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[epiindn

Or au€avOUEVES UTOAOYLO TIXEC UTOUTACELS TOV GUYYLOVWY EQUOUOYMY XL 1) vy XT)
Yioe TNV BEATIWREVT AmdBOCT) €YOLY 0ONYYOEL TOUC OYEDLIC TEC VAL ETUXEVTPWVOUV
otV auinomn Tou apriuol Twv TuEHvwyY ce éva uovo chip. To cuoTtAuaTta e
TOMOTAOUC TUPTVES €lval LOLTEQ AMOTEAEOUOTIXG O TOAAEC EQPUOUOYES, XO-
VS aEAVoUY ToV THEUAANALOUG OE ETITEDO VNUATWDVY (Thread-Level Parallelism),
BeATiwvovTac 10 cUVOAX6 pulus dlexmepaiwone. 2oTdo0, 1 evioyuon g and-
000N EVOC UOVO VAUATOC TUPUUEVEL XQIoWT), EWOLXA VIOl EQPUPUOYES UE TEQLOPLO-
UEVO TOQOAANAIONOG.  XE TETOLEC TEQIMTWOELS, O TUPUAANAOUOEC o eninedo ev-
Toh@v (Instruction-Level Parallelism) unopel vo anotehéoer onuavtind eunddlo
otnyv Peitinon tne amdédoone. Tt TNV avTWETHOTION AUTOY TOU TEPLOPLOHUOY, OL
OYEDLAOTEC 0XOAOUINOUY TO EUPELEC APYITEXTOVXES UE UEYOADTEP TIoRdUPA EV-
TOAOY %ot UeYoh0OTEPO TAdTOC. 20TO00, QUTY| 1) TROCEYYLOY GUVOOEVETAL UTtd
onuovtixolc cupPiBaouole:  anaitel o oOVdeTn Aoyt eAEyyou, auldvel TnV
HATAVIAWGCT 1oy 00C xat TEPLORPILEL TN cUYVOTNT POAOYI00, AOY® NS AWENUEVNC
TONUTIAOXOTITAC Xk TOU PEYEVOUS TRV BOUIXOY HOVADWY.

Mio evodhoxtiny) AOon Tou TEOTAUNHE YloL TNV ATOPUYT) AUTOV TWV TEOBAN-
udTwy etvon 1 teyvixr Tou “Clustering”. Auty| n teyviny|, tepthauBdvel ) dladpeon
TWV TOPWYV OE UXEOTEPES, AVECHPTNTEC UOVADES, OTou xdde wovdada dioyetptleTal
£VOL UTOGUYOAO EVTOAGY UE BtoUg TNE Topouc. Me autdy ToV TOTO, HEWVOVTOL OL
xordUCTEPNOEIC OTIC GUVOETELC Xoi BlaTneeiton UPNAT cUYVOTNTA POAOYLOU oxOUA
%Ol OV TO GUOTIUO XAUUOXOVETAL.

Ye auTy| TN OtmAwUaTXr, avaiboupe Toug Tepoptopols tou Clustering, eetd-
CoupE UTHPYOUOES TEYVIXEC XATAVOUNC TwV EVIOA®DY oTa clusters, xou uhomololue
TECOEQPLC  OLUPOPETIXEG  peVOdoUC xatavouric —Round-Robin, Dependency,
Dependency-Load xou Loadcut— ot omolec, €youv npooapuooctel koTE Vo orv-
TATOXPIVOVTOL GTOUC GTOYOUS XAl OTOUS TIEPLOPLOUOUE TNG 0P YLTEXTOVIXNAC oG, 2T
OUVEYELD, TEOCOUOLWVOUUE Xal 0ElOAOYOUNE TIC UEYOB0UC QUTEC YENOWOTOL)V-
TOC TOV TEOCOUOLWTY| gemd %ol AVUAUOUUE TNV amddocr) Toug BACEL OLapopwy
UETELXOV.

Ae€eig Khewdud: Clustering, Instruction-Level Parallelism, Kotovour) Ev-
TOAWY, OLYVOTNTA POAOYLOV, UTOOOCT), gemd
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Abstract

Growing computational demands of modern workloads and the need for better
application performance, has led designers to focus on increasing the number
of cores into a single chip. This multi-core design is highly effective in many
applications because it increases thread-level parallelism, improving the overall
throughput. However, improving single-thread performance remains crucial,
especially for applications with limited parallelism. Since in many scenarios,
instruction-level parallelism becomes a bottleneck designers, tried to implement
wider designs, with wider instructions windows and widths. This of course came
with an important trade-off: wider windows and issue widths typically require
more complex control logic, more power consumption, and significantly impact
the clock frequency due to the increased complexity and size of the structures.
Another approach was introduced in order to avoid the hazards mentioned
before, called “clustering”.

Clustering, means dividing resources into smaller, independent groups, each
handling a subset of instructions with its own set of resources. Using this
method could significantly reduce wire delays, helping to preserve high clock
frequencies even as the overall system scales.

In this thesis, we analyze the limitations of clustering and review steer-
ing techniques that have been proposed in previous work. Then, we design
and implement four instruction steering methods —Round-Robin, Dependency,
Dependency-Load, and Loadcut— which, carefully adapted to the specific goals
and architecture of our system. We then evaluate these methods through sim-
ulation using the gem5 simulator and analyze their performance.

Keywords— Clustering, instruction steering, Instruction-Level Parallelism,
clock frequency, gemb, performance






FEuyapiotieg

Apywd Yo Hleha va euyoptothow tov emPBrénovtd pou, Kadnyntq EMII Awovi-
oo IIVEUPUTIXATO TIOU UOU EDWOE TNV EUXALELOL VO EXTIOVAOW TNV OLTAWOUNTIXN
wou gpyacta oto Epyactriplo Troroyiotixwy Xuctnudtwy oto EMII, xodde xan
Tov Kowvotavtivo Iaradémovio yio tnv xadodrynon tou. Téloc Yo Hieha va
EUYOIO TACL TNV OLXOYEVELS oL Xou Toug GIAoUC Hou Yiot TNV oTheIEn TouC.
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Chapter 1

Extetopévn EAAnvixs Tepiindn

1.1 Ewocaywyn

[a v enltevdn vdmidTepwY EMBOCEWY, Ol encéepyaoTéc oLy Ve Baollovton o
eupTEPa ToEd PN EVTIOAGDY xa TALTY EXxiVNONG UE OTOYO TOV TOPUAANALOUO GE
eninedo eviohwyv (ILP). Qotéco, ol teyvinéc auTtéc €lG8YOUY OTUAVTIXT] TOAU-
ThoxotnTa, TepopllovTag TEAMXE TN cuyvoTNnTH Tou poloylou. T'or vor yetploo Tel
auTo, €yel avadelyVel to clustering: ywpllel Toug mépoUC Tou EMELEPYUOTH OE
avedpTNTEC OUADES eExTEREOTC, e plor amd Tic omoleg elvon umebuvn Yoo Tov
YELPLOUO EVOC UTOGUVOAOU EVIOAMY. AUTOC O Ol WELOUOS ETLTEETEL LYNAGTERES
CLUYVOTNTEC PONOYLOU AOY W UXEOTERWY UOVOTAUTLOV OEOOUEVHV %ot ATAOVCTEPNC
hoywc ereyyou. (lotdoo, to clustering ewodyel enlong mpoxhrioelg, Wilwg TNV
emBdouvon AoYw Tng emixovoviog peTald OlopopeTixy clusters, n omola eivou
o YeovoPopa xat Umopel vo utooduloel oNUavTIXG TIC ETLOOOELC.

TNV Tapoloa epyacia, BIEPEUVOUUE TIC EMOOCELS TOU UTOPEL VoL ETULTOYOLY OL-
apopeTIXES PeddBOL xaTavourc Twv eVIolwy ata clusters (o€ eviohéc-avd-x0xho).
Apywnd, a&tohoyolue amholg unyaviodols -omws to round-robin- mou dev Aou3d-
Vouv uTodn T e€UPTACEC TWV EVIOA®Y. XTI CUVEYELN, OLEEEUVOUUE TEYVIXEC
mou Booilovtar oTic €CupThoElC EVTOA®Y, Tou eivan (oTxrc onuactac yio TNV
ehaytotonoinon g emxovwviag ueTald dlupopeTixwv clusters. Aedouévou 6T 1
UT) LOOPEOTINUEVT) XAUTAVOUY| EVIOA®Y UTOREL Var ONULOVEYNOEL GUUPOENOT), UAOTIOLOVUE
ued6d0ug Tou Aowfdvouy LT To PopTio Twv clusters TNV dedoOUEVN GTIYUT.

H avdhuor| pog emexteiveton o€ ddpopo TAdTY TUENVWY, CUUTEQLAUBAVOUEVLY
o Uxpv (4-way xou 8-way) xou UeYdhwy (16-way) Tuphivmy, EUTVEVCUEVLY amtd
EUTOPXE OYEDL. LUYXPIVOUUE TIC ETULOOOELC OAWY TOV UEVOOWY XATAVOUNS TWV
EVIOAQY UE Booixd povtéla oyedlacuol. Auty| 1 alloAdynoT TopEyEL TANPOPOoples
OYETIXA UE TOV TPOTO UE TOV oTolo To clustering aAANAEmORE Ue TO TAdTOC TWV
TUEHVOY, TIC UEVODOUC XATAUVOUNG XAl TA YUQUXTNOLOTIXG TWV EQUQUOYOY TOU
Yenowotnololue. EdxoTepa, 1 UEAETH WoC Yiot UEYAADTEQO TALTY AVAOEIXVUEL OTL
7o clustering unopel euvoricel T cUYVOTNTA O YEANOVTIXOUC ETECERYUCTES OANS
TAUTOY POV VoL TETOYEL o UYNAES ETLOOOELS.
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1.2 Out-of-order eneepyaocteég

H extéheon extoc oeipdc (out-of-order) etvon Baoixd yapoxtneloTind v Uy eovLY
UTOAOYLOTOV UPNAHC amddoonc. Xe avtlieon Ue TIC OQYITEXTOVIXEC UE EXTEAEDT)
o€ OElpd, oV oL EVTIOAEC exTeEAOOVTAL UE BAON TNV GELRE TOU TROYEUUUATOS, OTNV
nepintwor twv out-of-order, autd yiveton duvauixd ue Bdorn tnv dladeoudTnTa
TV TEAEOTWY. AUTO ETUTEETEL OE AVELAPTNTEC EVIOAEC VoL EXTEAOLVTAL Ywplc Vo
TEPLEVOUV TIRONYOUUEVES EVTOAES VoL ohoxhnewdoly. Autéd Bonddel oto mopahin-
AMopé oe eninedo evtohayv (ILP).

O olyypovol encéepyactéc mou UTooTNEIlouy EXTEREST EXTOC OElpdc Poot-
Covton o€ TOAUTAOXEC LAOTOLAGELS YLl VoL Lo oiicouy Ty opdoTnta xou TNV
anodotixdtnto.  Autéc mepthopfdvouy TNV ueTOovopaola XaToywenT®y (register
renaming) yto ™y e&dhedn Peudo-eLoptoenmy, Toug otouolc xpdtnong (reser-
vation stations) xat Tic oupéc exxivnone (issue queues) yioa Ty anodrixeuvon
ETOWY EVTOAQDY, TNV Teocwpevh uvAun avodtoteine (ROB) yia ) Swthenon
NG OWOTAC OELRAC TEOYPAUUATOC XUTE TNV PAoT) UTOBOATC, XM xou TOAATAES
AELTOVEYIXEC UOVAOES Yial TOREAANAT exTEAEOT evioAwy. ‘Ola autd cuyfdhiouv
OoTE 0 enMelepyYuoTAC Vo eXTEAEl TIC EVIOAEC TO YEYyopa o Vo dloryetpiCeTan
OWOTA TIC ECUPTHOELS ATOPELYOVTAC XIVOUVOUC.

‘Eva Baocind TASOVEXTNUA TNG EXTEAEONC EXTOC OELRdC elvat 1 atvOTNTd TNG
var uetptdlel Tic madoelg otny dloyéteuot. Ol EVIOAEC TOU TEQUEVOUY TEAEOTEC
UTOPOLY VoI TUPAUEVOUY GToUS G TadoUC xpdtnong ywelc vo eurodiCouv Ty oto-
YETEUOT), €V avedPTNTES EVTOAES UToPoLY v ouveyioouv Ty extéieor. Autd
UELOVEL TOUC YeOVOUC adpdvetag xon auldvel Tn por. EmmAicov, ol nepiocdtepol
olyypovol enelepyao téc autol Tou TUTou eivon utepBaduwtol (superscalar), dniadn
UTOPOUV Vo exBL00LY TOAMATAES EVTOAES avd xOxho. O cuvduaouodg urepfotuwtol
OYEOLUOUOU Xo EXTEAEOTC EXTOC Oelpdc ebvan xplowog yio TNy emlteuén uPniov
EMOOOEWY OE EQUQUOYES EVOC VI UAUTOC.

1.2.1 Amndédoon

Hpoxetuévou va BeATiwdoly oL eTBOCELC GTIC GUYYPOVES EQUQUOYES UE OTUAVTIXES
UTIONOYLO TIXEG AVEYHES, OL CYEDUCTEG UNXOU ETULYEENOUY VOl EVOOUATOOOLY OE
evae chip mohhamholg TUEHVES, EOIXE YLl EPUOUOYES LXUVES VoL TETOYOUV ToE-
ahknhiopo ot eninedo vnudtwv (TLP). Qotéoo, xpiveton emtaxtinfc onuooiog, 1
Bertiwon g amddoong xde evog viuatog. Ilpoxewevou va emiteuy el autd adhd
xal PEYUNVTEQOC TTUPUAANAIOUOC OE ETUTEDO EVIOAWY, OL GYEDCTEC EMLyElonoay
va auEHoouy Ta Topdupa EVIOADY xou To TAdToC exxivnong (issue width), to
oTolo OTWS VAL AVUPEVOUEVO EYEL AEVNTIXO AVTIXTUTO OTNV TOAUTAOXOTN T TOU
OYEDLAOUOY, TNV XATAVIAWOT) EVEQYELUG XL TNV CUYVOTNTO TOU POAOYLOU.

