
NATIONAL TECHNICAL UNIVERSITY OF ATHENS
SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING
DIVISION OF COMPUTER SCIENCE
SOFTWARE ENGINEERING LAB

Investigation of AI tools Performance in the
Definition of Microservices Software

Architectures

Diploma Thesis
Of

GEORGIOS SOTIROPOULOS

Supervisor: Vassilios Vescoukis, Professor, NTUA

Athens, July 2025

NATIONAL TECHNICAL UNIVERSITY OF ATHENS
SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING
DIVISION OF COMPUTER SCIENCE
SOFTWARE ENGINEERING LAB

Investigation of AI tools Performance in the
Definition of Microservices Software

Architectures

Diploma Thesis
Of

GEORGIOS SOTIROPOULOS

Supervisor: Vassilios Vescoukis, Professor, NTUA

Approved by the examination committee on the 4th July 2025.

V.Vescoukis G.Stamou N.Papaspyrou
 Professor, NTUA Professor, NTUA Professor, NTUA

Athens, July 2025

...................................
Sotiropoulos Georgios

Graduate of School of Electrical and Computer Engineering, National
Technical University of Athens

Copyright © - Sotiropoulos Georgios, 2025
All rights reserved

You may not copy, reproduce, distribute, publish, display, modify, create derivative works,
transmit, or in any way exploit this thesis or part of it for commercial purposes. You may
reproduce, store or distribute this thesis for non-profit educational or research purposes, provided
that the source is cited, and the present copyright notice is retained. Inquiries for commercial use
should be addressed to the original author.

The ideas and conclusions presented in this paper are the author’s and do not necessarily reflect
the official views of the National Technical University of Athens.

Περίληψη

 Ο σχεδιασμός της αρχιτεκτονικής λογισμικού αποτελεί ένα καθοριστικό βήμα στον
κύκλο ζωής ανάπτυξης λογισμικού, γεφυρώνοντας τις απαιτήσεις του λογισμικού με την
υλοποίηση του συστήματος μέσω του καθορισμού δομών υψηλού επιπέδου. Ο σχεδιασμός της
αρχιτεκτονικής παραμένει μια απαιτητική, χρονοβόρα και επιρρεπής σε σφάλματα διαδικασία. Η
παρούσα εργασία εξετάζει την απόδοση εργαλείων τεχνητής νοημοσύνης (AI), και
συγκεκριμένα των Large Language Models (LLMs), στην αυτόματη παραγωγή αρχιτεκτονικών
λογισμικού με έμφαση σε συστήματα βασισμένα σε Microservices. Βασιζόμενη σε προηγούμενη
έρευνα, η μελέτη αυτή διερευνά πώς διαφορετικές μορφές εισόδου, από απλό κείμενο
απαιτήσεων έως λεπτομερή έγγραφα προδιαγραφών (SRS), η επιλογή μοντέλου και οι τεχνικές
Retrieval-Augmented Generation (RAG), επηρεάζουν την ποιότητα και τη συμμόρφωση των
αρχιτεκτονικών σχεδιασμών που παράγονται από την τεχνητή νοημοσύνη σε σχέση με τις
απαιτήσεις του λογισμικού. Εφαρμόζουμε ένα πλαίσιο αξιολόγησης βασισμένο σε εκτιμήσεις
ειδικών του πεδίου και εισάγουμε ένα σύνολο αντικειμενικών ποσοτικοποιημένων δεικτών με
στόχο τη μετάβαση σε μια αυτόματη διαδικασία αξιολόγησης. Επιπλέον, διερευνάται εάν
μικρότερα, τοπικά φιλοξενούμενα LLMs μπορούν να αποτελέσουν πρακτικές εναλλακτικές
λύσεις σε εμπορικά διαθέσιμα εργαλεία AI. Τα αποτελέσματα προσφέρουν σημαντικές γνώσεις
για τη δυνατότητα της τεχνητής νοημοσύνης να βοηθήσει στο στάδιο του αρχιτεκτονικού
σχεδιασμού στην ανάπτυξη λογισμικού, ενισχύοντας την αποδοτικότητα και την ποιότητα του
σχεδιασμού, ενώ παράλληλα επαναπροσδιορίζεται ο ρόλος των μηχανικών λογισμικού σε
συνεργατικά περιβάλλοντα ανθρώπου – τεχνητής νοημοσύνης. Η εργασία αυτή συμβάλλει στον
αναδυόμενο τομέα της υποβοηθούμενης από AI, τεχνολογίας λογισμικού και σκιαγραφεί
μελλοντικές ερευνητικές κατευθύνσεις για την περαιτέρω ενσωμάτωση της αυτοματοποίησης
στον σχεδιασμό πολύπλοκων συστημάτων.

Λέξεις Κλειδιά: Large Language Models (LLMs), αρχιτεκτονική λογισμικού, τεχνολογία
λογισμικού, τεχνητή νοημοσύνη (AI), Retrieval-Augmented Generation (RAG), UML,
Microservices, Software Requirements Specification (SRS).

Abstract

 The design of software architecture is a pivotal step in the software development
lifecycle, bridging user requirements and system implementation through the definition of high-
level structural designs. Despite its critical importance, architectural design remains a
challenging, time-intensive, and error-prone process. This thesis investigates the performance of
artificial intelligence (AI) tools, specifically large language models (LLMs), in automating the
generation of software architectures focusing on Microservices-based systems. Building on prior
research, this study explores how different input formats, ranging from plain-text requirements to
detailed specification documents, model selection and Retrieval-Augmented Generation (RAG)
techniques, affect the quality and compliance of AI-generated architectural designs with the
software requirements. We apply an evaluation framework based on assessments from domain
experts and we introduce a set of objective metrics to pave the road towards an automatic
evaluation process. Additionally, this study explores whether smaller, locally hosted LLMs can
serve as practical alternatives to commercially available AI tools. The results provide insights
into the potential for AI to transform the architectural design phase of software development,
enhancing design efficiency and quality while reshaping the role of software architects in
collaborative human-AI workflows. This work contributes to the growing field of AI-assisted
software engineering and outlines future research avenues to further integrate intelligent
automation into complex system design.

Keywords: Large Language Models (LLMs), software engineering, software architecture,
artificial intelligence (AI), Retrieval-Augmented Generation (RAG), UML, Microservices,
Software Requirements Specification (SRS).

Acknowledgements

 I would like to express my sincere gratitude to my Professor, Mr. Vassilios Vescoukis,
for his valuable guidance, support, and constructive feedback throughout this thesis. His
expertise was crucial in shaping the direction and outcome of my work.

 I am also grateful to PhD Researcher Mr. Christos Hadjichristofi, whose advice,
assistance and ongoing support played a key role in the development of this thesis.

 As this diploma thesis marks the completion of my studies at the School of Electrical and
Computer Engineering at the National Technical University of Athens (NTUA), I would like to
extend my thanks to my family and friends. Their continuous support and encouragement have
been with me every step of the way, making this journey both meaningful and fulfilling.

 Finally, I would like to thank all the teaching staff at NTUA for sharing their knowledge
and promoting a motivating and inspiring academic environment throughout these years.

Table of Contents

1. Introduction ... 29

1.1 Evolution of AI ... 30
1.2 AI in Software Engineering .. 30

1.2.1 Automated Code Generation... 31
1.2.2 Automated Testing .. 32
1.2.3 Understanding Software Requirements using Natural Language Processing....... 33

1.3 Challenges of AI in Software Engineering ... 34
2. AI-Assisted Software Architecture ... 37

2.1 Related Work .. 37
2.2 Architectural Patterns.. 39

2.2.1 Client-Server Architecture .. 39
2.2.2 Three-Tier Architecture .. 40
2.2.3 Model-View-Controller (MVC) Architecture... 41
2.2.4 Microservices Architecture ... 42

2.3 Selected Architectural Patterns ... 44
2.4 Motivation of Our Approach .. 44
2.5 Research Questions ... 45

3. Approach ... 47
3.1 Deployment, setup and technologies used .. 47

3.1.1 Hardware Specifications ... 47
3.1.2 Selecting the UML Output Format from LLMs ... 49
3.1.3 Retrieval Augmented Generation (RAG) ... 51

3.2 The DCC Experiment, revisited .. 56
3.2.1 Architectures Considered .. 56
3.2.2 Case Study: DCC (Dummy Coordinate Converter) Application 56
3.2.3 The Prompt.. 57
3.2.4 LLM Selection .. 57
3.2.5 RAG Material.. 58
3.2.6 Evaluation Process .. 59
3.2.7 Scenarios Performed ... 59
3.2.8 Reference Architectures .. 60

3.3 The MyCharts Experiment .. 63
3.3.1 Architectures Considered .. 63
3.3.2 Case Study: MyCharts Application .. 63
3.3.3 Evaluation Process .. 65
3.3.4 Metrics Considered for Objective Evaluation... 66
3.3.5 The Prompt.. 69
3.3.6 LLM Selection .. 72
3.3.7 RAG Material.. 74
3.3.8 Scenarios Performed ... 74
3.3.9 Experiment Pipeline .. 76
3.3.10 Reference Architecture ... 77

3.4 MyCharts 2-Prompt Experiment ... 78
3.4.1 Parameters ... 78
3.4.2 Second Prompt .. 78
3.4.3 Experiment Pipeline .. 80

4. Results ... 81
4.1 Web Based Evaluation Platform ... 81
4.2 DCC Experiment ... 84

4.2.1 Typical Cases .. 84
4.2.2 Evaluation Results .. 91
4.2.3 Results Discussion .. 96

4.3 MyCharts Experiment ... 98
4.3.1 Typical Cases .. 98
4.3.2 Evaluation Results .. 101
4.3.3 Metric Performance .. 107
4.3.4 Metric Hallucination ... 110
4.3.5 Results Discussion .. 111

4.4 MyCharts 2-Prompt Experiment ... 112
4.4.1 Typical Cases .. 112
4.4.2 Evaluation Results .. 114

5. Discussion ... 118
5.1 Conclusions ... 118
5.2 Future Work .. 119

6. Appendix ... 121
6.1 Appendix A (SRS_v1 for DCC Application) ... 121
6.2 Appendix B (SRS_v2 for DCC Application).. 130
6.3 Appendix C (SRS for MyCharts Application) .. 142

7. References ... 151

Table of Figures

Figure 2.1: Client-Server Model ... 40
Figure 2.2: Three-Tier Architecture Model .. 41
Figure 2.3: Model-View-Controller (MVC) Architecture Model ... 42
Figure 2.4: Microservices Architecture Model ... 43
Figure 3.1: Example of PlantUML Code .. 51
Figure 3.2: RAG Method Illustrated ... 53
Figure 3.3: Scenarios Performed - DCC ... 60
Figure 3.4: Client Server Architecture (DCC App) .. 61
Figure 3.5: Three-Tier Architecture (DCC App) .. 62
Figure 3.6: MVC Architecture (DCC App) .. 62
Figure 3.7: Scenarios graph - MyCharts ... 75
Figure 3.8: MyCharts Experiment Pipeline .. 76
Figure 3.9: MyCharts Reference Architecture .. 77
Figure 3.10: 2-Prompt Experiment Pipeline ... 80
Figure 4.1: Web Based Evaluation Platform - SAAI .. 82
Figure 4.2: Web Based Evaluation Platform - SAAI .. 83
Figure 4.3: DCC Experiment (ID = 67) .. 84
Figure 4.4: DCC Experiment (ID = 79) .. 85
Figure 4.5: DCC Experiment (ID = 89) .. 86
Figure 4.6: DCC Experiment (ID = 74) .. 87
Figure 4.7: DCC Experiment (ID = 107) .. 88
Figure 4.8: DCC Experiment (ID = 75) .. 89
Figure 4.9: DCC Experiment (ID = 14) .. 90
Figure 4.10: DCC Experiment (ID = 22) .. 90
Figure 4.11: DCC Experiment (ID = 17) .. 91
Figure 4.12: DCC Experiment - Model Performance ... 92
Figure 4.13: DCC Experiment - Model Performance No RAG .. 93
Figure 4.14: DCC Experiment - Model Performance with RAG ... 93
Figure 4.15: DCC Experiment - NoRAG vs RAG ... 93
Figure 4.16: DCC Experiment - SRSv1 vs SRSv2 ... 94
Figure 4.17: DCC Experiment - Model Performance SRS ... 94
Figure 4.18: DCC Experiment - Model Performance - FR-NFR .. 95
Figure 4.19: DCC Experiment - FR/NFR vs SRS .. 95
Figure 4.20: DCC Experiment - Performance per Architecture ... 96

Figure 4.21: MyCharts Experiment – FR/NFR (ID =16) ... 98
Figure 4.22: MyCharts Experiment - SRS (ID = 21) .. 99
Figure 4.23: MyCharts Experiment - SRS (ID = 8) .. 99
Figure 4.24: MyCharts - FR/NFR (ID = 14) ... 100
Figure 4.25: MyCharts Experiment - FR/NFR (ID = 12) ... 100
Figure 4.26: MyCharts Experiment - FR/NFR (ID = 6) ... 101
Figure 4.27: MyCharts Experiment - Model Performance (FR/NFR) .. 102
Figure 4.28: MyCharts Experiment - Model Performance (SRS) .. 102
Figure 4.29: MyCharts Experiment - FR/NFR vs SRS... 103
Figure 4.30: MyCharts Experiment - Model Performance without RAG (FR/NFR) 104
Figure 4.31: MyCharts Experiment - Model Performance with RAG (FR/NFR) 104
Figure 4.32: MyCharts Experiment - NoRAG vs RAG (FR/NFR) .. 105
Figure 4.33: MyCharts Experiment - Model Performance without RAG (SRS) 105
Figure 4.34: MyCharts Experiment - Model Performance with RAG (SRS) 106
Figure 4.35: MyCharts Experiment - NoRAG vs RAG (SRS) ... 106
Figure 4.36: MyCharts Experiment - Metric Correlation - Responsibility Distribution 107
Figure 4.37: MyCharts Experiment - Metric Correlation - Data Management 108
Figure 4.38: MyCharts Experiment - Metric Correlation - Data Consistency 108
Figure 4.39: MyCharts Experiment - Metric Correlation – Coupling .. 109
Figure 4.40: MyCharts Experiment - Metric Correlation - Cohesion ... 109
Figure 4.41: MyCharts Experiment - Metric Hallucination.. 110
Figure 4.42: MyCharts 2-prompt Experiment - Mistral (Response 1) .. 112
Figure 4.43: MyCharts 2-prompt Experiment - Mistral (Response 2) .. 113
Figure 4.44: MyCharts 2-prompt Experiment - Deepseek-r1 (Response 1) 113
Figure 4.45: MyCharts 2-prompt Experiment - Deepseek-r1 (Response 2) 114
Figure 4.46: MyCharts 2-prompt Experiment (claudeSonnet3.7) .. 115
Figure 4.47: MyCharts 2-prompt Experiment (deepseek-r1) ... 115
Figure 4.48: MyCharts 2-prompt Experiment (gpt4o) .. 115
Figure 4.49: MyCharts 2-prompt Experiment (o1) ... 116
Figure 4.50: MyCharts 2-prompt Experiment (mistral-online) .. 116

GREK EXTENDED ABSTRACT

 Ο κύκλος ζωής της ανάπτυξης λογισμικού είναι μια πολύπλοκη διαδικασία πολλών
σταδίων, που εκτείνεται από τη συλλογή απαιτήσεων του λογισμικού έως την ανάπτυξη και
συντήρηση πλήρως λειτουργικών και σύνθετων συστημάτων. Περιλαμβάνει βασικές φάσεις
όπως ανάλυση απαιτήσεων, σχεδιασμό αρχιτεκτονικής, υλοποίηση, δοκιμές, εγκατάσταση και
συντήρηση.

 Το στάδιο του σχεδιασμού της αρχιτεκτονικής του συστήματος αποτελεί κρίσιμο το
σημείο μετάβασης από τις αφηρημένες απαιτήσεις στην πρακτική υλοποίηση. Σε αυτό το
στάδιο, οι μηχανικοί λογισμικού ορίζουν τις βασικές δομές και σχέσεις που θα αποτελέσουν τον
σκελετό του συστήματος, δημιουργώντας μοντέλα (συχνά με χρήση της γλώσσας UML) τα
οποία λειτουργούν ως καθοδηγητικά σχέδια για όλες τις ομάδες ανάπτυξης. Η αρχιτεκτονική δεν
ικανοποιεί μόνο τις λειτουργικές απαιτήσεις, αλλά και μη λειτουργικές όπως η επεκτασιμότητα
και η απόδοση. Μία σωστή αρχιτεκτονική μειώνει τα λάθη, θέτει σαφή τεχνικά πρότυπα και
παρέχει σταθερή βάση για μελλοντική εξέλιξη. Ωστόσο, ο σχεδιασμός της αρχιτεκτονικής και η
δημιουργία των αντίστοιχων διαγραμμάτων είναι μια χρονοβόρα και ευάλωτη σε σφάλματα
διαδικασία, συχνά λόγω παρερμηνειών αρχιτεκτονικών αρχών, με αποτέλεσμα καθυστερήσεις
και αναποτελεσματικότητα σε όλη τη διαδικασία ανάπτυξης.

 Η ραγδαία πρόοδος της τεχνητής νοημοσύνης, και ιδιαίτερα των μεγάλων γλωσσικών
μοντέλων (LLMs) βασισμένων στη βαθιά μάθηση, έχει ανοίξει νέες δυνατότητες
αυτοματοποίησης εργασιών που μέχρι πρόσφατα απαιτούσαν ανθρώπινη παρέμβαση. Αυτά τα
μοντέλα, που εκπαιδεύονται σε τεράστιους όγκους δεδομένων, έχουν δείξει υψηλή ικανότητα
κατανόησης και παραγωγής φυσικής γλώσσας. Ήδη αξιοποιούνται για εντοπισμό σφαλμάτων
και δημιουργία κώδικα, γεγονός που εγείρει το ερώτημα: μπορούν να χρησιμοποιηθούν και για
την αυτοματοποιημένη παραγωγή αρχιτεκτονικών σχεδίων και UML διαγραμμάτων; Εάν
μπορούν να μετατρέψουν γραπτές απαιτήσεις σε οργανωμένα, συνεπή αρχιτεκτονικά μοντέλα
σύμφωνα με συγκεκριμένα πρότυπα, θα λύσουν μια από τις πιο απαιτητικές φάσεις του
σχεδιασμού λογισμικού.

 Η παρούσα μελέτη εξετάζει την ικανότητα των LLMs να παράγουν αρχιτεκτονικές
λογισμικού, σε μορφή διαγραμμάτων UML, με έμφαση στα Microservices. Χτίζοντας πάνω σε
προηγούμενη έρευνα, δοκιμάζουμε διάφορες μορφές εισόδου (από απλές περιγραφές
απαιτήσεων μέχρι πλήρη έγγραφα Software Requirements Specification) αξιολογώντας πώς το
εκάστοτε μοντέλο και η χρήση τεχνικών ενίσχυσης ανάκτησης γνώσης (Retrieval-Augmented
Generation) επηρεάζουν την ποιότητα των παραγόμενων σχεδίων.

 Κεντρικό ερώτημα αποτελεί το κατά πόσο οι παραγόμενες αρχιτεκτονικές ικανοποιούν
πλήρως τις απαιτήσεις και τηρούν τις αρχές σχεδίασης. Εισάγουμε σύνολο κριτηρίων
αξιολόγησης για ανθρώπινη αξιολόγηση και προτείνουμε ποσοτικοποιημένους δείκτες
αντικειμενικής αξιολόγησης βασισμένες σε προηγούμενες έρευνες. Παράλληλα, εξετάζουμε εάν

μικρότερα, τοπικά εκτελούμενα LLMs μπορούν να αποτελέσουν βιώσιμες εναλλακτικές έναντι
εμπορικών λύσεων.
Διερευνώντας τις δυνατότητες και τους περιορισμούς της τεχνητής νοημοσύνης στον σχεδιασμό
αρχιτεκτονικών λογισμικού, η παρούσα έρευνα επικεντρώνεται στα εξής ερευνητικά ερωτήματα:

1. Ποια μορφή εξόδου προσφέρει τη βέλτιστη απεικόνιση αρχιτεκτονικών από LLMs;
Διερευνούμε ποια μορφή αναπαράστασης (όπως XMI, εικόνες, PlantUML ή Mermaid
διαγράμματα) επιτρέπει στα LLMs να παράγουν αρχιτεκτονικά σχέδια υψηλής ποιότητας
και ακρίβειας.

2. Βελτιώνει ένα δομημένο έγγραφο SRS την ποιότητα των παραγώμενων
διαγραμμάτων από τα LLMs;
Συγκρίνουμε τα αποτελέσματα των μοντέλων όταν λαμβάνουν ως είσοδο πλήρες έγγραφο
Software Requirements Specification σε σχέση με απλές λίστες απαιτήσεων. Εξετάζουμε
κατά πόσο μπορούν να κατανοήσουν και να μεταφράσουν σύνθετη επιχειρησιακή λογική
και διασυνδεόμενες απαιτήσεις σε συνεκτικό αρχιτεκτονικό σχεδιασμό.

3. Μπορούν τα LLMs να παράγουν αρχιτεκτονικές Microservices για πιο σύνθετες

εφαρμογές;
Ελέγχουμε την ικανότητα των LLMs να διασπούν σύνθετες απαιτήσεις σε κατάλληλες
μικρο-υπηρεσίες (microservices), τηρώντας τις αρχές σχεδίασης, όπως τα όρια υπηρεσιών,
οι σχέσεις μεταξύ τους και τα πρότυπα επικοινωνίας.

4. Ποια κριτήρια αξιολόγησης είναι καταλληλότερα για αρχιτεκτονικές Microservices;

Εντοπίζουμε τα κενά των υφιστάμενων μεθόδων αξιολόγησης και αναπτύσσουμε
εξειδικευμένα κριτήρια που ανταποκρίνονται στις ιδιαιτερότητες του σχεδιασμού
Microservices.

5. Πώς μπορούμε να υπολογίσουμε αντικειμενικούς δείκτες αξιολόγησης για τις

παραγόμενες αρχιτεκτονικές;
Με στόχο την αξιόπιστη αξιολόγηση της ποιότητας των παραγόμενων αρχιτεκτονικών,
προτείνουμε ποσοτικοποιημένους δείκτες που εισάγουν μία αντικειμενική διάσταση στην
αξιολόγηση της ποιότητας των παραγόμενων διαγραμμάτων.

6. Παρουσιάζουν τα LLMs «ψευδαισθήσεις» όταν υπολογίζουν τους δείκτες μέτρησης

για τα δικά τους διαγράμματα κλάσεων;
Εξετάζουμε την ακρίβεια των υπολογισμών που κάνουν τα μοντέλα όταν καλούνται να
υπολογίσουν τους δείκτες μέτρησης για τα διαγράμματα που τα ίδια παρείχαν, εντοπίζοντας
τυχόν σφάλματα κατανόησης ή αυθαίρετες απαντήσεις.

7. Πώς επηρεάζει η τεχνική Retrieval-Augmented Generation (RAG) την ποιότητα

των διαγραμμάτων;
Ερευνάμε εάν η αξιοποίηση εξωτερικού πληροφοριακού περιεχομένου μέσω RAG ενισχύει
την ακρίβεια, τη συνέπεια και τη βαθύτερη κατανόηση του πλαισίου από το μοντέλο.

8. Πώς επηρεάζει η μία δεύτερη ερώτηση στα LLMs την ποιότητα του αρχιτεκτονικού
σχεδιασμού;
Μελετάμε εάν διαδοχικές αλληλεπιδράσεις, χωρίς προσθήκη εξωτερικής γνώσης, οδηγούν
σε προοδευτικά βελτιωμένο σχεδιασμό. Αξιολογούμε τη συνεισφορά της επαναληπτικής
βελτίωσης ως προς την πληρότητα, την ακρίβεια και τη συνοχή του τελικού αποτελέσματος.

