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Hepirngm

H ouvophia avipdmouv-unyavrc arotehel xplowo épyo otnv Teyvnth Nonuoolvn xou tnv
Ene&epyaoio Puoinric I'hwooag. Ilupd tnv mpdodo otny mopaywyy| SLoAdywy avoly o0 Topéd, 1
avantugn chatbots yia un ayyAuéc yYAdooeg €xel uetvel tiow Aoy ENerdmg dedouévmy. Xe auty
) Awmhopatixr) Epyacto, pyehetdye tnyv nopoaywyr dtahdywy ot ENAnvixd, onou ta dedopéva
EXTIAUOEVOTNC XOU TAL TTRO-EXTOUOEVUEVA LOVTEAX YAWOGOS VOl TEQLOPLOUEVAL.

Apyd, mopovoidlouvye Vewpntind undBadpo yiotn unyovixd uddnon (ML), tn Bodd pddnon
(DL) xou v eneepyoaoio guoic yhwooog (NLP). ¥tn cuvéyeia, yeletdue to povtéla Boot-
ouéva oty apyttextovixt] transformers mou ypnowonowjoaue: BERT, GPT-2, T5 xou XGLM.
Hapovaoidlouye To YewpnTixd LTORUEO AUTWY TV VEYLTEXTOVIXWY Xal aVUADOUUE TN ONuUtove-
yio twv avtiotoywyv ehnpvixedv (GREEK-BERT xou GPT-2 Greek) # noluyhwoowoy (mT5)
HOVTEAWV.

[No v avtetoniorn g EMReldng eEAAnvixol GLUVOAOU BEBOUEVKY BLIAOYOU, YENOWOTOLACA-
e unyavixt| petdpeacn (MT) yio va Snulovpyricoupe EAANVIXT €XxB0GT TOU GUVOROU BEBOUEVHY
DailyDialog. AweZdyouue 4 SlopopeTind TERAUATH UE T TOALYAWOOWE Yog povtéha mTH xan
XGLM:

1. Eyyevig exnaidcuor: Ilpocapudoous to TONYAOOOIXE UOVTEAA UMOXAEICTIXE GTO
HETOUPEACUEVO GUVOLO DEDOUEVWV.

2. AwayAwoowxy petagopd wddnong: Ipocupudoaue to poviéha otny apytxn oy yhl-
x1| €xdoon tou DailyDialog xou ot cuvéyela oe neploplolévo apldud yewpoxivnto ueto-
(PRUCUEVDY EAATVIXWY TORUOELYUATMV.

3. Mdidnon noAhanhwv epyaoctdv: Exnoudedoous o poviéia Tautdypova ot YAOoo
TEOEAEUCTC X0 OTY) YAWOGCW GTHYO.

4. MdOnon ue npotponéc: Evioylooue Tic mponyoUUeves TROCEYYIOEIS UE CUYXEXPWEVAL
prompts nou yolpdlovion YETOEY TOV YAWOOOV.

AZohoyriooue dhar o povTéda yenowonowdvtoe tolamhég uetpwés: Perplexity, BLEU,
BertScore xou Distinct-n. Ta anotedéopoarta detyvouv 6Tl 1 eyyeVrc exmaideuon enéTuye T
xohOtepn enidoon, ye o GPT2-Greek vo avadevietar wg 10 xoAbTepo poviého (perplexity:
12.47, BLEU B-1: 25.93, Distinct-1: 23.13%, BertScore F-1: 71.37%). MetaZ) twv toAuyAoo-
oy npoceyyioewy, 1 exnaideucn Baclouévn oe prompts evicyuoE GNUAVTIXG TNV ATGB00T TOL
XGLM (F-1: 69.12%), evéy n mohuepyaotaxt) udinon anodeiydnxe xahitepn and tn Slay Awooixn
UETOUpORd Udinome.

Aehyape enlong avip®mivn afloAdYNoT VLol TOLOTIXEC TTUYEC TTOU Ol AUTOUNTOTONUEVES [E-
TEWES EVOEYETOL VOL UMV ATOTUTVOUY TATIewS. AuTég ot a&tohoynoelg amoxdiupay 61t 1o XGLM
TOU EXTOUOEVTNXE UE TOAUEpYaotaxy) udinon Poaciouévn oc prompts enétuye v xaAlTERY o-
TO000T PETAED TV TEOCEYYICEWY UAC, XATATACCOUEVO BEVTEPO UOVO UETE TO TOAY UEYUAVTEQO
uovtélo Meltemi. Autd amodeixviel anoTEAEOUTIXT DAY AWOOIXT] HETAPORA YVAOOTS ToRd. TN
YENON ONUAVTIXG AYOTERWY EAANVIXWY OEOOUEVWY EXTaldEVOTC.

Me auts| tn Simhwpotiny epyooia, emtdupolue va avoiloupe véoug dpououg yia TNy e€epebvn-
O™ TNS TAEAYWYNS BLAAOY WY ovVOLY TOU TOUEN Yol YAWOGCES TEPLOPICUEVY TOPWY X0l TROTEVOUUE
EVOLAPEQOUCES UEANOVTIXESG EMEXTUCELS VIOl TTEQAULTEQRW EQELVAL.

A€Zeig KAedid - mopaywyr) Slohdywy avory 1ol nediou, YAOOGoES TEpLoploUévmy Topwy, Ei-
Anvixd, transformers, BERT, GPT-2, mT5, XGLM, Sy Awcowxr yetagopd pdinong, pdinon
TOMNNATAGY EPYIOLAOY, UddnoT ue TpoTteomés, avipnhmivy alloAdynor






Abstract

Human-machine conversation has been a critical and challenging task in AI and NLP.
Recent years have seen rapid progress in open-domain dialogue generation. However, because
vast conversational data are only available in English, the development of generation-based
chatbots for non-English languages has lagged behind. This Diploma Thesis studies dialogue
generation in a low-resource language, specifically Greek, where training data and pre-trained
language models are limited.

We present theoretical background on machine learning (ML), deep learning (DL), and
natural language processing (NLP), then study the transformer-based models used: BERT,
GPT-2, T5 and XGLM. We analyze how the corresponding Greek (GREEK-BERT and GPT-
2 Greek) or multilingual (mT5) models were created.

Following analysis of research on low-resource dialogue generation, we conduct experi-
ments and discuss results. To address the lack of a Greek dialogue dataset, we used machine
translation (MT) to create a Greek version of the DailyDialog dataset. We fine-tune Greek
monolingual models (GREEK-BERT and GPT-2 Greek) on the translated dataset, then
conduct 4 experiments with multilingual models mT5 and XGLM:

1. Native training: Fine-tuned multilingual models exclusively on the translated dataset
for direct comparison with monolingual models.

2. Cross-Lingual transfer learning: Fine-tuned models using the original English Dai-
lyDialog dataset, then further fine-tuned on limited manually translated Greek exam-
ples.

3. Multitask Learning: Trained models simultaneously on both languages, utilizing the
complete English dataset alongside a subset of the translated Greek dataset.

4. Prompt based Learning: Enhanced both approaches with specific prompt templates
shared across languages to facilitate knowledge transfer from English to Greek dialogues.

We evaluated all models using multiple metrics: Perplexity, BLEU, and BertScore for
response quality, and Distinct-n for lexical diversity. Results demonstrate that native training
achieved superior performance, with GPT2-Greek as the best-performing model (perplexity:
12.47, BLEU B-1: 25.93, Distinct-1: 23.13%, BertScore F-1: 71.37%). Among multilingual
approaches, prompt-based training significantly enhanced XGLM performance (F-1: 69.12%),
while multitask learning consistently outperformed cross-lingual transfer learning.

Human evaluations assessed qualitative aspects that automated metrics might not cap-
ture. These revealed that our XGLM model trained using prompt-based multitask learning
achieved the best performance among our approaches, ranking second only to the much
larger Meltemi model trained on substantially more Greek data. This demonstrates effective
cross-linguistic knowledge transfer despite using considerably less Greek training data.

This thesis opens new avenues for exploring open-domain dialogue generation for low-
resource languages and proposes future extensions for further research.

Keywords - open-domain dialogue generation, low-resource languages, Greek language,
transformers, BERT, GPT-2, mT5, XGLM, cross-lingual transfer learning, multitask learn-
ing, prompt learning, human evaluation






Euvyaptiotieg

H rapotoa dimhmpotiny anotehel xatdpUmuo TpocwTixo xal GUANOYLXO xad®S 1) OAOXAEWOT)
e mapodoag dev Yo unopoloe va elye emyteuydel ywplc TNV cuVBEOUT TOAATAWY TEOCHOTHV.

Oa Hleha va expdow Tic Vepuéc pou euyaptotie otov uteduvo xodnynt AAECavdpo
Hotoutdvo xar otov xOpto Adavdoio Kotooudvn and 1o gpeuvntind xévipo AYnvd yio tnv mo-
AT xodoBTYNOT X0 TOUG AmopalTNTOUG TOPOUG TTOU OV TORELY oY XOTd TNV EXTOVNOT AUTAHS
e epyaotog.

Axoun, Yo Rieha va evyaplotiow Toug @lAouc pou, Toug €€ anocTtdoewe xou dlar {Hang
mou otaepd Ye uroothelay oe OAeg wou Tic omoudéc. Télog, Yo fdeha vo euyoploTHoOW TOUS
yovelg you, Nuxdhao xon Baothiny|, xon tnv adepgr| pou IN'ewpylia, mou ywels tnv éumveuon alrd
xan T oTHEEN Tou You €dwaoay Bev Yo umopoloo vou elya xatapépel var EEXVAOL oA ol VoL
ONOXANEWOW QUTEC TIC OTOVOEC.

Avdpéac Kolxouvag,
Adrva, Todhog 2025
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Chapter 0

Extetoapevn EAANvxr TlepiAndn

0.1 Ewaywyn

H toyeio npdodoc twv teyvohoyidv enelepyooioc guotxic yhwooog (NLP) éyer géper e-
Tavdo taon ot dddpoon avipwrov-utoroyiotr. Ewovixol Bondol xo chatbots eCunneétnong
TEAXTWY €YOLV YiVEL avamdoTAoTo UERT TS XINUERVOTNTAS Uoc, BonddvTag o moAamholg
Touelg xan mapéyovtag Puyaymylo.

O e€ehieic otn Mryovixh Médnon (ML), wiaitepa péow tne Badide Mddnone (DL), éyouv
TEOWVACEL TNV AVATTUEY Blapdpwy cuoTudTwy dlakdyou. To chatbots avouytol mediou amo-
TeEhOLY onuavTXG Tedlo €peuvag, oToyeLovTag TN Uiunon avipdmvey cuvouthioyv. lotopixd,
uepxd and to mpwto chatbots Ytav n ELIZA xoa to PARRY. H ELIZA pwotvtoav duyodepa-
TELTH avadLaTuTdVovTaG epwthoels [79], evedy to PARRY npocopoinve mopavoixd acdevi [10].
To povtéra autd Boaoilovtay oe yewponolntoug xavovee, oyl oe udinomn and Sedouéva.

Nedtepeg pédodol adlonotolv npooeyyioelg facioyéveg oe dedouéva, podoutvovtag and Ueydho
6Y%0 avlp®TVEDY GUVOULAGY. To povtéla avorytol nedlou exmoundebovTol oe EXTETUUEVA GOVOA
OEBOUEVMY xou PEATLOVOVTOL UECW TRO-EXTAUBEUPEVKV HOVTEAWY Yhwooog [91], [63]. Tlupd toug
TOPOUC Yot TNV AVATTUEN QUTOY TwV wovTélwy [89], [37], [62], ol tepocbtepot elvan xuplwe ota
Avyyhxd, nopouctdloviog TEOXAACELS Yidl GARES YAWOOEC.

H EXAnvucr, ye tnv TAo0oLa loTopxT| %ol TOMTIGTIXY| XANEOVOULYL, VEWEEITOL YAWMOCU YoUNAWY
Topwv oTo Thaicto Tou NLP Aoyw tne énhewdng emonuetwpévey cuvormy dedogévemv. Auth 1
OtatELfr) BlEEELVE XUVOTOUES TIEOGEYYIOELS YLol TNV AMOTEAECUATIXY) YV 0N TwV SLdETUMY TOPWY
YL TNV QVETTUEN IXAVEOY CUCTAUETWY Ty wYhHS Sloddyou oo EANNvixd.

e auth) TN SlTEY3T), SLEPELVOUUE BLAPORES UPYITEXTOVIXES YLl UG THUTA BIAOYOU, CUUTERL-
AUBAVOUEVWY HOVTEAWY XWOXOTIONTA-amoxwoLxoTolnTy| encoder-decoder xan u6vo amoxwoLxo-
nownt) decoder-only. E&etdloupe d1a@opetixolg TUTOUC UOVTEAWY—HOVOYAWOOA Yiot Too EAAN-
vixd xou TohoyAwaooa. Egoapudlouue eniong didpopeg Teyvixég exmaldeuong, Onwe dlory Awooix
ueTapopd pddnong cross-lingual transfer learning, uddnorn molamhwv epyopoieyv multitask
learning xou pdinon puéow prompt prompt-based learning, emitpémovtac ) yenon ayyAxov
CLVOAWY BEBOUEVGY Yol TNV EVIOYUON TV TEQLOPIOUEVDY EANNVIXGY Bedopévwy. Auth 1 épeuva
OTOYEVEL OTN YEQPOEWOT, TOL YAOUATOC OTN YAWOOoWT TEYVOAoYio yior Ta EAAnwixd, mapéyo-
VTAG YVOOELG Tou Yo umopoloay Vo TeomUicouy GUCTHUNTA BIAOYOU VLol TUPOUOLES YADGOES
YOUNAGY TOPWV.

0.2 Mmnyavixry Mddnon

Ye outh TV unoevotnta Yo eEETACOVUE To YAWOOIXA HOVTERA, XM xat Bacixéc Tey V-
xé¢ exnaidevong autdy, 6nwe petapopd udinone (Transfer Learning), exudinon molhomhodv
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epyoaoidv (Multitask Learning), xou udidnon Bdoel prompt.

0.2.1 TAwoowd Movéla

To yAwooixd yoviéha eivon yovtéha mou avodétouy mbavotnteg oe oxohouvdiec Aé€ewv.
Anoteholy o Vepéhio e Enelepyaoiac Puoinric I'hwoocag, xadde npocgépouy uio uédodo e-
TATEOTAC TOLOTIXWY TATPOPOPLY XEWEVOL GE XATAYONTA a6 TN Unyovy| TocoTixd dedouéva. [lo
CUYXEXPWEVA, EVOL YAWOOIXO HOVTEND DEdOUEVNC Wiag axoloudiog AéEewv we eloodo, mpoomadel
vo TeoPAédel Ty endpevn AéEn. Me autdy Tov Tpémo Aowndy, To HOVTENO UTOREl Vo BnuLovp-
yHoer avanapaotdoelc AMEewy Ue Bdon to mepleyduevo/iotopixd. Me tnv mpdodo tne Boadidic
udinong, to mapadootaxd YAwooxd Lovtéha mou Bactlovtol 6T CTATIOTIXY OYTIXOTOC TadNXaY
amo YAWOOXA UOVTEANX TOU YENOWOTOLOUY VELPWVIXE BiXTud, Tol omolo TEAMXE 0¥ ynooy oTa
onuepVE ueYdAa TpoexTUdEUUEVA YAWOOXE HovTéla, 6nwe to Bert [14] xau to GPT-3 [8]. Ta
TRO-EXTIUDEVUEVOL YAWOGOIXA UOVTEAA GELOTIOLOVY TIC TEQUOTIEG TOCOTNTES BEBOUEVWV XEWWEVOU
YwplC ETIXETES Yia VO EXTIOUOEUTOVY, PECWL WUN EMBAETOUEVNS 1) qUTO-ETBAETOUEVNS Udinong,
TEOXEWEVOL Vo ATOXTACOUV LAl YEVIXT] XATAVONCT TNG PuoLxic YAwooog. Metd tnv exmaldeu-
O1) TOUG, UTOEOUV Vil TROCUPUOCTOUY OF EMUELOUS TEOBAAUATO TEQVMOVTIS ONO UEPLXOUS OXOUT
YUpoug exnaideuong, pe eqapuoy) Tne uedodou Bedtiotonoinong (fine-tuning), yenowomnoudvrog
UxEOTER GUVORN DEDOUEVLV UE ETIXETEC.

0.2.2 Meragopd Mdadidnong

H petagopd pddnone (Transfer learning) etvon por teyvixh unyovixic pddnone nou mept-
howBdver v o&lonoinon yvoong mou amoxthdnxe and tnv enitluon evég TpoBARUATOC xou TNV
EQUPUOYT NS OE €va BlapopeTnd, oLV iwe cuvapés. Mia exovoypapnuévr Exdoon Tng TEYVL-
¢ HETAPORAS wdinong gatveton 6to Lyruo 2.11. e mohhd mpoPAfuarto Bodide wdinong, yio
TNV XATAOXEVY] EVOC LOVTEAOU Tou eMAVEL Piot GUVIETT epyacia, amatTeltal TEEAC Tl TOCOTN T -
TUONUELOUEVKY OEB0UEVWY. 20TOGO, 1) GUANOYY| ETUEXWY BEDOUEVWY exTaldEUoTC uTtopel va etvan
domavnet, YeOVoBoEa 1) oxOUT xaL avEPIXTr o€ TOMAES TepinToelg. Avti va Eextvd 1) dadixacio
udinong amd To UNdEV Yo plor véa epyacia, 1 uetagopd udinong exyetoadreleTan Tpoldpyouca
Yvéom f Hovtéla Tou €xouy extoudeutel oe eydho oUvoha dedopévev. [99]

H petagopd udinong cuviduwe tepthopBdver 600 oTddia: TEo-exTaldeusT) xou BeATioTOTOMOT).
Y10 OTAO0 TMPO-EXTABEVOTC, EVal HOVTEND EXTIUDEVETOL GE UEYGAO OYX0 Oedouévmv. Auth 7
apyny| exmaideuot Bondd to povtéro va pdiel Yevixd yopoxTnetoTixd xou pot{Bo mou unopodv
VoL avoLV Yol YLol TOAES OLapopeTinés epyaoieg. XTo oTddlo BedtioTonolnong, o mpo-
EXTIUOEVPEVO UOVTEAD EXTIUOEVETAL TEPAUTERW OF EVOL UXQPOTEQO GUYOAO OEBOUEVLV TOU efvan
ewo yioo Ty epyacioa otéyov. H Beitiotonoinon nepthoufdver tnv exnaidevon tou poviéhou
070 VEO GUVOAO BEBOUEVWY BATNEOVTAS Tar aeyxd Bdpn otadepd ¥ TPOTOTOLOVTIS T GUUPHVA
ue ™ véa epyaota. Qotdoo, ofilel va onuewwdel Tt 1 YeTaPEROUEV YVOOY dev guVoEl TavTa
™ Véa epyaoio, xadde unopel va anotyel av utdpeyouv Alyo xowd ctotyela ueTald Tou ToUEd
TPOEAEUCTIC X0 TOU TOUEN GTOYOU.

Ye eldwég TEPINTAOOELS, 1) apyixt| epyaocia tepthauBdver un emBAenouevn pdinon. Autéd eivou
ToAU cuvniicuévo otny Enelepyactia Puowrc 'hwoscag, 6mou npo-exnatdedovye UEY A LOVTENX
YAWDOGCOC UE UEYIAES TOCOTNTES UT) EMIONUELWUEVWY BeBoUEVLY. AuTd Tar povTéla pordoalvouy va
TpoPBAETOUY TNV eMOUEVN AEEN OE Lol TEOTUOY X0l XATAPERVOLY Vo GUAAGBoUY Tholoteg Thnpo-
poplec mepleyopévou. Apydtepa, oUTA To OVTEAA YAWOGCOS UTopoLy va Bektiotonomdoly oe
epYOoiEg OTWE 1) UNYAVIXT) UETAPEAOT), 1) ONuLoupYic SIHAOYWY XAl 1) ATAVTNGCT| EPWTACEWY.
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0.2.3 Expddnor IloAhaniov Epyaciov

H exudinon modhamhodv epyoowdy (Multi-task learning) eivon po mpooéyyion pnyovixic
udinong mou mepLhopBdvel TNV amd xowo) exTolOEUCT) EVOG UOVTEAOU OE TOMAATAES GUVIPELS
epyooiec. Avtl vo exmoudedovtar SlopopeTnd Yovtéda yia xdie epyaocio, 1 ToAamAY pdidnon
EQYUOLOY YENOWOTOLE! XOLVES OVAUTORAUOTACELS XAl YVWOELS YETAL) TWV EPYUOLOV UE GTOYO TN
Behtiwon tng ambdoong oe xdde yepovwuévn epyacio. H Baou béa niow and v expdinon
TOMNNATAGY pyactV elvon 6Tt 1 udinon and toAamhéc epyacieg TaUTOYEOVY UTOPEL VoL TUEEYEL
0@éAN og xdie PEUOVOUEVT Epyacia.

Trdpyouv BldPopes TEOCEYYIOES Yl TNV LAOTOINGT, TNG EXUAUNCT] TOAMATADY EQYACLOY.
M mpocéyyion ebvar vo potpdlovton o younhotepou eminédou eninedo Tou YOVTEAOL PeTULD
TWV EPYUCLMY, OLATNEOVTC TURIAANA EW0IXA Yot xdUe gpyaoia emnedo TNV x0puUPT. AuTH 1)
OTEUTNYWXT ETUTEETEL GTO UOVTEAO VoL UAEL TOGO XOWVES AVATAPAGTAGEL OGO X0l YUPAXTNRLOTLIXS
€0 yior xde epyaoia.

Evodhoxtind, unopet v yenowdonoiniel Eva yovadixd xowod JOVTENO, YETNOULOTOWVTAS TOA-
hamhég xeporég €€600u 6Tou xde x| TeolBAénel Tnv avtiotolym cpyooio. Kotd tnv exmna-
(8euom), Tor xowd eimEd xa Ol XEPAUAES EWOWXES Yia xdie epyaocio BeATioTomolo0vTaL amd xowoD.
Ta xowd enineda evnuepdvovton e Baomn TIC TapaydYoUS and OAES TIC EPYUCIES, EMTEETOVTAC
0TO UOVTENO Vou GUANEBEL Tot XOWVE YopoxXTNELO TIXd UETAED TwV epyactidy. Ot xegahéc eidixég
yia x&ie epyaoio evnuepmvovtal e Bdon T TopaydyYous oy efval edixég yio xde epyoaoia,
ETUTEENOVTAS TOUC Vo eEEWBIXEVTOUY TNV axpl31| TeoBhedn Yo Tic avtioTolyeg epyacieg Toug.

Autr 1) TEOGEYYLON UEWOVEL TN GUVORXY] TOAUTAOXOTNTA TOU UOVTEAOU XL TIG OTOUTHOELS
UVAUNG OE CUYXELOT HE TNV EXTALBELCT EEXWEICTOV LOVTEAWY Yla xdie epyaoio xou cuyvd o-
onyetl oe xahiTeEn Yevixeuor, xomg T0 HOVTEND TEETEL VoL BREL UL XOWT| AVATUPdCTACT) TOU
BEATIOVEL TNV andB00T) OE OAEC TIC HEUOVWUEVES epyaoiec. Mo amedvion auThg TNS TEOCEYYL-
oNne TOAATANC YdInong epyooctoy galveton 6to Lyfua 2.12.

0.2.4 MdOnon Bdoel prompt

H uddnon Baoiouévn oc prompt ypenowonoleltan cuY Ve »¢ ULol EAAPEUTERT] EVOANIXTIXT OE
oUyxpion pe T Pertiotonoinon. 201600, Ta prompts unopolv va yenoiworointoly TapdAAnia
ue Tt BeAtiotonolnon yla Ty evioyuon Tng anddoong. LTiC axdroule Topayed(Pous, TUEOUCL-
Gloupe auTéc TIc 2 evohhaxTLXEC.

Evoalhoxtixn tng Beltiotonoinong

‘Onwe avagpépinxe mponyouuévws, otn udinorn Baclouévn oe prompts, oL TUEAUETEOL TOU
TPO-EXTIOUOEUUEVOU LOVTEAOL GUVATWE BLITNEOLVTOL TUYWUEVES, EWOIXE VLol UEYSAG TEOEXTOL-
OEUMEVAL HOVTENA YAWOGCOC, XU HOVO Ol ToedueTeol Tou prompt ¢, ahidlouv. Exmoudedovtag
ATOXAEIC TG TIC TUEAUETEOLS Tou prompt, 1 uddnon Pocioyévn oe prompt TpocpEpel Ui To
amodoTxn evahhaxTixh Abom and T BeATicTonolnon 600V aPopd TOUC UTOAOYLOTIX0UE TORPOUS
X0l TIC AMOUTHOELS AmoUAXEUOTC.

H pddnon Poacioyévn oe prompt omodeixvieTton iaitepa TAEOVEXTIXT) OE oEVdpLo 6OV TA
otord€oiuo BEBOPEVAL YIaL Lol CLYXEXPWEVT epyacia elvon Teploplopéva. Autd cuufalvel eTeldr| ot
TOEAPETEOL TOU TEO-EXTIULOEVUEVOU HOVTEAOU TIOQUUEVOUY OUETABANTES, BLOTNEMOVTIC TIC IXAVOTY-
TEC XATAVONONG YAWMOGCUE TOU amoxTHUNXAY xatd T @pdor tpo-exmaideuons. Kotd cuvéneia, 1
ouyxexplévn dladxaota pdinong xadodnyel antoxAEloTIXd TO HOVIENO TPOC TI) CUYXEXPUIEVT
epyaoio ywelg vo emneedlel TIC UTOXEUEVES IXAVOTNTES XUTAVONONC XOL TORYWYHS TOU.
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SupnAneouatixy tng BeAtictonoinong

Evoy etvan cuvnhiouévn mpoxtix] var SlatneolvTol oL THEdUETEOL TOU TEO-EXTALOEVUEVOL [LO-
VTENOL YAOOCOUC TAYWHUEVES, EWOLXA OTAY TEOXELTAL Y10l EEMPETIXG UEY AN TEO-EXTAUBEVUEVOL O~
VTEN, owTd 0ev ouufalvel TdvTa. Oplouévol epeLYNTES YENOWOTOWUY prompts w¢ GUUTANEW-
Hotixég mAnpogopieg Yol T BeATiwon tng ambddoong, eved TapdAANha BEATIOTOTOWOY UERLXES 1)
ONeC TIC TapOPETEOUE TOL povTéhou [45], [5]. Autd eivan WBiadtepa cuvniouévo dtay epyalduac e
UE WxEOTERO HOVTENX, ETEWN TOTE 1) BeATioTonolnon anoutel Aydtepoug mépoug xan yweo. H
ATOPOCT] YLOL TS WAL 1) TROGUPUOYT) CUYXEXPULEVLY TR TewY XordoptleTon TEMXE and o OEL-
ed xpttneiwy, CUUTERLAUPAVOUEVNC TNG CUYXEXPIIEVNC EpYACTAS, TNG OLdeaUOTNTAS BEBOUEVWY
%ol TV OldEciuwy TopmY.

0.2.5 IIpoexmoudsLUEVA YAWOCOIXA LOVTEAN
BERT

To BERT povtélo Booileton apyrtextovind otnyv 1déo tou Transformer [14]. Amotelelton
amo Lot 0TOBol XOOLXOTOLNTWY YENCULOTOLWVTAS TNV SUVATOTNTO AUTOTEOCOYHS TOMALY XEPUADV
(multi-head self-attention) oe 800 xateviivoelc. Evoc and toug xOptoug Adyous yla Ty Xt
anédoon tou BERT oe Siapopetinée epyaoiec (tasks) eivar 1 mpoexnaidevor| tou oe 800 un
EMOMTEVOUEVES epyaoiec. Me autdv Tov TpoTO, TO LOVTENO E€YEL TN SUVATOTNTO VoL XUTAVOEL Tol
wotifa g YAdoooug. H mpdtn epyasia otny omolo o povtého elvor tpoextoudeuuévo ovoudleTtol
“Hovtehonoinon yAhooac pe xevd (masked language modeling - MLM) [14]. Xe avthv v
gpyaoia, T0 15% tov Aewv xdle axohoudiog xohlTTeToL TUy oo XaL To BovTéNo TpooTadel va
TpoPAéde tic MéZewc autéc. H dedrtepn epyaoia ovopdleton “npdBhedn enduevne npdtaone’ (Next
Sentence Prediction - NSP), émou to povtého, dedopévng pag tpdtaong, mpoonadel vo Peet v
oax6houd TNG.

To GREEK-BERT [30] mpooopuéler to BERT-base yia tv enelepyooio tne ehknvixhc
yAdooag. Ipo-exnoudebtnxe oe 29 GB ehhnvixol xewévou and tn Wikipedia, o Ipoxtixnd
tou Evpwnoixol Kowofouliou xa 1o OSCAR (xadapr éxdoorn tou Common Crawl). Behti-
G TOTOUNUEVO YLl 0VOLY VOPLOT) UERKY TOU AGYOU, VoY VOPELOT) OVTOTHTWY X0l CUUTERAUOUO PUOLXNG
yhwooog, 1o GREEK-BERT Zenépaoe to toabyAlwooa povtéra (mnBERT, XLM-R [11]) ot
epyaoiec avayvopton ovtotftwy (Named Entity Recognition) xou eloywyric ouunepaoudtov
puowic yhwooog (Natural Language Inference), evé) nétuye ouyxplowo anotehéopata otny
avary vaplon depmyv tou Adyou (POS tagging).

GPT-2

To GPT-2 [60], nou avantiydnxe arnd tny OpenAl, eivor éva eupéne avary VoRIGUEVO LOVTEND
YADGOUG oV yenolponolelton oe dldpopes epyaoiec ue anoteréopota oauypung. H apyitextovixn
TOU, XENOWOTOLEL TN BOUY| TOU ATOXWOLXOTONTH TN dpyltexTovXrc Twv transformer, Aeitoup-
YOVTOC WE AUTO-TOAVOPOUIXO LOVTEAO TOL TapdYEeL Eval GUUBOAO xdie Qopd, TEOooVETOVTAC TO
otnv oxohovdia e16680L yior TNV emouevn neoBAiedr. Ilpo-exnadeltnxe oto WebText, mou nepl-
AopBéver méve omd 8 exatoupipla €yypaga (40 GB xewévov), yia va tpoBiédet tny enduevn héEn
o€ W TeoTaoy dedouévou Tou mpornyoluevou mhouctov. H Baowr Swapopd yetald tou BERT
xan tou GPT-2 elvon 1 yerion and 1o GPT-2 tng auto-npocoyfic TOAATADY XEPIADY UE YAoK
(masked multi-head self-attention), n onofo eunodilet Tnv Thnpogopia and Aé€eic ota de&id tng
Véone mou unoloyiletoan. Kdde xepahn mpocoyfc EMXEVTRHOVETOL OE SLUPORPETIXES TTTUYES TOU
XEWEVOU elo6d0uL (o0vTaly), onuactohoyia), emttpénoviac o axplBeic TEoPAEPES xou xahlTEEN
XaTOVONOT) TOL Thanctou.
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To GPT-2 Greek [38] npocapuélet 1o apyxd wxpd poviého GPT-2 yia tny ehknvixn yhdo-
oo Uéow BeltioTonolnong ue otadioxd Eexheldwpa emmEdmY. AUTH 1 ATOTEAECUATIXNY TEOCEY-
YoM Yot YAWGOES UE TEPLOPLOUEVOUS TOpoUE BedTioTonolel TNV anddooT yweic exnaideuor and
v apyY. To povtého dnuovpyHinxe yenowonowwvtag delypa 23,4 GB and eAAnvixd couo-
o xewwévwy ouunepthauPovopévey towv CC100, Wikimatrix, Tatoeba, Books, SETIMES o
GlobalVoices. H dioadeociudtntd tou avolyel véeg euxoupleg yia eqopuoyég encéepyasiog QUaXnc
YADOGUS TNV EAANVIXY] YADCO.

