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ITepiindn

Avuty) n Simhwuatixg epyocio EMXEVTPMVETUL OTN PAUNOT OVATOEOC TACEWY UOUGIXAC HECW
QUTO-ETBAETOUEVTS UAUNONC X OTNV TEOGUQUOYT| UTOAOYIC TIXWY LOVTEAWY OE TOIXIAES HOU-
owxég mopadooelc. Ilpdogateg e€elileic ota foundation povtéla yia pouonn €youv Behtiwoet
ONUAVTLXL TN H&INOT) AVATHPAC TACEWY 1Y 0L Xal To EYOLY QPEREL OTO ENEXEVTPO TN AVAXTNONG
pouotxic mAnpogopiac (music information retrieval — MIR). Qotéo0, 1 anoteheopotindtntd
TOUC TUPUUEVEL TEQLOPLOUEVT] Yol UN AUTIXEC OUCIXES TPAdOTELS, XM €YOUV EXTOUOEVTEL
xuplwg oe AuTtind eldn yovoixig. Xtn yehétn autn, npoteivouyue to CultureMERT-95M, éva To-
AUTIOALTIOUIX S TOOGUPUOCUEVO LOVTELO TIou G ToYEVEL 0T1 BelTiwon pdinong avanapao tdoswy
Yiot TOXEAEC UTOEXTIPOCWTOVUEVES HOLUGIXEC xOUATOURES. Tiot Tov oxond auto, epapudlovye
wa pévodo cuveyolc npo-exnoidevone (continual pre-training - CPT) 8Yo otadiwy, 1 onola
EVOOUATWVEL emavardépuavon xat ex véou peiworn Tou puduol uddnong, emtpénoviag otade-
1) TPOCUPUOYN UE TEPLOPLoNEVOUG LToAoYIoTIX0oUG topous. H cuveyrc mpo-exmaideuon tou
MERT-95M o€ moAumoAtiogxd cUvolo Bedouévewy 650 wpdyv, mou mepthauBdver EAAnvixéc,
Touprixée xon Ivdixée povowée mapadooel, odnyel oe uéon Behtioon 4.43% otn petpwd
ROC-AUC oe Sudgopeg epyaoie avtdpotne talvéunone povowhc (music auto-tagging ta-
sks) un Avtxdv mopadoceny, enepvivtag Teonyolueveg Yetddous, ue adeAntéa ammAeLa
am6doone oe Autixd benchmarks. Emmiéov, diepeuvolue tnv teyvixt| task arithmetic, pio
EVOAAAXTIXY TEOCEYYLOT TOU GUYYWVEDEL ECEWBIXEVPEVA OVTEAA oV TIORABOCT) GTOV Y(MEO
TV Popwy, tapovcidlovtag cuyxplown arnédoon ota un Autixd cOvoha SedoUévmy, ywelg
emdeivowon ota Avtd. Téhog, avakboupe T Slamohtiowxy| uetagepotudtnTo. (cross-cultural
transferability) petall poviéhwyv mou éyouv TpooapuooTtel o enépous tapaddoele, delyvo-
VTOG OTL DLAPEQOUY WC TEOC TN BUVATOTNTO UETAPORAS TOUS OE JAAEC LOUCIXES XOUATOUREC,
évol elpnuo Tou cuoyetileton eniong Ye TNV oUoldTNTA UETOEY TV SEBOUEVWY TOU YENOYLo-
TOWOVYE, Ue Bdon UETpES ouotdTnTag o eNinedo oxovoTixy tokens. Ilapoatnpolue 6Tl 1|
CLVEY S TRO-EXTIUOEUGT) GE GUVORO BEBOUEVWV aTtO BLaPORETIXES U AUTIXES TOEABOTELS 00T-
Yel oTNY XUAUTERT GUVORLXY) ATOBOGT), EVIGY VOVTUC T1| OLUTOALTIOULXY| YEVIXEUGT) TOU LOVTEAOU.
H perétn auty) cupPBdihel 6Ny avamTUEY MO TOMTIOUIXE EVUCUNTOTONUEVLY UTOAOYLO TIXWY

MOVTEAWY UOUGIXAG, IXOVMY VO XATAVOOUY UTOEXTPOCWTOUUEVES UOUGLXES TOQUDOCELS.

AéCeic KAeolk

Avéxtnon Mouowre ITinpogopioc, Mdinon Avanapactdoewy Mouoixrc, TrnoroyloTi-
xf) Edvopouoixohoyia, Auto-emPBienduevn Mdidnor, Yuveyrc [po-exnaideuon, pocapuoyt
IIedlou, Awmohitiouxy| Hpooapuoyn, Metagopd Mdinone, Xuyywvevon Movtéiwy, Botid
Mdinomn, Movtehonoinon Mn Auvtixic Mouvouxic, Autéuatn Talvounon






Abstract

This thesis focuses on self-supervised music audio representation learning and cross-
cultural adaptation of music foundation models to diverse musical traditions. Recent ad-
vances in music foundation models have improved audio representation learning and have
brought them to the forefront of music information retrieval (MIR). However, their effec-
tiveness across diverse musical traditions remains limited, as they are primarily trained on
Western-centric data, overlooking the diversity of global musical cultures. To address this,
we introduce CultureMERT-95M, a multi-culturally adapted foundation model developed to
enhance cross-cultural music representation learning and understanding. To achieve this,
we propose a two-stage continual pre-training (CPT) strategy that integrates learning rate
re-warming and re-decaying, enabling stable adaptation even with limited computational
resources. Continually pre-training MERT-95M on a 650-hour multi-cultural data mix, com-
prising Greek, Turkish, and Indian music traditions, results in an average improvement
of 4.9% in ROC-AUC and AP across diverse non-Western music auto-tagging tasks, sur-
passing prior state-of-the-art, with minimal forgetting on Western-centric benchmarks. We
further investigate task arithmetic, an alternative approach to multi-cultural adaptation
that merges culturally specialized models in the weight space. Task arithmetic performs
on par with our multi-culturally trained model on non-Western auto-tagging tasks and
shows no regression on Western datasets. Finally, we analyze cross-cultural transferability
between single-culture adapted models (via CPT), showing that musical traditions differ
in how well they transfer to others, a pattern that correlates with acoustic token-level simi-
larity among cultures, using as metrics the cosine distance and Jensen-Shannon divergence
computed over EnCodec-extracted token distributions. Our findings demonstrate that
exposure to culturally diverse data through multi-cultural CPT enhances cross-cultural
generalization and leads to improved overall performance. This study contributes to the
development of more culturally aware foundation models for music that generalize across

diverse underrepresented musical traditions and enable world music understanding.

Keywords

Music Information Retrieval, Music Representation Learning, Computational Ethno-
musicology, Self-supervised Learning, Continual Pre-Training, Domain Adaptation, Cross-
Cultural Adaptation, Transfer Learning, Cross-Cultural Transfer, Model Merging, Task
Arithmetic, Deep Learning, Foundation Models, Non-Western Music Modeling, Automatic

classification
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Euyoplotisg

Me auty| T Simhoyotixy epyacio ohoxAnedveTal €va UEYIAO Tagidl, YEUATO WEEC UEAETNG,
Tpoondielag, YUoLWY, EMTUYLOY, dAAS xon Suoxolwy. Idwitepa, o Teheutaiog ypdvog unrpie
OEXETA OTEECOYOVOS OANG o xaDOPIGTIXOG Yol EUEVA, xou efuan TOAD YapOUUEVOS Xou EU-
Yoo TNUEVOS Yia TNV Topeta xou TNV €xBoct| Tou. Oa Hlela Vo expedcw TNV ELALXEWVY 0L
EVYVOUOOUVY 6TouC Yovelg you, Mooya xou T'idpyo, xadde xar oe OAn TNV oxoYEVELd Uov,
yioe TN Stapexh oTHELET o oy AT Toug OAaL ouTd Tor yeovia. ‘Hrtov mévto dimha pou, tpddupol
VoL e ox00o0ouy, Vo ue oTneilouv xar vo pe eviappivouy, oxourn xu 6tay ol avnouyieg xou
ol culnthoelg YOpw amd TN GYOAY) XL T1) SITAWUTIXT €pYAolal TOUS QUiVOVTAY OXATAVONTES.
Xoplc ™ otadepr| Toug nopousta, Tinota and dho autd dev Yo oy duvatd. Euyaplotd Yepud
Toug QlAoug You xou Wiadtepa TNV Moalpn, Yiot TNV UTOUOVY, TNV XATAVONOT| XOL TNV AUERLG TN
puyohoywr| uToo THELEH Toug xard” OAN TN SLdExELa AUTAC TNS ATOUTNTIXNE TEELOBOL, Tou pE Bo-
AUNoAUY Vo SLoTne|ow TNV IGOPEOTHN HOU YOl VAL XEVOUY TNV XAV NUERLVOTNTY LoV TO UTOQEQRTY)
xa ouolodoln. Xwpelg autole, autd to Taidt dev Yo elye Ty (Bl onuoocia, ovte To (Blo vonua.
Oa Alela eniong vor eLyUEICTHOW WBLUTERKS ToV LToPhPLo SddxTopa Xden Hamdindvvou yia
NV dploTn ouvepyasia, TNV TOAUTIUN %00 yNoN, TS ETOXOOOUNTIXEG CUUBOUAES xou T
oLVEYT Tou LTOG THELEN Xou UToUovY, Tou e Boridnoay va e€ely e oe €vay To TEOCEXTIXG,
OPHO XL ONOXATPWUEVO peuvnTH. Evo ueydho euydploT® OPEN® Xol OTOUC GUUPOLTNTES
KOV, YiaL TNV aVTAAAXYY] YVOOEWY, T culnTAcELC xou TNV auolala oTeEn Tou uThHeay xa-
Yoptotwég. Téhog, expedle Tic Yepuéc wou euyopiotiee otov emPBAénovta xadnynty you,
Alé€avdpo Tlotopidvo, Yyl Tig YOVES 1B€sg, TV adudxonn emiBAedn xou T cuveyn xal ou-
oo T xoodrynor Tou xod” OAN TN OLdEXEl EXTOVNONG TNS BITAWUATIXAC UOU EpYICLAS.
Agiep®dve outh TN SIMALUaTIX: epyacio oTN UVAUT TS Ylaylde wou, Ayyehixnig, yio Tny a-
HEELO TN YY) XoU GUUTAPACTAOT) TTOU OU TEOGPERE Xor)” OAT) T1) OLAEXELN TWV TOUOLXWY LoV

YEOVOV.

Adrva, Todviog 2025

Ayyerog-NikéAaos Kavatdg
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To foundation models yadoaivouy avamopactdoels yevixod oxonol (general-
purpose) U€ow PeYaine xhipoxac tpo-exnaidevone oe Nyntixd dedopéva, ot
OTOlEC UTOPOLY GTN CUVEYEL VoL HETAPEPYOVY AMOTEAEOUATIXG OE €var €upL
(paopoL EQapUOYGY avdxtnong pouoixic tAneogoplac (MIR tasks). . . . . . .
Moryxbopto xatavouy pouoxdv culoy®y dedouévmy (music corpora) avd

YEWYEAUP TEQLOYN. « v v v v v v e e e e e
H apyrtextovixr) tov povtéhov MERT [1]. . .. .. ... o000
Ytpatnywxy Xvuveyolg Ilpo-exnaidsvong Ao Xtadiwv Tou
CultureMERT. ¥to X1ddio 1, exmoudedetar €vol UTOCGUVOAO TWV TOQOUETEWY
(o 1D CNN feature extractor xo to codeword embeddings) ndve oe 100
Opeg dedouévey Yo ToAhamhd epochs, pe o 20% tou cuvdhou va amoteke-
(ton amd AuTtix| poucixy|. 110 U100 2, OAEC Ol TUPIUETEOL TOU UOVTEAOU
EXTUOEVOVTOL TTAVW GTO TANPES GUVOAO BEbOEVLY Twv 650 wewv. H dua-
ouaota emavadépuavone tou learning rate egapuoleton xan 6tor 6U0 GTABLA,
EMTEENOVTAC OUOAT XU GTOUERT) TEOCOPUOYH.  « « v v v v v v v o o o e e e
Avaroltiopix)y Metagepoipndotnia. Anddoon TV TpOCUpUOCUEVLY
wovtélwy Bdoet tng petpic ROC-AUC oe 6ha tor ohvola SeBouévmy, o-
VOOEMVOOVTAS TACELS PETUPORAS YVWONS METUEY TV UOUCIXMY TORUOOCENDY
nou e€etdlovtan. To CultureMERT yevixelUel anoTtehAeoyotixd o€ un AuTixd
datasets, eved 1 ouyywvevon poviéhwy Yéow task arithmetic emtuyydvel o-
vtioTolym anddoon ota (Sl chvoha xa uneptepel ota Autixd datasets (FMA-
medium, MTAT) xadcde xou oto Lyra. . . . . .. ... ... ... ...
Oporotnta Axovotixwyy Tokens petalh) Movowxwy Iagaddoe-
wV. Zebyn opoldntog PeTadd TwV XATOVOUOY axoucTixwy tokens, onwe e-
Edryovtan an6 o EnCodec codec povtého [2]. Ou tipég opoldtnrag mpoxintouy
¢ Y€cog bpog amd 8 codebooks, xadéva ex twv onolwy meptéyet 1024 Soxpl-

ta tokens. Kau ot 800 petpinéc mopouoidlouy mapouoleg TAoelC UETAL) TeV

Eni{dpacr tou Yuvteheot) Luyywvevong A otnyv Anddoon tng
Teyvixng Task Arithmetic. O tipéc e yetpinic ROC-AUC o €21 dua-
popeTixég epyaoieg auTOHATNS TAEVOUNONS UOUCIXTE A TOIAES LOUGCIXES
ToEUBOCELS AvadEXVUOUY TS 1 METOBOAT) Tou A emnpedlel TV anddocr Tou
task arithmetic xotd 0 cLYYOVEUCT TV TeEaGdpwy single-culture adapted

MOVTEAMV. © o v v v vttt e e e e e e e



LIST OF FIGURES

2.1

2.2

3.1
3.2

3.3
3.4

4.1

4.2

4.3

44

4.5

Foundation models for music learn general-purpose representations through
large-scale pre-training, which can then be transferred to a wide range of
downstream MIR tasks. . . . . .. .. . o

Global distribution of music corpora by region. Pie charts illustrate genre

composition within each region.® Reproduced from [3].. . . . . . .. .. ..

MERT Pre-Training Framework [1]. . . . . .. .. ... ... ... ... ..

Two-Stage Continual Pre-Training Strategy for CultureMERT. In
Stage 1, a subset of parameters (the 1D CNN feature extractor and code-
word embeddings) is trained on 100 hours of multi-cultural data for multiple
epochs, with 20% Western music for stabilization. In Stage 2, all parame-
ters are unfrozen and trained on the full 650-hour dataset. Learning rate
re-warming and re-decaying is applied in both stages for smooth and stable

adaptation. . . . . . . ..

Linear warm-up and cosine annealing schedule. Reproduced from [4].

Merging Models via Task Arithmetic. Adapted from [5] and [6]. . . .

ROC-AUC Comparison Across Culturally Adapted Models on
Diverse Music Auto-Tagging Tasks. Continual pre-training on multi-
cultural data (CultureMERT) consistently achieves the highest performance
across most datasets, particularly for non-Western traditions, surpassing
both single-culture adaptations and model merging via task arithmetic
(CultureMERT-TA). However, the latter demonstrates particularly strong

results on Lyra and Western-centric auto-tagging tasks. . . . . ... .. ..

Cross-Cultural Transferability. Relative ROC-AUC performance across
datasets, highlighting key trends in cross-cultural transfer. CultureMERT
generalizes well to non-Western datasets, while task arithmetic performs
on par in these settings and even surpasses both the pre-trained and multi-
culturally adapted models on Western benchmarks (FMA-medium, MTAT)
and Lyra. . . . . oL oo

Token Similarity Across Cultures. Pairwise similarity between acous-
tic token distributions extracted from the EnCodec NAC model [2]|. Simi-
larity scores are averaged across 8 codebooks, each containing 1024 discrete
codewords (acoustic pseudo-tokens). Both measures—JSD and cosine dis-

tance—show consistent trends across cultures. . . . . . . . . . .. ... ..

Effect of Scaling Factor A on Task Arithmetic Performance. The
ROC-AUC scores across six diverse music tagging tasks demonstrate how
varying A impacts task arithmetic when merging the four non-Western
single-culture adapted models. . . . . . . . .. ... ... ... ... ...
Cosine Similarity Between Task Vectors. The values highlight signif-
icant overlap (non-orthogonality) among task vectors, which contributes to

inter-task interference during model merging with task arithmetic. . . . . .

66
68
69



LIST OF FIGURES

4.6

4.7

4.8

4.9

4.10

4.11

Task Arithmetic vs. Multi-Cultural CPT. Average ROC-AUC per-
formance across benchmarks for different task arithmetic scaling factors,
compared against multi-cultural continual pre-training (CultureMERT) and
the pre-trained baseline (MERT-v1). The best average task arithmetic per-
formance is achieved with a scaling factor of A=0.2. . ... ... ... ..
Layer-wise Probing Performance of CultureMERT across Datasets.
ROC-AUC scores across layers for each evaluation dataset, obtained via
probing of representations extracted from the frozen backbone. . . . . . . .
Catastrophic Forgetting on the MTAT Dataset. ROC-AUC per-
formance during two-stage continual pre-training shows an initial drop in
Stage 1, followed by recovery in Stage 2. This demonstrates how staged
adaptation with learning rate re-warming and Western replay (20%) miti-
gates catastrophic forgetting. . . . . . . . ... .. L
Gradient Norm Comparison: Two-stage vs. Single-stage CPT.
The two-stage CPT strategy stabilizes gradient updates more effectively,
maintaining consistently lower and smoother gradient norms throughout
training. In contrast, single-stage CP'T exhibits sharp oscillations and oc-
casional spikes, indicating unstable optimization and potential gradient ex-
plosions that can lead to training crashes. . . . . . . . . . .. ... ... ..
Musical MLM Loss During Continual Pre-Training. Subfigure (a)
shows loss curves for two-stage CPT across different cultures, while (b) com-
pares overall training dynamics between single-stage and two-stage CPT on
the multi-cultural dataset. . . . . .. ... ... .00
Acoustic MLM Loss During Continual Pre-Training. Subfigure
(a) illustrates loss behavior across individual EnCodec codebooks, while
(b) compares overall training dynamics between single-stage and two-stage
CPT on the multi-cultural dataset. . . . . . ... ... ... ... .....






List of Tables

4.1

Arnoteléopata AZworoynone (ROC-AUC xow AP) twv Ilpo-
exnoudeLpévey xau ITohTiowixd Ilpocappocuévey MoviéAwy
MERT occ Awdgopeg Epyacicg Auvtopatng Tagwounonc Mou-
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Extetopévn EAAnvixeR Tlepiindn

0.1 Ewaywyn

0.1.1 Kivnteo

H pouowny| anoteel Yepehiddec orotyeio Tou avipdmivou TOATIoNoY, Tapolco xodoMxd
oe OAEC TIC xOWwViES, exppalouevr Uéoa and Towiheg Hoppéc novadinéc oe xdie Topddoon
[8, 9, 10]. Ot pbéhot tne mepthapPBdvouy ™ pOIuon TV cuvaoINUETWY, TNV ETLXOVGLViO XoL
TOV XOWOVIX0 deoud: tailel pdho atny TEY VN, TNV Yuyorywyia, TN Aatpeelor xa Tr Sopriuion), xon
amOTEAEL ONUAVTING XAABO TNG Ty *OoULaG owovouiag. O BltTég autdg POAOG, KOG TONTIOUXO
AVTIXELUEVO XL (G OLXOVOUIXOG TIORAYOVTOG, TROCPEREL EUXAUEIES YLt OPEAOS TNG XOWVWVIAC,
EVO TOWTOY POV VETEL HOVOBIXES TEYVIXEG TPOXANOELS OTAY GUVOLALETOL UE TNV TEYVNTH VOT-
poovvn (artificial intelligence — AI) [11]. IIépav TV TEOXTIXMY EQUSUOYMV, 1 XATAVONO
e onuactoroyiog e povoxic péow Badide pdinone (deep learning — DL), pe biodtepn
éupoon o epunveloleg npooeyyioelg (explainable AT — XAI), unopel enlong vo cuvelopépet
oe YewpnTnd gupruata o€ Touelc OTwe 1 edvopouctxoloyio xou 1 pouoixy| avipwroloyia, 1
Yewplar TG HOLVOXAC Xau 1) YVwaoloxr pouoxohoyio. Emmiéov, Tapdtt 1 Loucix cuyva Tepl-
YEAPETOL WS KTAYXOOWUL YAWCTAy, aUTH 1) avTiAndn mapopéver avtixeipevo culhtnong uetol
TOV PEAETNTOV: OPLOUEVA YUpOXTNEIOTIXG pofvetat vo uTepBoivouy Ta ToltTiouxd bpta [12],
WO TOCO Ol UOUCIXES TAUPAOOCELS EYOUY EEEMYVEL UE BLOXELTE YOPOXTNELO TLXA X0l TOMTIOUIXA
Vepehwpévn onuactohoyio [13, 14]. Auth 1 ahknhenidpoom LeTa&l xodoOMXOTNTAUC Kot TONLTL-
OUXAC WtuTEPOTNTOC amoTEAE! gl cOVIETN TEOXANOT, TNV OTolol O YAJBOG TNG UTONOYLO TLXNS
novaoloyiog xou oL GUYYEOVES TEOCEYYIOEL TEYVNTNAS VONUOGUOVNE UTOEOVY Vi BLERELVHGOUY
péoo amd o véo omuxdy [15].

H avéxtnon povowxfic tinpogopiac (music information retrieval — MIR) avagépetar otov
EPEUVNTIXO TOPEN TIOU ETUXEVIPOVETOL GTNY YWY X avdhuoT TANeogopiag and Youctxd
dedopéva [16, 11]. O utoloyotixée pédodol oe autd To medio ouvdudlouv teyvixéc enelep-
yoolog GHUATOS Yot TNV EUYWYT YUPUXTNELO TIXMY amd NYNTXE ofjdota, Ue alyopiduoug un-
yovixhc pddnone (machine learning — ML) yio tnv extéleon epyootdv pouctxic xatovonong
(music understanding tasks), 6nwe n togwvounon eidouc (genre classification), n aviyvevon
pvduol (beat tracking), o evtomoudc tovixdétntoc (key detection), o Saywplopde TnydY
(source separation) xou 1 outépaTn eTXeTONOINOY (automatic tagging), uetold dMwv. Xe

avtideon ye v outhiot xou T YAWOOW, 1) LOUCIXT| EVOL TUTIXE TOAUQWVIXT|, GUY VA ATOTENO-
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OHEVN amtd TOANATAES TAUTOYPOVES KPWVESH» X0 GTEOUATA 0pYdvewy. Emmiéov, n «onuactioy
e ouvideg dev Bactleton oE AUECES AVUPORES GE AVTIXEUEVO TOU TEAYUATIXO) XOGHOL 1) GU-
YHEXQUIEVOL YEYOVOTA, AhAG EfValL apnEnUEVT) %o SLORPOVETIL a6 TO TOMTIoUXO Thaicto. ()¢
ex T00OTOU, 1) XUTAVONOT TNG LOVOIXTE ToROUCLALEL LOLTEPES TEOXANTELS, XOWE EVOOUNTWVEL
nepimhoxee, SLamhexoUeves Evvoleg Tou oyetilovian Ue Tov dvipnTno, OTwe To cuvalc V-
Ta, Ol EUTELRIES, 1) EXPEAOT), 1) TOATIOUXT| TAVTOTNTA, TO XOWMVIXO XL LOTORIXO TAXCLO, )
emxovwvior xou 1 dnuovpyotnTa. EmnAéov, 1 povoiny| €xel cuvidng peyahlbTepn ypovixt
dudipxetar xou LPnh6TERO PUIUG Bderypatoindioc (sample rate) and v ophion B Tov yYeEVIXS
Y0, YEYOVOS TOU Xoo T8 UTOAOYIC TIXEL OTOUTNTIXT| T1) LOVTIEAOTOINGT) OAOXANEMY UOUCLXWY
xoupatiey. ‘Eva Baowxd eunddio eivan 6t 1 aneudeiag yoviehomoinon tou fiyou (raw audio)
elodyel eCapthoelc peydhng euPéreiac (long-range dependencies), xatotdvtag 50oxoAn )
UdINoN TV ONUACIOAOYIXAOV WOLOTATWY TNS LOVOXNC OE BLopopeTixd eNineda.

O 6poc «foundation modely (FM) eiofjydn yio va teprypdiet onotadhinote npo-exnoaudeuuévn
2ol EVENXTY) AEYLTEXTOVIXT UMy ovixAc uddnong, n omola, avti va BeAtic tonoteitan yio évory ou-
YXEXPWEVO o%0TO, hertoupyel we xevipixd framework omd to onolo unopolyv vo tpoxigouv
moMomAd e€eidixeuuéva povtéha yio évo eupl @doua epyaotwy (downstream tasks) [17].
H avdduon towv foundation models €yel tpogodotniel and tic elehilec otn Pathd pddnon,
CLUTEPLAUUBAVOUEVDY PYITEXTOVIXDVY XavoTOUL)OY 6Twe o Transformer [18], xodoe o o-
7O TG BEATIOOE OTO UTOAOYIGTIXG UAIXO (hardware). [Tpéogata, ta foundation models
€Y0LV XAVEL TNV EUPAVIGT| Toug xou aTov Topéa tne pouotxic [1, 19, 20, 11], mpoogépovtog
LOYUEES, YEVIXOU OXOTOU AVAMUPACTACELS, PECW NG Udinong and dedopéva fyou YeYIAng
xhfpaxoc. Ta povtéha autd €youv TN SuUVATOTNTA Vo GUANOUBAVOLY EURELX LOUCLXA YoRo-
XTNEIOTIXA Xt €youv emdellel state-of-the-art emddoec oe mARlog epyaoidy xatavonong
HOUCIXAC, UELOVOVTAC ETOL TNV avayxT) Yiol Eetdixeupévr) exmaldeuon avd task. Aiomouwvtog
v auto-emiBhendpevn udinon (self-supervised learning — SSL) o€ un emonuocpévo pouoixd
oedouéva ueYahng xhipoxac, ta foundation models avtiyetwniCouv to TEOBANUA TG EMAELYNC
OEDOUEVMV, HELWVOUY TO XOGTOC ETUOTUAVOEWY %ol BEATIOVOLY TN YEVIXEUGT] OTNV aVIXTNOT)
wouoixric TAnpogoplag [11].

