NATIONAL TECHNICAL UNIVERSITY OF ATHENS

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING
DIVISION OF COMPUTER SCIENCE
SOFTWARE ENGINEERING LAB

Investigation of Al tools Performance in the
Definition of Microservices Software
Architectures

Diploma Thesis
Of
GEORGIOS SOTIROPOULOS

Supervisor: Vassilios Vescoukis, Professor, NTUA

Athens, July 2025

NATIONAL TECHNICAL UNIVERSITY OF ATHENS

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING
DIVISION OF COMPUTER SCIENCE
SOFTWARE ENGINEERING LAB

Investigation of Al tools Performance in the
Definition of Microservices Software
Architectures
Diploma Thesis

Of
GEORGIOS SOTIROPOULOS

Supervisor: Vassilios Vescoukis, Professor, NTUA

Approved by the examination committee on the 4™ July 2025.

V.Vescoukis G.Stamou N.Papaspyrou
Professor, NTUA Professor, NTUA Professor, NTUA

Athens, July 2025

Sotiropoulos Georgios

Graduate of School of Electrical and Computer Engineering, National
Technical University of Athens

Copyright © - Sotiropoulos Georgios, 2025
All rights reserved

You may not copy, reproduce, distribute, publish, display, modify, create derivative works,
transmit, or in any way exploit this thesis or part of it for commercial purposes. You may
reproduce, store or distribute this thesis for non-profit educational or research purposes, provided
that the source is cited, and the present copyright notice is retained. Inquiries for commercial use
should be addressed to the original author.

The ideas and conclusions presented in this paper are the author’s and do not necessarily reflect
the official views of the National Technical University of Athens.

IHeptinyn

O oyedloo oG TNG OPYLTEKTOVIKNG AOYIOUIKOV omoTteAel £va kaBoploTikd Pripo oTov
KOKAO {oNg avaTTLENG AOYICUIKOD, YEQUPMVOVTOS TIC OTATHGELS TOL AOYIGLIKOV LE TNV
VAOTOINGT TOV GLGTHLATOG LEGH TOV KABOPIGHOD dOUDV LYNAOL MTESOV. O GYedOTUOG TNG
OPYLITEKTOVIKNG TOPOUEVEL L0, OTTOLTNTIKT), XPOVOPOpa Kol ETPPENNG o€ cPaApata dwadikacio. H
napovoa epyacio eetdlel MV amddoon epyareimv Texvntng vonuooHivig (Al), ko
ovykekppéva tov Large Language Models (LLMs), 6tnv avtdpotn mapaymyn opyLItEKTOVIKOV
AOYIoUIKOV pe peaoct o€ cuoTipata Bacicpéve oe Microservices. Baoilopevn og mponyoduevn
gpeuva, 1 LEAETT QVTY| O1EPELVE MG SLUPOPETIKEG LOPPEG E1GOO0V, ATd ATAO KEILEVO
anotoewv £0¢ Aemtopepn Eyypaga tpodiaypa®v (SRS),) emloyn HoviéAov Kat ot TEYVIKES
Retrieval-Augmented Generation (RAG), ennpedlovv v mo1dtnTa Kot T GCLUUOPPOCT TOV
OPYLTEKTOVIKOV GYESOG UMV TOL TOPAYOVTOL OO TNV TEYVNTN VONLOCVVN GE GYECT LE TIG
amoutoelg Tov Aoyiopukov. Eeapuolovpe éva mhaicto a&loAdynong Paciouévo o€ EKTIUNGELS
E0IKMV TOV TS0V Kot EIGAYOVLE £VO GOVOAO OVTIKELLEVIKMV TOGOTIKOTOUEVMV OEIKTMV [E
o1oY0 ™ peTapacn o€ pa avtopot dadikacio agloAdynong. Emumiéov, diepevviton edv
pkpoTeEpa, Tomkd eriocevodeva LLMs umopovv va amoteAéG0UV TPUKTIKES EVOAAUKTIKEG
Mooelg og gumopikd dwbéoia epyareia Al Ta amoteAéoUATO TPOGPEPOLY CNUAVTIKES YVDGELS
Yo TN SVVATOHTNTO TS TEYVNTIAG VONUOGUVIG Vo, o1 ceL 6TO GTASI0 TOL OPYLTEKTOVIKOD
OYEOOGLOV GTNV aVATTLEN AOYIoUIKOD, EVIGYDOVTOS TNV OTOO0TIKOTNTA KOl TV TO1OTITO TOV
oXEO10GLOV, EVA TOPIAANA ETOVUTPOCSIOPILETAL O POAOC TOV UNYOVIKOV AOYICUIKOD GE
oLveEPYOTIKA TEPPAAAOVTA avOpdTOL — TEYVN TG vonroovvns. H epyacia avt cuppdaiiel otov
avadvopevo topéa g vrofonbovpevng and Al, texvoroyiag Aoyiopikod Kot oKloypapel
UEALOVTIKEG EPELVNTIKEG KATELOVVGELS Y10 TNV TEPOULTEP® EVOMUATMOT TNG OVTOUATOTOINONG
OTOV GYEOUG O TOAVTAOK®V GLGTNUATWV.

Aé&€erg Khewona: Large Language Models (LLMs), apyltektovikn AoYioukoy, Teyvoroyio
Aoyopkov, teyvnt vonuoovvn (Al), Retrieval-Augmented Generation (RAG), UML,
Microservices, Software Requirements Specification (SRS).

Abstract

The design of software architecture is a pivotal step in the software development
lifecycle, bridging user requirements and system implementation through the definition of high-
level structural designs. Despite its critical importance, architectural design remains a
challenging, time-intensive, and error-prone process. This thesis investigates the performance of
artificial intelligence (Al) tools, specifically large language models (LLMs), in automating the
generation of software architectures focusing on Microservices-based systems. Building on prior
research, this study explores how different input formats, ranging from plain-text requirements to
detailed specification documents, model selection and Retrieval-Augmented Generation (RAG)
techniques, affect the quality and compliance of Al-generated architectural designs with the
software requirements. We apply an evaluation framework based on assessments from domain
experts and we introduce a set of objective metrics to pave the road towards an automatic
evaluation process. Additionally, this study explores whether smaller, locally hosted LLMs can
serve as practical alternatives to commercially available Al tools. The results provide insights
into the potential for Al to transform the architectural design phase of software development,
enhancing design efficiency and quality while reshaping the role of software architects in
collaborative human-Al workflows. This work contributes to the growing field of Al-assisted
software engineering and outlines future research avenues to further integrate intelligent
automation into complex system design.

Keywords: Large Language Models (LLMs), software engineering, software architecture,
artificial intelligence (Al), Retrieval-Augmented Generation (RAG), UML, Microservices,
Software Requirements Specification (SRS).

Acknowledgements

I would like to express my sincere gratitude to my Professor, Mr. Vassilios Vescoukis,
for his valuable guidance, support, and constructive feedback throughout this thesis. His
expertise was crucial in shaping the direction and outcome of my work.

I am also grateful to PhD Researcher Mr. Christos Hadjichristofi, whose advice,
assistance and ongoing support played a key role in the development of this thesis.

As this diploma thesis marks the completion of my studies at the School of Electrical and
Computer Engineering at the National Technical University of Athens (NTUA), I would like to
extend my thanks to my family and friends. Their continuous support and encouragement have
been with me every step of the way, making this journey both meaningful and fulfilling.

Finally, I would like to thank all the teaching staff at NTUA for sharing their knowledge
and promoting a motivating and inspiring academic environment throughout these years.

Table of Contents

1.

INEOAUCTION ...ttt e e et e e eeetaeeesbeeensaeeensaeesssaeesnseeennseeennses 29
1.1 EVOIULION OF Aloiiiiiiiieiiee ettt ettt ettt e et esae s e b e e 30
1.2 AT In Software ENGINEETINGccvcuiiiiiiieiiieeeiee ettt eiteeeee e et eesveeesaeeesaaee e 30

1.2.1 Automated Code GENETAtION.........ccueeeeiieeeiieeeieeecteeeteeecreeeeeeeareeebeeesseeesnneeas 31

1.2.2 AUtOMAtEd TESTING......ecuiieiieiieeiieeie ettt ettt ettt ere et e e e beesaeeenseeeene 32

1.2.3 Understanding Software Requirements using Natural Language Processing....... 33
1.3 Challenges of Al in Software Engineeringcccceccvveeeiieerieeeniieeiiee e svee e 34

Al-Assisted SOftware ATChItECtUIEoocvieriiieiieie et 37
2.1 Related WOTK ...ooiieiieeeeeeee ettt erae e saee e earee e 37
2.2 ATChItectural PatternS.......cccvviiiiiiiiiie ettt e e e et erae e saee e enee e 39

2.2.1 Client-Server ATChIECTUIEc.eeiiieiieeieeiee ettt seae e 39

2.2.2 Three-Tier ATCRITECTUIEcccviiieiie et e eaee e eaee e 40

223 Model-View-Controller (MVC) Architecture..........cccccvveevveeeeieeeiieeeiieeeee e 41

224 MicrosServices ATChItECUIEevvuieiieeiieiie ettt s 42
2.3 Selected Architectural Patternsc.ceecvieeiiieiiiieeieece et 44
2.4 Motivation of OUur APProachcceeeuiiiiiiiiiiiie e 44
2.5 Research QUESTIONSviiiiiiiciie ettt ettt et e et e e e raeeeareeesaneeeeaneeenes 45

PN 07 5) 0T o] F PSSP 47
3.1 Deployment, setup and technologies USed..........ccccuveeiiieeriieeiiie e 47

3.1.1 Hardware SpecifiCationscccueevuieriieiiieiieeiieie et 47

3.1.2 Selecting the UML Output Format from LLMScccoooviiiviieiiiecieecieeeeee 49

3.1.3 Retrieval Augmented Generation (RAG)cccueveiiiieiiiieiiieeieeeeeee e 51
3.2 The DCC Experiment, reVISIt.........cceerireriiiriieiieiieeieeeieeieesee et sveeieeseeeeeesane e 56

3.2.1 Architectures Considered.........ccoeviiieriiieiiie et 56

322 Case Study: DCC (Dummy Coordinate Converter) Application............ccccccveeee. 56

323 THE PrOMIPL....ceiiieiieiieeie ettt ettt et abeebeesabeeneeas 57

324 | 3] 1Y Y] (<Tod 1) APPSR 57

3.2.5 RAG Material.......cccviiiiiieiiiiece ettt et etae e et e e et e e sneeeennee s 58

3.2.6 Evaluation ProCESScc.eeiiiiiieiiieiieeie ettt ettt s 59

3.2.7 Scenarios Performedc.oocuieiiiiiiiiiiiciee e 59

3.2.8 RETEIENCE ATCRITECTUIES ... eeeeeeeeeeee e e e e et e e e e e e e e e eaaaaaeeas 60

33 The MyCharts EXPEeriment..........cccueeeiiieeiiieeiieeeiieecieeeeieeesvee e e eereeseaeessaeesnreeeenns 63

3.3.1 Architectures Considered...........cuivieeiiieriieiiieiie ettt e 63
332 Case Study: MyCharts APplicationccceeecuieriierieenienieeieeeee e 63
333 Evaluation PrOCESScuuiiiiiieciiieciie ettt et e saee e s 65
334 Metrics Considered for Objective Evaluation.............cccceevieviienieniiienienieeee, 66
3.35 THE PrOMIPL...ceiiiiieiieeie ettt ettt ettt e e beesaneenseas 69
3.3.6 | 3] 1Y Y] (<To7 51) APPSR 72
3.3.7 RAG Material........cooiiiiiiiiieiieie ettt et e 74
3.3.8 Scenarios Performedc.oooviiiiiiiiiiiiiciee e 74
3.3.9 Experiment PIPEIINE........ccoouiiiiiiiiiiiecciie ettt 76
3.3.10 Reference ArChit@CtUIEocuiiiieiiieeiieie ettt e 77
3.4 MyCharts 2-Prompt EXPeriment...........ccccuveiuiiriieiiienieeiieeie et sie et sveeiee e eiee e e 78
3.4.1 ParamELerS uvieeeiiiee e e e e et e e e e aae e e e e 78
342 SECONA PIOMIPL....ccuviiiiiiiieiieieee ettt ettt s ebeeeaaeens 78
343 Experiment PIpeline.........cccoeouiiiiiiiiiiiiiciiceeee e 80

I ST 1 £ RSP RRRUSPRR 81
4.1 Web Based Evaluation Platform..........ccccoociiiiiiiiiiiiiicceee e 81
4.2 DOCC EXPEITMENL....cccuiieiiiiiiieiieiiieetiesieeteesiteeteesteesteesseeebeesseessseeseessseenseesssesnseesnseans 84
4.2.1 TYPICAL CASES ..vveeerieeiiieeiiee ettt e ettt ettt tte e et e e e teeesatee e sbeeeaseeessaeeensseesnsneesnseaenns 84
4.2.2 Evaluation RESUILSc.ceeviuiiiiiiieieeee et 91
423 RESUIES DISCUSSION ...ttt ettt ettt sae et eseae e saeeenseeeees 96
4.3 MyCharts EXPErimMENt.........c.cceevuiiiiiiiieiiieeiiieeeieeesieeesteeeveeeaeeeesaeeeaeeessaeessseeeenseeenns 98
4.3.1 TYPICAL CASES ..vveenerieeiiieeiiee ettt e ettt e ettt e e e st e et e e s ateeesebeeesseeessaeeenssaesnsaeesnseaenns 98
432 Evaluation RESULILSc.ooiiiiiiiiiiiieciece ettt e 101
433 Metric Performanceccueeeiiieiiieeiiieccie et 107
434 Metric HalluCINAtIONoeeviieiiiieciie ettt e 110
4.3.5 RESUILS DISCUSSIONeeuivieiiiiiiieiiie ittt ettt et ettt e siae bt essbeenseesasaens 111
4.4 MyCharts 2-Prompt EXperiment..........cccceccvieeriiieeiiieeiiieeriee e eie e sveeesvee e 112
4.4.1 TYPICAL CASES ..veeenerieeiiieeiiee ettt ettt e e tee et e e stee e s eaeeestaeeenaeeesseeennseesnseeesnseens 112
442 Evaluation RESULILSc.coiiiiiiiiiiiieeiieee et 114

T B 3 010 13 U) o BRSPS 118
5.1 CONCIUSIONS ... vieeetieeiiieeitee et e ettt e e stteestteesteeessseeesssaeeassaeasssaeensseeassseessssaesnseeensseeanns 118

52 FULUTE WOTK .ottt ee e eeeseneneeenennnnnnne 119

LT o o33 T 1 USRS 121

6.1 Appendix A (SRS _v1 for DCC Application)ccceeevieenieeiiienieniieniieeieeiee e 121

6.2 Appendix B (SRS_v2 for DCC Application).........ccccceeeueeniieriieniienieeniieeieeieeeve e 130

6.3 Appendix C (SRS for MyCharts Application)..........ccccveeerveeeriieerieeeieeeiieeeiee e 142
T RELEIEIICES ...ttt ettt sttt et st b et sttt 151
Table of Figures
Figure 2.1: Client-Server MOdel...........cocuiiriiiiiiiiiiciiee et 40
Figure 2.2: Three-Tier Architecture Modelcoooviiiiiiiiiiiiceece e 41
Figure 2.3: Model-View-Controller (MVC) Architecture Model...........ccccoevieviiienieniieienieenee. 42
Figure 2.4: Microservices Architecture Model...........ccooviiieiiiiiiiiiiiiece e 43
Figure 3.1: Example of PIantUML COde........cccooviiiiiiiiiiiiieieeitece ettt 51
Figure 3.2: RAG Method THUSTrated.........c.ooeeiiieiiiieiee ettt e 53
Figure 3.3: Scenarios Performed - DCCcciiiiiiiiiiiiciiee ettt 60
Figure 3.4: Client Server Architecture (DCC APDP) .ecoveeiiiieeiiieeieeeeiee ettt 61
Figure 3.5: Three-Tier Architecture (DCC APD) ...veecvierieeiiieiieeiteeie et eie ettt aeeseve e 62
Figure 3.6: MVC Architecture (DCC APP) coecveeeeiieeeiieeiiee et eieeeeieeesveeesaeeeseveessaaeesnneesseeens 62
Figure 3.7: Scenarios graph - MYCRhartScccoeviiiiiieiiieiienieeiteee ettt 75
Figure 3.8: MyCharts Experiment PIpelineccccoovviieiiiiiiiiiieeccee e 76
Figure 3.9: MyCharts Reference ArchiteCture............coccvveiieriieiiiiniieieeie et 77
Figure 3.10: 2-Prompt Experiment Pipelineccccoccviieiiiieiiiiciiecieeeee et 80
Figure 4.1: Web Based Evaluation Platform - SAATL........c.oooiiiiiiiiieieeeee e 82
Figure 4.2: Web Based Evaluation Platform - SAAL......cccoooiiioiieeeecee e 83
Figure 4.3: DCC Experiment (ID = 67)cccoiiiiiiieiieie ettt e 84
Figure 4.4: DCC Experiment (ID = 79)uoooiiiiiie ettt 85
Figure 4.5: DCC Experiment (ID = 89)cccoooiiiiiieiieie ettt 86
Figure 4.6: DCC EXperiment (ID = 74) ...ccuoioiiiieeiie ettt ee et 87
Figure 4.7: DCC Experiment (ID = 107) ...cccoeoiuiiiiieiieieeiieee ettt 88
Figure 4.8: DCC EXperiment (ID = 75) ..cccuiiiiiieecie ettt 89
Figure 4.9: DCC Experiment (ID = 14)oioiiiieeiieeiee ettt e et svee e svee e 90
Figure 4.10: DCC Experiment (ID = 22)cccoiiiiieiiieieeiieee ettt 90
Figure 4.11: DCC Experiment (ID = 17)ccoiiiioiiieeiee ettt 91
Figure 4.12: DCC Experiment - Model Performance.............ccoeeveviieiieniienieniieieeie e 92
Figure 4.13: DCC Experiment - Model Performance No RAG.........cccoooviiiiiiiiiiiiieeceeeeee 93
Figure 4.14: DCC Experiment - Model Performance with RAGcc.coccoeviniininiininiiiene, 93
Figure 4.15: DCC Experiment - NORAG VS RAGooooiiiiiieeeeeeee et 93
Figure 4.16: DCC Experiment - SRSV1 vS SRSV2ooiiiiiiiieeeeeee e 94
Figure 4.17: DCC Experiment - Model Performance SRS..........cccoooiiiriiiiiiiieeeeeeee e 94
Figure 4.18: DCC Experiment - Model Performance - FR-NFR............ccccociniiiininiiie 95
Figure 4.19: DCC Experiment - FR/NFR VS SRSoiiiiiiiiece et 95

Figure 4.20: DCC Experiment - Performance per Architecturecoceevveveenenieneenenienenn. 96

Figure 4.21:
Figure 4.22:
Figure 4.23:
Figure 4.24:
Figure 4.25:
Figure 4.26:
Figure 4.27:
Figure 4.28:
Figure 4.29:
Figure 4.30:
Figure 4.31:
Figure 4.32:
Figure 4.33:
Figure 4.34:
Figure 4.35:
Figure 4.36:
Figure 4.37:
Figure 4.38:
Figure 4.39:
Figure 4.40:
Figure 4.41:
Figure 4.42:
Figure 4.43:
Figure 4.44:
Figure 4.45:
Figure 4.46:
Figure 4.47:
Figure 4.48:
Figure 4.49:
Figure 4.50:

MyCharts Experiment — FR/NFR (ID =16)cccccoooiiiiiiiieiieeciee e 98
MyCharts Experiment - SRS (ID = 21)..ccccuiiiiiiiiiiieeiieieeeeeeeeeee e 99
MyCharts Experiment - SRS (ID = 8)...uvieiiiiiiieeceeeeeeee et 99
MyCharts - FR/NFR (ID = 14) ...coouiiiiiiieeieeeeeeeee et 100
MyCharts Experiment - FR/NFR (ID = 12) c..cccoiiiiiiieiieeeeeeeeee e 100
MyCharts Experiment - FR/NFR (ID = 6)c.coccuiiiiiiniiiiiiieeeeeeeee e 101
MyCharts Experiment - Model Performance (FR/NFR)..........ccccoovvviiviiiencieennn. 102
MyCharts Experiment - Model Performance (SRS)ccccovvieniniiniinciiinieee, 102
MyCharts Experiment - FR/NFR vs SRS.......coooiiiiiieeeeeeeee e 103
MyCharts Experiment - Model Performance without RAG (FR/NFR)................. 104
MyCharts Experiment - Model Performance with RAG (FR/NFR) 104
MyCharts Experiment - NORAG vs RAG (FR/NFR)cccoooviiiiiiiiiiiiiieeee 105
MyCharts Experiment - Model Performance without RAG (SRS)........cccccuveennee. 105
MyCharts Experiment - Model Performance with RAG (SRS).....c.cccocevvininnenne. 106
MyCharts Experiment - NORAG vs RAG (SRS)...covevviiiiieeeeeeeeeeeeeeen 106
MyCharts Experiment - Metric Correlation - Responsibility Distribution 107
MyCharts Experiment - Metric Correlation - Data Management 108
MyCharts Experiment - Metric Correlation - Data Consistency...........cccceeeeueenee. 108
MyCharts Experiment - Metric Correlation — Couplingccceeeeveeevveencneeennnenn. 109
MyCharts Experiment - Metric Correlation - Cohesion..........coccecueveenernieneenenne. 109
MyCharts Experiment - Metric Hallucination............ccccceeevvieeriieeciececieeceeeeenn 110
MyCharts 2-prompt Experiment - Mistral (Response 1)........cccevveviiienienireninnne. 112
MyCharts 2-prompt Experiment - Mistral (Response 2).......cccccveeeveeeeieencneeennnnen. 113
MyCharts 2-prompt Experiment - Deepseek-r1 (Response 1).......cccevervevvennennee. 113
MyCharts 2-prompt Experiment - Deepseek-r1 (Response 2).......cccceeevvvevvveenenn. 114
MyCharts 2-prompt Experiment (claudeSonnet3.7)ccccooveveeviniencinenieneenne. 115
MyCharts 2-prompt Experiment (deepseek-11)ccceeeviieviieeiiiieiiiieieeeieeeen 115
MyCharts 2-prompt Experiment (ZPt40).......cceevueeeieerieriiieniieeieeiie e eve e 115
MyCharts 2-prompt EXperiment (01).......cccovieriiieiiieeriie e 116
MyCharts 2-prompt Experiment (mistral-online)ccccevceevenveniencnnenieneenne. 116

GREK EXTENDED ABSTRACT

O kdxrog {mng ¢ avamtuéng ALoyiopkoy gival pio TOADTAOKT O1001KOGT10 TTOAADV
oTodimV, TOV EKTEIVETOL OO T1) GLAAOYY OTOLTHGEMY TOV AOYIGHIKOD £mG TNV avATTLEN Ko
CLVINPNOT TANPOS AEITOVPYIKAOV Kol cOUVOET®V cvotnudtov. [lepthapfdavel facikég pacelg
OM®G OVAALGT ATOITNOEWV, GXEOOGHO OPYITEKTOVIKNG, VAOTOINGT], dOKIUES, EYKATACTOOT Kot

GLVTNPNOT).

To otdd10 ToV GYEOAGHOD TNG APYLITEKTOVIKNG TOV GLGTHIATOS OTOTEAEL KPIGILLO TO
onueio petdfoong amd T aPNPNUEVES OTALTOELS GTV TPAKTIKN VAOTOINGN. Z€ aVTO TO
016010, 01 uNyaviKoi Aoytopkob opilovv Tig Pacikéc OoUES Kot oyEoelg Tov Ba amoTeEAECOVV TOV
OKEAETO TOL GLOGTNHOTOS, ONUIOVPYDVTOG HOVTELD (VY VA pe xprion ™G YAdooag UML) ta
omoio AerTovpyovV ®¢ KaBodnynTiKd oyedta yio OAES TG opadeg avantuéng. H apyrtektovikn dev
KOVOTOLEL LOVO TIC AELTOVPYIKES OMOLTNGELG, AALAL KO U1 AEITOVPYIKEG OTIMG 1| EXEKTOCILOTITO
Kol 1 06000 Mio 6moTH 0pYITEKTOVIKT HEIDOVEL Ta AGOT, B€TEL capn TEXVIKA TPOTLITO Kot
napéxel otabepn Paomn yio peAlovtikn e£EMEN. QoT1000, 0 GYEIACUOG TNG APYLTEKTOVIKNG KOL 1
dNUovpYio TOV AVTIGTOTY®V OYPOUUATOV Eivar Lo ¥povoPopa Kot EDAAMTN 6€ COAALATO
JdKaGia, CLYVA AOY® TOPEPUNVELDV OPYLITEKTOVIKMV 0PYDV, LE ATOTELECUO KOOVOTEPNGELS
KOl OVOTTOTEAEGUATIKOTNTO G€ OAN TN O1001KAGTI0 aVATTVLENG.

H payodaio mpo0odog g te)vVNTNG VONUOGVUVIG, Kol 1010HTEP TOV HUEYAAW®V YADMCGIKMV
povtédwv (LLMs) Baciopévav ot Badid pabnomn, éxet avoi&et véeg duvatdTnTeg
OLTOULATOTOINGNG EPYACIDV TOL UEYPL TPOCPUTA amoLTovcaV avhpdmvn Tapéupact. Avtd to
LLOVTEAQL, TOV EKTOLOEVOVTOL GE TEPAGTIONG OYKOVS Oed0UEVAV, £Y0VV dEIEEL LYNAY KOVOTNTOL
KATOVONONG KOl Topoy®yYNS GUGIKNG YAdocas. 'Hon aglomolovvtat yio EVIOTIGUO COOAUATOV
Kot dnpovpyia KOO, YEYOVOS OV £YEIPEL TO EPMOTNLOL: HTOPOVV VO, XPNGLULOTOM OOV Kot Yio
TNV GVTOLOTOTOUNUEVT TTOPAYWYN OPYLTEKTOVIKOV oyediwv Ko UML daypappdtov; Eav
UTTOPOVV VO LETATPEYOLV YPOATTESG OALTIOELS OE OPYOUVMOUEVO, GUVETN OPYLITEKTOVIKA LOVTELD
CUUPMVO, L€ CUYKEKPIUEVA TPOTLTA, Bt ADGOLV paL OO TIC O ATOUTNTIKEG PAGELS TOV
oXEO10.GLLOV AOYIGHKOVD.

H mapovoa perétn egetalet v kavomta tov LLMs va mapdyovy apyiteKtovikég
Aoyiopukov, oe popen owrypappdtov UML, pe épgpacn ota Microservices. Xtilovtag néve o€
TPOTYOVLEVT £PELVA, QOKILALOVLE SLAPOPES LOPPES E1GOJ0V (A0 OMAES TEPTYPOUPES
amoutNoewv pEYPL TANpN £yypago Software Requirements Specification) aloAoydvtag Tdg T0
EKAOTOTE LOVTEAO KOl 1 ¥PNON TEXVIKAOV gvioyvong avaktnong yvoong (Retrieval-Augmented
Generation) enmnpedlovv TNV TOWOTNTA TOV TOPAYOUEVOV CYESTI®V.

Kevtpiko epodtpo amotedel T0 KOTd OGO 01 TAPUYOUEVES APYLITEKTOVIKES IKOVOTOLOVV
TANPOG TIG ATOLTNGELS Kot TNPOoVV TI§ apyés oxediaonc. Eiodyovpue cuvoro kpumpiov
a&loAoynong yo avBpdmvn aE1oA0YNoT Kol TPOTEIVOVUE TOGOTIKOTOUEVOVS OEIKTESG
AVTIKEUEVIKNG a&loAdynong Baciopéveg e mponyovpeveg Epgvvec. [apdiinia, eetalovpe ebv

HKpOTEPQ, TOMIKG ekTEAOVUEVO LLMS pumopodv va amoteAécouy PLOCIUEG EVOAAAKTIKEG EVOVTL
EUTOPIKOV AVGEWV.

AlepeuvmVTOG TIC OLVATOTNTEG KO TOVS TEPLOPIOUOVE TNG TEXVNTNG VONLOCVVNG GTOV GYESOGLLO
OPYLTEKTOVIK®OV AOYIGLKOD, 1] TAPOVGH EPEVLVO EMKEVTIPMVETAL OTA £ENG EPEVVNTIKA EPMTNILOTOL:

1.

Iowa popen €600V Tposeéper T PEATIOTN OEIKOVION APYLTEKTOVIKAOV 0té LLMs;
Aiepevvovue mwoia popen avaropaotacns (orws XMI, eikoveg, PlantUML n Mermaid
orypapuata) emtpénel ato. LLMSs vo, Topayovy opyitektovika. ayéola DYnANgG molotnTog
Kai axpifelag.

Bektidver éva dounpévo £yypago SRS v o0t T TOV TOPAYOUEVOV
owypappdtov oné ta LLMs;

2VYKPIVODUE TO. ATOTEAEGUOTO TV UOVTEAWY OTOY LOUPAVODY WG EIGOOO TANPES EYYPOAPO
Software Requirements Specification oe ayéon ue amiég Aioteg anoutnoewv. Eéetalovue
KOTG OGO UTOPODY VO, KOTOVOHGOVY KOl VO, UETOPPATODY GOVOETH ENLYEIPNOLOKT AOYIKN
KOl OL0GOVOEOUEVES OTALTHOELS O GUVEKTIKO OPYITEKTOVIKO GYEOLOTUO.

Mmnopovv Ta LLMs va mapdyovv apyrrektovikég Microservices yia mo ovvleteg
EQappoyic;

EZéyyovue v ikavornta twv LLMs va d100m00v 6OVOETES 0mouthogis o€ KaToiinles
HIKPO-DITNPETIES (Microservices), THPWVTOS TIS OPYES TGYEOLOTNS, OTWS TO, OPLO, DTHPETIMDV,
o1 ayéoels uetald Tovg Kol 10 TPOTOTO EXIKOLVWVIOG.

owo kpreipra agloAdynong givar Katorliniotepa Yo apyrtektovikéc Microservices;
Evrorilovue ta keve, twv vpiotuevaov uedoowv alloloynong kot avarrtdooovue
eCE1OIKEDUEVOL KPITHPLO. TTOV OVTOTOKPIVOVTOL OTIS I0I0ITEPOTHTES TOD GYEOLATUOD
Microservices.

IO prropovpe vo VTOAOYIGOVIE AVTIKEINEVIKOVS OEIKTES 0.ELOAOYNONG Y10 TIG
TOPOYOUEVES OPYLTEKTOVIKESS

Me otoyo v aliomorn alioAoynon e ToI0THTOS TWV TOPAYOUEVMV APYITEKTOVIKDY,
TPOTEIVOVUE TOCOTIKOTOINUEVOVS OEIKTES TTOV EIGAYOVY ULO. AVTIKELUEVIKT OLO.GTOCH OTHY
0C10A0YNoN THS TOLOTHTOS TWV TOPAYOUEVDV OLOYPOLUUCTOV.

MMapovordlovy Ta LLMs «yegvdaicOjocicy otav vroroyilovv Tovg deikteg péTpnong
Y0 T O1KE TOVG LY PARNATE KAAGEWV;

Eletalovue v arxpifeto twv vmoloyioumy mov Kavovy ta. LOVTEAN OTAY KOAODVTAL VO,
DTOAOYIGOVY TOVG OEIKTES UETPNGNS YLO. TO OLOYPCUUATO TTOV TO, 1010, TOPELYAY, EVIOTILOVTOS
TOYOV GPAAUOTO, KaTOVONONS 1 a0OAIPETES ATOVTHOELS.

Iog exnpealer n teyviki Retrieval-Augmented Generation (RAG) tnv woiotnto
TOV SL0YPORPNATOV;

Epevvaue eav n acioroinon eCwtepixod minpopopioxod mepieyouévon uéow RAG eviayder
™mv axpifela,) ovvémeio kol) fobTepn Katavonon tov TAaIGIov aro TO UOVTELO.

8. Ilog emnpeale n pia devtepn epOdTNON 6T0. LLMS TNV TO16TNTO TOV OPYLTEKTOVIKOD

o)€0100L0V;

Meletaue e0v 01000)1KES AAANAETIOPOOELS, YWPIS TPOTONKY eCWTEPIKNG YVWONS, 00NYODV
0€ TPOOOEVTIKA PEATIOUEVO TYEO10GUO. AL10A0YODUE TH TVVELGPOPO. THG EXOAVOLNTTIKNG
Pertioons ws mpog v TANpoOTHTO, THY OKPILELR Kol TH OUVOYH TOV TEAIKOD ATOTEAEGUATOG.

[Tpoxeévou va TposTaBNGOVIE VO OTAVINGOVIE GTO TOPAUTAVED EPEVVNTIKA

EPOTNLLOTA, GYESIACAUE KOL VAOTOUCAUE U0 GEPE TEWPAUATOV DOTE VO EVIOTIGOVLLE TN
SLLPOPOTOINGT GTNV TOLOTNTO TWV TOPAYOUEVOV OPYLITEKTOVIKMY 10y PUUUATOV.

