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MepiAnyn

Ta Babua veupovikd diktua pe vrodseyppatikeég ouvbeoelg (YrmoAdeatika Neupovikd
Aiktua - YNA) éxouv erubeiet adoonpeiot ermtuyia oe Sidpopoug topeig, adda n avinon
tou BdABoug Toug OUXVA €10AYEL UTOAOYIOTIKO KOOTOG X@PIg aviiotoixeg PeAtiwoelg otnv
mo10TNTa TV AvAnapdoTdoenmV 1ou pabaivouv. Xe autnv v gpyaocia, mapouolaloupe ta
Auto-Zupmiedopeva Aiktua (AXA), pia apXiteKtovikr) rapadiayn tov YNA o6mou o1 oUviojeg
UTIOAEIPHATIKEG OUVOEDELS avTIKaO10TOVTIAL ATTO TIPOCOETIKEG PAKPIVEG EPTIPO0O1EG OUVOEDELS
and kabe orpopa otnv £€608o. AvaAduoviag tnv Sor| Iou erm@EPEL AUTHV 1] TPOITOIOIN 0 OTO
biktuo, arokaAurttoupe pia povadiky 1610tta tov AZA 1ou ovopddoupe auto-CUUTTIEON—TNV
Kavotnta evog S1ktuou va oupItiédet v mAnpogopia Katd i didpkela g eknaidbevong oe
£€va UTIOOUVOAO T®V OUVOAK®V OTPOUAT®V TOU, AUTOPATA MECO® APXITEKTOVIKOU 0Xe61a010U.
Egetdalovtag v apXiteKtoviky, deixvoupe Sewpnukd ot autr) n 1810tnta mpoKuIetl and
potiBa exmnaibeuong orpopa pe otpopa (layer-wise) ota AXA, omou ta otpopAtd XP1otl-
portotouviatl Suvapikda Katd ) di1dpkela g eKnaideuong PAcel IOV AAITOE®V TOU ITPoB-
Afjpatog oto oroio eknatbevoviat. Eruréov e€nyoupe pabnpauxkd kat Seixvoupie epreipika
ou n auto-ouprtieon dev oupBaivel ota YNA 1) ota armda Epnpoofia Neupwvikd Aiktua (ENA).
Zin ouvéyela, O1armoT®OVOUPE TMEPAPATIKA Ol Ta AXA mapouotddouv evioXUpEvr avOek-
TKOTNTa oto 96puBo 0 CUYKP10T HE TA UITOAEPPATIKA SiKTua, avwtepr emiboon o epBAA-
Aovia xapndov debopévav, Bedttwpéveg ikavotnteg petadopdg pabnong, Kat §exvouv onpav-
TIKA Atyotepo (catastrophic forgetting), ouykekpipéva €éng kat 18% Aryotepo, oe ouvOnKeg
Olapkoug pabnong, npoteivoviag o1t pabaivouv avarnapaotdoelg IoU YEVIKEUOUV KaAutepa
apd 1 Xpnon Ayotepov nmapapépev. Ta nmeipapatika anoteAéopatd g napouoag ep-
yaoiag Seixvouv 30-80% apXlteKToviKY] ouprtieon pe datrpnon vywnAng enidoong oe ripob-
Afjpata 6paocng Katl QUOIKNG yAwooag otav ta AXA evoepat®vovidl oe S1apopeg apXlTeEK-
Tovikeég oniwg Vision transformers, MLP-mixers, kat BERT. EmuniA¢ov, deixvoupe ot otav
ouvbuddoupe ta AZA pe tapadoolakeg TEXVIKEG KAadépatog (pruning), to kEpHog ocuprtieong
Sratnpeital Kat 1 auto-oupItieon Aettoupyel CUPMANPOPATIKA. ZUVOAIKA, Ta €Upnuatd g
rapovoag epyaciag kabiotouv ta AXA ®¢ Pia IPAKTIKY [IPOCEYYIoHN Yid TNV AVAITIugn
artodoTI-K®V VEUP®VIK®OV APXITEKTOVIK®V TI0U IIP00APHI0{0UV aUuTOpaATd TO UTTOAOY10TIKO TOUG

ATIOTUTI®HA 0TIV TIOAUTIAOKOTNTA TOU €KACTOTE TTPOBANATOG.

Atge1g KAedua

Babid Mdabnorn, Apxitektovikég Neupovikov Aiktuev, Mdbnon Avanapaoctdoswv, Y-

oAAewpatiky Mdabnon, Atapkng Mdadnor), Zuprtieon
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Abstract

Deep neural networks with short residual connections have demonstrated remarkable
success across domains, but increasing depth often introduces computational redun-
dancy without corresponding improvements in representation quality, while potentially
harming generalization in certain cases. In this work, we introduce Auto-Compressing
Networks (ACNs), an architectural variant where additive long feedforward connections
from each layer to the output replace traditional short residual connections. By ana-
lyzing the distinct dynamics induced by this modification, we reveal a unique property
we coin as auto-compression—the ability of a network to organically compress informa-
tion during training with gradient descent, through architectural design alone. Through
auto-compression, information is dynamically "pushed" into early layers during training,
enhancing their representational quality and revealing potential redundancy in deeper
ones, resulting in a sparse yet powerful network at inference. We theoretically show that
this property emerges from layer-wise training patterns present in ACNs, where layers are
dynamically utilized during training based on task requirements. We also find that ACNs
exhibit enhanced noise robustness compared to residual networks, superior performance
in low-data settings, improved transfer learning capabilities, and mitigate catastrophic
forgetting suggesting that they learn representations that generalize better despite using
fewer parameters. Our results demonstrate up to 18% reduction in catastrophic for-
getting and 30-80% architectural compression while maintaining accuracy across vision
transformers, MLP-mixers, and BERT architectures. Furthermore, we demonstrate that
when coupling ACNs with traditional pruning techniques, the compression gain persists
and enables significantly better sparsity-performance trade-offs compared to conventional
architectures. These findings establish ACNs as a practical approach to developing effi-
cient neural architectures that automatically adapt their computational footprint to task
complexity, while learning robust representations suitable for noisy real-world tasks and

continual learning scenarios.

Keywords

Deep Learning, Neural Network Architectures, Representation Learning, Residual

Learning, Continual Learning, Compression
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Euyxaplotieg

Mapadidoviag v Sumdopatiky pou epyacia, rmapadide ouclacTikd Katl TV @OITNTIKN
pou tautdtnta Kat 1810tnta, mou Pe ouvipoeeus ta tedevtaia 6 xpovia. Méoa ota xpovia
autd élnoa povadikeg epmneipieg, yvoploa aridavoug avdpwroug, egedixdnka kat adiada,
£€epeUVNOA TOV KOO0 KAl TOV £QUTO 1oU. Alyo MP1v a@roe Imioe v @Otk 1ou 18iotta,
Aowrtov, 9€A® va eUXAPIoTNo® KAl Ava@EP® OAOUG KAl OAd TTOU €MNPEAcav TV Mopeia j1ou
autd ta xpovia.

IMpota 9a f¥eda va euxaplowjoe tov ermBAénovia kabnynt) pou, K.  AA&Eavdpo
[Totapiavo, yla v €PIotoouvr] Kal TG AapETpnieg oudninoel§ Kat oUpBoUAEg Tou, ITOU
mpaypatika kabopioav 1ov Tporo oKEWPNG HOU Kal pouvi®oav tov evBouolaopo Hou yid
Vv épeuva. 'Hrav mpaypatka xapd Kat T pou aut 1) ouvepyaoia kat anodeiy9nke pa
anolauotiky epnelpia. Akopn 9a 119eda va euyxapilotron tov 6p. Fedpyio [Tapaokeuorovlo,
ou pe Bor9noe onpaviika Kat pe kateuduve, 1d1aitepa ota podta pou Pripata oty €pguvd.
Tuveyxidoviag, 9a 1)9eda va ne £éva oAU PeyAAo EUXAPIOT® 0 6AOUG TOUG CUVOSOTOPOUG 110U
0Aa autd ta Xpovid, YVOOoToUGg Kal YVOOTEG, elAoug Kat @ideg, adépdila pou ota aArbsia, mmou
riat§av KabopiloTikoO POAO OTO 010G £ipial KAl T0 MG EPraca ed®, PO1PACTNKAV PLOVASIKESG
gpnelpieg padi pou kal mapéa avappixndnkape anod v epnbeia oty evndikioon. Ilpwv
KAE10®, TIPETEL VA aAva@EéP® KAl TV TOAN pou, v Adnva, péoa oty ornoia yaAouxndnka
Kat urmpée 1 rmotr) Kat otabepr) oUVIpoPog 110U PECA OTA QOLTNTIKA Hou Xpovia. Teéhog, Sev
Propo va rapadeipo v olkoyEveld pou, oty oroia ogeide éva peyddo euxaplote yia v
S81apkr) otE1En Katl gRImotoouvn Ipog 10 MPOCEIT0 PoU, Kal X®peig v oroia 6ev Sa fjpouv
o 1610g.

KAetvovtag, 1o péAdov potadet aBéfato kat ouvaprnaotiko, mapadeite Aodv éva ot aKL

TTOU H1014dEl OXETIKO:

"Taypa oto t{dut Eva kapdflt eokdpwoa
Kt éva oUu Maykp otiyakt £xe okafiost:
T 9AYn ota talibia kpufetar arnspn!

Kat ey® yia €va tafidt exeo xwnoet”.

Athens, June 2025

Evangelos Dorovatas
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Extetapévy IepiAnyn ota EAAnvika

0.1 Euwayoyn

Ta Babia veupwvikd Siktua £X0oUV EMITIUYXEL EVIUM®MOIAKA ATOTEAEoPATA Of €va €UPU
@PAcPa £QPAPPOYROV, A0 TV AVAYVOPLoTN E€IKOVOV £mG TNV Erneiepyacia @UOIKNG YAWO-
oag (10; 11; 12). Ilapd v emtuyia T0UG, AUTA Ta POVIEAAQ €ival UMOAOY1OTIKA ITOAU
arp1Pd pe ouxVveg arotuyieg ot yevikeuorn ot véa media §ladopetikd and ta ouvoAd eK-
naidevong toug, ot aviibeon pe ta PloAoyikA veUp@ViKA SiKTua IMou eival onpavikd o
anodotikd kat evédikta. H sioayeyr tov Yrmodsippatukov Aiktueov (ResNets) amotédeos
oNuavuko Brjpa mnpog v kateuduvon g avinong g ermboong Kat AeToUpy KO TASTOV
VEUPOVIKOV OIKTUGV KAl anotédeoe v Pdon g Babiag Madnong, smpénoviag v ex-
raideuon oAU Pabéwv apXITEKTOVIK®V € EKTTANKTIKA artoteAéopata. Ao tnv AAAn, ApKeETEG
@Oop£g 1 augnor tou BaSoug bev 0bnyei o aviiotoa WEEAN ®G TIPOG TV IMO0TNTA TV avd-
rapaotdacewv (13), eved au§dvel onuAaviika To UTIOAOYI0TIKO KOOTOG, VO UITOPEL va er@QEPEL
KAl apvnukn enidpaon oy wavotnta yevikeuong tou Siktuou (14; 15). Zinv mapouoa
epyaoia, mapouoialoupe ta Auto-Xupreldpeva Aiktua (AXA), pla véa apXlIeKTOVIKI) TTap-
aAdayn oV UMOAAEIIATIKGOV S1IKTU®Y, ITOU aglorolel tnv 1810t)ta g auto-CUNTTieong yia
Va EMMTUXEL KAAUTEPT AMOSOTIKOTNTA KAl YEVIKEUOT], Xproionowwviag 1o Badog duvapika
avdloya pe v @uorn Kat v SUokoAia Tou poBANATog. TNV CUVEXELD, ApXIKA oulntape
10 9ePNTIKO UTIOBaOPO arapaitnIo yia IV KATAvonon g £pyaciag Kat £metta apouotd-
foupe kat avaluoupe Aentopepng ta AXA KAl 11§ 1810TEG TOUG, 1000 Je@PNTIKA 000 Kal
MIPAKTIKA, OUYKpivoviag ta pe ta YroAdsipatikd Nevpovikd Aiktua (YNA) kat ta Epnipoctia

Neupwvika Aiktua (ENA).

0.2 Oswpntiro Ynopadpo

Ye authv Vv evotntd, MApouctaloUpe OUVOTTIIKA 10 dempnuikd uroBabpo mmou esivat
OXETIKO KAl XPOHo yla Vv rapovoa epyaocia. Ilpota kavoupe pia oUviopn avaoKoOIorn)
oto niedio g Mnxavikrg MadSnong, otnv cuvexela oulnrape to nedio tng Madnong Ava-
MaPAoTAcE®V Kal T€Aog Ttapouoctadoupe 11g Baoikeg 16¢eg Kal SOUAEIEG TOV APXITEKTOVIK®V 11E

roAAartAd povortdtia.

0.2.1 Mnyavikry MadSnon
Tunot Madnong

o H emBiendusvn padnon (16) Bacifetat oe €éva ouvolo Sedopévav mou meptexet {evyn

€10060u-e§060u, D = {(x1, Y1), . .., (X, Yn)}. Zromog eival 1 exkpddnon g oucxEuong
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petady g e106dou x kat g ermdupnirg e§66ou y (ovopdletal Kat eUKETA), OOTE TO
povtédo va npoPAériel owotda tig €§0d0Ug yia véeg, ayvaoteg e10060ug. Edv ot €§odot
£ival Kamyopikeg (61arkpitég Tp£g), mpokettatl yia poBAnpa tagivopnong, eve av eivat

ouveyelg, mpokettatl yia naivépounon.

e H un smbicnopucvn ua9non (16) xpnowponotei povo dedbopiéva e106dou, xopig avtio-
To1Xeg eukEteg, 6nAadn D = {x1,...,x,}. O otdxog eivat n avarkaAuyn £0RTEPIKMV
b0V, OXEoEV 1] oUoYETioEwV ota 6edopéva, PEOK TEXVIKOV Omwg 1 opadortoinon

(clustering) 1 n peiwon daotaocewv.

e H suioyvukny ua9non (17) owmpiletat oe éppeon avatpododotnor, Xepig tnyv unapdn
arp1fav etketOV aAdd ouvrHmg 9eTIKOU 1] apvnTIKOU orjpatog (ermBpdabeuon 1) Tipwpia).
O aAyopiBpog pabaivel péom SokipdV Kal opadpdatev, AapBavoviag evioxuor (..
Jeukn 11 apvnuky aviapowdr)) avaloya pe v Aartodoor TV EVEPYEIOV TOU Of €va

riepiBaidov.

Awarpioeig Movtédov Mia ouvr9ng 61aKkp1on TV HOVIEA@V Pnxavikng padnong eivat oe
TaPaUETPIKA KAl Un-napauetpicd povieda (16). Lta mapaperpikd povieda, o aptdpog tev
napapétpev eivatl otadepog kat ave§dptntog aro to rArndog twv debouévav ekrnaibeuong.
Eival yevikd anodotikd og UTIOAOY10TIKO MNedo KAl eUKOAA otV exnaideuor), aAAd pnopet
va UoTEPOUV Of EKPPAOTIKOTNTA. AVIidetd, Ta PN-TIAPAPEIPIKA POVIEAA TTPOCAPHOLOUV T
dopr toug avaloya pe tov O0YKO eV debopiévav, anokt®viag peyaduteprn) euedi§ia adldd kat
aUgNHEVeEG UTOAOYIOTIKEG ATTALTT|OELG.

Mua Seltepn onpavikr) S1dkplon eival petadl yoapuuiKoy Kal Un-yoaupuKov OVIEARV.
Ta ypappika povieda opiouv v €500 ©O¢ YPARIIKLY OUVAPTON TOV £10060V KAl givat
KatdAAnda yua mpoBAnpata pe amdég, ypappika daxwpiotpeg oxéoelg. Ilapéxouv Kalr
KAtavonorn Kat €ival UmoAoy1oTiKA arnodotikd, aAld aduvatouv va anodooouv moAUnAoKa
potifa. Ta pn-ypappikd poviedd, ONg Td VEUP®VIKA diktua, elval 1kavd va PovieAoron-
00UV MOAUITAOKEG €§apT0elg, HE TUNHA OP®G TV avayKn yia o ouvletoug aiyopibiioug

exraidevong kal auvnuévoug ropoug.

Mn I'pappikoi Metaoxnpatiopoi E1066ou  'Eva kAaoiko napddeiypa rmou avadeikvuet
TNV AVAYKI) Vid P1-YPAPHIKOUG petaoynpatiopousg (6nAadr) pn-ypappika poviéda) eivat to
npoPAnpa tavopnong XOR. ‘Eote eicodot X = (x1, %) € {1, 1}2 kat enxéta y = x; @ X,

orou & eivat n Aoyikn rpdagn XOR. Ta {euyn e1006ou-e§ddou sivat:

(-1,-1)~0, (-1,1)>1, (1,-1)—1, (1,1)>0

To mpdRAnpa dev eival ypappika 81ax@piolio oto apXiko Xwpo, dndadn dev umapyet
YPAPPKO poviédo (subeia) mou va ta§ivopel owotd 6Aa ta onpeia, Onwg @aivetat oto
IZxnpa 1. Qotdoo, pe évav Pn-ypappiko HEaoXnpatiopd, oneg ¢x) = (x1,x1 © X»), 1@
onpeia arekovidovial o€ VEO XOPO XAPAKINPIOTIKAOV OIOU yivovial ypappuika diaxepiotpa
Kal priopouv va daxepiotovv ermtuxwg. TO XOR arotedel éva and mapddeiypa mou

avadeikvuel ) onuacia IOV Pn-ypappiKe®V HETAoXHIATION®V Ot PNXaviky padnor).

m Diploma Thesis



0.2.1 Mnyavikr) MdaSnon
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Zxnpa 1. To I[Tpo6Anua XOR.

Exnaideuvon Movtédwv H sxkmaibsuon neptdapfavet ) Xpron Piag ouvaptnong K6otoug
(loss function) rou petpa v arodoor) ToU PoviEAou Kat evog adyopidpiou eknaideuong mou
pooappodet g mapapétpous. Na mapddeypa, o éva rpoPAnpa ermPAenopevng padnong,
1] OUVAPTNOT KOOTOUG PETPAEL TTO00 KOVIA 1 £€§060¢ ToU PoVIEAoU givat oty owotr) eukéta. O
aAyopdpog exkmnaideuong ouolaotikd eKEEAZET PadNPATIKA T0 NG IIPEMEL va petaBAndouv
Ol TIAPAPETPOL TOU HOVIEAOU (HA@VIag yia MMapaperplka povieda) €101 wote va BeAdtwdel n)

ouUVAPTNOT KOOTOUG.

Texvnta Nevpovika Aiktuva Ta texvntd veupwvikd diktua (TNA) artoteAouv Baciky Katn-
yopla MapaperpikaVv PHOVIEA®V Ot PNXAViKI padnon, eprveucpéva amo tn dopn v Pi-
OAOYIK®V VEUP®VIKOV S1IKTUGV otov eyképado (18; 19). 'Eva TNA amnoteAeital anod kopboug
(veupaveg) Kat otabIoPEVEG CUVEEDELS, OPYAVOEVES O OTPOMATA. TNV ATAOUCTEPT) POPYPT)
T0UG, Ta epnpoodia veupavikd diktua (ENA), n eicodog x € RY mepva Sradoxikd and otpo-
pata orou epappodoviat 5Uo Paocikég Aettoupyicg: aOpotopa otadpiopévo anod ta Bapn
TGOV AKPHOV KAl BN-YPARHIKEG OUVAPTHOELG EVEPYOMOINONG.

Ia napadetypa, £€va PovooTtpePATIKO VEUP®VIKO SiKkTuo urodoyilet:

d
y=fx) = 47[2 B + b] = @(8"x + D),
i=1

orou §; eivat ta Bapn, b n mapdaperpog petatorong (bias) kar ¢ n Pn-ypappikn
ouvdptnon evepyonoinong, m.X. RelLU, sigmoid 1] tanh.

O1 tapdapetpot 8 "padaivovratl” amnd ta dedopéva katd v eknaideuon, Oote 10 HIKTUO
va napdayet oaoteg rpoPAeyetg (6nAadn owotég eTkEeg oe oevapto ermPBAsniopevng padnong)

Ui = f(x;; 9) ya xade Seiypa (X, Y;) 10U OUVOAOU ekTaideuong.

Exrnaidsuon Neupovirdv Aktiav H eknaideuorn veupovikov SiKtumv yivetal Kupiog
pe 1 pédodo g omoBodradoong (backpropagation) (20), n oroia xpnowaorolel tov
Kavova g aAucidag yla va uroAoyioet 11§ Tapay®youg tng ouvaptong KOOToUS MG P0G 1
APAPETPOUS ToU Siktuou. [eptdapBavel éva mmpomdnuko népaocpa (forward pass), katd 1o

ortoio urntodoyidetat ) £§060¢g TOU POVIEAOU KAl 1] GUVAPTHN 0T KOOTOUG, Kat éva ormobodpopiko
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(backward pass), kata 1o oroio Siadidovial o1 Mapdy®yol Kat MPAyHATONolEiTal avave®or)

TV Bapmv.

Badia Madnon H Badia padnon sotdlet otn xprjon Badiedv veupavikov S1IKTUGV pe TI0AAG
OTPOUATA Y1a TNV EKPASN 01 TOAUTIAOK®V 111 YPAPHIKOV ouvapthioeav (21). To mAeovexktnpa
toug eivat 6t padaivouv autdpata amnod ta debopéva 1epap)ieg avanapactaoe®V, 0dnyHvIag
og KaAr) anddoorn) oe mepindoxka mpoBAnpata T0U paypatikoy KOOHoU OMKG 1] avayvop1lor)
€1KOVAG 1] 1 Katavonon yAoooag. Ot KUuplotepeg ApXITEKIOVIKEG VEUPOVIKOV S1IKTU®V TTOU

Xpnotporotovviat otnv Badida MdadSnon eivat:

¢ Epnpoodia Neupwvika Aiktua (ENA) (18; 19): Arotedouviat ano 51ad0x1KA mArpeg
ouvdedepéva otpopata (ouvdeoelg amo Kade veupmva o KAde veEUp®OVA TOU ETTOPEVOU
oTPONATOG), OToU KAde eminebo edpappoddel Evav Ypappiko HETAOXNHATIONO KAl Jia
PN-YPAPHIKL OUVAPTNOn £vepyomoinong (0rwg mponyoupévag). Emitpénouv v ek-
pébnon ouvletwv PN-ypapplKeVv oUvApTHOe®V KAl Artotedouy 1) Bdon tev Imo ouv-

Ye10V APXITEKTOVIKOV.

e TuveAiktuira Neupwvika Aiktua (CNNs) (22; 23; 24): Efeidikeupéva yua eiocodo
pe dopr) mAéypatog (0mwg e1koOveg), epappolouv tormkeég ouveldiSelg avil yia mnpeig

ouvbéoelg petadu otpopdtev. Evoopatovouv 600 Bacikég apXIteKtovikeg 16€eg:

— Tomukcotnta: Ot VeUp®OVEG OUVOEOVTIAL 1IOVO e MIKPEG TEPLOXES TNG £10080U.
[Taipvouv éurveucn aro v @UOH TV EIKOVAV, OTTIOU OUXVA Ta AVIIKEIPEvVa eivat
EVIOTIOPEVA OE P1a TIEPLOXT) NG €1KOVAG (E10660u).

