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ITepiAndn

Tao tehevtalar ypdvia, ta Badd vevpwvixd dixtua €youv emitiyel eEoupeTixd anoteAéoyata oe BLdPopouC
topelc pe 6ho xou o moAUmhoxa {ntodueva unyavixhc pddnong. Qotéoo, yia va emiteuydel tétolo anddo-
o1}, To LOVTEAD YivovTar ohoéva xou O TERITAOXA XOU ATMATNTIXE WS TEOC TNV OVETTUEN Xou TNV EXTENEDY
toug. Ot pédodol ocupnieong povtéhwy, xou Wialtepa T0 XAAdeUa, €xouv avaderydel we AmOTEASOUATINES
OTEATNYXES VIO TNV AVTIETOTIOT AUTWOV TV TRORANUATLY, UEow Tne eEdieldng aypelactwy TapouéTeny
xon e Uelwone tou unohoylotixol xdotous. Ilop’ Gl awtd, oxpalor eninedo apaiwons cuyvd odnyolv
oe aotdielo xan unoPdtuion e anddoone. H mapoloa epyaoio avtipetwnilel autols TOUC TERLOPLOUOUC
ELO8YOVTUC TPOCUPUOC TIXES G TRATNYIXES XAUDEUATOS TOU EVIOYVOUY TNV omdd00T] EVE dlatneoly UPnAd e-
nineda ouurnicone. H epyaocio e€etdlel tic mpotewvdueves otpatnyixéc oto Feather, po npdogatn pédodo
rxhadéuatog mou aglonotel tov Straight-Through Estimator yio tnv exnaldeuon apouddv povtéhomv. Av xou
1o Feather xadcc xou dhhec mopduolec pédodol mpoopépouy moAd xakéc Bdoelg, Poaoilovta oe oplouéveg
O TUTIXES UTEQTIOROETEOUS YL TNV XAUEXWOT] TwV XAOE®Y X0l TOV TEOYPUUUATIONS TNE dpaiwong, YEYOVOC
mou unopel vo 0dnyrioel oe uixpn yelwon tne anddoong. H napoloa epyacia mpotelvel 800 cuvelspopés. H
TEWTY) CLUVELGPORA. Elvor VIS BUVAIXOC UNYAVIOUOS XAUAXWONG, ELTVEVCUEVOS OO T O TATLXY] UTEPTOOUUE-
TP0 ¥AMUIXWOoNE TwY xhicewv Tou Feather mou tnv avtixahotd ye wla cuvdptnor Baciouévn otn @don tng
EXTUUBEVOTG, ETUTEENOVTOE UEYURDTERT POY| XAICEWY OTA TEHTA GTADLAL YLOL TNV ATOQPUYT| TEOWEOL XAAUOEU-
TOC YOl TUO CUVTNENTIXES EVNUEPWOELS xododg auEdvetal o Adyoc apalwong. H 8ebtepn cuvelopopd elodyel
plo oLXoYEVELN TPOCUPUOC TNV CUVIRTHCENY YPOVOTPOYLOUUATIONOU Xxhadéuatog, ol onoleg puduilouv tov
pLiub apoiwong Bdoel tne otadepdtntag e wdoxac xAadéuoatos. Auth N mpocapuoo TixdTHTA Slac@ahilel
6Tl T0 XAAdepa YiveTow TO TEOCEXTIXG 6TV Ol PdoxeS elvon oo Todelc, PELOVOVTUSC TNV THaUvOTNTO ONUAVTL-
g TTdong e oxpifelac. H a€iohdynon oe Baoués apyitextovinég dmwe ol ResNet20, DenseNet40-24 xou
MobileNet V1, exnoudevuévec oto CIFAR-100, delyver 6L xon oL 500 cuvelspopég BehTidvouy Tny anddoon,
Wiodtepa oe axpalec Tocootd apaiwone. Emniéov, n epyacio nepthauBdvel plo perétn oe Badoc yio v
onpacta Twv xAadepévwy Bapmy, cuyxpelvovtag extaldeloelg Tou BUTNEOVLY TIC XNABEUEVES CUVDECELS UECH
tou STE pe exelvec mou tic anoppintovy povipa. Iho cuyxexpiuéva, n UEAETY AmooXOTEl 0TOV TEOGBLOPLOU
TOU 000G TOU WY Bap®y Tou @épouy onuacio xal exclivwy Tou uropoly va agoupedolyv oploTnd and T
dladixacio BeAtioTonoinong, e oToOY0 TNV ElCAYWYY) apot®Y XAloE®Y oTny dLodixacia e apaiwong ywelc
TN TS AnddooTg.

A€&eig-%Aeldid — oupnieon-DNN, apaiwon, xhEdepa-Bopmy, un-0opnuévo-xAddepa, apouf-exnaldeuon,
x\ddepa-Ldoet-pétpou-peyédoug






Abstract

In recent years, deep neural networks have achieved state-of-the-art performance across various and in-
creasingly complicated machine learning tasks. However, in order to achieve such performances the deep
neural network models are increasingly complicated and deployment heavy. Model compression meth-
ods, particularly pruning, have emerged as effective strategies to address these concerns by eliminating
redundant parameters and reducing computational overhead. However, extreme levels of pruning often
lead to instability and performance degradation. This thesis addresses these limitations by introducing
adaptive pruning strategies that improve performance while maintaining high compression targets. The
work tests the proposed strategies on the Feather pruning module, a recent method that utilizes the
Straight-Through Estimator to enable gradient-based dense-to-sparse training. Although Feather and
many similar modules yield SoA results, they rely on some static hyperparameters for gradient scaling
and sparsity scheduling, which may lead to reduced performance. This work proposes two contributions
on the basis of those static parameters. The first contribution is a dynamic scaling method inspired
by Feather’s fixed gradient scaling hyperparameter replacing it with a function based on the training
phase’s achieved sparsity, allowing larger gradient flow during early iterations to prevent premature
pruning and more conservative updates as the sparsity ratio rises. The second contribution introduces
an adaptive pruning scheduler function family that adjusts the pruning rate according to the stability
of the pruning mask. This adaptiveness ensures that pruning is more cautious when masks become
unstable, reducing the likelihood of large accuracy drops. Evaluations on benchmark architectures such
as ResNet20, DenseNet40-24, and MobileNet V1, trained on CIFAR-100, show that both contributions
enhance performance, especially in extreme sparsity ratios. In addition to these two contributions, the
thesis includes an in depth study of the significance of pruned weights, comparing training processes
that retain pruned connections via STE against those that permanently remove them. More specifically,
the study aims to find what percentage of pruned weights holds significance and what percentage can
be permanently dropped from the optimization process, in order to introduce sparse gradients to the
sparsification process without loss of accuracy.

Keywords — DNN-compression, sparsification, weight-pruning, unstructured-pruning, sparse-training,
magnitude-based-pruning






Euyapiotieg

Oa Hdeha apynd va euyaplotiow tov xodnynth Ilétpo Mopoyxd mou and tnyv opyr| TwV oToLBOY UoU Ue
EVEMVEUGE 0L €V TEAEL HOU EBWOE TNV euxanplal VoL EXTOVACK TNV BIMAWUATIXY Uou epyacio 0To epyaoThpLd
tou. Emmiéov, Yo ileha va evyapothon tov Ap. Tidpyo Petowd yio tnv xadodhynon xou Ty cuvepyaoia
Tou oL NToy TOADTIAL Ylot TNV TOEElol Xol OAOXANPWGT AUTAS TNS BIMALUATXG epyaciag.

Téhog, da Rdeha va euyaploTion Toug Yovels pou xar Ta adép@Lo oL Yot TNV amdAUTY oTHPIEY Toug Oha
QUTA ToL YEOVLAL, %oE TOUS PLAOUC oL X OTNV GO GAAG Xl EXTOS, XdET) OTOUC OTO{OUE ToL YEOVLX oUT
népaoay bpop@a Xt aléyaoTa.

Aixn Zdyou
ToUvioc 2025
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1 Ewayowyn

To Bordid vevpwvixd dixtua, eved anodldouy e€atpeTind ot Topelc Onwe 1 6pUCT) UTOAOYIGTOVY Xau 1) eneep-
yaola Quoc YAMCOUS, AmauTody TEPACTIOUE LTONOYIOTIX0UE Xal EVEpYELaxoUs Topoug [15], [19]. Auté
%o T8 SOGXOAN TNV AVETTUEY TOUG OE GUOKEVES PE TIEPLOPLOUEVES BUVATHTNTEG, OTWE XIVNTY X POUTOTIXY
OLC THUOTA, eV Tpoxahel xou avnouyla yia To nepBaihovtind toug amotimwua [99].

Me apopury awtd tar Intruata, €yel dodel ueydhn éugoon otn cupmieon Twv SiXTUWY, UE TO XAABeud Vo
amotehel o and Tic o anoteheocpoutixée texvikée [15], [16], [19], [59]. Méow tne agalpeone mepLTTOY
TUPAUUETEWY, 0TS BdET), Veupdves, GihTea ) xou ONOXANpa ETiNEdA, ETULTUYYAVOVTAL TLO ENAPELA XOlL ATOBOTIX
povtéha ywelc onuavtue andieio anédoorne. H napoloa epyaoto tpotelvel xdmoleg duvoxés pedodoue yia
TNV AVTLXATAOTAO OTATIXOY Topopétewy, eletdlovtag v anddoor touc oto mhaicto Feather [27], to
onolo xAaBeVEL TO UOVTEND TAUTOYEOVA UE TNV EXTAIBEUCT| TOU YENOULOTOLOVTOG Evay OToERd Unyovioud
APEHWoNg xAoEWY ot Eval XU YEOVOBLEY oI JEALOTNTOC.

H x0pia cuvelopopd tne epyoaciog etvar 1 avdntuén 500 BUVAULXDY PNYAVIOUGY Tou avTixadoTolV Tic oTo-
Txéq mopopéteoug ou avapéotnxay. Elodyeton o Suvopixn cuvdetnon xAMudxwons Ty xAloewy, 1 onola
emitpénel xahltepn pon TANpopoplac xatd TNV exmaldeuct), amopedyovtac TNV UTEpBOALXY) amoxomy] Poptv
ot apyxd otddo.  AglTepov, TEOTEIVETL EVUC TPOCUPUOC TIXOC TPOYPUUUATIONOS Xhadéuatoc tou pul-
piler Tov pudud apaiwone pe Bdon ™ otadepdtnTo e wdoxas xhadéuatog. To nelpapatixd amoteAéopoTa
delyvouv 6T oL TpoTewoueves uédodol Behtidvouy Ty axpeifelo xou T oTadepdTNTo TOU UOVTENOU, ELBLXS
oe ouvineg axpaiag apoudtnrag. Emmhéov, n epyacio tepthauBdver gl tocotr| Weétn yio T onpocia
TV XAOEUEVRY Bapddy, TRocPEpovTas YENOWES YVOOELS Yia TO Tola Bdpn UnopolV va apotpetoly oploTi-
%4 Ywplc EMNTOOE GTNY Am6B00TY), UE OTOYO TNV ELCUYWYT| AEUUMOY XAICEWY OTNY opol) EXTABEVCY) TOU
povtélovu.

2 Ocwpentixd YnoBadeo
2.1  Mnyavixr) Mddnon

H pnyovixy) udidnomn eivan éva and 1o o onpavtixd urnonedla tTng TEYYNTAS VONUOCUYNE TOU ETUTEENEL OTA
ovoTAdata va padaivouv and dedouéva ywels va mpoypappoatilovtat. Ouctaotixd to cuothpata padaivouy
VO TPOGOEUOLOVTOL X0l ATOXTOVY IXAVOTNTO YEVIXEUOTC and TEONYOVUEVES EUTElpleS, Xt TOU EmiTEénEL
otoug ahyopldupouc va anodiBouv ot véa, dyvuota dedopéva [8], [52].

TOror Mnyoavixic Mdadnong

H ynyoviny uddnomn ywelletan oe tpelg Slopopetixols TOTOUS avIAOY o PE TOV TEOTo Tou pardolvel To GG TN
po. H emfBAendyevn pddnorn exnoudeletar pe deSouéva pe ETIXETES, UE OTOYO TO WOVTEAD Vo dMULoupYTOEL
oLVOETELS LETAED TWV BEBOPEVLV XL TWV ETIXETAY, WOTE Vo Bploxel TNV xUTEAANAY eTixéTo o VEO Sedopéval.
Xpnowonoteiton xuplwe yior Tadvdpunon xou modwvdpdunon, e alyopiduous énwe ta dévipa andgouone [70]
%o 0 AAYOpLIUog TwV TANCIECTEPWY YEITOVWY. H un emPhenduevn udidnomn avtideta, padaiver and dedouéva
xwelc eTéteg xan otoyelel oTNY avaxdAun xpUPHOY TEOTOTWY 1) SOUWY PECO OE AUTY, YENCULOTOLOVTIC
ohyopiduoue énwe to k-means [84] xou v epapyind opadornoinon [71]. Téhog, n evioyutx| uddnon yo-
poxtneileton and évav medxTopa Tou dAANAETOEA pe éva TepBdihov xou pardaivel and avtopolBEc 1 Tovée,
Gote vo hapPdvel Bladoyxég anopdoels.

Katnyopieg Enirenopevne Mddnong

H emPrendpevn udinon ywelleton oe 800 xoatnyopleg, Tnv TaAvdpounon xou Ty TaEvounoT, avahoyo Ue
v epyaoio Tou mpénel va mpaypatonowoel. H moakivdpdunon anotedeiton and alyopituoug mou npoBAénouv
ouveyelc apriuntixéc Twée, dnwe N Veppoxpacia R ol Tiwée ueETOY DY, TpocapudlovTas o cUVEETNOY oTa
dedopéva exnaidevonc. H tawounon xatnyoptonolel elo6doug oe doxpitéc xatnyopieg, Lolpdlovtoag ouato-
oTxd ta dedopéva. [or mapddelypa, otny aviyveuon avemdbuntng ahknhoyeapio 10 wovieho podoivel omod
emonUoopéva Topadelypato WoTe vo TpoPBAEnel edv €va uhvuda ebvar avemrdiunto 1| Oxt.
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Yet Exnaidcvong, Enuxdpwong xow Aoxiunig

T v a&lohbéynon xou Bedtinon e anddoons evoc LoVTENOL unyovixhc uddnone, 1o chvoho dedopévwy
By wptleton cuvidwg oe tpiot UToclvola: To CET exTAiBEVONG, TO CET EMMVPWONE ot To oeT doxing. To
oeT exnaldeuong yeNnouLoToLElToL Yol TNV EXTAUBEVGT Tou WoVTEROL, To GeT emxlpwang Pondd oty pdiuion
TWV UTEPTUPAUETOWY Xl OTNV OMOQUYT UTEETEOCUPUOYNS, EVE) TO GET SOXWNE YENOWOTOLE(TOL Yo TNV
tehxn] o€loAGYNoT Tou UovTélou ot dyvwaoTa dedouéva.

Merpwxég AZohoYNnong

T Ty a€lohdynom g anddoong evoc Yovtélou, eldxd ot mpofifuata Tavounone, Utopoly va Yenolto-
nomndolv téooepic Paoixée petpinés. H axplPeia (accuracy) petpd 10 suvohnd nococtd cwotdhv Teoliéde-
wv. H oxpifeia (precision) ectidlel 610 100006 TV mporypotind YeTindv YEToE) OAwY TwV TEoPAEdEwY
VTNV, EVE 1 avdxhnom e€etdlel T0 T0G0GTO TV TEAYUUTIXE VETIHDV TOL EVIOTIG THXAY UETAED OAWY TwWY
umoex Ty Yetinwy. To Fl-score cuvdudlel axpifBeto xou avdxAnom oe piot Ty H€ow Tou appovIXoU PEGou,
OMOTEAMVTAC Lo LOOPPOTNUEVY] UETELXY) LOLOUTERMC YENOLULY| OF UT] LOOPEOTNUEVA GUVOAN BESOUEVMY.

Yuvaptroelg L@aApatog

O1 ouvapTthoeic opdhuatog eivon TOAD GNUAVTIXES Yol TNV EXTUBEVCT) TWY LOVTEAWY, XS TOGOTIXOTOOVY
T Bapopd petol Tne TpoAemoUevNgE xou TS Tpaypatxhc e€68ou. Ltny nodwvdpounc,  Méon Tetpoyw-
v Andxhion Tiwpel tepiocdtepo To yeyahitepa opdipata, eved N Méon Andhutn Andxhion avtipetonilet
6ha o opdhpata eZioou. Ta v tadvéunon, 1 andiela dloc TavpolPevne evipoTiag (cross-entropy loss)
elvon 1Oiaitepor SLadedouévr, xadde wetpd T Sopopd petald tng mpofienduevne xotovouns miuvothTey
%ol TV Tpaypatxey etxetov. H andxhon Kullback-Leibler elvon pior dAAn uetpiny| mou mocotxonolel T
dlapopd HeToEL B00 XaTavopwy TavoTATOY, xUplwe ot TEoyweNuéva TavoxeaTixd LoVTENA.

Y repnpocaployr xal Y TOTEOCAUPUOYY

H vunepnpocapuoyy ouyPoaivel dtav éva povtélo etvor urepfohixd nepinhoxo xou podolvel tov 96puBo twv
dedouévev exmaideuonc, odnywvTag oe xaxt anédoon ot véa dedouéva. H unonpocapuoyy avtidétwe eupo-
viletow 6tay T0 YovTELO elvon UTepBORLXd amhd xou aBduvatel va evtomioel o faocd potiBa, napouctdlovtag
YOUNAY amddocT 1600 GTO EXTAUBEVTIG GO XaL GTO doXIACc TS OeT. 'Eva anodotind poviéro Peloxel Ty
oopponio petadld Twv 300 aUTMV dxpwy, wodaivovtog xohd to potiBa oddd 6yt tov Bépufo.

Kavovixonoinon

OL TeYViXéc xavOVIXOTIOINONG YENOHLOTOOUVTAL Yiol TN UElOY TNS UTERPTPOCUPUOY NS, EMBAANOVTOS TOVES
oTny moAumhoxotnTa Tou poviéhou. H xavovixonoinon Ly mpoctétel mown lon ye tny andlutn Ty Tov
CUVTEAEGTWY TOU WovTéhou, eviopplvovtag Ty apadtnta. H xavovixomoinon L2 tuweel 1o tetpdywvo tomv
CUVTEAEGTWY, anoTpénovtoc TN dnuovpyio ueydiov Bopdv. To dropout elvon plor Ay Snpo@inc teyvixy,
xuplwe oe veupwvixd dixtua 1 omola undeviel Tuyola éva TOGOGTS TWY VELRPMVLY, UTOYREMVOVTIS TO BixTUO
VoL UGUEL IO BUVOIXES AVATUPAUOTICELS Xtk BEATIOVOVTISC TNV IXAVOTNTO YEVIXEUOTC.

2.2 Boadid Mddnon xow Nevpwvind Aixtua

To nedio e Podide uddnone anotehel utoclvoro g pnyavixhc uddnone xa Booiletoan otn yerion veu-
PWVIXOY BIXTOWY TOAATAGY emnédwy yio TNy enclepyacio UEYIAWY xou U1 eNEEEpYooUEVLY BEBOUEVLY,
Omwe exoveg, xeluevo N fyog. Avtidétwe, pe TNy mapadoctoxt) unyavixy) péinon mou amoutel Yeipoxivntn
e€ay YN YoeaxTNElo TV, Ta Pordid vevpwvixd dixtu pordolvouy auTOUNTA To AmAEaiTNToL Y UEaX TNELO TIXA
xotd T didpxela tne exnaidevong [1], [52].

To Perceptron xoau ta FeedForward Nevpwvixd Ailxtua

To perceptron eivon 1) Booixr| Bopuxr] LOVEBO TwVY VELEWYIXDY BIXTOWY TOU AELTOURYEL OUCLACTIXE WS BLAdIXOC
tadvounthc. Amoteleltan amd el06d0ug, Bdpog, Gpo PETATOTONG Xat Wia cLVdpTNON evepyonoinone. Katd
v exnaideuo), ta Bden evnuepdvovial GoTe Vo Yewdoly ta opdhyato tadivounons. Tmdeyouv Sidpopeg
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ouvapthoelc evepyonolnone, onwe n ReLU, n Sigmoid, n Tanh xo n Softmax. Xuvbudlovtoc mtolhamhd
perceptron dnuovpyolvton ToAverineda dixtua, Yvewotd wg MLPs § FNNs. ‘Otav xdide veupwvag cuvdéeton
ME GAoUC TOU ETOUEVOU ETUNEDOV, €youpe To TAHPWS cuvdedeuéva dixtuo (FCNNSs), evd to cuvehxtixd
veupwvixd dixtuo ("NNg) anotelolv eedixevon twv FNNs yio exdvee, ta onola e€etdlovton apydtepa
apol TopoLCLaoToVY TEMTY oL Bactxés €vvolec exnaldevong.

Bias
b
Xp O—>W
Activation
Function
Output
inpuls X, O——w, — f ——

x, O—> w,

Weights

4 z 7. Z 7 e 7z ’
Yyhua 1: Ontixomoinon veupdva Tepaéntov Tou yenoulonoteitar ota Veupwmvixd dixtua. Anéd [92]

Input Hidden Hidden Qutput
Layer Layer1 Layer 2 Layer

Yo 2: TTopdderypor opyltextovinic ThApmC CUVBEBEPEVOU VEUPLVIXOL Bixthou. ATé [55]

OnioYodLddoon

H exmaidevon twv vevpwvixodv dixtiny Paciletal 6 UTOAOYIOUS TOEAYDYWY TS CUVIPTNONG CPAAIATOC
w¢ mpog Ta Bden tou wovtélou. H pédodog mou yenoiuomoleiton Yol TOV UTOROYIGHUS AUTOV TWV TAEOY YWY
ovopdletar omioBodiddoon xa Bactleton otn ypnon Tou xavova tng ahucidag. H exnaldevon neplauBdvel
dVo pdoelg, TN @don eunpdotag Siddoore, 6mou utohoyileton 1 €£080¢ Tou dxTLOL, Xou TN Pdon omcVo-
dpoéuNoNg, 6mou UToAOYI{OVTaL OL TAUPAYWYOL TG UTAELNS XOL DLUVELOVTOL TEOC TOL THOw Yidl TNV EVNUEEKON
Twv Bop®v, Ue 0TéY0 TNV EAAYLOTOTOMOY) TOU CPIAUATOC.

BeAtiotonowmntég

O Bektiotonomtéc elvar ahyoprduol Tou Tpocopu6louy T THPUUETEOUE TOU WOVTEAOU Ue oXomo TN Uelwon
e oLVdpTnome xo6otouc. Ol o cuvndiopévol elvon Topahhoryée tne xadodufic xhione (gradient descent).
H Baow tne popey) etvar 1 anhr) xordoduxry xhion, 1 onola elvon apyn xou e€optdtan évtova and tov pudud
pdinone. H otoyaotind exdoyy| utohoyiler tnv xhion avd Selyya, Tpoo@épovtag TayTNTaL Xot TUYUdTNTA.
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H mini-batch exdoy¥ eicopponel tic nponyoluevee yetddoug, urtoroyilloviac Ty xAlon oe wxpd maxéta
dedouévev avtl va ta yenowonotel 6ha. H npocdnnn opuric otny otoyaotixy exdoyn Bondd otn otadepdtnta
xan taryOtepn olyxhon. Ov Adagrad xou RMSprop ewodyouv mpocoppoctixoic puduolc pdinone, eved o
Adam ouvbudlel to TheovexTAUATO TLV PEVOBWY 0pUnc Xl TROGUEUOY NS, XUOTOVTAUS TOV £Vay amd TOUg
o dadedopévoug ahydprdpoug ot Badd pdinon.

Apyrtextoviny TuveAuxTixwy Nevpwvixonyv Awuxtiny

Ta cuvehutind vevpwvixd dixtuo (CNNs) elvon apyrtextovixéc eldxd oyedloouéves yio enelepyacion xou
ta€voutor edvac. Aéyovta we eloodo exdveg pe dlaotdoeic W x H x D xau e€dyouv npoPrédeic yio tig
avtioTolyec xatnyopleg mou umopel v avrixouv. Kdbe eninedo tou CNN éyel Eeywplotd pdho xou unopel va
elvan ouvelxtixd, uroderypatoindiac (pooling), xavovixonoinone moxétwy (batch normalization) ¥ nhfpwc
ouvdedepévo (fully connected). Autd ta enineda Aettoupyolv pall yia vor e€aydyouy xou vo enelepyastody
YUEUXTNELOTIXG. TNS EXOVOG, OONYDOVTOS TNV XATAVONCT] TOU TEPLEYOUEVOU TNG Xou o€ Tpofiédelc.

Ta cuvehixtixd enineda etvan o Poocixdtepa wv CNNs, unediuva yio Ty e€aywyy YoEoXTNELOTIXOY UECH
e@apuoYnc @iktowy otny eloodo xa Tapdyouv ydpteg yapaxtnooTixwy. Ta giitea éyouv duotdoelg F' X F
xa ebvor UTELYUVOL YL TNV AVOLY VORLOT) BLAPOPWY YORUXTNELO TIXAOY TNE Elxovag. To enlneda UTOBELYUOTONT
(lag YELDOVOLY TIE BLOC TACELS TWV YOPTOV YOLUXTNELC TV AVIUESH O 800 GUVENXTIXG ETUTEDA, YELDVOVTOC
€10l ToV opilud TwV TUEUUETEMY XaL TOV UToAoYIo TG pdpTo. To eninedo xavovixomoiong moaxétwy xovo-
vixoToLel TG €l06B0UC €TOL DOTE VO UNV AmEYOUNY TOAD Ol XATaVOUES TwV Papwv avd eninedo. Téhog, To
nhipeg ouvdedepévo eninedo Bploxeton otny €£080 Tou dixTlou XU Tpaypatonolel TNV TEdBiedn xatnyopiog
e eodvag, ool Eyel AMdPel g elcodo ta e€ayoUEVa YAPUXTNELOTIXG TNG.

— CAR
— TRUCK
— VAN

j :l — BICYCLE

FULLY
| / INPUT CONVOLUTION + RELU  POOLING CONVOLUTION + RELU  POOLING FLATIEN FOLY  SOFTMAX
HIDDEN LAYERS CLASSIFICATION

Yyua 3: Topdderypo apyltextovinic GUVEAXTIXOU VELPWVIXOU dxTtlou. And [100]

3 BiBAoypagpixry Emioxdnnon

Ta tehevtaia ypdvia, ye 0 ouveyn TEdod0 Twv Pothdy VELPWVIXGOY BIXTUWY, 1 TEYYNTY vonpoolvy Exel
ONUEIDTEL oNpavTIXd dhpota ot didpopous Topelc 6mwe 1 Trohoyotxh, Opaon [34], [49], n Eneiepyaoia
Puoixic Thaooac [21], n Avayvodpon Ouhlac [37] xau ou tolvtponxéc epappoyéc [60], [76]. Qotdoo,
N e€apeTiny] andBOoT AUTWY TWV EQPUPHOYMY amtatTel dXTUX UE EXATOUHDPI £6C Xl Sloexatopudpla To-
papétpous, YeEYovie mou odnyel oe UPNAG unohoyloTikd xdoToc [19]. Autd cuvemdyeton pe aUEnuéveg
anuTAoEC o UVAUY), eMeEepyaoTixt] oYl Xl XATAVIAWGOTN EVERYELNS, XM TOVTOC BOOXOAT TNV VAOTOlN-
oY) TOUG OE GUCTHKATO UE TEQLOPLOUEVOUS TTOPOUG, OTWC XIVNTEC CUOXEVES, EVOWUATWUEVO GUC THUOTO XAl
POUTOT.