Ol TapAUETPOL TOV TPOTOTOMONKAV:

To v6 avamToén AoyiopIKo:

DCC (Loyiopuro ue wepiopiouéves kou anlés amoitioeig) kar MyCharts (mio ovvheto
Aoyiouiko e avénuévo TAnbog Kol ToAVTAOKOTHTO, ATOUITHOEMY).

H popon mapovciaong tov anartioemv apog 1o LLMs:

Eite w¢ amln liota Je1tovpyikv Kol un AEITOVPYIKDV OTOITHOEWV, EITE WG TANPWS
oounuévo Eyypapo Software Requirements Specification (SRS).

H {ntovpevn apyttektoviki Tpociyyion:

Client-Server, Three-Tier, MVC n Microservices.

To yhwoowko povréro (LLM) wov ypnoipomon)dnke yio ka0g doxkipun.

H ypion ¢ teyvikng Retrieval-Augmented Generation (RAG):

Av ypnoyomomnOnxe n oy1, kabwg koi woio cvykerpiuévo opyeio RAG aliomornOnxe oe
KaOe mepinrawon.

Ta tewpdpoato Tov vAoTOU0NKAY KOl 0 GKOTOS TOVG:

1.

Ieipapa DCC — Avaockonnon

E&etaler katd moco to LLMs amodidovv kaddtepa 6tV Aappdvouy g eicodo éva
dounpévo €yypao Ipodiaypapdv Amortioemv Aoyiouikov (SRS), oe cvykpion pe
AmAEG AMOTEC AELTOVPYIKDV KOl [T AEITOVPYIK®V amaltnoemy. o Tov 6komd avto,
OVOTTOPAYETOL TO OPYLKO TTEIPALL TG OOVAELAG GTNV 0Toia BOGIGTAKAE, AVLTH TN POPHL
pe ypnon SRS.

Heipapa MyCharts

21006 TOVL TEPdpaTOC ivor va agloAoynBel n ikovotnta twv LLMs oto va oyedidlovv
OPYLTEKTOVIKES Y10l LI TTO GUVOETN EQAPLOYY|, PACIGUEV GTO TPOTLTTO APYLTEKTOVIKNG
Microservices. To meipapo avtd anotedel Tnv KOplo eotioon TG LEAETNG.

Ieipapa MyCharts pe 2 Avadoyika Prompts

e auT0 10 TEipopo eEETALOVUE TEPAPATIKA EAV 1] (PT|OT EVOS OEVTEPOV, dOUNUEVOD
prompt po¢ to LLM pmopet va BEATIOGEL TNV TOLOTNTO TOV TOPAYOLEVOV

Sy papUATOV.

2& avTo T0 oNUEI0, TOPOVCIALOVUE GOVOTTIKAG TV OVIADGH TV EXIUEPOVS TEIPAUATOV:
Heipopo DCC — Avaokonnon

To neipapa DCC emkevipdveral otnv a&loAdynon g eXidpaons mov £XEL T LOPON
TOPOVGIOCNC TOV ATUIToE®V 6TV omddoon Twv Meydrov Nwcoikdv Movtélmv (LLMs)
KOTA T OMovpyio apyYLITEKTOVIK®Y AoYIokov. H epappoyn mov ypnoiponomdnke, e v
ovopacio Dummy Coordination Conversion (DCC), givon éva oyetikd amAd cOoTH
JLOLXEIPIONG CLVTETOYUEVOV GE KAPTEGLOVY KO TOAKT] LOPPT), TO OTOI0 EMITPEMEL GTOVS YPN|OTES
Vo LETATPETOVY, amodnKeHovVy, AVOKTOVV, TPOTOTOLOVY KOl SL0YPAPOLY OLAOES CUVTETUYUEV®V.

To meipapo viomomOnke eEetdlovtag TPEIS O1UPOPETIKES APYLITEKTOVIKEG TPOCEYYIGELS:
Client-Server, Three-Tier ka1 Model-View-Controller (MVC). O ot6y0¢ TV vo. dtomiotmbet
edv o LLMs umopodv va amoddcovy KaAOTEPES apITEKTOVIKEG AMOGELS OTAV TOVG TOPEXETOL EVOL
dopnpévo Eyypago Ipodiaypapdv Anartncemv Aoyiopikov (SRS), oe cOykpion pe amiég
Moteg Aettovpyikmv ko un Asrtovpyikov arortioev (FR-NFR lists).

H Baocwkr| dopn tov prompt mov ypnoiporomonke frov idla e avTn oL £iye EQUPUOCTEL
O€ TPONYOVUEVO TEIPOALLO TPOTYOVLEVIC £PEVVAG, LLE TN LOVOIIKT dlapopomoinon va evtomiletan
OTNV OVTIKATAGTACT) T®V AMoThV amaitioemv e SRS €yypaga. Xpnoipomomdnke Tpooipetikd
RAG (Retrieval-Augmented Generation) pe viwko amd to Bipiio «Software Engineering» (10n
éxooon) Tov lan Sommerville (id10 RAG apyeio e 6Oykpion pe mponyoduevo meipapa).

To nelpapa Tpaypatorombnke pe 600 exdoyéc Tov eyypapov SRS: po cuvomtikn kot
pio EKTEVESTEPT, LLE GTOYO VO, SUMIGTOOEL oV TO EMIMEDO AEMTOUEPELNG GTO EYYPOAPO EMNPEALEL
TNV TOLOTNTA KoL TV 0KPiPELn TOV TapayOUEVOV OPYITEKTOVIK®Y O10YPOUUATMV.

[Ma v a&loAdoynon tov mopayOoUevmY d1oypoUidToy dtatnpninkay To idlo kpiTnplo pe
TO TTPONYOVLEVO TTEIPALLO, MOTE VO EEAGPAMGTEL 1) GUVETELD KOL 1) SLVOTOTNTA £YKVPNG
oVYKpLoNG TV anoterespatwv. Kabe ddypoappa Babporoyndnke anod 0 £wg S pe Bdon ta
TOPOKATO:

1. Zoppopemon pe TNV GLTOVREVY OPYLTEKTOVIKY
Eletdotnxe koo mooo to mapoyouevo S16ypopio. VAOTOIEL GOTA THY OPYITEKTOVIKY TOD
(nbnxe (orwg Client-Server, MVC k.Ax.). A6Onke Eupaon oty opOn epopuoyn twv
OPYITEKTOVIKDV apy@V Kol othv opOn katavoun twv evfovay uetald twv kAdoewv.

2. Op0étnTO TOV oYfoemv peTald KAdosmv
A&ioLoynBnke n axpifeia twv oyéoewy (). CLOYETIOELS, ECOPTNOELS, KANPOVOUNTELS)
UETOED TV KAGOGEWY, GTO TAQITI0 THS OPYITEKTOVIKNG TOL (NTHONKE.

3. Xvvoyn kou Xvlgvépotnto
O aioloyntég éxprvay to kabe diaypopo ws Tpog to fabuo avvoyng (oniadn koo toco
KaOe KAaon Eyel evioio kor oapas kabopiouévo orkomo) kot T ovLEVEIUOTNTO. (KOTO. TOCO

eloyioTomoiodvior o1 eCoPTHOEIS UETOCD KAGOEWMY), ETLOIMKOVIOS DYNAN ovVOX Kol
xounin ov{evlyuotyo.

4. Xuvémero PE TIG ATOLTI|GELS TOV AOYLGUIKOD
A&10loynBnke kKot TOGO TO O1AYPOLUO AVTATOKPIVETOL OTIC AEITOVPYIKES KOL U]
Ae1tovpyixés omautoels mov giyav 000¢el, eite ue ™ popen Aoty gite uéow SRS eyypdpwv.

A@ov ohokAnpdOnke N mopaywyn TV daypappdtov ond to LLMs, akoAovdnoce n
a&loAoynon tovg Pacet Twv TpoovaeepbEvtav kpitnpiwv. Ta Pacikd ELPNUOTO GYETIKA LE TNV
TOLOTNTO TOV TOPAYOUEVAOV SLYPOUUAT®OV cuvoyilovtol o¢ EENG:

1. Ta peyordtepo epmoptkd LOVTELD AMEIMGAV YEVIKA KOADTEPO OO T PMKPOTEPQ, TOTIKA
HOVTELQ, ONULOVPYDVTOG L0 SOUNUEVA KOl GUVETT OL0LY POLLLOTOL.

2. Hypnon RAG odnynoce o€ pektd amoteAécpata, 101aitepa OTav GLVOLAGTNKE UE
ekTeVEiG £10600VG amd TAnpn £yypapa SRS. Zta peydio Loviéda TOALDY TAPOUETPOV 1)
EMIAEOV TANPOPOPIN AEITOVPYNOE VITOGTNPIKTIKA, EVD GE KPATEPO LOVTELD TPOKAAECE
oLYYLON Kol PLEIMON TNG TOLOTNTAG.

3. Koatd t o0ykpion petall avaAvTIKOV Kot GUVOTTIKAOV kd0X®V Tov SRS, 1 amddoon
TOV LOVTEA®V TTOPEUEIVE CYETIKA OTAOEPT], YEYOVOS TOL VTTOONAMDVEL TWG O1 TTO EKTEVEIG
TEPLYPOAPES OEV 00N YOVV OmAPAITNTA G€ KOADTEPTG TOLOTNTOS OLoyPELLLLLOTAL.

4. Oocov apopd T cvykpilon HeTaEy TApwv SRS gyypdowv Kot antAdv Motdv
Aertovpykadv Kot pn Aettovpyikav amartnoemv (FR-NFR), ta peyoAvtepa povtéia
avtorokpiOnkay koAvtepa ota SRS, dnpovpymdvtag dtaypappato vynidtepng
molotTOG. Avtifeta, To LKPATEPO LOVTEAD PAVIKE VO SUCKOAEDOVTOL LLE TO EKTEVEG
TEPEXOUEVO KOl OMESMOAY KAAVTEPQ OTAV TOLG 0OOMNKAY Ol L0 GHVTOUES Kot
OTOYELIEVEG MOTEG.

5. O 10mog g (NTOVUEVIG OPYLTEKTOVIKTG EMNPEACE ETIGNG TNV TOLOTNTO TOV
napoyopevov dtaypappdtov. Idaitepa oty mepintwon g apyrtektovikng Client-
Server, Ta anoteléopata aloroynOnkay youniotepa, evad avtifeta, 1 opyLTEKTOVIKN
Three-Tier odnynoe oe vymidtepeg Pabporoyies.

H wlnpng meprypapn tov mepouoTos, e aVoADTIK TOPOVTIOCH OAWY TWV TOPOUETDMV KOL TV ATOTEAEGUATOV,
rapatifetal oto Kopiwg ayyriko keiuevo mov akoAovbel Thy mopodoa eAnviky mepiinyn.

Heipopo MyCharts

Y10 meipapo MyCharts, 0 6tdy0¢ Tav va dtepguvnBel 1) IKOVOTNTO TOV PUEYAA®V
YAOGGIKOV povtéAwv (LLMSs) va oyedtdalovy apylteKTOVIKEG AOYICUIKOV Y10 EQAPLOYES
avénuévng ToAvTAoKOTNTOS, POCIGUEVES GTO OPYITEKTOVIKO TPOTLTO TV Microservices.

H epappoyn MyCharts givon pua d1001ktvokn TAatedopua tov anevfovetal Kupiwg oe un
TEYVIKOVG YPNOTES KOl EYEL OXEOAGTEL [Le OTOYO VO ATAOTTOLEL TN SNUIOVPYIO YPUPNUATOV.
[Tapéyet T dvvatodTNTa 6ToV YpNotn va katefaletl Eropa mpodTuma CSV Y100 GLYKEKPILEVOLG
TOTOVG YPAPNUATOV, Vo oveRalet Ta dikd Tov dedOUEVA, KOl VO, OTLLLOVPYEL QVTOUATO YPOPTLOTO
pnéom g PpAodnkng Highcharts. Ta ypapnuato pmopodv otn cuvéyela va arobnkevtodv 1 va
IeBoHv og ddpopeg popeés, dOmwg PDF, PNG, SVG kot HTML. EmitAéov, o ypriotg umopet
va ayopdoet “moakéta” xpriong (quotas) yio vo OMIIovpYNoEL TEPICTOTEPN YPAPTLOTAL, KOOMG Kol
va TpoPaidel 1 va Kotefdoet Ta oM dnpovpynuUéva.

H apyrtektovikny mov {nmonke and ta povtéda nrov Microservices, YEYovog Tov avEAvel
onuavTIKa Tov fadpd dvokoAiog, Kabmg araitel GOOTH KOTAVOUN AEITOVPYIDV GE OVEEAPTNTES
VINPEGies, dlayeipion AAANAETIOPACE®MY HETAED TV VINPESLOV KOl GOOTN ATOUOVOOT)
gvbuvav.

210 TAO{G10 TOV TEWPALATOG YPNOLOTOMOINKAY Kot VAKA vitooTpiEng Tumov RAG
(Retrieval-Augmented Generation) yio optopéveg 0oKIUEG. ZuykeKpLéva, alomomonkay
anoomaopota oo to PAio Microservices Patterns tov Chris Richardson (KepdAoio 2) kon
Microservices Design Patterns tov Nishant Malhotra.

Ta povtéla KARONKav va Tapdyovv apyttektovikd dtaypdupata faciopéva oe 600
SLLPOPETIKA €101 E1GOO0V TEPTYPAPNC TWV OTOLTHCEMY TOL AOYIGUIKOV: GUVTOUES MOTEG
Aertovpykadv Kot un Aettovpyikov arortinoemv (FR/NFR), 1 éva mAnpéotepo £yypago
TPodIypaPdV Aoyispkov (SRS).

[Ma v a&loAoynon TV TopayOUeEVOVY apYLITEKTOVIK®OV Tov Bacifoviotl 6To TPOTLTO TV
Microservices, kpiOnke amopaitn 1 el00ywyn vEmV, To EEEIOIKEVUEVOV KPLTHPimV, To 0ol
OVTOVOKAODV TIG 1O10UTEPOTNTES KO TIG OTTALTNOELS QTG TNG APYLTEKTOVIKNG Tpocsyyiong. Ta
KPLTPLO. 0VTA GTOYEVOLV GTNV TANPECTEPT] KOl TLO OVGLOCTIKY ATOTIUNGT TS TOOTNTOG KO TNG
opB6TTOC TOV TPOTEWVOUEVOV AVGE®V. ZVYKEKPYEVQ, YpnolomomOnkay ta e&Ng:

1. EvBuypappion pe tig Asrrovpyikég Aratiosig & Katavopn Evlovov
Eletaleron koo mooo kabe pikpodTnpeaio ovTioToI el 6€ EVOY GopmS 0p1oBeTniéVO
emyepnolaro touéa (bounded context) kot avalopfiaver Evo GUYKEKPIUEVO KOl GOVEKTIKO
obvolo Aertovpyiarv. To advoro TV lertovpyiv 6Awv TV ukpodrnpeai@v Qo apénel vo.
KOADTTTEL TANP MG TIC AEITOVPYIKES OTOUTHOTELS TOD CVOTHUATOG.

2. XopnM €€aptnon & AveEaptnoio Avantoéng
A&ioloyeitor n yolrapn ovlevln (loose coupling) petald pikpoimnpeoiav kai n dovaToTnTo
QVTOVOUNS AVATTOENS, ovafalbuions Kot 0160e0nS ToVGS, YWwpIs vo. exnpealovial GALES
OTTHPEOIEG.

3. Zvvoyn
Eletaleton n eowrepixn ovovoyn twv ukpovmnpeaiov. loovika, kabe pixpoivrnpeocio. Oo.
TPETCEL VO. ETITEAET AEITOVPYIES TTOV TYETICOVTOL OTEVA UETOLD TOVG, EVA 1] DAOTOINGN EVOS
use case eVOEYETaL VoL OTOITEL TH COVEPYOOLO. TEPICTOTEPWY THGS ULOS UIKPODTHPETLDV.

4. Awygipion Agdopévov
A&oloyeitor v kdOe pikpoimnpeaio ooy elPileETol AVTOVOUO. TO. OIKG THS OEOOUEVO. KOL OV
OTOPEVYETOL N YPHON KOV PATEDYV OEOOUEVWY UETALD DIENPETLOV.

5. Xvvénewn Agdopévov
Eletaletor n mpofreyn unyoviouwy yia v exitevln telikns ovovémeiag (eventual
consistency) Twv 0e00UEVMYV, OTOY AVTO OTOITEITOL OO TH GUVEPYO.TLO UETOLD
HLKPOVTNPETIOV.

6. Emkowomvia & "Eleyyoc Porg
EZéyyetor av o ovvioviouog petald vmnpeciav Tpoyuatonoleital Héow KaTallniwy
Lyoviouav. Eriong, alioloysitar n ypnon epyaieiwv onwg API Gateways 1 unyoviouwyv
ovtaAloyng unvoudtwv (z.y. publish-subscribe) yio tov édeyyo ¢ porg.

7. Mn Agrtovpyikég ATrontioelg
AL1oloyeitor ov n opYITEKTOVIKN IKOVOTOIEL TIG N AEITOVPYIKES OTOITHOELS TOV TEONKAY Yo,
TO GUYKEKPYLEVO TIPOPANUA, OIS ETEKTOOYUOTHTO, OLOOETIUOTNTA, 00PALELQ K.C.

Mé£pog avto) ToL TEWPEUATOS NTAV 1] EIG0YMYN TOGOTIKOTOUEVMV OEIKTMV HETPTONG
(amd TPONYOVUEVEG £PEVVEG) Y1 TNV AEIOAOYNOT OPYITEKTOVIKNG TOTOV Microservices, |Le GKOTo
va dtepeuvn el katd TOG0 HToPoHV VO TPOGPEPOVV UL OVTIKELLEVIKT KOt aS10mTIoTN S1doTooN
otV oldtkacio e agloAdynong. Avtd £yve SOAEYOVTOG OEIKTEC TOL £YOVV KATOLOL VOTLLATIKT
OLGYETION LE TO VITOKEUEVIKA KPLTHPLo. aEloAdYNOMG, KoL O TPOTOG TOV EEETACALLE OV AVTOTL OL
delkTec pmopovv va, Bondncovy eival mopatnpdVTag 4V €V TEAN TPAYUATIKE VITAPYEL CLOYETION
petall TV VTOKEEVIKAOV Kpttnpiov aloddynong (human evaluation score) kot twv
vroAoyiciuwv okt (calculatable metric).

Emiong, o1 deikteg mov emA&yOnkay vroAoyiomnkayv 1060 YEpoKivnTa amd ovOp®OTIVOUG
a&lohoynTéC 060 Kat ovtopata ond ta idwa T LLMs, dote va dtamiotmbel edv to povtéia
mopovctalovv povoueva Toporiavnong 1 "yevdaicnoewv" (hallucinations) Katd Tov
VTOAOYIGUO TOV JEIKTAOV AVTOV.

[Tepuinmticd ko pe Péon ta mapoandve, o prompt tpog to. LLMs mepirye ta eéng:

o T'evui) Ileprypapn Amootoing: Mo cuvonTIKN TOPOVGIGT) TOL £pYOV TOV avaTtifeTol
070 YAWGGIKO HOVTELO.

o Ileprypagn E@appoynis: Avalvtiki Teptypapt] TOV AOYICUIKOV-GTOYOV Y10 TO 0010
npoKertan vo topaydet apyrtektovikn (LEow eyypapov SRS 1 Aiotog Agttovpykdv/un
Aertovpyikdv omontnoewv - FR/NFR).

o Oonyieg Xyediaong yio Apyrrektoviki) Microservices: Z0voAo BEATIOTOV TPOKTIKMOV
KOl OPYLITEKTOVIK®V apy®V Yo ToV oyedlacud Microservices.

o Anmartiosig Xyediaong PlantUML: Zuykekpipéveg odnyieg yio t dourn tov
Syplppatoc KAAceEmV.

o Koatnyopromoinon Asttovpyidv oto Avaypoppe Kraseov PlantUML: Odnyieg yio
v ta&vounon kdbe Aettovpyiag (operation) Tov KAAcoewV o€ pio amd T1g €€Ng
Katnyopieg: emyelpnotaxn Aoyikn (business logic), diayeipion dedopévaov (data
management), o1atipnon cvvenelag dedopuévmv (data consistency) 1 Eeyyog pong (flow
control). H ta&véunon avt vrootnpilet tnv a&loAdynon g apyLTEKTOVIKNG TOOTNTOGS.

o Ileprypa@i] Tov deIKTOV péTpnong npog Yaoroyitopd: Enickonnon tov de1kT®v Tov
npokerton vo e&oyBobv avToOHaTA Od T TAPOYOUEVO SLOYPAULOTO.

o Avopevopevn Mopon EE000v Tov dsiktav pétpnong (JSON): H amartodvpevn popon
JSON 7y v mapovcioon T@vV VTOAOYIGUEV®V OEIKTOV.

A@ob oAoKANpOONKE M TOpay®YN TV dtaypappdtov and to LLMs, akolovbnoe 1
a&lohdynon toug Paoetl TV TpoavapepBEVTOV KPITNPimV Kol £TELTA O VTOAOYIGUOS TOV EIKTOV
v kéOe pio amd TG TopoyOpeveg apyttekTovikeS. Ta Bactkd evpriuate GYETIKA e TV TO1OTNT
TOV TOPAYOUEVOV JAYPOUUAT®V cuvoyilovtal o¢ eENG:

1. Ta peyordtepo povrélo emOEkvOOLVY YEVIKE KaAOTEPN amddoon: Ta peyodvtepa
eumopikd LLMs vrepioyvoay Tov LIKPOTEP®Y TOMKAOV LOVTEA®YV, TOPEYOVTOS GUVOALKA
O AT PN KoL SOUNLEVOL OOy PALLLLOLTAL.

2. Ta LLMs avTomoKpivovTal LKOVOTOUTIKG GTOV GYEOLUGUO OPYLTEKTOVIKAOV
Microservices: Ta nepiocotepa LOVTELN KO 10IMG TO LEYOADTEPQ ETESEIEAV
KOVOTIOUTIKT] KATOVON O™ TV apy®dVv oxediaong ot Microservices. Ta mapoayopeva
SLYPAULOTO, OV KOL GUYVEL OTOTOOGOV TEPAULTEP® PEATIOTOTOINGT|, ATOTEAOVGAV £V
a&oAoyo onueio ekkivnong.

3. H teyvui] RAG ovvels@épel Oetikd oTi meprocotepes nepurtooers: H aiomoinon
¢ nebodoroyiag RAG 0dMynoe yevikd o Pedtiopéva amoteléopata. Av Kot 0piGUEVOL
HoVTELQ Oev ETOEEANONKaAY 101aiTEPA, | TAPOVCIACAY OPLOKT) VITOYDPT|OT| GTNV
ToOTNTA, | TAEWOVOTNTO TOPOVGiace alcOn) Pedtioon 6tav Tovg mapacyEdnke
OTOYEVUEVO KOl GUVOTTIKO TTANPOPOPLOKO VAIKO, Baciopnévo og BepeAdoetg apyég g
apYLITEKTOVIKNG Microservices.

4. H popo1 €£16060v amodcikvoeTor kafoprotiki): Ta peyordtepa poviéha
dwyepiomray pe LeEYOADTEPT OMOTEAECUOTIKOTNTA TO AVOAVTIKA £YYpaa SRS oe
oLYKpLoN UE TIG omAovoTtevpéves AMaoteg anartioewv (FR/NFR).

5. Ouvavrikeyevikoi dgikteg mapovordlovy vrooydpeveg dSvvardtnres: [laporo mov ot
deiktec 0ev ypnoomombnkay dueca og epyareio agloAdynong oy mapovca LEALTN,
JOMGTOONKE 1GYVPN CLGYETION HETOED OVTMV KoL TWV VITOKELEVIKMV 0EOA0YCEDV
amd €101kove. To yeyovoc antd avadetkvdeL T LEALOVTIKT SVVOUIKT LI0BETNOMG

OLTOULATOTOMUEV®V 0ELIOAOYNGEMV, LLE YPNOT) OEIKTMOV TPOGUPUOCUEVDV GTHV
OPYLTEKTOVIKT).

6. Ovvmoroyiopévol dgikteg péTpnong mov napayovror ané ta LLMs napovsialovv
petafint axpipera: Katd v avtdévoun npoonddeia tov poviéAmy va vToAoyicovv
TOVG delKTES, mapatnpnONKe acvvénsln ota anotedécpota. H sppdvion «mopoicOncemv»
(hallucinations) H)Tav GLYVO POIVOUEVO, ETICTILAIVOVTOC TNV AVAYKN Y10 EEMTEPIKT
EMKVPWOT KOl TPOGEKTIKT EPUNVEID TOV TAPAYOUEV®V OEGOUEVOV.

H wlnpng meprypapn tov TEPOUOTOS, e OVOADTIKI] TOPOVTIOCH OAWY TWV TOPOUETDMV KOL TV ATOTEAEGUATOV,
wapoTifetal oo Kuplws oyyAiko Keiuevo mov axolovlel Ty mopovoo eAInviKn Tepiinyy.

Ieipopo MyCharts pe 2 Awodoyika Prompts

Y10 mhaicto tov mepdpatog «MyCharts pe 2 Atadoyucd Promptsy, e€etdotnke av n
ypNon eravaTpopodotnong (feedback loop) pe ™ popen evdg debtepov, E101KA STOUOPPDOUEVOV
prompt pmwopel va 00N yNoeL 6T PEATIOON TN TOWOTNTOG TOV SLOYPAUUATOV TOV TOPAYOVTOL OO
Meydra I'hoookd Movtéda (LLMs).

Apempia amotédeoe N dodikacio Tov Bactkod nelpdpatog «MyChartsy, katd TV omoia
T LOVTELD KOAOVVTOL VAL TTOPOYAYOUV OPYLITEKTOVIKA dtaypappota pe fdomn éva chvoro
OTOLTICEWMV Y10l TY] GLYKEKPIUEVT] EQAPUOYN. AQOV EANQON 1| TPOTN ATAVTNOT) OO TO EKAGTOTE
LOVTEAO, 1) TOPUYOLEVT] APYLTEKTOVIKT 0E10A0YNONKE e BAon Ta 1510 KpLTNpLo TOV
ypnoporomdnkay oto Pacikd neipapa. [apdAinia, vroAoyioTnkay Kot 0t avTioTOr 01 OEIKTEG
TOV EVOOUATOONKAY GTO TPOTYOVLEVO TTEIPALLOL.

To Kawvovpylo oToyelo TOV TAPHVTOC TEPALATOS NTOV 1) ELCAYWOYT EVOG OEVTEPOL
prompt, 10 omoio oyedidotnke mG dounuévo ko Tvmoromuévo feedback mpog to LLM. To
prompt ovt6 TePApPave OG0 TIC TOOTIKEG AEIOAOYNOELS TOV EOIKAOV OGO KOl TOVG
TOGOTIKOTOUNUEVOVS OEIKTEG TNG TPDOTNG OTAVINGNG, LE OKOTO Vo, KBOOYGEL TO LOVTEAD TPOG
TNV TAPOYOYN LOG Lo 0pONG, TANPECTEPNG KOl GUVETEGTEPTG APYITEKTOVIKNG TpdTaoNS. Me
Ao Aoy, a&lomomOnke 1 apykn ££000¢ ToL HOVTEAOL ®G Pdom kot {ntdnke avabedpnon 1
Bedtiwon, pe PAon avTIKEEVIKE KoL VTOKELEVIKE KPLTHPLO.

H devtepn andvinon tov povtélomv alohoynnke ex véov pe v i01o pebodoroyia kot
ovykpidnke dueca pe v apykn £€£000. Me tov TpOTO avTd, dlePELVNONKE EUTTEIPIKA M)
OOTEAECLOTIKOTNTA TNG ETOAVATPOPOIOTNONG HECH SLad0YIKNG oAAnAemiopaong (iterative
prompting) Kot ov avT| Propel va GUUPAAEL OVCIAGTIKAE 6T PEATIOOT TG APYITEKTOVIKNG
oKkEYNG Ko Topaymyns twv LLMs.

Ta amotelécpato Tov mEPAPATOg £d€1E0V OTL 1) XPNON EVOG OEVTEPOV, SOUNLEVOL prompt
umopet Tpdrypatt va cupPAaiel 6t PEATIOON TG TOLOTNTOS TOV TOPAYOUEVOV APYITEKTOVIKMDV
Swypappdtov ard to LLMs. Av kot TtpoKettal yio €vo Lkpfg KAILOKOG TEIPOLLO, TO EDPTUOTO
KOTAOELKVOOVV TN QUVOLKT TG HEBOSOV KOt EVIGYDOVV TNV 10£0 TWG L0 TUTOTOMUEVT,
Baciopévn oe aE10A0YNoT ETOVOTPOPOSOTNON UTOPEL VO BEATIOGEL TN GYESUOTIKY] IKOVOTNTO

TV povtéAwv. I[Ipog 10 mapodv, 1 dadikacio arattel yxeypokivntn a&loAdynom Kol VITOAOYIGHLO
TOV OEIKTOV PETE TNV TPATN ATOKPIGT, OCTOCO TO TEPALLA OPNVEL AVOLYTO TO EVOEYOUEVO V1O
™V avamtuén VO NUOTOUOTOTOUEVOD Ny ovicHol BeAtioong, o omoiog Ba evioyveL T
ypnotikotta v LLMSs 610 medio TG apylTtEKTOVIKNG AOYIGUIKOV.

H mlnpng meprypapn tov mEPpouoTos, 1e aVoAVTIKI TOPOVTIOCH OAWY TWV TOPOUETDMV KOL TV ATOTEAEGUATOV,
apoTifetal oo Kuplws oyyAiko Keiuevo mov arxolovlel Ty mopovoo, eEAINViKn Tepiinyy.

YounepdopoTo

Ta amotehécpato avTiG TNG LEAETNG AVAOEIKVOOVV TIG VTTOCYOUEVES OLVATOTNTES
evooudtoong twv Meydiov I'wooikdv Movtédwv (LLMs) otn ¢don 6yedlacpod Tov KOKAOL
Cong avantuéng Aoyioputkov. Mécm g e£€Taomg TV LOPPOV E1GOJ0V, TNG TOLOTNTAG TNG
€£000v, TNG TOAVTAOKOTNTAG TNG OPYLTEKTOVIKTNG, TV HEBOOWV a&l0AdYNoNG, TS 0mdI00NG TV
HOVTEL®V KO TOV TEYVIKAOV PEATIOONC, VTN 1) EPELVA TOPEYEL TPOKTIKES YVAOGELS Y10l TO TAG M
TEYVNTA VONUOCLVN UTTOPEL VO LITOGTNPIEEL TO apylTEKTOVIKO oYedtaopod. Ta suprpota avtd
umopovHv va Bondncovy 6Tov eVIOTIoUO TV onueinv 6mov ta LLMs tpocHétovy mpaypotikn
a&lo, oIV avayvVOPLoN TOV TPEYOVCOV TEPLOPIGUMV KOl GTNV AVATTUEN GTPOTHYIKMV Y10, TNV
OOTEAECUOTIKT EVOOUATOON TNG TEYVNTNG VONUOCLVNG O PEAMOTIKEG POEC EPYACTOG
oXEO10GLLOV.

AVTavakA®OVTOG ToW GTO EPELVNTIKA LOG EPOTHILATO, ETLYEPOVLE TAOPO VO, TO. ATOVTICOVLE
Baoel TV ELPNUATOV AVTNG TNG LEAETNG.

1. H a&oldynomn pog oxetikd pe T LopeEc 5000V amokdivye 0Tt OTav {nrteiton amod ta
LLMs va dnpovpyncovy apyltektovikég o€ YAdwooo PlantUML, tapdyovv otabepd
VYNAOTEPNC TOLOTNTOG APYLTEKTOVIKES OVOTOPACTACGELS GE GUYKPLoN e dAAeg poppés. H
¢€0do¢ PlantUML mpocpépet pio icoppomio HETOED OOUNG KOt OVAYVOCILOTNTOS TOV
eoaivetal waitepa KATdAANAN yo Too LLMs.

