=1,...,K do
i < centroid of cluster k;
Pr o i 1l = k)
P, < node.P - py;
Create child node vy, with forecast uy, probability Py;

// Select top-L children based on cumulative probability
Sort {vi} by Py in descending order and keep top L;
// Expand the tree
for each kept child-node vy with representative p; do
Concatenate O" <= O || p;
Attach v, as child of node;
Update tree S with vy;
Enqueue(Q, (vg, O, £+ 1));

return S
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Algorithm 2: Backward-Hierarchical Clustering Scenario Tree Construction (Phase 0)

Input:
S: empty tree with root;
O: initial observation history;
predictor: pretrained diffusion-based forecaster;
D: number of tree levels (depth);
M : number of trajectories to sample;
N: forecasting horizon (number of time-steps per trajectory);
{K4}E ,: desired number of clusters at each level d (can be calculated automatically);
{wy,wy, w3}: weights for the clustering objective.
Output:
A fully-constructed scenario tree S with levels 1, ..., D and branch probabilities.
// Definition of clustering-objective terms (for any clustering
C={Cy,...,Cx} on data X = {x;}M)):
1. Reconstruction Error:

M
RE =3 |xi — me
=1

2. Intra-Cluster Variance:

2 M 2
. REy =) |xi - x|,
=1

K F
IntraVar = Z Z Var(x), IntraVary = ZVar(X;,j) X K,
k=1 xeC}, J=1

3. Inter-Cluster Separation:

InterSep = Z H,uk — ,ug||2, InterSepy = Z Hrk — WHQ,

1<k<t<K 1<k<t<K

where: x; € RV'F is the ith flattened trajectory, F is the feature-dimensionality per
time-step, pu is the centroid of cluster Cy, c(i) denotes the cluster-index of x;, X is the
global mean of all {x;}, 1,...,7x are K random initial centers used to compute
InterSepy, REworm = RE/(REy + €), IntraVaryom = IntraVar/(IntraVarg + €),
InterSepnorm = InterSep/(InterSepy + €), and the composite objective is

Obj = wy REyorm + weo IntraVaryem — ws InterSepuorm.

// Note: REy, IntraVary, InterSepy are baseline scores computed once on
the unclustered data (by the overall variance and random initial
centers), used to normalize each metric-ensuring RE, IntraVar, and
InterSep become scale-invariant and comparable across the clusterings.

// Phase 0: Sample all M full-horizon trajectories from the
diffusion-based predictor

{(xM, = predictor.sample(O, M) with each x?) € RM*7"

Flatten each x into X € RV'¥. Denote the resulting matrix by

X = [x0,. . x0]" ¢ RMX(NF),
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Algorithm 2: Backward-Hierarchical Clustering Scenario Tree Construction (Phase 1)

// Define custom_kmeans algorithm, which is a Lloyd-style k-means loop
that clusters the data to optimize the composite objective 0bj

// Phase 1: Cluster at the deepest stage d=D (i.e., last time-slice
t=N)
1. Compute

{,u,(CD) 5:171, {EED)}ZZI = custom_kmeans(X, Kp, wi,ws, ws),

where () € {1,..., Kp} is the cluster-label of X at level D, and ") € RNF is the
centroid of cluster k.

2. For each k=1,... Kp:
o Let S,iD) = {x®: EED) = k } be the set of original (unflattened) trajectories in
cluster k.

e Branch-probability:

S(D)
D
p’<€>:|k |

e Representative trajectory (node prediction):

SI,E:D) = reshape(u,gD), N, F)
e Create a new Stage-D node v,(CD) with:
U,(CD).own_pred = y,iD),

U](CD) .probability = p,(CD)

o?)

Y

trajectories = S ,(f’) .

e Attach v,(gD) as a child of the unique Stage-(D — 1) “parent placeholder” (for now,
all children are temporarily orphans under a dummy root).

118



CHAPTER 4. METHODOLOGY

Algorithm 2: Backward-Hierarchical Clustering Scenario Tree Construction (Phase 2)

// merge_clusters groups the prior-stage clusters into j hyper-groups,
evaluating the objective Obj on each merged set and selecting the
grouping that minimizes 0bj.

// Phase 2: For each stage d=D—1,D—2,...,1, perform backward
merging into Ky clusters

ford< D —-1to1 by —1do

1. Collect the list of existing Stage-(d + 1) clusters’ trajectory-sets:

cld+) — {S]gd’Ll)}kK:dl“, where S,idﬂ) C {x@}M,.

2. fork=1,...,K;do
e Apply candidate merge of the K ;.1 prior clusters into k groups:
{ugd), fgd)} = merge_clusters (C(d+1), k, wl,wg,wg).

- ,u§~d) € RV*F: centroid of merged group j.
— Egd) € {1,...,k}: label of each prior group Si(d+1).

e Compute the composite objective Obj(k) on these k merged groups.

3. Select the best number of clusters

k* = arg min Obj(k),

1<k<K,
and let {u§d), ﬁg-d) le be the centroids and labels returned for £* clusters.

4. Using the chosen {Mgd), Egd)}, for each new cluster j =1,..., k*:

e Merge trajectories:

Kaq1
d) _ (d+1)
¢V = s
k=1
09—
e Compute branch-probability:
G5
@) _ ™y
p; = Vi

Extract representative prediction at time ¢t = d:

ﬂ§-d) = [reshape(ug.d), N, F)}

Create Stage-d node v](-d) with

(d)

F

(d) (

(d)
g Y

J

)

vy .own_pred = i d).probability =p;’, v](.d .trajectories = Gg-d).

Attach each prior node 'U,Ejdﬂ) for which E;d) = j as a child of vj(.d).
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Algorithm 2: Backward-Hierarchical Clustering Scenario Tree Construction (Phase 3)

// Phase 3: Finalize the root (d=0)
e Create the root node v with:

'U(O).own_pred =@, v probability =1, 0% trajectories = {X(i) f\il.

o Attach each Stage-1 node vj(l) (for j=1,...,K;) as a child of v©.

return S

Solving the Optimization Problem
In both variants, once the tree T is built we solve the following multistage SMPC:

ko+N—1
maximize E E ™ R(6}, a})
T
{ai} k=ko €Tk

subject to 61610 = Okys
~ind . pre(i),d i .
opty = (P ) Vie T \ {1},
al = a;,  whenever nodes i, j share the same history up to k,

a, € A Vi, k.

Here N, is the set of nodes at stage t, each with probability P}*, observation o}, and decision
ay; non-anticipativity is enforced by equating decisions a; across all scenarios sharing the same
parent node.
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4.6 Heuristic-Augmented Model Predictive Control

Standard MPC algorithms optimize control actions over a finite horizon IV, leading to strategies
that maximize short-term rewards, since the algorithm is able to "see" only N steps ahead.
To overcome this limitation, we augment the MPC framework with a terminal heuristic that
anticipates the system’s behavior beyond the finite horizon. This extension allows the controller
to account for long-term reward by incorporating an estimate of the optimal terminal observation
(regarding the deterministic part) into the optimization.

We propose a method of creating the heuristic that is inspired from pattern recognition. In
our approach, MPC is performed over a finite horizon of NV time steps. We then extend the fore-
cast by generating predictions for an extra interval of L time steps, conditioned on the generated
observations of the horizon. These extended forecasts are used to train a predictive model (we
implemented using an LSTM) that estimates the optimal terminal observation, denoted by

opt _ ~S ~S
ONtko—1 — LSTM, (OkoiN-i-ko—l? 0N+ko:N+ko+L—1>7

where 6 are the parameters of the LSTM network. This optimal terminal observation guides the
optimization process, taking the extended horizon into consideration, which helps the algorithm
approach the long-term objective. Regarding the training of the predictive model, we apply the
MPC algorithm on windows of N + L time steps of observations, and retrieve the deterministic
part of observation at step N. This is the observation at step N that the system must pass
through, in order to achieve the optimal action sequence for a longer horizon, which is a better
approximation for the infinite-horizon goal. Hence, the model is trained to predict the expected
optimal observation at the end of the horizon. We propose this concept in order to handle
situations where decisions must be made fast or computationally inexpensive, meaning that
optimizing directly on a larger horizon is challenging.
The Heuristic Augmented MPC optimization problem is then formulated as follows:

N+ko—1 9
. s ~S opt
maximize E R(o},ar) —~ H0N+k0_1 - 0N+k0_1‘ ,
akov'waNJrkOfl
k=ko
subject to 0p,01,...,0k,—1 are observed,

Gioy = F(0hens0l)s k=horeo N+ ho—1,
ar € A, k=ky,...,N+ky—1.

Here, F denotes the forecast operator as in the previous frameworks), and v is a weighting
factor that determines the significance of ending in the predicted optimal terminal state. We
propose two variants of this heuristic-augmented MPC: one with a hard terminal state constraint
(achieved by setting v = oo), where the optimization process must definitely end up in the
predicted state and one with a soft constraint (y < co), where the MPC algorithm can balance
between achieving the terminal state and optimizing the cumulative reward. One may choose
between infinite and finite ~, depending on how accurate their predictive model is.

By integrating the terminal heuristic into the MPC formulation, we indirectly extend the
planning horizon beyond N time steps, so that the optimal control sequence not only maximizes
short-term rewards but also positions the system favorably for future operations, mitigating the
limitations of the finite-horizon optimization.
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4.7 Model-Free Reinforcement Learning

To provide a holistic evaluation of learning strategies, we define various model-free RL baselines.
In this way, we explore a broader set of methods on the same task. Moreover, comparing these
baselines against our proposed model-based MPC framework (D-I MPC') will provide insight
considering the value of learning an explicit probabilistic model of uncertainty versus relying
purely on trial-and-error. We define three versions of model-free agents, all operating in the
POMDP setting, but differing in how they represent the environment state.

4.7.1 Model-Free RL with Idealized Hidden State

To establish an upper-bound benchmark, we consider a model-free agent that (unrealistically)
has access to the future K values of the stochastic process {0}, ..., 0}, x } governing the system’s
uncertainty. We consider as state these future values along with the current observation:

- S
St = [Ot; Ot+1:t+K]>

The agent then learns a parameterized policy m4(a | s) directly on these "true" states, aiming
to maximize the usual discounted return. By training a standard off-policy RL algorithm (e.g.,
a Deep Q-Network), we obtain a reference level of performance that most likely no model-free
method with only partial observations can surpass.

4.7.2 Model-Free RL with LSTM Hidden State

Moving on to frameworks that can be implemented in a real scenario, when only partial obser-
vations o; are available, we stack recent observations into a sequence o;_pi1.4 = (0t—g41,---,0¢)
and learn an internal hidden representation h; via a recurrent network. Specifically, we employ
a LSTM network parameterized by 1 to calculate a hidden state:

hy = LSTMw (0t7H+1:ta htq),
so that the agent’s input becomes
St = [Ot, ht} .

This hidden vector h; summarizes the history and serves as the agent’s internal belief.

4.7.3 Model-Free RL with TimeGrad Hidden State

Since our research proposes using diffusion models as system models, in this version we replace
the standard LSTM belief state with the hidden state learned by TimeGrad. At each time ¢, we
pass the most recent stochastic observations of_y, ., = (0{_g,1,--.,0;) through the TimeGrad,
yielding a hidden embedding hf¢, just before producing the distribution of future values. This
embedding captures the temporal dependencies and uncertainty encoded by the diffusion fore-
caster. We then concatenate hf¢ with the deterministic part of the observation of to form the
input feature vector for our Deep Q-Network (DQN):

htTG = TimeGI‘adRNNG(Oi—HJrl:tv htfl)v
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which captures both temporal patterns and uncertainty via the learned diffusion encoding. The
full agent state is then

S = [Ot, h;FG}
Training proceeds exactly as in the LSTM case, but now the hidden component
by the diffusion model’s internal representation of stochastic dynamics.

hTC is informed
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5.1 Application in Energy Arbitrage

To evaluate the proposed method, Diffusion-Informed MPC, we test how the integration of
a diffusion-based time series forecaster, specifically TimeGrad [7], within various model-based
optimization techniques, such as Model Predictive Control, performs in the context of energy
arbitrage in the day-ahead electricity market of the New York Independent System Operator
(NYISO) [55]. In this setting, an agent must control the operation of a Battery Energy Storage
System (BESS) to maximize long-term profit. The agent has to make sequential decisions under
the uncertainty of the future energy prices.