Tt Ty avTPETOTOY QUTHOY TV TEOXANCEWY, €xel avantuydel oNUavTIX €pEuvo TV GTN CLUTIEST %ol
ETUTAYLVOT VEUPWYIXGDY STtOwv [15], [16], [19], [59], pe otdyo ) welwon tou peyédoug Toug ywpels onpovtixd
omdAeld an6doong. Autd Sleuxohlvel TNV avdnTudn o TEPLOPICUEVA TERIBAANOVTA, EVE ToRdAANAL UuTtopEt
vaL evioy0aeL TNV evpwatia XaL 1 Yevixeuon.
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3.1 Xyetxéc MéVodol Yuunicong

H evénto awth| napoustdlet Tic xupldtepes nedddouc GUUTIEONC VEUPOVIXMY SIXTUMY EXTOS TOU XAUBEUATOC.

KBavToroinon

KBavtomoinom eivan 1 yaptoypd@non cuvey®yY TWOV OE SLIXPLTEC AVATUPAOTICELS, CUVAHTWE axépoues. Xta
VELPWVIXE BIXTLA, 1) TEYVIXY AUTH ETUTEENEL UElWOT) TNG UTOAOYIOTIXAC TOAUTAOXOTNTASC Ol TNE HATAVAAWONG
evépyelag, dlatnpmvTog xavorointixh amédoon [59]. H oprduntixd xBavtonoinon younhédv bit nepthayuBdvet
v anevdeiog mocotixonoinon twv Popwy evog dixtvou and 32- 1) 16-bit float twéc oe 8-, 4-, 2-bit 7
oxdpn xou 1-bit axépouee Twéc [42], [88]. H ouotadonoinomn xou 1 xowh yprion Bopdv emtuyydveton uéow
ohyopiduwy opadonoinong 6nwe to k-means [84], énou napdpola Bdpn opadomolovvton xou avtixodioTavto
and Wia XoWr TiN.

ArociUvOieon Tavuctov

H anocivieon tavuostdv atoyedel 61 SldoTao HEYSAWY Tvdxwy Bopty o8 UXEOTERES Xat YAUUNAAS TAENG
avanapactdoelc [83], pewdvovtae mopapétpoue xar FLOPs. Ou xbpiec teyvinée eivon v SVD [20], [73], 7
anoocUvdeon Tucker [47], [57], n anocOvieon CP [51] xou to Dictionary Learning [79].

Anéotain I'voong

H onéotaln yvoone elvon teyvixt| ouunieons xatd v onolo évo uixpdtepo dixtuo (podnthc) exmondedeton
vao ppetton v €080 evée peyahltepou mpoxodoplopévou yovtélou (ddoxaroc) [11], [29], [38]. H Baowh
Tey V| tapovatdleton oty Euxdva 4.

Teacher Model

Eyfua 4: Onuixonolnon amdotaéng YVOOoNS U TO HOVTENO-DAGKAUNO XAk TO HOVTENO-UodnTH).
Ané [29]

Yxediaopmog Tuunaywy Moviédwy xar Atgpedvnorn AuxtOLwy

Avtl vy oupnileon yeydhwy SixTOmV, pla EVUARUXTIXY EVOL O GYEBLICUOS UIXPEDY, ATOBOTIXWY OPYLTEXTO-
VXDV Yl Yprion o cuoThuoata Ye meploptoévous mépous. To MobileNets [40] xow DenseNets [41] efvou
YOEAXTNELO TIXd TopadelyuaTaL.

H Siepedivnon apyttextovixmv (neural architecture search) [77] eivon po autopatonomuévn Stadixacia edpe-
oNnc BEATIOTOV APYLTEXTOVIXWY, OYEBLUCUEVDY VoL OVTATOXEIVOVTOL OE GUYXEXPWEVOUC TEpLoplolols. XTo
TAACLO TNG CUUTIESNC, SNUIOVEYOUVTAL ATOBOTIXG X0l CUUTIECHEVO LOVTENX OO TO UNOEV.

3.2 KAiddepa Nevpwvixwy AxtOwy

To »\ddepa otor vevpwvixd dixtuo elvor ot TEY VXY cuunleons HOVTEAWY Tou amooxonel otn Yelwon tou
peyédoug xou tng mohumhoxdTnTog £VvOg dtou, aalervToag otolyela Tou YewpolvTtol AYSTepo oNUAVTIX
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A mheovalovta. Amé Tic mpatee oyetxée epyooiec eivon or "Optimal Brain Damage" [53] xou "Optimal
Brain Surgeon" [33]. H teyvnd| auth| ofpepo TUPpOPEVEL GTO ETXEVTPO TNG EPELVOC, AGYW TNG CUVEYOUC
aOENone TwY TopAUETPWY oTo clyypova dixtua [15].

Me9odolw KA adepatog

Ou pédodol xhddepa Soxpivovtol avdAoYo PE TN AETTOUEPELN TNG apalwoNne O UN-0ounuévo, dounuévo xat
nui-Sounuévo [15]. To un-dounuévo agarpel pepovwpéve Ben, 1o dounuévo agaipel ohdxinpes Sopés 6mwe
pihTpo 1 xovdMaL, EVE TO NUL-dopunuévo Tpootadel va cuVBUdoeL T TAsovex Tt Xt Twv 80o. To MyrAua 5

ortixonotel Tic dapopéc petadld touc [86].
e
=i e A

@) =

Channels Pruning

Filters Pruning &

KED =
= Eﬂﬂ

(c)

Eyua 5: Ontixonolnon yedddwy xhadéuotoc o€ éva GUVENXTIXG VEUpKVIXG BixTuo: (o)
Mn-dopnuévo Khddepa (B) Aounuévo Khddepo (v) Hu-Sounuévo Khddepo. Ané [86]

To un-Sounuévo xAddepa agonpel pepovouéva Ben avelopthtng Véone [15], dnuovpydvTog apoués oAAd
oxovoviotes Sopéc [25]. Tlapdti emtuyydver udmhA apaieon ywelc onuavtixy andieio oxpifelag, Sev pnopet
va a&tomomndel edxoha and cupfatixd Lxd ywelc efeldixevpévee BiPhotxee [96]. To Sounuévo xhédepa
agponpel dopée onwe veuphvee [64], giktpa [101] xou xavdhar [62], Blotneddvtag Opoll oEYLTEXTOVIXY TOU
guvoel TV emitdyuvon oe anhé VA6 [36]. To nui-Bounuévo xhddepa [81], [96] mpoonadel va ioopponioel
HETOEY TV GAA®Y 8V0 LedodwY.

Keutrera Khadepatog
To xpiripla xA&depa xodopilouv mowa Pden, ikt R Souée agarpotvtan [15], [96].

To mo Sdedopévo xpitrpto elvon to péyedoc, xar e€etdler to andhuto péyedoc twv Popwdv. To Bdern ue
YOUnAY Tiur Yewpolvton AyGTERO omMuavTind xou aponpolvTon [32].

‘Eva dA\ho Baowd xpithipo ebvon 1 euvonodnoia, Bdoel tng omolag yenouwlonotodvion mapdywyol deuTtépou
Barduov yia vo Beedel 1 onuocio twy Bapdv oty cuvdptnon opdigatos. Av xa mo oxpBelc, elvar uolo-
YIOTIXA SAmavneeES, X4TL TOU GTNY dpy 1| OEV AnoTEAOUCE TROBANUA EPOCOY Tal VEURWVIXA B{XTUN HTOY oXOUL
enyd. IIAéov ye to tepdotio dixtua mpoTiw®vToL Yédodol mou npoceyyilouv Ti¢ mapay®yous avti va Tic
uroloyilouv gudéwe [85], [94].
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To »\&depa pe Bdon tny eoudhuvor etvon pio tpitn xatnyoplo xpttneiwy xhadéuatog, xotd tnyv onola 1 opo-
lwom elodyeton TAaylng avti eVYEWS OTWC OTIC GAREC TEQINTAOCELS UE TNV ELCAYWYT) EVOS 6pou e&oudhuvong
(Lo, L1, Ly vépuec) otnv cuvdptnon ogpdiuatoc [31], [66], [98].

Télog, 1o Tuyalo *A&Bepa yenowdonolelton we pédodog ehéyyou, ywelc xplthplo emhoyng €10l WOTE Vo
ouyxprdoly pall Tou mo e&edixeuvuéves uédodot xan vor amodelZouv bt €youvy Bdon [9], [24].

Xeovixo IThaicwo KhabEuatog

To ypovixd mhaiclo xadopilel 1o note epopudleton 0 XAdBepa o€ oyéon Ue TNV exoddeucT), e, XoTd T
odpxeta 1y uetd. H mo evountddng exdoyy| etvar 1o xhddeya va yivel Uetd To mépag Tng exmaldeuong, e@écov
Vo €éyouv KON Peedel ta mo onuavtixd Bden [31], [33], [53].To xAddeua nptv v exnaideuon exnadelel A0n
opond dixtua [24], [54], [91], [95]. To xh&depor xotd tn ddpxelr e exnaidevong elvon Théov amd TiC O
dodedoyévee tpooeyyioels, xatd v onolo to emduuntéd nocooTd dpainone ewdyetan otadaxd [4], [27],
[89], [93], [104], [105].

Yuvdvaopos Khadépatog we '"ANAeg Medbddoug Xuvunicong

Av xou to x\ddeya elvan pior omd TG o SLodeBoUEve TEXVIXES oupTieons, Tal TEAEUTOLA YPOVIOL DIEPEUVEVTOL
TPOTOL EVIGYUGHE TOU PEGL cuvduaouoy HE GAAeC TexVixéc ouurnieone [15], [36].

O mo ouyvée cuvduaouds otn PiBhoypapio elvon tou xhadépatog xou e ¥PBaviomoinone. To xAddeya
aonpel un amapaltneeg cuVOEsELS 1 Bopég, eV 1 xBavTonolnon UewdveL TV oxp(Bela avanapdoTaong TV
amopévoviwy Bapdv [31]. To xhodeua oe cuvduaoud ye v anocivieon TavuoTtoy egetdlel ToauTdypova
Tov mheovooud oe Bder xou dopéc. To xhddepo apaipel dypnotec cuVdEoels, eV 1) anoclVIEsT) TAVUGTOV
HELOVEL Tic Saotdoels Tov Popmy [57]. O cuvduaoude xhadépatoc e omdoTadn yvoons yenoyLonoleito
Yl VoL UETPLAOEL TNV amwels anédoong oe uPniéc apatoeic. H andotaln yvoone emitpénel oto uixpdtepo
hoBePEVO povTéNo vo pdldel omd to mhpeg [13]. Télog, n Biepelivnon dp)LTEXTOVIXDY GE GUVOUAUOUS UE
*h&deya oToYEVEL OTNY OYESIUTT) ATOBOTINDV UPYITEXTOVIXAOY. AvalnTodvTal dpyITEXTOVIXES UE TEPLOPIOUOUS
OPAULOTNTOC X0 EXTEAE(TOL TO XAADEUA XaTd TNV avalATNOT, OTOYEVOVTAUS GE AMOBOTIXE LOVTEN AVIAOYX UE
TIC AMAUTAHOELS TOL LAxoU [12].

3.3 To Feather xou '"ANAeg ITapdupoiec MeEDodou
Adopnto Khddepa and ITuxvéd o Apond Bdost Meyédoug Bapoug

To GMP [105] anotehel pio and Tic Baoixée uedoddoue agaipeons Pupdv pe x| amdluTn Ty OE VEUpw-
vd 8ixtua, epapudlovtag oTadlaxd Evay oxhned Tekeo T xatwgiiov ot npoxadoplouévo onuela xatd TNV
EXTIOUBEVOT), UE OTOYO Wlo OUOAT UeTdBaom amd muxvd oe apond povtéro. H un diagopiown ¢bor tou duwe
xou 1 oTadepy| TEOYEUUUATIOUEVY agalpecT) Boptdy UTopel v TEpLoplcouY TNV TEOCUPUOC TIXOTNTA TOU GTIC
BuvoLXEg TNng exmaidevong.

To STR [50] avtiwetwniler autoldc TOUC TEPLOPIOUOVS ELGAYOVTUS €val BlapoplonNuo amohd XUTOPAL TOU
emiTEénel oo Bdpn VO CUPELXVMVOVTAL OUUAd TPO¢ TO UNBEY, avtl v agotpolvton andtoud. Autd emitpénel
070 8lxTuo Vo mpocopudleTton mo euéAxTa xon var dodafvel xaAUTepa ol Bden meénel var Statnendolv,
odNyVTOC O Mo oToept| exmaldeucT) xou xahiTepn dlathenor Tne oxpBetag.

To ST-3 [93] Behudver tepantépwy 10 STR pe ) yperion evéc Straight-Through Estimator [7], nou emtpénet
N pon Twv Parduldwy xatd Ty omoYodlddooT) oxdua xou HEow un dapopiotuwy onueiwy, xoadde xan ue évoay
UMY eVLoUS Buvoxric ETOVOXAMUAXKGNE TV Bapdy. Autéc ol Bedtidoei eEaoparilovy To amoteAeouoTiXy
xon otordepr| pdiinom, emitpénoviag TNy exudinom o dpatdy UOVTEADY Ywelc onpavTixy ammielo oxpiBeiog.

To Feather [27], to onolo anotehel avtixeluevo e epyaciog, Bacileton otov tpéno xhadépoatog tou GMP
xan tou ST-3 ol elodyel xawvotopleg 6TOV TEOTO TEOYPAUUUATIOHOD NS APUiPECNC Xl GTNY XAIXWOT)
v Baduidwy, Bertwvovtag 1 otadepdtnto T exnaldevong axdun xou oe TEPINTOOELS EUEETIXE UPNAAC
apalwong.

To Spartan [89], oe avtideon pe tic dhhec pedddoue, mpooeyyilel to npdPinua tne agoipeonc Bapdvy e
plar ewentind Yepehiwpévn pédodo Baotopévn otn Vewpla Béhtiotne uetagopds. Opilel vy apoudtna
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H€ow eVHC XAVOVIXOTIONUEVOL TEOBAAUATOC BEATIOTNG UETAPOPAS XoL Ypnoldonolel To Simhé péoo yia
otadepononon e udinong und meploplodole apalwong.

H MAP [4] etvon pror Suvopuxr| uédodoc aponric exnaidevone nov yenowonotel tpocoyn Baciouévn oto pétpo
v Bapdv. Avtl yio Suadixr pdoxa, epopudlel cuveyeic TS TEOCOYNRE WOTE VoL EVIOYUEL ONUOVTIXES
OUVOEGELS X0l VAL ETULTEETEL TTPOCUPUOYES 0TI Aydtepo onuavtixés. H exnaideuon yweiletou o (pdon e€epe-
Oynong xou gdom exyetdihevong, odnynviag oe VYN anddoon oxoun xou oe axpola eninedo apoiwong.

Feather

To Feather eivou pla un-dounuévr, Paciopévn oto péyedog teyvinny apalwaong, 1 onola epapudlel xAddeua
Bapdv xatd Tt ddpxeio tne exmaldevone. To Feather evowpatdver yia BeAtiwpévn exdoyr| tou Straight-
Through Estimator (STE), emtpénovtac tn pot| v xhicewy péoa and to xhadeuéva Bdpn xatd v omi-
ododidboaon, avtiuetenilovtog Tov TEAEC TH XATWPAOL ©C THY TAUTOTIXH CLVAETNOT.

O unyaviopos autés emTeénel oto diXTUo Vo Blatneel Ta TAEOVEXTAUAT EVOC TUXVOD UOVTEAOU EVE) TOL-
oy pova TPoodeuTXd anoxTd apoudtnTa. H Saduacio xhadéuatog xododnyelton and évav xuPixd ypovo-
TPOYEAUUATIO TH ToU auEdvel o Tadloxd To eninedo apondTnTag Xotd TNy exnaideuon. O teheotig xatw@iiou
dev elvol 0UTe TAApwS oXANEOS 0UTE TATIEKC Hahaxds, TANG emTLY Y Vel uia looppoTia Uéow TG TopouéTEou
D = 3, EMTEENOVTAS OUUASTERY) BUVOULXY| dpAULOTNTOC.

T Ty avtpetdmion e aotddelos e wdoxos o VYNAd tocootd apudtnrac (98% 1 99%), to Feather
ELOGYEL UNYAVIOUS XAUARODONG TV XMOEWY, OTIOU oL XMOELS TV XNadeuévny Bopny todamhacidlovton Ye
évav otadepd mopdyovta 6 xatd v omcVodiddoon. H Ty tou 8 nopopével otodepn xad’ dAn T Bidpxela
e exnaidevorng, ouviidwe oplletar we 1 yio uétpleg opatdoelc xou we 0.5 yio oxpales, av xon auTH 1) oTOLTIXY
npocéyylom €xel meplopiogol tou e€etdlovtal ot endpueva XEPIANA TNS EpYATloC.

control params: |pruningthreshold T ” target sparsity S |
T

———————————————— J————————— —-_————— w— Hard Th. i
1 | 9
Iforward | —— Proposed Th. (p=3) |
Py = {sign(w)i/|w|3 Tl > T | 081 — SoftTh. ; 6
0, ! |
1 ; d
ent 1
1
1
1

otherwise

gradi

) o
_I Liwl>T scale & 3 g 2%
m= { 9, otherwise = /,,/ 2
________________________________ a // s
__________________________________ 02
1 backward 1 /
1 1
1 MOVL(W) VL(W)! 00
1 1
S PR a 1

-0.2
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Feather Module w

(@ (b)

EyAua 6: H pédodoc xhadéuatoc Feather. And [27]

4  XYuvdptnorn KAwpdxwong KAloewv

H teyvur apaiwong Feather npoteiver tn yeron tng Poduwthic napauétpou 6 yia va otodeponolioel Tig
pdoxec xAadépatoc 660 TEPLOGOTERO ALEAVETOL TO TOCOCTO dpaltang, epodcoy ToTe anoctadepomolelton 1
pdoxa neploobdtepo. H mopduetpoc auth ennpedler t pof) Twv xhicewv (gradients) oto xhodeuéva Bdpn.
Qotéo0, 1 otauxh pooéyylon e enthoyhAc e 0 (eite 1 elte 0.5 avdhoya pe tov otoéY0 apainwong)
neptopllet T yevixeuomn xou unopel vo 0dnyYioel oe unonpocappoyn. To xepdhato autd mpoteivel Yo Suvapixy
ouvdptnon mou unoroylel o @ xatd TN ddpxei TN exmoideuone, WoTE v emiTuyYdveTan BehTiwpévn
oepifBeLa.

4.1 TIlpotewodpevr Meédodog

Enuhoyr Yuvdeinong

Ipotetvetan 1 xpron tne ouvdptnone f(z) = 1+ a-In(z), énou = eivor 1 exdoToTE TUXVOTNTA TOL LOVTEAOU
A emnédou tou dxtvou. Auth n emhoyn yivetaw dote To 6 vo Eextvder and PEYUAITEPES TIIES OTAL opYLXd
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otéddua exnaidevong (mou N TuxvétnTa elvon UPNMAA) Ko vor LEtdVETOL oTadLd XodME AUESVETOL 1) APOLGTN T
Me ouTtéV 10V TEOTO BLEUXOADVETOL 1) POT| TANEOYORLMY GTAY TO dixTUO elvor axdua TS, eved TeploplleTot
6t 7 pdoxo otodepomoleita.

1+aln(x)

1.0

0.8

0.6

Gradient Scale

0.4 1

0.2

0.0 T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Density

EyAua 7: Xuvdptnon 1 + a - In(z) y Swpopetind o

Entloyn tng Yrepnopapétpou o

I va xadoplotel 1 napdyetpoc o 1 omolo ennpedlet tov puiud UetaBorrc Tou 6, Sievepyhinxe eumeloixy
a€lohby Mo oe téooeplc dlaopeTinols oToyoug apondtntac. ‘Oco ueyolitepog elvan o otdyog, 1660 TO
yeryopo mpénet va pewdveton To 6. Ilpoéxue 6t 1 BérTiotn Ty Tou elvon cUVAETNOY TOL GTOYOL dEULGTNTOC
xot TpooeyY(leTol YE Wt TRLYWVOUETPIXT CUVAPTNOT):

a(S) = 0.026 - tan(23.09 - S + 22.08) + 0.093

H e&lowon autr) emitpénet ) yevixeuon e Uedddou xaL TNV EQOPUOYT TNG Xt OE EVOLAUETES 1) WU doxio-
OUEVEC TWES apodTNTOG.

Optimal a Function Optimal 6 function
0.12 1 1.0 1
g 0107 0.8 -
g
(V] 7]
E 0.08 - ©
© Y 0.6 1
o =
B 0.06 1 g
-] ©
E 5 0.4
2 0.04
o
0.02 0.2 -
0.00
T T T r r : 0.0 r : : : T
0.90 0.92 0.94 0.96 0.98 1.00 0.0 0.2 0.4 0.6 0.8 1.0
Target Sparsity Ratio Sparsity Ratio
® 90%:a=0.0 ® 98%:a=0.11

® 95%:a=0.09 ® 99%:a=0.12

Yyfua 8: Idovinr| cuvdETNoN Yol TO @ UE TIC LOUVIXES THIES YL XGUE OTOYO dpaltIONG ONUELWUEVES
xou e g moparydpeves ouvopthoele f(x) dimha
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IMayxoéouia xouw Avéd Eninedo Ilpooceyyioesig

H ouvdgtnon 6 unopel va egopuoctel pe Vo TpdTOUC:

o TTayxdowa (Global): vrnohoyileton évag péoog bpoc 0 pe Bdon Tic opadTnTES TOL EMTLYYAVEL XEDE
eninedo xou eqopudleton o Oha Tor enineda.

o Avé eninedo (Layer-wise): xdde eninedo éyet to dix6 tou 6, utohoylouevo and tn S| Tou TUXVOTHTO.

H moayxéoyia npocéyylon elvor mo amA| xou AyOTERO ETUPPENHC OF UTEPTPOCUPUOY T, EVE 1) TEOGEYYLOY avdl
eninedo emtpénel yeyolUtepn evehi&io xou xahitepn aflonoinon tng Tomxrg Thnpogopiag.

4.2 Ileipapatixry AZoAoéynon
YOyxpion IMayxoouiag xoaw Avéd Eninedo Ilpoocéyyiong

H olyxplon tov d0o npoceyyicewv mpaypoatonodnxe ot tpla Swugpopetind povtéha (ResNet20, MobileNet
V1, DenseNet40-24). TlapatneRdnxe 6T oe pétplec apardtntec 1 anddoon Aray Topdpold, kwotdoo o
axpalol TocooTd apadTNTaS 1 Taryxéopa EYodoc Eenépace T avd eninedo. Autéd anodidetar 6To YEYOVOHC
ot M avd eninedo eopuoyy) propel vo topdyel Tohd pxpd 6 oe oployéva enineda, 0dNYOVTIC O AVETUEXN
omoYodiddoon xhioewy xou utoexmaldevor. ‘Onwg gaivetar otny Ewdva 9, xdmoia eninedo hauBdvouy tehixn
Ty yia to 0 oyeddv 0.05, xdti o onolo onpalvel 6T ol xhioeic xatd Ty omotodiddoon oyeddy undevilovta,
UE OMOTENEGHO VoL UNV ovavewvovTon ta Bden xav. Autd €xel ¢ anoTéAeouo TNV UTOEXTABEVEST, TLV
HOVTEAWY o€ TOAD UPNAG T0G00Td apatdTnTag, xadde Ao xau teplocdTEpd eninedor amoxToUV TOND YoUNhd
Bdpn o omola xhadevovton o TOAD Yeydho mocootod. IIbdavog autd To TEOBANU Vo elvon TEPLOPIOUOS TNG
CLVEETNONG KOG XoL la TLO TEOCEXTIXG OYEBACUEVT GUVEETNOT Vo AOVEL QUTO TO TEOBANUL.

ResNet20 MobileNet V1 DenseNet40-24
0.8 1 % A
x 0.9 1 0.7 1
0.7 X % AL
0.8 - 0.6
0.6 - . L
0.7 1 05 1
o 0.5 1& " © ‘\
@ % T 0.6 1 T 04 A
= ® = =

0.4
051 0.3
0.3
0.4 1
0.2
031
014 0.1

X
Jasimmm M'

8‘5 9‘0 9‘5 100 4‘0 S;J 6‘0 7‘0 8‘0 9‘0 160 9‘0 9‘2 9‘4 9‘6 9‘8 100
Layer Sparsity Ratio Layer Sparsity Ratio Layer Sparsity Ratio
Yyfuo 9: Tehxée Tiwéc tou 6 xou Tehind TocooTo apadTNToC Yia xde eninedo xdide poviélou ue
otéyx0o 99% YpNoWOTOLOVTAC TNV avd ETUNESO TPOCEYYLON

H pédodoc tne nayxdowac avavéwone 6 gaivetar vor AUvel autd to TpdfBinue, xodde hauBdvovtor umddhy
Ohec oL Ueydhec petaoréc petoll twv emmédwy, divovtag €tol ula xodolxr) T mou @épvel Looppotia.
Yty Ewéva 10 gaiveton to yéoo 6 xou yio tic 8o mpooeyyioec. Evad yia yoauniole otéyoug apolwone
(QOLVETAL VO TUPAEVOUY OL TWES XOVTd, Yot UPNAE TocooTd etvon Eexdidopo 6T Blatneelton Alyo ugniotepn 7
HEoT TN, XATL ToU AmOdIBETOL GTO YEYOVOS OTL TAEOY TROYHUATOTOLE(TOL 1) CWOTY APAUWOT TWY ETUTESWY.
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Final Theta

1.0
0.9 1
0.8 A
0.7 1
0.6
—— ResNet20 Global N
-»- ResNet20 Layer-wise ~
0.5 .
—&— MobileNet V1 Global
~®- MobileNet V1 Layer-wise
0.4 1 —&— DenseNet40-24 Global ~
—&- DenseNet40-24 Layer-wise

T T T T
0.90 0.95 0.98 0.99

Target Sparsity Ratio

Yyfua 10: Méco 6 xan yio tig 800 mpooeyyioelg yior Ohar Tor JOVTEAX xol To ETVUUNTA TOGOGTA

apaiwong

Yty Ewdva 12 gatvovtan ot Tiwée 6 mou anoxtolv 6ha ol HOvTERA oVl EToYY| ExTaldeuong yio GAOUE Toug
otoyove. Elvan epgavéc 6Tl @tavouy dlapopetinéc telxéc Tée, Yeyovog mou Paoiletar ot diopopd petalld
TWV JEALOTATGWY TOU XATAPERVEL VoL ETUYEL Xdde eninedo, 6mwe galveton otny Euxdva 11.

