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MepiAnyn

H 6npioupyia 81aokeumv 1payoudidv amotedel pia anattntiky pOKANOoL oTov TOPEA NG
Avaxktnong Mouowkrng [TAnpogopiag. H mapouoca spyacia mpaypatevetal Facikoug mepto-
plopoug tou mediou: Vv EAdewyn dedopévav yla pn-Imomn pouoika £idn kat myv anouvoia
poviedev dnploupyiag draokeumv yia opyava mepav tou rmavou. Ilapouoiddoupe dUo ouvet-
opopeg o€ eminedo ouvodamv Sedopévav: 10 ouvoAro GreekSong2Piano, to oroio reptdapBavet
659 eAAnvika tpayoudia pe avriotoiyeg S1a0KeUEG yla rdvo, Kat 1o ouvodo Pop2Guitar, mou
niepaapBavet 40 Levyn tpayoudlou-kiBdpag yla rmpooapioyr) petaiy opyavev. Ta ouvoda
AUTA ETUTPETIOUV I CUCTIHATIKI] PEAETT TIPOOEYYioe®wV petadopdg pabnong oe iepiBaidovia
nieploplopévav opev. H pebodoAoyia pag Paocidetal oe apyitektovikn Transformer turou
encoder-decoder pe rupriva to poviedo T5, avupetoni{oviag ) Snpoupyia diaokeuov ©g
poBAnpa petadppaong akoAoubdv: armo @Aopatoypappata nxXouU oe oUPBoAKEG avara-
paotdocelg MIDI. Zuykpivoupe cUuOTNPATIKA TPELG OTPATNYIKEG EKMAideuong: ekrnaidsuon ano
Vv apyxr, HEPKn mpooappoyr] (fine-tuning) kat mAnpn npooappoyn. EmmAéov, eioayou-
He pla véa mpooéyylon S1adox1KNg mPooappoyhg Topéa: arod S1a0KEUEG TAVOU SUTIKNAG
TTOIT POUOIKIG O¢ AANVIKEG O1AOKEVEG Yid ITIAVO, KAl £v ouvexeia oe H1a0KeVEG yia KiOdpa.
Ta nelpapatkd arnotedéopata avadelkviouv TTAEOVEKTIATA TRV ITPOCEYYIOE®V PNETAPOPAg
pdabnong évavil g eknaibevong amo mv apxy). [a 1g eAAnvikég §1aokevEég mavou, ot otpa-
TYKEG IIPOCAPIIOYNAS EMTUYXAvouV £émg Kat 21,0% BeAtinon oty akpibeia Melody Chroma
oe oxéon pe ta Baowka povieda. H 6wadoyikr mpooappoyr rapouotddet 8iaitepn duvapt-
K1 yua ) dnpoupyia diaokeuwv yla KiBapa, PE 10 PEPIKROG IIPOCAPHIOOPEVO HOVIEAO va
onpewmvel v upniodtepn Babpodoyia opootntag (3,311+0,33) oe peAéteg Xpnotov, IIPOoEY-
yi¢ovtag tnv avBpwruvr arddoor (4,17£0,28). To ouvodiko rAaioto agloddynong ocuvdudalet
avukelpevikoug deikteg (opodtta pedwdiag, avayvoplon 61a0KeEUDV, NETPIKEG BAolopEVeES
oe embeddings) jie urokeevikr) aSl0AOYN O Ao XPHOTeg, AvadelkvUuoviag OTEVE] CUOXETL-
o1 PETay UTOAOYI0TIKGOV HETPr)oewV Kal avOparuvng aviiAnyng. H dullopaukr) epyacia
€104YEL P1a vEA TIPOOEYY10T] OTr| PLOUCLKYL] EVOPXTOTP®OT, PE EMIKEVIPO TNV MTOAITIONIKY €UAL-
oBnoia Kat v opyavoloyikr] MolKIAOpop@ia. ZUVEICPEPEL TO00 ot SNUIOUPYIKY agloro-
inon g TEXVNTHS VONHooUvng 600 Kat otV epBABuvon NG UMMOAOYIOTIKNG KATAVONoNG NS

HOUOIKNG HETdppaons.

Atge1g KAebua

Anpoupyia Ataokesuov Tpayoubiwv, Babia Mdabnorn, Apxitektoviky Metaoynpatiotr,
Metagpopd Mdabnong, [Ipooappoyr) oto Iedio, Avaktnon Mouoikng ITAnpogpopiag






Abstract

Cover song generation represents a challenging task in Music Information Retrieval,
requiring systems to preserve the musical essence of original compositions while adapting
them to specific instruments and styles. This thesis addresses key limitations in the field:
the scarcity of training data for non-pop musical genres and the lack of cover generation
models for instruments beyond piano.

We present two key dataset contributions: the GreekSong2Piano dataset, containing
659 Greek songs paired with piano covers across eight distinct genres (Rembetiko, Laiko,
Entexno, etc.), and the Pop2Guitar dataset with 40 song-guitar pairs for cross-instrument
domain adaptation. These datasets enable systematic investigation of transfer learning
approaches in low-resource scenarios.

Our methodology employs a T5-based encoder-decoder Transformer architecture that
treats cover generation as a sequence-to-sequence translation problem, converting audio
spectrograms to symbolic MIDI representations. We systematically compare three training
strategies: from-scratch training, partial fine-tuning, and full fine-tuning. Additionally,
we introduce a novel sequential fine-tuning approach that performs multi-step domain
adaptation from Western pop piano covers to Greek piano covers to guitar covers.

Experimental results demonstrate clear advantages for transfer learning approaches
over from-scratch training. For Greek piano covers, fine-tuning strategies achieve up
to 21.0% improvement in Melody Chroma Accuracy compared to baseline models. The
sequential fine-tuning approach shows particular promise for guitar generation, with
the partial fine-tuned model achieving the highest similarity ratings (3.314+0.33) in user
studies, approaching human performance (4.1740.28).

Our comprehensive evaluation framework combines objective metrics (melody simi-
larity, cover song identification, embedding-based measures) with subjective user assess-
ment, demonstrating strong correlation between computational measures and human
perception. This work establishes a foundation for culturally-aware and instrument-
diverse music arrangement systems, contributing to both creative applications and com-
putational understanding of musical translation across cultural and instrumental bound-

aries.

Keywords

Cover Song Generation, Deep Learning, Transformer Architecture, Transfer Learning,

Domain Adaptation, Music Information Retrieval
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Kegpalato m

Extetapévn EAAnvikn IlepiAnyn

0.1 Ewayoyn

0.1.1 Kivytpo

O1 POUOIKEG B100KEVEG ATOTEAOUV 11id ATIO TIG IO PAKPOXPOVIEG HOPPES KAAATTEXVIKNAG
£K(PPAOTG, CEMEPVAOVIAG TTOATIONIKA Op1a KAl 10TOPIKEG TEP1O60oUg. Ao TG apxaieg Aaikeg
apadooelg PEXPL ] CUYXPOVH ETTOXT, I] TIPAKTIKI] TG POUOCIKNG EMTAVEPHUNVEIQS ITapapével
KEVIPIKO OTOIXEIO TNG POUCIKLG KOUATOUpag. 01000, 1 dnpuioupyid molotikoOv S1a0KEUMV
arnattel mapadoolakd CNIAVIIKL] FIOUCIKI) TEXVOYV®Oid, YVAOELS E101KEG yia KABe opyavo kat
onpavukn enévdéuon xpovou. Ot POUoIKOol TIPETEL va avaAuoouv v apyikn ouvBeorn, va
KATAVOr)oouv TtV appoviky tng dour kat va avartugouv pia diaokeur mou diatnpei v
ouoia Tou Tpayoudlol eve apdAAnda avadeikviel TV KAAATEXVIKT] TOUG TIPOOTTIIKY.

H npoodatn enavaotaon oty teXvty] vonpoouvn Kat 1 Babid pdbnorn éxet avoiet eu-
Kalpieg yla v auTOpATOOUEVE MAPAY®YE] POUOIKOU Tmeplexopévou. Ta povieda €xouv
ermbeiet adoonpeinteg 1kavotnteg otn Snuoupyia povoikng uwnlng rowdtntag, odnywoviag
QUOIKA otr) Suvatdtnta napaywyng Staokevwv. Ilapd autég tig moAAd uniooxopeveg egediteg,
S1agopeg mporAnoelg epurnodiouv v mpoodo: 1o o epediddeg eprmodio eival n EAdswyn
bebopévav, kabwg ta ouyypoviopéva {euyn tpayoudlou-diaockeung eivatl e§alpetikd meplo-
plopéva, 1dlaitepa ylia 6pyava mépa amno 10 mavo Kdl yld Houoikd €1 eK1og Tou dutikou
ront. H mapouoa SImAeopatiky epyacia oToXeUEl va AVIHEIOITIOEL AUTEG TIG TIPOKALOELS a-
varrtuoooviag e§e1dikeupéva ouvola dedopévav, aglonolwviag teEXVIKEG petapopdg pdabnong

Kat 9étoviag éva avukeeviko rmiaioto agloddynong 1oV napayopevev POUCIK®OV KOPUHATIOV

0.1.2 Zuvelwodopa

H napovoa SumAopatikn epyacia cuvelopEpetl otov Topéa tng Avaktnong Mouowkng ITAn-
podopiag avadopikd pe ) Snpoupyia S1aokeumv Ipayoudiav. AeSopEvou OTL TO AVTIKEIIEVO
g dnpioupyiag draokeumv €£xel Tieploplotel o H1a0KeUEG TTIAvVOU SUTIKEG ITOIT IOUOIKNG, KAt
OTl PIOUO1KOl TOHEIG PE TIEPIOPIOPEVOUG TIOPOUG OTI®G 1] EAANVIKI] POUCIKY KAl 0pyava On®g
n KBapa Sev éxouv pedenBel eKTEVOG, 1) €PYACIA AUTH| £EEPEUVA MIPOOEYYIOELS HETAPOPAG
BAabnong Kat TEXVIKEG TIPOoApHoyng nediou yua 1 Snpioupyia Staokeudv oe Siapopstika

pouokd otud kat opyava. Ot faocikég ouvelodpopég TG ITapovoag epyaciag sivat:

e TUvoldo Sedopévov GreekSong2Piano: 'Eva véo ouvolo Hebopévev rou neplhap-
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Baver 659 eAAnvikd Tpayoudia pe TiG aviiotolXeg H100KEUEG TOUG Yia TTIAVO O POPPES

nxou kat MIDI, xopiopéveg ava £160g Kat j1€ ToUg OTiX0Ug TOUG.

e TUvolo 8edopévav Pop2Guitar: 'Eva ouvolo Sebopévav 40 mor 1payoudiov Kat tov
avtiotolX®v H1a0KEUMV TOUG yia KiBdpa, eVopXNOTPOUEVOV aTtd 51apOPETIKOUG OUGT-
KOUG, TIOU ETUTPETIEL TV EMEKTAOL TEPA A0 TIG IIPOCEYYIOEIS TTOU EMIKEVIPOVOVIAL OTO

mavo.

e AvdAuon otpatnylkeOv eknaideuong yia dSnplouvpyia Sraokeudv oe ouvOnkeg
MEPLOPLOPEVAV MOPWV: LUYKPILOT NG eKMaibeuong aro to undév, g HEPIKNG IIPOo-
OUPHOYNG KAl NG MANPOUG IPOCAPHOYNS, avadelkvioviag TV ArmoTteAeOPATIKOTTA
g petadopag pabnong oe oevdpla MEPOPIOPEVOV TTOPHOV KAl TNV IIPOCAPHOYH] O

Sraopetikda OTUA Kat opyavd.

e MeBoboAoyia avrirepevikng aftodoynong: 'Eva rpotokoArdo aglodoynong mnou a-
Slornotel mpoeknatdeupéva poviéda yia tauvtonoinon S1ackeu®v Kal Katavonong Houot-

KNG, Y1a va aSloAoynOoUv aviKEIPEVIKA Ol ITAPAYOHEVEG H1A0KEUEG.

0.2 Mnyxaviky Maénon

H Mnyavikny Md6non amnotedel évav Umotopéa tng TEXVNTNS VONHOOUVNG IOU EITIKE-
VIPWVETAL OtV avartudn alyopibpev Kat cuotpdtev mou propouv va pabaivouv kat va
AapBdvouv anoddoelg anod dedopéva xwpig va mpoypappati{oviatl pntd yia Kabe ouyKekpt-
pévn epyaoia [18]. Avti va axkolouBouv mpo-ypappéveg odnyieg, ta cuotrpata pPnyavi-
KNG pabnong avayvepi{ouv potiBa ota dedopéva Katl Xpnotpornoovv autd ta potiba yia va
KAVOUV TIPOBAEPELG 1] ATTOPACEIS OXETIKA HE VEEG, AYV@OTeg AN podopieg. Ot Pooeyyioelg
HNXavikng pabnong Katnyoplonolouvidal UpEng o Tpia Kupla mapadetypata: v ermbAe-
mopevy pdadnon [19] mou mporovei alyopiBpoug oe ermonpaocpéva ouvola dedopévav,
pn-ermmBAeniopevn pabnon [20] mou epyddetal pe Sebopéva Xwpig rporaboplopéveg ETIKETEG,
KAl TV EVIOYXUTIKY Padnor [21] érou ot ipaktopeg pabaivouv péow addnienidpaong je 1o
niep1Baidov.

H Babia pdbnon avurnpoowrevetl pia onpavikr) e§€An and g napadootakeg npooey-
Y10€1g PNXavikng padnong, Xxapakinet{Opevn Ao T XPHor IEXVNIOV VEUPOVIKOV SIKTURV
e moAAard emineda mMou Propouv autdpata va padaivouv 1Epapyikeg avanapactioelg a-
o 6edopéva [2]. Baowkég apyitektovikeg onwg ta IToAvenineda ITépoemtpovg (MLPs) [2], ta
Zuvedikuka Nevpovikd Aiktua (CNNs) [22] yia §e6opéva pe dour mAdypartog, kat ta Ena-
vaAnmnuikd Nevpovika Aiktua (RNNs) [23] yia akolouBiaka dedopéva, £xouv odnynoet otnv
emruyia g Padiag pabnong oe dapopetikovg Topeig. H eloayoyn tov pnxaviopov mpo-
oox1g Kat g apxttektovikng Transformer [4] avtimpooonieuoce pia epeAdiddn avakdaiuyn
OT1) POVIEAOTIO 01 AKOAOUOIGV.

ZTov Topéa g HOUOIKILG, Ol IMANPodopieg Ptopouv va avarnapactabouv pe HUo Kuploug
TPOTIOUG: OUPBOAIKEG Kal NXNTIKEG avarapaotdoelg. Ot cUpBOAIKEG avanapactdoel§ Ko-
H1KOIo10UV 1] POUOIKY ®S Slakpitd oupBoAa mapd ®G ouvexr) orjjpata nxou, pe to MIDI

va avadeirvietal @g 1 Kupiapxn oUpBoAlKY] avarnapdotaon OTlS UTTOAOYIOTIKEG EPUPIIOVES
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pouoikhlg. Ot OUYXPOVEG VEUPWVIKEG IIPOOEYYIOES £€XOUV avarttudel egeldikeupéva Ae§ika
tokens mou enekteivovial iEpa aro ta napadooiakd MIDI events. Ano tnv dAAn mAsupq,
Ol NXNTIKEG AvVATIAPACTACELS ATIOTUTIOVOUV TI] OUVEXT] HOop®1] KUPATOG 1] Td (PACPATIKA Xd-
PAKTINPIOTIKA €VOG HOUCIKOU OHJaAtog, TeplAapBdavoviag avanapaotdaoel§ on®sg td gacpata
ouyvotntag, ta mel-spectrograms, kat t1g pabnpéveg NXNTIKEG EVOOUATOOES NECK Pabiov
VEUPWOVIK®OV OIKTUGV.

H 6nuoupyila pouoikng otoxevel ot Snpoupyia vEOU POUOCIKOU TEPLEXOREVOU NEO®
urtoAoylotikev poviedav. H oupBoldikn Snuioupyia smkevipoveral otnv napayeyrn dopun-
Hévev avarapaoctacenv onwg MIDI 1 aptitoupeg, eve 1 Aot nXnukn Snpioupyia cuv-
9€tel aratépyaoteg HOpPEG KUNATOG 1 @ACHATA, OTOXEUOVIAG VA AITOTUIIWOEL TOV ITAOUTO KAt
MV EKPPACTIKOTNTA TS POUOIKNG eppunveiag. Moviéda orwg 1o MuseNet [24], to WaveNet
[25] kat to Jukebox [26] éxouv arobeitel ot eivatl duvatr) n dnuioupyia poOUoIKAG VWnAng

O10TNTAG TIOU 1KAVOTIOLEl H1aPOopeTIKA OTUAIOTIKA KAl SOPIKA Kpitrpid.

0.3 Anpuoupyia Araockeucdv Mouowkoy Koppatiou

Y& autd 10 Kepdaldalo e§etdloupe 10 OOUA £PYACIOV TIOU Oxetidetatl pe tn Snuoupyia
Slaokeunv. Apyxiloupe egepeuvaviag v Autopatn Mouoikr Metaypagr), ouprnieptdapBavo-
Pévev tev npooeyyioeev Pabidg pabnong. Zin ouvéxela, piddpe yia tov Mouoikd Meta-
OXNHATIOHNO0, EMKEVIPOVOVIAG 0 1EB060UG TIOU MPOoapPPOodoUV KAl TPOITOII010UV T0 POUCIKO
niepliexopevo. 'Enetta sotiadoupe oty Avayvepion Altaokeumv Tpayoudidv, n omoia mept-
YPAPEL TIHOG PITOPOUV VA AVAYVOPLOTOUV 01 S100KEVEG KAl pag rapexet fabid katavonon g
@uong toug. TéAog, peAetapie tov topéa g dnpoupyiag draokeumv, avadsikvioviag 1000 Tig
Mapadoo1aKeg TEXVIKEG 000 KAl TIS IPOoPATeS £GeAISE1g TTOU EVIIEP@VOUV TNV TIPOCEYYIOT)

pag.

0.3.1 Avutdpatn Metaypagpn Mouoikng

H Autépatn Metaypagpn Mouowkng eivat n iadikaoia petatpornt|s evog aKOUOTIKOU HoU-
OlKOU ONHatog o0& OUPBOAIKI) avarapdotact) rmou reptdapBavel tovo, Xpovo évaping, diap-
KE1a KAl TUIo opyavou [6]. Ito mAaioio tng dnuoupyiag Staokeuav, n Autopatn Metaypadr)
Mouoikrg propet va xpnotpornonfet yia va Bonbnoet otnv Snpioupyia ouvodeov dedopiévav
eknaidsuong petaypadoviag Houoika Koppatia.

H Babid pabnon €xel ermpedost onpavukda 1) POUOIKY petaypadrn. Kupidtepeg ele-
Aige1g eptdapBavouv to cuotnpa Sonic tou Marolt [27] pe Siktua xpovikhg kabuotépnong,
10 poviédo Onsets and Frames [7] ou xpnoworiolel ocuveMKtika Kat ernavadapBavopeva
veupevikd Siktua, KAl 1o cuotnpa uvynlng avdiuong tou Kong [8] yia petaypagpr) mavou.
Mo ipéogata, o Hawthorne [7] £6e18e 611 yevikoi kadikornonég-anokmdikorowtég Trans-
former pmopouv va emtuyouv aviictoixn anodoon, eve 1o poviedo MT3 [10] eméxktewve 1
petaypadn os ToAAAAd opyava tautoxpova.

Ta xupotepa ouvora dedopevav ieptdapBavouv: 1o MAPS yia petaypadr) mavou pe pe-
HOVOPEVEG VOTEG Kat AN pn Koppdtd, 1o SLAKH2100 e 2100 piktd koppdatia oAAarniov
opyavav, 1o GUITARSET pe 360 anoonacpata kiBapag, 1o MUSICNET pe 330 kKAaoKeEg
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eyypadeg, kat 1o MAESTROV3 e 200 opeg mapactdos®y mdavou UPnAng motottag.

0.3.2 Metaoxnpatiopog Mouoiknig

O petaoXnpatiopog Pouoikig anotedel pa diadikaoia mou aviiotoiyel Eva Pouoiko a-
mooTtacpa o€ €va ailo, Satnp®viag oplopéva POUOIKA XAPAKTNPIOTIKA £V TPOITOITOLEl AA-
Aq, Suatnpaviag nmapaddnda ) pouoikr ouvoyn [13]. 'Eva pouoiko anooriacpa opiletatl g
€vag ouvdUao0g POUOIK®V PEIP®V Yld KATOld @@V, 1adi PE TO aviioTtolXo apHovIKO IEPt-
BaAdov. Ta POUOIKA XAPAKINPIOTIKA MEPAapPBAVOUV OTo1XEla Om@g o1 VOTeS g peAwdiag,
ol appovieg, T0 tempo Kat 1) TOVIKOTTA.

H petadopd pouotroyU GTUA EIIKEVIPMVETAL 0TV AAAAYT] TOU OTUA £vOG HOUOIKOU ATTo-
OTIACHATOG TPOTTOIIOIMVIAG OTOIXEla 0TS O TOVog, T0 timbre kat 1 appovia, datnpoviag
Baowkr pedwdia kat tov pubpo. Zuugpeva pe tov oplopod tou [1], to otuA avagépetatl otov
Povadiko Tporo Pe Tov ornoio Kabe §l1aoKeuaotng epunvevsl Kat ouvBETel kata tr Snuioup-
yia pag dwaokeur)g. To ocuotnpa Groove2Groove [14] mapouoiadet piia rpoogyyilon one-shot
style transfer yia cupBoA1kr| 1OUOCIKY] XPNOHOTIO®VIAG EMOTTIEUOIIEVA OUVOETIKA Sedopiéva.
To poviédo akoAouBel 1o mpoturo encoder-decoder, XPNOIOIIOIOVIAG HU0 KOOIKOITONTES :
évav ylda 10 POUOIKO IEPIEXOHEVO KAl &vav yid TO OTUA KAl évav aroK®OIKOIoty) Iou 1a-
payet Vv £§odo. AAAdeg mpooeyyioelg repAapBavouy v KOSGIKOIOiNor HOUoIKOU OTUA e
transformer autoencoders [28], 0rtoU 01 CUYYPAPEIS E10AYOUV €va POVIEAO TTOU KATAYPAPEL
avanapaotacelg OTUA UPNAOU EMMITESOU XPIOIHOIIOIMVIAS AUTOKASIKOTIOMTEG BaCioEvVoug
oe Transformer. TéAog to MuseNet [29] arote)ei pia onpavtiky e§EACn, 610t eivatl tkavo va
dnpoupyel tetpaldertteg OUPBOAIKEG NOUOIKEG OUVOEODELS e H1aPOPETIKA Opyava KAl OTUA.

H peioon pouoikng avapépetal ot Siadikaoia andornoinong piag ouvOeng POUOIKIG
ouvBeong Satnpwviag ta Paoikd g otoxeia. H peiwon yia mavo eivat idaitepa onpavit-
K1), KOOGS Petatpérnel moAudpmvika £pya oe Siatdelg katdAAndeg yia ektédeon arnd rmavo. Ot
[15] mapouciddouv pia pébodo yia v autdpatn arndomnoinor oUVOET®V POUCIKGOV OUVOECEDV
yla rmavo, sioayovtag évav alyopibio ermAoyng epacenv rnou aglodoyei ) onuaocia Stagpope-
TIKOV THNPATeV TG ouvBeong. AdAdeg peAéteg [30] avamtuocoouv Sradpaoctika cuotpata 6i-
atagng mavou Imou mapéXouV avatpoPodotnorn o mPaypatiko xpovo. I npdéopata, ot [31]
XPNOTHOTIOUV £va POVIEAO enortteudpevng pabnong Paociopévo oe CNN yia ) dnpoupyia
MAPTITIOUP®V KATAAANA®V y1d ITIAVo aro 1payoudia mou anoteAouvidl arnd moAAdnAd Peépn,
delyvoviag ot o1 texVikEG fabiag pabnong propouv va epappootoUV AroTeAEOPATIKA OtV
epyaoia peiwong rmavou. H ouvbeon petady peiwong mavou kat dnuiovpyiag Siaokeuwmv
EYKETAL OtV Kavotnta S1atfjpnong PEAMSIK®OV Kal ApHPovIK@OV SOH®V VG TPOTIOIIOI0UV TNV

opyavikn Siatadn yia va taptddet oe €éva OUYKERPIREVO MAAIO0 EKTEAEOTG.

0.3.3 Avayvopion Awaoreuav Tpayoudiov

H avayvopion daokeuwv tpayoudiov (Cover Song Identification - CSI) aroteAei onpa-
VTIKO TOp€a OTnV avAakinor POUCIKNG MANpodopiag, Pe epappoyEég ot PoUoiKy Blopnyavia
KAl TV IPootaoia MvEUPATIKOV SIKAOUATOV.

Mia Siaokeur] opidetal @g pia evaAAakTiKY] anddoon nxoypadnpévou 1payoudlol 1mou

propet va dadépel ®g mPog To NYXOXpWHA, pubuod, Sopr, kAipaka, 1 ylowocoa [32]. Ot
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81a0keUég KATNyoPlOIOI0UVIAl 08 TUIIOUG € KUPLOUG TOUG OPXNOTPIKO, AKOUOTIKO, PEWIS,
{wvtavr) ektédeon), K.A. [33, 34, 35].

Ot apadooilakeg PeBodot pe Yepokrivita Yapaktnploukd [32, 36] avikataoctadnkav
and povieda Pabidg pabnong Pactopéva oe CNN. IZnpavukd ouvotpata neptiapbavouv
1o TPPNet [37], ByteCover [38], PiCKINet [39], kat CoverHunter [40], ou ermtuyxdavouv
state-of-the-art arndboon péow cuvdéuaooy Tadvounong Kat PHEIPIKNg nadnong.

