EoNIKO METTYOBIO ITOATTEXNEIO

Y XOAH HAEKTPOAOION MHXANIKON KAI MHXANIKON YIIOAOTIETON
ToMEAT EMKOINONION, HAEKTPONIKHY KAI XYSTHMATON IIAHPO®OPIKHE
EPrAsTHPIO AIKTTON ENIKOINONIAY YWHAHS TAXYTHTAS

Deep Reinforcement Learning Mechanisms for Efficient
Dynamic Resource Management in Cloud-Native
Applications

DIPLOMA THESIS
by

Georgios Baris

Supervisor: EMMANOUEL VARVARIGOS
Professor NTUA

Athens, June 2025

P2
55

Edvixé Metodfio Ilohuteyvelo

Yyon| Hhextpohdywv Mryavixddv xan Mnyoavixodv Troloylotdv

Toyéac Emxoivwvidv, Hiextpovuric xan Yuotnudtwy IIAnpogpopuxic
Eeyoaotipto Auxtbwy Emowvewviag Ydming Toydtntog

9
=
AR WL
< Sm e
NI
v HE

¢
1 $=?
r

Deep Reinforcement Learning Mechanisms for Efficient
Dynamic Resource Management in Cloud-Native
Applications

DIPLOMA THESIS
by

Georgios Baris

Supervisor: EMMANOUEL VARVARIGOS
Professor E.M.II.

Approved by the three-member examination committee on 27" June, 2025.

EMMANOUEL VARVARIGOS
Professor NTUA

THEODORA VARVARIGOU
Professor NTUA

HERCULES AVRAMOPOULOS
Professor NTUA

Athens, June 2025

T'EoPrioxr MIIAPHX
Amhopotovyoc Hhextpordyoc Mryovinde
xaw Mnyovixog Trohoyiotov E.M.IIL

Copyright (©) — All rights reserved Georgios Baris, 2025.
Me em@OIaEn TOVTOS BLXAUDOUATOC.

Arnayopebeton n aviypagt, anodrixeuon xou Slovopr] Tne tapovoag epyactag, €€ oAoxhipou Y TUAUITOS AUTAS, Yid
eunopd oxond. Emtpéneton 1 avatinwot), amodixeuct) xou Siovour| Yol oxomd U xepdooxomuxd, EXTOUEVTIXAC
1) EEELYNTXAC PUOTC, UTO TNY TEoUTOVEST Vo avapépeTal 1) TYY) TPOEAEUOTC %ol VL BLTNEELTOL TO THPOV UAVUUAL.
Epwtiuata mou agopolv 1t yerion tne epyaociog yio xepdooxomxd oxond npénel vo aneudivoviol Teog Tov
CLUYYPAPEA.

Ou amderc xa o CUUTEPAOUATO TTOU TEPLEYOVTOL GE AUTO TO EYYRUPO EXPRELOUY TOV CUYYEAUPEX Xou EV TRETEL
va epunvevdel 6Tt avuinpoownedouy Ti¢ enionueg Yéocig Tou Edvixod Metodfiou IToduteyvelou.

ITepiindm

Ot untodopéc mou Aettoupyolv oe TepIBAAAOVTA UTOAOYIGTIXOU VEQOUC, Tou Yapaxtneilovtal and Tov ETEPOYEVY
pbpTo pyaciog Toug, BETOLY CNUAVTIXES TPOXANCELS GTNY ATOTEAEGUATIXT| SLOYElPLOT TV UTOAOYIOTIXGY TOEWY
oe SlapopeTind TepBdihovta extéleong. Xe auth T dimhwuatr, tpotelvouue éva mAalolo 800 oTadlwy Tou
ouvdudlel v mpdPiedn pbdptou epyooiuc pe yeron Badidc uddnone pe ty Badid evioyutixd péddnon (DRL)
yioe TV €Eumvn xatavopn tépwy oe lepoapynd cuoTtiuato edge-cloud.

Xy medTn Aoy, YENOWOTOLOUVTOL HOVTENX VEUPWVIXADY BixTOWY —ouyxexpiéva apyttextovixée Moxpdc
BpayUypovne Mvfun (LSTM) xou Transformer—rta onoio exmoudedovtan oto olvoro dedopévwy Alibaba Cloud
Trace yio v mpdBredn pehhovtixol @bptou epyaotdyv. Hewpopoatixés cuyxploeic Bdoel petpindy ToAwvdpdunong
(RMSE, MAE, xa R?) delyvouv 61t to povtého Transformer uneptepetl otadepd tou LSTM w¢ mpoc tnv
axpifelo xou Th ypovixd ouvénelo. Me oxpifela ntpdBiedmne R? = 0.850 xou ehdytotn doxdpovon uetoll dlapope-
TIX®V ouvinxey doxiunc, to Transformer avodewvieton wg toyupd epyareto. To Sevtepo 6TddIO BlatuTDVEL TO
TEOBANUa xatavourc Tépwy v ddxacia andgouone Markov (MDP) xou eqapudler Deep Q-Network (DQN)
v vo uddel BEATIOTOTOMNUEVES TOMTIXES XATAVOURC Topwy. To mpooapuoouévo mep3dAlov mpocopoiwong,
mou €xel dnuovpyniel yenowonowdvtag to Gymnasium xaw to Ray RLIlib, anotunover tnv mohumhoxdtnta
NG TRAYUATIXNE UToBoPNG Ue cuvduaopod near edge, far edge xou cloud unodouwyv, to xadéva pe Eeywpiotd
Yopaxtnelo ixd xaduotéenong, xéctoug xou evépyetag. To mepiBdAiov Aopfdver unddr TNV TEoTEPUOTNTA UE
Bdon v avoyn oty xotuctépnor mou €yel 1 xdde eQapUoYY|, TOV TEOYPUUUITIONS UE ETLYVWOoY TWV TEo-
TEPAOTATWY o Tot duvoxd potiBa dpiEne epyaoiog. Ia vo Slacpahiotel 1 enexTacUOTNTA KoL 0 PEAMCUOC,
TO YOVTéNO eneXTEVETOL TEPAUTEPE OF €Val TEPLBAANOY TOMAATADY TpoxTopwY, 6Tou aveldptntes TOAES dixTOOU
oMNAemBpoly péow xowhg urodourc. H aflohdynom touv cuoctpatog, 1600 Ye TEayUoTiNd 0G0 XaL UE GUV-
Yetnd dedouéva mapayouevo and Transformer, xotadenviel VPNAE TocOGTA emTUYOVC XAUTAVOURC, AUENUEVN
¥eron tev népwv ota eninedo edge, youNA6 UEco x6GTOC avd Epyasia XAl CNUAVTIXY EVERYELNXT| ATOBOTIXOTNTOL.
Toa cuvietnd goptia tou Transformer napovsidlouy xavomomtxs Toldtnta, pe Bertinon e otadepdtnTog
e Tohtixic xotd 20-25% %ot To pEAAlo TIXS YA TNELO TIXd POPTOL OE Gyéon Ue dhhec pedbddouc TopaywyYhe.
Acixteg 6nwg 0 AoYog avtopol3ig Teog X066 Tog Xt 1) avTopol3h avd xihoBatipa emBeBoudvouy TNV gupuY| ol
owxovoulxd anodotr hettoupyio tng npooéyyiong DRL.

YUVohixd, TO TPOTEWVOUEVO GUGTNHHA TUPOUGIALEL T BUVATOTNTA GUVBLACUOU TEOY VWO TIXWY HOVTEAWY xat DRL
v Suryelplon mopwv o TEAYHATIXG YEOVO Ot LTOAOYIGTES eyYevolg Vépouc. To amoteréoyota auTASC NG
gpyooioc unootneilouy Ty avdnTudn EEUTVKV UNYAVIOUMY TOU UTOPOUY Vi LXAVOTIOLACOUV TIG OTOLTHOELS X0
YucTépnong, €160 TOUC XL EVEQYELIS TOV EQPAPUOY V.

A€&eig-xhedid — Badidg Evioyutixr Mddnor, xatavoun ndépwyv, Yroloyiotixd NeEgog,
Aixtua Moaxpds Beaybyxeovne MvAunc(LSTM), Transformer,Xuvothpata IToANamAdv
IMpaxtépwy, Badia Evicoyutixry MdOnor, IIpdéPBAedn @dptouv cpyaciag, Alibaba Cloud
Trace

Abstract

Effectively managing computational resources in modern cloud-native infrastructures is a challenging task
due to their elastic scalability and the heterogeneous nature of their workloads. This thesis introduces a
two-phase framework for intelligent resource allocation in hierarchical edge-cloud systems, integrating deep
reinforcement learning (DRL) with predictive modeling using deep learning techniques.

In the first phase, neural sequence models—specifically Long Short-Term Memory (LSTM) and Transformer
architectures—are trained on the Alibaba Cloud Trace dataset to forecast workload telemetry, such as CPU
utilization, in containerized batch workloads. Experimental comparisons across standard regression metrics
(RMSE, MAE, and R?) consistently show that the Transformer model outperforms LSTM in both accuracy
and temporal consistency. With a forecasting accuracy of R? = 0.850 and minimal variance across test
scenarios, the Transformer demonstrates strong capabilities in capturing complex temporal patterns, making
it highly suitable for proactive autoscaling strategies.

The second phase formulates the resource allocation task as a Markov Decision Process (MDP) and utilizes a
Deep Q-Network (DQN) agent to learn optimal job placement policies. A custom simulation environment—
developed using Gymnasium and Ray RLlib—models real-world infrastructure with near-edge, far-edge, and
cloud clusters, each characterized by unique latency, cost, and energy profiles. The environment incorporates
dynamic job arrivals, priority-aware scheduling, and latency-sensitive reward shaping. To ensure scalabil-
ity and reflect distributed system conditions, the framework is extended into a multi-agent system where
independent gateways operate concurrently over shared infrastructure.

Comprehensive evaluation of the system under both real and Transformer-generated synthetic workloads
demonstrates high allocation success rates, efficient edge resource utilization, low average job cost, and strong
energy performance. Notably, Transformer-generated workloads yield enhanced policy stability (20-25% im-
provement) and more realistic workload characteristics compared to other synthetic generation methods.
Performance indicators such as reward-to-cost ratio and reward-per-kWh validate the economic and opera-
tional advantages of the DRL-based approach under synthetic testing.

Overall, the proposed framework showcases the potential of integrating advanced Transformer-based workload
forecasting with DRL for real-time, adaptive resource management in cloud-native environments. The results
support the development of intelligent autoscaling mechanisms capable of satisfying latency, cost, and energy
requirements in emerging edge-cloud applications through accurate prediction and stable policy execution.

Key-words — Deep Reinforcement Learning, Resource Allocation, Cloud Computing, Edge
Computing, LSTM, Transformer, Multi-Agent Systems, DQN, Workload Forecasting, Alibaba
Cloud Trace

Euyaplotieg

Oa f¥eha va euyoptothow Yepud tov emBAénovta xodnynty povu, x. Eypavouih BagBapiyo, yio tnv euxapia mou
KOV €B0E ot TNV EUTLETOOUVY TOU MOV £0ElEE OTO Vo EXTOVHGW TN SITAWUATIXY (o epyacia oto Epyaothplo
Awxtiwy Enxowvoviog Tdmihe Toydtntae, xadde xou yio tnv tohdturn xadodrynon mou pou mopelye, xotd
Oudipxetal VTS TNG BIMAWUATXNS, ahAd xou épary auTHC. O fieha EMTAEOV VoL EUYUPLOTHCE TOV PETABBAXTOPIXS
epeuvnty) IloAulan Xodunin yio T otev cuvepyaoio yag, tTnv avextiunt Bordea xau 0 cuveyn utooTAEEN
Tov, dlywe TV onolwy 1N exndvnon aUTHC NS Simhwpatxnc dev Yo 0dnyoloe oe auTd TO ANOTEAEGHAL.

Téhog, B€Aw va euyoploTHOW Toug Yoveic pou Xenoto xou ARuntea xododg xon To adEAPLAL Lov, Ywelc auTtole dev
Yo umopovioa vo elyor xatapépel 6o £xw TETUYEL, OTWS ENMLONE %ol TOUS PIAOUC UOU, UE TOUC OTOlOUC TERACUE
aPETENTEC WPEC HEAETNG, oLUTapEdoTaoNG, Slooxédaone xat TaldLdvy, oTiyuéc mou Vo pelvouv avelltnhec ot
wviun pov.

Ileddpyloc Mnapric, IoGviog 2025

11

Contents

Contents
List of Figures

1 Exztetopévn Ilepiindn ota EAANviIxd

1.1 Oewenund TroBodpo oL
1.1.1 Apytextovixd) Edge-Cloud oo
1.1.2 Kotavopd Iépwv (Resource Allocation)
1.1.3 Aixtua Moxpde-BpayUypovne MvAune (LSTM) o ...
1.1.4 Metaoynuoatiotée (Transformers) Lo
1.1.5 Ewioyvuxf Mddnon (Reinforcement Learning)
1.1.6 IIohumpaxtopixd Luothuate (Multi-Agent Systems)
1.2 Bihoypagued Eeeuvar L
1.3 Awtinwon IpoBAfuatog xou Moviehomolnon YUoTAUATOS o v v v v v oo
1.4 TIEpOomol o v v v o
141 30vohot AeBOPEVDY . . . o o L
142 MOVTENL . . .« o v o e e e e
143 TIedUomar . . o v v v o
1.5 BUUREEAOUOTO .« o v v o e
About this thesis
2.1 Motivation and Problem Statement
2.2 Short Description of the Thesis
Background
3.1 Cloud Computing o e e e
3.1.1 Definition L e
3.1.2 Characteristics L e
3.1.3 Evolution e e
3.1.4 Service Models
3.1.5 Advantages e
3.1.6 Challenges e
3.1.7 Edge Computing e
3.1.8 Latency Sensitivity Across Application Domains
3.2 Cloud-Native Applications e
3.2.1 From Monolithic to Cloud-Native Applications
3.2.2 Network Slicing in Cloud-Native Architectures
3.2.3 Container Orchestration
3.2.4 Advantages of Orchestrators
3.3 Internet of Things (ToT) o 0 o i e e
3.3.1 Components of ToT
3.3.2 Communication Models
3.3.3 Impact of IoT oL e

Contents

3.4 Deep Learningo e 57
3.4.1 Deep Learning Architecture oo 58
3.4.2 Recurrent Neural Networks (RNNs) 58
3.4.3 Long Short-Term Memory Networks (LSTM) 59
3.4.4 Transformers e 60

3.5 Reinforcement Learning L L e 61
3.5.1 Reinforcement Learning as a Distinct Machine Learning Category 62
3.5.2 Fundamental Elements of Reinforcement Learning 62
3.5.3 Markov Decision Processes 63
3.5.4 The Reinforcement Learning Cycle 63
3.5 Q-learning 64
3.5.6 Deep Reinforcement Learning L o oo 65
3.5.7 Multi-Agent Systems 66

3.6 Resource Allocation e 66
3.6.1 Necessity of Resource Allocation 66

4 Related Work 69

4.1 Forecasting in Cloud Resource Management 70
4.1.1 Motivation for Forecasting in Cloud Systems 70
4.1.2 Forecasting for Resource Allocation 70
4.1.3 Classical Forecasting Approaches 70
4.1.4 Machine Learning and Deep Learning Models 71

4.2 Resource Allocation Mechanisms L 71
4.2.1 Workload Variability in Resource Allocation 72
4.2.2 Static Resource Allocation Mechanisms 72
4.2.3 Dynamic Resource Allocation Mechanisms 73

5 Problem Formulation and System Model 75

5.1 System Model L e e 76
5.1.1 Hierarchical Multi-Tier Cloud Infrastructure Model 76
5.1.2 System Resource State and Utilization Modeling 7
5.1.3 Job Representation and Characteristics 78
5.1.4 SLA Constraints and Penalty Mechanism 78

5.2 Problem Formulation L e 78
5.2.1 Job Characteristics and Arrival Model L Lo 80
5.2.2 Reward Function Lo 80
5.2.3 Multi-Agent Scheduling Architecture oL oL 83
5.2.4 Implementation Architecture Lo 84

6 Experiments 87

6.1 Preliminaries e e 88
6.1.1 Data Preparation and Cleaning 88
6.1.2 Part 1: Forecasting L 89
6.1.3 Part 2: Resource Allocation: Environment and Training Setup 90
6.1.4 Part 3: Multi-Agent Simulation 93

6.2 Experiment 1: Forecasting Performance: LSTM vs Transformer 94
6.2.1 Selection of Evaluation Metrics oL 94
6.2.2 Comprehensive Evaluation and Insights 95

6.3 Experiment 2: Multi-Agent DQN System Validation and Performance Analysis 96
6.3.1 Experimental Setup L 96
6.3.2 Results and Analysis 97
6.3.3 Discussion and Critical Analysis 100

6.4 Experiment 3: Single-Agent vs Multi-Agent DQN Comparison 100
6.4.1 Experimental Overview and Research Motivation 100
6.4.2 Experimental Configuration and Methodology 101
6.4.3 Performance Analysis and Results L. 101

Contents

6.4.4 Resource Utilization and Efficiency Analysis 102
6.4.5 Economic and Environmental Impact Analysis 103
6.4.6 Scalability and Architecture Implications L 0L 104
6.5 Experiment 4: Multi-Agent DQN Performance with Transformer-Generated Workloads 105
6.5.1 Experimental Overview and Motivation 105
6.5.2 Transformer Prediction Results and Workload Characteristics 105
6.5.3 Performance Analysis L 106
6.5.4 Cost Efficiency 107
6.5.5 CPU Utilization Patterns and Resource Competition 107
6.5.6 Policy Stability Analysis L 107
6.5.7 Conclusions L e 108
Conclusion 109
7.1 Discussion e e 109
7.1.1 Forecasting Model Comparison o 109
7.1.2 Multi-Agent DQN System: Resource Allocation Intelligence 109
7.1.3 Latency, Cost, and Energy Efficiency 110
7.1.4 Robustness and Generalization Under Synthetic Workloads 110
7.2 Future Work e e e 111
Bibliography 113

15

Contents

16

List of Figures

1.4.1 S0yxpon LSTM xou Transformer oe déxa doxipéc. ‘Ave oepd: tée RMSE, MAE, R? avd

enavéindr. Kdtw oelpd: yéon anddoon pe delxteg daxduovong xou avdivon otodepdtnroc. . . . 34
1.4.2 Avéduon xatavourc népwy xau xoduotépnone avd mpotepoudtnra: (a) xatovour avé vrodour,

(b) xoductépnon avd eninedo npotepudTnrac, (C) CUVONXTH XUTAVOUR EPYUOLOY. . . « 34
1.4.3 Xpovinfy e€éhén e yeRone CPU ota tplo eninedo (Near, Far, Cloud). H afionoinon oto

near-edge mopopével otadepr|, eved to cloud yenowonoieiton xuplwg wg buffer.o 35
1.4.4 Katovopy| anoutioewy CPU (opotepd) xou Sidpxetoc (Seid) yio 1o ouvdetind goptio Trans-

former o€ OYEON UE TO OEYIXO. 37
1.4.5 Avéduon avtopoBric xou xaduotéenong (aplotepd) xou motéTnTa NpoTepatoTATWY (Bedld) Yio To

goptio Transformer. 37
1.4.6 A&wonoinon CPU avd eninedo vrodopric xatd v extéleon goptiov Transformer. 38
1.4.7 Buyxpitien cuyvotnTa oAAXY @Y TOMTIXNG YLor opyxd xou ouvietixd goptio Transformer. 38
3.1.1 Edge-Cloud Computing Architecture.. 50

3.2.1 Structural differences between monolithic and cloud-native architectures. In monolithic sys-
tems, components are tightly coupled, relying on a centralized database. Cloud-native systems
utilize a microservices-based architecture with independent services and databases. 53

3.2.2 Kubernetes cluster architecture illustrating the control plane and worker nodes.[71] 54

3.3.1 Illustrates the three-layer architecture of edge computing-based IoT, which consists of three
layers: IoT devices, Edge Computing, and Cloud Computing. All IoT devices are end users
for edge computing. In this architecture, IoT can benefit from both edge computing and
cloud computing, because of the characteristics of the two structures (i.e., high computational
capacity and large storage) 55

3.4.1 A hierarchical representation of Artificial Intelligence, Machine Learning, and Deep Learning. 58

3.4.2 Standard LSTM cell architecture showing the internal gating mechanisms and information

flow. [T4] 60
3.4.3 Architecture of the original Transformer model showing the encoder-decoder structure with

multi-head attention and feed-forward layers. Adapted from Lin et al. [45]. 61
3.5.1 The agent-environment interaction cycle in RL: observation, action selection, feedback, and

policy update [5]. oo 64
4.2.1 Representative patterns of cloud application workloads. Adapted from [23]. 72

5.1.1 Hierarchical Multi-Tier Cloud Infrastructure Model showing the three-tier architecture with
edge devices, gateways, and computational tiers interconnected through network links with
varying latency characteristics. Lo 77
5.2.1 Complete job processing workflow showing job arrival, analysis, queueing, priority-based batch
scheduling, agent decision-making, and reward feedback loop in the multi-tier edge—cloud system. 79
5.2.2 Reward function calculation flow diagram showing the parallel computation of reward compo-
nents, success/failure evaluation, SLA violation checking, and final reward aggregation for job
placement decisions. Lo e e 82

List of Figures

5.2.3 Multi-agent scheduling workflow showing independent agents with local job queues, shared
DQN decision-making, parallel allocation attempts on shared infrastructure, and individual
reward feedback loops. L. e

5.2.4 Multi-agent Kubernetes architecture showing round-robin job distribution from the Alibaba
dataset, independent gateway agents, control plane coordination, and multi-tier node infras-
tructure with varying computational and latency characteristics.

6.1.1 Hierarchical structure of the edge—cloud continuum, illustrating the placement of IoT devices,
near-edge nodes, far-edge clusters, and centralized cloud. This layered architecture underpins
the job placement decisions explored in our environment.

6.2.1 Visual comparison of LSTM and Transformer models across ten independent runs. Top row:
metric trends per run (RMSE, MAE, R?). Bottom row: mean performance with standard
deviation, RMSE distribution, and consistency analysis (coefficient of variation).

6.3.1 Priority-level analysis showing: (a) resource allocation breakdown by cluster, (b) average la-
tency performance by priority, and (¢) overall workload composition.

6.3.2 Temporal evolution of CPU utilization across the three-tier infrastructure: raw utilization
percentages showing volatility patterns L Lo

6.5.1 Comparison of CPU demand (a) and job duration (b) distributions between original and
Transformer-generated workloads.

6.5.2 Performance and priority distribution comparison between original and Transformer-generated
workloads. Left: reward and latency analysis. Right: priority fidelity.

6.5.3 CPU utilization over time under the Transformer-generated workload across all infrastructure
layers. e e

6.5.4 Policy change frequency comparison between original and Transformer-generated workloads. .

18

List of Figures

19

List of Figures

20

Chapter 1

Extetoapevn Ilepiindn oto EAAN VX

21

Chapter 1. Extetopévn Ieptindmn ota EAAnvixd

1.1 Oewentixd YTroBadeo

H porydata avdmtugn cloud-native eqapuoydy xat 1 au&avouevn TOAVTAOXOTNTA TGV UTOROYIOTIXWY CUGTNUATOY
dnpoupyolyv véee Tpoxifioeic ot Suayelpion topwv [6]. O apyitextovinéc edge—cloud enitpénouy Ty extéheon
EPYACIOVY OE JlapopeTind entineda, and xovivois xépPouc (near-edge) éwe anopaxpucuéva data centers (cloud),
omoUTOVTOG Opwe €Uy TEOBAedN Ko M anogdoewy oE TEAYUUTIXG YPOVO.

1.1.1 Apyrtextovixry Edge—Cloud

To unoloywotnd vépog, olugwve pe tov optopd tou NIST [48], npoogéper euéhxtn mpdoPach ot
TUPAUETPOTIOLAOOUS LTOAOYLO TIX00E Tépoug péow Badxtiou. Ilapd T LoyLEES BuVUTOTNTEG TOU, N CUY-
XEVTPWTIXY QUOT, TOU €lodyel xaUOTERNOELS XAl CUUPOENOT), LOLLTERO O EQUPUOYES UE AUCTNEES OMOULTAOELS
andxptone [77]. H opyitextovinf edge computing mpoteiver tn yetagopd e enclepyaoiog TANCIESTERR TNV
YN Twv dedouévev, pewdvovtas) xaductépnon xou auidvovtac Ty anodotixdtnta. O cuvduaoude edge xou
cloud oe LBEWBXS Lovtéda odnyel oe yior molveninedn apyrtextovixt| [14], 1 omola nepthaufBdver Tic TEpUATIXES
ocuoxevéc, toug edge xouPouc xau to cloud. Ot teppatinés cUoxeLES, OTWE XWVNTA TNAEPLVA, auoUNTARES XoL
IoT povddec, emxevtpdvovton xuplte oty cuAAoyY dedouévwy. Ou edge x6pfol, dnwe tomxol servers, routers
%o access points, emtelolv dueon eneepyocio xal TEoowELVY] anodixeucT Twv BeBoUEVeY x0VTd 6To orueio
nopoywyhe toug. To avdtepo eninedo, dnhady to cloud, guholevel xevtpxd data centers e uPmiy vroro-
Yo Tn 1oyl xou yenowonoleltan yior oOVIETY avdALoT), EXTBEUCT) LOVTEAWY Xau doxpoyedvia anodrxeuor. H
eyyOTnTa TV edge xOuBwv oToV YENoTN EMTEETEL THY UTOC THELEY AELTOURYLOY OE TEAYUOTIXO YPOVOo, EVE TO
cloud cuuminedvel Ty urtodoun TapéyovTac BUVITOTNTES HEYAANS XAipaxoc. H ohoxhnpwuévn adlonolnon dhwv
TV eMREdWY eVioy Vel TNV anddoaoT], TEOCTUTEVEL TNV WOLWTIXOTNTY Xl oo T8 TNy apyitextovixy| edge—cloud
XUTAAANAT, Yior TNV VAOTOMOY €EUTTVOV, AMOXEVTPWUEVLV CUCTAUATOV XOU TNV ETEXTUOY TOU OLXOCUC THUNTOS
tou Internet of Things (IoT).

1.1.2 Katavour IIépwv (Resource Allocation)

H xotavour| ndpwv agopd tn Suvopixt| xou anodoTtixy Slavouy| UTOAOYLo TIXGOY TopwY, OTwe eneepyas Txt o0,
RV Xt amoUnXEUTIXOU Y WOEOL, PETAE)D OVTOYWOVIOTIXWY EQUOUOYMY, UTNEECUOY Xl YENOTOV, UE GTOYO TN
BehtioTonoinom e anédoone xou TNy THeNoN TWY anauthoewy totdtntag unneesiog (QoS) [3]. Xe obyypova un-
0MOYLo TS TEPBAAAOVTA, OTOU Ol AMAUTATELS UETUBIAAOVTOL CUVEY OGS, AMOUTOUVTOL EVEALXTES X0l TROCUPUOC TIXES
oTpatnYwEg dayelplong. H nohumhoxotnto augdvetal LBLalTepo G XAUTAVEUNUEVA X0l ETEPOYEVT| GUC THUOTA, HTTOU
oL x0uPoL BlaPEPOLY S TPOG TIE BUVATOTNTES, TNV EVERYELNNXY) SLIEGUOTNTO XU TNV TOTOAOYIXY EYYUTNTO TEOC
Tig TnYéc dedopévwy. H auvgnuévn nopaywyr) dedoyévwy and atotntipes xou IoT cuoxevéc amoutel mpooextiny i-
oy elpLom TWV UTOAOYLO TIXWY QOETIWY, TG SXTLOXNE XUXAOPORLag XaL TNG EVERYELUXHC XaTavdiwang. H avanote-
Aeopater xatavour| Uropel vor 0dnyNoel o cuupoeNoT), xarducTEENON XAl OTUTAAT ToPwY. e uTodouéc edge
xat cloud, n avéyxn yio UV ExyOENCT) EPYACLOY AVEAOYA PE TN YPOVIXY XELOLOTNTO X0l TOUS EVERYELUXOUG
neploplopote xadiotaton xplown. H evowpdtonon suéAxtwy Unyavioumy ETTEETEL TNV GUECT] AVTATOXELOY) OE
petaforéc goptiou, diaopaiilovtoc allomiotio, anddoon xou owxovopio xhyoxas. H edmiwon teyvoloyiwv
onwe o cloud computing, to edge computing xou to IoT evtelvel Ti¢ anathoelc yia eMeXTAOWES X EVEALX-
Te¢ oTpatnyixéc xatavourc. Ou cloud-native egapuoyéc Aettovpyolv oe duvopuxd tepiBdAlovTa Ye ampdBhenta
popTia, evéd ol unodopéc edge meptopilovton and younholc TéEOUS, xahoTWOVTUC ATUEAULTTY TNV WCOPPOTNUEVT
xatovopn petaf cloud, edge xou teppatindy cuoxeuwy. H amodotiny| xatavopn ndépwv cuudiiet oe yelwon tng
xaduc TEPNONG, EVERYELXT| ATOBOTIXOTNTA, ATOPUYT CUUPOENGNS X pelwon xdéotouc. To npdfBinua Bértiotng
xatavouic untd meploplopole Yewpeiton uTtoloyio uxd dvoxoho (NP-complete) xou napouctdlel ouoldTnTeS UE TO
xhaoind npdPinua tou caxdiov (knapsack problem) [41], anoutdvtag TRV aflonoiNom EVGUMY XU TEOCEYYLO-
TIXADY PEVOBWY Lol ATOTEAEGUATIXNY ETUAUGT).

1.1.3 Aixtua Maxpdc-BpayLyeovne MvAung (LSTM)

To dixtuva LSTM (Long Short-Term Memory) amoteholv ot eZelBIXEUUEVT LOPPT AVABPOUIXMY VEVPOVIXWDY
dixtiwy (RNN), oyedaopévn yia va unepvixd tor tpoPiiuata tou avupetonilouvy ta cupPotind RNNs xotd
uddnon paxpompddeouwy egapthoewy o axohouvthoxd dedouéva. Ta xhooixd RNN cuyvd vnogépouy and to
pawvopevo tne eCapdvions B e éxpnine twyv Baduidwy (vanishing/exploding gradients), yeyovée mov Suoyep-
abvel T o0VBEOY YEYOVOTWY Tou epgaviCovtal o anopaxpuouéves ypovixés otiypés. Ou Hochreiter xou Schmid-

22

1.1. Bewpnuxd TndBadpo

huber elofyoryav to 1997) Soury LSTM [31], ewodyovtog éva obotnua ecwteptxic uviung tou uropel vo dtatneet
minpogopia ot Bédoc ypdvou. H Baoixr| dour evéc LSTM nepihopPdver wa xuhehiBo xatdotaone (cell state), n
omnola Aertovpyel we ecwtepx wvhun xot Swotneel xplowwes TAnpogopiec xotd uixog g yeovixhc oxohoudiog.
H Swryelplon authAc Tng WvAUNG emituyydveton H€ow TELOY TUAGY: NG TUANG €lobdou, tng mUANC Afing xan tng
mOAne €€68ou. Kde mOAn Baoiletar oe éva eninedo evepyomnoinone sigmoid, to onolo eléyyel molo mocootd
TAnpogoplag Yo mpootedel, datnendel 1 amoppipdel. H nhAn eio6dou puduilel) pot| vEwv Thnpogoptdy,) TOAN
Mne amogaoilel T Yo Siorypoapel and Ty mponyoluevn uviun, xou 1 toAn e€6dou xoopilel v TeEAXY XpuUPY
XAUTEO TACT) TOU PETADIBETOU GTO EMOUEVO YEOVIXO BruoL.

H eowtepuxn apyttextovixt evog LSTM napovoidleton oto Lyfua 3.4.2, 6Tou anoTundveTal 1 po1) TAnpogopiog
HETOEY TwV TUAGY xou TS uviung. H podnuorue neprypapt tne Aettoupyiog Touv LSTM eivan 1 e€ric:

fo =0(Wy - [hy_1,24] + by),

ip = o (Wi [hi—1,2¢] + bs),

¢ = tanh(W, - [hy—1, z¢] + be),
¢t = fi ©ci—1 +i O,

or = (W - [hi—1,2¢] + Do),

hy = ot ® tanh(c,),

6mou o 1 ouvdpTtnon sigmoid, tanh 1 uvrepBohixy| epanTopévn, xar © 1 GTOLYELOUETELXY TOANATAACLAOTIXN TIREET.

H opyitextovinr) tov LSTM mpoo@épet onuavtixd mhcovextiuata o e@oppoyéc 6mou amanteltar expdinon
YEOVIX®Y EEAPTACEWY, OIS GTNY AVAYVORLOT|, PwVic, TNy enelepyacio QUOXAC YADCOUS, TN UETAPEAUOY) XOL TNV
TpdBAedn ypovooelpdv. Xto mhaioto Tng urtohoylotxic vépoug, Ta LSTM yenoiwonotodvton yia tnv npdBiedn
YXENHoNS TOPWY, EMTEENOVING TLO AMOBOTIXY Xl TEOANTTIXY XATAVOUT] o€ Suvaxd TepBdilovTa.

1.1.4 Mezaocynuatictés (Transformers)

O petaoynuatiotée (Transformers)[45] anoteholv wa xatnyopla poviédov Podide udidnone tou ddhaie pllixd
Tov TpoT0 enelepyacioc axohovhaxmy dedopévey, ELGdYoVTaS TOV unyoviopd autorpocoyfc (self-attention).
Ye avtideon pe T RNN xau tot CNN, ol yetaoynuatio tég dev Bacilovton oe diadoy x| enelepyaoio xon EMTEETOUY
e mapohAnhia xatd Ty exmoaideuot. Auto evioy el oNUavTIXG THY UTOAOYIo TIXY) amodoTXdTNTA Xou ETULTRETEL
v eneepyacia poxponpdiecuwy eCupthoeny ywplc tpoBiiuata Baduldwy. H apyitextovinr| tou Transformer
Baoileton o wior Soury xwdixomomnthi-amoxwdorointy, onwg ancixovileton oto Lyhua 3.4.3. Kdlde eninedo
nepLhouBdver unyoviopolc ToAuxépaine autorpocoyic (multi-head self-attention), mpowdnuxd veuvpwvixd dix-
toa (feed-forward layers), xadde xou cuvdéoeic unohoinou (residual connections) xou xavovixonoinon eminédou
(layer normalization). Ot MéZewc/elocodol petatpénovion oe TRIMAETES and dlaviopoata epwTiatos (query), xAet-
800 (key) xou e (value), ta omola enclepydlovian péow tou unyaviopol scaled dot-product attention. Ou
UETAOYNUOTIO TEC TPOOPEROUY TAEOVEXTApATY OTwe cLeMEio el06B0u—eE680L, xohltepn YEVIXEUGT, OE UoXpO-
npoédeoueg axoloudieg xan duvatdTNTo TEOEXTABEVONE OE TEPAOTIL GUVOAN SEBOUEVWY UE AUTOETBAETOUEVOUS
otoyouc. H emtuylo Toug dev neplopiletar povo otny eneepyacio uoixic YAWooog ahhd enextelveton ot Topelg
OTWC 1) bpacm UTOAOYLE TGOV, 1) BloTAnpogopixy| xou 1) TEdBAedn YPOVOCELROY, XUC TMVTIC TOUS HETACY NUATIO TES
ancpodtnNTo gpYaAelo GTr oUYYXEOVN TEXVNTY YONLOGUVY.

1.1.5 Evioyvtixr, Mddrnor (Reinforcement Learning)

H Evioyutu Mddnon (Reinforcement Learning — RL) amotehel wa xatnyoplo Mnyavixic Mddnone (Machine
Learning — ML). To RL eotidlet 6tnv exnaideuon npoaxtdpwmy oL omolot aAANAeTdpo0y pe éva duvauixd tepLBoi-
hov, hopfdvovtag avateopodotnorn e Tt poper emPeofeloeny 1 TowvGY, TEoxeévou va pddouy Béltioteg
ouunepupopéc [27]. Xe avtideon ye) Mdédnon pe ErniBredn (Supervised Learning), to RL 8ev amoutel de-
dopéva pe etixéteg, oUTE ENTég 0dNylec Yo Ty emlteuln evdg oTdYOU, OV XA UTOPEL VO EVOWUATMOCEL YVOOT
amd eWdxolg 1 1o nedio egapuoyng. H evioyutin pdinon cuviotd évay amd toug teelg Vepehiddelg d€oveg tne
unyovixhc pdinong, pall ue ™ Mdédnorn e EniBhedn xou tn Mddnon ywelc Enifredn. Eved n npdtn Bacileton
oe GUVORL BEBOUEVLV UE YVWO TES EL0GBOUC-EE680UC xal 1) BEUTERY ETUBLWXEL TNV AVl VEUCT) XEUUHEVWY BOUMY
,to RL Buoxplveton amd tnv diontepdtntd tou vo podaivel uéow ahhnienidpaong pe to mepdihov. O mpdxtopag
hoBdvel anopdoels, TopaTNEE! TIC CUVETEIES TWV EVEPYELWY TOL Xot Tpocapudlel oTodlaxd TV TOATIXY Tou Ue

23

Chapter 1. Extetopévn Ieptindmn ota EAAnvixd

oxon6 1N peylotonoinon tne adpolotixhc emPBedPeuone ot Bddoc yedvou. H duvatotnta Mng anopdoewy und
ofeBoudtnTa xon 1 ixavothTa dayelplong xaduc tepnuévey emPpaBedoeny xadiotody to RL xatdAinio yia e@op-
HOYEC OTWE 1) POUTOTIXY, TOL CUTOVOUA OYAULOTA, TO GUC TAATO TOpwV xat Ttol eupuy) Ttouy vidte. TO RL Baoileton
oe Boowd douxd otovyeio [42]: tov mpdxtopa (agent), to mep3dAhov (environment), v xotdotaoy (state),
) dpdom (action) xou v emPBedPevon (reward). O mpdxtopac haufdver we elcodo v Tpéyouca xatdotaom
Tou TEPPBAAAOVTOC XaL ETLAEYEL ol EVEpyeLa Ue Baor TNy mohTixn) tou. To nepiBddhov avtanoxplveta, emoTeé-
QOVTAS VEX XATACTAON ot avTioToly emBedfBeuoy, EMTEENOVTOC GTOV TREXTORO VO EVNUEPOOEL TNV TOMTIXT
Tou. H odinheniBpoon owth Sapoppiiveta podnuatind o Mapxofiavh Aepyooio Anogdoenv (Markov Deci-
sion Process — MDP). Xe éva MDP, opileton éva 6OVONO xATOOTEOEWY, €Val GUVOAO EVERYELDV, WO CUVHPTNON,
peTdPBaong mou neplyedpel Ty mdavotnto YeTdBoong o véa XATAG TAOT), (Lol CUVEETNOY EmPBedBeuone xou Evag
ouvteheo e mpoeLdphnone v € [0,1] mou xadopiler T Bopdtnta yeAhoviixdy emPBpaBedoswy. Xtdy0g TOU
Tpdxtopa elvar 1 expdidinon woc Bértiotne noktxhc m*(als) mou yeyiotonolel) padnpoting tpocdoxio tng
ouvohxrg emBpdPBeuong:

T
R, = k
t = Y Ttk
k=0

O olydprdpoc Q-learning cuviotd Yepehmdn teyviny oto RL. Baolleton ot ouvdptnon Q, 1 onola extyd
cuvohxr) avopevouevn emBedfeuvon yia xdde Lebyog xatdotaone xon evépyelog. H extiunon npayuatonolelton
Bdoet tne egiowonc Bellman:

Qr,0) =E[Y +ymaxQ(’,a') | ,]

omou ' elvou 1 emduevn xotdotoon xo @’ 1 evépyewa mou axoloudel. Xty mpdln, n extipnon viomoteitan
EMOVOANTITIXG UECL HOVOVWY EVIUEQWONG:

Qz,a) Q(w,0) + a [Y +ymax Q(',) - Q(z,a)]

omou o elvar o puiude wdinone. Tnd xatdhiniec cuvirixec, énwe 1 otadloxy Uelwon tou «, 1 emoEXAc
e€epelivnon Tou Yweou xaL 1 xehor teoefdpinone v < 1, n uédodog eyyudtar cbyxhion otn BENTIOTH TOALTIXY.

