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ABSTRACT 

 

The following thesis presents a multi-disciplinary computational approach for classifying potential 

inhibitors of the human serotonin transporter (SERT) into three distinct categories: strong binders, 

moderate binders, and non-binders. SERT is the primary target for many antidepressants. The pipeline 

integrates several steps including molecular docking, molecular descriptor analysis, residue-level 

interaction profiling and creation of a supervised machine learning model in order to extract and 

clarify ligand-SERT interactions. A total of 74 compounds with and without known pharmacological 

action were studied that belong mainly to wide antidepressant categories, such as SSRIs, SNRIs, 

TCAs and other unrelated categories which are considered non-binders. The categorization of these 

ligands into the 3 classes was assigned based on the available inhibition constant values (Ki) with 

human SERT receptor from authorized pharmacological sources. Initially, molecular docking was 

employed with the aid of “AutoDock Vina” and “Chimera” software to generate the top ten binding 

poses for each ligand. The validity of the docking process and protocol was assessed by comparing the 

predicted binding conformation of the known SSRI drug “Paroxetine” with the baseline 

crystallographic structure from Protein Data Bank (PDB: 5I6X), resulting in a nearly perfect 

alignment. A custom Python script was applied to select the top five out of ten poses by ranking them 

based on their binding affinity and root-mean-square deviation values (RMSD). Extensive molecular 

and residue details were obtained using “BIOVIA Discovery Studio”, including “Surface_Area”, 

geometric angles and distance-based features. Statistical analyses were conducted to examine the 

correlations of features with the target variable, which is the class label and to detect potential 

multicollinearity among them. Notably, for strong binders, hydrophobic residues, such as “ALA_173”, 

“ILE_172”, and “PHE_341” were found to be critical. Apart from these, distinct distributions of 

“Polar_Surface_Area” and other angular features like “ANGLE_HAY” and “GAMMA” were 

observed. Several machine learning algorithms were trained including Random Forest, XGBoost, 

LightGBM, Logistic Regression, SVM and Voting Classifier. Nested cross-validation technique was 

integrated to minimize the risk of overfitting, however performance was moderate, due to the 

overlapping descriptor distributions between moderate and adjacent classes. Tree-based models 

outperformed, while at the same time facilitated interpretability of model decisions through SHAP 

summary and partial dependence plots. These plots highlighted the most predictive and important 

features across “STRONG BINDING” and “MODERATE BINDING” classes and confirmed that 

moderate binders confused the model. Despite the controversial success of the models used, the 

assumptions and limitations under which the present thesis was conducted, are outlined. Most decisive 

of them is the limited sample size, the static docking simulations and the custom script that selected 

the five best poses. Nevertheless, the study suggests for future work to incorporate molecular 

dynamics simulations from a wider range, include more targeted receptors for docking that are 

responsible for antidepressant activity, such as NET and DAT and molecular fingerprints that capture 

atomic level interactions. By this method, the classification accuracy and validity of results will be 

indisputable. This thesis lays a foundation for an innovative plan for detecting potential 

antidepressants drugs with the aid of several computational tools, but it requires a lot of optimizations 

to be considered reliable. 

 

Keywords: Serotonin Transporter (SERT), SERT Inhibitors, Antidepressants, Molecular Docking, 

Machine Learning, Supervised Classification, Residue-Level Interaction Profiling, Molecular 

Descriptors, AutoDock Vina, Chimera, BIOVIA Discovery Studio, SHAP Values, Partial Dependence 
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Plots (PDPs), Nested Cross-Validation, Binding Affinity, Root-Mean-Square Deviation (RMSD), 

Surface Area, Polar Surface Area, ANGLE HAY, GAMMA, Hydrophobic Interactions, ALA_173, 

ILE_172, PHE_341, Random Forest, XGBoost, LightGBM, Logistic Regression, Support Vector 

Machine (SVM), Voting Classifier, Static Docking Limitations, Molecular Dynamics Simulations, 

Molecular Fingerprints, Multi-target Screening, NET, DAT. 
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Chapter 1: Introduction 

 

 1.1 Major depressive disorder 

One of the most common psychiatric disorders worldwide, is major depressive disorder (MDD). Based 

on the World Health Organization (2023) nearly 280 million people suffer from depression including 

adults, children and particularly women. Persistent sadness, pessimism, feeling of dissatisfaction, 

permanent fatigue, cognitive dysfunction, disrupted sleep and in severe cases suicidal thoughts are 

among the list of symptoms of depression. The healthcare professionals mention that the symptoms 

should persist for more than two weeks to be correlated to depression. Despite technological 

advancements, the efficacy of antidepressants remains debatable, with more than 75% of patients 

globally do not have access to treatment, especially in low-income countries. The most recognized 

theory for the cause of depression is the monoamine hypothesis. This theory claims that major 

depressive disorder is triggered by a dysregulation of specific neurotransmitters in the human brain, 

like serotonin (5-HT), norepinephrine (NE) and dopamine (DA) (Delgado, 2000). Based on this 

theory, scientists developed the selective serotonin reuptake inhibitors (SSRIs) in the mid-1980s with 

fluoxetine being the first that was launched, serotonin-norepinephrine reuptake inhibitors (SNRIs), 

tricyclic antidepressants (TCAs) and more recently the serotonin modulators (Hillhouse & Porter, 

2015). 

 

 

1.1.1 Selective Serotonin Reuptake Inhibitors (SSRIs) 

 

The majority of prescribed antidepressant drugs are SSRIs. They operate by blocking the serotonin 

transporter in the presynaptic nerve, which raises serotonin levels in the synaptic space and therefore 

allows serotonergic transmission through activation of postsynaptic 5-HT receptors that are 

responsible for handling mood and anxiety (Chu & Wadhwa, 2023). Common prescribed SSRIs 

include fluvoxamine, sertraline, citalopram, paroxetine, and fluoxetine (MedlinePlus, 2023). Due to 

their high selectivity to SERT, they tend to have less side effects than other classes of antidepressants. 

Based on Mayo Clinic, SSRIs potential side effects include upset stomach, headaches, dry mouth, 

anxiety, sexual dysfunctions and many more. 

https://pubmed.ncbi.nlm.nih.gov/?term=%22Hillhouse%20TM%22%5BAuthor%5D
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Image 1: Serotonin release from presynaptic nerve to synaptic cleft with SSRIs blockers in SERT transporter 

(Physiopedia, (n.d.)). 

 

 

1.1.2 Serotonin Norepinephrine Reuptake Inhibitors (SNRIs) 

 

SNRIs are newer drugs than SSRIs and as their name reveals, they implement a dual mechanism, by 

which they inhibit both the serotonin and the norepinephrine transporters. This leads to higher 

concentrations of serotonin and norepinephrine in the synaptic cleft (Randy A Sansone , Lori A 

Sansone, 2014). Usually, this class of drugs such as Venlafaxine and Milnacipran are prescribed as 

first class medication like SSRIs, since both have similar side effects, but fewer in number than other 

categories like TCAs or MAOs based on the Cleveland Clinic. 

 

 

Image 2: Serotonin and norepinephrine release from presynaptic nerve to synaptic cleft with SNRIs blockers 

in SERT and NET transporters (Neurotorium, (n.d.)). 

 

 

https://pubmed.ncbi.nlm.nih.gov/?term=%22Sansone%20RA%22%5BAuthor%5D
https://pubmed.ncbi.nlm.nih.gov/?term=%22Sansone%20LA%22%5BAuthor%5D
https://pubmed.ncbi.nlm.nih.gov/?term=%22Sansone%20LA%22%5BAuthor%5D
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1.1.3 Tricyclic Antidepressants (TCAs) 

 

Tricyclic antidepressants are the oldest class of antidepressants that were discovered in late 1950s and 

are still used nowadays as a secondary treatment of depression. Their name arises from the presence of 

three organic rings in their chemical core structure. Similarly to SNRIs, they inhibit the reuptake of 

both serotonin and norepinephrine by blocking their respective transporters. However, they are 

considered as alternative treatment for MDD, because it has been proved that they antagonize various 

receptors like histamine (H1), muscarinic (M1), and adrenergic (α1) receptors leading to severe side 

effects, such as sedation, constipation, orthostatic hypertension and cardiovascular conditions like 

arrhythmias (Moraczewski et.al, 2023). Common TCAs include imipramine and nortriptyline. 

Additionally, there is another class called tetracyclic antidepressants (TECAs) that operate in a similar 

manner, but they have 4 aromatic rings in their structure instead of three. 

 

 

Image 3: TCAs inhibition of SERT and NET and simultaneous antagonizing of adrenergic, muscarinic and 

histamine receptors (Neurotorium. (n.d.)). 

 

1.1.4 Monoamine Oxidase Inhibitors (MAOIs) 

 

Monoamine Oxidase Inhibitors (MAOIs) were introduced in 1950s for the treatment of depression and 

are still used today as a third option for handling depressive symptoms. Their mechanism is more 

complicated than other classes. Inside the mitochondria of the presynaptic neurons, there are two types 

of enzymes, monoamine oxidase enzymes MAO-A and MAO-B. Their role is the degradation of 

monoamines like serotonin, norepinephrine, dopamine and tyramine that do not enter the synaptic 

vesicles in order to reach a balanced concentration of these neurotransmitters in the nerve. MAOIs 

work by inhibiting these enzymes which therefore increase the levels of neurotransmitters availability 

for entering the vesicles and this leads to a higher concentration release in the synaptic cleft to regulate 
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the mood, attention and motivation of a patient. MAOIs can be reversible or irreversible. For instance, 

phenelzine and tranylcypromine inhibit both MAO-A and MAO-B irreversibly, while moclobemide is 

a reversible MAO-A inhibitor. Selegiline, for example, inhibits solely MAO-B which is useful for 

sufferers of Parkinson’s disease. As for the side effects, MAOIs have been accused of provoking 

diarrhea, constipation, drowsiness, insomnia. Howerer, there is a proven danger using these drugs, 

because in combination with other antidepressants like SSRIs, they are likely to cause serotonin 

syndrome which is a threatening condition for life. Last but not least, a strict dietary plan should be 

adjusted to patients when using MAOIs, because these drugs block the breakdown of tyramine from 

tyramine-rich foods like cheese and beer and as a result blood pressure elevates and this in rare cases 

leads to cerebral haemorrhage (Laban & Saadabadi, 2023). 

 

 

Image 4: Mechanism action of MAOIs inhibition of MAO-A and MAO-B enzymes (A. Reyes-Chaparro et al., 

2023). 

 

 

Drug Class Mechanism 

SSRIS BLOCK SERT AND HAVE FEW SIDE 

EFFECTS 

SNRIS BLOCK SERT AND NET TRANSPORTER 

WITH FEW TO MODERATE SIDE EFFECTS 

TCAS BLOCK SERT AND NET TRANSPORTER 

PLUS OTHER RECEPTORS WITH SEVERAL 

SIDE EFFECTS 

MAOIS INHIBIT MAO-A/B WITH SEVERE SIDE 
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EFFECTS AND DIETARY RESTRICTIONS 

Table 1: Summary of Antidepressants. 

 

1.1.5 Complementary theories of major depressive disorder 

 

Although all the treatment regimens were invented based on the monoamine theory of depression, 

scientists claim that it is a multifactorial condition for humans and many other theories try to shed 

light on “solving” the puzzle of what are the factors that are connected to depression. Supporting 

evidence for this is the delay onset for antidepressants to work, which ranges between 4-8 weeks based 

on Cleveland Clinic. In addition, only half of the patients taking first and second line medications 

show reduction of depressive symptoms, while only 30 percent manage complete recovery (Vedrines 

et al., 2022). Another possible cause of depression is correlated to synaptic dysfunction. Chronic stress 

and anxiety influence brain-derived neurotrophic factor (BDNF) which is a molecule that regulates 

synaptic plasticity in regions of the brain responsible for learning and memory processes (Miranda et 

al., 2019). With this way, there is a loss in dendritic spines that affect the neurons in regions related to 

mood disorders like prefrontal cortex and hippocampus (Duman , Aghajanian, 2012). An alternative 

theory that has been proposed as major cause for depression is the glutamatergic system, which is the 

main excitatory neurotransmitter system. This theory claims that exposure to stressful and anxious 

environments causes an imbalance in glutamate concentration in prefrontal and limbic regions of the 

brain leading to synaptic loss and maladaptive dendritic spines. NMDA (N-methyl-D-aspartate) and 

AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptors are the drug-targets with 

antidepressant effect that support this hypothesis (Sanacora et al., 2012). Other group of scientists 

consider that major depressive disorder is induced by chronic inflammation in the human body. 

Elevated levels of pro-inflammatory markers, such as Interleukin-6 (IL-6), Tumor Necrosis Factor 

TNF-α and C-Reactive Protein (CRP) play a substantial role in mood disorders by reducing BDNF and 

stimulating indoleamine 2,3-dioxygenase (IDO), which is an enzyme that removes tryptophan from 

the body and produces neurotoxic metabolites like quinolinic acid (Miller, Raison, 2016). Finally, 

changes in gut microbiota that occurs after chronic stress alter the neurotransmission. As a result, there 

is a destabilization of mood and overall cognitive behaviour. This neural signaling is motivated by the 

microbiota–gut–brain axis, which enables bidirectional communication between the central and 

the enteric nervous system (Hwei-Ee Tan, 2023). 

 

 

https://pubmed.ncbi.nlm.nih.gov/?term=%22Ouazana-Vedrines%20C%22%5BAuthor%5D
https://loop.frontiersin.org/people/771856
https://pubmed.ncbi.nlm.nih.gov/?term=%22Duman%20RS%22%5BAuthor%5D
https://pubmed.ncbi.nlm.nih.gov/?term=%22Aghajanian%20GK%22%5BAuthor%5D
https://pubmed.ncbi.nlm.nih.gov/?term=%22Miller%20AH%22%5BAuthor%5D
https://pubmed.ncbi.nlm.nih.gov/?term=%22Raison%20CL%22%5BAuthor%5D
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1.2 Central Nervous System and the Structure-Function of the Serotonin 

Transporter (SERT)  

 

The anatomy of the human nervous system is divided into two main parts, the Central Nervous System 

(CNS) and the Peripheral Nervous System (PNS). The autonomic nervous system which is a 

component of PNS seems to be highly correlated to emotional states as it regulates the involuntary 

physiological processes like emotions and arousal (Hall et al., 2023). Brain and spinal cord form the 

CNS by receiving and processing the signals from nerves and translate them into cognitive, motor and 

emotional outputs. The PNS consists of a network of nerves, which branch out of the spinal cord and 

transport the signals from brain and spinal cord to the organs and entire body (Cleveland Clinic, 2023). 

Over 100 billion neurons form the nervous system, which are the primary functional unit. Each neuron 

contains 3 parts: the cell body or soma, the dendrites and the axon. The cell body, inside of which 

nucleus exists, is vital for neuron’s life. Dendrites capture signals from surrounding neurons and pass 

them through cell body and axon to the adjacent nerve cell. The axon is protected from a fatty 

molecule called “myelin shealth” which regulates the speed and distance that the signal will travel at 

the same time (National Institute of Neurological Disorders and Stroke, 2018). 

 

 

 

Image 5: Structure of Νeuron (National Institute of Neurological Disorders and Stroke, 2023). 

 

Typically, a neuron has a potential of -70mV in resting state, which is called resting membrane 

potential. This means that the internal part of the cell has a negative electrical charge compared to the 

external. This electrical polarization is stabilized through controlled flow of Na+ and K+ in the 

membrane cell. When a neuron is stimulated by the adjacent neurons, hypopolarization begins. Above 

the threshold potential which ranges from -50 to -55 mV, depolarization starts and an action potential 

occurs that opens voltage-gated sodium channels and allows a large influx of sodium ions to enter the 

membrane (Vasković, 2023; Society for Neuroscience, 2018). 

https://loop.frontiersin.org/people/2100295
https://www.kenhub.com/en/library/physiology/voltage-gated-ion-channels
https://www.kenhub.com/en/team/jana-vaskovic
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In a serotonergic neuron this action potential will travel down the axon and as a result the voltage-gated 

calcium channels will open, allowing Ca²⁺ ions to enter. This influx of Ca²⁺ provokes fusion of 

presynaptic vesicles, that trigger the release of serotonin in the synaptic cleft and the adjacent neurons 

through their dendrites will receive this signal message. Depolarization stops when the inside of the cell 

becomes very positive reaching the known overshoot phase. After this point, sodium influx stops and 

voltage-gated potassium channels open leading to efflux of potassium. Cell membrane potential becomes 

again more negative in this repolarization step which purpose is to restore the resting membrane potential 

(Vasković, 2023; Society for Neuroscience, 2018). 

Apart from neurons, proteins also play a substantial role in neural function by mediating signaling and 

enzymatic activity. Proteins, primarily, consist of huge linear chains, called amino acids that fold into 

a specific three-dimensional structure that is vital for promoting their relevant biological activity. In 

addition, they possess a secondary structure, most common of which are the α-helices and the β-

sheets. Both are retained through hydrogen bonds. More specifically, in α-helices these bonds are 

formed every fourth amino acid, while in β-sheets the known “pleats” are formed on the backbone of 

the polypeptide chain. The unique three-dimensional shape of each protein constitutes the tertiary 

structure. Finally, there is the quaternary structure which is described as the arrangement of multiple 

polypeptide subunits in order to interact with each other. All structural levels of a protein are depicted 

in Image 6 below and they determine how proteins interact with other molecules, like ligands. Every 

protein has its own unique configuration and amino acids chains and when it is exposed in specific 

temperatures, pressure, pH or other chemical reactions, it denatures, meaning that its shape alters. This 

modification may be irreversible and therefore ceases to perform its biological function (Lodish et al., 

2016 ; courses.lumenlearning.com, (n.d.)). 

 

 

https://www.kenhub.com/en/team/jana-vaskovic
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Image 6: Structure of Proteins (courses.lumenlearning.com, (n.d.). 
 

A key pharmacological target for many antidepressants is the serotonin transporter (SERT) which 

consists of 12 transmembrane a-helices (TM1-TM12). Their role is to separate the intracellular from 

the extracellular environment by composing a binding cavity. SERT is responsible for the reuptake of 

serotonin from the synaptic cleft into the presynaptic neuron. Upon ion and substrate binding, some 

conformational changes occur which enable the transport of ions like Na+ and CL- and serotonin across 

the membrane. Critical regions for the inhibition of SSRIs are TM1, TM3, TM6 and TM8 which 

compose the central binding site of the protein. However, scientists have discovered that some ligands, 

such as escitalopram bind also on other secondary binding sites called allosteric sites, which affect the 

binding dynamics in the central site and stabilize the ligand-receptor complex (Coleman et al., 2016, 

Plenge et al., 2020).  

 

 

Image 7: Structure of the Human Serotonin Transporter (SERT) (Longone, P., 2011). 
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1.3 Importance and Tools for Ligand-Protein Binding Affinity Prediction 

 

The treatment of major depressive disorder remains a challenging issue, especially from the moment 

that a specific cause that triggers it has not been found yet. As usual for several diseases, most 

experiments rely on the prediction of ligand-protein interactions. The main metric is called inhibitory 

constant (Ki) or binding affinity. It measures the strength of the binding interaction between a protein 

like SERT and a potential drug, inhibitor like SSRIs (Malvern Panalytical). The inhibitory constant 

(Ki) is a type of equilibrium dissociation constant (Kd) and represents the concentration at which the 

inhibitor-ligand occupies 50% of the receptor sites when no competing ligand is present. The value of 

Ki is inversely proportional to the binding strength of the ligand relative to its target (Canadian Society 

of Pharmacology and Therapeutics, 2024). Binding affinity is determined by the intermolecular 

interactions like hydrogen bonds, hydrophobic bonds, van der Waals bonds and other types of bonds 

like electrostatic. It reveals different aspects of the structural and functional part of a protein shedding 

light on the drug discovery processes for the design of new therapies. However, this study does not 

aim to build a regression model that shows output values of binding affinity, instead it classifies 

ligands based on the affinity with SERT. Traditionally, binding affinity is measured in a laboratory 

with several techniques that are mentioned in Chapter 2.1, but it is very time-consuming and has low 

throughput. As a result, there is an urgent need for the development of novel computational tools that 

calculate binding affinity, speeding up drug discovery processes at lower costs (Jarmoskaite et al., 

2020). 

 

 

 

1.4 Thesis Objectives and Structure 

 

The main purpose of this thesis was to develop a supervised machine learning model that classifies 

ligands based on their binding strength to SERT protein. The categorization labels were strong 

binders, moderate binders and non-binders and were based on experimentally Ki values from scientific 

databases such as ChEMBL, BindingDB, DrugBank and PDSP Ki Database. The model integrated 

molecular features from known antidepressants (such as SSRIs, SNRIs, TCAs, TeCAs and serotonin 

modulators) alongside non-binding compounds that were extracted from the molecular docking 

software “AutoDock Vina” in combination with the visualization software “Chimera”. Further 

https://pharmacologycanada.org/equilibrium-dissociation-constant-Kd
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interaction analysis was conducted using the software BIOVIA Discovery Studio to obtain a variety of 

valuable features. By using known classification machine learning algorithms, the following study 

strived to identify patterns among molecular interactions that affect binding affinity. Last but not 

least, this work aimed to determine the most predictive and critical SERT residues that differentiate 

strong binders from moderate and non-binders using explainable AI tools. The combination of 

docking features and machine learning methods has become a standard practice in the drug 

development research due to the mechanistic insights that are provided by docking and 

generalization by artificial intelligence. 

The structure of this thesis is as follows: 

Chapter 2: Literature Review 

Description of approaches that have been applied for ligand binding classification tasks, including 

molecular docking and machine learning techniques involving SERT protein. 

Chapter 3: Methodology 

Configuration and labeling of the dataset, ligands and protein selection, preprocessing steps in 

docking software and extraction of interaction analysis features. Furthermore, the preprocessing 

steps of inputs in the model are mentioned, features are correlated, classification algorithms are 

described and finally model training, evaluation of parameters and explainable AI tools are 

analyzed. 

Chapter 4: Results and Analysis 

Perform initially all docking binding affinity scores with RMSD values. Additionally, the evaluation 

metrics of the algorithms used are performed. Lastly, the most predictive features that drive decision 

of algorithms towards a specific class are identified, while also common patterns for distinguishing 

the multi-classification model. 

Chapter 5: Conclusion and Discussion 

Interpretation of results based on biological evidence from literature review. Enumeration of 

assumptions and limitations of the dataset, such as sample size or docking assumptions. Key 

contributions are being pointed out with further suggestions and enhancements for future research in 

the field of antidepressant classification tasks with the aid of docking and machine learning and 

potentially facilitating drug discovery process. 

 

 

 

1.5 Structure of Dataset 

 

The dataset in this study consists of 74 ligands based on known inhibition constants (Ki) from widely 

used databases such as DrugBank, ChEMBL, BindingDB and PDSP Ki Database. Many of these 
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ligands are approved antidepressants, under investigation molecules and several known drugs that do 

not bind to SERT protein. More specifically the categories are: 

I. Selective Serotonin Reuptake Inhibitors (SSRIs): They usually have high binding affinity, 

therefore low Ki values and are labelled as strong binders 

II. Serotonin-Norepinephrine Reuptake Inhibitors (SNRIs): Moderate binding affinity with higher 

Ki values than strong SERT binders and are labelled as moderate binders 

III. Tricyclic and Tetracyclic Antidepressants (TCAs and TeCAs): Different class of 

antidepressants with moderate Ki values and labelled as moderate binders 

IV. Serotonin Modulators and Other Ligands: These drugs do not act the same way as SSRIs, they 

work as partial agonists or allosteric modulators, and their Ki values vary. 

V. Weak binders: Known drugs that have minimal to zero interaction with SERT protein and 

therefore their Ki values is considered zero. 

 

Chapter 2: Literature Review 
 

 

2.1 Laboratory and Computational Methods for Binding Affinity Prediction 

 

There are several ways to calculate binding affinity for a specific ligand-protein complex either in a 

laboratory or in a computer-based method. Enzyme-linked immunosorbent assay (ELISA) is a labelled 

method where a reagent detects an immobilized ligand bounded to the protein and this facilitates the 

screening process. On the other hand, there are also some label-free methods, such as isothermal titration 

calorimetry (ITC) that estimates binding affinity through differences in heat, while surface plasmon 

resonance (SPR) estimates affinity through changes in refractive index. In addition, biolayer 

interferometry (BLI) calculates light reflection from a biosensor and grating-coupled interferometry (GCI) 

which operates with phase-shift signals that emerge during the interaction. All these are some of the most 

common lab-based techniques for predicting binding affinity (Malvern Panalytical). However, these lab 

techniques share some disadvantages. For example, ELISA has low specificity for the target molecule, 

it is highly expensive and time-consuming (Merkel Technologies Ltd). ITC offers unreliable results 

when the changes in heat are small because the final signal is weak. Also, like ELISA, it is expensive 

since multiple samples for each ligand should be tested (Palacios-Ortega et al., 2021). The SPR has 

low throughput as a negative characteristic, while BLI shows poor reproducibility (Nicoya 

Biotechnology Company). Last but not least, the GCI system requires specialization and right training 

for handling, it is easily affected by environmental factors like vibrations and it is expensive (Hajnalka 

Jankovics et al., 2020). 

https://www.nature.com/articles/s41598-020-79226-w#auth-Hajnalka-Jankovics-Aff1
https://www.nature.com/articles/s41598-020-79226-w#auth-Hajnalka-Jankovics-Aff1
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To overcome these limitations, scientists have been focusing on computational methods for predicting 

binding affinity of ligands recently. A quick and low-cost method is Molecular Docking, in which 

molecules are tested in various conformations inside the binding pocket of a targeted protein. Another 

powerful tool is Molecular Dynamics Simulation (MD) that requires more time and high 

computational units that cannot be supported by conventional computers. MD uses Newtonian physics 

to simulate how atoms of a specific ligand and protein respond to predefined force fields resulting in 

their movement and interactions. With this way, researchers study the molecular behaviour under 

approximate physiological conditions in femtosecond or picosecond scale (Jafar Aghajani et al., 

2022). Another widely used tool is the Quantitative Structure–Activity Relationship model which is a 

mathematical model that correlates ligands binding affinities to chemical descriptors that simulate a 

realistic environment for the binding pocket of the ligand without prior knowledge of the exact 

geometry of the receptor, facilitating the whole drug discovery process (Shuxing Zhang et al., 2006). 

A more straightforward tool, but still very precise, are the free energy calculation formulas, Free 

Energy Perturbation (FEP) and Thermodynamic Integration (TI). These formulas utilize 

thermodynamic properties of molecules to measure binding energies. However, they demand high 

computational costs, since their function is based on comparing two similar ligands through MD 

simulations by gradually converting one ligand to the other. To overcome this drawback, MM-PBSA 

(Molecular Mechanics Poisson–Boltzmann Surface Area) has been discovered, which estimates 

binding energy from snapshots of molecular dynamics simulations without requiring each time to test 

a pair of ligands (Brandsdal et al., 2003). Recent advances, however, focus more on developing 

accurate machine-deep learning models for the prediction of ligand binding affinity. Unlike classical 

methods, these models do not simulate molecular interactions and structure, rather they include 

different types of machine learning algorithms and basic neural network architectures, such as 

convolutional neural networks (CNNs) and graph neural networks (GNNs). Models are trained on 

large datasets like PDBbind or BindingDB to predict by using several key metrics, such as root-mean-

square error (RMSE) or area under the curve (AUC), the binding affinity for a specific ligand-protein 

complex. The problem that emerges, though, is the integrity and validity of each dataset. Since the 

models rely on large datasets, evaluation and analysis should be carried out by specialists (Huiwen 

Wang, 2024). 