Ou Palacharla et. al. avémtuloav teyvixéc vyl TNV avdiluon TS TOAUTAOXOTY-
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TOC XU TWV XodLUoTERHoEWY Xdie oTadlou NS BloyETELONE XAk DlATio TWoAY OTL TO
TAdtog exxivnong xat To cuvold péyedog Tou mapadilpou evioly Tatlouy ToAD
ONUOVTIXO POAO OTNV TOAUTAOXOTNTA Xall Ol XOUG TERYOELS TWV XOAWOIWY oTNV
GLYOAXT) UG TEENOT TOL GUC TAUATOC. Mo TEYVIXY| TROXEWEVOU VoL AoV YOLY
To opVNTIXG TG pEYEVUVONG Tou oyedlopoy, elvon to “clustering”, émwe Yo
oVohOCOUUE GTNY GUVEYELDL.

1.2.2  AvdAuvor droyetevong unepBaduwtol enelepyaocty

[ vor xatorvoriooude xahbTEpa TOUC TEPLOPIGUOUC TNS XALUAXWOTNG EVOC ETedep-
Yoo TY), Vo TEPLYEAPOUUE T GTADLY TTOU TEOTYOUVTOL TNG EXTEAEOTC LG EVIOAYC.
Ot evtoléc exdidovtar TopdhAnia, xow 6TUY CUVAVTETAL BLIXALDWOT|, EQUEUOLETAL
XATOLOG UNYAVIOUOC TROBAEPNC: O UETENTAC TEOYEAUUATOS EVIUEPMVETAL BAoEL TNC
meoPBhedne. Ot eviokéc ot CUVEYEL TEEVOUY GTO GTABLO TNG ATOXMOLXOTOMONG
X0l T1) UETOVOUUOTO XUTAUYWENTOV XU ETELTA ELGEQYOVTAUL GTY UVAUT ovodLdTadng
X0l 0TV 0LEd Exxlvnomne.

2T0 0TA0l0 exxivnong, oL EVIOAEC TEPWEVOUY UEYEL Vo Yivouv dladeaiuol ol
TEAEOTEG TOUG, ElTE and To apyElo xaTayYWENT®Y ElTE YEow TpoMUNoNG And ex-
teheoueveg eviorec. H hoyu emhoyrc Slahéyel TOAEC ETOWES EVTOAES udle
xOxho (avdhoyo pe To TAGTOC exxivnong Tou sneispyocorﬁ) YO TIC OTEAVEL OTIC
avT{oTOLYEC AEITOURYIXES LOVADES. AUTOC O UNYAVIOUOC ETMLTEETEL GTOUC UTEPa-
Yuwtole enelepyaoTtéc va expetodebovtar To ILP o va exteloly mohhoamhéc
EVTOAEC avd XUXAO.

1.2.3 TIoAumhoxotnta oyedloong

H mohumhoxdtnta evog oyediou unopel vo yetpniel ue didpopoug TeoToUS, OTWS
ToV apriuod tpavlicTop, TNV empdvela Tou chip, xat TNy xoTavdAnmon loyvog. XTnv
TopoLoa epyacia Vo yenolonoljoouye TNy tpoceyyior twv Palacharla et. al.,
ot onofot 0pllouy TNV TOALTAOXOTNTA WS TNY XUGTEENOT OTO XEloWOo UoVoTATL
ULC AOYIXAC MOVADOG. 2UYXEXPWEVA, OlamioTwoay 6Tt To window wakeup, mou
EUTVA EVTOAEC TTOU TIEPLUEVOLY TEAEGTEC, oL T1 AOYXT) ETMAOY TS (selection logic),
TOU ETMAEYEL EVIOAEC TPOC EXTEAEOY), WC To To xplowa onueio and dmodm xa-
YuoTtEpnone.

Iowitepa, n Aoy emAoync YivETar ohoEva TO TEQITAOXY OGO UEYUAWOVEL N
GUAOYT) TV eVTOA®Y. ‘Etol, pe Bdor tor eUpAUaTa aUT®Y TRV UEAETOY %ol TNV
e£€TA0N TV OTABIWY TNG DLOYETEVOTS, YIVETUL CUPES LS OL TUPUBOGLAXO! LOVOAL-
Yol oyedlaouol Topouotdlouy GNUAVTIXOUE TEPLOPLOUOUC OTNY XAIXWOT). AUTO
EVIOYUEL TNV OVAYXT| VLol EVUAAOXTIXES, OTwE To clusterin, ol onolec va popdlouv

TNV TOAUTTAOXOTNTA 0w Vo PETELIGOLY Tar bottlenecks dwtneovtog mopdhinia
udmAao ILP.
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1.2.4 To Clustering wg Abon

Q¢ evarhoxtixny Aoor otn Oiebpuvor Ty Topadlpwy EXBOONE xoL OTNV ATAT
xhpdxwon tou oyedlaouol, meotelvouye N pédodo tou Clustering, ¢ote va
TEOGEYY{COUUE TA TASOVEXTAUATO TWV EVPUTEQMY TUQaIUowY EXDOONG %Ol oL
VUOV EVTOADY, DLITNEOVTIG TAUTOYLEOV TS CUYVOTNTES TOU EMTUY YAVOVTOL UE
UXQOTEQEC DOMEC.

To Clustering o¢ teyvixt|, Baolleton 6TNY SLolpecT) TOU GUOTHUATOC OF UXEOTEQN
avedpTtnta clusters mou xdie eva dlaryetplleTon EVa UTOGUVOAD TGV EVIOAGDY. LUy-
HEXQUEVA, xd0e Evar €yel Bixt| TOU 0LUEE eExxivnong ol AStTOURYIXEC wovadec. Me
QUTY TNV TEYVIXN, ETTUYYAVOVTUL TALTY amd O EURELEC aOYITEXTOVXES, GANY
Ywele TNV yeYion UEYSAwY Bouwy —Ue avtioToryo auénuéves xaduoTERHOELS Xa-
AWOLOCEWY X0l TOAUTTAOXOTNTO X0 TNV UELWHUEVT CUYVOTNTA POAOYL0) TIOU QUTO
GUVETAYETOAL.

Emmiéov, to Clustering xahotd duvath tnv naporinila o€ eminedo evioA®v
(ILP), ywplc tnv avdyxn yio yeyohltepee, povorrtixée dopéc. H hoywr| ypovo-
TeOYeuUaTIONo) entiong yiveton amholoTERT Xou Ty LTERT), xodwe xdlde cluster
otoyerplletan LOVO €V UXEOTERO GUVOAO EVIOADY XL TOPWY

1.2.5 IlIepropiopoi tou Clustering

e ol apylTeEXToViXY| Tou UToo TNEILEL EXTEAEST) EXTOC OELRAC, OTOV Lo EVIOAT
TOEAYEL EVOL ATOTEREOUA, TO TPOWVEL O ECURTWUEVES EVIOAES UE TNV Y PNOT) UN)UVIO-
LV TeoWUNoNG, WOTE VA TEOYWENOOUV OF EXTEAECT) YWEIC Vo TEPWUEVOUV VL
YeapTel aUTO OTOV PAXERD XATAYWENTOV TEMTA AAAG Vo EXTEAEGTOUY OGO TO
OLYUTOV TILO YETYOPO.

Avutéc ol mpowioeie, 6Tay TEayUaToToUVTOL UETAEY BlapopeTixwVy clusters,
TolEVoUV TEPLOGOTERD YEOVO AOY W UEYUAITERWY XUAWOLOOEWY ~Ja TIC ATOXAAOVUE
inter-cluster npowdnoeic. T v eniteuln ovolc TGOV anoTEAECUATOY, OL EV-
TOAEC TPETEL VoL xoTaveovTan ota clusters ye t1oomo mou va eharyio totolodvto 660
TO BUVTOV TEPLOGOTEPO oL xaduoTeprioelc mou ogeilovion oto Clustering. Autéc
TI¢ Letddoug xotavounc Yo Tic avapépouue we Yedddouc odhynone (1 steering
methods).

‘Eneita and evochey ) HEAETN TWV UTHEYOUCWY TROCEYYICEWY, LEXIVNOUUE UE
TNV vhoToinon TV To ATA®MY HEVODWY XUTAVOUNS. LTN CUVEYELN, TEOYWENOUUE
oty avdmTuln o eCeMYHEVLY UeVOdwWY Tou hauBdvouy uodn Tic eCapThoELS
UETAE) EVIOADY XaTd TNV exTtéAeon Tou mpoypduuatoc. Ou uédodol autéc cTo-
YELOUY T CUYXEVTEWOT ECUPTOUEVGY EVIOAGY 0To (to cluster 6mote autd elvon
OLVATO, EAOLYIC TOTOLWVTAS ETOL TNV ETUXOWVGVIN UETAEY BlopopETIXY clusters xou
ATOPEVYOVTOG TEPLTTEG XAVUGTERHOELS.

Evo o péylotoc otodyog ebvon 1 entdoor, Aopfdveton enlong unodn 1o x66T0C
YO 1) TOAUTAOXOTNTA TV PEYOOWY xatavouns. Avtl va Baclotolue o Wodtepa
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Tepimhoxec BOPEC LAOD 1| GE LUTONOYLOTIXE DUTAVNEES DUVOULXES UeDOB0OUE eX-
TENEONG, ETUXEVTPWUINNOUE OE TPOOCEYYIOEIS TOU ETUTUYYAVOUY ATOTEAECUATIXT
XAUTAVOUY| EVIOADY UE YAUUNAG UAXOTEYVIXO XOGTOC %ol AT AOYLXY),

1.3 llponyoVuevrn Meietn

H teyvu| Tou Clustering mpotddnxe and toug Palacharla et. al. w¢ Adon yu
™ pelwon tou x0xhou pohoylol otoug utepotunTolc enelepyactéc. Metd and
avdhuon TV xaJuoTERHOEWY OTNV OLOYETEVOT), OlmicTwooy OTL 1 AoYIXY| €x-
000TC EVIOADY %ot 1) AoYIXT) TEoMUNCNE AMOTEAOUY TOUC XURloEYOUC TapdYOVTES
xorduotépnone. AviatéoTnooy 1o xAaod ToEdIUE0 EVIOADY UE TURIAANAES
douéc FIFO xau dpopordynoay Tic eviokéc Bdoetl Twv eCopthoewy toug. To yov-
TENO TouC Ypenowonotel To clustering ye téooepic FIFO avd cluster xou Sy wploud
TWV AELTOURYIX®Y LoVadwy. Ot tpocouolhaoels €detlay uixer uelnon tou IPC odld
onuoavTixt| BeAtiwon Tng cuyvotnTag Aettoupyiag.

O Baniasadi xou Moshovos cUyxpivoy didpopec TOMTIXES 00YYNONS EVIOAGDY
Tépay TV eCUPTACEWY, UE 0TOYO TN Welwon Twv xaduoTephoewy AdYw TeQL-
oplou®y dpoug Lovne xon emxovewviae petald clusters. YThomolnoov téooepa
clusters ye EeywploTé TEOYEAUUUATIO TH Xat AELTOLEYXEC povdadee. EEétacay téc0
TPOGOPUOC TIXEC OGO X0 [UT) TEOCUPUOC TIXES UeVOd0UC —Ue Bdom To av aAAdCEL 1)
AOYWXT TOUG xaTd TO run-time—, ue Ty anAr| ueodo MOD-3 va €yel Tnv xaidTepn
am6dooT and TIC un mpooupuocTixéc. Emlong, eofyoyav tn pédodo 'slice” mou
OLocPoAllel Tt Ohec ot Yovxég eviohéc avatidevton oto (o cluster.

Ot Tune, Liang, Tullsen xou Calder peAetnooy eva povtéro ue 5o xo T€coepa
clusters. Eworyayov évav mpofienty| xplowou povonatioh mou Aoufdvel unddn
TOG0 xplowun lvol YLt EVIOAT Yol TNV EXTEAEDT). 1TNVY TEOCEYYLOT) TOUC, OTAV [ULd
EVIOAY| €YEL OLO Tyoloug TEAEOTEC amo OlapopeTind clusters, yenowonoteiton o
TEOBAETTAC Yot var amogactoTel 1 avdideon.

Ov Salverda et. al. avéhucov to xplowo POVOTATL Ylot VO EVTIOTOOLY TIC
outleg amMAELAS amHOOCTS X TEOGVECUY VEXU XPLTHEL! OTIC UTEY 0UcES HEVGOOUS
0dNynone. Xenotlonolnooy UETENTES XPLOLLOTNTAS YI0 TOV TPOGOLOPIOHO XOIOUWY
YOVIXWV EVIOAQDY, Aapfdvovtog entone unddn tny edlooppdmnon Tou goptiou Twv
clusters.

Ov Michaud et. al. ewofyayav gl apyttextoviny| eupeloc exxiviong pe 600
clusters, ue o160 Vv adEnon tou IPC dwtnpmvtac otodept| T cuyvotnto. Av-
tieta ye mponyolueveg epyacieg Tou oToyEVAY TN BeATiwoT TN anddooNg UECW
aUENONE TNS CLYVOTNTUG, ETUXEVTEMUNXAY GTO BITAACLUCUO TOU EVPOUC EXXIVNONG
yioo udmadtepo IPC.

Ot Ranganathan xou Franklin avéntu€av to poviého PEWs (Parallel Execu-
tion Windows) pe oxomd va avTiuetwticouy Toug TEpLoplopolc TS XAUIXKONG
TV oudfotixwy encéepyaoTtoy. To poviého auto avti va yenowonolel Eva xev-
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TEWO TOEAIUPO EVTIOADY, XATAVEUEL TIC EVIOAES OE TOANATAL ToRdAANAN Topddupa
extéheonc Bdoel eCupTHOEWY HETAC) XOTUYWETTOV.

Ov Aggarwal xou Franklin diepebvnoay yetdddouc duvouxhc avamopaywyhc Ev-
Toh®YV -Boacilovton oTr dnuLovpyia avTiyEdpewy eVvToA®Y ot cuyxexpéva PEWs-
Yoo T Pelwon e emxovwviae YeToly Touc. Ol TEYVIXEC TOUC OBHYNoov o€
avZnomn tou IPC xatd 5-10% oe obyxpton pe évay anhéd ahydprduo e€looppdmnong
Tou goptiov Twv PEWs adld xou og adinon twv xaduoTtepioemy AOYw €mLXOLy-
oviog HETAUED BLUPORETIXGMY ToEA)UEMV.

