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Περίληψη
Η παρούσα διπλωματική εργασία εξετάζει τις επιπτώσεις στην κοινωνική ευημερία από τη

συνεκτιμώμενη εκκαθάριση των αγορών ενέργειας και εφεδρειών στο ηλεκτρικό σύστημα του
Βελγίου, εστιάζοντας ειδικά στον ρόλο των Συστημάτων Αποθήκευσης Ενέργειας με Μπατα-
ρίες (BESS). Αναπτύσσεται λεπτομερές μοντέλο εκκαθάρισης αγοράς επόμενης ημέρας, βασι-
σμένο σε μικτού τύπου ακέραιο γραμμικό προγραμματισμό (MILP), το οποίο ενσωματώνει τη
δέσμευση μονάδων, την ανάθεση εφεδρειών, περιορισμούς αυξομείωσης ισχύος, κόστη εκκίνη-
σης/διακοπής και τη δυναμική των μπαταριών. Η συνεκτιμώμενη διαμόρφωση συγκρίνεται με
διαδοχική εκκαθάριση (reserve-first), όπου τα BESS λειτουργούν αποκλειστικά για ενεργειακό
arbitrage.

Αναλύονται οκτώ αντιπροσωπευτικοί εποχιακοί τύποι ημερών· η συνεκτίμηση μειώνει το
ετήσιο κόστος συστήματος έως 1.3 (μέση μείωση 10.01 %) και βελτιώνει τόσο την παροχή εφε-
δρειών όσο και την αξιοποίηση των BESS. Μελέτες ευαισθησίας ποσοτικοποιούν τον ρόλο της
σταθερής δέσμευσης, του εύρους συμμετοχής μπαταριών και της τιμολόγησης εφεδρειών στα
τελικά αποτελέσματα.

Λέξεις-κλειδιά: συνεκτίμηση αγοράς, εφεδρείες, BESS, MILP, ανάλυση ευημερίας
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Abstract
This thesis investigates the welfare implications of co-optimising energy and reserve mar-
kets in the Belgian electricity system, with a specific focus on Battery Energy Storage
Systems (BESS). A detailed day-ahead market-clearing model is developed using mixed-
integer linear programming (MILP). The co-optimised formulation is benchmarked against
sequential clearing (reserve-first), where BESS operate purely for energy arbitrage. Eight
representative seasonal day types are examined to approximate full-year operation. Co-
optimisation reduces annual system cost by up to 1.3 (average 10.01 %) while improving
reserve deliverability and BESS utilisation. Sensitivity studies quantify how fixed commit-
ment, battery participation scope and reserve pricing affect welfare. The findings motivate
integrated market design and highlight the value of storage under different clearing archi-
tectures.

Keywords: energy-reserve co-optimisation, reserve scheduling, battery storage, MILP,
welfare analysis
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Εκτενής Περίληψη
Η παρούσα διπλωματική εργασία εξετάζει αναλυτικά τα οφέλη ευημερίας που προκύπτουν

από την κοινή – ή συνεκτιμώμενη – εκκαθάριση των αγορών ενέργειας και εφεδρειών στο βελ-
γικό ηλεκτρικό σύστημα, δίνοντας ιδιαίτερη έμφαση στον ρόλο που διαδραματίζουν τα Συ-
στήματα Αποθήκευσης Ενέργειας με Μπαταρίες (Battery Energy Storage Systems, BESS). Για
τον σκοπό αυτό αναπτύσσεται ένα υψηλής ανάλυσης μοντέλο εκκαθάρισης αγοράς επόμενης
ημέρας, βασισμένο σε μικτού τύπου ακέραιο γραμμικό προγραμματισμό (Mixed-Integer Linear
Programming, MILP). Το μοντέλο ενσωματώνει: (i) δέσμευση θερμικών και πυρηνικών μονάδων,
(ii) ανάθεση εφεδρειών δύο κατηγοριών, (iii) περιορισμούς αυξομείωσης ισχύος και ελάχιστου
χρόνου λειτουργίας, (iv) κόστη εκκίνησης/διακοπής, καθώς και (v) πλήρη δυναμική φόρτισης-
εκφόρτισης των μπαταριών, συμπεριλαμβανομένων απωλειών στρογγυλού κύκλου και ορίων
κατάστασης φόρτισης (State of Charge).

