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IlepiAnypn

Ot ynPlakég unoypadeg eival KPUMIOypaPikol PnXaviopol mou mapEXouv Evav Tporo
enaAnBeuong tng yvnoldtntag, g aKePAOTNTAG KAl TNG IIPOELAEUONSG £vOg WPNPLAKOU in-
vupatog. Ze aviibeon pe 1o povopeAég replBailov, ol IIOAU-UTIOYPadEG KAl Ol UIOYPAPES
KAt®@Aiou arattouv cuvepyaoia petal rmoAdaov uroypapoviev kabévag ard toug ornoioug
KATEXEL Eva PEPOG £VOG KOWOU 1810TIKOU KAE1H510U. O1 TTOAU-UTIOYPAPES KAl Ol UTIOYPAPES
Kato@Aiou eival erbupniég Aoye g audnuévng aopaldelag rou npooPEPouV o GUYKPLOT)
€ Tig urtoypadEg evog povo xprotr). Qotoco, yia va utofetnBouv tétola oxrpata o mpaypa-
TIKEG EPAPPOYEG, eival {WTIKIG ONPAciag va 1KAVOIT010UV KATTIOIEG TTIOAU ONAVTIKEG 1010TNTEG
TTOU VA KAAUITIOUV TI§ AVAYKES T®V EPAPHOYOV TOU MPAYHATIKOU KOOH0U, £ve Tautoxpovad
va eivat 600 10 Suvatov Mo ArodoTKA, £AAX10TOIOIMOVIAS TOV OYKO EIMKOWV®OVIAG Katl Tov
UTTIOAOY10TIKO (OPTO.

Ye autyv v dumlepatky epyacia pedetape Siadopa oxnpata moAu-unoypapov Kat
uroypad®v KAatw@Aiou, £otiddoviag oto KOPHPAT v unoypapov Schnorr. Efetdloupe a-
nielAég aopaleiag, oplopoug aopaldeiag os dradopetikd mepBaidovia KAl CUYKPivoupe ta
oxnpata petadu toug. Eruméov, oudntape epappoyeg Kat avaAuoulle paypatikd cuotpa-
1a Ota oroia Xprnotpornolouvial ti€tola oxnpata. EmmAéov, oxediaoupe éva mpotoKoAAo ie-
prtudi€ng (wrapper protocol) rou rpooBétet eupwotia (robustness) (6nAadn v eyyunon ot
t EVTipol UTIoYPAdOVIEG PITOPOUV VA TIAPAYOUV £YKUPL UTIoypadr) aKopd Kat eIl rapouciag
KAKOBOUA®V CUPPEIEXOVI®V TT0U Itpoottabouy va S1atapdfouv 10 TPO@TOKOAAO0) 010 Tpocap-
pootikd acpaAég (adaptively secure) oxrjpa vnoypadov katapAiou Sparkle+ oto acuyxpovo
niep1Bardov. Ovopddoupe auto 1o rpatokodro Sparkling ROAST (Bacidetal oto ROAST, 10
P®TOKO0AAO MEPITUANG Yia to oxnpa unoypapov FROST). ITapouociadoupe U0 ekboxEG Tou
Sparkling ROAST: 1 rpotn eyyudtdl eUp®OTia OTav UIApYouV ¢t EVIiiol UroypAagovieg Kat
anattei 1o oAU O(n?) ecwtepikég ouvVeSpPieg, Ve 1 SeUTePT EMITUYXAVEL EUPKOTIA HIE TO TIOAU

J@ + t éviipoug unoypagovieg avtl yua t (érou f

O(n) eontepikég ouvedpicg, aAdd amattel
etvatl o ap1Bpog 1wv kakoBouAwv pedav). Tédog, oulntape g to Sparkling ROAST pnopet
va erektaBel Kat oe AAAa oxfjpata pe akopurn neploootepPousg yUpous, apKel autd ta oxnpata

va unootnpidouv avayvepioeg anoyxopnoelg (identifiable aborts).

Agterg KAe1ba

Kpurmtoypagia, Ynplakég unoypadég, Ynoypadés katwdAiou, [ToAu-unoypadeég, umo-

ypagég Schnorr, Eupwotia os urtoypadeg katodAiou
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Abstract

Digital signatures are cryptographic mechanisms that provide a way to verify the au-
thenticity, integrity and origin of a digital message. Unlike in the single-party setting,
multi- and threshold signatures require cooperation among multiple signers each holding
a share of a common private key. Multi-signatures allow a group of signers to jointly
produce a compact signature, indistinguishable from a single-party one, thereby optimi-
zing space and verification efficiency. Threshold signatures extend this idea, enabling any
subset of signers meeting a predefined threshold (symbolized as t) to collaboratively gene-
rate a valid signature. Multi- and threshold signatures are desired due to their increased
security in contrast to single-party signatures. However, in order for real-world applica-
tions to adopt such schemes, it is vital that they follow some very important properties
that will cover the needs of real-world applications as well as being as efficient as possible
by minimizing the amount of communication and computation needed.

In this thesis, we take a look at multiple multi- and threshold signatures schemes
focusing on the domain of Schnorr signatures. We look at security threats, definitions
of security in different settings and compare schemes as we go along. We also discuss
applications and look at real-world systems where such schemes are used. Moreover,
we present a new novel wrapper protocol that adds robustness (i.e the guarantee that t
honest signers are able to obtain a valid signature even in the presence of other malicious
signers who try to disrupt the protocol) to the adaptively secure Sparkle+ threshold signing
scheme in the asynchronous setting. We call our wrapper protocol Sparkling ROAST
(it is based on the ROAST wrapper protocol for the FROST signing scheme). We look
at two versions on Sparkling ROAST : the first guarantees robustness when t honest

signers are present and needs at most O(n?) internal sessions while the second guarantees

J(=1)
2

of t (where f is the number of adversarial members). Finally, we discuss how Sparkling

robustness in at most O(n) internal sessions but requires

+ t honest signers instead

ROAST can be extended to other schemes with even more rounds, as long as said schemes

provide identifiable aborts.

Keywords

Cryptography, Digital Signatures, Threshold Signatures, Multi-signatures, Schnorr

Signatures, Robustness in threshold signatures
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Euyxaplotieg

Ba nbela ratapyxdg va euxaplotnom tov Kadnynt) K. Apioteidn Mayouptdn yua myv e-
miBAeyn autrg g SUMAGNATIKAG £pyaAciag KAl yia Vv eukdipia rmou pou édwoe va acyoAntw
€ €va TIoAU evBlaépov Kal evepyo KOPNATL TG Kpurttoypadiag. AKOUn, eEUXaplot® Toug K.
NikoAao Asovapdo kat K. Anunteto POTAKn yia r CUHHPETOXT] TOUS OTtnV TPIREAT] €§ETAOTIKT)
ermtponty). Emiong, 9a 116gda va euyapiotrjon v vroynea §18dkropa Mapiavva Zriupdkrou
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otyoupog o611 6ev Sa propovoa va METUX® T AMOTEAEONATA AUTHG NG epyaciag Xwpig v
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Ke¢palairo E

Extetapévn EAAnvikn HepiAnyn

Y10 mapov KepdaAalo akoAoubel pia ektetapévn eAANVIKL rTapouciact) ToU MEPIEXOIEVOU
autrg g dumdepatkng epyaciag. Ta unokepddata £xouv v idwa dopr) pe auvtr ng ay-
VAKIG €KO0XIG KAl O AVAYVOOTNG MTAPATIEPIIETAL OTA AVIIOTOlXa ONpeia Ing yla Oplopéveg

AeTttop€PElEG TTOU £X0OUV TTapaAnpOet.

1.1 Ymn66aOpo

HeRvaple pe pla €10ayyr) otg Pacikég £Vvoleg Katl ota anapaitnta spyadéia g ouy-
Xpovng Kpurtoypadiag 1mou arnotedouv 10 Jenpnuko uroBabpo yia Tig eMopeveg eVOTITeS.

H aogpdaleia kaBe kpurttoypadikou cuotrpatog kabopidetat and pa nmapdperpo aocpaieiag
x. T'a ) oupBoloroinon xprnoworoteital i evadikn (unary) avarnapdotaor 1° wg eicodog
o aAyopibpoug eve 1 tuxaia emAoyr) €vog OTOIXEIOU AIO KATMO0 METIEPACHEVO OUVOAO S
oupBoAidetat pe x i S. YmoBétoupe ot 6Aot o1 aAdyopiBpot sivatl mbavotikol Katl MoAU®-
vupikol (PPT) ektog av SnAdvetal S1adopeTiKA, Ve ATIOKAAOUHE APEANTEES TIS OUVAPTLOELS
ITOU PEI®WVOVIAL YPNyopotepa aro KAOs aviiotpodr MOAUGVULLKL OUVAPTNOL.

Kevtpikr) 9¢on oty Kpurroypadia KATt€Xouv 01 CUVAPTHOES OUVOYNG 1) CUVAPTIOELS Ka-
takeppatiopou (hash functions). Autég arotedouv pia AmelkOvion Ao £vav PEYAAo Xmpo
TIHOV OE £vav PIKPOTEPO KAl IPETIEL VA TTANPOUV CUYKEKPIHIEVEG 1810TTEG Yia va Ssmpouviat
aopaleig. O1 faocikég anmattroetg eival n aviiotaon oty €UPeEOT) IIPOEIKOVAG, deUTEPNG ITPOEL-
KOVAG KAl OUYKPOUOE®V. YTIAPXEL lEpap)Xia petaiy autav tov 1810t tev Kabag 1) 10Xupdtepn)
(avtiotaon ouyKpoUOoe®V) CUVETTAYETAL TIS AOBEVEDTEPEG.

‘AAAEG TIOAU ONPAVIIKEG £VVOLEG €lval TA 18eatd POVIEAA TTOU XPTOTOIO0UVIdAL OTIS ATlo-
8ei€e1g aopdlelag TV KPUITIOYPAPIKGOV MPOTOKOAA®Y. ZinVv rapovoa SUA@PAtiKy Xpela-
fopaote povo 1o Moviédo Tuyxaiou Mavieiou [4] (ROM) kat 1o Moviédou tov AAyeBpikaov
Opadaev [5] (AGM). 10 ipkdto, Je@pPOoUE OT1 01 CUVAPTIOELS OUVOYNG OUNIEPIPEPOVIAL OaAV
MIPOYPAPHATI{OHEVES TUXAIEG CUVAPTIOELS EVR 0T0 HeUTtepo anattoupe Kabes avtinalog (adver-
sary) Irmou Iapouctadel KATO0 ototxeio g opadag, va mapouotadel Kat pia avarapaotaot)
auUTOU TOU OTo1Xelou aro ototyeia mou £xet 1d6n det mponyoupéveg.

Ou ynouakég vnoypagég (digital signatures) rmap€yxouv 10xUpoug PNXaviopoug €ra-
Af)Beuong g aubevukOINTag £vOg PNVUNATOS. Xe €éva OXNHPd YPnelakev uroypadpov, Kabe
xprotng 1abetetl Eva {guyog KAEB1OV (Eva dnjooto kat éva 1810 TIKO) KAl UToypddel pnvupa-

1a € UTIOYPAdEG TTOU POVO £KEIVOG PITOPEl va Snpiioupyrjost aAAd ortoloodrmote popet va
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enaAnBevoel. Aépe Ot €va TETO10 oXnpa €xel v 1810tta g opbotntag (correctness) av
KAOe unoypadr) rou dnpoupyeital pe tipto tpomo yiveral arnodektr) arno tov ailyopldpo e-
naAnBevong. IToAU onpavikr 1610tta eivatl Kat 1 acpdaAela mou neprypdPeral PEo® g
1610ttag aduvapiag mlaoctoypagnong (unforgeability) n omoia ekppadet tv aduvapia evog
aVTIIAAOU va TTapayel UToypadEg akopa Kat av £xet ot §1a0eor) Tou unoypapEg dAAev pn-
vupatev g ermdoyrg tou (EUF-CMA). Ot opiopoi tou natyviou tg aodpdAeiag yia ynplakeg
uroypaeg @aivetat otnv eikova 3.1.

'Eva oxnpa ynelakov unoypapov mave OTto OToio €XEl YIVEL EKTEVIS €peuva eivatl ot
Ynolakeg vnoypapég Schnorr [6] mou eival n pn-6iadpactikr) €kdoxr] 10U MPOIOKOGAAOU
tautorntoinong Schnorr [7] xpnowornowwviag v petatporny) v Fiat-Shamir [8]. To oxnua
unoypadrg Schnorr Baoiletat oe tpeig paoceg: ) @don g 6éopeuong o €va tuxaio ototyeio
(commitment), t @don ng rpoxAnong (challenge) xati ) @don g anoxkplong/andvinong
(response). H aogdleia tou oxnuatog PBaociletal o 6uokodia tou mpoBANpPATog €UPEONS
dlaxkpitou AoyapiBpou oto Moviédou tou Tuyxaiou Mavteiou.

'Evog KAao1kOg tpormog yia va Siapotlpactei éva puotiko eivat n pébodog tou Shamir
[1] ou PBaocietal oty 1W610tTa g rapepBoArng Lagrange evog rmoAuwvupou. To puotiko
Kodkonoieital @g 0 otabepodg 6pog evog moAuwvupou. O1o1061)moTe UTIOOUVOAO E£MTAPKOUG
HeyEBoug PImopel va avaKataoKEUACEL T0 APXIKO PUOTIKO pe T Porbeia tov ouviedeotov
Lagrange.

H Sewpnuky Bdong aocpdieiag 6Aav 1oV naparndave epyaleiov Bacidetal oe unoloytott-
KEG urtoBéoelg. H YnioBeon Atakpitou Aoyapibpou dndavetl ot §o0€viog evog Tou ototyeiou
g”, eivatl unodoyilotikda aduvato va avaxktnBei 1o x. Mia ekboxr) g rponyoupevng unobeong
etvatl n AAyeBpikn) €kdoor) tou [IpoBArpatog tou Evég EmmAéov Aoyapibpou (AOMDL) otnv
ortoia o avtiraldog £xoviag rpooBaon o MePLOPIOPEVO aplBo epwINoe®V o€ pavieio Aoya-
pibpev, dev pmopel va umoAoyioel EP1OCOTEPOUSG AoyaplBpoug épa amnod autoug rou €Aabe
aro 1o pavieio. Zug ewkoveg 3.3 kat 3.4 napouciadovial 01 0p1opol TV MPOBANUAT®V OTIg

ortoieg Baoidoviat ot Vo autég unoBEoeg.

1.2 TIloAu-unoypadig Kat Ynoypagég KatwgpAiou

H ouvepyatiky) unioypadr) Pnvupdtev and roAAoUg CUPHETEXOVIEG EL0AYEL I0XUPOUG Un-
XavViopoug aopdAelag. ZUYKEKPIIEVA, UITAPYXOUV 8U0 £vvoleg: o1 OAU-unoypadeg (multisig-
natures) kat o1 urioypadeg katadAiou (threshold signatures). Itig mpoteg, 6Aa ta péAn piag
opadag opeidouv va cuppetaoyxouv otn dadikaocia vnoypapng ya va rapaxOet pia eviaia
unoypadr). Avtifeta, otig deutepeg POVO £€va UTTOOUVOAO arto t péAn apkel yla tv mapayeyn
NG UTIoypadr)g aKOPA Kl av 0 OUVOAIKOG aplBpog pedav g opadag eivat n. 100G Katl 1oV
80 poviedwv eival n mapaywyr] uroypadpaov otabepov peyeboug, ave§dptnta arno tov aplfpo
1OV CUPHPETEXOVI®V, MOTE va dlatnpeital ] arodotkotta Kat 1 oupBatotnta J1€ Td POVOUEAT)
OXNPata Urnoypapov.

H erukowvevia petadl tov CUPPEIEXOVIOV 08 autd ta oxfjjiata vldoroteital péow aube-
VTIKOTIOINPEVOV KavaAldv dnAadn umobetoupe ott Kabe prjvupa mou arnootéAAgtal ouvo-
devetal ano pa Pneplakou uroypapn £vog Hovopeloug oxnuatog yia va Staogpadietal n

AKEPAIOTNTA KAl 1] AUBEVTIKOTNTA T®V PNVURATOV. € OPLOPEVEG TIEPUTIWVOELG ATTatteital évag
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nu-€prmotog ouvioviotg (coordinator) yia i daxeipion tov emkowveoviov o oroiog Sev
propei va mapaBiacet v aopdieia tou oxnpatog. Kad'oAn w didpkreia tg ouykekptpévng
Sumlepatikng Sewpoupe o011 KABe oxnua da £xel €vav ouvioviotr).

Ta oxfpata oAU-unoypapov Kat Unoypadov KatadAiou arnotedovvial and akoloubisg
aAyopiBuev rou extedouvial os yupoug. Kabe unoypdoav tpéxet toug alyopibpoug, aviai-
Adoel 1a anapaitnta pnvopata pPe ta UroAoirna PeAn Kal dlatnpel e0IEPIKI) KATAOTAOT PE
161wTikEG TIANpodopieg. ‘'Otav odorkAnpwbei n Siadikaoia, ta teAikA pnvupatd rmou ovopalo-
VIal EMPEPOUS UTIOYpadEG ouviudalovial yia v apaywyr) g TeAIKNG unoypadng n oroia
ernaAnBevetal OTIOG Pa KAVOVIKY uroypadr) pe Bdon to dnpooio kiedi g opadag.

Ia v eyKuponta £vog TET010U OUCTHLATOG artatteital opBotnta: epocov 6Aot o1 CUpPHE-
TEXOVIEG AKOAOUBO0UV Tijlla T0 TPWIOK0AAO, 1) UTIoypadr) rou rapdyestat Sa eivatl éykupr).
E&ioou onpavukr) eivat ) acpdAeta tou oXatog rou rpocopolwveTdl e To reipapa/na-
1yvio mAaotoypdgnong uroypadrg amo aviinalo mou eAeyxel aplOpo HeAdvV PIKPOTEPO ATIO
10 anattoupevo KatwdAtl. Ot oplopoi tev natyviov opbotntag Kat pun-rmiactoypadnong ep-
@avidovtat oug ekoveg 4.1 kat 4.2 avtiotoya.

Znv tpéxouca SUMAOUATIKI] £0TIAJOUHE O OXPATA MTOAU-UIOYPAPOV KAl UTIoypad®V
KAt®@PAIOU OToU 1) TeAKI] umoypadr] tng opddag poladel aroAuta Pe T POVOUEAL] UIto-
ypaon Schnorr. Tétola mPpOIOK0AAA TIPOCPEPOUV cuPBATOTTA e ouotpata eraAnbsuong
kAaowkoUu Schnorr. Emiong, pe autov 1ov tpomno évag orotoodrnote enainfsutng propet
va ernaAnBevoet v unoypadr) Xepig va yvepidet av porjAbe anod évav unoypdadovia 1 aro
opada.

H yprion 11010V oxnpatev £€Xel eneKtadel onpaviika Petd v Ul00£1nor 1oV Uroypadov
Schnorr oe cuotpata 6nwg to Bitcoin [9] avuikadiotdvrag nadaidtepeg peBodoug 6nwg 10
ECDSA. EnutA¢ov, opyaviopoi oniwg o NIST £xouv ekppdoet emionpo evdlapépov yia v
TUTIONOINOT) TOV CUCTNHATOV UTIoypadpov katapAiou [10] , [11] yeyovog rou unoSnAwvet n
onpaocia toug oe PeAAovikeG Urtodopég. TIpaKTKEG EPAPOYEG TETOIWV TEXVIKOV MEPLAQL-
Bavouv v aocpdiela PYnplakmv IopToPoAlrdv, I XPIon TOUG O apXEG TTOTOI0iNnong, oto
nedio TOV YEVVIIPIOV TUXALOTNTAG KAl O€ NAEKIPOVIKEG YN POPOPIES.

Ta oxfjpata moAU-unoypad®v Kal UTIOypadpeVv KATa(AIoU Propolv va ouykplBouv peta-
&U toug Kat va a§lodoynBouv pe BACT OUYKEKPIIEVEG METPIKEG UIMOAOYIOTIKLG KAl EMTIKOIVR-
ViakAg roAuridokotntag. Ot Bacikoi afoveg Toug oroioug XpnoIonolovupe reptAapBavouy
1oV ap1Bpd TV YUP®V EMKOWVAVIAG, TOV OUVOAIKO OYKO Petadidopevav dedopévav kat Toug

ATAITOUPEVOUG UTIOAOY10110UG avd unioypadovia [12].

1.3 IIpoxrAnoeig wg nMpog tnv Acopalieia twv IIoAu-unoypadpov

rat Ynoypagpov KatwgpAiou

Mia amo 11§ onpavilkOTePeg MPOKANCELS TTIOU AVIIPEIOIOUV Ta CUVEPYATIKA OXNpatd
Schnorr unoypagaov sivat to rpoBAnpa ROS 1o omoio £xel ouvdebel oteva pe v aocpaieia
AV urioypapav [13]. O opilopog tou mpoBArjuatog spgavidetal oty eiowon 5.2. Av
£vag avtiradog propet va ermAvcoel pia t€rola e§iowon, T0te anoktd t) duvatot)ta va mia-

oroypagnoet £+ 1 unoypadEg £X0Viag EMKOWVAVIOEL PLOALS £ pOPES 1€ TIIIOUG UTIOYPAPOVIES.
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Mia Baoikr) texviknig eivatl o I'evikeupévog AAyopiBpiog FevebAiov tou Wagner [14] mou
YEVIKEUEL TO KAAOKO IpoBAna yeveBAiov oto ipdBAnpa k-sum 6ndadn g eupeong k otot-
Xelwv (to kabéva amo pa Siapopetiky Aiota) ta omoia abpoidouv oto pndév. O aAyopidpog
opyavavel ta debopéva oe §Evipa Kal METUXAIVEL ONPAVTIKT] BEATIOOT MTOAUTTIAOKOTNTAG ATIO
aAdeg texvikeég. H texvikr) auty) prnopet va mpooappootet kat oto ripdBAinpa ROS.

To PBaowko mpodBAnpa tng emibeong tou Wagner eivat n ekOetikr] MOAUMAOKOTNTA NG
Kabiotoviag €101 v aneldn neploplopevn. Qotoco, oto [15] mapouoiadetal évag moAumvu-
KOG aAyopiOpog yia v erniduor tou ROS o oroiog avérpsywe mmoAAd oxrpata aodpaleiag.
H Baowkr) 16¢a eival n XaAdp®or ToU mEPIoPIopoU 1ou £€0ete 0 aAyopiOpog tou Wagner ott
n tedevtaia ypappn tou mivaka mpérnet va eival otabepry. H gukoAia umoloyiopou autnig
g Avong £0soe oe apgobrtnon akoun Kat arodeifelg aopaielag MPOTOKOAA®V rou dev
Baoidovtav apeoa oto poBAnpa ROS.

'Eva Xapaktnplotiko napddeiypa ivat 1o oxnpa uroypapov rou ovopddoupie Insercure-
Musig [16] rou Sewpoutav acpadég péxpt tote. Qotooo, rap OAn v anodeign aopAaieiag
mou eixe, anodeixOnke euddwto oe dUo Sapopetikeg embeoelg. H mpwtn ftav n emnibeon
Drijvers [17] ev® 1 deutepn) elval dpeoco anotédeopa g MOAUOVUNIKGG eniBeong oto ROS.
Kat o1 §U0 autég embéoeig xpnotponolovv noAAanAég mapaAAnieg ouvebpieg unoypapng pe
TOUG TIJ10UG UTIOYPAdovieg Kal eKpetarleuopeveg v edeubepia emdoyng g déopeuong
Schnorr, cuvBétouv pa mAaotr) vrioypadn n oroia eradnOsvetal wg £yKupr).

H arokdAuyn autev tov aduvapiev arnokaAuye coBapd opAdjiata oty apXiKr arnodeiln
aopdAeiag tou InsecureMusig, ) oroia Baci{otav onv vrtoBeon OMDL (One-More Discrete
Logarithm). H pebododoyia tng anddedng enérpere otov avtirado urepBoAikd roAAég rpo-
oBdoeig oe pavieio Siakpitou AoyapiOpou, kablotoviag v anodden averapkr). Ermrméov,
arodeixbnke o011 Kapia yveorr] texvikry Sev propei va arobeifel v aopdalela tou Inse-
cureMusig uro 11§ Mapadoo1aKEG UTTOAOYI0TIKEG UTIODE0ELG, KaB10T®OVTag T0 OXIHA MTPAKTIKA

avaopadeg.

1.4 Ta oxfpata MuSigl rat MuSig2 xkat texvikéG aogpalAeiag

Yla TauTtoXpOVveEG OUVEdpieg

H éAAewypn aopdAeiag tou peotokoAdou InsecureMusig oe tautoxpoveg ouvedpieg 061yn-
O€ 0TV avartudn 1oV petokoAAev MuSigl kat MuSig2 ta ornoia ermAvouy 1o rpoBAnpa Xe-
pig va duoiadouv v npaktukonta. To Baociko rpoBAnpa tou InsecureMusig Bpioketat otnv
mAnpn eAeuBepia mou H1abétel o emub€pevog otov IPoodloplopd g opadikng déopeuong
g unoypadng Schnorr emIpeénovidag 10U va nmpooappodel tig Seopevoelg Tou apou mpwia
apAtnEoet T1Ig SEOPEVOELS TOV TIHIOV OUPHETEXOVI®V. AUO KUPIEG TEXVIKEG £X0UV TTpotabel
Yla TV QVTIHETOITON AUTOU TOU TMPOBANIATOG: 1] £10AY®DYI] EMMITAEOV YUPOU SE0IEUONS KAl 1|
xprion Seopeutikov napayoviev (binding factors) rnou e§aptwviatl aro oAeg 1ig deopevoeig.

To npwtokoAAo MusSigl [18] Baoiletatl otnv nmpwtr TEXVIKIY NTPOCHETOVIAG EITITAEOV YUPO
Katd Tov omoia o1 CUPPETEXoVieg anooteAdouv pia deopeuon yia ) deopeuon Schnorr pv
MV eavepOooUV. AUTO ATIOTPEIEL ETUOECEIS OAV AUTEG IOV epappootnkav oto InsecureMusig

kaBag omotadrmote avakoAouBia odnyel oe akvpworn tng ouvedpiag. To MuSigl arotelet
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pa aopadr ekboxr) tou InsecureMusig npooBétoviag évav €§tpa yupo ardd Swatnpwviag
napopola dour).

AvtiBéteg, 10 MuSig2 [19] utobetel Vv TEXVIKT] TOV SEOPEUTIKOV ITAPAYOVIOV EITITPEITO-
vtag aodadn napaywyr uvnoypapwv oe duUo yupoug. Kabe ocupperexwv dnpioupyet duo
Tuxaieg tipég, Kat i teAikr) 6éopevon g opddag e§aptratat arod OAeg tg Snpooionopéveg
Seopevoeig péow evog kabodikou mapayovia. O mapayoviag autog s§acpadilet ot kapia
b6¢éopeuorn dev propel va opiotel ek OV MPOTEP®V, Kablotaviag tig embéosig tuniou ROS
pn epappoopeg. H xprion 6Uo txaiov tipev ava unoypadovia eivat Kpiowr, Kabwg 1
Xpron piag povo tuxaiag tpng Ya enérperte otov ermuBépevo va e§adeiyet g emidpaor) tou
deopieuTikoU apayovia.