2. 'Ocov apopd TNV avoTapAGTACT) TS IGO0V, OUMIGTMOGCALE OTL TO, SOUNLEVO £YYPAPOL
[Ipodwaypapdv Anartnoemv Aoyispukod (SRS) pmopodv va fertiddsovy v amddoon
twv LLMs 6g 60yKplon e amAd £yypopo OTaITHGE®MY GE OTAO KEILEVO Y10 LEYOADTEPQL
LOVTEAQ, TOV PUITOPOVV VO ETOPEANB0VV Ao TO £KTEVEG TAAIG1O0 Kot TNV TAOVGL0
dounuévn manpoopia ota £yypapa SRS. Avtd vrodnimverl 4Tt n To1dTNTA Kot 1 LOPpPN
TOV 0£00UEVOV €10000V Tailovy Kpicio poro oty akpifeta tng e£6d0L TV
APYLITEKTOVIKAOV TTov Ttapdyovion amd Al. Amhovotepeg AMoteg Asttovpykav (FR) kot pn
Aertovpyikav anortioewv (NFR) umopet va gtvot xprioyeg yon pukpdtepa LOVIEAQ, AALG
ovyvé atepovvTon Tov BdBovg Tov amatteiTon Yo TO TOAVTAOKO GYELO.

3. Otav avtipetomilovy TOAOTAOKES OYEOOCTIKES TPOKANGELS, ELOIKA OPYLTEKTOVIKES
pikpovmmpeciav (Microservices), to. LLMs epgdvicav avapeiktn anddoon. Ta
HEYOAVTEPQ, TTO IKOVO LOVTEAD YEVIKE £lyov pLeyaAbTePN EMTVYI0 GTNV amochvOes
TOADTAOK®MV OTOLTCEDY KOl GTNV EPAPLOYT BOCIKOV apydV LKPOUTNPESIDV, EVO TO

HUIKPOTEPO LOVTELD GLYVE duGKOAEVOVTOYV. AVTO TOVILEL TNV AVAYKN 1| ETAOYT| TV
LLMs va givatl avaioyn ¢ TOAVTAOKOTNTOG TG OPYLTEKTOVIKNG TOL TPOPANUATOG.

4. Mo akOpo Tty AVTAG TG HEAETNG glval 1 El0ay®YT| EEEIOIKELUEVDV KpLTNPimV
aE0AOYNONG KoL OVTIKEEVIKMV OEIKTMV E0IKA Y10l TIG PKpoTmpesies. Avtn elvai
TPOTN TPOSTADELL KAAVYNG KEVADV OTIG LITdPYovoeg peBOdovg a&loddynong Kot
TOVTOYPOVO, CLGYETIONG TOV VITOKEUEVIKAOV OVOpOTIVOV 0EI0A0YNCEDV LE
TOGOTIKOTONUEVOLS OEIKTES, AvOiyovTag TO OPOLLO Y10 TTO TVTOTOINUEVT] a&lOAdYNoN TG
anddoong tov LLM o pedhoviikég epyacieg.

5. THoapampnoape eniong 6t Texyvikn Evioyvuévng Avdxtnong [TAnpoeopiov (Retrieval-
Augmented Generation, RAG) BeAtidvel TNV TO1OTNTO TOL GYEOIAGHOV, WO10iTEPA GE
LEYOAVTEPO LLOVTEAQ TTOV UTTOPOVV VO SLOYEIPIGTOVY TO OVENUEVO TAAICIO YWPIg val
napomAovnBovv 1 va cuyyvotobv. To vAkd RAG eaivetatl va £xetl peyddlo avtiktumo
otV evioyvon Kot oyl oty moapanidvnon tov LLMs ta anoteléopatd pog oelyvouv 0Tt
To TEPLEKTIKA Kot akp1Pr] vAkd RAG pe mpaktikég odnyieg Asttovpyodv Kardtepa.

6. Tlopd avtég T1Ig TPOAAdOLG, N LEAETT amOKAAVYE Kol KATOLoVS Teptoptopovs. Ta LLMs
ovyvd gppaviCovv Aadn (hallucination) 6tov Tovg {nteiton vo vroAoyicovv
OVTIKEYLEVIKOVG OEIKTEG oTal dlarypdipLpLata ov ot id1ot dnpovpyncav. Avtd
vroypoppilel ™ onuacio TG eEMTEPIKNG OVTIKEILEVIKNG EMKVPMOTG Kol TOLG KIVOUVOUG
NG OMOKAEIGTIKNG EUTIGTOGVVIG G€ 0ELOAOYNGELS TOV TTapdyovTot povo amd Al

7. Télog, 10 meipapd pog pe emavainmTikég epmtnoelg (iterative prompting) £d€1&e Oetikd
OTOTEAECUOTO, VTTOONADVOVTOG OTL Lo SOUNKEVT] 0£0TEPT EpMTNON, TOV PacileTon o€
avaTpo@odoTNon a&loAdynongs, umopel va Pertidoet kot vo eEeMEEL TNV TOLOTNTO TOL
TOPAyOUEVOL O1aypAppatos. TTapdtt SoKIHAGTNKE GE TEPLOPIGUEVT KAMpLOKO, VT TO
e0pMULa OVOTYEL QUVATOTNTEG Y10 NU-AVTOUOTOTOMUEVES POES EpYaciog PeATimong Tov
cvvdvdlovv v avBpomivn eronteia pe Tov Al-mapayduevo oyedtoouo.

Meirovtiki 'Epeova

Evo avt n pedétn mopéyet EAmdopdpa evpnaTo oYETIKA pE T xpron Twv LLMs yia
ONUIOVPYLN APYLITEKTOVIKTG AOYIGHIKOD, TOPAUEVOVV OPKETOT TOUEIS TPOG OlEPEVVNOT GTO
péALov. Mio onuovtikn katevbovon eivar 1 KAMUAK®OON TOV TEPALATOV, TOGO ®G TPOG TOV
aplOpUd TOV TEPMTOCEMV YPNONG OGO KoL TNV TOIKIAIN TV EEETALOUEVOV APYITEKTOVIKMDV
TPOTLT®V. AVTO B0 EMETPETE EVPVTEPES YEVIKEVGELS KOl Ol LITOpOVGE VoL ATOKAADWYEL OV 01
TAGELS TOV TOPATNPNONKAY £3M 1GYVOVV GE SLUPOPETIKOVG TOUELS, HEYEDN £pYOV KOl EQAPLOYES
OLYKEKPIUEVOV PLOUMYovVIDV.

"Evoc axopa vrooydpevog topéag etvar n ovtopatonoinon g dadikaciog aSloAdynong
kot Bertioong. [Ipog o mapdv, 1 néBodog e 600 evioréc (two-prompt method) mov eionyOn og
avtV TV €pevva Paciletar g yelpokivta VITOAOYILOUEVOLS OEIKTEG Kol avOPOTIVEG
a&lohoynoelg yio v kabodnynon g Pertioong. To Aoyud enduevo Prpa Ba nTav M
EVOOUATOON OVTMOV TV SL0OIKOCIDV GE L0 T|UI-CUTOUATOTOMUEVT 1) TAT PO

OVTOLOTOTTOMLEVT] POT] EPYAGTOG, TTOV YPNOLOTOLEL TUTOTOMUEVOVGS, ETKVPOUEVOVS
TOGOTIKOTOINUEVOLS OEIKTES Y10 TNV 0ELOAGYNON TOV APYIKADV ATOTEAECUATMV KOl TN
ONUOLPYIN ATOTEAECUOTIKMOV ETOKOAOLOWV epTnUdTOV (prompts). Avto Bo uropodvoe vo
QTAOTTOMGEL OTLLOVTIKA TN XpNon Tov LLMs 61ov apy1tektoviko oyedlaco Kot Vo To
KOTOGTNOEL O TPOUKTIKA Y10, EVEOUATWOOT O€ PEUMOTIKEG POES OVATTLENG.

EmmAéov, vrdpyet onuavtiko teptdmpilo PEATIOONS GTNV AVIILETOTICN TOV QOIVOUEV®V
hallucination, g0 og TepmT®celg 6oL {nteitot amd o LLMs va vtoAoyicovv 1} va
EMLYEPTUOTOAOYNGOLV Y10 GUYKEKPIUEVES APYLTEKTOVIKES LLE TNV XPTON TOGOTIKOTOUEVOV
Jlektdv. MeAlovtikég pehéteg Oa pmopohoay va EETACOVV TEYVIKES OTMG 1) EVOMUATOON
eEMTEPIKNG YvMOONG N M AemTopepng ekmaidogvon (fine-tuning) poviédwv yio) peioon twv
avakpifeidv. Kabog ta LLMs eEghicoovtal, | Katavonon tov Tog vo otnpilovpe a&lomiota Tig
€E600VC TOVG GE TPAYLOATIKA Kot cLUPPALOUEVO TEKUNPLOUEVE ETLYEPN AT Ba efvan Kpiotun
YOl TNV EMLTUYN EPAPUOYT| TOVG OTN TEXVOAOYIO AOYICUIKOV.

1. Introduction

The software development lifecycle is a complex, multistage process that spans from
gathering user requirements to building and maintaining fully functional complex software
systems. It involves several key phases, including requirement analysis, architecture and design,
development, testing, deployment and maintenance. The system architecture phase of the
software development lifecycle serves as the crucial bridge between abstract requirements and
concrete implementation. During this stage, software engineers define the high-level structures
and relationships that will form the backbone of the entire system. By creating model designs,
often by utilizing Unified Modeling Language (UML), software engineers establish a blueprint
that communicates the system's organization to all development teams. The system architecture
determines not only how functional requirements will be met but also how non-functional
requirements like scalability, security and performance will be addressed. A well-designed
software architecture helps reduce development errors, sets clear technical standards and
provides a stable foundation for future development. However, conceiving an architecture and
creating the corresponding diagrams is often a time-consuming and error-prone task, with a high
risk of misinterpreting widely available architectural principles. Such issues can lead to
inefficiencies that affect the entire software development lifecycle.

The rise of artificial intelligence (Al), particularly through advanced large language
models (LLMs) built on deep learning, has introduced exciting new ways to automate tasks that
software engineers once had to handle manually. These Al systems, which learn from massive
amounts of data, have gotten impressively good at working with human language, both
understanding it and creating it. This skillset has already proven useful for coding-related tasks
like generating code snippets and fixing bugs, which brings up the challenges of exploring Al
tools' potential for something even more ambitious: automating the crucial creative architecture
design phase and creating the corresponding UML diagrams automatically. Being able to use Al
to turn written software requirements into well-structured architectural diagrams that comply
with selected architectural styles would tackle one of the toughest challenges in software
engineering. This approach could transform how teams handle what many consider the single
creative "make-or-break" phase of building software.

This study aims to investigate the capability of large language models (LLMs) to
generate software architectures, with particular focus on Microservices. We're building upon
previous research by examining various inputs, ranging from plaint-text functional and non-
functional requirements to complete standards-based Software Requirements Specification
documents and by analyzing how model selection and Retrieval-Augmented Generation
techniques influence the quality of the resulting architectures. Our primary concern is whether
these Al-generated designs adequately satisfy all requirements while correctly implementing the
specified architectural principles. We introduce a set of evaluation principles for assessment by
human experts and we propose a set of metrics for objective evaluation, based on established
metrics. Additionally, we're investigating whether smaller, locally deployed LLMs can serve as
viable alternatives to commercial solutions for architectural design tasks.

In the subsequent sections, we will describe our research methodology and experimental
design, present an analysis of our findings and conclude by discussing the broader implications
of our results and proposing promising directions for future work in the field of Al-assisted
software architecture design. Our discussion will particularly focus on how these advancements
might transform the architectural phase of the software development lifecycle and the potential
impacts on architectural quality, development efficiency and the evolving role of software
architects working alongside Al systems.

1.1 Evolution of Al

Artificial Intelligence (Al) is reshaping the world by introducing groundbreaking
efficiency in solving problems. At its essence, Al focuses on developing systems capable of
performing tasks that normally require human intelligence such as reasoning, decision-making
and understanding natural language. By utilizing algorithms and large volumes of data, Al
systems can adapt to changing environments and improve their performance over time. Due to
this constant evolution, Al is not only reshaping how we approach complex tasks now but also
redefines the future of technology and innovation.

Artificial Intelligence (Al) is implemented using advanced computational methods such
as machine learning and deep learning. Machine learning equips systems with the ability to
recognize patterns and make predictions by processing extensive datasets [1]. Deep learning, a
more advanced subset of machine learning, utilizes neural networks to address challenges like
image classification and speech recognition [2]. These methods have significantly enhanced how
machines interpret complex, high-dimensional data, laying the groundwork for many Al-driven
solutions. A key area built on these foundations is natural language processing (NLP), which
focuses on making machines able to understand, produce and engage with human language. NLP
is necessary for technologies such as voice assistants, automated translation services and
sentiment detection tools to work [3].

Artificial Intelligence (Al) is transforming a wide array of industries and becoming a key
part of everyday life. In healthcare, Al-powered diagnostic systems enhance both accuracy and
efficiency, while in transportation, autonomous vehicles rely on real-time data and predictive
modeling to navigate safely and effectively. Tools like TensorFlow, PyTorch and OpenAl's
models equip researchers and developers with the means to build complex systems with greater
speed and flexibility [4]. These platforms support rapid development, scalability and seamless
integration into existing infrastructures. However, as Al continues to evolve, it also brings forth
critical ethical challenges related to bias, privacy and the transparency of automated decision-
making, highlighting the urgent need for thoughtful regulation and responsible innovation [5].

1.2 Al in Software Engineering

The ability of Al tools to replicate aspects of human creativity has made them
increasingly appealing in the field of software engineering [6]. By automating tasks such as code

generation, refactoring and debugging, Al has the potential to significantly enhance productivity
and contribute to the development of higher-quality software. Large language models (LLMs)
can consistently generate code, identify and fix errors, allowing them to handle many
programming tasks either partially or, in some cases, completely. In addition to supporting
development activities, Al can optimize team workflows by analyzing operational patterns and
recommending process improvements. However, the integration of these capabilities into the
software development lifecycle is challenging. It requires a deep understanding of system
requirements, the specific development environment and the inherent limitations of current Al
technologies [6].

While AI holds great promise for supporting every stage of the software development
lifecycle, achieving this potential depends on overcoming several challenges. Utilizing large
language models (LLMs) for tasks such as generating architectural designs, automating test
procedures or forecasting development bottlenecks demands careful attention to accuracy,
completeness and adherence to established design principles. These Al capabilities are not
universally applicable in a plug-and-play manner, instead, they require planning, evaluation and
customization to align with specific project requirements. Additionally, factors such as the
quality and relevance of training data, domain-specific limitations and broader ethical
implications must be considered to ensure reliable and responsible integration.

Ultimately, Al serves to augment, rather than replace, human expertise in software
engineering. By creating systems that can learn, adapt and evolve, Al drives innovation and
helps development teams handle the growing complexity of modern software applications.
However, integrating Al into the software development lifecycle involves more than simply
adopting tools, it requires an understanding of the associated trade-offs, limitations and the
ethical and practical responsibilities that come with deploying AI [7], [8].

This literature review presents an overview of contemporary research examining how Al
supports various aspects of software engineering. The studies are categorized by domain,
highlighting key applications, potential benefits and existing challenges associated with Al
integration.

1.2.1 Automated Code Generation

The emergence of large language models (LLMs) and Generative Al has introduced new
possibilities in automated code generation, changing how software is developed and maintained.
By incorporating machine learning, deep learning and natural language processing techniques,
these systems can assist developers in tasks ranging from code completion to debugging.

Generative Al, powered by machine learning (ML) and deep learning (DL) algorithms,
has played a crucial role in automating key elements of the code generation process. As noted by
Tembhekar, these technologies allow the automation of tasks that were once the domain of
human developers, significantly boosting efficiency within DevOps workflows [9]. The
incorporation of natural language processing (NLP) techniques further enhances this capability,

allowing Al systems to interpret and generate code with increasing detail, thereby optimizing
development processes and streamlining operations.

Al-driven code completion has become a standard tool used in software development,
playing a vital role in boosting developer efficiency. Gao traces the transition from traditional
statistical approaches to modern neural models, emphasizing in their effectiveness in
streamlining the coding process [10]. However, the growing reliance on generative Al also raises
critical ethical concerns. Atemkeng et al. [11] emphasize the importance of using these tools
responsibly, calling for protective measures to ensure that generated code meets both functional
and security standards. As Al continues to influence software engineering practices, these issues
highlight the pressing need for thoughtful governance and accountability.

In summary, the incorporation of Al into code generation marks a major milestone in the
evolution of software engineering. Current research in this area remains focused on striking an
effective balance between the efficiencies of automation and the ethical challenges it presents,
aiming to ensure that these powerful technologies are applied thoughtfully and responsibly.

1.2.2 Automated Testing

Automated testing using Al technologies is a promising approach to enhancing software
quality and reducing testing durations. Mulla highlights that Al-driven testing allows the
execution of tests with each software update, supporting continuous integration and delivery
[12]. This capability is especially critical in modern development environments, where rapid
iterations are the norm. Additionally, Job highlights that the growing complexity of software
systems requires automated testing to maintain quality standards within shorter evaluation
timelines [13].

The use of machine learning (ML) techniques in automated testing has been widely
explored. For example, Gautam et al. offer an extensive review of how ML algorithms can be
utilized to automate error detection, thereby improving the reliability of software systems [14].

On the contrary, the adoption of Al in automated testing comes with several challenges.
Marijan points out key challenges in testing machine learning systems, notably the need for
specialized testing frameworks that address the distinct characteristics of Al models [15]. The
paper outlines a research focused on improving testing practices for machine learning
applications, with an emphasis on developing robust and reliable testing methodologies.
Similarly, Latika Kharb's work discusses the critical need for trust and transparency in automated
testing within machine learning systems [16].

Overall, the literature suggests that Al has the potential to significantly transform
automated testing in software engineering by improving efficiency, accuracy and reliability.
However, the challenges associated with testing Al systems underscore the need for continued
research and development to create methodologies that can address the distinctive requirements
of this evolving field.

1.2.3 Understanding Software Requirements using Natural Language Processing

Natural Language Processing (NLP) plays a crucial role in automating and enhancing the
traditionally manual processes involved in software requirements specification, elicitation and
analysis. NLP techniques allow machines to process and understand human language, bridging
the gap between human communication and computational systems. This section delves into the
application of NLP in software requirements engineering and design, examining its impact on the
quality, efficiency and automation of these processes.

A literature review by Calle and Zapata introduced the QUARE model (Question
Answering for Requirements Elicitation), a novel NLP-based framework designed to improve
the requirements engineering (RE) process. QUARE uses question-answering capabilities to
assist software analysts in extracting relevant information from requirements documents,
regardless of the writing style or structure [17]. This model emphasizes the potential of NLP for
streamlining requirements elicitation by automating the extraction of information and providing
software analysts with the tools needed to handle the complex and often ambiguous nature of
natural language requirements. The application of NLP in requirements engineering, often
referred to as NLP4RE, has gained traction as a valuable method for improving the accuracy and
efficiency of requirements analysis, reducing human error and allowing faster decision-making
[18], [19].

The integration of machine learning (ML) techniques alongside NLP further enhances the
capabilities of these tools in the requirements engineering domain. Machine learning algorithms
can be trained on large datasets of requirements documents, enabling them to recognize patterns
and extract important insights. This synergy between NLP and ML has the potential to automate
manual tasks such as requirements classification, conflict detection and validation, significantly
improving the efficiency of software engineers. For example, NLP-based systems can
automatically classify requirements into functional and non-functional categories, helping teams
organize and prioritize the scope of a project [18]. This not only accelerates the elicitation
process but also ensures that requirements are captured and categorized with greater precision.

An important application of NLP in software engineering is converting natural language
requirements into formal representations that can be directly used in the development process.
Semantic parsing techniques, which involve mapping natural language expressions to formal
models, play a crucial role in this transformation. By applying semantic parsing, requirements
can be structured in a way that allows for more precise interpretation and implementation by
developers and other stakeholders [20]. This formalization process is critical for ensuring that
requirements are not only understandable but also executable, making it easier for teams to
transition from high-level specifications to detailed design and development.

However, despite the promising potential of NLP in software engineering, several
challenges remain. A substantial portion of software requirements is still expressed in natural
language, which often leads to ambiguity, inconsistency and misinterpretation. Research
indicates that approximately 95% of software requirements are written in natural language,
highlighting the challenges in ensuring clarity and accuracy in these specifications [21]. The

complexity of human language presents a significant obstacle for NLP systems, which must be
trained to handle such challenges. As a result, misunderstandings and miscommunications
between stakeholders are common, underscoring the need for advanced NLP tools that can better
understand and validate these requirements.

Additionally, NLP-based systems must account for the diversity of requirements
documentation styles and formats. Requirements documents may vary significantly in structure,
terminology and level of detail, which can complicate the task of automatic analysis. Addressing
these issues requires the development of more advanced NLP models that can adapt to diverse
documentation practices and accurately extract relevant information. This ongoing research in
NLP for requirements engineering is important for overcoming these challenges and improving
the overall quality and reliability of requirements documentation.

In conclusion, the integration of Al, particularly NLP and ML, into software
requirements engineering holds promise for improving the accuracy, clarity and efficiency of the
requirements specification and design processes. While progress has been made, the field still
faces challenges, particularly in handling the ambiguity and variability inherent in natural
language requirements. As Al continues to evolve, it is likely that these technologies will reshape
the landscape of software engineering, driving improvements in both the quality and speed of
software development.

1.3 Challenges of Al in Software Engineering

While the integration of Artificial Intelligence (Al) into software engineering promises
substantial gains in productivity, automation and quality, it also introduces complex challenges
that must be carefully addressed. These challenges impact all phases of the software
development lifecycle, from requirements engineering to development and testing.

One of the primary challenges is the verification and validation of Al-based systems.
Traditional software verification techniques, which are based on deterministic behaviour,
struggle to accommodate the probabilistic and data-driven nature of Al algorithms. These
systems often operate on large and sometimes opaque datasets, which not only makes behaviour
harder to predict but also introduces risks such as hidden biases, data drift and unexpected
outcomes [22]. The dynamic and evolving nature of machine learning (ML) models further
complicates quality assurance efforts, as conventional static testing frameworks are not capable
for assessing systems that learn and change over time [23].

Another significant concern is the assurance of data quality and algorithmic transparency.
Al models are only as reliable as the data they are trained on, yet real-world datasets often
contain noise, biases, or imbalances. These issues can propagate through the Al pipeline, leading
to inaccurate or discriminatory results. Moreover, many modern Al techniques, particularly deep
learning, are "black box" in nature, lacking the explainability required for high-stakes software
systems where decision accountability is crucial [24]. The demand for explainable Al (XAI)

continues to grow as stakeholders seek not only high performance but also clarity on why an Al
system made a particular decision.

In software engineering, Al hold potential for automating various design-related tasks,

including the generation of architectural diagrams and early detection of design flaws. However,
realizing this potential remains a work in progress, as several critical limitations persist:

1.

Ambiguity and Complexity in Natural Language Requirements

Most software requirements are written in unstructured natural language, which is prone
to ambiguity, vagueness and inconsistency. This lack of precision hinders Al systems’
ability to extract actionable design elements automatically. While tools exist to assist in
generating UML class diagrams, they often require significant human intervention to
resolve ambiguities and fill in missing semantics such as class responsibilities,
relationships and behavioural patterns [25].

Difficulty in Inferring Relationships and Structural Hierarchies

A key challenge in class diagram and architecture generation is deducing relationships
between components, such as inheritance, aggregation and dependency. Requirements
document rarely spell out these relationships explicitly. Instead, they rely on contextual
cues that require abstract reasoning and domain-specific interpretation capabilities that
LLMs are not inherently optimized for [26].

Limited Exposure to Formal Software Modelling Constructs

Although LLMs are trained on massive datasets that include code and documentation,
they often lack sufficient representation of formal software design models, such as UML,
design patterns and architecture blueprints. As a result, LLMs may fail to adhere to the
syntactic and semantic conventions required for accurate modelling, leading to
inconsistent or technically incorrect diagram outputs.

Insufficient Domain Context and Pattern Awareness

Effective architectural decisions often depend on domain-specific knowledge and the
application of established design patterns. LLMs typically do not possess the contextual
grounding necessary to apply such patterns correctly. Research by Vaidhyanathan et al.
[27] suggests that while LLMs can assist in documenting and iterating on design
decisions, they fall short of autonomously generating coherent and context-aware
architectural solutions. Rather than replacing human architects, these models are better
suited to acting as co-pilots, augmenting human decision-making with automated
suggestions and refinement support.

Additionally, ethical considerations such as fairness, accountability and transparency

must be addressed in Al-enabled software engineering tools. As these tools increasingly
influence critical system design and operational decisions, ensuring that their outputs align with
ethical standards and societal expectations becomes necessary.

Motivated by these challenges, our research aims to explore the evolving capabilities of

Al in supporting software architecture and design. In the following sections, we outline our
experimental methodology and present results highlighting the strengths and limitations of LLMs
in Al-assisted software engineering.

2. Al-Assisted Software Architecture

In this chapter, we examine the current landscape of Al-assisted software architecture,
detail architectural patterns and explain how our approach stands apart from and builds upon
previous research.

2.1 Related Work

The automatic generation of Unified Modeling Language (UML) diagrams from textual
requirements has recently gained significant traction, largely due to advances in large language
models (LLMs). This emerging area of research explores how cutting-edge Al technologies can
help address long-standing challenges in software architecture, particularly bridging the gap
between natural language requirements and formally designed artifacts.

This study builds upon the work of Tsilimigkounakis [28], who investigated the use of
LLMs to automatically generate class diagrams from textual descriptions of a simple application,
focusing on straightforward architectural patterns such as Client-Server, Three-Tier and Model-
View-Controller. Building on that foundation, our research further investigates the potential of
LLMs in supporting the design phase of the software development lifecycle, while preserving the
core experimental methodology and research perspective established in the previous study.

Other methods for generating UML diagrams primarily utilized NLP techniques
supported by rule-based systems or domain-specific ontologies. While these approaches
showcased the potential for automation, they were limited by strict input requirements and
frequent reliance on human oversight. Ambiguities in natural language posed significant
challenges, often resulting in outputs that were fragmented or failed to fully capture the intended
system design.

A promising approach is proposed by Eisenreich, Speth and Wagner, who outline a six-
step framework designed to bridge the gap between textual requirements and software
architecture generation [29]. The process starts with the automated generation of a domain model
and use-case scenarios derived from natural language specifications. These initial outputs
undergo manual refinement to improve their accuracy and contextual relevance. Using the
refined domain model, scenarios and non-functional requirements, the system generates multiple
architectural candidates along with associated design decisions. These candidates are then
automatically evaluated and compared. The process concludes with manual refinement of the top
candidates and the final selection of the most suitable architecture for implementation. In their
exploratory study, the authors experimented with large language models (LLMs), including
LLaMAZ2 70-B and GPT-3.5, to generate domain models directly from textual requirements. By
prompting the models with requirement documents and instructing them to produce PlantUML
domain diagrams, they observed that although the models effectively identified key domain
concepts, they often misinterpreted the intended task. Rather than modeling the domain

contextually, the LLMs tended to generate representations of the system itself, revealing a
mismatch between the prompt’s objective and the model’s output.

In a different line of research, Yang and Sahraoui proposed an Al-driven approach to
mitigate the challenges posed by ambiguity in natural language during UML class diagram
generation [30]. Their technique utilizes a machine learning-based binary classifier to determine
whether each sentence in each input describes a class or a relationship. The methodology
involves parsing English text into individual sentences, converting each into a corresponding
UML diagram fragment and then assembling these fragments into a complete, coherent diagram.
To support their model, the researchers curated a dataset consisting of UML diagrams and their
associated English descriptions, establishing a direct mapping between natural language and
UML components. This dataset, although relatively small, was created through crowdsourcing
and proved adequate for training and evaluation purposes. While the approach showcased
promising innovation, the resulting diagrams exhibited limited accuracy. The authors attributed
this limitation to the shortcomings of the NLP tools used, suggesting that the adoption of more
advanced NLP technologies could substantially improve both the precision and robustness of the
outcomes, highlighting considerable potential for future advancement in this domain.

Building upon the capabilities of large language models, Iyad and Areen introduced
Vlissingen, a tool that uses GPT-3.5's natural language processing (NLP) capabilities to automate
the extraction of UML class diagram elements [31]. This approach marks a significant
advancement in the field by employing few-shot learning to enhance GPT-3.5’s effectiveness in
diagram generation. By fine-tuning the model on a dataset of 50 varied case studies, each
consisting of a prompt paired with an ideal output, ClassDiagGen achieved impressive results,
reporting a precision of 98.6% and recall of 93.3%, thereby substantially outperforming previous
techniques. The tool features an integrated pipeline that combines textual analysis, automatic
PlantUML code generation and diagram rendering into a unified workflow. These results
underscore the practical viability of large language models in automating and optimizing early-
stage software design.

The literature reveals a clear progression toward more advanced systems capable of
handling natural language ambiguities inherent in software requirements. These developments
demonstrate that LL.Ms offer considerable promise for automating the transition from textual
requirements to formal design artifacts. While challenges remain, the trajectory of research
suggests that automated UML generation is becoming increasingly viable for practical
application in software development processes. Our work builds upon these foundations to
further explore the capabilities and limitations of LLMs in supporting software architecture
design.

2.2 Architectural Patterns

This section examines the most common software architectural patterns, describing their
structure and main components. It is designed to serve as a clear and practical guide for
understanding and applying these patterns in software design.

2.2.1 Client-Server Architecture

The client-server architecture is a foundational and widely adopted design pattern in
computer networking where system functionality is divided between service providers (servers)
and service requesters (clients). This model is characterized by a clear separation of concerns:
servers host, manage and deliver resources or services, while clients initiate communication to
request and consume these services.

In a typical client-server system, servers are dedicated machines or processes that offer
specific services, such as data storage, computation, or application functionality. Clients, which
are often user-facing applications, interact with servers over a network to perform operations like
querying a database, submitting a request for computation, or retrieving files. The interaction
between clients and servers typically follows a request-response communication model, where
the client sends a request and the server responds accordingly [32].

The main components of the client-server architecture include:

o Servers, which are specialized systems responsible for providing particular services.
Examples include web servers (serving web content), file servers (managing file
operations) and database servers (handling data storage and queries).

o Clients, which are applications or devices that initiate requests to the servers. A client
may be a web browser accessing a website, a mobile application querying a cloud
service, or a desktop application requesting data from a remote database.

e Network infrastructure, which allows communication between clients and servers,
typically via standardized protocols such as TCP/IP, HTTP, or WebSocket over local
networks or the Internet.

Client-server architectures allow multiple clients to interact concurrently with centralized
servers. The reliability and manageability of this pattern have led to its widespread use across a
variety of domains, including web applications, enterprise systems and cloud computing
platforms. However, while the client-server model supports efficient resource sharing and
centralized control, it also introduces potential challenges such as server bottlenecks, single
points of failure and the need for robust security measures to protect data and services.

Client

<<component>> gl
Presaentation - Ul

: Sarver
A
<<components> g = <<components> gl
Application Logic TCPIP Database

Figure 2.1: Client-Server Model

By clearly separating responsibilities between service providers and consumers, the
client-server architecture remains a cornerstone of modern software and system design,
producing scalable and maintainable applications.

2.2.2 Three-Tier Architecture

The Three-Tier Architecture is a well-established software design model that organizes
applications into three distinct, logically separated layers: the Presentation Layer, the Business
Logic Layer and the Data Layer. Each layer is responsible for specific aspects of the
application’s functionality, promoting separation of concerns, scalability and maintainability
[33].

= Presentation Layer: The Presentation Layer is responsible for managing all interactions
with the user. It includes user interfaces such as web pages, forms, or mobile screens and
is designed to display data to users and capture their inputs. This layer is concerned solely
with the presentation of information and the forwarding of user-initiated actions to the
Business Layer. By isolating user interface components from business logic, the
architecture supports easier updates and enhancements to the user experience without
affecting the underlying application functionality.

* Business Logic Layer (Application Layer): The Business Logic Layer contains the core
functionality and business rules of the application. It acts as an intermediary between the
Presentation and Data Layers, processing user requests, enforcing business policies and
coordinating the flow of data. This layer ensures that input received from the user
interface is validated, business rules are applied consistently and the appropriate data
operations are triggered. By isolating the business logic, this layer supports reusability
and allows the application to adapt more easily to changes in business requirements.

= Data Layer (Persistence Layer): The Data Layer is responsible for managing the
application's data storage and retrieval operations. It includes database management
systems, data access objects and query processing components. This layer handles the
complexities of database interactions from the upper layers by providing standardized
methods to create, read, update, or delete data. Isolating the data access mechanisms

allows changes to the underlying data source (e.g., switching from one database system to
another) without affecting the business logic or presentation.

—

Presentation Layer

<<00Mm ponent=>
Web Application Client E

Application Layer - Business Logic Layer Data Lavyer - Persistence Layer

s <<component=> @ ________ o <<component>> gl

Mobile Application Client {l /Q Application Server =] Database Server

<<.COMmponent=>
Desktop Application Client

Figure 2.2: Three-Tier Architecture Model

The Three-Tier Architecture pattern enhances system scalability by allowing each layer
to be scaled independently based on demand (e.g., using load balancers, replicating databases, or
expanding application servers). It also improves maintainability, as developers can update or
replace components within a single layer without impacting others, supporting agile development
practices and long-term system evolution.

