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Abstract

Mental fatigue significantly seriously impacts cognitive functions and decision-making,

especially in safety-related environments like aviation, medicine, and transportation. This

thesis presents a methodology for detecting mental fatigue from electroencephalography

(EEG) signals recorded while doing an n-back working memory task. A hybrid deep

learning model that combines a convolutional neural network (CNN) and bidirectional

long short-term memory network (BiLSTM) was developed to classify EEG signals as

”fatigued” and ”rested” states. In order to enhance the spatial resolution of the EEG

signals, source localization was performed using the sLORETA algorithm, which projects

scalp-recorded activity onto cortical surfaces. The model was trained and tested using

10-fold cross-validation, and achieved an average accuracy of 91.55%, demonstrating that

it is robust and generalized across subjects. Explainability was also ensured through

SHapley Additive exPlanations (SHAP), which provided insight regarding the most salient

cortical sources that are responsible for the model predictions. The analysis highlighted

contributions from frontal and parietal regions, that are consistent with neuroscientific

findings on fatigue-related changes in brain activity. The dataset was collected from

recordings of the participants in both rested and sleep-deprived conditions, enabling the

model to learn discriminative patterns associated with mental fatigue. This work not only

offers a high-performing and also explainable model for EEG-based fatigue assessment

but also reduces the gap between deep learning and neuroscience by connecting machine

learning predictions with physiologically meaningful brain processes.
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Chapter 1

Introduction

1.1 Introductory Note

Mental fatigue is known to have a significant impact on the cognitive performance,

decision making, and productivity daily on humans across various domains. With pro-

longed mental exertion, mental fatigue is inevitable in modern lifestyle, manifesting as

reduced efficiency in task execution, slower reaction times, impaierd judgment, and an

increased likelihood of errors [7]. Given its profound consequences, particularly in high-

stakes environments such as aviation, healthcare, and industrial operations, understanding

and assessing mental fatigue have become key areas of research interest. One important

part of this research involves electroencephalography (EEG), a non-invasive neuroimaging

technique, which is widely used in neuroscience for studying mental states like fatigue.

EEG can provide real-time view of neural activity with high temporal resolution that can

capture patterns important to correlate cognitive workload and fatigue.

Based on EEG research mental fatigue is often associated with changes in brain os-

cillatory activity, particularly in alpha and theta frequency bands. These oscillations are

important marks of cognitive load that provides a physiological basis for classifying mental

states [8]. Despite its many advantages EEG signals are complex and contain noise, neces-

sitating advanced preprocessing and modeling techniques to extract meaningful features,

Cognitive workload, closely linked to mental fatigue, is commonly manipulated through

working memory tasks such as the n-Back task. This task involves recalling and process-

ing stimuli presented N steps earlier in a sequence and is extensively used in cognitive

neuroscience to evaluate working memory capacity [9]. The n-Back task is particularly

suitable for fatigue assessment as it allows for controlled manipulation of cognitive load,

making it a good framework for studying changes in neural activity that are related to

fatique.

1



1.2 Purpose of the Diploma Thesis 2

1.2 Purpose of the Diploma Thesis

The primary objective of this thesis is to develop a framework for assessing mental

fatigue using EEG signals recorded during an n-Back task. The study introduces a deep

learning model based on a hybrid architecture combining Convolutional Neural Networks

(CNNs) and Bidirectional Long Short-Term Memory (BiLSTM) networks. The CNN

component captures spatio-temporal patterns across cortical sources, while the BiLSTM

component models temporal dependencies, in order to detect sequential neural dynamics

that are associated with fatigue. To enhance the relevance of our EEG features, source

localization preprocessing was employed with the help of sLoretta program. This method

projects EEG signals that are acquired from the subjects scalp onto cortical sources,

with the goal to improve spatial resolution and isolate neural activity linked to cognitive

processes involved in the n-Back task.

Explainability was introduced in this work woth the incorporation of SHapley Additive

exPlanations (SHAP) to ensure interpretability. SHAP can atribute the model predictions

to specific EEG features,giving us important insights into the neural mechanisms of mental

fatigue.WIth this explainability the trustworthiness of the model is enhanced with the goal

to connect the machine learning predictions with neuroscience results. The dataset that

was collected that helped achieving this goal includes EEG recordings from participants

under the experimental conditions of rested (prior to sleep deprivation) and fatigued (after

24 hours of sleep deprivation). By employing advanced preprocessing, hybrid deep learning

techniques, and explainability tools, this thesis aims to achieve high classification accuracy

while ensuring the model’s predictions are physiologically meaningful.

1.3 Contents of the Diploma Thesis

This thesis is organized into seven chapters, each addressing a critical aspect of the

study on mental fatigue assessment using EEG signals. The structure ensures a logical

flow, from foundational knowledge to experimental results and conclusions.

1. Introduction: The introduction outlines the significance of mental fatigue in cognitive

performance and its broader implications. It presents the scope and objectives of

the study,and concludes with an overview of the thesis structure.

2. Theoretical background: This chapter is the foundation for the study. It shows brain

anatomy, focusing on the lobes and frequencies relevant to cognitive workload and

fatigue. It also introduces the concept of mental fatigue, its physiological basis, and

its impact on neural activity. The role of EEG in neuroscience and the cognitive

demands of working memory tasks, particularly the n-Back task, are also explained.

3. Related work: In this chapter previous research on EEG-based mental fatigue assess-

ment is reviewed. It highlights the use of application of machine learning models in

classifying mental states, discussing their advantages and limitations. The chapter
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shows the foundation of applied methodology while also identifies research gaps that

this thesis addresses.

4. Methodology: The methodology chapter describes the dataset, including experimen-

tal conditions and inclusion criteria. It details the preprocessing pipeline, focusing on

source localization using sLoretta, segmentation, and normalization. The proposed

CNN-BiLSTM model is presented, along with its architecture, hyperparameters, and

the SHAP-based explainability framework.

5. Experimental Procedure and Results: This chapter outlines the experimental setup,

including 10-fold cross-validation for robust model evaluation. It presents the results

of the classification performance (rested vs. fatigued) using metrics such as accuracy

and confusion matrices. SHAP analysis is discussed in detail, highlighting the most

influential EEG features for the model’s predictions.

6. Conclusions and Future Directions: The concluding chapter summarizes the study’s

findings, emphasizing the model’s performance and interpretability. It discusses lim-

itations, such as dataset size and individual variability, and proposes future research

directions, including real-time fatigue detection and expanding the approach to other

cognitive tasks.



Chapter 2

Theoretical background

This chapter lays the theoretical foundations for the complex and multidimensional

field of the research topic of detecting and classifying mental fatigue using electroen-

cephalography (EEG) data. Understanding the complex functioning of the human brain

and the capabilities of cognitive processing is based on many years of research in neu-

roscience, psychology and, more recently, computational modelling. This work not only

involves interpreting complex physiological signals, but also requires understanding the

theoretical foundations of the brain and its functions.

2.1 Mental fatigue

Mental fatigue is defined as temporary decrease in cognitive effectiveness which occurs

when a person engages in lengthy mentally demanding activities. Mental fatigue is dif-

ferent from physical fatigue because physical fatigue is primarily the product of muscle

usage but mental fatigue results from the prolonged use of neural systems which are re-

sponsible for maintaining attention and working memory and decision-making [10]. Such

deficits are usually manifested in decreased response time, reduced motivation, and both

increased error rate and decreased capacity for sustained concentration over long peri-

ods. Such impairments are especially bad in complicated real world environment, such as

controlling air traffic, nursing a patient or operating heavy machinery, because one has

to remain alert to guarantee efficiency and safety. At the neural level, mental fatigue is

most commonly linked with changes in brain’s organization of activity between cortical

areas that function dynamically. The frontal cortex which is central to executive function

will show decreased activation in fatigue, which corresponds to the decline in cognitive

control. Further, parietal areas that are connected with the processing of information

and the maintenance of focus may also become less active with time during tasks that

are repetitive or time-long. Using these networks repeatedly may lead to exhaustion of

the brain’s capacity to effectively manage its resources, which in turn leads to suboptimal

performance [11].

Electroencephalography (EEG) offers a non-invasive glimpse of such cortical develop-

4



2.2 Structure of the brain 5

ments. By measuring electrical activity at many scalp sites, researchers can measure each

moment of fluctuation in neural activity that reflects progression from an alert to a more

fatigued state. Although some research breaks down EEG data into frequency bands, sev-

eral newer approaches consider raw, time-domain signals. Source localization techniques,

such as sLORETA that this thesis utilizes, can further refine which cortical generators,

like the frontal or parietal regions that are most strongly affected, adding spatial detail to

the temporal information in the EEG recordings. In experimental settings, mental fatigue

is frequently induced and measured using continuous performance tasks like the n-back

working memory paradigm. As participants progress through repeated trials, they often

display lengthened reaction times, elevated error rates, and subjective sensations of strain.

These markers collectively indicate a reduced capacity to juggle or update information in

working memory. However, the degree and onset of such performance decrements can

vary considerably among individuals, influenced by factors such as prior rest, personal

resilience, and stress levels.

Recognizing these individual differences has spurred interest in personalized and data-

driven modeling of fatigue states. Deep learning models that work directly with raw EEG

time-series data rather than relying solely on hand-crafted features that offer a promising

route to detect emerging fatigue in real time. Identifying subtle neural patterns well

before marked behavioral lapses occur has practical benefits such as implementing brief

rest breaks or rotating tasks can mitigate risks in professional scenarios that demand

continuous alertness. In this way, real-time EEG-based monitoring of mental fatigue

contributes not only to theoretical insights into cognitive resource allocation but also

to tangible, preventative strategies in domains where sustaining mental performance is

paramount.

2.2 Structure of the brain

The human brain, widely regarded as the most complex organ in the body, is the center

of our cognitive capacities. This section serves as an explanation of the complex structure

of the brain, providing an essential basis for understanding its multifaceted functionality,

particularly in the context of cognitive processing and mental fatigue. Understanding the

structure of the brain allows us to better appreciate the genesis of the electrical activities

recorded by the EEG and thus the very foundation on which EEG-based mental fatigue

is based. This overview of brain structure, especially the macro-level organization into

lobes and frequencies, provides the biological and neurological background necessary for

understanding mental fatigue.

2.3 Brain Anatomy

The human brain is a complex and dynamic organ, consisting of interconnected re-

gions that collectively enable cognitive processes, including attention, working memory,
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and decision-making. Understanding the anatomical basis of these processes is crucial

for examining how cognitive workload is managed and how mental fatigue disrupts these

functions. This section focuses on key brain regions involved in cognitive workload, high-

lighting their roles and relevance to tasks requiring sustained mental effort. Although we

now know that most brain functions rely on many different areas of the whole brain work-

ing together, it is still true that each lobe performs most of certain functions. Figure 2.1

below shows a separation of the functions that each area of the brain does.

Figure 2.1: Functions of the brain lobes [1]

1. Frontal lobe: the frontal lobe is the largest lobe of the brain, comprising almost

a third of the surface area of the hemisphere. It is located largely in the anterior

cranial fossa of the skull, resting on the orbital plate of the frontal bone. The frontal

lobe is the most anterior part of the cerebral hemisphere and is separated from the

parietal lobe posteriorly by the central fissure and from the temporal lobe posteriorly

by the lateral fissure (Sylvian fissure).

(a) Region of Frontal Lobe (b) Sylvian fissure

Figure 2.2: Frontal Lobe [2]

2. Parietal lobe: the parietal lobe is located just below the parietal bone, behind the

frontal lobe and in front of and above the temporal and occipital lobes. It plays an
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important role in integrating sensory information from different parts of the body.

It plays an important role in spatial sensation and navigation, object manipulation

and number representation.

Figure 2.3: Parietal lobe [3]

Then the inferior parietal lobule (IPL) supports the manipulation of information

stored in working memory. This region is particularly active during tasks that re-

quire updating or transforming mental representations, such as remembering and

comparing sequential stimuli in the n-back test.