Text-To-Text Transfer Transformer (T5)

To povtého Text-to-Text Transfer Transformer, (T5)) napouoidotnxe to 2019 and epeu-
vntée e Google [01], avtitpoownebovtag pla onuovtixf Tedodo otn petapopd udinons yio
epyooiec enelepyaoiag uowhc Yhwoooc. H Baocur xouvotouta tou TH eivan 1 tpocéyylon xde
TpoPBhfuartog enegepyaciag XEWEVOU WG TEOBANUI UETATEOTAC XEWEVOU GE XEUEVO, ETULTOETOVTAG
TNV EQapUOYT TOL (Blou HovTEAOU, GTOYOU, dladxactag exnaideuong xat SLadiXaciog AmoXWOIXO-
Tolnong ot dudope cpyaoieg enelepyaciag QUOLXAE YAWCOAS., xou lvol Baclopévo 6To Thalolo
AWOXOTONTA-UTOXMOLXOTOINTY TNE 0Py XS dEytTeEXTOVIXAC Tou transformer.

INot v tpo-exnatdevan, ot epeuvntéc avéntulov o Kohooowido Kadopd Xopa Kepévwv
Awdetiou (Colossal Clean Crawled Corpus, C4), wa xadopiouévn éxdoorn tou Common Cra-
wl dutAdotou peyédoug amd tn Wikipedia. To TS ypnowonotel yia tporonoinon tng povielono-
inone YAOooug e pdoxa mou ovoudleto “ebpog drapdopdc’ (corruption span), avtixadio twvtog
OBy s Slao THUATO AEEEWY UE Vol HOVO XEVO, avTl VoL XUNOTITEL UEUOVWUEVES AEEELC OTILS GTO
BERT. Ot gpeuvntéc doxipacay Teelc o Teatnyxéc: xdAudn Tuyalnv AEewv, xdhudr Slaboyixwy
AeZewv xou andppldn AéCewy, Ue TN TeEVIXY xIAUPNG BLaBoyxdY AEEEMY VoL AmOBELXVIETAL TILO
ATOTEAECUATIXY).

M Baowny| xouvotopla otny mpo-exmaldeucn tou TH Atav 1 yeron meodéuatog xeywévou
Yoo CUYXEXPLEVES Epyooies (T.y., MeTdppoon and Ayyhxd oe Iepuovixd:”) yio vo Bondfoet
TO UOVTENO VOl TPOCOPUOCTEL OE GUYXEXPWEVES epyaoiec. AuTy 1 Tpocéyylon udinong mohha-
AWV EQYOOLOV TEPLOPIOE TO TESIO ToPUYWYNE, BEATIOVOVTAS TNV anodooT xou TNV eEeldixeuon
EQYOOLMV.

To (Multilingual Text-To-Text Transfer Transformer, mT5) [85] axohoudel tny opyttexto-
vix) Tou TH oAAd pe SrapopeTiny dradxacta tpo-exnaldcuone. Aldéoo oe TéVTe TapaAAaYES
ue 300 exatopulpla €ng 13 dioexatouplpta TopopéTeous, To mTH Tpo-exmoudelTNXE ATOXAEL-
owwxd oto mC4 ywpelc ENOTTEVOUEVY EXTIAUOEUGT), amouT®wVTAS BEATioTONOMOT TIRWY TN Yerion O
uetayevéotepeg epyaoieg. Xe avtileon ue to T5, to npodéuata epyacidyv oto mTH amoutodvton
uovo vl Bedtiotonoinon noAlamhwy gpyaoiwy. To mTH €yer emtdyel xopugala anddoor ce
OLdpopa TONOYAWCGO EPYAGIES aVaPOpIXd UE TNV ENELepYasiag PUOXTE YAOOOUS, Xaho TWVTAC
TO TOAUTIHO Yiot TNV TOADYAWGOT) XATAVOTOT) XOU TAUEAY YY) XEWEVOU.

XGLM

Ta auTOTOAVOEOUXE LOVTERA YAWOGUS UEYIANG xh{poxag 6mwe o GPT-3 urnopolv va npo-
capUooTOUY o€ BLdpopes epyaoies Héaw Udinong Alywyv xou undevixdv mopadetyudtwy (few- and
zero-shot learning) pe uixpdtepo xéotog and tnv TAfen Bertiotonoinon. otéco, ta dedouéva
EXTIUOEVOHC TOUC IOV XUPLIEYOLVTOL oltd ToL Ay YAXE EVOEYOUEVWLS TEPLOPIlOUY T SLory AWCTIXT
yevixevon. T Ty avtetonion autold tou mepoplouoy, 1 Meta Al napousiace to povtého
XGLM [39], éva ToAOYAWG00 QUTOTAAYOROUIXG LOVTENO YAWOOUC eunvevouévo and to GPT-3
[]-

To XGLM exnoudeltnxe o €vol LoOpROTNUEVO GOUO XEWEVMY TOU XAAUTITEL BLAPORES YADO-
OEC YOl VoL OLEPELVHOEL TIC TOADYAWGCGES SUVATOTNTES UAINONG Aly®V Xou UNOEVIXWY TURAUOELY-
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udtwv oe ddpopeg cpyaoieg. g éva amd o TENOTA TOANDYAWCGO AUTOTUAVOPOUXE. LOVTERX, 1)
apyrtextoviny) Tou XGLM powdlel pe 1o GPT-3 xou to GPT-2.

Mo tor Bedouéva Tpo-exmaldeuoTg, oL EpeUVNTES EMEXTEVAY TNV Bladixacio e€6puéng Tou cwua-
To¢ xewévwy CC100 yo va dnuovpyricouy to CC100-XL, éva moAOyAwoco cOvoho BEBOUEVHV
mou xoAUTTeL 68 unviaio otrypétuna tou Common Crawl. Ta 8edoyévo npo-exmaidevong mepl-
hofBdvouv 30 YAwooeg mou xahiTTouy 16 YAWCOXES OOYEVELES.

O ouyypageic doxiyacay To XGLM oe Sudpopeg peTayevéaTERES EpYaOles, xuplwe Ypnol-
pomolvtog pdinon AMywv mopadetyudtwy. e oqutd To OEVARLNL YUUNAGY TOPwY, 1 amddoo
Tou wovtéhou e€upTdTal ot YEYSAO Pordud amd TNV XAUTAOXELY| TwV prompts—uio TedXANCT ToU
TEQITAEXETOL TEQAUTERL OF TOALYAWOGo TepBdAhovia 6mou elvar amapaltntn 1 ebpeon BEATL-
oTwV prompts ylo SlapopeTixée YAWooee. Alepeuviinxay TeelC TEooeYYIoES Yiol un ayyAxd
prompts: dnuoupyio and PuoLXoLE OUANTES, HETAPEACT) amd aryYAd prompts xou SLry AWcGLxd
prompts (e@appoyn oy yAixy prompts aneudeiog oe pn ayyhxd topadelypota). Evd ta yvAou
X0l UETOPEACUEVO prompts TETUYAY XAADTERA ATOTEAEGUAT, ToL SLoyAWOOWXE prompts €detloy
AVTOY WVLG TIXT| AOBOGT), WOIATERA YIo YAWOCES YOUUNAWY TOPMY.

To XGLM nétuye eviunwotoxd anotehéoyota o udinon Alywy TapadetyUdtwy 68 Tdve and
20 YAhooeS (GUUTERIANOPBOVOUEVLY YAWOOOY HECUWY Xl YUUNAOY TOpWY) OE ERYAUCIEC GUUTE-
EoU00 PUOLXNG YADCGCAS X0 Unyavixic UeTdppaons. ‘Evac Bacixdg nopdyovtog otny anddoon
Tou XGLM Atav oL 1oy upeg SLay AWGOIXES TOU IXaVOTNTES, ETLOEXVIOVTAS Pordid xoTavONnoT TOA-
AUTADY YAWOOOV Xl ATOTEAECUATIXY UETAPORE YVOHONG UETAL) TOUC.

0.3 TIlapaywyn AtxAdYou Y YADOCCES UE TERLOPLOUEVOUG
ToépOoLG

H guown yhwooo xatéyel tepdotia onuacio otov avipdnivo Tohtioud, xodoe eEehiydnxe
yior Vo SLeUxoAOVEL TN UVOUTIOEEN xou TNV emowvmvio. O BldAoYog, we onuavTixd U€eog Tng
YADOOUG, CUVOEEL TOUG ovUPWTOUS UECK) GUVOULALGY. XTOV TOUEN TNG TEYVNTAS VONUOCUVNG,
To oLUGTRAUATO BlohGyou €youv avadetydel kg Eva amautnTind Tedlo Tou ETTEENEL TNV ETXOWOVIA
HETOEY TTEAXTOPWY GUVOULIAG Xt avipOTKY.

O mpdixtopec cuvouthiog ywetlovton oe 500 x0PLEC XATNYORIEC: TOUC TEOGOUVITOACUEVOUC
oe epyaotiec (task-oriented) xau toug un mpocavatoliouévous oe epyacies (non-task-oriented).
Ot mpwTol oyedlalovTaL Yol CUYXEXPUIEVES EQYOCIEC X0 EUTAEXOVTOL OE GUVTOUEC GUVOUALES,
eve) ol BelTepol emxevTpwvovtal ot ehellepec oulntioelc. Ta cuotiuata Bioakdyou avolyto)
nediou (open-domain dialogue systems) €youv THY IXAVOTNTO VoL XUTAVOOUY ELOO0USC QUOLXAC
YAWMOGOC X0 VoL TORAYOLY AMAVTACELS TTOU UOLALoLY Ue avipmves.

To npdta topadelypoto cuoTnudTwy cuvophiog tepiauBdvouy to ELIZA [79] xow to PARRY
[10], mou Baocilovtav oe xavévee xou potifa. Ou olyypovee pédodol aflomoloby npoceyyioel
Baolouéveg o BEBOPEVA, ETUITEENOVTOG OTU GUC TAUATI Vo Hordolvouy amd TERUCTIEC TOGOTNTES
CUVOULAGY UETAED oavip®dTWY.

0.3.1 TITopaywyn AlaAdyou

To povtéha nopaywyrg diahdyou Bactlovtoa cuviiwe oto povtéro axoloudio-tpoc-axoroudio
(sequence-to-sequence, seq2seq), Uio APYLTEXTOVIXT XOOXOTOWTH-OUTOXWOLXOTONTH GTIOL XAt oL
6Vo unopel va ebvor elte emavorauBavopeva vevpwvixd dixtua (RNNs) eite Transformers pe
umhox avtonpocoyic (self-attention blocks). Teleutala, ta awtomoAivdpopo HoOVTERX, TOL YpT-
owomololy Uovo Tov amoxwdxononty g transformer opyitextovinic €youv Beel onuavTixn
emTLY ot WS 1) TEOTWOPEVY HEYOBOC VLol TNV XATACKEUT) CUC TNUATWY TOEAYWYHS OLUAOYOU.
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H ewoaywyr e apyitextovinic Transformers enégepe emavdotacn otov Touéo Tng enclep-
yoolag QuUOXNG YAWOGOC, PEATIOVOVTOC TNV TOLOTNTO TV AMAVIACEWY X0l UEWDVOVTAS TO UTO-
hoyiotixd xéotog. IloAhd olhyypeova cucThuaTa dloakdyou avorytol nediou Bacilovton oe auty

X0l TPOEXTUOEUUEVL GUVORL BEBOUEVODY. LnuavTixd povtéha 6w to Meena [1], to DialoGPT
[91], o LaMDA [72] ot to ChatGPT [55] éyouv onuewdoetl onuavtixf tp6odo otny mapoyw-
vY Swhdyou. To povtého Meltemi [77] amotelel éva mopdderyya TEOoUpUOYAS TOV UEYSADY

Yhwoowxody povtéhwy (LLMs) oto ehhnvixd, Baotlopevo oto poviého Mistral-7B [25].

0.3.2 Teyvixég yia IHapaywyrn Awardéyou oe I'hdvooeg pe Ilepropt-
owévoug Ilépoug

Téca ta 6UVOA BEBOUEVWY BLIAGYOU avoLy ToU TESIOU, 6O o TA TEOEXTUUOEUHEVA YAWTOIXA
HOVTENX OE YAOOOES eXTOC NG oy YAXAS xou Tng xvelixhc ebvan omdvia. ot Ty avTipeTedmon
auToY Tou TEOPBAAUATOS, Exouy avamtuyUel OLdpopes TEYVIXES.

Mevdgeaon xouw Evyyevic Exnaideuvon

Mo mpooéyyion nepthauBdvel TNy exXTaldeUoT) LOVTEAWY GE UETAPEUCELS YVWO TV oY YAXOV
oLVOALV Bedopévev. Xto [53], oL ouyypagelc TEOTEWVAY EVOV UETACYNUATIOTY XOOXOTONTH-
anoxwdonomnth (BERT2BERT) apywonowmuévo pe mopapétpouc tou AraBERT [2]. Qotéoo,
1 épeuva 670 [09] avédeEe ToUG TEPLOPLOUOUE TNG UETAPROOTG CUVOLWY BESOUEVWY amtd YAMOOES
UE TOANOUC TOPOUC O YAWOGES UE Ayoug mopoue, ol omoleg evtonilovTtol GTY) TOATIO TIXT Lo~
TEEOTNTA TWV OLIAGYOU, APOU Ol GUECES PUETAPEAGELS UTIOREL VO UMY ATOTUTIMVOLY TIG UTOYPWOELS
NS YAWOGCUG-GTOY 0L, 081 YOUV- GE APUCLXES YEVIEC BLOAGYOU.

Araylwoowxr) Metapopd Mdadnong

H Soryhwoowd| petagopd uddnone ohiywv mopaderypdtov (cross-lingual transfer learning)
TPOCQEPEL Wit UTOGYOUEVY ADom xau tepthopfdver BVo @doelg: tnv exnaldevon tnyre (source-
training) xou tnv npooopuoyh otdyou (target-adapting). H épeuva and toug twit et ok, [31]
€0ele OTL, ToEd TIC EVIUTWOLAXEG BUVATOTNTES UETAPORAS, 1) ATOBOCT| TV TOAVYAWOGIXOY [UE-
TACY NUATIO TV UEWWVETOL ONUAVTIXA YLl YAWOGES TOU VoL YAWOGLXS ATOUOXQUOHEVES 1| €YOLV
UxeoTER GUVORA EXTIUOEVOTC.

IToAvepyaociaxyy Mdadnon

H nohvepyaoiaxt pdinon (multitask learning, MTL) eivar pia omoteheopatinf npocéyylon
ETAY OYXAC UETAPORAS TTOL BEATIWVEL TN YEVIXEUOT) UECL TNG XOWAS Expdinong uiog 1 teploodTe-
ewv Bonintixwy epyaouny yall ue Ty epyacio-otdyo. XTo TAAUCIO NS TAPAYWYHS SLHAGYOU
0€ YAWOOES UE TEPLOPLOPEVOUC TTOPOUS, OTOL 1) EARELN Sedopuévmy anotelel onuavTixn TedXAN-
o1}, 1) TONVERYAGLOXT PAINCT TEOGPEREL TNV BLVATOTNTA YLl TOV EUTAOUTIOUS TWV CUC TNUATWY
Stohdyou pe Savelopd yvoone and cuvageic epyaoiec. Ot Magooda et al. [19] Siepedvnoay
Tohugpyootoxy Udinon yia agpnenuévn teplindn oc yAwooec ye Alyoug mépoug xou Slomic Tw-
ooy OTL epyaoieg OTWS 1 avlyVEUCT TapaPEdoE®wY Xxou 1 aviyveuon evvolny Yo umopolcay vo
Behtuwoouy v oot e Tepthndng. Egopudlovtoc nopduoles opyés otny pyacia Tng ma-
PUYWYNEC BLIAOYOU, OTOU 1) TOEAYWYT| TUQUPEACENDY XAl 1) AVEYVEUCT] OYETIXWOV EVVOLOY elval
e&loou Lwtixrg onuociog, Yo uropodoe opolng vo BeATidoEL TNV amddooT).

Mddnor pe prompts

H pddnomn pe prompts (prompt learning) ovunpoonnelet gior oTpotnyixf TEOCUOUOYH TwV
TROEXTIUBEVUEVLY YAWOOXOY UOVTEAWY OE eEELOIXEVUEVES EQYAOIEC TPOTOTOLOVTAS TNV £(0000
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TWY HOVTEAWY UE ouyxexpluéves tponontotioels. Ot Madotto et al. [18] eworjyayoy ) pdinon
oMYV Topadelyudtwy Ye Bdon ta prompts yio GUG TAUATH SLIAOYOU, ATOBEVIOVTAS OTL UTO-
el va emtevy Vel onuavTXy anddOCT EVOOUATMOVOVTAS Prompts GUYXEXQUUEVWY EQYACLOY TNV
elcodo tou yovtéhou.

0.3.3 Merpixég A&oNoynong

Or petpixéc a€loAdYNONG YLl To CUCTARATO TORXYWY TS OLohoYou ywellovTal 6 aUTOUATES
xa UETEEC Pactopéveg o avipntoug.

Avtopateg Metpuxég

e Word Perplexity: Trohoyiler tnv mdovétnta 1o yoviého v meofrédel owotd v
enopevn AéEn oe uio cuvouiio. Xauniotepo perplexity unodnAdveL xahOTeEo HOVTERO.

e BLEU: Baduoloyel pa andvtnon pe Bdon 1o néco xohd taupldlet ye axohovdieg hé&ewv
n-gram nou BploxovTon Ge Yol TEOTUTY AmdVTNOT).

e SacreBLEU [58]: Hopéyet pior Tunonotuévn pedodoroyia Yo Tov UTOAOYIOUS TOU GX0p
BLEU.

e BERTScore [90]: AZonotel ta contextual embeddings ané to BERT xou urnohoy(let tnv
opotoTnTa UeToEY Twv embeddings twv Aé€ewv oTa TaPAyOUEVA X0 ToL XEUEVL AvVOIpPORAC.

e Response Diversity: To Distinct-1 xou Distinct-2 yetpolv tov aprdud tewv Sloxpltoy
LOVOYQOUUGTOV X0l SLYPOUUSTOV TWY TRy OUEVKDY OmavTHoEWY [34].

Metpwxég Baowopéveg oe Avlpwnoug

o Yuyxploeic xotd (ebyn yia va emAéEouy oL dvipwnot Tola and TG 600 ATAVTACELS VoL TIO
XTI, o appolovca xou o yerown [68].

o AZioloynom ouvdgelag: Ou dvipwrot Paduohoyoly T TapayOUEVES ATAVTHOELS AvahOY X
UE TO av poivovTon oyYeTXéC Pe T ouvouthio xou evtog Yépotog [62].

o AZio\bynom pevotdtnrac/cuvoyric: O dvlpwrot Boduohoyoly Tic anavTACELS avEAOY O UE
TO av QaivovTaL XUTAVONTES, hoYIXd xat ouvtaxTxd opdéc [59].

Yuunepaouatind, 1 a&loAOYNOT TWV CUC TNUATWY GUVOULALNG avoLy To TEGioU amouTel Uiar OhO-
WANpwUEVN TeoGEYYLoN, cuvbudlovtag TouAia uetexdy. H yerion cuvbuaouol petpixmy 6mwg
To perplexity, o BLEU, 7o Distinct-N, to BERTScore, poli pye to sacreBLEU Yy tunomoun-
uéveg ouyxploelg, TEOoPEREL TOMITYIES YVOOELS OE DLAPOPES TTUYEC TN TOLOTNTOUC GUVOULAlOC.
2671600, Ol TEPLOPLOUOL AUTWY TWV YETEIXWY LToYpaupiCouy TN onuacio TV alohoyoewy and
oVIpOTOUE YLl TNV XATAYROPT TWV AETTOV ATOYPOOEMY TNG PUOLXTS CUVOULALOC.

0.4 Ilopaywyn Awxhdyou: EAANvixd

H npdodoc otnv Teyvntr) Nonuooivn €yel avalnmupmoel To evOIAQEROY Yol TNV avamTuln
HOVTEAWY BLohGY WY ovoly ToU Tedlov. Autd tar ovTéra LVATKC EXTTABEDOVTOL YETCLLOTOLWVTOC
UEYSAEC TOCOTNTES DEBOUEVMV CUVOUALNG XAl ETWPEAOVYTOL UG TEO-EXTIOUOEUUEVOL LOVTEAD TTat-
POy WY NS YADOCUE TOU UTOROVY Vol TROCUPUOG TOUY OTNV THEAY WY 1| AToXploemy avoly Tou nediou.
H eupelo Slardeoipdtnto tétoiwy népwy €xel cuuBdiel TNy avdntuén LPNATC arddoCNE LOVTEAGDY
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ouvopniog [91], [63]. TIopd tnv Umoedn onpavtxay mépwy [39], [37], [62], ol neplocdtepol ebvon
oot AyyAixd, xahoTedvTag 80OX0AT TNV TURAY WYY TUPOUOLOY UOVTEAWY YId GARES YAWOOES.

H mpdxinon twv neploploévey mopwy Exel uehetniel yior poviéha cUVOUALNG TPOCAUVATOAL-
OUEVaL VoL BLEXTIUEOVOLY GLYXEXPWEVES epyaoies (task-oriented) [83], unyovixs yetdppaon [51],
andvtnon epwthoewy [50], xou dhheg epopuoyéc Enelepyacioc Puowmic Mdooog [21], [31]. Q-
071600, eENdYIoTEG HEAETES €YOLUY 0TOYEVTEL GTO (ATNUA TV TERLOPLOUEVLY TTIOPWY GTOL LOVTENX
CLYVOULALAG avoly ToU TEdiou.

O Yang et al. [87] pehétnoav 1o mpoBAnua TNe Topay®YHS AmOXpIOEMmY UE TEPLOPLOUEVOUC
mopoug yenowomoinvtoag 360K Lebyn exgpdocwyv-aroxpicewy ota Kiwvélwa, mpotelvovtag tny
extiunon tpotinwy and un emonuemuéva delypota. Ot Naous et al. [53] nétuyav udgnir anddoon
otV mapaywyT anoxploewv ota Apafnd, mpocopudlovtag éva poviého transformer oe 36K
delyparta autépato petappaopéve and to Ayylxd [H4]. Lty nopovoo epyasio avtetonilouye
TO TEOPBANUA TNG ToEUYWYHS amoxploewy avoly o) tedlou ota EAAnvixd.

0.4.1 3>0Ovolo Acdouévwy

To oUvolo dedouévwy DailyDialog [37] anotelel piot dnuooiwe dadéoiun culhoy T toluoTeo-
POV BAOY WY ToL xoAUTTOUY ToxiAa Vépara. TleprhopfBdver mévey and 13.000 cuvourhieg ue
uéco 6po 7,9 mpotdoelg avd Bidhoyo xou uéon éxtaot 15 Aé€eig avd mpdtact. O cuvouthieg cu-
Ay Unxav amd 1otoceldeg e€doxnone Ayyhxodv xou avuxotonteilouy xadnuepvois dBlahdyoug
UE OXOTO TNV AVIUAAXYT TATROPORLOY X TNV xowwvixy enagr. Kaldntouv didpopa cevdplo
OTwe oLINTACELS VLol SlaxoTES, EEUTNEETNOT GE XOTUC TAHUNTA Xl ECTLOTOPLA, UE XUPLOTERES Ue-
wotiéc Tic Lyéoelc (33,33%), v Kodnuepw| Zo (28,26%) xou tnv Epyaoio (14,49%).

[ot ) Snuioupyior TN eEAANVIXAC €xBooNng Tou GUVOAOU BEBOUEVWY, YENOHLOTOWINXE VEUR®K-
v wnyovixy) petdppact. Luyxexpiuéva, 1o Bovtého uetdppaone and tn cuihoyh OPUS [73]
anotéhece To xUplo epyoleio Yetdppaonc amd T Ayyhixd ota EXnvixd, tpoopépovtac uhnin
ATOBOCT| OTY CUYEXEPWEVT YAWGOWXT xatebiuvor.

0.4.2 IlIpotewodusva Movtéla

H perétn o€loloyel Téocepa BLUQORETIXE YEVVINTIXG LOVTERX YLOL TNV TOROY WY EAANVIXGDY GU-
vouthov. To medto eivon to GPT2-Greek, évo povdyhwoco automahivdpouixo poviéro ye 117M
ToEOPETEOUC Tou avomTUYUnxe Tpocapuolovtag TV ayYAxn éxdoor ue oTadloxd Eexheldmua
emnédwyv. To Sevtepo ebvar o GREEK-BERT2GREEK-BERT, i povéyhwoon vionoinon
seq2seq pe 224M mopop€Teoug OTOU XWOXOTONTAS XAl ATOXWOIXOTOTAS UEYIXOTOLOUVTOL UE
ta Bden tou GREEK-BERT. To tpito eivon to mTH, éva mtoAbyAwoco poviého mou axoloudet
v apyrtextoviny| TH ue 300M moapoapétpous. To tétapto elvon To XGLM, éva tohbyhwosco yo-
VTENO amoxwdixoroint ue 564M moapopétpouc. H onuovtinn diagpopd otov aprdud napauétemy
ogelAeTol GTOUG TEPLOPLOUONG DLECLUOTNTUC HOVTEAWY EXTIULOEUUEVLY OE EAANVIXG XE(UEVL.

0.4.3 Ilpooceyyioelg exnaldsvong

Mo o metpdpatd yag, eQapuocaue TEooepl xUPLEG TROoEYYIoElS exnaldeuong, Baciouéveg
OTIC WOEEC TPONYOUUEVWY EQYAOLOY OTOV TOUEN aUTO, OTWS TEptypdpetar otny Evotnta 0.3.2:
native training, cross-lingual transfer learning, multitask learning, xoat prompt learning.

Native training

Axohovddvtac ) pedodoroyior mou mpotdlnxe and toug cuyypagelc oto [54], N apyxh
Hog TEooEY Yo Teplehduove exmaldeuct) oe éva EANVIXG GUVOLO BEBOPEVWY TapaywYHC Ola-
Aoyou. Aedouévng g amousiag TETOWWY GUVOAWY DEBOUEVKY, YENOULOTOCUUE TIC EAANVIXES
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ueTappdoelg Tou cuvorou dedouévev Daily Dialog. H exmaldeuon die€nydn anoxieiotind ota
EANANVIXG, ETITEETOVTAS XU OTA TECOEPA LOVTEAA, TOGO TA HOVOYAWCGA 66O Xl To TOADYAWO-
OO, VO EXTILOEUTOUY YENOULOTOLWVTAS TNV (Bl GLVAETNOT) ATWAELNG LOVTIEAOTOIMONS YAWCGOS.
O dudixaoieg exnaidevong yio ta povtéha decoder-only Siégepay ehappde and exelves yla To
HOVTENX seq2seq.

Cross-lingual transfer learning

‘Onwe neprypdgetar oty Evotnra 4.3.2, n Sty Awooixy| petagopd udinone ue Alyo mopode-
typata (cross-lingual transfer learning) efvou pior amoteleoyatiny) oTeaTnyIXh Yior T0 HETAPOEE
YVOONG and Yo YAOCOA TNYT, OTNY TEOXEWEVY TERITTWOT ToL oAy YAXd, OE Wal YAOCOA GTOYO,
o eAMvxd. T vae Sieuxoluviel autd, elvon amopoltnteg 1660 oL apyIxéc OGO XoL OL UETAPEO-
ouéveg exdOoElC Tou cuVOlou dedouévwy DailyDialog. Katd cuvénela, xoode autd 1o 0tddlo
TepLAoBAVEL EXTaldELOT) TG0 GE Ay YAXE OGO o OE EANANVIXG BEBOUEVY, UOVO Tal LOVTEAX 3 Xal
4, to omola €lvon TOADYAWOOW, exatdedTnxay Lo autéc T ouvinxes. H tumxi mpocéyyion
nepterduBave apyxd tn pvdulon (fine-tuning) 6AwV WV TUPUUETEWY TOU LOVTENOU GTO oy YALXO
oUVOLO BEBOPEVLY Yiol VoL ETUTEEPEL 0TO LOVTEND Var pddel Ty ToparywyY) Slohdyou ue dedouéva
LPNAC ToloTNTAC. XN CUVEYEL, TO UOVTEAO exTtandedTnxe Eavd pe Tov (Blo TeoTOo, Yenoiuo-
TOLWVTAS OL8POPA UTOGUYOAX TOU EAANVIXOU GUVOAOU BedoUEVLY, ue k = 32,64, 128,512,1024
napadetypota. Auth 1 uédodog oToyelEL 0T UETAPOEA TWYV OVITOROC TAGEWY TOU €Y 0LV UadeuU-
tel and 10 apynd oTAdL0 exTAdEVOTG 0T YAWGOA GTOY0, 6ToUL BlatiievTon AydTeQ GEBOUEVAL.

Multitask learning

H évvoio xou ov puduloeic yioo tnv mohuepyaotaxy| pudinon (multitask learning) etvar na-
popoteg ue exciveg g udinong ue Alya mopodelypatoa. Edo, o otoyog elvon 1 exudidnon g
(Bl gpyaciag oe BLapORETIXES YAMGOES TauToypova. 'Eva onuavtind pgpog twv oy YAy Oc-
OOMEVWY YENOWOTOLETOL YL TNV TEOCUQUOYT| TWV TURUUETEWY TWV HOVIEAWY, EVE TUPdAANA
EVOOUOTMVETOL ULl UXEOTERT oVOROYIa EAMAVIXADY SLoAOY®Y. AUTH 1 TEOGEYYLON ETUOLOXEL VO
ouyypovioel Tic evowpoatdoelc (embeddings) Aextixdv povddwv (tokens) xou and tic 800 yA®o-
oe¢, GLUVTOVILOVTAC XUPLWE TO LOVTEA YENOWOTOLOVTOC TA EXTETUUEVOL X0l XIS TROE TOLUACUEVOL
oy YAd SedoUEVaL.

Avtl va iegdryoupe 800 Leywplotée Sadixaoie wxpopliulong onwe otn uddnon ue ilyo
TapadelyuoTa, oUYYwvELoAUE Ta BElYUATO TOU EAANVIXO) GUVOAOL BEBOUEVWV UE TO aYYAXO
GUVOAO DEDOUEVMV YL VO OYNUATICOVUE €val VEO, %LpltC oy YAXO, x0WO GUVOAO BEBOUEVHV.
H Siodixaoio exnoaidevone nepthopPaver (fine-tuning) hwv twv mopauéteny tou poviélou. Ta
novtéha exmandedovion €Tol va yelptlovtan Ty epyacio oTa ay yAxd eved TopdAinia tpoctodody
VO XOTOXTACOUY TNV TO OmotTnTixy, Ye Atydtepa dedopéva, ehnvixt| epyasia, alomoldvTog
YVOOT TOU OTOXTELTOL oo To oy YAS Sedopéval.