 Προκειμένου να προσπαθήσουμε να απαντήσουμε στα παραπάνω ερευνητικά
ερωτήματα, σχεδιάσαμε και υλοποιήσαμε μια σειρά πειραμάτων ώστε να εντοπίσουμε τη
διαφοροποίηση στην ποιότητα των παραγόμενων αρχιτεκτονικών διαγραμμάτων.

Οι παράμετροι που τροποποιήθηκαν:

• Το υπό ανάπτυξη λογισμικό:
DCC (λογισμικό με περιορισμένες και απλές απαιτήσεις) και MyCharts (πιο σύνθετο
λογισμικό με αυξημένο πλήθος και πολυπλοκότητα απαιτήσεων).

• Η μορφή παρουσίασης των απαιτήσεων προς τα LLMs:
Είτε ως απλή λίστα λειτουργικών και μη λειτουργικών απαιτήσεων, είτε ως πλήρως
δομημένο έγγραφο Software Requirements Specification (SRS).

• Η ζητούμενη αρχιτεκτονική προσέγγιση:
Client-Server, Three-Tier, MVC ή Microservices.

• Το γλωσσικό μοντέλο (LLM) που χρησιμοποιήθηκε για κάθε δοκιμή.
• Η χρήση της τεχνικής Retrieval-Augmented Generation (RAG):

Αν χρησιμοποιήθηκε ή όχι, καθώς και ποιο συγκεκριμένο αρχείο RAG αξιοποιήθηκε σε
κάθε περίπτωση.

Τα πειράματα που υλοποιήθηκαν και ο σκοπός τους:

1. Πείραμα DCC – Ανασκόπηση
Εξετάζει κατά πόσο τα LLMs αποδίδουν καλύτερα όταν λαμβάνουν ως είσοδο ένα
δομημένο έγγραφο Προδιαγραφών Απαιτήσεων Λογισμικού (SRS), σε σύγκριση με
απλές λίστες λειτουργικών και μη λειτουργικών απαιτήσεων. Για τον σκοπό αυτό,
αναπαράγεται το αρχικό πείραμα της δουλειάς στην οποία βασιστήκαμε, αυτή τη φορά
με χρήση SRS.

2. Πείραμα MyCharts

Στόχος του πειράματος είναι να αξιολογηθεί η ικανότητα των LLMs στο να σχεδιάζουν
αρχιτεκτονικές για μια πιο σύνθετη εφαρμογή, βασισμένη στο πρότυπο αρχιτεκτονικής
Microservices. Το πείραμα αυτό αποτελεί την κύρια εστίαση της μελέτης.

3. Πείραμα MyCharts με 2 Διαδοχικά Prompts

Σε αυτό το πείραμα εξετάζουμε πειραματικά εάν η χρήση ενός δεύτερου, δομημένου
prompt προς το LLM μπορεί να βελτιώσει την ποιότητα των παραγόμενων
διαγραμμάτων.

Σε αυτό το σημείο, παρουσιάζουμε συνοπτικά την ανάλυση των επιμέρους πειραμάτων:

Πείραμα DCC – Ανασκόπηση

 Το πείραμα DCC επικεντρώνεται στην αξιολόγηση της επίδρασης που έχει η μορφή
παρουσίασης των απαιτήσεων στην απόδοση των Μεγάλων Γλωσσικών Μοντέλων (LLMs)
κατά τη δημιουργία αρχιτεκτονικών λογισμικού. Η εφαρμογή που χρησιμοποιήθηκε, με την
ονομασία Dummy Coordination Conversion (DCC), είναι ένα σχετικά απλό σύστημα
διαχείρισης συντεταγμένων σε καρτεσιανή και πολική μορφή, το οποίο επιτρέπει στους χρήστες
να μετατρέπουν, αποθηκεύουν, ανακτούν, τροποποιούν και διαγράφουν ομάδες συντεταγμένων.

 Το πείραμα υλοποιήθηκε εξετάζοντας τρεις διαφορετικές αρχιτεκτονικές προσεγγίσεις:
Client-Server, Three-Tier και Model-View-Controller (MVC). Ο στόχος ήταν να διαπιστωθεί
εάν τα LLMs μπορούν να αποδώσουν καλύτερες αρχιτεκτονικές λύσεις όταν τους παρέχεται ένα
δομημένο έγγραφο Προδιαγραφών Απαιτήσεων Λογισμικού (SRS), σε σύγκριση με απλές
λίστες λειτουργικών και μη λειτουργικών απαιτήσεων (FR-NFR lists).

 Η βασική δομή του prompt που χρησιμοποιήθηκε ήταν ίδια με αυτή που είχε εφαρμοστεί
σε προηγούμενο πείραμα προηγούμενης έρευνας, με τη μοναδική διαφοροποίηση να εντοπίζεται
στην αντικατάσταση των λιστών απαιτήσεων με SRS έγγραφα. Χρησιμοποιήθηκε προαιρετικά
RAG (Retrieval-Augmented Generation) με υλικό από το βιβλίο «Software Engineering» (10η
έκδοση) του Ian Sommerville (ίδιο RAG αρχείο σε σύγκριση με προηγούμενο πείραμα).

 Το πείραμα πραγματοποιήθηκε με δύο εκδοχές του εγγράφου SRS: μια συνοπτική και
μία εκτενέστερη, με στόχο να διαπιστωθεί αν το επίπεδο λεπτομέρειας στο έγγραφο επηρεάζει
την ποιότητα και την ακρίβεια των παραγόμενων αρχιτεκτονικών διαγραμμάτων.

 Για την αξιολόγηση των παραγόμενων διαγραμμάτων διατηρήθηκαν τα ίδια κριτήρια με
το προηγούμενο πείραμα, ώστε να εξασφαλιστεί η συνέπεια και η δυνατότητα έγκυρης
σύγκρισης των αποτελεσμάτων. Κάθε διάγραμμα βαθμολογήθηκε από 0 έως 5 με βάση τα
παρακάτω:

1. Συμμόρφωση με την αιτούμενη αρχιτεκτονική
Εξετάστηκε κατά πόσο το παραγόμενο διάγραμμα υλοποιεί σωστά την αρχιτεκτονική που
ζητήθηκε (όπως Client-Server, MVC κ.λπ.). Δόθηκε έμφαση στην ορθή εφαρμογή των
αρχιτεκτονικών αρχών και στην ορθή κατανομή των ευθυνών μεταξύ των κλάσεων.

2. Ορθότητα των σχέσεων μεταξύ κλάσεων

Αξιολογήθηκε η ακρίβεια των σχέσεων (π.χ. συσχετίσεις, εξαρτήσεις, κληρονομήσεις)
μεταξύ των κλάσεων, στο πλαίσιο της αρχιτεκτονικής που ζητήθηκε.

3. Συνοχή και Συζευξιμότητα

Οι αξιολογητές έκριναν το κάθε διάγραμμα ως προς το βαθμό συνοχής (δηλαδή κατά πόσο
κάθε κλάση έχει ενιαίο και σαφώς καθορισμένο σκοπό) και τη συζευξιμότητα (κατά πόσο

ελαχιστοποιούνται οι εξαρτήσεις μεταξύ κλάσεων), επιδιώκοντας υψηλή συνοχή και
χαμηλή συζευξιμότητα.

4. Συνέπεια με τις απαιτήσεις του λογισμικού

Αξιολογήθηκε κατά πόσο το διάγραμμα ανταποκρίνεται στις λειτουργικές και μη
λειτουργικές απαιτήσεις που είχαν δοθεί, είτε με τη μορφή λιστών είτε μέσω SRS εγγράφων.

 Αφού ολοκληρώθηκε η παραγωγή των διαγραμμάτων από τα LLMs, ακολούθησε η
αξιολόγησή τους βάσει των προαναφερθέντων κριτηρίων. Τα βασικά ευρήματα σχετικά με την
ποιότητα των παραγόμενων διαγραμμάτων συνοψίζονται ως εξής:

1. Τα μεγαλύτερα εμπορικά μοντέλα απέδωσαν γενικά καλύτερα από τα μικρότερα, τοπικά
μοντέλα, δημιουργώντας πιο δομημένα και συνεπή διαγράμματα.

2. Η χρήση RAG οδήγησε σε μεικτά αποτελέσματα, ιδιαίτερα όταν συνδυάστηκε με

εκτενείς εισόδους από πλήρη έγγραφα SRS. Στα μεγάλα μοντέλα πολλών παραμέτρων η
επιπλέον πληροφορία λειτούργησε υποστηρικτικά, ενώ σε μικρότερα μοντέλα προκάλεσε
σύγχυση και μείωση της ποιότητας.

3. Κατά τη σύγκριση μεταξύ αναλυτικών και συνοπτικών εκδοχών του SRS, η απόδοση

των μοντέλων παρέμεινε σχετικά σταθερή, γεγονός που υποδηλώνει πως οι πιο εκτενείς
περιγραφές δεν οδηγούν απαραίτητα σε καλύτερης ποιότητας διαγράμματα.

4. Όσον αφορά τη σύγκριση μεταξύ πλήρων SRS εγγράφων και απλών λιστών

λειτουργικών και μη λειτουργικών απαιτήσεων (FR-NFR), τα μεγαλύτερα μοντέλα
ανταποκρίθηκαν καλύτερα στα SRS, δημιουργώντας διαγράμματα υψηλότερης
ποιότητας. Αντίθετα, τα μικρότερα μοντέλα φάνηκε να δυσκολεύονται με το εκτενές
περιεχόμενο και απέδωσαν καλύτερα όταν τους δόθηκαν οι πιο σύντομες και
στοχευμένες λίστες.

5. Ο τύπος της ζητούμενης αρχιτεκτονικής επηρέασε επίσης την ποιότητα των

παραγόμενων διαγραμμάτων. Ιδιαίτερα στην περίπτωση της αρχιτεκτονικής Client-
Server, τα αποτελέσματα αξιολογήθηκαν χαμηλότερα, ενώ αντίθετα, η αρχιτεκτονική
Three-Tier οδήγησε σε υψηλότερες βαθμολογίες.

Η πλήρης περιγραφή του πειράματος, με αναλυτική παρουσίαση όλων των παραμέτρων και των αποτελεσμάτων,
παρατίθεται στο κυρίως αγγλικό κείμενο που ακολουθεί την παρούσα ελληνική περίληψη.

Πείραμα MyCharts

 Στο πείραμα MyCharts, ο στόχος ήταν να διερευνηθεί η ικανότητα των μεγάλων
γλωσσικών μοντέλων (LLMs) να σχεδιάζουν αρχιτεκτονικές λογισμικού για εφαρμογές
αυξημένης πολυπλοκότητας, βασισμένες στο αρχιτεκτονικό πρότυπο των Microservices.

 Η εφαρμογή MyCharts είναι μια διαδικτυακή πλατφόρμα που απευθύνεται κυρίως σε μη
τεχνικούς χρήστες και έχει σχεδιαστεί με στόχο να απλοποιεί τη δημιουργία γραφημάτων.
Παρέχει τη δυνατότητα στον χρήστη να κατεβάζει έτοιμα πρότυπα CSV για συγκεκριμένους
τύπους γραφημάτων, να ανεβάζει τα δικά του δεδομένα, και να δημιουργεί αυτόματα γραφήματα
μέσω της βιβλιοθήκης Highcharts. Τα γραφήματα μπορούν στη συνέχεια να αποθηκευτούν ή να
ληφθούν σε διάφορες μορφές, όπως PDF, PNG, SVG και HTML. Επιπλέον, ο χρήστης μπορεί
να αγοράσει “πακέτα” χρήσης (quotas) για να δημιουργήσει περισσότερα γραφήματα, καθώς και
να προβάλλει ή να κατεβάσει τα ήδη δημιουργημένα.

 Η αρχιτεκτονική που ζητήθηκε από τα μοντέλα ήταν Microservices, γεγονός που αυξάνει
σημαντικά τον βαθμό δυσκολίας, καθώς απαιτεί σωστή κατανομή λειτουργιών σε ανεξάρτητες
υπηρεσίες, διαχείριση αλληλεπιδράσεων μεταξύ των υπηρεσιών και σωστή απομόνωση
ευθυνών.

 Στο πλαίσιο του πειράματος χρησιμοποιήθηκαν και υλικά υποστήριξης τύπου RAG
(Retrieval-Augmented Generation) για ορισμένες δοκιμές. Συγκεκριμένα, αξιοποιήθηκαν
αποσπάσματα από τα βιβλία Microservices Patterns του Chris Richardson (Κεφάλαιο 2) και
Microservices Design Patterns του Nishant Malhotra.

 Τα μοντέλα κλήθηκαν να παράγουν αρχιτεκτονικά διαγράμματα βασισμένα σε δύο
διαφορετικά είδη εισόδου περιγραφής των απαιτήσεων του λογισμικού: σύντομες λίστες
λειτουργικών και μη λειτουργικών απαιτήσεων (FR/NFR), ή ένα πληρέστερο έγγραφο
προδιαγραφών λογισμικού (SRS).

 Για την αξιολόγηση των παραγόμενων αρχιτεκτονικών που βασίζονται στο πρότυπο των
Microservices, κρίθηκε απαραίτητη η εισαγωγή νέων, πιο εξειδικευμένων κριτηρίων, τα οποία
αντανακλούν τις ιδιαιτερότητες και τις απαιτήσεις αυτής της αρχιτεκτονικής προσέγγισης. Τα
κριτήρια αυτά στοχεύουν στην πληρέστερη και πιο ουσιαστική αποτίμηση της ποιότητας και της
ορθότητας των προτεινόμενων λύσεων. Συγκεκριμένα, χρησιμοποιήθηκαν τα εξής:

1. Ευθυγράμμιση με τις Λειτουργικές Απαιτήσεις & Κατανομή Ευθυνών
Εξετάζεται κατά πόσο κάθε μικροϋπηρεσία αντιστοιχεί σε έναν σαφώς οριοθετημένο
επιχειρησιακό τομέα (bounded context) και αναλαμβάνει ένα συγκεκριμένο και συνεκτικό
σύνολο λειτουργιών. Το σύνολο των λειτουργιών όλων των μικροϋπηρεσιών θα πρέπει να
καλύπτει πλήρως τις λειτουργικές απαιτήσεις του συστήματος.

2. Χαμηλή εξάρτηση & Ανεξαρτησία Ανάπτυξης

Αξιολογείται η χαλαρή σύζευξη (loose coupling) μεταξύ μικροϋπηρεσιών και η δυνατότητα
αυτόνομης ανάπτυξης, αναβάθμισης και διάθεσής τους, χωρίς να επηρεάζονται άλλες
υπηρεσίες.

3. Συνοχή

Εξετάζεται η εσωτερική συνοχή των μικροϋπηρεσιών. Ιδανικά, κάθε μικροϋπηρεσία θα
πρέπει να επιτελεί λειτουργίες που σχετίζονται στενά μεταξύ τους, ενώ η υλοποίηση ενός
use case ενδέχεται να απαιτεί τη συνεργασία περισσότερων της μίας μικροϋπηρεσιών.

4. Διαχείριση Δεδομένων

Αξιολογείται αν κάθε μικροϋπηρεσία διαχειρίζεται αυτόνομα τα δικά της δεδομένα και αν
αποφεύγεται η χρήση κοινών βάσεων δεδομένων μεταξύ υπηρεσιών.

5. Συνέπεια Δεδομένων

Εξετάζεται η πρόβλεψη μηχανισμών για την επίτευξη τελικής συνέπειας (eventual
consistency) των δεδομένων, όταν αυτό απαιτείται από τη συνεργασία μεταξύ
μικροϋπηρεσιών.

6. Επικοινωνία & Έλεγχος Ροής

Ελέγχεται αν ο συντονισμός μεταξύ υπηρεσιών πραγματοποιείται μέσω κατάλληλων
μηχανισμών. Επίσης, αξιολογείται η χρήση εργαλείων όπως API Gateways ή μηχανισμών
ανταλλαγής μηνυμάτων (π.χ. publish-subscribe) για τον έλεγχο της ροής.

7. Μη Λειτουργικές Απαιτήσεις
Αξιολογείται αν η αρχιτεκτονική ικανοποιεί τις μη λειτουργικές απαιτήσεις που τέθηκαν για
το συγκεκριμένο πρόβλημα, όπως επεκτασιμότητα, διαθεσιμότητα, ασφάλεια κ.ά.

 Μέρος αυτού του πειράματος ήταν η εισαγωγή ποσοτικοποιημένων δεικτών μέτρησης
(από προηγούμενες έρευνες) για την αξιολόγηση αρχιτεκτονικής τύπου Microservices, με σκοπό
να διερευνηθεί κατά πόσο μπορούν να προσφέρουν μια αντικειμενική και αξιόπιστη διάσταση
στην διαδικασία της αξιολόγησης. Αυτό έγινε διαλέγοντας δείκτες που έχουν κάποια νοηματική
συσχέτιση με τα υποκειμενικά κριτήρια αξιολόγησης, και ο τρόπος που εξετάσαμε αν αυτοί οι
δείκτες μπορούν να βοηθήσουν είναι παρατηρώντας εάν εν τέλη πραγματικά υπάρχει συσχέτιση
μεταξύ των υποκειμενικών κριτηρίων αξιολόγησης (human evaluation score) και των
υπολογίσιμων δεικτών (calculatable metric).

 Επίσης, οι δείκτες που επιλέχθηκαν υπολογίστηκαν τόσο χειροκίνητα από ανθρώπινους
αξιολογητές όσο και αυτόματα από τα ίδια τα LLMs, ώστε να διαπιστωθεί εάν τα μοντέλα
παρουσιάζουν φαινόμενα παραπλάνησης ή "ψευδαισθήσεων" (hallucinations) κατά τον
υπολογισμό των δεικτών αυτών.

Περιληπτικά και με βάση τα παραπάνω, το prompt προς τα LLMs περιήχε τα εξής:

• Γενική Περιγραφή Αποστολής: Μια συνοπτική παρουσίαση του έργου που ανατίθεται
στο γλωσσικό μοντέλο.

• Περιγραφή Εφαρμογής: Αναλυτική περιγραφή του λογισμικού-στόχου για το οποίο

πρόκειται να παραχθεί η αρχιτεκτονική (μέσω εγγράφου SRS ή λίστας λειτουργικών/μη
λειτουργικών απαιτήσεων - FR/NFR).

• Οδηγίες Σχεδίασης για Αρχιτεκτονική Microservices: Σύνολο βέλτιστων πρακτικών

και αρχιτεκτονικών αρχών για τον σχεδιασμό Microservices.

• Απαιτήσεις Σχεδίασης PlantUML: Συγκεκριμένες οδηγίες για τη δομή του
διαγράμματος κλάσεων.

• Κατηγοριοποίηση Λειτουργιών στο Διάγραμμα Κλάσεων PlantUML: Οδηγίες για

την ταξινόμηση κάθε λειτουργίας (operation) των κλάσεων σε μία από τις εξής
κατηγορίες: επιχειρησιακή λογική (business logic), διαχείριση δεδομένων (data
management), διατήρηση συνέπειας δεδομένων (data consistency) ή έλεγχος ροής (flow
control). Η ταξινόμηση αυτή υποστηρίζει την αξιολόγηση της αρχιτεκτονικής ποιότητας.

• Περιγραφή των δεικτών μέτρησης προς Υπολογισμό: Επισκόπηση των δεικτών που

πρόκειται να εξαχθούν αυτόματα από τα παραγόμενα διαγράμματα.

• Αναμενόμενη Μορφή Εξόδου των δεικτών μέτρησης (JSON): Η απαιτούμενη μορφή
JSON για την παρουσίαση των υπολογισμένων δεικτών.

 Αφού ολοκληρώθηκε η παραγωγή των διαγραμμάτων από τα LLMs, ακολούθησε η
αξιολόγησή τους βάσει των προαναφερθέντων κριτηρίων και έπειτα ο υπολογισμός των δεικτών
για κάθε μία από τις παραγόμενες αρχιτεκτονικές. Τα βασικά ευρήματα σχετικά με την ποιότητα
των παραγόμενων διαγραμμάτων συνοψίζονται ως εξής:

1. Τα μεγαλύτερα μοντέλα επιδεικνύουν γενικά καλύτερη απόδοση: Τα μεγαλύτερα
εμπορικά LLMs υπερίσχυσαν των μικρότερων τοπικών μοντέλων, παράγοντας συνολικά
πιο πλήρη και δομημένα διαγράμματα.

2. Τα LLMs ανταποκρίνονται ικανοποιητικά στον σχεδιασμό αρχιτεκτονικών

Microservices: Τα περισσότερα μοντέλα και ιδίως τα μεγαλύτερα επέδειξαν
ικανοποιητική κατανόηση των αρχών σχεδίασης βάσει Microservices. Τα παραγόμενα
διαγράμματα, αν και συχνά απαιτούσαν περαιτέρω βελτιστοποίηση, αποτελούσαν ένα
αξιόλογο σημείο εκκίνησης.

3. Η τεχνική RAG συνεισφέρει θετικά στις περισσότερες περιπτώσεις: Η αξιοποίηση

της μεθοδολογίας RAG οδήγησε γενικά σε βελτιωμένα αποτελέσματα. Αν και ορισμένα
μοντέλα δεν επωφελήθηκαν ιδιαίτερα, ή παρουσίασαν οριακή υποχώρηση στην
ποιότητα, η πλειονότητα παρουσίασε αισθητή βελτίωση όταν τους παρασχέθηκε
στοχευμένο και συνοπτικό πληροφοριακό υλικό, βασισμένο σε θεμελιώδεις αρχές της
αρχιτεκτονικής Microservices.

4. Η μορφή εισόδου αποδεικνύεται καθοριστική: Τα μεγαλύτερα μοντέλα

διαχειρίστηκαν με μεγαλύτερη αποτελεσματικότητα τα αναλυτικά έγγραφα SRS σε
σύγκριση με τις απλουστευμένες λίστες απαιτήσεων (FR/NFR).

5. Οι αντικειμενικοί δείκτες παρουσιάζουν υποσχόμενες δυνατότητες: Παρόλο που οι

δείκτες δεν χρησιμοποιήθηκαν άμεσα ως εργαλείο αξιολόγησης στην παρούσα μελέτη,
διαπιστώθηκε ισχυρή συσχέτιση μεταξύ αυτών και των υποκειμενικών αξιολογήσεων
από ειδικούς. Το γεγονός αυτό αναδεικνύει τη μελλοντική δυναμική υιοθέτησης

αυτοματοποιημένων αξιολογήσεων, με χρήση δεικτών προσαρμοσμένων στην
αρχιτεκτονική.

6. Οι υπολογισμένοι δείκτες μέτρησης που παράγονται από τα LLMs παρουσιάζουν

μεταβλητή ακρίβεια: Κατά την αυτόνομη προσπάθεια των μοντέλων να υπολογίσουν
τους δείκτες, παρατηρήθηκε ασυνέπεια στα αποτελέσματα. Η εμφάνιση «παραισθήσεων»
(hallucinations) ήταν συχνό φαινόμενο, επισημαίνοντας την ανάγκη για εξωτερική
επικύρωση και προσεκτική ερμηνεία των παραγόμενων δεδομένων.

Η πλήρης περιγραφή του πειράματος, με αναλυτική παρουσίαση όλων των παραμέτρων και των αποτελεσμάτων,
παρατίθεται στο κυρίως αγγλικό κείμενο που ακολουθεί την παρούσα ελληνική περίληψη.

Πείραμα MyCharts με 2 Διαδοχικά Prompts

 Στο πλαίσιο του πειράματος «MyCharts με 2 Διαδοχικά Prompts», εξετάστηκε αν η
χρήση επανατροφοδότησης (feedback loop) με τη μορφή ενός δεύτερου, ειδικά διαμορφωμένου
prompt μπορεί να οδηγήσει στη βελτίωση της ποιότητας των διαγραμμάτων που παράγονται από
Μεγάλα Γλωσσικά Μοντέλα (LLMs).

