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Amayopetetal n aviypadr], amobfkevor ko Stovoun tng mopovoag epyaciag, €€ oAokArpov 1
TUAHOTOG LTAG, Yot epmtoptkd okomd. Emtpémeton 1 avatdnwor), oodrkevon ko Siavopr] yia
OoKOTO Ur) kKePOOGKOTLKO, EKTOUSEVTIKNG 1] EPELVNTIKNG PVGEWS LITO TNV TPolLOBeaT) Var ovadépe-
TaL 1) Ty TpoéAevong Kot vo Startnpeiton To TopodV Pvupa.

Ot amdyelg ko Ta cvumeplopata oL TEPLEXOVTAL 68 aLTO TO €yypado ekdpalovv Tov GLY-
ypodéa kot dev mpémel va epunvevdBel 0Tl avtitpocwebovy Tig emionpeg Béoelg Tov EOvicoo
Metoofrov IToAvteyveiov.



Hepiinyn

Ye avtifeon pe o TUTIKE GLGTAHATA OPACTG LITOAOYLOTOV 1oL Pacilovtal TNV TadNTIKY
ene€epyonoio dedopévwv, otn Proroyia n pdbnon ocvpPaivel cuxvotepa péow alAniemidpoong.
Ta moudid, yio mopaderypa, acAANAemSpodv yiow dpeg pe T oy vidia Toug Ko e€epevvovy TO
epLPEALOV TOUG, XWPLG CUYKEKPLUEVO GTOYO, He Patvopevikd Tuxaio tpomo. ITapdAinia, dri-
dyvouv povtéda petdfoaong, pe To omoioe prTopotv va TpoPAEmouy Tig aAday£ég Tov emLdpEpouy oL
npa&elg Tovg oto mepLPdAiov touvg. Ta povtéda avtd ta xpnoipomolody apyoTepa Yo va udBouvv
ypnyopotepa véeg Se€loTnTeg. Xe avth TN dadikacia TIg TeplocoTepeg Popég amovoLdlel Apeo
eniPAeyn mov karevBOveL T pdbnon. Avtibeta, n pdbnomn otnpiletal TeplocdTEPO GTA ECWTEPL-
K& KLV TPO TV OPYOVIGUOV KXL OTA SOULKA XXPAKTNPLOTIKA TV alodnTriplwv opyavwy Toug.

‘Etol mpokvmtel éva Oepehiddeg epevvntikd epdTnuo: Mopei, tapdpora, £vo popmodt vo ovo-
TTOEEL Pt KoTorvOn o) ToL epPAAAOVTOC TOL AELOTOLOVTOG HOVO TNV LKAVOTITO TOV VoL AN AE-
P& e aLTO, XWPIG €K TWV TPOTEPLV YV, 1] eEwTepikn] emtifAeyn). 2n topodoa SimAwpatikn
epyaoio eEetdlovpe TOG TexvnTol dpdoteg pmopoiv va eEepeuviioouy kot va pdbouv to meptai-
Aov Toug avtdvopa, Pacllopevol oe ecWTEPLKA KiviTpa.

[Ipoteivoupe, Aoutdv, pio véa, TANP®G AVTO-ETLPAETOUEVT) KO CVTIKELLEVO-KEVTPLKT] TPOGEY-
yton. To cbomnpa pog mTpota diakpivel TO XWOPO TOL Oe SLUKPLTEG OVTOTNTEG-OVTIKEIUEVDL XPT)-
OLHOTIOLOVTOG UTO-EMLPAETOUEVOVG KO CLVTIKELHEVO-KEVTPLKOVG atAyopibpovg 6pacng vitoloyt-
OTOV Tavew ot dedopéva ov éxyovv cLAAexDOel ad Tuyaieg dpAoelg evog pouToTikoL Ppayiova.
311 ovvéxeL, Eva povTédo petdPaong Paciouévo oe ypadoug exmondetetal vo tpoPAEmel TIg pe-
AOVTIKEG KATAOTAGELS TWV OVTOTAHTWOV QUTOV. Q6TO60, AOY® TNG TEPLOPLOUEVNG TTOLKIALQG TV
dedopévav mov Pacilovrar oe Tuyaieg dpdoelg, To povtédo petdfaong advvartel va mpoPAéPet
CWOTA TNV KIVNOT TOV OVTIKEWHEVOV.

T autd, oxedialovpe éva onpa emiPpaPevong mov Paciletar oto ohdhpa TpoPAeymg Tov
povtélov petdPoong. Ilove oe avtd To orjpa ekmoatdebovpie pio TOALTLKT 1) OTtolo TEALK& TTpoTEivEL
o evdiapépovoeg dpaoelg oto Ppayiova, dpdoelg mov mpokalolv Tpelg Gopég mepPLooOTEPN
KIVNOT TV OVTIKELEVWDY o8 cUYKpLoTn He TIg TuXaieg. TéAog, exmoudebovpe mePALTEP® T HO-
vTéda Opaong kol PeTdfoaong xpropomoldvtog véa dedopéva Tov GUAAEYOULE [ TNV VéQ TTo-
M. To povtéda Todpa Tapovstdlovy PeATiOT TOGO GTNV LKAVOTNTA AVATAPAGTAONG KoL
OVOKOLTOGKELTG TOL XOPOL OGO KL GTNV LKavOTN T TPOPAEYNS TIG KivioNg TOV AVTIKEEVWV.

EmaAnBebovpe tnv pébodo pag oe éva meptpddiov mpooopoinwong ko delyvovpe OTL pEGw
™G awto-emiPAemoOpevng alAnAemidpaong Popoltv TeAKE vo TPOKOYOLY XPHOLUES OTTIKES Ot
vamapactdoelg. H moapoboo dumAwpatikr) amotehel évo akOpa apadetylo Tov Twg 1) HeAéTn
NG vonong 6mwg cuvavtaral ot floloyio, aAld kat tng avarttuElakg Yuyxoloyiog propodv
va suvelsdépovy oTn oxediaot kal T PeATIOON TV CUGTNUATWY TEXVNTHG VONUOGHVNG. ZvykKe-
KpLéva, delyvouple OTL 1) avTIKELEVO-KeVTPLKT L&ONoN, Paciopévn ce ecwTePLKE KivTpor topel
VoL GUVELGDEPEL GTNV AVTOVOUT AVATTITUEN GLOTNHATWY KaTavonong tov koopov. Ta cvoTripata
avtd Oa elvan oe Béomn va avoarttocoovTol SLapk®dG Kol LTOVOUX Ge Ve TtepLaAlovTa.

Tuqua g epyaoiog éyive dextd oto ovvédplo tng IEEE, International Conference on De-
velopment and Learning (ICDL) Prague, 2025 pe titAo "Push, See, Predict: Emergent Perception
Through Intrinsically Motivated Play" [1] kot cvyypadeig tovg Orestis Konstantaropoulos, Mehdi
Khamassi, Petros Maragos kot George Retsinas.

Ae€erg kherdud - Avtikeevo-kevrpikt) Opaon Yroroyiotodv, Ecwtepicd Iopoakivodpevn E-
vioyvtik) Mabnon, Active Perception, Movtéla MetaPaong, Babid Mabnor, CNNs, GNNs, ViTs






Abstract

Unlike conventional vision systems that rely on passive observation, biological agents can
learn through physical interaction. Human infants, for example, spend hours interacting with
toys in seemingly random ways—exploring their environment and engaging in non-goal-directed
behaviors. It is believed that such agents construct internal transition models that allow them to
predict the future states of their environment, which they later use to efficiently acquire new skills.
This process typically unfolds in the absence of explicit supervision. Instead, biological learning is
driven by intrinsic incentives and shaped by structural inductive biases that help the agent make
sense of its surroundings.

This raises a fundamental question: Can a robot similarly develop an understanding of its
environment purely through interaction, without any prior knowledge or external supervision?
In this thesis, we investigate how artificial agents can autonomously explore and learn about their
environment through intrinsic motivation, much like how children engage in curious free play.

To this end, we propose a novel, fully self-supervised, object-centric learning framework. Our
system first segments visual input into discrete entities using Slot Attention, a self-supervised
object-centric vision model trained entirely on data collected from random actions of a robotic
arm. A graph-based world model is then trained to predict object-centric dynamics. However, due
to the limited diversity of interactions in the initial dataset, the model struggles to capture object
motion.

To overcome this, we introduce an intrinsically motivated reward signal based on world model’s
prediction error. This reward guides a policy that actively collects informative trajectories by
proposing actions that are more likely to challenge the current model’s predictions. Empirically,
this policy proposes actions that result in up to three times more object displacement compared to
random actions, leading to significantly richer training data. We then fine-tune both the vision and
world model on these data, which leads to improved prediction and reconstruction performance.
We validate our method in a simulated robotic environment with diverse objects, demonstrat-
ing that meaningful visual and physical representations can emerge entirely from self-supervised
interaction.

The findings of this thesis contribute to the growing body of cognitively inspired algorithms
designed to enhance artificial learning systems. Specifically, this thesis highlights the potential of
intrinsically motivated, object-centric learning for autonomous world perception and modeling;
paving the way for the designing of systems that can incrementally develop in novel, open-ended
environments without human supervision.

Part of our work was accepted at the 2025 IEEE International Conference on Development
and Learning (ICDL) Prague, titled "Push, See, Predict: Emergent Perception Through Intrinsically
Motivated Play” [1] with the authors being Orestis Konstantaropoulos, Mehdi Khamassi, Petros
Maragos and George Retsinas.

Keywords - Object-Centric Computer Vision, Intrinsically Motivated Reinforcement Learn-
ing, Active Perception, World Models, Deep Learning, CNNs, GNNs, ViTs






Evyapilotieg

H ohokAfpweon g mapodoog epyaciog onpatodotel To TEAOG TWV TPOTTUXLOKOV GTOLIGOV
pov oo EOvikd Metoofio IToAvteyveio. Eto mAaiclo TV 6TOVIGV QALTOV, XAAX KaL TNG TAPO-
voag epyaciag, NTav amopaitntn 1 emadn, n eEotkeiwon ko 1) epfdbuvon oe moAAég kot cOVOeTEG
évvoleg amd ta Stapopa media Twv emotnuov Tov HAektpordyov Mnyoavikov, tov Mnyovikod Y-
ToAoyLoTAOV ko Oyt povo. H Swadikacia avtr] dev Ba pmopovoe va otedBel pe emtuyio xopig tnv
oUVELGPOPE TV KAONYNTOV HOV, TV GUHPOLTNTOV HOU AAAX KOL TNG OLKOYEVELAG LLOV.

Yvykekpipéva, Oa nbela va evyoplotion Tov kabnynth [IéTpo Mapaykod yio tnv evkatpia voo
EKTTOVIIOW TNV SIMAWUATIKT pov epyacia oto epyaoctriplo Opaong Yroloyiotdv ko Ene€epya-
olog Znpatog oe éva diemiotnuoviko Bépa. Emiong, euyapiotd Beppd tov Ap. Tiwpyo Petowva yia
v koBoploTikr) cupPoAr) Tov oe OAN TN Sihpkelx TNG epyaciog. Ao TIG OVCLAOTIKEG GUINTHCELG
KoL TN SLpOP OO TV APYLKOV LOEDV, EWG TNV TOAVTLUN LITOGTHPLEN TOU O KaBnuepLvég TeYVL-
kég duokoieg, n kaBodrynor tov v pée kabopiotiky. Akodua, evyopioto tov Mehdi Khamassi,
gpevvntr) oo 1o [avemotrpio tng ZopPovvng, yia Ty cuvelopopd Tov 6T cLyypodr Tov dp-
Bpov mov yphdrnke pe adopur} TNV SUTAOUATIKT).

Téhog, Ba 1Beha var evyopLloTow TOLG GLIAOLG POV, €VTOG KOl EKTOG GXOANG, KABOG elval
eketvol mov divouv vonua ko aio oe k&Be TpoomdBelx pov, dxAA& Kot Tovg yoveig pov I'idvvn
kot Aompiva kot v odepdn} pov Avdia yio tnv dvev 0pwv ko adidhewntn otriplén Toug.

Opéotng Kwvotavtapdomoviog
Iobviog 2025
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Extetopévn EAAnvikN Hepiinym

Ewcaywyn

To onuepvé povtéda texvnrrg vonpoovvrg (TN) emitvyyxdvouv oloéva ko kaAbTEpeS emL-
dooelg oe mpoPAfuata avayvoplong elkovag kot Pivteo, acAAd ko oe tpofApata amddaonc.
Mopd v evivnwolokn Tpdodo, ta cVYXpove HOVTEAX pnyovikng pébnong (MM) akxopo dev
GTAVOUV TIG VONTIKEG KOL AVTIANTITIKEG LKAVOTNTEG TV PLOAOYIKOV opyovicpodv. Ot &dvBpwmol
xperaovtor oML pikpr| e€doknomn ko Alya dedopéva yia va katadépovv va pdbouvv va mpo-
oopUocToV ot éva véo TTeplPAAlov Ko va ekTeAéoOLV pia véa epyacio. AvtiBeto To cuoTpo-
taa MM e€aptdvtal amd tn SiabecipdtnTa peydrov aptbpot dedopévov kot onudtwv emifie-
Yng oxedwxopéva omd edikovg avBpamove. Ta dedopéva avtd mpémel vor elvon aveEdpTnTo ko
opotopopda katavepnpéve kabodg ovyva ta cvathipatae MM aduvatodv va yevikeboovy amo-
TEAEGUATIKA OTav 1) kartavopr] Tev dedopéveov adralet. T mopadetypa or avBpwmol prwopov
evkoAa va TAonynBovv ot pépr mov dev éxovv Ppebei oto mapeABOV, va xelploToV avTIKEipEVOL
1oL Sev éxouv Eavadel kol vo Aok Tioovy véeg SeELOTNTES YPIYOPO EKUETHAAEVOUEVOL TT) YVOOT)
7oL éxouv e€dyel amd mponyolpeveg epmelpieg Toug [22, 23]. T avtd, 1) pedétn tng Proroyikrig
VOT|HOG VNG KOL TV ApXDV TNG KPLVETAL otaepaitnTn oTnv mpocmdbela Hog v oXeSLAGOUIE Lo
QTTOTEAEGUATIKA KL EDPWOTO TEXVITA GUGTHUATAL.

Ztody0g TG SImAwpaTIKNG
21NV Topotoo SUTAWUATIKT TTPooeYYILOUE TNV eVEPYNTLKT] avTiAnym, active perception, epmve-
OpEVOL aTTO APXEG TWV YVWOTIKMOV SLEPYACLOV Kol eEKPETOAAEVOHEVOL TIG TehevTaieg eEelilelg oTo
nedio g Mnyaviknig Mabnong. O otd)x0g pag eivar vo punboovpe tn copmepLpopd evog ULKpo-
0 ToudLov oL AVTIAAUPAVETOL TOV KOGHO TOV, AAANAETISp& pe avTOV, Srdoyikd PeAtidvel Tnv
avTiAnym tov ko avartiocel £va eowtepltkd HovTéAo oL Tov e€nyel. Xe avtibeon pe ta mepio-
ootepa cvotipata TN mov Paocilovton oe onuata enifreng kou peydha cOvora dedopévwv,
o TOYEVOVHE VO AVOTTTOEOVE HOVTEAQ TTOVL WITOPOVV VOL EKTTALOEVTOVY HOVAL TOUG GE KOLVOUPYLA,
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avolyté meptariovra. o va To methyovpe avtod, mpoteivoupe poa Sradikacio ekmaidevong mov
otnpileto o€ edPALWUEVES OPYES oTd TNV vt TLELAKT YuYoAoYL, TNV YVWOLOKT ETLOTAUN Ko
TNV TEXVNTI] VONHOCOV.

216X0G pHag eivor vo avamtOEovpe artd To pndév Eva GUGTHA e LKAVOTITEG OTTTLKNG AVTIAN-
yng. T avtd, Bo xpoLUOTOLGOLHE THV LKOVOTNTO TOL GUOTHHATOS HaG Vo 0AANAemdpa e
T0 mepPaArov Tov. Oa LIOOETCOVE HLOL AVTIKELUEVO-KEVTPLKT] TTPOGEYYLOT], £VQ Oar KaTaokev-
Goovpe HOVTELA HETAPOOTIG TTOV EVOOUATOVOLY TO SUVOHULKA XOPAKTNPLOTIKE TOL KOGHOV TOU
ovotipatog. To cvotnua avtd Ba avartdcoetal avEntikd. Odnyolipevo artd ecOTEPLKT| TTEPLEP-
YELO, [e TNV TTapodo Tov xpovov Ba PeAtiodvel Ta povtéda dpaong kot petdfaong Tov.

Inpoviikég opxég oo TNV avartuElokn Ppuyoroyia

H x0plo apyn} otnv omoic 6tnpllovpe TN TPOCEYYLON HaG Elval UTH TNG EVEOUATNG VONONG, N
ool vLTooTNPieL OTL 1) VOTHOG UV TTPOKVTITEL HEGW TG aAANAenidpacTg Tov Spdatn pe TO Te-
ptpéArov tov. Eivon dniadn amotédeopa tng dpactnplotntag mov cuvduvdlel tnv oucOntnprokn
AUn TAnpodopodv ko v kvnTiky ostdkpion [24]. To Bpédn yio mopdderypo dev yevviobvral
LLE TTPOTYLLEVES VOT TLKEG LKAVOTNTEG, AAAX TIG OVATITOGGOUV £€PELVAOVTAG KOl AAANAETLOPAOVTAG
Ue Tov kOGHO Tovg. Meyodwvouv péoa oe évav KOGUO YEPATO emavalopfavopeva TpdTLTTA Kol
KOVOVLKOTNTEG, OL 0TT0ieg Staplopddvovy oTadlokd TV avTiAnym, tig tpdkelg kot T okéYr Toug.
H vonpootvn toug dev elvar k&t ammopovopévo, alld nyalel ko e€elicoeton péoo amd Tig
epmelpieg Tovg kau T ovvexn aAAnienidpoot pe to mepiPpdriov. Me Paon avtr tn Bedpnon,
EMLOLOKOVUE VO KAAALEPYHOOVHE OVTIOTOLYES LKAVOTNTEG AVTIANYNG Kot pabnong oe éva texv-
6 oo, Sivovtdg Tov T duvatdTnTa Vo SPACEL KoL VoL TTELPAPATIOTEL péca oTo dkd TOU
nepparrov. Onwg kot ot Ppédn, étol kat oe éva Tétolo oboTNpa, 1) eAevbepn eEepedvnon, a-
Koun kit av gaivetal tuxoic 1 YWPLG CLYKEKPLUEVO GKOTTO, PTOpEL Vo evioyDoeL T pnadnon ko
TNV GVAITTUEN VOTHOGVNG.

O XPN|CLLOTOLIGOVIE AKOHA TNV £VVOLX TV HOVTEA®WV petdPfaong [25, 26]. Oi dvBpwrol
SLOPHOPPDOVOLY ECHOTEPLKES AVATTOPACTAGELS TOL KOGHOV He faon aodnTnplakég epmelpieg, ot o-
moieg kaBodnyovv tnv avtidnym, tn dpdon kar tn Aqym amoddoewv. TéTowa povtéda emiTpémovy
ota {Oa, SuVNTIKA KoL 6TO TEXVITA CLGTHHATA, VO TTPOPAETOUV AITOTEAEGUATAL EVEPYELDV, VAL
oxedalovv, va e€epeuvoly ko va emmthbouy pofAfpata. Xt TAaiolo avThG TNG SITAWUATIKAG,
eKTTOOEVOVUE PHOVTEAQ UETAPAONC [UE LT ETTOTTEVOUEVO TPOTTO, DOTE VAL EVIGYVGOVUE TNV e€epe-
vvnon xat va PeAtidcovpe otadiakd TOco TNV avtiAnyn éco kot To ida T povtéda [27].

MopdAAnha, vioBeTodpE Pl XVIIKEIPHEVO-KEVTPLKT TTPpocéyyion. H kavotnta opydve-
oG Tov omtikoL epebicpatog oe dakpitd avtikeipeva aotelel Oepedddeg xopokTnPLoTIKO TNG
avOpdmvng avtiAnyng. Amd 1 Ppedikn nAikic, or dvBpwmor avayvwpilovv avtikeigeva o
KLVOOVTOL e GLVEKTIKO TPOTTO Ko pobaivouv Tig tdidtntég Tovg péoa amd tnv adAnienidpoor.
Avti va avTipetwmilovpe vty TNV SLdKplor Tov onTikol epefioPATOg G AVTIKEPEVA WG Lo
nonTky dwadikaoio, emdiodkovpe éva cvotnua Tov pobaivel péow dpaong: Eekvape atd tnv
KOTATUNOT) TOL OTTLKOV 7TeSiov Ge SLotkpLTég OVTOTNTEG KAl TPOYXWPALLE TTPOG TNV KATAVONGT] TWV
GLOLKOV XOPAKTNPLOTIKOV TOV OVTOTHTOV KL TNV EEAYWYT] AVATOPACTACEWV, e TEALKO GTOYO
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TN XPYOT QUTOV TOV AVATAPACTACEWV GE TPOPATHOTA EAEYYOU.

Hepiinyn tng npocéyyiong pog

O o16)0G HOG elvan vou EpELVIIOOVE €AV EVO HOVTEAO PITOpeEl var avamtyEel aLENTIKA avTiAnym)
TOUL KOGHOUV TOV QULYADG LEow TNG AAANAETIpaong e auTodv, Ywpic va Paciletal o eEwTepikr] e-
mipAedmn 1 peydho ovvora dedopévav. Fa v amovtioovpe 6e avto To epoOTNUa oxedidlovpe éva
neplPéArov oto omoio évag popntotikdg Ppoyiovag mhve ot éva TpartélL eEepevvd evepynTikd a-
VTIKeipeva Tov fploKOVTOL HTTPOGTA TOV e 6TOXO VO HEYLOTOTTOLOEL éva ot e pafevong mov
mopdyet To 1810 to popuntdt. OL meplocdTepeg OXETIKEG EpYOTieg Ewg TOpa aELomoLlovy éva oTAo!L-
po mpokaBopiopévo povtédo yio tnv eme€epyosio Tov ontikov epebioparog [28, 29]. Avrtibeta
epeic ypnotpomototpe To dedopéva mov cLAAEYoVTOL KaTd T dtdpreta TnG aAAnAemidpaong yio
va BedTidoovpe T povtéda Opaong kot petdfacng. Telkd, katadépvoupe v eKTOLdEDGOVE
O LOVTEAQ atUTA aTtd TO Pndév. Tyedidlovpe éva ecWTEPLKA TApaKLVOLPEVO oTjua emtPpaPevong
7oL 0dnyel To ocvoTNUA va emAéyel Sphoelg oL TPOKAAODV £mG Ko TPeLS Gopég meplocdTEPT
kivnon tev aviikeipevov Tov tpamellod oe cOYKpLoT pe Tuxaieg dpdoelg. Aelyvoupe, akopa, 0Tt
1 oAitikn wov akoAovbel To cvoTNU 08N Yel o Pedtiwon Tng tkavotnTog TPOPAEYG TOL po-
VTELOL PETAPoOTG OAAA KOL TG AVAKATOGKEVNG ELKOVAG otd TO PHOVTELO OpacTG.

Svvelopopd 6T KOWVOTNTA
I va emainBedoovpe Tig Tpotevopeveg peBodoug, dieEdyoupe melpapata pe Evor popTotiko Ppo-
xlova oe éva mepiBdAdov mpooopoiwong. Ta amoteAéoparta pag deixvouv 6tL 1 pébodog pog
Kpivetal aoteAecpartiky o€ oevapla 6mov dev vapyel orjpa enifAeyng, tpoekmardevpéva po-
vtéda 1) e€nteplcd cOVora dedopévav.

Juvomtikd, ol factkég pag ovvelopopég eivar oL e€Ng:

1. Avtikelpevo-kevrpikn Moviedomoinon tov Koopov: Yiofetolpe pio avTikelpevo-KkevTpikr)
TPOGEYYLOT) KOl AVOTTTUGGOUNE €va HOoVTELD peTdPoong mov mpoPAémel TNV peAAovTiky
KOTAGTAOT) TWV AVATTXPAOTACEWVY TOV AVTIKEHEVOV. Ze avTiBeoT) [e TIG TePLOTOTEPEG Le-
B68oug ot PLpAoypadia Tov Aettovpyodv oToV LYNAHG SLOUGTATIKOTITAS OTLTLKO X(OPO, TO
Skb pog povtédo kdvel mpoPAéferg o évav pikpdtepo, AavBdvovta x®po, eTLTpETovVTag
aodoTikOTEPEG KaL Lo dounpéveg tpoPAéPelc.

2. M\pwg Avto-Erontevopevny MaOnon and to Mndév: Exnardebovpe 1660 T0 povtéAo
O6paong 600 kot To povtéAo petdfacng TANpwG amd To Pndév, xwplg emomnteio 1) e€w-
Tepkd oOVorx dedopéviv. XproLHOTOLOVTAS TPONYHEVES TEXVIKEG OLUTO-ETTOTTEVOUEVTC
pé&Onong, o povtéda ekmaldevovtal amokAelotik pe dedopéva mov GLAAEYEL aLTOVOUA
TO POUTIOT PEGW OAANAETiIOpaoTG.

3. Eowtepkn Hapakivnon tov Tuotiparog péonm tng APefordtntag IMpoPreyng: Sye-
Stalovpe €vor KAVOTOUO KL EGOTEPLKG TopaKLvoLpeEVO orjpa emPpdfevong, faciopévo
oto odpdipa tpofAredng Tov povrédov petdPoaong. To onpa awtd Pprdtpdpel To BOpLPO
IOV ELGAYOUV T LOVTEAX KOIL TTOLPOKLVEL TTOALTLKEG TTOV 001 YOUV 0€ WG KOl TPLTAGOLL pe-
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TOKIVNOT) TV QVTIKEHEVOV.