Prompt based learning

Ta melpduatd yog pe 11 SLoyAwooxr UETOpopd Udinone xaL TNy TOAVERYACLOXT udinor o-
moxdhuoy yior Téon twv Hovtélwv vo Eeyvive mpoTepn Yvwon (catastrophic forgetting), éva
patvouevo mou €yel eniong napotnenVel and dhhouc epeuvntéc [12]. T Ty avtiwetdtion autod
Tou {nriuarog, ulodethooue Wi oTeaThYXh Tou tepiauBdvel tpoxodoplopévo (hard prompts)
Tou efvat CUVETH xat oTIC BVO YAWOOES, Tapdpola ue To [18]. Autd to prompts Bondolv otny
xateduvon g porc TAneogopuwy, Bonddvtag To YovTéRD Vo xatavorioel Baoixd oTolyelo Bia-
Aoyou mou elvor xowd PeTad) TWV YAWOOOY, EVIOYLOVTOS €TOL TN METOPORY YVWOONS ond To
oy YAxd otor ehnvixd. Lot Ty eqopuoyh auTtic g oTpatnyixAS, TEOCUECoUE GTNY apy T xdUe
ewoo6dou N @edor 'Dialog history”. Emmiéov, mpooiéooue Ti¢ gpdoeig "User:” mowv and tnv
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elcodo Tou yeriotn xou "System:’ mpwv and v elcodo Tou yovtélou pag. Enavegpoapudoaue 600
puduloelc exnaidevong and Ta TELRAUATO DAY AWCCIXAC UETAPORAS UAINCNEC Xl TOAUERYACLONNS
udinong, opllovtag tov aprdud Twv mapaderyudtwy ot 128, yenoyomoldviag To prompts Onwe
(OLVETAL TOROXATE:

Dialoghistory :< context > User :< user_input > System :< model’s_output >

0.4.4 Aecntopépeieg exnaldevong

Ye auth) TNV evoTnTa, CLLNTAUE TIC AETTOUEQEIEC OAWY TWV OLAPORETIXMY TEOCEYYIoEWY
exnaldeuong mou avahdooue 6Ty meonyoluevn Evotnta 0.4.3, xoa tov Tpdémo ue tov omoio
TPOGUPUOCUUE XGVE TPOGEYYLON oTal HovTEL Tou culntrocoue oty Evotnra 0.4.2.

Exnaidcsvon GPT2-Greek

Exnoaudetoaue to ovtého oo yetagpacuévo oivoho dedouévey DailyDialog. Kdle nepinte-
O™ EXTUBEUCTC ATOTEAOUYTAV A6 EVOY OAOXANEO BLIAOYO ad AUTOUS GTO GUVOLO EXTIULBELOTC
ue éva eldwd oduBoho mou eodyeton Yetald xdde expdvnong tou dhdyou. Kotd tn dide-
xew TG exmaldeuong, VéAope va BEATIOTOTOLACOUNE TOV AVTIXEWEVIXO OTOYO UOVIEAOTOINONG
YAWOOGOS amoXELoNG, TeooTaddvTag Vo TeoBAégouue Ty emduevn AEEN xan utoloyilovtoag Ty
ATWAELL TOU LOVTEAOL YADOCGUS YPNOWOTOWWVTAS cross-entropy ¢ ouvdptnorn xéctoug. H a-
nwheto utoloyileton o€ OAOXANEO TOV BIIAOYO XaL OYL UOVO GTN YEUCT| AmdvTNoT| TNS TEAEUTALOC
mpotaone. Me awtédv Tov tpdmo, To povtélo podaiver tor potifo petagd OAMY TWV EXPOVAGEWY
ToU BlahdYoUL xou eV Lodalvel UOVO VoL TORAYEL TNV TEAXT] ATAVTNOT| AVIAOYA UE TO LG TOPXO TOU
OLaAOYOU.

Exnaidcsvuon GREEK-BERT2GREEK-BERT

To povtého GREEK-BERT2GREEK-BERT exnoudeltnxe eniong yenolonoidviog To ye-
Tappacuévo ohvolo dedopévwy DailyDialog. Q2ot600, yenotuomoiinxe yio SlopopeTixy| G TEo-
YL Y T Onuiovpyia TV ToRadElYdTRY Tou 80Unxay w¢ elcodo oTto uoviého. Apyxd
TeooTa|CAUE Vo €YOUUE TOV (810 apLdd TOEAOELYUATMY EXTULBEUOTE OIS UE TO TEONYOUUEVO
HoVTELO, BivovTog w¢ ElG0B0 OTOV XWBXOTONTA TIC TPWTES ¢ — 1 TRPOTACELS TOL BlaAdyYou, 6TOU
i ebvar 0 cuvolde apLiudS TV TPOTACENWY GToV BLdhoyo, ot utohoyilovtoag to Addog uetald
TNe €600V TOU ATOXWOIXOTOLNTH Xl TNS TEAEUTALOC TEOTAGNC TOU BLIAOYOU YENOLLOTOLOVTOC
cross-entropy w¢ ouvdpetnon x6ctouc. Auty 1 uédodog odnyel oe yaunAy yevixeuon, Aoyw Tou
ueol aptiuol SLahGYwY 6To GUVORO BEBOUEVWLY, xodhS TO WOVTELD Yodolvel vor Topdyel LOVo
v teheutaio TEOTAUON AAYE BLIAOYOU BEBOUEVLY OAWY TWV TEONYOUUEVLY %ot OV Jodolvel va
Tapdyel xde yUpo tou Slahdyou. o autdv Tov Adyo, ywplooue xdie Bl OYO GE ULXPOTERCOUC
OLAOYOUG TTOU GYNUATIONY TIC OLUPOPETIXES TIEPLTTWOELS EXTIUUOEUOTG, OTIG PUVETAL TOEAUXETC.
And évay napadelypotind SIIAOYO TEGOUPWY PRACENY, UETY TNV enelepyaoia, TpoxUTTOLY 3 VEoL
ddhoyot.

Exraidevon mT5

To yovtého mTH yenowonoinoe tnv (Bla Bour| Yia TIC TEPLTTWOELS EXTUOEVOTC UE TO LOVTEAD
GREEK-BERT2GREEK-BERT' ot TelooaaTIo TAXAUE X0 YE TIC TECOEPLS TPOOEYYIOES eXTo-
devong mou avagépdnxay tponyoupévwe. To povtéla tou mpoéxuday and autéc yapaxtneloTn-
xav w¢ mT5-native (mT-NV), mT5-cross-lingual (mT5-CL), mT5-multitask (mT5-MTL, xou
mT5-prompt (mT5-P) avtiotowya. Xtdyoc frav Behtiotonoinon e YAwoouxhc poviehonoin-
onc unhoyiCovtag xdle Qopd TNy emOUEVN AEEN, XaL YENOWOTOWMVTAUS OTWS Ko TEOTYOUUEVKS
cross-entropy wg cuvdeTNoY X00TOUG.
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Exnaidcsvon XGLM

To povtého XGLM oxohoVince tnyv Bl pdduion ye to poviého GPT2-Greek yia Tic me-
pimTOoelg exnaidevong.  §2¢ TOAUYAWCCOo Uovtého, UTOPBARUNXE O TECOEQLS OLPOPETIXES TE-
yvixéc exnofdevonc: XGLM-native (XGLM-NV uixpopudtoyévo amoxhelotind o eEAANVIXO-
U¢ dahbyoug), XGLM-cross-lingual (XGLM-CL exnoudeupévo dtadoyxd o€ oryyAixd xat ot
OLVEYELL OE ENANVIXA GUVONL BESOUEVWLY yenowonotwvtac k apadelypata), XGLM-multitask
(XGLM-MTL pixpopuduiouévo toutdypova xon oto 300 cUvoha dedopévmv yenodonotwvtog k
Topadeiypata), 6Tou xou oTic dVo mepntwoec k = 32,64,128,512,1024, xou XGLM-prompt
6mou exTUdELTNXE Yenotwonotwvtas wdinon we Alya mopadelypoto (XGLM-P-CL) xou nopdh-
AnAn wédnon (XGLM-P-MTL).

0.4.5 AZ&woloymon

INo ™y a€lohdynon e anddoonc TwV YAWCOXOV UOVTEA®Y, YENOUOTONCOUE OLAPORES
HeTEWES OTwe 1 SlamAextixotnta (perplexity), to SacreBLEU, to Distinct-N, xou 1o BertScore.
Koéva amd autd to epyoleior o Bondd vor xatovoioOUUE BLAPORETIXEC TTUYES TNG AmOB00TS
TOU UOVTEAOU, AmO TN PELCTOTNTA Xou TNV Towhouoppla péyel Ty oxplBela o oyéon ue Ui
YEUOT) amAVTNOT ovVapopdS o TNV EVYUYEAUULOT UE TO TAX(CLO.

Perplexity: AZohoyel tnv affefoudtnra Tou povtéhou otny TEOBAeYN TN EMOUEVNE AeXTIXNS
novédog. Mo younidteern Baduoroyio umodexviel €va To Glyoupo UOVTEAD, AVTUVOXAMVTIS
XAAVTEQT) XATAVONOT) TNS YAWOOOC.

SacreBLEU, civar pua Bedtiwpévn éxdoon tne Paduoroyioc BLEU, n onola yenowuonoieiton
gVPEWC Yo TNV oELOAOYNOT TNG TOLOTNTOC TOU XEWEVOU TOU ToEdyeL 1) UETaPEALEL €Val LOVTEAO.
HepthapBdver didpopes HETEIXES:

e BLEU-1: Metpd tnVv avTloTo(ioT HELOVOUEVLY AEXTIXWY HOVAOWY (LOVOYESUUATO) UE-
Tag0) TG €€6B0U TOL YOVTENOL Xal TNG avaopxrc andvtnong. A&oloyel Ty axpBeta 6To
o Paocxd eninedo mopaywyYhHc XEWEVOU.

e BLEU-2: AZwloyel ) ouv-gupdvion 800 Sloboyindy AEXTIXGV Lovadmy (Btypdpupoto)
oTny €€080 TOU LOVTENOU GE GUYXELOT UE TNV AVAPORLXT| AdVTNoT). AuTtéd UETEd TGO XONd
T0 YOVTENO GUAoPBAvVEL Ppdoelc 800 MEEEWY, AVTAVAXAWDVTAS TEQIGOOTERO TIC CUVTOXTIXES
dopéc and to BLEU-1.

e Yuvohixy| Paduoroyloe BLEU: Auth n Paduohoyior GUYKEVTROVEL TNV amdb00T TOU Uo-
VTENOUL o€ BlopopeTnd uixn n-gram (énc 4), otadulopéva pe yewpeted péoo. Ilapéyet
Lot OAOXATPOUEVT EXOVA TOU OGO %AAd 1) €£000¢ Tou poviéhou euduypoupileTtar pe To
avapopd XELUEVO GE BLAPOPETIXG ETUMEDN AETTOUERELGS.

Distinct-N: Ou yetpixéc Distinct-N, cuunepihauBovopévwy tewv Distinct-1 xou Distinct-2,
HETEOVY TNV TOLUAOHOEPIN TOU TOEAYOUEVOL XEWEVOU UETEMVTUG T Lovadlxd N-grams xovovi-
XOTIONUEVA UE TOV GLUVORXO iU TV Aé€ewy. Thnhdtepes Tipég LTOBEWVOOLY TAOLGLOTEROD
%ot o Towxiho AeEoyo.

BertScore: To BertScore eAéyyet tn onuoacioloyixr opotdtnta yetald g €€66ou Tou po-
VTENOUL %0l TOU avapoptxol Xetévou yenotponownvtoc embeddings Bociouéva oto BERT. Tdn-
Aéc Twég BertScore umodnAkvouy 1oy LeY| GNUACLOAOYIXT EVVUYEAUULOT), UTOBELXVIOVTAS ATOTE-
AECUATIXY) XATOVONOT] TOU TAUGIOU X0l CUVAPELN TWV ATOXPICEMY TOU HOVTEAOU.

0.4.6 AmnoteAéopata

Avuty| 1 evotnTa ToEoVGLELEL TNV OAOXANEWUEVY OELONOYTOT] BLOPOEWY UOVTEAWY TIOU EXTIOL-
OEVTNXAY YENOWOTOLOVTIS OlopopeTxég uedodoloyieg: native training, cross-lingual transfer
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learning, multitask learning, xou prompt-learning exnaidevon. Xtov Ilivoxa 1 Beloxetar 1
xOpLa mepthndm twv anoterecudtwy. Ou Iivaxeg 2 xan 3 Selyvouv pior ueAéTn oyeTixd Ye Tov
aprlud Twv Tapadetyudtony k otig puduloeic cross-lingual transfer xou multitask learning yio ta
2 TohOYAwooo HOVTEAL.

Model perplexity SacreBLEU Distinct—-N‘ Bertscore

: B-1 B-2  score Distinct-1 Distinct-2  Precision Recall — F-1

Native training

GREEK-BERT2GREEK-BERT-NV 14.16 23.82 843 5.66 16.72 42.23 70.58 69.77  70.01
GPT2-Greek-NV 12.47 25.93 11.07 6.93 23.13 51.28 71.53 71.47  71.37
mT5-NV 6.52 2537 9.64 5.74 19.51 43.36 70.11 69.02  69.56
XGLM-NV 9.95 27.58 13.01 6.29 19.34 43.02 70.68 68.32  69.33

cross-lingual transfer training
mT5-CL (k=128) 19.39 13.54 599  3.53 18.71 37.62 64.12 63.24 63.52
XGLM-CL (k=128) 15.74 23.61 10.03 4.95 18.75 41.91 69.60 68.32  68.99

Multitask training
mT5-MTL (k=128) 12.27 189 6.83 3.93 21.12 46.35 68.35 67.96 68.04
XGLM-MTL (k=128) 16.53 23.25 9.89 4.75 18.24 40.39 69.53 68.25 68.75
Prompt-learning training
mT5-P-CL (k = 128) 16.12 18.64 826 4.41 18.52 38.22 66.31 64.36  65.12
mT5-P-MTL (k = 128) 13.45 13.83 4,99 3.12 18.52 43.27 64.48 55.59  65.12
XGLM-P-CL (k=128) 10.47 25.01 12.04 4.52 18.31 40.16 69.75 68.14 68.84
XGLM-P-MTL (k=128) 11.31 25.07 12.10 5.00 16.91 38.31 69.89 68.50 69.12
NV: Native training, CL: Cross-Lingual transfer learning, MTL: Multitask learning, P:
prompt

k: number of examples

ITivaxog 1: Anoteléopota yio OAEC TIC BLAPOPETIXES TPOCEYYIOEIC EXTABEVONG XoU Tal LOVTEADL.

Y UVONXE, TO LOVTERA TTOU EXTIOUOELTNHAY GE OAOXANEO TO UETAPEACUEVO GUVOAO OEGOUEVWLV
(native training) emtuyydvouv xolUtepn amddoon oe Ghec Tic petpixéc. To anoteréopota
Oty vouy 6Tt PeToY TwV POVTEAWY Tou extoudedTnxay eyyevee, To mT5-NV nétuye to youn-
Aotepo perplexity 6,52, UTOBEVUOVTOG AVIOTERY TEOY VWO TIXTY AnOB0CT, G GUYXELON UE GANX
povtéha o auty| TNV xatnyoplo. ‘Ocov agopd tig Paduoroyiec SacreBLEU, nou petpolyv tnv
OUOLOTNTO TNE TOPAYOUEVNC ATAVTNONG OE CUYXELOT| UE Wal oavlp@Tve YeUOT| amdvTnoT, 6cov
apopd TN yenon Twyv Blwv v-ypopudtwy, 1o XGLM-NV Eenépace to dAha pe Poduoroyieg 27,58
v B-1, 13,01 v B-2, xou cuvolur| Baduoroyio 6,29. Autéd unodniover 61t 1o XGLM-NV
TOEAYEL AMOVTACELS O XOVTH OTIS TEAYUUTIXES TwV SLAdYwY, ywels autéc va egacgaiilouv
ouvoyr. §2ot600, 1 péon Baduoroyia unoieiteton Alyo tou GPT2-Greek-NV unodewxviovtag
oL 10 TeheuTalo elye xaAUTERES Parduohoyieg o mo mepimhoxeg Baduoroyiee B-3 xou B-4.

To povtého GPT2-Greek-NV enédeile tic uvdmhdtepee Paduoroyiec Distinet-1 (23,13) xon
Distinct-2 (51,28), umodewxviovtag 6t mophyaye o mowxihes €€60ouc xewwévou. Autd elvou
%plOLO Yiot EQUPUOYES TOU AMOUTOUY TAOUGCLAL XAl TOWIAT TURAY WYY YAOCCHS. XT0 TAXICLO Tou
Bertscore, 1o omolo a&iohoyel TNV opoldTNTA HETAEY TR OUEVGV 0L XEWEVWY OVIPORAS YET-
owornowwvtoag evowpatwoelg, BERT, to GPT2-Greek-NV nétuye tic upnhotepeg Poduoroyieg
ue oxp{Belor 71,53, avdehnon 71,47, xon Boduoroyia F-1 71,37. H anddoon autod Tou poviéhou
UTOBNAGOVEL OTL Elval EEAUPETIXG ATOTENEGUATIXG TNV TOROY WYY XEWEVOU TIOU TouELdlel GTEVA
UE To XelPeva avapopdc GTO VOTUO XaL TNV TOLOTNTA.

Fevixd, 10 GPT-Greek-NV &emepvd tar dAAo ovtéha xou Texvxég exnaidevong. Auth 1
AVOTERY 60001 THAVOC OPEIAETOL TNV TEONYOUUEYY) EXTUDEUCT] TOU OE EAANVIXA DEQOUEVA,
1 onola mopelye pua loyver Bdon. Emmiéov, n yeron evog ehknvixol (tokenizer) cuvéBaie onuo-
VTIXA 0TV IXAVOTNTA TOU VoL ToRdyeL o TolxiAeg amoxploeic. Anéd tny dAAN TAgupd, 1 anddoo
Tou XGLM ebvar xoatdteen Tou avouevouevou Aaufdvovtog utodn to peyohitepo uéyedde tou
oe o0YXpLoN UE To GAAL LOVTEAQL.

Axour, to anoteréopato and tov Ilivaxa 1 anoxaiidntouy dtL ta povtéha XGLM nou exmou-
devTnxay ye prompts—1do0 oe oevdpla cross-lingual transfer learning (XGLM-P-CL) 600 xou
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oe multitask learning (XGLM-P-MTL)—endeixviouy avotepn anédoon oe Bacixéc UETpIXEC oE
oUYXEoT UE ToL avTioToLyd Toug Ywels evowudtwmon prompts. Muyxexpwéva, 1o XGLM-P-CL
métuye Paduoroyieg SacreBLEU 25,01 yia B-1 xou 12,04 vy B-2, ot onoleg elvan Bedtitdoeic oe
oyéan pe 1o poviého XGLM-CL ywelc prompts. Autd unodnhwvel 6t 1 cuunepthndn prompts
odnyel oe mo axplBeic xou cuvagelc ye To TAalolo e€6doug dBardyou. Emmiéoyv, ol Baduoroyiec
BertScore vy 1o XGLM-P-CL ot XGLM-P-MTL (Boduohoyiec F-1 68,84 xou 69,12, avtiotol-
xo) ebvon uhnhdtepec oe clyxplon Pe T avtioTotd Toug ywelc prompts, UTOBEVIOVTIS Lol
GTEVOTERY) OMUACLOAOYIXY| OHOLOTNTA UE amoxploelc Blahdyou avipwrivou titou. {lotdco, dev
Brémoupe Tig Bieg Bedtiwoeg yia to mTH, xodoe n pdinorn ye prompts dev galtveton var wpehet
70 wovtého.

Autd o evprjuata Setyvouy 6Tt 1 exmaldeuon Bacilopévn oe prompts Oyl udvo evicylel T
YAwooXN axplfBela xol CUVAPELR TOU ToEAYOUEVOU XEWEVOL JANS Blacaiilel eniong 6Tl o OL-
dhoyog drotneel €va LPNAG eninedo TowAopopplag xan ToAuThoxdTnTag. Autd elvar xpiowo
OTOL GUCTAUATO BLIAOYOL OTIOU 1) IXAVOTNTA TUEAYWYHS CUVEXTIXWY, CUVAP®Y PE TO TANCLO
xa To{AeY anoxploswy Umopel Vo ETNEEdOEL ONUAVTIXG TNV IXAVOTIOINGY XL TN BECUELCT) TOU
xerotn. Emnopévwe, 1 evowudtwon exnaidevong Boactopévng oe prompts oto poviého XGLM
o&lomolel TaL OEYLTEXTOVIXG TOU TAEOVEXTAUT, ETUTEENOVTIAS TUO ATMOTEAEOUATIXY HdInoY omd
AyOTeEpa TopadElY AT, XATL TOL elval WLETEQO ETWPEREC GE CEVAQLNL UE TEQLOPLOUEVA BEGOUEVAL
exTaUdEVOTC.

Emmiéov, n egapuoyr| prompts ot Swodixacio exmaldeuone cUPBUAAEL ONUAVTIXG GTOV [E-
TELOUO TOL {NTAUATOC TNG XaTao Teo@xc AIng xadme to povtého petofaiver and ayyAxd oe
ehMnixd oOvola Bedouévey. H xatactpopue Afin cupPBaiver dtav €va veupwvixd dixtuo ydvel
T TANEOYopleC oL Elye UAUEL TEONYOUUEVLC XATd TNV EXUAINGCT VEWY TANROYOELKOY, TO OTolo
elvol Lo x0T TEOXANCT| XATA TNV TROCUPUOYT) LOVTEAWY GE VEEC YAOOGES 1) GUVOAX DEBOUEVHV.
Me v evowudtwon prompts, to povtého XGLM eivon xolbtepa eE0TAIGUEVO Yiol Vo SlaTneroe
OYETIXAL YOPUXTNELOTIXA ATO ToL BEDOUEVO EXTIUBELOTC OTAL Oy YALXSL EVE ATOXTE, ATOTEAECUATING.
véa YAwooxd potiBa and to ehAnwixd 6edopéva. To prompts Aettoupyoly v dyxupeg 1 0dnyol
mou Bondolv va dwtnendel n ectlaon Tou HoVTENOL Ot %ploWES TTUYES TOU BLIAGYOU, BLaG(o-
ACovtag 6Tt 1 petdBoon petald YAWoOWY BeV apotpel TEONYOUUEVLS EBQUWUEVES IXOVOTNTES.

IMapdhhnha, Siehyoue xan wior yehétn yia tor povtéda mTH xow XGLM oyetixd pe teyvixég
cross-lingual transfer xou multitask learning, ypnowonowwvtac k = 32,64, 128,512, 1024 tuyaio
nopadeiypota and o EANANVIXG oUvoho dedouévwy (Iivaxes 2 xou 3).

Model perplexity SacreBLEU Distinct-N Bertscore

B-1 B-2 average-score Distinct-1 (%) Distinct-2 (%) Precision (%) Recall (%) F-1 (%)
mT5-MTL (k=32) 14.78 13.96 5.98 3.05 20.51 45.52 66.84 65.36 65.91
mT5-CL (k=32) 22.46 13.39 6.24 3.55 14.92 28.79 64.29 62.23 63.15
mT5-MTL (k=64) 13.06 17.32 6.64 3.77 22.82 51.27 68.23 67.56 67.82
mT5-CL (k=64) 20.19 13.37  6.06 3.49 18.13 36.14 64.11 62.97 63.44
mT5-MTL (k=128) 12.27 189 6.83 3.93 21.12 46.35 68.35 67.96 68.04
mT5-CL (k=128) 19.39 13.54 5.99 3.53 18.71 37.62 64.12 63.24 63.52
mT5-MTL (k=512) 9.84 21.75 7.75 4.49 21.23 47.16 68.94 68.25 68.57
mT5-CL (k=512) 14.56 17.33  6.67 3.97 20.03 42.38 65.51 65.13 65.22
mT5-MTL (k=1024) 8.92 22.98 8.25 4.85 18.65 39.66 69.37 68.60 68.85
mT5-CL (k=1024) 12.37 20.24 7.35 4.18 20.95 44.59 68.83 67.72 68.82

CL: Cross-Lingual transfer learning, MTL: Multitask learning, k: number of examples

ITivaxag 2: Andédoon tou poviéhou mT5 ot Sdgopec texvinés mou yenotwonoiinxay yio Slapopetind
aplduo %, ENANVIXGOV TopadelyUdtenv oo dedouéva exnaldevong.

Mo to mT5-MTL, n ab&non tov k Bektiowoe v anddoon: ueiddnxe to perplexity (8,92
oto k = 1024) xou avZhdnxav ot Boduoroyiec SacreBLEU (22,98 B-1, 8,25 B-2, xa péoo
oxop pe 4,85). Ou petpwxéc (Distinct-1, Distinct-2) Arov udmhétepes oto k = 64 (22,82%,
51,27%), eve> 1o Bertscore F-1 égtooce 68,85% oto k = 1024. A&wonueinwta, 1 nouahouoppio
UELOUNXE UE TEPLOCOTERX DELYUOTA X MG TO LOVTEAO EGTINCE GE TO CUYXEXPULEVAL TORADElY AT
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20l YAWGOOIXY TapadElyoTor OOTE VoL THpdYEL AMOVTACELS.

To mT5-CL €deiée Bertidoeic ue abnom touv k, odrd urokeindtay tTou MTL. Y10 k = 1024,
nétuye perplexity score 12,37, SacreBLEU 20,24 (B-1), 7,35 (B-2), uéon 4,18. Enuavtixt
Srapopd mapoatneinxe oto Distinct-N: oto k = 512, 1o MTL nétuye 21,23% Distinct-1 xou
47.16% Distinct-2, évavtt 20,03% xou 42,38% tou CL.

Model perplexity SacreBLEU o Dirstinct—ANA , N , Bertscore , ,
“  B-1 B-2 average-score Distinct-1 (%) Distinct-2 (%) Precision (%) Recall (%) F-1 (%)
XGLM-MTL (k=32) 18.06 19.75 8.85 4.06 17.06 36.21 69.26 67.99 68.41
XGLM-CL (k=32) 20.33 19.98  9.38 3.29 22.54 48.68 68.86 67.97 68.36
XGLM-MTL (k=64) 17.34 20.93  9.29 4.36 17.64 38.46 69.34 67.88 68.52
XGLM-CL (k=64) 17.61 20.41  8.99 4.21 19.78 43.04 69.23 67.98 68.51
XGLM-MTL (k=128) 16.53 23.25  9.89 4.75 18.24 40.39 69.53 68.25 68.75
XGLM-CL (k=128) 15.74 23.61 10.03 4.95 18.75 41.91 69.60 68.32 68.99
XGLM-MTL (k=512) 14.38 25.35 11.12 5.51 18.85 41.17 69.41 67.95 68.57
XGLM-CL (k=512) 14.16 2544 11.31 5.35 19.17 43.45 69.92 68.60 69.10
XGLM-MTL (k=1024) 13.53 26.49 11.66 5.78 19.21 41.97 69.51 67.96 68.60
XGLM-CL (k=1024) 13.31 26.13 11.42 5.91 19.11 42.88 69.26 68.60 69.23

CL: Cross-Lingual transfer learning, MTL: Multitask learning, k: number of examples

ITivaxoag 3: Anédoor tou poviéhou XGLM oTtic didpopes TeVixéS TOL Ypnolomotfdnxay Yo SlapopeTind
apLdud x, EANANVIXOV TopoadelyUdtwy oto dedopéva exnaldevong.

To XGLM ¢édeile napépowa tdon. To XGLM-MTL (k = 1024) elye perplexity 13,53 xou
vmiotepeg Poduohoyiec SacreBLEU: 26,49 (B-1), 11,66 (B-2), pe péon Baduoroyia 5,78 - udn-
Notepeg amd tou mTH. O Baduoroyieg Distinet-N Bertidrdnxay pe nepiocdtepa napadetyyota,
oAAG 1 Towahopoppla otadeponotfinxe oe udmidtepa k. To BERTScore F-1 égtoace 69,23%
vt to XGLM-CL (k = 1024), ehagpie udpmidtepo omd to mTH.

Yuunepaouatind, 1 TOAVERYacLoxy| Udinon uteptepel TNg Ydinong ue Alyo mopadelypota yio
o mT5 xou XGLM o€ dhec Tic yetpixée (perplexity, SacreBLEU, BERTScore, ot Distinct-N).
Hoapddhnha, adEnom Twv Toeadelyudtony BeEATIOVEL TNV anddooT), utoypauuilovtoc Tn onuosio
TEPLOCOTEPWY OEOOUEVWV EXTIALOEVOTC.

0.4.7 Av9pwnivn AZoNoynom

Ov autdpateg YeTpixés, TUPOTL YPNOWES Yld TOCOTIXY| AVAAUGT), GUY VY ATOTUYYAVOLY Vo
a&LONOYICOLY TAHEWEC TS TEUYUATIXES BUVATOTNTES TOL YovTéhou. o wia o ohoxAnpwuévn
XATAVONON TNG ATOB0OTG TWV UOVTEAWY, Blegyoue Wi avipdmivy oaloAdyNoT U€ow BLadXTUOXNS
€peuvag pe 40 CUUUETEYOVTES, EMTEENOVTOS TNV OELOAOYTOT TOLOTIXWY TTUYKOY TOU AUTOUATES
UETEIXES amd UOVES TOUC BeV Umopoly VoL UETEo0LY anoteheouatxd. Baowlduevol oto suphjuota
NG AUTOUTNG A€LOAOYNONG AT TNV TEONYOUUEVY EVOTNTA, EMAECAUUE To LOVTEAA TTOU ETEDEIE ALY
To o LTooY OUeva amoteréopata Yoo avipwmivh a&tohdynon: GPT-Greek-NV, XGLM-NV xo
XGLM-P-MTL. Emmiéov, cuunepihdBoye to Meltemi, éva onuavtixnd peyolitepo povtéro (7B
TopaéTpous ot olyxplom Ue ta 550M temv GAAWY), Yia VoL GUYXPIVOUUE ToL LOVTEAA O UE [ALOL THO
LOYLET] OEYLTEXTOVIXY) XAl VUL XAUTOVOHOOUUE T1) SLapopd amdB0oomg UETAUE) BLPORETIXWDY XAUEHWY
UOVTEAWV.

XNV €pEUVa, GTOUC GUUUETEYOVTES TOPOUGLAG TNXAY TOVOUOLOTUTA Lo TOPWXS BLOAGY MY Ko
Touc InTRdnxE Vo a€lOAOYNCOLY TIC ATAVTACELS TTOU TPy oryary Xodéva amd Tar TEGOERA UOVTENX
ue Bdomn moAamAd xpithpta. AUt 1 TEOGEYYIOT Mo EMETREPE VAL CUYHEVTPMOOCOUUE AEMTOUERELC
aVUPWTVES XPIOEIC OYETXE PE TNV TOLOTNTU TWV ATAVTACEWY TOU CUUTANEOVOLY T OTOTE-
Aopata TV auTOUATOVY PeTewov. Kdde ocuuuetéywy allohdynoe 5 Slohdyoug, Ye xpltrpta Tny
eugpddewa (fluency), n omola Setyvelr ™ cuvtoxtixh opddtnta Tng amdvInong, xou TN cUVoyN
(coherence) n omofa pag delyver oo cuvaPY pe TO W TOEXKG TOU Blahbyou elvor 1 amdvTNoT,
xenotonowdvtag xAfpaxa Likert 1-5. Juvohixd cuyxevtpwinxay 180 afloloynoelg avd povtého.