— Kown ypron Bapov (weight sharing): To 1610 @iAtpo epappoletal oe TOAAATIAEG
9¢oeig (pEpn) G 10060V (e1KOVAG), PAXVOVIAG Y1d OCUYKEKPIHEVA XAPAKINPIOTIKA

(.. aKpEg) Katd PrKog g e1KOvag.

Ta diktua autd, péoa amo dadoxika orpwpatd, padaivouv 1EpapyXiKeg avanapaotd-
0e1g arnod XapndAou ermredou YEQPEIPIKA XAPAKINPOTIKA (IT.X. aKpPég) £mg Kat ITo
uwnAou erurédou avukeipeva (.. npooona). Ailel va onpeiwdei, ot n erutuyia tou
ouveldkTikoU Siktuou AlexNet (24) oto ImageNet (25) arotéAdeoe KOpBiKY OTIYHL) OtV

ipoodo g Babiag padnong.

e Avadpopika Neupovika Aiktua (RNNs) (26; 27): Zxedlaopéva yua ceiplakd Se-
dopéva (.. yAwooa, nxog), SiabBetouv pnyaviopo enavadnyng (recurrent connec-
tions) mou srutpénet ) dratr)pnon pvhung (context vector) yia peAdoviikeg e10060uG.
Auto 10 mAaioto errpénet oto diktuo va enegepydletal akoloubieg aubaipetou prk-
oug. H 16¢a sivar 6t oe akoroubiakda Sedopéva urapyetl viovn Xpoviky §dptnor,
OTIOTE 1] E10AYOYI] PVIING EMMTPETIEL HEAAOVIIKEG £10060UG va aAAnAsrudpouv pe mpo-
nyoupeveg. IMapd tig ermruyieg toug, ol Paocikég ekdooelg RNNs €xouv meploploploug
otnVv arnobrKeUon PAKPOXPOVIEV EEAPTICEMV, 01 OITOI01 AVIIPEIRITIOTNKAV £V LEPEL ATTO

£EUTVEG EMEKTAOELG OTIWG ta LSTM (28).

e Mcetaoxnpatiotég (Transformers) (29): Eiorjyayav tov pnxaviopo mooocoxrg (at-

tention) (30), o omoiog ermtpénet ) SUVANIKY OTASNION OAGV TOV €000V KATA TNV
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0.2.2 MadSnon Avanapaoctdoemv

enegepyaoia plag akodoubiag, xwpig v avaykn enavanmnukng katdotaong. H 16éa
etvat ot ka9e €ioodog €xel otnv S1dBeon g OAeg TG IIPONYOUEVES Yld AVIANOT
mAnpogopiag, avtiBeta pe ta RNNs omou oAeg ot aAlAnAerudpdoelg yivovial PEo®
pag otabeprig o Siaotaon pvnpung. H apXitektoviki autr] €@eps enavaotaoct) otnv
poviedornoinorn akoAoublakav Sedopévav (1Blaitepa peydAou prkoug) Kat aroteAet )

Baon v ouyxpovav Meyaidov I'oootkov Moviéfov.

0.2.2 Madnon AvanapactdoewV

A6 TG TIponyoupeveg evotnteg, €ivat @avepd Ot o1 adyopiBpol pnxavikng padnong
etaptovial os peydlo Babuo amo tov tporo avarapdoctaong tv debopévav. TMa napddeyua,
10 mpoPAnpa XOR &eixvel 611 KAtdAAndol pn ypappikol HPETACXNPATIOROl HUImopouv va
KATAaotoouv £éva PoPAnpa ypappika diaxwpioo, vnodeikvuoviag Ol BAoikd pia «KAaAr»
avarapaoctaon sivat avt mou kabiotd 1o npoPAnpa (eukoAa) semdvowo. H dadikaoia
mou akolouBnOnke oto XOR, ®otoco, Hev yevikeUetal eUKOAdA, KAl XPEIAETal APKETO XPOVO
anod PNXavikoug yla v €Upeot] TETOI®V avATapaoTtAOEDV KAl XAPAKINPIoTKOV 1610¢ yia Se-
Sopéva vynArg dactaong (feature engineering). Autr) n Stadikaocia anatei e§eldikeupévn

YV®OT] Kat SUCKOAEUEL 1) Yevikeuorn og §1adOPeTIKOUG TOHELS.

Madnon Babiwov Mapaoctdoswv H epgavion kat ermtuyr|g eknaidevon tov Babiov veup-
WOVIKOV SiktUmv petéfale ) Sadikaoia pddnong avanapaoctdoemy. ZUYKEKPIEVA, Ta Hik-
TUa autd Propouv va padouv 11§ KataAAnleg avanapaoctacelg ansubesiag ano ta debopéva,
HE1OVOVIAG ONHIAVIIKA TOV XPOVO Kdl TV MPoordbsia PnXavikeov va Bpouv ta KatdAAnia
Xapaktnpiotikd. 'Etot, 1a veupavikd diktua emruyXavouv Tov PHETaoXPATION0 TOU O IaAtog
£10080U o€ Pia avarnapdotaon 1ou §1EUKO0AUVEL TV EMTIAUCT) TOU £KAOTOTE TTPOBANATOg. AUT)
N Kavotnta kabotd 1g Babiég avanapaotdoetg 161aitepa 10XUPEG KAl ATTOTEAECHATIKEG OTNV
pddn, e1dka otav unapxet n duvatotnta rpoeknaibeuong pe peydin noodtnta dedopévav.
H Baoiwky) 16€a eivat 011, 10 poviedo pabaivel va opyaveovel Kal KATAVoEeL v eyyevr) Sopr) tov
6edopévav, pabaivoviag ouclaoTika KAAEg avarapaotdoel§ autdV KAl OtV OUVEXELA AUTEG
01 AvarapaoctAoelg XP1OTH0IIO0UVIAL PE POVO £va HIKPO aplfpod mapadetypdtov 1e ETKETES

yla Vv eKpdbnon karowou mo e181kou npoBAnuatog (31; 32; 21; 33).

Avto-seruBAsndopevny Madnon H auto-cruPAeriopevn padnon éxel avadeixBel og pia eg-
ALPETIKA ATTOTEAEOPATIKY] POP@n 1N €rmBAEopevng PAd9nong, aviA®viag oUolaoTiKA 18€eg
KAl EQIveuor) ano 1o nedio g padnong avanapactace®Vv. LUYKEKPIIEVA, TETO101 aAyop1B-
pot ekpetaddevovial fedopéva Xwpig eTKETEG dnploupywviag YPeudo-oToXoug, YEYOVOS TToU
ETUTPETIEL TV EKTIAIOEUOT] 10XUP®V POVIEA®V KAl TNV PA9N01) YEVIK®OV avariapactdoe®V XOPIg
NV avaykn avhporuvng ermonpeioong (ermBAernopevn padnon). Moviéda onwg 1o BERT (34)
Kkat n ogpd GPT (35) enéde§av v ikavotna va padaivouv yevikég YAOOOIKEG avarapaotd-
OE1g € XP1ON TEPAOTI®V OUVOA®V Oedopiévev Xopilg etikéteg. AUTEG Ol AVAIIAPACTACELS
HIopoUV OtV OUVEXELWD Va TIPOCAPHO0TOUV €UKoAa (pe Alya 1 kat kaBodou dedopéva) oe
IT10 OToXeupéva IPoBArpata QuoikAg YAoooag, oneg yia rnapddetypa ta§ivopnon ocuvalodn-

patog 1 epiAnyn. TEAog, Tapooleg TEXVIKEG £X0UV edapllootel Kal o€ dAda media onwg n
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opaon (36), arnodeikvioviag 0Tt 1] eEKPAONON AvarapacTtAcE®V Ao tepdotia dedopéva Xwpig
ETIKETEG PITOPET va TTPoodEpet 1oxUpT) Bdon yia éva eupl pdopa epapPoydv Kat IIpoBAnpdtov

dlapopeTIKng PUOERS (T1.X. PUOIKY YA®ooa, opaot).

0.2.3 ApXITERTOVIKEG NEUPWOVIK®OV AIKTUGV pe moAAanAd povondtia

H avartuén Sagopetik®v tpdneov ouveouotnag ota veupavika diktua €xel maifet
onpavikd polo oty mpoodo Kat avayveplopotnta tou nediov g Babiag MdadSnong kat
artotedel AAAN pa onpaviky apapetpo nou kabopidet v padnon avanapactacemy. Tuy-
KEKPIPEVA, VOPIG 1] EPEVUVITIKI KOWOTHTA avakdAuye éva npoBAnpa tov Epnpocbiwv Neup-
OVIkKoV Aiktuev (EZA), orou ta gradients (kAioeig) tou Siktuou egagavidovial 1 peyalwvouv
onuavukd (exkpryvuviay kabog repvouv péoca aro 1o diktuo otav audaverat 1o Padog, 8-
attiag twv dadoyxikev oAdamdaciacpev Katl pn-ypappikotnev (37; 38). 'Etot apyios va
divetal épgaon oe Siktua pe mOAAAMAG POVOIIATIA KAl CUVOECELG CUVIOPEUOE®V, HE TV 16€a
0Tl NE0K AUTHOV TRV oUVvEEoemv 1 TAnpodopia Propel va péel kaAutepa oto HiKTtuo Kat ot
napaywyotl va pnv xavovtat kabwog autavetat 1o Badog, divoviag v duvatdnta diadoong

TOUG avepPTTod10ta PEO® TIAPAKAPYERV.

Zuvbéoeig Tuvropelosnv (mapakapwewv) Ta diktua Yrep-Awadpopov (39) sorfjyayav
TTUAEG TTAPAKAPYPNG TIOU ETUTPEIOUV TNV aveprtodiotn por mAnpogdopiag os oAU Badia dik-
TUd, avupetertidoviag ta rpoBAnpata pe 1ig apaymyous Iou ava@Eépalle Kat EKIAatdeuoviag
arnotedeopatika diktua pe exkatoviadeg emineda. [lepapatika, autd odrynoe oe KAAUTePn
yevikeuorn Kat 1o eUprotrn) eknaideuon kabwg avgavetat to Badog. H oxéon e10060u-e§d660u

yla éva otpopa og autd ta diktua, ano y = F(x) rou eivat oe éva ENA, petatpénetat oe:
y=T(x) - F(x)+ (1 -T(x) - x

Zinv ouvexela, mapouotaloviat ta YmoAdsipatikda Neuvpovika Aiktua (YNA) (40) mou
aroteAoUv Hia AmAOMOUPEVH] TEPIMTRON TV OIKTUGV Yrep-Aladpopmv, apalpoviag Tig
UAEG KAl UloBst®viag arneubeiag TaUTOTIKEG OUVOEDELS TIAPAKAPYDG, KATAANyOvVIag OTOV
artAouaotepo TUTIO:

y = x+ F(x).

IToAAég pedéteg éxouv avadeifel ta rmieovektpata v YNA évavil tov ENA, kuping og
npog ) duvapikn g eknaideuong kat w Siddoon onpatog. LUyKeKplEva, £xel Oetx-
Oei 611 01 ToAUSIACTATEG PEPIKEG TTAPAYRDYO1 CUUIEPIPEPOVTAL KAAUTEPA £8a1Tiag AUTOV TV
ouVvdEoE®V ouviopEUoe®Y, yia rapddetypa efopaluvoviag v erm@dvela PeAtiotonoinong
(41) (ouocwaotika kAvoviag 1o TMPOPAnpa PeAtiotonoinong Imo €UKOAO Oto0 va Ppet €va
KaAo eldyxioto). Axkourn, ot rapayeyot ota ENA kabwg 10 Bddog auidaverar yivoviai
oAU SopuPwdeilg (42) SGuokoAsvoviag v ekmnaibeuor, KATL ITOU PETIPLALETAl PEORD TO®V
napakapyeav tov YNA. Tédog, €xel Sewpnuka arodeiyxtel (43) ot autég ol ouvdéoelg
MPOKaAoUv dlatpnon 1ou PEIpou TV onuatev mmou dadibovial eprpoodia 1 kKatd mv
ortioBodiadoorn oto Hiktuo, ouolaoTika otabeporoldvIag v eknaideuon).

Muwa avaduorn rou e§nyel 1ov 0po "apXIteKTOVIKEG pe moAAarAd povoratia” yivetat oto
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0.3 Avto-2uumelopeva Aiktua

(3). Zuykekpipéva, ta YNA niapouctadovial ®g ouvoda e§aptipevav ermpépoug Siktumv (en-
semble). 'Etot, éva YNA n orpopdiev nepiexet 2™ povortdtia §1apopetikoy PiKoug, Kadwg
10 ornua, Kabag repvaet 1o Hiktuo, propei oe KA9e oTPOIA va MTEPACEL ATIO PECA 1) ATTIO TTAVR

(péow tng ouvtopeuong).

ITIapalAAayeg apXITEKTOVIRAOV Pe MOAAanAd povonatia Metd v ermtuyia tov YIoAet-
patkev Nevpovikov Aiktuev (YNA), potabnkav diapopeg rmaparAayég rmou Iporornolouv
1 61aocuvdeon TV OTPOUATEOV TEPA A0 TNV ArnAn npoobetikr ouvdeon "+1", pe otd)0 Vv
augnon g EKPPACTIKOTNTAG Kal g arodotkottag. Evbeikukd, Soxkipaoimkav 16¢eg ya
avikataotaon 1ng rpoobeong pe concatenation 1) avadpopikeg 16eeg (44; 45) Katl €meEK-
taon t@v YNA pe eknatdevolpo ypappiko ouviuaopo 1@V MPONyoUHEVOV OTpopndtev (46),
o rukvn (oe BadSog kat mAdrog) cuvdsodinta (47) aAdd Katl Xpron PNXaviopov mpoco-
XHs petadu orpopdtev (48). Zuprdnpeopatikd, urnrpéav kat d1apopeg mpooeyyioelg mou
etétadav apaddayég v YNA Kuping pe texvikég onwg gating (6niadr y = x + a - F(x)) pe
oKoTo BeATi®oelg ot otafepdTnTa Kat taxutnta EKNAideuong Kat oty IKAvotntd YEVIKEUONG
(49; 50; 15; 51).

IM16aviég nmAsovaocpog napapétpev ota YNA Ilapd ta miesovektpata tov YNA, pedéteg
Oelxvouv o1l 1 €10ay®YI UMOAAENaTIK@V ouvdeoemv propet va odnyel oe uroeknaideuorn
orpopatev (52) kabaig kat mieovacpo otg mapapérpoug, 1diaitepa Ota aAvAtEPA OTP®-
pata (13). Autoi o1 mapdyovieg evdexetal va neplopiouv 1) yevikeuon (14) 1) v nootnta
1OV avarapactace®v (15). Lo enopevo kepadaio, apouotaloupe pid eVAAAAKTIKL AP ITEK-
ToViKI] TIoU H1atnpel ta Paocikd o@éAn tov YNA, d1abéter 6nAadn moAdamAd povondtia porg
mAnpogopiag, aldda PeTptadel autég 11§ aduvapieg, EmTuyxavoviag eUpaotn padnon Xepig

mAeovaopd Kat arodoukotnta.

0.3 Avrwo-Zuumedoueva Aiktva

0.3.1 Ewayoyy)

[Mapd 1g TMoIKiIAEG TIPOOTIAOEIEG TG EPEVUVNTIKLG KOWVOTNTAG OXETIKA HE TV £10AY®YN
S1aPOPETIKAOV APXITEKTOVIKWV VEUPROVIKOV HIKTUGV PE TTOAAATAd povorndtid, Omneg oudntn-
9nke KAl otnv mPONyoupevn evotntd, Kapia and autég Sev £xel TUXEL €upeiag avayvaop-
ong. Axourn, kapia anod autr) 6ev €Xel epeUVIOel TO TIPORANPIA ToUu mBavoy AEOVAGHI0U
OTIS TTAPAPETPOUS OF UMOAAEIPATIKEG APXITEKTOVIKEG. XTIV Iapouod epyaocia, mpoteivouie
KAl PEAETAPE Pl APXITEKTOVIKY] S1apOopOortoinor TV apXIEKTOVIKOV e TTOAAATAG plovoItd-
Tla, Vv ornoia ovopddoupe Avto-Zuumeloucva Aiktua (AZA). Zuykekpipéva, oneg gaiverat
otov ITivaka 1, ta AXA oxnpuartidoviat §ekivoviag amo €va ardo VEUPRKVIKO SIKTuo pe gp-
ipoobieg ouvdeoelg (ENA) kat ipoobEtoviag eMAEOV PAKPIVEG eRTPO0Oieg ouvdéoelg amnod
KG9e orpopa oto tedevtaio. E&attiag autng g tporornoinong, to diktuo €xet drapope-
Tkr doun oe oxéon pe ta armda ENA 1) ta untoAdsipatikd veupwvikd diktua (YNA), kat €tot
apouotddel H1adpopPeTIKY] CUPTIEPIPOPA KATA TV EKTIAIdeUoT. ZUyKekpipéva, ta AXA 51abg-

Touv pua dotnta, Vv oroia ovopddoupe Auto-Zuumieon, 0rou 1o Siktuo Kkatd v Sidpkela
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G eKknaideuong cunIiEdet v MANPopopia oe £€va UMTOCUVOAO TRV MPWIEV OTPOUATOV TOU, Td
ortoia PItopouv va AUCOUV ATTOTEAECHUATIKA TO TTIAPOV TIPoBAnpa, aprjvoviag €101 td teAeutaia
TOU oTpoOpata Xpig eknaideuon Katl anokaAurntoviag rmbavo IMAeovacHo oTig TAPAPETPOUS
10U S1IKTUOU. ZTIG EMOPEVEG EVOTNTEG TTAPOUCIALOUNE AVAAUTIKA TNV IIPOTEIVOHEVI] APXITEK-
TOVIKY], avaAuoupe Se@pnTiKA Kal MEPAPATIKA TV AUto-Zupumnieon, KaBmg Kat 1a anoteAéo-
Hata Imou eMpEPEL AUty O IMPAKTIKO emirnedo, ouykpivoviag ta AXA pe 11g ipoavapepHeiosg

APXITEKTOVIKEG.

Arch Connectivity| Forward Propagation Backward (Gradient) Propagation

L i~
3
FFN Yr = Hle W;Xo aiui- = ( 1_[ wk] ( wm]xo
k=i+1 m=1
—_— ——  —

backward term forward term

DY ) L i-1
LA ! L o
ResNet ' . ; ! yr = [T, (1 + w)xo ﬁ = 1_[ (1 + wy) 1_[ (1 + wp) | x
\\\ '/I k=i+1 m=1
backward term Jorward term

L J i—
L i e
ACN yA=(1+Zi:1 }zle)xo aiwAiz[1+ Z l—l wk] [ wm]xo
=il k=it1 m=1
————
backward term JSorward term

HMivakag 1. Zuvvbeoonia (2A mepintwon) xar siaboon onuatog forward/backward (1A
yoauukn nepintwon) yia ENA, YNA kat AZA.

0.3.2 H mpoTELVOREVI] APXITEKTOVLIKI

'Onwg avapepdnke, éva AXA pe L otpopata AapBavel tv mapakdi® popen:

x; = fi(xi-1), y= in (1)

Me Bdon v napandve s§iomon, mnapatnpoupe ot éva AZA sival §iktuo pe modAarnid
povordtia A0Y® TV HAKPWVOV eUNPoodev ouvdeoemv Tou mnpootidevial. LUYKEKPIPEVA O
apdpog TV povoratov £ivatl 100g pe tov aptdpo tov otpopdiev L, tonodstoviag ta AXA
petadt v ardeov ENA nou 6ev Siadétouv nmapakapyelg petaiy otpopdtov kat ta YNA ta

oroia &ad¢touv 2L, yia L orpdparta.

E§ionoerg ITapayoywv kat Pon IIAnpogopiag otig 814Ppopeg ApXITEKTOVIREG ZUY-
Kpivoupe TG £§1000£1G IAPAY®Y®V Kal TV por| TAnpodopiag ota AZA cuykptuikd pe ta ENA
Kal ta YZA, otnv epin®or evog YPAapHRIKoU S1KTUoU L oTpopdiev Katl Pe ofjpa e10060u piag

d1aotaong. ZupBoAidoupe pe x; v €§060 ToU oTpOPATOS i, PE W; T0 BAPOG TG OTPWHATOG i,
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0.3.2 H mpotetvopevn apylteKTIOVIKI)

He Xo

10 ofjua €10060U, KAl Yr, Yr, Ya €lvat ta onpata £§680u yla kade apyItEKTOVIKY.

[Mapatnpoupe otov Ilivaka 1 6t oe KA9e Iepimaon N TeEAKY] £5l0OON MAPAYOY®V yid

KG9

(@)

w; Propet va aroouviedel oe HU0 6pOUG:

O eumpo0d10¢ GPO¢ TIEPIEXEL TO0 €UTPOCO10 onpa aro v £10060 ©G 10 oTpOUA KAl
kaBopilel ) otabepdtnta tou PEIPOU g rapaynyou (6ndadr) av to onpa efaocbevel
A audvetal amotopa). ta AZA kat ENA autdg o 6pog eivatl id1og kat dev mepiéxet

napaxkdapyelg yia ta evéidpeoa otpopatal

KAl T0 PETPO TOU TUITIKA HEIOVETAl KaBng
augdavetat 1o Badog tou d1ktvou, Adye MOAAATIAACIACPOV KAl P1-YPAPHIKOT TV (UItd
Vv U000 apX1KOoinong napaperpmv kKovida oto undeév). Aviibeta ota YNA, o ap-
100G TV povoratiev rmou reptAapBavovial oe aUty) TV OUVIOTOoA auiaveral Kadmg

draoyilovtal neploocdtepa orpoOPATA.