2.2.3 Model-View-Controller (MVC) Architecture

The Model-View-Controller (MVC) architectural pattern is a fundamental design
paradigm for developing interactive software applications. It promotes a clear separation of
concerns among the application's data, user interface and control logic, enhancing modularity
and maintainability [34].

e Model: The Model contains the core functionality of the application, representing its
data, business rules and operations. It manages the state of the application independently
of the user interface and directly reflects the underlying domain or business logic.
Changes to the model are typically propagated to interested views via notification
mechanisms (e.g., observer pattern). Data persistence and retrieval between the database
and the model layer are managed through Data Access Objects (DAOs) and Data
Transfer Objects (DTOs), ensuring abstraction and decoupling from storage-specific
concerns.

e View: The View is responsible for rendering the visual representation of the model’s
data. Each view accesses the model to display an up-to-date and specific subset of
information to the user. It acts as a dynamic projection of the model’s state, reflecting
changes without altering the underlying data. Views often use filtering and formatting to
present complex data structures in a user-friendly manner. In some implementations, the

view can subscribe to the model to receive automatic updates upon state changes,
supporting reactive interfaces.

e Controller: The Controller serves as the intermediary between the user, the model and
the view. It handles user inputs, processes them (possibly invoking business logic on the
model) and determines the appropriate view for response. Controllers interpret user
actions (e.g., mouse clicks, form submissions) and invoke corresponding changes on the
model. After processing, they coordinate the selection and rendering of a view to reflect
the new state. In web applications, controllers typically map HTTP requests to
application functionality and decide how to respond, often using frameworks like Spring
MVC or Struts in Java EE ecosystems.

By decoupling the components, MVC allows for independent development, testing and
maintenance of the model, view and controller layers. It also supports multiple views of the same
model, allows easier integration of new interfaces and facilitates parallel development by
separating front-end and back-end concerns.

Handles data Handles data presentation -
Logic dynamically rendered

1 1
<<component>> E' <<component>> El <<component>> El
Database Server < -1 Model View
AN VN

| | | |

|

Fetch Data Fetch Presentation
! I

\/ VAR

<<component>> - Request__ - <<component>>
Client Application P epupa—— Controller
Response '

1

Handles request
flow

Figure 2.3: Model-View-Controller (MVC) Architecture Model

2.2.4 Microservices Architecture

The microservices architectural pattern represents a modern approach to software design
characterized by the decomposition of applications into independent, autonomous services, each
responsible for a specific business function. Unlike traditional monolithic systems, microservices
implement vertical decomposition, allowing each service to be developed, deployed and scaled

independently. This architecture has gained significant adoption among organizations of all
sizes, from industry leaders like Amazon, Netflix and Spotify to small and medium enterprises
seeking greater flexibility and resilience in their systems.

Microservices offer numerous technical advantages compared to traditional architectures.
Each service can be built using the most appropriate programming language and technology
stack for its specific requirements, enabling targeted optimization. Services scale individually
based on demand, allowing for efficient resource allocation. The decentralized, modular structure
also enhances system maintainability and fault tolerance, as the failure of one service does not
compromise the entire application which is a common vulnerability in monolithic systems.

While microservices share conceptual roots with Service-Oriented Architecture (SOA),
they represent a distinct evolution. Where SOA services typically encompass complete business
capabilities, microservices focus on smaller, highly specialized software components dedicated
to single tasks. This granular approach overcomes many limitations of traditional SOA
implementations, making microservices particularly suitable for modern cloud-based enterprise
environments where flexibility, scalability and resilience are paramount considerations.

<<component>> <<component=>>
Web Application Client Mobile Application Client

O

REST
<<component>>
API GATEWAY
7~ ! ~ ~
A7 l N
e - ! ! ~ ~
s I 1 ~
e ! ! N
e 1 1 ~.
” I] ~
L \/ ' ps

<<component>> El <<component>> El <<component>> El <<component>>
Microservice A Microservice B Microservice C Microservice D

|]]]

| I I I

| I I I

| I I I

| I I I

\/ \/ \/ \/
<<component>> <<component>> <<component>> <<component>>
Database A Database B Database C Database D

Figure 2.4: Microservices Architecture Model

2.3 Selected Architectural Patterns

This research builds on previous investigations into established architectural patterns
such as Client-Server, Three-Tier and Model-View-Controller (MVC) while expanding our
scope to include the Microservices architectural paradigm.

Our methodology follows a two-phase approach in terms of selected architectures. First,
we will continue our established research trajectory by implementing a simple application using
the simpler architectural patterns such as Client-Server, Three-Tier and MVC. Unlike previous
work, this phase will incorporate well-structured requirements through a formal Software
Requirements Specification (SRS) document, to evaluate if more detailed requirements help the
model to produce better architectures. Following the evaluation process, we will progress to
analysing Al capabilities in handling more complex architectural challenges by implementing a
more complex application with more requirements within a Microservices Architecture
framework.

Through this structured comparison, we aim to systematically evaluate Al's ability to
generate and implement architectural solutions across varying levels of complexity, with
particular emphasis on its competence to produce coherent designs for moderately complex
systems within the Microservices paradigm.

2.4 Motivation of Our Approach

The evolution of Al technologies, particularly Large Language Models (LLMs), has
created immense opportunities to transform software development practices. This research is
motivated by the growing need to determine whether modern Al can effectively assist in the
complex process of architectural design that has traditionally relied on human expertise and
experience. As organizations increasingly seek to accelerate development cycles and address
talent shortages, understanding Al's capabilities and limitations in this critical domain becomes
essential for responsible integration into professional software engineering workflows.

The architectural design phase represents one of the most intellectually demanding
aspects of software development, requiring engineers to translate abstract business requirements
into concrete system structures that balance numerous technical and operational concerns.
Current approaches to Al assistance in software development have primarily focused on
implementation-level tasks, leaving a significant opportunity to explore how Al might augment
architectural thinking. Our approach is motivated by the hypothesis that properly trained LLMs
could potentially assist in architectural reasoning, pattern selection and design representation.
Thus, providing valuable support to human architects while addressing common challenges such
as consistency, documentation and alignment with requirements. By investigating this potential,
we aim to establish a foundation for understanding where and how Al can meaningfully
contribute to architectural processes.

Lastly, the rapid advancement of Al capabilities requires the development of alternative
objective evaluation methodologies. Unlike code generation, where correctness can often be
objectively verified through compilation or test execution, architectural quality contains more
subjective dimensions such as modularity, scalability and appropriateness for business context.
Our research is motivated by the need to propose evaluation frameworks and metrics that can
meaningfully assess Al-generated architectural designs across these dimensions. By introducing
and testing such metrics, we lay the groundwork for future evaluation tools to be implemented.
Tools that will be able to benchmark advancements in AI’s architectural capabilities as Al
technologies continue to evolve. This motivation drives our investigation into the connection of
Al and software architecture, seeking to define the current boundaries of possibility and the
pathways toward more advanced Al assistance in architectural design.

2.5 Research Questions

We aim to explore Al's capabilities and limitations in software development assistance,
focusing specifically on architectural design. Specifically, we investigate how Al can generate
software architectures, what materials improve model training for this task and how to evaluate
Al performance in architectural design.

1. Which output format yields optimal architectural representations from Large
Language Models?
This investigation aims to determine the most effective format for Al-generated
architectural designs. We evaluate various representation methods including XMI/UML,
images, PlantUML and Mermaid diagrams to identify which format allows LLMs to
produce the highest quality and most accurate architectural designs.

2. Does a structured Software Requirements Specification Document enhance Al's
architectural design capabilities?
We explore whether Al produces better software designs when presented with SRS
documentation versus simplified requirement lists. We examine how effectively Al
interprets complex business logic, use cases and interconnected requirements when
translating them into coherent architectural designs.

3. How effectively can Al develop Microservices architectures for complex problem
domains?
We test Al's capability to decompose complex requirements into appropriate
microservice components while correctly implementing architectural principles such as
service boundaries, relationships and inter-service communication patterns.

4. What evaluation criteria best assess Al-generated Microservices architectures?
We address the limitations of existing evaluation frameworks when applied to
Microservices architectures. We aim to develop specialized criteria that more accurately
assess the unique aspects of microservice design that weren't captured in our previous
evaluations of simpler architectural patterns.

5. How can we utilize objective metrics for AI-generated architectures?
As LLM technology rapidly evolves, we need automated methods to objectively measure
improvements in architectural design capabilities. We focus on creating architecture-
specific metrics that provide consistent, quantifiable evaluation of Al performance.

6. Do LLMs hallucinate when calculating well-defined metrics for the class diagrams
they generated?
We examine whether LLMs can calculate objective well-defined metrics accurately
from the class diagrams they generated. We measure hallucination and conceptual
mistakes that might reveal gaps in the model's understanding.

7. How does Retrieval-Augmented Generation (RAG) impact architectural design
quality?
We explore if RAG techniques can enhance context-awareness and design accuracy,
improving Al's architectural reasoning capabilities.

8. How does iterative prompting affect the quality of Al-generated architectural
designs?
We test whether multi-turn conversations, without explicit knowledge injection,
progressively improve the quality of architectural designs. We analyze how iterative
refinement through conversation affects the completeness, correctness and coherence of
the resulting architecture.

These research questions collectively address some of the fundamental challenges of
integrating Al into software architecture development workflows. By investigating input formats,
output representations, architectural complexity boundaries, evaluation methodologies, model
capabilities and enhancement techniques, this research aims to establish practical guidelines for
utilizing Al in architectural design. The findings will help software engineering teams better
understand where Al can provide genuine value in the architectural process, identify current
limitations and implement strategies to optimize Al-assisted design outcomes for real-world
software projects.

3. Approach

3.1 Deployment, setup and technologies used

Before diving into the details of our experimental setup and results, it's important to
highlight a few constants that stayed the same throughout all experiments. These include the
hardware used in our testing environment, the tools and technologies we relied on and the RAG
(Retrieval-Augmented Generation) methods we applied. Outlining these shared elements helps
provide a consistent foundation for understanding and comparing our findings.

3.1.1 Hardware Specifications

Our experiments were conducted on a dedicated Ubuntu 22.04 server configured with
128 GB of RAM. This environment was essential for efficiently running large language models
(LLMs) and performing the computationally intensive tasks involved in generating UML class
diagrams.

Interfacing with Local Language Models

To manage and run LLMs locally, we employed the Ollama platform. Ollama is a
versatile framework that simplifies the deployment and interaction with models such as llama3.3
and deepseek-r1. It supports cross-platform compatibility working seamlessly on Linux,
Windows and macOS and offers several interfaces:

e Terminal-based commands (ollama run <modelName>)
o HTTP API requests via http://localhost:11434/api/generate
o Integration into custom applications through common programming libraries
For this project, we chose to communicate with Ollama using Python, pairing it with the
LangChain library to construct modular, logic-driven workflows. LangChain provides a flexible

infrastructure for managing interactions with LLMs, supporting features like prompt engineering,
chaining and Retrieval-Augmented Generation (RAG) with ease.

Vector Management for RAG

The RAG process required a solution for storing and accessing vector embeddings
generated from segmented text inputs. For this, we used Chroma, an open-source vector database
purpose-built for machine learning and Al workflows. Its native compatibility with LangChain

https://ollama.com/
https://www.langchain.com/langchain
https://www.trychroma.com/

allowed for seamless integration and efficient management of embedding data throughout the
retrieval and generation process.

Experiment Configuration and Workflow Automation

To organize our test scenarios and automate the UML class diagram generation process,
we adopted a structured approach similar to that used in the work of Tsilimigkounakis [28]. This
involved designing a table where each row represents a distinct test scenario, complete with
detailed metadata to guide the generation workflow. By standardizing scenario definitions in this
way, we enabled automated processing and ensured consistency, reproducibility and clarity
across all experiments.

The table includes the following key fields:

o ID: A unique identifier assigned to each scenario, directly linked to the corresponding
generated class diagram.

o familyld: Represents the broader group or "family" to which the scenario belongs. It also
reflects the directory structure. The format follows:
{architecture}{fr set number}{nfr set number}{prompt file number).
Forinstance, cs111 indicates a Client-Server architecture with functional requirements
set 1, non-functional requirements set 1 and prompt file 1.

o architecture: Defines the architectural design pattern requested for that scenario (e.g.,
Client-Server, Three-Tier, Micrservices).

o frPathfile: File path to the functional requirements (FR) used in the scenario.
o nfrPathfile: File path to the non-functional requirements (NFR).

o srsPathfile: File path to the SRS (Software Requirements Specification) file used in the
scenario.

o promptPathfile: File path to the textual prompt that guides the model.

o modelMetadata: Specifies which language model was used, along with its version (e.g.,
llama3.3:latest, deepseek-r1).

o source: Describes how the diagram was generated, either programmatically through
Python scripts or manually via online tools like ChatGPT or Gemini.

o ragDecision: Indicates whether the scenario utilizes a Retrieval-Augmented Generation
(RAG) approach.

o ragPathfile: Path to the external RAG data file, used when RAG is enabled.

o embeddingsMetadata: A JSON object detailing the configuration and behavior of the
RAG process.

o resultPath: Automatically filled by the script post-execution, pointing to the generated
response file.

By using this structured table, our Python scripts can loop through all defined scenarios,
automating the generation of UML class diagrams based on their respective requirements and
parameters. This setup supports controlled experimentation across various architectural styles,
LLM configurations and RAG applications and ensures all results are reproducible, traceable and
organized for further analysis.

3.1.2 Selecting the UML Output Format from LLMs

The effectiveness of large language models (LLMs) in generating UML diagrams largely
depends on the output format they produce. When prompting a large language model (LLM) to
generate software architecture diagrams in UML, the output can take various forms, including
XMI, PlantUML, Mermaid, or image files. We observed that the quality of the generated
diagrams varies depending on the output format. This variation arises because LLMs are trained
on data that unevenly represent these formats, leading to differing levels of proficiency. Our goal
is to continue this research using the output format where LLMs demonstrate the highest quality
responses.

For that reason, in the initial phase of our research, we experimented with various output
formats for UML class diagram generation using large language models (LLMs). These formats
included image-based outputs, XMI (XML Metadata Interchange) and Diagram-as-Code (DaC)
approaches such as Mermaid and PlantUML. Our assessment revealed that LLMs consistently
delivered superior accuracy and structural integrity when generating diagrams in PlantUML
format, which subsequently became our standard output format for all class diagram generation
experiments in this study.

It is important to note that the utilization of model-oriented tools like Visual Paradigm
presented significant technical challenges for both generation and evaluation processes.
Requesting class diagrams in XMI format for Visual Paradigm import posed different obstacles,
including complex syntax requirements, platform-dependent variations and potential
compatibility issues that often result in errors or incomplete diagrams.

One alternative approach involved working with class diagrams as images, which would
have limited us to LLMs capable of image generation and recognition which is a substantial
deviation from our core research objectives. This method would have introduced additional
complications through reduced accuracy and increased complexity in processing diagram
components.

The following table presents a detailed comparison of the four UML output formats
examined (PlantUML, Mermaid, Image Output, and XMI) based on four key criteria relevant to
their suitability for use with large language models: ease of generation, syntax robustness, post-
generation usability, and accuracy in representing class attributes and relationships.

Output Ease of Syntax Post- Accuracy in Class
Format Generation Robustness Generation Attributes and
Usability Relationships

PlantUML | Well-structured Moderately Requires code- | Captures most standard
and intuitive for | robust. Most based editing, class features but lacks full
LLMs to produce. | syntax issues are | lacks visual UML semantic support.

easy to fix. editing support.

Mermaid Simpler syntax, Prone to syntax Requires code- | Supports only basic class
but LLMs errors. Small based editing, declarations and relations.
sometimes mistakes often lacks visual
confuse break rendering. editing support.

Mermaid-specific
conventions.

Image Not directly Immune to syntax | Useful for Accuracy in class

Output generatable by all | errors as it's a viewing only, attributes and relationships
LLMs. static visual. not editable or depends entirely on the

machine- model’s prior exposure to

readable. UML visuals, with no
underlying semantic or
verifiable representation.

XMI Difficult for Very fragile. Easily imported | Fully supports UML
LLMs to generate | Small formatting | into modeling semantics, including
due to its errors break tools for advanced constructs and
verbosity and parsing and are graphical constraints.
strict structure. often very editing.

difficult to fix.
3.1.2.1 PlantUML

Following our comparative evaluation, we adopted PlantUML as our preferred solution.
This approach combines the capability to create detailed, well-structured UML diagrams with a
straightforward, code-like, text-based language that LL.Ms can efficiently generate and
understand. PlantUML's syntax accessibility ensures that any LLM with basic text generation
capabilities can effectively produce and recognize diagrams, avoiding the compatibility
challenges associated with XML while avoiding the complexities of image recognition

processing.

Furthermore, PlantUML offers visualization capabilities across multiple platforms and

tools, including an official web server functioning as an editor and dedicated libraries for various
programming environments such as Java, Python and React. For our specific implementation, we
used PlantUML's Java .jar file, supporting direct diagram rendering and visualization as images.

This functionality significantly enhanced our workflow efficiency by providing a streamlined
process for converting PlantUML code to image format, analysis and evaluation of the generated
class diagrams, as demonstrated in Figure 3.1, which illustrates the relationship between
PlantUML code and its corresponding UML diagram representation.

@startuml
@ Company

class Company 1
— name: String
— location: String

o name: String
o location: String

+ getDetails(): String o getDetails(): String
¥ 1
class Employee { P employs

- name: String many

— employeeId: int -

— role: String (:) Employee

+ getProfile(): string -
1 o name: String

o employeeld: int Y owns

class Project { o role: String

— projectName: String o getProfile(): String

— deadline: Date

+ getStatus(): String many
L 4 works on
' Associations man many
Company "1" — "many" Employee : employs = e
Employee "many" — “many" Project : works on = © roje
Company "“1" — "many" Project : owns = o projectName: String

o deadline: Date

@enduml

e getStatus(): String

Figure 3.1: Example of PlantUML Code

3.1.3 Retrieval Augmented Generation (RAG)

3.1.3.1 RAG Overview

Retrieval-Augmented Generation (RAG) represents a significant advancement in large
language model (LLM) technology, designed to address fundamental limitations in these
systems. While LLMs demonstrate remarkable language capabilities, they operate by identifying
statistical patterns in language rather than achieving true semantic comprehension. This
limitation often results in information that appears convincing but may be factually incorrect or
outdated, a phenomenon commonly referred to as "hallucination". RAG frameworks mitigate
this issue by integrating external knowledge retrieval into the generation process.

At its core, RAG operates through a two-phase process: first retrieving relevant
information from external, verified knowledge sources, then incorporating this information into
the language generation process. This approach effectively grounds the model's responses in
documented facts rather than relying solely on learned parameters. When a query is submitted,
the RAG system identifies and retrieves relevant information from its knowledge base, which
then serves as supplementary context for the LLM as it formulates a response. This process
creates a bridge between the statistical reasoning capabilities of LLMs and verified external
knowledge.

The implementation of RAG offers several significant advantages in production
environments. Most notably, it substantially improves response accuracy and reliability by
relating outputs to factual information. Additionally, RAG systems provide traceability through
citation capabilities, allowing users to verify the sources underpinning generated content, a
critical feature for building trust in applications requiring high information precision and
reliability. From a practical perspective, RAG reduces the frequency of model retraining required
to maintain relevance, as new information can be incorporated by simply updating the external
knowledge base rather than retraining the entire model.

From a technical standpoint, RAG frameworks typically use complex information
retrieval techniques such as vector embeddings to identify semantically relevant content, which
is then injected as contextual information alongside user queries. This contextual enrichment
transforms the LLM's operational environment, providing it with precise, relevant information
directly applicable to the current query. These systems carefully balance the computational cost
of retrieving context with improvements in output quality, allowing them to achieve notable
increases in factual accuracy without sacrificing response times. As LLM applications expand
into domains requiring precise factual information, RAG has emerged as an essential process for
responsible Al system development that uses external context to enhance model capabilities.

3.1.3.2 Embeddings in RAG Systems

Embeddings form the mathematical backbone of modern Retrieval-Augmented
Generation (RAG) systems by representing text as dense vectors that capture its underlying
meaning. Unlike traditional keyword matching, embeddings focus on the concepts behind the
words, placing similar ideas close together in vector space, even if the exact wording differs.
This ability to retrieve information based on meaning rather than exact words makes embeddings
especially powerful for RAG, greatly enhancing the system’s capacity to find contextually
relevant information.

In RAG architectures, the embedding process occurs in two critical phases. Initially,
during knowledge base preparation, each document or text segment is transformed into a vector
through specialized neural network models trained specifically for semantic representation.
These document embeddings are indexed in vector databases optimized for similarity search
operations. Subsequently, during the retrieval phase, user queries undergo the same embedding

transformation, creating query vectors that occupy the same semantic space as the document
embeddings.

The retrieval mechanism operates on vector similarity principles, typically using distance
metrics such as cosine similarity or Euclidean distance to identify the closest conceptual matches
between query and document embeddings. Modern implementations often utilize approximate
nearest neighbour algorithms to efficiently search vast vector spaces containing millions of
document embeddings while maintaining low latency characteristics. This approach allows RAG
systems to rapidly identify and retrieve the most semantically relevant contextual information
from extensive knowledge bases.

The effectiveness of RAG systems is linked to embedding quality, with more advanced
embedding models capturing increasingly complicated semantic relationships. Recent
advancements have produced embedding models capable of representing complex relationships
between entities, understanding domain-specific terminology and preserving hierarchical concept
structures. When paired with efficient vector indexing technologies, these advanced embeddings
allow RAG systems to provide highly relevant contextual information to language models,
improving response accuracy while maintaining the natural fluency characteristic of modern
LLMs.

6. Response

Embedding Model

AARY
1. Que d1 ,-iE
AN |</ >| e >
1 Z_'r 5. Combine prompt
]yyé[with relevant information
A Large Language Model

4. Relevant Information

2. Query Embedding for Enhanced Context

3. Similarity search with
query embedding

Vector
Database

BRB

Knowledge Sources

Figure 3.2: RAG Method Illustrated

3.1.3.3 RAG Techniques

In the following section, we explore various RAG techniques, outline the available
options and explain the specific RAG pipeline chosen for our experiments, along with the
rationale behind that choice.

Embedding Models

The quality of embeddings directly determines retrieval accuracy in RAG
implementations, making model selection a critical decision. One can choose between four
primary deployment options: self-hosting open-source models, utilizing cloud providers offering
open-source implementations, employing proprietary embedding services (e.g., OpenAl), or
implementing integrated end-to-end solutions with built-in embedding functionality.

When choosing embedding models for Retrieval-Augmented Generation (RAG)
applications, four key factors should guide the decision. First, Retrieval Average Performance
measures how well a model performs on retrieval tasks using standard benchmarks. Second,
Model Size and Memory Usage impact computational demands, while larger models often
provide better accuracy they also require more resources. Third, Embedding Dimensions that
affect the model’s ability to capture subtle semantic relationships and the storage needed, which
means that higher dimensions offer better accuracy but increase computational load. Finally,
Maximum Token Length defines the amount of text that can be processed in a single embedding,
influencing how documents need to be divided and handled.

The optimal embedding model varies by use case, with domain-specific applications
often benefiting from specialized models while general knowledge implementations may require
broader models with higher parameter counts. Organizations should evaluate models using
representative data from their knowledge domain rather than relying solely on published
benchmarks to ensure selection of embeddings that balance performance with implementation
constraints.

Chunking Methods

Chunking is the strategic decomposition of documents into smaller units that enhance
retrieval efficiency and precision in RAG systems. This process determines how information is
indexed and retrieved, directly impacting the contextual relevance of generated responses.
Effective chunking balances context preservation with computational efficiency, creating
segments that contain sufficient information while maintaining reasonable storage requirements.
RAG implementations typically employ four primary chunking methodologies.

e Sliding Window Chunking: Creates overlapping segments of predetermined size,
preserving context across boundaries at the cost of storage redundancy

e Document-Based Chunking: Respects natural document structures like paragraphs or
sections, maintaining inherent information organization but potentially creating
inconsistent chunk sizes

e Semantic Chunking: Identifies conceptual boundaries within text, grouping related
information regardless of structural indicators

o Agent-Based Chunking: Optimizes segments for distributed processing across
specialized retrieval agents in multi-agent systems

The optimal chunking approach varies based on content characteristics and application
requirements. Technical documentation often benefits from document-based strategies, while
conversational content typically performs better with sliding window techniques. Implementation
parameters such as chunk size and overlap percentage require manual optimization through
performance testing with representative queries. By evaluating different chunking techniques,
RAG systems can achieve an optimal balance between retrieval accuracy, contextual coherence
and computational efficiency.

Although there are additional techniques that could enhance the RAG process such as
metadata filtering, query transformation and reranking, our experimentation has determined that
these approaches fall outside the current scope of our work.

3.1.3.4 Our RAG Pipeline

Building on the work of Tsilimigkounakis [28], we excluded underperforming RAG
methods such as the recursive chunking technique from our scope. Furthermore, we chose to
proceed exclusively with the nomic-embed-text embedding model from Nomic Al, as it
demonstrated comparable performance to OpenAl’s text-embedding-3-large. Given that our
focus is not on exhaustively experimenting with various RAG methods, we narrowed our
approach to using nomic-embed-text in combination with semantic chunking.

The documents inserted into the vector database for each experiment will be referenced
later in this work within the corresponding experiment descriptions.

3.2 The DCC Experiment, revisited

In this experiment, we explore whether Large Language Models (LLMs) benefit more
from Software Requirements Specification (SRS) documents compared to basic lists of
Functional and Non-Functional Requirements. To do so, we replicated the original experiment,
from Tsilimigkounakis [28] work, using an SRS document as the input format for software
requirements, replacing the simpler requirements lists. Additionally, we excluded RAG methods
or materials that previously demonstrated poor performance and further investigation had limited
research value. This study seeks to shed light on whether LLMs can better comprehend and
utilize richer, more detailed software descriptions, as opposed to minimal input formats.

3.2.1 Architectures Considered

The architectural patterns considered such as Client-Server, Three-Tier and Model-View-
Controller (MVC) remain unchanged, as the primary focus of this experiment is to compare SRS
documents with FR-NFR lists. Introducing additional architectural patterns would dilute the
objective and compromise the clarity of the comparison.

3.2.2 Case Study: DCC (Dummy Coordinate Converter) Application

The Dummy Coordination Conversion (DCC) Application is a software system designed
to manage coordinate groups in both Cartesian and polar formats. It allows users to convert,
store, retrieve, modify and delete coordinate groups.

Originally introduced in previous work [28], the application remains unchanged in this
study. Its simplicity and straightforward functionality make it an ideal candidate for evaluating
the Al's ability to adhere to a specified architectural pattern based on clearly defined
requirements. By reducing the complexity of the use case, we can more effectively assess the
Al's architectural and diagrammatic accuracy.

Software Requirements Specification Input

Given the uncertainty around how Large Language Models (LLMs) would respond to
software descriptions provided through a Software Requirements Specification (SRS) document,
we designed an experiment using two variations: a concise version and a more extensive one.

The concise SRS (Appendix A (SRS vl for DCC Application)) focuses on the essential
elements of the application, including use case diagrams and lists, activity diagrams for each use
case and data requirements. In contrast, the extensive SRS (Appendix B (SRS_v2 for DCC
Application)) converges to what would typically be found in a real-world specification. It
includes a detailed system overview, business context, the intended user base, system scope,
suggested technologies and constraints and any assumptions or dependencies.

This approach allows us to assess whether LLMs perform better when given richer
contextual and business-level information, as opposed to a minimal functional specification.

3.2.3 The Prompt

We maintained the original prompt structure used in previous experiments, modifying
only the section where the FR-NFR lists were replaced with the SRS document. This decision
was made to preserve the integrity of the comparison. Introducing a new prompt format could
have introduced confounding variables, compromising the clarity of the results.

Task Description: You are tasked with processing a software description and its requirements to generate a class
diagram using PlantUML. The class diagram should respect the requested software architecture, define all
necessary classes, and accurately represent associations between them.

The requirements for the software we want you to design are in the SRS (Software Requirements Specification)
here: {SRS}

The demanded Architecture is {Architecture}

Generate a class diagram using PlantUML that defines all necessary classes and associations based on the
described architecture, requirements, and functionality. Ensure that:

The diagram reflects the separation of concerns based on the requested architecture.

Each class is properly defined with attributes and methods.

All associations (e.g., composition, aggregation, or inheritance) between the classes are included in PlantUML
and are clearly represented.

Create the appropriate packages to include the classes.

3.2.4 LLM Selection

When selecting LLMs for this experiment, we made a conscious decision to retain the
models used in previous work. This allowed for a controlled comparison, isolating the effect of
replacing the FR-NFR lists with an SRS-based application description while keeping all other
variables constant. Additionally, we included several newer models available at the time of the
study such as o1, ol-mini, 03-mini-high and deepseek-r1, to evaluate their performance within
the same experimental framework.

Model Source Parameter Size | Quantization

llama3.1 local 8B Q4 0

deepseek-r1:70b local 70.6 B Q4 0

Model Source Parameter Size | Quantization
command-r local 323B Q4 0
gemma?2:27b local 272 B Q4 0
mixtral:8x7b local 47.6 B Q4 0
phi3:medium-128k local 14B Q4 0
claudeSonnet3.5 online N/A N/A
deepseek-rl online 671 B N/A
gemini-1.5 online N/A N/A
gptdo online N/A N/A
gpt4oSAV online N/A N/A
ol online N/A N/A
ol-mini online N/A N/A
03-mini-high online N/A N/A

3.2.5 RAG Material

The RAG file used in this experiment comes from a well-established source: Software
Engineering (10th Edition) by lan Sommerville. This textbook is widely recognized in the field
and offers in-depth coverage of core software engineering concepts. By using material from such
a trusted source, we aim to give the model reliable information that can help it generate more
accurate and structured class diagrams. Including content from Sommerville also lets us explore
how academically solid material influences the model's understanding of software architecture.

To make the RAG even more effective, we organized the documentation by architectural
style, creating a separate file for each one. This way, we can match the RAG file directly to the

architecture type requested in the prompt. The goal is to see if giving the model focused,
architecture-specific guidance improves its ability to follow the desired pattern. By isolating the
content this way, we can better assess whether targeted documentation works better than a single,
combined resource.

This RAG material approach, splitting the RAG file into three distinct documents, one for
each architecture type, follows the second method from Tsilimigkounakis’ work [28], which
demonstrated the highest performance. By adopting the same strategy and reusing the
corresponding RAG documents, we ensure a valid and consistent comparison framework for our
experiment.

3.2.6 Evaluation Process

The final phase of our experiment focuses on a evaluation of the generated class diagrams
by human experts. The evaluation is based on a set of predefined criteria, which remain
unchanged from the previous experiment to ensure consistency and enable a valid comparison of
results.

Evaluation Criteria

e Adherence to Architecture: Human experts evaluate the extent to which each class
diagram conformed to the requested architectural pattern. This involves examining
whether core architectural principles are followed, including the proper distribution of
responsibilities across classes and structural alignment with the designated architecture
(e.g., MVC, Three-Tier, Client-Server).

e Correctness of Class Relationships: This criterion focuses on the accuracy of inter-class
relationships in the context of the given architecture. Experts assess whether associations,
dependencies and communication flows are correctly modeled and whether they comply
with architectural best practices.

e Cohesion and Coupling: Diagrams are evaluated on their ability to achieve high
cohesion and low coupling, two foundational principles of sound software architecture.
High cohesion is judged by how focused and purpose-driven each class is, while low
coupling is assessed based on the degree of independence between classes.

e Consistency with Software Requirements: Ensure that the diagrams accurately reflect
both the functional and non-functional requirements defined in the input specifications.
This ensures that beyond structural correctness, the diagrams capture the full scope of
expected system behavior.

3.2.7 Scenarios Performed

To understand how different factors like model choice and the use of RAG affect the
quality of Al-generated class diagrams, we ran a series of experiments. We designed a range of
scenarios to help isolate and analyze the impact of each variable. While staying at the scope of

architectures such as Client-Server, Three-Tier and MVC we varied a combination of parameters
resulting in 120 scenarios.

e Large Language Models (LLMs): We used different models to evaluate how
model selection impacts the quality of generated architecture.

e RAG vs No-RAG: We tested scenarios with and without Retrieval-Augmented

Generation (RAG) to examine how access to supplementary information affects
the accuracy and structure of the generated diagrams.