MobileNet V1

DenseNet40-24

100.0 4

Final Sparsity

Final Sparsity
Final Sparsity
£

92

88 l

15 20 o 5 10 15 20 25 0
Layer

5 10 15 20 25 30 35 40
Layer

Eyfua 11: Tehxd nocootd apalewaong Tou TETUYAVOLY Tal ENINESA TWV TELWY LOVTEAWOY UE OAXO
otdyo 99%yenowonolnvtog Ty moryxdoute pédodo. Me umhe eivor to ResNet20, ue moptoxahi to

MobileNet V1 xa ye npdowo to DenseNet40-24
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Eyfua 12 Khpdnwon xhloewy avd enoyy| yio xdie povtéro xow xde T0c00To apaltaong UE TN
nayxoowa pédodo. Me umhe etvon to ResNet20, ye noptoxarl o MobileNet V1 xou ye npdowo to
DenseNet40-24

Y Oyxplwon we to Feather

O 8%o npooeyyloeg ouyxpivovta amevdelog pe to apyxd Feather, xdnowa SoA frameworks xadde xon pe to
Feather tponomoinuévo wote 1o 0 va eivan To WBavind dnwe npoéxude and tic ueréteg tou. To anoteréopota
delyvouv 6Tl 1 Buvouxy) cuvdptnon 6 anodidel otodepd xohbTePo axdua xan 6Tay 1 TEAXN Ty Tou elval
Bl pe v Wavixr tou Feather, yeyovog mou anodidetar oty udnin Ty mou Swotneel 1o 6 oty apy T
exnafdevone. H avd eninedo npocéyyion diver xalbtepa anoteréopata o yeydha xou Bardid dixtua dmwe
10 MobileNet V1, aAAd oe pixpd poviéha 6mwe to DenseNet 1 mayxdouia npocéyylon anodetxvietal mo

oELOTOTY.
Ratio 90% 95% 98% 99%
ResNet-20 (1.096M Params): 73.59 1044

ST-3 72.8140.13 71.7240.20 67.5340.53 98.3240.17

Spartan 72.5640.35 71.6040.40 67.2710.14 61.7040.21

Feather-Global 73.74 1917 72.53 +0.32 69.83 +0.14 65.55 +0.25

Feather with best 8 73.74 1917 72.67 1034 69.83 4+0.14 65.55 +0.95
77777 Global &  73.74 1917 T72.77 1030 70.04 1913 65.75 1908

Layer-wise 0 73.74 1917 72.66 011 69.54 1900 64.94 4034

MobileNetV1 (3.315M Params): 71.15 1017

ST-3 70.94.19.25 70.44 1023 69.4040.06 66.6310.15

Spartan 70.5210.51 69.0140.11 65.5210.24 60.6510.22

Feather-Global 71.55 +0.30 71.03 +0.20 69.44 +0.29 67.64 40.45

Feather with best 8 71.55 1930 71.03 4020 69.89 1907 67.64 1945
77777 Global &  71.55 1930 7122 1020 70.04 4004 67.73 1018

Layer—wise 0 71.55 4+0.30 71.33 +0.12 70.29 +0.58 67.64 +0.31

DenseNet40-24 (0.714M Params): 74.70 1051

ST-3 72.560.31 71.2149.35 65.4810.18 96.18+0.60

Spartan 73.13+0.25 71.6140.04 65.941¢.07 58.64+0.18

Feather-Global 73.75 +0.36 72.36 +0.21 69.06 40.23 63.40 40.44

Feather with best 8 73.75 1936 72.93 40.53 69.06 1923 63.40 1944
77777 Global &  73.75 1936 7292 1004 69.13 1919 63.54 1032

Layer—wise 0 73.75 +0.36 72.53 +0.09 68.72 40.31 61.93 40.35

Table 1: X0yxeion g axp{Belag Top-1 oto CIFAR-100
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95% Sparsity 98% Sparsity 99% Sparsity

70 . 68 T

> — \\ /
7] . 64 //\
L

o
£ 66 1 60 1
]
2 70
64 1 561
68 1 624 52
0 0.25 0.5 0.75 1.0 0 0.25 O.'5 0.75 1.0 0 0.25 0.5 0.75 1.0
6
—*— ResNet-20 —&— DenseNet40-24 —8— MobileNetV1 with log function

MobileNetV1 —— ResNet-20 with log function = —&— DenseNet40-24 with log function

Yyfuo 13: Tehwnd anoteréopata tng nayxdculag edodou oe oyéon pe to Feather

AZwohoynon yioo Mn Aoxipaocpéves Tipég Apaiwong

H pédodoc doxwpdotnxe xon yio evOldueses 1 axpoleg THES oTOYWY apalwone. H mayxdoua cuvdptnor 6
omédwoe eoupeTind, ouyvd Eenepviviac to Feather axdun xou xatd 4% oe oxpifeio o eoupetind udmhéc
QPALWTELS.

Ratio 92% 94% 97%

ResNet-20 (1.096M Params): 73.59
Feather  73.07 4040 72.73 4005 71.18 4043
Global 6 73.25 +0.08 72.91 +0.12 71.29 4+0.06

MobileNetV1 (3.315M Params): 71.15
Feather 71.45 +9.09 71.01 40,12 70.14 1946
Global 6 71.51 +0.24 71.26 +0.08 70.85 40.29

DenseNet40-24 (0.714M Params): 74.7
Feather 73.28 +0.17 72.84 40.16 70.85 40.10
Global 6 73.38 +0.37 73.07 +0.19 70.89 40.30

Table 2: X0yxpion e axpiBelag un doxwoaouévey axeifeidv oto CIFAR-100

Ratio 99.2% 99.5% 99.8%

ResNet-20 (1.096M Params): 73.59
Feather 63.13:‘:0.34 57.5210.34 39.80;&0.50
Global 6 63.58:‘:0_32 58.49:‘:0.14 43.24:‘:0.57

MobileNetV1 (3.315M Params): 71.15
Feather 66.621790 62.96494 50.7110.09
Global 6 66.41:‘:0.23 63.04:‘:0.28 52.47:‘:0.29

DenseNet40-24 (0.714M Params): 74.7
Feather 60.53+0.31 53.5240.24 34.860.54
Global 6 61-01i0.38 55-20i0.16 38.34i0.14

Table 3: X0yxpion g axplBelag un doxyoaouéveny ToAd uhniov axeiBeidy oto CIFAR-100
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H Suvopuxn cuvdptnor Baduwntric napauétpou 6 anotehel ovolaotxy| Bedtivwon oe oyéon pe TN ooty
vhonoinon tou Feather. H eloptnuévn amd v muxvotnta Aoyootdpuxy Yop®r TNg EMTEETEL Uiot PUOLXY
TEOGUPUOYN XOTA TN BLdEXELX TNS EXTUUBEVONC, TTOU EVIGYUEL TN G THIEPOTNTA XOU UELDVEL TOV X{VBUVO UTOEX-
naidevong. H mayxdouia epapuoyr tng cuvdptnong anodelydnxe n mo otadepr Abor oe axpaleg cuviixeg
oPAULOTNTOC, EVE N avd entinedo pmopel va anodhoet xahitepa ot BardlTERA LOVTEND YE TILO AVOUOLOYEVY) SouN.

5 Ilpoocappootindg llpoyepappatiopndc Khadéuatog

Kotd v exnaidevon pe to Feather, n dwduocio xhadépatog epapudleton e ) xeHon duadedy HaoxdY
M oe xdde otphon tou dixtbou. Kadde avidvetan o otdyoc apoiwone oe axpalec twée dnwe 98% A
99%, 1N oTadeEPOTNTO TWV YUKV UELDVETAL, TTROXIADVTIS COBUPES OMMOAELES OTHY onddOoT TOU UOVTEROL.
Yxomé¢ Tou xeqoialou efvon Vo epeLVAcEL aUTH TN cUVOEST YeTadl TNC oTadepdTNTAUC TWV UAOXWDY, TNC
anddoang %ol TOU GTOYOU dpaiwoTNG, XUl Vo TUPOUGCLACEL €Vay AmAG OAAGL OMOTEAECUATIXG TPOCUPUOCTIXG
yeovompoypauuatiot xhadéuotos, o onolog yetptdlel Tic anwieles axplBetac.

5.1 Xrzadepotnta Mdoxag xow Andédoon

Do vae petpndet n otadepdtnta peta€d SO0 paoxrdv oe dladoyixés emavolfdelg e extaldevong yenoulo-
notolue Tov delxtn opoidtnrac Jaccard, o onolog opileton we to péyedoc tng toung 800 cLVOAWY TEOG
0 péyedoc e évwonc touc. Kadde or pdoxee eivon duadixol mivaxee (ue 0 o 1), auth 1 petpwer| elvou
XAUTEAANAN YLoL THY eXTIUNON TV UETABOADY OTO TOLoL GUVOEGHOL TapoéVouy EVepYol avd emavdhndn.

H otodepdtnta teov paoxdyv yetpdtan avd emoyr ota tplo wovtéha ResNet20, MobileNet V1 xouw DenseNet40-
24. Tapotnphdnxe 6t 6tav emtuyydvovton TohD peydhes apadtnies, 6nwe 98% 1 99%, n otadepdtnta
MELOVETAL AmOTOUN, OdNYWVTaS o TTwot tng axpifelag, Wwiadtepa otar ResNet20 xow DenseNet40-24 mou
elvan YxpodTeEpa LOVTENQL.
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Eyfuor 14: AxpiBeta, uéomn otodtepdTnta UaoxoC Xol opatGTNTO LOVTEAOL TOU ETUTUY Y EVOVTOL ovdl
enoy)| exnaidevong pe otoyo apaudtnrac 99% yio ResNet20 (umhe), MobileNet V1 (rnoptoxahi)

xou DenseNet40-24 (npdowvo)

5.2 Ilpotewoduevn Médodog

Alagopd Xtadepotntag Mdoxag

H Baowr) 8¢ tou ypovonpoypoupatiot| elvar vo napaxolovdeiton 1 Slopopd e otadepdtnTag avdueoa
og dUo SladoyéS eMOYEC 41 — pi. Av 1 otadepdtntor audvetar, TOTE UTOROVUE VO TROYWENOOUUE OE
aOENom e oLVORXAC dPAULOTNTOC TOU HOVTENOU. Av dyt, Taydvoupe Ty Tpéyovoa Tl e apoudtntoc. H
YENHoN TNS BLopopdic o Oyl TNS amdALTNG TLNS Blvel EupocT oTNY Tdom Tou GUOTAUATOS Vo aTodepoToLelTa.
O ypovonpoypauuaTloT g oualacTixd diveton and Ty cuvdptnon:

Skt+1 =Sk + A (k1 — pk)

‘Onou Si41 ebvan 1 mapaydpevny apondtnta, Sk 1 dpatdTNTA TOV EMTEVYINUE OTNV TEONYOUUEVY) ENAVAAN T,
exoldevoNe xou A évag xatdhAniog cuvteAesTAC Tou Yo avohutel TapaxdTew.

Yuvdetnon Khwpdxwong

TNt var npocapudleton 1 XAUEXWOT NG Blopopdc TV HAox®Y oTatepdtnTag 6Toy autr 1) dlapopd elvon
VETINY, YENOULOTOLE(TOL Lot CLYHOEWDNS GUVEETNOT TOU TUTOU:
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A
/\(Sk) = —1 F o—C(B—50) +D

To A ebvan n otadepd mou xadopiler TNy xApdnwon tng Slapopds otadepdTnTog Yo YounAég apodTneg,
10 B xadopilel o nola apardtnTa 1) Slapopd Vo ebvor 610 Yéso g ntdone, to C' elvan 1 xhion xou to D
évoc 6poc pepohndiag yio va BeBouwdel 6Tt 1 T A dev mépTel xdtw and to 0 xodde xou npocopudlovtog
TNV XOUTOAT OTIC CUUTERLPOEES TOL xodeVoe oTadepdTnTal ToU Yovtéhou. Auto elvan amapoitnto ool xdde
HOVTENO TOPOUGLALEL BLUPOPETIXES TTWOGELC Xt aLENoel oTn otoepdTnTa TNS HdoXaS, OTWS Palvetal 6To
Syfuo 14.

‘Otav 1 Sapopd ebvan apvntixd, tote Yétovue A(Sk) = 0 dote 1 opandtnta var taydvel oe pio otodept] T,

Khpdxwon weg Ilpog tov Aptdwd twv Enoywy

Kodog o metpdparta yia v e€aywyr tng ouvdptnong €ywav yio 160 emoyée, yio va yiver n pédodog
ave€dptnTn ond T0 GUVOAXS TAU0C ETAVOAAPENY ELGAYETOL O CUVTEAECTAG:

160
~ |epochs|

Telwxég Juvaptiosig

H tehud popen) Tou duvaixol ypovompoypopuuatiot etvau:

g = ) Ot ASK)  (besr = k) pkr >
k1 =
Sk Pra1 < g

Aoxdlovton 800 moapahhayéc TN cLVEETNONG €Tol DoTe vor UEAETNUOUY OL BLUPOPETIXES BLOTNTES Xol
CUUTERLPORES.

0.5

A1(Sk) = 1 + e—20(0-80—5k) +D
0.3

Xa(Sk) = D

"1 4 e—75(0.91-5k)

O 6poc peporndlac D Sragépel otny anddooT] SLaPopeTindy LoVTEA®Y, x4t tou unopel vo anododel oty
BLapoPETLXY XWX WO TG Y€one oTadepdtnTag TNe pdoxag. Io nopdderyua, 6nwe ofvetan otny Ewdva 14,
7o MobileNet V1 eivat évo moA0 mio otodepd povtého, TopouctdlovTtas ToAD UixpOTERES TTOOELS Xot AUEHOELS
oe oUyxplom Pe To dAha d0o. Me tov (8o b6po pepohndloc elte Yo éptave otov oTtdyY0 dpoudTNTaC TOAD 0EYd
oty exnaddeuon # xou xodéhou. T Ai(Sk) éyouvue D = —0.01 v ResNet20 xow DenseNet40-24 xou
D = —0.007 yix MobileNet V1. Ou avtictouyec téc yio 10 Ag(S) elvow D = 0 xou D = 0.003 avtiotoryo.

Yy Ewéva 15 éyovue tic 800 cuvapthoeic yia to A(Sk)
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YyAua 15: Tuée A yior 6ha T emtinedo apondtntoc (o) xou yrot tohd uhnid (B). To dedtepo
Yedpnuo TOREYETOL YLt CUPHVELXL, XM TO TEMTO Bev Bely Vel TIC SLPOoRES Yot UPNAES apoOTNTES

5.3 Ag&wAhoynon

Ot 800 YpovompoYpoUATIO TEC AgloA0YOUVTOL OE GUYXELOT UE ToV apyxd xUPWd. O mpitog Suvouxog yeo-
vompoypapuatiotig, o onolog Bacileton ot cuvdptnon xhdxwong A1 (Sk), anédwoe xahdtepa 660V apopd
Ty ekt oxpifeio oe oyéomn pe tov xuBd. Autd ogelletar oTo OTL emiTEENEL TayUTEPN Xt O emileTi-
x| TEOGEYYLON TWV LYNAOY TOCOCTWY dpadTnTag dTay aviyveletan awEavouevn otaldepdtnta otn Udoxa.
Ovolaotind, n otpatnyw] auth emPeaBedel Ty otadepdtnta, emitpénoviag oto Yoviého va cuveyloel To
xAGdep 6TaY €xel NON emTUYEL Yot oYETLXY) ouolopop@lor oToug evepyols cuvdéouous. To anotéheoya e-
tvou 6TL T0 ovtého unopel vo QTACEL 0TOV GTOY0 TOAU vwpitepa, BlardéToviag TEPIOCOTERO YEOVO Yid Vo
TpocopUocEeL o Bder Tou oe awTd To eninedo, pe YeTixd avTiXTUTO GTNY AmodOoT).

Avudétne, o dedtepoc duvaindc YpovoTpoYpaupatio THS Tou yenoulomotel tn cuvdptnon Az(Sk), €xel To
ouvVTNENTWY cuuneplpopd. Enttpénel wixpdtepeg auEnoelg TNE apondTnToG axdun xou 6tay mopotneeiton adEn-
omn NS oTUEROTNTAS, UE UMOTENEGHO TO LOVTEND VoL QTAVEL GTOV EMIUUNTO 0Td)0 opainang ue Peaditepo
pudud. Auth 1 npocéyyion eEoopailer uvdnhdtepn péon otaldepdtnta pdoxac xod’ AN TN Sldpxelo TNC
exnaldevong, xadde anogedyovtan Eapvixéc ahhayés, duwe neplopllel TNV anddoon Tou YOVTENOU GE GUV-
YMxec dmou anante(ton Toyelo TPOCUEUOYT. Le TOANES TEQINTOOELS, TO HOVTENO BEV BLodETEL EMOEXES YPOVIXO
TepLiplo Yol TPosopRoYY) Xak €TOL 1) TEAXT oxp(Bela TUpAUUEVEL EAAPEWS UTOOEET TERT.
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Tyua 16: Anddoon xon Twv TeudY HOVTEAWY PE aTtoéyo apadtntac 99% ue xufud
YPOVOTPOYEUUUATIOTH (Hot)p0) Xol TOV TPOTEWOUEVO TPOCUPUOCTIXG (UTAE, TopTOXAA Xou
Tpdowvo) yenotponotdvtas Ap(Sk) v xhdxwon
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—— Adaptive Scheduler - ResNet20 —— Adaptive Scheduler - MobileNet V1
—— Cubic Scheduler Method —— Adaptive Scheduler - DenseNet40-24

Eyua 17: Anddoon xon Twv Teudy HoVTEAWY Pe aTtoyo apadtntac 99% ue xuPud
XPOVOTEOYpaUUaTIoTY (Uodp0) Xl TOV TPOTEWVOUEVO TPOCUPUOOTIXG (UTAE, TOPTOXAAL Xal
TEAOWVO) Yenotronotdvtas Az(Sk) yiot xhdxwon
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Ratio 90% 95% 98% 99%
ResNet-20 (1.096M Params): 73.59 1044
ST-3 72.81+£0.13  71.724020 67.534053 58.32+0.17
Spartan 72.5640.35 71.6040.40 67.2710.14 61.7040.21
Feather 73.7441017 72534032 69.8340.14 65.5540.95

Feather with different schedulers
Adaptive Scheduler 1 73.48:|:0.32 72.56i0_12 70.03:|:0_09 65.72;&0_17
Adaptive Scheduler 2 73.70192¢ 72.694017 69.921¢3s 64.9310.21
MobileNetV1 (3.315M Params): 71.15 1017

ST-3 70.9440.05 70.4441903 69.404006 66.63+0.15
Spartan 70.5240.51 69.0140.11 65.524094 60.654099
Feather 71.5510.30 71.03+0.20 69.44 10 .99 67.6410.45

Feather with different schedulers
Adaptive Scheduler 1 71.56i0.20 71-23i0.29 69.75i0,03 68.04i0,19
Adaptive Scheduler 2 71.20:&0‘07 71.06:‘:0.19 70.02:|:0.30 67.77:‘:0.13
DenseNet40-24 (0.714M Params): 74.70 1051

ST-3 72561031 712140935 65.484018 56.1810.60
Spartan 73.134+0.25 71.614004 659441007 58.64+0.18
Feather 73~75:|:0.36 72.36:‘:0.21 69.06:‘:0.23 63.40:‘:0.44

Feather with different schedulers
Adaptive Scheduler 1 73-32i0‘12 72'13i0.12 69.14i0,14 63.68i0_37
Adaptive Scheduler 2 73.80:|:0_17 72.47;&0_20 69.10:‘:0.09 62.73:‘:0.15

Table 4: Anédoom YENOWOTOIWOVTAS TOV TROCUPUOCTIXO YEOVOTROYRAUUUATIOTY| Yiot EXTOOEUOT)
160 emoywv

Ratio 90% 95% 98% 99%

ResNet-20 (1.096M Params)

Cubic Scheduler 69.77 1099 67.8740207 63.784030 58.4240.14
Adaptive Scheduler 1  69.291999 67.9641930 63.941035 58.4810.0s
Adaptive Scheduler 2 69.36:|:0.18 67.60;&0_30 63.71i0_23 58.67;&0_44

MobileNetV1 (3.315M Params)

Cubic Scheduler 64.96:|:0,19 64.41:|:0,25 61.47i0,31 57.73:‘:0,49
Adaptive Scheduler 1 64.98:&0.33 64.21:&0.08 61.76:|:0.31 57.87:|:0.39
Adaptive Scheduler 2 65.01:|:0_26 64.47:|:0.26 62.14:|:0.71 57.79:‘:0.47

DenseNet40-24 (0.714M Params)

Cubic Scheduler 69.49i0,14 67.04i0.40 62.07i0,25 56.37i0,12
Adaptive Scheduler 1 69.56:&0‘03 66.96:|:0.20 62.27:&0.14 56.35:‘:0.20
Adaptive Scheduler 2 69.591911 66.494+995 62.414015 55.191008

Table 5: AnddooT YENOWOTOIWOVTAC TOV TROCUPUOCTIXO YEOVOTROYRAUUUATIOTY Yia exntotdeuon 30
ETOY WV

Evé o mpotog mpoypaupatiothc €delée Bedtiouévn axplfeia o mohhéc meplntwoelg, o deltepog NTov To
otadepdc ahhd byl mavta amoteheopotixdc. H pédodoc amoteel éva Brua mpog mo otadepy| exnoldeuvon
UTS axpator XAABEUA, UE BUVATOTNTA TEPALTERW PEATIOOEWY e PEANOVTIXY epyaoia, eWBixd 600V apopd TNV
autépatn e€aywyr Twv oTadep®y NS cUVEETNONG.
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6 MeAiétn yia TV Enuacio Twv KAadspevwy Boagdv

H evotnta auty| Siepeuvd ) onuacio twv Bapdv mou £youv xhadeutel oe TAalolo exnaldeuong ue apondtnTa,
gotéloviac otov pbho tou Straight-Through Estimator (STE) [7]. To STE emutpénet oto dixtuo va
EXUETOAAELTEL TOL TAEOVEXTAUOTA TNG TAHEOUS EXTALBEVOTC, EMTEENOVTOS TN po1) MapaYdYwY Héoa amd T
xhadeuéva Bder. Ilewpduata delyvouv nwe 1 yerion tou STE npoc@épet onuavtiny Bektiwon otnv axplBela
OE OYEOT UE TNV TAYPN AMOHAXEUVOY TWV XAAOEUEVKDY Bupwy xatd Ty omododiddoon. O otdyog Tou
xeqohalou elvon var evtonioel méoa and to Bden mou xhadevovion TEAMXE dlatneody onuacio xal THE ouTd
eZopTdTon omd To mHTE oupapoUVTOL XoTd TN Sldpxeta TG exnaideuome.

6.1 MeOodol ASohoynong

T vau exctiundel ) nparypatue] onuaocio Twv xAadepévwy Baptdv, oYeBEOTNXAY CUYXEXPUIEVO TELPSUATO TOU
egetdlouv dapopetné otpatnyixéc agalpeanc Toug. Ot uédodol aglohdynong ywetllovto oe dvo Poaocixoic
GE€oveg: TO XATOPAL %dTw and To onolo T BdpN CTUUATEVE TANEMS VO AVOVEDVOVTAL Xl TO YEOVIXO GTuEio
e exnaidevong oto onolo yivetar oty 1 agaipeon. Kdde d€ovae ywpelleton oe 800 LTOMERITTOCELS, TOU
CGUVOAXE TPOXUTTOUV TEGCERLE GUVOLAOUO! a€lONGYNOTC.

Katweiinon

To xatdeh xdtw and to omolo Ta Bdern oTauaTdve TAHEKS Vo avavedvovton unoloyiletan pe Bdorn To
emduuntd mocootd amopdxpuvons. Autd To xatweM unohoyiletan oe oyéon PE TO TOCOGTO APUIWOTNS
nou éyet emtevy Vel glte and 1o dixtuo eite and xdde eninedo Eeywplotd xou e@apudleTan elte oe xoohxy
whipoxa, 6mou cuyxelvovtar dha T Bden tou dixtvou pali, elte xatd eninedo, dmou xdle eninedo €xel to
Oxd Tou ToTd xoT@pM. H olyxpon autdv twv dUo mpooeyyioewy mpoodidel Ty onuacia Tng TomXAC
Thnpogoplac otny andgaon yio agaipeo.

Xpovixd IThaicwo Agaipeong

H 8e0tepn didotoom aglohdynong apopd to note epapuoleton 1 agaipeor. EEetdleton apyixd n enldpoor tng
HOVIUNG amopdxpuvoTg evoe Tocootol Bopdv pe to mou Eexwvioel 1 exnaldeuct) Yéypet To téhog TS, Aut
1 TEOCEYYLON elvon aUoTNEOTERY), xS To BixTuo Bev €yel TNV euxaipla Vo alOTOLAOEL XATOl0 TOCOGTH
Bapwv. H deltepn npocéyyion nepthopBavel tor xAodeuéva Bden Vo GUUHETEYOUY TAHPKS oTNV exmaldeuon
€wg 6tou emtevy Vel To npoxatoplouévo eninedo apondTnTog, xon TOTE Vo GTAUATHOEL To EMYUUNTO TOCOCTO
vo avavewveta. ‘Etou divetan 1 suxanpion oo dixtuo va avantiel mbavég e€optroelg, e afloloyniel 1
VoY XOLOTNTOL BLATRENONG AUTWY TWV PopdVv.

6.2 Ileipapatixy) AZLoAoymon

Y Oyxplon

Ipayyatonolotvton extevelc yehétec oe Bidgopes apyttextovixés. Ot melpopotixée napahAayés mepL -
Bdvouv odharyéc TNV T TOL XATOPALOU, OTOV TEOTO EQUPUOYTC TOU XUl OTO YEOVIXd TANLGLO.
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Eyuar 18: Mehétn yio Ty enidpaon tng TTwone nococtol) Bap®dy ue xodoMxd xATO@AL and TNV
apy Y| TNE exmoldevong

90% Sparsity 2 95% Sparsity 98% Sparsity 99% Sparsity
74 4 70 4 68 -
72 4 68 64
S 72
g 66 1 60
g 70 A
70 4 64 56 -
68 A
62 52
68 ——— , o A ' e " ' e —_— - —_—
010 25 50 75 90100 010 25 50 75 90100 010 25 50 75 90100 010 25 50 75 90100

% of Dropped Weights
—*— ResNet-20 —#— MobileNetV1 —+— DenseNet40-24

Eyfuo 19: Merétn yio Ty eldpao NG TTHONE TOG0GTOY Bapy UE XUTWPAL Ve ETUTESO amd
NV dpy TNS exTaldevong
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Yyfuo 20: Merétn yio Ty enldpaon tng TTHoNe T0cooTol Bopmy Ue XooMXO XATOQAL UETA TNV
enitevdn Tou oTdyoL opaikoNg




Extetopévn Heplhndm oto EXAnvixd
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Yyfua 21 Mekétn yio tnyv enldpaon tng nTwong mococTol Bopmy Ue xoto@hl avd eninedo uetd
NV eniteudn Tou oTOYOL dpaiwong
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Yyhuo 22: Tlepoutépw YEAETN OYETXG UE TNV TTWOT axEolwV TOGOCTMY Bap®y Ue xooMxod
XATOPAL UETE TNV ETUTEVET TOLU GTOY OV UPUUWOTG

90% Sparsity 95% Sparsity 98% Sparsity 99% Sparsity
74 4 7 70 4 67
, 72 4 1 |
> 69 65 N
g A\\
5
V)
< 54 70 681 63 1 ‘/\.’{
67 1
68 T ——— 68 . —— T T —— T . ——
90 95 98 99100 90 95 98 99100 %0 95 98 99100 %0 95 98 99 100
% of Dropped Weights
—*— ResNet-20 MobileNetv1 —+— DenseNet40-24

Yyfua 23: Tlepoutépw YeAETn OYETIXG PE TNV TTWOTN 0XEAWY TOCOCTOY BopmV UE XATWQAL avdl
eninedo yetd Ty eniteuln Tou otdyoL apaiwong

Ta anoteléopata delyvouv 6Tl 1 EQaUPUOYY XATWOALOY UeyollTepwY Tou 0.25 odnyel oe andtoun uelwon
an6doone 6tav 1o *AEdepa eQapUOlETL At TNV oYY, EVE 1) EQOPUOYT| HETE TNV eTtiteudn apaiwone odnyel
oe oyedov mapdpoln anodoor pe to STE. Autd to euprpota delyvouv dtL tar uixpne TWhic Bden pumopolv
Tpdrypatt vor oponpedoly e ao@dAela eTd and xdnoto onueio e exnaidevong. Xtov Iivaxa napovotdlovron
o xohOtepa anoteréopato Tou emtelydnxoay 6tay doypdgnxoay Bden ot avtloTtolyd 10600 Td, Yia GAoUG
ToUug BUVITOUE TLUVBVACUOUS PEFEBWY oL YEOVIXWY o TIYUwY eqappoyhc. O Ilivaxag nopoucidlel to toco-
oTd darypopuévey Bapmv ota omola 1 anddoon pewdveton onuoavtid. H onpavtixy mtoon opiletar we o
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onueio oto onolo 1 péon axpifeta, pall ye ta dpla tou xadopllovton and TNV TUTLXY ATOXALOY), TAVOUY Vo
EMXAAUTITOVTOL UE QUTE TOU HOVTEROU Ywplc xotdAou agalpean Boov.