In many energy markets, including the market of New York, the efficient operation of energy
storage systems plays a crucial role in electricity grid management. These systems provide flex-
ibility and stability to the grid while enabling opportunities for profit through energy arbitrage.
Energy arbitrage involves purchasing electricity during periods of low prices, storing it, and re-
selling it during periods of high prices, thereby exploiting price fluctuations for financial gain.
This application requires the prediction of future energy prices and a decision-making strategy
to maximize profit over the long term.

The market works with participants submitting bids for buying and selling electricity for the
following day. Prices in this market are determined by the intersection of supply and demand
curves and the participants’ bids, therefore participants must predict the prices in order to
plan their energy transactions and, since the goal is to maximize the long-term profit, accurate
forecasting is essential for informed decision-making, so as to overcome the uncertain factors
that influence prices.

The NYISO is responsible for managing the electricity grid in New York State, ensuring the
reliable and transparent operation of the power system and overseeing the electricity markets.
New York State is divided into several zones, each with distinct electricity prices to account for
the local supply and demand. These zones range from Zone A (West) to Zone K (Long Island),
with some regions exhibiting high price volatility, for example due to their denser population.
We focus on a real-world energy market, so our study provides a theoretical approach that has
a real-world application.

A Battery Energy Storage System (BESS) [56| is a technological solution that stores elec-
tricity during periods of surplus or low prices and discharges it during periods of high demand
or high prices. These systems play a critical role in energy arbitrage, frequency regulation, peak
shaving, and renewable energy integration. For the purpose of this study, we focus on the energy
arbitrage function of BESS. The operation of a BESS is constrained by factors such as its state
of charge (SoC), charging and discharging efficiency, and physical limits on the amount of energy
that can be stored or delivered. An intelligent agent must account for these constraints while
aiming to maximize profit through energy arbitrage over the long term.

Energy prices of the various regions exhibit strong temporal dependencies, seasonal patterns,
and stochastic variations. Capturing these characteristics requires models capable of learning
and predicting complex multivariate time series distributions. Diffusion models, as explained,
are suitable for this task.

TimeGrad 7], which is a time series forecaster based on Conditional Diffusion Models, can
model the distribution of multiple future energy prices by iteratively adding noise to the observed
data and learning to reverse this process to generate realistic future samples. This approach cap-
tures the inherent uncertainty in price forecasts. Moreover, its ability to probabilistically predict
future trajectories, forming a distribution of the future prices, provides with a probabilistic rep-
resentation of possible future price trajectories.
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To test the proposed methods, we use TimeGrad’s probabilistic forecasts as a model for the
future prices. This study addresses various topics, such as how effectively can diffusion models
like TimeGrad forecast energy prices for NYISO’s day-ahead market, how well our decision-
making framework can optimize the operation of a BESS for energy arbitrage, how much better
are diffusion models than other predictive models, both in forecasting, and for guiding opti-
mization algorithms, and finally, if our Model-Based approach has benefits over Model-Free RL.
Through this exploration, valuable insights are provided regarding the potential of combining
advanced forecasting models and decision-making algorithms in real-world applications.
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5.2 Dataset

The dataset utilized in this study is publicly available by the NYISO. This dataset consists of
historical data on electricity prices in the day-ahead market, offering hourly and zonal Locational
Based Marginal Prices (LBMP). The data spans six years and covers the regions across New
York State, each characterized by electricity prices determined by local supply and demand
dynamics.

For example, Figures 5.1 and 5.2 illustrate the energy price time series for various regions
over 7 days in the winter of 2018 and 7 days in the summer of 2020, respectively. One may
observe by these figures that there are various seasonal patterns and periodic trends present in
the data: 1) the time series have a periodic component, 2) their trend is variable, 3) the season
plays a crucial role in their morphology, 4) there are various anomalies, such as in the lower plot
of Figure 5.2, and most importantly, 5) the time series correlate heavily on one another.

Basic statistics give an overview of the central tendency and dispersion of the data. Table
5.1 presents the mean, quantiles one and three, standard deviation, minimum, and maximum
values for the energy prices across the regions.

Each region has 52,584 data points corresponding to hourly values recorded across six years.
Key characteristics of the data include the mean prices, which range from $24.85 in the NORTH
region to $49.42 in LONGIL, meaning there are regional price disparities. LONGIL and NYC
regions generally have higher average prices and, conversely, regions like NORTH and GENESE
exhibit lower average prices. The standard deviations indicate substantial variability in prices,
with LONGIL ($37.79) and HUD VL ($30.73) showing higher volatility. This suggests these
regions provide more opportunities for profit, due to the high variability of the prices. Meanwhile,
regions like NORTH ($23.40) show relatively lower volatility, implying more stable prices.

The minimum and maximum values demonstrate the extreme observed prices, that happen
due to high demand or supply. We note that negative prices result from oversupply situations
where it is optimal for generators to pay to release energy in order to remain operational.

The 1st percentile (Q1) and 3rd percentile (Q3) provide additional information about the
price distributions. For instance, LONGIL’s Q3 ($58.19) is significantly farther from the median
than Q1 ($26.53) is, meaning that there is tendency toward higher prices. Generally this is the
case in all regions, i.e. Q3 is farther from the Median than Q1 is.

We checked for missing values in the dataset to ensure data completeness, and there were no
missing data, making the dataset a great choice to test our idea.

As for the data distribution and outliers, we use the Interquartile Range (IQR) method.
Figure 5.3 displays box plots for energy prices across regions. We observe that the medians for
the LBMPs lie in the range $19 to $31, so they are relatively similar to one another. Additionally,
the length of the boxes is indicative of the variability of the prices of each region. Although some
regions, like LONGIL, exhibit slightly higher variability in the prices than others, there are no
significant differences. What is important to note is that most of the medians do not lie in the
middle of the boxes, and more specifically, the medians are usually lower than the means of
the prices. This means, as will be showcased later using histograms, that the distributions of
the prices are positively skewed, for most regions. As a result, using the normal distribution to
model the data may not be a good approximation.

The whiskers of the box plots (representing the range of data outside the 1st and 3rd quan-
tiles), 1) do not spread out much, meaning that the values outside 25th and 75th percentile are
relatively concentrated, and 2) are asymmetrical, indicating positive skewness which aligns with
the observation made when examining the medians. Considering the outliers, they all lie to the
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Figure 5.1: Daily fixed energy prices by NYISO for 7 days of the winter 2018.
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Figure 5.2: Daily fixed energy prices by NYISO for 7 days of the summer of 2020.
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Region Count Mean Std Min Q1 Median Q3 Max
CAPITL 52,584 43.75% 37.27%  -1.41$ 23.03% 31.53%  49.53% 522.77%
CENTRL 52,584 30.61$ 24.33% 1.97% 16.88% 24.31% 35.58% 362.47%
DUNWOD 52,584 40.73$ 31.25% 5718 22.33% 30.73% 47.21% 398.16%
GENESE 52,584 29.46% 23.52% 1.44% 16.06% 23.43% 34.28% 350.32%
HQ 52,584 26.39% 22.768 -1.35% 14.10% 20.78% 31.34% 367.25%
HUD VL 52,584 40.04% 30.73% -10.78% 22.00% 30.24% 46.44% 394.83%
LONGIL 52,584 49.42% 37.79% 9.08% 26.53% 37.26% 58.19% 569.81%
MHK VL 52,5684 31.03% 25.25% 1.98% 16.89% 24.46% 36.063 385.64%
MILLWD 52,584 40.62% 31.19% 5.68% 22.28% 30.63% 47.06% 396.70%

NYC 52,584 41.85% 32.01% 5.77%  23.09% 31.908 48.50$ 400.72%
NORTH 52,584 24.85% 23.408 -2.91% 12.45% 19.45% 30.06% 373.13%
WEST 52,584 31.57% 25.36% 2.09% 17.17% 25.10$ 36.89% 653.41%
Average 35.73%  28.45% 1.44%  20.77% 27.22%  43.59% 569.81%

Table 5.1: Basic statistics for electricity prices ($/MWh) across different regions in New York
State.

right of the boxes, meaning that the "unexpected" values that occur are high, reaching $400,
$500, or even $600. These extreme cases offer great opportunities for profit, hightlighting the
significance of using an accurate and flexible predicting model.

Furthermore, understanding the correlation between energy prices and loads across different
regions helps identify dependencies and dynamics within the market. The heatmap in Figure
5.4 visualizes the correlation matrix, where more red and darker colors indicate stronger positive
correlations and more blue and darker colors represent weaker or negligible correlations.

From the heatmap, it can be observed that most regions exhibit high positive correlations
with one another, price-wise and load-wise, which means that price and load fluctuations in
one region are strongly dependent with those in others. This overemphasizes the need of a
multivariate predicting model, that takes into account multiple time series to make forecasts,
making TimeGrad an excellent choice for this application. Note that certain regions like LONGIL
or N.Y.C., have unique supply-demand dynamics due to their higher urbanization, thus exhibit
slightly lower correlations with more rural regions like NORTH or WEST. Also, there is no
negative correlation value, meaning that all variables tend to move in the same direction.

Another way to draw some insights from the data is to decompose the time series, that
is to break down the data into trend, seasonal, and residual components. For instance, the
decompositions for the CAPITL region are shown in Figures 5.5 to 5.8, for the NYC region are
displayed in Figures 5.9 to 5.12, and for the WEST region in Figures 5.13 to 5.16.

The time series decomposition for each region reveals patterns in prices. The observed data
(top subfigures) shows the overall behavior, with NYC showing greater fluctuations than WEST,
for instance.

The Trend component illustrates long-term price progression. Seasonal components capture
the periodic daily, weekly, mothly, or annually patterns, with NYC showing more intense peaks
during high-demand hours compared to the smoother seasonality in WEST. Residuals, repre-
senting noise or irregularities, are low in magnitude for all regions, except during price spikes,
which occur in case of rare and high-impact events that models have a hard time predicting.

An intresting observation is that there exist two spikes in the energy price, for all regions,
near the beginnings of 2022 and 2023, despite the fact that there are no spikes in the load time
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Figure 5.3: Box plots of energy prices showing outliers across various regions.

series. They can be explained through unpredictable events. According to the "EXPLAINER -
Impact of National & Global Conditions on Electricity Prices in New York" [57], the spikes can
be attributed to several factors, such as those outlined in the following excerpts of the report.

Spiking global demand for fossil fuels, lagging supply, and global instability caused by
the war in Ukraine have combined to bring fossil fuel prices to historic high levels.
While consumers might expect these conditions to impact the cost of gasoline, many
have been surprised by the degree to which these fossil fuel prices have found their
way into electricity bills as well.

As COVID-19 restrictions eased and parts of the world began to return to normal in
2021, the demand for energy began to rise as well. This was particularly visible with
the industrial and commercial sectors, which accounted for nearly 40% of natural gas
consumption in the United States.

The national inflation rate was the highest it had been in nearly 40 years. Higher
fuel costs, including natural gas, led to higher average wholesale electricity prices.