Για τη βαθμονόμηση του μοντέλου υιοθετούνται πραγματικά τεχνικο-οικονομικά δεδομένα
από τον διαχειριστή συστήματος Elia: καμπύλες κόστους παραγωγής, ονομαστικές ισχύς, δια-
θεσιμότητες ανανεώσιμων πόρων και ιστορικά προφίλ ζήτησης δεκαπενταλέπτου. Ο ετήσιος ο-
ρίζοντας προσεγγίζεται μέσω οκτώαντιπροσωπευτικών εποχιακών τύπων ημερών (AutumnWD,
WinterWE κ.λπ.), οι οποίοι επιλέγονται βάσει ομοιότητας κλιματικών και ζυγισμένων στατιστι-
κών συνθηκών. Για κάθε τύπο προσομοιώνονται δύο βασικές αρχιτεκτονικές αγοράς:

1. **Συνεκτίμηση (Co-optimised)** – ταυτόχρονη εκκαθάριση ενέργειας-εφεδρειών, όπου τα
BESS δύνανται να προσφέρουν τόσο ισχύ/ενέργεια όσο και εφεδρική ικανότητα.

2. **Διαδοχική εκκαθάριση (Sequential)** – αρχικά κατανομή εφεδρειών και στη συνέχεια
κατανομή ενέργειας· τα BESS περιορίζονται σε καθορισμένο σενάριο συμμετοχής.

Εξετάζονται επιπλέον τρία σενάρια συμμετοχής μπαταριών: (α) αποκλειστική συμμετοχή
στο στάδιο της ενέργειας, (β) σταθερή προ-δέσμευση (fixed dispatch) και (γ) περιορισμένο εύρος
(20/80 split). Τα σενάρια αυτά επιτρέπουν την ποσοτικοποίηση της αξίας ευελιξίας των BESS
υπό διαφορετικούς κανονισμούς.

Κύρια αποτελέσματα
* **Μείωση κόστους συστήματος:** Η συνεκτίμηση οδηγεί σε ετήσια εξοικονόμηση μέχρι

1.3 (μέση μείωση 10.01 % έναντι της διαδοχικής εκκαθάρισης), κυρίως μέσω αποτελεσματι-
κότερης ανάθεσης εφεδρειών και άρσης ενεργειακών περιορισμών που επιβάλλει η σταθερή
δέσμευση μονάδων.

* **Αξιοποίηση BESS:** Στο συνεκτιμημένο σενάριο, οι μπαταρίες επιτυγχάνουν 18 % υψη-
λότερο συντελεστή χρησιμοποίησης (cycle throughput) και 25 % μεγαλύτερη συνεισφορά σε
ανοδικές εφεδρείες σε σχέση με το καθαρά ενεργειακό σενάριο.

* **Ανθεκτικότητα σε αβεβαιότητα ΑΠΕ:** Η κοινή εκκαθάριση μειώνει τα σφάλματα πρό-
βλεψης αιολικής και ηλιακής παραγωγής έως 15 %.

Συμπεράσματα και προτάσεις πολιτικής
Τα αποτελέσματα καταδεικνύουν ότι:
* Η μετάβαση από διαδοχική σε συνεκτιμημένη εκκαθάριση δικαιολογείται οικονομικά, α-

κόμη και σε ώριμες αγορές με σχετικά περιορισμένη διείσδυση ΑΠΕ.
* Η διπλή συμμετοχή των BESS (ενέργεια και εφεδρεία) βελτιώνει σημαντικά την αποδοτι-

κότητα επενδύσεων σε αποθήκευση και ενισχύει την ασφάλεια εφοδιασμού.
* Η εφαρμογή δυναμικής τιμολόγησης εφεδρειών συνιστάται, ώστε το σήμα αγοράς να α-

ντικατοπτρίζει επαρκώς το οριακό κόστος ευελιξίας.
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Μελλοντική έρευνα μπορεί να επεκτείνει το πλαίσιο σε ενδοημερήσιες αγορές, πολυζωνικά
σχήματα και υβριδικές λύσεις (π.χ. BESS + υδρογόνο ή V2G στόλοι), προκειμένου να επιβεβαιω-
θεί η γενικευσιμότητα των συμπερασμάτων.
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Κεφάλαιο 1

Introduction

1.1 Context and Motivation

The European electricity landscape is undergoing a fundamental transformation, driven by
decarbonisation goals, rapid renewable deployment, and evolving patterns of electricity consumption.
In pursuit of the EU’s climate neutrality target by 2050, member states are accelerating the phase-
out of fossil-based generationwhile promoting clean energy technologies. Belgium is undergoing
similar shifts, rapidly expanding its renewable energy fleet—particularly through large-scale
offshore wind farms and distributed solar photovoltaics (PV) across residential and commercial
sectors. In parallel, the electrification of transport and heating—fueled by policy incentives and
technology cost declines—is increasing both the volume and variability of electricity demand.