 

 

2.2 Molecular Docking and Ligand Preparation 

 
Molecular docking is a computer-based technique to fit a potential ligand into the binding site of a 

targeted protein. With the aid of integrated searching algorithms, the optimal conformations of a 

ligand are found and ranked. There are several software programs available for applying molecular 

https://pubmed.ncbi.nlm.nih.gov/?term=%22Aghajani%20J%22%5BAuthor%5D
https://pubmed.ncbi.nlm.nih.gov/?term=%22Zhang%20S%22%5BAuthor%5D
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docking, such as AutodockVina, AutoDock, DockThor, GOLD, FlexX and Molegro Virtual Docker. 

Their differences lie on several aspects as the following table reveals (Fan et al., 2019), such as 

searching algorithms, scoring functions, flexibility of protein-ligand complex, speed and accuracy. 

 

 

Image 8: Characteristics of common-used molecular docking software tools (Fan, J., Fu, A., & Zhang, L., 

2019). 

 

 

The general workflow of molecular docking is illustrated on the following outline (Image 9). Based on 

this, the files of the targeted protein and ligands should be downloaded from a database, such as 

Protein Data Bank and PubChem respectively. These files have been obtained from experimental 

methods and contain the 3D atomic coordinates of a specific molecule providing information about 

their structure. Then, protonation states, charges and hydrogen atoms should be applied correctly to 

both structures to reflect a realistic environment. After this, the binding site of the protein is 

determined either from known biological sources or from specific software programs. Finally, search 

algorithms and score functions operate to extract the best poses for each ligand conformation (Torres 

et al., 2019). 
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Image 9: Workflow of Molecular Docking Process (Torres, P. H. M. et al., 2019). 

 

 
Based on the ligand-receptor flexibility, docking is distinctively separated into 3 major categories: 

Rigid docking, where both receptor and ligand are rigid and the whole simulation time is much faster, 

but it does not reflect the reality. To balance this drawback, there is the option of partial flexibility of 

ligand and rigid receptor which is obviously more realistic. On the other hand, exclusively flexible 

ligand and receptor can be used which requires high computational time cost, although it simulates the 

ideal condition in a living organism, such as human (Mohanty & Mohanty, 2023). 

 

 

 
Image 10: Types of Docking Process (Mohanty, M., & Mohanty, P. S., 2023). 
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There are 2 ways to perform the docking simulation. The first one is called site-specific docking, 

where the active site of the targeted protein is known from literature or other biological evidence and 

the user can adjust the grid box accordingly. The other option is called “blind docking” and it is useful 

when binding site is unknown or if possible allosteric sites exist. It does extensive research in the 

whole protein to find the most representative binding pocket of a ligand and it requires higher 

computational cost and time than the site-specific method (Mohanty & Mohanty, 2023). 

As for the docking model, there are 3 different cases which are shown in the figure below (Image 11). 

First, there is the lock-and-key model where both ligand and receptor are rigid and have 

complementary shapes for interaction. Secondly, in the induced-fit model, a conformational change in 

shape undergoes in the receptor after ligand binding, while in the last model there are more variations 

in protein-shape and the ligand binds selectively to one of these (Mohanty & Mohanty, 2023). 

 

 

Image 11: Docking Models (Mohanty, M., & Mohanty, P. S., 2023). 

 
 

 

 

 

2.2.1 AutoDock Vina 

 
A widely used and compatible tool for molecular docking is the AutoDock Vina which was developed 

at The Scripps Research Institute in San Diego California, and it belongs to the AutoDock suite 
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platform. This tool is applied to the present study. It surpasses in speed and ease upon handling in 

comparison to other software programs by utilizing multiple central processing units. At the same time 

it achieves higher accuracy than the previous AutoDock4 program (Eberhardt et al., 2021). Since 

Autodock Vina is a newer and more refined version than other docking tools, it does not require for 

the user to regulate many parameters before implementing the docking simulation and it also enables 

multiple docking simultaneously. Vina employs a Broyden–Fletcher–Goldfarb–Shanno (BFGS) 

algorithm for local optimization combined with a stochastic global search using Monte Carlo sampling 

to create an iterated local search global optimizer. This iteration is achieved through random 

perturbations and local energy minimization steps, causing extensive search in the conformational 

space to find the optimal poses of a tested ligand. A quasi-Newton optimization algorithm, the BFGS 

method quickly converges on a local energy minimum by approximating the second derivative of the 

scoring function, therefore improving docking accuracy (Trott & Olson, 2010). 

The output that emerges from molecular docking software programs is the binding affinity of a ligand 

and some RMSD values. These outputs arise from the prediction of some scoring functions which can 

be classified broadly into four categories, force field-based, empirical, knowledge-based, and machine 

learning-based scoring functions. Force field-based functions apply classical laws of physics based on 

energy terms from protein–ligand complex non-bonded interactions and internal ligand energy, taking 

into account the solvent environment of the docking. The solvent environment is regulated through 

continuum models like Poisson–Boltzmann (PB) or Generalized Born (GB). Examples of softwares 

that integrate force field-based functions are DOCK and DockThor. Empirical functions work through 

regression analysis and match energy terms with experimental known data. Knowledge-based 

functions conduct statistical analysis of the interacting atoms of the ligand-protein complex and 

convert it into the preferred geometries (Guedes et al., 2018). Machine learning-based scoring 

functions use known algorithms or neural networks that are trained on large datasets with known 

ligand affinities for a specific protein. They do not focus on physics, but they try to “learn” some 

common patterns from the dataset in order generalize satisfactorily in new unseen samples 

(Ballester & Mitchell, 2010). 

 

AutoDock Vina utilizes an empirical formula that is the following: 

ΔG =  -0.0356 * Gauss1 + (−0.00516) * Gauss2 + 0.840 * Repulsion + (−0.0351) * Hydrophobic + 

(−0.587) * Hydrogen bonding +0.0585 * N_rot, 

Where: 

 Gauss1 and Gauss2: Gaussian steric interaction terms: Both terms reflect the electrostatic 

Van der Waals forces between a ligand and a targeted protein (Trott & Olson, 2010). 

https://pubmed.ncbi.nlm.nih.gov/?term=%22Eberhardt%20J%22%5BAuthor%5D
https://loop.frontiersin.org/people/582127
https://pubmed.ncbi.nlm.nih.gov/?term=%22Ballester%20PJ%22%5BAuthor%5D
https://pubmed.ncbi.nlm.nih.gov/?term=%22Mitchell%20JBO%22%5BAuthor%5D
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 Repulsion: Steric clashes are penalized by this term, meaning that atoms that are close to 

others do not promote the occurrence of the interaction (Eberhardt et al., 2021). 

 Hydrophobic: Non-polar regions of a ligand and protein contribute also to the binding 

process (Eberhardt et al., 2021). 

 Hydrogen bonding: Hydrogen bonding between ligand and protein primarily affects the 

affinity, with electronegative atoms like oxygen or nitrogen have a higher probability of 

accepting a hydrogen atom (Trott & Olson, 2010). 

 N_rot: Number of rotatable bonds. This term penalizes the system because the partial ligand 

flexibility decreases the entropy upon binding (Eberhardt et al., 2021). 

This formula was derived from the PDBbind dataset, and it shows the measure of strength in kcal/mol 

of a ligand binding to a protein and which type of bonds contribute more to the binding process with 

more negative values indicating stronger affinity (Trott & Olson, 2010). On the other hand, RMSD 

(Root Mean Square Deviation) values indicate the conformational variations of poses that occur 

because of the movement of heavy atoms only, based on the best-ranked pose with the lowest binding 

affinity. Two values are obtained, the upper bound RMSD (rmsd/ub) and the lower bound RMSD 

(rmsd/lb). The former compares each atom of one pose to the exact same on another but ignores the 

symmetry factor in the molecule. The latter term aims to minimize deviation across poses by 

comparing each atom of one pose to the closest element type atom from another, leading to a more 

realistic result (Trott & Olson, 2010; AutoDock Vina Manual). Both of them give valuable insights 

into the resulting docking simulation which drive drug discovery processes in many cases. 

 

 

 

2.2.2 Chimera software 

 

Among the well-established molecular modelling and visualization software programs, is UCSF 

Chimera. It was developed by the University of California, San Francisco's Biocomputing, 

Visualization, and Informatics team. Due to its known advantages, such as the flexible settings and 

easy handling, it is widely used in the field of structural and computational biology, especially for the 

drug discovery process. Chimera supports a variety of formats like PDB, MOL2, SDF, and PDBQT 

files. Users can explore in detail the three-dimensional structure of a protein, ligand or a complex and 

recognize all types of interactions that occur during docking or just inspect the structures alone prior to 

any simulation. It is very useful for ligand and protein preparation, since specific tasks can be 

performed, for example addition of hydrogen atoms, assignment of charges, removal of unwanted 

atoms or chains and adjustment of force field parameters (Pettersen et al., 2004). 
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Chimera offers the ability to measure distances, torsions, angles, surface area and binding pockets of a 

receptor. It can be connected to docking engines, such as AutoDock or AutoDock Vina and visualize 

the docking results there. In addition, other software platforms like BIOVIA Discovery Studio support 

output files that emerge from AutoDock Vina in combination to Chimera, to extract two-dimensional 

maps that depict as graphs the molecular interactions and residues included in the docking simulation 

(Butt et al., 2020). A more advanced and newer version of USCF Chimera is ChimeraX which prevails 

in functional and modelling settings of the classic version, though USCF Chimera is used in this study. 

 

 

 

2.3 Machine Learning Applications in Ligand-Protein Affinity 

 

In recent years, the drug discovery community has focused on inventing machine learning techniques 

that overcome the difficulties one faces during traditional molecular docking and molecular simulation 

software platforms in order to predict binding affinity of a ligand. These computational tools require 

several assumptions during their application, they are highly time-consuming and computationally 

expensive. For this reason, machine learning models act as promising solution for approaching ligand 

binding either numerically or categorically. Machine learning models aim to “learn” specific patterns 

from a variety of molecular or interaction features in order to increase the generalization to real world 

scenarios with high validity, speed and less costly (Ballester & Mitchell, 2010). 

Machine learning methods can be separated into 2 types, traditional machine learning methods and 

deep learning techniques. In the former case, traditional algorithms, such as Random Forest, Logistic 

Regression, k-Nearest Neighbors and XGBoost are employed in a model. As for features, they usually 

consist of molecular descriptors, like molecular weight and polar surface area, molecular interaction 

details, such as hydrogen, hydrophobic bonds, angles etc. and some specific residue analysis of the 

binding site of the protein. Models are trained on approved and large datasets, for example BindingDB 

and ChEMBL and they can serve different purposes. Regression tasks involve the determination of a 

continuous numerical value which in such cases is the binding affinity of a ligand to a specific protein 

or receptor. On the other hand, there are the classification models, either binary or multiclassification, 

in order to categorize a number of ligands based on one or more features. Several evaluation metrics 

are used to evaluate results, such as root mean squared error (RMSE) and mean absolute error (MAE) 

for regression analysis, F1-score, accuracy, precision and recall for classification problems (Wang et 

al., 2024).  

A more sophisticated approach than the traditional machine learning models, are the deep learning 

algorithms. The advancement is due to the spatial component that they can integrate in training 

process. This means, that deep learning algorithms learn from raw molecular formats instead of 
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receiving inputs of molecular features extracted from other sources, such as Docking and Visualization 

Softwares. Convolutional neural networks (CNNs) can interpret and understand the three-dimensional 

coordinates of atoms included in the protein-ligand complex, while Graph Neural Networks (GNNs) 

utilize molecular graphs where atoms and bonds are represented as bonds and edges respectively 

(Torres et al., 2019). 

In the context of the following thesis, a supervised machine learning framework will be constructed to 

classify ligands based on serotonin transporter (SERT) inhibitors as strong, moderate and non-binders. 

Intrinsic molecular characteristics, interaction information and residue level contact analysis derived 

from the docking and visualization programs will serve as input to the machine learning model. 

 

 

2.4 Related Work on Ligand Binding Prediction and Machine Learning in 

SERT and Docking Studies 

 

Predicting ligand–protein binding interactions computationally has been a vital component of drug 

discovery in recent years. In the vast majority of studies, the serotonin transporter (SERT) has been the 

main focus of ligand screening in depression research and has been used for potential inhibitor or 

modulator identification. Machine learning (ML) integrated with molecular docking features show 

increased reliability and cost-effectiveness of experiments, decreased screening time and decode 

structure–activity relationships. In this section, relevant studies have informed the present thesis, in the 

context of docking, dataset structure and ML classification for predicting ligands binding to SERT 

protein transporter. 

In the study titled “Prediction of 5-hydroxytryptamine Transporter Inhibitor Based on Machine 

Learning”, researchers managed to apply a binary classification task related to SERT inhibitors and 

non-inhibitors. Samples were collected from ChEMBL and DrugBank databases and were separated 

based on the IC50 variable. IC50 is the concentration of the competitive antagonist required to reduce 

the activity/binding of an agonist to a specific enzyme, receptor or transporter by 50% (Canadian 

Society of Pharmacology and Therapeutics, 2024). Specifically, compounds with IC₅₀ < 500 nM were 

labelled as inhibitors, while those with IC₅₀ > 1000 nM were considered non-inhibitors. The dataset 

consists of 812 inhibitors and 400 non-inhibitors. For this reason SMOTE (Synthetic Minority Over-

sampling Technique) technique was applied to reduce the severe class imbalance. Final number of 

samples reached 1920 and a variety of features including circular, topological and physicochemical 

descriptors from RDKit tool were extracted. These features capture not only the atomic correlations 

but also the global structure of the complex. Conventional machine learning algorithms were applied 

such as Random Forest (RF), k-Nearest Neighbor (KNN), Support Vector Machines (SVM), Logistic 

regression (LR) and Voting ensemble Classifier (VOL_CLF). The results of this model prove that on 

https://pharmacologycanada.org/Competitive-antagonist
https://pharmacologycanada.org/Agonist
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internal tests precision in inhibitors of SERT ranged from 90.7% in Random Forest, to 93.3% in the 

VOL_CLF algorithm. Highest recall was achieved also with RF. In non-inhibitors highest precision 

was achieved with RF classifier and highest recall with VOL_CLF. On the external test set, RF again 

showed better performance in non-inhibitors with precision 95.7% and recall 73.3% respectively, 

while in SERT-inhibitors the results were not satisfactorily (Kong et al., 2019). 

Another research approach conducted by Sharma and Dang in 2022, was to compare the binding 

affinity and interactions of phytochemical compounds with SERT protein to the standard SSRIs, for 

possible antidepressant activity. For docking, AutoDock 4.2 software and the Lamarckian Genetic 

Algorithm (LGA) were used, while for visualization Discovery Studio Visualizer 2020 and PLIP. Ten 

natural compounds were downloaded from PubChem database and tested in parallel to the standard 

drug Paroxetine and the results are in the following table (Image 12): 

 

Image 12: Binding Energy and Amino acids residues involved in interactions with the Ligands and standard 

drug Paroxetine (Sharma, S., & Dang, S., 2022). 

 

 
As the above table depicts, although it is known that paroxetine strongly binds to SERT with binding 

affinity here -8.05 kcal/mol, Withaferin A outperformed in binding energy and shared 5 common 

amino acids residues in binding site interaction with paroxetine, indicating that it could be helpful in 

treating depressive symptoms. However, the rest molecules did not show any promising antidepressant 

effect based solely on binding energy (Sharma S. & Dang S., 2022). 

As for the study “Synthesis, molecular docking and binding studies of selective serotonin transporter 

inhibitors” another chemical class was tested, called arylpiperidine oxime ethers for possible SERT 

inhibition. Reference drugs were paroxetine and fluoxetine. Ten compounds were tested in different 

stereoisomeric forms, which emerge from the different spatial conformation their atoms have around 

the double bond. A combination of experiments was conducted to investigate structure–activity 

relationships (SAR). Radioligand binding assays in a laboratory environment with the radio-labelled 

[³H]-paroxetine and docking simulations in the computational tool GOLD were applied. The inhibition 

constant (Ki) for the ethers ranged from 10.28 nM to 396.5 nM for SERT, while it was 0.31 and 5.80 

for paroxetine and fluoxetine respectively. Through docking simulations, researchers came up to the 

conclusion that the primary binding site for known SSRIS is between transmembrane regions TM1, 
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TM3, TM6, and TM8 of SERT protein. Key residues in these regions are aspartame 98, which forms 

electrostatic bonds with the amine group of paroxetine, threonine 439 that forms hydrogen bonds and 

finally tyrosine 95, Phenylalanine 341, and Asparagine 177 that enable hydrophobic interactions. All 

these residues are in agreement with what literature mentions about critical residues for SERT 

inhibition (Nencetti et al., 2011). 

In their general review, Crampon et al. (2022) try to overcome the limitations of traditional molecular 

docking techniques with integrated machine learning and deep learning pipelines. These disadvantages 

lie on the fact that docking requires high number of computational units while at the same time scoring 

functions and accuracy remain a controversial issue. A machine learning model approach is proposed 

called “SIEVE-Score” which encodes specific residues that enable protein-ligand binding by using 

variables related to individual energy terms, such as Van der Waals interactions, electrostatic and 

hydrogen bonding. The machine learning model is then trained on these input features in order to 

define the structure of the complex and the pattern of the interactions that occur locally. In addition, it 

is underlined, that for better and more valid results, explainable artificial intelligence algorithms can 

be implemented, like Random Forests or Decision Trees feature importance tools. These tools allow 

researchers to link specific residues interactions with known physical quantities, for example 

molecular weight or polar surface area. In conclusion, this combination of structurally and biologically 

meaningful features increase the generalizability of the models with more reliable and quicker results 

than conventional docking, making it a useful tool for the drug discovery community (Crampon et al., 

2022). 

An informative research paper that analyze thoroughly the key residues that are involved in SERT 

ligand binding has been conducted by Andersen et al in 2009. Research team tested the known SSRI 

drug “escitalopram” with the current brand names “Cipralex” and “Lexapro”. It is the S-enantiomer of 

racemic citalopram which is more potent and selective than R-citalopram. To explore the binding site 

of this known SSRI, scientists combined mutational mapping and modelling through radioligand 

binding assays and docking simulations. Sixty four mutations were applied to SERT in order to define 

the most critical residues that are highly connected with inhibition action. The critical region was 

between transmembrane regions TM1, TM3, TM6 and TM8 as the following image shows. 

 

 

Image 13: Critical Binding sites of SERT inhibition (Andersen, J. et al, 2010). 

https://go.drugbank.com/drugs/DB00215
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As several research papers reveal, there are many residues that affect SERT binding. However in this 

study, the most critical seemed to be TYR95, ILE172, PHE341, SER438, ASP98 and ASN177 which 

altered the inhibition constant 10 to 400-fold meaning much weaker inhibition. First 3 residues were 

involved in hydrophobic bonds, SER438 in polar, ASP98 in electrostatic interactions and ASN177 in 

hydrogen bonding (Andersen et al., 2010). 

One of the most recently published research papers is titled “Predicting Selective Serotonin Re-Uptake 

Inhibitors Potency: Machine Learning and Molecular Docking Approach” and was conducted by 

Adejoro and Adewara in 2025. The goal was to predict the potency of 2616 ligands for SERT protein. 

They used a cheminformatic tool named “PaDEL-Descriptor” in order to extract 12 molecular 

fingerprints, each of which gives a different structural and molecular information. For example 

“MACCS” is a binary vector that shows the presence or absence of some specific chemical groups, 

such as aromatic rings. In addition, “Estate” descriptors inform researchers about the electronic status 

and the polarity of the protein-ligand complex, while “Klekotha–Roth” fingerprint is a high-

dimensional vector that acts as “MACCS”, but it integrates a large chemical library with a huge 

number of subgroups to search for. Ten ensemble machine learning algorithms were trained and the 

best results were obtained with Extra Trees Regressor in combination with the Klekota–Roth 

fingerprint. Coefficient of determination (R²) was calculated 0.92 and root mean square error (RMSE) 

0.01. The former proves that the model can effectively explain the variance of inhibition constant 

results, while the latter shows that predicted values of Ki do not differ significantly from real values. 

Both metrics increase the generalizability of the model and research in general. The fifty molecules 

with the lowest Ki value were then selected for docking studies and interaction paths with SERT 

protein by using AutoDock Vina and PyRx software platforms. Several compounds performed better 

than known SSRIs in the binding affinity term. TYR95, ILE172, and SER438 were the critical 

residues that facilitate SERT binding as it was indicated by the interaction analysis. These residues are 

located in the S1 domain of the binding pocket and the first 2 participate in hydrophobic interactions, 

while SER438 in hydrogen bonding (Adejoro & Adewara, 2025). 

 

 

Chapter 3: Methodology 
 

 
 

3.1 Overview of the Workflow 
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The present study proposes a hybrid computational approach that integrates molecular docking 

simulations, deep interaction analysis and machine learning model in order to classify ligands based 

on the affinity they have with SERT protein. First step was to obtain the structure of SERT from 

RCSB protein Data Bank (PDB ID: 5I6X) and prepare it effectively for docking in UCSF Chimera 

software. Similar procedure was applied to the 74 ligands that comprised the dataset and then they 

were docked to the protein with the aid of AutoDock Vina. Chimera enabled visualization of the top 

10 ranked poses, while through a custom script in Python the best five were selected taking into 

account both binding affinity and RMSD values. Structural analysis was then conducted through 

BIOVIA Discovery Studio to extract a variety of meaningful features related to interactions, residues 

and geometrical details. A comprehensive dataset was constructed consisting of hundreds of features, 

while for samples the top 5 poses for each ligand were aggregated by the median value into one single 

vector, resulting in 74 ligands. Categorization was made into strong, moderate and non-binders with 

SERT based on experimentally validated Ki values from established databases such as ChEMBL, 

PDSP Ki Database, DrugBank and BindingDB. A supervised machine learning model pipeline was 

built and classical algorithms were trained and evaluated on these features. Finally, explainable AI 

techniques were applied to capture the most informative and predictive features for the decision of 

models. With all this pipeline, virtual screening process for the discovery of antidepressant drugs can 

be facilitated. However enhancements and additions should be implemented in order to be considered 

a scientifically reliable approach. 

 

 

3.2 Ligand and Protein Selection and Preparation 

 

3.2.1 Protein Preparation 

 
The target protein used in this study was retrieved from RCSB Protein Data Bank and the 

identification number is 5I6X. 
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Image 14: 5I6X structure in Chimera. 

 

The image above, which shows paroxetine bound to the central site of the protein, was obtained 

through X-ray crystallography and has 3.14 Å resolution. 5I6X structure includes apart from the main 

chain A (blue colour in image 14), which is the human serotonin receptor protein, chain B (green 

colour) and chain C (red colour) which are heavy and light chains respectively of the 8B6 monoclonal 

antibody derived from “Mus musculus”. They were placed only for crystallization purpose and that 

was to stabilize SERT protein. In addition, chain A is surrounded by several ligands. Sodium (Na+), 

chloride ions (Cl-) and water molecules (H2O) enable the proper functioning of the protein. Cholesterol 

(CLR) on the other side might be useful for stabilizing the membrane protein environment, while 

Dodecyl-beta-D-maltoside (LMT) is a detergent molecule. Both seem not to contribute to the binding 

process of a ligand in SERT. 2-acetamido-2-deoxy-beta-D-glucopyranose (NAG) is observed only in 

glycosylation sites far from the binding pocket. Paroxetine is mentioned as 8PR and it is the reference 

ligand in the whole structure. The actual protein sequence of human SERT is depicted in image 15 

which was obtained from UniProt database (ID: P31645). It consists of 630 amino acids and its 

molecular weight is 70.325 Daltons. The protein sequence that was used in the present study is in 

image 16. 

 

 

Image 15: Protein Sequence of human SERT (UniProt database, ID: P31645). 
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Image 16: Protein sequence of human SERT structure 5I6X from RCSB. 

 
 

First of all, SERT protein transporter (5I6X) was imported in Swiss-Pdb Viewer (DeepView) software 

for a deepened inspection of the structure. It is a widely used computational tool for identifying and 

repairing missing atoms and residues of a given protein. Mutations can also be recognized and 

engineered for further simulation purposes. As the following table reveals (Table 2), there were 

several missing atoms in different residues of SERT structure. As a result, Swiss-Pdb Viewer was used 

in order to ensure the accurate replacement of missing parts and artifacts of the protein, leading to a 

more realistic environment in the docking process.  

 

 

ID RESIDUE CHAIN RESIDUE 

NUMBER 

MISSING 

ATOMS 

1 GLN A 76 CG, CD, OE1, 

NE2 

2 ARG A 79 CG, CD, NE, CZ, 

NH1, NH2 

3 TRP A 82 CG, CD1, CD2, 

NE1, CE2, CE3, 

CZ2 

4 TRP A 82 CZ3, CH2 

5 ASN A 145 CG, OD1, ND2 

6 LYS A 201 CG, CD, CE, NZ 

7 GLU A 215 CG, CD, OE1, 

OE2 

8 LYS A 275 CG, CD, CE, NZ 

9 GLU A 463 CG, CD, OE1, 

OE2 

10 ARG A 464 CG, CD, NE, CZ, 

NH1, NH2 

11 GLU A 494 CG, CD, OE1, 

OE2 

12 GLN A 562 CG, CD, OE1, 

NE2 

13 LEU A 597 CG, CD1, CD2 



35 

 

14 ILE A 598 CG1, CG2, CD1 

15 ILE A 599 CG1, CG2, CD1 

16 THR A 600 OG1, CG2 

17 THR A 603 OG1, CG2 

18 PHE A 604 CG, CD1, CD2, 

CE1, CE2, CZ 

19 LYS A 605 CG, CD, CE, NZ 

20 GLU A 606 CG, CD, OE1, 

OE2 

21 ARG A 607 CG, CD, NE, CZ, 

NH1, NH2 

22 ILE A 608 CG1, CG2, CD1 

23 ILE A 609 CG1, CG2, CD1 

24 LYS A 610 CG, CD, CE, NZ 

25 SER A 611 OG 

26 ILE A 612 CG1, CG2, CD1 

27 THR A 613 OG1, CG2 

28 THR A 616 OG1, CG2 

29 GLU B 20 CG, CD, OE1, 

OE2 

30 ASN C 232 CG, OD1, ND2 
 

Table 2: Missing atoms of residues in 5I6X structure from RCSB. 

 

After these modifications, the structure was uploaded into UCSF Chimera for further preparation. 

Chains B and C were deleted, as they did not participate in ligand binding. As for the co-crystallized 

ligands, they were evaluated in order to be retained or removed based on biological relevance. 

Dodecyl-β-D-maltoside (LMT) and N-Acetyl-D-glucosamine (NAG) were deleted since they did not 

fall into the binding pocket of SERT protein. Water molecules, sodium and chloride ions were 

maintained not only because they promote the function of the transporter, but also are located near the 

binding site and are the target molecules for many ligands. Cholesterol (CLR) was also kept since it is 

a valuable molecule for membrane stabilization. Finally, paroxetine was not removed at this stage. 