‘Otav ta Bden anoxielovton and 1 Swdixacio Bedtiotonoinong and v apyy| Tng exnaldeuong, yio wixpd
T0C00TA AMOoXpUOUEVLY Popmv (T.y. 10% A 25%), n enidpaon otnv anddoor eivar suviduc eite aueintéa
elte Yenxry. Autd umOBNAGDVEL OTL 1) TP ATOPAXEUVOY) AOTLAVTWY GUVOECEWY UTopel vor BEATIOCEL TN
yevixeuon, 1Bl oe UTEPTUPUUETEOTONUEVA HOVTEAA. 20TOG0, XoME TO TOGOGTO TKWV BLoYPUUUEVLY Bapdy
avdvetan mépay tou 50%, 1 anddoon apyilel vo emdewvdvetar. Autd cuufBaiver eneldr ToIAG and ta Bdprn Tou
Yo umopoloay evieyouévwe vo eEehyBoly oe onuavTixd agpateolvTal Tedwed, enodilovtag ToV oY NUATIoNS
%xploWwY CUVBECEWY Xai TWIUVOC TNV ETOVOPORE TOUG OE PETAYEVESTERO OTAOLN EXTALDEVCTC.

‘Otav Ta Bdpn amouaxpbVovTol p6vo agol 1o WOVTEAD E€xel QTAoEL 0To emBuuNTd ETUNEDO APALOTNTAS, TA
AmOTEAEOUATA EIVOL CUPWE TO O Tadepd. Xe TOAES TEQPITTWOELS, 1) ANdBOCT] TUPUUEVEL OYEDOY (Blar Ye exeivn
e xavovixhic pedddou STE, cuvidwe péypl évo mohd udnid xatdght anoudxpuvone Poapdv (90-95%).
Autd unoBnhGVEL OTL Tal TEPIOTOTEPX OO Tal XAAdEUEVY Bdpn OvTwg dev €xouv Wiaitepn onpacio uetd ™
olyxhion e Soduaciog apoudtntac. H mtdon oty anédoor petald 90%—100% nococtdv agpaipeonge
UTOBEWXVUEL OTL €val Uixpd PERPOC aUTWY TwV Bapy, xupltng autd Tou Beloxovtol XoVTd 0To XATOPAL XAo-
déparog, e€axohoutoly vo GUPBAANOUY GTNY am6GB0CT] TOU LOVTEAOL OTAY TOUG EMLTRENETOL VAL EVIUERLIVOVTIL
O€ UETAYEVECTER OTADLA TNG EXTALDEVTTC.

Q¢ mpog Ti¢ BYo pedodoug xatwhonoinong, dev undpyel capric vixntic. H mayxdouta yédodog €yet ehappdc
%xah0TeEP amodocT OTay amouaxebvovTal To BT ool PTdcouY ot dpaldTNTA, EVE 1) avd eninedo dtav 1)
agaipeon Eexwvd otny apyh.

Ratio 90% 95% 98% 99%
ResNet-20 (1.096M Params): 73.59 1044
Feather (0%) 73 74:‘:0 17 72.53:|:0 32 69 83:|:0 14 65 55:|:0 25

From the Beginning of Training

Global 73.19i0,11(10%) 72.48i0.12(25%) 6986i030(10%) 6550i017(25%)

Layer—wise 73'51:|:0.10(10%) 72.63:‘:0.21(10%) 6996i010(25%) 6540:‘:016(10%)
777777777777777777777 After Reaching Sparsity

Global 73-90i0.09(10%) 72.61i0.29(50%) 6975i025(25%) 6550i001(75%)

Layer-wise  73.5040.00(10%)  72.3710.07(25%)  69.68.40.00(10%) 65.56.0.05(75%)

MobileNetV1 (3.315M Params): 71.15 1017
Feather (0%) 71.5540.30 71.0340.20 69.4449.29 67.6440.45

7777777777777777777 From the Beginning of Training

Global 71.50i0.20(10%) 71.67:&0.34(25%) 69.7410.21 (50%) 6783i003(10%)

Layer—wise 71.63;&).17(10%) 71.31;&113(10%) 69.72:‘:0.08(25%) 67.48:‘:0.18(10%)
777777777777777777777 After Reaching Sparsity

Global 71.70i0,23(25%) 71.69:‘:0.11(25%) 70.04:‘:0.37(10%) 6806i041(25%)

Layer—wise 71.55;&).20(25%) 70.84:|:0_01(10%) 69.79:‘:0.22(10%) 67.43:‘:0.04(10%)

DenseNet40-24 (0.714M Params): 74.70 1051

_Feather (0%) __ 73.75 +036 _ __ __ 7236 2021 _ 69.06 +o23 63.40 £o.44
From the Beginning of Training
Global 73801025(10%) 72-47:|:0.09(10%) 68731029(25%) 63.25:‘:0.28(25%)

Layer—wise 7379i021(10%) 7245i029(10%) 6899i014(10%) 6335i030(10%)

********************* After Reaching Sparsity
Global 73.94:|:0.02(50%) 72-73:|:0.07(50%) 69.01:‘:0.23(10%) 63.54i0_35(10%)

Layer—wise 73-97i0.13(10%) 72-7410.28(10%> 68791022(10%) 62-94i0.03(10%)

Table 6: Ou napoucialdueveg axpBeteg ebvan oL xopugaieg mou emtedyvnxoy pall ye o avtioTolya
TOCOGTA TTWONS Poptdy
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Ratio 90% 95% 98% 99%

ResNet-20 (1.096M Params): 73.59 1044
From the Beginning of Training

Global 10% 50% 50% 75%
Layer-wise 25% 50% 50% 50%
777777777777 After Reaching Sparsity
Global 90% 90% 90% 95%
Layer-wise 25% 95% 95% 95%

MobileNetV1 (3.315M Params): 71.15 1017
From the Beginning of Training

Global 50% 5% 90% 90%
Layer-wise 25% 50% 75% 75%
777777777777 After Reaching Sparsity
Global 5% 90% 95% 98%
Layer-wise 50% 50% 90% 90%

DenseNet40-24 (0.714M Params): 74.70 1051
From the Beginning of Training

Global 50% 50% 10% 50%
Layer-wise 75% 50% 50% 50%
777777777777 After Reaching Sparsity
Global 98% 98% 99% 98%
Layer-wise 98% 98% 98% 90%

Table 7: Iivoxag mou nopoucldlel G TOWO TOCOGTO 1) ANOBOCT) UELOVETAL OTuavTXd woll Ye Tnv
OO

YOyxAon Anddoong

E&etdloupe tar mpodtumar avdxtnong e axpifelog xou tov pudud clyxhong HETd amd emUeTiny YoOVIUT,
amopdxpuvor Bopmy. Ta 8o wxpdtepa poviéda (PeoNet-20 xon AevoeNet40-24) napousiooay pio eviio-
(PEEOVCO. GUUTEPLPOEE 6Tay TEPLETGTERO omd T 95% Twv Boapiv Toug agaupédnxe uéviga and tn dudixaocia
Behtiotomoinone. Mol emiteuydel To emduuntd nocootd apadTnTac xou agarpedel to xadoplouévo noco-
o016 TV Poapdv, xou ta 8o dixtua napouciocoay wia évtovn dvodo oty axplfBeta, axoloudoluevn and wia
o opyYY xou otadlaxy) alEnor, mou TeEAxd cuyxAivel tepinou oty enoyy) 140. Autd épyetan oe avtideon
ME TNV TUTXY) CUUTEELPORE, Bnhadr clyxhion meplnou otnv enoyy| 155, yeyovdg mou delyvel 6T 1) exmo-
{devon ouctacTnd ohoxAnewinxe vopltepa. Autd to potifo unopel va anodolel otn Eapvixr adinon e
oTdEPOTNTAC TNG UACKAUS XAAUDEUATOS [L.

To Eyhua 24 aneixovilel autd to govopevo yia 1o AevoeNet40-24, nopoucidlovtag Tic xopndheg exnaldeu-
ong Yo T€0oEpa T0GOG T AmopdxpuYaNS Bopwy UETE TNV eniteudn Tng opadTNToC, UE TN Yeron xadohixol
xatwphion (95%, 98%, 99% xa 100%).
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DenseNet40-24 - Sparsity 95% - Global - After Reaching Sparsity

30 Elimination of 100% of pruned weights
—— Elimination of 99% of pruned weights
—— Elimination of 98% of pruned weights

20 —— Elimination of 95% of pruned weights
—— Elimination of 10-90% of pruned weights

0 20 40 60 80 100 120 140 160
Epoch

Yyfuo 24: AxpiPeta tou DenseNetd0-24 pe otdyo apandtnrac 95% xar amopdxpuvon Bopdy YeTd
v eniteudn NG aEadTNTIS YenolontolnvTag TNV xadohxr uédodo. Kdie yphua avtiotoyel oe
BLLPOPETING TOCOGTO AMOUAXEUVONS, €V 1) wadpn Yeouur delyvel Tny amddoon yia o
ouvtnenuxéc twée (10-90%).

To Xyfuo 25 napouoidlel tpio axdun TUPUBEYUOTO AUTOU TOU (QOVOUEVOU, BEl)VOVTS TIC XUUTUAES Yla
amopdxpuver 100% xou tic o cuvinentikés Twée 10-90%. To ResNet-20 epgoviler topduota cupnepLpopd
pe o DenseNet40-24.

Avt¥étwe, to peyahbtepo povtého, to MobileNet V1, 6ev napovciooce tny (Bla évtovn dvodo otnv axplBeta
00TE TEMWY CUYXAOY HETE TNV eNiTELEN NG APAOTNTAS, AVEEUPTHTWS TOU TOTE EYLVE 1) ATOUIXPUVCT] TWV
Bopwv (eite and v apy e exnaidevone elte Yetd v eniteuln g opudTNTC).
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MobileNet V1 - Sparsity 98% - Global - From the Beginning of Training MobileNet V1 - 90% Sparisty - Layer-wise - After Reaching Desired Sparsity
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ResNet20 - Sparsity 99% - Layer-wise - From the Beginning of Training

—— Elimination of 100% of pruned weights
—— Elimination of 10-90% of pruned weights

0 20 40 60 80 100 120 140 160
Epoch

(¥)
Eyfuo 25: XOyxplor TS CUUTERLPORAS GUYXAOTG UETAUED BLUPORETIXGY LOVTEAWY Xou pUINIoEWY
amoudxELVGTNC Boe®y.

Katavopés Bapov

IapoucidlovTal eVOELXTIXA XATAVOUES Boptdv VLol SLUPOPETIXG LOVTERN Xl TOG0GTA amopdxpuvong. Ilapo-
TneolUe xat e8¢ 0 YEYOVOS OTL OG0 TeplocdTepa Bdpn extoniCoupe and TNy dladxacio g PeitioTononong
1600 TEPLOCHTEREC CUVOETELS YAVOVTOL, UE OMOTEAECUO VoL £YOUHE TOAD BLUPOPETIXES XATAVOUES.

ResNet-20 Weight Distributions for 99% Sparsity

25 25 25 25 25
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15 15 15 15 15
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10% e 25% e 50% . 75% mm 90%

Eyfua 26: Kotavopée Bdpouc ResNet20 pe otdyo apaiwone 99% yio Gl Tt T0o600Td TThONG
Bapav pe v xadohiny| pédodo mou draypdpet To Bden amd TNV apy ) TNG EXTOEUCTC.
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MobileNet V1 Weight Distributions for 95% Sparsity

0 1 2 3 0 1 2 3 -1 0 1 2 3 4 -1 0 1 2 3 -1 0 1 2 3

10% 25% e 50% . 75% . 90%

Eyhua 27: Kotavouée Bdpouc MobileNet V1 pe otéyo apainons 95% yio 6k 1o 1oc00Td TTtdHoNC
Bopov ue v xadohunr| uédodo mou Srorypdpel Tar Bden amd TNV aEy Y| TNG EXTAUBEVOTC.

DenseNet40-24 Weight Distributions for 90% Sparsity

1 1 1 1 1

0 0 - 0 0 0 -
-10 -05 0.0 0.5 10 -1.0 -0.5 0.0 0.5 10 -10 =05 0.0 0.5 1.0 -10 =05 0.0 0.5 10 -10 =05 0.0 0.5 10

10% 25% e 50% . 75% . 90%

Syua 28: Katavopée Bdpouc DenseNet40-24 pe otédyo apainone 90% yio 6ho to tocootd
TTong Bapwy e TNV xodolxr| u€dodo Tou dlaypdpel o Bdpn amd TNV oy Y| TNS exTaldevong.

7 Ernihoyvyog xouw MeAhovtixeg Kateudivoelg

H epyoaoio aut) emixevtpivetan otn Behtiwon Tg anoTeAEoUaTIXOTNTAS Xt TNE O TAEPOTNTAS TOU XAUDEWO-
T0¢ O€ VEUPWYIXE BixTua pécw enextdoewy oto Feather. Ilpoteivovton Tpelc xVplec cuvelspopéc: (1) pelétn
e onuaciog Twv xhadeuévey Bapyv, delyvovtac 6Tl oplouéva umopoly va oy vonitoly puévido Y wels amoieia
oxpiBelag, (2) Suvaixr cuVdETNON XAMUIXWONE TaEUYOYWY ToU Tpocupudleton Bdoet Tne opadTnTaS, Xou
(3) mpooapuocTnds TEOYPUUHATIONGS xhadEpaTog Pe Bdon T otadepdTnTa TwV paoxoy apoiwong. To
anotehéopata delyvouv Bedtidoels oty axplBela xar T clyxhion, evéd avolyouv BpduouS Yo TEPUTERE
BehtiotomolnoT %ol GUVBUACHUOS HE GAAES TEYVIXES.
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1.1 Motivation

In recent years, deep learning has become the dominant approach in a wide range of machine learning
applications, including computer vision [49], natural language processing [21], and multi-modal applica-
tions [76] to name a few. The success of deep neural networks in these domains is attributed to the fact
that modern architectures can be designed with as many parameters as necessary to yield such results,
which can be in the millions or even billions [19].

Such DNNs require substantial computational resources, both during training and inference. This creates
several practical challenges, particularly when discussing deployment in resource constrained devices,
such as mobile devices, embedded systems, wearables, and robots. The growing demand for these models
in real-time and low-power applications has made crucial the need for more efficient models that can
deliver high performance with minimal resource consumption.

Another concern arising from the large resource demands of DNNs is the environmental impact of training
and deploying them. Studies have shown that the carbon footprint of training a single SoA neural
network can be substantial, prompting the machine learning community to explore more sustainable
alternatives [99].

In response to the aforementioned issues, extensive research is done on model compression [16], [19], [59].
Among several compression techniques, neural network pruning has received much attention, providing
various modules to sparsify and therefore lighten large DNNs [9], [15]. Pruning removes redundant
parameters from large models, such as weights, neurons, filters or even entire layers. Interestingly,
research has shown that large models that are pruned up to a moderate sparsity ratio outperform smaller
dense models with the same number of parameters [24], [27], [105].

The Feather [27] framework was developed as a highly effective approach utilizing an enhanced version
of the STE [7], which prunes weights during the forward pass but allows gradients to flow freely and be
updated during the backward. Feather combines magnitude-based unstructured pruning with a cubic
sparsity scheduler [105] and a gradient scaling mechanism to enable training of extremely sparse networks.
Feather was a primary motivation for this thesis, and as such all experiments will be run as additions to
it. However, all three contributions can be run with different sparsification modules, which could prove
their versatility.

The gradient scaling factor in Feather is fixed throughout training, which may not reflect the varying
sensitivity of different layers or sparsity levels. In addition, most unstructured dense-to-sparse sparsifi-
cation modules use a cubic pruning schedule, which is predetermined and static, offering no adaptability
based on the stability of the pruning mask during training in extreme sparsity ratios. The rigidity of
these parameters is what motivated this thesis, which will explore more dynamic approaches to realize
whether adaptability improves performance.

1.2 Contributions

As mentioned, this thesis is motivated by ideas of developing more effective, principled, and adaptive
pruning methods in place of static ones. Specifically, it introduces two core contributions: a gradient
scaling function that dynamically adjusts learning behavior during training, and an adaptive pruning
scheduler that adjusts the pruning rate based on the stability of the pruning mask. Together, these
techniques aim to improve the reliability of pruning at extreme sparsity, enhance model performance,
and offer insights into the actual significance of pruned weights.

e Gradient Scaling Function: A dynamic scaling mechanism is proposed for the Feather pruning
framework, replacing its static hyperparameter with a function that adjusts during training. This
new approach enhances learning efficiency in early training stages by facilitating greater gradient
flow, thereby mitigating early-stage over-pruning.

e Adaptive Pruning Scheduler: An adaptive scheduler is developed to control the progression of
sparsity throughout training. By quantifying the stability of pruning masks using metrics like the
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Jaccard similarity index, this method dynamically adjusts pruning aggressiveness to avoid desta-
bilizing the model. Experimental results demonstrate that the scheduler improves both accuracy
and mask stability, particularly under very high sparsity ratios.

e A quantitative study of pruned weights’ significance, identifying when certain weights can be
permanently removed without negatively impacting model performance. This exploration can
guide the development of more efficient pruning techniques and inform decisions about optimization
strategies in sparse training.

1.3 Thesis Outline

This thesis is made up of seven chapters, including the Introduction. The topics discussed are as follows:

e Chapter 2 introduces the basic concepts of machine and deep learning crucial for the understanding
of the work of this thesis.

e Chapter 3 provides an overview of the most important deep neural network compression meth-
ods, with an emphasis to neural network pruning. The chapter concludes with a summary of
Feather [27], which is the module used for all further experiments.

e Chapter 4 introduces the proposed gradient scaling function, explains its formulation, and presents
experimental results demonstrating its advantages over the simple static scaling approach.

e Chapter 5 presents the adaptive pruning scheduler, including its theoretical foundation, imple-
mentation, and performance evaluation.

e Chapter 6 investigates the importance of pruned weights, analyzing the difference between full
STE-based training and permanent elimination of low-magnitude weights.

e Chapter 7 summarizes all previous three chapters and offers ideas for future work in each presented
application.
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2.1 Machine Learning

This section aims to present an overview of the principles of machine learning [8], [28], to a better
understanding of the following work.

Machine learning is a domain of Artificial Intelligence that studies the principles, methods, and algorithms
that enable computer systems to learn and make predictions based on past evidence and experience rather
than relying on explicitly coded instructions. This allows systems to become autonomous, adapting to
changing environments and generalizing their knowledge to new, unseen scenarios. Machine learning not
only improves a system’s adaptability and generalization capabilities but also serves as an attempt to
understand the mechanisms behind human learning better. Its significance spans various applications,
from autonomous vehicles to personalized recommendations, making it an essential field in modern
artificial intelligence.

2.1.1 Types of Machine Learning

To develop an optimal prediction algorithm, it is necessary to fully define the problem and find an
appropriate dataset that will be used to train the algorithm. This dataset will determine the feedback
given to the model during training, so we can divide machine learning into three categories depending
on the nature of the data: Supervised, Unsupervised, and Reinforced Learning.

Supervised Learning

During supervised learning the model is trained on labeled datasets, meaning that each input sample
is paired with a corresponding correct output. The goal of supervised learning is to learn a mapping
function that can accurately predict outputs for new inputs based on that exact function it managed
to learn during training. Some common supervised learning algorithms are decision trees [70], support
vector machines [18] and k-nearest neighbors.

Unsupervised Learning

In unsupervised learning the model is trained on unlabeled data. This means that the algorithm must
identify patterns and relationships within the data without predefined output labels. The trained model
creates its classes by grouping similar samples. Unsupervised learning is commonly used for tasks such
as clustering, where data points are grouped based on similarity. Popular algorithms for unsupervised
learning include k-means clustering [84], hierarchical clustering [71], and autoencoders [6].

Reinforced Learning

In reinforced learning the model learns to make decisions by interacting with an environment and receiv-
ing feedback in the form of rewards or penalties. Unlike supervised learning, where the model learns from
labeled data, reinforcement learning relies on trial and error to discover optimal strategies. Reinforced
learning is widely used in applications such as robotics, game playing, and autonomous systems, where
an agent interacts with the provided environment and is either rewarded or punished for each action.
Some reinforced learning algorithms include Q-learning [97], policy gradients, and deep reinforcement
learning methods such as Deep Q-Networks [69].

2.1.2 Supervised Machine Learning Tasks

The two most common tasks in supervised machine learning are regression and classification. Both
involve predicting outcomes based on input data with their corresponding labels, but they differ in what
they predict and how.

Regression

During the training of a regression algorithm, the relationship between the samples and their corre-
sponding target variable is fitted into the best possible curve. By analyzing patterns in the training
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data, regression identifies trends and correlations, making it particularly effective for tasks like forecast-
ing, trend analysis, and numerical prediction.

Classification

Classification predicts a discrete value which is one of a finite set of available categories or classes. Com-
mon applications of classification include spam email detection, image recognition, sentiment analysis,
and medical diagnosis, where the goal is to accurately determine the class or label for each data point
based on its features rather than a continuous value.

The differences between the two tasks are highlighted in n Figure 2.1, where it becomes evident that in
a classification task the resulting curve divides the data into distinct classes and the regression task fits
a curve as well as possible to all data.

Classification Regression
XL v ¥
. . .,
®
o ° . e o
. °
[ ]
. « *
.
[ ]
X1 & X
Classes predictions Numerical predictions
(separating hyperplane) (hyperplane)

Figure 2.1: Difference between classification and regression. From [72]

2.1.3 Train, Test and Validation Sets

In machine learning, the dataset provided for the training of the model is usually split into three subsets.
These are the training set, the validation set, and the test set. The training set is used to train the model
by using all the samples with their corresponding labels, allowing the algorithm to form relationships
between data and targets. The validation set is used during the training process to fine-tune the model’s
hyperparameters and evaluate its performance on further data, something that ensures the model gen-
eralizes well. Finally, the test set is used after training is complete to evaluate the model and prove that
it can generalize and has learned efficiently, rather than adapting perfectly to only the training dataset.

2.1.4 Evaluation Metrics
In supervised classification tasks, there is a need to evaluate the model’s performance.
After training and testing, all samples will be assigned with a label predicting the class in which they
must belong. These samples then can belong to one of the four categories:
e True Positives (TP): The sample was correctly predicted to belong to the class
e False Positives (FP): The sample was falsely predicted to belong to the class
e True Negatives (TN): The sample was correctly predicted not to belong to the class

o False Negatives (FN): The sample was falsely predicted not to belong to the class
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Figure 2.2: Visualization of all four categories for one class. From [43]

Accuracy

Accuracy is one of the most common evaluation metrics for a model’s performance and it represents the
percentage of overall correct predictions.

B TP+ TN L00%
accuracy_TP—l—TN—’—FP—i—FN 0

Precision

Precision is a metric used for a single class, and it calculates the ratio of all the samples correctly
identified as belonging to that class over the total number of samples predicted to belong to the class,
whether they were accurately predicted or not.

TP
precision = TPLFP 100%

Recall

Recall (or sensitivity) is also used for each class and it represents the ratio of all the samples correctly
identified as belonging to that class over the total number of samples that belong to that class.

TP
ll= —— 100
reca TPLFN %

F1-Score

F1-Score understands the important information represented in both precision and recall and combines
them with their harmonic mean.
precision - recall

=2 — -100%
precision + recall

2.1.5 Common Loss Functions

Another way to evaluate the performance of a machine learning model is through loss functions, which
are especially useful in regression tasks where the previous evaluation metrics cannot be used. They are
also differentiable, which means that they can be utilized during training for gradient-based updating
of the parameters (denoted as 6) [80], in contrast to accuracy or Fl-score. These algorithms aim to
minimize the loss function L(6), which usually represents the distance between the actual labels y and
the predicted ones g. In this section we will list the four most common loss functions. The first two are
used for regression tasks whereas the third and fourth are used for classification.
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Mean Square Error (MSE)

This loss function calculates the average squared difference between the actual labels and the predicted
ones. By squaring the errors, the function makes sure that large errors are given more attention by the
model to correct.

Lyse(0) = %Z(yz — ;)

Mean Absolute Error (MAE)

MAE measures the average absolute error between the actual labels and the predicted ones. In contrast
to MSE, it gives equal attention to all errors, making it a preferable metric when the training dataset
has large variation and outliers in its samples.

N

1 .

LMAE(Q) = N E |y11 - yz‘\
=1

Cross-Entropy Loss

Cross-Entropy loss is the most widely used loss function for classification tasks in machine learning.
To better understand this metric, it is import to first define cross-entropy. Cross-entropy between two
discrete probability distributions p and g over the same underlying set of events (class) X is a measure
of how different the two distributions are and is mathematically defined as:

H(p,q) ==Y p()-logg(x)
rzeX

For binary classification tasks where the label y can either be 1 or 0, the binary cross-entropy loss over
N samples is as follows:

N
1 .
Lpce(0) = -+ Z yi log(gi) + (1 — y;) log(1 — 4;)]

This loss increases the more the predicted labes differ from the correct ones, penalizing greatly incorrect
assumption. It can be extended for multiclass classification as such:

N
Leocr(f N Z Z Yik - log(yik)

In the above function, M denotes the number of classes in the classification problem, and as such it
calculates the cross entropy loss for each class. It represents the probability that the i-th sample belongs
to class k.