This energy transition introduces significant challenges to power system operation. The
rise in variable renewable energy sources (VRES) such as wind and solar leads to increased
forecast uncertainty, larger intra-day imbalances, and reduced system inertia. These challenges
make system flexibility a central pillar of modern electricity markets. Flexibility is required both
in real-time balancing operations and in day-ahead market commitments. The efficient use of
flexible resources—such as peaking gas units, demand response, and battery storage—is crucial
for ensuring reliable, cost-effective operation in this new paradigm.

Historically, Belgium and most of continental Europe have adopted a sequential market
design. Under this structure, reserve procurement (for services such as FCR, aFRR, and mFRR)
occurs in advance or separately from the day-ahead energy market. The two markets are cleared
independently, whichmay prevent themarket from accounting for the opportunity cost of resources
that could provide both energy and reserves. For instance, a flexible generator or storage unit may
be scheduled to provide upward reserve without considering its value in meeting peak energy
demand, resulting in inefficiencies such as excessive reserve procurement or avoidable generator
start-ups.

In contrast, co-optimisedmarket clearing—as used byNorth American system operators such
as PJM, MISO, and CAISO—integrates the scheduling of energy and reserve capacity into a single
optimisation problem. Co-optimisation allows the system operator to simultaneously consider
technical constraints (such as ramping and state-of-charge limits) and system needs across both
services. This leads to more efficient resource allocation and overall welfare gains. There are
several studies supporting the operational and economic benefits of co-optimisation in high-
renewable systems [17][69].

However, implementation of co-optimisation in Europe remains limited. European markets
are governed by national and regional regulatory frameworks that often prohibit or restrict
joint optimisation of multiple services. While the EU’s Clean Energy Package and the evolving

15



Target Model support greater market integration and flexibility provision, institutional inertia
and cross-border coordination challenges have slowed the adoption of co-optimised clearing.
Belgium, through its transmission system operator (TSO) Elia, continues to procure reserve
products through dedicated auctions and platform-based mechanisms (e.g., PICASSO and MARI
for aFRR and mFRR, respectively), with limited interaction between these and energy markets.

Within this evolving context, Battery Energy Storage Systems (BESS) have emerged as a
promising technology for grid flexibility. BESS can provide a wide range of services: they can
shift energy consumption through arbitrage, provide upward and downward reserve capacity,
and deliver fast frequency response.Their rapid response times, scalability, and modularity make
them well suited to complement the intermittency of wind and solar. However, in sequential
market designs, BESS participation is often limited to a single service—either energy or reserves—
which may not fully utilise their capabilities [70]. Moreover, without co-optimisation, storage
dispatch may be based on predefined participation strategies that are unable to adapt to real-
time price signals or system needs, resulting in lower utilisation and less efficient operation [70].

By contrast, co-optimised markets enable so-called value stacking, where storage resources
participate in multiple services within the same dispatch interval. This integrated participation
increases system flexibility and improves the financial viability of BESS assets [71]. Studies have
found that co-optimisation frameworks can significantly improve the net revenue and welfare
contribution of storage resources compared to sequential market designs [17].

For Belgium,where both decarbonisation and system adequacy are high on the policy agenda,
understanding the economic role of BESS under different market arrangements is crucial. Elia
has already integrated storage into reserve capacity qualification frameworks, and pilot projects
are exploring dynamic participation of batteries in aFRR and mFRR products. Still, quantitative
assessments of how market design influences the value of BESS—and more broadly, how co-
optimisation compares to the current sequential setup in welfare terms—remain limited in the
Belgian context.

This thesis is therefore motivated by a dual objective. First, to contribute by modelling and
comparing the welfare impacts of sequential and co-optimised market clearing in Belgium, with
explicit attention to battery participation. Second, to provide empirical and policy-relevant evidence
for stakeholders such as Elia and CREG, supporting decisions on future market design, storage
incentives, and the integration of flexibility resources in a high-renewable system.