To Meltemi enédeile v xahbTepn anddoot e oTaTloTixd onuavtixéc Poduoroyieg 4,01
oty evpddeta xou 3,97 otn cuvoyy (p'0,05), emBeParhvovtos TV aveTEEHTNTA TOL TOL UTOoEEL
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va anodovel 6To yeyahltepo uéyedog xan TNy extevéotepn exnaideuor tou. To XGLM-P-MTL
nopouciooe onuavtixd Bertinon évavtt tou XGLM-NV w660 oty eugpddeta (3,46 évavtt 3,13)
660 xou 6T ouvoyY| (2,98 évavtt 2,62), amodexvioVTIS TNV ATOTEAECUATIXOTATO TNG TEOGEY-
yiong exmoldeucne TOAAATAGY gpyaotwy Ye ayyhxd prompts. To GPT-Greek-NV oanédwoe
X0l otnV evgeddela (3,42) odhd uvotépnoe ot cuvoyt (2,90), utodnhdvovtag Suoxohic o
OLUTAENOT CUVAPELNG GE EXTEVEIC AMAVTHCELS.

Model Fluency Coherence
GPT-Greek-NV 3,42 2,90
XGLM-NV 3,13 2,62
XGLM-P-MTL 3,46* 2,98*
Meltemi 4,01* 3,97*

ITivascog 4: LOyxpion LOVIEAWY WE TROoG TNV EVpeddeta xou Tn cuvoy . Ta anotehéopota ye * elvar otatiouxd
onuovtxd pe ©°0,05 ypnotwonowdvtac to teot MannWitney U.

0.5 Xuvelo@opeég xal LEANOVILXES TEOEXTACELS

0.5.1 Xvuvelcpopég

H épeuvd poc nepthduove piar OAOXANEWUEVT) OELRA TELRUUATWY YPNOWOTOWWVTAS Ulol ToLUAL
HOVOYAWGGIXMY Xl TONYAWCOXWY LOVTEAWY Bactouévey oe transformers. Autd nepuhdufovory
o GREEK-BERT, GPT-2 Greek, mT5 xow XGLM. Atepeuvriooye SLopopeTinéc npooeyyloelg
EXTIOUOELONC YIdL TNV ATMOTEAECUATIXT 0&lOTIOIMNOT TV TEPLOPLOPEVLY TIOPwY. AUTEC oL TPOscEY-
yioew mepAduPoavay SloryAwcowxr) uetogopd yvaoone zero-shot, few-shot xou full-shot, o
xan yyevy exnofdevon. Emmiéov, Siepeuviooue Tn yehom TEYVIXAC exudinong ue TpoTpomég
(prompt learning) yia ) Behtiwon g anddoong TwV TOANUYAWOOUMY LOVTEADY HOC, ATOOEL-
%xv0OVTOC TNV AMOTEAECUATIXOTNTE TNG oT1 BeATinon Tne Topaywyng Slahdyou.

AZiohoyriooye ol OVTEND YENOWOTOLOVTAS Bldpopeg autduates UeTewés: Perplexity, BLEU,
BertScore xou Distinct-n. Autéc ot petpuéc foryInoay otny alloAdynon g ToldTnTog, TG Tol-
nhopop@lag xaL TNG CUVAPELNS TV TaEUYOUEVKLY anavthceny. H alohdynon uag amoxdiude
OTL M eYYEVAC exmtaldeuon yevixd Cemépooe dhheg teyvixée, ye To XGLM-P-MTL vo eivar to
uovo ouyxplowo povtého. Autd o UOVTERO exToudETNXE TAUTOYPOVA O oy YAd Bedouéva
OLAOYOU xal VoL U0 PEEOC EAANVIXGY OEOOUEVLV YENOLLOTOLWVTOG CUVETELS TPOTEOTES OE
OAEC TIC YAWOOEC.

INo tepoutépn alohdynon e anddoone xon clYXEIor Ye UEYUADTEPX UOVTENX, Ole&hyoue
ular €peuva aviedmvng alloAdYNoNg cuyxelvovTog To Tela XOADTERO HOVTERA GUUPWYL UE TIC U-
topateg uetpixéc (GPT-Greek-NV, XGLM-NV xou XGLM-P-MTL) palt pe évo mo mponyuévo
automahvOpouxd poviého, to Mehtéur (Meltemi). To anoteréopota tne épeuvac €detlay 6Tt
0 Mehtéu Eemépaoe Ao tar dAAa povtéda, axohovdoluevo and to XGLM-P-MTL, to omo-
lo enédelle oTatiIoTd onuovTixy Bedtiowon oe oyéorn ye 1o poviého XGLM mou exnaudedtnxe
ATOXAELG TIXG. OF UETUPEACUEVA EANTVIXE OEBOUEVAL.

Ta cupAUATA TOV TEWAUATWY YOS TEOCPECOUY TOANITIUES YVWOELS CYETIXA UE TIC TOAUTAO-
AOTNTEC TNE TAPAY WY SLIAOYOL OE YAOGGTES Ue TepLoplouévoug tépoug. Ta anoteAéouotd pog
umoyeauUiouy TIg BUVATOTNTEC TNE BLYAWSOIXAC HETUPORAS udinong we Bidotun oteatnyixy
yior TETOLL OEVAELOL OTOY GUVOLALETAL UE XATOLL EXUAUNOT) TEOTEOTIY, TUEEYOVTAS €V LOVOTATL
YLt LEAOVTIXT) €REUVAL YOl OVATTUET).
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0.5.2 MeAhovTixég Ilpoextdoelg

Avuty) n Simhwpatixn epyacto avolyel ToAég 0000¢ yia peAlovtiny) épeuva.  ITavéc eme-
ATAGELG 0L TPOCUPUOYES YIal TEQALTERL OLEPEUVNOT TEpLAaUSdvouy:

Egopuoyn mponyuévev teyvixey enadinong 0edouévmy Tépo oamd Tr Unyovixy| UETAPEoo,
OTWC ToEAPEACT) Xt CUVIETIXY TP YWYT| BIAOYWY, VLol TOV EUTAOUTIONO TWV GUVOALY
OEDOUEVLV EXTIUBEVONG YLl YADGGES UE TEPLOPLOUEVOUS TOROUG.

AvEmTuZn xon doxuur| eZEWBIXEVPEVOY TPOCEYYIoEWY Uy ovixAc TeoTpoTdY (prompt engi-
neering) mEOCUPUOCUEVLY GE GUoTAUATA DlahGYou, WBLETEPR BlEpELUVHVTOS TopadElypaTa
udinone few-shot mou a&lonololy TN By AwCOWXT UETAPORE YVHOOTC.

Enéxtaon tng oliohdynone LoviéAnv ot dLdpopous Topelc xot TAalolar SlahGYou Yol TNV
a&loAOYNON TNE EVPWOTING XOL TN TROCUPUOC TIXOTNTIC OE BLUPOPETIXG CEVAPLO GUVOUL-
Ao,

EyeBLaouOg OAOXANPOUEVKDY Thaualwy ovipdmivng aloAdynong mou cUAAAUBAVOLY AeTég
TTUYEC NS TOLOTNTOC TOU OLOAOYOU, CUUTERLAUBAVOUEVNC TNS CUVOYNS, TNG OECUEUONC
X0l TNG TOMTIOUXAC XATUAANAGTNTAS.

Enéxtaon twv yedodoroylov mou avantiydnxay o auth| T OITAOUATIXY EpYaoia ot JAAES
YADOOES UE TEPLOPIOPEVOUS TTOPOUC, LOLUTEPX OE EXEIVEC UE TEQLOPLOUEVT] EXTIPOCWTNON
oty épeuva EneZepyaociag Puoiic I'\dooag (NLP).

AlgpehvNoT AMOTENECUATIXGDY TEYVIXOY AETTOPEPOUS cuvToviouoy (fine-tuning) mou eloyt-
GTOTOL0Y TOUG UTOAOYIG TOUG TOPOUS, UEYLO TOTOLOVTIS TORAAANAGL Tot OQEAT ATOOOCNC
Yiot CUCTHUATA BLAOYOL.

H €peuva mou napoucidleton o€ auth T Simhwuatixn epyacio anotehel VeUENo yia TNV avTiE-
TOTUOT TWV TEOXANCENY TN ONUOVEYIIS ATOTEASOUATIXGDY CUC TNUATWY BIAGYOU VLo YAWCGIXS
UTOEXTIPOCGWTOVUEVES XOVOTNTES.
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Chapter 1

Introduction

1.1 Motivation

The rapid advancement of natural language processing (NLP) technologies has revolution-
ized various aspects of human-computer interaction. Virtual assistants like Siri and Alexa,
alongside sophisticated customer service chatbots, have become integral parts of our daily
lives. These dialogue response generation systems help us with tasks across multiple do-
mains—such as booking flights, making restaurant reservations, and shopping online—and
also entertain us.

Advances in Machine Learning (ML), particularly through Deep Learning (DL), have
spurred the development of diverse dialogue systems. Notably, open-domain chatbots are a
significant area of research. These systems aim to emulate human-like interactions by engag-
ing in free-flowing conversations on any topic, much like humans. Modern open-domain con-
versational models are usually trained on extensive datasets and enhanced through massively
pre-trained language generation models, which are fine-tuned to perform specific dialogue
tasks [91], [63].

However, despite the wealth of resources for building these models [39], [37], [62], most
are predominantly in English, presenting significant challenges in developing similar tech-
nologies for other languages. While limited research has addressed low-resource dialogue
generation—such as template-based approaches for Chinese [37] and simple fine-tuning on
auto-translated Arabic data [53], [51]—these efforts have focused on single training method-
ologies without systematic exploration of cross-lingual transfer strategies or modern multi-
lingual model capabilities.

Greek, with its rich historical and cultural heritage, is considered a low-resource language
in the context of NLP due to the scarcity of large-scale annotated datasets and linguistic
resources. To the best of our knowledge, no prior work has addressed open-domain dialogue
generation for Greek, creating a significant gap in conversational Al accessibility for Greek
speakers.

This thesis addresses these limitations through several key innovations. Initially, we
present the first systematic comparison of multiple training strategies (native, cross-lingual
transfer, multitask, and prompt-based learning) for low-resource dialogue generation, moving
beyond the single-approach focus of previous work. Subsequently, through this comprehensive
evaluation, we identify and develop a novel prompt-based cross-lingual transfer methodology
that uses shared linguistic structures to facilitate knowledge transfer from English to Greek
dialogues—an approach that emerges as superior and has not been previously explored in
open-domain dialogue generation scenarios. Furthermore, we demonstrate how modern mul-
tilingual models can be effectively leveraged through strategic combination of source language
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data, limited target language data, and consistent prompt structures—establishing a new
framework for efficient dialogue system development in low-resource settings.

1.2 Thesis Contributions

This diploma thesis contributes to the field of open-domain dialogue systems for low-
resource languages, specifically addressing the challenges of developing such systems for the
Greek language.

The principal contributions of this work are fourfold. We begin by addressing the absence
of Greek dialogue data through the creation of a Greek version of the Daily Dialog dataset
via machine translation, enabling experimental research in Greek dialogue generation that
was previously impossible.

Subsequently, we conduct the first comprehensive systematic evaluation of multiple train-
ing methodologies for low-resource dialogue generation, comparing native training, cross-
lingual transfer learning, multitask learning, and prompt-based approaches across both mono-
lingual and multilingual transformer architectures. This systematic comparison provides cru-
cial insights into the relative effectiveness of different strategies and represents the first such
comparative study in this domain.

Through this comprehensive evaluation, we identify and develop a novel prompt-based
cross-lingual transfer learning approach for dialogue generation that employs shared prompt
structures across languages to facilitate knowledge transfer from high-resource to low-resource
languages. This methodological innovation, which emerges as the most effective strategy
from our systematic comparison, significantly enhances multilingual model performance in
few-shot scenarios and represents the first application of such techniques to open-domain
dialogue generation.

Most significantly, we establish an optimal training framework for low-resource dialogue
generation that combines multilingual models with both source language data and small
amounts of target language data, enhanced by consistent prompt structures across languages.
This approach achieves performance comparable to or better than models trained solely on
target language data, while requiring significantly less target language resources—providing
a practical solution for developing dialogue systems in resource-constrained settings.

1.3 Thesis outline

Chapter 2: From Machine Learning to Deep Learning, provides background knowl-
edge to set the stage for the subsequent chapters. First, we provide an overview of technical
information that is relevant to understand the contents of this thesis. Next, we introduce
the reader to machine learning together with its most elementary methods. We subsequently
delve into the original deep learning models and the basic architectures. Then, transfer
learning methods that are currently used to train natural language processing models are
explained.

Chapter 3: Natural Language Processing, presents the natural language processing
background needed to understand this thesis. After briefly presenting popular natural lan-
guage processing tasks, language modeling is presented, initially in the form of an n-gram
model based on the Markov assumption and then as a recurrent neural network. The chapter
then transitions to large-scale pre-trained transformer models, highlighting the most signif-
icant architectures and models. It concludes with an analysis of various prompt learning
techniques that enable the efficient training of larger models with smaller datasets.
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Chapter 4: Open-Domain Dialogue Generation for Low-Resource Languages
surveys the approaches researchers have taken to address open-domain dialogue generation
in languages with limited or no available data. It starts by describing the problem and then
examines different training strategies for Transformer-based models, focusing on their success
with varying data quantities. The chapter also reviews the evaluation metrics used to assess
such tasks and discusses the insights each metric provides.

Chapter 5: Dialogue Generation - Greek Case details the development of a Greek
open-domain dialogue generation system using various models and techniques. It covers a
range of models, from encoder-decoder to decoder-only, and from monolingual to multilingual
approaches. The chapter discusses the use of different subsets of datasets in combination
with different training techniques and their impact on performance. It concludes with a
comparative analysis of all the models and techniques, presenting the best results achieved.

Chapter 6: Conclusions, contains our conclusion, summarizing our findings and provid-
ing an outlook into the future work.
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Chapter 2

Machine Learning and Deep Learning

2.1 Introduction

Machine learning and deep learning are two interconnected subfields of artificial intel-
ligence that have revolutionized the way computers learn from data and make decisions.
Machine Learning is at the connection between computer science and statistics. Its goal is
the algorithmic use of data, both structured and unstructured, to mimic how humans learn
and to perform tasks without being explicitly programmed. Deep learning is a subdomain
of machine learning and has gained significant attention for its ability to learn representa-
tions from complex data. Deep learning involves neural networks with numerous layers of
interconnected artificial neurons, which are inspired by the structure of the human brain.

Machine learning and Deep learning have found applications in various fields, such as
computer vision, natural language processing, healthcare, and finance, transforming the way
we approach various tasks and challenges. With their ability to uncover hidden patterns and
handle massive amounts of data, machine learning, and deep learning have become essential
tools for solving complex problems in the field of artificial intelligence.

In this chapter, we provide an in-depth review of the technical components that form the
foundations of machine learning and deep learning.

2.2 Types of learning

Machine Learning algorithms can be classified depending on the way of learning. The most
common categories are supervised learning, unsupervised learning, semi-supervised learning,
and self-supervised learning.

2.2.1 Supervised Learning

In supervised learning, the model can make predictions with the help of a labeled dataset.
The aim is to build an algorithm that learns the mapping function f between input variables
X and target variables Y.

Y = f(X) (2.1)

The labeled dataset contains the corresponding target variable Y for every variable X.
During training, both X and their corresponding label Y are provided. At inference, we
expect the mapping function to predict the output for every new input sample provided from
the same distribution as the training samples. Supervised learning can be further divided
into two types:
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1. Classification
2. Regression

In classification, the model learns to predict the class of an input sample. For example, in
image recognition, the model classifies images of animals into categories such as ’dog’, ’cat’,
or 'bird’. Another example is email spam detection, where the model classifies emails into
‘spam’ or 'not spam’. In regression, the model predicts a numerical value. For instance,
predicting house prices based on features like size, location, and number of bedrooms, or
predicting stock prices based on historical data.

2.2.2 Unsupervised Learning

In contrast to supervised learning, unsupervised learning is used for problems where the
output variable Y is not available, thus the data are unlabeled. The algorithm’s goal is to
identify patterns and commonalities among its input data.

The main tasks of unsupervised learning are clustering, generative modeling, and dimen-
sionality reduction. The process of clustering involves grouping the population or data points
into a number of groups so that the data points within each group are more similar to one an-
other than the data points within other groups. Simply said, the aim is to segregate groups
with similar traits and assign them into clusters. For example, customer segmentation in
marketing, where customers are grouped based on purchasing behavior. Generative models
are the ones that mimic the method used to produce training data. A good generative model
should produce new data that is somewhat similar to the training data. For instance, Gen-
erative Adversarial Networks (GANSs) can generate realistic images of faces that do not exist
in reality. Since the process of generating the data cannot be directly observed, this type of
learning is regarded as unsupervised [17].

2.2.3 Semi-Supervised Learning

Semi-supervi- sed learning lies between supervised and unsupervised learning. Semi-
supervised learning algorithms operate on datasets that are partially labeled. The labeled
samples are initially used to train a model, which will be used to label the whole dataset.
After that, we combine the given labels with pseudo-labels we generated to create the fully
labeled dataset. It is used for tasks, for which it is infeasible to label every sample, like
web content classification or text document classification. For example, in a large-scale text
classification task, a small subset of the documents might be manually labeled by experts,
and the rest of the documents are labeled using the model trained on this subset.

2.2.4 Self-Supervised Learning

Self-supervised learning is a type of learning where the model generates its own labels
from the input data, effectively creating a supervised learning problem from an unlabeled
dataset. This approach leverages the structure within the data itself to create pseudo-labels.

In self-supervised learning, the algorithm typically uses part of the input data to predict
another part. This can be done through tasks such as predicting the next word in a sen-
tence, completing masked parts of an image, or predicting future frames in a video sequence.
For example, BERT (Bidirectional Encoder Representations from Transformers) uses self-
supervised learning by masking out words in a sentence and training the model to predict
these masked words [11]. Large Language Models (LLMs), such as GPT (Generative Pre-
trained Transformer), also leverage self-supervised learning. These models are trained on vast
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amounts of text data by predicting the next word in a sentence, which inherently creates a
supervised learning task from the text [3].

2.3 Basic concepts in machine learning

2.3.1 Loss function

Any Supervised Learning algorithm’s goal is to return a mapping function f(), that maps
the input instances to the corresponding labels. In order to quantify the error (loss) of the
model, we introduce the loss function L(y, ), where g is the predicted output and y is the
true label. The Loss function L(y,#) assigns a numerical score (a scalar), and the lower the
numerical score, the better the prediction made. During the training phase, the parameters 6
of the mapping function are determined by minimizing the loss L. Given a train set (21.,Y1:n),
and the function f(x;0) the total loss over the training set is defined as:

:—f2£ F(x::0), ) (2.2)

The model’s optimal parameters # are determined by minimizing the total loss L.

0 = argmin £(0) = argmln -—— Z L(f(xi;0),v:) (2.3)
0

For different tasks, different loss functions maybe should be selected. Classification (bi-
nary or multi-label) and regression tasks use different cost functions. Also, for the same task
and dataset, a different loss function can give better results than another one. The most
common cost functions are described below:

Mean Squared Error(MSE): The mean squared error prediction is mainly used for
regression models and is described as:

1 N
=% z:: (2.4)

Where (y;) is the true value, (g;) is the predicted value and 6 is the parameter vector of the
network.

Cross-entropy loss: Cross-entropy loss is mainly used for classification problems. On
this kind of task, the model predicts an output with probability p € [0,1]. For binary
classification, the output ¢ of the model is interpreted as the conditional probability § =
Py = 1| x). We want to maximize the log conditional probability P(y = 1 | z), or
equivalently minimize the cross-entropy loss. Lety = (y1,¥2,...,ym) be a vector representing
the true multinomial distribution over the labels 1,...,m, and let y = (91, 92, ..., 9n) be the
linear classifier’s output, the loss function is defined as:

2
= yilog(s) (2.5)
=1

For multi-label classification problems, we use the negative log-likelihood loss, also known as
categorical cross-entropy loss. The loss is calculated among two probability distributions, we
call p the predicted probability distribution and ¢ the ground truth distribution. The goal is
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to minimize the cross-entropy between the model’s distribution and the distribution of the
given data. The formula, for M classes classification, is given as:

M
J(p.q) == arlogps (2.6)
k=1

The negative log-likelihood loss is important and widely used in training language generative
models, such as the models we use.

2.3.2 Optimization

Machine learning optimization is the process of updating the parameters, during the
training phase, to minimize the loss. The most common category of optimization algorithms
is gradient-based. These methods minimize the loss function J(6) by updating the parameters
6 of the model in the opposite direction of the gradient Vy.J(6).

Gradient Descent algorithm computes the gradient of the cost function with respect to
the parameters 6 for the entire training dataset at each iteration n + 1, and is defined as:

9n+1 = 9n - 77V¢9J(9n) (27)

The learning rate 1 determines the size of the steps the algorithm takes to reach a minimum.
However, this algorithm is possible to be stuck at a local minimum and not reach a global one.
Therefore, it is important to carefully adjust the learning rate because a small value results
in slow convergence while a large value may cause the cost function to fluctuate around a
minimum. Additionally, calculating the loss over the entire dataset at each iteration may be
computationally expensive, if we operate on a large dataset, as it recomputes gradients for
similar examples before each parameter update.

Stochastic Gradient Descent [7], in contrast, computes the gradient of the cost func-
tion and performs a parameter update over a subset of the sample. For each training example,
x; and its corresponding label y; the parameter update at step n + 1, is defined as:

Ons1 =00 — Vo J (O x4, vi) (2.8)

SGD algorithm is much faster than gradient descent as it performs one update at a time and
avoids redundant computations.

2.3.3 Backpropagation

Backpropagation is a standard method for neural network training. The term is a short
form for “backward propagation of errors”. During the training process, to find the opti-
mal parameters (weights) of the model, we minimize the loss function. This method helps
calculate the gradients of the loss function with respect to the weights of the network|32].
Backpropagation computes the gradients of a complex expression using the chain rule, one
layer at a time. The algorithm starts from the last layer of the network and iterates back-
ward while caching the intermediate terms. With this method we update the weights of the
network after each computation of the cost function L, using the partial derivatives 2—5) with
respect to any learnable weight w. In this way, we fine-tune the weights, which leads to a
further decrease in the model’s loss and improves the performance.
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2.3.4 Generalization: Underfitting and Overfitting

The main goal of training in machine learning is to develop the model’s ability to generalize
successfully, thus performing well in previously unseen data. Generalization is an important
concept in machine learning and examines how well a model can digest new data and make
correct predictions after getting trained on a fixed training set.

During the training phase, the model computes an error (training error) based on pre-
dictions on the training set, which it tries to minimize through the backpropagation process.
After the training, the model is tested in a different, called the testing dataset which probably
includes previous unseen input samples. The error that is computed on the testing dataset
is called generalization or testing error. The success of a machine learning algorithm can be
determined by how the model handles data seen during the training process and the way it
adapts to unseen data. Simply, the goal is to make the training error small and at the same
time make the gap between training and generalization error small, as shown in Fig 2.1.

& Underfitting | Overfitting >

Best Fif

Error

Model “complexity”

Figure 2.1: At the left end of the graph, where training and test error are both high is the underfitting
regime. As we increase capacity, training error decreases, but the gap between training and generalization
error increases. Eventually, the size of this gap outweighs the decrease in training error, and we enter the
overfitting regime, where capacity is too large, above the optimal capacity. Source: vitalflux

The two factors mentioned above represent two important machine learning concepts:
underfitting and overfitting. Underfitting occurs when our machine learning model is not
able to capture the underlying pattern of the training data, thus the training error is not low
enough. Overfitting occurs when the model learns the training data really well. As a result,
the model starts modeling noise and inaccurate values present in the dataset. This has an
effect on the model’s performance in unseen data, resulting in a large gap between training
and testing error. So, it’s critical to find a good trade-off between training error and the gap
between training and test error during the training phase.

2.3.5 Tackling overfitting

Overfitting is one of the most common issues encountered when training a machine learn-
ing model. There are several approaches to overcoming overfitting and improving generaliza-
tion. Regularization and dropout are the two most common.

Regularization is the most common technique that is used to calibrate machine learning
models in order to minimize the adjusted loss function and prevent overfitting or underfitting.
The regularization term in the adjusted loss function now penalizes complex hypotheses that
we believe are unlikely to generalize well and favor simple ones. With the new regularization
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term, our cost function described in equation 2.2 is now defined as:

N
£00) = =5 S £/ (@i36),) + AR(O) (2.9
i=1

The regularization term(R) considers the parameters § and scores their complexity. The
training algorithm is now encouraged to find a compromise between the fit of the training
data and the norms of the weights. The two most common regularization norms are L2 and
L1.

e L1 Regularization:

The L1 norm penalty, also known as Lasso regression, uses the L1 norm (also called
Manhattan distance), and is thus defined as:

K
R(w) = 3" luwi
1=1

where w;,7 = 1,2, ..., K are the model’s weights.

e L2 Regularization:

The L2 norm penalty, also known as weight decay or ridge regression, uses the L2 or
Euclidean norm, and is thus defined as:

K
R(w) =7 w}
i=1
where w;,7 =1,2,..., K are the model’s weights.

Comparing the two regulation methods, we can conclude the following: Due to squaring,
L2 regularization penalizes parameters with bigger values much more strongly, while it only
affects smaller values lightly. It can therefore reduce overfitting by decreasing model com-
plexity, but, since it does not lead any parameters to become equal to zero and only decreases
them, it does not reduce the total parameter number. On the other hand, L1 regularization
affects all values equally, decreasing all non zero parameters and leading some of them to as-
sume an optimal value of zero. For this reason, L1 regularization often leads to more sparse
models than L2 regularization

Dropout is a form of stochastic regularization. By injecting some stochasticity into the
computations, we can sometimes prevent certain pathological behaviors and make it hard for
the network to overfit. Dropout is intended to prevent the network from relying on specific
weights. The algorithm itself is simple: we drop out each individual unit(hidden or visible)
with some probability p by setting its activation to zero, as shown in Fig 2.2. Dropout
technique has become part of the standard toolbox for neural network training and can give
a significant performance boost. |71]

2.3.6 Activation Functions

An activation function is the last part of a layer in a neural network and decides if a
neuron should be activated or not. This means that the activation function will decide how
important is the neuron’s input to the network. Basically, is a mathematical function that
transforms the weighted sum of a neuron’s input into an output. If f is the activation function
of a neuron with n inputs 1, xo, ..., 2y, and bias b then the output y is defined as:

y = f(wizy + ...+ wpzy +0) (2.10)
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a) Standard Neural Net (b) After applying dropout.

Figure 2.2: . Dropout Neural Net Model. Left: A standard neural net with 2 hidden layers. Right: An
example of a thinned net produced by applying dropout to the network on the left. Crossed units have been
dropped. Source: [71]

The simplest form of an activation function can be defined as a binary function that activates
the neuron based on the input and the output is either 0 or 1. Activation functions can be
linear or non-linear. Linear functions, also known as no-activation functions, do not change
the weighted sum and the activation is proportional to the input. So, we usually use non-
linear functions in order to add non-linearity to the network, learn non-linear states, and
create complex mappings between the network’s inputs and outputs. The most common
non-linear functions are presented below.

Sigmoid Function

The sigmoid function is commonly used for models we have to predict the probability as
an output, as it squishes the value between the range of 0 and 1. The mathematical form of

the function is: )

14+e*
The larger the input, the closer the output value will be to 1, whereas the smaller the input
(more negative) the closer the value will be to 0. However, large changes in the inputs of the
sigmoid will cause a small change in the output because of the compression we mentioned
before. Thus, the derivatives become small and after stacking many layers with sigmoid
as the activation function, during the backpropagation algorithm, all these derivatives are
multiplied together and lead to the vanishing of the gradients.

o(x) (2.11)

14
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N

] Fal | ]
A=

-6 4 -2 0 2 4 6

Figure 2.3: The sigmoid function
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Tanh Function

The hyperbolic tangent (tanh) function is mathematically represented as:

et —e "
Tanh function is similar to the sigmoid with the difference that is zero-centered and the
output is in the range [—1,1]. It has a steeper gradient compared to the sigmoid function
which has the advantage of faster learning, but Tanh also faces the problem of vanishing
gradients.

tanh x

Lo L —

/
5

Figure 2.4: The tanh function

ReLU Function

Rectified Linear Unit (ReLU) is probably the most commonly used activation function in
neural networks and is defined as:

f(z) = max(z,0) (2.13)

The function returns the value of the input or 0 if the input is negative. It seems like a linear
function but has a derivative function and allows for backpropagation. Also, the neurons with
negative output (those with negative activation function input) will be deactivated. Since only
a certain number of neurons are activated, the ReLU function is far more computationally
efficient when compared to the sigmoid and tanh functions. Moreover, ReLU due to its linear,
non-saturating property can accelerate the convergence towards the global minimum of the
loss function.

GELU Function

Gaussian Error Linear Unit (GELU) [22] is the result of combining the dropout technique
(see Section 2.3.5) and the ReLU activation function. Both ReLU and dropout yield a
neuron’s output. The first one does it deterministically, while the second one stochastically
by randomly multiplying a few activation functions by 0 at certain nodes in layers. GELU
function merges these functionalities by multiplying the input by either zero or one which
is stochastically determined and is dependent upon the input. Mathematically it can be
represented as:

2
GELU(z) =2P(X <x)=2®(x) =0.5(1 + tanh[\/>(x 4 0.0447152%)]) (2.14)

T
Where ®(z) is the standard Gaussian cumulative distribution function. GELU’s nonlinearity
is better than ReLU’s and is the most commonly used activation function in the top NLP

models like BERT [11], GPT [59], and RoBERTa [10].
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Figure 2.5: Comparison between ReLu and GELU function

2.4 Traditional Machine Learning Models

2.4.1 Linear Regression

Linear regression is a supervised algorithm that learns to model a dependent variable, vy,
as a function of some independent variables, x;, by finding a line (or surface) that best "fits"
the data. For an input vector x, where x € R"™, we define the output value ¢ as:

j=wlx (2.15)

where w € R" is the parameter vector.

The error function we try to minimize in order to find the optimal fit of the model to
training is the mean squared error (loss) function, which is defined in Eq. 2.4. Minimizing
this function with respect to the parameters w we find the optimal parameters. The solution
is also called the least squares solution. We can calculate the optimal solution using the
gradient descent algorithm we described earlier. Even though the family of linear models,
like linear regression, has considerable limitations, they serve as the foundation for more
complicated models, such as neural networks, which we shall examine later.

2.4.2 Support Vector Machine

Support Vector Machine (SVM) is one of the most performant off-the-shelf supervised
machine learning algorithms [12|. Suppose given some data points in the N-dimensional
space belonging to one of two different classes. If the data are linearly separable, an SVM
algorithm will calculate the optimal hyperplane:

fx)=wle(x)+b=0 (2.16)

that separates the data of each class, where ¢(x) denotes a fixed feature-space transformation
and b is a bias parameter. Finding the optimal hyperplane means that the SVM algorithm
finds the decision plane that has the maximum margin between the samples of each category,
thus the maximum distance from the nearest data point on each side. We just use a fraction of
the training data points to discover the optimal hyperplane location (those which are closest
to the decision plane). These data points are referred to as support vectors.

In the case of nonlinearly separable data, SVM models can still find a solution performing
non-linear classification by mapping the input vectors to a higher-dimensional space, where
they are more likely to be linearly separable. For this mapping SVM models employ a kernel
function. The most common kernel functions are:
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e Polynomial kernel: k(z;, ;) = (z; - z; + 1)4

e Gaussian radial basis kernel: k(x;, ;) = exp(—v||lz; — x;]|?) for v > 0

2.5 Deep Learning

Deep learning is a subset of a larger class of machine learning approaches that combine
artificial neural networks with representation learning. This section will discuss deep-learning
models and their ability to handle big amounts of data to extract high-level features. Deep
learning models are composed of stacked neural network levels, with each level serving as a
function that learns to transform the input data into a representation. Deep learning has been
applied to numerous fields of study, including computer vision, speech recognition, natural
language processing, bioinformatics, and medical image analysis.