H Bohd Evioyutinh Mddnon (Deep Reinforcement Learning — DRL) anote)el tnv npoéxtaon tou RL ye yerion
Barddv veupwvixey Sixtiwy. O 6pog «Bathdy avapépetol ot XeHoT TOAATADOY G TEWHUATOV TEYVNTOV VEVROVLY
Yio TNV TEOGEYYIOT GUVOETACEWY TOMTIXAC 1 Twhc. H mpddytn emituyric vhomoinon DRL Atav to Deep Q-Network
(DQN) and v opddo DeepMind [49], o omolo ypnotponoinoe cuvehixtixd dixtua yioe TV extaidevon TolTixic
oe mepBdAhovTa Ye cuveyY| xweo xatactdoenwy. [tn otadeponoinomn tne pdinong swofydnoay dvo Teyvés:
7 emavéAngn euneipidv (experience replay) xou to target network. Ilepantépw Beltidoelc mepthopfdvouy to
Double DQN [30], mou pewdver v urepextiunon tov Q-Tidy Péow Jaywplogol tne ETAOYAS Xl TS EX-
tipnone evépyetoc, 1o DDPG (Deep Deterministic Policy Gradient) [44] yio cuveyn éheyyo, xou to TD3 (Twin
Delayed DDPG) [25], to ontolo elodyel xaduotepnuévec evnuepmoelc xou {euydpla cuvopThoewy Q Yo augnuévn
otadepdtnTa. H evioyutind pddnon xau Wiodtepa ou Badiée enextdoeic tng, npoc@épouy Loyued epyaleio Yo
v enfluon npoBinudtey AMPng aropdoewy oe duvauLxd, o3éBona xa xotaveunuéva nepBdilovta, xohoTdvTog
TNV WOAVIXT TTROGEYYLOT) YL TNV XATOVOUT TépwY ot uTodopég Tinou edge—cloud, 6mou 1 BélTioty Buayelpion oe
TEAYHATXO YpOVO elvon xplotun.

1.1.6 TIloAumpaxtopuxd SuctApate (Multi-Agent Systems)

To nohvnpoxtopd cucthuata (Multi-Agent Systems - MAS) [9] aroteholdvioan and nolhamhéc autévoues
ovIoTNTEC AMPNC ATOPACEWV—TOUGC TEEXTOPEC—0L OToloL AELTOUPYOLY GE €val Xolvo TepBdAloy, Aaufdvovtag
TOTUXES AMOPACEL BACEL YEPLXDV TUPAUTNENCEWY X0l UTOXEVIPWUEVNC TANEo@opiag. XTo MAAGIO TOu UToAO-
yioTieol vépouc xou TN urodouhc auyurc (edge-cloud), xéde mpdxtopac unopel va avahdBel tov pého evée
TpOYEUUUATIOTH epYaotdVY 1| dlayelpto T mopwy ot tomxd eninedo. H amoxevtpwpévn @lon twv MAS npoo-
(PEPEL ONUOVTIXG TASOVEXTAUATA EVAVTL TWV XEVIPMOTONUEVKY TpoceyYloewy. Ot napadooioxol olyoprduot
Behtiotomoinone avtietwnilouv exdetinn adlnon e urtohoyloTixie ToAUThoXOTNTAC Xaddde auEdveTon O apL-
Buoc twv oviotitwy. Avtideta, To ntolumpaxtopd wovtého rollout Bacileton oe tomxol¢ LTohoYIoUOUS Xalt
HAYLOXVETAL YEOUUIXE WS TEOG TOV optdd TeV TEoXTOpwY, Xao TOVTIS TO WBLAITECH XATAAANAO Yio GUYYPOVES
unodouéc vépoug. Emmiéov, to MAS unoctnpllouv @uoixd xataveunuévn Aettovpyla, Ue TOUC TEAXTORES VA

24

1.2. BiBhoypagpiny ‘Egeuva

dpouv aclyypova, TUPdAANAA Xou Ue EAdyLoTh emxowvevio. Auth 1 evel&la Tor xahotd xatdAhnio yio tepBEA-
hovta 6mou 1 xevteuxr dlayelplon eivon avépuxtn Adyw xaduc teprioeny, BAafoy N yewypapixic dlaotopds. Eva
eminpbodeto mheovéxtnua anotehel N SuvatdtnTa Aettovpyiog und moixiha TpdTUTA ETUXOWVKVING—O0TO TAHEWS
aveEdpTNTOUC TEAATOPES £WC TEPLOPLOUEVO GUVERYUTIXA O AUATO—ETUTEENOVTAS TNV TPOCUPUOYT) TOU GUC THUd-
To¢ oe éva eupl Qdoua TpaypaTxwy oevapiwy. To ToAUTEaxTOpXd CUCTHUNTA EMEXTEVOVTOL QUOIXE %Ol OF
mpoPMuata evioyvtxic wddnone (Reinforcement Learning), dieupivovtog tic duvatdtntéc toug o€ Suvapixd
xou of3éBona mepBAANOVTA O amontoly dlayelplor TOEWY.

1.2 BiBAoyeagpixn 'Epsuva

IIpoBAedm ITopwy YrohoyioTtixod Neégoug
Kivntea yia IIpoBAedmn os Troroyiotixd Suocthipata NEpoug

H tayeio e€dniwon xou gupela ULOVETNOT TOL UTOAOYLOTIXOU VEPOUC OE ETLYELRNOELS XOU 0pYAVIOUOUS XorhoTd
xplown Tnv avdyxrn yio anoteeopatixy enelepyaoio xal TEOBAEdN TWV YEOVOCELR®Y TOL TOEEYOVTAL 0nd TETOL
ovothuota. H diayeipion ndpwv anotelel xevTpXr] TEOXANOT], OTOUTWVTAUS TEOCUOUOCTIXEC Xl TEOPAENTIXES
OTPATAYIXES Yo Vo avTamoxpldel oTic UVEYHOS HETUBUNNOUEVES OmOUTHOELS TwV YopTimy epyaciog.[50]

Ou ypovooeipég avagépovian oe axoloudeg TapaTnEHoENY oL 0ToleC CUAAEYOVTOL OE BLadoY X YPOVIXd BLos Th-
pato. Xe nepBEANOVTO UTOAOYIG TLXOU VEQOUG, Ol YPOVOOELRES TPOERYOVTOL Ad GUC THUATA TNAEUETElOC Tot omola
XATOYPAPOUY UETPXES ATOBOCTE XAk XATAVIAWGTE TopwY, 6Twe Yenon CPU, uvAung, dloxou. Autd ta dedouéva
ATOTUTIGVOULY T1) SUVOLXY] CUUTERLPORE TNG UTOBOUNAC Xal EVOL amapolTNTaL YLol TNV XATAVONOT TNS XATAO TUOTS
TOU GUGTNAUATOE, TNV aviYVEUOT) AVWUAALOY xou TNV TeoBAedn ueAhovTixey cuvinuadv Aettouvpyiog. O @dptog
epyaocioc 0To UTOROYITTIXG VEQOS elvar TOAUBLEG ToTog, Un oToepds Xou GUY VL Tapouctdlel aupvidieg petoBoléc.
IToA\éc undpyouoec pédodol mpdPredne amotuyydvouy vo avtanoxetdoly oe qUTH TN YETHBANTOTNTA, OdNY V-
Tag elte o unép-exyweno elte oe avemopxn exywenon tépwv. H unép-exywenon odnyel oe pewwpévn xeron
NG UTodoUNG Xol AVENUEVO AELTOURYIXO XOGTOG, EVE 1) AVETUPXNG EXYWENOT| TEOXOAE! YELWUEVY anddoom xou
o) napofBioon tov Tuggevidy Emnédou Trnpeowdv (SLA) [16]. T nopdderypa, dtav mopatneeiton apvixi
aOENON UTNUETWY YENoTWY, To cloTNUa uropel va uteppopTwiel xou va epgavioer xaduoteprioels N amotuyles
unnpeeotdv. Avtiotpoga, ot teptddoug younhic Rtnong, ol tdpol UEvouv ay pnoloTolnToL, TPOXUADVTOS GoXOTN
EVEQYELUNT| XATAVIAWOT) X0 oovouix omatdhn [16]. Autd to gouvdpeva xadiotolv copés 6t omonteiton axplBhic
xan €yxonen TedBAedn yio TNV anotekeouatixny| dloyeliplon Topwy.

ITe6BAedr v Katavour Iépwv

O Baowde ot6)0¢ TNg TEoBAedne ot tepiBdhhovta LTOAOYIGTINOD VEQOUS elvon 1) axpBic exTiunon pEANOVTIXWY
TEOTONWY XATAVIAWONS TopwY, WoTe Vo elvar Buvaty N mpoAnmuxy xou amodotixn xatavour;. H mpdéfiedn
Aettoupyel we xploo TpoxaTapxTXd oTEBI0 Yia eEeEMYUEVES TEYVIXES Bloyelplong, OTWE AUTOUTY XAULEXWOT
(autoscaling), e&iooppdnnon goptiou (load balancing) xou evioyutixf| pddnon vy evopyfiotewon mdpwv. ¢
petoBAnTy otoyog, N xehon e enelepyaoTixrc toyVg elvon 1 cuvndéotepn emhoyy, xadde anoteel dueco
delxtn g mieong oTo SUOTNUA X CUCYETILETOL GUECH PE TNV OTOBOCY, TWV EQPUPUOYMY XL TG ATOPACELS
xhpdwone. H mpdfhedn tng oe xatdAinin ypovix) avdiuon eivor Jeuemddng yia tn Slatrienon tng moldTnTog
urneeoiog xou T pelwon tou Aettoupyxol xéctoue.[33][72]

Khaowxéc MéGodol ITpbBAedng

H npofiedn ypovooeipdv oe meplBdAlovia VEQoug €yel opyLxd TEOCEYYIOTEl UECK XAUCIXMY OTATIOTIXWY
ped6dwv onwe ta AutoRegressive (AR), Moving Average (MA), AutoRegressive Integrated Moving Average
(ARIMA), xou Vector AutoRegression (VAR) [51]. Autéc ot pédodol npoinodétouv oTaotudTnTa Xow Ypouuixéc
oyéoeic Yeto€l Twv dedouévwy, mpoopépovtag xaly axplBela o mpolAédiua xou younhol VYoplBou mepBiAi-
hovta. Ilpéoleta otatiotnd epyaheia, Omwg oL UECEC TWES, OL TUTIXES OMOXAICELS, 1) CLUVEETNOT XAUTAVOUNG
(CDF) xau 0 cuvteheothic petoPintotniac (CoV) [20], yenotponoodvial Yl TOV YopaxTnelopd tne Saedpay-
onc twv petpwdv. Lo Peoayvnpdteoun npdBiedn, cuyvd epapuoélovton ta wovtéra SMA xou ARIMA, pe to
TeheLTafo var amodidel ixavomonTixd dtav Ta dedopéva mopouctdlouvy opahdtnTa. 2oTOCO, OE TEPITTNOOELS UN
Yeouuxotntoc 1 €vtovou YopBou, 1 oxplBeta auTdY TV YovTElwy yewdveton dpaotixd. H otatioting npooéy-

25

Chapter 1. Extetopévn Ieptindmn ota EAAnvixd

yion mheovexTel AOYw TNG BLAQAVELNS Xl TOU YoUNAOU UTOAOYLOTIXO) *HGTOUS, WOTOCO Bev emapxel yia TNy
AnOTONWOT) TOADTAOXMY DUVAUXWY, YARAXTNRLO T oL Xuplapy oLy oTa olYypeova cloud-native cucThpaTa.

Movtéha Mnyavixng xow Badide Mddnong

Iot TV aVTHETOTION TWV TEPLOPIOHMY TV XAUCIXWOY UETOdwY, €xouy mpotadel TeyVixéc unyovixic uddnong
(ML) xou Bohde pddnone (DL) [26]. To ML povtéha, 6mwe n yeouux tokwvdpdunon, to SVM, ta Random
Forests xou ot k-xovtvétepol yeitoveg (k-NN), npoogépouv peyahltepn ixovétnta yevixeuons péow wéinong
and Sedopéva. H yprion vevpwvixdv dtiny, oe cuvduaoud pe texvixés 6mwe to mapddupo eioddou (window-
ing), éyet anodewydel anoteheopatinf oty TEOBAeN TopwV exovixdy unyavev(SVM) [35]. Iapéro mou ta
SVM nopouctdlouv xahég emBOCELS G GLYVES BlaxLUAVoEelS popTiou, 1) ambdooY| Toug unoPfadulleton oe ueydia
datasets [52].

To yovtéha LSTM unepéyouv otny amotdnmoT yeovixdy eE0pTHOEMY ol GELOLOXWY HOTBwWY, emtAbovtog To
TedBAnua eZagpdvions Poaduldwy mou yapoxtneilel to oupPBoatind RNN [33]. TTodamhéc perétes éyouy xotadelEet
v unepoy] v LSTM évavti Tev mopadoolaxdy oTato Tixdy npoceyyioewy otny npdfredn goptiou[39]. Ot
HETACYNUOTIO TEC TPOTPEEOLY axdun Ueyohltepn axpifeia, Wilwe oe MeptnThoel; GUVIETWY 1} TOAUTAEOY OVTLXY
YeovixY e€aptioewv[4]. O unyoviopdc autonpocoyfc EMTEENEL 0TO LOVTENO Vo 0 TIELEL ETINEXTIXG O OYETIXES
Yeovixéc oTiypés, anodidovtos BeATiwUéva anoTeléoUaTo o YETOUBANTE 1) eExpnXTXd TpdTUTa Xatavdinong [54].
Av xon T DL povtéha eivon mo oxpifn) xou aviextind otn Un yeouixotnTa, anoutolyv peydhoug 6yxoug Oe-
BOUEVLY, LoYLEOVE LTOAOYICTIXOUC TOPOUC Xl TEOCEXTXY TapoucTeonolnor. Emmiéov, n epunvevoiudtntd
TOUG TOPOUEVEL TTROXANOT] YIoL TNV TOROY WYX TOUS EQPAPUOYY| o8 evaloUnTa CUC THUATA.

Mnyavicpol Katavoung Ilépwy

H xatoavour| tépwv (Resource Allocation — RA) anotedel Yepehiddec otouyelo oo unoloyiouxd nepiBdrhovia
VEQPOUC, apopOVTIS TN BLAVOUT| TERPLOPLOUEVKY UTOAOYLO TIXMY, ATOUNXEVTIXOV XAl BIXTUAXOY TOPWY OE oVTolY-
wvioxés diepyaoies) yprotes. H Unapln anodotindv unyoviopoyv RA eivon xplowr yia) Behtiotonolnon e
GUVOMXTAC AmOBOCNG, TN UEYLOTOTONoT TN XPNONS TWY TOPWY, TN PElWOT TOU XOGTOUC X0k T CUUHOPYWOT| UE
anoutioels totdtntac unnpeoiog [22]. O unyaviopol RA Sioxpivovton ot dvo Paoixéc xatnyoples: otatinols xou
Buvogxoic.

Yrtatixol Mnyoavicpol Katavourg Iépwv

O ototixée otpatnyiés xatavounc mopwv otneiloviar oe xavéveg mou xoopilovion ex TV TEOTEPWY XL
nopouévouy ototepol xatd v extéleoyn twv Sepyaotdy. Autol oi unyaviouol elvon xotdAAniol v oTo-
Vepd 1 mpoBiéduuor poptia. Tumxée teyvixés mephauBdvouy YEuUUXG Xol UXTO OXEPULO TEOYPUUUTIONO
(MILP, MINLP), ev¢) oc o obvieta mepBdihovia eqapudlovial 6ToxooTixd BOVTEAX Yo Vo EVonuatoe!
7 afeBadtnra otn Linon A tic twée [15].. Ou Moeig unoroyiloviar extdc yedvou pe ypfomn epyarelwy dmwe
CPLEX 7y Gurobi xou eopuolovTtol o€ EQuproYEs Onwe apy x| ToTtoUETnan emovixay unyovoy 1 admission con-
trol [75]. Topd to mAeovexthyata o€ amhotnta xou npoPfAedyudnta, oL otatixol unyaviouol dev tpocapudlovon
o€ andToues peToBoléc, YeYovos Tou odnyel oe utoexueTdA eV i LTEPPOPTLCT TWV ThpWV [76].

Avuvapixol Mnyovicpol Katavourc Ilépwv

Ou Suvoixée otpatnywés xatavouic népwv (DRA) eivan amapaitntes yia nepiBAANOVTO YE EVTOVES BLoXUpEy-
oeig. Autol o unyoaviopol mpooapudlouvv) yeron CPU, uviung xo dAAwv népwv pe Bdon meaypotixd Oe-
dopéva 1) mpoPrédec. Avutopatrn xAtpwdxwor (Auto-scaling): IlepihopfBdver xatoxdpugn (eviéc VM)
xou oplévtia (npootinn/agaipeon, VM 1 containers) xhpdxworn. H mpdtn éxel wixph xaduotépnor, evod
n Oeltepn mpoogépel peyohltepn evehilia. IlpoBAemtixy diayeipion mépwv: Baoiletan oe otopind
dedopéva xou yenoruornolel ypopuxr, moAwdpdunor, ¢@iitpa Kalman A multiplexing yia mpdBiedn pelhov-
wxfic (htnone [19]. BeAtiotonoinon moAhanAodv ctdéywv: Egopuéleton we mpdPinua molomihc
avTxeevixic Bedtiotonoinong, cuvdudlovtag emdooel, x0otog xou evépyeld. ‘Eyouv mpotodel alydprduot
omwe coral-reefs optimization pe Yewplo maryviey yio duvauuxd avaxatavops tépwy [24]. TuoThpoto Bo-
owopéva o xavoveg: Acttoupyoly ye dpla evepyornoinone (n.y. CPU > 80%) xou eivon amhd odhd hiySdtepo
oaxph [66]. Tuothuata avddpacrs (feedback control): Eunveuouéva and dewpio eléyyou, yenot-
ponowov PID controllers yia ouveyr pOduior. Ilagéyouv otadepdtnto xon SUVATOTNTA AUTOVOUNS AMOXELONG

26

1.3. Awrtinwon Hpofriuatoc xou Movtelonoinon Xuotiuatog

[19]. Evepyeiaxd svaicdnteg otpatnyixés: Emnyepolv ehaylotonoinon e xatavdhwons evépyelog
HEow oYy WVELUOTG PoETOL o amevepyonoinong adpovay x6uPwv (T.y. to cbotnua pMapper) . [69]. TTapd o
o@éln Toug, ot DRA unyoviouol avtyetwnilouvy mpoxhioelc 6mng 1 axplBeta mpdBiedng, 1o x6610¢ peteyxotdo-
TaOMG, 1) XoUeTERPNON AMOXELENE XAl 1] A&y HY) EELCOPEOTINGNE AVTIXPOUOPEVKDV oTOY WY [306].

O Pdérog tnc Evioyvtixrc Mddnonec (RL)

Ou mopadootaxég u€dodol exyweNoNG EPYUCWOY OTO VEQOS ot oTo edge, amoutolv Loyupés unolécelc xou
aduvaTolV va Tpooapootoly ot duvouxd mepBdihovto. H Evioyutind Mddnon (RL) mpoogépet éva evol-
haxTixd mhalolo, 6mou ol mpdxtopeg padalvouy BEATIOTEC oTpaTNYXES PECW BOXNAC XA opdlpaTog, Ywelc
yvoon tou unoxeipevou povtérou. T Ty avtetodnion e exdeTxrc TOAUTAOXOTNTOC OF UEYUAEC XA(-
poxee, 1 Badid Evioyutiey Mddnorn (DRL) afomotel veupwvixd dixtua yiot tny expdidinomn oAty ot yopoug
vfmiav daotdoewy. To Deep Q-Network (DQN) éyet anodeier tqv anoteleopanxdtntd tou oe mepBdi-
hovta edge—cloud [49]. H enéxtoon oe Holunpaxtopufy DRL (MADQN) emitpénet tnv anoxevipnuévn Adn
ATOPICERY o6 TOMATAOUC TEEXTOPES, TEOCPEPOVTAS XUAVTERT) XAUAXWOY), avIEXTIXOTNTO ol TORIAANAY AEL-
tovpylo. H mpooéyylon auty ebvan dovix] Yiot oY YPOVES XATAVEUNUEVES UTOBOUES, OTIOU O XEVIPIXOC GUYYPO-
VIOUOC €lvor TRoXTIXd dodUPopog.

1.3 Awatinwon llpoBAjuatog xaw MovieAonoinorn Yvotripatog

H nopoloo Simhwuatiny epyoaoio EMXEVIPWVETOL OTOV GYEBLAOUS EVOC ELPUONE CUCTAUATOS XATAVOUNS TOPWLY
o omnolog hettovpyel oe alyypova molueninedo nepBdriovta edge—cloud umodoucyv. To Bacixd mpdBAnua mou
avupetonileton elvon 1 anoteheopotixt] xou anodotny| dyelplon epyacudy (jobs) e mowiha yapoxtnploTixd
onwg evonoinoio oe xouoTteproels, SLoPopeTNd EINEDA TEOTEPUATNTOG KOl UTOULTAOELS TTOPWY.

Movtélo Yuotruatog
H unodopn mou yehetdton anoteleiton and Ttplo eidn Siodéoiuwy ndpwv:

e Near-Edge (Tp): To mo xovtvéd eninedo mpog tov tehxd yeRotn, ue yopunhf xaduotépnon (latency),
0AAG UPNAO AELTOURYING XOGTOC XU TEQLOPLOUEVY] Y WENTIXOTNTA.

e Far-Edge (71): Meoaio eninedo pe pérpa xoaduotépnon xou xdotog, xou pétpla drodeoudtnta tdpmyv.

e Cloud (T2): To mo anopaxpuouévo eninedo, ye v xoduotépnon Adyw andotaons, ahhd oyedov
ATEPLOPLOTOUS TTOPOUE oL TO YUUNAOTERO x6GTOC avd povédo CPU.

Kéde eninedo T; meptypdpeton we:
T; = (M;, Cap;, L;, Cost;, P;)

onou M; to ohvolo twv unyavnudtwy, Cap; 1 CPU ywentxdtnto avd unydvnua, L; n dutvaxr] xaduotépnon,
Cost; o nbéotoc hertovpylog avd CPU-mpa xan P; 1 xatavdiwon toybog avd tupriva oe Watt.

Katdotaon IIépwv xou Xerion

Ye xdlde ypovixn) otiyur| 7, To cbotnua napaxohowdel TN yeron xou Sdeopotnta CPU ndpwv avd eninedo:

Usage;(T) = Z Z cpu_demand,,
meM; j€ActiveJobs,, (T)

Avail;(T) = TotalCap; — Usage;(7),

_ Usage;(7)

Utili(r) = TotalCap;

ue v mpobmddeon ot 1) yeron Swtneeiton xdtw and éva uéyioto dplo Max_Util yia anoguyy| xopecouod xou
Slaodilor otadepiic amoddoorg.

27

Chapter 1. Extetopévn Ieptindmn ota EAAnvixd

ITeprypapr Epyaciony
Kdde epyaoio j meptypdpeton oe:
j = (id, start_time,end_time,cpu_demand, duration, priority)

OToL Tal TED{OL AVOPEROVTAL GE VALY VWPLOTIXG, YEOVO APIENG, avoEVOUEVD Ypdvo ohoxhfpwaone, {htnon yia
CPU, extydpevn didpxeia extéheons xat eninedo npotepoundtntag. Ol mpotepatdTnTeS elval oxépaeS THES OOV
UxpoTEPES TWES onuaivouy LPNAGTERT TPOTEPAULOTNTO ot dpal YUUNAOTERY ovoy T 0 XaJUGTERNON).

IToAu-napayovtixy AwatOnwor IlpoBAruatog
To medBAnua xatavounc TOpKY EVOWHUATMOVEL TOAATAOUE AVTIXEWEVIXOVUS GTOYOUC:

e Meiwom xd6cToug xou evépyelag: llpoxewévou va emteuydel Biwopdtnto xon owovoulo, Ao-
Bdavovtar unddmn to xdéotog avd CPU ava tpol ot 1) XatavdAmon EVERYELXS, UE TO X600 TOC Vo utohoyileTou
we

duration;;

23600 x Cost;,

Costé- = cpu_demand; x

XL 1) EVERYELXL WG
duration;

Energy; = P; x cpu_demand; X 3600

o AauPdvovrtac unodrn xaduoteproeig (latency): H xaduotépnomn xdde epyaoioc xadopileton
xuplwe amd T Véomn TNg 6To BIXTUO XoL TOUC YPOVOUC OVAUOVNS, HE TO Bactxd povtého

Latency§ =1L,.

o THAemon Tvppovioyv Ennédouv Trneeoiog (SLA): Ia xdde eninedo npotepoudtnroc p, undpyet
péytoto emtpentd dpto xaduotépnone SLA, mou mpéner vo ixavoroleitan (.. 5 deutepOenT Yl TNV
udmhotepn npotepandtnta). IMapofidoeic SLA empépouv Towvée, evioyboviag 1 onuacio tne dueons
EXTENEONC TOV XPlOWWY EPYATLAOV.

Avvopixy] ‘AgiErn xouw Opadornoinon Epyacioy

O epyaoiec @Tdvouv Buvouixd xou oPadOTOLOVYTAL GE YEOVIXA Tapdupo BIAEXELNG W YId ATOTEAECUATIXG TEO-
yooppatiopd oe toptides. Owepyaoieg evide xdde mapadtpou Tadvopotvton xatd tpotepardtnta, e€aopoiiloviag
oL Vo Eexv oLy VoL EXTEAOUVTOL TIRWTOL OL TLO XEICLUES.

Katnyopionolodvtal oe xAdoeig:
e KNdon I (Keioweg): Ipotepardtnto 1-2, anatoldv ehdyiotn xaduotépnon.
o K\don II (Evéhixtec): Ilpotepoudtnta 3—4, avextixéc oe pétplec xaduotepiioeic.

e KAdon IIT (Best-effort): Ilpotepoudtnta 5, xatdhhnhec yio cloud extéheor xodde éxouv tepdotia
avoyt| o xaducTERNOM).

Yuvdetnon AvtopolB3rc (Reward Function)
H onégoon tonodétnong epyaociac oe cluster i aflohoyeiton péow ovvietne ouvdptnone avtopoBrc:

R; = wlease + w2Rplacement (]7 Z) - w3Rcost (]7 Z) - w4Rlatency(j7 Z) - wSRenergy (j; Z) + wGRSLA (])7
6ToU xGe GPOC AVITAPLOTA BlaPopeTixy| SLdoTACT:

® Rpgse: Baou] avtopol3y) yio emtuyn xotoavoun # mowvy yio amotuylo.

® Rpjacement: 1lpocopuoouévn avtopolB/towvh mou euvoel Tomolethoelc cURPOVE UE THY TPOTEROOTNTO Xol
Vv Tp€YoUca XpNO), ATOTEENOVTAS T.Y. UTERPOETWOT edge ETTESWY.

28

1.4. Iewdporo

e Ilowvéc mou oyetiCovton pe x60t0¢, xaduoTépnomn xaL EVEPYELXL.

e ITowr SLA nou epapudletar dtav Eemepviéton to dpio avoyhc oe xaduoTtépnan yio TNV xdVe xotnyopld,
dlvovtog peyahitepn mowvy 6tay autéd cupfalvel oe epyaoleg e HEYIAN TEOTEPAULOTNTAL

H nopapetponoinon Bapdy w; emitpénet eueMéla TNV EUPAOT) GE GUYXEXPLEVOUS GTOYOUS, OTIWE AUGTNRT THENOT
SLA 7 yelwon xéctoug.

Mnyoviopnoés Mdadnong

H xatavoprn népwv avuuetwnileta we mpdfinua Adne anopdoewy oe duvauxd nep3dilov, ue tn pédodo
Q-learning w¢ Baowd unyavioud pddnone. Kdde npdutopac padaivel va extiud tny avaevouevn HeAAOVTIX
avtopolBh Q(s, a) yio xdle xatdotacn s xou eVEPYELL a, OdNYOVTAC o€ PEATIOTY TOMTIXN.

H Beitiotonolnon tne ouvolixhc avtauolBrc toopponel Yetall uelwong xéotoug, oefucyol TEoTEpaOTHTWY,
ouppdepwong ue SLA xau Swyelpione xatuoteprioewy.

Apyrtextovixy] IToAu-Tlpaxtdépwy (Multi-Agent)

H ulonoinom elvon anoxevipwpévr, ue nolariolc npdxtopes (gateways) mou dioyetpilovtan Stoxpttd urtochvoha
gpyaoldy. Kdlde npdutopag mapatneel To tomixd nepBdihoyv, Aoudvel anogdoeig xou oxoAovdel xolvi ToALTLXy.

Avuth| 1 Sratimwon xou To HovTtého anoTe oY TN Bdon yia TV avdmTuEn evoc EVPUOVE, TEOCUPUOC TLXOU UNYAVLO-
HoU TEOYEAUUUATIONOU Tou avTanoxplvetal o8 oOvVIeTeG amalTHOEIC XL TEPLOPLOU00S TwY alYyeovwy edge—cloud
UTOBOPGY, EVOOUATWVOVTAS TOCO OXOVOUXE OG0 XAl TEYVIXE XELTHELAL ATOBOCTS.

1.4 Ilsipapota

1.4.1 X0volo Acdopévwy
Kadapiopog xou IlpoeneZepyaocio AsSopevmy

To clvoho dedopévewv Alibaba Cluster Trace 2017 nepthoyufBdvel dedouéva TnheUeTplog o UTOBOUY UTOAO-
Yo TX00 VEQPOUC HEYAANG xhlpoxac. Av xon To apyxd VxS elvar e€onpetind mholotlo oe TAnpogopla, Topouctdlet
ONUAVTIXEC TEOXAACELC Yia dUeST] YeYion ot yoviehonoinot, Aoyw YopUBou, AmWAELDY Xol ETEROYEVOY YopoX-
MeLo TIXdY. Axolouvddvtag tn pedodoroyia twv Lackinger et al. [40], vhonouidnxe wo todugacinn diadixascio
xodapLoUo) XoL XOVOVIXOTIOINoNG, HE OTOY0 TNV e€aywyy| Xeovixd euduYpUUUOUEVKDY, optUNTXE GUVETDY Xat
ONUOCLOAOYIXE. EUTAOUTIOUEVLY GUVOAWY BEBOUEVLV, XATEIAANALY TOG0 Yiol TROPBAEYN 650 %o Yiol EVIOYUTIXN
udrdnom.

H apyix) Sour; tou opyelou TeplAduBove ovary VORLOTIXG EQYAGLOY XOL UNYAVOY, YEOVIXES ONUAVOELS, UEYLOTN
xou péon xotavdiwon CPU, xadde xan tiée xatavdhwone uviune, toAlég amd tig onoleg anovsialav. ‘Etot,
amoxhelotnay TAfpwe Tedio pe un aprduntixéc B elhimelc Tyéc, dnwe to task ID, to nedio xatdotaone (status),
XOUL 1) XUTOVIAWCT UVAUNG. Axohollng, EQUEUOCTNXE UETATROTY| TWV YLOVIXOV CTLYUWOV O OYETIXESC YPOVIXES
OVALPOPES X0 XAVOVIXOTIOIMOT, OAwV Tewv aptduntixdy nedinv yéow MinMax scaling oto didotnua [0, 1], yia
otadepomoinoy NG EXTAUBEVOTNE TWV UOVTEAWV.

Téhoc, tpootédnxe etéta npotepaundTnTac Yot xde epyooio (and 1 éwe 5), Bdoet SLA xotnyoptonoinong, dote
VO XATAOTEL BUVATH N TOLOTIXY] BLICTROUGTWOT TWY ERYACLOY AVAROYO PE TI OMOUTHCELS XoJUCTERNONG Xou M
duvopxT evowpdtwon otnv avtopolfry tou tpdxtopa. To xadapiouévo dataset aliomoleltar 1600 we axoloudia
eloddwV Yio TEOPBAedN TOpwY, 660 XoL 6TO TEPIBAAAOV EVIOYUTIXTE Hddnong.

Table 1.1: Andonaocpo Tou cpyixol axatépyactou cuvérou dedouévwy (Alibaba trace)

start ts end ts jobid task id machineid max cpu avgcpu max mem avg mem

41562 41618 120 686 299 1.50 0.29 NaN NaN
41561 41619 120 686 1279 0.89 0.28 NaN NaN
41562 41617 120 686 828 0.94 0.29 NaN NaN

29

Chapter 1. Extetopévn Ieptindmn ota EAAnvixd

Table 1.2: Anbéonacya Tou xodoplopévou GUVOROU BESOUEVWY UE EXYWENUEVEC TEOTERUUOTNTES

Start Timestamp

End Timestamp

Job ID Machine ID Max CPU Avg CPU Priority

2017-01-01 00:00:00 2017-01-01 00:00:01 10528874 518 1.01 1.01 1
2017-01-01 00:00:01 2017-01-01 00:00:55 30629148 352 1.01 0.98 3
2017-01-01 00:00:01 2017-01-01 00:00:56 30629079 258 1.00 0.97 3
2017-01-01 00:00:01 2017-01-01 00:00:55 30629105 278 1.02 0.99 3
2017-01-01 00:00:02 2017-01-01 00:00:59 30629093 897 1.01 0.96 3

1.4.2 Moviéra
Movtéla IIpbBredne

H gdon npoBiedme tne napoloug PEAETNG ETXEVTPWVETAL TNV EXTUNCT TNE UeEAAOVTLNE {ATNONG UTOAOYLOTIXGY
népwy, xou ouyxexpwéva e yerone CPU, yia noptidec epyootdyv (batch jobs), ye Bdorn otopd tniepetpixd
dedoyuéva and TepBdAhoy ueydAng xhlpoxag. H wavdtnta npdBredne anotelel xplowwo cuotatxnd evég euguoie
unyeviopol dayelplong mopwy, xodde xodiotd duvath T AN anogdoewy Tou dev neplopilovTal ATOXAELGTIXG
OTNV TEEYOLOU XUTAGTACT] TOU GUGTAUATOS, OAAS EVOOUATOVOUY XoL TNV AVOUEVOUEVT pehhovtixh {htnon.

A6 10 olvoho Sedopévwy Twv 8 exatoupuplny ey ypap®y eTAEYINXE €va avTLTpocKTeuTXd utocivoro 500.000
EYYPAUPWY Yl ox0mol¢ exntofdevong, MOoTE va SLucPaAloTel T600 1 LUTOAOYLOTIXY amodoTxdTNTA 66O XL 1|
oTATLOTIXY ToLALaL.

H gdon auth efunnpetel 8o Paoixolts otdyous: agevog, TNy mapoywyY) ooy Beayurpdieouny npoiédenv
e {htnone CPU, ot onoleg adlomolovvtar amd to cbotnuo RL yio) BéATiotn xatovopr] twy epyaotiy, xou
ageTépou, TN c0YXELoN 800 CUYYEOVKV AEYLTEXTOVIX®DY VELEWVIXKOY dXTU0Y — Twv LSTM xa twv Trans-
former. H avdntuén twv poviéhwy éyive pe yeron tov BiBhotnxdy TensorFlow xou Keras. H npoetoyocio twv
dedouévev xau 1) dnwovpyio Twv batches mpayuatomouinxe uéow unyaviouol sequence generator, EMITEETOVTAS
N Sloyelpton LeYSAwY dyxwy dedouévwy ywelc uep@oeTwor e UvAUNG. . Ko ta 800 yovtéha exmoudedtnrov
UTIO XOLVO TIELOUUATING TP TOXOANO, eUnveUcpEVO and TN wedodoroyia tou Lackinger et al., dote va e€acpolio-
el 1 ouYxpLEWOTNTA TV anoteheoudtwy. Xenowonoiinxe o ahyopripog Adam ye otodepd pudud uddnong,
ouvdptnon andiewog MSE, xoa nocootd emxtpwone 20%. H exnaldeuon éywve oto Google Colab ue yprion
emtdyuvone GPU (T4). O Iivaxag 1.3 nopovotdlel tic Paoixée mopauétpous exnaldeuons yia x&de poviého.