Client-Server

r [Architecture] [ThI’EE'TIeI’ J
MVC
[totaleumberJ { (]20 J
(RAG File] { rag2/rag3/ragh]
[Yes] { [RAG Detal\s] [chunkmg method] { {semamtic]
[agent / embedding modeIJ { [o\lama /nom\c-embed-text)

SRS_vl (Concise)
{
SRS_v2 (Extended)

- | lama3l
gemmaz2:27b
command-r
mixtral-8x7b
phi3:medium-128k

gpt4o

gpt4oSAV
~ !

gemini-1.5

claudeSonnet3.5

o

ol-mini

deepseek-rl:70b

deepseek-rl

r

o3-mini-high

Figure 3.3: Scenarios Performed - DCC
3.2.8 Reference Architectures
In this section, we present reference class diagrams for the proposed architectures for

DCC application. These reference architectures we inherited from Tsilimigkounakis work [28]. It
is important to state that these reference architectures were not used as a benchmark to evaluate

the generated diagrams, based on similarity. Instead, it is included to illustrate the type of
architectural outputs we considered a strong response from the language models in this
experiment.

Figure 3.4: Client Server Architecture (DCC App)

Figure 3.5: Three-Tier Architecture (DCC App)

Figure 3.6: MVC Architecture (DCC App)

3.3 The MyCharts Experiment

In this section, we present the experiment conducted to evaluate the generation of class
diagrams by Al for a more complex application with requirements of moderate complexity, an
area that represents the core focus and primary research interest of this study. We describe the
application's functional and non-functional requirements, outline the Software Requirements
Specification (SRS) document and detail all relevant experimental parameters, including the
RAG materials, the models selected, the prompt, evaluation criteria for the human evaluation, the
metrics for objective evaluation and a reference architecture.

3.3.1 Architectures Considered

For this experiment, we chose to focus exclusively on the Microservices Architecture,
applying a new set of evaluation criteria specifically to this architectural paradigm. Since the
primary objective was to assess the capabilities of Al in generating a more complex system
architecture, revisiting the previously explored architectures was deemed unnecessary.

3.3.2 Case Study: MyCharts Application

MyCharts Application is a web-based service designed to allow users with minimal
technical expertise to generate, manage and download charts in various formats. It simplifies
chart creation by providing templates for source data, supporting data uploads. It uses the
Highcharts library for chart generation.

The application allows users to:

- Download CSV templates for supported chart types.

- Upload CSV files to generate charts.

- Save and download charts in PDF, PNG, SVG and HTML formats.
- Purchase quotas for chart creation.

- View and download generated charts.

The selected software application presents a higher level of complexity compared to the
DCC Application examined in the previous experiment. It was inherited from the “Software-as-
a-Service Technologies” course at NTUA, where it served as a term project. Its design and
requirements are sufficiently advanced to justify the application of the Microservices
Architectural paradigm, providing a more realistic and demanding scenario for evaluation. At the
same time, the complexity remains manageable, ensuring that it does not exceed the capabilities
of the Al system to produce meaningful and high-quality software diagrams.

In this experiment, we tested two different types of input to evaluate which would enable
the Al to produce higher-quality software architecture class diagrams. The first input type
consisted of a list of functional and non-functional requirements written in natural language. This
input provided only the essential information necessary for the application's design, without

Vassilios Vescoukis
Να κάνουμε αναφορά στο ότι ήταν εργασία ΤΛ2 το 2022-2023

offering deeper insights into its business logic or operational details. The second input type was a
complete Software Requirements Specification (SRS) document, which included more detailed
information about the application, such as business logic descriptions, use case diagrams, activity
diagrams and additional contextual insights.

Functional and Non-Functional Requirements Input
Below are the functional and non-functional requirements used to describe the MyCharts

Application. This information was included as part of the prompt in the Al experiment and
served to define the application for which the software architecture was to be generated.

Functional Requirements

1. Authenticate users via Google accounts.

Allow download of CSV templates for 3 supported chart types (Basic line, Line with

annotations, Basic column).

Upload CSV file with the user data for chart generation.

Validate uploaded CSV files against the template structure, data types, and mandatory data

existence.

Generate charts with data from the CSV file uploaded by the user, using Highcharts.

Save charts to the server in PDF, PNG, SVG, and HTML formats.

Display a dashboard with the history of user-generated charts, including chart previews.

Download selected chart type.

Charge quotas for chart creation.

10. Allow users to delete or download charts.

11. Sell quotas and receive payment by a payment gateway

12. Maintain user profiles containing the following data: Name (from Google account), profile
picture (from Google account), email (from Google account), remaining quota, account
creation timestamp, last login timestamp.

13. Display user's profile info, including remaining quotas.

B

AN

R

Non-Functional Requirements

Performance
- Chart generation completes within 3 seconds.
Usability
- Intuitive UI with guided workflows (e.g., tooltips, validation hints) to assist non-technical
users.
Security
- SSL encryption: Data transmitted over the internet is encrypted using SSL.
Availability
- The service should be available 90% of the time daily.
- The system should prioritize Availability over Consistency during network partitioning.
- While in network partitioning, although temporary data inconsistencies may occur, as many
as possible services should remain fully operational.
Scalability
- Support 1,000 concurrent users.

It is important to note that many of the non-functional requirements cannot be directly
evaluated through the PlantUML-generated design, as their verification would require full
application development and testing. Nevertheless, we included them to create a more realistic
use case scenario, simulating the workflow a software engineer might follow. Where, after
obtaining the initial software architecture in UML form, they would continue prompting the Al
to generate code and progressively build and test the complete application. While the scope of
this study, is restricted to the generation of software architecture, we believe including this aspect
provides more realistic insights.

Software Requirements Specification Document

The Software Requirements Specification (SRS) document used to describe MyCharts
Application (Appendix C (SRS for MyCharts Application)) was included as part of the prompt in
the Al experiment and served as the basis for defining the application for which the software
architecture was to be generated.

The Software Requirements Specification (SRS) contains all the essential information
needed to design the architecture, while also including additional details that go beyond the
immediate scope of the task. However, these supplementary elements were retained to simulate a
more realistic use case, one in which a software engineer uses an Al model to derive the initial
architecture directly from a SRS document.

3.3.3 Evaluation Process

This experiment includes an evaluation of the generated class diagrams, against carefully
selected criteria specific to the unique characteristics and principles of the Microservices
Architectural Paradigm. This ensures that the assessment reflects not just general diagram
quality, but also alignment with principles of Microservices design.

These evaluation criteria differ from those used in previous experiments, as earlier
benchmarks lacked the specificity needed to properly reflect the principles and demands of the
Microservices architecture. Unlike more traditional architectures such as Client-Server, Three-
Tier, or Model-View-Controller, Microservices present a significantly higher level of complexity
and require a more detailed set of evaluation criteria to validate proper design and alignment
with best practices.

Evaluation Criteria

1. Functional Alignment & Responsibility Distribution: Ensure that each microservice
maps to a bounded context and implements a focused set of functionalities. The union of
the functionalities of each microservice should be the entire set of functional
requirements.

2. Coupling & Deployment Independence: Ensure that microservices are loosely coupled
and independently deployable

3. Cohesion: Ensure high cohesion meaning that more than one microservice needs to be
involved in the completion of each use case.

4. Data Management: Ensure that each service is responsible for managing specific data
elements without using shared databases.

5. Data Consistency: Ensure that operations to achieve eventual consistency of data states
among different microservices are included.

6. Communication & Flow Control: Ensure that service coordination is done using
choreography or orchestration mechanisms. API gateways and/or messaging (pub-sub)
services should be used to implement flow control.

7. Non-Functional Requirements: Ensure that the design satisfies all problem-specific
non-functional requirements.

Human experts with varying software architecture expertise evaluated the diagrams. Each
reviewer independently rated the diagrams from 0-5 across the 7 criteria. This approach provided
qualitative feedback for quality assessment.

3.3.4 Metrics Considered for Objective Evaluation

A focus of this research was finding an objective way to evaluate Al-generated
architectures using solid metrics rather than just subjective evaluations. With Al technology
evolving so quickly, we need a reliable system to measure how these models are improving over
time regarding software design capabilities. We realized that the metrics depend heavily on what
type of architecture we're evaluating, therefore, different architectural styles need different
metrics.

We selected which metrics to use based on previous work regarding evaluating
Microservices architectures. We were guided by Engel's work [35] on evaluating already
implemented and deployed microservices applications and Bogner's significant contributions
[36],[37] that focused on theoretically evaluating a system design, designed using microservices.
Their research helped us identify what really matters when evaluating microservice designs.
Additionally, we introduced new metrics that we deemed essential to the evaluation process.

Based on this prior work, we carefully selected metrics that capture the most important
aspects of good microservices architecture: how well services stick to single responsibilities,
how many interfaces each microservice has, how they communicate with each other, how well
they align with business domains and whether they can be deployed independently etc.
Additionally, we opted to structure a conceptual corelation between the quantitative evaluation

metrics (objective) and some of the qualitive evaluation criteria (subjective) evaluated by human
experts.

We selected the following metrics to evaluate the quality of Al-generated microservices
architectures:

1. Metrics applicable across the entire architecture
e SI (Statelessness Index):
SI = (# of stateless services)/|Number of Services|
The SI metric measures the proportion of services that remain stateless across requests,
i.e., they do not retain a persistent state between interactions. Higher values (closer to 1)

suggest that the architecture predominantly consists of stateless services, which enhances
scalability, supports containerization and allows for independent deployment.

e DOC (Data Ownership Count):
DOC = (# of services with a dedicated data store)/|Number of services|

The DOC metric captures the percentage of services that manage their own dedicated
data stores. Values approaching 1 indicate strong data autonomy, reflecting a key
microservices principle where each service owns its data, reducing coupling and
enhancing maintainability.

e SST (Service Support for Transactions):

SST = (# of transaction aware services)/|Number of services|

The SST metric reflects the percentage of services that implement at least one mechanism
for ensuring eventual consistency across distributed data states. Higher values imply that
a greater number of services are aware of and actively manage cross-service
consistency.

2. Service-specific metrics

e SIC (Service Interface Count):
SIC(S) = Z operations of service S

The SIC(S) metric measures the number of operations exposed by a given service, S. It
serves as an indicator of interface complexity. Lower but adequate values suggest that

the service has a well-defined, focused responsibility, avoiding functional overload and
promoting clear separation of concerns within the architecture.

e AIS (Absolute Importance of the Service):
AIS(S) = Z other services that invoke service S

The AIS(S) metric represents the number of distinct clients that invoke at least one
operation of service S. A balanced distribution of AIS values across services indicates
that no single service plays a disproportionately central role, which is essential for
maintaining low coupling and ensuring deployment independence within a microservices
architecture.

e ADS (Absolute Dependence of the Service):
ADS(S) = Z other services that are invoked by service S

The ADS(S) metric captures the number of other services that service S depends on.
Specifically, the number of services from which S invokes at least one operation. A
balanced distribution of ADS values across the system suggests an even spread of
dependencies, minimizing the risk of bottlenecks and promoting loose coupling and
independent deployment.

3. Use-case-specific metrics
e SC (Service Cohesion):
SC(U) = {Set of services involved for use case U}
The SC(U) metric identifies the set of services that participate in fulfilling use case U. A
high number of collaborating services for a single use case indicates high cohesion
within the system, which is an expected characteristic of a well-structured microservices

architecture, where functionality is distributed.

The following outlines the conceptual relationship between the objective metrics and the
evaluation criteria used to assess the generated architectures.

Evaluation Principle Metric(s)
Functional Alignment & Responsibility Distribution SIC
Coupling & Deployment Independence SI, AIS, ADS
Cohesion SC

Data Management DOC

Data Consistency SST

While a conceptual alignment between the evaluation principles and the selected metrics
is expected, the actual correlation must be validated experimentally. For example, architectures
generated with a DOC metric value closer to 1 are expected to achieve higher scores in data
management.

Lastly, not all evaluation principles have a corresponding metric, as some criteria are not
easily quantifiable. Specifically, aspects such as 'Communication & Flow Control' and 'Non-
Functional Requirements' are difficult to assess directly from a UML diagram with any accuracy.

3.3.5 The Prompt

In our experiment, we used two types of prompts: one based on a Software Requirements
Specification (SRS) and another based on a Functional and Non-Functional Requirements (FR-
NFR) description. Each prompt is structured into the following sections:

e General Task Description: A high-level overview of the task assigned to the language
model, outlining the overall objective.

o Application Description: A detailed description of the target software system for which
the architecture is to be generated. This can be provided either in the form of a SRS
document or as separate lists of functional and non-functional requirements.

o Design Guidelines for Microservices Architecture: A set of best practices and
architectural principles for Microservices design, intended to guide the language model
toward generating sound and maintainable solutions.

o PlantUML Design Requirements: Specific instructions regarding the structure of the
class diagram, including attributes, methods, associations and package organization.
These directives help ensure that the generated diagrams are syntactically correct and
semantically meaningful.

e Operation Classification in PlantUML Class Diagram: Instructions for categorizing
each class operation in the architecture as one of the following: business logic, data
management, data consistency, or flow control. This classification supports the
evaluation of architectural quality.

o Description of Metrics to Be Calculated: An overview of the metrics to be
automatically extracted from the generated diagrams, along with a brief explanation of

their purpose and calculation method.

o Expected Metric Output Format (JSON): The required JSON format for presenting the
calculated metrics, ensuring consistency and enabling automated analysis.

The following are the two precise prompts employed in our experiment:

Task Description: You are tasked with processing a software description and its requirements to generate a class diagram
using PlantUML. The class diagram should respect the requested software architecture, define all necessary classes, and
accurately represent associations between them.

The requirements for the software we want you to design are in the SRS (Software Requirements Specification) here: {SRS}
The demanded Architecture is Microservices

Important guidelines for designing proper microservices architecture:

1. Functional Alignment & Responsibility Distribution

Focus: Ensure that each microservice maps to a bounded context and implements a focused set of functionalities. The union
of the functionalities of each microservice should be the entire set of functional requirements.

2. Coupling & Deployment Independence

Focus: Ensure that microservices are loosely coupled and independently deployable

3. Cohesion

Focus: Ensure high cohesion meaning that more than one microservice needs to be involved in the completion of each use
case.

4. Data Management

Focus: Ensure that each service is responsible for managing specific data elements without using shared databases.

5. Data Consistency

Focus: Ensure that operations to achieve eventual consistency of data states among different microservices are included.
6. Communication & Flow Control

Focus: Ensure that service coordination is done using choreography or orchestration mechanisms. API gateways and/or
messaging (pub-sub) services should be used to implement flow control.

7. Non-Functional Requirements

Focus: Ensure that the design satisfies all problem-specific non-functional requirements.

Generate a class diagram using PlantUML that defines all necessary classes and associations based on the described
architecture, requirements, and functionality. Ensure that:

The diagram reflects the separation of concerns based on the requested architecture.

Each class is properly defined with attributes and methods.

All associations (especially operation calls for service offerings, service dependencies) between the classes are included in
PlantUML and are clearly represented.

Create the appropriate packages to include the classes.

Classify each operation into one of the following groups (by commenting next to the operation in the PlantUML):
Functional requirement-business logic operation

Data management operation

Data consistency operation

Flow control operation

Additionally, calculate the following characteristics of the architecture:
General characteristics:
- SI: Counts that services do not carry persistent state across requests and divides with the total number of services. SI = (#
of stateless services) / [Total number of services|
- DOC (Data Ownership Count): Counts the services that manage a dedicated data store and divides with the total number of
services. DOC = (# of services that are linked to a dedicated data store) / |Total Number of services|
- SST (Service Support for Transactions): Counts the services that have at least one operation classified as "Data consistency
operation" and divides with the total number of services. SST(S) = (# of transaction-aware services) / [Total Amount of
services|.
Characteristics per service:

- SIC (Service Interface Count): Counts the interfaces of service S.

- AIS = Number of distinct consumers of service S

- ADS = Number of distinct services called by S
Characteristics per use case:

- SC: Set of services involved for the completion of one-use case. SC = {(Set of microservices involved per use case) MS
SET}

Display the characteristics described above, in a JSON object with the following format:
{JSON_METRIC_FORMAT}

Task Description: You are tasked with processing a software description and its requirements to generate a class diagram
using PlantUML. The class diagram should respect the requested software architecture, define all necessary classes, and
accurately represent associations between them.

The requirements for the software we want you to design described below: {FR}, {NFR}
The demanded Architecture is Microservices

Important guidelines for designing proper microservices architecture:

1. Functional Alignment & Responsibility Distribution

Focus: Ensure that each microservice maps to a bounded context and implements a focused set of functionalities. The union
of the functionalities of each microservice should be the entire set of functional requirements.

2. Coupling & Deployment Independence

Focus: Ensure that microservices are loosely coupled and independently deployable

3. Cohesion

Focus: Ensure high cohesion meaning that more than one microservice needs to be involved in the completion of each use
case.

4. Data Management

Focus: Ensure that each service is responsible for managing specific data elements without using shared databases.

5. Data Consistency

Focus: Ensure that operations to achieve eventual consistency of data states among different microservices are included.
6. Communication & Flow Control

Focus: Ensure that service coordination is done using choreography or orchestration mechanisms. API gateways and/or
messaging (pub-sub) services should be used to implement flow control.

7. Non-Functional Requirements

Focus: Ensure that the design satisfies all problem-specific non-functional requirements.

Generate a class diagram using PlantUML that defines all necessary classes and associations based on the described
architecture, requirements, and functionality. Ensure that:

The diagram reflects the separation of concerns based on the requested architecture.

Each class is properly defined with attributes and methods.

All associations (especially operation calls for service offerings, service dependencies) between the classes are included in
PlantUML and are clearly represented.

Create the appropriate packages to include the classes.

Classify each operation into one of the following groups (by commenting next to the operation in the PlantUML):
Functional requirement-business logic operation

Data management operation

Data consistency operation

Flow control operation

Additionally, calculate the following characteristics of the architecture:
General characteristics:
- SI: Counts that services do not carry persistent state across requests and divides with the total number of services. SI = (#
of stateless services) / [Total number of services|
- DOC (Data Ownership Count): Counts the services that manage a dedicated data store and divides with the total number of
services. DOC = (# of services that are linked to a dedicated data store) / |Total Number of services|
- SST (Service Support for Transactions): Counts the services that have at least one operation classified as "Data consistency
operation" and divides with the total number of services. SST(S) = (# of transaction-aware services) / |Total Amount of
services|.
Characteristics per service:

- SIC (Service Interface Count): Counts the interfaces of service S.

- AIS = Number of distinct consumers of service S

- ADS = Number of distinct services called by S
Characteristics per use case:

- SC: Set of services involved for the completion of one-use case. SC = {(Set of microservices involved per use case) MS
SET}

Display the characteristics described above, in a JSON object with the following format:
{JSON_METRIC_FORMAT}

The following is the JSON format of the metrics:

NSIH: "N’

NDOCH: HH’

NSST": Y”l’

"services": [

{

"service_name": "",
HSIC": "H’
HAIS(in)H: HH,
HADS(Out)H: H"’

"

"service_name": "",
HSIC": "H,
HAIS(in)": HH’
"ADS(Out)": H"’
}s
]

2
"use cases": [

"use case name": "",
HSCH: |l||7
}s
"use case name": "",
HSCH: HH,
}s
1,

3.3.6 LLM Selection

Based on the outcomes of earlier experiments, we decided to leave out models that had
already shown weak performance. Since the current task, designing a Microservices Architecture
for MyCharts Application, is more complex than the previous DCC application, it didn’t make
sense to include models that couldn’t handle a simpler case effectively.

For this more demanding task, we included a selection of commercially available online
models that are generally expected to deliver higher performance. It is important to note that, at
the time this research was conducted, models such as DeepSeek-R1, OpenAl’s models (e.g., o1,
03-min-high) and Claude Sonnet 3.7 had been released and were incorporated into our study.
Since then, additional models have become available, however, in the interest of maintaining a
clear scope, we chose to set a boundary for model selection. Further evaluation of newer models
is considered a valuable direction for future work.

Model Source Parameter Size | Quantization
llama3.3:1atest local 70.6 B Q4 0
deepseek-r1:70b | local 70.6 B Q4 0
mistral local 725 B Q4 0
gemma?2:27b local 272 B Q4 0
mixtral:8x22b local 141 B Q4 0
claudeSonnet3.7 | online N/A N/A
deepseek-rl online 671 B N/A
gemini-2.0 online N/A N/A
gptdo online N/A N/A
ol online N/A N/A
03-mini-high online N/A N/A
mistral-online online N/A N/A
grok3 online N/A N/A

3.3.7 RAG Material

In this experiment, we explored two different cases using two distinct RAG (Retrieval-
Augmented Generation) files. The first RAG file provides a more abstract and formal overview
of the Microservices Architectural paradigm, while the second adopts a more concise and
practical approach.

e RAGI1: Microservices Patterns by Chris Richardson, Chapter 2 [38]
e RAG?2: Microservices Design Patterns by Nishant Malhotra, Value Labs [39]

3.3.8 Scenarios Performed

To understand how different factors, like FR/NFR versus SRS input, model choice and
the use of RAG, affect the quality of Al-generated class diagrams, we ran a series of
experiments. We designed a range of scenarios to help isolate and analyze the impact of each
variable.

While staying at the scope of Microservices Architecture we varied a combination of parameters
resulting in 46 scenarios.

e Large Language Models (LLMs): We used different models to evaluate how
model selection impacts the quality of generated architecture.

e RAG vs No-RAG: We tested scenarios with and without Retrieval-Augmented
Generation (RAG) to examine how access to supplementary information affects
the accuracy and structure of the generated diagrams.

¢ Functional and Non-Functional Requirements vs SRS: We experimented with
both FR-NFR formatted requirements and full Software Requirements
Specifications (SRS) to determine which type of input yields better results.

—

p.

total_number

scenariosSet_1

scenariosSet_2

{1

P

~ [number_ul_scenarinx] { [ﬁ

L—

[Architecture

)] { (microservices)

P,

| scenarios 4

] { [RAC Details]

—

(e) { (Gomante)

r | RAG Decision

—r—
(<)

r | lama3.3:latest

deepseek-r:70b

gemmaz2:27b
mixtral:8x22b

claudeSonnet3s.7

—J
A
=
p—

deepseek-n

R

mistral-online

~ [number_nl_scenarins] { [25

p—

[Architecture

)] { ((microservices)

~ | scenarios <

R
B
©w

] { [RAG Details]

[agent / embedding modeE] { [olla ma /nom ic-embcd-text)

e

~ | RAG Decision {

r | lama3.3:latest

deepseek-r:70b

gemmaz2:27b
mixtral:8x22b

claudeSonnet3.7

- [rnodel:

P
A
~
p—

deepseek-n

mistral-online

r

Figure 3.7: Scenarios graph - MyCharts

(e) { (—=)

(agent / embedding model] { [clla ma /nom ic-embcd-text)

3.3.9 Experiment Pipeline

In this section, we describe the experiment’s pipeline, with a focus on the steps carried
out after collecting the generated PlantUML class diagrams that represent the software
architecture of the MyCharts application, designed following the microservices paradigm. The
diagram in Figure 3.8 illustrates the overall workflow of the experiment.

Prompt
Evaluation Results Analysis
SRS / FR-NFR
- i Evaluation by Human Experts)

Scenarios Collection Gathering Responses Exploring the possible correlation between

Scenarios Execution _) Human Evaluation - Metrics
LLMs Manual Metric CalculatlonJ
RAG Decision
RAG Material Metric Hallucination Analysis Metric Performance Analysis

Figure 3.8: MyCharts Experiment Pipeline

Below we describe each step of the experiment pipeline:

e Scenarios Collection / Scenarios Execution: In this step, all scenarios outlined in the
previous section are compiled into an Excel spreadsheet. Custom scripts are then
executed to automate prompt delivery to all LLMs and to organize their responses.

e Gathering Responses: All generated outputs are uploaded to a custom Web Ul ,
developed specifically for human evaluation of the class diagrams. This platform
provides real-time rendering of PlantUML diagrams and stores evaluator feedback in a
dedicated database.

e Evaluation by Human Experts: Each team member evaluates the generated class
diagrams individually, assigning a score from 0 to 5 across seven predefined evaluation
criteria.

e Evaluation Results Analysis: Human evaluation data is aggregated and analysed to
extract meaningful insights. Graphical visualizations are used to compare performance
across different LLMs, RAG configurations and supporting materials.

e Manual Metric Calculation: Selected architectural metrics are manually extracted from
the generated class diagrams. Both the manually calculated and LLM-generated metrics
are stored.

e Metric Performance Analysis: Here, we assess the overall quality of each class diagram
based on how well its calculated metric performance.

e Metric Hallucination Analysis: We compare the manually computed metrics with those
automatically provided by the LLMs, assessing the extent to which the models accurately
understand and report on architectural metrics.

e Exploring possible Correlations: We investigate whether better metric performance
corresponds with higher human evaluation scores per principle, offering insight into the
potential for objective, metric-driven evaluation of software architectures.

3.3.10 Reference Architecture

In this section, we present a reference class diagram that outlines a proposed architecture
for MyCharts application. In software engineering, particularly in the design of complex
architectures, there is rarely a single “correct” solution. With this understanding, our goal was to
provide a generally sound and well-structured example. This reference diagram was not used as a
benchmark to evaluate the generated diagrams based on similarity. Instead, it is included to
illustrate the type of architectural output we considered a strong response from the language
models in this experiment.

Figure 3.9: MyCharts Reference Architecture

3.4 MyCharts 2-Prompt Experiment

While the primary focus of this research was the MyCharts experiment detailed earlier,
we subsequently conducted a smaller exploratory test to evaluate whether issuing a second,
structured prompt to the LLM could enhance the quality of the generated class diagrams. This
conversational approach, which mimics back-and-forth interaction, presents several research
limitations, being its reliant on the specific context of the prior response, which makes
generalization technically challenging. Despite these constraints, the method holds significant
research value, as it mirrors a more realistic scenario in which a software engineer iteratively
prompts an LLM to refine architectural outputs. Although limited in scope, this preliminary
experiment highlights the potential of this approach and lays the groundwork for future large-
scale studies.

3.4.1 Parameters

For this small-scale experiment, we chose to repeat the MyCharts experiment using only
those LLMs that had previously produced responses of moderate to good quality. The setup
remained largely the same: we used the identical prompt from the original MyCharts experiment
and relied solely on the problem description provided through the Software Requirements
Specification (SRS) document. Based on these selection criteria, the following LLMs were
included in this follow-up study:

Model Source Parameter Size | Quantization
claudeSonnet3.7 | online N/A N/A
deepseek-rl online 671 B N/A
gptdo online N/A N/A
ol online N/A N/A
mistral-online online N/A N/A

3.4.2 Second Prompt

The strategy behind the second prompt was to introduce a degree of standardization in
guiding the LLM toward improving its class diagram design. This guidance was delivered in two
main ways. First, we manually computed the metrics for the initial class diagram generated by

the LLM and provided these results as part of the second prompt, explicitly stating that they
reflect the first response. Second, we included the human evaluation scores based on the seven
criteria outlined in the previous experiment. Finally, we offered standardized guidance
encouraging the LLM to regenerate the class diagram with the goal of improving both the
evaluation metrics and its performance on the human-assessed criteria. As a result, the follow-up
prompt consisted of the following sections:

e Task Description

e Metrics regarding class diagram from first response

¢ Human evaluation based on first response

e Standardized Guidance

Based on this strategy, the second prompt was formulated as follows:

Try regenerating the microservices architecture in a PlantUML class diagram with the previous requirements.
Your current metrics are the following:

{Metrics JSON}

Your current human evaluation for this class diagram is the following:
Functional Alignment & Responsibility Distribution: X

Coupling & Deployment Independence: X

Cohesion: X

Data Management: X

Data Consistency: X

Communication & Flow Control: X

Non-Functional Requirements: X

Try regenerating a better microservices architecture for the previous requirements achieving a higher human
evaluation and better metrics. While re-designing the architecture keep in mind that SI, DOC and SST metrics
should be as close to 1 as possible, SC should contain many services per use case and SIC, AIS, ADS metrics
should be as low as possible.

3.4.3

Experiment Pipeline

The workflow for this small-scale experiment is illustrated in the diagram in Figure 3.10,

providing a visual overview of the sequential steps and components involved in the process.

Prompt 1

(MyCharts)

SRS

LLMs

Manual Metric Calculation

Human Evaluation
for Response 1

Scenarios Collection
Scenarios Execution

Gathering Responses] Prompt 2 Gathering Responses 2 Human Evaluation
for Response 2

Improvement Analysis

Figure 3.10: 2-Prompt Experiment Pipeline

The pipeline consists of the following procedures:

Scenarios Collection: Gathering all relevant scenarios intended for execution, relying on
the selected LLMs used in this experiment.

Manual Metric Calculation: Manually computing the metrics for each generated class
diagram.

Human Evaluation from Response 1: Assessing the initial LLM responses using the
seven evaluation criteria introduced in the previous experiment.

Prompt 2: Issuing the second, standardized prompt to the LLMs, following the approach
described earlier, to guide the regeneration of the class diagram.

Human Evaluation for Response 2: Evaluating the revised class diagrams from the
second prompt using the same seven human evaluation criteria.

Improvement Analysis: Analysing whether the second set of responses demonstrated
improvement over the first in terms of human-assessed evaluation criteria.

4. Results

4.1 Web Based Evaluation Platform

We enhanced our evaluation methodology for DCC and MyCharts experiments by
utilizing the framework initially developed by Tsilimigkounakis [28]. This web application
presents generated diagrams through an intuitive, well-structured interface while providing
functionality for human evaluation. By expanding this web-based application to accommodate
multiple experiments, we established an effective platform for assessing numerous class
diagrams and automatically generating visualization graphs across experimental datasets.

In Figure 4.1: Web Based Evaluation Platform - SAAI, Figure 4.2: Web Based
Evaluation Platform - SAAI we showcase the Web Based Evaluation Platform that allowed us to
simplify the evaluation process store and organize our evaluation results while also generating
useful graph visualizations to support analysis and interpretation.

@j LLM-PlantUML

Experiment DCC Experiment MyCharls

E Logout

Filters

D

PROMPT

EMBEDDINGS-AGENT

Results

Visualizations

FRNFR SRS

DCC Experiment Evaluations

ARCHITECTURE FR

MODEL RAG

EMBEDDINGS-MODEL

Evaluate PlantUML

4

D

1

Family
D

csil

Architecture FR Prompt

EMBEDDINGS-CHUNKING.»

NFR
RAGDECISION

EMBEDDINGS-CHUNKSIZE~»

Model Source.

Client-Server rios/FRIAr txt Rinfr1.bd

PNG SVG

c s mum @

llama3.1:latest code No

Figure 4.1: Web Based Evaluation Platform - SAAI

Experiment DCC Experiment MyCharis E Logout

Evaluate Visualizations

FR-NFR SRS

DCC Experiment Visualizations

Performance Analysis Per
Parameter Based On User Score Distribution Top Diagrams By Users
Evaluations

Model Performance Analysis

Qozserlinait Based On User Evaluations

Model Performance by Principle

comeciness_relationships
consistency_with_requirements

conesion_coupling

Principle Label

adherence_to_architecture

AVERAGE

comeciness_relafionships
consistency_with_requirements

cohesion_coupling

Principle Label

adherence_to_architecture

AVERAGE

Model Performance by Principle with RAG

O
Figure 4.2: Web Based Evaluation Platform - SAAI

4.2 DCC Experiment

4.2.1 Typical Cases

In this section, we present a selection of UML class diagrams generated by the LLMs for
the DCC experiment. As anticipated, the quality of the diagrams varied significantly, from
incomplete and unstructured representations with little relevance to the DCC application (weak
diagrams), to well-structured and highly accurate class diagrams that performed exceptionally
across all four evaluation criteria (strong diagrams).

Strong Diagrams

Client-Server | gemini-1.5 | SRS _v1 | NoRAG

The diagram in Figure 4.3: DCC Experiment (ID = 67) satisfies nearly all the application's
software requirements and adheres to the Client-Server architectural pattern. It clearly defines
separate client and server packages, each containing the appropriate classes with sufficient
attributes. On the client side, the diagram effectively integrates both the user interface and
application logic, while the server side is dedicated to database management.

(© coordinate
© CoordinateGroup
| o x: double
© Userinterface ‘ o id: int o y: double
= ; F o timestamp: Date o r: double
|= coordinateGroupController: CoordinateGroupController o label: String o theta: double

o initialize() o coordinates: Coordinate
o handleCreateGroup()

@ Coordinate(x: double, y: double)

@ CoordinateGroup(label: String, coordinates: Coordinate) @ Coordinate(r: double, theta: double)
e arauel o getld(}: int o getX(): double
handleViewGroupB Label(] » getTimestamp(): Date & getY(): double
3 handleDeleteGri p y{; o getLabel(): String = getR(): double
° ebeletetroup e getCoordinates(): Coordinate e getTheta(): double
I o setLabel(label: String): void e convertToPolar(): void

| e convertToCartesian(): void

v

@ CoordinateGroupController
o coordinateGroups: List<CoordinateGroup>

o addCoordinateGroup(group: CoordinateGroup): void

e modifyCoordinateGroupi{group: CoordinateGroup): void

e viewAllCoordinateGroups(): List<CoordinateGroup>

e viewCoordinateGroup(label: String): List=CoordinateGroup>
o deleteCoordinateGroup(group: CoordinateGroup): void

Server'

Y
© Database

o connection: Connection

o connect()

o disconnect()

o saveCoordinateGroup{group: CoordinateGroup)

e updateCoordinateGroup(group: CoordinateGroup)

o getAllCoordinateGroups(): List<CoordinateGroup=>

o getCoordinateGroup(label: String): List<CoordinateGroup=>
o deleteCoordinateGroup(group: CoordinateGroup)

Figure 4.3: DCC Experiment (ID = 67)

Client-Server | gpt4o | SRS v2 | NoRAG

Similarly, the class diagram in Figure 4.4 accurately defines two packages (client and server)
each containing the appropriate classes for their respective responsibilities. The client package
includes classes that handle CRUD operations, coordinate conversion and the graphical user
interface, while the server package encapsulates the domain model and manages database
operations. Although the diagram lacks some detail in the GUI implementation, it nonetheless
presents a solid Client-Server design for the DCC application, satisfying nearly all software
requirements.