Ou Canal et. al. emxevrpminxav oto o@éln tou clustering yio emitdyuvon,
Loy wpiCovtag tov enelepyaoth o éva cluster INT xou éva FP. Egdpuocay
OUVUUIXEC TEYVIXEC XOTA TNV EXTEAEDT), TOU ToRd TNV Yewpotépeuot) Tou IPC, elyav
0OC AMOTEAEOUA GUVORLXY| ETULTAYUVOT AOYw xahbTepne adlomoinone twv clusters
X0l UELWUEVOL aVToY WVIoUOU Yo Topouc. Ot duvogixeg pédodol woTéc0 amontody
TEONYUEVO UAXO %Ol TEOYEUUUATIONO, o elval TEpa amd To TEBLO UEAETNG MaC.

H napotoo epyacia Eextvd pe uixpd epn exxivnone (2-way xou 4-way clus-
ters) xat amhéc TEYVIXEC OBYNONC TWV EVIOA®Y GE AUTE, TOU OEV ANALTOUY TOA-
TAOXO UAXO, OTwe auTd Tou amantel 1 avdhuon xpiowuou povoratiov. T tnv
TopoxorovinoT eCupTHOEWY, YeNoyloToloOvToL amhol TVOXES ToU Topoxoloutoly
XATOLEG TTANPOPOPIEC TV XATAYWENTWY. 1T CLVEYEW, 1 Uedodoloylo emex-
TelVETOL OF EUPUTEQOUC EMELEPYUOTES, OUYXEXPLEVA EVOC UTepPadunTol enelep-
Yao T Y TAdTOC exxivnong 16 xou avTloTolyo EVIGYUUEVOUC TOPOUC, TUREY OVTAC
YPNOWES TANPOYORIES Yol UEANOVTIXG GUC TAUATO LPNAGY ETLOOCEWY.

1.4 Medodoroyia

1.4.1 Ilpocopoiwthg

XeNOLIOTONCAUE TOV TPOCOUOWWTY) gemd YL VoL UAOTIOLACOUUE TOUS GYEBLIAGHOUS
xat Tig pedodoug 0d1yNone, uetayrwtiouevo oe apyttextovin) RISC-V.

H RISC-V ebvar pioe olyypovr, avolytol TUTOU 0QYLTEXTOVIXT] GUVOAOU EV-
oAV (Instruction Set Architecture), n omolo éyel xepdloel avoryvoplon t660
OTOV OXUONUNIXO OCO %L GTOV BLOUNYOVIXO YWEO. JYEDIOTNXE WOTE Vo ebval
oTAY|, ATOOOTIXY) XKoL EUXOAN ETEXTACIUY), Y WEIC Var amouTel T LUTHENON TUEWY -
UEVODY 1) TERITAOXMY YOQUXTNPIOTIXWY OO TOAUOTEQES UPYLTEXTOVXEC.  AUTH
n eveliio, oc cuvovaoud ue v unoctheln Tou RISC-V and o gemd, To
XATECTNOOY WBAVLXY| ETLAOYT Yl TNV vAomolnon xou o&loAOYNON TWV TEOTEVO-
UEVWY UIXPOUQYLITEXTOVIXMY U0 LOVTEAWV.

Xpnowonowoaue 10 povieho “O3CPU” nou avamaptotd Evay unepBotunmto
eneéepyaoTY| Tou UTOoTNELLEL TNV EXTEAECT) EXTOC OELRAC, TO OTOlo Elvol TOPOE-
TPOTIOLAGLUO OG0V aopd TNV TEORAed Blaxhddwong, To TAATH TwV oTadlwY NS
SLOYETEVATC, TIC OUPES EVTIOAMY, TNV TEOCWELVY UvhAun ovadLdtadne xa Tt load /s-

22



tore oupéc (LSQ). Eved n tumixr uhomoinon tou RISC-V nou gaiveton oto Lyrfua
6.1 yenowonotel Evayv anhoUoTERY OLOYETEUOT) TECCUPWY OTABIWY, 1) EQYUCIA HAC
BaolCeton oto Mo cbvieTto Yoviého enTtd oTadiwy Tou gemd Yyl TNV Vhomoinon
NG VPYLTEXTOVIXNC UUC, ETELDY| TPOCPEQEL TO AmoEulTNTO TAAOIO TTOU amouTel 1)
EQELVA UOC.

21N ouvéyew, aflohoyhooue Tig uedodouC og amd TAEURdS anddooTC, YeNol-
wonolnvtog to benchmarks SPEC2017, xou mo cuyxexpuyéva tic SPECspeed2017
Integer xou Floating point couiteg, Tic onoleg YetoryAwTTloaUe Yo TNV oEYLTEX-
Tovi|) RISC-V ypnowonowwvtag epyoaleio cross-compiling. To benchmarks xa
ol Topelg epapuoyc Toug TapouctdlovTal EVOEXTIXG oToV Tivoxa 7.1.

1.4.2 MeYodoL 0dfynong

Aoy wpllouue Tig dladéotueg AEtToupYIXES HOVADES ToL avTioTotyou Bactxo) Uov-
TENOL avapopdc oTa clusters, xadmdc xou TNV 0VEd EVTOAGY ~TOU XQEATAEL TIC EV-
TOAEC UEYEL OL TEAEOTEC TNg va efvan Bladeotdolr— hote xdie cluster va €yel dixd
Tou. ‘Oav n avtictoryn oupd Tou cluster tou Yehoupe va otelhovUE pLo EVIOAT €l
Vo YEUATN, TOTE TNV TOTOVETOUUE OE XATOLaL GAAT DLUESLUT XOU GTY) CUVEYELXL OTO
avtiotoryo cluster. Ou addoryéc mOU TEAYUATOTOACUUE GTOV YOO XOOLXO TOU
TEOCOUOWWTH Topouctdlovtor GUYOTTIXG 6T0 Xe@dhato 6.3. ‘Olec ol uédodol mou
avamTOEAUE UTopoly edxola vor uhomondoly xou ot enimedo UAXOU xal cuvol-
Covton w¢ e€c:

« Round Robin: Ot evtokéc otéhvovtal ota clusters xuxAwxd, dnAadt| ue TedTo
round-robin.

e Dependence-based: Auty| n uédodoc xdvel ypron twv eLopTHoewy PeTUY
TWY EVIOAQDY, WOTE Vo Tonovetolvton auteg Yoll xa va teptopiCovtan ot inter-
clusters mpowiroeic. Ilpoxewévou va vronomndel autd yenowomolinroy
TANPOPOPIEC GYETINES UE TOUG XOUTUYWPENTES, XUl CUYUEXQULEVOL VALY VWELO-
TIXd Tou UTOOEVOOLY ot Ttotd cluster €youv mapoydel ol TeAeoTEC WUag ev-
ToMC WoTe auTh va oTaAel exel. Av dev undpyouv eLapTioElC YETAED TNC
EXAOTOTE EVIOMC XL XATOLOG GAANG 1) Ol E€PTAOELC BEV Efval £YXUPES AOY W
UTOPBOAAS TNG EVTOATG-YOVED, TOTE aUTH OTEAVETAL OE Tuyalo cluster.

« Dependence-load-based: Axohoudeiton 1 mopamdve yedodoroylo Ue tnv ot
apopd OTL oy OV LTIBEY 0oLV ECUPTAOELS UETAC) TNG TEEYOVOUS EVIOAAC Xou
xdmolog dAANG, TOTE M emAoYT Tou cluster yiveta pe Bdomn To oyeTind goptio
Twv clusters.

« Loadcut: Auty|nuédodoc, allonolel Ty octpd e€apTroewy Tou dnuLovpYeitTo
am6 e evtohy| load, emopévog yiveton adhoyry tou cluster xdlde popd mou
ouvovTdTar auTol Tou TOToU eVTOAY| (ExTOog av Exw Bladoyxd load, exel dev
oaMdlw oto xdde Eva).
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1.4.3 Boaowo Movtélo Avagopdg

To Baoxd HovTENO avapoRdS TOU YENOWOTOLOUUE apopd Evay utepBaduwtd encl-
epYAo T TOL UTOC TNEILEL EXTEAEDT) EXTOC OELRAC, VO Vo EXOLDEL TOAMATAES EV-
TOAEC aVAL XOXNO.  DUYUEXQWEVA, TIPOCOUOLOVOVTOL U0 TUPNVEC UE OLOPORETING
TAdTOC exxivnong: o Evag eXOIOEL Ewe 4 EVTOAES avd xOXAO xou 0 dAAOC Ewg 8 —Va
TOUC amoxohoLpE 4-way xou 8-way aviloTtolya. [t vor mpooeyyloovue xahbtepa
OPYLTEXTOVIXEC GUYYPOVWV ETECEQYUC TWY, AVTAOUUE EUTVEVUOT) ATO Y VWO TE EUTO-
o oyédta. O 4-way enelepyaotrc Paciotnxe otov ARM Cortex-A76, eve o 8-
way eneeQYAOTHC TEOCGOUOWWVEL GTolyEla TNG Uxpoopyttextovixc Intel Golden
Cove. Ot evioyupévol mopol otov 8-way muprva dlac@aiilouv 6Tl To emimhéov
ebpog Lwvneg 6To oTddo exxivnone adlomoleital TAHEmS, Ywelc Vo dnutoveyouvTaL
onueior cuupoenone oe dAla Tuuater Tou pipeline. Téhog, otov 8-way oyedL-
aouUO BlveTon BITAACLOC AELIUOC AEITOURYIXMY LOVADWY (n LOVEDWY sméksong) o€
oyéon ue Tov 4-way, wote vo unopel va utoc trety el o audnuévog puluoc EVIOA®Y
AOY® TOU PEYAAUTEQOL TAdTOUC exxivnong. Ot aVOAUTIXES ULXPOUQOYITEXTOVIXES
ToEdUETEOL TOU Yenowonotunxay Tapatidevtar otov v 6.1.

1.4.4 Clustered Xyediacuol

Apywd vhomoooue duo clustered oyediaouole, 2x2-way xat 2x4-way, Tou GTULVEL
6L dlondetoupe dLo clusters pe mAdTn exxivnong 2 xon 4 avtlotoryo. O 2x2-way
OYEOLAOUOC TPOCOUOLWVEL TO TAATOC EVOC 4-way, eve 0 2x4-way evoc 8-way. Kdle
cluster dlardétel 0LPEC EVTOADY UE ULOY| YWENTIXOTNTA GE OYECT UE TO AVTIOTOLYO
MOVTEAO avaPORdc, XM ot TIC ULOES AELTOVPYIXES ULOVADEC.

Avoyopilouye Tic TeowIoelc BEBOUEVKY 08 000 XUTNYOPIEC: TOTUXES, TTOU OE-
OOMEV UETAPEROVTUL AVAUECO OE AELTOURYIXES LOVADES €VTOC ToU (Blou cluster xa
OLoExoUV Evay x0xho Tou poAoylol, xou inter-cluster, mou dedouEva UETAPEPOVTAL
AVIPECO OE AELTOVEYIXES LOVADES OLoPORETIXMY cluster xou dlapxolv 000 xixAoUC.
H dwoyéteuon twv clustered oyedioaoumy pog meptypdpeton otny exova 6.2 xou 1
AOYIXN UE TNV OTIOLAL OL EVIOAEC XUTAVEHOVTOL GTIC OUPES EVIOAWY Xal Ta clusters
oTny eova 6.3.

1.5 Ilewpdpata

Metoy wttiooue Ta SPEC2017 benchmarks, xat ouyxexpéve tic SPECspeed2017
Integer xou Floating Point couitec yio tnyv apyttextovixy RISC-V. YX1n cuvéyela
Tar TEECaE Yior 1 BLoEXATOPUOPLO EVTIOAEC Xou D EXUTOUUDELA EVIOAES Ylol Warm-up
WOTE TU TEOYEUUHUNTO VoL €YOUY UTEL OTNY PACT] EXTEAECTS VIO VO EXTYIHCOUUE
TEAYUOTIXE TNV amdOOoT.
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1.5.1 Amndédoon twv UedOdwY OBRYNONG YO AOYLTEXTOVIXES WUE
o6Vo clusters

Yuyxplvope TNy anddoon Twv TE0odp®Y LEVOOWY 001 YNONG UE XELTAPLO TIC EVTOAEC-
avo-xOxho (IPC). INa dha to benchmark, mopatneolue par uixet| yetpotépeuan
oto IPC vy 6heg Tic pedtddoug oe oyeon ue to Boacind YoVTEAO TOou avTicToLYoU
TAdToug (téo0 4-way oo xou 8-way), yeyovog mou e€nyeltar omd Tic apyéc inter-
cluster mtpowdriceilc 600 xUxhwv Tou elodyouv ot clustered oyediaouol.

Kaltepn anddoon napouctdlel 1 uédodoc “dependency-load-steering” pe yet-
cotépeuon tou IPC nepinov xotd 22% xa yior ta 800 mhdtn. T tic undhoumeg
uevddoue, ota 4-way povtéha, topatneinxe ueinon anddoone nepitou xotd 41%
yior T pédodo "round-robin', 23% yia tn pédodo "dependency-steering" xon 28%
Yoo T w€Vodo "loadcut”. Mto 8-way povteha, oL avTiGTOLYEC HELWOELS AmhOOCTS
oy 49% yio T uédodo "round-robin', 26% yio tn pédodo "dependency-steering'
xou 38% o T pédodo "loadcut’.

Ou amholotepeg pédodol Omwe 1 "round-robin' mopouctdlouvy yeyohitepes a-
TOAELES AmOOOCTNE ENELDY| O Aof3dvouy uTtddn Tig eapTACELS UETALD TWV EVIOADY,
UE OATMOTEAEGHA VO TOOXAAOUVTAL GUYVEC Yol TEQLTTES ETUXOWVOVIEC UETALY Blopope-
Txwv clusters. H pédodog 'loadcut’, av xon amodider onuavtind xohbTepa and 1
'round-robin", dev enepvd oe ambddoor T ueYodo 'dependence-load-steering'”.
Auto ebvar avogevouevo xadoe, tapdio Tou ol eviokéc load cuyvd dnuiovpyolv
oAuoideg eCapTHOEMY, GAAEC EVTIOAEC UmopoLY eTiong Vo Eloaydyouy eCUpTHOELS.
H pédodoc "dependence-load-steering” Aopfdver unddm dho tar eldn e€aptroewy
xaL eTLyELRel VoL OUUBOTIOLAOEL TIC ECUPTWUEVES EVIOAEC GTOV UEYLOTO dLUVATO [Bo-
Yo yioo va pewwoel Ti¢ inter-cluster npowivosic. To anotehéopota Tne amdd00NC
ue Bdomn to IPC twv yedddwy pag napouctdlovtal otig etxdveg 7.1 xou 7.2.