O omic9io¢ 6pog petagepel v MANpodopia mou oxetidetar pe wmyv padnon. Zta
povodiactata (1A) ENA, autdg o 6pog meptidapBdvel éva povordrtt. Qotdco, yua ta
1A AZA kat 1A YNA, £¢kaoteg apXITEKTOVIKEG TIOAAATIA®V POVOTIATIOV, O OPOG ATTIOTEAEL-

2

tat and L — i + 1 xat 2871 povonatia, avriotoxa.? ZupBoAidoupe pe FG tov omioio

opo.
omio9iog 6pog propet va Saxwpiotel repattépw® oe HU0 6POUG:

Movondtia nou §1acyifouv to SiKTuo: Xe OAeg TS APXITEKTOVIKEG, UMAPXEL pid
Kupilapxn ouviotooa otig £§1000elg OIouU 1 IMANPo@opia @tdvel ot éva otpoua péoa
arno ta EnopEvVA Ao avto orpepatd, diaocyifoviag ta Kat ouotactikd kadopifoviag nog
TIPETIEL VA TTPOCAPHO0TOUV Td Apr autou ToU oTpepatog pe BAon ta snopeva. XTig
e€1000E1§ AVIIOTOLXEl OTOV OUVOAIKO omiodio 6po v ENA, eve) yia ta AXA kat YNA
nieptAapPavel 6Aa ta povorndria €KTog ToU POVOTIatiou Iou @tdavel aneudeiag amno v
£€060 (0 Opog "1+" ot aviiotoikeg €§10W0ELS). ZNHEIOVOURE OTL TO HEIPO AUTHG NS
ouviotOoag petpvetat kadwg audavetat 10 Badog Ady® g PEIRONGS TV PLOVOITAaTtioV Kat

v oupPorifoupe wg NG.

Movonatt ancudciag anod tnv £€5060 tou Siktvou: Zta AXA kat YNA urdpxet ermiong
ma 8iadpopn mou mpogpxetal ancvdeiag and tnv £§060, Aoyw OV MAPARAPYEDV
TIOU SN10UPYyOoUV Ol UTTOAAEIHATIKEG OUVOECELS KAl AVIIOTOLXEl 0T0 okéAog "1+" eV

3. ZupPolifoupe tov 6po @g DG. O 6pog autdg petapépel TV

napandve {1000V
Anpo@opia 10U G MPErel va petaBAndei 1o fApog evog OTPOPATOS MOTE TO CUVOAIKO
6iktuo va Bedtiwdel oto mpoéPAnpa mou eknaidevetat. H oupfodr tou DG eivat mo
onpaviikin ota AXA, apou o aptdpdg TV POVOIATIOV £ival YPAPHPIKOG ©¢ IIPOS TO
Badog, oe avtiSeon pe ta YNA orou eival ekSetikog. Ma nmapddeypa, oto otpopa 2
evog Oiktuou L = 12, n DG arotedei 1 and ta 11 povondtia ota AXA, eve ota YNA

aviayovifetat 127 aAda povornduia.

Yn6 v évvola 6Tt To oTpdpa a yia va @rdosl oto otpdpa b mpénet va diaoyiost 6Aa ta evdidpeoa.

2A&ie1 va avagep9ei 611 1o povortatt tou ENA givatl urooyvolo tev povortatidv tou AZA, Ta oroia pe ) oelpd
toug neptdapPavoviat ota povortatia tou YNA.

31 BiPAoypapia o 6pog autog sivat yvaotdg wg Direct Feedback Alignment (DFA) (53; 54)
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ZUVOAIKA, PIOPOULLE va YPAWOUE:

FG = DG + NG.

"Eppeon eknaidsuon otpopa pe orpodpa ota AXA To yeyovog ot ta AXA Srabétouv
gumPoodio 6po opotlo pe ta ENA katl omicdio 6po pe moAAarAd povordtia odnyei eppeoa
oe exnaibeuor otpopa pe orpopa (layer-wise), 6rou ta np®ta orpopata eknaidevoviat mo
yphiyopa amo ta 1o Pabeid apou £Xouv PEyaAuUTEPO O PEIPO EUMPO0OI0 0PO KAOBMG Kat
peyaAutepo oe PETPO omicdio 0po AOY® IEPLOOOTEPMV HOVOIATIOV. AKOUn 6wabétouv éva
10XUpo (og oxéon pe ta YNA) DG 6po rou wdel ta orpopata va petaBdiAouv ta Bapn toug
€101 MOTE va pewvetal apeoa (AOy® tng ouvelopopdg Toug oto TeAKO dbpotopa) to Addog
Kata v ekraidevon. 'Etol, n 16éa eival otl av ta nmpota orpeparta, rmou eknaidsvovial
Ta)Utepd, HITOPOUV EMITUXAOG va AUcouv 10 mpoPAnua, ta tedeutaia otpopata dev xpnot-
porolouviatl anod 1o §IKTUo Kal KATtaAnyouv autopata va eivatl mieovadovia. Autn ouot-
aoTIKA 1 oupIeplpopa etvat ) Auto-Zuumieon, 6Tou 1o SIKTUO autopata Katd TV eKnaideuon)
XPNOTHOTIOEL POVO 00d OTPOUATA TIPAYHATIKA XPE1AETal yia TV IMAUOH TOU TPOBAN1aTOg
(eAayiotoroinon tou AdSoug).

ZNHEWVOUPE TIOG AUTI Il OUUIEPLPOPA KATA TNV eKmaideuorn eival d1a@opetikin amno
ta YNA (6niwg Sa deiyvel Katl EPnepikd oty EMOPEVH] EVOTNTA) KAl AVIIHEIOITI(EL eudéwmg Tov
rmdavo rAeovaopo mapapetp®y ota YNA, mou oulnt9nKe nponyoupEvag, NEo® g 1510TnTag

g Avto-Zuumieong.

0.3.3 IIsipapata

TG ETIOPEVEG EVOTNTEG TTAPOUCIAJOUE TIEIPAPATIKA ATIOTEAEOPATA TG ITIPOTEWVOHEVNS
APXITEKTOVIKLG.
Movtéda: Ylorowoupue AZA o apyitektovikég Transformer (29) kat MLP-Mixer (4).
ZUvoda Aedopévav: Xpnowporoloupe yia ta§ivopnon eikovev ta CIFAR-10/100 (5) kat
ImageNet- 1K ka1 yia katavonor guoikng yAwooag ta BooksCorpus (55), English Wikipedia,
SST-2 (56), Q@QP (57) xkat QNLI (58).

Normalized Gradient Norm across layers during training

Residual Networks Auto-Compressing Networks
©_ o
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Epochs Epochs

IZxApa 2. Ta pcpa tov gradients ota YNA kat AZA kata tu diapkeia g eknaibevong.
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0.3.3 TIlepdpata

Avuto-Zupnieon otnv npaln Exknaidevoupe AXA, ENA kat YNA svoopatopéva otnv ap-
Xttektoviky) MLP-Mixer oto ouvoAo &ebopéveov CIFAR-10 yia 100 emoyég. Emiong ex-
nadevoupe pila nmapaddayr AXA rou AapBavetl onpa katd to backpropagation povo arod
TG PAKP1IVEG ouvdEoelg (dndadn povo and 1o DG povortaty). Ta anoteAéopata @aivovial oto
Zxnpa 3 (apiotepa). ITapatnpovpe 6t povo ta AXA niapouotiadouv Auto-Zupriieon. AxKOUn
oto Zxnua 3 (6e€1d) deiyxvoupe ot 1o DG eivat mo 10xupo ota AZA ard ta YNA kat tédog
ot0 ZYfpa 2 mapatnpoupe Ol 1d PEIPA TV MApAyoyev tov AXA pikpaivouv pe 1o fadog
eve ota YNA eivat o opoidpopda, ermBeBaiovoviag v otpadpad He oTp®iia eKnaibeuon mou

oulnoape.

Direct Gradient (DG) to total gradient ratio during training

Residual Networks

Auto-Compressing Networks1 .

1.0
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Prediction Layer

ZxfApa 3. (apiotepd) Ta AZA sivar 1 UOVn APXUEKIOVIKY) TOU Tetuyaivel Auto-Zuumison.
(6e&1a) O Adyoc tou DG mpog 10 FG ota YNA (Residual Networks) kai AZA (Auto-Compressing
Networks). 'Onwg eaivetal, o ypoaupuukog (Evavtt ex9eticov) aprduov povomatiwv ota AXA
mpokajlel onuavtkn ovvelopopa tou DG ota mpata otpwuata ov AZA.

Avto-Zupniedopevot Vision Transformers X cuvéxela, adlodoyoupe ta AXA oto mai-
010 TRV APXIIEKIOVIKGOV TUrou Transformer, uvdonowwviag pia auto-cuprueldopevn ek60X1)
tou Vision Transformer (ViT) (6). Exniaibevoupe évav Vision Transformer (ViT) pe pakpivég
ouvdéoelg (AC-VIT) kat éva pe vnmoAAepatikég Koviveg ouvdeoetg (Residual ViT) oto ouvoldo
dedopévav ILSVRC-2012 ImageNet- 1K*. ‘'Oneg napatnpovpie oto Zxnua 4 to AZA netuyaivel
ONMAVIIKI] AQUTO-CUNITEST] XP1OIH0IIoI)VTIAS To 1106 Badog yia va metuxet tyv idia emiboon

pe o YNA rou xpnotporotei 6Ao 1o Siktuo.

Avuto-Zupnieon kat AuokoAia tou npoBAnpatog X cuvéxela eSetdoupe Meg ennpeade-
A1 1] IKAVOTTA AUTO-CUNITIEOT|S @G CUVAPTNON TG SUuoKoAiag Tou poBAnatog ou Kalsitat
va Auoet 1o diktuo. Xpnotporotovupe tov aplfpod tov KAAoemv g évav deiktn yia ) Suokodia
Tou 1PoBANpatog tagvopnong ekovav oto ouvolo debouévav CIFAR-10, Snuioupywviag
uniooUvoAa pe 2, 5 xkat 10 xkAdaceg. Ta 10 melpapa autod XPnoHOTOIOUHE TV APXITEK-
tovikr) MLP-Mixer kat ekniatdevoupe 600 napaddayég: myv apxikr) MLP-Mixer pe urtoAei-
patukeg ouvdeoeig (Residual Mixer - YNA) kat v tportortomnpiévn) €kdoor (AZA) e pakpiveg
ouvdeoelg (AC-Mixer). 'Oniwg mapatnpoupe oto Lxnpa 5, ta AZA @aivovial va rmpoocappo-

Jovtat otnv duokoAia Tou TPOBAHIATOG, XPNOIHOIIOIOVIAS §1a60X1KA TEP1o0dTEPA OTp®HATA

410 YNA cuyxrAivet oe 300 eroyég eve 1o AZA petdletat 700 eroyég.
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Prediction Layer

Ixfpa 4. Eniboon tov evdiaueswv otpwudiov tov AZA (AC-VIT) kar YNA (Residual ViT) oto
ImageNet- 1k, svoouartousva o apyttekroviky) Vision Transformer (ViT).

Kabwg Kwvoupaote aro 2- oe 10-kAdcewv mpdPAnpa tadvopnong. H ocuprnepipopd auty)
dev mapatnpeitat ota YNA, ta oroia Xpnotponotovv 0Ad 1a orpopata ave§dptnta amno tyv

duokoAia tou ripoBAnpatog. ZuvoAikd, @aivetal ot ta AXA kavouv Suvapikr) Auto-Zuprtieon

pe Bdon 1o poPAnpa xwpig va xavouv oe emnidoor.

Ixavétnteg F'evikeuong TV ASA Y& quirv v evotnta, Heixvoupe Mg 01 avanapaotd-

0€1G IoU Plabaivovtatl aro 10 §1KTUo PE0® TG AUTO-CUHITIEONS YEVIKEUOUV KAAUTEPA ATIEVAVTL

oe Sopufo oy eicodo kat os mepuTIOOElg Atyootav dedopévav eknaidsuong.

e ATA evavtia oe 90pufo £10660u: Xprnotporolovpe ta exknadeupéva poviéda ViT

TIPONYOUHEVIG EVOTNTAG Kdl MPOocHEToupe oty £icodo au§avopeva emineda mpoo-
= 0.1,0.2,0.4, xaBng ratr Yo6pufo

Yetikou Yopufou Gauss pe TUITKI ATOKALON O
Tunou "salt-and-pepper" pe ocootd addowwpévav pixels p = 1%, 2%, 10%. Ta arote-

Aéopata (péon akpifeta) mou mapovorddoviat otov ITivaka 2, eixvouv ot ta AZA eivai
ONPAvIIKA 1o £Up®ota arnévavit oto Jopufo os oxéorn pe ta YNA, ota omoia o S6pufog

petagépetal oe 6Ao 10 diktuo egattiag TV UMOAAENATIKGOV OUVEECEDV.

e ATA pe Aryoota Sedopéva ernaideuong: EnavalapBavoupe to meipapa tou MLP-
Mixer os CIFAR-10 ypnotporoioviag 1o 1/10 tev dsdopévav eknaideuong yia kade
KAdon. Exnaidevoupe yia 150 emoxég kat deixvoupe oto Zxrpa 6 1o o@dApa ex-
naidevong kat test yla tig 600 apyiiektovikég. 'Onwg @aiverat, ta AXA metuxaivouv
ypOyopa HiKpO o@dApa eKnaibeuong Kat ONPAavilka HIKPOTEPO CQAAPA YeEVIKEUONG
(test) oe oxéon pe ta YNA, unodeikvioviag Mwg I MIPOTEIVOHEVT] APXITEKTOVIKI] givatl

KataAAnAodtepn o€ MEPUTIWOELS PE Atyootd Sedopéva.
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Ixnpa 5. Zuunepipopa (emiboon) tov evdiducov opoudiov o AZA kar YNA otav ueta-
BaAfouue tov apduo kidaoewv oto mpobanua taltvounons sukovev CIFAR-10 (novtéflo MLP-
Mixer).

Model Baseline Gaussian Noise Salt and Pepper Noise
w/onoise || 0=0.1 | 0=02|0=04 | p=0.01 | p=0.05| p=0.1

Residual ViT 70.74 67.68 62.80 45.46 56.80 27.48 10.34

AC-ViT 70.76 69.50 64.54 51.89 59.80 36.35 19.98

IMivarag 2. Zuunepipopd tov AZA kat YNA uro v napovoia 9opu6ou ot gioodo (teipaua
ViT -ImageNet). ITapovowdaletar n uéon axpifeia (%) arcvavu oe mpooetueo JopuBo Gauss ue
rxat 9opufo tnov "salt-and-pepper”.

Avuto-Zuprmedopevo BERT ZXunv cuvéxelwa, Soxipaloupe ta AZA oe ouyxpova Hovieda
Katavonong QUuolkng yAoooag kat ouykekpipéva oto BERT. H 16éa eivat ot katd v
Oldpkela ng mpo-eknaidevong 1o HikTtuo pmopel va xpnotporolel 6Aa 1a orpopatd yia v
Katavonor) g PUOIKAS YA®OOAG ITOU £ival £va YEVIKO MPOBANHA KAl 0TV CUVEXELA vd XP1otl-
porotet 116vo €va UTIOCUVOAO aUT®V 0Tav T0 IPooapodoulie o mo e1dika npoBAnpata (..
avaluorn ouvaiebnpatog). Ilpo-Exnaisvoupe éva unoddsipatiké BERT (Residual BERT
- YNA) yua pia emoyxn kat éva AXA poviédo BERT (AC-BERT) yia 6o enoyég, ota Book-
Corpus kat English Wikipedia kat otnv ouvéxela eknaidsvoupe oe 1o £181KA KAl PIKPA
ouvoAa debopévav ya va aglodoyricoupe ta §uo poviéda (avdAuon cuvaitobrnpatog: SST-2,
napagpaon: QQP, epwoto-anavinoelg: QNLI). Ta armotedéopata tou Xxnuatog 7 (aplotepd)
beixvouv ot 1o AXA metuyaivel mapopola emidoorn pe 1o YNA kat ota 3 ouvola Sebopévav
EMBEIKVUOVIAG OP®G 10XUPH AUTo-ZUNITEDT, a@OU XPNolponolel mepimou 0 1/4 tov otp-
opatev tou BERT.

Axopn ggetaloupie av ta AZA PIopouVv va XPnotpornotndouy cuPnAnp®@UATtKA ue AAAeg
TEXVIKEG aPAIPEONG TIAPAPEIPOV, CUYKEKPIPEVA TEXVIKEG pruning. Xpnoworoloupe duo
1e€T01eg TEXVIKEG 010 SST-2: (1) apaipeon mapapétpwv pe BAon 10 PETPO TOUG PETA TO TEAOG

5

¢ eknaideuong oto TeAKO TIPOPANpa Kat (2) otadiakr ag@aipeorn mapap€rpeyv ° Katd v

ekmniaibevuon pe BAot 1o PETIPO TOUG Kal TI§ TTIAPAY®YOUS TOUS ®G ITPog to opdApa (Movement

5TV nepirmtaon (1) apaipoupe 20% oV APAPETPGV METd ard kade eroxr), eved oty (I1), 40% xade emoxr)
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2.4 ---- Residual Mixer - Train Loss
U B RAAERE Residual Mixer - Test Loss
2.31 A\ —-— AC-Mixer - Train Loss
B 1\\JY —— AC-Mixer - Test Loss
2.2 ks
n 2.1
%)
o
—1 2.0 1
1.9 1
1.8 -
1.7 -

ZxHpa 6. Zediua eknaibevong kat yevikevong (teot) wwv AZA kar YNA oe MLP-Mixer oto
CIFAR- 10, oe osvapio ftyootov debousvov (100 debousva ava kAaon).

Pruning(59)). 'Onwg mapatnpoupe oto Lxnpa 7 (6e§id), n Auto-Zuprieon twv AXA Spa
OUPIMANPOUATIKA PE AUTEG TIG TEXVIKEG Kal €101 ta AXA mEeTuxaivouv onpaviika KaAutepn

1opportia petagy apdpou napapétpev (sparsity level) kat eniboong.

851
0.85
- 80,
0.80 1
e
/
>’0.75’ s ’II %75,
S , / ©
@ 0.70 { » / =
g / 3! ] - AC-
3 0.65] »/ —e— QNLI, AC-BERT g e ﬁagirun ﬁc %ERITBERT
< / '/ -=- QNLI, Residual BERT 651 A =s Yagirun - sesidua
0.60 et /T —— SST:2, AC-BERT A MovPrun (I) - AC-BERT
0.55 .___./ 4 -=- SST2, Residual BERT 601 y --- MovPrun (I) - Residual BERT
S ) —+— QQP, AC-BERT / —— MovPrun (II) - AC-BERT
0.501 B S SN --+- QQP Residual BERT 554 l/ --+- MovPrun (II) - Residual BERT
I T U U T ™ T T T
0 2 4 6 8 10 12 40 50 60 70 80 90 100 110
Prediction Layer #Params (M)

Ixfpa 7. (apiotepa) Anoboon tou mpo-eknaibevpévou AC-BERT (AZA) évavii tou mpo-
exnardevpsvou vnofsypaticov BERT (YNA) peta and mpooapuoyn (fine-tuning) oe ovvoia
beboucvov ue: avaivon ovvawodnuarog (SST-2), napdepaon (QQP), kat spato-anavtioeg
(QONLI). (6e€1a) ArpiBeia évavu ueyedoug povtéfov tou tov U0 poviéAwv oto SST-2 dtav
epapuoletar Magnitude kar Movement Pruning.

Awaprng (ouvexrg) padnon rat AXA H Swpkrg (1) ouvexng) pnadnon (60; 61; 62; 63;
64; 65; 66) cival éva urmroouvolo TV £1d®wv PAdNonNg Orou S1a@OPETIKA UTO-TipoRAnpata

rapouotdfoviat akoAoudakd, Xopig emavaAnyn, Kat 0 0t0Xog eivat, oto T€A0G TG CUVOAIKNAG
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0.3.3 TIlepdpata

exknaidsuong, 6nAadr apou 1o poviedo exnaldeutel otadlakda o 6Aa ta uno-mpoPArpataljie
Vv ogpd, €va-éva), va mapouotddel cuvolika kaldn emidoorn. H kupla Suokodia autrng ing
Katwnyopiag mpofAnpdreyv eivatl 61t 1a veupevika diktua otav eknaidevovtal o€ €va poAnpa
A xat peta oe éva npoPAnpa B, teivouv va "§exvouv' to A. H Auto-Zuurieon eival pia
18101Ta Iou @aivetal Xprioin o€ pid T€1o1d MEPITteon a@ou to §iktuo pmopel autopata va
AVAKAAUITIEL TTOEG TTAPAPETPOUG XPELAdeTal Yia éva IPOBANa KAl va a@rVvel T1G UTTOAOLITESg
yla ta enopeva. Ta va enaAnSsvocoupe v diaiodnon pag, adiodoyoupe AXA kat YNA oe
MLP-Mixer, oto ouvolo Sedopévev split CIFAR-100, 1o onoio mepthapfavet 20 Sradoxika
Kat pn erukaduritopeva npoPAnpata tagivopnong pe 5 kAdoeig 1o kadéva (task-incremental
learning (67)). Exnaidevoupe yia 10 emoyxég oe kade uno-npoPAnpa. Aoxipaloupe duo
aAyopidpoug ouvexoug padnong: amdn exknaidevon (Naive FT) xkat aAdyopiSpo Synaptic
Intelligence (SI) (65)°. Zta mewpdpata avagépoupe to Average Forgetting, opiojévo g o
Béoog 6pog g dlapopag petaiy g KaAutepng anodoong evog uno-nipoBAnpartog (dpeoca
peta v ekpadnon tou) Kat g TeAKNG anodoong Tou petd v eKpadnon oAwv, Kadng
kat m Méon Axkpipfela (Average Accuracy), rmou opiletat g 1 péon akpifeia oe 6Aa ta
npoPAnpata oto tédog g eknaidsvong. Ta amoteAéopata tou ITivaka 3 semPeBaidvouv
Siaio9nor) pag: ta AXA Texvouv onpavuka Atyotepo (Eng kat 18% Reldtinon) oe ouykpion
pe ta YNA. ISwaitepa, pe m xpron tou adyopiSpou Synaptic Intelligence (SI), n audnon
tou Badoug twv ACNs odnyel oe peiwon tou forgetting — pa davikn ocupnepipopda yua
T€tol0U €1doug ouotruata, JPag KAt td MEPLO0OTEPA OTPOPATA XPNOIOIoouVIdAl yid TV
eKpadnon mneploodiepav und-ripoPAnpatewyv. Aviideta, ta YNA exvouv meploodiepo 000
auavetat 1o BadSog, unodeikvuoviag rmdavr) uvriepripooappoyyy (overfitting). ErurmAéov, ta
AXA smutuyxavouv uynldotepn péon akpifela kat gaivovral €10t va eivatl kataAAnAotepa oe

TIEPUTTOOELS OUVEYXOUG Padnong.