2.5.1 Feedforward Neural Networks

A Feed Forward Neural Network is an artificial neural network (ANN) in which the
connections between nodes do not form a loop. They were the first ANNs proposed and are
mainly used in supervised learning problems with non-sequential input data. Feedforward
neural networks are so named because all information flows in a forward manner only; from
the input layer to the hidden layers and then to the output layer. Regardless of whether
the data passes through multiple hidden nodes, it always travels in one direction and never
backward.

A Feed Forward Neural Network is commonly seen in its simplest form as a single-layer
perceptron. Perceptron consists of one node that computes the weighted sum of its inputs and
passes the result through a non-linear activation function. An extension of the single-layer
perceptron is the multi-layer perceptron(MLP). It consists of an input layer, one or multiple
stacked hidden layers, and an output layer and each layer includes multiple perceptron nodes.
Because of their numerous layers and non-linear activation function, MLPs can differentiate
non-linearly separable data. MLPs with one hidden layer are considered a simple Neural
Network while those with more hidden layers constitute a Deep Neural Network as shown in
Fig 2.6.

Simple Neural Network Deep Learning Neural Network

@ Input Layer () Hidden Layer @ Output Layer

Figure 2.6: An illustration of a simple (left) and a deep (right) neural network. Source: electronicdesign

In general, feed-forward neural networks perform well in the case that the input features
are independent.
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2.5.2 Recurrent Neural Networks

Many times we encounter sequential data, such as time series, speech signals, and lan-
guage texts, where past inputs are important for the next. Recurrent Neural Networks are
a common solution for modeling this type of data. A recurrent neural network (RNN) is a
type of artificial neural network proposed in the 1980s where connections between units form
a directed cycle. It is recurrent as the output of every step is copied and sent back into the
recurrent network and thus it is fed as input to the next step. This creates an internal net-
work state, allowing it to exhibit dynamic behavior, and maintain information about what
has been computed so far. The mechanism makes RNNs applicable to tasks that require
remembering the history of previous inputs and outputs, such as natural language generation
and speech recognition.

Wwhy
whh th

Figure 2.7: An unfolded recurrent neural network. Source: [28]

Unrolling the feed-back loop of an RNN through time, we can think of RNNs as multiple
copies of the same network, one for each input point, each passing a message to a successor,
in sequential order. We can see both the rolled and unrolled versions of the RNN architecture
in Figure 2.7, where X is the input at time ¢, A is the internal part of an RNN cell (different
for vanilla RNNs, LSTM, and GRU) and h; is its hidden state. For vanilla RNNs the hidden
state at each timestep and the output are calculated as follows:

hy = f,(Wrnhi—1 + Wyax + by,)

) (2.17)
Vi = fy(Wpyh +by)

where h, x4, 9; is the hidden state, the input vector, and the output vector at time step ¢
respectively, by, is the bias for h, b, is the bias for § and f,, f}, are the activation functions for
x and h respectively. W parameters are three separate matrices of weights. where W, are
the input to hidden weights, W}, are the hidden to hidden weights and W, are the hidden
to output weights. Also, it is worth mentioning that we could construct stacks of RNN layers
on top of each other by simply connecting each cell’s activation,h; at time step t, as an input
to the next RNN layer at the same time step.

Long-term dependencies : While RNNs showed great promise in handling sequential
data, they fall short in handling “long-term dependencies”. For example, consider a language
model trying to predict the next masked word based on a small sequence of words, such as "It
is a sunny summer day and the temperature is [MASK]". The RNNs can efficiently predict
the masked word in a small sequence, but as the sequence gets longer and the number of
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Figure 2.8: The LSTM cell. Source: colah.github.io

words after the most important one increases, it becomes almost impossible for the RNNs
to remember all the previous context. The reason for this failure is the vanishing gradient
problem. To overcome this problem, the Long Short-Term Memory Networks (LSTMs) were
proposed by Sepp Hochreiter [23].

Long Short-Term Memory (LSTM)

Long Short-Term Memory Networks are a subcategory of Recurrent Neural Networks that
overcome the problem addressed above by preserving long-term dependencies using the cell
state. Adding the LSTM to the network is analogous to adding a memory unit within the
network that can recall context from the start of the input. The internal architecture of an
LSTM is depicted in Figure 2.8. It is composed of a cell state, an input gate, a forget gate,
and an output gate. These components organize the flow of information through the cell.
Given a sequence Xi,X2,...,Xt,...,Xn Of vectors of an input sequence of length n, for a
vector x¢, with inputs hy_1 and c¢_1, the hidden-state hy and cell state with c¢ for time-step
t are computed as follows:

fi =0(Wsx; + Ushy_1 + by)

it = oc(W;x; + Ujhy—1 + b))

o = o(Wyx¢ + Ushy—1 + by)

u; = tanh(W,x; + U,h; 1 + by,)
c=ftoOct—1+i; O u

h; = o; ® tanh(c;)

(2.18)

Forget gate (ft) determines which information should be preserved or discarded. Infor-
mation from the previous hidden state h;_; together with information from the current input
Xt is passed through a sigmoid activation function, which squeezes the values between 0 and
1. A value closer to 0 means to forget, while closer to 1 means to keep.

Input gate (i¢), the previous hidden state together with the current input is passed into
a sigmoid function, to squeeze the values between 0 and 1 and determine which values will
be updated (0 means unimportant and 1 means important). The hidden state and current
input are also passed to the tanh function to squish values between -1 and 1 (u;). Finally,
the tanh output is multiplied with the sigmoid output (i; ® u;), so that the latter will filter
the important information of the former.

Cell gate (c;), To compute the next cell state, firstly the current cell state c; gets
pointwise multiplied by the result of the forget gate. This results in dropping the information
from the cell state that is not that important. Then, a pointwise addition is applied between
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the previous result and the output from the input gate, which updates the cell state to new
values that the neural network finds relevant.

Output gate (o). The output gate decides what the next hidden state should be. As
the hidden state contains information on previous inputs, it is also used for predictions. First,
the previous hidden state and the current input are passed into a sigmoid function. Then,
the newly modified cell state is passed to the tanh function. We multiply the tanh output
with the sigmoid output (o; ® tanh(c;)) to decide what information the hidden state should
carry. This hidden state is the output of the LSTM at each moment. The new cell state and
the new hidden are then carried over to the next time step.

2.5.3 Sequence to Sequence Models

Sequence to Sequence (often abbreviated to seq2seq) models is a special class of neural
network architectures that is typically used to solve NLP tasks like Machine Translation,
Question Answering, creating chatbots, etc. A sequence-to-sequence model consists of an
encoder-decoder architecture proposed by Cho et al. [9] as shown in Figure 2.10(a). The
encoder is an RNN that takes an input sequence of tokens xi1,Xs,...,X, where n is the
length of the input sequence, and encodes it into fixed length hidden vectors hy, hs, ... hy.
The decoder is also an RNN which then takes a single fixed length vector x5 (the last hidden
state of the encoder) as its input and generates an output sequence y1,yz2,...,¥n token by
token, where n’ is the length of the output sequence.

2.5.4 Attention Mechanism

In applications, recurrent neural networks often only use the final hidden state to model
a sequence, to be used in a successive network. Compressing all the input information into
a single fixed-length vector creates a bottleneck in the information an encoder can pass to
the decoder. Because of the way the last hidden state is aggregated, the system pays more
attention to the last parts of the sequence and the decoder lacks any mechanism to selectively
focus on relevant input tokens while generating each output token. The attention mechanism
that mitigates this problem was introduced by Bahdanau et al. in [1], initially for the task of
neural machine translation, in order to deal with the need for an effective translation of very
long sentences. Attention has grown in popularity in the Artificial Intelligence community
as a critical component of neural networks for numerous applications in Natural Language
Processing, Speech Recognition, and Computer Vision. Especially in the field of natural
language processing, the attention mechanism gave rise to the transformer architecture [74],
which enabled researchers to attain state-of-the-art performance in many tasks and is the
foundation of today’s large pre-trained language models.

The key idea of attention mechanisms is to apply attention weights « over the input
sequence to prioritize the positions where relevant information is essential for generating the
next output token, in a sequence-to-sequence model. The encoder-decoder architecture with
the attention mechanism is shown in Figure 2.9. Using attention, we obtain a context vector
¢;, which is passed as an input to the decoder. At each decoding position j, the context vector
c¢;j is a weighted sum of all hidden states of the encoder and their corresponding attention
weights a;; and contains information about the encoder’s hidden state, decoder’s hidden state,
and the alignment between the input sequence and the target.

n
Cj = Z ajz-hi (2.19)
i=1
where h; is the encoder’s hidden state for time step ¢ and aj; are the attention weights, that
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determine the importance of each of the encoder’s outputs through time, for the calculation
of the decoder’s input context vector. The attention weights are calculated as:

aji = softmaz(f(sj—1,h;)) (2.20)

where f is an alignment function, often learned by a trainable model, such as a feed-forward
neural network and scores how important is the encoder hidden state h; for the decoder
hidden state s;_1. Some examples of alignment functions are shown in Table 2.1.

Name Function

Similarity f(st, hj) = sim(sg, hy) [18]
Additive f(st,hj) = ul tanh(Wy[s¢; hy) [4]
Dot-Product f(st,h;) = st hj [47]

Scaled Dot-Product | f(s¢, hj) = % |

General f(st,hj) = st Wohj [47]

Table 2.1: Summary of the most common Alignment functions

The most notable attention mechanisms that have been developed and that we will de-
scribe in more detail are the Scaled Dot-Product Attention, the Multi-Head Attention and
the Self-Attention. In all of these mechanisms, the attention function can be described as
mapping a query and a set of key-value pairs to an output, where the query, keys, values, and
output are all vectors. The output is computed as the weighted sum of the values, where the
weight assigned to each value is the result of the alignment function between the keys and a
query and shows the keys which are relevant for the main task with respect to the query.

2.5.5 Transformers

Transformers represent a revolutionary architectural concept in the field of deep learning,
leveraging attention mechanisms as their core building blocks. Introduced by Vaswani et al.
in [74], transformers have been adopted in various natural language processing, computer
vision and sequence modeling tasks. Transformers are designed to handle sequential data,
without the need of processing the data in order, and allow for much more parallelization
than RNNs during training. This enabled training on larger datasets and the development
of large pre-trained transformer-based models that achieved state-of-the-art results in tasks
like Machine Translation, Question Answering and Dialogue Generation.

The Transformer is a sequence-to-sequence model and consists of an encoder and a de-
coder, each of which is a stack of N identical layers, with different weights. The authors
proposed a scaled dot-product alignment function for a self-attention mechanism. Each en-
coder block consists of a multi-head self-attention module and a fully connected feed-forward
network, followed by a residual connection [20] and layer normalization [3]. The output of the
top encoder layer is then transformed into a set of Key and Value vectors and is fed through
a Cross-Attention module to the self-attention module of the decoder. This assists the de-
coder in focusing on the right locations in the input sequence. Furthermore, the self-attention
modules in the decoder are adapted to prevent each position from attending to subsequent
positions. The overall architecture of the Transformer is shown in Figure 2.9.

Scaled Dot-Product Attention

For each input vector x the self-attention mechanism creates a Query vector(Q), a Key
vector(V) of dimension dg, and a Value vector(V). The vectors are obtained by multiplying
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Figure 2.9: Overview of the simple Transformer architecture. Source: [74]

the input embedding with the 3 learnable matrices Wq, Wi, and Wy . As we show in Table,
the alignment function is calculated by scaling the dot-product of the K and Q vectors with
the factor v/dx and passing the result through a softmax function. To get the result of the
self-attention module, the softmax function is then multiplied by the Value vector V.

T
Attention(Q, K, V) = softmax(?/T
K

An illustration of scaled-dot-product self-attention is shown in Figure 2.10.

% (2.21)

Multi-Head Attention

The multi-head attention extends the classic scaled-dot-product attention mechanism,
performing attention in parallel multiple times and concatenating the output representations.
The multi-head attention mechanism linearly projects the queries, keys and values N times,
where N is the number of heads, with different learned linear projections and each head
performs a Scaled Dot-Product Attention individually. With this procedure, separate sections
of the Embedding can learn different aspects of the meanings of each word and allows the
Transformer to capture richer interpretations of the sequence. Multi-Head Attention can be
denoted as

MultiHead = Concat(heady, . . ., head,)W©° (2.22)

head; = Attention(QWE, KWK Vw)) (2.23)

where WiQ € Rxdq, WiK € Rxdk WZV € R and WZO € R%%4o gre the projection matrices
for the attention head i, d is the dimension of the models hidden layer and d,, dj, d, are
learnable linear projections. An illustration of Multi-Head Attention is shown in the Figure
2.10.

Positional Embeddings

Since an RNN implements a loop where each word is input sequentially, it implicitly knows
the position of each word. As transformers rely completely on attention mechanisms and do
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Figure 2.10: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several attention
layers running in parallel. Source: [74]

not have inherent notions of order or position, positional embeddings provide a mechanism for
encoding sequential information into the model. To achieve that, it uses positional encoding,
each position in the input sequence is assigned a unique vector representation based on sine
and cosine functions. The frequency and phase of the sine and cosine functions are used to
encode different positions, ensuring that each position has a distinct representation. For a
position pos and dimension 7, the sine and cosine functions are defined as:

PEpos 2; = sin(pos/100002" dmeder)) (2.24)

PEpos pi1 = cos(pos /100002 dmeder)) (2.25)

In summary, transformers provide numerous benefits compared to conventional recurrent
or convolutional architectures. By exploiting self-attention, transformers excel at captur-
ing long-range dependencies in sequences and generating context-aware representations by
attending to relevant parts of the input sequence. Moreover, the self-attention mechanism
in transformers allows for parallel processing of the input sequence, leading to significant
speed improvements during training and inference. This capability facilitates the utilization
of large models and extensive datasets for training purposes. With ongoing advancements
and research, transformers are likely to continue pushing the boundaries of deep learning and
revolutionize other domains beyond natural language processing.

2.6 Transfer Learning

Transfer learning is a machine learning technique that involves leveraging knowledge
gained from solving one problem (domain task) and applying it to a different one(target task),
usually relevant. An illustrated version of the transfer learning technique can be shown in
Figure 2.11. In many deep learning problems, to build a model that solves a complex task,
a vast amount of labeled data is required. However, collecting adequate training data can be
costly, time-consuming, or even impractical in numerous situations. Instead of starting the
learning process from scratch for a new task, transfer learning takes advantage of pre-existing
knowledge or models trained on large datasets. [99]
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Transfer learning typically involves two stages: pre-training and fine-tuning. In the pre-
training stage, a model is trained on a large amount of data. This initial training helps the
model learn generic features and patterns that can be useful for many different tasks. In
the fine-tuning stage, the pre-trained model is further trained on a smaller dataset that is
specific to the target task. Fine-tuning involves training the model on the new dataset while
maintaining the initial weights fixed or modifying them according to the new task. However,
it is worth noting that transferred knowledge does not always favor the new task, as it may
be unsuccessful if there is little in common between the source and the target domain.

Transfer Learning

Source task/ Target task/
domain domain

Model Model

N\ /

Knowledge

Figure 2.11: An illustration of the transfer learning technique Source: nimblebox.ai

In special cases, the domain task involves unsupervised learning. This is really common in
Natural Language Processing, where we pre-train large language models with large amounts
of unlabeled data. These models learn to predict the next word in a sentence and manage
to capture rich contextual information. Later, these language models can be fine-tuned on
downstream tasks, such as machine translation, dialogue generation and question-answering.

2.7 Multi-task learning

Multi-task learning (MTL) is a machine learning approach that involves jointly training
a model on multiple related tasks. Instead of training different models for each task, Multi-
task learning makes use of shared representations and knowledge across tasks with the goal
of improving performance on each individual task. The key idea behind MTL is that learning
from multiple tasks simultaneously can provide benefits to each individual task. There are
various approaches to implementing MTL. One approach is to share lower-level layers of the
model across tasks while retaining task-specific layers on top. This strategy allows the model
to learn both shared representations and task-specific characteristics.

Alternatively, a single shared model can be utilized, employing multiple output heads
where each head predicts the corresponding task. During training, the shared layers and
the task-specific heads are optimized jointly. The shared layers are updated based on the
gradients from all tasks, allowing the model to capture the common features across tasks. The
task-specific heads are updated based on the gradients specific to each task, enabling them to
specialize in making accurate predictions for their respective tasks. This approach reduces the
model’s overall complexity and memory requirements compared to training separate models
for each task and often leads to better generalization as the model needs to find a common
representation that improves performance across all the individual tasks. An illustration of
this multitask learning approach is shown in Figure 2.12.
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Figure 2.12: An illustration of a multi-task learning technique Source: [(7]

2.8 Summary

In this chapter, we introduce the fundamental concepts and theories of machine learning
and deep neural networks. These ideas are essential for this diploma thesis, as the models
discussed in later sections build on these principles. Understanding recurrent neural networks,
attention mechanisms, transfer learning, and multi-task learning is crucial for grasping the
concepts and experiments that follow. The next chapter will cover the basics of Natural
Language Processing (NLP), an important area of study for understanding dialogue systems.
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Chapter 3

Natural Language Processing

3.1 Introduction

Natural language processing (NLP) is the branch of computer science—specifically, the
branch of artificial intelligence or Al—concerning giving computers the ability to comprehend
and understand text and spoken words in the same manner that humans do. It includes the
development of algorithms and models that enable computers to understand, interpret, and
generate natural language. With the increasing amount of textual data available, because of
the internet and social media platforms, NLP plays a critical role in extracting important in-
formation, enabling effective communication, and automating various language-related tasks.

One of the fundamental challenges in NLP is the complexity and ambiguity of human
language. Natural language is full of context-depended interpretations, idiomatic expressions
and syntactic structures that pose challenges for computational systems. To tackle these
difficulties NLP researchers use a variety of methods, including statistical models, machine
learning algorithms, deep neural networks. These techniques help in generating coherent
responses, extracting valuable information from text and achieving high levels of language
understanding.

The advancements in NLP have been greatly influenced by large-scale datasets, power-
ful computing infrastructure, and transformer-based models like BERT [14] and GPT[59)].
Transformer architectures have revolutionized various NLP tasks as they manage to capture
contextual dependencies, produce language representations and generate natural language.

In this chapter, we first present the most common applications of NLP. We then explore
the most common word representation methods, discuss language modeling and the creation
of the most significant pre-trained language models. Finally, we will examine methods for
adapting and transferring the knowledge of pre-trained models to specific NLP tasks.

3.2 Applications

Natural Language Processing (NLP) is a highly popular subject within the realm of data
science. NLP finds applicability in any domain that involves working with text data. Here
are some of the common applications of NLP:

1. Information Retrieval: The science of searching for documents, extracting information
from within them, and retrieving metadata associated with the documents.

2. Information Extraction: This involves identifying, tagging, and extracting specific key
elements from large text collections and representing them in a structured format.
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3. Text Summarization: Text summarization involves generating a shorter version of one
or more documents while retaining the main meaning and important information.

4. Machine Translation (MT): Machine translation utilizes computer software to translate
text from one natural language to another.

5. Question Answering (QA): Question Answering is the task of extracting or generating
the answer to a question from a given text.

6. Natural Language Understanding (NLU): NLU aims to understand human language
and generate computer-based representations for effective analysis and interpretation.

7. Natural Language Generation (NLG): The task of generating natural language from
computer-based representation, enabling machines to communicate using human-like
language.

8. Dialogue Systems or Conversational Agents (CA): The task of designing computer
systems that engage in conversations with humans, providing interactive and conversa-
tional experiences.

3.3 Language Modeling

Language modeling involves estimating the probability distribution over sequences of
words. The objective is to construct models that assign higher probabilities to sequences
that are more grammatically correct or more likely to occur. Mathematically, the probability
of any given sequence of n words can be denoted as:

P(wi,wa, ..., wy) (3.1)

This probability can be calculated using the following formulation:

n

P(wlv"'awn) :HP(wi|wi—lawi—27"'7wl) (32)
=1

3.3.1 Traditional Language Models

Farly language models primarily relied on statistical techniques, such as n-gram models.
An n-gram refers to any sequence consisting of n consecutive words. In n-gram language
modeling, the word sequence is split, and one word is predicted at a time. This process can
be described using the chain rule with the following equation:

P(wi,...,wy,) = P(wy)P(wa|wr) ... P(wy|wi, ..., wp—_1) (3.3)

To calculate the probability of a word w; being the next word in a sequence, given a corpus
C, the formula is as follows:

count(wy ... w;)
P(w; o Wi—1) = 3.4
(wl|w1’ 9 w’L 1) Zwec Count(wl L UJz'—l) ( )

The above formula is computationally expensive, and therefore, certain assumptions are
made to efficiently train a language model. Instead of requiring the entire history to compute
the probability P(wi,ws,...,w,), the Markov condition is employed, assuming that the
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probability of a word depends only on its n — 1 previous words. Mathematically, this can be
described as:

P(warwy, wa, ... war—1) & P(wa|wy—ny -« - s War—2, war-1) (3.5)

While sentences can exhibit arbitrarily long dependencies, the Markov assumption is applica-
ble for relatively small values of n and has been the dominant approach to language modeling
for many decades. For the commonly used bigram and trigram models, the estimation of
probabilities P(wz|w;) and P(ws|ws,w;) is computed as follows:

Plunuy) = S0, w2) (3.6)

count(ws )

count(wy, we, w3)

P(wg\wg,wl) = (3.7)

count(wi, wy)

In simpler terms, for the bigram model, the count of how often the word w; is followed by
the word we is compared to the count of other words in the training corpus. Similarly, for
the trigram model, the count of how often the word sequence wy, wo is followed by the word
ws is compared to the count of other words.

The specific number of words considered in the history depends on the amount of available
training data. Trigram language models are commonly used, which require a two-word history
to predict the third word. Language models can also be estimated using bigrams, unigrams,
or any other order of n-grams, depending on the requirements and available resources.

3.3.2 Neural Language Models

Neural language models are language models based on neural networks. Bengio proposed
a neural probabilistic language model in [6]. Non-linear neural network models allow condi-
tioning on large context sizes with only a linear increase in the number of parameters, which
makes them computationally affordable. Furthermore, these models can effectively learn
dense word representations, which proves helpful in addressing the curse of dimensionality.

The model tries to simultaneously learn a word vector representation space and the prob-
ability distribution for word sequences. The model takes as input vector representations, also
known as word embeddings. These word embeddings, denoted as C(w) € R% | represent a
window of n preceding words. The embeddings are concatenated together and passed through
a hidden layer. The resulting output is then fed to a softmax layer, as illustrated in Figure
3.1.

More formally, this process can be described by the following equations:

x = [C(w1); C(wz); . ..; Cwn)]
7 = P(w;|wy.k) = softmax(hWs + by) (3.8)
h = g(XWl + bl)

where V is the vocabulary, w; € V, W, € Rvdw>dnia_p, e Rinia 1}/, ¢ RIniaxIV] py € RIVI and
dpiq and dy, are the dimensions of the hidden layer and the word embedding correspondingly.

The vocabulary size |V, ranges between 1,000 - 1,000,000 words, with the common size
being around 70,000 unique words. In recent times, there has been a shift from employ-
ing feed-forward neural networks to adopting recurrent neural networks (RNNs) and long
short-term memory (LSTM) networks for language modeling, as discussed in Section 2.5.2.
Additionally, the use of transformer architectures mentioned in Section 2.5.5, has prevailed
over the previous ones and is proving to be the go-to method for language modeling.
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Figure 3.1: A feed-forward neural network language model. Source: [6]

3.4 Large-scale pre-trained language models

Large-scale pre-trained language models, such as GPT and BERT, have revolutionized
the field of natural language processing (NLP). With the rise of deep learning, transformer
architecture, and the increase of computational power, deeper model architectures with a
large number of trainable parameters have emerged. These models are pre-trained on mas-
sive amounts of unlabeled corpora, allowing them to learn meaningful language patterns
and relationships. Through pre-training on extensive corpora, these models learn to predict
missing words, understand context, and capture semantic relationships.

Furthermore, large-scale pre-trained language models offer transfer learning capabilities,
where knowledge gained during pre-training can be effectively utilized for various NLP appli-
cations. This transferability significantly reduces the need for task-specific training data and
computational resources, as extensive labeled datasets are difficult to collect due to the ex-
pensive annotation costs. In this section, we will discuss the architecture and the pre-training
techniques of the most important Large Language models.

3.4.1 Bidirectional Encoder Representations from Transformers (BERT)

Bidirectional Encoder Representations from Transformers (BERT), proposed by Google
AT [14], is a pre-trained model of deep bidirectional transformers for language understanding,
which is then fine-tuned to be used in a wide variety of language tasks, such as classification,
question-answering, etc. BERT consists of a stack of transformer encoders. Each encoder
block comprises multiple self-attention layers and feed-forward neural networks, augmented
with residual connections and layer normalization, similar to the original transformer archi-
tecture described in 2.5.5. Two different versions of BERT were introduced by the authors.
BERTbase which has 12 transformer encoder layers, 12 attention heads and a hidden dimen-
sion of 768, and BERTlarge which has 24 transformer encoder layers, 16 attention heads, and
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a hidden dimension of 1024. The maximum length of the input sequence is restricted to 512
tokens, and the extra tokens in the sequence are ignored. The BERTbase model contains 110
million trainable parameters, while bert-large contains 340 million.

Traditionally, training a unidirectional encoder, either as a left-right or a right-left model,
was the only possible option. However, BERT is bidirectional, being able to consider both
the left and right contexts of a word during the training process, which allows it to build a
deep understanding of the context and generate contextually rich word representations.

This is achieved by setting a bidirectional LM task, instead of the classic Language Mod-
eling, called Masked Language Modeling(MLM). The model was trained to predict only
the words that had been masked while being able to see the entire sequence. The authors
randomly masked 15% of tokens in each input sequence and replaced the original token with
the special token [MASK]. The model is then asked to predict only the correct words that
were masked and not the whole sequence, resulting in an output size equal to 15% of the
input size. However, instead of constantly replacing the selected words with a [MASK] token,
it was decided the masked word to be:

e Replaced with a [MASK] token 80% of the time.
e Replaced with another random word 10% of the time.
e Left unchanged 10% of the time.

The second unsupervised task that the authors trained their model on, was the task
of Next Sentence Prediction(NSP). The objective of this task is to perform binary
classification on whether one sentence is the next sentence of another. The dataset used for
training had a balanced 50/50 distribution. Specifically, for a sentence pair (A,B) from the
dataset, sentence B follows sentence A 50% of the time, and 50% of the time sentence B is
a random sentence from the corpus. The input sequence for this pair classification task is
created as:

[CLS] < SentenceA > [SEP] < SentenceB > [SEP]

where [CLS| token is the first token used to obtain a fixed vector representation that is
consequently used for classification, and [SEP] is used to separate the two input sequences.
For the 2 pre-training tasks the authors used the BooksCorpus(800M words) [95] and English
Wikipedia texts(2500M words).

In addition, BERT introduces certain changes in the way the input word embeddings
are created. BERT uses WordPiece embeddings, dividing the words into smaller sub-word
units in order to handle words with common root or rare words more effectively, and has
a total vocabulary of 30.000 tokens. Moreover, to distinguish tokens belonging to different
input segments, BERT incorporates a learned embedding known as "segment embedding"
into each word embedding, that denotes on which sentence a token belongs. Finally, the
positional embeddings are learned rather than hard-coded as it was in the vanilla Transformer
architecture.

After pre-training, BERT model can be fine-tuned in a number of downstream tasks. Fine-
tuning involves training BERT on labeled data for tasks such as text classification, named
entity recognition, or question-answering. During fine-tuning, the text input is transformed,
in order to match the input template of BERT and the model’s parameters are adjusted to
adapt its learned representations to the target task. BERT’s fine-tuning can be performed
effectively using much smaller datasets than those used in the pre-training stage and it de-
mands less computation resources. The way model is finetuned on these tasks is shown in
Figure 3.3.

59



CHAPTER 3. NATURAL LANGUAGE PROCESSING

— — e — "
Ingea o || my || dog s | cute [I:S-EF: he || lkes [pla\- #eing || 1SEF
Taken e = 1 e M= 1 W= 1= |

Embeddings I:--.- E.:-L E, E puas Ejem E,, | E: . E.\.a.

+ + o+ * + +  + o+ + +
B 15| (5] (6] ] [T [T ] ] ] [T [T
- + o+ o+ o+ + + o+ o+ + +

Poaiion
Embaddings F(: FJ FE Fl F-1 FE Fé F.‘ FB F':l FJG

Figure 3.2: BERT input representation. The input embeddings are the sum of the token embeddings, the
segmentation embeddings and the position embeddings. Source: [14]
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Figure 3.3: Illustrations of Fine-tuning BERT on Different Tasks. Source: [14]

At the time of its release, BERT found significant success in multiple NLP tasks and
achieved state-of-the-art results. Subsequently, a family of language models were developed
by adapting the BERT to different languages, or modifying its architecture. The most known
are, mBERT |[I4] which is a multilingual model that covers 102 languages, trained on the
multilingual version of the Wikipedia dataset, RoOBERTa [16] which is a retraining of BERT
with optimized training methodology and much more data, and GREEK-BERT which we
will discuss in the next subsection.
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GREEK-BERT

GREEK-BERT [30] is a variant of the BERT model specifically designed for the Greek
language. The authors used the BERTbase’s architecture and pre-trained the model on the
tasks of Masked Language Modeling and Next-Sentence Prediction. For the pre-training a
total of 29GB of Greek text used from the following corpora:

e the Greek part of Wikipedia.
e the Greek part of the European Parliament Proceedings Parallel Corpus.
e the Greek part of OSCAR, a clean version of Common Crawl.

The fine-tuning process adapted the model to perform well on 3 Greek language tasks,
Part-of-Speech tagging, Named Entity Recognition, and Natural Language Inference. On
NER and NLI tasks, GREEK-BERT outperformed the multilingual models mBERT and
XLM-R [!1], whereas on the PoS tagging task, GREEK-BERT had similar results to XLM-
R.

3.4.2 Generative Pretrained Transformer 2 (GPT-2)

Developed by OpenAl, GPT-2 [60] is a language model that has gathered attention and
recognition from many researchers and has been used in a wide variety of tasks, achieving
state-of-the-art results. The model’s architecture is simple and it is very similar to the
transformer’s decoder architecture. GPT-2 is a decoder-only model and is built by stacking
decoder blocks. GPT-2 is an auto-regressive model meaning that it outputs one token at a
time and adds that token to the sequence of inputs. In the next step, that new sequence is
fed as input into the model.

The GPT-2 model is available in 4 different versions, each varying in dimensionality and
number of decoder layers: small, medium, large, and extra-large. The different dimensions
of these versions are 768, 1024, 1280, and 1600, respectively. Additionally, the number of
decoder layers in the decoder stack varies across the different versions, with 12, 24, 36, and
48 decoder layers in the respective versions. For the pre-training of the model, a large-scale,
unsupervised strategy was adopted. Through the pre-training, GPT-2 learns to predict the
next word in a sentence given the preceding context. The model was trained using the
WebText dataset, which contains slightly more than 8 million documents totaling 40 GB of
text. This extensive pre-training allows GPT-2 to develop a deep understanding of language
structures, grammar, and semantic relationships.