Zwnv teA1kn) oUuyKkplon, 1o MuSig2 uneptepel @g IPog TV MIPAKTKOTNTA, KaO®)g arattet
Atyotepoug yupoug adAnAenidpaong - KPioHo XAPAKINPIOTIKO Yld ATIOKEVIPOPEVA Siktua
KAl EPAPHPOYEG HE TIEPIOPIoPEVO aplBud punvupdtev. H emdoyr) petadu v dvo egaptatat
and Tg andaitjoelg 10U CUCTHIATOS G TTPOG TV acpaleld, To latency kat toug urtoAoyioti-
KOUG IOPOUS TOV HEPROV IMTOU OUPPEIEXOUV. XIta oxnpata 6.1 kat 6.2 meprypadoviatl pe

Aerttopépeta ot adyopiBpot tov SUo oxnpdatev.

1.5 Katavepnpévn Mapaywyn KAeidiov yua Ynoypagpég Katw-
@Aiou

H Baowkr) 6iagopd petaly tov moAu-uroypadov Kal 1oV Uroypadov Katd@Aiou sivat
0Tl 0T OUCTHHATA TV IIPOTOV ATAlteital 1) oUpBoAn] OA®V TV PEADV £V OTIS UTIOYPAdES
KAT®@PAIOU apKel 1) OUPPETOXT t A0 Ta CUVOAIKA N PEAD. AUTO @OTO0O0. €10AYEL TNV AVAYKD
Y1d e181KEG TEXVIKEG MTAPAY®YNS KAEB10V 0ote KAOe UTTOOUVOAO t aSlOTIOT®V PEAGV VA PITOpel
va rapaydyet EyKupn uroypadr) rnou va eradnOsvstatl and 1o povadiko dnpooto kAedi g
opadag.

Ia wmv vdomoinon auvtng g 1810tTag, XPnolponolouvial PtokoAla diapiolpacpou
puotikev (secret sharing), pe yvoototepo to Shamir Secret Sharing [1]. Ze autd to oxnpa,
£€va PUOTIKO PO1pAdeTal 0e N CUPHETEXOVIEG PEO® EVOG TTOAUGVULIOU Babpou t — 1 kat €tot,
KABe umoouvolo peyéBoug t pmopel va 1o avakatackeudost. Qotoco, to Shamir Secret
Sharing anattei évav éproto Sraxepiloty (trusted dealer) katu pn emBupntd. I'a va a-
nopeuxOel n eprImotooUvn otov dlaxelPloTr] IIPOTEivovIal KAl IEPypAdovIdl oXpatd Oneg
1o Feldman’s VSS ka1 1o Pedersen’s VSS nou nipooBétouv pnxaviopoug enaAffsuong mg
0pBoNTAg TRV empépoug peptdimv wote kabe xprjotng va propet va PeBaimbet ot €éAaBe 10
0®OoTo Pepidlo amo tov daxeipioty.

Xpnowpornowwviag patokoAda Siapoipacpou, napouctialoupe tov adyopiBpo DKG tou
Pedersen [20]. Ze autdv tov adyopiBpo, o kabBévag amod Toug N CUPHETEXOVIEG EVEPYEL WG
dealer tpéyovtag 10 61k6 Tou VSS. Ot TeAKEG TIHES TV PEPIDInV KAl TO KOO PUCTIKO TIPOo-
KUITIouv amno v d0poton 1oV TIHeV 0Aev 1ev empépoug VSS. To npotokoldo PedPoP [21]
aroteAei pia enéktaor) tou Pedersen DKG nipooOtoviag arodei§eilg katoxng (proof of poces-
sion) yia v armotpor) embécewv rogue-key. Kat ta §Uo autd npewtokodAa anartovv §Uo

yupous. Ta npotokoAda meptypadovial otny ekova 7.2.
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[Tapdro ou o adyopiBpog Pedersen DKG sivat Aettoupyikog kat anodotikog, dev Bacilet
Vv aopdaldela 10U og Karotla urnobeor. Auto akpiBog ekpetadAeutnkay ot Gennaro et al. [22]
evrornidoviag pia ermibeon empporg Katd v ornoia £€vag KakoBoulog CUpPHETEX®V PITopel va
EMINPEACEL TNV KATAVOHT TOU TeAkoU Snpooiou kAelSiou napabiadoviag €10t v 1810tta g
opoopopdng katavoprg. H emibeon avty Baociletal oy wkavotnta tou emubépevou va
ATIOKAEIEl CUPPETEXOVTIEG APOTOU €XEl TIapatnpnoelg tg deopevoelg toug. Ia v emiduon
10U TIPOoBANIATOG, O1 TIPONYOUHEVOL OUYYPAPEIG TIPOTEIVOUV [i1a TPOIOIIOEVT] EKOOXT) TOU
Pedersen DKG mou xpnowpornotiei to Pedersen VSS yia va artokpuyet to 6npooto kAeidi kata
1 61apKed TOU TIPOTOKOAAOU.

TéAog kortoUpe pia Kavoupyla epyaocia [23] rmou katamdvetat pe tov opiopo 1810t tev
aopdAelag ya toug adyopiBpoug DKG kat opidel dopka otoixeia mou mmpoodEpouv autég
11§ 1610teg. Kamoiog mou 9¢Aetl va dnpioupyrjoet évav véo aiyopiBpo DKG apxket va xpn-
owomnonoet ta §1kd tou embupntd Sopikd otoixeia mou akoAouBouv karoileg 1610tnteg. H
aopdaAeia tou tedikou DKG nipoépyetat aneubeiag amod v acpadeid 1oV SOPIKOV OToXeiwv.

Autr) 1 KATAOKEUN Qaivetal otnv ewkova 7.4.

1.6 Ta oxnpata unoypapodv KatxdpAiou FROST kat FROST2

X1 OoUVEXElA EMKEVIPOVOPAOTE Ota oxhpata urnoypadov katwdAiiou FROST [21] kat
FROST2 [24]. Ta oxfjpata ng owoyévelag FROST amotedouvial and 6Uo yupoug Orou
0 IPWTOG YUPOG £ivatl ave€aptntog tou PNvUPatog mpog Uroypadr] Kat CUVEN®SG UItopel va
TIPOEIECEPYAOTEL TIPOTOU eKVT|Oe1 KATola ouvedpia.

H Baoikn apxr) mice aro ta §Uo oxrpata sivat n e§acpdlion ot t ard ta n péAn propouv
va OUVEIOPEPOUV ETIHEPOUG UTTOYpadES yia va rapaxBel pla €éykupn opadikr) unoypadn.
QOot000, 1 111 ATOCTOAT EMPIEPOUG UTTOYPAPNS ATIO0 KATIO10 PEAOG 1) 1] artooTtoAr) AavBaopévng
unoypadrg odnyei oe anotuyia g ouvedpiag. Autd kabiotd ta oxrjpata FROST pn evpwota
(non-robust) mpdypa mou onpaivel 0t 0g MEPIMIOOT CUNREPIPOPAS TIOU ATIOKAIVEL ATIO TO
MPOTOKOAAO, 1] CUVEDPIA TIPETIEL VA ETTAVEKKIVI|OEL.

To npewtokodAo FROST2 armotedei napaddayr tou apyxikou FROST pe BeAtiotomnoinon
otV MOAUTIAOKOTNTA UmoAoylopwv. H xkupla diadopa eivat ot 1o FROST2 ypnowportotet
évav Koo SeopeUTIKO Mapayovia avii yla {eEX®Plotoug yla Kabe cuppetéyxovia (mpaypa
rou oupbBaivel oto FROST). H avdaluon moAurAokotntag rmou 51e§ayoupie amnodeikvuel ot
10 FROST2 srutuyxdvel JikpOtepn UTIOAOYIOTIKY] EMMBAPUVOT AvA CUPHETEXOVIA, PEIDVOVIAS
1oV apibpod v vpwoewv oe SUvaurn rou eivat i rmo kootoBopa mnpagn. Ta &vo oxnpata
napouctadovratl oty eikova 8.1.

It ouvéxela avaduoupe v €vvola g eupwotiag (robustness) oe unoypadég Katw-
@Aiou. 'Eva eUpnoto oxnua mpemnet va eyyudidl iy mapayayn unoypapng otav undpyouv
TOUAAX10TOV t TI101 CUPHETEXOVIEG, AKOIA KAl AV Ol UTOAOLTOl IIpoortabouv va dtakoyouv
) Sadikaocia. 1o aocuyXpovo PoViEAo emikoveviag (r.x oto 61adiktuo), omou dev urapyxet
EYYUN 01 XPOVIKIG AIOKP101G, 1] euprotia dev eivat autovontn. I'a autdv tov Adyo dnpoup-
y1Onke 1o mpwtokoAdo ROAST [25] 10 omoio arotelel éva potokoAAo “miepttuAypa” yupw
a6 1o FROST kat ripoodepet eupmotia oto acuyypovo riepiBaildov. To ROAST tpéxet mapdl-

AnAeg ouvedpieg FROST otig oroieg KOs CUPHETEX®V OUVOOEVUEL TNV EMPEPOUS UIIOYPADT
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ToU pe €va véo {euyog mpokaboplopévav deopieuoewv (presignature share). O ouvioviotig
Sratnpel Aioteg pe toug “arorp1BEvieg” Kal “Hn ArokpiBEvieg” CUNPETEXOVIEG KAl LEKIVA
véeg ouvedpieg pe 6ooug éxouv aviarorpBei. To ROAST e§aodalilet 011 petd ard 1o rmoAu
n—t+ 1 ouvebpieg FROST, pia touddyiotov 9a emtUuXel KAl CUVETIHG 11d Opadiky) uroypa-
1) 9a dnuioupynOei. H kevipikn eyyunon tng eupwotiag tou ROAST Bacidetat otnv i6idtnta
g avayvepiong anoyxopnong (identifiable abort) rmou napéxetat and 1o FROST, 6nAadn
TV 1KAvOTNTd TOU CUOCTIHATOS VA EVIOITi{el Pe akpiBela mo10g CUPPETEX®V CUPIEPIPEPETAL

KaxkoBoula (otéAvoviag AavBaopévr empépoug unoypadr)).

1.7 ’'Evvoleg acpalerag yia Ynoypagég KatwgpAiou

'Onwg nipoavagépapie, n Baocikny évvola acpaldelag yia 0da ta oxnpata Pyndplakev u-
noypagov sivat n évvola g aduvapiag miactoypaenong (unforgeability). Zta oyxnpata
UIoypAaP®V KAt®@PAioU Orou Urtdpxel EmKovavia petadl tewv peddv, n epunveia tng aduva-
piag mAaotoypagnong ivat 6t évag avtinaldog, Sev Propet va mapaydayel unoypapeg akopa
Kat av eAéyXel OUVOAKA t — 1 urnoypagovieg. AUt 1) £vvold IIPOKELTAL Yid TNV artapaitnin
Baowkr) aroden rnou ogeidet va £xel Eva oxnpa unoypapev KatwdAiou oote va dewpeitat
aogpalég, Hev elval Opwg 1) Povr). Xe auto 10 Kepddalo e0t1adoupe og TIANPECTEPES KAl ITO -
Kp1Beig évvoleg aopadeiag kat oulntoulie Tl £160ug aopadela ETUXAivOUY ta IpoavapepBivia
oxnpata pe BAon autég TG EVVOLEG.

H Baowkr) epyacia otnv oroia Baocwopaocte eivat n [26] rou okomo eixe va mapouctdoest
dradopetika ertineda aopaieiag yla ta pepkag P 61adpaotikd oxnpata urnoypadov Kate-
@Aiou. Autd eival oxfjpata 6Uo yupev OToU 0 TIPWIOS YUPOS UITOPeil va eKktedeotel PoTou
Eekroel pa ouvedpia piag kat eivat ave§aptnrog tou pnvopatog. Edikdtepa, ta oxnpata
auta Xepidoviatl otig mapaKat® QACELS: TApaywyr) pokaboplopéveyv deopevuoenv (presigna-
tures) aro T0UG CUPPETEXOVIEG, EKKIVNON TG oUvedpiag amo Tov ouvioviotn Je pia aitnon,
ATTOOTOAT] EMMPEPOUG UTIOYPAPROV A0 TOUG UTIOYPAPOVIEG KAl OUVEVROOT] TOV UTTOYPAPOV O
Hpia TeAdkr) unoypagn aro Ttov GUVIOVIOTY).

X1 OoUuVEXEla TIAPOUCIAdeETal 1 1epapyia IMEVIE EMMESOV yid Vv €vvold Tng Jn miAacto-
ypaonong onwg npotabnke aro toug Bellare et al [26]. Ta enineba avta (TS-UF-0 ¢ng
TS-UF-4) Baociloviat otov apiBpd kat v moootntd g CUPHEIOXNG TOV TiN®V OUPHETE-
XOviwv og pla ouvedpia unoypadng. Le xapndotepa enineda (. TS-UF-0) pa uvnoypagr
Yewpeital aorpavin (trivial) epocov o aviinalog anékinoe £€0t® Katl pia ermpépoug unoypa-
@1 ya 1o prjvupa (autd to eminedo eival 10o6Uvapo pe v mePInI®on Omou O Aviirnalog
eléyxel t — 1 unoypagovieg) eve og avatepa ertneda ermrpénetatl peyadutepn evedi§ia otov
TPOTIO HE TOV OTI010 0 avtirnalog propei va avaptyvusl attfjpata ano d1apopeg ouvedpieg.

[Tépa OpwG Ao TG £VVOIEG TG ATTALG [ TAACTOYPAPN oG, UTIAPXEL KAl 1] £€vvold TG 10X U-
pNg 1n miaoctoypdgnong (strong unforgeability) n onoia amnattel 611 aképa Kat av o aviina-
Aog €xel AdBel €ykuprn) umoypadr) yla KATo0 prvupa, v propet va va dnpioupynoet véa,
Slapopetikn) uroypadr) yia to 610 prjvupa. Zto rmlaiolo tev unoypapov katedAiou egetalou-
pe tg dadopég autng g £vvolag Evavil otd POVOPEAL oxfpata aAld Katl TG IIPOKATOE1g
TIOU IIPOKUIITOUV Ipoortabwviag va opicoupe autnyv v évvolda. TéAog, mapouotddoupe Tov

0OP1OUO AUTHG TG £vvolag Yid UTIoypadEg KatwdAiou onwg opidetal oto [27] orou o oplopog
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etvatl Baoiopévog otig evvoleg aopaleiag yia tupAeg vroypadég (blind signatures). ITio ou-
YKekplpéva, Baoidetat oty nmpoogyyion g "pilag akopag pn miactoypdgpnong” (one-more
unforgeability) n oroia {ntd and tov avtinado va dnUoOUPYIHOEL TTEPIOCOTEPES UIOYPAPES
amno TG ouvedpieg IOV eKTEAEOTNKAVY.

H évvola tng 1oxuprg pn mlactoypddnong yia uroypadeg katapiou dev eivat avegap-
T Ao ta ponyoupeva emineda acpadeiag apou anodeikvustal oto [26] o1l ouvenayetat
mv aopalrela srunedou TS-SUF-2. Zinv ewova 9.3 mapouoiddovial ta mévie naiyvia a-
opaleiag omwg opidovtatl oto [26] eved otnv ewkova 9.5 spgavidetatl 1o aiyvio 10XUpHg PN

mAaotoypagpnong.

1.8 Zxnpata unoypadpav xKatwdAiou £vavrtt IIpocappooTirAOV

Emtifépevaov

Zuveyi{oviag, OUYKEVIP®OVOHAOTE OtV AOPAAEld TOV OXNHIATOV UIIOYyPaAPaV KATOGAIoU
otav ot ertiBépevol Asttoupyouv npoocappootikd (adaptive security), 6ndadn propouv va
EMAEYOUV avd omoladrIiote OTIYHn TOU MP®IOKOAAOU 1mota peAn Sa dapbBeipouv (puoika
AAl UTTAPXEL 0 TIEPIOPIOHOS TV t — 1 ouvoAikda avurddev). H péxpt twpa avaduon tng
dimlepatikng Paociddtav oe otatikoug emrtifépevoug ol oroiot ermAéyouv ta Siepbappéva
HéAn €€ apxng. Qotdoo, n acPpdldela evaviia o MPOCAPIIO0TIKOUG AVIITAAOUG ival TTOAU 1o
peadlotikr) 18laitepa 0 MPAYPATIKA KATAVEPNPEVA CUCTHHATA, OTIOG (PAiveral KAl Ao Tig
npodlaypaEg mou anattouv ta oXnpata ya ta onoia evéiadeépetatl o NIST [11]. Zuykekptl-
Héva, og autd 10 KePAAalo TEPLypAPoupe T §1apopEég TNG OTATIKAG KAl IIPOCAPHOO0TIKNAG
aoddlelag kal tapouoialoupe §Uo oxnpata mMou MANPOUV TI§ ATAITN0Elg TG deUtepng: 10
Sparkle [28] kat to Glacius [29].

To Sparkle+ [28] fjtav 10 mpeto oxnua Schnorr unoypadpov kat®dAiou pe arnodedety-
Pévn poocappootiky acpaAela oto Movtédo tou Tuxaiou Mavteiou. H Baowkrn) tou dopur) ivat
arAn kat Supidel 1o MuSigl (puowkd n Baoikr) diadopa sivar ot 1o Sparkle eival oxrpa v-
oypapoV KatwdAiou kat o1 roAu-unoypadov). Extedeital oe 1peig yupoug ot oroiot eivat
AarootoAr] HeOPEVOERV OTIS TUXAIEG TIHEG, ATIOKAAUYN TRV TUXAI®V TIHGOV TTou 9a Xprotjio-
nowBouv ot dopevon Schnorr kat mapaywyr smpépoug vnoypapav. H aodpdleia tou
Sparkle egaptatat and tov apdpod wv dtepbappéveav ouppetexoviov. £1o ROM to oxnpa
elvat aopadég yia éag t/2 Sapbopég ever av petaBoupe oto AGM, to Sparkle sivatl mArpwg
npooappootkd acpadég. H drapopd autr) éykettal oto yeyovog ot otnv arodegn oto ROM
etval n anapait n xpnon tou forking lemma [30] kat €tot Sev priopovpe va eipaocte
olyoupot 0Tl 0 TIPOCoAPPOoTIKOG avtiradog da diadOeipet toug 161oug urtoypadovieg otig SUo
€KO0XEG TOU TIPAOTOKOAAOU.

Edv S¢doupe va anopuyoupie 1o AGM kat va €X0Upe €va AR P®S ITPOCAPHOCTIKO OXNHd,
TMPETIEL va OTPEYOUHE v Tpoooxr] pag oto Glacius [29] mou wg pelovéRTaA €vavit ToU
Sparkle sivat nj au€norn g oAurdokotrag. To Glacius ermtuyyxdvet A png POCApPooTL-
KN aopdAela yuati faocidetl i duokoAia oto npoBAnpa anogaong Diffie-Hellman 1ou eivat
pia pn 6adprotiky) unobeon évavit oto OMDL nou ypnowonoteital oto Sparkle. To npw-

1O0K0AAO aUTO arote)deital arod rEvie YUPoUg KAt E10AYEL EMITAEOV EAEYXOUG OUVEIELAG PETASU
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TOV CUPPETIEXOVIOV IT.X £AEYX0S OCURP®OVIAG TOV VIEWS TOU IMPOTOKOAAOU KAOe cuppetEyova.
Xapaxktnplotikod tou Glacius eivat ot moAAardol yupot Seopevoemv 1potol anokaAupOouv
o1 TIANPoopieg 01 OIT0i01 UAOTIO0UVIAL PE ATIOOTOAT| TIHAOV OUVAPTIOE®V CUVOYNG.

Ty ewkova 10.3 yivetrat piia oUyKp1on tov U0 autov MPOTOKOAAGV Pe BAoNG TIG YVOOTEG
petpkég. H ouykpion Seixver 6t 1o Sparkle eivat rmio eAadpu 1000 o€ €rKOVOVia 000 Kat
oe urnodoylopd eve to Glacius arattel replocotepoug yUpoug adAd mPoodEpel KAAUTEPES

EYYUN0£1G aopalAelag.

1.9 Sparkling ROAST: 'Eva £e0p®0To NP TOKoAAo yia to Sparkle+

Zto tedeutaio KUPo RePAAalo g SUMAOpPATIKAG epyaoiag, rapouotadoupe ) 61Kt pag
KAtaokeur), 1o rmpotokoAdo Sparkling ROAST, pia véa mpodtaorn rmou €xel @G oTtoX0 va Ipo-
oB¢oel eupwotia (robustness) oto TPV YUPKV oXnpa uroypadpov katwdiiou Sparkle+. Xe
avtifeon pe 1o ROAST, 10 omoio €xet oxediaotel yla oxnpata duo yupov onwg to FROST, 10
Sparkling ROAST eivat €161k KATAOKEUAOHEVO WOTE VA EMEKTEIVEL TNV €vvold TG EUPKOTIAG
0€ 110 oUVOETa oXNPata UIoypad®V ITOU AdrtoTEAOUVIAL A0 MEPIO0OTEPOUS YUPOUG.

'Onwg avagépape otav napouotalajpie 10 mpetokoAdo ROAST, ta oxfjpata unoypadpov
Kat@pAiou ev yével mAoyouv amo v éAAeyn eupwotiag, 6ndadn g 8ontag mou opilet
0Tl 600 UTIAPYXOUV TOUAAX10TOV t Ti[1101 UITOyPAdOVIES, T0 MTPWIOKOAAO TIPETEL va PItopel va
0AoxAnpwBeil emtuxwg. E1dkotepa, pag evdiEpepe va mpocbécoupe authv v 1610tnta oto
Sparkle+ 0to acUyXpovo POVIEAO emKoveVviag orou (untevoupidoupe) n povn eyyunon givat
Ot ta pnvupata 9a @rdoouv olyoupd OTOV IIPOOPIOHO TOUG KATIOld XPOVIKY OTYHI] X®PIg
VA UITOPOoULE vad TEPLOPICOULIE TO XPOVIKO d1dotnpa petady tng armootodng Kat tng aApigng
(latency).

O ouvtoviotrg amnotedel Baowko otoixeio tou Sparkling ROAST kabwg eivat urevbuvog
yla ) daxeipton moAdarmiev napdAAndeov cuvedpiov tou Sparkle+ nmapakolouBwviag tnv
npoodo kABe cupperexovia Kait dHiatnpwviag mAnpodopieg yla tnv Kataotaon (state) tou
KAOe ouppetéxovia. Ot KaAtaotdoelg Xopidovial oe KAtaotdoelg avedaptnieg twv ouvedbptl-
wv (session-independent) kat kataoctdoelg e81kég pe t1g ouvedpieg (session-specific). ITio

OUYKEKPLIEVA, Ol KATAOTAOELG £ivat:

e Responsive : O unoypd¢pev ivat £101110G va CUPHETACXEL O P1a ouvedpia.

e Blocking2 : O unoypadmv dev £Xel ATTOKAAUWEL TV TIPOEIKOVA TG CUVAPTIONG OUVO-

yng (preimage) otov deutepo yupo tou Sparkle.

e Pending : O unoypd¢av £xel oteldel TV MIPOEIKOVA KAl AVAHPEVEL TOUG UTIOAOIITIOUG

UTIoyPAdoVvieg g ouvedpiag va kavouv to id1o.

e Blocking3 : O uroypdgov 6ev €xel APAdSDOEL TNV EMPIEPOUG UTIOYPA(PT] OTOV TPiTOo
YUpo tou Sparkle.

To daypappa katactaoewv tou Sparkling ROAST @aivetat oty ewwova 11.2.

'Onwg kat oto ROAST, ¢tor kat oto Sparkling ROAST, kevipikr) teXvikr) eival to piggy-

backing 6nAadr) n anootoAn véwmv presignatures (otnv mnepirmworn tou Sparkle ta presig-

natures eivat tpég ouvoyng) yia peddovikég ouvebpieg £tot Mote va e§aodpariletal out givat
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TIAVTOTE £TOHO1 va TIPOoTeBoUV 08 KatvoUpyleg ouvedpieg OUCIAOTIKA PEIDVOVTAG TOUG YUPOUG
tou Sparkle amo tpeig oe &vo.

[Ma va propei o diaxelpiotrg va ekvdet véeg ouvedpieg, opeiret va Siatnpet éva ouvoAo
PotentialSigners. Tlapouoiadoupe dUo Siapopetikég mapaldayeg 10U oUVOAOU aUToU, KAOE

Hla pe ta 81kd g MAEOVEKTIATA KAl IIEPLOPIoHOoUG:

e [TapaldAayn eSiowong 11.1: Ermrpérel oe CUPPIEIEXOVIEG VA CUHETAOX0UV OF VEEG OU-
vebpieg apkel va pnv eivat oe kataotaoelg Blocking2 ) Blocking3 oe karnota ouvedpia.
Aut) n mapaddayr) emtuyxavet oe f - (n — t +2) = O(n?) (6rou f eivat to mAneog tev
61aBeppaiveov CUPHETEXOVI®V) OUVEDpPieg apKel va UTIAPYXOUV t TIH101 CUPHETEXOVIEG

avapeoa otoug mn.

e IMTapadAayn sdiowong 11.2: Te oxéon pe tnv mponyoupnevr egioworn PotentialSigners,
ermA£ov neplopidet 1ov apiBpd 1V oUVESPIOV OTIG OTIOIEG 0 CUPHETEXOVIAG UITOPEl va
etvat oe Pending kataotaor). 'Etot eplopidet tov kabe avtinado oe 6U0 ouvedpieg rat
OUVETIOG TO TIPWTOKOAAO erutuyxavel oe 2 - f + 1 = O(n) 1o oAu cuvedpieg (6mou f eivat
10 TIAN00¢g tev S1abeppaiveov cuppetexoviov). To pelovéktnpa eivat ot mpounobetet

L(t=1)

TOUAGX10TOV —5— + t £vavil eV t TG MPONYOUHEVNG MEPIMI®ONG.

Ta va arodei§oupe v opboétnta kat v avekuxota ou Sparkling ROAST xpnopo-
moupe éva sryeipnpa neplotepwva (pigeonhole principle) mapopoto pe avtd tou ROAST

[25] apou pwta arodeifoupe mapopoieg 16101eg pe autég rou rapouctaloviat oto ROAST.

'Eva akopia mMAEOVEKTN A TG KATAOKEUNG 11aG £1vatl 1] EMEKTACTHOTTA TG O€ MTPOTOKOAAA
aKOpA IEPLO0OTEPRV YUPMV, APKel aUTd va £€X0UV TV 1810TTa TG avayvepioting arnoxopn-
ong (identifiable abort). ITapadsiypa anotedei 1o pwtokoAdo Glacius [29] ou neprypdpou-

€ OTO TIPONYOUHEVO KePAAALO.