Table 1.3: Iapdpetpor Exnaidevone yio LSTM xou Transformer

ITopdpetpocg LSTM Transformer
Mxoc¢ elo680L 60 60
Opilovtac mpdPBredne 1 By 1 Bripa
Méyedoc déounc 32 32
Behtiotonowntic Adam Adam
Pududc udinone 0.001 0.001
JuVdETNON ATWOAELS MSE MSE
Enoyéc 13 36
Tropovy ywr early stopping 5)
[Moco616 emxlpwong 20% 20%
Trodoun Google Colab (GPU) Google Colab (GPU)

ITepBarrov Katavouns Ilépwyv xar Exnaidcvone Juvothpatoc Badide Evioyutixrg
Mda9none

o v 0€lohéYNoT TEOCUPUOCTIXDY OTEATNYXWY Tomtolétnong epyactey oe unodouéc tinou edge—cloud,
oxedidotnxe xaL LAomoinxe éva Tpocupuocuévo TEpBdihoy evioyuTixic udinone, Poaciopévo 6to mpdTUTO
gymnasium. To nepiBdAAov TPOCOUOLOVEL Eva GEVEQLO OVOU TEAXTOPM, O OTOLOE XAAELTAL VoL EXYWEHOEL BUVOLXE
xdde epyaoio oe ula and tpeg diardéoipeg Poduldec unodourc: To near-edge, to far-edge 1 To xevteixd cloud.

30

1.4. Iewdporo

H opyitextovixr] tou mepBdhhovtoc amewxoviletor oto Lyhua 6.1.1, to onolo mapovctdlel v epopytxy dour
ToL unoa TNE(leL TNV ToNoVETNOT TWYV EpYUoIOY Bdoel emnédou enelepyaciog xou yYewypapwhc eyyidtntoag. Kdde
ELOEPY OUEV EpYaola TIEPLYEAPETIL UEGK EVOC GUVONOL YUPUXTNELOTIXGY, oL TeptAopfdvouy tn {ntoluevn oyl
CPU, 11 Sudpxeia extéheong xan tnv evanotnoio xaduotépnonc. O mpdxtopog moapatneel €vor cuveyr| dlavuo-
potixd Y wpeo €€L SlooTdoewy, o onolog TeplhauBdvel Thnpogoplec T6o0 Yia TNV Bla TV epyacia oo xou Yl TNV
TEEYOLOA XATAC TAOT TwV Bladéoiuwy untodouwy. Ot teploplopol Tou GUGTALATOS, OTWS 1) dlardeotudTnTa TdPWY,
oL evepyelaxol teploploiol xou ot dplal xadUc TEENONS, EVOWUATOVOVTAL GTO TERB3EA0V Xou enneedlouy dueca TNV
an6doaom xan T dour) g emiPedBeuonc. Lo Ty pealio T Tpocopoiwon Twv pody epyaciag xaL TN SlaThENoT
NS YEOVIXNC CUVEYELNS, EPUPUOCTNXE OYNud TpoypaupaTiopol Bdoet topottpwy. Avtl vo avtiyetonilovto
Ol EPYOOIEC UEUOVOUEVD, opadonolobvTon Ypovixd e Bdor xowvd timestamps. Xuyxexpuléva, cuyxpoTolvTaL
ToEGDIVEN ELGERYOUEVOV ERYACLOY UE 1 BLlopopeTind oTiypiotuna évapéne. Evtdc xdie mopadipou, ol epyaoies
tadivopolvtar Bdoel mpotepandTnTaG o exywpolvTan xatd ¢giivouca cepd. To péyedoc mapadipeou opileton
HECL TOU UTEPTUPUUETEOV N, UE TWH 1 = 3 xatd v exnoideuon xou n = 10 xotd v a€loAdynor, Oote va
eheyy el 1 yevixevon tng noltng o mo chvieTa xan exenxTnd wotiBa goptiou.

To nepBdrirov oflomotel to (Blo xadapiouévo chvoho Bedopévwy and to Alibaba Cluster Trace 2017, npocogp-
poouévo yior evioyutixy udinon. H xwdixomolnom tng mpotepatdTnTog TV £pYAOWY aOTEAEL avanéoTAGTO
otoyelo e emPBpdBevorng, xadoe anotunmvel anouthoelg notdtntoc unneectioc. O Iivaxag 1.4 napovoidlel tig
TEVTE XATNYOPIEC TPOTEPAUOTNTUC OE OYECT UE TNV AmoUTOVUEVY xdUOTERNOT %o TIC EQUPUOYES OTIC OToleg
AVTLO TOLYOOV.

Table 1.4: Katnyoplec Hpotepandtnrac Epyaoioy ye Baon v Koduotépnon

Erninedo Ilpotepandotnrac Avoyn Kaduotépnone Evdeuxtixéc Egappoyéc

1 — TIoh Xaunin < 10 ms ‘Eleyyoc oe mpaypatxd — Ypovo,
Ewovuy/Enauénuévn Tpaypotidtna
2 — Xaunin 10-50 ms Aodixtuaxd manyvidia, TnAedidoxedn
3 — Métpu 50-200 ms Trnpeotec 1ot00
4 - TdniA 200-500 ms Juyypoviopos Bedopévwy, meplodxt
Tapaxorovinon
5 — Xaunirc Ilpotepandtnrag > 500 ms Eqedpuxéc epyaoieg, walu eneepyacia

H noltix) tonodétnong twv epyoaotdv dapoppavetal Bdoet tng xatnyoplag npotepandtntog. Epyaoleg ue mohd
YoUnA avoyy xaduotéenone meénel va tonodetobvtan oto near-edge. Exelvec pe pétplor avoyn umopolv vo
avatetolv oto far-edge ¥ oto cloud. Téhog, ot epyasiec yaunirc npotepaudTnTog Tonodetodvion Wavixd 6To
cloud, mpoxewévou va dwtnendolv ol unodouée yoauning xaduotépnong drdéoiues yio xploweg epapuoyéc. H
ouvdptnon emPBedPeuonc Twpeel TRV TomoVéTnon VPNAHSC TEOTEPAUOTNTIC EPYAUOLOY GE axatdAAnAes Barduidec
xat evioppivel TNy euduypduuion peta€d anouthoeny xoduoTéenang xot dladéotuwy Tépwy.

H exnoldevon npaypatonolelton ye tn yenomn tou thactov Ray RLIib xou cuyxexpyéva tou ahyopiduou Standard
DQN. To nepBdrirov xatayweelton péow tng dlemaghc register_env. To melpoauotind TpwTOXOANO TEQUAOY-
Bdvel 500.000 epyaoieg, ye TAHEN xdAudn AWV TwV emnédwy npotepadtntoc. H unodoun nou npocopoidveto
anoteAelton omd ulo povdda near-edge pe 16 nuprivec CPU, téooeplc povddec far-edge eniong pe 16 nuprivee
xodeplo, xou moAhamhéc wovddee cloud pe 64 muprveg, ol onoleg npooeyyilouv Yewentind to dneo. H uixpen
auTH LTOBOUN ETMAEYETAL Ylot AOYouS Tayelag exmaidevone xou elvon avdAoyn ot Tou PEYEVOUC TV JeBoUEVLY
exnafdeuong, v oe @dorn a&lohdynong yivetar adEnom g yiot TOV €AeYYO TNG YEVIXEUGNG TNG TMOMTXAC OF
PEAALO TIXA GEVAQLAL

Yuvdetnorn AviapoBrg xow Movtelonoinon Anodotixotntag Ilépwv. O akydprduoc udinone
xadodnyeiton and pa cdveTn cuvdptnon aviauolBnc, n onola AauBdver unddm ta e&hc:
o Acsittovpyxd Kootog: Avdloyo tng ypéwone avd CPU-hour yia xdie eninedo:
— Near-edge: $0.10
— Far-edge: $0.05

31

Chapter 1. Extetopévn Ieptindmn ota EAAnvixd

— Cloud: $0.01

o ITown Kaduotépmnong: Kdie job pépel mpotepondtnta xou cuven®g oyetnt| analtnon xaduotépnomng.
H Baow xoduotépnon avd eninedo elvon:

— Near-edge: 1ms
— Far-edge: 20 ms
— Cloud: 100ms
o Katavdiworn Evépyeiag: Xenowonolelton yia vo tpowdeiton 1 extéleon o mo omodotind eninedo
— Near-edge: 40 W
— Far-edge: 70 W
— Cloud: 200 W

o AZwonoinom CPU: Av 1 ypfion CPU napapéver xdtw ond 80%, napéyeton bonus. Av n yerion Eenepvd
N Stodéoiun YwenTXoTNTA, EQUpUOlETOL TOLVY| UTERPORTWOTG.

e AvtapoBr Torodétnone (Placement Reward): ToroVetiioeic o xatdhhnho eninedo avéroya
He TNV mpotepondTNTA TOu job emfBpafetovton, dote va mpooeyyiletan 1 oupudepnon SLA ywelc oxineoic
novOVeC.

IMapapetponoinon: ‘Okec ol otadyioeic e cuvdptnong avtopolBhc eAEyyovTon YEow NS ToEUXETL EU-
Yulouevng doung:

"reward_penalty_config": {
"base_reward": 50,
"cost_weight": 2,
"latency_weight": 2,
"placement_reward": 400,
"placement_penalty": 100,
"utilization_bonus": 300,
"over_utilization_penalty": 200,
"energy_weight": 2

¥

Avtn 1 oyedlaon npoo@épel eueMéla yior TNV Looppomior ueTaED xdoTOLS, NAYUCTEPNONG, EVERYELOXNE OmOBOCNC
xou a€lonolnone ndpwv xatd v exnaldeuoy xou a€lordynon tou aryopituou evioyuonc.

ITpooéyyion IToAAov ITpaxtopwy

To nponyoluevo TepBdAAov LOVOU TEEXTOPA EMEXTUVETOL OE [lal EXDOYY) TOAAGDY TEaXTOPWY, PE GXOTd TNV afl-
ONOYNON TNG XMUAXWOTNG, TNG YEVIXEUOTE X0l TOU GUVTOVIOUOU GE xaTtavepnuéva aevdpta AMdng anogdoewy. H
Boowh 1déa Eyxetton 0T HovieNoTonon TOAATAGY TUAGY (gateways) we aveldptnTtewy Tpaxtdpwy, oL orolol
AELToLEYOUY TALTOY POV TdVL OE %01 LTOdOUY| Xat Hopdlovian Toug SLETLoUs TOPOUS TOU GUO TAULATOC.
Kdéde mOAn drardétel dixy) NG oupd ELOERYOUEVWY EQYAOLOY Xl AUPBAVEL ano@doelc exydenone Y Bdon Tomxt
TEATAENOT), Ywelc dUesT) emxovmvio Ue Toug uTdAoLToUS TEdxTopES. To oNUAVTING YAEAXTNEOTIXG AUTAS TNG
TEOGEYYLONG elvor OTL GAOL OL TPAXTOPES EMAVAYENOYLOTOOVUY TNV (Bl TohTx Tou €yel uddel o apyixég DQN
TEAXTOPAUC XAt TNV exntaldevon) ato nepBdhAoy evdg Tedxtopa. Me auTOV TOV TOTO, ATMOPEVYETAL 1) AVAYXN EX
VEOU eXTIOUBELOTC OE EMUMEDO TOAADY TEAXTOPWY XOU UELOVETAL CNUAVTIXG TO LToAOYIo TS xdcTog. H xatavoun
TWY EPYACLOY OTOUE TEAXTOPES YIVETAL UE OTEUTNY X xUxAc evolhayvic (round-robin), dote vo Stacpahileton
lodTIUN xoTavouy) QopTiou UeTAED Twy TuAGY. Kaldde ol tpdxtopes Aettoupyoly médvw ot xowvr guatxr utodou,
1 xorTorvour) oo évay TedxTopa enneedlel Toug BladEcLUoUE THPOUE YLol TOUG UTTOAOLTOUS, YEYOVOC TOU duLoupYel
duvopxr] aAAnienidpoon xon éupeco avtayovioud. To nepBdihov mapoxoroudel aveldptnta T AAEN epyaoidv
e mpdntopa xal GUANEYEL EEYWELOTA OTATIOTIXG AndBooNS, OTWS GUVOALXT avTaolfT], TOCOOTO EMLTUY LG Xalt
xatavour) evepyelv. H yprion xowvhc mohtixric and 6houg Toug TpdxTtopes ETUTRETEL TNV 0ELONOYNOT TNG IXAVOTY-
Tag yevixeuong g otpatnyic, xadng xou Tou Patuod TEocUpUOC TIXOTNTAS GE TOAUTAOXL, UN-CUVERY XTI

32

1.4. Iewdporo

nepBdrrova. Topdhinia, egetdleton n evpwotia TNE TOATIXG 6TaY AUTH EapudleTon oE SLPOPETIXES TUAES
HE ETEPOYEVT TPOTUTTA POPTOV, XABdS XAl 0 TPOTOC UE TOV OTol0 OL TEAXTOoPES avTaywvilovtal 1) cuvepydlovto
eUpéonS PEow TNE xoWvhg Xerone Topwy. To tehxd cloTNUA ETTEENEL TNV TAUTOYEOVY EXTEAECT] YLAADWY Ep-
Yooy and todhanhéc aveldptnteg tUAeg dixthou, e€opolwvovTag éva peahloTixd oevdplo edge-cloud vodourc
HE xaTaveunuévous evopynotewtés. H mpooéyyion auth) avolyel tov Bpduo ylol HEANOVTIXY UENETY XATAVOUNG
OpHOBLOTATOV, GUVERYUTIXAC UEUNONC ot UNYAVIOUOY SLOECONIBNoNG LETOED TROXTOPWY OE UEYAANG XAUOXAC
€EUmvol GUC THUATAL.

1.4.3 Ileipdpota
IMeipopo 1: Iepapoatinf LoOyxpion LSTM xouw Transformer otnv ITp6BAedr Poptiou

ITpoxewévou va oforoyndel n amodotxdtnra mponypévev yoviéhwv Bohde uddnone yia v mpoBiedn
Bepayunpddeouou pdptou epyaoidy oe cloud umodopée, die&hytn cuyxprtnd nelpopo wetald 800 clYYEOVWY
OPYLTEXTOVIXWY: TwV eTovoAdUBovoevey dixtiny Timov Moxpds Beoyldyeovng Mvriuns xou twv Transformer.
Ko to 800 povtéha exnoudebtnuay oe 1o topind dedopéva tnhepetplac and 10 xodoplodéVo Xol XOVOVIXOTONUEVO
Alibaba Cluster Trace dataset, ye otéyo v npdéfAiedn tng yerone eneepyactinhc Loy lc xan TNg didpxetag
EXTENEONC EQYOOLOV OE PEANOVTIXA Ypovixd mapddupa. H exnaldeuon npoayuatonotfdnxe pe evomoinuéves pu-
Yuioeic: otadepd uhixog ewwddou 60 Prudte:y, xowd loss function (MSE), (dio batch size xou early stopping. H
alohdynom éywve péow twv petpixdy RMSE, MAE xa R?, evé) mporypotonothdnxoy déxa aveZdptntee doxipéc
yia xdde povtéro.

Table 1.5: Yuvontxf Anédoon LSTM xaw Transformer oce Aoxuéc HpdBrednge

Metewxy Movtého Meéor Twry Tun. Andxh. Kakbtepn Xeipodtepen

RMSE LSTM 0.0850 0.0020 0.0823 0.0889
RMSE Transformer 0.0820 0.0020 0.0795 0.0856
MAE LSTM 0.0650 0.0012 0.0635 0.0673
MAE Transformer 0.0630 0.0011 0.0615 0.0649
R? LSTM 0.8190 0.0025 0.8234 0.8129
R? Transformer 0.8500 0.0008 0.8513 0.8485

To Yyfua 1.4.1 anewoviler) obyxplon TV goviéhwy, napouctdloviac Ty eZEMEN TV YETEXOY ot xdde
enavdndn (dve oelpd), xodde xan T cuvolxn péon anddoor xou otadepdtnTo (XdTe oERd).

Yvunepdopata. To Transformer unepelye oe dheg Tic yetpuée, eppavilovtoc otadepdtepn xou mo axplPh
ouumeplpopd. H apyitextoviny mpocoyrc mou yenowonotel enétpede TNy oviyVeEUsN TOAITAOXWY YEOVIXOV
oYEoEWY, XONOTWVTIS TOV Wavixd Yo TedBAedr pdptou ot duvauixd tepBdriovta cloud. Av xau ol Bedtidoeic
ebvan oplaxée (3-4%), n npoxtind Toug onuacia ot tepBdhhovTa PEYIANG xAiponag elvon onpovTixny, odnydvtag
oe Behtiouévn oflonolinomn mopwy xou pelwon xéctoug. To LSTM eZoxohoudel vo anotedel afidmotn emhoyn,
wot6co to Transformer nopouctdler avddtepn cuvERELr xou am6doo), Wine dtav amouteiton axplBelo xou oTo-
YeponTa TNV TEOBAedn Yior autouatonoinuévo scaling ¥ xotavour| epyacudy oe edge—cloud unodopéq.

IMeipopa 2: AZiordynon ITolunpaxtopixod DQN yio Katavour Ilépwy

To debtepo nelpaya aflordynoe v anddoor tolunpaxtopxod cuc thpatoc DQN yia xatavour; 50,000 epyootdv
OE OPYITEXTOVIXY TPV oTpwUdTnv (near edge, far edge, cloud)), ue tpeic aveldptnrouc Tpdxtopee (gateways)
mou haufdvouv anogdoelc ywelc emxowvwvia. To yovtélo ypnowonoinoe xowvr] Toltxy| evioyuTixig uddnong,
exnoudevuévn oe yovorpoxtopixd nepBdhhov. To clotnua nétuye nocootd emtuyiog 100%, ywele anotuyieg
1) unepdéopeuon mopwv. Epyacleq uvdmiic npotepondtnrag xotaveudnxay xupleng oto near xau far-edge, eved
epyaoieg yauninig tpotepondtnag totovethdnxay suxalploxd oto edge, epdoov utnpye dladéoiun YweNTIXOTNTA.
H cuuneptpopd auth avtavoxid tnyv ixavotnta tou DQN va i.ooppotel avdueoa otny dueon dladeotudtnta xon ¢
anarthioel TolotnTag unneeotag. H otpatnywr| xotavourc avédeile mpotiunon yia to edge 2.7x petald e Hpo-
tepandtnrog 1 (39.8%) xan tne Mpotepandtnrac 3 (14.6%), dnwe gaivetan oto Awdrypoppa 1.4.2(a). Eviiogépov
Tpoxahel 1 ToTo¥ETNOT OpLoUévmy xplowy gpyaoldv oto cloud, xadmg xan avtiotpopa 1 avddeon epyaoLidv

33

Chapter 1. Extetopévn Iepihndn ota EAAnvid

RMSE Across Tests MAE Across Tests R? Across Tests
0105 0.085

e LSTM o LSTM —e— LsTM
~#- Transformer - Transformer - Transformer

085
0100 0080 -

0,095
0075

0,090
0070

I3
§ ooes K % o0
0065
0080
0060 082
0075
0070 0055

0,065 0050
2

E

s 10 2 8 10

6 6 6
Test Number Test Number Test Number

Average with iati RMSE Distril Performangg.Consi: (Lower = More i
0850
- STM 0.819 00251 o023 == 5T
0 | E Transformer == Transformer

0.088
0020

0018 5018
05 0.086
0015

w
@
£ 008

0010

Coefficient of Variation

0.082

0,005

0.080

0,000
sTM Transformer RMSE

MAE
Metrics

Figure 1.4.1: S0yxpion LSTM xou Transformer oe déxa doxpée. ‘Ave oepd: twée RMSE, MAE, R? avd
enavdhndn. Kdtw oepd: yéon anddoomn pe delntes dlanOgovong xo avdAuon otodepdTnTog.

YOUNAAC TeoTEPAUOTNTAC 0To near-edge. Auth 1 cUUTEPLPOEE Bev amoTehel GQAAUA, AAAG TPOCUPUOC TIXY) EVQULAL:
10 obotnuo ofomotel Slrdéoipous ndpous anodotind, TPocupUOLOVTUS TNV XATOVOUY OE TEAYUATIXG YPOVO WE
Bdon T dardeopdTnTa.

Allocation Percentage by Priority Average Latency by Priority Overall Jobs Distribution
100 87.5ms Priority 4
(995 jobs
81.0ms
20
8 Priority 3
(13,699 jobs
64.1ms 27.3%)
= E % 56.5ms
& 6 > Priority 1
& g (23441 jobs
& kit 46.9%)
I‘ICJ -
& g a0
s a4 g
¢ g
<
2 » -
riority 2
(11,903 jobs
23.8%)
0 0
10 15 20 25 30 35 40 05 10 15 20 25 30 35 40 45
Priority Level Priority Level

Figure 1.4.2: Avéluon xatavouric tépwv xa xaduotépnone avd tpotepondtnta: (a) xotavour avé utodous,
(b) xaduotépnomn avd eninedo tpotepadTNTAC, (C) CUVOMXY XATAVOUY| EPYAUCLOV.

Avdivorn AZonoinorng IMopwv. H Ewdva 1.4.3 anewxoviler m ypoviny e€éhin e xerone CPU ota
tplo enineda e unodourc (Near Edge, Far Edge xou Cloud) xoatd tnv extéleon tou mtolutpaxtopixol DQN.
IMopatneeiton 611 1o near-edge dtnpel otadepd LPNAA aliomoinomn (dvew tou 70%), Aertoupydvtag we x0pLog
popeag eneepyaciag. To far-edge napovoidlel magdpola exdva, eved to cloud evepyonoleitoan Lbvo TopodIXd,
xuplee 6tov Tar TEpLPEpELaxd eNiTEd QTAVOUV O XO0pECUS. AUTH 1) CUUTEPLPORE AVTAVOXAS CTEATNYIXY EX-
peTdAAEUoT TV Sldéoipwy Topwy, dTou 1 TohTx Ldinone TeoTwd Tomxy enelepyaoia yio xounho latency,
eve dtneet To cloud we buffer oe neplddouc auyurc.

34

1.4. Iewdporo

CPU Utilization % by Cluster

—— Near Edge

100% - = Far Edge

= Cloud
Total

80% -

60% -

CPU Utilization (%)

40% -

!

0%

T T T T T T
o 2500 5000 7500 10000 12500 15000 17500

Figure 1.4.3: Xpovixf e&éhén tne xprione CPU ota tpla eninedo (Near, Far, Cloud). H a&ionoinorn oto
near-edge mopapével otadepr], eved to cloud yenowonoteiton xuplwe we buffer.

AZloomuelwn elvan enione 1 TPOCAPROC TIXY) CUUTERLYPOER TOU GUCTHUNTOS: TUPd TNV OMOUGCLN EMULXOLV-
wviag, oL TEAXTOPES ATEBWOAUY LOOBUVAUL, UE EAAYLOTY DL UUUVOT) AmdBOCTC, UTOBEVIOVTAS ETULTUY T YEVIXEUOT
e xownc noAtic. H evepyelaxt anddoor aviide oe 1,246,625 povddeg avtopolBric avd kWh, arodeixviovtag
oL M €Zumvn xorTavouy) UToEEl VoL IXAVOTIOLGEL TOUTOYpOVa 0TOY0US anddoone xan Puwotudtnrag. Ilopdhhnia,
10 ouvohxd xbotog enelepyaoiog i 50,000 epyaoiec dwpoppddnxe polc ota $22.61 (0.0005$/epyooia),
emBefoudvovtac TV eEAUPETIXT OLXOVOULXY ATOBOTIXOTNTO TOU GUC THUATOG.

IMeipapoa 3: ZOyxpion Movonpaxtopitxol xou IToAunpaxtopixob DQN

To Ilelpaya 3 aglohoyel Tnv anddoor tou tohunpaxtopixold DQN cuctiuatog oe oyéon Ye T HOVOTEUXTORIXT
Tou exdoyr, o€ xowd cOvoro dedopévev 50,000 epyaotddv xon xotvh unodopr. To yovompoxtopixd cloTNU
hoBdvel amogdoeic oe xevtpind eninedo, evéd To ToluTpaxtopxd Bacileton ot Tpelg avedptntouc agents ywplc
peTagh Toug emxotvemvio.

Ko o1 8o npooeyyioeic nétuyav 100% emituyio oty exywernon yuplc anotuyiee ¥ unepxatavopéc. H

x0pta Brapopd evtoniletor oy amodoTikdTNT: TO TOAUTEOXTOPWS HovTého anoutel 67% Aty dtepa BAnATA
enedepyaciog,ws avouéveto, xa mpoogépel 2% VPNAOTEEN UECT AVTAUROLPBN.

Table 1.6: Yuvortuxh X0yxplon Anédoone Movonpaxtopixol xan ITohutpaxtopixold Luothiuotog

Meteuxn Single-Agent Multi-Agent Aopopd
Brjuarta Eneepyaociog 50,000 16,667 -67%
Méorn AvtapoB/Epyacia 109.73 111.96 +2.0%
Koéotoc/Epyacta $0.0005 $0.0005 0%
Kotavéhwon Evépyelc/Epyooia 0.0001 kWh 0.0001 kWh 0%

H xortoavour| ye Bdon tny meotepaudTnTag %ol T T0000T6 eMTUY0C Tory TarvoudoldTuTy), emBeondvovtog 6TL Xau
oL dvo mpooeyyioelg dayepllovtan e&loou anoteleouotind xplowes epyaoieg:

35

Chapter 1. Extetopévn Ieptindmn ota EAAnvixd

Table 1.7: Katavouy| Ilpoteponothitwy xar Emituyia

ITpotepoundtntar IIAAYoc Epyaocwwy Edge Alloc. (SA) Edge Alloc. (MA) Emtuyio

1 (Kpiown) 23,439 40.3% 40.3% 100%
2 (Tdmrr) 11,905 22.1% 22.1% 100%
3 (Méon) 13,659 15.9% 15.9% 100%
4 (Xognhni) 995 51.1% 50.9% 100%
5 (Best-effort) 2 50.0% 50.0% 100%

Yy adlomoinon CPU, ol dwpopéc elvon apgelntéeg:

Table 1.8: A&womnoinom I1épwv

Yrodoun Single-Agent Multi-Agent Aapopd

Near Edge (Mécoc ‘Opoc) 72.0% £ 6.7% 72.2% + 7.0% +0.2pp
Far Edge (Méooc ‘Opoc) 66.7% + 13.9% 66.8% + 14.0% +0.1pp
Cloud (Méooc "Opoc) 11.3% £ 6.1% 11.3% + 6.1% Opp

Télog, oe oovouxols xou TepBailoviinols deixTee, xou Ta 500 HOVTENN TETUYOY TAUTOCUO CUVOAXO XOGTOG
O XUTOVIAWOT), UE TO TOAUTRUXTOPXO VoL UTERTEREL EAAPPAOC O amdBOCT WS TEOG XOGTOC Xl EVERYELAL:

Table 1.9: AnoSotixétnta Kéotoue xou Evépyetag

Aceixtng Single-Agent Multi-Agent
Avtopo3y avé Aokdplo 242 816 247,648
Avtopo3y avé kWh 1,269,074 1,294,781

Jvpnepacpatind, 1o nolunpaxtopxé DQN moapéyel (Blag moldTNToC XoTovouy Ue onuavTixd xoA0Tepn
EMEXTACIUOTNTA XL OmOBOCN HEGEL TUPUARNAIGHOY, Yoo TMVTNC TO XATAAANAO Ylol duvopxd meplBdArovTa
edge—cloud.

ITeipapo 4: Anédoorn IToAunpaxtopixod DQN pe Yuvdetind Poptia Transformer

To Ilelpapor 4 a&tohoyel) Aettovpyio tou moiunpaxtopxol DQN und goptio epyaciac mou mopdydnxay e
Tov oAyopuduo mpoPhedne Transformer. O otdyog eivon 1 extiunon e eupwotiog TOU CUGTAUNTOS XaL TNS
TPOGUPUOCTIXOTNTAG TOU GE BuVaULXd, oTatioTixd dlagoponoinuéva goptio. To Transformer exnoudedtnxe oe
500,000 opyxéc epyaoiec xoun maphyoye évo véo chvoro 42,156 epyaoioy, e uéon tuh opdhuatoc R? = 0.850.
O mpoPiédeic Tou odfynoav oe 21% abdEnon tne wéone anoitnone CPU (2.24 évavtt 1.85) xou 5% pelwon ot
Oudpxetar eEXTEAESNC XATE UECO 6pO0, OTWE PAVEROVOUY Xl Tor Sorypduuoata 1.4.4, TpooPEpovTag Mo PEANOTIXES
xou TOW(AES POEC EQYATLOV.

36

1.4. Iewduota

05

04

02

0.0

CPU Demand Distribution
(maximum real cpu number) Job Duration Distribution

Original Mean: 1.85 QOriginal Mean: 42 .00
Transformer Mean: 2.24 Transformer Mean: 39.80

0.0175

0.0150

00125

0.0100

[Original Dataset 'E' [Original Dataset
[0 Transformer Dataset é [0 Transformer Dataset
0.0075
0.0050
0.0025
0.0000
2 3 4 5 6 0 25 80 75 100 125 150 175

AP .

b (b il

Figure 1.4.4: Katoavouy, oanoutioewy CPU (apiotepd) o didpxelas (8e€id) yia to ouvdetuxd goptio

Transformer ce oyéomn ye T0 0EYLXO.

H xotavouR npotepaottwy enione dwtneidnxe pe uwixpéc anoxhioec: o xpiowec epyaoiec (Priority 1)
peddnxoy oto 43.2%, evéy ov Priority 2 avZhdnxav oto 28.9%.

100

Performance Value

Performance Metrics Comparison Priority Distribution Comparison

[Original Dataset
[Transformer Dataset

3 Original Dataset
[Transformer Dataset

i)
82.1 _
uction £

67.5 .g 0
=
k<1
@
o
@

£ 20
I}
=4
i}
o

10

38%
]
0
Avg Reward Avg Latency (ms) Priority 1 Priority 2 Priority 3 Priority 4
(Critical) (High) (Medium) (Low)

Figure 1.4.5: Avéluon avtopohic xo xaduotéenone (aptotepd) xon moTtodTNTo TPoTEPaoTHTLY (3elid) yio To

poptio Transformer.

Iopd v awEnuévn ToAuThoxdtnta, 1 wéon avtopoly) petddnxe wévo xatd 37% (67.45 évavt 107.78) xou 7
xaduotépnomn aulhdnxe xatd 10%, emBeBoucdvovtog Ty avIeXTixdTNTA TOU CUCTAUATOC GE avTiZoec cuVIXES.
H o€ronoinon népwyv moapeucive UPNAT xaL LGOPEOTNUEVT, 0TS QalveTon oTo oyfua 1.4.6:

Téhoc, 1 ouvyvétnra alhayody TolTxAc avd 100 BAuata pewddnxe onuavtind (amd 290-300 o 210-240),
evioyVovtag TN otadepdtnTa, Onwe Paiveton oto oyfuo 1.4.7:

37

Chapter 1. Extetapévn Ieplindn oto EXAnvixd

CPU Utilization % by Cluster

—— Near Edge

100% - —— Far Edge

= Cloud
Total

80% o
60% o

CPU Utilization (%)

40% -

v
o '1‘/ Vvi/‘/

0%

T T T T T T
0 2000 4000 6000 8000 10000 12000
Evaluation Steps

Figure 1.4.6: A&wonoinon CPU avd eninedo unodourc xotd tnv extéieon goptiou Transformer.

Policy Change Frequency (All Gateways, 100-step window)

320
Statistics Summary —— Original Data

Original Mean: 290 9 changes/window
Transformer Mean: 250.3 changes/window Transformer-Forecasted Data
Stability Improvement: 14.0%

280

260

Changes per Window

(14% Stability
|Improvement

240
220

200
0 1000 2000 3000 4000 5000

Job Processing Steps

Figure 1.4.7: Yuyxpiuxr) ouyvétnto ahhaydv ToMTnhAc yia opywd xan cuvidetind goptio Transformer.

Yvunepaouatind, 1o cuvietuxd goptio Transformer emtpénel anawtnundtepn a€loAdynoT, omoxahdTTOV-
Tog UENUEVN o TadepdTNTA Xl TEOCUPUOG TIXGTNTA Tou Tohurpaxtopixod DQN. H pelwon otnv andédoon av-
Tavaxholy Ty auENuévn moAuthoxdtnTo Tou Qoptiou xou o)L aduvauio Tou akyopliluou, o onolog anodelydnxe
ELEAMHTOC %ol VUEXTIXOC.

1.5 Xvunepdopata

Yvunepdopata xol ITpoontixégs EEENENg

H nopoloo epyaoio tpocépepe plol OMOXANEWUEVT], UEAETY] CUCTNUATWY EVPUONE XATAVOUNC TOPWY OE UTODOUES
edge—cloud, o€lonowdvtoc teyvoroyieg Bahd evioyutins pdinon oe nolumpaxtopxd meptBdhhovto xodds xou

38

1.5. Xuurepdoporo

povtéla npofBredne Bactopéva oe LSTM xaw Transformer opyttextovixéq.

To aroteéopota ToU TEWTOL TElEdUATOC Xatedellay TNy utepoyy) Tou Transformer oe oyéon ye to LSTM 6cov
apopd. TNy oxpifeta tpdBredne (ue R? = 0.850 évavtt 0.819), T otodepbdTnTal ATOTEAEOUSTOY oL T1) YOULT-
Notepn evanodnoio oe Slopopetixée unoopddee dedouévewv. H apyitextovixt| npocoyfc (attention mechanism)
tou Transformer enétpede v anodoTndTeERN XUTAVONOT HoXEOTEOVECUWY YPOVIXWY EEUPTAOEWY GTa dedoUEVa
TnAepeTelog, evioylovToag TN Xehor Tou w¢ Baoixd cusTaTixd ot TEOANTTIXOUS AAYSELIIOUC AUTO-XALUAXKOTS.
To nolvnpaxtopd cvotnua DQN nou pehetrilinxe otn cuvéyela amodelydnxe e€apetind txavd TNy xaTovoun
epyaotv ot dapopetind enlneda unodoudc (near-edge, far-edge, cloud), pe mhfen emtuyio xatavourc (100%).
O npdxtopeg voBétnoay otpatnyxXés dlopopononong e BAoT TNV TEOTEQUUOTNTA EPYOUCLMY, ELVOOVTIS TNV
TonoVETNO EpYaOLOY LPNATC TeotepadTnTag oe xOUPBouc Ye younho latency, eved enédelay xar eupuY TPoCUE-
KoY o€ TEPLOBOUC YopNAhoL PopTiou 6oL eXeTAAAEDTHX AV Dlardéaiuoug edge mopoLS Yio EpYasies YouNAOTEPNC
mpotepaudTNTaG. Emmiéov, 1o clotnua mopousiace duvatdTnTa TEocupUoYHc Twy 0TéYwy Behtiotonolnong
péow odhayfic Twv Bapdv avtapolPhc (Y x6otog, evépyela, latency), emtpénoviag Ty LlodETnon oTeATHYIXGY
AVENOY UL LE TIC TIPOTEPUOTNTES EQOPUOYHC (). Prwoipdtnta, xéo10g, andxpion). H tétaptn Soxun avédelle
YEVIXELOT) Xl G THIEROTNTA TOU CUC TAATOS 6Tay egapudletan o cuvdetixd workloads mou mapryorye To Trans-
former. Iopd ty ab&non e nohurhoxdtntog (t.y. 21% vdniédtepn anaitnon oe CPU), to clotnua dwthenoce
TN allomotio, eved N otodepbdtnta Tne moltixhc Bertddnxe xatd 20-25%. Auth 1 aviextxdtnro evioybe
™ Xerorn ouvieTnwy dedouévmy we alldmoTn UEVobo EAEYYOU Xal TPOGOUOIWONS OE TEAYHATIXES GUVITXEG.

ITpotewopeveg MerhovTixég Enextdoeig
Ot yehhovtinég xoteutivoelg nepthauSdvouy:

o Trv evowudtwon cuvepyotixfc molurpaxtopxhc udidnone (MARL) ue duvatdtniec cuvtoviogol xou
emxowveviog YeTagd TEAXTORMV.

e Trv vlonoinon ahyoplduwy avdextixdv oe BAdBec, emdéoelc 1 aleBoundTnTa, UECK UNYAVIOUWY oviyVELUSTC
AVOUOALOY 1) EVOOUATOONG YVHOONS ploxou.
o Trv evowudtwor meptBodlovixay dextdv ot Swdacia xotavophic (.. exmounés dvdpaxa, yehon

OVAVEDGCUIWY TNYMY), TEOdYoVTaS TNV AvVETTUEN PIOCUMY X0l EUGLEY UTOBOUGY.

Yuvohixd, 1 nopoloo epyocia mpoetodlel To €dopog yiot LU xou TEpPoihovTind evaicdnta cucTAPATA
edge—cloud, wovd vo npocapudélovion oe Buvoxés cUVIAXES XL VO TUPEYOLUY amOTEAECUOTIXNY Xou Bixann Si-
ayelplon UTOAOYIO TIXWY TOPWV.

39

Chapter 1. Extetopévn Ieptindmn ota EAAnvixd

40

Chapter 2

About this thesis

Contents

2.1 Motivation and Problem Statement

2.2 Short Description of the Thesis

41

Chapter 2. About this thesis

2.1 Motivation and Problem Statement

With a variety of workloads spread over heterogeneous infrastructures spanning near-edge, far-edge, and cen-
tralized cloud tiers, modern cloud-native systems function under ever-increasing complexity. These workloads
differ remarkable in computational demand, execution duration, latency sensitivity, and service priority. As
a result, resource allocation in such environments is no longer a matter of static provisioning but requires
dynamic, context-aware decision-making.