4. Evepynrikn E€epevnon yia tn Ltadroxkn Bedtioon tov Moviédwv: Aeiyvoupe 0Tt
1 TEPAUTEPW EKTTAIOEVOT) TV HOVTEAWV Ot Sedopéva TOL GUAAEYOVTOL OTTO TNV eKTTALdEL-
pévn moAitikr) odnyei oe onpovtikr BeAtinon Tng katavonong Tov KOGHOL otd TO POUTTOT.
H BeAtiovon autr) amroTumdveTon TocoTKd HEGw TG emidoong oe mpoPAeyn ko omTiKy o-
VOKOTOGKEDLT], TOGO YLO TO HOVTEAO OPACTIG OGO KL Yo TO HOVTEAO peTdPaong.

5. Extevig Ilepopoatikn A§lodoynon: Aloloyolie tnv mpociyylon HOG GE POUTOTLKO
TePLPAALOV TTPOCOUOLOOTG, EMLOELKVDOVTAG OVCLAGTLKEG PEATLOOELS TWV HOVTEAWV

OewpnTkd YroPfaOpo

Ye avtd TO PéPOG TNG epyasiag mapovotdlovpe TG faotkég évvoleg kar texvikég tng Padi-
&g padnong mov aote AoV To Bewpntikd voPabpo tng peBddov oL TpoTeivovpe. Eekvape pe
HLot ETLOKOTNGT] TV PACIKOV TOPASELYHATWV TNG UNXOVIKNG HAONONG, ETOTTEVOUEVT), UN) ETTO-
TLTEVLOPEVT] KOl LUTO-ETTOTTELOPEVT pHaBnon, divovtag Wiaitepn éudaon otnv tedevtaia, kabwg
1 Tpocéyylon pog Paciletar €€ OAOKANPOL 0 AUTO-ETMOMTEVOUEVEG TEXVIKEG. ZTT GUVEXELA, TTE-
prypadovpe Tic faoiiég apyltektovikég Pabibg pabnong mov XproorolodvTaL 6T TELPAUATAE
pog. Téhog, elcdryovpe ta Pacikd oTolyelo TNG EVIGYXULTIKNG H&Bnong n omoix eiva kpioun yio
TNV eKTALOEVOT) TTOALTIKOV OV EMLTPETOVY 6TO GUOTNUA PG Vor cAANAemidpd ¢€vmva e To Te-
ptpéArov tov.

H emomtevopevn pdOnon eivor éva vromedio tng unyovikig pdbnong mov Pacileton o
emonuoopéva 6OVoAx SeSOUEVODV YL TNV eKTTaideLOT] HOVTEAWY e oKOTO TNV TTPOPAedn aito-
TeEAEOUATOV 1} TNV avayvdplot mpotiunewy. Ta povtéda pabaivouv va cvoeyetiCovv ta dedopéva
€LGOOOV e TIG OVTIOTOLYEG ETIKETEG KOL £TAL UITOPODV VI YEVIKEDOLVY O€ VEQ, AyvwoTa dedopéva
pe vYNAn akpifeiax [30]. Avtifeta, n pn emomTELOPEV PAON OGN eV XproLOTOLEL ETLKETEG. XTO-
xeveL oty ovakdAvyn dopdv ota dedopéva, oV KaTyopLomoinon tovg oe opddeg (clusters) 1
akopx otnv eEoywyn AavBAvVOVTOV avamopacsTdoewy, Xwpig vo LITdpyEL dpeco onpa enifieyng.

H ovto-emontevopevn pdOnon (Self-Supervised Learning, SSL) Bpicketor oto petaiypto
aLvTeV TV dVo mpooeyyicewv. Expetadiiedeton tn dopr twv dedopévav yio va dnpiovpynoet
Pevd0-eTIKETEC, EMLTPETOVTOG TNV EKTALOEVOT) HLOVTEAWV O€ EPYNTIES TTOL TAPADOG LUK ATTALTOVY
enipreyn. Topa, to onpoata enifreyng mtpokdmrovy amd ta idix Ta dedopévar, EMLTPETOVTAS GTO
HOVTEAO vor HdiBel XPTIOLHEG AVATAPACTAGELS XWPIg TNV aviykn avBpomivng enifAeyng. Ztnv
elkova 1, mapovoialetor pia evpéwg dradedopévr texvikn SSL.

H pébodog awtn eivon moAdtipn oe meptBdAlovta 6oL oL EMOTUELOCELS TwV dedopévwy a-
movodllovy 1} akdpa 1 cvAloyr Toug eivor xpovoPopa kot kootofopa. Xe TETOLEG TEPUTTMOGELS,
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Syfuo 1: M evpéwg Sradedopévn texvikr) SSL[2]: Eva peydho pépog tng ewkdvag et-
06d0ov kpOPetot ko To SikTLO KWALKOTTOLEL TNV LITOAOLTN elkOVa. MeTd, 0 ATOKWLKO-
TLOLNTNG ETTLYELPEL VO LVOKATOGKEVAGEL OAOKANPT) TNV OPYLKT] ELKOVA.

péow g SSL emituyyavetol nf pédnon amevbeiog and akatépyaota dedopéva. EmumAéov, n avto-
eMOMTELOUEVT) HABnoN Tpooeyyilel mepLoGOTEPO TOV TPOTO pe TOV 0molo oL Blodoyikol opyavt-
OOl QITOKTOVV YVAOOT). ZUYKeEKPLUEVQ, 1) paBnomn otnpiletal oty opatrpnor koL tnv tpofieyn
- a€lomoteital 1 eowtepikr) Sopr| kat 1 Xpovikn cuvémela twv dedopévaov yio T dnpovpyia on-
p&twv pabnong.

Otav 0 o1o6)0G dev eivar TpokaBopLopévog Kot 1) Katavopr] Twv dedopévav eivat dyvootn
1 peTaPodAopevn, Ta Topadoolokd TAALGLO ETOTTEVOPEVNG 1] U] ETTOTTELOUEVNG LGB ONG ao-
Tuyx&vouv. Xe Tétoleg cuVONKeg VEx avTIKEipeVa, KATAOTACEL 1) oTOXOL epdavilovTal oe Tpory-
potied xpovo. Méow tng SSL pmopel va emitpoartel 6tovg dphoteg va pabaivovy cuvexwg pécw
aAAnAentidpaong, avripetomilovtag k&be eumeipio wg mhavo ofpa pabnong, xwpig tnv avaykn
yioe avBpomivn mapépPoon.

SovnOeig apyxrrekTovikég Siktdwv Badidg pddnong
H Babia padnon éxer emideifel tephotio emitvyio Ta TeAevtaio xpovia e TOHEIG OTWG 1) OpOL-
o1 LTOAOYLOTOV, N eneepyacia PUOIKNG YADOOOG KL 1] POUTOTIKY. ZNHOVTIKO HEPOG QLTS
NG emTuyiog oPelleTal OTIS APXLTEKTOVIKES TWV HOVTEAWY TTOV YPTOLLOTOLOVVTAL OL OTOLES €-
lvo oXeSLACUEVEG ETOL MOTE VO EKUETOAAEDOVTOL T SOUT] KOL T XOPOKTNPLOTIKA TV deSOUEVHDY
Ko va eEyouv yprioteg avamapaotdoelg amevbeiog amd o dedopéva [3]. H mo amAr) tétola
apxltektoviky eivar to Multilayer Perceptron (MLP) to omoio amoteAeital and mAfpwg cuv-
dedepéva emimeda. e k&Be eminedo epopuoleton dadoyikd Evag Ypapplkog HETAOYNUATIONOG
KO HLor Un ypopptkny ouvéptnor). Tétowo povtéda, mopdT autAoikd emdelkviouY AVTAYWVLIGTIKEG
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emdooelg oe mpoPAnporta 0nwg n TaEvopnor ewkovag [31].

Mo GAAN Wroutépwg Sradedopévn apyrtektovikr, Waviky yia tnv enekepyacio dedopévmv
1o opovotdlovy tomoroyio mAEypaTog eivon o XuvelkTikd Nevpwvikéd Alktua, Convolu-
tional Neural Networks (CNNs). Yta CNNs n Paocikr] Tpd€n eivon 1 cuvéln. Adyw awtod
ToPoLGLAlOUV GTUAVTIKE XOPAKTIPLOTIKE OTTWG

1. Apoaw Tovdeopotnta: OL cuvdécelg petafd v dadoylk®v emutédwy eivol apatég o-
G0V Katd TNV TPAEN NG cLVEAMENG Yivetal xprion pikpodv didtpwv. Etol ta diktua avtd
EXOLV ALYOTEPES TTAPAPETPOUGS, HLKPOTEPO LITOAOYLOTIKO KOGTOG, VM GEPOVTOL TN XWPLKT)|
TOTKOTNTO TV Sedopévv

2. IoopetafAntotnTo wg Tpog TN XWPLKN RETHTOTTION: Mix peTatomion g eL.6d6d0ov TG
TPAENG TNG oLVEAMENG éxel WG amotédeoua avtioTolyn petatomnion tng e€6dov, WioTnTa
XPHOWN o€ TPOPARUATO AVayvOPLOTG ELKOVOG

3. Awporpaopog Hapopétpowv: O idiog muprvag xprnoipomoteital oe dStoupopeTikd YwpLka
onpeia TG 16680V LITOOETOVTOG OTL XAUPAKTNPLOTLKA X PO O pict TEPLOXT) TNG ELKOVOG
B elval yproa kot oe dAAeg TTEPLOXEG

To CNNs eivon akdpo epmvevopéva amd ) proroyio. Onwg ko o omtikdg dpAotdg Twv Onla-
OTLIKOV TTapovotalovy tepapyin dopn [32], kabog ta xaunAotepa enineda twv diktdwv eEdyov
OTTAQ YOLPOKTIPLOTLK OTIWG YWVIES KO OKUES, EVD T LYNAOTEpa eTtimeda e€dryouv Mo ovVOeTn)
ovyxva onuactoloyiky tAnpodopio. Ta diktva pe vrorewpatikéc ovvdéoelg ResNet, [33], ato-
TEAOVV eTioNg Hiot outd TIG Lo EMLOPAGTIKEG apXLTEKTOVIKES oTn Pabid pabnom. Ewodyovtag tig
LTTOAELHUATLKEG OLTEG GLVOEGELS Tat KTV AVTA KATOUPEPVOLY VAL AVTIHETWOTLOOUV TO TPOPATHAL
TV eEadavicpévov Topay®ywv [34] mov cuvavtator ota Pabid vevpwvikd diktva. Méow twv
oLvdécewv aUTOV dlvetan 1 SuvatodTNTA 6TO dIKTLO Vo TTapadeimel oplopéva emineda, TO 0TOL0
odnyel otnv amoteleopatikdTepr ekmaidevon Tovg.

Vision Transformers: ITap& to yeyovog Ot 1 Tpa€n tng cuveAENg Bewpodvtay asapaitn-
N yuo v omtotelecporikt] ene€epyaocio eikdvag ol Vision Transformers (ViT) [5] épyovtar va
apdePntriicovv avthv v memoibnor. Ot Dosovitskiy et al. omdve pua etcova oe TuApoTo KoL tnv
oVTIHETOTILOUV WG pia akoAovBic. Xt cuvéyela, epappdolovy KATAAANAOLG UNXOVIGHOVG TTPO-
ooxng [6] mhvw oe vtV TV akorovBia pe amotéheopo okdpa Ko vor Eemepvoiv TiG emdOoELg
TWV ZOVEAKTIKOV ALKTOWV.

Nevpovikd Aiktoa Tpddpwv (GNNs): Ou mponyodpeveg apyLTeKTOVIKES aPpopolv KUPLKG
dedopéva pe evkdeidera dopr). Otav T dedopéva eivon dopnpéva wg ypadog, cuxva To HovTéAD
avtd amotuyydvouv. Kowvwvikd diktoa, xnuikd popia, tpotdoels puoikic yAwooog 1) akopa Ko
elkOVeG popovv va povredomolnBov cav évag ypddog. Ta Nevpwvikd Aiktva Ipddwv edop-
polovroun mhvw ot TéTolov eidovg dedopéva MGTE Vo TPORAETOLY Tl XOPOAKTNPLOTIKA VEDV KOM-
Bwv tov ypddov, tnv Orap€n 1) pn kLY 1) akOPa KoL v TRELVOHOVY 0OAOKATpOUG VEOUG Y padOoug.
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H x0pra mpd€n mov edappodletal 6Toug yphdoug eival To mépacpa HnvOpatog, message-passing,
KOUTAL TO OTOL0 TOL X POKTNPLOTIKG KGBe kopPov tov ypadov evnuepdvovtal e Paon avtd twv
YELTOV®V TOU.

H evioyvtikn paOnon

H evioyvtikny pdOnon (Reinforcement Learning - RL) eivou évag waitepog tpdmog pabnong
1oL Paciletor otnv adAnAenidpacn evog dpdotr (agent) pe to mepitpdArov tov. Ze avtibeon pe
GAAeg popdég punyavikng pabnong, otnv evioyutikn padbnomn o dpdotng pabaivel povog tov, péca
amd v aAAnAentidpact Tov pe To meptPaAiov Tov kot T cuvexr a€loAdynon TV dpdoewy Tov.
O oto)0G TOUL elvan va emidéyel dpaoelg Tov 0dnyovV GTN HeEYLGTOTOINGT TNG avTapoLPrg Tov
AapPéver amd To meptPdAiov. Auvth i) cuveyrig diadikacio pabnong oxetiletol pe Tov TPOTO TOUL
ot froroyikoi opyaviopot pobaivouv pécw dokiung Kot GHAAUATOG.

Eva cOotnua evioyutikig padnong amoteleiton amd: tov dpdotn, to meppdAdov, pio mwo-
Atwer) (SnAadn) Tov TpoTTo pe Tov 0oio GLOYXETILOVTOL Ol KATAOTACTELS OTLG 0Toleg PplokeTal o
dpdotng pe evépyeleg), éva onjpa avtopolPrig mov kabopilel Ti Bewpeiton emituyio Ko pioe cuvap-
ton akiog mov fonda tov dpdotn va mpoPAémel OGO whEAUN eivar pia katdoToon pe Baor Tig
peArovtikég avrapolPég. H Siadikaoio akolovbel éva ouykekpipévo tiaioto, yvwotd wg Map-
koProvry Awadikacio Atdédaong (Markov Decision Process), 6mov ke amdpaot emnpedlel Oxt
UOVo 1O POV AAG KoL TIG peAAOVTLKEG KaTaoTaoELS Ko avtapolPég. O dphotng kadeitor va
Loopporrioel petakl tng e€epedvnong véwv Atydtepo BéPouwv emAOY®OV KoL TNG EKPETAAAEVOTG
66wV §ON yvwpilel 6TL arodidovv kaAd.

H a€loloynomn tov evepyelmv yiveton pécw ocvvaptioewny a&lag, oL 0moleg amoTIHody T oL-
VOALKT] acvTopotPr) o propel va epLpével 0 SpAoTNG artd Lot KATAGTOOT) H) 0td Ve GUVOLAGHO
katdotaong kot evépyelag. H PéAtiotn otpatnykn pabnong mpokimtel 0Tay 0 dpAoTng po-
Baivel va emdéyel evépyeleg mov 0dnyoldv ot péylotn dvvatr avopevopevn avtopolpr). Avtég
oL évvoleg Ppiokovtal 670 emikevTpo TOAADV adyopiBuwy evioyvtikng padbnong, 6mwg KoL Tov
ahyopiBpov Q-learning.

To (Deep) Q-learning siva pia péBodog evioyvtikng pddnong o6mov évog dpdotng poboaivel
vo emtiAéyel evépyeleg Tov 0dnyolv oTo pHeyoddTepo duvatd 6derog. XpnoLpomotel £va VELPwVLKO
SikTuo Yo var ekTIpd, yio ke katdoToon, TN avapevopevn aio k&be evépyelag, eved mpooey-
yileL To TpaypaTikd avorpevopevo 6¢ehog piag katdotaong abpoilovtog to 6dgerog mov AapPdvel
epTELPLKA KL TO Odehog oL mpoPAémel To diktvo OtTL B Aarfel otnv emdpevn katdotaot ov Oo

BpeOet.

INa va Pertiwdel 1 otabepotnta g ekmaidevong, o Mnih et al. [35], epapudlovv tpelg
TEXVLKEG: XPHOLLOTOLOVV EeXwPLoTO SIKTLO YL TNV TPOGEYYLOT) TOL AVAHEVOUEVOL OdeAOVG, O-
100NKevOLV TOHAXLOTEPEG EUTTELPLEG GE L UVIHT DOTE VOL TIG ETTOLVOLY PT|CLLOTTOLOVV TOKTLKR KOl
EMAEYOUV eVépYeLeg pe évav TuXaio aAA& edeyyopevo Tpdmo (moArtikr) e-greedy). H mapoAio-
y1f} tov, Double DQN [36], tpoteivel va Sorywpileton To SikTLO TOL EMAEYEL TNV EVEPYELD OITO
avtd oL TNV a&lodoyel, amotpémovtag vepPoAlkd aloLtdd0Eeg exTIHNOELG KOl PEATIOVOVTAG TN
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otafbepodTnTo Ko TNV akpifetx tng pabnong.

Yxetikn BrofAroypadra

>1n ovvéyelx apovoidlovpe tn PpAoypadia ov oxetifeton pe Too kKupLdTepa BépaTo TOUL
KOTOTTLAVETAL 1) TOPOVO X SUTAWUATIKY. Zekivépe avadepopevol otig factkég pebddoug katdTun-
oMG elKOVOG o€ avTikeipeva, adol To TPOPAnUa Tov éxovpe Bécel pmopel ap LKA VO OV TLUETWITL-
otel wg éva TPOPANUX OpAGTG VITOAOYLOTAOV, eV divoupe EUPOOT) 08 AVTIKELUEVO-KEVTPLKES |LE-
006d0vg Kartdtunong. Xtn cuvvéxela, eEetdllovpe Texvikég un emLBAemopévng evioyuTIKNg Hdbnong
OAAG KO EcWTEPLKE TTapakivoLpeva orjpata emipifevong. Avardovtag tr oxetikn PpAloypo-
dio Bétovpe tn Phon yio tnv Pabitepn katavonon g Tpotelvopevng pebodooyiag.

Mn emomtevopevn katdtunon Pivieo H avtikepevo-kevrpikt] katdtunorn (object segmen-
tation) avadépetor ot dradikacio kot tnv omoio k&be pixel piog eucdvag tagvopeiton wg PéPog
€VOG GUYKEKPLUEVOL CLVTLKELPEVOD 1) TOL GOVTOL, He GKOTTO TOV atkpLPT] EVIOMLIOUO T®V 0plOV TV
avtikelpévov [37]. Ztnv mepintwon tov Pivteo, n avtiotoryn dwadikacio ovopdleton Video Ob-
ject Segmentation (VOS) kait otoyebel 6TOV EVTOMIOUO TWV ONHOVTIKOTEPOVY AVTIKELLEVWV o€ KGDe
Kopé, oe eminedo pixel [37]. H Sadikaoia avtr) cuvdéeton dueoo pe tnv omtiky) avtiAnym, ko-
Bwg ovpdwva pe tov Biederman [38], ) avayvopion avtikelpévov atd tov dvBpwmo Pacileton
ot SLAoTHoT) TOL OTTTLKOL epebiopaTog o8 aTAEG YeEWUETPLKEG HopdéC. XTo TAaIoLO TNG Ur) €-
momtevopevng VOS, 1 Suokoria avEavetor onpavtikd, adod To HOVTENO TTPETEL VO EVTOTICEL KOl
vou TapakoAovdnceL T AVTLIKEIPEVE XWPLG TN XPTOT| EMLONUELWUEVODY SESOUEVMV 1] QLPXLKOV ot
ok®v. H avéykn yio evtomiopd kol avoyvapLoT oavTIKELUEVOY o€ TOADTAOKEG GKNVES KOBLGTA
0 TPOPANUX WLaitepa Aot Tk, Ko £xeL 0dnynoeL otny avamtugn tAnbopog uebodwv Pact-
opéveov otr Pabid pebnon, kabodg ko otn dnpiovpyia Tpotimwv cuVOAwY dedopévav OTWG TO
DAVIS [39] ko To FBMS [40].

Apxikég Tpooeyyioelg, 6mwg owth twv Fragkiadaki et al. [41], faciotnkav otnv ontikr por
YLt TNV aViYVELOT] OVTLKEWHEVOVY KOL KIVIONG, 1) OTTOLOl EVIGYVETOL HEGK GUVEALKTIKOV SLKTOWV.
"AMeg péBodot, 6mwg avth twv Zhou et al. [42], eVOOUATOVOLY PXAVIGHODG XWPLKAG TPOGOXHG
kot dSuvopikng péow Convolutional LSTMs, v mio tpdodateg mpooeyyioelg, 6nwg twv Lu et al.
[43], aklomoloby pnyaviopovg Tpocoxig yiow Ty aviyvevon pokponpdbecpwy eEaptrioewy kat
™ Pertiwon tng ovvoxng Tev packov. H pébodog twv Yang et al. [12] ocvvduvadlel tnv omtiky
por pe apyltektovikég transformer, avtipetwnilovrog tnv katdtunon og TpoPANUa avokata-
okevng g pong. Téhog, ot Lee et al. [44] mpoteivouv éva cOotnua pe pix popdr pviung, to
07t0l0 EMLTPETEL TN SLATHPNOT) CNUAVTIKGOV TANPOPOPLOV AITO TPOTYOOEVR KAPE, EVIGYDOVTOG
TNV XPOVIKT cUVETELX kKo TNV akpifelo oty mtapakorovBnon avtikelpévev oe Bivieo xwplg e-
TonTeia.
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Avtikelpevo-kevipikn kotatpunon fivreo Mia onpoavtikn katevbvvon otnv poonddeia
eMIALGOTG TOL TPOPAUATOG TG UT) ETTOTTEVOUEVNG KATATUNONG PLVTED elvo 1) AVTIKELUEVO-KEVTPLKT]
AVOTTOPACTACT] TWV CKNVOV, 0oL Ta avtikeipeva Bewpodvtal factkég Soptkég povadeg. Ot me-
PLoCOTEPEG OYETLKEG TTPOOEYYITELS OTNPLLOVTAL GTNV AVAKATACKELY TNG ELKOVAG ELGOSOV, ETTLYEL-
POVTOG TAPIAANAX VO ATTOLOVOGOLY GUVEKTLK GLVIEdEUEVX GLGTATIKG TNG oknvhg. Ot pébodot
avtég Slakpivovtal kuping oe SO kaTnyopieg: ta povtéda pi&ng oxnvig (scene-mixture models)
KoL TaL LOVTEAD Y wpLKiG Tpoooy g (spatial-attention models). Ta tpoTa, 61w T MoNet [45], I0-
DINE [46] ko GENESIS [13], avtipetwnilovv tn oknvh oG éva cuvSuaopd emépoug oToLxeiwy,
To 0TTola HOVTEAOTTOLOOVTAL HECK TTaparywYLK®V povtédwv. Edikdtepa, to IODINE ypnoomnotet
emavaAnTTikG variational inference yio Tnv amopoveoon ToV AVTIKEWPEVOVY Ot aveEXPTNTEG Aav-
Bavovoeg petaPintég (slots), eved to GENESIS sioayel oxéoelg ypovikng eEaptnong petakd twv
QVTLKELHEVOV QUTOV. Q0TOGO0, TX LOVTEAX AUTA KWOLKOTOLOVY EUPECH TIG XWPLKES LOLOTNTEG TWV
QVTIKELPEVOV OTLG AavOAVOLoEG PETAPANTEG TTOL AVTLETOLYOVY o€ auTd (01wg Béom kat péyedog)
Kot TopovcLdlovy TpoPARHATE KALPAKWONG KOOGS 0 aplOUog avTikelpévev avEaveTal.

Avtifeta, T povtéda YwpLkig tpocoyng [47, 48, 49, 50, 51] avamaplotodv pnTd TIG Yew|le-
TPLKEG WOLOTNTEG TWV OVTIKELUEVODV KOl E0TLALOLY 0T StdkpLoT) peta€d GOVTOL KaL Tpooknviov.
To k&Be avtikeipevo mepLyphdetal HEGH XAPAKTNPLOTIKGOV OTTWG 1) Béom, 1) OYm kal 1) Tapovsia
tou. To SCALOR [48], yiax map&derypa, mapovotdlel PeATIONEVT TOAVTAOKOTTA EMLTPETOVTOG
TOUPAAANAC TOV EVTOMIOUO Ko TNV TTapokoAovBnon twv avtikelévoy oto xpovo. Ilapk tnv
LTTOAOYLOTIKT] eVEALELX TOVG, TaL LOVTEAX LUTA GUY VA AdLVATODY VoL AVOTTAPAGTHIGOLY cVVBETA
oxfpata. Ilpdodateg mpooeyyioelg 6mwg to DINO-based object-centric attention [51] emtuyetpovv
vo vTepPolV AVTOVG TOVG TEPLOPLOUOVG, AELOTOLOVTG XAPTEG TTPOCOXTG TTOV TPOKVITOLV AT
QLUTO-ETTOTTEVOUEVA HOVTEAC PEYGANG KAlpaKkaG. Xe avtd To mAaioto, 1) péBodog Slot Attention
[14] éxeL avaderyBei wg éva oo ta o Sradedopéva epyaheior yiow Tr) Un EIOTTEVOUEVT] KATATUNOT)
KoL TNV pébnon avortapaotdoemy avTikelévoy Kol amotelel T Pdorn tng Sikng pag mpocéyyt-

orng .