1.10 Zupnepaopata Kat MeAdovuikeg IIposrtaocelg

Ka®'0An ) &idpkela authg g SmAepatkng epyaciag avadubnkav oxrpata IToAu-
unoypad®v Katl unoypadev KatwdAiou turnou Schnorr. Avalvoape emBéoetg, areldég,
OpPlOPoUS aoPAldelag, oUYKpivape 1010TnTeg KAl OXHPATA £ve METUXAPE KAl €va VEo evdia-
(PEPOV EPEUVITIKO AMOTEAEOHA, TO TIP®TOKOAAO Sparkling ROAST.

Qg PeAAOVTIKEG TIPOEKTAOELG, OPeiAOUE PUOIKA va £€XOUE KATA VOU TI§ ATIAIT|CELS TOU
NIST yia unoypadég katwdAiov [11]. 'Etor Aowtdv napatnpoupe 61t peddoviika oxrjpata
MPETIEL VA £€XOUV (Kat va ouvdudalouv) apketeg embupntég 1610tnteg wote va ulobetnBouv oe
TMIPAKTIKEG £PAPOYES (TT.X EUPWOTiA, TPOCAPIOOTIKY] AOPAAELd, ATTOSOTIKOTNTA).

TéAog, Srakpivoupe €va ouyKeKplévo onpieio ou Asinetl and ) BBAloypadia kat autd
etvat n dnuioupyia evog blind Schnorr threshold oxnuatog vnoypagov rmou va aviexet otig
ermbeoeig ROS.
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Chapter a

Introduction

2.1 Motivation

In the digital age, the integrity and authenticity are foundational pillars of security in
al kinds of applications like communication and finance. Cryptographic signatures have
long been instrumental in guaranteeing these properties by enabling message authenti-
cation and verification in a mathematically rigorous way. Among these, digital signatures
based on hard mathematical problems (such as the Discrete Logarithm Problem) have
stood the test of time for their simplicity and provable security properties.

Traditional, single-party signature schemes, while effective, are often insufficient in
distributed or high-stakes environments where trust cannot be centralized. Multi- and
threshold signature schemes address this limitation by distributing signing capabilities
among multiple participants. Multi-signatures allow a set of users to jointly produce
a single, compact signature while threshold signature schemes enable any subset of
size t out of n participants to generate a valid signature, offering fault tolerance and
decentralized trust.

Such schemes are especially relevant in real-world applications such as securing
blockchain transaction, certificate authorities, distributed key generation protocols and
other multi-party computation applications. The practicality of such schemes relies not
only on their cryptographic soundness against adversarial behavior in a concurrent set-
ting but also their efficiency and other properties like robustness.

The Schnorr signature scheme with its simplicity and efficiency has emerged as a well-
studied foundation for building both multi- and threshold signature schemes. However,
as implementations evolve to support multiple signers new vulnerabilities and perfor-
mance challenges emerge. Notable, attacks such as rogue-key attacks [16], the ROS
attack [15] and the Drijvers attack [17] highlight the subtle pitfalls in protocol design,
particularly in a concurrent setting where an adversary can open multiple signing ses-

sions at the same time.

2.2 Contributions

This thesis conducts an in-depth study of multi- and threshold Schnorr signature

schemes, looking at their security guarantees, performance trade-offs and assumptions
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that underlie model signature schemes. We then survey prominent multi- and threshold
schemes, examining their algorithmic designs and properties and comparing them to one
another. We pay particular attention to the threat landscape, exploring vulnerabilities in
schemes that were initially considered secure [16]. Our focus then shifts to the MuSig
[18], [19] and FROST [21] , [24] protocol families to look at secure constructions of multi-
party signing schemes and look at the trade-offs in communication complexity and round
efficiency. We also look at schemes that provide security against adaptive adversaries
like the Sparkle+ [28] and Glacius [29] schemes as well as different properties such as
robustness [25] .

Building on this groundwork, we introduce Sparkling ROAST, a novel robust wrapper
protocol designed to enhance the Sparkle+ threshold signature scheme by adding robust-
ness to the protocol. Two variants of Sparkling ROAST are presented: one prioritizes
minimal honest signer assumptions with quadratic overhead in internal sessions, while
the other reduces session complexity to linear at the cost of increased honest signer re-
quirements. These constructions exemplify a practical and scalable solution for achieving

robust threshold signing in adversarial, decentralized environments.

2.3 Outline of the thesis

This thesis is structured as follows:

In Chapter 2, we present the necessary cryptographic preliminaries and assump-

tions.

e In Chapter 3, we introduce the foundational definitions and properties of multi- and

threshold signatures.

e In Chapter 4, we look at security threats for multi-party signing schemes looking at

how specific attacks were able to break a scheme that was considered secure.

e In Chapter 5, we look at the MuSig schemes (MuSigl [18] and MuSig2 [19]) dis-

cussing how they avoid concurrent attacks and comparing them to each other.

e In Chapter 6, we transition over to the threshold setting by looking at some Dis-
tributed Key Generation (DKG) algorithms which are needed for threshold signa-

tures.

e In Chapter 7, we introduce the state of the art FROST schemes [21], [24] and the
ROAST protocol which adds robustness to them [25].

e In Chapter 8, we look in much more detail at the unforgeability notions that exist

for threshold signatures.

e In Chapter 9, we survey two adaptive secure schemes : Sprakle+ [28] and Glacius
[29].
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e In Chapter 10, we introduce our new wrapper protocol which adds robustness to the

Sparkle+ threshold signing scheme (we call this wrapper protocol Sparkling ROAST).

e In Chapter 11, we conclude the thesis with reflection on our contributions and

directions for future research.
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Chapter E

Background

In this chapter, we present some necessary cryptographic tools and definitions which

will be used in later sections. We use the notation from [28] throughout this chapter.

3.1 Preliminaries

3.1.1 General Notation

Let x € N denote the security parameter and 1” be its unary representation.

For a non-empty set S, let x i S denote sampling an element of S uniformly at random
and assigning it to x.

Let [n] denote the set {1,--- ,n} and [0--: n] represent the set {O,--- , n}.

Let PPT denote probabilistic polynomial time. Algorithms are randomized unless explicitly
noted otherwise. The set of values that have a non-zero probability of being output by an

algorithm A on input x is denoted by [A(x)].

Definition 3.1. Negligible Functions
A function negl : N — R is called negligible if for all c € R, ¢ > 0, there exists kg € N such
that negl(k) < %for allk e N, k > k.

Group Generation. Let GrGen be a polynomial-time algorithm that takes as input a security
parameter 1™ and outputs a group description (G, p, g) consisting of a group G of order p,

where p is a k-bit prime and a generator g of G.

3.1.2 Hash functions and Idealized Models

Hash Functions. Hash Functions play fundamental role in modern cryptography. They
map elements of a set with a large number of elements to another set with a smaller number
of elements. These functions are of the form H : X — Y,|X| > |Y| and Y is a finite set. Due
to the fact that X is a larger set than 'Y, it is obvious that some elements of X will be mapped
to the same element in Y. In general, hash function must have some desirable properties

in order to be considered secure. Such properties are:

e Pre-image Resistance: Given a hash value y € Y it is computationally hard to find
x € X such that H(x) = y.
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e Second Pre-image Resistance: Given an element x; € X and its hash value H(x;) €
Y it is computationally difficult to find element x; € X such that H(x;) = H(xg).

e Collision Resistance: It is computationally hard to find two distinct elements x;, Xy €
X such that H(x;) = H(xy).

There is a certain hierarchy in those three properties ; namely a hash function that is
Collision Resistant is also Second Pre-image Resistant, and a hash function that has the
property of Second Pre-image Resistance also has Pre-image Resistance. Equivalently, a
hash function that is not Pre-image Resistant cannot be Second Pre-image Resistant and
also if it is not Second Pre-image Resistant then it is impossible for it to be Collision Resistant.

From now on, when we refer to hash functions we will assume that they are Collision
Resistant and we refer to them as "Cryptographically Secure Hash Function”. An example
of such function could be one from the SHA family [31].

Random Oracle Model [4]. The random oracle model (ROM) is an idealized model that
treats a hash function H as an oracle in the following way. When queried on an input in
the domain of H, the oracle first checks if it has an entry stored in its table for this input.
If so, it returns this value. If not, it samples an output in the codomain of H uniformly at

random, stores the input-output pair in its table, and returns the output.

Algebraic Group Model [5]. The algebraic group model (AGM) is an idealized model that
places the following restriction on the adversary. An adversary is algebraic if for every group
element Z € G = (g) that it outputs, it is required to output a representation d = (ap, a, - )
such that Z = g® [] Y{*, where Y1, Yo, -- € G are group elements that the adversary has
seen thus far. Intuitively, this captures the notion that an algorithm should know how it

computes its outputs from the values it has received as input so far.

3.1.3 Digital Signatures

Digital signatures are cryptographic mechanisms that provide a way to verify the authen-
ticity, integrity, and origin of a digital message or document. They are the digital equivalent
of handuwritten signatures or stamped seals, but much more secure and based on mathe-

matical algorithms.

Definition 3.2. Digital Signatures
A digital signature scheme consists of the polynomial-time algorithms (Setup, KeyGen, Sign, Verify)
defined as follows:

- Setup(1™) — par: On input a security parameter 1%, this algorithm outputs public

parameters par (which are given implicitly as input to all other algorithms).

- KeyGen() — (pk, sk): This probabilistic algorithm outputs a public key pk and secret
key sk.
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- Sign(sk, m) — o: On input a secret key sk and a message m, this algorithm outputs

a signature o.

- Verify(pk, m, ) — 0/1: On input a public key pk, a message m and a signature o,
this deterministic algorithm outputs 1 (accept) if o is a valid signature on m under pk;

ekse, it outputs O (reject).

A digital signature scheme must be correct. It is said to be secure if it is existenstially

unforgeable under chosen-message attacks (EUF-CMA).

Definition 3.3. Correctness
A digital signature scheme (Setup, KeyGen, Sign, Verify) is correct if for all security param-

eters k € N, all key pairs (pk, sk) € [KeyGen()], and all messages m, we have:

Pr [Verify(pk, m, Sign(sk, m)) = 1] =1 (3.1)

Definition 3.4. (EUF-CMA)[32]
We define the EUF-CMA game:

MAIN Game;EJS'SCMA(K) 059" (m)
par « Setup(1*) Qm < Qm U {m}
Qmn <0 o « Sign(sk, m)
(pk, sk) « KeyGen() return o

(m*, %) & A% (pk)

return O if m* € Q,,
V Verify(pk, m*, 0*) # 1

return 1

Figure 3.1: The EUF-CMA security game for a digital signature scheme DS =
(Setup, KeyGen, Sign, Verify).

The Game;UgéCMA gives to a PPT adversary A access to a signing oracle 059" (m) allowing

him to get polynomial-many signatures of the (unknown to him) secret key sk. The adversary
wins the game if he is able to produce a signature on any message m* for which he has not

queried the signing oracle.

Let the advantage of an adversary A playing the EUF-CMA game GameglugéCMA as

3

defined in Figure 3.1, be as follows:

AdvEESMAGe) = ’Pr |Game5 B MAGe) = 1” (3.2)

A digital singature scheme DS = (Setup, KeyGen, Sign, Verify) is existentially unforge-

able under chosen-message attacks if for all PPT adversaries A, Adv;L’JgéCMA(K) is negigible.
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3.1.4 Schnorr Identification Protocol

Let G be a cyclic group of prime order p with generator g.

The Schnorr Identification Protocol [7] is a Zero-Knowledge protocol involving a Prover and a

Verifier. In this protocol the Prover proves to the Verifier that he knows the discrete logarithm

x of a group element X € G without revealing any information on the value of x.

The steps of the protocol are the following:

. $
1. Commitment phase : The Prover samples a random value r « Z, and calculates

his commitment R = g" which he sends to the verifier.

2. Challenge phase : The Verifier samples a random value c i Z,, which he sends to

the Prover.

3. Response phase : The Prover calculates his response to the challengec, z=r+c- x.

R
4. Verification phase : After the Verifier receives the response z, he checks if g = R-X°.

If the equation holds, then he accepts ; otherwise rejects.

Intuitively, the Schnorr Identification Protocol has zero-knowledge since the response z is

a line equation with gradient the challenge. However, since the verifier does not know the

value r , it is impossible for him to find x. The security of this protocol relies on the Discrete

Logarithm Assumption which we discuss later in this chapter.

Prover

R=g", TiZq

Verifier

Y.

$
2y

<
«<

z=r+c-x

Figure 3.2: The Schnorr Identification Protocol.

3.1.5 The Fiat-Shamir Transformation

Y.

?
gz:R'XC:(—

The Fiat-Shamir transformation [8] turns an interactive ).-protocol into a non-interactive

proof system by replacing the verifier’s random choice of ¢ with ¢ = H({P}) where H is a
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hash function and {P} is the set of public information of the protocol which the verifier has
access to. Hash functions are treated like Random Oracles (we are working in the ROM)
and therefore we consider the output of a hash function to be random. By doing this, we
can turn interactive proof systems non-interactive ; these new proof systems can be used
as signatures. An example use case of the Fiat-Shamir transfomation is turning the Schnorr
Identification protocol into a digital signature scheme, the very well-known and studied

Schnorr signature which we describe next.

3.1.6 Schnorr Signatures

Definition 3.5. Schnorr Signatures [6]
The Schnorr signature scheme consists of polynomial-time algorithms (Setup, KeyGen, Sign, Verify),
defined as follows:

- Setup(1™) — par: On input a security parameter 1*, run (G, p, q, g) < GrGen(1*) and
select a hash function H : {0, 1}* — Z,. Output public parameters par < ((G, p, g), H)

(which are given implicitly as input to all other algorithms).

- KeyGen() — (pk, sk): Sample a secret key x i Z, and compute the public key as
X « g*. Output key pair (pk, sk) « (X, x).

- Sign(sk, m) — o: On input secret key sk = x and a message m, sample a nonce
$
r < Z,. Then, compute a nonce commitment R < g', the challenge ¢ < H(X, m, R)

and the response z « r + ¢ - x. Output a signature o < (R, z).

- Verify(pk, m, o) = 0/1: On input a public key pk = X, a message m and a signature
0 = (R, z), compute ¢ «— H(X, m, R) and output 1 (accept) if g = R- X° ; else, output O
(reject).

It is clear that the Schnorr signature scheme is derived from the Schnorr Identification
protocol with the use of the Fiat-Shamir transform. In more detail, instead of having a
verifier provide a challenge c to the Prover, we create the challenge ¢ by hashing all the
public information of the protocol (that is the public key X of the signer, the message m to be
signed and the commitment of the protocol R). This way, any public verifier who has access
to the message m and the signature o = (R, z) can check the validity of the signature. The
Schnorr signature scheme is secure under tthe discrete logarithm assumption in the ROM
(Random Oracle Model) [33].

3.1.7 Polynomial Interpolation

A polynomial f(x) = ap+aj - x+--- a; - x* of degree t over a field F can be interpolated by
t+1 points. Let S C [n] be the list of t + 1 distinct indices corresponding to the x-coordinates
x; € F,i € S of these points. Then the Lagrange polynomial L;(x) has the form:

X - X

L= ] ==

jesjzi X T
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Given a set of t + 1 points (x;, f(x;))iet+1], any point f(x;) on the polynomial f can be

determined by Lagrange interpolation as follows:

F0) = )" f(x0) - Lixe) (3.4)

k€S
Definition 3.6. Shamir Secret Sharing [1]
Shamir secret sharing is an (n, t)-threshold secret sharing scheme consisting of algorithms

(IssueShares, Recover), defined as follows:

- IssueShares(x,n,t) — {(1,x1),---,(n,xz)}: On input a secret x, number of partici-
pants n and threshold t, perform the following. First, define a polynomial f(Z) =

X+ay-Z+ag-Z%+ -+ a_,-Z"! by sampling t — 1 coefficients at random:

$
ap, -+ ,a;1 < Zp. Then, set each participant’s share x;,i € [n], to be the evalua-
tion of f(i):
X=X+ Z aj-ij (3.5)
Jjelt—1]

Output {(i, x;)} ie[n] -

- Recover(t, {i, x;}ics) = L/x: Oninput threshold t and a set of shares {(i, x;)}ics, output

L ifSZ [n] orif|S| < t. Otherwise, recover x as follows:

X e X (3.6)

where the Lagrange coefficient for the set S is defined by

=] lJTJ (3.7)

JESj#i

3.1.8 Additive Secret Sharing

While Shamir secret sharing and derived constructions require shares to be points on
a secret polynomial f where f(0) = s, an additive secret sharing scheme allows a set of a
participants to jointly compute a shared secret s by each participant P; contributing a value
si such that the resulting shared secret s = } ic[4] Si, the summation of each participant’s
share.

Additive Secret Sharing is very useful when a set of participants want to create a joint

secret s and do not trust a single party to create that secret.

3.2 Assumptions

3.2.1 Discrete Logarithm Assumption (DLOG)

Definition 3.7. Discrete Logarithm Problem (DLP)
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Let G be a finite group of order p and g one of its generators. Given h € G find x € Z,, such
that g* = h.

Definition 3.8. Discrete Logarithm Assumption (DLOG)
Let the advantage of an adversary A playing the discrete logarithm game, Game® as
defined in Figure 3.3 be as follows:

Advfg((;c) = |Pr [Game%(;c) = 1]| (3.8)

The discrete logarithm assumption holds if for all PPT adversaries ‘A, Adv%(rc) is negligible.

MAIN Game%(r)

(G, p,g) « GrGen(1"™)
X g Zp, X<g*
x' — A(G.p.9).X)
if X' =x

return 1

return O

Figure 3.3: The discrete logarithm (DL) game for adversary A.

3.2.2 Algrebraic One-More Discrete Logarithm Assumption (AOMDL)

Definition 3.9. (Algebraic) One-More Discrete Logarithm Problem [19]

Let G be a finite group of order p and g one of its generators. Givent+1 values Xo, Xy, - , X
and the ability to make t queries to a discrete logarithm oracle O% find xy, x1.,- -+ . x; such
that g% = Xi,i € [0, . t].

Definition 3.10. Alegbraic One-More Discrete Logarithm Assumption
Let the advantage of an adversary A playing the t + 1-algebraic one-more discrete game,

Gamel;1 (i), as defined in Figure 3.4, be as follows:

Adv'aemdle) = |Pr [Gamegl'aomdl(n) = 1]| (3.9)

The algebraic one-more discrete logarithm assumption holds if for all PPT adversaries A,
Adv;l'aomdl(;c) is negligible.
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t+1- a omdl

MAIN Game () O0UX. a.{B},)

(G, p,g) « GrGen(1"™) .
/1 X =g ] X

Q<0 i=0
q<0 return L if g=1t
for i € [0..t] do ge—q+1

X; s Lp, X;— gt
A 4 9 x—a+Xoxp

OIXi] « x
X — (x0,...,x) return x
X (Xo.. .. %) x « dlog(X)
x' .?lodl((Gr, p.9).X) return x
if x' =X

return 1
return O

Figure 3.4: The Algebraic One-More Discrete Logarithm (AOMDL) game. The difference
between the OMDL and AOMDL games are highlighted in gray. The key distinction is that
in the AOMDL game, the adversary can only query its discrete logarithm oracle on linear
combinations of its challenge group elements whereas in the OMDL game, the environment
must return the discrete logarithm of an arbitrary group element. dlog is an algorithm that
finds the discrete logarithm of an arbitrary group element X base g.
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Chapter

Multi- and Threshold Signatures

In this chapter, we introduce the notion of multi-party signatures as well as threshold
signatures. We describe the algorithms and properties they should hold. We also present
some applications for such schemes. Due to the focus of this thesis being Schnorr signatures
; we discuss their advantages over other multi-party signature schemes. We follow the
notation of [29] for defining multi- and threshold signatures as well as the game definitions

Jor Correctness and Unforgeability properties.

4.1 Multi- and Threshold Signature Schemes

4.1.1 Multi-signatures

Multi-signatures protocols, first introduced in [34] allow a group of signers (each pos-
sessing its own private/ public key pair) to jointly produce a single signature o on a message
m. A trivial way to transform a standard signature scheme into a multi-signature scheme
is to have each signer produce a stand-alone signature for m with its private key and to
concatenate all individual signatures. Howeuver, the size of the multi-signature in that case
grows linearly with the number of signers. In order to be useful and practical, a multi-
signature scheme should produce signatures whose size is (ideally) independent from the

number of signers and close to the one of an ordinary signature scheme.

4.1.2 Threshold signatures

Threshold signature protocols are quite similar to multi-signatures in the sense that
multiple parties are needed in order for a signature to be produced. The main difference
between threshold signature protocols and multi-signatures is that in the former a threshold
t out of n parties are needed for a signature to be produced whereas in the latter all n out
of n parties need to participate in the signing session. Same as before, each party holds
a private/public key pair and the final group signature should be independent from the

number of signers.

4.1.3 Coordinator Role

In both types of schemes, we could consider that a coordinator is present whose job is to

propagate messages between signers and report misbehaving participants. Although this
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coordinator is not needed in all schemes, his presence can reduce conmununication costs. We
note that the coordinator is semi-trusted meaning that he cannot break the unforgeability
of said schemes but can mount denial-of-service attacks. Throughout this thesis, we will

assume that a coordinator is present for every protocol.

4.1.4 Authenticated Channels

Throughout this entire thesis we consider that each protocol message exchanged be-
tween signing parties is sent via an authenticated channel, meaning that each protocol
message is accompanied with a signature of the sender using a separate single-party Dig-
ital Signing scheme DS. In our notation we skip the signatures produced by DS for clarity
however each time a signer receives a protocol message, he must check the validity of the

DS signature.

4.2 Definition of the algorithms

Definition 4.11. Multi- and Threshold Signatures

A multi-signature scheme M or a threshold signature scheme TS consisting of r signing
rounds and a signing set SS (SS = [n] in the case of multi-signatures and SS C [n] with
SS > t in the case of threshold signatures) is a tuple of algorithms M = (Setup, KeyGen,
(Sign,, Signg, - - - , Sign,.), Combine, Verify) or TS = (Setup, KeyGen, (Sign,, Signs, - - - , Sign,.),
Combine, Verify) defined as follows:

- Setup(1™, n,t) — par: On input a security parameter 1", the number n of total signers
and a threshold t (t = n in the case of multi-signatures and t < n for threshold
signatures) run par <« GrGen(1™). Output public parameters par (which are given

implicitly as input to all other algorithms).

- KeyGen(n) — (pk, {(pk;, ski)}icin]): A probabilistic algorithm that takes an input the
number of signers n and outputs the public key pk representing the set of signers
(group’s public key), the set {plk;}icin) of public keys for each signer, and the set
{ski}iern) of secret keys for each signer. It it assumed that participant P; is sent its

secret key sk; privately.
- Sign = (Sign,, Signg, - - - , Sign;) : The signing protocol is split into r algorithms:

- Signy(SS, m, i, (pmyc_1 j)jess. Ski. stj) = (pmy;. st;) : The k-th round signing algo-
rithm for k € [r] which takes as input the signer set SS consisting of the signing
parties of the session, a message m, an index i € [n], a tuple of protocol mes-
sages of the (k — 1)-th round (prmy._1 j)jess, a secret signing key sk; and a state
st;. It outputs a protocol message pmy.; for the k-th round and the updated state
st;. We define pmg; < L for all j € SS.

- Combine(SS, m, (pMyci)ke[r),iess) — 0: The deterministic combine algorithm which
takes as input the signer set SS, a message m and a tuple of protocol messages

(P, ielr.iess and outputs a signature o.
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- Verify(pk, m,0) — 0/1: The deterministic verification algorithm takes as input a
public key pk, a message m and a signature o and outputs either 1 (accept) or O

(reject).

4.3 Properties of multi- and threshold signature schemes

4.3.1 Correctness

Definition 4.12. Correctness of Multi- and Threshold Signature schemes

Consider the game Gameﬁ,lo}s defined in Figure 4.1. Then an r-round multi-signature
scheme M or an r-round threshold signature scheme TS is correct, if for all xk € N, n, t
with t < n, messages m € M (where M is the message space), SS C [n], the following
holds:

Pr[Gamef (17, 1, £.SS, m) = 1] > 1 - negl(). 4.1)

GameKA"rTS(lﬁ, n, t,SS, m)

forie SS:st;:=0

par « Setup(1”, n, t)

(pK. {pkK;. Ski}icin)) < KeyGen(par)
forie SS:pmy; = L

for k € [r]:

for i € SS:
(PmMy i, sti) < Sign, (SS, m, i, (PM;_; j)jess. SKi, Sti)

o := Combine(SS, m, (PMy. ))ie[R],ieSS)

return Verify(pk, m, o)

Figure 4.1: Correctness game for an r-round multi- or threshold signature scheme

4.3.2 Unforgeability

We provide a basic game definition for unforgeability in Figure 4.2 (we discuss unforge-
ability and security models of threshold signatures extensively in later chapters). Let A
be the adversary in this game. Initially, A gets the public parameters par, an honestly
generated public key pk and threshold public keys {pk;}ic[n) of all signers as input. At the
beginning of the game, A must provide the set C of parties he wishes to corrupt. A learns
the secret key sk;, i € C and has access to their internal state st;. At any point in time A can
start a new signing session with identifier sid for signer set SS and message m by calling
the oracle NEXT(sid, SS, m). We allow A to participate in any number of concurrent signing

sessions. Further, A can interact with honest signers using the signing oracles SIGy for
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k € [r]. A can query each of these oracles for an individual honest signer i and a session
identifier sid. When querying SIGy., A can freely choose the protocol messages pmy._; of the
(k — 1)-th round. Importantly, we do not assume broadcast channels for the signing proto-
col, and the adversary could send different messages to different honest signers. However,
we do assume authenticated channels, and our unforgeability game captures this via the
Allowed algorithm. The Allowed algorithm also enforces that ‘A’s queries for each session
are consistent. Finally, when A outputs a forgery (m*, ¢*), we say that A wins if he has

not initiated a signing session for the message m*.

Definition 4.13. Unforgeability of Multi- and Threshold Signature schemes

Let M be an r-round multi-signature scheme or TS be an r-round threshold signature scheme.
Consider Game UF—CMA,\yA"TS(l", n, t) in Figure 4.2. We say that a scheme is secure if for
all k € N, n, t with t < n, PPT adversaries A, the following advantage is negligible:

AV (17, n, t) := Pr[UF-CMAY; (1%, n.t) = 1]. (4.2)

In summary, the adversary should not be able to produce a forgery even if he controls

n — 1 signers of a multi-signature scheme or t — 1 of a threshold signing scheme.