Now, we will focus on the decoder layer of the GPT-2 model where most of the work is
done. The key difference between BERT and GPT-2 is that the latter uses masked multi-
head self-attention. Masked self-attention attention works by blocking information from
tokens that are to the right of the position being calculated. An illustration of the simple
self-attention, used in BERT, and the masked self-attention is shown in Figure 3.4. Moreover,
each attention head in GPT-2 is responsible for attending to a different part of the input text.
For example, one head might focus on the syntax of the sentence, while another might focus
on the semantics. This way, the model can focus on different aspects of the input text, and
it is able to generate more accurate predictions and better understand the context of the
sentence.

Initially, OpenAl limited GPT-2 model’s availability; however, they later made smaller
versions accessible to the research community. This decision enabled researchers to conduct
experiments across a variety of NLP applications, including text classification, summarization,
and question-answering. Notably, GPT-2 demonstrated remarkable adaptability to these
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Figure 3.4: Left: Bert’s self-attention mechanism. Right: GPT’s masked-attention mechanism. Source:
The Tllustrated GPT-2

downstream tasks following successful fine-tuning. Fine-tuning involves training GPT-2 on
a labeled dataset that is tailored to the specific task the model is intended to perform.
Through this process, GPT-2 can acquire task-specific knowledge and improve its performance
accordingly.

GPT-2 Greek

The open-source versions of GPT-2 made possible the creation of many family models
like DialoGPT|[91] and GPT-2 Greek [38], which is an adaptation of the GPT-2 language
model specifically designed for the Greek language. GPT-2 Greek model is built by fine-
tuning the original GPT-2 small model with gradual layer unfreezing. This is a more efficient
and sustainable alternative compared to training from scratch, especially for low-resource
languages, as it optimizes the performance of the GPT-2 Greek model, allowing it to better
comprehend and generate Greek text. To create the GPT-2 Greek model, the authors utilized
a 23.4GB sample from a consolidated Greek corpus from CC100, Wikimatrix, Tatoeba, Books,
SETIMES, and GlobalVoices containing long sentences.

The availability of GPT-2 Greek opens up new opportunities for researchers, developers,
and organizations working with the Greek language. It enables them to use the power of a
language model that understands and generates Greek text and helps them create a variety
of NLP applications for the Greek language.

3.4.3 Text-To-Text Transfer Transformer (T5)

Text-to-Text Transfer Transformer (T5) was introduced in 2019 by researchers at Google
[61] and represents a significant advancement in transfer learning for NLP tasks. The au-
thors’ main idea is to approach every text-processing problem as a text-to-text problem. By
adopting this text-to-text framework, it becomes possible to directly apply the same model,
objective, training procedure, and decoding process to a wide range of NLP tasks.

At its core, T5 is built upon the encoder-decoder framework of the original transformer
architecture, described in 2.5.5, which has proven highly effective in capturing contextual
information and relationships in sequences. In the Tb5-base model, both the encoder and
decoder stacks are composed of 12 layers. Each layer includes feed-forward networks that
consist of a dense layer with an output dimensionality of 3072, followed by a ReLLU non-linear
activation function and another dense layer. All attention mechanisms in T5-base utilize 12
heads, while the sub-layers and embeddings have a dimensionality of 768. The T5-base model
has a total of around 220 million parameters.
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Original taxt

Thank you fer imwiting me to your party [ast week.

Inputs

Thank you <X= me to your party <V> week.

Tangsls
=X= for inviting =v= last <=z

Figure 3.5: The words “for”, “inviting” and “last” (marked with an x) are randomly chosen for corruption.
Each consecutive span of corrupted tokens is replaced by a sentinel token (shown as <X> and <Y>) that is
unique over the example. Since “for” and “inviting” occur consecutively, they are replaced by a single sentinel
<X>. The output sequence then consists of the dropped-out spans, delimited by the sentinel tokens used to
replace them in the input plus a final sentinel token <Z>. Source: [(1]

For effective transfer learning, the model needs to be trained on a massive high-quality
dataset, during the pre-training phase. To satisfy these requirements the authors developed
the Colossal Clean Crawled Corpus (C4), a cleaned version of Common Crawl that is 2 times
bigger in size than the Wikipedia. T5 utilizes a modified version of the masked language
modeling task, for the pretraining process, known as corruption span. As opposed to BERT,
which uses a mask token for each word, T5 replaces many consecutive tokens with a single
mask keyword. Since the final goal is to have trained a model that inputs text and outputs
text, the targets were designed to produce a sequence as shown in Fig 3.5.

The authors tested 3 different corruption strategies:

e Masking a random word, like BERT
e Masking more than one consecutive word (a span)
e Dropping a word from the input

and corrupting the span was the method that worked best for them. Furthermore, the
researchers conducted experiments involving various lengths of corruption spans. They dis-
covered that as the span length increased, the model’s performance decreased. This finding
aligns with expectations since if the span length were equal to the length of the sentence, the
model would essentially be generating text from an empty input, allowing for a high level of
variability.

Furthermore, during pretraining the researchers trained the model on some supervised
tasks, using multitask learning. One crucial aspect in this stage of training was the insertion
of a task-specific prefix-text in the input sequence before encoding. This prefix helped specify
the desired task for the model to perform. For instance, to ask the model to perform the
task of translation from English to German, a translate English to German: prefix-text
was added. By incorporating these task-specific prefixes, the model could adjust its weights
to focus on the specific task. This narrowing of the generation scope ensured that the model
would only produce the expected output for the designated task, enhancing its performance
and task specificity.

In conclusion, the pretraining phase serves as a crucial step in equipping T5 with the
foundational knowledge necessary for subsequent fine-tuning on specific tasks, enabling it
to perform at state-of-the-art levels in a wide range of NLP applications. After its success,
Google released some follow-up works like T5.1.1 which is an improved version of T5 with some
architectural tweaks and is pre-trained on C4 only without mixing in the supervised tasks,
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mT5 which is a multilingual T5 model, UL2 which is a T5 like model pre-trained on various
denoising objectives, and Flan-T5 which used pretraining methods based on prompting.

Multilingual Text-To-Text Transfer Transformer (mT5)

The model architecture and training procedure that the authors used for mT5 [35] closely
follow that of the T5 recipe. Similar to T5, mT5 also introduced five different variants,
namely small, base, large, xI, and xxl, with varying numbers of parameters ranging from
300 million to 13 billion. However, there is a difference in the pretraining process of mTH
compared to the original T5 model. The mT5 model was only pre-trained on mC4 excluding
any supervised training. Therefore, this model has to be fine-tuned before it is usable on a
downstream task, unlike the original T5 model. Since mT5 was pre-trained unsupervisedly,
there’s no real advantage to using a task prefix during single-task fine-tuning, and only if
you are doing multi-task fine-tuning, a prefix is needed. The mT5 model has achieved state-
of-the-art performance on various multilingual NLP benchmarks and tasks. Its ability to
handle multiple languages within a unified model, leverage cross-lingual transfer learning, and
facilitate fine-tuning for specific languages and tasks makes it a valuable tool for multilingual
text understanding and generation.

3.4.4 XGLM

Large-scale autoregressive language models such as GPT-3 can be adapted, via few- and
zero-shot learning, to a wide range of tasks with significantly less cost than full fine-tuning.
While these models are known to be able to jointly represent many different languages, their
training data is dominated by English, potentially limiting their cross-lingual generalization.
To address this, Meta Al introduces the XGLM model in [39], a multilingual autoregressive
language model inspired by GPT-3 [3]. XGLM is trained on a balanced corpus covering
a diverse set of languages and aims to explore the multilingual few- and zero-shot learning
capabilities in a wide range of tasks. It was one of the first multilingual autoregressive models
that were created and has an architecture similar to GPT-3 and GPT-2, mentioned in 3.4.2.
Four different variants were created with 564M, 1.7B, 2.9B, and 7.5B parameters respectively.
Due to the fact that the authors processed all languages using a combined vocabulary of 250k
tokens, XGLM’s variants have more parameters than the comparable variants of the GPT-3
model.

To collect their pretraining data, the researchers extend the pipeline used for mining
the CC100 corpus, to generate the CC100-XL, a multilingual dataset spanning 68 monthly
snapshots of the Common Crawl. In total, pretraining data includes 30 languages covering 16
language families. However, due to an imbalanced distribution with English tokens being six
times more abundant than the second-largest language, the authors up-sampled the medium
and low-resource languages to create a more balanced language distribution. During the
pretraining phase, the model focused on the unsupervised task of language modeling, aiming
to predict the next word.

The authors tested the model on a variety of downstream tasks, mainly using few-shot
learning. In these low-resource scenarios, the performance of the model heavily depends on
the prompt construction. This problem is further complicated in the multilingual setting,
where it is necessary to find the optimal prompts for examples in different languages. Three
different approaches were explored for obtaining prompts in non-English tasks. The first
approach involved native speakers of the target language crafting the prompts. The second
approach entailed translating from English prompts, leveraging the ease of constructing high-
quality prompts in English. The final approach was cross-lingual prompting, where prompts
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in English (or another high-resource language) were directly applied to non-English examples,
capitalizing on the model’s cross-lingual capabilities after being trained on a diverse language
set. While handcrafted and translated prompts achieved better results across various tasks,
cross-lingual prompting demonstrated competitive performance, particularly in low-resource
languages where creating effective prompts was more challenging.

In conclusion, XGLM model achieved state-of-the-art results for few-shot learning in more
than 20 languages (including mid- and low-resource languages) on commonsense reasoning,
NLI, and machine translation tasks. A key factor for XGLM’s performance was its robust
cross-lingual capabilities. The model showcased a deep understanding of multiple languages,
allowing it to transfer knowledge and effectively learn from examples in non-English lan-
guages.

3.5 Prompt-Based Learning

Prompt-based learning has emerged as a promising methodology for adapting an LLM to
a specific downstream task [13]. Prompt-based learning addresses the problems of the fine-
tuning method, which requires the training of millions or billions of parameters and often
needs a large amount of good-quality data to properly train the model in a downstream task.
Instead of altering the parameters of the pre-trained model, prompt-based learning introduces
an additional set of parameters known as a prompt into the model’s input|13], [33]. These
prompts can be included in one of two ways: as a series of prompt tokens within the text
input or as prompt embeddings directly in the embedding space. Using prompts, a set of
parameters ¢, is added to the parameters 6 of the model. Thus, the model now calculates
the probability:
Py, (Y|X; P) (3.9)

where P are the prompt tokens, parameterized by 60,, which are passed into the model as
additional input.

3.5.1 Creating prompts

As mentioned, prompts are constructed from a collection of prompt tokens. There are
two approaches to determining these tokens: manual selection and automatic learning [%]. In
manual determination, predefined prompts are used, typically designed to align with human
understanding of the task. Alternatively, automatic learning methods can be employed to
determine the tokens, utilizing various techniques to identify the most suitable prompts.

Discrete prompts

In the context of prompt-based learning, a discrete prompt refers to a fixed set of pre-
defined instructions or task descriptions provided to a language model. Discrete or hard
prompts consist of tokens that are directly mapped to an existing word in the model’s vo-
cabulary [92],]26]. In that way, the prompt parameters 6, are a subset of the pre-trained
language model’s word embedding parameters 6.,,;,, and no extra parameters are added to
the model 6, C 6cp,p. Authors in [13], proposed an easy way to optimize discrete prompts
through reinforcement learning to find the suitable prompts for your task.

The advantage of using discrete prompts is the level of control they provide over the Al
system’s behavior. By explicitly defining the instructions, researchers can shape the generated
responses to meet their specific requirements. Discrete prompts have been utilized in various
natural language tasks. For instance, in classification tasks, researchers have created prompts
that define the desired classification task and guide the model to produce the appropriate
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class labels. Discrete prompts have also been employed in text generation tasks, where
researchers aim to generate coherent and contextually appropriate responses. By providing
explicit prompts, researchers guide the system’s response generation, ensuring the production
of text that is both coherent and of high quality.

It is worth noting that despite the advantages discrete prompts can offer, they may have
some limitations. Designing discrete prompts requires an understanding of the model’s inner
workings. Additionally, prompts that may seem reasonable to humans may not necessarily be
effective for language models. The choice of prompts can significantly impact the performance
of pre-trained language models, as they are sensitive to this selection process.

Soft prompts

Soft prompts, also known as continuous prompts, offer a distinct approach compared to
discrete prompts. Rather than providing explicit instructions, soft prompts are characterized
by continuous parameters that can be optimized through back-propagation in the embedding
space [33],[45]. This makes them easily trainable and adaptable to specific tasks and language
models. Unlike hard prompts, the embeddings of soft prompts do not correspond to specific
words in the model’s vocabulary.

One advantage of soft prompts is their ability to handle more complex and ambiguous
tasks. Unlike discrete prompts, which provide rigid instructions, soft prompts allow the
Al system to consider a broader range of information and adapt its response generation
accordingly. This flexibility makes soft prompts suitable for tasks that require more context-
aware or context-dependent responses. his flexibility makes soft prompts well-suited for tasks
that require context-aware or context-dependent responses. However, it is important to note
that while soft prompts provide flexibility, they do not replace the importance of effective
prompt engineering

The initialization of soft prompts can be performed in different ways: The simplest ap-
proach is a random initialization of the prompt parameters. However, over the years, other
methods have been proposed as well. For instance, soft prompts can be initialized with em-
beddings of random words from the language model’s vocabulary or with other pre-trained
embeddings.

Mixture of hard and soft prompts

Rather than choosing exclusively between discrete prompts and soft prompts, researchers
have proposed a hybrid approach that combines the benefits of both types [15],[19]. This
approach involves utilizing tunable soft prompts, which can have their parameters optimized
to improve performance, while also incorporating hard prompt tokens that directly correspond
to words in the model’s vocabulary. These hard prompt tokens are specifically determined
for each task, aiming to further improve performance and provide more explicit guidance to
the language model. In that way, we combine the flexibility and adaptability of soft prompts,
with the precision and specificity of hard prompts.

3.5.2 Training and prompt-based learning

Prompt-based learning is often utilized as a more lightweight option compared to fine-
tuning. However, prompts can be utilized alongside fine-tuning to enhance performance. In
the following paragraphs, we present these 2 alternatives.
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Alternative to finetuning

As previously stated, in prompt-based learning, the pre-trained model parameters are
typically kept frozen, especially for large pre-trained language models and only the prompt
parameters ¢, are optimized. The optimization process can involve back-propagation, par-
ticularly when working with soft prompts, or other manual and automatic methods such
as reinforcement learning for discrete prompts. By training solely the prompt parameters,
prompt-based learning offers a more efficient alternative to fine-tuning in terms of computa-
tional resources and storage requirements.

Prompt-based learning proves to be highly advantageous in scenarios where the avail-
able data for a given task are limited. This is because the pre-trained model’s parameters
remain unchanged, preserving the language understanding capabilities acquired during the
pre-training phase. Consequently, prompt learning solely guides the model towards the spe-
cific task without impacting its underlying comprehension and generation abilities.

Supplementary to finetuning

While it is common practice to keep the parameters of the pre-trained language model
frozen, especially when dealing with extremely large pre-trained models, this is not always the
case. Certain researchers use prompts as supplemental information to improve performance
while also fine-tuning some or all of the model’s parameters [15], [5]. This is especially
common when working with smaller models because then fine-tuning requires fewer resources
and space. The decision to freeze or adjust particular parameters is ultimately determined
by a number of criteria, including the specific task, the availability of data, and the available
resources.

3.5.3 Previous work using prompts

In the field of prompt-based learning using soft prompts, many different variations have
been proposed in recent years. Lester et al. [33], use a sequence of prompts that lie directly in
the embedding space of the model and are concatenated with the word embeddings that are
produced from the text input that is given to the model. From their results, they observe that
their method can be very effective for billion parameter models, but lacks in performance in
comparison to finetuning, when the language model is smaller (i.e. 100 million parameters).
For this reason, transfer learning was later proposed by Vu et al. [78]: Prompts were first
trained on different tasks similar to the downstream task or tasks that involve high-level
reasoning about semantic relationships among sentences. The pre-trained prompts were then
used to initialize the prompts for the target task. As the authors observe, this method can
allow prompt-based learning to be effective even for smaller-scale models.

Other researchers have explored a modified approach to prompt-based learning by incor-
porating prompts not only at the input layer but also deeper within the model. For instance,
Li and Liang [36] used a prefix-tuning method. They employed prefix activations added
to every layer in the encoder of the model, including the input layer, particularly for lan-
guage generation tasks. They discovered that initializing with task-relevant words improves
generation performance. In a similar vein, Liu and colleagues [14] integrated prompts at
various layers of the pre-trained model, placing them as prefixes. They expanded upon Li
and Liang’s method for tasks related to natural language understanding (NLU). Further-
more, they found that, in situations with complete data, both a language modeling head and
a randomly initialized classification head can be used for predicting the final classification
labels in prompt-based learning.
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As previously discussed, some researchers have advocated for a hybrid approach that
combines both hard and soft prompts, striving to achieve optimal performance. One no-
table example of this is presented by Liu and colleagues in their work on "P-tuning" [15].
In this approach, continuous prompts are employed, which are generated by a prompt en-
coder that is trainable. The key function of the prompt encoder is to model the relationship
between prompt embeddings and mitigate the risk of getting stuck in local minima. This
encoder is structured with a bidirectional LSTM, followed by a RELU-activated MLP (Multi-
Layer Perceptron). Additionally, within the prompt template, Liu and his team incorporated
task-specific anchor tokens. These tokens, such as "?" for tasks like Recognizing Textual
Entailment (RTE), help tailor the prompts to the particular task, enhancing the model’s
ability to provide precise and relevant responses. This combination of techniques demon-
strates an innovative approach to prompt-based learning, effectively leveraging both hard
and soft prompts to achieve improved performance across various tasks.

3.6 Summary

In this chapter, we studied the basic principles of the Natural Language Processing (NLP)
research field, emphasizing the computational techniques that enable machines to compre-
hend and generate human language. The discussion begins with an introduction to the diverse
applications of NLP, ranging from text summarization to conversational systems, which un-
derscores the field’s vast scope and potential. We then explore language modeling, detailing
the evolution from traditional n-gram models to sophisticated neural network approaches
that allow for efficient management of larger contexts. This sets the stage for an in-depth
look at transformative pre-trained language models like BERT and GPT-2, highlighting their
architectures, training methods, and pivotal role in advancing NLP tasks through contextual
understanding. The chapter culminates with an examination of prompt-based learning, a
novel approach that leverages the capabilities of these large models to perform specific tasks
efficiently, without the need for extensive retraining. This progression from basic concepts
to cutting-edge technologies not only provides a foundational understanding of NLP but
also prepares the ground for addressing the challenges associated with dialogue generation in
underrepresented languages such as Greek.
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Chapter 4

Open-Domain Dialogue Generation
for Low-Resource Languages

4.1 Introduction

Natural language holds immense significance in human civilization as it evolved to facili-
tate coexistence, communication, and social evolution. Dialogue, being an important part of
language, connects humans through conversations. Whether with family, friends, or in busi-
ness settings, we all utilize this form of language in our daily lives. In the realm of artificial
intelligence, dialogue systems have emerged as a challenging field that enables communica-
tion between conversational agents and humans through natural language. These automated
conversational agents are designed to imitate human behavior during conversations.

Conversational agents fall into two main categories: task-oriented and non-task-oriented
agents. Task-oriented agents are designed for specific tasks and engage in short conversations
with users. Their primary objective is to assist users in completing particular tasks by gath-
ering information and providing relevant responses. We frequently encounter task-oriented
dialogue systems in various daily life services, such as booking, traveling, shopping, or food
ordering applications.

On the other hand, open-domain dialogue systems represent a fascinating variation. Un-
like task-oriented systems, their focus is on engaging in free-flowing, unrestricted conversa-
tions with users. These chatbots, also known as open-domain dialogue systems, possess the
capability to understand natural language inputs and generate human-like responses. They
aim to emulate human-like conversation by incorporating techniques like language under-
standing, context retention, and context-aware generation. Generative systems can produce
flexible and dialogue context-related responses while sometimes they lack coherence and tend
to make dull responses. Retrieval-based systems select responses from human response sets
and thus are able to achieve better coherence in surface-level language. However, retrieval
systems are restricted by the finiteness of the response sets and sometimes the responses
retrieved show a weak correlation with the dialogue context.

The earliest examples of chatbots include ELIZA [79], a system based only on simple text
parsing rules that managed to convincingly mimic a Rogerian psychotherapist by persistently
rephrasing statements or asking questions, and PARRY [10], which managed to mimic the
pathological behavior of a paranoid patient to the extent that clinicians could not distinguish
it from real patients. These models relied on rules and patterns rather than data for learning.
However, more recent methods have leveraged data-driven approaches, enabling chatbots to
learn from vast amounts of conversations between humans, such as those on chat platforms,
Twitter, or in movie dialogues. These methods can be broadly categorized as retrieval-based
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or generation-based. Retrieval-based chatbots are trained to select the most suitable response
from a predefined database of responses [32]. In contrast, generation-based systems aim to
generate responses word-by-word, drawing from a probability distribution over the vocabulary
used [68]. This allows them to create more diverse and contextually relevant responses.

Dialogue systems can exist for both voice and text modalities. While we discuss dialogue
systems for the text modality in this thesis, spoken dialogue systems are equally popular
in industries and are a very active research area in academia. By incorporating additional
audio features such as acoustic cues, spoken dialogue systems might be extremely useful in
situations where the user might be visually challenged or have difficulty writing.

Existing powerful dialogue models have been typically pre-trained on a significant number
of English dialogue sessions extracted from either social media (e.g. Reddit and Twitter) or
web documents. However, dialogue systems for many other languages have long been under-
explored. In the following sections, we analyze some of the most important generation-
based approaches for creating an open-domain dialogue generation system and later present
techniques for dialogue generation on a low-resource language.

4.2 Dialogue Generation

Before we study dialogue systems conversing with humans, it is crucial to understand
dialogues and their properties, to understand better how humans converse with each other.
Typically, a dialogue is a sequence of utterances often regarded as turns between two or more
parties in the literature. Each utterance (turn) is a single contribution from one speaker to
the dialogue. At the very least, a dialogue should involve more than one person, so usually,
when someone asks a question, they expect a response. Essentially a dialogue system seeks
to comprehend the user’s utterance (question, request, statement, etc.) and attempts to
generate suitable and coherent responses while trying to use its memory and reasoning over
the context.

Dialogue generation models are typically built on the sequence-to-sequence (seq2seq)
model, an encoder-decoder architecture where both the encoder and decoder can be ei-
ther recurrent neural networks (RNNs) or Transformers with self-attention blocks, while
lately autoregressive transformer, decoder only, models have found significant success as
the go-to method of building a dialogue generation system. Let the input sequence be
X = (x1,x9,...,27) termed context and the output sequence be Y = (y1,y2, ..., yr) termed
response, the learning objective of the task is to maximize the generation probability of re-
sponse conditioned on context:

Tl

p(Y1X) =[] p(yrlyr va.- - yw—1, X) (4.1)
=1

where p(yy|y1,y2, ..., yr—1,X) denotes the conditional probability of yy given context X and
its prior words in response Y.

The basic idea behind generation-based methods is to synthesize a new sentence word
by word as a response to the user’s request. Traditionally conversational agents are built
using the sequence-to-sequence (seq2seq) architecture [76] and were inspired by the work in
machine translation. However, the task of response generation in dialogue settings is a bit
different from machine translation, as in machine translation words or phrases in the source
and target sentences tend to align well with each other, but in conversation, a user utter-
ance may share no words or phrases with a coherent response. The sequence-to-sequence
architecture consists of an encoder model that encodes the user input and represents it as a
vector, and a decoder model that decodes the vector (representation of encoded input) and
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generates a sentence word by word. The first conversational agents created that way used
recurrent neural network (RNN) as encoder and decoder models respectively. Engaging with
these agents, however, leads to short conversations [75] as the responses produced are dull
and generic as the generated response is based on the previous turn while the huge amount of
information derived from previous turns of the dialogue is partially ignored. To overcome this
problem and to incorporate dialogue history in response generation the hierarchical recurrent
encoder-decoder (HRED) architecture was adopted, allowing the model to summarize infor-
mation over multiple prior turns |70], [65]. Subsequently, [66] proposed a Latent Variable
Hierarchical Recurrent Encoder-Decoder (VHRED) to model complex dependencies between
sequences. Based on HRED, VHRED combined a latent variable into the decoder and turned
the decoding process into a two-step generation process: sampling a latent variable at the
first step and then generating the response conditionally. VHRED was trained with a varia-
tional lower bound on the log-likelihood and exhibited promising improvement in diversity,
length, and quality of generated responses. The introduction of memory networks allowed
the researchers to create models able to condition responses on both dialogue history and
external knowledge. However, these architectures could not produce continuous and coherent
responses across multiple turns. Also, some researchers adopted reinforcement learning in a
try to train a model to generate more natural responses [(].

Subsequently, the transformative architecture of Transformers, as discussed in the pre-
vious section, emerged and revolutionized the field of Natural Language Processing. This
innovation led to enhancements in answer quality while reducing computational costs, en-
abling the development of larger models capable of capturing more extended dependencies.
The introduction of self-attention architecture, coupled with the "Pretrain, then fine-tune"
paradigm, has significantly influenced dialogue generation. Many recent open-domain dia-
logue systems now rely on extensive transformer structures and pre-trained datasets.

There have been some noteworthy developments in relation to knowledge-aware systems.
The authors in [93] built a knowledge-grounded dialogue system in a synthesized fashion.
Authors used both BERT and GPT-2 to perform knowledge selection and response generation
jointly, where BERT was for knowledge selection and GPT-2 generated responses based on
dialogue context and the selected knowledge. Researchers in [10] addressed the issue of
factually inaccurate responses and hallucination using a generate-then-refine strategy, where
generated responses are corrected using a knowledge graph.

Significant research efforts have been dedicated to exploring emotion [31], [31] and em-
pathy within dialogue systems. One notable example is Know-EDG [35], which features a
knowledge-enhanced context encoder and an emotion identifier linear layer integrated into a
transformer model. The emotion identifier allows the model to adapt its responses based on
the emotions expressed by its dialogue partner. Beyond providing engaging responses, the
ability to comprehend the situation and generate appropriate emotional responses is also a
desirable trait.

In the realm of open-domain chatbots, with a broader focus on dialogue characteristics,
Meena [1| stands out. Meena is a transformer-based seq2seq model trained on substantial
volumes of real chat data, designed to engage in natural and open-ended conversations with
users, aspiring to pass the Turing Test. Training data for Meena comprises context-response
pairs, where the context encompasses the last few turns, up to a maximum of 7. Meena
analyzes previous turns to predict responses, similar to how BERT learns by comparing ac-
tual and predicted words. Subsequently, Facebook researchers introduced BlenderBot [63],
highlighting that chatbot performance relies on more than just parameter scalability. Ef-
fective conversation necessitates a blend of skills, including offering engaging talking points,
active listening, demonstrating knowledge, empathy, and appropriate personality expression,
all while maintaining a consistent persona. BlenderBot achieved state-of-the-art results in

71



CHAPTER 4. OPEN-DOMAIN DIALOGUE GENERATION FOR LOW-RESOURCE LANGUAGES

terms of engagement and human-like qualities, as evaluated by human judges.

Furthermore, notable progress has been observed in recent years based on the pre-trained
GPT-2 language model ([50], [36], [91],]94]). In 2020, researchers in [91] introduced Di-
aloGPT, which treats multi-turn dialogues as long text and frames the generation task as
language modeling using a vast dataset sourced from Reddit. DialoGPT is specifically de-
signed to generate human-like text in a conversational context, making it well-suited for
chatbot applications. It achieved state-of-the-art performance across various conversational
tasks and was one of the first models capable of handling multi-turn dialogues effectively.

Subsequently, Google unveiled LaMDA [72], an improved iteration of Meena, based on
seq2seq architecture. Researchers demonstrated that scaling models through pretraining in-
deed enhanced their capabilities. However, to address metrics such as bias and groundedness,
and target more real-world subjects fine-tuning was necessary on domain-specific datasets.
They also noted that combining fine-tuning with prompting further improved all metrics,
ultimately achieving state-of-the-art results.

In recent years, large language models (LLMs), which function as open-domain dialogue
systems, have gained significant prominence. These models primarily utilize a transformer-
decoder architecture. A notable milestone in this evolution was the introduction of the
ChatGPT model [55], which was soon followed by various other models that cater to diverse
languages and specialized domains such as coding and healthcare. The defining features of
these newer models compared to earlier versions is their extensive scaling in terms of both
parameters and the data volume used for training, as well as advancements in instruction
tuning after the large scale pretraining.

Efforts are underway to adapt these LLMs to low-resource languages, with the Meltemi
model [77] serving as a prominent example for the Greek language. This model builds on
the foundation of the Mistral-7B model [25], originally trained primarily on English texts.
To better accommodate Greek, the developers of Meltemi expanded the original tokenizer’s
vocabulary by adding a substantial number of Greek tokens. Mistral-7B’s pretraining was
extended to include Greek, utilizing a corpus of approximately 40 billion tokens—28.5 billion
of which are in Greek. This corpus is supplemented by an additional 10.5 billion tokens of En-
glish texts and a 600 million token bilingual Greek-English dataset, which aids in maintaining
the model’s bilingual capabilities and mitigating catastrophic forgetting.

However, most of the techniques mentioned above are focused on the English language
and require a vast amount of English data. In the next section, we will discuss techniques
that can be used to create open-domain chatbots in languages where there’s hardly any
conversation data available.

4.3 Techniques for dialogue generation in low resource lan-
guages

Open-domain dialogue datasets in languages other than English and Chinese are scarce.
Authors in [29] (2021) addressed this gap by crafting a Korean dataset through the transla-
tion of the English Wizard of Wikipedia dataset [15]. As far as our knowledge extends, one
notable multilingual dataset is XPersona |10]. This dataset is an expansion of the English Per-
sonaChat dataset [39], encompassing languages such as Chinese, French, Indonesian, Italian,
Korean, and Japanese. The creation process involves an initial phase of automatic trans-
lation for the training, development, and test data. Subsequently, the latter two partitions
undergo manual correction, while the training set undergoes a semi-manual cleaning process.
Researchers employ this dataset for the evaluation of methods that rely on multilingual mod-
els and automatic translation. Additionally, the MDIA [88] dataset offers another valuable
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resource as the first large-scale multilingual benchmark for dialogue generation, encompass-
ing low- to high-resource languages. This extensive collection includes real-life conversations
in 46 languages, spanning 19 language families. However, it is worth noting that the MDIA
dataset primarily consists of single-turn dialogues and may not exhibit the highest quality in
terms of dialogue data.

In addition to the challenges posed by the scarcity of open-domain dialogue datasets
in languages other than English and Chinese, the utilization of Pretrained Language Mod-
els (PLMs) in low-resource languages introduces another layer of complexity. PLMs have
demonstrated remarkable capabilities in English and, to some extent, Chinese, owing to the
vast amounts of training data available. However, for low-resource languages with limited
digital content, the performance of these models can be suboptimal. Adapting PLMs to
such languages requires innovative strategies, such as cross-lingual transfer learning and data
augmentation techniques. Researchers actively explore these approaches to tap into PLMs po-
tential for building dialogue systems in historically underrepresented languages, or languages
with a few amount of available data. The development of multilingual PLMs has partly
bridged the gap between English and other systems, enabling the utilization of techniques
that don’t demand extensive data for training dialogue systems in low-resource languages.