Following this cleanup, next crucial step was to replace the mutations that existed in structure. From 

the validation report of 5I6X in RCSB Protein Data Bank it was obvious that 4 mutations have been 

engineered in chain A (Image 17). 
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Image 17: Discrepancies of modelled and reference sequence (validation report of 5I6X, RCSB Protein Data 

Bank). 

 

 
By the option represented in image 18 in Chimera, alanine 291 was selected and replaced with the 

actual amino acid isoleucine. This was achieved through the rotamer selection library and more 

specifically the Dunbrack 2010 library which provides statistical data for possible side chains 

conformations based on probability scores. For example in case of replacement of alanine 291 with 

isoleucine (Image 18), the first conformation was applied since it had approximately 77% probability 

of occurrence. Chi 1 and Chi 2 columns were the torsion angles of side chains around their bonds, 

reflecting the final structure of the replaced region. Same procedure was followed for the rest 3 

mutations. Serine 439 was replaced by threonine, while alanine 554 and 580 by 2 cysteine amino 

acids.   

 

 
Image 18: Rotamer library for handling mutations. 
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Image 19: Side-chain rotamers probabilities. 

 

 
After rotamer replacement, geometric clash analysis was performed. By the Find Clashes/Contacts 

option in Chimera, it was manageable to identify potential steric hindrances to the whole structure and 

minimize these steric effects for a more realistic protein environment. Initially, unprocessed 5I6X 

complex had 12.24 clashscore and was calculated from MolProbity web-based tool. This metric 

reveals the number of clashes per 1000 atoms. Clashes were derived from overlaps or unrealistic van 

der Waals interactions and were visualized in Chimera for further optimization. 

The minimization of structure was achieved through two major steps. Firstly, local minimization was 

performed with 200 steepest descent steps to the four mutated amino acids from rotamer library. In 

addition, several steric clashes, especially in critical regions of the protein that are shown from PDB 

files or MolProbity were alleviated. Raw crystal structure, as previously mentioned, had 12.24 

clashscore, while after the usage of Swiss-Pdb Viewer the number increased to 20.52 possibly due to 

the addition of missing atoms and reconstructed chains. To compensate this high value, a global 

minimization step to the whole protein was applied. Conjugate gradient steps were set at 10 in order 

for the system to converge faster to a local minimum. With this way, high strains and clashes in 

structure were reduced. For this reason, the clashscore of the final structure after local and global 

minimization steps was calculated 3.3 in MolProbity, increasing the validity of results and the docking 

simulations. 

Next step crucial for docking was the Dock Prep tool from structure editing option in Chimera (Image 

20). Solvent and non-complexed ions options were deactivated, because water and ions of sodium 

(Na⁺) and chloride (Cl⁻) were present in the structure and critical for ligand binding and functionality 

of protein. Incomplete side chains were replaced from Dunbrack rotamer library. Another important 

step for docking and scoring functions was the addition of hydrogen atoms at physiological pH which 

were not represented in X-ray PDB structure. Last but not least, partial charges were assigned by using 

the Gasteiger–Marsili method. This is a fast, heuristic and iterative algorithm that calculates charges 

based on the electronegativity and polarizability of the atoms participating in bonds, while it also 
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accounts for the role and influence of the adjacent atoms whether they are donors or acceptors of 

electrons (Gasteiger & Marsili, 1980). 

 

Image 20: Dock Preparation in Chimera. 

 
 

The resulting structure that included the above steps, namely deletion of unwanted chains and ligands, 

handling of clashes, minimization of protein and docking preparation, was the following (Image 21). 

Blue colour is Na+, green is Cl- and yellow is the bound paroxetine.  
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Image 21: Final SERT structure for docking. 

 

3.2.2 Ligand Selection 

 
The selection of the 46 ligands for docking followed the specific criteria below: 

 

1. Similar assay type: Since the categorization of the dataset was based on inhibition constants, 

the assays from which Ki values were obtained must be comparable. For this reason, only 

radioligand binding assays were included that reflect directly ligand binding instead of uptake 

inhibitions that show the functionality of the protein. 

2. Validated radioligands: Radioligand that were approved for use were known SERT selective 

compounds, such as [³H] Paroxetine, [³H] Citalopram and [³H] Imipramine. 

3. The experiments must involve only human SERT protein, so animal based experiments were 

excluded. 

4. Ki values were obtained from validated databases, for example ChEMBL, PubChem, PDSP 

Ki Database from NIMH Psychoactive Drug Screening Program and DrugBank. 

5. The present study focused solely on Ki values. This means that studies which calculated other 

similar variables like half-maximal inhibitory concentration (IC50) or Kd were excluded. 

 

The dataset was divided into 2 parts. First part includes 21 compounds without any brand or generic 

name in literature. They may be under investigation for possible antidepressant activity or they may be 

tested in structure-activity relationship (SAR) studies, where different derivatives of the same initial 
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ligand are examined. The second part includes 28 ligands with known antidepressant action in human 

SERT protein, such as SSRI’s, SNRI’s, TCA’s, TeCA’s and other serotonin modulators. 

As for the 21 compounds, they were retrieved from 2 literature sources. In first study several indole 

cyclopropylmethylamines analogues were examined as potential selective serotonin reuptake 

inhibitors. Although the authors mention that they applied radioligand displacement assays, the exact 

radioligand is not stated. However, it is mentioned that binding affinities were determined based on 

literature methods from other research papers, where [³H]-citalopram was used (Taber et al., 2005), 

(Schmitz et al., 2005). The experiments were conducted in vitro using human SERT protein (Mattson 

et al., 2005). 

On the other hand, the other study analyzed new compounds of piperazine and diazepane amides with 

simultaneous serotonin reuptake inhibition and histamine H3 receptor antagonism. As described in 

reference 13 of the study, researchers used radioligand binding assays with [3H]citalopram to 

determine binding affinities of tested ligands (Barbier et al., 2007). Similar to previous study, 

experiments were conducted in vitro by using hSERT (Ly et al., 2008). 

In conclusion both studies, although they did not clearly mention the exact steps for their experiments, 

they met the above criteria to a great extent. For this reason, their findings and calculations were 

integrated into the present thesis by forming a big part of the dataset. Below is a table with 20 

compounds from the 2 aforementioned studies and their experimentally measured inhibition constants 

(Ki) against human SERT (Table 3). CID_44351345 is a tested ligand from another research paper, 

where radioligand binding assay was implemented with [3H]paroxetine in humans (Takeuchi et al., 

2006). 

 

 

 

ID Compound Ki value SERT Inhibition 

1 CID_11310988 

 

0.56 STRONGLY 

BINDING 

2 CID_11447499 

 

2 STRONGLY 

BINDING 

3 CID_11535974 59 MODERATE 

BINDING 

4 CID_11608403 0.58 STRONGLY 

BINDING 

5 CID_11623136 1.8 STRONGLY 

BINDING 

6 CID_11658763 230 MODERATE 
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BINDING 

7 CID_11673089 100 MODERATE 

BINDING 

8 CID_11694324 2.1 STRONGLY 

BINDING 

9 CID_16006089 3.3 STRONGLY 

BINDING 

10 CID_24855949 229 MODERATE 

BINDING 

11 CID_24855953 2.9 STRONGLY 

BINDING 

12 CID_24855981 94 MODERATE 

BINDING 

13 CID_24856012 68 MODERATE 

BINDING 

14 CID_24856046 702 MODERATE 

BINDING 

15 CID_24856107 5 STRONGLY 

BINDING 

16 CID_24947569 5 STRONGLY 

BINDING 

17 CID_24947939 37 MODERATE 

BINDING 

18 CID_24964158 0.8 STRONGLY 

BINDING 

19 CID_44351345 0.24 STRONGLY 

BINDING 

20 CID_44390396 4 STRONGLY 

BINDING 

21 CID_44456154 3.7 STRONGLY 

BINDING 

Table 3: Unknown compounds with Ki values for hSERT. 
 

Below is another table with 28 ligands that were included in my dataset (Table 4). These were known 

SSRI’s, SNRI’s, TCA’s, TECA’s and some serotonin modulators that are widely used in clinical 

practice and treat or manage depressive symptoms. The majority of Ki values were available in 

ChEMBL database and the experiments from which they were extracted, were radioligand binding 
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assays with [3H] paroxetine or [3H] citalopram, except for trimipramine and chlorpheniramine where 

[3H] imipramine was used. Experimental conditions were not exactly the same across the compounds, 

but they all referred to human SERT protein transporter. For some ligands the Ki values were obtained 

from other sources like DrugBank or PDSP Ki DATABASE. For Dextromethorphan which is a cough 

suppressant, a value of 40nM was considered based on the research paper titled “Pharmacology of 

dextromethorphan: Relevance to dextromethorphan/quinidine (Nuedexta®) clinical use”, were 

[³H]paroxetine was used as radioligand (Taylor et al., 2016). 

 

ID COMPOUND Ki SERT Inhibition 

22 PAROXETINE 0.043 STRONGLY 

BINDING 

23 FLUOXETINE 0.271 STRONGLY 

BINDING 

24 FLUVOXAMINE, PDSP KI 1.95 STRONGLY 

BINDING 

25 CITALOPRAM 0.479 STRONGLY 

BINDING 

26 ESCITALOPRAM 1.1 STRONGLY 

BINDING 

27 SERTRALINE 0.075 STRONGLY 

BINDING 

28 MILNACIPRAN, PDSP KI 8.44 MODERATE 

BINDING 

29 LEVOMILNACIPRAN( 

DRUGBANK) 

11 MODERATE 

BINDING 

30 DOXEPIN 22.0 MODERATE 

BINDING 

31 DULOXETINE, PDSP KI 0.8 STRONGLY 

BINDING 

32 AMITRIPTYLINE 0.882 STRONGLY 

BINDING 

33 NORTRIPTYLINE 6.977 MODERATE 

BINDING 

34 PROTRIPTYLINE 

(DRUGBANK) 

20 MODERATE 

BINDING 

35 IMIPRAMINE, PDSP KI 1.3 STRONGLY 
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BINDING 

36 CLOMIPRAMINE 0.047 STRONGLY 

BINDING 

37 DESIPRAMINE 

(DRUGBANK) 

18 MODERATE 

BINDING 

38 VENLAFAXINE 

(DRUGBANK) 

82 MODERATE 

BINDING 

39 DESVENLAFAXINE 15 MODERATE 

BINDING 

40 MAZINDOL MINIMUM:45 MODERATE 

BINDING 

41 VILAZODONE 0.5 STRONGLY 

BINDING 

42 VORTIOXETINE 1.6 STRONGLY 

BINDING 

43 INDATRALINE 

(DRUGBANK) 

4.8 STRONGLY 

BINDING 

44 NEFAZODONE 290 MODERATE 

BINDING 

45 REBOXETINE 1400 MODERATE 

BINDING 

46 TRIMIPRAMINE (3h 

imipramine),PDSP KI 

149 MODERATE 

BINDING 

47 ATOMOXETINE 77 MODERATE 

BINDING 

48 DEXTROMETHORPHAN 40 MODERATE 

BINDING 

49 CHLORPHENIRAMINE 15.2 MODERATE 

BINDING 

Table 4: Known SERT binders with Ki values. 
 

The remaining 25 compounds that formed the dataset were randomly picked from a variety of drug 

classes and it was proved that they had minimal to zero affinity with hSERT and thus they were 

considered having zero Ki value with 5-HT protein. The list of them included: 

“Acetaminophen”, “Aspirin”, “Bupropion”, “Cimetidine”, “Fexofenadine”, “Ibuprofen”, 

“Maprotiline”, “Metformin”, “Naproxen”, “Probenecid”, “Ranitidine”, “Amlodipine”, 

“Bromocriptine”, “Clozapine”, “Dantrolene”, “Diphenhydramine”, “Flutamide”, “Iprindole”, 
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“Losartan”, “Metocloprimide”, “Mirtazapine”, “Naltrexone”, “Piroxicam”, “Quetiapine” and 

“Zolpidem”. 

 

 

3.2.3 Ligand Preparation 

 
After choosing all samples next step was to download the 3D structure data file (SDF) for each ligand 

from PubChem. Docking was conducted automatically with the aid of AutoDock Vina on an Ubuntu-

based environment. This procedure was facilitated by the use of Open Babel software, which is a 

chemical informatics software that handles chemical files data and molecular details (O'Boyle et al., 

2011). Energy minimization was applied with Merck Molecular Force Field (MMFF94), which was 

developed by Merck and is a very effective force field mainly for organic molecules, such as the 

ligands that were used in this dataset. It includes parameters for the majority of atoms and ions and it 

is compatible with the Open Babel environment. In addition, since it takes into account all the 

different types of interactions that occur, refinement of structural geometry was achievable. The 

minimized SDF files were then converted into PDBQT format which stands for Protein Data Bank 

(PDB), partial charge (Q) and atom Type (T). This is the right readable format in order to perform 

docking simulations in Autodock Vina. Finally, all files were listed together. 

 

 

3.2.4 Definition of Grid Box Size and final options prior to docking 

 

One of the most substantial part for docking, is the configuration of the grid box size. An accurate grid 

box with punctual dimensions ensures that the docking will occur in a biologically relevant region of 

SERT protein. The coordinates and dimensions of the box are shown in Table 5, while the box is 

visualized in image 22. Center x, y and z values indicate the center point of the whole box, while size x, 

y and z are proportional to the size of the box in all axons. Obviously, a slightly enlarged box was 

constructed in order to capture a wider part of the protein, although higher computational cost was 

required and accuracy was reduced. However, the present study focused mainly on the central site of 

SERT protein, where paroxetine was bound, namely in transmembrane regions TM1, TM3, TM6, and 

TM8 of the SERT protein 5I6X crystal structure. All dimensions were recorded in a configuration file 

called “conf.txt”, where also a seed number “1234” was applied in order to get reproducible results in 

multiple ligand docking simulations.  

 

 

 

https://pubmed.ncbi.nlm.nih.gov/?term=%22O%27Boyle%20NM%22%5BAuthor%5D
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center_x 

 

-34,5132 

center_y -20,9471 

center_z 3,38718 

size_x 47,826 Å 

size_y 30,9402 Å 

size_z 28,9013 Å 

Table 5: Grid Box Coordinates and Dimensions. 

 

 

 

Image 22: Grid Box Configuration in known SERT binding pocket. 

 

 
As for the final docking settings hydrogen atoms were placed in the structure. All the other options 

were set to false both in receptor and in ligand. This means that polar hydrogen atoms were retained in 

order to find possible hydrogen bonding interactions. Furthermore, water molecules and ions were 

kept in order to study their behaviour upon docking and whether they played a critical role in ligand-

binding. Non-standard residues were also kept for structural integrity. In the advanced section, binding 

modes were set at 10 in order for AutoDock Vina to generate ten poses per ligand. Exhaustiveness of 

search was set at 32 manually in Open Babel to increase the probability to find the optimal pose for a 

given ligand. Last option referred to the maximum energy difference between the best and the last 

pose and this was set to 4 kcal/mol manually, in order unfavourable conformations with low binding 

affinity as an absolute value to be excluded (Image 23). 
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Image 23: Final Docking Settings for set up. 

 

3.2.5 Batch Docking with Autodock Vina 

To automate1 the docking process of these 74 ligands “Vina_linux.pl” command was applied. This 

command initially reads the receptor.pdbqt file from Chimera. Then it iterates over the “ligand.txt” 

which contains all pdbqt files from ligands and it adjusts its search based on the “conf.txt” file that 

includes the dimensions and size of the grid box, exhaustiveness, energy range, seed and number of 

poses. Finally, execution was made and all results were gathered with the command “tail -n 11 *.log > 

results.txt” which shows best poses and their respective binding affinities and RMSD values. 

  

 

3.3 Docking Pose Evaluation and Selection 

Autodock Vina generated the best ten poses for each ligand with their binding affinity and RMSD 

values. The former is proportional to the magnitude of ligand binding with SERT protein and the latter 

is separated into upper and lower bound. However, in the present study a scoring script-based 

approach was applied in Python in order to identify and classify the best 5 poses out of ten. This 

method outweights other alternatives, because of the fact that it counts in not only the binding affinity, 

                                                 
1 Appendix, page 135-136 
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but also the RMSD values. This combination added value and integrity in the final results. Since the 

three variables were on a different scale, normalization was done based on the following formulas: 

 

For normalized binding affinity:   

 

, where A is the binding affinity for a specific pose of a given ligand and Amin and Amax the 

minimum and maximum affinity among the 5 poses of the same ligand 

 

For normalized RMSD lower value:  

 

, where R is the RMSD value for a specific pose of a given ligand and Rmin and Rmax the minimum 

and maximum RMSD among the 5 poses of the same ligand. Same formula was followed for RMSD 

upper value. This formula has opposite signs in comparison to normalized binding affinity formula, 

because lower RMSD indicates closer geometrical structure with reference pose, namely the first one. 

In summary, the formula used in the script was: 

Score = 1/3(Normalized Affinity + Normalized RMSD lower value + Normalized RMSD Upper 

value) 

By using this function, each parameter from the 3 contributed equally to the final score, where higher 

score was linked to better and more favourable pose. First 5 pose were selected for further post 

docking analysis and feature extraction in BIOVIA Discovery Studio. 

 

3.4 Interaction Analysis and Feature Extraction using BIOVIA Discovery 

Studio Visualizer 

 
Once the top 5 poses for each ligand were chosen as it is described in Chapter 3.3, namely 370 

different poses, next step was to conduct deeper interaction analysis by using the BIOVIA Discovery 

Studio Visualizer software. This computational tool enables users to have comprehensive insights into 

the protein-ligand interactions and bonds by providing several features and descriptors. The procedure 

A-Amax 

Amin-Amax 

Rmax-R 

   Rmax-Rmin 
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for this task was simple. Firstly, the PDB structure of the complex SERT-ligand was loaded, then 

receptor and ligand were set and the 2D diagram with the interactions included as depicted in image 

24 were generated. As shown in figure, different types of bonds and interactions are represented, such 

as Pi-Sigma bonds, Pi-Pi T-shaped, Amide-Pi Stacked, Alkyl, Pi-Alkyl, hydrogen bonds, hydrophobic 

contacts, van der Waals interactions, π-π stacking, and other relevant non-covalent forces. BIOVIA 

offers also the ability to calculate specific angles and distances between certain atoms of amino acids. 

In addition, it highlights the most critical residues for binding. This process was repeated for all the 

370 poses of the 74 distinct ligands. 

 

 

 

Image 24: Paroxetine-SERT 2D diagram pose 1. 
 

 

3.4.1 Interaction analysis features and molecular characteristics2 

 

                                                 
2 Appendix, page 137-138 (Image 57) 



49 

 

A curated dataset was constructed to gather all essential features needed before starting the 

preprocessing steps in Python in order to build the supervised machine learning model. These features 

derived from several sources: 

 

 Chimera and AutoDock Vina: “Binding Affinity (kcal/mol)”, “RMSD Upper value” and 

“RMSD Lower value”. The first one refers to the free energy required for a ligand to bind with 

SERT protein. The more negative values indicate stronger interaction. RMSD measures the 

conformational deviation between a specific pose and the optimal pose with the lowest 

binding energy. 

 PubChem Database: “logP”, “Molecular_Weight” and “Polar_Surface_Area” (PSA): LogP 

is an indicator of hydrophobicity for a molecule and it is the logarithm of the partition 

coefficient between octanol and water. Molecular weight is the mass of the ligand in Daltons. 

PSA shows the capacity of polar atoms in the structure, such as oxygen, nitrogen etc. 

 BIOVIA Discovery Studio Visualizer tool: All the rest features except for “Ligand_Distance_ 

to_Grid_Box_Center”. “Molecular_Volume” is proportional to the capacity of the whole 

ligand in 3D space. “Surface_Area” is the part of the ligand that can have access with the 

solvent and it is measured in Å² (square angstroms). “NAME” and “CATEGORY”, 

“INTERACTION TYPES”, “FROM”, “FROM CHEMISTRY”, “TO”, “TO CHEMISTRY” 

columns show which atoms were involved, in what kind of interactions (hydrogen bonding, 

hydrophobic, electrostatic and more) and the direction of electrons and protons. “Hydrogen 

Bonds count”, “Hydrophobic Bonds count”, “Van_Der_Waals_Interaction_Count”, “Other 

types interaction count” revealed the respective number of interactions between ligand and the 

receptor. In the other bonds, less common interactions, like halogen reactions, salt bridges and 

electrostatic interactions were included. More specifically, in hydrogen bonds a hydrogen 

donor sends the H to a hydrogen acceptor (like O, N). This happens because of the 

electronegativity of the atoms, where more electronegative atoms in a molecule tend to attract 

more electrons. Typically these bonds are moderate to strong and are vital for binding. On the 

other hand, the hydrophobic contacts are caused when non-polar parts of the ligand come into 

close proximity with the non-polar residues of SERT protein, typically involving alkyl or 

aromatic groups. Non polar atoms do not carry any electrical dipoles momentarily, meaning 

that non polar molecules have atoms with similar electronegativity. Hydrophobic bonds 

stabilize the binding process since it depends on the size of the receptor and the ligand. Van 

der Waals interactions, which are weak, are provoked by the dipoles that are created because 

of the redistribution of electrons. They act on atoms that are in close distance (~3–4 Å). For 

the other bonds, electrostatic interactions are generated due to the attraction of a positively 

charged atom with a negatively charged atom. They can act over longer ranges by forming salt 

bridges. In the excel file there were also “Mean_Hydrogen_Bond_Length_Distance” and 
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“Mean_Hydrophobic_Bond_Length_Distance” columns that calculated the average distance 

of all hydrogen and hydrophobic bonds that were included in a specific pose. “CLOSEST 

ATOM DISTANCE” feature is a metric distance for the shortest atom to SERT protein. Apart 

from these classical descriptors, several angular details that capture spatial geometry and 

orientation were extracted. These included: 

 “Angle DHA” (Donor hydrogen acceptor): It calculates the angle between the donor hydrogen 

atom and the acceptor hydrogen atom. Values closer to 180° are highly connected with strong 

interactions. 

  “Angles HAY” (Hydrogen acceptor Y) and “DAY” (Donor acceptor Y): These angles assess 

how the acceptor aligns not only with the donor and hydrogen atom but also with adjacent 

environment. They reveal possible steric effects due to the overall geometry. 

  “Angle XDA” (X donor acceptor): This feature is correlated to the donor’s orientation. 

  “THETA” and “THETA 2”: These are torsional angles that are formed in a Pi-orbital system 

with the involvement of aromatic rings. 

 “GAMMA”: This angle is configured solely by the interaction of Pi systems. 

 “ANGLE DEVIATION”: Quantifies the deviation of the actual value of an angle with the ideal 

to prevent steric hindrances. 

 “Ligand_Distance_to_Grid_Box_Center”: This molecular descriptor quantifies the position 

of each ligand based on the predefined grid box center (Table 5). It was calculated as the 

Euclidean distance between the centroid of the ligand which was measured by its three-

dimensional atomic coordinates and the stable grid box. To automate this analysis, a custom 

Python script was designed. This metric was very informative for docking simulations, since it 

offered an accurate spatial orientation of each ligand in comparison to a known binding pocket 

as the initial PDB structure with Paroxetine revealed. All docking poses from all ligands were 

uploaded and the script extracted the atomic coordinates from HEATM entries and UNL which 

represent the different ligands of the SERT-ligand complex. 

 

3.4.2 Residue-Level Interaction Features 

 
After molecular interaction details, another sheet3 in Excel file was constructed that contained residue-

level information for the 370 poses. This file added high value to the present thesis as it highlighted 

critical residues for strong, moderate and non-binders with SERT protein. Furthermore, it delved into 

the kind of interaction each residue participated in, either in hydrogen, hydrophobic, van der Waals, or 

other interactions and their frequency of occurrence. Residues gathered through BIOVIA tool among 

                                                 
3 Appendix, page 137 (Image 56) 
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these 74 ligands and 370 poses, were 68 which constituted the columns of the second excel file (Table 

6). For samples there were the 370 poses (the best 5 for each ligand). 

 

ID Residue Name Residue Number 

1 TYR 95 

2 ALA 96 

3 VAL 97 

4 ASP 98 

5 LEU 99 

6 GLY 100 

7 ASN 101 

8 TRP 103 

9 ARG 104 

10 TYR 107 

11 ILE 108 

12 ALA 110 

13 GLN 111 

14 ASN 112 

15 GLY 113 

16 GLY 114 

17 ALA 169 

18 PHE 170 

19 ILE 172 

20 ALA 173 

21 TYR 175 

22 TYR 176 

23 ASN 177 

24 ILE 179 

25 PHE 263 

26 PHE 311 

27 LYS 314 

28 PRO 315 

29 ASN 316 

30 LYS 319 

31 ILE 327 

32 ASP 328 

33 ALA 331 

34 GLN 332 

35 PHE 334 

36 PHE 335 

37 SER 336 

38 LEU 337 

39 GLY 338 

40 PHE 341 

41 VAL 343 

42 ASN 368 

43 ASP 400 
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44 ALA 401 

45 PRO 403 

46 LEU 406 

47 PHE 407 

48 SER 438 

49 THR 439 

50 GLY 442 

51 LEU 443 

52 VAL 446 

53 LYS 490 

54 GLU 493 

55 GLU 494 

56 TYR 495 

57 THR 497 

58 GLY 498 

59 PRO 499 

60 VAL 501 

61 SER 555 

62 PHE 556 

63 SER 559 

64 PRO 560 

65 PRO 561 

66 GLN 562 

67 LEU 563 

68 ARG 564 

Table 6: Residues included in the 370 poses of dataset. 

 

The residue-level interactions were encoded as a 4-component vector. More specifically, in the 

example of Paroxetine pose 1 (Image 24) for “TYR95” residue there was only one hydrophobic bond 

and zero in the other 3 categories (hydrogen, van der Waals, Other interactions), so the final vector 

will be   

0,1,0,0 

, while “ALA169” participated in one hydrogen and one hydrophobic bond so the final vector for 

Paroxetine pose 1 and “ALA169” residue will be   

1,1,0,0 

 

Same procedure was followed for all 68 residues and 370 poses in the second excel sheet file. An 

important note to all this process, is the fact that in the hydrogen interactions category, conventional 

hydrogen bond, carbon hydrogen bonds, hydrogen-halogen bonds and hydrogen-electrostatic bonds 

were included. As for hydrophobic bonds, the interactions included are those that contain at least one 

Pi system or aromatic ring system or alkyl. Van der Waals bonds were appearing as circles with the 

green colour (Image 24). Other bonds included halogen bonds, salt bridges, electrostatic bonds and Pi-
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sulfur. First component matches hydrogen bonds, second hydrophobic, third van der Waals and last 

the other category of bonds. 