Ta poviéda CSI eivat kaAd e§ormAtopéva MoTe va Katavoouyv Tig S1a0KeUES KAl TOV TPOITo He
TOV 01010 aUTEG ouvdeovial e ta apxikd koppdata. 'Exouv tnv ikavotnta va avayvepi{ouv
KAl va PETPOUV TV OP010TNTA aVAPESa O Pid 81a0KEUT] KAl T0 TP®IOTUIIO T1)G, YEYOVOG ITOU
arodeikvuetal 18waitepa XPropo KAatd v a§loAdoynon v napayopevev Siaokeuwv. Me
Vv Ponbeta evog poviedou CSI, Propovpe va ATOTIPNCOUNE TV MOLOTNTA €VOG HOVIEAOU
dnpoupyiag draokevmv, eite oUyKpivoviag v OPodTNTA AVAPESA OT0 {EUYOG MPWIOTUITO-
Slraokeun eite urodoyilovtag v ardotacn PeTady ToU AOTeEAOVIAS £va TOAUTIHO epyaleio

a&loAoynong.

0.3.4 Anpoupyia AlaGKEUOV

H dnpioupyia daokeumv (cover generation) artotedei ) Siadikaocia dnpouvpyiag piag
véag ekdoxrg £vog uTtdpyoviog 1payoudiov. H nmapayweyr plag Siaokeurg amnattel ouvhwng
ONUAVIIKO XPOVo, IPooTtddela Kal MpoX®PNHEveg Houoikeg 6e€iotneg. To medio tng au-
opatng 6npoupyiag 5100KEVGOV IPOoTIabel va aVIPEIOITIOEL aUuTo To TPoBANHa.

O1 IIPO1IEG UITOAOY10TIKEG TTPOoEYYioelg Ieptdapbavay ouotpata orneg to Song2Quartet
[16], ou dnuioupyouoe Slaokeuég string quartet cuvbudaloviag mbavotika povieda pe a-
vdAuon fxou, kat 1o Song2Guitar [17], mou smikevipovotav ot dnuioupyia Sraokeumv
K10dapag.

O topéag g Snpoupyiag S1aoKeVGOV €xel Bldoet pia petdBaor anod napadooiareg po-
oeyyloelg Baoiopéveg oe kavoveg oe oUuyxpoveg PebodoAoyieg Pabiag pabnong. H ewcaywyn
tou Pop2Piano aro toug [1] €6ede ot eivar dSuvatr) n Snuoupyia S1a0KeU®V IMIAVOU ATEU-
Yelag amnod eicodo fxou xpnoponoiwviag pia Baciopévr oe dedopéva pooeyyiorn, Xopis va
Baoiletal os evBiapeon petaypagn 1 pouoikr] avaduon. To Pop2Piano Baociletat oty ap-
xttektoviky) TH Transformer [5], mpooappidoviag 1o sequence-to-sequence framework rou
Xpnowornoteitat ouvr|Bwg otnv eneepyaoia QUOIKNG yAoooag yia to redio tng pouvoikng. To
ouotpa avupetnridetl ) dnpoupyia S1a0KeUdv ©G MPOBANpa petappacng, OIoU I AKOo-
Aoubia £10660u anotedeital and frames gaopatoypaPratog 1xou Kat ) akodoubia eE6dou

niepiexel oupBoAika MIDI events.

H aioAoynon autopata mapayopevey 81a0KEUGV Iapouctalet IIpoKAnoelg, Kabag arat-
Tel TV EKTIPINON TO00 TG TEXVIKEG TOTOTNTAG 000 KAl TG PoUoIKrg rowdtntag. To Pop2Piano
[1] é6e0e éva mAaiolo a§loAoynong rmou ouvdiUAlel AVIIKEIPIEVIKEG LETPT)OEIS KAl UTTOKETHE-
VIKI] EKTIPNON PE00 NAEKTIPOVIKOU gpetniiatodoyiou. Ta v avukeeviky a§lodoynon, ot
ouyypageig xpnowornoinoav v Melody Chroma Accuracy (MCA) yla va Petprjoouv 1moco
KaAd ot mapayopeveg S1a0KEVEG TIAVOU H1aTh)pnoayv 10 HEA®SIKO TEPIEXOHEVO TOV APXIKOV

Tpayoudiov.
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0.4 XZuUvola Asdopévav

0.4.1 Y¢rotapeva Luvoda Aedopévav

Ztov topéa apaynyrg dtaockeumv 6ev urtapxouv rmoAAd cuvolda dsbopévav, Kuping Aoyw
10U UYPndou Kootoug Snpoupyiag uvywning mowotntag ocuddoywv. Emiong, ta unapyovia
oUvoAa dedopévav eotiadouv KUpimwg oe H1a0KEUEG TIIAVOU TTOTT TPAYOUd1®OV.

Pop2Piano Dataset: To ouvolo dedopévav Pop2Piano [1] meptdapBavetl 5.989 diaokeugg
mdavou aro 21 draokeuaotég padi pe ta aviiotoxa pop payoudia, ouvodikrg Sidpkeiag 307
®POV. MeTd amod ouyXPOVIoHROo KAl IATPAPLo}d, TO TeAKO oUvolo ekmaidsuong eptdapBavet
4.989 koppatia. To péyeBog tou unepBaiver ta 250 GB, pe anotédeopa va eivatl SUOKOAN 1)
a&loroinon tou.

POP909: To POP909 [41] arotedel ouvodo debopévav 909 Kivellkdv pop Tpayoudiov
oxeblaopévo yla épsuva oto 1edio g avakinong Pouoikng minpogopiag. Kdabe tpayoudt
nieptdapBaver koppatia MIDI yia govnuky pedwdia, KUplo opyavo kat ouvodeia ridvou,
eubuypappiopéva pe tov ipetoturno nxo. To peyeBog tou eivart nepinou 34 GB.

Tpia xkUpla ouvola dedopévav unootnpidouv Vv €peuva eAANvikLg pouoikrg. To Greek
Audio Dataset (GAD) [42] eptidapBavet petadedopéva kat xapakinplotikd yia 1.000 eAAn-
VKA Tpayoudla og OKI® Katnyopieg e18av (Peprmétiko, Aaiko, ‘Eviexvo k.d.). To Greek Music
Dataset (GMD) entekteivel 1o GAD og 1.400 xoppdrtia pe mpo-UToAoyiopéva XapaKtnplott-
KA 1)X0U, oTiX0V KAl oUpBoAlka yapaxktnpiotikd. To ouvolo Sedopévav Lyra [43] eotiadet
otnv napadootlakt) kat Aaikn pouoilky pe 1.570 koppatia (80 dpeg) Ao v VIOKIPAVIEP
oepd «To AAdat ng I'ng», apéxovtag Aertopiepr| petadedopéva onwg idn Katl yeaypadik)
nipogdeuor. Ta eAAnvikda oUvoAa 6edopévav amoTuUNIOVOUY Ta PovadiKda XapaKINPloTiKA TS
€AANVIKLG NOUOIKIG TTapAdoong, TapEXoviag ONHavIlkoug ITOpous yid Epeuva Kat Siatrpnon
TTOALTIOTIKIG KATPOVOLAG.

Ma mv avupetoron g EAAsyng Stabeéoiov ouvodev dedopévav otov Topéa tng on-
poupyiag Staokeuwv, avarrtuape 6U0 véa oUvoAda 8e8oPEVaV TTOU EMEKTIEIVOUV TV €peuva

népa ano g SUTIKEG pop Pedwdieg kat 1ig S1aokeuég rmdavou.

0.4.2 Xuvolo Aedopévev GreekSong2Piano

To mpoto oUYXPOVIoPEVO GUVOAO Hedopévev eAANVIK®OV Tpayoudi®v Kal 1a0KEUQV TTi-
avou, arotedovpevo and 659 {eUyn mou kKadurouv 41 ®peg POUOIKAG 0 8 H1aPpopeTika
eMAnvika €idn (Peprméuko, Aaiko, Eviexvo, Moviépvo Aaiké, Rock, Hip Hop/R&B, Pop, E-
vaddaktuikd). Ot draokeuég ouAAéxOnkav Kupiwg and 1o kavadl tou I'avvn Fpnyopiou oto
YouTube kat petaypdgpnxkav oe MIDI xpnowornowwviag to poviédo tou Kong [8]. To ouvoldo

Xwpiotnke pe avadoyia 80-10-10 yua v eknaidsuor).

0.4.3 ZuUvolAo Acsdopivev Pop2Guitar

Enekteivovtag mépa aro 1o mavo, dnpioupyrnoape €va ouvolo 40 {euymv 1payoudiov-
dlaokeumv K1Bapag (2,52 wpeg) yia tnv e§epelivon NG Ipooapioyg rediou petal opyavev.

Abdy® TRV MEPIOPIoP®V ot petaypadn kKiOapag pe to MT3 [10], ouAAégape apyxeia MIDI ard



0.5 MebBodoloyia

10 MuseScore [24]. Ady® TOoU TiEP1OPIoPEVOU PeyeBoug Tou ouvodou debopévav Pop2Guitar
(40 Teuyn), epappooaype 5-fold cross-validation yia tnv anokinon a§lomotov eKTIIN0ERV
anodoong. Autr) ) npoogyylon draodpadidel ot kaBe {euyog Tpayoudlou-61a0KEUNG XPIOTHE-
Vel 1000 0g debopévo eknaideuong 0oo kat g dedopévo enaAr|bsuong. 'Etol peyiotonoloupe
T XPNOOTNTA TOU TIEPLOPLIOHEVOU OUVOAOU Sedopiévav pag.

Autd ta ouvolda debopévev arotedouv ) PAon yia v €§epeUvion OTPATYIK®OV ETA-
(POpPAg PAdnong o osvapla XapniAov mopev, EMIIPENOVIAG TNV IIPOCAPHIOYT] O€ ITOATTIOPIKA

niedia kat dAAa opyava.

0.5 MeOodoAoyia

0.5.1 IIpoenciepyacia

H 61adwkaoia nipoene§epyaoiag neptdapbBavet 1pia otadia nou e§aopadidouv ty rowdtnta
Kat ) Xpnopointa v dedopévev eknaidbeuong, akodoubaviag 1 pebododoyia tng pedétng

[1].

MIDI Aligned MIDI Quantized MIDI

1 2 3 4 >

ch

ik

[ Pitch

[P

) 4

Filtering
Melody Contour EB—)

Quantization

M

Beat

Estimation T
Pop Half-beats Separated Vocal

Vocal Extraction

Exnpa 1. Ipoenefepyaaoia. Inyn: [1]

Zuyxpoviopog: XprnotporoloUpe to SynctoolBox [44] yia v akpBry eubuypappiion
TV MPETOTUMIOV TPAyoudiov pe TG avtiotoixeg Siaokeugég toug. H dadikacia §ekva pe
KAVOVIKOITOIN o) TOU X0V Katl epappoyr] Suvapikng napapoppwong xpovou (Dynamic Time
Warping - DTW) yia va aviipetomnotouv S1apopeg o TOVIKOTNTA Kal pubpo. Iin ouvéyxeld,
ol xpovol tev votov MIDI nipocappodovial péoe ypappuikng mapepBoAng yia va erteuyOet
MAPNG OUYXPOVIOHOS.

Efaywyn Pubpou kat K8avronoinon: Me 1w xprion tou Essentia [45], e§dyoune toug
pubpoug amod Tig NXNTIKO KOPPATIA KAl KBAVIOTIO0UE TOUG XPOVOUG TV VOT®V O P1OvVAdeg
oydoou. Autr 1 IPOCEYY1OT PETATPETIEL TNV AVATIAPACTACT) ATIO GUVEXI] XPOVO og Sopnpeévn
HOP®1], HEIDVOVIAG TV eviportia Tov 6edopévav Kat d1eukoAuvoviag v enegepyaocia amno to
povtédo.

P1drpapiopa IMowdtntag: Epappodloupe autopato Katl XEPOKiviio @ATpApiopa yua
TV AropAarpUvon {euymv Xapning rowottag. Yrodoyi¢oupe v Melody Chroma Accuracy
(MCA) [46] petadt v govnukev rmou s§ayovial pe 1o Spleeter [47] kat tng KUplag ped®-
d1kng ypapung g dwaokeung, arnoppimtoviag {euyn pe MCA 0.10 1 Awyotepo. ErumAéov,
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arokAgioupe ey pe Stapopd prroug peyadutepn tou 40% kat ertaAnBOevoupie Xelpoxivita
v eubuypdppion 6Awv TV delypatmv.

Aut 1) tp1paocikr) dadikaocia e§aodalidel ot 1o teAkd oUvolo Sebopévav repléxel uyn-
Afg molotntag, ouyxpoviopéva {euyn tpayoudlou-81aoKeurg Iou eival KatdAAnda yia v

eknaibevorn poviedwv autopatng dnuioupyiag dHraokeuwv.

0.5.2 Movtédo

H dnpioupyia pouoikev d1aokeumv aviipetonidetal og npoBAnpa sequence-to-sequence,
OTIOU KAPE 1XOU HETATPENovIal o oupBoAikd tokens mou avilipoo®IEVOUV VOTEG TOU Op-
yavou 81a0Keung. XpnollomoloUhe Pl YEVIKT ap)xitektovikn encoder-decoder Transformer
orou kaBe 9éon €10660u mepiExel éva kapé spectrogram kat kaBe 9éon e§66ou éva yeyovog
arno Ae€Adyo turou MIDI.

To poviédo Baoidetatl otnv apyitektovikr TH [5], akoAoubmvrag to Pop2Piano [1]. Xpnot-
porotet turikoug Transformer blocks pe oxetikeg Seorakég embeddings kat autornadivdpo-
pn anokewdikoroinon. Yobetoupe 1o poviédo T5 "small” pe 60 ekatoppupla napapETpous.

Qg eiocodog xpnowonoovviat log Mel spectrograms padi pe token Swaokevaotr). H
£€060g eival katavopr softmax ndve oe Ae€lAdy1o rou rieptdapBavet: Note Pitch (128 tpég,
pévo 88 yua mavo), Note On/Off (2 tipég), Beat Shift (100 tipég yia xpovikr kBavtion), kat
EOS/PAD tokens. To Ae€lAdyto eprmvéetal and v npodiaypadr] MIDI [48] kat epappoyeg
os AMT [9, 10].

4-Beat Segmented

S trogram
e Autoregressive
Decoding
ﬂiuiuu EEDDDD Output Midi Tokens
— F= O O I
Style
Conditioning
= goonom

Ixnpa 2. Apytexrovucr] tov Movtéfou. Inyn: [1]

0.5.3 Ztpatnyirég Exnaideuvong Moviédwv yia Araockeuég EAAnvikov Tpa-
youdiov os IMavo

Y& autv Vv evotnta, apouctadoune TPELG OTPATNYIKES ektaibeuong: ekmaidevuorn ano
mv apxn (training from scratch), (partial fine-tuning), kat (full fine-tuning). To ouvolAo

d6edopévav GreekSong2Piano yprnotporoteital yia 0Aeg tig pooeyyioelg eknaidsuong.
- Deep Learning network
Train from o000
_ scratch _ )
*—0—0—0
Large dataset

Ixnpa 3. Exnaibevon and mv apxn

Exrnaidsuon anod tnv Apxn: Ta v avdanudn evog poviédou Snuoupyiag Staokeuwmv



0.5.4 Zrpawnyikég Exnaidbeuong Moviédwv yia Ataokeuég Tpayoudiov oe KiBapa

mavou yua eAAnvika tpayoudia, Soxkippdoape mpeta va eKAtbeUCOUNE TO POVIEAO ATIO TV
apxn. Xpnotpomotloupe v 181a apX1teKtoviky poviedou kat tokenizer omwg 1o [1]. To
nPOBANpa pe autnyv v NMPooEyylon eival ou arattei éva peydAo ouvolo debopévav yia va
EMMTUXEL KAAA amoteAéopata Kal 10 81k0 pag ouvolo 6edopévav Sev rtav apketd peydo.
To ouvolo dedopévav pag €xel Atyotepa ard 1000 tpayoudia kat eivat repltoodtepo aro 5
(POPEG HIKPOTEPO ATd T0 oUVOAo Hedopévav Tou Xprnotpomnou)fnke yla myv eknaidsuon tou
povtédou Pop2Piano.

Msetagopd Maénong: I'a va avipERicoups 0 PpoBANa OV MEPIOPIoREVAV TIOPKV,
epappodoupe Transfer Learning. Eexkwvape aro to poviedo Pop2Piano [1] mou eival ek-
ntadeupévo oe miepinou 5000 {euyn Tpayoudiwv-rmavou Kat kavoupe fine-tuning tov apa-

HETP@V TOU OTO CUYKEKPIPEVO GUVOAO Hebopévav pag.

|

¢ - ;

FEE] [or] e
PSP Transfer Learning Pop piano cover

69 T o=

+ — = -
o, FEREL B R |« =
: |
Greek Dataset

Greek piano cover

Ixnpa 4. Metagpopa Madnong

Aoxipdaoape 6uo mpooeyyioetg fine-tuning:

Mepwrn: [Tayopa v encoder otpopdtov Katl eknaidevorn povo v tedikov decoder
OTPOPATOV KAl TG KEPAALG POVIEAOIT0IN0NG YAK®OOAG, a§lornoimviag 1o yeyovog OTt Td IpOd
orpopata padaivouv YeVIKEG POUCIKEG AvATIapAOTACELS.

IIAnpng: Exrnaibeuon 0Aov tov otpepdtev tou poviédou TH-small (6 encoder kat 6 de-
coder otpwpATA), EMITPENOVIAG MAT)P TIPOCAPHOYH OV £pyAcia-otdxo mapd v ausnpévn
UTIOAOY10TIKY anaitnon [49].

H ouvbuaopévn mpoogyyilon petapopdg pabnong Kat mARpoug Aemtopepous pubuiong
anodeiyxOnKe 1 Mo ATOTEAECPATIKI) Y1d TNV AVIIHETDITION TRV [IPOKATCERDV TOV TEPIOPIOUEVOV

6edopévav katl 1@V 181a1TEPOTNIOV T®V EAANVIKGOV NOUCIKOV e16GV.

0.5.4 ZItpatunyirég Exnaideuong Moviédwv yia Awackeuég Tpayoudiodv oe
Ki0apa

Ta wmv avanudn poviédev dnuoupyiag Siaokeumv KiBApAg aviPIETRITioue 1§ Ipo-
KA 0£1G TOV IMEPOPLoPEVRV dedoévav ekmaideuong néom orpatnyikev transfer learning xkat
domain adaptation. Evé n dnpioupyia §1a0KeU®Vv IAVOU yia pop HOUCIKI] €XEL EMMITUXEL

a§odoya arotedéopata [1], ouykpioa ouvoda Sedopévav yia adda dpyava eivat onavia.
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Tpononoinon Aefldoyiou: IIpocappoloupe tov tokenizer yia £€§o6o MIDI kiBapag,
KaAurtoviag 1o eupog ano E2 (vota MIDI 40) ¢ng E6 (vota MIDI 88) kat aAldadoviag 1o
Opyavo arnodoong amno mavo os aKouotikn KiBapa [48].

Exrnaidsuon ano to Apxn: Exnaibevoape éva poviédo aro 10 pndév xpnoponoioviag
10 ouvolo Sedopévev Pop2Guitar tov 40 {euywmv yia va sykabidpucoupe pa Baon avagpopdg,
apOAOo IOV 10 MEPLOPIoPEVO 11EyeO0G TOU 0UVOAoU Hedopévav 081 yNnoe O UTIEPTIPOCAPLOVT).

Metagpopa Mabnong: Epappdloupe transfer learning and 1o nposxkmnaibeupévo po-
viédo Pop2Piano, Siepeuvaviag dUo mpooeyyioeig:

Mepwrn: Ilayovoupe ta otpopata tou encoder Kat ta npeta orpopata tou decoder,
exrmaldevoviag Povo ta tedevutaia otpopata KAl v KeEQAAn] YA®OOIKNG povieAornoinong.
Autn 1 mpoogyylon Statnpel T1G YEVIKEG POUOIKEG AVATIAPACTACELS EVR TIPOCAPHOLETAl OTIg
16lattepotnteg g K1Odpag.

IMAnpng: Evnuepovoupie 0Aeg T1G IIAPAPETPOUG TOU HOVIEAOU, EMITPENIOVTIAG ITATPT] TTPO-
oappoyr). Eve anattel eploodtepoug UTOAOY10TIKOUG ITOPOoUg, pIopet va odnyrost os Ka-

AUtepn amodoor otav o1 TOHEIG NG KAl OTOX0U H1adEPOUV ONPIAVIIKA.

0.5.5 Awadoxirn Ernaidesuon yia Anpoupyia Araokevov EAAnvikov Tpa-
youdiov oe KiBapa

Ia v avupetomon g mpokAnong dnuoupyiag dtaokeumv KiBapag €161kA yia €A-
Anvika tpayoubia, mpoteivoupe pia otpatyiky Staboxikng exnaidevong mou alornoiel
dabikaoia petapopdg pabnong.

H 6waboxikn pag rpooéyyton akoloubei pia dipaoikr) e§eAn :

1. ®don 1: Ilpooappoyr Greek2Piano (EAAnvikd tpayoudia — S1aokeuég mavou)

2. ®aon 2: Ipooappoyr) Greek2Guitar (EAAnvika tpayoudia — Siaokeugg K16dpag)

AuTtr) 1 OTPATN YKL TIPAOTA IIPOCAPHOLET TO POVIEAO OTa €AANVIKA POUOIKA XAPAKINP1OTL-
KA dlatnpoviag v okeia popdr £§6dou rmavou, Kat ot CuvEXEld IPOcapOlel TO POVIEAO
OTOUG TIEPLOPLoPoUS g KiBapag. H umobeon sivat 6t avt n evéiapeon mpooappoyn Sa
dlatnproet kaAvutepa ta eAANVikd Pouoikd potiBa Katd ) @Aacn g TeAKAG OPYAVIKAG TTIPo-

OappOYI|S.

0.6 IIsipapata Kait AnoteAéopata

0.6.1 Movtéda yua Araockeuég EAAnvikov Tpayoudiodv oe ITavo

Awapopgpwon Exnaidsuong: Ma ) 61aopAalion avanapaydyipev aroteAeopdat®y, Xprn-
owonowoape otabepn tpr seed 3407 katl mpaypatonojoape v eknaibevon oe NVIDIA
GeForce GTX 1080 Ti GPU pe batch size 8. H mapakoAouBnorn tng eknaideuong €yive
péow tou mAatciou wandb, eve ulomouwjoape ocuvaptroetg callback ywa v anoBrjkevon tou
KaAutepou poviedou Paocet tou validation loss.

Exrnaidsuon and tnv Apxn: Exnaibevoape éva poviédo 59.1 skatoppupieov mapa-

pépwv Xpnoworowwviag AdaFactor [50] pe learning rate 1e — 3 yia 3000 epochs (11 opeg).



0.6.2 Movtéda ya Ataokeuég Tpayouduwv oe KiBdapa

To poviédo ntapouociace overfitting, pe 10 kaAutepo checkpoint oto epoch 544, ermbeikvuo-
VIag TG TIPOKANOElS NG eknaibeuong pe ieploplopéva Sedopéva.

Mestadopda Mabnong: Egapudoape transfer learning arnod to rpo-eknaibeupévo po-
viédo Pop2Piano [1], e§epeuvaviag Uo npooeyyioeig:

Mepwrn: Illaywoape 1a mpota orpopata KAt eknadevoape povo ta duo tedeutaia
orpopata decoder kat v kKedadr| language model. H exknaidevorn dirjpkeoe 200 epochs
(20 Aertta) pe kadutepo checkpoint oto epoch 165.

IIAnpng: Evnuepmoape 6Aeg T1g Tapapérpoug ToU POVIEAOU, EMMITPENOVIAG IMAT)PT) TIPO-
cappoyn ota eAAnvika dedopéva. H exmaideuon dinpreoe 500 epochs (2 ®peg) pe kaAutepo
checkpoint oto epoch 164.

Kat o1 600 orpatnyikég transfer learning senédei§av onpavuxkd kaAutepa arotedéopata a-
o v eKnaidevorn ano v apxr), ermbeBaidvoviag Vv AoTeEAEOHATIKOTNTA TG IIPOCEYY10NG

yla ogvapla pe reploplopéva Sedopéva onwg 1 Snpioupyia S1a0KeUDV AANVIKIG POUOIKIG.

0.6.2 Movtéda yua Ataoreuég Tpayoudiov oe KiBapa

Awapoppwon Exnaideuong: H exkrnaibeuon tov poviédov dnpiouvpyiag d1aokeuov Ki-
9dpag npaypatoriow)Onke oe NVIDIA GeForce GTX 1080 Ti GPU e batch size 8 kat ota-
9epod seed 3407 yua avanapayeoyipotnta. H mapakolouBnon ing eknaibeuong £yve PEO®
tou framework wandb onwg kat yua ta napandve poviéda. Ta Adyoug ouvémeiag otnv
mapouoiaoct), Ta aroteAéopata eKnaideuong mou napatifevial otig enOPEVEG E1IKOVEG TIPO-
£€pYOVial amo TtV MPXOTN ITUXI NG 81a0TaupoUpevng EmMKUPOONG. AVUOETRG, Ol TEAKEG
petpikég aglodoynong mou rapouotddoviat oty Evotnra 0.6.4 aroturnovouyv tov p£co 0po
Kat ta draotpata epriotoouvng 95% mou UnoAoyiotnKav o€ 0Aeg Ti1§ TUXEG(OUVOAKA b).

Exnaideuon and tyv Apxn: To poviédo exknaidevtnke yia 2000 epochs oto ouvolo
6edopévav Pop2Guitar pe 40 {euyn tpayoudiou-diaokeur)s. H kaldutepn anodoon erite-
UXOnke oto epoch 1974, aAdd 1o poviedo epgavicoe cadr onuadua overfitting Aoyw tou
TIEPLOPLOPEVOU NeYEBoUG TV dedopévav.