Traditional strategies—based on static rules or reactive autoscaling—fail to capture the intricate interplay
between job urgency, resource availability, and quality-of-service (QoS) constraints. Misplacing high-priority
jobs often leads to SLA violations, while over-allocating cloud resources incurs unnecessary operational and
energy costs. There is a growing need for intelligent scheduling frameworks capable of learning and adapting
resource allocation policies that balance these trade-offs in real time.

This thesis addresses the problem of computational job placement in multi-tier cloud infrastructures using
reinforcement learning (RL). The primary objective is to train agents that can dynamically allocate resources
by jointly optimizing for latency, energy efficiency, execution cost, and CPU utilization, while also respecting
job priorities. The system is modeled as a Markov Decision Process and deployed in a custom simulation
environment that incorporates real-world job trace data and system constraints.

To reflect emerging architectural trends, we extend this framework into a multi-agent setting, where multiple
gateways act as independent agents operating over shared resources. Each agent handles its job queue and
reuses a shared policy trained in the single-agent configuration. This distributed approach allows us to
evaluate system scalability, inter-agent fairness, and policy generalization under decentralized orchestration.

Furthermore, the framework is enhanced with short-term workload forecasting. By predicting future CPU
demand from past telemetry, the system can anticipate load bursts and adapt job placement decisions ac-
cordingly. This forecasting module, implemented using a Transformer model, serves as an input and is fully
decoupled from the reinforcement learning process.

42

2.2. Short Description of the Thesis

2.2

This

Short Description of the Thesis

thesis presents an integrated framework for intelligent, scalable, and QoS-aware job placement in

edge—cloud infrastructures using deep reinforcement learning. The main contributions are summarized as
follows:

Development of a custom Gymnasium-compatible simulation environment that models job placement
decisions across near-edge, far-edge, and cloud clusters, incorporating resource constraints, latency tiers,
priority levels, and energy—cost dynamics.

Design of a multi-objective reward function that captures trade-offs between operational cost, SLA com-
pliance, CPU utilization, energy consumption, and overload avoidance, providing informative feedback
to the learning agent.

Training of a DQN-based scheduler using realistic job traces. The evaluation includes priority-aware
job ordering and varying load intensities.

Extension of the RL framework to a multi-agent setting, where multiple independent agents operate
sequentially on shared infrastructure. The evaluation explores scalability and policy robustness in
decentralized orchestration scenarios.

Comparative analysis of state-of-the-art time series forecasting models, specifically LSTM and Trans-
former architectures, to determine the most suitable model for workload prediction based on real teleme-
try.

Integration of a forecasting module using Transformer-based predictors to enrich agent observations with
short-term CPU usage forecasts, enhancing proactive decision-making under non-stationary workload
patterns.

The final system demonstrates intelligent, adaptive behavior in job placement decisions, achieving high
resource utilization and low operational cost. It also maintains strong compliance with job priority constraints
and QoS guarantees in both centralized and distributed configurations.

43

Chapter 2. About this thesis

44

Chapter 3

Background

Contents
3.1 Cloud Computing v v i v i i i ittt e e e et e ettt e e e e e 46
3.1.1 Definition oL 46
3.1.2 Characteristics L e 46
3.1.3 Evolution e 47
3.1.4 Service Models 47
3.1.5 Advantages e e e 48
3.1.6 Challenges e 48
3.1.7 Edge Computing e e 49
3.1.8 Latency Sensitivity Across Application Domains 51
3.2 Cloud-Native Applications o o it i it e 52
3.2.1 From Monolithic to Cloud-Native Applications 52
3.2.2 Network Slicing in Cloud-Native Architectures 53
3.2.3 Container Orchestration 54
3.2.4 Advantages of Orchestrators. 54
3.3 Internet of Things (IoT) o i i i it ittt i ie et 55
3.3.1 Components of IoT 55
3.3.2 Communication Models 56
3.3.3 Impactof IoT o o e 56
3.4 Deep Learning 0 i i e e e e e e e e e e e e e e 57
3.4.1 Deep Learning Architecture L oL 58
3.4.2 Recurrent Neural Networks (RNNs) 58
3.4.3 Long Short-Term Memory Networks (LSTM) 59
3.4.4 Transformers e 60
3.5 Reinforcement Learning 0 v i i i i ittt e e e e e e 61
3.5.1 Reinforcement Learning as a Distinct Machine Learning Category 62
3.5.2 Fundamental Elements of Reinforcement Learning 62
3.5.3 Markov Decision Processes o 63
3.5.4 The Reinforcement Learning Cycle 63
3.5.5 Q-learning 64
3.5.6 Deep Reinforcement Learning Lo o 65
3.5.7 Multi-Agent Systems e 66
3.6 Resource Allocation v i i i i i e e e e e e e e e e e e e 66
3.6.1 Necessity of Resource Allocation 66

45

Chapter 3. Background

3.1

Cloud Computing

3.1.1 Definition

The US National Institute of Standards and Technology (NIST) has defined cloud computing in its widely
referenced technical document. According to NIST:

"Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access to
a shared pool of configurable computing resources (e.g., networks, servers, storage, applications,
and services) that can be rapidly provisioned and released with minimal management effort or
service provider interaction." [48]

3.1.2 Characteristics

[28] Cloud computing operates on a service-oriented model, where users gain access to various computing
resources and services without the need to manage the underlying infrastructure. This abstraction allows
users to focus on leveraging the services provided, rather than dealing with the complexities of hardware and
software management.

Service-Oriented Architecture: Cloud computing operates on a service-oriented model, where users
gain access to various computing resources and services without the need to manage the underlying
infrastructure. This abstraction allows users to focus on leveraging the services provided, rather than
dealing with the complexities of hardware and software management.

Loose Coupling: A critical feature of cloud computing is its loose coupling, which allows flexibility
and scalability. Users can access and interact with cloud services independently of the specific resources
being used, providing a dynamic and adaptable environment. This flexibility enables organizations to
quickly adjust to changing demands without being limited by rigid infrastructure constraints.

Strong Fault Tolerance: Cloud systems are designed with robust fault tolerance mechanisms, en-
suring that they can handle failures gracefully and continue operating without many disruptions. This
resilience is essential for maintaining high service availability and reliability, especially for businesses
that require continuous access to their data and applications.

Innovative Business Model: The cloud computing business model is primarily supported by large
technology companies focused on maximizing return on investment (ROI) and gaining a competitive
advantage. This approach contrasts with grid computing, which is typically funded by government and
academic institutions. Cloud computing’s commercial viability highlights its ability to meet market
demands effectively while delivering value to businesses and consumers.

User-Friendly Experience: Cloud services are designed to be intuitive and user-friendly, enabling
individuals with minimal technical expertise to navigate and utilize the available resources. This ease
of use broadens accessibility, allowing a wider audience to benefit from cloud technologies, including
those who may not have a strong IT background.

Pay-Per-Use Pricing Model: A standout feature of cloud computing is its pay-per-use pricing
structure, where users are billed based on the resources they consume, much like utilities such as
electricity or water. This pricing model enables organizations to optimize costs by paying only for the
resources they use, making cloud computing a cost-effective and efficient solution.

Scalability: Cloud computing provides exceptional scalability, enabling users to scale resources up or
down in response to fluctuating demands. Whether an organization needs additional resources during
peak usage times or to scale back during quieter periods, cloud services offer seamless adaptability,
ensuring that performance remains optimal at all times.

Virtualization Technology: Virtualization is at the core of cloud computing, allowing multiple
virtual instances to run on a single physical server. This technology enhances resource utilization and
provides flexibility in workload management. By using virtualization, cloud providers can offer a diverse
range of services while maintaining efficiency and reducing operational costs.

46

3.1. Cloud Computing

e High Reliability: Cloud platforms are engineered for high reliability, ensuring users can access their
applications and data whenever needed. This reliability is achieved through redundant systems, data
replication, and a strong infrastructure backbone, all of which contribute to a dependable and uninter-
rupted service experience.

e Multi-Tenancy: Cloud computing uses a multi-tenant architecture, where multiple users share the
same physical infrastructure while keeping their data and applications isolated. This setup optimizes
resource utilization and enhances security by ensuring that each tenant’s data remains private and
protected from unauthorized access.

3.1.3 Evolution

Cloud computing, by nature, is difficult and has strict boundaries, making it challenging to pinpoint its
origin. The term "cloud" became commonly used in the mid-2000s, but the concept has much deeper roots.
In the 1950s, large-scale mainframe computers emerged, and users accessed these powerful systems through
terminal computers that lacked computing capabilities. The earliest forms of cloud computing were closely
tied to supercomputing and High-Performance Computing (HPC), and their primary applications were in
scientific, financial, and academic fields.

The 1990s marked an important shift, as researchers developed large-scale computing systems that could be
shared among multiple users. Telecommunication companies began to use these infrastructures to offer Vir-
tual Private Network (VPN) services that provided lower costs and maintained good Quality of Service (QoS).
This era also saw the rise of time-sharing systems, prompting the development of optimization algorithms to
improve user efficiency.

In the late 2000s, the first cloud platforms were introduced, offering developers tools that simplified the
management and sharing of centralized computing resources. Over time, cloud computing became a main-
stream technology, evolving rapidly to meet the demands of businesses and consumers. Many of the world’s
leading technology companies have begun to build their cloud infrastructures, offering an expanding range of
services. This shift brought about a wave of new products and services, with many widely used applications
transitioning to cloud-based models.|7]

Today, cloud computing is no longer limited to researchers, developers, or those requiring high-performance
computing. Nearly everyone uses cloud-based services, often without even realizing it. Tasks such as file
storage, synchronization across multiple devices, and backup creation are now common functions for everyday
users of personal computers, smartphones, and tablets.

3.1.4 Service Models

Cloud computing enables the provision of computational services over the Internet, as defined by the National
Institute of Standards and Technology (NIST) [48]. Traditional cloud computing is categorized into three
primary service models:

Infrastructure as a Service (IaaS). IaaS delivers virtualized computing resources over the internet,
managed by cloud providers. These resources include storage, servers, and networking infrastructure, which
are provided to clients through virtual machines. Examples of [aaS offerings include Amazon Web Services
(AWS), Microsoft Azure, and Google Cloud Platform (GCP). IaaS offers a cost-effective way to run workloads
without the need for organizations to invest in, manage, or maintain physical infrastructure. However, the
responsibility for operational tasks such as resource provisioning and managing application code remains with
the developers.

Software as a Service (SaaS). SaaS provides users with direct access to cloud-hosted applications, such
as Microsoft 365 and Zoom. By utilizing SaaS solutions, users can leverage applications without having to
manage the underlying infrastructure or operational complexities. This model simplifies usage but introduces
certain trade-offs, such as reduced control over application customization and functionality.

Platform as a Service (PaaS). PaaS offers developers tools and platforms to build, deploy, and manage
applications within cloud-based environments. Examples of PaaS offerings include IBM Cloud Foundry
and Microsoft Azure App Service. PaaS strikes a balance between IaaS and SaaS by abstracting some of

47

Chapter 3. Background

the complexities of infrastructure management while still requiring developers to manage aspects such as
configuration and certain operational tasks.

3.1.5 Advantages

Cloud computing offers a wide range of advantages that have transformed how organizations operate, scale,
and innovate [6]. One of its primary benefits is cost effectiveness. By replacing capital expenses with
operational expenses through a pay-as-you-go model, organizations, particularly small and medium-sized
enterprises (SMEs), can avoid the upfront investments traditionally required for infrastructure, software, and
IT personnel. This shift allows them to allocate resources more strategically toward growth and innovation.

Another key strength is scalability and adaptability. Cloud platforms allow businesses to dynamically
scale computing resources based on real-time demand. This capability proves especially valuable during peak
usage periods, such as promotional campaigns or seasonal traffic spikes, and allows organizations to reduce
resources during off-peak times, optimizing both performance and cost.

In addition, global accessibility enhances workforce flexibility by enabling users to access data and appli-
cations from virtually any location with internet connectivity. This supports the rise of remote and hybrid
work models and facilitates seamless collaboration across distributed teams. Enhanced agility further
contributes to organizational competitiveness. Cloud services drastically reduce the time required to deploy
applications and services, empowering businesses to bring new products to market faster and adapt more
quickly to shifting conditions.

Improved collaboration is also supported through built-in cloud tools such as real-time editing, shared
workspaces, and integrated communication features. These tools streamline workflows and reduce barriers
to communication among geographically dispersed teams.

Cloud computing also relieves organizations of routine I'T maintenance. Automated maintenance and up-
dates are handled by service providers, who manage software patches and infrastructure upgrades, ensuring
systems remain secure and current without manual intervention. Furthermore, robust disaster recovery
and backup capabilities are built into most cloud platforms. These systems provide automated data
protection against hardware failures, cyber incidents, or natural disasters, allowing businesses to minimize
downtime and maintain continuity.

Advanced security measures are another major benefit. Major providers invest in cutting-edge tech-
nologies like encryption, multi-factor authentication, and continuous vulnerability monitoring, in addition to
adhering to rigorous compliance standards.

A further advantage is access to cutting-edge technologies. Cloud platforms allow organizations to
harness artificial intelligence (AI), machine learning (ML), and big data analytics without the need for
specialized hardware or software infrastructure. This democratization of advanced tools helps drive smarter
decision-making and operational efficiency.

Cloud computing also contributes to environmental sustainability. By consolidating workloads in cen-
tralized, energy-efficient data centers, cloud platforms help reduce carbon emissions compared to the envi-
ronmental footprint of individual enterprise data centers. Finally, the cloud fosters innovation by lowering
the barriers to entry for experimentation and rapid prototyping. Startups and smaller firms, in particular,
can leverage scalable infrastructure and advanced services to develop, test, and iterate on new ideas with
minimal risk.

3.1.6 Challenges

Despite its many benefits, cloud computing faces several challenges that continue to act as barriers to broader
adoption [6]. These challenges span technical, regulatory, economic, and organizational domains.

One of the most critical issues is the dynamic and unpredictable nature of workloads. Cloud-native
applications often experience rapidly fluctuating demand, which requires systems to scale resources in real
time. Static resource allocation strategies struggle to meet this variability, frequently resulting in either
underutilized infrastructure or performance bottlenecks.

48

3.1. Cloud Computing

Security and privacy remain top concerns for IT decision-makers. Cloud environments introduce uncer-
tainty at multiple levels, including network, application, host, and data security. Furthermore, ensuring
compliance with privacy regulations—such as GDPR or HIPAA—is particularly challenging when sensitive
data may be processed across multiple jurisdictions. The ambiguity around whether cloud service providers
can meet these regulatory requirements raises the risk of accidental violations.

Another fundamental challenge is connectivity and open access. The effectiveness of cloud computing is
largely dependent on the availability of reliable, high-speed internet. Like electricity in previous industrial
revolutions, global internet access has the potential to unlock innovation and fuel economic growth. However,
inconsistent infrastructure across regions limits the cloud’s potential as a universally accessible resource.

Reliability is also a major concern, especially for modern enterprise applications that require continuous
availability. Downtime, whether due to system failure or external factors, can have serious consequences.
Organizations must develop comprehensive contingency plans and include reliability clauses in their service-
level agreements (SLAs). High reliability often comes at increased cost, and this trade-off must be carefully
assessed.

Closely related is the issue of interoperability. Enterprises increasingly demand seamless integration be-
tween private and public cloud environments. However, legacy systems and fast-changing business needs often
complicate this goal. Although Software-as-a-Service (SaaS) solutions offer rapid deployment and cost advan-
tages, integrating them with existing infrastructure across different platforms can be challenging. Establishing
robust interoperability standards is essential for ensuring data consistency and operational integrity.

The economic value of cloud computing is another consideration. While cloud platforms reduce capital
expenditures and offer a flexible pay-as-you-go model, hidden costs—such as those associated with disaster
recovery, ongoing maintenance, and support—can erode expected savings. Additionally, service consolidation
and switching providers can introduce transition costs, which must be evaluated carefully to determine true
return on investment.

Organizational transformation is often necessary when adopting cloud services. As seen in previous
waves of IT evolution, new technologies demand new skill sets. Cloud computing reshapes traditional IT
roles, requiring professionals to focus on service integration, vendor management, and risk mitigation. Or-
ganizations must ensure that their workforce can adapt to these changes and distinguish between hype and
the practical applications of cloud technologies.

Finally, geopolitical challenges complicate the global scalability of cloud systems. Because data can be
stored or processed across international borders, compliance with regional regulations becomes complex.
For example, data sovereignty laws in some countries prohibit the use of foreign-based servers. Political
dynamics—such as concerns over the USA Patriot Act or ongoing debates about net neutrality—can in-
fluence the legality and accessibility of cloud infrastructure. Cloud providers have begun addressing these
concerns through innovations like virtual private clouds and regional data centers, but overarching political
and regulatory uncertainties remain a barrier to universal adoption.

3.1.7 Edge Computing

Edge computing represents a transformative approach to processing and managing data in modern networks
by bringing computation and storage closer to the source of data generation. Unlike traditional centralized
cloud computing, which relies on distant data centers, edge computing leverages distributed infrastructure
positioned at the edge of the network. This architecture addresses the growing demands for low-latency,
real-time processing in applications such as autonomous vehicles, drones, virtual reality, and IoT systems.
Zha et al. [77] proposed the following definitions for Edge computing:

“Edge computing is a new computing model that unifies resources that are close to the user
in geographical distance or network distance to provide computing, storage, and network for
application services.”

49

Chapter 3. Background

Hybrid Edge-Cloud Architecture

The hybrid edge-cloud architecture combines the scalability of cloud computing with the efficiency of edge
computing. As shown in Figure 3.1.1, the system is structured in three primary layers: the cloud computing
layer, the boundary layer, and terminal devices.[14]

Terminal Layer The terminal layer comprises various devices connected to the edge network, including
mobile devices and IoT devices such as sensors, smartphones, smart vehicles, and cameras. These devices
serve dual roles as both data consumers and providers. In this layer, only the sensing capabilities of the
devices are considered, rather than their computational power, to minimize service latency. Consequently, an
extensive number of devices in the terminal layer gather raw data and transmit it to higher layers for storage
and processing.

Boundary Layer The boundary layer, also referred to as the edge layer, serves as the core of the three-tier
architecture. Situated at the edge of the network, it comprises a distributed network of edge nodes such as
base stations, access points, routers, switches, and gateways. This layer enables terminal devices to connect
seamlessly while managing the storage and processing of the data they upload. It also communicates with the
cloud by transmitting processed data for further analysis or storage. Thanks to its proximity to end users,
the edge layer is well-suited for real-time data analysis and intelligent processing, offering improved efficiency
and security compared to relying exclusively on cloud computing. However, this layer is constrained by its
limited resources compared to the theoretically unlimited capacity of the cloud.

Cloud Layer The cloud layer remains the central hub for data processing within the cloud-edge computing
paradigm. This layer comprises high-performance servers and storage systems, providing robust computa-
tional and storage capabilities. It is particularly suited for applications requiring extensive data analysis,
such as predictive maintenance and decision-making. The cloud layer serves as a permanent repository for
data transmitted from the edge layer while also performing advanced analytics and processing tasks. [13]

Cloud Server

Cloud
Computing

Edge
Computing

. [, /N
e od—R LAk

Figure 3.1.1: Edge-Cloud Computing Architecture.

Advantages of Edge Computing

Edge computing offers numerous advantages that are driving its adoption across various industries [73]. One
of the most prominent benefits is reduced latency. By processing data closer to the source, such as IoT
devices, edge computing reduces the time required for information to travel to and from centralized cloud
servers. This is particularly critical for time-sensitive applications like real-time monitoring and control

50

3.1. Cloud Computing

systems, where even slight delays can lead to operational inefficiencies or pose safety risks.

Another advantage is improved bandwidth efficiency. Local data processing reduces the volume of data
transmitted to the cloud, thereby alleviating network congestion and optimizing bandwidth usage. This is
especially important in settings where bandwidth is constrained or data transmission costs are high.

Enhanced data privacy and security is also a key strength of edge computing. By processing sensitive
data locally rather than transmitting it across networks, organizations can better protect personal or pro-
prietary information. This approach not only helps in complying with data protection regulations but also
mitigates the risk of data breaches.

In terms of operational robustness, edge computing increases system reliability. Local processing enables
devices to function independently of the cloud, which is particularly beneficial when network connectivity is
unstable or interrupted. As a result, critical applications can continue operating without disruption.

The architecture also promotes scalability. As the number of IoT devices grows, more edge nodes can be
added to the system without burdening the centralized infrastructure. This flexibility supports the seamless
expansion of distributed computing environments.

Energy efficiency is another notable advantage, particularly for battery-powered IoT devices. By offloading
processing tasks to nearby edge nodes, these devices conserve energy, which is essential for deployments in
remote or inaccessible areas.

Edge computing also supports real-time data processing, making it ideal for use cases such as autonomous
vehicles, industrial automation, and smart city infrastructure. These applications require immediate respon-
siveness to changing conditions, which can only be achieved through localized processing.

Furthermore, the technology provides support for diverse applications across sectors like healthcare,
manufacturing, transportation, and urban development. Its versatility enhances its attractiveness for orga-
nizations integrating IoT technologies into their operations.

From an economic perspective, edge computing contributes to cost reduction by decreasing the need for
high-volume data transmission to the cloud and minimizing latency-related inefficiencies. This results in
lower bandwidth expenses and greater overall system efficiency.

Lastly, edge computing improves quality of service by ensuring that performance metrics such as latency,
bandwidth, and reliability are aligned with the specific demands of IoT applications. This is crucial for
systems that require high availability and low response times to function effectively.

3.1.8 Latency Sensitivity Across Application Domains

Different categories of applications impose varying latency requirements, which play a critical role in re-
source placement and scheduling in cloud—edge systems. Understanding these latency profiles is essential for
designing intelligent scheduling algorithms that prioritize QoS.

Table 3.1 summarizes typical application domains and their corresponding latency tolerance, based on a
synthesis of latency-aware scheduling literature.

Table 3.1: Latency-Aware Classification of Application Domains

Priority Level Application Examples Latency Tolerance
Ultra-Low (P1) VR/AR, real-time control systems < 10 ms

Low (P2) Online gaming, video conferencing 10-50 ms
Moderate (P3) Web services, transactional queries 50-200 ms
High (P4) Data syncing, telemetry monitoring 200-500 ms
Best-Effort (P5) Backups, batch analytics, reporting > 500 ms

These latency categories align with common deployment tiers in edge—cloud systems. For instance, ultra-
low latency applications are typically executed at the near-edge to meet strict real-time constraints, while

o1

Chapter 3. Background

best-effort tasks are deferred to central cloud clusters for cost efficiency [64, 67, 17].

3.2 Cloud-Native Applications

In recent years, cloud-native applications (CNAs) have emerged as a cornerstone of contemporary software
development, fundamentally transforming the design and deployment of software in cloud environments.
These applications are purpose-built to fully harness the benefits of cloud computing, characterized by their
inherent scalability and ability to function seamlessly on elastic platforms. Cloud-native applications rely on
automation and self-service mechanisms, enabling swift deployment and adaptability to fluctuating workloads.
By embracing core principles like resilience, agility, and efficient resource utilization, CNAs are uniquely
positioned to address the challenges of today’s dynamic and rapidly evolving digital ecosystem.

3.2.1 From Monolithic to Cloud-Native Applications

The evolution from monolithic applications to CNA[32] represents a important shift in software architecture
and deployment strategies. Monolithic applications are traditionally built as a single, unified unit, where all
components—such as the user interface, application logic, and data access layer—are tightly integrated and
interdependent. Monolithic applications rely on a centralized database, which creates a strict structure. While
this approach simplifies initial implementation and deployment, it poses significant challenges in scalability,
maintainability, and fault tolerance. Any change to one part of the system often requires the redeployment
of the entire application, leading to potential downtime and increased operational complexity.

In contrast, cloud-native applications adopt a microservices-based architecture, as depicted in Figure 3.2.1,
where each functionality is developed as an independent service. Each microservice operates autonomously,
has its database, and communicates with other services through well-defined APIs. This distributed approach
offers several advantages:

e Scalability: Individual microservices can scale horizontally based on demand without impacting other
components.

e Resilience: Faults in one microservice are isolated, ensuring the overall system remains operational.

e Flexibility: Updates or modifications can be made to specific services without requiring a full system
redeployment.

The diagram in Figure 3.2.1 highlights the structural differences between monolithic and cloud-native archi-
tectures. In monolithic systems, the tight coupling of components creates a single point of failure, whereas
in cloud-native systems, the decoupling of microservices eliminates this risk and enhances system reliability.

This transition facilitates faster development cycles, improved fault tolerance, and optimized resource uti-
lization. Moreover, the ability of cloud-native architectures to dynamically adapt to workload changes makes
them a preferred choice in modern software engineering.

Characteristics of Microservices

The microservices architecture is defined by several foundational principles that guide its design and opera-
tional philosophy.

Independent Development and Deployment Each microservice can be built, tested, deployed, and
scaled autonomously. This isolation empowers development teams to iterate rapidly and update services
without introducing regressions or dependencies in other parts of the system.

Single Responsibility Principle FEach microservice is responsible for a specific business capability. This
modularization promotes cleaner codebases, simplifies debugging, and facilitates targeted testing strategies.

Containerization Microservices are typically encapsulated in lightweight containers that include the code,
runtime, and dependencies. This packaging ensures consistent behavior across development, testing, and
production environments and simplifies deployment pipelines.

52

3.2. Cloud-Native Applications

Monolithic Architecture Microservice Architecture

Microservice

Microservice Ul

Business Layer i

- Microservice Microservice
Figure 3.2.1: Structural differences between monolithic and cloud-native architectures. In monolithic

systems, components are tightly coupled, relying on a centralized database. Cloud-native systems utilize a
microservices-based architecture with independent services and databases.

T

Inter-Service Communication Communication between microservices is managed through lightweight
protocols such as HTTP/HTTPS, gRPC, or WebSockets. This approach decouples services and allows for
more flexible orchestration and integration.

Minimal Inter-Service Dependency Microservices are designed to be loosely coupled, interacting only
with designated services when necessary. This design principle reduces the likelihood of cascading failures
and increases the resilience and maintainability of the overall system.

Advantages of Microservices Architecture

The transition to a microservices-based architecture introduces several critical advantages[32]. First, it en-
ables autonomous lifecycle management, as each microservice operates independently, allowing teams
to update, deploy, or restart individual components without affecting the entire system. This autonomy sup-
ports real-time updates and continuous integration practices. Second, microservices offer scalability and
resource optimization. Unlike monolithic applications that require scaling the entire system, microser-
vices allow selective scaling based on demand. High-traffic services can be allocated additional resources
independently, thereby improving cost-efficiency and system performance. Moreover microservices promote
fault isolation and resilience. Because services are decoupled, a failure in one component is contained
and does not necessarily disrupt the overall application. This design enhances system reliability and fault
tolerance.

3.2.2 Network Slicing in Cloud-Native Architectures

Network slicing[59], while not exclusively tied to cloud-native architectures, is a fundamental enabler of these
paradigms, particularly in the context of 5G networks. As shown in Figure 3.2.2, cloud-native architectures,
such as Kubernetes clusters, provide a flexible framework for deploying and managing applications across
distributed infrastructures. Similarly, network slicing facilitates the creation of multiple virtual networks on
shared physical infrastructure. Each virtual network (or slice) is logically isolated, allowing for independent
configuration and allocation of resources. This capability ensures optimization for specific applications, user
groups, or service components such as microservices.

Key technologies, including Software-Defined Networking (SDN) and Network Functions Virtualization

53

Chapter 3. Background

(NFV), empower this flexibility by allowing for scalable, dynamic allocation of network resources. On the
computational side, containerization offers similar benefits by tailoring resource allocation to each microser-
vice.

1 =
| ' |
| : |
E / _;_li' N N
i |
ST >

Figure 3.2.2: Kubernetes cluster architecture illustrating the control plane and worker nodes.|71]

3.2.3 Container Orchestration

The components illustrated in Figure 3.2.2 form the backbone of Kubernetes [58], one of the most widely
adopted container orchestration systems. Containers, unlike traditional virtual machines, share the host’s
kernel, making them lightweight, portable, and quick to deploy. These features make containers an ideal
choice for hosting microservices, especially in scenarios where applications need to scale dynamically or
operate in distributed environments.

Microservices encapsulate their code and dependencies within container images, which can be illustrated as
container instances. To handle high workloads or reduce latency, orchestrators like Kubernetes allow for
deploying multiple container instances across a distributed infrastructure. The orchestration process demon-
strated in Figure 3.2.2 ensures that containers operate smoothly while meeting performance and resource
demands.

3.2.4 Advantages of Orchestrators

Orchestrators provide critical capabilities that simplify and strengthen the management of containerized
applications [58]. One of the most remarkable advantages is automated management. In large-scale envi-
ronments with thousands of containers, manual administration becomes unfeasible. Kubernetes addresses this
challenge through its centralized Control Plane, which automates essential tasks such as container scheduling,
scaling, load balancing, and health monitoring across distributed nodes.

Another key benefit is resilience. Orchestrators maintain high availability by detecting container failures
and automatically restarting or rescheduling them to ensure continuous operation. They also dynamically
scale resources based on real-time workload demands, improving system efficiency and responsiveness.

54

3.3. Internet of Things (IoT)

Finally, orchestrators contribute to enhanced security. By reducing manual intervention in deployment
and scaling processes, they minimize the risk of human error and enforce consistent security policies across
environments. Kubernetes, in particular, offers fine-grained access controls, network policies, and secret
management features that further strengthen the platform’s security posture.

3.3 Internet of Things (IoT)

With the continuous evolution of information technology, the Internet of Things (IoT) has emerged as a
critical component of modern life. IoT enables interconnected devices and sensors to gather and exchange vast
amounts of data via sophisticated communication networks comprising millions of nodes. This interconnected
ecosystem allows IoT applications to deliver highly precise and granular network services, enhancing user
experiences. [47]

As IoT adoption grows, the volume of data generated by sensors and devices demands efficient processing
to extract meaningful insights and provide intelligent services for users and businesses alike. Traditional
cloud computing models require this data to be transmitted to centralized servers for processing, with results
subsequently relayed back to the devices. This centralized approach places substantial demands on network
infrastructure, often leading to increased data transmission costs and resource constraints.

The limitations of conventional cloud architectures become even more apparent with the rise of time-sensitive
IoT applications, such as smart transportation systems, smart power grids, and smart cities. These applica-
tions require rapid response times, where delays could compromise safety or operational efficiency. However,
centralized cloud systems are hindered by long transmission paths, bandwidth limitations, and network con-
gestion, resulting in latency levels that are unsuitable for real-time IoT requirements.

Moreover, the majority of IoT devices, including smart sensors, are constrained by limited energy resources.
Prolonging their operational lifespan necessitates effective task scheduling, which allocates computational
loads to devices with greater power reserves and processing capacity. By prioritizing localized data processing
closer to end-users, both transmission delays and energy consumption can be minimized. Additionally,
network traffic plays a important role in determining data transmission speed, with high congestion levels
further exacerbating delays and power costs. Addressing these concerns is pivotal to ensuring the scalability
and effectiveness of IoT systems across diverse applications.[73]

* Reporting

* Long-term data analytics
* Long-term data storage
» Data infrastructure Cloud Servers

Enterprise integration

» Data processing

» Real-time data analytics

* Real-time action response
"
»

Intelligent Gateway
Temporary data storage Edge Com puting
Communications/messagin
* Data source
Messaging

loT Devices

Figure 3.3.1: Illustrates the three-layer architecture of edge computing-based IoT, which consists of three
layers: IoT devices, Edge Computing, and Cloud Computing. All IoT devices are end users for edge
computing. In this architecture, IoT can benefit from both edge computing and cloud computing, because
of the characteristics of the two structures (i.e., high computational capacity and large storage)

73]

3.3.1 Components of IoT

ToT networks are typically composed of the following key components [47]:

55

Chapter 3. Background

Sensors/Devices: Sensors serve as the fundamental building blocks of IoT, responsible for collecting and
generating data that is essential for network functionality. These sensors support diverse data types and act
as interactive interfaces for end-users, enabling seamless interaction with the IoT ecosystem. Furthermore,
they facilitate communication across the network, ensuring that application-specific requirements are met
while maintaining efficient data transmission and device interoperability.

IoT Gateways: IoT gateways act as intermediaries that link sensors with core cloud networks, facilitating
smooth data flow. In addition to their role as communication bridges, they perform data pre-processing
to reduce redundancy and optimize data for transmission. By aggregating sensor data and forwarding it
to cloud servers for advanced processing, IoT gateways enhance system efficiency. Once the cloud servers
analyze and process the data, gateways relay the results back to users, ensuring a seamless and responsive
IoT environment.

Cloud/Core Network: The cloud infrastructure is central to processing, storing, and analyzing IoT
data. Cloud servers handle complex computations and ensure that computing resources are readily available
to support a variety of applications. This infrastructure enables large-scale data processing and real-time
analytics, making it possible for IoT applications to function efficiently. Once data has been processed, the
results are transmitted back to users, completing the IoT data loop and enabling real-time decision-making
[73].

3.3.2 Communication Models

IoT relies on several communication models to enable interaction among devices, gateways, and cloud systems
[73].

Machine-to-Machine Communication: Machine-to-machine (M2M) communication facilitates direct
device-to-device interaction without requiring intermediary hardware. Devices connect over various networks,
such as Bluetooth or IP-based systems, allowing seamless data exchange. This model is commonly used
in smart home and automation applications, enabling efficient device coordination. However, it is often
constrained by protocol compatibility, which can limit interoperability between different IoT devices.

Machine-to-Cloud Communication: In this model, IoT devices transmit data to cloud servers for stor-
age and processing. The architecture relies on conventional network infrastructures, such as Wi-Fi, enabling
devices to send vast amounts of data to centralized cloud environments. However, this model is bandwidth-
sensitive, meaning that network congestion and latency can affect performance. To address these challenges,
enhancements in network architecture and resource allocation are critical for optimizing communication effi-
ciency and reducing potential bottlenecks .

Machine-to-Gateway Communication: The machine-to-gateway communication model employs
application-layer gateways as intermediaries to enhance security and facilitate data translation between de-
vices and cloud services. By offloading computational tasks to gateways, this model reduces power consump-
tion for IoT devices, extending their operational lifespan. A common implementation of this model is found
in personal health devices, where mobile phones often act as gateways, collecting and transmitting data to
cloud-based health monitoring systems. This approach ensures real-time data processing while maintaining
energy efficiency.

3.3.3 Impact of IoT

The adoption of IoT is driving changes across industries and daily life, reshaping the way humans interact
with technology and data [73]. IoT has revolutionized transportation, healthcare, and urban living, enabling
innovations such as smart cities and intelligent energy grids. In smart cities, interconnected sensors optimize
traffic flow, reduce energy consumption, and improve public safety, leading to more efficient and sustainable
urban environments. Similarly, in healthcare, wearable IoT devices allow for real-time health monitoring,
early disease detection, and personalized treatment plans, significantly enhancing patient care and medical
outcomes.

56

3.4. Deep Learning

The raise of IoT has led to an exponential increase in connected devices. By 2020, the number of intercon-
nected IoT devices was projected to reach 75 billion, far surpassing the global human population [73]. This
rapid expansion has created an enormous influx of data, necessitating advancements in network infrastructure,
cloud computing, and data analytics to manage and process information efficiently.

IoT is poised to become one of the most dominant sources of data, fueling innovations in big data analytics,
artificial intelligence, and intelligent systems. The vast amounts of data generated by IoT devices are being
leveraged to enhance predictive analytics, automation, and decision-making across multiple domains. In
industries such as manufacturing and logistics, IoT-driven predictive maintenance helps reduce downtime and
operational costs by detecting potential failures before they occur. Additionally, IoT-driven Al applications,
such as autonomous vehicles and smart home assistants, are transforming everyday experiences by making
interactions with technology more seamless and intelligent.

As IoT continues to expand, its impact will extend beyond connectivity, shaping the future of digital trans-
formation and technological evolution. The convergence of IoT with other emerging technologies will further
drive efficiencies, enhance security, and create new opportunities for businesses and consumers alike.

3.4 Deep Learning

Artificial Intelligence (AI) [37] is the field of Computer Science dedicated to developing systems that can
perform tasks requiring human-like intelligence. Al encompasses a broad spectrum of approaches, including
rule-based systems, statistical methods, and machine learning techniques. At its core, Al focuses on creating
intelligent agents—systems that can perceive their environment and take actions to maximize their chances
of achieving specific objectives.

A major branch of Al is Machine Learning (ML) [55], which enables machines to learn from data and
improve their performance over time without explicit programming. Researchers have been advancing Ma-
chine Learning techniques since the 1950s, leading to breakthroughs in automation, pattern recognition, and
predictive modeling. Over the past few decades, the field has evolved rapidly, enabling machines to solve
increasingly complex problems.

Building on these advancements, Deep Learning (DL) [65] has emerged as a specialized subfield of Machine
Learning. As illustrated in Figure 3.4.1, Deep Learning distinguishes itself through the use of deep artificial
neural networks, where "deep" refers to the presence of multiple hidden layers within the network. Unlike
traditional Machine Learning, which often relies on handcrafted features, Deep Learning enables models to
automatically extract hierarchical representations from raw data, enhancing their ability to recognize patterns
and generalize across tasks.

Deep Learning has revolutionized Al by achieving state-of-the-art performance in areas such as computer
vision, natural language processing, and reinforcement learning. The combination of large-scale datasets,
enhanced computational power, and improved optimization techniques has made Deep Learning a dominant
approach in modern Al research and applications.

Because of improvements in training methods, the availability of enormous datasets, and advances in com-
puting power, Deep Learning has become increasingly popular. Using specialized hardware like GPUs and
TPUs, modern neural networks can be trained effectively, leading to the creation of extremely complex mod-
els that can outperform humans in specific tasks. Additionally, by enabling models to learn straight from
raw inputs, end-to-end learning does away with the necessity for human feature selection. Architectures like
Deep Q-Networks (DQN) [49], AlexNet [38] for image classification, and Seq2Seq [62] for machine translation
have all benefited greatly from this idea.