Avg. Accuracy (%) T Avg. Forgetting (%) |
M. Arch L=5 L=10 L=15 L=5 L=10 L=15
nFT ACN 3297+24 3294+53 31.61+22 46.55+2.2 45.46+58 46.91+2.4
Res 31.77 £ 1.8 28.16 + 1 26.14 +2.3 52.76 +2.3 54.89+1.6 54.49+2.2
SI ACN 445+2.2 46.1+1.3 46.2+0.8 35.7+2.1 33.8+0.4 32+1.8

Res 43.47 £ 3.1 36.1+5 32.1+0.8 42.4+4.1 44.6 +£3.7 50+ 2.1

IMivarag 3. Méon arpibeia kat forgetting yia g diagpopeg uedodoug, diktva kar apxiiek-
tovucég ato Split CIFAR-100. To M. onuaivet Mé9obog, 1o nFT cupboAilet tnv anin exnaibevon
Kkat 1o SI Tov afdyopduo Synaptic Intelligence. Ta poviéia ekmaibevoviar yia 10 emoxég ava
nmpofinua, orov kade mpoBinua anotefeitar ano v tadtvounon 5 ano g 100 kAdoegg Tou
rapovolafovtar Staboxucd. To L dniladvet 1ov apiduUo 1oV OTPOUATOV OTNV AP X ITEKTOVIKT.

%0 aAyop1dpog autdg mpoodétel £vav regularizer Baciopévo oOTIG TIAPAYOYOUS GG TIPOG TO OPAApA yia Kade
MAPAPETPO, OUYKEKPIPEVA TTPOKUITIEL Pid T yia Kade mapdaperpo avaloya Pe 1o g ot adAayég o autrv
£MNPEAJOUV TO CUVOAIKO O@AlApa oto TpeXov MPoPAnpa Katd ) dtapkela g eknaidsuong.
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0.3.4 ZUvowyn TV ANOTEAEOHATROV

Zto Zxnpa 7 kat orov ITivaka 4 mapouctadovial CUVOITIIKA KATold arnd td AroteAEo-
Hata T®V IPONYOUHEVOV MEPAPATOV. ZNPEIOVOUHE OTL 08 OAd Td MEPAPATA TTAPATPHOALE
1oxupn Auto-Xuprtieon ota AXA, 1) ontoia PIopet va ertayUvel ONIAVIIKA TNV XP1 0T T0U §1K-
TUOU pETd TV eKnaideuon apou Propovpe avaduva va apaipeécoupe éva PEYAAO TOCOOTO
1OV OTPOHAT®OV ToU. AKOUN Katl pe tnv Auto-Zuprtieon, ta AXA netuxaivouyv emmdooelg 01101eg
e ta YAN eve 0 apKeETEG TIEPUTIAOELS YEVIKEUOUV KaAutepa (9dpufog oty eicodo, Atyoota

b6edopéva exkmaidsuong, Stapkrg padnon).

Performance vs. Resource Usage Trade-off

901 AC-BERT
(41M params)
———— X
85 / Residual BERT
/ (110M params) BERT-SST2
i
< 80 /
1 i
< *
>
o
£ 751
=]
O
Q
< 20 ViT-ImageNet_1K
AC-ViT Res-ViT
(51M params) (86M params)
65 - =¥ - Auto-Compressing BERT with pruning
Residual BERT with pruning
. Auto-Compressing Networks
60 - Residual Networks

0 20 40 60 80 100 120 140 160
Resource Usage (Parameters in millions)

IZxnpa 8. Amodoon AZA évavit YNA ovvaptrioet 10U aplduoU Tapauelo®v, Ue Kat XepIic
pruning.

Models ‘ Accuracy T ‘ #Params | ‘ #Inference Layers | ‘ Storage Size (MB) | ‘
Res-Mixer on C10 90.12 + 0.06 2.5M 16 17.6
AC-Mixer on C10 90.24 + 0.05 1.8M 12 13.2

Res-ViT on ImageNet | 70.74 + 0.09 86M 12 330
AC-ViT on ImageNet | 70.76 + 0.12 51M 7 195
Res-BERT on SST-2 86.63 = 0.09 110M 12 418
AC-BERT on SST-2 86.68 + 0.06 46M 3 174
Res-BERT on QNLI 83.14 + 0.07 110M 12 418
AC-BERT on GQNLI 83.07 £ 0.1 46M 3 174
Res-BERT on QQP 87.2 +0.09 110M 12 418
AC-BERT on QQP 87.3+0.07 46M 3 174

IMivarag 4. Avaokonnorn ToL TEPAUATIKOV ATOTEASOUATOV, Ot apyliektovikég AXA kat YNA.
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0.3.5 Zuunepdopata

0.3.5 Zupnepaopata

Ztnv mapouod £pyacia, IMAPOUCIAOTNKE KAl PEAETNONKE Pla vEA APXIUIEKTOVIKY] VEUpP-
WOVIKOV SIKTUGV, ta Auto-Zupreddopeva Aiktua (AXZA). Méow g S1apopeTiKAG OUVOECTHOT-
1ag T0Ug, o€ oxéon pe ta Epnpoofia kat YrioAAsipatikda Neupwvika Aiktua, ta AXA rapouotd-
Jouv H1aPOPETIKA XAPAKINPIOTIKA KATA TNV EKMAIOEUOT] PE AaroTéAeopa va KAaTaAnyouv og
Sragopetikég avanapaotdoelg oe oxéorn pe ta ENA kat YNA. Zuykekpipéva, ta Siktua auvtd
exkraldsvovial éPpeoa oTPOUA-PE-OTPOUA AOY® TG APXITEKTOVIKIG TOUG HE AToTéEAeopa va
napouotddouv pia véa 1810tta, v onoia ovopdcape Auto-Zuumicon, Orou 1 mAnpogopia
KAatd IV eKNAideU0T) OUYKEVIPMOVETAL O€ £vd UMMOOUVOAO TOV CUVOAIKGOV OTPOUAT®OV TOU S1K-
TUoUu. Méow autrg tng 1810tntag, ta AXA exnaideUouv eUPXOTA Td IPMOTA OTPOUATA TOUG Katl
KATtaAnyouv oe evdlapEpovia TMPAKTIKA IMAEOVEKTHIATA, CUYKPITIKA PE Ta YTTOAASlHaTIKA
Neupwvika Aiktua.

Ye O0Aa ta mepapata, €ibape ot ta ALA mPoodEPOUV OUYKPIoUN 1] avatepr anodoor
aro ta vrodAetpatikd diktua, pe tayxutepn eKtéAeorn Kal pelwpévn Xpnon pvnung. AsiSape
AKOWI OTL PEYAAO TMOCOCTO TOV AVE OIPWHATOV Kabiotavial mAeovaldovid, OUYKEVIPOVOV-
1ag Vv mAnpogopia ota katotepa ermnineda os S1adpopa povieda Kat oUvoAda §e6opEvav, OTIOG
tadwvounorn eikovev pe Transformer kat MLP-Mixer 1] Katavonor yA©Oooag e YA®OOIKA Pov-
1¢Aa turou BERT. ErunAéov, ta AZA apouctdotnKav avetepa o€ EPUTIOoELS Yopuou otnv
€l00d0, oevdpila Atyootov 6edopévav aAdd rat mepuTtwoelg diapkoug padnong, arnoraAur-
ToVIag Ot €XoUv duvatdtepeg IKAVOTNTEG Yevikeuong oe tétola osvdpld, mou pdAtlota eivat
MPoBAfjIaTa TTOU CUVAVIAHE TTOAU OUYXVA OTOV MPAYHATIKO KOOHO.

KAetvoviag, peddovuxég Souldeieg Sa pmopovoav va emekieivouv ta AXA oe peydia
YA®OOIKA Kl TIOAUTPOITIKA POVIEAA KAl va pPeAetndouv ekel ta MAEOVEKTNPATA TG AUTO-
ouprtieonsg. Akopn, éva evdlapépov nedio eivatl n avartudn adyopibpwv mou rpooappdiouv
duvapikad, KAtd v eKTEAEOT], ToV aplfpo 1V oTpePAIev ava dsiypa yua BéAtiotn anodoorn
KAl arnodotkotta, maAl PEO® TG AUTO-CUNITEONG. TNHAVIIKI Kpivetal Kat n Siepevvnon
ToUu audnuévou xpovou exkmnaideuong twv AZA oe oxéon pe ta YNA kat n andavinorn oto
£POUIA av aUTr] Il CUUIEPIPOPA £ival avaykaia yia va urapget Auto-Zuuriieon) 1) propei
va petpraoctei. Tédog, ta AXA arotedouv €vav aro 1toug MOAAOUG TPOIIOUG oUVOEoIIOTTAG
OTPOUATOV 0t VEUPOVIKA diktua, mepattépw €peuva Kal e§epeuvnon oe S1aPpopetikég 16€eg

ouvleoINOTTAG KAl CUVOUAOHO KOVIIVOV KAl PAKPIVOV OUVEECE®V £1vVal QUOIKO £TTAKOAOUDO.
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Chapter E

Introduction

1.1 Motivation

In recent years, deep learning has demonstrated remarkable success across a wide
range of tasks and modalities, often matching or even exceeding human-level perfor-
mance (10; 11; 12). The applications of these models are vast and diverse, with many
focused on enhancing human welfare. To achieve such strong performance, these models
rely on deep and expressive neural network architectures containing billions of parame-
ters, which significantly drive up computational and storage demands. As these models
continue to grow in size, adhering to scaling laws that link performance to the number
of parameters and the volume of training data, they are effectively becoming huge power-
houses, increasing the energy consumption for both training and inference. This leads to
significant consequences such as environmental impact and substantial economic costs.

Despite these impressive advances, artificial neural networks remain remarkably inef-
ficient compared to their biological counterparts. While deep learning models require mas-
sive datasets and enormous computational resources, biological neural networks achieve
superior capabilities with remarkable efficiency. Specifically, biological neural networks
learn robust representations from sparse data points rather than millions of examples,
are capable of continuously adapting to new information without catastrophic forgetting,
generalize knowledge across domains with minimal crossover examples, and operate with
exceptional energy efficiency compared to computational demands of artificial systems.
This efficiency-performance balance achieved through evolution remains an aspiration
for artificial systems. Researchers are exploring several promising directions to address
these inefficiencies, effectively enhancing the representations of artificial deep neural net-
works and making them less computationally expensive. A central aspect of this is the
architecture of the neural network, an ingredient that effectively acts as an inductive bias,
shapes the training dynamics of the model and affects the representational quality and
capabilities of it. The architecture determines how information flows through the network
and influences what patterns the network can efficiently capture.

A crucial factor in the efficiency of biological neural networks is their connectivity pat-
terns. Unlike the predominantly layered and densely connected artificial networks, biolog-
ical neural structures combine both short and long-range connections in sophisticated

ways (68). The brain exhibits a multiscale organization where local processing occurs
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alongside global integration through strategic long-range projections. This arrangement
creates information highways that allow signals to bypass intermediate processing when
appropriate, optimizing both processing speed and computational efficiency. Additionally,
biological networks employ adaptive pruning through experience-dependent exploration.
During development and learning, the brain initially forms numerous synaptic connec-
tions, many of which are later eliminated through competitive processes that retain only
functionally important connections. This "synaptic pruning" (69) is guided by neural
activity patterns that emerge during interaction with the environment, effectively sculpt-
ing the network based on experiential demands rather than predetermined architectural
constraints (70; 71).

Drawing inspiration from these biological principles, the research community has ex-
plored biologically-inspired approaches including sparsely connected models where only
a fraction of possible connections are utilized, and growing neural networks that add con-
nections or neurons as needed during training. Neural architecture search techniques
automate the discovery of optimal connectivity patterns, effectively exploring the vast
functional space of possible architectures to find those that balance performance and
efficiency (72).

In another direction, again inspired from these biological principles, researchers have
experimented with various connectivity patterns in artificial networks. Skip connec-
tions create direct pathways for information flow across multiple layers "information
highways"), mitigating vanishing gradient problems while creating shortcuts analogous
to long-range connections in biological systems. More recently, attention mechanisms
have been introduced dynamically establishing connections between all positions in a
sequence, mimicking the brain’s ability to selectively focus on relevant information while
ignoring irrelevant inputs. More specifically, since the introduction of Highway Networks
(39), which first proposed additive skip connections with learned gating, a wide array
of architectural innovations have emerged. Residual Networks (ResNets) (40) simplified
this approach by replacing gates with identity mappings, becoming the de facto standard.
Subsequent models explored alternative connectivity strategies like concatenation (44),
recursive, multi-depth compositions (45), learnable (experience-based) weighted combi-
nations (46) and cross-layer attention (48).

While the majority of these architectural innovations—ranging from identity mappings
and dense concatenation to attention-based fusion—have primarily aimed to improve
task performance, training efficiency, or optimization dynamics, a complementary line
of research has raised concerns about the effective utilization of network depth. For
instance, (14) demonstrated that randomly dropping layers during training can actually
improve generalization and reduce overfitting, suggesting that not all layers are equally
essential. Similarly, (52) found that skip connections may lead to certain layers being
under-trained or effectively bypassed altogether. More recently, studies have uncovered
significant parameter redundancy in large-scale foundation models, particularly in their
deeper layers, indicating that much of the model capacity may remain unused (13).

These findings suggest that despite their empirical success, residual-style architec-

tures may suffer from inefficient depth utilization and parameter usage that can poten-
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1.2 Contributions

tially harm the generalization capabilities of the model. In this work, we take a step toward
addressing this gap by proposing Auto-Compressing Networks (ACNs), which leverage
architectural bias to alter training dynamics and promote efficient and adaptive depth
usage, based on the task at hand, throughout learning. Starting from a standard feedfor-
ward neural network (FFN), we introduce long connections from each intermediate layer
(including the input embedding) to the output, which are summed to form a multi-path
architectural variant of Residual Networks. By analyzing the resulting gradient dynam-
ics, we uncover implicit layer-wise training characteristics, where layers are dynamically
utilized throughout learning, and information naturally concentrates in a subset of the
network’s layers. We refer to this behavior as Auto-Compression. This mechanism en-
ables ACNSs to learn compressed representations that offer practical advantages, including
increased robustness to noise, improved data efficiency, and reduced catastrophic forget-
ting in continual learning scenarios. Across diverse tasks, ACNs demonstrate substantial
architectural compression—akin to synaptic pruning in biological networks, though re-
alized in a layer-wise manner—while maintaining strong generalization. Notably, they
match or exceed the performance of Residual Networks, despite using significantly fewer

parameters.

1.2 Contributions
The main contributions of this thesis are the following:

e We propose and investigate, both theoretically and empirically, a neural network
architectural modification in connectivity patterns, termed Auto-Compressing Net-
works (ACNs)—a variant of standard feedforward and residual networks. By ana-
lyzing the distinct training dynamics introduced by this modification, we uncover
a unique property we coin as auto-compression: the ability of a network to organi-
cally compress information into a subset of its layers during training with gradient

descent, through architectural design alone.

e We provide a detailed analysis of the gradient dynamics of ACNs, along with residual
and feedforward networks, shedding light on their distinct behaviors and arguing
that different connectivity patterns result in unique training regimes that drive dis-

tinct learned representations.

e We provide an extensive literature review of prior work on connectivity patterns in
neural networks, including variations of short- and long-range connections, and
broader efforts that introduce multiple information pathways through skip connec-
tions—challenging the traditional paradigm of densely layered, short-range connec-

tivity in standard feedforward architectures.

e We implement ACNs in fully connected and transformer-based architectures, finding
that they match or outperform residual baselines, while 30-80% of top layers effec-
tively become redundant as information concentrates in the lower layers. Notably,

ACNSs are hardware-friendly and require no specialized software.
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e We show that ACNs learn representations that are more robust against noise and

generalize better in low-data regimes compared to residual architectures.

e We argue that auto-compression offers a natural pathway to continual learning
by preserving unused parameters for new tasks and utilizing different parameters
for different tasks. We empirically validate this by showing that both naively FT
or coupling ACNs with a well-know regularization based CL technique significantly

outperforms Residual Networks in forgetting.

e We demonstrate that regularization-based approaches (relying on intermediate
losses) that try to compress information into a subset of the full network’s lay-
ers are highly sensitive to hyperparameter tuning and weaker at transfer learning,

compared to ACNs.

e We pair ACNs with widely-used baseline pruning techniques, demonstrating that
their organically compressed representations significantly amplify the effectiveness
of traditional compression methods, achieving superior levels of sparsity compared

to residual architectures.

1.3 Outline

The rest of this thesis is organized as follows:

e Chapter 2 introduces fundamental concepts and definitions from Machine and Deep

Learning that support the remainder of the thesis.

e Chapter 3 presents the historical development and core ideas of Representation
Learning, emphasizing the importance of learning robust representations for ma-

chine learning algorithms.

e Chapter 4 explores Multi-Path architectures, such as Residual Networks. We dis-
cuss their motivation, historical evolution, and various design directions. The chap-
ter concludes by highlighting some limitations of Residual Networks, which motivate

our proposed approach.

e Chapter 5 introduces the main contribution of this thesis: a novel architectural
variant called Auto-Compressing Networks. We describe the architecture, provide
theoretical analysis comparing its dynamics to Feedforward and Residual Networks,
and present empirical results demonstrating its effectiveness and unique advan-

tages.

e Chapter 6 concludes the thesis by discussing biological inspirations and key dif-
ferences from Residual Networks. We summarize our findings, discuss limitations,

and propose future research directions.
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Chapter E

Machine Learning

2.1 Introduction

Machine Learning is a sub-field of Artificial Intelligence. According to Murphy (16)
"we define machine learning as a set of methods that can automatically detect patterns
in data, and then use the uncovered patterns to predict future data, or to perform other
kinds of decision making under uncertainty (such as planning how to collect more data!)".
In essence, machine learning is the science of learning from data.

In its early stages, the field faced several limitations that hindered its widespread adop-
tion. These included limited computational power, scarcity of large datasets, and a lack
of scalable algorithms capable of learning from complex data. As a result, much of early
artificial intelligence research focused on rule-based systems, where expert knowledge
was encoded manually through "if-then" rules. One prominent example of this approach
is ELIZA (73), an early natural language processing program that mimicked conversation
through scripted responses without any real understanding or learning capability.

As compute and data became more available, traditional machine learning systems
started appearing, typically relying on handcrafted features, domain-specific heuristics,
and statistical models. These approaches required significant human expertise to en-
gineer representations and often involved in-depth inspection of the problem domain.
Researchers, in effect, were designing the solution architecture manually—limiting the
system’s ability to generalize and scale, especially in high-dimensional or ambiguous
data environments. However, this paradigm began to shift with the advent of neural
networks, a class of models inspired by the structure and function of biological neural
systems. Instead of manually specifying the solution logic, handcrafting and engineering
features, neural networks learn to map directly inputs to outputs through exposure to

data—implicitly uncovering patterns from examples, utilizing them for future predictions.

2.2 Types of Learning

Machine Learning can be categorized into different paradigms based on the nature of
the available data and the presence or absence of feedback signals during training, as

well as the form that such feedback may take.
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2.2.1 Supervised Learning

In the supervised learning (16) setting, a dataset D is provided, consisting of input-
output pairs:

D = {(x1.y1). . ... (Xn. Yn)}-

Each x; typically represents a D-dimensional input feature vector (though in general, it
can be a more complex structure), and each y; is the corresponding ground truth label or
target output.

If y; belongs to a finite set of categories, the task is known as classification, where the
goal is to assign each input x; to a class label y;. On the other hand, if y; is a real-valued
quantity (often a K-dimensional vector), the task is referred to as regression.

In supervised learning, the objective is to train a model using a training algorithm to
learn the underlying mapping from inputs to outputs—that is, to accurately predict y;
given the corresponding x;. We assume that each pair (x;, y;) is drawn from an unknown

target function f*, such that:

yi = f(x), Yie{l,...n}

This function f* represents the true mapping that the model aims to approximate. For
example, in a classification task, f* is the function that assigns each input to its correct

category.

2.2.2 Unsupervised Learning

In the unsupervised learning (16) setting, a dataset D is provided, consisting of inputs
only:

D={xy,...,x}.

Each x; represents an input feature vector, but in this case, there are no associated
labels. Unlike supervised learning, we are not given input-output pairs that can guide the
model to learn a mapping. Instead, the task is to discover, without supervision, underlying
patterns, structures, or regularities within the data. This setting is inherently more
abstract than supervised learning, as there are no ground truth labels to evaluate or guide
the model’s output. As a result, unsupervised learning requires alternative strategies to
uncover hidden structures—such as clustering or dimensionality reduction—with the aim

of understanding, explaining, or organizing the data in a meaningful way.

2.2.3 Reinforcement Learning

In reinforcement learning (17), feedback is provided alongside input features, but
unlike supervised learning, it does not take the form of explicit correct outputs (such as
the correct category). Instead, the feedback is weaker and indirect—typically indicating
only whether the model’s output was correct or not. The challenge there is to interpret

and use this limited signal effectively, so that the model gradually learns, through trial
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(producing outputs) and error (receiving the feedback signal), to produce outputs that

lead to positive feedback more consistently and efficiently.

2.3 Parametric vs Non-Parametric Models

A broad distinction among machine learning models can be made based on whether
they feature a fixed number of parameters-—referred to as parametric models—or a num-
ber of parameters that grows with the amount of training data—known as nonparametric
models (16). Parametric models are typically faster and more efficient to use (constant
complexity as a function of the training set size), but they come with the drawback of
making stronger assumptions about the underlying data (e.g., the target function f*).
In contrast, nonparametric models can model a wider range of functions, however, they
often become computationally expensive for large datasets, as the number of parameters
can grow significantly with the size of the data.

Parametric models are designed by embedding certain assumptions about the under-
lying data into the model’s parameters—assumptions commonly referred to as inductive
biases. These biases define different families of models, each with distinct capabilities
and characteristics, providing practitioners with a range of options tailored to the specific
nature of the problem at hand. A fundamental distinction among these model families
lies in whether the model’s output is a linear or non-linear function of the input. This
distinction significantly impacts both the expressiveness of the model and the training
algorithm used. Linear models are generally simpler and easier to train, but they are lim-
ited in the kinds of patterns they can capture. Non-linear models, on the other hand, are
more powerful and flexible, capable of capturing complex relationships, but they typically

require more sophisticated training procedures.

Why nonlinear transformation of the input? A classic and insightful example that
motivates the use of non-linear transformations is the XOR problem. Consider a binary
classification task where the input vector x = (x;,x) € {1, 1}> and the label is defined
as:

y=x1 DX,

where @ denotes the logical XOR (exclusive OR) operation. The four input-output pairs
are:
(-1,-1)—-»0, (-1,1)->1, (1,-1)—>1, (1,1)—>0.