[Topd tnv mpdodo, T teptocdTepa Lo TdPeva foundation models yio poucixy| €youy ex-
moudeuTel xuplwe oe chvola Bedouévey Tou TEopyovTon amd AUTIXEC HOVOES XOUATOVEEC,
YEYOVOS TOL TEPLOPIlEL TV XAVOTNTE TOUS VoL avamapto ToUy towxiAa pouowxd otul [21, 3].
Ynuovtino ebvon eniong 6Tt Tt LovTéra T oTdvLaL aELOAOYOUVTOL PE BAOT) TNV Ty XOOULL LOU-
o Towahopoppla, aprivovtog oe ueydho Badud avelepedvntn T1 YEVIXEUOWOTNTE TOUG OF
OLULPOPETIXES LOUCIXEC TaPABOTELS, WlalTepa 0TIC UToEXTPOoKwTOVUEVES. TToAEC amd autég Tig
Tapadocels, 6w 1 Touexuxn, N Ivoud xou ) EAAnvin napadoctiony| pouvoixy, yopoxtnetlovio
AmO UOVOOIXEC UEAWOXES DOUES, TEOTXA 1} TOVIXd LT, xoun Wiadtepa puiuxd wotifa,
Tt 0Ttol0L BEV ATMOTUTVOVTOL ETUEXAOS 0 ToL UTdpyovTo povtéha [22, 23, 24]. H aduvapio po-
VIEAOTIOMNONG TETOLWY TOMTIOUIXA EWBIXWY GTUMGTIXWY YORUXTNRLO TIXWY O)L Hovo Teplopllet
TNV €QopPOCLUOTNTA Twv music foundation models, yio Tapdderyua, oe cuoTHUATE GLCTAOTNC
nepteyouévou (recommendation systems) mou TpooupuOloVTUL OE GUYXEXPUIEVES YEWYPOpL-
xéc meployéc [25], B ot Swthenon noktiotixic xhnpovoulds, ahhd eniong mopaBrénel Ty
TAOUGLY TOMTIOUXE LOUCIXT YVWOOT Tou elvar xplotun yio TNV Teoodo Tng €pEuvag GTNY o-

véxtnon pouoixhic mhnpogopiog [11]. Koatd cuvéneta, xadiototar emtantixd 1 avdyxn ylo Ty
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OVETTUET IO CUUTERLANTTIXGY X0l TOMTICUIXE EVAUGUNTOTONUEVGDY UTOAOYLO TIXWY UOVTEAWY
[26], avedv var yevixebouv Tépa and Tic AUTIXOXEVTEIXES TAUPUOOOELS Xal Vo TPOGUpUOLoVTL
OMOTEAECUATIXG OE TOWIAES, UTOEXTIPOCWTOVUEVES HOUCIXES XOUATOVRES. AuTh 1 xatediuvon
€yeL MON onuewndoetl Tpdodo oe cLUYYEVElC Topelc OTwe 1) enelepyaoia puowic YAwooac (nat-
ural language processing — NLP) [27] xou 1 avaryvepton outhiog (speech recognition) [28],
p€ow TNE avamTUENG TOATIOUIXA TEOCUPUOCUEVWY Xal TOALYAwoowxoY foundation models.
Mot ToAAG UTOGY OUEVY TTROGEYYIGT] YOl TNV AVTLIETOTLOT QUTWY TV TEOXANCEWY elvol 1)
ouveyc npo-exnaidevon (continual pre-training — CPT), n onola €xel avoderydel we pa omo-
TEAEoUATIX X0t ONOEVAL Tio Dtadedopévr pédodog oo ota peydha YAwoowxd yovtéla (large
language models — LLMs) [4, 29, 30] 660 xo oty ntohutpomix uddnon (multimodal learn-
ing) [31]. Emtpénovtoc ota povtéha vo npocupuolovion otodioxd oe véa domains, tasks
1 YA®ooee, o CPT anogedyel v avdyxn yio mAen enavexnaidevor, wiar dtadixactior Tou
oLY VA elva N TEOXTIXY Xxou UToAOYIo Tixd damavney| [32, 4]. Lnuovuxd, €yet anodetyel 6Tt
O€ OPLOUEVES TEQLTTWOOELS EMTUYYAVEL ATOBOGCT] LGOOUVAUT 1) X0 AVAOTERT AT TNV EXTAUOEUCT)
and v apyt (training from scratch) [33, 34], evey Toavtdypova 0dnyel oe tayhtepn oUyxhion
[35] xou peiwon tou gawvopévou tou catastrophic forgetting [36]. To CPT éyel enione op-
yloer vo epapudletal xaL GTOV TOUEN TOU 1)YOU, UE TEOCPAUTEC UEAETES VAL TEXUTPUOVOLY TNV
ATOTEAECUATIXOTNTE TOU GTNY TEOGUQUOYT| LOVTEAWY OVOY VLGNS OULAlIC TOCO OF YAWOCOES
UMDY 660 xou younhédvy tépwv [37, 28, 38]. Emmiéov, 1 ouyyodveuon poviéhov (model
merging) [39, 40] éyer avadewyVel we pior amhf ahhd amOTENESUATIX TEYVIXY Yl TNV TpO-
COPUOYY| TRO-EXTIOUBEVUEVLY UOVTEAWY o€ ToAAamhd domains, cuvdudlovtac domain-specific
povtéha oTov Yweo Tov Pupdv (weight space), ywele va anoutelton emnhéov exnaidevon [41] 7
npbéoPoon oo apyxd dedouéva exnaidevone [42]. M iaitepa atoonueintn pédodoc elvar o
task arithmetic (TA) [5], n onola xataoxevdlel task vectors unoloyilovtog ) Sapopd peta-
&0 TWV TUPAUETEMY EVOC TROCUPUOCUEVOL HOVTEAOU XAl TOU AVTIOTOLYOU TRO-EXTOULOEUUEVOU.
Autd to task vectors umopolv ot cuvEyeL Vo EVOWUAT 00V OTO TEO-EXTUBEVUEVO LOVTERD
péow ahyefeixmy mpdlewy otov Euxheldelo ywpo, dnuovpydhvtog Ue autdy Tov TeoTo €va €-
VOTOINUEVO HoVTERO. Aedopévne Tne EAELYNS TOATIOUIXE TOXIAWY ETUCUACUEVMY LOUCIXMDY
OEDOUEVWV, 1) CUVEYTC TPO-EXTALBEVCT] TROCPEREL ULol UTOAOYLO TIXE amodoTxr) Ao yiot TNV
mpocopuoyn Twv foundation models oe un Auvtinég povowég mapadocels, ywelc TNV avdyxn
Thfpoug enavexnaidevong. Tlapdhhnha, n teyviny| task arithmetic emtpénel v opohh cuy-
YWVELOT) HOVTEAWY OTOV YOREO TV Boptdy, BIEUXOAIVOVTAC TNV TOAUTOATIGUIXT] TEOGUQUOYT

xan meptopiCovTag To pouvouevo Tou catastrophic forgetting.

0.1.2 Xvuvewcgopd

Eve 1600 1 cuveyic mpo-exmaldeuct 600 xan 1 Texvixy task arithmetic €éyouv yehetniel
EXTEVWS GE GAAOUG TOUELS, 1) EQUPUOYY| TOUG GTNY AVAXTNOT| HOUCLXNG TANEOPORIaS TUPUUEVEL
oe Yeydho Podud avelepebvntn. XNy mopolod SITAwUATXY epyoacid XAAOTTOUUE oUTO TO
*evd, aZOTOIOVTAC TIC D00 TEYVIXEC Y1l TNV Tpoooppoy Tou MERT-v1-95M! | evéc pouotxol
foundation povtélou [1], to onolo éyer exnadeutel apywd oe 1.000 wpeg xvping Autixrc

pouotxic [1, 43]. Xtdyoc yog elvon Vol T0 TEOCUPUOGOUUE GE HOUCIXES TOPABOCELS amtd TNV

Yhttps://huggingface.co/m-a-p/ MERT-v1-95M
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Avatohxy Meooyeio xou v vy unorreipo, Slatnedvtog Toedhhnia TV anddoct) Tou ce
«AuTixoy»-xevtpixd benchmarks.

M onuovTtied tedxinor otny meocopuoyn v foundation models oe mowxilo domains
elvon 1 enfteudn amodotinic TPocUpUOYNC Ywelc TNV EU@dvioT Tou (ovouévou catastrophic
forgetting [44], 6mou 1 TpoYEVESTERT YVWOT EVOEYETOL VoL «EEXUOTEL GTAV TO HOVTENO EXTOU-
deveton oe véa dedouéva [45]. T Ty avTietdmon autol Tou TEOBAAUTOS, TEOTEVOUUE [la
UTIOAOYLO TIXA AODOTLXY) GTEATNYLXY) CUVEY 0D TRO-EXTAULOELCTC BUO GTAdiwWY, 1) oTold EVGEL-
HoTdVveL emavexxivnon tou puduol udinone (learning rate re-warming) [4], otadeponoudvtog
TNV EXTUOEUCT] X0 ETUTEETOVTAS TUO OUOAY) X0l ATOTEAECUATIXY TEOGUQUOYT.

H mopoloa dimhwpatin epyacio cuvels@épetl oTar e€ng:

1. Ano 600 yvopilouye, TpdxeLTal Yot THY TEWTN HEAETY TOU €EEPELVE TN CLVEYY| TEO-
exnoidevon (continual pre-training) xou tnv teyvixy| task arithmetic yio Svo-
TOALTIOULX Y] Tpocapoyy (cross-cultural adaptation) otnv avéxtnon pouot-
NS TANEOGPORIC, TEXUNELOVOVTOS TNV ATOTEAECUATIXOTNTA QUTMY TOV UeHO0wY oTNnY

EXUAINOT AVATAPAC TAOEWY LouooD fyou o1o mAdlcto Twv foundation models.

2. Tlpoteivoupe wa oTpatnYLxy) cuveyolg mpo-exnaideuong 800 oTadiwy, N
onola otadepomolel TNy exnoldeuo), pewdvel To catastrophic forgetting xon emtpénet

ATOTEAEGUATIXT| TROCUPUOYY| UTO TEPLOPLOHEVOUS UTOAOYLOTIX0US TOPOUG.

3. To TOAUTOMTIOUIXE TPOCUPUOCUEVO UOVTENO Uog, CultureMERT, unepBaivel Ty anddo-
on tou apyxol MERT-v1 xotd 4,43% xotd yéco bpo ot petpixy ROC-AUC oe un
Avtixd auto-tagging tasks, nopouvoidlovtog eniong otadepéc péoeg Pektidoeic oe GA-
Aec petpxéc: 5,4% oto Average Precision (AP), 3,6/% oto Micro-F1, xa 6,8% oto

Macro-F1, ye ehdyiotn andielo anddoone ot Autixd benchmarks.

4. To moltiouxd npocapuocuéva poviéda uag Eemepvoly mpornyoLueva state-of-

the-art anotehéopata o dha to un Avtixd auto-tagging tasks mou e&etdlouye.

5. Algpeuvolue 1 SLtamoMTIoUIX eTapepoiwdTnTa (cross-cultural transfer-
ability), avolbovtog xatd toéco To povtéla Tou Tpocapudlovion e dedouéva and o
©6vo povonl| topddoon (m.y., OVwuovixh/ Tovpxixh xhacoixh LOUGIXT|) UTOEOVY VA YE-
vixeloouv ot dhheg (.., ENinvixn nopadootaxy| yovowt|). Ta anoteréopota detyvouv
OTL Ol TOMTIOUIXS EEELBIXEVUEVES TTROCUPUOYES TAEOUGLALOLY BLOPOROTIOUNUEVT) LXAVOTT-
TOL UETAPORAC OF GAAEG LOUOIXES TORABOCELS, EVE TO TOAUTOMTIOUIXE TROCUPUOCUEVO

MOVTENO ETUTUYYAVEL TN UEYUADTERT YEVIXEUGT) OTA GUVOAX OEBOUEVV TTOU UEAETOVTAL.

Me 0y avTETOTIOTN AUTOY TV TEOXAACEWY, 1) TOEOVCH DIMAWUATIXY epyacia GUUBIAAEL
oTNY avdnTtudn ToAltlopxd evoncnTotoinuévwy foundation models yio T povoixy, to omoio
EMTEETOVY TNV XATAVONON TNS TOYXOCULIC HOUCIXNS TOAOUOR®LIC XU EVIOYVOLY T1) BLoTo-
NTou eXUdineT avamapao TIoEmy Hovoxng e Bdaon tov fyo. H yekétn auth avadeixviet
TNV AMOTEAEOUATIXOTNTA TG CUVEYO0US TEO-EXTALOEUOTC WG TEOCEYYLON Yid OLUTOMTICUIXT
TREOCUPUOYT) GTNV AVAXTNOY Houctxic TAnpogoploac, xadicpwvoviag To CultureMERT-95M w¢

éva state-of-the-art foundation povtélo yia nowiiec povowég tapaddoelc. Ilpog utootren



0.2 Avéxtnon Mouowrc ITinpogoplog

TNC TMEQOUTER® EQELVIC OTNY EXUAINOT AVATUEUC TACEWY VLol UTOEXTOOCMOTOVUEVES UOUOIKES
XOUATOUREC, Onuocteboupe To CultureMERT-95M, xodo¢ xaL TNV TapaAAayY| TOU UE XeNoT TNG
Tey V¢ task arithmetic, CultureMERT-TA-95M.

0.2 Avdxtnon Mouvowxrg ITAnpogoplag

H avdxtnorn pououxig mhnpogoplag eivan €vag BIETICTNUOVIXOC TOUENS TOU ETUXEVTPWVE-
TAL GTNY UTOAOYLOTIXT| AVAAUGT), 0pYAvwoT xou Sloyelplon dedopévwy mou oyetilovtal Ye T
nouotxn [46]. O 6poc MIR ypenowonoteiton peptnée @opéc eVOANAXTIXG UE TOUS GPOUS Music
informatics 1) music information processing [47]. Ta teleutaia ypdvia, 1 épeuva oTOV TOUEN
auTo xordodnyeiton ohoéva xou TeplocdTERo amd Ti¢ e€eMEELS o unyovixn uddinom, xou 1wiwe
oTic pedodoug Padide pdinone, ot omoleg €youv empépel afloonueiwtn npdodo ce mARdoc

ETUUEPOUC EQURUOY V.

0.2.1 Foundation Models ctnv Avdaxtnon Mouocwxvg ITAnpogopiag

Mpdueg pédodol otny avdxtnon pouoixic tAneogopiag Bactlovtav oc hand-crafted yo-
paxtnptotixd (t.y. MFCCs, chroma features, constant-Q representations) xou xhacoxoic
alyopldpoug unyavixic pdinong. 201600, 1 €hevon e PBadidc udinone égepe plixéc ahha-
YEC OTNV eEXUAUNCT AVOTORAC TAGEWY UOVUCIXNG, ETLTUYYAVOVTOS AllOCNUEIWTES ETOOCE OE
nowiheg epopuoyéc [48]. Iho mpdbogota, N Mo emxpatolon TEOGEYYIOT Yot TNV exudinon
oVATEUO TAGEWY ovotxic Pacileton otny auto-emPBrenouevn udidnon (self-supervised learn-
ing — SSL), émou tor povtéla exnaudedovian o€ proxy objectives mou mpoxintouy aneudeiog
omd To (Bror Tor Sedopéva eteddou, eaelpovtag TNy avdyxn Y yetpoxivty emofuoavor (label-
ing). Auth n mpocéyyion emtpénel TV eEaywY T TAOVOLWY X0 YEVIXEUOLUMY AVOTOPAUC TECEWY,
aZLOTIOLOVTOS AUTOPOTOL Topary bpeva ofjpoto emonteiog (self-supervision).

ITohhd povtéha Bactopéva 6Tny auTo-eTPBAETOUEVT Udinon €youy emdellel loyven anddo-
oM o€ Wiot EUpEla Yo pY oLV avdxTnong Lovoxic tAneogopiog (downstream MIR tasks),
UELDOVOVTUC UMTOTENECHOTIXG TO YAOMOL UE TIC ETOTTEVOPEVES TpooeYYioelc (supervised learn-
ing) [49, 50, 51, 52, 1, 53]. Ta povtéla auTd TRo-eXTULBEVOVTOL OE UEYINES LOUCIXES CUANOYEC
(music corpora), podaivovtag YEVIX0) GXOTO) AVOTEAO TYGELS TTOU UTtopoUV Vo UEToPEE o0V
anoteleoyatixd oe nowxihes egopuoyéc MIR [11] (BA. Eyfua 1). Xt ouvéyela, tpocopudlo-
vion Yéow fine-tuning oe cuyxeEXpWEVES EpYOOIES, YENOWOTOWOVTAUC CNUAVTIXG UIXPOTEQRA E-
TUOTUOCUEVO GUVOAX BEBOUEVLV, ETUTEETOVTOS ETOL ATOBOTIXT| UETAPORSL YVWOTG OXOUT] X0l GE
CEVIQLAL TEPLOPIOUEVLY TIOPWY 1| EAAITOUE eNOTTElOC.

"Eva xupiopyo pre-training paradigm eivar to masked modeling (MM), to onoio mpoépye-
Ton amd Ty Tpo-exnaldeuon tunou BERT otov toyéa tng enedepyaciaug Quowhc YAOooUg [54].
To MM Booileton otny tuyoio andxpudn (masking) tpnudtoy e €L0680U X0t GTNY EXTO-
{deuom tou povtélou va TpoPBAETEL T xpuPUEVa oTotyelo pe Bdon ta ouuppaldueva (context).
"Eva yapoxtneiotixd mopdderypa eivor to povtého MERT [1] (Music undERstanding model
with large-scale self-supervised Training), oto onofo évag encoder tonou BERT, Booiouévog
oty opyttextovix) HUBERT [55], npo-exnawdeteton o€ pueydine hipoxag nyntixd dedouéva

pouotxic péow tne pedodou masked language modeling (MLM). To MERT uvoletel pua
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SxAua 1. Ta foundation models paOaivovy avamapaotdoes yevikol okomol (general-
purpose) péow peydAng kAipakas npo-ekmaidevons oe nyntikd dedopéva, o1 omoles umopolv
otn owéyea va uetapeploly aroteleopatikd o€ éva €upl @pdopa epapuoywy avdkTnons

povoikris mAnpogopias (MIR tasks).

dual-teacher otpotny yio tn Snuiovpyio onudtwy emonteloc (supervision signals): évav
«axouvoTidy teacher, Bootopévo o RVQ-VAE (cuyxexpiuéva tov EnCodec audio tokenizer
[2]), xou évav «poucixdy teacher, Bociouévo otny avaxataoxevy| uéow tou constant-(Q trans-
form (CQT). O ouvduooudc auTdC EMITEETEL 0TO YOVTELD Vo podaivel 1600 axovoTixd oo
xalL apUovixd yopoxtneto Tixd g wovowrc. To MERT Swrtideton o 800 exdoyéc, ue 95 xou
330 exatopudplo TapAUETEOUS, Xou EMITUYYAveL state-of-the-art amddoon oe 14 SwpopeTind
music understanding tasks, emfBefoucivoviog TNV AMOTEASCUATIXOTNTA TNG UEYIANG XAlUa-
AAC AUTO-ETUBAETOUEVNC TRO-EXTIUBEVCTC X0 TNV LXOVOTNTA EVOTOINGNE TOAATAWY EQYACUDY
AVEXTNONG LOUCIXAC TAnpogoplag ot €va eviaio povtého. ‘Eva dhho mopddelypa eivar To po-
viého MusicFM [19], 1o onolo Pacileton oto MERT, avuxadiotdvtog tov exntoudedoluo
axoucTxo audio tokenizer pe évav un exmoudevolwo random projection quantizer, epmveu-
ouévo and v opyttextovix tou povtéhov BEST-RQ [56]. Auth n mpooéyyion oparpet
™y avdryxn yio EExweloTod oTddlo exudinone avarapactdoeny (.y. péow RVQ ¥ k-means
clustering), xode 1 Sradixaoia Tou tokenization dev omoutel exnaldevor. Luyxexpwéva, to
MusicFM npofdiher to gaopotind yopoxtnetotxd (log-mel features) oe hovddvovta yodpeo
(latent space) xau o Saxprtomotel p€ow evic Tuyaia apyxonotnuévou he€ixol (codebook).
[opd TNy amAOTNTE TNS, AUTA 1) TEOGEYYLOT ETUTUY YAVEL UYNAT arddooT), Wdlaftepa 6Tay LTdE-
YOUV ETOEXT) OEDOUEVA EXTIAUBEVOTC.

QoT600, LTdEYOUY Xou GAAa (BN TEo-exTAldEVaTE, OTWS To generalive pre-training. Au-
& to foundation models evtdccovton otny xotnyopia Tou auto-regressive predictive coding
(APC), evic mapadeiypatoc npo-exmoideuonc 6mou to poviého padaiver vo TpoBhénel Yel-
hovtixd tokens péoa oe pio axohoudia, yENOHOTOLOVTAG Uiot auto-regressive opyLTEXTOVIXY.
‘Evo yapoxtneiotixd napdderyua anotekel 1o Jukebox [20], évac peydhne xhiyaxac auto-
regressive Transformer (5 Sioexatoppupiowv Topauétemy), o onolog extoudeletor oe TEPLO-
cotepa and 1,2 exatopudpla Tpayoldia. To Jukebox cuumélel 1o nyntixd ohua oe dloxpLtd
codes yenowonowdvtag Tela aveldptnta exnadevpéva VQ-VAEs oe Slagpopetind temporal
resolutions, ye xdie eninedo vo yenowonotel Aelihdéyio peyédoug 2048. Ilopdho mou oyedi-
dotnxe xupine Yyl music generation, 1o JukeMIR [57] €8eile 6TL oL evdidpeces avamapo-

otdoelg Tou Jukebox urnopolv va emavoayenopotoinoly yia pyacieg xaToavonong LOLCIXAC,
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EMTUY Y AVOVTAS Loy LeT| anodooT ot tasks omwe music auto-tagging, genre classification, key
detection xou emotion recognition. Eva oxéun napdderyua anotehel to MusicGen [58], to
omolo, av xau opyIxd OYeBLEoTNXE Xou AUTd WS HovTENo dnuovpyioc povoixic (music genera-
tion) ye eloodo xeipevo xa yehwdia (text- and melody-conditioned), éyet eniong adiohoyniei
OC TEOC TNV XaVOTNTE TOu Yla eExUddnon avanapac tdoewy pouotxic (music representation
learning). To MusicGen ypnowponotel évav auto-regressive Transformer decoder, o onolog
exnoudedeton oe residual vector-quantized (RVQ) tokens mou mopdyovtar and tov EnCodec
tokenizer. Ye avtideon pe yovtéha dmwe to Jukebox, ta onola uhomololv ToAveTiTEdES Lepop-
ylec ye molhamAd priors, to MusicGen enelepydleton eninedec 1 SLEUTAEXOUEVES TORIANNAES
poéc amd tokens mou mpoépyovton and morhanAd codebooks. Autdc o oyedoudc anionotel
N Saduacto exnaideuong xou BEATIOVEL TNV UTOAOYLOTIXY] AmOBOTIXOTNTA, ATOPELYOVTOS TO
%00TOC TOU GUVETAYETAL 1) TOEAY WYY TOMATAOY powv tokens omd SlopopeTind codebooks.
Or evdidueoeg avanapaotdoeic Tou MusicGen unopolv va enavaypnowonomndoly ce TAfdog
EQPUPUOYWY oVAXTNOTNG HoLoXAg TAnpogoplag, 6mwe genre classification, key detection xau

music transcription.

0.2.2 AwnoAtiopixy; Avaxtnorn Mouowric ITAnpogopiog

East Asian 26,59
%

{‘ ﬁ‘ '
South Asian o

0.9%

Avant-Garde &

Experimental  Easy Listening
11% 6.9% Rock

Electronic 17.4%
131%
Pop Classical

19.3% l’ 13.5%
Blues

Country Hip-hop 6%
89% 6%

Jazz
57% Latin American

Region & Genre Wise Distribution of Dataset Corpus

Global distribuition of genres

YxAue 2. Iaykdopna katavour] povoikdy ouvAoydy dedopévwy (music corpora) avd ye-
WYPAPIKT) TEPIOYT.

H avéxtnon pououic mAnpogoplag €yetl mapadoctaxd emxevipmdel otny avdivon Auti-
AWV POVOXOY PETERTORIWY, PE €upaot xuplwe oty Evpw-Aucpuovin mom xan T Autixd
xhacoxn) pouoixy. ‘Eva auavouevo oo EPELYNTIXWY EQYACLOY AVUOEXVOEL TNV EVTOVN
AvTtixoxevtpxn tpoxatdAndm tou medlou xou uToYEUUUICEL TNV VXY Yol SLUTOMTIoUIXY Ole-
Upuvon xou dixandtepn extpoonnnon [21, 11, 59, 60]. T nopdderypa, ot [61] napovoiacay to
SAMBASET, éva oOvoho dedopévewy didpxelog dve twv 40 wpdv ue Bpallldvixn oduna, pe

oTOY0 Vo avTimopatedoly oTny xuplapyn Autixoxevteiny| ectlaon Tou tedlou. Trootneilouv
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OTL Ta TEPLECOTERN GOVORA BEBOUEVWY, Ol UEVOBOAOYIEC XL TA EPEUVNTIXG CUUTIEQRACUATA OTNV
OVAXTNOT LOVCIXNC TANEOPORINC EVOWUNTOVOUY CNUAVTIXEC TOMTIOUXES TEOXATUA eI, UE
TN W AuTix ouotxr Vo ival GUY VA UTOEXTIROGWTOVUEVT], OVETOEXAOS ETLONUACUEVY 1) axOUn
%ol ECQUAUEVA XAUTNYOPLOTIONUEVT. AvtioTowya, ot [3] TocoTuxomololy auth TNV TEOXATI-
m, Belyvovtag 6Tt wohic 10 5,7% twv dedopévwy yio dnutovpyia povotxic (music generation)
mpoépyetar and un Auvtixéc TopadooElg, avadEVOOVTAS €Tl TNV €VIOVY UTOEXTPOCWNNGT)
TOUC Xou TNV enelyousa avdyxn yio To TOATIoWXS Towiha chvola Sedouévwy (BA. Lyfua 2).
H avayvoplon tne Autixoxevtpixic ntpoxatdindng anotelel avayxaio medhto Priua wotdco,
1) OUCLAC TIXT) AVTWETOTIOT TN TEoUTOVETEL TEaXTIXEC TPOCTIAUELES Yiot TNV AVATTUET XAUTHA-
ANV GUVOAWY BEBOPEVWYV, OVATUEAC TAGEWY Xt PEVOOWY aELOAGYNONG TROCUPUOCUEVGLY OE

nowiheg (un Autixég) pouoixée mapadooeLS.

Y0Ovola Acdopévwy Ilodéc npwtofoulicc €youv avaderydel yio T uelworn Tng ToALTL-
OUXAC TEOXATAANYNG OTNY avEXTNOT LOUCIXAC TANEOYORIIC, UECK TNS ONUIOLEYIASC CUVORWY
dedouévmy amd dopopeTnés yewypapixée nepoyéc. To CompMusic project [62] npoogépet
méve omd 1300 weec povoxmy dedopévwy and mapadooel dnwe 1 Ivdur (Iviouotovux,
Kapvatiny), to Tovpxixd Maxdy, n Apofo-Avdarouctovi| pouotx xou 1 ‘Onepa tou Hexivou.
Yuuminpwuotixd, cvvoha dedouévwy 6mwe o SAMBASET [61], corpusCOFLA [63], Nava
Dastgah [64], KritiSamhita [65] xou Erkomaishvili Dataset [66] eotidlouv otn Bpalihidvixn,
Dhapévxo, [epownt|, Kapvoatinr| xan I'ewpyiavn povowd avtictotya. Emniéov, €youv npotaiel
olvola dedopévmv énwe to Lyra yio tnv EXnvixd nopadootond povowxd [67], to CCMusic
yioo Kivelixée mopaddoei [68], xardide xon dedopéva yior Agpixavind wbudpoata 6tne to Sotho-
Tswana [69] xou Ndwom [70]. Téhog, to M4-RAG [71] xou GlobalMood [15] npoopépouv
Ty xOoUaS xApoxag SE00UEVA UE TAOUGIEC TOAUYAWOGIXEC Xl TOMTIOUXES ETUCTUAVOELS,

EVIOYVOVTAS TNV AVTITPOCOTEVTIXOTNTA XU T1| SLUTOALTIOULXY) EYXUEOTNTA TWV GEOOUEVWLV.

MeYodoloyieg Ta teheutaio ypdvia mopatneeital dLEAVOUEVO EVOLAPEROY YLoL TNV UTO-
Aoy T MERETN Un AuTiX@V poucix@y mopadboewy [72]. Evdewtind napodelypota mept-
AopPdvouy peréteg avaryvoptone Tovpxxdyv Maxdy [73], ta&véunone Ivbixrc pouvourc [74],
xode xou avdhuone tne Ipavixrc [75], Kopeotndc [76] xou I'xavélinng [77] mopadootaxic
wovouxnc. H teheutola yehétn amoxahOTTEL UXEOTOVIXES UTOXAGCELS OTIC PWVNTIXES YRUUUES
TV seperewa scales, avadetxvOOVToC TOC0 TOUS TEPLOPLOUOUC 6G0 Xt TIC AUTIXOXEVTELXES
TUPAOOYES IOV EVOOUATMVOVTUL OTU XAAGOLXA EpYUheior avdxTnong pouotxic TAnpopoplag.
Hapdhhnha, mpdcpatee epyaoiec e€eTdlouy T1 SLATONTICUXT| UETAPORE CTNY QUTOUATY TolL-
véunon pououxrc (music auto-tagging) [78], xadie xou teyvixée few-shot learning yio oevdpuo
we younholg mnépoug [79]. Emniéov, to CLaMP 3 [71] ewodyer moAutpomxd xon ToAUYAWO-
oo alignment yio MIR tasks, netuyaivovtag state-of-the-art emddoeic oe eqopuoyéc Omwg
n avéxtnon povoxnc pe Bdomn to xeluyevo (text-to-audio retrieval). Télog, n moltiowxy
TPOCUPUOYT) G HoVTERX music generation Siepeuviinxe Y€cK AMOBOTIXAC TEOCUPUOYTC TWV
MusicGen [58] xou Mustango [80], yenoulonouwsvtog low-resource nohtiopxd chvolo dedo-
uévov. Ta mpocapuoouéva povtéla napouctdlouy Behtiwuéveg emdooelc otny IvBouotoviny
oot xou v Tovpxinh pouoxd [3], avadewviovtog t6o0 Tic duVaTHTNTES GO0 XaL TIC

TEOXATOELC TN BlamollTiouxc Tpocapuoyhc Twv foundation models.



0.3 Ipotewopevn Medodoroyia

IMpoxAroeig  Ilopd Tic TpdoPaTEC TEPOHBOUE, 1) OUCIAC TIXT) AVTWETHOTICT] TG TOATIOUXNC
avicopponiog 6to MIR Sev umopel va teptoplotel otny amhi adénon tng noixhouop@iog twy
oLVOALV Bedopévev. ‘Onwe tovilouv ol [81], amauteltan xpitiny enoveZétaon twv Yepehiw-
0LV THEABOY WY TOU TESOU—ETIC TNLOAOYIXWY, UEVOBOMOYIUDY X0l oLaXOY—CUUTERL oS a-
VOUEVOU TOU TG 0plleTal, XUToUVOELTaL o UEAETATAL 1) LOUCIXT OF OLOPOPETIXA TOMTIOUIXA
mhadowa.  Amapaitntn eivon eniong 1 Slemotnuovixs) obvdeor ye v edvououcixohoyla xou
T EVERYT| CUUUETOYT EWBOWOY and TIC avTIOTOLYEC HOVOXES TORUDOOES. LTNY TEdEn, N €A-
Aewpn Bedouévev meptopllel T BUVITOTNTA EXTPOCMTNONS TOAAWY TOALTIOUMOY XaL 00NYEl o€
unbalanced xoatavopée petadedouévwy (metadata), ov onofec ennpedlouv v a&lohdynon.
Iapdhhnha, tor povtéra Tou exmoudedovial xuplws oe AuTixd SEBOUEVO EVOWUATOVOUY TROXA-
Tahelg, ot omoleg To xorha ToOY Ay dTepo Yevixelolua o€ un AuvTtixd uouoixd cuoTriuato. I
TNV UTEEBOOT AUTWY TWV TEPLOPIOUMY ATAUTOUVTOL TOALTIOUIXE EVAGUNTOTONUEVO TEWTOXOA-
Aot a€LOAOYNONG, XATIANNAES PETEWXES, XAl 1) ATO XOWVOU aVATTULN HOVTEAWY GE CUVERYIGIX
ue local experts xou practitioners, hoaufBdvovtag urodn Tic evvoloroynés Bdoelg xou Tic oieg

7oL BIETOLY XddE pousLxY| TaEAdOGT).