Mn emomtevdpevn eviexvtikn padnon H un eomtevdpevn evioyvtikn pdbnon (Unsuper-
vised Reinforcement Learning) eotiélel otnv eknaidevon dpactdv ywpig tnv vmapkn efwtepticov
onuatog avtopolPrg arrd Pacilopevn oe evdoyevn KivnTpa 1} avto-gmontevopeva orjpata. Kio-
olkd mopadetypo oe oavtd to medio amotelei 1) epyacia Learning to Poke by Poking [52], 6mov
évo popTtOT pobaivel var TpoPAémel T MO PAOT) TWV EVEPYELDY TOV TTAVK OE AVTIKEILEVQ, OITO-
KTOVTOg dtonsOntiky katovonon tng GuoLKic Kol THG YEWUETPLOG TOVG. AAAEG epyaoiec, OTWG oL
[18, 53], edpappolovv off-policy Pabid evioyvtikr pdbnon yio tnv exkpddnon otpatnykdv xeipt-
OUOU OVTIKELHEVOV, PACLOUEVES ITOKAELOTIKG G& SeQOUEVOL TTOU GUAAEYOVTOL OUTOVOUX. € UTO
To mAaiolo, 1 mpocéyylon Grasp2Vec [54] ouvdvdlel Tnv ekpdOnomn HLOG TOALTIKNG XELPLOHOD
OVTLKELUEVOV HE TNV TRLTOYPOVT EKPAONGOT) AVOITTAPACTACEDY VTLKELHEVOV.

M o tpododatn kol Wixitepo LITOGYOUEVT KATEDOLVGT] APOPA TNV AVTLKELUEVO-KEVTPLKT)

EVIGYUTLKY HAONGT), OTTOL 0 XDPOG KATAOCTAGTG TOL SPAOTH OPYOVAOVETHL YOPW atd OVTOTNTEG-
avtikeipevo. H mpooéyyion SMORL [19], yia mapddetypo, cuvdudlel avTiKEUEVO-KEVTPLKT] VO

27



TopaoTaoT) pe eVioyLTLKY Hdbnomn dedopévou evog otdyov, xprotponoldvrag tov encoder SCALOR
[48] yio TV Topaywyr] SOUNHEVOY OVOTTOPACTACEWY KOL VOV UXOVIGHO TTPOCOYTIS YLQ TV €K-
naidevon pog moAltikng Paoetl otoyov. H exmaidevon Pacileton oe dedopéva amd tuyaieg Tpo-
XLEG, eV® 0 dpaatng Bétel Suvaptkd otOYOLS TOL 0pilovTal Ao ELKOVEG. Xe AVAAOYO TTVEDUQ, OL
Heravi et al. [55] a€lomoiotv tnv texviki Tov Slot Attention ywx tnv e€aywyr avamapactdcewy
QVTLKELPEVOV, SELYVOVTOG OTL 1) LOVTEAOTIOINGT] TV AVTIKELUEVWV 0dNYEL 08 ONUAVTIKE KaADTEPT
anddoor ko tayOTept pabnor, kabng amantovvtal Aydtepeg delypoata yio Tnv ekpddnon g
eMLOLUNTHG TTOALTIKNG.

Eowtepikd Tapoakivodpevn evioyvtikn paddnon H ecwtepikd mapakivodpevn evioyuti-
k1 péOnon (Intrinsically Motivated Reinforcement Learning) a€lomotel ecwteptkodc pnyxoviopong
emPpaPevong yro tnv kaBodrynon tng eepediviong, Wiwg oe mepifparlovra 6mov T e€wTepikd
onpota emPpafevong eivon apatd 1| akopx dev LILEPYOLY. Xe ALTO TO TAQIGLO, O TPAKTOPAG
evBappivetor va emdéyel evépyeteg mov petdvouy v afefatdtnTd ToUv Ko 0dnyodv ce kata-
otdoelg pe vPnAR TAnpodoprakn akia. Epyo 6mwg awtd twv Pathak et al. [56, 57] édei€av 611
N xprion Tov opaApatog TpoPAePng evog HOVTELOU pITOpel vor AELTOLPYTOEL WG EYYEVEG GTiHOL
avtopolPrg, vd v mpotmdBeon OTL oL aVaATOPACTACELS ELGOS0L PLIATPAPOUV KATAAANAC Ae-
TTOUEPELEG TTOL SeV £XOUV Vo kKdvouv pe Tn duvaypukr] Tov meptBdAlovtog. Qotdoo, 1) amoTelespa-
TIKOTN T TETOLWV PEBOd WV TTepLopileton amd Tnv LYNAT Stokdpaven Ko Tn XOUNAR ATodoTLKOTN-
ta derypatoAnyiag (sample efficiency) mov yopoaktnpilel TIG TAPASOCIOKES TEXVIKEG EVIGYVTLKNG

péOnong.

Ta v avtipetdmion autdv Tev rtepoplopdyv, ol Pathak et al. [58] mpoteivov pia tpooéy-
yion Paciopévn otn dwxdpwvia petakd evog cuvorov amd povréda. Exmardedovrag kaveig éva
oVvoAo (ensemble) povtéAwv petdfactc, Popel vor opiceL TO £YYeEVES OTH avTapOLBG WG TV
Srokdpaven petald Tev TpoPAEPEmdV TOVS, TPOAYOVTAS TNV EEEPEVVNOT) TEPLOYXDV TOL XDPOL KoL-
totaong pe vynmAn afepfardtnta. EmutAéov, evarlakticég mpoceyyioelg, 6mwg avtr) twv Liu et
al. [59], BaoilovTon 0T peylotonoinon g eVTPOmiog TOL XWOPOL KATAGTACTG, X PT)CLULOTOLOVTOG
EKTLUATPLEG TTUKVOTITAS TOV XMPOL ALTOV.

H mapovoa duthopatikrn evidooetol 6To evpiTePo TAALOLO TNG evepyng avtidnyng (active
perception), 6mov o dphotng dev meplopileton otnv obnTiKy AYn cednnplokev dedopévwv,
OAANG aAAnAemidpd evepyd pe o mepLBAALOV Yo v BEATLOGEL TNV AVTIANTITIKY] TOV LKOVOTHTOL.
Epyooieg, 0mwg exeiv twv Pinto et al. [60], emPefardvouv 6t texvntoi dpdoteg pmopodv va
QUTOKTHGOUV OTITIKEG AVOTAPAOTACELS HEGW aAANAenidpaotg, evd ot Pathak et al. [61] etcdyouvv
EVOL LUTO-ETTOTTEVOUEVO GO KATATUNOTG XVTIKELHEVOV LECK JOKIUOV Ko Tapatripnong. Ot
Sancaktar et al. [62] ko Waters et al. [63] mpoteivovv peBddoug eyyevog mapakivoopevng e€e-
pebvnong ywx tn ovAroyr dedopévev vimAng TAnpodopiag, aflomoidvtag ensembles povtédwv
petaPoong. Iopodtt Kovtd otn dikr pHOG TPOcEYYLoTn, oL ev Adyw pébBodol eite Pacilovtor oe
proprioceptive dedopéva eite aklohoyovvtal oe amlomonuéva eptBdAiovta. AvtiBeta, 1 Sk
pog epyocio mpoteivel, Yo TpdT Gopd, EVa TATPWS UTO-ETOTTEVOUEVO, OVTLIKELHEVO-KEVTPLKO
OUGTNUO TTOV EVIGYVEL EYYEVMG TNV AVTIANPI) KoL TH HOVTEAOTOLNGT) TOL KOoUOL o€ cUVOeTa Te-
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ptpaArovTa.

IIpotewvopev MeBodoroyia

IMopovoidlovpe Topa TNV mpotetvopevn peBodoroyio. ZeKIVapE e Lo ETLOKORTNOT TG OL-
voAlkrig dtadikaciog kor ot cvvéxela eEnyolpe Aemtopepas kdbe empépouvg otorxeio. Apyi-
K&, TEPLYPAPOVUE TTHOG £V HOVTEAO OPAOTG UITOPEL VO EKTTOLOEVTEL DGTE VAL EKTEAEL LVTLKELUEVO-
KevTplkn katdtunon xwpig kaboiov emifredn. Ztn ovvéxela, Topovotd{ovpe Vol LOVTEAO [Le-
téPoong mov ekmardeveton v TpoPAémel T SUVOLKT AUTOV TV avoopactdoewy. AkolovBel
1] AVAALGT] TOL EGMOTEPLKOD KLVITPOL TTOL XPNOLUOTOLOVHE OG GTJHO avTopolPric, kabmg kat Twv
alyopibuwv evioyvtikrg pabnong mov aflomotobvta yia tnv ekmaidevor) tng moAtikrg. Télog,
detyvoupe oG avtr) 1) ToALTiky) 0dnyei 6T cLAAOYN 7o TAOVGLWV OAANAETLOpAGEWY TOL dPAGTH)
pe to mepLBAAAOV TOV, OL OTTOLES e TN GELP& TOVG PEATLOVOLY TEPALTEPW TO LOVTEAX OPALOTG KoL

petaPoong.

MepiAnyn
AxolovBotpe pio avto-emiPAemopevn, avtikelpuevo-kevpiky péBodo mov amotedeitan od Téooe-
po oTadio

o) Eexwvpe cvAléyovtag éva apyikd cOvolo Sedopévwv amd axolovbieg elkdvwv mov ma-
payet évag Sp&otng péow TuXAlWV KLVHoEWY 6TO TTePLBGALOV TOU.

B") Exmaidevovpe éva avto-emiPArendpevo povtélo dpacng Paciouévo oto Slot Attention, va
KOTOTUNOEL OKNVEG O TUTHOTO EVED €EQYEL AVTIKELUEVO-KEVTPLKES ALVOTTOPAOTAGELG.

Y) AEomoidvtag to povtélo dpacng, ekmoudedovpe éva povtédo petdPaong va mpoPfAémer
TN HEAAOVTIKT] KATAOTOOT] TV OMTIKOV AVATOPACTACEWV SESOUEVOL TWV EVEPYELDV TOU
dpdotn. To povtédo petdPaong apyikd €xel meploplopéves duvaTdTNTES EEQLTIOG TNG UL-
Kkpng Stokdpaveng TV SedoUEVOY TTOL LITEPYXOLY GTO apP)Lkd GOVOAO dedopévwv.

8") Exmaidebovpe pLoe TOMTIKY YPTCLUOTOLOVTOG VA ECWTEPLKE TOLPAKLVOUUEVO GO ETTL-
BpaPevong n omoio whel Tov dphotn va e€epeuvd kataoTdoelg Tov mepLPAAlovVTog Tov
ylo TIg omoieg To povtéda eivar aféfara.

') Telkd, xpnoomolodpe TNV véa TOMTIKY Yl va cLAAEEOLUE £Vl GUVONO TPOXLOV e TTe-
plocdtepn mAnpodopic yix to mepPAArov katL vor PEATIOCOVUE T HOVTEAX OHPAONG KoL

petaPoong

Mo epiAnym tng mpotewvodpevng pebodoroyiag daiveton 6to oxrpa 2.
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Sxnuoa 2: Iepidnyn tng tpotetvopevng pebodoroyiag: H eikova eicddov I, eme€ep-
ya&letan oo évav kwdikomontn kot e€dyovronr K slot representations wov ot ovvéyela
QTTOKWOLKOTTOLOVVTAL YLOL VO VAKX TACKEVAGTEL 1] OLPYLKT] ELKOVOL I,. Eva HOVTENO -
taPacng Paoiopévo oe ypadoug maipvel Ta K slots kot tnv avtictoiyn dpdomn ko mpo-
PAémer Tnv peAdovtikr ewkova I, .. Eva ofpo emPpaPevong voroyileton pe faon to
odarpa TpoPAeyng, o omoio odnyet éva Q-Network vo mporteivel mo evdiadépovoeg
dpaoelg.

Ontikég Avanapactdoeig pe Slot Attention
T Ty expdBnon owto-emiPAeTOUEVWV, AVTIKELLEVO-KEVTPLKDV OTTIKOV AVATTAPACTACEWY, X PT)-
owpormototpe tn pébodo Slot Attention [14], pia oOyyxpovy kot aroS0TIKT] TEXVLKY YL TNV KO-
ThTUnoT OoKNVNG o€ avTiKeipeva xwpig emonteia. H mpooéyyion autr ewodyel petafAntés, yvo-
otég g slots, oL omoleg cuvdéovton pe TNV etkoVa eLl6Od0L pEcw evog dtaupopicipov unyaviopos
TPOCOYNG, WOTE VO ATTOHOVAOVOLY SLOKPLTEG TLEPLOXEG TNG OKNVIG TTOL AVTLGTOLXODV GE OVTLKE-
ipeva.

H Baoikn 18éa eivan amhr): outodopovpe tnv etkdva oe slots ko emuyelpodye va tnv avokata-
okevhoovpe péow avtov. H Stadikacio avtr mepthapPdaver dvo Paocikd cvotatikd: évov Kodi-
konownti (Vision Encoder) kot évav Aroxwdikomowth (Slot Decoder), ot omoiot emitpémovv
070 GUOTNUA Vo HEBeL Vo avataplo TR OKNVEG e TPOTIO OLVTIKELLEVO-KEVTPLKO, XWPLG EMLOTUELD-
pévo dedopévar.

Kowdwonmowntiig (Vision Encoder) I'a k&Be Pivteo pe xapé I otn xpoviky otiypn ¢, o kw-
Sucomonthc mapayet K slots Sy € REXP 4mov K eivan o apiBpodg tov slots ko D 1 Siastati-
kotnTa kK&Oe slot. H eikdva etaddov eme€epydletar mphdta amd éva fobld vevpwvikd diktuvo (..
éva. CNN), To omoio e€ayer N yapaktnpiotika diaotboewv Dy, hy = fon(Iy) € RN* Dy
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To Slot Attention avtiotoryilel emavainmntikd Ta slots ota yapoaktnploticd hy péow evog
unxaviopot pocoyng. Ta slots avtaywviCovral peta&d tovg wote va e€nynoovy diodopeTiiég
TEPLOXES TNG eLkOVag kat PedTidvovtal otadiokd pe tn Porbelo YpappLlk®dy HETOCYNHATIGHOV,
evog MLP kot piog povédag GRU [64]. Ta slots apyicomotodvton pe Tuxaieg Tipég kou e€elicoovon
pe otdyo To K&Be Eva var avamoplotd Eva SLoupopeTIKO aVTIKELpEVO.

O unyxaviopodc tpocoyis Paciletor otn xprion keys oL TPOEPYOVTOL AT TOL XALPOKTIPLOTLKA
hy, eved ta queries xou values mpoépyovtal amd ta tpéxovta slots S;. Ta Papn mpocoyrg mov
TPOKVITTOVV X PICLLOTOLOVVTAL Yot TNV eVIEPWOT) TwV slots, 0dnywvtag étol ot Sropdpdwon
SLOKPLTAOV AVOTTOPACTACE®Y Yo K&Be AVTIKEUEVO TNG OKNVIC.

Anoxwdikonontig (Slot Decoder) K&be slot amokwdikomoteiton yproyomotdvtag évo
amokwdikomotntr] tomov spatial broadcast [65], pe 6TOYO TNV AVOKATAGKELT] TNG TEPLOXNG TNG
oknvrg ov tov avtiotoyel. Kabe slot sg mopdyel i elkOVO avark T kevng I, xou pia pboxa
I1;, ) omoia kavovikomoteital péow evog softmax. H tedikr) etkdva mpok el suvdualovtog To
ETMUEPOVG GTOLYELOL:

K
Lo, I = faee(sk), I = softmaxpIl, 1= Zﬂk ® I (1)
=1

T evkolMia, ypddovpe covorttikd It = fec(St), OOV fiee avTutpocwedel OAOKANPY TN
dradikaoio amokwdikomoinong.

Exnaidevon péow Avakarackevng Mmopoovpe va ekmatdedoovpe artd kowvot to CNN tov
kwdikomolnTh, To unyaviopo Slot Attention, kabmg kal Tov amokwdLKoTOLNTY), ATAMG HEGK TNG
OVOKATACKELTC TOV APYLKOV KopE:

T
Lrec = ZHit - ItHZ (2)
t=1

Tpomomowoelg oto Slot Attention ITapdro mov 1 AVTLKEWHEVO-KEVTPIKY OPACT] LITOAOYL-
otV mopovotdlel onpavtiky tpdodo, o Topéag Ppicketal akodun ot mpoipo otddio. Ot mepio-
o0tepeg pébodot Pacilovtal oe aobevdg emomTevOUEVA GHHATA, OTTWG 1) OTTIKT] Por] 1 O€ TTPo-
eKTTOLOELHEVD HOVTEA D PeYAANG KAlpakag. Epeig exmandevovpe to Slot Attention amwd To pundév,
XPNOLHOTOLOVTHG HOVO SeSopEVa TTOV GLAAEYOVTOL UTOVOUQ oTTO EVaty PORTTOTLKO PBporyiovet.

INa ™ PeAtioon Tov amoteAecpudtoy, edboppdlovpe Tig ENG TPOTOTOLCELS:

1. Kodwcomowung ResNet: Avti yia évav kwdikomowntr (Vision Transformer) mov mpo-
exmtondeveTon ovvrBwg pe tn pébodo DINO [66] ot ImageNet, xpnotpomolovpe évav otAo

31



kwdikomointr tOmov ResNet, o omoiog amodidel kaddtepa oto Sukd pag chvoro dedopévav.

2. Avtoemontevdpevn lposknaidevon pécw Avtopatng Kodikonoinong (Autoencoder):
T va emitoOvoupe T oVYKALOT KoL Voo oTafePOTOLGOUHE TNV eKTaideVOT), TPOEKTL-
devovpe tov kwdikomointr ResNet wg pépog evog Autoencoder. To povtédo amoteAeiton
amd Tov kwdikomontr ResNet kot évav cuppetpikd amokwdikomointr ResNet mov facile-
tal o€ amoovvedi€elg (deconvolutions). Autr) 1 ) emonTevLOUEVT) TpoekTaidevoT) emLTpérel
0TO GUOTNUO VO LADEL YEVIKG OTLTIKA XOPOKTIPLOTIKG XPHOLa Yio TNV emakoAovdn ava-
TOUPACTACT] AVTLKELUEVOV.

H Evipornia Tov pack®dv wg 0pog cpdrlpatog Elchyouvpe évav emmAéov 0po amdAelog
TTOU TIHWPEL TNV eVTPOTi TOV YWwpLk®dV paokodv I, evioybovtag T cuvoyT] Kol HEL®VOVTOg TOV
B6puPo. H telikr) ouvaptnon odpdipatog yiveton:

L= Lrec + 5 : Lent (3)

600 3 eivau pia vteprapdpeTpog o opileton oe 1073,

And g Ewcoveg ota Bivteo I va elodyovpe to xpdvo 6to pHovtéAo dpaong, XprotLpo-
motovpe pioe ekdoyr) tov Slot Attention mov Aettovpyel dwxdoyikd oe Pivreo. Avti ta slots va
apxlkomotobvTal Tuyaia oe kdbe kapé, xprnotponoteiton Eva petaPotikd povtéAo mov mpofAémet
TNV endpeVn Katdotaot 6nws 6to SAVI [67].

To povtédo petdfaong

O o16)0G Hog elval TP va eKTaLdeDGOVE £va LOVTENO peTdPoong mov popel v TpofAémet
TNV SUVOULKT] TV OVTIKELPEVDVY, Vo TpoPAémel SnAadr] tnv peAlovtikn katdotaor Tov slots de-
dopévng piag dpaong. AxorovBovpe toug Kipf et al. [20] ko xpnoipomolodpe éva TARpwG GLV-
dedepévo Nevpwvikd Aiktvo Ipadov mov pabaiver Baorlopevo oe tpradeg (S, ar, Sty ), 6mov Sy
etvon ta slots n ypovikr otiypn ¢, a; eivon ) evépyeta Tov dpdotn ko Siy, Tar peAlovTikd slots
UETA atd GLYKEKPLUEVO XPOViKO StdoTnua 1, adod éxel olokAnpwbei n evépyelta tov dpdotn. To
povtélo mpoPAémnel petaPhoeig étor wote Sy + T'(Sy, ar) = Sy

Mmopotpe va ekmatdeboovpe To HOVTEAO Yphopomotdvtag To Méco Tetpaywvikd ShaApo
ota slots:

Lyreqa = ||St + T (S¢, at) — Stirll2 (4)

Xpnopomorodpe akopo eva odpdipo avtibeong (contrastive loss), 6mov cuykpivovpe ta slots mov
npoPAémeL To povtédo pe Tuyaia adlotwpéva slots S¢:

Lhinge = max(O, Y= Hst + T(Stv at) - SCHZ) (5)

Télog elodyovpe éva Tpito Opo, £val OPAAUN AVAKATHOKEVNG GTO XMOPO TNG ELKOVAS DOTE VO
emPdArovpe ta mpoPAemdpeva slots va prropodv vo omtikomonfobv oe mporypaticég aAARyeg
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oto meplfaAdov Tov dpdon:

Lyee = Hfdec(st + T(St7 at)) - It—l—r”2 (6)

Tehk&, To odpahpa exnaidevong opiletal oG Lym = Lpred + Lhinge + @Lrec. Ipaxtixé,
xpnopomototpe v = 10 ko a = 103,

I xediooT TOU EOCMTEPIKA TAPAKLVOOHEVOL oNPaTog enLPpdfevong
Yxedialovpe TOP TO E0WTEPLKA TaPokLvoLpevo onpa emtPpafevong. E€etalovpe dadopetikd
onpota g orjpata entPpiPevons. Apyikd eEeTdlovpe T0 GHIAUA AVOKATAGKEVTG TOL LOVTEAOV
opaong kabdg Bewpodpe OTL peydho odpdApo avakatackevnig ovvemayetal Ot To meptPailov
oL dphoth Ppioketan o [ TPWTOYVWPN Katdotoot. Efetalovpe akdpa 1o opaipo tpoPie-
Yng Tov povtédov petdPaocng. M Spdor mov Sev pmopel va tpofAéPel To povtéro petafoong
elva yproiun xai propei v odnynoet oe kahvtepn eepedvnon tov mepiparrovtog. Kottalovpe
akopa tn Sradpwvia petakd evog cuvolov artd povtéda petaPfoaong. Av ta povtéda petaPoong mo-
povoidlovv vYMAR Stokduaven wg mtpog T TPOPAePn Tov amoteAéopatog pie dpdong onpaivel
ot vapyel afePordtnTa wG TPog To amoTéAecpa TG dpdong ko Ba eiva ypropo va emiieyel.

Adob avardooupe kot cuykpivovpe Ta SLapopeTikd aLTA oTjHOTO oYX ESLALOVE Vo GO TTOV
Baocileton oto odpdApa TpoPAeymng tov povtédov petdfoaong. Apyikd, vtoloyilovpe To ohaAp
npoPAredng oo medio Tng elkoOvVaC.

Epred - (fdec(St + T(St7 at)) - It+r)2 (7)

Eneidn) awtd to opadpa cvpmeptlapPavel ko tao oPaApato AOyw ToL HOVTEAOL OpacTg elval
apketd aotabéq. Eioayovpe éva opaipa avodopds e To 0molo eMLSLOKOVHE VO ATTOHOVOCOVIE
T0 oparpa Tov odeiretarl oe BopuPddn omTikn avamapioTooT):

Eref = (fdec(st) - It)2 (8)

Télog, kavoupe yprion pog SLadikng HACKAG YOPw atd TNV TEPLOXT) OV TPAYUATOTOLONKE 1)
dpdom. Tehkd to ofjpa emPpdaPevong AapPdver ™ popd:

re =Y MO maz((Eprea — Eref), 0)];; ©)
i

Exnaidevon véag moltikng Exmandevovpe todpar P TOALTIKT) OO TE Vo eTLAEYEL KLVIGELG TTOV
UEYLGTOTOLOVY TO orjpa oL avalbOnke vopitepa. I'a v To metdYOoLE ALTO, SLATLTTOVOLHE TO
poPAnUa g pia dradikacia andpacng Markov (MDP), 6mov 1 katdoToG) TOL GUOTHHATOG
TPOKVTTTEL o TIG 10 UACKES OV TOPAYOVTOL KATA TNV arokwdlkomoinon twv slots kot ot e-
VEPYELEG OVTLOTOLYOUV O€ KLVIOELS TOV POpToTikoL PBpoyiova. Xproyomolodpe tov odyopibuo
Double Q-learning pe éva diktvo ResNet, to omoio déyeton Tig pdokeg wg eicodo kat mpofAémel
0¢€ TOLEG TEPLOYEG TNG ekovag akilel va dpdoel to popmot. Kabe evépyewx eivan pior 0o oe
K&ITOL0 onpeio TG ekdvag, 1) omoin petadppdletal oe pic kivnorn Tov Ppayiover.
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BeAtiwon twv povtéAwv Adod ekmondevTel 1) TOALTIKT, TN XPNCLUOTOLOVUE YLOL VO GUA-
Aé€ovpe véax dedopéva atd to meptaArov. Avtég ol adAnAemidpdaoelg 0dnyolv 6& KATAGTACELG
710V SUGKOAEDOUVV TO HOVTEAO HETAPAOTG KoL TTPOGPEPOLY GTO HOVTELD OPAGT|G VEEG TTANpOdOpies.
Me awtov TOV TpOTO, PEATIdVOUpE Kot Ta SVO HOVTEAQ, EKTTALOEDOVTAG TA TTAVW o€ dedopéva TTOV
mepLEXOLV TePLocOTEPES OAANAemdpaoelg pe avtikeipeva. H Siadikaoio avtr] dnpovpyel évav
KOKAO pH&Bnong, 61ov To popmdT PEATLIOVEL CLVEXDG TNV KOTAVONOT) TOL KOGHOL TOL XWwpig e€w-
tepikn] emifAeym.