This problem is not linearly separable in the input space, as no straight line can separate
the points with label 1 from those with label O (see Figure 2.1 (left)), meaning that we
cannot find values for & that solve the problem. However, if we introduce a non-linear

transformation, for example:

P(x) = (x1, X1 - X2),

we effectively map the data into a different feature space where a linear classifier can now

separate the two classes, as shown in Figure 2.1 (right).
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Figure 2.1. The XOR problem in the original input space (left) and in a transformed feature
space (right), where it is linearly separable.

2.4 Training

Training is the process of learning the parameters of a parametric machine learning
model, based on a given dataset D. Two core components are central to this process: the

loss function and the training algorithm.

Loss Function A loss function defines the task that the model is intended to solve and
quantitatively measures how well the machine learning model performs on it. For exam-
ple, in supervised learning, it measures the discrepancy between the model’s predicted
output and the ground truth label. It is referred to as a function because it takes as input
both the model’s prediction and the target output, and returns a value indicating the
quality of the prediction. The term loss reflects the idea that the function quantifies how
much the model "loses" or underperforms relative to the ideal case, where all predictions
perfectly match the ground truth labels and the loss is zero. The loss function plays a

central role during training, as it defines the objective that the model seeks to minimize.

Training Algorithm While the loss function quantifies the model’s performance and
serves as a kind of "progress bar" during training, it does not by itself specify how to adjust
the model’s parameters to improve that performance—that is, to further minimize the loss.
This is the role of the training algorithm, which provides a set of rules or equations that
determine how each parameter should be updated in order to minimize the loss function
effectively.

These two components, along with the model family (e.g., linear or non-linear models),
are deeply interconnected. The choice of model family influences the properties of the
loss function (such as convexity), which in turn determines the nature of the training
algorithm used to minimize it. Two broad categories of training algorithms arise based on
these properties: closed-form (or global) solutions and iterative optimization methods.

In closed-form solutions, one can derive an explicit analytical expression that directly

specifies the optimal value of each parameter to minimize the loss function. This is often
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possible when the model is linear and the loss function is convex. In contrast, when
using non-linear models, the resulting loss function is typically non-convex and does not
permit a closed-form solution. In such cases, training relies on iterative optimization
methods—most commonly gradient-based approaches like gradient descent—where the
update rules specify how each parameter should be adjusted incrementally based on the
gradient of the loss with respect to that parameter. These updates are repeated until the
loss is sufficiently minimized.

While convex optimization converges, in theory, starting from any initial parameters
gradient descent applied to non convex loss functions has no such convergence guarantee

and is sensitive to the initial values of the parameters.

2.5 Generalization, Overfitting and Regularization

The central goal of any machine learning algorithm is to perform well on newly in-
troduced, unseen inputs. In the context of supervised learning, this means that after
training on a given dataset D, the model should be able to make correct predictions for
an unseen input x’, where x’ ¢ D. This indicates that the model has successfully learned
the underlying mapping from inputs to outputs, i.e., it has approximated the function f*
such that y = f*(x).

To evaluate this capability, practitioners typically reserve a separate dataset Diegt,
containing input-output pairs drawn from the same true distribution as the training
data. This test set is not used during training and serves as a proxy for assessing the
generalization ability of the model—its capacity to perform well on unseen data.

Why not evaluate performance solely on the training set? The key issue is that the
model has already seen the training data during the learning process and may have mem-
orized it, especially if the model is highly expressive (consisting of a lot of parameters)
and/or the data are sparse (so a trivial solution can be easily found). In such cases,
the model may achieve very low training error without actually learning meaningful ab-
stractions or rules that generalize beyond the training set. Consequently, although the
model performs well on D, it may perform poorly on Dy, revealing that it has learned a
function f that diverges significantly from f* (outside of D). This phenomenon is known
as overfitting—when a model fits the training data too closely and fails to generalize to
new inputs.

A common technique to prevent overfitting and improve generalization is regulariza-
tion, which involves introducing constraints on the model’s parameters. The core idea
is to discourage the model from learning trivial or overly complex solutions that simply
memorize the training data, and instead guide it to utilize its parameters in a way that
captures meaningful abstractions from the data. These constraints typically act as priors
that promote certain desirable properties—such as sparsity or low parameter norms—that
have been empirically shown to enhance generalization. Regularization thus serves as a
form of inductive bias, steering the learning process toward solutions that are more likely

to generalize well to unseen data.
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2.6 Neural Networks

Neural networks are among the most prominent machine learning models today,
playing a key role in the rise of the field and serving as the foundation of modern
Deep Learning. Inspired by the structure of the brain—specifically biological neural net-
works, which are responsible for learning and organizing information, among others,
in the brain—researchers introduced Artificial Neural Networks (ANNs) as computational
analogs (18; 19). ANNs are composed of nodes (also called neurons) and weighted connec-
tions between them, organized into layers. In their simplest form, known as feedforward
networks, neural networks are structured as directed acyclic graphs through which input
features are passed and progressively transformed by two core mechanisms: weighted
sums and non-linear activation functions. These transformations are applied layer by
layer, ultimately producing the network’s output.

At their core, Artificial Neural Networks (ANNs) are parametric machine learning mod-
els, where the parameters—typically denoted as 8—correspond to the weights of the con-
nections between neurons. These parameters are learned from data and adjusted through
training, based on a training algorithm, to approximate an underlying function of the data,
i.e. f =f(x;8). In a supervised learning setting, for example, neural networks are trained
to approximate the target function f*, based on the given dataset D. The goal is to learn
the parameters 8 such that, for a given input x;, the network’s output {j; = f(x;; 8) closely
matches the true output y; = f*(x;). In other words, the training process adjusts the
parameters 9 so that the model can accurately produce the correct output (i.e., match the
ground truth label y;) for each corresponding input x;.

As a simple example, consider a single-layer neural network that receives a d-
dimensional input vector x = [x1,Xa,...,Xq]- The network first computes a weighted
sum of the inputs, adds a bias term, and then applies a non-linear activation function

¢(-) to produce the final output:

d
y=S(x) = 4»(2 B + b),
i=1

where §; are the learnable weights, b is the bias term, and ¢ is a non-linear activation

function such as ReLU, sigmoid, or tanh. Using vector notation, this can be written as:
y=50) = @@ x+b).

2.6.1 Training

ANNSs are predominantly trained with gradient-based learning, which iteratively mod-
ifies the parameters 9 of the network in order to improve the predictions of it. This comes
from the fact that ANNs’ power and capabilities come from the introduction of non-linear
functions, thus making most interesting and commonly used loss functions, nonconvex.
The algorithm used to train these models is called Backpropagation (20). In essence, this

algorithm computes the gradients of the loss function with respect to each parameter by
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leveraging the compositional structure of neural networks, thereby deriving the gradient
descent update rules used to iteratively minimize the loss during training. It consists of

two main phases:

1. Forward pass: The input is propagated through the network to produce a prediction.
This predicted output, along with the target label, is passed to the loss function,

which computes a loss value indicating the model’s performance.

2. Backward pass: The loss is then propagated backward through the network, start-
ing from the output layer. Gradients of the loss with respect to each parameter are

computed, layer by layer, and used to update the parameters accordingly.

A key aspect of backpropagation in deep neural networks is that the gradient update
for the parameters of layer | depends on the gradients from layer [ + 1. As a result, the
backward pass must proceed sequentially from the final layer (close to the loss function)

toward the input layer, making the entire process inherently sequential.

2.7 Deep Learning

Deep Learning is a subfield of machine learning that focuses on models with deep
compositional structures—most notably, deep neural networks—to solve complex tasks.
Its popularity surged following a major breakthrough in image classification (i.e. clas-
sifying images into different categories like car or bird), where a deep neural network
significantly outperformed traditional approaches in a benchmark competition (10). This
marked the first compelling evidence that deep neural networks could surpass classical
machine learning methods, which relied on handcrafted features and domain-specific

engineering, and had previously dominated the field.

2.7.1 Deep Feedforward Networks

Deep Feedforward Networks are the simplest form of neural networks with multiple
layers. Each layer consists of neurons that are fully connected to the next one, mean-
ing every neuron is connected to all neurons in the subsequent layer. These networks
are called feedforward because they form a directed acyclic graph through which the
input flows in one direction—forward—being progressively transformed at each layer via
weighted sums and non-linear activation functions, until the final output is produced, as
mentioned previously.

Because of this layered structure, feedforward networks are typically expressed as
compositions of functions. Specifically, each layer i applies a function f @ and for a

network of depth L, the full model is written as:

fx)=fPoflDo...ofM(x).

This can be viewed as the input being gradually transformed into increasingly abstract

representations as it traverses the layers.
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A helpful way to understand the power of these transformations is through the XOR
example discussed earlier. In the raw input space, no choice of parameters 8 could solve
the classification task. However, with a suitable non-linear transformation of the input,
we were able to move to a feature space where the problem became linearly separable.
While such a transformation can be engineered manually for simple, well-understood
problems like XOR, this is rarely feasible in complex, real-world settings. This is precisely
where deep neural networks prove valuable: they automatically learn powerful, non-
linear transformations through their layered architecture. These transformations produce
feature spaces—such as f W(x), f (2)(]‘ ((x)), and so on—where the problem may become

linearly separable, even when that was not possible in the original input space.

2.7.2 The value of depth

But why depth? Theoretically, it has been well established that an ANN with a single
hidden layer containing a sufficient number of sigmoid units can approximate any deci-
sion boundary (74). This foundational result implies that, in theory, shallow networks
have the same representational power as deep networks—that is, they can approximate
the same class of functions.

However, deep neural networks are not just about expressivity; they are motivated
by the principle of hierarchical feature learning. These models, as described before,
build multiple levels of abstraction and compositional representations, where the input
x is successively transformed into increasingly abstract latent features: first into f(M(x),
then f@(fM(x)), and so on, resulting in feature spaces that are better-suited (e.g. more
discriminative in the case of classification) for the task at hand.

Several explanations have been proposed to account for the practical advantages of
depth. It has been both shown that deep networks can represent certain families of
functions much more efficiently—that is, using significantly fewer parameters—than their
shallow counterpart (75). This has been further investigated and proved for the case of
compositional functions (76), and it has been further argued that many real-world prob-
lems can be efficiently solved by compositional algorithms, like deep neural networks (76).

Empirically, shallow networks have been shown to match the generalization perfor-
mance of deep networks only when trained to mimic their outputs in a teacher-student
setup (77). Moreover, it has been observed that, under a fixed parameter budget, deeper
networks tend to generalize better than shallow ones (78).

Another influential line of work (79; 80) has demonstrated that depth, when combined
with more traditional learning techniques such as layer-wise unsupervised pre-training,
can act as a powerful inductive bias for parameter initialization, improving generalization.
Moreover, deep models trained in this manner have been observed to “disentangle” the
underlying structure of the data more effectively—that is, to represent inputs in terms of

underlying explanatory factors that help the model generate accurate predictions.!

'Here we introduce, somewhat briefly, the term explanatory factors, which commonly refers to the latent
causes or generative factors of the observed data. Discovering these factors can significantly aid in solving
the learning problem. For a more thorough discussion, see (21).
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2.7.3 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) (22; 23) are a specialized class of neural net-
works designed for processing data with a grid-like topology, such as images. Unlike
fully connected networks that use dense matrix multiplications, CNNs apply local convo-
lutional filters, meaning that each node is connected only to a local neighborhood of the
input rather than to every other node.

They typically consist of multiple layers, where early layers emphasize local interac-
tions between parts of the image, enabling the network to detect simple spatial, geometric
patterns such as edges or textures. As we move to deeper layers, CNNs progressively in-
tegrate information from larger portions of the input, allowing them to detect increasingly
abstract and semantic features, such as object parts or entire objects. CNNs incorporate
two key inductive biases, inspired by the human visual system and properties of natural

images:

1. Sparsity/Locality of Connections: Neurons are only connected to small, localized
regions of the input, based on the idea that meaningful visual features often arise

from local patterns.

2. Weight Sharing: The same set of weights (i.e., a convolutional filter) is applied
across different spatial locations, enabling the network to detect the same feature

(e.g., a vertical edge) in multiple parts of the image.

By combining these properties with a hierarchical structure, CNNs effectively extract
local spatial features in early layers and progressively build higher-level semantic repre-
sentations in deeper layers. This layered abstraction enables CNNs to learn powerful and
efficient representations for image recognition and related tasks.

Convolutional Neural Networks (CNNs) played a crucial role in the rise of Deep Learn-
ing, as they were among the first neural network architectures to demonstrate strong
performance in pattern recognition tasks—most notably in handwritten digit recogni-
tion (22). Their impact became especially prominent in 2012, when AlexNet (24), a CNN-
based model, won the ImageNet classification competition (25). This was the first time
a neural network achieved such a result in this large-scale visual recognition challenge,
marking a turning point and sparking a renewed wave of research and interest in deep
learning. To illustrate the hierarchical feature learning of CNNs, the authors include in
their paper figures showing some of the filters learned by the first layer of AlexNet. These
filters highlight simple geometric patterns—such as edges and color gradients—that the
network learns to detect in its early layers. Each filter effectively scans different regions
of the image, identifying whether a specific feature (e.g., a vertical edge) is present in that

region.

2.7.4 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) (26; 27) are another class of neural networks, also

inspired by biological observations suggesting recurrent (feedback) connections in the
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brain, designed specifically for processing sequential data, such as language, speech, or
time-series signals. Unlike feedforward networks, RNNs contain cycles in their connec-
tions, meaning that the output of a unit can be fed back into itself, directly or indirectly.
This feedback loop allows the network to retain information from previous steps, effec-
tively creating a form of memory. Typically, they receive input sequences as vectors at
different time steps—for example, feature vectors representing words in a sentence when
processing language.

The key idea is that when processing input at the current time step, the network also
uses a hidden state vector, a context vector, that summarizes information from all previous
time steps. This context vector acts as context, influencing predictions at later points in
the sequence. This temporal feedback and memory mechanism distinguishes RNNs from
feedforward and convolutional networks, which lack such a notion of sequential context.
Importantly, the length of this context is not fixed; the hidden state can, in principle,

carry information from the very start of the sequence up to the current step.

.

Unfold

Figure 2.2. A graphical illustration of an RNN (figure taken from (1)).

RNNs perform two key operations at each time step by processing the current input
together with the previous context: (1) they produce an output, whose nature varies
depending on the task—for example, predicting the next word or classifying the part of
speech, and (2) they update the context vector, incorporating new information from the
current input to be used in future steps. A graphical illustration of this architecture
is shown in Figure 2.2. As described, each input is processed along with the hidden
vector that summarizes past information through recurrent connections. The network
then produces an output and updates the context vector for the next time step.

Another observation and a shared characteristic with CNNs, is that RNNs also use
weight sharing: the same set of weights (denoted as U, W, V in the figure) is applied at every
time step in the sequence. This allows the network to efficiently process variable-length
inputs and learn meaningful abstractions or patterns that generalize across different parts
of the sequence. Finally, it is common for RNNs to consist of multiple layers, especially
when solving complex tasks, to increase their expressivity and representational power.

While RNNs had been the primary choice for sequential tasks, achieving notable suc-
cess in language understanding and generation, they exhibit a key limitation as the length

of the input sequence increases. This limitation arises from the fixed dimensionality of the
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context vector, which constrains the amount of information it can retain. Consequently,
information from earlier positions in long sequences tends to be lost or diluted over time.
The context vector plays a crucial role in sequential processing, as it summarizes relevant
past information essential for understanding dependencies within the sequence. There-
fore, the inability to effectively preserve and access information from distant time steps
can significantly degrade the overall performance of RNNs on long sequences. Despite
the introduction of more sophisticated RNN variants such as Long Short-Term Memory
networks (LSTMs) (28), which incorporate gating mechanisms to selectively write, delete,
and read information from the context vector, significant improvements in long-range
context integration and sequential processing were only achieved with the advent of a

new architecture, discussed in the following section.

2.7.5 Transformers and the Attention Mechanism

Transformers (29) handle long-term dependencies far more effectively than previous
architectures. Since their introduction, they have propelled deep learning to unprece-
dented prominence and have become the foundational architecture behind today’s widely
known large language models, which power assistants and chatbots. At the heart of
the Transformer architecture lies the attention mechanism (30)—a powerful method for
dynamically routing information across different positions in a sequence. This mech-
anism enables the model to capture complex dependencies between inputs at different
timestamps, regardless of their distance from each other.

For each input vector at time step i, the attention mechanism computes a new rep-
resentation y; by attending to all other input vectors X; (for j < i) and aggregating them

according to their relevance to x;. This is typically done in three steps:

1. Scoring: Compute a relevance score between x; and each x;, using a similarity

function such as the dot product (often scaled):

score(xq, Xj) = X; * Xj

2. Weighting: Normalize the scores using the softmax function to obtain attention

weights:
exp(score(x;, X;))

ki €xplscore(x;, Xic))

Qi

3. Aggregation: Compute the output vector y; as a weighted sum of all input vectors,

where the weights reflect the relevance of each input to x;:

yFZayxj

J<i

This process allows each position in the sequence to dynamically integrate information
from the entire history of the sequence up to that point directly, and not through a fixed-

sized context vector.
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A limitation of the basic attention formulation described earlier is that the same input

vector x is used for three distinct purposes:

e To query other vectors (i.e., to look for relevant information),
e To act as a key (i.e., to represent information that others may attend to),

e To serve as a value (i.e., the actual content to be retrieved when attended to).

Using the same representation for all three roles can limit the model’s expressiveness.
To address this, Transformers introduce three distinct learned linear projections of the
input vector, mapping it into separate subspaces dedicated to each role. These projections

are represented by matrices W9, WX, and WV, which transform each input x into:

q= W%, k=WXx, v=w"x

Here, g, Ik, and v are referred to as the query, key, and value vectors, respectively.
Given a sequence of input vectors (e.g., X = [x], X9, ... . x21T), we can compute the

attention output for all positions in a matrix form as follows:

. OK'
Attention(Q, K, V) = softmax \% (2.1)

Vdi
Where:

e Q= XW¥9 is the matrix of query vectors,

K = XWX is the matrix of key vectors,

V = XWV is the matrix of value vectors,

dy is the dimensionality of the key vectors (used to scale the dot product),

softmax(-) is applied row-wise to produce normalized attention weights.

This final formulation enables each position in the sequence to attend selectively to
others, based on content similarity, with greater expressiveness due to the separation of
roles via distinct projections. A graphic illustration of the process is shown in Figure 2.3.

Transformers, therefore, are composed of multiple identical layers—referred to as
Transformer blocks—each of which integrates a self-attention mechanism and a position-
wise feedforward network. These components are augmented with residual (skip) con-
nections and layer normalization to facilitate stable and efficient training of deep archi-
tectures, as illustrated in Figure 2.3. This modular design enables the network to model
complex dependencies and hierarchical representations across sequence elements.

Finally, each Transformer block typically employs multi-head attention, which consists
of multiple parallel attention mechanisms, each with its own set of learned projection
matrices (W9, WK, WV), as illustrated in Figure 2.4. The idea behind this design is to
allow different heads to learn different rules. Each attention "head" learns to capture

potentially distinct patterns or dependencies within the input sequence—for example,
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some heads may focus on syntactic relationships while others learn to capture semantic
associations. The outputs of all heads are then concatenated and linearly projected to

form the final attention output.
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Figure 2.3. A graphical illustration of a Transformer block (figure taken from (2)).
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Figure 2.4. A graphical illustration of Multi-Head Attention (figure taken from (2)).
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Chapter B

Representation Learning

3.1 Introduction

In the previous sections, we introduced the central ideas of machine learning, includ-
ing the different types of learning, the goal of learning, and how it is typically performed.
As discussed, machine learning is fundamentally the science of learning from data. A
crucial aspect of this process is how data are represented. For example, in the XOR
problem, we observed that using the raw input features led to failure, whereas apply-
ing a well-chosen non-linear transformation—based on insights into the structure of the
data—enabled a successful solution. This illustrates that the performance of machine
learning models is highly dependent on the quality of the data representation, or fea-
tures. This raises a fundamental question: what constitutes a good representation of the
data, and more importantly, how can we discover such representations in a general and

automated manner?

To formulate the problem more concretely, we adopt the perspective of supervised
learning. We begin with linear models and gradually extend to neural networks and deep
representations. As discussed earlier, the goal of supervised learning is to learn a function
y = f(x; w), where f belongs to a family of functions parameterized by learnable weights
w. In the simplest case of linear models, we have y = w'x, representing the family of
linear decision boundaries. However, this family has limited representational capacity
and can only solve linearly separable classification problems. To increase expressivity,
we can introduce a non-linear transformation ¢(x) of the input, leading to the model
y = w'g(x). In this formulation, ¢(x) defines a new set of features. As seen in the
XOR example, identifying an appropriate non-linear transformation can map the problem
into a space where it becomes linearly separable, allowing effective learning using simple
linear models. In (21), the authors hypothesize that good representations can effectively
disentangle the underlying explanatory factors of variation in the data. In simpler terms,
we can postulate that good representations are the ones that makes learning the task at
hand easier. That is, they can reveal meaningful patterns or structure inherent in the
data that are useful for solving the target task. This perspective aligns with the XOR
example, where an appropriately chosen transformation exploited the structure of the
input and revealed a space in which the problem became trivial to solve. That also means

that the choice of representation will usually depend on the target task.
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Feature Engineering While in this simpler case we were able to identify an effective
representation through direct observation and intuition, this approach does not scale to
complex, high-dimensional real-world problems. As such, traditional machine learning
pipelines trying to tackle these complex, real-world problems, were often requiring signif-
icant domain-specific knowledge and expertise. Practitioners would spend considerable
effort analyzing data and designing handcrafted representations tailored to the specific
task. This process, known as feature engineering, involved constructing pre-processing
steps and data transformations after carefully studying the underlying nature of the prob-
lem, in an effort to discover representations suitable for the task.

Although feature engineering enabled many early successful applications across var-
ious domains, it has several limitations. It is labor-intensive, requires deep problem-
specific insight, and is difficult to generalize across different domains. More importantly,
it exposes a fundamental limitation of traditional learning algorithms: their inability to
autonomously extract and organize meaningful abstractions from raw data. Instead,
they rely heavily on human-crafted features to operate effectively, a reliance that hinders
scalability, robustness, and cross-domain generalization—qualities.

At a more conceptual level, as argued in (21), truly intelligent systems must go beyond
surface-level pattern recognition and strive to understand the world in a deeper, more
structured manner. This form of understanding can only emerge if a system is capable
of identifying and disentangling the underlying explanatory factors that give rise to the
observed data. In other words, intelligence involves uncovering the latent causes and
abstract concepts that are hidden within the raw, low-level sensory inputs—much like
how humans perceive and interpret their environment. Learning such representations is
not merely a technical convenience but a fundamental prerequisite for developing robust,

generalizable, and human-like learning systems.