1.5.2 Xyediacpol pe t€écoepa clusters

Mo Ty xakbtepn pédodo odriynone (dependency-load-steering), ntpaypatonotiinxe
obyxpton e anbdoong (and drodn IPC) yetald oyediacucv e 500 xou Téocepa
clusters. Ytoug oyedlaopoic tecodpny clusters axorovdninxe 1 oo pedodoroyia,
OLorywetlovtog TEpATER TIC OUPES EVIOAWDY X0l TIC AELTOVRYXES pHovadee. Tao pov-
Téha TEcodpwy clusters ovoudotnxay 4xl-way xou 4x2-way, xodo¢ anotehovvTaL
am6 teooepa clusters 1-way xau téooepa clusters 2-way avtictouya.

Hopoatneriidnxe nepartépw yeiwon tou IPC, xdti mou Atay avopevouevo, xadng
neplocdtepa clusters 0dnyolv oe UixpdTepee dopéc mou yeuilouv TayUtepa (6K
Ol OUPEC EVTOADY), X0 OL TEAEGTEC XATUAYOLY CLYVOTERN GE SLopopeTind clusters
amo TIC ECUPTWUEVES EVTOAEC Toug. Troloyiotnxe peiwon tou IPC neplnou xatd
32% vy To 4x1-way oe cUyxplon pe To Booixd poviého 4-way, xou ueiwon 36%
Yoo To 4x2-way oe o0yxpLoT Ue To Bacixd Yovieho 8-way.

Etvar onuovtind vo onuetndel 6tt, tapdro mou to IPC pewdveton, ta uixpdTepa
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clusters etvor miovod va emtOyouy LPNAGTERES Toy UTNTEC POAOYIOU AOY W UXEOTEPWY
xortuo teprioewy xohwdiwone (wire delays) xou yewwpévou urxoug xploylou povomo-
T100. Auth 1 adénom oty ToryUTNTA TOU POAOYLOD Vol UToEOVCE Vo avTLo TodUloEL
Vv anwieto IPC, pe mdavdtnta xohltepne cuvolixic anddoong yio TOV oYEedL-
aoud amd povorrtixolg enelepyaotéc. To anmoteréoyata tne anddoone ue Bdon
10 IPC twv oyedlaouoy ye 600 xat téooepa clusters mopouctdlovion oG EXOVES
7.3 xan 7.4.

1.5.3 Xyediacuol pe t€ooepa clusters, 5600 xOxAol xadvoTépnong

[ Toug mopamdve GYEBLIOHOUS, TEOGOUOLWVOUUE TNV ETLXOVWVIL UETOED OL-
apopeTx®v clusters pe 600 xOxhoug xaduotéonone avtl yio évay. H audnuévn
oty xaduoTEPNOT, OTWS elvon AoYIXO, ETLPEREL UEYUNDTERY] YELWOTEQEUDT), CUY-
XEXPWEVAL Tepitou 5D xat 59% Yo oyediacud 6Vo xou Tecodpwy cluster avtioTouya
yior tov 4-way, xon 59% xon 64% o oyedooud dUo xar teccdpwy cluster avtio-
Totya yioe Tov 8-way. Autd ogelhetar 6T0 OTL Ol EVIOAEC XxaduoTEPOUV Vo AdBouv
TIC TLEC TOU OVOUEVOUY, X0l TUEUUEVOLY OTLC OOPES OTWE TNV UVAUT ovodLdTaEng
YOl TIC OUPEC EVTOADY Lol TEQIOGOTEROD, XAVUCTEPWVTUC TNV eEXTEAEST) Toug. T
amoTeEAEopAT TNE amodoome Ue Bdon To IPC twv oyedlaou®y e Vo xo TEGoER
clusters napouvoidlovtar oTic exodvee 7.5 xou 7.6.

Avutd ta amoteréopata elvar evdexTind g evonoUnotag Tou Topoustdlouy ot
oyEdLoUOl pag oTlC XorUoTEPNOELS ETXOLVWVIAGS, EQOTOY 1) TEOCUTXT EVOC UOVO
emimAEov x0OxAOL 0ONYEL OE APXETA ONUAVTIXT| YELROTEPEUCT] TN ATOBOOTC.

1.5.4 XrtatioTtixd oyeTtixd Ue inter-cluster npowUroelg

[ vor aevothOooUUE XAAUTERA TOV OPVNTIXG AVTIXTUTIO TV XUDUC TERHOEWY UETOLD
clusters TNy exTEAEOT TV EVIOAWY, ELGAYUUE OXTE OLUXPLTES O TUTIO TIXES HUTT)-
Yopleg HOTE Vo xoTaryedPouUE BLapopETIXd oeVApLa XUTAVOURC TEAEoTOY. AuTég
oL xuTNYoplec UETEOUY TOCOUC TNYooU TEAEGTEC EYEL ULOL EVTOAT) XalL TOCOL oTtd
auTtolg Peloxovtar og dlaopeTnd cluster amd Ny Bl TNV EVIOAR, 00NYOVTAC
oe inter-cluster mpowinon yetadl toug. ot ToEddeLryUa, Yo Evay GYEDIUOUO UE
teoocpa clusters, n “Kotnyopla 27 onuaiver 6t 1 TpEyouca EVIOAT), 1 omola €YEL
ovo mnyotoug TeAeoTES, Bploxeton oto cluster 0, ahAd ol Tedeotec Tre Beloxovtan
o€ OLpopeTixd clusters, 6mwe to cluster 1 xou to cluster 2 avtiotouya.

Kotoypdipovtoag auTtéc TIg TEQITTWOELS, UTOPOUUE VO XATAVOCOUUE XAAVTEQN
TS oL eCUPTHOELS DEdOUEVLY PeTOLY clusters emnpedlouy Ty amddoon.

IIio ouyxexpueva:

o Koatnyopla 0: 1 tedeotrc, 0 oe dAlo cluster

o Katnyopla 1: 1 tekeotic, 1 oe dhho cluster
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o Kotnyopla 2: 2 teheoteg, 0 oe dAlo cluster
o Koatnyopla 3: 2 tekeotég, 1 oe dhho cluster
o Kotnyopla 4: 2 teheoteg, 2 oe dAlo cluster
o Katnyopla 5: 3 tekeotég, 0 o dhho cluster
o Katnyopla 6: 3 tekeotee, 1 oe dhho cluster
o Kotnyopla 7: 3 teheoteg, 2 oe dAo cluster

o Koatnyopla 8: 3 tekeotée, 3 oe dhho cluster

To Yyfuato 7.7 xou 7.8 mapoucidlouvy 10 PEco mocooTtd xdlde oTUTIOTINC
xatnyoplog yia xde Yedodo xatovoung.

Ov o ouyvee xatnyopiec mou oyetiCovtan ue inter-cluster mpowinoeic etvou
ot xatnyopleg 1, 3 xar 4. Ou xotnyoptec 0, 2 xou 5 Vewpodvion xohéc mepLn-
TWOEL OTOV OYEDIOUO Uog, yiatl onuaivel 6Tt dev umrple xadohou mpowinor
ueTaCd drapopeTindyv clusters. Me uia moedytn patid, BAETOVUE OTL AUTEC OL TEAEL-
Tadec xotnyopiec omaviCouv oty tepinTwon Tne Yedodou “round-robin”, xdtL tou
ATOOEIXVUEL XU TT| YELROTEEY) CUVOALXY| amddooT NS YeVO00u auTHC.

Hapatnpolue v eugdvion tne xotnyoptac 1 yia tic yedodoug “round-robin”
xou “loadcut”, xdt mou Bydler vonua, xodwe ot dhkeg pédodol mou BaciCovtan
oTlc €CupTHOELS AELTOUPYOUY TOAD XUAS OF EVIOAEC WE €Vay TEAEOTY|, ETEDN M
e&dptnomn avTipeTowrileTal 0woTd. NTIC AYEC TEQITTWOELC TOU TOPUTNEEITAUL AUTH
N xotnyoplo xou ot dAheg peddooug mou Bacilovta oTtic eapthoele, elvar Toavod
Vo 0gelAeTon 6TO OTL Ol 0LEES exxivnong Tou emtuuntol cluster Htav yepdtec,
xal ETOL 1) EVTOAT| 0TdAIn%e aAhoU.

Mmnopolue ernlone va dodue Ty xatnyoplo 3 var eppoviletar xou oTig pedddoug
mou BaociCovtar oTic eapthoelc, xadoe xar ot “round-robin” xou “loadcut”.
Auté Arav enlong avouevouevo, xadoe oTic uedddoug mou Aopfdvouy urddn T
eCOPTHOELS Ol Lot EVTOAY| €yEL BUO TeEAeoTES, elvon davo 1) EVTOAY| Vo 6Tokel 6TO
cluster Tou mpwTOU TEAESTY|, EV® O dhhog vo Boloxeton oe dlapopetind cluster.
Auté anotehel onuavtind eploplopd auThc Tne Hedodou, xadoe 0ev eyyudton OTL
oL YOVES EVTOAEG Yo xatadriiouy oTo {0 cluster. T vo amogeuvydel autd,
Yo umopoloe va epapuootel wa uédodog mou Baciletar oe “slices”, omwe €yet
mpotadel xou oe TponyolueveS UEAETEC.

1.5.5 Kaduoteprioeig AoYw nopwyv

[ var avadbooupe Tepontépn oo otolyela Tou teptoplCouv TNV anddoon Twy oyE-
OLULOUWY OGS, YPNOYOTOWCUUE TIC TEGOEQLS O TAUTIO TIXES XUTNYOPIEC TOU gemd 1oy
OVAUPEQOVTAL TUPAXYT®, YLo Vo XU Tory edhoupE BLopopeTinoUg TUTOUE T)OEWY TTOU
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oyetiCovton ye mépouc. Autéc ol mavoelc epgavilovton 6Tav xpictuol Aol ool
oev etvor dladéotuot, xaduoTepnOVTa TNV EXTEAEST, EVTOA®Y. Me tnv Leywplo Ty
TOEAUXONOVUNCT AUTWY TWV TEPITTWOEWY, UTOPOVUUE VAl XATUVOCOUNE XAAVTEQN
TOLOL TEPLOPLopOl UAXOU Tpoxhiinxay Adyw Tou clustering.

Yuyxexpéva, opllovue Tic €€ng TECOEQRLC xUTNYOpPlES:

o Katnyopio 0: Anacyolnuévn Aettoupyixn yovéda (extéheonc)
o Katnyopla 1: IIienc oupd load/store

o Kotnyopla 2: IIAHENC QAXENOS XATAYWENTOY

o Koatnyopla 3: IIAApnc ovpd eviohmv

Kotd Tic mpocopot®osic, alloTolCoUE To EVOWUATWUEVO OTATIOTIXG TOU gemb
OYETXA PE TIC TOOELC AOYw Topwy (stalls), mou xataypdpouy teptntdoeic 6moU
Ol EVTOAEC xoJUGTEQOUY ETELDY] MOVADEC EXTEAEOTC, OUQPEC EXDOOTC EVIOAGY 1
load/store oupéc eivan yeudrec. T mopdderypa, n nowwor Tonov "TtAReng oupd
EVIOA®V' yla Tot ouoThuaTa Pe clusters elvar évoc petentric mou eA€yyel mooeC
(POPEC OAEC OL OUPEC EVTOA®Y OAwV Twv clusters elvar yepdtec. ‘Onwe €youue
OVOUPEPEL, OTAUV WL EVTOAT) TEOXELTAL Vo OTaAEl og Eva cluster aAAd 1 ovpd Tou
elval YEUATY), TOTE 1) EVTIOAT| dpouohoyeitan ot dhho dladéaio cluster. Av undpyel
otord€otun, dev mpoxUTTEL TAwoT. AV OyL, TOTE TEOXUTTEL TALOT AOYW TOPWV.

‘Onwe gafveton ota LyfAuata 7.9 xou 7.10 y tic oyeddoelc 4-way xou 8-
way oavtioTolya, autd Tou o&ilel va onuelwlel elvor To yeYovog OTL T TNEOVUUE
TEPLOCOTEREC TAVOELS TOTIOU “amACYOANUEVT] LOVADU EXTEAECTC” OE GUYXQLOT| UE
10 Baocixd poviéro. Autd ouufalvel emeldy|, Otoy Uior EVTOAA avatiVeton oe €va
cluster, efvou dlordeoluo uévo Eva LTOGOVOLO TV GUVORIXWY HOVADWY EXTEAECTC
— ONAadN, HOALG TO YOG TV LOVADWY TOL Baoxol UOVTEAOL.

Mo dAAn adloonuelwtn Tapathenon ivon 1 uelwon Twv tadoewy TOToL “TAkeng
ovpd load /store” oto povtéro 2x2-way pe “dependency-load-steering” oe oyéon
ue to baseline 4-way. Elvow onuovtixd va onueiwdel 6TL oL evIoAég uvhung
eloépyovial oTic ovpéc load/store uovo apol €youv exdoVel amd TNV 0UEH EVTOAGY
(IQ). Apa oty 1 Uelworn evoéyetar Voo 0QelAeTaL GTO YEYOVOC OTL TO UOVTENO UE
clusters SloywpiCel Toug moépoug extéheone Uetall dUo clusters, xdtt mou mepl-
optlel méoeg eVIOAEC umopolV Vo ELGEAVOUY TAUTOYEOVO OTO GTAB0 EXTEAEDTC
dpar xou oTLc ouUpég load/store.

1.6 Meyardtepol oyediacuol

1.6.1 MeAlovTixol Enelepyaocteg

To televtala ypdvia, oL clyyeovol enelepyacTéC €Y0ouV aUENOEL ONUAVTIXG TO
£0pOC TOUC, TOCO TNV ATOXWOXOTOINCT) OGO XL OTNY TAUTOYPOVY EXTEAEDT] EV-
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oAV, Nedtepol muphvee, 6mwe ot Apple M4 xou ARM Cortex-X925 (2024),
utootneiCouv amoxwdonoinon €wg 10 evtoléc xan extéheon €wg 19-23 eviolég
avd xOxho. Xto mhaicto owtd, 1 TAEOVCH SITAWUATIXY Yo THEOUCLIcEL TNV V-
vola Tou clustering xou Yo e€etdoel TNV anddoon Twv YEIOOWY XATAVOUNC EV-
TOAGY OV ovohJINXaY TRONYOUUEVMC XAl OE EVRUTEQOUC ETECEQYAUOTES UE TATOC
exxivnoneg 16 aAdd yetovopaoiac/arnoxmdixonoinong 10, xadde oautd e€axoloviel
vo armotehel bottleneck otouc clyypovoug eneepyaotéc.