Client\

(© CcoordinateManager

o createCoordinateGroup(label: String, x: Double, y: Double): void
momfyComamazeGmupnd |nt \abel String, x: Double, y: Double): void
© viewC
cvlewCuurdma!eGmupByLabel(\abel String): CoordinateGroup ~—
o deleteCoordinateGroup(id: int’ —

\ —
lu

\ Server\
—a
X4 (© coordinateGroup (© patabase
CoordinateConverter GuI :
© © oL i saveCoordinateGroup(group: CoorainateGroup): void
- - 3 void
o toPolar(x: Double, y: Double): PolarCoordinate o displayCoordinat List<Coordinat): void 5 timestamp: Date
© toCartesian(r: Double, theta: Double): CartesianCoordinat o displ String): void 5 cartesianCoordinate: CartesianCoordinate K t['f‘ec"""‘"“a‘es"’“p“d s ‘"’"’

o polarCoordinate: PolarCoordinate

o retrieveCoor dmaxeroupByLabemabel String): CoordinateGroug

(©cartesianCoordinate. | (€) PolarCoordinate:

x: Double or: Double
o y: Double > theta: Double

Figure 4.4: DCC Experiment (ID = 79)

Three-Tier | claudeSonnet3.5 | SRS vl | NoRAG

The diagram in Figure 4.5 correctly defines three packages: Presentation Layer, Business
Layer and Data Layer. Each containing the appropriate classes for its designated
responsibilities. The Presentation Layer manages user interface operations, while the Business
Layer handles both CRUD functionality and core business logic, including communication
with the database. The Data Layer contains the database and is responsible for ensuring data
persistence. Collectively, these three layers implement the Three-Tier architecture effectively,
addressing nearly all of the application’s software requirements.

Presentation Layer)

© CoordinateConverterGUI

o coordinateController: CoordinateController

o initializeGUI()
o displayCoordinateGroups(List<CoordinateGroup=>)

o showError(String message)
o refreshView()
o getinputValues(): Map<String, Double>
e getSelectedCoordinateType(): String
o getlabel(): String
|

Business Layer,

¥
© CoordinateController

o coordinateService: CoordinateService

e createCoordinateGroup(String label, double x, double y)

e createPolarCoordinateGroup(String label, double r, double theta)
e updateCoordinateGroup(int id, String label, double x, double y)
o deleteCoordinateGroup(int id)

o getAliCoordinateGroups(): List<CoordinateGroup>

o findByLabel(String label): List<CoordinateGroup=>
m validatelnput(double... values): boolean

l Data Layer)
@ CoordinateService |

o coordinateRepository: CoordinateRepository

© MySQLCoordinateRepository

® saveCoordinateGroup(CoordinateGroup group)

e updateCoordinateGroup(CoordinateGroup group)

e deleteCoordinateGroup(int id)

o getAllCoordinateGroups(): List<CoordinateGroup>

o findByLabel(String label): List<CoordinateGroup>

o convertCartesianToPolar(double x, double y): double[]

e convertPolarToCartesian(double r, double theta): double(]

© CoordinateGroup
oid: int
o label: String
o timestamp: LocalDateTime

© CoordinateConverter
o x: double

o y: double

o r: double

o theta: double

o getters()

o setters()

@ toString(): String

e cartesianToPolar{double x, double y): double|

e polarToCartesian{double r, double theta): double]

o connection: Connection

e save(CoordinateGroup group): void

o update(CoordinateGroup group): void

o delete(int id): void

o findAll(): List<CoordinateGroup>

o findByLabel(String label): List<CoordinateGroup>
= getConnection(): Connection

I

@ coordinateRepository

e update{CoordinateGroup group): void
o delete(int id): void
e findAll(): List<CoordinateGroup>

e save(CoordinateGroup group): void
o findByLabel(String label): List<CoordinateGroup>

Figure 4.5: DCC Experiment (ID = 89)

Three-Tier | 01 | SRS vl | NoRAG

Likewise, the diagram in Figure 4.6 shows a clear structure with three packages: Presentation,
Business and Data. The Presentation Layer takes care of the user interface. The Business
Layer handles CRUD operations, business logic and connects to the database. The Data Layer
stores the database and manages data storage. Overall, this design follows the Three-Tier
architecture and meets most of the software requirements for the application.

presentationy

© occoul

o coordinateService : CoordinateService

o createCoordinateGroup(type: String, x: double, y: double, label: String) : veid

o modify CoordinateGroupl(id: int, type: String, x: double, y: double, label: String) : void
o deleteCoordinateGroup(id: int) : void

@ viewAllCoordinateGroups() : void

o viewCoordinateGroupByLabel(label: String) : void

uses

© CoordinateGroup

oid:int
o timestamp : Date
o label : String

o x : double
CoordinateServi oy : double
@ ocordinateService b s
o dao: Coord‘lnateG_roupDAO o theta : double
o converter : CoordinateConverter o getid() : int
o createCoordinateGroup(type: String, x: double, y: double, label: String) : void o getTimestamp() : Date
e modifyCoordinateGroup(id: int, type: String, x: double, y: double, label: String) : void @ getLabel() : String
o deleteCoordinateGrouplid: int) : void o getX() : double
o getAllCoordinateGroups() : List<CoordinateGroup> o getY() : double
| @ getCoordinateGroupsByLabel(label: String) : List<CoordinateGroup=> @ getR() : double

@ getTheta() : double
o setLabel(label: String) : void
o setX(x: double) : void \\
o setY(y: double) : void
o setR(r: double) : void
@ setTheta(theta: double) : void

uses call anages
=Y
@ CoordinateGroupDAQO
© CoordinateConverter o dbConnection : DBConnection
« create(group: CoordinateGroup) : void
o cartesianToPolar(x: double, y: double) : (double, double) @ update(group: CoordinateGroup) : void
@ polarToCartesian(r: double, theta: double) : (double, double) o delete(id: int) : void

o findAlIK) : List<CoordinateGroup>
o findByLabel(label: String) : List<CoordinateGroup>

iuses

(© pBConnection

|'e getConnection() : Connection
o close() : void

Figure 4.6: DCC Experiment (ID = 74)

MVC | deepseek-r1:70b | SRS v2 | NoRAG

The class diagram in Figure 4.7 satisfies almost all software requirements and follows the
MVC architecture. It includes four packages: View, Controller, Model and DAO. The View
package contains the classes for the user interface, while the Controller package includes a
class that handles CRUD operations. The Model package defines the coordinate group model
and includes the business logic for coordinate conversion. The DAO package manages data
access. The diagram also shows correct relationships between the classes.

view \
© CoordinateGroupView
o JPanel panel
© MainView o JTable table
o JTextField labelField
o JFrame frame o JButton addButton
o CoordinateController controller o JButton updateButton
T) o JButton deleteButton
g mlatlir;\;:lzee\?;(controller, CoordinateController) o CoordinateController controller
e CoordinateGroupView(controller: CoordinateController)
o initialize()
o addListeners()

Uses ses
controller)

kY ¥
© CoordinateController

o CoordinateGroupDAO dao

o MainView view

o CoordinateGroup currentGroup

e void addCoordinateGroup(label: String, r: Double, theta: Double)

o void updateCoordinateGroup(uniquelD: Integer, label: String, r: Double, theta: Double)
o void deleteCoordinateGroup(uniquelD: Integer)

e List<CoordinateGroup> getAllCoordinateGroups()

ses Uses Uses
model

¥

© CoordinateGroup

o Integer uniquelD
o Date timestamp
o String label

o Double r

o Double theta dao

o Double x Y
o Double y ‘ @ coordinateGroupDAO

o getUniquelD() | © CoordinateConverter
o setUniquelD(uniquelD: Integer)

o getTimestamp()

o setTimestamp(timestamp: Date)

o void create(group: CoordinateGroup): void
o CoordinateGroup read(uniquelD: Integer): CoordinateGroup
o void update(group: CoordinateGroup): void

o fromPolarToCartesian(r: Double, theta: Double): CoordinateGroup
o fromCartesianToPolar(x: Double, y: Double): CoordinateGroup

o getLabel() o void delete(uniguelD: Integer): void
o setLabel(label: String) o List<CoordinateGroup> findAll(): List<CoordinateGroup=>
@ getR()

@ setR(r: Double)
o getTheta() I
o setTheta(theta: Double) .
° getx() I
o setX(x: Double) !
® gety() |
o setY(y: Double) |

1

1

1
1 [Implements
|

| © CoordinateGroupDAOMySQL

o Connection connection

e CoordinateGroupDAOMySQL()

@ void create(group: CoordinateGroup)

e CoordinateGroup read(uniquelD: Integer)
@ void update(group: CoordinateGroup)

e void delete(uniquelD: Integer)

o List<CoordinateGroup> findAll()

Figure 4.7: DCC Experiment (ID = 107)

MVC [0l [SRS vl | NoRAG

Like the previous example, the diagram in Figure 4.8 aligns well with the MVC architecture
and its principles. It includes clearly defined packages and classes, each with a very good level

of detail.

controller

© Hanconwoter
o view : MainView
o dao : ICoordinateGroupDAQ
o converter : CoordinateConverter
© MainC MainView, dao : IC converter mnrde!CnnV!ﬂQﬂ
» createCoordinateGroup(type : String, x : double, y dDub‘e.r double, theta : double, abel :

~ o viewAllCoordinateGroupsi) : veid
@ viewCoordinateGroupByLabel(label : String) : void

-

String) :
ik g String, x double, y - doubls, double, theta : doubie, iabel - String) : void

_cénerter /4

~yiew ™ gontrofier
T

(@ coordinateconverter

(© coordinateGroup

cid: int
© timestamp : java.time.LocalDateTime
c label - String

x: double
oy anubla
or:

@ icoordinateGroupDAO = ihata: double

\ View
© Mainview

2 controlier : MainController

© toPalar{x : double, y : double) : double[]
s toCartesianir : double, theta : double) : double(]

o get
. gemmmmpn java time LocalDateTime
@ getLabel() : Strin

= setLabel(label : String} : void

 getx() : doubl

= setX(x : double} : void

« getYD : double

= soti{y s dothilivod

nupﬂale(gmuu cuwnmaxeﬁmup: e
e i - int) : voi

elmdﬂywhuﬂabel smng] java.util.List<CoordinateGroup>

o findall() : java.util List<CoordinateGroup>

226R0 - double) : vid
 getTheta() : double
= setThetaitheta : double) : void

= CoordinateGroup(label - String, x : double, y : double, r : double, theta : double)
int

(© coordinateGroupDAOImpI

© dbConnection ; DatabaseConnection
. Cﬂamma[eruwAG\mwﬂbcnnnrcunn DatabaseConnection)
= create{group : CoordinateGroup)

© wpdatelgroup ; CoordinateGroup) : v

= delete(id - int)

« findByLabel(la DE
o findAlK) - java.ul

Siring) : java.utilList<CoordinateGroup=
ist<CoordinateGroup>

ses

(©) pawbasecomnection

o connectior

java.sql.Connection

o getConnection) : java. sql.Connection
« closeCannection() : void

© MainView()
& setController(controller : MainCantroller) : void
. java. util List<Coordi void
: java.util List < Vo
oshanreateGruuprurmt) vmn

* void

e

Figure 4.8: DCC Experiment (ID = 75)

Weak Diagrams

Client-Server | command-r | SRS vl | RAG | ollama | nomic-embed-text | semantic

The class diagram in Figure 4.9 is unrelated to the DCC application and lacks any meaningful
structure. It fails to define the core business operations and does not include a model for
representing a coordinate group, making it unsuitable for the application's requirements.

Connection Package
© perver © Connection

o database: Database

o socket: Socket

@ handleConnectionRequest(client)

o handleViewAllGroups(client)

o handleViewGroupByLabel(client, label)
e handleAddGroup(client, group)

o handleDeleteGroup(client, group)

1
handles connections, views, adds, deletes \accesses

@ Client

o connection: Connection
Elernect(} © Database
o disconnect() 9

o viewAllGroups() ———

e connect(serverAddress)
o disconnect()

o sendData(data)

o receiveData()

o viewGroupByLabel(label)
e addGroup(group)
o deleteGroup(group)

uses

© Connection

Figure 4.9: DCC Experiment (ID = 14)

Three-Tier | mixtral:8x7b | SRS vl | RAG | ollama | nomic-embed-text | semantic

The class diagram in Figure 4.10 does not conform to the principles of the Three-Tier
architecture, as it lacks the essential separation into three distinct layers or packages:
Presentation, Business and Data. Furthermore, the diagram fails to implement core business
operations outlined in the software requirements, making it an incomplete and ineffective
representation of the intended system design.

[Database\

@ CoordinateGroupTable
o coordinateGroups: List<CoordinateGroup> 1
| *

e getCoordinateGroupByLabel(label: String): List<CoordinateGroup>
o deleteCoordinateGroup(coordinateGroup: CoordinateGroup)

© MySQLDatabase

o connection: Connection

Userinterface\
© CoordinateGroup © MainWindow
o id: Int o coordinateGroupTable: CoordinateGroupTable
o timestamp: Date o database: MySQLDatabase
o label: String o o initialize()
o polarCoordinates: String r o typelabel(label: String)

o cartesianCoordinates: String o findByLabel()

i N . o viewCoordinateGroups(coordinateGroups: List<CoordinateGroup>)
o getPolarCoordinates(): St"_"g o selectCoordinateGroup(coordinateGroup: CoordinateGroup)
o getCartesianCoordinates(): String o deleteCoordinateGroup()

Figure 4.10: DCC Experiment (ID = 22)

MVC | command-r | SRS vl | NoORAG

While the diagram in Figure 4.11 includes a few relevant classes, such as CoordinateGroup
and CoordinateManager, which partially reflect the software requirements, it fails entirely to
follow any architectural pattern. Moreover, it does not utilize packages to organize the
system’s components, resulting in a disorganized and incoherent structure. Overall, the
diagram represents a poorly generated output that lacks both structure and alignment with the
application's design goals.

©PQIarPcinl ©CartesianP0|nt @ f=8 et e
r: double x: double o viewCoordinateGroups()
theta: double y: double e addCoordinateGroup(label: string, polarCoordinates: List<PolarPoint>, cartesianCoordinates: List<CartesianPoint>)

o deleteCoordinateGroup(id: int)
7 TV
|

i [} 1
WView All Add Delete
v L
CoordinateGi 2 ¥k
L @ bl Sttty @ CoordinateManager
id: integer =
timestamp: date o getAliCoordinateGroups(): List<CoordinateGroup>
label: string e getCoordinateGroupsByLabel(label: string): List<CoordinateGroup>
polarCoordinates: List<PolarPoint> o addCoordinateGroup(label: string, polarCoordinates: List<PolarPoint>, cartesianCoordinates: List<CartesianPoint>)
cartesianCoordinates: List<CartesianPoint> o deleteCoordinateGroup(id: int)

- 7 Y <
/ \ \

F ‘ ' v

/Fetch All [Fetch By Label IStore /'Delete

| '

’

Y 4 v
| (©) DatabaseManager

o fetchAllCoordinateGroups(): List<CoordinateGroup>
o fetchCoordinateGroupsByLabel(label: string): List<CoordinateGroup>
o storeCoordinateGroup(group: CoordinateGroup)

| @ deleteCoordinateGroup(id: int)

Figure 4.11: DCC Experiment (ID = 17)

4.2.2 Evaluation Results

In this section, we present a series of charts based on evaluation data, highlighting key
insights from the human evaluations of the class diagrams. All visualizations were created using
the Highcharts library.

LLM Performance

The heatmap in Figure 4.12 illustrates the average evaluation scores of class diagrams
generated by each LLM. It is important to note that the online models generated diagrams
without Retrieval-Augmented Generation (RAG) and, as a result, produced significantly fewer
diagrams compared to the local models.

Despite the smaller sample size, the online models appear to outperform their local
counterparts. In particular, ClaudeSonnet3.5, deepseek-rl (online version), ol and ol-mini
consistently achieved high scores across all evaluation criteria, positioning them as top
performers.

That said, local models should not be dismissed. While some, such as llama3.1 and
phi3:medium-128k, underperformed, others like deepseek-r1:70b and gemma2:27b delivered
strong results with consistently high scores across all evaluation principles. These findings

suggest that certain local models remain highly competitive and are viable options for supporting
software architecture generation tasks.

Model Performance by Principle

correctness_relationships
consistency_with_requirements

cohesion_coupling

Principle Label

adherence_to_architecture

AVERAGE

Figure 4.12: DCC Experiment - Model Performance

To explore the impact of different experimental parameters on the quality of the
generated class diagrams, we begin by examining the role of Retrieval-Augmented Generation
(RAGQG). The charts in Figure 4.13, Figure 4.14, Figure 4.15 display the average evaluation scores
for each LLM, distinguishing between diagrams generated with RAG and those generated
without it. The results reveal notable trends and offer promising insights, highlighting
opportunities for future enhancements and optimizations in prompt design and model
configuration.

These charts indicate that while some models such as deepseek-r1:70b and command-r,
appear to benefit from the use of RAG, others show a decline in performance when RAG is
applied. This unexpected result may be due to the models becoming overwhelmed or confused
by the additional context introduced through RAG, especially when combined with the lengthy
input from the Software Requirements Specification (SRS) document. Interestingly, in previous
experiments where a simpler FR-NFR list was used instead of the full SRS, the same models
demonstrated improved performance with RAG. This suggests that the effectiveness of RAG
may depend heavily on the structure and complexity of the input context.

Principle Label

Principle Label

Average Score

Model Performance by Principle without RAG

correctness_relationships

consistency_with_requirements
cohesion_coupling
adherence_to_architecture
AVERAGE
&
&
0 2 4 (5]
Highcharts.com
Figure 4.13: DCC Experiment - Model Performance No RAG
Model Performance by Principle with RAG =
correctness_relationships 1.9 1.1 1.6 0.2
consistency_with_requirements 1.6 1.1 21 08
cohesion_coupling 23 1.3 25 0.5
adherence_to_architecture 24 08 24 02
AVERAGE 2.0 1.1 22 04
command-r deepseek-11:70b gemmaz2:27b llama3.1:latest mixtral:8x7b phi3:medium-128k
Model
]
0 2 4 6
Highcharts.com
Figure 4.14: DCC Experiment - Model Performance with RAG
Average Model Performance: RAG vs No-RAG =
NoRAG @ RAG
5
4.19
4 3.85
3.52
3.19
3
233
204 215
2 1.75
1.52
127
1.06
1
0.35
0 | .
command-r deepseek-r1:70b gemmaz2:27b llama3_1-latest mixiral 8x7b phi3:medium-128k
Model
Highcharts.com

Figure 4.15: DCC Experiment - NoORAG vs RAG

Performance per Software Requirements Specification Document

To assess whether LLMs benefit from a detailed Software Requirements Specification
(SRS) document compared to a more concise version, the diagram in Figure 4.16 compares the
average performance scores across all models for each evaluation principle. The results suggest

that the overall performance of the LLMs remains relatively consistent regardless of the length or
depth of the SRS.

Average Score per Principle by SRS versions used based on Users' Evaluations

Average Score

adherence_to_architecture cohesion_coupling consistency_with_requirements. correctness_relationships
Principle Label

®srst @ sis2

Highcharts.com

Figure 4.16: DCC Experiment - SRSv1 vs SRSv2

LLM Performance SRS vs FR-NFR

To investigate whether LLMs benefit more from detailed Software Requirements
Specification (SRS) documents compared to simpler FR-NFR lists for describing a software
application, this section presents a comparative analysis of their respective impacts on model
performance without RAG, since the RAG average in the DCC experiment with FR-NFR
includes multiple RAG methods that were not re-run in the SRS experiment. Figure 4.18 and
Figure 4.17 display the average performance scores of the models using FR-NFR lists and SRS
documents without RAG, respectively. Based on these results, we constructed the clustered bar
chart below to provide a clear visual comparison of the two input formats.

Model Performance by Principle without RAG

correciness_relationships
consistency_with_requirements

cohesion_coupling

Principle Label

adherence_to_architecture

AVERAGE

Figure 4.17: DCC Experiment - Model Performance SRS

Model Performance by Principle without RAG

cormectness_relationships
consistency_with_reguirements

cohesion_coupling

Principle Label

adherence_to_architecture

AVERAGE

Highharts.com

Figure 4.18: DCC Experiment - Model Performance - FR-NFR

The results reveal considerable variation, highlighting that not all LLMs benefit from
more detailed software descriptions provided by SRS documents. Larger models with more
parameters such as Claude Sonnet 3.5, Gemini-1.5, GPT-40, GPT-40 SAV and ol tend to
perform better when using SRS input, generating class diagrams that receive higher average
scores. In contrast, smaller local models like llama3.1 and mixtral:8x7b appear to struggle with
the increased input length and complexity, performing significantly worse when given SRS
documents compared to concise FR-NFR lists.

Average Score per LLM without RAG - FR/NFR vs SRS

4.5

4

3.5

2.5

1.5

0.5 I I
0

° (8] N
'b' Q N g ‘?‘ ‘b') >
& @@0 A & Q;»"'” g o ,f’+ .o\”\ &
o g & Q N\ $ > O
2 06\ 6Q,Q’ ¢0® ¢0®((\ & (0\+ O(b,(o (QQ)G\
6@ K\C’ 2

w

N

_

mFR-NFR ® SRS

Figure 4.19: DCC Experiment - FR/NFR vs SRS

Performance per Architecture

Finally, we examine whether the choice of requested architecture influences the average
scores of the generated class diagrams. The chart in Figure 4.20: DCC Experiment - Performance
per Architecture displays the average scores grouped by architectural pattern.

The results in Figure 4.20 show that diagrams generated for the Client-Server architecture

received generally the lowest average scores. In contrast, Three-Tier and Model-View-Controller
(MVC) architectures performed more closely, with Three-Tier slightly outperforming MVC.

Average Score per Principle by Architecture based on Users' Evaluations

Average Score

adherence_to_architecture cohesion_coupling consistency_with_requirements correctness_relationships

Principle Label

® Client-Server @ Model-View-Controller @ Three-Tier

Highcharts.com

Figure 4.20: DCC Experiment - Performance per Architecture

4.2.3 Results Discussion

The analysis of our results reveals several noteworthy patterns regarding the factors that
influence how well LLMs generate class diagrams, in relation to the experiment context and
architectural patterns used. While human evaluation scores are subjective, the overall trends
align well with the evaluators' qualitative impressions. A larger-scale expert review would
further validate these findings, but even with the current data, a few clear takeaways emerge.

o Larger online models generally performed better than smaller local ones, producing
more complete and well-structured diagrams across the board. This was expected, given
their higher capacity and training scale.

e The use of RAG led to mixed outcomes when paired with the longer input from the full
Software Requirements Specification (SRS). Some models clearly benefited from the
additional context, while others seemed to struggle, possibly due to input overload or
difficulty in focusing on the relevant parts.

e When comparing detailed versus concise versions of the SRS, model performance
remained relatively consistent, suggesting that more verbose descriptions don't
necessarily improve diagram quality.

Performance comparison between SRS documents and FR-NFR lists. Larger models
tended to handle the full SRS documents better and generated higher-quality diagrams,
while smaller models often performed worse with the longer input and showed better
results when working with the more focused FR-NFR lists.

The requested software architecture also played a role in performance. Diagrams
generated for the Client-Server architecture consistently received lower scores, indicating
that this pattern may be more challenging for LLMs to interpret and model correctly. In
contrast, the Three-Tier and MVC architectures were handled more effectively, with
Three-Tier slightly outperforming MVC.

4.3 MyCharts Experiment

4.3.1 Typical Cases

In this section, we present a selection of UML class diagrams generated by the LLMs for
the MyCharts experiment. As anticipated, the quality of the diagrams varied significantly, from
incomplete and unstructured representations with little relevance to the MyCharts application
(weak diagrams), to well-structured and highly accurate class diagrams that performed
exceptionally across all seven evaluation criteria (strong diagrams).

Strong Diagrams

Microservices | claudeSonnet3.7 | fr | nfr | NoORAG

The diagram in Figure 4.21 illustrates a well-structured Microservices architecture for the
MyCharts application. Responsibilities are logically distributed across the microservices and
collectively satisfy all the application's requirements. The architecture adheres to design
principles, including low coupling and high cohesion, because each microservice has a degree
of independence and can be deployed atomically, yet several services collaborate to complete
end-to-end use cases. Each microservice manages its own dedicated database or repository,
supporting the principle of decentralized data management and includes operations for
eventual consistency where necessary. Communication across services adheres to standard
Microservices patterns, utilizing an API Gateway for request routing and a message broker to

handle inter-service messaging effectively.

e

Figure 4.21: MyCharts Experiment — FR/NFR (ID =16)

Microservices | grok3 | SRS | NoRAG

Similarly, the diagram in Figure 4.22 presents a well-structured Microservices architecture.
Responsibilities are logically distributed among the microservices and the design meets nearly
all application requirements. Like the previous example, it demonstrates low coupling and
high cohesion, with each microservice managing its own data and including mechanisms to
maintain consistency. In terms of communication, this diagram employs an API Gateway for
routing client requests and adopts a choreography-based approach for inter-service
interactions, aligning well with modern Microservices best practices.

Figure 4.22: MyCharts Experiment - SRS (ID = 21)

Weak Diagrams

Microservices | mistral | SRS | RAG | ollama | nomic-embed-text | semantic

The diagram in Figure 4.23 illustrates an example of a weak response generated by the LLM,
reflecting significant issues in both understanding the software requirements and applying the
principles of Microservices architecture. Key functionalities are missing, services are isolated
with no interconnections and there is a complete absence of databases or repositories. As a
result, the diagram appears incomplete and lacks a coherent structure, failing to meet the basic
expectations for a Microservices-based design.

Microservices\

(© GoogleoAuthservice (© ChartGenerationService!
N

—Flow control ™} | accessToken - String \—Data management™ | o quota : Int \— Functional r
o chartData : Data e

(© usersenvice l

(© chartapl
o csvFile : File

— Functional requirement ™

o generateChart(user: User) : Chart © uploadCSV() : Void

o customizeChart() : Chart

o authenticate() : AccessToken

o generateChart() : Chart

Figure 4.23: MyCharts Experiment - SRS (ID = 8)

Microservices | mixtral:8x22b | fr | nfr | RAG | ollama | nomic-embed-text | semantic

The class diagram in Figure 4.24 fails to follow any fundamental principles of established
software architectures and does not satisfy any of the defined software requirements. The
structure lacks classes necessary for the representation of the intended system.

—— checkAvattabitityth————

(© PartitionHandler {

/
(©user ~
© handlePartition(): void | recover: Services| (), maintainConsistency()
= recoverServices(): void €

= maintainConsistency(): void |

(© HealthCheckservice (© usertoadBalancer

o checkAvailability(): boolean o balanceUsers(users: User(]): void

lencryptData()

Security

© sstservice |

o privateKey: string |

o encryptData(data: string): string
decryptData(encryptedData: string): string

Figure 4.24: MyCharts - FR/NFR (ID = 14)

Noteworthy Diagrams

The diagrams presented in this section may not achieve high scores across all evaluation
criteria, as some requirements are either overlooked or the designs do not fully align with
Microservices architecture principles. However, they still represent surprisingly well-structured
responses from local models that were initially expected to underperform, highlighting their
potential in generating coherent architectural designs.

Microservices | gemma2:27b | fr | nfr | RAG | ollama | nomic-embed-text | semantic

The diagram in Figure 4.25, despite missing several key elements, demonstrates clear
potential. It lacks support for certain software requirements, such as template downloading and
chart validation and shows limited detail in the implementation. Additionally, it does not
distribute functional responsibilities across a wide range of microservices, relying instead on
just a few. However, the response reflects a general understanding of both the application and
Microservices architecture. Notably, it incorporates an API Gateway that handles request
routing and also functions as an orchestrator. Overall, this is a reasonably solid output from a
local LLM and could serve as a strong foundation for further refinement.

UserManagement

© Aunsenice API Gatoway

© authenticateUser(authCode: String): Authinfo // Functional requirement -

[authenticateUser() I Flow c:

[

_~gelUserByld), createUser(), i Flow). updateChart() i Flow control operation

v » = <
© vsersenice © veer © Crartsevice

© charosts

o chartid: int
o chartType: String
o chartData: JSON

teChart(chartData: ChartData): int // Fun

Quota: int
eationTimestamp: Date
o lastLoginTimestamp: Date

int): int // Fu;

ProcessPaymenty) // Functional Requirement & Flow Control Operation "\ sendNofification() //Functional Requirement & Flow control aperation

PaymentManagement NotificationManagement

2 <
(© PaymentService (© NotificationService

= processPayment(userld: int, amount: double): bool // Functional requirement © sendNotification(userld: int, message: String): void // Functional requirement t

Figure 4.25: MyCharts Experiment - FR/NFR (ID = 12)

Microservices | deepseek-r1:70b | fr | nfr | RAG | ollama | nomic-embed-text | semantic
Similarly, the diagram Figure 4.26, while lacking some essential characteristics of a
Microservices architecture, shows notable potential. One key omission is the absence of
dedicated databases for each microservice. Despite this, the diagram demonstrates a solid
grasp of Microservices principles by logically distributing functional responsibilities and
addressing nearly all software requirements. It also features an API Gateway that manages
request routing and acts as an orchestrator. Again, this is a promising response from a local
LLM and could serve as a strong foundation.

Figure 4.26: MyCharts Experiment - FR/NFR (ID = 6)

4.3.2 Evaluation Results

In this section, we present a series of charts based on evaluation data, highlighting key
insights from the human evaluations of the class diagrams. All visualizations were created using
the Highcharts library.

It is important to note that in this experiment, we intentionally limited the number of
generated diagrams to 46, significantly fewer than in previous studies. This decision was made to
allow for a more in-depth evaluation based on seven detailed criteria, along with performance
analysis using manually calculated objective metrics. As a result, we worked with a smaller set
of scenarios. These constraints should be kept in mind when interpreting the average
performance of the LLMs, as the findings are based on a relatively small sample size.

LLM Performance

The heatmaps in Figure 4.27, Figure 4.28 display the average evaluation scores of class
diagrams produced by each LLM in FR-NFR and SRS experiments respectively. It is important
to highlight that online models generated diagrams without the use of Retrieval-Augmented
Generation (RAG). In contrast, local models produced three versions of each diagram: one
without RAG, one using the ragl file as supplemental material and another using the rag? file.

Across both FR-NFR and SRS input scenarios, online models such as ClaudeSonnet3.7,
ol, 03-mini-high, deepseek-r1 and gemini-2.0 consistently outperformed local models, as
expected. However, certain local models demonstrated strong performance in the FR-NFR cases,
with gemma2:27b and deepseek-r1:70b achieving scores that were comparable with their online
competitors.

Model Performance by Principle

non_functional_requirements
functional_alignment
data_management
data_consistency
coupling_independence

Principle Label

communication_flow
cohesion
AVERAGE

Highcharts com

Figure 4.27: MyCharts Experiment - Model Performance (FR/NFR)

Model Performance by Principle

non_functional_requirements
functional_alignment
data_management
data_consistency
coupling_independence
communication_flow

Principle Label

cohesion
AVERAGE

Highcharts com

Figure 4.28: MyCharts Experiment - Model Performance (SRS)

The chart in Figure 4.29 compares the average performance of LLMs across all
evaluation criteria when using FR/NFR lists versus a full SRS document as input. A consistent
trend persists, larger LLMs with more parameters tend to perform better when given the more
detailed and extensive input provided by the SRS document, as opposed to the concise FR/NFR
lists. On the other hand, most local LLMs struggle with the increased input length, often
becoming overwhelmed and underperforming. A notable exception is mixtral:8x22b, a local
model with 141 billion parameters, which appears to handle the richer input effectively and
benefits from the additional context provided by the SRS due to its parameter count.