 Αφετηρία αποτέλεσε η διαδικασία του βασικού πειράματος «MyCharts», κατά την οποία
τα μοντέλα καλούνται να παραγάγουν αρχιτεκτονικά διαγράμματα με βάση ένα σύνολο
απαιτήσεων για τη συγκεκριμένη εφαρμογή. Αφού ελήφθη η πρώτη απάντηση από το εκάστοτε
μοντέλο, η παραγόμενη αρχιτεκτονική αξιολογήθηκε με βάση τα ίδια κριτήρια που
χρησιμοποιήθηκαν στο βασικό πείραμα. Παράλληλα, υπολογίστηκαν και οι αντίστοιχοι δείκτες
που ενσωματώθηκαν στο προηγούμενο πείραμα.

 Το καινούργιο στοιχείο του παρόντος πειράματος ήταν η εισαγωγή ενός δεύτερου
prompt, το οποίο σχεδιάστηκε ως δομημένο και τυποποιημένο feedback προς το LLM. Το
prompt αυτό περιλάμβανε τόσο τις ποιοτικές αξιολογήσεις των ειδικών όσο και τους
ποσοτικοποιημένους δείκτες της πρώτης απάντησης, με σκοπό να καθοδηγήσει το μοντέλο προς
την παραγωγή μιας πιο ορθής, πληρέστερης και συνεπέστερης αρχιτεκτονικής πρότασης. Με
άλλα λόγια, αξιοποιήθηκε η αρχική έξοδος του μοντέλου ως βάση και ζητήθηκε αναθεώρηση ή
βελτίωση, με βάση αντικειμενικά και υποκειμενικά κριτήρια.

 Η δεύτερη απάντηση των μοντέλων αξιολογήθηκε εκ νέου με την ίδια μεθοδολογία και
συγκρίθηκε άμεσα με την αρχική έξοδο. Με τον τρόπο αυτό, διερευνήθηκε εμπειρικά η
αποτελεσματικότητα της επανατροφοδότησης μέσω διαδοχικής αλληλεπίδρασης (iterative
prompting) και αν αυτή μπορεί να συμβάλει ουσιαστικά στη βελτίωση της αρχιτεκτονικής
σκέψης και παραγωγής των LLMs.

 Τα αποτελέσματα του πειράματος έδειξαν ότι η χρήση ενός δεύτερου, δομημένου prompt
μπορεί πράγματι να συμβάλει στη βελτίωση της ποιότητας των παραγόμενων αρχιτεκτονικών
διαγραμμάτων από τα LLMs. Αν και πρόκειται για ένα μικρής κλίμακας πείραμα, τα ευρήματα
καταδεικνύουν τη δυναμική της μεθόδου και ενισχύουν την ιδέα πως μια τυποποιημένη,
βασισμένη σε αξιολόγηση επανατροφοδότηση μπορεί να βελτιώσει τη σχεδιαστική ικανότητα

των μοντέλων. Προς το παρόν, η διαδικασία απαιτεί χειροκίνητη αξιολόγηση και υπολογισμό
των δεικτών μετά την πρώτη απόκριση, ωστόσο το πείραμα αφήνει ανοιχτό το ενδεχόμενο για
την ανάπτυξη ενός ημιαυτοματοποιημένου μηχανισμού βελτίωσης, ο οποίος θα ενισχύει τη
χρηστικότητα των LLMs στο πεδίο της αρχιτεκτονικής λογισμικού.

Η πλήρης περιγραφή του πειράματος, με αναλυτική παρουσίαση όλων των παραμέτρων και των αποτελεσμάτων,
παρατίθεται στο κυρίως αγγλικό κείμενο που ακολουθεί την παρούσα ελληνική περίληψη.

Συμπεράσματα

 Τα αποτελέσματα αυτής της μελέτης αναδεικνύουν τις υποσχόμενες δυνατότητες
ενσωμάτωσης των Μεγάλων Γλωσσικών Μοντέλων (LLMs) στη φάση σχεδιασμού του κύκλου
ζωής ανάπτυξης λογισμικού. Μέσω της εξέτασης των μορφών εισόδου, της ποιότητας της
εξόδου, της πολυπλοκότητας της αρχιτεκτονικής, των μεθόδων αξιολόγησης, της απόδοσης των
μοντέλων και των τεχνικών βελτίωσης, αυτή η έρευνα παρέχει πρακτικές γνώσεις για το πώς η
τεχνητή νοημοσύνη μπορεί να υποστηρίξει το αρχιτεκτονικό σχεδιασμό. Τα ευρήματα αυτά
μπορούν να βοηθήσουν στον εντοπισμό των σημείων όπου τα LLMs προσθέτουν πραγματική
αξία, στην αναγνώριση των τρεχουσών περιορισμών και στην ανάπτυξη στρατηγικών για την
αποτελεσματική ενσωμάτωση της τεχνητής νοημοσύνης σε ρεαλιστικές ροές εργασίας
σχεδιασμού.

Αντανακλώντας πίσω στα ερευνητικά μας ερωτήματα, επιχειρούμε τώρα να τα απαντήσουμε
βάσει των ευρημάτων αυτής της μελέτης.

1. Η αξιολόγησή μας σχετικά με τις μορφές εξόδου αποκάλυψε ότι όταν ζητείται από τα
LLMs να δημιουργήσουν αρχιτεκτονικές σε γλώσσα PlantUML, παράγουν σταθερά
υψηλότερης ποιότητας αρχιτεκτονικές αναπαραστάσεις σε σύγκριση με άλλες μορφές. Η
έξοδος PlantUML προσφέρει μια ισορροπία μεταξύ δομής και αναγνωσιμότητας που
φαίνεται ιδιαίτερα κατάλληλη για τα LLMs.

2. Όσον αφορά την αναπαράσταση της εισόδου, διαπιστώσαμε ότι τα δομημένα έγγραφα
Προδιαγραφών Απαιτήσεων Λογισμικού (SRS) μπορούν να βελτιώσουν την απόδοση
των LLMs σε σύγκριση με απλά έγγραφα απαιτήσεων σε απλό κείμενο για μεγαλύτερα
μοντέλα, που μπορούν να επωφεληθούν από το εκτενές πλαίσιο και την πλούσια
δομημένη πληροφορία στα έγγραφα SRS. Αυτό υποδηλώνει ότι η ποιότητα και η μορφή
των δεδομένων εισόδου παίζουν κρίσιμο ρόλο στην ακρίβεια της εξόδου των
αρχιτεκτονικών που παράγονται από AI. Απλούστερες λίστες λειτουργικών (FR) και μη
λειτουργικών απαιτήσεων (NFR) μπορεί να είναι χρήσιμες για μικρότερα μοντέλα, αλλά
συχνά στερούνται του βάθους που απαιτείται για πιο πολύπλοκα σχέδια.

3. Όταν αντιμετωπίζουν πολύπλοκες σχεδιαστικές προκλήσεις, ειδικά αρχιτεκτονικές
μικροϋπηρεσιών (Microservices), τα LLMs εμφάνισαν ανάμεικτη απόδοση. Τα
μεγαλύτερα, πιο ικανά μοντέλα γενικά είχαν μεγαλύτερη επιτυχία στην αποσύνθεση
πολύπλοκων απαιτήσεων και στην εφαρμογή βασικών αρχών μικροϋπηρεσιών, ενώ τα

μικρότερα μοντέλα συχνά δυσκολεύονταν. Αυτό τονίζει την ανάγκη η επιλογή των
LLMs να είναι ανάλογη της πολυπλοκότητας της αρχιτεκτονικής του προβλήματος.

4. Μια ακόμα πτυχή αυτής της μελέτης είναι η εισαγωγή εξειδικευμένων κριτηρίων
αξιολόγησης και αντικειμενικών δεικτών ειδικά για τις μικροϋπηρεσίες. Αυτή είναι η
πρώτη προσπάθεια κάλυψης κενών στις υπάρχουσες μεθόδους αξιολόγησης και
ταυτόχρονα συσχέτισης των υποκειμενικών ανθρώπινων αξιολογήσεων με
ποσοτικοποιημένους δείκτες, ανοίγοντας το δρόμο για πιο τυποποιημένη αξιολόγηση της
απόδοσης των LLM σε μελλοντικές εργασίες.

5. Παρατηρήσαμε επίσης ότι η Τεχνική Ενισχυμένης Ανάκτησης Πληροφοριών (Retrieval-
Augmented Generation, RAG) βελτιώνει την ποιότητα του σχεδιασμού, ιδιαίτερα σε
μεγαλύτερα μοντέλα που μπορούν να διαχειριστούν το αυξημένο πλαίσιο χωρίς να
παραπλανηθούν ή να συγχυστούν. Το υλικό RAG φαίνεται να έχει μεγάλο αντίκτυπο
στην ενίσχυση και όχι στην παραπλάνηση των LLMs τα αποτελέσματά μας δείχνουν ότι
τα περιεκτικά και ακριβή υλικά RAG με πρακτικές οδηγίες λειτουργούν καλύτερα.

6. Παρά αυτές τις προόδους, η μελέτη αποκάλυψε και κάποιους περιορισμούς. Τα LLMs
συχνά εμφανίζουν λάθη (hallucination) όταν τους ζητείται να υπολογίσουν
αντικειμενικούς δείκτες στα διαγράμματα που οι ίδιοι δημιούργησαν. Αυτό
υπογραμμίζει τη σημασία της εξωτερικής αντικειμενικής επικύρωσης και τους κινδύνους
της αποκλειστικής εμπιστοσύνης σε αξιολογήσεις που παράγονται μόνο από AI.

7. Τέλος, το πείραμά μας με επαναληπτικές ερωτήσεις (iterative prompting) έδειξε θετικά
αποτελέσματα, υποδηλώνοντας ότι μια δομημένη δεύτερη ερώτηση, που βασίζεται σε
ανατροφοδότηση αξιολόγησης, μπορεί να βελτιώσει και να εξελίξει την ποιότητα του
παραγόμενου διαγράμματος. Παρότι δοκιμάστηκε σε περιορισμένη κλίμακα, αυτό το
εύρημα ανοίγει δυνατότητες για ημι-αυτοματοποιημένες ροές εργασίας βελτίωσης που
συνδυάζουν την ανθρώπινη εποπτεία με τον AI-παραγόμενο σχεδιασμό.

Μελλοντική Έρευνα

 Ενώ αυτή η μελέτη παρέχει ελπιδοφόρα ευρήματα σχετικά με τη χρήση των LLMs για τη
δημιουργία αρχιτεκτονικής λογισμικού, παραμένουν αρκετοί τομείς προς διερεύνηση στο
μέλλον. Μία σημαντική κατεύθυνση είναι η κλιμάκωση των πειραμάτων, τόσο ως προς τον
αριθμό των περιπτώσεων χρήσης όσο και την ποικιλία των εξεταζόμενων αρχιτεκτονικών
προτύπων. Αυτό θα επέτρεπε ευρύτερες γενικεύσεις και θα μπορούσε να αποκαλύψει αν οι
τάσεις που παρατηρήθηκαν εδώ ισχύουν σε διαφορετικούς τομείς, μεγέθη έργων και εφαρμογές
συγκεκριμένων βιομηχανιών.

 Ένας ακόμα υποσχόμενος τομέας είναι η αυτοματοποίηση της διαδικασίας αξιολόγησης
και βελτίωσης. Προς το παρόν, η μέθοδος με δύο εντολές (two-prompt method) που εισήχθη σε
αυτήν την έρευνα βασίζεται σε χειροκίνητα υπολογιζόμενους δείκτες και ανθρώπινες
αξιολογήσεις για την καθοδήγηση της βελτίωσης. Το λογικό επόμενο βήμα θα ήταν η
ενσωμάτωση αυτών των διαδικασιών σε μια ημι-αυτοματοποιημένη ή πλήρως

αυτοματοποιημένη ροή εργασίας, που χρησιμοποιεί τυποποιημένους, επικυρωμένους
ποσοτικοποιημένους δείκτες για την αξιολόγηση των αρχικών αποτελεσμάτων και τη
δημιουργία αποτελεσματικών επακόλουθων ερωτημάτων (prompts). Αυτό θα μπορούσε να
απλοποιήσει σημαντικά τη χρήση των LLMs στον αρχιτεκτονικό σχεδιασμό και να τα
καταστήσει πιο πρακτικά για ενσωμάτωση σε ρεαλιστικές ροές ανάπτυξης.

 Επιπλέον, υπάρχει σημαντικό περιθώριο βελτίωσης στην αντιμετώπιση των φαινομένων
hallucination, ειδικά σε περιπτώσεις όπου ζητείται από τα LLMs να υπολογίσουν ή να
επιχειρηματολογήσουν για συγκεκριμένες αρχιτεκτονικές με την χρήση ποσοτικοποιημένων
διεκτών. Μελλοντικές μελέτες θα μπορούσαν να εξετάσουν τεχνικές όπως η ενσωμάτωση
εξωτερικής γνώσης ή η λεπτομερής εκπαίδευση (fine-tuning) μοντέλων για τη μείωση των
ανακρίβειών. Καθώς τα LLMs εξελίσσονται, η κατανόηση του πώς να στηρίζουμε αξιόπιστα τις
εξόδους τους σε πραγματικά και συμφραζόμενα τεκμηριωμένα επιχειρήματα θα είναι κρίσιμη
για την επιτυχή εφαρμογή τους στη τεχνολογία λογισμικού.

1. Introduction

 The software development lifecycle is a complex, multistage process that spans from
gathering user requirements to building and maintaining fully functional complex software
systems. It involves several key phases, including requirement analysis, architecture and design,
development, testing, deployment and maintenance. The system architecture phase of the
software development lifecycle serves as the crucial bridge between abstract requirements and
concrete implementation. During this stage, software engineers define the high-level structures
and relationships that will form the backbone of the entire system. By creating model designs,
often by utilizing Unified Modeling Language (UML), software engineers establish a blueprint
that communicates the system's organization to all development teams. The system architecture
determines not only how functional requirements will be met but also how non-functional
requirements like scalability, security and performance will be addressed. A well-designed
software architecture helps reduce development errors, sets clear technical standards and
provides a stable foundation for future development. However, conceiving an architecture and
creating the corresponding diagrams is often a time-consuming and error-prone task, with a high
risk of misinterpreting widely available architectural principles. Such issues can lead to
inefficiencies that affect the entire software development lifecycle.

 The rise of artificial intelligence (AI), particularly through advanced large language
models (LLMs) built on deep learning, has introduced exciting new ways to automate tasks that
software engineers once had to handle manually. These AI systems, which learn from massive
amounts of data, have gotten impressively good at working with human language, both
understanding it and creating it. This skillset has already proven useful for coding-related tasks
like generating code snippets and fixing bugs, which brings up the challenges of exploring AI
tools' potential for something even more ambitious: automating the crucial creative architecture
design phase and creating the corresponding UML diagrams automatically. Being able to use AI
to turn written software requirements into well-structured architectural diagrams that comply
with selected architectural styles would tackle one of the toughest challenges in software
engineering. This approach could transform how teams handle what many consider the single
creative "make-or-break" phase of building software.

 This study aims to investigate the capability of large language models (LLMs) to
generate software architectures, with particular focus on Microservices. We're building upon
previous research by examining various inputs, ranging from plaint-text functional and non-
functional requirements to complete standards-based Software Requirements Specification
documents and by analyzing how model selection and Retrieval-Augmented Generation
techniques influence the quality of the resulting architectures. Our primary concern is whether
these AI-generated designs adequately satisfy all requirements while correctly implementing the
specified architectural principles. We introduce a set of evaluation principles for assessment by
human experts and we propose a set of metrics for objective evaluation, based on established
metrics. Additionally, we're investigating whether smaller, locally deployed LLMs can serve as
viable alternatives to commercial solutions for architectural design tasks.

 In the subsequent sections, we will describe our research methodology and experimental
design, present an analysis of our findings and conclude by discussing the broader implications
of our results and proposing promising directions for future work in the field of AI-assisted
software architecture design. Our discussion will particularly focus on how these advancements
might transform the architectural phase of the software development lifecycle and the potential
impacts on architectural quality, development efficiency and the evolving role of software
architects working alongside AI systems.

1.1 Evolution of AI

Artificial Intelligence (AI) is reshaping the world by introducing groundbreaking
efficiency in solving problems. At its essence, AI focuses on developing systems capable of
performing tasks that normally require human intelligence such as reasoning, decision-making
and understanding natural language. By utilizing algorithms and large volumes of data, AI
systems can adapt to changing environments and improve their performance over time. Due to
this constant evolution, AI is not only reshaping how we approach complex tasks now but also
redefines the future of technology and innovation.

 Artificial Intelligence (AI) is implemented using advanced computational methods such
as machine learning and deep learning. Machine learning equips systems with the ability to
recognize patterns and make predictions by processing extensive datasets [1]. Deep learning, a
more advanced subset of machine learning, utilizes neural networks to address challenges like
image classification and speech recognition [2]. These methods have significantly enhanced how
machines interpret complex, high-dimensional data, laying the groundwork for many AI-driven
solutions. A key area built on these foundations is natural language processing (NLP), which
focuses on making machines able to understand, produce and engage with human language. NLP
is necessary for technologies such as voice assistants, automated translation services and
sentiment detection tools to work [3].

Artificial Intelligence (AI) is transforming a wide array of industries and becoming a key
part of everyday life. In healthcare, AI-powered diagnostic systems enhance both accuracy and
efficiency, while in transportation, autonomous vehicles rely on real-time data and predictive
modeling to navigate safely and effectively. Tools like TensorFlow, PyTorch and OpenAI's
models equip researchers and developers with the means to build complex systems with greater
speed and flexibility [4]. These platforms support rapid development, scalability and seamless
integration into existing infrastructures. However, as AI continues to evolve, it also brings forth
critical ethical challenges related to bias, privacy and the transparency of automated decision-
making, highlighting the urgent need for thoughtful regulation and responsible innovation [5].

1.2 AI in Software Engineering

The ability of AI tools to replicate aspects of human creativity has made them
increasingly appealing in the field of software engineering [6]. By automating tasks such as code

generation, refactoring and debugging, AI has the potential to significantly enhance productivity
and contribute to the development of higher-quality software. Large language models (LLMs)
can consistently generate code, identify and fix errors, allowing them to handle many
programming tasks either partially or, in some cases, completely. In addition to supporting
development activities, AI can optimize team workflows by analyzing operational patterns and
recommending process improvements. However, the integration of these capabilities into the
software development lifecycle is challenging. It requires a deep understanding of system
requirements, the specific development environment and the inherent limitations of current AI
technologies [6].

While AI holds great promise for supporting every stage of the software development

lifecycle, achieving this potential depends on overcoming several challenges. Utilizing large
language models (LLMs) for tasks such as generating architectural designs, automating test
procedures or forecasting development bottlenecks demands careful attention to accuracy,
completeness and adherence to established design principles. These AI capabilities are not
universally applicable in a plug-and-play manner, instead, they require planning, evaluation and
customization to align with specific project requirements. Additionally, factors such as the
quality and relevance of training data, domain-specific limitations and broader ethical
implications must be considered to ensure reliable and responsible integration.

Ultimately, AI serves to augment, rather than replace, human expertise in software

engineering. By creating systems that can learn, adapt and evolve, AI drives innovation and
helps development teams handle the growing complexity of modern software applications.
However, integrating AI into the software development lifecycle involves more than simply
adopting tools, it requires an understanding of the associated trade-offs, limitations and the
ethical and practical responsibilities that come with deploying AI [7], [8].

 This literature review presents an overview of contemporary research examining how AI
supports various aspects of software engineering. The studies are categorized by domain,
highlighting key applications, potential benefits and existing challenges associated with AI
integration.

1.2.1 Automated Code Generation
 The emergence of large language models (LLMs) and Generative AI has introduced new
possibilities in automated code generation, changing how software is developed and maintained.
By incorporating machine learning, deep learning and natural language processing techniques,
these systems can assist developers in tasks ranging from code completion to debugging.

 Generative AI, powered by machine learning (ML) and deep learning (DL) algorithms,
has played a crucial role in automating key elements of the code generation process. As noted by
Tembhekar, these technologies allow the automation of tasks that were once the domain of
human developers, significantly boosting efficiency within DevOps workflows [9]. The
incorporation of natural language processing (NLP) techniques further enhances this capability,

allowing AI systems to interpret and generate code with increasing detail, thereby optimizing
development processes and streamlining operations.

 AI-driven code completion has become a standard tool used in software development,
playing a vital role in boosting developer efficiency. Gao traces the transition from traditional
statistical approaches to modern neural models, emphasizing in their effectiveness in
streamlining the coding process [10]. However, the growing reliance on generative AI also raises
critical ethical concerns. Atemkeng et al. [11] emphasize the importance of using these tools
responsibly, calling for protective measures to ensure that generated code meets both functional
and security standards. As AI continues to influence software engineering practices, these issues
highlight the pressing need for thoughtful governance and accountability.

 In summary, the incorporation of AI into code generation marks a major milestone in the
evolution of software engineering. Current research in this area remains focused on striking an
effective balance between the efficiencies of automation and the ethical challenges it presents,
aiming to ensure that these powerful technologies are applied thoughtfully and responsibly.

1.2.2 Automated Testing

 Automated testing using AI technologies is a promising approach to enhancing software
quality and reducing testing durations. Mulla highlights that AI-driven testing allows the
execution of tests with each software update, supporting continuous integration and delivery
[12]. This capability is especially critical in modern development environments, where rapid
iterations are the norm. Additionally, Job highlights that the growing complexity of software
systems requires automated testing to maintain quality standards within shorter evaluation
timelines [13].

 The use of machine learning (ML) techniques in automated testing has been widely
explored. For example, Gautam et al. offer an extensive review of how ML algorithms can be
utilized to automate error detection, thereby improving the reliability of software systems [14].

 On the contrary, the adoption of AI in automated testing comes with several challenges.
Marijan points out key challenges in testing machine learning systems, notably the need for
specialized testing frameworks that address the distinct characteristics of AI models [15]. The
paper outlines a research focused on improving testing practices for machine learning
applications, with an emphasis on developing robust and reliable testing methodologies.
Similarly, Latika Kharb's work discusses the critical need for trust and transparency in automated
testing within machine learning systems [16].

 Overall, the literature suggests that AI has the potential to significantly transform
automated testing in software engineering by improving efficiency, accuracy and reliability.
However, the challenges associated with testing AI systems underscore the need for continued
research and development to create methodologies that can address the distinctive requirements
of this evolving field.

1.2.3 Understanding Software Requirements using Natural Language Processing

 Natural Language Processing (NLP) plays a crucial role in automating and enhancing the
traditionally manual processes involved in software requirements specification, elicitation and
analysis. NLP techniques allow machines to process and understand human language, bridging
the gap between human communication and computational systems. This section delves into the
application of NLP in software requirements engineering and design, examining its impact on the
quality, efficiency and automation of these processes.

 A literature review by Calle and Zapata introduced the QUARE model (Question
Answering for Requirements Elicitation), a novel NLP-based framework designed to improve
the requirements engineering (RE) process. QUARE uses question-answering capabilities to
assist software analysts in extracting relevant information from requirements documents,
regardless of the writing style or structure [17]. This model emphasizes the potential of NLP for
streamlining requirements elicitation by automating the extraction of information and providing
software analysts with the tools needed to handle the complex and often ambiguous nature of
natural language requirements. The application of NLP in requirements engineering, often
referred to as NLP4RE, has gained traction as a valuable method for improving the accuracy and
efficiency of requirements analysis, reducing human error and allowing faster decision-making
[18], [19].

 The integration of machine learning (ML) techniques alongside NLP further enhances the
capabilities of these tools in the requirements engineering domain. Machine learning algorithms
can be trained on large datasets of requirements documents, enabling them to recognize patterns
and extract important insights. This synergy between NLP and ML has the potential to automate
manual tasks such as requirements classification, conflict detection and validation, significantly
improving the efficiency of software engineers. For example, NLP-based systems can
automatically classify requirements into functional and non-functional categories, helping teams
organize and prioritize the scope of a project [18]. This not only accelerates the elicitation
process but also ensures that requirements are captured and categorized with greater precision.

 An important application of NLP in software engineering is converting natural language
requirements into formal representations that can be directly used in the development process.
Semantic parsing techniques, which involve mapping natural language expressions to formal
models, play a crucial role in this transformation. By applying semantic parsing, requirements
can be structured in a way that allows for more precise interpretation and implementation by
developers and other stakeholders [20]. This formalization process is critical for ensuring that
requirements are not only understandable but also executable, making it easier for teams to
transition from high-level specifications to detailed design and development.