4.4 Multi- and Threshold Schnorr Signatures

In this thesis, we mainly focus on Schnorr signatures both in the multi-signing as well as
the threshold setting. The main characteristic of these schemes is that the output signature
of the Combine algorithm looks exactly the same as a single-party Schnorr signature (as
discussed in Section 3.1.6). This means that a single-party Schnorr verifier can verify the
validity of the multi-party signature without changing his Verify algorithm. This provides
backwards compatibility with older systems as multi- and threshold signing algorithms are
used for a constantly growing number of applications. Another important thing to note is
that the verifier cannot distinguish between a single-party Schnorr signature or a Schnorr

signature produced via a multi- or threshold signing scheme.

4.5 Applications of Multi- and Threshold Signatures

In the last few years, there has been a large increase in the amount of research for
multi- and threshold signatures. This is mainly because getting a signature from a number of
participants of a signing set is much more secure than getting a single-party signature where
the signer could have been corrupted. However, another reason is that large blockchains
lilce Bitcoin [9] have adopted Schnorr signatures after using ECDSA [35] for a long time [36].
The fact that NIST has made calls for threshold schemes [11],[10] is a clear indication that
the use of multi- and threshold signature schemes will be greatly increased in the years to

come. Some real-world applications where such schemes can be used include:

e Securing bitcoin wallets: The very nature of a blockchain system is decentralized

and the key idea is the distribution of trust among the participants. A single signing

m AitAeouatxn Epyaoia



Game UF-CMAJ} (17, n. 1)

par « Setup(1”, n, t)

(pk. {pk;. SKi}ic[n]) <« KeyGen(par)
C:={c1,-- .c1}, H:=[n]-C
if C > t: return L

for i € C:sty = sty | J(sk;, st;)
pmsg := 0 , Queried := 0

SIGN := (NEXT, (SIGN)ke(r))

if m* € Queried: return O

return Ver(pk, m*, o%)

Oracle NEXT(sid, SS, m)

if (|SS| < t) V(SS ¢ [n]): return L
if sid € Sessions: return L
Sessions := Sessions U {sid}
Queried := Queried U {m}
message|sid] := m

signers[sid] := SS

for i € SS: round[sid, i] ;=1

Oracle Sign,(sid, SS, m, i, (pmk_lJ)jess)

input := (SS, m, i, (pM_; ;)jess)

if Allowed(sid, I, input) = O:
return 1

(pmMy ;. Sty) « Sign,(input, sk;. st;)
pmsg[sid, k, i] := pm,;
round[sid, i] ;= k+ 1

return pm; ;

(M, 0") « ANSE%(pk, {pKilicin)) Allowed(sid. k. SS. m,i. (pm;_; ;)jess)

assert sid € Sessions

assert SS = signers(sid]

assert i € (SSNH)

assert J = round[sid, i]

assert m = message[sid]

if kc = O: return 1

for j € SS\ {i}:
if
pmMy_, ; € pmsg(sid, k — 1,jl:
return O

return 1

Figure 4.2: UF-CMA game for an r-round multi- or threshold signature scheme
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identity cancels the notion of distributed trust and introduces a single point of failure.
To protect against theft, a user distributes t-out-of-n shares of her private key among
n devices that she owns. When she initiates a Bitcoin transaction from one device,
the transaction would have to be approved by t — 1 other devices in order to reach
the threshold. An attacker will have to compromise t of the user’s devices to steal her
bitcoins. The same concept can be used for wallet recovery[37], [38]. A real world

example is Frostsnap [39].

e Certification Authority and Directory Service : A certification authority (CA) is a service
run by a trusted organization that verifies and confirms the validity of public keys.
The issued certificates usually also confirm that the real-world user defined in a
certificate is in control of the corresponding private key. A certificate is simply a
digital signature under the CA’s private signing key on the public key and the identity
(ID) claimed by the user. A secure directory service maintains a database of entries,
processes lookup queries, and returns the answers authenticated by a signature
under its private signing key. DNS authentication is one example of a service that can
be distributed [40], [41], [42].

e Distributed random beacons: Active adversaries can behave dishonestly in order to
bias public random choices toward their advantage. public randomness are man-
ifold and include the protection of hidden services in the Tor network ,selection of
elliptic curve parameters , Byzantine consensus , electronic voting and much more.
Distributed protocols can be used in order to generate bias-resistant, third-party veri-
fiable randomness. Threshold signatures can be used to verify the distributed nature
of the output [43].

e E-voting and whistleblowing via threshold ring signatures: Suppose that a member of
a national parliament (an MP) would like to submit a controversial bill for a law. The
bill is controversial enough that the MP could lose his standing among his own party.
However, if enough other members agree to the bill, it will be submitted for an official
law. The solution, then, is for the first MP to publish their bill using a threshold ring
signature with strong inter-signer anonymity. Any other MP can add themselves by

contributing to the signature [44].

We will discuss further application of each scheme we present in further chapters.

4.6 Metrics of Complexity in Multi- and Threshold signatures

In order to study the complexity of different schemes and compare them to each other,

we will use the metrics defined in [12]. These are:
e Rounds: The number of communication rounds between the signers

e Communication: The amount of bits exchanged during the protocol, the elements

exchanged can have the following sizes:
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- Zp: A scalar.

- G: A group element.
e Computation: The amount of operations each signer has to make, these are:

GMul: Multiplication of group elements of size G.

GExp: Raising a group element of size G to a scalar element Zy,.

SMul: Multiplication of scalars of size Z,, each.

Lagr: Calculation of a Lagrange coefficient (this can actually be calculated as
t- SMul + t - (SInv + SMul) where t is the size of the signing set and SInv is the

cost of calculating the inverse of a scalar, but we include it _for simplicity).

Hh: Hashing, we consider all hashes to have the same cost.
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Chapter E

Security Concerns of Multi- and Threshold sig-

natures

5.1 The ROS problem

The ROS problem (Random inhomogeneities in a Overdetermined Solvable system of lin-
ear equations) first introduced in [13] is a well-known problem in the field of blind signatures
; mainly blind constructions of Schnorr signatures such as [45] and Okamoto-Schnorr blind
signatures [46]. In his 2001 paper, Schnorr proved that this problem plays a pivotal role
in assessing the security of such schemes as finding a solution to the problem would allow
an adversary to mount an attack on said schemes breaking the "one-more” unforgeability
aspect that blind signatures require. In more detail, it would allow an adversary to forge
? + 1 signatures after interacting only ¢ times with a legitimate signer. We next describe the
ROS problem:

Definition 5.14. ROS problem

Given a prime number p and access to a random oracle H,,s with range in Z,, the ROS

problem (in dimension {) asks to find ¢ + 1 vectors p; € Zﬁ, and a vector € = (cy, -+ , ¢p) such
that:
H,0s(D;) = {pi,C) forallie [£+1]. (5.1)
Equivalently,

Hyos(P1) P11 Pr2  t Pie .

— 1

Hyos(P2) P21 P22 Do .

2
: = : : : : (5.2)

Hyos(Dr) Pr1 De2 o DPee .

— P

Hios(Pe+1) (+1)x1 DPry1,1 Pe+12 0 D+l (b+1)xt tx1

When first looking at this problem one might wonder why would we care about it in
the setting of multi- and threshold signatures. Howeuver, as it will become clear by the end
of this chapter, blind signatures and threshold signatures are quite similar in the sense
that there is interaction between the signers just like there is interaction between the User

and Signer in blind signature schemes. In blind signatures, an adversarial User will try to
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get forgeries against the Signer ; whereas in multi- and threshold signatures adversarial

signers will try to forge signatures on behalf of the group.

5.2 Wagner’s Generalized Birthday Attack

In a very well known paper [14], Wagner studied a generalization of the birthday attack
which he called the k-sum problem.
The birthday problem is a very famous and well-studied combinatorial tool in cryptography

which states the following:

Definition 5.15. Birthday Problem
Given two lists L, Ly of elements drawn uniformly and independently at random from
{0, 1}", find x; € L, and x» € Ly such that x| @ x».

This problem has been studied extensively and it can be proven that a solution x;, xp exists
with good probability once |L1| X |Ly| > 2™ holds. The complexity of the optimal algorithm
is O(2™/2). A solution to this problem can be found by using the join operator Ly X L. The

cost of computing a join between the two lists is |L,| + |Ls| steps of computation.

5.2.1 Generalized Birthday Problem / k-sum problem

Definition 5.16. Generalized Birthday Problem/k-sum problem
Given k lists Ly, - , Li of elements drawn uniformly and independently at random from
{0,1}", find x; € L1, x0 € Ly, -+ ,xic € Lic such that x; ® xo ®--- ® x;c = 0.

5.2.2 Wagner’s Algorithm

Wagner studied the k-sum problem and came up with an algorithm to solve it. In order
to understand the generalized algorithm for k lists let’s study the case where k = 4. We are
given 4 lists and our goal is to find x1 € L1,x2 € Ly, x3 € Lg, x4 € Ly that XOR to zero. Let
low;(x) be a function that denotes the ! least significant bits of x. Based on this function we
can define the generalized join operator X, so that Ly X, Ly contains all pairs in L, X Ly that
agree in their ? least significant bits. Given this new operator we find some very important

properties:
1. lowy(x; @ x5) = 0 & low(x;) = lowy(x;)
2. Ifx19x =x3® x4, then x; ®xo D Xx3Dxy =0

3. If lowp(x; ® x5) = 0 and low;(x3 ® x4) = O then we have low;(x; ® xo & x3® x4) = 0 and
in this case Pr[x; ® x; ® x5 ® x4 = 0] = 2¢/2"

With these properties in mind, we can follow these steps in order to solve the 4-sum problem:
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AvLcoriTeM 5.1: List Matching Based on Property 2

: Extend the lists L;, ..., Ly until they each contain about 2/ elements.

: Generate list L1 of values x; @ xy such that low,(x; ® x) = 0.

: Generate list Lg4 of values x3 @ x4 such that low,(x3 & x4) = O.

: Search for matches between Lo and Lzs. Any match will satisfy x; @ xo @ x3 @ x4.

=W N =

{ix1, 22, 23, T4} :

1‘ T @ By = 0}

Lapar Lo Lavar La

A A

Ly L, Ly Ly

Figure 5.1: Illustration of the 4-sum algorithm steps

We can calculate the amount of steps needed for this algorithm to conclude by figuring out
how large ! must be.
We can calculate the expected number of elements in lists Lo and Lz, after the joins M,:
E[|L12l] = |Li| X |Lp| /2" = 2% /2! = 2!
E[|Lsall = |Lg| X |Lg| /2" = 22* /2" = 2°
By property 3, any pair in L1y X Lgs yields a match with probability 2°/2". Therefore,
the expected number of matching elements between Lys and Lgy is |Lia| X |Laa|/ 2"t This
number is at least 1 when ? > n/3. Therefore the resulting algorithm can be implemented

with O(2™3) time and space.

Note : We can easily extend this algorithm to find elements that XOR to a different value
aiex; ®x ®x3® x4 = a by simply changing the lists L; = L, ® a and L, = Ly ® a and
computing : (Ly Xy Ly) M (Lg M, L))

Generalizing for all k : In [14] it is shown how to generalize this algorithm for k lists. In
short, in that case we will have a tree like the one in Figure 5.1 but of depth log(k). It is

proven that that algorithm requires O(k - 2110900 time and space and uses lists of size
O(zn/(1+log(k))-

5.2.3 Using Wagner’s Algorithm against ROS

Wagner’s k-sum algorithm can be extended to use other operators apart from . By using

addition, we can solve instances of the ROS problem. We fist notice that is easy to find ¢
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partial solution to the ROS problem like so:

Hios(P1) 1 0 --- 0 o)
Hios(P2) o1 --- 0 Hms(ﬂl)
P2
: =[: : : N 5.3
Hios(Pr) O 0 --- 1 B
Hios(Pe+1) ) 92 ... 9 Hios(D0) ),
o (¢+1)x1 (+1)x?

Notice that the first ? lines of the equation 5.3 hold trivially. The computationally hard
problem is to find the last partial solution, that is, a non-trivial linear combination pj;,
of these values c¢; that matches the hash image of Hyos(Pi+1). Also, notice that the trivial
solutions do not have to be unit vectors, we can use any constant value a in our non-zero
vector coefficients as long as the matching c; is Hyos(B;)/a.

Solving the ROS problem is surprisingly straight-forward using Wagner’s algorithm. We
start of by fixing the last line of the matrixto pp,1 = [1,1,---, 1]. We populate lists Ly,--- , Ly
with hash values and then use the kk-sum algorithm to find a hash value from each list such
that they sum up to Hyos(Pp+1)-

We discuss how to populate list L, and the rest will be the same. The elements in L, corre-
spond to those with the first line of the matrix. The first line of the matrix will be a vector
pirn =1r.0,0,---,0] i.e only the first element is not zero and equal to r;. We populate L,
with hash values Hyos(pily,)/m. This way r - Hyos(Piin)/T = Hos(P1r,)-

We then execute Wagner’s algorithm which which will give use elements c¢; € Ly, co €
Ly,--- ,cp € Ly suchthatc; + co + - -+ + ¢ = Hyos(Pp+1)-

These elements will be of the form ¢1 = Hyos(piy)/11 . ¢2 = Hpos(Par,)/T2 oo+ .0 =

Hyos(pir,) /2. We have now solved an ROS instance :

Hros(ﬁl,rl) D1 = [ o --- 0] c

— — 1
Hros(pz,rz) p2=[0 rn --- O]

. 2 ) C2
Hros(ﬁ?,rg) pr=10 0 - 1] c

— — L
Hros(le) D1 = r 1 --- 1] X1

(+1)x1 (+1)x¢?
This is a well-known attack, however without serious threat against blind Schnorr or thresh-
old Schnorr signatures due to the fact that it is of exponential cost. The threat of using

Wagner’s algorithm as a means of solving ROS instances is not really realistic.

5.3 Polynomial algorithm for the ROS problem

Although attacking ROS with Wagner’s algorithm does not present a realistic threat due
to its exponential complexity, the attack discussed in this section and published in [15]
completely broke schemes who based their security on the hardness of the ROS problem.
This attack did not only break schemes, but also raised questions on the validity of security
proofs of schemes like [16] which can easily be broken by this algorithm but did not base

their security on the ROS problem. We discuss further about those issues in Section 5.4. In
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this section we present the polynomial algorithm to break the ROS problem. The intuition
from where this algorithms stems from is the fact that the Wagner attack fixes the final
vector of the matrix as pp;1 = [1,1, -+, 1] ; this is quite limiting. The authors of [15] wanted
to allow the last line of the matrix to have different coefficients. This, as we will demonstrate

in Section 5.5.3, allows for a very automated way to solve the ROS problem.

We introduce the following notation: a polynomial p = po + p1 - X1 + -+ + pp - xp has the
Sollowing vector of coefficients : p = [p1,:-* ,pr]. The steps an adversary has to follow in

order to produce an ROS solution are:

1. The adversary defines polynomials: p? = X, pi1 =2 x forie[!]
2. and c? = 27 . H,os(p?)

3. With overwhelming probability it will hold that ¢ # c! for all i € [£]. Therefore, the

adversary can define the following degree-1 polynomials:
Xi — C?

cl —c?

fi(x) =

These polynomials have the following property: fi(cf’) = b.

4. Definepp, = Y\, 277! - f; which is also of degree-1 and can thus be written as

Pe+1 = Pr+1,0 T Do+1,1 * X1 + Por1,2 - X2 + 00+ Pps1p - Xp.

5. Define y = Hros(Pe+1) + Pe+1,0 = Hros([Pe+1,1. Pe1,2,*++ - Pe+1,2]) + Pe+1,0 and find the
binary representation of y = Zle 21 . p,.
6. The adversary outputs the solution

—b;

P
by
| )
: and ©€= [cfl,cgz,--- L.
_by
P,
Pe+1

For i € [f] it holds that (p}.c) = 2% - ¢ = Hus(p") and (piz1.€) = Pes1(©) — pre1 =
le 251 £(cP) — pre1o = Zle 251 by — pre1.0 = Hros(Pit1)

5.4 The InsecureMusig scheme

One of the multi-signature schemes affected by this algorithm was the scheme presented
in [16]. This was considered a state-of-the-art multi-signature schemes as it only consisted
of 2 rounds which was the lowest amount of signing rounds until then. Apart from that, it

was suggested that this signing scheme be added to Bitcoin in order to improve performance
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and user privacy. Thankfully, this did not happen ; had it happened, it could have been a
massive security flaw that could have caused blockchain theft. The scheme was presented
to be provably secure in the plain public-key model ; meaning that signers are only required
to have a public key, but do not have to prove knowledge of the private key corresponding
to their public key before engaging in the protocol. The reason why this was allowed is
because the group’s public key is calculated via a non-trivial key aggegation algorithm

which does not allow for rogue-key attacks.

5.4.1 Rogue-key attacks

Rogue-key attacks [47] are a form of attack where an adversary in able to influence
the outcome of a group key generation algorithm to a value he wants. Let’s assume that
the aggregated public key of a discrete logarithm multi-signature scheme is calculated as
pk = [lie[n) Pki where pk; is the public key of each member involved in the protocol. An
adversary can easily influence the final group public key to result in a value X for which
he knows the discrete logarithm x by just waiting for the first n — 1 members to reveal their
keys p1.p2.- - , pn-1 and then reveal his own key as pk, = X+ [[e(n-1] Pki. By doing that, it
is evident that the resulting group public key is pk = X for which the corresponding private
key (the discrete logarithm) is known to the adversary. In such case, the adversary could
produce signatures on behalf of the group for any message by following the single-party

signing algorithm (Schnorr in this case).

5.4.2 InsecureMusig key aggregation against rogue-key attacks

The authors of the scheme suggested a different way to aggregate each parties keys in
order to avoid such attacks. The new key aggregation algorithm works as follows: assume
that each member has a public, private key pair (plk;, sk;) = (X; = g*, x;) and they reveal
their public key to the rest of the group. After everyone has revealed their public keys
pk; = X, the key pairs will change so that the final key pair of each individual is tied to
the other participants’ keys. The way this happens is that a binding factor a; = H(L, X;) is
calculated by each participant (where L is the list of all public keys before the transformation
takes place ie L = {X; = g°, Xy = g2,--- , Xn = g*}. After that, the final keys which will
be used by each member are (pk;, sk;) = (X] = g“™, a; - x;). The final public key of the
group is pk = [Tiein) X{ = [lieiry Xi*-

The reason this key aggregation algorithm works at avoiding rogue-key attacks is be-
cause the final public key of the group key is tied to the binding factors which are themselves
tied to the original public keys revealed by the members. It is impossible to calculate the
final public key of a member before all the rest have revealed their initial public keys, since

in that case the binding factors cannot be calculated.

5.4.3 Algorithms of the InsecureMusig scheme

We remind that a multi-signature scheme M consists of algorithms (Setup, KeyGen,

(Signy, Signy, - - - , Sign,.), Combine, Verify) (since InsecureMusig is a two-round protocol we
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have r = 2). We add another algorithm KeyAgg for clarity but in reality we can consider
that key aggregation happens during the two-step KeyGen algorithm (first step is initial key
generation and second step is adding the binding factors to each key pair and calculating

the group’s public key). We describe the algorithms:

- Setup. We work in a group G of order p and g is a generator of the group. The scheme
will also need two hash functions Hy, H; : {0, 1}* — Zj,.

$
- KeyGen. Each signer generates a random private key x « Z, and computes the

corresponding public key X = g*.

- KeyAgg. After all initial public keys have been revealed and added to the list L =
{X1,: -+, X}, the actual key pair of each participant P; are calculated as (pk;, sk;) =
(X", x; - a;) where a; = Ho(L, X;) and the aggregated public key is X = 1L, X{".

- Sign;: We assume the signers wish to sign an (agreed-on) message m. Each signer

$
P; generates a randomr; < Z,, computes R; = g and sends R; to all other cosigners.

- Signy: After receiving all {R;}c[n) from all other cosigners, participant P; computes the
group commitment R = [ ] R; the challenge of the Schnorr signature ¢ = Hy (X,R, m)
and his partial signature share z; = r;+ c- a; - x; which he sends out to all other signers

(or the central coordinator node).

- Combine. After all partial signatures {z;} have been sent out the final group signature

on m is produced as o = (R, Y e[n] Z1)-

- Verify. Any public validator can verify the signature under the public key X by using

the Schnorr single party verification algorithm on o = (R, z = }}ic[n] Zi)-

We provide a quick correctness proof for this scheme before discussing some important

information.

Theorem 5.1. Correctness of InsecureMusig The scheme M = InsecureMusig follows the

definition of correctness from Section 4.3.1.

Proof. The final group response is z = () Zi = Xien]Ti + C* @; - X; and we also have
R = [l Ri and ¢ = Hi(X.R. m).
It holds that: gz — gZie[n] riteaix; — gZie[n] Ti , gZie[nJ caixi _ (Hie[n] gfi) . (nie[n] Xic'ai) =R- Xc O

As discussed in earlier sections, the final group signature looks exactly like a single-
party Schnorr signature and can be verified under a common, aggregated group key. An-
other key thing to note is that each partial signature o; = (R;, z;) can be verified by any
member that has access to R; and z;. This partial signature is also exactly identical to a
Schnorr signature that can be verified under the participants public key X{*. This is really

important in detecting adversarial members who might try to stop the group signature from

verifying.
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Setup(17)
(G, p,g) <« GrGen(1")
Hy.H, : {0, 1}" — Z,
par < ((G, p.9). Ho, H1)

return par

KeyGen(par)
forj=1ton:
X —Zp, XjegI
plg < X;
skj < x;

return ({pk}jc(n), {Sk}je[n))

KeyAgg({Xj}jess)

fori=1ton
a; < HO((XI’ . ’Xn)’Xi)
X « ]_[?leiai

return X

Sign; (SS, m, i, {pmo j}jess, Ski, st;)

r &« Zp
Ry« g"
pmy; < R;
Sty « 13

return pmy ;, St;

Sign,(SS, m, i, {pmy j}jess. sk, sty),

parse r;, < st;, x; < sk;
parse {Rj}jcss < {pmy j}jess
a; < Ho((X1, -+, Xn), Xp)
R<[[L R

c— Hi(R X, m)
Zie—ritcoa-x

pPmy,; < z;

return pmy ;, st;

Combine({pmycj}ie[2] jess)

parse {Rj}jcss < {pmu j}jess
parse {Zj}jcss < {pmy j}ljess
R [liess R
c— Hi(R X, m)
forj=1ton

@ — Ho(Xy. . ... Xn). X))

if g% % R, .Xjafc

return L

z < Nl Z
R« I R
0« (R, 2)

return o

Verify(o, Y, m)
parse 0 «— (R, z)
c— H{(R Y m)

return 1 if g = R- Y¢, else O

Figure 5.2: The InsecureMusig scheme
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5.5 Breaking InsecureMusig

As we mentioned earlier, this scheme was considered state-of-the-art as it only required
two rounds to output a signature. However, its success was short-lived as two separate
practical attacks can break the scheme. This was extremely surprising, as the Insecure-
Musig scheme had a security proof which relied on the OMDL assumption discussed in
Section 3.2.2. In fact, one of the main selling points of this scheme is that it was considered
provably secure and that is why it was been considered as a viable candidate to be added
to blockchains. Clearly, the proof was not correct. We discuss shortly about the issues of
the proof in section Section 5.5.4 and we refer the reader to [17] for a much more detailed

discussion.

5.5.1 Drijvers attack

The first attack on the InsecureMusig scheme appeared in [17] and used Wagner’s
Generalized Birthday attack in order to create a one-more forgery against the scheme when
an adversary was able to open multiple signing sessions with an honest signing party. The
first thing to notice about the InsecureMusig scheme is that it went to great lengths to avoid
rogue-key attacks but did not bother protecting against rogue-commitment attacks i.e the
adversary can fully control the commitment R of the group signature. The way he can do
this is by waiting for all honest signers to reveal their { R;}icgon during the first signing round
and then reveal his commitment as T - [|iepon Ri ! ; it is obvious that the resulting group
commitment is R = T. For simplicity we will assume that we only have 2 signers, Bob (an
honest party) and the adversary. At the end of the key generation phase, Bob has keys
(pkg, skg) which we can assume to be of the form (g*%, x - a) were a is the binding factor
(the attack is exactly the same if we are to assume that the keys are (g*, x), the difference
is only notational).

The adversary will open -1 parallel signing sessions with Bob for messages my, - -+ , my_;
which Bob agrees on signing. For each signing session, Bob will send his comumitment nonce
{Ri}ic[o-11. Before sending out his commitment nonces for each session, the adversary will
perform an instance of the k-sum (with k = ?) algorithm described in Section 5.2 to find

specifically calculated group nonces that will allow him to mount the attack.

Figure 5.3: Parallel sessions
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We now explain how the adversary populates his ? lists: Lists Ly,...,L—; will be
populated with elements of the form Hy(g", my, X) for many r values (my is the message
signed on session k and X is the public key of the group). The elements of each list depict
challenge values of the session for the resulting group signature because the adversary will
use R;l - g% as his commitment nonce for session k. List L, will be populated with values
of the form —HO(Hf;ll Ry, m*, X) for many m* values.

o [ ]
(@) ) '
Ry Ry_1 R*<RiR;-1

H(* m) —H(R*, m)
[ H(5m) |

e

Figure 5.4: List population for the Drijvers attack

Then the adversary runs Wagner’s algorithm on theses ! lists. The algorithm will find
values c; € Ly,...,cp_1 € Li_1,cp € Ly such thatc; + -+ c¢p_1 + ¢ =0 & H(g", X, my) +
. H(g™, X, my_y) = H(Hf;l0 R, X, m"). The adversary sends his commitment nonces
R;l g R; L.oge,... ,Re__l1 - g"-! back to Bob. Each one of those nonces will lead to the
target challenge value cy for session k. Bob will reply with a valid partial signature share
zi. for session k which will verify under his public key pkg. Thus, it will hold that g% =
Ry - pkg®, ke [£ - 1].

21y R2y .0y Rl-1

Figure 5.5: Parallel sessions response

The adversary then defines:
e R =[], Re

o ¢ =—¢; = H(T}Z, Re. m*. pk) = H(R", m", pk)
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o 7 = ;;—:11 Zie

It holds that:
G = gBAm = [T g% = 12 Re - phs® = (T124 Re) - (TT'24 plep™) = R - plet & =
R* . pch*
And therefore o* = (R*, z*) is a valid signature share of Bob’s on m*.
The adversary has therefore succeeded in forging a signature under Bob’s key ; he can just
add his own signature share on Bob’s partial signature and create a forgery that verifies
under the aggregated public key of the group.
Notice that this attack can easily be extended when the honest participants are more than
one ; the adversary just waits for all of them to send their comumitment nonces for each
session and the attack is exactly the same if we replace Bob’s commitment share with
Ry = [licon Ri.i Where Ry.; is the commitment nonce of participant i for session k.
The Drijvers attack, although exponential, is practical: with 127 parallel sessions we can
get a forgery in 24°

break schemes even faster with less computation.

steps. However, the polynomial ROS attack that we presented can

5.5.2 Polynomial ROS attack

In order to use the polynomial ROS attack against InsecureMusig, the adversary will
once again need to open multiple parallel signing sessions with the honest participants
(again we limit the honest participants to one, Bob, but the attack can easily be generalized.
This step is the same as in Figure 5.3. For clarity we will symbolize Bob’s commitment
shares with D; instead of R;. Before sending out his commitment nonces, the adversary

uses the algorithms steps as follows:

1. The adversary samples r;o and r;; and computes R? =g - D; and R? =g - D; and
the challenges c? = Hy(R?, m;, X) and ¢! = Ho(R}, m;, X).