 

 

3.5 Data Preprocessing and Machine Learning Pipeline 

 

3.5.1 Ligand labelling and final dataset 

 
To build the supervised classification model that will predict the affinity of a ligand with SERT 

protein transporter, each ligand in the dataset was assigned a binding class label based on its 

experimentally measured inhibition constant (Table 3 and Table 4). Given the variability in assay 

conditions and the limited size of the dataset, a slightly wider threshold range was adjusted to ensure 

sufficient data points across all three classes. For strong binders with SERT the limits were Ki values 

smaller than 5nM, for moderate binders the limits were placed between 5 nM and 1000 nM and above 

1000 nM or not known values no binding labels were attributed. In other words, in first category the 

majority were known drugs with high potency with SERT, mainly SSRI’s, in the moderate binders 

there were several antidepressant drugs and a few others showing mid-affinity behaviour and finally 

the non-binders were those with minimal or zero inhibition of 5-HT receptor, like ibuprofen, aspirin 

etc. 

To prepare the final dataset for the classification task, first step was to merge the 2 excel sheets in one. 

First source is named “Molecular Descriptors” and contained all interaction details derived from 

Autodock Vina, Chimera, PubChem and BIOVIA Discovery Studio. The second file, named 

“Residue-Analysis”, on the other hand included all specific residue information in a format “H”, 

“HYD”, “VDW”, “OTHER” that showed the number of hydrogen, hydrophobic, van der Waals and 

other bonds for each of the 68 residues respectively.                                         From the first file, 

“NAME”, “DISTANCE”, “CATEGORY”, “INTERACTION TYPES”, “FROM”, “FROM 

CHEMISTRY”, “TO”, “TO CHEMISTRY”, “ANGLE DEVIATION” columns were removed, since the 

present thesis did not aim to focus on deep atomic interactions. “DISTANCE” column was 

incorporated to the “Mean Hydrogen Bond Length Distance” and “Mean Hydrophobic Bond Length 

Distance” features. Across the same pose the hydrophobic interactions were averaged and constituted 

the “Mean Hydrophobic Bond Length Distance” feature, similarly for hydrogen bonds. “ANGLE 

DEVIATION” was removed since it was appeared in few samples, so there would be many missing 

values to handle. Next important step was to group the docking poses based on their ligand names and 

label them accordingly. In addition, missing values in all the interaction file were replaced with 0 since 

in all cases it had as biological meaning the absence of that particular feature. As for the residue 

analysis, the excel sheet name is “Residue-Analysis” and the missing values it contained had the 
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default vector 0,0,0,0 meaning absence of all the 4 categories of bonds. These 2 sheets were then 

merged and the resulting dataset is shown as snapshots in images 25 and 26 below. All vectors were 

then split into four separate numerical columns. All this process resulted in a dataset with shape 

(370,301), namely 370 samples or poses and 301 features. An important note in this part was that 

during the merging of the 2 excel sheets, the mean values of all angular metrics were calculated to 

yield a single representative value per pose for consistency and later aggregation. 

 

Image 25: Merged Dataset with interaction details and residue analysis 1st image. 

 

 
Image 26: Merged Dataset with interaction details and residue analysis 2nd image. 

 

3.5.2 Aggregation of Docking Poses and Final Dataset Configuration 

 
Since for each ligand there was variation in the features across the 5 poses, an alternative approach 

was applied and that was the aggregation per ligand in order to minimize this variation for the present 

classification task. More specifically, the group of ligands was achieved through the isolation of the 

basic names from the full names of pose identifiers (e.g., "Paroxetine with Sert dock pose 1") that was 

isolated into Paroxetine. The features were separated into 4 main categories: 

 

 Descriptor_columns: “Ligand_Distance_to_Grid_Box_Center”, “Molecular_Volume”, 

“Surface_Area”, “Binding_Affinity(kcal/mole)”, “logP”, “Polar_Surface_Area”, 

“Mean_Hydrogen_Bond_Length_Distance”, “Mean Hydrophobic_Bond_Length_Distance”, 

“ANGLE_DHA”, “ANGLE_HAY”, “THETA”, “THETA 2”, “GAMMA”, “CLOSEST_ATOM 
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DISTANCE”, “ANGLE_XDA”, “ANGLE_DAY”. For these features, the median values were 

kept across the 5 poses, since they are not sensitive to outliers and also in other metrics, such 

as the mean values, the model outputs lower accuracy. “Molecular_Weight” was deleted since 

it was similar to “Molecular_Volume” and it did not add extra biological essence to the 

model. 

 Interaction_columns: “Hydrogen_Bonds_count”, “Hydrophobic_bonds_count”, 

“Van_Der_Waals_Interaction_Count”, “Other types interaction count”. For these columns, 

the sum of values was used in order to obtain a cumulative interaction profile for each ligand. 

 Residue_columns: These included all columns that contained a format like “H”, “HYD”, 

“VDW”, “OTHER” which is described in section 3.5.1 and the sum values were used across 5 

poses in order to involve the frequency factor in the model. 

 Target variable: This is the column “Labelled_class” which represents the binding class for all 

ligands. In order to be manageable for the model to recognize this variable, it was encoded 

into 3 numerical values, 0 was mapped to “MODERATE BINDING”, 1 was mapped to “NO 

BINDING” and 2 to “STRONGLY BINDING”. This was achieved by using the label encoder 

technique in scikit-learn , which is a  free and open-source machine learning library for 

the Python programming language. 

 

After these steps the aggregated dataset had a shape of (74,293), where 74 were the ligands-samples 

and 293 the features. Then, the constant features that showed no variance between ligands were 

deleted since they did not contribute to the training process of the model. The remaining features were 

160. 

 

 3.5.3 Correlation and statistical analysis of dataset 

 

Statistical analysis was conducted on the refined dataset (74,160) for better understanding of the 

variance across features and their curve distributions. Mean, min, max and standard deviation were 

calculated for each column and the correlation matrix was computed between the top 30 features and 

the target variable, either with positive or negative correlation. To visualize all these, pair-plots were 

created between features and labelled class. To avoid redundancy and multicollinearity in the dataset, 

interaction columns (e.g., “Hydrogen_Bonds_count”, “Hydrophobic_bonds_count”, 

“Van_Der_Waals_Interaction_Count”, “Other types interaction count”) were compared against the 

sum of their corresponding residue-level interactions (e.g., “TYR95_H”, “TYR95_HYD”, 

“TYR95_VDW”, “TYR95_OTHER”) and it was confirmed that they were highly correlated, so they 

were removed from the dataset. This led to a more optimal version of 156 features instead of previous 

160. Below in image 27 the Pearson correlation coefficients among features were calculated in order 

https://en.wikipedia.org/wiki/Free_and_open-source
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Library_(computing)
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Programming_language
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to identify potential multicollinearity. Values closer to 1 indicated strong positive correlation, while 

values closer to -1 negative correlation. As illustrated, there were 3 pairs of features that showed high 

correlations (above 0.80 threshold). These were: 

 “ANGLE_XDA” with “ANGLE_DAY” with 0.98 correlation 

 “ANGLE_HAY” with “ANGLE_DHA” with 0.97 correlation 

 “Surface_Area” with “Molecular_Volume” with 0.89 correlation 

All other features were below this threshold. This was very important, especially during training of 

models, because algorithms like Logistic Regression and Support Vector Machines cannot handle 

multicollinearity, while tree-based algorithms, such as Random Forest and XGBoost are robust to such 

correlations. 

 

Image 27: Pearson correlation coefficients among features of dataset. 
 

3.5.4 Model training4  

 

The correlation analysis was then followed by the implementation of the model training. Due to the 

limited size of dataset, several methods were applied to handle this situation. The majority of them 

showed overfitting with moderate to low promising results. However, nested cross validation 

technique performed moderately and at the same time it minimized the risk of overfitting. It consists 

of two loops, the outer loop and the inner loop. The former splits the entire dataset into k training and 

                                                 
4 Appendix, page 138-140 
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test folds and predicts the evaluation metrics, while the latter splits further the training set into n folds 

in order to find the optimal features and tune the hyperparameters for each model. Nested cross 

validation offers several advantages that are commented below (Varma & Simon, 2006), (Varoquaux 

et al., 2017). 

 Decreased risk for overfitting, since model and feature selection arise solely from training set 

 Prevention of data leakage, since the evaluation of model is done prior to the model selection 

which is achieved in the inner loop. 

 High generalizability, because model selection and parameters are selected from different 

folds in comparison to final evaluation. This leads to reliable performance in unseen data, 

which is the final scope of the present thesis. 

More specifically, a 5-Fold stratified cross validation was applied in the outer loop to test the model’s 

performance. With this way, the dataset was split into 5 parts, 4 for training and 1 for test which 

calculated precision, accuracy, recall, F1-score and ROC curve. For the inner loop 3-Fold stratified 

cross validation was applied in order to extract the most predictive features and tune the parameters of 

the models trained. The process of feature extraction started from selecting the best 30 features out of 

155 by using feature importance scores on the respective model (meaning XGBoost with xgboost 

feature importance, random forest with random forest feature importance, etc. and absolute 

coefficients for Logistic Regression and Support Vector Machines) and then Recursive Feature 

Elimination (RFE) followed. RFE was applied on the 30 features starting from 15 and proceeding with 

step 5 until 30 to search for the optimal number and subset of features. At each number of features, 

GridSearchCV was integrated to find the best hyperparameters and subset of characteristics based on 

the f1 macro score. It surpasses over other approaches, such as RandomizedSearchCV, because it 

searches exhaustively all the possible combinations of parameters and different subsets of features, 

though it required high computational cost and time. RFE was not applied in LightGBM algorithm, 

because it required high computational time, but remaining training process was similar to the other 

models. Lastly, the frequency of features across the 5 folds was printed in addition with the robust 

ones which referred to the features that were present in 3 or more folds in the nested structure. These 

robust features were used later in the explainable section. 

Several classifier algorithms were trained and evaluated in the present study. Initially, XGBoost is a 

scalable and fast gradient boosted classifier. It acts by creating an ensemble of decision trees 

sequentially, where each new trees aim to minimize the errors made by the previous ones. 

Regularization (both L1 and L2) techniques were incorporated, which were useful for reducing 

potential overfitting and improving generalization (Chen & Guestrin, 2016). The parameters that were 

set for this classifier were the following:  

 

 



58 

 

Grid parameters for XGBoost Possible values in GridsearchCV 

Max depth 4 

Learning rate 0.05, 0.1 

Reg alpha (L1 Regularization) 1, 2 

Reg lamda (L2 Regularization) 4, 5 

Gamma 0.5, 0.8 

Subsample 0.7 

Colsample bytree 0.7 

Table 7: Grid parameters for XGBoost classifier. 

 
Default value of max depth is 3 and was increased it by one, in order to capture more complex 

patterns. Learning rate is proportional to how quickly will the model converge to a final decision. The 

difficulty lies in the fact that the model may reach a local minimum instead of a global minimum 

which results in poorer performance. However, lower rates are better for generalization. 

Regularization parameters L1 and L2 act by reducing the models complexity and alleviating the 

overfitting that usually occurs in small and high dimensional datasets. Gamma parameter determines 

the splits of the tree nodes required to improve the accuracy of the model. Last 2 parameters involve 

the fraction of samples and features respectively that are sampled for each tree and both are defined to 

minimize the risk for overfitting. 

Another algorithm that was applied is the Random Forest Classifier (RF), which is an ensemble 

learning method that incorporates several decision trees. Each tree is trained on a different subset of 

training samples and features according to the Bootstrapped Sampling technique and feature 

subsampling respectively. With this way, the randomness in the RF model is enhanced, dragging 

equally the generalization at the same time. The operation of RF is depicted in Image 27. The final 

output of the model lies on the majority voting of the different trees, so in the following example the 

model would predict class c. This aggregated mechanism ensures robustness especially when the 

dataset has few samples and many features as in the present thesis, because the variance across trees is 

minimized (Scikit-learn, 2009). 
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Image 28: Structure of Random Forest Classifier (Chauhan, A., 2021). 

 
Random Forest offers several advantages and drawbacks. It is user friendly and easy to adjust, because 

it does not require standard scaling, since it consists of several decision trees that are split by features 

and not by other distance metrics or thresholds. Another positive aspect of RF is the risk of overfitting 

which is much less in comparison to single decision tree classifier or other traditional algorithms. It 

also enables feature importance analysis in order to find the most predictive features for the 

classification task. Last but not least, it is widely used in the scientific community for several 

purposes, like healthcare, finance etc. On the other hand, an issue in RF classifier is the high 

computational time needed to process all the number of trees. The higher the number of trees is, the 

longer the run time will be. In addition, the structure is more complex than that of a decision tree, so 

careful tuning of hyperparameters is essential (Coursera, 2024). 

 
As now for the hyperparameters, these included: 

 
Grid parameters for Random Forest Possible values in Random Forest 

Max depth 5 

Minimum samples split 25 

Minimum samples leaf 5 

Max features ‘log2’,‘sqrt’ 

Class Weight ‘balanced’ 

Table 8: Grid parameters for Random Forest classifier. 

 

 
Max depth value was set at 5 (default value is ‘None’) in order to capture more complex patterns, but 

it was safe to handle the risk of overfitting. Minimum samples split and leaf were much higher than 

the default values (2 and 1 respectively). This was a logical option, because having more samples 

before splitting a node and more in leaf, increases the validity of results. Max features parameter 

added randomness in the model since it determines the size of available features at every split. Finally, 
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class weight parameter was responsible for alleviating the small class imbalance that existed in the 

dataset. 

A more sophisticated algorithm employed in this thesis was the Light Gradient Boosting Machine 

(LightGBM) which is an advanced gradient boosting algorithm that utilizes lower memory while at the 

same time it surpasses in speed and accuracy in comparison to other algorithms. Based on 

LightGBM’s documentation the unique structure is based on the leaf-wise (best-first) tree growth. This 

means that LightGBM expands in a leaf level that minimizes the error, regardless of the layer level 

(Image 29). For example in XGBoost classifier with default parameters, all nodes from the same depth 

should expand firstly and then the model goes deeper (LightGBM 4.6.0 documentation, 2017). 

 

 

Image 29: Leaf-wise tree growth strategy in LightGBM classifier (LightGBM 4.6.0 documentation., 2017). 

 

In parallel to the leaf-wise method, another approach is applied, called histogram-based learning. This 

method discretizes the continuous variables into fixed bins, saving computational time and reducing 

model complexity. Then, it decides the optimal place to split the leaf. This process is accelerated 

through the histogram subtraction, which does not reconstruct the histogram for every node, instead it 

is derived from the parent nodes (LightGBM 4.6.0 documentation, 2017). 

As for the hyperparameters in LightGBM learning rate was tested into 3 possible values, mainly focus 

on a smoother learning process instead of a more aggressive approach, because the dataset is small and 

generalization was the final goal of the present thesis. Number of leaves per tree were tested in values 

15 or 31 (31 is the default value), because more leaves usually drive the model to learn more complex 

patterns of the dataset. However, in this case overfitting was a possible threat due to the limited size. 

Similar to number of leaves is the minimum number of samples per node, where more balanced values 

were tuned. L1 and L2 regularization were applied to decrease the probability of overfitting (Table 9). 

 

Grid parameters for LightGBM Possible values in LightGBM 

Learning rate 0.01,0.05,0.1 

Number of Leaves 15,31 

Min child samples 10,20,30 



61 

 

Reg alpha 3,4,5 

Reg lamda 4,5 

Table 9: Grid parameters for LightGBM classifier. 

 

 
In conclusion, based on LightGBM’s documentation LightGBM offers as advantages the high speed in 

process without consuming much memory units with the aid of histogram-based learning. It ensures a 

higher accuracy due to the leaf-wise method and lastly it does not require encoding categorical 

variables as other algorithms. Nevertheless, overfitting is considered a realistic situation, because it 

contains several hyperparamaters that need to be tuned effectively. Furthermore, it lacks in 

interpretability because of the complex structure it has (LightGBM 4.6.0 documentation, 2017). 

Logistic regression was also applied in this thesis to test its performance. Logistic Regression 

classifier (LR) is a simpler structured linear algorithm that handles both binary and multiclass 

problems. Main formula behind LR is the sigmoid function, which maps the predicted values that arise 

from the combination of features into probabilities (Image 30). These probabilities are then translated 

into values between 0 and 1, depending on where they are closer. This is clear especially in binary 

categorical cased where 1 is “Yes” and 0 is “No” (GeeksforGeeks, 2024). 

 

Image 30: Sigmoid function of Logistic Regression (GeeksforGeeks., 2017). 

 

 
However, in multiclass tasks like in the present thesis, scikit learn supports the One-vs-Rest (OvR) 

strategy by default, where a separate binary classifier is trained for each class against the rest (Scikit-

learn, 2014). 

For the hyperparameters tuning process (Table 10), increased regularization strength was introduced to 

manipulate overfitting. In addition, 2 types l1 and l2 of regularization were tested and the solver is the 

algorithm used to minimize the loss function. In this case liblinear solver supports both penalty types 

and can be implemented in multiclass problems (Scikit-learn, 2014). 

 

Grid parameters for Logistic Regression Possible values in Logistic Regression 

                  Regularization Strength (C) 
 

                   0.0001 – 100 (log-spaced) 
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Penalty l1, l2 

Solver liblinear 

Table 10: Grid Parameters for Logistic Regression. 

 

 
For further analysis, LR can be useful in cases where the dataset is simple and the features are linearly 

separated, though in real world scenarios these are not linearly distributed. This means that, it cannot 

capture any complex patterns within the dataset. Overfitting occurs regularly, especially in small 

sample size and high dimensional datasets (like in this thesis). It is a very fast algorithm and very 

interpretable to identify critical features that define the class label either in binary or in multiclass 

models again with the major assumption that the correlation of independent variables and target 

variable is linear (GeeksforGeeks, 2023). 

In addition, Support Vector Machine Classifier (SVM) was also employed in this thesis. When data 

points are non-linearly separable, the main mechanism behind SVM is that it maps the input vectors 

into higher dimensional feature space, called “hyperplane” in order to separate the classes with the 

largest possible margin (Image 31). This is achieved through some non-linear functions which are 

called “kernel” functions and affect the decision boundaries. The points closer to these margins are the 

support vectors (Cortes & Vapnik, 1995). 

 

 

Image 31: Mechanism of Support Vector Machines Classifier (GeeksforGeeks., 2021). 
 

On the other hand, if features are linearly correlated, then the formula behind the structure of SVM is: 

 F (x) = w⋅ x +b, where w is the weight vector and defines the orientation of the hyperplane and b is 

the bias term. Since the goal is to increase the margin, 2÷∥w∥ should be maximized (Cortes & Vapnik, 

1995).  

The hyperparameters optimized for SVM are the following: 
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Grid parameters for Support Vector Machines Possible values in Support Vector Machines 

Regularization Strength (C) 
 

0.01, 0.1, 1, 10 

kernel ‘linear’, ‘rbf’ 

gamma ‘scale’, ‘auto’ 

Table 11: Grid Parameters for SVM. 

 

 
Regularization strength is inversely proportional to C parameter, where lower C values allow wider 

margins. Several values were tested for their performance. The kernel types that were tested in SVM 

were ‘linear’ and ‘rbf’ and kernel coefficient is the gamma parameter (Scikit-learn, 2019). 

The most important aspect of SVM is that it has the ability to handle high dimensional datasets, either 

linearly or non-linearly separable. The outliers are easily excluded with the accurate adaptation of the 

margins, ensuring robustness in the model. Finally, it supports multiclassification problems without 

consuming too much memory in the system. As for the limitations of SVM, it lacks in interpretability, 

because its structure of hyperplane is difficult to understand. Furthermore, right scaling is necessary, 

otherwise SVM performs poorly in comparison to other algorithms. Also, it cannot handle overlapping 

classes (GeeksforGeeks, 2021). 

Last algorithm that was implemented is the Voting Classifier, an ensemble meta-estimator that 

combines the predictions of multiple base models with their optimal parameters. This works by 

averaging the probabilities of each model and for each class. There are 2 different voting strategies. 

The first, which was applied in present thesis is, the soft voting strategy. Its core function is based on 

the fact that each model estimates a probability for each of the 3 classes, then the average probability 

across all models is measured and the voting classifier outputs the class with the highest averaged 

probability. This means that the confidence intervals for each model are counted in the final 

prediction. On the other hand, there is the hard voting, where each model outputs a specific class 

without probabilities and then the ensemble classifier votes based on the majority class (Scikit-learn ; 

Pedregosa et al., 2011).  

Based on the code shell below, the best parameters from Random Forest and XGBoost were used, 

since these 2 algorithms performed better individually as shown in Chapter 4. 

VotingClassifier(estimators= [('rf', best_rf), ('xgb', best_xgb)], voting='soft') 

Soft voting seems to stabilize predictions, because it reduces the variances. In other words, it is a 

smoother vote that relies on consistency and not on the absolute prediction. This ensemble strategy is 

grounded in the core philosophy of ensemble learning and that is that the overall is greater than the 

sum of its parts, because it enables to keep the strengths of each algorithm and minimize their 

weaknesses. Random Forest is known for its robustness to noise due to bootstrap aggregation, while 

XGBoost excels in handling complex patterns through gradient-boosted additive trees with 

regularization. Their complementary nature enhances the effectiveness of ensemble techniques like the 
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Voting Classifier and promotes a better generalization which was the main goal of the present study 

(Rokach, 2010). 

As for the advantages of this ensemble method, most important one, is that it ensures robustness, since 

it integrates the structures of 2 base models. Similarly, accuracy and generalizability are improved and 

there is less risk for overfitting. However, this Voting Classifier lacks in the field of interpretability in 

comparison to the individual models, due to the more complex structure that includes the combination 

of other models (Scikit-learn ; Pedregosa et al., 2011). 

 

3.5.5 Model evaluation 

All the aforementioned models were assessed using a diverse set of evaluation metrics from the 

sklearn.metrics module in Scikit-learn (Pedregosa et al., 2011). This variety ensured different 

perspective of the performance of each model and all metrics together act complementarily. This set 

includes (Pedregosa et al., 2011): 

 Accuracy: Shows the number of correct predictions over total number of samples. It is 

applied across all models, since accuracy is the most common used metric and easy to 

interpret. However, it is not reliable, because in imbalanced datasets the minority classes may 

be falsely labelled. 

 Precision: It represents how many of the positive predicted class are actually positive. For 

example how many samples that are predicted as class 2 are actually in class 2.This metric 

reveals the false positive samples and it is more valuable especially in imbalanced and small 

datasets. The formula that corresponds to precision is            TP/ (TP+FP), where FP are the 

false positive samples (those that were assigned a specific class but it is actually the wrong 

class). The goal is to get closer to 1 by reducing the FP term. 

 Recall: This metric known as sensitivity, is the ratio of the correctly positive predicted cases 

to all the actual positive samples and the formula is           TP/ (TP+FN), where FN are the 

false negative samples (those that failed to be assigned in the correct class). Again the goal is 

to get closer to 1 by reducing the number of FN. 

 F1-Score: It is attributed as the harmonic mean of precision and recall            2*TP/ [(2*TP) 

+ FN+ FP] and it is the most recognizable and reliable metric since it captures both types of 

errors. Values closer to 1 indicate better performance with fewer wrong predictions. 

 Confusion Matrix: This is a matrix that is plotted in order to visualize per class the predicted 

samples in comparison to the actual labels. It shows which class each model struggles to 

identify and which samples mislabels. 
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 Classification Report: It aggregates all aforementioned metrics, such as precision, recall and 

F1-score for each class. 

 ROC Curve and AUC (One-Vs-Rest): The Receiver Operating Characteristic (ROC) curve 

is a graphical representation that depicts the true positive rate against the false positive rate. 

The Area under the Curve (AUC) is proportional to the models ability to identify a positive 

class among other classes. Values of AUC closer to 1 mean that the model discriminates well, 

while values closer to 0.5 are in the randomness region. Since in the present thesis there are 3 

classes labelled the ROC analysis was performed in combination to the One-Vs-Rest 

technique. This method converts the multiclassification task into a binary task, where one 

class is considered the positive case and the other 2 classes the negative. As a result, three 

individual ROC curves, one per class, were generated. This strategy is very useful to assess a 

models performance across the 3 classes in the present thesis and it is not influenced by the 

imbalanced dataset (Pedregosa et al., 2011). 

 

3.5.6 Key Libraries and modules used from Python language 

Several Python libraries were utilized by the present thesis for different purposes. “Numpy” and 

“Pandas” libraries were used for their effectiveness in handling large datasets with a variety of features 

as in this study. They also facilitated loading CSV or excel files, unzipping them, transforming them, 

aggregating the 5 poses for each ligand into one single vector and finally filtering the descriptors in 

order to keep the most meaningful (McKinney, 2010; Harris et al., 2020). Regular expressions (“re”) 

module enabled  matching samples between the 2 files according to their docking pose names and 

assigning the correct number of bonds for each residue and type of bond (Python Software 

Foundation, 2009). For visualization analysis, “Matplotlib” and “Seaborn” were employed. With the 

aid of these libraries, correlation matrix, pair plots analysis, ROC curves, feature importances plots etc 

were plotted (Hunter, 2007; Waskom, 2021). For the application of machine learning algorithms (LR, 

SVC, RF), scaling of data (Standard scaler), hyperpararameter tuning (“StratifiedKFold”, 

“GridSearchCV”), evaluation metrics that are mentioned in chapter 3.5.5, nested cross validation and 

selection of a specific number of features through “RFE”, scikit-learn library was responsible 

(Pedregosa et al., 2011). To handle imbalances in the dataset the imbalanced-learn library was 

installed (Lemaître et al., 2017). Last but not least, the “counter” module was essential for tracking the 

most frequent features across the folds in the nested cross validation, therefore the most influential 

features that added value to a models decision (Python Software Foundation, 2024). 
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3.6 Explainable AI Tools (XAI) 

 

To further validate results from predefined models and enhance their interpretability for future 

purposes, 2 additional explainable AI techniques were incorporated: SHAP (SHapley Additive 

Explanations) and Partial Dependence Plots (PDP). These tools shed light on a models prediction 

process, meaning that they highlighted the most influential features that determined a models decision 

in order to classify a ligand into strong binder, moderate binder and non-binder with human SERT 

protein transporter. 

SHAP is a recent AI strategy based on the game theory approach. It calculates the marginal 

contribution of all possible combinations of features in order to come up with a final prediction. It is 

easily adapted in tree-based models, such as Random Forest Classifier and XGB Classifier with the aid 

of SHAP-Tree-Explainer method (Lundberg & Lee, 2017). The SHAP values were computed to the 

top 2 models from 3.5.5 chapter evaluation metrics. The models with their optimal hyperparameters 

from their best fold in the nested cross validation technique were retrained on the entire dataset with 

the robust features obtained from each model. The SHAP summary was plotted for both models, 

which performed the contribution of each feature for each of the three classes of this classification 

task, while also a heatmap was printed that matched this contribution into percentages for a clearer 

view. A comparison was conducted between the 2 models to identify how each model prioritized and 

ranked each feature, while also a mislabeling analysis was conducted by using SHAP waterfall plots to 

analyze which features pushed models towards wrong classes (Molnar C., 2025). 

On the other hand, Partial Dependence Plots (PDPs) are another interpretability technique that 

visualizes the effect of a specific feature on a models prediction. In contrast to SHAP, PDPs provide a 

global perspective on feature–response relationships, enabling users to capture non-linear relationships 

among features and final predictions. They are especially useful in multiclassification problems, 

because they represent the marginal values of features that can alter the models behaviour. PDPs were 

computed in the present thesis for both models and they were compared to SHAP features for further 

validation. However, the most negative characteristic of PDPs, is the fact that they assume 

independency across features, so if the correlation between some features is high, misleading results 

may occur (Molnar C., 2025). 