 However, despite the promising potential of NLP in software engineering, several
challenges remain. A substantial portion of software requirements is still expressed in natural
language, which often leads to ambiguity, inconsistency and misinterpretation. Research
indicates that approximately 95% of software requirements are written in natural language,
highlighting the challenges in ensuring clarity and accuracy in these specifications [21]. The

complexity of human language presents a significant obstacle for NLP systems, which must be
trained to handle such challenges. As a result, misunderstandings and miscommunications
between stakeholders are common, underscoring the need for advanced NLP tools that can better
understand and validate these requirements.

 Additionally, NLP-based systems must account for the diversity of requirements
documentation styles and formats. Requirements documents may vary significantly in structure,
terminology and level of detail, which can complicate the task of automatic analysis. Addressing
these issues requires the development of more advanced NLP models that can adapt to diverse
documentation practices and accurately extract relevant information. This ongoing research in
NLP for requirements engineering is important for overcoming these challenges and improving
the overall quality and reliability of requirements documentation.

 In conclusion, the integration of AI, particularly NLP and ML, into software
requirements engineering holds promise for improving the accuracy, clarity and efficiency of the
requirements specification and design processes. While progress has been made, the field still
faces challenges, particularly in handling the ambiguity and variability inherent in natural
language requirements. As AI continues to evolve, it is likely that these technologies will reshape
the landscape of software engineering, driving improvements in both the quality and speed of
software development.

1.3 Challenges of AI in Software Engineering

 While the integration of Artificial Intelligence (AI) into software engineering promises
substantial gains in productivity, automation and quality, it also introduces complex challenges
that must be carefully addressed. These challenges impact all phases of the software
development lifecycle, from requirements engineering to development and testing.

 One of the primary challenges is the verification and validation of AI-based systems.
Traditional software verification techniques, which are based on deterministic behaviour,
struggle to accommodate the probabilistic and data-driven nature of AI algorithms. These
systems often operate on large and sometimes opaque datasets, which not only makes behaviour
harder to predict but also introduces risks such as hidden biases, data drift and unexpected
outcomes [22]. The dynamic and evolving nature of machine learning (ML) models further
complicates quality assurance efforts, as conventional static testing frameworks are not capable
for assessing systems that learn and change over time [23].

 Another significant concern is the assurance of data quality and algorithmic transparency.
AI models are only as reliable as the data they are trained on, yet real-world datasets often
contain noise, biases, or imbalances. These issues can propagate through the AI pipeline, leading
to inaccurate or discriminatory results. Moreover, many modern AI techniques, particularly deep
learning, are "black box" in nature, lacking the explainability required for high-stakes software
systems where decision accountability is crucial [24]. The demand for explainable AI (XAI)

continues to grow as stakeholders seek not only high performance but also clarity on why an AI
system made a particular decision.

 In software engineering, AI hold potential for automating various design-related tasks,
including the generation of architectural diagrams and early detection of design flaws. However,
realizing this potential remains a work in progress, as several critical limitations persist:

1. Ambiguity and Complexity in Natural Language Requirements
Most software requirements are written in unstructured natural language, which is prone
to ambiguity, vagueness and inconsistency. This lack of precision hinders AI systems’
ability to extract actionable design elements automatically. While tools exist to assist in
generating UML class diagrams, they often require significant human intervention to
resolve ambiguities and fill in missing semantics such as class responsibilities,
relationships and behavioural patterns [25].

2. Difficulty in Inferring Relationships and Structural Hierarchies
A key challenge in class diagram and architecture generation is deducing relationships
between components, such as inheritance, aggregation and dependency. Requirements
document rarely spell out these relationships explicitly. Instead, they rely on contextual
cues that require abstract reasoning and domain-specific interpretation capabilities that
LLMs are not inherently optimized for [26].

3. Limited Exposure to Formal Software Modelling Constructs
Although LLMs are trained on massive datasets that include code and documentation,
they often lack sufficient representation of formal software design models, such as UML,
design patterns and architecture blueprints. As a result, LLMs may fail to adhere to the
syntactic and semantic conventions required for accurate modelling, leading to
inconsistent or technically incorrect diagram outputs.

4. Insufficient Domain Context and Pattern Awareness
Effective architectural decisions often depend on domain-specific knowledge and the
application of established design patterns. LLMs typically do not possess the contextual
grounding necessary to apply such patterns correctly. Research by Vaidhyanathan et al.
[27] suggests that while LLMs can assist in documenting and iterating on design
decisions, they fall short of autonomously generating coherent and context-aware
architectural solutions. Rather than replacing human architects, these models are better
suited to acting as co-pilots, augmenting human decision-making with automated
suggestions and refinement support.

 Additionally, ethical considerations such as fairness, accountability and transparency
must be addressed in AI-enabled software engineering tools. As these tools increasingly
influence critical system design and operational decisions, ensuring that their outputs align with
ethical standards and societal expectations becomes necessary.

 Motivated by these challenges, our research aims to explore the evolving capabilities of
AI in supporting software architecture and design. In the following sections, we outline our
experimental methodology and present results highlighting the strengths and limitations of LLMs
in AI-assisted software engineering.

2. AI-Assisted Software Architecture

 In this chapter, we examine the current landscape of AI-assisted software architecture,
detail architectural patterns and explain how our approach stands apart from and builds upon
previous research.

2.1 Related Work

 The automatic generation of Unified Modeling Language (UML) diagrams from textual
requirements has recently gained significant traction, largely due to advances in large language
models (LLMs). This emerging area of research explores how cutting-edge AI technologies can
help address long-standing challenges in software architecture, particularly bridging the gap
between natural language requirements and formally designed artifacts.

 This study builds upon the work of Tsilimigkounakis [28], who investigated the use of
LLMs to automatically generate class diagrams from textual descriptions of a simple application,
focusing on straightforward architectural patterns such as Client-Server, Three-Tier and Model-
View-Controller. Building on that foundation, our research further investigates the potential of
LLMs in supporting the design phase of the software development lifecycle, while preserving the
core experimental methodology and research perspective established in the previous study.

 Other methods for generating UML diagrams primarily utilized NLP techniques
supported by rule-based systems or domain-specific ontologies. While these approaches
showcased the potential for automation, they were limited by strict input requirements and
frequent reliance on human oversight. Ambiguities in natural language posed significant
challenges, often resulting in outputs that were fragmented or failed to fully capture the intended
system design.

 A promising approach is proposed by Eisenreich, Speth and Wagner, who outline a six-
step framework designed to bridge the gap between textual requirements and software
architecture generation [29]. The process starts with the automated generation of a domain model
and use-case scenarios derived from natural language specifications. These initial outputs
undergo manual refinement to improve their accuracy and contextual relevance. Using the
refined domain model, scenarios and non-functional requirements, the system generates multiple
architectural candidates along with associated design decisions. These candidates are then
automatically evaluated and compared. The process concludes with manual refinement of the top
candidates and the final selection of the most suitable architecture for implementation. In their
exploratory study, the authors experimented with large language models (LLMs), including
LLaMA2 70-B and GPT-3.5, to generate domain models directly from textual requirements. By
prompting the models with requirement documents and instructing them to produce PlantUML
domain diagrams, they observed that although the models effectively identified key domain
concepts, they often misinterpreted the intended task. Rather than modeling the domain

contextually, the LLMs tended to generate representations of the system itself, revealing a
mismatch between the prompt’s objective and the model’s output.

 In a different line of research, Yang and Sahraoui proposed an AI-driven approach to
mitigate the challenges posed by ambiguity in natural language during UML class diagram
generation [30]. Their technique utilizes a machine learning-based binary classifier to determine
whether each sentence in each input describes a class or a relationship. The methodology
involves parsing English text into individual sentences, converting each into a corresponding
UML diagram fragment and then assembling these fragments into a complete, coherent diagram.
To support their model, the researchers curated a dataset consisting of UML diagrams and their
associated English descriptions, establishing a direct mapping between natural language and
UML components. This dataset, although relatively small, was created through crowdsourcing
and proved adequate for training and evaluation purposes. While the approach showcased
promising innovation, the resulting diagrams exhibited limited accuracy. The authors attributed
this limitation to the shortcomings of the NLP tools used, suggesting that the adoption of more
advanced NLP technologies could substantially improve both the precision and robustness of the
outcomes, highlighting considerable potential for future advancement in this domain.

 Building upon the capabilities of large language models, Iyad and Areen introduced
Vlissingen, a tool that uses GPT-3.5's natural language processing (NLP) capabilities to automate
the extraction of UML class diagram elements [31]. This approach marks a significant
advancement in the field by employing few-shot learning to enhance GPT-3.5’s effectiveness in
diagram generation. By fine-tuning the model on a dataset of 50 varied case studies, each
consisting of a prompt paired with an ideal output, ClassDiagGen achieved impressive results,
reporting a precision of 98.6% and recall of 93.3%, thereby substantially outperforming previous
techniques. The tool features an integrated pipeline that combines textual analysis, automatic
PlantUML code generation and diagram rendering into a unified workflow. These results
underscore the practical viability of large language models in automating and optimizing early-
stage software design.

 The literature reveals a clear progression toward more advanced systems capable of
handling natural language ambiguities inherent in software requirements. These developments
demonstrate that LLMs offer considerable promise for automating the transition from textual
requirements to formal design artifacts. While challenges remain, the trajectory of research
suggests that automated UML generation is becoming increasingly viable for practical
application in software development processes. Our work builds upon these foundations to
further explore the capabilities and limitations of LLMs in supporting software architecture
design.

2.2 Architectural Patterns

 This section examines the most common software architectural patterns, describing their
structure and main components. It is designed to serve as a clear and practical guide for
understanding and applying these patterns in software design.

2.2.1 Client-Server Architecture

 The client-server architecture is a foundational and widely adopted design pattern in
computer networking where system functionality is divided between service providers (servers)
and service requesters (clients). This model is characterized by a clear separation of concerns:
servers host, manage and deliver resources or services, while clients initiate communication to
request and consume these services.

In a typical client-server system, servers are dedicated machines or processes that offer

specific services, such as data storage, computation, or application functionality. Clients, which
are often user-facing applications, interact with servers over a network to perform operations like
querying a database, submitting a request for computation, or retrieving files. The interaction
between clients and servers typically follows a request-response communication model, where
the client sends a request and the server responds accordingly [32].

The main components of the client-server architecture include:

• Servers, which are specialized systems responsible for providing particular services.
Examples include web servers (serving web content), file servers (managing file
operations) and database servers (handling data storage and queries).

• Clients, which are applications or devices that initiate requests to the servers. A client
may be a web browser accessing a website, a mobile application querying a cloud
service, or a desktop application requesting data from a remote database.

• Network infrastructure, which allows communication between clients and servers,
typically via standardized protocols such as TCP/IP, HTTP, or WebSocket over local
networks or the Internet.

Client-server architectures allow multiple clients to interact concurrently with centralized

servers. The reliability and manageability of this pattern have led to its widespread use across a
variety of domains, including web applications, enterprise systems and cloud computing
platforms. However, while the client-server model supports efficient resource sharing and
centralized control, it also introduces potential challenges such as server bottlenecks, single
points of failure and the need for robust security measures to protect data and services.

Figure 2.1: Client-Server Model

By clearly separating responsibilities between service providers and consumers, the

client-server architecture remains a cornerstone of modern software and system design,
producing scalable and maintainable applications.

2.2.2 Three-Tier Architecture

 The Three-Tier Architecture is a well-established software design model that organizes
applications into three distinct, logically separated layers: the Presentation Layer, the Business
Logic Layer and the Data Layer. Each layer is responsible for specific aspects of the
application’s functionality, promoting separation of concerns, scalability and maintainability
[33].

 Presentation Layer: The Presentation Layer is responsible for managing all interactions
with the user. It includes user interfaces such as web pages, forms, or mobile screens and
is designed to display data to users and capture their inputs. This layer is concerned solely
with the presentation of information and the forwarding of user-initiated actions to the
Business Layer. By isolating user interface components from business logic, the
architecture supports easier updates and enhancements to the user experience without
affecting the underlying application functionality.

 Business Logic Layer (Application Layer): The Business Logic Layer contains the core
functionality and business rules of the application. It acts as an intermediary between the
Presentation and Data Layers, processing user requests, enforcing business policies and
coordinating the flow of data. This layer ensures that input received from the user
interface is validated, business rules are applied consistently and the appropriate data
operations are triggered. By isolating the business logic, this layer supports reusability
and allows the application to adapt more easily to changes in business requirements.

 Data Layer (Persistence Layer): The Data Layer is responsible for managing the
application's data storage and retrieval operations. It includes database management
systems, data access objects and query processing components. This layer handles the
complexities of database interactions from the upper layers by providing standardized
methods to create, read, update, or delete data. Isolating the data access mechanisms

allows changes to the underlying data source (e.g., switching from one database system to
another) without affecting the business logic or presentation.

Figure 2.2: Three-Tier Architecture Model

 The Three-Tier Architecture pattern enhances system scalability by allowing each layer
to be scaled independently based on demand (e.g., using load balancers, replicating databases, or
expanding application servers). It also improves maintainability, as developers can update or
replace components within a single layer without impacting others, supporting agile development
practices and long-term system evolution.

2.2.3 Model-View-Controller (MVC) Architecture

 The Model-View-Controller (MVC) architectural pattern is a fundamental design
paradigm for developing interactive software applications. It promotes a clear separation of
concerns among the application's data, user interface and control logic, enhancing modularity
and maintainability [34].

• Model: The Model contains the core functionality of the application, representing its
data, business rules and operations. It manages the state of the application independently
of the user interface and directly reflects the underlying domain or business logic.
Changes to the model are typically propagated to interested views via notification
mechanisms (e.g., observer pattern). Data persistence and retrieval between the database
and the model layer are managed through Data Access Objects (DAOs) and Data
Transfer Objects (DTOs), ensuring abstraction and decoupling from storage-specific
concerns.

• View: The View is responsible for rendering the visual representation of the model’s
data. Each view accesses the model to display an up-to-date and specific subset of
information to the user. It acts as a dynamic projection of the model’s state, reflecting
changes without altering the underlying data. Views often use filtering and formatting to
present complex data structures in a user-friendly manner. In some implementations, the

view can subscribe to the model to receive automatic updates upon state changes,
supporting reactive interfaces.

• Controller: The Controller serves as the intermediary between the user, the model and
the view. It handles user inputs, processes them (possibly invoking business logic on the
model) and determines the appropriate view for response. Controllers interpret user
actions (e.g., mouse clicks, form submissions) and invoke corresponding changes on the
model. After processing, they coordinate the selection and rendering of a view to reflect
the new state. In web applications, controllers typically map HTTP requests to
application functionality and decide how to respond, often using frameworks like Spring
MVC or Struts in Java EE ecosystems.

 By decoupling the components, MVC allows for independent development, testing and
maintenance of the model, view and controller layers. It also supports multiple views of the same
model, allows easier integration of new interfaces and facilitates parallel development by
separating front-end and back-end concerns.

Figure 2.3: Model-View-Controller (MVC) Architecture Model

2.2.4 Microservices Architecture

 The microservices architectural pattern represents a modern approach to software design
characterized by the decomposition of applications into independent, autonomous services, each
responsible for a specific business function. Unlike traditional monolithic systems, microservices
implement vertical decomposition, allowing each service to be developed, deployed and scaled

independently. This architecture has gained significant adoption among organizations of all
sizes, from industry leaders like Amazon, Netflix and Spotify to small and medium enterprises
seeking greater flexibility and resilience in their systems.

 Microservices offer numerous technical advantages compared to traditional architectures.
Each service can be built using the most appropriate programming language and technology
stack for its specific requirements, enabling targeted optimization. Services scale individually
based on demand, allowing for efficient resource allocation. The decentralized, modular structure
also enhances system maintainability and fault tolerance, as the failure of one service does not
compromise the entire application which is a common vulnerability in monolithic systems.

 While microservices share conceptual roots with Service-Oriented Architecture (SOA),
they represent a distinct evolution. Where SOA services typically encompass complete business
capabilities, microservices focus on smaller, highly specialized software components dedicated
to single tasks. This granular approach overcomes many limitations of traditional SOA
implementations, making microservices particularly suitable for modern cloud-based enterprise
environments where flexibility, scalability and resilience are paramount considerations.

Figure 2.4: Microservices Architecture Model

2.3 Selected Architectural Patterns

 This research builds on previous investigations into established architectural patterns
such as Client-Server, Three-Tier and Model-View-Controller (MVC) while expanding our
scope to include the Microservices architectural paradigm.

 Our methodology follows a two-phase approach in terms of selected architectures. First,
we will continue our established research trajectory by implementing a simple application using
the simpler architectural patterns such as Client-Server, Three-Tier and MVC. Unlike previous
work, this phase will incorporate well-structured requirements through a formal Software
Requirements Specification (SRS) document, to evaluate if more detailed requirements help the
model to produce better architectures. Following the evaluation process, we will progress to
analysing AI capabilities in handling more complex architectural challenges by implementing a
more complex application with more requirements within a Microservices Architecture
framework.

 Through this structured comparison, we aim to systematically evaluate AI's ability to
generate and implement architectural solutions across varying levels of complexity, with
particular emphasis on its competence to produce coherent designs for moderately complex
systems within the Microservices paradigm.

2.4 Motivation of Our Approach

 The evolution of AI technologies, particularly Large Language Models (LLMs), has
created immense opportunities to transform software development practices. This research is
motivated by the growing need to determine whether modern AI can effectively assist in the
complex process of architectural design that has traditionally relied on human expertise and
experience. As organizations increasingly seek to accelerate development cycles and address
talent shortages, understanding AI's capabilities and limitations in this critical domain becomes
essential for responsible integration into professional software engineering workflows.

 The architectural design phase represents one of the most intellectually demanding
aspects of software development, requiring engineers to translate abstract business requirements
into concrete system structures that balance numerous technical and operational concerns.
Current approaches to AI assistance in software development have primarily focused on
implementation-level tasks, leaving a significant opportunity to explore how AI might augment
architectural thinking. Our approach is motivated by the hypothesis that properly trained LLMs
could potentially assist in architectural reasoning, pattern selection and design representation.
Thus, providing valuable support to human architects while addressing common challenges such
as consistency, documentation and alignment with requirements. By investigating this potential,
we aim to establish a foundation for understanding where and how AI can meaningfully
contribute to architectural processes.

 Lastly, the rapid advancement of AI capabilities requires the development of alternative
objective evaluation methodologies. Unlike code generation, where correctness can often be
objectively verified through compilation or test execution, architectural quality contains more
subjective dimensions such as modularity, scalability and appropriateness for business context.
Our research is motivated by the need to propose evaluation frameworks and metrics that can
meaningfully assess AI-generated architectural designs across these dimensions. By introducing
and testing such metrics, we lay the groundwork for future evaluation tools to be implemented.
Tools that will be able to benchmark advancements in AI’s architectural capabilities as AI
technologies continue to evolve. This motivation drives our investigation into the connection of
AI and software architecture, seeking to define the current boundaries of possibility and the
pathways toward more advanced AI assistance in architectural design.

2.5 Research Questions

 We aim to explore AI's capabilities and limitations in software development assistance,
focusing specifically on architectural design. Specifically, we investigate how AI can generate
software architectures, what materials improve model training for this task and how to evaluate
AI performance in architectural design.

1. Which output format yields optimal architectural representations from Large
Language Models?

 This investigation aims to determine the most effective format for AI-generated
 architectural designs. We evaluate various representation methods including XMI/UML,
 images, PlantUML and Mermaid diagrams to identify which format allows LLMs to
 produce the highest quality and most accurate architectural designs.

2. Does a structured Software Requirements Specification Document enhance AI's

architectural design capabilities?
 We explore whether AI produces better software designs when presented with SRS
 documentation versus simplified requirement lists. We examine how effectively AI
 interprets complex business logic, use cases and interconnected requirements when
 translating them into coherent architectural designs.

3. How effectively can AI develop Microservices architectures for complex problem
domains?

 We test AI's capability to decompose complex requirements into appropriate
 microservice components while correctly implementing architectural principles such as
 service boundaries, relationships and inter-service communication patterns.

4. What evaluation criteria best assess AI-generated Microservices architectures?
 We address the limitations of existing evaluation frameworks when applied to
 Microservices architectures. We aim to develop specialized criteria that more accurately
 assess the unique aspects of microservice design that weren't captured in our previous
 evaluations of simpler architectural patterns.

5. How can we utilize objective metrics for AI-generated architectures?

 As LLM technology rapidly evolves, we need automated methods to objectively measure
 improvements in architectural design capabilities. We focus on creating architecture-
 specific metrics that provide consistent, quantifiable evaluation of AI performance.

6. Do LLMs hallucinate when calculating well-defined metrics for the class diagrams
they generated?

 We examine whether LLMs can calculate objective well-defined metrics accurately
 from the class diagrams they generated. We measure hallucination and conceptual
 mistakes that might reveal gaps in the model's understanding.

7. How does Retrieval-Augmented Generation (RAG) impact architectural design
quality?

 We explore if RAG techniques can enhance context-awareness and design accuracy,
 improving AI's architectural reasoning capabilities.

8. How does iterative prompting affect the quality of AI-generated architectural
designs?

 We test whether multi-turn conversations, without explicit knowledge injection,
 progressively improve the quality of architectural designs. We analyze how iterative
 refinement through conversation affects the completeness, correctness and coherence of
 the resulting architecture.

 These research questions collectively address some of the fundamental challenges of
integrating AI into software architecture development workflows. By investigating input formats,
output representations, architectural complexity boundaries, evaluation methodologies, model
capabilities and enhancement techniques, this research aims to establish practical guidelines for
utilizing AI in architectural design. The findings will help software engineering teams better
understand where AI can provide genuine value in the architectural process, identify current
limitations and implement strategies to optimize AI-assisted design outcomes for real-world
software projects.

3. Approach

3.1 Deployment, setup and technologies used

 Before diving into the details of our experimental setup and results, it's important to
highlight a few constants that stayed the same throughout all experiments. These include the
hardware used in our testing environment, the tools and technologies we relied on and the RAG
(Retrieval-Augmented Generation) methods we applied. Outlining these shared elements helps
provide a consistent foundation for understanding and comparing our findings.

3.1.1 Hardware Specifications

 Our experiments were conducted on a dedicated Ubuntu 22.04 server configured with
128 GB of RAM. This environment was essential for efficiently running large language models
(LLMs) and performing the computationally intensive tasks involved in generating UML class
diagrams.

Interfacing with Local Language Models

 To manage and run LLMs locally, we employed the Ollama platform. Ollama is a
versatile framework that simplifies the deployment and interaction with models such as llama3.3
and deepseek-r1. It supports cross-platform compatibility working seamlessly on Linux,
Windows and macOS and offers several interfaces:

• Terminal-based commands (ollama run <modelName>)

• HTTP API requests via http://localhost:11434/api/generate

• Integration into custom applications through common programming libraries

 For this project, we chose to communicate with Ollama using Python, pairing it with the
LangChain library to construct modular, logic-driven workflows. LangChain provides a flexible
infrastructure for managing interactions with LLMs, supporting features like prompt engineering,
chaining and Retrieval-Augmented Generation (RAG) with ease.

Vector Management for RAG

 The RAG process required a solution for storing and accessing vector embeddings
generated from segmented text inputs. For this, we used Chroma, an open-source vector database
purpose-built for machine learning and AI workflows. Its native compatibility with LangChain

https://ollama.com/
https://www.langchain.com/langchain
https://www.trychroma.com/

allowed for seamless integration and efficient management of embedding data throughout the
retrieval and generation process.

Experiment Configuration and Workflow Automation

 To organize our test scenarios and automate the UML class diagram generation process,
we adopted a structured approach similar to that used in the work of Tsilimigkounakis [28]. This
involved designing a table where each row represents a distinct test scenario, complete with
detailed metadata to guide the generation workflow. By standardizing scenario definitions in this
way, we enabled automated processing and ensured consistency, reproducibility and clarity
across all experiments.