Ierpapaticd Mépog

INa va emoAnBeboovpe tn peBodoroyio mov mpoteivovpe oyedidlovpe éva katdAAnlo mel-
popatikd meptPdAiov xpnotpomowdvtag v mpocopoinon CoppeliaSim [68]. To meipopo me-
prhapPaver éva poprtotikd Bpayiovo URS, v adAnhemidpd pe amAd Ttpiodidototo ovikeipeva
oe éva Tpaméll. O Ppayiovag extedel TpokaBopLopHEVES KIVIGELS GTIPOYVOVTAS GTO XWMPO UITPO-
oTQ TOL Ue cuykekpévn katevBuvon. Xtn oknvi vapyel kapepo RGB-D, evd edappuodlovroan
UETAOYNUOTIOHOL CUVTETAYHEVOV PETAED TNG ELKOVAG KL TOV PUOLKOD YDPOL TOL POUTOT, DOTE
vou eTLITPETETOL 1) GUVOEDT) TV EVEPYELDV TOL POUTOT pe omTikd dedopéva kot avtictpoda. O
0TOX0G TOVL GLUGTHHATOG elval va aviyvevBoDV Tar avtikeipeva ko va e€oryOel TAnpodopia yio o
XOPOKTNPLOTIKE TOVG Xwpig Kavéva onjua entiPAeyng 1 mpdtepn yvoon. Ola ta povtéda exmar-
devovral amd 1o pundév, mhvw ot aAAnAemidpacelg mov £xel cLAAEEEL o Bporyiovag.

Apxik&, o Bpoyiovag acdAniemdpd tuyaio pe to mepitPdArov Sixdéyovtag amd TG ePLKTEG
KWwioelg. Xe autr] T dpaon, dtidyvoupe éva obvolo dedopévwv mov amotedeitar amd (evydpia
Spdoewv ko akorovbieg etkdHVLV, TO 0T0i0 KAAOVE apXLlkd cOVOAO deSOUEVWV KOL TO YXPNOLLO-
TOLODYE YLt TNV opyLKT] eKTaidevon Twv HovTéAwv Opaog kol petdfaocng. Pridyvouvpes akdpa
éva. oOvoro dedopévwv eléyyov aTo omoio o Ppayiovag eite adAnAemdpd Tuxaio pe To mept-
BaAlov eite xpnopomoldvTag evploTikéq wote vo eEacdaiiletal 0Tt B Tpokarécel kivnon ota
avtikeipeva Tov meptPdAiovtog. Ztnv etkdva 3 deiyvoupe K&rolo TopadelylaTo TV GUVOA®Y
dedopévav.

Exmtaidevon onTiko0 HovIEAOL KOl AP LTEKTOVIKEG

Apxika, n exmaidevon Tov HoVTEAOL Opaong YiveTal TAvw 6To apykd cVUVOro dedopévwv.
To povtélo XAoT Attevtiov ekmmondeVeTaL v SLoXWPLLeL TNV ELKOVOL G ETLUEPOVG ALVTLKELUEVO-
KEVTPLKEG TTEPLOYES KO VAL AVOKATAOKELALEL Ta KOopé, OIS dpaiveTon oTny etkova 4. Aokipudlovtal
TpeLg SLaPoPETIKEG APYLTEKTOVIKEG YIX TNV eEQYWYN OMTIKAOV YapakTnplotikedv. H mpdtn, éva
antAd CNN, atotuyydvel va dwaoel yprioleg ovamapaotdoels, kabmg 6Aa ta slots katainyouvv
va tepLypadouvv to dpovto.
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Step 3

Sxnuo 3: Herpopotind Mépog: O popmotikdg Bpayiovag ektedel dpdoelg oTo meptPai-
Aov Tov

H Sedtepn apyitektoviky xpnotpomnotel évav mpoekmondevpévo Vision Transformer (ViT). Av
KOl AELTOVPYEL ITOTEAEGUATIKA, 1) artdd0GT) TOL TepLopiletal AdYw TOL Hikpov peyéBoug tov dio-
Béoov cuvorov dedopévwv. Tédog, n) Tpitn tpocéyyion Paciletal oe évav ResNet kwdikomountr
OV eKTToSEVETAL ATTO TNV ap)T), XWPLg eEwTepikn emonteio. Avtr 1 TPocéyylon armodelkvieTal
Wiaitepo amoTeAeopATIKT, EOLKA GE oeVapLa [e TTeploplopéva dedopéval, emLtuyyxdvovtog vyn-
ANG TOLOTN TG AVATTOPACTAGELS Kol 0tELOTTLOTEG AVOKATAOKEVES. 2TOV mivaka 1 mapovoidlovpe
L TOGOTLKT COYKPLOT) TWV APXLTEKTOVIKOV.

Apxrtektovikn Kodworowmnty Aedopéva ExainOevong

AmAo “NN 0.4
[Ipoexmondevpévog 1T 0.095
PeoNet18 0.073

[Tlivakag 1: TOykpion petafd S1adpopeTik®dV APYITEKTOVIKOV kKodikorontn Xn)-
HELOVOUPE TO opdApa avakatacevg (MIE £1072) yia Tpelg apyLteKToViKEg,
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Input image Reconstructed image

Siot 5

"
1
y

Siot 10

Reconstructed image

Siot 5

Siot 2 Siot 3

Siot 9 Siot 10

HARE

Sxnuoa 4: Exnaidevon tov povrélov 6pacng: To povtédo pabaivel va avtiotoryilet slots
0€ OVTIKELUEVO EVED OVAKATOOKUALEL LKOVOTTOLNTIKA TNV elkOVaL ELGOS0U.
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Koavovikomoinon Tov paok®v HEGw TOU COAALATOG EVIPOTTING ZTNV ap)T) TNG EKTTO-
idevong, oL phokeg mov mapdyel to Slot Attention eivon apketd Bopufiddetg, apot moAAd slots
eme€nyovv KoLV onpeio NG apLKNG elkOvag. Me T xprio Tng eVvIpomiog Twv HAcK®OY G GOAA-
po wBolpe TIg pokeg va Exouv THEG kovt 6To 0 1) 670 1 pe amotéAecpa KaAUTEPNG TOLOTNTOG
KOQTATUNOT) TNG ELKOVOG

Exnaidevon tov poviéhov petdPfaong To povrédo petdfaong exmondedetal ©ote vo Ka-
TOvoel TIG SUVOHLKES TV AVTIKELHEVOV GTI OKN VT, He PAOT) TIG AVOTTapAOTACELS TTOL TTPOCHEPEL
70 Ot TIKO povtéro. [l TV exmaidevotn Tov, Statnpovpe ToywHEVO TO SLKTLO OPAGTG KL XPOL-
pomototpe ta slots wg eicodo. K&be avtikeipevo avamapiotatar wg éva slot ko ke dpdon (.x.
®Bnom Tov pounor) adoo dexdei Tnv emekepyacio evog MLP cuvevedveTal e TIG AVOTAPACTROELG
TWV OVTIKELUEVOV.

H apytrextovikr tov povrédov Pacileton oe éva vevpwvikd diktvo ypadov (GNN), To omoio
povtedomotel Tig aAAnAemidphoelg petakd avtikelpévov. Méow katdAAniov oxrpatog message-
passing peto€d kOpuPwv (avTikelpévov) To povtédo pobaivel vo TpofAémet Tnv eV KATAOTO-
on Tev avtikelévoy. Otav exmoudedetal pe dedopéva amd dpdoelg mov TPokaAovV kiviomn Twv
OVTLKELUEVOV, TO HOVTEAO UTTOpEl va TpoPAEYel emTuX®G TNV Kivon Toug, OTwg Ppaivetal oTnv
ekova 5. Avtifeta, otav 1 exmaidevon Paciletar oe Tuxaieg dpdoelg, To povtélo eaTiaEL LOVO
otV Kivnon tov idov Tov Ppayiova kol aduvartel va atod®MoEL WOTA TIG SUVOULKES TOV OVTL-
KEHEVWV, ELKOVA 6.

Initial frame Next frame Reconstructed initial frame Predicted frame
Sxnuoa 5: To povtého petaPaong eivor oe Béon va tpofAéPel tnv kivion tov Tpdcivov
QVTLKELHEVOD, 0TV €xel eKTTodeLTEL 6TO CVVOAO SeSOUEVMV e EVPLOTLKES KLVIOELS.

Ixedioon eocwtepkd TaApaAKIVOOPEVOL opaTog aviapolfng Adov to chotnua éxel a-
TOKTHOEL PLot AELTOVPYLKT] KaTovonom tov meptpaAlovtog, popovpe mAéov va kabodnyrioouvpe
1 ovAhoyn 7o xpriowv dedopévev. To povtédo dpaong éxel ekmOLdEVTEL EMAPKDG OOTE VAL
evToTileL aVTIKELEVQ, EVED TO HOVTEAO PETAPoOTG KATODEPVEL VL EKTIUA P oXETIKT ok pifela Tnv
kivnon tov poprotikod Ppayiova. AUTEG OL LKAVOTNTEG APKODV YL VOl EKTTOLOEDGOVHE HLOL TTOAL-
TIKT] IOV emLdLdKeL eviladépovoeg TpoxLég, SnAadn evépyeleg mov 0dnyolv oe aAAniemidpdoelg
e To avTikeipeva Tov meptBaAAovTog.

IIpokelévou va evromiotel éva kKatdAAnho orfjpo avtopolPrg, avarbovrol Tpelg Stapopeti-
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Initial Frame Next Frame Reconstructed Initial Frame Predicted Frame

‘1

Initial Frame Next Frame Reconstructed Initial Frame Predicted Frame
o

Initial Frame Next Frame Reconstructed Initial Frame Predicted Frame

Sxfuo 6: Otav exkmondeveton oe Tuyaieg dphoelg To potélo petdPaong popei povo va
npoPAéyel Tnv kivnon tov Ppayiova.
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Initial Frame Reconstructed Initial Frame Reference Error

Next Frame Predicted Frame Prediction Error

.
Sxnua 7: Xxedioomn tov onjpartog emiPpaPevong. To povtédo petdPaocng mapovoidlel
VPNAS opaipa TpOPAedng otV TEPLOXT TOL KLVELTOL TO TPACLVO OvTLKEipevo. Adat-

POVTAG TO U AVOPOPAS OUTOLOVOVOUE TO CHAAIX TTOV adopd T dpdion Tov Ppoyio-
Vo at0 T0 GOAA TTOL APOPAE TNV AVOKATAGKELT TOV TTOPTOKOAAL ALVTLKELUEVOU.

KéG emAoYEG: (1) TO COAAUA OVOKOTOOKELTG TOL HOVTEAOV OpaoT|S, (ii) To apdipa TpdPAiedng Tov
povtéAov petdfoaong kou (iii) n Stoaxdpaven otig tpoPAéfelg evog cuvorov povtédwy petéfoong.
A€loloyotpe ta orjpata kdtw otd d0o Siudopetikd eidn dpdoewv: TUXALWY KoL EVPLETIKOVY. ATO
1 oVYKpLoT] SUTLETOVETOL OTL TOGO TO THAAUA AVAKATACKEVTG 660 KoL TO GPAApa TPOPAe-
Png avEdvovTon ONUAVTIKE Ge EVEPYELEG TTOL TTPOKAAODVY KiVIOT) TOV AVTLKEWHEVOV, YEYOVOS TOU
ta KoOloTd vrooxOpeva orjpata avTapolPrg. Avtifétwg, 1 Staomopd oTig TpoPAréPelg Tov ou-
voAou povtédwv dev mapovotdlel Stapopomoinot peto€d twv dpdoewv Siadopetikon eidovg kat
Dewpeital AtyoTepo aELOmIOTH).

QoT060, EUTELPLIKE TOPATNPOVUE OTL HE XPHOT TWV TAPOTTAV® ONUAT®OV OV PITOPODHE Vo
ekmoudevoovpe TOALTIKEG, KaB®g oL avtopolPég eivarl ouyva actabeig 1 BopuPddeic. T awtd
oV AOYO, poTeivovpe TNV evioyvon tov opaipatog tpdPAeyng pe dvo emutAéov unyaviopoie
Omwg avalboope vopitepa. XTI ewkoveg 7, 8 deiyvoupe tn dwxicOnon miow omd tn oxediaon
TOL GHPATOG TTOL Tpoteivovpe. Me To Grjpa ALTO KATAGEPVOLLE VA EKTXLOEVGOVIE LA TTOALTLKT),
éva ResNet Q-Network, va tpoteivel dpdaelg mov 0dnyoldv o¢ £wg Ko Tpelg Gopég meplocdTepn
LETATOTLOT) TWV VTIKELUEVOV TOL XDPOL G€ GUYKPLOT e TIG TUXaieg dpaoelg. Aeiyvoupe tn cadr
TPOTIUNOT) TNG VENG TTOALTLKTG VX GILPOYVEL TOL AVTLKELUEVO TNV ELKOVL 9.

BeAtioon tng AvrtiAnyng ko tng IpopfAreyng Tov Tvotnparog Aflomodvtag tnv mo-
ATk Tov ekToudevoaple, CLAAEYOUUE TOPX Eva vEo aOVoAo dedopévwv. Me Pdomn avtd o véo
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Initial Frame Reconstructed Initial Frame Reference Error
y { .
Next Frame Predicted Frame Prediction Error
SxnNua 8: LTIG eLKOVES XWOPLG KIVNOT) AVTIKELUEVOV 0TO oPaApa TpOPAedng kuplapyel TO
odaApo TOL OPeLAETAL GTNV AVUKATAOKEDT TNG ELKOVAG. APALPOVTAS TO GTHX otvoudo-

pac katoapépvoupe o B0pvPog avTdg va unv cuvvelodépel 6To TeALKO onpa emPpafevong
He amoTéAeopa TNV eAdyLoth emPpdPevon dtav vITaPYEL amovsio Kivong.

Exnaidevon oe: Apxwd Aedopéva  Evprotika Aedopéva
Tuyaieg Apbdoelg 0.062 0.084
Tuyaieg Apdoelg 0.070 0.053
ApAGELS oTTO TNV TTOALTIKT) HOG 0.063 0.069

[Tivakag 2: AEloAoynon tov poviéAov 0paong o€ Srtapopetikd dedopéva Snuel-
ovoupe 10 ohdApa avakatackedng (MSE x1072) tov povtéhov dpaong dtoy exmonde-
vetal oe Tuyaieg dpAoelg, oe eVPLOTIKEG OPACELS KL OTNV ECWTEPLKA TTAPAKLVOOUEVT)
TOALTLKT] HOG.

VALKO, emmovekmatdebovpe TOGO TO HOVTEAD OpacNG 060 KOL TO HOVTEAD KOGHOU, EeklvdvTag o-
76 TIG ap)LKéG Toug Tapapétpouvs. H emavekmaidevon avtr odnyel oe onuavtikn Pertioon: to
HOVTEAO OpaoTG KOTODEPVEL TAEOV VO AVAKATOOKEVALEL KAADTEPX TIG OKNVEC, EVK TO HOVTEAO
KOopov TTpofAémel pe peyaddtepn akpifelx TIg eMITTOOELS TV SPAoewY OMWG avadelkVOETLL
OTOVG TVaKEG 2, 3. ZuyKekpLuéva, otnv Tétoptn oThin g etkoévag 10 PAémovpe 6TL To povtéAo
petdPaong eivor oe Béom mia v TPoPAEPEL TNV KIVIOT) TOUL QVTLKELHEVOD TTOU GIPOYVETOL ATTd
Tov PBpoylova, 0wg dpaiveton kKo Tocotikd otov mivaka 5.3. EEetdlovpe dvo tpdmovg Peltiovong
TV HovTéAwv: 1) Statnpolpe ToyoUéVo ToV apyLkd KwILKOTOTH OpAOT|G KOl ETAVEKTTOLOEDOL-
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Sxnua 9: OrtTikomoinon tng woArtikng: Ontikomolovpe TNy é€0do Tov Q-network. Ae-
LXVOUUE [E KOKKLVO Ta GTUelot TO OTTolaL TTPOTELVEL 1) TTOALTLKY) TTOL EXOVHE EKTTAULOEVTEL.
davepd, oL dphoelg eival TETOLEG OOTE VO TTPOKAAELTAL KIVI|OT) TOV AVTIKELHEVWOV.

Exnaidevon oe: Apxwkd Aedopéva  Evprotika Aedopéva
Tuyaieg Apboelg 0.209 0.235
Evplotikég Apdoelg 0.247 0.164
Ecwrtepikd Hapakivoopevn IToAtikn 0.131 0.143
Ecwrtepikd Hapakivoopevn oAtk (EV) 0.131 0.135

[Tivakoag 3: ALloAdynon tov povtédov petdfoaong oe dradopetikd cOvora dedo-
péveV Snuetdvovpe to odhdApa avakatokevig (MSE x1072) xatd tnv npdBreym tov
ETOUEVOL KOPE KoL GLYKPIvoLpe 4 epntidoels. Otav to HovTéNo ekmondeveTal HOVO o€
Tuyaieg Spaoels, HOVO oe eVPLOTIKES dpAoelg 1) OTav ekmadevetat ota dedopéva mov ma-
PAYEL 1) TTOALTLKT] TTOVL TTpoTELVOLpE. XNV Tedevtaia mepintwon (EV) e€etdlovpe kot tnv
duvaToTNTA XPHIOTG TOL HOVTEAOL OPACTG IOV EXEL EKTTALOEVTEL KOl 6T VEX dedopévar.

pe povo To povtéAo petdPaocng Kot 2) xpnoipomolovpe Tov 1dn PeATiwpévo kwdikomonTn opa-
ong (EV), eriong maywpévo, ko enavekmondevovpe to povtélo petdPaocng. Onwg avapevotav, o
BeAtiwpévog kwdikomon g Opacng Tpocdhépel emTALov abENCT OTNV Ak pifelo AVaKATOOKEVTG
Twv TpofAéPenv Tov povtédov petdfaong. AEilel va onpetwbel 6TL ko ot o exdoxég amodidovv
KoAOTEPOL ATTd TAL CUGTHUOTA TTOVL EXOLV eKTTaLdELTEL HOVO G TuXaleg SPAOELS 1] AKOUX Ko LOVO
oe evploTikég dpdoels.

SUUTEPACHATO

Stnv mapovoo Simhwpatikn efetdlovpe edv éva popumdT popel v avTiAndOei to meplPa-
AOV TOU TOTEAECUATIKA, ATOKAELOTIKE HECW TNG XAANAeTiOpacTig Tov He avtd, Ywpig v oTn-
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Initial Frame Initial Prediction Refined Prediction

Sxnua 10: IHowotikn agrordynon: H mpwtn kou n dedtepn otiAn delyvouv etkdveg mpiv
Ko peté v edpappoym pag dpdong. H tpitn xou n tétaptn otin deiyvouv tnv mpofie-
Yn tov povtéAov petdfacng Otav avtod exel ekTaldeLTeL Ge TUXALEG KIVIOELG. 2TV TETOP-
™ oTtiAn daiveton n tpoPAeyn tov PeAtiwpévou povtédov. To PeAtiwpévo povtédo pe-
taPoong mpoPAémel TNV Kivion TOL AVTIKELUEVOU.

pileton oe mpoOTEPN Yvdon 1 eEwtepikn) emifAreyn. Epmvedpevol amd v yvwoloky emLoThun, 1
omola vtootnpilel 6TL 1) avTiAnyn otnpiletol oe ecwTEPLKE LOVTEAX TPOPAEYNG KABMOG KoL oTN
Sropxn} aAAnAenidpaon cacOnTnplokdv epebiopdtov ko KvnTikng andkpiong [69, 24], oxedi-
&lovpe TOPOHOLOVG PIXOVIGHOVG G TEXVNTOUG SPAOTEG KAl TTPOTELVOLLE éVva otuTO-EMLPAETOUEVO,
OVTLKELLEVO-KEVTPLKO cUoTnpa. To cUoTNHo avTO EMLTPETEL GE £Val POUTTOT VO AVOTITOGGETAL OLL-
ENTikd péoo oItd TNV £0WTEPLKA TOPOKLVOOUEVT eEEPELVIOT TOL XMPOL TOL KoL Vo PeATIOVEL
TG0 TNV SUVATOTITA TOL VI VKO TAOKELALEL TO OmTLKO TOL epéBiopa, aAAX Kot vo TpoPAérel
TO QTTOTEAEGUA TWOV SPACEWY TOU.

Smv npoomdBela avtr), onpovTikh TpoKANon NTav 1 amovcio eEwtepikng enifAedng. To
ovyyxpova povtéha TN cuvBwg xpetdlovton ToAA& kal emionpelwpéva dedopéva yia var eKo-
devToOV KATAAANA KOl SUOKOAEDOVTOL VO YEVIKEDGOLY GE TEPLITOCELS OOV eivo Stabéorpa
AMyo dedopéva, ywpig emifAieym. N va ekmoudedooupe To povtédo dpaong va dtoywpilel Ty el-
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Kova eLl06d0v o€ avTikeipevo xpetdotnikay TOAATAEG SOoKLPEG TEXVIKOV ekTaidevong Kot ohoA-
patwv Pertiotomnoinong kabog kot ekteviig PeEATIOTOTOINGT LITEPTAPAUETPWY, YEYOVOS TTOL €-
oAnOedel Ta TaApATAVE.

"AMAN onpavTikn TpokAnon HTav 1 oxediaon evog orjpatog emBpdfevong mov v odnyei
otnv eknaidevon ebpwotwv moltikdv. [opd to yeyovog 6t to opdipa mpoPrelng wg orjpa
emPpaPevong eivar Sraobnticd edkoAa katavonTd, dedopévou OTL Tar HovTéAX apyLKd eiva ap-
ketd BopuPiddn To o avtd dev apkel. ['la avTO, ELGAYOUVE GTO GTUA TOVG TAPATAVE® OPOVG TTOV
nopovotdoaype vopitepa. Iapdha avtd, oe éva mpoypotikd meptPAAlov iowg LITEPYEL AVAyKT
yla povtédo pe KahOTepeg duvatdTNTEG YEVIKELOTG DOTE 1) TTPOTELVOpEVT peBodoroyio va eivar
amoteleopatiky. TeAwed,  dovAeld pog amd T pice pepid ovadelkvoel OTL 1) HeEAETN apydV ad
TIG YVWOLOKEG EMLOTHHEG UTTOopel var 0dnyrioeL atn oxedloon KaADTEPOY GUOTNUATOY TEXVNTAG
vonpoovvng. Amd tnv GAAn, voypoppilel TOVG TEPLOPLOUODG TTOL £XOUV T GUYXPOVA HOVTEAQ
TN ko v advvapio Tovg va ekTodevTovy TeEAEiwg aLTOVOUA G VéQ TTepLPAAAOVTAL.

Merrovtikég Enextdoetg

M pvoiky enéktaot g epyaociog eival n cvvexrg pabnon (continual learning) [70]. Ztnv cuve-
X1 L&Onomn To HoVTEAD avave®VOVTOL cLVEX MG KBS véa dedopéva yivovtan Stabéoipa kot tpo-
cappolovtot oTig aAAaYEG TNG KATOVOUNG TV dedopévev ekmaidevong xwpig va katacTpédeTot
1 a1t6d00T1) TOLG oTA TAALOTEPA GOVOAX SeSOUEVODV. ST TAXLOLX TOV TTELPAUATOG HAG, 0 OPAGTNG
Bo propovoe v cAAnAemidpd pe to meptPdAlov tov aklomoldvtog TV ToALTIkT] TTov PocileTol
ota povtéla dpaong kot enifAePng, evd mapdAAnAa to povtéda avtd exmondedovron e T vEo
dedopéva Tov cLAAEYEL 0 Sphotng. "ANAeg emekTAoELS TTEPLAAUBAVOLY TN XPHOT] TOV OLVOITOPL-
OTACEWV TOV OVTIKEWHEVOVY YLOL ACKTGELG EAEYXOL TAV®W GE AUTA Ta avTIKelpeva kaL 1) aEloAoy)-
o1 toug pe Phomn to mwg ennpedlouvv T TaybTNTH eKTTaidevong Twv moAltik®v. H puébodog pog
ETMLTPETTEL ALKOUOL PLX TTOLOTLKT] VAALGT) £vOG pHovTéAoL petéfaong. Ao kaveig exmaidevoel pio
TOALTLKT] e TO ohaApa TpOPAedng Tov povtélov petdfaong UITopel vo OTTTLKOTTOLOEL TLG SPATELg
IOV TTPOTELVEL KoL var kKortavonoel kadbTepa Tig aduvapieg Tov povtédov petdfaong. Téhog, pio
PLAOd0EN edappoyr) tng nebodov pog, tepthapfhavel TNy evewpdtwon tng duvatdTnTeg Kivnong
o€ évol popuntoT to omoio e€epevvd évav véo xwpo. To poumot Ba eivon oe Béomn vo emhéEel vau
kwnBetl 1 va adAnhemtidpaoel pe Ta avtikeipeva ov Ppickovtal prpootd. Telwd, To poundt Ha
oyxedidlel Stadpopéc ko dphoelg dote va e€epevvd kalbTepa To TEPPAALOV TOL, VD pabaivel
TavTOYpova Kl T SUVOLKT] TOU.