2. With overwhelming probability it holds that ¢? # ¢! so the polynomialp = ¥/-1 201 .

0

Xi—Cy

C{ o can be defined.
i

3. The adversary calculates Ry = Hf;} D! and ¢; = Ho(Ry, mg,X) and finds the binary

representation of ¢; + po = Y.'-1 201 - by

4. For each session k, the adversary proceeds by sending his commitment nonce D,;l -RZ"
to Bob.

5. After Bob replies with his partial signature shares z, the adversary outputs (R, =
[Ty Dz = 353 2 o).

—
i

It holds that gZe — gié’;i Zpi — gz = p(ditc-skg) — (gzﬁ;i pi'di) . (gSkB'Zf;ll pi'Cibi) = R -
gl PO-pl = R, 'pkg
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Dy, Dy, Doy

—1_pbi -1 pb —1 b
Dy'- R} Dy’ Ry, Dy - Ry
-

21,2277 21
—_—

Figure 5.6: Parallel sessions response in the ROS algorithm

5.5.3 Implementation of the ROS attack against InsecureMusig

As part of this thesis, we implement the polynomial ROS attack in SageMath using
the elliptic curve parameters of Bitcoin [48]. Our code can forge a signature in about 10
seconds showcasing the practicality of the attack and the serious threat that it poses. We

use SHA256 [31] as Hy. Some key parts of the code include:

Zq = GF (6xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F)

E = EllipticCurve(Zq, [0, 7])

G = E.lift x(0x79BE667EFIDCBBAC55A06295CES70B07029BFCDB2DCE28D959F2815B16F81798)
p:

Z

G.order()
p = GF(p)
# Bob's keys
X = Zp.random element()
X =G * int(x)

Figure 5.7: Parameter generation for the attack including the elliptic curve parameters and
the key pair of the honest signer.

# Hash function

def hash to Zp(data):
h = hashlib.sha256(str(data).encode()).hexdigest()
return Zp(int(h, 16))

# Function to verify Bob's partial signatures
def verifyBob(message, R bob, R group, z):
chall = hash to Zp((R group, message))
return (G * int(z) == (R bob + X * int(chall)))

# Function to verify a normal Schnorr signature
def verify(message, R , z):

chall = hash to Zp((R, message))

return (G * int(z) == (R + X * int(chall)))

def inner product(coefficients, values):

return sum(y*int(x) for x, y in zip(coefficients, values))

Figure 5.8: Helper functions including the hash function Hy, a function to verify partial
signature shares of the honest signer, a function verify Schnorr signatures and a a _function
to compute inner products of vectors.

m Awtflopatkn Epyaoia



# Hash function

def hash to Zp(data):
h = hashlib.sha256(str(data).encode()).hexdigest()
return Zp(int(h, 16))

# Function to verify Bob's partial signatures
def verifyBob(message, R bob, R group, z):
chall = hash to Zp((R group, message))
return (G * int(z) == (R bob + X * int(chall)))

# Function to verify a normal Schnorr signature
def verify(message, R , z)

chall = hash _to Zp((R, message))

return (G * int(z) == (R + X * int(chall)))

def inner_product(coefficients, values):
return sum(y*int(x) for x, y in zip(coefficients, values))

Figure 5.9: Interaction between the adversary and the honest signer and forgery creation.

In our code we use 256 parallel session between Bob and the adversary. The entire

code can be found at The full source code is available at our GitHub repository.

5.5.4 Insecure shortcuts in InsecureMusig

It is evident from the previous attacks that the InsecureMusig cannot provide concurrent
security (that is, security when parallel sessions are allowed). However, as we mentioned
earlier, the InsecureMusig scheme came with a proof that claimed that it was unforgeable
under the OMDL assumption. In [17] it was shown that this proof was flawed. The issue
was in the amount of DL oracle accesses that the reduction had. The point is that the
reduction must have t accesses to a DL oracle and provide t + 1 discrete logarithms of t + 1
challenges. In the original proof of InsecureMusig the reduction was able to make more
than t queries to the oracle thus trivially solving the t + 1 discrete logarithms. Not only that,
but Drijvers et al showed that the InsecureMusig scheme is impossible to be proven secure

under the DL or OMDL assumptions with any currently known technique.
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Chapter E

The MuSigl and MuSig2 schemes and concur-

rently secure techniques

6.1 Concurrent security challenges

A very simple approach to add concurrent security to InsecureMusig is to completely
avoid it by not allow parallel sessions. However, this would render the scheme impractical
Jor many real world applications. Instead, understanding why the attacks of the previous
chapter work is vital to the construction of secure multi- and threshold signing schemes. As
we mentioned before, the adversary can have total control of the group’s commitment with
the way that InsecureMusig was constructed. This is the main issue behind the attacks and
is a very important point to be fixed. Fixing it however, could be costly. Overall, throughout

the literature we can find two ways to combat this.

1. Extra commitment round: Add an extra commitment round on the commitment
nonces. This way after the nonces have been revealed we can check whether they
match the commitments of the previous round and disqualify signers for which it does

not.

2. Binding factor: Add an extra factor to each commitment nonce so that each nonce
depends on all other nonces. This way the final nonces cannot be computed until
they have all been revealed. This is very similar to the key aggregation technique of

InsecureMusig to avoid rogue-key attacks.

In this chapter we describe two concurrently secure schemes that were created in order
to add security to the InsecureMusig scheme. Those schemes are MuSigl [18] and MuSig2
[19]. These schemes use the two techniques that we mentioned with MuSigl using the
extra commitment round whereas MuSig2 the binding factor technique. In Section 6.2 we
describe the MuSig1 scheme, in Section 6.3 MuSig2 is presented. Finally, in Section 6.4 we

compare the two schemes and their techniques.

6.2 The MuSigl scheme

MuSig1 [18] is the second version of the InsecureMusig paper [16] and is thus quite

similar. The only difference between the two schemes is that MuSig1 is a tree-round scheme
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because it adds an extra commitment round at the start of every signing session.

6.2.1 Algorithms of the MuSigl scheme

The algorithms are very similar to the ones in Section 5.4.3:

Setup. We work in a group G of order p and g is a generator of the group. The scheme

will also need three hash functions Hqgg, Heom. Hsig : {0, 1}* — Z,.

$
KeyGen. Each signer generates a random private key x « Z, and computes the

corresponding public key X = g~.

KeyAgg. After all initial public keys have been revealed and added to the list L =
{Xy,---, X}, the actual key pair of each participant P; are calculated as (pk;, sk;) =
(X{", x; - a;) where a; = Hygq(L, X;) and the aggregated public key is X = 1L, X{".

Sign,: We assume the signers wish to sign an (agreed-on) message m. Each signer
$
P; generates a random r; < Z,, computes R; = g, t; = Heom(R;) and sends out t; to

all other signers.

Signy: After receiving all {t;}ic[n) from all other cosigners, participant P; reveals his

commitment nonce R; by sending it out to all signers.

Signg: After receiving all {R;}ic[n] from all other cosigners, participant P; checks that
t; = Heom(R;) and aborts the protocol if this is not the case. Otherwise, he computes
the group commitment R = []n Ri, the challenge of the Schnorr signature ¢ =
Hsig(f( , R, m) and his partial signature share z; = r; + ¢ - a; - x; which he sends out to

all other signers (or the central coordinator role).

Combine. After all partial signatures {z;} have been sent out the final group signature

on m is produced as o = (R, X ic[n] Zi)-

Verify. Any public validator can verify the signature under the public key X by using

the Schnorr single party verification algorithm on 0 = (R, z = }en) Zi)-

The correctness is identical to the one presented in Section 5.4.3.

It is clear that the attacks of the previous chapter cannot be used here as an adversary

cannot wait for the honest signers to reveal their commitment nonces before revealing his

own as if his commitment hash _from the first round does not check out with the commitment

nonce he reveals during the second round, the protocol aborts. Therefore, the adversary is

unable to adaptively choose his commitment nonce.

6.2.2 Complexity analysis of MuSigl

We use the metrics described in Section 4.6 to measure the complexity of the MuSig1

scheme. We do not count the cost of key generation KeyGen and key aggregation KeyAgg

as these do not occur for every session.

First of all, each session consists of 3 rounds.

For each session, each signer has send out elements of size:
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Setup(17) Signs3(SS, m, i, {pmy j}jess. ski. sty).

K
(G.p.g) < GrGen(1") parse (R, i, {ti}jess) « sti.x «

Hagg. Heom» Hsig : {0, 1} — Z), sk;
par « ((G, p. g). Hagg. Heom. Hsig) parse {Rj}icss < {pmy,ljess
return par forj=1ton

if Hcom(Rj) # g

KeyGen(par) ‘ N
E— return

forj=1 ton:
a; < Hagg((Xl’ <L Xn), Xp)

X Zp, Xjeg?
R « HJ'.;I R;
pki — X; B
’ ’ c— H{(R X,m)
sl — %

Zie—nt+c-a;Xx

return ({plkc}je[n). {sk}jein))
pms; < z;

KeyAgg({ Xj} e ss) return pmg, st;

fori=1ton
Combine({pryj}ke(3] jess)

a; < Hagg((le cee an)’Xi)
parse {Rj}jcss < {pmy j}jess

X« H?:l Xiai
- parse {Zj}jess A {pmSJ}jESS

return X

R [liess Ry

Sign,(SS, m, i, {pmo j}jess. ski, st;) ¢ « Hgy(R X, m)
T« Zp forj=1ton
. T
Ri—g &) — Hagg((X1.. ... Xp). X))
ti — Hcom(Ri) if gzj + RJ . ‘Xjafc
pmy; < b return L
Sti — (ri1 Rl) Z — 2?:1 Zi
return pmy ;, st; R — Hl(l:l R;
. . o< (Rz
Signy(SS, m, i, {pmy jljess, Ski, sty), (R.2)

return o
parse (R;, 1;,) <« st
parse {tj}jess < {pmy j}jess Verify(o, Y, m)
pmg; «— R; parse 0 < (R, z)
sty «— (Ry, 1y, {tj}jess) ¢« Hi(RY,m)
return pmy ;, st; return 1 if g = R- Y, else O

Figure 6.1: The MuSigl scheme
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e Sign;: n-7Z, (broadcast)
e Sign,: n- G (broadcast)
e Signs: Zp (sent to coordinator)

Thus, the total amount of communication for a MuSig1 session is: n-((n+1)-Z,+n-G).

For each session, each signer has to perform computations of cost:
e Sign,: GExp + Hh

e Sign,: -

e Sign3: (n+2)-Hh+ (n—1) - GMul + 2 - SMul

Therefore, the total amount of computation per signer is: GExp+ (n+3)-Hh+ (n—-1) -
GMul + 2 - SMul.

6.3 The MuSig2 scheme

The only difference between MuSig1 [18] and InsecureMusig [16] is that MuSig1 had to
add an extra commitment round. This adds minimal computation cost, howeuver the rounds
of the protocol get increased from 2 to 3. The creators of MuSig2 [19] wanted to create
a 2 round concurrently secure multi-signature scheme. To do so, they used the second

technique described in Section 6.1 and two nonces per signer instead of just one.

6.3.1 Algorithms of the MuSig2 scheme

- Setup. We work in a group G of order p and g is a generator of the group. The scheme

will also need three hash functions Hagg, Hnon. Hsig : {0, 1}* — Zp.

$
- KeyGen. Each signer generates a random private key x < Z, and computes the

corresponding public key X = g*.

- KeyAgg. After all initial public keys have been revealed and added to the list L =
{Xy,--, X}, the actual key pair of each participant P; are calculated as (pk;, sk;) =
(X{", x; - a;) where a; = Hqgq(L, X;) and the aggregated public key is X = 1L, X{".

- Sign;: We assume the signers wish to sign an (agreed-on) message m. Each signer
$
P; generates two random values ry1, 12 < Z,, computes R;; = g"*', Ris = g"*? and

sends out R; 1, R; o to all other signers.

- Signy: After receiving all {R;j}ic[n) je[2] Srom all other cosigners, participant P; com-
putes a binding factor b = Hpon(X, (Rj,1)jern)» (Rj2)je(n]- M), the group commitment
R = [ljetn Rix - sz’ the challenge of the Schnorr signature ¢ = Hsig(}? , R, m) and his

partial signature share z; = r;; + ri2 - b+ ¢ - a; - X; which he sends to the coordinator.

- Combine. After all partial signatures {z;} have been sent out the final group signature

on m is produced as o = (R, }ic[n] Z0)-
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- Verify. Any public validator can verify the signature under the public key X by using

the Schnorr single party verification algorithm on o = (R, z = }}ic[n] Zi)-

Once again, each partial signature share is a Schnorr signature and its validity can be

checked under the public key of each participant.

6.3.2 Escaping ROS attacks with two nonces

The binding factor solution malkes it so that each participant’s commitment nonce is
dependent on the nonces of all other participants, since the binding factor involves the
nonces of the entire signing set. The important thing is that we have to use two nonces per
signer instead of just one. Recall that in the original InsecureMusig paper, the adversary

could perform his attack by calculating R; such that:

-1

D Haig(X, R, mye) = Heg(X, R*, m") 6.1)

k=1
With the usage of the binding factor, it is tempting to fall back to only a single nonce and
rely on each signer having a commitment share R; = R%’. This would however fail as
the adversary can effectively eliminate b by redefining R* = Hf;ll Rj. and considering the

equation:

— > pb
ezi Hsig(X’ Rkk! mk)

= Hg;y(X, R*, m") (6.2)
by

k=1

We recommend reading [19] for a more detailed description of the one-nonce problem.

6.3.3 Complexity analysis of MuSig2

Each session consists of 2 rounds. For each session, each signer has to send out

elements of size:
e Sign;: n-2 -G (broadcast)
e Sign,: 7, (sent to coordinator)

Thus, the total amount of communication for a MuSig2 sessions is : n-(n-2-G + Zp).

For each session, each signer has to perform computations of cost:
e Sign,: 2 - GExp
e Sign,: 3- Hh+ 2 - n- GMul + GExp + 3 - SMul

Therefore, the total amount of computation for each signeris3-Hh +2-n-GMul + 3 -
GExp + 3 - SMul.
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Setup(17)
(G, p.g) < GrGen(1")
Hegg, Hnon, Hsig : {0, 1} — Z,
par < ((G, p. 9). Hagg, Hrnon, Hsig)

return par

KeyGen(par)
forj=1ton:
X Zp, Xy g
plg < X;

sky <

return ({pl}je(n), {Sk}je[n))

KeyAgg({Xj}jess)

fori=1ton
a; < Hagg((Xl’ ce ,Xn),Xi)
X Hin:1Xiai

return X

Sign,; (SS, m, i, {pmo j}jess, Ski, st;)

ri1, 2 < Zp

Ri1 < g

Rip <« g2

pmy; < (Ri1, Ri2)
sty « (i1, Ti2)

return pm, ;, st;

Sign,(SS. m, i, {pmy j}jess. ski. sty),

parse (ry1,Ti2) < St;, x; < sk;
parse {R;}jcss uc[2] < {PMg j}jess
b — Hpon(X, (R;,1)jern] (Rj2)je[n]» M)
a; < Hagg((X1,--+ , Xn), Xi)
R« HJ(lzl Rja1 'Rjk,)z

¢ « Hgy(R X, m)
Zie—T1i1+Trio-b+ca;-x
pmg,; < z;

return pmy ;, st;

Combine({pryj}kef2] jess)

parse {R;,}jess uc[2] < {pmu j}jess

parse {Zj}jcss < {pmy jljess

b « Hnon(X’ (Rj,l)jE[n]’ (Rj,2)j6[n]’ m)

b

R — Hjnzl Izj,l : Izj’z

¢ « Hgg(R X, m)

forj=1ton
aj < Hagg((Xl’ s ’Xn)’ X])
. . b aj-c
lfng iRj.l'Rj,z'XjJ

return L

Z— i1z

R« n?:l Ri

0« (R, 2)

return o

Verify(o, Y, m)
parse 0 < (R, z)
c— Hi(R Y,m)

return 1 if g = R- Y, else O

Figure 6.2: The MuSig2 scheme
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6.4 MuSigl vs MuSig2

Scheme Rounds Communication (total) Computation (per signer)
MusSigl 3 n-(n-G+(n+1)-Z,) (n+3)-Hh+(n-1)-GMul + GExp + 2 - SMul
MusSig2 2 n-(2-n-G+2p) 3-Hh+2-n-GMul+ 3 - GExp + 3 - SMul

Figure 6.3: Comparison of MuSigl and MuSig2

From the table we can see that MuSig2 is more expensive in both communication and
computation complexity since G is larger than Z,, and GExp, GMul are the most expensive
operations. However, the most important metric when it comes to multi- and threshold
signatures is the amount of rounds. Here, MuSig2 definitely take the upper hand as it

reduced the number of rounds by one while still allowing concurrent sessions.
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Chapter

Distributed Key Generation for Threshold Sig-

natures

Multi-signature and threshold signature schemes are fundamentally different in the
way that they work. Multi-signature schemes are n-out-of-n meaning that all signers must
contribute to the signature whereas threshold signature schemes are t-out-of-n meaning
that t signers must contribute to the signature. An extremely important thing to note is
that in the threshold setting, every subgroup containing t (honest) signers must be able to
produce a signature which verifies under the public key of the entire group. This is important
because that means that the public, private key pair of each signer is not so simple to create
as different subsets of signers would then form different group keys, something which is
undesirable. Instead, we need a way such that any t public keys of participants aggregate
to the same public key for the group. To do so, we need to utilize t-out-of-n secret sharing
schemes. The issue with that is that these schemes rely on a trusted dealer which is also
something we do not want. Luckily, there exist many Distributed Key Generation (DKG)
algorithms which can work without a trusted dealer. In this chapter, we describe such

algorithms that are extensively in threshold signature schemes.

7.1 Secret Sharing Schemes

We describe some of the secret sharing schemes which are very similar to Shamir’s
Secret Sharing described in Section 3.1.7. The goal of these schemes is to distribute shares
of a secret s to n members such that any group of at least t honest parties can recreate the
key.

7.1.1 Shamir’s Secret Sharing (SSS) [1]

The dealer samples t — 1 coefficients ay, -+ , a;—1; at random and defines a polynomial

of degree t — 1 using these values. He sets the constant term as the secret (f(0) = s):

t—1
f(X)=S+Zaz-xi (7.1)
i=1

The secret share of each participant P; is (i, f (i)). Using Lagrange interpolation, t participants

can recreate the secret s.
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Notes on Shamir’s Secret Sharing:

e The dealer is trusted, otherwise we have no guarantee that the shares which he
sends to the participants are correct. If they are not correct, the secret s cannot be

reconstructed.

e During interpolation, the members are trusted to send out the correct shares. If they

do not, a different message s’ will be recreated such that s’ # s.

7.1.2 Feldman’s Verifiable Secret Sharing (VSS) [2]

In this secret sharing scheme, we do not trust the dealer. Therefore, we need to have
some guarantee that the shares he distributes are correct. To do so, we build on SSS by
adding an extra commitment step on the polynomial. This way each participant can check
if their share is indeed correct i.e if it of the form (i, f(i)).

The first step is the same as in SSS; the dealer samples t — 1 coefficients a;,--- ,a;—; at
random and defines a polynomial of degree t — 1 using these values. He sets the constant

term as the secret (f(0) = s):

t—-1
S =s+ Zai-xi (7.2)
i=1

When sending the private share (i, f(i)) to each participant P;, the dealer also broadcasts
a public commitment vector C = {¢q, @1, , Pr_1), where ¢y = g° and @;=g%9.je[t-1].
Once a participant receives their share (i, v), they can check that is is correct i.e v = f(i) by

using the following equation:

Notes on Feldman'’s Verifiable Secret Sharing:
e The participants must all have the same view of C.

e Equation 7.3 can be used during reconstruction time to detect incorrect shares sub-

mitted by dishonest parties.

e By revealing ¢o = g°, some information about the secret is leaked.

7.1.3 Pedersen’s Verifiable Secret Sharing (PVSS) [3]

Feldman’s VSS reveals some information about the secret (since it reveals g°). We would
lilke a sharing scheme that would reveal no information. In order to do so, we use Pedersen’s
commitments.

The dealer samples coefficients for two polynomials: a,, -+ , a;_1 forf(x) and aj, aj, -+, a;_,
Jor g(x) and sets f(0) = s:

t—1
fe)=s+ ax (7.4)
i=1
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t—1
g = af - (7.5)
i=0

The secret share of participant P; will now be (i, f (i), g(i)). While distributing these shares to
each participant the dealer also broadcasts a public commitment vector C = {@q, - , Pi_1)
where ¢ = g° - h% and @ =9g%9- h%.

Once a participant receives their share (i, u, v) they can check that it is correct i.e u = f(i)

and v = ¢g(i) as _follows:

t-1
Jj=0
Notes on Pedersen’s Verifiable Secret Sharing:

e The value of ¢ is now a Pedersen commitment on s which hides s unconditionally.

e [t is shown in [3] that the dealer can succeed in distributing incorrect shares if he can

solve loggy(h).

7.2 Pedersen’s DKG algorithm and PedPoP

One of the most used DKG algorithms is the well-known Pedersen’s DKG [20]. In fact, a
variant of Pedersen’s DKG protocol appears in the state-of-the-art threshold signing protocol
FROST [21] ; this new variant is called PedPoP (Pedersen + Proofs of Possession). In this
section we describe the two schemes which are very similar.

We discuss briefly the intuition behind this DKG algorithm. In Pedersen’s DKG, we run n
parallel VSS algorithms with each one of our n participants being the dealer in a specific
VSS session. This way, each participant will create a specific polynomial {f;(x)}icn]. Each
dealer, will distribute shares of his secret f;(0) to all n members. The final secret of the
group will be s = J’.IZO Ji(0) and each participants P; secret share will be s; = Z;l:O JSi(.

Consider the following figure for an explanation:

. _ 2 t—1
b, .fl()C) =aqota,-xXx+a1o- X +---+ap-1-X

. _ 2 t—1
Py .fg(x) =gotag-X+age X +---t+dagt-1°X

. _ 2 -1
Ppifa(X)=ano+an1 X+ ano X"+ - +ani-1-X

F(X)=s+A; - X+Ag - x>+ +A_1-x" !

Figure 7.1: Intuition behind Pedersen DKG

In Figure 7.1 we can see the sampled t — 1 polynomial of each participant acting as
a dealer. If we were to sum these polynomials we would create an idealized polynomial
F(x) = Y1 fi(x) (this polynomial is idealized because it is never actually created during
the DKG) and the shares of each participant will be s; = F(i) = }1:0 JSi(.
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Participants whose shares do not check out using Equation 7.3 get disqualified from the
protocol and their shares will not be used. The way that they get disqualified is that if a
share of P; does not verify for P;, then P; will raise a complaint against P; by publishing the
share and the digital signature that accompanied it. The other participants will then see if

the complaint is valid or not.

Pedersen DKG and PedPoP

Round 1

$
1. Every participant P; samples t random values (a;p. . .., Qijt-1) < Zp, and uses
these values as coefficients to define a degree t—1 polynomial f;(x) = ;;é ajxj .

Every P; computes a proof of knowledge to the corresponding secret a;o by

$
2. calculating 0; = (R;, 1), such that k « Zp, R; = gk, ¢ = H(i, D, g%, Ry),
w = k+ a;o - ¢;, with ® being a context string to prevent replay attacks.

3. Every participant P; computes a public commitment C; = (¢;0...., Pi¢_1),
where ¢;; = g*,0<j<t-1.

4. Every P; broadcasts C;, o; to all other participants.

Upon receiving Cy, 0p from participants 1 < £ < n,? # i, participant P; verifies
5. o0y = (Ry. ), making a complaint against P; on failure, by checking Ry 2
g - cpZS", where ¢; = H(L, @, ¢p0. Ry).

Upon success, participants delete {o; : 1 < £ < n}.

Round 2

1. Each P; securely sends to each other participant P, a secret share (¢, f;(?)),
deleting f; and each share afterward except for (i, f;(i)), which they keep for
themselves.

2. Each P; verifies their shares by calculating: gt 2 ch_:lo cpfw raising a com-
plaint if the check fails.

3. Let QUAL be the set of participants that haven’t been disqualified from com-
plaints. Each P; calculates their long-lived private signing share by computing
Si = 2eguar (i), stores s; securely, and deletes each fp(i).

4. Each P; calculates their public verification share X; = g%, and the group’s
public key X = [ljeguaL @j0- Any participant can compute the public verifi-
cation share of any other participant by calculating

— ik
Xi = [ljern chzlo ¢},k-

Figure 7.2: Pedersen DKG and PedPoP. The pink part is only present in PedPoP

In the Figure 7.2 we can see the steps of Pedersen’s DKG in detail and the difference

between Pedersen’s DKG and PedPoP where a proof-of-possession of the constant term is
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included to avoid rogue-key attacks [47], [49].

Overall, Pedersen DKG is a simple two rounds algorithm making it very appealing.
However, it came with no security proof as it was not known what properties a DKG
algorithm should have. In the next section, we discuss an influence attack on Pedersen
DKG and how Gennaro et al. [22] fixed the issue.

7.3 Gennaro’s DKG algorithm

7.3.1 Problems with Pedersen’s DKG

Without specific security goals in mind it was impossible for Pedersen DKG to set a
standard on what properties a DKG ought to have. In their paper, [22] Gennaro et al,
constructed an influence attack against Pedersen DKG and after defining some specific
properties for DKG algorithms, they created their own version which avoided said attaclk.
This influence attack does not break Pedersen DKG per se, in fact in the same paper it is
proven that Pedersen DKG is "secure enough” when it comes to specific applications like
Schnorr signature (in fact it is secure in all applications where the security of the underlying
protocol can be directly reduced to the hardness of the discrete logarithm problem). The fact
that specific schemes like FROST [21] use versions of Pedersen DKG is a clear indication
that it is trusted. Nonetheless, Gennaro et al. introduced some properties that a DKG
algorithm should have. After defining those, they were able to mount an attack against

Pedersen DKG that breaks one of those properties. The properties defined are:
e Correctness

— All subsets of t shares provided by honest parties define the same unique secret

key sk.

— The resulting secret key sk is uniformly distributed (and hence the associated

public key also follows the uniform distribution).
e Secrecy

— No information on sk can be learned by an adversary except for what is already

implied by the public key (in discrete logarithm systems, that is g**).