Mestadopd Mabnong: Xpnolporoirjoape 10 rposknatdeupévo poviedo Pop2Piano [1]
®G onpeio erkKivnong Kat epappoocape dUo otpatnyikeg BeAtinong:

Mepkn: [layooayie ta Meplocotepa OTPOUATA KAl EVIIEPOOAE povo ta o tedeutaia
orpopata decoder. Exnaideuorn yua 1000 epochs (25 Aerta), kaAutepo checkpoint oto
epoch 929.

IIAnpng: Evnuepooape 6Aa ta otpopata tou poviédou. H eknaibeuon kpatnoe 1000
epochs (35 Aerta), pe kaAvutepo checkpoint oto epoch 174. IlapatnpnOnke overfitting peta
arnté 1000 Brpata Adyw tou pikpoU peyeboug Sedopévav.

0.6.3 Movtéda yia Araockeuég EAAnvikov Tpayoudiodv oe KiBapa

H 61adoyikr) pag npoogyyion yla ) Snpioupyila S1a0KeU®V EAANVIKOV TpAyoudi®Vv O Ki-
9dpa akoAroubel v dipaoikn mopeia: To mpoeknaideupévo poviedo Pop2Piano xpnopevet
®g Baon.

®aon 1. Exknaibeuon oto ocuvodo debopévav GreekSong2Piano Xpnoiponoioviag twyv

BéAtiotn Sapopdwor, dnpuoupywviag éva poviedo dnpoupyiag Siaokeumv mavou.
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Paon 2: Xpnoporopviag 1o poviedo Greek2Piano wg apyikornoinor), ekteAoupe telt-
KI] TIPOoappoy1 oto ouvolo Sedopéveov Pop2Guitar pe Siaokeuég kiBdpag, epappodoviag

tokenization €181k0 yla xki@apa.

0.6.4 MceOoboAoyia A§loAdynong

e autiv v evotnta napouvotadoupe tg pebodoug rou xprnowonoidnkav yia v aglo-
Aoynon g anodoong v povitdev dnuioupyiag diaokeumv. H agloddynon nepdapBavet
1000 AVUIKEIHEVIKA 000 KAl UMMOKEPMEVIKA Kpttjpla. H avukepevikr a§lodoynon Baoiletat

O€ TI00OTIKA PETPA, EVE 1] UTIOKETHEVIKY] aSloA0yN o otnpidetatl o pedétn Xpnotwv.

Avadluon Anoddoong pe Metpikég A§loAdynong

Yi00etoUpe 11§ akOA0UBeg PETPIKEG Yia TV aSloOAOYN O] TG MTO0TNTAS TV TIAPAYOUEVEV
81a0KkeUGOV Ao MOAAATIAEG OMTIKEG YOVIEG. AUTEG 01 PETPIKEG A§l0AOYOUV TO00 TV OH1010Tr)-
10 TOV S100KEUQOV PE TO ApPX1KO TPAYoUdl 000 KAl TNV ITPOOKOAANOI TOUG OTIG OTUALOTIKEG
oupBAcelg KAt Vv E0WTEPIKL] OUVOYXT] ITOU XapaKinpidel 11§ avoporveg S100KeUEG.

Melody Chroma Accuracy: aioloyel v opotdtnta pHetady 6U0 HovoPOVIKOV PeA@dt-
KOV akodoubiov. H pedwdikn ypappr naidel kaboplotikd poAo otnv anopaon yla 1o av pid
bdlaokeur) potadel pe 10 apXko tpayoudl. AkodoubBwviag tig 0dnyieg ano [1], unoAoyidoupe
v MCA petadl 1oV geVvnTikov mou egayoviat anod 1o Spleeter [47] amo tov fix0 KAt g
Kopugaiag peAadikng ypapprg rou egayetat and to MIDI g §1a0Keung Xpnotonoioviag
tov aAyopiBpo skyline.

Avayvopion Awacreumv Tpayoudiov: Ta va a§odoyrjooupe v opoldtnta petaiy
TOU apPX1KOU KOPHATIOU KAl TNG IAPAYOHEVNG O100KEUNG, XP1OTHOIOI0UE Pid HEIPIKY €-
HITVEUCOHEVE ATIO TV avayvoplon 81aokeunv tpayoudiov, dndadn i petpiky Omnax [36]. H
HETPIKY] Omax a§10A0YEL TNV OPO1OTHTA TOU APJOVIKOU TEPIEXOHEVOU PeTady TG TTapaAyOEVNS
cover Kadl ing avadopdg, Pe XapnAotepeg TIHEG va UTIOOEIKVUOUV OTEVOTEPT] AVIIOTOX1d.

ErumA¢ov, xpnotwponouwjoape €va ouyxpovo poviedo CSI mou ouppeteixe Kat Katetayn
1pito orov Sayeoviopo MIREX 2024 Cover Song Identification. Xpnowornowoupe to Cover-
Hunter [40] yua va e§ayoupe embeddings aro 11g apyikég nXoypaprioeig Kat tg 81a0Kevég.
1) ouvéyeld, urodoyidoupe v anootact cuvnpitovou petady twv embeddings tov apXikov
Kdl TV ITAPAYOHEVROV O1a0KEUQV.

Opoidtnta Baotopévn o Embeddings: Baowldpevol oty 18¢a 6t propoupe va u-
roAoyicoupe v opowdtnta pe ) xprion embeddings, xpnowponowrjoape to MERT (Music
undERstanding model with large-scale self-supervised Training) [51], éva pioviédo peydaAng
KAIPaKAG, AUTO-ETMOITTEVOHEVTS PAONoNG oxeS1aoévo yia v KATavororn aKOUOTIKLG H10U-
OKI)g. Xta Melpapatd pag, xprnotporotovpe to poviedo MERT-v1-95M, srudéyoviag aut)
1 PIKPOTEPT] TTIApaAAayr] AOY® TV UTTOAOYIOTIK®V IIEPIOPIOPAOV HAG.

A§rodoynon Awaokevwv ITavou: O Ilivakag 1 cuvowiletl v anddoon twv poviedev
dnpioupyiag 6100KEUGOV TIIAVOU Ot B1APOPEG AVIIKEIPEVIKEG PETPIKES. [a tig Sraokeuég -
avou, ot orpatnyikég fine-tuning deixvouv cageig BeAtiwoelg tooo €vavit tou Pop2Piano
baseline 600 kat g exknaibeuong anod v apxn. H npootyyion mArpoug fine-tuning eru-

Tuyxavet v Kadutepn anodoor) pe MCA 0.443 + 0.021, Qpax 0.064 + 0.013 kat andotaon



0.6.4 MeBodoAoyia A§loAdynong

CoverHunter 0.146 £ 0.013, avurnpoowrnievoviag BeAtiwoeig 21.0% otnv MCA kat 14.% oto

Omax 0€ OUYKplon He to baseline.

IMivakag 1. Meroucég ASioAoynong yia [apayoueves Aaockevég ITidvou (teipapa 5 mruxov).
YynAotepeg tiuéc MCA war opowotntag eubuvdiopdrov (MERT) givar mooTuotepeg, eV Xaun-
ANotepeg tpueg CSI Qmax kat anootaocelg CoverHunter vrtodnAovovv kaAdvtspn amodoon.

Movtédo MCA (1) CSI (QOmax) () Amndotaon CoverHunter (|) Opoiétnta MERT (1)
Pop2Piano [1] 0.363 = 0.019 0.075 £ 0.017 0.159 £ 0.015 0.808 £ 0.007
Greek2Piano-Scratch 0.372 &= 0.020 0.100 £ 0.020 0.175 £ 0.012 0.802 + 0.008
Greek2Piano-Partial 0.443 + 0.021 0.068 = 0.017 0.155 £ 0.013 0.809 + 0.007
Greek2Piano-Full 0.439 £ 0.022 0.064 + 0.013 0.146 £+ 0.013 0.811 + 0.009
Human Piano 0.389 £ 0.029 0.093 £+ 0.028 0.142 £ 0.014 0.794 £+ 0.017
Human Piano (Audio) - 0.087 £+ 0.026 0.134 £ 0.013 0.834 £ 0.007

Af0Adynon Awaorevov Ki@apag:

O ITivakag 2 ouvoyidel v arodoorn tov poviedewv dnpioupyiag dtaokeumv KiBapag.
Sy dnuoupyia Staokeuwv kK1BApag, ot dtapopég arodoong Petaiy Twv oTpatnykov eivat
onpavikes. Kat ot §Uo npooeyyioeig fine-tuning emtuyxavouv oxupd arotedéopata, pe
10 MANprg fine-tuned poviédo va @taverl 1o vypndotepo MCA (0.363 £ 0.042) kat opoilotn-
ta MERT (0.783 + 0.024), eve 10 pepikag fine-tuned poviédo srmtuyxdvel v KaAutepn
artodoor CSI (0.152 + 0.050 Qnax) Kat ) XxapnAodtepn arootaor CoverHunter (0.153 =+
0.010). AvtiBeta, 10 poviédo amod v apxn nou eknaldevtnke oe poAg 40 euyn Sraokeuwmv
K1BAapag €xe1 KAKr anodoon os 0Aeg TG PeTPkEG (0.189 4+ 0.016 MCA, 0.576 4 0.105 Qnax
), avadeikviovtag ) onpaocia g petadopdg pabnong otav epyadopacte Pe TEPLIOPIoPEVA
ouUvoAa 6edopévav.

IIivarag 2. Meipuceg alofoynong ya napayoueveg Staokevég kidapag (telpaua 5 Truxov).

O vyniotepeg tuée MCA rar opodtniag eubvdioudatov (MERT) sival mpoTUOTEPES, V@ OL
xauniotepeg tueg CSI Qmax kat arootaocelg CoverHunter urtodnAovovv kadutspn arodoon.

Movtédo MCA (1) CSI (Qmax) () Amndotaon CoverHunter (|) Opoiétnta MERT (T7)
Pop2Guitar-Scratch  0.189 = 0.016 0.576 £ 0.105 0.181 £ 0.030 0.735 £ 0.007
Pop2Guitar-Partial 0.358 £0.043 0.152 + 0.050 0.153 + 0.010 0.781 £ 0.016
Pop2Guitar-Full 0.363 - 0.042 0.169 + 0.062 0.156 £+ 0.014 0.783 + 0.024
Human Guitar 0.288 £ 0.018 0.211 £ 0.053 0.168 £ 0.022 0.777 =+ 0.014

ATiel va onpewwbei 611 ta poviéda pag €xouv Kadutepa arotedéopata ard autd v
avOpemveVv S1a0KEUMV 0 TTIOAAATIAA AVUKEIPEVIKA HEIPIKA, Oriwg 10 MCA (0.363 4+ 0.042
évavtt 0.288 £ 0.018 yia v kiBapa), mapd 10 YeEYovog ott ol avBpariveg diaokeueg Aap-
Bavouv avitepeg UTIOKETEVIKEG aSl0A0YT|0e1g. AUTI) I] QAIVOHEVIKT) AVTi(AOor aviavakid pia
Seped®dn Sadopd mPoogyyiong: eve Ta POVIEAA Pag OTOXEVOUV OTNV ITIOTOTNTA TG NEA®-
6iag, o1 avBpormvol Staokeuaotég §ivouv mPotepaldTNTA OtV KAAATIEXVIKY EpUnveia €vavtl
G Katd Aégn avarapaywyng, eoayoviag Srpioupyikeg mapaAayés Katl TEXVIKEG TOU OXE-
tidovial pe 1o ekAoTOTE Opyavo. AUTEG Ol IAPEPBACEIS EVIOXUOUV TNV EKPPACTIKOTNTA TG
HOUOIKNG, aAAd PEIWVOUV TNV HEIPROn opoldtnta. Auto 10 potiBo cupdovel pe ta gu-
pnpata g apxikng dnpooicuong Pop2Piano [1], omou ot avBpmruveg §1aokeuég onpeinoav

apopola XapnAotepsg Pabpodoyieg ota UMMOAOYIOTIKA PETPIKA, aAdd €AaBav uywnAotepeg
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urnokepevikég aglodoyrnoelg. Ta uynddtepa okop opototnrag MERT yia tg avOporiveg
d1a0KeUEG UTTIOONAGDVOUV OTL AUTEG 01 SNU0UPYIKEG ATTOKATOELG, TTAPOAO TTOU PEI®VOUV TV a-
KpiBela oe eninedo votag, cUPBAAAOUV TEAKA OTr) OUVOAIKY] POUOCIKY] TTO10TNTA TTIOU EKTIHOUV
01 AKPOATEG.

Evbiagépov mapouciadel 1o yeyovog ott, otav ot idieg avBpwriveg exktedéoelg agloAoyo-
vvtal aneubeiag ot popdn nyoypadpnong toug (Human Piano (Audio)), srutuyxdavouv oxt
povo uyndotepn opodtnta MERT, aAla kat BeAtiwpévn amndotacn CoverHunter kat CSI
Omax, UMEPEXOVTAG TO00 TV avBpaIvev 51a0KeucVv og popdr) MIDI 600 kat 6Aav tev e€08mv
MoU MapAyouVv ta povieda. Autrn 1 arnokAion avadeikvuel nwg n Hadikaoia petaypadng,

MPOEMESEPYATiag, avanapaywyng eoayet unoBadpioslg mou KAataotéAAOUV T METPIKEG.

AvtiAnyn Xpnotov rat Yorelpeviky A§todoynon Ilowdtntag

Ta v unokelpevikn ag§lodoynorn, diednyape pia pedé xpnotowv. Xinv pedét pag
npav P€pog 26 pn-snayyeApatieg OUPPETEXovieg, ot oroiotl a§loAdynoav aroortdopata 10
deutepoAémov anod tpayoudia tou test set oe 1peig Sractacelg: Opodtnta pe 1o [petdturo
(SI), Mouoikn Zuvoyr) (CO) kat Artodauorn Axkpoatr] (LE). Ta artooridopata rnapouoiactnkayv
avevupa oe tuyaia ogpd yla va egaopaliotet apepoAnrn agloddynon).

O1 ouppetéyovieg KAONKav va akouoouv autd Td NXNTIKA KAUT KAl va rapexouv Bab-

poloyieg oe kAipaka Likert 5 Babpov yia 11g akoAoubeg rtuyég:

e Opowotnta pe to Ipotétuno (SI): O Babudg opoldtnrag Hetady OV eKTeEAECE@V

mavou/k1Bdpag Kat 1ou apy1Kou Tpayoudlou.

e Mouoiky Zuvoyy (CO): O Babpog avuAnrrg pong oty MOUCIKY, AVIUTPOORXITIEUOVIAS

TV OPaAOTTA KAl GUVOYXH TOV EKTEAEOE@V TTIAVOU/K1BdApag.
e AndAauon Akpoaty (LE): [16co apéoel otoug ouppetéxovieg i diaokeur rmdavou/Ki-

9dpag cuvoAika.

IMivarag 3. Merpucég ASloAdynong yia Ilapayoueveg Ataokevég IIidvou. YynAotepeg tiueg
yia Ouodtnta, Movowkr Zuvoxn kat Anofavon Akpoatr 6eiyvouv kadutepn arnodoon.

Movtéldo Opowdtnta pe to llpwtotuno (T) Mouoikrn Zuvoxq (T) AndAavon Axpoaty ()
Pop2Piano [1] 2.29 + 0.20 2.60 + 0.26 2.40 + 0.25
Greek2Piano-Scratch 1.81 + 0.21 2.42 + 0.26 1.97 £ 0.21
Greek2Piano-Partial 2.67 £ 0.22 2.60 + 0.23 2.46 + 0.24
Greek2Piano-Full 2.94 + 0.21 2,91 + 0.23 2.72 + 0.25
Human Piano 4.06 £ 0.23 3.94 £ 0.25 3.78 + 0.28

Ta anotedéopata g UTIOKEIREVIKES agloAoynong otov Ilivaka 3 katadeikviouv 1oxupt
avtiotolyia Pe 1§ aviKEIPEVIKEG pag petpnoelg. Na tg diaokeuég mavou, 1 mPOcEYyion
mAnpoug fine-tuning ¢AaBe g vwnAotepeg Pabpoloyieg oe 0Aeg g Saotacelg (avapepo-
Vtal ®§ PEoOG 0pog pe Staotrpata gprmotoouvng 95%: SI: 2,94+0,21, CO: 2,91+0,23, LE:
2,7240,25) npooeyyidoviag 10 avBp®rivo onpeio avadpopdg Kat EEMepVOVIAg t000 ) BACIKY)

ypappr Pop2Piano 6co kat to poviédo ano v apyxr). Autd emBeBaiwvet ot 1o fine-tuning



0.7 Zupnepdopata kat MeAdovukr) KateuBuvoeig

IMivarag 4. Mepuceg ASoAdynong yia Iapaydueveg Ataokeveg Kiddpag. Yynaotepeg tiueg
ya Ouowotnta, Movowkr Zuvoxn kat Anojlavon Axpoatn Seixvouv kafutepn arodoon.

Movtéldo Opootnta pe to Ilpwtotuno(T) Mouoikn Suvoxy (1) AndAauvon Axpoaty(T)
Pop2Guitar-Scratch 1.54 £ 0.28 1.77 £ 0.27 1.54 £ 0.24
Pop2Guitar-Partial 2.56 + 0.29 2.50 + 0.28 2.29 + 0.31
Pop2Guitar-Full 2.27 £ 0.25 2.35 + 0.26 2.06 + 0.26
Human Guitar 3.13 £ 0.26 2.87 £ 0.34 2.71 £ 0.33

EVIOXUEL OX1 PNOVO TIG TEXVIKEG PEIPIOEIS AAAd KAl TV avTlANITr] POUCIKOTNTA KAl ArtoAdu-
on. Ta poviéda kiBapag otov Ilivaka 6.5 Seixvouv apopolo potiBo adAd pe 1mo €vioveg
dragpopég. To povigdo amo v apyrn onueinos xapniég erudooelg oe O0Aeg g petpnoeig (S
1,5440,28, CO: 1,77+0,27, LE: 1,54+0,24), evo ta fine-tuned poviéda nétuxav onpavtt-
KA uynAdtepeg Babpodoyieg, pe v pooéyylon pepikou fine-tuning va AapBavet 16iaitepa

uyniég Babpodoyieg yia opodtnta (2,56+0,29) kat cuvoyr (2,5010,28).

IMivakag 5. Meipikeg Aflofoynong yia Ataokeveg EAAnuikev payovdiov oe Kiddpa. Y-
ynAotepeg Teg yra Ouowotna, Movousn Zuvoxn kat Anodavon Axpoatn deiyvouv kadutepn

anoboon.
Movtéldo Opootnta pe to Ipwtotuno(f) Mouowkn Zuvoxy (T) AndAauvon Axpoatr (T)
Base (No Fine-tuning) 2.37 + 0.32 2.10 £ 0.31 1.90 £+ 0.29
Sequential-Partial 3.31 £0.33 3.00 + 0.33 3.00 £ 0.33
Sequential-Full 3.19 +£ 0.28 2.67 +£ 0.29 2.50 + 0.29
Human (Greek Guitar) 4.17 £ 0.28 3.85 + 0.31 3.65 + 0.38

ISwaitepa agloonpeinto eivat to nieipapa diadoykou fine-tuning (Greek2Guitar) rou a-
MOSEIKVUEL TIG HUVATOTNTEG TNG OTPOUATOTIOUHEVNS PETadopag padnong. To pepikag ekmat-
Seupévo 61adoy1ko poviédo TIETUXE T uYnAdtepn Pabporoyia opodttag (3.314+0.33) peta-
&U 0Awv TV poviedwv K1BAapag, minoiadoviag to avlparivo onpeio avadpopdg (4.17+0.28).
Auto unodndovel ot n Sadpopr| petapopdg yvaong arod 10 SUTIKO IMOIT ITAVO 010 €AANVI-
KO TIAVO Kal Otr OUveéxXela otnv Kibdapa ouAlAapBavel anoteAeopatika ONpavilka PHOoUoIKdA

XAPAKINPIOTIKA TTOU BEATIOVOUV TNV AVUANTIIT] [TO0THTA TV IAPAYOHEVEV §100KEUMV.

0.7 XIZupnepaocpata xkat MeAAdovtikn KateuOuvoeilg

0.7.1 Zupnepacpata

H dnpioupyia draockeumv tpayoudiiv anotedel onpaviiky npokAnor oto redio tng pou-
OlKI)G AVAKTINONG MANPOGOPIRDV, ATAIOVIAS Ao Td CUCTHpatd va dlatnpouv v ouoia eV
MPPIOTUTIOV OUVOECE®V £V TAUTOXPOVA TIG TIPOCAPIIO0{0UV 08 OUYKEKPIHIEVA OPYava KAl OTUA.
H napovoa dinmdepatikr epyacia avupetornos SUo meplopiopious tou nediou: v EAAsyn
6edopévav exmaideuong yia pn-6UTikEG POUOIKEG TIAPABO0Elg KAl TNV AIToUsia PoVIEA®V 81)-
Ploupyiag S1aoKeUuav yla dpyava mépav tou mavou. Méoa amd cuctnuatki diepeuvnon
pooeyyicewv petagopdg padbnong kat ) dnuiovpyia eie1dikeupévav ouvolav edopévavy,
TIPOTEIVAIE OTPATNYIKEG Y1a TNV autopatn Snpioupyia S100KEUGOV 08 OEVAPLA TIEPIOPIOPEVOV

opwV.
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H xupla ouvelodpopd pag ota ouvoda dedopévav eivat 1o GreekSong2Piano dataset, rou
nieptdapBavetl 659 eAAnvika Tpayoudia Katl Tig aviiotolxeg S1a0KEUEG TOUG Yid TTAVO, GUVOAL-
Kd 41 Opeg POUOIKNAG O OKI® dladopetikd eAAnvika €idn, onwg Pepunétiko, Aaiko kat ‘Evie-
xvo. To oUvoAo aUTO ATIOTUTIOVEL TA XAPAKINPIOTIKA TG €AANVIKNG HOUOIKYG tapadoong,
TAPEXOVIAG TV MPWTN CUYXPOVIoHEV cuddoyn eidika oxediaopévn yla v avtopatn dn-
poupyia Staokeumv eAANVIKNG pouokrg. EmutAéov, dnpoupynoape to Pop2Guitar dataset
pe 40 Levyn tpayoudlou-ki0dapag, EMmMIPENOVIAg TV EepeUVN O TG IPOCAPIOYTG Tediou ot
opyava mépav tou mavou.

H cuompatikr) avaduor) pag £6e18e oagr) mieovektrpiata arnodoong yia g pooeyyioelg
petadopdg pabnong evavil g eKnaidevong amo v apxn. LUykpivoviag tnv eknaideuon
amod Vv apyxr), 1o pepko fine-tuning kat 1o mArpeg fine-tuning oto eAAnviko pag ocuvoAo
debopévav, kat o1 o npooeyyioeig fine-tuning Eenépacav v anodoor) g faong avapopag
Pop2Piano, pe 10 pepwko fine-tuning va @tavel 1o vynidtepo MCA tov 0.443 £ 0.021,
onpuelwvoviag BeAtiwon 21,0% oe oxéon pe ) Bacn avapopds. AT00nUeinTo ival 0Tt akoun
KA1 TO POVIEAO TTOU eKTTAISEUTIKE ATIOKAEIOTIKA O EAANVIKI] F1IOUCIKI] AVIAY@VIOTNKE OTEVA TO
apxwko Pop2Piano oe eAAnvikd tpayoudia, ermBeBaiovoviag v adia g exkrnaideuong e1d1ka
nipooavatoAilopévng oto nedio. Xinv nepintoon tng dnpioupyiag daokeumv yia KiBApa, 1
petagopd padnong anodeixbnke akopn mo kaboplotiky), pe g npooeyyioelg fine-tuning
Va UMEPEXOUV 0APRS TG EKMAISEUONG AT TNV ApXI], AOY® T®V MEPLOPIOPEVOV S1a0£0110V
bedopevav.

ErumAéov, seloaydyape pia véa otpatnyikr Stadoyikou fine-tuning, n ornoia reptdapBavet
nipocappoyr] rediou moAdarmlev Prpdtov: and GUTIKEG TIOTT H100KEVEG TIIAVOU OF EAANVIKEG
dl1a0KeUEg TIIAVOU KA1, O OUVEXELD, O O100KeUEG K1BApag. Autr 1 mpoogyylon aredwoe
Blaitepa Setikd amnotedéopata, PE 10 PEPIKA ekmatdeupevo §1ab0X1KO POVIEAO va Katd-
ypagetl 1ig vynlotepeg Babuodoyicg oporotmrag (3.31+0.33) petadv tov poviedov KiBapag,
mAnowadoviag v avBparvy anodoon (4.171+0.28). Autd Seixvel 6Tl n yvoon propet va
petagpepOel anoteAeopatikd 1000 O TTOATIORIKA 000 KAl 08 OPYAVIKA Op1d PECK IIPOOEKTIKA
oxedlaopévev povonati®v rmpocappoyng.