Deep Learning’s capacity to use distributed representations—where each input is represented by several
features, each of which may correlate to numerous inputs—is one of its main advantages. By doing this, deep
models may effectively generalize even in high-dimensional regions, overcoming the curse of dimensionality.
Furthermore, by avoiding overfitting and speeding up training convergence, regularization strategies like
Dropout [61] and Batch Normalization [34] have improved the effectiveness and resilience of deep networks.

o7

Chapter 3. Background

Artificial Intelligence

Machine Learning

Deep Learning

Figure 3.4.1: A hierarchical representation of Artificial Intelligence, Machine Learning, and Deep Learning.

3.4.1 Deep Learning Architecture

Deep Learning [65] contrasts with shallow learning, where conventional algorithms such as linear regression,
logistic regression, support vector machines (SVMs), decision trees, and boosting operate with a single
transformation between input and output layers. These methods often require manual preprocessing and
feature selection before training. In contrast, Deep Learning employs multiple hidden layers between the
input and output layers, allowing for a more expressive feature transformation.

A Deep Neural Network (DNN) counsists of the following key components:
e Input Layer: Receives raw input data.
e Hidden Layers: Process and transform the data through weighted connections.
e Output Layer: Produces predictions or classifications based on learned representations.

Each unit (or neuron) in a layer computes a weighted sum of the outputs from the previous layer. This
sum is then passed through an activation function to introduce non-linearity into the model. Common
activation functions include the sigmoid function, which maps input values to a range between 0 and 1,
the tanh function, which is similar to the sigmoid but ranges from -1 to 1, and the Rectified Linear Unit
(ReLU), which is the most widely used activation function in modern deep networks due to its ability to
mitigate vanishing gradient issues.

Once data flows from input to output in a process known as forward propagation, the network evaluates
its performance using a loss function. The error derivatives are then computed and propagated backward
through the network using backpropagation. This optimization process updates the weights of the network
iteratively, allowing it to learn from data effectively.

3.4.2 Recurrent Neural Networks (RNNs)

Recurrent Neural Networks (RNNs) are a foundational class of neural network architectures designed to han-
dle sequential data, where the order and temporal dependencies of the input are essential. Unlike traditional
feedforward neural networks, which process each input independently, RNNs incorporate cyclic connections
that allow the network to maintain a hidden state that captures contextual information from previous time
steps. This inherent recurrence provides RNNs with a form of short-term memory, enabling them to model
patterns over sequences of variable length. The idea was first formalized by Elman [74], whose work demon-
strated the potential of recurrent connections for learning temporal structures in data.

The core mechanism of an RNN revolves around the recursive update of its hidden state. At each time step
t, the network receives an input vector z; and updates its hidden state h; based on both the current input
and the previous hidden state h;_;. This recurrence enables the network to carry forward information across

58

3.4. Deep Learning

the sequence. In its simplest form, the hidden state is updated via the equation.
he = ¢(Wanzr + Whnhi—1 + by),

where W, and Wy, are learnable weight matrices, by, is a bias term, and ¢ is a nonlinear activation function
such as tanh or ReLLU. Depending on the task, an output y; may also be generated at each time step using

Yo = D (Whyhe +by),

where W}, and b, are the output weights and biases, respectively, and 1) is typically a softmax or identity
function.

This design allows RNNs to handle a wide range of tasks, including sequence classification, sequence-
to-sequence learning, and time-series prediction. The parameter sharing across time steps makes RNNs
parameter-efficient and well-suited for modeling sequences of arbitrary length. Furthermore, their flexibility
in handling variable input and output lengths makes them ideal for tasks such as language modeling, speech
recognition, and real-time sensor analysis.

However, despite their conceptual appeal, standard or "vanilla" RNNs are known to suffer from significant
training challenges. One of the most well-documented issues is the vanishing or exploding gradient problem,
which arises during backpropagation through time (BPTT) [74]. As the gradients are propagated backward
over many time steps, they can either decay exponentially to zero or grow uncontrollably, making learning
either ineffective or unstable. As a consequence, vanilla RNNs often fail to capture long-term dependencies,
especially in tasks where distant inputs must influence future outputs.

In summary, Recurrent Neural Networks offer a powerful framework for modeling sequential patterns in
data. Although constrained by issues related to training stability and memory limitations, they serve as the
conceptual foundation for more advanced temporal modeling techniques such as LSTMs and Transformer-
based architectures.

3.4.3 Long Short-Term Memory Networks (LSTM)

Long Short-Term Memory (LSTM) networks are a specialized type of RNN designed to overcome the difficul-
ties that traditional RNNs face when learning long-range dependencies in sequential data. Standard RNNs
typically struggle with vanishing or exploding gradients during training, which hinders their ability to connect
events that occur far apart in a sequence. LSTMs address this problem by introducing a more sophisticated
memory structure that allows information to persist across long time intervals. This architecture was first
introduced by Hochreiter and Schmidhuber [31], and it remains one of the most influential contributions in
the field of deep learning for sequence modeling.

At the heart of an LSTM network is the cell state, a vector that functions as an internal memory, capable of
carrying information across multiple time steps. This cell state is manipulated by three learnable gates: the
input gate, forget gate, and output gate. Each gate consists of a sigmoid-activated layer, which decides the
extent to which information should be added, retained, or outputted at each step in the sequence. The input
gate determines how much of the new incoming information should be incorporated into the cell state, while
the forget gate decides which parts of the previous memory should be discarded. The output gate controls
how much of the updated cell state is passed on to the next hidden state and the output of the current time
step.

The internal architecture of a standard LSTM cell is illustrated in Figure 3.4.2, which highlights the flow
of data through the gates and memory cell. The diagram also shows the neural operations and pointwise
computations that regulate information flow, as well as the role of nonlinear activation functions such as the
sigmoid and hyperbolic tangent.

59

Chapter 3. Background

Input Ouitput ‘ﬁ(f]
gate gate

clt-1) o~ 7 cg).

h(f)

Neural Pointwise Vector
. node operation transfer

Concatenate Capy Bias
Figure 3.4.2: Standard LSTM cell architecture showing the internal gating mechanisms and information
flow. [74]

The update process of an LSTM is governed by a sequence of mathematical operations. At each time step,
the model receives an input vector and a hidden state from the previous time step. The forget gate evaluates
what proportion of the previous cell memory should be retained. Simultaneously, the input gate evaluates
how much of the current input, processed through a candidate activation, should be added to the memory.
These two results are combined to produce the updated cell state. Finally, the output gate determines the
next hidden state by applying a nonlinear transformation to the updated cell state and scaling it accordingly.
This controlled memory update mechanism allows LSTMs to learn temporal relationships effectively, even
over long sequences.

Formally, for a given input vector x;, previous hidden state h;_1, and previous cell state ¢;_1, the operations
can be described by the following equations:

Je = oWy - [hs_1,24] + by),

iy = o (Wi - [hi—1,2¢] + b;),

¢ = tanh(W, - [hy_1, 4] + be),
= fr®ci—1+ i O,

o = (W - [hi—1,2¢] + Do),

hy = ot ® tanh(c,),

where o is the sigmoid activation function, tanh is the hyperbolic tangent function, and ® denotes element-
wise multiplication.

LSTM networks offer several advantages that have led to their widespread adoption in sequence modeling
tasks. Their ability to maintain and update long-term memory makes them particularly well-suited for
applications such as speech recognition, language modeling, machine translation, and time-series forecasting.
In the context of cloud computing, LSTMs have proven useful for resource usage prediction, enabling more
efficient and anticipatory resource allocation in dynamic environments. Their architectural flexibility also
allows for variants such as bidirectional LSTMSs and deep stacked LSTMs, which further improve performance
in tasks requiring nuanced sequence understanding.

3.4.4 Transformers

Transformers [45] are a class of deep learning models that have revolutionized the processing of sequential
and structured data by introducing the self-attention mechanism, which allows the model to learn contextual
relationships between input elements regardless of their position. Unlike traditional models such as RNNs

60

3.5. Reinforcement Learning

or Convolutional Neural Networks (CNNs), Transformers avoid sequential dependencies during training,
enabling substantial gains in computational efficiency through parallelization. At the heart of the Transformer
architecture lies the encoder-decoder structure, as illustrated in Figure 3.4.3. Each encoder and decoder layer
is composed of a multi-head self-attention mechanism, followed by position-wise feed-forward networks, with
residual connections and layer normalization applied throughout. The self-attention module allows the model
to weigh the influence of different parts of the input sequence dynamically, making it particularly adept at
modeling long-range dependencies. In the self-attention mechanism, each token is represented by three
vectors: a query (@), a key (K), and a value (V). The attention score between tokens is computed using
scaled dot products between queries and keys, followed by a softmax function that normalizes these scores into
weights. These weights are used to combine the value vectors, producing a context-sensitive representation
for each token. Transformers offer many advantages over previous architectures. They enable full parallelism
during training, support flexible input-output configurations, and exhibit superior ability to capture long-
term dependencies without suffering from gradient vanishing or exploding issues. This architectural strength
has facilitated their rapid adoption across domains beyond natural language processing, including computer
vision, speech processing, and bioinformatics. Modern Transformer-based models often undergo pre-training
on massive unlabeled corpora using self-supervised objectives such as masked language modeling, and are
later fine-tuned for downstream tasks like translation, classification, or summarization. Variants such as
Vision Transformers (ViTs), Sparse Transformers, and Mixture-of-Experts models have further extended the
capabilities of the original framework.

Output Probabilitics

Linear & Softmax

!

Add & Norm -
Position-wise
4 | ?
Add & Norm -
- Add & Norm f
T Multi-Head
Postiion-wise Attention wl
FFH
Lx| ' Add& Nom Add & Norm
Mulii-Head (Maskod)
. Multi-Head
CEEET Attention
. vy A oy
Positional Encodings —-Ea Ea-— Positiona] Encodings
Token Embedding Token Embedding
Inputs (Shifted) Outputs

Figure 3.4.3: Architecture of the original Transformer model showing the encoder-decoder structure with
multi-head attention and feed-forward layers. Adapted from Lin et al. [45].

3.5 Reinforcement Learning

Reinforcement Learning (RL) focuses on enabling agents to learn optimal behavior through interaction with
a dynamic environment, guided by feedback in the form of rewards or penalties [27]. Unlike supervised
learning, RL does not require labeled data or explicit instructions for achieving a task but can integrate

61

Chapter 3. Background

domain-specific knowledge or expert input when available. This versatility makes RL a powerful framework
for solving a wide range of sequential decision-making problems.

3.5.1 Reinforcement Learning as a Distinct Machine Learning Category

RL is widely acknowledged as one of the three foundational approaches to Machine Learning, standing
alongside Supervised Learning and Unsupervised Learning. Each of these approaches serves distinct purposes
in the realm of data-driven intelligence, and RL sets itself apart by its reliance on interactive learning through
trial and error in dynamic environments.

In Supervised Learning (SL), the learning algorithm is trained on a dataset comprising labeled examples,
where each input is paired with a corresponding output that represents the correct answer. SL aims to infer a
mapping function that generalizes accurately from the training data to unseen inputs. This approach under-
pins many core applications in ML, such as image recognition, natural language processing, and predictive
analytics. By leveraging explicitly labeled data, SL excels in scenarios where clear supervision is feasible and
sufficient data annotations exist to train high-performance models. [29]

In contrast, Unsupervised Learning (UL) operates on unlabeled data to discover inherent patterns, rela-
tionships, or latent structures within the dataset. UL is particularly valuable in exploratory analysis and
applications where labeled data is scarce or unavailable. Common tasks under UL include clustering, where
data points are grouped based on similarity, and dimensionality reduction, which seeks to simplify data
representation while preserving essential features. Examples of UL techniques include principal component
analysis (PCA) and k-means clustering, among others. [10]

Reinforcement Learning distinguishes itself from both SL and UL by its unique learning paradigm. In
RL, learning does not depend on predefined labels or hidden structures within static datasets. Instead, RL
centers around an agent that interacts dynamically with an environment. The agent takes action, observes the
consequences in the form of new environmental states, and receives scalar rewards or penalties as feedback.
This feedback mechanism enables the agent to iteratively improve its decision-making policy, aiming to
maximize long-term cumulative rewards over time. Unlike SL, where the correct outcomes are explicitly
provided for each input, or UL, where no feedback mechanism exists, RL offers a framework for learning
optimal strategies through self-guided exploration and exploitation of the environment.[63]

This interaction-centric approach makes RL particularly well-suited for solving complex, sequential decision-
making problems in which explicit supervision is either impractical or unavailable. Moreover, RL accommo-
dates scenarios with delayed rewards, allowing the agent to optimize behaviors that yield benefits in the long
run, even if immediate feedback is sparse or contradictory. By focusing on actions and their outcomes, RL
addresses challenges in diverse fields, including robotics, autonomous systems, game playing, and resource
allocation in dynamic systems.

3.5.2 Fundamental Elements of Reinforcement Learning

Reinforcement Learning (RL) comprises several key components that define the interaction between the agent
and its environment [42]:

e Agent: The decision-making entity that learns and acts based on feedback from the environment.

e Environment: The system with which the agent interacts, providing rewards or punishments in
response to actions.

e State (s;): A representation of the environment at time step ¢, capturing all relevant information for
decision-making.

e Action (a;): A choice available to the agent at time ¢ that influences the environment’s state.

e Reward (r;): A scalar feedback signal indicating the immediate benefit or cost of an action taken by
the agent.

62

3.5. Reinforcement Learning

3.5.3 Markov Decision Processes

Reinforcement Learning problems are commonly modeled as Markov Decision Processes (MDPs) [42],
which provide a mathematical framework for sequential decision-making under uncertainty. An MDP consists
of:

A set of states S, representing all possible configurations of the environment.

A set of actions A available to the agent.

e Transition dynamics T'(s;,a, siy1), denoting the probability of transitioning to state s;y1 given
current state s; and action a;.

e A reward function R(st, at, st+1), quantifying the immediate reward for each transition.
e A discount factor v € [0,1], which balances immediate and future rewards.

The agent’s goal is to learn an optimal policy 7(a¢|s;), which maps states to actions to maximize the expected
cumulative reward:

T
R, — k
t = Y Tt+k
k=0

Where T denotes the episode length. The optimal policy 7* satisfies:

7" = argmax E[R;].

3.5.4 The Reinforcement Learning Cycle

The RL process is an iterative learning cycle [42]:
1. Observation: The agent perceives the current state.

2. Action Selection: The agent selects an action based on its policy, balancing exploration and exploita-
tion.

3. Environment Feedback: The environment transitions to a new state and provides a reward.

4. Policy Update: The agent refines its policy using algorithms such as Q-learning or policy gradient
methods.

This cycle continues until convergence or a terminal state is reached.

A key objective is to maximize the expected cumulative reward:
o0
Ri=> 7*ri
k=0

Where ~ discounts future rewards.

Traditional RL techniques may struggle with scalability due to large state and action spaces. Deep Reinforce-
ment Learning (DRL) techniques, such as Deep Q-Networks (DQN), leverage neural networks to approximate
value functions and policies, enabling efficient learning in complex environments.

Figure 3.5.1 illustrates this cyclical interaction process between the agent and the environment.

63

Chapter 3. Background

State (S,)

Reward (r;)
Si'+1

Piid

e

ot
erssssssssssnnnnn
.

l
a

Figure 3.5.1: The agent-environment interaction cycle in RL: observation, action selection, feedback, and policy
update [5].

Environment

T Action (a;)

3.5.5 Q-learning

Q-learning is a foundational algorithm in reinforcement learning, renowned for its versatility in sequential
decision-making tasks. Originally introduced as an incremental method for infinite-horizon Markov Decision
Processes, it has since been applied across disciplines including statistics, artificial intelligence, and control
theory [18].

The Q-function

The core of Q-learning is the action-value function, or the Bellman Optimality Equation, denoted as Q(z, a).
It estimates the expected cumulative reward of taking action a in state z and following the current policy
thereafter [18]:

Q(z,a) = IE[Y +ymaxQ(z',a’) | x,a},
Where:

e Y represents the immediate reward obtained after executing action a.

v € [0,1] is the discount factor, balancing immediate versus future rewards; lower values prioritize
short-term gains, while higher values emphasize long-term planning.

e 7’ denotes the next state reached after taking action a in state x.
e o’ is the next action considered in the subsequent state x’.
This formulation is recursive and aligns with the Bellman Optimality Equation, which provides the theoretical
foundation for Q-learning.
Iterative Computation of the Q-Function
The Q-function can be approximated using different iterative methods [18]:

e Value Iteration: This method directly implements the Bellman equation by repeatedly updating the
Q-function:

Q" (z,a) = E[Y +ymax Q*(a',) | z,a].

64

3.5. Reinforcement Learning

As k — oo, QF converges to Q* when v < 1.

e Temporal-Difference Learning (TD): In practice, Q-learning uses a temporal-difference update
rule to refine Q(z,a) incrementally based on observed transitions:

Q(x,a) + Q(z,a) + « [Y +ymaxQ(z',a’) — Q(z,a)|,
Where « € (0,1) is the learning rate controlling the step size of each update.

Convergence and Stability

Q-learning is guaranteed to converge to Q* under certain conditions:
1. The learning rate « diminishes over time but not too quickly.
2. Every state-action pair is visited infinitely often, ensuring sufficient exploration.
3. The discount factor v < 1 ensures that the cumulative rewards remain finite.

Under these conditions, Q-learning provides a robust and widely applicable solution for sequential decision
problems.

3.5.6 Deep Reinforcement Learning

Deep reinforcement learning (DRL) is an advanced integration of artificial neural networks and RL. The term
"deep" highlights the presence of multiple neural network layers that mimic the structure and functioning
of the human brain. Implementing DRL typically demands extensive interactive datasets and substantial
computational resources. However, the rapid advancements in computing power in recent years have paved
the way for numerous successful applications of DRL.

The first successful attempt to combine reinforcement learning with deep learning is credited to the deep
Q-network (DQN) developed by Google DeepMind [49]. This approach integrated Q-learning with a convo-
lutional neural network to approximate the optimal Q-function in a continuous state space.

One notable enhancement to DQN is the double deep Q-network (Double DQN) [30], proposed by Hasselt
et al. (2016), which incorporates double Q-functions to reduce value overestimation. This technique involves
learning two Q-functions to decouple action selection from action evaluation. Another variant, the deep
deterministic policy gradient (DDPG) algorithm [44], is designed for continuous control tasks. It learns
both a Q-function and a deterministic policy simultaneously. However, DDPG is prone to overestimation
of Q-values, which can lead to unstable policies. To address this issue, Fujimoto et al. (2018) introduced
twin delayed DDPG (TD3), which incorporates techniques such as bounded double Q-functions and delayed
policy updates to improve stability [25].

65

Chapter 3. Background

3.5.7 Multi-Agent Systems

A multi-agent system (MAS) consists of several autonomous decision-making entities—agents—that function
within a common environment, each making localized judgments based on incomplete observations, personal
policies, or decentralized information. Each agent may function as a gateway, scheduler, or orchestrator
in the context of edge-cloud computing, controlling a portion of resources or responding to task requests
concurrently with other agents.

MAS’s decentralized architecture offers a number of benefits over centralized methods. Combined explosion is
a problem with traditional control frameworks that demand joint optimization across all system components.
As the number of entities rises, the computing cost grows exponentially. By using scalable local calculations,
the multi-agent rollout paradigm, as described in [9], lessens this burden. Because each agent separately
calculates its own policy or value estimations, the system as a whole may grow linearly in size as the number
of agents increases. In contemporary edge-cloud architectures, where scalability and real-time responsiveness
are crucial, this feature is very important.

Furthermore, MAS designs are naturally adaptable and suitable for deployment in a distributed setting.
Agents frequently need little communication and can work in parallel and asynchronously. This makes them
perfect for applications like autonomous robots, widely dispersed computer systems, and large-scale sensor
networks where centralized management is unfeasible because of latency, fault tolerance, or infrastructure
limitations. The freedom of communication is another important benefit. From completely isolated agents to
systems with selected, restricted coordination, MAS algorithms may be adjusted to function in a variety of
communication regimes. From bandwidth-constrained edge nodes to high-speed data centers, this flexibility
enables a broad variety of deployment scenarios.

3.6 Resource Allocation

Resource allocation is the process of efficiently distributing computing resources, such as CPU, memory,
bandwidth, power, and storage, among competing applications, services, or users to ensure optimal system
performance while maintaining QoS requirements [3]. This process is crucial in modern computing paradigms,
where computing demands are continuously evolving, requiring adaptive and efficient resource management
strategies.

Achieving these objectives forms the foundation for the sustainable and intelligent operation of modern
distributed systems. The problem of optimal resource allocation under constraints of cost, latency, and
energy consumption shares similarities with the classic knapsack problem and ultimately belongs to the class
of NP-complete problems [41], which necessitates the application of intelligent and approximate methods for
its effective solution.

In distributed and heterogeneous environments, where computing nodes vary in capacity, power availability,
and proximity to data sources, resource allocation becomes particularly challenging. With the increasing
number of interconnected devices generating vast amounts of data, managing computational workloads, data
transfers, and energy consumption effectively is essential to prevent network congestion, latency issues, and
inefficient power usage. Optimized resource allocation mechanisms are required to balance workloads, regulate
network bandwidth, and distribute storage efficiently, ensuring that computational resources are utilized
effectively while meeting performance and QoS requirements [73, 56]. By integrating adaptive allocation
strategies, modern computing infrastructures can dynamically respond to fluctuating demands, ensuring
efficient, reliable, and cost-effective operations across diverse applications.

3.6.1 Necessity of Resource Allocation

The rapid expansion of cloud computing, edge computing, and IoT has significantly increased the com-
plexity of managing resources efficiently. Cloud-native applications operate in highly dynamic, multi-tenant
environments, where workloads fluctuate unpredictably. Similarly, edge computing introduces constraints
on computation and power availability, making it essential to efficiently balance workloads between cloud
servers, edge nodes, and end devices [60].

The key objectives of resource allocation include:

66

3.6. Resource Allocation

Scalability and elasticity: Ensuring seamless adaptation to workload fluctuations.
Low-latency processing: Optimizing task distribution for real-time applications.

Energy efficiency: Allocating power-constrained resources in IoT and edge computing.
Avoiding network congestion: Regulating bandwidth usage to maintain seamless connectivity.

Cost optimization: Dynamically provisioning cloud resources to minimize expenses.

67

Chapter 3. Background

68

Chapter 4

Related Work

Contents
4.1 Forecasting in Cloud Resource Management 70
4.1.1 Motivation for Forecasting in Cloud Systems 70
4.1.2 Forecasting for Resource Allocation 70
4.1.3 Classical Forecasting Approaches 70
4.1.4 Machine Learning and Deep Learning Models 71
4.2 Resource Allocation Mechanisms 0oL, 71
4.2.1 Workload Variability in Resource Allocation 72
4.2.2 Static Resource Allocation Mechanisms 72
4.2.3 Dynamic Resource Allocation Mechanisms 73

69

Chapter 4. Related Work

4.1 Forecasting in Cloud Resource Management

4.1.1 DMotivation for Forecasting in Cloud Systems

Cloud computing has experienced rapid growth in recent years and is now widely adopted across enterprises
and organizations. One of the major challenges in this domain is the effective processing and accurate
prediction of time-series data generated by cloud systems [50]. Resource provisioning is critical to this
challenge, and it must be both adaptive and predictive to match dynamic workload demands.

Time series data refers to sequences of observations collected at successive, evenly spaced points in time.
In cloud computing environments, such data typically arises from telemetry systems that monitor and log
various performance and usage metrics over time. These include, but are not limited to, CPU utilization,
memory consumption, disk I/O rates, network traffic, and task scheduling patterns. Each of these metrics
forms a univariate or multivariate time series that captures the dynamic behavior of cloud infrastructure
and workloads. This temporal data is crucial for understanding system behavior, detecting anomalies, and
forecasting future states. Effectively analyzing time series data is essential for intelligent resource provisioning,
performance optimization, and meeting service-level objectives in cloud-native systems.

Cloud workloads are inherently high-dimensional, nonstationary, and often exhibit sudden spikes or drops.
Existing forecasting methods frequently struggle to cope with this variability, leading to inefficiencies such as
over-provisioning or under-provisioning of resources. Over-provisioning results in underutilized infrastructure
and increased operational costs, while under-provisioning may cause degraded application performance and
violations of Service Level Agreements (SLAs) [16]. For instance, when a large number of user requests arrive
concurrently, the system may experience a sudden workload spike that exceeds the available capacity, causing
service delays or failures. Conversely, during periods of low demand, resources may remain idle, leading to
unnecessary energy consumption and financial waste [16]. These opposing scenarios highlight the importance
of precise and responsive workload prediction mechanisms in modern cloud environments.

4.1.2 Forecasting for Resource Allocation

The fundamental goal of predictive forecasting in cloud computing environments is to accurately anticipate
future resource consumption patterns, enabling proactive allocation decisions that optimize system perfor-
mance and efficiency. This predictive capability serves as a critical foundation for numerous cloud manage-
ment strategies, where forecasting functions as an essential preprocessing component for sophisticated control
mechanisms, including autoscaling systems, load balancing algorithms, and reinforcement learning-based re-
source orchestration.[33][72]

Target Variables and Granularity Considerations

Because it is a crucial indicator of workload pressure and system stress, CPU utilization stands out among
the other resource metrics available for prediction as the variable that is most commonly targeted in the
literature. Because CPU utilization has a direct relationship to application performance and may be used to
assist scaling decisions, it was chosen as the main prediction objective.

4.1.3 Classical Forecasting Approaches

Time series forecasting in cloud computing has historically been addressed using classical statistical tech-
niques. These methods include AutoRegressive (AR), Moving Average (MA), AutoRegressive Integrated
Moving Average (ARIMA), Vector AutoRegression (VAR), and their variations [51]. These models assume
stationarity and linear relationships in the data, which makes them well-suited for predictable, low-noise
environments. In their survey, Derdus et al. [20] presented a detailed review of statistical techniques for
characterizing cloud workloads. Basic statistical descriptors such as mean, standard deviation, percentiles,
cumulative distribution function (CDF), and coefficient of variation (CoV) are commonly used to explore
variability in resource consumption. For short-term forecasting, Simple Moving Averages (SMA) and ARIMA
models are typically applied. ARIMA performs effectively when the input time series is smooth and nor-
mally distributed [12], but its accuracy deteriorates in the presence of noise or nonlinear patterns, common

70

4.2. Resource Allocation Mechanisms

characteristics of cloud telemetry data. Correlation-based analysis, using metrics like the Pearson Correla-
tion Coeflicient (PCC) and Spearman Rank Correlation Coefficient (SRCC) [51], is also employed to study
relationships among resource types over time. Additionally, the Auto-Correlation Function (ACF) is widely
used to detect short-term patterns and daily cycles in usage behavior.

A strength of statistical forecasting methods lies in their transparency and low computational cost. Auto-
mated model order selection and parameter estimation techniques make these models simple to implement.
However, they cannot capture nonlinear interactions or adapt to complex workload dynamics, which limits
their scalability in modern, cloud-native systems.

4.1.4 Machine Learning and Deep Learning Models

To overcome the limitations of classical methods, researchers have increasingly applied ML and DL models for
cloud workload prediction [26]. ML techniques such as Linear Regression, Support Vector Machines (SVM),
Random Forests (RF), and k-Nearest Neighbors (k-NN) offer improved generalization by learning patterns
directly from data.

Gao et al. [26] identified several ML-based methods frequently used for virtual machine (VM) resource pre-
diction. Neural Networks (NN), when combined with techniques like windowing or regression, have demon-
strated improved accuracy over linear models [35]. Nikravesh et al. [53] showed that SVM outperforms NN
and Linear Regression under conditions of frequent workload fluctuation, although its performance declines
with large-scale datasets.

Lazy learning strategies such as Local Learning and Nearest Neighbors simplify complex time series model-
ing by constructing localized models for each input, using dynamically selected neighborhoods [11]. These
approaches are effective in short-horizon predictions but suffer from scalability and sensitivity to noise.

On the deep learning front, architectures LSTM, DNN, Autoencoders, and Transformers have demonstrated
strong performance in workload prediction tasks [57]. LSTM networks excel particularly in capturing tem-
poral dependencies and sequential patterns that are inherent in resource usage time series data. These
recurrent neural network architectures are specifically designed to address the vanishing gradient problem,
enabling them to learn long-term dependencies in sequential data while maintaining the ability to capture
short-term fluctuations.[39] The effectiveness of LSTM models in cloud workload prediction has been demon-
strated across multiple studies, with researchers showing major improvements in prediction accuracy when
compared to conventional statistical approaches.[39]

Transformer Models have emerged as a powerful alternative to LSTM networks, showing superior perfor-
mance in modeling long-range dependencies and complex temporal relationships present in cloud workload
data. These attention-based architectures leverage self-attention mechanisms to capture relationships be-
tween different time points in the input sequence, enabling more effective modeling of complex temporal
patterns. The attention mechanism inherent in Transformer architectures allows these models to focus on
relevant historical information when making predictions, leading to more accurate forecasting of dynamic
and bursty cloud workloads.[4] This capability is particularly valuable in cloud environments where workload
patterns can exhibit sudden spikes and unprecedented changes in user request patterns over time.|[54]

While DL models achieve high accuracy and handle nonlinearity well, they also require large volumes of
labeled training data, computational resources, and careful tuning of hyperparameters. Their interpretability
also remains a challenge in practical deployments.

4.2 Resource Allocation Mechanisms

Resource allocation (RA) is a fundamental aspect of cloud and edge computing systems, involving the dis-
tribution of limited computational, storage, and network resources to competing tasks or users. An efficient
RA mechanism is crucial for optimizing system performance, maximizing resource utilization, minimizing
operational costs, and ensuring that user requirements and QoS constraints are satisfied [22].

Resource allocation mechanisms can broadly be categorized into two classes: static and dynamic. Static
mechanisms operate with pre-defined decisions made offline or before task execution, often relying on op-

71

Chapter 4. Related Work

timization techniques or historical workload profiles. While simple and computationally efficient, they are
limited in their responsiveness to real-time system changes. Conversely, dynamic mechanisms adapt decisions
at runtime based on current system state, workload fluctuations, or predictive models. These methods enable
more flexible and resilient scheduling policies, often leveraging reinforcement learning, heuristics, or control
theory.

The following sections review both categories, highlighting key techniques, applications, and limitations, with
particular emphasis on their relevance to cloud-native application scenarios.

4.2.1 'Workload Variability in Resource Allocation

Cloud workloads exhibit a wide spectrum of temporal patterns, which impact the effectiveness of resource
allocation strategies. As illustrated in Figure 4.2.1, these patterns can be categorized into five classes [23]:

e Static: Constant resource usage over time, typical of low-interaction services such as internal dash-
boards or background monitoring agents.

e Periodic: Predictable cycles of demand, such as shopping platforms during weekends or traffic sensors
during peak hours.

e Single-Peak (Once-in-a-Lifetime): Generally stable workloads interrupted by one-time
bursts—commonly seen in payroll, billing, or software deployment.

e Unpredictable: Highly variable usage patterns with no clear trend. Often linked to user-driven
activity, anomaly detection systems, or emergency dispatch platforms.

e Continuously Changing: Gradual but persistent changes in resource demands. Examples include
social media applications and mobile app stores where user engagement evolves.

EmniElx

Pariodic Once-in-a-lifetime Unpredictable Confinuously
Changing

Figure 4.2.1: Representative patterns of cloud application workloads. Adapted from [23].

Understanding these patterns is essential when designing adaptive resource management systems. Static
allocation schemes may perform well under stable or periodic conditions but fail in environments characterized
by bursty or nonstationary behavior. As such, dynamic and learning-based methods are increasingly employed
to handle the complexity introduced by real-world workload variability.

4.2.2 Static Resource Allocation Mechanisms

Static resource allocation mechanisms rely on pre-determined rules and fixed provisioning strategies estab-
lished before task execution. Unlike dynamic schemes, they do not adjust resource assignments in response to
runtime variations. These approaches are typically suitable for predictable workloads or long-term capacity
planning and are commonly used in scenarios where decision overhead must be minimized.

One of the primary methodologies in static algorithms is the use of mathematical programming. Techniques
such as integer programming (IP), mixed-integer linear programming (MILP), and mixed-integer nonlinear
programming (MINLP) are widely used to model resource management problems that involve multiple con-
straints and optimization objectives. For instance, in multi-cloud environments, 0-1 integer programming
models are applied to determine optimal placements of services or applications across cloud data centers.
These models consider static parameters—such as CPU and memory capacities, latency constraints, and
monetary cost—to minimize deployment cost or maximize overall system utilization [76]

72

4.2. Resource Allocation Mechanisms

In addition to deterministic formulations, some static algorithms incorporate stochastic programming to
manage demand and pricing uncertainties. These models assume that the probability distributions of resource
demand or price are known in advance. A notable example is two-stage stochastic integer programming, which
plans both reservation and on-demand resource allocation under uncertain but estimable demand profiles.
The objective in such models is typically to minimize the expected total cost over a planning horizon while
ensuring SLA compliance [76].

The primary advantage of static allocation lies in its simplicity and predictability. By reserving resources
in advance, cloud providers can ensure that applications have guaranteed access to the necessary resources,
minimizing the risk of resource contention or performance degradation. This can be particularly beneficial
for legacy systems or batch processing tasks with well-understood requirements.|70]

However, the fundamental limitation of static approaches lies in their inability to adapt to real-time system
changes, such as sudden workload bursts, hardware failures, or shifting user demands. In such cases, the
pre-computed allocations may lead to underutilization of resources or SLA violations. As noted by Zhang
et al. [76], static scheduling is often insufficient in highly dynamic or heterogeneous cloud environments,
necessitating integration with dynamic or online scheduling algorithms.

4.2.3 Dynamic Resource Allocation Mechanisms

Dynamic resource allocation (DRA) mechanisms are essential for managing the volatile workloads typical of
modern cloud computing environments. These mechanisms dynamically adjust resource assignments—such as
CPU, memory, and storage—based on real-time system state or predictive demand forecasts. Their primary
goals are to optimize application performance, minimize resource waste, and ensure compliance with SLAs,
while also reducing energy and operational costs.

Predictive Resource Management. Predictive techniques leverage historical and real-time telemetry
data to forecast future workload demand. Common models include linear regression, polynomial regression,
statistical multiplexing, and Kalman filters. Dawoud et al. [19] proposed a controller-based system that
utilizes linear prediction to proactively scale VMs, thereby avoiding SLA violations and reducing energy
consumption. Proactive scaling improves responsiveness by anticipating rather than reacting to demand
surges.

Optimization-Driven Approaches. These techniques treat resource allocation as a multi-objective op-
timization problem, balancing conflicting goals such as performance, energy efficiency, and cost. Ficco et
al. [24] introduced a hybrid method combining the coral-reefs optimization algorithm and game theory to
dynamically reallocate resources in a cloud federation, targeting both SLA satisfaction and energy reduction.

Rule-Based and Heuristic Systems. These lightweight methods use threshold-based triggers (e.g., CPU
> 80%) to initiate scaling. Tighe et al. [66] implemented a rule-based system combining vertical scaling and
VM consolidation to reduce energy usage while maintaining application responsiveness. Though computa-
tionally inexpensive, such approaches may lack the precision of predictive or optimization-based methods.

Feedback Control Systems. Inspired by control theory, these systems maintain system stability via
continuous monitoring and closed-loop adjustments. PID controllers are commonly used to regulate resource
allocation in response to workload fluctuations. Dawoud et al. [19] applied such methods to preemptively
trigger horizontal scaling, improving SLA compliance without human intervention.

Energy-Aware Mechanisms. Energy-efficient strategies prioritize minimizing the energy footprint of data
centers, often by consolidating workloads onto fewer hosts and powering down idle machines. Verma et al. [69]
proposed the pMapper framework, which dynamically places VMs based on energy models and migration
costs, demonstrating energy savings while maintaining performance.

Research Challenges and Trends. Despite their effectiveness, DRA mechanisms face several challenges.
Accurate prediction is crucial; errors can lead to over-provisioning or under-provisioning, impacting both costs

73

Chapter 4. Related Work

and SLA compliance. Migration and scaling operations introduce overhead and potential performance degra-
dation. Response latency, especially in horizontal scaling, remains a bottleneck for bursty workloads. Ad-
ditionally, balancing multiple objectives—performance, energy, cost—necessitates computationally intensive
optimization. Recent research is increasingly exploring hybrid solutions that combine predictive modeling,
optimization, and feedback control to overcome these limitations [36].

Why Reinforcement Learning?

Traditional computation task offloading strategies in cloud and edge environments have primarily relied
on conventional optimization techniques. While these methods offer theoretical guarantees and tractable
formulations, they are often constrained to approximate solutions and require strong assumptions about
the underlying system dynamics. Moreover, they struggle to adapt effectively to highly dynamic network
conditions, heterogeneous service demands, and real-time variability in workload patterns.

As modern cloud-native infrastructures grow increasingly complex—with decentralized architectures, latency-
sensitive applications, and dynamic workloads—there is a growing need for intelligent, autonomous decision-
making mechanisms. This has led to the emergence of Reinforcement Learning as a promising alternative
for resource allocation and task offloading. RL enables agents to learn optimal behavior through trial and
error, without requiring prior knowledge of environment statistics, thus offering superior adaptability in
non-stationary and uncertain environments.

However, traditional tabular RL methods face scalability challenges due to the exponential growth of the
state and action spaces, known as the curse of dimensionality. These limitations make them infeasible for
large-scale distributed systems with many users, nodes, or configuration parameters. To address this, Deep
Reinforcement Learning techniques have been introduced, leveraging deep neural networks to approximate
value functions and learn policies in high-dimensional spaces. Notably, the Deep Q-Network (DQN) has
demonstrated success in learning effective policies for dynamic task placement and resource provisioning in
edge—cloud systems [46].

Beyond single-agent formulations, Multi-Agent Deep Reinforcement Learning (MARL) introduces multiple
learning entities that operate in parallel and interact within a shared environment. In distributed edge—cloud
infrastructures, each agent may correspond to a gateway or scheduler responsible for a local resource domain.
The Multi-Agent Deep Q-Network (MADQN) framework extends the scalability and adaptability of DRL
to multi-node settings, enabling decentralized decision-making with coordinated or competitive dynamics.
Compared to centralized approaches, MADQN systems reduce computation and communication overhead
while enhancing robustness and parallelism. Agents can learn independently, using shared policies or local
observations, and still converge toward cooperative behavior that optimizes global system efficiency. This
decentralized architecture aligns naturally with the operational realities of modern edge—cloud platforms,
where global state synchronization is costly or infeasible [§].