The table includes the following key fields:

• ID: A unique identifier assigned to each scenario, directly linked to the corresponding
generated class diagram.

• familyId: Represents the broader group or "family" to which the scenario belongs. It also
reflects the directory structure. The format follows:
{architecture}{fr_set_number}{nfr_set_number}{prompt_file_number}.
For instance, cs111 indicates a Client-Server architecture with functional requirements
set 1, non-functional requirements set 1 and prompt file 1.

• architecture: Defines the architectural design pattern requested for that scenario (e.g.,
Client-Server, Three-Tier, Micrservices).

• frPathfile: File path to the functional requirements (FR) used in the scenario.

• nfrPathfile: File path to the non-functional requirements (NFR).

• srsPathfile: File path to the SRS (Software Requirements Specification) file used in the
scenario.

• promptPathfile: File path to the textual prompt that guides the model.

• modelMetadata: Specifies which language model was used, along with its version (e.g.,
llama3.3:latest, deepseek-r1).

• source: Describes how the diagram was generated, either programmatically through
Python scripts or manually via online tools like ChatGPT or Gemini.

• ragDecision: Indicates whether the scenario utilizes a Retrieval-Augmented Generation
(RAG) approach.

• ragPathfile: Path to the external RAG data file, used when RAG is enabled.

• embeddingsMetadata: A JSON object detailing the configuration and behavior of the

RAG process.

• resultPath: Automatically filled by the script post-execution, pointing to the generated
response file.

 By using this structured table, our Python scripts can loop through all defined scenarios,
automating the generation of UML class diagrams based on their respective requirements and
parameters. This setup supports controlled experimentation across various architectural styles,
LLM configurations and RAG applications and ensures all results are reproducible, traceable and
organized for further analysis.

3.1.2 Selecting the UML Output Format from LLMs

 The effectiveness of large language models (LLMs) in generating UML diagrams largely
depends on the output format they produce. When prompting a large language model (LLM) to
generate software architecture diagrams in UML, the output can take various forms, including
XMI, PlantUML, Mermaid, or image files. We observed that the quality of the generated
diagrams varies depending on the output format. This variation arises because LLMs are trained
on data that unevenly represent these formats, leading to differing levels of proficiency. Our goal
is to continue this research using the output format where LLMs demonstrate the highest quality
responses.

 For that reason, in the initial phase of our research, we experimented with various output
formats for UML class diagram generation using large language models (LLMs). These formats
included image-based outputs, XMI (XML Metadata Interchange) and Diagram-as-Code (DaC)
approaches such as Mermaid and PlantUML. Our assessment revealed that LLMs consistently
delivered superior accuracy and structural integrity when generating diagrams in PlantUML
format, which subsequently became our standard output format for all class diagram generation
experiments in this study.

 It is important to note that the utilization of model-oriented tools like Visual Paradigm
presented significant technical challenges for both generation and evaluation processes.
Requesting class diagrams in XMI format for Visual Paradigm import posed different obstacles,
including complex syntax requirements, platform-dependent variations and potential
compatibility issues that often result in errors or incomplete diagrams.

 One alternative approach involved working with class diagrams as images, which would
have limited us to LLMs capable of image generation and recognition which is a substantial
deviation from our core research objectives. This method would have introduced additional
complications through reduced accuracy and increased complexity in processing diagram
components.

 The following table presents a detailed comparison of the four UML output formats
examined (PlantUML, Mermaid, Image Output, and XMI) based on four key criteria relevant to
their suitability for use with large language models: ease of generation, syntax robustness, post-
generation usability, and accuracy in representing class attributes and relationships.

Output
Format

Ease of
Generation

Syntax
Robustness

Post-
Generation
Usability

Accuracy in Class
Attributes and
Relationships

PlantUML Well-structured
and intuitive for
LLMs to produce.

Moderately
robust. Most
syntax issues are
easy to fix.

Requires code-
based editing,
lacks visual
editing support.

Captures most standard
class features but lacks full
UML semantic support.

Mermaid Simpler syntax,
but LLMs
sometimes
confuse
Mermaid-specific
conventions.

Prone to syntax
errors. Small
mistakes often
break rendering.

Requires code-
based editing,
lacks visual
editing support.

Supports only basic class
declarations and relations.

Image
Output

Not directly
generatable by all
LLMs.

Immune to syntax
errors as it's a
static visual.

Useful for
viewing only,
not editable or
machine-
readable.

Accuracy in class
attributes and relationships
depends entirely on the
model’s prior exposure to
UML visuals, with no
underlying semantic or
verifiable representation.

XMI Difficult for
LLMs to generate
due to its
verbosity and
strict structure.

Very fragile.
Small formatting
errors break
parsing and are
often very
difficult to fix.

Easily imported
into modeling
tools for
graphical
editing.

Fully supports UML
semantics, including
advanced constructs and
constraints.

3.1.2.1 PlantUML

 Following our comparative evaluation, we adopted PlantUML as our preferred solution.
This approach combines the capability to create detailed, well-structured UML diagrams with a
straightforward, code-like, text-based language that LLMs can efficiently generate and
understand. PlantUML's syntax accessibility ensures that any LLM with basic text generation
capabilities can effectively produce and recognize diagrams, avoiding the compatibility
challenges associated with XML while avoiding the complexities of image recognition
processing.

 Furthermore, PlantUML offers visualization capabilities across multiple platforms and
tools, including an official web server functioning as an editor and dedicated libraries for various
programming environments such as Java, Python and React. For our specific implementation, we
used PlantUML's Java .jar file, supporting direct diagram rendering and visualization as images.

This functionality significantly enhanced our workflow efficiency by providing a streamlined
process for converting PlantUML code to image format, analysis and evaluation of the generated
class diagrams, as demonstrated in Figure 3.1, which illustrates the relationship between
PlantUML code and its corresponding UML diagram representation.

Figure 3.1: Example of PlantUML Code

3.1.3 Retrieval Augmented Generation (RAG)

3.1.3.1 RAG Overview

 Retrieval-Augmented Generation (RAG) represents a significant advancement in large
language model (LLM) technology, designed to address fundamental limitations in these
systems. While LLMs demonstrate remarkable language capabilities, they operate by identifying
statistical patterns in language rather than achieving true semantic comprehension. This
limitation often results in information that appears convincing but may be factually incorrect or
outdated, a phenomenon commonly referred to as "hallucination". RAG frameworks mitigate
this issue by integrating external knowledge retrieval into the generation process.

 At its core, RAG operates through a two-phase process: first retrieving relevant
information from external, verified knowledge sources, then incorporating this information into
the language generation process. This approach effectively grounds the model's responses in
documented facts rather than relying solely on learned parameters. When a query is submitted,
the RAG system identifies and retrieves relevant information from its knowledge base, which
then serves as supplementary context for the LLM as it formulates a response. This process
creates a bridge between the statistical reasoning capabilities of LLMs and verified external
knowledge.

 The implementation of RAG offers several significant advantages in production
environments. Most notably, it substantially improves response accuracy and reliability by
relating outputs to factual information. Additionally, RAG systems provide traceability through
citation capabilities, allowing users to verify the sources underpinning generated content, a
critical feature for building trust in applications requiring high information precision and
reliability. From a practical perspective, RAG reduces the frequency of model retraining required
to maintain relevance, as new information can be incorporated by simply updating the external
knowledge base rather than retraining the entire model.

 From a technical standpoint, RAG frameworks typically use complex information
retrieval techniques such as vector embeddings to identify semantically relevant content, which
is then injected as contextual information alongside user queries. This contextual enrichment
transforms the LLM's operational environment, providing it with precise, relevant information
directly applicable to the current query. These systems carefully balance the computational cost
of retrieving context with improvements in output quality, allowing them to achieve notable
increases in factual accuracy without sacrificing response times. As LLM applications expand
into domains requiring precise factual information, RAG has emerged as an essential process for
responsible AI system development that uses external context to enhance model capabilities.

3.1.3.2 Embeddings in RAG Systems

 Embeddings form the mathematical backbone of modern Retrieval-Augmented
Generation (RAG) systems by representing text as dense vectors that capture its underlying
meaning. Unlike traditional keyword matching, embeddings focus on the concepts behind the
words, placing similar ideas close together in vector space, even if the exact wording differs.
This ability to retrieve information based on meaning rather than exact words makes embeddings
especially powerful for RAG, greatly enhancing the system’s capacity to find contextually
relevant information.

 In RAG architectures, the embedding process occurs in two critical phases. Initially,
during knowledge base preparation, each document or text segment is transformed into a vector
through specialized neural network models trained specifically for semantic representation.
These document embeddings are indexed in vector databases optimized for similarity search
operations. Subsequently, during the retrieval phase, user queries undergo the same embedding

transformation, creating query vectors that occupy the same semantic space as the document
embeddings.

 The retrieval mechanism operates on vector similarity principles, typically using distance
metrics such as cosine similarity or Euclidean distance to identify the closest conceptual matches
between query and document embeddings. Modern implementations often utilize approximate
nearest neighbour algorithms to efficiently search vast vector spaces containing millions of
document embeddings while maintaining low latency characteristics. This approach allows RAG
systems to rapidly identify and retrieve the most semantically relevant contextual information
from extensive knowledge bases.

 The effectiveness of RAG systems is linked to embedding quality, with more advanced
embedding models capturing increasingly complicated semantic relationships. Recent
advancements have produced embedding models capable of representing complex relationships
between entities, understanding domain-specific terminology and preserving hierarchical concept
structures. When paired with efficient vector indexing technologies, these advanced embeddings
allow RAG systems to provide highly relevant contextual information to language models,
improving response accuracy while maintaining the natural fluency characteristic of modern
LLMs.

Figure 3.2: RAG Method Illustrated

Large Language Model

3.1.3.3 RAG Techniques

 In the following section, we explore various RAG techniques, outline the available
options and explain the specific RAG pipeline chosen for our experiments, along with the
rationale behind that choice.

Embedding Models

 The quality of embeddings directly determines retrieval accuracy in RAG
implementations, making model selection a critical decision. One can choose between four
primary deployment options: self-hosting open-source models, utilizing cloud providers offering
open-source implementations, employing proprietary embedding services (e.g., OpenAI), or
implementing integrated end-to-end solutions with built-in embedding functionality.

 When choosing embedding models for Retrieval-Augmented Generation (RAG)
applications, four key factors should guide the decision. First, Retrieval Average Performance
measures how well a model performs on retrieval tasks using standard benchmarks. Second,
Model Size and Memory Usage impact computational demands, while larger models often
provide better accuracy they also require more resources. Third, Embedding Dimensions that
affect the model’s ability to capture subtle semantic relationships and the storage needed, which
means that higher dimensions offer better accuracy but increase computational load. Finally,
Maximum Token Length defines the amount of text that can be processed in a single embedding,
influencing how documents need to be divided and handled.

 The optimal embedding model varies by use case, with domain-specific applications
often benefiting from specialized models while general knowledge implementations may require
broader models with higher parameter counts. Organizations should evaluate models using
representative data from their knowledge domain rather than relying solely on published
benchmarks to ensure selection of embeddings that balance performance with implementation
constraints.

Chunking Methods

 Chunking is the strategic decomposition of documents into smaller units that enhance
retrieval efficiency and precision in RAG systems. This process determines how information is
indexed and retrieved, directly impacting the contextual relevance of generated responses.
Effective chunking balances context preservation with computational efficiency, creating
segments that contain sufficient information while maintaining reasonable storage requirements.
RAG implementations typically employ four primary chunking methodologies.

• Sliding Window Chunking: Creates overlapping segments of predetermined size,
preserving context across boundaries at the cost of storage redundancy

• Document-Based Chunking: Respects natural document structures like paragraphs or
sections, maintaining inherent information organization but potentially creating
inconsistent chunk sizes

• Semantic Chunking: Identifies conceptual boundaries within text, grouping related

information regardless of structural indicators

• Agent-Based Chunking: Optimizes segments for distributed processing across
specialized retrieval agents in multi-agent systems

 The optimal chunking approach varies based on content characteristics and application
requirements. Technical documentation often benefits from document-based strategies, while
conversational content typically performs better with sliding window techniques. Implementation
parameters such as chunk size and overlap percentage require manual optimization through
performance testing with representative queries. By evaluating different chunking techniques,
RAG systems can achieve an optimal balance between retrieval accuracy, contextual coherence
and computational efficiency.

 Although there are additional techniques that could enhance the RAG process such as
metadata filtering, query transformation and reranking, our experimentation has determined that
these approaches fall outside the current scope of our work.

3.1.3.4 Our RAG Pipeline

 Building on the work of Tsilimigkounakis [28], we excluded underperforming RAG
methods such as the recursive chunking technique from our scope. Furthermore, we chose to
proceed exclusively with the nomic-embed-text embedding model from Nomic AI, as it
demonstrated comparable performance to OpenAI’s text-embedding-3-large. Given that our
focus is not on exhaustively experimenting with various RAG methods, we narrowed our
approach to using nomic-embed-text in combination with semantic chunking.

 The documents inserted into the vector database for each experiment will be referenced
later in this work within the corresponding experiment descriptions.

3.2 The DCC Experiment, revisited

 In this experiment, we explore whether Large Language Models (LLMs) benefit more
from Software Requirements Specification (SRS) documents compared to basic lists of
Functional and Non-Functional Requirements. To do so, we replicated the original experiment,
from Tsilimigkounakis [28] work, using an SRS document as the input format for software
requirements, replacing the simpler requirements lists. Additionally, we excluded RAG methods
or materials that previously demonstrated poor performance and further investigation had limited
research value. This study seeks to shed light on whether LLMs can better comprehend and
utilize richer, more detailed software descriptions, as opposed to minimal input formats.

3.2.1 Architectures Considered

 The architectural patterns considered such as Client-Server, Three-Tier and Model-View-
Controller (MVC) remain unchanged, as the primary focus of this experiment is to compare SRS
documents with FR-NFR lists. Introducing additional architectural patterns would dilute the
objective and compromise the clarity of the comparison.

3.2.2 Case Study: DCC (Dummy Coordinate Converter) Application

 The Dummy Coordination Conversion (DCC) Application is a software system designed
to manage coordinate groups in both Cartesian and polar formats. It allows users to convert,
store, retrieve, modify and delete coordinate groups.

 Originally introduced in previous work [28], the application remains unchanged in this
study. Its simplicity and straightforward functionality make it an ideal candidate for evaluating
the AI's ability to adhere to a specified architectural pattern based on clearly defined
requirements. By reducing the complexity of the use case, we can more effectively assess the
AI's architectural and diagrammatic accuracy.

Software Requirements Specification Input

 Given the uncertainty around how Large Language Models (LLMs) would respond to
software descriptions provided through a Software Requirements Specification (SRS) document,
we designed an experiment using two variations: a concise version and a more extensive one.

 The concise SRS (Appendix A (SRS_v1 for DCC Application)) focuses on the essential
elements of the application, including use case diagrams and lists, activity diagrams for each use
case and data requirements. In contrast, the extensive SRS (Appendix B (SRS_v2 for DCC
Application)) converges to what would typically be found in a real-world specification. It
includes a detailed system overview, business context, the intended user base, system scope,
suggested technologies and constraints and any assumptions or dependencies.

 This approach allows us to assess whether LLMs perform better when given richer
contextual and business-level information, as opposed to a minimal functional specification.

3.2.3 The Prompt

 We maintained the original prompt structure used in previous experiments, modifying
only the section where the FR-NFR lists were replaced with the SRS document. This decision
was made to preserve the integrity of the comparison. Introducing a new prompt format could
have introduced confounding variables, compromising the clarity of the results.

3.2.4 LLM Selection

 When selecting LLMs for this experiment, we made a conscious decision to retain the
models used in previous work. This allowed for a controlled comparison, isolating the effect of
replacing the FR-NFR lists with an SRS-based application description while keeping all other
variables constant. Additionally, we included several newer models available at the time of the
study such as o1, o1-mini, o3-mini-high and deepseek-r1, to evaluate their performance within
the same experimental framework.

Model Source Parameter Size Quantization

llama3.1 local 8 B Q4_0

deepseek-r1:70b local 70.6 B Q4_0

Task Description: You are tasked with processing a software description and its requirements to generate a class
diagram using PlantUML. The class diagram should respect the requested software architecture, define all
necessary classes, and accurately represent associations between them.

The requirements for the software we want you to design are in the SRS (Software Requirements Specification)
here: {SRS}

The demanded Architecture is {Architecture}

Generate a class diagram using PlantUML that defines all necessary classes and associations based on the
described architecture, requirements, and functionality. Ensure that:

The diagram reflects the separation of concerns based on the requested architecture.
Each class is properly defined with attributes and methods.
All associations (e.g., composition, aggregation, or inheritance) between the classes are included in PlantUML
and are clearly represented.
Create the appropriate packages to include the classes.

Model Source Parameter Size Quantization

command-r local 32.3 B Q4_0

gemma2:27b local 27.2 B Q4_0

mixtral:8x7b local 47.6 B Q4_0

phi3:medium-128k local 14 B Q4_0

claudeSonnet3.5 online N/A N/A

deepseek-r1 online 671 B N/A

gemini-1.5 online N/A N/A

gpt4o online N/A N/A

gpt4oSAV

online N/A N/A

o1 online N/A N/A

o1-mini online N/A N/A

o3-mini-high online N/A N/A

3.2.5 RAG Material

 The RAG file used in this experiment comes from a well-established source: Software
Engineering (10th Edition) by Ian Sommerville. This textbook is widely recognized in the field
and offers in-depth coverage of core software engineering concepts. By using material from such
a trusted source, we aim to give the model reliable information that can help it generate more
accurate and structured class diagrams. Including content from Sommerville also lets us explore
how academically solid material influences the model's understanding of software architecture.

 To make the RAG even more effective, we organized the documentation by architectural
style, creating a separate file for each one. This way, we can match the RAG file directly to the

architecture type requested in the prompt. The goal is to see if giving the model focused,
architecture-specific guidance improves its ability to follow the desired pattern. By isolating the
content this way, we can better assess whether targeted documentation works better than a single,
combined resource.

 This RAG material approach, splitting the RAG file into three distinct documents, one for
each architecture type, follows the second method from Tsilimigkounakis’ work [28], which
demonstrated the highest performance. By adopting the same strategy and reusing the
corresponding RAG documents, we ensure a valid and consistent comparison framework for our
experiment.

3.2.6 Evaluation Process

 The final phase of our experiment focuses on a evaluation of the generated class diagrams
by human experts. The evaluation is based on a set of predefined criteria, which remain
unchanged from the previous experiment to ensure consistency and enable a valid comparison of
results.

Evaluation Criteria

• Adherence to Architecture: Human experts evaluate the extent to which each class
diagram conformed to the requested architectural pattern. This involves examining
whether core architectural principles are followed, including the proper distribution of
responsibilities across classes and structural alignment with the designated architecture
(e.g., MVC, Three-Tier, Client-Server).

• Correctness of Class Relationships: This criterion focuses on the accuracy of inter-class
relationships in the context of the given architecture. Experts assess whether associations,
dependencies and communication flows are correctly modeled and whether they comply
with architectural best practices.

• Cohesion and Coupling: Diagrams are evaluated on their ability to achieve high
cohesion and low coupling, two foundational principles of sound software architecture.
High cohesion is judged by how focused and purpose-driven each class is, while low
coupling is assessed based on the degree of independence between classes.

• Consistency with Software Requirements: Ensure that the diagrams accurately reflect
both the functional and non-functional requirements defined in the input specifications.
This ensures that beyond structural correctness, the diagrams capture the full scope of
expected system behavior.

3.2.7 Scenarios Performed

 To understand how different factors like model choice and the use of RAG affect the
quality of AI-generated class diagrams, we ran a series of experiments. We designed a range of
scenarios to help isolate and analyze the impact of each variable. While staying at the scope of

architectures such as Client-Server, Three-Tier and MVC we varied a combination of parameters
resulting in 120 scenarios.

• Large Language Models (LLMs): We used different models to evaluate how

model selection impacts the quality of generated architecture.

• RAG vs No-RAG: We tested scenarios with and without Retrieval-Augmented
Generation (RAG) to examine how access to supplementary information affects
the accuracy and structure of the generated diagrams.

Figure 3.3: Scenarios Performed - DCC

3.2.8 Reference Architectures

 In this section, we present reference class diagrams for the proposed architectures for
DCC application. These reference architectures we inherited from Tsilimigkounakis work [28]. It
is important to state that these reference architectures were not used as a benchmark to evaluate

the generated diagrams, based on similarity. Instead, it is included to illustrate the type of
architectural outputs we considered a strong response from the language models in this
experiment.

Figure 3.4: Client Server Architecture (DCC App)

Figure 3.5: Three-Tier Architecture (DCC App)

Figure 3.6: MVC Architecture (DCC App)

3.3 The MyCharts Experiment

 In this section, we present the experiment conducted to evaluate the generation of class
diagrams by AI for a more complex application with requirements of moderate complexity, an
area that represents the core focus and primary research interest of this study. We describe the
application's functional and non-functional requirements, outline the Software Requirements
Specification (SRS) document and detail all relevant experimental parameters, including the
RAG materials, the models selected, the prompt, evaluation criteria for the human evaluation, the
metrics for objective evaluation and a reference architecture.

3.3.1 Architectures Considered

 For this experiment, we chose to focus exclusively on the Microservices Architecture,
applying a new set of evaluation criteria specifically to this architectural paradigm. Since the
primary objective was to assess the capabilities of AI in generating a more complex system
architecture, revisiting the previously explored architectures was deemed unnecessary.

3.3.2 Case Study: MyCharts Application

 MyCharts Application is a web-based service designed to allow users with minimal
technical expertise to generate, manage and download charts in various formats. It simplifies
chart creation by providing templates for source data, supporting data uploads. It uses the
Highcharts library for chart generation.

The application allows users to:
- Download CSV templates for supported chart types.
- Upload CSV files to generate charts.
- Save and download charts in PDF, PNG, SVG and HTML formats.
- Purchase quotas for chart creation.
- View and download generated charts.

 The selected software application presents a higher level of complexity compared to the
DCC Application examined in the previous experiment. It was inherited from the “Software-as-
a-Service Technologies” course at NTUA, where it served as a term project. Its design and
requirements are sufficiently advanced to justify the application of the Microservices
Architectural paradigm, providing a more realistic and demanding scenario for evaluation. At the
same time, the complexity remains manageable, ensuring that it does not exceed the capabilities
of the AI system to produce meaningful and high-quality software diagrams.

 In this experiment, we tested two different types of input to evaluate which would enable
the AI to produce higher-quality software architecture class diagrams. The first input type
consisted of a list of functional and non-functional requirements written in natural language. This
input provided only the essential information necessary for the application's design, without

Vassilios Vescoukis
Να κάνουμε αναφορά στο ότι ήταν εργασία ΤΛ2 το 2022-2023

offering deeper insights into its business logic or operational details. The second input type was a
complete Software Requirements Specification (SRS) document, which included more detailed
information about the application, such as business logic descriptions, use case diagrams, activity
diagrams and additional contextual insights.

Functional and Non-Functional Requirements Input

 Below are the functional and non-functional requirements used to describe the MyCharts
Application. This information was included as part of the prompt in the AI experiment and
served to define the application for which the software architecture was to be generated.

Functional Requirements

1. Authenticate users via Google accounts.
2. Allow download of CSV templates for 3 supported chart types (Basic line, Line with

annotations, Basic column).
3. Upload CSV file with the user data for chart generation.
4. Validate uploaded CSV files against the template structure, data types, and mandatory data

existence.
5. Generate charts with data from the CSV file uploaded by the user, using Highcharts.
6. Save charts to the server in PDF, PNG, SVG, and HTML formats.
7. Display a dashboard with the history of user-generated charts, including chart previews.
8. Download selected chart type.
9. Charge quotas for chart creation.
10. Allow users to delete or download charts.
11. Sell quotas and receive payment by a payment gateway
12. Maintain user profiles containing the following data: Name (from Google account), profile

picture (from Google account), email (from Google account), remaining quota, account
creation timestamp, last login timestamp.