IIpog tn oxediaon cvotnuartwv Texvntng Nonpootvng exnpeacpévov oo tn froro-
yia
H TN méavta alomoiodoe 1déeg atd tn Aettovpyio Twv Plodoylk®dv opyavicpov. Amd Tig fact-
KEG LOVADEG TV VEVPWOVIKOV SIKTOWV GTIG CLVEAMKTLKEG TPAEELS TTOL HLHLOVVTOL TOV OTTLKO GAOLO
NG YATAG KO TOVG UIXOVIGHOUG TPOGOXNG LITAPYEL EVOG OLAAOYOG HETAED VEVPOETLOTNUNG, OUL-
urepipopikng Yuyoroyiag kot TN. H TN a€romoretl avtiv tnv aAAnienidpaon yio tn oxediaon
L0 EVPWOTWV Kot ALOTLOTOV CLOTNUATWY vonpoovng. Iliotebovpe 6Tt 1) Tapodoo SuTAwpa-
Tikn} outoteAel GAAo éva Tapddetypa owtrg TG aAAnAenidpaong. AElomoldvtog apyég, OTWS 1)
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ecWTEPLKT TTOpakiviomn kot 1 avtoemiAeyn wpoteivovpe Evay SPOO YLt TPOCAPHOGTIKA KL 0L-
tovopa cvotnpota TN, adAdd kot éva Tpomo va aloloynBolv Bewpieg yia To mwg oL opyavicpol
OTTOKTOVV YVQOT).
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Today’s state-of-the-art Al models continue to break new ground in computer vision and ma-
chine learning [71], [3] advancing rapidly across various domains, including image and video clas-
sification, semantic segmentation and decision-making. Despite these impressive achievements,
the cognitive abilities and world understanding of animals and humans still surpass those of cur-
rent machine learning (ML) systems. Unlike humans, who require minimal exposure to new tasks
to adapt and succeed, ML systems depend on vast amounts of data along with carefully designed
supervisory signals from human experts. These data samples must be independent and identically
distributed (i. i. d.); when the domain or data distribution shifts typical Al models struggle to
generalize effectively. Humans, on the other hand, can master new tasks with limited practice and
data. For example, adolescences learn to drive with only about 20 hours of instruction. People
can effortlessly navigate in places they have never been before or manipulate objects they have
never encountered before, while children learn new tasks fast by re-exploiting structured knowl-
edge from previous interactions [22, 23]. Therefore, it is essential to thoroughly study and draw
inspiration from biological cognition and its underlying principles in our attempt to develop more
reliable and efficient artificial systems [27].

45



Chapter 1. Introduction

1.1 Thesis Objectives

In this thesis, we explore active perception through a cognitively inspired approach while
leveraging recent advancements in machine learning. Our goal is to emulate the behavior of a
human infant, who perceives the world and interacts with it to incrementally enhance their un-
derstanding of the environment and develop an internal model of it. Unlike typical Al models that
rely heavily on supervisory signals and large datasets, we aim to investigate whether a model can
learn in a self-supervised manner within a novel, open-ended environment. To achieve this, we
design a training paradigm grounded in well-documented principles from developmental psychol-
ogy, cognitive science and artificial intelligence.

We aim to leverage several key advantages of physical intelligence, as reported in the literature,
to develop the perception capabilities of an artificial system from scratch. First, we will utilize
the system’s ability to interact with its environment in order to develop embodied intelligence.
Next, we will adopt well-established perception principles, enabling the system to perceive the
world in an object-centric manner. We will then construct world models that encapsulate the
physical properties of the environment, allowing the system to better predict and understand its
surroundings. The system will develop incrementally, driven by intrinsic curiosity, which will
enable it to naturally refine and enhance its world model over time.

1.2 Cognitive and Developmental Motivations

A key principle supporting our approach is the embodiment hypothesis, which suggests
that intelligence emerges through an agent’s interaction with its environment and as a result of
sensorimotor activity [24]. Human infants, for example, are not born with advanced cognitive
abilities; instead, they develop incrementally by exploring and interacting with the physical world.
This process plays a crucial role in how they eventually develop advanced cognitive skills, often
beyond what current Al systems can do. Infants live in a world full of rich regularities that shape
their perception, actions and thoughts. Their intelligence is distributed across their experiences
and interactions with the environment, thus by enabling an artificial system to intervene in its
surroundings, we aim to bootstrap its perception and learning capabilities in a similar manner.
Like infants, such a system can benefit from exploration, engaging in diverse, seemingly random
and non-goal-directed activities. This behavior promotes open-ended and inventive intelligence
development, both in human infants and potentially in artificial intelligence.

Drawing inspiration from physical intelligence, we will also incorporate the concept of world
models [25, 26]. Humans construct mental models of the world based on sensory information.
The brain processes vast amounts of data from daily life, forming abstract representations that
guide decisions and actions. Research suggests that perception at any moment is shaped by the
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1.3. Overview of our Approach

brain’s predictions about the future, grounded in these internal models [69]. Animals leverage
such world models to quickly acquire new skills, predict the outcomes of their actions and engage
in reasoning, planning, exploration and problem-solving. In this thesis, we aim to train world
models in an unsupervised manner, use them to promote exploration and iteratively enhance both
the system’s perception capabilities and the world models themselves [27].

We also adopt an object-centric approach to world perception, driven by the dynamics of
motion. Objects are central to how humans visually interpret their surroundings [72]. That is why,
the question of how humans are able to organize visual input into distinct objects has intrigued
researchers for centuries. For instance, the Gestalt school of psychology proposed that humans
use cues such as color, texture and motion to group visual elements into coherent objects [73].

Developmental psychology reveals that even in early infancy, humans have an understanding
of objects, expecting them to move cohesively along continuous paths, which shapes their per-
ception of object boundaries [72, 74]. Initially, infants may not differentiate between entities apart
from their visual boundaries, but through interaction with their environment, they gradually learn
to associate specific properties with these entities. For instance, they might discover that spherical
objects roll, while objects with rough surfaces are more difficult to push. In this work, rather than
viewing segmentation as a passive process, we aim to enable the system to actively interact with
its environment to refine its segmentation model. We start from segmenting the visual world into
distinct entities and advance toward understanding their physical properties. This progression
naturally supports further capabilities, such as using these representations for control tasks and
iteratively improving the quality of these representations.

1.3 Overview of our Approach

In this work, we investigate active perception through a cognitively inspired framework that
emulates how human infants learn by interacting with their environment. Our goal is to ex-
plore whether a model can develop an internal understanding of the world purely through self-
supervised interaction, without relying on external supervision or large-scale datasets, in open-
ended settings. To achieve this, we study world model learning while a robotic arm actively ex-
plores objects on a table so as to maximize an intrinsically motivated epistemic reward function.
Importantly, while to our knowledge most previous developmental robotics approaches to world
model learning used fixed visual modules [28, 29], here we use the data generated through active
interaction with objects to simultaneously learn the world model and the vision module entirely
from scratch, without any external supervision, pretrained modules or external datasets. We first
show that our proposed epistemic reward generates actions that lead up to three times more ob-
ject displacement than random actions. We then show that the resulting policy leads to both world
model improvement (i.e., better prediction of state-action-state dynamics) and better visual recon-
struction.

47



Chapter 1. Introduction

1.4 Contributions

To validate the proposed methodology, we conduct experiments with a robotic arm in a table-
top environment with a diverse set of objects. We evaluate various versions of our algorithm, ex-
ploring different model architectures, training schemes and reward functions. Our results demon-
strate that the proposed approach is effective in scenarios where no supervision signals, pretrained
models or external datasets are available.

In summary, our key contributions are as follows:

1. Object-Centric World Modeling: We adopt an object-centric approach and develop a
world model capable of predicting the future states of object representations across frames.
Unlike most methods in literature that operate in the high-dimensional visual space, our
model reasons in a compact latent space, enabling more efficient and structured dynamics
prediction.

2. Fully Self-Supervised Learning from Scratch: We train both the vision and world model
entirely from scratch, without any supervision or external datasets. Leveraging state-of-
the-art self-supervised vision techniques the models are trained entirely on data collected
autonomously by the robot through interaction.

3. Intrinsic Motivation through Predictive Uncertainty: We design a novel, intrinsically
motivated reward signal based on the world model’s prediction error, which effectively fil-
ters out noise introduced by imperfect models. This reward encourages policies that result
in up to three times more object displacement on average.

4. Data-Driven Model Refinement via Active Exploration: We show that fine-tuning the
models on data collected via the learned policy significantly improves the robot’s world
understanding. This improvement is quantitatively measured through prediction and re-
construction performance of both the vision and world models.

5. Comprehensive Experimental Validation: We validate our approach in a simulated
robotic environment, demonstrating the effectiveness of the proposed method.
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Chapter 2

Theoretical Background

Contents
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2.4 ReinforcementLearning . . ............... . ...... 58
2.5 DeepQ-learning(DON) . ... ... ... ... .. 61

In this chapter, we introduce the key concepts and techniques in deep learning that form the
foundation of our proposed method. We begin by outlining the different paradigms of machine
learning, namely supervised, unsupervised and self-supervised learning, with a particular focus on
the latter, as our approach relies exclusively on self-supervised techniques. Next, we describe the
primary deep learning architectures employed throughout our experiments, providing the neces-
sary background to understand their role in our framework. We then present DINO, a state-of-
the-art self-supervised learning method for representation learning, which we incorporate into
some of our vision modules. Finally, we provide a formal introduction to Markov Decision Pro-
cesses (MDPs) and cover the fundamentals of reinforcement learning (RL), Q-learning and its deep
learning-based variant. These will be essential for training the policy that enables our system to

interact intelligently with its environment.
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Chapter 2. Theoretical Background

2.1 Self-Supervised Learning

Supervised learning is a type of machine learning where models are trained using labeled
data. By learning the relationship between inputs and their corresponding labels, a model can
generalize to new data and make accurate predictions [30]. In contrast, unsupervised learning
works without labeled data and aims to find patterns or structures within the data, such as clusters
or low-dimensional.

Formally, let X C R? denote the input space and ) the output space. ) is a finite set in
case of a classification task. In supervised learning, we are given a dataset of IV labeled examples:
Ds = {(zi,yi) 1"y € X x ) assumed to be drawn i.i.d. from an unknown joint distribution
P(z,y). The goal is to learn a function f : X — ) from a hypothesis space H that minimizes the
expected risk:

R(f) = E(x,y)NP[g(f(x)v y)] (2-1)

where ¢ : Y x ) — R is a loss function. Since the true distribution P is unknown, we approxi-
mate the expected risk with the empirical risk:

R(f) = = S (/i) wi) 2
=1

The objective is to find:

fr=arg ;rgg R(f) (2.3)

Similarly, let D,, = {wz}f\il C X represent a dataset of N samples without labels. In un-
supervised learning, the goal is to learn some structure or representation from the data without
supervision. The objective is to learn a function f : X — Z that maps the input data to some
latent space Z, where Z may represent a lower-dimensional manifold, a set of clusters, or some
other learned structure.

In some cases, we seek to minimize the reconstruction loss when the task involves recon-
structing the input data from its representation. The objective is then to minimize the expected
reconstruction error:

where P(x) is the underlying data distribution. Since the true distribution P(z) is unknown, again
we approximate the expected loss using the empirical risk:

. 1 X
R(f) = 55 DU (i), i) (255)
i=1

This empirical risk can take different forms depending on the specific task (e.g., clustering,
density estimation, or dimensionality reduction). For example, in clustering, the goal is to learn
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2.1. Self-Supervised Learning
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Figure 2.1: A widely adopted SSL architecture [2]: A large portion of the input image
is hidden and the network encodes the rest. Then, the decoder tries to reconstruct the
original image.

a function f that groups the data into meaningful clusters. This is often done by minimizing a
clustering loss, such as:

Rclustering(f) = % Z e(f(.%'z), Ci) (2.6)
=1

where ¢; represents the cluster assignment for each sample.

Self-supervised learning (SSL) lies at the intersection of these two paradigms. It uses the
structure of unlabeled data to generate pseudo-labels, enabling models to learn tasks that tradition-
ally require supervision. In SSL, supervisory signals are constructed from the data itself, allowing
the model to learn meaningful representations without the need for human-annotated labels. In
Figure 2.1 a widely adopted SSL framework is presented.

This approach is especially useful in open-ended environments, where labeled data is often
unavailable or too costly to collect. In these situations, self-supervised learning (SSL) allows mod-
els to learn directly from raw data, making use of the large amounts of unlabeled information
and reducing reliance on manual supervision. SSL also resembles how biological agents learn—by
recognizing patterns and making predictions from their own experiences, without being explicitly
told what to do. In open ended environments, where the task is not fixed ahead of time and the
distribution of data is non-stationary or unknown, the traditional supervised and unsupervised
learning frameworks fail. In such settings, as in real-world robotics, new situations, objects, or
goals can appear without explicit labels. Here, SSL proves particularly powerful: it enables agents
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Chapter 2. Theoretical Background
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Figure 2.2: The architecture and equations of a two-layered MLP network. 3]

to learn continuously from interaction, treating every experience as a potential learning signal,
without requiring manual intervention.

2.2 Common Deep Learning Architectures

Deep learning has achieved remarkable success in recent years across domains such as com-
puter vision, natural language processing and robotics. Key factor behind this success is the de-
velopment of specialized model architectures that introduce suitable inductive biases for different
data modalities and tasks. These architectures are designed not only to approximate complex func-
tions but also to automatically learn rich representations from raw data, significantly reducing the
need for handcrafted features [3]. In this section we review the core deep learning architectures
used throughout this thesis, focusing on Multilayer Perceptrons (MLPs), Convolutional Neural
Networks (CNNs), Vision Transformers (ViTs) and Graph Neural Networks (GNNs).

The simplest deep learning architecture is the Multilayer Perceptron (MLP), Figure 2.2. An
MLP is composed of several fully connected layers, where each layer applies a linear transforma-
tion followed by a non-linear activation function. The output of each layer serves as the input
to the next. Although simplistic, architectures based on MLPs can achieve competitive results in
various tasks, such as image classification [31]. However, their fully connected structure results
in a large number of parameters and ignores spatial structure in the input data.

Convolutional Neural Networks (CNNs): Convolutional Neural Networks (CNNs) were
among the first deep learning architectures to show outstanding performance in computer vision.
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Figure 2.3: Architecture of a widely used CNN: LeNet [4]. In deeper layers the receptive
field of each neuron increases.

CNNs are particularly well-suited for processing data with a grid-like topology, such as images
[75]. Unlike MLPs, CNNs use convolutional layers instead of fully connected ones, which provides
several important advantages:

1. Sparse Interactions: In CNNs, connections between input and output units are sparse,
achieved through the use of small filters (kernels) that are applied over local regions of the
input. This leads to significantly fewer parameters and reduced computational cost, while
also preserving spatial locality, allowing the model to capture local patterns effectively.

2. Translation Equivariance: Convolutional operations are equivariant to translation, mean-
ing that a shift in the input results in a corresponding shift in the output. This property is
especially beneficial for visual tasks, as objects may appear in different positions across
images.

3. Parameter Sharing: Instead of learning separate weights for every spatial location, CNNs
share parameters across the input. A single kernel is used at multiple spatial locations,
reducing the number of parameters and allowing the model to generalize learned features
across the image. This assumes that a feature useful in one region is likely to be useful
elsewhere.

CNNss are also biologically inspired. Their hierarchical structure resembles that of the mammalian
visual cortex, where early visual areas detect edges and textures and later areas integrate these
into more complex representations like shapes and objects [32]. Similarly, in CNNs, lower layers
detect low-level features (e.g., edges), while deeper layers capture high-level semantic concepts.

ResNet, introduced by He et al. [33], is one of the most influential architectures in deep learn-
ing and is also employed in this work. ResNet was proposed to address the difficulty of training
very deep neural networks, particularly the problem of vanishing gradients [34]. As networks
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identity

Figure 2.4: Residual building block

grow deeper, gradients propagated during backpropagation can diminish to near-zero, making it
difficult to update weights in early layers.

The key innovation in ResNet is the introduction of residual connections, which allow certain
layers to be bypassed through identity mappings. These connections create shortcut paths for
gradient flow, enabling deeper networks to be trained more effectively. As illustrated in Figure 2.4,
the output of a residual block is computed as:

y=F(z)+x (2.7)

where F' represents the composition of a convolutional, a non-linear and a second convolutional
function. Residual connections also allow the network to retain and combine both low-level and
high-level features. In convolutional networks, the receptive field, namely the region of the input
that affects a neuron’s activation, grows with depth. By reusing features from earlier layers (with
smaller receptive fields), ResNet integrates local detail with global context, enhancing the model’s
ability to capture complex patterns at multiple spatial scales.

Vision Transformers: While convolutional operations have long been considered essen-
tial for image processing, recent advances have challenged this assumption. In particular, Vision
Transformers (ViT), introduced by Dosovitskiy et al. [5], demonstrated that transformer archi-
tectures [6], originally developed for natural language processing, can also achieve competitive
performance on image classification tasks when applied to sequences of image patches. The key
idea in ViT is to treat an image as a sequence of patches, analogous to words in a sentence and
to process these using the self-attention mechanism. Given an input image x € R¥*W*C where
H and W are the image height and width and C' is the number of channels, the image is divided
into N = % non-overlapping patches of size P x P. Each patch x; is first flattened from a two-
dimensional into a one-dimensional vector and then projected into a D-dimensional embedding

z' € R using a learnable linear projection layer E.

To preserve spatial information, a learnable positional embedding E,s € RV*D s added to
the patch embeddings: A A
z' = E(flatten(x;,)) + Epos(7) (2.8)
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Figure 2.5: The Vision Transformer and Transformer Encoder architectures [5]

These embeddings are then passed through multiple layers of Multi-Head Self-Attention (MHSA)
and feedforward networks, forming the core of the transformer architecture. An overview of the
Vision Transformer architecture is depicted in Figure 2.5.

Multi-Head Self-Attention: In each attention head h, the patch embedding matrix Z €
RN*P s projected into queries Q,, keys K}, and values V}, using learned projection matrices:

Qn=2Wypn, Kp=2ZWip, Vi=ZWyy (2.9)

where W, 1, Wi n, Wy 1, € RDP*Dh and Dy, = HQG is the dimensionality per head for H, attention
heads.

The attention output for each head is computed as:

KT
SA; = softmax <Q\;ﬁ: > Vi (2.10)

This mechanism assigns a weight to each token (patch embedding) based on its relevance to others,
enabling the model to capture long-range dependencies in the image. In multi-head attention, the
outputs of all attention heads are concatenated and projected back to the original embedding space:

MHA(Z) = [SA1;...:SAg]|Wo (2.11)

where Wy € RHaDr)xD ig 3 Jearnable output projection matrix, as shown in Figure 2.6.
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Scaled Dot-Product Attention Multi-Head Attention

Figure 2.6: Overview of the attention mechanism [6]

The full ViT model includes multiple layers of MHA and feedforward blocks, with layer nor-
malization and residual connections. A special class token is appended to the sequence of patch
embeddings to aggregate the global image representation and its final embedding is used for clas-
sification.

Graph Neural Networks (GNNs): With the aforementioned architectures one can process
Euclidean structured data. However, graph-structured data exhibit irregularities. A graph may
contain a variable size of unordered nodes and these nodes may possess different numbers of
neighbors. Consequently, operations like convolutions, which are straightforward in the image
domain, become challenging when applied to the graph domain. Graphs are ubiquitous. Images,
text, chemical molecules or even complex scenes can be treated as graphs. Tasks related to graphs
can either have to do with prediction of the attribute and role of a whole graph, a particular node
or an edge.

A graph is represented as G = (V, E'), where V is the set of vertices (or nodes) and F is the
set of edges. Let v; € V denote a node and e;; = (v;,v;) € E denote an edge from v; to v;. The
neighborhood of a node v is defined as: N'(v) = {u € V' | (v,u) € E} and the adjacency matrix
Ais ann x n matrix, where: A;; = 1ife;; € Eand A;; =0ife;; ¢ E.

A fundamental operation in GNNs is that of message-passing, shown in Figure 2.7. During

each message-passing iteration in a Graph Neural Network, the embedding h&’“) corresponding to
each node v € V is updated according to information aggregated from u’s neighborhood. This
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Figure 2.7: The GNN uses message-passing within a node’s neighborhood enabling node-
level prediction [7].

message-passing update can be expressed as follows:
pEHD = UPDATE® (1), AGGREGATE® ({n{") |ve N(w)})) (2.12)

where UPDATE and AGGREGATE are arbitrary differentiable functions (e.g., MLPs).

2.3 Representation Learning with DINO

Combining the strengths of self-supervised learning and Vision Transformers (ViTs), Caron
et al. introduced DINO (Self-Distillation with No Labels) [8], a method for training vision models
without the need for manual annotations. DINO leverages a self-distillation framework and strong
data augmentation strategies to learn rich and transferable image representations.

The core idea behind DINO is to train a student network to match the output of a teacher
network, both sharing the same architecture but updated differently. The teacher parameters, 6;,
are updated using an exponential moving average of the student’s parameters, 04, see Eq. (2.13),
ensuring stable targets during training. Both networks are fed different augmentations of the
same image and the student is trained to produce output distributions similar to the teacher’s, as
depicted in Figure 2.8.

0; =« %0, + (1 — a) * O (2.13)

Despite the absence of labels, DINO is able to learn high-level semantic features and object-centric

representations, which emerge naturally from the training objective. These features are particu-
larly well-aligned with object boundaries and show strong performance in downstream tasks such
as semantic segmentation, image retrieval and classification.
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Figure 2.8: Self-distillation with no labels [8]: The input image x is augmented to two
different views (21, x2). The student is trained with backpropagation trying to imitate
the teacher’s output. The teacher is updated based on the student’s parameters.

When pretrained on large-scale datasets such as ImageNet [76], DINO-equipped ViTs become
powerful feature extractors, offering spatial awareness and generalization capabilities. These char-
acteristics make DINO especially suitable for use in object-centric learning frameworks, such as
ours, where identifying and disentangling individual entities in a scene is crucial.

2.4 Reinforcement Learning

Learning through interaction is one of the most intuitive and fundamental forms of learning
when thinking about intelligence. An agent observes its environment and interacts with it to
discover which actions lead to desirable outcomes. For example, a human learning to drive or
engaging in conversation continuously adapts their behavior to optimally influence what happens
next.

Reinforcement Learning (RL) is a distinct paradigm of machine learning, alongside super-
vised and unsupervised learning. It focuses on developing agents that learn to map observations to
actions in order to maximize cumulative reward through interaction with an environment. Unlike
supervised learning, where labeled input-output pairs are provided, RL does not rely on explicit
labels. Moreover, the data in RL is not independently and identically distributed (i.i.d.); instead, it is
collected sequentially through the agent’s own actions, which influence future states and rewards,
making the learning problem significantly more complex [9, 77].

A central challenge in reinforcement learning is the exploration-exploitation trade-off: the

agent must decide between choosing actions that are known to yield high rewards (exploitation)
and trying out uncertain actions that might lead to better outcomes (exploration). Balancing this
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trade-off is essential for discovering optimal behavior, especially in unfamiliar or dynamic envi-
ronments.

An RL system typically includes the following components:

+ Agent and Environment: The agent interacts with an environment by taking actions and
receiving observations and rewards in return.

« Policy: A policy defines the agent’s behavior; it maps observed states to actions. In Deep
Reinforcement Learning (Deep RL), the policy is often parameterized by a deep neural net-
work, which learns to approximate optimal behavior through trial and error.

« Reward Signal: The reward function provides feedback to the agent, guiding learning by
defining what constitutes success or failure.

» Value Function: While immediate rewards are important, RL agents must also consider long-
term returns. The value function estimates the expected cumulative reward (also called
the return) from a given state or state-action pair, helping the agent evaluate the future
consequences of its actions.

To formally model the interaction between an agent and its environment in reinforcement
learning, we introduce the framework of Markov Decision Processes (MDPs), see Figure 2.9.
An MDP is defined by the following components:

« A countable set of states S (State Space), a subset 7 C S (known as the set of Terminal
States) and a countable set of actions A.

« A time-indexed sequence of environment-generated pairs of random states S; € S and
random rewards R; € D C R, alternating with agent-controllable actions A; € A, for time
stepst =0,1,2,...

« The Markov Property, which states that the future state and reward depend only on the
current state and action, not on the full history:

P[(Rig1,Se41) | (St, Ai, Si—1, A1, ... ,50, Ao)] = P [(Rig1,S141) | (Se, Ar)]  (2.14)

+ A termination condition: If an outcome for St (for some time step T) is a state in the set
7T, then this sequence terminates at time step 7'.

At each time step ¢, given a representation of the environment’s state S; € S, the agent selects an
action A; € A(S;). One time step later, the agent receives areward Ry € R C R and transitions
in a new state S;11 € S.
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Figure 2.9: The Markov Decision Process framework [9]

Policies and Value functions: A policy 7(a|s) defines the agent’s behavior, specifying the
probability of selecting action a in state s. Given a policy, we define the value function v, (s) as the
expected return (cumulative reward) when starting from state s and following policy 7 thereafter:

/U7T(S) =Ex [Gt \ Sy = 8] =Ex [Z ’Yth+k+1
k=0

Sy = s] (2.15)

where E; denotes the expected value under the policy 7 and y € [0, 1) the discount factor, con-
trolling how much future rewards are valued relative to immediate ones. Similarly, the ¢ (s, a)
function denotes the expected cumulative reward if an agent is in state s, chooses action a and
then follows policy .

These functions satisfy a fundamental recursive relation known as Bellman equation that is
very useful in RL algorithms. It is easy to derive that:

vr(s) = Eg ZykRHkH Sy = s]
k=0 (2.16)
— Zﬂ(a | 5) Zp(s’,r | s,a) [r +'yvﬂ(s’)]

where p(s’,r | s,a) is the transition-reward distribution: the probability of reaching state s’ and
receiving reward r after taking action a in state s.