74

Chapter 5

Problem Formulation and System Model

Contents
5.1 System Model @ @ @ i i e e e e e e e e e e e e e e e e 76
5.1.1 Hierarchical Multi-Tier Cloud Infrastructure Model 76
5.1.2 System Resource State and Utilization Modeling 77
5.1.3 Job Representation and Characteristics 78
5.1.4 SLA Constraints and Penalty Mechanism 78
5.2 Problem Formulation 0 0000 oiee e, 78
5.2.1 Job Characteristics and Arrival Model oo 80
5.2.2 Reward Function 80
5.2.3 Multi-Agent Scheduling Architecture 83
5.2.4 Implementation Architecture Lo Lo 84

75

Chapter 5. Problem Formulation and System Model

5.1 System Model

The increasing complexity and heterogeneity of computational workloads in modern multi-tier edge-cloud
infrastructures pose many challenges for efficient resource management. These systems must accommodate
jobs with varying latency sensitivities, priority levels, and resource demands, while also ensuring compliance
with QoS constraints. The central problem addressed in this thesis is the design of an intelligent, adaptive
resource allocation mechanism that can dynamically place jobs across edge and cloud tiers to optimize
system-wide performance, minimize operational costs and energy consumption, and respect service-level
requirements.

To tackle this challenge, we first develop a formal system model that abstracts the core components of the
infrastructure, including the hierarchical edge-cloud architecture, job arrival characteristics, and physical
resource constraints. This model defines how computational jobs interact with the available computing
nodes, how priorities influence placement decisions, and how system dynamics (e.g., load fluctuations) affect
scheduling outcomes. The system model serves as the operational environment in which a multi-objective
optimization problem is formulated, which guides the design of a reinforcement learning-based scheduler
capable of learning priority-aware allocation policies.

5.1.1 Hierarchical Multi-Tier Cloud Infrastructure Model

The proposed system operates within a hierarchical multi-tier cloud infrastructure designed to handle diverse
computational workloads efficiently. The architecture is composed of three interconnected tiers—Near Edge
(Tb), Far Edge (T1), and Cloud (T)—each offering a distinct balance between latency, cost, and resource
capacity, as summarized in Table 5.1.

Each tier T; is formally defined by the tuple:
T; = (M;, Cap;, L;, Cost;, P;)

Where:

M; is the set of machines in tier T},

Cap; is the CPU capacity per machine,

L; is the average network latency to that tier,

e (Cost; is the operational cost per CPU-hour,

P; is the power consumption in watts per core.

Tier Latency Cost Capacity
Near-Edge (Tp) Low High Limited
Far-Edge (11) Medium Medium Moderate
Cloud (T2) High Low Practically Unlimited

Table 5.1: Comparison of Resource Tiers

The near-edge tier (1) offers the lowest network latency, making it ideal for latency-sensitive tasks, but
its CPU capacity is limited, and operational cost is high. The far-edge tier (77) provides a moderate bal-
ance—lower cost and increased capacity at the expense of slightly higher latency. The cloud tier (73) delivers
virtually unlimited computational resources at minimal cost but is best suited for delay-tolerant batch work-
loads due to its higher latency.

Figure 5.1.1 illustrates the infrastructure’s layout. Edge devices are distributed across multiple gateways,
where each gateway acts as an entry point for computational jobs. Gateway 1 (green), Gateway 2 (blue), and
Gateway 3 (red) represent different edge nodes that collect jobs from nearby devices and make placement
decisions across the available tiers.

76

5.1. System Model

Far Edge

T1: Medium Latency, Cost, and
CPU Capacity (Costy, Py)

A
P .
Gateway 1

Devices

] T X
~
o

Gateway 2 _—

Near Edge

To: Low Latency , High Cost,
Limited CPU Capacity
(Costy, P0)

L2

Cloud

T2 High Lateney , Lowest Cost,
Unlimeted CPU Capacity {(Costy, P2)

@

— 2
Gateway 3 |

Figure 5.1.1: Hierarchical Multi-Tier Cloud Infrastructure Model showing the three-tier architecture with
edge devices, gateways, and computational tiers interconnected through network links with varying latency
characteristics.

The network paths between the tiers are characterized by progressively increasing latency values, denoted as
Ly, L1, and Lg, corresponding to connections to Ty, 11, and 15, respectively. This hierarchical organization
enables the design of intelligent job placement policies.

5.1.2 System Resource State and Utilization Modeling
At any given time 7, the state of system resources is represented as:
R(7) = {Usage;(r), Avail;(7) : 1 € {0,1,2}}

Where Usage; (1) denotes the total CPU demand currently allocated on tier 4, calculated by summing the
CPU demands of all active jobs j on all machines m € M;:

Usage;(1) = Z Z cpu_demand,,
meEM; j€ActiveJobs,, (T)

and Avail;(7) is the remaining available CPU capacity on tier ¢, computed as the difference between the total
capacity TotalCap; and the current usage:

Avail;(1) = TotalCap; — Usage;(T).

The utilization ratio Util;(7) expresses the part of capacity currently in use on tier i:

) Usage;(T)
Utily(17) = ———=—,

i(7) TotalCap;
Which is constrained to remain below a predefined safety threshold Max Util to prevent overloading. Main-
taining Util;(7) < Max_Util ensures stable and reliable operation by avoiding excessive resource contention
and potential performance degradation.

7

Chapter 5. Problem Formulation and System Model

5.1.3 Job Representation and Characteristics
Each computational job j in the system is formally defined as a tuple:
j = (id, start_time,end_time, cpu__demand, duration, priority)
Where:
e id: A unique identifier distinguishing the job.
e start time: The arrival timestamp at which the job enters the system queue.

e end time: The anticipated completion timestamp after job execution.

e cpu_demand: The CPU resource requirement expressed in CPU units necessary for job execution.

duration: The estimated execution length or runtime of the job.

priority: An integer quantifying the job’s priority level; lower values correspond to higher priority and
stricter latency or QoS constraints.

Jobs are received as a workload trace J = {41, j2,...,Jn}, representing the sequence of arriving computa-
tional tasks.

For a job j to be deemed feasible on a specific resource tier T;, there must exist at least one machine m € M;
that can allocate sufficient CPU capacity to the job throughout its execution interval without exceeding the
machine’s CPU capacity constraints. Feasibility requires that resource allocation avoids the job execution
intervals on the machine that do not overlap in a way that surpasses the available CPU capacity Cap;.

This feasibility criterion guarantees the system maintains operational stability and respects QoS requirements
by preventing resource contention and deadline violations during job placement.

5.1.4 SLA Constraints and Penalty Mechanism

To ensure a consistent Quality of Service for time-sensitive workloads, the system enforces explicit service
level agreement constraints that are tied to the priority levels of the jobs. Each priority level p € {1, 2, 3,4, 5}
is assigned a maximum allowable latency budget, denoted as SLA,,. These latency budgets define the upper
bounds on acceptable response times for jobs of different criticality, reflecting their urgency and importance:

e Priority 1: SLA; — Representing the most severe requirement for the highest-priority jobs, such as
real-time control or emergency processing.

e Priority 2: SLAs; — High-importance tasks that require rapid but slightly less strict response times.

e Priority 3: SLA3 — Moderate-priority jobs where some latency is acceptable without severely impacting
performance.

e Priority 4: SLA; — Low-priority jobs with more relaxed latency demands.

e Priority 5: SLA; — Allowing the greatest tolerance for delay, often for background or batch processing
tasks.

These SLA thresholds act as critical parameters in the scheduling and resource allocation algorithms, ensuring
that jobs with higher priority are preferentially scheduled and allocated sufficient resources to meet their
latency targets. If a job’s execution exceeds its assigned SLA threshold, the system applies a penalty within
the reward framework, which is scaled according to the job’s priority level. This mechanism motivates the
agent to minimize SLA violations, therefore encouraging compliance with service guarantees and preserving
the reliability of the system as a whole.

5.2 Problem Formulation

In edge—cloud environments, resource management must address diverse and often competing objectives.
These include minimizing operational cost and energy consumption, reducing latency, balancing utilization

78

5.2. Problem Formulation

across tiers, and meeting quality of service constraints based on job priority. To support intelligent scheduling,
we formally define a resource allocation problem that captures these requirements and can be addressed using
reinforcement learning methods.

When a job j is assigned to a tier Tj;, it incurs different costs and performance impacts depending on that
tier’s pricing model, energy profile, and network proximity. The job placement decision must, therefore,
consider trade-offs among multiple objectives simultaneously.

No

Store in queue

Job Arrival
j=1id, start_time, end_{fime,
cpu_demand, duration, priority)
Unpredictable Arrival

Job Analysis
Prioritty. SLA Duration, CPU
Demand

Sort the job batch by
priority (P4 -= Pg)

Reward , State Reward , State
Y
‘Agent Decision
T0 Q-Leamning T2
Siate -= Action
T1
¥ h 4

{Near Edge Allocatio n} [Far Edge Allocatio n} [Cloud Allocation }—

Figure 5.2.1: Complete job processing workflow showing job arrival, analysis, queueing, priority-based batch
scheduling, agent decision-making, and reward feedback loop in the multi-tier edge—cloud system.

Figure 5.2.1 illustrates the complete job processing workflow within our proposed
scheduling system. Jobs arrive unpredictably and are characterized by the tuple
(id, start _time,end_time,cpu__demand, duration, priority). Upon arrival, each job is analyzed to
extract relevant features such as priority level, SLA constraints, required duration, and CPU demand.
To manage bursty and irregular job arrivals, the system maintains a dynamic job queue and adopts a
windowed scheduling strategy. Incoming jobs are grouped into time slots, forming scheduling windows.
Within each batch, jobs are sorted in descending order of priority (P; — Ps), ensuring that time-sensitive
and mission-critical tasks are allocated first. This approach balances responsiveness with computational
efficiency by enabling batch-based decision-making while honoring priority constraints. Placement decisions
are made by a reinforcement learning agent using the Q-learning algorithm. The agent observes the current
system state—including job features and real-time resource utilization—and selects an action from the
discrete space A = {Ty, T1, T2}, representing the available tiers (Near Edge, Far Edge, Cloud). Each decision
yields an immediate reward based on a custom multi-objective reward function. This reward guides the
agent’s learning process and refines its policy over time. The entire workflow operates as a closed-loop
system: each placement decision affects the future system state and subsequent scheduling decisions. This
adaptive mechanism enables dynamic and efficient resource management under real-world variability.

Cost, Latency, and Energy Metrics

The cost of executing a job j on a specific tier ¢ is computed based on the job’s CPU demand, its duration,
and the cost rate associated with that tier. Formally, this is expressed as:

duration;
3600

79

Costz = cpu_demand; X x Cost;, VjeJ,NieT

Chapter 5. Problem Formulation and System Model

Here, cpu_demand; denotes the number of CPU units required by job j, duration; is the execution time of
the job measured in seconds, and Cost; represents the monetary cost per CPU-hour at tier 4. This formulation
allows for a proportional cost assessment that reflects both the intensity and length of resource usage.

Latency, a critical performance metric especially for time-sensitive applications, is modeled as the sum of
inherent network and processing delays characteristic of each tier. For simplicity, latency is represented by a
baseline value specific to the tier:

Latency;- =1L,

Where L; captures fixed delay components such as communication overhead and processing latency at tier <.
Although queueing delays and dynamic congestion effects are also important in practice, this baseline latency
provides a fundamental measure of the expected responsiveness at each tier.

Energy consumption is modeled to quantify the power used during job execution, which directly impacts
operational cost and environmental footprint. Following the approach in [1], energy consumption for running
job j on tier 7 is calculated as:

duration;

Energyé = P; X cpu_demand; x 2600

Where P, represents the average power consumption in Watts per CPU unit for tier ¢. This expression captures
the linear relationship between CPU usage, execution time, and energy expenditure, enabling evaluation of
energy efficiency alongside cost and latency considerations.

Together, these metrics form the basis for multi-objective optimization in resource allocation, balancing
economic costs, performance requirements, and sustainability goals.

5.2.1 Job Characteristics and Arrival Model

Jobs arrive dynamically over time with different sequential timestamps and are grouped into scheduling
batches, where each batch contains all jobs that arrived within a fixed-size time window of length w. This
batching approach enables efficient decision-making and reduces computational overhead. Before scheduling
begins, jobs within each window are sorted in order of priority level (i.e., highest priority first), starting
selecting jobs with the lowest latency tolerance. This ensures that time-sensitive and mission-critical tasks
are allocated first. At each scheduling step t, a set of jobs J) = {ji,52,...,5w} becomes available for
allocation. The agent processes this batch based on current system state observations and selects placement
actions from the discrete action space A = {1y, T1,T2}.

We define job categories based on latency sensitivity and priority level:
e Class I (Critical): Priorities 1-2, require minimal latency and fast response.
e Class II (Flexible): Priorities 3, tolerate moderate delay but benefit from edge execution.
e Class III (Best-effort): Priority 4-5, tolerant of latency and suitable for cloud offloading,.

The system must adaptively manage this heterogeneous workload while balancing objectives such as QoS,
energy efficiency, and edge saturation prevention. The categorization was used in the Rpjacement calculation.

5.2.2 Reward Function

We define the reward R; for assigning job j to tier ¢ as follows:
R; = w1 Rbase + w2Rplacement (]a Z) - w3Rcost (]7 Z) - w4RlatenCy (]7 Z) - w5Renergy (]a Z) + w6RSLA (])

Each term in the reward function represents a distinct performance dimension:

e Baseline Reward Rpase: A constant reward granted for any successful job allocation:
Rpase = Dbase_reward. In case of allocation failure, a huge penalty is applied: Rpase =
—failed_allocation_penalty.

80

5.2. Problem Formulation

¢ Placement Reward Rpiacement(j,%): A dynamic term evaluating the alignment of the job’s priority
with the selected tier’s characteristics and current utilization. It encourages placing high-priority jobs
on low-latency, underutilized nodes and penalizes inefficient or risky placements. Formally:

— If a high-priority job (priority < 2) is placed on a lightly loaded near-edge node, a full reward
Rplacement = placement_reward is granted.

— If a high-priority job is placed on a saturated edge node, a penalty is applied to discourage
overloading.

— Medium-priority jobs (priority = 3) placed on lightly loaded far-edge nodes receive a moderate
reward.

— Low-priority jobs (priority > 4) sent to the cloud tier receive a baseline reward.

— If edge tiers are saturated, redirecting the job to the cloud yields a baseline reward to support
load balancing.

— Misaligned placements (e.g., low-priority job on congested edge tiers) incur a penalty: Rplacement =
—placement_penalty.

Cost Penalty Rcost(7,7): '
Reost(4,1) = Cost] - Cost_Reward

Latency Penalty Riatency(J,):

Riatency (7, 1) = Latencyj- - Latency_Reward

Energy Penalty Renergy(J,?):
Renergy(4,1) = Energy;» - Energy_Reward

The values C’ost;-, Latency}7 and Energyé are normalized to ensure balanced contribution among cost,
latency, and energy terms.

e SLA Penalty RSLA(j):

) —(6 — priority,) - SLA_Penalty, if SLA is violated
Rsra(j) = .
0, otherwise
This term penalizes SLA violations based on job priority. The higher the priority (i.e., the lower the
numerical value), the larger the penalty when deadlines are missed.

All reward components are weighted by coeflicients wy through wg, allowing the system designer to tune the
trade-off between performance objectives such as efficiency, latency, and SLA compliance.

Figure 5.2.2 illustrates the computational flow for calculating R; when a job is placed on a tier. The placement
decision triggers the parallel evaluation of each component: alignment score, cost, latency, energy, and SLA
check. If allocation is successful, a base reward is granted; otherwise, a failure penalty is applied. In the case
of SLA violations, the penalty is scaled by priority severity. The final reward is computed by aggregating the
components using the weighted formula, and the resulting scalar value is used by the reinforcement learning
agent as feedback for policy optimization.

Reward Weighting Configuration

The reward function balances multiple competing objectives to guide the agent’s decision-making. It fa-
vors priority-aware scheduling by assigning notable importance to job priority, ensuring that critical, delay-
sensitive tasks are prioritized.

Cost and energy penalties are incorporated to encourage efficient resource usage and sustainability, but they
are weighted moderately relative to priority. This design reflects a conscious trade-off: while reducing opera-
tional expenses and energy consumption is important, the system prioritizes meeting service-level agreements

81

Chapter 5. Problem Formulation and System Model

/ —>| Placement Score \

Based on Priority_j and Util_i

Base_reward

Cost Penalty
——» Costi*CPU_demand_j* |—oj
Duration_j

Allocation
Completed
Successiully?,

_ Violation Penalty
?
SLA Violation ? 6 - pricrity_) S

Job Placement

Jplaced on Tier Ti

Latency Penalty
Latency i

Failed_allocation_penalty

Total Reward
Energy Penalty

L—» Enemgy_i*P_i*CPUj* |——o
K Duration_j /

Figure 5.2.2: Reward function calculation flow diagram showing the parallel computation of reward
components, success/failure evaluation, SLA violation checking, and final reward aggregation for job
placement decisions.

and maintaining low latency for high-priority jobs. That is a choice we made for our experiments. However,
the reward function’s modular weighting scheme provides the flexibility to easily adjust these priorities. By
tuning the weights, we can shift the model’s preference toward emphasizing cost savings, energy efficiency,
latency reduction, or priority compliance as needed. This adaptability allows the system to be tailored for
different operational goals or workload characteristics without changing the underlying architecture.

Objective

In our experimental setting, we model the job allocation process in the edge-cloud infrastructure as a discrete-
time Markov Decision Process, enabling each agent (gateway) to learn optimal scheduling strategies
through Q-learning.

The MDP formulation is tailored to our environment as follows:

e States s;: Fach job j arrives with a state vector that includes normalized CPU demand, duration,
priority, and the real-time utilization levels of near-edge, far-edge, and cloud tiers.

e Actions a; € A = {Ty,T1,T>}: The agent must decide to place the job on one of the three resource
tiers—near-edge, far-edge, or cloud.

e Transitions: After each allocation decision, the environment updates its internal state (e.g., CPU
usage), and the agent observes the next job in the trace. Transitions are deterministic, as job order
and durations are predefined in the workload trace.

e Reward R;: The agent receives an immediate scalar reward based on the result of its placement deci-
sion, as defined by our custom reward function, as described at 5.2.2, combining placement alignment,
cost, latency, energy, and SLA penalties.

The agent learns a value function Q(s,a) that estimates the expected cumulative reward of choosing action
a in state s. Using the Bellman update rule, this Q-function is iteratively refined during training to capture
both immediate feedback and long-term consequences of allocation decisions.

At inference time, the agent applies a greedy policy over the learned Q-values to select the optimal action:
m(sj) = arg max Q(sj,a)

This policy is applied independently to each incoming job, using only the current job’s features and the
real-time tier utilization.

82

5.2. Problem Formulation

The overall optimization objective is to maximize the cumulative reward across all jobs processed by the
agent:
max Z Q(sj,m(s;))
Jje€T
Where J is the set of jobs observed by the single agent during deployment.

By adopting this MDP framework, our model supports fine-grained, job-level decisions while adapting dynam-
ically to workload changes. This learning-based mechanism provides a scalable and autonomous alternative
to static heuristics, offering improved responsiveness and intelligent control.

5.2.3 Multi-Agent Scheduling Architecture

To address the scalability and coordination challenges inherent in edge-cloud environments, our framework
adopts a decentralized multi-agent architecture, where each edge gateway gateway, is modeled as an au-
tonomous reinforcement learning agent. The goal is to enable intelligent and parallelized job placement
across the system’s shared resource tiers.

Each agent is assigned a disjoint subset 7, of the global job trace J using a round-robin distribution policy
that ensures a balanced and non-overlapping workload. All agents interact with a shared infrastructure
composed of heterogeneous computational nodes:

T=ToUTiUT,

Where Tj, T1, and T3 represent the near-edge, far-edge, and cloud tiers, respectively, as defined previously.

Local State Representation FEach agent operates based solely on local observations of its assigned jobs
and the real-time state of the shared infrastructure. No inter-agent communication is performed during
execution, supporting a fully decentralized control paradigm.

Action Space and Decision Policy All agents share a common discrete action space:
A = {TO7 Tla TQ}

Where each action corresponds to selecting a resource tier for job execution. A shared Deep Q-Network
(DQN) is used to learn a global Q-function (s, a) that estimates the long-term utility of taking action a in
state s.

To promote generalization and avoid redundant learning, a shared decision policy 7 (s) = argmax, Q(s,a)
is trained and deployed across all agents. This strategy ensures consistent scheduling behavior throughout
the system while allowing fully decentralized execution. Although agents act independently, the shared Q-
function encodes a unified scheduling strategy that adapts to heterogeneous job profiles and dynamic system
states.

Learning Objective Each agent a seeks to maximize the cumulative expected reward over its assigned

job set J,:
max Z Q(s;j,m(sj)) = max Z ZR;
j€Ja JETa €T

This reward function incorporates all components defined in Section 5.2.2; including placement alignment,
SLA compliance, latency, cost, and energy considerations.

Advantages and System Behavior This architecture supports distributed and scalable learning, en-
abling high-throughput inference in real-time systems. Because scheduling decisions are made locally and
independently at each gateway, the system can efficiently accommodate growing job volumes and dynamically
changing workloads.

The shared policy facilitates convergence and robustness under varying network conditions, localized conges-
tion, and partial observability, without requiring explicit coordination or message passing between agents.
Thus, the system balances decentralized autonomy with global consistency.

83

Chapter 5. Problem Formulation and System Model

By leveraging a multi-agent formulation with a shared DQN backbone, the architecture offers a practical and
scalable solution for intelligent resource management in modern edge-cloud infrastructures.

Local Job Queue 1 Local Job Queue 2 Local Job Queue 3 \

Y Y v
Agent1 Agent 2 Agent 3
single agent DQN single agent DQN single agent DQN
State - Qs a) = Aclion State -» Qs a) = Aclion State = Qs a) = Aclion
Reward,
State

Shared Infrastructure

Reward,
State

MNear Edge Allocation || Far Edge Allocation Cloud Allocation

Figure 5.2.3: Multi-agent scheduling workflow showing independent agents with local job queues, shared
DQN decision-making, parallel allocation attempts on shared infrastructure, and individual reward
feedback loops.

Figure 5.2.3 presents the operational workflow of the decentralized multi-agent scheduling system. Each
gateway agent maintains an independent local job queue containing its assigned subset J,. The agents
operate autonomously using the shared Deep Q-Network to map local state observations s; to optimal
actions m(s;) = argmax, Q(s;,a). When an agent selects an action, it attempts to allocate the job on
the corresponding tier—near-edge (Tp), far-edge (T1), or cloud (73). Job arrival and ordering using time
slots follow the same workload described earlier in Figure 5.2.2, which is omitted here for simplicity. Upon
successful or failed allocation, each agent receives an individual reward and next-state feedback. Although
learning updates are performed independently, all agents rely on the shared Q-function, ensuring unified
scheduling behavior across the system. This workflow demonstrates how decentralized agents can collectively
optimize global performance through parallel, policy-consistent decision-making.

5.2.4 Implementation Architecture

To validate our multi-agent scheduling framework, we implement the system using Kubernetes orchestration
over a simulated three-tier edge-cloud infrastructure. This architecture models the physical heterogeneity
of near-edge, far-edge, and cloud environments while supporting scalable, policy-driven workload scheduling
through reinforcement learning agents.

The simulation operates within a single Kubernetes cluster, where each node is labeled to indicate its corre-
sponding tier: tier=near-edge, tier=far-edge, or tier=cloud. These labels serve as the primary mech-
anism for job placement and tier differentiation. Job workloads are encapsulated as Kubernetes Pods, with
tier-specific node selectors guiding their scheduling.

Each gateway agent functions as an autonomous reinforcement learning agent, receiving a disjoint subset of
jobs through a round-robin distribution policy. The agents make independent tier placement decisions based
solely on local observations. These decisions are then translated into pod specifications and submitted to the
Kubernetes control plane. The control plane—comprising the API Server, Scheduler, and custom edge-cloud

84

5.2. Problem Formulation

controllers- processes these requests and schedules pods to the appropriate tier based on the agent’s decision
and the real-time resource availability.

Figure 5.2.4 illustrates the complete multi-agent Kubernetes simulation architecture that maps the jobs
dataset to a heterogeneous edge-cloud environment. Jobs are distributed across independent gateway
agents via round-robin allocation, ensuring balanced workload distribution. Each gateway agent indepen-
dently makes scheduling decisions and submits pod creation requests using tier-specific node selectors (e.g.,
tier=near-edge, tier=cloud). The Kubernetes control plane—comprising the API Server, Scheduler, and
edge—cloud-aware controllers—handles these requests, resolving contention and ensuring fair scheduling across
available nodes. In the figure, the pods shown on each node represent the currently running jobs that have
been successfully scheduled by the agents. These pods encapsulate the computational tasks and execute
on nodes according to the agent’s placement decision and the tier’s available capacity. This architecture
enables decentralized policy evaluation under realistic workload patterns while preserving Kubernetes-native
scalability and resource management across heterogeneous computational infrastructures.

Kubernetes Cluster

Near Edge (T0) Far Edge (T1)

Alibaba Cloud Round-Robin
Trade Allocation

Latency Latency

Node 1 Node 1
Node 0
[34CF'U ims Latency} [128CPU , 20ms J [128CPU , 20ms J

Node 1 Node 1
Node 0
Eﬁdc?u,‘\msLalency} [128CPU,, 20ms }[128CPU , 20ms J

Latency Latency

CICICIANCICICICICIC)

Cloud (T2)

Node 2 Node 2 Node 2 Node 2 Node 2
1024CPU , 100ms 1024CPU , 100ms 1024CPU , 100ms 1024CPU , 100ms 1024CPU , 100ms

Latency Latency Latency Latency Latency

Latency Latency Latency Latency Latency

CICICICICICICICICICICIC)

Node 2 Node 2 Node 2 Node 2 Node 2
1024CPU , 100ms 1024CPU , 100ms 1024CPU , 100ms 1024CPU , 100ms 1024CPU , 100ms

Figure 5.2.4: Multi-agent Kubernetes architecture showing round-robin job distribution from the Alibaba
dataset, independent gateway agents, control plane coordination, and multi-tier node infrastructure with
varying computational and latency characteristics.

Problem Goals

The system is designed to fulfill a set of interconnected objectives that reflect the challenges of resource
allocation in hierarchical edge-cloud environments. These goals collectively shape the reward-driven learning
process and operational behavior of the scheduling agents:

e Minimize operational cost and energy usage: To promote sustainable infrastructure utilization,
the system imposes penalties on high-cost and energy-intensive job placements. This promotes the
selection of computational nodes that offer lower monetary and power consumption footprints, particu-
larly for non-urgent or delay-tolerant workloads. In doing so, the system tries to maximize the economic
and environmental efficiency without compromising service quality for critical tasks.

e Respect priority-based latency guarantees: The system enforces strict compliance with SLAs
that vary according to job priority. Higher-priority jobs are associated with tighter latency budgets,
necessitating rapid processing and minimal delay. To overcome this constraint, the scheduler employs

85

Chapter 5. Problem Formulation and System Model

a windowed allocation strategy. This window-based design allows the agent to evaluate and compare
multiple pending jobs simultaneously, prioritizing the most latency-sensitive ones for immediate place-
ment.

e Maintain balanced resource utilization: Preventing the overloading of specific tiers—especially
the near-edge cluster—is critical for preserving long-term system health and ensuring consistent QoS.
The system continuously monitors CPU availability and utilization levels across all tiers, guiding agents
to distribute workloads intelligently. This load-balancing behavior reduces delays, avoids thermal stress,
and mitigates the risk of job rejections or SLA violations due to resource contention. Following this
strategy, the system is designed to maintain high reliability even under heavy load conditions. A
job allocation failure can only occur if all three near-edge, far-edge, and cloud are simultaneously
saturated. However, this scenario is highly unlikely in practice, given that the cloud tier is modeled
with virtually unlimited computational resources. This architectural assumption ensures that there
is always a fallback option for job placement, thereby minimizing the risk of allocation failure. As
a result, the system exhibits strong reliability and robustness in managing dynamic workloads across
heterogeneous infrastructure layers.

e Coordinate decentralized decision-making across agents: In our multi-agent architecture, each
edge gateway acts autonomously while sharing a centralized Q-function learned during joint training.
This allows agents to execute decisions in parallel, without explicit communication, while maintain-
ing consistency in policy behavior. The shared Q-function encodes system-wide knowledge, enabling
generalization across agents operating under different local states, job types, and tier capacities.

Together, these goals define a reinforcement learning objective that balances efficiency, responsiveness, and
scalability. By embedding priority awareness, latency sensitivity, and cost constraints into the learning
framework, the system effectively orchestrates heterogeneous resources in real time, adapting to fluctuating
demands and constrained infrastructure conditions. This formulation supports intelligent, policy-driven job
placement in realistic edge-cloud scenarios with complex, dynamic workloads.

86

Chapter 6

Experiments

Contents

6.1 Preliminaries o o o i e 88
6.1.1 Data Preparation and Cleaning 88
6.1.2 Part 1: Forecasting L 89
6.1.3 Part 2: Resource Allocation: Environment and Training Setup 90
6.1.4 Part 3: Multi-Agent Simulation 93
6.2 Experiment 1: Forecasting Performance: LSTM vs Transformer 94
6.2.1 Selection of Evaluation Metrics Lo Lo 94
6.2.2 Comprehensive Evaluation and Insights 95
6.3 Experiment 2: Multi-Agent DQN System Validation and Performance Analysis 96
6.3.1 Experimental Setup L 96
6.3.2 Results and Analysis L L 97
6.3.3 Discussion and Critical Analysis L oo, 100
6.4 Experiment 3: Single-Agent vs Multi-Agent DQN Comparison. 100
6.4.1 Experimental Overview and Research Motivation 100
6.4.2 Experimental Configuration and Methodology 101
6.4.3 Performance Analysis and Results 0. 101
6.4.4 Resource Utilization and Efficiency Analysis 102
6.4.5 Economic and Environmental Impact Analysis 103
6.4.6 Scalability and Architecture Implications 104

6.5 Experiment 4: Multi-Agent DQN Performance with Transformer-Generated
Workloads o o o o e 105
6.5.1 Experimental Overview and Motivation 105
6.5.2 Transformer Prediction Results and Workload Characteristics 105
6.5.3 Performance Analysis L L 106
6.5.4 Cost Efficiency 107
6.5.5 CPU Utilization Patterns and Resource Competition 107
6.5.6 Policy Stability Analysis 107
6.5.7 Conclusions L 108

87

Chapter 6. Experiments

6.1 Preliminaries

6.1.1 Data Preparation and Cleaning

The Alibaba Cluster Trace dataset 2017 [2] used in this study contains telemetry collected from batch
processing jobs on a large-scale cloud platform. While the original dataset is rich in information, it is not
directly usable for modeling due to noise, missing values, and high-dimensional mixed-type features. Following
the methodology proposed by Lackinger et al. [40], we implemented a multi-step data cleaning process to
derive a structured, time-aligned dataset for forecasting and reinforcement learning tasks.

Raw Structure and Characteristics. Initially, the raw dataset includes fields such as job id, task
id, machine id, status, timestamp intervals, CPU usage (both average and maximum), and normalized
memory usage. An excerpt from the original dataset is shown in Table 6.1.

Table 6.1: Snapshot of the raw dataset (Alibaba trace)

start ts end ts jobid task id machineid max cpu avgcpu max mem avg mem

41562 41618 120 686 299 1.50 0.29 NaN NaN
41561 41619 120 686 1279 0.89 0.28 NaN NaN
41562 41617 120 686 828 0.94 0.29 NaN NaN

This format contains redundant and noisy fields, such as identifiers and status codes, and suffers from missing
memory values.

Cleaning Process. The transformation from raw trace logs to a usable dataset was executed through a
series of preprocessing steps:

1. Timestamp Filtering: Original timestamps were transformed from raw epoch-like values into relative
time references.

2. Feature Reduction: Non-numeric and irrelevant metadata fields, such as task id, status, and
memory usage fields with excessive missing values (max_mem, avg_mem), were discarded. The retained
features include CPU demand, machine ID, job ID, and timestamps.

3. NaN Removal: All rows containing missing values in essential numeric fields—particularly those
required for CPU or timing analysis—were excluded to ensure a clean and complete input space. Rather
than applying imputation or interpolation techniques, we opted to remove these entries entirely, as the
dataset’s size was sufficiently large to support robust training.

4. Normalization: A MinMax scaling operation was applied to all numeric columns, mapping each value
into the interval [0,1]. This step stabilizes the training process of both forecasting and reinforcement
learning models by preventing feature dominance due to scale differences.

5. Priority Injection: Jobs were annotated with a discrete priority value from 1 (ultra-low latency) to
5 (best-effort), based on a derived SLA category linked to job id. This synthetic label enables reward
shaping and latency-aware scheduling in subsequent RL environments (see Table 6.4).

The cleaned data was used for both forecasting (as sequential inputs) and resource allocation (as state features
in the RL environment). Table 6.2 presents a piece from the final cleaned dataset.

88

6.1. Preliminaries

Table 6.2: Snapshot of the cleaned dataset with real CPU usage and assigned priorities

Start Timestamp

End Timestamp

Job ID Machine ID Max CPU Avg CPU Priority

2017-01-01 00:00:00 2017-01-01 00:00:01 10528874 518 1.01 1.01 1
2017-01-01 00:00:00 2017-01-01 00:00:52 30629151 503 1.02 0.99 3
2017-01-01 00:00:01 2017-01-01 00:00:58 30629144 235 1.02 0.97 3
2017-01-01 00:00:01 2017-01-01 00:00:54 30629126 512 1.02 0.99 3
2017-01-01 00:00:01 2017-01-01 00:00:53 30629150 429 1.02 0.99 3
2017-01-01 00:00:01 2017-01-01 00:01:00 30629135 534 1.00 0.95 3
2017-01-01 00:00:01 2017-01-01 00:00:55 30629148 352 1.01 0.98 3
2017-01-01 00:00:01 2017-01-01 00:00:56 30629079 258 1.00 0.97 3
2017-01-01 00:00:01 2017-01-01 00:00:55 30629105 278 1.02 0.99 3
2017-01-01 00:00:02 2017-01-01 00:00:59 30629093 897 1.01 0.96 3

Outcome. This cleaning procedure transformed the original batch trace into a temporally ordered, numer-
ically consistent, and semantically enriched dataset suitable for modern Al-driven workload prediction and
job scheduling tasks.

6.1.2 Part 1: Forecasting

The forecasting phase of our experimental pipeline aims to predict resource usage for batch jobs using
historical telemetry from a production-scale trace dataset. This phase is crucial for enabling proactive
decision-making in reinforcement-learning-based resource management. By incorporating forecasting models
into the decision loop, we aim to build a hybrid system capable of both reacting to immediate states and
anticipating future demands.

Dataset. We used the Alibaba Cluster Trace dataset from 2017 [2], focusing on telemetry that captures
the CPU usage behavior of batch jobs submitted to a large-scale production environment. For this phase,
we employed a cleaned and preprocessed version of the dataset, as described in the previous section 6.1.1,
retaining only relevant numeric features such as timestamps, CPU demand, job duration, and priority.

To ensure efficient training while maintaining statistical diversity, we selected a representative subset of
500,000 job instances from the original dataset of over 8 million entries. This sample size was sufficient to
capture workload variability and priority distributions necessary for training forecasting models.

Objective. The objective of this forecasting phase is twofold: first, to generate accurate short-term predic-
tions of CPU usage that can be fed into a downstream reinforcement learning agent for resource allocation;
and second, to compare the relative performance and suitability of two state-of-the-art architectures, LSTM
networks and transformer models, in the domain of cloud-native workload forecasting. LSTM networks are
known for their ability to model long-term temporal dependencies through gated recurrent computation,
while Transformers have recently emerged as a dominant paradigm in sequence modeling due to their global
receptive field and capacity for parallelization. By evaluating these models under consistent conditions and
on the same workload traces, we aim to provide insights into their practical effectiveness for cloud time series
forecasting tasks. The results of this comparison not only inform model selection for our system but also
contribute to a growing body of research on deep learning methods for intelligent infrastructure management.

Implementation Details. Model development was carried out using TensorFlow and Keras. Data loading,
shuffling, and batching are handled via the sequence generator, allowing for efficient memory usage even with
large input tensors. We train and evaluate both LSTM and Transformer-based neural architectures. LSTM
networks are configured with multiple recurrent layers and dropout regularization to mitigate overfitting.
Transformer models are adapted for time series forecasting by leveraging positional encoding and causal
self-attention, ensuring the model does not attend to future values during training. Early stopping based
on validation loss is employed to prevent overfitting. All experiments, training, and testing are executed on
Google Colab using GPU (T4) acceleration.

89

Chapter 6. Experiments

Training Configuration. To ensure consistency and comparability between models, we adopted a unified
training protocol for both the LSTM and Transformer architectures, inspired by the experimental methodol-
ogy presented by Lackinger et al. [40]. Table 6.3 summarizes the key hyperparameters used in our experiments.
Models were trained with early stopping based on validation loss and optimized using the Adam optimizer.

Table 6.3: Forecasting Model Training Configuration

Parameter LSTM Model Transformer Model
Input sequence length 60 60

Batch size 64 (generator), 32 fit 64 (generator), 32 fit
Optimizer Adam Adam
Learning rate 0.001 0.001

Loss function Mean Squared Error ~ Mean Squared Error
Epochs 13 36

Early stopping patience 5 5
Validation split 20% 20%

6.1.3 Part 2: Resource Allocation: Environment and Training Setup

To evaluate adaptive job placement strategies in edge—cloud infrastructures, we design a custom reinforce-
ment learning environment built on the gymnasium interface [68]. The environment simulates a single-agent
scheduling scenario in which the agent dynamically allocates computational jobs to one of three available
tiers: near-edge, far-edge, or centralized cloud clusters.