4.3.1 Translation and native training

To address the problem of data unavailability, some prior work has focused on training
a model on translations of known English datasets. Strategies that leverage neural machine
translation models to create training datasets, by converting existing high-resource language
datasets into the target low-resource language, can enrich the available data pool for training
and introduce linguistic diversity into the model.

The term native training means that we train the model only on the data of the targeted
low-resource language (either translated original datasets in that language). This can be
done using specific-language pretrained language models, or multilingual models when mono-
lingual ones are not available. In [53], the authors proposed a transformer-based encoder-
decoder (BERT2BERT) initialized with AraBERT|2| parameters. They showed this approach
facilitates knowledge transfer, significantly improving performance in response generation
tasks. To enhance their model with empathy, they trained it using the ArabicEmpatheticDi-
alogues dataset [2], a translated version of the EmpatheticDialogues dataset [62]. Their model
achieved superior performance compared to previous state-of-the-art models, as evidenced by
the lower perplexity value and higher BLEU scores.

Given the constraints in data and computational resources, which limit the availabil-
ity of Pre-trained Language Models (PLMs) for many languages, an alternative approach
has emerged. Researchers have begun fine-tuning multilingual PLMs with these translated
datasets, adapting them to the linguistic specifics of the target languages. However, an-
other investigation highlighted the limitations of translating high-resource language datasets
into low-resource languages [69]. Through experiments involving English and Chinese dia-
log data, the authors examined different cross-lingual transfer methods. They found that
directly training multilingual models using English dialog corpora without translation can be
more effective than using translated versions. This is attributed to the cultural specificity of
dialog, where direct translations may not capture the nuances of the target language, lead-
ing to unnatural dialog generations. The study suggests focusing on utilizing untranslated
high-resource language data for cross-lingual transfer, providing insights into the limitations
of MT in dialog generation tasks.
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4.3.2 Cross-lingual transfer learning

Few-shot cross-lingual transfer learning, supported by multilingual pre-trained language
models offers a promising solution for various natural language processing (NLP) tasks, par-
ticularly for languages with limited resources. This approach typically involves two key
phases, and :

e Source-training: The mPLM is initially fine-tuned using the comprehensive training
dataset available in a source language, such as English.

e Target-adapting: Subsequently, the model that has been trained on the source lan-
guage is fine-tuned further using a small number of example data points (i.e., few-shot
examples) from the target language.

While using Multilingual models has shown promise in enabling cross-lingual transfer for
other generation tasks, zero-shot cross-lingual transfer with mPLM suffers much from catas-
trophic forgetting, where mPLM that has been fine-tuned on the source language is unable to
generate fluent sentences in the target language when being evaluated on it. Vinit et al. [31]
showed that while these multilingual transformers show impressive transfer capabilities, their
performance significantly drops for languages that are linguistically distant or have smaller
training corpora. In their study, however, they stated that inexpensive few-shot transfer (i.e.,
additional fine-tuning on a few target-language instances) can be surprisingly effective across
the board.

The study conducted by Otegi et al. [56] came to examine the previous techniques, within
the framework of conversational question-answering (CQA) tasks, specifically targeting the
Basque language. They examined the performance of CQA systems using native training
data only, curating a small dataset through crowdsourcing, zero-shot transfer learning (using
English training data only), and low-resource transfer (a combination of native and English
training data). For the native training, they fine-tuned both monolingual and multilingual
models. The results demonstrated that by fine-tuning multilingual PLMs with English data
and doing few-shot learning using a small amount of native data, it is possible to achieve
performance comparable to English-centric systems. Interestingly, the monolingual model,
fine-tuned with native data, performed nearly as well as the multilingual model pre-trained
on a larger English dataset before undergoing few-shot learning, and much better than the
multilingual that was trained on the native Basque data.

4.3.3 Mutlitask learning

Multitask learning (MTL) is an effective inductive transfer approach that improves gen-
eralization by jointly learning one or more auxiliary tasks together with the target task. In
this work, we focus on pairwise MTL, where there is only one auxiliary task trained together
with the target task, as it works better when the target dataset is smaller than the auxiliary
dataset [43]. In our case, we have auxiliary language(s) and target language as auxiliary
task(s) and target task, respectively.

The authors in [30], investigated the differences of Sequential Transfer Learning with In-
termediate Tasks in comparison to Pairwise Multi-Task Learning. In our case, the sequential
transfer learning with intermediate tasks is identical to the cross-lingual transfer learning
methods, where we first finetune a model on a source language and then we train the model
on the target language. In their research, they found out Pairwise MTL tends to outperform
STILTs (Supplementary Training on Intermediate Labeled-data Tasks) when the target task
has fewer instances than the supporting task. Conversely, STILTs is preferable when the
target task has more instances than the supporting task.
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Multitask learning (MTL) has shown significant promise in enhancing performance across
various natural language processing tasks by leveraging shared representations, however little
to no work has to do with tasks around dialogue generation on a low resource language.

Recent studies have explored different facets of MTL, applying it to both high-resource
and low-resource languages. For instance, Zhu et al. [97] developed a framework combining
natural language generation (NLG) with an unconditioned language model. This approach
not only addressed the semantic correctness of the responses but also their naturalness, a cru-
cial aspect often missing in low-resource settings. They reported that this dual-task model sig-
nificantly outperformed traditional single-task models across various datasets, demonstrating
the effectiveness of MTL in generating more diverse and contextually appropriate responses.

Similarly, Ide and Kawahara [21] focused on integrating emotion detection with response
generation, enhancing the emotional intelligence of dialogue systems. By training a model to
recognize and generate emotional responses simultaneously, their system could engage more
naturally with users, an approach that could be particularly effective for culturally nuanced
languages like Greek.

In the context of Greek, where data scarcity poses a significant challenge, MTL offers a
pathway to enrich dialogue systems by borrowing strength from related tasks. Magooda et al.
[19] explored MTL for abstractive summarization in low-resource languages and found that
tasks like paraphrase detection and concept detection could enhance summarization quality.
Applying similar principles to dialogue response generation, where generating paraphrases
and detecting relevant concepts are equally vital, could similarly improve performance.

4.3.4 Prompt learning

Prompt learning represents a strategic adaptation of pre-trained language models (PLMs)
to specialized tasks using tailored input modifications, which guide the models’ generative
capabilities without the need for extensive retraining. This method is especially relevant
in the context of dialogue systems where generating contextually appropriate responses is
critical but often hindered by the scarcity of training data in low-resource languages.

Madotto et al. [18] introduced prompt-based few-shot learning for dialogue systems,
demonstrating that significant performance can be achieved by embedding task-specific pro-
mpts into the model’s input. This approach leverages the intrinsic capabilities of large lan-
guage models trained on diverse datasets to perform tasks with only a few instructive exam-
ples. The efficacy of this method provides a framework for applying large models to dialogue
generation tasks where training data may be limited.

Kasahara et al. [27] further explored the utility of prompt tuning in dialogue systems
by optimizing only the prompt’s embedding vectors while keeping the rest of the model
parameters frozen. Their findings suggest that such an approach not only maintains the
generative quality of responses but also reduces the computational overhead associated with
traditional fine-tuning methods. This methodology is particularly advantageous for low-
resource scenarios, where computational resources and domain-specific data are often limited.

Brown et al. [3] investigated the application of zero-shot and few-shot learning paradigms
using manually crafted prompts that encapsulate task-specific directions and examples. Their
research highlights the potential of using prompts to adapt pre-trained models to new tasks
efficiently, without the need for large annotated datasets. Such strategies are pivotal for
languages and dialects that lack extensive computational resources and linguistic data.

These studies collectively underline the transformative potential of prompt learning in
making advanced NLP technologies accessible for low-resource languages. By employing
minimal prompt engineering and leveraging pre-existing large models, researchers and prac-
titioners can develop robust dialogue systems capable of handling a variety of interactions
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with reduced resource investment. This body of work not only contributes to the theoret-
ical understanding of prompt-based learning but also provides a practical blueprint for its
application across diverse linguistic landscapes.

4.4 Evaluation Metrics

In this section, we look into the most commonly used metrics for evaluating the generated
responses of an open-domain conversational agent. These metrics are divided into automatic
and human-based metrics.

4.4.1 Automatic Metrics

Although there is no well-established method for automatic evaluation of the response
quality, there are some automatic metrics for reference.

e Word Perplexity: This metric, designed to evaluate probabilistic language models [6],
is widely used in end-to-end dialogue systems assessment. It calculates the likelihood
of the model predicting the next word in a conversation accurately. A lower perplexity
indicates a better model. Modifications to this metric exclude stop-words and punctu-
ation to emphasize the semantic content [52]. Despite its popularity, its effectiveness
is limited in dialogue systems due to the diverse range of potential responses and the
numerous ways a sentence can be constructed while retaining the same meaning.

e BLEU: Originating from machine translation evaluation, BLEU [57] scores a response
based on how well it matches n-gram sequences found in a reference response. The
formula is given by:

N
BLEU = BP - exp (Z wy, log pr,) (4.2)
n=1
where BP is the brevity penalty on the length of the utterance, p, represents the
probability that the n-grams in a generated response occur in the real response, N is
the max number of grams, and w, is the weight for each n-gram (normally set as 1/N).
BLEU’s output is always a number between 0 and 1. A score close to 1 indicates a
high similarity to the reference, suggesting better model performance. However, its
correlation with human judgment on dialogue quality is weak [11].

e SacreBLEU: SacreBLEU [58] provides a standardized methodology for computing the
BLEU score, including consistent preprocessing and tokenization. While primarily de-
signed for machine translation, sacreBLEU can be applied to evaluating conversational
agents by providing a standardized measure for comparing the generated responses
to reference responses. However, like BLEU, sacreBLEU may not fully capture the
conversational context or the appropriateness of responses in a dialogue setting.

e BERTScore: BERTScore leverages the contextual embeddings from BERT and com-
putes the cosine similarity between the embeddings of words in the generated and
reference texts [90]. It is particularly useful for evaluating conversational agents where
semantic accuracy and the ability to produce contextually relevant responses are cru-
cial. BERTScore can capture the subtleties of meaning that traditional metrics might
miss, offering a deeper insight into model performance.

e Response Diversity: Distinct-1 and Distinct-2 measure the number of distinct uni-
grams and bigrams of the generated responses [31], trying to measure the diversity of
the generated responses.
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4.4.2 Human-based Metrics

Currently, human evaluation is still the most convincing method for judging the response
quality and is widely applied in chatbot evaluation. The most common human-based metrics
are:

e Pair-wise comparison to let humans choose which of the two responses is more suitable,
more appropriate, and more helpful, etc. [65].

e Evaluating relevance: Humans grade the generated responses according to whether they
seem relevant to the conversation and on-topic. [62].

e Evaluating fluency/coherency: Humans grade the responses according to whether they
seem understandable, logically, and syntactically correct. [59].

In conclusion, evaluating open-domain conversational agents requires an all-around ap-
proach, combining a variety of metrics. Using a combination of metrics such as Word Per-
plexity, BLEU, Distinct-N, BERTScore, along with sacreBLEU for standardized comparisons,
offers valuable insights into various aspects of conversational quality, including fluency, rel-
evance, and semantic accuracy. However, the limitations of these metrics underscore the
importance of human-based evaluations for capturing the nuances of natural conversation,
including context, coherence, and user satisfaction.

4.5 Summary

In this chapter, we provided a theoretical background knowledge of open-domain dia-
logue generation for languages with limited resources, starting with a foundational discussion
on the evolution of natural language, which has significantly influenced human interaction
and societal development. We explored the roles of task-oriented and non-task-oriented di-
alogue systems, emphasizing their functionality in everyday applications and their broader
implications in Al-driven communications. In Section 4.2 we broke down dialogue generation
mechanisms, transitioning from traditional rule-based systems, like ELIZA [79], to modern
data-driven approaches that use vast corpora to train more nuanced conversational systems,
like ChatGPT [55]. We considered various methodologies like retrieval-based and generative
systems, each with unique strengths in coherence and contextual relevance, and look into the
previous advances in the field of open domain dialogue.

In Section 4.3, the narrative shifted towards the challenges faced by low-resource languages
in developing dialogue systems. We examined strategies such as translating high-resource
datasets and native training, which adapt existing content to enrich linguistic databases
for underrepresented languages. Cross-lingual transfer learning was highlighted as a key
technique for using robust multilingual models to extend the benefits of advanced NLP tech-
nologies to these languages. Multitask learning and prompt-based learning were discussed
as methods that enhance model performance by integrating auxiliary tasks or fine-tuning
models with minimal examples, respectively.

Finally, the chapter concluded with an analysis of the usual metrics, automatic and
human-based, that are used to evaluate open domain dialogue systems. These assessments are
crucial for understanding the effectiveness of various models in producing relevant, coherent,
and contextually appropriate responses, thereby pushing the boundaries of what automated
systems can achieve in real-world interactions.
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Chapter 5

Dialogue Generation - Greek Case

5.1 Introduction

Open-domain conversational models aim to seamlessly blend knowledge and intelligence
while satisfying users’ need for communication and social belonging. A long-standing goal of
Artificial Intelligence (AI) has been to build intelligent open-domain conversational models
that can understand the semantics of input utterances and provide coherent and relevant
responses. Early attempts in building open-domain models relied on developing Natural
Language Processing (NLP) modules for utterance understanding and generation, and a
dialog manager to switch between modules [95]. However, such approaches remained limited
in their capabilities and failed to generalize beyond a specific set of domains. With the
advances in Al techniques and computation power, researchers recently showed that open-
domain conversational models developed using end-to-end neural network-based approaches,
such as Sequence-to-Sequence (Seq2Seq) models and autoregressive transformers, generalize
well to unforeseen domains without needing complicated setups or predefined modules and
hand-crafted rules [63]. These approaches, however, require training on large corpora of open-
domain conversational data [1|. The availability of massively pre-trained language generation
models also helps address the issue of data scarcity whereby less task-specific labeled data
would be needed to reach reasonable performance.

However, when it comes to languages that aren’t widely supported, like Greek, the chal-
lenge is finding enough conversational data, and the pre-trained models available aren’t as
advanced as those for English. This gap led us to our research goal: finding the best way to
create a chat model for open-domain conversations in Greek, where resources are scarce.

The rest of this chapter is organized as follows: Section 2 overviews recent work on open-
domain response generation models, in addition to works targeting low-resource languages.
Section 3 presents the dataset we used for our experiments. The proposed architectures are
explained in Section 4. In section 5, we discuss the different approaches used, the training
implementations, the conducted experiments, and the results achieved.

5.2 Related Work

With the progress in neural conversational Al, there has been a resurgent interest in de-
veloping open-domain conversational models. These models are typically trained using large
amounts of open-domain conversational datasets and also benefit from massively pre-trained
language generation models that can be fine-tuned on the target open-domain response gen-
eration task. The wide availability of such resources has contributed to the development
of high-performing open-domain conversational models [91], [63]. Despite the existence of
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valuable resources to build open-domain conversational models [39], [37], [62], most of them
are in English, making it challenging to produce similar models for other languages.

The low-resource challenge has been previously studied in the literature for task-oriented
conversational models [83], machine translation [51], question-answering [56], and other NLP
applications [21], [31], as we extendedly discussed in Section 4.3. However, very little work
targeted the issue of low resources in open-domain conversational models.

Yang et al. [387] studied the problem of low-resource response generation with 360K
utterance response pairs in Chinese. The authors proposed estimating templates from large-
scale unlabeled samples to aid an encoder-decoder model in response generation. Naous et al.
[53] achieved high performance in open-domain response generation in Arabic by fine-tuning
a transformer model on 36K utterance-response samples that were automatically translated
from English [54]. In our work though, we tackle the problem of open-domain response
generation in Greek using a chit-chat dataset of 11k dialogues. To the best of our knowledge,
this is the first attempt to tackle open-domain response generation in Greek.

5.3 Data

In this section, we present and analyze the DailyDialog dataset that we used for our
experiments.

5.3.1 DailyDialog dataset

The DailyDialog [37] dataset is a publicly available collection of multi-turn dialogue con-
versations that span across a diverse range of topics. The dataset consists of over 13,000
conversations between two or more speakers, with each conversation consisting of up to 15
turns. Each conversation has on average 7.9 utterances and the average utterance length is
about 15 words long. The basic statistics are presented in Table 5.1

Total Dialogues 13,118
Average Speaker Turns Per Dialogue 7.9
Average Tokens Per Dialogue 114.7
Average Tokens Per Utterance 14.6

Table 5.1: Caption

The conversations were collected from various websites that serve for English learners to
practice English dialog in daily life. DailyDialog datasets are written to reflect our daily
conversations, so the main purpose of the dialogues is to exchange information and enhance
social bonding. The dialogues in the developed dataset cover a wide range of daily scenarios:
chit-chats about holidays and tourism, service-dialog in shops and restaurants, and so on.
The 3 most common topic categories of a conversation are Relationship (33.33%), Ordinary
Life (28.26%), and Work (14.49%). Finally, the dataset was split into training, validation,
and test sets. A conversation from the training set is provided below.

Turn 1: A: 'm worried about something.
Turn 2: B: What’s that?

Turn 3: A: Well, I have to drive to school for a meeting this morning, and I’'m going to end
up getting stuck in rush-hour traffic.
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Turn 4:

Turn 5:

Turn 6:

Turn 7:

Turn 8:

Turn 9:

B: That’s annoying, but nothing to worry about. Just breathe deeply when you
feel yourself getting upset.

A: Ok, I'll try that. [A contemplates B’s advice/
B: Is there anything else bothering you?

A: Just one more thing. A school called me this morning to see if I could teach a
few classes this weekend, and I don’t know what to do.

B: Do you have any other plans this weekend?

A: I'm supposed to work on a paper that’s due on Monday.

Turn 10: B: Try not to take on more than you can handle.

Turn 11: A: You're right. I probably should just work on my paper. Thanks!

5.3.2 Greek DailyDialog dataset

To create the Greek version of the DailyDialog dataset(el) we translated the original En-
glish DailyDialog(en) dataset using neural machine translation. The neural machine transla-
tion model from the OPUS collection |73] serves as the primary tool for this translation task,
offering state-of-the-art performance in translating between English and Greek. A conversa-
tion from the projected dataset is provided below.

Turn 1: A: avnouyo yio xdrt.

Turn 2: B: 1 ebvar autod:

Turn 3: A: howndy, mpénel va mdw 0To oyorelo ylo Ui GLVAVTNOT oYuepa To TELE, xou Yo
XxATOAAEW Vo xohAow oty xivnon poc.

Turn 4: B: auto cbvar evoyAnuxd, aAld tinoto vo avnouyels. omhd avanvéels Pohd ooy
VIOUELC TOV EAUTO GOU VoL VUG TATOVETL.

Turn 5: A: evtdgel, Yo 10 doxipdon.

Turn 6: B: o évoyhel xdti dAlor

Turn 7: A: éva axoduo mpdypa. €va oyoleio you Tnhepwvnoe ofuepa 10 Tl YLol Vo 6w oV
UTOPW Vo B1BAEM pepxd portfuata autéd To cuPBatoxiploxo, xo dev EEpw TL VoL XAvew.

Turn 8: B: éyeic dAa oyédia autd 10 coffoatondploxo

Turn 9: A: unotideton 6Tl mpénel va SoLAédw oe éva yoptl Tou ogeiletar Tn deutépal.

Turn 10: B: npoondinoe va unv avtélelc Teplocotepa omd 000 UTopElC Vol YeploTElC.
Turn 11: A: éyeic dixio. udhhov mpénel vor Soukédw mavew 6To YapTl You. EuyapleTO!
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5.4 Proposed architectures

In this section, we describe the generative models that we used for our task and compare
the results of all models in Section 5.5. We tried 4 different generative models, a monolingual
autoregressive decoder model, a monolingual encoder-decoder model, a multilingual autore-
gressive decoder model, and a multilingual encoder-decoder model. The models we can use
for our task are limited as there are few monolingual and multilingual models trained on a
Greek corpus. So, there is a comparable difference in the number of parameters between our
4 proposed models, as shown in the details below.

Model 1 - GPT2-Greek: This model used the GPT-2 architecture described in Section
3.4.2. GPT2-Greek is a monolingual model and has 117M parameters (12-layer, 768-hidden,
12-heads). It was developed by finetuning the English version with gradual layer unfreezing.
We initialize the model using the ’lighteternal /gpt2-finetuned-greek’ [35]| checkpoint from the
HuggingFace library.

Model 2 - GREEK-BERT2GREEK-BERT: This monolingual model uses the seq2seq
architecture, with encoder and decoder both composed from transformer models. More specif-
ically, the encoder and the decoder are initialized with the weights of the GREEK-BERT,
whereas the language model head at the top of the decoder and the cross-attention layers
are randomly initialized. The GREEK-BERT2GREEK-BERT model has 224M parameters
as the GREEK-BERT encoder and decoder models are similar to the English BERT model
and have 110M parameters (12-layer, 768-hidden, 12-heads).

Model 3 - mT5: This multilingual model follows the original T5 recipe described in section
3.4.3. We use the small model which has 300M parameters. The bigger vocabulary employed
in mT5 results in a higher parameter count when compared to the corresponding T5 small
model.

Model 4 - XGLM: XGLM is a multilingual decoder-only generative model with transformer
architecture similar to GPT-3 described in section 3.4.4. We use the smallest XGLM model
with 564M parameters which has a similar architecture to GPT-3 Medium (24-layer, 1024-
hidden, 16-heads).

5.5 Experiments and Results

In this section, we first outline the different training approaches utilized, delve into the
training specifics of the models highlighted in Section 5.4, detail the experiments conducted,
and evaluate the outcomes of the proposed models.

5.5.1 Training approaches

For our experiments, we implemented four primary training approaches, based on the
ideas from previous work in this domain as described in Section 4.3: native training, cross-
lingual transfer learning, multitask learning, and prompt based learning.

Native training

Following the methodology proposed by the authors in [54], our initial approach involved
training on a Greek dialogue generation dataset. Given the absence of such datasets, we
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utilized the Greek segment of the Daily Dialog dataset (see Section 5.3.2), which we had
translated. We used a full model fine-tuning training approach, which was conducted solely
with Greek data, allowing all four models, both monolingual and multilingual, to be trained
using the same language modeling loss. The training processes for the decoder-only models
differed slightly from those for the seq2seq models, as will be further explained in Section
5.5.2.

Cross-lingual transfer learning

As outlined in Section 4.3.2, cross-lingual transfer learning is an effective strategy for
transferring knowledge from a source language, in this case, English, to a target language,
Greek. To facilitate this, both the original and the translated versions of the DailyDialog
dataset are necessary. Consequently, as this stage involves training on both English and Greek
data, only models 3 and 4, which are multilingual were trained under these conditions. The
typical approach involved first fine-tuning the model on the English dataset to allow the model
to learn dialogue generation with abundant high-quality data. Subsequently, the model was
fine-tuned again using various subsets of the Greek dataset, with k = 32,64, 128,512,1024
examples. This method aims to transfer the learned representations from the initial training
stage to the target language, where less data is available. Both fine-tuning stages involved
training the complete set of model parameters, rather than freezing any layers or using
selective parameter updates.

Multitask learning

The concept and settings for multitask learning are akin to those of few-shot learning.
Here, the objective is to learn the same task across different languages simultaneously. A
substantial portion of English data is used to adjust the models’ parameters, while simul-
taneously incorporating a smaller proportion of Greek dialogues. This approach seeks to
synchronize the token embeddings from both languages, primarily tuning the models using
the extensive and well-prepared English data.

Instead of conducting two separate fine-tuning processes as in cross-lingual transfer learn-
ing, we merged the Greek dataset samples with the English dataset to form a new, predomi-
nantly English, joint dataset. The number of Greek samples used to create the joint dataset
varies, similarly to the Cross-Lingual transfer learning method. For training, we used a full-
parameter fine-tuning approach. The models are thus trained to handle the task in English
while also attempting to master the more challenging, data-sparse Greek task, leveraging the
knowledge acquired from the English data.

Prompt based training

Our experiments with cross-lingual transfer learning and multitask learning revealed a
tendency for the models to experience catastrophic forgetting, a phenomenon also noted by
other researchers [12|. To address this issue, we adopted a strategy involving predefined hard
prompts that are consistent across both languages similar to [18]. These prompts help direct
the flow of information, aiding the model in grasping essential dialogue elements that are
common across languages, thereby enhancing knowledge transfer from English to Greek.

To implement this strategy, we prepended each input with the phrase "Dialog history".
Additionally, we added "User:" before the user’s input and "System:" before our model’s
input. We re-implemented two training setups from the cross-lingual transfer learning and
multitask learning experiments, setting the number of examples to 128, using these prompts
as shown below:
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Dialoghistory :< context > User :< user _input > System :< model's _output >

5.5.2 Training details

In this section, we discuss the details of all the different training approaches we discussed
in the previous Section 5.5.1, and the way we tailored each approach to the models we
discussed in Section 5.4.

GPT2-Greek training

We trained the model on the translated DailyDialog dataset. Each training instance
consisted of an entire dialogue from those in the training set with a special token inserted
between each utterance of the dialogue. During training, we wanted to optimize the response
language modeling objective, trying to predict the next word and computing the language
model loss using cross-entropy. The loss is computed on the whole dialogue and not only on
the gold reply of the last sentence. In that way, the model learns the patterns between all the
utterances of the dialogue and does not only learn to generate the final response depending
on the dialogue history.S

During fine-tuning, we used the AdamW optimizer with a learning rate of 7e-5, weight
decay equal to 0.01, and a linear scheduler. The model was trained with early stopping,
keeping the checkpoint with the best language model loss in the validation set. The training
set contains 11118 dialogues and we use a batch size of 8. With gradient accumulation steps
set to 2, the effective batch size reached 16.

GREEK-BERT2GREEK-BERT training

The GREEK-BERT2GREEK-BERT model was also trained using the translated Daily-
Dialog dataset. However, a different strategy was used to create the training instances. We
first tried to have the same number of training examples as with the previous model, by giving
as input to the encoder the first i-1 sentences of the dialogue, where i is the total number of
sentences in the dialogue, and calculating the cross-entropy loss between the decoder output
and the last sentence of the dialogue. This method leads to poor generalization, also due to
the small number of dialogues in the dataset, since the model learns to generate only the last
sentence of each dialogue given all the previous ones and does not learn to generate every
turn of the dialogue. For this reason, we divided each dialogue into smaller dialogues that
formed the different training instances, as shown below.

For example, we have the dialogue:

"I met Carson’s mother last week for the first time.",
"How was she?",

"She turned out to be really nice. I like her.",
"That’s good to hear."

From the above dialogue, after the processing, emerge 3 new dialogues as shown below.

" I met Carson’s mother last " I met Carson’s mother last " I met Carson’s mother last
week for the first time.", week for the first time.", week for the first time.",
"How was she?" "How was she?", "How was she?",
"She turned out to be really "She turned out to be really
nice. I like her." nice. I like her.",

"That’s good to hear."
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For our encoder-decoder models, the training instances are formed as:
< context > [special token] < user input > [special token], for the encoder input.

Therefore, using the above example, < context > consists of sentences 1 and 2, <
user _input > consists of sentence 3, while sentence 4 is the label based on which the cross-
entropy loss is calculated. During fine-tuning, we wanted to optimize the response language
modeling objective, trying to predict the next sentence and computing the language model
loss between the generated response and the label using cross-entropy. We used the AdamW
optimizer with a learning rate of le-4, weight decay equal to 0.01, and a linear scheduler with
500 warm-up steps. The model was trained with early stopping for 10 epochs, keeping the
checkpoint with the best language model loss in the validation set. After the preprocessing
of the dataset, the augmented training set contains now 76052 dialogues and we use a batch
size of 16.

mT5 Training

The mT5 model used the same structure for training instances as the other seq2seq
model we discussed previously, GREEK-BERT2GREEK-BERT model and underwent all
four training approaches. The models resulting from these were designated as mt5-native,
mt5-cross-lingual, mt5-multitask, and mth-prompt respectively. The focus was on optimizing
the language modeling objective by predicting the next tokens and computing the language
model loss using cross-entropy. For fine-tuning, the mT5-native and mT5-transfer models
used the AdamW optimizer with a learning rate of 7e-5 and a linear scheduler. The mT5-
multitask model was initially trained on the English dataset for three epochs with a constant
learning rate of 7e-5, then fine-tuned on the Greek dataset with a learning rate of 3e-5.
Weight decay for all models was set at 1le-2. All training was conducted with early stopping,
utilizing a dataset of 76,052 dialogues and a batch size of 16.

XGLM Training

The XGLM model followed the same setup as the GPT2-Greek model for training in-
stances. Being a multilingual model, it was subjected to four different training techniques:
XGLM-native (XGLM-NV fine-tuned solely on Greek dialogues), XGLM-cross-lingual (XGLM-
CL, trained sequentially on English and then Greek datasets using k examples), XGLM-
multitask (XGLM-MTL, fine-tuned simultaneously on both datasets using k examples), and
XGLM-prompt where it was again trained on cross-lingual transfer(XGLM-P-CL) and mul-
titask (XGLM-P-MTL) learning, but using the extra prompt tokens on the input sequences
as discussed in 5.5.1. Each dataset was maintained in its original state with 11,118 dialogues.
Due to the large size of the model and resource constraints, a batch size of 2 with gradient
accumulation steps equal to 8 was used, achieving an effective batch size of 16. The AdamW
optimizer was employed across all models with a learning rate of 7e-5 for XGLM-native and
XGLM-transfer, and 3e-5 for XGLM-multitask during fine-tuning.

5.5.3 Evaluation

To assess the performance of the language models, we used several metrics like, perplexity,
SacreBLEU, Distinct-N, and BertScore. Each of these tools helps us understand different
aspects of the model’s performance, from fluency and diversity to accuracy regarding a golden
truth response and contextual alignment.
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Perplexity: Perplexity evaluates the model’s uncertainty in predicting the next token. A
lower score indicates a more confident model, reflecting better understanding of the language.

SacreBLEU: SacreBLEU is a refinement of the BLEU score, which is widely used to
assess the quality of text that a model generates or translates. It includes several metrics:

e BLEU-1: Measures the match of single tokens (unigrams) between the model’s output
and the reference. It assesses the accuracy at the most basic level of text generation.

e BLEU-2: Evaluates the co-occurrence of two consecutive tokens (bigrams) in the
model’s output compared to the reference. This measures how well the model captures
two-word phrases, reflecting more on syntactic structures than BLEU-1.

e Overall BLEU Score: This score aggregates the model’s performance across different
n-gram lengths (up to 4), weighted by a geometric mean. It provides a comprehensive
picture of how well the model’s output aligns with the reference text across different
levels of granularity.

We adapted SacreBLEU to assess how the model’s responses align with a golden truth,
focusing on both the precision of individual words and the fluency of phrases.

Distinct-N: Distinct-N metrics, including Distinct-1 and Distinct-2, measure the diver-
sity of the generated text by counting the unique n-grams normalized by the total number of
words. Higher values indicate a richer and more varied vocabulary.

BertScore: BertScore checks the semantic similarity between the model’s output and the
reference text using BERT-based embeddings. High BertScore values suggest strong semantic
alignment, indicating effective context understanding and relevance of the model’s responses.

We consolidate these metric scores into tables and charts, allowing us to visually compare
the capabilities of the different models and techniques we developed.

5.5.4 Results

This section presents the comprehensive evaluation of various models trained using dif-
ferent methodologies: native training, cross-lingual transfer learning, multitask learning, and
prompt-learning training. In Table 5.2 is the main summary of the results. The Tables 5.4
and 5.5 show a study regarding the number of examples k on the cross-lingual transfer and
multitask learning settings for the 2 multilingual models.