Learning Deep Representations The reliance on human-designed feature engineering
changed significantly with the rise of deep neural networks. Instead of depending on
hand-crafted features and manually defined data representations, deep networks are
capable of learning these representations ¢ directly from the data. This process is guided
only by a few general and simple inductive biases introduced by researchers. In this
setting, the model takes the form

y=w'o(x) =w @o(x;9),

where the representation function ¢ is parameterized by 8 and learned jointly with the
weights w during training. This formulation is quite general, allowing us to transition
from simple models—where the function family ¢ is limited in expressiveness—to highly
complex models with rich representational capacity. Additionally, it is flexible in terms of
incorporating human prior knowledge, as any desired inductive biases or domain-specific
assumptions can be encoded directly into the design of ¢.

As an example, we can view deep feedforward networks for supervised classification as

performing a form of representation learning. Typically, the final layer of such networks
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is a simple linear classifier, which we can denote as w. The preceding layers are respon-
sible for learning a transformation of the input into a new representation that makes
classification easier, i.e. go from x to ¢(x; 8). Because the entire network is trained using
a supervised objective, the hidden layers—especially those closer to the output—tend to
learn representations that progressively disentangle the underlying structure of the data.
As aresult, classes that are not linearly separable in the original input space may become
linearly separable in the space defined by the top hidden layers. In essence, this mirrors
the same approach we followed in the XOR problem: transforming the input into a space
where the task becomes linearly separable. However, in the case of deep neural networks,
this process is fully automated—the network learns the appropriate transformation of the

input on its own, effectively discovering a useful representation for the task at hand.

Disentangling Representation and Task Learning While the previous example focused
on the supervised learning setting, deep representations can also be learned in a purely
unsupervised manner. In this case, the goal is to uncover patterns and meaningful
abstractions inherent in the data—often by attempting to model the underlying data dis-
tribution itself. Once such representations are learned, they can be used to a variety
of target tasks involving the same input domain. These tasks can then be learned with
minimal supervision, typically requiring only a small number of labeled examples to adapt
the learned representations to the specific objectives.

The core hypothesis is that learning data representations and task-specific mappings
can be effectively decoupled. In the framework y = w’ ¢(x; §), we can separate the learning
process into two complementary phases: first learning the representation function ¢(x; 8)
to capture the underlying structure and patterns in the data, then learning the task-
specific mapping w. The key insight is that once the model has learned to organize
and understand the intrinsic structure of the data through 8, only a small number of
labeled examples are needed to learn the task-specific parameters w. This is because
the representation ¢(x; ) already encodes rich, generalizable features that can be readily
adapted to target tasks through simple transformations. This decoupling is particularly
powerful because learning good representations 8 from large amounts of unlabeled data
provides a strong foundation that significantly reduces the annotation requirements for
downstream tasks.

In the upcoming sections, we discuss why deep neural networks are able to learn
these useful representations, presenting hypotheses about the role of inductive biases
embedded in their design, the training algorithms and objectives employed to optimize
these representations, and finally how such general representations can be effectively

utilized across a variety of downstream tasks.

3.2 Greedy Layer-wise Pre-training

Historically, one of the earliest successful and well-known cases of deep represen-
tation learning was unsupervised pre-training. In the early development of deep neu-

ral networks, training all layers jointly using a single objective often proved ineffec-
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tive. A breakthrough approach that emerged was greedy layer-wise unsupervised pre-
training (31; 32; 81), which became one of the first demonstrations of how decoupling
representation learning from task-specific learning could be effective.

The core idea involves training the deep network one layer at a time in an unsupervised
manner: at each step, a single layer l is trained with an unsupervised objective, to extract
useful features from the output of the previously trained layers, while the parameters of all
preceding layers are frozen (i.e., not updated). This unsupervised phase allows the model
to learn hierarchical representations that capture the underlying structure of the data.
After pre-training, a second phase known as supervised fine-tuning follows. In this step,
a classification head is placed on top of the final hidden layer and trained using labeled
data to solve a specific task. Fine-tuning can involve updating only the parameters of
the classification head or jointly optimizing the entire network. This two-stage training
process helped overcome optimization difficulties and demonstrated the value of learning
general-purpose representations prior to task-specific learning.

But why does this two-stage learning procedure work? The authors of (80) directly
address this question, offering arguments supported by empirical evidence. They pro-
pose that greedy layer-wise unsupervised pre-training acts as a form of regularization,
effectively guiding the model parameters toward regions of the parameter space that are
more constrained and structured. This resembles the role of traditional regularization
techniques, which discourage overfitting by limiting the model’s capacity to fit arbitrary
patterns in the data. More importantly, they argue that unsupervised pre-training leads
to parameter configurations that are often (the cases that it is successful ) well-suited for
supervised fine-tuning—provided that the features learned from the data, i.e., learning a
function f(x), are relevant to the downstream supervised task. In the paper, they formu-
late it from a probabilistic perspective, postulating that this unsupervised pre-training is

useful for supervised fine-tuning when "learning P(x) is useful for learning P(y|x)".

3.3 Joint Supervised Pre-training and Transfer Learning

Following the success of unsupervised pre-training, a parallel yet conceptually dis-
tinct approach emerged: supervised pre-training followed by transfer learning. Rather
than relying on unsupervised objectives to initialize deep networks, this method lever-
ages large labeled datasets—such as ImageNet in vision (82) or SNLI in text (83)—as a
source of supervision for learning general-purpose representations. In contrast to greedy
layer-wise schemes, these models are trained end-to-end from the outset using standard
supervised training objectives, learning features that not only support the source task
but also transfer effectively to new downstream tasks.

The core intuition is similar: decoupling representation learning from task-specific
learning. By first training on a broad and diverse labeled corpus, models acquire a strong
prior over useful input structures, which can then be refined for target tasks with limited
supervision. This transfer typically takes the form of fine-tuning, either updating all
model parameters or just a subset, depending on data availability and task similarity. In
vision, pre-training on ImageNet followed by fine-tuning on CIFAR-10 (5), Pascal VOC (84),
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or medical imaging benchmarks (85) became a widely adopted pipeline. In NLP, similar
gains were observed by fine-tuning models trained on entailment or sentence classification
tasks (33; 86). Although the reliance on labeled data limited scalability compared to
emerging self-supervised methods, supervised pre-training laid crucial groundwork for

the transfer learning paradigm that underlies many modern systems.

3.4 Self-Supervised Learning

Finally, Self-Supervised Learning emerged as a powerful form of unsupervised learn-
ing that leverages unlabeled data to generate pseudo-labels for training. This approach
effectively addresses one of the fundamental limitations of traditional supervised learning:
the scarcity and high cost of labeled data.

The convergence of three technological advances in the late 2010s catalyzed an explo-
sion in self-supervised learning capabilities. First, the availability of massive amounts of
unlabeled data from the internet provided the raw material needed for these hungry al-
gorithms. Second, the proliferation of powerful GPUs enabled the computational muscle
required to process datasets at unprecedented scales. Third, and perhaps most crucially,
the Transformer architecture proved exceptionally well-suited for parallel processing and
capturing long-range dependencies in sequential data.

BERT (Bidirectional Encoder Representations from Transformers) (87) was the first
major breakthrough in self-supervised learning for natural language processing. It
demonstrated that pre-training on large-scale unlabeled text corpora using the masked
language modeling objective—where the model learns to predict randomly masked tokens
based on their surrounding context—could yield a single model that achieves state-of-the-
art performance across a wide range of NLP tasks with minimal task-specific fine-tuning.
This highlighted the power of representation learning on unlabeled data and its strong
complementarity to downstream tasks, as only a small amount of labeled data is required
for fine-tuning. A key factor in BERT’s success was its bidirectional attention mechanism:
each token attends to all other tokens in the input sequence, both preceding and suc-
ceeding. This allowed BERT to capture rich contextual dependencies from both directions
simultaneously, resulting in deeper and more informative representations.

Building on this foundation, the GPT (Generative Pre-trained Transformer) series (35)
showed the remarkable potential of autoregressive language modeling at scale. By simply
training transformers to predict the next word in a sequence across internet-scale text
corpora, these models developed increasingly sophisticated language understanding and
generation capabilities from completely unlabeled data. Again, minimal supervised fine-
tuning can lead to effective downstream task adaptation.

The core idea behind these models, pre-trained using self-supervised learning algo-
rithms, is to act as generalists—learning to understand and represent the input modality
(in this case, language) in a way that downstream tasks can leverage with minimal task-
specific tuning. By capturing broad, reusable features during pre-training, these models
provide a strong foundation for a wide range of target applications. Finally, it is worth

noting that these self-supervised learning strategies have been successfully extended to
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other modalities, such as vision (36), where the core idea remains the same: learning
general-purpose visual representations from unlabeled data that can be effectively trans-
ferred to a variety of downstream tasks, such as image classification or object detection

in an image.
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Chapter ﬂ

Multi-Path Neural Network Architectures

4.1 Introduction

We have previously discussed the importance of representations in machine and deep
learning, as well as how specific algorithms and architectures can provide better condi-
tions for learning. In particular, incorporating appropriate inductive biases can signifi-
cantly enhance the efficiency and effectiveness of deep neural networks. In this chapter,
we present a historical overview and discussion of the evolution of connectivity patterns
in neural networks, focusing on the connectivity between layers and the emergent infor-
mation pathways throughout the network!. The central theme is how information flows
from input to output and how gradients are propagated backward during learning.

The evolution of connectivity patterns has played a pivotal role in the progress of deep
learning. For several decades, feedforward neural networks dominated the field, estab-
lishing themselves as the prevailing paradigm through their conceptual simplicity and
extensive study. In these conventional architectures, information flows uni-directionally
from input to output layers through sequential transformations, with each layer’s ac-
tivations serving as inputs to the subsequent layer. Essentially, each layer is directly
connected only to the next layer. A fundamental challenge in training deep neural net-
works using gradient descent is the vanishing or exploding gradient problem, where gra-
dients decay or increase exponentially as they are backpropagated through many layers
(37; 38). This can happen because essentially both forward and backward signals are
propagated through sequences of matrix multiplications, and so their magnitudes can
diminish to near zero or explode, depending on the values of these matrices, either case
leading to unstable training. This limitation significantly constrained the practical depth
and thus the representational capacity of feedforward networks for many years, until the
introduction (in a practical and efficient implementation) of a new family of multi-path
architectures, featuring skip connections between layers that create multiple paths for
information to flow inside the network. While multi-path network architectures date back
to the 1980s, with early work exploring cascade structures in fully connected networks
trained layer by layer to improve training stability (88), it was not until the mid-2010s

that these architectures gained prominence and began to dominate the field.

'This differs from connectivity between inputs in a sequence, as in RNNs, though related formulations
have been explored in the literature.
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4.2 Shortuct Connections

4.2.1 Highway Networks

Highway networks (39) were among the first practical multi-path architectures. They
introduced gated bypass paths that allowed for effective training of networks with hun-
dreds of layers. Specifically, these architectures modified the input-output relationship

of a layer from the standard form y = F(x) to a more general formulation:
y=T():F(x)+ C(x) - x,

effectively introducing additional signal pathways—termed information highways—to fa-
cilitate the flow of both forward and backward signals. The motivation stemmed from
the challenges of training deep neural networks, both in terms of optimization (89) and
vanishing gradients problem. By allowing information to flow through the network with-
out modification, these pathways aimed to mitigate these issues. In practice, they set
C=1-T, where:

T = o(Wix + br).

Empirical results from the paper, demonstrated that while shallow feedforward net-
works trained effectively, deeper plain architectures struggled. In contrast, highway
networks exhibited significantly improved training performance with increasing depth,
achieving lower training losses. More importantly, this translated to improved generaliza-
tion: deeper highway networks achieved lower test errors, underscoring the conclusion
that depth is indeed beneficial for generalization—provided the architecture supports ef-

ficient training.

4.2.2 Residual Networks

In a similar spirit, the authors of (40) found that deeper convolutional neural networks
(CNNs) not only suffer from a decrease in generalization performance, often due to overfit-
ting, but also experience a decrease in training performance, underpinning once more the
inherent optimization difficulty of training deep neural networks. To address this, they
introduced residual connections (or identity mappings), proposing that learning residual
functions relative to identity mappings simplifies optimization, forming Residual Networks
(ResNets). Essentially, Residual Networks are a subset of Highway Networks, removing

the learned gating functions and adopted direct identity skip connections, resulting in:
Yy = x + F(x).

This simpler form, introduced in this work without the addition of extra trainable
parameters, enabled the training of very deep neural networks with strong generaliza-
tion performance and has since come to dominate modern deep learning architectures.
Several studies have investigated the advantages of residual connections over standard

feedforward architectures, particularly in the context of training dynamics and signal
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propagation.

Specifically, (42) demonstrated that in deep feedforward networks, the correlation of
gradients decays exponentially with depth, resulting in gradient patterns that resemble
white noise—a phenomenon they term the shattered gradients problem. They argue that
this phenomenon makes training difficult and unstable since commonly used optimization
techniques assume that gradients vary smoothly in the parameter space.In contrast, they
show that introducing residual connections mitigates this issue, resulting in sublinear
decay in gradient correlation , offering an insight into why residual networks can be
trained more effectively as depth increases.

In a complementary line of work, (41) investigate the effect of residual connections
on the loss landscape of neural networks. Their findings reveal that: (1) increasing net-
work depth significantly impacts the geometry of the loss surface, introducing high levels
of non-convexity, and (2) incorporating residual connections helps to smooth the land-
scape, reducing this non-convexity commonly observed in deep feedforward networks. An
additional insight from their study is the empirical correlation between the geometry of
the loss landscape and generalization performance: flatter, less severe non-convex land-
scapes tend to correspond to lower test error. This offers further support for the argument
that residual networks not only improve trainability but also lead to better generalization.

Finally, (43) provided both theoretical analysis and empirical evidence showing that
the skip connections in Residual Networks promote improved norm preservation of for-
ward and backward signals. This property leads to more robust and stable backprop-
agation, effectively solving the vanishing gradient problem. Interestingly, their results
indicate that increasing network depth further enhances this norm preservation effect.
This work offers a complementary explanation for the success of residual connections and

highlights their crucial role in enabling the training of deep networks.

4.2.3 Residual Networks as Ensemble of (relatively) Shallow Networks

In (3), Residual Networks are analyzed through the lens of ensemble learning. An
ensemble of neural networks refers to a collection of different models that collectively
contribute to producing the final output. The authors argue that a residual network with
n layers can be interpreted as a collection of 2™ distinct paths of varying lengths, as shown
in Figure 4.1 for 3 layers. At each layer, the signal has the option to either skip the layer
or pass through it, leading to an exponential number of possible paths—or information
highways as discussed earlier.

Despite sharing parameters, these paths behave as an ensemble of dependent sub-
networks, as supported by empirical evidence. This stands in stark contrast to traditional
deep feedforward networks, which offer only a single computational path from input to
output. Specifically, the authors showed that randomly removing or permuting small
subsets of layers has minimal impact on overall performance—a common characteristic
of ensembles, where the degradation of a subset does not catastrophically affect the whole
system. Furthermore, their analysis reveals that most of these paths are relatively shal-

low, with backward gradients frequently vanishing after traversing only a small portion
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of the total depth. This insight leads to the characterization of Residual Networks as

behaving like ensembles of shallow networks.

Building block

Skip
connection

Ji 12 J3

Residual
module

(a) Conventional 3-block residual network (b) Unraveled view of (a)

Figure 4.1. Paths in a Residual Networlk (figure taken from (3)).

4.2.4 Residual Variants

Following the success of Residual Networks, various architectural modifications have
been proposed to further improve efficiency and performance. The core idea is that, in
essence, Residual Networks combine outputs from all preceding layers at layer i through a
static element-wise addition. This fixed form of feature aggregation limits the flexibility of
the network in learning more effective representations. Consequently, several works have
explored more expressive and adaptive strategies for feature fusion, aiming to enhance
representation learning and, ultimately, model performance. To this end, DenseNets
(44) proposed using feature concatenation—rather than addition—to model the input-
output relationships between layers, enabling more flexible and expressive feature reuse.
Similarly, FractalNets (45) introduced a recursive, tree-like architecture that combines
subnetworks of varying depths to enhance feature fusion.

More recent works have explored learned weighted averaging of layer outputs (46),
attention-based fusion across block outputs (48), and denser inter-layer connectivity pat-
terns (47). Other studies have focused on improving the residual pathways directly by
introducing scalar gates or modulation mechanisms in either the residual or main stream,
aiming to boost training stability and representation quality (49; 50; 15; 51). In the do-
main of neural machine translation, researchers have drawn inspiration from both vision
and language architectures to combine information across layers, facilitating richer se-

mantic and spatial propagation throughout the network (90; 91).

4.2.5 Potential Redundancy in Residual Architectures

While Residual Networks, as discussed, offer numerous advantages—such as more
robust training and improved generalization—there remain several aspects that are worth
some further examination and discussion. As highlighted in the section interpreting
Residual Networks as ensembles, these architectures exhibit a notable resilience to layer
dropping and permutation. In (14), it was further observed that dropping subsets of

layers during training can reduce overfitting and improve generalization. In a related
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study, (52) showed that introducing skip connections between layers can lead to parts of
the network being effectively bypassed and under-trained. More recently, research has
revealed substantial parameter redundancy in large-scale foundation models, particularly
within their deeper layers (e.g., (13)).

All these observations can be unified under the perspective that, although resid-
ual architectures facilitate training via multiple signal pathways, these same pathways
can sometimes act as shortcuts that cause certain components to be either underuti-
lized or prone to overfitting—ultimately limiting effective generalization. Supporting this
concern, (15) demonstrated that unscaled residual connections can degrade the quality
of generative representation learning, offering a concrete case where standard (unreg-
ularized) residual connections negatively impact performance. Thus, an open question
remains: can we design alternative architectures that retain the key benefits of Residual
Networks—such as multiple signal pathways and efficient gradient flow—while mitigat-
ing drawbacks such as redundancy and shortcut overuse, effectively resulting in better
representation learning?

In the next chapter, which serves also as the main contribution of this thesis, we take a
step towards answering this question by proposing, analyzing, and empirically evaluating
such an alternative architecture, showing promising improvements and distinct learning

dynamics.
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Chapter E

Auto-Compressing Networks

5.1 Introduction

Despite the breadth of the research, presented in the previous chapter, exploring
different connectivity patterns across domains—with goals ranging from improved expres-
sivity and representation learning to increased training efficiency—mnone of these poten-
tial improvements have achieved broad adoption beyond standard residual connections.
Furthermore, none of these works have explicitly investigated the parameter redundancy
issue that potentially exists in these architectures based on evidence from discussed
prior literature. In this work, we explore an architectural variant where additive long
feedforward connections from each layer to the output replace traditional short residual
connections as shown in Table 5.1 and Figure 5.1, introducing Auto-Compressing Net-
works (ACNs). ACNs showcase a unique property we coin as auto-compression—the ability
of a network to organically compress information during training with gradient descent,
through architectural design alone, dynamically pushing information to bottom layers,
enhancing their representational quality, and naturally revealing redundant in deeper
layers. We theoretically investigate the emergence of this property by analyzing the gradi-
ent dynamics of networks with different connectivity patterns. As illustrated in Figure 5.2
(top), ACNs (right) demonstrate layer-wise training patterns in which early layers receive
significantly stronger gradients during the initial stages of training, in contrast to the
more uniform gradient distribution observed in Residual Networks (left). In the following
sections, we start by presenting a theoretical analysis of the gradient dynamics of ACNs,
along with residual and feedforward networks, shedding light on their distinct behaviors
and arguing that different connectivity patterns result in distinct learned representa-
tions. Next, we implement ACNs in modern architectures and we empirically demonstrate
a broad range of advantages that ACN-learned representations offer compared to resid-
ual or feedforward architectures, including: enhanced information compression, superior

generalization, reduced catastrophic forgetting, and efficient transferability.

5.2 The proposed Architecture

The core idea behind ACNs is to force each layer to produce features that are directly

useful for prediction. In this manner, when the last layers are pruned, earlier layers can
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be used for prediction directly without the need for further fine-tuning. As shown graph-
ically in Figure 5.1, we form ACNs by starting from a generic feedforward architecture
in (a) and adding long connections from each layer directly to the output and summing
them up in (b). During training, information is naturally “pushed" towards the early
layers ultimately allowing the removal of redundant top layers during inference without
performance loss in (c). Concretely, we propose replacing the residual short connections
with long connections, as described in Eq. 5.1 and shown in Table 5.1 for a network of
depth L!:

X = filxi1). y=) % GRY

In ACNs the output of each layer 2 is directly connected to the output of the network,
and thus is directly optimized by the objective function during gradient descent training.
Furthermore, the number of possible shortcuts is equal to the number of layers L. We find
this simplified structure maintains the improved signal flow that shortcut connections
provide, while also introducing the ability to detect potential parameter redundancy in

the architecture®.

V=2
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Figure 5.1. Main concept: (a) Start from a neural network with L layers. (b) Add residual
long connections from each layer to the output of the network and sum them (also remove
any existing short residual connections - if any). During training of the resulting ACN net-
work the majority of the information (shown here as darker vs lighter circles) will naturally
concentrate at the lower layers. (c) You may now safely remove the top (two in our example)
layers during inference without any performance loss.

5.2.1 Gradient Propagation Across Network Architectures

To understand how different neural network architectures behave during training, we

analyze, in this section, their gradient flow characteristics. We examine and compare

'We note that a classification head can be built on top of y.
2Also the embedded input, represented with x, in equation 5.1.
3We note that long connections are a strict subset of the 2° shortcut connections in residual networks.
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the forward and backward pass dynamics of three architectures: traditional feedforward
networks (FFN), residual networks (ResNet), and the proposed auto-compressing networks
(ACN). For clarity and mathematical tractability, we consider linear neural networks of
depth L and derive the equations for the 1-dimensional case (they can be expanded to
N-dimensional inputs).

Notation: x; is the output of layer i, w; is the weight of layer i (the weight used to
construct x;), xp is the input (after a potential initial embedding operation) and yr, yr, ya

is the output for each architecture.