To mAaiolo a&loddynong pag ouvéuaoe AVIKENEVIKEG HPEIPHOEIS KAl UTIOKEIEVIKT] A-
E10AOY 101, TTPOOPEPOVTIAG 111a OAOKANPOUEVT EKTIINOT NG TTO0TNTAS. XPT1OHOMO|OAE TO
Melody Chroma Accuracy (MCA), petprjoeig avayveplong 81a0Keumv 1payoudiov, Kabng rat
nipooeyyioelg Baoiopéveg oe embeddings pe mpwrtoroplakd poviéda onwg 1o CoverHunter
xat 1o MERT. H urnokeipeviky] a§loAdynon PEom PEAET®V XPNOoTt®V EMKUPKOOE T EUPHIATA
pag, delxvoviag otevr] CUCKETIOn PETady TV UMMOAOYIOTIK®V HETPH0E®V KAl TG avOp®Iivng

avtiAnyng g rnootntag 1oV S1a0KEUGMV.
0.7.2 IIepropiopoi kat MeAdovuirég KateuOuvoelg

IIepropiopoi

Evo n napouoa epyaocia xkatadeikvuel 11§ duvatotnteg g petadopdg pabnong ya m
dramoAttiopikn kat Saopyavikn dnpioupyia draokeuwv, apketol replopiopoi avadeikvuouv
niedia mpog nepattépm Pedtinon. Ta ouvoAda Sedopévev pag napouotalouv eyyeveig meplo-

P1OP0UG o0t Tag. Xe aviibeon pe enayysApauka nxoypapnpéva ouvola dedopévav orwg
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10 MAESTRO [52], 10 oroio mpoodEépel EKTEAL0EIS TTIAVOU e UWYNANG akpiBelag Xpovikn
eubuypdapption (nepirou 3ms) petady v EUKETOV VOTAG KAl TOV KUPATOPOPY®OV X0U, 1] 10
GuitarSet [53] pe 11g efapavikég Kataypapég tou anod e1dikd nnvia, ta Sikd pag dedopéva
npogpxoviatl anod 10 YouTube kat cuyxpovidovial P€owm UrmoAoylotikav 1ebodov ot oroieg,
APOTL AMOTEAEOPATIKEG, Oev ermTuyxavouv 1o 1610 eminedo akpiBelag. Auto evdexetal va
€10AYEL XPOVIKEG AMOKAICELG TTOU €MINPEACOUV TNV IOOTNTA TG EKMAIGEUONG TOV OVIEAGDV.
Eruréov, n unokeipevikr) pag a§lodoynorn), av Kat rapeixe Xxprotpeg minpogopisg, Baciotn-
KE OT1] CUPHETOXY] 26 Hn enayyeARaTidv aKkpodtdV, YEYOVOG ITOU UTTOOEIKVUEL OTL PEAETES
peyaldutepng KApakag, ot oroieg 9a EVO®PATOVOUV T ETEPOKANTO AKPOATHP0 KAl £MAY-
yeApatieg pouoikoug, Sa priopouoav va IipoohEPOUV I 10XUPT) ermBeBaino: tov eupnpat®v
pag.

Ermiong, texvikoi meplopiopol meptoploav 1o rnepapatko pag nedio. H e€apinor) pag
and npounapyovia apxeia MIDI and to MuseScore yia 1o ouvolo dedopévav Pop2Guitar
emMBANONKE ATIO TNV KAKI] AT000T TRV TPEXOVI®V HOVIEA®V AUTONATNS HOUOIKG PETtaypa-
e1g oe nyoypagpnoelg KiBapag. IMapd tov oxediaopod tou MT3 yua petaypadpr] rmoAdanieov
opyavav [10], cuxva avayvopile AavBaopéva g ektedéoelg KiOdpag g adda opyava, kadi-
oteVIag 10 akatdAAndo yia ) dnpoupyia t@v ouyxpoviopévav euyav nxou-MIDI nou eivat
anapaimnta yia tmyv npoocEyylon pag.

AUTOG 0 MEPOPIoHOG PAG AVAYKACE VA EPYACTOUE € £vd ONHIAVIIKA PIKPOTEPO TUVOAO
bdedopévav kiBapag (40 Jeuyn) oUyKpITKA pe 10 oUvolo debopévav mavou pag (659 feuyn).
ErumAéov, ta nepdpata pag rneplopiotnkav and toug UnoAoylotikoug pag rmopous. ‘OAa ta
niepdpata 81e€nxdnoav otov Siakopiotr) ou gpyaotnpiou SLP-NTUA, siorAiopévo pe 6uo
GPU v 12I'B (NVIDIA GeForce GTX 1080 Ti kat GeForce GTX TITAN X), yeyovog rou
TIEPLOPLOE TV IKAVOTNTA 114G VA TEPAPATIOTOUE e Peyadutepa PhKn mAatoiou Kat peyédn
naptibev otn dadikaocia eknaidbeuong 1@V POVIEAGV.

[Mapopoing, Katd tnv a§loddynor, meploplotkape ot xprion tou MERT-95M [51] avti
Tou 1o 1kavou poviedou MERT-330M Aoye meploplopev pvhung, ennpeaoviag moaveg

VvV ot ta 1V a§lodoynoemv opootntag Paoctopévev oe embeddings.

MeAAovtikrég KateuOuvoeilg

MeAAovuky) épeuva da rmpernet va egepeuvr)oet H1eupupéva MOMTIoPKA redia Kat PouoiKda
VPN mépav g AANVIKNAG Kat g SUTIKNG 1o napddoong rmou egetddovial otnv napovoa
epyaoia. H gAAnvikn POUO1KI), PE TA XAPAKINPEIOTIKA pubpikd potiBa kat tg 1diaitepeg
Sopikeg 18610p0pPieg g [42], anotéAeos anoteAeopatiky nepinmoon dokung ya ) daro-
ATOPIKY TIPOCAPHOYT], AAAd o1 apxEg Tou mapouoctadovial ed® PImopouv va enektabouv Kat
oe aAAeg Tapadooelg e Povadika XapaKTNPloTIKA, OTIOG 1 vO1KI) KAAO1KI) PoUO1KY) [54], ta
apaBika ouotrjpata maqam [55] 1) o1 pouoikeg popdeg g Avatodikrg Aciag [56]. Tétoieg
enekraoelg 9a doxkipaldav mepattép® T YEVIKEUOIHIOTNTA TV MPooeyyioenv transfer learning
o€ €va €upuTEPO PACHA POUOIKGOV TIAPAPETPRDV.

'Onwg n avtopatn petaypadr pouoikng (AMT) €xet ermexktabel emTuxmOg aAro mavoke-
VIPIKA OUCTHATA OF TIOIKIAEG OIKOYEVEIEG OPYAV®V, €101 KAl Il ApAy®yn O6laokeuomv Sa

HITOPOUoE va akoAoUBr|oel mapopold rmopeia, epocov urapset KatdAAnin avarcuén ouvodwv
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debopévav. Tlpoopateg egeAdifelg oty AMT €xouv srutuxel petaypadr oe eyxopda (Bro-
At, 10€)0) [57], EVAva rveuotd (pAdouto) [58], kpouotd [59] kat napadootakd eBvodoyika
opyava onwg 1o apaBiko @Adaouto [60]. H napayeyn diaokeumv Sa priopovoe ertiong va ere-
ktabel oe autd ta dpyava, av Kat autd rmpoUIobEtet v avartuin ouyXpOoVIoHEVOY CUVOAGV
debopévav peyddng kAipakag kat rmo sseAdiypévov oxnudtev tokenization yia va AngOouv
UnoOYI TEXVIKEG TTOU eivat e181kég yia kabe dpyavo.

Mua 18uaitepa urooxopevn mpoéktaon rnepthapBavet ) Snpioupyia 0AOKANPOPEVEV OU-
OTNPATOV Ao AKPO O AKPO TOU HETATPENMOUV arneubeiag nXnuky €icobo og maptitoupa
€towun yua extédeor. Baowlopeva ounv unapyxouoa por| audio-to-MIDI, tétola cuotrjpata Sa
Hropoloav va eVoPAT®VOUV UIopovadeg peta-snegepyaoiag ya ) dSnpioupyia POUCIKAS
onpeoypadiag. IIpoodartn epyacia otov topéa tng petarporr)g arto MIDI o maptitoupa,
oniwg 10 MIDI2ScoreTransformer [61], katadsikviet ) Suvatotnta PETATPOING OUNBOAIKIG
HOUOIKAG Og maptitovpa rmavou. Opoiwg, eeidikeupéva ouotpata yla Kibapa propouv
va agloroirjoouv poviéda petatporg aro MIDI oe tablature [62] yia v napayoyn Katdl-
AnAng onpeloypagiag ava opyavo. 'Eva oAdokAnpopévo ouotnpa Sa propouocs Suvnuka va
evortoroet tpia otada: (1) perarpor] fXOU 0 CUPBOAIKT] AvVATIAPACTACH €0 TOV EKITAL-
deupévav poviedeav apayeyng diaokeumv, (2) petatport) g cUPBOAIKNG avarapactacng
oe onueoypadpia péoe e§e181keupEVEOV NOVIEA®V anelkoviong Kat (3) kowr BeAtiotonoinon
o€ 0AOKATPI) T POTY).

TéAog, pia akopn kateubuvor adpopd v e§aptopevn napaywyn diaokeuov pe Pdon Ket-
HEVIKE 1] TTOAUTPOITIKY £10060. MEO® TG eVOROPATOONG S1aPOPETIKGOV TUTIOV £10000U OTIMG
ouyxopdieg, NeEA@OIKEG YpaAPIEG, OTIXO1 KAl MEPypadika Keipeva ol Xprjoteg 0xX1 LOvo |Io-
pouv va aAAnAsemdpouv mo duvapika pe ) dadikaoia dnpioupyiag pouvoikng, aAld kat va
AIMTOKTOUV PEYAAUTEPO KAl IO AETITOPEPT] €AEYXO OTO TeEAKO arotédeopa [63]. Méoa amo
xpnon poviédev onwg to ChatMusician [64], to Llark [65], 1] tv enéktaorn tou poviéAou
T5 [5], peddovuikd poviéda Sa priopovoav va SExovial IePLypaAPES YUOIKIG YAOOOAG, OIg
«dnpoupynoe pia peAayxoAikn 100KV TTIAVOU OTO UPOG PG KAAOIKIG PITAAAVTIAG) 1] «I1d-
pryaye pia {onpr diaokeun yla kiBdpa katdAAnin yua @eotiBad rapadooiakng POUOIKNAGY.

EAnidoupe o1l 1 epyaoia pag 9a mpooeAKUCEL TIEPLOCOTEPT] EPEUVITIKL] IIPOCOYXY OTO d-
AN TKO NPoBANpa ng dnuioupyiag POUCIKGV S1a0KEUMV KAl 9a EPIVEUOEL VEA EPEUVITL-
KA EYXEPNPATA OXETIKA PE T S1anmoAMTIOPIKY aviaAAayn) Ot HPOUOIKY PECW® UTIOAOYI0TIKGOV
npooeyyioenv. Méoa amo 1 yepUPp®on S1adopeTik®V PNOUCIK®V apadooemv Kal Hophov
0pYAV®V, OUCTIIATA OTIOG TO0 H1KO Hag evoéxetatl va cupBalouv 1000 og SNILIOUPYIKEG Epap-
Poyég 600 Katl og Pabutepn UMOAOYIOTIKI] KATAVONOTI] TG HOUCIKNG PETAPPAOTG TIEPA ATIO

MOATTIOPIKA Op1d.



Chapter E

Introduction

1.1 Motivation

Music covers represent one of humanity’s most enduring forms of artistic expres-
sion, transcending cultural boundaries and historical periods. From ancient folk tra-
ditions where songs evolved through oral transmission to classical composers creating
arrangements of existing works, the practice of reinterpreting music has been central to
musical culture. In contemporary times, cover versions serve multiple purposes: they
preserve musical heritage, introduce songs to new audiences, and allow artists to express
their unique interpretative vision. However, creating quality covers traditionally requires
substantial musical expertise, instrument-specific knowledge, and considerable time in-
vestment. Musicians must analyze the original composition, understand its harmonic
structure, adapt it to their chosen instrument’s capabilities, and develop an arrangement
that maintains the song’s essence while showcasing their artistic perspective.

The recent revolution in artificial intelligence and deep learning has opened unprece-
dented opportunities for automated content generation across multiple domains. Break-
through models in natural language processing, computer vision, and audio synthesis
have demonstrated remarkable capabilities in generating human quality text, images, and
music. In the music domain specifically, we have witnessed significant advances from un-
conditional music generation systems to more sophisticated conditional approaches that
can generate music based on specific constraints or inputs. This progression naturally
leads to the possibility of cover generation, transforming existing songs into arrange-
ments for specific instruments while preserving their musical identity. Such systems
could democratize music arrangement, making it accessible to musicians regardless of
their theoretical background or arrangement experience.

Despite these promising developments, several challenges impede progress in cover
generation. The most fundamental obstacle is data scarcity: unlike text or image datasets,
synchronized song-cover pairs suitable for training are extremely limited, particularly
for instruments beyond piano and the pop music genre. This creates a low-resource
learning scenario that traditional deep learning approaches struggle to address effectively.
Additionally, the evaluation of generated covers presents difficulties, as musical quality
assessment involves both objective measures of similarity and subjective judgments of

artistic merit.
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This thesis aims to address these challenges and advance the field in both technical
and cultural dimensions. To overcome data limitations, we develop two datasets including
the GreekSong2Piano dataset, which captures the unique characteristics of Greek mu-
sical traditions, and the Pop2Guitar dataset, expanding cover generation beyond piano
to guitar arrangements. Our methodological approach leverages transfer learning and
domain adaptation techniques to effectively utilize limited training data, demonstrating
how knowledge from larger datasets can be adapted to specialized musical contexts. We
establish a comprehensive evaluation framework that combines objective metrics with
subjective assessments, providing a more complete picture of generation quality. By ex-
tending automatic cover generation to Greek music and guitar arrangements, this work
creates a foundation for culturally-aware and instrument-diverse music arrangement sys-
tems, opening new possibilities for preserving musical heritage while expanding creative

expression through technology.

1.2 Contribution

This thesis contributes to the MIR field regarding cover song generation. Given that
the specific subject of cover generation from audio input has been limited to piano covers
of Western pop music, and that low-resource musical domains such as Greek music and
alternative instruments like guitar have not been extensively studied, this thesis explores
transfer learning approaches and domain adaptation techniques for cover generation
across different musical styles and instruments. Firstly, we address the challenge of gen-
erating piano covers for Greek music by creating the first synchronized dataset of Greek
songs and their corresponding piano covers, and by exploring different training strategies
including training from scratch, partial fine-tuning, and full fine-tuning of pre-trained
models. Then, we investigate cross-instrument domain adaptation by developing guitar
cover generation models, exploring how knowledge learned from piano cover generation
can be transferred to guitar arrangements. Specifically, we examine a sequential fine-
tuning approach that leverages the path from Western pop piano covers to Greek piano
covers to guitar covers, which constitutes a multi-step domain adaptation strategy. Fi-
nally, we establish a comprehensive evaluation framework that combines melody-based
metrics with embedding-based similarity measures and cover song identification tech-
niques.

The main contributions of this thesis are:

e GreekSong2Piano dataset: A new dataset of 659 Greek songs accompanied by
piano covers in audio and MIDI formats, with manual annotations capturing genre-

specific traits and lyrical content.

e Pop2Guitar dataset: A dataset of 40 pop songs and corresponding guitar covers ar-

ranged by diverse musicians, enabling extension beyond piano-centric approaches.

e Analysis of training strategies for low-resource cover generation: Comparison of

training from scratch, partial fine-tuning, and full fine-tuning approaches, demon-
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strating the effectiveness of transfer learning in low-resource scenarios enabling

adaptation across stylistic and instrumental domains.

e Objective evaluation methodology: An evaluation protocol leveraging pre-trained
cover song identification and acoustic music understanding models to objectively

assess generated covers.

1.3 Thesis Outline

This thesis is structured as follows:

e In Chapter 2, we provide the theoretical background, covering machine learning
fundamentals, deep learning architectures, music representations, and music gen-

eration techniques.

e In Chapter 3, we examine related work relevant to our task, including automatic
music transcription, music transformation, cover song identification, and cover

generation approaches.

e In Chapter 4, we review existing datasets in the field and introduce our newly created

datasets for Greek piano covers and guitar cover generation.

e In Chapter 5, we detail our methodology, including the preprocessing pipeline,
model architecture, and training strategies for both piano and guitar cover gen-

eration.

e In Chapter 6, we describe our experimental setup for each training approach and

evaluate our models using both objective metrics and subjective user studies.

e In Chapter 7, we summarize our findings and outline potential directions for future

work.
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Machine Learning

2.1 Overview of Machine Learning

Machine Learning (ML) is a subfield of artificial intelligence that focuses on developing
algorithms and systems that can learn and make decisions from data without being
explicitly programmed for every specific task [18]. Rather than following pre-written
instructions, machine learning systems identify patterns in data and use these patterns
to make predictions or decisions about new, unseen information.

The concept of machine learning was first formally introduced by Arthur Samuel
in 1959, who defined it as a "field of study that gives computers the ability to learn
without being explicitly programmed" [66]. Samuel demonstrated this concept by creating
a checkers-playing program that improved its performance through self-play, learning
strategies and tactics that were not directly programmed by its creator. This early example
illustrated the fundamental promise of machine learning: systems that could adapt and
improve their performance based on experience.

Machine learning approaches can be broadly categorized into three main paradigms,
each addressing different types of learning problems:

Supervised Learning involves training algorithms on labeled datasets, where both
input data and desired outputs are provided [19]. The system learns to map inputs to
outputs by identifying patterns in the training examples. Common applications include
image classification, speech recognition, and regression tasks. In the context of music,
supervised learning might involve training a model to classify songs by genre using labeled
examples of different musical styles [67, 68].

Unsupervised Learning works with data that has no predefined labels or target out-
puts [20]. These algorithms seek to discover hidden patterns, structures, or relationships
within the data. Clustering algorithms that group similar data points and dimensional-
ity reduction techniques that identify the most important features in complex datasets
are typical examples. In music applications, unsupervised learning has been applied to
diverse tasks including music segmentation and ocal feature discovery for genre classifi-
cation [69, 70] .

Reinforcement Learning takes a different approach, where agents learn through
interaction with an environment, receiving rewards or penalties based on their actions

[21]. The system learns to maximize cumulative rewards over time through trial and error.
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This paradigm has shown remarkable success in game-playing systems and robotics, and
in music, it has been applied to tasks such as interactive composition and performance
systems [71, 72].

The transition from traditional rule-based programming to data-driven machine learn-
ing represents a fundamental shift in how we approach complex problems. Traditional
programming requires developers to explicitly define rules and logic for every possible
scenario, which becomes increasingly difficult as problems grow in complexity. Machine
learning, by contrast, allows systems to discover these rules automatically from data,
enabling solutions for problems where explicit rule formulation would be impractical or
impossible.

This data-driven approach has proven particularly valuable in domains like music,
where the complexity of human creativity and cultural expression makes it difficult to
encode comprehensive rules manually. The ability of machine learning systems to learn
from large collections of musical data has opened new possibilities for understanding
and generating music, setting the foundation for the deep learning advances that have

transformed the field in recent years.

2.2 Deep Learning Fundamentals

Deep learning represents a significant evolution from traditional machine learning
approaches, characterized by the use of artificial neural networks with multiple layers
that can automatically learn hierarchical representations from data [2]. While early neu-
ral networks were limited by computational constraints, advances in hardware capabil-
ities, optimization techniques, and architectural design have enabled the development
of increasingly sophisticated models capable of handling complex tasks across diverse

domains.

2.2.1 Key Architectures

Several fundamental architectural innovations have driven the success of deep learn-

ing across different domains:
w

Figure 2.1. An example of a feedforward network, drawn in two different styles. Source:

2]
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Multi-Layer Perceptrons (MLPs) serve as the foundation of deep learning, consisting
of fully connected layers that transform input representations through successive non-
linear transformations [2]. While conceptually simple, MLPs remain effective for many
structured data problems and serve as building blocks for more complex architectures.

Convolutional Neural Networks (CNNs) introduced the concept of local connectivity
and weight sharing, making them particularly well-suited for processing grid-like data
such as images and spectrograms. The foundational work by LeCun et al. demonstrated
that CNNs could effectively learn hierarchical features from raw pixel data, achieving
state-of-the-art performance on handwritten digit recognition [22]. In music applications,
CNNs have proven effective for tasks involving time-frequency representations, where local

patterns in both time and frequency dimensions carry important musical information.

o Em] Not Dog

Input image Convolution Layer ~ ReLU Layer Pooling Layer '\ /" output
\ Classes

Figure 2.2. An example of CNN architecture for image classifcation. Source: [3]

Recurrent Neural Networks (RNNs) and their variants were designed to handle se-
quential data by maintaining internal memory states. However, traditional RNNs suffered
from the same vanishing gradient problems that plagued deep feedforward networks.
This limitation was addressed by the introduction of Long Short-Term Memory (LSTM)
networks by Hochreiter and Schmidhuber [23], which used gating mechanisms to se-
lectively retain and forget information over long sequences. LSTMs became particularly
important for music generation and analysis tasks, where temporal dependencies and
long-range relationships between musical events are crucial for maintaining coherence

and structure.

Output y i - \ 4 y - .. :_'/ ‘\‘.
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Input
layer

Figure 2.3. Typical unfolded RNN diagram. Source: [3]

2.2.2 Attention Mechanisms and Transformers

The introduction of attention mechanisms represented a fundamental breakthrough

in sequence modeling, addressing the limitations of RNNs in capturing long-range depen-
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dencies. The revolutionary "Attention Is All You Need" paper by Vaswani et al. demon-
strated that attention mechanisms alone could achieve superior performance compared
to recurrent and convolutional approaches [4].

Self-Attention extends this concept by allowing each position in a sequence to attend
to all other positions, enabling the model to capture complex relationships within the
sequence. This mechanism has proven particularly powerful for understanding musical
structure, where relationships between distant musical events (such as motifs that appear
throughout a composition) are essential for maintaining coherence.

Transformer Architecture builds upon self-attention to create a fully parallel pro-
cessing framework that eliminates the sequential bottlenecks inherent in RNNs [4]. The
Transformer consists of encoder and decoder components, each containing multiple layers
of self-attention and feed-forward networks. This architecture has achieved state-of-the-

art results across numerous sequence-to-sequence tasks.

Output
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Forward
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Figure 2.4. The Transformer - model architecture. Source: [4]

Sequence-to-Sequence Models leverage the Transformer architecture to map input
sequences to output sequences of potentially different lengths. This paradigm is particu-
larly relevant for music applications that involve translating between different representa-
tions (such as audio to symbolic notation) or generating musical content based on input
conditioning.

T5 (Text-to-Text Transfer Transformer) [5] illustrates this approach by treating every
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task as a text-to-text problem using a unified encoder-decoder framework. The model is
pre-trained on a large corpus using a denoising objective, where spans of text are masked
and the model learns to predict the missing content. This pre-training strategy enables
effective transfer to downstream tasks with minimal task-specific modifications. T5’s
flexibility in handling variable-length input-output mappings and its proven transferabil-
ity across domains has made it a choice for music generation tasks, where the ability
to capture long-range dependencies is essential for maintaining musical coherence and

structure.

[ “translate English to German: That is good."”

“cola sentence: The
course is jumping well."

[‘stsb sentencel: The rhino grazed

"Das ist gut."
“not acceptable”

“3.g"

on the grass. sentence2: A rhino
is grazing in a field."

“"six people hospitalized after
dispatched emergency crews tuesday to a storm in attala county.”

survey the damage after an onslaught
of severe weather in mississippi.”

[ "summarize: state authorities

Figure 2.5. The text-to-text framework used by T5. Every task—translation, question
answering, classification is posed as generating target text from input text, enabling a
single model and training objective across diverse tasks. Source: [5]

2.3 Music Representations

Musical information can be represented in many different ways. We consider two

widely used music representations: symbolic, and audio representations.

2.3.1 Symbolic Representations

Symbolic music representation encodes musical information as discrete symbols rather
than continuous audio signals, providing a structured format that captures the essential
elements of musical composition while abstracting away performance-specific details [73].
These representations form the foundation for computational music analysis and gener-
ation tasks, as they offer a compact, interpretable, and manipulable format for musical
data.

MIDI Format

The Musical Instrument Digital Interface (MIDI) has emerged as the dominant sym-
bolic representation in computational music applications [48]. MIDI encodes music as a

sequence of discrete events, each containing specific parameters:

e Note Events: Each note is represented by a note-on event (with pitch and velocity)
and a corresponding note-off event, where pitch values range from 0-127 (with
middle C as 60) [48]

e Timing Information: Events are timestamped either in absolute time or as delta

times between successive events, typically quantized to musical subdivisions
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e Velocity: Represents the force or intensity of a note (0-127), approximating dynam-

ics in musical performance

e Control Messages: Additional parameters such as program changes (instrument

selection), pitch bend, and continuous controllers

Figure 2.6. MIDI piano roll view

MIDI’s widespread adoption in Music Information Retrieval (MIR) stems from several
key advantages. Its compact representation enables efficient storage and processing of
large music collections, as demonstrated in the Million Song Dataset which includes
MIDI-aligned features [74]. The symbolic nature of MIDI facilitates various MIR tasks like
automatic chord recognition [75], key detection [76], beat tracking [77], transcription [9]
and cover generation [1].

Musical Scores and Notation

Beyond MIDI, other symbolic formats capture different aspects of musical information:

e MusicXML: Provides a comprehensive representation of Western musical notation,
including visual layout information, articulation marks, and score-specific annota-
tions [78]. While richer than MIDI in notational detail, its complexity makes it less

suitable for neural sequence modeling.

e ABC Notation: A text-based format originally designed for folk music, using ASCII
characters to represent pitches, durations, and basic musical structures [79]. Its
simplicity and human-readability have made it useful for certain music generation

tasks, particularly in folk and traditional music domains.

e Kern Format: Developed for musicological analysis, Kern represents polyphonic
music with separate spines for each voice, facilitating computational analysis of

counterpoint and voice leading [80].

Token-Based Representations
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Modern neural approaches to music generation have developed specialized token vo-
cabularies that extend beyond traditional MIDI events. These representations are de-

signed to optimize learning and generation within transformer architectures:

e MIDI-Like Event Sequences: Frameworks such as MT3 [10] and Pop2Piano [1]
tokenize music as sequences of discrete events. The vocabulary typically includes
note pitches (128 discrete values), note-on and note-off events, time shifts (quan-
tized to musical subdivisions), and special tokens such as end-of-sequence (EOS)
and padding (PAD). This design mirrors the structure of MIDI while enabling au-

toregressive prediction within transformer-based models.

e Compound Tokens: Some approaches, such as the REMI format in Pop Music
Transformer [81] and the MuMIDI representation in PopMAG [82], combine multiple
note attributes (e.g., pitch, duration, velocity) into single tokens to reduce sequence

length while maintaining musical coherence.