Optimal Value Functions: The optimal value function v*(s) gives the maximum expected
return achievable from state s and is defined as: v*(s) = max;, vr(s). Likewise, the optimal Q-
function ¢*(s, a) represents the highest expected return achievable by taking action « in state s
and following the optimal policy thereafter: ¢*(s,a) = max; ¢ (s, a)

This optimal Q-function satisfies its own Bellman optimality equation, which is used in many
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RL algorithms like Q learning:

q*(s,a) =E [RtJrl + ymax g*(Se+1, a’) ’ St =s,Ar = a] (2.17)

2.5 Deep Q-learning (DQN)

The last equation (2.17) provides an algorithm for iteratively approximating ¢*(s, a) by updat-
ing an estimation of it, (s, a), with a learning rate o

Q(St, Ap) < Q(S, Ap) + o [Req1 + 7y max Q(Stv1,a) — Q(St, At)} (2.18)

Notably, this is an one-step temporal difference (TD) update since the target value is approximated
using the current estimate @) function: v(s;4+1) & Ri41+7ymaxg Q(Si+1,a). In Deep Q-Learning,
the Q-function is parameterized using a deep neural network, typically referred to as a Q-network,
which takes the state s as input and outputs Q-values for all possible actions. While conceptually
simple, this direct application of Q-learning with neural networks is unstable in practice due to
correlations in sequential data and the moving target problem.

To address these issues, Mnih et al. [35] proposed Deep Q-Networks (DQN) and introduced
three key modifications that significantly improved stability and performance, achieving human-
level performance on the Atari benchmark:

« A separate, slowly updated target network Q4,¢et is used to compute the target value:
Ri41 47 max, Qrarget (St+1, a), while the main Q-network is updated via gradient descent.
This helps to prevent oscillations caused by rapidly changing targets.

« An experience replay buffer is used to store transition tuples (s, a,r, s’) observed during
interaction with the environment. During training, batches of transitions are randomly
sampled from the buffer, breaking correlations between consecutive samples and reducing
the variance of updates.

+ Data is collected using an e-greedy policy, where the agent selects a random action with
probability € and the greedy action (according to current Q-values) otherwise. This encour-
ages exploration while allowing the agent to learn from off-policy data.

Double Deep Q Learning: A limitation of the original DQN is that the same network is used
to select and evaluate the best action in the next state, which can lead to overoptimistic value
estimates. To mitigate this, Double DQN [36] was introduced. In this variant, the current Q-
network is used to select the best action, while the target network is used to evaluate its value.
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The modified target for Double DQN is now:
U(St+1) ~ Rt+1 + Y mGELlX Q(St+1, argmaxaQtarget(StH, CL)) (2.19)

This decoupling of action selection and evaluation leads to more accurate value estimates and
improved training stability.
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This thesis intersects multiple research areas, each of which has been extensively studied in
the literature. These fields lie at the intersection of computer vision, robot learning and cognitively
inspired machine learning. In the following sections, we provide a comprehensive review of the
relevant literature, covering the key problems that this thesis addresses. We begin with unsuper-
vised video object segmentation (3.1), as our problem can be initially formulated as a computer
vision task, detecting and segmenting objects in a scene in a self-supervised manner. We then fo-
cus on object-centric methods, with particular emphasis on Slot Attention, a prominent approach
for learning structured scene representations.

Next, we explore unsupervised reinforcement learning techniques (3.2), which are crucial for
enabling our system to acquire and refine its skills in the absence of an explicit reward function. In
this process, we leverage world models that operate in an object-aware manner (3.3), using intrinsic
rewards (3.4) to guide exploration and learning. Finally, we examine recent deep learning studies
where agents learn policies while improving their perception capabilities, which corresponds to
an active perception process (3.5). This structured review lays the groundwork for understanding
our methodology and its connections to prior research.
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Figure 3.2: The Davis Dataset typically used for VOS [11]
3.1 Unsupervised Video Object Segmentation

Object segmentation, Figure 3.1, refers to the task of delineating precise object boundaries by
classifying every pixel (or unit) in an input image as belonging to a specific object class or the
background. In the context of videos, Video Object Segmentation (VOS) aims to extract salient ob-
ject masks at the pixel level for each frame in a sequence [37]. This task is closely linked to human
visual perception; as Biederman [38] suggested, object recognition in images can be conceptual-
ized as the decomposition of regions, often marked by deep concavities, into simple volumetric
primitives.

In unsupervised VOS, the challenge is significantly heightened: the model must segment and
track salient objects throughout a video without being provided with ground-truth masks or object
annotations in the initial frame. This requires the model to not only detect visually prominent
entities but also to maintain consistent object identity over time, which is non-trivial in complex
or cluttered scenes.

With the rise of deep learning, numerous techniques have been proposed to tackle unsuper-
vised VOS, alongside the development of benchmark datasets for evaluation. Two of the most
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widely used datasets are DAVIS (Densely Annotated VIdeo Segmentation) [39] and FBMS (Freiburg-
Berkeley Motion Segmentation) [40], both of which provide high-quality, pixel-level annotations
across diverse and challenging video sequences. Performance is commonly evaluated using the
Jaccard Index (Intersection over Union, IoU), which measures spatial overlap between predicted
masks Spreq and ground truth Sg, often with consideration for temporal consistency.

>_(Spred N Sge)

Z(Spred U Sgt) (3'1)

J<Spred7 Sgt) =

One of the earliest unsupervised VOS approaches was proposed by Fragkiadaki et al. [41].
Their method begins by generating object proposals for each frame using either static image
boundaries or motion cues derived from optical flow. Moving object proposals are identified using
a learnable boundary detector [78] applied to the magnitude of the optical flow field. These initial
proposals are refined by a dual-pathway convolutional network operating on both the image and
flow fields to assess whether the object is indeed moving. Dense point trajectories are then com-
puted by linking optical flow vectors across time, allowing object proposals to be extended into
coherent spatio-temporal tubes.

Temporal coherence in videos presents a powerful cue for object segmentation, as frames,
even those that are temporally distant, often exhibit strong structural similarities. Zhou et al. [42]
leverage this property through video salient object detection. Their method fine-tunes a pretrained
semantic segmentation model to extract spatial saliency features, followed by training a Convo-
lutional LSTM to capture temporal dynamics. While this sequential strategy processes temporal
information, it may fall short in modeling long-range dependencies or capturing global consis-
tency across the video.

To address this limitation, Lu et al. [43] propose an attention-based mechanism that models
correlations not just between consecutive frames but across multiple frame pairs. By capturing
long-range dependencies, their model is able to detect more globally consistent object masks and
achieve superior performance compared to earlier methods.

Yang et al. [12] introduce a method that combines optical flow with a transformer-inspired
architecture. They frame object segmentation as a flow reconstruction task, allowing the model
to differentiate foreground from background. Their method first encodes the input optical flow
using a convolutional encoder ¢y into features and then introduces two learnable queries that
are iteratively updated based on the extracted features. These queries are decoded separately to
produce foreground and background segmentation masks. They also propose an additional loss
to ensure that the reconstructed optical flow is consistent regardless of the temporal gap it was
computed, as shown in Figure 3.3. This approach has demonstrated robust performance across
multiple datasets. More recently, Lee et al. [44] proposed a memory-based mechanism to move
beyond using only adjacent frame information in unsupervised video object segmentation. Their
method extracts feature prototypes from input frames and selectively stores the most informative
ones in a memory bank. This memory bank serves as a repository of useful object features from
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Figure 3.3: Optical flow can be used for efficient foreground-background separation [12].

past frames, enabling the model to leverage longer-term temporal context for improved segmen-
tation. During inference, newly extracted prototypes are combined with stored prototypes and
all are ranked based on relevance scores. The top-ranked prototypes are then used to generate
the predicted segmentation mask, allowing for more temporally consistent and accurate object
tracking across the video.

3.1.1 Object-Centric Unsupervised Object Segmentation

A prominent direction in addressing the unsupervised instance segmentation problem is through
object-centric scene representation, where "objects" serve as the fundamental building blocks.
Most of these approaches rely on a reconstruction objective to extract meaningful components
from visual scenes. The object-centric paradigm aligns with the causal mechanisms that govern
our physical world, offering the potential to significantly improve the generalization capabilities
of computer vision models [79]. Object-centric scene representation methods can be divided into
two main types of models: scene-mixture models and spatial-attention models.

Scene-Mixture Models: Scene mixture models [45, 46, 13] interpret a visual scene as a com-
bination of multiple component images. These components are represented and reconstructed by
a generative model that decomposes the scene into distinct elements. One early example of this
approach is MoNet [45], a deep generative unsupervised model that uses a variational autoen-
coder (VAE) [80] paired with a recurrent attention network. MoNet is trained end-to-end without
supervision, generating attention masks and reconstructions for image regions. This method is
motivated by the advantageous use of compositional structures that break down complex scenes
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into simpler, coherent parts with some common structure.

Similarly, IODINE [46] introduces iterative variational inference, where multiple independent
latent representations (slots) correspond to different objects in the scene. Each slot generates both
a pixel-wise appearance map and a mask assignment for its respective object. However, models
like MoNet and IODINE do not account for interactions between scene components. GENESIS [13]
addresses this limitation by incorporating a recurrent neural network (an autoregressive prior) that
models dependencies between components, enabling the generation of coherent, novel scenes. In
Figure 3.4 are shown the corresponding graphical models for each method.

°°@‘0°o
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(a) VAE (b)) MONET  (c) IODINE (d) GENESIS (e) GENESIS-S

Figure 3.4: Graphical models of different scene mixture models [13]. K denotes the num-
ber of the components (slots) in which the scene is decomposed, while N denotes the
number of refinement iterations used in IODINE.

While scene-mixture models provide segmentation maps capable of handling objects with
complex morphologies, they face several limitations. Each component corresponds to a full-scale
image and thus encode object attributes like position and scale only implicitly. Furthermore, scene
inference in these models is sequential, which hinders scalability when dealing with scenes con-
taining many objects.

Spatial-Attention Models: In contrast, spatial-attention models [47, 48, 49, 50, 51] directly
represent geometric properties of objects, such as position and scale. By grounding object rep-
resentations in spatial semantics that reflect physical reality, these models promote sample effi-
ciency, interpretability, geometric reasoning, and cross-task transferability. They typically model
an image as a composition of background and foreground elements, with the foreground further
decomposed into a set of object-centric representations. Each object is described by attributes such
as spatial location, visual appearance, and presence.

Visual saliency and multimodal attention, motivated by cognitive and perceptual theories, had

already been explored well before the deep learning era. The foundational work by Itti et al. [81]
introduced one of the first computational models of saliency-based visual attention, combining
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low-level visual cues such as color, orientation, and intensity to predict likely fixations in natural
scenes. This model laid the groundwork for numerous saliency algorithms rooted in bottom-up
attention. Building on this, works like [82, 83] integrated visual, auditory, and textual streams to
model attention and saliency in complex, dynamic environments. These early efforts emphasized
the value of attention for video summarization, event detection, and affective analysis, though
they relied on hand-crafted features.

Advances in deep learning have enabled more powerful and generalizable attention mecha-
nisms that can be trained end-to-end across modalities and tasks. For example, SUSiNet [84] intro-
duced a unified architecture that jointly learns saliency estimation, action recognition, and video
summarization using spatio-temporal features from multiple datasets. Similarly, STAViS [85] pro-
posed a deep audiovisual attention network that combines spatial-temporal visual features with
learned auditory saliency to improve localization and attention modeling in videos.

In the context of VOS, SCALOR [48] addresses the scalability challenge by parallelizing both
the object discovery and propagation processes, reducing the computational complexity from
O(K) in most Scene-Mixture models to O(1), where K is the number of objects in the scene.
This parallelization allows the system to efficiently handle scenes with high object density.

However, spatial-attention models often struggle to capture complex objects that cannot be
easily represented with simple geometric shapes, such as rectangular bounding boxes. Recent
work [51] has demonstrated that this limitation can be mitigated by leveraging object-centric at-
tention maps from self-supervised foundation models, such as DINO, to kickstart unsupervised
semantic segmentation. This approach combines the strengths of both object-centric scene rep-
resentation and large-scale self-supervised learning, pushing the boundaries of unsupervised seg-
mentation capabilities.

3.1.2 Slot Attention Models

A widely-used object-centric method for unsupervised object segmentation and representation
learning, which forms the foundation of our approach, is Slot Attention [14]. In this method, a
set of variables called slots binds to the perceptual representations of an input scene through a
differentiable attention mechanism. These slots serve as object-like entities that capture different
parts of the scene. A predefined number K of slots is randomly initialized. Meanwhile, a feature
map is extracted from the input image, typically using a convolutional neural network (CNN).

An iterative mechanism is then employed, where each slot attends to features of the input.
During this process, slots compete with one another to explain distinct parts of the input scene.
They are updated through a gated recurrent unit (GRU) [64], allowing them to progressively refine
their representations.
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At the end of this procedure a spatial broadcast decoder [65] operates on each slot to recon-
struct its corresponding part of the image. The individual reconstructions are then combined into
a final, single RGB image, as shown in Figure 3.5.

SLOT ATTENTION

_HC‘*

Figure 3.5: Slot attention [14]: The slots iteratively compete and bind with the represen-
tations of the input image. Each slot is then decoded to a specific part of the initial image
that corresponds to either an object or the background. The individual reconstructions
should be combined into the input image.

DinoSAUR: However, the image reconstruction objective used in Slot Attention models has
limitations when applied to real-world data. It is proven successful mainly on simpler datasets,
where low-level features like color provide clear cues for assigning pixels to objects. To address
this, Seitzer et al. propose an alternative in [15]. Instead of reconstructing the raw input image,
their model’s decoder reconstructs high-level features derived from self-supervised pretraining.
This method, depicted in Figure 3.6 introduces an additional inductive bias by leveraging features
that exhibit strong homogeneity within objects, making object segmentation more robust.
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Figure 3.6: Overview of DINOSAUR [15]: DINO extracts object-centric features. Slot
attention binds them to slots and is then trained by reconstructing them.

These features can be obtained from modern self-supervised learning techniques, such as
DINO [66], which are trained on large datasets like ImageNet. The proposed method can be seen
as a form of student-teacher knowledge distillation [86], where the student model (the decoder)
compresses the high-dimensional, unstructured information from the teacher’s feature space into
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Figure 3.7: Overview of VideoSAUR [16]: Slots should be able to predict a temporal simi-
larity matrix.

Cosine
Distance

N
P heik \

LA
pasiazadns-jjos

a lower-dimensional, structured representation. By doing so, the model gains improved general-
ization capabilities for complex real-world scenes.

From Images to Videos: A sequential extension of Slot Attention, designed to operate on
videos, arises naturally from the need to capture temporal dynamics. In SAVI [67], instead of ran-
domly reinitializing the slots for each consecutive input frame, a predictor module serves as a tran-
sition function to model temporal relationships, including interactions between slots. SAVI also
incorporates additional contextual information, such as object bounding boxes to condition slot
initialization. For training, it uses optical flow predictions as the primary target for each individ-
ual frame, encouraging the model to capture temporal consistency. Building on this, VideoSAUR
[16] extends DinoSAUR by explicitly integrating temporal information through an additional loss
term. This term ensures that the extracted slots can predict an affinity matrix, which encodes the
cosine similarity between features from temporally proximal frames. By enforcing this temporal
coherence, the model is incentivized to group regions with consistent motion and semantics into
the same slots, thus improving object-centric segmentation in video data, see Figure 3.7.

On The Number of Slots: A significant limitation of the object-centric models discussed
here, including Slot Attention, is their reliance on a predefined number of slots. This approach
requires prior knowledge of the dataset and fails to account for the variability in the number of
objects present in each scene. To address this issue, AdaSlot [17] introduces a complexity-aware
adaptive slot attention mechanism that dynamically determines the optimal number of slots based
on the input data. Initially, a large number of slots is generated, but only a subset is selected for the
reconstruction process. The framework also employs a slot sparsity regularization term to balance
reconstruction quality with efficient slot usage.
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Figure 3.8: Overview of AdaSlot [17]

A lightweight neural network predicts the drop probability for each slot, see Figure 3.8. Ap-
plying the Gumbel-Softmax [87] to these probabilities yields a hard but differentiable decision
mask. An alternative technique is slot merging, proposed in [88]. This method uses an agglomer-
ative clustering algorithm to merge semantically similar slots based on their cosine similarity. By
combining slots that represent the same object, the model can dynamically determine an optimal
number of slots, further enhancing segmentation flexibility and efficiency.

As discussed, previous work has addressed the limitations of Slot Attention by incorporating
additional information sources, such as motion, depth, or pretraining on large datasets like Ima-
geNet. Similar to color, motion and depth provide useful grouping cues by highlighting objects
as they move or stand out in 3D space. However, rather than relying on such auxiliary signals or
external datasets, our goal is to develop a system that is fully unsupervised and capable of learning
independently.

3.2 Unsupervised Reinforcement Learning of Skills and
Representations

The work presented in this thesis aligns with a broader area of research known as Unsuper-
vised Reinforcement Learning. In this paradigm, models are trained to learn meaningful state
representations or tasks without access to an externally defined utility signal. Instead, the system
relies on intrinsic objectives or self-supervised signals to guide learning. One early example of this
approach is Learning to Poke by Poking [52]. In this work, a forward and an inverse model are
used to predict the future position of an object being poked. By training a robot to perform poking
actions aimed at moving objects to goal locations, the model develops an intuitive understanding
of object physics and geometry.
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Figure 3.9: Robotic arms interact with their environment and collect data without super-
vision [18]

In other works [18, 53] off-policy deep reinforcement learning is used to learn closed-loop dy-
namic visual grasping strategies, using entirely self-supervised data collection as shown in Figure
3.9. These systems generalize to previously unseen objects during testing by predicting the value
of low-level end-effector movements directly from raw camera input. Grasping is modeled as a
MDP where the state is the perceived image, the actions are Cartesian motions of the gripper and
the reward is a self-supervised signal from gripper sensors. The policy is derived using a varia-
tion of double Q-learning and stochastic optimization. Building on this paradigm, Grasp2Vec [54]
introduces a method to extract object-centric representations from grasping episodes. The goal
is to learn embeddings that encode object features, ensuring that images containing the same ob-
jects are close together in the embedding space, while images with different objects are far apart.
During training, each grasping episode produces an image triplet: (Spcfore; Sa fter, 0bs). The em-
beddings of these images represented by ¢ should satisfy: ¢(obs) ~ ¢(pre) — ¢(after). The
grasping policy is trained as in [53], with a reward function based on these embedding distances.
This approach allows the model to simultaneously learn both a robust grasping strategy and rich
object representations.

Object-Centric Unsupervised Reinforcement Learning: Another line of research focuses
on learning object-centric representations that are useful for control and reinforcement learning.
Representing perceptual observations in terms of entities has been shown to improve data effi-
ciency and transferability across a wide range of tasks. One such approach is SMORL [19], which
integrates SCALOR [48], discussed in Section 3.1.1, with goal-conditioned visual reinforcement
learning. Observations are encoded as a set of structured vectors z; through the SCALOR object-
centric encoder g4. These representations are then processed by a goal-conditional attention policy
mp(at| 2, 24), where z4 represents the goal state, see Figure 3.10. During training, goal represen-
tations are sampled conditionally on the representations of the first observation z;. At test time,
an external goal image o, is provided, which is processed by g, to generate a set of potential goal
candidates z,_,. The agent sequentially selects and pursues one goal 24 at a time, effectively
breaking down complex tasks into manageable sub-tasks.
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Figure 3.10: The SMORL algorithm enables self-supervised multi-object RL [19]

The object-centric encoder is pretrained on data from random trajectories, while the policy
can be optimized using any goal-conditioned model-free reinforcement learning algorithm with
randomly sampled goal images. Similarly, Heravi et al. [55] demonstrate the benefits of object-
aware representation learning for robotic tasks, particularly in imitation learning. They employ
a Slot Attention encoder, similar to ours and show that policies trained on the slot-based repre-
sentations exhibit improved sample efficiency. They conclude that these policies require fewer
demonstration trajectories to learn effectively.

3.3 Object-Centric World Models and Control

Within our system we aim to equip machine learning models with the ability to decompose
scenes into objects, infer their properties and understand the relationships between them. Training
a world model capable of predicting physical dynamics and the consequences of actions is a key
step towards this goal. This world model should be able to answer questions such as, what would
happen if an object is pushed in a certain way. Recent research has focused on training such world
models operating on object centric state representations, which can be further used for model-
based control.

Object-Centric World Models: In Contrastively-trained Structured World Models (C-SWMs)
[20], Kipf et al. propose using a graph neural network (GNN) as an action-conditioned transition
model. This model learns object-level state abstractions to predict state transitions. The training
data consists of offline experience tuples (z;, as, z¢111) where z; is a state representation, a; is an
action and 241 is the resulting state after taking action a;. The transition model 7', is imple-
mented as a fully connected Graph Neural Network (GNN), where each node represents an object.
The model takes 2; as input and is trained to predict the resulting state 2 1. An overview of the
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approach is shown in Figure 3.11.
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Figure 3.11: The C-SWM model [20]: A CNN and MLP based module extracts and encodes
object representations that compose the nodes of a graph. Message passing schemes on
that graph model the transition of the objects states.

This GNN framework models pairwise interactions between object while maintaining invari-
ance to the order in which objects are represented. To improve sample efficiency, a contrastive
hinge loss is employed. The loss compares the predicted state transition with both the actual next
state and a randomly corrupted state representation z;. For a detailed analysis of the graph-based
object-centric world model, refer to Section 4.3, where we present our proposed approach.

World Models for Control and Planning: The learned world models can interpolate past
experiences and provide analytic gradients of multi-step returns, enabling efficient policy opti-
mization and control. In Dreamer [89], the agent leverages a world model and learns behavior
by predicting hypothetical trajectories within the compact latent space of the world model. This
approach consists of three key models:

1. A representation model: p(s¢|s;—1,a;—1,0;), that encodes observations and actions into
latent states s; and an observation model that decodes the state representations back to
observations q(o¢|s¢)

2. A transition model that predicts future states based on previous states and actions, without
observing the actual outcome: q(s¢|s;—1,a;—1)

3. A reward model that predicts rewards given the current model state: q(r;|s;)

The observation and reward models are trained in a supervised manner, whereas the transition
model is trained so that the predicted state distribution to resemble the state distribution according
to the representation model. The objective function is defined as follows:

T
L(6) = Eg(s1.0]a1.r017) [Z ( —Ingg(os | s¢) —Ingg(rs | se)

t=1

+BKL[go(st | St—1,at—1,0¢) || po(5¢ | St—laat—l)])]
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With this learned world model, the agent can "imagine" the outcomes of potential actions
without directly observing them. This capability allows the agent to enhance planning by choos-
ing actions that maximize predicted rewards. Alternatively, the model can generate hypothetical
trajectories on which the policy can be trained, significantly improving sample efficiency.

An action model proposes actions that maximize the reward-to-go along these imagined tra-
jectories. The action model is trained by regressing to the values estimated by a critic network. The
critic itself is trained to optimize the reward-to-go, which depends on predicted rewards, values
and the imagined states and actions. By directly back-propagating gradients through the world
model, the critic’s objective can be optimized efficiently, further improving sample efficiency.

An alternative approach, depicted in Figure 3.12 is to learn representations and dynamics sep-
arately. In Masked World Models [21], a masked auto-encoder (MAE) is used to reconstruct visual
observations through convolutional feature masking, while a latent dynamics model is trained on
top of the learned visual representations. Decoupling visual representation learning and dynamics
learning improves both the quality of representations and model efficiency.

Visual Representation Learning Dynamics Learning
c0 €0
Zp Zra1
| T [ | | I | |
._. _.._. L5, ﬁ ﬁ
. . . [l t St t St+1
vaskedcore ], 2 aa
Features z" M t t
. L[ - HE EE - ] |
O -7 25 z°
r r+1

Figure 3.12: Decoupling visual representation learning and dynamics learning improves
the quality of representations and model efficiency [21].

Combining the strengths of Slot Attention with advances in Transformer networks, Wu et al.
[90] propose SlotFormer, a Transformer-based object-centric dynamics model. SlotFormer models
object dynamics as a sequential learning problem, extracting object-centric representations from
a sequence of input images and predicting object features at future time steps. By conditioning
on multiple frames, the model captures both spatial and temporal relationships between objects,
maintaining consistency in object properties and motion across synthesized frames. This capabil-
ity enables SlotFormer to perform competitively on planning tasks. The aforementioned models
leverage object-centric representations and world models in a task specific and reward-dependent
way. Instead, in this thesis we propose a task-agnostic, curiosity-uncertainty driven framework to
improve a systems understanding of its environment.
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3.4 Intrinsically Motivated Reinforcement Learning

Another key component of our approach is the intrinsic reward function, which drives the
system’s exploration and generates novel, informative trajectories with high information gain for
both the vision and world models. In scenarios where extrinsic rewards are sparse or entirely
absent, intrinsic motivation becomes crucial, as it encourages the agent to take actions that reduce
its uncertainty, improve its ability to predict the consequences of its actions and explore novel
states.

Pathak et al. [56, 57] were among the first to effectively integrate curiosity-driven exploration
into a reinforcement learning framework. They demonstrated that when sensory inputs are rep-
resented in a meaningful way and a forward dynamics model is trained to predict these represen-
tations, the model’s prediction error can serve as an intrinsic reward signal. Importantly, input
representations should filter out information irrelevant to the agent, ensuring that prediction loss
is not perturbed by noise in the sensory input. This intrinsic reward function, when combined
with a deep reinforcement learning algorithm, enables the agent to explore the state space more
effectively and develop policies with greater efficiency.