The influence attack we are about to describe breaks the second bullet point of Cor-
rectness, meaning that an adversary can influence the distribution of the resulting key so
that the output does not follow the uniform distribution. The basic idea of the attack is
that an adversary participating in the Pedersen DKG can make complaints against partic-
ipants after seeing their ¢;o values (if the complaint stands then that member will not be
included in QUAL). This is important as the final public key of the group is calculated as
X = [licguar @io- The attack works as follows: Assume the adversary controls two parties
Py, Py, and he wants to bias the output of the DKG so that the resulting public key has 0 as
its last bit. At the end of the first round of the DKG (after having access to the commitment
vectors of the participants) the adversary can calculate three possible keys (assuming the

rest of the participants are honest and will thus be in QUAL until the end):
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e Public key if both P; and P, are in QUAL : pkpon = [112] ®i0-
e Public key if P; is disqualified from QUAL: pkp, = H{;PI ®i0-
e Public key if P, is disqualified from QUAL: pkp, = []4p, ®io-

If pknon ends in O then the adversary does not have to do anything and can just follow
the DKG like any honest member. Otherwise, it is quite possible that one of pkp, or pkp,
ends in 0. If pkp, (or pkp,) ends in O then the adversary can have Py, (or P1) make a complaint
against P; (or Py) during step 2 of the second round (since he controls both parties, it is easy
for him to create a complaint that will stand i.e VSS verification will fail). This was the
adversary can influence the final output effectively breaking the property that requires the

resulting keys follow the uniform distribution.

7.3.2 Fixing the issues in Pedersen’s DKG

Gennaro el al. did not just create this influence attack against Pedersen DKG ; they
also created a scheme to combat the issue and which provably has the properties described
in the previous section. As we will see however, there is a tradeoff between the security
of Pedersen DKG and the increased cost of the new DKG. We next describe the new DKG
and discuss the tradeoffs between the two algorithms. In this new DKG algorithm, we will
have n parallel runs of PVSS (instead of VSS) with each of the n participants being a dealer
in a specific PVSS session. These sessions will hide the public key before the algorithm is
concluded. The reason for that is that the new commitments will be ¢;o = g*© - h%o however
the public key will still be X = [;cquar g*°. This way the adversary will not be able to find
the possible public keys since they are blinded. The new DKG is described in Figure 7.3.
Some note on the new DKG and the tradeoffs between this algorithm and Pedersen DKG:

e The set QUAL is built during PVSS. All parties included in QUAL will influence the
final key.

e [f a party misbehaves during VSS (round 3, step 2) the honest parties can recover his
polynomial and his contribution to the secret key will still be included (otherwise the

adversary would be able to use the attack as in Pedersen DKG).

e The new protocol adds two rounds (one if no party is dishonest) to Pedersen DKG and

demands at most twice more local computation (VSS + PVSS).

7.4 A formal analysis of DKG algorithms

Building upon existing notions, Komlo et al. [23] wanted to define game-based notions of
security for DKG algorithms because previous notions were either incomplete or informally
presented. Apart from that, they presented a generic construction of a secure DKG using
three modular cryptographic building blocks which have their own properties. Using this

new construction, in order to create a new DKG protocol, it is just needed to use building
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Gennaro DKG

Round 1

$
1. Every participant P; samples t random values (a;o. . ... Q;t-1) < Zp, and uses
these values as coeflicients to define a degree t—1 polynomial f;(x) = J’f;é axd.

2. Every P; broadcasts C; = (@io, "+, Qit-1), to all other participants where
@ij = g% - h%.

Round 2

1. After receiving all commitment vectors, each participant P; secretly sends
sij = fi(j) and s = gi(j) to all other participants P;,j # i and keeps s;; = fi(i)
and s;; = g;(i) for himself.

2. Each P; verifies the validity of the secret shares (sj;, sJ’.’i) sent to him from
other participants P;,j # i broadcasting a complaint against P; if the shares
are not valid. If the complaint is valid, then P; is disqualified.

3. Let QUAL be the set of participants that haven’t been disqualified from com-
plaints. Each P; calculates their long-lived private signing share by computing
Si = XyeguarJi(i), stores s; securely, and deletes each f;(i). The secret key of
the group can be found via Lagrange interpolation.

Round 3

1. Each party P;, i € QUAL broadcasts A; = (g%®©, -, g&t-1),

2. Each participant P; verifies the shares s;; via Feldman’s VSS. If the check
fails he broadcasts a complaint against P; displaying the value s;;, sjf,l. which
passed validation during the previous round but failed on this step.

3. For parties P; that receive at least one valid complaint, the other parties
run the reconstruction to compute a;g, fi(z) in the clear. The public key is
calculated as X = []jeguar Ajo-

Figure 7.3: DKG by Gennaro et al.
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blocks that follow specific properties ; the security of the DKG is then proven for free as long
as its building blocks do not break any of the required characteristics. In this section we
briefly describe the building blocks of a DKG construction and the properties they should
hold. Finally, we discuss the properties of a secure DKG and give the construction using
generic building blocks. For proofs and game definitions of properties we advise reading
[23].

7.4.1 Building blocks of a secure DKG
The three building blocks for a DKG are:
e A secure hash function, we talk about hash function in Section 3.1.2.

e An Aggregatable Verifiable Secret Sharing (AgVSS) scheme: Building on a VSS, an
AgVSS allows us to aggregate multiple runs of a VSS protocol into a single instance.
Apart from that, it adds a small modification called a twealk to the original shares so
that the resulting public information is not visible before has ended. An AgVSS con-
sists of the tuple of algorithms (Share, Verify, Recover, GetPub, GetTweal, AggPriv, AggPub):

- Share(x, s,n, t) = ({1,w;), -+, (n, wy)}, D: Where {i, wi}ic[n) are the shares and
D is a commitment on those shares.

- Verify(i, w;, D) — {0, 1}

- Recover(t, M) — s/L1: Where M = {(j, wj)}je[1]-

— GetPub(i, D) — W;: Where W; is the public value associated with the secret value
w;.

- GetTweak(O, aux) — v: Where O = {Dy,--- , Dy}.

- AggPriv(P,v) — w;: Where P = {wj i}je[s-

- AggPub(O, v) — C: Where C is the aggregated commitment.

Using VSS as an example (ignoring the twealk for now), this VSS can be aggregated

as:
Py :fi(z)=ao+aiy-z+ - +ay 1z withD = {g@°, g™, .-, gUt),
Pp:fn(2) = Qno + Gn1 -z + -+ aneoy - 271 with Dy = {g*0, g1, -+ gonet),

These runs can be aggregated into a single run with a single commitment:

F(z) =Ag+A;-z+ -+ A -2 withC = {4y, Ay, -+ , A1} where A; = ity @ and
A =T] JZI g%t and the new secret shares of each participant P; being w; = 2}1:1 wj,;.
Now we can add the tweak value v = H{Dy, - - - , D,;}, aux) which will turn the secret
shares of the participants to W; = v + Z}‘Zl w;; and the aggregated commitment to
C={g"-Ao. Ay - A1},
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In order for an AgVSS to be used in the DKG construction it must satisfy the properties

of aggregated correctness, aggregated secrecy and uniqueness.

- Aggregated correctness : For honestly generated shares, tweak the aggregated
shares must verify with the aggregated commitment and after using Recover the

correct secret must be returned.

— Aggregated secrecy : The adversary cannot distinguish between honest shares

and simulated shares.
— Uniqueness : The adversary cannot find two different recovery sets for the same

commitment but which recover distinct secrets.

e A Non-Interactive Key Exchange (NIKE) scheme: A NIKE is a cryptographic primitive
which enables two parties, who know each others’ public keys, to agree on a sym-
metric shared key without requiring any interaction. It is a tuple of the algorithms
(KeyGen, Verify, SharedKey):

- KeyGen(k) — (sk, pk)
- Verify(sk, pk) — {0, 1}
— SharedKey(ski, pky) — w: Where y is the shared key.

The canonical example of a NIKE scheme is the Diffie-Hellman key exchange.

In order for a NIKE to be used in the DKG construction, it must satisfy the properties

of correctness, session-key unrecoverability and bindness.

— Correctness : A NIKE is correct if every key pair generated by KeyGen passes ver-
ification by Verify and for every honestly generated key pairs, SharedKey(sk, pks) =
SharedKey(sks, pk;).

— Session-key unrecoverability : A NIKE is session-lkey unrecoverable if an adver-
sary, given access to any two honestly generated public keys, cannot obtain the

shared secret.

- Bindness : A NIKE is binding if for key pairs that pass Verify it holds that
SharedKey(sk;, pks) = SharedKey(sks, pk).

7.4.2 Properties of a secure DKG and construction from generic building
blocks

A secure DKG must satisfy the properties of correctness, strong/weak robustness, zero-

knowledge and indistinguishability:

e Correctness : Honestly generated key shares must recover the secret key which

verifies with the public key on the target ey generation scheme.
e - Robustness:

— Strong : The protocol should always succeed as long as at least t honest parties

are present.
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— Wealk : The protocol can fail as long as all honest parties agree that it failed i.e

they all have the same status after the end of the protocol.

e Zero-Knowledge : The adversary does not gain any additional advantage to learn sk
than it would against the target key generation algorithm. This is once again shown
via a simulation algorithm just like the aggregated secrecy property of the AgVSS

scheme.

e Indistinguishability : The DKG must generate keys that are indistinguishable from
keys output by the target key generation algorithm.

The reader is encouraged to consult [23] for a more detailed description of the properties
as well as their game-based definitions. In Figure 7.4 we describe the generic DKG initiated
by a NIKE NK, an AgVSS AV and a hash function H. Without getting into too many details,
we can say that this generic DKG construction is secure since no one can learn the tweak
until the Finalize round because in order to learn the tweak one must know the shared keys
(which are revealed at the end of the second round) or the g; values which get reconstructed
only if j is a corrupt member. Finally, even if j is corrupt, his value a; will be used in the
final output key pair of the DKG.
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PerformRound,[H](x, n, t, i)

(ai, A;) i NK.KeyGen(x)
in « (x, a;,nt)
(({wyj}j#0). D) < AVHIi].Share(in)
(Bi, B;) « NK.KeyGen(k)
bmsgo,i «— (A, Bi, Dy)
forjec[n],j+#i
pmsgg ; < (wyy)
state; « (B;, wy, Dy, By)
outp < {pmsg y}ie[n) i

return (state;, outy,, bmsg, ;)

PerformRound, [H](state;, inp;, inb;)

parse {(i, wj)}je[n j#) < inp;
parse ((Aj, B, D)))je[n] j2i < inb;
forjec[n],j#ido
if AV(HY).Verify(i, wj, D;) # A
or if AV(H1).GetPub(0, D)) # A;
state;.status <« abort
return (state;, L,bmsg; ;, 1)
state;. « state; U {(j, wji)}je[n)
bmsg, ; < accept

return (state;, 1, bmsg, ;)

PerformRound,[H](state;, 0, inby)

if fail € inby

bmsg, ; < B

Finalize[H](state;, (), inbg)

state;.status <« abort

return (state;, L, 1)

return (state;, L, bmsg, ;)

if state;.status = abort
return (1, 1, 1), (abort, 1)
parse {Bj}jc(n)j+ < inbs
qual < 0; corrupt « @
forjc [n],j# ido
if NK.Verify(8;. B) = 1
w; < NK.SharedKey(5;, Aj)
qual « qual U {j}
else corrupt « corrupt U {j}
for j € corrupt do
M; = {(k, Wi} kequal
a; < AV[H1].Recover(t, M)
¥; < NK.SharedKey(q;, B;)

D
AV[H1].GetTweak({Dj}je[n), {¥j}je(n))

sk; < AV[H1].AggPriv(i, {wji}je[n), v)
C « AV[H;].AggPub({Dj}je[n]. V)
pk < AV[H;].GetPub(0, C)
for i€ qual do

pk; < AV[H;].GetPub(i, C)

aux < {pki } iequal

return (pk, qual, aux), (accept, sk;)

Figure 7.4: Generic DKG construction
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Chapter E

The FROST and FROST2 Threshold Schemes

Now that we have discussed key generation in threshold signatures, we can look at some
threshold signing schemes, specifically the FROST schemes [21] , [24]. The FROST scheme
[21] was one of the first concurrently secure threshold Schnorr schemes which allowed
two-round signing without using pairings. FROST stands for: Flexible Round-Optimized

Schnorr Threshold Signatures.

e Flexible: As we will see later, FROST is a two-round scheme where the first round
can be precomputed to cover multiple signing sessions. This allows the signers to
perform signing operations asynchronously ; once the first round (also called the pre-
processing round) is complete, signers only need to eventually reply with a single

message for the group signature to be completed.

o Round-Optimized: Can be used as either a two-round protocol, or optimized to a

single-round protocol with a pre-processing stage.

e Schnorr: The resulting group signature is identical to a normal Schnorr that can be

verified using a single aggregated group key.

e Threshold: A threshold t out of n possible participants are required for signing opera-

tions.

Each FROST signing session will contain t participants all of which are expected to send
partial signatures in order for a group signature to be formed. If even a single signing
member does not reply with a partial signature, then the signing session cannot be com-
pleted. Likewise, if a member replies with a partial signature that does not verify under his
public key, the signing session cannot be completed either. In both such cases, we would
need to create a new session without including the delaying party (the party which does
not send out signatures after a timer) or the party whose partial signature share does not
verify. Therefore, FROST is what is referred to as a non-robust scheme meaning that if
a party misbehaves, the protocol needs to be restarted after kicking out the misbehaving
participant. Of course, this is not new ; both MuSigl and MuSig2 schemes presented in
previous chapters where also not robust. The difference between MuSig and FROST is that
the former is a multi-signature scheme whereas the latter is a threshold signing scheme.

In MuSig we cannot kick out participants since all n of them are expected to contribute
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to the final signature, whereas in FROST, even if we kick out misbehaving members, the

threshold t might still be covered by the remaining parties. FROST traded off the robustness

aspect for efficiency, robust threshold signing schemes such as [50] required more than two

comununication rounds (which is what FROST requires). This combined, with the fact that

the first round of FROST can be precomputed means than in the case of a misbehaving

participant, essentially only a single extra round will need to take place. Nonetheless, we

describe how to add robustness to FROST in Section 8.3. We now describe the algorithms
of FROST and FROSTZ2 which are very similar to the ones in MuSig2.

8.1

\

\

Algorithms of FROST/FROST2

Setup. We work in a group G of order p and g is a generator of the group. The scheme

will also need two hash functions Hgg, Hnon — Zp.

KeyGen. We need to use a DKG algorithm like PedPoP with n signers and threshold
t. At the end of the protocol, each signer holds a secret key x;, a public key X; and the
group has an aggregate key X.

Sign;: We assume the signers wish to sign an (agreed-on) message m. We also

assume that the signing set SS of the session is known to the participants. Each
$

signer P; generates two random nonces d;, e; < Zp, computes D; = gdi, E; = g% and

sends out D;, E; to all other signers.

Signy: After receiving all {(D;, Ej)}jess from all other participants, participant P; com-
putes the binding factors b; = Hpon(j. X, m {(2, Dy, Ep)}ess).j € SS (or the single binding
factor b = Huon(X, m, {(2, Dy, Ep)hiess in the case of FROST2), the group commitment
R = [ljess D - EJbJ or R = [ljessD; - Ejb in the case of FROST2), the challenge of the
Schnorr signature c = Hs,;g(f( , R, m), his Lagrange coefficient ; for the set SS and his

partial signature share z; = d; + e; - b+ ¢ - A; - x; which he sends to the coordinator.

Combine. After all partial signatures {z;} have been sent out and verified, the final

group signature on m is produced as 0 = (R, Y icss Zi)-

Verify. Any public validator can verify the signature under the public key X by using

the Schnorr single party verification algorithm on o.

In Figure 8.1 we can see the algorithms of the 2 schemes in detail. The authors of
FROST suggest pre-processing the first round such that every participant sends out
multiple tuples (D, Ey) to the coordinator. This way when a participant gets added to
a session, the first round of the protocol can be skipped as nonces will be available.
Of course, this is not specific to the FROST protocol ; signers in MuSig2 can do the
exact same thing and likewise signers of MuSigl can pre-process the first round by
sending out multiple hashes. In order for rounds to be pre-processed, a coordinator
must be present ; this is fine for our analysis as we always assume our protocols

have a coordinator.
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Signy(SS, m, i, {pmy j}jess. sk, sty),

Setup(lK) parse (di’ ei) «— Stj, X; «— Ski

(G, p, g) «— GrGen(1%) parse {(D;, Ej)}jess < {pmu jljess

HnoruHsig . {O, 1}>k - Zp b — Hnon(Xa m, {([, DZ,E[)}[GSS
par < ((G, p, 9), Hnon. Hsig) R « HjeSS D;- EJb
return par

forj € SS

bj < Huon(j. X. m. {(2, Dy, Ep)}pess

b;
KeyGen(t, n, par) R« [ljess D - E, )
(X' {(X’ x]}JE[n]) — PedPOP(t! n) Cc — Hslg(Ry X’ m)

forj=1ton: zie—di+e-b+c-a-x

ki — X;
P ’ pmy i < z

sk «— x;
J J return pmo ;, st;

return X, {pk;}jein). {Skj}je(n)
Combine({pmyj}ie[2] jess)

parse {(D;, Ej)}jess < {pmu j}jess
Verify(o, Y, m) parse {zj}jcss < {pmyj}jess

arse 0 «— (R, z S
P (R.2) b Hion(X, m. (2, Dy, Ep)}sess
¢ <« Hsi4(R, Y, m) ,
R« [ljess D - E;
return 1 if g =R-Y¢ else O

for j € SS

. . bj < Hpon(j, X, m, {(£, Dy, E)}sess
Sign, (SS, m, i, {pmo j}jess, Ski. sti)

b.
di,ri «— Zp Re HJESSDJ ’ EJ'J
d; X
Di —g C «— Hsig(R’ X; m)
Ei — gei fol‘j € SS
m .+ (Du.E, . ; b ¢
pbmy ;i (Di, Ey) lfgz']iDj'EjJ'XJ'J
sty « (d;, 17) return |
return pm, ;, st; Z — Diess Zi
R« []iess Ri
0« (R 2)
return o

Figure 8.1: The FROST and FROST2 schemes. The parts in pink only appear in FROSTZ,
whilethepart®imgray only appear in FROST m



8.2 Complexity analysis of FROST and FROST2

The communication complexity of the two schemes is the same:
Each session consists of 2 rounds. For each session, each signer has to send out

elements of size:
e Sign,: t-2 -G (broadcast)
e Sign,: 7, (sent to coordinator)

Thus, the total amount of communication for a FROST/FROSTZ2 session is: t-(t-2-G+Z,)

For each FROST session, each signer has to perform computations of cost:
e Sign,: 2 - GExp
e Sign,: (t+1)-Hh+2 -t-GMul +t- GExp + 3 - SMul + Lagr

Therefore, the total amount of computation per signeris (t+ 1)- Hh + 2 -t- GMul + (t +
2) - GExp + 3 - SMul + Lagr.

For each FROST?2 session, each signer has to perform computations of cost:
e Sign,: 2 - GExp
e Sign,: 2-Hh+2-t- GMul + GExp + 3 - SMul + Lagr

Therefore, the total amount of computation per signeris 2- Hh +2-t- GMul + 3 - GExp +
3 - SMul + Lagr.

Scheme Rounds Communication (total) Computation (per signer)
FROST 2 t-(t-2-G+2Zp) (t+1)-Hh+2-t-GMul + (t + 2) - GExp + 3 - SMul + Lagr
FROST2 2 t-(t-2~G+Zp) 2-Hh+2-t-GMul+ 3-GExp+ 3 - SMul + Lagr

Figure 8.2: Comparison of FROST and FROST2

Given that GExp is the most costly operation, we can clearly see the reduction in com-

plexity costs that FROSTZ2 was able to achieve over the original FROST scheme in Figure 8.2.

8.3 Turning FROST robust with ROAST

8.3.1 Robustness

As we mentioned before, the FROST schemes do not have the property of robustness.
That means that if a party misbehaves by sending out a partial signature share which
does not verify, the protocol needs to restart. Even more importantly, an adversary in a
FROST session can simply choose to never reply with a partial signature. One might say
that the solution to this is trivial : just abort the protocol if a specific time frame has passed
and restart a new session. This however is a synchronous approach which assumes that

protocol messages will reach their destination in a constant time for all signers. However, in
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real-world applications over the internet it is much more desirable to create a robust scheme
in the asynchronous model. In this model, our only guarantee is that protocol messages
will reach their destination eventually. For this reason, when working in the asynchronous
model, we cannot raise timers when messages are delayed as we run the risk of kicking out

an honest party. Let’s start by defining robustness and see why that would be catastrophic.

Definition 8.17. Robustness in Threshold Signatures
We call a threshold signing protocol (run with n signers) robust if it is guaranteed to output
a valid signature in the presence of t honest signers, even if the remaining signers try to

prevent the protocol from completing.

It is obvious from the previous definition that if we have exactly t honest signers, and we kick
out one of them, then the remaining t—1 honest signers will not be able to produce a signature
(due to the threshold) so we instantly lose robustness. Therefore, the synchronous approach
will not work in the asynchronous model if robustness is our goal. Therefore achieving
robustness is not a trivial task but is it necessary for many real-world applications. For
example, if we wish to apply threshold signatures to DNS where DoS attacks are costly,
robust schemes are needed as seen in [51]. Apart from that, we can list plenty of real world
systems such as [52] [53] that use robust BLS signatures. If we wish for Schnorr signatures
to be an alternative, we need ways to add robustness to Schnorr schemes.

In this chapter, we look at a wrapper protocol for FROST called ROAST [25] which adds
robustness to the schemes. However, before we describe the scheme, we must first look at

a specific property that robust schemes must have: Identifiable Abort.

8.3.2 Identifiable Abort property

Intuitively speaking, the Identifiable Abort property states that an adversary that mis-
behaves during a signing protocol will be identified (and then kicked out of the protocol).
In order to do so, a scheme that has this property must have an extra ShareVal algorithm
which can identify if a partial signature share is valid or not. In the identifiable abort game
defined in [25], the adversary wins if the malicious signers under its control submit sig-
nature shares which pass validation (ShareVal) but lead to the output of an invalid group
signature (break of accountability) or if an honest party outputs a share that does not pass
validation (break of non-frameability).

It is easy to see that the FROST schemes have this property as each share is validated
during the Combine algorithm as each share is a mini-Schnorr signature. This way break
of non-freameability can never happen as the adversary does not control the information
included in the partial signatures of honest signers, and brealk of accountability can also
never occur as signature shares that pass the validation will create a correct signature due

to Lagrange interpolation.

8.3.3 The ROAST wrapper protocol

We give an intuitive explanation of the ROAST protocol and refer the reader to [25] for a
much more detailed description. ROAST [25] is a wrapper protocol on the FROST protocol
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that guarantees robustness in the asynchronous model. The way that this protocol operates
is that multiple parallel FROST sessions are run and within a specific number of sessions,
at least one them is guaranteed to succeed. In order to understand the ROAST protocol in

more detail, let’s consider a specific run of a FROST session:

Figure 8.3: FROST session in a 2-out-of-4 setting which includes the top and bottom left
servers. The server on the top left has sent his partial signature but the bottom left signer
is not responsive.

We can make some observations on the session that appears in Figure 8.3:

e There is no need to abort this session, as the unresponsive signer might reply.

e Unresponsive signers should be excluded from future sessions.

We need to start a new session to guarantee progress.

If we had piggybacked a new presignature share (that is a new nonce (D, E)) on every

partial signature share, we could start a new session immediately.
Based on these observation we can create a plan for the wrapper protocol:
o We will keep sessions open, maybe pending signers will respond.

e We will maintain a set of responsive (not pending) nodes, these members can be used

for future sessions.

e Whenever we have t responsive members in the previous set we will start a new
FROST session with them.

e Each participant has to piggyback a fresh presignature share on every partial signa-

ture they send.

With these things in mind, we can create the following ROAST algorithm that is event-

driven:
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ALGORITHM 8.1: ROAST Protocol

Signer Behavior:

Upon init:
Send initial presignature share.

Upon receiving a presignature share (start of new session):
Send partial signature.
Send new presignature share.

SO

Coordinator Behavior:
6: Upon init:
7 Mark all nodes as UNRESPONSIVE.
8: Upon receiving an initial presignature share:
9: Mark sender as RESPONSIVE.
10: Upon receiving a partial signature and new presignature share for session sid:
11: if partial signature does not verify then
12: Mark sender as MaLicious and exclude them from future sessions.
13: end if
14: if session sid has t signature shares then
15: Compute and output group signature.
16: end if
17: Mark sender as RESPONSIVE.
18: if there are t RESPONSIVE members then

19: Start a new session with them.
20: Send them their presignatures.
21: Mark them as UNRESPONSIVE.
22: end if

In this wrapper protocol, the n members are split into two distinct group, the Responsive

and the Unresponsive sets:

e Responsive: A signer is in this set once a presignature is available for him (meaning he
can be added in a new session). This can be done in two ways: either he was added in
a session and he responded with his partial signature share and a new presignature

or he has never been added to a session but has sent his initial presignature share.

e Unresponsive: A signer is in this set if he is blocking a session i.e he is not sending

out his partial signature share.

In order to justify why this protocol guarantees robustness we look at its invariant which
states that any signer is Unresponsive in at most one FROST session. This is easy to see as
Unresponsive signers will not be added to further sessions. Therefore each Unresponsive
member can hold up at most 1 session. Furthermore, due to the Identifiable Abort property
of FROST, a malicious signer cannot escape the Unresponsive state as he will either send
out a non-valid partial signature (and be caught as malicious getting kicked out of future
sessions) or he will send out a valid partial signature (in which case he does not act as
an adversary and his signature share can be used to compute the final group signature).
Therefore each adversarial signer can hold up to a single session (by staying Unresponsive

forever). In order for the protocol to succeed we of course need at least t honest parties, this
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means that the adversaries can be f < n — t. In the worst case, each malicious signer will
be able to block a separate signing session. This means that if f + 1 sessions are started,
it is guaranteed that one of them will succeed. Therefore, robustness is guaranteed with
n—t+ 1 sessions since in one of those sessions there will only be honest participants ; that

session is guaranteed to end eventually.
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Chapter E

Security Notions for Threshold Signatures

In Section 4.3.2 we tallked briefly about unforgeability for multi- and threshold signa-
tures. Intuitively, the most basic definition of unforgeability for threshold signing schemes
states that an adversary who control t — 1 signers is unable to forge a signature. When it
comes to FROST, its unforgeability proof is presented in [54]. However, this notion of un-
forgeability, although very natural, is not the only definition that exists in the literature. In
this chapter we will look at some security notions for threshold signatures first introduced
by Bellare et al. in [26]. The authors of this paper, not only introduced a new hierarchy
of security definitions, but they were also able to show that schemes like FROST achieve
better security than what was originally believed. Another goal was to introduce a unified
syntax for a specific kind of schemes, called partially non-interactive ; these are two-round
schemes where the first round can be precomputed (FROST is in this scheme category as
described in the previous chapter). For simplicity, we will adopt their syntax but it is easy to
see how the algorithms presented in the chapter match the ones in Section 4.2. Finally, we
will look at a separate paper [27] which introduced strong unforgeability for threshold sig-
natures and how their definition of strong unforgeability compares the strong unforgeability
notions of [26].