2.4 Electroencephalography

Electroencephalography (EEG) is a key tool in the neuroscientific study of brain ac-

tivity. With its roots dating back to the early 20th century, when German psychiatrist

Hans Berger first recorded human brain waves, EEG was first recorded in the animal brain

in 1875 by Richard Caton. It captures the fluctuations in voltage generated by neuronal

activity, specifically the postsynaptic potentials of pyramidal neurons in the cerebral cor-

tex. This electrical activity is detected by electrodes placed on the scalp and is recorded

as continuous waveforms reflecting the dynamics of neural processing. EEG is the most

widely used signal acquisition method because of its high temporal resolution, safety and

ease of use. EEG has low spatial resolution and is non-stationary in nature.

EEG signals provide insights into brain function with exceptional temporal resolu-

tion, often on the millisecond scale. This makes EEG particularly suited for studying

fast-occurring cognitive processes such as attention shifts, decision-making, and working

memory. EEG signals though are sensitive to artifacts caused by eye blinks, eye move-

ments, heartbeat, muscle activities and power line interference [12].
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2.4.1 10-20 system

The international 10-20 system is a method used to standardize the placement of EEG

electrodes, paving the way for consistency and reproducibility in EEG studies. The 10-20

system uses anatomical landmarks to standardise the placement of electroencephalography

(EEG) electrodes. The system is based on the relationship between the position of the

electrodes and the underlying region of the the underlying cerebral cortex, while ensuring

that all areas of the brain are covered. The nomenclature ¨10-20’ refers to the actual

distances between adjacent electrodes, which is either 10% or 20% of the total front-to-

back or right-to-left skull distance [13].

Figure 2.4: Electrode distance in 10-20 system



Chapter 3

Relevant work

Mental workload shows the proportion of limited cognitive resources a person allo-

cates while performing a task. Quantifying mental workload objectively has become really

important in domains where safety is critical such as aviation, road transport, air-traffic

control because either overload or underload can degrade performance and jeopardise ones

safety. Closely allied to mental workload is mental fatigue, the progressive loss of efficiency

that accompanies sustained cognitive effort [14]. Mental fatigue manifests as slowed reac-

tion time, lapses of attention and reduced motivation, and neuro-physiologically as drifts

in frontal-midline theta and rising delta power during prolonged vigilance [15]. Over the

past decade AI has emerged as the leading computational framework for modelling both

mental workload and fatigue, largely because modern learning algorithms can capture the

complex, non-linear relationships that link neuro-physiological signals to hidden cognitive

states [16].

The first EEG-based mental workload systems relied on hand-engineered features such

as band power, Hjorth parameters and autoregressive coefficients, which were fed to con-

ventional classifiers including support vector machines or random forests [16]. Although

these pipelines achieved reasonable two-class accuracies, they demanded labour-intensive

feature design and were highly sensitive to recording noise. Deep learning alleviates many

of these limitations by learning hierarchical, task specific representations directly from raw

or minimally pre-processed EEG [17]. Convolutional and recurrent networks are able to

discover relevant spatio-temporal patterns automatically and routinely outperform classi-

cal approaches in multi-class settings. Chakladar and colleagues, for example, combined

a bidirectional LSTM with a Grey-Wolf optimiser for feature selection and reached 86%

accuracy on a three-level n-back protocol [18]. Fan et al. introduced EEG-TNet which is

a 3-D depth-wise separable convolutional network that simultaneously captures frequency,

spatial and temporal information and reported subject-dependent accuracies above 99%

on binary workload discrimination [19]. More recently Gupta et al. fused model-free

functional-connectivity matrices (Mutual Information and Phase-Locking Value) with a

lightweight CNN and achieved an average three-class accuracy of about 81%, the best

performance yet for subject-specific workload classification [20].

9
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One theoretical contribution of AI to workload research is its capacity for representa-

tion learning. Variational auto-encoders followed by spatial-attention modules compress

noisy EEG topographies into latent codes where workload-specific boundaries become lin-

early separable, a strategy that consistently improves downstream CNN-BLSTM classifiers

[21]. Hybrid pipelines that integrate robust decomposition (RLMD), meta-heuristic opti-

misation and ensemble learners can further exploit complementary frequency information,

pushing accuracies beyond 97% on two public workload datasets [22].

Because mental workload reflects coordinated activity of distributed neural assem-

blies, recent work has shifted from single-sensor features to functional-connectivity graphs.

Model-free connectivity measures such as mutual information, phase-locking value and

phase-transfer entropy provide weighted adjacency matrices that quantify statistical and

directed interactions between cortical regions. Convolutional networks operating directly

on these matrices (or on graph representations via graph convolution) learn topological

descriptors like edge weights, clustering coefficients, network efficiency, which can capture

changes in fronto-parietal communication observed under high load [20]. Such graph-

based deep models narrow the explanatory gap between EEG and slower neuro-imaging

modalities, while maintaining millisecond resolution.

Despite these advances, several challenges remain. Inter-subject variability in EEG

and in functional connectivity still limits generalisation domain-adversarial training and

meta-learning have been proposed to mitigate this problem, yet large-scale validation is

lacking. Data scarcity and class imbalance hamper deep models that thrive on abundant,

balanced samples self-supervised pre-training and generative augmentation are promising

counter-measures. Real-time deployment requires rapid inference on portable hardware

and here the combination of model-free connectivity metrics with shallow CNNs is im-

portant because it preserves accuracy while reducing computational load [20]. Finally,

interpretable AI is essential for regulatory approval and user trust. Saliency mapping,

layer-wise relevance propagation and attention visualisations now reveal that many deep

models base their decisions on canonical mental workload correlates such as frontal midline

theta and parietal alpha suppression, thereby providing neuro-physiological validity.

The representative papers reviewed below illustrate the trajectory of this field from

carefully engineered pipelines rooted in classical power-spectral analysis to sophisticated

end-to-end neural architectures augmented with attention mechanisms, evolutionary fea-

ture selection or functional-connectivity representations. For example Xu et al. [23] in-

troduced one of the most compact yet effective feature sets for fatigue discrimination by

combining relative band power with fuzzy entropy. In a controlled 2-back paradigm, EEG

data of partocipants was recorded at three stages (baseline, fatigue induction and recov-

ery). Relative band power captured the redistribution of energy across delta–theta versus

alpha–beta ranges that are widely accepted markers of rising cognitive strain while fuzzy

entropy quantified the loss of signal complexity as mental resources waned. When these

two descriptors were supplied to an Extreme-Gradient-Boosting (XGBoost) classifier, the

model achieved 92.4 % average accuracy for these three fatigue levels. Complementing
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that single-task approach, Xing et al. [24] tackled cross-task generalisation which is a

difficult subject for EEG systems by training on a 2-back dataset and testing on a mental-

arithmetic (MA) dataset, and vice-versa. They retained fuzzy entropy as the core feature

but adopted a linear-kernel SVM classifier. With only eight participants and 16 EEG

channels, the framework still reached a high mean accuracy across the two-task mismatch,

demonstrating that entropy-based markers generalise reasonably well when spectral con-

tent differs between tasks. Notably, training on the 2-back data and testing on MA yielded

slightly higher performance, hinting that the n-Back paradigm elicits more consistent fa-

tigue signatures than arithmetic computation.

Recognising the limitations of manually engineered features and simple classifiers,

Zhang et al. [25] proposed a two-stream neural network (TSNN) that learns spectral

and temporal EEG patterns in parallel. One branch ingests Welch-derived topographic

power maps and the other processes raw event-related segments via a temporal convo-

lutional network (TCN). Fusion of the two streams boosted overall classification to 91.9

% for three workload classes which is substantially higher than the low accuracy of the

temporal-only branch. Deconvolution visualisations further revealed that the spectral

stream captures theta-alpha power shifts, whereas the temporal stream is sensitive to re-

ductions in P3 and P2 amplitudes, providing interpretable neuro-cognitive evidence for

the learned representations.

An important work that inspired this thesis was that of Su et al. [26] where they

extended the spatio-temporal idea with a CNN-LSTM hybrid trained on wavelet-denoised

EEG from a prolonged 2-back protocol. Their pipeline first extracts spatial patterns

through 2D convolutions, then models long-range dynamics with sequential LSTM layers.

On a sample of 18 subjects, the network delivered 97.1 % overall accuracy and 97.8 %

sensitivity when differentiating awake, mild-fatigue and severe-fatigue states. The authors

linked the model’s success to its ability to detect frontal-central increases in delta–theta

power and concurrent alpha–beta suppression, that are classical markers of fatigue that

became pronounced after multiple five-minute task blocks. Another convolutional based

architecture which still relies on discrete wavelet preprocessing, was that of Siddhad et al.

[27]. They distributed the handcrafted stages entirely by adapting the ConvNeXt vision

backbone to 1-s EEG windows. After reducing channel counts and kernel sizes, their model

surpassed SVM, EEGNet, TSception and a transformer baseline on the STEW (SIMKAP)

dataset, achieving 95.8 % binary and 95.1 % three-class accuracy. Confidence-interval plots

showed consistent gains across participants, suggesting that modern image-architecture

design principles, including depthwise separable convolutions and large effective receptive

fields can translate well to noisy electrophysiological data.

A different unsupervised route was explored by Chakladar et al. [21], who combined

a variational auto-encoder (VAE) with a spatial–temporal attention block. The VAE first

produces a compact latent representation of each EEG segment and attention then high-

lights those latent dimensions that are most relevant for workload classification. The VAE

and attention pipeline outperformed handcrafted-feature models on two public mental-
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arithmetic datasets and maintained interpretability with saliency maps that emphasized

frontal and parietal regions that are repeatedly implicated in executive load. Ablation

experiments showed that removing either the VAE or the attention module degraded the

accuracy, confirming the synergy of deep latent encoding and focused feature weighting.

Another solution by Fan et al. [19] presented EEG-TNet, an end-to-end architecture

that preserves the raw time dimension while convolving across channels, thereby cap-

turing micro-temporal cues often lost in pooling. Compared with shallower CNNs and

LSTMs, EEG-TNet achieved the best fold-wise performance on both subject-specific and

cross-subject settings of the n-Back workload benchmark. Saliency visualisation indicated

strong reliance on mid-frontal theta bursts and posterior alpha suppression—consistent

with cognitive-control literature and underscored the importance of fine-grain temporal

kernels that avoid excessive down-sampling.

Hybrid evolutionary deep approaches have also shown promise. For example Das Chak-

ladar et al. [18] applied a grey-wolf pptimiser (GWO) to select an optimal subset from a

broad library of spectral, statistical and entropy-based features, which were then passed to

a stacked BLSTM-LSTM. The evolutionary filter removed redundant inputs and enhanced

interpretability by surfacing theta-alpha ratios and approximate entropy as dominant dis-

criminators. The resulting model delivered 86.3 % accuracy on a three-class SIMKAP

workload dataset and proved more compact than full-feature or hand-pruned baselines.

Finally, Gupta et al. [20] analyzed workload detection through functional connectivity.

The authors computed model-free metrics with mutual information, phase-locking value

and phase-transfer entropy across carefully chosen Brodmann-area electrodes, yielding 16

× 16 adjacency matrices per trial. Treating these matrices as images, a subject-specific

CNN classified the low, medium and high load with peak accuracies exceeding 97%. This

high performance of connectivity maps emphasise that fatigue does not merely alter local

oscillations but reconfigures network-level interactions among frontal, parietal and insular

nodes.

Collectively, these studies show a clear progression in EEG-based workload and fatigue

research. We see that early reliance on single-domain features has evolved into multi-

stream deep models that can exploit spatial, spectral, temporal and network information.

Accuracy has climbed from mid-80 % in cross-task SVM pipelines to above 95 % in modern

end-to-end networks, with interpretability techniques making sure that the performance

gains are physiologically grounded. These works have influenced the present thesis, which

utilizes source-localised signals and a CNN-BiLSTM model and SHAP explanations to

further close the gap between real-time classification and neuroscientific validity in mental-

fatigue monitoring systems.



Chapter 4

Methodology

This section describes the methodology used in this study for mental fatigue assessment

using EEG signals. It covers the design of the experimental paradigm in depth, advanced

signal preprocessing techniques, including source localization with sLoretta, and a deep

learning classification model that combines convolutional neural networks (CNN) and

bidirectional long short-term memory (BiLSTM) networks. The proposed framework aims

to capture spatial and temporal patterns in EEG data to effectively classify different mental

fatigue levels.