0.3 Ilpotewduevn Medodoloyia

0.3.1 XUvolo Acdopévwy xow ASLoAoYnoM

[ow Tor TELpdoTd Pog, YENOHLOTOLOUUE Uit TOLUALYL oltd GUVORN LOUGLXWY GEBOUEVLY TTOU
XohOTTOUY 1060 AuTIXEC 660 xan U1 AUTIXEC HOUCIXES TIOEAUOOCELS. LUYXEXPWEVA, Yol TNV
exnpooonnot e Autixrc pouotxic yenowwonotolue ta obvolo MagnaTagATune (MTAT)
[82] xou FMA-medium [83]. A6 tnv mheupd twv un Avtixdy napaddoemy, EVOWUNTOVOUUE
t0 olvohro Lyra [67], to onoio mepthapfdver EXAnvixn napoabootaxt| pouotxh, xadoe xou Teele
ouMoyéc and ta CompMusic Corpora? [62]: Tnv xhacowr Odwuavie/Tovpxd pouou
(Turkish-makam) [84, 85], n onola, pali pe to Lyra, exnpoownel v Avatohxry Meadyeto:
xadde xou Tic topaddoelc e Ivdouotavinic (Hindustani) xo Kapvotixfc (Carnatic) xhao-
o povowxhc [86], Tou avtioToyolv ot Bépewa xou Nt Ivdio avtiotouyo.

AZlohoyolue o HOVTEND HOG OF EQYACIEC AUTOUUTNG ETLONUEIWONS / T VOUNoNE LOUGLXNS
(music tagging), 1600 yia Avtixéc 600 xou yio un Avtixéc napaddoelc, 6To TAicto dlamo-
Mtouric oflohdynone (cross-cultural evaluation). Xenowonotolue xadiepmUéves UETPIXES
vt multi-label classification, 6nwe o ROC-AUC, 1o average precision (AP), xaddc xou
Tic petpeée F1 (micro-averaged xou macro-averaged). AxohovdmvTog TiC TPOCEYYIGES TwV
[57, 1, 19], epapudlovue probing-based evaluation [87] avti yio mApec fine-tuning, Sotn-
POVTOC TO TREO-EXTIUOEUUEV LOVTEAD <TIOLYWUEVOY X0 YENOOTOIWVTaS Toe w¢ deep feature
extractors, eve exnawdedoupe povo éva MLP ue éva xpupd eninedo 512 vevp®vey méve arnd
outd. It TV mpoetoyacion Twv SEBOUEVLV LG Yot GUVEYT TRO-EXTAOEUOT), €dyOuNE amto-
ondopota didpxetac 30 deuteporéntwy and xdde clvoho exnaidevonc (training set) twv un
ATV GUVOADY BEBOUEVOV. AEBOUEVLV TWV BLOPORMY GTOV GUVOAIXO OYXO TWY CUVOAWY,
£€100pEOTOVUE T1 SLdpXELd TwV OEBOUEVKDY EXTIUBEUCNC OVE TOAITIOUO WGTE VoL BLUGPAUALC TEL

avahoywr| exnpocwnnor: e&dyoupe 200 opeg and ta alvoro Tovpxixol Moxdy, Kapvorti-

2 py . ,
https://compmusic.upf.edu/corpora
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¢ xan Ivdouotavinic povouxnc, xou 50 wpec and to Lyra, Aéyw Tou uixpdtepou yeyédoug
TOU. LT GUVEYELN, GUVOUALOUUE AUTE T UTOGUVOR YLOL VOL XUTOUGHEVAGOVUE €V EVOTIONUEVO
oUVOAO 650 WPV, TOU EVOWUATMVEL XAl TIC TEOCEPLS TUPABOCELS, HE GTOYO TNV TOAUTOALTL-

ot exnaideuan Tou aEy X0l LovTEAOU.

0.3.2 To povtého MERT

Acoustic [VQ(M)) (VQ(xs)] [[CQT(mz)] [CQT%)]J Musical

Teacher Teacher
" B
Acoustic Musical
MLM MLM
N / Audio Waveform
Contextual Ty T3 T3 T4
Representation = )| G| () & E ¢ b B Am
m 7 7

Transformer
Encoder

N O/

1D Convolution
Feature Extractor

Masked Audio
Features :J CJ

YxAue 3. H apyirextoviki tov povtéov MERT [1].

H ocuveyrc mpo-exnaldeuon mou egapudlovue axoroudel to self-supervised masked lan-

TRVQ -VAE

guage modeling (MLM) objective tou MER , 070 omnolo 600 teacher models mopéyouv

Ta pseudo-labels:

o (i) évac acoustic teacher, cuyxexpéva to EnCodec codec povtého [2], 1o onolo dloxpt-
tonotel Tov fyo o tokens and K = 8 residual vector quantization (RVQ) codebooks,

xadéva ex Twv onolwy meptéyel C' = 1024 codewords, xau

e (ii) évoc musical teacher, Baciopévoc oe avaxataoxeur constant-Q transform (CQT)

spectrograms, o omolog poviehonolel TAnpogopia GyeTH UE TO pitch xou Ty apuoviny

doun.

To MERT-v1-95M oxoloudel tnv HUBERT apyitextovixr [55], n onola amoteleltar omd
évav CNN-based feature extractor nou ene€epydleton raw audio waveforms ye sampling rate
24 kHz o ta yetotpénel oe frame-level representations oto 75 Hz, xadde xou évav 12-layer
Transformer encoder mou napdyer 768-dimensional contextual embeddings (BA. LyAua 3).
Katd tny exnaidevon, éva utosivoho twv frame embeddings xahOnteton pe pdoxo (masking)
%ol To povtého Behtiotonoleitan Yéow evée multi-task learning (MTL) objective, to omofo

ouvdudlet masked acoustic token prediction xou spectrogram reconstruction.



0.3.3 Xvveync Ipo-exnaidcuon Advo Xtadiwv

Stage 1 Stage 2
MERT MERT
= Codeword Embeddings ¢% S Codeword Embeddings ¢}

¥ ¥

- | Music MLM loss Acoustic MLM loss Music MLM loss Acoustic MLM loss

"\ 7 R 7

v

Transformer Encoder \: Transformer Encoder
.| : [: 1

: [ ] ' L 1 (f\’

- | i L 1
'\_ s 1

1D convolution feature extractor 1D convolution feature extractor
Learning Rate Re-Warming AR Learning Rate Re-Warming
o Hietiiee  S5e-4 5e-5
100-hour Multi- 650-hour Multi-
Cultural Audio Data Cultural Audio Data

(20% Music4All)

10% Warm-up 1% Warm-up
5e-5 5e-6

Yxnue 4. Yrparnykn Xuvvexoilg Ilpo-exrmaibevong Avo Xradiwv tou
CultureMERT. Yto Xtddw 1, eknaibetetar éva vnoovolo twr tapapétpwy (o 1D CNN feature
extractor kai ta codeword embeddings) ndvw oe 100 dpes bedoprévwv ya toAanAd epochs, e
0 20% Ttov owdlou va amoteAeftar and Avtikry povoikry. Xto Xtddiwo 2, 6Aes o1 mapdpetpor
TOU OV TéAOU ekTta1deortal Tdrvw oto TANpeS ovrolo dedouévar twy 650 wpwy. H Madikaoia
eravaOéppavons wov learning rate epapuoletar ka1 ota 600 otddia, emTpénortag opain) kai

otalepn mpooapuoyn.

0.3.3 Xuveync Ilpo-exnaidevon Avo Xtadlwy

[Mo v npocapuoyy) Tou wovtéhou MERT oe nowiieg povowxés mapadooeie, eqapuolouue
continual pre-training, o dtadxacta xatd TNy ool Eva d1 TEO-EXTAUOEVUEVO LOVTEAO GUVE-
(et vo exmandedetan o€ Véa SEG0UEVL, UE GTOYO TNV TEOCURUOYT| TOU OE OLopopeTixd domain,
OLULTNEWVTOC T1) YVWOT) TOL EYEL 1\OT) ATOXTAHCEL, Ywplc avayxrn TAYpous enavexnaidevong. X tnv
TEPIMTWON Hog, aUTO CUVETAYETAL T CUVEYT| TEOo-eXTaideusT Tou MERT-v1-95M, yenowonol-
@vTog To {0lo pre-training objective, ndvw o€ TOAMTIOUXE ETEQOYEVY| BEBOUEVA TTOU ELGAYOUV
oNUOVTIXA PETATOTION 6TNY Xatavour] Twv dedouévey (distribution shift), xadde to povtého
elye apyxd exmoudeutel xuplwe oe Auvtn| povowd [1, 43]. Aedopévne authc Tne LETATOTLONG,
1 APEAN CUVEYLOT TNG EXTIUUBEUOTC, ONAADT| 1 TUUTOYPOVY TROCUPUOYY) OAWY TWV TUROUETEWY
Ywelg emavagpopd Tou learning rate, umopel vor 0dnyfoeL oe pouvoueva catastrophic forgetting
[44] xou avemopxn mpooopuoyy| [4], 6nwe emBeBoutdveTon o and TO TEOXUTUPXTIXG. YOS TEL-
pduata (BA. Evémnta 0.4.3). Tho tny avTPUETOTON QUTOY TOV QUVOUEVGY, TROTEVOUUE ULa

otpatnyxy 800 cTadlwy, n onola otadeponotel tn Swdixacia exnaideuone Yéow:

o (i) enravadéppavorne (re-warming) xow €x véou peiwong tou pudnod
wddnonc [4, 31, 34, 88, 89], xou

o (ii) otadraxrc mpoocappoyrc (staged adaptation).
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H pédodoc pac mapovoidletar oto Lyfua 4, OTOU CUYXEXPHIEVA ATEWOVI(ETOL 1) GTEUTT-

Y| 800 cTadiwy Yo TN cuveyT Tpo-exmaideucT) Tou CultureMERT.

Ytadiaxy] ITpoocoappoyr (Staged Adaptation) Xto apyxd poc meipduoto ToEAUTn-
PHOUUE L0l CEYIXT] TTWOT TNV AmOd00Y] xuTd TN OLIEXELX TNG GUVEYOUS TRO-EXTIUUOEVOTC,
oxohoudoVUeYn amd o @dom apyhc avixaudne, @ouvouevo Yvwotod we stability gap [90].
H actdideia authy ogelhetar 6Ty andTOUr TEOCUQUOYT TWV TUPUUETEWY TOU HOVIEAOU OE
o opxeTd BtapopeTixy) xotavour| dedouévwy (distribution shift). T va yetpidoouye oautd
TO QAVOUEVO, avTi Vo TeocupUOloupE OAEC TIC TOEAUUETEOUS amtd TNV oYY OE OAOXANEO TO
oUVOAO BEBOUEVLV, ywpllouue TNV exntaldeuon ot 800 Bladoyxd GTAdLL, WOTE Vo EmTELY Vel

opoldTeEN xan o otadept| Tpooappoyy (Bh. Lyhuo 4):

e 3tddwo 1 — Pdorn Xradepornoinong: To yoviého exmoudeleton apyixd oe éva
Uxe6TERO UTOGUVOLO dedouévimy [90], ue evnuépwon uévo tou CNN-based feature ex-
tractor xou tou codeword embedding layer, eve o Transformer encoder diutnpeiton
«moyouévogy. T v avtwetonicovye o distribution shift xou v meplopicoupe to
forgetting, evowuatdvouue tocootd 20% and dedouéva tou cuvérou Music4All [7], to

7 7. 4 4 4 Z
omolo etvan xatd Bdon Auvtixrg mpoéhevong.

e 3tddwo 2 — ITAYeng Ilpocappoyr: O Transformer encoder «Eemayhvetony xou
ouveyileton 1 exnaidevon oto ThApec ohvoho twv 650 wpwv. H evowudtwon Autixody
0edoPEVLY UTopel var Slatnenldel xou oe auTd TO GTASL0, WOTE Vo TEPLOPLO TEL TEPAUTERW
70 forgetting, wotéo0 elodyel évay ouuPiBacud (trade-off) uetald Toltiouxhc npocoe-
poyhe (plasticity) xou diatrpnone mpdtepnc yvwone (stability), wo tpdxinon yvwot
oc stability-plasticity dilemma [91, 92, 93] (BA. Evétnta 0.4.3).

O Burywpeioude e exnoldevong oe V0 oTAdIL PG ETUTEETEL Vo EAEYEOUUE TO OmOTENE-
OUOTXE aUTAY TN Buvox| HETOED TEOGUPUOC TIXOTNTAC X0 O TAHEPOTNTOC, EMLOLOXOVTOC HULdL
AELTOURYIXT) LOOPEOTIA AVHUETO GTNY EVOWUSTWOT VEUS TOMTIOUIXNS YVMONS Xl GTN SLTHET-

o™ 60wV €YEL HOT UADEL TO TEO-EXTIOUOEVUEVO HOVTENOD

Enavadépuavorn (re-warming) touv pudpot pwddnorng o m Bertioon tne oto-
Yepdtnroc xatd ) ouveyn mpo-exmoideuot), epapudlovue emavaléppavon (re-warming) xou
ex VEou ueiwon tou puduol udinone (learning rate) xou ota dVo otddie. H exnaideuvon
oe véa Oedopéva umopel vo odnyroel oe aoTadr) clyxhion xou gawvoueva forgetting, €dv to
learning rate dev npooopuootel xotdAnia [4, 34]. Iponyoluevee yeléteg éyouv deilet bt
7o re-warming tou learning rate elvon xplollo yio TNV ETTUY T TEOCUPUOYY| XU TOV UETELICUO
Tou garvouévou catastrophic forgetting [4, 31, 34]. O tpdnoc pe tov onolo YeTafdAheTon TO
learning rate ennpedlel xaopioTid ta dynamics Tng eEXTalBELONC XAl TNY ATOTEAECUATIXOTT)-
TA TG TEOCUPUOYNG, XUGTOVTUS TNV ETAVOIEQUAVOT] ATUQLTATY Yol amodoTixy| udinon ot

véa dedopéva. o cuyxexpiuéva, oxohoudolue Ta TaEUXdTw:

e Y10 XTddo 1, uviodetolue éva ehagppwe o aggressive warm-up schedule, kote va

evioyUoOUUE TNV oYX Tpocopuoy Twv low-level representations (CNN-based fea-
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ture extractor xat codeword embeddings), npwv Eextviioe 1 exnaidevon tou Transformer

encoder xou 1 udinomn mo high-level avanopactdoewmy.

e Y10 XTddio 2, eqopudlouye éva nmotepo schedule, embiwxovtog woopponio aviyeoo
oto plasticity xou stability xotd tnv TAHEN exnaidevon Tou Uoviélou, meplopllovtog

Topdhhnho Tic aotdieleg otny exnoidevon (training instabilities).

Axohovdwvtag ) pédodod pog, avVamTOCCOUNE To TUPUXATE TOATIOUIXE TEOCURUOCUEVL

povTENQL:

e (i) 'Eva ToAuToONTIOUIXS TEOCUpUOOUEVO HovTého, To CultureMERT, to onoio exmou-
0elETOL OE €VOL EVOTIONUEVO GUVOAO OEBOUEVWV TIOU TEPLAOUPBAVEL Xou TIC TEGOEQLS WUN

Avtixée povowrée napadooelc (Turkish-makam, Hindustani, Carnatic xou Lyra).

e (ii) Téooepa povtéla npocupuloouéva o dedouéva plac Lévo pouotxic tapddoone, odn-

ywvtog oto MakamMERT, HindustaniMERT, CarnaticMERT xou LyraMERT, avtioToiya.

0.3.4 Xvuyywvevorn Moviéhwy pe tnv Teyvixy Task Arithmetic

Q¢ evadhoxTixr) TNg oUVEYOUS TEO-EXTABEVCTC OE €Vl EVOTIONUEVO GUVOAO BEBOUEVWY
TOU TEPLAOBAVEL X0 TIC TECOEQPLS HOUCLXEC TOpAdOoELS, Blepeuvolue T pévoodo task arith-
metic [5] — @ TEXVIXA CUYYDOVELONES LOVTEA®Y TIOU GUVOUGLEL TOMTIOUIXY EEEIDIXEUUEVL
HovTéha oToV YWeo Twv Popwy (weight space), pe oxond tnv xataoxeuf evoc eviaiou To-
Aumohitiopwol povtéhou. H pédodoc task arithmetic Poociletor otov ahyefeind cuvbuaoud
TUEUUETEWY LOVTEAWY, UECK TREOCHaPUEECEWY BlavuoudTeny Bapny otov Euxieldelo yopo.
Yuyxexpuéva, avtetonilel T ohyeBpuxn Slapopd HeTAE) EVOC UOVTEAOU TROGUQUOCUEVOU GE
éva task 1 domain xou TN aEy L TOL TEO-EXTIUBEVUEVNS EXBOYC WS €val task vector oTov
X ®eo Twv Papnyv. ‘Eyet anodewyvel 6TL ypouuixol cuvovacuol tTétowwy task vectors prmopolv
VoL XoTELFOVOUY OTOTENEGUATIXG TN CUUTEQLPORE. TOU HOVTENOU Yol Vo ETLTEEPOLY UETOPORS
Yvoone petall dtapopetindy domains [94, 5).

Y10 0w pog mepintwor, vnoloyilouye to task vectors we tny element-wise Sloupopd pe-
Tag) TOV TUPUUETEWY TWV TOMTIOUIXA EEELOLXEVUEVWY LOVTEAWY — OnAadY| Twv single-culture
continually pre-trained models — xou tou apyixol yovtélou MERT-v1. Ilio tumxd, av to
OEYIXO TPO-EXTIOUOEUUEVO UOVTEND EYEL TUPUUETEOUS Opre ot TO YOVTEAO 0; €yl TPOCUPUO-
otel oe évo molTiouxd cOvoho dedopévwy D;, téte To task vector yio Tn cuyxexpluévn
poucxy| Toeddoot ¢ diveton and TN oxéomn: T; = 0; — Opre. I'iot TNV TOAUTOAITIOWIXT| TTROGORUO-
Y7, %ATAOAEVALOUPE EVOL EVOTIOLNUEVO HOVTEND Oimerged HEOWL task arithmetic, cuyywvebovTog
N povtéla mou €youv TEOCUPUOGTEl OE UEHOVOWUEVES UOUOIXEC Tapadooelg, adpoilovTog Ta

avtiotowyo task vectors 7; pe cuvteleotéc PopltnTag A; yior xodéva and auTd:
N
emerged = epre + § AiTi, (1)
i=1

omou \; € R eivon Paduwtol unepropduetpol (scalar hyperparameters) mouv ehéyyouv

oLVELoPOPd xde task vector.
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Yuyvd epopuoleton vag evialog CUVTEAESTAC A yia Oha T task vectors, dnAadh A; = A, Vi,

onote 1 E€iowon 1 avadatundvetoa »:

N
Hmerged = gpre + A § Ti- (2)
i=1
Ye autd To mhaicto, ouyywveboupe T N = 4 povtélo mou €Youv TEOCUPUOCTEL GE

UELOVOUEVES UOUCIXEG Tapadooel; — To MakamMERT, HindustaniMERT, CarnaticMERT xou
LyraMERT — yio Vo XUTAOXEVACOUUE €Vl EVIOLO TOAUTOMTIOUIXO HOVTEAO, TO OO0 AVOpE-
eopaoTe w¢ CultureMERT-TA. Aentopépeleg Yo TV EMAOYY) TOU GUVTEAEGTH A Bivovton oty

Evétnta 0.4.2.

0.4 Ilepdpota xow AToTEAECUATE

'Onwe nopovoidletan otoug Iivaxes 1 xou 2, to CultureMERT, to omolo €yel npocoplocTel
UECL TOAUTIOALTIOUXAC GUVEY0UC TPO-eEXTaidELaTC, UTEREYEL G TardEpd TOU aEyIX0) LOVTEAOU
MERT-v1 oe OAa Tor un Autixd music auto-tagging tasks, oe dhec tig pyetpixéc allohdynong.
TrepPaiver eniong, xotd y€oo 6po0, Ta HOVTEAN TIOU €YOLY TEOCUPUOCTEL OE UEUOVOUEVES TTO-
PUDOCELS, YEYOVOS TIOU UTOONAWDVEL OTL 1) EVOOUATWOT) TOMTICUXE TOWIAOUORPWY OEOOUEVELV
xatd 1 Sidpxeta Tou continual pre-training evicy Vel TNV TOLOTNTA TWV AVATUEAUC TACEWY YLoL
xade emuépoug povoxn Tapddoaor, Behtidvovtog €Tol T Yevixeuor. Aoonueiwto elvar ot
70 CultureMERT emituyydvel auTd Tol ATOTEAEGUOTA UE EAGYLOTY AmWAEL ombdoone o Au-
Txd oUvoha allohdynone (uéon peiwon ROC-AUC xaw AP xatd pohc —0.05%), yeyovoq
TIOU XOTAOEIXVVEL TNV AMOTEAECUOTIXOTNTA TNG TEOCEYYIoHS pac. Emmiéov, nopouoidlel xa-
ANOtepn Slathienon TN TEOTERNS YVOOoNS 0T AUTXT] HOUCIXY|, CLYXELTXA Ue Ta single-culture
wovTéha, to omolol EYPovilouv GNUAVTIXOTERES HELDOELC ambd0oNC XaTd TNV o&LOAOYNOT TOUG

ota auto-tagging tasks twv FMA-medium xot MagnaTagATune (MTAT).

Dataset ‘ Turkish-makam ‘ Hindustani ‘ Carnatic ‘ Lyra ‘ FMA-medium ‘ MTAT ‘A
vg.
Metrics | ROC AP | ROC AP | ROC AP | ROC AP | ROC AP | ROC AP |
MERT-v1 ‘ 83.20.08 53.30.12 ‘ 82.40.04 52.90.19 ‘ 74.90.05 39.70.15 ‘ 85.709.10 56.50.18 ‘ 90.709.04 48.1¢0.11 ‘ 89.60.07 35.90.15 ‘ 66.1
MakamMERT 88.70.11 58.80.22 | 84.50.16 57.80.18 | 77.60.14 42.70.16 | 84.60.12 53.20.17 | 90.30.12 47.19.16 | 89.00.07 35.60.12 | 67.5
CarnaticMERT 88.40.06 58.40.16 | 87.00.06 60.20.14 | 78.80.13 44.00.17| 85.40.11 55.80.16 | 90.20.10 46.70.09 | 89.20.10 35.30.11 | 68.3
HindustaniMERT | 88.39.12 58.20.16 | 87.40.11 60.30.16 | 77.00.12 42.70.16 | 84.20.13 52.00.15 | 90.20.13 46.10.10 | 89.10.09 35.8p.13 | 67.6
LyraMERT 86.70.07 56.80.13 | 85.90.08 57.40.13 | 76.40.00 40.10.13 | 85.00.11 53.50.14 | 90.00.08 46.00.16 | 88.90.05 35.1p.14 | 66.8
CultureMERT [89.6¢.09 60.69.21 |88.20.20 63.50.24(79.20.18 43.19.22 | 86.99.10 56.70.20 | 90.709.09 48.10.13 | 89.40.09 35.90.16 |69.3
CultureMERT-TA | 89.09.12 61.00.18| 87.50.10 59.30.13 | 79.10.11 43.30.13 |87.30.08 57.30.19| 90.80.06 49.10.15 | 89.60.10 36.4¢.14 | 69.1
(Previous) SOTA |87.7 [78] 57.7 [78] |86.5 [78] 63.1 [78]|77.0 [78] 43.9 [78]|85.4 [78] 54.3 [78](92.4 [78] 53.7 [78]|92.7 [95] 41.4 [57]| -

ITivaxoc 1.

AmnoteAéopara A&oAdynons (ROC-AUC kar AP) twv Ilpo-

exnaibevuévwr kar IToMtiouikd Ilpooapuoouévwrv MovtéAwvy MERT oe
Ardgopes Epyaoieg Avtéuarng Ta&wdéunong Movoikrig (1/2). Avapépovar
pnéoor opor and mévte random seeds, peE TIS avTIOTOLYES TUTIKES amokAioels wg deikteg. H
oTtiAn «Avg.» avunpoownelel T puéon anédoon o€ dAa ta oUvora SedOUEVWY Kal TIS UETPLKES

a&1oAéynong ya kdOe povtédo.
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Dataset ‘ Turkish-makam Hindustani Carnatic Lyra FMA-medium MTAT A
vg.
Metrics (F1) ‘Micro Macro ‘Micro Macro‘Micro Macro‘Micro Macro‘Micro Macro ‘Micro Macro‘
MERT-v1 | 730 389 | 711 332 | 801 300 | 724 426 | 57.0 369 |35.7 212 [493
MakamMERT 77.5 44.0 74.0 37.6 81.0 314 70.8 40.2 57.2 35.4 34.2 20.5 | 50.3
CarnaticMERT 76.8 44.0 76.2 46.3 81.6 324 72.9 42.8 57.3 35.3 33.3 22.5 |51.8
HindustaniMERT | 76.5 43.9 78.9 46.9 81.0 33.0 70.1 40.6 55.1 33.8 34.4 209 |51.3
LyraMERT 75.9 42.1 75.9 44.9 80.9 29.6 71.3 41.1 56.2 33.9 33.8 21.2 | 50.6
CultureMERT 77.4 45.8 77.8 50.4 | 82.7 32.5 73.1 43.1 58.3 36.6 35.6 22.9 |52.9
CultureMERT-TA| 76.9 45.4 74.2 45.0 82.5 32.1 73.0 45.3 | 59.1 38.2 35.7 21.5 | 524

ITivaxac 2. AmoteAéouata A&woAéynong (Micro-F1 kar Macro-F1) twv
IMpo-exrmardevuévwrv kar Ilohtiouikd Ilpooapuoouévwr MovtéAwy MERT
oe Ardgpopes Epyaociegc Avtduarng Ta&wwdunong Movoikis (2/2). H otin
«Avg.» napovaidler tn péon anédoon kdle povtédov, VTOAOYIOLEVN) wS 0 U€OOS OpOS €Tl CGAwY
TV OUVOAWY B€B0EVwY Kal Tw 600 UETPIKDY.

[apatneolue emlong 6Tt Tar wovtéda oy €youv TpooupuooTtel e Ui UOVO UouoIXr Ta-
pddoon (single-culture adapted models) teivouv va emtuyydvouy Bértiotn anddoon ota o-
vtiotoya in-domain tasks, Wiaitepa o well-resourced napadoocels, emBeBarcyvovtoc TNy ano-
TEAeoUaTIXOTNTA TG oLVEY0US Tpo-exntaideuone yio domain-specific adaptation [32]. H tdon
oUTY TAUEATNEELTAL GE OAEG TIC UETEWES aglOAOYNoNE Tou Yenotuonowolue. A&loonuelnTto elvor
OTL axdun xou 1 TpooappoyY| o clvola dedopévmv Ue Teptoplouévouc tépouc (low-resource
adaptation), 6nwe oty nepintworn tou LyraMERT nou exnoudeldtnxe ot puokic 50 wpec EX-
AnNVIrc Tapadoctoxic Louoxrc, 00nYel o onuavTixég BeATIOoES o dhha un Autixd tasks.
To yeyovog autd umodexviEL OTL axdun xou TEploplopévn éxdeor oe diverse dedouévo xa-
T& TN SudpxELs TNE EXTALBEVOTC UTOREL Vo EVIoYOOEL ONUAVTIXG T1| OLUTOAITIOUIXT] YEVIXELUOT)

(cross-cultural generalization) mépoav v Avtixdv datasets.

Emmiéov, n TOAUTONTIOUIXY CUYYOVEUST] HOVTEAWY PECW TN TEYVWNS task arithmetic
eMTUYYAvEL cUYXpEloeS emBOaELC pe To CultureMERT ota un Autixd chvolo SEG0UEVKY, EVE
T0 unepfaivel otar Autixd tasks xon 6to Lyra, xatadewvioviag 0Tl 1 GLUYYWVEUCT] TOMTIGUIX
£ZEWBIXEVPEVWY LOVTEAWY GTOV Y WO TV PopddV UTOREL VO ATOTEAETEL Lo ATOTEAECUOTIXT, Y-
plc emmiéov exnaidevon (training-free), evahhoxtx) — vnd v mpoimddeon ot ta enpépouc
povtéla etvan HoT Sldéotpa. AZloomueiwTo elvan eniong 6T To task arithmetic unepPoatvet, xa-
T& PECO 6RO, OXOUT 0L TO 0PYLXO TEO-EXTIOUOEVUEVO HovTEho oTa AuTtind tasks, evioylovtac
TEPALTEQ® TNV IXAVOTNTA TOU VO ETULTUY YAVEL LOOPEOTIA UETOEY OMOTEAECUATIXNAC TROCUPUOYNC
xan dthipnong meotepng Yvwone. Téhog, to CultureMERT xou CultureMERT-TA unepPaivouv
ta tponyolueva SOTA amoteréopata tng Bihoypagpioc oe dha To un Autxd music auto-
tagging tasks, w¢ mpog Tic petpieéc ROC-AUC xou AP, pe tnv xahbtepn nopodhoyt| Tou task
arithmetic va emtuyydveton i A = 0.2 (BA. LyAua 7). Evdagépov napouctdlel 6T uévo to
TohLTOMTIOUXS LoVTéND, CultureMERT xou CultureMERT-TA, Eencpvolv o opyixd MERT-v1
oto Lyra auto-tagging task, €o0tw xou ye ) uixpdTepn OLopopd CUYXELTIXG YE ToL UTOAOLTTA
tasks. H mopatfpnomn autr cuvddel ye to yeyovog 6Tl to MERT-v1, npo-exnawdeuyévo oe Au-

TIXY houoint|, anoTelel Yon éva toyupd baseline yia 1o Lyra, unepBaivovtoc ta mponyolueva
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SOTA anoteléopator YEYOVOS TOU EVOEYOUEVC AVTAUVOXAS OUOLOTNTES OVAUETH GTNV EAAN-
VIXY| TopaBOsLoY) LOUGIXT Xt TIc AUTIXEC LOUCIXEC TORUOOCELS. LUVOAXA, To EUPYUATE UaS
EVIOYVOLY TEQUTERW TNV AMOTEAECUATIXOTNTA TG TOAUTOMTIOMXAS TEOCUPUOY NS, Wiwe Ot

OEVAQLAL UE TIEPLOPICUEVOUS TTOPOUC EXTALBEVCTIC Xl UTOLTAOELS Yot DLAmOATIoMXT YEVIXEUOT).