Cold weather and seasonal demand for fossil fuels to meet heating needs added to the
existing demand for power generation, creating additional upward pressure on prices.

The war in Ukraine further strained global oil and natural gas markets, adding to the
economic factors.
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Figure 5.4: Correlation heatmap for energy prices across various regions.
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(a) Daily LBMP Decomposition for CAPITL (b) Daily Loads Decomposition for CAPITL

Figure 5.5: Daily time series decomposition for the CAPITL region. The left plot shows the
decomposition of LBMP, and the right plot shows the decomposition of loads.
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(b) Weekly Loads Decomposition for CAPITL

Figure 5.6: Weekly time series decomposition for the CAPITL region. The left plot shows the
decomposition of LBMP, and the right plot shows the decomposition of loads.
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(a) Monthly LBMP Decomposition for CAPITL

(b) Monthly Loads Decomposition for CAPITL

Figure 5.7: Monthly time series decomposition for the CAPITL region. The left plot shows the
decomposition of LBMP, and the right plot shows the decomposition of loads.
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(a) Annual LBMP Decomposition for CAPITL

(b) Annual Loads Decomposition for CAPITL

Figure 5.8: Annual time series decomposition for the CAPITL region. The left plot shows the
decomposition of LBMP, and the right plot shows the decomposition of loads.
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(b) Daily Loads Decomposition for NYC

Figure 5.9: Daily time series decomposition for the NYC region. The left plot shows the decom-
position of LBMP, and the right plot shows the decomposition of loads.
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(a) Weekly LBMP Decomposition for NYC

(b) Weekly Loads Decomposition for NYC

Figure 5.10: Weekly time series decomposition for the NYC region. The left plot shows the
decomposition of LBMP, and the right plot shows the decomposition of loads.
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(a) Monthly LBMP Decomposition for NYC (b) Monthly Loads Decomposition for NYC

Figure 5.11: Monthly time series decomposition for the NYC region. The left plot shows the
decomposition of LBMP, and the right plot shows the decomposition of loads.
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(a) Annual LBMP Decomposition for NYC (b) Annual Loads Decomposition for NYC

Figure 5.12: Annual time series decomposition for the NYC region. The left plot shows the
decomposition of LBMP, and the right plot shows the decomposition of loads.

(a) Daily LBMP Decomposition for WEST (b) Daily Loads Decomposition for WEST

Figure 5.13: Daily time series decomposition for the WEST region. The left plot shows the
decomposition of LBMP, and the right plot shows the decomposition of loads.
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(b) Weekly Loads Decomposition for WEST

(a) Weekly LBMP Decomposition for WEST

Figure 5.14: Weekly time series decomposition for the WEST region. The left plot shows the
decomposition of LBMP, and the right plot shows the decomposition of loads.
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(a) Monthly LBMP Decomposition for WEST (b) Monthly Loads Decomposition for WEST

Figure 5.15: Monthly time series decomposition for the WEST region. The left plot shows the
decomposition of LBMP, and the right plot shows the decomposition of loads.

(b) Annual Loads Decomposition for WEST

(a) Annual LBMP Decomposition for WEST

Figure 5.16: Annual time series decomposition for the WEST region. The left plot shows the
decomposition of LBMP, and the right plot shows the decomposition of loads.

136



CHAPTER 5. EXPERIMENTAL RESULTS

Autocorrelation (ACF) and partial autocorrelation (PACF) plots help in understanding the
dependencies within the time series data. Figures 5.17, and 5.18 illustrate these plots for two
regions. Autocorrelation measures the correlation of the time series with a lagged version of
itself. Mathematically, for a time series X;, the autocorrelation at lag £ is defined as:

P (X = X) (Ko — X)
> (X — X)? 7

where T is the total number of observations, X is the mean of the series, and k is the lag.

Regarding the autocorrelation plots, we can observe that they are wave-like graphs with high
points every 24 time steps (e.g., 0, 24, 48) and low points at the middles of these intervals (e.g.,
12, 36), indicating seasonality with a periodic cycle of 24 time steps. The significant peaks at
lags 0, 24, 48, etc., indicate a strong positive correlation with data points spaced 24 time steps
apart, that is a daily cycle where the values follow a similar trend every 24 hours. The low
correlation values at 12, 36, etc., suggest a weaker relationship between points separated by a
half cycle, one and a half cycles, etc. This occurs because the data exhibits contrasting behavior
(e.g., low and high energy demand) at those intervals. Moreover, the gradual fading of the wave
is explained by the fact that the influence of past cycles to current ones decreases as the lag
increases. This is expected since data has additional random components and seasonal patterns
lose strength over time (for example, the patterns of the cooler months do not affect the ones of
the warmer months).

Partial autocorrelation measures the correlation between the time series and its lagged values,
after removing the correlations at all shorter lags. For a time series X;, the partial autocorrelation
at lag k is the correlation between X; and X, after removing the effects of all lags less than
k. Mathematically, for a time series X;, the partial autocorrelation at lag k£ can be obtained
by fitting an autoregressive (AR) model of order k and examining the coefficient of X;,;. The
partial autocorrelation plot in Figure 5.17 shows that the first 4 peaks are higher than the rest,
suggesting strong short-term dependencies. There exist peaks around regular intervals (e.g.,
24, 48) indicate seasonality with a periodic cycle of 24 time steps. A sharp cutoff followed
by a gradual fading after the first 4 lags shows that there is a more complex structure, where
long-term dependencies exist but weaken over time.

For Figure 5.18, the partial autocorrelation plot shows that the first 3 peaks are significant
peaks are higher than the rest, meaning that dependencies exist in shorter windows than in
the case of CAPITL region. We can observe stronger peaks at lags 24, 48, etc., meaning daily
seasonality. A sharp cutoff followed by points with no apparent structure and of low magnitude,
after the first 3 lags shows that the time series structure is even more complex than the one of
CAPITL region.

This analysis indicates that although there is strong periodicity, as expected, the underlying
dependencies are complex and require a powerful model to capture them.

The Augmented Dickey-Fuller (ADF) test was performed on the time series data for electricity
prices across various regions. The test evaluates the stationarity of the data and the results are
provided in Table 5.2.

The ADF test evaluates the null hypothesis (Hy) that the time series has a unit root, implying
it is non-stationary. The alternative hypothesis (H;) suggests the series is stationary. The results
for all regions indicate that the null hypothesis of non-stationarity is rejected, as the ADF
statistic is negative for all regions and all p-values are significantly below the common threshold
of 0.05. This means that we can be over 95% confident that each region’s price series is truly
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Figure 5.17: Autocorrelation (ACF) and Partial Autocorrelation (PACF) plots for the CAPITL
region.
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Figure 5.18: Autocorrelation (ACF) and Partial Autocorrelation (PACF) plots for the NYC
region.
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Region ADF Statistic p-value Lags Used Observations Used
CAPITL -12.0835 2.20 x 10-%2 51 52,532
CENTRL -13.1605 1.31 x 10724 57 52,526
DUNWOD -11.1055 3.77 x 10720 58 52,525
GENESE -14.8843 1.59 x 10=%7 58 52,525
HUD VL -11.7883 9.97 x 10~2 54 52,529
LONGIL -9.0261 5.60 x 1071° 58 52,525
MHK VL -10.8888 1.24 x 10719 57 52,526
MILLWD -12.7147 1.01 x 1072 58 52,525
NYC -9.6140 1.78 x 10716 58 52,525
NORTH -5.9232 2.48 x 1077 57 52,526
NYCA -10.7316 2.97 x 10719 58 52,525
WEST -14.7668 2.36 x 10~%7 58 52,525

Table 5.2: Augmented Dickey-Fuller (ADF) Test Results

stationary. Thus, the time series data are stationary, that is their statistical properties, such
as mean, variance, and autocorrelation, remain constant over small windows. The stationary
nature of the time series indicates that training a model to predict them will likely succeed,
however there are still intricate patterns and abnormalities in the data that require complexity
in order to be understood.

Rolling statistics provide insights into how the mean and standard deviation of the data
change over time. Figures 5.19a and 5.19b show the rolling mean and standard deviation for two
regions. One can observe that the rolling statistics are smoothly variating, in general, reinforcing
the stationarity result by the statistic. However, there are some anomalies (e.g. spikes) in the
rolling mean and variance, which mean that the dynamics can be complex, hence a carefully
tuned and powerful model is needed.

Histograms provide a visual representation of the distribution of data. Figure 5.20 shows the
histograms for energy prices across various regions. The distributions seem positively skewed,
as expected by the boxplot analysis, with some regions having higher variability. Moreover, the
distributions appear to be unimodal, hence simpler for modeling (than in the multimodal case).
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Figure 5.19: Rolling mean and standard deviation for CAPITL and NYC regions.
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Figure 5.20: Histograms of energy prices across the regions.
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5.3 Forecasting

We use TimeGrad to forecast energy prices including both LBMPs and regional load data, given
their interdependencies. TimeGrad is configured to handle 27 time series, denoted as x, mod-
eling the probability distribution of their future values over various horizons. Mathematically,
TimeGrad models the conditional distribution of future time steps based on past data, which is:

T

Q(XtO:T|X1:t0717C1:T) = Q(XtO:T’XLtOA) = H q<Xt’X1:t71)7
t=to

where x; is the multivariate vector of the time series at time ¢, and c;.r are covariates, that can
encode additional information about events, such as extreme weather conditions or the news,
however in our application we will not use them, as the purpose is to experiment with the
forecaster and test our method of integrating it with a control framework. The model uses an
RNN-based architecture to encode temporal dependencies, where the hidden state at each time
step is influenced by the previous time step’s data:

h, = RNNy(concat(xy, c;),h;_1) = RNNy(x;, hy_1),

where h; is the hidden state at time t. Future steps are sampled autoregressively, with the
parameters of the RNN and the diffusion model included in the process:

pe(xt’htfﬁ-

The goal of TimeGrad is to approximate the conditional distribution of future time steps based
on past data:

T T
Q(Xto:T|X1:to—1) = H C](Xt|X1:t—1) ~ Hpe(Xt|ht—1)-

t=to t=to

Here, 60 includes the parameters of the RNN and the diffusion model.

After careful tuning, we ended up with the following setup. The input size consists of 27
variables, each representing a distinct time series. For our application, the prediction length
needs to be a multiple of 24 hours (e.g., 24, 48) to align with day-ahead market operations. The
context length, which is the overall span of historical data considered for making predictions,
was chosen to be seven days of past data. This duration was found experimentally to provide an
adequate model for capturing dependencies without being overly complex in terms of training,
inference, and memory requirements. The lag sequence, referring to specific past time steps
used as input features for predictions, consists of two days of lagged data. We chose the DEIS
(Diffusion Exponential Integrator Sampler) Multistep Scheduler to guide the diffusion process
with 150 timesteps. It is a high-order solver for ordinary differential equations (ODEs) and is
designed to speed up the sampling process while maintaining high sample quality. The RNN
component, which encodes temporal dependencies, is configured with a LSTM architecture fea-
turing two layers, 128 hidden units, and a dropout rate of 0.1. We trained the model using
5 x 1075 as learning rate, for 200 epochs, and we configured the model to generate 1000 sam-
ples of predictions. This high number of samples ensures dense predicted distributions, which
are necessary for certain applications and will be discussed in later sections. The embedding
dimension is 5, and determines the size of the vector space in which features are embedded, the
conditioning length 100 timesteps, and regarding the residual network, it has 8 layers with 8
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channels and a dilation cycle length of 2. Lastly, the loss function for the training is the mean
squared error with a linear beta schedule for noise variance.