Kullback-Leibler Divergence Loss

Kullback-Leibler (KL) loss is similar to the cross-entropy one. Specifically, it measures how much in-
formation is lost when one distribution ¢ is used to approximate another distribution p (with the same
support X') by utilizing the Kullback-Leibler divergence metric between two distributions:

Dir(plla) =Y pla ) log(22)

zelX I)

2.1.6 Overfitting and Underfitting

Two very common issues that arise with machine learning models are overfitting and underfitting.
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Overfitting in machine learning happens when a model learns the training data exceptionally well, un-
derstanding and learning both the desired patterns and the noise and randomness of some data. This
results in the model achieving a very high performance on the training data, giving the illusion of a very
well trained model. However, when it is evaluated on the test set it shows very poor results, as it has
failed to generalize effectively. Overfitting can happen when the model is too complex for the amount
of data it is trained on. For example, having too many parameters or features allows it to simply learn
the exact training data rather than noticing patterns. It can also happen when the dataset is too small,
allowing the model to learn only a few test cases without the need to generalize.

Underfitting on the other hand occurs when a model is too simple to identify the desired patterns in the
training data, which yields a poor performance both on the training set and on the testing set. It most
commonly happens when the model is too simple, having too little trainable parameters to effectively
learn the data provided. It can also occur if the model is not trained for enough iterations or if the data
is noisy, having too many outliers, therefore making it difficult for the model to learn.

Finding the right fitted model for the desired task involves figuring out a balance between underfitting
and overfitting. This means designing a model which has sufficient parameters in accordance to the given
data, but not too many, to ensure it generalizes well to both the training and test data. A correctly
fitted model captures the underlying patterns in the data without being too simplistic (which leads to
underfitting) or too complex (which leads to overfitting).

Figure 2.3: Examples of Overfitting, Right Fit, and Underfitting for a classification (up) and a
regression task (down). From [67]

2.1.7 Regularization

Regularization in machine learning is a set of techniques used to prevent overfitting by adding constraints
or penalties to the learning algorithm. This encourages the model to generalize unseen data better.

The first two regularization techniques presented here typically involve modifying the loss function by
introducing a regularization term denoted as R(#), which is scaled by a suitable parameter A. The loss
function is then as follows:

L.(0)=L(9)+ \- R(9)

The third method is commonly used in neural networks, which will be discussed further in this chapter.

L, Regularization

Commonly referred to as LASSO Regularization, it utilizes the Li-norm of the parameters and promotes
sparsity by encouraging some weights to become zero.

Ri(0) = [16l12 = > 163
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The result is a sparser model, which improves generalization by ignoring certain features deemed too
unimportant.

Lo Regularization

Also known as Ridge Regression or Weight Decay, it uses the Ls-norm and is used to discourage large
weights by applying a squared penalty.

Ro(0) = [10]]2 = _ 67

By decaying the larger weights, the model encourages more conservative solutions, which can prevent
overfitting very efficiently.

Dropout

Dropout is an effective regularization technique for neural networks that enhances generalization and
mitigates overfitting. During each training epoch, each neuron has a small probability p of having its
weight set to zero. This process dynamically alters the network’s architecture throughout training,
promoting robustness and reducing reliance on specific neurons. The concept is inspired by random
forest algorithms [10], where multiple decision trees contribute to the final prediction.

2.2 Deep Learning and Neural Networks

After providing the basics of machine learning, we introduce deep learning [1], [52], which is a subset
of machine learning. The core difference between the two is that deep learning utilizes neural networks
with multiple layers to manage large, raw data, such as images, text or sound. Where machine learning
algorithms need the data to be manually and appropriately transformed, deep learning neural networks
receive them as they are, performing the necessary transformations at some of their layers. The way
neural networks are constructed aims to model the function of the human brain, where pattern recognition
and feature extraction are much more abstract. This is why neural networks are preferred for tasks such
as object detection in images, text and speech recognition, and image classification, which are performed
over too complex data for traditional machine learning algorithms to handle.

Deep learning networks have millions or more trainable parameters (weights), which is why it is crucial
for them to be properly trained, using loss functions as evaluation metrics. In this section, we will provide
an overview of the ways the weights are updated during training, using optimizers and backpropagation.

In this thesis we discuss the compression of neural networks, which is why we will now offer an overview
over their basic principles and the most common architectures of convolutional neural networks, which
are the subject of our pruning module.

2.2.1 Perceptron and Feed Forward Networks

The perceptron, visualized in Figure 2.4, is the fundamental structural unit of neural network architec-
tures and resembles structurally and fundamentally a neuron. In its own right, it functions as a binary
classifier designed to predict whether a given input belongs to one of two classes by learning a linear
decision boundary. A perceptron is comprised of input features, weights that represent the importance
of each feature, a bias term that allows the model to shift the decision boundary, and an activation
function that determines the output based on the weighted sum of inputs. The perceptron updates its
weights during the training process to minimize classification errors, in a way that will be analyzed in
further sections.
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Figure 2.4: A single neuron used in neural networks. From [92]

Mathematically, the output y of a single neuron is as follows, in which equation N is the total number of
input features, x; each of those features, w; its corresponding weight, b the bias term and f the activation
function.

N

y:f(Z[wi'-Ti+b])

=0

According to the specific requirements of each classification problem, different activation functions can
be employed to enhance the performance of neural networks. Here, we present the five most commonly
used activation functions:

o Identity: f(x) ==«

0 <0
r x>0

ReLU: f(z) = {

0 0
Binary Step: f(z) = {1 . i 0
T >

Sigmoid: f(z) = H%

x

Tanh: f(z) = ZI_T_Z,I
It is interesting to note that for multiclass classification problems a popular activation function is the
Softmax function, which converts raw output scores into probabilities that sum to 1, allowing the model
to predict the likelihood of the input to belong to each class.

e’
Softmax(v;) = ———, fori=1,.,N
D p—1 €7

By using such neurons as building blocks, more complex neural network architectures can be designed
by creating layers with multiple perceptrons. This modifies the network to be able to handle multiclass
classification problems, extending beyond the binary classification capability of a single perceptron. In
these architectures, called multi layer perceptrons (MLPs) or deep feedforward neural networks (FNNs),
neurons are organized into several layers: an input layer, one or more hidden layers, and an output
layer. In the case that each neuron in a layer is typically connected to all neurons in the subsequent
layer, as shown in Figure 2.5, the network is called a fully connected neural network (FCNN) and it is a
subcategory of FNNs.
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Input Hidden Hidden Output
Layer Layer1 Layer 2 Layer

Figure 2.5: Fully connected neural network model architecture. From [55]

Another wide subcategory of FFNs are the convolutional neural networks (CNNs), which are specifically
optimized for processing and classifying images. Similarly to FCNNs, CNNs are designed by organizing
multiple neurons into multiple layers, using unique architectures designed to extract and process the
desired features from the input. These architectures will be thoroughly discussed further in this chapter,
after first providing an overview of the most important concepts of training FFN .

2.2.2 Backpropagation

Most neural networks are trained using optimization algorithms, which will be discussed in the following
section, that rely on the calculation of gradients to update the model’s weights. These gradients decide
the weight adjustments needed during training, since they are based on the loss function’s gradient with
respect to the weights. The primary method used to compute these gradients is backpropagation, which
is based on the application of the chain rule [14]:

dz  dz dy

%7@.@5

The process consists of two main steps which are discussed below, the forward pass and the backward
pass.

Forward Pass

During the forward pass, the model performs the necessary calculations in all successive layers using the
current weight values for any given input in order to provide the final output. It starts with the input
layer, then calculates the hidden layers and finally it calculates the output layer, storing all results in
the process.

Backward Pass

After the output is calculated, the flow of the data is reversed, going now from output to input. This
is called the backward pass, and it distributes the loss of the output to the entire network by utilizing
gradients. During this process, the partial derivatives of the loss function with respect to the model’s
weights are calculated. The chain rule is used to avoid redundant computations, and it efficiently
calculates the derivative of the loss function with respect to the weights, the inputs and all intermediate
layers, helping the model to learn how to minimize the loss for each of these cases.
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2.2.3 Optimizers

Optimizers are algorithms designed to minimize the loss function during training by adjust the network’s
parameters (weights and biases). In this section we will discuss the most common optimizers [102] used in
training of convolutional neural networks, which are the object of this thesis. The first two discussed are
variations of gradient descent, the third introduces momentum, then we present two adaptive gradient
based learning algorithms and finally one that combines momentum and adaptive gradient.

Vanilla Gradient Descent

Vanilla gradient descent is the most basic form of the gradient descent optimization algorithm. It
iteratively updates model weights by computing the gradient of the loss function with respect to these
weights and moving in the opposite direction of the gradient to minimize the loss. Mathematically it
can be expressed as:

O =0k—1—1-VoLl(Op_1; T)

where 6 are the model’s updateable parameters, £(wy; 7T ) the loss function with respect to the previous
weights and the training set 7 and 7 the learning rate.

The learning rate is a model hyperparameter that defines the step size at which the model updates its
weights, determining how much the model learns from the gradient at each iteration. A small learning rate
results in slow convergence, which can require many iterations to reach the optimal solution. However, a
high learning rate can cause the model to overshoot the minimum or even diverge, preventing convergence
altogether. There has been lately a technique known as learning rate scheduling, which is used to adjust
the learning rate during training instead of keeping it a constant. Common strategies include step decay,
where the learning rate drops at fixed intervals, exponential decay, where it decreases continuously over
time, and adaptive methods like Adam, which will be discussed further in this section. Other approaches,
such as cyclical learning rates, oscillate between bounds to help escape local minima, while warm-up and
cool-down schedules gradually increase or decrease the learning rate for better stability. A well defined
learning rate scheduler can lead to faster training, better generalization, and improved optimization
efficiency.

While vanilla gradient descent is one of the most simple and effective optimization algorithms, it still
has limitations, such as slow convergence and sensitivity to the learning rate, making it less practical
for large datasets. Furthermore, this algorithm can falsely converge to a local minimum instead of the
global one. This is why several variants were developed, which will be further discussed.

Stochastic Gradient Descent

Vanilla gradient descent computes the necessary gradients with the entire training set samples, which as
mentioned can be inefficient for large datasets. Stochastic gradient descent (SGD) tackles this problem
by computing the gradients per sample, which can be very fast but may also cause great variations to
the loss function, due to the fact that a single sample may not be representative of the entire dataset.
Figure 2.6 visualizes these fluctuations, comparing to vanilla gradient descent which is smoother but
slower. Although the learning process can be highly variable, this randomness also allows it to escape
local minima.

For the individual sample pair (z;,y;) the updating equation is now:

Or = 0r—1—1-VoLl(Or—1; xi,vs)
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Figure 2.6: Vanilla and Stochastic Gradient Descent visualization. From [75]

Mini-Batch Gradient Descent

Mini-batch gradient descent manages a balance between the vanilla and stochastic variants by updating
model parameters using a small batch of samples rather than the entire dataset or a single one. This
approach reduces the high variance of stochastic gradient descent while being more computationally
efficient than vanilla gradient descent. If we denote as B a batch of samples, the updating equation is
now:

Or = 6r—1 —1n-VoL(0r—1; B)

In most deep learning tasks, mini-batch gradient descent is referred to simply as SGD and the batch size
is provided as a hyperparameter before training, having values of 64, 128, 256 etc.

SGD with Momentum

Momentum is introduced into the SGD algorithms as a way to smooth fluctuations and speed up the
learning process, while avoiding convergence to local minima. The following formulas show the parameter
updating with momentum:

Avg =p-Avg_1 + (1 — p) - VoL (Ok—1; B)
Op =01 — 1 - Avy,

vk is the momentum term introduced as a way to keep track of all gradients during the entire training
cycle with p € [0,1] denoting the weight of momentum. This formulation incorporates an exponentially
decaying moving average of past gradients into the current update term, which causes a momentum-like
effect that enhances both convergence stability and speed.

Adaptive Gradient Algorithms: Adagrad and RMSprop

Some optimizers are adaptive gradient based, which means that the variables are updated with adaptive
learning rates rather than a stable or scheduled one.

Adagrad (Adaptive Gradient) is a gradient method that scales each learning rate of a parameter based on
a cumulative sum of squared gradients. The approach allows sparsely updating parameters to be assigned
more weight in their updates over frequently updating parameters, making it very useful in dealing with
sparse data. One of the shortcomings of Adagrad is that it allows the sum of squared gradients to
become unbounded, causing a learning rate that is constantly decreasing to lead to premature stalling
of learning.

RMSprop (Root Mean Square Propagation) mitigates Adagrad’s issue with earning rate diminishing by
introducing a moving squared gradient average. This average manages to suitably decay the weights
of historical accumulated gradient instead of accumulating all previously computed. This prevents the
learning rate to rapidly drop in account of large accumulative gradients.
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Adaptive Moment Estimation (Adam)

The Adam optimization algorithm combines the advantages of momentum and adaptive gradient algo-
rithms. This combination along with its computational efficiency and low memory requirements makes
Adam one of the most popular optimizers for most deep learning tasks.

Adam maintains an exponentially decaying average of past gradients (first moment estimate) and an
exponentially decaying average of past squared gradients (second moment estimate). This allows the
optimizer to maintain learning rates suitable for each specific parameter, improving performance on
problems with sparse gradients and noisy data.

2.2.4 Convolutional Neural Network (CINN) Architecture

After providing an overview of the most crucial paradigms in deep learning and neural networks, we now
analyze the architecture of CNNs, which are the backbone of all further sections presented in this work.

As previously mentioned, CNNs are are designed and optimized for processing and classifying images.
They receive raw images with dimensions W x H x D (width, height and depth) as the input data
and provide prediction scores for each possible class as output. Since they are designed exclusively for
images, they are able to extract and process important features from the provided pixels, allowing them
to effectively learn patterns. In CNNs, each layer has a specific task to perform, and can therefore be
categorized as a a convolutional layer, a pooling layer, a batch normalization layer and a fully connected
one. Figure 2.7 visualizes a common CNN architecture with such layers.
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Figure 2.7: CNN model architecture. From [100]

Convolutional Layer

Convolutional layers are the most fundamental layers in CNNs and perform the most important tasks
of feature extraction, yielding outputs that are called feature maps. They apply a set of K filters with
dimensions F' x F with learnable parameters that slide over the input performing convolutions, thus
producing feature maps which contain the most important aspects of the image, such as edges, textures,
shapes etc. These filters are usually small with common dimensions being F' = 3 or F' = 5 and manage
to be applied to the entire input. Each filter is responsible for capturing specific features, allowing the
network to learn hierarchical representations of the data.

The input of each convolutional layer will have dimensions of W; x H; x D;. To obtain the layer’s output

dimensions we must also provide two additional parameters, stride and padding.

Stride S is the step size by which the kernel is slid on the input. For S = 1, the filter performs the
necessary convolutions by sliding one pixel each time, for S = 2 two pixels, etc.

Padding P is the number of zeros to be appended to the borders of the output of the layer, aiming
to match the output dimensions with the inputs.
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Figure 2.8: Example of a convolutional operation with S =1 and P = 0. The input has
dimensions 4 x 4 X 1, the one filter 2 x 2 and the output 3 x 3 x 1. From [2§]

Pooling Layer

A pooling layer is usually between two subsequent convolutional layers and is used to reduce the spatial
dimensions of the feature map, therefore reducing the number of learnable parameters for each layer.
This helps the model become faster and less computationally efficient, while also improving the CNN’s
ability to generalize, since fewer parameters mean a smaller chance to overfit to the training data. Fur-
thermore, downsampling the activation map helps the network to become invariant to small translations
or distortions in the input, making it more robust.

The pooling layer, like the convolutional, slides a filter across the input. This filter can either be a max
pooling one or an average pooling one. Max pooling provides the maximum element of the feature map’s
selected area, preserving the most important features. Average pooling calculates the average of all the
elements in that area, which has a smoothing effect on the feature map.

While pooling has several advantages to overall performance, it is important to note that the dimension-
ality reduction can result to the loss of fine details in the image, while also smoothing out important
features. This makes the selection of the filter’s hyperparameters, such as filter size, type, and stride,
crucial.

Batch Normalization Layer

During CNN training, as the parameters of the layers are updated, the distributions of said parameters
also change. This means that at each layer, the inputs belong to different distributions making the
layers more disconnected with each other, which makes it difficult for the network to learn and converge
efficiently. This problem is called the covariate shift problem.

The batch normalization layer [44] alleviates this problem by normalizing the input, as the name suggests,
stabilizing the model and speeding up the training process. The normalization process involves the
calculation of the mean and the variance of every batch and shifting it so that the outputs obtain a mean
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close to 0 and a standard deviation close to 1. This ensures that the data are always from the same
distribution, which solves the internal covariate shift problem, thus allowing for larger learning rates with
faster convergence, something previously difficult to achieve.

Fully Connected Layer

The final layer in every CNN is a fully connected one (FC), which provides the final outputs which are the
probability scores for each available class. It is basically a feed-forward network. Since these networks
require a 1D input rather than the 3D produced by the rest of the CNN, the final feature map must be
flattened.

Pooled Feature Map Flattened Pooled FC Layer
Feature Map

Figure 2.9: Flattening of a feature mask and its subsequent feeding as input to an FC layer in

a CNN. From [3]
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3.1 Introduction

In the last few years, with the continuous development of deep neural networks, artificial intelligence has
made large leaps in various areas. Such areas are Computer Vision (CV) [34], [49], Natural Language
Processing (NLP) [21], Audio and Speech Recognition (ASR) [37] and multi-modal applications [60],
[76]. However, to achieve excellent performance in these applications, the DNNs rely from a few million
to several billion parameters, making the computational cost massive [19]. They require more memory,
processing power, and energy consumption, presenting challenges for deployment in resource-constrained
environments like mobile devices, embedded systems, wearables, and robots. Another issue with modern
DNNs is that the existence of so many trainable parameters leads to several of them being rendered
redundant, compromising their robustness and making them vulnerable to adversarial attacks [82]. Fi-
nally, in recent years there have been environmental concerns about the carbon footprint produced by the
training and usage of large DNNs, which call for a more sustainable approach in designing and deploying
such models [99].

Since DNNs’ increasingly large volume presents so many challenges, to tackle them there has been ex-
tensive research on compression and acceleration of neural networks [15], [16], [19], [59]. Most techniques
alm to compress and accelerate the model as much as possible with a minimal trade-off in performance.
This leads to the ability of those models to be deployed in resource-constrained environments without
any significant losses, while in some cases enhancing robustness and generalization ability. Moreover, the
computational cost is greatly lessened as well as the energy consumption.

In this chapter, we provide an overview of the most common compression methods for DNNs, with the
biggest focus being on network pruning. Section 3.2 briefly analyzes the other methods, with section 3.3
focusing exclusively on network pruning, which is the main focus of this thesis. Finally, in section 3.4 the
SoA Feather [27] sparse training module is presented, which is the module that all subsequent experiments
are run on.

3.2 Relevant Compression Methods

In this section, the most common compression methods are presented (except network pruning) along
with some influential applications. These methods are quantization [59], low-rank factorization, knowl-
edge distillation [29], and neural architecture search.

3.2.1 Quantization

Quantization in general refers to the process of mapping a continuous signal with infinite values to a set
of discrete, finite representations, usually integers. As a method, it is commonly used in signal processing
as a way to compress raw data, reducing computational demands and processing power, while retaining
important information. This idea was adopted in neural network compression, where the quantization
of DNNs led to the same advantages while retaining good performance [59]. In this section, we present
the two most common quantization methods.

Numerical Low-Bit Quantization

Numerical low-bit quantization is the most straightforward quantization method since it involves the
quantization of the model’s weights and biases in the strict definition. In typical DNNs, the parameter
values are stored using 32-bit or 16-bit floating point precision, since those are typically used on GPUs and
CPUs [88]. Quantization aims to store the values as INT-8, INT-4, and INT-2, thus decreasing complexity
and computational cost. There is also a method that stores the values as INT-1 producing binarized
neural networks [42]. Generally, there are two ways to quantize a neural network: by quantizing it after
training (post-training quantization) and by training the model with quantized values (quantization-
aware training) [59].

Post-training quantization [87] is the process of quantizing a neural network after it has been fully
trained with 32-bit or 16-bit precision parameters. This results in a more compact model while also
achieving acceleration in inference time, with the cost being reduced accuracy and performance due to
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approximation errors, especially when quantizing in an INT-2 or INT-1 format [59]. The acceleration is
determined by the hardware and typically ranges from 1-4x.

The issue with approximation errors introduced in post-training quantization is mitigated in quantization-
aware training [46], another popular method of compressing a model. It involves training with quantized
weights along the entire process, while not quantizing the gradients for the backward pass. This is known
as the Straight-Through Estimator (STE) [7], in 2013. The STE treats the quantization operation as
an identity function when computing gradients. As a result, the gradients flow through the quantized
weights as if no quantization had occurred in the training iteration. This method prevents the model
from updating the weights with zeroed gradients, which would be the case if the gradients were quantized.
An illustration visualizing the use of the STE during the training process is shown in Figure 3.1

Weigh r Quantized Weight @
(FP)

Quantizer H (INT)
11 | 2.2 1 2
; Forward Pass
-2 2

-1.7 | 36
0.1 | -0.1 0.1 | -0.1
5 Backward Pass
0.2 | 0.2 -0.2 | 0.2
Gradient dL/dr Gradient dL/dQ
(FP) (FP)

Figure 3.1: Quantization aware training process. From [26]

Clustering and Parameter Sharing

A different approach in DNN quantization is weight sharing, in which different weights share the same
numerical value, thus decreasing the number of unique values stored and reducing the storage space
needed for the model. This is typically achieved through clustering algorithms such as k-means [84],
which group similar weights into clusters based on some distance metric (eg. Euclidean, Manhattan).
Each weight within a cluster is then assigned a shared value, typically the cluster’s centroid. During
inference, instead of storing the full precision weights individually, only small indices pointing to the
corresponding centroids need to be stored, leading to significant compression. However, since the lookup
table used for weight reconstruction still operates with the original floating-point precision, the inference
speed remains largely unaffected. It still offers considerable advantages, especially for hardware-limited
applications, such as FPGA-based Al accelerators, yielding the same performance for smaller memory
demands.

3.2.2 Tensor Decomposition

Tensor Decomposition or Low-rank factorization is a family of network compression methods that operate
by decomposing large-weight matrices into products of lower-rank ones [83]. This approach is particularly
useful for compressing fully connected and convolutional layers, where the weights are stored in very large
matrices, thus significantly reducing the number of parameters and floating-point operations (FLOPs),
enabling efficient inference on resource-constrained devices. Common approaches for CNNs include
Singular Value Decomposition (SVD) [20], [73], Tucker Decomposition [47], [57], Canonical Polyadic
(CP) Decomposition [51], and Dictionary Learning [79].
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Singular Value Decomposition

SVD is a classical matrix factorization technique widely used for compressing fully connected layers in
neural networks. For a weight matrix W € R™*" SVD decomposes it as:

wW=UxvV"

Where U € R™*" ¥ € R™*", and V € R™*" with r < min(m,n) denoting the rank. By truncating the
decomposition and retaining only the top k < r singular values, a low-rank approximation of the original
weight matrix is obtained. This reduces memory and computation while maintaining representational
capacity [20], [73].

Tucker Decomposition

Tucker decomposition generalizes SVD to higher-order tensors by factorizing a tensor into a smaller core
tensor multiplied by a matrix along each mode. For a 3D convolutional kernel tensor W € R!*/*K the
Tucker decomposition approximates it as:

Wa G xy AxegBx3C

where G € RFf1xR2xHs ig the core tensor, A € RI*F1 B € R/*E2 and C' € RE*#s are factor matrices
along each mode, and x,, denotes the mode-n tensor-matrix product.

Tucker decomposition is particularly effective for compressing convolutional layers in deep neural net-
works by preserving the core structure of the tensor while discarding redundancy [47], [57].

Canonical Polyadic Decomposition

Canonical Polyadic decomposition factorizes a tensor into a sum of tensors with a rank of one. For a 3D
weight tensor YW € RI*/XK it approximates:

R
W = E ar 0 by oy

r=1

Where a, € R!, b, € R7, and ¢, € R¥, and o denotes the vector outer product. This method is
particularly suitable for compressing convolutional kernels due to its effectiveness in reducing parameters
and operations [51].

Dictionary Learning

Dictionary learning is an unsupervised technique that represents data as a sparse linear combination of
basis elements (atoms) from a learned dictionary. For weight approximation:

W=~ DX

Where D is the dictionary and X contains the sparse codes. This approach supports efficient storage and
computation, especially when X is highly sparse. Dictionary learning can be applied post-training or as
a training regularizer, and has shown success in compressing both convolutional and dense layers [79].

3.2.3 Knowledge Distillation

Knowledge distillation is a model compression technique where a small and compact network called the
student is trained to mimic the behavior of a larger one, the teacher, which is usually a pre-trained large
model [29], [38]. Instead of training the student with the standard method using the ground-truth labels,
it is trained to match the outputs (soft probabilities) produced by the teacher. These outputs distill
the student with information about class relationships more effectively than hard labels alone, enabling
the student to generalize better with fewer parameters and little computational cost. Bucilua et al. [11]
introduced the concept in 2006, which then got popularized by Hinton et al. [38] in 2015, who proved
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that the same compact model performed notably better when using knowledge distillation rather than
being trained from scratch.

The knowledge distillation method proposed by Hinton at al. [38] is response-based knowledge, since it
operates on the predictions made by the teacher. In the literature there exist several types of knowledge
that can be extracted from the teacher, such as feature-based knowledge and relation-based knowledge,
where the knowledge extracted is provided from intermediate layers and feature maps respectively [29].

During response-based knowledge distillation, the student network is trained to minimize a combination
of the standard task loss and a distillation loss that encourages the student to replicate the teacher’s
behavior. A typical formulation of the total loss is:

L= (]— - a)ﬁstudent + acdistillation

Where Ltudent is the cross-entropy loss between the ground-truth labels student’s predictions, Ly, S
is the Kullback-Leibler divergence between the softened student and teacher outputs, and a is a balancing
hyperparameter. The softened outputs (logits) for both student s and teacher ¢ for the i-th class are
computed as:

pt ors __ 6.13])(%)
’ > exp(F)

Where T' > 0 is a temperature parameter which when high enough smooths the output probabilities,
making it easier for the student to capture dark knowledge about the relationships between classes [29].

Teacher Model

Figure 3.2: Visualization of the teacher and student models and the knowledge distillation
process. From [29]

3.2.4 Compact Model Design and Neural Architecture Search

Instead of compressing large, over-parameterized neural networks, an alternative approach is to design
compact architectures with the explicit goal to deploy it in resource-constrained environments such as
mobile devices, embedded systems, or edge computing platforms. This design process can be carried out
manually or automatically through Neural Architecture Search [77].

Two of the most prominent models in compact model design are MobileNets and DenseNets. MobileNet
V1 [40] was proposed by Howard et al. and introduced the use of depthwise separable convolutions, a
factorized version of the standard convolution, to significantly reduce computational complexity while
preserving accuracy. MobileNet V2 [40] further improved performance by incorporating inverted residual
blocks and linear bottlenecks.

DenseNets [41] was developed by Huang et al. as CNNs for object recognition tasks, achieving high
accuracy with much less parameters than other CNNs. This was achieved by employing dense connec-
tivity between layers to improve feature reuse and gradient flow, where each layer receives as input the
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concatenation of all preceding layers’ outputs. Despite its deeper structure, DenseNet requires fewer
parameters and less computation than comparable architectures due to its high feature reuse and the
ability to maintain compact growth rates.

In contrast to compact model design by hand, Neural Architecture Search (NAS) is an automated method
for designing neural networks for tasks and deployment constraints that has lately gained increased
research interest. It was initially introduced to improve the accuracy of the model and the design
process, while also addressing the limitations of manual architecture design by exploring vast search
spaces for the optimal design [77].