0.4.1 Awrohtiopixn I'evixevon xouw Metagopd I'verong

‘Onwg gabveton oto Lyfua 5, 1 cLveyhc Tpo-exnaideuon oe plo poucixt| Taeddocn uropet
VoL EVICYVUOEL TNV OmOB00T %ol OE GAAES, oV XU OE OlapopeTind Pardud. Evdeixtind, mopo-
peiton toyupy| dtamohitiopixyy petagopd uetold e Tovpxixrc (Turkish-makam) xon tng
Kapvatixfc (Carnatic) nopddoong, xodoe tar LoVTENS TOU €Y0UY TPOCUEUOGTEL oTN o Yevi-
%€VOLUV ATOTEAEOUATXG Xat oTNY GAAT. Tlopduola yetapopd yvohong napatnesiton xat UETUED
e Kapvatinrc (Carnatic) xou tne Ivdouotavixic (Hindustani) povowic. Suyxexpyéva, to
novtého mou €yel mpocapuootel oty Kapvatixh emituyydver upniéc embddoelc oe Oheg TIC
uetpéc xatd v olohdynon tou oto Hindustani auto-tagging task, evéd to yovtého trng
Hindustani napoucidlel ehagppide xahitepn anédoon oTic uetpwég F1 otav epapudleton otny
Koapvatnd| povowr, (Bh. Iivaxee 1 xou 2). H opoBaio auth petagepoudtnta evioy Vel Ty
eyyYUTNTO UETAE) TWV 800 HOUCIXWY TUPAdOCEWY, WIS AOYW NS XOWNE YEHONS TWV 1aga
xou tala [24], mapd Tic dapopéc ot Lop@ohoyio TG EXTEAEOTS, TIC HEAWOXES XIVACELS Xou Ta

OPYOVOL TTOU Y ETOULOTOLOUVTOL.

—— MERT-v1
CultureMERT

—+— MakamMERT

—— CarnaticMERT

—— HindustaniMERT
LyraMERT

—— CultureMERT-TA

Carnatic Hindustani

Lyra Turkish-makam

L\

FMA-medium MagnaTagATune

Yxnuo 5. Arwanoltiouikn) Metageporudrnra. Anddoon twv Tpoosapuoouévwy
povtéwy Pdoer tng puetpiknis ROC-AUC o€ 6Aa ta ovvola dedouévwy, avadeikriortag tdoes
Hetapopds yvwons petall twy pHovoikoy mapadéoewy mov efetdlovtar. To CultureMERT
yevikeUel anoteAeouatikd oe un Avtixd datasets, evd n ovyydvevon povtédwy péow task
arithmetic emruyydrer avtiotoryn anédoon ota ida ovvola ka1 vreptepel ota Avtikd datasets
(FMA-medium, MTAT) kaOds ka1 oto Lyra.

Ye yevrég YpouUés, mapatneoUue 6Tt To cross-cultural transferability dev etvou ndvtote

ouupeTod. Mo Topddetyuo, v To HovTtélo Tou éyel tpoodpuoctel otnv Carnatic pouot-
)
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x| yewixeLel ixavorountixd oty Hindustani, n avtiotpogn xatebduvon odnyel o ehappng
xoNUTEPES emB60EC WoVo oe oplopéves petpixée (m.y., Macro-F1). Ilapduolec acuppetpies
€youv xataypagel xou ot BiBAoypopio yio To cross-lingual transferability [96, 97, 98]. Idiwo-
{tepo eVOLOPEPOV TaPOUGLALEL TO YEYOVOS OTL TO WOVTEAO TOU €yEL TEocopUooTel oty Kopva-
TIXY LOUOXT] avadEXVUETOL w¢ To o oTtadepd transferable petalld dAwv twv single-culture
HOVTEA®Y, ETULTUYYEVOVTOC TIC UPNAOTERES PETES ETUBOTELS OE TOAAATAES U1 AUTIXEC HOVOIXES
Tapaddoel, olupwva pe T peteixéc ROC-AUC, AP xou F1. Eugavilel ioyvpn anddoon oyt
16vo evtoc Tou evpltepou Ivdixol tohitiopxol mhasiou (avdueoa otic napaddoeic Carnatic
xou Hindustani), od\& xou yevixelel anoteheopatixd npog tnv Toupxnh xhaocowxd| xou thv
EXNnvur) topadootaxt| Louotx).

H EXNnvuc| TopaBoctoxt] Louctxr] GUVIG T Uiol LOLIETERT) «TEOXANGTY, XoiE EVOWUATWVEL
YAEaXTNELWOTIXE 10 amd un Autixéc 600 xat and AUTIXEC UOUCIXEC TUEUBOOELS. LUYXE-
HEWEVA, PEREL OTOLYElD UEAWBIXO) AUTOCYEDIAOUOU KO UIXPOTOVIXAC EXPEUOTC, XOWA UE TIC
rapaddoeg g Tovpxinic Moxdyu xou g IvBouotavinfc youoixnig, eved mopdiinia oflomolel
evopuovioelg ennpeacuéves and TN Autnr) xhaooixn pouoixr. Autdg 0 GUVBUUCUOS TEOTUIXGDY
X0l TOVIXOV CUCTAUATOVY €yl avahulel extevdc otny edvopoucixoloyixy| BiBAoypapia, 1dla-
{tepa ot0 Thaiclo Tou Peunétixou tpayoudiod, To omoio cuvoudlel ueAmdieg Baolouéveg o
makam ye opuovixéc mpaxtixéc e Autixng pouotxic oxédng [99]. Xto nelpdpotd pog, Topo-
Tneolpe 6Tt To MERT-v1, 10 omolo €yel apyixd exnoudeutel oe Autixy| povowxn, Non Aettovpyel
¢ éva loyupod baseline yia 1o Lyra auto-tagging task. Emniéov, n nepoutépw mpooapuoymn
TOU YoVTEAOL — &lTe Ye Oedopéva amd ula LOVO UoUsIXT| ToEdd0sT EITE ano €Val ETEPOYEVEC,
TOAUTOMTIOUIXO GUVORO — amopEpEL GTalERd TIg UXEOTERES BeEATIWOEG oTo Lyra, cuyxpitind
HE OAeC TiC dAAeg un Autixég Topaddoele, o OAeg Tic UeTEXES alloAdynone. To ebpnuo autd
UTOONAWVEL OTL 1) wouowxn) doun tTne EAAnvixic mapaboctoxic pouoxrc evoéyeton vo eudu-
Yeouuiletar, TouAdy ooV eV péEEL, pE TIC AuTég Tpoxatahpelc mou (pépel KON TO apyixd
Hovtého.

‘Onwg avagevoTay, To Tpo-eXTUOEUPEVO WovTENO MERT-v1 nopouctdlet uhniy| anddoon oe
AvTixoxevtpixd cLvola dedopévey, omwe ta MTAT xou FMA-medium, yeyovog mou avto-
VOAE TNV apy i) TEoXa AN Tou LTER TV AUTIXOY LOUCIXWY Topadocewy. Avtidétng,
ot ovTéda Tou €youv Tpoocappootel oe empépouc un Autinég mopadooel; (m.)y., MakamMERT,
HindustaniMERT x.4.) epgoviouy cuyvd petwpévn anddoon oe auvtd ta Avtixd benchmarks.
To @awvoyevo autd avadexviel 1o onuovTtixé domain shift petadd Avtixdv xou pn Auvti-
AWV POVOKOY GUVOLLY dedouévwy. (lotéoo, 1 enidpaon auth petptdleton aodntd and To
CultureMERT, xou axdun meplocdtepo and to CultureMERT-TA, twv omolwv 1 éxdeorn oc
EVaL EUPL PACHA LOVUCIXGY TURABOCEWY, EITE UEGK GUVEYOUE TRO-EXTIUUOEVOTC EITE UECL CUY-
YWVELONG LOVTEAWY, TOUC ETUTEENEL VAL BLATNEOVY AMOTEAECUATIXOTERY) YEVIXEUCT) TOCO GE UT|

Avtxéc 660 xou o€ AUTIXEC HOLOIXES TOPUDOCELS.

Owoiotnta Movowxwy Ilapaddcewy oe Eninedo Axovotixwyv Tokens. T
VoL UEAETHioOLUE OF PEYAAOTERO BA)og TIC BIAMOMTICUXES OUOLOTNTES T OEQOUEVAL IS, OV
ADOULUE TN CUYVOTNTOL EUPAVIONG XOVWY AXOLCTIXWY tokens PETUE) TwY CUVORWY BEBOUEVELV
TIOU OVTITPOCWTEVOUY TIC HOUCIXES TORADOCEL TOU UEAETHUE, YPNOLOTOLOVTOS BUO UETELXEC:

v andkAion Jensen-Shannon (JSD) xou tnv andotaon ouvnutévou (cosine distance) Yeto-
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E0 twv xatavouwy tokens mou eZdyoviar and 1o poviélo EnCodec [2], to onolo Aettovpyel
w¢ audio tokenizer. Xounidtepeg TWéS xan 0TI 600 UETEIXEG LTOOEXVOOUV UEYAADTERT O-
wotdtnto. H avéluot| pag, omwe mopoustdleton 0to Xy rua 6, amoxoAUTTEL €VTOVH OUoLOTNTA
HETOEY TV Un AUTIX®Y HOUCIXWY Topaddcewy, Ue Wlktepa UPNAT eyyOTnTo Yetadd tng Iv-
dovotavixrc xat e Kapvatixic povoixdc. Avtideta, to Autind oOvoha dedopévmy (MTAT,
FMA-medium) napouotdlouv petal toug udmhi ogotdtnta, oAAd epgavilovy onuovtixés o-
noxhioewc oe oyéon ue T pn Autixée topaddoetc. H EXinviny| napadootoxi| pouoixr (Lyra),
ov xou lvol OYETIXG To Blaxplty), potvetar vo efval To xovtd Ye Ti¢ un AuTixéc TopadooelS

Tapd Ye Tic AuTixég.

[ Jensen-Shannon Divergence [EE Cosine Distance

Turkish-makam - RGN/ 16.1% 19.8% 13.8%
Hindustani KN WA 14.5% 10.9%

Carnatic PAEEZ) 18.3% 12.9%
Lyra- 18.6% [F5SE20 16.1% 13.0% 11.9%

MTAT - 22.5% 19.8% 22.6% 19.4%

FMA-medium - 19.2% 18.0% 19.6% 19.0%

> XS] >
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Yxnuo 6. Onorérnta Axovotikdv Tokens peta& Movorkwy Ilapaddéoewr.
Zevyn opoiotntag petaél twy katavouwy akovotikoy tokens, onws ekdyovtar and to EnCodec
codec povtélo [2]. Or ipés opoidtntas npokUntovy ws péoos dpog and 8 codebooks, kaBéva
ex Twv ormolwy mepiéyel 1024 daxpied tokens. Kar o1 6Uo petpirés mapovordlovy mapdouoleg
wdoes petal twv dataset.

To mapoamdve evpruato ToEoLcLaLouy Loy UET CUCYETION UE TOL ATOTEAEGUOTA DIUTOALTIOWL-
NG HETOPORAS TOU avaAbdxay TEOoNYOLUEVWS. AuTO UTOBEVUEL OTL UETEIXEC OUOLOTNTAS
umopoly va a&tonoinoly we evoel€elc VeTXC HETUPORAC YVOOTE UETOEY LOUCLXMY THpadOCE-
wv. H dumniotwon auth €yel dUEcES TEAXTIXEC TPOEXTACELS: OL EV AOYW UETPIXEC UTOPOUV VoL
%xado0NYNoOoLY TOGO TNV ETMAOYY OGO XU TNV AVAAOYIX TwV BEGOUEVLY XATA TNV EXTOUOEL-
orn. To ebpnua autd elvan Wiitepa xplowo oe oevipLo TEPLOPLOUEVKLY TOPWY, OTIOU UOUCIXES
TapadOCELC UE WxEY| Btardeotudtnta Sedouévmy unopoly va evioyuloly péow tng o&lotolnong

CUYYEVWY, TOATIOUXE CUVIPOY THEABOCEWY UE UEYORDTERT SlordeayoOTNTAL.
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0.4.2 Ernidpaon touv 3uvteheot) A otnyv Teyvixn Task Arithmetic

Mo xplown mapduetpoc oty teyvixt| task arithmetic eivar 1 emhoy) Tou CLVTEAEGTH
ouyydvevone A.  Ilponyoluevee pekétec [6, 94] éyouv Beller dtL un Bértioteg Tpéc Tou
A umopoly vo urofoduicouy onuavTIXd TNV ambd0oT xoTd TN ouyywveuot. o vo yehe-
THCOUUE TNV €NBEACT) TOU A, TEOYUATOTOOVUE CUCTNUATIXY AELOAGYNON BLOPORETIXMY THIWY
(A € {0.1,0.2,0.25,0.3,0.5,0.75,1.0}), ot onolec epapudéloviar opolbpoppa o 6ho o task
vectors — dnhadt), yenowwonoLlelton o Blog cUVTEAECTAE Yiat xdle emEpoug WoVTENO — oU-
pwvo Ue TNV aniomoinuévn datinwon e E¢lowone 2, cuunepthauBavouévng xar e eldxnc
nepintwong tou weight averaging (A = 1/N = 0.25). Xe cuugovia Ue TpoNYOUUEVES TURUTN-
eroelc and Tt PBAoypapio, SO TGVOLUE OTL Un XoTdAANAES TIES, Omwe A = 1.0, odnyodv

o younhiéc emdooelc oe 6ha ta benchmarks, 6nwe galveton oto Xyrfua 7.
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Scaling Factor A

YyAua 7. Enidpaocn tov YvrteAeorn Yvyyxdvevong A otnv Anédoon Tng
Texvikng Task Arithmetic. O tipés wng petpikng ROC-AUC oe é& dapopetinég
epyacies avtouatns taounons HOUoIKNS amod TOIKIAES JLOUOIKES Tapadooels avadelkyvovy
TS 1 petafoAn tov A emnpedler tny anédoon tou task arithmetic katd tn ovyywvevon twy
teoadpwy single-culture adapted povtédwy.

0.4.3 Arnotelecpatixotnia tng Ilpotewduevng Atpatnywxng Avo
Ytadlwy

[opatnpolye OTL 1 AmAT) GUVEYLOT) TNG EXTALBEVOTS UE TOV UELWUEVO pLTUG pddnong Tou
QEYLXOV TEO-EXTAULOEVIEVOL LOVTENOU, BNAadT ywelc learning rate re-warming, odnyel o€ ava-
TOTEAEGUATIXT| TPOCOPUOYY| OE DLUPOPETIXES UOUCIXES TAUPABOCELS, XAME Ol OVITUPOC TACELS
Tou €yel Ydlel To apyxd YoVTENO Bev UeTafBdAlovTon emopxds. Autod yiveton Wiaitepa eu-
pavég otny teplntwor e Tovpxinhc Maxdu poucixic, 6ToU 1 CUVEYTC TEO-EXTALBEUCT] OE
€val WOVO oTAdL0 yweic Te-warming 0ev oonyel oe xopla fertinon anédoone. H eqopuoyy re-
warming oto single-stage setup enupépel Ao xépdn mpocopuoyic (+0.8%), adhd cuvodeletat

and onpovtiny andieta yvoone (forgetting) oto MTAT auto-tagging task (—3.6%), oxdun
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%o 6tay evowpatdveton Autixd dedopéva (20%) yio THY AVTIETOTIOT AUTOV TOU QUUVOUEVOU.
Avtideta, n npotewvouevn two-stage o Tpatn Yy cuVEY0UC TEO-EXTABEUOTG EMITLY Y AVEL G-
vTxd xohUtepn mpooappoyy| (+6.4%), eved tautdypova teptopilel oto eldytoto to forgetting
(—0.4%), amodexviovtac Ty amoTeAeouaTixOTNTE NS otny edlooppdmnon wetall plasticity
xau stability. Télog, e€etdlouye ToV pOAO TNE EVOWUATOONC BESOUEVKY TTOU TPOECYOVTUL ATO
AvTixéc LoUoIXES TUPABOCELS WS UNYOVIOUO UETELIOUOL Tou @awvouévou catastrophic forget-
ting. Av xou 1 yprion tTéTtouwy dedopévewy cuufdihel oTn dlathenon tng amddoone oto MTAT,
elodyet évay ouufiBaoud PeTE) TEOCUPUOC TIXOTNTAC XAk SLTHENONG TEOTEPNS YVWONG: U-
nepBoAxd replay AuTix®dv OeSOUEVLY UTOREL Vo EUTOBIOEL TNV AMOTEAECUATIXY) TOMTIOUIXT
npocappoyy. Ta anoteléopotd poc (Hivaxag 3) unodeixviouy 61t o neploplopds tou Western
replay pévo cto X1ddi0 1 mpoopépel T BEATIOTN Woppomior ueTadd BTHENONG YVWONS XAl

EMTLUYOUS TEOGUPUOYTC.

CPT Strategy ‘ ‘Western Replay ‘ Turkish-makam MTAT
MERT-v1 (Baseline) ‘ - ‘ 83.2 89.6
Single-stage (w/ re-warming) 4 83.8 86.0
Single-stage (w/o re-warming) v 83.0 87.5
Two-stage (Ours) Stage 1 89.6 89.2
Two-stage (Ours) Both stages 88.6 89.4

ITivaxac 3. Xvykpion Xrpatnykdy Xvvexovs Ilpo-exraidevong (CPT).
Tiués ROC-AUC ota ovvoda dedopévewy Turkish-makam xar MTAT. H otpatnyixr) ovvexols
Tpo-eknaidevong OVo otadiwy uneptepel tng single-stage mpooapuoyns, €vd 0 TEPOPITHOS
s evowpdtwons Avtikoy 6edopévwr (Western replay) povo oto Xtddio 1 mpoogéper tov

Bé\tioro ouupiBaoud petabd moAimiopknig mpooapoyns Kai 61aTrpnong TPOTEPNS YYWons.
Xe 6Aa ta oevdpia CPT mov mpooiéroupe Avtikd dedopéra, to 20% twy ouvokikdy 6edopévwy
eknaidevons mpoépyetar and to ovvolo MusicfAll [7].

0.5 Xuvunepdopota

0.5.1 3XulAtnon

H rapodoa Simhowyotixd epyactio e€etdlel T uddnom ovanapao TAGEDY Yol UTOEXTROCWTO-
UMEVES HOUGIXES TapadOoEelS xou TpoTelvel To CultureMERT-95M, éval TOAUTOALTIOUIXE TEOGO0-
noouévo foundation model, to onolo avantiydnxe yéow ocuveyoic tpo-exnaideuone (contin-
ual pre-training) oe Sidpopec un AvTxéc LoUoIXES TOPUOOTELS. LUYXEXQWEV, TPOTENVOUUE
war o TeatnY) 800 oTadiwY Yiol TN CUVEYY| TPo-exTaideUGT), 1) omtola cUVBLALEL «emtovardépuay-
ony tou puduol pdinone (learning rate re-warming) xou o TadLAX TPOGUPUOYT, ENLTRETOVTOC
oToept| EXTAUBEVTT] axoUN Xol UTO TEPLOPLOMEVOUS UTOAOYLOTIX0UE Topous. To melpouati-
%8 omoteAéopata detyvouv 6Tt To CultureMERT uneptepel otadepd Tou opyixol UOVTENOL
MERT-95M e Sudpopec epyaoieg Tavounong pouvoixrg yio un Autixd datasets, EemepvivTag
nponyoLueveg state-of-the-art yedddoug, eved tautdypova Swotneel LPNAY anddoon xa ot

AvTtixd benchmarks.



0.5.2  Merovtxée Kateudivoeig xou Ipoextdoeic

Emmiéov, yehetdue 0 UETAPORA YVHOOTG UETAEY LOUCIXMY TURUBOCEWY, OVIAVOVTAS TNV
an6d00T TOMTIOUIXG EEELBIXEVUEVODY HOVTEAWDY OE JAAEC HOLOWXES Tapadooels. Ta evpruata
delyvouv 6Tl 1 petagepotudtnTo. (transferability) Siopéper avdhoyo ye v mopddoon xon T
OedoPEVaL EXTTULBEVOTC, AVTOVOXAWVTAC YVWOTEC VewENnTIXEC oUYYEVELEC amd TNV edvououst-
xohoyia, eve) ouoyetileton eniong e UETEO OUOLOTNTAS UETAEY TV GUVOAWY BEGOUEVGLY TTOU
XENOWOTOWLUE OE €NiNEdO axoucTIXWY token, TEOCYEEOVTAC VEEC UTOAOYIOTIXEG TEOCEY-
yioeig yioo T yapToYRdAPNoN TWV OYECEWY PETOEY HoLUoWKOY Ttapadboewy. H molurohtiopxr
eXTOUOEVOT] OE EVI(O GUVORO BEBOUEVMY TIOLU EVOWOUUTWVEL OAEC TIC U1 AUTIXEC TopaddoELS
odnyel o cuVOAXd BeATIOUEVY amdBOaT), EVIoYDOVTUC TN YEVIXEUOT) OE TOLXIAA PETEQTOELA.
Emniéov, e€etdlouye tn uédodo task arithmetic we evahhaxtinr otpatnyiny, cuyywvedo-
VTOC TOMTIOUXE. EEEWBIXEVPEVOL LOVTERA OTOV Yo TwV Poapnv. H mpocéyylon autr anodide
ouyxploua e o CultureMERT oe un Autixd datasets, eved oe 0ploPEVES TEQITTAOCELS EEMERVA
OXOUT]) X0 TO OPY X0 TEO-EXTUOEUMEVO UOVTEAD Ot AUTid GUVOAX BEBOUEVKY.

Yuvolixd, n epyaoior auth CUUBEAAEL oTNV avATTUEY TOMTIOWXE EVUCUNTOTONUEVLY
foundation models yio T povow| o arotehel TNV TEWTN PEAETN TOU EQaEUOTEL Xal o&loho-
yel TeXVIXES GLVEYOUE TEO-EXTABEVCTIC Xl CUYYWVEVUCTS LOVTEAWY OTO TEDO TN avaxTNomg
pouoixiic mhnpogoptag. H yehétn yoc evidooeton oe wa euplTepY TEOoTAUEL AVATTUENS
UTIOAOYLOTIXWY PEVOOWY Tou GéfBovTon TNV TOMTIOUIXY| TOLUAOHOR@io XoL GTOYELOUY GTNV
EVOTIONUEVT, uddInon xooOMXGDY AVATUQUC TUGEWY TNG UOUCIXHC, AVOLYOVTOS TROOTTIXES Yo

TEPALTER €PELVA GTO TESIO TNG BAMOMTIOUXAS AVEXTNONG LOUCIXAC TATROPORLaG.

0.5.2 Melrhovtixég Kateudivoeig xaw Ilpoextdoeig

H rmapoloa epyacio avolyel TOAATAES TEOOTTIXES Yol UEANOVTIXY| EQELVAL XAl ETEXTAOELS.
Mia oo xatediuvon agopd TNV XAUEXWOT TNE TEOCEY YOS LIS OF TEPLOGOTERES UOUCIXES
Topadooele, peyohitepa povtéha (t.y. MERT-330M), xadde xou tn Siepelivnon eVahhox Tixy
AEYLTEXTOVIXGY, OTwe Toe MusicFM [19], MuQ [100] xou SoniDo [101]. Melhovtixéc pyeréteg
Yo mpémel eTiONG VoL BIEGEUVACOUY TG 1) ETULAOYY| TWV LOUGIXMY TOQUOOCEWY XAl Ol AVAUAO-
yiec Twv avtioTorywy dedopévey xutd tn (cuveyY|) tpo-exnoideuon enneedlouy TN YeVixeuon
TV YoVTEAWY o SlpopeTxd tasks. Emmiéov, n mpooéyyiot| pac umopel va emextodel oe
GAAeC xaTNYOoplEC EPUOUOYWY, TEROY TNS AUTOUATNG TaglvOuNaNg HOUOWXAC, OTwe beat track-
ing, emotion recognition xou source separation, xod&¢ xoul G€ TOAUTEOTLXA Zero-shot cevdpla
XL LOVTEAA oL GLVBLALOLY PoLGX ot PuoLxY| Yhwooo. o mopddelypa, 1 evowudtwon
xou Tepoutépw exmoideuon tou CultureMERT oe tétown frameworks (6mwe to MuLan [95],
MusiLingo [102] xou CLaMP 3 [71]) Ya unopoloe v evioyUOEL T1) YEVIXEUOY GE LTOEXTRO-
OWTOVUEVESC HOUCIXEC TUPADOCELS, OE EQUQUOYES OTIWC 1) AVAXTNOY] LOUGIXWY UTOCTUCUTLY
Bdoel puonhc YAwooag. Télog, 1 epunveLoOTNTA XL ENEENYNOWOTNTA TWY HOVIEAWY To-
popével xplowo {nroduevo. Melhovtixy| €peuva Yo unopoloe vor emxevTpwiel o TEYVIXES
eneZnynootnrog (XAI) yio v xatavonomn xou ouTlohdYNon TV ATOPECEDY TWV HOVTEAWY,
16lwg og ToATIowxd evaicinTo TAALGLO, XUNOTOVTIS TS ATOPICELS TNG TEYVNTAS VONUOGUVNG

O OLOPAVELS X0l TIEPLOGOTERO EVOPUOVIOUEVES UE TNV ovlp®TvY Houctxy| avTiAndn.






Chapter

Introduction

1.1 Motivation

Music is a fundamental aspect of human culture, universally present across societies
while taking diverse forms and expressions unique to each tradition |8, 9, 10|. Its func-
tions include emotional regulation, communication, and social bonding; it plays roles in
art, entertainment, worship, and advertising, and it constitutes a major global industry.
This dual role, as both a cultural artifact and an economic driver, presents opportuni-
ties to benefit society while also posing unique technical challenges when combined with
artificial intelligence (AI) [11]. Beyond practical applications, comprehension of music’s
semantics through deep learning (DL), particularly emphasizing interpretable approaches,
can also significantly contribute to theoretical insights across various fields, including eth-
nomusicology and music anthropology, music theory, and the study of music cognition.
For instance, by analyzing vast amounts of music data, computational models can uncover
musical patterns and cultural influences in music evolution, and relate these findings to
broader social and historical contexts. Furthermore, while music is often described as a
"universal language", this notion remains debated among scholars: certain elements may
transcend cultural boundaries [12], yet musical traditions have evolved with distinct char-
acteristics and culturally grounded semantics [13, 14]. This interplay between universality
and cultural specificity poses a complex challenge that music informatics and modern Al
approaches can provide a new perspective to explore [15].

Music information retrieval (MIR) refers to the field of research focusing on extracting
and analyzing information from music data [16, 11]. Computational methods in music
typically employ signal processing techniques to extract relevant features from audio sig-
nals, which are then utilized by machine learning (ML) models for music understanding
tasks, such as genre classification, beat tracking, key detection, source separation, and
music auto-tagging, among other tasks. Unlike speech and language, music is typically
polyphonic, often comprising multiple concurrent “voices” or instrumental layers, which
makes it fundamentally a multi-stream signal. Moreover, musical "meaning" is not usu-
ally grounded in direct references to real-world objects or concrete events, but is instead
abstract and often shaped by cultural context. Thus, music understanding presents sig-
nificant challenges due to the intricate and interwoven human-related concepts embedded

within the sequence of music signals, such as emotions, experiences, expressions, cultural
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identity, societal and historical contexts, communication, and creativity. Additionally, mu-
sic typically has a much longer duration and a higher sample rate compared to speech
or general audio, making it computationally demanding to model entire pieces effectively.
The key bottleneck is that modeling raw audio directly introduces extremely long-range
dependencies, making it computationally challenging to learn the high-level semantics of
music.

The term “foundation model” (FM) was introduced to refer to any pre-trained, versa-
tile machine learning architecture that, rather than being optimized for just one specific
purpose, functions as a central framework from which multiple specialized models can be
derived for a wide variety of downstream tasks [17]. The emergence of foundation models
has been driven by advancements in deep learning, including architectural innovations such
as the Transformer [18], as well as improvements in computational hardware. Foundation
models have recently emerged in the music domain [1, 19, 20, 11, 103, 58], offering powerful
general-purpose representations learned from large-scale audio data. These models capture
broad musical characteristics and have demonstrated state-of-the-art performance across
a range of music understanding tasks, reducing the need for task-specific training. By
leveraging self-supervised learning (SSL) on large amounts of unlabelled music data, foun-
dation models address data scarcity, reduce annotation costs, and improve generalization
in music information retrieval [11|. In general, SSL has emerged as a promising paradigm
in representation learning, enabling models to learn meaningful representations from large
unannotated datasets, without requiring explicit labels, by leveraging the inherent struc-
tures present in the data [104|. Similarly, it facilitates the extraction of generalizable
knowledge from extensive unlabelled datasets, thereby enhancing model performance on
downstream tasks where labeled data is scarce.