 

Chapter 4: Results 
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4.1 Docking Results 

 
Firstly, in order to evaluate whether docking simulation was successful and proceed with the results, a 

comparison between docked paroxetine pose 1 with the real human SERT (5I6X) structure from 

RCSB protein data bank was conducted. As the following image depicts, paroxetine from 5I6X 

structure with yellow colour is parallelized with the docked paroxetine pose 1 with the procedure 

mentioned in chapter 3 (blue colour). Obviously, there is almost complete alignment, indicating that 

all the docking regulations and options followed, are consistent with reality to a great extent and 

enhance the validity of the docking results and thesis (Image 32). 

 

 
Image 32: Docking of Paroxetine Pose 1 in comparison to 5I6X structure. 

 

 
As mentioned in Chapter 3.3, ten poses were extracted from Chimera software and AutoDock Vina 

and through a custom script in Python the best 5 poses were retained based again on the mathematical 

formulas described in 3.3 chapter. For example, below the results for the ten poses for paroxetine are 

represented with decreasing values of binding affinities with SERT protein. Third and fourth columns 

are the RMSD lower and upper bounds respectively with first pose being zero. In table 12 the best 5 

were kept from the initial 10 through the Python script. Similar procedure was conducted for all 370 

poses and 74 ligands and the best 5 are presented in appendix below5. 

==> PAROXETINE_COMPOUND_CID_43815<== Chimera and Autodock Vina               
-----+------------+----------+---------- 

   1     -10.09        0             0   

   2       -8.475      2.841      3.936   

                                                 
5 Appendix, page 114-135 
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   3       -8.439      2.912      3.813                                   

   4       -8.432      4.73        7.021 

   5       -8.39        3.148      4.01                            

   6       -8.35        3.472      6.18   

   7       -8.277      3.496      5.825   

   8       -8.247      6.714      9.165 

   9       -8.246      3.741      6.649 

  10      -8.186      3.72        6.801 

 

Top 5 Poses for PAROXETINE_COMPOUND_CID_43815 through Python custom script: 

    
POSE BINDING AFFINITY RMSD LOWER 

BOUND 

RMSD UPPER 

BOUND 

COMPOSITE 

SCORE 

1 -10.090 0.000 0.000 1.000000 

2 -8.475 2.841 3.936 0.433060 

3 -8.439 2.912 3.813 0.427706 

5 -8.390 3.148 4.010 0.400246 

6 -8.350 3.472 6.180 0.298234 

Table 12: Best 5 poses chosen out of 10 based on Python script. 

 
For the predefined classes mentioned in chapter 3.2.2, the binding affinities distributions were 

analysed by taking into account only the first pose for each ligand, namely the best one. As 

anticipated, strong binders exhibit lower median value and generally more negative values across the 

dataset with the majority of them falling between -8.5 and -9.5 kcal/mol. The interquartile range (IQR) 

is relatively narrow, however there is obvious overlap between strong and moderate binding classes. 

As for “MODERATE BINDING” class, the IQR is narrower than that of the strong class and the 

majority of values lie between -8 and -9 kcal/mol with lowest binding affinity around -7 kcal/mol, 

similar to strong binders. There is a huge overlap between moderate and non-binders and moderate 

with strong binders, which is a logical behaviour since it represents the intermediate condition. “NO 

BINDING” class shows an irrelevant behaviour in molecular docking with SERT, because the IQR 

reveals high overlap not only with moderate class but also with the strong class. It falls between -7 

kcal/mol and -9 kcal/mol, which are values typical of strong and moderate binders. A distinct 

behaviour, however, is that “NO BINDING” class has several extreme values both on the 

“STRONGLY BINDING” spectrum and in weak binding ranges, like -5 kcal/mol to -6 kcal/mol (Image 

33). 
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Image 33: Box Plots of Binding Affinity across the 3 classes. 

Although the overall pattern reflects a realistic behaviour to some extent and that is for example that 

strong binders show more negative values, moderate binders show an intermediate step between non-

binders and strong binders etc., several limitations exist in class labeling of human SERT inhibitors 

with “Chimera” and “Autodock Vina” that cannot identify the exact boundaries between these 3 

categories. This fact, suggests a need for complementary validation methods beyond docking 

simulations.  

Another useful plot is the Kernel Density Estimate (KDE) plot which estimates the probability density 

function for binding affinities in the 3 classes. As the following image depicts, in the strong binders, 

there is a narrow distribution curve with a peak among -9 kcal/mol and -10 kcal/mol. This suggests 

that strong SERT inhibition in the present dataset shows consistency to a great extent. However, as the 

box plots reveal (Image 33), the distribution of the moderate SERT binders overlaps with the other 2 

classes and peaks around -8.5 kcal/mol proving that it balances between strong and non-binders. 

Surprisingly again, class “NO BINDING” has the main peak around -9 kcal/mol and overlaps 

significantly with moderate and strong binders. Nevertheless, the distribution is much more flattened 

than in the other 2 classes and that enhances the perception, that such a classification task with 

potential SERT inhibitors cannot be interpreted only by molecular docking techniques and several 

samples may easily be mislabelled (Image 34). 
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Image 34: KDE Plot of Binding Affinities across Classes. 

 

 

 

4.2 BIOVIA Discovery Studio Results 

 
 

All the features that are displayed in the machine learning pipeline and described extensively in 

Chapter 3.4 have been extracted from BIOVIA Discovery Studio. Each pose of each ligand was 

uploaded in the BIOVIA software and the features were presented as in the following box. This 

process was repeated for all 370 poses and the molecular details dataset was formed (Image 35). In 

addition, residue analysis dataset was formed by collecting all 370 images from all poses (as shown in 

Image 24), which depicts not only the type of interactions between human SERT and each ligand, but 

also distance metrics of the bonds participating in each interaction. 
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Image 35: Molecular Details for Paroxetine Pose 1 with SERT protein from BIOVIA Discovery Studio 

Visualizer. 

 

 

 

4.3 Machine Learning Results 

 

4.3.1 Molecular Descriptor Distribution Analysis Across 3 Classes 

A comprehensive analysis is conducted in this section in order to outline the distribution patterns 

between molecular descriptors and specific residues with the target variable, namely binding classes. 

This analysis sheds light on which features dominate in each class, facilitating interpretability and 

explanation of the model performance. 

In Image 36 there is clear evidence that higher molecular volumes and surface areas are correlated to 

stronger binding with SERT protein transporter. This occurs because the contact interface is 

maximized. Moderate binders show overlap with the adjacent classes, while non-binders have lower 

values of these features. In addition, in “NO BINDING” class, several outliers appear in the image, 

which might struggle model distinguishing binding classes. 
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Image 36: “Molecular_Volume” and “Surface_Area” distributions across binding classes. 

 

 

Image 37 depicts the distributions of several more features important for inhibition of SERT protein. 

“Polar Surface Area” is notably high in non-binders, while in the rest classes there is a significant 

percentage of overlapping. An explanation for this behaviour could be that excess of polar atoms may 

decrease the probability of a ligand to enter inside the binding pocket of SERT protein transporter 

which consists of several hydrophobic bonds. As a result, moderate values of PSA can facilitate this 

SERT inhibition. The angular descriptors “ANGLE_DHA” and “ANGLE_HAY” capture critical 

geometric relationships involved in hydrogen bonding. Strong binders tend to exhibit a high variability 

in values ranging from 0°- ~130°, while moderate binders from about 50° to ~135°. Interestingly, the 

“NO BINDING” class shows higher angular values that might be more ideal for binding. This 

irrelevant behaviour suggests that these 2 angular features cannot together effectively classify ligands 

based on SERT inhibition. Furthermore, image 37 shows that strong binders possess a compact and 

narrow distribution in “THETA”, “THETA_2” and “GAMMA” angular metrics in contrast to 

moderate and non-binders which have broader distributions. In strong binders, “THETA” falls 

between 25–35°, ~ 20–30° for moderate and ~ 20–35° for “NO BINDING” class. For “THETA_2”, 

35–45° for strong binders, ~ 30–50° for moderate and 10–45° for non-binders. For “GAMMA” 

feature, the IQR of strong binders is ~ 20–40°, ~ 30–70° for moderate and ~ 10–50° for non-binders. 

Lastly, for “ANGLE_XDA” and “ANGLE_DAY” descriptors, huge overlap exists across the 3 classes. 

The median values, though smaller in non-binders with higher variance, the interquartile ranges are 

largely comparable, indicating that these angular features may not distinctly differentiate across the 3 

classes. This suggests that while these angles may add value to the overall geometry, they do not 

contribute to the final model’s estimation. 
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Image 37: Polar Surface Area and other angular features distributions across binding classes. 

 

 
 

Last 5 features for molecular descriptors are the following presented in Image 38. In 

“Ligand_Distance_to_Grid_Box_Center”, the strong binders have a median value between moderate 

and non-binders, indicating that the boundaries that determine the binding class of a ligand with SERT 

protein based on this feature are relatively small. “NO BINDING” class varies more than the other 2 

classes, while at the same time in all classes several outliers appear. The second feature, namely 

“logP”, indicates that higher median values of hydrophobicity, typically around 3.5 are correlated to 

strong binders, compared to moderate and non-binders that exhibit values closer to 3. This means, that, 

increased hydrophobicity of a ligand favours the ligand binding into SERT pocket. The descriptor 

“Mean_Hydrogen_Bond_Length_Distance” shows that “STRONGLY BINDING” ligands tend to 

exhibit slightly longer hydrogen bond distances with higher median values than non-binders and 

moderate binders, the last of which are the intermediate step. For 

“Mean_Hydrophobic_Bond_Length_Distance” there are no obvious differences across the 3 classes, 

neither in the interquartile ranges, nor in the median values, suggesting that this feature does not help 

classify ligands for SERT inhibition. Finally, “CLOSEST_ATOM_DISTANCE” shows only subtle 

median shifts across the 3 classes. 
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Image 38: More molecular descriptors across the 3 binding classes. 

 

 

4.3.2 Residue-Level Distribution Analysis across 3 classes 

 

Residue-level frequency analysis was then conducted through Python programming language. The top 

twenty residue interaction counts across the three classes are illustrated in Image 39. Notably, the 

residue “ILE_172_HYD” (Isoleucine 172) is the most dominant, particularly in strong binders, across 

the 3 classes and the “HYD” suffix suggests that it participates in hydrophobic interactions, which 

play crucial role in stabilizing the ligand binding. 225 interactions appear totally in strong binders, 176 

in moderate and 138 in non-binders. Similarly, “TYR_176_HYD”, “PHE_335_HYD”, 

“TYR_175_VDW”, “THR_439_VDW” and “THR_497_VDW” show progressively increasing 

interaction counts from “NO BINDING” to “STRONGLY BINDING” class. Interestingly, 

“ALA_173_HYD”, “SER_438_HYD”, “THR_439_HYD” and “TYR_95_H” appear predominantly in 

the top 20 residues in strong binders which are compatible with literature review to some extent. Other 

residues, such as “ASP_98_H”, “TYR_176_VDW”, “VAL_501_HYD” and “VAL_501_VDW” are 

observed frequently in moderate and non-binders, however they are also present, albeit with lower 

counts, in “STRONGLY BINDING” class. 
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Image 39: Top 20 most frequent residues across the three binding classes. 

 

 

 

4.3.3 Machine learning pipeline outputs 

 
As mentioned in Chapter 3.5.3 in the present thesis, the remaining features were 156. From the 

correlation matrix below, the thirty features with the highest contribution to the target variable 

“Labelled class” are highlighted based on absolute values (Image 40). Since the encoding was applied 

based on the 3.5.2 chapter where 0 is “MODERATE BINDING” class, 1 is the “NO BINDING” class 

and 2 the “STRONGLY BINDING”, this means that higher values in the correlation matrix are 

possibly connected to class 2 with a linear correlation. For this reason, “ALA_173_HYD” with a 

correlation 0.30 indicates that in more interactions this residue is involved, the higher the chances are 

to classify this ligand as strong binder to SERT protein transporter. In the same way, 

“Hydrophobic_bonds_count”, “ALA_169_HYD” and more residues are correlated to strong binders. 

On the other hand, “TYR_175_HYD”, “GAMMA” and “ALA_96_VDW” have negative values of 

correlation, meaning that as these increase, the less probable is, for a ligand to be assigned as 
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“STRONGLY BINDING” class. However, all values in this matrix are quite small ranging from -0.28-

0.30, so no clear conclusions can be made for the strength and the kind of the relationship between 

features and target variable. For example, in the negative correlations, it is uncertain whether a more 

negative value drives the model towards class 1 which is non-binders or class 0 which is the moderate 

binders.  

 

 
Image 40: Correlation of the top thirty features with the target variable Labelled class. 

 

 

After all preprocessing steps and correlation analysis of features mentioned both in chapter 3 and 

chapter 4, next step was to evaluate the 5 classical machine learning algorithms (XGBoost, Random 

Forest, LightGBM, Logistic Regression, Support Vector Machines and the ensemble method Voting 

Classifier). These algorithms were trained and tuned as mentioned in chapter 3.5.4 and an estimation 

performance was conducted based on the evaluation metrics from chapter 3.5.5. Table 13 presents the 

train and test accuracies for each model across the five outer folds of nested approach. The greater the 

difference between train and test fold, the higher the probability for overfitting is, since the model 

“memorizes” the cases instead of learning them. For instance, XGBoost shows up to 98.3% in training 

fold while the mean accuracy in test is only 52.6%, which means that there is a high risk for 

overfitting. Similarly, LightGBM exhibits lower training and test accuracy than XGBoost, but again 

the gap is huge. Logistic Regression algorithm and Support Vector Machines underperform, since 

their training accuracies are more than 90% and their test accuracies 47.3% and 40.7% respectively. 

On the other hand, the Random Forest classifier has approximately 84% training accuracy and 

achieves the best mean test accuracy with 61.9% and even 80% to one fold. This results in a more 

balanced condition where the model generalizes better than the other algorithms, while at the same 

time offers room for improvement in training, possibly with increasingly number of samples. After 
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Random Forest, Voting Classifier seems to perform also quite satisfactorily with 92.2% training and 

60.6% test accuracy. All results are shown in table 13 below. 

Fold XGBoost Random 

Forest 

LightGBM Logistic 

Regression 

Support 

Vector 

Machines 

Voting 

Classifier 

1 Train 0.983 0.881 0.780 0.949 0.966 0.966 

1 Test 0.600 0.667 0.467 0.60 0.533 0.667 

2 Train 0.949 0.864 0.847 0.898 0.898 0.898 

2 Test 0.600 0.667 0.533 0.333 0.333 0.733 

3 Train 0.814 0.814 0.763 0.966 0.898 0.898 

3 Test 0.400 0.533 0.467 0.400 0.400 0.533 

4 Train 0.915 0.814 0.814 0.966 1.000 0.932 

4 Test 0.600 0.800 0.467 0.533 0.267 0.667 

5 Train 0.900 0.833 0.850 1.000 1.000 0.917 

5 Test 0.429 0.429 0.500 0.500 0.500 0.429 

Table 13: Per fold accuracy in train and test for each algorithm. 

 
Besides table 13, below in Tables 14-20 there are other additional metrics that are useful for forming a 

comprehensive view about how models perform. These include precision, recall, F1-score and area 

under the curve analysis (via one-Vs-rest strategy). Random Forest and Voting Classifier achieved the 

highest area under the curve (AUC) for all three classes, reflecting strong discriminative capability 

with both models being more able to identify the strong binders. This view is reinforced by the fact 

that F1-score for class 2 is 0.68 in RF and 0.65 in Voting Classifier. Both perform quite effectively in 

“NO-BINDING” class, while they struggle to identify the moderate binders with 0.52 and 0.50 F1-

score respectively. XGBoost, although it performs moderately, it cannot easily recognize class 1 with 

0.48 F1-score, but it shows better results for class 0. LightGBM seems to struggle to identify the 

moderate binders. However it underperforms in general. Last 2 algorithms, namely LR and SVM show 

limited effectiveness with low accuracies, recall and F1-scores, especially SVM where AUC scores 

are close to 0.5 and all evaluation metrics close to 0.40 that are near the boundaries of random guess in 

a multiclassification task with 3 classes. 

 

Model 
Nested 

Accuracy 

Macro 

Precision 

Macro 

Recall 
Macro F1 

AUC 

Class 0 

AUC 

Class 1 

AUC 

Class 

2 

XGBoost 0.526 0.537 0.526 0.529 0.72 0.69 0.62 

Random 

Forest 
0.619 0.618 0.617 0.615 

0.69 0.71 0.73 

LightGBM 0.487 0.49 0.483 0.482 0.73 0.71 0.62 
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Logistic 

Regression 
0.473 0.475 0.474 0.473 

0.60 0.65 0.59 

SVM 0.407 0.396 0.411 0.401 0.64 0.61 0.51 

Voting 

Ensemble 
0.606 0.605 0.602 0.599 

0.73 0.74 0.74 

Table 14: Average evaluation metrics of all algorithms. 

 

 
XGBoost Class 0 Class 1 Class 2 

Precision 0.63 0.48 0.50 

Recall 0.52 0.48 0.58 

F1-score 0.57 0.48 0.54 

Support 23 25 26 

Table 15: Evaluation metrics per class for XGBoost. 

 
Random Forest Class 0 Class 1 Class 2 

Precision 0.58 0.61 0.67 

Recall 0.48 0.68 0.69 

F1-score 0.52 0.64 0.68 

Support 23 25 26 

Table 16: Evaluation metrics per class for Random Forest. 

 
LightGBM Class 0 Class 1 Class 2 

Precision 0.50 0.50 0.47 

Recall 0.39 0.48 0.58 

F1-score 0.44 0.49 0.52 

Support 23 25 26 

Table 17: Evaluation metrics per class for LightGBM. 

 

Logistic Regression Class 0 Class 1 Class 2 

Precision 0.44 0.50 0.48 

Recall 0.52 0.44 0.46 

F1-score 0.48 0.47 0.47 

Support 23 25 26 

Table 18: Evaluation metrics per class for Logistic Regression. 

 
Support Vector 

Machines 

Class 0 Class 1 Class 2 

Precision 0.44 0.44 0.30 

Recall 0.52 0.48 0.23 
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F1-score 0.48 0.46 0.26 

Support 23 25 26 

Table 19: Evaluation metrics per class for Support  Vector Machines. 

 

Voting Classifier Class 0 Class 1 Class 2 

Precision 0.59 0.61 0.62 

Recall 0.43 0.68 0.69 

F1-score 0.50 0.64 0.65 

Support 23 25 26 

Table 20: Evaluation metrics per class for Voting Classifier. 
 

The confusion matrixes are presented below, where first row refers to class 0, second to class 1 and 

third to class 2 and that is similar for columns. 

Confusion Matrix for XGBoost: Here, XGBoost out of 23 samples in class 0, the model finds 12 and 

mislabels 5 into class 1 and 6 into class 2. For the second row, out of the 25 non-binders, the model 

identifies correctly 12 samples and mislabels 4 into moderate binders and 9 into strong binders, which 

is quite confusing why the majority of wrong predictions are strong binders, because theoretically 

speaking, the moderate binders are an intermediate category between non-binders and strong binders. 

Lastly, 15 samples are correctly identified as class 2 while 8 are mislabelled into class 1 and 3 as class 

0, providing similar behaviour as in the second row.                                             

[12, 5, 6] 

[4, 12, 9] 

[3, 8, 15] 

 

Confusion Matrix for Random Forest: This model shows the best performance, since it correctly finds 

18 samples belonging to class 2 and mislabels 3 into moderate binders and 5 into non-binders. 

Furthermore, it identifies 17 non-binders and misclassifies 3 as strong binders and 5 as moderate 

binders, which is a more logical condition. And finally, as all models struggle, it predicts correctly 11 

“MODERATE BINDING” samples out of the 23 and the rest 12 are shared equally falsely into the 

other 2 classes. 

[11, 6, 6] 

[5, 17, 3] 

[3, 5, 18] 

Confusion Matrix for LightGBM: LightGBM performs better in “STRONG BINDING” class, where it 

finds 15 out of the 26 samples and misclassifies 7 into non-binders and 4 into moderate binders. It also 

correctly identifies 12 samples of class 1, however it mislabels 8 into class 2 and 5 into class 0 

following similar irrelevant behaviour as the XGBoost algorithm. In class 0, it offers limited success, 

since more than half of samples are misclassified. 

 [9, 5, 9] 

 [5, 12, 8] 
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 [4, 7, 15] 

Confusion Matrix for Logistic Regression: Logistic Regression algorithm performs moderately in 

“MODERATE BINDING” class with 12 correct predictions out of 23, while in the other 2 classes the 

model struggles to recognize them with almost 45% correct predictions. 

 [12, 4, 7] 

 [8, 11, 6] 

 [7, 7, 12] 

Confusion Matrix for Support Vector Machines: SVM is the weakest model with moderate 

performance in class 0 and class 1 and poor performance in the “STRONG BINDING” class with 6 

correct predictions out of the 26. 

 [12 5 6] 

 [5 12 8] 

 [10 10 6] 

Confusion Matrix for Voting Classifier: This ensemble classifier performs almost similar to RF. Class 

2 is identical to RF, while class 1 has only 1 difference in one misclassified sample, where in RF 5 

were mislabelled to class 0 and 3 to class 2, while in this case 4 were mislabelled to class 0 and 4 to 

class 2. Another small difference is in moderate binders where RF correctly identifies 11, while voting 

classifier finds 10. 

 [10, 6, 7] 

 [4, 17, 4] 

 [3, 5, 18] 

Robust Features per Model 

For interpretability and robustness purposes, each model produced a list of features that appeared in at 

least 3 of the 5 outer folds of the nested cross validation and are depicted below. From the best 3 

models analyzed previously, which are Random Forest, Voting Classifier and XGBoost, the 

overlapping robust features include residues “ALA_173_HYD”, “PHE_341_HYD”, 

“PHE_341_VDW” and for molecular descriptors “ANGLE_HAY”, 

“Ligand_Distance_to_Grid_Box_Center”, “Mean_Hydrogen_Bond_Length_Distance”, 

“Mean_Hydrophobic_Bond_Length_Distance”, “Polar_Surface_Area”, “Surface_Area” and 

“THETA” (Image 41). 

 

 
Image 41: Code cell in Python for picking the robust features. 
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Below the robust features for each model are mentioned: 

 XGBoost: 

o “Polar_Surface_Area”, “ILE_172_HYD”, “GAMMA”, “ALA_173_HYD”, 

“ALA_96_VDW”, “ANGLE_HAY”, “Surface_Area” and “TYR_175_HYD” 

 Random Forest: 

o “Polar_Surface_Area”, “ILE_172_HYD”, “logP”, “ANGLE_HAY”, 

“Mean_Hydrophobic_Bond_Length_Distance”, “GAMMA”, “Surface_Area”, 

“THETA_2”, “Ligand_Distance_to_Grid_Box_Center”, 

“CLOSEST_ATOM_DISTANCE”, “ALA_96_VDW”, “Binding_Affinity_kcal/mole_”, 

“THETA”, “Mean_Hydrogen_Bond_Length_Distance”, “THR_439_VDW”, 

“TYR_95_H”, “Molecular_Volume”, “ANGLE_XDA”, “PHE_335_HYD”, 

“PHE_341_HYD” and “ALA_173_HYD” 

 LightGBM: 

o “ALA_96_VDW”, “THETA_2”, “Polar_Surface_Area”, “ANGLE_HAY”, 

“CLOSEST_ATOM_DISTANCE”, “Mean_Hydrophobic_Bond_Length_Distance”, 

“ASN_177_VDW”, “PHE_335_HYD”, “logP”, “THETA”, “Surface_Area”, 

“ALA_173_HYD”, “GLY_338_VDW”, “PHE_341_HYD”, “SER_336_VDW”, 

“TYR_95_VDW”, “GAMMA”, “Ligand_Distance_to_Grid_Box_Center”, 

“Mean_Hydrogen_Bond_Length_Distance”, “ANGLE_DHA”, “TYR_95_H”, 

“PHE_334_VDW”, “SER_336_H”, “PHE_335_VDW”, “ANGLE_XDA”, 

“Molecular_Volume”, “SER_438_HYD” and “ARG_104_VDW” 

 Logistic Regression: 

o “ALA_96_VDW”, “TYR_175_HYD”, “GLY_338_VDW”, “Polar_Surface_Area”, 

“ANGLE_HAY”, “PHE_335_HYD”, “SER_438_H”, “SER_336_HYD”, 

“ALA_169_HYD” and “ASP_98_OTHER” 

 SVM: 

o “ALA_96_VDW”, “GLY_338_VDW”, “TYR_175_HYD”, “ANGLE_HAY”, 

“Polar_Surface_Area”, “THR_497_VDW”, “SER_438_H”, “PHE_335_HYD”, 

“SER_336_HYD”, “SER_336_VDW”, “PHE_334_VDW” 

 Voting Classifier: 

 

o “ILE_172_HYD”, “GAMMA”, “ALA_96_VDW”, “Polar_Surface_Area”, 

“ANGLE_HAY”, “Surface_Area”, “Mean_Hydrogen_Bond_Length_Distance”, 

“Mean_Hydrophobic_Bond_Length_Distance”, “Binding_Affinity_kcal/mole_”, 

“Ligand_Distance_to_Grid_Box_Center”, “THETA”, 
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“CLOSEST_ATOM_DISTANCE”, “logP”, “TYR_176_HYD”, “ANGLE_XDA”, 

“THETA_2”, “ALA_173_HYD” and “Molecular_Volume” 

 

The hyperparameters from the best fold are the following: 

Random Forest: 

Best Outer Fold Index: 3, Accuracy: 0.800 

Best Hyperparameters for that fold: {'class_weight': 'balanced', 'max_depth': 5, 'max_features': 'log2', 

'min_samples_leaf': 5, 'min_samples_split': 25} 

 

XGBoost: 

Best Outer Fold Index: 0, Accuracy: 0.600 

Best Hyperparameters for that fold: {'colsample_bytree': 0.7, 'gamma': 0.5, 'learning_rate': 0.1, 

'max_depth': 4, 'reg_alpha': 1, 'reg_lambda': 5, 'subsample': 0.7} 

 

 

 

4.4 Explainability Analysis with SHAP Values 

 

For validity and interpretability of the previous results, SHAP (Shapley Additive exPlanations) values 

were applied for the optimal 2 algorithms, which are Random Forest and XGBoost. Since Voting 

Classifier has not an internal decision structure and combines the outputs of the other 2 models, SHAP 

analysis cannot be conducted for this ensemble method. For this reason, the 2 models were retrained 

on the robust features that are described in chapter 4.3.3 and on the best hyperparameters from the best 

fold of nested cross validation approach. This means that the final dataset size is (74, 21) for Random 

Forest and (74, 8) for XGBoost algorithm and the SHAP summary plots were generated as shown 

below in Image 42 and Image 43. The graphs illustrate that “Polar_Surface_Area” in both models is 

the top contributor and affects the decision more in samples belonging to class 1 and class 0. Among 

the 5 most predictive features in both models is “GAMMA” angle, which is equally useful for 

discriminating the strong and the moderate binders in both models. In addition, “ANGLE_HAY” 

feature is very decisive in XGBoost algorithm, especially in class 0 and class 2, while in RF it is not 

that critical. “Surface_Area” is important in XGBoost algorithm to discriminate class 1 and class 2 

samples, while in RF is less vital and is more predictive towards moderate and strong binders. As for 

residues “ALA_173_HYD” and “ILE_172_HYD” they are considered highly important, especially in 

the Random Forest Classifier, and facilitate decisions towards class 1 and class 2. Furthermore, the 

models show strong agreement in the “ALA_96_VDW” residue and that is that it contributes to 

moderate and non-binders. Another highlighted fact is that the binding affinity in Random Forest 
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contributes almost equally to all classes, meaning that this feature exclusively, although it is very 

important in molecular docking simulations and computational biology in general, it does not achieve 

proper classification of these 74 ligands in the 3 classes. This is also confirmed by the fact that the 

SHAP value of binding affinity is close to zero. Notably, SHAP values derived from Random Forest 

were significantly lower in magnitude than those from XGBoost. This difference stems from their 

underlying architectures. XGBoost is a gradient-boosting algorithm that builds trees in a sequential 

manner and optimizes the loss function at each stage, resulting in more strict and confident 

predictions. In contrast, Random Forest mechanism as described in section 3.5.4, averages the 

decisions of several trees and that led to the production of more distributed and conservative SHAP 

values. Despite these scale differences, the overall proportions of decisions towards the 3 classes 

indicate similar patterns and the most critical features are observed. 