In this chapter, a 2-back task paradigm will be explained, that was used to induce dif-

ferent levels of mental fatigue. This paradigm is well known to impose sustained cognitive

load and engage working memory. EEG signals were recorded during the performance of

the task and at rest to capture neural activity under different conditions of fatigue. These

data also underwent preprocessing to enhance signal utility and ensure that meaningful

physiological features could be extracted. The source localization was the most crucial

step using the sLoretta that mapped the EEG signals obtained on the scalp to underlying

cortical regions. Such approaches allow greater spatial resolution but more importantly,

higher interpretability as neural activity in connection with specific cognitive functions

and fatigues can be discriminated. The EEG signals were then segmented into epochs of

4-second (each with 1024 samples) that are appropriately considered for better analysis

as used with the CNN-BiLSTM model. It is very important to note that signals already

had artifact removal performed before preprocessing, so it eliminated the need for these

extra steps to remove the artifacts.

The hybrid CNN-BiLSTM model that was used will also be explained, a model that

leverages the strengths of both architectures the CNNs for spatial feature extraction across

EEG channels and BiLSTMs for modeling the temporal dynamics of neural activity. The

model automatically learns discriminative patterns from preprocessed EEG data with-

out using handcrafted features. It further enhances the spatial features by incorporating

source-localized data to improve the accuracy of fatigue classification. This section further

gives an explanation of explainability of SHAP (Shapley Additive Explanations) values

that are incorporated to understand the model’s predictions. SHAP provides insight into

13
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how different features contribute to the classification of mental fatigue states, thus increas-

ing model interpretability and decision credibility. This approach ensures physiologically

relevant neural patterns, learned by the model, are consistent with a solid body of knowl-

edge pertaining to the mechanisms of mental fatigue.

4.1 Working Memory and the n-Back Task

Working memory is the core component of human cognition which empowers the tem-

porary storage and manipulative functions of information needed in executing complex

cognitive tasks like reasoning, problem-solving, and decision-making. It is a cognitive

workspace, where individuals can hold and update information relevant to ongoing tasks

while simultaneously processing new inputs. While distinguished from short-term mem-

ory, which mainly holds information for brief periods of time, working memory deals with

the active manipulation of that information to govern behavior. Working memory is uti-

lized internally while calculating math problems in one’s head to remember intermediate

results as one processes subsequent steps of the problem [28].

4.1.1 N-back task

The n-back task is one of the most widely used paradigms for studying working memory

in cognitive neuroscience. It involves the sequential presentation of stimuli (e.g., letters,

numbers, images) and requires participants to determine whether the current stimulus

matches the one presented n steps earlier. The value of n can be adjusted to manipulate

task difficulty and cognitive load, with higher n levels placing greater demands on working

memory [29]. In a standard n-back task, stimuli are presented one at a time in a continuous

stream. Participants must respond (e.g., via button press) when the current stimulus

matches the one presented n items earlier. For example in a 1-back task, participants

compare the current stimulus to the one immediately preceding it. On the other hand in

a 2-back task, participants compare the current stimulus to the one presented two steps

earlier. Also in a 4-back task that we can see in Fig 4.1, participants compare the current

stimulus to the one presented four steps earlier and so on.

N-back task can also be adapted in several ways to target specific cognitive processes

or experimental objectives. One example of this is that the stimuli can be auditory (e.g.,

spoken words) or visual (e.g., shapes, letters). Multimodal versions combine both modal-

ities to assess integration across sensory systems. There are also the dual-task versions

require participants to perform a secondary task simultaneously, further increasing cog-

nitive load. These tasks can use verbal stimuli (e.g., letters, words), numerical stimuli,

spatial locations, or abstract shapes, depending on the research focus.

One more import aspect of the n-back task is that it is particularly effective for assessing

cognitive load because it allows for precise control over task difficulty by manipulating the

value of n. Increasing n requires participants to hold more items in working memory
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Figure 4.1: Example of 4-back task [4]

while simultaneously comparing incoming stimuli to past ones, thereby taxing attentional

resources and executive control. Furthermore, the n-back task’s design enables real-time

measurement of performance through metrics such as response accuracy, reaction time,

and error rates. These behavioral indicators provide a direct link between cognitive load

and task performance, which can be further complemented by neural measures such as

EEG. N-back task is particularly well-suited for studying mental fatigue due to its ability to

systematically manipulate cognitive load over time. Mental fatigue arises from prolonged

engagement in cognitively demanding activities, leading to a decline in performance and

attentional control. By increasing the difficulty or duration of the n-back task, researchers

can induce fatigue and measure its effects on both behavioral and neural responses.

Higher n levels in the n-back task put higher demands on working memory, requiring

participants to use more cognitive resources to maintain performance. During fatigue, the

ability of the brain to maintain these resources decreases, and clear differences in task

performance become evident. Among the most pronounced behavioral effects are that

prolonged performance of the n-back task is associated with prolonged reaction times,

reduced accuracy, and higher error rates, particularly at high n levels. The n-back task

provides a useful framework for the study of the evolution of cognitive performance in

time under sustained workload conditions.

4.2 Dataset description

The dataset that we utilized in this thesis was collected to investigate the effects of

mental fatigue on working memory with EEG signals. The participants were selected

carefully, and the experimental protocol was designed to evoke neural activity under both

rested and fatigued conditions, providing a good foundation for analyzing the influence

of sleep deprivation on cognitive function. The experimental setup and preprocessing for

cleaning the data were done before acquiring the dataset for the work in this thesis.
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4.2.1 Participants and experimental design

For the experiment 22 healthy participants (9 females, mean age 27.3 ± 4.1 years) were

recruited from the 401 General Military Hospital of Athens, comprising doctors and staff

members. All the participants were prescreened to make sure that they had no history

of sleep disorders, mental illnesses, ADHD, or long-term medication use, as these factors

could affect the results. All participants also reported normal or corrected-to-normal

vision. Ethical approval for the study was obtained from the institution’s Review Board,

in compliance with the Declaration of Helsinki. Also the written informed consent from

all participants was signed before the commencement of the experiment, to make sure that

they participate voluntarily and they understand the study’s procedures.

Regarding the experiment a visual 2-back working memory task was employed to

evaluate the cognitive effects of mental fatigue. This 2-back task is a reliable method

for imposing sustained working memory demands. Each participant completed the task

twice, once before their on-call shift (the Rested condition) and once after their on-call

shift (the Fatigue condition), which lasted up to 28 hours with minimal or no sleep. This

protocol allowed for a direct comparison of neural activity under rested and fatigued states,

isolating the effects of mental fatigue induced by sleep deprivation. During this 2-back

task, participants were required to compare the current visual stimulus with one that was

presented two trials earlier. The stimuli were images displayed in one of the four corners

of the screen, and participants had to evaluate the stimulus based on both content and

location. Using a response box, participants indicated one of four conditions:

1. Same image and same location

2. Same image but different location

3. Same location but different image

4. No similarity (different image, different location)

The specific task consisted of 72 trials, with the four conditions being balanced across

the session. Each trial lasted approximately 5 minutes, with the visual stimuli displayed

for 3.5 seconds and with a 1-second fixation cross. To ensure that participants fully

understood the task, they completed practice trials before the actual EEG recordings.

This preliminary step minimized the likelihood of errors due to misunderstanding the task

instructions.

4.2.2 Data acquisition and preprocessing

EEG data were collected by means of the Biosemi Activetwo System comprising of

a total of 64 channels according to the standards of the 10-20 international electrode

positioning system [5]. The system was beneficial since it provided sufficiently high spatial

resolution to enable recording from specific brain areas linked to working memory as well

as to mental fatigue. 512 Hz was the EEG sampling rate that was adopted for this
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study as it was enough to ensure that the temporal variations of neural activities were

preserved. Also, the bilateral EOG signals were captured using bipolar electrodes placed

at the sides of the eyes in order to track and remove any eye movement induced noise.

Specific measures were taken with regard to the set up in order to limit the impact of

external noise and movement on the EEG data recorded. The measures ensured that the

EEG signals were reliable and consistent across different subjects. Raw EEG Signals were

deposited into extensive preprocessing to wipe them out and to promote their quality as

well their suitability of use for subsequent analytical purposes.

Figure 4.2: Electrode placement of the experiment [5]

These preprocessing steps, that were performed prior to the acquisition of data for this

study, included:

1. Down sampling and band pass filtering. This involves reducing the raw eeg database

from 512 hz to 256 hz to minimize computational difficulties while still maintaining

the essential temporal emblems. An appropriate cut-off frequency between 1Hz

and 40 Hz was implemented since this range was sensitive to cognitive and fatigue

processes. In addition to lowering frequency drifts, these filtering strategies did away

with high frequency noises.

2. Artifact Correction Using ICA: Eye blinks, muscle movements, or any other non-

brain activities were separated and removed from the EEG signals using ICA. This

method finds application in Reconstruction of EEG signals through Independent

Component Analysis (ICA), where the components of these EEG signals are trans-

formed into independent variables which can then be used to ascertain and eliminate
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together with EOG and EMG signals [30]. The independent components are primar-

ily easy to classify into EOG and EMG noise through their topographic map and

signal shape. However, there are also cases where it is difficult to distinguish what

type of signal is the independent component where the independent component has

an EOG signal topographic map shape, whereas it is most likely an EMG signal.

So the classified EOG and EMG signals with a big probability that they are the

respective signals are rejected.

3. Segmentation: The procedures involved divided the EEG signals into 4-second pe-

riods a well performing segmentation size [31] or referred to as segments of 1024

sampling points. EEG signals are non-stationary and change rapidly over time. By

segmenting the data, these dynamic fluctuations are captured more effectively. Also,

the temporal information of the EEG is better utilized. Each segment was shifted

along the time axis with respect to the preceding stimulus along the time axis with

respect to the preceding 100 ms stimulus, in order to perfectly minimize inter-trial

differences. The first 0.5 seconds after every stimulus presentation was disregarded

in the analysis in order to decrease the possibility of capturing effects associated

with a transient vision stimulus.

4. Electrode Selection: In order to ensure symmetry with regards to the analysis, Iz

electrode was eliminated which left 63 electrodes to be analyzed afterward. This

arrangement was favorable as it made sure that no brain regions became deficient

or over represented in the activity under study.

5. Trial Selection and Labeling: The only trials which were kept were the ones that

resulted from correctly answering the task thus removing any cognitive activity that

was not related to the use of working memory. This provided a total of 2047 trials

out of which 1050 originated from the Fatigued condition while 997 came from the

Rested condition.

To conclude every trial of the dataset is saved as a 63 × 1024 matrix, where the

rows correspond to EEG signals from 63 channels, and the columns represent time points

sampled at 256 Hz. This format ensures that each trial contains good spatial and temporal

information for the model to make the necessary associations between the mental states

that the participants had in the experiment and have a good recognition accuracy. The

dataset is also balanced across fatigue states, ensuring that the classification model can

learn and distinguish patterns related to rested and fatigued conditions more effectively.

4.3 Source localization

Source localization is a rather complex and advanced technique which is applied in

EEG for the purpose of estimation the cortical areas from which the recorded electrical

activities are derived [32]. This resolution is low but the temporal resolution is highly
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appreciated. There is a restriction in the context of recording electrical signals because of

the loss of the characteristics of such signals that are moving through brain, skull, scalp and

the EEG scalp electrodes. The first approach to solving this loss of information concerns

the mathematical reconstruction of the neural generators focusing on the sources of EEG

signals. This helps pinpoint the cortical regions that are responsible for specific cognitive

or neural functions. As stated above, the EEG signals are produced by the integration

of the postsynaptic potentials of large number of neurons. These signals originate in the

cortex and consider propagating through different conductive media such as, CSF, skull,

scalp and electrodes. These electrodes measure the signals but they do not analyze the

waves exactly. As a result, it is observed that a single EEG electrode is in fact a large

spatial integrate of many cortical regions and thus the exact origin of these signals cannot

be directly confirmed from the scalp recordings.

In the effort to localize the existing current sources inside the brain based on the

potentials and their distribution recorded by EEG electrodes on the scalp, the potential

combinations of the current sources that generate such potentials and distributions and

that are captured by the pre-defined number of electrodes might be infinite [33]. This case

is known as the inverse problem, which could be resolved by introducing constraints based

on the anatomical and physiological rules that control the generation and propagation of

the current sources. Various proposals have been introduced to attempt to solve the matter

with improvements and justifications provided for the proposed models and the introduced

technical approaches. Hence, this review defines the source analysis models used in dipole

source localization and distributed source localization that prevail currently in the domain.