In the context of compression, NAS is used to discover architectures that inherently require fewer parame-
ters and operations. This is distinct from classic compression techniques such as pruning or quantization,
as NAS generates architectures from scratch or through fine-tuning. For example MobileNet V3 [39],
which improved the Mobilenet family presented above by using NAS techniques to maximize efficiency,
and EfficientNet [90] were partially discovered or refined using NAS approaches focused on optimizing
the trade-off between accuracy and resource usage on mobile devices.

3.3 Neural Network Pruning

Neural network pruning is a model compression technique used to reduce the size and complexity of a
neural network by eliminating parts that are considered less important or redundant. The main objective
is to make the model smaller and more efficient, ideally without significantly affecting its performance. It
is one of the most popular compression methods, with research starting as early as 1989 with "Optimal
Brain Damage" by LeCun et al [53] and 1992 with "Optimal Brain Surgeon" by Hassibi and Stork [33].
In later years, with SoA neural networks yielding unprecedented performances, neural network pruning is
at the forefront of research as a means to contain the ever growing amount of trainable parameters [15].

Pruning works by identifying and removing redundant or non-essential components of a network, such
as individual weights, neurons, channels, or even entire layers. Depending on the level of granularity,
pruning methods can be categorized into unstructured pruning, which removes individual weights leading
to sparse weight matrices, and structured pruning, which eliminates groups of parameters in a way
that preserves the network’s original structure and enables efficient hardware acceleration. These will
be discussed in the Section 3.3.1, the first of this part, along with semi-structured pruning, a later
development in the literature.

Beyond the basic distinction in structure, pruning strategies also differ in terms of criteria and timing,
discussed in Sections 3.3.2 and 3.3.3 respectively. Neural network pruning has also lately been enhanced
by combining it with the other compression techniques discussed before in this Chapter, in order to
complement the methods strenghts and weaknesses. Although these methods are beyond the scope of
this thesis, they will be briefly discussed in Section 3.3.4 for the sake of continuity.

3.3.1 Pruning Methods

Pruning can be categorized by the granularity of sparsified elements into unstructured, structured, and
semi-structured [15]. Unstructured pruning allows the pruning algorithm to freely remove any specific
parameters it deems necessary, while structured pruning aims at removing entire groups of parameters,
like vectors or entire filters. Semi-structured pruning is a recently developed method that combines the
advantages of both structured and unstructured pruning, in ways further analyzed later in this section.
Figure 3.3 provides a visualization of these pruning methods for further clarity.
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Figure 3.3: A visualization of pruning methods in a CNN where the blue weights are the ones
retained, the white the ones pruned and the red are the pruning masks: (a) Unstructured
Pruning (b) Structured Pruning (c) Semi-Structured Pruning. From [86]

Unstructured Pruning

Unstructured pruning is the finest-grained type of the three methods, removing specific weights from
any part in the model without taking into account the relative position in which they are in [15]. This
approach leads to sparse weight matrices, which means that the distributions of the non-zero parameters
are irregular, therefore leading to unstructured sparsity patterns. This irregularity allows the model to
reach very high sparsity ratios with a minimal negative impact on performance [25].

However, for the same reason, it can be challenging to fully leverage the efficiency gains on standard
hardware, requiring specialized libraries or hardware accelerators to observe a substantial speed-up [96].
There has been extensive research to develop the suitable hardware to support speed-up in unstructured
pruning, which involves acceleration in sparse matrix operations [45].

Structured Pruning

Structured pruning is a model optimization technique that removes entire structures within a neural net-
work in various granularities [2]. This includes neurons [64], which is the finest-grained type, filters [101],
or channels [62], rather than individual weights. By eliminating larger, well-defined components, struc-
tured pruning creates a more compact and efficient model that maintains a regular architecture, making
it easier to accelerate on standard hardware like CPUs, GPUs, or FPGAs [36]. This approach reduces
both the number of parameters and the computational load, leading to faster inference times without
requiring specialized sparse matrix operations, unlike the unstructured counterpart. However, the trade-
off between structural integrity and accuracy is large, which means that with structured pruning the
pruning target must remain conservative or else there will be a significant drop in performance [25].

Semi-Structured Pruning

Also known as pattern pruning [96], semi-structured pruning has recently developed as a way to leverage
the advantages of both the structured and unstructured variants, while also discarding as many disad-
vantages as possible [81]. N:M structured sparsity [103] was the first instance of semi-structured sparsity
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that balanced between the two aforementioned types, providing fine-grained sparsity and requiring spe-
cialized hardware while also maintaining structure. Meng et al. in [68] (2020) propose pruning stripes
from filters in CNNs rather than entire filters or individual weights, resulting in both heightened accu-
racy and regularity in sparsity patterns, combining the performance and the speedup in most available
hardware. This combination of advantages can be ideal for application in autonomous vehicles (AVs),
where speed and accuracy are of the essence. R-TOSS by Balasubramaniam et al. [5] (2023) utilizes
semi-structured pruning in such a way that proves object detection can be both fast and accurate in AVs
and their hardware.

3.3.2 Pruning Criteria

While we explored the methods by which pruning can be applied, it is also important to discuss the
criteria by which the weights, kernels, layers etc are eliminated. [15], [96]

Magnitude-based Pruning

Magnitude-based pruning is one of the most widely used and intuitive criteria for pruning neural networks.
It is based on the idea that weights with smaller absolute values contribute less to the model’s output
and can therefore be removed with minimal loss in performance. Han et al. (2015) [32] in their deep
compression work popularized magnitude-based pruning by proving it could significantly reduce model
size without noticeable drops in accuracy. In practice, after or during training, a threshold T is applied,
and all weights below that threshold are pruned away while the rest keep a non-zero value as follows:

fw), i w| =T

&= Prlw) = {0, it jw| <T

The f(w) function provides the model with the non-zero value of the remaining weights and can be
implemented through hard or soft thresholding [23]. In hard thresholding, the weights keep their initial
value:

frlw) =w

This creates a sharply sparse model but introduces non-differentiability at the pruning operation, com-
plicating training in the backward pass. Soft thresholding offers a smoother alternative, shrinking the
surviving weights toward zero by

w—=T, if w>T
fs(w): .
w+T, if w<T

This allows the pruning effect to be integrated during optimization, gradually encouraging sparsity
rather than enforcing it abruptly. However, in the case where some weights are set exactly to zero, soft
thresholding still has non-differentiable operations.

To address this non-differentiability in both hard and soft thresholding operators, the Straight-Through
Estimator (STE) [7] is often employed, approximating the backward gradient of the pruning function
as the identity function. This allows gradients to flow through and enables continued training, where
the pruned weights are still present in the optimization process. Research showed that allowing pruned
weights to be optimized rather than completely eliminated significantly improved performance, since
important connections were allowed to develop instead of being completely pruned from the beginning [7],
[27].

These techniques can be applied in an unstructured manner, removing individual weights resulting in
irregular sparsity, or in a structured manner, where entire neurons, filters, or channels are pruned based
on aggregate magnitude metrics like Ly or Ly norms. For example, Li et al. [56] prune entire CNN filters
by scoring their average magnitudes using the L; norm.
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Although magnitude pruning is simple and quite effective, since it does not consider the sensitivity of
the network to individual weights or structures, it may struggle to maintain performance at extremely
high sparsity levels [9], [24].

Sensitivity-based Pruning

Sensitivity-based pruning techniques aim to remove weights from a neural network based on their impact
on the model’s loss function, rather than simply their magnitude. These methods evaluate how sensitive
the loss is to changes in each parameter, pruning those weights whose removal causes the smallest
increase in error. Unlike magnitude-based pruning, which assumes that small weights are unimportant,
sensitivity-based approaches directly estimate the importance of each weight in maintaining the model’s
predictive performance. As a result, they can produce more compact and accurate models, especially at
high sparsity levels where magnitude-based pruning methods fall short [33], [53].

One of the earliest and most influential sensitivity-based methods is Optimal Brain Damage (OBD) by
LeCun et al. [53] in 1989. In this method, the sensitivity of each weight is estimated using a second-
order Taylor expansion of the loss function, incorporating information from the diagonal elements of the
Hessian matrix, which are equivalent to the second derivatives with respect to each weight. Weights are
ranked based on their estimated contribution to the loss, and those with the least impact are pruned
first. Optimal Brain Surgeon (OBS) by Hassibi and Stork [33] in 1993 extended this idea by considering
the full Hessian matrix rather than just its diagonal, allowing for even more precise weight removal by
accounting for the interactions between different parameters.

Although these methods were proposed as a more accurate alternative to magnitude-based pruning, they
were applied to the neural networks available back then, which were rather small compared to those
available now. Computing and inverting the full Hessian for millions of parameters is computationally
expensive [59]. Due to this computational overhead, sensitivity-based pruning is less common in modern
literature but has inspired several methods utilizing low-cost approximation approaches, such as Wood-
fisher [85] and EigenDamage [94]. Another notable example is SNIP by Lee et al. [54], which proposes
a saliency criterion called the connection sensitivity criterion. It identifies important connections before
training by measuring how sensitive the loss function is to each individual weight at initialization, uti-
lizing first-order gradients rather than second. This makes it rather computationally efficient, compared
to OBD and OBS.

Regularization-based Pruning

While the previous two methods directly set parameters to zero, regularization-based pruning techniques
introduce sparsity in a more indirect way. Instead of pruning weights based on heuristic criteria like
magnitude and loss change, these methods train the model in a way that it naturally sets some parameters
close to zero during optimization. This is achieved by adding a regularization term (Lo, L1, Lo norms) to
the loss function. These weights are then usually pruned using another criterion, such as magnitude [96].

While Ly regularization directly penalizes the number of nonzero weights, making it ideal for pruning, it
is non-differentiable. Louizos et al. [66] address this by introducing a differentiable approximation using
the hard-concrete distribution. Their method enables sparse training and can be implemented for both
structured and unstructured sparsity.

Wen et al. [98] introduced structured sparsity learning by applying Ly and group LASSO regularization
to architectural components such as neurons, filters, and channels. This regularization framework is
ideal for structured pruning without requiring a separate pruning step, something that mitigates the
computational overhead.

Lo regularization (weight decay) is traditionally used to improve generalization as discussed in Sec-
tion 2.1.7, but it can also assist in pruning since it shrinks (decays) less important weights. Han et
al. [31] introduced this concept for unstructured pruning, which while it is not aggressive in driving
weights to zero, it supports subsequent threshold-based pruning in unstructured pruning schemes. An-
other method is proposed by Chin et al. [17] which employs a dynamically increasing Lo regularization
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term during training. This growing penalty progressively encourages structured or unstructured sparsity,
enabling the network to prune unimportant weights while preserving important structures.

Random Pruning

Random pruning is used as a control method in various works, such as [9], offering a way to measure the
effectiveness of more intelligent pruning strategies. It involves removing weights, neurons, or structures
from a neural network without using one of the aforementioned pruning criteria [63]. This results in
significant performance degradation, especially in higher sparsity ratios, whereas works like [63] show
that it can be quite effective for low targets. The Lottery Ticket Hypothesis by Frankle and Carbin [24]
(2018) is a prime example of using random pruning to evaluate their methods. In this work, not all
sparse subnetworks are equally capable of learning. Even when reset to their original initialization, they
fail to match the performance of the intelligently picked winning tickets, which are sparse subnetworks
that can train effectively from initialization. This comparison highlights that intelligent pruning criteria,
rather than random removal, are essential.

3.3.3 Pruning Timeframe

The timeframe of pruning refers to when the pruning process is applied relative to the training of a
neural network. Different strategies have emerged based on whether pruning occurs before training,
along training, or after training, each with its own philosophy, advantages and challenges.

Pruning Before Training

Pruning before training, also called foresight pruning in [95] or pruning at initialization in [91] and [54],
is a sparse-to-sparse training approach with the objective of reducing the inference time even during
training [15].

One of the most influential works in this area is the Lottery Ticket Hypothesis (LTH) proposed by
Frankle and Carbin in 2018 [24], in which they proved that within randomly initialized networks, there
exist sparse subnetworks (winning tickets) that can be trained by themselves to achieve comparable
accuracy to the original large and dense model. Lee et al. [54] introduced SNIP, a method that prunes
a network before training begins by evaluating the sensitivity of the loss function to each weight at
initialization, therefore pruning in a single shot without the need for computationally expensive iterative
procedures.

Other techniques, such as GraSP [95] and SynFlow [91], both proposed in 2020, further refined SNIP’s
idea by proposing pruning criteria in order to stabilize the gradient signal throughout training, something
that rendered SNIP unable to perform well in large sparsities. GraSP retains gradient flow throughout
the network, whereas SynFlow avoids the pruning of entire layers (layer collapse) by only pruning weights
with the lowest synaptic strengths.

Pruning Along Training

Pruning along training is a dense-to-sparse pruning approach that has recently gained popularity [4],
[27], [89], [93], [104], [105]. In this approach, weights are pruned not before or after the training process
but with it. The core idea is that pruning happens gradually during training, by updating a weight, filter
or kernel mask M (usually binary) which then produces the pruned weight matrix W = M © W [15].
This mask can be a thresholding function as discussed in Section 3.3.2, with the amount of weights
to be eliminated (sparsity ratio) in each iteration predefined by a scheduler. The simplest scheduler
is the ramp, which starts from 0% sparsity and then linearly reaches the target ratio at the desired
epoch. In most cases, after reaching the target sparsity ratio, there exists a training phase where the
final pruning rate is kept constant, to allow the network to adjust for the sparsity, instead of ending
training when the desired sparsity is reached. Another popular scheduler is cubic, first used by Zhu and
Gupta in [105]. They proposed this scheduler by noticing that a network can reach low levels of sparsity
fairly fast without compromising performance, therefore it would be beneficial to prune aggressively in
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the beginning of training and smoothly when reaching the target. Figure 3.4 shows both schedulers for
a few different targets.

Pruning Schedulers
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Figure 3.4: Cubic and ramp pruning schedulers for reaching various sparsity ratio targets in 80
epochs out of the 160 total

A large discussion in pruning along training concerns the handling of backpropagation through the
thresholding operator that determines which weights are pruned. The most straightforward and simple
approach used in earlier works is to apply the thresholding operation during both the forward and
backward passes, removing pruned weights from the optimization process entirely [105]. This however
has since proven to drop performance significantly, since it can result in premature decay of important
connections, especially during the very early stages of training. For this reason, many methods employ
the Straight-Through Estimator (STE) [7] discussed in Section 3.3.2, which approximates the gradient
of the non-differentiable thresholding operation using the identity function. This allows all gradients
to flow through during backpropagation, allowing them into the optimization process to be updated
and potentially recovered from premature pruning in future steps. Modern pruning approaches such as
Feather [27] and ST-3 [93] utilize the STE by combining it with advanced thresholding or soft-thresholding
operations, aiming for the stability of gradients. Feather interestingly compared their method with and
without utilizing the STE and noted a difference of more than 10% in accuracy for large sparsity ratios
and 3% for low. The way Feather operates will be further discussed in Section 3.4, since it is the core of
the experiments for this thesis.

Pruning After Training

Pruning after training is the most intuitive dense-to-sparse pruning approach in neural network pruning
with earlier pruning modules, such as OBD [53] and OBS [33], as well as some more recent ones [32],
[56], [65] employing it. The intuition is that since the model has already been trained, then it has learned
effectively how to perform its objective task, and therefore it will be easier to identify redundant or less
significant components such as weights, filters or layers that can be safely pruned.

Deep Compression by Han et al. [32] in 2015 popularized the training pipeline used in modern applica-
tions. This pipeline is comprised by three steps: train a dense network to full accuracy, prune weights
with magnitudes below a threshold, and then retrain (fine-tune) the sparse model to regain any lost ac-
curacy. The magnitude-based criterion assumes that smaller weights contribute less to the final output
and thus can be removed without severely impacting performance. Pruning introduces a sudden drop in
model capacity, which is why fine-tuning the model after pruning is crucial. It is important to note that
the two final steps can be iterated more than once, up until the performance is acceptable. Because of
this, such methods can require a longer training time than usual, since they could need many cycles of
pruning and fine-tuning [65].
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3.3.4 Fusion of Pruning with Other Compression Methods

While pruning is one of the most popular compression techniques, in later years there has been extensive
research in enhancing it by combining it with the other model compression techniques. This includes the
methods discussed in Section 3.2, meaning quantization, tensor decomposition, knowledge distillation,
and neural architecture search (NAS). The fusion explores different forms of redundancy in deep neural
networks, broadening the range of available strategies, as well as enabling distinct methods to complement
each other, providing their joint advantages and covering each others gaps [15], [36].

Pruning and Quantization is the most common combination in literature, used to reduce both
the parameter count and the precision of weights. While pruning removes unimportant connections or
structures, quantization compresses the remaining weights to lower bit-width representations. Han et
al. [31] demonstrated that combining pruning with 8-bit quantization could achieve compression rates of
up to 49x without significant loss in accuracy on models such as AlexNet [49].

Pruning and Tensor Decomposition explore the redundancy in both weights and structure.
Pruning eliminates unnecessary connections, while tensor decomposition methods reduce the dimension-
ality of weight tensors. For example, Li et al. [57] propose CC (Compressible Convolution), in which
channels are pruned according to their relative importance, while the weight tensors are decomposed
using Tucker decomposition. This encourages both sparsity and low-rank, leading to models that are
not only more compact but also more computationally efficient without compromising performance.

Pruning and Knowledge Distillation (KD) are often combined to preserve accuracy during
compression. Pruning removes redundant parameters to reduce model size and computation, but in
extreme sparsity ratios can drop performance significantly. KD compensates for this loss by transferring
knowledge from a large, unpruned teacher model to the pruned student. Chen et al. [13| proved that
this method allows the model to regain lost performance much better than simply fine-tuning it after
training. Park and No [74] propose the opposite by pruning the teacher model rather than the student,
in order to make it more transferable and then distill its knowledge onto the unpruned but significantly
smaller student.

Pruning and Neural Architecture Search (NAS) can also be combined to create inherently
compact networks. Rather than starting with a large model and pruning it, NAS explores architectures
under sparsity constraints to discover efficient subnetworks directly. Some approaches, such as Once-
for-All (OFA) [12], jointly search and prune across multiple architectures to deploy lightweight models
for specific hardware constraints. A more straightforward approach is NPAS [58], which adds pruning
algorithms to the search space to find the best possible combination of CNN architecture and pruning
method. Similarly TAS [22] also adds pruning into the search space to obtain an already pruned network,
with the addition that this network will then benefit from knowledge distillation techniques.

3.4 Feather and Relevant Work
3.4.1 Unstructured Magnitude-based Dense-to-Sparse Modules

One of the most influential and intuitive works in this area is Gradual Magnitude Pruning (GMP),
introduced by Zhu and Gupta in 2017 [105]. GMP progressively removes the weights with the lowest
magnitude by using a cubic sparsity scheduler, enabling a smooth dense-to-sparse transition throughout
training. Its simplicity and generality have made it a reference point for many subsequent pruning
strategies.

GMP removes weights with the smallest magnitudes by employing a hard-thresholding operator. This
process is non-differentiable and relies on a fixed pruning schedule and threshold, which may not adapt
optimally to the training dynamics. To combat this, STR [50| was proposed, introducing a differentiable
soft-thresholding function applied via reparameterization, allowing the sparsity threshold and the weights
themselves to be learned jointly through gradient-based optimization. STR encourages weights to shrink
smoothly toward zero during training rather than abruptly removing them, thus enabling the network
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to adaptively discover which weights to prune. As a result, STR often leads to more stable training and
better retention of model accuracy compared to the stepwise, magnitude-based hard pruning strategy of
GMP.

ST-3 [93] improves the STR by addressing the gradient flow issues around the thresholding operation
more effectively. While the STR uses a soft-thresholding function that is differentiable, it can still
suffer from vanishing or very small gradients near the threshold, which can limit how well the network
learns under sparsity constraints, thus reducing model accuracy. ST-3 incorporates a Straight-Through
Estimator (STE) [7], which allows gradients to flow freely during backpropagation. Additionally, the
ST-3 employs a rescaling mechanism that dynamically adjusts weight magnitudes to maintain model
efficiency even as pruning progresses. This combination results in more stable and efficient training,
learning sparser models with less accuracy loss compared to STR.

The Feather [27] module, studied in this thesis and further discussed in Subsection 3.4.2, also follows
the dense-to-sparse paradigm. It applies an STE-compatible pruning mechanism with custom gradient
scaling and thresholding. While based on GMP’s magnitude principle, Feather introduces innovations in
scheduling and differentiability that improve training stability under extreme sparsity.

Spartan, introduced by Tai et al. [89], offers a different approach by proposing a differentiable sparsity
mechanism based on optimal transport theory. Spartan defines a sparse mask through a regularized
optimal transport problem and employs dual averaging to stabilize learning under sparsity constraints.
Unlike dynamic methods, Spartan uses soft top-k projection for differentiability while enforcing hard
sparsity in the forward pass. Compared to STR and ST-3, which focus on soft-thresholding mechanisms
to induce sparsity, Spartan’s optimal transport framework provides a more global and theoretically proven
approach to sparse training.

Magnitude Attention-based Dynamic Pruning (MAP) is one of the latest developments in this area,
proposed in 2025 [4]. It comprises of two phases, the exploration and the exploitation. The exploration
phase utilizes dynamic sparse training by introducing an attention mechanism based on the weight
magnitude. Most pruning methods use magnitude as a means to create a binary pruning mask M,
but MAP creates a continuous-valued magnitude attention mask to train with important weights. This
method still allows updates to unimportant weights without using the STE. In the middle of training,
the exploitation phase is initiated, in which the sparse structure freezes and the method focuses on
optimizing only the most relevant connections. This combination offers enhanced results compared to
other methods.

3.4.2 Feather

Feather [27] is a magnitude-based, unstructured sparsification module that efficiently prunes weights
during training. As shown in Figure 3.5, Feather operates by employing an improved version of the
straight-through estimator (STE) [7] that incorporates a novel thresholding operator and gradient scaling
mechanism to enhance model sparsification. Feather’s pruning process is dense-to-sparse, gradually
introducing sparsity during training using a cubic scheduler [105].

Feather achieves SoA results compared to similar modules throughout different training models, espe-
cially in extreme sparsity ratios such as 98% and 99% while using both a global magnitude pruning
framework [105] and a layer-wise one [78].
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Figure 3.5: Feather Module. From [27]

STE Thresholding Operator

Using the STE Feather as well as several SoA modules in unstructured pruning achieve high performance
in sparse training. Sparse training with the STE involves applying the pruned version of the weights
during the forward pass, and the unpruned during the backward pass. This is achieved by treating the
thresholding function Pz (where T' denotes the pruning threshold), which performs the pruning, as an
identity function when computing gradients. As a result, the gradients flow through the pruned weights
as if no pruning had occurred. This allows the model to successfully sparsify the model while still keeping
the advantages gained from a fully dense optimization process.

wy = Py (wy)

P {szgn(w) “{/|wp =TP |w| >T
() =

0 otherwise
W41 = WK — 1N Vﬁ(’lf]k)

Instead of employing soft or hard thresholding, Feather chooses the approach of balancing between the
two as proposed by several works [30], [61]. To achieve this, the operator Py uses p = 3. When p =1
we have the soft version and the higher the value, the harder the thresholding operator becomes, as is
evident in Figure 3.5.

STE and Gradient Scaling

During each training iteration, Feather computes a binary pruning mask applied to the forward pass
for each layer. As the sparsity target ratio increases to more demanding values (98% or 99%) the mask
destabilizes, resulting in lower performance. Feather proposes gradient scaling as a way to stabilize these
pruning masks in the latter training epochs. During the backward pass, the gradients of the pruned
weights are scaled by a constant 8 € (0,1). It is proposed that § = 1 for targets less than 95% and
0 = 0.5 otherwise, a selection which seems to work mostly well. The gradient scaling parameter is kept
constant during training and is established at the beginning of training based solely on the final target.
The same value is maintained for all layers of the training model throughout the training process, while
the weights are now updated using the following equations:

Wiyl = W, — N - my © VL(Wy)

Where my, € {0,1}" such that m; = 1 if w;p, > T and m; = 6 if w; < T, with ® denoting
element-wise product.
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4.1 Introduction

In Feather [27], gradient scaling is proposed as an alteration to the backward pass of the Straight-Through
Estimator (STE) [7] to stabilize the pruning masks in the latter training epochs. During the backward
pass, the gradients of the pruned weights are scaled by a constant 6 € (0,1). It is proposed that § = 1 for
targets less than 95% and 6 = 0.5 otherwise, a selection which seems to work mostly well. The gradient
scaling parameter is kept constant during training and is established at the beginning of training based
solely on the final target. The same value is maintained for all layers of the training model throughout
the training process, while the weights are now updated using the following equations:

W1 = Wi — 1 - My, © VL(Wg)

Where my, € {0,1}" such that m;, = 1 if w;, > T and m;y, = 0 if w;x < T, with © denoting
element-wise product.

In several cases, as shown in Figure 4.1, the best scaling is neither 0.5 nor 1, but 0.75. This points
towards an existing function that can calculate the optimal gradient scaling parameter and reach the
best possible final accuracy. This chapter aims to identify this function, which will calculate the best
possible 8 throughout the training process.

90% Sparsity 95% Sparsity 98% Sparsity 99% Sparsity
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Figure 4.1: Effect of gradient scaling in Feather [27]

Instead of using a single static parameter, we propose a dynamic scaling function that adapts the gradient
flow depending on the training stage. The proposed method changes the scaling value over time, allowing
larger gradients to flow early in training and gradually scaling with a lower value the gradients from
pruned weights as sparsity increases and the network stabilizes.

The aim of this dynamic scaling function is that it can both help stabilize the pruning mask during later
epochs while also allowing a greater gradient flow during early training. This theoretically could improve
final model accuracy, since the gradients will be updated as needed throughout training. Additionally,
we explore both global and layer-wise applications of the dynamic scaling function to investigate whether
different layers may benefit from varying gradient sensitivities. The function’s adaptability provides a
principled way to incorporate training dynamics into pruning-aware optimization, filling the gap left by
Feather’s heuristic-based scaling.

The effectiveness of the proposed method is evaluated through experiments on ResNet20 [35], MobileNet
V1 [40] and DenseNet40-24 [41], all trained on the CIFAR-100 [48] dataset. The results indicate that our
dynamic gradient scaling approach consistently outperforms the original Feather configuration especially
at high sparsity levels. It also becomes evident that the final 6 value is close to the ones shown in the
ablation study of Figure 4.1.
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4.2 Proposed Method

4.2.1 Function Selection

We propose a method for calculating the optimal # during training based on the density of each layer
at each training iteration. The module is modified to be able to set a different 6 for each layer, which
is calculated in each training iteration based on a suitable function. Specifically, we chose the function
family of f(z) =1+ « - In(x), where x is the layer density.

1+ aln(x)

1.0

0.8

0.6

Gradient Scale

0.4 1
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0.0 0.2 0.4 0.6 0.8 1.0

Density

Figure 4.2: Function 1 + a - In(density) for different a

The function form was selected based on observations during training that for low sparsities, the gradients
do not need to be scaled, making § = 1 preferable. When large sparsities are reached, # must drop
significantly the larger the target sparsity, which was observed with the original Feather module. The
issue was that this crude selection of the scaling parameter based on the target resulted in some models
reaching lower accuracy than possible since some cases needed a scaling of 0.75 rather than 1 or 0.5.