When the intrinsic reward function relies on prediction error, the agent must perform an ac-
tion and compute the reward based on the difference between its own prediction and the actual
environment behavior. The policy is rewarded if the prediction model and the observed envi-
ronment disagree, which promotes exploration of unfamiliar or uncertain states. However, this
reward depends on the unknown dynamics of the environment and thus the policy requires RL
algorithms for training, which typically suffer from sample inefficiency and high-variance.

Later, Pathak et al. [58] address this challenge through a disagreement-based approach. They
train an ensemble of world models and incentivize the agent to explore the action space where the
models’ predictions diverge the most. The intrinsic reward is derived from the variance among
the ensemble’s predictions, making it fully self-supervised. Additionally, this reward function
is differentiable and thus policy optimization can be framed as a supervised learning problem,
allowing for more efficient training through direct likelihood maximization. Formally if we denote
the ensemble of forward prediction models as fg = {fo,, fo,--., fo, } the reward is defined as the
variance of the output of the different ensembles:

= Eg ||1f (w1, a1360) — Eq [f (20, ai; 0)]3 (3.3)

This reward mechanism drives the agent to explore areas of high uncertainty in the environment,
ultimately improving its ability to learn robust and generalizable policies. The policy parameters
Op can be optimized using direct gradients by treating r; as a differentiable loss function:
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3.5. Robotic Active Perception

Another approach for task-agnostic exploration relies on entropy maximization in the rep-
resentation space H(s). These methods require a computationally tractable way to estimate the
entropy, which can be challenging in high-dimensional spaces. Liu et al. [59] propose a particle-
based entropy estimation method, where each state is treated as a particle in the representation
space. They approximate the density of the space by calculating the average distance of the k
nearest neighbors of a state. For each batch of transitions (s, a, s’) sampled from the replay buffer
the reward is computed as:

r(s,a,s') =log | c+ % Z Hfg(s) — z(j)H (3.5)

20Nk (2=fo(s))

Here, ¢ is a constant for numerical stability, fy is the representation network and and zU) are the
k nearest neighbors (particles) to fy(s) in the batch. Liu et al. demonstrated that this method
enables active exploration during unsupervised pretraining, leading to significant improvements
in downstream tasks that are otherwise difficult to train from scratch.

3.5 Robotic Active Perception

While most approaches mentioned above study intrinsic motivations to learn policies or world
models relying on a fixed perception module, here we are interested in simultaneously improving
perception, which corresponds to an active perception process. Several studies in the literature
have explored active perception [91, 92, 93]. More recently, researchers have begun integrating
deep learning into this concept. Pinto et al [60] in The Curious Robot, argue that biological agents
learn visual representations through physical interactions and build a system that pushes, pokes,
grasps and observes objects in a tabletop environment to learn such representations. This system
is trained to predict the outcomes of these robotic tasks with data annotated in a self-supervised
manner. The extracted representations have been shown to be beneficial for simple downstream
control tasks.

Similarly, Pathak et al. [61] propose a self-supervised approach to object segmentation through
interaction with the environment. The agent here maintains a segmentation hypothesis, manipu-
lates a hypothesized object through random actions and updates the model based on the difference
between visual frames captured before and after each action. These interactions provide a noisy
yet informative signal that enhances the initial segmentation hypothesis over time.

In [62], Sancaktar et al. demonstrated that a preliminary phase of curiosity-driven free play
can enhance downstream task performance. Their system employs an ensemble of world mod-
els to plan actions that maximize epistemic uncertainty. The actively collected data is used to
iteratively update the models, gradually reducing epistemic uncertainty. Cobra [63] also adopts

77



Chapter 3. Literature Review

a task-free intrinsically motivated exploration approach. Using unsupervised learning, they build
object-based transition models of their environment optimizing a pixel-based loss function, which
they use in a model-based reinforcement learning setting.

Although similar in spirit, [62] relies on proprioceptive state information to train world models
from which rewards are derived, while [63] evaluates their approach only in a two-dimensional,
visually simplistic environment. To the best of our knowledge, the work done in this thesis is the
first to propose a fully self-supervised, object-centric framework that intrinsically enhances an
agent’s world perception and modeling in a visually complex environment.
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In this chapter, we present our proposed methodology in detail. We begin with an overview of
the full pipeline, followed by a thorough explanation of each component. First, we describe how a
vision model can learn to perform object segmentation in a fully self-supervised manner. Next, we
introduce a world model trained to predict the dynamics of these object-centric representations.
We then explain the motivation and formulation of our intrinsically motivated reward function,
along with the reinforcement learning algorithms used to train a policy based on this reward.
Finally, we show how this learned policy enables the collection of more informative trajectories,
which in turn can be used to further improve both the vision and world models.
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4.1 Overview

Our method follows a self-supervised, object-centric pipeline composed of five key stages:

a) We begin by collecting an initial dataset of image sequences, generated by an agent per-
forming random actions in the environment.

b) We train a self-supervised vision model, based on Slot Attention, to segment scenes into
object-like components and learn structured object-centric representations.

c) Using the frozen vision model, we train a world model to predict future visual represen-
tations conditioned on the agent’s actions. This world model is of low quality due to the
mainly uninformative actions in the initial dataset.

d) We train a policy using an intrinsic reward derived from the prediction error of the world
model, encouraging the agent to explore states where the model is uncertain.

e) Finally, we use the learned policy to collect more informative trajectories involving object
interactions and fine-tune both the vision and world model on this richer dataset.

A summary of the proposed framework is illustrated in Figure 4.1.

4.2 Self-Supervised Vision Encoder

To achieve self-supervised, object-centric vision representations, we employ Slot Attention
[14], a state-of-the-art unsupervised method for object discovery and segmentation. It introduces
latent variables, referred to as slots, which bind to perceptual inputs via a differentiable attention
mechanism, capturing distinct parts of the scene as object-like entities.

The core idea is simple: decompose an image into slots and reconstruct it from them. This
self-supervised pipeline comprises two main components, a Vision Encoder and a Slot Decoder,
enabling Slot Attention to learn object-centric representations without supervision. The Vision
Encoder is composed of a deep neural network backbone f,,,. that extracts feature maps from the
input image, which are then processed by the Slot Attention module to produce object-centric
representations.

Vision Encoder: Given a video with frames I; at timestep ¢, each frame is encoded into K
slots S; € RE*P where the number of slots K and the slots’ dimensionality D are predefined
parameters set by the user. The image is first processed by a DNN backbone, producing a feature
map hy = fone(I;) € RV*Ps, with N spatial locations and feature dimensionality D Iz
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Figure 4.1: Overview of our proposed framework: The input image I; is processed by
the vision encoder to extract K slot representations which can be decoded to the recon-
structed image I. A graph-based world model takes the K slots and the corresponding
action as input to predict the future frame I, .. A reward function is then computed based
on the prediction error, which guides a Q-network to propose informative actions.

The Slot Attention module then iteratively binds slots to input features via a differentiable
attention mechanism. Slots compete to explain different regions of the scene and are progressively
refined through learnable projection layers, an MLP and a Gated Recurrent Unit [64]. This process
requires initializing slot representations, originally done randomly.

More specifically, Slot Attention employs an attention mechanism where keys are derived
from the feature map h; and queries and values come from the current slot representations S;.
This produces attention weights that are used to compute updates for each slot. The formulation
is as follows:

N
1
U; = 7. ZAt,n V(hin) € REXP Ay = softmaxg < K(hy) - Q(St)T> e RV K
t

1
N
(4.1)

Here, K,(Q,V are learnable linear projection for keys, queries, values respectively. Ay repre-
sent the attention weights, normalized over slots using a softmax across slot dimension. Z; =
27]:[:1 At n, is a normalization factor and ©® denotes the Hadamard product. Then the GRU unit
updates the slots in an iterative process: S; = GRU (U, S;). The exact algorithm is described in
the pseudocode of Algorithm 1.
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Algorithm 1 Slot Attention Module

Input: h, € RV*Pr SY ~ N (p, diag(o)) € RE*P

Layer Parameters: K, (), V: linear projections; GRU; MLP; LayerNorm x 3
1: h, < LayerNorm(h;)
2: fori=1to1 do
3: S! + LayerNorm(S; ')

attn < Softmax <\/L5K (hy) - Q(S;)T) > Normalize over slots

4
5: updates < WeightedMean(weights = attn + ¢, values = V' (h,))
6 S! < GRU(state = S, inputs = updates)

7: Si < S! + MLP(LayerNorm(S}))

8: end for

9: return S7

Slot Decoder: Each slot is decoded using a spatial broadcast decoder [65] to reconstruct its
corresponding scene region. Each slot s produces a reconstruction I, and a mask Iy, normalized
via spatial softmax. The final image is then formed by combining all components:

K
ik, ﬂk = faec(sk), Iy = softmafoIk I= zﬂk ®© ik (4.2)
k=1

For simplicity, we use it = fdec(St), where fg.. denotes the entire slot decoder pipeline.

Training through Reconstruction: We can now train the CNN backbone of the encoder,
the trainable parts of the slot attention, as well as the decoder, jointly by simply reconstructing
the original input, across all frames:

T
Lrec = ZHit - ItH2 (4~3)
t=1

Modifications on Slot Attention: While object-centric learning shows promise, the field
remains relatively immature as most methods rely on weak supervision, such as optical flow or
depth maps, or large-scale pretrained encoders. We instead train Slot Attention from scratch
using only data collected autonomously by a robotic arm.

To improve the performance and stability of our learning framework, we introduce two key
modifications to the standard pipeline:

1. ResNet Encoder: Rather than using a Vision Transformer (ViT) backbone, commonly em-
ployed in conjunction with DINO pretraining on large-scale datasets like ImageNet, we opt

82



4.2. Self-Supervised Vision Encoder

for a ResNet-based encoder trained directly on our task-specific data. This choice is moti-
vated by several factors. First, convolutional networks like ResNet inherently incorporate
strong spatial inductive biases that are beneficial in low-data regimes, unlike transformers
which typically require extensive pretraining to generalize effectively. Second, the hier-
archical feature extraction and large receptive fields of ResNet layers help capture object-
level context in cluttered scenes, making them well-suited for structured visual inputs such
as tabletop environments with multiple interacting objects. Empirically, we find that the
ResNet encoder not only performs more reliably than the ViT alternative in our setting but
also leads to improved reconstruction and segmentation outcomes.

2. Self-Supervised Pretraining via Autoencoding: To further enhance the representational
capacity of the encoder and promote stable convergence during Slot Attention training, we
introduce a self-supervised pretraining phase. Specifically, we use an autoencoding setup
where the ResNet encoder is paired with a symmetric ResNet-style decoder composed of
deconvolutional layers. This architecture is trained to reconstruct the input images using
only reconstruction loss, without any labels or object-specific annotations. Through this
unsupervised pretraining, the encoder learns to capture general-purpose visual patterns
that serve as a strong initialization for downstream object-centric learning. This pretraining
phase not only accelerates convergence but also mitigates common failure modes such as
slot collapse and noisy segmentation in the early stages of Slot Attention training.

Entropy-based loss term: Optimizing Slot Attention to produce clean, localized masks re-
mains challenging in our setting, thus we introduce an additional loss term that penalizes the
entropy of the spatial masks II; associated with each slot. This promotes low-entropy, coher-
ent masks, reducing noise and improving segmentation. The proposed loss term for pixel (i, j) is

formulated as L = — S K TI}, % log(ITy). The final objective is now:
L=Lrect+B*> L, (4.4)
)

where b is a hyperparameter we set to 1073,

From Images to Videos: To capture temporal dynamics, we employ a sequential extension
of Slot Attention, designed to operate on videos. Instead of randomly re-initializing the slots for
each consecutive input frame, a predictor module serves as a transition function to model temporal
relationships, as done in SAVI [67]. The slots for frame ¢ + 1 are initialized using a transformer-
based mechanism as follows:

S, = LN (MHSA(S,) + S;) (4.5)

Ses1 = LN (MLP(st) + St) (4.6)

Here, MLP denotes the Multilayer Perceptron, MHSA is the multi-head dot-product self-attention
mechanism [6] and LN is layer normalization [94] applied after each residual connection.
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4.3 World Model for Predicting Future Slots

Our goal is to enable models to decompose scenes into objects, infer their properties and under-
stand inter-object relations. A key step is training a world model that predicts physical dynamics
and action outcomes—e.g., what happens when an object is pushed. Given that our system already
extracts structured slot representations, building such a model becomes straightforward.

Following Kipf et al. [20], we use a fully connected graph neural network (GNN) as an action-
conditioned transition model over slot representations. It learns object-level abstractions from
offline tuples (S¢, a;, St ), where S; are the slots at time ¢, a; is the action and S, the resulting
slots after a fixed interval r, corresponding to the frame where the action’s effect is observed. The
model predicts transitions such that S; + T'(S, a) ~ Sy

Implementation-wise, a node update function f,,,4. and an edge update function f,g4. is shared
across all nodes and edges, both implemented as MLPs. A single round of message passing updates
is performed using the following equations on individual slots s e;(i,7) = fedge([s},s]]) and

AS% = fnode([sg a’ia Zi;&j et(ia ])})
Typically, we can train the world model using the MSE loss over the predicted slots:
Lyprea = ||S¢ + T(St, a¢) — Sitr||2 (4.7)

To improve sample efficiency, a contrastive hinge loss is also employed, where the predicted state
transition is compared to a randomly corrupted state representation S¢:

Lhinge = ma$(077 - ||St + T(Sta at) - SCH2) (4~8)

We also introduce a third reconstruction loss term back on the pixel space employing the frozen
vision decoder fy.. and ensuring that the predicted slots can be decoded to actual changes in the
robot’s environment:

Lyec = ||fdec(st + T(Stv at)) - IH‘THQ (4-9)

Overall, the loss is defined as Ly, = Lpreqd + Liinge + ®Lyec. In practice, we used v = 10
and o = 103,

The standard prediction loss L,,.q encourages the world model to accurately estimate how
object slots evolve over time under the influence of actions. However, minimizing only this loss
can lead to degenerate solutions, especially in noisy or low-signal environments where the model
might overfit to trivial dynamics (e.g., ego-motion). The contrastive hinge loss Ly;yge explicitly
pushes the predicted future slots away from randomly corrupted states encouraging the model to
learn more discriminative and robust object-level dynamics. Additionally, the reconstruction loss
L. in the pixel space, ensures that latent predictions correspond to visually meaningful outcomes
when decoded, aligning the latent space dynamics with observable changes in the environment.
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Together, these auxiliary losses help regularize training and promote the emergence of physically
coherent object dynamics.

4.4 Designing an Intrinsically Motivated Reward

A key component of our approach is an intrinsic reward function that guides exploration by
encouraging trajectories with high information gain for both the vision and world models. We ex-
amine a variety of rewards that reflect the uncertainty of our models, such as (i) the reconstruction
error of the vision encoder L, (ii) the prediction error of the world model and (iii) the prediction
variance of an ensemble of world models.

The underlying intuition is that high reconstruction or prediction error signals unfamiliar
or poorly understood regions of the state space. These regions are likely to provide informative
learning signals when explored.

1. Vision Model Reconstruction Error L,..: When the vision encoder reconstructs an input
frame with high error, it implies that the observed scene is novel or significantly different
from previously encountered ones. Using this reconstruction loss as a reward signal en-
courages the policy to visit diverse visual states, thereby facilitating the learning of a more
comprehensive and generalizable representation.

2. World Model Prediction Error: Similarly, large prediction errors from the world model
suggest that the environment responded to the agent’s actions in an unexpected way. This
indicates that the action led to novel outcomes, which can improve the model’s understand-
ing of object dynamics. We therefore treat high prediction error as an intrinsic reward signal
that encourages exploratory behavior.

3. Disagreement in an Ensemble of World Models: Inspired by prior work on uncertainty-
driven exploration [58], we train an ensemble of three world models with identical archi-
tecture and objectives but initialized with different random seeds. The variance or disagree-
ment among the predictions of the ensemble serves as a proxy for epistemic uncertainty.
Actions leading to high prediction disagreement are considered more uncertain and are thus
rewarded more. This approach encourages the agent to seek states where the model is less
confident, leading to richer and more informative data collection.

We analyze and compare the effectiveness of these different intrinsic reward signals in guiding
exploration in Section 5.4, highlighting their respective impacts on policy behavior and model
learning.

The proposed reward: Building on our statistical and empirical analysis, we base the final
proposed reward on the world model’s prediction error. Raw prediction error can be noisy—especially
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early in training—due to limitations in the models. To address this, we compute the error in pixel
space as the difference between predicted and actual future frames:

Epred = (fdec(st + T(Sta at)) - It+r)2 (4.10)

However, this error may also capture biases introduced by the decoder, reflecting the limita-
tions of the current vision model rather than true prediction error. To isolate this, we compute a
reference error using only the static vision reconstruction pipeline:

Eref = (fdec(st) - It)2 (4.11)

Only prediction errors exceeding this reference reflect epistemic uncertainty, namely the model’s
current ignorance about the outcome of its own actions.

To localize the learning signal, the reward is computed only over a region of the image centered
on the action, denoted by a binary spatial mask M. This reduces the influence of irrelevant changes
and focuses the reward on action-relevant areas. Let p denote the pixel location corresponding to
the center of the robot’s action in the image space. The spatial mask M, 4 is defined as: M,, 4(x) =
1)3—p||, <d» Where d is a predefined radius and ||-||; denotes the L1 (Manhattan) distance. The mask
assigns a value of 1 to all pixels within distance d of the action point and 0 elsewhere. Overall, the
intrinsic reward is calculated as:

re=> > MO maz((Eprea — Eref), 0)];; (4.12)
i

A deeper intuition behind the designing of the reward function is given in Section 5.4.

4.5 Training a Policy

In order to train a policy to maximize the proposed reward, we frame the problem as a Markov
Decision Process (MDP). States are defined by the K = 10 segmentation masks, concatenated
in the channel dimension, which are produced by the frozen vision model at each timestep and
actions correspond to the robotic arm’s movements. We train the policy using Double Q-learning
[36], with the Q-network implemented as a ResNet. The network takes as input the segmentation
masks and outputs a spatial map indicating the expected value of performing a pushing action at
each pixel.

More specifically, the state input during policy learning is defined as s; = {IIj }, where {II;}
are the K segmentation masks produced by the vision model at time ¢. In principle, other repre-
sentations could also be used as state input, such as the raw image I;, the image features hy, or
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the slot embeddings s;. However, we choose to use the segmentation masks because they provide
a spatially structured and object-centric representation, which simplifies the action selection task.
The reward signal is computed intrinsically, as described in previous sections, and the actions
correspond to physical interactions between the robot and its environment.

The action space consists of 2D spatial locations corresponding to pixels in the image plane.
Each action represents a pushing motion executed by the robot at a specific location. The Q-
network outputs a dense spatial map of Q-values, indicating the expected return of performing
a push at each pixel. During execution, one of the pixels with the highest Q-value is selected
randomly and the corresponding action is translated into a physical robot movement using a pre-
defined mapping from image coordinates to the workspace of the robotic arm, see Section 5.1.

The Q function @ : § X A — R calculates the quality of a state-action combination. The ex-
pected reward for state-action is computed as 7y = 7 + YQg- (5141, argmax,Q (s¢, a)), where 6~
is a previous version of the ResNet parameters. The Q-function is updated as described in Section
2.5, with a; denoting the learning rate:

Qo(st,as) = Qo(st,ar) + ay (e — Qo(s¢, ar)) (4.13)

4.6 Refining the Models with Informative Trajectories

The learned policy generates image sequences that are novel and informative for both the
vision and world model. Using the frozen policy the agent interacts with its environment. Due
to the way the reward function was designed, the agent now performs actions that often result in
environmental changes the world model cannot accurately predict. Consequently, the collected
trajectories not only lead to broader exploration of the environment but also systematically expose
the limitations of the current models.

We exploit these informative interactions by fine-tuning both the vision and world models
on the new dataset. Unlike the initial dataset, which was largely composed of static frames or
simple gripper motion, the new trajectories feature rich, object-centric interactions. This increased
diversity allows the models to observe dynamic object behavior and previously unseen spatial
configurations. Specifically, in our setting these more informative trajectories correspond to robot
actions that with high probability cause the movement of the objects in the robot’s environment
with respect to random actions that most of the time do not interact with an object.

We exploit these informative interactions by fine-tuning both the vision and world models on
the new dataset. Unlike the initial dataset, which was largely composed of static frames or sim-
ple gripper motion, the new trajectories feature rich, object-centric interactions. This increased
diversity enables the models to witness dynamic object behavior and encounter spatial configura-
tions that were previously absent during training. In our setup, these more informative trajectories
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arise from robot actions that are far more likely to cause actual object displacement, unlike random
actions, which often fail to make meaningful contact with objects.

As a result, both models experience measurable improvements in performance:

+ The vision model enhances its ability to reconstruct complex scenes.

« The world model becomes better at capturing object dynamics and predicting future states.

Model uncertainty is used to guide exploration. Then, data collected in this exploratory process are
used for a targeted refinement of the models. In this way, we establish a self-improving learning
loop that builds world understanding without any external supervision.
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To evaluate our proposed methods and hypotheses, we designed an appropriate experimen-
tal setup using the CoppeliaSim simulation environment [68]. The experiment involves a UR5
robotic arm, Figure 5.1, interacting with objects placed on a tabletop. These objects are simple
three-dimensional geometric shapes with unknown colors and physical properties. The robotic
arm executes non-preemptive motion primitives, parameterized by three values: the x and y coor-
dinates on the table and the movement orientation. The orientation is selected from 16 discretized
options. The only type of action performed is pushing. To simplify the experimental setup, we
restrict our experiments to pushing actions with a fixed orientation.

The primary objective of our system is to detect objects in the scene and infer as much as
possible about their physical properties. A key challenge in this problem setting is that our models
have no access to any supervision signal or prior knowledge. Instead, all models are trained from
scratch, relying entirely on the sequences of interactions experienced by the robotic arm.

Initially, the robotic arm interacts randomly with the environment, selecting from the available
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A
Figure 5.1: The UR5 robotic arm. We equip the robot with a gripper.

pushing actions. During this phase, we construct a dataset comprising tuples of robotic actions and
corresponding image sequences. This dataset, which we call initial dataset, is then used to train
our vision and world models. We also construct a control (oracle) dataset, in which the robotic arm
either interacts randomly with the environment or pushes the objects in front of it using heuristics.
We demonstrate a few instances in Figure 5.2.

5.1 Collecting Trajectories in the Simulation Environ-
ment

We conduct all experiments in a simulated tabletop environment built using CoppeliaSim, a
widely adopted robotic simulation platform. CoppeliaSim combines Python and Lua scripting with
C/C++ plugins and utilizes the MuJoCo physics engine [95] for accurate rigid body dynamics, as
well as dedicated engines for forward and inverse kinematics computations. The environment
supports multi-threaded execution, allowing robotic interaction to occur concurrently with model
training and data processing, which enables efficient data collection and learning cycles. Our
environment setup and control logic are based on the open-source repository provided in [96].

Motion Primitives: To enable the robot to interact with objects, we define pushing actions as
parameterized motion primitives. Each action is defined by a target pixel location and an orienta-
tion, specifying the direction of the push. Rather than planning actions online, we use a predefined
motion sequence executed by the UR5 robotic arm with a closed gripper. The length and trajectory
of the push action are fixed.

To execute the action, the selected pixel point is transformed into a 3D coordinate in the robot’s
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-

Figure 5.2: Experimental Setup: Sequences of robotic arm push actions in our tabletop
environment. Top: random push with no object movement. Middle and bottom: heuristic
pushes causing object movement.

reference frame using the known workspace limits. The height of the push i.e., the vertical distance
from the tabletop, is determined using a heightmap obtained from a simulated depth sensor. This
ensures that the pushing motion occurs just above the object surface and is physical plausible.

Camera Setup and Coordinate Transformations: The simulation environment is equipped
with a four-channel RGBD camera sensor mounted above the scene. To enable interactions based
on visual input, we perform coordinate transformations between the robot’s workspace and the
camera view.

Specifically, to execute a pushing action at a pixel location selected in the camera frame, we
transform this point into the robot’s coordinate frame. Conversely, when interpreting the results
of robot actions or computing rewards, it is often necessary to map a 3D location in the robot’s
reference frame back to a pixel location in the image. These forward and inverse transformations
are computed using the intrinsic parameters of the camera, such as focal length and principal
point, along with known extrinsic calibration between the camera and the robot base.
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(a) View 1 (b) View 2

Figure 5.3: The CoppeliaSim simulation environment: Our scene consists of the UR5
robotic arm and two camera sensors. Coordinate transformations from robot’s workspace
to camera view are needed.

Projection of Image Points into the Robot’s Coordinate Frame: We want to perform a
geometric transformation of a point from 2D pixel coordinates (u, v) in the camera image into the
corresponding location on a bird’s-eye-view heightmap defined in the robot’s reference frame. Let
(u,v) € Z? denote the pixel coordinates in the image and let 2 = D(u,v) be the corresponding
depth value (in meters), provided by a depth sensor with the same frame as the camera. The
intrinsic matrix of the pinhole camera model is given by the simulation and is defined as:

fm 0 ¢
K=|0 f, c| eR¥3 (5.1)
0 0 1

The depth value provides the z-coordinate of the 3D point in the camera frame and the corre-
sponding homogeneous image point is:

S

Ppix = |V (5.2)

[y

The 3D coordinates of the point in the camera frame are obtained by back-projecting the pixel
using the inverse of the camera intrinsic matrix:
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Pcam = 2 - Kﬁlppix € Rg (5'3)

Next, the point is transformed into the world (robot) coordinate frame using the camera’s
given extrinsic matrix:

Tworld — |:R t:| c R4X4 (5‘4)

cam

Here, R € R3*3 is the rotation matrix and t € R3 is the translation vector. The transformation
is applied as:

Pworld = ¥ - Pcam + t (5.5)

The resulting world coordinates (x, y, z) are then checked against the workspace limits: [Zmin, Tmax),

[ymim ymax}, [Zmim Zmax]-

If the point lies within this bounded workspace, it is projected to discrete coordinates in the
top-down heightmap using a fixed resolution § € R, defined as meters per pixel. The pixel coor-
dinates on the heightmap are computed as:

i = \‘ZL' _;minJ - \‘y _(SyminJ (5.6)

These indices (i, j) correspond to the row and column in the 2D heightmap array where the
projection of the 3D point is located.