Distributed source localization estimates the 3-dimensional structure of the brain into

many lattice points, typically over 5,000, and offers a model where current dipoles placed

in each lattice are distributed in their respective strengths. Hence, it is not required to

determine or assume. The number of existing sources is high. However, the number of

lattice points of the distributed source model far outweighs the number of electrodes mea-

sured on the scalp, therefore, one has to deal with an inverse problem. In the head model,

the location of the lattice points is restricted to gray matter and hippocampus, using ei-

ther individual or template MRI scans, and the constraints provided by this anatomical

information reduce the number of variables. Additionally, under the distributed source

model, there is an minimum norm (MN) methodology which states that a distribution

is optimal when it has a minimum total energy of all the current sources [34]. For this

purpose, the MN solution tends to stay near the scalp electrodes and thus may fail to

recognize current sources with larger depths in the brain. To counteract this disadvan-

tage, a depth-weighted MN has been suggested. Notwithstanding, the depth-weighted MN

solution exhibits a diminished level of resolution.

At present, distributed source models have garnered significant attention and are evolv-

ing in sophistication [35]. The LORETA software employs the Laplacian-weighted MN

method, which posits that neuronal activities in close proximity are interconnected where,

the distribution of current density is subjected to smoothing. Nonetheless, the LORETA
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Figure 4.3: 3D cortical view of neural activity across the cortex at specific time point

Figure 4.4: Slices of brain activity at specific time point

software is limited by its propensity to generate indistinct and excessively smoothed im-

ages. LORETA has been updated to sLORETA (and more recently eLORETA) to com-

pensate for these shortcomings.

We use source localization in our preprocessing pipeline to map scalp-recorded EEG

data onto cortical sources via sLORETA. This step enhances spatial resolution by pin-
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Figure 4.5: EEG signal linked to the localized activity at specific time point

pointing the neural origins of the detected electrical signal. When the source is localised,

the whole cortical surface gets partitioned into 80 ROIs, so we are piecing the brain into

different sources. This parcellation bundles local activity into relevant anatomical or func-

tional units, compressing the data while retaining vital spatial data. All of the 80 sources

are located in a part of the brain with a known neural pattern, giving a refined source to be

processed. Then these concatenated sources become the foundation for feature extraction,

making sure the EEG signals identifying to the most relevant neural activity for mental

fatigue classification are recorded, and the computation is less complicated.

4.4 Standardization

After loading, selecting, segmenting and doing source localization on the data, the

next vital step in the preprocessing pipeline is data standardization, and more specifically

standard scaling. This process is performed to ensure that EEG data across channels

have a common scale, a prerequisite for many machine learning algorithms [36]. Standard

scaling is performed by subtracting the mean and dividing by the standard deviation of

each feature. Mathematically, this can be represented as follows:

z =
x− µ

σ

• z: The variable z represents the standardized value (or z-score) of the data point x.

It indicates how many standard deviations a given data point deviates from the mean

of the distribution. A positive z implies that the data point lies above the mean,

whereas a negative z indicates that it lies below the mean. This transformation

standardizes all data points, allowing them to be compared on a common scale.

• x: The variable x is the raw, unprocessed value of the feature being analyzed. This

could represent any measurement within the dataset, such as the height of an indi-

vidual in centimeters or the temperature in degrees Celsius. The purpose of stan-

dardization is to transform x into a comparable metric across features with different

scales.
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• µ: The mean µ is the average value of the feature across all data points in the dataset.

Subtracting the mean µµ centers the data, aligning the feature’s distribution around

zero.

• σ: The standard deviation σ quantifies the spread or variability of the feature values

around the mean. Standard deviation ensures that the data is scaled in a way

that reflects its variability. Dividing by σ normalizes the variance of the data to 1,

ensuring a uniform scale for all features.

By applying this transformation, the resulting distribution of data points has a mean

of 0 and a standard deviation of 1. This technique is particularly useful when dealing with

data that have varying scales and ranges. It is important to note that normalization in this

sense differs from min-max scaling, which scales the data to a fixed range, usually between 0

and 1. Standard scaling is particularly beneficial in EEG data analysis, as it addresses two

important challenges: high inter-subject variability and inherent inter-channel variability

in EEG data. With data scaling, the algorithm can learn better from the dataset, as

it ensures that no particular feature (or in this case, channel) dominates others due to

differences in their scale. Furthermore, it allows us to effectively compare data between

different individuals and trials, paving the way for more accurate models of mental fatigue

assessment. Thus, standardized scaling of EEG data is an integral pre-processing step

that ensures that all data conform to a common scale, promoting fairness and efficiency

in subsequent data analysis tasks, particularly those involving machine learning models.

4.5 CNN-BiLSTM hybrid model

This proposed model utilizes the hybrid 2d convolutional neural network (2DCNN)

architecture and the bidirectional long-short term memory (BiLSTM) networks to assess

with details the mental fatigue of the subjects. This hybrid CNN-BiLSTM model can

successfully capture the spatio-temporal information of the EEG signals and utilize the

dynamic nature of the signal both from the electrode placements and the signal fluctuations

over time. Below the components of the proposed model are explained in detail and its

role and design and operational strengths are highlighted in detail.

4.5.1 2DCNN architecture

The 2DCNN component is specifically designed to extract spatial features from the

EEG input, represented as a matrix of size 80 × 1024 (80 ROIs × 1024 time points). Each

channel corresponds to an electrode placed on the scalp, and the time points represent

sequential EEG activity. By applying 2d convolutional layers, the CNN identifies patterns

in neural activity distributed across the electrodes, such as localized activations or inter-

channel relationships that are indicative of mental fatigue.

Each 2D convolutional neural network (2DCNN) layer is designed to extract spatial

features from input data, such as EEG signals represented as a 2D matrix. It works by
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applying convolutional filters (kernels) over the input matrix to detect localized patterns,

such as correlations between adjacent electrodes or specific spatial activity. The convolu-

tion operation involves sliding a kernel of predefined size (k × k) across the input matrix

and computing the dot product between the kernel weights and the overlapping input

region. Mathematically, the operation can be expressed as:

Y (i, j) =
k∑

m=1

k∑
n=1

X(i+m, j + n) ·W (m,n) + b

where:

• Y (i, j) is the output feature at position (i, j),

• X(i+m, j + n) represents the input matrix values covered by the kernel at position

(i+m, j + n),

• W (m,n) is the kernel weight matrix,

• b is the bias term.

The resulting feature map Y is then passed through a tanh (hyperbolic tangent) acti-

vation function, defined as:

f(x) = tanh(x) =
ex − e−x

ex + e−x

This introduces non-linearity, enabling the network to model complex spatial patterns.

The feature maps produced by the 2DCNN layer highlight important spatial relationships,

such as localized neural activity or inter-channel dependencies in EEG data. One key

feature of the CNN architecture is the use of progressively larger kernel sizes in the con-

volutional layers. The model employs kernels of sizes 3× 3, 5× 5, and 7× 7 in successive

layers to capture features at varying spatial scales. This progressive increase in kernel size

allows the CNN to extract both fine-grained and global spatial features:

• 3 × 3 kernel (first layer): The smallest kernels are used in the initial convolutional

layer to focus on localized features in the data. These features might include sharp

changes in activity between neighboring electrodes or small-scale patterns that are

critical for identifying the early signatures of fatigue-related neural activity.

• 5×5 kernel (second layer): The second convolutional layer expands the receptive field

to capture regional patterns, aggregating information from clusters of electrodes. For

example, this layer might identify activity patterns within specific cortical regions,

such as the frontal or parietal areas, which are often implicated in working memory

and cognitive load.

• 7×7 kernels (third layer): The largest kernels are employed in the final convolutional

layer to detect global spatial features. These features represent widespread neural

activity patterns or inter-regional correlations that become prominent during fatigue.
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Also each 2DCNN layer is followed by a MaxPooling layer, which is a sampling reduc-

tion function that is usually applied after convolution operations in a CNN. The primary

purpose of the MaxPooling layer is to progressively reduce the width, height and, in the

case of the 2DCNN, depth of the input representation (in our case reducing temporal and

spatial dimensions). This helps to reduce the amount of parameters and computations in

the network, thus controlling overfitting. A MaxPooling layer works by sliding a 2D win-

dow in the input volume and, for each window, extracts the maximum value. In essence,

it selects the most prominent features within the window, discarding the least prominent

ones. This feature provides the network with a certain level of invariance to small changes

or distortions in the input data, allowing it to focus on the most prominent, high-level

features.

4.5.2 BiLSTM components

The BiLSTM element attempts to identify the temporal dependencies of EEG sig-

nals [37]. While CNN is interested in the spatial associations and temporal features, the

BiLSTM layers look at how those spatial characteristics change with time, which helps

in detecting the onset of mental exhaustion. In contrast to the more conventional RNNs,

BiLSTMs encode input sequences both forward and backwards, so that the model can work

on past and future simultaneously. Each LSTM unit of the BiLSTM network contains a

set of gates the input gate, forget gate, and output gate controlling the flow of information

in the network. These gates allow BiLSTM to store or remove data only when it’s needed,

a feature especially helpful when dealing with long term dependencies on sequential data.

This gating process is essential for the interpretation of EEG data, because fatigue-related

patterns can arise over long periods of time. Because the BiLSTM is bidirectional, this

makes it useful for modelling temporal relationships using the following technigues:

• Forward Pass: The forward pass processes the input sequence from the beginning

to the end, capturing dependencies where earlier time points influence later activity.

This is useful for identifying fatigue-related trends that develop over time.

• Backward Pass: The backward pass processes the sequence from the end to the be-

ginning, capturing dependencies where future time points provide context for earlier

activity. This bidirectional processing is particularly advantageous for EEG signals,

where both past and future neural dynamics contribute to the observed patterns.

The BiLSTM component in our model consists of two stacked layers designed to process

sequential data and capture temporal dependencies in the spatial features extracted by

the CNN layers. The first BiLSTM layer takes the reshaped output from the final 2DCNN

layer as its input. This input, that is formatted as a sequence, allows the BiLSTM to

analyze how the extracted spatial features evolve over time. The first layer processes

the sequence in the two directions the forward pass, which examines the data from the

beginning to the end, and the backward pass, which processes the data in reverse. This
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bidirectional processing enables the network to consider both past and future contexts,

ensuring a comprehensive understanding of the temporal dependencies in the data. The

hidden state outputs generated by this layer encapsulate the temporal relationships across

the input sequence, laying the foundation for deeper temporal modeling.

The second BiLSTM layer extends the representations generated by the initial layer.

With the help of these intermediate temporal features, the second layer polishes and

enhances the learned temporal characteristics. This stacked configuration enables the

model to identify more elaborate and structured temporal characteristics which can be

useful in differentiating between various fatigue stages. This layer’s output is a sequence

of concatenation of the forward and backward hidden states for each time step, which

gives a lot of information about temporal dynamics.

Every BiLSTM layer includes 128 hidden units, which specifies the size of the hidden

state variables. This size is enough for the network to have enough capacity to capture the

essential temporal features while at the same time being computationally efficient. Also,

a dropout layer is used before the two BiLSTM layers to avoid overtraining. In dropout, a

portion of neurons are switched off randomly during the training process in order to make

the model more robust to data that it has not seen before. The output of the BiLSTM

part is the representation of the temporal features obtained from the EEG data. This

output is then fed into fully connected layers in order to categorise the different mental

fatigue states using the temporal information as well as the spatial patterns identified by

the CNN. This architecture of the BiLSTM component with the stacked layers and the

bidirectional connection is capable of capturing the temporal evolution of neural activity,

thus enabling the model to learn the complex patterns associated with mental fatigue.