1.2 Problem Statement
This thesis addresses the unexplored economic and operational benefits of co-optimising

energy and reserve markets, as well as the role of battery energy storage in enhancing system
flexibility by developing a comprehensive, Belgium-specific simulation framework to assess the
system-widewelfare impact of integrating battery storage under differentmarket-clearing paradigms.
In particular, it focuses on three core dimensions:

1. MarketDesignComparison: It contrasts thewelfare outcomes of sequential versus co‑optimised
clearing of energy and reserves in the Belgian electricity system. These scenarios are
evaluated under historical load and renewable generation profiles representative of seasonal
and intra-week variability.

2. Battery StorageModelling: It incorporatesmultiple BESS participation strategies, including
energy-only dispatch, reserve-only provision, and fully co‑optimised energy-reserve coordination.
These configurations are tested using detailed operational constraints, such as state-of-
charge tracking and round-trip efficiency.
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3. ExpandedWelfare Metrics: It evaluates welfare not only in terms of total production cost,
but also by analysing start-up events, ramping requirements, reserve over-procurement,
and fixed costs. This multidimensional perspective offers a more nuanced understanding
of how BESS and cooptimisation affect overall system efficiency.

By simulating these alternatives on a set of representative day-types (weekday and weekend
scenarios across all four seasons), the thesis provides a robust, data-driven basis for assessing
whether co‑optimisation and more flexible BESS integration can unlock measurable welfare
benefits in the context of Belgium’s evolving electricity system.

1.3 Research Objectives
The overarching goal of this thesis is to evaluate how market design and battery storage

participation models affect the social welfare of the Belgian electricity system. This is achieved
by simulating and comparing sequential and co‑optimised clearing of energy and reserves, under
realistic operational constraints and representative system conditions.

The study is guided by the following central research questions:

Q1 What is the system-wide welfare impact of transitioning from sequential to co‑optimised
market clearing in the electricity market of Belgium?

Q2 How do different models of battery energy storage system (BESS) participation, such as
energy-only, reserve-only, and co‑optimised configurations, affect the magnitude of
welfare gains under each market paradigm?

Q3 How sensitive are these welfare outcomes to key factors such as battery size, round-
trip efficiency, allocation strategy, seasonal load profiles, and renewable generation
patterns?

To answer these questions, the specific research objectives of the thesis are as follows:

• To develop a mixed-integer linear programming (MILP) unit-commitment and dispatch
model of the Belgian power system that endogenously determines energy schedules and
reserve allocations, while incorporating generator-specific operational constraints and
reserve requirements.

• To implement a suite of BESS integration methodologies, including:

– Energy-only participation:BESS can charge/discharge based solely on energy arbitrage.

– Energy and reserve allocation: BESS is allocated to either energy or reserve in a
static fashion.

– Fully co‑optimised dispatch: BESS dynamically allocates state-of-charge to energy
and reserve simultaneously based on marginal system value.

• To simulate system performance across a diverse set of temporal profiles that capture
seasonal and intra-week variability. Eight representative days are selected: four weekdays
(one from each season) and four weekends (also seasonally distributed).

• To calculate and comparemultiplewelfare-related performancemetrics under each scenario,
including:
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– Total system production cost,

– Number of thermal generator start-ups,

– Ramping and reserve deployment levels,

– No-load fuel consumption and reserve over-procurement.

By systematically varying both the market design and the BESS configuration across these
scenarios, the thesis aims to provide quantitative insights into how improved coordination and
storage flexibility can support more efficient, resilient, and cost-effective system operation in the
Belgian context.

1.4 Methodological Overview
To evaluate the welfare implications of different market-clearing paradigms and battery

storage configurations in the Belgian electricity system, this thesis develops a detailed power
system optimization model based on a unit-commitment and economic-dispatch formulation.
The model is implemented in Python and solved using the commercial solver Gurobi, which
enables the efficient handling of large-scale mixed-integer linear programming (MILP) problems.

Two alternative market-clearing designs are simulated:

1. Sequential clearing: In this paradigm, reserve procurement is performed in a preliminary
stage based on predefined requirements (covering upward and downward aFRR andmFRR),
and often reflects agents’ expectations of future energy prices.These reserve-cleared capacities
are treated as fixed inputs in the subsequent day-ahead energy market clearing, which
minimizes energy production cost subject to unit and system constraints. The reserve-
cleared capacities are treated as fixed inputs in the subsequent day-ahead energy market
clearing, which minimizes energy production cost subject to unit and system constraints.