Despite these advances, most existing foundation models for music have been trained
primarily on Western-centric datasets, limiting their ability to represent diverse musical
styles |21, 3]. Critically, these models are also rarely evaluated on the world’s musical di-
versity, leaving their generalization ability to diverse musical traditions, especially under-
represented ones, largely unexplored. Many musical traditions, including Turkish, Indian,
and Greek traditional music, feature unique melodic structures, modal or tonal systems,
and rhythmic patterns that are not adequately captured by these models [22, 23, 24].
Unlike Western classical and popular music, which primarily rely on equal temperament
and harmony-based composition, these traditions incorporate microtonal intervals, dis-
tinct rhythmic cycles, and melodic improvisation. Failing to model such culture-specific
stylistic elements not only narrows the applicability of music foundation models, for ex-
ample, in region-specific recommendation systems [25] or cultural heritage preservation,
but also overlooks rich, culturally specific knowledge crucial for advancing MIR research
[11]. This bias reflects a broader historical trend of Westernisation, where the dominance
of Western music in computational models risks marginalizing and displacing local tradi-
tions. Accordingly, there is an urgent need to develop more inclusive and culturally aware
computational models [26], capable of generalizing beyond Western-centric traditions and
adapting effectively to diverse underrepresented musical cultures, a direction that has also

gained traction in other domains, such as natural language processing (NLP) [27] and
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speech recognition 28], through culturally adapted and multilingual foundation models.

One promising avenue for addressing these challenges is continual pre-training (CPT),
which has emerged as an effective and increasingly popular approach in large language
models (LLMs) [4, 29, 30, 105, 32, 88, 33, 34, 106, 107, 108] and multimodal learning
[31]. By enabling models to incrementally adapt to new domains, tasks, or languages,
CPT avoids the need for full re-training, which is often impractical and computationally
expensive [32, 4, 88, 106, 37|. Notably, it has been shown to match, or even surpass,
training from scratch in some cases [33, 34|, while also leading to faster convergence [35]
and mitigating catastrophic forgetting [36]. CPT has also gained traction in the audio
domain, with recent work demonstrating its effectiveness in adapting pre-trained speech
models to both high- and low-resource languages [37, 28, 109, 38, 110].

Additionally, model merging [39, 40, 111, 112] has proven to be a simple yet effective
technique for adapting pre-trained models across multiple domains by combining domain-
specific parameters in weight space, without requiring additional training [41] or access to
the original training data [42]. A notable method within this paradigm is task arithmetic
(TA) [5], which constructs task vectors by computing the difference between the parameters
of an adapted model and its pre-trained counterpart, encoding domain-specific knowledge.
These task vectors can then be integrated into the pre-trained model via algebraic oper-
ations in Euclidean space to create a unified model from multiple independently adapted
models, offering a computationally efficient alternative to multi-task learning (MTL) [6].
Task arithmetic provides a modular framework for editing pre-trained models and fusing
knowledge across domains, enabling generalization across diverse tasks while preserving
information from both individual adaptations and the original pre-training.

Given the scarcity of culturally diverse, annotated music data, CPT provides a com-
putationally efficient solution for adapting foundation models to non-Western traditions
without requiring full re-training, while task arithmetic enables seamless model merging in
weight space, facilitating multi-cultural adaptation while mitigating catastrophic forget-

ting.

1.2 Research Objective and Contributions

While both continual pre-training and task arithmetic have been widely explored in
other domains, their application to MIR remains largely unexplored. We bridge this gap
by leveraging these techniques to adapt the MERT-v1-95M! music foundation model [1],
originally trained on 1K hours of predominantly Western music [1, 43|, to diverse musical
cultures from the Eastern Mediterranean and the Indian subcontinent, while preserving
performance on "Western"-centric benchmarks.

This process can be naturally framed as a domain adaptation (DA) [113] task, in which
a model trained on a Western source domain is adapted to perform effectively on culturally
distinct target domains. In this context, continual pre-training and model merging can be

viewed as strategies within the broader DA framework. While conventional DA approaches

Yhttps://huggingface.co/m-a-p/ MERT-v1-95M
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often involve aligning feature distributions or fine-tuning on the target domain, CPT entails
further training a pre-trained model, typically using the same self-supervised objective, on
domain-specific data to incrementally adapt it to a new target domain, whereas TA enables
multi-domain merging directly in parameter space without access to the original training
data.

A major challenge in adapting foundation models to diverse domains is ensuring efficient
adaptation while avoiding catastrophic forgetting [44], where previously learned knowledge
can be "lost" when the model is trained on new data [45]. To address this, we propose a
computationally efficient two-stage continual pre-training approach that integrates learning
rate re-warming [4] and staged adaptation, stabilizing training and enabling smoother,

effective adaptation.

This thesis makes the following contributions:

1. To the best of our knowledge, this is the first study to explore continual pre-
training and task arithmetic for cross-cultural adaptation in MIR, demonstrating
their effectiveness in music audio representation learning within the context of music

foundation models.

2. We propose a two-stage continual pre-training strategy that stabilizes train-
ing, mitigates catastrophic forgetting, and facilitates effective adaptation under con-

strained computational resources.

3. Our multi-cultural model, CultureMERT, outperforms the original MERT-v1 by an
average of 4.43% in ROC-AUC across diverse non-Western music tagging tasks,
alongside consistent average improvements of 5.4% in AP, 3.6% in Micro-F1, and

6.8% in Macro-F1, while exhibiting minimal forgetting on Western benchmarks.

4. Our culturally adapted models surpass previous state-of-the-art results across

all evaluated non-Western music tagging tasks.

5. We explore cross-cultural transferability, analyzing how models adapted to one
musical tradition (e.g., Turkish Makam) generalize to others (e.g., Greek folk). Our
results indicate that single-culture adaptations exhibit varying degrees of transfer
across cultural domains, with the multi-culturally adapted model yielding the best

generalization across cultures.

By addressing these challenges, this thesis contributes to the development of cultur-
ally aware foundation models for music that enable world music understanding and en-
hance cross-cultural music representation learning. Our work highlights the efficacy of
continual pre-training for cross-cultural adaptation in MIR, establishing CultureMERT-95M
as a state-of-the-art foundation model for diverse musical traditions. To support repro-
ducibility and further research on world music representation learning, we publicly release
CultureMERT-95M, along with the task arithmetic variant, CultureMERT-TA-95M.
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1.3 Outline

The remainder of this thesis is organized as follows:

e Chapter 2 reviews relevant literature on music representation learning and foundation
models for music, discusses MIR tasks and evaluation paradigms, and examines prior

work and challenges in cross-cultural MIR.

e Chapter 3 presents the methodology of this thesis, including a detailed overview of the
MERT architecture and its pre-training objective, the proposed two-stage continual
pre-training strategy for cultural adaptation, and task arithmetic as an alternative
approach to multi-cultural adaptation through model merging. This chapter also
describes the datasets used, the experimental setup, and the probing-based evaluation

protocol.

e Chapter 4 presents the experimental results and provides an in-depth discussion.
It evaluates the impact of continual pre-training and task arithmetic on cultur-
ally diverse music tagging tasks, analyzes cross-cultural transferability patterns, and
demonstrates the effectiveness of our proposed approach through detailed ablation

studies.

e Chapter 5 concludes the thesis by summarizing the main findings, highlighting the
limitations of the current study, and outlining promising extensions, directions, and

research avenues for future work.






Chapter

Music Information Retrieval

Music information retrieval (MIR) is a multidisciplinary field that focuses on the com-
putational analysis, organization, and manipulation of music-related data [46]. The term
MIR is sometimes used interchangeably with music informatics or music information pro-
cessing [47]. It encompasses a wide range of tasks, including indexing, retrieval, recom-
mendation, transcription, source separation, and music generation. In recent years, MIR
research has become increasingly driven by advances in machine learning (ML), particu-
larly deep learning (DL) methods, which have enabled significant progress across many
subfields. In this chapter, we first review recent advances in music audio representation
learning and foundation models for music, followed by a discussion of MIR tasks and
evaluation paradigms. We conclude with an overview of cross-cultural MIR, highlighting

emerging datasets, methodologies, and ongoing challenges in this important area.

2.1 Music Representation Learning

The objective of representation learning is to discover and learn meaningful features
that facilitate downstream tasks while remaining robust to the complex variations inherent
in natural data [114]|. Representation learning has gained popularity across many domains
due to its effectiveness, computational efficiency, and the simplicity of reusing pre-trained
model representations as features for a wide range of downstream tasks. This objective is
central to advancing artificial intelligence (Al), as learning good representations reduces
the need for task-specific engineering and enables knowledge transfer across tasks. A va-
riety of model architectures, training paradigms, and modalities have been employed to
learn representations that perform well on tasks such as classification, retrieval, and gen-
eration. In the context of music informatics, such learned representations can be leveraged
for downstream MIR tasks such as automatic classification, recommendation, generation,
and emotion recognition, among others. Ideally—especially in the case of foundation mod-
els—these representations should capture broad musical features such as rhythm, melody,
dynamics, timbre, pitch, and harmony, as well as higher-level abstractions, including com-
positional structure, arrangement, and cultural context. This makes them essential for
models designed to support a wide range of music understanding tasks, where a deep,
holistic representation of musical content is crucial.

Early music information retrieval relied on hand-crafted features (e.g., MFCCs, chroma
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Figure 2.1. Foundation models for music learn general-purpose representations through
large-scale pre-training, which can then be transferred to a wide range of downstream MIR
tasks.

features, or constant-Q representations) and classical machine learning algorithms. How-
ever, deep learning has since revolutionized music representation learning, achieving re-
markable success [48|. In particular, convolutional neural networks (CNNs) trained on la-
beled music tasks, such as music auto-tagging and genre classification, have become widely
adopted. For example, musicnn [115] offers pre-trained VGG-like CNNs that achieve high
accuracy on benchmarks such as MagnaTagATune. Transfer learning [116, 117] has further
improved performance by fine-tuning models pre-trained on large audio corpora, signifi-
cantly boosting results on downstream MIR tasks including instrument classification and
genre recognition. This approach also enables effective use of smaller annotated datasets,
which is particularly advantageous given the high cost and difficulty of manual labeling, es-
pecially in diverse or low-resource musical domains. More recently, an alternative strategy
for learning music representations leverages self-supervised learning (SSL), where models
are trained on proxy objectives derived directly from the input data, eliminating the need
for manual annotation. This approach enables the extraction of rich representations us-
ing automatically generated supervision signals. Several SSL-based models for music have
demonstrated strong performance across a range of downstream MIR tasks, effectively

closing the gap with supervised approaches [49, 50, 51, 52, 1, 53].

2.2 Foundation Models for Music

Recent research has increasingly focused on developing foundation models for music [11,
103], inspired by analogous advances in natural language processing (NLP) and computer
vision [17]|. These models are typically pre-trained on large-scale music corpora using SSL,
learning general-purpose representations that can transfer effectively to a wide range of
MIR tasks [11] (see Figure 2.1). After pre-training, they are fine-tuned and evaluated on
downstream tasks using much smaller labeled datasets, enabling effective transfer even
in low-resource or annotation-scarce scenarios. Notably, [101] shows that intermediate
features extracted from such pre-trained models can serve as general-purpose boosters for
task-specific models, particularly when training data is limited or computational resources

are constrained.
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One dominant pre-training paradigm is masked modeling (MM ), adapted from BERT-
style pre-training in NLP [54]. MM works by randomly masking portions of the input and
training the model to infer the missing segments from surrounding context. This approach,
commonly employed in Transformer models, allows for effective modeling of sequential data
and long-range dependencies, as in the case of music audio signals. Music audio, typically
sampled at rates up to 48 kHz and spanning several minutes or more, results in extremely
long sequences that pose significant computational challenges, particularly during model
training. To address this, models employ tokenizers to compress audio signals into compact
latent representations with shorter sequence lengths.

In general, audio tokenization refers to the process of transforming raw audio into
sequences of "meaningful" units (i.e., tokens or codes) that can be used for language
modeling (e.g., masked prediction or auto-regressive generation), downstream tasks (e.g.,
text-to-speech synthesis [118, 119]), or audio compression. Unlike text, where tokens are in-
herently discrete (e.g., words, subwords, or characters), audio is a continuous waveform that
lacks natural segmentation boundaries. Earlier approaches relied on handcrafted features
such as spectrograms and cepstral coefficients (e.g., MFCCs), whereas more recent methods
learn token representations directly from data using models like vector-quantized autoen-
coders [2, 120, 121], which primarily capture acoustic representations, or self-supervised
audio encoders [1, 122, 123, 124], which aim to learn higher-level semantic representations.

Therefore, input sequences are typically tokenized into either continuous embeddings
or discrete integer tokens. The latter are often produced by neural audio codecs (NACs),
learnable vector-quantized models that discretize audio into compact, semantically mean-
ingful tokens at specific temporal resolutions [125]. These tokens can serve as inputs or tar-
gets for masked prediction and generation tasks in music foundation models [11]. Notable
examples include EnCodec [2], SoundStream [121], Descript Audio Codec (DAC) [120],
SpeechTokenizer [126], X-Codec [126], and, more recently, SemantiCodec [124], Pyramid-
Codec [127], and SAT [128], which combine fine-grained acoustic fidelity with the ability to
capture long-range semantic information via hierarchical tokenization. Depending on the
tokenization strategy, the masked prediction objective is formulated as either a regression
task, in the case of continuous masked modeling where models predict continuous targets
using typically the mean squared error (MSE) loss, or as a classification task, as in dis-
crete masked modeling where models predict token indices, typically using cross-entropy
losses. Finally, the choice of tokenization strategy can significantly impact the trade-off
between training efficiency, data requirements, and model capacity, an important yet un-
derexplored aspect in the development of music FMs. In particular, the segmentation of
raw audio into tokens is highly non-trivial, and future work may benefit from exploring
adaptive, content-aware tokenization schemes that better capture the temporal variability
of music (see Section 5.3 for a suggested research direction on this topic).

Overall, recent work highlights a clear trend: neural audio codecs—and audio tok-
enization more broadly—play a central role in state-of-the-art music foundation models by
providing compact, high-fidelity representations that support both language model-based
audio generation and understanding tasks, aligning the training paradigm of audio models

with the masked or auto-regressive language modeling paradigms used in NLP.
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Below, we review key foundation model architectures that have driven recent progress
in music audio representation learning, focusing on their pre-training paradigms (e.g.,
masked modeling, multimodal learning, generative modeling), architectural choices, and

audio tokenization strategies.

MERT [1] (Music undERstanding model with large-scale self-supervised Training) is a
prominent example, a BERT-style encoder built upon the HuBERT architecture [55] and
pre-trained on large-scale music audio using a masked language modeling (MLM) objec-
tive. MERT employs a dual-teacher strategy to generate pseudo-labels: an RVQ-VAE-
based “acoustic” teacher (specifically, the EnCodec audio tokenizer [2]) and a “musical”
teacher based on constant-Q transform (CQT) reconstruction. This combination enables
the model to learn both acoustic and harmonic characteristics of music. Available in
95M and 330M parameter variants, MERT achieves state-of-the-art performance across
14 diverse music understanding tasks, demonstrating the effectiveness of large-scale self-
supervised pre-training for unifying multiple MIR tasks in a single model. For further

architectural and pre-training details, refer to Section 3.2.

Music2Vec [123] is a lightweight and efficient self-supervised framework for learning
music audio representations directly from raw waveforms. Inspired by the data2vec ar-
chitecture [129], it adopts a teacher—student setup where both models share the same
architecture, comprising a 1-D CNN feature extractor followed by a 12-layer Transformer
encoder. The CNN maps 16 kHz audio into 50 Hz feature sequences, which are then passed
through the Transformer. The student is trained on masked input segments to predict the
contextualized representations generated by the teacher model, which are derived from the
outputs of all 12 Transformer layers. Importantly, the teacher’s parameters are updated
via exponential moving average of the student’s weights. Music2Vec is trained from scratch
on 1k hours of music audio and achieves competitive performance on several MIR tasks,
including music auto-tagging, genre classification, emotion regression, and key detection,

despite having fewer than 2% of the parameters of large models like Jukebox [20].

MusicFM [19] builds upon MERT by replacing its learned tokenization mechanism with
a non-trainable random projection quantizer, inspired by BEST-RQ [56]. This approach
removes the need for a separate representation learning stage (e.g., RVQ or k-means clus-
tering), as the tokenization process is entirely training-free. Specifically, MusicFM maps
log-mel spectral features into a latent space via random projection and discretizes them
using a randomly initialized codebook. Despite its simplicity, this tokenization strategy
achieves strong performance—particularly when sufficient training data is available—across
both sequence-level and token-level MIR, tasks, including beat tracking, chord recognition,
and music tagging. These results suggest that random quantization can be a computation-
ally efficient and effective alternative to learned audio tokenizers for foundation models in

music informatics.
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MuQ [100] is a self-supervised foundation model for music audio representation learning
that introduces a novel tokenization method, Mel residual vector quantization (Mel-RVQ).
Unlike prior models that rely on random projections (e.g., MusicFM) or heavy neural
codecs (e.g., EnCodec in MERT), MuQ) employs a lightweight residual quantizer trained
on Mel-spectrograms using simple linear projections. This approach provides both com-
putational efficiency and stable token generation, addressing the initialization sensitivity
of random quantizers and the resource demands of neural codecs. The model is trained to
predict these discrete Mel-RVQ tokens using a Conformer-based encoder under a masked
language modeling objective. Despite using only 0.9K hours of pre-training data, MuQ
outperforms larger models like MERT and MusicFM on a wide range of downstream MIR
tasks, including genre classification, instrument and key detection, and music structure
analysis. Further scaling to 160K hours and incorporating iterative training improves
performance even more. Additionally, MuQ supports multimodal extension through MuQ-
MuLan, a joint music-text embedding model that achieves state-of-the-art results on the

MagnaTagATune zero-shot music tagging task.

MULE [130] presents a comparative study of supervised and unsupervised strategies for
pre-training audio models specifically for music understanding. It explores how dataset do-
main (music vs. general audio) and training strategy (supervised vs. unimodal contrastive
unsupervised) affect the transferability of audio embeddings across a wide range of music
tasks. Notably, it demonstrates that supervised training on large-scale expert-annotated
music data achieves state-of-the-art performance across diverse tagging tasks, while unsu-
pervised learning on in-domain music audio yields highly generalizable embeddings with

strong performance on novel tasks.

Generative Pre-Training Generative modeling has also shown promise in music rep-
resentation learning. A seminal example is Jukebox [20], a large-scale (5B parameter)
auto-regressive Transformer model trained on over 1.2 million songs. Jukebox compresses
raw audio into discrete codes using three separately trained VQ-VAEs at different temporal
resolutions (each with a vocabulary size of 2048). To model long-range musical structure,
separate auto-regressive priors are trained for each level, and audio is generated hierarchi-
cally from coarse to fine resolution, with each level conditioned on the upsampled codes of
the coarser level. The model enables controllable generation by conditioning on metadata
such as genre, artist, timing, and optionally unaligned lyrics. While primarily designed
for music generation, JukeMIR [57| demonstrated that intermediate representations from
Jukebox can be repurposed for music understanding tasks, achieving strong performance
in music auto-tagging, genre classification, key detection, and emotion recognition.
Building upon this, SoniDo [101] proposes a two-stage hierarchical foundation model
tailored for both music understanding and generation. It uses a hierarchically quantized
VAE (HQ-VAE) in the first stage to extract coarse-to-fine latent tokens, and models their
distribution in the second stage using a stack of sparse Transformer decoders conditioned
on CLAP embeddings for multimodal alignment. Importantly, the token hierarchy in

SoniDo is jointly trained, unlike Jukebox, where each level is independently trained, which
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allows richer inter-level dependencies. SoniDo extracts task-agnostic representations from
intermediate Transformer layers, supporting a broad range of downstream tasks including
music auto-tagging, music transcription, music source separation, and music mixing.

Furthermore, while originally developed as a text- and melody-conditioned music gen-
eration model, MusicGen [58| has also been evaluated for music representation learning.
It employs a single-stage auto-regressive Transformer decoder trained on residual vector-
quantized (RVQ) tokens from EnCodec. In contrast to models like Jukebox or SoniDo,
which use multi-level hierarchies with multiple priors, MusicGen processes flattened or in-
terleaved parallel token streams from multiple codebooks. This design simplifies training
and improves efficiency by avoiding the computational costs of generating multiple code-
book streams. As demonstrated in the SoniDo paper, intermediate representations from
MusicGen can be repurposed for downstream MIR tasks such as genre classification, key
detection, and music transcription.

Additionally, AudioLM [131] introduces a multi-stage auto-regressive framework that
models long-term structure and fine-grained detail by combining semantic tokens extracted
from w2v-BERT (k-means-clustered representations) [122] with coarse and fine acoustic to-
kens derived from the SoundStream neural audio codec. Originally proposed for speech
and piano music continuation, AudioLM achieves coherent generation over long timescales
without requiring textual supervision, showcasing the power of hybrid tokenization in audio
foundation models. Building on this framework, MusicLM [132] extends AudioLM by incor-
porating text conditioning via MuLan embeddings, enabling high-fidelity and semantically
aligned music generation from textual descriptions. MusicLM demonstrates improvements
in both audio quality and adherence to text prompts, and supports additional conditioning
modalities such as melody inputs.

Most recently, YuE [133] introduced a family of open-source foundation models for
long-form lyrics-to-song generation. Built on the LLaMA2 architecture and trained on
trillions of tokens, YuE uses a two-stage hierarchical modeling framework with semantic-
acoustic fused tokenization and track-decoupled next-token prediction. The model enables
up to five-minute coherent generation with fine-grained control over lyrics, structure, and
style, while also demonstrating strong performance in music understanding tasks such as
the MARBLE benchmark, matching or exceeding previous state-of-the-art methods.

These foundation models fall under the umbrella of auto-regressive predictive coding
(APC), a pre-training paradigm where a model learns to predict future tokens (i.e., discrete

audio codes) in a sequence using an auto-regressive architecture.

Multimodal Learning Multimodal approaches extend music foundation models by in-
corporating modalities beyond audio, such as natural language. Typically, the text modal-
ity is processed using pre-trained embeddings from large NLP encoders or decoders. For
example, LLark [134] is an instruction-tuned multimodal model that integrates a pretrained
Jukebox-based audio encoder with a LLaMA-2 language model via a projection module,
following a prefix tuning strategy. It supports flexible (audio, text) input prompts and
produces text outputs, enabling tasks like music captioning, genre identification, and com-

positional reasoning. Evaluated on music understanding, captioning, and reasoning tasks,
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LLark achieves strong zero-shot performance, showcasing the benefits of instruction-tuned
training on open-source music datasets. Similarly, the JMLA model [135] also targets
zero-shot music tagging via a joint music and language attention mechanism to address
the open-set music tagging problem. It connects a pre-trained masked audio encoder to
a Falcon-7B decoder using a perceiver resampler and dense cross-attention layers across
encoder-decoder layers, allowing multi-level semantic information exchange. By leveraging
GPT-processed music descriptions for training, JMLA achieves competitive zero-shot per-
formance across multiple benchmarks, demonstrating the effectiveness of tight cross-modal
alignment in music tagging.

Furthermore, MusiLingo [102] bridges music and language with prefix tuning by align-
ing MERT music embeddings with a frozen large language model (Vicuna-7B) via a linear
projection, enabling captioning and instruction-following for music-related queries. Mus-
tango [80] further explores text-to-music generation through controllable diffusion mod-
eling, using musically enriched prompts to guide generation via chord, tempo, and key
information. LTU (Listen, Think, and Understand) [136] is a multimodal instruction-
following model for general audio understanding. It integrates a CAV-MAE-pretrained
AST audio encoder with a Vicuna-7B language model via LoRA adapters, and is trained
using a four-stage perception-to-understanding curriculum on the OpenAQA-5M dataset,
which combines closed- and open-ended (audio, question, answer) pairs. LTU demon-
strates strong generalization across audio tasks and exhibits emerging reasoning abilities,
including step-by-step inference, explanation, and uncertainty awareness.

Qwen-Audio [137] and its successor Qwen2-Audio [138] are large-scale audio-language
models that integrate a pre-trained audio encoder with a frozen large language model to
support universal audio understanding. Both models adopt a multi-task training strategy
across over 30 speech, sound, and music tasks, using next-token prediction. To mitigate in-
terference from heterogeneous datasets, Qwen-Audio conditions the decoder on hierarchical
label sequences to balance shared knowledge with task-specific signals, while Qwen2-Audio
replaces these with natural language prompts to improve generalization and alignment. It
scales up training data and demonstrates strong performance on tasks such as genre classi-
fication, instrument recognition, and emotion description, achieving state-of-the-art results
on the AIR-Bench music subset without task-specific fine-tuning.

Additionally, contrastive learning-based (CL) models such as MuLan [95], MusCALL
[139], and CLAP [140] align audio and text representations into a shared embedding space
using paired audio-text data, enabling zero-shot tagging and cross-modal retrieval. Mu-
Lan and CLAP scale to large datasets and leverage strong pre-trained encoders, while
MusCALL emphasizes lightweight training and robust contrastive alignment, introducing
a content-aware loss and exploring audio self-supervision through SimCLR. By leveraging
natural language supervision instead of fixed label taxonomies, these models offer greater
flexibility and semantic grounding for downstream MIR tasks.

In addition to text, some multimodal models also incorporate visual information, such
as album artwork, music video frames, or other associated visuals, as in recent models
like M2UGen [141], V2Meow [142], and VidMuse [143], to bridge the gap between visual
and audio modalities. Finally, AnyGPT [144] further pushes the boundary by enabling
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any-to-any multimodal generation across music, speech, image, and text using a unified
framework based on discrete tokenization. By leveraging modality-specific tokenizers and
a shared language model backbone (LLaMA-2 7B), AnyGPT achieves zero-shot general-

ization across diverse modality combinations without architectural changes.

We should note that while foundation models for music can be designed to process
various modalities—such as symbolic music representations (e.g., MIDI, ABC notations,
tokenized sequences), sheet music, and others—this thesis focuses primarily on music au-
dio representation learning, where the musical modality is the raw or preprocessed audio
signal. Therefore, our emphasis is on models that operate directly on audio input, aiming
to learn representations that capture both low-level acoustic features and high-level mu-
sical semantics. This focus aligns with recent trends in MIR research and self-supervised
learning [11]. Nonetheless, we acknowledge that many non-audio musical modalities re-
main underexplored in the development of foundation models [11], and future work could
benefit from addressing this gap. For example, ChatMusician [145] is a recent LLM trained
on ABC notation—a compact, text-compatible symbolic music format—that demonstrates
strong symbolic music understanding and generation capabilities. Built on LLaMA 2 via
continual pre-training and fine-tuning, it shows that treating music as a second language
allows LLMs to reason about music theory, compose structured scores, and outperform

GPT-4 on a college-level symbolic music benchmark.

Future work may benefit from integrating such symbolic modalities with audio-based
models in a multimodal setting, combining the structural "clarity" of symbolic representa-
tions with the expressive nuance and dynamics of raw audio signals. This could involve de-
veloping unified multimodal representations that incorporate symbolic music, audio, text,
and music score images within FM architectures [146]. Such fusion may enable models to
better capture the multifaceted nature of music by leveraging diverse sources of information
and mitigating the limitations of relying on a single modality. Very recently, the UniMuLM
framework [147] was proposed to address this challenge by unifying symbolic music, wave-
form audio, and textual instructions into a single language model. It introduces a bar-level
tokenizer that explicitly aligns symbolic and waveform representations. UniMuLLM demon-
strates strong performance across diverse music tasks, including captioning, continuation,
inpainting, and music question answering, underscoring the potential of multimodal inte-
gration for advancing music understanding and generation. Similarly, Seed-Music [148] is
a unified multimodal music generation framework that combines text, audio, and symbolic
modalities. It combines MuLan-based text embeddings (including phonemes for lyrics),
an auto-regressive (LM-based) audio token generator, and a symbolic lead sheet generator
to produce high-quality, controllable music conditioned on multimodal inputs. In parallel,
incorporating domain knowledge, such as music theory, notation, and structural semantics,
into foundation model design could guide learning toward musically meaningful abstrac-

tions, potentially moving beyond architectural conventions inherited from other domains.
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2.3 MIR Tasks and Evaluation

Music information retrieval encompasses a wide range of tasks involving both audio
and symbolic music. As noted earlier, this thesis primarily focuses on the raw audio signal

as the musical modality. Common MIR tasks' include:

e Tonality and Harmony: mode recognition, chord recognition, key estimation.

e Melody and Pitch: melody extraction, pitch and multi-pitch estimation, note

tracking, automatic music transcription.

e Rhythm: onset detection, beat and downbeat tracking, metre estimation, tempo

estimation.

e Timbre and Instrumentation: musical instrument identification, playing tech-

nique detection.
e Temporal Alignment: score following, audio-to-score alignment.

e Temporal Segmentation: music/non-music detection, structural segmentation /struc-

ture analysis, time boundary identification.

e Source Separation: musical instrument source separation, harmonic-percussive

source separation.

e Performance-related Understanding: performer identification, technique iden-

tification, performance assessment, difficulty estimation.

e Clip-level Classification: auto-tagging?, genre classification, mood/emotion recog-

nition.

e Retrieval and Similarity: audio identification, audio matching, cover song detec-

tion.

e Vocal Understanding: singer identification, vocal technique detection, automatic
lyrics transcription and alignment, singing transcription, vocal source separation,

lyrics interpretation.

e Multimodal Understanding: cross-modal retrieval and recommendation, music

captioning, music instruction following, music question answering.

e Music Generation: text-to-music generation, symbolic music generation, mono-
phonic/polyphonic music generation, conditioned generation (chord sequences, melody,
video, text descriptions), melody harmonization, lyrics to singing, singing voice syn-

thesis, singing voice conversion.

1This list is indicative; constructing a complete MIR taxonomy is challenging and beyond the scope of
this thesis.

2 Automatic music tagging, which refers to the automatic assignment of descriptive metadata to au-
dio tracks, encompassing attributes such as genre, mood, instrumentation, tempo, language, and even
contextual information such as geographic location, is typically referred to as music auto-tagging.
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MIR-based evaluation can be broadly categorized into two paradigms: probing-based
and language-based evaluation. The probing setup is typically employed for unimodal
models that learn audio representations, where the audio encoder is treated as a feature
extractor—either frozen or fine-tuned—and a lightweight probing head, typically a shal-
low multilayer perceptron (MLP), is trained on top with labeled data to perform the
downstream task. In contrast, multimodal models that incorporate both audio and text
modalities can be evaluated via natural language prompting: the model is provided with a
task-specific instruction (e.g., "What is the key of this song?"), and its generated response
(e.g., "This song is in F minor.") is mapped to a corresponding label for scoring—typically
in the case of closed-ended tasks.