2.3.2 Audio Representations

Audio-based representations capture the continuous waveform or spectral character-
istics of a musical signal, encompassing nuances of timbre, dynamics, and performance
expression that symbolic representations abstract away. They provide a rich basis for
a wide range of Music Information Retrieval (MIR) tasks, including genre classification,
source separation, transcription, and style transfer.

Time-Domain Representations

At the most fundamental level, audio signals are represented as time-domain wave-

forms, typically sampled at a fixed rate:

e Raw Waveform: Continuous waveform samples (e.g., 44.1 kHz sampling rate) that

preserve the full dynamic and spectral information of the audio signal [83].

e Amplitude Envelope: Simplified representation capturing the overall amplitude

variation of the waveform, useful for rhythm and energy analysis [84].

Frequency-Domain Representations
Applying the Fourier Transform to audio signals yields frequency-domain representa-

tions, highlighting the spectral content:

e Magnitude Spectrum: Represents the distribution of energy across frequency bins
[84].

e Phase Spectrum: Encodes phase information, which can be critical for accurate

waveform reconstruction but is often discarded in some MIR tasks [84].

Time-Frequency Representations
To capture the evolution of spectral characteristics over time, time-frequency repre-

sentations provide a two-dimensional view of audio signals:
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e Short-Time Fourier Transform (STFT): Decomposes the signal into overlapping
frames, producing a spectrogram that visualizes energy distribution across fre-

quency and time [85].

e Mel-Spectrogram: Applies a Mel-scale filter bank to the spectrogram to approxi-
mate human auditory perception, widely used in deep learning-based music tasks
[83].

e Constant-@ Transform (CQT): Uses logarithmically spaced frequency bins to better
match musical pitch intervals, useful for tasks such as pitch tracking and transcrip-
tion [86].

Mel Spectrogram
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Figure 2.7. Mel-Spectrogram of a piano excerpt.

Learned Audio Embeddings
Recent advances leverage deep neural networks to extract high-level audio embed-

dings, enabling transfer learning and improved performance on downstream tasks:

e VGGish: Embeddings learned from large-scale audio data (e.g., YouTube-8M) using
a VGG-like CNN, capturing perceptually relevant features for music classification
[87].

e OpenL3: Trained on paired audio-visual data to create robust representations for

audio similarity and classification [88].

e AudioCLIP: Embeddings that align audio with text and vision modalities for cross-

modal applications [89].

2.4 Music Generation

2.4.1 Overview

Music generation aims to create new musical content through computational models.
The first music generated by computer appeared in the late 1950s, shortly after the in-

vention of the first computer. The Illiac Suite is the first score composed by a computer
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[90] and was an early example of algorithmic music composition, making use of stochas-
tic models (Markov chains) for generation, as well as rules to filter generated material
according to desired properties. This field has advanced rapidly in recent years, driven by
deep learning and large-scale data availability, enabling applications in creative Al, music

production, and educational tools [73].

2.4.2 Symbolic Music Generation

Symbolic generation focuses on producing structured representations such as MIDI
or sheet music, capturing pitch, rhythm, and structural hierarchy. The scope of symbolic
music generation encompasses various levels of musical complexity and creative tasks.
Accompaniment generation involves creating harmonic and rhythmic support for exist-
ing melodies, requiring understanding of chord progressions and musical relationships.
Melody generation focuses on creating coherent melodic lines that exhibit musical logic.
Whole song generation represents the most comprehensive task, involving the creation
of complete musical compositions with structure, development, and coherence across
multiple sections.

Specific instrument generation tailors the output to the constraints and capabilities
of particular instruments, considering factors such as range, polyphony limitations, and
idiomatic playing techniques. Within this category, cover generation emerges as a special-
ized task that involves adapting existing songs for specific instruments while preserving
the recognizable essence of the original composition. This task bridges music transcrip-
tion, arrangement, and style transfer, requiring models to understand both the source
material and the target instrument’s characteristics.

Several works have shaped the landscape of symbolic music generation, each intro-
ducing novel approaches for the field. DeepBach [91] introduced a steerable graphi-
cal model for generating Bach-style chorales using pseudo-Gibbs sampling, demonstrat-
ing that non-autoregressive approaches could achieve remarkable stylistic consistency.
MuseGAN [92] pioneered the application of Generative Adversarial Networks to multi-track
symbolic music generation, addressing the challenges of modeling multiple instruments
simultaneously. Music Transformer [81] adapted the Transformer architecture with rel-
ative attention mechanisms, enabling the modeling of long-term musical structure and
minute-long compositions with compelling coherence. MuseNet [29] scaled up the Trans-
former approach to generate 4-minute compositions with up to 10 instruments across
diverse musical styles from classical to pop. Finally, Transformer-GANs [93] combined
Transformer architectures with adversarial training, addressing exposure bias problems

and improving long sequence generation quality.

2.4.3 Audio Music Generation

Direct audio generation models synthesize raw waveforms or spectrograms, aiming to
capture the richness and expressivity of musical performance. The scope of audio music
generation encompasses several distinct subtasks, each addressing different aspects of

musical audio creation. Music synthesis involves generating raw audio from symbolic
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representations or other high-level musical information. Text-to-audio generation en-
ables the creation of musical content from textual descriptions, while audio continuation
focuses on extending existing musical audio with coherent material. Style transfer in the
audio domain involves transforming the acoustic characteristics of existing recordings
while preserving musical content.

Audio music generation has been shaped by several works that demonstrated the
feasibility of generating music directly in the waveform domain. WaveNet [25] pioneered
autoregressive modeling of raw audio waveforms using dilated convolutional networks,
originally for text-to-speech but demonstrating remarkable results for music generation
through sample-by-sample prediction. Jukebox [26] represented a significant leap for-
ward, introducing a hierarchical VQ-VAE approach combined with autoregressive Trans-
formers to generate full songs with vocals, demonstrating controllable generation condi-
tioned on artist, genre, and lyrics. Finally, MusicLM [94] extended text-to-audio gener-
ation to music, enabling the creation of musical content from textual descriptions and

showcasing the potential for cross-modal music generation.
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Cover Generation of Music Piece

In this chapter, we examine the body of work relevant to cover generation. We begin by
exploring Automatic Music Transcription (AMT), including the deep learning approaches
that have significantly advanced its accuracy and robustness. Next, we discuss Music
Transformation, focusing on methods that adapt and alter musical content. We then turn
to Cover Song Identification, which outlines how covers can be recognized and gives us
deep insight in their nature. Finally, we review the field of cover generation, highlighting

both traditional techniques and recent developments that inform our approach.

3.1 Automatic Music Transcription

In this section we give a brief overview of AMT, present the deep learning advance-
ments, the key datasets and show how these architectures can be used as a backbone
for cover generation. Also, how transcription models can be utilized for creating training

data for a symbolic music generation model like our own.

3.1.1 Definition and Scope

Automatic Music Transcription (AMT) is the process of converting an acoustic music
signal into a symbolic representation, such as musical notation, that details elements
like pitch, onset time, duration, and instrument type. This complex task involves sev-
eral subtasks, including multi-pitch estimation, onset and offset detection, instrument
recognition, beat and rhythm tracking, and the interpretation of expressive timing and
dynamics [6].

AMT has a wide range of applications, including music education, music information
retrieval, music creation, music production, music search, and musicology [95].

In the context of automated cover generation, AMT is important as it provides the
note-level data necessary to recreate or reinterpret existing music pieces. By accurately
transcribing audio signals into symbolic formats like MIDI, AMT enables systems to ana-
lyze and reproduce music with high fidelity, facilitating the creation of training datasets

for cover generation.
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Figure 3.1. Data represented in an AMT system. (a) Input waveform, (b) Internal time-
Jfrequency representation, (c) Output piano-roll representation, (d) Output music score, with
notes A and D marked in gray circles. The example corresponds to the first 6 seconds of W.
A. Mozart’s Piano Sonata No. 13, 3rd movement (taken from the MAPS database).Source [6]

3.1.2 Deep Learning Advancements

Deep learning has significantly influenced music transcription and music signal pro-
cessing in recent years, as it has in many pattern recognition tasks. More specifically,
Neural Networks (NNs) can learn complex nonlinear mappings between inputs and out-
puts using optimization techniques like stochastic gradient descent [2]. Although there
have been many advancements, the field has moved slower than other fields like image
processing [6].

One of the first approaches in this direction was the Marolt’s Sonic system [27]. A
central component in this approach was the use of time-delay (TD) networks, which
resemble convolutional networks in the time direction [2], and were employed to analyze
the output of adaptive oscillators, in order to track and group partials in the output of a
gammatone filterbank. Because of its competitiveness it appears in comparisons even in
recent publications [96].

The first succesfull system was presented by Béck and Schedl [97] which used two
spectrograms as input to enable the network to exploit both a high time accuracy (when
estimating the note onset position) and a high frequency resolution (when disentangling
notes in the lower frequency range). The network is composed of one (or more) Long
Short-Term Memory (LSTM) layers [2].

Next, focus is given to long-range dependencies by combining an acoustic front-end
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with with a symbolic level module resembling a language model as used in speech pro-
cessing [98]. The information from the MIDI files is used to train a recurrent network to
predict the active notes in the next time frame given the past one. Although the training
was done on a large MIDI-based dataset the improvements were small.

The development of AMT models continues with the Onsets and Frames model [7]
proposed by the Google Brain team. They use a deep convolutional and recurrent neural
network which is trained to jointly predict onsets and frames. One network is used to
detect note onsets and its output is used to inform a second network, which focuses
on detecting note lengths. Training was carried out using the MAPS dataset [99] which
contains audio and corresponding annotations of isolated notes, chords, and complete
piano pieces. It is pointed out in [6], this can be interpreted from a probabilistic point of
view: note onsets are rare events compared to frame-wise note activity detections - the
split into two network branches can thus be interpreted as splitting the representation
of a relatively complex joint probability distribution over onsets and frame activity into a
probability over onsets and a probability over frame activities, conditioned on the onset
distribution. Since the temporal dynamics of onsets and frame activities are quite dif-
ferent, this can lead to improved learning behavior for the entire network when trained

jointly.
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Figure 3.2. Diagram of Network Architecture. Source [7]

Figure 3.3 gives us a better understanding of how the model works from the input
log-magnitude mel-frequency spectrogram to the output transcription.

Kong [8] proposed a high-resolution piano transcription system by regressing the
precise onset and offset times of piano notes and pedals. This approach involves training a
neural network to predict continuous values representing the exact timing of note events,
rather than relying on discrete frame-wise classifications. During inference, an analytical
algorithm calculates these precise times, enhancing the system’s ability to capture the

nuances of piano performances. Using the MAESTRO dataset [52], the proposed system
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Figure 3.3. Inference on 6 seconds of MAPS MUS-mz 331 3 ENSTDkCl.wav. Source [7]

achieves an onset F1 score of 96.72%, surpassing the previous "Onsets and Frames"
model’s score of 94.80%. Figure 3.4 shows the framework of the proposed high-resolution

piano transcription system.
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Figure 3.4. High-resolution piano transcription system by regressing velocities, onsets,
offsets and frames. Source [8]

In contrast with previous approaches, which required domain-specific design of net-
work architectures, input/output representations, and complex decoding schemes Hawthorne,
[9] shows equivalent performance can be achieved using a generic encoder-decoder Trans-
former with standard decoding methods. The model can learn to translate spectrograms
to MIDI-like events removing the need for task-specific architectures. This finding sug-
gests that focusing on dataset quality and labeling may be more beneficial for advancing

music transcription systems than developing increasingly complex model architectures.
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Figure 3.5 visualizes their simple but effective architecture.
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Figure 3.5. The model is a generic encoder-decoder Transformer architecture where each
input position contains a single spectrogram frame and each output position contains an
event from our MIDI-lilke vocabulary. Outputs tokens are autoregressively sampled from the
decoder, at each step taking the token with maximum probability. Source [9]

Building on top of [9] the MT3 (Multi-Task Multitrack Music Transcriptio) model [10]
is created. The authors introduce a general-purpose Transformer model capable of tran-
scribing multiple instruments simultaneously. MT3 leverages a sequence-to-sequence
framework, enabling the model to jointly transcribe various combinations of musical in-
struments across multiple datasets. This unified training approach allows MTS3 to learn
shared representations that enhance transcription performance, particularly for instru-
ments with limited available data. They also introduced and applied a consistent evalua-
tion method using note onset+offset+instrument F1 scores, using a standard instrument
taxonomy. Finally, the transcriptions from the model could be used as training data for a
symbolic music generation model. Figure 3.6 illustrates the model’s ability to transcribe

a raw spectrogram into MIDI representations for each instrument.

et

Figure 3.6. Shown here are real 4-second audio clips, pianorolls reconstructed from the
model’s tokenized output, and the corresponding instrument labels (additional Slakkh2100
instruments omitted due to space). Note that in some cases, multiple notes predicted from
a monophonic instrument (such as clarinet or French horn) reflects an ensemble containing
multiple players of that instrument. Source [10]

3.1.3 Datasets

To train these promising Automatic Transcription Models large synchronized instrument-

audio datasets were used. We present the most influential datasets in the field of AMT
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that have helped the field move forward. Most of them are focused on piano automatic

transcription with a little attention given to other instruments.

MAPS

MAPS - standing for MIDI Aligned Piano Sounds - [100] is a database of MIDI-
annotated piano recordings. MAPS has been designed for the development and the evalu-
ation of algorithms for single-pitch or multipitch estimation and automatic transcription
of music. It is composed by isolated notes, random-pitch chords, usual musical chords
and pieces of music. The database provides a large amount of sounds obtained in various
recording conditions. MAPS provides recordings with CD quality (16-bit, 44-kHz sampled
stereo audio) and the related aligned MIDI files as ground truth. The overall size of the

database is about 40GB, i.e. about 65 hours of audio recordings.

SLAKH2100

The Lakh MIDI Dataset [101] is a collection of 176,581 unique MIDI files scraped from
publicly-available sources on the Internet, spanning multiple genres. By taking 2100 files
from Lakh MIDI and constructing high-quality renderings using high-quality sample-
based synthesis the Synthesized Lakh Dataset (Slakh, or Slakh2100) [11] is created.
Recordings in Slakh are generated using professional-grade virtual instruments used by
countless musicians and composers. Slakh2100, contains 2100 automatically mixed
tracks and accompanying MIDI files separated into training (1500 tracks), validation (375
tracks), and testing (225 tracks) subsets, and totals 145 hours of mixtures. Additionally,
the technique described can lead to a virtually endless supply of high-quality mixtures
and sources. The 2100 files selected all contain at least piano, bass, guitar, and drums,

where each of these four instruments plays at least 50 notes. Figure 3.7 gives us a better
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Figure 3.7. Number of mixtures in Slakch2100 that contain at least one instrument from the
Sollowing categories. Every mixture has piano, bass, guitar, and drums (the four leftmost
bars, shown in green.) Source [11]
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GUITARSET

GuitarSet [53] is a dataset comprising high-quality guitar recordings accompanied
by time-aligned annotations. It contains 360 excerpts, generated by six guitarists who

each performed 30 lead sheets (songs) in two distinct playing styles: comping (rhythmic
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accompaniment) and soloing (melodic improvisation). These lead sheets represent a di-
verse combination of five musical genres—Rock, Singer-Songwriter, Bossa Nova, Jazz,
and Funk—three harmonic progressions—12-Bar Blues, Autumn Leaves, and Pachelbel’s
Canon—and two tempo variations (slow and fast). The dataset’s annotations are origi-
nally provided in the JAMS format but can be converted to MIDI with standard evaluation
libraries. Notably, GuitarSet does not include an official train-test split, leaving it to re-
searchers to devise their own partitioning strategies for model training and evaluation.
GuitarSet stands out due to its recording process, which utilises a hexaphonic pickup to
capture individual string signals, allowing for detailed transcription and is a first step in

helping build models for guitar music transcription.

MUSICNET

MusicNet [12] is a public collection of labels for 330 freely-licensed classical music
recordings of a variety of instruments arranged in small chamber ensembles under various
studio and microphone conditions. The recordings average 6 minutes in length. The
shortest recording in the dataset is 55 seconds and the longest is almost 18 minutes. It
also contains MIDI annotations. The annotations were aligned to recordings via dynamic
time warping, and were then verified by trained musicians. Figure3.8 gives a detailed

summary of the dataset statistics.

MusicNet
Minutes Labels Recordings  Error Rate Composer  Minutes Labels
2,048 1,299,329 330 4.0% Beethoven 1,085 736,072
Schubert 253 146,648
Ensemble Minutes  Labels Brahms 192 133,109
Solo Piano 017 576471  posat 156 99.641
; ac 184 62,782
String Quartet 405 259,702 Dvorak 56 46,261
Accompanied Violin 148 124,886 Cambini 43 24,820
Piano Quartet 73 60,362 Faure 33 22349
Accompanied Cello 63 37,557 Ravel 27 21’2 43
String Sextet 48 33,248 Haydn 15 6,404
Piano Trio 46 28,873 Z
&?:g 8:11:$: ig %Z:ggg Instrument ~ Minutes  Labels
Horn Piano Trio 30 18,799  Piano 1346 794,532
Wind Octet 23 14,635  Violin 874 230,484
Clarinet-Cello-Piano Trio 25 13447  Viola 621 99,407
Pairs Clarinet-Horn-Bassoon 24 12,218 Cello 800 99,132
Clarinet Quintet 26 11,184  Clarinet 173 24,426
Solo Cello 49 10,876  Bassoon 102 14,954
Accompanied Clarinet 20 10,049 Horn 132 11,468
Solo Violin 30 8,837  Oboe 66 8,696
Violin and Harpsichord 16 7,469 Flute 69 8,310
Viola Quintet 15 4,156  Harpsichord 16 4,914
Solo Flute 8 2,214 String Bass 38 3,006

Piano Violin Cello Viola Clarinet Bassoon Horn Oboe Flute Bass Harpsichord
Notes| 83 51 51 51 41 36 41 28 37 43 51

Figure 3.8. Summary statistics of the MusicNet dataset. Source [12]

URMP

The University of Rochester Multi-Modal Music Performance (URMP) Dataset [102]
contains audio-visual recordings and ground-truth annotations for 44 pieces of classical
chamber music pieces, ranging from duets to quintets. It has a size of 12.5 GB and the to-

tal duration of the dataset is approximately 1 hour and 18 minutes. The dataset includes
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both MIDI scores and sheet music (PDF).. The audio recordings consist of high-quality
WAV files (48 kHz, 24-bit), available for both individual instruments and full ensemble
mixes, following the same track order as the score. The video recordings, encoded in
H264 MP4 format (1080p, 29.97 FPS), feature performers arranged horizontally accord-
ing to the score’s track order. Additionally, the dataset provides annotation files, including

ground-truth frame-level pitch trajectories and note-level transcriptions in ASCII format.

MAESTROV3

The MAESTRO (MIDI and Audio Edited for Synchronous TRacks and Organization) v3
dataset [52] contains 198.7 hours of piano performances captured via a Disklavier piano
equipped with a MIDI capture device which ensures fine alignment (= 3ms) between note
labels and audio waveforms. The MAESTRO dataset contains mostly classical music and
only includes piano performances (no other instruments).

MAESTRO includes a standard train/validation/test split, which ensures that the
same composition does not appear in multiple subsets. 962 performances are in the

train set, 137 are in the validation set, and 177 are in the test set.

3.2 Music Transformation

In this section, we explore music transformation focusing on two common approaches:
music style transfer and music reduction. We begin with a brief overview of music trans-
formation, outlining its significance before delving into an in-depth discussion of each

approach.

3.2.1 Definition and Scope

Even though, music transformation has a degree of fuzziness, accounting to the fact
that music correctness regarding the result of a transformation is in many ways a subjec-
tive judgment, by defining a few terms we bring a little more concreteness to what music
transformation is. The definitions here are drawn from [13].

We define music fragment as a combination of some number (typically small) of
music measures for some voice, along with their corresponding harmonic contexts. A
music fragment can be qualified with a temporal extent, i.e., given by beginning and
ending whole times, that defines the precise portion of a line and harmony track to
which a music transformation could be applied. The term music feature refers to some
significant aspect of a music fragment, such as the notes in the melody - their pitch values,
durations, and offsets, more precisely. It also refers to the key and tempo of the music.
And it refers to the chords, their chord types, roots, and inversions, and durations. By
musical cohesion we mean that for a given music fragment, its music features conform
to some music practice that in some way, even subjectively, makes musical sense. In
common vernacular, “the music sounds right” or “as the composer intended”. Music

cohesion can implicitly imply an understood music style or genre, or other criteria that
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are considered ‘proper’ for the music under consideration as source and/or target of a
transformation.

A music transformation or music transform maps a music fragment into another in
such a way that some music features are preserved while others are changed to meet user
provided criteria, while at the same time preserving musical cohesion.

Suppose for example, we want ‘melodic preservation’ in using a transform. The mean-
ing would vary over circumstances. In one interpretation, ‘melodic preservation” might
mean ‘the melodic notes remain the same, identical in pitch, duration, and offset’. That
kind of identity transform is generally too restrictive to be meaningful. However, in a key
shift in the same modality, the notes pitches are changed, but otherwise the melodies
are isomorphic (identical) regarding durations, relative note offsets, pitch, and overall
shape. If the modality is changed though and possibly as well as tonal root, we want the
melodic shape or contour to be less isomorphic but rather homeomorphically preserved
even though the resulting pitches may vary significantly in pitch from the original. So, we
are not speaking of a strict isomorphic relationship here. This is illustrated in Figure 3.9

in the transform from C Major to G Melodic Minor.

Transform
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Figure 3.9. Music Transformation. Source [13]

We have defined key concepts such as music fragments, music features, and musical
cohesion. These ideas help us understand how a music transformation works. Next, we
focus on two specific ways to apply these ideas: music style transfer and music reduction.
Both methods show how we can change some aspects of the music while keeping other

important parts intact.

3.2.2 Music Style Transfer

In the sections that follow, we will first look at music style transfer. This method
focuses on changing the style of a music fragment by altering elements such as tone,
timbre and harmony while keeping the basic melody and rhythm. In this study, we adopt
the definition of style from [1]: the unique manner in which each arranger interprets and
composes when creating a cover of a song.

Music style transfer by utilizing deep learning techniques has caught attention in re-
cent years. Researchers have approached this task using various models and techniques.
We explore synthetic data and one-shot learning, recurrent neural networks with autore-
gressive models and transformer architectures. Each approach adds a unique view on
how style can be understood and transferred between musical pieces.

Groove2Groove [14] presents one-shot style transfer for symbolic music with the use
of supervised synthetic data. It focuses on the case of accompaniment styles in popular

music and jazz. This approach allows the model to learn from a controlled set of examples,
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reducing the need for large amounts of labeled real data. Their model follows the encoder-
decoder pattern. It uses two encoders, one for music content and one for style and a
decoder that subsequently generates the output. The detailed architecture is shown in
Figure 3.10. The work effectively preserves the essential musical structure while adapting
stylistic elements and shows promise in this direction. On the other hand, it is limited
to symbolic music and relying on synthetic data limits the model’s ability to generalize to

more varied real-world musical styles.

Content encoder Style encoder
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Figure 3.10. A detailed view of the model architecture. Source [14]

Another approach is encoding musical style with transformer autoencoders [28]. The
authors introduce a model that captures high-level stylistic representations of musical
performances using Transformer-based autoencoders. By aggregating encodings across
time, a global style embedding is extracted. This allows to independently control the
style and melody during the music generation process. To train the model the Maestro
dataset [52] and 10000 hours of YouTube audio was used. The model encodes separately
performance and melody input and then combines them so that they can be used by
the Transformer decoder to generate new sequences. the model is able to effectively
capture style and also maintain the input performance structure. The results show
that incorporating a global style representation improves performance in terms of log-
likelihood and subjective listening tests compared to baseline models.

One more relevant method for music style transfer is found in [103]. This paper
focuses on changing the accompaniment of a song while keeping the melody and chord
progression the same. The model uses a DeepBach-based recurrent network [91] along
with a WaveNet autoregressive model [104] to modify how the accompaniment sounds.
The method applies Gibbs sampling, an iterative process that gradually changes the
accompaniment to fit a target style, such as Bach chorales or jazz. Unlike the above
model, which captures a global style representation, this approach works locally over
time, adjusting the harmony at each moment based on the surrounding notes.

A big leap forward was the creation of MuseNet [29] by OpenAl, a deep neural network
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capable of creating 4-minute symbolic music compositions with different instruments and
styles. It can use up to 10 instruments and blend styles from classical composers like
Mozart to modern genres like country and pop. To train the model, they used data from
many different sources. ClassicalArchives and BitMidi donated their large collections of
MIDI files for this project, and we also found several collections online, including jazz, pop,
African, Indian, and Arabic styles. Additionally, they used the MAESTRO dataset [52].
This training approach is similar to that used in GPT-2, focusing on unsupervised learning
to predict the next token in a sequence. MuseNet’s versatility allows it to combine different
styles and instruments, creating unique compositions that maintain musical coherence.

Piano/Guitar cover generation has a lot in common with music style transfer. It tries
to keep the essence of the song and at the same time transfer the music performance to
the piano/guitar realm. Having discussed the work on music style transfer, we now move
on to examine music reduction, an approach that focuses on simplifying music while

retaining its essential qualities.