Normalized Gradient Norm across layers during training

Residual Networks Auto-Compressing Networks
© _ © _
s - 0.25 s - 0.25
o0 _ ™ _
S S
- 0.20 - 0.20
oS- oS-
=~ —
o - - o - L
%’ o - 0.15 % o 0.15
— o~ - — o~ -
© - -0.10 © - -0.10
n - v -
1 * 1 I
o - S0.05 - L X
~ - o -JEN N N O I
~ . ——— - N D I
1 10 20 40 60 80 100 1 10 20 40 60 80 100
Epochs Epochs

Incremental Layer Performance Contribution during training

Residual Networks Auto-Compressing Networks

PN e

'
o
©

-0.4

56 7 8 9101112
(=]
[=)]
Layers
56 7 8 9101112
o
=2}

-0.2 -0.2
- -0.1 N - -0.1

10 30 50 100 150 300 10 30 50 100 150 300
Epochs Epochs

Figure 5.2. (top) ACNs vs Residual Networks gradient flow across layers during train-
ing for MLP-Mixer architecture (4) on CIFAR-10 (5), showcasing implicit layer-wise train-
ing and information concentration on the bottom layers for ACNs. On the other hand,
Residual Networks show higher gradient norms (information concentration) in early and
deep layers, while middle layers receive significantly lower gradients (suggesting potential
parameter redundancy). (bottom) ACNs vs Residual Networks incremental performance
contribution across layers during training for ViT architecture (6) on ImageNet- 1K, revealing
auto-compression by gradual layer-wise training in ACNs (task-learning starts_from shallow
layers and gets "pushed” to deeper layers to maximize performance). In Residual Networks,
as shown in the Figure task learning happens in the 2-3 final layers.
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FFN forward pass
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ACN backward pass for weight i
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5.2.2 Emergent Gradient Paths

The forward and backward components: As seen in the previous equations, the

gradient of w; can be generally decomposed in two terms, coined as the forward and the

backward terms.

e The forward term consists of the forward propagated signal up to layer i, essentially

the input embedding transformed as it traverses the layers up to i, and it primarily
governs the stability of the gradient flow (whether the signal vanishes or explodes).
In ACNs and FFNs this term is the same, consists of one path, and its norm typically
decreases in practice as the network depth increases, due to multiplications and
non-linearities (assuming close to zero initialization). In ResNets, the number of
paths included in the component grows as more layers are traversed, since each

layer adds its output to the the residual stream.

The backward term carries the information relevant to learning (coming from the
loss and traversing subsequent layers) and thus, its structure influences the behav-
ior and characteristics of the representations learned by the network during training
with backpropagation. In 1D FFNs, the backward term contains a single path from
the last layer L to the layer i currently being trained. However, for 1D ACNs and 1D
ResNets, both multi-path archiitectures, the backward term consists of L —i+ 1 and
2L~ paths, respectively. It is worth mentioning that the FFN path is a subset of the
ACN paths, which in turn are contained in the ResNet paths, so, for the set of paths

B of the backward term one may write:

Brrn C Bacy C BResnet-

Thus, in this 1D case, the transition from FFNs to ACNs, and subsequently to
ResNets, reflects a progression in the number of effective information paths: from a
single path in FFNs, to a number of paths linear in the number of layers in ACNs, and
finally to an exponential number of paths in ResNets. We will use the notation FG
when referring to the full gradient including all backward paths (the full backward

signal of a layer).
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Arch Connectivity| Forward Propagation Backward (Gradient) Propagation
L i~1
3
FFN Yr = HiLzl W;iXp aiwi = ( 1_[ wk] [ wm)xo
k=i+1 m=1

backward term forward term

L i—1
e
ResNet yr = [TH,(1 + w)xo aiui = ( 1_[ (1+ wk)) (1_[ (1+ wm))xo
k=i+1 m=1
backward term Sorward term
L J i-1
i Ie)
ACN yA=(1+Z{.“=1 [, wj)Xo aiw‘“iz[lJr Z l—l wk] [ wm]xo
J=i+1 k=i+1 m=1
~———
backward term Jorward term

Table 5.1. Connectivity (2D case), Forward and Backward Propagation (1D linear case) for
FFN, ResNet, and ACN architectures.

Decomposition of the backward term: The backward component can be further de-

composed into two distinct terms: one term that captures the propagation of gradients

through the network layers, and another term that corresponds to a direct gradient path

from the output to each layer.

e The gradient paths through the network: In all architectural variants, there is a

dominant component (the majority of paths) that backpropagates information using
the network weights, traversing subsequent subnetworks (subsets of layers). This
component carries the information on how the weights of a given layer should be
adjusted in relation to the following layers, enabling the entire network to reduce
the error. In the above equations, it corresponds to the single backward path in
Eq. 5.4 for FFNs, while for ACNs and ResNets it contains all the paths except for the
direct path "1+" in the backward term of Eq. 5.12 and Eq. 5.8, respectively. We will
refer to this term as the network-mediated gradient or NG. We note that the norm of
this component decreases in ResNets and ACNs as we move to deeper layers, since

the number of paths diminishes.

The gradient path directly from the output: Interestingly, in both ACNs and
ResNets, there is also a path that comes directly from the output, the “1+" com-
ponent in the backward terms. This path exists because, in these architectures,
the output of each layer is directly connected to the final output of the network
through the skip connections. This backward path has been previously explored as
an alternative to traditional backpropagation, with a significant body of work dedi-
cated to it (53; 54). This line of research is referred to as Direct Feedback Alignment

(DFA), and thus we use the term direct gradient or DG to describe this mechanism
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throughout this work. This path carries information on how a layer’s weights must
change so that the output of this layer directly lowers the error. Finally, the DG
path’s contribution is more significant in ACNs compared to ResNets due to ACNs’
linear (rather than exponential) total path count, something that becomes more ap-
parent in deep networks and especially for the training of early layers, i.e., for large
L —i. For example, when training the second layer of a L = 12 layer network, DG is
one of 11 ACN backward paths, while for ResNets the DG is competing with another
127 paths (of the NG term). This further accelerates training of the early layers.

In summary, we can write:
FG = DG + NG.

5.2.3 Implicit Layer-Wise Training in ACNs

Unlike the symmetric forward and backward terms of ResNets and FFNs, ACNs feature
a forward term identical to FFNs for intermediate layers (single path) and a backward
term more similar to ResNets (multiple paths that grow linearly vs exponentially with
depth). This design creates an implicit layer-wise training dynamic, where deeper layers
are trained at a slower rate compared to earlier layers, since they have a weaker forward
component (assuming close-to-zero initialization) and a smaller number of backward
paths.

Main Claim: Enhancing the performance of intermediate layer predictions (through a
strong DGcomponent) coupled with the implicit layer-wise training, as discussed above,
can lead to robust progressive training of the network in a layer-by-layer manner, while
also potentially identifying parameter—whole-layer—redundancy within the architecture,
effectively compressing compressing information into a sufficient subset of layers during
training. The idea is that when training a randomly initialized neural network of depth L,
if the first k layers (that are trained faster) are able to solve the task (minimize the error),
then the network will utilize only them, leaving the remaining deeper layers untrained and
effectively leading to information compression. Thus, we postulate that: 1) a strong DG
component coupled with a weaker feed-forward signal leads implicitly to efficient layer-
wise training, and 2) inadvertently, architecturally-induced layer-wise training results in
a form of structural learning where information is naturally pushed to early layers and
later layers become redundant (effectively identity mappings). We refer to this new class of
networks as auto-compressors since they naturally shed their redundant layers during

backpropagation simply via architectural design.

5.2.4 A Note on Addressing some of Residual Network Limitations through
ACNs

From the analysis conducted on our proposed architecture thus far, it appears that we
are taking meaningful steps toward addressing several of the potential issues of Residual
Networks, raised in the final section of the previous chapter. Specifically: (1) the induced

training dynamics in ACNs promote a form of layer-wise training, where each layer is
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robustly optimized only if necessary. This behavior serves as a mechanism for identifying
and managing parameter redundancy in the initialized network, and may lead to improved
representation learning by ensuring that layers are trained meaningfully when required;
and (2) ACNs retain the multi-path nature characteristic of Residual Networks, thereby
preserving the benefits of having multiple information pathways for both forward and
backward signal propagation—an essential property for effective training in deep neural
architectures.

We now turn our attention to empirically validating these theoretical properties.
Specifically, we aim to investigate how ACNs behave in practice, evaluate their ability
to mitigate parameter redundancy, and assess their capacity to facilitate improved repre-

sentation learning.

5.2.5 A Toy Demonstration

Following the theoretical analysis of gradient dynamics, we first validate our key claims
through a simple demonstration that illustrates the core compression mechanism. Specif-
ically, to demonstrate how ACNs naturally compress information into early layers during
training, we perform a simple toy experiment involving a 1D linear feedforward network
with three layers and weights w;, wy and ws for each layer, respectively. The dataset
comprises pairs drawn from the function y = 2x. We consider two architectures: the first
employs residual (short) connections, while the second utilizes long connections (ACN).
For this toy problem, both the residual and ACN networks should ideally require only a
single layer to successfully accomplish the task, i.e., w; = 1, wy = 0, ws = 0 is the most

efficient solution:

ResNet: yr = (1 + wy)(1 + wo)(1 + ws)x = 2x, (5.13)
ACN: yu = (1 + wy + wiwe + WiWwaWws)X = 2x. (5.14)

We perform this simple training experiment multiple times (N = 1000), each time
generating 1000 examples of input x with values between —10 and 10. Both models
are trained for 300 epochs and the weights are initalized with values around zero either
uniformly in [-1, 1] or following a normal distribution. Fig. 5.3 illustrates the distribution
of learned w; values for both architectures.

For residual architectures in (a) we observe a pretty wide distribution of w, values
centered around 0.26; indeed w; = wy = w3 = 0.26 is a valid solution of Eq. 5.13 . Thus,
in this example, residual networks have the tendency to utilize all layers equally, even
if a sparse solution exists. ACNs, however, typically converge to solutions where w; is

close to 1, allowing correct predictions from the first layer*

. So in this simple example,
long connections in ACNs induce implicit depth regularization, guiding the network toward

sparse solutions.

“Note that initialization plays a crucial role, as w, sometimes converges near —1 for ACNs. Further, the
solution that ACN converges at is w;, = 0.9, w, = 0.11, ws = 0, so it just gets pretty close to the most efficient
solution but it does not achieve perfect compression.
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Figure 5.3. Histogram (1000 runs) of the weight of the first layer w; of a 1D linear
feedforward residual network with three layers solving y = 2x, utilizing either: (a) residual
connections or (b) long connections (ACN).

The careful reader will observe that this behavior arises from the weight asymmetry
in Eq. 5.14, where there are three terms that include w;, two terms with wy and a single
term with ws. In terms of derivative flow, the DG component for each layer is pretty
strong compared to NG. Compare this with the weight symmetric Eq. 5.13, where the NG
component dominates. The residual network naturally converges to the w; = wy = ws

symmetric solution®.

5.3 Experiments

In this section, we move from theoretical analysis and simple demonstrations to im-
plementing auto-compressing networks in modern deep learning architectures. We apply
our approach to state-of-the-art neural network models across diverse tasks and datasets,
demonstrating that the information compression effect observed in our theoretical anal-
ysis manifests consistently in practice. Our experimental validation spans multiple do-
mains and model architectures. We implement ACNs using variants of the Transformer
(29) for language and vision tasks and MLP-Mixer (4) for vision tasks. This allows us to
evaluate our approach on diverse benchmarks including image classification (CIFAR-10,

ImageNet- 1K), sentiment analysis, and language understanding.

Experimental Setup: For ACNs, for each input token, we compute a final output vector
y' (where t is the sequence index) by summing the output representations of all intermedi-
ate layers along with the input embedding, as shown in Eq. 5.1. To generate classification
predictions, we either apply a pooling layer to these vectors for image classification or use

the final representation of the [class] ([CLS]) token for text classification. For a network of

SAnother way to interpret Eq. 5.14 is that we have superimposed four feedforward networks: the identity
network, a single layer, two layer and three layer network. The important tweak here is that their weights
are tied, e.g., w; is common for all network depths, which biases the network towards a shallow solution.
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depth L, making predictions using k intermediate layers involves computing yf( for each
token, which is the sum of intermediate representations up to layer k. This summed
representation is then passed to a single global classification head, which is trained once
and shared across all sub-networks (we do not retrain or create separate classification
heads for each depth configuration). This approach yields L + 1 sub-networks, ranging
from using only the input embedding (the first sub-network) to the full network (the last
sub-network). For example, the network shown in Figure 5.1(c) would be the L — 2 sub-
network (utilizing layers 1 to L — 2), whereas the network in in Figure 5.1(b) would be the
full network (all layers included). When evaluating residual network baselines, we follow
standard practice: to assess the network at depth k, we simply take the output y,tc of the
kth layer as our representation. This provides a natural comparison point to ACNs at
equivalent depths. All other procedures remain the same. In all figures, prediction layer

O refers to the input embedding passed through the classification head for prediction.

5.3.1 Auto-Compression via Direct Gradient Flow

Here, we validate the main claim established in the previous section; that the presence
of a strong DG component coupled with implicit layer-wise training dynamics drives auto-
compression .

We train feedfoward (FFN), residual and auto-compressing variants incorporated in the
MLP-Mixer architecture (4) on CIFAR-10 dataset (5) for 100 epochs. To emphasize the role
of the DG gradient in auto-compression, we also train an ACN variant receiving gradients
only from the long connections (only DG component). This experiment allows us to iso-
late the effects of different gradient components and connectivity patterns on information
compression and overall task performance. From Figure 5.4(left), we observe that among
ACNs, FFNs, and Residual Networks, only ACNs exhibit auto-compression. Moreover,
ACNs utilizing only the direct gradient (DG) still achieve significant auto-compression,
highlighting the importance of a strong DG component to achieve this behavior® and ex-
plaining why FFNs do not exhibit auto-compression, as they lack a direct gradient term
(Equation 5.4). In the case of Residual Networks, we previously argued that the exponen-
tial number of gradient paths substantially diminishes the influence of the direct gradient
(DG) on the overall gradient, one of the key components crucial for auto-compression. To
further illustrate this, Figure 5.4(right) presents the ratio of DG to the full gradient FG
across layers during training for both AC and Residual variants. The results indicate a sig-
nificantly higher DG to FG ratio in ACNs, confirming the increased contribution of direct
gradients in the early layers of auto-compressing architectures compared to residual net-
works and explaining the auto-compression property. Furthermore, from Figure 5.2(top)
we observe that ACNs (right) demonstrate a concentrated gradient pattern with stronger
signals in early layers and stronger patterns of layer-wise learning. Residual Networks
(left) exhibit a more "uniform layer learning" pattern, whereas deeper layers show increas-

ing gradient contribution in later epochs, suggesting task-specific adaptation as training

SACNs with only the DG component under-perform, underpinning the importance of the NG component
for maximizing performance.
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Figure 5.4. (top) ACNs are the only architectural variant that achieves auto-compression.
(bottom) The ratio of direct gradient DG to the total gradient FG in auto-compressing vs
residual architectures. The exponential (vs linear) number of paths in Residual Networks
decreases the influence of DG in the training dynamics of the network compared to Auto-
Compressing Networks.

progresses. Both architectures display distinct first-epoch behavior, with Residual Net-
works showing more uniformity immediately, while Auto-compressing Networks establish
their hierarchical gradient pattern from the start. Interestingly, the pattern observed in
Residual Networks indicates that high gradient norms are primarily concentrated in the
early and deep layers, while middle layers receive significantly lower gradients, suggest-
ing potential redundancy. Overall, this gradient pattern reveals that layer-wise training
dynamics, the other key factor for auto-compression, is absent in ResNets.

In summary, the auto-compressing architecture featuring a strong DG component
along with implicit layer-wise training dynamics pushes information to the bottom layers

of the network, achieving layer-wise structural learning (auto-compression) while main-
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taining strong performance.

5.3.2 Auto-Compressing Vision Transformers
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Figure 5.5. Performance of intermediate layers of AC vs Residual Vision Transformers

trained on ImageNet- 1K.

Next, we evaluate ACNs in the context of transformer architectures by implementing an
auto-compressing variant of Vision Transformer (ViT) (6). We train a Vision Transformer
(ViT) with long connections (AC-ViT) from scratch on the ILSVRC-2012 ImageNet-1K, fol-
lowing the training setup in the original paper. For both models we use 256 batch size
due to memory constraints. AC-ViT converges at 700 epochs, while the Residual ViT
converges at 300 epochs’.

As shown in Fig. 5.5, AC-ViT reaches top performance at only 6 layers while the
vanilla ViT needs all 12 layers to reach similar performance, effectively suggesting that
ACNs can improve inference time and memory consumption without sacrificing performance.
To gain more intuition about the training dynamics and task learning of the two variants,

in Figure 5.2(right) we plot the incremental layer performance contribution (difference in
accuracy of subnetwork i+ 1 to subnetwork i) to track the behavior of intermediate layers
throughout training. The key observation is that ACNs (right) are trained in a layer-wise
fashion where early layers are trained at a faster rate and task-relevant information is
gradually pushed only to a subset of the deeper layers, achieving strong performance along
with auto-compression. In the contrary, the Residual variant performs task-learning in

the last 2-3 layers, effectively utilizing the full network to achieve top performance.

“In this more challenging setting, we observe a trade-off between training and inference time, which is
partially aleviated using a parameterization similar to DiracNets (92) for the MLP layers, specifically W =

I+ w).
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We also conduct a transfer learning experiment on CIFAR-10 dataset, to test the be-
havior of the auto-compressing architecture compared to residual network, when trans-
fering to a donstream task. As we observe from Figure 5.6, AC-ViT is on-par with the
residual variant, showing no transfer learning degradation while maintaining the 50%

layer compression rate.
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Figure 5.6. Fine-Tuning the previously trained ViTs on CIFAR-10. The auto-compressing
architecture transfers to downstream tasks as effectively as the residual counterpart, de-
spite utilizing half the number of layers.

5.3.3 The Effect of Task Difficulty

Intuitively, overparameterized networks trained on easier tasks should demonstrate
higher levels of redundancy. Therefore, ACNs should converge to utilizing fewer layers
as task difficulty decreases. To verify this, we use the number of classes as a proxy for
task difficulty for image classification on the CIFAR-10 dataset (5). Specifically, we create
subsets of 2, 5, and 10 classes, the assumption being that binary classification should be
easier than 10-class classification. For this experiment we utilize MLP-Mixer (4) and train
two variants, the original MLP-Mixer with residual connections and the modified MLP-
Mixer with long connections (AC-Mixer). The MLP Mixers have 16 layers with a hidden
size of 128. The patch size is 4 (the input is 32x32, 3 channels). The MLP dimension D¢
is 512, while Dg is 64. We are using the AdamW optimizer (93) with a maximum learning
rate of 0.001 and a Cosine Scheduler with Warmup. The batch size is 64. Results are
presented in Fig 5.7. We observe that indeed AC-Mixer converges to solutions with larger
effective depth, as the task “difficulty” increases. Specifically, in this experiment, ACN
needs 8, 10 and 12 layers for the 2, 5 and 10-class classification problem, respectively.

In contrast, the Residual Mixer converges to solutions where the full depth of the network
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is utilized, irrespective of the task difficulty 8.
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Figure 5.7. Performance of the intermediate layers as the number of classes (and examples)
in the CIFAR- 10 dataset increases from 2, to 5 to 10 classes: (a) Residual Mixer vs (b) AC-
mixer.

5.3.4 Generalization Capabilities of Auto-Compressors

While ACNs demonstrate effective parameter reduction through architectural com-
pression, a key question remains: do these compressed representations offer additional
benefits beyond parameter efficiency? In this section, we investigate whether the con-
centrated information in ACNs’ early layers leads to improved generalization capabilities
compared to traditional residual architectures. This point is crucial, as one could argue
that compression alone can be achieved through external techniques such as pruning or
knowledge distillation. However, this is not entirely accurate, as such external methods
typically introduce additional computational costs and require careful hyperparameter
tuning on top of the standard training process, compared to ACNs that exhibit natural
auto-compression during training. Nevertheless, beyond this implicit compression, fur-
ther demonstrating that the proposed architecture not only mitigates redundancy but
also enhances representation learning and generalization significantly strengthens its
overall contribution. To investigate this, we explore two critical aspects of generalization:

robustness to input noise and performance in low-data regimes.

Robustness to Input Noise

Robustness to Data Sparsity Next, we experimentally compare the performance of
residual and long connections architectures in low-data scenarios. For this purpose,
we create a random subset of CIFAR-10 (5) by retaining only 100 samples per class,

resulting in a total of 1000 examples. Using the same training settings and models as

8The Residual Mixer was trained for 300 epochs, while AC-Mixer for 420 epochs to reach the performance
of its residual counterpart.
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Figure 5.8. Train and Test Loss of AC-Mixer and Residual Mixer on CIFAR-10 with limited
data (100 samples per class).

Model Baseline Gaussian Noise Salt and Pepper Noise
w/onoise || 0=0.1 | 0=02|0=04 | p=0.01 | p=0.05| p=0.1

Residual ViT 70.74 67.68 62.80 45.46 56.80 27.48 10.34

AC-ViT 70.76 69.50 64.54 51.89 59.80 36.35 19.98

Table 5.2. Robustness (average accuracy %) of ViT with long connections (AC-ViT) and with
residual connections (Residual ViT) to additive Gaussian noise and salt-and-pepper noise
on ImageNet- 1K test set.

described in Section 5.3.3, we train both architectures for 150 epochs to assess how
fast the training and test loss decrease, as a proxy for the generalization capabilities of
each architecture. Results shown in Fig. 5.8 reveal that ACNs achieve lower training and
test loss in fewer epochs compared to residual networks. This faster convergence in loss
metrics is a strong indication that auto-compressing networks can be effectively utilized

in scenarios with limited data.

5.3.5 Auto-Compressing Encoder Architectures for Language Modeling

As previously discussed, recent studies have demonstrated that foundation models
suffer from parameter redundancy, especially in their deeper layers (eg. (13)). This
characteristic is crucial today, in the context of large language and multimodal models,
which are typically pre-trained as general-purpose models before being adapted to specific
downstream tasks. Since these specialized applications may not require the full param-
eter capacity of the base model, learned representations (through architectural choices)
that facilitate subsequent compression and pruning become crucial. In this section, we

conduct a preliminary study on the effectiveness of the ACN architecture in general pre-
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training (masked language modeling with a BERT architecture) followed by fine-tuning
and pruning. The results show that ACNs learn compact representations that: 1) achieve
on-par performance with the residual architecture on transfer learning tasks, while utiliz-
ing significantly fewer parameters, and 2) complement post-training pruning techniques,

enhancing their effectiveness.

Masked Language Modeling and Transfer Learning with ACNs Next, we compare
the ACN and residual architectures in the standard BERT pre-training and fine-tuning
paradigm. Using the original BERT pretraining corpus (BooksCorpus (55) and English
Wikipedia), we train both architectures to equivalent loss values; the AC-BERT variant
requires two epochs vs one epoch for the residual baseline. Following pre-training, we
fine-tune both models on three GLUE benchmark datasets (56): SST-2 sentiment analysis
(57), QQP paraphrasing, and QNLI question answering (58).