MyCharts Experiment - FR/NFR vs SRS

6
5
4
3
2
| I I
: il 1
A N 0 Q \") o > % > & YO N ON
& N A° g '{'\ Q\‘b‘ o il ~é‘§b (\'\\0 .{J/q’ o ¥
& 2° O & oV % @ < & o NG &
s F & & N & @ S
Q}o&’* & & @ & o
& *
B FR-NFR m SRS
Figure 4.29: MyCharts Experiment - FR/NFR vs SRS
NoRAG vs RAG

In this section, we compare the performance of class diagrams generated with and
without Retrieval-Augmented Generation (RAG) across both FR/NFR and SRS input formats.
The goal of this analysis is to examine whether RAG methods provide measurable benefits when
applied to a more complex application like MyCharts and a more demanding architectural
pattern such as Microservices.

FR/NFR Input:

The charts in Figure 4.30, Figure 4.31 indicate that, when combined with FR/NFR input,
certain local models such as deepseek-r1:70b and gemma2:27b, demonstrate improved
performance with RAG. In contrast, other models like llama3.3, mistral and mixtral:8x22b tend
to underperform when RAG is applied.

Model Performance by Principle without RAG

non_functional_requirements

B E

functional_alignment
data_management

=
5

data_consistency

g

coupling_independence

b
)

Principle Label

communication_flow 1410
cohesion 4.5
AVERAGE 42
=)
3
&
@

0 2 4 6
Highcharts.com
Figure 4.30: MyCharts Experiment - Model Performance without RAG (FR/NFR)
Model Performance by Principle with RAG =
Comparing semantic chunking method only
- I
0 2 4 6
data_management 0.0 0.3
data_consistency 0.0 0.0
©
| coupling_independence 0.0 03
F
=3
[5)
£ communication_flow 0.0 0.0
o
cohesion 0.0 0.0
AVERAGE 0.0 0.1
deepseek-r1:70b gemma?2:27b llama3.3 mistral mixtral-8x22b

Model
Highcharts.com

Figure 4.31: MyCharts Experiment - Model Performance with RAG (FR/NFR)

The chart in Figure 4.32 illustrates the impact of RAG methods on the performance
scores of each model, while also highlighting the comparative effectiveness of the two RAG files
introduced in Chapter 3.3.7. Among the models that benefited from RAG, the rag2 file, which is
designed as a more concise and practical explanation of the Microservices architecture,
consistently led to better performance. This suggests that targeted, streamlined supplemental
material can be more effective than lengthier or more general alternatives in guiding LLMs.

Model Performance: Semantic RAG vs No RAG

Comparing semantic chunking method only

® NoRAG @ ragl @ rag2

2.57

g >
7]
z2

1 -

0]

deepseek-r1:70b gemma2:27b llama3.3 mistral mixtral:8x22b
Model
Highcharts.com
Figure 4.32: MyCharts Experiment - NoRAG vs RAG (FR/NFR)
SRS Input:

The charts in Figure 4.33, Figure 4.34 indicate that, when combined with SRS input,
nearly all local models, except mistral, demonstrate improved performance with RAG on
average.

Model Performance by Principle without RAG

non_functional_requirements
functional_alignment

g data_management
- data_consistency
% coupling_independence
§ communication_flow
cohesion
AVERAGE
& &
\)bz 65&
3

Highcharts.com

Figure 4.33: MyCharts Experiment - Model Performance without RAG (SRS)

Model Performance by Principle with RAG

non_functional_requirements 1.8 2.0 1.5 0.5 23
functional_alignment 3.8 3.8 3.5 1.5
5 data_management 1.0 28 0.3 0.3
§ data_consistency 2.0 0.0 1.0 0.3 1.5
% coupling_independence 40 3.3 4.0 15 “
@ communication_flow 1.5 1.5 0.5 25
AVERAGE 2.7 2.0 28 0.8 24
deepseek-r1:70b gemma2:27b llama3.3 mistral mixtral:8x22b
Model
-]
0 2 4 (<]

Highcharts com

Figure 4.34: MyCharts Experiment - Model Performance with RAG (SRS)

The chart in Figure 4.35 showcases the impact of RAG methods on the performance
scores of each model, while also highlighting the comparative effectiveness of the two RAG files
introduced in Chapter 3.3.7. Across all models, the rag2 file, which offers a concise and practical
explanation of the Microservices architecture, consistently resulted in better performance. This
finding suggests that well-targeted and streamlined supplemental material can be more effective
in guiding LLMs than longer or more generalized documents.

Model Performance: Semantic RAG vs No RAG

Comparing semantic chunking method only

@ NoRAG ® ragl ® rag2

Average Score

deepseek-r1:70b gemma2:27b llama3.3 mistral mixtral:8x22b
Model

Highcharts.com

Figure 4.35: MyCharts Experiment - NoRAG vs RAG (SRS)

4.3.3 Metric Performance

To introduce a more objective dimension to the evaluation process for the Microservices
architecture, this experiment incorporates the metrics outlined in Chapter 3.3.4. As discussed
earlier, there is a conceptual alignment between these metrics and the subjective evaluation
principles. In this section, we examine whether this alignment is reflected in practice through
experimental results.

Following the MyCharts experiment pipeline stated in Figure 3.8, after generating the
class diagrams, we manually calculated the defined metrics for each one. To enable a fair
comparison, we normalized both the metric values and the human evaluation scores to a scale
from 0 to 1. The human evaluations were normalized individually for each evaluation principle
to maintain consistency across different criteria.

As outlined in Chapter 3.3.4, the quality of a generated class diagram can be interpreted
through the following metric patterns: SI, DOC and SST should ideally be close to 1 indicating
stateless microservices that manage their own data and have operations achieving eventual data
consistency. SC should reflect a high number of services per use case, signaling appropriate
service cohesion. In contrast, lower values are desirable for SIC, AIS and ADS, as they indicate
reduced inter-service coupling and redundancy, for this reason, these metrics have been inverted
in the following charts to align with the convention that higher values indicate better-quality
diagrams.

The charts in Figure 4.36, Figure 4.37, Figure 4.38, Figure 4.39, Figure 4.40 display on
the horizontal axis the ID of the class diagrams generated, where 1-23 refer to FR/NFR scenarios
and 24-46 refer to corresponding 1-23 of SRS scenarios and the vertical axis represents the score
either of the metric of the evaluation. These charts provide a visual representation of the
conceptual correlation between some evaluation principles with some of the metrics.

Responsibility Distribution

1.2
1
0.8

0.6 —e— SIC Metric

0.4 —@—Evaluations

0.2

0
0 10 20 30 40 50
-0.2

Figure 4.36: MyCharts Experiment - Metric Correlation - Responsibility Distribution

1.2

0.8

0.6

0.4

0.2

-0.2

1.2

0.8

0.6

0.4

0.2

-0.2

Data Management

=@=DOC Metric
=@==Evaluations
{
40 50

Figure 4.37: MyCharts Experiment - Metric Correlation - Data Management

Data Consistency

—@— SST Metric
—@— Evaluations
40 50

Figure 4.38: MyCharts Experiment - Metric Correlation - Data Consistency

—@—AIS - ADS Average

1.2 Coupllng Metric
—@— Evaluations
1
0.8
0.6
0.4
0.2
0
0 10 20 30 40 50
-0.2
Figure 4.39: MyCharts Experiment - Metric Correlation — Coupling
Cohesion
1.2
1
0.8 m
0.6)
—@— SC Length Metric
—@— Evaluations
0.4
0.2
0
0 10 20 30 40 50
-0.2

Figure 4.40: MyCharts Experiment - Metric Correlation - Cohesion

The charts illustrate that for certain evaluation principles such as Data Management, there
is a clear and observable correlation between the subjective evaluations and the corresponding
metrics. However, for other principles like Cohesion, the relationship is less evident. This
suggests that further investigation is needed, including the exploration of additional or alternative
metrics, to more accurately and objectively capture the concept of cohesion in class diagrams.

4.3.4 Metric Hallucination

To assess the extent to which LLMs exhibit hallucination in metric generation, i.e.,
calculating inaccurate metric values, we compared the manually calculated metrics for each class
diagram with the corresponding metrics automatically generated by the LLMs. The chart in
Figure 4.41 illustrates the difference between these two sets of values, effectively calculating the
degree of hallucination per LLM and per metric.

As seen from the chart, it seems that all LLMs hallucinate to some extent, but the degree
of hallucination varies significantly between models and across different metrics. Notably,
models like mistral, ol and 03-mini-high show particularly high hallucination in certain metrics,
especially the SIC (Service Interface Count) and AIS (Absolute Importance of Service Average)
metrics, with values approaching 1. This suggests a substantial mismatch between the
automatically generated and the manually verified values. On the other hand, models such as
claudeSonnet3.7, gemini-2.0 and mixtral:8x22b generally exhibit lower hallucination rates across
most metrics, indicating a higher level of accuracy in self-assessed metric reporting.
Interestingly, even strong performers like grok3 show high hallucination levels, especially in the
SIC and DOC metrics, highlighting that performance in diagram generation does not always
correlate with accurate self-evaluation. Overall, the variation in hallucination emphasizes the
need for cautious interpretation of LLM-generated metrics and the importance of external
verification when evaluating architectural outputs.

Metric Hallucination Per Model

1.2

0.8
0.6

0.

Nl
» Wi
(‘:;?"

n

N

/\60 > n;\ (\ (LQ b‘o .(\QJ

||- |‘|I|I | I||
N

& N X 5]
: &8 ! & S 3 °© & N o
'b&{b & & o & e & 6"\0\ & S - ¢
N @Q}E {(\@ .\’_\S{b QJ%O Q}Q’Q Q?) f'b'((\ %\gb
@Q“o ég) ((\\ \)6 & o ((\\
&® ®
| S| Hallucination m DOC Hallucination B SST Hallucination

B SIC Average Hallucination mAIS Average Hallucination m ADS Average Hallucination

B SC Average Hallucination

Figure 4.41: MyCharts Experiment - Metric Hallucination

4.3.5 Results Discussion

Our analysis highlights some clear patterns in how different factors impact the ability of
large language models (LLMs) to generate class diagrams, especially for complex applications
like MyCharts and when using more demanding architectures like Microservices. While human
evaluations are subjective, the overall trends match well with the evaluators' impressions. A
larger-scale experiment would help confirm these results, but even from our current data, several
takeaways stand out:

o Bigger models generally do better: Larger online LLMs outperformed smaller local
ones, creating more complete and well-structured diagrams overall. This isn’t too
surprising, given their greater capacity and broader training.

e LLMs handle Microservices reasonably well: Most models showed a reasonably good
understanding of microservices-based design, particularly the larger ones. These models
often generated diagrams that needed refinement but provided a solid starting point.

e RAG helps most of the time: Using Retrieval-Augmented Generation (RAG) generally
improved results. While a few models didn’t benefit much or even declined in
performance, most performed better when given a focused, concise RAG file that
emphasized key microservice design principles.

o Input format makes a difference: When comparing full Software Requirements
Specifications (SRS) with more concise Functional/Non-Functional Requirements (FR-
NFR) lists, larger models handled full SRS documents better. Smaller models tended to
perform worse with longer inputs but showed improved results with the shorter, more
targeted FR-NFR format.

e Objective metrics appear promising: Although we didn’t directly use objective metrics
to evaluate the diagrams in this study, there was a noticeable correlation between these
metrics and the subjective human evaluations. This points to the potential of automating
evaluations using architecture-specific metrics in future work.

e LLM-generated metrics vary in accuracy: When models attempted to calculate the
metrics on their own, the results were inconsistent. Hallucination was common,
highlighting the need for careful interpretation and external validation.

4.4 MyCharts 2-Prompt Experiment

Lastly, we ran a final experiment, the two-prompt experiment described in Chapter 3.4.
This small-scale test explored whether giving the model a follow-up prompt, based on the
evaluation and metrics of its initial response, could help it produce a better second version. The
idea came from reviewing results for MyCharts, where many initial outputs were close to correct
and just needed minor adjustments. We wanted to see if a structured second prompt could guide
the model to improve those responses more effectively.

4.4.1 Typical Cases

In this section, we showcase pairs of UML class diagrams generated by the LLMs, one
from the initial prompt and the other from a follow-up, evaluation-informed prompt. These
examples illustrate how the second prompt, guided by feedback and metrics from the first
response, can enhance the structure, completeness and overall quality of the diagrams. By
comparing these pairs, we aim to demonstrate the practical value of iterative prompting in
refining architectural outputs.

Microservices | mistral | SRS | NoRAG | Response 1

The diagram in Figure 4.42 represents an adequate initial response, capturing most of the core
features of the application. It demonstrates a reasonable distribution of functional
responsibilities across multiple microservices, indicating a general grasp of the microservices
architectural style. However, it falls short in two key areas: modeling interservice
communication and incorporating dedicated databases for each microservice, both of which
are essential aspects of a robust microservices design.

uuuuuuuuu

@ runsenice

. Stringl: UserPrafile if logic operation
© waligateTokenftokan: String]: bosiean |/ Flow control spersbion

[Userservice'

© Usesanvicn

PaymentService

© Temrisesarvice

© rovm

= processPayment{userid: int, amount: int): boolesn // Functi
. Swring): boolean ff

» downioadTemplate(chartType: String): File f/ Functions| requirement—business Iogic operation
= validateCSV(csvData: String, charType: String): boolean // Data management aperatian

(€ Chansenice

Figure 4.42: MyCharts 2-prompt Experiment - Mistral (Response 1)

Microservices | mistral | SRS | NoORAG | Response 2

The diagram in Figure 4.43 shows a notable improvement, introducing an API Gateway to handle
request routing while also clearly enhancing the modeling of interservice communication. This addition
makes service interaction more explicit and structured.

Figure 4.43: MyCharts 2-prompt Experiment - Mistral (Response 2)

Microservices | deepseek-r1 | SRS | NORAG | Response 1

The diagram in Figure 4.44 shows a solid first attempt, capturing most of the key features of
the application. It does a decent job of spreading responsibilities across different
microservices, showing that the model understands the basics of microservices architecture.
That said, it misses a couple of important points like inter-service communication and the use
of separate databases for each microservice, which are both important for a strong

microservices design.

Figure 4.44: MyCharts 2-prompt Experiment - Deepseek-r1 (Response 1)

Microservices | deepseek-r1 | SRS | NoORAG | Response 2

The diagram in Figure 4.45 demonstrates a significant improvement in modeling inter-service
communication. The addition of a publish-subscribe (pub-sub) messaging queue introduces
asynchronous communication between services, enabling better scalability and decoupling.
Alongside this, the inclusion of an API Gateway centralizes request routing and access control,
reflecting a more realistic microservices architecture. These enhancements significantly
elevate the architectural completeness and structure of the diagram.

APl Gateway'

[(© APiGateway ‘
| |
___——=F orouteRequest{request): response «FC» .

—
Thart service\, T Chart Storage
/ ®© CchartController (© storageController
e
<FR» osaveChart{chart): void «<DM»
/ o generateChart(csv): Chart «FR, osavechartichart: vid L

/k quota

/ Quota 5'@ :;i‘e — l Template Servic
/ © QuotaCantraller [(© ChartGenerator | [(© TemplateController | © chart
I 1 |] oid: strim
| o checkQuota(usertd): int «FR» " o
/ o handiePaymentEvent(bid): void «DCx [orenderChart(data): Chart <FRx | [udown\uadfemp\a‘leilype) CSV «FRa | o formats: string[]
/ b EN lidate CSV
User Service | AN ‘
" v
— v d .
@© userContraller (© QuotaManager \ \ [@© rempiatesence |
| \ (©Highchartsadapter| © Templateservice
o getProfile(): UserProfile «FR» odecrementQuota(userid): vold «DC» | ! . e ST —
< updateLogin(): void «DM» \ oaddQuota(userid, amount): void «DC» | || ' [ovatisateCsviesv): boolean «FR- |
v
— — !
| date quota nitiate payment Publishes Publishes
l / Payment Service / | !
= ¥ I ' N
| (© userservice } | (© PaymentController | \ © Template
I | I 1| ! oheaders: string(]
| o fetchuserData token): User «FR» | | = processPayment(amount): PaymentResult <FR» | | . oexamples: string]
S - b
- s '
7~ .subscribes. ~ ~ subscribes
o v
"=~ _[Event Bus

(© userRepository

osave(user): void «DM»

© <Events

PaymentCompletedEvent|
E . 1
t 1k j

x i
© «Events
QuotaUpdatedEvent

© user
oid: string
oqueta: int
cemall: string
ocreatedAt: DateTime

Figure 4.45: MyCharts 2-prompt Experiment - Deepseek-r1 (Response 2)

4.4.2 Evaluation Results

In this section, we present a series of charts illustrating how each model’s output changed
in response to a second, follow-up prompt. As shown in Figure 4.46, Figure 4.47, Figure 4.48,
Figure 4.49, Figure 4.50 most models, like Claude Sonnet 3.7, Mistral-Online, DeepSeek-R1 and
GPT-40, showed noticeable improvement in their second responses, achieving higher scores
across the evaluation criteria. However, model ol experienced a slight decline in performance.

While this small-scale experiment isn’t sufficient to draw broad conclusions, it does open
the door for further research. It highlights the potential of using a standardized second prompt to
refine LLM outputs. Currently, this process still requires manual evaluation of the first response

and metric calculation, but it suggests a path toward a semi-automated refinement approach that
could enhance architectural output quality.

claudeSonnet3.7

6
5
4
3
2
1 B Response 1
0 B Response 2
& S
c,}\o(‘ -\\<~°0 e & &8 Fa ,-\\o‘\ c,}\o‘\
& N S % & R &
N 9 @) 4 'S Q N
& O Q\(b 00 O &
<2 2 (0(0 P
Q® Q <
Figure 4.46: MyCharts 2-prompt Experiment (claudeSonnet3.7)
g deepseek-r1
4 W Response 1
H Response 2
3
2
0
KN
& o S
,;\0° \><‘°" & @Q’ & . & »;\°°
© X N &) N 9
& S o & ® S N
W ° & N
& & o <°
Q
Figure 4.47: MyCharts 2-prompt Experiment (deepseek-r1)
gptdo
6
5
4
3
2
1 I I I W Response 1
0 o o o H Response 2
> . 0 O .
&\oo &)0% & Q}QQ) . 5_’,@0) 0’50 '000
& S & K > S &
< d 3 & > o
Q\(b O & &
< 2 00(4\ °
Vi Q

Figure 4.48: MyCharts 2-prompt Experiment (gpt4o)

o1

6

5

4

3

2 I

! T

- o & 5 o’ >
QOQ '\\(\% Q?\O < N © < <
9 Q N @ & X &
N N o =2 2 X N
<<0 OO o) OQ QQ\ N
%\ (bo (Q od
& & N <
Q Q €
Figure 4.49: MyCharts 2-prompt Experiment (01)
mistral-online

6

5

4

3

2

! I II
0

N : X
2 . QO
N O & <\
& Q*\Q \\Q’e\ e‘& . é&o q;\\ &
N & ® & & & S
< o & & & &
= o & &
& & c® <
Q

Figure 4.50: MyCharts 2-prompt Experiment (mistral-online)

B Response 1

B Response 2

H Response 1

B Response 2

5. Discussion

This thesis explored the capabilities and limitations of large language models (LLMs) in
generating UML class/component diagrams that implement specific architectural patterns,
including Client-Server, Three-Tier, MVC and Microservices. Through three structured
experiments, we examined how different input formats such as functional and non-functional
requirement lists, Software Requirements Specification (SRS) documents and the use of
Retrieval-Augmented Generation (RAG) influence the quality of generated architectures. We
then introduced a more complex software application and assessed LLM performance in
designing more demanding architectures like Microservices and proposed new evaluation criteria
and objective metrics specific to this pattern. Lastly, we tested a two-prompt approach, where a
standardized follow-up prompt based on feedback from the initial output led to improved second
responses, suggesting the potential for a semi-automated refinement process.

5.1 Conclusions

The results of this study highlight the promising potential of integrating LLMs into the
design phase of the software development lifecycle. By examining input formats, output quality,
architectural complexity, evaluation methods, model performance and refinement techniques,
this research provides practical insights into how Al can support architectural design. These
findings can help identify where LLMs add real value, recognize current limitations and develop
strategies to effectively incorporate Al into real-world design workflows.

Reflecting on the research questions outlined in Chapter 2.5, we now attempt to address
them based on the findings from this study.

1. Our evaluation of output formats revealed that when asking LLMs to create
architectures as PlantUML documents, they consistently produce the higher quality architectural
representations compared to other "diagram-as-code" formats. PlantUML documents, offer a
balance of structure and readability that seems well-suited for LLMs. This insight provides a
practical recommendation for teams integrating Al into their architecture workflows.

2. In terms of input representation, we found that structured Software Requirements
Specification (SRS) documents can enhance LLM performance compared to plain-text
requirements documents; notably, diagrams in SRS are also expressed as PlantUML text; this
stands particularly for larger models, capable of benefiting from the extended context and rich
structured information in SRS documents. This suggests that the quality and format of input data
play a critical role in the output accuracy of Al-generated architectures. Simpler FR/NFR lists

may still be useful for smaller models, but they often lack the depth needed for more complex
designs.

3. When tackling complex design challenges, specifically Microservices architectures,
LLMs exhibited mixed performance. Larger, more capable models were generally more
successful in decomposing complex requirements and applying core microservices principles,
while smaller models often struggled. This emphasizes the need for LLM selection to be
proportional to the architectural complexity of the problem domain.

4. Another part of this study is the introduction of specialized evaluation criteria and
objective metrics specific to Microservices. This is a first attempt to fill gaps in existing
assessment methods, and also to correlate subjective human evaluations with quantifiable
architectural metrics, paving the way for more standardized benchmarking of LLM performance
in future work.

5. We also observed that Retrieval-Augmented Generation (RAG) enhances design
quality, particularly in larger models that can handle the increased context without being misled
or confused. The RAG material seems to have a large impact for enhancing and not misleading
the LLMs; our results indicate that concise and precise RAG materials with practical guidelines
seem to work best.

6. Despite these advancements, the study also revealed some limitations. LLMs
frequently hallucinate when asked to calculate the objective metrics in the diagrams themselves
have created, often offering incorrect values. This underlines the importance of external
objective validation and the risks of relying solely on Al-generated evaluations.

7. Finally, our experiment with iterative prompting showed encouraging results,
suggesting that a structured follow-up prompt, which is informed by evaluation feedback, can
refine and improve the quality of the architectural output. Although tested on a limited scale, this
finding opens up possibilities for semi-automated refinement workflows that blend human
oversight with Al-generated design.

Together, these findings provide a roadmap for both using LLMs in software architecture
and understanding the conditions under which they are most effective. They also highlight areas
for future exploration, including more robust automation pipelines, deeper integration of
evaluation metrics and expanded use of conversational refinement techniques.

5.2 Future Work

While this study provides promising insights into the use of LLMs for software
architecture generation, there remain several areas for future exploration. One important
direction is scaling up the experiments, both in terms of the number of use cases and the diversity
of architectural patterns examined. This would allow for broader generalizations and could

reveal whether the trends observed here hold across domains, project sizes and industry-specific
applications.

Another promising area is the automation of the evaluation and refinement process.
Currently, the two-prompt method introduced in this research relies on manually calculated
metrics and human evaluations to guide refinement. A logical next step would be to integrate
these processes into a semi-automated or fully automated pipeline that uses standardized,
validated metrics to assess initial outputs and generate effective follow-up prompts. This could
significantly streamline the use of LLMs in architectural design and make them more practical
for integration into real-world development workflows.

Additionally, there is substantial room to improve hallucination mitigation, particularly in
cases where LLMs are asked to calculate or reason about specific architectural metrics. Future
studies could investigate techniques such as external knowledge integration or model fine-tuning
to reduce inaccuracies. As LLMs continue to evolve, understanding how to reliably anchor their
outputs in factual and context-aware reasoning will be critical to their successful application in
software engineering.

6. Appendix

6.1 Appendix A (SRS_vl for DCC Application)

Software Requirements Specification
(SRS)

Dummy Coordinate Converter Application

1. Introduction

1.1 Introduction: Purpose of the Software

The Dummy Coordination Conversion (DCC) Application is an application that manages coordinate
groups in Cartesian and Polar formats. The app allows users to input, convert, store, retrieve, modify,
and delete coordinate groups.

1.2 Interfaces

1.2.1 User Interfaces

The user interacts with the application via a graphical user interface (GUI) developed using Java and
the Swing framework. This interface includes all the necessary buttons and controls to implement the

use cases outlined below.

2. References - Glossary

» Cartesian Coordinates:
A type of coordinate representation that specifies a point's location using two values: x (horizontal
position) and y (vertical position). Example: (x, y).

« Polar Coordinates:
A type of coordinate representation that specifies a point's location using a radius (r) and an angle
(9), measured from the origin. Example: (r, 6).

+ Coordinate Group:
A collection of coordinates that includes both Cartesian and Polar representations.

3. Software Requirements Specifications

3.1 Use Cases

The user should be able to perform the following actions: create a coordinate group, modify a
coordinate group, delete a coordinate group, view all coordinate groups, and view a specific
coordinate group selected by its label. These use cases are illustrated in the use case diagram

provided below. Additionally, each use case is elaborated in detail in the subsequent sections.

Use Case Diagram

DCC
Create Coordinate Group
Modify Coordinate Group

R View All Coordinate Groups

View Coordinate Group by Label
Delete Coordinate Group

3.1.1 Use Case 1: (Create Coordinate Group)
3.1.1.1 Preconditions for Execution

The sole prerequisite for executing this use case is that the application must be running.

3.1.1.2 Execution Environment

The execution environment for this use case is the graphical user interface (GUI). This interface

provides all the required buttons and controls to facilitate user interactions.
3.1.1.3 Input Data

The input data consists of the source coordinate type (either Cartesian or Polar) and the
corresponding values: x and y for Cartesian coordinates, or 7 and @ for Polar coordinates. Also, a
unique label to identify the coordinate group.

3.1.1.4 Sequence of Actions - Desired Behavior

The flow of the program in this use case is described by the following actions:

Step 1: Choose source coordinate type from drop down menu (either Cartesian or Polar).
Step 2: Fill in the values of the coordinates in the corresponding fields.

Step 3: Assign a label to the coordinate group by filling the corresponding field.

Step 4: Press the "Add" button.

Activity Diagram (Create Coordinate Group)

b1

[Chonse type of coordinates (either Cartesian or Polar) from drop down menuj

v

[Type in the coordinates in the corresponding fields]

v

(Assign a label to the coordinate groupj

v

[Click on the "Add" button)

xf<}\re coordinate values and label assigned to the coordinate group>n—1

[System converts the coordinates to the alternate format] (Corresponding error message is displayedj

v

[Coordinate group is inserted into the database]

\

3.1.1.5 Output Data

The newly created coordinate group is stored in the system's database; this includes the source

coordinates and the coordinates converted to the alternate format, as well as the label.

3.1.2 Use Case 2: (Modify Coordinate Group)

3.1.2.1 Preconditions for Execution

a) an active connection to the database

b) the existence of the coordinate group that is intended to be modified.
3.1.2.2 Execution Environment

The execution environment for this use case is the graphical user interface (GUI). This interface

provides all the required buttons and controls to facilitate user interactions.
3.1.2.3 Input Data

The input data consists of a selected coordinate group, the new label, the source coordinate type
(either Cartesian or Polar) and the new corresponding values: x and y for Cartesian coordinates, or r
and 6 for Polar coordinates.

3.1.2.4 Sequence of Actions - Desired Behavior

The flow of the program in this use case is described by the following actions:
Step 1: Choose coordinate group from a list.

Step 2: Fill in the new values of the coordinates in the corresponding fields.
Step 3: Assign the new label in the corresponding field.

Step 4: Press the "Update” button in the User Interface.

Activity Diagram (Modify Coordinate Group)

b

[Choose coordinates group from Iistj

v

(Type in the new coordinates in the corresponding ﬁelds]

v

(Assign a new label to the coordinate groupj

v

(Click on the "Update” buttonj

v

yf<}\re coordinate values and label assigned to the coordinate group>ﬁ

[System converts the coordinates to the alternate formatj (Corresponding error message is displayedj

v

[Coordinate group is updated in the database)

3.1.2.5 Output Data

The modified coordinate group is stored in the system's database; this includes the source coordinates

and the coordinates converted to the alternate format, as well as the label.

3.1.3 Use Case 3: (View All Coordinate Groups)

3.1.3.1 Preconditions for Execution
a) an active connection to the database
3.1.3.2 Execution Environment

The execution environment for this use case is the graphical user interface (GUI). This interface
provides all the required buttons and controls to facilitate user interactions.

3.1.3.3 Input Data

The is no input data.

3.1.3.4 Sequence of Actions - Desired Behavior

The flow of the program in this use case is described by the following actions:
Step 1: Press the "View All" button in the User Interface.

Step 2: Retrieve all stored coordinate groups from the database.

Step 3: View the list of coordinates.

Activity Diagram (View All Coordinate Groups)

b

(Click on the "View All" buttonj

v

?<Are there any coordinate groups in the database

[Coordinate group listis displayedj

3.1.3.5 Output Data

The output data is the list of the coordinate groups in the database.

3.1.4 Use Case 4: (View Coordinate Groups by Label)

3.1.4.1 Preconditions for Execution
a) an active connection to the database
3.1.4.2 Execution Environment

The execution environment for this use case is the graphical user interface (GUI). This interface
provides all the required buttons and controls to facilitate user interactions.

3.1.4.3 Input Data
The input data consists of label to be used as filter for selecting coordinate groups from the database.
3.1.4.4 Sequence of Actions - Desired Behavior

The flow of the program in this use case is described by the following actions

Step 1: Type in the label in the corresponding field in the User Interface.

Step 2: Press the "Find by Label" button.
Step 2: Retrieve the coordinate groups from the database that satisfy the search criteria.
Step 3: View the retrieved groups of coordinates in a list.

Activity Diagram (View Coordinate Groups hy Label)

?

[Type in the label of the coordinate group you want to see)

v

[Click on the "View By Label" button]

v

yf<Are there any coordinate groups in the database with this label

Empty list is displayed

The output data is the list of the coordinate groups in the database that satisfy the selection filter.

(Coordinate group list is displayed)

3.1.4.5 Output Data

3.1.5 Use Case 5: (Delete Coordinate Groups)

3.1.5.1 Preconditions for Execution

a) an active connection to the database
b) there is at least one coordinates group in the database

3.1.5.2 Execution Environment

The execution environment for this use case is the graphical user interface (GUI). This interface

provides all the required buttons and controls to facilitate user interactions.
3.1.5.3 Input Data

The input data consists of the coordinate group that is selected from the list.

3.1.5.4 Sequence of Actions - Desired Behavior

The flow of the program in this use case is described by the following actions

Step 1: Select a coordinate group from the coordinate group list.
Step 2: Press the "Delete” button.

Activity Diagram (Delete Coordinate Group)

b1

[Select a coordinate group from the coordinate group Iist]

v

[Press the "Delete” button]

3.1.5.5 Output Data

The selected coordinate group is deleted from the system's database.

3.2 Data Requirements

3.2.1 Data Organization Organization Requirements

The database must be designed to store the following attributes for each coordinate group:

« Auto-generated unique primary key (integer)

« Unique user-defined label for identification
¢ Coordinates in Polar format (r, 8)
« Coordinates in Cartesian format (x,y)

Timestamp (automatically assigned the date and time of group creation)

The following conceptual Entity Relationship Diagram describes the high-level design of the database.

Polar Coordinates

XTI

CoordinateGroup

Cartesian Coordinates

3.2.2 Data Access Requirements

The system must be designed to store all data in a MySQL database. The application will connect to

the database using a TCP/IP connection.

6.2 Appendix B (SRS_v2 for DCC Application)

Software Requirements Specification
(SRS)

Dummy Coordinate Converter Application

1. Introduction

1.1 Purpose

The Dummy Coordination Conversion Application (DCC app) is an application that manages
coordinate groups in Cartesian and Polar formats. The app allows users to input, convert, store,
refrieve, modify, and delete coordinate groups.

1.2 Scope

This application serves as a lightweight tool for managing coordinate groups, used in several
calculations by students, engineers, educators, etc.. It provides a GUI developed with Java Swing and
supports essential operations such as coordinate conversion, storage, and retrieval. This document
contains the requirements specification of the DCC app.

1.3 Definitions, Acronyms, and Abbreviations

« Cartesian Coordinates:
A type of coordinate representation that specifies a point's location using two values: x (horizontal
position) and y (vertical position). Example: (x, y).

« Polar Coordinates:
A type of coordinate representation that specifies a point's location using a radius (r) and an angle
(68), measured from the origin. Example: (r, 8).

« Coordinate Group:
A collection of coordinates that includes both Cartesian and Polar representations.

e GUI: Graphical User Interface.