3.2.3 Music Reduction

In music, a reduction is an arrangement or transcription of an existing score or com-
position in which complexity is lessened to make analysis, performance, or practice easier
or clearer; the number of parts may be reduced or rhythm may be simplified, such as
through the use of block chords [105]. Another way to reduce a music piece is to perform
it by a smaller group of instruments or a single performer, while preserving its musical
content. Our review will focus on piano reduction, the process that arranges music for
the piano by reducing the original music into the most basic components

One of the first papers in piano reduction [15] , presents a method for automatically
simplifying complex musical compositions for piano. The system identifies and retains
the most important musical elements from a multi-part score while ensuring that the ar-
rangement remains playable on the piano. To achieve this, the authors introduce a phrase
selection algorithm that evaluates the significance of different parts of the composition,
selecting the most essential phrases while considering the piano’s physical constraints,

such as polyphony limits and hand span range.

en Grow the Lilacs (Irish Folk Song)

»

Figure 3.11. (a) Original music: an excerpt from an Irish folk song “Green Grow the Lilacs
(b) Piano reduction for solo (c) Piano reduction for accompaniment. Source: [15]

Another important study in piano reduction is [30] which introduces an automatic

system that arranges orchestral scores for solo piano by analyzing how human composers
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approach piano reductions. Thus, creating an interactive piano arrangement system,
which provides real-time feedback to arrangers by detecting and warning them about
potential playability issues.

Instead of hand-picked features [31] utilizes a CNN-based supervised learning model
to generate piano-playable scores from songs consisting of multiple parts. The study
demonstrates that deep learning techniques can be effectively applied to the task of piano
reduction.

The link between piano reduction and cover generation lies in the ability to retain
melodic and harmonic structures while modifying the instrumental arrangement to fit a
specific performance context. In conclusion, we can view cover generation as a form of

music reduction in the sense that songs are "reduced" to instrument covers.

3.3 Cover Song Identification

In this section, we analyze CSI (Cover Song Identification), exploring its definition,
significance, advancements through deep learning. We also examine how these identi-
fication techniques inform the process of cover song generation and can help evaluate

generated covers.

3.3.1 Definition and Scope

A cover version is an alternative rendition of a previously recorded song. Given that a
cover may differ from the original song in timbre, tempo, structure, key, arrangement, or
language of the vocals, automatically identifying cover songs in a given music collection
is a rather difficult task [34].

Different versions are characterized by these 10 labels in the literature [33, 34, 35]:

o Remaster: Creating a new master for an album or song generally implies some sort

of sound enhancement to a previously existing product.
e Instrumental: Sometimes, versions without any sung lyrics are released.

e Mashup: A mashup is a song or composition created by blending two or more

prerecorded songs.
e Live Performance: A recorded track from live performances.

e Acoustic: The piece is recorded with a different set of acoustical instruments in a

more intimate situation.

e Demo: A demo is a way for musicians to approximate their ideas on tape or disc and

to provide an example of those ideas to record labels, producers, or other artists.

e Standard: In jazz music, musicians usually maintain the main melodic and/or

harmonic structure but adapt other musical characteristics to their convenience.
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e Medley: Mostly in live recordings, a band performs a set of songs without stopping

between them and linking several themes.

e Remix: A remix is a reinterpreted version of a song that can range from minor
adjustments in sound and structure to substantial alterations that transform the

arrangement.

e Quotation: The incorporation of a relatively brief segment of existing music in

another work, in a manner akin to quotation in speech or literature.

We can categorize piano/guitar covers with the instrumental label. CSlis an important
field that encompasses several applications. In the music industry especially with the
rise music platforms like YouTube and Spotify recommendations can be improved by
taking into account the different versions of a song. Regarding copyright law, they can
protect intellectual property rights by assisting in the detection of unauthorized use of
adaptions of original work. In addition, in musicological research it can be useful for
music historians to track the evolution and spread of a song across different cultures and

time periods.

3.3.2 Deep Learning Advancements

In the early stages of cover song identification (CSI) research, manually designed
features were used to achieve acceptable results [32, 36]. However, these traditional
approaches have two main drawbacks: their accuracy is limited mainly in recall since
handcrafted features struggle to accommodate diverse music styles and instruments, and
their high computational cost makes them unsuitable for real-time online applications as

the data scale increases.

To overcome these limitations, neural network methods have become the standard,
showing promising progress on large datasets. The most common approach involves
training a CNN-based model to extract version embeddings by minimizing both classifi-
cation and contrastive losses. For instance, Yu [37] introduced TPPNet (temporal pyra-
mid pooling) and later CNN-based CQTNet [106] for capturing cover song characteristics.
On ther other hand, ByteCover [38] and ByteCover2 [107] achieved state-of-the-art per-
formance using a ResNet-IBN50 backbone with multi-loss training (cross-entropy and
triplet loss). Additionally, PiCKINet [39] proposed Pitch Class Blocks to preserve key
invariance, and LyraC-Net [108] utilized WideResNet along with combined classification
and metric learning to further enhance performance. Furthermore, CoverHunter [40]
built on a Conformer-based backbone with an attention-based time pooling module and
a coarse-to-fine training scheme reached state-of-the-art performance. Lastly, by build-
ing DISCOGS-VI [109], which offers over nine times the number of cliques and over four
times the number of versions than existing datasets a baseline NN without extensive

model complexities is trained. It achieves comparative results to the other models.
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3.3.3 Cover Evaluation

CSI models are well-equipped to understand covers and their relationships to original
tracks. They can identify and measure the similarity between a cover and its original,
which proves useful in evaluating generated covers. By using a CSI model, we can assess
a cover generation model either by comparing the similarity of the track-cover pair or by
calculating the distance between them. In short, these models serve as a valuable tool for

evaluation.

3.4 Cover Generation

In this section, we explore Cover Generation, first defining its meaning and empha-
sizing its significance. We review both traditional approaches and recent advancements
introduced through deep learning methodologies. Furthermore, we discuss evaluation

methods and highlight the associated challenges and limitations.

3.4.1 Definition and Scope

Cover generation is the process of creating a new version of an existing song. Produc-
ing a cover typically requires significant time, effort, and advanced musical skills. For
instance, you might want to play your favorite song on the piano but cannot find a suit-
able piano cover available. To address this issue, researchers are developing automatic

cover generation models.

3.4.2 Traditional Methods

Historically the methods employed for this creative task can been broadly categorized
into manual techniques and computational approaches. Manual techniques primarily
involve ear-based transcriptions and music theory-driven arrangements. First, we have
the creation of ears-based covers. Skilled musicians relying in their auditory skills create
versions of songs. This process requires deep understanding of music theory and aural
proficiency. Additionally, musicians employ music theory-driven arrangements, where
their knowledge of harmony, counterpoint, and orchestration guides the creation of new
musical interpretations. This approach ensures the preservation of the original com-
position’s essence while introducing unique stylistic variations. Although this method
enables significant creative freedom, it is typically time-consuming and demands consid-
erable musical expertise.

One of the first computational approaches was made by [16] developing a system for
generating string quartet versions of popular songs by combining probabilistic models
estimated from a corpus of symbolic classical music with the target audio file of any song.

The system combined audio analysis with score analysis to create cover songs in
a specific style for all instruments of a string quartet (2 violins, viola, cello). The audio
analysis focuses on rhythms, chord voicings and contrary motions to create a recognizable

cover, where as the score analysis focuses on typical note onsets and pitch transitions
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Figure 3.12. Generating a cover song. Source: [16]

capturing characteristics of a string quartet. Figure 3.12 gives an overview of the system

while 3.13 and 3.14 go into more details about the contribution of each analysis.
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Figure 3.13. Audio analysis (4 measures shown in examples). Source: [16]
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Figure 3.14. Score analysis (Mozart cello in examples). Source: [16]

Another study focuses on generating guitar cover songs from polyphonic audio of popular
music [17]. Important features are extracted from audio signals such as FO contour, beats
and chords and feeded to an HMM (Hidden Markov Model) producing a tablature score.
The system is difficulty aware taking into account the average movement of the index
finger of a hand to hold the guitar and the average number of fingers to press the strings.
In addition, an interface allowed the guitarist to practice and perform the generated cover.
The following is the overview of the system.
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Figure 3.15. Overview of the Song2Guitar system. Source: [17]

3.4.3 Deep Learning Advancements

The field of cover generation has experienced a shift from traditional rule-based ap-
proaches to modern deep learning methodologies. This transition has been driven by
the availability of larger datasets and improvements in neural network architectures,
particularly in sequence-to-sequence modeling. While early systems required extensive
manual feature engineering and domain-specific rules, recent deep learning approaches
have demonstrated the potential for end-to-end learning from data.

The introduction of Pop2Piano by Choi and Lee [1] demonstrated that it is possible
to generate piano covers directly from audio input using a purely data-driven approach,
without relying on intermediate transcription or explicit musical analysis. Pop2Piano is
built on the T5 Transformer architecture [5], adapting the sequence-to-sequence frame-
work commonly used in natural language processing for the music domain. The system
treats cover generation as a translation problem, where the input sequence consists of
audio spectrogram frames and the output sequence contains symbolic MIDI events. The

system architecture is illustrated in Figure 3.16
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Figure 3.16. Overview of the Pop2Piano system. Source: [1]

The architecture includes several key components:
e Input Processing: Log mel-spectrograms serve as the audio representation

o Encoder-Decoder Framework: A standard Transformer processes input frames

and generates output tokens autoregressively

e Vocabulary Design: A MIDI-inspired token vocabulary that includes note events,

timing information, and control messages

e Conditioning Mechanism: Arranger tokens that allow the model to learn style-

specific generation patterns
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Pop2Piano was trained on a dataset of roughly 5000 pop song and piano cover pairs,
representing approximately 307 hours of audio from 21 different arrangers. The dataset
construction involved synchronization of audio and MIDI using dynamic time warping
techniques [44], followed by quality filtering to ensure alignment accuracy. The detailed

preprocessing pipeline is detailed in Figure 3.17.
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Figure 3.17. Overview of the Pop2Piano system. Source: [1]

The results from Pop2Piano demonstrate the viability of deep learning approaches for
cover generation. The system achieves reasonable performance on both objective metrics
(MCA [46]) and subjective evaluations (user preference study). More importantly, the
work establishes a framework that can potentially be extended to other instruments and

musical styles.

3.4.4 Evaluation of Generated Covers

The evaluation of automatically generated covers presents challenges, as it requires
assessing both technical fidelity and musical quality. Different approaches in the litera-
ture have employed varying evaluation methodologies, reflecting the evolving understand-
ing of what constitutes a "good" cover song.

One of the earliest works in automatic cover generation, Song2Quartet [16], relied pri-
marily on informal listening tests without systematic evaluation metrics or user studies.
The authors evaluated their string quartet arrangements through subjective listening, fo-
cusing on whether the generated covers maintained recognizable melodic and harmonic
content from the original songs. While this approach provided basic validation of the sys-
tem’s functionality, it did not offer the methodological framework required for comparative
analysis and objective performance assessment.

Song2Guitar [17] introduced a more structured evaluation approach tailored to the
specific challenges of guitar arrangement. The authors conducted a user study with one
professional guitarist who was asked to practice each generated score for 15 minutes
before performing the intro, first verse, and chorus sections. Following the performance,
they conducted an interview where the guitarist provided detailed feedback about the
system’s output, including comments on playability, musical coherence, and arrangement
quality.

This evaluation methodology, while limited in scale, addressed important practical
considerations for guitar covers, such as technical difficulty and instrument-specific con-

straints. The use of a professional musician provided insights into the real-world appli-
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cability of the generated arrangements, though the single-participant design limited the
generalizability of the results.

Pop2Piano [1] established a more comprehensive evaluation framework that combined
both objective metrics and subjective assessment. For objective evaluation, the authors
employed Melody Chroma Accuracy (MCA) to measure how well the generated piano covers
preserved the melodic content of the original songs. This metric provides a quantitative
measure of melodic fidelity by comparing the chroma features of the original vocal line
with the top melodic line extracted from the generated piano arrangement.

The subjective evaluation involved a user study with 25 non-professional participants.
They listened to 10-second clips selected from outside the training set and rated the gen-
erated covers on a 1-5 scale based on how naturally the piano arrangement represented
the original song. This approach provided insights into listener acceptance and perceived

quality of the generated covers.
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Datasets

The field of cover generation lacks readily available datasets, primarily due to the high
costs associated with creating high-quality collections. Building such datasets demands
significant resources, including skilled musicians and specialized sound equipment. As a
result, there are no synchronized song-single instrument cover datasets with time-aligned
annotations for any instrument. To address this gap, data are collected from YouTube and
synchronization pipelines are implemented. Existing resources, such as the Pop2Piano
Dataset [1] and the POP909 Dataset [41], focus on piano arrangements of pop songs.
Drawing inspiration from the Pop2Piano Dataset, we developed two new datasets: one for

piano and another for guitar cover generation.

In this section, we explore existing datasets in the field of MIR, with a particular fo-
cus on datasets tailored to cover generation and on Greek datasets. The existing datasets
provide a foundational context and inspiration for the creation of our own datasets, which
aim to expand this research area. Specifically, we present two new contributions: the
GreekSong2Piano Dataset, designed to capture the unique characteristics of Greek mu-
sic, and the Pop2Guitar Dataset, which broadens the scope from piano to guitar cover

generation.

4.1 Existing Datasets

4.1.1 Pop2Piano Dataset

The Pop2Piano(PSP) Dataset is a collection of 5989 piano covers from 21 arrangers
along with their corresponding pop songs, sourced from YoTube. After synchronizing and
filtering the Pop, Piano Cover pairs, a total of 4,989 tracks are left, totaling 307 hours of
audio, which forms their training set. In this dataset, each piano cover is unique, though
the original songs may appear multiple times. This structure allows the model to learn
the distinct stylistic interpretations of piano covers based on the arranger’s approach,
while also adapting to the acoustic features of the provided audio tracks. This dataset
however, is substantial in size, exceeding 250 GB, which presented significant challenges
for our current setup. It was used as a training dataset to create the Pop2Piano model

[1].
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4.1.2 POP909

POP909 [41] is a dataset of 909 Chinese pop songs, specifically designed for music
arrangement research. Each song includes MIDI tracks for vocal melody, lead instrument
melody, and piano accompaniment, all carefully aligned with their original audio. The
dataset also provides detailed information like tempo, beat, key, and chords. To create
a usable dataset for cover generation the original songs were downloaded from YouTube
and roughly synchronized. It has a size of about 34 GB. Lastly, POP909 served as a

benchmark for evaluation for the Pop2Piano model [1].

4.1.3 The Greek Audio Dataset

The Greek Audio Dataset (GAD) [42] is a freely available collection designed to support
Music Information Retrieval (MIR) research. It includes metadata, audio features, and
lyrics for 1,000 Greek songs but excludes the actual audio files due to copyright limita-
tions. Instead, it provides YouTube links to the tracks for further feature extraction. This
dataset manually annotates genre and mood classes, drawing inspiration from the MSD
in such a way that it is useful and compatible with state-of-the-art MIR methodologies.
The GAD will enable researchers to do genre classification, mood detection, and linguistic
analyses, since its features are stored in HDF5 and comma-separated values format, so
as to easily interface with data mining platforms.

The GAD concentrates on capturing the peculiarities of Greek music, from traditional
to modern genres. The tracks fall into eight categories of genres that capture the rich
variety of Greece’s musical life: Rembetiko, Laiko, Entexno, and so on. Mood annota-
tion follows the Thayer model, while 16 mood taxonomies have been divided according
to dimensions of arousal and valence. Lyrics are included for linguistic analysis, com-
prising more than 143,000 words and close to 1.4 million characters. Audio features,
timbral texture, rhythm, and pitches were extracted through jAudio with other tools such
that a track with acoustic properties represents in detail. The creation process empha-
sized keeping a balance regarding genre representation as well as careful annotations.
Genre classification involved listening tests to accurately tag the tracks, while in mood
annotation, each annotation had consensus among multiple annotators, achieving an
Inter-annotator Agreement of approximately 0.8 in F-measure. The data were extracted
from personal collections, live performances, and public platforms like stixoi.info for the
lyrics. This is a very holistic approach that will ensure the dataset is relevant not only for
Greek music but also can be adapted for wider MIR research goals.

Although currently smaller in size compared to some international datasets, GAD
constitutes an important step toward standardized resources for Greek music research,

and its format and design allow for future expansions and methodological advancements.

4.1.4 The Greek Music Dataset

The GMD is an important extension of GAD, which is meant for MIR. It comprises

1,400 Greek music tracks. Pre-computed audio, lyrics, and symbolic features have been
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provided. It includes manually tagged labels concerning mood and genre, general meta-
data, a manually selected MIDI file for 500 tracks, and YouTube links for further explo-
ration. Although it does not include audio files due to intellectual property restrictions, it
covers a wide range of Greek music from traditional to modern. GMD allows researchers
to explore MIR tasks such as genre and mood classification with a focus on Greek musical
traditions.

Greek music has its own musical and structural characteristics, reflecting the rich
cultural heritage of the country. Traditional genres like "Peprniétiko,” "Aaiko,” avd “"Evte-
xvo™ are characterized by peculiar features, including uncommon rhythms-for example,
9/8 time-and traditional instruments such as the bouzouki and lyra. GMD focuses on
these aspects by providing both audio and symbolic data, thus allowing feature extrac-
tion relevant for MIR processes. Manual genre annotations consist of eight categories that
capture the rich variety of Greek music styles and provide insight into the evolution of
Greek music over time.

It is provided both in HDF5 and CSV for the convenience of a number of data process-
ing tools. There are 454 audio features, 530 linguistic features, and symbolic features
from Music21 and jSymbolic. Finally, the addition of lyrics, their bag-of-words mod-
els, captures Greek language complexity, linguistic analysis, and mood analysis in the
GMD. The dataset represents a robust tool for advancing MIR and exploring Greek mu-
sic’s unique attributes, setting a foundation for future expansions such as contextual

metadata integration and symbolic representation enhancements.

4.1.5 Lyra Dataset

The "Lyra" dataset [43], representing an important contribution to computational eth-
nomusicology in the field of Greek traditional and folk music. It consists of 1,570 pieces,
about 80 hours of high-quality audio and video material based on the Greek documentary
series To Alati tis Gis (Salt of the Earth). The collection is augmented with metadata related
to instrumentation, genres, geographical origins, and danceability. These data were an-
notated in detail by volunteers, ensuring both musicological accuracy and rich contextual
detail. Unlike previous Greek music datasets such as GAD and GMD, which focused on
diverse genres and varied recording quality, Lyra offers a consistent, fine-grained dataset
tailored specifically for traditional and folk music research.

The dataset is structured for multiple musicological and computational tasks, sup-
porting analyses of genre classification, geographic patterns, and instrumentation. Meta-
data: unique identifiers, timestamps, geographic coordinates, and binary labels for "dance-
ability". Some key findings are that "traditional" is dominant at 78%, regional variations
in music are influential, and violin, klarino, and laouto are the most central instruments
in Greek ensembles. Baseline classification tasks using convolutional neural networks
outperformed with promising results: macro F1l-scores of 39.9% for genre classification
and 34.4% for geographic origin showed that there is a good scope for further refinements
and analysis.

The authors have also highlighted that the dataset can enhance the study of MIR and
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allow different fields to interrelate on various aspects. In future work, the authors want to
increase the metadata categories to include lyrics and dance types and add more pieces
from similar series. The Lyra dataset, together with its public availability, positions itself
as a robust resource for studying the points of intersection of Greek traditional music,

computational tools, and cultural heritage preservation.

4.2 GreekSong2Piano Dataset

Overview

The GreekSong2Piano Dataset consists of 659 Greek songs, their corresponding piano
covers in audio and MIDI, manually annotated labels pertaining genre styles of music and
lyrics. It consist of roughly 41 hours of music with a size of 42 GB. Its main purpose is

to be utilized for piano cover generation, but it can be used in other MIR-related tasks.

Challenges and Methods

Piano Cover In our attempt to create a piano cover generation model that specializes
in Greek songs, we decided to construct a dataset consisting of Greek songs and their
matching piano covers. The task of finding suitable piano covers was not easy. Also, we
wanted the covers to be composed mostly from one arranger, so they are more coherent
and have the same style. We searched YouTube specifically for piano covers of widely
known Greek songs and found that there are not many available. An invaluable asset
was the YouTube channel of Giannis Grigoriou, a Greek music teacher from whom most
of our piano covers were collected. In addition, a portion of covers were sourced from the
channel of pianistas, a Greek piano teacher and arranger and from the GreekSongsPiano
channel. Below we can see two example videos, one from Giannis Grigoriou and one from

pianistas.
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(a) Piano Cover by Giannis Grigoriou (b) Piano Cover by pianistas

Figure 4.1. Side-by-side Piano Cover illustrations

Audio Track For each piano cover, we identified the corresponding original track. Both
Giannis Grigoriou and pianistas had a detailed description about the music and the

performers. In cases where multiple original tracks were available, we selected the one
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with the highest audio quality, highest views, and the most closely matching duration.
For example, for the above piano covers we choose these original tracks that ensure high

quality, have millions of views and have closely matching duration.
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Figure 4.2. Side-by-side Audio Track illustrations

Both resources were downloaded from the Internet.

Lyrics For each song, the dataset also provides its corresponding lyrics. These lyrics

were sourced from various platforms, including the website stixoi.info [110].

Genre Tags The dataset includes tracks from 8 distinct genres. We adopt the same
genre classification as presented in [42]. Below, we provide the necessary explanations to

distinguish the unique characteristics of these Greek genres:

e Pspunétiko (Rembetiko): 19 tracks. Originating in urban centers with a strong
Greek presence, Rembetiko is a type of folk music that emerged with notable influ-
ences from the Smyrnaic and Piraeus schools of classical Rembetiko [111]. Char-

acteristic rhythms include "Zeibekiko," "Karsilamas," and "Hasapiko."

e Aaikod (Laiko): 163 tracks. Evolving from Rembetiko, Laiko represents Greek folk
songs from the 1950s and 1960s and continues to evolve today [112]. The transition
to Laiko music is marked by the incorporation of European instrument tuning, new

rhythms, and harmonic songwriting.

e 'Evtexvo (Entexno): 147 tracks. A sophisticated form of modern Greek music that
blends musical artistry with poetry [113]. It differs from Laiko primarily in its lyrical

content and musical style, including instrumentation and arrangement.

o Movtépvo Aaiko (Modern Laiko): 162 tracks. Considered the contemporary evo-
lution of popular music, Modern Laiko incorporates elements of pop and electronic
sounds. It is the most commonly performed genre in live Greek music venues, with

themes adapted to current societal issues.
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Rock: 40 tracks. This category includes Greek Rock as well as 1980s Pop-Rock

tracks.

e Hip Hop / R&B: 6 tracks. Featuring Greek interpretations of Hip Hop and R&B
music styles.

e Pop: 74 tracks. Includes Dance-Club music styles and older Greek disco hits.

e EvaAldaxktuiko (Enallaktiko): 63 tracks. Although often equated with "Alternative
Rock" [114], this category includes tracks that fuse modern Greek music styles such

as Pop Rock and Entexno elements.

Figure 4.3 shows the frequencies of the genres in the dataset, with Moviépvo Aaiko
and the Movtépvo Aaiko being the dominant ones constituting almost 25 percent of the

total. Other genres like Pepniétiko, Hip Hop and Rock have lower percentagies.
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Figure 4.3. Relative frequencies of the music genres in the dataset

Transcribed piano covers into MIDI The piano covers in WAV (audio) format were
transcribed into MIDI files using a state-of-the-art piano transcription model proposed
by Kong et al. [8]. This model utilizes a high-resolution transcription method by directly
regressing the onset and offset times of piano notes and pedal events, rather than relying
on frame-based predictions.

The transcription process involved feeding the audio recordings into the model, which
accurately identified the onset, offset, and pitch of each note, as well as the timing and
dynamics of pedal usage. The model’s ability to regress exact timing allowed it to produce
MIDI files with high temporal precision, closely mirroring the original performances.

The transcription process took approximately 6 hours in total, with each song taking
approximately 30 seconds to transcribe.

Using the transcription model, we converted the audio files (WAV format) into piano
MIDI (MIDI format). In summary, our dataset consists of: Piano Cover audio, original

track audio, piano cover MIDI, lyrics, genre of song.
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Figure 4.4. Piano Transcription Adapted from [8]

Next, the data was synchronized and filtered through the pipeline, which is detailed

in Section 5.1.

Data Insights

Metadata In addition to the audio, MIDI, lyrics described in detail above the dataset
includes for every one of its tracks a YAML file containing rich information. For both

piano cover and the audio track, we collect the uploader, title, YouTube id, genre and

duration.

Field Description

Uploader The name or identifier of the individual or organization uploading the track.
Title The title of the music piece as it appears on YouTube or other metadata sources.

YouTube ID The unique identifier for the track’s YouTube video.
Genre The genre label assigned to the track (e.g., Rempetiko, Laiko, Entexno etc.).
Duration The length of the track in seconds (SSS format).

We calculated statistical information about the dataset. Figure 4.5 below illustrates
the number of songs in each genre. It is evident that Laiko, Modern Laiko, and Entexno
dominate the dataset, comprising the largest portions. In contrast, Rembetiko and Hip
Hop/R&B are underrepresented. Although we aimed to gather a balanced number of

covers across all genres, achieving this for the latter two proved particularly challenging.
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Figure 4.5. Count of songs for every music genre in the dataset

Figure 4.6 gives us insight about the number of songs taken from each YouTube
channel. We can see that most of our piano covers are sourced from a single channel,

indicating a significant reliance on this particular source for our dataset.
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Figure 4.6. Number of Songs per YouTube Channel

We present the distributions of song durations and their corresponding piano cover
durations in Figures 4.7 and 4.8. Our aim was to select pairs with similar durations
to facilitate more accurate synchronization. The distributions confirm that the durations

are closely aligned, validating our approach.
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Figure 4.8. Distribution of Piano Cover Durations
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Focusing on the MIDI files we present the note distribution for every genre.