TimeGrad was applied to forecast NYISO energy prices, trained on six month windows of data
and tested in three month windows, so the model’s performance is tested across various seasons
in the period 2018-2022. The model showcased incredible prediction accuracy for future hourly
prices for up to 10 days of hourly data (240 time steps in the future), generating a probabilistic
distribution of trajectories. Figures 5.21 to 5.30 illustrate TimeGrad’s ability to accurately
forecast up to 240 time steps (10 days) across 27 time series. However, there are anomalies in
the time series -caused by unexpected events or data imperfections- which TimeGrad cannot
overcome in this configuration. The use of covariates could help mitigate these issues, so does
the incorporation of additional data, such as the weather and the news. These problems belong
to other interesting research areas, like anomaly detection.

TimeGrad was evaluated against various classical and deep learning models, including AR,
ARIMA, SARIMA, ETS, CNN, and LSTM. It outperformed all models across all metrics
(Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE),
Mean Absolute Percentage Error (MAPE), and Continuous Ranked Probability Score (CRPS)).
TimeGrad demonstrates impressive accuracy, even in large prediction horizon setups. This is
because it is not a point-estimating autoregressive model; it learns the probability distribution
of the next time step, given the distribution of the previous ones, for N days of hourly future
time steps. Therefore is much more resilient to noise than a point-estimation model, where
one bad point forecast would affect severely the future autoregressive forecasts. Figure 5.31
compares TimeGrad’s forecasts for various horizons, focused on one region of the grid. This
approach allows it to predict accurately even 10 -24 = 240 points in the future for 27 time series
simultaneously. However, there are always some anomalies due to unexpected events or dataset
imperfections (see Figures 5.32 and 5.33) that are impossible to predict by any model.

TimeGrad was compared with several classical models such as AR (AutoRegressive), ARIMA
(AutoRegressive Integrated Moving Average), SARIMA (Seasonal ARIMA), ETS (Exponential
Smoothing State Space Model), VAR (Vector AutoRegressive), and deep learning models like
CNN (Convolutional Neural Network) and LSTM. AR predicts the value of a time series based
on previous values but is limited to handling linear dependencies. ARIMA extends AR by
adding integration to handle non-stationarity and moving average components to capture past
forecast errors. SARIMA incorporates seasonal components, making it suitable for time series
with periodic trends. ETS captures trends and seasonality using exponential smoothing. VAR
extends the AR model to work with multivariate time series by predicting each variable using past
lags of all variables, capturing interdependencies among multiple time series. CNN models help
capture local patterns in time series, detecting short-term temporal dependencies but struggling
with long-term forecasting. TimeGrad outperformed these methods, showcasing its ability to
model complex patterns over long horizons.

The evaluation metrics provide insights into models’ performances. MSE, emphasizes larger
errors and is sensitive to outliers. RMSE, as the square root of MSE, provides results in the same
units as the original data. MAE, the average magnitude of errors, describes deviation, weighing
the errors in the same way. MAPE expresses MAE as a percentage, for better interpretation
across different scales, though it is sensitive to small actual values. CRPS evaluates how well the
predicted distribution fits the actual distribution of the stochastic process (CRPS is thoroughly
explained in 3.2.4).

The evaluation is summarized in Table 5.3, where TimeGrad consistently achieves the best
performance across all metrics. Trained on six months of hourly data and tested on one month
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Figure 5.21: TimeGrad’s hourly probabilistic forecasts for 1-day horizon.
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Figure 5.22: TimeGrad’s hourly probabilistic forecasts for 2-days horizon.
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Figure 5.23: TimeGrad’s hourly probabilistic forecasts for 3-days horizon.
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Figure 5.24: TimeGrad’s hourly probabilistic forecasts for 4-days horizon.

148



CHAPTER 5. EXPERIMENTAL RESULTS

Figure 5.25: TimeGrad’s hourly probabilistic forecasts for 5-days horizon.
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Figure 5.26: TimeGrad’s hourly probabilistic forecasts for 6-days horizon.
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Figure 5.27

: TimeGrad’s hourly probabilistic forecasts for 7-days horizon.
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Figure 5.28

: TimeGrad’s hourly probabilistic forecasts for 8-days horizon.
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Figure 5.29

: TimeGrad’s hourly probabilistic forecasts for 9-days horizon.
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Figure 5.30: TimeGrad’s hourly probabilistic forecasts for 10-days horizon.
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Figure 5.31: Comparison of TimeGrad’s hourly probabilistic forecasts for a specific region for
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Figure 5.32: An example of TimeGrad’s performance in time series anomalies.
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of unseen data, TimeGrad predicted the next 72 hours for each day across 27 time series.
It is noteworthy that the LSTM within TimeGrad’s diffusion process shares the exact same
architecture as the standalone LSTM model, while yielding by far better results. This highlights
the advantage of combining LSTM networks with the diffusion process. Typical examples of
qualitative comparisons are shown in Figures 5.34 to 5.36, where TimeGrad’s performance is
better. Figure 5.37 illustrates an anomalous window of the time series, emphasizing TimeGrad’s
superior ability to model complex patterns. Furthermore, TimeGrad is trained on the full
dataset of 27 time series, while the classical models AR, ARIMA, SARIMA, ETS are trained on
one time series at a time, hence TimeGrad deals with a more complex problem. Despite this,
TimeGrad performs better. Moreover, TimeGrad provides probabilistic predictions rather than
point predictions, offering valuable additional information about the uncertainty of the forecasts.

Model MSE RMSE MAE MAPE CRPS

AR 4.44 x 10° | 6.66 x 10> | 1.86 x 10®> | 16.15 | 1.410 x 10°
ARIMA 6.82 x 10° | 8.26 x 10% | 2.39 x 10? | 22.94 | 1.804 x 10°
SARIMA 3.40 x 10° | 5.83 x 10> | 1.61 x 10®> | 13.98 | 1.218 x 10°
ETS 3.09 x 10° | 5.56 x 102 | 1.55 x 102 | 14.70 | 1.174 x 10°
VAR 2.90 x 10° | 5.39 x 102 | 1.56 x 10® | 16.46 | 1.176 x 10°
CNN 522 x 10° | 7.22 x 10% | 2.23 x 10* | 24.48 | 1.832 x 10°
LSTM 4.07 x 10° | 6.38 x 10* | 1.82 x 10% | 17.17 | 1.372 x 10°
TimeGrad | 1.97 x 10% | 4.44 x 102 | 1.31 x 102 | 11.46 | 7.635 x 10*

Table 5.3: Performance comparison of various models for time series forecasting.
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Figure 5.34: Comparison of TimeGrad’s performance in 3-day prediction horizon with other
classical methods and ground truth on a typical dataset window.
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Figure 5.35: A second comparison of TimeGrad’s performance in 3-day prediction horizon with
other classical methods and ground truth on another dataset window.
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Figure 5.36: Comparison of TimeGrad’s performance in 3-day prediction horizon with other
classical methods and ground truth on a smooth segment of the dataset.
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Figure 5.37: Comparison of TimeGrad’s performance in 3-day prediction horizon with other
classical methods and ground truth on a challenging dataset segment.
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5.4 Environment

To incorporate the outputs of TimeGrad within the energy grid simulation, we defined an RL
environment. This environment is structured to model the operation of a battery energy storage
system (BESS) in the electricity grid as a Partially Observable Markov Decision Process. Fore-
cast prices for a three-day horizon are generated using TimeGrad and are available in each day.
The BESS characteristics include parameters such as the state of charge (SoC), efficiency, capac-
ity, and degradation factors. These parameters model the operational constraints and physical
characteristics of the battery system.

We model the operation of the BESS as a Partially Observable Markov Decision Process
(POMDP)

(S, AT, R,Q,0,7),

where:

e S is the (hidden) state space of the environment. In our application, the true state includes
variables such as the battery’s state-of-charge (SoC) and the electricity prices, which can
be measured and other unobservable factors that influence price dynamics, which cannot
be measured.

e A is the set of actions available to the agent. An action a; is the amount of energy
(expressed as a fraction of the battery capacity) to be charged (if a; > 0) or discharged (if
ar < 0) at time step k.

e 7':SxA— A(S) is the state transition function; T'(s’ | s,a) gives the probability of
moving to state s’ when action a is taken in state s.

e R:S5xA— Ris the reward function, which captures the profit from energy transactions,
accounting for the action costs (e.g., battery degradation due to excessive use). In this
application, the agent can access the reward function through the observations, since it
depends on the action and the observed market price, which are both observable.

e () is the set of observations available to the agent. Since the true state is not fully observ-
able, the agent receives observations oy that provide partial information about §. In this
application, the observations consist of the battery’s SoC and the electricity prices of the
various regions in the grid.

e O:8 xA— A(Q) is the observation function that yields observations to the agent, after
choosing an action at a given state. In our setting, the battery’s SoC evolves determin-
istically according to the applied action, while the evolution of the electricity prices is
stochastic.

e v € [0,1) is the discount factor of the POMDP.

At each time step k, the environment is in a hidden state s, and the agent receives an

observation
o d s
O = < k> 0k>7

where of is the deterministic component, which is the battery’s SoC, evolving according to
known dynamics and oj is the stochastic component, consisting of the electricity prices, whose
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dynamics are influenced by uncertain market factors. Based on the observed information, the
agent selects an action a; € A. The observation then transitions according to the dynamics:

SoCri1 = SoCy +nag, with SoCyyq € [0, 1],
Pry1 = Prices(k + 1),

where 71 denotes the battery efficiency when charging and discharging. The action space is
defined by the battery’s operational limits, i.e. the maximum flow of energy u,,ax that can flow
in or out of the battery and the fact that the State of Charge should always lie between [0, 1]
(between 0% and 100% of the battery’s capacity):

SOCk 1— SOCk . SOCk . 1— SOCk
ap € [_umaxa umaﬂﬁ]ﬁ n ; n = ap € |—min Umazx T , NN § Umagz, T .

The charging/discharging efficiency is set n = 0.95, which represents energy losses. We
assume to have a battery with total energy capacity 192,000 Wh, and the maximum flow of
energy in and out of the battery, which is bounded by the battery’s physical limits, is %4, = 0.25
(or 25% of the capacity). To account for battery wear, the degradation of the BESS is modeled
using a parameter ¢; = 4.5x 1077 and the End-of-Life (EoL) threshold, which is set as EoL. = 0.3.
The simulation operates with a time step of At = 1 hour.

So, the reward at each time step is computed as:

R(o, ax) = Revenue(oy, ax) — Degradation(oy, ax),

where revenue is generated from buying or selling energy at the observed price and calculated
as is calculated as Revenue(ay, sp) = ag -0 - pg - C - 107% and the degradation cost is calculated
as:

1SOC — SOCpas]
SOCae
Cycle Life = 0.0035 - DoD? + 0.2215 - DoD? — 132.29 - DoD + 10555

ca- (1= EoL)- At-59%ma jf |q,| =0

Cq (1 — EOL) <At - % otherwise

DoD =

Degradation = {

where DoD is the Depth of Discharge, SoC' is the State of Charge SoC,,q, is the maximum
State of Charge (we assume that the battery can be fully charged, so SoC,,.. = 1), EoL is the
End of Life of the battery, At is the time step, C' is the battery capacity, a; is the action chosen
and ¢4 is the degradation cost coefficient. The degradation model was inspired by [41].
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5.5 Model Predictive Control in Energy Arbitrage

In our first step, we integrate the diffusion-based forecasting model TimeGrad into the MPC
framework defined in Section 4.4 to compute the optimal control sequence for managing the
BESS in a partially observable environment. Let a decision epoch begin at step ky. Denote by
0; the stochastic component of the observation at time ¢ (i.e., the electricity price p;) and by of
the deterministic component (i.e., the battery SoC evolution). Given the history {0, ..., 0} _;},
TimeGrad generates M sample forecasts:

’\Sv(i) M
Oko }i:l :

We then aggregate these into a single point forecast using a desired aggregator (we experimented
with both the median and the mean, which yielded similar results):

~S s s _ : ~5,(1) M
Op, = f(oo, o 701@071) = medlaun{ok0 }2.:1,
The combined predicted next-step observation is therefore:
~ _ d ~S
Ok’o — <0k‘07 0k0>‘

Using this one-step forecast operator in an autoregressive fashion, we generate a predicted ob-

servation trajectory {6k}],z(’:*,;év . The resulting deterministic MPC problem, over a horizon of N

steps, becomes

ko+N—1
maximize g R(ék, ak)
—_—
Ak sy Akg+N—1 k=ko
A A ~d ~s
St Opg—1 = Og—1, Op = <f(0k_1, ag-1), 0k>7
NS S S ~S S
o, = .7:(00, ey Op 15 Oy e o Ok—1)7

a, € A, k=koy,....,kg+ N —1.