The proposed function aims to calculate the best possible gradient scaling parameter during training to
achieve the best possible accuracy in each case.

4.2.2 Selection of o

In preliminary experiments, the objective was to identify an ideal function that would yield the best
possible result for any given sparsity target ratio. Nevertheless, it became evident that different rates
gave optimal results for different target ratios. More specifically, the higher the target, the larger « the
function required. This led to the conclusion that higher targets required a much steeper decline in 6
earlier in the process to stabilize the sparsity mask efficiently, whereas lower targets performed much
better when the gradient scaling parameter remained closer to 1, meaning that the drop should happen
in sparsities well higher than the targeted one.

To determine the optimal o parameter, several experiments were run for 30 epochs instead of the standard
of 160. In Figure 4.3, the experiments for ResNet-20 are shown for two targets of 95% and 99%. Accuracy
alone, however, proved to be an inconclusive performance metric, especially for the 95% target, where
no discernible pattern emerged to identify the optimal parameter range. For this reason, the results in
Figure 3.5 were utilized, and as such the combination of accuracy and final 6 yielded the ideal range for
the optimal a. By identifying the range where accuracy was high enough while the final average 6 was
closely aligned to the one provided in Feather’s ablation studies, a few key a values were selected for
further testing at 160 epochs.
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Figure 4.3: Effect of different functions at ResNet-20 for a 30 epoch training in final accuracy
and 6

As such, by finding the best possible « for each target sparsity analyzed in Feather (95%, 95%, 98%,
and 99%), the results were mapped to create a function for calculating o based on the target sparsity S,
which is set before the training even begins. It is interesting to note that for a target of 90% sparsity,
there was no suitable parameter o, suggesting that the initial # = 1 is the optimal “function”. For that
reason, it was set as a = 0, which yields the constant § = 1 throughout training.

By the four defined sparsity target ratios, the following tangent function was calculated:
a(S) =0.026 - tan(23.09 - S + 22.08) + 0.093

To encourage generalization and consistency across all possible target sparsity ratios over 90%, including
those not explicitly tested during experimentation, « is rounded to two decimal places. This minimizes
the risk of overfitting to specific targets and ensures that negligible differences between targets do not lead
to large variations in the function’s behavior. This standardization maintains robustness and scalability
for applications where the model may encounter sparsities not tested either on the original Feather
module or in this study.

In Figure 4.4, the function for calculating the best « is shown, with the tested ratios highlighted. As
expected, there are target sparsity ratio families, where for a group of different ratios the same parameter
is selected. For the four targets tested the resulting gradient scaling function is also shown, providing
visualization of the rate at which 6 ought to drop.
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Figure 4.4: Opimal « function with the tested sparsity targets highlighted alongside the
produced optimal gradient scaling function

4.2.3 Global and Layer-wise Approaches

The function was tested using two approaches, a layer-wise one and a global one. In the layer-wise
approach, 6 is calculated for each layer based on the calculated optimal function and updated indepen-
dently for each layer. In the global approach, there is one further step in which the average is calculated
across all layers, which is then applied at every layer.

4.3 Experimental Evaluation
For the evaluation of the modified module, we experiment on the three architectures tested on Feather,

ResNet20 [35], MobileNet V1 [40] and DenseNet40-24 [41] on CIFAR-100 [48]. The training hyperpa-
rameters used in all experiments are presented in Table 4.1

Epochs 160
Batch Size 128
Weight Decay 5-1074

Learning Rate 0.1
Optimizer SGD
LR Scheduler  Cosine
Momentum 0.9

Table 4.1: Training Hyperparameters

4.3.1 Global and Layer-wise Approaches

The layer-wise and global methods performed similarly well at lower sparsity levels, either exceeding or
keeping up with the original Feather results. However, a disparity in accuracy was observed for high
target sparsity ratios. The global approach showed superior performance. This difference is caused
by the fact that when a layer reaches a sufficiently high sparsity, the gradient scaling parameter drops
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significantly because of the nature of the selected function. With 6 reaching values as low as 0.05, as
shown in Figure 4.5, pruned weights decay significantly, offering great stability to the mask, but hindering
training in the process. This results in the model having under-trained layers, which, even if they are
few in number, cause a drop in accuracy. The effect of this is reduced global accuracy at the end of
training, yielding results worse than originally achieved.

This is more prevalent in DenseNet40-24, which has the fewest trainable parameters by a wide margin.
Under-trained layers can prove catastrophic, yielding much lower results than Feather. It is interesting to
note that while MobileNet also excibits layers with a very low 6 value just as the other models, the effect
is minimized, giving good results within the margins of Feather and, in some cases, even better. That
might be due to the fact that those layers have one hundred times more parameters than the equivalent
layers in other models, resulting in a much larger amount of trainable parameters.

However, this issue with the layer-wise approach could prove to be a limitation of the proposed function
rather than a general problem, and a more carefully designed one could bypass this collapse issue,
something that remains an open research question for future work.
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Figure 4.5: Final achieved 6 and sparsity for each layer in each model for a target of 99%
sparsity with the layer-wise updating approach

The global update of the parameter minimizes this problem, as the average value of 6 takes into account
the density variations between all layers, ensuring better performance and generalization. With this
method, no layer has a 6 with an extremely low value, resulting in the layers being pruned more efficiently
achieving acceptable ratios without hindering parameter training. In Figure 4.6, the difference between
final 6 with each approach is highlighted. For the layer-wise approach, the average of all layers was
calculated and was shown to generally reach a lower value, pointing toward the fact that some layers,
more so in smaller models, get over-pruned when the gradient scaling parameter is too low.
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Figure 4.6: Average 6 for both approaches for all tested models and target sparsity ratios

Figure 4.7 visualizes the importance of a different optimal global 6 for different models while targeting
the same final sparsity ratio of 99%. In MobileNet, many layers do not reach very high sparsity levels,
resulting in a better performance with a higher average 6. On the other hand, DenseNet achieves the
desired sparsity level more consistently across its layers, with even the most dense layers having little
deviation from the target, therefore requiring a lower 6 to ensure effective training. ResNet also achieves
the desired sparsity in most layers, having a few with a more significant difference than DenseNet, but
still at acceptable levels. This results in an average 6 between the two other models, but closer to the
lower end. This behavior aligns with what the ablation studies concerning gradient scaling presented in
Figure 3.5, where MobileNet demonstrated its top performance when using a higher 6 at sparsity targets
of 95% and 98% compared to other models. Figure 4.8 shows the different gradient scaling parameters
achieved throughout training with a global 8 updating approach for all three models for all three target
sparsities. It is evident that after reaching the target sparsity ratio at the 80th epoch, 6 converges to its
final value.
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Figure 4.7: Achieved sparsities for a target of 99% per layer for each tested model with the
global updating approach
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Figure 4.8: Gradient scaling evolution per epoch for each tested model with the global
updating approach

4.3.2 Comparison with Feather

The results suggest that gradient scaling is insignificant for low sparsities, causing a significant change
only after reaching a certain point. The optimal # is not needed from the beginning of training and
pruning, but can rather be computed while training and pruning the model. The optimal value is
reached when the model reaches the target sparsity ratio.

The results for the global updating method also show a small but consistent improvement compared to
the original performance, even if the final 8 is equal to the module’s set. This suggests that calculating
the gradient scaling parameter during training results in having a sufficiently high 6 value during early
epochs with lower sparsities, allowing the model to learn more efficiently before being pruned to extreme
ratios.

It is interesting to note that the larger the model, the smaller the performance gap between the two
approaches. Notably, for MobileNet V1 the layer-wise approach surpasses the global one for targets of
95% and 98%, while being very close for the 99% sparsity target ratio. In contrast, for the smallest of
the three models, DenseNet40-24, the gap in all cases is significant. This implies that for even larger
models, a layer-wise approach will be preferable.

Table 4.2 provides the results obtained during our experiments in CIFAR-100 compared to ST-3 [93],
Spartan [89] Feather. The experiments were run with the exact same training parameters for 160 epochs.
The results, as with Feather, are the averages of three runs with the corresponding standard deviations.
It is important to note that calculating the 6 value at each iteration did not impact training time.
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Ratio 90% 95% 98% 99%
ResNet-20 (1.096M Params): 73.59 1044

ST-3 72.8140.13 71.7240.20 67.5340.53 98.3240.17

Spartan 72.56+0.35 71.60+0.40 67.2710.14 61.7040.21

Feather-Global 73.74 1017 72.53 +0.32 69.83 +0.14  65.55 1995

Feather with best 8 73.74 117 72.67 +031 69.83 41014 65.55 +0.95
"~ Global Theta  73.74 1917 72.77 1030 70.04 1013 65.75 1008

Theta per Layer 73.74 1917 72.66 1011 69.54 1900 64.94 4034

MobileNetV1 (3.315M Params): 71.15 1g.17

ST-3 70.94.19.05 70.44 4023 69.4040.06 66.6310.15

Spartan 70.5240.51 69.0140.11 65.5240.94 60.650 92

Feather-Global 71.55 +0.30 71.03 +0.20 69.44 +0.29 67.64 40.45

Feather with best # 71.55 1930 71.03 1020 69.89 1907 67.64 1945
"~ Global Theta  71.55 1930 71.22 1920 70.04 1024 67.73 1018

Theta per Layer 71.55 4+0.30 71.33 +0.12 70.29 +0.58 67.64 +0.31

DenseNet40-24 (0.714M Params): 74.70 1051

ST-3 72.560.31 71.2149.35 65.48.10.18 56.1810.60

Spartan 73.13+0.25 71.6140.04 65.941¢.07 58.6410.18

Feather-Global 73.75 +0.36 72.36 +0.21 69.06 40.23 63.40 40.44

Feather with best 8 73.75 1036 72.93 1053 69.06 1923 63.40 1044
"~ Global Theta  73.75 1036 72.92 1004 69.13 1010 63.54 1037

Theta per Layer 73.75 +0.36 72.53 +0.09 68.72 40.31 61.93 40.35

Table 4.2: Top-1 accuracy in CIFAR-100

For further clarity on the optimal values 6 and the evaluation of the results summarized in Table 4.2, a
visualization is provided. In Figure 4.9 the experiments with the proposed function updating 6 globally,
highlighted in red, are presented in comparison to Feathers’ previous ablation studies in regards to the
gradient scaling effect, while also giving the optimal 6 value. As intended, the optimal 6 falls close to
the value identified in the previous study consistently.
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Figure 4.9: Final results of the global approach over Feather
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4.3.3 Experimental Evaluation for Untested Sparsities

Since optimal functions were derived from four sparsity target ratios but built to work universally, it
was necessary to test whether they worked for different targets. The tests were run only for the global
method, since it had the best results overall and it was needed to see whether the function operates
as expected throughout all targets and models. The results shown in Tables 4.3 and 4.4 validated this
assumption, as it is shown that for every possible combination, the globally updated 6 achieves the
highest results. When reaching very extreme sparsity ratios, the difference becomes even more evident,
with accuracy exceeding the original one by even almost 4%.

In Figure 4.10, we provide all the final global § values calculated for each combination of model and
target sparsity, showcasing the optimal gradient scaling for each.

Ratio 92% 94% 97%

ResNet-20 (1.096M Params): 73.59

Feather 73.07 +0.40 72.73 +0.05 71.18 +0.43
Global Theta 73.25 1908 72.91 1012 71.29 4006

MobileNetV1 (3.315M Params): 71.15
Feather 71.45 +9.09 71.01 4912 70.14 +o.46
Global Theta 71.51 40.24 71.26 +0.08 70.85 +0.29

DenseNet40-24 (0.714M Params): 74.7
Feather 73.28 1017 72.84 1016 70.85 +0.10
Global Theta 73.38 10937 73.07 1019 70.89 4030

Table 4.3: Comparison for previously untested target sparsity ratios

Ratio 99.2% 99.5% 99.8%

ResNet-20 (1.096M Params): 73.59

Feather 63.13+0.34 57.5240.34 39.80+0.50
Global Theta 63.58:&0.32 58.49:|:0.14 43.24:|:0.57

MobileNetV1 (3.315M Params): 71.15
Feather 66.62;&).22 62.96:‘:0.42 50.71:‘:0.09
Global Theta 66.41i0,23 63-04i0.28 52-47i0.29

DenseNet40-24 (0.714M Params): 74.7
Feather 60.53i0,31 53.5210.24 34.8610.54
Global Theta 61.01:|:0.38 55'20:|:0.16 38.34;&0_14

Table 4.4: Comparison for very large target sparsity ratios
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Figure 4.10: Final globally updated 6 for all models and target sparsity ratios

4.4 Conclusions

In this chapter, we introduced a dynamic gradient scaling function designed to improve upon the fixed
scaling parameter used in Feather. By employing a logarithmic function dependent on layer density and
adapting the function’s slope on the target sparsity, the scaling parameter  can now be computed con-
tinuously during training. This approach addresses the limitations of Feather’s static scaling, providing
greater flexibility and adaptability to different sparsity targets.

Two approaches where evaluated, a layer-wise one and a global one. While they both perform well at
lower sparsity levels, the global approach proves to be better and more robust at higher sparsity targets.
By averaging 6 across layers, the global method prevents the over-pruning and under-training observed
in the layer-wise method, especially in smaller models like DenseNet40-24.

Compared to the original Feather module, the proposed method demonstrated small but consistent
improvements in performance. These improvements are based on the fact that a higher 6 value early
in training allows higher gradient flow with the STE operator, enabling more effective learning before
entering the aggressive pruning phases.
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5.1 Introduction

As DNN pruning reaches extreme sparsity levels, such as 98% or 99%, performance presents significant
drops in accuracy and stability (Figure 5.1). This could be dependent on the variability of the pruning
masks M, which are binary matrices that determine which weights shall be kept (1) and which pruned

(0).

In many pruning frameworks, including Feather [27], the sparsity level increases according to a predefined
schedule, such as the cubic one proposed in [105], regardless of the network’s training state or the stability
of its sparsity mask. While this scheduler is more than effective for moderate pruning levels, when
concerning extreme sparsity ratios they seem to reach the target too fast too soon. As a result, pruning
masks may differ significantly between consecutive training iterations, suggesting that the network has
not settled into a stable sparse pattern.

This chapter introduces an adaptive pruning scheduler function family, by which each possible configu-
ration dynamically adjusts the pruning rate based on the observed stability of the pruning masks. This
means that at each training iteration the scheduler measures how much the pruning masks change. To
quantify mask stability we use the Jaccard Similarity Index, which measures the overlap between con-
secutive pruning masks. When the stability of the mask appears rises, this means that an acceptable
stability is reached and the scheduler allows pruning to proceed more confidently. When drops in stability
are detected, pruning is paused to give the model more time to stabilize.

Through experiments on architectures such as ResNet20 [35], DenseNet40-24 [41], and MobileNet V1 [40]
trained on CIFAR-100 [48] we evaluate the proposed scheduler’s effect on accuracy, mask stability, and
overall pruning efficiency. The results demonstrate that incorporating a feedback-driven adjustment
mechanism can help maintain model quality even under extremely high sparsity ratios, as long as the
schedulers hyperparameters are chosen correctly.

5.2 Mask Stability and Performance

In this section we will quantify this destabilization from training iteration to training iteration, providing
a more definite connection between drops in accuracy and mask stability. First, we present the metric
used to calculate the similarity between subsequent masks. Then we define mask stability while presenting
the correlation between this stability and the performance.

5.2.1 Jaccard Similarity Index and Mask Stability Definition

The Jaccard (or Tanimoto) similarity index J(A, B) is a statistical measure of similarity between two
sets A and B. Mathematically it is defined as the size of the intersection of the sets divided by the size
of their union.

The Jaccard index ranges from 0 to 1, where 0 indicates no similarity and 1 signifies that the sets are
identical. Unlike other similarity metrics, Jaccard similarity does not account for element frequency,
making it ideal for binary or categorical data, which is why it is widely used in tasks like text analysis
and image recognition.

The sparsity mask of a layer is a matrix containing only binary elements (0 or 1), pointing towards which
weights shall be retained (1) and which shall be pruned (0) at each training iteration. As such, we can
define the mask stability p;  of a layer [ in an iteration k of two subsequent masks M; ;1 and M, as

their Jaccard index:
My 0 My

,U/l,k = J(Ml’kflaMlvk) - m

5.2.2 Performance Evaluation

Feather employs a cubic pruning scheduler [105], which prunes the model aggressively at the beginning
where the targets are low enough, and smooth when reaching the final target.
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We train ResNet20 [35], MobileNet V1 [40], and DenseNet40-24 [41] for 160 epochs along with the
Feather sparsity module with a target sparsity ratio of 99%, which is the most demanding one and the
one presenting the biggest drops in performance. Along with training, we calculate the mask stability
w1,k for each layer [ at each iteration £ and then receive the average py,. Figure 5.1 presents the accuracy,
the average mask stability ui as well as the sparsity ratio at the end of each epoch for all three models.

It is evident that when very large sparsities are achieved, the mask stability drops significantly, which
means that the pruning masks get too destabilized. This results in a significant drop in accuracy (in the
cases of ResNet20 and DenseNet40-24), creating a local minimum close to the epoch where 99% sparsity
is reached.

MobileNet V1 in general retains a high enough stability, which results in a small drop and by far the best
performance, with an average accuracy of 67.64%. This is attributed to the fact that MobileNet, having
by far the most parameters, retains a large amount of weights even after pruning excessively, which can
then be trained. DenseNet40-24 has the least amount of parameters, which means that after pruning
there are too little of them, resulting in a large drop in stability and an average accuracy of 63.40%, with
ResNet20 having similar issus and achieving 65.55%.

This correlation between mask stability and performance points to the possibility of designing an adaptive
pruning scheduler, which provides the model with the target sparsity ratio to achieve based on the average
mask stability.
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Figure 5.1: Accuracy, average mask stability, and model sparsity achieved per training epoch
with a target sparsity ratio of 99% for ResNet20 (blue), MobileNet V1 (orange) and
DenseNet40-24 (green)
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5.3 Proposed Method

Since it was made evident that sparsity, performance, and mask stability are closely related, in this
section, a simple, experimentally derived adaptive pruning scheduler is proposed. The scheduler is based
on the average mask stability difference between two consequent training iterations.

5.3.1 Mask Stability Difference

While the average mask stability value uy of a single iteration k can offer important information about
the pruning and accuracy state, it requires previously set limits. A predefined limit must be set, by
which if the stability falls under it indicates drops in performance. This is why for this work we chose to
employ the difference between two consequent iterations, something that shows whether overall stability
drops, rises or remains steady. Usually large drops indicate that a high enough sparsity is reached, which
translate to big drops in overall performance. On the other hand, a large increase translates to the model
adapting to its current sparsity, and indicates that it is able to reach even higher values.

This difference between two iterations, denoted as pir+1 — g, can be used with proper scaling to calculate
the k + 1 iteration’s desired sparsity. The proposed function is

Sk+1 =Sk + X (pg+1 — pg)

where Sk is the calculated sparsity desired in this iteration, Sy is the sparsity previously achieved and
A a scaling factor which will be discussed further in the next section.

This function ensures that when stability rises, the target sparsity rises accordingly, as the model is now
able to handle such change. When stability drops or remains steady, the model has not yet adapted to
the current sparsity level, which is why the scheduler keeps the pruning ratio to a steady state.

Figure 5.2 visualizes the mask stability differences for 1000 iterations based on the training task presented
in 5.1.
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Figure 5.2: Difference between consecutive average mask stabilities per iteration

5.3.2 Scaling Factor

After experiments it became evident that when g1 < pg, the best approach is to completely freeze
the pruning process, giving the model time to fully adapt to the current sparsity level. This means that
when the average mask stability drops or remains the same, the scaling factor will be set to 0.

In the case of mask stability rising we add this difference to the previous ratio. There are two factors
that must be taken into account when choosing the proper scaling function. First, it must scale the
difference accordingly to the sparsity’s order of magnitude to ensure that the sparsity rises smoothly
during training, neither too fast nor too slow. The second factor is that for very high and therefore
challenging sparsities the scheduler must be able to slow down, diminishing the stability difference’s
effect considerably. This role falls on the scaling factor because as seen in Figure 5.2 the differences in
mask stability are relatively close in absolute values throughout training. Keeping the same magnitude
for large sparsities can cause even larger drops in performance, which is why it is crucial to scale the
difference accordingly.
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Modeling the properties described above with a function leads to the selection of a sigmoid function. The
sigmoid function family has the ability to keep a steady scaling value for a wide range of lower sparsities,
and then smoothly drop the value the larger they become, rendering it ideal for this task. The general
form of the proposed function is as follows:

A
A(Sk) = 1+ e—C(B=5k) +D

A is the constant that determines the scaling of the stability difference for low sparsities, B determines
at which sparsity the difference will be at the midpoint of the drop, C' is the slope and D a bias term
to make sure the A value does not fall below 0 as well as adjusting the curve to the behaviors of each
model’s stability. This is necessary since each model presents different drops and rises in mask stability,
as shown in Figure 5.1.

5.3.3 Total Iterations Scaling

The experiments to determine the proper scaling function and its constants were conducted for a total
training of 160 epochs, something which means that the scaling factor is proportional to the iterations
of this training time. The order of magnitude of the sparsity added during each iteration is determined
directly from the fact that it must happen at most in 160 epochs. Nevertheless, the scheduler should
adapt to all possible amounts of training epochs, which is why we introduce one more scaling value {:

,_ 160
~ |epochs|

This constant manages to compress or expand the adaptive scheduler’s form in such way that it performs
as expected in all cases, adding a proportional value of sparsity during each training iteration.

5.3.4 Proposed Scheduler Constants

The final experimentally derived scheduler is described as follows:

g Sk +1-A(Sk) - (Brg1 — pr) a1 > Pk
k1 =
Sk et < g

For the experiments conducted to evaluate the performance of the scheduler we choose two vastly different
a(Sk) functions, to showcase the different behaviors that can be achieved and the different effects they
present in both accuracy and stability. The two selected functions are:

0.5

A1 (Sk) = 1 + ¢—20(0.80—5y) +D
0.3

X2 (Sk) = +D

1+ e—75(0.91—Sy)

As mentioned in a previous section, the bias term D differs between different models, something that can
be attributed to the different scaling of the average mask stability. For example, as shown in Figure 5.1,
MobileNet V1 is a much more stable model, presenting much smaller drops and rises compared to the
other two models. With the same bias term it would either reach the target sparsity too late in training
or never at all. The bias term aims to adjust the scheduler to the model’s overall stability behavior. For
A1(Sk) the bias term is D = —0.01 for ResNet20 and DenseNet40-24 and D = —0.007 for MobileNet
V1. The corresponding values for \2(S;) are D = 0 and D = 0.003. For future discussion, it would
be interesting to explore how to derive the D constant from the properties of the training model rather
than selecting a specific value for each model.

Figure 5.3 graphs the functions with the bias terms set to those of ResNet20 and DenseNet40-24.
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Figure 5.3: A values for all sparsity levels (a) and for very high ones (b). The second graph is
provided for clarity, as the first one does not show the differences for high sparsities

5.4 Evaluation

Figure 5.4 shows the performance of a ResNet20 model with a target sparsity of 99% both with the cubic
scheduler (black) and our proposed adaptive one (blue). From both the accuracy and stability graphs it
is evident that with the adaptive scheduler while the drops in performance are still prominent they are
less steep than before, giving a smoother appearance. This helps the model to become more stable and
therefore achieve a slightly higher accuracy, as shown both in the graph and in Table 5.1. However, the
overall stability seems to follow a similar pattern as the original one, showing no improvement.

It is also interesting to note that the model is able to reach certain sparsity levels earlier than previously
thought. For example, a sparsity of 90% is now reached at epoch 34 rather than 45. This causes a
minimal decrease in performance at that time during training and a small increase in stability, which
contribute to the overall smoothing of performance. The target of 99% sparsity is reached now at the
86th epoch rather than the 80th, which in combination with the earlier reaching of 90% results in the
model having more available iterations to train with very high sparsity ratios (> 90%).

This method of adaptive scheduling appears to be more beneficial for very extreme sparsity ratios, such
as 98% and 99% where the drop in performance during training was already quite significant. For lower
targets, performance is usually close to the original, with the exception of ResNet20 that reveals a drop
in 90% sparsity compared to cubic scheduling.
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Figure 5.4: Performance of all three models with a target sparsity of 99% with a cubic
scheduler (black) and our proposed adaptive one (blue, orange and green) using A1 (Sy) for
scaling

Figure 5.5 shows the performance of the same model with the second adaptive scheduler, as a response to
the fact that the stability with the first one shows little improvement. In this case, both the accuracy and
the stability keep a remarkably high value throughout training, only slightly dropping when the target
of 99% is reached at the 117th epoch. This drop however, despite being considerably smaller than usual,
happens too late into the training process which results in the performance never recovering, rendering
a final accuracy lower than the one achieved with a cubic scheduler.

Since this scheduler reaches the target further into the training process than before, it seems to perform
better for lower targets, such as 90% and 95%. In the case of 98% sparsity it also appears to barely
surpass the performance of the cubic scheduler in all three models. However, in 99% there is a dramatic
drop in performance in ResNet-24 and DenseNet40-24, which happens due to the very late sparsity target
achievement. MobileNet V1 once again shows increased stability, which is why it is the only model to
surpass Feather with both schedulers.
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Figure 5.5: Performance of all three models with a target sparsity of 99% with a cubic
scheduler (black) and our proposed adaptive one (blue, orange and green) using A\ (.Sy) for
scaling

Table 5.1 presents all the available results. The first adaptive scheduler, using the scaling function A; (Sk),
has improved final accuracy over the cubic one. The scheduler increases sparsity only when a positive
trend in mask stability is observed, greatly rewarding the model for stabilizing its pruning mask. As
a result, the target sparsity is achieved earlier in the training schedule, giving the model more time to
fine-tune its weights under the final sparse configuration, thereby leading to better overall performance.

In contrast, the second adaptive scheduler with the As(Sk) function, adopts a more conservative approach.
It allows smaller sparsity steps, even when the model demonstrates stable pruning behavior. This strategy
ensures a higher average mask stability throughout training, but it often fails to reach the target sparsity
early enough. For higher sparsity targets the model lacks the time to fine-tune, which results in slightly
inferior accuracy. This highlights the fundamental trade-off between accuracy and stability in extreme
sparsities.