The

notes are represented in MIDI note number and gives us a better understanding of the

transcribed piano covers and the different distributions according to the specific genre.
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We have extracted and calculated roughly the tempo of the original tracks with the
help of essentia [45]. Below we present the tempo distributions of the songs for every

genre. We can see that most songs are close to 120 beats per minute (bpm).
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Figure 4.17. Tempo Distribution of Rembetiko
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Figure 4.18. Tempo Distribution of Laiko
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Tempo Distribution for Modern Laiko

Frequency

120 140
Tempo (BPM)

Figure 4.19. Tempo Distribution of Modern Laiko

Tempo Distribution for Enallaktiko

o

Frequency

ES

04
120 140
Tempo (BPM)

Figure 4.20. Tempo Distribution of Enallaktiko

Tempo Distribution for Pop

10 1

Frequency

120
Tempo (BPM)
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Lyrics Statistics Our dataset comprises cover-song pairs accompanied by the lyrics of

the original songs. A preliminary analysis of the lyrics reveals several interesting statistics:

e Average Length: Each song contains approximately 148 words on average.
e Vocabulary Size: Across all songs, there are about 10370 unique words.

e Range of Lengths: The shortest song comprises of 0 words(small portion of songs

are instrumental), while the longest contains up to 509 words.

e Most Common Words: If we exclude common stopwords like kai, ta, pn, etc.,
and keep meaningful words we can focus on capturing the emotional and thematic

essence of the lyrics.

Most Common Meaningful Words
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Figure 4.25. Bar chart showing the frequency of the most common meaningful words:
Kapdwa (heart) (360), lon (life) (321), ayann (love) (305), ayarnw (love) (271), uaua (eyes)
(253), 9¢Aw (want) (230), and uadi (together) (224) occurrences.

These words are central to the thematic content of the lyrics, reflecting recurring
motifs of love, life, and emotion. It reveals that the corpus is rich in emotion and personal

sentiment.

Splitting

The dataset is split into 80-10-10 proportions, resulting in 523 pairs for training, and
64 pairs for validation and 72 for testing. More specifically, we can see the table below.

For all experiments , we use a single train/validation/test split designed to satisfy the
following criteria:

e No composition should appear in more than one split.
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Split Performances Duration (hours) Size (GB)
Train 523 32.76 34
Validation 66 3.81 3.9
Test 70 4.43 4.1
Total 659 41 42

Table 4.2. Statistics of the Greek dataset.

e Train/validation/test should make up roughly 80/10/10 percent of the dataset,
respectively. These proportions should be true globally and also within each genre.

e The validation and test splits should contain a variety of pairs. Extremely popular
compositions performed should be placed in the training split. For comparison with our
results, we recommend using the splits which we have provided. We do not necessarily
expect these splits to be suitable for all purposes; future researchers are free to use
alternate experimental methodologies.

We can see the detailed split by genre in Table 4.3

Split Rembetiko Laiko Modern Laiko Entexno Hip Hop/R&B Pop Ennalaktiko Rock Total
Train 15 128 128 116 4 59 50 32 523
Validation 2 16 16 14 1 7 6 4 66
Test 2 16 16 15 1 8 7 4 70
Total 19 160 160 145 6 74 63 40 659

Table 4.3. Number of songs in each split by genre.

4.3 Pop2Guitar Dataset

Our Pop2Guitar Dataset comprises 40 songs paired with their corresponding guitar
covers, created by a diverse group of arrangers. The majority of the songs in the dataset
belong to the western pop genre. Because of the scarcity of guitar covers in MIDI we could
not collect a lot of data. It consist of 2.52 hours of music with a size of 2 GB. The purpose

of this dataset is to explore guitar cover generation via domain adaption.

Challenges and Methods

To create the dataset, we aimed to implement a similar pipeline as used for the Greek
and Pop2Piano datasets. Leveraging the abundance of guitar covers available on YouTube,
we collected a significant number of covers and attempted to transcribe them into guitar
MIDI for our task. However, guitar transcription remains a challenging task due to the
limited availability of datasets. While the MT3 model [10] showed promise with its im-
proved performance for low-resource instruments like the guitar, it struggled to generalize
effectively, often misidentifying the guitar as a variety of other instruments.

As we can see above, the solo guitar recording is transcribed incorrectly(every different
colour represents a different instrument). Further evidence about the poor generalization
skills are reported here [115]. So instead of using transcribed guitar recordings we col-

lected the guitar covers in MIDI format from Musescore [24], valiable resource for music
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Figure 4.26. Transcribed example with MT3

scores. We searched for guitar covers in MIDI format with the keywords: guitar cover
and filtered so that only the solo guitar covers would remain. From the 139 pieces, a part
of them required payment and another part was missing the MIDI files or did not match
with the original song. So in total 40 MIDI files were sourced. The corresponding original
tracks were collected from YouTube exactly like the ones for the Greek Dataset.

The data was then synchronized and processed through our pipeline, as described in
Section 5.1. This resulted in a set of synchronized song and cover pairs with a total size

of approximately 2 GB.

Data Insights

Metadata In addition to the audio and MIDI described in detail above the dataset in-
cludes for every one of its tracks a YAML file containing rich information. For both piano

cover and the audio track, we collect the uploader, title, YouTube id and duration.

Field Description
Uploader The name or identifier of the individual or organization uploading the track.
Title The title of the music piece as it appears on YouTube or other metadata sources.

YouTube ID The unique identifier for the track’s YouTube video.
Duration The length of the track in seconds (SSS format).

Splitting

Given the limited size of our Pop2Guitar dataset (40 pairs), we employed 5-fold cross-
validation to ensure robust evaluation of our guitar cover generation models. The dataset
was randomly partitioned into 5 folds, with each fold serving as the test set once while the
remaining 4 folds were used for training. This approach maximizes the use of our limited

data while providing more reliable performance estimates than a single train-test split.
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Methodology

In this chapter, we present the methods we followed, regarding our preprocessing
pipeline, the model used, our training for our cover generation task.
5.1 Preprocessing Pipeline

Our preprocessing pipeline is split into three parts: Synchronization, Beat Extraction

and Filtering of low quality samples. It follows the recipe used in [1].

MIDI Aligned MIDI Quantized MIDI

) 4

Filtering
Melody Contour 69—)

h A

Quantization

Beat

i i Estimation > T T T
1 2 3 4 5
Pop w Separated Vocal

Vocal Extraction

Figure 5.1. Preprocessing Pipeline. Adopted from [1]

5.1.1 Synchronization

To create a usable dataset, synchronizing the songs with their covers is a critical step.
We utilize SynctoolBox [44], a Python package designed for efficient, robust, and precise
music synchronization. The process begins by normalizing the audio followed by dynamic
time warping (DTW) to align the audio and MIDI accurately, regardless of key or tempo
differences. After alignment, we adjust the note timings of MIDI to match the aligned

audio with linear interpolation. Lastly, we produce pitch-shifted audio and warped MIDI.

5.1.2 Beat Extraction

The next step involves quantizing the note timings into 8th-note units. Using Essentia

[45], beats are extracted from audio recordings, serving as the temporal framework for
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quantization. The onset and offset of each MIDI note are then snapped to the nearest
8th-note beat. To ensure that no two quantized notes have identical onsets and offsets,
any offsets coinciding with their onsets are adjusted to the next beat. This approach
reduces data entropy by transforming the timing representation from continuous time (in
seconds) to a structured, quantized format (in beats), making the data more manageable

and consistent for further processing.

5.1.3 Filtering

The last step is filtering the low quality samples of the data pairs. For example, some
covers might have a difference in musical progress or different keys or the synchronization
might fail and create unsuitable pairs. This entails both automatic and manual handling.
We calculate the Melody Chroma Accuracy (MCA) [46] and discard pairs with 0.10 or
less. Melody Chroma Accuracy (MCA) evaluates the similarity between two monophonic
melody sequences. The melody line plays a crucial role in deciding whether a song
cover resembles the original song. We compute the MCA between the vocals extracted by
Spleeter [47] from the audio, and the top melodic line extracted from the cover MIDI using
the skyline algorithm. To get the melody contours of music, the fO sequence of the vocal
is calculated using Librosa [83] and pYIN [116]. The analysis is performed with a sample
rate of 44,100 Hz and a hop length of 1,024 samples. Additionally, pairs with an audio
length difference of 40% or more are rejected. Lastly, we manually verify each extracted

pair to ensure alignment and correctness.

5.2 Model

Music cover generation fundamentally involves a sequence-to-sequence task, where
a series of audio frames serves as the input, and the output is a sequence of symbolic
tokens representing the notes arranged for the cover instrument. So, the use of a generic
encoder decoder Transformer architecture where each input position contains a single
spectrogram frame and each output position contains an event from a MIDI-like vocab-
ulary is ideal. Figure 5.2 provides an overview of the model along with the input and

output configuration.
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Figure 5.2. Model Architecture. Source [1]
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5.2.1 Architecture

The architecture is the same as the Pop2Piano model [1]. It is based on the Tb5
architecture [5], an encoder-decoder Transformer model which closely follows the original
form in [4]. The relative positional embeddings are used like in [5] instead of the absolute
positional embeddings used in MT3 [10]. The model employs standard Transformer self-
attention blocks in both its encoder and decoder. For generating output sequences, greedy
autoregressive decoding is used: the input sequence is processed, and the output token
with the highest predicted probability is appended iteratively until an end-of-sequence
(EOS) token is generated. In our setup, we use the TS “small” model, which comprises
approximately 60 million parameters.

We discussed using a larger model like T5 "large" or a varient of GPT [117] but evidence
from [10] and [9] showed that for Automatic Music Transcription (AMT) increasing model
size tended to exacerbate overfitting and a comparative small model was sufficient. Since
Automatic Music Transcription (AMT) and Automatic Cover Generation are closely related

tasks, we determined that the T5 "small" model, was an appropriate choice.

5.2.2 Inputs and Outputs

As shown in Figure 5.2 the model uses log Mel spectrograms as inputs. Also, the
arranger token, indicating who arranged the target cover is embedded and appended
before the first frame of the log Mel spectrogram. At each step, the model produces
a softmax distribution over a discrete vocabulary of events, as outlined below. This
vocabulary is heavily inspired by the messages originally defined in the MIDI specification
[48] and was first applied in AMT [9] and [10]. The vocabulary consists of the following
token types:

Note Pitch [128 values] Indicates a pitch event for one of the MIDI pitches. However,

only the 88 pitches corresponding to piano keys are actually used.

Note On/Off [2 values] Determines whether previous Note Pitch events are interpreted

as note-on or note-off.

Beat Shift [100 values] Indicates the relative time shift within the segment quantized
into 8th-note beats. It applies to all subsequent note-related events until the next Beat
Shift event. The vocabulary includes Beat Shifts up to 50 beats, but because time resets

for each segment, in practice, only about 10 events of this type are used.
EOS, PAD [2 values] Indicates the end of the sequence and the padding of the sequence.

5.2.3 Sequence Length

Transformers can process all tokens in a sequence at every layer, making them par-
ticularly well-suited for transcription tasks that demand precise details about pitch and

timing for each event. However, this attention mechanism has a space complexity of
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Figure 5.3. Piano Tokenization. Source [1]

O(n?) with respect to the sequence length n. As a result, most audio sequences used for
transcription exceed memory limitations. To address this issue, the audio sequence and
its corresponding symbolic representation are divided into smaller segments during both

training and inference.

During training The following procedure is applied to each sequence in a batch:

1. Arandom audio segment is selected from the full sequence as the model input. The
length of the segment is 4 beats.

2. The corresponding symbolic segment is selected as the training target. Since notes
may begin in one segment and end in another, the model is trained to predict note-off

events even in cases where the note-on event is not observed within the segment.

3. A spectrogram is computed for the selected audio segment. The sampling rate
is 22050, the window size is 4096, and the hop size is 1024.Then, the symbolic

sequence is mapped into the defined vocabulary like in Figure 5.3.

4. The spectrogram input and the one-hot-encoded MIDI-like events are provided as a

training example to the Transformer architecture.

During inference The following procedure is applied:

1. The audio sequence is divided into non-overlapping segments, using the maximum

input length wherever possible, and spectrograms are computed for each segment.

2. Each segment is processed sequentially by providing its spectrogram as input to the
Transformer model. The model decodes the sequence by greedily selecting the most

probable token at each step based on its output until an EOS token is generated.

3. The decoded events from all segments are concatenated into a single sequence
(except for the EOS token).

4. The relative beats of the generated tokens are then mapped to absolute time using

the beat timing extracted from the original song.

5. This information is subsequently used to convert the sequence into a standard MIDI
file.
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5.3 Training Strategies for Greek Song-to-Piano Cover Genera-

tion Models

In this section, we present three training strategies: from scratch training, partial
fine-tuning, and full fine-tuning. The GreekSong2Piano dataset is used for all training

approaches which is described in 4.2.

5.3.1 Training from scratch

To develop a piano cover generation model for Greek songs we first tried to train the
model from scratch. We use the same model architecture and tokenizer as [1]. The
problem with this approach is that it requires a large dataset to achieve good results and
our dataset was not large enough. Our dataset is under 1000 songs and more than 5

times smaller than the dataset used to train the Pop2Piano model.

Deep Learning network
Train from oo _-o
scratch 00500
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Large dataset

Figure 5.4. Training from Scratch

5.3.2 Transfer Learning

To deal with the low-resource task we apply Transfer Learning. We start from the
Pop2Piano model [1] which is trained on approximately 5000 songs-piano pairs and fine-
tune its parameters on our specific dataset. This approach leverages the knowledge the
model has already learned on generating plausible piano covers for the pop genre and

tries to transfer it to Greek songs and their discrete genres.
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Figure 5.5. Transfer Learning from Pop2Piano Model



Chapter 5. Methodology

Partial Fine-tuning

A common approach to transfer learning involves freezing most of the model’s layers
and training only the final layers. This strategy leverages the fact that the early layers
typically learn generic features, such as abstract musical representations, while the later
layers capture task-specific features. By keeping the early layers frozen and unfreezing
the final layers, as detailed in the following figure 5.6, the model can efficiently adapt to
the target genres, such as Entexno. The Pop2Piano model is based on the T5 "small"

architecture. It consists of 6 encoder, 6 decoder layers and a language modeling head.

Table 5.1. T5 Small Model Specifications

Parameters # Layers dmodel dsr dxy # Heads

60M 6 512 2048 64 8

We freeze all encoder layers and experiment with fine-tuning parts or all of the decod-

ing layers and the language modeling head.

Full Fine-tuning

Instead of freezing most of the model’s layers and training on the final layer, we explore
training the whole model from a pre-trained checkpoint. This requires more time and GPU
resources, but might give better performance. Full fine-tuning adjusts all layers of the
model, allowing it to adapt to the target task. Additionally, it mitigates pre-trained biases

more effectively and enhances generalization to new data[49].

Labeled training set Labeled training set
I ; ! ;
Pretrained Pretrained
transformer Keep frozen transformer
—_— — Update
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.
Update
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4

Figure 5.6. Partial vs Full Fine-tuning

The combination of transfer learning and full fine-tuning proved to be the most effective
strategy for Greek song-to-piano cover generation, solving the challenges of low-resource

datasets and genre-specific nuances.
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5.4 Training Strategies for Song-to-Guitar Cover Generation
Models

In this section, we outline the training strategies employed to develop guitar cover
generation models for our Pop2Guitar dataset. As with piano cover generation models,
the challenges of limited data and genre-specific nuances make the creation of a from
scratch model hard to create. To deal with these difficulties we take advantage of Transfer
Learning and Domain Adaptation. Piano cover generation for pop music has achieved
plausible results with the use of the Pop2Piano dataset (PSP) but comparable datasets
are not yet available for other instruments. We propose the use of a piano cover generation
model to train a new guitar cover generation model.

Given the limited size of our Pop2Guitar dataset (40 pairs), we employed 5-fold cross-
validation to obtain robust performance estimates. This approach ensures that every
song-cover pair serves as both training and test data across different folds, maximizing
the utility of our limited dataset while providing statistically reliable evaluation metrics

with 95% confidence intervals.

5.4.1 Tokenization

To create the guitar cover generation model we have to make small tweaks to the
tokenizer. The input stays the same (spectogram) but the output has to change from piano
MIDI to guitar MIDI. A real guitar typically covers a range of MIDI notes corresponding
to the physical range of its strings and frets. Here’s the breakdown: The lowest note
is the open low E string (E2), which corresponds to MIDI note 40. The highest note
is typically the 24th fret of the high E string, which corresponds to E6 (MIDI note 88).
However, guitars with fewer frets (e.g., 21 or 22 frets) will have a slightly lower upper
limit, typically around D6 (MIDI note 86) or Eb6 (MIDI note 87). So, the standard range
of a standard guitar is from 40 (E2) to 88 (E6) [48]. Our pre-trained model can output
all 128 notes but only 48 are actually used for the guitar generation. We adapt the MIDI
rendering process by changing the output instrument from a piano (instrument number 1)
to a guitar. Specifically, we use General MIDI instrument numbers 25 (Acoustic Guitar,
nylon), aligning the output to a guitar-friendly format. We do not deal with extended

playing techniques (pitch bends, harmonics, slides).

Output Tokens

Tokenizer: Adapt to Guitar MIDI

Guitar MIDI
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5.4.2 Training from scratch

To establish a baseline for guitar cover generation, we first attempted to train the model
from scratch using our Pop2Guitar dataset. We employ the same model architecture
as [1] with our adapted tokenization schema for guitar MIDI output, as described in
Section 5.4.1.

While our dataset contains only 40 song-cover pairs, this training approach serves as
an important baseline for comparison with our domain adaptation methods. We acknowl-
edge that this limited dataset size is insufficient for optimal performance, as successful
from-scratch training typically requires datasets that are orders of magnitude larger.
However, this experiment provides valuable insights into the challenges of low-resource
guitar cover generation and establishes a lower bound for model performance in our

evaluation framework.

5.4.3 Domain Adaptation

To address the problem of lack of training data for instruments other than piano we
adapt a recently proposed model to meet this need. Having created a dataset of aligned
guitar tracks and covers presented in 4.3, we now apply this data to the downstream
task of training an guitar cover generation model. We approach this task as a domain
adaptation task, where we take an existing state-of-the-art piano cover generation model,
trained on a large dataset, and fine-tune it using our much smaller guitar dataset .
The source model we use is the same model used for Greek piano cover generation in

section 5.3.
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Figure 5.7. Domain Adaptation from Pop2Piano Model

Partial Fine-tuning

In partial fine-tuning, we update only specific components of the pre-trained piano
cover generation model. We freeze all the encoder layers and the earlier layers of the
decoder, as these layers primarily learn general representations of music that remain

relevant across domains. We fine-tune only the last few layers of the decoder, which are
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responsible for task-specific generation, and the language modelling (LM) head, which
maps the decoder outputs to the vocabulary space.

This approach reduces the chance of overfitting, especially since our guitar dataset
is small, and it keeps the general knowledge learned from the larger piano dataset. By
focusing on the output layers, the model learns to capture the specific style and structure

of guitar music without the need to retrain the entire model.

Full Fine-tuning

In full fine-tuning, we unfreeze all layers of the pre-trained model and update all
parameters during training. This approach allows the model to adapt both the general
representations learned by the encoder and the task-specific generation processes han-
dled by the decoder. While, needing more time and GPU resourses, full fine-tuning can
lead to domain-specific adaptation, particularly when the target domain (guitar music)
differs significantly from the source domain of piano music.

Full fine-tuning is especially useful when the target dataset is sufficiently large to
support such extensive parameter updates, or when the model needs to learn intricate
domain-specific details that are not captured by the frozen layers. Care is taken to prevent

overfitting, because the dataset is small, using early stopping.

5.5 Sequential Fine-Tuning for Greek Song-to-Guitar Genera-

tion

As an exploratory extension, we investigate a multi-stage domain adaptation path
that leverages knowledge transfer across both cultural and instrumental boundaries.
This approach, which we term "Greek2Guitar," follows a two-stage progression:

Stage 1: Greek2Piano adaptation (Greek songs — piano covers)

Stage 2: Greek2Guitar adaptation (Greek songs — guitar covers)

This strategy first adapts the model to Greek musical characteristics while main-
taining the familiar piano output format, then subsequently adapts the culturally aware
model to guitar specific constraints. The hypothesis is that this intermediate adaptation
will better preserve Greek musical patterns (such as rhythmic structures, and melodic
characteristics) during the final instrumental adaptation phase.

By decomposing the adaptation challenge into cultural adaptation followed by in-
strumental adaptation, we aim to achieve more effective knowledge transfer than direct
cross-domain adaptation, ultimately producing higher-quality guitar covers for Greek

songs.
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Experiments & Results

Building on the methods explained in Chapter 5, this chapter describes how we carried
out our experiments and shares the results. We start by explaining the setups and

training steps for each approach, followed by a clear analysis of the results.

6.1 Implementation Details for Greek Song-to-Piano Cover Gen-

eration Models

In this section, we will present our training setup, our specific configurations and im-
plementations focusing on Greek-to-Piano cover generation models following our method-

ological framework.

6.1.1 Training Setup

Before training, we establish some basic configurations. We use a fixed seed value
of 3407 for all processes to ensure reproducibility. All training is performed on a single
NVIDIA GeForce GTX 1080 Ti GPU provided by the SLP-NTUA lab’s server. The batch size
is set to 8, as higher values resulted in CUDA out-of-memory errors, and the number of
workers is also set to 8. Furthermore, the following configurations are employed: feed_-
forward_proj is set to "gated-gelu", tie_word_embeddings is disabled (false), tie_encoder_-
decoder is also disabled (false), the vocabulary size is fixed at 2400, the maximum number
of positions (n_positions) is set to 1024 (potentially expandable), and relative_attention_-
num_buckets is configured to 32. These settings, together with our training hardware,
ensure a stable and reproducible training pipeline.

To monitor our training, we set up the wandb framework, which provides insights into
the training process. This includes monitoring the training and validation loss, tracking
the number of steps corresponding to epochs, observing GPU usage during training,
and other relevant metrics. In addition, we implement two callback functions for the
monitoring process. The first callback evaluates the validation loss after every epoch
and saves the model if it outperforms the previously saved version. The second callback
ensures that the latest checkpoint of the model is always saved, providing a fallback
in case of unexpected interruptions. These measures ensure effective tracking and safe

preservation of our training progress.
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6.1.2 Training from Scratch

First we tried to train our model from scratch. The model has 59.1 million trainable
parameters, is optimized using AdaFactor [50] and has a learning rate of 1e—3. Empirical
testing and previous studies [10, 1] helped us choose this configuration. The model
is trained for 3000 epochs which took roughly 11 hours to complete. Throughout the
training we closely monitor the training and validation losses and also listen to pairs of
generated covers and original songs to understand if the model is getting better. Below

Figure 6.1 provides details about the losses, training steps and GPU usage.
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Figure 6.1. Training details of the model: (a) Training loss, (b) Validation loss, (c) Epochs
vs Steps, and (d) GPU usage during training.

The above figure gives us deeper insights about our training. We can see that the
model overfits the training data and even though it has a very low training loss, the
validation loss skyrockets. To deal with this problem we keep checkpoints of the model
when the validation loss is at its lowest. The best model checkpoint is from epoch 544
which gives balance between understanding the training data and being able to generalize
to data it has never seen. We can estimate that about 158 hours of music were used to

train the best model assuming an average bpm of 120.

6.1.3 Transfer Learning

We continue our experiments by applying transfer learning to the pre-trained model
in our Greek Dataset. This way we will leverage the ability of the model to generate piano
covers for pop songs and refine its parameters for our specific dataset. We will explore

two strategies: partial and full fine-tuning to figure out which one is best for our case.
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Partial Fine-tuning

In our partial fine-tuning approach, we freeze the early layers of the model, and only
update the later layers. The model architecture consists of 6 encoder-decoder layers and
a language model head. We experiment with unfreezing different layers and determine

that unfreezing the last two decoder layers suits best.

Configuration Trainable Params Non-trainable Params Total Params
Two Last Decoder Layers + LM Head 11.7M 47.4 M 59.1 M
Last Decoder + LM Head 6.5 M 52.6 M 59.1 M
All Layer + LM Head 59.1 M 0] 59.1 M

Table 6.1. Parameter counts for different fine-tuning configurations.

We keep the same configurations we had for training from scratch. The model is
trained for 200 epochs which took close to 20 minutes to complete. We keep the best
checkpoint (epoch 165) which has the lowest validation loss. We can estimate that about
48 hours of music were used to train the best model assuming an average bpm of 120. The
figure below 6.2 provides details about losses, training steps, and GPU usage. The training
loss consistently decreases. However, after approximately 8-10k steps, the validation loss

no longer follows this downward trend and instead fluctuates.
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Figure 6.2. Training details of the model: (a) Training loss, (b) Validation loss, (c) Epochs
vs Steps, and (d) GPU usage during training.



Chapter 6. Experiments & Results

Full Fine-tuning

In contrast to partial fine-tuning, we allow all layers to update their weights, letting
the model to fully adapt to the new data distribution. We keep the same configurations
we had for training from scratch. The model is trained for 500 epochs, which took close
to 2 hours to complete. We keep the best checkpoint (epoch 164) which has the lowest
validation loss. We can estimate that about 48 hours of music were used to train the
best model assuming an average bpm of 120. The figure below 6.3 provides details about

losses, training steps, and GPU usage.
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Figure 6.3. Training details of the model: (a) Training loss, (b) Validation loss, (c) Epochs
vs Steps, and (d) GPU usage during training.

6.2 Implementation Details for Song-to-Guitar Cover Genera-

tion Models

In this section, we will present our training setup, our specific configurations and im-
plementations focusing on Song-to-Guitar cover generation models following our method-

ological framework.

6.2.1 Training Setup

Prior to initiating training, we establish several fundamental configurations to ensure
a stable and reproducible pipeline. A fixed seed value of 3407 is used across all processes
to guarantee reproducibility. Training is conducted on a single NVIDIA GeForce GTX 1080
Ti GPU provided by the SLP-NTUA lab’s server. We set the batch size to 8 because larger
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batches led to CUDA out-of-memory errors, and we also configure the number of workers
to 8. Additionally, the same configurations are employed as in the training setup of the
piano cover generation models.

To monitor our training, we use the already set up wandb framework, which provides
insights into the training process. The same metrics are monitored and callback functions
are implemented ensuring effective tracking and safe preservation of our training progress.