Overall, the models trained on the whole translated dataset (native training) achieve
better performance across all the metrics. The results show that among the models trained
natively, mT5-NV achieved the lowest perplexity of 6.52, indicating superior predictive per-
formance compared to other models in this category. In terms of SacreBLEU scores, which
measure the similarity of the generated answer in comparison to a human golden answer, in
terms of using the same n-grams, XGLM-NV outperformed others with scores of 27.58 for
B-1, 13.01 for B-2, and an overall score of 6.29. This suggests that XGLM-NV generates
answers closer to the real ones of the dialogues, without these assuring coherence. However,
the average score falls a bit behind GPT2-Greek-NV indicating that the latter had better
scores on more complicated B-3, and B-4 scores.

For diversity, GPT2-Greek-NV demonstrated the highest Distinct-1 (23.13) and Distinct-
2 (51.28) scores, indicating that it produced more varied text outputs. This is crucial for
applications requiring rich and diverse language generation. In the context of Bertscore,
which evaluates the similarity between generated and reference texts using BERT embeddings,
GPT2-Greek-NV achieved the highest scores with precision at 71.53, recall at 71.47, and an
F-1 score of 71.37. This model’s performance suggests it is highly effective in generating text
that closely matches the reference texts in meaning and quality.
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Model perplexity SacreBLEU Distinct-N Bertscore

B-1 B-2  score Distinct-1 Distinct-2  Precision Recall — F-1

Native training
GREEK-BERT2GREEK-BERT-NV 14.16 23.82 843 5.66 16.72 42.23 70.58 69.77  70.01
GPT2-Greek-NV 12.47 25.93 11.07 6.93 23.13 51.28 71.53 71.47  71.37
mT5-NV 6.52 2537 9.64 574 19.51 43.36 70.11 69.02  69.56
XGLM-NV 9.95 27.58 13.01 6.29 19.34 43.02 70.68 68.32  69.33
cross-lingual transfer training

mT5-CL (k=128) 19.39 13.54 599  3.53 18.71 37.62 64.12 63.24 63.52
XGLM-CL (k=128) 15.74 23.61 10.03 4.95 18.75 41.91 69.60 68.32  68.99

Multitask training
mT5-MTL (k=128) 12.27 189 6.83 3.93 21.12 46.35 68.35 67.96 68.04
XGLM-MTL (k=128) 16.53 2325 9.89 4.75 18.24 40.39 69.53 68.25  68.75

Prompt-learning training
mT5-P-CL (k = 128) 16.12 18.64 8.26 4.41 18.52 38.22 66.31 64.36  65.12
mT5-P-MTL (k = 128) 13.45 13.83 4,99 3.12 18.52 43.27 64.48 55.59  65.12
XGLM-P-CL (k=128) 10.47 25.01 12.04 4.52 18.31 40.16 69.75 68.14 68.84
XGLM-P-MTL (k=128) 11.31 25.07 12.10 5.00 16.91 38.31 69.89 68.50 69.12
NV: Native training, CL: Cross-Lingual transfer learning, MTL: Multitask learning, P:
prompt

k: number of examples

Table 5.2: Results across all the different training approaches and models on Greek test set

In general, GPT-Greek-NV outperforms the other models and training techniques. This
superior performance is likely due to its prior training on Greek data, which provided a
strong foundation. Additionally, the use of a Greek tokenizer significantly contributed to
its ability to generate more diverse responses. On the other hand, XGLM’s performance is
underwhelming considering its larger size compared to the other models.

The results from the Table 5.2 reveal that XGLM models trained with prompts—both in
cross-lingual transfer (XGLM-P-CL) and multitask learning scenarios (XGLM-P-MTL)—demonstrate
superior performance in key metrics over their counterparts without prompt integration.
Specifically, XGLM-P-CL achieved SacreBLEU scores of 25.01 for B-1 and 12.04 for B-2,
which are improvements over the non-prompt XGLM-CL model. This suggests that the
inclusion of prompts leads to more accurate and contextually relevant dialogue outputs.
Furthermore, the BertScores for XGLM-P-CL and XGLM-P-MTL (F-1 scores of 68.84 and
69.12, respectively) are higher compared to their non-prompt counterparts, indicating a closer
semantic similarity to human-like dialogue responses. However, we don’t see the same im-
provements for mT5, as the prompt learning does not seem to benefit the model.

Table 5.3 presents the performance evaluation of various training approaches on the En-
glish test set, providing insights into how different adaptation methods affect the models’
retention of original language capabilities. While the primary focus of this study centers
on Greek language generation performance, evaluating on English serves as a crucial diag-
nostic tool to assess the degree of catastrophic forgetting and knowledge preservation during
cross-lingual adaptation. The results demonstrate clear performance hierarchies across native
training, cross-lingual transfer learning, multitask learning, and prompt-based approaches.

The superior performance of prompt-based cross-lingual transfer (XGLM-P-CL, mT5-P-
CL) and multitask (XGLM-P-MTL, mT5-P-MTL) approaches compared to their non-prompt
counterparts reveals the severe impact of catastrophic forgetting in traditional fine-tuning
methods. When models are adapted to new languages without prompts, they experience
degradation not only in target language performance but also in fundamental linguistic capa-
bilities that form the backbone of language generation. This degradation can extend beyond
language-specific knowledge to core competencies such as fluency, coherence, and dialogue
structure that were originally acquired during English intermediate fine-tuning. This for-
getting of language generation capabilities is the primary factor explaining the worse per-
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Model perplexity SacreBLEU o Distinct—.N. N Bertscore

B-1 B-2  score Distinct-1 Distinct-2 Precision Recall — F-1

Native training
XGLM (English only) 8.37 24.08 8.51 6.12 10.29 38.25 69.67 73.18 71.28
mT5 (English only) 8.34 28.15 12.19 6.48 11.51 36.26 72.33 71.40 71.74
cross-lingual transfer training
XGLM-CL (k=128) 9.84 21.23  5.89 4.12 8.21 28.73 66.42 68.91 67.58
mT5-CL (k=128) 9.71 24.18 9.87 5.23 9.83 31.25 69.12 67.28 68.15
Multitask training
XGLM-MTL (k=128) 9.12 24.45 6.28 4.51 8.15 30.24 68.21 71.82  69.89
mT5-MTL (k=128) 8.95 26.18 10.92 5.62 10.89 34.15 71.43 70.17  70.76
Prompt-learning training

XGLM-P (English only) 6.22 25.09 8.07 5.53 9.11 33.23 69.90 73.03 T71.34
mT5-P (English only) 8.38 27.32 12.08 6.33 11.78 37.93 71.89 71.26 71.46
XGLM-P-CL (k=128) 6.92 24.81 7.78 5.16 8.77 32.26 69.36 72.31 70.71
mT5-P-CL (k=128) 9.48 25.77 10.92 5.69 12.54 38.22 71.45 70.66  70.94
XGLM-P-MTL (k=128) 6.29 26.80 7.74  5.39 8.69 31.66 69.83 72.88 71.23
mT5-P-MTL (k=128) 8.48 26.35 11.38 5.87 10.16 30.39 72.04 71.16  71.48

P: Prompt-based, CL: Cross-Lingual transfer learning, MTL: Multitask learning
k: number of examples

Table 5.3: Results across all the different training approaches and models on English test set

formance, rather than the model losing understanding of the source language. This same
mechanism also explains the degradation in target language performance when not using
prompts, even though the amount of Greek training data remains essentially the same across
all conditions. Consequently, the model loses essential generative capabilities that affect
overall performance quality, as evidenced by the deteriorated BLEU scores, reduced diversity
metrics, and lower semantic coherence in non-prompt approaches.

These findings illustrate that prompt-based training not only enhances the linguistic ac-
curacy and relevancy of the generated text but also ensures that the dialogue maintains a
high level of diversity and complexity. This is crucial in dialogue systems where the abil-
ity to generate coherent, context-aware, and varied responses can significantly affect user
satisfaction and engagement. Therefore, integrating prompt-based training in the XGLM
model capitalizes on its architectural strengths, enabling more effective learning from fewer
examples, which is particularly beneficial in scenarios with limited training data.

Moreover, the implementation of prompts in the training process significantly aids in mit-
igating the issue of catastrophic forgetting as the model transitions from English to Greek
datasets. Catastrophic forgetting occurs when a neural network loses the information previ-
ously learned upon learning new information, which is a common challenge when adapting
models to new languages or datasets. By integrating prompts, the XGLM model is better
equipped to retain relevant features from the English training data while effectively acquiring
new linguistic patterns from the Greek data. Prompts serve as anchors or guides that help
maintain the model’s focus on crucial aspects of the dialogue, ensuring that the transition
between languages does not remove previously established capabilities.

Next, we conducted an ablation study for mT5 and XGLM regarding cross-lingual transfer
and multitask learning training techniques. Specifically, we ran experiments for each model
using k random examples from the Greek dataset, where k = 32, 64, 128, 512, 1024, and results
are shown in Tables 5.4 and 5.5.

The multitask learning approach for the mT5 model shows varying results depending on
the number of examples (k). As k increases, there is a noticeable improvement in performance
across most metrics. Perplexity consistently decreases with the number of examples, with
mT5-MTL (k=1024) achieving the lowest perplexity of 8.92, indicating better predictive
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Model perplexity SacreBLEU Distinct-N Bertscore
B-1 B-2 average-score Distinct-1 (%) Distinct-2 (%) Precision (%) Recall (%) F-1 (%)

mT5-MTL (k=32) 14.78 13.96 5.98 3.05 20.51 45.52 66.84 65.36 65.91
mT5-CL (k=32) 22.46 13.39 6.24 3.55 14.92 28.79 64.29 62.23 63.15
mT5-MTL (k=64) 13.06 17.32 6.64 3.77 22.82 51.27 68.23 67.56 67.82
mT5-CL (k=64) 20.19 13.37  6.06 3.49 18.13 36.14 64.11 62.97 63.44
mT5-MTL (k=128) 12.27 189 6.83 3.93 21.12 46.35 68.35 67.96 68.04
mT5-CL (k=128) 19.39 13.54 5.99 3.53 18.71 37.62 64.12 63.24 63.52
mT5-MTL (k=512) 9.84 21.75 7.75 4.49 21.23 47.16 68.94 68.25 68.57
mT5-CL (k=512) 14.56 17.33  6.67 3.97 20.03 42.38 65.51 65.13 65.22
mT5-MTL (k=1024) 8.92 22.98 8.25 4.85 18.65 39.66 69.37 68.60 68.85
mT5-CL (k=1024) 12.37 20.24  7.35 4.18 20.95 44.59 68.83 67.72 68.82

CL: Cross-Lingual transfer learning, MTL: Multitask learning, k: number of examples

Table 5.4: Detailed performance of mT5 model on the different techniques used

performance with more training data. SacreBLEU scores also improve with more examples,
with mT5-MTL (k=1024) achieving the highest scores of 22.98 (B-1), 8.25 (B-2), and an
average score of 4.85. The diversity of generated text, measured by Distinct-1 and Distinct-2,
shows some variability. The highest Distinct-1 (22.82%) and Distinct-2 (51.27%) scores were
observed with mT5-MTL (k=64), though diversity generally remains high across different k
values. Bertscore metrics improve with more examples, with the highest F-1 score (68.85%)
achieved by mT5-MTL (k=1024), indicating a better balance between precision and recall
in generating high-quality text. Overall, the multitask learning approach demonstrates that
increasing the number of examples leads to better performance in perplexity, translation
quality, and Bertscore metrics, though diversity metrics show some fluctuations. It is really
interesting, that while we increase the number of samples, the diversity metric seems to
decrease as the model is probably learning more specific language templates to generate
answers.

In contrast, cross-lingual transfer learning for the mT5 model shows significant improve-
ments across various metrics as the number of examples increases, though it still falls short
of the performance seen with multitask learning. For example, perplexity decreases with
more data, with mT5-CL (k=1024) achieving a perplexity of 12.37. In terms of SacreBleu,
mT5-CL (k=1024) achieved scores of 20.24 (B-1), 7.35 (B-2), and an average score of 4.18.
Big difference we can see on the diversity metric Distinct-N. MTL models generally achieve
higher Distinct-1 and Distinct-2 scores. For instance, at k=512, MTL achieves Distinct-1 of
21.23% and Distinct-2 of 47.16%, compared to TL’s 20.03% and 42.38%. This indicates that
MTL is more effective in generating diverse text outputs, which is crucial for applications
requiring rich and varied language generation.

Model perplexity SacreBLEU Distinct-N Bertscore

“  B-1 B-2 average-score Distinct-1 (%) Distinct-2 (%) Precision (%) Recall (%) F-1 (%)
XGLM-MTL (k=32) 18.06 19.75  8.85 4.06 17.06 36.21 69.26 67.99 68.41
XGLM-CL (k=32) 20.33 19.98  9.38 3.29 22.54 48.68 68.86 67.97 68.36
XGLM-MTL (k=64) 17.34 20.93  9.29 4.36 17.64 38.46 69.34 67.88 68.52
XGLM-CL (k=64) 17.61 2041  8.99 4.21 19.78 43.04 69.23 67.98 68.51
XGLM-MTL (k=128) 16.53 23.25 9.89 4.75 18.24 40.39 69.53 68.25 68.75
XGLM-CL (k=128) 15.74 23.61 10.03 4.95 18.75 41.91 69.60 68.32 68.99
XGLM-MTL (k=512) 14.38 25.35 11.12 5.51 18.85 41.17 69.41 67.95 68.57
XGLM-CL (k=512) 14.16 2544 11.31 5.35 19.17 43.45 69.92 68.60 69.10
XGLM-MTL (k=1024) 13.53 26.49 11.66 5.78 19.21 41.97 69.51 67.96 68.60
XGLM-CL (k=1024) 13.31 26.13 11.42 5.91 19.11 42.88 69.26 68.60 69.23

CL: Cross-Lingual transfer learning, MTL: Multitask learning, k: number of examples

Table 5.5: Detailed performance of XGLM

Turning to the XGLM model, a similar trend is observed. Multitask learning shows better
performance compared to cross-lingual transfer learning across various metrics. For example,
the lowest perplexity for XGLM-MTL (k=1024) is 13.53, and the highest SacreBLEU scores
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are 26.49 for B-1, 11.66 for B-2, and an average score of 5.78. These scores are higher
compared to those of mT5, suggesting that XGLM generates text closer to the reference
answers.

Distinct-N scores for XGLM-MTL also show a general improvement with more examples,
although the diversity metrics do not increase as significantly as they do for mT5. The highest
diversity is observed with lower values of k, but as k increases, the diversity metrics stabilize,
reflecting a balance between specific language templates and varied outputs.

BERTScore metrics for XGLM demonstrate high precision, recall, and F-1 scores, with
the highest F-1 score being 69.23% for XGLM-CL (k=1024). This is slightly higher than the
F-1 scores observed for mT5, indicating that XGLM may be better at generating semantically
similar text to the reference.

In conclusion, the ablation study reveals that multitask learning is more effective than
cross-lingual transfer learning for both mT5 and XGLM models across most metrics, includ-
ing perplexity, SacreBLEU, and BERTScore. The diversity of generated text is also generally
higher with MTL, which is crucial for applications requiring rich and varied language gener-
ation. Increasing the number of examples leads to improved performance, highlighting the
importance of leveraging more training data in these models.

5.5.5 Output Samples

User: Awdvouon mporyuatixd 6Tl umoptd Vo EXPEAOw
e oflec pou péow g véog exmoumAc Tou  eToWdlew.

System: T{ oflec mnpoonadeic vo exqpdoe;

6Tt ouTd Elvar TO TO  ONUOVTIXG  TRAYUX GTO  XOGUO.

System: Autd axolyetar cav €var avalwoyovnTixd BlapopeTind VEUa Yiol ot ExToun

User: Nou, cipor mpaypotxd oe Oéon va  petagpéon

{ User: To 0éua tnc exmopmic ebvon 1 oydmn, xou voullw }
{ TOMNéC  Ouoppec oxéeic xon W€eC OTO XOWO  Uou. }

Models’ Responses:

XGLM-NV: Aev Yo propodoa vo }

G 1) SR (o ouppwviow pall cou TepleabdTepo.

GPT-Greek-NV: IlLictelec {
VO O XAVEL TIO GOQOUC;

mT5-NV: Aoy, Yo npéner va
x3velg 6, TL umopeic yia Vo PETOpERELS
oxéderc xou Wéec oe dhloug xowouic.

XGLM-P-MTL: I16c0 xaupb
Yo Biopxéoer N exmoun;

Actual Response: Qo 7npénel vo mapaxohoudficw TNV exmount
oou ulo and Tic axdhouldec pépec Yoo Vo T EAEYEW.

Figure 5.1: Dialogue example with multiple system responses

Since the task we are examining is a generation task, we present some of the responses
generated by the models GPT2-Greek-NV, XGLM-NV, XGLM-P-MTL, mT5-NV, and mT5-
P-MTL in the following examples. We utilize manually translated examples from the Com-
monsense Dialogues dataset [90] as the test data. Each model is provided with the same
dialogue history up to a certain point, and we analyze their respective generated responses.
These responses are then visually compared to the actual dataset responses through Figures
5.1, 5.2, and 5.3. This comparison aims to assess the coherence and relevance of the responses
produced by each model.

In Example 5.1, where the user discusses expressing personal values through a new
show focused on the theme of love, the responses from the models varied in relevance and
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depth. GPT-Greek-NV’s question about the educative potential of television. XGLM-NV
and XGLM-P-MTL provided generic responses, with XGLM-P-MTL at least asking a rel-
evant question about the show’s duration. mT5-NV provided the most aligned response,
encouraging the user to spread thoughts and ideas, resonating well with the intent to express
values, having however a slight grammatical error.

[ User: [Ifya oto mouyvidt tou you pou yvec Ppddu. ]
[ System: [lc¢  whye w0 mouwyvidy; ]
[ User: H ouddo tou xépdioe pe 6 mévtouc. Aatpetioy vo tov Brénw va moilet! ]

Models’ Responses:

var TOAD xoh6G madxTnC. oA xahbe madxTng.

{ GPT-Greek-NV: Na, ei- } { XGLM-NV: Eivat }

XGLM-P-MTL: Evtécet, mT5-NV: Aev elvar t600
elvoar TOA) xahée malxTNg. doymuo, étor dev eivou;

[ Actual Response: Modoiver vo epydleton oe ot ouddo. ]

Figure 5.2: Dialogue example 2 with multiple system responses

In Example 2, which revolves around the user’s son’s game, the responses were gen-
erally supportive but lacked depth. GPT-Greek-NV, XGLM-NV, and XGLM-P-MTL all
commented positively on the son’s playing skills, reinforcing a supportive stance but adding
little to the conversation. mT5-NV introduced a slight negative spin which, while different,
might be perceived as less supportive. In general, the responses on this example were quite
coherent but lacked engagement.

User: Awoidvopon moh) xahd mou emoTeépw onit uetd and Yo Bdouddec oto vocoxoueio.

[
[

System: Eiuacte 6lol yapoluevol mou oe PAémouue omiti.

User: Nou, 10 va clow dppwotoc oto  voooxoueio
oy @pixtd. AANNE Bev Atav  TO  YEWOTERO  TEAYHAL

System: ITow6 fitav 10  yepdTERO  TMEAYUYL;

User: To goyntdé 7tou  voooxouciou.

~—
)

Models’ Responses:

{ GPT-Greek-NV: ‘Hray

2 q } [ XGLM-NV: Aut6 eivor xpiuo. ]
%06 Y Ty vyela cou.

va motédew 6t Yo gropoioo

XGLM-P-MTL: Aev unopd
Vo Qhew auTd TO QayNTo. {

mT5-NV: T éxavec yetd ond
800 BBouddec oT0 Vocoxoueio;

Actual Response: Oo mpéner va mepiuévelc Ayo axoua,
agol T0 gouynté Yo pac To mopud®oouy ot pia hpa.

Figure 5.3: Dialogue example 3 with multiple system responses

Example 3 presented a discussion on the user’s return from the hospital. Here, GPT-
Greek-NV focuses on the benefit of the hospital’s food on the user’s health. XGLM-NV’s
expression of sympathy was appropriate, while XGLM-P-MTL showed the strongest empathy
by directly commenting on the poor quality of hospital food, aligning well with the user’s
feelings. mTH-NV, however, missed the mark by asking an unrelated question.
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The effectiveness of the responses varied across different models, with mT5-NV and
XGLM-P-MTL often providing more contextually appropriate and engaging responses. GPT-
Greek-NV tended to offer more diverse responses, considering the context of previous turns
in the dialogue. Notably, the XGLM model, which was trained with a subset of prompts,
approximately 1% of the total Greek dialogues compared to other models trained on fully
translated sets—produced responses that were on par with other models in terms of quality
and syntactical correctness. Overall, this analysis demonstrates that models yield the best
performance when their responses are closely aligned with the user’s emotional context and
the specific content of the ongoing discussion.

5.6 Human Evaluation

Automatic metrics, while useful for quantitative analysis, often fall short in capturing the
nuanced aspects of human dialogue. To gain a more comprehensive understanding of model
performance, we conducted human evaluations through an online survey, which allowed us to
assess qualitative aspects that metrics alone cannot measure effectively. Building on our auto-
matic evaluation findings from Section 5.5.5, we selected models that demonstrated the most
promising results for human assessment: GPT-Greek-NV, XGLM-NV, and XGLM-P-MTL.
Additionally, we included Meltemi, a substantially larger model (7B parameters compared to
the others’ 550M), to benchmark our models against a more capable architecture and under-
stand the performance gap between different model scales. In the survey, participants were
presented with identical dialogue histories and asked to evaluate responses generated by each
of the four models based on the following criteria:

1. Fluency: Is the generated response correct syntactically and feels natural?
2. Coherence: Is the generated response relevant to the dialogue history?

A total of 40 participants were involved in the study: 72.5% were aged between 20 and 30,
27.5% between 30 and 40. Each participant was assigned 5 random set of dialogues-responses
resulting to a total of 180 evaluations per model. Participants were asked to rate each
generated response using a 1-5 Likert scale, where 5 is the best score. Detailed instructions
were provided at the beginning of the survey on how to determine if an answer is fluent or
coherent. Figure 5.4 shows an example of the User Interface (UI) of the web application used
to conduct the survey.

Model Fluency Coherence
GPT-Greek-NV 3.42 2.90
XGLM-NV 3.13 2.62
XGLM-P-MTL 3.46* 2.98%
Meltemi 4.01% 3.97*

Table 5.6: Comparison of Models on Fluency and Coherence. Results noted with * are statistically significant
with p<0.05 using the MannWitney U test.

Table 5.6 show the comparison of response ratings on the different models. Meltemi
demonstrates superior performance compared to all other models, achieving the highest scores
in both fluency (4.01) and coherence (3.97). These improvements are statistically significant
(p<0.05), suggesting that Meltemi produces responses that human evaluators find substan-
tially more natural and contextually appropriate than the alternatives. Something expected,
considering the much bigger size and more extensive training.
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AZloAdynaon ATtavtioewv AlGAGYoU

AEIOAGYT|OT) TFC TIOIGTNTAC, TCoV AMQVTOEWY O TIAGITIC SICAGYOU GTIG SICPOPETIKG HOVIEAT

MNapaseypa 1

Aithoyoc:

Human: H giAn pou pou £@uiafe autd 1o Sioko. 'ExEl TIOAD EVBIOQEPOV JOUTIKY PETa.

Assistant: 400 yapdTo. H iin gou fray TIoAd TPOCEKTIKGE GTOV TV EQTICTVE.

Human: ZEpei &1 ayame T HOUCIKT TG Kal £101 pou £QTIOEE aUTO To Sioko. MO HPECEl v Tov aKobw EVEs 0B,
Assistant: Ti £i5oug HOUTIK TIEPIEXEL

Human: EKAEKTIKI] HOUGIKT], TG akpiBg Kar n Kouiv. Exel WmnTepd kol yapolpeva Tpayolsia, kasuwg Kal
KTIOI YpAyOpE KO apye

Assistant Model 1 Response

Mou apécouv GAa OUTE Ta TTRAYHOTE.

1. PeuoTotTa *
Kok 1 2 3 4 5 Egmpeny

2. Zuvoxn *

Kaki 1 2 3 4 5  EXmpeTiKi

Assistant Model 2 Response

AUTE elvan évar aTT6 T KaAGTEPT KOPATIO TTOD £X AKOUTE TIOTE.,

3. Pevotéma *
Kakj 1 2 3 4 5 Egmpenki

4. Iuvoxn *
Kk 1 2 3 4 5 Egmpeny

Figure 5.4: Example from the human evaluation survey setup. At the top, there is an example of a 5-turn
dialogue. Then, is provided the answer of each model, and possible ratings for the user.

XGLM-P-MTL shows moderate improvements over its XGLM-NV | with statistically sig-
nificant gains in both fluency (3.46 vs. 3.13) and coherence (2.98 vs. 2.62). This indicates
that the multitask training approach using english prompts employed in XGLM-P-MTL ef-
fectively enhances the quality of generated text, using much less Greek annotated data.

GPT-Greek-NV performs relatively well on fluency (3.42) but shows limitations in co-
herence (2.90), suggesting that while the model can produce grammatically sound text, it
struggles more with maintaining contextual relevance throughout longer responses. The gap
between fluency and coherence scores across all models indicates that achieving contextual
consistency remains more challenging than producing grammatically correct text.

5.7 Summary

In this chapter, we explored the development of open-domain dialogue models specifically
designed for the Greek language, addressing the unique challenges of working with limited
linguistic resources. We started by looking at the history and evolution of dialogue systems,
from traditional rule-based methods to modern neural network-based approaches. In Section
5.2, we reviewed key research on open-domain dialogue generation models and discussed the
specific considerations needed for languages with fewer resources.

In Section 5.3 we introduced the dataset used in our experiments, which was essential for
training our models given the limited availability of Greek conversational data, and next we
discussed the model architectures we adapted to train a model in the Greek language.

In Section 5.5, we detailed our methodological approach, including specific adjustments
made to train effectively with limited data and various training techniques employed. We
provided an in-depth analysis of our results and examined how different models performed
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in generating meaningful and coherent responses, considering both automated evaluation
metrics and specific generation examples. While our best models produced responses that
were generally fluent and coherent, we observed inconsistencies, with some outputs being dull
and lacking engagement.

Beyond automated metrics, we conducted human evaluations to assess model performance
from a user perspective, focusing on fluency and coherence as shown in Table 5.6. These eval-
uations revealed that Meltemi model significantly outperformed other approaches, achieving
the highest ratings in both fluency (4.01) and coherence (3.97), something expected con-
sidering the higher model size, and exposure to bigger amount of Greek data. Among the
remaining models, XGLM-P-MTL demonstrated superior performance, highlighting the effec-
tiveness of our bilingual training approach using a common prompt between the 2 languages.
This model achieved notable results despite utilizing significantly less Greek data, illustrating
the powerful cross-linguistic knowledge transfer that can occur between languages.
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Chapter 6

Conclusion and Future Work

6.1 Thesis summary and contributions

In this diploma thesis, we we studied in depth the work done in the field of open-domain
dialogue systems for low-resource languages. And specifically we examined different methods
and proposed ideas of creating such systems in the Greek language. More specifically, at first,
we analyzed the traditional architectures used for dialogue generation. Then, we studied
the state-of-the-art models that can be used in dialogue generation, including the Vaswani
encoder-decoder transformer, the Bert, the GPT2 and the T5 models. After providing a
theoretical background for the aforementioned models we focused on methods applicable to
low-resource languages for dialogue generation and similar tasks.

After presenting and studying the related work, we addressed the unique challenges pre-
sented by the limited availability of training data and the scarcity of pre-trained language
models for such languages. A significant challenge in our study was the lack of a suitable
Greek dialogue dataset. To overcome this, we employed machine translation to create a Greek
version of the Daily Dialog dataset, enabling us to conduct our experiments.

Our research involved a comprehensive series of experiments utilizing a variety of mono-
lingual and multilingual transformer-based models. These included GREEK-BERT, GPT-
2 Greek, mT5H, and XGLM. We investigated different training approaches to leverage the
limited resources effectively. These approaches encompassed zero-shot, and few-shot cross-
lingual training, as well as native training. Furthermore, we explored the use of a prompt
learning technique to enhance the performance of our multilingual models, demonstrating its
effectiveness in improving dialogue generation.

We evaluated the models using several automatic metrics: Perplexity, BLEU, BertScore,
and Distinct-n. These metrics helped assess the quality, diversity, and relevance of gener-
ated responses. Our evaluation revealed that native training generally outperformed other
techniques, with XGLM-P-MTL being the only comparable model. This model was trained
concurrently on English dialogue data and a small portion of Greek data using consistent
prompts across languages. To further assess performance and compare with larger models,
we conducted a human evaluation survey comparing the three best-performing models ac-
cording to automatic metrics (GPT-Greek-NV, XGLM-NV, and XGLM-P-MTL) alongside
a more advanced autoregressive model, Meltemi. The survey results showed that Meltemi
outperformed all other models, followed by XGLM-P-MTL, which demonstrated statistically
significant improvement over the XGLM model trained solely on translated Greek data.

The findings of our experiments offer valuable insights into the complexities of dialogue
generation in low-resource languages. Our results underscore the potential of cross-lingual
transfer learning as a viable strategy for such scenarios when couple with some prompt
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learning, providing a pathway for future research and development.

6.2 Future Work

This thesis establishes methodologies for dialogue systems in low-resource languages,
opening several interconnected research directions that could significantly advance conver-
sational Al accessibility for underrepresented communities.

The first step is improving data creation beyond the machine translation methods shown
here. Techniques like paraphrasing and creating synthetic dialogues could build better train-
ing datasets while keeping the language natural. These improved datasets would directly
support developing specialized prompting methods for dialogue systems.

Future prompt engineering should focus on dialogue-specific approaches that go be-
yond general prompting techniques. Few-shot learning paradigms show particular promise
for transferring knowledge from high-resource languages, but these need careful design to
capture dialogue patterns like turn-taking, response coherence, and context maintenance.
Cross-lingual prompting strategies should also explore how to adapt conversation styles and
cultural communication patterns across different languages. Additionally, investigating dy-
namic prompting that adjusts based on conversation context could improve response quality.
Template-based prompting for common dialogue scenarios (greetings, requests, clarifications)
could provide more consistent performance while maintaining flexibility for diverse conversa-
tional situations.

However, as these methodologies become more sophisticated, comprehensive evaluation
becomes increasingly critical. Future work must expand beyond current metrics and tasks to
assess model performance across diverse dialogue domains. This expanded evaluation scope
necessitates robust testing against real-world challenges including code-switching, dialectal
variations, and informal language use.

The methodologies of this thesis can can guide work on other low-resource languages.
This scaling process requires careful investigation of which components are language-agnostic
versus language-specific, with particular emphasis on languages having minimal NLP repre-
sentation. Such extension efforts must consider computational constraints, as many target
communities have limited access to advanced hardware. Therefore, developing parameter-
efficient fine-tuning methods, knowledge distillation techniques, and hardware optimization
strategies becomes crucial for practical development.

Ultimately, these technical advances must serve real community needs. Future research
should prioritize sustainable solutions, ensuring that dialogue systems remain accessible and
beneficial for linguistically underrepresented populations. The methodologies presented in
this thesis serves as a foundation for addressing the challenges of building effective dialogue
systems for linguistically underrepresented communities.
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