Recently, several promising evaluation protocols have emerged for benchmarking learned
music representations. The most comprehensive among them is the MARBLE protocol
[149], which introduces a unified framework for evaluating music audio representations
across a wide range of MIR tasks. MARBLE organizes its evaluation into a four-level hi-
erarchical taxonomy: (i) acoustic-level, encompassing tasks such as singer identification,
instrument classification, and source separation that focus on low-level signal features;
(ii) performance-level, targeting expressive elements like vocal techniques and orna-
mentation; (iii) score-level, covering tasks such as pitch tracking, beat tracking, melody
extraction, chord estimation, and lyrics transcription; and (iv) high-level description,
which includes tasks like key detection, genre classification, music tagging, and emotion
recognition. The benchmark spans 18 tasks across 12 publicly available datasets and aims
to provide a standardized, reproducible, and fair evaluation protocol for pre-trained music
models.

In the domain of multimodal foundation models, which extend beyond traditional MIR
tasks, a broad spectrum of evaluation tasks has also been explored to assess music un-
derstanding. A particularly prominent one is cross-modal retrieval, which serves as a
standard benchmark for evaluating alignment capabilities across modalities. This task in-
volves retrieving samples in one modality (e.g., audio clips) based on a query in a different
modality (e.g., text or video), thereby testing the model’s ability to associate and align se-
mantically related content across modalities. Another complementary evaluation approach
centers around language generation, often used for open-ended tasks. This paradigm is
suited to models that take audio or audio-text pairs as input and generate free-form textual
outputs. Typical tasks include music captioning, commonly evaluated on the MusicCaps
dataset [150] or custom ad-hoc datasets, and music question answering, where performance
is assessed using automatic metrics (e.g., BLEU, METEOR, ROUGE), human evaluation,
or large language model (LLM)-based scoring.

However, evaluation in MIR remains an open and challenging research problem. De-
spite significant advances in model architectures and datasets, the field continues to grapple
with issues such as inconsistent evaluation protocols across studies—including differences
in datasets, metrics, experimental settings, and even task formulations—alongside concerns
of data leakage across train-test splits and model bias [151, 152|. Furthermore, existing
unified benchmarks for music representation learning are predominantly Western-centric

and lack cultural diversity, limiting the ability to assess the generalizability of learned
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representations across diverse musical traditions. Finally, comprehensive evaluation of
learned representations should go beyond downstream task-specific probing to assess in-
ternal structural properties of the latent space, such as robustness, invariance, safety, and
interpretability, as well as alignment with human preferences. While such holistic evalua-
tion protocols are gaining traction in other domains, notably with recent efforts proposing
standardized metrics to quantify informativeness, equivariance, invariance, and disentan-
glement of representations [153|, they remain largely unexplored in the context of music

representation learning.

Another key consideration is the role of temporal resolution and granularity, along
with the distinction between sequence-level and token-level downstream MIR tasks, which
is essential in music representation learning. Temporal resolution refers to how finely the
input audio is segmented or represented over time (e.g., the number of tokens/frames per
second in language modeling approaches), determining how precisely a model can capture
the timing and dynamics of musical events at a fine temporal level. Downstream tasks in
MIR differ in their temporal granularity requirements: sequence-level tasks, such as music
auto-tagging or genre classification, require global understanding of the entire clip, while
token- or frame-level tasks demand fine-grained temporal precision, as in downbeat track-
ing, chord recognition, or instrument source separation. Importantly, temporal granularity
requirements vary not only across tasks, but also across musical cultures, where distinct
rhythmic structures, ornamentation, and expressive timing necessitate varying levels of
sensitivity. Designing a general-purpose foundation model that can flexibly adapt to such
variations remains a core challenge, particularly in cross-cultural contexts where both task

semantics and temporal structures differ significantly.

We should note that this study centers on music understanding and does not address

music generation, which is beyond our current scope.

2.4 Cross-Cultural MIR

MIR has traditionally centered on the analysis of Western musical forms, notably, main-
stream Euro-American popular music and Western classical repertoire. A growing body
of work highlights the strong Western bias in MIR research and emphasizes the need for
cross-cultural broadening [21, 11, 59, 60]. For instance, [61] introduced SAMBASET, a
40+ hour dataset of Brazilian samba music, specifically to challenge the dominant "West-
ern" focus. They argue that most MIR datasets, methodologies, and conclusions embed
substantial cultural bias, with non-Western music often being underrepresented, poorly
labeled, or even mislabeled. Similarly, [3] quantify this bias by showing that only 5.7%
of music generation data derives from non-Western traditions, underscoring their under-
representation and the urgent need for more culturally diverse datasets (see Figure 2.2).
While identifying Western bias is a necessary first step, addressing it requires practical ef-
forts to develop datasets, representations, and evaluations tailored to non-Western musical

traditions.
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Figure 2.2. Global distribution of music corpora by region. Pie charts illustrate genre
composition within each region.® Reproduced from [3].

Datasets Several initiatives have emerged to bridge this gap by curating culturally spe-
cific music corpora from diverse regions. The CompMusic project [62] has been central to
this effort, offering an extensive collection of over 1,300 hours of music corpora spanning
various non-Western traditions. This includes large annotated datasets for Indian classi-
cal music, specifically Hindustani and Carnatic [86, 155], as well as corpora for Turkish
Makam [84, 85], Beijing Opera [156], and Arab-Andalusian [157] music. Complementing
this, KritiSambhita [65] offers a tonic-annotated Carnatic vocal dataset, while [158] present

a 191-hour Hindustani classical dataset labeled by raga and tonic.

As previously noted, for Latin-American music, [61] introduced SAMBASET a 40-hour
dataset of Brazilian samba de enredo recordings with rich metadata and beat/downbeat an-
notations. Additional Latin-American datasets include annotated recordings of Uruguayan
candombe drumming for beat and downbeat tracking [159]; the Latin Music Database
(LMD) [160], which contains over 3,200 full-length recordings across ten Latin genres for
genre classification; the Brazilian Music Dataset (BMD) [161], focused on regional Brazil-
ian styles such as repente, brega, and MPB (Brazilian popular music); and the Brazilian
Rhythmic Instruments Dataset (BRID) [162], a dataset of Brazilian rhythmic instrument
recordings across styles like samba, samba de enredo, partido-alto, and capoeira, designed
for rhythmic pattern and microtiming analysis. For classical flamenco music from Southern
Spain, the corpusCOFLA [63] offers over 1,800 commercial recordings (approximately 95
hours) selected from canonical anthologies, accompanied by editorial metadata and sev-
eral test collections. These include manual and automatic annotations for tasks such as

vocal detection, vocal pitch extraction, automatic singing transcription, repeated melodic

3However, we acknowledge that genre categorization is subjective and music genre perception varies

significantly across cultures [154].



2.4 Cross-Cultural MIR

pattern discovery, melodic similarity, and style classification, supporting computational
analysis of flamenco’s rich melodic ornamentation and vocal expressivity.

For Iranian traditional music, the Nava Dastgah dataset [64] provides 1,786 solo vocal
excerpts (totalling approximately 55 hours), categorized into seven canonical dastgahs and
labeled by expert performers. In addition, the KUG Dastgahi Corpus (KDC) [163] offers a
growing collection of well-curated and annotated audio for computational analysis of Per-
sian modal music. Furthermore, a curated corpus of traditional Georgian a cappella vocal
music is provided by the Erkomaishvili Dataset [66], comprising 101 historic three-voice
overdubbed recordings performed by master chanter Artem Erkomaishvili. The dataset in-
cludes transcriptions in Western staff notation (in MusicXML), FO trajectories for all three
vocal parts, and manually annotated note and rest onset positions. The recordings exhibit
not equal-tempered tuning and abundant pitch slides, reflecting the distinctive tuning prac-
tices and harmonic thinking of Georgian polyphony. These properties make the dataset
a valuable resource for MIR tasks such as multi-pitch estimation, onset detection, source
separation, and score-to-audio alignment, while also supporting musicological research on
traditional Georgian vocal music. Moreover, [67] introduced Lyra, an 80-hour corpus of
Greek traditional and folk music, annotated with rich metadata on genre, place of origin,
and instrumentation. For Chinese musical traditions, [68] proposed CCMusic, a unified
database integrating multiple Chinese music datasets, both published and unpublished,
with standardized structure, annotations, and evaluation protocols. In the Scandinavian
context, [164] released a corpus of Norwegian Hardanger fiddle recordings, annotated with
precise note and beat onsets by expert performers. Emerging efforts are also addressing
the under-representation of African music traditions in MIR. The Sotho-Tswana dataset
[69] is a multimodal collection of music video clips annotated for genre, sentiment, lyrics,
and visual features. Likewise, the Ndwom dataset [70] contains curated Akan music videos,
spanning genres such as Highlife, Gospel, Soul, and Asakaa, with multimodal annotations
(audio, lyrics, and video frames), curated and labeled by native Akan speakers.

Finally, very recently, [71] introduced M4-RAG, a web-scale dataset comprising 2.31
million music—text pairs, covering 160,000 hours of audio from 1.8 million tracks, with
rich metadata and multilingual annotations across 27 languages and 194 countries. They
also released WikiMT-X, a benchmark designed to support evaluation in multilingual and
cross-modal MIR, addressing critical gaps in globally representative, high-quality training
and evaluation resources. In parallel, the GlobalMood benchmark [15] provides a novel
cross-cultural dataset for music emotion recognition, comprising 1,180 songs from 59 coun-
tries and nearly one million mood ratings elicited through a bottom-up, participant-driven
tagging approach across five culturally and linguistically distinct regions. Fine-tuning mul-
timodal models like CLAP on this culturally grounded dataset significantly improves their
alignment with human judgments. It also demonstrates that mood perception is cultur-
ally grounded and highlights the need for localized descriptors and multilingual annotation

pipelines for building more representative and equitable music foundation models.

Methodologies Furthermore, recent years have seen growing interest in the computa-

tional analysis of non-Western musical traditions |72]. Notable work includes studies on
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Turkish makam recognition |73, 165|, Indian classical music classification [74, 158|, and
analysis of Iranian [75] and Korean [76] traditional music. Additionally, [77]| present a
computational pitch analysis of traditional Ghanaian seperewa (Akan harp-lute) songs,
revealing systematic microtonal deviations from equal temperament in vocal tracks and
highlighting both the limitations and the implicit Western-centric biases of standard MIR
tools and assumptions when applied to culturally specific musical systems such as Ghana-
ian seperewa scales. While some recent efforts have explored music auto-tagging in cross-
cultural transfer settings [78] and addressed challenges in low-resource and imbalanced
world music datasets through few-shot learning [79], comprehensive evaluations or adap-
tations of foundation models in cross-cultural low-resource MIR contexts remain scarce.
Recently, CLaMP 3 [71] proposed a framework to align multiple musical modalities and
multilingual text in a shared representation space via contrastive learning, enabling cross-
modal alignment and generalization to unseen languages for MIR tasks, and demonstrated
state-of-the-art performance on tasks such as text-to-audio and text-to-symbolic music
retrieval. Recent efforts have also explored cultural adaptation in music generation. In
particular, [3| investigate parameter-efficient fine-tuning (PEFT) approaches and demon-
strate that culturally adapting MusicGen [58] and Mustango [80] with low-resource corpora
improves performance on Hindustani classical and Turkish Makam music, highlighting both

the potential and the challenges of cross-cultural adaptation.

Challenges Still, despite these promising developments, addressing cultural imbalance
in MIR requires more than simply diversifying datasets, as [81] argue. The field must
critically reflect on its foundational assumptions, epistemological, ontological, method-
ological, and axiological, by reconsidering what music is, how it is understood, and how
it should be studied in ways that acknowledge and respect diverse cultural knowledge
systems. The very definition of music, the boundaries between music and other cultural
expression, and the values attached to musical sound can differ radically across cultures.
They also call for greater interdisciplinarity with ethnomusicology, as well as the inclusion
of domain experts, to incorporate non-Western musical concepts and values. In prac-
tice, several recurring challenges hinder progress in cross-cultural MIR. Data scarcity is
foremost: many musical cultures lack large annotated corpora, resulting in long-tail label
distributions and unseen tags during evaluation. Model bias is another key issue: models
trained on Western-centric data often reflect WEIRD (Western, Educated, Industrialized,
Rich, Democratic) assumptions [26], and may also encode inductive biases implicitly tuned
to Western musical structures, genres, and semantics, thereby limiting their generalizabil-
ity to non-Western traditions. These biases are often compounded, as Western-oriented
data and modeling assumptions mutually reinforce one another, producing systems that
underperform, or even misrepresent, music from other cultural contexts. To address these
limitations, culturally diverse benchmarks, evaluation metrics, and protocols are essential
for uncovering and mitigating bias in computational models and for quantifying progress
toward truly universal music representations. This includes rethinking ground-truth anno-
tations, adapting evaluation criteria to align with the epistemologies of different musical

traditions, and co-developing models in collaboration with local experts and practitioners.
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Methodology

In this chapter, we first review the architecture and pre-training objective of MERT
(Music undERstanding model with large-scale self-supervised Training), and then present
our continual pre-training strategy for cultural adaptation. Finally, we investigate task
arithmetic, an alternative approach to multi-cultural adaptation that merges culturally spe-
cialized models in weight space to construct a unified multi-cultural model, CultureMERT-TA.
Our experiments are conducted on a diverse collection of Western and non-Western music
datasets, with model evaluation performed on corresponding music auto-tagging tasks, as

detailed in the following section.

3.1 Datasets

For our experiments, we use a diverse set of music datasets spanning both Western
and non-Western traditions. Specifically, we adopt the MagnaTagATune (MTAT) [82] and
FMA-medium [83] datasets to represent "Western"! music. For non-Western traditions,
we incorporate the Lyra corpus [67], featuring Greek traditional and folk music, along
with three collections from the CompMusic Corpora® [62]: Turkish-makam [84, 85], which,
together with Lyra, represent music of the Eastern Mediterranean; and Hindustani and
Carnatic music [86], representing North and South Indian classical traditions, respectively.

We assess our models on both Western and non-Western music tagging tasks for cross-
cultural evaluation, using standard multi-label classification metrics, including the area
under the receiver operating characteristic curve (ROC-AUC), average precision (AP),
and F1 scores (both micro-averaged and macro-averaged). Following [78, 79|, we utilize the
top-k tags relevant to each dataset: 50 tags for MTAT (spanning genre, instruments, and
mood), 20 hierarchical genre tags for FMA-medium, 30 tags for Turkish-makam (covering
makam, usul, and instruments), 20 tags for Hindustani and Carnatic (primarily reflecting
raga, tala, instruments, and forms), and 30 tags for Lyra (related to genre, place, and
instruments metadata).

All audio is resampled to 24 kHz, and we adopt the same data splits as [78]. To prepare
our data for continual pre-training, we extract 30-second segments from each training split

of the non-Western datasets. Given the varying dataset sizes, we balance the pre-training

"We use the term “Western” to refer to music styles predominantly rooted in Western cultures, including
pop, rock, and Western classical.
2https://compmusic.upf.edu/corpora
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duration across cultures to ensure proportional representation by extracting 200 hours each
from the Turkish-makam, Carnatic, and Hindustani datasets, and 50 hours from Lyra due
to its smaller size. Additionally, we combine these subsets to construct a unified 650-hour
dataset integrating all four traditions for multi-cultural continual pre-training. While Lyra
is of limited volume compared to the other datasets, its inclusion in the multi-cultural
data mix serves two key purposes: (i) our preliminary experiments indicate that even
a small amount of diverse data enhances overall generalization performance, and (ii) it
ensures the multi-cultural model is exposed to all non-Western traditions it is evaluated

on, maintaining consistency in evaluation.

3.2 MERT Pre-Training Objective

Our continual pre-training objective follows the self-supervised masked language mod-
eling (MLM) objective of MERTRVA-VAE ' wwhere two teacher models provide the pseudo-labels:

e (i) an acoustic teacher, the EnCodec codec model [2], which discretizes/tokenizes
audio into tokens from K = 8 residual vector quantization (RVQ) codebooks, each

containing C' = 1024 codewords, and

e (ii) a musical teacher, based on constant-Q transform (CQT) spectrogram recon-

struction, encoding pitch and harmonic structure.

MERT-v1-95M follows the HuBERT architecture [55], comprising a CNN-based feature
extractor that encodes raw 24 kHz waveforms into 75 Hz frame-level representations, fol-
lowed by a 12-layer Transformer encoder, producing 768-dimensional contextual embed-
dings (see Figure 3.1). During training, a subset of frame embeddings is masked, and
the model is optimized using a multi-task learning (MTL) objective, combining masked
acoustic token prediction and spectrogram reconstruction.

The overall training objective is:
L= OcﬁRVQ + ECQT, (3.1)

where the acoustic MLM loss Lrvq encourages the model to predict masked RVQ-VAE

tokens from K codebooks, using a noise-contrastive estimation (NCE) [166] loss:

K

Lrvg =Y Y logpy(crrlz)), (32)

k=1teM

with M denoting the set of masked time frames, ¢; the ground-truth discrete codeword
from the k-th codebook at time frame ¢ extracted via the EnCodec tokenizer, and py the

model’s predicted token distribution:

exp(sim(7' (o), e.)/T) .
Y0y exp(sim(T(0y), e0) /)

po(clzy) = (3.3)

Here, @} is the masked input feature, oy is the model’s output representation, 7'(o;) projects
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Figure 3.1. MERT Pre-Training Framework [1].

it to the codeword embedding space, e. is the embedding of codeword ¢ € Cj, where
ke {1,...,K}, sim(-,-) denotes cosine similarity, and 7 = 0.1 is a temperature scaling
parameter.

The musical MLM CQT reconstruction loss Lcqr minimizes the mean squared error
(MSE) between the model’s predicted zcqr, and ground-truth zcqr frame-level CQT

features:

Loqr = Y llzoqrie — zeqralls - (3.4)
teM

The hyperparameter « controls the relative importance of the acoustic MLM token
prediction loss Lryq and the musical MLM spectrogram reconstruction loss Loqr. By
jointly optimizing these objectives, MERT pre-training balances acoustic and musical rep-

resentation learning.

3.3 Two-Stage Continual Pre-Training Strategy

To adapt the MERT foundation model to diverse musical traditions, we employ contin-
ual pre-training, which extends the training of a pre-trained model on new data, aiming to
adapt it to a shifted domain or task while retaining prior knowledge, without re-training
from scratch. In our case, this involves continually pre-training the MERT-v1-95M model,
using the same pre-training objective, on culturally diverse data that introduce a signifi-
cant distribution shift, as it was initially trained on predominantly Western music [1, 43].
Given this shift, naively continuing to train the model, i.e., adapting all parameters at
once without resetting the learning rate, can lead to catastrophic forgetting [44] and poor
adaptation [4], as confirmed by our preliminary experiments (see Section 4.6). To address

this, we propose a two-stage strategy that stabilizes training through:

e (i) learning rate re-warming and re-decaying |4, 31, 34, 88, 89|, and
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Figure 3.2. Two-Stage Continual Pre-Training Strategy for CultureMERT. In Stage
1, a subset of parameters (the 1D CNN feature extractor and codeword embeddings) is
trained on 100 hours of multi-cultural data for multiple epochs, with 20% Western music
for stabilization. In Stage 2, all parameters are unfrozen and trained on the full 650-hour
dataset. Learning rate re-warming and re-decaying is applied in both stages for smooth and
stable adaptation.

e (ii) staged adaptation.

The overall framework of our approach is illustrated in Figure 3.2, which depicts the

two-stage continual pre-training strategy for CultureMERT.

Staged Adaptation In our preliminary experiments, we observed an initial performance
drop during CPT, followed by a slow recovery phase, a phenomenon known as the stability
gap [90, 167, 31]. This instability arises due to the abrupt adaptation of model parameters
to a substantially shifted data distribution, which can temporarily degrade previously
learned representations before stabilizing. To mitigate this, rather than full-parameter
adaptation on the entire dataset in a single epoch, which induces a large plasticity gradient
for a long period [167], we split training into two stages to reduce instability and ensure

smoother adaptation, as illustrated in Figure 3.2:

e Stage 1 Stabilization Phase: We first train on a smaller subset of the data [90],
updating only the CNN-based feature extractor and the codeword embedding layer
while keeping the Transformer encoder frozen. To reduce the distribution gap and
mitigate forgetting [88, 109, 35|, we incorporate a fraction of Music4All data |7],
which is primarily of Western origin, into the pre-training mix, accounting for 20%

of the total training data ( Western replay).
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e Stage 2 Full Adaptation: We unfreeze the Transformer encoder and continue training
on the full dataset. While Western replay (e.g., including a portion of Music4All data)
can also be applied at this stage to further mitigate forgetting, it introduces a trade-off
between cultural adaptation and knowledge preservation, i.e., the stability—plasticity
dilemma [91] (see Section 4.6).

This two-stage approach is particularly motivated by computational constraints, specif-
ically the batch size mismatch between pre-training and adaptation. MERT-v1-95M was
originally trained with batch sizes of 1.5 hours per step, whereas we use a significantly
smaller effective batch size of 160 seconds per step due to memory limitations. Training
with this reduced batch size directly on the entire dataset with full-parameter adaptation
resulted in unstable training and frequent crashes, degrading performance on both Western
and non-Western benchmarks.

By structuring adaptation in two stages, we strike to balance plasticity (adaptation
to non-Western traditions) and stability (retaining knowledge on Western datasets), a
challenge known as the stability-plasticity dilemma [91, 92, 93]. Intuitively, the initial
stabilization phase allows lower-level acoustic representations, captured by the CNN-based
feature extractor and the codeword embeddings, to adapt first and calibrate to the shifted

distribution before updating high-level Transformer representations.

Learning Rate Re-Warming and Re-Decaying To further improve adaptation sta-
bility during continual pre-training, we apply learning rate re-warming and re-decaying
in both stages. Continual pre-training on a shifted distribution can lead to poor conver-
gence and forgetting if the learning rate is not adjusted properly [4, 34]. Prior work has
shown that resetting the learning rate schedule, i.e., re-warming the model, during contin-
ual pre-training is crucial for effective adaptation and mitigating catastrophic forgetting
[4, 31, 34, 88, 89]. The learning rate schedule significantly impacts the training dynamics
and efficacy of CPT and re-warming is necessary for efficient adaptation to new data.

We adopt a two-phase learning rate schedule comprising a linear warm-up followed by
cosine annealing (see Figure 3.3), following prior work [4, 88]. The learning rate 7; at
timestep t is defined as:

(1) Linear warm-up (for ¢ < Tyarmup):

t
M =Tmax " 77

Twarmup

(3.5)

(2) Cosine annealing (for tann <t < tend):

max — //min t—1 nn
Mt = Tpin + e Tmin (cos <7r - a) + 1) (3.6)
2 tend - tann

where:
Nmax 18 the maximum learning rate, Nmin is the minimum learning rate, Tywarmup is the
warm-up duration, tann = Twarmup is the start of cosine annealing, and teng = Tann + tann

is the total training duration.
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Warm-up durations in prior work typically range between 0.1% 2% of total training
steps. In the audio domain, HuBERT base uses a warm-up phase of 8% during initial
pre-training. Models using shorter warm-up phases tend to forget and adapt more quickly
in early training due to the faster learning rate increase. However, over longer training
durations, this effect becomes less impactful on overall forgetting and adaptation, as noted
in [4]. The choice of learning rate re-warming strategy depends on the training objective
and the task at hand. The selection of warm-up duration and maximum learning rate also
reflects a trade-off between stability and plasticity. Carefully designed warm-up and decay
schemes are crucial for effective continual adaptation [31]. In our preliminary experiments,
we extensively tested different warm-up and decay durations, as well as learning rate values;
the final values used in each stage are reported in Section 3.5.3. Finally, the learning rate
is typically annealed down to 0.1x the maximum learning rate, consistent with prior cosine
decay schedules, where the maximum learning rate is initialized to match the nyax of the

original pre-trained model.
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Figure 3.3. Linear warm-up and cosine annealing schedule. Reproduced from []].

e In Stage 1, we adopt a moderately aggressive warm-up and decay schedule to en-

courage early adaptation of low-level representations.

e In Stage 2, a less aggressive schedule balances plasticity and stability during full-

model training, reducing also training instabilities.

Following this two-stage CPT strategy, we develop two types of culturally adapted

models:

e (i) a multi-culturally adapted model, CultureMERT, trained on a culturally di-
verse mix spanning all four non-Western musical traditions (Turkish-makam, Hin-

dustani, Carnatic, and Lyra); and

e (ii) single-culture adapted models, each continually pre-trained on data from
a single tradition, resulting in MakamMERT, HindustaniMERT, CarnaticMERT, and
LyraMERT.
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Figure 3.4. Merging Models via Task Arithmetic. Adapted from [5] and [06].

As an alternative to continual pre-training on multi-cultural data, we explore task
arithmetic [5], a model merging method that combines culturally specialized models in
weight space to construct a unified multi-cultural model. Model merging [40] has recently
emerged as a promising approach for integrating multiple independently fine-tuned or task-
specific models into a single model without requiring access to training data or additional
re-training. Task arithmetic operates by algebraically merging model parameters through
weight vector addition and subtraction in Euclidean space, as illustrated in Figure 3.4.
Specifically, it treats the difference between a task-adapted model and its pre-trained base
as a task wvector in weight space. Linear combinations of such task vectors have been
shown to effectively steer model behavior and enable knowledge transfer across domains
[94, 5]. For example, adding a task vector to a base model can improve its performance
on the corresponding task, while combining multiple task vectors supports multi-task gen-
eralization. Notably, task vectors exhibit a form of compositionality: expressions such as
Tp = 7c + (7B — T4) can yield improved performance on a target task D, even without
direct training data—enhancing domain generalization and revealing analogical structure
in model space (e.g., "A is to B as Cis to D"). Furthermore, negating task vectors enables
the removal of specific "behaviors" from a model, offering a mechanism for targeted for-
getting. These properties highlight task arithmetic as an efficient, modular, and data-free
strategy for domain adaptation (DA), and a lightweight tool for model editing.

In our setting, we obtain task vectors by computing the element-wise difference between
the parameters of the single-culture continually pre-trained models—i.e., the culturally
specialized models—and those of the MERT-v1 model. Formally, given the initial pre-
trained model with parameters 0, and a continually pre-trained model 6; adapted to a
cultural dataset D;, the task vector for culture 7 is given by 7; = 0; — Opre, capturing the
parameter shift induced by culture-specific adaptation. For multi-cultural adaptation, we
construct a unified model Opergea by merging N single-culture adapted models via task

arithmetic, summing their respective task vectors 7; with corresponding scaling factors A;:

N

Hmerged = epre + Z AiTi, (37)
=1

where A\; € R are scalar hyperparameters that control the contribution of each task vector,
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typically determined using held-out validation sets.
Prior work on task arithmetic typically uses a single scaling factor A for all task vectors,

i.e., Ay = A, Vi, reducing Equation 3.7 to:

N
Hmerged = gpre + A Z Ti- (38)
i=1

In the special case where A = 1/N, this further simplifies to:

1 & 1 &
emerged = epre + N ;(61 - gpre) = N Zz; 61'7 (39)

which corresponds to weight averaging [111, 112, 39], where the adapted models are merged
by directly averaging their parameters.

Here, we merge N = 4 single-culture adapted models—MakamMERT, HindustaniMERT,
CarnaticMERT, and LyraMERT—to construct a unified multi-cultural model, referred to as

CultureMERT-TA. Details on the choice of scaling factor A are provided in Section 4.4.

3.5 Experimental Setup

3.5.1 Implementation Details

In all continual pre-training setups, we initialize our models from the publicly available
MERT-v1-95M° pre-trained checkpoint. Training was conducted using the FAIRSEQ? frame-
work on a single NVIDIA GeForce GTX TITAN X GPU with 12 GB of memory. All models
were trained with half-precision (FP16), using 5-second audio segments as input context,
randomly cropped from the extracted 30-second pre-training audio data. The weight of
the acoustic loss in the pre-training objective is set to a = 10.0. The EnCodec neural au-
dio codec (NAC) model [2]|, which tokenizes audio into discrete codewords, remains frozen
during continual pre-training, as in [1]. To enhance representation robustness, we apply
in-batch noise mizture augmentation with a mixup probability of 0.5 (see Section 4.6.2 for
a complete discussion), and use pre-layer normalization (Pre-LN) [168] for training stabil-
ity, following [1]. The impact of mixup augmentation is further examined in Section 4.6.2
(Table 4.4). Other training settings mirror those of the MERT-v1-95M setup; further details
are provided in Appendix A.1.

3.5.2 Probing-Based Evaluation

Following [57, 1, 19], we adopt a probing-based [87] evaluation rather than fine-tuning,
keeping the pre-trained models frozen as deep feature extractors while training only a shal-
low multilayer perceptron (MLP) with a single 512-dimensional hidden layer for sequence-
level tasks. Our evaluation follows the MARBLE protocol [149] under constrained settings,

and we apply it to both Western and non-Western music tagging tasks for cross-cultural

3https://huggingface.co/m-a-p/MERT-v1-95M
*https://github.com/facebookresearch /fairseq
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3.5.3 Continual Pre-Training Settings

evaluation. To process long-duration audio files, we segment them into 30-second chunks
using a sliding window approach and aggregate the chunk-level predictions by averaging to
obtain the final prediction for the entire audio file. For Turkish-makam, Hindustani, and
Carnatic tasks, we apply a maximum duration cut® as in [78]. Evaluation hyperparameters

are detailed in Appendix A.2.