The findings confirm the necessity of adaptivity into pruning schedulers. By making pruning rate depen-
dent on real-time mask stability, the adaptive scheduler aligns more closely with the learning dynamics
of the model. The first adaptive scheduler is shown to be more effective when high accuracy and fast con-
vergence to sparsity are needed, while the second is better suited for applications where mask consistency
is crucial.
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Ratio 90% 95% 98% 99%
ResNet-20 (1.096M Params): 73.59 1044
ST-3 72.81+£0.13  71.724020 67.534053 58.32+0.17
Spartan 72.5640.35 71.6040.40 67.2710.14 61.7040.21
Feather 73.7441017 72534032 69.8340.14 65.5540.95

Feather with different schedulers
Adaptive Scheduler 1 73.48:|:0.32 72.56i0_12 70.03:|:0_09 65.72;&0_17
Adaptive Scheduler 2 73.70192¢ 72.694017 69.921¢3s 64.9310.21
MobileNetV1 (3.315M Params): 71.15 1017

ST-3 70.9440.05 70.4441903 69.404006 66.63+0.15
Spartan 70.5240.51 69.0140.11 65.524094 60.654099
Feather 71.5510.30 71.03+0.20 69.44 10 .99 67.6410.45

Feather with different schedulers
Adaptive Scheduler 1 71.56i0.20 71-23i0.29 69.75i0,03 68.04i0,19
Adaptive Scheduler 2 71.20:&0‘07 71.06:‘:0.19 70.02:|:0.30 67.77:‘:0.13
DenseNet40-24 (0.714M Params): 74.70 1051

ST-3 72561031 712140935 65.484018 56.1810.60
Spartan 73.134+0.25 71.614004 659441007 58.64+0.18
Feather 73~75:|:0.36 72.36:‘:0.21 69.06:‘:0.23 63.40:‘:0.44

Feather with different schedulers
Adaptive Scheduler 1 73-32i0‘12 72'13i0.12 69.14i0,14 63.68i0_37
Adaptive Scheduler 2 73.80:|:0_17 72.47;&0_20 69.10:‘:0.09 62.73:‘:0.15

Table 5.1: Performance using an Adaptive Scheduler for 160 epochs

Table 5.2 presents the results of all experiments with the first adaptive scheduler for 30 epochs rather
than 160, to evaluate the [ constant.

Ratio 90% 95% 98% 99%

ResNet-20 (1.096M Params)

Cubic Scheduler 69.77 099 67.874007 63.784030 58.4240.14
Adaptive Scheduler 1  69.291999 67.961030 63.941035 58.4810.08
Adaptive Scheduler 2 69.36i0‘18 67.60i0,30 63.71i0,23 58.67i0,44

MobileNetV1 (3.315M Params)

Cubic Scheduler 64.96:&0.19 64.41:|:0.25 61.47:|:0.31 57.73:‘:0,49
Adaptive Scheduler 1 64.98:|:0.33 64.21:|:0_08 61.76:|:0_31 57.87:|:0_39
Adaptive Scheduler 2 65.01199 64.47199 62.141971 57.79+0.47

DenseNet40-24 (0.714M Params)

Cubic Scheduler 69.49;&0‘14 67.0410‘40 62.07:&0.25 56.37:|:0.12
Adaptive Scheduler 1  69.561903 66.964920 62.27+014 56.3510.20
Adaptive Scheduler 2 69.5910.11 66.49:|:0.25 62.41:&0‘15 55-19:t0.08

Table 5.2: Performance using an Adaptive Scheduler for 30 epochs

5.5 Conclusions

In this chapter, we explored the relationship between pruning mask stability, target sparsity, and model
performance. We showed that as the sparsity target increases to very high levels (such as 98% and 99%),
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the pruning masks become destabilized, leading to significant drops in accuracy. This destabilization
could be quantitatively measured using the Jaccard similarity index, which allowed us to identify the
correlation between mask stability and performance.

Based on these observations, we proposed an adaptive pruning scheduler that adjusts the sparsity target
dynamically during training by using the difference in mask stability between consecutive training itera-
tions. We experimented with two schedulers from the same function family with very different constants.
The first adaptive scheduler demonstrated significant improvements for very high sparsity targets, such
as 99%, by reaching these levels more gradually and providing the model with more time to stabilize
at each stage. It did not manage though to keep the average stability high enough, which is why we
evaluated another scheduler. However, the second adaptive scheduler, while keeping the overall mask
stability high enough, presented drops in accuracy since in its task of keeping a high stability and a small
drop in accuracy it reached the target sparsity ratio too late in training.

The adaptive pruning scheduler provides a small solution for training in extreme sparsity levels. While
the first version of the scheduler showed improved accuracy in many cases, further research, particularly
for the scaling factor and bias terms, could lead to even better results, while also maintaining a high
enough stability and a smaller drop. Future work could focus on optimizing these constants and exploring
methods to derive the bias term without setting a new one for each model, while also testing the adaptive
scheduler with other pruning modules like ST-3 and Spartan.
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6.1 Introduction

Using the Straight-Through Estimator (STE) [7], Feather [27] as well as several SoA modules in un-
structured pruning achieve high performance in sparse training. Sparse training with the STE involves
applying the pruned version of the weights during the forward pass, and the unpruned during the back-
ward pass. This is achieved by treating the thresholding function P(7y, which performs the pruning,
as an identity function when computing gradients. As a result, the gradients flow through the pruned
weights as if no pruning had occurred. This allows the model to successfully sparsify the model while
still keeping the advantages gained from a fully dense optimization process. This results in much better
performance than discarding the pruned weights during backward passes. The weight updating and
thresholding equations are now as follows:

wy = Pery(wy)

Wiy = wi — 1 VL(Wy)

In Feather’s ablation studies it becomes evident that the use of the STE accounts for a difference in final
accuracy from 4% to more than 10% in contrast to not using it at all. This large success of the STE
points towards the fact that out of all the pruned weights, at least a small percentage of the largest ones
hold some significance.

This chapter aims to investigate this significance of the pruned weights. Beyond finding which pruned
weights help with accuracy, the potential computational benefit from eliminating a percentage of weights
completely from the training process is a central motivation. Providing the model with sparse gradients
during training could offer large reductions in training time and memory usage. If a subset of weights
can be entirely removed from the optimization process, this could mean fewer operations per iteration,
lower memory bandwidth usage, and reduced parameter updates.

The former possibility along with the success of the STE in enhanced performance motivates us to
understand whether the high accuracy enabled by the STE is uniformly necessary across all sparsity
levels or whether some portion of the weights is indeed redundant during both the forward and backward
passes. If such a threshold exists, it would imply that sparse training can be further optimized not just
for inference, but for training efficiency as well.

To prove the existence of this threshold and derive it, we design a set of ablation experiments on various
architectures and sparsity targets, assessing both global and layer-wise thresholding strategies. The
experiments involve dropping from the optimization process a fixed percentage of weights either from
the beginning of training or after the desired sparsity level is reached. The question is whether a threshold
exists under which the non-STE method can be safely applied and above which the STE is necessary.
This would suggest that a portion of weights is truly redundant and does not significantly influence the
model’s ability to predict classes accurately. To explore this, we analyze the significance of weights by
entirely removing varying percentages of them from the optimization process either from the beginning
of training or after the model reaches target sparsity.

6.2 Method of Evaluation

Feather determines the threshold T globally in each training iteration by receiving the target sparsity
from the pruning scheduler and sorting all prunable parameters across all layers. The threshold is then
calculated to meet the global target sparsity, uniformly distributing the desired sparsity throughout the
network. For the experiments conducted in this section, a new threshold ¢ must be calculated. This can
be achieved with two methods, where the threshold is either the same for each layer or unique, both
analyzed in Section 6.2.1. There is also the question of when the decaying will begin, as described in
Section 3.3.3. We consider two different timeframes, one where the decay starts straight away in the
beginning of training along the sparsification, and one where all weights are allowed to be updated up
until the desired sparsity is reached, after which the weights with the smallest magnitude are completely
excluded from the updating process.
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6.2.1 Thresholding
Global Threshold

The global pruning ratio in Feather is calculated at each iteration based on the desired sparsity ratio. For
these experiments, a further step is added, in which the desired global sparsity Sy € [0, 1] is multiplied
by a parameter p € [0, 1] that denotes the decimal fraction of weights dropped.

t=p- Sk
As such, Feather now calculates two global thresholds using the same function, one for sparsity S and

one for p- S. Gradients corresponding to values below the second threshold are not updated, effectively
decaying them and eliminating them from optimization. The backward pass is modified as shown:

Wy = Wi — 1 - My, © VL(Wy)

Where my, € {0,0,1}" such that m; =1 if w; p > T, mip =0 if t <w; p <T and m; = 0if w;p <t
with ® denoting element-wise product.

Throughout our experients, the global elimination threshold always converged to a specific value after
reaching the desired sparsity along with the pruning one.

Layer Specific Threshold

This threshold is based on the sparsity achieved by each layer Sjqyer 1 after calculating the global thresh-
old, rather than the global target. With respect to the global threshold, all weights with a smaller
magnitude get pruned. Since each layer has a different weight distribution, it achieves a different spar-
sity than the global one. The layer-specific threshold ¢, is now calculated by multiplying the [-th layer’s
achieved sparsity by the desired scale p € [0, 1] of the weights to be dropped.

ti=p-Sik

Then, as the Feather module operates, the algorithm calculates the corresponding threshold ¢; after
sorting all the layer weights. Thus, the backward pass is now represented as:

Wiy = Wi — 1 - My © VL(Wwy)

Where my, € {0,6, 1} such that Mmip =1ifw e >T,mp =0ift; <w;p <Tand my =0ifw;p <1
with ® denoting element-wise product.

Throughout our experiments and across all layers, the elimination thresholds always converged to specific
values after reaching the desired sparsity, along with the pruning one.

6.2.2 Timeframe of Weight Elimination
From the Beginning of Training

Initiating the weight elimination process at the beginning of training removes the smallest weights from
the optimization process at each iteration throughout the entire training period. However, this approach
risks premature loss of significant connections, as they are cut off before developing. This can limit the
model’s ability to learn optimal representations when considering large enough percentages of decaying
weights. On the other hand, for small percentages it could be beneficial, aiding with the generalization
ability of the model since it can prevent unnecessary connections from even being considered.

After Reaching the Desired Sparsity

This approach aims to mitigate the issue described above. It will allow the model to first develop all
important connections, whether pruned or not, before completely eliminating the most insignificant ones.
This will also improve training speed, since calculating thresholds at each iteration is computationally
heavy, therefore cutting the amount of calculations by half could mitigate the issue. By gradually decay-
ing these weights after reaching the target sparsity ratio, the model continues to update the important
parameters during the remaining training iterations while removing the least significant ones.
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6.3 Experimental Evaluation

The percentages of dropped weights that we evaluate in our experiments are 10%, 25%, 50%, 75%, and
90%. This percentage does not refer to the absolute amount of weights dropped, as it is relative to the
overall sparsity. For example, in the global threshold approach, if the sparsity is 95% and we drop 25%
of weights, 23.75% of all available weights is decayed instead of 25%. We also note the extreme cases
of 0%, in which the STE is not affected, and 100%, which is essentially the non-STE approach when
experimenting with the elimination of the weights from the beginning of training.

The training hyperparameters are those provided in Table 4.1 and run with ResNet20 [35], MobileNet
V1 [40] and DenseNet40-24 [41] with the CIFAR-100 dataset [48]. All results are the averages of three runs
with their corresponding standard deviations. We note that training time was larger than usual, since the
module calculates now more thresholds. However, the results hint to the possibility of introducing sparse
gradients to the backward pass, which could mean acceleration with suitable hardware and libraries. The
proof , however, of this is not in the scope of this study.

6.3.1 Ablation Studies

Figures 6.1 and 6.2 show the results for all percentages of weights dropped for all models and for each
target sparsity with decay occurring from the beginning of training. Figures 6.3 and 6.4 show the same
results with decay occurring after the model reaches the desired sparsity ratio.

Decaying Weights from the Beginning of Training

In some cases for both thresholding methods with the elimination happening from the beginning of
training, while it mostly does not affect the performance for low percentages, decaying some of the
weights can even be beneficial, achieving higher performance than the STE approach. This points to
the fact that many parameters are actually harming the model’s ability to generalize effectively, and by
decaying them from the training process the model is able to form more meaningful connections. Most
prominently, it benefits MobileNet V1, which is by far the largest network, something that suggests it
overfits.

For large percentages such as 75% and 90%, performance appears to drop significantly, as expected
since some significant connections that could develop in the course of training are prematurely cut. It
is interesting to note that for a target sparsity of 99% the accuracy drop is less significant, whereas for
90% the drop happens immediately.
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Figure 6.1: Ablation study on the effect of dropping a percentage of weights with a global
threshold from the beginning of training
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Figure 6.2: Ablation study on the effect of dropping a percentage of weights with a layer-wise
threshold from the beginning of training

Decaying Weights after Reaching Target Sparsity

When the least significant weights are eliminated from the training process after reaching the target
sparsity, the results change drastically as is obvious in Figures 6.3 and 6.4. In this case, the performance
is relatively steady throughout all dropped weights percentages up until the 100% mark, neither improv-
ing nor worsening the final accuracy. This come in contrast with the 10%-25% threshold in previous
experiments, where a rise in accuracy was observed and then an immediate drop. This is because now
the most important connections are allowed to develop during training, up until the target sparsity ratio
is reached. When the elimination happens, the eliminated pruned weights are truly the least significant.
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Figure 6.3: Ablation study on the effect of dropping a percentage of weights with a global
threshold after reaching the desired sparsity ratio
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Figure 6.4: Ablation study on the effect of dropping a percentage of weights with a layer-wise
threshold after reaching the desired sparsity ratio
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In the extreme case of excluding all the weights below the pruning ratio (the case of 100%) from the
optimization process a drop in accuracy is observed, which points to the fact that there are at least a
few weights (a percentage between 0% and 10%) with a magnitude near the threshold that hold some
significance in late training. Figures 6.5 and 6.6 show these experiments to figure out the threshold where
dropping those weights from the training process after reaching the desired sparsity negatively affects
performance.
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Figure 6.5: Further study on the dropping a extreme percentages of weights with a global
threshold after reaching the desired sparsity ratio
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Figure 6.6: Further study on the dropping a extreme percentages of weights with a layer-wise
threshold after reaching the desired sparsity ratio

6.3.2 Comparison

In Table 6.1 we present the best results achieved with dropping weights with the corresponding percentage
for all four possible combinations of methods and timeframes. Table 6.2 presents the percentage of
dropped weights were performance drops significantly. The significant drop is defined as the point at
which the average accuracy, along with the bounds determined by the standard deviation, no longer
overlaps with those of the model without any weight pruning. Together with the figures of the ablation
studies, these experiments yield interesting results for discussion.

Comparison of Timeframes

When weights are excluded from the optimization process right from the start, for small percentages
of decayed weights (e.g., 10% or 25%), the impact on performance is often minimal and in some cases
even beneficial. This suggests that early elimination of clearly unimportant connections might improve
generalization, particularly in overparameterized models like MobileNetV1. However, as the percentage
of decayed weights increases beyond 50%, the performance starts to degrade significantly. This is because
many of the weights that would eventually grow to be important are instead removed too early, preventing
them from forming important connections an maybe later being unpruned.
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When weights are decayed only after the model has reached its target sparsity, the results are far more
stable across different decay percentages. In many cases, the performance remains nearly identical to that
of the normal STE method, usually up until a very high threshold of weight decay (90-95%). This suggests
that most of the pruned weights truly hold little to no significance after sparsification has converged. The
drop in performance between 90-100% decay, however, indicates that a small number of these pruned
weights, mainly those near the pruning threshold, still contribute to the model’s performance when
allowed to be updated late in training. DenseNet40-24 presents a curious case, as it seems to have very
few pruned weights that hold any significance, with most cases presenting a drop in performance only
when more than 98% of the pruned weights are eliminated. This could mean that all of the important
weights were correctly identified during the training process. In the case of 90% and 95% sparsity and
the global threshold method, accuracy presents a minimal and insignificant drop, furthering the point
that the unpruned weights are truly the most significant.

Overall, this comparison strongly supports the conclusion that the STE’s advantage comes primarily
from allowing small, pruned weights to mature before being discarded. Weight significance is not only
determined by the magnitude. Therefore, aggressively discarding weights from the start risks hindering
the model’s ability to learn, while doing so after sparsity is achieved allows for a more reliable identifi-
cation of truly redundant weights. Even in that case though there are always some pruned weights that
hold importance. This could point to the existence of a more sophisticated function than the identity
used in the STE for the backward pass, possibly giving a different weight term to the gradients of each
pruned weight based on its significance.

Comparison of Global and Layer-Wise Thresholds

There is no consistent winner between global and layer-wise approaches. The global method seems
to outperform slightly when weights are dropped after reaching sparsity, while the layer-wise method
does better when pruning starts at the beginning. This might be due to the global threshold’s stricter
enforcement across all layers after reaching the desired sparsity, and the layer-wise method’s adaptability
to per layer sensitivity during early training.
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Ratio 90% 95% 98% 99%
ResNet-20 (1.096M Params): 73.59 1044
Feather (0%) 73 74:‘:0 17 72.53;&0 32 69 83:|:0 14 65 55:|:0 25

From the Beginning of Training

Global 73.19:|:0,11(10%) 72.48:|:0_12(25%) 69.86;&)_30(10%) 65.50:‘:0,17(25%)

Layer—wise 73'51:|:0.10(10%) 72.63:‘:0.21(10%) 6996i010(25%) 6540i016(10%)
777777777777777777777 After Reaching Sparsity

Global 73-90:|:0.09(10%) 72.61:|:0_29(50%) 69.75;};0_25(25%) 65.50:‘:0,01(75%)

Layer-wise  73.5040.00(10%)  72.3740.07(25%)  69.6810.00(10%) 65.56.10.05(75%)

MobileNetV1 (3.315M Params): 71.15 1017
Feather (0%) 71.55:‘:0_30 71.03;&0_20 69.44:|:0.29 67.64:|:0_45

7777777777777777777 From the Beginning of Training

Global 71.50i0.20(10%) 71.67i0.34(25%) 69.74i0.21 (50%) 6783i003(10%)

Layer-wise  71.631017(10%)  71.3140.13(10%)  69.72.40.08(25%)  67.48.10.15(10%)
777777777777777777777 After Reaching Sparsity

Global 71.70i0,23(25%) 71.69i0.11(25%) 70'04i0.37(10%) 6806i041(25%)

Layer—wise 7155:|:020(25%) 70.84:|:0_01(10%) 69791022(10%) 67.43:‘:0.04(10%)

DenseNet40-24 (0.714M Params): 74.70 1051

_Feather (0%) __ 73.75 4036 _ 72.36 xo21_ 69.06 1023 63.40 £o4a
From the Beginning of Training
Global 7380i025(10%) 72'47:|:0.09(10%) 68731029(25%) 63.25:‘:0.28(25%)

Layer—wise 73.79:|:0,21(10%) 72.45:|:0_29(10%) 68.99;};0'14(10%) 63.35:‘:0,30(10%)

********************* After Reaching Sparsity
Global 73.94:|:0‘02(50%) 72'73:|:0‘07(50%) 69.01:‘:0.23(10%) 63.54i0.35(10%)

Layer—wise 73-97:|:0.13(10%) 72-74:i:0,28(10%) 68.79i0_22(10%) 62.94:*:0,03(10%)

Table 6.1: The presented accuracies are the top achieved along with their corresponding
percentages of dropped weights
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Ratio 90% 95% 98% 99%

ResNet-20 (1.096M Params): 73.59 1044
From the Beginning of Training

Global 10% 50% 50% 75%
Layer-wise 25% 50% 50% 50%
777777777777 After Reaching Sparsity
Global 90% 90% 90% 95%
Layer-wise 25% 95% 95% 95%

MobileNetV1 (3.315M Params): 71.15 1017
From the Beginning of Training

Global 50% 5% 90% 90%
Layer-wise 25% 50% 75% 75%
777777777777 After Reaching Sparsity
Global 5% 90% 95% 98%
Layer-wise 50% 50% 90% 90%

DenseNet40-24 (0.714M Params): 74.70 1051
From the Beginning of Training

Global 50% 50% 10% 50%
Layer-wise 75% 50% 50% 50%
777777777777 After Reaching Sparsity
Global 98% 98% 99% 98%
Layer-wise 98% 98% 98% 90%

Table 6.2: Table that presents at which percentage performance drops significantly along with
the drop

6.3.3 Performance Convergence

In this subsection, we explore the patterns in accuracy recovery and convergence timing following aggres-
sive permanent weight elimination. The two smaller models (ResNet-20 and DenseNet40-24) exhibited
an interesting behavior when more than 95% of their weights were permanently removed from the opti-
mization process. This behavior was consistent across all combinations of pruning schedules and across
four sparsity targets (95%, 98%, 99%, and 100%). Specifically, once the desired sparsity level was reached
and the designated fraction of weights was eliminated, both networks exhibited a large jump in accuracy
followed by a more gradual, slower rise that converged around epoch 140. This is in contrast with the
default, meaning converging at around 155 epochs, indicating that training actually terminated early.

This pattern can be attributed to the abrupt increase in pruning mask stability p (Section 5.2). When
weights are pruned and then permanently excluded from optimization, the set of active weights becomes
fixed, and no further structural changes occur within the network. This results in the pruning masks
becoming fully stable, meaning that subsequent iterations are dedicated solely to refining the surviving
parameters with no chance of regrowing pruned ones. As a consequence, the gradient flow becomes
more consistent and less noisy, which accelerates convergence but also reduces the network’s capacity to
explore different connections.

Figure 6.7 illustrates this phenomenon for DenseNet40-24, displaying training curves for four levels of
post-sparsity weight elimination with a global threshold (95%, 98%, 99%, and 100%). As the percentage
of eliminated weights increases, the observed accuracy jump becomes larger, and convergence is achieved
earlier. This confirms the hypothesis that mask stability is correlated with convergence speed.
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Figure 6.7: DenseNet40-24 accuracy with a target of 95% sparsity with the global method
eliminating weights after reaching desired sparsity. Each color represents a different percentage
while the black one shows performance for more conservative percentages (10-90%.

Figure 6.8 gives three more examples of this phenomenon by providing the curves of 100% elimination and
10-90% for simplicity. ResNet-20 shows the same behavior as DenseNet even for different configuration
in elimination timeframes and target sparsity.

Unlike the smaller models, MobileNet V1 did not exhibit the same pronounced accuracy jump or early
convergence behavior after reaching the target sparsity in both timeframes (elimination from the be-
ginning of training and after reaching target sparsity). Even when high percentages of weights were
permanently removed from the optimization process, MobileNet maintained a relatively smooth and
gradual training curve without the sharp recovery phase observed in ResNet-20 and DenseNet40-24.
Even after aggressive pruning, MobileNet still retains a very large amount of trainable parameters, thus
making it more resilient to early convergence.
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MobileNet V1 - Sparsity 98% - Global - From the Beginning of Training MobileNet V1 - 90% Sparisty - Layer-wise - After Reaching Desired Sparsity
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Figure 6.8: Comparison of convergence behavior across different models and weight elimination
settings

6.3.4 Weight Distributions

In this section, we visually compare distributions for the global threshold method in order to better
understand the results provided in Table 6.1 regarding the elimination of weights from the optimization
process from the beginning of training. In the figures below, the original weight distribution is represented
with a black line. By eliminating weights from the beginning of training it was evident that many
unimportant connections never managed to fully develop, which is why we chose to only visualize the
distributions of only this timeframe approach. It is important to truly see that the connections are
hindered with this method, and as such this visualization was deemed more important.

It is evident that for large percentages of dropped weights the weights change significantly because
important connections never formed, resulting in the accuracy drops. In contrast, for smaller percentages
the distributions nearly overlap, aligning with the results in Table 6.1.
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ResNet-20 Weight Distributions for 99% Sparsity
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Figure 6.9: ResNet20 weight distributions with a target of 99% sparsity for all evaluated
dropped weights percentages with the layer-wise method eliminating weights from the
beginning of training. Each color represents a different percentage while the black line

represents the original distribution.

MobileNet V1 Weight Distributions for 95% Sparsity
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Figure 6.10: MobileNet V1 distributions with a target of 95% sparsity for all evaluated dropped
weights percentages with the global method eliminating weights from the beginning of training.

DenseNet40-24 Weight Distributions for 90% Sparsity
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Figure 6.11: DenseNet40-24 weight distributions with a target of 90% sparsity for all evaluated
dropped weights percentages with the global method eliminating weights from the beginning of
training.

For clarity, in Figure 6.12 we provide an example of distributions with the other timeframe, the one
where the elimination happens after reaching the desired sparsity. As mentioned, the distributions are
all nearly identical with each other, even if they slightly differ from the original. This points to the fact
that the most important connections where salvaged in each case.
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MobileNet V1 Weight Distributions for 99% Sparsity
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Figure 6.12: MobileNet V1 weight distributions with a target of 99% sparsity for all evaluated
dropped weights percentages with the global method eliminating weights after reaching the

desired sparsity.

6.4 Conclusions

Through these experiments, we proved that not all pruned weights are equally important. A significant
portion of the pruned weights with very small magnitudes can be excluded from the optimization process
without worsening performance. In some cases, eliminating a small amount (up to 25%) of the least
significant weights can even be beneficial to the model’s generalization ability, especially for larger models
such as MobileNet V1.

Changing the timeframe of the decaying of weights until after reaching the target sparsity proves to be
a more robust method, allowing important connections to develop first fully. This strategy consistently
yields performance similar to that of the standard STE approach, with the exception of very high
percentages. This proved that there is a small amount of pruned weights that hold some significance in
late training.

These findings suggest that an approach to sparse training in which pruned weights below a second
threshold are permanently excluded can yield the same results in sparsity and accuracy, while providing
a better computational efficiency. While training speed is slightly larger, the introduction of sparse
gradients could be more beneficial with suitable hardware and libraries. A future direction of this study
could be proving this assessment. Another possible research venture could be using these observations
to find of more sophisticated, differentiable functions for the backward pass than the STE.
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Conclusion and Future Work

7.1 Conclusion

This thesis focused on enhancing the effectiveness and stability of neural network pruning in the Feather
module through two contributions and one quantitative strudy. These were developed as improvements
upon the Feather pruning framework, which, despite its strong performance, suffers from fixed scheduling
and static gradient scaling limitations.

Chapter 4 introduced a dynamic gradient scaling function that adjusts its value throughout training
based on layer sparsity and the global sparsity target. This method expanded on Feather’s observation
in its ablation studies that the scaling of the gradients improved performance with a different value at
each combination of model and target, even if they opted to a more fixed solution.

Chapter 5 proposed a function family for adaptive pruning schedulers designed to adjust the rate of
pruning based on the stability of pruning masks. Two variations of the scheduler were evaluated, in
which one favored gradual sparsity increases and improved accuracy at extreme sparsity, while the
other maintained high pruning mask stability but often converged too late, causing slight drops in final
accuracy.

In Chapter 6, we explored the significance of pruned weights in sparse training using the Straight-
Through Estimator (STE). Through a series of ablation experiments, we demonstrated that not all
pruned weights contribute equally to the learning process. Specifically, we found that a considerable
portion of low-magnitude weights can be permanently excluded from training without significant loss in
performance, especially when this elimination happens after the model has reached the desired sparsity
level. This effectively allows the introduction of sparse gradients along with sparse weights in training

7.2 Future Work

The proposed methods achieved encouraging results, while also offering openings for further research.

e The dynamic gradient scaling function currently uses a logarithmic formulation based on
achieved sparsity that could be further optimized. It could be possible that a more optimal function
exists, using different mathematical formulations as well as different metrics. For example, using
mask stability as done in the pruning scheduler rather than sparsity could yield better results.

e The adaptive pruning scheduler as it is now is not the optimal, but rather proof that the
optimal can be found. Future research could focus on optimizing the functions’ constants to find
the best balance between high accuracy and high mask stability and exploring methods to derive
the bias term without setting a new one for each model.

e The study on pruned weights’ significance offered an insight to the weights close to the
pruning threshold, introducing sparse gradients with a different threshold. One possible endeavor
will be proving that these sparse gradients can accelerate training and testing when using suitable
hardware. This insight could also be leveraged for designing more refined, differentiable functions
for the backward pass than the STE.

e Finally, all these results could be replicated for different datasets and for different pruning modules
to prove the versatility of those additions
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