13. Display user's profile info, including remaining quotas.

Non-Functional Requirements

Performance

- Chart generation completes within 3 seconds.
Usability

- Intuitive UI with guided workflows (e.g., tooltips, validation hints) to assist non-technical
users.

Security
- SSL encryption: Data transmitted over the internet is encrypted using SSL.

Availability
- The service should be available 90% of the time daily.
- The system should prioritize Availability over Consistency during network partitioning.
- While in network partitioning, although temporary data inconsistencies may occur, as many

as possible services should remain fully operational.
Scalability

- Support 1,000 concurrent users.

 It is important to note that many of the non-functional requirements cannot be directly
evaluated through the PlantUML-generated design, as their verification would require full
application development and testing. Nevertheless, we included them to create a more realistic
use case scenario, simulating the workflow a software engineer might follow. Where, after
obtaining the initial software architecture in UML form, they would continue prompting the AI
to generate code and progressively build and test the complete application. While the scope of
this study, is restricted to the generation of software architecture, we believe including this aspect
provides more realistic insights.

Software Requirements Specification Document

 The Software Requirements Specification (SRS) document used to describe MyCharts
Application (Appendix C (SRS for MyCharts Application)) was included as part of the prompt in
the AI experiment and served as the basis for defining the application for which the software
architecture was to be generated.

 The Software Requirements Specification (SRS) contains all the essential information
needed to design the architecture, while also including additional details that go beyond the
immediate scope of the task. However, these supplementary elements were retained to simulate a
more realistic use case, one in which a software engineer uses an AI model to derive the initial
architecture directly from a SRS document.

3.3.3 Evaluation Process

 This experiment includes an evaluation of the generated class diagrams, against carefully
selected criteria specific to the unique characteristics and principles of the Microservices
Architectural Paradigm. This ensures that the assessment reflects not just general diagram
quality, but also alignment with principles of Microservices design.

 These evaluation criteria differ from those used in previous experiments, as earlier
benchmarks lacked the specificity needed to properly reflect the principles and demands of the
Microservices architecture. Unlike more traditional architectures such as Client-Server, Three-
Tier, or Model-View-Controller, Microservices present a significantly higher level of complexity
and require a more detailed set of evaluation criteria to validate proper design and alignment
with best practices.

Evaluation Criteria

1. Functional Alignment & Responsibility Distribution: Ensure that each microservice
maps to a bounded context and implements a focused set of functionalities. The union of
the functionalities of each microservice should be the entire set of functional
requirements.

2. Coupling & Deployment Independence: Ensure that microservices are loosely coupled
and independently deployable

3. Cohesion: Ensure high cohesion meaning that more than one microservice needs to be
involved in the completion of each use case.

4. Data Management: Ensure that each service is responsible for managing specific data
elements without using shared databases.

5. Data Consistency: Ensure that operations to achieve eventual consistency of data states
among different microservices are included.

6. Communication & Flow Control: Ensure that service coordination is done using
choreography or orchestration mechanisms. API gateways and/or messaging (pub-sub)
services should be used to implement flow control.

7. Non-Functional Requirements: Ensure that the design satisfies all problem-specific
non-functional requirements.

 Human experts with varying software architecture expertise evaluated the diagrams. Each
reviewer independently rated the diagrams from 0-5 across the 7 criteria. This approach provided
qualitative feedback for quality assessment.

3.3.4 Metrics Considered for Objective Evaluation

 A focus of this research was finding an objective way to evaluate AI-generated
architectures using solid metrics rather than just subjective evaluations. With AI technology
evolving so quickly, we need a reliable system to measure how these models are improving over
time regarding software design capabilities. We realized that the metrics depend heavily on what
type of architecture we're evaluating, therefore, different architectural styles need different
metrics.

 We selected which metrics to use based on previous work regarding evaluating
Microservices architectures. We were guided by Engel's work [35] on evaluating already
implemented and deployed microservices applications and Bogner's significant contributions
[36],[37] that focused on theoretically evaluating a system design, designed using microservices.
Their research helped us identify what really matters when evaluating microservice designs.
Additionally, we introduced new metrics that we deemed essential to the evaluation process.

 Based on this prior work, we carefully selected metrics that capture the most important
aspects of good microservices architecture: how well services stick to single responsibilities,
how many interfaces each microservice has, how they communicate with each other, how well
they align with business domains and whether they can be deployed independently etc.
Additionally, we opted to structure a conceptual corelation between the quantitative evaluation

metrics (objective) and some of the qualitive evaluation criteria (subjective) evaluated by human
experts.

 We selected the following metrics to evaluate the quality of AI-generated microservices
architectures:

1. Metrics applicable across the entire architecture

• SI (Statelessness Index):

𝑆𝑆𝑆𝑆 = (# 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)/|𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠|

The SI metric measures the proportion of services that remain stateless across requests,
i.e., they do not retain a persistent state between interactions. Higher values (closer to 1)
suggest that the architecture predominantly consists of stateless services, which enhances
scalability, supports containerization and allows for independent deployment.

• DOC (Data Ownership Count):

𝐷𝐷𝐷𝐷𝐷𝐷 = (# 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑤𝑤𝑠𝑠𝑠𝑠ℎ 𝑠𝑠 𝑑𝑑𝑠𝑠𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑑𝑑 𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑜𝑜𝑠𝑠𝑠𝑠)/|𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠|

The DOC metric captures the percentage of services that manage their own dedicated
data stores. Values approaching 1 indicate strong data autonomy, reflecting a key
microservices principle where each service owns its data, reducing coupling and
enhancing maintainability.

• SST (Service Support for Transactions):

𝑆𝑆𝑆𝑆𝑆𝑆 = (# 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑜𝑜𝑡𝑡 𝑠𝑠𝑤𝑤𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)/|𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠|

The SST metric reflects the percentage of services that implement at least one mechanism
for ensuring eventual consistency across distributed data states. Higher values imply that
a greater number of services are aware of and actively manage cross-service
consistency.

2. Service-specific metrics

• SIC (Service Interface Count):

𝑆𝑆𝑆𝑆𝐷𝐷(𝑆𝑆) = �𝑜𝑜𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑜𝑜𝑡𝑡𝑠𝑠 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑆𝑆

The SIC(S) metric measures the number of operations exposed by a given service, S. It
serves as an indicator of interface complexity. Lower but adequate values suggest that

the service has a well-defined, focused responsibility, avoiding functional overload and
promoting clear separation of concerns within the architecture.

• AIS (Absolute Importance of the Service):

𝐴𝐴𝑆𝑆𝑆𝑆(𝑆𝑆) = �𝑜𝑜𝑠𝑠ℎ𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠ℎ𝑠𝑠𝑠𝑠 𝑠𝑠𝑡𝑡𝑠𝑠𝑜𝑜𝑖𝑖𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑆𝑆

The AIS(S) metric represents the number of distinct clients that invoke at least one
operation of service S. A balanced distribution of AIS values across services indicates
that no single service plays a disproportionately central role, which is essential for
maintaining low coupling and ensuring deployment independence within a microservices
architecture.

• ADS (Absolute Dependence of the Service):

𝐴𝐴𝐷𝐷𝑆𝑆(𝑆𝑆) = �𝑜𝑜𝑠𝑠ℎ𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠ℎ𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑡𝑡𝑠𝑠𝑜𝑜𝑖𝑖𝑠𝑠𝑑𝑑 𝑁𝑁𝑏𝑏 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑆𝑆

The ADS(S) metric captures the number of other services that service S depends on.
Specifically, the number of services from which S invokes at least one operation. A
balanced distribution of ADS values across the system suggests an even spread of
dependencies, minimizing the risk of bottlenecks and promoting loose coupling and
independent deployment.

3. Use-case-specific metrics

• SC (Service Cohesion):

𝑆𝑆𝐷𝐷(𝑈𝑈) = {𝑆𝑆𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑡𝑡𝑠𝑠𝑜𝑜𝑠𝑠𝑠𝑠𝑠𝑠𝑑𝑑 𝑜𝑜𝑜𝑜𝑠𝑠 𝑁𝑁𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑈𝑈}

The SC(U) metric identifies the set of services that participate in fulfilling use case U. A
high number of collaborating services for a single use case indicates high cohesion
within the system, which is an expected characteristic of a well-structured microservices
architecture, where functionality is distributed.

 The following outlines the conceptual relationship between the objective metrics and the
evaluation criteria used to assess the generated architectures.

Evaluation Principle Metric(s)
Functional Alignment & Responsibility Distribution SIC
Coupling & Deployment Independence SI, AIS, ADS
Cohesion SC
Data Management DOC
Data Consistency SST

 While a conceptual alignment between the evaluation principles and the selected metrics
is expected, the actual correlation must be validated experimentally. For example, architectures
generated with a DOC metric value closer to 1 are expected to achieve higher scores in data
management.

 Lastly, not all evaluation principles have a corresponding metric, as some criteria are not
easily quantifiable. Specifically, aspects such as 'Communication & Flow Control' and 'Non-
Functional Requirements' are difficult to assess directly from a UML diagram with any accuracy.

3.3.5 The Prompt

 In our experiment, we used two types of prompts: one based on a Software Requirements
Specification (SRS) and another based on a Functional and Non-Functional Requirements (FR-
NFR) description. Each prompt is structured into the following sections:

• General Task Description: A high-level overview of the task assigned to the language
model, outlining the overall objective.

• Application Description: A detailed description of the target software system for which
the architecture is to be generated. This can be provided either in the form of a SRS
document or as separate lists of functional and non-functional requirements.

• Design Guidelines for Microservices Architecture: A set of best practices and
architectural principles for Microservices design, intended to guide the language model
toward generating sound and maintainable solutions.

• PlantUML Design Requirements: Specific instructions regarding the structure of the
class diagram, including attributes, methods, associations and package organization.
These directives help ensure that the generated diagrams are syntactically correct and
semantically meaningful.

• Operation Classification in PlantUML Class Diagram: Instructions for categorizing
each class operation in the architecture as one of the following: business logic, data
management, data consistency, or flow control. This classification supports the
evaluation of architectural quality.

• Description of Metrics to Be Calculated: An overview of the metrics to be
automatically extracted from the generated diagrams, along with a brief explanation of
their purpose and calculation method.

• Expected Metric Output Format (JSON): The required JSON format for presenting the
calculated metrics, ensuring consistency and enabling automated analysis.

The following are the two precise prompts employed in our experiment:

Task Description: You are tasked with processing a software description and its requirements to generate a class diagram
using PlantUML. The class diagram should respect the requested software architecture, define all necessary classes, and
accurately represent associations between them.

The requirements for the software we want you to design are in the SRS (Software Requirements Specification) here: {SRS}
The demanded Architecture is Microservices

Important guidelines for designing proper microservices architecture:
1. Functional Alignment & Responsibility Distribution
Focus: Ensure that each microservice maps to a bounded context and implements a focused set of functionalities. The union
of the functionalities of each microservice should be the entire set of functional requirements.
2. Coupling & Deployment Independence
Focus: Ensure that microservices are loosely coupled and independently deployable
3. Cohesion
Focus: Ensure high cohesion meaning that more than one microservice needs to be involved in the completion of each use
case.
4. Data Management
Focus: Ensure that each service is responsible for managing specific data elements without using shared databases.
5. Data Consistency
Focus: Ensure that operations to achieve eventual consistency of data states among different microservices are included.
6. Communication & Flow Control
Focus: Ensure that service coordination is done using choreography or orchestration mechanisms. API gateways and/or
messaging (pub-sub) services should be used to implement flow control.
7. Non-Functional Requirements
Focus: Ensure that the design satisfies all problem-specific non-functional requirements.

Generate a class diagram using PlantUML that defines all necessary classes and associations based on the described
architecture, requirements, and functionality. Ensure that:
The diagram reflects the separation of concerns based on the requested architecture.
Each class is properly defined with attributes and methods.
All associations (especially operation calls for service offerings, service dependencies) between the classes are included in
PlantUML and are clearly represented.
Create the appropriate packages to include the classes.

Classify each operation into one of the following groups (by commenting next to the operation in the PlantUML):
Functional requirement-business logic operation
Data management operation
Data consistency operation
Flow control operation

Additionally, calculate the following characteristics of the architecture:
General characteristics:
- SI: Counts that services do not carry persistent state across requests and divides with the total number of services. SI = (#
of stateless services) / |Total number of services|
- DOC (Data Ownership Count): Counts the services that manage a dedicated data store and divides with the total number of
services. DOC = (# of services that are linked to a dedicated data store) / |Total Number of services|
- SST (Service Support for Transactions): Counts the services that have at least one operation classified as "Data consistency
operation" and divides with the total number of services. SST(S) = (# of transaction-aware services) / |Total Amount of
services|.
Characteristics per service:
 - SIC (Service Interface Count): Counts the interfaces of service S.
 - AIS = Number of distinct consumers of service S
 - ADS = Number of distinct services called by S
Characteristics per use case:
 - SC: Set of services involved for the completion of one-use case. SC = {(Set of microservices involved per use case) MS
SET}

Display the characteristics described above, in a JSON object with the following format:
{JSON_METRIC_FORMAT}

Task Description: You are tasked with processing a software description and its requirements to generate a class diagram
using PlantUML. The class diagram should respect the requested software architecture, define all necessary classes, and
accurately represent associations between them.

The requirements for the software we want you to design described below: {FR}, {NFR}
The demanded Architecture is Microservices

Important guidelines for designing proper microservices architecture:
1. Functional Alignment & Responsibility Distribution
Focus: Ensure that each microservice maps to a bounded context and implements a focused set of functionalities. The union
of the functionalities of each microservice should be the entire set of functional requirements.
2. Coupling & Deployment Independence
Focus: Ensure that microservices are loosely coupled and independently deployable
3. Cohesion
Focus: Ensure high cohesion meaning that more than one microservice needs to be involved in the completion of each use
case.
4. Data Management
Focus: Ensure that each service is responsible for managing specific data elements without using shared databases.
5. Data Consistency
Focus: Ensure that operations to achieve eventual consistency of data states among different microservices are included.
6. Communication & Flow Control
Focus: Ensure that service coordination is done using choreography or orchestration mechanisms. API gateways and/or
messaging (pub-sub) services should be used to implement flow control.
7. Non-Functional Requirements
Focus: Ensure that the design satisfies all problem-specific non-functional requirements.

Generate a class diagram using PlantUML that defines all necessary classes and associations based on the described
architecture, requirements, and functionality. Ensure that:
The diagram reflects the separation of concerns based on the requested architecture.
Each class is properly defined with attributes and methods.
All associations (especially operation calls for service offerings, service dependencies) between the classes are included in
PlantUML and are clearly represented.
Create the appropriate packages to include the classes.

Classify each operation into one of the following groups (by commenting next to the operation in the PlantUML):
Functional requirement-business logic operation
Data management operation
Data consistency operation
Flow control operation

Additionally, calculate the following characteristics of the architecture:
General characteristics:
- SI: Counts that services do not carry persistent state across requests and divides with the total number of services. SI = (#
of stateless services) / |Total number of services|
- DOC (Data Ownership Count): Counts the services that manage a dedicated data store and divides with the total number of
services. DOC = (# of services that are linked to a dedicated data store) / |Total Number of services|
- SST (Service Support for Transactions): Counts the services that have at least one operation classified as "Data consistency
operation" and divides with the total number of services. SST(S) = (# of transaction-aware services) / |Total Amount of
services|.
Characteristics per service:
 - SIC (Service Interface Count): Counts the interfaces of service S.
 - AIS = Number of distinct consumers of service S
 - ADS = Number of distinct services called by S
Characteristics per use case:
 - SC: Set of services involved for the completion of one-use case. SC = {(Set of microservices involved per use case) MS
SET}

Display the characteristics described above, in a JSON object with the following format:
{JSON_METRIC_FORMAT}

The following is the JSON format of the metrics:

3.3.6 LLM Selection

 Based on the outcomes of earlier experiments, we decided to leave out models that had
already shown weak performance. Since the current task, designing a Microservices Architecture
for MyCharts Application, is more complex than the previous DCC application, it didn’t make
sense to include models that couldn’t handle a simpler case effectively.

 For this more demanding task, we included a selection of commercially available online
models that are generally expected to deliver higher performance. It is important to note that, at
the time this research was conducted, models such as DeepSeek-R1, OpenAI’s models (e.g., o1,
o3-min-high) and Claude Sonnet 3.7 had been released and were incorporated into our study.
Since then, additional models have become available, however, in the interest of maintaining a
clear scope, we chose to set a boundary for model selection. Further evaluation of newer models
is considered a valuable direction for future work.

{
 "SI": "",
 "DOC": "",
 "SST": "",
 "services": [
 {
 "service_name": "",
 "SIC": "",
 "AIS(in)": "",
 "ADS(out)": "",
 },
 {
 "service_name": "",
 "SIC": "",
 "AIS(in)": "",
 "ADS(out)": "",
 },
],
 "use_cases": [
 {
 "use_case_name": "",
 "SC": "",
 },
 {
 "use_case_name": "",
 "SC": "",
 },
],
}

Model Source Parameter Size Quantization

llama3.3:latest local 70.6 B Q4_0

deepseek-r1:70b local 70.6 B Q4_0

mistral local 7.25 B Q4_0

gemma2:27b local 27.2 B Q4_0

mixtral:8x22b local 141 B Q4_0

claudeSonnet3.7 online N/A N/A

deepseek-r1 online 671 B N/A

gemini-2.0 online N/A N/A

gpt4o online N/A N/A

o1 online N/A N/A

o3-mini-high online N/A N/A

mistral-online online N/A N/A

grok3 online N/A N/A

3.3.7 RAG Material

 In this experiment, we explored two different cases using two distinct RAG (Retrieval-
Augmented Generation) files. The first RAG file provides a more abstract and formal overview
of the Microservices Architectural paradigm, while the second adopts a more concise and
practical approach.

• RAG1: Microservices Patterns by Chris Richardson, Chapter 2 [38]
• RAG2: Microservices Design Patterns by Nishant Malhotra, Value Labs [39]

3.3.8 Scenarios Performed

 To understand how different factors, like FR/NFR versus SRS input, model choice and
the use of RAG, affect the quality of AI-generated class diagrams, we ran a series of
experiments. We designed a range of scenarios to help isolate and analyze the impact of each
variable.

While staying at the scope of Microservices Architecture we varied a combination of parameters
resulting in 46 scenarios.

• Large Language Models (LLMs): We used different models to evaluate how

model selection impacts the quality of generated architecture.

• RAG vs No-RAG: We tested scenarios with and without Retrieval-Augmented
Generation (RAG) to examine how access to supplementary information affects
the accuracy and structure of the generated diagrams.

• Functional and Non-Functional Requirements vs SRS: We experimented with
both FR-NFR formatted requirements and full Software Requirements
Specifications (SRS) to determine which type of input yields better results.

Figure 3.7: Scenarios graph - MyCharts

3.3.9 Experiment Pipeline

 In this section, we describe the experiment’s pipeline, with a focus on the steps carried
out after collecting the generated PlantUML class diagrams that represent the software
architecture of the MyCharts application, designed following the microservices paradigm. The
diagram in Figure 3.8 illustrates the overall workflow of the experiment.

Below we describe each step of the experiment pipeline:

• Scenarios Collection / Scenarios Execution: In this step, all scenarios outlined in the
previous section are compiled into an Excel spreadsheet. Custom scripts are then
executed to automate prompt delivery to all LLMs and to organize their responses.

• Gathering Responses: All generated outputs are uploaded to a custom Web UI ,
developed specifically for human evaluation of the class diagrams. This platform
provides real-time rendering of PlantUML diagrams and stores evaluator feedback in a
dedicated database.

• Evaluation by Human Experts: Each team member evaluates the generated class
diagrams individually, assigning a score from 0 to 5 across seven predefined evaluation
criteria.

• Evaluation Results Analysis: Human evaluation data is aggregated and analysed to
extract meaningful insights. Graphical visualizations are used to compare performance
across different LLMs, RAG configurations and supporting materials.

• Manual Metric Calculation: Selected architectural metrics are manually extracted from
the generated class diagrams. Both the manually calculated and LLM-generated metrics
are stored.

• Metric Performance Analysis: Here, we assess the overall quality of each class diagram
based on how well its calculated metric performance.

Figure 3.8: MyCharts Experiment Pipeline

• Metric Hallucination Analysis: We compare the manually computed metrics with those
automatically provided by the LLMs, assessing the extent to which the models accurately
understand and report on architectural metrics.

• Exploring possible Correlations: We investigate whether better metric performance
corresponds with higher human evaluation scores per principle, offering insight into the
potential for objective, metric-driven evaluation of software architectures.

3.3.10 Reference Architecture

 In this section, we present a reference class diagram that outlines a proposed architecture
for MyCharts application. In software engineering, particularly in the design of complex
architectures, there is rarely a single “correct” solution. With this understanding, our goal was to
provide a generally sound and well-structured example. This reference diagram was not used as a
benchmark to evaluate the generated diagrams based on similarity. Instead, it is included to
illustrate the type of architectural output we considered a strong response from the language
models in this experiment.

Figure 3.9: MyCharts Reference Architecture

3.4 MyCharts 2-Prompt Experiment

 While the primary focus of this research was the MyCharts experiment detailed earlier,
we subsequently conducted a smaller exploratory test to evaluate whether issuing a second,
structured prompt to the LLM could enhance the quality of the generated class diagrams. This
conversational approach, which mimics back-and-forth interaction, presents several research
limitations, being its reliant on the specific context of the prior response, which makes
generalization technically challenging. Despite these constraints, the method holds significant
research value, as it mirrors a more realistic scenario in which a software engineer iteratively
prompts an LLM to refine architectural outputs. Although limited in scope, this preliminary
experiment highlights the potential of this approach and lays the groundwork for future large-
scale studies.

3.4.1 Parameters

 For this small-scale experiment, we chose to repeat the MyCharts experiment using only
those LLMs that had previously produced responses of moderate to good quality. The setup
remained largely the same: we used the identical prompt from the original MyCharts experiment
and relied solely on the problem description provided through the Software Requirements
Specification (SRS) document. Based on these selection criteria, the following LLMs were
included in this follow-up study:

Model Source Parameter Size Quantization

claudeSonnet3.7 online N/A N/A

deepseek-r1 online 671 B N/A

gpt4o online N/A N/A

o1 online N/A N/A

mistral-online online N/A N/A

3.4.2 Second Prompt

 The strategy behind the second prompt was to introduce a degree of standardization in
guiding the LLM toward improving its class diagram design. This guidance was delivered in two
main ways. First, we manually computed the metrics for the initial class diagram generated by

the LLM and provided these results as part of the second prompt, explicitly stating that they
reflect the first response. Second, we included the human evaluation scores based on the seven
criteria outlined in the previous experiment. Finally, we offered standardized guidance
encouraging the LLM to regenerate the class diagram with the goal of improving both the
evaluation metrics and its performance on the human-assessed criteria. As a result, the follow-up
prompt consisted of the following sections:

• Task Description

• Metrics regarding class diagram from first response

• Human evaluation based on first response

• Standardized Guidance

Based on this strategy, the second prompt was formulated as follows:

Try regenerating the microservices architecture in a PlantUML class diagram with the previous requirements.
Your current metrics are the following:

{Metrics JSON}

Your current human evaluation for this class diagram is the following:
Functional Alignment & Responsibility Distribution: X
Coupling & Deployment Independence: X
Cohesion: X
Data Management: X
Data Consistency: X
Communication & Flow Control: X
Non-Functional Requirements: X

Try regenerating a better microservices architecture for the previous requirements achieving a higher human
evaluation and better metrics. While re-designing the architecture keep in mind that SI, DOC and SST metrics
should be as close to 1 as possible, SC should contain many services per use case and SIC, AIS, ADS metrics
should be as low as possible.

3.4.3 Experiment Pipeline

 The workflow for this small-scale experiment is illustrated in the diagram in Figure 3.10,
providing a visual overview of the sequential steps and components involved in the process.

Figure 3.10: 2-Prompt Experiment Pipeline

The pipeline consists of the following procedures:

• Scenarios Collection: Gathering all relevant scenarios intended for execution, relying on
the selected LLMs used in this experiment.