Here f denotes the known, deterministic SoC update of,, = f(0{, ax), and R(0y, a) is the re-
ward (revenue minus the degradation cost) based on the predicted observation. By aggregating
TimeGrad’s uncertainty into a single forecast at each step, the optimization remains determin-
istic. In contrast, the stochastic MPC framework that we examine in the next section explicitly
includes multiple sampled trajectories inside the optimizer, to handle the uncertainty in the
optimization step.

At each day t, we solve the optimization problem over a rolling 24-hour horizon using the
latest TimeGrad forecasts. Only the first 24 actions are applied; once NYISO publishes the real
prices, we observe the new state, shift the horizon forward one day, and re-optimize.

Figures 5.38 to 5.42 show the control strategies that the MPC plans over five consecutive
days in the market. The agent plans using the forecasts of the next three days. Once the optimal
strategy is calculated, the agent performs the best actions for the first day and moves to the
next day, when the prices of the previous day are known, since they were set by NYISO after
collecting all the bids, and more accurate forecasts can be generated.

Figures 5.43 and 5.44 show the control sequence of the BESS that the MPC calculated and
the SoC along with the forecasted prices and actual prices after publication, over a month.
Specifically, for Figure 5.44, the blue line refers to the SoC of the BESS for each time step, the
gray dotted line is the region’s forecasted prices for each time step and the black line represents
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Figure 5.38: First day’s strategy planned by the MPC Optimizer.
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Figure 5.39: Second day’s strategy planned by the MPC Optimizer, after new knowledge oc-
curred (new prices published by NYISO).
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Figure 5.40: Third day’s strategy planned by the MPC Optimizer, after new knowledge occurred
(new prices published by NYISO).
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Figure 5.41: Fourth day’s strategy planned by the MPC Optimizer, after new knowledge occurred
(new prices published by NYISO).
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Figure 5.42: Fifth day’s strategy planned by the MPC Optimizer, after new knowledge occurred
(new prices published by NYISO).

the actual prices. The color of the dots on the gray line helps understand the action. If the SoC
increases, it means that the BESS buys energy from the grid, thus the revenue is negative, and
the dot’s color is red. If the SoC remains the same, it means that the BESS makes no action on
the grid, so there is no revenue (only maintenance costs to retain the charge). In this case, the
dot’s color is gray. And if the SoC decreases, it means that the BESS sells energy to the grid,
thus the revenue is positive, and the dot’s color is green.

Overall, the BESS operates efficiently, typically buying energy when prices are low and selling
when prices are high. It also strategically charges the BESS when it anticipates prices to increase
and discharges when prices peak to maximize profit.

One important aspect to note is that the BESS is limited in how much energy it can charge or
discharge at any given time due to its inherent characteristics. As a result, it cannot fully charge
or discharge on the most favorable prices in just a single time step. Instead, it must spread
out charging and discharging across multiple steps. The system charges more when prices are
optimal and gradually adjusts the flow of energy in less favorable time periods to either fill or
empty the BESS.

A significant limitation of the MPC algorithm in the BESS setup is that it optimizes over
a finite horizon. As seen in each of the Figures 5.38 to 5.42, by the end of the horizons, the
plan suggests that the battery is fully discharged to maximize the cumulative reward over the
horizon. While this is optimal short-term, it leaves the BESS depleted, without taking into
account the future energy needs and opportunities. MPC is efficient at optimizing short-term
profits but lacks long-term planning capabilities. In later sections, we will examine how the
proposed solution to this problem in Section 4.6 manages to address this problem by aiming for
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a terminal SoC that is expected to be optimal for future time steps.

Optimal Actions over Time
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Figure 5.43: Optimal actions returned for 25 days by the MPC optimizer.
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Figure 5.44: SoC levels along with fixed hourly prices for 25 days after applying the MPC
Optimizer.

167



CHAPTER 5. EXPERIMENTAL RESULTS

5.6 Stochastic MPC in Energy Arbitrage

Stochastic Model Predictive Control (SMPC) extends the classical MPC framework by em-
bedding uncertainty directly into the optimization. Unlike traditional MPC, which relies on
deterministic forecasts, SMPC accounts for the stochastic nature of variables such as future
energy prices by considering probabilistic forecasts. As a first step toward full Monte Carlo
SMPC, we follow the framework for Monte Carlo SMPC, defined in Section 4.5.1, with number
of generated samples M = 1, by drawing a single stochastic price trajectory from TimeGrad’s
forecast distribution. At decision epoch kg, we sample

O ~po (M) k= ko, ko+ N =1,

where h;, is TimeGrad’s RNN state. Each sampled stochastic component is combined with the
known deterministic update

0i+1 = f(Oﬁ, ak)

to form the full predicted observation

~ d ~
Ok+1 = <0k+1> Ort1)-
The controller then maximizes the cumulative reward along this single trajectory:

ko+N—1

J = Z R(ék, ak), where 0, = <0Z, 6Z>.

k=ko

SMPC enables the system to plan control actions over the prediction horizon, taking into
account one realization of the stochastic forecasts of future prices. However, taking only one
trajectory often results in suboptimal control actions, since it will most likely not be a good
representative sample. The stochasticity can lead to frequent charging and discharging decisions
as the controller tries to exploit opportunities for profit, that may not be realistic. Figures 5.45
to 5.49 show the control strategies that the SMPC plans over five consecutive days in the market.
The agent plans using the sampled trajectory of the next three days. Again, once the optimal
strategy is calculated, the agent performs the best actions for the first 24 hours and moves to
the next day, when the prices for the previous day are published and more accurate forecasts
can be generated.

The bold blue line refers to the SoC of the BESS for each time step, the gray dotted line is
the mean of the forecasted prices for each time step, while the purple line is the sample used for
the optimization and the black line refers to the actual prices as published by NYISO.

By looking at the dots’ colors and the thin purple line in the Figures 5.45 to 5.49 it is easy
to understand that the BESS operates less efficiently than in the case of deterministic MPC.
Although again, in general, it buys energy when prices are low and sells when prices are high
and it charges the BESS when it anticipates prices to increase and discharges when prices peak.
The noisy trajectory results in the algorithm yielding suboptimal control sequence. This can be
seen in the daily plans plots that the agent plans to charge and discharge the battery very often,
as the noise makes the agent misinterpret it as profit opportunity.

Despite these challenges, SMPC produces a logical sequence of actions, because TimeGrad is a
powerful model and even taking only one sample of the distribution yields a good action strategy.
This is important as there can be applications were the generation of multiple trajectories is not
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possible, due to time or computational bounds, therefore having a model that can perform well
even if it is not fully exploited, is crucial. In the next implementation we incorporate Monte
Carlo simulations, to enhance the robustness of SMPC.

Moreover, like deterministic MPC, SMPC optimizes over a finite horizon and may prioritize
short-term gains at the expense of long-term considerations, as seen in the tendency to fully
discharge the battery by the end of the horizon.

SoC
8
Real Prices

Hour

Figure 5.45: First day’s strategy planned by the SMPC Optimizer.

Figures 5.50 and 5.51 show the control sequence of the BESS that the SMPC returned and

the SoC along with the forecasted and actual prices over 25 days.
We also observe that the SMPC handles the limitations of charge flow of the BESS in a
similar way as the MPC, as it has to spread out the charging and discharging of the battery.
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Figure 5.46: Second day’s strategy planned by the SMPC Optimizer, after new knowledge
occured (new prices published by NYISO).
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Figure 5.47: Third day’s strategy planned by the SMPC Optimizer, after new knowledge occured
(new prices published by NYISO).
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Figure 5.48: Forth day’s strategy planned by the SMPC Optimizer, after new knowledge occured
(new prices published by NYISO).
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Figure 5.49: Fifth day’s strategy planned by the SMPC Optimizer, after new knowledge occured
(new prices published by NYISO).
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Optimal Actions over Time
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Figure 5.50: Optimal actions returned for 5 days by the SMPC optimizer.

E‘
=

1

—
—E
]

—
—
—

—

=

U u i i

So
%
s
P =
N ._4_,3}_?
Voma -
=
.__qf*;
|

AR

Figure 5.51: SoC levels along with fixed hourly prices for 5 days after applying the SMPC
Optimizer.
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5.7 Monte Carlo Simulations of Stochastic MPC in Energy
Arbitrage

Monte Carlo SMPC enhances robustness by explicitly accounting for forecasting uncertainty
inside the optimizer. At each decision epoch kg, we draw M independent future-price trajecto-
ries from TimeGrad’s learned distribution. Following the proposed framework for Monte Carlo
SMPC, defined in Section 4.5.1, for scenario i € {1,..., M}, we recursively sample

620 ~ py (a;f}m,@) C k=ke .. ko + N —1,

where h,(j) is TimeGrad’s internal RNN state for scenario ?. Combining each stochastic sample
with the known deterministic update of,; = f(of, ax) yields the full trajectory

o = (o, o™y for k=ko,... ko + N.

Each scenario’s cumulative reward is

ko+N—1 '
JO = Z R(éz(f), ak)'
k=ko

The SMPC then selects the control sequence that maximizes the average performance across all
M trajectories:

| M
maximize ;_1 J

Ak AN +kg—1

subject to o, ..., 0x,—1 Observed,
6i+1 = f(6g7ak)a Ok, = Ok (5-1)
o) ~ po (010" |
CLkEA, ]{?:ko,...,N—l.

By optimizing the expected reward over multiple realizations, Monte Carlo SMPC plans
control actions that are robust to the complete distribution of future prices, balancing aggressive
and conservative actions, and also mitigates the problem of the disturbed forecasts, since the
noise is averaged out. Although Monte Carlo simulations are computationally expensive, they
offer a powerful way to manage uncertainty. Like the previous controllers, the control strategy
adapts to the stochastic market conditions. Figures 5.52 to 5.56 show the control strategies
that the Monte Carlo SMPC plans over five consecutive days in the market by considering 100
realizations of the future system states. Once the optimal strategy is calculated, the agent
performs the best actions for the first day’s prices and moves to the next day, when new data is
available.

Figures 5.57 and 5.58 show the control sequence of the BESS that the Monte Carlo SMPC
returned and the SoC along with the prices of the specific region over 25 days. Specifically, for
the Figure 5.58, the bold blue line refers to the SoC of the BESS for each time step, the gray
dotted line is the region’s prices for each time step. The color of the dots on the gray line help
understand the action, following the same logic as in MPC and SMPC. The thin purple lines
represent the realizations of the stochastic model of the system.
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Figure 5.52: First day’s strategy planned by the Monte Carlo SMPC Optimizer.
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Figure 5.53: Second day’s strategy planned by the Monte Carlo SMPC Optimizer, after new
knowledge occured (new prices published by NYISO).
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Figure 5.54: Third day’s strategy planned by the Monte Carlo SMPC Optimizer,
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Figure 5.56: Fifth day’s strategy planned by the Monte Carlo SMPC Optimizer, after new
knowledge occured (new prices published by NYISO).