2. Co-optimised clearing:Here, energy and reserve capacity decisions aremade simultaneously
within a single optimization problem. The model jointly allocates generation capacity for
energy supply and ancillary services, internalizing opportunity costs, reserve substitution
effects, and physical coupling constraints such as ramp rates and minimum up/down
times. In this configuration, reserve procurement reacts endogenously to the prevailing
energy price signal, enabling the model to capture trade-offs between energy and reserve
provision in real time.

In both paradigms, the participation of battery energy storage systems (BESS) is modelled
under multiple strategies, reflecting the diversity of technical configurations and market rules.
These include:

• Energy-only participation: BESS can charge or discharge to maximize energy arbitrage
value, but is not eligible to provide reserve capacity.

• Reserve-only or energy-prioritised configurations: BESS capacity is statically assigned
to either energy or reserve provision before optimization, mimicking existing sequential
constraints in real markets.

• Hybrid allocation (sequential case): BESS participation is manually balanced between
energy and reserve functions, with fixed limits on each service.

18



• Fully co-optimised participation:The allocation of battery energy and reserve capacity is
determined endogenously as part of the co-optimised clearingmodel, allowing for dynamic
value stacking and optimal use of flexibility.

The model includes detailed technical and economic constraints:

• Reserve requirements are based on Elia’s Adequacy and Flexibility Study, while generator
technical parameters are compiled frompublic reports, academic literature, and representative
assumptions consistent with Belgian system characteristics.

• Storage constraints include state-of-charge tracking, round-trip efficiency, power and energy
limits, and degradation-penalised cycling.

• System constraints enforce demand balance, spinning reserve coverage, and reserve product
substitution rules.

Eight representative simulation days are selected to capture seasonal and intra-week temporal
variation: fourweekdays and fourweekends, one from eachmeteorological season. Each simulation
is treated as an independent optimization run to avoid assumptions about inter-day storage
operation or forecast recourse.

Key input data are sourced from publicly available reports and datasets:

• Generator technical characteristics and reserve requirements are based on Elia’sAdequacy
and Flexibility Study.

• Historical fuel prices, CO2 emission cost estimates, and renewable generation time series
are obtained from Belgian market operators and ACER reports.

• Demand and renewable production profiles are constructed using historical hourly data,
filtered and aggregated by season and day type.

The simulation outputs include not only system-wide production costs but also operational
indicators such as the number of generator start-ups, ramping frequency, reserve activation
patterns, and storage utilizationmetrics.These outputs allow for a comprehensivewelfare comparison
across market designs and storage participation strategies.
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Κεφάλαιο 2

Literature Review

2.1 Market Background and Motivation

2.1.1 Structure of European Electricity Markets
European electricity markets are organized in a sequence of timeframes, from long-term

forward contracts to day-ahead and intraday trading, and finally real-time balancing. The day-
ahead market consists of a single pan-European auction held at noon each day for the 24 hours
of the next day, with all accepted bids paid the marginal clearing price [1]. This day-ahead
market is coupled across nearly all EU countries through the Single Day-Ahead Coupling (SDAC),
which implicitly allocates cross-border transmission capacity to maximize overall welfare [1]. In
practice, each bidding zone (usually corresponding to a country) is treated like a copper-plate,
and trades between zones are facilitated by market coupling algorithms that match offers and
bids across borders, subject to network constraints. After the day-ahead market is cleared, a
continuous intraday market opens, allowing participants to adjust their positions closer to real
time as new information (like updated renewable forecasts or plant outages) becomes available
[1]. These coupled day-ahead and intraday markets ensure a high level of regional coordination,
as electricity is routinely traded across European borders, making use of available interconnection
capacity in an efficient, transparent manner. Following the close of intraday trading, the system
enters the balancing phase managed by the Transmission System Operators (TSOs). Each TSO
is responsible for maintaining the real-time balance of supply and demand in its control area,
which in Europe typically corresponds to a national grid [2]. To do so, TSOs procure various
reserve products (also known as balancing services) that can be activated on short notice to
correct any imbalance. These reserves are generally classified into three main categories in line
with EU definitions [3]:

• Frequency Containment Reserve (FCR): Also called primary reserve (R1), which acts to
stabilize the system frequency immediately after a disturbance. FCR is triggered automatically
and delivered within seconds (full response within 30 seconds) to counteract frequency
deviations and prevent system collapse [3]. All TSOs of the synchronous European grid
collectively maintain FCR; each TSO carries an obligation to procure a share of the total
FCR for the grid. For example, Belgium’s FCR requirement is on the order of 80–90 MW
(93 MW in 2024, slightly decreasing to 86 MW in 2025), a volume determined at the European
level and then shared among countries. FCR is a symmetric reserve (providers must handle
both upward and downward frequency deviations) and is procured on a regional or European
basis to take advantage of diversity and cost efficiency. Since July 2020, Elia (the Belgian
TSO) has participated in a joint FCR procurement auctionwith neighboring TSOs, replacing
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earlier national auctions. This common auction allows cross-border competition for FCR
provision, though current rules require that at least 30% of Belgium’s FCR need be procured
from resources located inside Belgium [4].

• automatic Frequency Restoration Reserve (aFRR): Also known as secondary reserve
(R2), which restores the balance and frequency to nominal by autonomously adjusting
generator output or demand within minutes. In Belgium, aFRR is centrally controlled by
Elia’s automated generation control system. Reserve providers must be able to ramp up
or down to their full contracted aFRR power within 5 minutes, and the TSO continuously
sends set-point signals (every few seconds) to track the desired output, allowing precise
regulation of the system’s balance [3]. Historically, Belgium maintained a static aFRR
requirement around 140 MWof upward reserve capacity (with an equal 140 MWdownward
capacity) [5].This volumewas deemed sufficient to handle normal supply–demandmismatches
and was mainly provided by a few large gas-fired units in the past [5]. In recent years, Elia
has moved to a more dynamic sizing of aFRR needs. For 2023, the aFRR capacity needed in
Belgium was about 117 MW (upward) on average, based on a probabilistic methodology
covering 99% of imbalance situations. This requirement is expected to increase as the
penetration of renewable energy rises, since amore variable systemwill needmore balancing
reserves. Notably, because aFRR activations adjust output continuously, it is considered
themost critical balancing resource for the Belgian system tomaintain control of frequency.
Until recently, aFRRwas procured exclusively from large power plants, but this has changed
with new market design measures (see below).

• manual Frequency Restoration Reserve (mFRR): Also called tertiary reserve (R3), which
provides slower backup power to replace or supplement aFRR in case of sustained large
imbalances. mFRR is activated by the TSO via dispatch instructions (manual triggering)
and must be fully deliverable typically within 15 minutes of activation notice [3]. It is used
to handle major contingencies or prolonged shortages and to restore the aFRR buffer (i.e.
release capacity of aFRR that might be saturated) [3]. In practice, mFRR in Belgium serves
as the “last resort” reserve to resolve significant deviations and can remain activated for
extended durations (minutes to hours) if needed. The volume of mFRR that Elia procures
is determined as part of the total FRR (Frequency Restoration Reserve) requirement (aFRR
+ mFRR) needed to cover the country’s worst-case imbalance scenarios. This can amount
to several hundred megawatts of reserve capacity depending on system conditions (for
instance, to cover the sudden loss of a large power plant or an HVDC interconnector).
Since 2013, Belgium has progressively opened the mFRR market to a broader range of
technologies and participants. Initially, mFRR was mainly an obligation on large thermal
units, but reforms allowed smaller generation, demand response, and aggregated resources
to participate [5]. As a result, the mFRR market became quite competitive: by 2017, over
1100 MW of mFRR capacity was being offered by various providers, which was 250–500
MW more than what Elia typically needed to procure at that time [5]. This oversupply
indicates a well-developed market with ample flexibility resources for tertiary reserves.

In summary, the European market structure separates energy trading (day-ahead/intraday)
frombalancing services, but coordinates these layers through clear timelines and couplingmechanisms.
Long-term and day-aheadmarkets handle the bulk of energy scheduling, while balancingmarkets
ensure real-time stability through reserves like FCR, aFRR, and mFRR. Each TSO operates its
balancingmechanism according to commonEU rules, butwith some national specifics in procurement
and product design.The Electricity Balancing Guideline (EBGL) issued by the EU in 2017 provides
a harmonized framework for integrating these balancing markets across Europe, aiming to foster
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competition and cross-border exchange of balancing services [6]. Under this framework, European
TSOs are establishing platforms for sharing balancing energy (e.g. the PICASSO platform for
aFRR and MARI for mFRR), further enhancing regional coordination. Indeed, Belgium’s TSO
recently joined the PICASSOplatform inNovember 2024, enabling the exchange of aFRR balancing
energy with other countries and access to a wider, more cost-efficient pool of balancing resources
[7].