• Manual Metric Calculation: Manually computing the metrics for each generated class
diagram.

• Human Evaluation from Response 1: Assessing the initial LLM responses using the
seven evaluation criteria introduced in the previous experiment.

• Prompt 2: Issuing the second, standardized prompt to the LLMs, following the approach
described earlier, to guide the regeneration of the class diagram.

• Human Evaluation for Response 2: Evaluating the revised class diagrams from the
second prompt using the same seven human evaluation criteria.

• Improvement Analysis: Analysing whether the second set of responses demonstrated
improvement over the first in terms of human-assessed evaluation criteria.

4. Results

4.1 Web Based Evaluation Platform

 We enhanced our evaluation methodology for DCC and MyCharts experiments by
utilizing the framework initially developed by Tsilimigkounakis [28]. This web application
presents generated diagrams through an intuitive, well-structured interface while providing
functionality for human evaluation. By expanding this web-based application to accommodate
multiple experiments, we established an effective platform for assessing numerous class
diagrams and automatically generating visualization graphs across experimental datasets.

 In Figure 4.1: Web Based Evaluation Platform - SAAI, Figure 4.2: Web Based
Evaluation Platform - SAAI we showcase the Web Based Evaluation Platform that allowed us to
simplify the evaluation process store and organize our evaluation results while also generating
useful graph visualizations to support analysis and interpretation.

Figure 4.1: Web Based Evaluation Platform - SAAI

Figure 4.2: Web Based Evaluation Platform - SAAI

4.2 DCC Experiment

4.2.1 Typical Cases

 In this section, we present a selection of UML class diagrams generated by the LLMs for
the DCC experiment. As anticipated, the quality of the diagrams varied significantly, from
incomplete and unstructured representations with little relevance to the DCC application (weak
diagrams), to well-structured and highly accurate class diagrams that performed exceptionally
across all four evaluation criteria (strong diagrams).

Strong Diagrams

Client-Server | gemini-1.5 | SRS_v1 | NoRAG
The diagram in Figure 4.3: DCC Experiment (ID = 67) satisfies nearly all the application's
software requirements and adheres to the Client-Server architectural pattern. It clearly defines
separate client and server packages, each containing the appropriate classes with sufficient
attributes. On the client side, the diagram effectively integrates both the user interface and
application logic, while the server side is dedicated to database management.

Figure 4.3: DCC Experiment (ID = 67)

Client-Server | gpt4o | SRS_v2 | NoRAG
Similarly, the class diagram in Figure 4.4 accurately defines two packages (client and server)
each containing the appropriate classes for their respective responsibilities. The client package
includes classes that handle CRUD operations, coordinate conversion and the graphical user
interface, while the server package encapsulates the domain model and manages database
operations. Although the diagram lacks some detail in the GUI implementation, it nonetheless
presents a solid Client-Server design for the DCC application, satisfying nearly all software
requirements.

Figure 4.4: DCC Experiment (ID = 79)

Three-Tier | claudeSonnet3.5 | SRS_v1 | NoRAG
The diagram in Figure 4.5 correctly defines three packages: Presentation Layer, Business
Layer and Data Layer. Each containing the appropriate classes for its designated
responsibilities. The Presentation Layer manages user interface operations, while the Business
Layer handles both CRUD functionality and core business logic, including communication
with the database. The Data Layer contains the database and is responsible for ensuring data
persistence. Collectively, these three layers implement the Three-Tier architecture effectively,
addressing nearly all of the application’s software requirements.

Figure 4.5: DCC Experiment (ID = 89)

Three-Tier | o1 | SRS_v1 | NoRAG
Likewise, the diagram in Figure 4.6 shows a clear structure with three packages: Presentation,
Business and Data. The Presentation Layer takes care of the user interface. The Business
Layer handles CRUD operations, business logic and connects to the database. The Data Layer
stores the database and manages data storage. Overall, this design follows the Three-Tier
architecture and meets most of the software requirements for the application.

Figure 4.6: DCC Experiment (ID = 74)

MVC | deepseek-r1:70b | SRS_v2 | NoRAG
The class diagram in Figure 4.7 satisfies almost all software requirements and follows the
MVC architecture. It includes four packages: View, Controller, Model and DAO. The View
package contains the classes for the user interface, while the Controller package includes a
class that handles CRUD operations. The Model package defines the coordinate group model
and includes the business logic for coordinate conversion. The DAO package manages data
access. The diagram also shows correct relationships between the classes.

Figure 4.7: DCC Experiment (ID = 107)

MVC | o1 | SRS_v1 | NoRAG
Like the previous example, the diagram in Figure 4.8 aligns well with the MVC architecture
and its principles. It includes clearly defined packages and classes, each with a very good level
of detail.

Figure 4.8: DCC Experiment (ID = 75)

Weak Diagrams

Client-Server | command-r | SRS_v1 | RAG | ollama | nomic-embed-text | semantic
The class diagram in Figure 4.9 is unrelated to the DCC application and lacks any meaningful
structure. It fails to define the core business operations and does not include a model for
representing a coordinate group, making it unsuitable for the application's requirements.

Figure 4.9: DCC Experiment (ID = 14)

Three-Tier | mixtral:8x7b | SRS_v1 | RAG | ollama | nomic-embed-text | semantic
The class diagram in Figure 4.10 does not conform to the principles of the Three-Tier
architecture, as it lacks the essential separation into three distinct layers or packages:
Presentation, Business and Data. Furthermore, the diagram fails to implement core business
operations outlined in the software requirements, making it an incomplete and ineffective
representation of the intended system design.

Figure 4.10: DCC Experiment (ID = 22)

MVC | command-r | SRS_v1 | NoRAG
While the diagram in Figure 4.11 includes a few relevant classes, such as CoordinateGroup
and CoordinateManager, which partially reflect the software requirements, it fails entirely to
follow any architectural pattern. Moreover, it does not utilize packages to organize the
system’s components, resulting in a disorganized and incoherent structure. Overall, the
diagram represents a poorly generated output that lacks both structure and alignment with the
application's design goals.

Figure 4.11: DCC Experiment (ID = 17)

4.2.2 Evaluation Results

 In this section, we present a series of charts based on evaluation data, highlighting key
insights from the human evaluations of the class diagrams. All visualizations were created using
the Highcharts library.

LLM Performance

 The heatmap in Figure 4.12 illustrates the average evaluation scores of class diagrams
generated by each LLM. It is important to note that the online models generated diagrams
without Retrieval-Augmented Generation (RAG) and, as a result, produced significantly fewer
diagrams compared to the local models.

 Despite the smaller sample size, the online models appear to outperform their local
counterparts. In particular, ClaudeSonnet3.5, deepseek-r1 (online version), o1 and o1-mini
consistently achieved high scores across all evaluation criteria, positioning them as top
performers.

 That said, local models should not be dismissed. While some, such as llama3.1 and
phi3:medium-128k, underperformed, others like deepseek-r1:70b and gemma2:27b delivered
strong results with consistently high scores across all evaluation principles. These findings

suggest that certain local models remain highly competitive and are viable options for supporting
software architecture generation tasks.

Figure 4.12: DCC Experiment - Model Performance

 To explore the impact of different experimental parameters on the quality of the
generated class diagrams, we begin by examining the role of Retrieval-Augmented Generation
(RAG). The charts in Figure 4.13, Figure 4.14, Figure 4.15 display the average evaluation scores
for each LLM, distinguishing between diagrams generated with RAG and those generated
without it. The results reveal notable trends and offer promising insights, highlighting
opportunities for future enhancements and optimizations in prompt design and model
configuration.

 These charts indicate that while some models such as deepseek-r1:70b and command-r,
appear to benefit from the use of RAG, others show a decline in performance when RAG is
applied. This unexpected result may be due to the models becoming overwhelmed or confused
by the additional context introduced through RAG, especially when combined with the lengthy
input from the Software Requirements Specification (SRS) document. Interestingly, in previous
experiments where a simpler FR-NFR list was used instead of the full SRS, the same models
demonstrated improved performance with RAG. This suggests that the effectiveness of RAG
may depend heavily on the structure and complexity of the input context.

Figure 4.13: DCC Experiment - Model Performance No RAG

Figure 4.14: DCC Experiment - Model Performance with RAG

Figure 4.15: DCC Experiment - NoRAG vs RAG

Performance per Software Requirements Specification Document

 To assess whether LLMs benefit from a detailed Software Requirements Specification
(SRS) document compared to a more concise version, the diagram in Figure 4.16 compares the
average performance scores across all models for each evaluation principle. The results suggest
that the overall performance of the LLMs remains relatively consistent regardless of the length or
depth of the SRS.

Figure 4.16: DCC Experiment - SRSv1 vs SRSv2

LLM Performance SRS vs FR-NFR

 To investigate whether LLMs benefit more from detailed Software Requirements
Specification (SRS) documents compared to simpler FR-NFR lists for describing a software
application, this section presents a comparative analysis of their respective impacts on model
performance without RAG, since the RAG average in the DCC experiment with FR-NFR
includes multiple RAG methods that were not re-run in the SRS experiment. Figure 4.18 and
Figure 4.17 display the average performance scores of the models using FR-NFR lists and SRS
documents without RAG, respectively. Based on these results, we constructed the clustered bar
chart below to provide a clear visual comparison of the two input formats.

Figure 4.17: DCC Experiment - Model Performance SRS

Figure 4.18: DCC Experiment - Model Performance - FR-NFR

 The results reveal considerable variation, highlighting that not all LLMs benefit from
more detailed software descriptions provided by SRS documents. Larger models with more
parameters such as Claude Sonnet 3.5, Gemini-1.5, GPT-4o, GPT-4o SAV and o1 tend to
perform better when using SRS input, generating class diagrams that receive higher average
scores. In contrast, smaller local models like llama3.1 and mixtral:8x7b appear to struggle with
the increased input length and complexity, performing significantly worse when given SRS
documents compared to concise FR-NFR lists.

Figure 4.19: DCC Experiment - FR/NFR vs SRS

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

Average Score per LLM without RAG - FR/NFR vs SRS

FR-NFR SRS

Performance per Architecture

 Finally, we examine whether the choice of requested architecture influences the average
scores of the generated class diagrams. The chart in Figure 4.20: DCC Experiment - Performance
per Architecture displays the average scores grouped by architectural pattern.

 The results in Figure 4.20 show that diagrams generated for the Client-Server architecture
received generally the lowest average scores. In contrast, Three-Tier and Model-View-Controller
(MVC) architectures performed more closely, with Three-Tier slightly outperforming MVC.

Figure 4.20: DCC Experiment - Performance per Architecture

4.2.3 Results Discussion

 The analysis of our results reveals several noteworthy patterns regarding the factors that
influence how well LLMs generate class diagrams, in relation to the experiment context and
architectural patterns used. While human evaluation scores are subjective, the overall trends
align well with the evaluators' qualitative impressions. A larger-scale expert review would
further validate these findings, but even with the current data, a few clear takeaways emerge.

• Larger online models generally performed better than smaller local ones, producing
more complete and well-structured diagrams across the board. This was expected, given
their higher capacity and training scale.

• The use of RAG led to mixed outcomes when paired with the longer input from the full
Software Requirements Specification (SRS). Some models clearly benefited from the
additional context, while others seemed to struggle, possibly due to input overload or
difficulty in focusing on the relevant parts.

• When comparing detailed versus concise versions of the SRS, model performance
remained relatively consistent, suggesting that more verbose descriptions don't
necessarily improve diagram quality.

• Performance comparison between SRS documents and FR-NFR lists. Larger models
tended to handle the full SRS documents better and generated higher-quality diagrams,
while smaller models often performed worse with the longer input and showed better
results when working with the more focused FR-NFR lists.

• The requested software architecture also played a role in performance. Diagrams
generated for the Client-Server architecture consistently received lower scores, indicating
that this pattern may be more challenging for LLMs to interpret and model correctly. In
contrast, the Three-Tier and MVC architectures were handled more effectively, with
Three-Tier slightly outperforming MVC.

4.3 MyCharts Experiment

4.3.1 Typical Cases

 In this section, we present a selection of UML class diagrams generated by the LLMs for
the MyCharts experiment. As anticipated, the quality of the diagrams varied significantly, from
incomplete and unstructured representations with little relevance to the MyCharts application
(weak diagrams), to well-structured and highly accurate class diagrams that performed
exceptionally across all seven evaluation criteria (strong diagrams).

Strong Diagrams

Microservices | claudeSonnet3.7 | fr | nfr | NoRAG
The diagram in Figure 4.21 illustrates a well-structured Microservices architecture for the
MyCharts application. Responsibilities are logically distributed across the microservices and
collectively satisfy all the application's requirements. The architecture adheres to design
principles, including low coupling and high cohesion, because each microservice has a degree
of independence and can be deployed atomically, yet several services collaborate to complete
end-to-end use cases. Each microservice manages its own dedicated database or repository,
supporting the principle of decentralized data management and includes operations for
eventual consistency where necessary. Communication across services adheres to standard
Microservices patterns, utilizing an API Gateway for request routing and a message broker to
handle inter-service messaging effectively.

Figure 4.21: MyCharts Experiment – FR/NFR (ID =16)

Weak Diagrams

Microservices | mistral | SRS | RAG | ollama | nomic-embed-text | semantic
The diagram in Figure 4.23 illustrates an example of a weak response generated by the LLM,
reflecting significant issues in both understanding the software requirements and applying the
principles of Microservices architecture. Key functionalities are missing, services are isolated
with no interconnections and there is a complete absence of databases or repositories. As a
result, the diagram appears incomplete and lacks a coherent structure, failing to meet the basic
expectations for a Microservices-based design.

Figure 4.23: MyCharts Experiment - SRS (ID = 8)

Microservices | grok3 | SRS | NoRAG
Similarly, the diagram in Figure 4.22 presents a well-structured Microservices architecture.
Responsibilities are logically distributed among the microservices and the design meets nearly
all application requirements. Like the previous example, it demonstrates low coupling and
high cohesion, with each microservice managing its own data and including mechanisms to
maintain consistency. In terms of communication, this diagram employs an API Gateway for
routing client requests and adopts a choreography-based approach for inter-service
interactions, aligning well with modern Microservices best practices.

Figure 4.22: MyCharts Experiment - SRS (ID = 21)

Microservices | mixtral:8x22b | fr | nfr | RAG | ollama | nomic-embed-text | semantic
The class diagram in Figure 4.24 fails to follow any fundamental principles of established
software architectures and does not satisfy any of the defined software requirements. The
structure lacks classes necessary for the representation of the intended system.

Figure 4.24: MyCharts - FR/NFR (ID = 14)

Noteworthy Diagrams

 The diagrams presented in this section may not achieve high scores across all evaluation
criteria, as some requirements are either overlooked or the designs do not fully align with
Microservices architecture principles. However, they still represent surprisingly well-structured
responses from local models that were initially expected to underperform, highlighting their
potential in generating coherent architectural designs.

Microservices | gemma2:27b | fr | nfr | RAG | ollama | nomic-embed-text | semantic
The diagram in Figure 4.25, despite missing several key elements, demonstrates clear
potential. It lacks support for certain software requirements, such as template downloading and
chart validation and shows limited detail in the implementation. Additionally, it does not
distribute functional responsibilities across a wide range of microservices, relying instead on
just a few. However, the response reflects a general understanding of both the application and
Microservices architecture. Notably, it incorporates an API Gateway that handles request
routing and also functions as an orchestrator. Overall, this is a reasonably solid output from a
local LLM and could serve as a strong foundation for further refinement.

Figure 4.25: MyCharts Experiment - FR/NFR (ID = 12)

Microservices | deepseek-r1:70b | fr | nfr | RAG | ollama | nomic-embed-text | semantic
Similarly, the diagram Figure 4.26, while lacking some essential characteristics of a
Microservices architecture, shows notable potential. One key omission is the absence of
dedicated databases for each microservice. Despite this, the diagram demonstrates a solid
grasp of Microservices principles by logically distributing functional responsibilities and
addressing nearly all software requirements. It also features an API Gateway that manages
request routing and acts as an orchestrator. Again, this is a promising response from a local
LLM and could serve as a strong foundation.

Figure 4.26: MyCharts Experiment - FR/NFR (ID = 6)

4.3.2 Evaluation Results
 In this section, we present a series of charts based on evaluation data, highlighting key
insights from the human evaluations of the class diagrams. All visualizations were created using
the Highcharts library.

 It is important to note that in this experiment, we intentionally limited the number of
generated diagrams to 46, significantly fewer than in previous studies. This decision was made to
allow for a more in-depth evaluation based on seven detailed criteria, along with performance
analysis using manually calculated objective metrics. As a result, we worked with a smaller set
of scenarios. These constraints should be kept in mind when interpreting the average
performance of the LLMs, as the findings are based on a relatively small sample size.

LLM Performance

 The heatmaps in Figure 4.27, Figure 4.28 display the average evaluation scores of class
diagrams produced by each LLM in FR-NFR and SRS experiments respectively. It is important
to highlight that online models generated diagrams without the use of Retrieval-Augmented
Generation (RAG). In contrast, local models produced three versions of each diagram: one
without RAG, one using the rag1 file as supplemental material and another using the rag2 file.

 Across both FR-NFR and SRS input scenarios, online models such as ClaudeSonnet3.7,
o1, o3-mini-high, deepseek-r1 and gemini-2.0 consistently outperformed local models, as
expected. However, certain local models demonstrated strong performance in the FR-NFR cases,
with gemma2:27b and deepseek-r1:70b achieving scores that were comparable with their online
competitors.

Figure 4.27: MyCharts Experiment - Model Performance (FR/NFR)

Figure 4.28: MyCharts Experiment - Model Performance (SRS)

 The chart in Figure 4.29 compares the average performance of LLMs across all
evaluation criteria when using FR/NFR lists versus a full SRS document as input. A consistent
trend persists, larger LLMs with more parameters tend to perform better when given the more
detailed and extensive input provided by the SRS document, as opposed to the concise FR/NFR
lists. On the other hand, most local LLMs struggle with the increased input length, often
becoming overwhelmed and underperforming. A notable exception is mixtral:8x22b, a local
model with 141 billion parameters, which appears to handle the richer input effectively and
benefits from the additional context provided by the SRS due to its parameter count.

Figure 4.29: MyCharts Experiment - FR/NFR vs SRS

NoRAG vs RAG

 In this section, we compare the performance of class diagrams generated with and
without Retrieval-Augmented Generation (RAG) across both FR/NFR and SRS input formats.
The goal of this analysis is to examine whether RAG methods provide measurable benefits when
applied to a more complex application like MyCharts and a more demanding architectural
pattern such as Microservices.

FR/NFR Input:

 The charts in Figure 4.30, Figure 4.31 indicate that, when combined with FR/NFR input,
certain local models such as deepseek-r1:70b and gemma2:27b, demonstrate improved
performance with RAG. In contrast, other models like llama3.3, mistral and mixtral:8x22b tend
to underperform when RAG is applied.

0

1

2

3

4

5

6

MyCharts Experiment - FR/NFR vs SRS

FR-NFR SRS

Figure 4.30: MyCharts Experiment - Model Performance without RAG (FR/NFR)

Figure 4.31: MyCharts Experiment - Model Performance with RAG (FR/NFR)

 The chart in Figure 4.32 illustrates the impact of RAG methods on the performance
scores of each model, while also highlighting the comparative effectiveness of the two RAG files
introduced in Chapter 3.3.7. Among the models that benefited from RAG, the rag2 file, which is
designed as a more concise and practical explanation of the Microservices architecture,
consistently led to better performance. This suggests that targeted, streamlined supplemental
material can be more effective than lengthier or more general alternatives in guiding LLMs.

Figure 4.32: MyCharts Experiment - NoRAG vs RAG (FR/NFR)

SRS Input:

 The charts in Figure 4.33, Figure 4.34 indicate that, when combined with SRS input,
nearly all local models, except mistral, demonstrate improved performance with RAG on
average.

Figure 4.33: MyCharts Experiment - Model Performance without RAG (SRS)

Figure 4.34: MyCharts Experiment - Model Performance with RAG (SRS)

 The chart in Figure 4.35 showcases the impact of RAG methods on the performance
scores of each model, while also highlighting the comparative effectiveness of the two RAG files
introduced in Chapter 3.3.7. Across all models, the rag2 file, which offers a concise and practical
explanation of the Microservices architecture, consistently resulted in better performance. This
finding suggests that well-targeted and streamlined supplemental material can be more effective
in guiding LLMs than longer or more generalized documents.

Figure 4.35: MyCharts Experiment - NoRAG vs RAG (SRS)

4.3.3 Metric Performance

 To introduce a more objective dimension to the evaluation process for the Microservices
architecture, this experiment incorporates the metrics outlined in Chapter 3.3.4. As discussed
earlier, there is a conceptual alignment between these metrics and the subjective evaluation
principles. In this section, we examine whether this alignment is reflected in practice through
experimental results.

 Following the MyCharts experiment pipeline stated in Figure 3.8, after generating the
class diagrams, we manually calculated the defined metrics for each one. To enable a fair
comparison, we normalized both the metric values and the human evaluation scores to a scale
from 0 to 1. The human evaluations were normalized individually for each evaluation principle
to maintain consistency across different criteria.

 As outlined in Chapter 3.3.4, the quality of a generated class diagram can be interpreted
through the following metric patterns: SI, DOC and SST should ideally be close to 1 indicating
stateless microservices that manage their own data and have operations achieving eventual data
consistency. SC should reflect a high number of services per use case, signaling appropriate
service cohesion. In contrast, lower values are desirable for SIC, AIS and ADS, as they indicate
reduced inter-service coupling and redundancy, for this reason, these metrics have been inverted
in the following charts to align with the convention that higher values indicate better-quality
diagrams.

 The charts in Figure 4.36, Figure 4.37, Figure 4.38, Figure 4.39, Figure 4.40 display on
the horizontal axis the ID of the class diagrams generated, where 1-23 refer to FR/NFR scenarios
and 24-46 refer to corresponding 1-23 of SRS scenarios and the vertical axis represents the score
either of the metric of the evaluation. These charts provide a visual representation of the
conceptual correlation between some evaluation principles with some of the metrics.

Figure 4.36: MyCharts Experiment - Metric Correlation - Responsibility Distribution

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50

Responsibility Distribution

SIC Metric

Evaluations

Figure 4.37: MyCharts Experiment - Metric Correlation - Data Management

Figure 4.38: MyCharts Experiment - Metric Correlation - Data Consistency

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50

Data Management

DOC Metric

Evaluations

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50

Data Consistency

SST Metric

Evaluations

Figure 4.39: MyCharts Experiment - Metric Correlation – Coupling

Figure 4.40: MyCharts Experiment - Metric Correlation - Cohesion

 The charts illustrate that for certain evaluation principles such as Data Management, there
is a clear and observable correlation between the subjective evaluations and the corresponding
metrics. However, for other principles like Cohesion, the relationship is less evident. This
suggests that further investigation is needed, including the exploration of additional or alternative
metrics, to more accurately and objectively capture the concept of cohesion in class diagrams.

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50

Coupling AIS - ADS Average
Metric

Evaluations

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50

Cohesion

SC Length Metric

Evaluations

4.3.4 Metric Hallucination

 To assess the extent to which LLMs exhibit hallucination in metric generation, i.e.,
calculating inaccurate metric values, we compared the manually calculated metrics for each class
diagram with the corresponding metrics automatically generated by the LLMs. The chart in
Figure 4.41 illustrates the difference between these two sets of values, effectively calculating the
degree of hallucination per LLM and per metric.

 As seen from the chart, it seems that all LLMs hallucinate to some extent, but the degree
of hallucination varies significantly between models and across different metrics. Notably,
models like mistral, o1 and o3-mini-high show particularly high hallucination in certain metrics,
especially the SIC (Service Interface Count) and AIS (Absolute Importance of Service Average)
metrics, with values approaching 1. This suggests a substantial mismatch between the
automatically generated and the manually verified values. On the other hand, models such as
claudeSonnet3.7, gemini-2.0 and mixtral:8x22b generally exhibit lower hallucination rates across
most metrics, indicating a higher level of accuracy in self-assessed metric reporting.
Interestingly, even strong performers like grok3 show high hallucination levels, especially in the
SIC and DOC metrics, highlighting that performance in diagram generation does not always
correlate with accurate self-evaluation. Overall, the variation in hallucination emphasizes the
need for cautious interpretation of LLM-generated metrics and the importance of external
verification when evaluating architectural outputs.