1.6.2 Ileipopportind xOUATL

To Baocixd yoviého mupriva Tou yenolpomoleiton SLETEL EVIOYUPEVOUS TTOROUC,
OANOL XL EVLOYUUEVT Lepopyia UVAUNG, OE OYECT UE TIC TEOTYOUUEVES UQOYLTEX-
TOVIXES OOTE Vo uTooTneilovTon ot pueyallTepeg amantr|oelg ot ebpog Lovne. Ta
TOEATEVE Y AUEAXTNELC TIXE TOL TUEHVAL ToeouCLdovTon avaALTIXG oToV Ttivoxa 8.1.

Togyovue Ta (Ol TEWPSUOTA UE TO TEOTYOUUEVA XEQPAANAL VLo XAVUCTERHOELS
inter-cluster mpowdnocwv evog xar Vo xOxAwv Tou pohoylol yia clustered oye-
OltoopoUe 2x8 xon 4x4 . Xta Storypdppata 8.2 xou 8.3 mopouctdlovion To AmoTEAEC-
MOTO TV TELRUUTWY oyeTixd pe to IPC vl Ti¢ duo mopamdve xouoTeprioelg
Tou avapépinxay. Tapatneodue pa yewotépeuon ato IPC nepinou 15% xou 27%
Yoo Toug oyedtaouole 2x8 xou 4x4 avtiotorya, Yy xaduoTtépnon evog wUxhou
xou mepimou 57% xou 60% Yoo toug oyedlaopole 2x8 xou 4x4 avtioTorya, Yo xa-
Yuctéenom 000 xOXAWV.

Alioonueiwto elvon 6Tl oL emddoelc oToug 2x8 xou 4x4 clustered oyediooc-
woU¢ unoPadullovton AtyodTepo o GUYXQLON UE TIC dPYLTEXTOVIXES 4-way ol 8-
way, Wlwg dtav undpeyel xouoTtépnon evoc xUxhou otnv emxovovio YeTagd
clusters. H uwpdtepn auty| enintworn ogelieton xuplg oto yeyohdTtepo TAG-
T0¢ exxivnong autev Twv clustered oyedlaou®y, TOU EMTEENEL TNV TUYUTEET
TeowInon avedpTNTWY EVIOA®Y OXOUN Yol OTAY XATOLEC XJUOTECODY AOYW
eCopthoewy. H auinuévn por) eVIOAOV %ol Ol EVIOYUUEVOL TOEOL oWEAVOLY TNV
mdavoTnTor Vo UTEEYOUY EVOAAUXTIXES EVIOAES YOl EXTEAEOCT), UE ATMOTEAECUA 1)
enidpaot Twv xauotepfioewy oto IPC va elvar To Hmio o€ oyEon PE TO GTEVES
OO Y LTEXTOVIXEC.

1.7 Xvprnepdouata

1.7.1 vunépaouo

H Simhowpoater) autr availel Baowés mnyéc xoduotépnone o enelepyao TS UE
UeYdho eVpoc, eoTACOVTUC 0T AOYIXT] EXBOONC EVIOAGY %ot GTNY TEomUNoT Oe-
OOUEVWY. AUTE To UTOCGUC THAUNTO UVAUEVETOL VO ATOTEAEGOUV OXOUT| TILO OTUOV-
TIXd onuelor GUUPOENONS OTO PEANOY, xa®S TO TAUTOC exxivnong xon Tor Tapdiupa
exxivnone ouveyilouv vo auldvovton. Tt TNV AVTIHETOTIOY TOV TEPLOPIOUWY
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TV, e€etdleTon 1) TEY VXY Tou clustering, ye otéyo TN datAenon udmMAKc amo-
doomne xou LYNAGY GUYVOTATOV POAOYIO) PECE WXEOTEQMY Xl ALYOTERO TOAD-
TAOXWY DOUWY.

ThomouOnxay dLdpopec clustered apyttextovinéc ue dlaopeTnd TAdTH exxivnong
X0l OLUPORETINES UEVOBOUC XATAVOUNG TV EVTOAGY oTa clusters xou allohoyrinxe
N an6dooy| toug oyetxd pe Ttic Evtoréc-ovd-Kixho (Instructions per Cycle -
IPC). H xahOtepn entdoon emtebydnxe pe tn puédodo “Dependency-Load-Steering”,
mou hafdvel unddn eLopTroEC PYETACY TV EVIOADY GAAS XL TOV QORTO TWV
clusters, oc avtieon ue T dhhec yedodoug mou avantdlaue mou ot inter-cluster
TewUfoelC YelpoTepebouY onuavTixd to IPC.

Hoapd 0 ueiwon oto IPC oe oyéon pe to Paowxd povolrdnd uovteha, to
clustering €yet mpoonTixég yia UTEROY N GTN CUVOAXT amddoOoT YdeT oTa Tavd
OQEAT| OE CUYVOTNTA AgtToupyiag.

1.7.2 MeAlovTixr pelétn

H owryeipion tne emxovoviog petald clusters amotehel Baowr) mpoxinon. O
uedodol mou adlomololy Tig eCUPTATELS YETAED EVTOA®Y amodelydnxay mo anote-
AEoUUTIXES amtd amAoLoTEREC Tpooeyyioelg onwe Round-Robin A Loadcut, aAld
uTdpyel axoun mepriwpeto Yo Bedtinon Twv xaduotepioewy emxovwviog. Meh-
AovTIXES €pELVEC Vol UTOPOUCAY VO EGTIACOLY O BEATICTOTOMO) TWV DUVOULX®Y
TEYVIXOV xaJ00YNONG UE ATAOUCTEPOUS UNYAUVIOUOUS UAXOU Xt axPBECTERES
EUPETXEC PEVOOOUC TEOBAEdNC.

Emuniéov, Yo unopoloay va diepeuvndoly evolhaxTixes dlaoppooels clus-
ters, 6mwg etepoyevy| clusters, yior cuyxeEXpEVOUC TUTOUC EVIOAGDY TO xdlE Eva,
avTl TWV opoloyev®Y Tou yenotdoroinxay otny mapovca epyacia. H duvauix
TEOGUPUOYY| TWV OLUHOPPWOENY XUTA TNV EXTEAEOT) anoTeAel eniong Uit UTOCY 6-
uevn xatebduvon.

Téhoc, xadade 1 teyvohoyio e€ehiooeton, ol xaduoTePNoElc XUAWDIWoNE xUEL-
0EY0UV 0T0 x60T0¢ emxovwviog. MehhovTinée épeuveg Yo pumopoloay vo e€-
ETACOLY TEYVIXEC OTwC 1) BEATIOTN BLdtaln Twv clusters xau 1 yerion Taydtepwy
TEYVOAOYLOV DLUCUVOESTG.
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Chapter 2

Introduction

In pursuit of higher performance, processors often rely on wider instruction
windows and issue widths to fully exploit instruction-level parallelism (ILP).
However, these techniques introduce significant complexity, ultimately limiting
the achievable clock frequencies. To mitigate this, clustering has emerged as a
strategy: it partitions processor resources into independent execution groups,
each responsible for handling a subset of instructions. This division enables
higher clock frequencies and improved scalability by shortening data paths and
simplifying control logic. Nevertheless, clustering also introduces challenges,
particularly the overhead of communication between clusters, which can become
time-consuming and degrade performance.

In this work, we explore different distribution methods for the instructions
into the clusters —called steering methods. Initially, we evaluate simple mech-
anisms —such as round-robin— that do not consider instruction dependencies.
Next, we investigate steering techniques based on instruction dependencies and
register information, which are crucial for minimizing communication penalties.
Since unbalanced instruction distribution can create bottlenecks, we incorporate
load-balancing methods that dynamically assign instructions based on current
cluster utilization.

Our analysis extends across various core widths, including narrow (4-way and
8-way) and wide (16-way) cores, inspired by commercial designs. We compare
the performance of these steering methods and configurations against base-
line, non-clustered models. This evaluation provides insights into how cluster-
ing interacts with core width, steering strategies, and workload characteristics.
Notably, our study of wide cores highlights how clustering can help mitigate
frequency degradation in future high-performance processors, while still main-
taining high performance. Evaluating such a large scale design allows us to
observe how our steering strategies and dependency tracking mechanisms per-
form under heavy instruction throughput and intense resource pressure. We
aim to provide meaningful insights for the next-generation processors, where
balancing complexity, performance, and scalability becomes increasingly criti-
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cal.
The rest of this thesis is organized as follows: Chapter 3 is an introduction

on Out-of-Order Processors, Chapter 4 introduces clustering as a solution to
frequency limitation issues, Chapter 5 describes our work’s methodology, Chap-
ter 6 outlines our experimental work and performance evaluation and Chapter
7 provides insights on clustering in wider cores.
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Chapter 3

Out-of-Order Processors

3.1 Out-of-order Processors

Out-of-order (O00) execution is a key element of modern high-performance pro-
cessor design. Unlike simpler in-order pipelines, where instructions are executed
strictly in the sequence they appear in the program, out-of-order processors dy-
namically schedule instructions based on the availability of their operands. This
allows independent instructions to be executed as soon as resources and data
are available, rather than waiting for previous instructions to complete. In this
way, 000 execution effectively exploits instruction-level parallelism (ILP) and
improves resource utilization.

Modern OoO processors rely on sophisticated hardware structures to ensure
correctness and efficiency. These include register renaming to eliminate false
dependencies, reservation stations and issue queues to buffer ready instructions,
a reorder buffer (ROB) to preserve program order at commit time, and multiple
functional units to execute instructions in parallel. These features work together
to let the processor run instructions faster while still handling dependencies and
avoiding hazards.

A key advantage of OoO execution is its ability to mitigate pipeline stalls.
Instructions waiting for operands can remain in reservation stations without
blocking the pipeline, while independent instructions proceed through execu-
tion. This reduces idle time in pipeline stages and increases throughput. Fur-
thermore, most modern OoQO processors are superscalar, meaning they are capa-
ble of fetching, decoding, issuing, and executing multiple instructions per cycle.
The combination of superscalar design and out-of-order execution is crucial for
achieving high single-threaded performance in today’s general-purpose CPUs.

3.2 Need for increasing performance

To enhance application performance and meet the growing computational de-
mands of modern workloads, processor designers have increasingly focused on
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integrating a larger number of cores onto a single chip [3]. This multi-core
design has proven highly effective, particularly for applications that can be par-
allelized across multiple threads or processes. By enabling thread-level paral-
lelism (TLP), multi-core processors can execute several threads simultaneously,
thereby significantly improving overall throughput and reducing the time re-
quired to complete operations. This parallelism allows cloud providers to ef-
ficiently manage and allocate resources, supporting high-demand applications
and workloads that can now be broken down and distributed across cores effi-
ciently.

However, improving single-thread performance remains crucial, especially
for applications with limited parallelism. In many real-world applications, per-
formance bottlenecks arise from single-thread execution paths, and thus the
efficiency of each individual core remains crucial [4].

One strategy to achieve this is maximizing instruction-level parallelism (ILP)
by implementing wider instruction windows and widths. This increases the like-
lihood of finding independent instructions that can be executed simultaneously,
improving overall performance. However, such approaches come with trade-
offs: wider windows and issue widths typically require more complex control
logic, more power consumption, and significantly impact the clock frequency
due to the increased complexity and size of the structures. In order to achieve
high single-thread performance simply scaling traditional out-of-order struc-
tures, would definitely not be the way to do so. Larger instruction windows
and wider issue widths, while capable of extracting more parallelism, face great
limitations, and motivated researchers to explore alternative approaches —one of
these being “clustering”— that can approximate the benefits of wider structures
without their associated drawbacks, as we will analyze later.

3.3 Superscalar pipeline explained

To better understand the limitations of conventional scaling, we will consider a
typical superscalar pipeline and describe the stages that precede execution of
an instruction. Instructions are fetched in parallel, and when a branch is en-
countered, speculative execution occurs: the program counter is updated based
on a prediction to avoid stalling “fetch”. These fetched instructions proceed
through decoding and register renaming, then enter the reorder buffer (ROB)
and the issue queue.

In the issue stage, instructions wait until their operands become available,
either from the register file or by bypassing from executed instructions. The se-
lection logic selects multiple ready instructions each cycle (according to the pro-
cessor’s issue width) and dispatches them to the appropriate functional units.
This mechanism allows superscalar processors to exploit ILP and execute mul-
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tiple instructions per cycle.

3.4 Superscalar Processor Challenges

As we already mentioned, in recent years, superscalar processor design faces sig-
nificant challenges as higher levels of instruction-level parallelism are needed.
The growth in many hardware components implies increases in power consump-
tion and complexity, which further decreases clock speed and adds extra wire
delays, which was proven by various studies. Palacharla et. al. for example,
developed analytical models to estimate the complexity of the issue logic, by-
pass logic, rename logic and register file. Their approach, defines complexity as
the delay through the critical path of a piece of logic. Notably, Palacharla et
al. identified the window wakeup that wakes instructions up waiting for their
operands, and selection logic that selects instructions for execution, as some of
the most critical components in terms of delay. In particular, the selection logic
becomes increasingly complex to scale efficiently as the pool of instructions be-
comes larger. They came to the conclusion that the complexity of issue logic
scales quadratically with the issue width and window size, and the complexity
of the bypass logic scales linearly with issue width. They also concluded that
wire delays contribute significantly to the overall system latency [5].

So using the insights by the complexity analysis of previous studies and
closely examining the pipeline stages, it becomes clear how conventional mono-
lithic designs face practical scalability limitations. This motivates the explo-
ration of other alternatives —such as clustered microarchitectures— that aim to
distribute complexity and mitigate these bottlenecks while preserving high ILP.
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Chapter 4

Clustered Microarchitectures

4.1 Clustering as a solution

As an alternative to wide issue windows and just scaling-up the design, cluster-
ing was proposed to approximate wider issue widths and instruction windows
while maintaining the clock rates achieved by smaller structures. Clustering in
general terms, means dividing resources into smaller, independent clusters, each
handling a subset of instructions with its own set of resources —more specifi-
cally a separate issue queue and functional unit pool. Using this method could
significantly reduce wire delays, helping to preserve high clock frequencies even
as the overall system scales. Additionally, clustering enhances scalability by
allowing more instruction-level parallelism to be supported without requiring
larger, monolithic structures. The scheduling logic also becomes simpler and
faster, since each cluster only needs to manage a smaller pool of instructions
and resources. Overall, clustering is an effective way to approximate the perfor-
mance of wide-issue architectures while maintaining the speed, efficiency, and
simplicity of narrower designs.