9.1 Syntax for Partially Non-Interactive Threshold Signatures

The syntax described in this chapter is strictly for partially non-interactive threshold
signing schemes. These are two-round schemes where the first round can be precomputed.
In these schemes we will assume that we have some servers and a leader to manage the
sessions.

A partially non-interactive threshold signature scheme TS specifies a number ns of servers,
a reconstruction threshold t, a key-generation algorithm Kg, a server pre-processing algo-
rithm SPP, a leader pre-processing algorithm LPP, a leader signing-request algorithm LR, a
server partial-signature algorithm PS, a leader partial-signature aggregation algorithm Agg
and a verification algorithm Vf. We describe how the new algorithms are used in a signing

session.

1. Before the signing session begins, the ns servers use the SPP to produce presignatures/pre-

processing tokens which they send to the leader.
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2. When the leader wishes for a signing session to be started, he uses the LR algorithm
to create a leader request Ir. This leader request specifies the servers chosen to

participate in the signing session as well as the pre-processing tokens they shall use.

3. The servers chosen use the PS algorithm to _form partial signatures which they send

to the leader.

4. The leader uses the Agg algorithm on the partial signatures to create a group signa-

ture.

5. Any public verifier can check the validity of said signature by using the Vf algorithm.

9.2 Unforgeability challenges in threshold signatures

In order to define an unforgeability game for threshold signatures, the adversary needs
to have access to a signing oracle. In contrast to single party signing schemes, this oracle
will produce partial signatures instead of standalone signatures. This however could be
problematic as, for all we know, an adversary might be able to find a way to be able to use a
partial signature of a separate session to create forgeries. This naturally lead the authors of
[26] to define when a threshold signature shall be considered trivial or not. For single-party
signatures, a forgery is considered trivial if the oracle has been queried on that message
as seen in Figure 3. 1. In the game definition of Figure 4.2 for threshold signatures, we can
see that a signature is considered trivial if the adversary has obtained at least one partial
signature on that message from the oracle. This is natural considering that in that game,
the adversary controls t — 1 signers so all he needs is one more partial signature share to
produce a group signature ; and therefore getting that share from the oracle would be trivial.
Howeuver, this would not be correct if the adversary controlled less than t — 1 signers. In
order to study such cases, an unforgeability hierarchy was defined with multiple levels.
For this levels it holds that : TS-UF-0 < TS-UF-1 <« TS-UF-2 < TS-UF-3 <« TS-UF-4 (where
B < A means that any scheme which is A-secure is also B-secure). We next describe what

is considered trivial in each of these levels:

e TS-UF-0: A partial signature for the message M was generated by at least one honest

server (i.e the adversary got that partial signature from the oracle).

e TS-UF-1: A partial signature for the message M was generated by at least t — c honest

servers, where c is the number of corrupted signers.

e TS-UF-2: There exists a leader request Ir for the message M which was answered by

at least t — c honest signers.

e TS-UF-3: There exists a leader request lr for the message M such that every honest
server i € Ir.SS either answered lr or the pre-processing token pp; associated with i

in lr is maliciously generated.

e TS-UF-4: There exists a leader request Ir for the message M such that every honest

server i € Ir.SS answered Ir.
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Set of trivial forgeries Security Level

TS-UF-0
TS-UF-1

TS-UF-2
TS-UF-3

TS-UF-4

Figure 9.1: Hierarchy of security notions

The first two notions of unforgeability (T'S-UF-0 and TS-UF-1) focus specifically on the
messages, whereas the next levels focus on the leader requests. This allows more flexibil-
ity to the adversary as in levels TS-UF-2,3,4 he is allowed to mix different leader request
responses (i.e different signing sessions) while trying to create a forgery. The authors also
introduce the first notion of strong unforgeability for threshold signatures. In single-party
schemes strong unforgeability states that a forgery (m”*, ¢*) is non-trivial as long as ¢* was
never output from the oracle. This means that an adversary can query the signing oracle
on m* as long as the final signature which he submits is not one given to him by the oracle.
In order to translate this notion to the threshold setting, the authors asked that there exists
an algorithm SVF that outputs true only for a single signature given a specific message.
Given this algorithm, they defined three strong unforgeability levels: TS-SUF-2 « TS-SUF-3
«— TS-SUF-4.

In Figure 9.3 we define the unforgeability games as seen in [26]. The trivial forgery condi-

tions appear in the following figure.

tfo(M) Si(M) #0

tfy (M) IS1(M)| =t —|CS|

tEa(lr) ¢  [Sa(lr)| > f—|CS|

tEa(lr) tfo(lr) and Ss(lr) = Ss(lr )

tE4(lr) tfo(lr) and So(lr) = Sy(lr
tsfa(lr. vk, sig) :  tfa(lr) and SVF[h](vk, Ir, sig)
tsfy(lr, vk, sig) :  tEz(lr) and SVF[h](vk, Ir, sig)
tsfy(lr, vk, sig) 1(Ir) and SVf[h](vk, Ir, sig)

Figure 9.2: Trivial forgery conditions and trivial strong forgery conditions.

It is clear that the unforgeability defined in Section 4.3.2 is equivalent to TS-UF-0. The
fact that FROST is TS-UF-0 secure was shown in [54]. However, in [26] it was actually
shown that FROST is TS-SUF-3 secure, showing that schemes might unveil better than

advertised security when looked under this new scope.
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Games Gthé“f'i (i=0,1,2,3,4) and G‘TSéS“f'i (i=2,8,4)

INIT(CS):
Require: CSc [l..n]and |CS| < t
h « TS.HF; (vk, aux, sk, ..., sky) & Kglh]
HS « [1..n]\ CS // Set of honest parties
For i € HS do:
sti.sk « sk;; sti.vk < vk; sti.aux < aux

Return vk, aux, {sk;}iccs

PPO(i):

Require: i € HS

(pp. sty) i SPP[h](st;)); PP; « PP; U {pp}

Return pp

PSIGNO(i, Ir):
M « Ir.msg
Require: [rrSScC [l..ns]and M € {0, 1} and i € HSN Ir.SS
Require: Ir.PP(i) € PP;
L LU{l: (psig.st) < PS[RI(r, i, st;)
If (psig # L) then
S1(M) « Si(M) U {il;  Sp(lr) « So(lr) U {i}

Return psig

RO(x): // Random Oracle

Return h(x)

FIN(M, sig):
For all Ir € L do:
S3(Ir) « {i €e HSN Ir.SS : Ir.PP(i) € PP;}; Su(lr) « HSNIr.SS

If not Vi[h](vk, M, sig) then return false

Return (not tf;(M)) // Game Gthé“f'i fori=0,1
Return (not Alr(lr.msg = M A tf;(Ir))) // Game Gifé“f’i fori=2,3,4
Return (not Alr(lr.msg = M A tsfi(Ir, vk, sig))) // Game G‘fés‘”f'i

92| Figure 9.3: Games to define unforgeability for threshold signdtii'¥4¢reesryaoia



9.3 Relations between notions of security

The previously defined unforgeability levels are not unrelated. In the following figure,

we can see some relations between them. We refer the reader to [26] for the proofs.

--
=" -

T5-UF-0 =—— TS5-UF-1 +=— T5-UF-2 =—— T5-UF-3 «=—— T5-UF-4

TS-5UF-2 =— T5-5UF-3 =— T5-5UF-4

-
----- L

Figure 9.4: Relations between notions of security. The blue non-dotted arrows indicates
an implication under a quantitatively loose reduction. The dotted arrows show that the
levels are completely separated. The thick dotted arrows indicate the existence of a generic
transformation.

9.4 Strong unforgeability for threshold signatures

In the previous section, we show that the authors of [26] defined strong unforgeability
Jfor threshold signature schemes that have a special SVf algorithm. However, we would
much prefer a definition that is closer to the one for single-party schemes and is not limited
to the class of threshold signing schemes studied in [26] (i.e semi non-interactive schemes).
In [27] a new definition on strong unforgeability for threshold signature schemes is given

via one-more unforgeability.

9.4.1 Strong unforgeability challenges for threshold signatures

The authors of [27] found a number of obstacles that make strong unforgeability difficult

to define when it comes to threshold and multi-signatures. These issues include:

e Pinpointing when a signature is produced.: In single-party signing schemes, the signer
executes a single signing operation when given a message m to sign. In contrast to
this, threshold signing schemes might need multiple interactive rounds between the
signing members ; these rounds are all separate steps. It is therefore difficult to
pinpoint exactly when a signature gets produced. One idea would be to define that a
signature has been produced once the last round of the protocol completes. Another
approach would be to consider that a message m has been signed as long as a signing
session on m began. This is however problematic as in reality, the signing session on
m might never end. For example, in a five-round interactive protocol, it would be very
problematic if the adversary can create a signature after only seeing the messages
of the first round. It is clear that in that case the adversary never got to see a group

signature being produced when he completed his forgery.

e Mixed sessions: An adversary that controls t — 1 out of n signers might start multi-

ple signing sessions on a message m. If this happened in the single-party setting,
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we could of course count the amount of signatures that the adversary got from the
honest party and expect him to create another forgery on m in order to break strong
unforgeability. In the threshold setting however, we have to consider the case where
the adversary is able to mix partial signature shares from different sessions leading
to multiple distinct group signatures on m even though technically none of the honest

parties signed the message twice.

9.5 One-more unforgeability to the rescue

To sidestep these issues, the authors turn to a quantitative approach borrowed from
blind-signature schemes: one-more unforgeability. As we have seen throughout this thesis,
threshold signatures and blind signatures are very similar in the sense that the unforgeabil-
ity notions of both cases allow for communication between the adversary and the honest
signers and therefore it seems natural to use notions from the blind-signature literature
Jor threshold schemes. Intuitively, the authors ask that after ! complete executions of the
interactive signing protocol on message m, the adversary cannot output more than ¢ valid
full signatures on m. In Figure 9.5 we can see the game definition of strong unforgeability
for threshold signatures. From the game we can see that after an adversary executes the
last interactive round of a session on m, we expect him to only be able to form a single

signature on that message.

9.6 Comparing strong unforgeability with previous notions

After presenting strong unforgeability, it is natural to see how it compares to the notions
of Section 9.2 and if there is any connection with them. In [27] it is shown that : TS-SUF-2 —
SUF (i.e an adversary that wins the strong unforgeability of Figure 9.5, wins the TS-SUF-2
game of Figure 9.3. The proof is quite simple and we discuss it briefly:

— If the adversary wins the strong unforgeability game, that means he can come up

with valid distinct signatures (Oj)j;l for some message m s.t £ > |{Ir : Ir-m = m}|.

— Hence, there exists some signature o; for which SVi(pk, Ir, 0;) = false for all Ir € {lIr :

Ir.-m = m} and thus he can use that exact signature to win in the TS-SUF-2 game.
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1: Games G'I"5[TS], G [TS]

2: procedure INIT(CS) CS C {1,..., n}and |[CS| < t > corrupt set
3 HS «{1,..., n}\ CS > honest parties
4: Q<o > tracks legit signatures
5 ((vk, s)l,, vk) « TS.Kg(n, 1)

6 return vk, ((vk)} ;. (sk)jecs)

7: end procedure

8: procedure SIGNOj(k, s, some subset of {m, S, out})

9 if j ¢ HS then

10: return L

11: end if

12: 0 « k.TS.Sign(input to Signg, )

13: if 0 = 1L then

14: return |

15: end if

16: if j = TS.ir then > on last interactive round
17: if Q[s, m] uninitialized then

18: Qlsts, m] « 1

19: else

20: Qlsts, m] « Q[sts, m] + 1

21: end if

22: end if

23: return o

24: end procedure

25: procedure FIN(m, (q)le)
26: ifdi#j: o, = 0;then
27: return false

28: end if

29: forj=1,..., ! do

30: if = TS.Verify(vk, m, ;) then
31: return false
32: end if

33: end for

34: if Q[m] initialized A Q[m] > ¢ then
35: return false

36: end if

37: if Q[m] initialized then

38: return false
39: end if
40: return true

41: end procedure

Figure 9.5: Strong unforgeability for threshold signatures. The lines in blue are for strong
unforgeability while the red lines are for existential unforgeability.
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Chapter m

Threshold signature schemes against Adaptive

Adversaries

10.1 Static vs Adaptive Security

Throughout this entire thesis we’ve only looked at security against static adversaries.
That means that the adversary has to declare which parties he wishes to corrupt at the
beginning of the unforgeability game. Howeuver, this poses a clear limitation on his abilities.
In a real-world example, the adversary would be able to monitor the signing parties and
look at their messages, then he would able to hack the parties he wishes only after having
seen their messages. While sticking to static security is a much simpler goal, as threshold
signature schemes aim to be approved for real-world application, finding schemes that are
unforgeable against an adaptive adversary is of great importance. This is evident from
the threshold signature schemes call that NIST made [11]. It is cleared stated there that
"a proposed protocol must not allow its critical safety properties to be trivially broken in
case of adaptive corruptions”. In this chapter we will look at two schemes, Sparkle and
Glacius which provide security under adaptive corruptions and compare them ; but first, let
us define the adaptive unforgeability game as seen in [29]. Note than in the literature for
adaptive threshold signatures, it is common to symbolize the threshold as t + 1 instead of
t, so we will stick to that. From Figure 10.1 we can see that in this version of the game,
the adversary has access to a corruption oracle allowing him to corrupt singers whenever
he wishes as long as he does not corrupt more than t members. Whenever a party gets
corrupted, the adversary learns their secret key and their internal state. Our desired goal
would be to find schemes unforgeable even if the adversary can corrupt t signers in an

adaptive manner.

10.2 The Sparkle+ scheme

The first threshold Schnorr scheme to be proven secure against adaptive corruptions
was the Sparkle+ scheme [28] (which we call Sparkle for simplicity). This scheme is a
simple three-round scheme that very much resembles the construction of MuSig1 presented
in Section 6.2. The Sparkle scheme does however achieve full adaptive security in the

ROM where the authors were able to prove security when the adversary has t/2 available
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Game UF-CMA}] (1. n, 1)

1: par <« Setup(1”,n, t)

KeyGen(par)

19: assert sid € Sessions
3: C:=0, H:=[n]

20: assert SS = signers[sid]
4: Queried :=0, pmsg:=0

21: assertic (SSNH)
5: SIGN := (NEXT, (SIGN)ke[r])

22: assert k = round[sid, i]
6: (m*, o%) «

ACORRSIGN, i {pki}iern) 23: assert m = message|sid]
7. if m* € Queried : return O 24: ifk=0: returnl
8: return Ver(pk, m*, o) 25: forjeSSNH:

26: if pm;_,; ¢

pmsglsid, k — 1,j] : return O
Oracle CORR(i) 27 return 1

9: if|Cl>torieC: return L
10: C:=CuUli}, H:=H\{i}

11: ki, i .
return (ski. st;) Oracle SIGN(sid, SS, m, i, (pm;._ )jess)

Oracle NEXT(sid, SS, m) 30: input:=
(SS’ m, iv (pmk—lJ)jESs)

12: if(SS|<t+1)Vv(SS ¢

[n]) : return L 31: if Allowed(sid, k, input) =0 :
13: if sid € Sessions : return L 32: return L
14: Sessions := Sessions U {sid} 33:  (pmy,;.st) «

Sign, (input, sk;, st;)
15: Queried := Queried U {m} ININP

34: pmsg[sid, k, i] := pm,;
16: message[sid] := m '

35: round[sid,i] ;== k+1
17: signers[sid] := SS

] 39: return pm,;
18: for i € SS: round[sid,i] :=

1

Figure 10.1: UF-CMA game for an r-round threshold signature scheme against adaptive
adversary
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corruptions. However, when moving to the AGM, Sparkle achieves full adaptive security.
This is because, without the AGM, the authors had to resort to the forking lemma [30] in
order to prove security. This is problematic when it comes to adaptive adversaries as if
we allowed the adversary to corrupt t members, that means he would be able to corrupt
t + t = 2t parties throughout the proof (the fact that the adversary is adaptive means that
the t corrupted parties of the first run and the t corrupted parties of the second run might
be different) leading to trivial forgeries. For this reason, when using the forking lemma, the
authors allow the adversary to corrupt t/2 participants, leading to a maximum number of t
corrupted members in total.

Please note that the original version of Sparkle [565] was not secure under a specific attack
presented in [56]. The authors of Sparkle fixed the issue by including a separate single-
party signature for each protocol message exchanged during Sparkle. This howeuver, is no
issue for us as we always assume that protocol messages are sent with a signature as

described in Section 4.1.4.

10.2.1 Algorithms of the Sparkle Scheme

- Setup. We work in a group G of order p and g is a generator of the group. The scheme

will also need two hash functions Hgig, Heom — Zp.

- KeyGen. We need to use a DKG algorithm lilkke PedPoP with n signers and threshold
t. At the end of the protocol, each signer holds a secret key x;, a public key X; and the
group has an aggregate key X.

- Sign;: We assume the signers wish to sign an (agreed-on) message m. We also
assume that the signing set SS of the session is known to the participants. Each

$
signer P; generates a random r; < Zp,, computes R; = g"t, t; = Hcom(R;) and sends out

t; to all other signers in SS.

- Signy: After receiving all {t;}icss from all other cosigners, participant P; reveals his

comumitment nonce R; by sending it out to all signers.

- Signg: After receiving all {R;}ic[n] from all other cosigners, participant P; checks that
t; = Hem(R;) and aborts the protocol if this is not the case. Otherwise, he com-
putes the group commitment R = [];css Ri, the challenge of the Schnorr signature
c= Hsig(f( , R, m) and his partial signature share z; = r; + ¢ - f; - x; which he sends out

to all other signers (or the central coordinator role).

- Combine. After all partial signatures {z;} have been sent out and verified, the final

group signature on m is produced as o = (R, Y icss Zi)-

- Verify. Any public validator can verify the signature under the public key X by using

the Schnorr single party verification algorithm on o.
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Setup(1”)
(G, p,g) « GrGen(1")
Heom, Hsig : {0, 1} = Z,,
par < ((G, p, 9), Hagg: Heom: Hsig)

return par

KeyGen(t, n, par)

(X.{(X, xj}jein]) < PedPoP(t, n)
forj=1ton:

plj < X;

skj « X;

return X, {pl}iein. {Ski}jern)

Sign;(SS, m, i, {pmo j}jess, Ski, st;)

ri «— Zp

Ry« g"

ti < Heom(Ry)
pmy; <t

st; « (11, Ry)

return pmy ;, st;

Signy(SS, m, i, {pmy jljess, ski, sti),

parse (R;, 1;,) « st;
parse {{j}jcss < {pmy jljess
pmg; < R;

sty « (R, 1y, {tj}jess)

return pmy ;, st;

Signs(SS, m, i, {pmy j}jess. sk, sty),

parse (R, 1y, {tjljess) <« st,x <

sk;
parse {Rj}jcss < {pmg j}jess
forj e SS
if Hom(R) # §
return L
R « njeSS R;
c— Hi(R X, m)
zie—r+c-ii-x
pmg,; < z;

return pmg;, st;

Combine({ pmyj}ie[3] jess)

parse {Rj}jcss < {pmy j}jess
parse {Zzj}jcss < {pm3 j}jess
R« []jess Ry
¢ « Hgg(R. X, m)
forj € SS
if g% # R X'
return L
Z — Yliess Z
R« [liess Ri
0 (R 2)

return o

Verify(o, Y, m)
parse 0 «— (R, z)
c— H{(R Y, m)

return 1 if g = R- Y¢, else O

Figure 10.2: The Sparkle+ scheme
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10.2.2 Complexity analysis of Sparkle
For each session, each signer has to send out elements of size:
e Sign,: n-Z, (broadcast)
e Sign,: n- G (broadcast)
e Signs: 7, (sent to coordinator)

Thus, the total amount of communication for a Sparkle sessions is: n-((n+1)-Z,+n-G).

For each session, each signer has to perform computations of cost:
e Sign,: GExp + Hh
e Sign,: -
e Signs: (t+1)- Hh+ (t—1)- GMul + 2 - SMul + Lagr

Therefore, the total amount of computation for each signer is (t + 2) - Hh + GExp + (t —
1) - GMul + 2 - SMul + Lagr.

10.3 The Glacius scheme

As we saw, the Sparkle protocol cannot achieve full adaptive security in the ROM.
Glacius [29] on the other hand, is a five-round threshold Schnorr scheme which achieves

Jfull adaptive security in the ROM under the DDH assumption.

10.3.1 Algorithms of the Glacius schemes

- Setup. We work in a group G of order p and g is a generator of the group. The scheme

will also need five hash functions Hy, H1, Hsig, Heom . Hyiew-

- KeyGen. They key generation algorithm takes as input the public parameters and
samples three uniformly random polynomial s(x), r(x), u(x) i Zp[x](t) suchthatr(0) =
u(0) = O where Zy[x]) is the set of all polynomial in Z, of degree t. The secret
signing key of signer i is then sk; < (s(i), r(i), u(i)) and its public key share is pk; =
g On @@ - Further, the public key of the system is pk = g5¥@h" @@ = 5O

- Sign,;. We assume the signers wish to sign an (agreed-on) message m. We also
assume that the signing set SS of the session is known to the participants. Each P;

$
samples a uniformly random string p; < {0, 1} which he broadcasts.

- Signy. Upon receiving all random strings p = ((j. pj))jess from signers, each singer
$

P; proceeds as follows. He samples a random a; < Z, and computes the nonce

A; < (g% - Ho®)™ - Hy (5" where 7; is the Lagrange coefficient. Signer P; then

broadcasts his commitment y; = Heom(i, A;).
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- Signg. Upon receiving all commitments [i = (1)jess from signers, each P; hashes its
current view of the protocol messages (B, fi) and computes the hash y; = Hyiew(0, i)

which he broadcasts.

- Signy. Upon receiving all views § = (y;)jess from signers, each P; proceeds as follows.
For all j € SS, he checks whether y; = y; holds i.e checks whether his view matches
with the views of all other honest signers. If one of these checks fails, the signer

outputs L and aborts. Otherwise, he sends the opening A; to all other signers.

- Signs. Upon receiving all opening (Aj)jess from signers, each P; proceeds as follows.
First, it retrieves the commitments i = (lj)jess from the second round. Then, for all
Jj € SS, it checks whether pj = Heom(j. Aj) holds. If either of these checks fails, he
outputs L and aborts. Otherwise, he computes the combined nonce A; = H_jeSS Aj,

challenge c = Hsig(A, pk, m) and his signature z; = A;(a; + ¢ - s(i)).

- Combine. After all partial signatures {z;} have been sent out and verified, the final

group signature on m is produced as 0 = ([ |icss Ai» X iess Zi)-

- Verify. Any public validator can verify the signature under the public key X by using

the Schnorr single party verification algorithm on o.

10.3.2 Complexity analysis of Glacius

For each session, each signer has to send out elements of size:

e Sign;: n- k (broadcast)

Sign,: n - G (broadcast)

e Signs: n - k (broadcast)

Sign,: n- G (broadcast)
e Signs: 7, (sent to the coordinator)

Thus, the total amount of communication for a Glacius session is: n-(2-n-G+2-n-k+7Zp).

For each session, each signer has to perform computations of cost:

Sign,: —

Sign,: 2 - Hh + Lang + 3 - GExp + 2 - GMul

Signs: Hh

Sign,: —

Signs: 2-Hh+2- SMul + (t — 1) - GMul.

Therefore, the total amount of computation for each signeris: 5- Hh+ 3 - GExp+ (t+ 1) -
GMul + 2 - SMul + Lagr.
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10.4 Sparkle vs Glacius

Scheme Rounds Communication (total) Computation (per signer)
Sparkle 3 n-(n+1)-Z,+n-G) (t+2)-Hh+ GExp+ (t — 1) - GMul + 2 - SMul + Lagr
Glacius 5 n-2-n-G+2-n-xk+%2p) 5-Hh+3-GExp+ (t+1)-GMul+ 2-SMul + Lagr

Figure 10.3: Comparison of Sparkle and Glacius

10.5 New advances in threshold signatures against adaptive

corruptions

Concurrently with this thesis, two very interesting papers on the adaptive security of
threshold signatures were published. In [57] it is proven that it is impossible to prove the
adaptive security of any key-unique threshold signature scheme under any non-interactive
computational assumption above t/2 corruptions, for a broad class of reductions. It is
also proven that it impossible to prove the adaptive security of any key-unique threshold
Schnorr signature under (A)JOMDL in the ROM above t/2 corruptions via rewinding. This
makes sense of Sparkle’s t/2 adaptive corruption threshold. In [58] the FROST schemes are
proven secure against adaptive adversaries in the ROM with a corruption threshold t/2 and
when moving to the AGM, FROST is secure under a full adaptive threshold under AOMDL

and a new assumption called low-dimensional vector representation problem.
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Chapter m

Sparkling ROAST: A robust wrapper protocol
for Sparkle+

As we’ve already discussed, robustness is vital for real-world systems where denial of
service attacks are costly. Recalling its definition, robustness simply states that a protocol
is guaranteed to output a valid signature in the presence of t honest signers, even if the
remaing signers try to prevent the protocol from completing. As real-world applications
aim to adopt threshold signatures, robustness in Schnorr schemes should be a main goal
if we wish Schnorr schemes to be considered. The well established security of Schnorr
signatures is not going to be enough when other candidate schemes have robustness as
an extra property. In the case of FROST [21] [24], we saw how the ROAST [25] wrapper
protocol can be used in order to add robustness to the initial threshold signing protocol.
However, the construction of ROAST only works for a specific kind of two-round schemes
with identifiable abort [25] [29]. It is natural to consider whether this wrapper protocol can
be extended to other protocols which include more rounds, the simplest one being Sparkle+
[28] (which we call Sparkle for simplicity). In this chapter, we discuss an extension of
ROAST for Sparkle, which we call Sparkling ROAST, justifying why it achieves robustness
and how many internal Sparkle sessions will have to be run for success in finite time.
Just like in ROAST, we work in the asynchronous model where the only guarantee that
we have is that protocol messages between signers will reach their destination eventually,
but without being able to set a specific time frame (robustness is trivial in the synchronous
model by raising timers against delaying participants). In order to do so, we study the
original ROAST and draw parallelisms in order to extend it in this new setting. Finally, we
argue that our new construction can be extended for even more schemes as long as said
schemes have the Identifiable Abort property (an example would be the five-round Glacius
scheme [29]).

11.1 ROAST on FROST

In this section, we look at the ROAST protocol while trying to identify some key informa-
tion on why it provides robustness for FROST and on how many internal sessions need to
run until termination.