The small gray gaussians for every predicted time step show the distributions of which the
trajectories’ points are sampled.

By looking at the dots’ colors and the thin purple lines in the Figures 5.52 to 5.56 we can see
that the BESS now operates better than in the case of SMPC. Again, in general, it buys energy
when prices are low and sells when prices are high and it charges the BESS when it anticipates
prices to increase and discharges when prices peak, but also the variability of each individual
trajectory does not really affect the planning. On the contrary, the multiple realizations of the
system’s stochastic dynamics are a robust approach in planning under the uncertainty of the
system dynamics.

Once again, the Monte Carlo SMPC can easily handle the limitations of charge flow of the
BESS in a similar way as the MPC and SMPC.

However, the limitation of the finite horizon optimization remains unsolved. We seek the
solution in the section where we examine Multistep Lookahead Rollout algorithms.
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Optimal Actions over Time
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Figure 5.57: Optimal actions returned for 5 days by the Monte Carlo SMPC optimizer.
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Figure 5.58: SoC levels along with fixed hourly prices for 5 days after applying the Monte Carlo
SMPC Optimizer.
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5.8 Scenario Tree-Based MPC in Energy Arbitrage

Scenario Tree-based Model Predictive Control offers a structured approach to managing uncer-
tainty in energy arbitrage by discretizing future uncertainties into a scenario tree. This method
enables the optimization of control actions over multiple possible future evolutions of uncertain
variables, which in our case are the energy prices.

At each decision epoch kg, a scenario tree 7 of depth N = 3 is built, as described in
Section 4.5.2, whose nodes ¢ € T; at stage t = ko, ..., ko + N carry:

e The forecasted observation 6i = (61¢, 1),
e The branching probability ;,
e A pointer to the parent node pre(z).

We then solve the following stochastic MPC problem over 7, choosing one action a! per
node:

ko+N—1
maximize E E ™ R(0}, a})
K2
{ai} k=ko icTh

subject to 6;0 = Oy
~d ~ pre(z),d re(s .
ot = SO ™) Vie T\ {1},
ai, = af; whenever nodes 7, j share the same history up to k,
a, € A Vi k.
Here:

e 7, C T is the set of nodes at stage k,

node 1 is the root at k = k,

m; is the product of branch-probabilities along the path from the root to 7, i.e. the realiza-
tion of the stochastic variables up to time 1,

f(+) is the known deterministic evolution of the SoC,

e non-anticipativity a! = a] enforces that decisions depend only on the shared history.

This formulation maximizes the probability-weighted sum of immediate rewards R over all
tree nodes, subject to the battery dynamics and non-anticipativity. In essence, this approach
determines the optimal sequence of battery actions across multiple potential future scenarios,
recognizing that each action’s outcome influences the future decisions and system trajectory.
We implement the two versions of generating the stochastic system’s scenario tree proposed in
Section 4.5.2.
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Intuition Behind the Scenario tree: The tree diagram in Figure 5.59 visualizes the con-
cept of how the Scenario Tree captures the uncertainty of the stochastic process. It illustrates
how the continuous probability distribution of future stochastic variables (energy prices) is dis-
cretized into a finite set of distinct scenarios. At each stage, the tree branches out, with each
branch signifying a possible realization of the stochastic system’s evolution. Each node, carries
a forecasted observation and the arrows connecting these nodes represent transitions between
stages, and contain the probability P(-) of that specific branch occurring and the control action
a() taken at that stage, which is the decision made at the preceding node to navigate towards
that potential future.

Initial observation at time kg

4,
£,
Realized observation at time kg + 1

Realized observation at time kg + 2

Figure 5.59: Visualization of a Scenario Tree that discretizes the probability distribution of the
future steps.

Receding Horizon: The Scenario Tree-Based MPC approach also uses the receding horizon
concept, where the optimization is performed over a finite horizon, and after deciding the control
actions for the first stage (day), the horizon is shifted 1 stage (24 time steps) forward, and the
whole Scenario Tree is generated again, in order to optimize on the updated data and forecasts.
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5.8.1 Forward-Clustering Scenario Tree MPC

To apply the forward-clustering variant of Scenario Tree-Based MPC to the energy arbitrage
problem, we grow a tree over a planning horizon of N = 324 steps (3-day horizon), in D = 3
stages, by iteratively sampling and clustering TimeGrad forecasts. At staging step kg, given the
history of observed stochastic prices of, ..., 0y, _;, we draw M = 5000 sample forecasts {F OyM,
of length H = 24 (the length of one full stage, to create the branches) from TimeGrad, cluster
them via K-means into K groups, and take each cluster centroid p; as a representative forecast
for the correspondent node with probability p,. For this version, we examined how the algorithm
performs by taking the mean and the median as a centroids in two different implementations.
We then trim to the top L = 20 branches by probability (to avoid the exponential expansion)
and repeat this at each node until depth D = 3. The resulting tree has nodes n € N, at stage
k, each with forecasted observation 0} and cumulative path probability 7.

Then the multistage MPC optimization is solved over this tree to maximize the expected
profit, taking into consideration all the possible generated scenarios.

The Forward-Clustering Scenario Tree-Based MPC provides a robust control strategy by
explicitly considering multiple future scenarios. Figures 5.60 to 5.64 show the control strategies
planned over five consecutive days in the market. The left plots refer to the version where the
median is used as the cluster centroid, while in the right plots, the mean is the centroid.

Day 1 Results Day 1 Results

H
®

40

State of Charge (SoC)
Prices
State of Charge (SoC)

Hour Hour

Scenario Tree-Based MPC using medians as Scenario Tree-Based MPC using means as cen-
centroids. troids.

Figure 5.60: First day’s strategy planned by the Forward-Clustering Scenario Tree-Based MPC
Optimizer for two versions.

Figures 5.60 to 5.64 illustrate the daily control strategies generated by the Forward-Clustering
Scenario Tree MPC. Both the left (median as centroid) and right (mean as centroid) columns
depict the planned actions over five consecutive days.

Each graph visualizes the scenario tree constructed for three days (stages) ahead. In each
stage the scenarios branch out, with every 24-hour forecasted price prediction corresponding to
each node of the stage. For each potential future scenario, the agent’s actions have colors as the
previous implementations of MPC: red dots indicate moments when the agent decides to buy
energy, green dots refer to the agent selling amounts of energy, and grey dots show time steps of
no action. A distinct grey trajectory on each plot represents the actual, realized energy prices,
in order to visualize the accuracy of the predictor.
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Figure 5.61: Second day’s strategy planned by the Forward-Clustering Scenario Tree-Based MPC

Optimizer for two versions.
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Figure 5.62: Third day’s strategy planned by the Forward-Clustering Scenario Tree-Based MPC

Optimizer for two versions.
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Figure 5.63: Fourth day’s strategy planned by the Forward-Clustering Scenario Tree-Based MPC
Optimizer for two versions.
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Figure 5.64: Fifth day’s strategy planned by the Forward-Clustering Scenario Tree-Based MPC
Optimizer for two versions.
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The control actions are initially identical at the root of the tree (the current decision epoch),
which are the ones to be applied after the optimization. As the tree branches out, the ac-
tions diverge, reflecting the agent’s adaptive plan based on the realization of the stochastic
variables (energy prices) along each path. One can observe the non-anticipative nature of the
Forward-Clustering Scenario Tree MPC algorithm, where future decisions are evaluated as new
information unfolds (stochastic variables are realized).

Overall, the agent exhibits highly effective behavior in the energy market. It consistently
manages to buy energy at low prices and sell at high prices, demonstrating a robust ability to
use market fluctuations to maximize the long-term goal. Furthermore, the multi-stage optimiza-
tion inherent in the scenario tree approach enables the agent to plan for long-term profits by
strategically considering a multitude of possible future scenarios, leading to an adaptive and
profitable control strategy.

5.8.2 Backward-Hierarchical Scenario Tree MPC

In the backward-hierarchical variant, we first sample a full set of M = 5000 price trajectories
{x}M  over the entire horizon N = 3 - 24 from TimeGrad’s generated distribution. For the
D = 3 stages of the optimization, beginning at the final stage k& = ko + D, we cluster these
M = 5000 samples into Kp = 20 groups to form leaf-nodes (ultimately resulting in Kp = 20
scenarios). We then merge each group’s trajectories and recluster into Kp_; parent nodes, and
so on, up to the root, ensuring clusters only coalesce and thus enforcing non-anticipativity by
construction. The optimal clustering number K,, d < D is found by iteratively searching for it,
keeping the one that optimizes the clustering objective function (as described in our backward
clustering tree generation algorithm). Each node n at stage k has a centroid p} and probability
py equal to the fraction of samples in that cluster.

Then the same multistage MPC optimization is solved over this tree version to maximize the
expected profit over all the scenarios. Figures 5.60 to 5.64 show the control strategies planned
over five consecutive days in the market. The left plots refer to the version where the median is
used as the cluster centroid, while in the right plots, the mean is the centroid.

The strategies generated by the Backward-Hierarchical Scenario Tree MPC are presented in
Figures 5.65 to 5.69. Similar to the forward-clustering approach, each plot showcases the agent’s
actions over a day, visualized within the constructed scenario tree.

Again, each node within this tree also represents a 24-hour forecasted price prediction, and
the branching illustrates the different possible price evolutions. The agent’s decisions are again
indicated by red dots for buying, green dots for selling, and grey dots for no action. The grey
trajectory on each plot represents the actual, realized energy prices.

The plots demonstrate that the control actions are the same at the root but progressively
diverge as the tree branches out, respecting the non-anticipativity constraints. Like in the
forward-clustering variant, this Backward-Hierarchical approach also allows the agent to effec-
tively buy energy at low prices and sell at high prices, thereby optimizing energy arbitrage.

Ultimately, when comparing the strategies derived from both the Forward-Clustering and
Backward-Hierarchical Scenario Tree MPC methods, one can see that the results are similar,
with both approaches yielding effective control strategies. This will be viewed more formally
later, where the metrics of the various MPC algorithms are compared.
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Figure 5.65: First day’s strategy planned by the Backward-Hierarchical Scenario Tree-Based

MPC Optimizer.
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Figure 5.66: Second day’s strategy planned by the Backward-Hierarchical Scenario Tree-Based

MPC Optimizer.
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Figure 5.67: Third day’s strategy planned by the Backward-Hierarchical Scenario Tree-Based
MPC Optimizer.
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Figure 5.68: Forth day’s strategy planned by the Backward-Hierarchical Scenario Tree-Based
MPC Optimizer.
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5.9 Heuristic-Augmented MPC in Energy Arbitrage

Heuristic-Augmented MPC (H-A MPC) extends the Multistep Lookahead techniques we have
examined so far, by incorporating a heuristic function at the end of the horizon. This usually is
a function of the terminal state or observation that estimates the expected reward that the agent
will achieve after the lookahead horizon, if it ends up in the given terminal state. An illustration
of the extension is depicted in Figure 5.70, where the agent examines both the possible actions
in the prediction horizon and the estimated gain of ending in various states. Following the
framework defined in Section 4.6, instead of a function of the terminal observation, we create
a function of the observations that estimates the optimal terminal observation that the system
has to pass through to maximize the expected reward after the end of the horizon.

H ()

4 ()

Figure 5.70: Illustration of Model Predictive Control with a Heuristic.

To exemplify how the H-A MPC works, we use the following naive heuristic on the final

observation oy, n_1:
H(0p1n—1) = = (S0C(0py4n—1) — 0.5)°,
where SoC(0g,+n—1) is the state of charge at the final observation g, n_1.