Figure 4.41: MyCharts Experiment - Metric Hallucination

0

0.2

0.4

0.6

0.8

1

1.2

Metric Hallucination Per Model

SI Hallucination DOC Hallucination SST Hallucination

SIC Average Hallucination AIS Average Hallucination ADS Average Hallucination

SC Average Hallucination

4.3.5 Results Discussion

 Our analysis highlights some clear patterns in how different factors impact the ability of
large language models (LLMs) to generate class diagrams, especially for complex applications
like MyCharts and when using more demanding architectures like Microservices. While human
evaluations are subjective, the overall trends match well with the evaluators' impressions. A
larger-scale experiment would help confirm these results, but even from our current data, several
takeaways stand out:

• Bigger models generally do better: Larger online LLMs outperformed smaller local
ones, creating more complete and well-structured diagrams overall. This isn’t too
surprising, given their greater capacity and broader training.

• LLMs handle Microservices reasonably well: Most models showed a reasonably good
understanding of microservices-based design, particularly the larger ones. These models
often generated diagrams that needed refinement but provided a solid starting point.

• RAG helps most of the time: Using Retrieval-Augmented Generation (RAG) generally
improved results. While a few models didn’t benefit much or even declined in
performance, most performed better when given a focused, concise RAG file that
emphasized key microservice design principles.

• Input format makes a difference: When comparing full Software Requirements
Specifications (SRS) with more concise Functional/Non-Functional Requirements (FR-
NFR) lists, larger models handled full SRS documents better. Smaller models tended to
perform worse with longer inputs but showed improved results with the shorter, more
targeted FR-NFR format.

• Objective metrics appear promising: Although we didn’t directly use objective metrics
to evaluate the diagrams in this study, there was a noticeable correlation between these
metrics and the subjective human evaluations. This points to the potential of automating
evaluations using architecture-specific metrics in future work.

• LLM-generated metrics vary in accuracy: When models attempted to calculate the
metrics on their own, the results were inconsistent. Hallucination was common,
highlighting the need for careful interpretation and external validation.

4.4 MyCharts 2-Prompt Experiment

 Lastly, we ran a final experiment, the two-prompt experiment described in Chapter 3.4.
This small-scale test explored whether giving the model a follow-up prompt, based on the
evaluation and metrics of its initial response, could help it produce a better second version. The
idea came from reviewing results for MyCharts, where many initial outputs were close to correct
and just needed minor adjustments. We wanted to see if a structured second prompt could guide
the model to improve those responses more effectively.

4.4.1 Typical Cases

 In this section, we showcase pairs of UML class diagrams generated by the LLMs, one
from the initial prompt and the other from a follow-up, evaluation-informed prompt. These
examples illustrate how the second prompt, guided by feedback and metrics from the first
response, can enhance the structure, completeness and overall quality of the diagrams. By
comparing these pairs, we aim to demonstrate the practical value of iterative prompting in
refining architectural outputs.

Microservices | mistral | SRS | NoRAG | Response 1
The diagram in Figure 4.42 represents an adequate initial response, capturing most of the core
features of the application. It demonstrates a reasonable distribution of functional
responsibilities across multiple microservices, indicating a general grasp of the microservices
architectural style. However, it falls short in two key areas: modeling interservice
communication and incorporating dedicated databases for each microservice, both of which
are essential aspects of a robust microservices design.

Figure 4.42: MyCharts 2-prompt Experiment - Mistral (Response 1)

Microservices | mistral | SRS | NoRAG | Response 2
The diagram in Figure 4.43 shows a notable improvement, introducing an API Gateway to handle
request routing while also clearly enhancing the modeling of interservice communication. This addition
makes service interaction more explicit and structured.

Figure 4.43: MyCharts 2-prompt Experiment - Mistral (Response 2)

Microservices | deepseek-r1 | SRS | NoRAG | Response 1
The diagram in Figure 4.44 shows a solid first attempt, capturing most of the key features of
the application. It does a decent job of spreading responsibilities across different
microservices, showing that the model understands the basics of microservices architecture.
That said, it misses a couple of important points like inter-service communication and the use
of separate databases for each microservice, which are both important for a strong
microservices design.

Figure 4.44: MyCharts 2-prompt Experiment - Deepseek-r1 (Response 1)

Microservices | deepseek-r1 | SRS | NoRAG | Response 2
The diagram in Figure 4.45 demonstrates a significant improvement in modeling inter-service
communication. The addition of a publish-subscribe (pub-sub) messaging queue introduces
asynchronous communication between services, enabling better scalability and decoupling.
Alongside this, the inclusion of an API Gateway centralizes request routing and access control,
reflecting a more realistic microservices architecture. These enhancements significantly
elevate the architectural completeness and structure of the diagram.

Figure 4.45: MyCharts 2-prompt Experiment - Deepseek-r1 (Response 2)

4.4.2 Evaluation Results

 In this section, we present a series of charts illustrating how each model’s output changed
in response to a second, follow-up prompt. As shown in Figure 4.46, Figure 4.47, Figure 4.48,
Figure 4.49, Figure 4.50 most models, like Claude Sonnet 3.7, Mistral-Online, DeepSeek-R1 and
GPT-4o, showed noticeable improvement in their second responses, achieving higher scores
across the evaluation criteria. However, model o1 experienced a slight decline in performance.

 While this small-scale experiment isn’t sufficient to draw broad conclusions, it does open
the door for further research. It highlights the potential of using a standardized second prompt to
refine LLM outputs. Currently, this process still requires manual evaluation of the first response
and metric calculation, but it suggests a path toward a semi-automated refinement approach that
could enhance architectural output quality.

Figure 4.46: MyCharts 2-prompt Experiment (claudeSonnet3.7)

Figure 4.47: MyCharts 2-prompt Experiment (deepseek-r1)

Figure 4.48: MyCharts 2-prompt Experiment (gpt4o)

0
1
2
3
4
5
6

claudeSonnet3.7

Response 1

Response 2

0
1
2
3
4
5
6 deepseek-r1

Response 1
Response 2

0
1
2
3
4
5
6

gpt4o

Response 1

Response 2

Figure 4.49: MyCharts 2-prompt Experiment (o1)

Figure 4.50: MyCharts 2-prompt Experiment (mistral-online)

0
1
2
3
4
5
6

o1

Response 1

Response 2

0
1
2
3
4
5
6

mistral-online

Response 1

Response 2

5. Discussion

 This thesis explored the capabilities and limitations of large language models (LLMs) in
generating UML class/component diagrams that implement specific architectural patterns,
including Client-Server, Three-Tier, MVC and Microservices. Through three structured
experiments, we examined how different input formats such as functional and non-functional
requirement lists, Software Requirements Specification (SRS) documents and the use of
Retrieval-Augmented Generation (RAG) influence the quality of generated architectures. We
then introduced a more complex software application and assessed LLM performance in
designing more demanding architectures like Microservices and proposed new evaluation criteria
and objective metrics specific to this pattern. Lastly, we tested a two-prompt approach, where a
standardized follow-up prompt based on feedback from the initial output led to improved second
responses, suggesting the potential for a semi-automated refinement process.

5.1 Conclusions

 The results of this study highlight the promising potential of integrating LLMs into the
design phase of the software development lifecycle. By examining input formats, output quality,
architectural complexity, evaluation methods, model performance and refinement techniques,
this research provides practical insights into how AI can support architectural design. These
findings can help identify where LLMs add real value, recognize current limitations and develop
strategies to effectively incorporate AI into real-world design workflows.

 Reflecting on the research questions outlined in Chapter 2.5, we now attempt to address
them based on the findings from this study.

 1. Our evaluation of output formats revealed that when asking LLMs to create
architectures as PlantUML documents, they consistently produce the higher quality architectural
representations compared to other "diagram-as-code" formats. PlantUML documents, offer a
balance of structure and readability that seems well-suited for LLMs. This insight provides a
practical recommendation for teams integrating AI into their architecture workflows.

 2. In terms of input representation, we found that structured Software Requirements
Specification (SRS) documents can enhance LLM performance compared to plain-text
requirements documents; notably, diagrams in SRS are also expressed as PlantUML text; this
stands particularly for larger models, capable of benefiting from the extended context and rich
structured information in SRS documents. This suggests that the quality and format of input data
play a critical role in the output accuracy of AI-generated architectures. Simpler FR/NFR lists

may still be useful for smaller models, but they often lack the depth needed for more complex
designs.

 3. When tackling complex design challenges, specifically Microservices architectures,
LLMs exhibited mixed performance. Larger, more capable models were generally more
successful in decomposing complex requirements and applying core microservices principles,
while smaller models often struggled. This emphasizes the need for LLM selection to be
proportional to the architectural complexity of the problem domain.

 4. Another part of this study is the introduction of specialized evaluation criteria and
objective metrics specific to Microservices. This is a first attempt to fill gaps in existing
assessment methods, and also to correlate subjective human evaluations with quantifiable
architectural metrics, paving the way for more standardized benchmarking of LLM performance
in future work.

 5. We also observed that Retrieval-Augmented Generation (RAG) enhances design
quality, particularly in larger models that can handle the increased context without being misled
or confused. The RAG material seems to have a large impact for enhancing and not misleading
the LLMs; our results indicate that concise and precise RAG materials with practical guidelines
seem to work best.

 6. Despite these advancements, the study also revealed some limitations. LLMs
frequently hallucinate when asked to calculate the objective metrics in the diagrams themselves
have created, often offering incorrect values. This underlines the importance of external
objective validation and the risks of relying solely on AI-generated evaluations.

 7. Finally, our experiment with iterative prompting showed encouraging results,
suggesting that a structured follow-up prompt, which is informed by evaluation feedback, can
refine and improve the quality of the architectural output. Although tested on a limited scale, this
finding opens up possibilities for semi-automated refinement workflows that blend human
oversight with AI-generated design.

 Together, these findings provide a roadmap for both using LLMs in software architecture
and understanding the conditions under which they are most effective. They also highlight areas
for future exploration, including more robust automation pipelines, deeper integration of
evaluation metrics and expanded use of conversational refinement techniques.

5.2 Future Work

 While this study provides promising insights into the use of LLMs for software
architecture generation, there remain several areas for future exploration. One important
direction is scaling up the experiments, both in terms of the number of use cases and the diversity
of architectural patterns examined. This would allow for broader generalizations and could

reveal whether the trends observed here hold across domains, project sizes and industry-specific
applications.

 Another promising area is the automation of the evaluation and refinement process.
Currently, the two-prompt method introduced in this research relies on manually calculated
metrics and human evaluations to guide refinement. A logical next step would be to integrate
these processes into a semi-automated or fully automated pipeline that uses standardized,
validated metrics to assess initial outputs and generate effective follow-up prompts. This could
significantly streamline the use of LLMs in architectural design and make them more practical
for integration into real-world development workflows.

 Additionally, there is substantial room to improve hallucination mitigation, particularly in
cases where LLMs are asked to calculate or reason about specific architectural metrics. Future
studies could investigate techniques such as external knowledge integration or model fine-tuning
to reduce inaccuracies. As LLMs continue to evolve, understanding how to reliably anchor their
outputs in factual and context-aware reasoning will be critical to their successful application in
software engineering.

6. Appendix

6.1 Appendix A (SRS_v1 for DCC Application)

6.2 Appendix B (SRS_v2 for DCC Application)

6.3 Appendix C (SRS for MyCharts Application)

7. References

[1] Shaveta, “A review on machine learning,” International Journal of Science and Research

Archive, vol. 9, no. 1, pp. 281–285, May 2023, doi: 10.30574/ijsra.2023.9.1.0410.
[2] R. Mu and X. Zeng, “A Review of Deep Learning Research,” KSII Transactions on

Internet and Information Systems, vol. 13, no. 4, pp. 1738–1764, Apr. 2019, doi:
10.3837/tiis.2019.04.001.

[3] X. Wang, “The application of NLP in information retrieval,” Applied and Computational
Engineering, vol. 42, no. 1, pp. 290–297, Feb. 2024, doi: 10.54254/2755-
2721/42/20230795.

[4] H. Li, G. K. Rajbahadur, and C.-P. Bezemer, “Studying the Impact of TensorFlow and
PyTorch Bindings on Machine Learning Software Quality,” ACM Transactions on
Software Engineering and Methodology, Jul. 2024, doi: 10.1145/3678168.

[5] “ETHICAL CONSIDERATION IN AI,” International Research Journal of
Modernization in Engineering Technology and Science, May 2024, doi:
10.56726/IRJMETS55881.

[6] H. W. Marar, “Advancements in software engineering using AI,” Computer Software and
Media Applications, vol. 6, no. 1, p. 3906, Feb. 2024, doi: 10.24294/csma.v6i1.3906.

[7] C. M. Hicks, C. S. Lee, and K. L. Foster-Marks, “The New Developer Executive
Summary The New Developer AI Skill Threat, Identity Change & Developer Thriving in
the Transition to AI-Assisted Software Development.” [Online]. Available:
https://www.pluralsight.com/product/flow/developer-success-lab/dsl-navigate-toolkit

[8] I. Ozkaya, “Application of Large Language Models to Software Engineering Tasks:
Opportunities, Risks, and Implications,” May 01, 2023, IEEE Computer Society. doi:
10.1109/MS.2023.3248401.

[9] P. Tembhekar, M. Devan, and J. Jeyaraman, “Role of GenAI in Automated Code
Generation within DevOps Practices: Explore how Generative AI,” Journal of Knowledge
Learning and Science Technology ISSN: 2959-6386 (online), vol. 2, no. 2, pp. 500–512,
Oct. 2023, doi: 10.60087/jklst.vol2.n2.p512.

[10] Z. Gao, “A review on statistical language and neural network based code completion,”
Applied and Computational Engineering, vol. 22, no. 1, pp. 233–239, Oct. 2023, doi:
10.54254/2755-2721/22/20231222.

[11] M. Atemkeng, S. Hamlomo, B. Welman, N. Oyetunji, P. Ataei, and J. L. K. E. Fendji,
“Ethics of Software Programming with Generative AI: Is Programming without
Generative AI always radical?,” Aug. 2024, doi:
https://doi.org/10.48550/arXiv.2408.10554.

[12] N. M. Dr. Naveenkumar Jayakumar, “Role of Machine Learning & Artificial
Intelligence Techniques in Software Testing,” Turkish Journal of Computer and
Mathematics Education (TURCOMAT), vol. 12, no. 6, pp. 2913–2921, Apr. 2021, doi:
10.17762/turcomat.v12i6.5800.

[13] M. A. Job, “Automating and Optimizing Software Testing using Artificial Intelligence
Techniques,” International Journal of Advanced Computer Science and Applications, vol.
12, no. 5, 2021, doi: 10.14569/IJACSA.2021.0120571.

[14] S. Gautam, A. Khunteta, and P. Sharma, “A Review on Software Testing Using Machine
Learning Techniques,” ECS Trans, vol. 107, no. 1, pp. 3393–3406, Apr. 2022, doi:
10.1149/10701.3393ecst.

[15] Dusica Marijan; Arnaud Gotlieb, “Software Testing for Machine Learning,” 2022, doi:
10.48550/arxiv.2205.00210.

[16] L. Kharb, “Automated Testing in Machine Learning Systems,” International Journal of
Progressive Research in Engineering Management and Science, Nov. 2023, doi:
10.58257/IJPREMS32282.

[17] J. Calle and C. Zapata, “QUARE: Towards a Question-Answering Model for
Requirements Elicitation,” Jul. 29, 2022. doi: 10.21203/rs.3.rs-1872151/v1.

[18] C. Cheligeer, J. Huang, G. Wu, N. Bhuiyan, Y. Xu, and Y. Zeng, “Machine learning in
requirements elicitation: a literature review,” Artificial Intelligence for Engineering
Design, Analysis and Manufacturing, vol. 36, p. e32, Oct. 2022, doi:
10.1017/S0890060422000166.

[19] Zarina Che Embi, Khaleduzzaman, and Ng Kok Why, “A Systematic Review on Natural
Language Processing and Machine Learning Approaches to Improve Requirements
Specification in Software Requirements Engineering,” International Journal of Membrane
Science and Technology, vol. 10, no. 2, pp. 1563–1577, Sep. 2023, doi:
10.15379/ijmst.v10i2.1828.

[20] W. Alhoshan, R. Batista-Navarro, and L. Zhao, “Towards a Corpus of Requirements
Documents Enriched with Semantic Frame Annotations,” in 2018 IEEE 26th International
Requirements Engineering Conference (RE), IEEE, Aug. 2018, pp. 428–431. doi:
10.1109/RE.2018.00055.

[21] C. Liu, Z. Zhao, L. Zhang, and Z. Li, “Automated Conditional Statements Checking for
Complete Natural Language Requirements Specification,” Applied Sciences, vol. 11, no.
17, p. 7892, Aug. 2021, doi: 10.3390/app11177892.

[22] Q. Lu, L. Zhu, J. Whittle, and J. B. Michael, “Software Engineering for Responsible AI,”
Computer (Long Beach Calif), vol. 56, no. 4, pp. 13–16, Apr. 2023, doi:
10.1109/MC.2023.3242055.

[23] R. Khankhoje, “Quality Challenges and Imperatives in Smart AI Software,” in Soft
Computing, Artificial Intelligence and Applications, Academy & Industry Research
Collaboration Center, Dec. 2023, pp. 143–154. doi: 10.5121/csit.2023.132412.

[24] A. Barredo Arrieta et al., “Explainable Artificial Intelligence (XAI): Concepts,
taxonomies, opportunities and challenges toward responsible AI,” Information Fusion,
vol. 58, pp. 82–115, Jun. 2020, doi: 10.1016/j.inffus.2019.12.012.

[25] E. A. Abdelnabi, A. M. Maatuk, and M. Hagal, “Generating UML Class Diagram from
Natural Language Requirements: A Survey of Approaches and Techniques,” in 2021
IEEE 1st International Maghreb Meeting of the Conference on Sciences and Techniques
of Automatic Control and Computer Engineering MI-STA, IEEE, May 2021, pp. 288–293.
doi: 10.1109/MI-STA52233.2021.9464433.

[26] O. MacMillan-Scott and M. Musolesi, “(Ir)rationality and cognitive biases in large
language models,” R Soc Open Sci, vol. 11, no. 6, Jun. 2024, doi: 10.1098/rsos.240255.

[27] R. Dhar, K. Vaidhyanathan, and V. Varma, “Can LLMs Generate Architectural Design
Decisions? -An Exploratory Empirical study,” Mar. 2024, [Online]. Available:
http://arxiv.org/abs/2403.01709

[28] M. Tsilimigkounakis, “Exploring the utilization of LLM tools in Software Architecture,”
Athens, Nov. 2024.

[29] T. Eisenreich, S. Speth, and S. Wagner, “From Requirements to Architecture: An AI-
Based Journey to Semi-Automatically Generate Software Architectures,” Jan. 2024, doi:
10.1145/3643660.3643942.

[30] S. Yang and H. Sahraoui, “Towards automatically extracting UML class diagrams from
natural language specifications,” in Proceedings - ACM/IEEE 25th International
Conference on Model Driven Engineering Languages and Systems, MODELS 2022:
Companion Proceedings, Association for Computing Machinery, Inc, Oct. 2022, pp. 396–
403. doi: 10.1145/3550356.3561592.

[31] I. Altawaiha and A. Al-Hgaish, “ClassDiagGen Tool: Fine-Tuning the GPT-3 Model for
Auto- mated Class Diagram Generation from Textual Descriptions,” May 02, 2024. doi:
10.21203/rs.3.rs-4350615/v1.

[32] Ian. Sommerville, Software engineering. Pearson, 2011.
[33] P. Kumar and Y. Singh, “A Software Reliability Growth Model for Three-Tier Client

Server System.”
[34] M. Yener and A. Theedom, “Model View Controller Pattern,” 2015. [Online]. Available:

www.wrox.com/go/
[35] T. Engel, M. Langermeier, B. Bauer, and A. Hofmann, “Evaluation of microservice

architectures: A metric and tool-based approach,” in Lecture Notes in Business
Information Processing, Springer Verlag, 2018, pp. 74–89. doi: 10.1007/978-3-319-
92901-9_8.

[36] J. Bogner, S. Wagner, and A. Zimmermann, “Towards a practical maintainability quality
model for serviceand microservice-based systems,” in ACM International Conference
Proceeding Series, Association for Computing Machinery, Sep. 2017, pp. 195–198. doi:
10.1145/3129790.3129816.

[37] J. Bogner, S. Wagner, and A. Zimmermann, “Automatically measuring the maintainability
of service- and microservice-based systems - a literature review,” in ACM International
Conference Proceeding Series, Association for Computing Machinery, Oct. 2017, pp.
107–115. doi: 10.1145/3143434.3143443.

[38] C. Richardson, “Microservices Patterns with Examples in JAVA,” 2019.
[39] Malhotra Nishant, “Microservices Design Patterns,” 2023. [Online]. Available:

www.valuelabs.com

	1. Introduction
	1.1 Evolution of AI
	1.2 AI in Software Engineering
	1.2.1 Automated Code Generation
	1.2.2 Automated Testing
	1.2.3 Understanding Software Requirements using Natural Language Processing

	1.3 Challenges of AI in Software Engineering

	2. AI-Assisted Software Architecture
	2
	2.1 Related Work
	2.2 Architectural Patterns
	2.2.1 Client-Server Architecture
	2.2.2 Three-Tier Architecture
	2.2.3 Model-View-Controller (MVC) Architecture
	2.2.4 Microservices Architecture

	2.3 Selected Architectural Patterns
	2.4 Motivation of Our Approach
	2.5 Research Questions

	3. Approach
	3
	3.1 Deployment, setup and technologies used
	3.1.1 Hardware Specifications
	3.1.2 Selecting the UML Output Format from LLMs
	3.1.2.1 PlantUML

	3.1.3 Retrieval Augmented Generation (RAG)
	3.1.3.1 RAG Overview
	3.1.3.2 Embeddings in RAG Systems
	3.1.3.3 RAG Techniques
	3.1.3.4 Our RAG Pipeline

	3.2 The DCC Experiment, revisited
	3.2.1 Architectures Considered
	3.2.2 Case Study: DCC (Dummy Coordinate Converter) Application
	3.2.3 The Prompt
	3.2.4 LLM Selection
	3.2.5 RAG Material
	3.2.6 Evaluation Process
	3.2.7 Scenarios Performed
	3.2.8 Reference Architectures

	3.3 The MyCharts Experiment
	3.3.1 Architectures Considered
	3.3.2 Case Study: MyCharts Application
	3.3.3 Evaluation Process
	3.3.4 Metrics Considered for Objective Evaluation
	3.3.5 The Prompt
	3.3.6 LLM Selection
	3.3.7 RAG Material
	3.3.8 Scenarios Performed
	3.3.9 Experiment Pipeline
	3.3.10 Reference Architecture

	3.4 MyCharts 2-Prompt Experiment
	3.4.1 Parameters
	3.4.2 Second Prompt
	3.4.3 Experiment Pipeline

	4. Results
	4
	4.1 Web Based Evaluation Platform
	4.2 DCC Experiment
	4.2.1 Typical Cases
	4.2.2 Evaluation Results
	4.2.3 Results Discussion

	4.3 MyCharts Experiment
	4.3.1 Typical Cases
	4.3.2 Evaluation Results
	4.3.3 Metric Performance
	4.3.4 Metric Hallucination
	4.3.5 Results Discussion

	4.4 MyCharts 2-Prompt Experiment
	4.4.1 Typical Cases
	4.4.2 Evaluation Results

	5. Discussion
	5
	5.1 Conclusions
	5.2 Future Work

	6. Appendix
	6
	6.1 Appendix A (SRS_v1 for DCC Application)
	6.2 Appendix B (SRS_v2 for DCC Application)
	6.3 Appendix C (SRS for MyCharts Application)

	7. References