3.5.3 Continual Pre-Training Settings

Multi-Cultural CPT In Stage 1, training runs for 2,250 steps with a 10% linear warm-
up period, using 100 hours of the dataset, where 20% of the mix consists of Western music
from Music4All [7]. Optimization follows AdamW [169] with 51 = 0.9, f2 = 0.999, and

e = le=®

. Training employs an effective batch size of 32 recordings (160 seconds) with
gradient accumulation over 8 steps. The maximum learning rate is set to Nmax = He 4,
followed by a cosine decay to a minimum of i, = 5e~°. Gradient clipping is applied with
a norm of 1.0 to prevent exploding gradients. In Stage 2, training extends to 14,625 steps
with a 1% warm-up period, using the full 650-hour dataset. Optimization follows AdamW
with 81 = 0.9, B2 = 0.95, and € = le~°, maintaining the same batch size as Stage 1. The
learning rate decays from a maximum value of Nyax = 5e > t0 Nmin = He . Gradient

clipping remains at 1.0.

Single-Culture CPT In Stage 1, we train on 60 hours, with 20% of the mix allocated
to Music4All, for a total of 1,350 training steps. In Stage 2, we expand training to the full
200-hour dataset for 4,500 steps. We employ the same optimizers, batch size settings, and
learning rate schedules as in the multi-cultural CPT. For Lyra, due to its smaller size (50
hours), we train on 20 hours in Stage 1 (450 steps) and then on the full dataset in Stage
2 (1,125 steps).

5This is done to ensure comparability with previous state-of-the-art results reported in [78].






Chapter

Results and Discussion

In this chapter, we present and analyze the empirical findings of our study. We begin
with the evaluation results of our culturally adapted models across diverse music auto-
tagging tasks, highlighting the effectiveness of multi-cultural continual pre-training and
model merging via task arithmetic. We then examine patterns of cross-cultural transfer,
focusing on how cultural proximity influences cross-cultural generalization of single-culture
adapted models. This is followed by an analysis of token-level similarity across musical
traditions as a potential predictor of positive transferability. We also explore the sensitivity
of task arithmetic to the scaling factor and layer-wise probing performance. Finally, we
provide an in-depth evaluation and analyze the training dynamics of our proposed two-
stage adaptation strategy through detailed ablations, demonstrating its effectiveness in

mitigating catastrophic forgetting, stabilizing training, and enhancing cultural adaptation.

4.1 Evaluation Results

As shown in Tables 4.1 and 4.2, CultureMERT, adapted via multi-cultural continual pre-
training, consistently outperforms the initial MERT-v1 model across all non-Western tasks
and evaluation metrics. It also surpasses the single-culture adapted models on average,
suggesting that incorporating culturally diverse data during CPT benefits all non-Western
traditions by improving the quality of representations computed for each individual cul-
ture, thereby enhancing generalization. This finding aligns with observations in multi-
lingual NLP and speech recognition, where pre-training on diverse multilingual corpora,
such as in XLM-R [170] and XLS-R [171], has been shown to improve cross-lingual trans-
fer and performance [97, 172|, particularly in low-resource or unseen language settings
[98]. Notably, CultureMERT achieves this with minimal forgetting on Western benchmarks
(—0.05% average drop in ROC-AUC and AP), demonstrating the efficacy of our approach.
Furthermore, it shows better retention of prior Western knowledge compared to single-
culture models, which suffer greater performance drops when evaluated on FMA-medium
and MagnaTagATune (MTAT).

We further observe that single-culture adapted models tend to achieve the best per-
formance on their respective in-domain tasks, particularly for well-resourced traditions,
reaffirming the effectiveness of continual pre-training for domain-specific adaptation [32].

This trend holds consistently across all evaluation metrics. Interestingly, even low-resource
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Dataset ‘ Turkish-makam ‘ Hindustani ‘ Carnatic Lyra ‘ FMA-medium ‘ MTAT ‘ A
vg.
Metrics | Roc AP |ROC AP |ROC AP |ROC AP | ROC AP | ROC AP |
MERT-v1 ‘83.20,08 53.30.12 ‘82.40_04 52.90.19 ‘ 74.90.05 39.70.15 ‘85.70,10 56.50.18 ‘ 90.709.04 48.1¢0.11 ‘ 89.60.07 35.90.15 ‘ 66.1
MakamMERT 88.709.11 58.80.22 | 84.50.16 57.80.18 | 77.60.14 42.70.16 | 84.60.12 53.20.17| 90.30.12 47.19.16 | 89.00.07 35.60.12 | 67.5
CarnaticMERT 88.40.06 58.40.16 | 87.00.06 60.20.14 | 78.80.13 44.0¢.17|85.40.11 55.80.16 | 90.20.10 46.70.09 | 89.20.10 35.30.11 | 68.3
HindustaniMERT | 88.3g.12 58.20.16 | 87.409.11 60.30.16 | 77.00.12 42.70.16 | 84.20.13 52.00.15 | 90.29.13 46.19.10 | 89.19.09 35.80.13 | 67.6
LyraMERT 86.70.07 56.80.13 | 85.90.08 57.40.13 | 76.49.09 40.10.13 | 85.00.11 53.50.14 | 90.00.08 46.00.16 | 88.90.05 35.1p.14 | 66.8
CultureMERT [89.60.09 60.60.21 [88.20.20 63.50.24|79.20.18 43.19.22 | 86.90.10 56.70.20 | 90.70.00 48.10.13 | 89.40.09 35.90.16 | 69.3
CultureMERT-TA | 89.09.12 61.0¢.18 | 87.50.10 59.30.13 | 79.10.11 43.30.13 [87.30.08 57.30.19| 90.80.06 49.1¢0.15 | 89.60.10 36.40.14 | 69.1

(Previous) SOTA [87.7 [78] 57.7 [78]|86.5 [78] 63.1 [78]|77.0 [78] 43.9 [78][85.4 [78] 54.3 [75]|92.4 [78] 53.7 [78]|92.7 [95] 4L.4 [57]| -

Table 4.1. FEwvaluation Results (ROC-AUC and AP) of Pre-Trained and Cul-
turally Adapted MERT Models on Diverse Music Auto-Tagging Tasks (1/2).
We report averages across five random seeds with standard deviations as subscripts. The
"Avg." column represents the average performance across all datasets and evaluation met-
rics for each model. The results highlight the impact of multi-cultural CPT (CultureMERT)
and multi-cultural model merging via task arithmetic (CultureMERT-TA) on cross-cultural
adaptation and transfer.

adaptation, as in the case of LyraMERT trained on just 50 hours of Greek folk music, leads
to noticeable gains across other non-Western tasks, indicating that even limited cultural
exposure can significantly enhance cross-cultural generalization beyond Western datasets.
This finding is consistent with recent work in low-resource NLP [32] and speech recogni-
tion [38], where in the latter continually pre-training with as little as 10 hours of target
language data yielded substantial improvements over unadapted models. Improvements
in Macro-F1 scores across non-Western datasets are particularly noteworthy, highlighting
that cross-cultural adaptation not only enhances overall accuracy but also improves recog-
nition of less frequent tags among the top-k most common labels used in our evaluation.
This is particularly important for ethnomusicological datasets [79], where even within the
top-k evaluated tags, frequency distributions remain imbalanced and capturing a wider
diversity of musical concepts is crucial.

Moreover, multi-cultural model merging via task arithmetic achieves comparable perfor-
mance to CultureMERT on non-Western tasks and even surpasses it on Western benchmarks
and Lyra, demonstrating that weight-space merging of culturally specialized models can
serve as an effective, training-free alternative to multi-cultural CPT, provided such mod-
els are available. Interestingly, task arithmetic also outperforms the original pre-trained
model on average across Western tasks, further reinforcing its ability to balance adaptation
and retention. Finally, CultureMERT and CultureMERT-TA surpass previous state-of-the-
art (SOTA) results (ROC-AUC and AP) on all non-Western music tagging tasks, with the
best task arithmetic variant obtained using A = 0.2 (see Figures 4.4 and 4.6). Notably,
only the multi-cultural models, CultureMERT and CultureMERT-TA, outperform the orig-
inal MERT-v1 on Lyra, albeit with the smallest margin compared to other non-Western

tasks. This observation aligns with the fact that MERT-v1, pre-trained on Western mu-
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Dataset ‘ Turkish-makam Hindustani Carnatic Lyra FMA-medium MTAT A
vg.
Metrics (F1) ‘Micro Macro ‘Micro Macro‘Micro Macro‘Micro Macro‘Micro Macro ‘Micro Macro‘
MERT-v1 ‘ 73.0 38.9 ‘ 71.1 33.2 ‘ 80.1 30.0 ‘ 72.4 42.6 ‘ 57.0 36.9 ‘ 35.7 212 ‘ 49.3
MakamMERT 77.5 44.0 74.0 37.6 81.0 31.4 70.8 40.2 57.2 35.4 34.2 20.5 |50.3
CarnaticMERT 76.8 44.0 76.2 46.3 81.6 32.4 72.9 42.8 57.3 35.3 33.3 225 |51.8
HindustaniMERT | 76.5 43.9 78.9  46.9 81.0 33.0 | 70.1 40.6 55.1 33.8 34.4 209 |51.3
LyraMERT 75.9 42.1 75.9 44.9 80.9 29.6 71.3 41.1 56.2 33.9 33.8 21.2 | 50.6
CultureMERT 7.4 45.8 778 50.4 | 82.7 325 | 73.1 431 58.3 36.6 356 22.9 |52.9
CultureMERT-TA| 76.9 45.4 74.2 45.0 82.5 32.1 73.0 45.3 | 59.1 38.2 35.7 215 |524

Table 4.2. Evaluation Results (Micro-F1 and Macro-F1) of Pre-Trained
and Culturally Adapted MERT Models on Diverse Music Auto-Tagging Tasks
(2/2). The "Avg." column represents the average performance across all datasets and
both Micro-F1 and Macro-F1 for each model. The results further highlight the impact of
multi-cultural CPT (CultureMERT) and multi-cultural model merging via task arithmetic
(CultureMERT-TA) on cross-cultural adaptation and transfer.

sic, already serves as a strong baseline for Lyra, surpassing previous SOTA, potentially
reflecting certain underlying similarities between Greek folk music and Western musical
traditions. Overall, these results further underscore the effectiveness of multi-cultural
adaptation, especially in low-resource and transfer settings.

We next analyze these quantitative findings in greater depth by examining patterns of

cross-cultural transfer and cross-cultural generalization of culturally adapted models.

4.2 Cross-Cultural Transfer

As illustrated in Figures 4.1 and 4.2, continual pre-training on one musical tradition
can benefit others to varying degrees, revealing differing levels of cross-cultural transfer ef-
fectiveness. For instance, we observe strong transfer between Turkish-makam and Carnatic
music, with models adapted to either tradition generalizing well to the other. This aligns
with both magam (Makam) and raga (Carnatic) being modal systems that emphasize
microtonal pitch variation, ornamentation, and improvisation, serving similar functions
within their respective musical cultures [173].

Additionally, we observe strong cross-cultural transfer between the Carnatic and Hin-
dustani traditions. Specifically, the Carnatic-adapted model achieves high scores across all
metrics when evaluated on the Hindustani auto-tagging task, while the Hindustani-adapted
model shows slightly stronger transfer in F1 scores when evaluated on Carnatic music (see
Tables 4.1 and 4.2). This mutual transferability reinforces the musical proximity between
these traditions, particularly in their shared use of raga (melodic mode) and tala (rhythmic
framework) |24], despite differences in performance structure, melodic movements, and the
types of instruments used. Moreover, despite some shared musical characteristics, such
as modal improvisation and microtonality, Turkish-makam models do not generalize well

to Hindustani music. This gap highlights that theoretical similarity may not necessarily



Chapter 4. Results and Discussion

MERT-v1
CultureMERT
MakamMERT
CarnaticMERT
HindustaniMERT
LyraMERT
CultureMERT-TA

Turkish-makam Hindustani Carnatic Lyra FMA-medium MagnaTagATune
Target Domains

Figure 4.1. ROC-AUC Comparison Across Culturally Adapted Models on
Diverse Music Auto-Tagging Tasks. Continual pre-training on multi-cultural data
(CultureMERT) consistently achieves the highest performance across most datasets, par-
ticularly for non-Western traditions, surpassing both single-culture adaptations and model
merging via task arithmetic (CultureMERT-TA). However, the latter demonstrates particu-
larly strong results on Lyra and Western-centric auto-tagging tasks.

translate to practical transferability. In general, we observe that cross-cultural transfer is
not always symmetric. For instance, while the Carnatic-adapted model generalizes well to
Hindustani music, the reverse direction yields slightly better results in certain metrics (e.g.,
Macro-F1). Such asymmetries have also been observed in cross-lingual transfer research
[96, 97, 98]. We encourage further exploration of (a)symmetric cross-cultural transfer pat-
terns in the context of music representation learning.

Interestingly, the model adapted to Carnatic music appears to be the most consistently
transferable among all single-culture adaptations, achieving the highest average scores
across multiple non-Western traditions in ROC-AUC, AP, and F1 metrics. It performs
strongly not only within Indian classical traditions but also generalizes well to Turkish-
makam and Lyra, suggesting a particularly robust capacity for cross-cultural generalization.
This observation aligns with findings in cross-lingual NLP [98], where certain high-resource
“super-donor” languages consistently boost performance across diverse low-resource lan-
guages, often irrespective of linguistic proximity.

Greek traditional and folk music presents a unique challenge, as it theoretically shares
elements with both non-Western and Western traditions. It exhibits melodic improvisation
similar to Turkish-makam and Hindustani music, while also employing harmonic accom-
paniment influenced by Western classical and folk traditions. This blending of modal and
tonal frameworks has been extensively discussed in ethnomusicological studies, particu-
larly in the context of "Rebetiko", which integrates makam-based melodies with Western
chordal harmony [99]. In our experiments, we observe that MERT-v1, originally trained on
Western music, already serves as a strong baseline when evaluated on the Lyra auto-tagging
task. Moreover, adapting the initial model, whether using data from a single tradition or
from a diverse multi-cultural mix, consistently yields the smallest gains on Lyra across
all evaluation metrics among the non-Western tasks. This suggests that the underlying

musical structure of Greek folk music may partially align with the Western biases already
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present in the foundation model.

—— MERT-v1
CultureMERT

—— MakamMERT

—— CarnaticMERT

—— HindustaniMERT
LyraMERT

—— CultureMERT-TA

Carnatic Hindustani

Lyra Turkish-makam

FMA-medium MagnaTagATune

Figure 4.2. Cross-Cultural Transferability. Relative ROC-AUC performance across
datasets, highlighting key trends in cross-cultural transfer. CultureMERT generalizes well
to non-Western datasets, while task arithmetic performs on par in these settings and even
surpasses both the pre-trained and multi-culturally adapted models on Western benchmarks
(FMA-medium, MTAT) and Lyra.

As expected, the pre-trained MERT-v1 model performs strongly on Western-centric
datasets such as MTAT and FMA-medium, reflecting its initial training bias toward West-
ern musical traditions. In contrast, models adapted to individual non-Western cultures
(e.g., MakamMERT, HindustaniMERT, etc.) often exhibit reduced performance on these West-
ern benchmarks. This highlights the substantial domain shift between Western and non-
Western musical audio representations. However, this effect is substantially mitigated by
CultureMERT, and even more so by CultureMERT-TA, whose exposure to a diverse range of
musical traditions during continual pre-training or model merging enables them to better
retain generalization across both non-Western and Western domains.

The efficacy of task arithmetic in cross-cultural transfer mirrors recent findings in cross-
lingual transfer learning. Notably, [94] demonstrated that combining language- and task-
specific models via arithmetic operations significantly improves performance across both
high-resource and low-resource languages.

Overall, these results emphasize that cultural proximity, shared musical structures, and
the internal diversity of traditions all play critical roles in cross-cultural transferability.
It is important to note, however, that our analysis is based on continual pre-training
starting from a Western-biased foundation model, rather than training from scratch for each
tradition. Thus, the observed cross-cultural transfer patterns may partly reflect how these
musical cultures are projected into the representational space shaped by prior Western-

centric pre-training.
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4.3 Token-Level Culture Similarity

To further examine cross-cultural similarities in our data, we analyze token overlap
across musical traditions using both the Jensen-Shannon divergence (JSD) and cosine dis-
tance between token distributions extracted from the EnCodec codec model [2], which
serves as our audio tokenizer. These pseudo-tokens represent discrete acoustic represen-
tations that are also used as masked prediction targets in the acoustic MLM pre-training
objective of MERT (Section 3.2). Lower values in both metrics indicate greater simi-
larity. Our analysis, as shown in Figure 4.3, reveals strong token-level similarity among
non-Western traditions, particularly between Hindustani and Carnatic music. In contrast,
Western datasets (MTAT, FMA-medium) are highly similar to each other but notably
dissimilar from non-Western traditions. Greek folk music (Lyra), while distinct, aligns
more closely with non-Western traditions than Western ones. These findings underscore

the need for cultural adaptation to address distributional shifts in audio representations.
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MagnaTagATune - 19.4% 22.5% 19.8% 22.6% MagnaTagATune - 13.0% 19.8% 14.5% 18.3%
FMA-medium— 19.0% 19.2% 18.0% 19.6% FMA-medium— 11.9% 13.8% 10.9% 12.9%
Lyra- 19.4% 19.0% 18.6% 16.1% Lyra- 13.0% 11.9% 16.1% 10.9%
Turkish-makam - 22.5% 19.2% 18.6% Turkish-makam- 19.8% 13.8% 16.1%
Hindustani- 19.8% 18.0% Hindustani- 14.5% | 10.9%
Carnatic- 22.6% 19.6% | 16.1% Carnatic- 18.3% 12.9% |10.9%

Jensen-Shannon Divergence Cosine Distance

Figure 4.3. Token Similarity Across Cultures. Pairwise similarity between acoustic
token distributions extracted from the EnCodec NAC model [2]. Similarity scores are aver-
aged across 8 codebooks, each containing 1024 discrete codewords (acoustic pseudo-tokens).
Both measures—JSD and cosine distance—show consistent trends across cultures.

Interestingly, these findings correlate with our results on cross-cultural transfer (Sec-
tion 4.2), suggesting that token-level similarity metrics can serve as predictors of positive
cross-cultural transfer. This insight has practical implications: such similarity metrics
can help guide the selection and refinement of mixture proportions of pre-training data dur-
ing CPT, or inform the adjustment of arithmetic operations when combining models via
task arithmetic. This is particularly valuable in low-resource scenarios, where limited data
for an underrepresented culture can be complemented by leveraging similar, higher-resource

cultures as effective "donors", an approach supported by recent findings in low-resource
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speech recognition [38] and NLP [98]. Similar approaches for quantifying language sim-
ilarity and predicting positive cross-lingual transfer, based on the similarity of extracted
linguistic or acoustic tokens, have been explored in both the text [105, 32, 174, 96, 98] and
speech domains [38]. Finally, these observations are consistent with known ethnomusico-
logical similarities and resonate with findings from prior work in multilingual adaptation
[38, 175], where cross-lingual similarities, and, in turn, positive cross-lingual transfer, were
often associated with historical, structural, and social proximity between languages, such
as shared linguistic roots or sustained contact.

We should note that the EnCodec audio tokenizer used for extracting acoustic token
distributions was originally trained on Western musical data and was kept frozen during our
experiments. While this could introduce a Western-centric bias in how token similarities are
measured, it is actually aligned with the inductive biases of the MERT-v1 foundation model,
which was also trained predominantly on Western music. Following arguments made in
recent low-resource speech adaptation research [38], using a similarity measure grounded
in the pre-trained model’s internal representations, rather than relying on external notions
of similarity, is often more predictive of positive transfer in CPT settings. Thus, despite
potential biases, the EnCodec-derived token similarity remains a suitable and meaningful
predictor of cross-cultural transferability in our setting. Additionally, an alternative strat-
egy could involve following the Acoustic Token Distribution Similarity (ATDS) approach
proposed in [38], by extracting frame-level contextual embeddings from a transformer layer
of the pre-trained model, clustering them to induce deep semantic tokens, and computing
token distribution similarities based on the resulting semantic token frequency vectors.
Such model-internal representations could offer an even more tailored and task-specific
measure of cultural proximity, closely aligned with the inductive biases of the model be-
ing adapted. Furthermore, it would be interesting to derive semantic token similarities
from our culturally adapted models using the same approach, and compare them to those
from the original MERT-v1 pre-trained model and the EnCodec acoustic tokens, to better
understand how cultural adaptation shifts internal representations of musical proximity.

However, it remains an open question which aspects of similarity most effectively pre-
dict cross-domain or cross-cultural transfer relative to the target task. This echoes recent
findings in multilingual NLP, where the most predictive notion of similarity varies depend-
ing on the downstream task. For instance, [96] demonstrate that syntactic similarity best
predicts cross-lingual transfer in POS tagging and parsing, while lexical and n-gram overlap
are stronger predictors for topic classification. Their study also considers a wide array of
similarity measures, including grammatical structure, phonological and phonetic features,
phylogenetic relatedness, geographic proximity, and dataset-level token overlap. Inspired
by this, we suggest that future work in music understanding should investigate which di-
mensions of similarity, whether captured via acoustic tokens, semantic representations, or
external musicological knowledge, best align with task-specific performance in transfer set-
tings. Moreover, diverse and representative music corpora could support the construction
of phylogenetic trees or networks based on various similarity measures to further explore
cross-cultural relationships. Finally, exploring audio tokenizers trained on globally diverse

corpora may also yield a more holistic and "unbiased" view of cross-cultural proximity.
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4.4 Task Arithmetic Scaling Factor

A key consideration in task arithmetic is the choice of the scaling factor A, which con-
trols the balance between task vectors. Prior work [6, 94| has shown that suboptimal val-
ues can significantly degrade performance in multi-task model merging. We systematically
evaluate different values of a shared scaling factor A € {0.1,0.2,0.25,0.3,0.5,0.75,1.0}, ap-
plied uniformly across all task vectors, following the simplified formulation in Equation 3.8,
including the special case of weight averaging (A = 0.25). Consistently with prior observa-
tions, we find that ill-suited values, such as A = 1.0, result in poor performance across all

benchmarks, as shown in Figures 4.4 and 4.6.
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Figure 4.4. Effect of Scaling Factor A on Task Arithmetic Performance. The
ROC-AUC scores across six diverse music tagging tasks demonstrate how varying X impacts
task arithmetic when merging the four non- Western single-culture adapted models.

AWD [176] suggests that this sensitivity arises because inter-task interference is ampli-
fied when task vectors are scaled up. This is consistent with our observations: as the scaling
factor A increases, performance systematically degrades across all evaluated auto-tagging
tasks (Figure 4.4). Such interference stems from task vectors not being orthogonal [176],
a hypothesis further supported by measuring the cosine similarity between task vectors
(Figure 4.5). In line with this, other studies have noted that naive linear merging via task
arithmetic can suffer from parameter conflicts. For instance, TIES-Merging [177| identi-
fies two key sources of cross-task interference: (a) redundant small-magnitude parameters
that introduce noise when merged, and (b) sign conflicts where models "disagree" on the
direction of parameter changes.

While multi-cultural continual pre-training jointly learns representations across mul-
tiple musical cultures, task arithmetic offers a post-hoc merging strategy by combining
culturally specialized models without requiring additional training or access to original
data, provided such models are already trained. In our experiments, the best-performing

task arithmetic variant was obtained with a scaling factor of A = 0.2, a result that was
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Task Vector
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Hindustani- 0.39 1.00 0.41 0.41
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Figure 4.5. Cosine Similarity Between Task Vectors. The values highlight sig-
nificant overlap (non-orthogonality) among task vectors, which contributes to inter-task
interference during model merging with task arithmetic.

consistent across all evaluated music auto-tagging tasks (Figure 4.4). Although task arith-
metic offers a strong alternative, its effectiveness depends critically on the careful tuning of
scaling factors and may be more sensitive to inter-task interference, particularly when task
vectors are highly correlated. In future work, we plan to investigate more robust model
merging methods and task arithmetic variants that better mitigate parameter interferences
and task conflicts, including adaptive scaling strategies, task- and layer-weighted merging,

and interference-robust optimization techniques (see Section 5.3 for suggested future work).
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Figure 4.6. Task Arithmetic vs. Multi-Cultural CPT. Average ROC-AUC
performance across benchmarks for different task arithmetic scaling factors, compared
against multi-cultural continual pre-training (CultureMERT) and the pre-trained baseline
(MERT-v1). The best average task arithmetic performance is achieved with a scaling factor

of A =10.2.
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4.5 Layer-wise Cultural Encoding in CultureMERT

Probing-based evaluation (for details see Appendix A.2) reveals that different trans-
former layers in CultureMERT provide the most effective representations for different cul-
tural auto-tagging tasks (see Figure 4.7). Interestingly, these optimal layers not only vary
across tasks but also differ from those observed in MERT-v1, indicating a "reorganization"
of cultural knowledge during multi-cultural continual pre-training. This suggests that cul-
turally relevant information may be encoded at varying depths within the multi-culturally
adapted model, rather than being uniformly distributed across layers. Such variation re-
flects the diversity of musical representations learned through CPT and highlights the
importance of task-aware feature extraction and layer-wise selection for culture-specific
modeling. The following list summarizes the transformer layers that yielded the best per-

formance via probing for each evaluation dataset:

e Turkish-makam: layer 6

Hindustani: layer 7

Carnatic: layer 7

Lyra: layer 8

e FMA-medium: weighted sum over all layers (all)

MagnaTagATune: weighted sum over all layers (all)

As shown in Figure 4.7, intermediate transformer layers in CultureMERT yield the best
representations for most tasks, particularly for non-Western traditions. The optimal layers
for these datasets range from layers 5 to 8, indicating that culture-specific information
may be encoded at the mid-network layers after continual pre-training. Interestingly, the
Hindustani and Carnatic auto-tagging tasks both achieve peak performance at layer 7,
aligning with prior observations of cross-cultural similarity and transfer between these
two traditions. In contrast, Western benchmarks such as FMA-medium and MTAT ex-
hibit more uniform performance across layers. The learnable weighted sum over all layers
(all) performs robustly across all datasets and achieves the best results on Western-centric
benchmarks. This pattern may reflect the impact of multi-cultural continual pre-training
on a Western-biased model: while Western benchmarks retain broadly distributed repre-
sentations from the base model, non-Western datasets benefit from localized adaptation,
with culture-specific features emerging more strongly at specific intermediate layers. No-
tably, representations extracted from the lower layers of the transformer encoder, and
especially from the pre-transformer 1-D CNN feature extractor (layer 0), result in consis-
tently lower performance across all evaluated tasks, suggesting that they primarily encode
low-level acoustic characteristics insufficient for semantic-level tasks. Finally, top trans-
former layers (e.g., layer 11 and layer 12) underperform slightly across most datasets,
likely because they specialize more in the masked modeling pre-training objective rather

than providing features relevant for downstream tasks.



4.6 Two-Stage Adaptation Strategy

Turkish-makam 9% Hindustani Carnatic
90 80.0
881 A A
77.51 4 peng ey
%8 86 =4 ~
75.01 ook
./
1 X
-~ 86 841 72.5
s L e
< DONVI BG4 20N DONVIHSG0A 20N DONVHI BG4 DDO0NMY
8 Layer Layer Layer
< Lyra FMA-medium MagnaTagATune
O 9% 92 90
< .
~ 85 1 894 o S L S
90+ SR )
L +
80 881
881 +
B ) g

DOANVH B D 0A DMV
Layer

DONVE B 0A DMV
Layer

DONVE B D 0A DMV
Layer

Figure 4.7. Layer-wise Probing Performance of CultureMERT across Datasets.
ROC-AUC scores across layers for each evaluation dataset, obtained via probing of repre-
sentations extracted from the frozen backbone.

These findings are consistent with prior work in speech representation learning [178],
computer vision [179], and NLP [180, 181|, where task- or language-specific information
tends to be concentrated at different layers of transformer models, and the most informative
and transferable features often lie in the middle of the network. A similar trend was also
observed in the original MERT-v1 model across different music understanding tasks, showing
also that intermediate layers tended to cluster music examples by genre or content, whereas
the top layers focused more on the MLM-style pre-training task [1]. Our findings also res-
onate with recent layer-wise analyses in music foundation models such as MuQ [100|, which
show that acoustic tasks (e.g., pitch or instrument classification) tend to benefit from lower
layers, while semantic tasks (e.g., genre classification or structure analysis) perform best
at higher layers. In contrast, comprehensive tasks such as music tagging distribute across
layers. These observations suggest that different MIR tasks, and by extension, cultur-
ally diverse musical content, may require representations extracted from different network
depths. Such insights reinforce the importance of task-specific representation selection and
motivate future work exploring more adaptive, culturally aware, and interpretable layer
aggregation strategies to further illuminate how musical and culturally-specific attributes

are distributed across the network [182].

4.6 Two-Stage Adaptation Strategy

In this section, we evaluate the effectiveness of our proposed two-stage continual pre-
training strategy, which incorporates learning rate re-warming, and compare it against
single-stage CP'T baselines that perform full-parameter adaptation in a single step, with
and without re-warming. Our empirical analysis supports the core design choices of the
two-stage approach, focusing on three key aspects: (i) mitigation of catastrophic forgetting,

(ii) effectiveness of cultural adaptation, and (iii) training stability.
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4.6.1 Mitigating Catastrophic Forgetting

Figure 4.8 shows the ROC-AUC performance on the Western MagnaTagATune (MTAT)
dataset during two-stage continual pre-training. We observe a performance drop in Stage
1, followed by gradual recovery in Stage 2, evidence of catastrophic forgetting due to a
distributional shift, as well as the effectiveness of staged adaptation. Specifically, Stage
1 plays a critical role in mitigating forgetting by adapting only low-level representations
using a re-warmed learning rate, while keeping the Transformer encoder frozen. This
controlled adaptation sets the stage for smoother full-parameter training in Stage 2, where
a decayed learning rate promotes more stable optimization. The initial drop in Stage
1 is partially alleviated by Western replay, i.e., injecting training data resembling the
original pre-training distribution of MERT-v1. As shown in Table 4.3, this two-stage setup,
particularly when Western replay is restricted to Stage 1, yields the best trade-off between

cultural adaptation and knowledge retention.
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Figure 4.8. Catastrophic Forgetting on the MTAT Dataset. ROC-AUC perfor-
mance during two-stage continual pre-training shows an initial drop in Stage 1, followed
by recovery in Stage 2. This demonstrates how staged adaptation with learning rate re-
warming and Western replay (20%) mitigates catastrophic forgetting.