4.5.3 Fully connected layers

The extracted features are already a flattened vector after the pass on the second

BiLSTM layer so it is then passed through a fully connected layer (Dense layer) with

an activation function ’relu’ and 1024 output neurons and its output passes through a a

fully connected layer with 128 output neurons. The final Dense layer works as the output

layer, using a ’softmax’ activation function to generate the probabilities for each of the

two classes of mental state. In the following Table 4.1 we can see in detail the layers of

the proposed model.
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Layer (type) Output Shape Kernel Size Activation Function

InputLayer 80× 1024× 1 - -

Conv2D 80× 1024× 32 k × k Tanh

MaxPooling2D 40× 512× 32 - -

Conv2D 40× 512× 64 k × k Tanh

MaxPooling2D 20× 256× 64 - -

Conv2D 20× 256× 128 k × k Tanh

MaxPooling2D 10× 128× 128 - -

Dropout 10× 128× 128 - -

TimeDistributed Flatten 10× 16384 - -

TimeDistributed Dense 10× 128 - ReLU

BiLSTM 10× 256 - -

BiLSTM 256 - -

Dense 1024 - ReLU

Dropout 1024 - -

Dense 128 - ReLU

Dense 2 - Softmax

Table 4.1: Summary of the Model Layers
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4.6 Model interpetability with SHAP values

A crucial aspect of this study is the integration of SHAP (Shapley Additive Explana-

tions) values to enhance the interpretability of the CNN-BiLSTM model used for mental

fatigue detection. While deep learning models excel at extracting patterns and achieving

high classification accuracy, their complexity often makes them ”black boxes”, limiting

insight into how predictions are made. SHAP values address this issue by providing a

transparent, mathematically rigorous framework to explain the contribution of each in-

put feature to the model’s output. By applying SHAP to the CNN-BiLSTM model, this

study bridges the gap between performance and interpretability, offering both accurate

predictions and physiologically meaningful insights.

SHAP values are grounded in cooperative game theory and extend the concept of

Shapley values, which were originally developed to fairly distribute rewards among players

in a game. In the context of machine learning, SHAP values quantify the contribution of

each input feature (e.g., EEG channel and time point) to the model’s prediction. Given

a model f(x) and an input feature set x = {x1, x2, . . . , xn}, the SHAP value for a feature

xi is computed as:

ϕi =
∑

S⊆{x1,...,xn}\{xi}

|S|!(n− |S| − 1)!

n!
[f(S ∪ {xi})− f(S)]

Where:

• ϕi: The SHAP value for feature xi, representing its contribution to the model’s

prediction.

• S: A subset of all features excluding xi.

• f(S): The model’s prediction when only the features in subset S are included.

In our framework, each EEG segment after source localization is represented as a

series of activities in 80 cortical ROIs. The CNN-BiLSTM model then uses these ROI-

specific time signals to classify whether the participant is “rested” or “fatigued.” While

this pipeline yields high accuracy, SHAP serves as a post hoc explainer to reveal which

ROIs and temporal windows most strongly help with the model’s classification. Firstly

we treat each ROI as a feature, capturing its spatiotemporal activity. In practice, the

CNN part of the network captures spatial relationships across ROIs, while the BiLSTM

uncovers temporal dependencies. After the model is trained, we extract predictions for

each test instance. Then we employ a model-agnostic SHAP method specifically the

GradientSHAP that uses gradient-based approximations. Since computing exact Shapley

values can be extremely computationally expensive, these approximations strike a practical

balance between speed and fidelity of explanations. After that all of the test instances

local explanations are generated, SHAP yields a vector of 80 attributions, one for each

ROI along with the model’s baseline logit or probability. ROIs with positive SHAP values
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push the model’s output closer to the “fatigued” side, whereas negative values push it

toward “rested.” The magnitude of the value indicates how influential that ROI is relative

to others. Finally all local explanations can be aggregated across multiple trials and

subjects to uncover consistent patterns. For instance, if frontal ROIs generally exhibit

higher positive SHAP values in fatigued epochs, it supports neuroscientific findings about

frontal-lobe engagement under sleep deprivation or high cognitive load.



Chapter 5

Experiments and Results

5.1 K-fold cross-validation

In this chapter the experimental procedure and the results obtained are explained and

compared with the results of similar works. The experimental procedure incorporates a

popular, widely accepted methodology in machine learning and statistics the k-fold cross-

validation. However, before applying this procedure, the dataset is first divided into two

distinct subsets, a training set and a test set. This initial separation is an integral part of

the machine learning process, ensuring that the model, while learning from the training

set, is validated on unseen data (test set) that played no role in the training phase. The

training phase uses the concept of k-fold cross-calidation, a powerful resampling technique

used for model evaluation and selection. The following is how this technique works:

1. The training dataset is divided into ¨K¨ equal folds or subsets. Each of these subsets

has an equal chance of being used as a validation set while the model is trained on

the remaining subsets.

2. This procedure is performed in a loop for ¨K¨ iterations. In each iteration, one of

the ¨K’ subsets is used as the validation set and the remaining ¨K-1’ subsets form

the training set.

3. The model is trained on the ’K-1’ training subsets and then validated on the vali-

dation subset that was reserved. The performance is evaluated using the accuracy

metric, which is then stored.

4. Steps 2 and 3 are repeated ¨K’ times until each unique subset is used once as a

validation set. This ensures that every observation from the original training dataset

has a chance to be validated.

5. Calculate the average validation error across all the ’K’ trials. This average error

serves as the overall performance metric of the model.

The underlying strength of k-fold cross-validation lies in its integrated nature, signifi-

cantly reducing the bias and variance associated with a single experimental run. It ensures

29
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that each data point is found once in a validation set and ¨K-1’ times in a training set,

providing a more accurate and reliable measure of model performance, especially when

the size of the dataset is limited. In this thesis, 10-Fold Cross-Validation is used, which

is the same as the amount of subjects where the EEG data were collected. Also, after

each model is trained and validated with the corresponding fold, the final evaluation is

performed with the test set, which has not participated in the training at all, and stored

to calculate the final average accuracy value from all 10 models.

5.2 Optimizer and loss function

The model is drawn with the Adam optimizer with a learning rate of 0.0001 and a

decomposition of 0.00001, using categorical cross-entropy as the loss function and preci-

sion as the metric. The Adam optimizer (Adaptive Moment Estimation) is a stochastic

gradient-based optimization algorithm. It is a popular choice due to its efficiency and low

computational resource requirement. Adam calculates adaptive learning rates for different

parameters, which makes it particularly effective when dealing with sparse or noisy data.

It achieves this by estimating the first and second moments of the gradients to adapt the

learning rate, hence it is called adaptive moment estimation.

The learning rate determines how much the model will change in response to the

estimated error each time the model weights are updated. The choice of learning rate

for the Adam optimizer can be important, as it controls the step size at each iteration

while moving towards the minimum of the loss function. A lower learning rate can lead

to more accurate convergence towards the minimum of the loss function, at the cost of

convergence speed. In this model, Adam is used with a learning rate of 0.0001 and an

attenuation rate of 0.00001. .The learning rate determines the size of the step at which

the optimizer moves towards the minimum of the loss function, and the decay rate slowly

decreases the learning rate over epochs, allowing the model to learn more efficiently.

Categorical Cross-Entropy Loss is a loss function often used in machine learning models

for multi-category classification problems. The loss indicates how far a model’s prediction

is from the actual data. This loss is commonly used in models where the output is a

probability distribution. It is also used when we have one-hot coding. In one-hot coding,

each categorical value is converted to a new categorical column and assigned a binary

value of 1 or 0. Each integer value is represented as a binary vector. All values are zero

and the index is marked 1.

The mathematical formula for the categorical cross-entropy loss function for N classes

is as follows:

L = − 1

N

∑
i

[
yi log(y

′
i)
]

Below are the components of the formula:

• N : The total number of classes.
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• yi: This is the true label for class i, often represented as a binary value, where 1

indicates the correct class, and 0 for all others (one-hot encoding).

• y′i: This is the predicted probability that an example belongs to class i, as provided

by the model’s output (usually a softmax function).

• log: This is the natural logarithm function.

•
∑

: This represents the summation over all classes i.

The term−1/N is the average across allN classes. In essence, categorical cross-entropy

loss calculates the difference between two probability distributions the true distribution

(the coded labels using the one-hot method) and the predicted distribution (the output of

the softmax function in the model). The logarithmic function provides a large penalty for

predictions that are confident but incorrect and a small penalty for predictions that are

correct. The negative sign up front ensures that the loss is positive, as logarithm values

for numbers between 0 and 1 are negative.

5.3 Metrics

Evaluation metrics play an important role in machine learning as they provide a quan-

titative measure of the model’s performance, thus providing a clear understanding of its

strengths and weaknesses. This section mainly focuses on accuracy and confusion matrix,

two key metrics in the context of fatigue assessment based on EEG signals.

5.4 Accuracy

Accuracy is a simple and intuitive metric, representing the fraction of predictions

that our model gets right. Mathematically, accuracy is defined as the ratio of correctly

predicted instances to the total instances in the dataset. The mathematical equation for

accuracy is:

Accuracy =
True Positives + True Negatives

True Positives + False Positives + False Negatives + True Negatives

Where:

• True Positives (TP):These are cases where we predicted ”yes” (positive), and the

actual value was also ”yes.”

• True Negatives (TN): These are cases where we predicted ”no” (negative), and the

actual value was ”no.”

• False Positives (FP):These are cases where we predicted ”yes,” but the actual value

was ”no.”
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• False Negatives (FN):These are cases where we predicted ”no,” but the actual value

was ”yes.”

In this equation, the numerator represents the correct predictions (positive and neg-

ative) and the denominator is the sum of all the outcomes, correct or incorrect. Thus,

precision gives us a ratio of the correctly predicted observations to the total number of

observations. In this paper, however, we use the average accuracy, which is the sum of

all accuracies from all models (folds) divided by their n number: Average Accuracy =
Acc1+Acc2+···+Accn

n . Thus with the average accuracy we can effectively evaluate the overall

performance of all models.

5.5 Confusion matrix

The confusion matrix, also known as the error matrix, is a specific matrix layout widely

used in machine learning and statistics to visualise the performance of an algorithm. It

is particularly useful for supervised learning problems. Each row in the table represents

instances in a predicted class, while each column represents instances in an actual class.

The name comes from the fact that it makes it easy to see if the system is ’confusing’ two

classes (it usually misidentifies one as other).

Figure 5.1: Schematics of the confusion matrix for the binary classification problem in-

cluding definitions of basic terms used in the assessment of model’s performance [6].

The following is a brief overview of the basic components of a confusion table: - True

Positives (TP): these are the correctly predicted positive values for each class, meaning

that the class was accurately predicted as the true outcome. These values are located

along the main diagonal of the table. - True Negatives (TN): For any given class, these

are the correctly predicted negative values, meaning that the other instances of the class

were correctly identified. - False Positives (FP): also called Type I errors, they occur when

a class is incorrectly identified as the target class. - True Negatives (FN): Also known as
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Type II errors, they represent cases where the target class was incorrectly classified as

another class.

The confusion matrix allows a variety of metrics such as precision, accuracy, recall

(also known as sensitivity), and F1 score to be calculated for each class, and these metrics

can be combined or weighted in various ways to provide a single overall measure of model

performance. It is particularly useful in cases where the classes are unbalanced, i.e. where

some classes have many more instances than others, which is a common situation in real-

world datasets.

5.6 Results

In order to evaluate the performance of the CNN-BiLSTM model, a rigorous 10-fold

cross-validation method was adopted in this thesis to generate the classification results.

The model yielded an average accuracy of 91.55% with a standard deviation of 2.67% for

each fold of the cross-validation. This indicates that the model performs fairly consistently

and with a low level of variation, and thus it is considered to be quite accurate in identifying

the different mental fatigue states from EEG data. The database was split into ten equal

parts, and the K-fold cross-validation was employed, where each set was used for validation

while the remaining nine were for training. This approach makes sure that the model is

tested on every part of the dataset making it less likely to overfit and thus provide a better

measure of performance. The high average accuracy indicates the ability of the model in

producing correct results even when applied to different parts of the data set.

The standard deviation of 2.67% shows the consistency of the model’s performance

throughout the folds, and the accuracy did not fluctuate much. This shows that the

CNN-BiLSTM architecture is capable of identifying the key features of the EEG signals

which represent the transition from rested to fatigued mental state. Consequently, it is

seen that the CNN-BiLSTM model has a good classification performance for the 10-fold

cross-validation with an accuracy of 91.55%. This result supports the model’s potential to

effectively model EEG data and identify mental fatigue states, which forms a strong base

for its utilization in neuroscience study as well as real-life applications.