ROAST works by having a coordinator orchestrate multiple internal FROST sessions until
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one of them succeeds (deterministically). In order to do so, the coordinator maintains a list
of responsive signers i.e signers that have responded to all previous signing requests. As
soon as that list contains t signers, the coordinator will start a signing session of FROST
with them i.e ask each signer to respond with a valid signature share. Along with every
partial signature, every signer is required to send a fresh presignature share in preparation
of a possible next signing session (we refer to this technique as piggybacking). This way a
pipeline of signing sessions is created as signers who answer honestly will always have an
available presignature to join a new session if needed. For FROST, presignatures are of the
form (D = g%, E = ¢°). We consider that each signing session begins with the coordinator
sending a list of presignatures and the signing parties included in the signing set SS i.e if
a participant P; receives the list {(j, D;, Ej)}jess he is supposed to provide a partial signature
based on that signing committee and those presignatures. Of course it is assumed that in
the previous list, the values (D;, E;) are a presignature which the signer sent earlier to the
coordinator otherwise it would be impossible for him to find the discrete logarithms needed
Jor the partial signature. Finally, we assume that the coordinator and the signers know

which message is indented for which session.

ArcoriTHM 11.1: ROAST Protocol for FROST

Signer Behavior:

Upon init:
Send initial presignature share.

Upon receiving a presignature share (start of new session):
Send partial signature.
Send new presignature share.

S A

Coordinator Behavior:
6: Upon init:
7 Mark all nodes as UNRESPONSIVE.
8: Upon receiving an initial presignature share:
9: Mark sender as RESPONSIVE.
10: Upon receiving a partial signature and new presignature share for session sid:
11: if partial signature does not verify then
12: Mark sender as MaLicious and exclude them from future sessions.
13: end if
14: if session sid has t signature shares then
15: Compute and output group signature.
16: end if
17: Mark sender as RESPONSIVE.
18: if there are t RESPONSIVE members then

19: Start a new session with them.
20: Send them their presignatures.
21: Mark them as UNRESPONSIVE.
22: end if

Overall, the new FROST protocol for signing parties looks as follows:

e When ROAST begins: Send initial presignature.
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e Added to signing session: Send partial signature based on presignatures, and new

presignature.

The fact that FROST is a partially non-interactive protocol (meaning that it includes
two-rounds the first of which is message independent) means that the ROAST construction
allows us to bring it down to a single interactive round by including a presignature with each
partial signature share (pretty much reducing the protocol rounds to one). This introduces
a single blocking point in the pipeline (i.e a single point to determine which participants are
honest): when a party enters a signing session, he will either answer or not ; of course
due to the asynchronous setting we do not know when (or if) that will happen. However
since honest participants are guaranteed to answer, we can separate participants into two

distinct sets: Responsive and Unresponsive:

e Responsive : These participants are not blocking any sessions from concluding. Also,
they have an available presignature making them available to join a new session

whenever needed.

e Unresponsive : These participants are in a signing session but have not provided their
partial signature share. We do not know whether these members are adversarial
parties looking to perform a denial of service attack or honest members whose partial

signature transmission is delayed.

To get a better visual understanding of the two states we present the following state

machine (adding a new Starting state _for simplicity).

send first presignature
—| Starting

Responsive

send partial sig-
nature for sid

and new presig-
nature

enter session sid

Unresponsive

Figure 11.1: State machine for ROAST

To justify why the ROAST protocol provided robustness_for FROST we look at some key
properties:

1. Honest signers will never stay at Unresponsive state indefinitely. By definition,
honest signers always answer with valid signatures and their protocol messages
will eventually reach the coordinator. That means that whenever they are added to

a signing session (and are thus put on Unresponsive state) they will always reach
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Responsive state eventually, which also means that they will be available to be added

to further sessions.

2. An adversarial member cannot escape a signing session undetected. Due to
the Identifiable Abort property of FROST, we can tell when an adversary sends out
a non-valid partial signature. Of course, parties that send invalid responses are

excluded from future sessions.

3. Adversaries are Unresponsive _forever. From the previous observation we can con-
clude that an adversary added to a signing session will be added to the Unresponsive
set and never be able to escape. The reason for that is in order to escape that state,
the adversary will need to reply with a partial signature. If that partial signature is
non-valid he is kicked out whereas if it passes validation, the adversary acted as an
honest signer and we will gladly accept his partial signature to form a group signa-
ture. Since his goal is to stop a group signature from being formed, his best bet is
therefore to stay at Unresponsive state forever, completely blocking that session from

terminating.

4. Invariant: Each party can block at most one session. Due to the construction
of the wrapper protocol, an Unresponsive party will never join a new session. That

means that the most that a single party can block is a single session.

From the previous observations we can prove that ROAST terminates via a contradiction
argument. Let us assume that no internal signing session terminates. By observation 1,
we know that honest signers will eventually (and constantly) be added to the Responsive
set. Since, there are at least t honest signers present (we could consider exactly t honest
signers present), by construction we will eventually always have t parties in the Responsive
set => a new session can always be started. As a result there will eventually be f + 1
sessions during the execution. Let’s consider now the point at which the f + 1 session is
initiated (where f is the number of adversarial signers). By the invariant (observation 4) as
well as observations 2 and 3, we know that at most f malicious members are Unrespon-
sive in at most one session each. Thus, among the f + 1 sessions there exists a session
in which all signers are honest. This session is guaranteed to succeed and we’ve there-

fore reached a contradiction. Thus, the ROAST protocol will always terminate in a signature.

Finally, we’ve also proven that ROAST needs at most f + 1 internal FROST sessions.
Since we have t honest signers present, it holds that f < n — t and of course it holds that
f < t—1, otherwise the adversarial parties can trivially produce signatures on behalf of the
group. Therefore, the maximum amount of internal sessions is n — t + 1 or t depending on

which assumption we prefer.

11.2 Extending ROAST for Sparkle+

Since Sparkle [28] is also a scheme with Identifiable Abort, we believe that a new

wrapper protocol, an extension of ROAST should be able to add robustness to the original
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protocol. The main difference between Sparkle and FROST (and the reason why the original
ROAST does not work on Sparkle) is of course the fact that the former is a three-round
protocol whereas the latter is two-rounds. The fact that FROST’s first round is message
independent allowed the wrapper protocol to reduce the rounds to one by piggybacking a
presignature along with every signature share. In Sparkle, we have that the first round (in
reality the second one as well) is message independent. By using the same piggybacking
approach (our new presignatures will be hashes of the form H(D)) therefore we see a clear
way to reduce the protocol rounds to two, which is not enough for us to apply ROAST on
it. We either have to reduce the rounds further or extend the ROAST protocol in some way.
Reducing the rounds of Sparkle however is completely out of the question as that would
be equivalent to completely removing the initial round (where each signer member provides
a hash value). This would of course be insecure in concurrent sessions [15] just like the
original version of MuSig [16]. Our approach should therefore be to use the piggybacking
approach to reduce the amount of interactive rounds to two, and then introduce a new

version of ROAST that will work for our underlying scheme.

11.2.1 Challenges of multi-round robustness

We recall that in FROST, the fact that piggybacking allowed us to have only one inter-
active round introduced a single blocking point. In Sparkle however, since the amount of

interactive rounds will be reduced to two, introduces two blocking points :

1. Blocking point on the second round of Sparkle: A party could block a session by not
revealing the preimage D to their presignature p = H(D).

2. Blocking point on the third round of Sparkle: A party could block a session by not

sending out their partial signature during the third round.

As we will see, the fact that there are two blocking points instead of one makes it im-
possible to stop parties from joining multiple sessions at the same time. Intuitively, this
means that while in ROAST each adversary can block at most one internal session, this
will not be the case here. An easy reason to see why this cannot work is the following
scenario: Let’s consider that we only allow signers to join a new session once they send
out their partial signature for their current session. This allows the adversary to completely
break the availability of the protocol by just not revealing their hash preimage during the
second round of Sparkle. In this case, honest signers cannot compute partial signatures as

all preimages need to be revealed for them to calculate their signature share.

One might say that since in the FROST version of ROAST , where only a single blocking
point is present, each party can block at most one session ; then in our extended version
of ROAST for Sparkle, where we now have two blocking points, each adversary should be
able to block at most two sessions, one for each blocking point. This would be a desirable

goal but is not so simple as we will see.
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Even after agreeing that each party should be able to join multiple sessions at the
same time, it is not exactly clear when the piggybacked presignatures should be sent. One
(flawed) approach would be to have each signer send out their fresh presignature along
with their partial signature share, just like in the original ROAST. This would however
easily be attacked by an adversary who once again refuses to reveal the preimage to their
presignature during the second round of Sparkle. To combat this, we argue that the fresh
presignatures should be sent when revealing the preimage instead of when creating the
partial signature share. This way honest signers should always have one extra available

presignature per session they get added in.

11.2.2 What we achieve

We construct the Sparkling ROAST protocol, a wrapper protocol on Sparkle which adds
robustness. We present two versions of the protocol, one which guarantees robustness
with t honest participants and needs at most f - (n — t + 2) + 1 internal sessions, and one
which guarantees robustness in at most 2 - f + 1 sessions but requires there are J# +t
honest participants present (instead of t). Finally, we briefly describe how this protocol
can be extended to other threshold signature schemes so long as those schemes have the

Identifiable Abort property.

11.2.3 Sparkling ROAST construction

We once again assume that we are in the asynchronous setting and that the coordinator
and the members are able to distinguish which message is sent for which session (this can
be done by including the session ID sid with every sent message). The new presignatures
of Sparkle will be of the form H(D) where D = g% is the preimage of the presignature. We
consider that each signing session begins with the coordinator sending a list of presigna-
tures and the signing parties included in the signing set SS i.e if a participant P; receives
the list {j, H(D))}jess he is supposed to follow the signing algorithm with that signing com-
mittee and which those presignatures in mind. Of course, it is assumed that in the previous
list, the presignature H(D;) is a presignature which the signing party sent to the coordinator

at an earlier stage otherwise it would be impossible for him to find the preimage to the hash.

As we mentioned earlier, two blocking points means two Unresponsive states : one that
demonstrates that a signer is blocking the second round from concluding (i.e doesn’t send
the preimage corresponding to the hash value) and one that demonstrates that a signer is
blocking the third round from concluding (i.e doesn’t send out their partial signature). We
call these new states Blocking2 and Blocking3 in order to demonstrate which round of the
session they are holding (second and third round of Sparkle respectively).

The Responsive state however is also problematic. A signer should not only be Responsive
when they send out their partial signature but also when they reveal their preimage during
the second round (otherwise an adversarial signer that stays on state Blocking2 would hold
the honest members hostages and block them from joining future sessions). Therefore, if

someone reveals their preimage during the second round of the protocol and is waiting for
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the other parties to do as well, they should be put on a new semi-Responsive state which
we call Pending. We should start new sessions for signers that are Responsive or Pending
for some session but are not BlockingZ2 or Blocking3 in any sessions. Of course, in order to
add a member to a new session, that member should have an available presignature so the

coordinator will also have to keep track of members with available presignatures ready.

Overall, the new Sparkle protocol for signing parties looks as follows:
e When Sparkling ROAST begins: Send initial presignature.

e When added to a signing session: Reveal preimage to presignature and send new

presignature.

e When all preimages have been revealed: Send partial signature based on the preim-

ages.

The coordinator’s job will be to:

e Maintain the state of each participant for each session, starting sessions whenever t

signers exist in his set PotentialSigners (we explain what PotentialSigners is a bit).
e Detect and kick out malicious signers (via Identifiable Abort). This means:

— Malke sure that preimages match presignatures i.e for a signing session where
participant P; joined with presignature p; and revealed preimage D;, malke sure
that H(Dl) = Pi.

— Male sure that partial signatures for specific sessions verify.

We describe the algorithm for Sparkling ROAST in Figure 11.2.

Each state demonstrates something different:

e Responsive : This is a session independent state. A server on this state has either

finished a session or never been in one (has only sent the starting presignature).

e Blocking2 : A session specific state. As soon as a server enters a new session he
transitions to this state. At this state we are waiting for the server to reveal his

preimage corresponding to the presignature used for this session.

e Pending : A session specific state. A server on this state has revealed his preimage

and is waiting for the other signers to do so as well.

e Blocking3 : A session specific state. As soon as all the preimages are revealed (i.e
all signers went from Blocking2 — Pending) , all signers get moved to this state until

they provide their partial signature for this session.
The state machine for this new protocol can be seen below:
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AvrcoritaMm 11.2: Sparkling ROAST protocol

10:
11:
12:

13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:

27:
28:
29:
30:
31:
32:
33:
34:

N @R e

Signer Behavior:
Upon init:
Send initial presignature share.
Upon receiving a presignature share (start of new session, round 2 of Sparkle):
Send preimage of presignature.
Send new presignature share.
Upon receiving all preimages(round 3 of Sparkle):
Send partial signature.

Coordinator Behavior:
Upon init:
Mark all nodes as STARTING.
Upon receiving an initial presignature share from P;:
Mark P; as RESPONSIVE.
Upon receiving a preimage of presignature and new presignature share for ses-
sion sid from P;:
if preimage is not the preimage of presignature then
Mark P; as MaLicious and exclude them from future sessions.
else
Remove P; from BLOCKING2[sid].
Mark P; as PENDING[sid].
Perform CheckNewSession procedure.

if |Pending[sid]l =t then
Send Preimages|sid] to the signers of sessions sid.
Remove these signers from PENDING[sid].
Mark the signers of sid as BLoCKING3[sid].
end if
end if
Upon receiving a partial signature and new presignature share for session sid
from P;:
if partial signature does not verify then
Mark P; as MaLicious and exclude them from future sessions.
end if
if session sid has t signature shares then
Compute and output group signature.
end if
Remove P; from BLocKING3[sid].
Mark P; as RESPONSIVE.

Procedure: CheckNewSession

1: procedure CHECKNEWSESSION

2 if there exists at least t parties in PotentialSigners then
3 Start a new session with those signers.

4: Mark those signers as BLoCKING2[sid].

5 end if

6: end procedure
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send first
presignature

Responsive

Blocking2[sid] Pending|[sid] Blocking3[sid]

reveal all preimages

preimage revealed
and new for session sid
presignature

Figure 11.2: State machine for Sparkling ROAST

The only thing left to do is to define the set PotentialSigners which the coordinator has

to check in order to see if a new session can be started. We define:

—dsid : P; € Blocking2[sid]
PotentialSigners = { P;| A —dsid : P; € Blocking3[sid] (11.1)
A Available_PreSigs[P;] > 1

This means that we allow signers to join new session so long as they are not in a

Blocking state. Based on this PotentialSigners set and the pseudocode we can write down

some observations (just like we did for the original ROAST) to allow us to see whether this

new protocol provides robustness and if so, how many internal sessions need to be run:

1. Honest signers will never stay at Blocking2 or Blocking3 states indefinitely.

By definition, honest signers always answer with valid preimages and valid signa-
tures and their protocol messages will eventually reach the coordinator. That means
that whenever they are added to a signing session (and are thus put on Blocking2
state for that session) they will always reach Pending state eventually. The same will
happen when they reach Blocking3 state, they will provide a valid partial signature

share escaping the Blocking state.

. An adversarial member cannot escape a signing session undetected. Due to
the Identifiable Abort property of Sparkle, if a preimage that does not match the
presignature is revealed or a partial signature that does not verify is sent then that

signer is automatically considered malicious and kicked out of future sessions.

. If an adversary reaches Blocking3 for some session he is stuck there indefi-
nitely. This stems from the previous observation. In Blocking3 state we are awaiting
Jor the adversary to send out his partial signature. The adversary cannot send a

non-verifying partial signature as he will be detected as malicious. Therefore, his
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best bet is to stay at Blocking3 state forever, completely blocking that session from

terminating.

4. Adversaries whose strategy is to block sessions at Blocking2 state will never
Jjoin future sessions. Due to the construction of the PotentialSigners set, if someone

is at Blocking2 state he will never be able to join a separate session.

From observation 1 we can infer that (since t honest parties are present), these honest
signers will always eventually (and constantly) be added to PotentialSigners and then into
new signing sessions. This means that new sessions can always be created. The question
is what is the maximum amount of sessions that an adversary can block (and is that maxi-
mum finite in order to prove robustness?). From observation 4 it is clear that an adversary
who will not reply at all will only block a single session. Therefore, the adversary’s strategy
cannot be so simple. On the other hand, if he replies and joins Pending state, he will be able
tojoin a new session until he reaches Blocking state either in this session or a future one (for
example when an adversary gets added to a session where the rest of the signing parties
are honest, the amount of time that he is in Pending state will depend on how long it will
take the honest signers to also reach that state. As soon as that happens, the adversary
will be Blocking3). Therefore it seems that the amount of sessions an adversary can block
depends on the latency between the other signers and the coordinator. In order to count
the maximum amount of sessions (and create a new invariant for our protocol) we consider

the following worst-case scenario:

We assume maximum latency between the honest signers and the coordinator and min-
imum latency between the adversaries and the coordinator. The reason we need that,
is because we will have the adversary reveal his preimage during the second round (as
staying at Blocking2 state will exclude him from future sessions), the issue with that is that
when all preimages have been revealed for a session in which he is in, he will automatically
be moved to Blocking3 state for that session (and be blocked from future sessions according
to observation 3). The best bet of the adversary is to escape Blocking2 state as soon as
possible and join Pending state in order to be re-added to PotentialSigners. We assume
than whenever a session gets created and the adversary is available, he will join this new
session. We will look at how many sessions an adversary is able to block in this setting to

find our invariant.

Assume Adversaries = {1} and Honest = {2,3,--- ,n}:

1. Session 1: Signers = {1,2,--- ,t} ; The adversary quickly answers to escape Block-
ing2 state. At some point only a single Blocking2 signer is left on this session, let’s

assume that is signer 2. Signer 2 is excluded from future sessions until he answers.

2. Session 2: Signers = {1,3,--- ,t + 1} ; The adversary quickly answers to escape
Blocking?2 state. At some point only a single Blocking2 signer is left on this session,
let’s assume that is signer 3. Signer 3 is excluded from future sessions until he

answers.
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3. Session 3: Signers = {1,4,--- ,t + 2} ; The adversary quickly answers to escape
Blocking2 state. At some point only a single Blocking2 signer is left on this session,
let’s assume that is signer 4. Signer 4 is excluded from future sessions until he

answers.

n—t+ 1. Session n-t+1: Signers = {l,n—-t+ 2,--- ,n} ; The adversary quickly answers to
escape Blocking2 state. At some point only a single Blocking2 signer is left on this
session, let’s assume that is signer n — t + 2. Signer n —t + 2 is excluded from future

sessions until he answers.

At this point, the only available signers in PotentialSigners are {1,n—t + 3,--- , n} which
is t — 1 signers, so a new session cannot be started until one of the previous sessions
i.e sid € [n — t — 3] is unblocked (this will happen eventually). As soon as that is done
however, the adversarial party will be added to Blocking3 state for that session and it will
be impossible to escape (in reality since the procedure CheckNewSession() is run before the
party gets added to Blocking3, the adversary will be able to join exactly one session at that
instant before being added to Blocking3 state). As soon as he is added to Blocking3, the
only thing he can do it to block all the current sessions in which he is, thatisn —t + 2
sessions in total.

Generalizing, in the case where we have f adversaries, each one of them will be able to
block at most n — t + 2 sessions before being forced into Blocking3 state and excluded from
PotentialSigners. This is the new invariant of the protocol : an adversarial party can
block at most n — t + 2 sessions (we symbolize ! = n — t + 2 for clarity).

We claim that the above scenario is a worst-case scenario as it is literally impossible (due
to the construction) to create a new session for the adversary to block.

It is easy to see why that holds even when there are more than 1 adversarial parties : one by

one they will start being forced into Blocking3 states and be excluded from PotentialSigners.

The proof as to why our construction works is very similar to the contradiction argument
of the original ROAST: Let us assume that no internal signing session terminates. From
observation 1, we know that we will have a constant stream of signing sessions. Since
there are t honest signer present, by construction we will always (eventually) have t parties
in the PotentialSigners set => a new session can always be started. As a result there will
eventually by f - £ + 1 sessions during the execution. By the invariant we know that the f
adversarial parties are blocking in at most ¢ sessions each. Thus, among the f - + 1 ses-
sions, there exists a session in which all signers are honest. This session is guaranteed to
succeed and we’ve therefore reached a contradiction. Thus, the Sparkling ROAST protocol
(parametrized with the specific PotentialSigners set of Equation 11.1) will always terminate

in a signature so long as t honest parties are present.

Finally, we’ve also proven that Sparkling ROAST(parametrized with the specific

PotentialSigners set of Equation 11.1) needs at most f -+ 1 internal Sparkle sessions. Since
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we have t honest signers, it holds that f < n — t and of course it must hold that f < t— 1.
In order to achieve provable adaptive security of Sparkle in the ROM, we might have to
assume f < % Depending on what we want from the internal protocol, f can be bounded
by different values all of which are all < n. Therefore a definite upper bound of internal

sessionsisn-l=n-(n-t+2)=0(n?).

11.2.4 Using different PotentialSigners sets

The analysis of the Sparkling ROAST protocol depends heavily on the PotentialSigners
sets with which it is parametrized. The reason why the adversaries can block a linear
amount of sessions with the set of the previous section is because the set presented in
Equation 11.1 does not limit the amount of sessions one can be in Pending state (this allows
the adversary to join as many sessions as the latency allows him). As we briefly discussed
earlier, the fact that we have two blocking points in the Sparkle version of ROAST, naturally
draws us to the conclusion that the new protocol should allow adversaries to block at most
2 sessions. This would allows us to keep the total amount of internal sessions linear, just
lilce in the case of the original ROAST. In order to do so, we can change the PotentialSigners

set to the following:

—dsid : P; € Blocking2|[sid]

A —dsid : P; € Blocking3[sid]

A =dsid, sid’ : sid # sid’ A P; € Pending[sid] A P; € Pending[sid’]
A Available_PreSigs[P;] > 1

PotentialSigners = < P;

(11.2)

It is easy to see (for example by using the previous scenario as an example), that if we
were to use this version of PotentialSigners, an adversarial party would only be able to join
at most 2 sessions before being forced into Blocking3 state. Howeuver, it is impossible to
prove robustness with just t honest parties. The reason for that is that is that with this

new PotentialSigners set, a new issue is introduced, the issue which we call hostage-taking.

This issue simply states that any honest participant who is stuck on Pending state for
2 sessions, is no longer able to join a new one. This completely breaks the notion of robust-
ness as even 1 honest hostage is enough to stop the t honest total signers_from producing a
signature. However, since keeping the total amount of internal sessions linear is intriguing,
we analyze how many honest participants need to be present for robustness with this new
PotentialSigners set. To do so, we have to find the maximum amount of hostages depending

on f. After doing so, we will need |Honest| > |hostages| + t _for robustness.

It is easy to see that the only way hostages can be created (and kept forever) is for the
adversaries to stay at Blocking2 state forever. This way, it will be completely impossible
for the honest signers to escape their Pending states. Let’s consider than an adversary
will hold a session of t — 1 honest participants at state Blocking2, let’s then assume that

these t — 1 honest signers will join a new session where a second adversary will hold at
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state Blocking2. In the worst case, the t — 1 signers will be all be added to the same two
sessions each one blocked by a different Blocking2 adversary. Therefore, we can clearly
see that each pair of 2 adversaries, can take t — 1 hostages. Therefore, the total amount
of hostages is : |hostages| < J@ This means that with this new PotentialSigners set, in
order to guarantee robustness we will need t + J@ honest participants instead of the t of
the previous section. The upside to this version of PotentialSigners is that the total amount

of internal sessions will be 2 - f + 1 = O(n) (linear to n in contrast to the previous section).

11.3 Extending Sparkling ROAST to other multi-round schemes

We argue that our construction of Sparkling ROAST, can be extended to other multi-round
threshold signing schemes as long as they have the Identifiable Abort property. In such
cases, all we have to do is use the piggybacking approach once again and add Blocking
states for each blocking point of the protocol i.e if the original internal protocol is 5 rounds,
like Glacius [29], there should be 4 blocking states. After each Blocking state, there should
be a semi-responsive Pending state so that honest parties are not blocked by adversaries

on Blocking states. We believe the analysis to be very similar as the one presented here.

11.4 A note on unforgeability of Sparking ROAST

Just like the original ROAST bases its unforgeability on the unforgeability of FROST
[54], we base the unforgeability of Sparkling ROAST on the unforgeability of Sparkle+[28].
In fact, we believe that our wrapper protocol should even work in the case of an adaptive

adversary.
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Chapter m

Conclusion and future work

Throughout this thesis we studied multi- and threshold Schnorr signatures looking at
schemes, comparing them, looking at different threats and attacks, listing applications for
different schemes and finally presenting a new robustness protocol for Identifiable Abort
schemes.

Overall, threshold and multi- signatures are clearly a very hot research area. The fact
that NIST [11] has made calls on threshold signature schemes proves that such schemes
are desired (and needed) in order to add further security guarantees and malce the internet
more secure. Whether or not threshold signature schemes will be accepted for real-world

use cases however depends on if they have desired properties such as:
o Adaptive security.

Robustness.

e Low amount of rounds.

o Low communication costs.

e Low computational costs.

e Signature size relative to that of single-party schemes.

With the new papers on adaptive security [58], [57], it seems that researchers of the
field are mainly focused into providing schemes that follow the instructions and standards
set by NIST in their public call.

However, threshold signatures schemes are not limited to the standardization efforts
of NIST. There are works presenting different threshold signature schemes (not necessarily
Schnorr) that provide a plethora of properties which might be appealing for future appli-
cations. Examples include [59] where signers can append their partial signature share to
an already produced threshold signature, effectively increasing the threshold, [60] where a
threshold signing scheme is presented which supports private accountability i.e a selected
trusted party can see which members were included in the signing process of a signature
and a lot more. It seems that this research area can be extended as far as the creativity of
the researchers involved.

As a future work, we are unaware of the existence any blind Schnorr threshold signing
schemes. The fact that the ROS attack [15] broke many blind Schnorr constructions, added
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a whole in the literature in the area of blind Schnorr. This is a big challenge as the ROS
attacks do not only affect blind Schnorr but also threshold signature schemes, so creating
a threshold blind Schnorr construction would have to do so by avoiding both threats.
Apart from that, it’s interesting to see how threshold signature schemes can be ex-
tended to hold other properties, for example threshold ring signatures [61]. These can be
extended further to add other properties such as designated verifiers [62], [63]. Finally,
we mentioned that applications of threshold signatures include electronic voting so another
interesting idea would be to use threshold (blind) signatures in voting protocols to imple-
ment registration authorities in a distributed manner, an addition to those schemes would

of course be everlasting privacy and coercion resistance [64], [65].
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Suviouoypagiec - Apxtuxofefa - Akpovuuia

ROM Random Oracle Model

AGM Algrebraic Group Model

PPT Probabilistic Polynomial Time

DLP Discrete Logarithm Problem

DLOG Discrete Logarithm Assumption

(A)JOMDL (Algebraic) One-More Discrete Logarithm

DDH Decisional Diffie Hellman

ROS Random inhomogeneities in a Overdetermined Solvable system of linear equations
DKG Distributed Key Generation

SSS Shamir’s Secret Sharing

VSS Verifiable Secret Sharing

PVSS Pedersen’s Verifiable Secret Sharing

AgVSS Aggregatable Verifiable Secret Sharing

NIKE Non-Interactive Key Exchange

ROAST Robust Asynchronous Schnorr Threshold Signatures
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