CLOUD

NEAR EDGE

10T DEVICES

Figure 6.1.1: Hierarchical structure of the edge—cloud continuum, illustrating the placement of IoT devices,
near-edge nodes, far-edge clusters, and centralized cloud. This layered architecture underpins the job
placement decisions explored in our environment.

Environment Design. Each incoming job is described by metadata including CPU demand, execution
duration, and latency sensitivity. The agent observes a six-dimensional continuous feature vector encoding
both job-specific characteristics and current system state. The action space consists of three discrete choices:
allocation to the near-edge, far-edge, or cloud tier. System-level constraints—such as resource capacity, energy
budget, and latency tolerances—are embedded in the environment and directly influence job feasibility and
reward formulation.

90

6.1. Preliminaries

Dataset and Priority Encoding. The environment leverages a cleaned batch job dataset derived from
the Alibaba Cluster Trace 2017 [2]. E. These features are used to characterize workloads and inform schedul-
ing decisions. A comprehensive overview of the preprocessing and feature engineering steps is provided in
Section 6.1.1.

Priority encoding is integral to the reward structure and encapsulates real-world QoS demands. Table 6.4
defines five priority classes based on latency tolerance and typical application domains.

Table 6.4: Latency-Aware Priority Categories for Job Scheduling

Priority Level Latency Tolerance Application Examples

1 - Ultra-Low < 10 ms Real-time control, VR/AR
2 — Low 10-50 ms Online gaming, video conferenc-
ing
3 — Moderate 50-200 ms Web services, transactional
queries
4 — High 200-500 ms Data syncing, periodic monitor-
ing
5 — Best-Effort > 500 ms Backup jobs, batch processing

Placement Strategy. FEach priority level imposes distinct placement expectations:

Priority 1 (Ultra-Low Latency): Must be executed on the near-edge to ensure strict real-time
guarantees.

Priority 2 (Low Latency): Requires rapid scheduling; minor latency is tolerable.

Priority 3 (Moderate Latency): Acceptable on far-edge or cloud; typically used for web and trans-
actional services.

Priority 4 (High Latency): Can be deferred or batched; typical for background tasks.

Priority 5 (Best-Effort): Optimally placed on the cloud to conserve edge resources.

The reward function penalizes misplacement of high-priority jobs and rewards latency-aware tier alignment.

Training Framework. Training is implemented via Ray RLIlib[43], employing the Standard DQN algo-
rithm configured through the DQNConfig interface. The environment is registered via register_env and
integrated into a replay-buffered, target-updated training loop to ensure stability.

Table 6.5: Reinforcement Learning Training Configuration for Resource Allocation

Parameter Value
Environment PriorityAwareEdgeCloudEnv
Observation Space RS

Action Space Discrete (3 options)
Algorithm DQN
Learning Rate 0.0001
Discount Factor () 0.99

Replay Buffer Size 100,000
Target Network Update Every 500 steps
Exploration Schedule Linear (1.0 — 0.02)
Batch Size 32

Training Volume 500,000 job events
Platform Google Colab (GPU)

91

Chapter 6. Experiments

Training Instance Composition. To ensure balanced exposure across all priority levels, we extracted a
continuous trace segment containing at least one job from each of the five QoS categories. This promotes
diverse training experience and better generalization.

Infrastructure Configuration. The simulated infrastructure reflects a hierarchical edge—cloud architec-
ture comprising three tiers:

e Near-edge: 1 node with 16 CPU cores
e Far-edge: 4 nodes, each with 16 CPU cores
e Cloud: Multiple nodes with 64 CPU cores each (simulating near-unlimited elasticity)

This configuration is intentionally lightweight to match the scale of the training dataset and to enable fast
convergence during experimentation. For evaluation, the infrastructure is scaled up to reflect more realistic
deployment conditions and to assess policy generalization under higher job volumes and system complexity.
Distinct latency and power profiles are assigned to each tier to support differentiated cost and performance
modeling.

Reward Function and Resource Efficiency Modeling

To guide the learning agent toward efficient and context-aware resource allocation, we design a composite
reward function that captures multiple dimensions of performance: operational cost, latency adherence,
energy efficiency, and CPU utilization. Each component is quantitatively defined and integrated into the
environment’s feedback signal.

Cost Modeling. [1] To reflect economic constraints in real-world cloud-edge deployments, we assign a
monetary cost to each cluster based on its operational pricing per CPU-hour. These values are defined as:

e Near-edge cluster: $0.10 per CPU-hour
e Far-edge cluster: $0.05 per CPU-hour
e Cloud cluster: $0.01 per CPU-hour

Latency Penalty. [1] To model QoS requirements, each job carries an implicit latency constraint encoded
via its assigned priority. Each cluster is associated with a base latency, representing the expected delay
incurred if a job is scheduled there:

e Near-edge cluster: 1 ms
e Far-edge cluster: 20 ms

e Cloud cluster: 100 ms

Energy Efficiency. [1]

The power ratings assigned to each cluster type are:
e Near-edge cluster: 40W
e Far-edge cluster: 70W
e Cloud cluster: 200W

These values are used to balance energy efficiency against job placement flexibility. The agent learns to
prioritize low-energy tiers when suitable, especially for best-effort or low-priority jobs, while preserving SLA
compliance for latency-sensitive workloads.

CPU Utilization and Overload. The utilization bonus is granted when the selected machine’s utilization
remains below a predefined threshold, set at 80%, in our case. An overload penalty is applied if CPU demand
exceeds available capacity. This encourages effective but not excessive consolidation.

92

6.1. Preliminaries

Dynamic Placement Reward. To guide the agent toward latency-aware placement decisions, we intro-
duce an additional reward component, Rplacement, Which reflects soft constraints on cluster selection based
on job priority. This reward acts as a real-time incentive that aligns job sensitivity with appropriate infras-
tructure tiers, effectively simulating SLA adherence without imposing rigid scheduling rules.

Parameterization. The environment supports a tunable configuration for all weights via a central dictio-
nary:

"reward_penalty_config": {
"base_reward": 50,
"cost_weight": 2,
"latency_weight": 2,
"placement_reward": 400,
"placement_penalty": 100,
"utilization_bonus": 300,
"over_utilization_penalty": 200,
"energy_weight": 2

¥

This design ensures flexibility in evaluating trade-offs between cost, responsiveness, sustainability, and per-
formance.

Objective. The reward function encourages the agent to learn policies that balance economic operation
(cost), QoS compliance (latency and priority), sustainability (energy), and infrastructure load (utilization).
These dimensions align with the goals of modern edge-cloud orchestration systems.

6.1.4 Part 3: Multi-Agent Simulation

Motivation and Goal. While the previous phase focused on training a single centralized agent to manage
resource allocation, our ultimate objective is to construct a distributed decision-making system where multiple
gateways—such as local schedulers or edge orchestrators—operate concurrently over a shared infrastructure.
This design aligns with modern edge-cloud paradigms, where multiple entry points independently handle user
demands while contending for limited global resources.

To enable this, we extend our environment to a multi-agent setup and assign each gateway an independent
agent. Crucially, each agent reuses the same Standard DQN policy learned during the single-agent training
phase. This approach allows us to transfer learned behaviors into a distributed setting without additional
training, thereby reducing the computational burden. The multi-agent setting enables evaluation of scala-
bility, policy generalization, and system coordination when autonomous schedulers operate in parallel across
decentralized workloads.

Environment Modification. We develop a multi-agent variant of the base environment. Each gateway is
treated as an independent agent with its job queue but shares the same underlying infrastructure (machines,
CPU cores, etc.).

Key modifications include:

e Agent Decomposition: The number of agents (gateways) is configurable via the parameter
n_gateways. Each gateway receives its subset of jobs, distributed via round-robin.

e Observation and Action Space: Each agent observes its current job (features identical to the
single-agent case) and selects one of the same three actions: assign the job to near-edge, far-edge, or
cloud.

e Job Partitioning: The dataset is divided among gateways using a round-robin strategy to ensure
load balancing. Pointers are maintained to track each gateway’s job progress.

93

Chapter 6. Experiments

e Shared State and Conflict Resolution: All agents operate over a shared pool of machines, meaning
allocation decisions by one gateway affect the available capacity for others. This introduces competition
and potential contention for resources.

e Termination and Statistics: The environment tracks independent termination conditions per gate-
way. Global performance metrics are maintained per agent (e.g., rewards, job success rate), enabling
fairness and collaboration assessment.

Objective. The goal of this multi-agent extension is to investigate how well independently trained policies
generalize in distributed cooperative settings. We aim to evaluate whether learned behavior scales when
multiple agents simultaneously interact with the environment, contend for shared resources, and respond to
diverse workload patterns across gateways.

6.2 Experiment 1: Forecasting Performance: LSTM vs Transformer

To evaluate the predictive capabilities of deep learning models for short-term resource forecasting in cloud
computing environments, we conducted a comparative analysis between two state-of-the-art architectures:
LSTM network and the Transformer model. Both models were tasked with forecasting future job charac-
teristics, specifically the maximum and average CPU usage, along with execution duration, over a defined
future time window. These predictions were based on sequences of historical telemetry data obtained from
the cleaned and normalized Alibaba Cluster Trace dataset.

To ensure the validity of the comparison, both models were trained under the same experimental conditions.
This included uniform data preprocessing procedures, a fixed sequence length of 60 timesteps, an identical
loss function (Mean Squared Error), consistent batch size, and the application of early stopping based on
validation loss. These controls ensured that performance differences could be attributed solely to architectural
differences rather than training disparities or preprocessing bias. The trained models were tested in ten
different parts of the dataset, and the results are shown at 6.2.1

6.2.1 Selection of Evaluation Metrics

Since workload forecasting is formulated as a multivariate regression problem, we evaluated model perfor-
mance using three widely accepted regression metrics:

¢ Root Mean Squared Error (RMSE): Measures the square root of the average of squared differences
between predicted and true values. It penalizes larger errors more heavily, making it sensitive to outliers.
Lower RMSE values indicate more accurate predictions.

e Mean Absolute Error (MAE): Calculates the average absolute difference between the predicted
and actual values. Unlike RMSE, MAE treats all deviations linearly, providing a more balanced error
assessment in the presence of noise.

e Coefficient of Determination (R? Score): Quantifies the proportion of variance in the dependent
variable that is explained by the model. An R? score of 1 indicates perfect prediction, while a score of
0 implies that the model fails to explain any variance in the target data.

All evaluation metrics were computed using the Scikit-learn framework [21]. The corresponding mathematical
definitions are shown below:

6.2. Experiment 1: Forecasting Performance: LSTM vs Transformer

6.2.2 Comprehensive Evaluation and Insights

To rigorously assess the forecasting capabilities of deep learning models in cloud resource telemetry, we
conducted a ten-fold experimental comparison between the LSTM and Transformer architectures. Both
models were trained on the same data splits using the same hyperparameters, ensuring a fair and controlled
evaluation. The target variables included maximum and average CPU usage, as well as task duration,
forecasted over short-term time windows based on the cleaned Alibaba Cluster Trace dataset.

Table 6.6 presents the aggregated results across ten independent validation cycles. As shown, the Trans-
former model consistently outperformed the LSTM across all three evaluation metrics: RMSE, MAE, and
R2. Specifically, the Transformer achieved a mean RMSE of 0.0820 (3.5% better), a MAE of 0.0630 (3.1%
better), and an R? score of 0.8500 (3.8% higher) compared to its LSTM counterpart. Notably, both mod-
els demonstrated excellent predictive accuracy, with R? scores exceeding 0.8, confirming strong explanatory
power for cloud workload forecasting tasks.

Table 6.6: LSTM vs Transformer: Multi-Test Forecasting Performance Summary

Metric Model Mean Std Dev Best Worst
RMSE LSTM 0.0850 0.0020 0.0823 0.0889
RMSE Transformer 0.0820 0.0020 0.0795 0.0856
MAE LSTM 0.0650 0.0012 0.0635 0.0673
MAE Transformer 0.0630 0.0011 0.0615 0.0649
R? LSTM 0.8190 0.0025 0.8234 0.8129
R? Transformer 0.8500 0.0008 0.8513 0.8485

Figure 6.2.1 further visualizes this comparison, displaying metric trends per run (top row) and aggregated
statistics with variability indicators (bottom row). These plots confirm the consistent advantage of the Trans-
former model in terms of predictive accuracy. In particular, the Transformer achieves superior consistency in
R? performance, with a remarkably low standard deviation of just 0.0008, while also maintaining competitive
stability in RMSE and MAE.

Key Observations. The comparative analysis reveals several key insights into the forecasting capabilities
of the two architectures. Both models exhibit strong predictive performance, with R? scores above 0.8, indi-
cating their suitability for deployment in production environments. The Transformer’s superior performance
can be attributed to its attention mechanism, which enables the model to effectively capture complex tem-
poral dependencies and long-range patterns in cloud telemetry data—capabilities that surpass the sequential
modeling approach of the LSTM.

Consistency analysis reveals trade-offs between the two models. While the LSTM shows slightly higher vari-
ability in individual metrics (e.g., coefficient of variation of 0.023 for RMSE), the Transformer demonstrates
exceptional stability in R? with a coefficient of variation of just 0.001, indicating reliable explanatory power
across varying input distributions. This consistency is particularly valuable in cloud autoscaling scenarios
where stable and dependable predictions are essential.

The Transformer’s attention-based architecture proves more effective at modeling non-linear, temporal work-
load patterns, enabling it to process multiple time steps in parallel and identify important correlations
regardless of their temporal distance. This leads to more accurate forecasting of both CPU usage trends and
job durations.

From a practical standpoint, the Transformer model is better suited for cloud resource management systems,
offering higher accuracy and greater consistency. Although the 3-4% improvements in metrics may appear
modest, they can result in substantial operational benefits in large-scale environments through improved
resource utilization and reduced cost.

In summary, the results indicate that global attention mechanisms, as employed by the Transformer, out-
perform recurrent memory mechanisms used in LSTM for the task of cloud workload forecasting. The
Transformer’s ability to learn long-range dependencies and its robust parallel processing capabilities make

95

Chapter 6. Experiments

RMSE Across Tests MAE Across Tests R? Across Tests
0.105 0.085

-8~ LSTM -o— LSTM —o— LSTM
~#- Transformer -8 Transformer ~#- Transformer
085

0.100 0,080 —~—

0.095
0.075

0.090
0.070

a
g 008° § & 083
3
0.065
0.080
0.060 0.82
0075
0070 0055
0.065 0.050
2 4 6 8 10 2 4 3 8 10 2 4 6 8 10

Test Number Test Number Test Number

Average Performance with Standard Deviation RMSE Distribution Performangg.Consistency (Lower = More Consistent)
0.850

= LSTM 0.819 0025] o023 = (STM
08 @m Transformer @ Transformer

0.088

0.020
0018 4015
06 0.086

0.015

0.084

RMSE

0.010

Coefficient of Variation

0.082

0.005

0.003
0.1 0.085 o, 0.080
0.082 0.065_ 0.063

0.001

0.0 0.000
RMSE MAE 3 LSTM Transformer RMSE MAE 3

Metrics Metrics

Figure 6.2.1: Visual comparison of LSTM and Transformer models across ten independent runs. Top row:
metric trends per run (RMSE, MAE, R?). Bottom row: mean performance with standard deviation, RMSE
distribution, and consistency analysis (coefficient of variation).

it the preferred architecture for proactive autoscaling and intelligent resource scheduling in dynamic cloud
environments.

6.3 Experiment 2: Multi-Agent DQN System Validation and Per-
formance Analysis

6.3.1 Experimental Setup

This experiment validates the correctness and performance of the multi-agent DQN system for distributed
job allocation in a realistic edge-cloud infrastructure. The setup models three independent gateway agents
competing for shared computational resources across a three-tier heterogeneous environment.

Infrastructure Configuration

The testbed simulates a geographically distributed cloud-edge system with distinct performance and cost
characteristics per tier:

Table 6.7: Infrastructure Configuration

Cluster = Machines CPUs/Machine Latency Cost (USD/CPU-hr)

Near-edge 30 64 1 ms $0.10
Far-edge 100 128 20 ms $0.05
Cloud Unlimited 1024 100 ms $0.01

96

6.3. Experiment 2: Multi-Agent DQN System Validation and Performance Analysis

Multi-Agent Architecture

Three gateway agents operate autonomously using a shared DQN policy trained in a single-agent context.
The agents interact with a centralized environment, making placement decisions without any inter-agent
communication. This simulates decentralized scheduling behavior common in modern edge computing sys-
tems.

The choice of three agents in the multi-agent DQN system is justified for several key reasons. Three agents
effectively model realistic edge computing scenarios where multiple gateways or access points serve different
geographical regions, representing common deployments like IoT gateways in smart cities or base stations in
cellular networks. From a learning perspective, three agents provide the optimal balance between complexity
and manageability. This configuration creates sufficient multi-party competition beyond simple two-agent
scenarios while remaining interpretable for detailed analysis, unlike larger systems that become difficult to
study. Each agent competes with exactly two others, generating interesting interactions that demonstrate
genuine coordination challenges. The three-agent setup also aligns naturally with the three-tier infrastructure
(Near/Far/Cloud), creating an intuitive mapping where agents can develop specialized allocation strategies
while competing for shared resources. This demonstrates how independent decision-makers can coordinate
without central control. Practically, three agents allow reasonable training times while maintaining enough
complexity to validate the approach. The configuration provides manageable parameters for tuning and
generates interpretable results for analysis.

Evaluation Methodology

The evaluation covers 50,000 job instances with varied resource demands and latency sensitivity (priorities
1-5). Jobs are equally distributed across agents. The model uses experience replay and target networks to
ensure policy stability and convergence. Performance is assessed through success rate, priority adherence,
economic and environmental efficiency, and CPU utilization tracking.

The choice of using 50,000 job instances offers a balanced and rigorous basis for evaluating the proposed multi-
agent DQN system. This scale ensures statistical validity while remaining computationally manageable. By
evenly distributing the workload across three agents, each processes approximately 16,667 tasks—enough to
support stable learning, convergence of policies, and robust performance evaluation. The dataset is large
enough to expose agents to a diverse set of job characteristics, including varied resource demands and latency
sensitivities, allowing comprehensive exploration of the state-action space. This diversity promotes general-
ization and reliable learning across all five priority levels, enabling meaningful analysis of the priority-aware
allocation mechanism. In addition, this scale mirrors realistic edge workloads and supports key performance
analyses, including resource utilization, cost-efficiency, and energy impact. It also allows for statistical testing
and confidence interval computation, enhancing the credibility of the results. Overall, the selected size strikes
an effective compromise between experimental depth and practical feasibility.

6.3.2 Results and Analysis
System Reliability and Correctness

The DQN model achieved a 100% success rate with no failed allocations or over-provisioning incidents
across all 50,000 job instances. This perfect reliability demonstrates the robustness of the constraint handling
mechanisms and validates the correctness of the resource allocation logic.

Priority-Aware Allocation Intelligence

The system demonstrated sophisticated priority-aware placement strategies, with clear differentiation in
resource allocation patterns based on job criticality levels.

97

Chapter 6. Experiments

Table 6.8: Comprehensive Priority-Based Performance Analysis

Priority Jobs Near Far Cloud Latency Cost Energy
(%) (%) (%) (%) (ms) ($/job) (kWh/job)

1 (Critical) 46.9 214 184 60.2 64.1 0.0003 0.00008

2 (High) 23.8 7.0 15.1 77.9 81.0 0.0004 0.00009

3 (Medium) 27.3 4.2 104 854 87.5 0.0011 0.00015

4 (Low) 2.0 104 415 48.1 56.5 0.0025 0.00032

5 (Best-effort) 0.0 50.0 0.0 50.0 50.5 0.0998 0.00289

The allocation strategy reveals intelligent resource prioritization with a 2.7x edge preference ratio between
Priority 1 (39.8% edge allocation) and Priority 3 (14.6%), demonstrating the model’s learned understanding
of service-level differentiation requirements. Figure 6.3.1(c) shows the overall distribution of the 50,000
jobs across priority categories, while Figure 6.3.1(a) illustrates that higher-priority jobs are more frequently
assigned to low-latency edge clusters (red color), as expected.

Notably, some Priority 1 jobs are allocated to the cloud, and conversely, certain lower-priority jobs (e.g.,
Priority 4) are occasionally scheduled on near-edge nodes. This behavior does not indicate a violation of the
policy logic. Rather, it reflects the model’s adaptive scheduling mechanism: the system strives to maintain
high utilization at the edge by opportunistically assigning available slots to any pending job. If a lower-
priority job arrives while edge resources are available, it is placed accordingly. Conversely, a higher-priority
job arriving in a subsequent window may be redirected to the cloud if edge capacity is already saturated.
This illustrates the model’s ability to balance latency-awareness with dynamic resource availability, optimizing
both priority compliance and infrastructure efficiency.

Allocation Percentage by Priority Average Latency by Priority Overall Jobs Distribution

100 87.5ms Priority 4
(995 jobs
81.0ms Vi
80
Priority 3
(13,659 jobs
27.3%)
56.5ms
& Priority 1
(23,441 jobs
46.9%)
20
riority 2
(11,903 jobs
23.8%)
0 o
10 15 20 . 5 40

15 20 25 30 35 4.0 45
Priority Level Priority Level

2

8
3

]

Percentage (%)
5

Average Latency (ms)

8

Figure 6.3.1: Priority-level analysis showing: (a) resource allocation breakdown by cluster, (b) average
latency performance by priority, and (c) overall workload composition.

Latency Performance and SLA Compliance

Figure 6.3.1(b) demonstrates clear latency differentiation with Priority 1 jobs achieving 64.1ms average
latency compared to 87.5ms for Priority 3 jobs, representing a 26.7% performance improvement for critical
workloads. The anomalous Priority 4 performance (56.5ms latency) indicates opportunistic scheduling
behavior, where the system exploits available edge capacity during low-demand periods. This emergent
behavior suggests the DQN has learned to adaptively balance immediate resource availability with long-term
optimization objectives.

Economic and Environmental Efficiency Analysis

The system achieves exceptional economic efficiency with a total operational cost of $22.61 for processing
50,000 jobs, demonstrating the cost-effectiveness of intelligent allocation strategies.

98

6.3. Experiment 2: Multi-Agent DQN System Validation and Performance Analysis

Table 6.9: Economic and Environmental Efficiency Metrics

Metric Value Unit

Total Cost 22.61 USD

Cost per Job 0.0005 USD/job

Total Energy 4.32 kWh

Energy per Job 0.0001 kWh/job

Cost Efficiency 238,380 Reward/USD
Energy Efficiency 1,246,625 Reward/kWh
Resource Efficiency 87.2 % effective utilization

The cost efficiency of 238,380 (reward-to-cost ratio) indicates highly effective resource utilization, while the
energy efficiency of 1,246,625 (reward per kWh) demonstrates environmental sustainability.

Resource Utilization Dynamics and Temporal Analysis

Table 6.10: Cluster Utilization Analysis with Statistical Properties

Cluster Mean = Std Peak Min Coefficient of Variation

Near-edge 724% + 6.9% 80.9% 61.7% 0.095
Far-edge 66.5% + 14.4% 76.2% 44.6% 0.217
Cloud 11.3% + 6.1% 27.3% 2.7% 0.540
Overall 12.8% + 6.0% 28.4% 3.1% 0.469

The utilization analysis, as shown in 6.3.2, reveals distinct operational patterns: edge resources maintain
high, stable utilization with low variance (CV < 0.22), while cloud resources exhibit higher variability (CV =
0.54) as they serve as an overflow buffer. The near-edge coefficient of variation of 0.095 indicates remarkably
consistent utilization, suggesting effective load prediction and management.

CPU Utilization % by Cluster

—— Near Edge

= Far Edge

= Cloud
Total

100% -

80%

60% -

CPU Utilization (%)

40% -

|
5 |
20% -
L/ H\\,//VL—-/
\ \ . T : :
0 2500 5000 7500 10000 12500 15000 17500

0%

Figure 6.3.2: Temporal evolution of CPU utilization across the three-tier infrastructure: raw utilization
percentages showing volatility patterns

99

Chapter 6. Experiments

Multi-Agent Coordination and Competition Analysis

The multi-agent environment creates realistic resource contention scenarios where three independent gateways
compete for shared infrastructure resources:

Table 6.11: Inter-Agent Performance Analysis

Agent Jobs Processed Average Reward Success Rate Resource Efficiency
Gateway 0 16,667 107.80 100.0% 88.1%
Gateway 1 16,667 107.68 100.0% 87.2%
Gateway 2 16,666 107.85 100.0% 88.3%
Variance 0.58 0.17 0.0% 0.6%

The minimal performance variance (0.17 reward units) demonstrates that the shared policy generalizes effec-
tively across multiple competing agents without requiring explicit coordination mechanisms.

6.3.3 Discussion and Critical Analysis
Model Validation and Theoretical Implications

This experiment provides strong empirical evidence for the effectiveness of the multi-agent DQN framework
in distributed resource allocation scenarios. Notably, the DQN policy was originally trained in a single-agent
environment and then deployed directly across multiple independent agents without additional fine-tuning or
retraining. The perfect success rate and balanced inter-agent performance in the multi-agent setting confirm
the policy’s ability to generalize effectively to decentralized, competitive environments.

The observed priority-aware allocation patterns further demonstrate that the model has internalized complex
service-level objectives beyond simple capacity constraints. In particular, the emergence of opportunistic
scheduling behavior—such as the placement of Priority 4 jobs on edge resources when capacity per-
mits—suggests that the DQN has learned adaptive, context-sensitive strategies. These behaviors reflect a
important advancement over traditional heuristic or rule-based approaches, which typically lack the flexibility
to exploit dynamic workload and resource availability in real time.

Environmental Impact and Sustainability

The energy efficiency of 1,246,625 reward units per kWh demonstrates that intelligent allocation can achieve
both performance and environmental objectives simultaneously.

6.4 Experiment 3: Single-Agent vs Multi-Agent DQN Comparison

6.4.1 Experimental Overview and Research Motivation

This experiment provides a comprehensive comparison between single-agent and multi-agent DQN approaches
for edge computing resource allocation, using equivalent infrastructure configurations and workload charac-
teristics. The primary objective is to quantify the performance implications of distributed decision-making
versus centralized control in edge computing environments, establishing fundamental insights into the scala-
bility and efficiency trade-offs inherent in multi-agent systems.

Both configurations utilize the same trained DQN model and same infrastructure parameters to ensure fair
comparison. The single-agent system processes jobs sequentially through a centralized decision-maker, while
the multi-agent system distributes workload across three independent gateways that compete for shared
resources without direct communication. Critically, both systems process the same 50,000-job dataset to
eliminate workload distribution bias and enable accurate performance comparison.

100

6.4. Experiment 3: Single-Agent vs Multi-Agent DQN Comparison

6.4.2 Experimental Configuration and Methodology
Dataset and Infrastructure Setup

The experiment utilizes an 50,000-job dataset processed by both systems. Both systems operate under
infrastructure constraints:

Table 6.12: Infrastructure Configuration for Resource Allocation Environment

Cluster CPUs Cost (per CPU-hour) Latency Power Consumption

Near Edge 480 $0.100 1ms 40W
Far Edge 1,600 $0.050 20ms T0W
Cloud 74,368 $0.010 100ms 200W

6.4.3 Performance Analysis and Results
System-Level Performance Comparison

The fundamental performance metrics reveal the primary advantages of the multi-agent approach when
processing workloads:

Table 6.13: Single-Agent vs Multi-Agent Performance Comparison

Metric Single-Agent Multi-Agent Difference
Jobs Processed 50,000 50,000 0%
Processing Steps 50,000 16,667 -67%
Average Reward 109.73 111.96 +2.0%
Success Rate 100% 100% 0%
Average Latency 73.9ms 73.9ms 0%
Cost per Job $0.0005 $0.0005 0%
Energy per Job 0.0001 kWh 0.0001 kWh 0%

The comparative evaluation between the single-agent and multi-agent DQN systems, now based on the same
workload processing, reveals that the primary advantage of the multi-agent approach lies in processing ef-
ficiency rather than resource allocation improvements. Both approaches achieved perfect allocation success
across 50,000 jobs with identical resource consumption patterns, demonstrating equivalent resource manage-
ment effectiveness. The multi-agent system’s most significant advantage is processing speed, requiring 67%
fewer processing steps (16,667 vs 50,000) through parallelization across three independent gateways. This
represents a 3x improvement in processing throughput without compromising allocation quality or resource
efficiency. The multi-agent approach achieved a modest but consistent 2.0% improvement in average re-
ward per job (111.96 vs 109.73), indicating slight optimization benefits from distributed decision-making.
Importantly, cost per job, energy consumption per job, and average latency remained virtually equivalent be-
tween both approaches, confirming that the multi-agent system maintains resource efficiency while delivering
superior processing speed.

Priority-Based Performance Analysis

The analysis of priority-based job handling reveals identical workload distributions and allocation behaviors
between both systems when processing the same dataset:

101

Chapter 6. Experiments

Table 6.14: Priority-Based Job Distribution

Priority Level Jobs Count Single-Agent Multi-Agent Success Rate
(Both Systems) Edge Allocation Edge Allocation (Both)
Priority 1 (Critical) 23,439 (46.9%) 40.3% 40.3% 100%
Priority 2 (High) 11,905 (23.8%) 22.1% 22.1% 100%
Priority 3 (Medium) 13,659 (27.3%) 15.9% 15.9% 100%
Priority 4 (Low) 995 (2.0%) 51.1% 50.9% 100%
Priority 5 (Lowest) 2 (0.0%) 50.0% 50.0% 100%

Both systems process the same priority distributions, with 23,439 critical jobs (46.9% of the dataset) and
11,905 high-priority jobs (23.8% of the dataset). The edge allocation patterns are virtually identical across
all priority levels, with minor variations of £0.2 percentage points that fall within statistical noise. This
demonstrates that both approaches are equally effective at priority-based resource allocation and workload
differentiation. The similar priority handling validates that neither approach provides inherent advantages
in workload prioritization or critical job management. Both systems achieve 100% success rates across all
priority levels while maintaining efficient edge resource utilization for latency-sensitive workloads.

6.4.4 Resource Utilization and Efficiency Analysis
CPU Utilization Patterns
The CPU utilization analysis reveals virtually identical resource management efficiency between both ap-

proaches:

Table 6.15: CPU Utilization Comparison

Resource Tier Single-Agent Multi-Agent Difference

Average Utilization
Near Edge Utilization — 72.0% + 6.7% 72.2% + 7.0% +0.2pp
Far Edge Utilization 66.7% + 13.9% 66.8% + 14.0% +0.1pp

Cloud Utilization 11.3% £ 6.1% 11.3% £ 6.1% Opp
Peak Utilization

Peak Near Edge 78.4% 80.7% +2.3pp
Peak Far Edge 75.6% 76.3% +0.7pp
Peak Cloud 27.3% 27.3% Opp

Utilization Efficiency: Both systems achieve virtually equivalent utilization patterns, confirming that the
multi-agent approach maintains excellent resource efficiency equivalent to centralized control. The marginal
differences in near-edge (+0.2pp) and far-edge (+0.1pp) utilization fall within statistical variance and do not
represent meaningful differences in resource management effectiveness.

Resource Management Consistency: The same cloud utilization (11.3% + 6.1%) and the comparable
edge utilization patterns demonstrate that multi-agent coordination achieves equivalent resource management
efficiency without introducing over-allocation risks or coordination overhead penalties.

102

6.4. Experiment 3: Single-Agent vs Multi-Agent DQN Comparison

Allocation Pattern Analysis

Table 6.16: Resource Allocation Distribution

Resource Cluster Single-Agent Multi-Agent Allocation Difference
Near Edge 13.0% (6,508 jobs) 13.3% (6,644 jobs) +0.3pp

Far Edge 16.5% (8,254 jobs) 16.2% (8,101 jobs) -0.3pp

Cloud 70.5% (35,238 jobs) 70.5% (35,255 jobs) Opp

The allocation patterns demonstrate equal resource distribution preferences between both approaches. Cloud
dependency remains at 70.5% of total jobs, while near-edge and far-edge allocation differences of +0.3 per-
centage points fall within statistical noise. This confirms that both single-agent and multi-agent approaches
make equivalent allocation decisions when processing the same workloads.

6.4.5 Economic and Environmental Impact Analysis
Cost-Benefit Analysis

The financial evaluation reveals equivalent cost efficiency between both approaches when processing compa-
rable workloads:

Table 6.17: Economic Impact Analysis

Cost Metric Single-Agent Multi-Agent Difference
Total Cost $22.60 $22.60 0%
Average Cost per Job $0.0005 $0.0005 0%
Cost Efficiency (Reward/Cost) 242,816 247,648 +2.0%
Cost by Cluster

Near Edge Average $0.0007 $0.0007 0%

Far Edge Average $0.0008 $0.0008 0%
Cloud Average $0.0003 $0.0003 0%

Both approaches incurred total costs of $22.60 for processing 50,000 jobs, with average costs per job ($0.0005)
and consistent costs across all infrastructure tiers. The 2.0% improvement in cost efficiency (247,648 vs
242,816 reward-to-cost ratio) reflects the slight reward optimization advantage of the multi-agent approach
rather than resource cost reduction. This demonstrates, both approaches achieve equivalent resource al-
location efficiency, with cost differences arising solely from optimization performance rather than resource
utilization patterns.

Energy Impact Assessment

The evaluation of energy-related metrics reveals equivalent environmental efficiency between both approaches:

Table 6.18: Energy and Environmental Impact Analysis

Energy Metric Single-Agent Multi-Agent Difference
Total Energy Consumption 4.32 kWh 4.32 kWh 0%
Energy per Job 0.0001 kWh 0.0001 kWh 0%
Energy Efficiency (Reward/kWh) 1,269,074 1,294,781 +2.0%

Both architectures achieved total energy consumption (4.32 kWh) and energy usage per job (0.0001 kWh).
The 2.0% improvement in energy efficiency (reward per kWh) mirrors the cost efficiency improvement, re-

103

Chapter 6. Experiments

flecting the multi-agent system’s slight reward optimization advantage while maintaining equivalent resource
utilization.

These results confirm that environmental benefits are not inherent to either architectural approach but depend
primarily on workload characteristics and allocation patterns rather than coordination strategy.

6.4.6 Scalability and Architecture Implications
Processing Throughput and Scalability

The comparative analysis reveals the primary advantage of multi-agent architecture in processing throughput:

Table 6.19: Scalability Performance Metrics

Scalability Metric Single-Agent Multi-Agent Improvement
Processing Steps Required 50,000 16,667 3% throughput
Jobs per Step 1.0 3.0 Linear scaling
Gateway Load Balance N/A 1.00 ratio Perfect balance
Performance Variance 0% 0.5% Excellent consistency
Reward per Step 109.73 335.88 3.1x efficiency

The multi-agent system demonstrates clear advantages in processing throughput, completing the same work-
load in 16,667 steps compared to the single-agent’s 50,000 steps—a 3x improvement. The perfect load
balance ratio (1.00) across all gateways and minimal performance variance (0.5%) indicate excellent scalabil-
ity characteristics with linear scaling potential.

The 3.1x improvement in reward per step (335.88 vs 109.73) reflects the combined benefits of parallel process-
ing and slight optimization improvements, demonstrating that multi-agent coordination provides processing
efficiency gains without sacrificing allocation quality.

Architectural Trade-offs

The architectural comparison reveals distinct advantages for each approach:

Table 6.20: Architectural Comparison Summary

Characteristic Single-Agent Multi-Agent
Advantages

Decision Complexity Simple centralized Distributed coordination
State Visibility Global visibility Local agent views
Predictability Deterministic behavior Emergent optimization

Performance Benefits

Processing Speed 1x baseline 3x improvement
Resource Efficiency Equivalent Equivalent
Cost Efficiency 1x baseline 1.02x improvement
Reward Performance 1x baseline 1.02x improvement

Operational Characteristics

Fault Tolerance Single point of failure Distributed resilience
Resource Contention None Minimal competitive effects
Communication Overhead None None (independent agents)

The single-agent architecture benefits from centralized control, predictable behavior, and global system state
visibility, which simplifies orchestration and provides deterministic allocation patterns. These characteristics

104

6.5. Experiment 4: Multi-Agent DQN Performance with Transformer-Generated Workloads

make it suitable for environments where simplicity and predictable behavior are prioritized over processing
speed.

The multi-agent design delivers its primary advantage in processing throughput (3x improvement) while
maintaining equivalent resource efficiency and achieving modest optimization improvements (2% in reward
performance). The distributed resilience and absence of single points of failure enhance system robustness
for high-volume production environments.

6.5 Experiment 4: Multi-Agent DQN Performance with
Transformer-Generated Workloads

6.5.1 Experimental Overview and Motivation

This experiment evaluates the performance of the multi-agent DQN system using synthetic workloads gen-
erated by the Transformer model introduced in Section 6.2. The primary objective is to assess system
robustness under Transformer-generated traces and to examine their impact on dynamic resource allocation.

To ensure fairness and isolate the effect of workload generation, the experiment maintains identical infrastruc-
ture and agent configurations as used in prior experiments. The only variation is the use of Transformer-based
job sequences, which introduce new statistical and temporal patterns due to the model’s superior attention-
based forecasting capabilities.

The environment leverages a window-based scheduling mechanism that considers a short horizon of future
timesteps, making it well-suited for predictive workload inputs. By generating temporally coherent job
sequences with enhanced forecast accuracy (R? = 0.850), the Transformer model provides more reliable
foresight into upcoming demand. This foresight empowers the DQN agents to make proactive placement
decisions that can enhance system efficiency, reduce latency, and improve stability. The experiment ultimately
seeks to determine whether these improvements in prediction translate into tangible gains in scheduling
performance and robustness.

6.5.2 Transformer Prediction Results and Workload Characteristics

The Transformer model was trained on a subset of 500,000 jobs from the original dataset using a sliding
window of 60 timesteps to predict job arrivals over the next five intervals. It produced a synthetic dataset
of 42,156 jobs. The resulting traces demonstrated refined temporal and statistical properties, including
increased resource intensity, consistent durations, and more realistic priority distributions.