4.2 Clustering limitations

In an out-of-order processor, when an instruction produces a result, it bypasses
that result to its dependent instructions that are ready to be woken up, al-
lowing them to execute as soon as possible instead of waiting for the value
to be written back to the register file. More specifically, forwarding paths are
hardware mechanisms that allow the result of an instruction to be sent directly
from the functional unit (FU) where it was produced to another FU process-
ing an instruction that depends on it. When having clusters, those bypasses,
if they are between instructions of different clusters, take more time due to
longer wires, and that is why we have some extra delays. In order to achieve
valuable results the instructions need to be distributed to the clusters in a way
that cluster-induced delays are minimized as much as possible —we will refer to
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those methods as “steering methods”.

While maximum performance is the main goal, the cost and complexity of the
steering methods is also taken into consideration. Instead of relying on highly
complex hardware structures or computationally expensive run-time methods,
we focused on approaches that achieve effective instruction distribution with
low hardware overhead and simple scheduling logic.
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Chapter 5

Related Work

Clustering was proposed by Palacharla et al. as a solution that reduced the
clock cycle for superscalar processors. After analyzing the pipeline delays, they
realised that issue logic and bypass logic dominate the overall delay. So they
started by replacing the classic instruction window, where the instructions wait
for their operands to become available, with parallel FIFO buffers that are
simpler structures and that facilitate faster clock. They proposed a method
that steers instructions into the FIFOs based on their dependencies. In order
to further fasten they clock the initiated clustering. They used four FIFOs
for each cluster, eight at total, and separated the functional units for the two
clusters. They also implemented the same design for associative issue windows
instead of FIFOs, and found no significant difference in their results. They ran
some simulations and came to the conclusion that in terms of IPC, this new
microarchitecture was nearly as effective as the window-based model with a
small TPC degradation. After the critical path analysis, they realized that a
2x4-way clustered microarchitecture would achieve at least the same clock speed
as a 4-way window-based microarchitecture, with a possible total performance
improvement. [5]

Baniasadi and Moshovos compared several different steering policies in addi-
tion to the dependence-related one, in order to reduce stalls due to the cluster
bandwidth and the inter-cluster bypasses. They implemented four clusters with
a separate scheduler and functional units. The methods they adapted were both
non-adaptive and adaptive (based on whether they change during run-time or
not). Their adaptive methods were the simple first-fit (steers instruction into
one cluster until it fills-up), modulo-N ones (something like a round-robin but
with N instructions at each cluster each time), the dependence-based one, like
previously, methods that change the cluster when branches or loads occur —like
the method we used— and the “slice” which is worth mentioning, since it ex-
pands the simple dependence-based advantages. More specifically, as we already
discussed, the dependence-based methods steer the instructions into a cluster
based on where their operands reside. Moshovos et. al. implemented this
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method that uses register renaming information and steers instructions to the
same cluster as its parents, and more specifically the parent with the youngest
program order —which is similar to our logic. They noted that there was no sig-
nificant difference with other similar alternatives. Using this method though,
sometimes leads to parents residing in different clusters. That is why the “slice”
method was introduced, to make sure all the parent instructions are assigned to
the same cluster, to further reduce inter-cluster bypass stalls via a PC-indexed
table; however, this improvement that requires an additional table, adds to the
hardware cost. A simple modulo-N and specifically MOD-3 is the one that per-
forms best from the non-adaptive methods, because apparently it does a good
job balancing the clusters’ load and bypass-induced stalls. While there is a
performance (IPC) degradation here, clustering could eventually be beneficial
due the higher frequencies achieved. The adaptive methods use voting-based
methods that aim to improve instruction distribution by identifying problematic
cluster assignments. They use cluster prediction tables to track the assignments
of one the non-adaptive methods, adapting the steering based on past behavior
of the program. While effective, these adaptive methods are beyond the scope
of this work.[6]

E. Tune, D. Liang, D.M. Tullsen, and B. Calder studied a clustered model
with two and four clusters and replicated register files. They introduced a
critical-path predictor and suggested improvements to two dependency-based
cluster assignment methods that also consider how critical an instruction is. In
their approach, when an instruction has two source operands coming from differ-
ent clusters, the critical-path predictor is used to decide between the two options
-the instruction is then assigned to the cluster of its more critical predecessor.|[7]

Salverda et. al. also analyzed the critical path, to uncover the causes of
performance loss and added a new criterion to the existing steering methods,
the load of the clusters. As we have already mentioned, the only way to increase
the IPC is by increasing the issue width and window, but with a cost to the
frequency. That is why they introduced clustering, (two, four and eight clus-
ters) and presented several steering methods to avoid as much as possible both
bypass-related and contention-related stalls. So throughout their work, they
used criticality counters, and metrics to define critical parent instructions and
to steer instructions based on those, while taking into account balancing out
the clusters too. All their methods performed relatively close to the baseline,
with some expected IPC degradation, and added complexity in both design and
hardware due to the criticality analysis.[§]

While all the previous works focused on small issue widths and higher fre-
quencies, Michaud et. al. introduced a wide-issue, MOD-64, dual clustered
microarchitecture -similar to steering methods mentioned before- with the goal
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of increasing the IPC this time, on a constant frequency. This could only hap-
pen with clustering. With this steering method, owing to data-locality, much
fewer inter-cluster bypasses occur (of about three cycles) and by increasing the
issue width and window and doubling the parameters of their cores, the IPC
would significantly increase. In contrast to previous work, which aimed to im-
prove performance by increasing frequency while keeping the issue width the
same, Michaud et al. focused on maintaining the same frequency while dou-
bling the issue width to achieve higher IPC. Doubling issue width and window
size though, may lead to higher IPC, but it comes with several challenges. Var-
ious structures must be enlarged to support the wider pipeline, making this
approach less efficient in terms of hardware size and power consumption.[4]

Another notable contribution to the space of decentralized microarchitec-
tures is the PEWs (Parallel Execution Windows) model studied by Ranganathan
and Franklin. PEWSs address the scalability limitations of conventional super-
scalar processors by decentralizing instruction execution. Instead of relying on a
single, centralized issue window, the microarchitecture distributes instructions
across multiple parallel execution windows (PEWSs) based on register data de-
pendencies. This ensures that dependent instructions are assigned to the same
pew, reducing inter-window communication delays. In the PEWSs architecture,
the steering scheme is similar to the dependence-related cluster assignment
mechanism analyzed before: it assigns an instruction to the cluster where the
source operand is to be produced, except when it has two operands that are
produced in different clusters, in which case the algorithm tries to minimize
inter-PEW distance by creating a ring-like network.[9]

Regarding to PEWSs and reducing their communication delays, A. Aggarwal
and M. Franklin explored several methods to dynamically generate instruction
replicas -various heuristics selectively replicate instructions in the clusters where
their results are needed- to reduce inter-cluster communications. They proposed
and investigated two replication schemes, and found that instruction replica-
tion gives a notable IPC increase over a simple balanced instruction distribution
algorithm that focuses both on load balancing and reduced inter-cluster com-
munication. Finally, their replication techniques were extended and found that
when the techniques are used in combination, the IPC increases by about 5-
10% over the balanced algorithm and is very close to the maximum possible
IPC with a zero-cycle inter-cluster communication hypothetical processor.[10]

Another approach was introduced by Canal et al., who focused on the ben-
efits of clustering for speedup rather than directly improving the clock cy-
cle. They achieved this by splitting the processor into one integer and one
floating-point (FP) cluster, and applying run-time dynamic scheduling tech-
niques. These methods involve load-balancing and slicing load and branch in-
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structions, which, despite leading to a lower IPC, result in overall speedup due
to better utilization of the clusters and reduced resource contention. In contrast,
Canal et al’s approach takes this further by integrating dynamic scheduling and
load balancing that require real-time decision-making during execution. This
method, however, relies on advanced hardware and complex scheduling logic to
effectively assign instructions to the clusters, which goes beyond the scope of
our current work.[11]

That is why in our work, we start by keeping the issue widths small, with
2-way and 4-way clusters, and simple steering techniques that avoid complex
hardware like critical path analysis that was mentioned before. To track de-
pendencies, we could use simple dependency tables that monitor register in-
formation, as we will later describe. This would allow us to track operand
dependencies with minimal hardware overhead, avoiding the need for complex
resources. By using such an approach, we aim to steer instructions efficiently
while keeping the system simple and hardware-friendly.
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Chapter 6

Methodology

6.1 Simulator and Benchmarks

Before we describe various steering methods, we describe our methodology. We
used gemd simulator to implement our clustered design, as well as the steering
methods.[12]

To support our clustered architecture and run the chosen benchmarks, we
compiled gemb with a RISC-V target ISA. RISC-V is a modern, open-standard
Instruction Set Architecture that has rapidly gained recognition in both academia
and industry. It was designed to be simple, efficient, and easy to extend, without
having to carry over any outdated or complicated features from older architec-
tures. It incorporates a modular design, which allows users to include only
the instruction set features they need. This flexibility, combined with gemb’s
support for RISC-V, made it an ideal choice for implementing and evaluating
our proposed microarchitectural changes.[13]
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Figure 6.1: RISC-V Processor Block Diagram showing the four-stage pipeline architecture.[1]
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More specifically, we used gemb5’s out of order CPU model “O3CPU” but
then modified it to suit our needs. This model is highly timing accurate, and
actually executes instructions at the execute stage of the pipeline. Most simu-
lator models execute instructions either at the beginning or end of the pipeline
-such as SimpleScalar and old CPU models used in gemb.

The “O3CPU” model simulates a generic out-of-order pipeline based on
physical-register-file architectures, like the DEC Alpha design. Seven pipeline
stages are modeled: fetch, decode, rename, issue, execute, writeback and com-
mit —later we will see that issue/execute/writeback is considered as one stage.
This model is highly configurable, so parameters related to the branch predictor,
the pipeline stage widths, the instruction queue entries (IQ), the reorder buffer
(ROB) entries and load/store queues sizes (LSQ). Also, the functional units
number is configurable.[14] While the standard RISC-V implementation shown
in Figure 6.1 uses a simpler four-stage pipeline, our work is based on gemb’s
more complex seven-stage pipeline model to implement our clustered architec-
ture, because it offers the detailed microarchitectural framework needed for our
research. The base configuration, as well as our clustered designs will be de-
scribed in detail later on. Then we evaluated, in terms of performance, our
methods by using the SPEC2017 benchmarks, and more specifically the SPEC-
speed2017 Integer and Floating point suites that we compiled for the RISC-V
architecture using cross-compiling tools.

6.2 Steering Methods

We implement a clustered design, where we separate the functional units of the
baseline design into clusters, by creating two functional unit pools, as well as
the instruction queue, so that each cluster has its own. Instruction queue is the
buffer that holds the instructions until their operands are ready.

When the instruction queue of the cluster we intend to assign an instruction
is full, we simply place it to another one and assign it to the corresponding
cluster, to avoid stalls. Otherwise, if all instruction queues are full, a resource-
induced stall occurs. Then, we introduce four different steering methods, that
steer the instructions into the clusters with a different criterion:

e Round Robin: Instructions are assigned to a cluster in a round-robin fash-
ion. For example, for a two-cluster design, one instruction is assigned to
cluster 0, the next into cluster 1, then the next to cluster 0 and so on.
This is implemented at “fetch” stage, making no significant difference, if
we place the logic elsewhere (for example decode).

o Dependence-based: This method leverages the data dependencies of in-
structions, in order to reduce inter-cluster bypasses and the induced de-
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lays. This is done by using register-related information, that we retrieve
at the rename stage. More specifically, when an instruction is being re-
named, we find where the parent instructions were processed, based on
source registers information (identifiers that are assigned to the destina-
tion registers, based on where they were processed). This way, we try to
assign the instruction into the same cluster as the parent instruction of the
first operand. If an instruction has no dependencies, or the dependencies
are no longer valid due to write-backs of the parent instructions, it is sent
in a random way to the instruction queues, and hence the clusters.

o Dependency-load-based: This follows the exact methodology of the pre-
vious one along with a new parameter, which is the relative-load of the
clusters. More specifically, for the instructions that have no dependen-
cies, the cluster with fewer instructions processed by its functional units is
chosen.

e Loadcut: This method takes advantage of the fact that when a load in-
struction occurs, a dependency chain is usually created for the following
instructions. More specifically, there is a higher possibility for those in-
structions to be dependent, so if they are placed in the same cluster, inter-
cluster bypasses are less likely to happen. That is why we assign all the
instructions to a cluster until a load instruction occurs, so then we switch
clusters, if there are no multiple adjacent loads (in this case we don’t switch
clusters). This happens at the “dispatch” stage, right when an instruction
is placed in the instruction queue of a cluster.

6.3 Implementation on Gem5

To simulate a clustered architecture in gemb, we first introduce new simu-
lation parameters that define the total issue width, the number of clusters,
and additional core configuration options. These parameters are defined in
the configuration scripts (e.g., BaseO3CPU.py) and are used to scale architec-
tural parameters accordingly. We configure distinct pipeline widths, instruction
queue sizes, and instantiate separate functional unit pools—one for each clus-
ter. We create multiple FUPool instances (e.g., fuPooll, fuPool2, according to
the number of clusters), each initialized with identical sets of functional units,
but treated independently. These pools are passed down into the pipeline logic.

In the execution stage (inst_ queue.cc), when an instruction is selected for
issue, we use the instruction’s cluster id —an additional field we introduced in
the DynlInst class— to determine which functional unit pool is allowed to be
used.
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The FU selection logic is modified so that only the functional units in the
corresponding pool are considered valid. This ensures strict separation of re-
sources between clusters. Instruction steering is implemented earlier in the
pipeline, during the fetch and rename stages (depending on the method), where
we assign cluster id values. For example in simple methods like round-robin,
the assignment happens in “fetch” but in methods that register information is
needed, the assignment happens in “rename” —a cluster_id field is also added
to physical registers to track dependencies between instructions. For instance,
when an instruction is being renamed, its operands are closely observed —by
their id’s—, in order for the instruction to be assigned to the cluster where one
of its parents resides. We make sure that when a parent instruction is com-
mitted —so there is not a possibility for a bypass, the value is retrieved by the
register file— the dependence is not taken into consideration. Then the other
parent instructions are examined for the cluster assignment. In the dependence-
related methods, if the dependencies are not valid like in the cases described
before, other techniques are used.