Given the limited size of our Pop2Guitar dataset (40 pairs), we employed 5-fold cross-
validation to ensure robust evaluation of our guitar cover generation models. The dataset
was randomly partitioned into 5 folds, with each fold serving as the test set once while the
remaining 4 folds were used for training. This approach maximizes the use of our limited
data while providing more reliable performance estimates than a single train-test split.

For consistency in presentation, the training curves and GPU usage statistics shown
in the following figures correspond to the first fold of our cross-validation setup. The
final evaluation metrics reported in Section 6.4 represent the mean and 95% confidence

intervals across all five folds.

6.2.2 Training from Scratch

For the training from scratch approach, we trained the guitar cover generation model
for 2000 epochs using our Pop2Guitar dataset. The model achieved its best performance
at epoch 1974, demonstrating the challenges of learning from limited data. Throughout
training, we monitored both training and validation losses to track the model’s learning
progress and identify optimal stopping points.

The model exhibited clear signs of overfitting due to the severely limited dataset size
of only 40 song-cover pairs. The small dataset forces the model to memorize training
examples rather than learn generalizable patterns for guitar arrangement, resulting in
poor performance on unseen data.

The training process required approximately one hour and 20 minutes to complete
on our hardware setup. While the from-scratch approach provides a valuable baseline
for comparison, the results confirm that domain adaptation techniques are essential for

achieving reasonable performance in low-resource scenarios like guitar cover generation.

6.2.3 Domain Adaptation

We approach this task as a domain adaptation task, where we have the Pop2Piano
pretrained model for piano cover generation trained on close to 5000 pairs and fine-tune
it using our much smaller Pop2Guitar dataset. We will explore two strategies: partial and

full fine-tuning to figure out which one is best for our case.

Partial Fine-tuning

In our partial fine-tuning approach, we freeze a subset of the model layers while
updating the others. Our model architecture comprises six encoder-decoder layers and a

language model head, and after experimenting with various freezing strategies, we found
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Figure 6.4. Training details of the model: (a) Training loss, (b) Validation loss, (c) Epochs
vs Steps, and (d) GPU usage during training.

that unfreezing the final two decoder layers provides the optimal balance. The same
observation was made for the piano generation model. We can see the parameter count
for different fine-tuning configurations in Figure 6.1 . Also, we experiment with the
learning rate ( 1073, 1074, 1075) and find best results with 107 .

The model is trained for 1000 epochs which took close to 25 minutes to complete.
We keep the best checkpoint (epoch 929) which has the lowest validation loss. We can
estimate that about 20 hours of music were used to train the best model assuming an
average bpm of 120. The figure below 6.5 provides details about losses, training steps,
and GPU usage. We observe that both the training and validation losses steadily decline

during the early stages of training and then stabilize after approximately 3,000 steps.

Full Fine-tuning

In contrast to partial fine-tuning, we allow all layers to update their weights, letting
the model to fully adapt to the new data distribution. We keep the same configurations
we had for partial fine-tuning training. We experiment with the learning rate and choose
10~* as the best fit. The model is trained for 1000 epochs, which took close to 35 minutes
to complete. We keep the best checkpoint (epoch 174) which has the lowest validation
loss. We can estimate that about 20 hours of music were used for the whole training
and 3.5 hours to train the best model assuming an average bpm of 120. The figure
below 6.6 provides details about losses, training steps, and GPU usage. We can see that
even though the training loss decreases, the validation loss after close to 1k steps start

to increase. This can be attributed to the small size of the dataset, so the model overfits
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Figure 6.5. Training details of the model: (a) Training loss, (b) Validation loss, (c) Epochs
vs Steps, and (d) GPU usage during training.

it after some time.

6.3 Implementation Details for Greek Song-to-Guitar Cover Gen-

eration Models

6.3.1 Training Setup

Before beginning the training process, we configure several key parameters to ensure
pipeline stability and reproducibility. We set a fixed random seed of 3407 throughout all
operations to guarantee consistent results across runs. The training is performed on a
single NVIDIA GeForce GTX 1080 Ti GPU from the SLP-NTUA lab’s server infrastructure.
Due to GPU memory constraints that caused CUDA out-of-memory errors with larger
configurations, we limit the batch size to 8 and set the number of workers to 8. We
maintain consistency by applying the same parameter settings used in the piano cover

generation model training phase.

6.3.2 Training Pipeline

Our sequential approach for Greek song-to-guitar generation follows the established
two-stage progression:
Stage 1: Fine-tune on GreekSong2Piano dataset using the optimal configuration from

Section 6.1, creating a Greek-culturally-aware piano generation model.

107



Chapter 6. Experiments & Results

t_loss/train/loss t_loss/val/loss epoch

1k 2k 3k ak

(@) Training Loss (b) Validation Loss (c) Epochs vs Steps

GPU Power Usage (%)

|l bl

(d) GPU Usage

Figure 6.6. Training details of the model: (a) Training loss, (b) Validation loss, (c) Epochs
vs Steps, and (d) GPU usage during training.

Stage 2: Using the Greek2Piano model as initialization, perform final adaptation on

Pop2Guitar dataset with guitar covers, applying guitar-specific tokenization.

We begin with the best Greek2Piano model from full fine-tuning and further adapt it
to the Pop2Guitar dataset using both partial and full fine-tuning approaches. In both
cases, we train for 1000 epochs with a learning rate of 1074, selecting the best validation

checkpoints at epoch 929 for partial fine-tuning and epoch 169 for full fine-tuning.

6.4 Evaluation Methodology

In this section, we present the evaluation methods used to assess the performance
of our cover generation models. Our evaluation comprises both objective and subjective
measures. The objective evaluation is based on several quantitative criteria, while the

subjective evaluation relies on a user study.

6.4.1 Performance Analysis Across Evaluation Metrics

We adopt the following metrics to assess the quality of the generated covers from
multiple perspectives. These metrics evaluate both the similarity of the covers to the
original song and their adherence to the stylistic conventions and internal coherence

characteristic of the human arrangements.
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Melody Chroma Accuracy

Melody Chroma Accuracy (MCA) [46] evaluates the similarity between two monophonic
melody sequences. The melody line plays a crucial role in deciding whether a song cover
resembles the original song. Following the directions from [1] we compute the MCA
between the vocals extracted by Spleeter [47] from the audio, and the top melodic line
extracted from the cover MIDI using the skyline algorithm. To get the melody contours of
music, the fO sequence of the vocal is calculated using Librosa [83] and pYIN [116]. The
analysis is performed with a sample rate of 44,100 Hz and a hop length of 1,024 samples.

Cover Song Identification

In order to assess the similarity between the original track and its generated cover, we
employ a metric inspired by cover song identification, namely the metric Qnax [36]. The
Omax metric assesses the similarity of harmonic content between the generated cover and
the reference, with lower values indicating a closer match. To calculate it, we first convert
the generated MIDI to audio using the synthesizer FluidSynth with its basic soundfont.
We then calculated the similarity between the original track and the generated audio
using the Python implementation of ChromaCoverID [118]. Lastly, we average the Qmax
value for all the pairs.

In addition, we employed a state-of-the-art CSI model which took part and ranked
third in the MIREX 2024 Cover Song Identification challenge. We use CoverHunter [40]
to extract rich, discriminative embeddings from the original recordings and covers. Then
we calculate the cosine distance between the embeddings of the original and generated
covers. This metric quantifies the degree of similarity in content between the original
track and its various generated versions. Note that a pretrained CoverHunter model

(CoverHunter-128) is employed. The bigger model with 256 dimensions was not available.

Embedding-based Similarity

Building upon the idea that we can calculate the similarity with the use of embeddings
we employed MERT (Music undERstanding model with large-scale self-supervised Train-
ing) [51] a a large-scale, self-supervised learning (SSL) model designed for acoustic music
understanding. It achieves comparable results across a wide range of MIR tasks while
using significantly smaller parameter size and generates high-dimensional audio embed-
dings by aggregating hidden states across time and layers, capturing both fine-grained
acoustic details and broader harmonic structure. We take advantage of these embeddings
to calculate to cosine similarity between the original songs and different covers.

In our experiments, we employ the MERT-v1-95M model available from Hugging Face,
selecting this smaller variant due to our compute limitations and its faster inference
times. While we initially experimented with comparing whole track embeddings, we found
that a segment-based approach yielded more reliable similarity measures. Therefore,
we divide both the original song and its corresponding cover into non-overlapping 4-

second segments. MERT comprises 12 representation layers, and to obtain a unified,
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high-dimensional embedding vector for each segment, we first average the hidden states
over the time dimension within each layer and then further average these results across
all layers. This process effectively condenses the temporal dynamics and hierarchical
information of each 4-second audio segment into a single robust representation. We then
compute the cosine similarity between corresponding 4-second segments from the original
track and its cover (i.e., segment 1 vs. segment 1, segment 2 vs. segment 2, etc.). Finally,
we average all pairwise similarity scores across segments to obtain the overall similarity

measure between the original song and its generated cover.

Piano Cover Evaluation

Table 6.2 summarizes the performance of our piano cover generation models across
several objective metrics. The table lists each model alongside its corresponding scores
for Melody Chroma Accuracy (MCA), Cover Song Identification performance as measured
by Omax, CoverHunter embedding distance, and MERT embedding similarity. MCA eval-
uates how effectively the generated cover preserves the melodic characteristics of the
original song, while Qu.x reflects the harmonic similarity between the generated cover
and the reference. The embedding distance metrics derived from both CoverHunter and
similarity from MERT capture the overall similarity in learned representations, providing

complementary perspectives on the quality of the generated covers.

Table 6.2. Evaluation Metrics for Generated Piano Covers. Values are mean + 95 %
confidence interval. Higher MCA and embedding similarity (MERT) values are preferable,
whereas lower CSI (Qnax) and embedding distances (CoverHunter) indicate better perfor-

mance.

Model MCA 7 CSI (Qmax) | CoverHunter Distance | MERT Similarity]
Pop2Piano [1] 0.363 + 0.019 0.075 + 0.017 0.159 + 0.015 0.808 + 0.007
Greek2Piano-Scratch  0.372 + 0.020 0.100 + 0.020 0.175 + 0.012 0.802 + 0.008
Greek2Piano-Partial  0.443 + 0.021 0.068 + 0.017 0.155 + 0.013 0.809 + 0.007
Greek2Piano-Full 0.439 + 0.022 0.064 + 0.013 0.146 + 0.013 0.811 + 0.009
Human Piano 0.389 + 0.029 0.093 + 0.028 0.142 + 0.014 0.794 + 0.017
Human Piano (Audio) - 0.087 4+ 0.026 0.134 + 0.013 0.834 + 0.007

For piano covers, fine-tuning strategies demonstrate clear improvements over both the
Pop2Piano baseline and from-scratch training. The partial fine-tuning approach achieves
the best performance with an MCA of 0.443 + 0.021 and the partial fine-tuning with a
Omax 0f 0.064 £ 0.013 (lower is better), and a CoverHunter distance of 0.146, representing
improvements of 21.0% in MCA and 14.7% in Qmnax compared to the baseline. Even the
from-scratch model trained exclusively on our GreekSong2Piano dataset (0.372 + 0.020
MCA) outperforms the Pop2Piano baseline in melodic accuracy, demonstrating the value

of domain-specific training for Greek music adaptation.

Guitar Cover Evaluation

Table 6.3 summarizes the performance of our guitar cover generation models across

several objective metrics.

We employ the same evaluation metrics as in piano cover
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generation: Melody Chroma Accuracy (MCA), Cover Song Identification performance as

measured by Qnax, CoverHunter embedding distance, and MERT embedding similarity.

Table 6.3. Evaluation metrics for generated guitar covers (5-fold experiment). Values are
mean + 95 % confidence interval. Higher MCA and MERT indicate better quality; lower CSI
(Omax) and CoverHunter distance indicate better quality.

Model MCA 7 CSI (Qmax) | CoverHunter Distance | MERT Similarity 7
Pop2Guitar-Scratch  0.189 £ 0.016 0.576 £ 0.105 0.181 + 0.030 0.735 £+ 0.007
Pop2Guitar-Partial 0.358 + 0.043 0.152 + 0.050 0.153 + 0.010 0.781 + 0.016
Pop2Guitar-Full 0.363 - 0.042 0.169 £+ 0.062 0.156 = 0.014 0.783 + 0.024
Human Guitar 0.288 + 0.018 0.211 + 0.053 0.168 + 0.022 0.777 + 0.014

In the guitar generation task, the performance differences between strategies are sub-
stantial. Both fine-tuning approaches achieve strong results, with the full fine-tuned
model reaching the highest MCA (0.363 + 0.042) and MERT similarity (0.783 £ 0.024),
while the partial fine-tuned model achieves the best CSI performance (0.152 + 0.050 Qax
Omax) and lowest CoverHunter distance (0.153 & 0.010). In contrast, the from-scratch
model trained on only 40 guitar cover pairs performs poorly across all metrics (0.189 +
0.016 MCA, 0.576 £ 0.105 Qmnax Omax), highlighting the importance of transfer learning
when working with limited datasets.

It is worth noting that our fine-tuned models outperform human-created covers across
multiple objective metrics, including MCA (0.363 £ 0.042 vs. 0.288 + 0.018 for guitar),
despite human covers receiving superior subjective ratings. This apparent contradiction
reflects a fundamental difference in approach: while our models optimize for melodic
fidelity, human arrangers prioritize artistic interpretation over literal reproduction, in-
troducing creative variations and instrument-specific techniques that enhance musical
expressiveness but reduce measurable similarity. This pattern is consistent with findings
in the original Pop2Piano paper [1], where human arrangements similarly scored lower on
computational metrics yet received higher subjective ratings. The higher MERT similarity
scores for human covers suggest that these creative deviations, while reducing note-level
accuracy, ultimately contribute to the overall musical quality that listeners value.

Interestingly, when the same human performances are evaluated directly in their
recorded audio form (Human Piano (Audio)), they achieve not only higher MERT similarity
but also improved CoverHunter distance and CSI (Qmax), outperforming both the MIDI-
rendered human covers and all model-generated outputs. This discrepancy highlights
how the transcription-preprocessing-re-rendering pipeline introduces degradations that

suppress metric scores.

6.4.2 User Perception and Subjective Quality Assessment

For subjective evaluation we conduct a user study. Our user study with 26 non-
professional participants evaluated 10-second excerpts from test set songs across three
dimensions: Similarity to Original (SI), Musical Coherence (CO), and Listener Enjoyment
(LE). Excerpts were presented anonymously in randomized order to ensure unbiased

assessment.
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Subjects are asked to listen to these audio clips and provide ratings on a 5-point Likert

scale for the following aspects:

e Similarity to Original (SI): The degree of similarity between the piano/guitar per-

formances and the original song.

e Music Coherence (CO): The degree of perceived fluency in the music, representing

the smoothness and coherence of the piano/guitar performances.

e Listener Enjoyment (LE) : How much the participants like the piano/guitar cover

in their overall listening experience.

User Study

Table 6.4. Evaluation Metrics for Generated Piano Covers. Higher values for Similarity,
Music Fluency, and Overall indicate better performance.

Model Similarity to Original () Music Coherence (T) Listener Enjoyment (7)
Pop2Piano [1] 2.29 + 0.20 2.60 + 0.26 2.40 +£ 0.25
Greek2Piano-Scratch 1.81 £ 0.21 2.42 + 0.26 1.97 £ 0.21
Greek2Piano-Partial 2.67 + 0.22 2.60 £+ 0.23 2.46 +£ 0.24
Greek2Piano-Full 2.94 + 0.21 2.91 + 0.23 2.72 + 0.25
Human Piano 4.06 + 0.23 3.94 + 0.25 3.78 + 0.28

Table 6.5. Evaluation Metrics for Generated Guitar Covers. Higher values for Similarity,
Music Fluency, and Overall indicate better performance.

Model Similarity to Original(T) Music Coherence () Listener Enjoyment(7)
Pop2Guitar-Scratch 1.54 £ 0.28 1.77 £ 0.27 1.54 £ 0.24
Pop2Guitar-Partial 2.56 + 0.29 2.50 + 0.28 2.29 + 0.31
Pop2Guitar-Full 2.27 £ 0.25 2.35 £ 0.26 2.06 = 0.26
Human Guitar 3.13 £ 0.26 2.87 £ 0.34 2.71 £ 0.33

The subjective evaluation results in Table 6.4 demonstrate strong correspondence
with our objective metrics. For piano covers, the full fine-tuning approach received the
highest ratings across all dimensions (reported as average with 95% confidence intervals:
SI: 2.94+0.21, CO: 2.914+0.23, LE: 2.724-0.25) approaching the human benchmark and
outperforming both the Pop2Piano baseline and the from-scratch model. This confirms
that fine-tuning enhances not only technical metrics but also perceived musicality and
enjoyment.

The guitar models in Table 6.5 show a similar pattern but with more pronounced
differences. The from-scratch model scored poorly on all measures (SI: 1.5440.28, CO:
1.77+0.27, LE: 1.544+0.24), while fine-tuned models achieved substantially higher rat-
ings, with the partial fine-tuning approach receiving particularly strong ratings for simi-
larity (2.5640.29) and coherence (2.5040.28).

Most notably, our exploratory sequential fine-tuning experiment (Greek2Guitar) demon-

strates the potential of layered domain adaptation. The partial fine-tuned sequential
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Table 6.6. Evaluation Metrics for Greek-to-Guitar Covers. Higher values for Similarity
Index (SI), Coherence (CO), and Listener Enjoyment (LE) indicate better performance.

Model Similarity to Original({) Music Coherence (1) Listener Enjoyment ()
Base (No Fine-tuning) 2.37 £ 0.32 2.10 + 0.31 1.90 £+ 0.29
Sequential-Partial 3.31 + 0.33 3.00 + 0.33 3.00 £+ 0.33
Sequential-Full 3.19 £ 0.28 2.67 + 0.29 2.50 + 0.29
Human (Greek Guitar) 4.17 £ 0.28 3.85 + 0.31 3.65 +0.38

model achieved the highest similarity rating (3.314+0.33) among all guitar models, ap-
proaching the human benchmark (4.17£0.28). This suggests that the knowledge trans-
fer path from Western pop piano to Greek piano to guitar effectively captures important

musical characteristics that enhance the perceived quality of generated covers.






Chapter

Conclusion and Future Work

7.1 Conclusion

Cover song generation represents a challenge in Music Information Retrieval, requiring
systems to preserve the musical essence of original compositions while adapting them to
specific instruments and styles. This thesis addressed two fundamental limitations in
the field: the scarcity of training data for non-Western musical traditions and the lack of
cover generation models for instruments beyond piano. Through systematic investigation
of transfer learning approaches and the creation of specialized datasets, we demonstrated
strategies for automatic cover generation in low-resource scenarios.

Our primary dataset contribution, the GreekSong2Piano dataset, consists of 659
Greek songs paired with their corresponding piano covers, totaling 41 hours of music
across eight distinct Greek genres including Rembetiko, Laiko, and Entexno. This dataset
captures the unique characteristics of Greek musical traditions, providing the first syn-
chronized collection specifically designed for Greek music cover generation. Addition-
ally, we created the Pop2Guitar dataset with 40 song-guitar pairs, enabling exploration
of cross-instrument domain adaptation beyond the piano-centric approaches that have
dominated the field.

Our systematic analysis of training strategies revealed clear performance advantages
for transfer learning approaches over training from scratch. When comparing from-
scratch training, partial fine-tuning, and full fine-tuning on our Greek dataset, both
fine-tuning approaches achieved higher performance than the Pop2Piano baseline, with
the partial fine-tuning approach reaching the highest MCA of 0.443 £ 0.021, repre-
senting a 21.0% improvement over the baseline. Even our from-scratch model, trained
exclusively on Greek music, competed closely with the original Pop2Piano model on Greek
songs, demonstrating the value of domain-specific training. For guitar generation, trans-
fer learning proved even more critical, with fine-tuned models achieving substantially
higher performance than from-scratch approaches given the limited training data.

We introduced a novel sequential fine-tuning strategy that performs multi-step do-
main adaptation: from Western pop piano covers to Greek piano covers to guitar covers.
This approach achieved promising results, with the partial fine-tuned sequential model re-
ceiving the highest similarity ratings (3.31+0.33) among guitar models in our user study,

approaching human performance (4.17£0.28). This suggests that knowledge can be ef-
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fectively transferred across both cultural and instrumental boundaries through carefully
designed adaptation paths.

Our evaluation framework combined objective metrics with subjective assessment
to provide comprehensive quality assessment. We employed Melody Chroma Accuracy
(MCA), cover song identification metrics and embedding-based approaches using state-
of-the-art models like CoverHunter and MERT. The subjective evaluation through user
studies with 26 participants validated our objective findings, showing strong correspon-
dence between computational metrics and human perception of cover quality.

In summary, our key contributions are:

e Novel datasets for underexplored domains: Created the first synchronized Greek
song-piano cover dataset (GreekSong2Piano dataset) and expanded cover generation

to guitar arrangements with the Pop2Guitar dataset.

e Systematic analysis of transfer learning strategies: Demonstrated that partial
and full fine-tuning consistently outperforms from-scratch training in low-resource

scenarios enabling adaptation across stylistic and instrumental domains.

e Multi-step domain adaptation approach:: Introduced sequential fine-tuning across
cultural and instrumental boundaries, showing effective knowledge transfer from

pop piano to Greek piano to guitar covers.

e Comprehensive evaluation framework: Established objective metrics combining
melodic and embedding-based similarity measures with subjective user assessment,
demonstrating strong correlation between computational measures and human per-

ceptual judgments.

7.2 Limitations and Future Work

While this work demonstrates the potential of transfer learning for cross-cultural and
cross-instrumental cover generation, several limitations highlight areas for improvement.
Our datasets face inherent quality constraints. Unlike professionally recorded datasets
such as MAESTRO [52], which provides virtuosic piano performances with fine-grained
alignment ~ 3 ms between note labels and audio waveforms, or GuitarSet [53] with its
hexaphonic pickup recordings, our data is sourced from YouTube and synchronized using
computational methods that, while effective, cannot achieve the same level of precision.
This introduces potential timing discrepancies that may affect model training quality.
Additionally, our subjective evaluation, while providing valuable insights, involved 26
non-professional participants, suggesting that larger-scale studies incorporating diverse
listener populations and professional musicians could provide more robust validation of
our findings.

Also, technical limitations constrained our experimental scope. Most notably, our
reliance on pre-existing MIDI files from MuseScore for the Pop2Guitar dataset was neces-
sitated by the poor performance of current automatic music transcription models on gui-

tar recordings. Despite MT3’s design for multi-instrument transcription [10], it frequently
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misidentified guitar performances as other instruments, making it unsuitable for creating
the synchronized audio-MIDI pairs essential to our approach. This limitation forced us to
work with a substantially smaller guitar dataset (40 pairs) compared to our piano dataset
(659 pairs). Furthermore, computational resource limitations constrained our our exper-
imental scope. All experiments were conducted on the SLP-NTUA lab’s server equipped
with two 12GB GPUs (NVIDIA GeForce GTX 1080 Ti and GeForce GTX TITAN X), which
constrained our ability to experiment with larger context lengths and batch sizes in our
training process. Similarly, during evaluation, we were limited to using MERT-95M [51]
rather than the more capable MERT-330M model due to memory constraints, potentially
affecting the quality of our embedding-based similarity assessments.

Future research should explore expanded cultural domains and musical styles be-
yond the Greek and Western pop traditions examined in this work. Greek music, with
its distinctive rhythmic patterns and unique structural characteristics [42], provided an
effective test case for cross-cultural adaptation, but the principles demonstrated here
could extend to other traditions with unique characteristics, such as Indian classical mu-
sic [54], Arabic maqam systems [55], or East Asian musical forms [56]. Such extensions
would further test the generalizability of transfer learning approaches across more diverse
musical parameters.

Just as automatic music transcription has successfully expanded from piano-focused
systems to encompass diverse instrumental families, cover generation could follow a sim-
ilar trajectory given appropriate dataset development. Recent advances in AMT have
demonstrated successful transcription across strings (violin, cello) [57], woodwinds (flute)
[58], drums [59] and traditional ethnic instruments like the Arabian flute [60]. Cover
generation could similarly expand to these instruments, though this would require devel-
oping larger-scale synchronized datasets and more sophisticated tokenization schemes to
handle instrument-specific techniques.

A particularly promising extension involves creating comprehensive end-to-end sys-
tems that transform audio input directly into performance-ready notation. Building upon
our current audio-to-MIDI pipeline, such systems could integrate post-processing mod-
ules for musical notation generation. Recent work on MIDI-to-score transformation, such
as the MIDI2ScoreTransformer [61] , demonstrates the feasibility of converting symbolic
music into readable sheet music. Similarly, guitar-specific systems could leverage MIDI-
to-tablature conversion models [62] to produce instrument-appropriate notation. An end-
to-end system could potentially unify three stages: (1) audio-to-symbolic conversion using
our trained cover generation models, (2) symbolic-to-notation transformation using spe-
cialized rendering models, and (3) joint optimization across the entire pipeline.

Finally, another direction of this thesis involves conditional cover generation with
textual or multi-modal inputs. By incorporating various types of input conditions, such
as chords, melody tracks, lyrics, and text descriptions, not only can users interact with
the music generation process more dynamically, but they also gain higher and more
fine-grained control over the output [63]. By leveraging models like ChatMusician [64],
Llark [65] or expanding the T5 model [5] future models could accept natural language

descriptions like "create a melancholic piano cover in the style of a classical ballad" or
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"generate an upbeat guitar cover arrangement suitable for a folk festival."

We hope that our work will help attract more attention to the challenging problem
of music cover generation and inspire new research on musical cross-cultural exchange
through computational approaches. By bridging diverse musical traditions and instru-
mental forms, systems like ours could ultimately contribute to both creative applications
and deeper computational understanding of musical translation across cultural bound-

aries.
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