The normalized confusion matrix with percentages shown in Fig 5.3 helps to easily

comprehend the performance of the model on different classes. It is observed that the

model was able to identify 93% of the Fatigue samples as Fatigue and 90% of the Rest

samples as Rest. The high percentages along the diagonal show that the model performs

well in differentiating the two classes. Nevertheless, it also shows low misclassification

rates; 7% of the Fatigue samples were classified as Rest and 10% of the Rest samples were

classified as Fatigue. This suggests that in some cases the neural signatures of fatigue and

rest may be confused especially in the transitional or mild fatigue stages. Remarkably, the

model performs better in predicting Fatigue (93%) than Rest (90%), which means that

features of fatigue in EEG data may be easier to identify or more constant.

The confusion matrix without normalization shown in Fig 5.2, however, gives the
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Figure 5.2: Confusion matrix for 10-fold cross-validation experiment

Figure 5.3: Normalized confusion matrix for 10-fold cross-validation experiment

exact number of the correct and wrong classifications making it easier to understand

the specific characteristics of the classification problem. Out of 1020 Fatigue samples it

correctly classified 972 as Fatigue and 48 as Rest while out of 1020 Rest samples it correctly

classified 902 as Rest and 118 as Fatigue. This indicates that the model performed well

across both categories with a relatively low error rate. Furthermore, the equally divided

data set between the Fatigue class and the Rest class makes it impossible for the model

to tend towards one class more than the other.

These two matrices in comparison demonstrate how efficient and coherent the CNN-

BiLSTM model is. The normalized matrix helps to understand the proportional accuracy
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of the model and makes the class-wise performance more clear while the unnormalized

matrix gives an idea about the actual scale of correct and wrong predictions. Taken

together, they show that the model is very precise in identifying the states of mental

fatigue with minimum chances of misclassifying the states. However, the slightly higher

error rate for the Rest class shows the potential for the model to be improved, especially

where there are mixed states of being rested and having mild fatigue, for instance. These

matrices establish the strong performance of the suggested CNN-BiLSTM approach for

managing EEG in the course of mental fatigue. Such performance with high level of

accuracy and without big differences between the classes make this structure to be a

potentially useful tool and may have its applications in further researches in cognitive

neuroscience and general monitoring of brain fatigue.

5.7 Comparative analysis

In comparing our CNN-BiLSTM approach to similar EEG-based methods for mental

fatigue detection, several key aspects come to light. First, the protocol,like many oth-

ers relies on cognitively demanding tasks (here, an N-back paradigm) to induce fatigue,

though the exact task variants differ among studies. For example, Xing et al. [24] used

both an N-back and a mental arithmetic task, emphasizing a cross-task scenario in which

models are trained on one task and validated on another, obtaining around 84.5% ac-

curacy. Their method underlines the inherent challenges of generalizing across different

tasks, particularly when using classical fuzzy-entropy features and SVM classifiers.

On the other hand, approaches such as Xu et al. [23] and Su et al. [26] illustrate two

distinct success routes, one that uses well-crafted features plus a robust ensemble classifier

(Xu et al. using relative band power, fuzzy entropy, and XGBoost, achieving 92.39%

accuracy), and another that leverages deep neural architectures (Su et al.’s CNN-LSTM,

yielding 97.12% on a three-level fatigue problem). While these methods differ significantly

in preprocessing (wavelet denoising vs. simpler filters) and channel counts, they confirm

that carefully engineered pipelines can detect nuanced fatigue-related patterns. Karim et

al. [38] similarly adopt a smaller CNN (EEGNet) for binary fatigue detection, reaching

88.17%. Their emphasis on portability and real-time practicality with a lightweight 4-

channel setup that indicates an emerging trend of wearable EEG solutions, albeit at a

modest cost in classification accuracy.

Our own CNN-BiLSTM pipeline joins this deep-learning trajectory: it automatically

learns and refines temporal-spatial EEG features, culminating in a strong average accu-

racy of 91.55% under 10-fold cross-validation for binary (fatigue vs. rest) classification.

Comparing to Zhang et al. [25], whose two-stream network (TSN) learns from both spec-

tral and temporal topographic maps and achieves 91.9% for three classes, our technique

is similar in fusing different EEG characteristics (temporal and convolutional). Yet, ours

maintains a slightly simpler architecture (CNN + BiLSTM) that still robustly captures

fatigue-relevant patterns, as evidenced by our confusion matrices (93% accuracy in detect-
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ing fatigue, 90% for rest). Minor performance disparities often stem from differences in

task designs, sample sizes, EEG channels, artifact removal, and whether the study uses

two or three fatigue levels. Still, all of these works confirm that advanced architectures, es-

pecially ones blending CNNs with recurrent modules or parallel streams that consistently

surpass the earlier hand-crafted and traditional classifier pipelines.

Reference Methodology Classes Accuracy

Xing et al. [24] Fuzzy-entropy + SVM 2-class 84.5%

Karim et al. [38] EEGNet 2-class 88.17%

Xu et al. [23] Relative band power + Fuzzy en-

tropy + XGBoost

3-class 92.39%

Zhang et al. [25] Two-stream network (temporal &

spectral) TSN

3-class 91.9%

Su et al. [26] Wavelet denoising + CNN-LSTM 3-class 97.12%

This thesis Source localization + CNN-

BiLSTM

2-class 91.55%

Table 5.1: Comparison of methods and accuracies for EEG classification tasks.

Overall, our results illustrate that a hybrid deep network, combining convolutional

feature extraction with bidirectional LSTM, can achieve robust binary fatigue detection.

Not only does it align with contemporary deep-learning methods in accuracy, but it also

affirms that synergy between advanced architectures and balanced experimental protocols

can reliably discern fatigued vs. rested mental states.

5.8 SHAP values explainability

In order to uncover which brain sources and timepoints predominantly drive the CNN-

BiLSTM model’s predictions, we employed a two-step procedure that combines source

localization with SHAP (SHapley Additive exPlanations). First, each EEG epoch was

projected into localized brain regions (ROIs), for example, “Source 30,” “Source 33”, and

“Source 65,”, reconstructing cortical signals of interest. Next, these localized signals were

segmented by specific timepoints (“Sample point 159,” “Sample point 775,” etc.) to yield

a detailed spatiotemporal representation of the EEG data. Each fold of the cross-validation

then yielded SHAP values for both training and test samples, thereby indicating how

each source/timepoint combination pushed the model’s decision toward fatigued or rested.

Once all 10 folds were complete, we aggregated the SHAP values for every feature ( every

“Source xx Sample point yyy”) and computed its mean absolute SHAP score. Ranking

these scores revealed which localized timepoints had the strongest overall impact on the

model’s output. Finally, we selected the top 20 features with the highest mean absolute
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SHAP values across folds and visualized them in the beeswarm plot.

In the plot, each row corresponds to a single feature (for instance, “Source 33 Sample -

point 777”), while each dot along that row represents the SHAP value for a single EEG

instance. The color gradient have a range from blue (low feature value) to red (high feature

value), as it indicated on the right. Points that are located on the positive side (to the

right of zero) typically show a feature that increases the probability of a fatigued output,

and points that are on the negative side (left) suggest that the feature decreases it.

Figure 5.4: Highest 20 SHAP values from all folds

Several insights arise from the analysis on Fig 5.4. First, certain ROIs, like Source 30

(Insula R) and Source 33 (Cingulum Mid L) repeatedly appear among the top 20 SHAP-

ranked features, suggesting that these two cortical regions play an really important role

in the discrimination of fatigued from rested states. The insula is located in the deep

fold between the temporal and frontal lobes, and is widely regarded as a crucial hub for

interoceptive processing, emotional regulation, and awareness of bodily states [39]. So the

elevated SHAP values in the insular cortex may reflect how shifts in bodily or affective cues

help signal the onset of fatigue. Meanwhile, the mid-cingulate cortex, which falls along

the dorsal portion of the cingulate gyrus, is implicated in attention allocation, conflict

monitoring, and other executive control functions [40]. Because mental fatigue strongly
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impacts one’s ability to maintain cognitive control and handle task demands, it is not

surprising that activity in this region would emerge as a key driver of the model’s output.

Furthermore, multiple distinct timepoints for these same sources appear among the most

impactful features, indicating that not only do these regions matter, but the precise timing

of their EEG fluctuations is equally critical. Observing these high SHAP values across

different epochs shows the CNN-BiLSTM’s reliance on how neural dynamics in these

sources evolve over time and the patterns that evidently help the network differentiate

fatigue states.

These findings in a neurophysiological scope align with the established literature that,

for instance, frontal and parietal sources signals often correlate with fatigue. By identifying

the features with high SHAP values, we can be sure that the network bases its prediction

of fatigue vs rested stated in meaningfull spatio-temporal EEG features. This finding also

strengthens the overall robustness of our pipeline which starts from source localization of

the EEG signals to identify the cortical source and ends with a CNN-BiLSTM network for

classification. Lastly, using SHAP together with source localization provides really good

information about why certain features exert strong influences on the model’s classification.

It demonstrates that the model’s internal learned representations coincide with known

neural correlates of fatigue, ultimately offering a blueprint that is interpretable for future

researchers aiming to refine EEG-based fatigue detection.

Below we can see in detail the SHAP values on the experiments on each fold:

(a) SHAP values after training on the 1st

fold

(b) SHAP values after training on the 2nd

fold
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(c) SHAP values after training on the 3rd

fold

(d) SHAP values after training on the 4th

fold

(e) SHAP values after training on the 5th

fold

(f) SHAP values after training on the 6th

fold
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(g) SHAP values after training on the 7th

fold

(h) SHAP values after training on the 8th

fold

(i) SHAP values after training on the 9th

fold

(j) SHAP values after training on the 10th

fold
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Table 5.2: Top 8 sources identified in SHAP analysis, showing the number of folds in which

each source appeared as a significant feature

Source # Brain Region (ROI Label) Folds

30 Insula R 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

33 Cingulum Mid L 2, 3, 4, 5, 6, 8, 10

65 Precuneus L 1, 2, 3, 4, 5, 6, 9

41 Calcarine L 2, 3, 5

76 Temporal Mid R 1, 2, 9

18 Rolandic Oper R 1, 2, 6

29 Insula L 3, 4, 9

1 Precentral L 3, 5, 6

By analysing the results of the top SHAP values of every fold in the cross-validation

scheme we can access a comprehensive understanding of the features that the CNN-

BiLSTM model used in order to classify the mental fatigue states. We can see that some

key features consistently contribute to the model’s predictions across all folds. These

are some critical brain regions and time points that are important for distinguishing be-

tween Fatigue and Rest states. Several sources, which represent brain regions (ROIs),

like Source 33, and Source 30 frequently appeared as the most impactful across all folds.

Source 30 and Source 33 seem to have the most impact as they were the only sources that

appeared in the previous highest 20 SHAP values across all folds. This shows that these

regions correspond to cortical regions involved in cognitive load and fatigue. As presented

in Table 5.2 we can see that other sources also appear frequently in many of the folds on

the cross-validation scheme, which shows that there are more brain regions important in

mental fatigue assessment.

Firstly we can see that Source 30 which corresponds to the right insular cortex (Insula

R) appears in almost all the folds (1 through 10). The right insula is widely recognized for

its role in processing interoceptive signals those originating within the body, such as heart

rate, respiration, and gut sensations and linking them to emotional or cognitive states [41].

In situations that demand sustained effort, the right insula can become a key mediator of

subjective feelings like stress or discomfort. As task difficulty accumulates, an individual

might experience heightened arousal or shifts in autonomic markers that the right insula

helps interpret. This region also facilitates transitions between focusing on external stimuli

and monitoring internal bodily status, a dynamic frequently stressed by fatigue. When

mental fatigue sets in, changes in insular activity may be an early physiological alarm. The

insula can modulate attention and working-memory processes based on internal feedback,

such that an overtaxed state in the body is signaled through increased or dysregulated

insular output. Within the SHAP analysis, the repeated appearance of Source 30 in every
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fold underscores how robustly the right insula’s signals distinguish between rested and

fatigued states. This signal consistency suggests that fatigue influences bodily awareness

in a reproducible way, making right-insula activation an important marker for classification

models.