Intuitively, this heuristic maximizes rewards by aiming for a final SoC close to 50%. This
value is set because the agent anticipates (naively) that it will need some amount of energy for
its actions after the end of the horizon. Figures 5.71 to 5.73 indicatively show sample cases of
the strategies planned by the MPC, Stochastic MPC, and Monte Carlo SMPC optimizers using
the naive heuristic. One can observe that optimizer yields a control sequence that results in a
final SoC near 0.5, due to the queadratic heuristic. After the lookahead horizon, the model of the
system yields a window of trajectories, which can be helpful in calculating a more sophisticated
heuristic, described in the following sections.

A more sophisticated H-A MPC algorithm requires a better heuristic. In our approach,
explained in Section 4.6, MPC is performed over a finite horizon of N time steps. Then the
forecast is extended by generating predictions for an extra interval of L time steps, conditioned
on the generated observations of the horizon. These extended forecasts are used to train a LSTM
model that estimates the optimal terminal observation, denoted by

opt _ ~8 AS
0N+k0—1 o LSTM9 (OkOZN-i-k’o—l’ 0N+k0:N+ko+L—l>7
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Figure 5.71: Strategy planned by MPC Optimizer, with the predictor extending the optimization
horizon.
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Figure 5.72: Strategy planned by SMPC Optimizer, with the predictor extending the optimiza-
tion horizon.
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Figure 5.73: Strategy planned by MC-SMPC Optimizer, with the predictor extending the opti-
mization horizon.

where 6 are the parameters of the LSTM network. This terminal observation is the observation
at step N which the system must approach, in order to yield an optimal decision sequence that
accounts for the steps after the end of the horizon.

We implemented the two variants proposed; one with a hard terminal constraint, where the
optimization process must end up in the predicted observed state and one with a soft, quadratic
constraint, where the MPC algorithm can balance between achieving the terminal state and
optimizing the cumulative reward. Figure 5.74 provides an image to compare the predictions
made by the LSTM against the actual optimal terminal observed states. One can observe that
the LSTM is overall accurate in predicting the optimal SoC for the given sequences, hence
provides a good heuristic for the algorithm.

In addition, Figure 5.75 shows the distribution of residuals (differences between actual and
predicted values), indicating that the errors are generally small and centered around zero.

Training of the Optimal Terminal State Predictor

The training and testing datasets for the LSTM model contain 16,747 and 4,187 samples, respec-
tively. The LSTM achieved a Mean Absolute Error of 0.0809, Mean Squared Error of 0.0127, and
an R? score of 0.9149 (meaning that a big part of the variance in the input features is explained by
the model). Figure 5.76 show an example of the control strategy that the Heuristic-Augmented
version of MPC plans in the market. The agent plans using the forecasts of three days and aims
to optimize in a way that the last state of the horizon is the predicted optimal terminal state
denoted with a yellow dot (in the case of the hard constraint version) or lies close to it (in the
case of the soft constraint version). Once the optimal strategy is calculated, the agent performs
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Figure 5.74: Examples of LSTM predictions for optimal SoC to be used as a heuristic by the
Heuristic-Augmented MPC algorithm.
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Figure 5.75: Residuals distribution indicating small errors centered around 0.
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the best actions for the first day and moves to the next day, where the new prices are published,
and more accurate forecasts are generated.
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Figure 5.76: Strategy planned by the Heuristic-Augmented MPC Optimizer.

The overall behavior of the Heuristic-Augmented MPC algorithm over a whole month is
illustrated in Figures 5.77 and 5.78. As with other implementations of our proposed framework,
the agent’s behavior proves to be efficient. In fact, the numeric results presented in Section
5.10 show that the MPC augmented with our defined heuristic consistently, albeit slightly,
enhances the optimization process of the standard MPC algorithm. This consistent improvement
highlights the potential of such an enhancement, suggesting that in other applications, its impact
could be even more substantial.
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Optimal Actions over Time
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Figure 5.77: Optimal actions returned for a month by the MPC optimizer with heuristics.
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Figure 5.78: SoC levels along with fixed hourly prices for a month after applying the MPC
Optimizer with heuristic.
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5.10 Diffusion-Informed MPC Variants Comparison

We experimented with all Diffusion-Informed MPC variants by applying them in 25 consecutive
days, for 10 months and we collected their total rewards in Tables 5.4 to 5.6.

Table 5.4 compares the performance of the MPC variants. In these experiments, we also
considered two idealized benchmarks: the Perfect MPC, which has full knowledge of the future
price trajectory (infinite horizon), so it yields the absolute best possible control, and the Oracle
MPC, which uses the actual prices as its forecast model (a perfect forecaster - or an Oracle
that informs about the actual prices in a same horizon as the rest MPC implementations). Our
model, Diffusion-Informed MPC. gives results that closely match these idealized benchmarks.
The average rewards of the Deterministic MPC, Monte Carlo Stochastic MPC and Scenario
Tree-Based MPC were found to be 85.78, 86.96, and 85.27 respectively. Comparing with the
average rewards of 94.26 for Perfect MPC and 88.93 for Oracle MPC, our method showcases
great performance. The gaps of the Deterministic MPC, Monte Carlo Stochastic MPC and
Scenario Tree-Based MPC with the Oracle MPC benchmark were merely 3.54%, 2.22%, 3.5%,
indicating that a Diffusion-Based forecaster produces sufficiently accurate and detailed forecasts
to guide the MPC optimization effectively.

We note that the average reward of the Stochastic MPC version (using one realization)
is lower, as expected, however, this reinforces the claim that a diffusion-based forecaster is a
powerful model of the system, as even one (noisy) realization of the future trajectory is enough
to calculate a good decision sequence. One may compare this method’s average reward of 74.99
with the average reward of the best classical MPC method, shown in Table 5.6, which is 61.8,
having a gap of 21.34%. Therefore, even with its single sampling, the D-I MPC implementation
still outperforms other methods, indicating that our approach remains superior for applications
demanding rapid optimization.

Furthermore, the incorporation of multiple forecast trajectories in MC SMPC helps to average
out the uncertainty over the prediction horizon, yielding more robust decisions. The Scenario
Tree-Based MPC variant results in a slightly lower average reward of 85.27, only 1.98% worse,
making it still a highly valuable and robust framework. This minor difference in average reward
is often a small trade-off for the inherent advantages of the scenario tree approach, particularly
its representation of future uncertainties and the non-anticipativity constraints. In situations
where the agent has to make cascading decisions and manage the risk, the Scenario Tree-Based
MPC version can be superior. Such examples are energy scheduling, smart grid management,
financial portfolio optimization, etc.

Additionally, the comparison of MPC with and without heuristic augmentation in Table 5.5
reveals that including a heuristic at the end of the look-ahead horizon can improve performance,
although in our current setup the improvement is small. In this application, TimeGrad is al-
ready a very powerful forecasting model and the forecasting horizon is big (as the forecasting
horizon extends, the terminal state’s impact becomes less significant), so the relative improve-
ment from heuristic augmentation is small. However, the consistent gains observed (H-A MPCs
yield slightly better results than MPC, in every experiment conducted except one) suggest that
in other problem settings, where the forecasting model may not be as precise, or the system
dynamics are more chaotic, a well-designed heuristic could have a significant impact.
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Month | Perfect Oracle MC DST FC RDST BH RDST
Month MpPC MPC | MPC SMPC SMPC | SMPC SMPC SMPC
2018-06 99.98 97.13 90.72 73.88 92.11 94.47 97.57 96.25
2018-07 147.46  141.56 | 134.61 119.13 138.75 | 140.00 139.73 139.10
2018-08 123.11  115.31 || 111.62  95.56 112.43 | 112.63 112.99 112.31
2018-09 108.44  102.32 | 100.65  86.48 100.53 | 100.20 97.87 98.80
2018-10 104.05 95.36 | 103.48 89.45 102.84 | 101.17 96.08 96.58
2019-04 60.35 54.62 53.42 47.85 53.51 45.00 45.64 46.16
2020-12 68.85 59.31 60.58 49.00 61.61 59.92 61.05 58.31
2021-01 64.03 59.00 97.09 53.84 56.60 58.27 61.05 56.96
2021-02 109.34  108.33 95.46 87.03 96.69 95.71 90.71 88.38
2021-03 56.94 56.35 50.15 47.68 54.54 50.72 50.05 49.78
Sum 942.57  889.30 || 857.78  749.90 869.62 | 858.09 852.74 835.34
Average | 94.26 88.93 85.78 74.99 86.96 85.81 85.27 83.53
Table 5.4: Comparison of rewards for different MPC methods (higher is better). Columns

represent: Perfect MPC (idealized benchmark with full future knowledge), Oracle MPC' (ideal-
ized benchmark with perfect forecaster), Deterministic MPC' (MPC with single point aggregated
forecast), Stochastic MPC' (SMPC with one trajectory realization), Monte Carlo SMPC (SMPC
with 100 realizations), Diffusion Scenario Tree SMPC, Forward-Clustering Reduced Diffusion
Scenario Tree SMPC, and Backward-Hierarchical Reduced Diffusion Scenario Tree SMPC.

Month | Oracle MPC | MPC H-A MPC H-A MPC
(Hard Constraint) (Soft Constraint)
2018-06 97.13 90.72 90.68 90.97
2018-07 141.56 134.61 134.55 134.33
2018-08 115.31 111.62 111.62 111.59
2018-09 102.32 100.65 100.69 100.83
2018-10 95.36 103.48 103.86 103.75
2019-04 54.62 53.42 53.30 53.59
2020-12 59.31 60.58 60.76 60.88
2021-01 59.00 57.09 57.36 57.21
2021-02 108.33 95.46 95.45 95.63
2021-03 56.35 50.15 50.16 49.60
Sum 889.30 857.78 858.40 858.38
Average 88.93 85.78 85.84 85.84

Table 5.5: Comparison of MPC and Heuristic-Augmented MPC methods with hard and soft
constraints, relative to Oracle MPC. (higher is better).
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5.11 Diffusion vs. Classical Forecasting for MPC

Table 5.6 presents the comparison between the performance of MPC guided by a diffusion-based
forecaster (TimeGrad) and MPC guided by several classical forecasting models. We used again
the cumulative reward obtained over one-month periods for 10 months. The Diffusion-Informed
MPC achieves an average reward of 85.78, substantially outperforming the best classical ap-
proach (using an autoregressive model) with average reward 61.80. Our method has an advantage
of approximately 38.8% over the best classical forecaster method.

Month | TimeGrad AR ARIMA SARIMA VAR CNN LSTM
MPC MPC MPC MPC MPC MPC MPC
2018-06 90.72 87.99 —1.28 80.25 65.84  60.47 74.84
2018-07 134.61 109.56 —-3.11 106.86 68.81 3.59 38.13
2018-08 111.62 93.55 —2.55 93.4 61.02 —15.46  3.59
2018-09 100.65 81.44 1.33 83.38 60.77 —1.19  32.56
2018-10 103.48 o7.71 —1.31 62.07 60.85  38.76 79.75
2019-04 53.42 16.45 —1.64 25.34 30.77  18.73 50.13
2020-12 60.58 47.05 —0.79 35.27 30.65  12.54 54.41
2021-01 57.09 47.51 —0.16 38.39 37.63 =223 4287
2021-02 95.46 56.69 —4.39 36.93 56.99 —19.42 —46.61
2021-03 50.15 20.44 —0.92 22.24 28.2 —5.31  50.88
Sum 857.78 618.00 —14.82 584.14 001.54 9048  380.54
Average 85.78 61.80 —1.48 08.41 50.15 9.05 38.05

Table 5.6: Comparison of rewards for MPC methods using various predictive models (higher is
better).