1.4 References

+ Polar coordinate system: https:/en.wikipedia.org/wiki/Polar_coordinate_system

« Cartesian coordinate system: https://en.wikipedia.org/wiki/Cartesian_coordinate_system

+ Java runtime environment:
https://en.wikipedia.org/wiki/Java_(software_platform)#Java_Runtime_Environment

« Java Swing Framework: https://docs.oracle.com/javase/8/docs/technotes/guides/swing/

¢ MySQL Documentation: https://dev.mysql.com/doc/

1.5 Overview

This document outlines the software requirements for the DCC Application, detailing functional and
non-functional requirements, data organization, and interface expectations. It is structured to facilitate

both development and validation processes.

2. System Overview

2.1 Product Perspective

The DCC Application operates as a standalone desktop application, that runs in all modern operating
systems (windows, macos and linux). It uses a MySQL database for backend storage and Java Swing
for the user interface. Its primary goal is to simplify coordinate system transformations and

management.

2.2 Product Functions

+ Create, view, modify, and delete coordinate groups.
« Convert coordinates between Cartesian and Polar systems.

« Store coordinate groups persistently in a database.

2.3 User Characteristics

The intended users are students, engineers, educators, that need to convert between coordinate

systems. No special technical skills are required to operate the software.

2.4 Operating Environment

Hardware: Any computer that can run a JRE.
Software: Java Runtime Environment (JRE) 8 or higher, MySQL Server 8.0 or higher.
Network: Required for database access.

2.5 Assumptions and Dependencies

3.

The application requires a connection to a MySQL database.
The Java Swing library is required for running the application's GUI
A JDBC connector is required for database communication.

Functional Requirements

3.1 Functional Requirements Specification

g W N =

. Define cartesian coordinates as a pair (x, y) of high-precision numbers

. Define polar coordinates as a pair (r, 8) of high-precision numbers

. Convert cartesian (x, y) to polar (r, 8) coordinates

. Convert polar (r, 8) to cartesian (x, y) coordinates

. Create a unique auto-generated integer identifier (id) for the coordinate group edited, add a

timestamp, and save the label and the values of the coordinates group as a new record into the
database

. Create a list of all saved coordinate group records. For each record, show: id, label, cartesian

coordinate values, polar coordinate values, datetime added or modified), sorted by id

. Update a coordinate group record with new values entered by the user and save the updated

record of the coordinates group into the database

. Delete a coordinate group record from the database
. Provide error handling for invalid inputs.

3.2 Use Cases

3.2.1 Use Case Diagram

DCC
Create Coordinate Group
Modify Coordinate Group

S View All Coordinate Groups

View Coordinate Group by Label
Delete Coordinate Group

3.2.2 Use Case 1: Create Coordinate Group

« Use Case ID: UC1

« Actors: User

« Execution environment: The execution environment for this use case is the graphical user
interface (GUI). This interface provides all the required buttons and controls to facilitate user
interactions.

« Preconditions: The application must be running.

« Input Data: The input data consists of the source coordinate type (either Cartesian or Polar) and
the corresponding values: = and ¥ for Cartesian coordinates, or r and # for Polar coordinates.
Also, a unique label to identify the coordinate group.

« Main Flow:

Step 1: Choose source coordinate type from drop down menu (either Cartesian or Polar).
Step 2: Fill in the values of the coordinates in the corresponding fields.

Step 3: Assign a label to the coordinate group by filling the corresponding field.

Step 4: Press the "Add" button.

Step 5: The app converts coordinates to the alternate format and stores them in the database.

« Alternate Flow:
o If the input is invalid, the system displays an error message.
+ Postconditions:
a) The new coordinate group is saved in the database.
« Related Diagrams: UML Activity Diagram (see below).

Select coordinate type

(Enter coordinate values]

Assign a label
Click "Add"

« Output Data: The newly created coordinate group is stored in the system's database; this
includes the source coordinates and the coordinates converted to the alternate format, as well as
the label.

3.2.3 Use Case 2: Modify Coordinate Group

« Use Case ID: UC2

+ Actors: User

« Execution environment: The execution environment for this use case is the graphical user
interface (GUI). This interface provides all the required buttons and controls to facilitate user
interactions.

« Preconditions:

a) an active connection to the database

b) the existence of the coordinate group that is intended to be modified.

* Input Data: The input data consists of a selected coordinate group, the new label, the source
coordinate type (either Cartesian or Polar) and the new corresponding values: & and y for
Cartesian coordinates, or 7 and @ for Polar coordinates.

« Main Flow:

Step 1: Choose coordinate group from a list.
Step 2: Fill in the new values of the coordinates in the corresponding fields.
Step 3: Assign the new label in the corresponding field.
Step 4: Press the "Update” button in the User Interface.
« Alternate Flow:
o Ifinput is invalid, the system displays an error message.
« Postconditions:
a) The coordinate group is updated in the database.
+ Related Diagrams: UML Activity Diagram (see below).

b4

[Choose coordinates group from Iistj

v

(Type in the new coordinates in the corresponding ﬂelds]

v

[Assign a new label to the coordinate groupj

v

(Click on the "Update” button]

v

)f<Are coordinate values and label assigned to the coordinate group?>%

[System converts the coordinates to the alternate formatj (Corresponding error message is displayed]

v

[Coordinate group is updated in the databasej
« Output Data: The modified coordinate group is stored in the system's database; this includes the

I

source coordinates and the coordinates converted to the alternate format, as well as the label.

3.2.4 Use Case 3: View All Coordinate Groups

« Use Case ID: UC3
« Actors: User
« Execution environment: The execution environment for this use case is the graphical user
interface (GUI). This interface provides all the required buttons and controls to facilitate user
interactions.
« Preconditions:
a) an active connection to the database
« Input Data: The is no input data.
+ Main Flow:
Step 1: Press the "View All" button in the User Interface.
Step 2: Retrieve all stored coordinate groups from the database.
Step 3: View the list of coordinates.
« Postconditions:
a) A list of coordinate groups is displayed.
+ Related Diagrams: UML Activity Diagram (see below).

b

(Click on the "View All" buttonj

v

)?<Are there any coordinate groups in the database?

&

« Output Data: The output data is the list of the coordinate groups in the database.

Empty list is displayed

[Coordinate group list is displ ayed)

3.2.5 Use Case 4: View Coordinate Group by Label

« Use Case ID: UC4

« Actors: User

« Execution environment: The execution environment for this use case is the graphical user
interface (GUI). This interface provides all the required buttons and controls to facilitate user
interactions.

« Preconditions:
a) an active connection to the database
« Input Data: The input data consists of label to be used as filter for selecting coordinate groups
from the database.
« Main Flow:
Step 1: Type in the label in the corresponding field in the User Interface.
Step 2: Press the "Find by Label" button.
Step 2: Retrieve the coordinate groups from the database that satisfy the search criteria.
Step 3: View the retrieved groups of coordinates in a list.
« Postconditions:
a) The selected coordinate group is displayed.
« Related Diagrams: UML Activity Diagram (see below).

b

(Type in the label of the coordinate group you want to see]

v

(Click on the "Find By Label" buttonj

v

yF<Does the label exist in the database?>%

[Coordinate group is displayedj [Error message is displayed]

| - - |

« Output Data: The output data is the list of the coordinate groups in the database that satisfy the

selection filter.

3.2.6 Use Case 5: Delete Coordinate Group

+ Use Case ID: UC5

o Actors: User

« Execution environment: The execution environment for this use case is the graphical user
interface (GUI). This interface provides all the required buttons and controls to facilitate user
interactions.

« Preconditions:
a) an active connection to the database
b) there is at least one coordinates group in the database

« Input Data: The input data consists of the coordinate group that is selected from the list.
* Main Flow:
Step 1: Select a coordinate group from the coordinate group list.
Step 2: Press the "Delete” button.
Step 3: System removes the selected coordinate group from the database.
« Postconditions:
a) The selected coordinate group is deleted.
« Related Diagrams: UML Activity Diagram (see below).

b

[Select a coordinate group from the Iistj

v

(Click on the "Delete” buttonj

v

[System removes the selected coordinate group from the database)

@

« Output Data: The selected coordinate group is deleted from the system's database.

4. Non-Functional Requirements

4.1 Performance Requirements

« The system shall process user inputs and database operations within 2 seconds.

4.2 Usability Requirements

« The GUI shall be simple and comprehensive, with clear labels and buttons.

4.3 Security Requirements

o The system shall authenticate to the database using a secure username and password.

4.4 Availability Requirements

« The app should be able to maintain 90% uptime during operation hours.

4.5 Scalability Requirements

« The system shall support up to 100,000 (one hundrend thousand) coordinate groups without

performance degradation.

4.6 Compliance Requirements

« The system shall adhere to applicable data handling and privacy laws.

5. Data Requirements

5.1 Data Models

Each coordinate group shall include:

« Auto-generated unique primary key (integer)

Timestamp (automatically assigned the date and time of group creation)
« Unique user-defined label for identification

Coordinates in Polar format (r, 8)

Coordinates in Cartesian format (x,y)

The following conceptual Entity Relationship Diagram describes the high-level design of the database.

@ Polar Coordinates

CoordinateGroup

Cartesian Coordinates

5.2 Data Storage

¢ Data shall be stored in a MySQL database with proper indexing for performance.

5.3 Data Access

e The system shall use a JDBC connection for database access.

5.4 Data Validation

« Coordinate values must adhere to valid ranges (e.g., 6 in [0, 360] degrees).

6. Interface Requirements

6.1 User Interfaces

« The GUI shall include input fields, dropdowns, and buttons for all core functionalities.
¢ The Ul shall include:

o Main menu with navigation options.

o Forms for creating and modifying coordinate groups.

o Display list for viewing coordinate groups.

6.2 External Interfaces

¢ The system shall interface with a MySQL database via JDBC.

7. System Constraints

7.1 Design Constraints

* The system shall use Java Swing for the GUI.
¢ The database must be MySQL.

7.2 Environmental Constraints

« The application must run on systems with Java 8 or later JRE installed.

8. Verification and Validation

8.1 Verification Plan

o Unit tests shall verify all functional requirements.
« Integration tests shall validate the integration with the DBMS service.

8.2 Validation Plan

« User acceptance testing shall confirm that the system meets the users' expectations for simplicity
and efficiency in the user interface.

8.3 Traceability Matrix

« Each requirement shall be mapped to test cases to ensure coverage.

9. Appendices

9.1 Glossary

e GUI: Graphical User Interface
« JDBC: Java Database Connectivity

9.2 References

« See Section 1.4 for detailed references.

9.3 Change History

« Version 1.0: Initial release of the DCC Application SRS.

6.3 Appendix C (SRS for MyCharts Application)

Software Requirements Specification (SRS)

MyCharts Application

1. Introduction

1.1 Purpose

The MyCharts Application is a web-based service designed to enable users with minimal technical expertise to generate, manage, and download
charts in various formats. It simplifies chart creation by providing templates for source data, supporting data uploads. It uses the Highcharts library for
chart generation

1.2 Scope
This application allows users to

« Download CSV templates for supporied chart types

= Upload CSV files to generate charts

» Save and download charts in PDF, PNG, SVG, and HTML formats
« Purchase quotas for chart creation

+ View and download generated charts

1.3 Definitions, Acronyms, and Abbreviations

« C8SV: Comma-Separated Values file format
» Quota: A imit on the number of charts a user can create
» Highcharts: JavaScript library used for chart rendering

1.4 References

« Highcharts Library: hitps //www highcharts com
» Google Authentication API: hitps://developers google com/identity
« CSV Format Specification: htips:/tools ietf.org/htmirfc4 180

1.5 Overview

This document outlines functional and non-functional requirements, use cases, and interface specifications for the MyCharts Application

2. System Overview

2.1 Product Perspective

MyCharts is a SaaS (Software as a Service) standalone web application. It will be offered online and produce revenue by selling credits for chart

generation

2.2 Product Functions

1. User authentication via Google accounts.

2 Download CSV templates for chart types.

3.
4.
5.
6.

Upload CSV files to generate charts.
Save charts in PDF, PNG, SVG, and HTML formats.
Display and manage user-generated charts.

Charge for quotas needed to create charts.

2.3 User Characteristics

Primary users include educators, students, and professionals needing simple chart generation. Mo coding or technical skills are required.

2.4 Operating Environment

Frontend: Modern browsers (Chrome, Firefox, Safari).
Backend: Application Server with Node.js or Python runtime and database server(s) as needed.
Network: Internet connectivity required for service offering.

2.5 Assumptions and Dependencies

3.

Google OAuth is available for user authentication.
Highcharts library is accessible for chart rendering
Users follow the CSV structure.

Functional Requirements

3.1 Functional Requirements Specification

@ N @k W N

= e e

12.

Authenticate users via Google accounts.

Allow download of CSV templates for 3 supported chart types (Basic line, Line with annotations, Basic column).
Upload CSV file with the user data for chart generation.

Validate uploaded CSV files against the template structure, data types, and mandatory data existence.
Generate charts with data from the CSV file uploaded by the user, using Highcharts.

Save charts to the serverin PDF, PNG, SVG, and HTML formats.

Display a dashboard with the history of user-generated charts, including chart previews.

Download selected chart type.

Charge quotas for chart creation.

Allow users to delete or download charts.

. Sell quotas and receive payment by a payment gateway

Maintain user profiles containing the following data: Mame (from Google account), profile picture (from Google account), email (from Google
account), remaining quota, account creation timestamp, last login timestamp.

. Display user's profile info, including remaining quotas.

3.2 Use Cases

3.2.1 Use Case Diagram

MyCharts

Download Template
Upload CSV and Generate Chart

B — View/Download Charts from History

View Profile

3.2.2 Use Case 1: Download CSV Template

« Actors: User
« Preconditions:
a) User is logged in
+ Main Flow:
I. User navigates to the "Create Chart" section and selects a chart type from a dropdown menu
ii. System displays the 3 supported chart types
iii. User clicks "Download Template" for the selected chart type
iv. System provides a CSV file for each chart type, containing:
o Predefined column headers matching the chart type
o Sample data rows, to be replaced by the user's actual data.
o Chart formatting parameters
v. CSV file is downloaded to the user's device
+ Post-conditions:
a) CSV template is saved locally on the end-user's machine for data entry.

¢

(Userse\ects chart type frem dropdowm]

v
VL YES¢” Chart type o ¢

(Generate CSV template (headers + examples + guide\ines)) [Disp\ay "Chart type unavailable"j

é

3.2.3 Use Case 2: Upload CSV and Generate Chart

+ Activity Diagram:

Download CSV to device

» Actors: User
* Preconditions:
a) User has a valid CSV file formatted per the template

b) User has remaining quota for chart creation.
+ Main Flow:
i. User navigates to the "Generate Chart" section and uploads a CSV file.
ii. System performs validation checks:
o Column headers match the selected chart type.
o Data types are comect (e.g., numeric values for data).
o MNo empty mandatory fields.
iii. System renders a preview of the chart using Highcharts.
iv. User confirms the preview.
v. System saves the chart to the server in all supported formats (PDF, PNG, SVG, HTML).
vi. User's quota is decremented by 1.

Alternate Flows:
o Invalid CSV: System highlights errors (e.g., "Column 'Revenue’ missing") and blocks submission.

¢ Quota Exhausted: System displays "Quota Limit Reached: Upgrade to create more charts."
Post-conditions:

a) Chart is stored on the server.
b) Chart appears in the user's dashboard.
Activity Diagram:

User uploads CSV file

Validation,/

Headers match chart type?

8¢ Data types valid?

(Highlight "Column headers mismahch"j

(High\ight"lnvalid data types"j
[High\ight"Mandatury fields missing‘) %

(Render chart preview) (Disp\ay "Quota Exhausted") é)

é

no

User confirms preview

(Save chart (PDFIPNG!SVGIHI'ML))

Decrement quota by 1

3.2.4 Use Case 3: View/Download Chart from History

Actors: User

Preconditions:
a) User is logged in.

b) At least one chart has been previously generated by the logged in user.

Main Flow:
i. User navigates to the "Chart History" section in the dashboard.
ii. System displays a list of all previously generated charts with timestamps.
lii. User selects a chart from the list.
iv. System displays a preview and provides download options (PDF, PNG, SVG, HTML).
v. User selects a format to download the chart.
Alternate Flow:

o |If no charts exist, the system displays a message: "No charts found in history.”
« Post-conditions:

a) The selected chart is downloaded in the chosen format.
« Activity Diagram:

User navigates to Chart History

no

¢ YE5 Charts exist?

(Display list with charlsj [Disp\ay "Mo charts fou nd"j

User selects a chart

(Shcvw preview and download opn‘ons)

User selects format
Download chart

&

3.2.5 Use Case 4: Purchase Additional Quotas

« Actors: User
+ Preconditions:
a) User is logged in.
b) Payment gateway integration is operational.
« Main Flow:
i. User navigates to the "Quota Management" section in the dashboard.
ii. User selects the number of quotas to purchase and confirms the purchase.
lii. System redirects the user to a secure payment gateway (e.g., Stripe/PayPal).
iv. User completes the payment process.
v. System validates the payment and increases the user's quota limit accordingly.
vi. System sends a confirmation email with a receipt.
« Alternate Flows:
o Payment Failure: If payment fails, the system retains the original quota and notifies the user.
o Partial Payment: System cancels the transaction and restores the initial quota state.
+ Post-conditions:
a) The user's quota limit is updated.
b) A transaction record is stored in the system.
+ Activity Diagram:

b1

[User navigates to Quota Management)

Display quota packages
User selects package
Redirect to payment gateway

& Payment successful?

(Incr&ase user quutaj [Display "Payment Failed"j
Send confirmation email
Store transaction record

3.2.6 Use Case 5: View My Profile

Actors: User
Preconditions:
a) User is logged in.
Main Flow:
i. User clicks the "My Profile" button in the dashboard navigation menu.
ii. System retrieves and displays the following profile details:
o MName and profile picture (from Google account).
o Email address associated with the Google account.
o Current chart creation quota (e.g., "15/20 charts remaining").
o Account creation date.
o Last login timestamp.
iii. User reviews the displayed information.
Alternate Flows:
o Profile Data Unavailable: If the system cannot retrieve data (e.g., server error), it displays "Profile temporarily unavailable.”
Post-conditions:
a) User views their profile details.
Activity Diagram:

User clicks "My Profile"

Profile data retrievable?

(Display name, email, quota, account date, last \ogin) (Disp\ay "Profile temporarily unavai\ab\e"j

é

4. Non-Functional Requirements

4.1 Performance

= Chart generation completes within 3 seconds.

4.2 Usability

« Intuitive Ul with guided workflows (e.g., tooltips, validation hints) fo assist non-technical users

4.3 Security

« SSL encryption® Data transmitted ove the intemet is encrypted using SSL

4.4 Availability

« The service should be available 90% of the time on a daily basis
« The system should prioritize Availability over Consistency during network partitioning
« While in network partitioning, although temporary data inconsistencies may occur, as many as possible services should remain fully operational

4.5 Scalability

« Support 1,000 concurrent users with linear performance scaling via cloud-based auto-scaling infrastructure

5. Data Requirements

5.1 Data Models

« User Profile: Store the following attributes for every user

o

Name (from Google account)

o

Profile picture (from Google account)

o

Email (from Google account)

o

Remaining quota

o

Account creation timestamp

o

Last login timestamp
+ Chart Metadata Chart ID, type, creation date, Highcharts json chart object

5.2 Data management

Data will be stored in databases (e.g., PostgreSQL, MySQL, MongoDB, efc), as required by the architecture to be implemented.

5.3 Data consistency

« After network partitioning, data should be synchronized to achieve a consistent state across the system's components

6. Interface Requirements

6.1 User Interfaces
Web app, offering a frontend containing the following elements
1. Landing Page

« Service description and features

Sample chart gallery

Pricing information

Call-to-action buttons for login-registration

N

Authentication Page

Google OAuth login button

w

Profile Dashboard

User details from Google account
Current quota status

Account statistics (creation date, last login)
Profile picture display

4. Chart Management

View of previously generated charts

Preview thumbnails

Download/delete actions

@

Chart Generator

Chart type selector

CSV template downloader

File upload zone with validation

Real-time chart preview

Format selection for export

=2}

Quota Store

Quota selection

Pricing display

Payment gateway integration

6.2 External Interfaces

* Google QAuth for authentication.

7. System Constraints

7.1 Design Constraints

« Frontend: React Framework

« Backend: Use of REST APIs, API gateways, Load balancer as needed

7.2 Environmental Constraints

« Requires modem browser support.

8. Verification and Validation

8.1 Verification Plan

« Unit tests for chart generation logic
« Integration tests for Google OAuth

8.2 Validation Plan

+ User testing for ease of CSV upload and chart customization

9. Appendices

9.1 Glossary

« Quota: Credits remaining for chart generation per user.
+ CSV: Data file format for chart input.

7. References

[1]
[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

Shaveta, “A review on machine learning,” International Journal of Science and Research
Archive, vol. 9, no. 1, pp. 281-285, May 2023, doi: 10.30574/ijsra.2023.9.1.0410.

R. Mu and X. Zeng, “A Review of Deep Learning Research,” KSII Transactions on
Internet and Information Systems, vol. 13, no. 4, pp. 1738-1764, Apr. 2019, doi:
10.3837/1is.2019.04.001.

X. Wang, “The application of NLP in information retrieval,” Applied and Computational
Engineering, vol. 42, no. 1, pp. 290-297, Feb. 2024, doi: 10.54254/2755-
2721/42/20230795.

H. Li, G. K. Rajbahadur, and C.-P. Bezemer, “Studying the Impact of TensorFlow and
PyTorch Bindings on Machine Learning Software Quality,” ACM Transactions on
Software Engineering and Methodology, Jul. 2024, doi: 10.1145/3678168.

“ETHICAL CONSIDERATION IN AL” International Research Journal of
Modernization in Engineering Technology and Science, May 2024, doi:
10.56726/IRIMETS55881.

H. W. Marar, “Advancements in software engineering using Al,” Computer Software and
Media Applications, vol. 6, no. 1, p. 3906, Feb. 2024, doi: 10.24294/csma.v6i1.3906.

C. M. Hicks, C. S. Lee, and K. L. Foster-Marks, “The New Developer Executive
Summary The New Developer Al Skill Threat, Identity Change & Developer Thriving in
the Transition to Al-Assisted Software Development.” [Online]. Available:
https://www.pluralsight.com/product/flow/developer-success-lab/dsl-navigate-toolkit

I. Ozkaya, “Application of Large Language Models to Software Engineering Tasks:
Opportunities, Risks, and Implications,” May 01, 2023, IEEE Computer Society. doi:
10.1109/MS.2023.3248401.

P. Tembhekar, M. Devan, and J. Jeyaraman, “Role of GenAl in Automated Code
Generation within DevOps Practices: Explore how Generative Al,” Journal of Knowledge
Learning and Science Technology ISSN: 2959-6386 (online), vol. 2, no. 2, pp. 500-512,
Oct. 2023, doi: 10.60087/jklst.vol2.n2.p512.

Z. Gao, “A review on statistical language and neural network based code completion,”
Applied and Computational Engineering, vol. 22, no. 1, pp. 233-239, Oct. 2023, doi:
10.54254/2755-2721/22/20231222.

M. Atemkeng, S. Hamlomo, B. Welman, N. Oyetunji, P. Ataei, and J. L. K. E. Fendji,
“Ethics of Software Programming with Generative Al: Is Programming without
Generative Al always radical?,” Aug. 2024, doi:
https://doi.org/10.48550/arXiv.2408.10554.

N. M. Dr. Naveenkumar Jayakumar, “Role of Machine Learning & Artificial
Intelligence Techniques in Software Testing,” Turkish Journal of Computer and
Mathematics Education (TURCOMAT), vol. 12, no. 6, pp. 2913-2921, Apr. 2021, doi:
10.17762/turcomat.v1216.5800.

M. A. Job, “Automating and Optimizing Software Testing using Artificial Intelligence
Techniques,” International Journal of Advanced Computer Science and Applications, vol.
12, no. 5, 2021, doi: 10.14569/1IJACSA.2021.0120571.

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

S. Gautam, A. Khunteta, and P. Sharma, “A Review on Software Testing Using Machine
Learning Techniques,” ECS Trans, vol. 107, no. 1, pp. 3393-3406, Apr. 2022, doi:
10.1149/10701.3393ecst.

Dusica Marijan; Arnaud Gotlieb, “Software Testing for Machine Learning,” 2022, doi:
10.48550/arxiv.2205.00210.

L. Kharb, “Automated Testing in Machine Learning Systems,” International Journal of
Progressive Research in Engineering Management and Science, Nov. 2023, doi:
10.58257/1JPREMS32282.

J. Calle and C. Zapata, “QUARE: Towards a Question-Answering Model for
Requirements Elicitation,” Jul. 29, 2022. doi: 10.21203/rs.3.rs-1872151/v1.

C. Cheligeer, J. Huang, G. Wu, N. Bhuiyan, Y. Xu, and Y. Zeng, “Machine learning in
requirements elicitation: a literature review,” Artificial Intelligence for Engineering
Design, Analysis and Manufacturing, vol. 36, p. €32, Oct. 2022, doi:
10.1017/S0890060422000166.

Zarina Che Embi, Khaleduzzaman, and Ng Kok Why, “A Systematic Review on Natural
Language Processing and Machine Learning Approaches to Improve Requirements
Specification in Software Requirements Engineering,” International Journal of Membrane
Science and Technology, vol. 10, no. 2, pp. 1563—-1577, Sep. 2023, doi:
10.15379/ijmst.v10i2.1828.

W. Alhoshan, R. Batista-Navarro, and L. Zhao, “Towards a Corpus of Requirements
Documents Enriched with Semantic Frame Annotations,” in 2018 IEEE 26th International
Requirements Engineering Conference (RE), IEEE, Aug. 2018, pp. 428—431. doi:
10.1109/RE.2018.00055.

C. Liu, Z. Zhao, L. Zhang, and Z. Li, “Automated Conditional Statements Checking for
Complete Natural Language Requirements Specification,” Applied Sciences, vol. 11, no.
17, p. 7892, Aug. 2021, doi: 10.3390/app11177892.

Q. Lu, L. Zhu, J. Whittle, and J. B. Michael, “Software Engineering for Responsible AL”
Computer (Long Beach Calif), vol. 56, no. 4, pp. 13—-16, Apr. 2023, doi:
10.1109/MC.2023.3242055.

R. Khankhoje, “Quality Challenges and Imperatives in Smart Al Software,” in Soft
Computing, Artificial Intelligence and Applications, Academy & Industry Research
Collaboration Center, Dec. 2023, pp. 143—154. doi: 10.5121/csit.2023.132412.

A. Barredo Arrieta et al., “Explainable Artificial Intelligence (XAI): Concepts,
taxonomies, opportunities and challenges toward responsible AL,” Information Fusion,
vol. 58, pp. 82—115, Jun. 2020, doi: 10.1016/.inffus.2019.12.012.

E. A. Abdelnabi, A. M. Maatuk, and M. Hagal, “Generating UML Class Diagram from
Natural Language Requirements: A Survey of Approaches and Techniques,” in 2021
IEEFE Ist International Maghreb Meeting of the Conference on Sciences and Techniques
of Automatic Control and Computer Engineering MI-STA, IEEE, May 2021, pp. 288-293.
doi: 10.1109/MI-STA52233.2021.9464433.

0. MacMillan-Scott and M. Musolesi, “(Ir)rationality and cognitive biases in large
language models,” R Soc Open Sci, vol. 11, no. 6, Jun. 2024, doi: 10.1098/rs0s.240255.
R. Dhar, K. Vaidhyanathan, and V. Varma, “Can LLMs Generate Architectural Design
Decisions? -An Exploratory Empirical study,” Mar. 2024, [Online]. Available:
http://arxiv.org/abs/2403.01709

[28]

[29]

[30]

[31]
[32]
[33]
[34]

[35]

[36]

[37]

[38]
[39]

M. Tsilimigkounakis, “Exploring the utilization of LLM tools in Software Architecture,”
Athens, Nov. 2024.

T. Eisenreich, S. Speth, and S. Wagner, “From Requirements to Architecture: An Al-
Based Journey to Semi-Automatically Generate Software Architectures,” Jan. 2024, doi:
10.1145/3643660.3643942.

S. Yang and H. Sahraoui, “Towards automatically extracting UML class diagrams from
natural language specifications,” in Proceedings - ACM/IEEE 25th International
Conference on Model Driven Engineering Languages and Systems, MODELS 2022:
Companion Proceedings, Association for Computing Machinery, Inc, Oct. 2022, pp. 396—
403. doi: 10.1145/3550356.3561592.

I. Altawaiha and A. Al-Hgaish, “ClassDiagGen Tool: Fine-Tuning the GPT-3 Model for
Auto- mated Class Diagram Generation from Textual Descriptions,” May 02, 2024. doi:
10.21203/rs.3.rs-4350615/v1.

Ian. Sommerville, Software engineering. Pearson, 2011.

P. Kumar and Y. Singh, “A Software Reliability Growth Model for Three-Tier Client
Server System.”

M. Yener and A. Theedom, “Model View Controller Pattern,” 2015. [Online]. Available:
WWW.Wrox.com/go/

T. Engel, M. Langermeier, B. Bauer, and A. Hofmann, “Evaluation of microservice
architectures: A metric and tool-based approach,” in Lecture Notes in Business
Information Processing, Springer Verlag, 2018, pp. 74—89. doi: 10.1007/978-3-319-
92901-9 8.

J. Bogner, S. Wagner, and A. Zimmermann, “Towards a practical maintainability quality
model for serviceand microservice-based systems,” in ACM International Conference
Proceeding Series, Association for Computing Machinery, Sep. 2017, pp. 195-198. doi:
10.1145/3129790.3129816.

J. Bogner, S. Wagner, and A. Zimmermann, “Automatically measuring the maintainability
of service- and microservice-based systems - a literature review,” in ACM International
Conference Proceeding Series, Association for Computing Machinery, Oct. 2017, pp.
107-115. doi: 10.1145/3143434.3143443.

C. Richardson, “Microservices Patterns with Examples in JAVA,” 2019.

Malhotra Nishant, “Microservices Design Patterns,” 2023. [Online]. Available:
www.valuelabs.com

	1. Introduction
	1.1 Evolution of AI
	1.2 AI in Software Engineering
	1.2.1 Automated Code Generation
	1.2.2 Automated Testing
	1.2.3 Understanding Software Requirements using Natural Language Processing

	1.3 Challenges of AI in Software Engineering

	2. AI-Assisted Software Architecture
	2
	2.1 Related Work
	2.2 Architectural Patterns
	2.2.1 Client-Server Architecture
	2.2.2 Three-Tier Architecture
	2.2.3 Model-View-Controller (MVC) Architecture
	2.2.4 Microservices Architecture

	2.3 Selected Architectural Patterns
	2.4 Motivation of Our Approach
	2.5 Research Questions

	3. Approach
	3
	3.1 Deployment, setup and technologies used
	3.1.1 Hardware Specifications
	3.1.2 Selecting the UML Output Format from LLMs
	3.1.2.1 PlantUML

	3.1.3 Retrieval Augmented Generation (RAG)
	3.1.3.1 RAG Overview
	3.1.3.2 Embeddings in RAG Systems
	3.1.3.3 RAG Techniques
	3.1.3.4 Our RAG Pipeline

	3.2 The DCC Experiment, revisited
	3.2.1 Architectures Considered
	3.2.2 Case Study: DCC (Dummy Coordinate Converter) Application
	3.2.3 The Prompt
	3.2.4 LLM Selection
	3.2.5 RAG Material
	3.2.6 Evaluation Process
	3.2.7 Scenarios Performed
	3.2.8 Reference Architectures

	3.3 The MyCharts Experiment
	3.3.1 Architectures Considered
	3.3.2 Case Study: MyCharts Application
	3.3.3 Evaluation Process
	3.3.4 Metrics Considered for Objective Evaluation
	3.3.5 The Prompt
	3.3.6 LLM Selection
	3.3.7 RAG Material
	3.3.8 Scenarios Performed
	3.3.9 Experiment Pipeline
	3.3.10 Reference Architecture

	3.4 MyCharts 2-Prompt Experiment
	3.4.1 Parameters
	3.4.2 Second Prompt
	3.4.3 Experiment Pipeline

	4. Results
	4
	4.1 Web Based Evaluation Platform
	4.2 DCC Experiment
	4.2.1 Typical Cases
	4.2.2 Evaluation Results
	4.2.3 Results Discussion

	4.3 MyCharts Experiment
	4.3.1 Typical Cases
	4.3.2 Evaluation Results
	4.3.3 Metric Performance
	4.3.4 Metric Hallucination
	4.3.5 Results Discussion

	4.4 MyCharts 2-Prompt Experiment
	4.4.1 Typical Cases
	4.4.2 Evaluation Results

	5. Discussion
	5
	5.1 Conclusions
	5.2 Future Work

	6. Appendix
	6
	6.1 Appendix A (SRS_v1 for DCC Application)
	6.2 Appendix B (SRS_v2 for DCC Application)
	6.3 Appendix C (SRS for MyCharts Application)

	7. References