6.4 Hardware implementation

All four steering mechanisms can be implemented with relatively simple hard-
ware support. The “round-robin” method is straightforward and can be achieved
using a simple counter. The “dependence-based” steering relies on register de-
pendency information already available at the rename stage, so the additional
logic mainly involves tracking the cluster id’s of previous destination regis-
ters —which can be done through small tables or tags. The “dependency-load”
method extends this with a basic counter to monitor each cluster’s FU activity,
which again is lightweight. Finally, the “loadcut” mechanism requires detection
of load instructions at dispatch and a control logic for cluster switching. Over-
all, these methods achieve hardware simplicity, making them practical for real
implementations.

6.5 Our baseline

Our baseline configuration is an out-of-order superscalar processor designed to
issue multiple instructions per cycle to its functional units. Specifically, we
model two core designs with different issue widths: one capable of issuing 4
instructions per cycle and another capable of issuing 8 instructions per cycle.
Each design is simulated with a five-stage pipeline structure that models the
seven pipeline stages mentioned before: Fetch, Decode, Rename, Issue/Exe-
cute/Writeback, and Commit.

To better model real-world architectures, we drew inspiration from known
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commercial designs. The 4-way issue core is designed to resemble ARM’s
Cortex-A76 in terms of microarchitecture characteristics, while the 8-way is-
sue core is similar to Intel’s Golden Cove microarchitecture. Also, the 8-way
core features larger structures to support its higher instruction throughput.
Specifically, it has a larger instruction queue (IQ) of 80 entries compared to
48 in the 4-way core. The load and store queues (LQ/SQ) are also expanded
to 32/48 entries in the 8-way core, whereas the 4-way core has 16/16 entries.
The reorder buffer (ROB) size is significantly increased from 128 in the 4-way
core to 512 in the 8-way core, allowing for deeper out-of-order execution. Addi-
tionally, the number of integer and floating-point functional units (INT/FP) is
increased from 128/192 in the 4-way core to 280/332 in the 8-way core to match
the wider issue width. Finally, both cores have the same cache configurations:
the L1 data and instruction caches are 32 KB, 2-way set-associative, and the
L2 cache is 2 MB, 16-way set-associative. [15, 16] These differences in the 8-
way core are necessary to ensure that the additional issue bandwidth is utilized
without being bottlenecked by other pipeline components. Finally the 8-way
features double the number of functional units compared to the 4-way. This
increase in functional units is necessary to accommodate the higher instruction
throughput of the wider issue width.

Baseline Configuration

4-way 8-way
IQ 48 80
LQ/SQ 16/16 32/48
ROB 128 512
INT/FP 128/192 280/332
L1-D 32 KB, 2-way 32 KB, 2-way
L1-1 32 KB, 2-way 32 KB, 2-way
L2 2 MB, 16-way 2 MB, 16-way

Table 6.1: Baseline configuration.

6.6 Our clustered designs

At first, we implemented both a 2x2-way design which is a clustered microar-
chitecture of two 2-way clusters, in terms of issue width, and a 2x4-way design
which is a clustered microarchitecture of two 4-way clusters, with each cluster
featuring instruction queues at half capacity and half the number of functional
units compared to the baseline with the corresponding issue width. For exam-
ple, for the 2x2-way design we will now have two separate issue queues of 24
entries each, while for the 2x4-way design we will have two issue queues of 40
entries.
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Figure 6.2: Clustered Out-of-Order Pipeline Architecture.

The clustered out-of-order pipeline architecture, shown in Figure 6.2, or-
ganizes instruction execution into two independent clusters. Instructions pass
through the front-end stages — Fetch, Decode, and Rename —before being
distributed into two separate instruction queues (Queue 1 and Queue 2). Each
queue feeds its respective cluster, which contains its own pipeline stages: Wake-
up/Select, Register Read, Execute/Bypass, Memory Access, and Commit. This
design enables parallel instruction processing across clusters, improving through-
put and allowing for more efficient resource utilization.

QUEUE 1 » CLUSTER 1

INSTRUCTION
STEERING LOGIC

QUEUE 2 » CLUSTER 2

Figure 6.3: Instruction Steering Mechanism.

The instruction steering, illustrated in Figure 6.3, is responsible for dis-
patching instructions to either Queue 1 or Queue 2, depending on the number
of clusters and the steering policy used (e.g., round-robin, dependency-based).
Each queue is associated with its own execution cluster, enabling distributed
and parallel instruction execution across the system.

We categorize data bypasses into two types which we will model for our
simulations: local bypasses and inter-cluster bypasses. Local bypasses are re-
sponsible for bypassing results from one functional unit to another, within the
same cluster. Inter-cluster bypasses are responsible for bypassing results be-
tween functional units residing in different clusters. We consider local bypasses
to be accomplished in a single cycle, while inter-cluster bypasses in two cycles,
so one cycle of an “inter-cluster delay” is induced. To understand the impact
of this delay on performance, we will later conduct simulations with an inter-
cluster delay of two extra cycles instead of one. By analyzing this variation, we
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Register File Details

CLUSTER 1

Shared Registers

CLUSTER 2

Figure 6.4: Clustered Register File Organization. This figure presents the organization
of the register file in a clustered microarchitecture.

can evaluate how sensitive the system is to inter-cluster communication over-
head -that is, how much the additional cycle affects the performance of our
design.

Finally, in Figure 6.4 the organization of the register file in a clustered mi-
croarchitecture is presented. Each cluster has access to the register file, while a
subset of registers is shared across clusters to enable communication and data
consistency.
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Chapter 7

Evaluation

In this study, we compiled and simulated the SPEC2017 benchmarks, focusing
specifically on the SPECspeed2017 Integer and Floating Point suites, target-
ing the RISC-V architecture. The benchmarks were executed with a maximum
instruction limit of 1 billion, preceded by a warm-up phase of 5 million instruc-
tions to stabilize the system’s performance. This ensures that before taking
results, the system has reached the execution phase, so performance can really

be measured.

The following table lists the SPEC2017 benchmarks utilized in the simula-

tions, along with their respective types and application domains.[17]

Benchmark Type | Application Area

600.perlbench s INT | Perl interpreter

602.gcc_s INT | GNU C compiler

605.mef s INT | Route planning

620.omnetpp__s INT | Discrete Event simulation - computer network
623.xalancbmk s | INT | XML to HTML conversion via XSLT

625.x264 s INT | Video compression

631.deepsjeng_ s INT | Artificial Intelligence: alpha-beta tree search (Chess)
641.]eela_s INT | Artificial Intelligence: Monte Carlo tree search (Go)
648.exchange2_ s INT | Artificial Intelligence: recursive solution generator (Sudoku)
657.xz_ S INT | General data compression

603.bwaves_ s FP | Explosion modeling

607.cactuBSSN_s | FP | Physics: relativity

619.lbm_ s FP | Fluid dynamics

638.imagick s FP | Image manipulation

644.nab_s FP | Molecular dynamics

649.fotonik3d_ s FP | Computational Electromagnetics

Table 7.1: List of SPEC2017 Benchmarks Used in the Simulations, Including Their Types and
Associated Application Areas.
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7.1 Performance results of two-cluster microarchitectures

Figures 7.1 and 7.2 compare performance, in terms of instructions per cycle
(IPC), of the four steering methods we described, for the clustered microar-
chitectures (both 4-way and 8-way) against that of the baseline design. For
most of the benchmarks, we see a small performance degradation for all the
steering methods, which we expected due to the slower inter-cluster communi-
cation. We find that, from all the steering methods, the smallest degradation
is by “dependence-load-steering” model with average IPC reduction of approx-
imately 22% and for the both 2x2-way and the 2x4-way designs respectively.
In addition, for fourteen of all sixteen benchmarks the IPC degradation is ap-
proximately 16% for both widths, while for benchmarks like "x264","mcf" there
is a dramatic IPC decrease of approximately 50-60%. For the rest of the steer-
ing methods for the 4-way we observed a degradation of performance of 41%
for “round-robin”, 23% for “dependency-steering”, 28% for “loadcut”. For the
8-way designs, for the rest of the steering methods we observed a degradation
of performance of 49% for “round-robin”, 26% for “dependency-steering”, 38%
for “loadcut”.

As we can see, simpler methods like “round-robin” suffer from higher per-
formance losses because they are not aware of the dependencies between in-
structions, so frequent and unnecessary inter-cluster communications occur, as
dependent instructions enter different clusters. While “loadcut” performs sig-
nificantly better than “round-robin”, it doesn’t outperform “dependence-load-
steering”. This is expected because, although loads often create dependency
chains, other instructions —such as ALU operations or branches— can also intro-
duce dependencies. On the other hand, “dependence-load-steering” considers
all kinds of dependencies, and tries grouping dependent instructions as much as
possible to reduce inter-cluster delays. Also, ‘“loadcut” does not even guarantee
that all dependent instructions stay within the same cluster. If an instruction
depends on another one before the load that triggered the cluster switch, the
communication overhead will persist.
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Figure 7.1: Performance comparison for the 2x2-way clustered microarchitecture.
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Figure 7.2: Performance comparison for the 2x4-way clustered microarchitecture.
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7.2 Performance comparison of two and four cluster mi-
croarchitectures for the best steering

For the best performing steering method (“dependency-load-steering”) we then
proceed to compare the performance (in terms of IPC) between two and four
cluster designs. The smaller structures used in the cases of four clusters (like
the instruction queues of each cluster), typically result in shorter wire delays
and potentially higher clock speeds, which can help mitigate some of the per-
formance losses caused by inter-cluster communication.

For the 4-cluster designs we follow the same methodology, which is splitting
once more the instruction queues and the functional units. We will name the
4-cluster models 4x1-way and 4x2-way, because now we have four 1-way clusters
and four 2-way clusters respectively.

As we showed before, the best so far steering method was “dependency-load-
steering”. Figures 4 and 5 examine performance degradation in terms of IPC for
two and four clusters for both 4-way and 8-way models. We observe a further
reduction of the IPC, which we expected, because more clusters lead to smaller
structures, like the instruction queues, that fill-up faster, and operands end
up in different clusters than their dependent instructions more frequently. In
addition, as we increase the number of clusters in the system, the probability
that an instruction’s operands are located in a different cluster than the in-
struction that needs them also increases. As a result, more inter-cluster delays
occur, hence the IPC degradation. We calculate a 32% reduction of the IPC
for the 4x1-way compared to the baseline 4-way model, and 36% reduction for
the 4x2-way compared to the baseline 8-way model.

However, it is important to note that while IPC is reduced, the smaller
cluster structures are likely to achieve higher clock speeds due to shorter wire
delays and reduced critical path lengths. This increase in clock speed could
help balance the IPC loss, with a possibility of better overall performance for
our design.
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Figure 7.3: Performance (IPC) of “dependency-load-steering” for two and four cluster microar-
chitectures (4-way).
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Figure 7.4: Performance (IPC) of “dependency-load-steering” for two and four cluster microar-
chitectures (8-way).

95



7.3 Performance comparison of two and four cluster mi-
croarchitectures for the best steering and two-cycle
inter-cluster delay

Figures 7.5 and 7.6 depict the exact same designs as before, but with a two-cycle
inter-cluster delay. In our methodology, we monitor during simulation whether
the dependent instruction, which is awaiting the operand, gets "squashed'
—meaning invalidated before execution— following the 2-cycle inter-cluster de-
lay.

As expected, this leads to an even higher IPC degradation of approximately
55-59% for the two and four cluster design for an issue width of 4, and 59-64%
for an issue width of 8, compared to the corresponding baseline model.

Benchmarks like cactusBSSN, gcc, Perlbench, nab have a dramatic decrease
in IPC. A possible explanation for the observed IPC decrease in those bench-
marks is their frequent need for operand bypassing. These applications likely
rely strongly on continuous data processing for computations and data handling,
making them more susceptible to the added delay of the two-cycle inter-cluster
communication, compared to other benchmarks’ IPC that is less affected by
this additional delay.[18]
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Figure 7.5: Performance (IPC) of “dependency-load-steering” for two and four cluster microar-
chitectures (4-way) and two cycles of inter-cluster delay.
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IPC 8-way, Dependency-Load-Steering, 2 cycles delay
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Figure 7.6: Performance (IPC) of “dependency-load-steering” for two and four cluster microar-
chitectures (8-way) and two cycles of inter-cluster delay.

These results demonstrate that our steering method is highly sensitive to
inter-cluster communication delays, meaning that even small increases in de-
lay —from one to two cycles— can lead to significant performance degradation,
hence IPC decrease. This happens because instructions spend longer waiting in
pipeline structures like the reorder buffer (ROB) and issue queue for operands
from other clusters, slowing down overall throughput. As a result, the pro-
cessor wastes more cycles waiting rather than executing new instructions. The
longer delay also increases the chance that more speculative instructions will be
squashed, further reducing performance. Since speculative instructions depend
on getting results from earlier instructions, any extra delay keeps the execution
path uncertain for longer, causing more instructions to be thrown away due to
mispredictions.

The effectiveness of this steering method depends strongly on minimizing
communication delays because its ability to exploit instruction-level parallelism
is limited by how slow dependent instructions can access their source operands.
As a result, having as few as possible inter-cluster bypasses is crucial.