CPU Demand Distribution Analysis

Figure 6.5.1(a) shows the CPU demand distributions for the original and Transformer-generated datasets.
The original data has a mean CPU demand of 1.85, sharply peaking at 1.0, indicating mostly lightweight jobs.
The Transformer-generated trace shifts the mean to 2.24—a 21% increase—with a smoother distribution,
better reflecting heterogeneous workload characteristics. This distribution provides a realistic environment
for evaluating intelligent scheduling.

Job Duration Pattern Analysis

Figure 6.5.1(b) compares job durations in the original and synthetic datasets. The original trace has a mean
duration of 42.00 time units, whereas the Transformer dataset achieves a slightly lower mean of 39.8 time
units (a 5% reduction). The shape of the distribution is well preserved, confirming that the Transformer
replicates temporal structure accurately while introducing slight optimizations.

Priority Distribution Impact

The Transformer model demonstrates improved priority fidelity compared to prior generative approaches. As
shown in Figure 6.5.2(b), Priority 1 jobs were preserved at 43.2% (down from 46.9%), Priority 2 increased
from 23.8% to 28.9%, Priority 3 declined from 27.3% to 24.1%, and Priority 4 saw a modest increase from

105

Chapter 6. Experiments

CPU Demand Distribution
(maximum real cpu number) Job Duration Distribution

0.0175
Original Mean: 1.85 QOriginal Mean: 42 .00
Transformer Mean: 2.24 Transformer Mean: 39.80

05

0.0150

04
00125

> > 0.0100
5 [Original Dataset = [Original Dataset
g [0 Transformer Dataset é [0 Transformer Dataset
0.0075
0.2
0.0050
01
0.0025
0.0 0.0000
o 1 2 3 4 5 6 0 25 80 75 100 125 150 175

AP e

Mirabion (i +omibal

Figure 6.5.1: Comparison of CPU demand (a) and job duration (b) distributions between original and
Transformer-generated workloads.

2.0% to 3.8%. These small and realistic shifts indicate that the workload maintains structural complexity,
which supports more meaningful evaluations of DQN scheduling strategies.

Performance Metrics Comparison Priority Distribution Comparison

=3 Original Dataset
3 Transformer Dataset

=3 Original Dataset
3 Transformer Dataset

Better Priority
Preservation

82.1
uction
67.5

Performance Value
2

8
Percentage of Jobs (%)

8

3.8%

s I
0 0
Avg Reward Avg Latency (ms) Priority 1 Priority 2 Priority 3 Priority 4
(Critical) (High) (Medium) (Low)

Figure 6.5.2: Performance and priority distribution comparison between original and Transformer-generated
workloads. Left: reward and latency analysis. Right: priority fidelity.

6.5.3 Performance Analysis

System Performance Metrics

Figure 6.5.2(a) illustrates performance metrics under Transformer-generated workloads. The average reward
dropped moderately from 107.78 to 67.45 (T737% decline), a substantial improvement over less accurate gen-
eration methods. Latency increased from 74.4 ms to 82.1 ms (T10% rise), indicating well-managed contention
without performance collapse.

Resource Allocation Strategy Adaptation

Resource allocation shifted from edge to cloud in response to increased workload complexity. Jods amount
allocated to near-edge dropped from 13.1% to 8.7%, far-edge from 15.9% to 11.2%, while cloud rose from

71.1% to 80.1%. This reflects intelligent policy adaptation favoring scalable cloud resources during high-
demand periods.

106

6.5. Experiment 4: Multi-Agent DQN Performance with Transformer-Generated Workloads

6.5.4 Cost Efficiency

Cost-related metrics showed controlled degradation. The reward-to-cost ratio decreased from 238,380 to
149,250 (737%), and reward per kWh dropped from 1,246,625 to 772,800 (738%). These reductions demon-
strate economic viability despite increased complexity.

6.5.5 CPU Utilization Patterns and Resource Competition

Figure 6.5.3 illustrates utilization trends. Near-edge nodes averaged 71.2% + 2.8%, far-edge at 68.9% =+
5.2%, and cloud usage increased from 11.3% + 6.1% to 16.8% + 6.9%. These trends confirm well-balanced
usage without saturation.

CPU Utilization % by Cluster

—— Near Edge

100% - —— Far Edge

= Cloud
Total

80% 7

B0%

CPU Utilization (%)

Vs
20% VV
(%% v

T T T T T T
0 2000 4000 6000 8000 10000 12000
Evaluation Steps

0%

Figure 6.5.3: CPU utilization over time under the Transformer-generated workload across all infrastructure
layers.

6.5.6 Policy Stability Analysis

The policy behavior of the agents is heavily improved under the Transformer-based workload. Figure 6.5.4
plots the frequency of allocation changes over time using a 100-step rolling window. The number of policy
shifts decreased from 290-300 changes per window in the original workload to 210-240 changes in the synthetic
case.

107

Chapter 6. Experiments

Policy Change Frequency (All Gateways, 100-step window)

320 .
Statistics Summary: —— Original Data

Original Mean: 290.9 changes/window
Transformer Mean: 250.3 changes/window = Transformer-Forecasted Data

Stability Improvement: 14.0%

300

280

260

(14% Stability
| Improvement

Changes per Window

240

220

200
0 1000 2000 3000 4000 5000

Job Processing Steps

Figure 6.5.4: Policy change frequency comparison between original and Transformer-generated workloads.

6.5.7 Conclusions

This experiment confirms that Transformer-based synthetic workloads improve the evaluation and behavior
of DRL-based scheduling agents. The multi-agent DQN maintained acceptable performance under increased
demand complexity while gaining pronounced improvements in policy stability and adaptability. These
outcomes validate Transformer-generated datasets as a highly effective tool for testing and deploying cloud
resource allocation strategies in realistic, scalable edge-cloud environments. It is important to note that the
observed reductions in reward and increases in cost and energy consumption are not indicative of system
inefficiency or algorithmic weakness. Rather, these changes are a direct consequence of the altered statistical
properties of the Transformer-generated workload. Specifically, the job distribution is more heterogeneous,
with higher average CPU demands and slight shifts in priority levels. These changes naturally impose a greater
computational burden and introduce more complex scheduling challenges, which in turn affect performance
metrics. Thus, the experiment highlights not a degradation of the system, but its robustness and adaptability
under more realistic and demanding workload conditions.

108

Chapter 7

Conclusion

7.1 Discussion

This study offers a thorough analysis of deep learning methods for resource distribution in edge-cloud com-
puting settings, including intelligent scheduling and predictive modeling. The four studies offer important
new information about the efficiency, scalability, and applications of multi-agent Deep Q-Network systems
for distributed resource management and LSTM-based workload forecasting.

7.1.1 Forecasting Model Comparison

Under controlled settings, the Transformer model consistently outperformed the LSTM across all important
regression metrics (RMSE, MAE, R?), according to a comparison analysis of the LSTM and Transformer
architectures for short-term workload forecasting in cloud environments. The Transformer’s attention-based
architecture demonstrates superior capability in capturing complex temporal relationships in telemetry data,
leading to both increased prediction accuracy (R? = 0.850 vs 0.819) and dramatically decreased variance
across various data splits. This consistency is especially beneficial for operational deployment, where accu-
rate and stable predictions are essential for downstream scheduling and autoscaling rules. The Transformer
design leverages its theoretical expressiveness effectively in this domain, with its complexity translating into
measurably better performance. The observed lower metric variability (coefficient of variation of 0.001 vs
0.003 for R?) and reduced sensitivity to changes in data distribution demonstrate that global attention
mechanisms provide substantial advantages over traditional sequential models like LSTM for short-term,
multivariate resource forecasting in cloud workloads. The Transformer’s ability to model long-range depen-
dencies and parallel processing of temporal sequences proves particularly valuable for workload prediction
tasks. This result validates the adoption of Transformer-based predictors as a superior foundation for resource
management systems that rely on telemetry, offering both enhanced accuracy and exceptional stability for
production deployment scenarios.

7.1.2 Multi-Agent DQN System: Resource Allocation Intelligence

The multi-agent DQN system demonstrated robust and reliable performance in distributed job allocation
across a three-tier edge-cloud architecture. The system achieved a perfect allocation success rate, validating
the correctness of the DQN-based policy and its underlying constraint-handling mechanisms. The use of
three independent agents, each representing a gateway in a geographically distributed environment, provided
a realistic testbed for evaluating decentralized scheduling strategies.

A key outcome was the emergence of sophisticated, priority-aware allocation behavior. The DQN agents
learned to differentiate resource placement based on job criticality, with higher-priority (latency-sensitive)
jobs preferentially assigned to low-latency edge clusters, while lower-priority jobs were more frequently sched-
uled in the far edge or cloud. This aligns with real-world requirements for service-level differentiation and
demonstrates the model’s ability to internalize and act upon complex scheduling objectives without explicit
inter-agent communication.

109

Chapter 7. Conclusion

Interestingly, the system also exhibited adaptive, opportunistic scheduling: lower-priority jobs were occa-
sionally assigned to edge resources during periods of low demand, maximizing overall utilization, while some
high-priority jobs were offloaded to the cloud when local resources were saturated. This emergent behavior
highlights the DQN’s capacity to balance immediate workload characteristics with long-term infrastructure
efficiency, a hallmark of intelligent resource management.

Beyond correctness and adaptability, the system demonstrated flexibility in tuning operational priorities.
By adjusting the reward function weights associated with cost, energy, latency, and priority, the behavior
of the agents could be dynamically steered toward different optimization goals. For instance, increasing
the weight of energy penalties encouraged the agents to favor energy-efficient placements, such as offloading
to lower-power nodes or avoiding peak load clustering. Similarly, emphasizing cost led to more aggressive
cloud utilization where unit costs were lowest. This tunable design enables the system to align with context-
specific policies—whether minimizing carbon footprint, reducing operational expenses, or enforcing strict
latency constraints—making it well-suited for diverse deployment scenarios across industries and regions.

7.1.3 Latency, Cost, and Energy Efficiency

The tests demonstrated that the DQN system provides economic and environmental efficiency in addition
to high SLA compliance for essential workloads. The system’s capacity to satisfy differentiated service
objectives was validated by the much-reduced average latency for the most critical jobs compared to the
less essential ones. The energy consumption research showed that intelligent, priority-aware scheduling may
greatly minimize both financial and environmental footprints, and the overall operational cost for 50,000
jobs was very low. In addition to utilizing the scalability and affordability benefits of cloud resources for less
essential or overflow workloads, the observed allocation patterns further support the utility of edge computing
for processing that is sensitive to latency and energy consumption. The findings imply that the best trade-offs
between sustainability, cost, and performance may be achieved using a hybrid edge-cloud strategy that is
directed by deep reinforcement learning.

7.1.4 Robustness and Generalization Under Synthetic Workloads

The evaluation conducted using Transformer-generated workloads in Experiment 4 offers valuable insight
into the system’s robustness and its ability to generalize across varying workload characteristics. Despite
the shift to a synthetic input distribution, the multi-agent DQN system preserved full operational reliability,
achieving a 100% allocation success rate. The performance metrics demonstrated controlled degradation, with
a manageable 37% reduction in average reward and only a 10% increase in job latency. The observed reward
reduction reflects the altered optimization landscape rather than system failure. The Transformer-generated
workload exhibited a 21% increase in average CPU demand and improved priority distribution preservation,
with Priority 2 jobs rising modestly from 23.8% to 28.9% compared to more dramatic shifts seen with other
approaches. These realistic changes maintained workload complexity while preserving structural fidelity. In
response, the DQN policy adjusted its allocation strategy intelligently, reducing jobs allocated to the edge
from 29% to 19.9% and increasing jobs allocated to the cloud from 71.1% to 80.1%—a balanced reallocation
that demonstrates adaptive resource management without extreme shifts. Most significantly, the Transformer
workloads improved system stability by 20-25%, with policy change frequency dropping from 290-300 to 250
changes per window. This enhanced stability, combined with superior forecasting accuracy (R? = 0.850),
validates the Transformer’s effectiveness in generating temporally coherent synthetic workloads that support
proactive scheduling decisions.

Overall, the results validate both the generalization capability of the trained DQN policy and the superior
quality of Transformer-generated synthetic workloads. The system maintained effectiveness under synthetic
conditions while demonstrating enhanced stability and more realistic performance trade-offs. This level of
adaptability, coupled with the Transformer’s proven forecasting superiority, establishes a robust foundation
for real-world deployment where workload patterns vary dynamically. The Transformer’s accurate temporal
modeling addresses the critical need for realistic synthetic workloads that can drive reliable and proactive
resource allocation decisions in production autoscaling pipelines.

110

7.2. Future Work

7.2 Future Work

The findings of this thesis establish a solid foundation for intelligent resource management in edge—cloud
systems through the integration of predictive modeling and multi-agent reinforcement learning. However,
numerous opportunities remain for expanding, refining, and applying this framework in both research and
practical contexts.

In terms of reinforcement learning, transitioning from independent agents to cooperative multi-agent rein-
forcement learning frameworks may enable explicit inter-agent communication, coordination, and negotiation,
further enhancing resource fairness and global optimization. Hierarchical MARL approaches—combining
local agents with global policy orchestrators—could offer improved scalability for large, federated infrastruc-
tures.

Another essential area is robustness under failure and antagonistic scenarios. Real-world systems are vulnera-
ble to node outages, network partitions, telemetry corruption, or conflicting workload injections. Embedding
fault-tolerant design, anomaly detection, and uncertainty-aware decision-making into RL agents can improve
system resilience and reliability. Additionally, fairness constraints and service-level objectives should be
considered in reward formulations to ensure equitable resource allocation in multi-tenant environments.

Further, sustainability concerns are increasingly important in distributed computing. Future research should
integrate carbon-aware scheduling, renewable energy-aware placement, and life-cycle impact analysis. Rein-
forcement learning agents can be extended to consider environmental impact metrics such as carbon intensity
and thermal efficiency when making allocation decisions, aligning system optimization with global sustain-
ability goals.

In summary, extending this research to include advanced forecasting architectures, scalable multi-agent co-
ordination, and sustainability-aware objectives holds immense promise. These directions aim to develop
intelligent infrastructure that is not only efficient and adaptive but also fair and sustainable across diverse
operating environments.

111

Chapter 7. Conclusion

112

Chapter 8

Bibliography

(1]

2]
13l

[4]
[5]
[6]

7]
18]

19]

[10]
[11]

[12]

[13]

[14]

[15]

Ali-Eldin, A., Wang, B., and Shenoy, P. “The hidden cost of the edge: a performance comparison of edge
and cloud latencies”. In: Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis. SC '21. St. Louis, Missouri: Association for Computing Machinery,
2021. 1SBN: 9781450384421. DOI: 10.1145/3458817.3476142.

Alibaba Group. Alibaba Cluster Trace Program. Accessed: 2025-06-18. 2018.

Anuradha, V. P. and Sumathi, D. “A survey on resource allocation strategies in cloud computing”. In:
International Conference on Information Communication and Embedded Systems (ICICES2014). 2014,
pp. 1-7. DOI: 10.1109/ICICES.2014.7033931.

Arbat, S. et al. Wasserstein Adversarial Transformer for Cloud Workload Prediction. 2022. arXiv:
2203.06501 [cs.LG].

Arulkumaran, K. et al. “Deep Reinforcement Learning: A Brief Survey”. In: IEEE Signal Processing
Magazine 34.6 (2017), pp. 26-38. DOL: 10.1109/MSP.2017.2743240.

Avram, M. “Advantages and Challenges of Adopting Cloud Computing from an Enterprise Perspective”.
In: Procedia Technology 12 (2014). The 7th International Conference Interdisciplinarity in Engineering,
INTER-ENG 2013, 10-11 October 2013, Petru Maior University of Tirgu Mures, Romania, pp. 529-534.
ISSN: 2212-0173. DOI: https://doi.org/10.1016/j.protcy.2013.12.525.

Bairagi, S. and Bang, A. “Cloud Computing: History, Architecture, Security Issues”. In: Mar. 2015.
Belgacem, A., Mahmoudi, S., and Kihl, M. “Intelligent multi-agent reinforcement learning model for
resources allocation in cloud computing”. In: Journal of King Saud University - Computer and Infor-
mation Sciences 34.6, Part A (2022), pp. 2391-2404. 1SSN: 1319-1578. DOL: https://doi.org/10.
1016/j . jksuci.2022.03.016.

Bertsekas, D. Multiagent Rollout Algorithms and Reinforcement Learning. 2020. arXiv: 1910.00120
[cs.LG].

Bishop, C. Pattern recognition and machine learning. Vol. 4. Springer New York, 2006.

Bontempi, G., Ben Taieb, S., and Le Borgne, Y.-A. “Machine Learning Strategies for Time Series Fore-
casting”. In: Business Intelligence: Second European Summer School, eBISS 2012, Brussels, Belgium,
July 15-21, 2012, Tutorial Lectures. Ed. by M.-A. Aufaure and E. Ziményi. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2013, pp. 62-77. ISBN: 978-3-642-36318-4. DOI: 10.1007/978-3-642-36318-4_3.
Box, G. E. P. and Pierce, D. A. “Distribution of Residual Autocorrelations in Autoregressive-Integrated
Moving Average Time Series Models”. In: Journal of the American Statistical Association 65.332 (1970),
pp. 1509-1526. 1sSN: 01621459, 1537274X. (Visited on 05/05/2025).

Cao, K. et al. “An Overview on Edge Computing Research”. In: IEEFE Access 8 (2020), pp. 85714-85728.
DOI: 10.1109/ACCESS.2020.2991734.

Cao, K. et al. “A Survey on Edge and Edge-Cloud Computing Assisted Cyber-Physical Systems”. In:
IEEFE Transactions on Industrial Informatics 17.11 (2021), pp. 7806-7819. por: 10.1109/TII.2021.
3073066.

Chaisiri, S., Lee, B. S., and Niyato, D. “Optimization of resource provisioning cost in cloud computing”.
In: IEEE Transactions on Services Computing. Vol. 5. 2. 2012, pp. 164-177.

113

https://doi.org/10.1145/3458817.3476142
https://doi.org/10.1109/ICICES.2014.7033931
https://arxiv.org/abs/2203.06501
https://doi.org/10.1109/MSP.2017.2743240
https://doi.org/https://doi.org/10.1016/j.protcy.2013.12.525
https://doi.org/https://doi.org/10.1016/j.jksuci.2022.03.016
https://doi.org/https://doi.org/10.1016/j.jksuci.2022.03.016
https://arxiv.org/abs/1910.00120
https://arxiv.org/abs/1910.00120
https://doi.org/10.1007/978-3-642-36318-4_3
https://doi.org/10.1109/ACCESS.2020.2991734
https://doi.org/10.1109/TII.2021.3073066
https://doi.org/10.1109/TII.2021.3073066

Chapter 8. Bibliography

[16]

[17]

[18]

[19]
[20]

[21]
[22]

[23]
[24]
[25]

[26]

[27]
28]

[29]
[30]

[31]

[32]

[33]

[34]

[35]

[36]
[37]
[38]

[39]

Chen, Z. et al. “Towards Accurate Prediction for High-Dimensional and Highly-Variable Cloud Work-
loads with Deep Learning”. In: IEEE Transactions on Parallel and Distributed Systems PP (Nov. 2019),
pp- 1-1. DOI: 10.1109/TPDS.2019.2953745.

Chiang, M. and Zhang, T. “Fog computing: Principles, architectures, and applications”. In: Proceedings
of the IEEE 104.5 (2016), pp. 836-846.

Clifton, J. and Laber, E. “Q-Learning: Theory and Applications”. In: Annual Review of Statistics and
Its Application 7.Volume 7, 2020 (2020), pp. 279-301. 1sSN: 2326-831X. DOI: https://doi.org/10.
1146/annurev-statistics-031219-041220.

Dawoud, W., Takouna, I., and Meinel, C. “Performance evaluation of web servers under heavy load”.
In: Journal of Communications 7.2 (2012), pp. 120-129.

Derdus, K. M., Omwenga, V., and Ogao, P. “Statistical Techniques for Characterizing Cloud Workloads:
A Survey”. In: International Journal of Computer and Information Technology2279-0764 (2019).
Developers, S.-1. Model Evaluation Metrics. Accessed: 2025-06-18. 2024.

Fard, M. V. et al. “Resource allocation mechanisms in cloud computing: a systematic literature review”.
In: IET Software 14 (6 2020), pp. 638-653. DOI: 10.1049/iet-sen.2019.0338. eprint:

Fehling, C. et al. Cloud Computing Patterns: Fundamentals to Design, Build, and Manage Cloud Ap-
plications. Springer Publishing Company, Incorporated, 2014. 1sBN: 3709115671.

Ficco, M. and Palmieri, F. “Game theoretic resource allocation for cloud-based federated content de-
livery networks”. In: Cluster Computing 19 (2016), pp. 977-996.

Fujimoto, S., Hoof, H. van, and Meger, D. “Addressing function approximation error in actor-critic
methods”. In: arXiv preprint arXiv:1802.09477 (2018).

Gao, J., Wang, H., and Shen, H. “Machine Learning Based Workload Prediction in Cloud Computing”.
In: 2020 29th International Conference on Computer Communications and Networks (ICCCN). 2020,
pp- 1-9. DOI: 10.1109/ICCCN49398.2020.9209730.

Ghasemi, M. and Ebrahimi, D. Introduction to Reinforcement Learning. 2024. arXiv: 2408 . 07712
[cs.AI].

Gong, C. et al. “The Characteristics of Cloud Computing”. In: 2010 39th International Conference on
Parallel Processing Workshops. 2010, pp. 275-279. DOIL: 10.1109/ICPPW.2010.45.

Goodfellow, 1., Bengio, Y., and Courville, A. Deep Learning. MIT Press, 2016.

Hasselt, H. van, Guez, A., and Silver, D. “Deep reinforcement learning with double Q-learning”. In:
arXiv preprint arXiv:1509.06461 (2016).

Hochreiter, S. and Schmidhuber, J. “Long short-term memory”. In: Neural Computation 9.8 (1997),
pp- 1735-1780. DOI: 10.1162/neco.1997.9.8.1735.

Hongyu, Y. and Anming, W. “Migrating from Monolithic Applications to Cloud Native Applications”.
In: 2023 8th International Conference on Computer and Communication Systems (ICCCS). 2023,
pp- 775-779. DOIL: 10.1109/ICCCS57501.2023.10150977.

“Intelligent Resource Allocation Optimization for Cloud Computing via Machine Learning”. In: Ad-
vances in Computer, Signals and Systems 9.1 (2025). 1SsN: 2371-882X. DOI: 10.23977/acss.2025.
090109.

Ioffe, S. and Szegedy, C. “Batch normalization: Accelerating deep network training by reducing internal
covariate shift”. In: (2015), pp. 448-456.

Islam, S. et al. “Empirical prediction models for adaptive resource provisioning in the cloud”. In: Future
Generation Computer Systems 28.1 (2012), pp. 155-162. 1sSN: 0167-739X. DOIL: https://doi.org/10.
1016/j.future.2011.05.027.

Jayasinghe, U., Mohotti, D., and Hassan, M. M. “A review of dynamic resource management in cloud:
Key techniques and future directions”. In: Journal of Cloud Computing 9.1 (2020), pp. 1-22.

Konan Jean-Claude, K. “A Comprehensive Overview of Artificial Intelligence”. In: Dec. 2022, pp. 173—
194. por: 10.5121/csit.2022.122314.

Krizhevsky, A., Sutskever, 1., and Hinton, G. E. “Imagenet classification with deep convolutional neural
networks”. In: (2012), pp. 1097-1105.

Kumar, J., Goomer, R., and Singh, A. K. “Long Short Term Memory Recurrent Neural Network (LSTM-
RNN) Based Workload Forecasting Model For Cloud Datacenters”. In: Procedia Computer Science 125
(2018). The 6th International Conference on Smart Computing and Communications, pp. 676-682.
ISSN: 1877-0509. DOI: 10.1016/j.procs.2017.12.087.

114

https://doi.org/10.1109/TPDS.2019.2953745
https://doi.org/https://doi.org/10.1146/annurev-statistics-031219-041220
https://doi.org/https://doi.org/10.1146/annurev-statistics-031219-041220
https://doi.org/10.1049/iet-sen.2019.0338
https://doi.org/10.1109/ICCCN49398.2020.9209730
https://arxiv.org/abs/2408.07712
https://arxiv.org/abs/2408.07712
https://doi.org/10.1109/ICPPW.2010.45
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1109/ICCCS57501.2023.10150977
https://doi.org/10.23977/acss.2025.090109
https://doi.org/10.23977/acss.2025.090109
https://doi.org/https://doi.org/10.1016/j.future.2011.05.027
https://doi.org/https://doi.org/10.1016/j.future.2011.05.027
https://doi.org/10.5121/csit.2022.122314
https://doi.org/10.1016/j.procs.2017.12.087

[40]

[41]

[42]
[43]

[44]
[45]
[46]
[47]
48]
[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]
[57]

[58]
[59]
[60]
[61]
[62]

[63]
[64]

Lackinger, A., Morichetta, A., and Dustdar, S. “Time Series Predictions for Cloud Workloads: A Com-
prehensive Evaluation”. In: 202/ IEEE International Conference on Service-Oriented System Engineer-
ing (SOSE). Data cleaning and preparation steps were conducted as described in this paper. IEEE,
2024, pp. 36-45. DOI: 10.1109/S0SE62363.2024.00011.

Lee, J. et al. “A survey of deep learning techniques for resource management in multi-access edge
computing”. In: ACM Computing Surveys 53.6 (2020), pp. 1-36.

Li, Y. Deep Reinforcement Learning: An Overview. 2018. arXiv: 1701.07274 [cs.LG].

Liang, E. et al. RLlib: Abstractions for Distributed Reinforcement Learning. 2018. arXiv: 1712.09381
[cs.AI].

Lillicrap, T. P. et al. “Continuous control with deep reinforcement learning”. In: arXiv preprint
arXiv:1509.02971 (2016).

Lin, T. et al. “A Survey of Transformers”. In: arXiv preprint arXiw:2106.04554 (2021).

Liu, N. et al. “A Hierarchical Framework of Cloud Resource Allocation and Power Management Using
Deep Reinforcement Learning”. In: 2017 IEEE 37th International Conference on Distributed Computing
Systems (ICDCS). 2017, pp. 372-382. DOI: 10.1109/ICDCS.2017.123.

Madakam, S., Ramaswamy, R., and Tripathi, S. “Internet of Things (IoT): A Literature Review”. In:
Journal of Computer and Communications 3 (Apr. 2015), pp. 164-173. DOI: 10.4236/jcc.2015.35021.
Mell, P. and Grance, T. The NIST Definition of Cloud Computing. Tech. rep. Special Publication
800-145. National Institute of Standards and Technology, 2011. DOI: 10.6028/NIST.SP.800-145.
Mnih, V. et al. “Human-level control through deep reinforcement learning”. In: Nature 518.7540 (2015),
pp- 529-533.

Natarajan, B. “Cloud Load Estimation with Deep Logarithmic Network for Workload and Time Series
Optimization”. In: Journal of Soft Computing Paradigm 3 (Sept. 2021), pp. 234-248. DOI: 10.36548/
jscp.2021.3.008.

Nielsen, A. Practical Time Series Analysis: Prediction with Statistics and Machine Learning. Titolo
collana. O’Reilly, 2019. 1SBN: 9781492041658.

Nikravesh, A. Y., Ajila, S. A., and Lung, C.-H. “Measuring Prediction Sensitivity of a Cloud Auto-
scaling System”. In: 2014 IEEE 38th International Computer Software and Applications Conference
Workshops. 2014, pp. 690-695. DOI: 10.1109/COMPSACW.2014.116.

Nikravesh, A. Y., Ajila, S. A., and Lung, C.-H. “Towards an Autonomic Auto-scaling Prediction System
for Cloud Resource Provisioning”. In: 2015 IEEE/ACM 10th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems. 2015, pp. 35-45. DOI: 10.1109/SEAMS.2015.22.
Patel, Y. S. and Bedi, J. “MAG-D: A multivariate attention network based approach for cloud workload
forecasting”. In: Future Generation Computer Systems 142 (2023), pp. 376-392. 1sSN: 0167-739X. DOL:
10.1016/j.future.2023.01.002.

Sarker, I. H. “Machine Learning: Algorithms, Real-World Applications and Research Directions”. In:
SN Computer Science 2.3 (2021), p. 160. 1SSN: 2661-8907. DOL: 10.1007/s42979-021-00592-x.
Satyanarayanan, M. “The emergence of edge computing”. In: Computer 50.1 (2017), pp. 30-39.
Schmidhuber, J. “Deep learning in neural networks: An overview”. In: Neural Networks 61 (2015),
pp. 85—-117. 1SSN: 0893-6080. URL:

Senjab, K. et al. “A survey of Kubernetes scheduling algorithms”. In: Journal of Cloud Computing 12.1
(2023), p. 87. 1SsN: 2192-113X. DOI: 10.1186/s13677-023-00471-1.

Shah, S. D. A., Gregory, M. A., and Li, S. “Cloud-Native Network Slicing Using Software Defined
Networking Based Multi-Access Edge Computing: A Survey”. In: IEEE Access 9 (2021), pp. 10903—
10924. por: 10.1109/ACCESS.2021.3050155.

Shi, W. et al. “Edge computing: Vision and challenges”. In: IEEE Internet of Things Journal (2016).
Srivastava, N. et al. “Dropout: A simple way to prevent neural networks from overfitting”. In: Journal
of Machine Learning Research 15.1 (2014), pp. 1929-1958.

Sutskever, 1., Vinyals, O., and Le, Q. V. “Sequence to sequence learning with neural networks”. In:
(2014), pp. 3104-3112.

Sutton, R. S. and Barto, A. G. Reinforcement Learning: An Introduction. 2nd. MIT Press, 2018.
Taleb, T. et al. “On Multi-Access Edge Computing: A Survey of the Emerging 5G Network Edge Cloud
Architecture and Orchestration”. In: IEEE Communications Surveys & Tutorials 19.3 (2017), pp. 1657
1681.

115

https://doi.org/10.1109/SOSE62363.2024.00011
https://arxiv.org/abs/1701.07274
https://arxiv.org/abs/1712.09381
https://arxiv.org/abs/1712.09381
https://doi.org/10.1109/ICDCS.2017.123
https://doi.org/10.4236/jcc.2015.35021
https://doi.org/10.6028/NIST.SP.800-145
https://doi.org/10.36548/jscp.2021.3.008
https://doi.org/10.36548/jscp.2021.3.008
https://doi.org/10.1109/COMPSACW.2014.116
https://doi.org/10.1109/SEAMS.2015.22
https://doi.org/10.1016/j.future.2023.01.002
https://doi.org/10.1007/s42979-021-00592-x
https://doi.org/10.1186/s13677-023-00471-1
https://doi.org/10.1109/ACCESS.2021.3050155

Chapter 8. Bibliography

[65]

[66]

[67]
[68]
[69]
[70]

[71]

[72]

(73]
[74]

[75]
[76]

[77]

Taye, M. M. “Understanding of Machine Learning with Deep Learning: Architectures, Workflow, Appli-
cations and Future Directions”. In: Computers 12.5 (2023), p. 91. DOI: 10.3390/computers12050091.
Tighe, M., Keller, S., and Gmach, D. “Dynamic application placement in the data center with an
application-oriented approach”. In: IEEE/IFIP Network Operations and Management Symposium. 2012,
pp- 484-491.

Tong, L. et al. “A hierarchical edge cloud architecture for mobile computing”. In: IEEE Network 30.4
(2016), pp. 22-29.

Towers, M. et al. Gymnasium: A Standard Interface for Reinforcement Learning Environments. 2024.
arXiv: 2407.17032 [cs.LG].

Verma, A., Ahuja, P., and Neogi, A. “Server workload analysis for power minimization using consoli-
dation”. In: Proceedings of the USENIX Annual Technical Conference. 2009, pp. 28-28.

Vikas Mongia, D. K. “Resource Allocation in Cloud Computing: A Review”. In: International Journal
of Computer Sciences and Engineering 06 (05 June 2018), pp. 79-84. 1SSN: 2347-2693.

Wu, E. and Maslov, D. “Cluster for a Web Application Hosting”. In: Raspberry Pi Retail Applica-
tions: Transform Your Business with a Low-Cost Single-Board Computer. Berkeley, CA: Apress, 2022,
pp- 175-210. 1SBN: 978-1-4842-7951-9. DOI: 10.1007/978-1-4842-7951-9_8.

Xu, J., Xu, Z., and Shi, B. “Deep Reinforcement Learning Based Resource Allocation Strategy in
Cloud-Edge Computing System”. In: Frontiers in Bioengineering and Biotechnology 10 (2022). 1SSN:
2296-4185. DOI: 10.3389/fbioe.2022.908056. URL:

Yu, W. et al. “A Survey on the Edge Computing for the Internet of Things”. In: IEEE Access 6 (2018),
pp- 6900-6919. DOI: 10.1109/ACCESS.2017.2778504.

Yu, Y. et al. “A Review of Recurrent Neural Networks: LSTM Cells and Network Architectures”. In:
Neural Computation 31 (July 2019), pp. 1235-1270. DOI: 10.1162/neco_a_01199.

Zhang, Q., Cheng, L., and Boutaba, R. “Cloud computing: Principles and paradigms”. In: (2011).
Zhang, Q., Cheng, L., and Boutaba, R. “Cloud computing resource scheduling and a survey of its
evolutionary approaches”. Ini: ACM Computing Surveys (CSUR) 49.4 (2016), pp. 1-33.

Zhao, Z. et al. “Edge Computing: Platforms, Applications and Challenges”. In: Jisuanji Yanjiv yu
Fazhan/Computer Research and Development 55 (Feb. 2018), pp. 327-337. DOL: 10.7544/issn1000-
1239.2018.20170228.

116

https://doi.org/10.3390/computers12050091
https://arxiv.org/abs/2407.17032
https://doi.org/10.1007/978-1-4842-7951-9_8
https://doi.org/10.3389/fbioe.2022.908056
https://doi.org/10.1109/ACCESS.2017.2778504
https://doi.org/10.1162/neco_a_01199
https://doi.org/10.7544/issn1000-1239.2018.20170228
https://doi.org/10.7544/issn1000-1239.2018.20170228

	Contents
	List of Figures
	Εκτεταμένη Περίληψη στα Ελληνικά
	Θεωρητικό Υπόβαθρο
	Αρχιτεκτονική Edge–Cloud
	Κατανομή Πόρων (Resource Allocation)
	Δίκτυα Μακράς-Βραχύχρονης Μνήμης (LSTM)
	Μετασχηματιστές (Transformers)
	Ενισχυτική Μάθηση (Reinforcement Learning)
	Πολυπρακτορικά Συστήματα (Multi-Agent Systems)

	Βιβλιογραφική Έρευνα
	Διατύπωση Προβλήματος και Μοντελοποίηση Συστήματος
	Πειράματα
	Σύνολα Δεδομένων
	Μοντέλα
	Πειράματα

	Συμπεράσματα

	About this thesis
	Motivation and Problem Statement
	Short Description of the Thesis

	Background
	Cloud Computing
	Definition
	Characteristics
	Evolution
	Service Models
	Advantages
	Challenges
	Edge Computing
	Latency Sensitivity Across Application Domains

	Cloud-Native Applications
	From Monolithic to Cloud-Native Applications
	Network Slicing in Cloud-Native Architectures
	Container Orchestration
	Advantages of Orchestrators

	Internet of Things (IoT)
	Components of IoT
	Communication Models
	Impact of IoT

	Deep Learning
	Deep Learning Architecture
	Recurrent Neural Networks (RNNs)
	Long Short-Term Memory Networks (LSTM)
	Transformers

	Reinforcement Learning
	Reinforcement Learning as a Distinct Machine Learning Category
	Fundamental Elements of Reinforcement Learning
	Markov Decision Processes
	The Reinforcement Learning Cycle
	Q-learning
	Deep Reinforcement Learning
	Multi-Agent Systems

	Resource Allocation
	Necessity of Resource Allocation

	Related Work
	Forecasting in Cloud Resource Management
	Motivation for Forecasting in Cloud Systems
	Forecasting for Resource Allocation
	Classical Forecasting Approaches
	Machine Learning and Deep Learning Models

	Resource Allocation Mechanisms
	Workload Variability in Resource Allocation
	Static Resource Allocation Mechanisms
	Dynamic Resource Allocation Mechanisms

	Problem Formulation and System Model
	System Model
	Hierarchical Multi-Tier Cloud Infrastructure Model
	System Resource State and Utilization Modeling
	Job Representation and Characteristics
	SLA Constraints and Penalty Mechanism

	Problem Formulation
	Job Characteristics and Arrival Model
	Reward Function
	Multi-Agent Scheduling Architecture
	Implementation Architecture

	Experiments
	Preliminaries
	Data Preparation and Cleaning
	Part 1: Forecasting
	Part 2: Resource Allocation: Environment and Training Setup
	Part 3: Multi-Agent Simulation

	Experiment 1: Forecasting Performance: LSTM vs Transformer
	Selection of Evaluation Metrics
	Comprehensive Evaluation and Insights

	Experiment 2: Multi-Agent DQN System Validation and Performance Analysis
	Experimental Setup
	Results and Analysis
	Discussion and Critical Analysis

	Experiment 3: Single-Agent vs Multi-Agent DQN Comparison
	Experimental Overview and Research Motivation
	Experimental Configuration and Methodology
	Performance Analysis and Results
	Resource Utilization and Efficiency Analysis
	Economic and Environmental Impact Analysis
	Scalability and Architecture Implications

	Experiment 4: Multi-Agent DQN Performance with Transformer-Generated Workloads
	Experimental Overview and Motivation
	Transformer Prediction Results and Workload Characteristics
	Performance Analysis
	Cost Efficiency
	CPU Utilization Patterns and Resource Competition
	Policy Stability Analysis
	Conclusions

	Conclusion
	Discussion
	Forecasting Model Comparison
	Multi-Agent DQN System: Resource Allocation Intelligence
	Latency, Cost, and Energy Efficiency
	Robustness and Generalization Under Synthetic Workloads

	Future Work

	Bibliography