It is important to note that, although the deep learning models we trained achieve better
error metrics compared to autoregressive models, their performance in guiding MPC algorithms
is not as good. The key reason lies in the specific application on which we test our method,
since in energy arbitrage accurately predicting the peaks and valleys of energy prices is far more
critical than merely achieving low error rates. The trained CNN and LSTM models tended
to estimate the trends of the price time series sometimes with a small shift, resulting in the
agent, which follows the policy created by the MPC, being confused on when it is optimal to
make certain transactions. This is illustrated in Figure 5.79, where the CNN and LSTM models
demonstrate better anticipation of reward compared to classical models, since they provide
more accurate forecasts. However, the MPC algorithms based on these deep learning models
do not exhibit improved performance, due to the said shifts, and since energy prices are highly
time-dependent, autoregressive models inherently provide better temporal correlation. This
underscores once again the importance of accurately predicting the details in the state trajectory,
hence diffusion-based forecasters are highly suitable to guide the MPC. We observe that all
variants of Diffusion-Informed MPC, demonstrate much closer alignments between the expected
and actual outcomes, reinforcing our method’s strength in capturing the intricate dynamics and
yielding a robust policy.

Figure 5.80 displays a sample day of the calculated plans for the various classical MPC

195



CHAPTER 5. EXPERIMENTAL RESULTS

Anticipated vs Actual Rewards
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Figure 5.79: Comparison of anticipated and actual rewards (in 3-day windows) for the various
implementations, sorted by how closely the anticipated reward matches the actual reward.

methods, compared with D-I MPC. These plots highlight how the forecasted price trajectories
and the resulting control actions differ among the methods and one may observe several patterns.
The AR forecasting model tends to exhibit increasingly large oscillations as predictions progress
further from the starting point, meaning that they are not robust enough to plan on. However,
the oscillations become apparent after the first 24 hours, which mitigates their influence. To
explain further, since MPC is a recending horizon optimizer, it applies the first 24 actions before
shifting the horizon window forward, hence the oscillations are too far away to have a significant
effect on the policy. The SARIMA model, although also prone to divergence, produces forecasts
that follow the overall trend more smoothly; however, its predictions gradually have a growing
offset relative to the target series, as error accumulates. The VAR model is more stable than the
simple AR model, however it struggles in predicting the minima and maxima which, as explained
before, has devastating effects in the calculated policy. Furthermore, the CNN-based forecasting
model shows an underestimation of the time series, although it is not a typical behavior; in other
windows, its predictions follow the target series well. On the other hand, the LSTM predictions
align a lot better with the target. Both the CNN and LSTM models, despite capturing the
trend, exhibit small but noticeable offsets in the prediction of the minima and maxima of the
series, which significantly affect the decision-making process of the MPC.

Consequently, diffusion-based forecasters, with their enhanced expressivity and ability to
generate detailed trajectories, are highly suitable to guide the MPC, as they produce forecasts
that represent the underlying dynamics better and thus lead to superior control performance.

We also compare Scenario Tree-Based MPC plans constructed from classical point-forecast
models versus the diffusion forecaster. For each classical model (VAR or LSTM), we fit a
Gaussian to its one-step-ahead residuals on historical data and sample scenario trajectories by
drawing

f:l(::z ~ N (Brsj, Oon),
where 25, ; is the point forecast and o, its residual standard deviation. We then solve a
multistage MPC over these sampled trees. For the diffusion forecaster, the tree is sampled
directly from its learned conditional diffusion model.

Note that the scenario tree generated by VAR was so noisy and irregular that the MPC
solver had difficulty optimizing across all branches. As a result, we pruned the least probable
trajectories to ensure tractable and stable control optimization.
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(a) Diffusion-based forecasting model. (b) AR forecasting model.

(¢) SARIMA forecasting model. (d) VAR forecasting model.
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(e) CNN forecasting model. (f) LSTM forecasting model.

Figure 5.80: Control trajectories for MPC strategies using different forecasting models. Sub-
figure (a) shows the diffusion-based forecasting model (TimeGrad) guiding the MPC, whereas
subfigures (b) through (f) display the corresponding trajectories when using classical forecasting
methods: AR, SARIMA, VAR, CNN, and LSTM respectively.
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(c) Diffusion-based tree MPC

Figure 5.81: Control trajectories under scenario-tree MPC. (a) VAR-based, (b) LSTM-based,
and (c) diffusion-based trees. Scenario trees from VAR and LSTM are noisy and produce dis-
turbed control plans, whereas the diffusion-based tree yields coherent scenarios and a robust

plan.
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5.12 Diffusion-Based MPC vs. Model-Free RL

Table 5.7 compares the performance of our Diffusion-Informed MPC with that of several model-
free RL implementations based on various DQN architectures. In the experiments, the model-free
methods are provided with perfect knowledge of the next 12 real prices, yet even the best-
performing DQN agent yields an average reward of 26.92, which is approximately 69.5% worse
than our method. This large difference underscores the advantage of using a model to optimize
decisions when an accurate one exists.

Beyond performance, a significant advantage of our method over model-free RL approaches
lies in its robustness and the fact that tuning is significantly easier. Once good parameters
are found for the diffusion-based forecaster, its predictions remain consistent across all training
runs. This consistency in forecasting leads to a robust and stable optimization process within
the MPC framework.

In contrast, training model-free RL methods is challenging. The immense size of their param-
eter space makes it very difficult to search for optimal configurations. Furthermore, given the
inherent complexity and stochastic nature of real-world system dynamics, achieving convergence
in model-free RL agents often demands a huge number of training iterations. For instance, our
best-performing DQN agent required 15,000,000 iterations.

While it is theoretically proven that model-free RL methods, when applied to Markov De-
cision Processes (and not even POMDPs that usually model real-world systems) and given
sufficient training iterations under certain conditions (e.g., proper exploration, suitable function
approximation), can eventually approach optimal behavior, the practical implications are of-
ten prohibitive. The extensive time and computational complexity required for training make
model-free approaches less desirable for applications where a robust and accurate system model,
like our diffusion-based forecaster, is available. In such scenarios, the model-based approach
offers a far more efficient and reliable path to good agent behavior.

Model-Free RL (Knowledge: 12 real prices ahead) Model-Based RL
Month DQN DQN DQN DQN DQN TimeGrad
32 X 64 x 32 64 x 128 x 64 128 x 256 x 128 64 x 128 x 128 x 64 64 X 128 x 256 X 128 x 64

2018-06 8.40 30.89 21.34 4.62 61.28 92.11
2018-07 14.99 53.44 30.08 8.80 45.05 138.75
2018-08 6.14 46.00 10.64 3.56 25.57 112.43
2018-09 3.87 28.21 17.99 3.07 20.14 100.53
2018-10 8.29 31.75 18.96 8.79 14.46 102.84
2019-04 3.43 18.65 10.25 241 6.00 53.51
2020-12 3.55 15.35 9.32 3.67 7.18 61.61
2021-01 291 19.37 10.47 7.01 10.62 56.60
2021-02 2.58 12.44 14.39 3.36 0.32 96.69
2021-03 1.59 13.10 7.46 6.43 5.65 54.54
Sum 95.76 269.15 151.80 51.02 196.27 869.62
Average 5.58 26.92 15.18 5.10 19.63 86.96

Table 5.7: Performance comparison of Model-Free RL with different DQN architectures and
Model-Based RL (TimeGrad).
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6.1 Conclusion

This thesis developed a set of novel frameworks for decision-making under uncertainty in stochas-
tic dynamical systems. We integrated state-of-the-art diffusion-based probabilistic forecasting
in control algorithms to handle the uncertainty and complexity of real-world multi-dimensional
stochastic systems. Our core insight was that diffusion models, which are designed to learn
complex data distributions, can be successfully adapted to the time-series domain, to yield rich
predictive distributions. On these results, we defined and implemented a collection of Model Pre-
dictive Control algorithms to perform deterministic and stochastic, single-stage and multi-stage
control, based on the diffusion model’s forecasts distribution.

Through extensive experiments in the problem of energy arbitrage, we demonstrate that our
method, Diffusion-Informed MPC (D-I MPC'), consistently achieved substantially better met-
rics when compared to traditional approaches. This outcome is explained by the inherent ability
of diffusion models to accurately capture the intricate dynamics of the system. Furthermore,
the performance of our D-I MPC' variants closely matched idealized benchmarks that we imple-
mented, indicating that our method optimized agent actions nearly as effectively as algorithms
operating with perfect models of the system.

Our model-based framework demonstrated a distinct advantage over various model-free Re-
inforcement Learning (RL) implementations too. This substantial difference underscores the
benefits of using an accurate model for optimization when it is available. An additional advan-
tage of our approach is the robustness and easier tuning, in contrast with the high complexity
of tuning and time-consuming training of model-free RL methods.

Our work has been accepted for publication at EUSIPCO 2025, underscoring the practical
value of our method. In sum, these contributions point to a promising direction for applying
deep generative models in real-world decision problems.

6.2 Summary of the Contributions of this Thesis

1. Deterministic MPC with TimeGrad. We aggregate the diffusion model’s forecasts
into a single point trajectory and solve a standard receding-horizon optimization, retaining
the simplicity of classical MPC while utilizing the expressive forecasts of TimeGrad.

2. Monte Carlo Stochastic MPC. We sample multiple full-horizon trajectories from the
diffusion-based forecaster and optimize control actions to maximize the average reward
across these scenarios, approximating the expected reward by embedding uncertainty into
the decision process.

3. Scenario Tree-Based MPC. By clustering the diffusion model’s forecasts at multiple
stages, we discretize the probability distribution and organize it in a tree structure allowing
planning under non-anticipativity constraints.

4. Heuristic-Augmented MPC. To mitigate finite-horizon effects, we train a lightweight
optimal terminal state predictor and incorporate its output as terminal constraint in the
MPC formulation, implicitly extending the planner’s foresight without much additional
computational cost.
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CHAPTER 6. CONCLUSION AND DISCUSSION

6.3 Future Work

Building upon the frameworks defined in this thesis, there are several promising areas for future
research:

1. Advanced Scenario Tree Pruning: While Diffusion Scenario Trees result in a robust
optimization process, further research is needed to mitigate the effects of tree trimming.
This means to explore dynamic pruning or heuristic-driven concepts that adapt to the
generated scenarios and decide which nodes are worth to expand or prune.

2. Hybrid Reinforcement Learning Architectures: Another future direction involves
creating hybrid RL approaches that combine the strengths of both model-free and model-
based techniques. Such an approach would use the explicit knowledge of system dynamics
provided by our diffusion-based forecaster, and also incorporate the adaptive capability
of model-free RL to refine policies through interaction. Architectures such as Dyna-style
algorithms that use our diffusion-based forecaster to generate imagined trajectories for
policy evaluation, and Q-learning variants that use the learned model to approximate
cost-to-go values beyond the planning horizon could enhance the learning process.

3. Broader Application Domains: To provide more solid proof of the efficiency and ro-
bustness of our methodology, future work can exploring additional use cases beyond energy
arbitrage, such as smart grid control, supply chain management, autonomous driving, or
financial portfolio optimization.

4. Comparison of Various Diffusion Models in MPC: While TimeGrad provided a
powerful forecasting model, it would be interesting to explore and compare the performance
of other diffusion models for time series within our MPC framework.

5. Integration of Anomaly Detection: Future research could also investigate the incor-
poration of anomaly detection diffusion models into the framework. This would allow the
MPC to plan more accurately and exploit the anomalous fluctuations of the system, such
as price spikes or sudden demand shifts.

6. Incorporation of Event Data: Another future step should also involve incorporating
other sources of data, such as weather information and news feeds. These external factors
provide valuable information regarding the unexpected system behaviors, like sudden price
spikes, and can be added into the diffusion model as a condition vector on the generation
of the future trajectories.
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