Inverse Projection: From Heightmap to Camera View

We also implement the inverse process to map a spatial location defined in the top-down
heightmap, constructed in the robot’s reference frame, back into the 2D image plane of the camera.
Given discrete indices (4, j) € Z? from the heightmap, the corresponding world coordinates (, )
in meters are recovered using:

T=Zmin+¢0, Y="Ymin+Jj:0 (5.7)
where § € R* is the heightmap resolution (meters per pixel) and [Zmin, Tmax|, [Ymin, Ymax)

are the workspace bounds along the respective axes. The z-coordinate is fixed as: z = 2zpin, which
corresponds to the surface level of the workspace.
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Let

xT

Pworld = | Y ERS (5'8)
z

denote the recovered 3D point in the robot/world coordinate frame. To map this to the camera
coordinate system, the inverse of the camera pose is applied:

Pcam = RT(pworld - t) (5'9)

where R € R33 and t € R? are again the rotation and translation components of the camera’s
extrinsic matrix TV, This effectively performs a rigid transformation from world to camera
coordinates. Next, the camera projection model is applied to project this 3D point into the 2D

image plane using the intrinsic matrix K:

fz 0 ca Lcam
Ppix = K peam= |0 fy Cy| * | Yeam (5.10)
0O 0 1 Zeam

The resulting pixel coordinates (u, v) are obtained via homogeneous division:

T )
v = {MgJ , U= {ylng (5.11)
Zcam Zcam

where u and v represent the row and column indices in the image.

Collecting trajectories heuristically: In the absence of learned models, simple yet effective
heuristic methods can be employed to generate candidate robotic actions that cause movement to
the objects in the environment based on geometric cues from the environment. Here, we itera-
tively rotate the depth heightmap across a fixed number of orientations. For each orientation, we
identify potential pushing regions by computing where a forward shift of the rotated heightmap
(in the intended push direction) reveals a significant drop in height. This depth discontinuity
is interpreted as an opportunity to push an object, likely facilitating movement or separation of
clustered items.

94



5.2. Training the Vision Model

5.2 Training the Vision Model

The initial dataset contains 400 episodes, each with up to five randomly selected objects. The
robot performs 10 pushes per episode and we record r = 5 frames per action. We train the vision
model with the Adam optimizer [97] over 100 epochs using a multi-step learning rate schedule
and K = 10 slots. As shown in Figure 5.4, the model effectively learns to bind distinct slots to
different objects and reconstructs the input frames adequately well.

Different encoder architectures: We evaluate three different vision encoder architectures to
study their impact on the performance of the Slot Attention module in our object-centric learning
framework.

1. Baseline Convolutional Encoder: As a starting point, we adopt the convolutional en-
coder architecture proposed in the original Slot Attention paper [14]. This encoder consists
of five convolutional layers with a relatively small receptive field. In our setup, however, we
observe that the Slot Attention module struggles to learn meaningful object representations
from the limited spatial context provided by this encoder, resulting in poor reconstruction
and segmentation quality.

2. Pretrained Vision Transformer (ViT): To provide stronger object-centric features, we
employ a Vision Transformer (ViT) pretrained with the DINO self-supervised learning method
on ImageNet. The encoder consists of 12 transformer layers, each with 12 attention heads
and a hidden dimensionality of 768. GELU [98] is used as the activation function. During
training, the ViT weights are kept frozen and we append two trainable fully connected lay-
ers to adapt the extracted features before feeding them into the Slot Attention module. This
configuration yields strong performance, allowing the model to detect objects robustly and
reconstruct input images with high quality.

3. Proposed ResNet-Based Encoder (Ours): To eliminate reliance on external datasets and
pretraining, we propose a ResNet-18 encoder with a large receptive field, trained entirely
from scratch on our dataset. This encoder is trained jointly with the Slot Attention module
using the reconstruction loss. Despite the lack of pretraining, we find that this architec-
ture is capable of producing high-quality object representations and reconstructions when
combined with Slot Attention.

In prior work on object-centric representation learning [15, 51, 90], the vision encoder is typ-
ically frozen and the object-awareness of DINO-pretrained models is leveraged to support slot-
based decomposition. In contrast, our method successfully trains the vision encoder from scratch,
enabling end-to-end learning without external visual priors. Nevertheless, we observe that train-
ing Slot Attention from scratch can be unstable and sensitive to initialization, consistent with
findings in earlier work. We report a quantitative comparison of these encoder variants in Ta-
ble 5.1.
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Figure 5.4: Training the vision model: Slot Attention learns to bind slots to individual
objects and reconstructs relatively well the initial image. More than one slot might be
bound to one object. 9%



5.3. Training the World Model

We observe that Slot Attention fails to converge to meaningful object representations when
paired with a standard convolutional encoder. In this setup, the slots consistently collapse to
modeling the background and no distinct object representations emerge. In contrast, both the
pretrained Vision Transformer (ViT) and the ResNet-based encoder lead to significantly better
performance.

The ViT encoder, pretrained with DINO, although inherently exhibits an object-centric bias,
achieves slightly worse quantitative reconstruction performance than the ResNet encoder. We
attribute this to the limited amount of training data available in our setting. Transformer-based
architectures such as ViT are known to require large-scale datasets to fully realize their represen-
tational capacity. In contrast, the ResNet architecture, being convolutional and more inductive
bias-driven, can perform more effectively under data constraints, making it better suited for low-
data regimes like ours.

Encoder Architecture Test Data

Simple CNN 0.4
Pretrained ViT 0.095
ResNet18 0.073

Table 5.1: Evaluation of Different Vision Encoders We report the reconstruction loss
(MSE x1072) across three configurations: a CNN, a ViT and a ResNet18 based encoder.

Improving Masks with Entropy Regularization: At early stages of training, the segmen-
tation masks produced by the Slot Attention module tend to be noisy, with multiple slots often
attending to the same pixels. This overlap leads to ambiguous assignments and coarse object
boundaries. To encourage sharper and more confident mask predictions, we introduce an entropy
regularization term into the objective function, added alongside the standard reconstruction loss.

This regularization penalizes high entropy of the K = 10 attention masks, encouraging the
model to assign each pixel more decisively to a single slot. Formally, we compute the pixel-wise
entropy of the attention distributions across slots and minimize it, pushing the mask values closer
to binary (i.e., 0 or 1). This constraint promotes finer segmentation and reduces overlap between
slots. As illustrated in Figure 5.5, incorporating this loss significantly improves the quality of the
produced masks by suppressing noise and yielding clearer, more object-aligned segmentations.

5.3 Training the World Model

For the world model, we adopt a training procedure similar to that of [20], keeping the vision
components (encoder, Slot Attention and decoder) frozen. The world model takes as input the
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Input image Reconstructed image

Without mask regularization

Figure 5.5: Effect of entropy-based mask regularization. When the entropy regularization
term is added to the loss function, the resulting segmentation masks become sharper and
more aligned with object boundaries. This reduces noise caused by overlapping slot at-
tention across pixels, resulting in clearer and more consistent segmentation.

98



5.4. Designing an Intrinsic Reward Function

K = 10 slots of dimension D = 128 produced by the frozen encoder and Slot Attention module.
The GNN takes these vectors along with the 3-dimensional action vector and predicts the latent
object representations at the next time step. The action vector is first processed by a two-layer
MLP, yielding an action embedding of size 16 that is broadcast and concatenated to each object’s
latent feature.

The GNN comprises two main components: an edge MLP and a node MLP. The edge model
processes every pair of object embeddings, producing 128-dimensional interaction messages us-
ing a 3-layer MLP. These edge features are aggregated for each node. The aggregated message,
the original node embedding and the processed action are then concatenated and passed through
the node MLP, also a 3-layer network. The output is a set of updated latent vectors of the same
dimension (128). Training is done with the Adam optimizer on the objective described in Section
4.3

We test the proposed method by training the world model on trajectories collected under
heuristic pushing actions that cause movement. As shown in Figure 5.6 the world model man-
ages to predict the orientation of the pushed object’s movement.

Initial frame Next frame Reconstructed initial frame Predicted frame
Figure 5.6: The world model is able to predict the movement of the green object, when
trained on the dataset comprised of heuristic actions.

Now we train the world model using the trajectories collected under randomly chosen pushing
actions. However, due to the limited diversity of the dataset, the world model struggles to develop
a meaningful understanding of object dynamics. In most episodes, the only moving element is the
gripper, which biases the model toward learning only ego-motion. As a result, it fails to capture or
predict the movement of objects when interacted with, as illustrated in Figure 5.7.

5.4 Designing an Intrinsic Reward Function

With a functional understanding of the environment in place, we proceed to actively collect
informative data. At this stage, the vision model is capable of reasonably localizing objects and the
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Initial Frame Next Frame Reconstructed Initial Frame Predicted Frame

‘1

Initial Frame Next Frame Reconstructed Initial Frame Predicted Frame
o

Initial Frame Next Frame Reconstructed Initial Frame Predicted Frame

Figure 5.7: When trained on the random dataset the world model can only predict ego-
motion
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world model can predict the gripper’s motion with fair accuracy. These capabilities are sufficient
to drive a policy that seeks novel and informative trajectories.

We begin by performing a statistical analysis of the different intrinsic reward signals intro-
duced in Section 4.4: (i) the reconstruction loss of the vision model, (ii) the prediction error of the
world model and (iii) the variance among predictions from an ensemble of world models.

To evaluate these signals, we compare their values under the two types of actions: (1) heuris-
tic actions designed to cause object movement and (2) random actions that may or may not cause
such movement. Our goal is to test the hypothesis that moving actions result in significantly dif-
ferent reward signals compared to non-moving actions, which would indicate that a given reward
function can effectively drive exploration.

Assuming that the reward signals are normally distributed with equal variance, we apply an in-
dependent t-test to evaluate statistical significance. The results show that both the reconstruction
loss and the world model prediction error exhibit significantly higher values under movement-
inducing actions. This indicates their potential as intrinsic rewards that encourage interaction
with objects. In contrast, the variance among ensemble predictions does not show a significant
difference, suggesting it may be less reliable for this purpose. The distributions of these signals
are visualized in Figure 5.8.

Reconstruction Error

Prediction Error

World Model Variance

Under Heuristic Actions

[ Under Random Actions | |

[ Under Random Actions
Under Heuristic Actions

[ Under Random Actions
Under Heuristic Actions

) 1N . C ) g

il miizl |18

Figure 5.8: The distribution of the different reward function under random and under
heuristic actions. Both reconstruction error and world model prediction error seem to be
able to serve as a reward.

Despite these findings, we observe empirically that using reconstruction loss or prediction
error alone results in noisy reward signals that are insufficient to robustly guide policy learning.
Consequently, we focus on the prediction error-based reward and enhance it by incorporating two
key modifications: (i) a reference error baseline and (ii) a spatial mask that localizes the reward
around the action point, as described in Section 4.4.

The intrinsic reward was computed online during training using the prediction error from the
world model. At each time step, the model decoded both the predicted and current latent states to
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Initial Frame Reconstructed Initial Frame Reference Error

d

W

Next Frame Predicted Frame Prediction Error

Figure 5.9: Designing the reward function. The world model exhibits high prediction
error where object motion occurs, particularly for the green object affected by the robotic
arm. By subtracting the reference reconstruction error, we isolate the action-dependent
prediction error and suppress irrelevant errors such as those from the static orange object,
which is not influenced by the action.

produce future and current frame reconstructions, respectively. The reward was evaluated over a
spatial mask of radius d = 15 pixels, centered at the action point in image space. In Figures 5.9,
5.10 we visualize the intuition behind the designing of the reward function.

5.5 Collecting Informative Trajectories

Our intrinsic reward signal, designed to filter out noise from the partially trained vision and
world models, successfully reflects the world model’s predictive uncertainty. The policy is trained
using Double Q-learning [36], for 1000 steps, with a classic decaying epsilon-greedy exploration
strategy. The Q-network is a ResNet that takes as input the 10 segmentation masks {II;} con-
catenated in the channel dimension. To obtain the proposed action we randomly choose from
N = 100 pixels with the highest value in the map that the Q Network outputs and then transform
the pixel to an exact location in the robot’s reference frame as explained in previous sections.

Interestingly, the learned policy predominantly suggests pushing actions that cause object mo-
tion. We quantify this observation by measuring that the average displacement of object centers
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Initial Frame Reconstructed Initial Frame Reference Error
' ‘ ' ‘ .

Next Frame Predicted Frame Prediction Error
.
Figure 5.10: Handling static scenes. When the action does not induce object motion, the
overall prediction error is dominated by reconstruction noise from the vision model. Sub-

tracting the reference error ensures that such noise does not contribute to the reward,
resulting in minimal intrinsic reward in static scenes.

of mass is three times greater than under random actions. More specifically, the simulation en-
vironment provides access to the 3D positions of the centers of mass for all objects in the scene.
We conduct 100 episodes under a random action policy and 100 episodes under our learned policy,
recording the average displacement of objects per episode. This analysis reveals that the learned
policy more frequently selects actions that result in meaningful object interaction and motion. We
also demonstrate this qualitatively in Figure 5.11 by visualizing the positions of the best actions
that the learned policy suggests. These visualizations show a clear focus on areas near or in contact
with objects, in contrast to the uniform and object-agnostic distribution of random actions.

5.6 Enhancing World Perception and Modeling

We leverage the learned, intrinsically motivated policy to collect a new dataset composed of
more diverse and dynamic interactions, particularly involving object motion. As before, the new
dataset contains 400 episodes of 10 actions each. We initialize the vision and world models with
parameters from the initial training and fine-tune them for 100 epochs using a reduced learning
rate and the same training setup.

As shown in Tables 5.2, 5.3, fine-tuning on this enriched dataset leads to substantial improve-
ments in both reconstruction and predictive accuracy, compared to models trained exclusively
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Figure 5.11: Policy visualization: We visualize the output of the Q-network by marking
as red the pixels that our policy suggests. The red pixels clearly illustrate that the agent
has learned to prefer actions that push objects.

on data from random actions. To showcase this, we evaluate the models on the control dataset;
namely on newly, independent, collected test trajectories generated using either random or heuris-
tic action policies. In more detail, Table 5.2 shows that the re-trained vision encoder provides more
balanced results across the test sets, compared to the action-biased alternatives. The vision model
can now reconstruct better the instances corresponding to heuristic actions, while maintaining its
performance on instances of random actions. In practice, we want good reconstruction to both
random and heuristic data to reflect our ability to “perceive" our world.

Moreover, in the fourth column of Figure 5.12 we demonstrate that the world model is now able
to predict the movement of the object when pushed by the gripper, which is quantitatively shown
in Table 5.3. Here, we consider two enhancement pipelines: 1) keep the initial vision encoder
frozen and fine-tune the world model and 2) use the previously enhanced vision (EV) encoder
frozen and fine-tune the world model. As expected, the enhanced vision encoder further improves
the reconstruction metric. Note that both enhancement versions, provide better results compared
to the considered biased alternatives, even with respect to the system trained on heuristic actions.

Trained On Random Test Data Heuristic Test Data
Random Actions 0.062 0.084
Heuristic Actions 0.070 0.053
Intrinsic Reward Policy 0.063 0.069

Table 5.2: Evaluation of Vision Models on Different Test Datasets We report the
reconstruction loss (MSE x10~2) across three configurations. A vision model trained on
random actions, one trained on heuristic actions and one trained on the dataset collected
using the intrinsically motivated policy.
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Trained On Random Test Data Heuristic Test Data
Random Actions 0.209 0.235
Heuristic Actions 0.247 0.164
Intrinsic Reward Policy 0.131 0.143
Intrinsic Reward Policy (EV) 0.131 0.135

Table 5.3: Evaluation of World Models on Different Test Datasets We report the
reconstruction loss (MSE x10~2) for the predicted next frame across four configurations: a
world model trained on random actions, one trained on heuristic actions and two trained
on the dataset collected using the intrinsically motivated policy, either with the initial
vision model or the enhanced vision model (EV).

5.7 Discussion

Our experiments demonstrate that world perception and understanding can emerge when an
agent, equipped with a self-supervised object-centric framework and driven by intrinsic motiva-
tion, leverages its ability to interact with its environment. A key finding is that the prediction error
of the world model induces meaningful object motion. This behavior arises without any external
supervision, supporting the hypothesis that model uncertainty can effectively guide exploration.

We also observe that training a vision model in a fully self-supervised manner with limited
data remains a significant challenge. The Slot Attention module fails to produce meaningful seg-
mentations when paired with a shallow CNN encoder and successful convergence requires careful
hyperparameter tuning. Interestingly, although the DINO-pretrained Vision Transformer exhibits
strong object-centric priors, its performance is slightly worse than that of the ResNet-based en-
coder trained from scratch, likely due to the limited size of our dataset and the superior data
efficiency of convolutional architectures.

We demonstrate that the quality and variety of collected data are highly correlated with the
world model’s ability to accurately capture object dynamics. When trained solely on randomly
collected episodes, the model learns little beyond gripper motion. In contrast, trajectories gathered
via heuristic or learned policies enable the model to capture and predict object interactions.

Crucially, we find that fine-tuning both the vision and world models on data collected through
intrinsically motivated exploration leads to measurable improvements in both reconstruction and
prediction. The vision model trained on this dataset achieves a better overall reconstruction error,
while the world model performs best when both it and the vision encoder are fine-tuned on the
more informative data.

Our work operates in a setting without external supervision, there are no object labels, bound-
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ing boxes, or class annotations, making traditional supervised methods for instance segmenta-
tion like Mask R-CNN [99] or YOLO [100] unsuitable. One alternative could be leveraging self-
supervised methods such as Masked Autoencoders (MAE) [?]. In principle, we could pretrain a
MAE-based Vision Transformer on our dataset and use its features both for world modeling and
as a state representation for the reinforcement learning pipeline. However, in practice, this ap-
proach proved unstable. Due to the limited visual diversity in our dataset, MAE training failed
to converge to meaningful representations. Moreover, MAE models are typically pretrained on
large-scale, object-rich datasets like ImageNet, which our environment does not resemble. In con-
trast, we chose to use Slot Attention, which introduces a strong object-centric inductive bias and
allows for self-supervised object segmentation. This design enables us to train the world model
directly on structured object representations and to use the corresponding segmentation masks as
interpretable input to the policy network.

This approach offers several practical advantages. First, it brings interpretability: each slot
corresponds to a specific object, and when an action affects an object, the world model learns
to update the corresponding slot embedding. Second, world model training becomes simpler, as
the model only needs to predict object-level embeddings, rather than high-dimensional, entangled
features. Third, the segmentation masks output by Slot Attention provide a spatial structure that
makes it easier for the policy network to learn where to act. Compared to learning policies over
dense MAE feature maps, using discrete object masks helps focus exploration and simplifies the
learning problem. That said, Slot Attention comes with its own drawbacks. Training it from
scratch is notoriously fragile and requires careful hyperparameter tuning and architectural choices.
Despite its popularity in the vision community, it is not yet a plug-and-play solution. Still, our
results suggest that object-centric representation learning, especially in low-data regimes, is a
promising research direction with open challenges and strong potential for impact in real-world
robotic settings.

Overall, our experiments validate the central idea that a self-supervised agent, guided by in-
trinsic incentives, can incrementally construct more effective models of its environment. While
our approach has limitations, such as training instability and the relative simplicity of the simu-
lated environment, it still provides strong evidence that cognition-inspired principles like curios-
ity, object-centric perception, and predictive world modeling can significantly enhance artificial
systems.
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Initial Frame Next Frame Initial Prediction Refined Prediction
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Figure 5.12: Qualitative Evaluation: The first and second columns show image frames
before and after an action. The third and fourth columns display the predicted motion
from the world models trained on the initial dataset and on the new, informative trajec-
tories, respectively. Note the improved accuracy of the refined model in capturing object
movement.
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6.1 Summary and Further Discussion

This work explores whether a robot can adequately perceive its surrounding and their dy-
namics purely through interaction, without relying on prior knowledge or external supervision.
Drawing inspiration from cognitive science, which suggests that perception is shaped by internal
predictive models and that intelligence emerges from continuous sensorimotor experience [69, 24],
we looked to emulate similar mechanisms in artificial agents. Human infants, for example, learn
incrementally through physical interaction with their environment, with objects playing a funda-
mental role in how they structure and interpret visual input [72].

Building on these principles, we proposed a self-supervised, object-centric learning framework
that enables a robot to incrementally improve its perceptual and predictive capabilities through
intrinsically motivated exploration. By fine-tuning both the vision and world models on data col-
lected through a learned policy, our system significantly improved in terms of both reconstruction
quality and dynamics prediction accuracy.

One of the primary challenges we faced was the absence of external supervision. Modern deep
learning models typically excel when trained on large, curated datasets. In contrast, training a vi-
sion model to extract useful object-centric representations from limited, noisy and unstructured
data proved difficult. In particular, ensuring the convergence of Slot Attention was non-trivial and
required careful tuning of hyperparameters, weight initialization schemes and the use of auxiliary
loss functions, as discussed in previous sections. These observations reinforce the broader under-
standing that deep learning models still face substantial limitations in low-data, self-supervised
settings. Consequently, contributions such as ours, which propose ways to incrementally improve
model performance in the absence of supervision, are essential steps forward.

Another significant challenge was the design of a reward function capable of driving meaning-
ful and coherent policies. While using model prediction errors as a source of intrinsic motivation is
conceptually straightforward, it is practically difficult. When models are trained on limited or un-
informative data, their representations are often noisy and unreliable. To address this, we designed
a reward function that filters out vision model noise and focuses primarily on errors in predicted
dynamics. Nevertheless, in more realistic or complex environments, stronger vision models with
better generalization capabilities may be required to support reliable reward signals and robust
policy learning.

In conclusion, our work demonstrates two important insights. First, principles from cog-
nitive science and developmental psychology can inspire effective learning frameworks for au-
tonomous agents. Second, it underscores the current limitations of deep learning in enabling fully
autonomous, self-supervised learning in open-ended, real-world environments.
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6.2 Future Work

A natural extension of this thesis is to explore continual learning [70]. In continual learning,
models are updated incrementally as new data becomes available, allowing them to adapt over
time without retraining from scratch. In our context, this could be implemented by alternating
between two stages: (1) a data collection stage, where the agent interacts with the environment
using a policy guided by a reward function shaped by the vision and world models and (2) a
learning stage, where the vision and world models are updated based on the newly collected data.
This framework would raise questions about how to mitigate catastrophic forgetting and ensure
long-term knowledge retention, two core challenges in continual learning research.

Another promising direction involves a deeper exploration of the quality and utility of the
learned object-centric representations. In this thesis, we primarily use these representations to
improve the formulation of the world model. However, they may also encode rich information
about object attributes, such as shape, position, or affordances, that could be leveraged in down-
stream control tasks. An immediate application would be to train a policy directly on the object-
centric representations and evaluate whether this abstraction facilitates faster or more robust skill
acquisition compared to raw pixel-based inputs.

Our framework also introduces an implicit mechanism for evaluating world models qualita-
tively. By observing the behavior of the trained policy, particularly how the robot interacts with
objects of varying shapes and configurations, we can infer properties of the underlying world
model. For example, a policy that adapts its behavior to different object geometries may reflect a
world model that has successfully captured key physical dynamics.

Finally, an ambitious direction for future work is to implement our method in a real-world
robotic setting. In a basic version, a robotic arm could interact with objects while a human pe-
riodically rearranges the scene to introduce novelty. However, this could evolve into a fully au-
tonomous scenario involving navigation and interaction. In this setting the robot would have an
extended action space that includes locomotion, facilitating the ability to choose whether or not
to engage with objects at specific locations. Initially, the robot would collect data through random
interactions. It would then use this data to train its vision and world models. These models, in
turn, would be used to shape an intrinsic reward signal, driving further exploration in ways that
yield improved perception and understanding of both the visual scene and the underlying dynam-
ics. With each iteration, the robot would refine its internal models using the richer data generated
under the updated policy.
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6.3 Towards Cognitively Inspired Machine Learning

Artificial intelligence has long been influenced by insights from natural cognition. For ex-
ample, the nodes in artificial neural networks are loosely inspired by the behavior of biological
neurons, convolutional operations in CNNs were motivated by early studies of the visual cortex
in cats and Transformer architectures are built around the concept of attention, a fundamental
mechanism in human cognition.

This ongoing dialogue between neuroscience, cognitive science, developmental psychology
and machine learning has proven mutually beneficial. Machine learning continues to draw inspi-
ration from these fields to design more robust and intelligent systems, while cognitive and brain
sciences increasingly leverage machine learning techniques to model and understand the com-
plexities of natural intelligence.

We believe that this thesis represents another contribution to this interdisciplinary exchange.
By drawing on cognitive principles, such as intrinsic motivation, object-centric perception and
self-supervised learning through interaction, we offer not only a pathway to more reliable, au-
tonomous and adaptive artificial systems, but also a framework that could inform and support
theories of how learning unfolds in biological agents.
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