Source 33 which corresponds to the left mid-cingulate cortex (Cingulum Mid L) plays a

central role in cognitive control, conflict monitoring, and adaptive behavior. It is integral to

detecting performance lapses, such as when a subject becomes prone to missing stimuli or

responding incorrectly in cognitively demanding tasks. During extended task performance,

neural resources in the MCC can become depleted, leading to slower or less efficient error

processing. From a fatigue perspective, when participants are pushed to sustain attention

over time, the MCC may exhibit reduced capacity to handle competing demands. This

manifests as subtle time-domain EEG fluctuations lower amplitude responses or altered

latencies that the CNN-BiLSTM architecture captures. Source 33 shows in most folds (2,

3, 4, 5, 6, 8, 10) and reveals that erratic MCC activity is a strong indicator of entering

a fatigued state. In real-world terms, diminished MCC involvement may translate to

difficulty maintaining set goals or adapting to quick, unexpected changes in the task

environment, both hallmarks of mental fatigue [42].

One source that appears frequently other than the previous dominant sources is Source -

65 which is the region left precuneus (Precuneus L) and is located in the superior parietal

region. The left precuneus is associated with a variety of functions, such as visuospatial

processing, self-referential thought, and attentional control. Cognitive neuroscientists of-

ten regard the precuneus as pivotal for juggling internal mental imagery and externally

oriented tasks, making it highly relevant in sustaining working-memory load. In an n-

back paradigm, for instance, participants must repeatedly update and compare stimuli,

a process that draws heavily on parietal resources [43]. Accordingly, Source 65 appears

as a significant marker in folds 1, 2, 3, 4, 5, 6, and 9 which is an indicator that the left

precuneus reliably flags the strain of continuous mental workload.

Another important feature is the Source 41 which is located on the left calcarine cortex

(Calcarine L) also known as primary visual cortex. This region, found in the occipital lobe,

corresponds to the primary visual cortex, responsible for the initial cortical processing of

visual input [44]. Even though mental fatigue research often focuses on frontal and parietal

lobes, fatigue can also alter early perceptual mechanisms. When individuals are cognitively

drained, top-down attention on visual stimuli may fluctuate, leading to small changes in

the amplitude and timing of neural responses in this region. This source appears in three

folds (2, 3, 5) showing it is an important brain region for mental fatigue assessment.

The Source 76 which is the right middle temporal gyrus (Temporal Mid R) is heavily

implicated in semantic processing, language-related comprehension, and the integration of

multimodal sensory data. In intensive cognitive tasks, the middle temporal gyrus helps

bridge incoming information (visual, auditory, or linguistic) with stored knowledge, en-

abling rapid decoding of stimuli. Mental fatigue may degrade this efficiency, manifesting

as more variable or attenuated EEG signals. This helps explain why Source 76 stands out
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in Folds 1, 2, and 9, marking it as one of good temporal-lobe correlates of fatigue [45].

Situated near the junction of somatosensory and motor cortex, the Source 18 which

is the rolandic operculum in the right hemisphere (Rolandic Oper R) is integral to sen-

sorimotor integration. Seeing Source 18 frequently within folds 1, 2, and 6 underscores

that fatigue is not confined to purely cognitive areas rather, it permeates into motor-

preparatory mechanisms. Once sensorimotor gating is compromised, participants might

exhibit delayed or inconsistent response times, a hallmark behavioral outcome of mental

fatigue.

In Folds 3, 4, and 9, mirroring Source 30 (right insula), Source 29 represents the left

insula (Insula L). Both sides contribute to emotional regulation and bodily awareness,

although there can be subtle lateralization effects some studies link the left insula more

closely with cognitive aspects of emotional processing, whereas the right insula is some-

times more attuned to autonomic or arousal states. Bilateral insular involvement suggests

a widespread interoceptive imbalance under fatigue, reflecting the individual’s experience

of strain or rising stress internally [46].

The left precentral gyrus (Precental L) which is the Source 1 and is dedicated to volun-

tary motor control for the right side of the body appears in folds (3, 5, 6). Often considered

outside the “core” network of cognition, it can nonetheless be a sensitive index of fatigue

where if an individual’s motor signals degrade or slow down, it may indicate the broader

system’s inability to sustain good attentional or executive processes. In the repeated,

rapid-response environment of the n-back, small changes in motor-planning readiness can

serve as early warning signs of deteriorating cognitive ability [47].
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Discussion

This thesis set out to determine whether a lightweight, CNN-BiLSTM pipeline, trained

on source-localized EEG signals, can distinguish a mentally fatigued state from a rested

state with high reliability while remaining physiologically interpretable. A 10-fold cross-validation

scheme showed an average accuracy of 91.55% and a narrow 2.67% standard-deviation of

the values of the accuracies where the network made 1874 correct predictions out of 2047

trials, showing that the network learned task-general features rather than being tied to a

specific partition of the data. The confusion matrices reveal that the model detects fatigue

slightly more readily than rest, an outcome that is expected when the fatigued condition is

accompanied by stronger and more stereotypical oscillatory changes, whereas rest may slip

into light mind-wandering or incipient drowsiness that partially mimics fatigue in EEG

dynamics.

High performance alone is not sufficient, the central question is whether the network

bases its decision on plausible neuro-cognitive cues. To address this, a two-step inter-

pretability analysis was carried out. First, the raw surface EEG was projected to a set of

80 sources, providing an anatomically meaningful representation. Second, SHAP values

were computed to identify the spatio-temporal samples that have the greatest influence

on the final classification. A really consistent picture emerged across folds where the right

insular cortex (Source 30) emerged as the single most influential region, appearing in every

fold and frequently contributing SHAP values exceeding 0.12. The insula’s role in mental

awareness and autonomic regulation makes it a good connection for the subjective sense

of exhaustion shown in EEG rhythms. Also the left mid-cingulate (Source 33) repeatedly

appeared among the most influential sources, showing in 7 of 10 folds, consistent with

its involvement in performance monitoring and conflict detection. Additional regions in-

cluded the left precuneus (Source 65, 7 folds) and to a lesser degree, the left calcarine

cortex (Source 41, 3 folds), right middle-temporal gyrus (Source 76, 3 folds), and bilateral

opercular and pre-central regions. This pattern fits with the established understanding

that mental fatigue modulates the salience-network hub in the insula (mediating inte-

roceptive awareness and autonomic status), the cingulo-opercular system that sustains

performance monitoring, and parietal sites that do working-memory updating. The pres-
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ence of primary visual and sensorimotor regions in the explanation maps suggests that

fatigue-related changes spread early in the perceptual stream and into motor-preparatory

circuits, in line with behavioural findings that reaction times slow as mental resources

fade.

The blend of convolutional filters and bidirectional LSTM layers appears critical for

these results. The convolutional stage can isolate spatially distributed, time-specific mo-

tives that correlate with fatigue, while the BiLSTM stage captures how these motifs accu-

mulate or dissipate over time. In practical terms, the bidirectional component helps the

network to evaluate a time point in context, observing both the build-up of fatigue markers

and their subsequent evolution resulting in reducing false positives that might arise from

remaining artifacts. The convergence of SHAP features across folds further underscores

that the network relies on robust and generalisable EEG signatures rather than on chance

correlations.

Despite these encouraging findings, several limitations deserve attention. First, the

dataset was acquired under a single cognitive-load paradigm, namely the N-back task.

While the task is a well-validated stressor, it captures only one side of the complex phe-

nomenon of mental fatigue. Future work could evaluate the network on settings such

as extended driving or industrial monitoring, where sources of fatigue are multifactorial

and there are many external distractions. Second, although the inverse model and 80 re-

gion parcellation simplified the analysis and reduced computational load, higher-resolution

source modelling or subject-specific anatomical models could sharpen the localisation of

fatigue-critical generators. Third, the experiment adopted a binary labelling scheme. A

richer annotation along a continuous fatigue spectrum or at least three or more discrete

fatigue tiers could show a better feedback and help bridge the gap between laboratory

classifications and the gradual decrease observed in real-world alertness.

Taken together, the study shows that a relatively light neural architecture, supple-

mented by source localisation and SHAP-based explanation, can provide reliable, inter-

pretable discrimination of mental fatigue from rest. By capturing both spatial patterns

and temporal evolution, the model lays a foundation for wearable or in-vehicle system for

monitoring fatigue that can operate in real time. Extending the methodology to broader

tasks, larger cohorts, and continuous fatigue metrics will move the technology from more

theoritical toward practical deployment in safety-critical domains such as aviation, trans-

portation, and high-demand knowledge work.



Chapter 7

Conclusion and future directions

In conclusion, this thesis introduced the CNN-BiLSTM network for EEG-based mental

fatigue assessment that can capture both the spatial representations of brain signals with

2D convolutional layers and the temporal dependencies with bidirectional LSTMs. By

applying a thorough preprocessing and a 10-fold cross-validation strategy, the model had

a final average accuracy of 91.55%, which idndicates its robustness and reliability across

multiple partitions of the dataset. Something more crucial than the raw performance

was the SHAP analysis that provided insight into why certain features like time points,

and brain regions (ROIs) contributed so strongly to distinguishing the fatigued and rested

states. This interpretability is really important in order to correlate all the learned features

with already known neurophysiological signatures of fatigue.

A key strength of the proposed pipeline is its end-to-end nature, rather than relying

only on hand-crafted features, the network learned spatio–temporal patterns directly from

multi-channel EEG. By simplifying the model’s internal operations to a convolutional

front-end followed by BiLSTM components, we ensured that the short-term and long-

term EEG dynamics were both leveraged for a good prediction. This design choice proved

to be really effective not just for classification accuracy but also for offeringa simple and

lightweight architecture compared to more complex or specialized neural architectures

in this problems. Moreover, the state-of-the-art interpretability method (SHAP) was

integrated in the solution and it helped to clarify that the CNN-BiLSTM latched onto

meaningful EEG fluctuations over time, and showing that the detected features are not

arbitrary artifacts but relevant cognitive changes related to fatigue.

There are, however, quite a number of ways that this might be taken further scientifi-

cally and technologically. For instance, this may extend to more extended and longitudinal

EEG sets, possibly with repeated measures over days or weeks, which would reveal just

how invariant or time-varying these fatigue signatures are in naturalistic usage. Method-

ologically, the study could include cross-subject generalization, crucial for establishing that

an approach being put forward can perform when trained on some and tested on unseen

subjects, this being a pretty tough requirement for any practical deployment across a di-

verse range of populations. After all, real-time implementation is the next step for a range
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of applications like aviation, driving, and industrial workplace settings where continuous

monitoring of mental fatigue can forestall all types of accidents. Low-latency inference can

only be achieved by compressing models or optimizing them for specific hardware and/or

by employing much smaller yet powerful architecture.

One direction is going to be further multimodal integration, so we are going to comple-

ment EEG, for example, with eye-tracking data, or facial electromyography, or heart rate

variability, where all these biosignals will allow us to include a more holistic measure of

fatigue, and thus the model will be able to handle the artifacts in the signal and gaps in the

data a lot better. Such fusion will also make the system more robust in case some sensors

fail or return noisy signals. In parallel, deeper investigation of the explanation of models

beyond SHAP may show if some sampling points or regions of the cortex prevail over time

during decision-making, thus yielding more diverse neurophysiological insights. Lastly, we

take our findings to clinical and workplace settings, profiting from the collaboration with

neuroscientists, ergonomists, and industry partners, allowing iterative refinements of the

approach to fit the domain-specific needs and constraints.