 

 

Image 42: SHAP summary plot for Random Forest. 
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Image 43: SHAP summary plot for XGBoost algorithm. 

 
For better understanding of the predictive power of each feature in the 2 previous algorithms, SHAP 

summary plots were converted into class-wise percentages as the following heatmaps illustrate. As 

discussed in chapter 4.4, it is clear that random forest operates in a more conservative manner since 

none of the 21 robust features contribute more than 50% towards a class. On the other hand, in 

XGBoost algorithm, the differences in percentages across classes are wider, enhancing the strict and 

confident character of this model. 

 

 
Image 44: SHAP contribution percentage per class for Random Forest. 
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Image 45: SHAP contribution percentage per class for XGBoost. 

 

 
To complement and validate the class-specific SHAP breakdowns, a cross-model comparison was 

performed by averaging the absolute SHAP values across all samples and classes for both Random 

Forest and XGBoost models. All features are shown below in Image 46 with their overall contribution 

to model predictions. More specifically, features such as “Polar_Surface_Area” and “GAMMA” were 

found to be the top contributors in both models. In conclusion, XGBoost exhibited generally higher 

SHAP magnitudes than the Random Forest. However, the relative rankings between the two models 

show strong agreement. This alignment enhances the robustness and the repeatability of the results, 

which are totally compatible with what previous SHAP analysis revealed. 
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Image 46: Absolute SHAP values of robust features across the 2 models. 

 

 

 

4.4.1 Misclassification Analysis 

 
To further identify and assess the limitations of the models applied,  

an in-depth study was conducted into the causes behind them based on the following misclassification 

analysis. Figure 47 points out that Random Forest algorithm mislabelled 10 samples, while XGBoost 8 

and the common incorrect predictions were 4 which is inevitably a high percentage. This strong 

agreement between the two models highlights that although their core architecture is different, they 

can effectively detect possible mistakes in the initial dataset configuration and question directly the 

binding behaviour of these compounds. More specifically, the four common misclassifications were: 

 “Maprotiline” was predicted as a strong binder by both models, though it has an actual label 

1. This could be a reasonable condition, because it is a tetracyclic antidepressant, but it has 

very weak SERT inhibition with 5800 Ki value from PDSP. 

 “Nefazodone” was mislabelled into strong binder but its actual label is moderate binder. 

 “Trimipramine” showed a controversial behaviour, because Random Forest predicted it as a 

strong binder, while XGBoost as non-binder. However, the true label is “MODERATE 

BINDING” class. 

 “Vilazodone”, which was predicted as a non-binder again by both models, but its actual label 

is strong binder with Ki value approximately 0.5 and it is a serotonin modulator.  

Based on these results, it is obvious that they reinforce earlier findings from confusion matrices and 

SHAP values, where the most challenging group to identify, is the moderate binders. Two out of the 4 
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misclassifications were between “MODERATE BINDING” class and one of the remaining two. This 

suggests, that class 0 shares potentially an overlapping feature space and constitutes the intermediate 

condition. Nevertheless, in two cases, like “Vilazodone” and “Maprotiline”, the models do not follow 

an expected prediction, indicating potential overlap even in the distinct “STRONG BINDING” and 

“NO BINDING” classes. For the remaining six samples of Random Forest, 5 of them were again 

mislabelled between moderate binders and another class, while in 1 case, which was 

“CID_24856107” between strong and non-binders. As for XGBoost algorithm, for the remaining four 

samples, two of them were between moderate binders and one of the adjacent classes, one was 

classified as strong binder but it was a non-binder and finally one was labelled as a non-binder but it 

was actually belonging to “STRONGLY BINDING” class. 

 

 
Image 47: Misclassification analysis of Random Forest and XGBoost algorithms. 

 

 
To better understand the underlying path by which each model forms a final prediction, waterfall plots 

were generated. They consist of a base value denoted as “E[f(X)]” and it is the mean model output, 

namely what the model expects based on all samples of the dataset. Then the actual model’s output is 

“f(x)” and its value depends on whether the contribution of the additional feature pushes the model 

towards the predicted class or not. If the SHAP value is positive (red colour in Image 48), it indicates 

that this specific feature helps the model to get this particular prediction, while if it is negative (blue 

colour in Image 48), it means that the specific feature introduced is preventing the model from getting 

this predicted class. For the short waterfall analysis below, 4 compounds are depicted which represent 

4 different cases. 
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“Paroxetine” is an example of a positive predicted sample in both models that belongs in the 

“STRONG BINDING” class. For Random Forest classifier, initially the base value was relatively low 

with a value of 0.331. The most positive contributors were “ALA_173_HYD”, “Surface_Area”, 

“Polar_Surface_Area”, “THETA”, “logP” and “THETA_2” while the rest 15 features did not affect 

the model significantly. Final “f(x)” increased to 0.478, so the overall contribution was relatively 

small. On the other hand, XGBoost again recognized “ALA_173_HYD” as the most positive 

influential feature for predicting class 2, followed by “Surface_Area” and “GAMMA”. Their SHAP 

values were 0.32, 0.28 and 0.16 respectively. The final output “f(x)” went from 0.545 to 1.404, 

highlighting the importance of these features. However, there was 1 feature, “ILE_172_HYD” that 

pushed the model towards the opposite direction of class 2 prediction (Image 48). 

 

 

Image 48: Waterfall plots for “Paroxetine”. 
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In “Maprotiline” both models failed to predict the actual “NO BINDING” class and misclassified it as 

a strong binder. For RF baseline “E[f(X)]” was 0.331 and it slightly increased to “f(x)”=0.371. 

“logP” and “GAMMA” guided this prediction, but mainly “THETA” opposed this outcome. Since the 

impact of all these features was small, the final output of the model was governed by a high 

percentage of uncertainty and that was the most probable reason for the wrong prediction. XGBoost 

had 3 features, like “Surface_Area”, “ANGLE_HAY”, and “GAMMA” that dragged the model 

towards class 2 with high values, while only the residues “ILE_172_HYD” and “ALA_173_HYD” 

contributed to the opposite direction. As a result, the final model output increased from 0.545 to 0.843 

and this concludes that XGBoost classifier was confident in its incorrect prediction, in contrast to 

Random Forest (Image 49). 

 
Image 49: Waterfall plots for “Maprotiline”. 

 
 

Another unexpected misclassification case is that of “Trimipramine”, which was incorrectly predicted 

by RF as a strong binder and as a non-binder by XGBoost, although its actual label is moderate. In 

Random Forest algorithm, the majority of features possessed relatively low SHAP contributions to 

either in favour of class 2 or against and that is the reason why the model’s output was almost similar 
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to the baseline value. “logP” had the highest contribution though, with a small 0.04 value. In contrast, 

for XGBoost, “ALA_96_VDW” contributed with a positive value of 0.28 to a class 1 prediction, 

however, “Polar_Surface_Area” performed a significant contribution to the opposite direction with a 

value of -0.48. This led to an “f(x)”=0.348 from the baseline value “E[f(X)]” = 0.469, indicating high 

uncertainty of prediction towards class 1 (Image 50).  

 
Image 50: Waterfall plots for “Trimipramine”. 

 
 

Last misclassified case that is discussed in the present thesis refers to “Vilazodone”. It was recently 

launched in the US in 2011 and it is a serotonin modulator with very strong inhibition of SERT protein 

transporter. However, the 2 models labelled it as a non-binder which is an alarming condition since it 

indicates minimal to zero interaction with human SERT protein transporter. RF showed moderate 

certainty with output value “f(x)”=0.41 from “E[f(X)]” = 0.334, while XGBoost exhibited strong 

confidence in the false prediction with an output value “f(x)”=0.83 from “E[f(X)]” = 0.469. Both 

models’ decisions were driven mainly by “Polar_Surface_Area” feature, especially in XGBoost 

where it had a SHAP value of 0.9. To conclude, both models struggled to categorize “Vilazodone” in 

the “STRONG BINDING” class, because they relied heavily on one specific feature and that is the 
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reason why in the present thesis there are several misclassifications that result in low accuracy in 

nested cross validation approach (Image 51). 

 

Image 51: Waterfall plots for “Vilazodone”. 

 

 
In summary, the misclassification analysis conducted reinforces the complexity of predicting ligand 

binding affinity, particularly for compounds positioned in the intermediate “MODERATE BINDING” 

class. The details of evaluation metrics insights, confusion matrices, SHAP interpretability and 

individual case studies mentioned in waterfall plots, illustrate that a large portion of the errors 

occurred at the boundaries between moderate and adjacent classes. Random Forest displayed more 

conservative predictions with smaller SHAP values, while XGBoost produced, in general, more 

confident outputs, even in wrong cases. This behaviour reflects the inherent architectural differences 

of how each model interprets feature space. “Paroxetine” and drugs like these facilitate the scientific 

community to identify which features are common in strong binders, since this compound is widely 

recognized as an SSRI with strong affinity with SERT protein. It highlighted specific features, such as 

“ALA_173_HYD” and “Surface_Area” that are marked as potential strong binding indicators. In 

contrast, cases like “Maprotiline” and “Trimipramine” revealed that even expected predictions can 
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contradict dataset labels, hinting at either biological nuance or inconsistencies in the ground truth. 

Lastly, “Vilazodone”, for which both models failed to detect its actual label, highlights the danger of 

over-reliance on dominant features with extreme SHAP values, such as “Polar_Surface_Area”. 

Ultimately, these findings underscore the limitations of the present thesis and how essential the 

explainable AI tools are in the drug discovery process, as they enable researchers not only to quantify 

possible errors but also modify an underdevelopment drug. 

 

 

 

4.4.2 Partial Dependence Plot Interpretation 

 

The last tool used to validate all the previous results was the generation of partial dependence plots 

(PDPs). These plots illustrate how the distribution of each feature affects the predicted probability for 

a given class label. To maintain clarity and avoid redundancy, the partial dependence analysis 

presented here focused exclusively on classes 2 and 0 which represent the strong and the moderate 

binders, since these are the most probable candidates for potential antidepressant activity. The features 

shown in the following graphs (Images 52 and 53) were the most influential based on the previous 

SHAP analysis, though there were many more from Random Forest that were not integrated in this 

PDP analysis. Most predictive include “THETA”, “Polar_Surface_Area”, “Surface_Area”, 

“ANGLE_HAY”, “PHE_341_HYD”, “ALA_173_HYD”, “ILE_172_HYD”, “ALA_96_VDW”, 

“GAMMA”, “TYR_175_HYD”, “logP” and “Binding_Affinity_kcal/mole_”. The following plots 

display the contribution of the robust features to the “STRONG BINDING” class. More specifically, 

for “Polar_Surface_Area” both models converged. Values above approximately 50Å² tend to reduce 

the probability for a given ligand to be labelled as class 2, suggesting that highly polar drugs cannot 

effectively inhibit SERT protein transporter. As for the angle “THETA”, which was presented only by 

Random Forest, it was clear that values between  20° to 40° increased the chances for a class 2 label 

and then the curve plateaued. “ANGLE_HAY” and “GAMMA” depicted steep drops in their curves in 

XGBoost after ~100° and ~50° respectively, while similar pattern was followed by RF, though with 

much smoother decline. Major rise was observed in “Surface_Area” after the value of ~300 Å², 

particularly in XGBoost, but the curve was stabilized and slightly decreased after the value of ~450Å². 

This indicates that the ideal contact area of a molecule should possess an intermediate condition, 

meaning that very small area is not a probable SERT inhibitor, but also very large areas may not fit 

properly in the binding pocket. In addition, “logP” was a positive contributor for a “STRONG 

BINDING” case after a value of 3 in Random Forest Classifier. Regarding the most critical residues 

involved in interactions with SERT protein based on the SHAP summary plots and robust features, the 

2 models showed strong alignment. “Alanine_173_HYD” showed a rise in predicting class 2 with 
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values up to ~3 hydrophobic interactions. However, this consists the saturated point where the addition 

of extra bonds did not contribute to the models’ ability to label a compound as a strong binder. 

“Isoleucine_172_HYD” which appeared over 500 times in the present dataset indicated that when it 

formed more than 10 bonds with a given ligand, representing the sum of the 5 individual poses, it was 

more likely to be labelled as strong binder. “ALA_96_VDW” performed a slight increase in probability 

of a strong binder in the range of 0 to 1 bonds and then curves in both models plateaued. 

“PHE_341_HYD” in RF had a plot that was mostly flat, but in the range of ~1-2 bonds a minor 

increase was observed in the probability of a class 2 occurrence. Interestingly, the binding affinity 

curve was mostly flat in RF, suggesting low discriminative power to classify strong binders in the 

current task. Lastly, “TYR_175_HYD” that was included only in robust features of XGBoost 

algorithm had a minimal decrease in strong binding probability between 0-1 bonds. Generally, it is 

substantial to note that the range on y-axis for RF was very narrow (0.30-0.40) indicating that the 

predictive power of the depicted features did not alter the output probability of class 2 to a great 

extent. Similar but less narrow (0.20-0.45) was the range for XGBoost algorithm. We can conclude 

then, that the binding affinity of a ligand to human SERT protein transporter depends on multiple 

factors and not one exclusively, making the binding process a difficult task to clarify. 

 

Image 52: Partial Dependence Plots for Random Forest for strong binders. 

 

 



94 

 

 
Image 53: Partial Dependence Plots for XGBoost for strong binders. 

 
 

Images 54 and 55 represent the partial dependence plots across the two models for “MODERATE 

BINDING” class. Notably, “Polar_Surface_Area” aligned well with previous class 2 PDP plots as it 

demonstrated a steep decline after ~50 Å² in both models. This underlines that lower polarity favours 

both models, while higher values prevent a ligand from binding to SERT protein transporter. In 

contrast to class 2 PDP plots, “ANGLE_HAY” and “GAMMA” features showed increasing likelihood 

for “MODERATE BINDING” in the same ranges, where strong binding probability decreases. In 

addition, an opposite trend was observed for the “Surface_Area” feature, since in the range of ~300 

Å²- ~450 Å² both models displayed a drop in their  probability curves, whereas in the “STRONG 

BINDING” PDP plots a pronounced increase. As for “THETA”, which was depicted only in Random 

Forest Classifier, a slight decrease was observed around 20°–40°, opposite to the trend of strong 

binding class, indicating minimal discriminative power towards class 0. “logP” and 

“Binding_Affinity_kcal/mole_” had mostly flat curves for class 0 as image 55 revealed, indicating 

limited influence on predicting such compounds. Both models confirmed that for residues 

“ALA_173_HYD” and “ILE_172_HYD”, the behaviour was opposite to “STRONG BINDING” PDP 

plots. More specifically, for isoleucine the addition of more than 10 bonds weakened the model of 

predicting a potential moderate binder. The same was concluded for alanine, since the slope of the 

curve was negative. “ALA_96_VDW” exhibited positive contribution for moderate binders from 0 to 2 

bonds and then the curves plateaued. “PHE_341_HYD” showed an initial slight drop between values 

1-2 and then the curve flattened. Lastly, “TYR_175_HYD” increased the probability of a class 0 
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prediction in values 0 to 1 bonds, while in the same range the probabilities for a class 2 label were 

reduced as shown in image 53. Similarly to “STRONG BINDING” PDP plots, the ranges in y-axis 

were very narrow, which is correlated to minimal discriminative ability across the three binding 

classes. 

 

 

 
Image 54: Partial Dependence Plots for XGBoost for moderate binders. 
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Image 55: Partial Dependence Plots for Random Forest for moderate binders. 

 

 
In overall, the PDP analysis across both Random Forest and XGBoost models revealed that several 

SHAP-selected features, such as “ALA_173_HYD”, “GAMMA” and “Surface_Area”, were utilized 

by both models in predicting class 0 and class 2. However, their effects often appeared in opposite 

directions between the two classes, which aligns with the expected behaviour in a multiclassification 

task. Major exception was “Polar_Surface_Area”, which consistently decreased the probability of 

strong and moderate binding beyond ~50 Å², suggesting more distinct role in ligand-SERT binding 

process. Apart from these findings, the presence of flat and marginal curves highlighted the limited 

discriminative power for individual features, supporting the idea that SERT binding inhibition is 

governed by multiple factors or that all the assumptions and limitations of this thesis that are described 

in chapter 5.2 prevent the model from identifying potential discriminative patterns. 

 

 

Chapter 5: Conclusion and Discussion 
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5.1 Findings Analysis 

 

In the present study, an innovative and detailed approach was implemented that combined molecular 

docking simulations, extraction of molecular interaction descriptors, residue-level profiling and a 

machine learning pipeline to classify 74 ligands based on their affinity with human SERT protein 

transporter. “AutoDock Vina”, “Chimera” and “BIOVIA Discovery Studio” configured a final 

multidimensional dataset with over 150 features that captured different perspectives of the protein-

ligand binding process including inherent molecular properties of ligands, physicochemical 

characteristics, residue interactions and other distance and geometry-based features. 

The docking analysis conducted was first validated through the alignment with the 5I6X PDB 

structure (Image 32) and it showed high convergence. As expected, the KDE and box plots (Images 

33-34, 36-38) illustrated that strong binders have the most negative binding affinities, followed by 

moderate binders and last the non-binders. However, significant overlapping was observed, which 

suggests that this feature, while vital for binding processes, was insufficient for effective binding 

classification of the 74 ligands with SERT protein. This was also confirmed by the fact that in Random 

Forest SHAP values and PDPs, the binding affinity did not show any discriminative power towards a 

specific class. The top ten poses were generated from the software and from them the best five were 

selected through a custom Python script that ranked them based on binding affinity and RMSD values.  

Several machine learning models were tested and evaluated for their ability to classify ligands based 

on SERT inhibition into the three classes with a nested cross validation strategy. Among the 

algorithms, the most promising and robust one was Random Forest, with a mean training accuracy 

across folds ~84% and mean test accuracy 61.9%. The gap between train and test was acceptable, 

showing minimal overfitting possibly due to the small dataset size. However, it was still reliable and 

can possibly form the basis for future studies in this field. Second in rank, came the Voting Classifier 

which is an ensemble method that predicts based on the decisions of other known individual models. 

In the present thesis, for the Voting Classifier, Random Forest and XGBoost were integrated. It 

achieved mean train accuracy ~92% and mean test accuracy 60.4%. Notably, there was a high risk of 

overfitting since the difference between train and test was more than 30%. Another possible cause for 

this could be that the model memorizes the sample set instead of learning from them, again due to the 

small sample size. Finally, XGBoost performed moderately with 91.22% and 52.6% in train and test 

mean accuracy respectively, which was close to the Voting Classifier’s behaviour. The remaining 

models underperformed. The ranking order based on the F1-score and precision was similar to the 

accuracy for the three models. Random Forest predicted correctly more strong binders followed by 

non-binders and lastly moderate binders, indicating that it can easier detect samples in the 

diametrically opposed categories, while in the intermediate class which is in a boundary condition 
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with the adjacent 2 classes, it underperformed. Voting classifier performed similarly to Random 

Forest, while XGBoost acted oppositely to the other two models by focusing mostly on the moderate 

to strong binding spectrum and underperformed in “NO BINDING” class. Apart from the evaluation 

metrics, the two models had as outputs the robust features involved in the nested cross validation 

technique, which represented features that were selected in 3 or more out of the 5 folds. 

Several descriptors were examined statistically (Images 36-38) that reflect their distribution patterns 

across the three classes, while in combination with SHAP values and PDPs, an overall behaviour for 

each feature can be assessed. Notably, from SHAP summary plots it was clear that both Random 

Forest and XGBoost relied heavily on overlapping features with different weights. Across all features, 

“Polar_Surface_Area” was demonstrated as the top contributor in both models. Values exceeded ~50 

Å² were linked to lower probabilities of strong and moderate binding cases, as the steep decline in 

PDPs revealed, highly compatible to the box plot depicted in Image 37. The interpretation from this 

lies on the fact that excess polarity atoms in ligands are less likely to interact with the hydrophobic 

part of the protein. To further confirm this interpretation, “logP”, which is a measure of 

hydrophobicity of a molecule, indicated that the probabilities for a strong binder case rose sharply in 

values more than 3, as shown in the PDPs (Image 52). For “Surface_Area”, there was a clear 

relationship among classes and that was, higher values tend to correlate easier to strong binders. This 

argument was enhanced by the increased discriminative power that this feature showed in the PDP 

curve, where around ~300-450 Å² performed a rise, highlighting simultaneously the optimal contact 

area for a potential strong SERT inhibitor. Box plot in image 36 confirmed these findings. As for the 

angular descriptors, most important and influential angles were “GAMMA” and “ANGLE_HAY” and 

last “THETA” which was only exhibited in Random Forest robust features. “THETA” supported 

strong binding to SERT protein between ~20° and 40°. This was compatible with the PDPs of 

moderate binders, where in the same range exhibited a decreasing curve and therefore lower 

probabilities. SHAP summary plots of the other two angles displayed positive contribution effect to 

class 0 and class 2. PDPs revealed decreasing probabilities for strong binders at values beyond ~50° in 

“GAMMA” and ~100° in “ANGLE_HAY”, while a reversed behavior was depicted in the 

“MODERATE BINDING” plots for the same values. Another important aspect of the present thesis 

was the residue-level analysis and which of them were decisive and observed in each class more 

frequently. Based on the robust features from the 2 main algorithms and their SHAP values, the most 

important residues include “ALA_173_HYD”, “ILE_172_HYD”, “ALA_96_VDW”,    

“PHE_341_HYD” and “TYR_175_HYD”. First 3 were demonstrated in the robust features of the two 

models applied, while “PHE_341_HYD” was found in RF and “TYR_175_HYD” in XGBoost 

algorithm and performed moderate SHAP values. The probability of strong binding increased in both 

models when “Alanine_173_HYD” participated in up to 3 hydrophobic interactions, while a reversed 

behaviour was performed in “MODERATE BINDING” as shown by the PDPs. “ILE_172_HYD”, 
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which was the most frequent residue in all classes with more than 500 records, enabled “STRONG 

BINDING” classification for number of bonds higher than 10, while at the same time in moderate 

binders PDPs had a negative slope. “Alanine_96_VDW” that is involved in van der Waals interactions 

was informative for moderate and non-binders based on SHAP summary plots. Higher probabilities 

for the “MODERATE BINDING” class, emerged when it was involved in 0-2 bonds. 

“PHE_341_HYD” was more critical in class 0 and class 1, however the probability of a strong binder 

sample was increased in the range of 1-2 bonds, while in moderate binders was reduced. Lastly, 

“TYR_175_HYD” proved to be significantly influential for class 0, in which the probabilities were 

increased when “TYR_175_HYD” formed 0-1 bonds. There were also additional features among those 

in Random Forest, for which a more comprehensive analysis was not conducted for space, however 

their SHAP summary plots and box plots added value to this thesis and can be integrated in future 

studies. Generally, both SHAP summary plots and PDPs demonstrated that the features extracted from 

Chimera, AutoDock Vina and BIOVIA Discovery Studio did not have enough predictive power to 

direct a models decision, instead they were more likely to show the tendency that these features 

followed. This statement was enhanced by the low SHAP values in the SHAP summary plots, 

especially in the Random Forest model and by the y-axis in all PDPs, where the ranges were narrow 

(~0.3-0.4 in RF and 0.15-0.45 in XGBoost). Apart from that, y-axis represents the average predicted 

probability of a ligand belonging to a given class as a function of a feature X. Notably the ranges are 

close to the random guess in a multiclassification task with 3 categories which is 0.33, since several 

curves were flat around this range. 

Misclassification analysis was conducted to prove that both models underperformed due to limitations 

in the whole pipeline followed in the present thesis. Both models over-relied on some features and this 

led to wrong predictions. For example, in “Vilazodone” which is known as strong SSRI, both models 

failed to confirm this, and they labelled it as a non-binder due to its dominant value of 

“Polar_Surface_Area”, as image 51 illustrates. Similarly, “Maprotiline” was falsely labelled as 

strong binder instead of a non-binder, because both models over-relied on features like 

“Surface_Area”, “logP” and “GAMMA”. However, both models managed in cases such as 

“Paroxetine” to combine the contributions stemmed from molecular descriptors, like 

“Surface_Area”, “Polar_Surface_Area” and residues, like “ALA_173_HYD” and predict correctly 

the binding class. All this analysis, though very informative for ligand binding to SERT protein, it 

underlines the complexity and the multifactorial nature of SERT inhibition, which is difficult to clarify 

based solely on these tools. 

The findings of the present study aligned well with prior works related to SERT inhibition and 

computational modeling of ligand binding mentioned in Chapter 2. Key residues such as 

“ILE_172_HYD” and “PHE_341_HYD”, which consistently appeared in this thesis as critical 
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discriminators for “STRONG BINDING” class, were also identified in experimental studies by 

Andersen et al. (2009) and Adejoro & Adewara (2025) confirming their key role in SERT inhibition. 

Nencetti et al., 2011 and Andersen et al. (2009) also highlight the essential role of residue “Tyrosine 

95” that was among the robust features of Random Forest in SHAP summary plots. Apart from key 

residues, “Polar_Surface_Area”, is emphasized by Crampon et al. (2022) as a meaningful molecular 

descriptor for ligand binding affinity, compatible with the present study, in which PSA was a key 

discriminator especially for a “NO BINDING” class label. In addition Kong et al. (2019), achieved 

high precision using Random Forest and Voting Classifier models on SERT inhibitors by applying a 

binary classification task. The present thesis confirmed this tendency, although the evaluation metrics 

were much lower, possibly due to the three number of classes instead of two. Another common 

conclusion with the study (Crampon et al., 2022) is that the accuracy of molecular docking scores is 

questionable and for this reason an integrated machine learning pipeline is considered a more optimal 

solution for classifying ligands binding interactions. 