Figure 5.9 (top) demonstrates a key advantage of the ACN architecture: it naturally
converges to using significantly fewer layers (approximately 75% less layers) while main-
taining performance comparable to the full residual network. These results suggest
promising applications for ACNs in large language models, where pre-training could be
performed with long connections, allowing downstream tasks to adaptively utilize only

the necessary subset of layers during fine-tuning.

Post-Training Pruning with AC-Encoders ACN'’s primary advantage lies in its inherent
compression capabilities during training, suggesting that when combined with pruning
techniques, it should significantly outperform traditional residual architectures. To pro-
vide validation for this hypothesis, we conducted experiments using magnitude and move-
ment pruning (59)°, two commonly employed baseline pruning techniques. For Magni-
tude pruning, we consider the setting where the pruning happens after fine-tuning on the
downstream task. For Movement pruning, we follow a gradual fine-tune and prune cur-
riculum, where in setting (I): 20% of the parameters are pruned after each epoch, whereas
in setting (II): we prune 40% of the parameters after an epoch. Results are shown when
fine-tuning of the SST-2 dataset sentiment analysis task. Figure 5.9 (bottom) confirms our
hypothesis: ACNs consistently demonstrate superior compression-performance trade-offs
compared to standard architectures, with their advantage becoming more pronounced at
higher compression rates. This indicates that ACNs’ architectural design naturally leads
to more efficient parameter utilization, creating representations that are inherently more
amenable to further pruning. While these preliminary results validate our approach to
addressing parameter redundancy, they also point toward promising future directions.
We anticipate that combining pre-trained ACN architectures with state-of-the-art prun-
ing methods will result in extremely efficient, high-performing models, though rigorous

validation of this hypothesis requires further investigation.

9Movement pruning differs from magnitude pruning in that it evaluates the importance of weights based
on their cumulative parameter updates during training, rather than solely on their absolute values. This
approach enables more informed removal of less critical weights, potentially preserving model performance
better while achieving sparsity.
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Figure 5.9. (top) Downstream performance of AC-BERT vs residual BERT on three GLUE
tasks: sentiment analysis (SST-2), paraphrasing (QQP), and question answering (QNLI).
(bottom) Accuracy vs model size of AC-BERT and Residual BERT on SST-2 when pruned
with Magnitude and Movement Pruning.

5.3.6 Auto-Compressing Architectures vs. Layer-wise Loss Regularization

Parameter redundancy, and specifically potential layer redundancy, in residual archi-

tectures is a phenomenon that has been well documented(52; 3; 14), ar argued. Recent

works (8; 7) have attempted to address this through regularization-based layer-wise struc-

tural learning approaches during training, specifically by adding losses to all intermediate

layers of the network and using a weighted sum of them as the total loss, a technique
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formally introduced in (9) for improved training. Such loss-based regularization methods
rely heavily on precise tuning of intermediate loss weights, creating practical challenges.
If early-layer loss weights are set too high, the network risks overfitting and poor general-
ization; if set too low, performance improves gradually across layers with no clear cutoff
point, reaching optimal results only at the final layer. This sensitivity to hyperparameter
selection makes it difficult to reliably identify an optimal depth for inference using loss-
based regularization. ACNs address this challenge through architectural design rather
than regularization, naturally compressing information without requiring complex hyper-

parameter tuning.

ACNs achieve better generalization To evaluate hyperparameter sensitivity in
regularization-based approaches, we compare several methods on the CIFAR-10 dataset
using MLP-Mixer architectures. Our comparison includes: 1) our proposed AC-Mixer, 2)
an unregularized Residual Mixer as baseline, 3) a Residual Mixer with the setup of (7)
(Aligned), 4) a Residual Mixer with the setup of (8) (LayerSkip), with the rotational early
exit curriculum with ppge = 0.1, escare = 0.2 and Crorg = 15, and 5) a Residual Mixer
with a baseline vanilla deep supervision (9) where all intermediate losses before the final
layer are weighted with A = 0.1 (DeepSup). This comparative analysis reveals how dif-
ferent approaches respond to their respective hyperparameter configurations. We follow
the training pipeline as described in the previous section and track the performance of all
intermediate layers. Our experiments (Figure 5.10) demonstrate that while regularization
approaches are highly sensitive to intermediate loss weights, creating a trade-off between
performance and compression, ACNs consistently achieve strong results through their
inherent architectural properties. Specifically, ACNs match the performance of unregu-
larized Residual Networks, while effectively determining a shallower cutoff layer. While
careful tuning of regularization methods can potentially match ACN’s performance, our
approach provides a more elegant and robust solution that requires no parameter adjust-

ment while maintaining high performance and achieving sparsity.

ACNs show stronger Transfer Learning capabilities To evaluate whether different
layer compression approaches learn generalizable representations, we conduct a transfer
learning experiment from CIFAR-100 to CIFAR-10 (5). This setup allows us to assess how
well each model’s learned representations transfer to a similar task. In regularization-
based layer compression methods, explicitly training all layers to directly minimize a task
loss through intermediate supervision can lead to overfitting, as shown in the previous
section, which can further result in weaker transfer capabilities on downstream tasks. In
contrast, ACNs’ implicit compression mechanism naturally balances generalizability and
task performance without imposing external constraints.

To ensure fair comparison, we train all models to achieve comparable performance on
the CIFAR-100 pre-training task, enabling direct assessment of their transfer capabilities
to CIFAR-10. The results in Figure 5.11 confirm our analysis: ACNs demonstrate su-
perior performance on the downstream CIFAR-10 task compared to regularization-based

methods, even when upstream CIFAR-100 task performance is similar. This provides
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Figure 5.10. Performance of intermediate layers on CIFAR-10 of AC-Mixer, unregularized
Residual Mixer and Residual-Mixer with intermediate losses based on (7) (Aligned), (8)
(LayerSkip) and (9) (DeepSup). For better resolution only the last 4 layers are shown in the
plot.

additional evidence that the representations learned by ACNs are more generalizable and

thus exhibit greater transferability.

5.3.7 Mitigating Forgetting in Continual Learning with Auto-Compressors

Continual learning involves training models on a sequence of tasks without access
to past data, aiming to retain performance on previous tasks while learning new ones
(60; 61). A central challenge in CL is catastrophic forgetting—the tendency of neural net-
works to overwrite old knowledge when updated with new data. Common approaches
include data replay methods (62; 63) and regularization techniques that penalize changes
to important parameters (64; 65; 66). We've already demonstrated that ACNs, through im-
plicit layer-wise training, dynamically allocate parameters based on task demands while
preserving redundant parameters for future tasks. Conversely, Residual Networks op-
timized for efficient task learning risk overfitting and suboptimal parameter usage in
these sequential learning settings. To test our claims, we evaluate both architectures
on the split CIFAR-100 continual learning benchmark, comprising 20 sequential disjoint
5-class classification tasks, focusing on task-incremental learning (67) where task iden-
tity is known. We utilize MLP-Mixer architectures and we test two continual learning
algorithms trained for 10 epochs for each task: naive fine-tuning (Naive FT) and Synaptic
Intelligence (SI) (65), which adds a gradient-based regularizer to each parameter depend-
ing on how changes in it affect the total loss in a task over the training trajectory. We are
using the same MLP-Mixer setup with the Cifar-10 experiment (see above). We train for 10

epochs in each task, using AdamW with learning rate of 0.001 and a batch size of 64. For
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Figure 5.11. Transfer learning performance (C-100 to C-10) of AC-Mixer and Residual-
Mixer with intermediate losses based on (7) (Aligned) and (8) (LayerSkip).

Synaptic Intelligence we use a coefficient 1 = 1. Across experiments, we report Average
Forgetting, defined as the mean difference between a task’s best performance (right after it
is learned) and its final performance after all tasks are learned, and Average Accuracy, de-
fined as the mean accuracy over all tasks at the end of training. We expect gradient-based
regularization methods to perform particularly well with ACNs since unused, redundant
parameters receive small gradients, making their detection easier compared to Residual
Networks where gradients are more uniformly distributed (see gradient heatmaps, Fig.
5.2(left)). Results in Table 5.3 confirm our intuition: ACNs consistently exhibit signifi-
cantly less forgetting (up to 18% improvement) compared to Residual Networks. Notably,
with SI, increasing ACN depth decreases forgetting—an ideal behavior for CL systems
where increasing network capacity reduces forgetting—while Residual Networks show the
opposite pattern, indicating potential overfitting. ACNs also achieve better average ac-
curacy across all tasks, further establishing them as a more suitable architecture for

continual learning.

Avg. Accuracy (%) T Avg. Forgetting (%) |
M. Arch L=5 L =10 L=15 L=5 L=10 L=15
nFT ACN 3297+2.4 3294+53 31.61+2.2 46.55+2.2 45.46+58 46.91+24
Res 31.77 £ 1.8 28.16 x 1 26.14 £ 2.3 52.76 £2.3 54.89+1.6 54.49+2.2
a1 ACN 445+22 46.1+13 46.2%0.8 35.7+2.1 33.8+0.4 32+1.8

Res 43.47 £ 3.1 36.1+5 32.1+0.8 42.4+4.1 44.6 + 3.7 50+2.1

Table 5.3. Average accuracy and forgetting across layers, methods, and architectures on
the Split CIFAR-100 continual learning benchmark. M. stands for Method, nFT stands for
naive Fine-Tuning and SI for Synaptic Intelligence. Models are trained for 10 epochs per
task, where each task consists of classifying 5 out of 100 classes presented sequentially.
L denotes the number of layers in the architecture. ACNs consistently forget less and they
also do not waste capacity.
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5.4 Summary of Results

These results demonstrate that ACNs are superior to Residual Networks in terms of
information organization throughout the network. In particular, the gradient patterns
across layers are more distinct and structured, making them not only more interpretable
but also more amenable to visualization and analysis. This clarity allows for straightfor-
ward identification of which layers are essential and how much each contributes to perfor-
mance—evident from gradient visualizations, incremental accuracy plots, and accuracy-
vs-layer analyses. Moreover, this structured behavior provides a strong foundation for
downstream algorithms, such as continual learning algorithms in this case, which benefit

significantly from the clearer and more predictable training dynamics exhibited by ACNs.

5.4 Summary of Results

Performance vs. Resource Usage Trade-off
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Figure 5.12. ACNs vs Residual Networks performance vs number of parameters, with and
without pruning.

From our experiments, we conclude that ACNs are able to “push" information down
to the early neural layers without performance degradation, resulting in a sparse high-
performing network, effectively revealing potential redundant layers and driving the prun-
ing process. This pruning significantly reduces memory requirements and accelerates in-
ference. In all of the experiments we observed that the converged depth between train and
validation/test sets matched. Thus, pruning layer depth is a meta-parameter determined
directly on the validation set, eliminating the need for a separate pruning procedure after
training. Additionally, utilizing ACNs makes it straightforward to produce and distribute
differently sized variants of the same architecture with a single training run—for exam-
ple, distributing tiny, small, medium, and large versions of the model. In Figure 5.12,

we show the performance of the pruned ACN models compared to their respective resid-
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ual baselines across various experiments. We also note that utilizing the pruned AC-ViT
instead of the residual ViT, we can reduce inference time from 13.9 miliseconds to 8.3

miliseconds (CPU).

‘ Models ‘ Accuracy T ‘ #Params | ‘ #Inference Layers | ‘ Storage Size (MB) | ‘
Res-Mixer on C10 90.12 + 0.06 2.5M 16 17.6
AC-Mixer on C10 90.24 + 0.05 1.8M 12 13.2

Res-ViT on ImageNet | 70.74 + 0.09 86M 12 330
AC-ViT on ImageNet | 70.76 + 0.12 51M 7 195
Res-BERT on SST-2 86.63 + 0.09 110M 12 418
AC-BERT on SST-2 86.68 + 0.06 46M 3 174
Res-BERT on QNLI 83.14 = 0.07 110M 12 418
AC-BERT on GQNLI 83.07 £ 0.1 46M 3 174
Res-BERT on QQP 87.2 +0.09 110M 12 418
AC-BERT on QQP 87.3 +0.07 46M 3 174

Table 5.4. Summary of experimental results (detailed in the previous sections) comparing
auto-compressing with residual architectures.

Beyond parameter efficiency, our experiments demonstrated several additional ad-
vantages of ACNs. In noise robustness tests, AC-ViT maintained 51.89% accuracy under
severe Gaussian noise o = 0.4 compared to ResNet-ViT’s 45.46%, and nearly doubled
performance (19.98% vs 10.34%) under heavy salt-and-pepper noise at p = 0.1. When
trained on limited data (100 samples per class), ACNs converged to lower training and test
losses significantly faster than residual networks. In transfer learning from CIFAR-100 to
CIFAR-10, ACNs achieved 85.7% accuracy compared to 83.2% for the best regularization-
based approach while using fewer parameters. Finally, when combined with pruning
techniques on language tasks, ACNs maintained 80% accuracy at sparsity levels where
residual models dropped to 65%, demonstrating that architectural compression and prun-

ing techniques are complementary rather than redundant.
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Chapter E

Discussion, Conclusions, Limitations and Fu-

ture Work

6.1 Discussion

Biological motivation for long-connections: Brain Neural Networks (BNNs) combine
short and long connections (68), where short connections form dense sub-network hubs,
and long connections sparsely link these hubs. Typically, short connections are more
numerous and have stronger synaptic weights (94). In (95), the authors show that short
connections more efficiently route information across brain areas and sub-networks. Long
connections are key for functional diversity, offering unique inputs and novel targets for
outputs across sub-networks. The importance of long connections for BNNs is highlighted
in imaging (96) and computational modeling studies (97) showing “evidence both of local
over-connectivity and of long-distance under-connectivity” in BNNs of individuals on the
autistic spectrum (98). This served as our main motivation for exploring long connections
in search of architectures that can lead to better representations, improved generalization
and enhanced performance in complex tasks.

Biological motivation for auto-compressing networks: The brain itself has mech-
anisms for creating efficient and robust biological networks. One key efficiency mecha-
nism is synaptic pruning. During early development, an excess of synapses is formed
and progressively eliminated through activity-dependent pruning (99). Early studies (69)
measured synaptic density across different ages and found that it peaks around 1-2 years
of age, followed by a decline to approximately 50% by adulthood. This approach of early
overconnectivity followed by pruning has been shown to train neural networks exhibiting
significant efficiency and robustness (100). ACNs can be viewed as an initial architectural
approach to determining the essential number of layers while learning a task (experience-
based), by starting from an overparameterized network at initialization and exploring the
parameter space during training. Note, however, that as we have experimentally verified
in Section 5.3.5, computational ANN pruning algorithms (motivated by BNN’s “use it or
lose it” synaptic pruning) can be effectively combined with the ACN architecture to achieve
even greater compression gains.

Connection to layer-wise training: Greedy layer-wise training (101; 102) was a

popular method for training deep neural networks in a sequential manner, inspired by
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cognitive neural development in the prefrontal cortex (103). In our analysis of ACN’s dy-
namics, we show that ACNs naturally exhibit similar layer-wise training behavior, where
early layers train first followed by deeper layers. Unlike traditional layer-wise training
that requires explicitly freezing layers and careful hyperparameter tuning, this sequen-
tial training emerges automatically in ACNs due to their long-connection architecture,
effectively providing a "one-shot" version of layer-wise training.

ACNs vs ResNets connectivity patterns: Residual Networks were motivated by im-
proving training robustness - their skip connections were designed to facilitate gradient
flow and enable stable training of networks of great depth. However, this architectural
innovation had an unexpected benefit: ResNets also demonstrated better generalization
compared to standard feedforward networks. This improved generalization appears to
stem from the ensemble-like behavior created by the multiple paths through which in-
formation can flow. ACNs take inspiration from biological networks’ sparse but strategic
connectivity patterns. By maintaining direct long-range connections to the output while
reducing local skip connections, ACNs achieve both stable training and enhanced gener-
alization through a different mechanism. Rather than relying on dense connectivity and
ensemble-like behavior, ACNs encourage the development of more abstract and integrated
representations in earlier layers. This architectural choice appears to better support gen-
eralization while maintaining robustness in the training. A promising future direction is
to integrate small-world network properties into artificial network architectures.

A Remark: Altering connectivity patterns in artificial networks may provide valuable
insights that could be mapped back to biological network structures. This approach
may contribute to a deeper understanding of why evolutionary processes have led to the

specific connectivity patterns observed in biological systems.

6.2 Conclusions

In this paper, we introduced Auto-Compressing Networks (ACNs), a novel family of
architectures that naturally compress information into shallow layers of a neural net-
work during training, through architectural design alone. By replacing residual (short)
connections with long connections from all layers to the output, ACNs leverage gradient-
based optimization to automatically organize information in early layers without requiring
explicit compression techniques or additional regularization objectives. By analyzing the
gradient dynamics of ACNs, feedforward and residual networks, we revealed how ACNs’
unique connectivity patterns fundamentally alter training dynamics, resulting in learned
representations distinct from feed-forward and residual architectures. Specifically, the
existence of a strong direct feedback signal (from the output directly to each layer) coupled
with a weaker (compared to residual networks) forward signal induces an implicit layer-
wise training which, as we argued and empirically validated, drives the auto-compression.

Our comprehensive experiments demonstrated that ACNs achieve comparable or su-
perior performance to residual networks while enabling significant practical benefits, for
all modalities and baseline architecture tested. Through extensive experiments with both

fully connected and transformer-based implementations, we showed that 30-80% of the
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top layers in ACNs become effective identity mappings as information concentrates in
the bottom layers. This natural compression leads to accelerated inference and reduced
memory consumption—all without sacrificing accuracy. We also conducted preliminary
experiments on masked language modeling with auto-compressing architectures. There,
we showed that pretrained auto-compressing encoders can dynamically adapt to down-
stream tasks by naturally utilizing only a subset of their pretrained layers without per-
formance degradation, a behavior absent in the residual counterpart. More interest-
ingly, when combined with standard pruning techniques, ACNs’ organically compressed
representations significantly amplified the effectiveness of these methods, achieving bet-
ter sparsity vs performance trade-offs compared to residual architectures. We consider
combining strong pre-trained ACN architectures with state-of-the-art pruning methods
as future work. Overall, as shown in Figure 5.12, we found that ACNs achieve bet-
ter efficiency-performance balance across multiple tasks including ImageNet, CIFAR-10,
and BERT-SST2, maintaining high accuracy while utilizing significantly fewer parameters
compared to traditional residual networks. Furthermore, when combined with traditional
pruning techniques, ACNs consistently maintain their performance advantage over resid-
ual networks across all sparsity levels.

In summary, our empirical results demonstrate that ACNs, when compared to Resid-

ual Networks, offer the following advantages:
e Achieve stronger information compression without compromising performance;
e Generalize more effectively in noisy and low-data regimes;
e Significantly mitigate catastrophic forgetting in continual learning tasks;

e Outperform recent information compression regularization-based in both general-

ization capabilities and transfer learning.

Concluding, Auto-Compressing Networks (ACNs), building on implicit regularization
through architectural design insights, represent a promising step towards more self-
adapting neural architectures that allocate resources based on the task at hand, while
learning sparse yet robust representations. Future research could expand ACNSs to self-
supervised and multi-task settings, leveraging the pre-training and fine-tuning paradigm.
ACNSs also hold promise for generative tasks, reducing inference costs and energy con-
sumption. Additionally, developing inference-time algorithms that dynamically adjust the
number of layers per sample for optimal performance and efficiency is an intriguing di-
rection for future work. Last but not least, ACNs are only one possible long-connection

architecture out of the many that are worth investigating further.

6.3 Limitations

Due to resource constraints, our proposed architecture was evaluated solely on rel-
atively small scale tasks; however, it demonstrated robust and promising performance

across various modalities, datasets, and state-of-the-art architectures within this scope.
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To fully assess its potential and limitations, further testing on a broader range of tasks is
essential. Additionally, applying our method in self-supervised and multi-task learning
settings, such as training large-scale language models or multimodal models, represents
a significant and exciting avenue for future research.

Furthermore, in our experiments, we observed a trade-off between training and in-
ference cost when choosing between short residual connections and long connections.
It is possible that ACN’s inherent sparsity and longer training time is what makes them
more robust to noise and more efficient in low-data settings. Preliminary experiments
further strenghten this belief: as the representations learned by earlier layers become
more discriminative focusing on the task at hand, ACNs can still effectivelly transfer their

knowledge to downstream tasks.

6.4 Future Work

As discussed in the Limitations section, a natural extension of this work involves
applying the proposed architecture to self-supervised and multi-task learning scenarios.
This includes training large-scale language models or multimodal models, which repre-
sents a promising and exciting direction for future research. In the case of multimodal
inputs, it would be particularly interesting to investigate optimal connectivity patterns
and fusion strategies across modalities.

Another compelling direction is leveraging ACNs for dynamic inference. In this setting,
the model can adaptively decide at inference time which layer to exit from, based on the
difficulty of the input. ACNs are especially well-suited for this, as their structure offers
a natural way to assess difficulty through intermediate accuracies, offering a method to
determine the appropriate early exit point for a given input.

Finally, taking inspiration from the discussion on biological motivation and the con-
nectivity patterns observed in brain networks, a fascinating direction for future research
is the design of hybrid architectures that combine both short and long-range connec-
tions—effectively interpolating between ACNs and Residual Networks. Such networks
would exhibit hybrid connectivity patterns, potentially moving closer to the Small-World
characteristics found in biological systems. This raises the question of whether neu-
ral networks with graph-theoretic properties similar to those of the brain—such as high
clustering and short path lengths—can achieve improved efficiency and generalization.

In this context, general graph-theoretic metrics and measures could be employed to
analyze and better understand the structural properties of these architectures. Moreover,
we note that the interpolation between ACNs and ResNets is both natural and straight-

forward to implement, as illustrated in the algorithm below:
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ArcoriTHM 6.1: Forward pass of ACNs (a=0) and ResNets (a=1)

x « emb(input)

current < x

for each layer in layers do
Xout < layer(x)
current < current + Xgut
X ¢ Xout + @ X

end for

Xos < current

Xels < Cls(xcls)
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List of Abbreviations

AZA
ENA
YNA
RNN
CNN
MLP
ACN
FFN
ResNet
DG

FG

NG
BERT
CL

FT

SI
C-10
C-100
DeepSup
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Avuto-Zupruelopeva Aiktua
Ennpoodia Neupwvika Altktua
YrioAAsipatikd Neuwpvikd Alktua
Recurrent Neural Network
Convolutional Neural Network
Multi-Layer Perceptron
Auto-Compressing Network
Feed Forward Network

Residual Network

Direct Gradient

Full Gradient

Network-mediated Gradient
Bidirectional Encoder Representations from Transformers
Continual Learning

Fine-Tuning

Synaptic Intelligence

CIFAR-10

CIFAR-100

Deep Supervision
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