Generally, this thesis provides appropriate evidence for how such a combination of

CNN and BiLSTM architecture together with the interpretability analyses can successfully

classify and explain the mental fatigue states from EEG signals. Further chapters in this

study can scale up the methodology to larger scenarios while keeping things light and real-

time, furthering insights into the brain-based pattern analysis of cognitive fatigue. This

pipeline, under continued emphasis on explainable deep learning, wide curation of data,

and practical deployment scenarios, has the possibility to keep improving both scientific

understanding and mitigation at the levels of mental fatigue in applied, real-world settings.
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Appendix A

Python Code

1 import scipy.io

2 import glob

3 import pandas as pd

4 import numpy as np

5 import tensorflow as tf

6 import matplotlib.pyplot as plt

7 import itertools

8 import shap

9 from tensorflow import keras

10 from tensorflow.keras import activations

11 from tensorflow.keras.utils import to_categorical

12 from tensorflow.keras import layers

13 from tensorflow.keras.models import Sequential

14 from tensorflow.keras.backend import is_keras_tensor

15 from sklearn.model_selection import train_test_split

16 from sklearn.model_selection import KFold

17 from sklearn.preprocessing import StandardScaler

18 from sklearn.decomposition import PCA

19 from tensorflow.keras.optimizers import Adam

20 from tensorflow.keras.callbacks import EarlyStopping

21 from sklearn.metrics import confusion_matrix

22 from sklearn import preprocessing

23 from sklearn.metrics import f1_score

24 from numba import cuda

25 import gc

26

27 gpus = tf.config.list_physical_devices(’GPU’)

28 if gpus:

29 # allocate specific size of memory on the GPU

30 try:

31 tf.config.set_logical_device_configuration(

32 gpus[0],

33 [tf.config.LogicalDeviceConfiguration(memory_limit=13336)])

53



54

34 logical_gpus = tf.config.list_logical_devices(’GPU’)

35 print(len(gpus), "Physical GPUs,", len(logical_gpus), "Logical GPUs")

36 except RuntimeError as e:

37 print(e)

38

39 batch = 32

40 epochs = 50

41 channels = 80

42 sampling_points = 1024

43 class_names = [’Fatigue’, ’Rest’]

44

45 mat_data = []

46 labels = []

47

48 files = glob.glob(r’C:\Users\giannos\Desktop\data\Fatigue_asc\*.mat’)

49

50 # Loop through and load each file with 4 second segmentation

51 # different segmentation lengths were tested with optimal 4 seconds

52 for i in range(2):

53 if i>0:

54 files = glob.glob(r’C:\Users\giannos\Desktop\data\Rest_asc\*.mat’)

55 for file in files:

56 data = scipy.io.loadmat(file)

57 d = np.array(data[’EEG_source’][:1024])

58 mat_data.append(d)

59 labels.append(i)

60 # mat_data.append(d[256:512])

61 # labels.append(i)

62 # mat_data.append(d[512:768])

63 # labels.append(i)

64 # mat_data.append(d[768:1024])

65 # labels.append(i)

66

67

68 features=np.array(mat_data)

69 labels=np.array(labels)

70

71 features = features.reshape([len(features), channels, sampling_points, 1])

72 print(features.shape)

73 print(labels.shape)

74

75 # CNN-BiLSTM model

76 def cnn_model():

77

78 model = Sequential()

79 inp = layers.Input(shape=(channels, sampling_points, 1))
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80

81 conv1 = layers.Conv2D(32, kernel_size=(3, 3), activation=’tanh’, padding=’

same’, input_shape=(channels, sampling_points, 1))(inp)

82 #x22 = layers.Dropout(0.5)(x1)

83 conv1 = layers.MaxPooling2D((2, 2), padding=’valid’)(conv1)

84 conv2 = layers.Conv2D(64, ( 5, 5), activation=’tanh’, padding=’same’)(conv1)

85 conv2 = layers.MaxPooling2D((2, 2), padding=’valid’)(conv2)

86 # x444 = layers.Dropout(0.8)(conv2)

87 conv3 = layers.Conv2D(128, (7, 7), activation=’tanh’, padding=’same’)(conv2)

88 conv3 = layers.MaxPooling2D((2, 2), padding=’valid’)(conv3)

89

90 x13 = layers.Dropout(0.3)(conv3)

91 x14 = layers.TimeDistributed(layers.Flatten())(x13)

92 x14 = layers.TimeDistributed(layers.Dense(128, activation=’relu’))(x14)

93 x14 = layers.Bidirectional(layers.LSTM(128, return_sequences=True))(x14)

94

95 x14 = layers.Bidirectional(layers.LSTM(128))(x14)

96 #with tf.device("cpu:0"):

97

98 #x14 = layers.Dropout(0.5)(x14)

99 x15 = layers.Dense(1024, ’relu’)(x14)

100 x16 = layers.Dropout(0.3)(x15)

101 x16 = layers.Dense(128, ’relu’)(x16)

102

103 out = layers.Dense(2, ’softmax’)(x16)

104 model = tf.keras.Model(inputs=inp, outputs=out)

105 model.summary()

106 # Compile the model

107 model.compile(optimizer=Adam(learning_rate=0.0001, decay=0.00001), loss=’

categorical_crossentropy’, metrics=[’accuracy’])

108 return model

109

110

111 pat = 10 # this is the number of epochs with no improvment after which the

training will stop

112 early_stopping = EarlyStopping(monitor=’val_loss’, patience=pat, verbose=1)

113

114 all_acc = []

115 all_shap_values = []

116 all_val_samples = []

117

118

119 def fit_and_evaluate(t_x, val_x, t_y, val_y, fold_num, EPOCHS=epochs, BATCH_SIZE=

batch):

120 model = None

121 model = cnn_model()
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122 history = model.fit(t_x, t_y, epochs=EPOCHS, batch_size=BATCH_SIZE, callbacks

=[early_stopping],

123 verbose=1, validation_data=[val_x,val_y])

124 _, acc_t = model.evaluate(t_x, t_y)

125 print(’training accuracy:’, str(round(acc_t * 100, 2)) + ’%’)

126 _, acc = model.evaluate(val_x, val_y)

127 all_acc.append(acc)

128 print(’testing accuracy:’, str(round(acc * 100, 2)) + ’%’)

129 # print("Val Score: ", model.evaluate(val_x, val_y))

130

131

132 # SHAP Explainer

133 #use the whole train set as background

134 background = t_x

135 explainer = shap.GradientExplainer(model, background)

136

137 #use the whole val set

138 val_sample = val_x

139 print(f’Validation sample shape: {val_sample.shape}’)

140

141

142 shap_values = explainer.shap_values(val_sample)

143 print(f’SHAP values shape (before sum/flatten): {np.array(shap_values).shape}

’)

144

145

146 shap_values = np.sum(shap_values, axis=-1) # remove the class dimension

147

148 # flatten SHAP values

149 shap_values_flat = shap_values.reshape(val_sample.shape[0], -1)

150 val_sample_flat = val_sample.reshape(val_sample.shape[0], -1)

151

152 print(f’SHAP values shape (after flatten): {shap_values_flat.shape}’)

153 print(f’Validation sample shape (after flatten): {val_sample_flat.shape}’)

154

155 all_shap_values.append(shap_values_flat)

156 all_val_samples.append(val_sample_flat)

157

158

159 assert shap_values_flat.shape[1] == val_sample_flat.shape[1], \

160 f"Mismatch in shape: SHAP values {shap_values_flat.shape[1]}, validation

sample {val_sample_flat.shape[1]}"

161

162

163 feature_names = [f’Source_{i}_Sample_point_{j}’ for i in range(channels) for

j in range(sampling_points)]
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164

165 # create SHAP plot

166 shap.summary_plot(shap_values_flat, val_sample_flat, feature_names=

feature_names, show=False)

167 plt.savefig(f’C:/Users/giannos/Desktop/python/shap_fold_{fold_num}.png’) #

Save SHAP plot

168 plt.close()

169 return history,model

170

171

172

173 n_folds = 10

174

175 # save the model history in a list after fitting so that we can plot later

176 model_history = []

177 predicted_targets = np.array([])

178 actual_targets = np.array([])

179 all_shap = []

180

181 kfold = KFold(n_splits=n_folds, shuffle=True, random_state=1)

182

183 i = 1

184 for train_index, val_index in kfold.split(features, labels):

185

186 y = to_categorical(labels, num_classes=2, dtype="int32")

187

188 print("Training on Fold: ", i)

189

190 X_train, X_val = features[train_index], features[val_index]

191 y_train, y_val = y[train_index], y[val_index]

192 print(len(X_train))

193 scaler = None

194 scaler = StandardScaler()

195 x_train = scaler.fit_transform(X_train.reshape(len(X_train) * sampling_points

, channels)).reshape(X_train.shape)

196 x_val = scaler.transform(X_val.reshape(len(X_val) * sampling_points ,

channels)).reshape(X_val.shape)

197

198 print(x_train.shape)

199 #print(x_test.shape)

200 print(x_val.shape)

201 hist,mod = fit_and_evaluate(x_train, x_val, y_train, y_val, i, epochs, batch)

202 model_history.append(hist)

203

204

205 predicted_labels = mod.predict(x_val)
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206 predicted_labels = np.where(predicted_labels>0.5 , 1, 0)

207 predicted_targets = np.append(predicted_targets, tf.argmax(predicted_labels,

axis=1))

208 actual_targets = np.append(actual_targets, tf.argmax(y_val, axis=1))

209

210 #mod.save(’C:/Users/giannos/Desktop/seed_preprocessed/models/subject’+str(

subj)+’/model’+str(subj)+’_’+str(i)+’.h5’)

211 i=i+1

212 # device = cuda.select_device(0)

213 # device.reset()

214 gc.collect()

215

216 def plot_confusion_matrix(predicted_labels_list, y_val_list):

217 cnf_matrix = confusion_matrix(y_val_list, predicted_labels_list)

218 np.set_printoptions(precision=2)

219

220 # plot non-normalized confusion matrix

221 plt.figure()

222 generate_confusion_matrix(cnf_matrix, classes=class_names, title=’Confusion

matrix, without normalization’)

223 plt.savefig(r’C:\Users\giannos\Desktop\confusion1.png’)

224 #plt.show()

225

226 # plot normalized confusion matrix

227 plt.figure()

228 generate_confusion_matrix(cnf_matrix, classes=class_names, normalize=True,

title=’Normalized confusion matrix’)

229 plt.savefig(r’C:\Users\giannos\Desktop\confusion2.png’)

230 #plt.show()

231

232 def generate_confusion_matrix(cnf_matrix, classes, normalize=False, title=’

Confusion matrix’):

233 if normalize:

234 cnf_matrix = cnf_matrix.astype(’float’) / cnf_matrix.sum(axis=1)[:, np.

newaxis]

235 print("Normalized confusion matrix")

236 else:

237 print(’Confusion matrix, without normalization’)

238

239 plt.imshow(cnf_matrix, interpolation=’nearest’, cmap=plt.get_cmap(’Blues’))

240 plt.title(title)

241 plt.colorbar()

242

243 tick_marks = np.arange(len(classes))

244 plt.xticks(tick_marks, classes, rotation=45)

245 plt.yticks(tick_marks, classes)
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246

247 fmt = ’.2f’ if normalize else ’d’

248 thresh = cnf_matrix.max() / 2.

249

250 for i, j in itertools.product(range(cnf_matrix.shape[0]), range(cnf_matrix.

shape[1])):

251 plt.text(j, i, format(cnf_matrix[i, j], fmt), horizontalalignment="center"

,

252 color="white" if cnf_matrix[i, j] > thresh else "black")

253

254 plt.tight_layout()

255 plt.ylabel(’True label’)

256 plt.xlabel(’Predicted label’)

257

258 return cnf_matrix

259

260 # after collecting all SHAP values and validation samples from all folds

concatenate them

261 all_shap_values = np.concatenate(all_shap_values, axis=0)

262 all_val_samples = np.concatenate(all_val_samples, axis=0)

263

264 # Number of top features to show

265 top_n = 20 # you can adjust this value to show more or fewer top features

266

267 #calculate the mean absolute SHAP values across all samples for each feature

268 mean_abs_shap_values = np.mean(np.abs(all_shap_values), axis=0)

269

270 # get the indices of the top N features based on the mean absolute SHAP values

271 top_n_indices = np.argsort(mean_abs_shap_values)[-top_n:]

272

273 # filter SHAP values and corresponding validation samples to keep only the top N

274 top_shap_values = all_shap_values[:, top_n_indices]

275 top_val_samples = all_val_samples[:, top_n_indices]

276

277 #generate feature names

278 feature_names = [f’Source_{i}_Sample_point_{j}’ for i in range(channels) for j in

range(sampling_points)]

279

280 # filtered feature names to keep only the top_n

281 top_feature_names = [feature_names[i] for i in top_n_indices]

282

283 shap.summary_plot(top_shap_values, top_val_samples, feature_names=

top_feature_names, show=False)

284

285 plt.savefig(r’C:\Users\giannos\Desktop\python\shap_all_folds.png’)

286 plt.close()
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287 #print(predicted_targets)

288 plot_confusion_matrix(predicted_targets, actual_targets)

289

290 print("Average accuracy : "+ str(round(np.mean(all_acc) * 100, 2)) + "% , std : "

+ str(round(np.std(all_acc) * 100, 2)) + "%")
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