 

5.2 Assumptions- Limitations and Challenges  

 

The present thesis which incorporated several computational techniques, like docking simulations, 

extraction of specific molecular and residue details and construction of a supervised machine learning 

model to classify ligands based on their SERT inhibition, was governed by several assumptions, 

limitations and challenges that required careful consideration. Assumptions were grouped into 4 main 

parts: 

Docking Environment Assumptions: 

 Protein structure source: It was assumed that the 5I6X crystallization structure from RCSB 

Protein Data Bank was suitable for docking purposes. 

 It was also assumed that protein and ligand preprocessing steps (removal of unwanted atoms 

and ligands, addition of hydrogen atoms, assigning of charges, energy minimization of 

structure and steric effects and dock preparation) were done correctly. 

 It was assumed that sodium, chloride ions, water molecule and cholesterol did not disturb the 

correct execution of the docking simulations. 

 Construction of Grid Box: The grid box dimensions were defined manually in Chimera 

software, considering that the initial structure with the bound paroxetine at the central site of 

the protein was correct. In addition, it was assumed that the box had the suitable dimensions 

which included all the central site of the protein that the present thesis focused on. 
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 Docking scores validity: While docking is widely used in the drug discovery community and it 

reveals approximate biological aspects, it does not reflect a realistic ligand-binding simulation, 

since the receptor was considered rigid, the ligand was partially flexible and the scoring 

functions simplify the overall interactions that occur without considering potential steric 

effects. 

 Another assumption was based on the formulas used in 3.3 chapter for the evaluation of best 5 

poses, where binding affinity and RMSD values contributed equally to these. However, 

another approach, for example an increase in the weight of binding affinity could lead to 

alternative 5 best poses and possibly better and more realistic results. 

Feature Extraction & Representation Assumptions: 

 The selection of the best 5 poses through the custom Python script relied on a combination of 

binding affinities and RMSD values. Nevertheless, there is uncertainty in the fact that these 

poses may not reflect possible realistic conformations during ligand-SERT binding or they 

may not be functionally effective. 

 Molecular interaction details and residue-level profiling: Similar to docking validity, all the 

descriptors and residues were extracted from BIOVIA Discovery Studio which represents 

static snapshots of the ligand with the SERT transporter, though in reality these interactions 

emerged from dynamic environments under specific conditions, for example pH or 

temperature. 

 Median Aggregation: During aggregation of molecular descriptors with the median value, it 

was assumed that the median captures the most representative interaction profile of a ligand, 

effectively down-weighting outliers while still assuming that all 5 poses added value to the 

overall binding behaviour. 

 The strategy used for residues was summation, meaning that for the five poses, the values for 

each residue were summed in order to get one value for each residue and for each ligand. 

 For each ligand pose, the mean value of geometric properties, including the angular features 

“ANGLE DHA”, “ANGLE HAY”, “ANGLE XDA”, “ANGLE DAY”, “THETA”, “THETA 2”, 

“GAMMA”, as well as the feature “CLOSEST ATOM DISTANCE” was computed. These 

values represent averaged structural features per pose, irrespective of the specific residues 

involved in the interactions and are computed across all interaction entries associated with that 

pose. 

  In cases where an interaction (e.g., Amide–Pi Stacked) involved multiple residues the 

interaction was classified based on its type (in this case, as hydrophobic) and contributed to 

the hydrophobic interaction count for each of the residues involved. This ensured that multi-

residue contributions were integrated in the final model. 
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 While in the docking process, all ligands that support the functional part of the protein were 

kept, such as ions of sodium, chloride, water and cholesterol, they were excluded from 

machine learning model, since it focused on amino acids. However, among these ligands, only 

Na+ ion was present with some van der Waals interactions. 

 The mean values of hydrogen and hydrophobic bonds length distances emerged from the 

average distances of the individual bonds that participated in the respective category. This 

approach was quite confusing, because detailed information was put aside, but it was easier to 

integrate such feature in a machine learning pipeline. 

 In the other interactions feature, electrostatic bonds and halogen bonds were included, 

although their action is different. 

Machine Learning Pipeline Assumptions: 

 The machine learning models used (Random Forest, XGBoost, Voting Classifier) assume 

independence among input features, even though molecular descriptors are often correlated. 

 Collinear features described in chapter 3.5.3 were maintained in tree-based models that are 

more robust in handling multicollinearity, while in Logistic Regression and Support Vector 

Machines were dropped from the training process. 

 Nested cross validation framework was applied, since it is often a more ideal approach when 

the sample size is small. 

 For LightGBM algorithm RFE was not applied due to increased demands of computational 

time. 

 Slight variations in SVM AUC metrics across runs were assumed to result from internal 

randomness during probability estimation and data splitting. This could possibly be fixed with 

the probability parameter. 

 Explainable AI tools used here assumed that each feature had an individual discriminative 

power. However, it is possible that some features act cooperatively with other both in machine 

learning models and in realistic SERT-ligand binding environments. 

 The strategy for robust features that were obtained from nested cross validation in 3 or more 

outer folds, while logical, there could be another more effective solution of picking a subset of 

features. 

 In explainability analysis the thesis focused on all robust features from XGBoost algorithm 

that were also displayed in Random forest, with the addition of a few more robust features 

from RF. 

 The model focused equally to all 3 classes, although the strong and moderate binders are more 

probable SERT inhibitors. 
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Biological Interpretation & Validation Assumptions: 

 Label Accuracy: The most important fact for the present thesis is the correct labelling of the 

74 ligands. It was assumed that the Ki values for these ligands were valid from the widely 

known sources and also relatable. More specifically, while the radioligand binding assays 

from which the Ki values were extracted were not the same (radioligand, conditions of 

experiments etc.), they were considered suitable for the present thesis. 

 It was assumed that the structural and biological information associated with the selected CID 

compounds from the recognized sources was accurate, relevant, and suitable for docking and 

classification task in the present study. 

 It was assumed that the custom scripts about selection of best 5 out of 10 poses and 

“Ligand_Distance_to_Grid_Box_Center” feature were correct, although they are not 

mentioned in the following thesis for clarity and space limitations. 

 During the extraction of 2D images from BIOVIA Discovery Studio, several unfavourable 

interactions were revealed with red circles. While these might be correlated to severe steric 

effects, the specific poses were not excluded from the dataset or penalized somehow. The 

majority of them belong to the “NO BINDING” class. 

 The class separation was based solely on real Ki values with human SERT protein transporter 

and not based on the clinical antidepressant activity itself. This means that a moderate binder 

can be more effective as an antidepressant than a strong binder. 

 It was assumed that all ligands act via the same mechanism and binding site within SERT, 

without accounting for allosteric or atypical modes of action, although in literature there are 

several articles that claim for allosteric mechanism of SERT protein. 

 There was zero reference in the pharmacokinetics and ADMET for these ligands, despite their 

importance in ligand binding and drug-discovery processes. 

Apart from the previous assumptions there were several limitations and challenges that need to be 

mentioned. These include: 

 Limited Dataset: Notably, the sample size of 74 ligands is very small. In addition, it is a high 

dimensional dataset with over 150 features, so there was overfitting to some extent. This was 

proved by the fact that training accuracies in nested cross validation were much higher than 

test accuracies. The models showed poor generalization since they tended to “memorize” 

more the samples than learning the distinct patterns from them. Only Random Forest 

performed decently. 

 Aggregation issues: While the aggregation is a highly acceptable technique, especially in 

small datasets like in the present thesis, it may confuse the model, because it may take into 

account a potential outlier case. For example, in this thesis, where the median values were 
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used in pose aggregations, there was high uncertainty of whether the chosen sample was 

representative or not for a specific ligand. 

 All descriptors were extracted from static docking poses, where the SERT protein was rigid 

and the ligands were partially flexible without integrating molecular dynamics phenomena. 

 The thesis focused on all available residues that emerged from the static reaction of each 

ligand with SERT protein. This means that there might be more residues from SERT that were 

not observed in the 370 poses of the 74 different ligands, but may play a vital role in SERT 

inhibition. Furthermore, not all residues fall up or close to the binding pocket of SERT, so it 

may be redundant to study them. Last but not least, there are residues that are useful for the 

ligand-binding process and others for the stabilization of the whole complex. The challenge 

that emerged is the fact that this thesis did not separate them based on their realistic role, but it 

considered them equally useful for binding. 

 Collinear features may be present in the thesis, since only the features related to the 4 types of 

bonds have been removed, because they were the sum of the individual residue bonds for that 

specific type. Collinear features may confuse the model and underperform, especially Logistic 

Regression and SVM that are not tree-based models. 

 Lack of external validation set: The models were evaluated via internal nested cross-

validation, but no fully independent external test validation was used, because it would show 

potential overfitting. 

 The tuning of hyperparameters was limited due to low computational resources. Extended 

search for the optimal hyperparameters could benefit the model and increase evaluation 

metrics. 

 SHAP interpretability and PDPs considered the power of features individually, without any 

synergistic effects. 

 

5.3 Future Recommendations and Enhances 

 

Building on the findings and limitations of the present thesis, future research could progress in several 

aspects. First and mandatory, is the expanding of the dataset with a larger number of ligands, more 

than 1000 ligands, with experimentally validated Ki values. By this, generalizability will be enhanced 

and more advanced models could be implemented. An innovative approach would be to integrate in 

docking simulations, apart from the serotonin transporter (SERT), other related monoamine 

transporters, such as the norepinephrine transporter (NET) and dopamine transporter (DAT), which are 

primarily targets for SNRIs and TCAs, resulting in the creation of poly-pharmacological models that 

will have the ability to distinguish broad-spectrum antidepressant profiles. The docking scores of all 
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tested compounds with the three receptors and the extraction of all molecular descriptors and residues 

will facilitate the classification task that is applied in this thesis. Additionally, the incorporation of 

molecular dynamics simulations is essential, since it captures protein flexibility and reflects a more 

realistic in-vivo environment. From docking and molecular dynamics simulations, much more valid 

features will emerge that will be useful for possible machine learning model. Another proposal would 

be to integrate molecular fingerprints, which encode atom-level substructures and represent detailed 

chemical structures that are more realistic than the traditional descriptors used in the present thesis. 

Furthermore, the inclusion of pharmacokinetic and ADMET 

(absorption, distribution, metabolism, excretion and toxicity) data, would bridge the gap between 

binding affinity, efficacy and clinical condition. Finally, the creation of hybrid models or advanced 

models, like Graph neural networks (GNNs) may capture more distinct patterns of the ligands and 

classify them, handling the overlapping of classes more effectively. 

 

  

 

https://en.wiktionary.org/wiki/absorption#English
https://en.wiktionary.org/wiki/distribution#English
https://en.wiktionary.org/wiki/metabolism#English
https://en.wiktionary.org/wiki/excretion#English
https://en.wiktionary.org/wiki/toxicity#English
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APPENDICES 
 

 

A. Top 5 poses for each ligand with Chimera AutoDock Vina and Python 

Script  

 

Top 5 Poses for AMLODIPINE: 
Pose Binding 

Affinity 

RMSD Lower 

Bound 

RMSD Upper 

Bound 

Composite 

Score 

1 -7.524 0.000 0.000 1.000000 

2 -7.443 2.419 4.830 0.767533 

4 -7.085 2.572 4.870 0.648967 

5 -7.037 2.376 4.695 0.645159 

3 -7.131 2.765 5.866 0.631250 

 

Top 5 Poses for BROMOCRIPTINE: 
Pose Binding 

Affinity 

RMSD Lower 

Bound 

RMSD Upper 

Bound 

Composite Score 

1 -9.807 0.000 0.000 1.000000 

2 -9.604 1.571 2.584 0.719442 

5 -9.063 2.814 4.500 0.386319 

4 -9.144 3.127 4.909 0.372074 

3 -9.459 4.704 6.990 0.270925 

 

Top 5 Poses for CLOZAPINE: 
Pose Binding 

Affinity 

RMSD Lower 

Bound 

RMSD Upper 

Bound 

Composite 

Score 

1 -9.499 0.000 0.000 1.000000 

5 -8.760 2.037 2.399 0.683476 

3 -9.247 3.581 7.734 0.637632 

2 -9.319 8.765 11.900 0.396030 

6 -8.700 6.624 11.320 0.312432 
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Top 5 Poses for Conformer3D_COMPOUND_CID_11310988: 
Pose Binding 

Affinity 

RMSD Lower 

Bound 

RMSD Upper 

Bound 

Composite 

Score 

1 -7.662 0.000 0.000 1.000000 

2 -7.400 2.023 6.669 0.689447 

3 -6.990 1.702 2.570 0.646039 

9 -6.754 3.035 5.279 0.456393 

7 -6.879 3.548 7.338 0.437421 

 

Top 5 Poses for Top 5 Poses for  Conformer3D_COMPOUND_CID_11447499: 
Pose Binding 

Affinity 

RMSD Lower 

Bound 

RMSD Upper 

Bound 

Composite 

Score 

1 -7.360 0.000 0.000 1.000000 

2 -7.330 1.151 1.340 0.920166 

3 -7.172 1.162 1.456 0.820772 

4 -7.120 2.419 3.363 0.712491 

5 -6.977 1.630 2.663 0.662581 

 

Top 5 Poses for Conformer3D_COMPOUND_CID_11535974: 
Pose Binding 

Affinity 

RMSD Lower 

Bound 

RMSD Upper 

Bound 

Composite 

Score 

1 -8.398 0.000 0.000 1.000000 

2 -7.732 1.976 2.545 0.744553 

5 -7.444 1.899 2.622 0.672886 

4 -7.512 1.486 6.160 0.631180 

3 -7.563 2.381 6.427 0.620233 

 

Top 5 Poses for Conformer3D_COMPOUND_CID_11608403: 
Pose Binding 

Affinity 

RMSD Lower 

Bound 

RMSD Upper 

Bound 

Composite 

Score 
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1 -8.726 0.000 0.000 1.000000 

4 -7.813 1.667 1.957 0.708850 

2 -7.874 1.768 6.613 0.620253 

3 -7.824 2.142 6.314 0.604478 

7 -7.483 2.276 3.092 0.594335 

 

Top 5 Poses for Conformer3D_COMPOUND_CID_11623136: 
Pose Binding 

Affinity 

RMSD Lower 

Bound 

RMSD Upper 

Bound 

Composite 

Score 

1 -7.547 0.000 0.000 1.000000 

2 -7.367 3.346 4.339 0.726730 

5 -7.163 1.324 1.651 0.722580 

3 -7.252 1.321 6.486 0.672397 

9 -7.029 3.872 8.468 0.444365 

 

Top 5 Poses for Conformer3D_COMPOUND_CID_11658763: 
Pose Binding 

Affinity 

RMSD Lower 

Bound 

RMSD Upper 

Bound 

Composite 

Score 

1 -7.677 0.000 0.000 1.000000 

3 -7.248 6.010 7.688 0.528387 

9 -6.765 2.783 4.896 0.503150 

8 -6.814 4.017 6.380 0.456314 

10 -6.724 3.861 6.524 0.425735 

 

Top 5 Poses for Conformer3D_COMPOUND_CID_11673089: 
Pose Binding 

Affinity 

RMSD Lower 

Bound 

RMSD Upper 

Bound 

Composite 

Score 

1 -7.890 0.000 0.000 1.000000 

2 -7.693 1.852 2.716 0.718743 

3 -7.541 2.146 3.401 0.618048 

4 -7.381 2.000 2.913 0.583127 
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8 -7.209 2.700 4.349 0.423784 

 

Top 5 Poses for Conformer3D_COMPOUND_CID_11694324: 
Pose Binding 

Affinity 

RMSD Lower 

Bound 

RMSD Upper 

Bound 

Composite 

Score 

1 -7.829 0.000 0.000 1.000000 

2 -7.741 2.593 3.280 0.852055 

3 -7.628 2.573 3.318 0.815793 

4 -7.349 2.777 6.542 0.660779 

5 -7.348 3.664 6.331 0.644944 

 

Top 5 Poses for Conformer3D_COMPOUND_CID_16006089: 
Pose Binding 

Affinity 

RMSD Lower 

Bound 

RMSD Upper 

Bound 

Composite 

Score 

1 -10.430 0.000 0.000 1.000000 

2 -10.230 1.453 2.141 0.760300 

3 -10.180 4.004 6.768 0.403548 

5 -9.696 2.384 8.885 0.287613 

4 -10.070 4.821 7.863 0.273415 

 

Top 5 Poses for Conformer3D_COMPOUND_CID_24855949: 
Pose Binding 

Affinity 

RMSD Lower 

Bound 

RMSD Upper 

Bound 

Composite 

Score 

1 -8.986 0.000 0.000 1.000000 

3 -8.716 2.393 8.324 0.480704 

10 -8.193 2.321 3.499 0.429517 

9 -8.231 2.737 4.512 0.389789 

4 -8.649 3.246 9.113 0.382380 

 

Top 5 Poses for Conformer3D_COMPOUND_CID_24855953: 
Pose Binding RMSD Lower RMSD Upper Composite 
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Affinity Bound Bound Score 

1 -9.651 0.000 0.000 1.000000 

3 -8.667 1.731 2.234 0.650647 

7 -8.308 2.860 4.408 0.468666 

4 -8.664 4.310 7.563 0.411505 

8 -8.260 4.629 7.313 0.313507 

 

Top 5 Poses for Conformer3D_COMPOUND_CID_24855981: 
Pose Binding 

Affinity 

RMSD Lower 

Bound 

RMSD Upper 

Bound 

Composite 

Score 

1 -10.530 0.000 0.000 1.000000 

3 -10.120 1.800 2.337 0.693584 

4 -10.100 2.464 9.066 0.456693 

5 -9.925 2.340 9.459 0.388982 

2 -10.390 5.274 11.450 0.347788 

 

Top 5 Poses for Conformer3D_COMPOUND_CID_24856012: 
Pose Binding 

Affinity 

RMSD Lower 

Bound 

RMSD Upper 

Bound 

Composite 

Score 

1 -9.634 0.000 0.000 1.000000 

4 -9.228 2.274 2.831 0.649327 

9 -8.750 1.687 2.317 0.531373 

5 -9.000 3.098 4.613 0.471443 

3 -9.257 3.796 8.683 0.399562 

 

Top 5 Poses for Conformer3D_COMPOUND_CID_24856046: 
Pose Binding 

Affinity 

RMSD Lower 

Bound 

RMSD Upper 

Bound 

Composite 

Score 

1 -10.080 0.000 0.000 1.000000 

3 -9.578 1.547 1.809 0.730895 

8 -9.028 2.648 3.135 0.480455 
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5 -9.367 3.705 5.412 0.474801 

6 -9.347 3.455 5.865 0.468723 

 

Top 5 Poses for Conformer3D_COMPOUND_CID_24856107: 
Pose Binding 

Affinity 

RMSD Lower 

Bound 

RMSD Upper 

Bound 

Composite 

Score 

1 -10.600 0.000 0.000 1.000000 

3 -9.937 4.285 7.633 0.435235 

4 -9.682 4.185 7.606 0.374716 

2 -10.340 6.246 11.360 0.353193 

7 -9.471 4.561 7.177 0.313788 

 

Top 5 Poses for Conformer3D_COMPOUND_CID_24947569: 
Pose Binding 

Affinity 

RMSD Lower 

Bound 

RMSD Upper 

Bound 

Composite 

Score 

1 -9.335 0.0000 0.000 1.000000 

2 -9.263 0.8117 1.056 0.916583 

4 -8.765 1.8450 2.846 0.697736 

9 -8.156 2.6330 4.209 0.473574 

5 -8.713 4.3130 7.265 0.455903 

 

Top 5 Poses for Conformer3D_COMPOUND_CID_24947939: 
Pose Binding 

Affinity 

RMSD Lower 

Bound 

RMSD Upper 

Bound 

Composite 

Score 

1 -10.190 0.000 0.000 1.000000 

3 -9.794 1.410 1.813 0.816973 

2 -9.934 2.001 3.001 0.799177 

4 -9.640 2.561 3.763 0.694763 

5 -9.597 5.489 7.796 0.483775 

 

Top 5 Poses for Conformer3D_COMPOUND_CID_24964158: 
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Pose Binding 

Affinity 

RMSD Lower 

Bound 

RMSD Upper 

Bound 

Composite 

Score 

1 -9.353 0.000 0.000 1.000000 

2 -8.989 1.530 1.872 0.723190 

3 -8.970 1.825 2.201 0.687595 

4 -8.668 1.799 2.729 0.573182 

9 -8.390 1.963 2.717 0.472402 

 

Top 5 Poses for Conformer3D_COMPOUND_CID_44351345: 
Pose Binding 

Affinity 

RMSD Lower 

Bound 

RMSD Upper 

Bound 

Composite Score 

1 -11.080 0.000 0.000 1.000000 

3 -10.540 1.040 1.840 0.769295 

9 -10.070 1.978 3.182 0.573985 

7 -10.240 2.782 3.870 0.563039 

10 -9.755 2.599 3.458 0.460074 

 

Top 5 Poses for Conformer3D_COMPOUND_CID_44390396: 
Pose Binding 

Affinity 

RMSD Lower 

Bound 

RMSD Upper 

Bound 

Composite 

Score 

1 -7.644 0.0000 0.000 1.000000 

2 -7.374 0.9077 1.115 0.854380 

3 -7.318 2.1340 2.858 0.740583 

4 -7.096 1.6210 2.142 0.716419 

6 -6.831 2.6120 6.355 0.479039 

 

Top 5 Poses for Conformer3D_COMPOUND_CID_44456154: 
Pose Binding 

Affinity 

RMSD Lower 

Bound 

RMSD Upper 

Bound 

Composite 

Score 

1 -10.030 0.000 0.000 1.000000 

2 -9.996 1.329 1.873 0.848732 



122 

 

3 -9.768 1.550 1.972 0.773039 

4 -9.766 2.067 2.617 0.720116 

6 -9.250 2.752 3.816 0.503481 

 

Top 5 Poses for DANTROLENE_COMPOUND_CID_6914273: 
Pose Binding 

Affinity 

RMSD Lower 

Bound 

RMSD Upper 

Bound 

Composite 

Score 

1 -9.284 0.0000 0.000 1.000000 

2 -9.258 1.1960 1.781 0.872258 

3 -9.239 1.7070 2.073 0.828532 

4 -8.961 0.9312 2.016 0.791366 

6 -8.468 2.0760 2.717 0.556085 

 

Top 5 Poses for Diphenhydramine_COMPOUND_CID_3100: 
Pose Binding 

Affinity 

RMSD Lower 

Bound 

RMSD Upper 

Bound 

Composite 

Score 

1 -7.836 0.0000 0.000 1.000000 

2 -7.442 0.3864 4.309 0.617308 

3 -7.325 2.1910 5.086 0.419748 

7 -7.171 2.5440 3.172 0.410435 

9 -7.105 2.0870 3.273 0.405202 

 

Top 5 Poses for FLUTAMIDE_COMPOUND_CID_3397: 
Pose Binding 

Affinity 

RMSD Lower 

Bound 

RMSD Upper 

Bound 

Composite 

Score 

1 -8.199 0.000 0.000 1.000000 

2 -7.813 2.066 2.731 0.795774 

3 -7.714 2.256 2.935 0.759441 

8 -7.385 2.562 3.294 0.651121 

5 -7.546 4.445 6.828 0.594228 
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Top 5 Poses for INDATRALINE_COMPOUND_CID_3703: 
Pose Binding 

Affinity 

RMSD Lower 

Bound 

RMSD Upper 

Bound 

Composite 

Score 

1 -9.796 0.000 0.000 1.000000 

2 -9.672 1.876 2.503 0.878129 

3 -9.571 2.129 2.925 0.837126 

4 -9.202 1.630 2.471 0.756060 

7 -8.862 3.680 5.652 0.558608 

 

Top 5 Poses for IPRINDOLE_COMPOUND_CID_21722: 
Pose Binding 

Affinity 

RMSD Lower 

Bound 

RMSD Upper 

Bound 

Composite 

Score 

1 -8.240 0.000 0.000 1.000000 

2 -8.158 1.770 5.066 0.793670 

3 -8.048 1.212 4.172 0.785478 

5 -7.975 1.501 4.250 0.744781 

4 -7.994 1.759 5.004 0.727217 

 

Top 5 Poses for LOSARTAN_COMPOUND_CID_3961: 
Pose Binding 

Affinity 

RMSD Lower 

Bound 

RMSD Upper 

Bound 

Composite 

Score 

1 -9.809 0.000 0.000 1.000000 

3 -9.304 3.045 3.701 0.386599 

7 -8.898 2.066 2.538 0.385310 

6 -8.938 2.122 3.184 0.366317 

2 -9.398 2.622 7.062 0.313633 

 

Top 5 Poses for METOCLOPRAMIDE_COMPOUND_CID_4168: 
Pose Binding 

Affinity 

RMSD Lower 

Bound 

RMSD Upper 

Bound 

Composite 

Score 

1 -6.760 0.000 0.000 1.000000 
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4 -6.547 2.696 6.338 0.468835 

3 -6.575 3.698 6.893 0.399112 

9 -6.237 2.899 4.056 0.382474 

7 -6.305 2.711 6.090 0.349849 

 

Top 5 Poses for MIRTAZAPINE_Conformer3D_COMPOUND_CID_4205: 
Pose Binding 

Affinity 

RMSD Lower 

Bound 

RMSD Upper 

Bound 

Composite 

Score 

1 -8.735 0.000 0.000 1.000000 

6 -8.518 1.080 1.355 0.720238 

3 -8.582 1.262 4.741 0.571578 

4 -8.555 2.717 4.450 0.439059 

8 -8.464 2.262 4.808 0.414710 

 

Top 5 Poses for NALTREXONE_COMPOUND_CID_5360515: 
Pose Binding 

Affinity 

RMSD Lower 

Bound 

RMSD Upper 

Bound 

Composite 

Score 

1 -8.912 0.000 0.000 1.000000 

2 -8.845 2.444 4.857 0.780188 

3 -8.742 2.731 3.601 0.764124 

4 -8.546 2.473 5.466 0.648800 

10 -8.046 2.006 2.939 0.534010 

 

Top 5 Poses for NEFAZODONE_COMPOUND_CID_4449: 
Pose Binding 

Affinity 

RMSD Lower 

Bound 

RMSD Upper 

Bound 

Composite 

Score 

1 -10.540 0.000 0.000 1.000000 

2 -10.110 3.838 5.306 0.448241 

8 -9.937 4.320 4.954 0.358037 

4 -10.050 5.087 6.050 0.334267 

9 -9.920 4.521 5.642 0.318890 
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Top 5 Poses for PIROXICAM_COMPOUND_CID_54676228: 
Pose Binding 

Affinity 

RMSD Lower 

Bound 

RMSD Upper 

Bound 

Composite 

Score 

1 -9.076 0.000 0.000 1.000000 

3 -8.741 1.920 3.100 0.631585 

2 -8.990 2.905 7.734 0.520041 

4 -8.717 3.127 4.496 0.499194 

5 -8.693 4.062 5.180 0.407860 

 

Top 5 Poses for QUETIAPINE_COMPOUND_CID_5002: 
Pose Binding 

Affinity 

RMSD Lower 

Bound 

RMSD Upper 

Bound 

Composite 

Score 

1 -8.679 0.000 0.000 1.000000 

5 -8.124 3.295 5.796 0.629053 

2 -8.259 4.557 7.809 0.594568 

8 -7.818 3.254 3.907 0.577849 

3 -8.152 4.049 7.881 0.574715 

 