4.6.2 Cross-Cultural Adaptation Effectiveness

We observe that naively continuing pre-training with the reduced learning rate from the
original pre-trained model (i.e., without re-warming) fails to adapt effectively to different
cultures, as the pre-trained representations are not sufficiently shifted. This is evident in
the Turkish-makam case, where single-stage CPT without learning rate re-warming yields
no performance improvement. Applying re-warming in the single-stage setup results in
minor adaptation gains (+0.8%), but this comes at the expense of substantial forgetting
on the MTAT task (—3.6%), even when Western replay (20%) is included. In contrast, the
two-stage CPT strategy achieves significantly greater adaptation (4+6.4%) while minimizing
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forgetting (—0.4%), highlighting its effectiveness in balancing plasticity and stability. Fi-
nally, we examine the role of Western data replay as a mechanism for mitigating forgetting.
While incorporating Western data helps preserve performance on MTAT, it introduces a
stability—plasticity trade-off: excessive replay can inhibit effective cultural adaptation. Our
results (Table 4.3) suggest that restricting replay to Stage 1 offers the best overall balance

between knowledge retention and effective adaptation.

CPT Strategy ‘ Western Replay ‘ Turkish-makam MTAT
MERT-v1 (Baseline) ‘ - ‘ 83.2 89.6

Single-stage (w/ re-warming) v 83.8 86.0

Single-stage (w/o re-warming) v 83.0 87.5

Two-stage (Ours) Stage 1 89.6 89.2
88.6 89.4

Two-stage (Ours) Both stages

Table 4.3. CPT Strategy Comparison. ROC-AUC scores on Turkish-makam and
MTAT datasets. Two-stage CPT outperforms single-stage adaptation, with Western replay
limited to Stage 1 yielding the best trade-off between cultural adaptation and knowledge
retention. All CPT setups involving Western replay sample 20% of the total training data
from the Music4All dataset [7].

To further compare in-depth the two-stage approach versus single-stage full-parameter
adaptation, we examine the training loss dynamics during CPT.

Musical MLM loss. Figure 4.10 shows the musical CQT MLM loss curves across
different cultural adaptations and CPT strategies. Subfigure 4.10b compares two-stage and
single-stage CP'T on the multi-cultural dataset. The two-stage strategy consistently con-
verges to a lower loss and demonstrates substantially less variance throughout training. In
contrast, single-stage CP'T exhibits noisier optimization dynamics, with slower convergence
and a higher final loss. These observations support our hypothesis that Stage 1 enables
smoother adaptation by first calibrating lower-level features to new data. This stage likely
reduces representational shock, facilitating more stable and effective full-parameter train-
ing in Stage 2. In Subfigure 4.10a, we observe that convergence behavior varies across
musical cultures: CarnaticMERT and LyraMERT reach the lowest final loss, followed by
HindustaniMERT and MakamMERT. This variation suggests varying degrees of alignment be-
tween the original pre-trained model and each target cultural distribution. Notably, Greek
and South Indian traditions appear more aligned, possibly due to greater overlap in pitch
structure or spectral content as captured by the CQT representation.

Acoustic MLM loss. Figure 4.11 presents the corresponding results for acoustic
MLM loss. Once again, two-stage CPT outperforms the single-stage baseline in both
convergence speed and final loss values. Interestingly, the breakdown by codebook in
Figure 4.11a reveals that codebooks 0-2, particularly codebook 0, consistently reach lower
loss values, whereas deeper codebooks (e.g., codebooks 6 and 7) plateau at significantly
higher levels. Since we use a pre-trained EnCodec tokenizer to discretize each waveform

into eight parallel streams of quantized indices, one per residual codebook, these trends
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reflect the relative predictability of each token stream. More specifically, the results suggest
that tokens from later codebooks are far less predictable. This observation aligns with the
structure of residual vector quantization. Lower codebooks capture coarse-grained acoustic
features such as pitch and broad timbral envelopes, as well as rich semantic information like
melody and vocal content [133]. In contrast, higher codebooks encode fine-grained, high-
frequency residuals that are more variable [183|. These deep codebook tokens exhibit higher
entropy and lower contextual redundancy, making them harder to model under a masked
language modeling (MLM) objective. Moreover, since acoustic MLM loss is computed
independently for each codebook and summed to obtain the final loss, this hierarchy in
representational difficulty becomes particularly evident. This behavior was also reflected in
preliminary experiments, where training with only the first four codebooks (codebook 0-3)
yielded nearly identical downstream performance. This further motivated our exploration
of using only four randomly selected codebooks per batch during multi-cultural continual
pre-training (Table 4.4). Despite the reduced supervision signal per batch, this variant

achieves comparable downstream performance with lower GPU memory utilization.

In-Batch

Noise Mixt ‘ Acoustic ‘ Turkish-makam
glseb bl); ure Target Class
robability \ \ ROC-AUC AP
0.5 1024 x & &l codebooks 89.55 60.62
X 1024 x 8 all codebooks 88.71 59.54
0.5 1024 x 4 random codebooks 88.45 59.24
X 1024 x 4 random codebooks 88.14 58.31

Table 4.4. Mizup Augmentation and Codebook Usage Ablation. This ablation
study examines the effect of in-batch noise mixture augmentation and acoustic target class
selection during multi-cultural continual pre-training, evaluated on the Turkish-makam
auto-tagging task. Using a 0.5 probability for mizup consistently improves performance.
Sampling four randomly selected codebooks per batch (instead of predicting targets from
all 8 codebooks) offers a more memory-efficient alternative with only minor performance
degradation, albeit with slower convergence [1] due to reduced supervision per update step.

We also explore the impact of in-batch noise mixture augmentation introduced
in the original MERT framework, which adds short, randomly selected audio segments
from the same batch to the input waveform with a fixed probability. This augmentation
encourages the model to learn robust, invariant representations by exposing it to perturbed
inputs during pre-training. In our multi-cultural continual pre-training setting, we apply
this augmentation with a 0.5 probability and observe consistent gains across downstream
tasks (see Table 4.4). We hypothesize the mixup acts as a regularizer that enhances gen-
eralization, especially when learning from diverse cultural audio sources in multi-cultural

pre-training.
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4.6.3 Training Stability

We finally examine training stability by analyzing the gradient norm during continual
pre-training. As shown in Figure 4.9, the two-stage CPT strategy exhibits significantly
more stable gradient dynamics compared to the single-stage variant. In the multi-cultural
adaptation setup, Stage 1 rapidly stabilizes gradients at low magnitudes, which enables
Stage 2 to proceed with smoother full-parameter updates. In contrast, single-stage CPT
displays sharp oscillations and frequent gradient spikes, particularly during the early stages
of training. This instability often results in gradient explosions, which in turn cause fre-

quent crashes and degraded convergence.

Gradient Norm
— CPT Stage 2 CPT Stage1 = Single-stage CPT
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Figure 4.9. Gradient Norm Comparison: Two-stage vs. Single-stage CPT.
The two-stage CPT strategy stabilizes gradient updates more effectively, maintaining con-
sistently lower and smoother gradient norms throughout training. In contrast, single-stage
CPT exhibits sharp oscillations and occasional spikes, indicating unstable optimization and
potential gradient explosions that can lead to training crashes.

Overall, our proposed two-stage training strategy with re-warmed learning rates proves
crucial in our setting for maintaining training stability when adapting to culturally diverse

data distributions, without exhibiting forgetting.
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CQT Music MLM Loss
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(a) Musical MLM Loss Across Cultures. CQT reconstruction loss curves during two-stage
CPT (Stage 2) across different single-culture adaptations. Convergence behavior varies by dataset,
with Carnatic and Lyra achieving the lowest final loss.

CQT Music MLM Loss
— CPT Stage2 = CPTStagel = Single-stage CPT
0.7 |

0.6 h
0.5
0.4

0.3

0.2

0.1 Step

5k 10k 15k

(b) Two-stage vs. Single-stage Multi-Cultural CPT. The two-stage ap-
proach achieves lower and more stable loss due to the initial Stage 1 stabilization
phase, which enables smoother full-parameter training in Stage 2. In contrast, full-
parameter adaptation at once exhibits greater fluctuations and higher final loss, in-
dicating less stable convergence.

Figure 4.10. Musical MLM Loss During Continual Pre-Training. Subfigure (a)
shows loss curves for two-stage CPT across different cultures, while (b) compares overall
training dynamics between single-stage and two-stage CPT on the multi-cultural dataset.
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Acoustic MLM Loss per Codebook
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(a) Acoustic MLM Loss per Codebook. Loss curves for individual codebooks
reveal varying convergence behavior in multi-cultural CPT, with earlier codebooks
(e.g., codebooks 0-2) achieving lower losses, while deeper codebooks (e.g., codebooks
6 and 7) plateau at higher values, indicating greater modeling difficulty.
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(b) Two-stage vs. Single-stage Multi- Cultural CPT. The second stage in the
two-stage approach enables further loss reduction, as Stage 1 calibrates representa-
tions for smoother initialization. In contrast, single-stage adaptation exhibits higher
final loss and slower convergence.

Figure 4.11. Acoustic MLM Loss During Continual Pre-Training. Subfigure (a)
illustrates loss behavior across individual EnCodec codebooks, while (b) compares overall
training dynamics between single-stage and two-stage CPT on the multi-cultural dataset.
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Conclusions, Limitations, and Future Work

5.1 Conclusions

In this thesis, we explore cross-cultural music representation learning and introduce
CultureMERT-95M, a multi-culturally adapted foundation model developed via continual
pre-training (CPT) on diverse non-Western musical traditions. We propose a two-stage
CPT strategy that incorporates learning rate re-warming and staged adaptation, en-
abling stable training under limited computational resources. Our results demonstrate
that CultureMERT consistently outperforms the initial pre-trained MERT-95M model across
diverse non-Western music tagging tasks, surpassing previously reported state-of-the-art,
while preserving performance on "Western"-centric benchmarks.

We further examine how models adapted to specific cultural datasets perform and
transfer to other cultural domains. Interestingly, cross-cultural evaluation reveals that
transferability varies across musical traditions and aligns with known theoretical similari-
ties from ethnomusicology, offering a novel computational perspective on cultural relation-
ships. Notably, these results correlate with token-level similarity metrics between cultural
datasets, such as Jensen-Shannon divergence and cosine distance computed over acoustic
token distributions extracted from the EnCodec codec model, suggesting that such metrics
can predict positive cross-cultural transfer, in line with findings from prior work in text
and speech domains. These similarity metrics may also serve as heuristics for refining the
composition of pre-training data in continual pre-training, tailored to the target evaluation
task or cultural context.

Continual pre-training on a culturally diverse dataset comprising all studied non-
Western traditions (i.e., CultureMERT) consistently yields the best overall performance,
enhancing cross-cultural generalization compared to single-culture adaptations. Addition-
ally, we investigate task arithmetic, which offers a strong alternative to multi-cultural
CPT, effectively merging culturally specialized models, obtained via single-culture contin-
ual pre-training, in weight space and mitigating catastrophic forgetting. Task arithmetic,
CultureMERT-TA, performs on par with CultureMERT on non-Western tasks, while also
demonstrating strong performance on Western datasets, interestingly even surpassing the
original pre-trained model in some cases.

Overall, this investigation contributes to the development of culturally aware founda-

tion models for music and is, to our knowledge, the first to apply and validate continual
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pre-training and model merging techniques—originally introduced in other domains—in
the context of music audio representation learning, paving the way toward universal mu-
sic representations. Our study aligns with the broader goal of creating computational
methods that respect cultural diversity and ethical considerations, while offering a lens
for comparison and knowledge transfer across world music traditions. Finally, this work
lays a foundation for future cross-cultural MIR research, encouraging the development of

inclusive foundation models that generalize across underrepresented musical traditions.

5.2 Limitations

5.2.1 Model and Scaling Considerations

While our exploration shows promising results, several limitations remain. The MERT
model relies on the frozen EnCodec audio tokenizer for its self-supervised acoustic MLM
pre-training, which is trained on Western music, making it potentially suboptimal for
encoding culturally diverse musical languages. This limitation could affect the represen-
tational granularity for non-Western traditions, motivating future work on adapting or
re-training audio tokenizers to better align with cultural diversity. Furthermore, we pro-
pose a computationally efficient two-stage continual pre-training strategy. However, while
effective and crucial under constrained resources, future work could explore whether such
staged adaptation remains necessary when scaling to larger computational budgets (e.g.,
increased batch sizes) or model sizes. Additionally, our continual pre-training strategy is
specifically tailored to the MERT architecture, and future work should explore extending
and applying the proposed two-stage CPT framework to other foundation models for music.
This study also did not explore the effects of pre-training with more extensive datasets; a
more fine-grained investigation into the impact of data volume, increased context lengths,
and scaling model size (e.g., using the 330M MERT variant), could yield deeper insights
into data—model trade-offs. Following [1], the input context length during pre-training was
limited to 5 seconds, constraining the model’s ability to capture the long-range dependen-
cies inherent in music signals. This limitation may hinder performance on tasks requiring
extended musical context (for example, music structure analysis), highlighting the need for
future research into long-sequence modeling in FMs. Moreover, examining the impact of
cultural composition in the pre-training data, such as training on specific subsets of musical
traditions (e.g., Carnatic-Hindustani data mix), would help clarify how different cultural
combinations influence transferability and performance in cross-cultural adaptation. An-
alyzing transfer behavior and synergy among cultural pairs, especially in relation to the
token-level similarity metrics we examined, could illuminate which traditions benefit most
from co-training, particularly in low-resource settings where underrepresented traditions

may gain from leveraging culturally related data.

5.2.2 Datasets and Evaluation

Our investigation focuses on four non-Western musical traditions, Carnatic, Hindus-

tani, Turkish-makam, and Greek folk, leaving other genres within the CompMusic Corpora
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[184, 62], such as Beijing Opera and Andalusi classical music, unexplored. Furthermore,
our evaluation is limited to sequence-level tasks, focusing specifically on the music auto-
matic tagging task. However, many MIR applications require predictions at finer (e.g.,
frame-level) temporal resolutions. In this context, robust foundation models for music
should also demonstrate strong capabilities in token-level classification tasks [19], such as
beat/downbeat tracking, structure analysis, and chord recognition, which also typically re-
quire modeling longer-term temporal contexts. For non-Western traditions, several existing
CompMusic datasets offer opportunities for such evaluations: the Carnatic Music Rhythm
Dataset and Hindustani Music Rhythm Dataset include time-aligned taala and taal cy-
cle markers, respectively, which are useful for rhythm analysis; the Mridangam Stroke
Dataset provides individual percussive stroke recordings suitable for stroke classification
tasks; the Tabla Solo Dataset offers time-aligned syllabic scores and audio recordings of
solo performances, facilitating studies in syllabic percussion patterns and structural seg-
mentation; and the Turkish Makam Melodic Phrase Dataset and Annotated Jingju Arias
Dataset contain structural phrase-level annotations for segmentation and phrase boundary
detection. Additional culturally diverse datasets reviewed in Section 2.4, including those
from Chinese, Persian, African, and other musical traditions, present further opportunities
for expanding cross-cultural evaluation. Collectively, these resources open up promising
directions for extending foundation model evaluation beyond tagging in culturally diverse
settings.

It is also important to acknowledge that evaluation practices in MIR have been criticized
for inconsistencies in experimental protocols, data leakage, and weak construct validity, fac-
tors that can undermine the generalizability and interpretability of models’ performance
[151]. In particular, data leakage can significantly impact a model’s performance by ar-
tificially inflating its evaluation results. While we follow standard evaluation protocols
by adhering to dataset-provided train/test splits for continual pre-training and probing,
recent work on transfer learning has shown that subtle forms of data leakage may still
arise even under seemingly valid partitioning strategies [152]. For example, overlaps in
musical artists, recording conditions, or culturally specific instrumentation between train-
ing and evaluation domains may unintentionally introduce spurious correlations, leading
to shortcut learning [185]. As such, exploring more robust evaluation designs that avoid
any cross-contamination between training and testing domains remains an important open

challenge.

5.2.3 Cultural Framing and Interpretive Scope

We acknowledge the limitations of framing music within a "Western" versus "non-
Western" dichotomy. While such terminology is commonly used in computational research
for convenience, it risks oversimplifying the diversity of musical traditions. The concept
of "non-Western" inherently groups together vastly different cultures, where categorizing
"Western" music as a singular entity neglects its own internal diversity. Musical cultures
exist on a continuum shaped by historical exchanges and regional adaptations rather than

strict geographical divisions, and such classifications should be interpreted with caution.
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Additionally, this work does not aim to establish or analyze cross-cultural similarities from
an ethnomusicological perspective. Computational approaches inherently operate within
a data-driven framework and are not explicitly informed by the historical, theoretical, or
cultural knowledge embedded in the studied traditions. Nevertheless, our study may offer
a novel lens on cross-cultural transfer patterns that emerge directly from the data through
deep learning methods, contributing also to the development of more robust and culturally
aware computational models for music. Moreover, our analysis on cross-cultural transfer-
ability should be considered in light of potential limitations in the representativeness and
coverage of the datasets used. For example, as highlighted by [186], the datasets used in
this thesis for Carnatic and Hindustani music may lack crucial aspects of these traditions,
including instrumental compositions, improvisational elements, and performance context,

leading to an incomplete representation in computational studies.

5.3 Future Work

Several interesting avenues for future research and potential extensions of this work
can be identified:

e Scale up to more cultures, more data, and larger models (MERT-330M large).
Experiment with other model architectures beyond MERT, for example, MusicFM
[19], MuQ [100], SoniDo [101], and YuE [133]. Conduct more ablations and explore

scaling laws in music audio foundation models.

e Train from scratch multicultural foundation models for music by exploring large-
scale pre-training strategies across diverse musical traditions, and compare their per-
formance to continual pre-training and model merging approaches. Future work
should also examine how cultural selection and data mixture proportions during
(continual) pre-training influence downstream generalization, akin to recent work in
cross-lingual transfer [97, 98, 172]. This includes analyzing cross-cultural trans-
fer dynamics at scale and identifying potential “super-donor” and “super-recipient”

musical traditions that consistently enhance or benefit from transfer.

e Evaluate culturally adapted models beyond sequence-level tasks, such as music auto-
tagging. Extend to token-level tasks (e.g., beat tracking, source separation) and
multimodal tasks (e.g., music-language models such as MusiLingo [102]|, LLark
[134], and CLaMP 3 [71]) in zero-shot settings and culturally diverse contexts. A
promising direction is to construct a joint music—text embedding model using our
culturally adapted music encoders as audio backbones, fine-tuned via contrastive
learning in the style of MuLan [95]. Replacing the frozen MERT audio encoder in
frameworks like CLaMP 3 with CultureMERT could improve generalization to under-
represented musical cultures. Such models could support zero-shot cultural music un-
derstanding tasks such as culturally informed captioning, retrieval, and cross-modal
tagging. Moreover, they would advance interpretability and open new directions for

cross-cultural music-language alignment. Additionally, since the use of pre-trained
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encoders is common in modern generative models, CultureMERT could also serve as

a conditioning audio encoder in generative frameworks such as MusicGen or SoniDo.

Future work could explore parameter-efficient fine-tuning (PEFT) techniques
(e.g., adapter-based methods such as LoRA [187]) as lightweight alternatives to
full-parameter adaptation in CPT, or as complementary approaches, particularly
for supervised fine-tuning (SFT) after the CPT phase, instead of relying solely on
probing-based evaluation [188]. In this context, few-shot and low-resource setups
could be further investigated through multi-label few-shot learning approaches, such
as "LC-Protonets" [79], which has demonstrated strong performance under chal-
lenging evaluation settings on low-resource world music tagging tasks. Additionally,
future work could explore mixed-objective training strategies that combine self-
supervised learning and supervised fine-tuning in a joint multi-task learning frame-
work, similar to the M2DS2 [189] and UDALM [190] approaches proposed in the

speech and text domains.

Adapt existing audio tokenizers to non-Western music. Current models (for exam-
ple, EnCodec used in this study, DAC [120]) are trained on Western data, which may
limit their effectiveness in encoding culturally diverse musical languages, especially
when integrated into model architectures as audio tokenizers [144, 191, 58, 131], or
as acoustic teachers [1, 192]. Recently, UniCodec [193] introduced a single-domain-
adaptive codebook and domain Mixture-of-Experts strategy to unify audio modeling
across speech, music, and environmental sound, representing a promising direction

for culturally adaptive tokenization.

Explore different music teachers for self-supervision: The current 336-bin CQT
reconstruction loss with 48 bins/octave encodes Western assumptions like octave
equivalence and equal temperament, which may bias self-supervision against non-
Western traditions with microtonality or unequal tuning. Future work could explore
culturally appropriate alternatives such as trainable filterbanks [194], non-stationary
Gabor transforms with variable resolution [195], or data-driven frequency scales de-
rived from pitch distributions in each culture [196], to provide richer and less biased

supervisory signals for cross-cultural music representation learning.

Current audio tokenization schemes (e.g., NACs such as EnCodec [2], or wav2vec2-
style feature extractors [1]) tokenize audio into fixed-length frames (e.g., 13.3 ms per
token at a 75 Hz frame rate), imposing a uniform temporal resolution that may
fail to capture the adaptive timing structures characteristic of many musical tradi-
tions. This rigidity is particularly limiting in expressive performance styles involving
tempo rubato, improvisation, or free rhythm, especially in non-Western traditions,
where timing naturally deviates from a strict metrical grid. Moreover, fixed-rate to-
kenization can over-segment "musically predictable" or slow-evolving passages (e.g.,
a sustained tone or steady rhythmic pulse), while lacking the flexibility to compress
or expand time dynamically based on musical content, thereby introducing unnec-

essary computational overhead in regions with low information density. Many music
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traditions also differ in their temporal structure and rhythmic granularity, further
motivating the need for adaptive tokenization strategies. An interesting and novel
research direction would be to adapt the Byte Latent Transformer (BLT) [197]
to music, enabling variable-length adaptive music tokenization with entropy patch-
ing. BLT could allow models to allocate more attention to complex or unpredictable
musical segments (e.g., ornaments, modulations), better handling regions of different
information densities, and improving representation fidelity. Moreover, it could
learn variable-length patterns specific to each tradition and avoid fixed-token biases
from Western-trained audio tokenizers. Finally, BLT’s representation may be more
interpretable in terms of musical structure compared to low-level acoustic tokens.
This interpretability could be explored by analyzing whether the model’s learned
patch boundaries align with known musical event boundaries, such as phrase transi-
tions, onsets, or changes in instrumentation or harmony. Such an architecture could

be adapted and utilized for both music understanding tasks and generation.

Investigate advanced model merging techniques and task arithmetic variants that
address task conflicts and parameter interference (e.g., AdaMerging [6], TIES [177],
DELLA [198|, CART [111|, AWD [176], Adaptive Projective Gradient Descent [199],
OPCM [200], TSV-Merge [201], AdaRank [202]) to combine specialized models more
effectively. These methods utilize adaptive, task- and layer-wise scaling fac-
tors for task arithmetic, rather than a fixed global A, whose selection is often sen-
sitive—as demonstrated in our findings—thus better managing merging conflicts.
Additionally, they incorporate techniques such as pruning, orthogonalization and
disentanglement, and low-rank subspace methods to mitigate parameter interference
and improve multi-task compatibility. These techniques could also be applied to
merge models trained on different music understanding tasks (for example, combin-

ing beat tracking and music auto-tagging expert models).

Explore dynamic data mixtures during continual pre-training (e.g., DoGE [203],
DoReMi [204], RegMix [205], D-CPT [206]) to balance domain influence. Addition-
ally, compare multi-cultural CPT with curriculum/incremental learning strate-
gies |31] progressively adapting the model to different musical cultures (e.g., Lyra
— Hindustani — Carnatic — ...). In such staged settings, infinite or meta
learning rate schedules [31] could be employed to improve training stability and
reduce unwanted forgetting. Moreover, curriculum-based CPT could be evaluated
against model merging approaches, such as task arithmetic explored in this the-
sis, which in general eliminate the need for multiple adaptation steps [207], or hy-
brid approaches such as MagMax [208], BECAME [209], and Branch-and-Merge
[210], which combine sequential adaptation with model merging to consolidate cross-

cultural knowledge more effectively and mitigate catastrophic forgetting.

Extend to training and adaptation of music generation models [58, 3, 101, 133]
and explore the applicability of our paradigm in the context of multimodal models

(e.g., music-language models) in cross-cultural settings.
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e Despite their effectiveness, foundation models for music often function as black boxes.

However, interpretability is essential for fair, ethical, and trustworthy Al, especially
in cultural contexts. As shown in Section 4.5, we observed that different transformer
layers in CultureMERT yielded the best results when evaluated via probing on music
tagging tasks across different musical cultures, suggesting that culturally relevant
information may be encoded at varying depths within the adapted multi-cultural
model. Possible research directions on the interpretability of music FMs include
using probing classifiers and intervention techniques [211], saliency maps, attention
analysis, and clustering learned embeddings (e.g., by abstract cross-cultural musi-
cal concepts, or culture-specific elements). Furthermore, recently, [212] proposed
transforming CLAP audio embeddings into sparse, concept-based representations
aligned with human-interpretable audio concepts, shown to retain or even improv-
ing performance on downstream tasks. Applying similar post-hoc transformations to
CultureMERT could provide insight into how cultural information is semantically en-
coded and which interpretable dimensions drive predictions across musical traditions.
Moreover, exploring explainable AI (XAI) techniques tailored to the music do-
main, such as counterfactual explanations (audio-level, latent-space, or generative),
could further enhance our understanding of these models and make Al decisions more

transparent and aligned with human musical understanding [158|.
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Ethics Statement and Responsible Use

Careful consideration is advised before deploying the models developed and presented in
this work in real-world contexts, as they may still reflect cultural and dataset-specific biases.
Some of the datasets used are not publicly available and were accessed under research-
use agreements. Any released models should not be used for commercial or generative
applications without explicit attention to cultural representation, appropriate licensing,

and the consent of the relevant communities or dataset curators.






Appendices

101






Appendix

Training and Evaluation Settings for MERT-v1-95M

This appendix details the training settings and hyperparameters used for training the
MERT-v1-95M model, as well as the downstream evaluation on music auto-tagging tasks
under the MARBLE constrained protocol.

A.1 Training Settings
The core settings for training MERT-v1-95M are summarized as follows:

e Audio sampling rate: 24 kHz
e Input segment length: 5 seconds, randomly cropped during training

e Feature extractor: 7-layer 1D CNN with GELU activations and GroupNorm in
the first layer; no internal dropout. Architecture: [(512,10,5)] + [(512,3,2)|x4 +
[(512,2,2)]x2, producing frame-level representations at 75 Hz

e Transformer encoder: 12-layer Transformer with 768-dimensional embeddings, 12

attention heads, and 3072-dimensional feed-forward layers

e Projection layers: CNN outputs are projected to the transformer input dimension
(768) via a linear layer; transformer outputs are projected to a 64-dimensional space
to match the dimensionality of codeword embeddings; separate final projections are

used for each codebook

e Positional embeddings: One convolutional positional embedding layer with 128

filters and 16 groups

e Masking: Random masking applied at the frame level (after the CNN feature ex-
tractor), with 80% probability and a mask length of 5 frames; loss is computed only

on masked frames

e CQT prediction: Auxiliary objective to predict CQT spectrograms with 336 bins

from masked frames

e Gradient scaling: Feature extractor gradients are scaled by a factor of 0.1 during

training
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e Dropout settings: 0.1 for input, features, encoder layers, and attention modules;

0.0 for activation; encoder layerdrop probability is set to 0.05.

e Codebook usage: All 8 codebooks are jointly predicted during masked prediction,
instead of randomly accessing a subset of codebooks per batch, leading to faster con-
vergence. An ablation on random 4-codebook sampling is presented in Section 4.6.2
(Table 4.4).

e Temperature scaling: Fixed at 0.1 for contrastive prediction loss

e Data augmentation: In-batch noise mixture augmentation applied with probabil-
ity 0.5

A.2 Evaluation Settings

Evaluation follows the MARBLE probing-based constrained protocol: backbone mod-
els are frozen, probing heads are shallow (single-layer MLP), and hyperparameters are
selected from a restricted grid search space. Performance on auto-tagging tasks is mea-
sured using macro-averaged ROC-AUC, mean Average Precision (mAP), Micro-F1, and

Macro-F1 scores. The detailed evaluation settings are:

e Classifier: Single-layer MLP with 512 hidden units and ReLU activation, trained

on top of frozen MERT representations

e Backbone feature extraction: Task-specific selection of either a single transformer
layer or a learnable weighted sum over all layers (see Section 4.5 for details and

discussion on task-specific feature selection)
e Batch size: 64
e Learning rate: Chosen per task from {5e-5, le-4, 5e-4, le-3, 5e-3, le-2}
e Dropout probability: 0.2
e Optimizer: Adam [213] with default parameters (51 = 0.9, 32 = 0.999, ¢ = 1079)

e Learning rate scheduler: ReduceLROnPlateau, with patience typically set to 3
epochs (task-specific)

e Early stopping: Enabled, with patience typically set to 10 epochs (task-specific)

e Training epochs: Up to 100

Hyperparameters and training strategies that are explicitly discussed in Section 3 (e.g.,
optimizer settings and learning rate schedules during continual pre-training) are not re-

peated here for brevity.
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