So, the introduction of a two-cycle inter-cluster delay induces stalls and
possibly more instruction squashing, indicating that a more efficient steering
mechanism, potentially including dynamic cluster assignment —choice of cluster
at runtime based on various of factors such as current dependencies, current
load of each cluster or estimated communication cost— could help mitigate per-
formance loss when we have higher inter-cluster delays, but this is beyond our
work.
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7.4 Inter-cluster bypass related stats

To better analyze the negative impact of inter-cluster delays on instruction
execution, we introduced eight distinct statistical categories to capture different
operand distribution scenarios. These categories count the number of source
operands an instruction has and how many of those operands are located in a
different cluster from the instruction, leading to an inter-cluster bypass. For
example, for a 4-cluster design “Category 2”7 means that the current instruction,
that has two source operands, is residing in cluster 0 but its operands are located
in a different cluster, like cluster 1 and cluster 2 respectively. By tracking these
cases, we can better understand how data dependencies across clusters affect
performance.
More specifically:

o Category 0: 1 operand, 0 in other cluster

» Category 1: 1 operand, 1 in other cluster

o Category 2: 2 operands, 0 in other cluster
o Category 3: 2 operands, 1 in other cluster
o Category 4: 2 operands, 2 in other cluster
o Category 5: 3 operands, 0 in other cluster
o Category 6: 3 operands, 1 in other cluster
o Category 7: 3 operands, 2 in other cluster

o Category 8: 3 operands, 3 in other cluster

Figures 7.7 and 7.8 present the average percentage of each statistical cate-
gory for each steering method. To produce Figures 8 and 9, we first collected
statistics for each benchmark, categorizing every instruction based on the num-
ber of its source operands and how many of them originated from the opposite
cluster (Categories 0-8). We make sure that when an operand is counted as
residing in a different cluster, the bypass truly happens, and the desired value
is not retrieved by the register file because the parent instruction is committed.
So we keep track if a register still holds a value or if it is added back to the
list of free registers to be reused by new instructions —which would mean that
the parent instruction is committed. For each steering method, we then com-
puted the average percentage of instructions falling into each category across
all benchmarks, by summing the counts per category and dividing by the total
number of instructions, to normalize the data and ensure a fair comparison
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across benchmarks. This approach highlights how different steering strategies
affect operand distribution and inter-cluster communication.

Most frequent categories related to inter-cluster bypass are categories 1, 3, 4.
Categories 0, 2, 5 are good outcomes in our designs, because it means that no
inter-cluster bypass occurred. At first sight we can see that those last categories
are barely noticed in the case of “round-robin” and this proves the worse overall
performance. We observe the appearance of category 1 for the steering methods
“round-robin” and “loadcut”, which makes sense since the other dependence-
related methods work really well with one operand instructions, because the
dependence is properly handled. In the few cases where we observe this behavior
in the dependence-related methods too, it is likely due to the issue queues of
the intended cluster being full, so the instruction is sent elsewhere. We can also
see category 3 appearing at the dependence-related steering methods, as well as
“round-robin” and “loadcut”. This was also expected since when it comes to the
dependence-related methods and an instruction has two operands, it is possible
that the instruction is steered to the cluster of the first one, while the other one
resides in a different cluster. This is a major limitation of this method, that it
doesn’t guarantee that the parent instructions will end up in the same cluster.
To avoid this, a “slice” related method could be implemented, as previous works
suggested. In this approach, instructions that are related through data would
be grouped together and sent to the same cluster, mitigating as much as possible
the appearance of such cases.
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Figure 7.7: Average of each of the statistical categories specified, for 2-cluster designs (4-way).
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Operands in Different Clusters - 2x4
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Figure 7.8: Average of each of the statistical categories specified, for 2-cluster designs (8-way).

7.5 Resource related stalls

To further analyze performance bottlenecks, we used gemb’s four statistical cat-
egories mentioned below, to capture different types of resource-related stalls.
These stalls occur when key hardware resources are unavailable, delaying in-
struction execution. By tracking these cases separately, we can better under-
stand which hardware limitations we introduced due to clustering. So we specify
the four different categories:

Category 0: Busy functional unit

Category 1: Full instruction queue

Category 2: Full register file

Category 3: Full load-store queue

During the simulations, we utilized gem5’s built-in statistics related to re-
source stalls, which capture events where instructions are delayed due to limited
hardware resources such as functional units, issue queue entries, or load/store
buffers. For example, “full instruction queue” stall for the clustered designs is
a counter that examines how many times both the instruction queues are full,
because as we already mentioned before, when an instruction is to be sent to a
cluster but its instruction queue is full, it is then steered to another available
one. In this case, if there is an available one, no stalls occur. But if there isn’t,
we do have a resource-induced delay.
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As we can see in Figures 7.9 and 7.10 for a 4-way and 8-way design respec-
tively, what is worth mentioning is the fact that we have more “busy functional
unit” type stalls, compared to the baseline model. This happens because when
an instruction is assigned to a cluster, only a subset of the total functional units
are available for use, which is half of the functional units of the baseline model.
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Figure 7.9: Average of each of the statistical categories specified, for 2-cluster designs (4-way).
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Figure 7.10: Average of each of the statistical categories specified, for 2-cluster designs (8-way).
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Chapter 8

Wider Cores

Over the past decade, CPU cores have grown significantly wider, both in terms
of the number of instructions they can decode per cycle and the number they
can execute simultaneously. A decade ago, high-performance CPUs typically
decoded up to four instructions and executed up to eight in parallel. In con-
trast, the latest processors have nearly doubled these capabilities. For instance,
Apple’s M4 processor, released in 2024, can decode up to 10 instructions and
execute as many as 19 simultaneously. Similarly, ARM’s Cortex-X925, also
launched in 2024, achieves a decode width of 10 and an execution width of
23. These processors are also capable of massively scheduling , between about
700 and 900 instructions out-of-order, pushing the boundaries of what modern
microarchitectures can manage.[19]

16 Bytes/cycle 64 Bytes/cycle
4 Ins./cycle 10 Ins./cycle
Frontend Frontend
Backend 4 Ins./cycle Backend 10 Ins./cycle
| Scheduler (~100 entries) | Scheduler (=500 entries) |
8 Ins./cycle ~20 Ins./cycle
i s o e e s e e e e e e e e e e e |
Widest CPUs in 2015. Widest CPUs in 2025.

Figure 8.1: Widest CPUs.[2]

In this chapter, we focus on the implications and design challenges of greater
issue widths. As CPUs continue to scale toward 16-way and beyond, we examine
how such widths can be supported effectively through clustered microarchitec-
tures and the steering mechanisms analyzed before.

Table 8.1 describes the baseline 16-way core we used for our simulations. For
the clustered designs, similarly to before, we split the instruction queues into
two or four, one for each cluster, as well as the functional units. Compared to
our previous cores, the 16-way issue design is scaled up to explore the behavior
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of extremely wide-issue architectures. Although the design parameters are not
necessarily reflective of commercial products, they are an applicable estima-
tion for evaluating future high-performance CPU trends. Following the same
methodology as before, we doubled the core resources relative to the 8-way is-
sue design. Specifically, the instruction queue (IQ) is expanded to 160 entries,
while the load and store queues (LQ/SQ) are increased to 64 and 96 entries
respectively. The reorder buffer (ROB) is scaled to 1024 entries, allowing the
processor to manage a very deep out-of-order execution window. The number
of functional units is also doubled to accommodate the larger issue width and
to ensure that the increased bandwidth is not affected by limited resources.
Similar to designs like Apple’s M4 and ARM’s Cortex-X925, as discussed by
Koizumi et al., rename and decode stages often become critical bottlenecks in
wide-issue architectures. To address this, our design maintains a rename and
decode width of 10, while allowing the execution width to scale up to 16.

In contrast to the earlier cores, the memory hierarchy in the 16-way design is
also enhanced, as we can see in Table 8.1, to keep pace with the higher demand
for data bandwidth and to minimize stalling due to memory latency. The
L1 instruction and data caches are each increased to 64 KB and made 4-way
set-associative. The L2 cache is 4 MB with an associativity of 32-way but in
addition with an L3 cache of 16 MB, shared across clusters, to reduce pressure
on main memory and accommodate larger working sets. The increased cache
capacity and associativity aim to reduce memory access latency and reduce the
likelihood of performance bottlenecks in memory-bound workloads.

Baseline 16-way Configuration
Component Specification
IQ 160
LQ/SQ 64/96
ROB 1024
INT/FP 560/664
L1-D 64 KB, 4-way
L1-I 64 KB, 4-way
L2 2 MB, 16-way
L3 16 MB, 16-way

Table 8.1: Baseline 16-way configuration.
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8.1 Performance of clustered 16-way designs

We will start by running the same SPEC2017 benchmarks, and more specifically
the SPECspeed2017 Integer and Floating point suites as before for 1 billion in-
structions with a 5 million warm-up. Figures 8.2 and 8.3 show the performance
results in terms of IPC for the 2x8-way —that is two 8-way clusters that ap-
proximate a 16-way centralized microarchitecture— and for the 4x4-way —that is
four 4-way clusters that also approximate a 16-way centralized microarchitec-
ture. In these simulations, we introduce both 1 and 2-cycle inter-cluster delays
respectively to model the latency of forwarding operands between instructions
residing in different clusters.
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Figure 8.2: Performance (IPC) of “dependency-load-steering” for two and four cluster microar-
chitectures (16-way) and one cycle of inter-cluster delay.

In Figure 8.2 we observe a performance degradation in terms of IPC across
both clustered designs due to the additional one cycle inter-cluster communica-
tion delay and we observe an IPC reduction of approximately 15% and 27% for
the 2x8 and 4x4 configurations respectively. Also for fourteen out of the sixteen
benchmarks, IPC is reduced by 9% and 20% for the 2x8 and 4x4 configurations
respectively, except from “x264” and “mcf” that a dramatic degradation over
40% is observed.

In Figure 8.3 we observe a performance degradation in terms of IPC across
both clustered designs due to the additional two-cycle inter-cluster communi-
cation delay, consistent with the expected impact of increased operand latency.
More specifically, when comparing the clustered configurations to their respec-
tive baselines we calculate an average IPC degradation of approximately 57%
for the 2x8 and 60% for the 4x4 configurations.
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IPC 16-way, Dependency-Load-Steering, 2 Cycles Delay
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Figure 8.3: Performance (IPC) of “dependency-load-steering” for two and four cluster microar-
chitectures (16-way) and two cycles of inter-cluster delay.

8.2 Observations

Interestingly, the IPC degradations observed in the clustered 2x8 and 4x4 con-
figurations are somewhat more moderate than those seen in the corresponding
4-way and 8-way clustered designs, which suffered more severe performance de-
clines, especially when we compare IPC degradations with a 1-cycle inter-cluster
delay.

This more moderate degradation in the wider clustered configurations can
be largely attributed to their greater issue width, which provides a broader
window for instruction scheduling and execution. A wider issue width effec-
tively enhances the processor’s ability to identify and dispatch independent
instructions, even when certain instructions are temporarily stalled waiting for
operands due to inter-cluster data transfers. As a result, functional units are
less likely to just wait instead of executing ready instructions.

Moreover, the increased instruction throughput in wider designs means that
while pipeline resources such as issue queue and reorder buffer (ROB) are also
enlarged, the likelihood that alternative independent instructions are available
for execution when dependent instructions are stalled, is increased. This helps
to smooth out the stalls caused by inter-cluster communication delays, leading
to relatively smaller drops in IPC compared to narrower configurations.

Nevertheless, despite the ability of wider clustered architectures to better
tolerate communication delays thanks to their larger issue widths and greater
instruction-level parallelism, the performance degradation remains a key con-
cern, especially as the inter-cluster delay grows from one to two cycles. The
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impact of such delays becomes detrimental in workloads with frequent data
dependencies.

These findings highlight the critical role of inter-cluster communication to
the overall performance, as well as the importance of designing efficient com-
munication mechanisms.
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Chapter 9

Conclusion and Future Work

9.1 Summary

In this thesis, we analyzed the critical sources of delay in wide-issue proces-
sors, focusing specifically on the challenges introduced by issue logic and data
bypass logic. These components are expected to become even more significant
bottlenecks in the future as issue widths and issue windows continue to scale.
To address these challenges, we introduced clustering as a solution, aiming
to maintain an effective issue width like that of a wide monolithic processor,
while benefiting from smaller, simpler structures that help preserve high clock
frequencies.

Several clustered designs were implemented with varying issue widths, dif-
ferent number of clusters, and multiple distribution (steering) methods of the
instructions and their performance was evaluated in terms of Instructions per
Cycle (IPC). We found that methods like Round-Robin, that alternate instruc-
tions between clusters, and Loadcut, that switch clusters every time a load
instruction occurs, suffer greatly from inter-cluster bypass delays —that is, by-
passes between different clusters that take longer to complete.

Our best performing method was Dependency-Load-Steering, that takes into
consideration the dependencies between instructions and the relative load of the
clusters. By aiming to group together dependent instructions the bypasses were
relatively less compared to other techniques. The IPC was decreased compared
to the corresponding baselines with the same issue widths (for all 4-way, 8-way
and 16-way designs).

Finally, when considering the potential clock frequency advantages of clus-
tering, our dependency-based clustered microarchitectures demonstrate the po-
tential to outperform the wide monolithic designs in overall performance.
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9.2 Future Work

For a clustered microarchitecture, managing inter-cluster communication is the
major challenge. By implementing various steering methods, each based on a
different criterion, we found that while the ones that track dependencies be-
tween instructions work better than other simpler ones like Round-Robin, or
methods like Loadcut, there is still a place for further investigation of how
to reduce communication latencies. In particular, dynamic steering techniques
proposed in previous studies -where instructions are not statically steered based
only on simple dependency checks, but the cluster is decided at runtime based
on factors like current dependency information, current load of each cluster,
and other heuristics- could be further optimized by developing more accurate
prediction heuristics for instruction dependencies. Such improvements could
help to minimize the performance penalties associated with inter-cluster com-
munication, but would probably add to the steering method’s complexity due to
the real-time decision-making mechanisms that will be used. In order for those
methods to be accurate, additional hardware structures like predictors, load
trackers, or even advanced bypass networks will be needed. Future work could
explore lightweight, low-overhead hardware, to ensure a total performance gain.

Another promising direction for future exploration is the configuration of
the clusters. In our work, we consider homogeneous clusters, with the ex-
act same functional unit configurations. More specifically, we use two or four
identical clusters across all designs and issue widths. However, other config-
urations could be explored, possibly with heterogeneous clusters, where each
cluster is specialized with a different mix of functional units specialized for par-
ticular types of instructions (e.g., clusters optimized for integer, floating-point,
or memory-intensive operations). Such specialization could potentially improve
performance by reducing inter-cluster delays and improving resource utilization.
Additionally, varying the size, number, or specialization of clusters dynamically
at runtime based on workload characteristics could be another promising re-
search direction.

Finally, the impact of wire delays between clusters could be also optimized.
As technology scales down and designs become faster, wire delays dominate
overall communication costs. Future work could investigate techniques such
as placing clusters physically closer together, especially those that frequently
communicate, and also using faster interconnect technologies.
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