Top 5 Poses for REBOXETINE_COMPOUND_CID_127151: 
Pose Binding 

Affinity 

RMSD Lower 

Bound 

RMSD Upper 

Bound 

Composite 

Score 

1 -8.538 0.000 0.000 1.000000 

7 -7.817 1.748 2.763 0.594357 

3 -7.971 2.678 4.156 0.587815 

6 -7.907 2.218 4.662 0.566756 

4 -7.955 3.580 5.652 0.514157 

 

Top 5 Poses for TRIMIPRAMINE_COMPOUND_CID_5584: 
Pose Binding 

Affinity 

RMSD Lower 

Bound 

RMSD Upper 

Bound 

Composite 

Score 
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1 -8.627 0.000 0.000 1.000000 

2 -8.579 2.660 7.273 0.665815 

6 -8.188 1.553 4.610 0.630041 

5 -8.252 2.237 5.047 0.617087 

3 -8.260 2.502 6.115 0.578712 

 

Top 5 Poses for ZOLPIDEM_COMPOUND_CID_5732: 
Pose Binding 

Affinity 

RMSD Lower 

Bound 

RMSD Upper 

Bound 

Composite 

Score 

1 -8.958 0.000 0.000 1.000000 

2 -8.878 1.768 4.159 0.803351 

4 -8.655 2.395 4.685 0.677699 

7 -8.412 1.668 2.404 0.658587 

5 -8.582 2.020 4.799 0.655180 

 

Top 5 Poses for ΑΤΟΜΟΧΕΤΙΝΕ_COMPOUND_CID_54841: 
Pose Binding 

Affinity 

RMSD Lower 

Bound 

RMSD Upper 

Bound 

Composite 

Score 

1 -8.230 0.0000 0.000 1.000000 

3 -7.909 0.7422 2.055 0.798195 

2 -8.095 1.5020 5.638 0.658978 

6 -7.112 1.4230 2.632 0.541864 

4 -7.318 1.7440 5.612 0.456037 

 

Top 5 Poses for ACETAMINOPHEN_COMPOUND_CID_1983: 
Pose Binding 

Affinity 

RMSD Lower 

Bound 

RMSD Upper 

Bound 

Composite 

Score 

1 -6.078 0.000 0.000 1.000000 

2 -5.971 1.478 4.769 0.829390 

3 -5.867 2.069 2.623 0.801272 

4 -5.834 2.381 2.804 0.774520 
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5 -5.774 2.948 3.944 0.711360 

 

Top 5 Poses for AMITRIPTYLINE_COMPOUND_CID_2160: 
Pose Binding 

Affinity 

RMSD Lower 

Bound 

RMSD Upper 

Bound 

Composite 

Score 

1 -8.991 0.000 0.000 1.000000 

2 -8.401 2.073 5.554 0.656883 

5 -8.310 2.416 4.389 0.646271 

4 -8.382 2.763 5.805 0.628623 

7 -8.228 4.435 7.240 0.510925 

 

Top 5 Poses for ASPIRIN_COMPOUND_CID_2244: 
Pose Binding 

Affinity 

RMSD Lower 

Bound 

RMSD Upper 

Bound 

Composite 

Score 

1 -6.570 0.000 0.000 1.000000 

2 -6.526 1.760 3.484 0.799232 

3 -6.458 2.023 2.544 0.788851 

5 -6.099 2.834 4.294 0.539706 

6 -6.061 2.615 5.110 0.504824 

 

Top 5 Poses for BUBROPION_COMPOUND_CID_444: 
Pose Binding 

Affinity 

RMSD Lower 

Bound 

RMSD Upper 

Bound 

Composite 

Score 

1 -7.263 0.000 0.000 1.000000 

2 -7.189 1.985 2.630 0.772865 

3 -7.091 1.808 2.775 0.730354 

4 -6.868 1.722 3.040 0.620837 

7 -6.617 1.954 2.483 0.513507 

 

Top 5 Poses for CIMETIDINE_COMPOUND_CID_2756: 
Pose Binding RMSD Lower RMSD Upper Composite 
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Affinity Bound Bound Score 

1 -6.130 0.0000 0.000 1.000000 

2 -6.074 0.7883 2.159 0.833194 

9 -5.772 1.8890 3.353 0.519221 

3 -5.966 1.6440 7.098 0.517508 

5 -5.838 3.1090 4.244 0.461997 

 

Top 5 Poses for CITALOPRAM_CID_2771: 
Pose Binding 

Affinity 

RMSD Lower 

Bound 

RMSD Upper 

Bound 

Composite 

Score 

1 -8.991 0.000 0.000 1.000000 

3 -8.240 2.085 2.753 0.703838 

2 -8.298 3.848 6.322 0.601099 

4 -8.226 4.213 6.023 0.580426 

6 -8.103 4.871 6.692 0.519678 

 

Top 5 Poses for CLOMIPRAMINE_COMPOUND_CID_2801: 
Pose Binding 

Affinity 

RMSD Lower 

Bound 

RMSD Upper 

Bound 

Composite 

Score 

1 -8.493 0.000 0.000 1.000000 

3 -7.906 1.659 2.123 0.639394 

2 -8.115 2.771 5.887 0.493080 

6 -7.832 2.256 5.391 0.455850 

10 -7.408 2.933 5.362 0.286330 

 

Top 5 Poses for CLOPHENIRAMINE_COMPOUND_CID_2725: 
Pose Binding 

Affinity 

RMSD Lower 

Bound 

RMSD Upper 

Bound 

Composite 

Score 

1 -7.871 0.000 0.000 1.000000 

3 -7.393 1.875 3.060 0.627946 

5 -7.302 1.817 3.251 0.596842 
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2 -7.651 2.997 5.248 0.552960 

6 -7.258 2.536 5.356 0.459077 

 

Top 5 Poses for DESIPRAMINE_COMPOUND_CID_2995: 
Pose Binding 

Affinity 

RMSD Lower 

Bound 

RMSD Upper 

Bound 

Composite 

Score 

1 -8.359 0.000 0.000 1.000000 

2 -8.051 2.001 5.329 0.688746 

4 -7.718 2.197 5.362 0.563910 

7 -7.532 1.587 5.271 0.521417 

3 -7.860 3.401 7.546 0.517803 

 

Top 5 Poses for DESVENLAFAXINE_COMPOUND_CID_125017: 
Pose Binding 

Affinity 

RMSD Lower 

Bound 

RMSD Upper 

Bound 

Composite 

Score 

1 -7.352 0.000 0.000 1.000000 

2 -7.286 1.697 3.983 0.683070 

3 -7.249 1.459 3.986 0.670105 

4 -7.210 2.100 5.052 0.559244 

6 -7.110 2.207 3.737 0.538199 

 

Top 5 Poses for DEXTROMETHORPHAN_COMPOUND_CID_5360696: 
Pose Binding 

Affinity 

RMSD Lower 

Bound 

RMSD Upper 

Bound 

Composite 

Score 

1 -8.997 0.000 0.000 1.000000 

2 -8.990 2.222 4.155 0.856418 

3 -8.376 1.961 4.138 0.709919 

4 -8.282 2.174 4.732 0.668760 

6 -7.809 2.731 5.342 0.524128 

 

Top 5 Poses for DOXEPIN_COMPOUND_CID_667477: 
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Pose Binding 

Affinity 

RMSD Lower 

Bound 

RMSD Upper 

Bound 

Composite 

Score 

1 -8.607 0.000 0.000 1.000000 

2 -8.162 4.657 7.271 0.555206 

5 -8.060 3.920 6.612 0.547975 

4 -8.072 4.559 6.596 0.536998 

3 -8.129 4.724 7.447 0.536928 

 

Top 5 Poses for DULOXETINE_COMPOUND_CID_60835: 
Pose Binding 

Affinity 

RMSD Lower 

Bound 

RMSD Upper 

Bound 

Composite 

Score 

1 -8.528 0.000 0.000 1.000000 

2 -8.029 2.340 5.868 0.550223 

4 -8.000 2.571 6.180 0.521642 

3 -8.015 3.569 6.488 0.486426 

7 -7.885 3.591 6.149 0.438085 

 

Top 5 Poses for ESCITALOPRAM_COMPOUND_CID_146570: 
Pose Binding 

Affinity 

RMSD Lower 

Bound 

RMSD Upper 

Bound 

Composite 

Score 

1 -9.175 0.000 0.000 1.000000 

4 -8.365 2.104 3.220 0.635389 

2 -8.489 3.841 6.266 0.563323 

7 -8.257 4.625 6.475 0.469445 

3 -8.404 5.685 7.559 0.463302 

 

Top 5 Poses for FEXOFENADINE_COMPOUND_CID_3348: 
Pose Binding 

Affinity 

RMSD Lower 

Bound 

RMSD Upper 

Bound 

Composite 

Score 

1 -10.93 0.000 0.000 1.000000 

2 -10.89 2.061 3.445 0.764486 
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5 -10.72 1.425 3.080 0.744072 

4 -10.75 2.366 4.592 0.657978 

8 -10.30 1.889 2.306 0.561988 

 

Top 5 Poses for FLUOXETINE_CID_3386: 
Pose Binding 

Affinity 

RMSD Lower 

Bound 

RMSD Upper 

Bound 

Composite 

Score 

1 -9.268 0.000 0.000 1.000000 

2 -8.629 1.446 2.284 0.724027 

4 -8.103 1.931 3.231 0.562049 

6 -7.901 2.080 3.555 0.502949 

3 -8.480 4.260 6.644 0.411342 

 

Top 5 Poses for FLUVOXAMINE_CID_5324346: 
Pose Binding 

Affinity 

RMSD Lower 

Bound 

RMSD Upper 

Bound 

Composite 

Score 

1 -8.007 0.0000 0.000 1.000000 

3 -7.916 0.9886 1.507 0.913120 

2 -7.939 1.3330 1.798 0.904758 

4 -7.906 1.6230 2.329 0.875393 

5 -7.477 1.8660 2.460 0.734461 

 

Top 5 Poses for IBUPROFEN_COMPOUND_CID_3672: 
Pose Binding 

Affinity 

RMSD Lower 

Bound 

RMSD Upper 

Bound 

Composite 

Score 

1 -7.505 0.000 0.000 1.000000 

3 -7.075 1.226 2.057 0.780508 

2 -7.453 3.690 6.342 0.775007 

7 -6.756 1.724 2.413 0.649922 

9 -6.612 2.578 3.486 0.559104 
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Top 5 Poses for IMIPRAMINE_COMPOUND_CID_3696: 
Pose Binding 

Affinity 

RMSD Lower 

Bound 

RMSD Upper 

Bound 

Composite 

Score 

1 -8.448 0.000 0.000 1.000000 

3 -8.003 1.733 5.548 0.640254 

2 -8.055 3.154 7.505 0.564812 

4 -7.804 1.908 5.919 0.551163 

7 -7.692 2.996 5.764 0.477680 

 

Top 5 Poses for LEVOMILNACIPRAN_COMPOUND_CID_6917779: 
Pose Binding 

Affinity 

RMSD Lower 

Bound 

RMSD Upper 

Bound 

Composite 

Score 

1 -7.854 0.000 0.000 1.000000 

2 -7.107 1.371 2.015 0.600660 

5 -6.996 1.527 1.723 0.569127 

6 -6.890 1.846 2.482 0.483956 

3 -7.020 2.094 3.198 0.474232 

 

Top 5 Poses for MAPROTILINE_COMPOUND_CID_4011: 
Pose Binding 

Affinity 

RMSD Lower 

Bound 

RMSD Upper 

Bound 

Composite 

Score 

1 -8.967 0.000 0.000 1.000000 

2 -8.928 2.487 5.165 0.802928 

3 -8.825 2.822 5.363 0.756733 

6 -8.255 2.015 3.472 0.642726 

5 -8.348 2.407 4.969 0.627659 

 

Top 5 Poses for MAZINDOL_COMPOUND_CID_4020: 
Pose Binding 

Affinity 

RMSD Lower 

Bound 

RMSD Upper 

Bound 

Composite 

Score 

1 -8.709 0.000 0.000 1.000000 
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2 -8.686 2.778 5.187 0.605710 

5 -8.411 2.696 5.034 0.522707 

7 -8.110 3.483 6.165 0.323434 

3 -8.522 5.168 7.462 0.304373 

 

Top 5 Poses for METFORMIN_COMPOUND_CID_4091: 
Pose Binding 

Affinity 

RMSD Lower 

Bound 

RMSD Upper 

Bound 

Composite 

Score 

1 -5.364 0.000 0.000 1.000000 

2 -5.154 1.412 1.518 0.894515 

4 -4.808 1.397 1.667 0.788814 

3 -4.875 1.880 2.665 0.787595 

5 -4.749 1.383 1.394 0.775192 

 

Top 5 Poses for MILNACIPRAN_COMPOUND_CID_65833: 
Pose Binding 

Affinity 

RMSD Lower 

Bound 

RMSD Upper 

Bound 

Composite 

Score 

1 -7.218 0.000 0.000 1.000000 

2 -7.021 1.815 2.008 0.682278 

4 -6.846 1.607 2.305 0.586511 

8 -6.749 1.378 1.975 0.561457 

3 -6.876 1.942 3.097 0.547866 

 

Top 5 Poses for NAPROXEN_COMPOUND_CID_156391: 
Pose Binding 

Affinity 

RMSD Lower 

Bound 

RMSD Upper 

Bound 

Composite 

Score 

1 -8.782 0.000 0.000 1.000000 

4 -8.154 1.199 2.269 0.770645 

2 -8.327 1.269 6.448 0.710655 

3 -8.182 1.426 6.641 0.669012 

7 -7.503 2.935 6.837 0.466617 
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Top 5 Poses for NORTRIPTYLINE_COMPOUND_CID_4543: 
Pose Binding 

Affinity 

RMSD Lower 

Bound 

RMSD Upper 

Bound 

Composite 

Score 

1 -8.992 0.000 0.000 1.000000 

2 -8.745 2.312 5.458 0.725699 

3 -8.669 2.274 4.474 0.717858 

6 -8.322 1.710 4.743 0.589444 

4 -8.645 5.686 7.326 0.559641 

 

Top 5 Poses for PAROXETINE_COMPOUND_CID_43815: 
Pose Binding 

Affinity 

RMSD Lower 

Bound 

RMSD Upper 

Bound 

Composite Score 

1 -10.090 0.000 0.000 1.000000 

2 -8.475 2.841 3.936 0.433060 

3 -8.439 2.912 3.813 0.427706 

5 -8.390 3.148 4.010 0.400246 

6 -8.350 3.472 6.180 0.298234 

 

Top 5 Poses for PROBENECID_COMPOUND_CID_4911: 
Pose Binding 

Affinity 

RMSD Lower 

Bound 

RMSD Upper 

Bound 

Composite 

Score 

1 -7.594 0.000 0.000 1.000000 

2 -7.467 1.768 2.446 0.856924 

3 -7.266 1.263 1.896 0.826020 

5 -6.926 1.395 2.771 0.704417 

6 -6.675 4.718 8.204 0.413108 

 

Top 5 Poses for PROTRIPTYLINE_COMPOUND_CID_4976: 
Pose Binding 

Affinity 

RMSD Lower 

Bound 

RMSD Upper 

Bound 

Composite 

Score 
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1 -8.882 0.0000 0.000 1.000000 

2 -8.619 1.4640 2.166 0.813885 

5 -8.245 1.7120 2.207 0.673190 

4 -8.265 0.8695 4.643 0.648642 

3 -8.269 1.8420 4.963 0.614176 

 

Top 5 Poses for RANITIDINE_COMPOUND_CID_3001055: 
Pose Binding 

Affinity 

RMSD Lower 

Bound 

RMSD Upper 

Bound 

Composite 

Score 

1 -6.398 0.000 0.000 1.000000 

5 -6.141 1.303 1.523 0.657612 

8 -5.924 1.688 2.056 0.465515 

2 -6.356 3.575 4.603 0.445504 

10 -5.855 1.526 2.138 0.431936 

 

Top 5 Poses for SERTRALINE_CID_68617: 
Pose Binding 

Affinity 

RMSD Lower 

Bound 

RMSD Upper 

Bound 

Composite 

Score 

1 -9.461 0.000 0.000 1.000000 

2 -9.285 1.770 2.416 0.807273 

4 -8.520 1.794 2.484 0.625660 

5 -8.430 3.799 6.049 0.406762 

3 -8.794 5.552 7.009 0.386596 

 

Top 5 Poses for VENLAFAXINE_COMPOUND_CID_5656: 
Pose Binding 

Affinity 

RMSD Lower 

Bound 

RMSD Upper 

Bound 

Composite 

Score 

1 -7.585 0.000 0.000 1.000000 

2 -7.532 1.498 2.307 0.802880 

3 -7.466 1.597 3.720 0.713850 

4 -7.459 2.580 4.957 0.607789 
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7 -7.138 1.927 2.764 0.576117 

 

Top 5 Poses for VILAZODONE_COMPOUND_CID_6918314: 
Pose Binding 

Affinity 

RMSD Lower 

Bound 

RMSD Upper 

Bound 

Composite 

Score 

1 -10.530 0.000 0.000 1.000000 

5 -10.160 1.620 2.298 0.688417 

8 -10.100 3.857 5.300 0.483140 

10 -9.849 2.624 5.249 0.417318 

2 -10.340 4.501 13.070 0.378059 

 

 

Top 5 Poses for VORTIOXETINE_COMPOUND_CID_9966051: 
 

Pose Binding 

Affinity 

RMSD Lower 

Bound 

RMSD Upper 

Bound 

Composite Score 

1 -8.832 0.000 0.000 1.000000 

5 -8.074 1.377 2.376 0.553724 

2 -8.313 2.288 5.737 0.412751 

3 -8.203 2.006 5.516 0.408739 

10 -7.775 1.463 3.965 0.382683 

 

 

 
 

B. Setup and Execution of Multiple Ligand Docking Using AutoDock Vina in 

Ubuntu 

 

This code below outlines the step-by-step procedure used to perform multiple ligand docking using 

AutoDock Vina in a Linux-based (Ubuntu) environment. It includes installation of required packages, 

preparation of receptor and ligand files, execution of batch docking via a Perl automation script and 

finally extraction of the 10 poses for each ligand. 
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For installation of packages and libraries: 

sudo apt update 

sudo apt upgrade 

sudo apt install gcc 

sudo apt install cmake 

sudo apt install build-essential 

sudo apt install libfftw3-dev   # or 

sudo apt-get install -y libfftw3-dev 

 

For installation of Open Babel and AutoDock Vina: 

sudo apt install openbabel 

sudo apt install autodock-vina 

 
For minimizing the ligands: 

 

obminimize -ff MMFF94 -n 1000 *.sdf 

Conversion to .pdbqt Format: 

obabel -isdf *.sdf -opdbqt -O *.pdbqt 

 

Creation ligand list: 

 

ls *.pdbqt > ligand.txt 

 

Run the docking simulations: 

 

perl Vina_linux.pl  

ligand.txt 

 

Get final results: 

tail -n11 *.log > results.txt 

 

Scripts and supporting files (such as Vina_linux.pl and conf.txt) were sourced from the following 

GitHub repository: 

🔗 https://github.com/DweipayanG/Multiple_Ligand_Docking_Vinna 

 

 

 

 

 

 

 

 

 

 

 

https://github.com/DweipayanG/Multiple_Ligand_Docking_Vinna
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C. Summary of Residue Interactions and Molecular Descriptors 

The following snapshots represent key portions of the dataset used for the whole machine learning 

pipeline: 

 Residue Interaction Snapshot (from the “Residue-Analysis” sheet): 

This table contains all the interacted residues from protein with the 5 best poses from each 

ligand. Each cell is a tuple (e.g., 0,1,0,1) denoting the number of hydrogen bonds, 

hydrophobic interactions, van der Waals contacts and other interactions respectively. Rows 

correspond to ligand-protein docking poses, while columns represent interacting residues. The 

respective chapter in the present thesis is 3.4.2 (Image 56). 

 Molecular Descriptors Snapshot (from the “Molecular Descriptors” sheet): 

This includes all molecular descriptors described in chapter 3.4.1 for each ligand pose (Image 

57). 

These sheets were then merged into a single dataset that served as input for the classification pipeline 

and feature selection process detailed in the main methodology.  

 
Image 56: Residue-Interaction Snapshot from my personal excel file. 
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Image 57: Molecular Descriptors Snapshot from my personal excel file. 

 

 

 

D. Python Code for Nested Cross-Validation and Feature Selection  

The following code implements the full pipeline mentioned in Chapter 3.5.4 and 3.5.5 for 

multiclassification analysis using XGBoost with nested cross-validation. It includes: 

 Preprocessing and standardization (although not necessary in XGBoost) 

 Class weight balancing 

 Feature selection with the aid of RFE 

 Hyperparameter optimization using GridSearchCV 

 Outer-loop evaluation with 5-fold stratified CV 

 Evaluation Metrics as described in 3.5.5 chapter 

 Robust feature identification across folds that are later used in Explainability section 

Similar procedure was followed for all remaining classifiers. 

CODE: 

warnings.filterwarnings('ignore') 

 
X = aggregated_df.drop(columns=["Labelled_class"]) 

y = aggregated_df["Labelled_class"] 

classes = np.unique(y) 
n_classes = len(classes) 

 

 
class_weights = compute_class_weight(class_weight='balanced', classes=classes, y=y) 
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class_weight_dict = dict(zip(classes, class_weights)) 

 

 
def perform_rfe_and_hyperparam_cv(X_train, y_train): 

    scaler = StandardScaler() 

    X_train_scaled = pd.DataFrame(scaler.fit_transform(X_train), columns=X_train.columns) 
 

   

    sample_weights = y_train.map(class_weight_dict) 
 

     

    xgb_temp = XGBClassifier(n_estimators=100, random_state=42, eval_metric='mlogloss', use_label_encoder=False) 
    xgb_temp.fit(X_train_scaled, y_train, sample_weight=sample_weights) 

 

    importances = pd.Series(xgb_temp.feature_importances_, index=X_train.columns) 
    top_features = importances.sort_values(ascending=False).head(30).index 

    X_top = X_train_scaled[top_features] 

 
    param_grid = { 

        'max_depth': [4], 

        'learning_rate': [ 0.05,0.1], 
        'reg_alpha': [1,2], 

        'reg_lambda': [4, 5], 

        'gamma': [0.5, 0.8], 
        'subsample': [0.7], 

        'colsample_bytree': [0.7] 

    } 
 

    inner_cv = StratifiedKFold(n_splits=3, shuffle=True, random_state=42) 

 
    best_score = -np.inf 

    best_features = None 

    best_params = None 
 

    for n_features in range(15, 31, 5): 

        rfe = RFE(estimator=xgb_temp, n_features_to_select=n_features, step=5) 
        rfe.fit(X_top, y_train) 

 

        selected_cols = X_top.columns[rfe.support_] 
        X_rfe = X_top[selected_cols] 

 

        sample_weights_rfe = y_train.map(class_weight_dict) 
        xgb_model = XGBClassifier(n_estimators=100, random_state=42, eval_metric='mlogloss', use_label_encoder=False) 

        gs = GridSearchCV(xgb_model, param_grid, cv=inner_cv, scoring='f1_macro', n_jobs=-1) 

        gs.fit(X_rfe, y_train, sample_weight=sample_weights_rfe) 
 

        if gs.best_score_ > best_score: 

            best_score = gs.best_score_ 
            best_features = selected_cols 

            best_params = gs.best_params_ 

 
    return list(best_features), best_params 

 
 

outer_cv = StratifiedKFold(n_splits=5, shuffle=True, random_state=42) 

all_y_test, all_y_pred, all_y_proba = [], [], [] 
fold_accuracies, fold_best_feature_lists, fold_best_params = [], [], [] 

 

for train_index, test_index in outer_cv.split(X, y): 

    X_train, X_test = X.iloc[train_index], X.iloc[test_index] 

    y_train, y_test = y.iloc[train_index], y.iloc[test_index] 

 
    best_features, best_params = perform_rfe_and_hyperparam_cv(X_train, y_train) 

    fold_best_feature_lists.append(best_features) 

    fold_best_params.append(best_params) 
 

    scaler = StandardScaler() 

    X_train_scaled = scaler.fit_transform(X_train[best_features]) 
    X_test_scaled = scaler.transform(X_test[best_features]) 

 

    sample_weights_final = y_train.map(class_weight_dict) 
    final_model = XGBClassifier( 

        n_estimators=100, 

        random_state=42, 
        use_label_encoder=False, 

        num_class=n_classes, 
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        objective='multi:softprob', 

        eval_metric='mlogloss', 

        **best_params 
    ) 

    final_model.fit(X_train_scaled, y_train, sample_weight=sample_weights_final) 

 
    y_pred = final_model.predict(X_test_scaled) 

    y_prob = final_model.predict_proba(X_test_scaled) 

 
    all_y_test.append(y_test) 

    all_y_pred.append(y_pred) 

    all_y_proba.append(y_prob) 
 

    test_acc = accuracy_score(y_test, y_pred) 

    fold_accuracies.append(test_acc) 
    print(f"✅ Fold training accuracy: {accuracy_score(y_train, final_model.predict(X_train_scaled)):.3f}, test accuracy: {test_acc:.3f}") 

 

 
all_y_test = pd.concat(all_y_test) 

all_y_pred = np.concatenate(all_y_pred) 

all_y_proba = np.vstack(all_y_proba) 
 

print(f"Nested CV Accuracy: {np.mean(fold_accuracies):.3f}") 

print(f"Macro Precision: {precision_score(all_y_test, all_y_pred, average='macro'):.3f}") 
print(f"Macro Recall:    {recall_score(all_y_test, all_y_pred, average='macro'):.3f}") 

print(f"Macro F1:        {f1_score(all_y_test, all_y_pred, average='macro'):.3f}") 

print("\nConfusion Matrix:\n", confusion_matrix(all_y_test, all_y_pred)) 
print("\nClassification Report:\n", classification_report(all_y_test, all_y_pred)) 

 

 
plt.figure(figsize=(8, 6)) 

y_test_bin = label_binarize(all_y_test, classes=classes) 

for i in range(n_classes): 
    fpr, tpr, _ = roc_curve(y_test_bin[:, i], all_y_proba[:, i]) 

    plt.plot(fpr, tpr, label=f"Class {i} (AUC = {auc(fpr, tpr):.2f})") 

plt.plot([0, 1], [0, 1], "k--") 
plt.legend(); plt.xlabel("FPR"); plt.ylabel("TPR"); plt.title("XGBoost ROC (One-vs-Rest)") 

plt.show() 

 
 

feature_counter = Counter([feat for feature_list in fold_best_feature_lists for feat in feature_list]) 

print("\nFeature selection frequency across folds:", feature_counter) 
 

robust_features = [feat for feat, count in feature_counter.items() if count >= 3] 

print("\nRobust features (selected in >=3 folds):", robust_features) 
 

best_fold_index = np.argmax(fold_accuracies) 

print(f"Best Outer Fold Index: {best_fold_index}, Accuracy: {fold_accuracies[best_fold_index]:.3f}") 
print("Best Hyperparameters for that fold:", fold_best_params[best_fold_index]) 

 

 

 

 

 

 

 

 

 

 

 