2.1.2 Separation of Energy and Reserve Markets

Traditionally, European market design has separated the procurement of energy and reserve
capacity, clearing them in a sequential process rather than jointly. In most European countries,
reserves (balancing capacity) and energy are traded in independent markets, often in a fixed
sequence (e.g. reserve auctions held either shortly before or after the day-ahead energy auction),
without a unified optimization of the two products [8]. This sequential market clearing means
that generators and other market players decide on reserve offers and energy bids in isolation,
taking the other market’s outcome as given or uncertain. For example, a generator might secure a
contract to hold 50 MW for aFRR (reserve) in a morning capacity auction and later adjust its day-
ahead energy bid to account for that reserved capacity. Conversely, if it sells energy in the day-
aheadmarket, it may have less headroom to offer reserves. Under the current paradigm (prevalent
in Europe), there is no single algorithm that co-optimizes these decisions – instead, market
participants and TSOs manage the linkages through administrative processes and opportunity
cost pricing. This sequential clearing is in contrast to many North American power markets,
where centralized unit commitment algorithms co-optimize energy and reserves together in the
day-ahead market [8].

The separation of energy and reserve markets can lead to several inefficiencies due to the
lack of joint optimization. First, treating energy and reserve procurement independently fails
to capture the physical interdependency: both products often come from the same capacity on
flexible generators or controllable loads. Clearing them separately may yield an outcome that is
globally suboptimal – for instance, a power plant might be scheduled to generate energy in day-
ahead even though its capacity would have been more valuable providing reserve, or vice versa.
Academic studies have shown that a sequential approach tends to result in higher total system
costs compared to a co-optimized approach. In a case study of the CentralWestern Europe region,
Van den Bergh and Delarue found that the sequential energy-reserve market clearing incurred
greater operating costs than a joint clearing, primarily because the sequential model could not
fully account for generators’ technical constraints and opportunity costs across markets [8].
These extra costs are attributed to the “missing” co-optimization: for example, some generators
might be committed out-of-merit in the energy market just to ensure sufficient reserves are
available, or expensive last-minute adjustments might be needed if reserve capacity winners turn
out to be unavailable for energy they had sold earlier. Furthermore, under sequential designs,
fixed costs and start-up costs of units are often misrepresented in bids: generators bid reserves at
an opportunity cost assuming a certain energy market outcome. If that assumption is wrong (e.g.
the unit doesn’t clear energy but assumed it would), the result can be an inefficient commitment
or dispatch of units. An official analysis by the Agency for the Cooperation of Energy Regulators
(ACER) underscores these inefficiencies: energy and balancing capacity markets are “strongly
interdependent” and separating them can lead to suboptimal outcomes, such as unnecessary unit
commitments and higher overall costs.

One notable inefficiency arises from the need to adjust schedules after the fact. In sequential
clearing, once the day-ahead energy market is run, TSOs might have to make significant changes
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(through intraday adjustments or extra reserve activation) because the day-ahead schedule didn’t
account for reserve needs. If intraday markets cannot fully accommodate these adjustments,
the cost savings that could have been achieved via co-optimization are effectively lost, or even
negative (since correcting the schedules can be costly). In essence, the sequential model might
dispatch the system one way in the energy market, only to redispatch it in part to meet reserve
requirements – a redundant and costly shuffle.

These concerns have motivated proposals to move toward joint optimization of energy and
reserves in Europe. Co-optimizingmeans that the day-aheadmarket algorithmwould clear energy
and reserve capacity simultaneously, ensuring that the opportunity cost of providing reserves
(not generating energy) is explicitly considered in the clearing of energy, and vice versa. Recent
studies commissioned by regulators indicate huge potential benefits from such an approach.
A 2024 consultancy study for ACER quantified the welfare gain of co-optimizing day-ahead
energy and balancing capacity at roughly €1.3 billion per year for the EU, compared to the status
quo sequential design [6]. Even an intermediate step – a sequential “market-based allocation”
of cross-zonal capacity for reserves (used in the Nordic region) – yields far smaller benefits
( €160 million/year), highlighting that only full co-optimization captures themajority of efficiency
gains. The study also noted that under sequential arrangements, market participants are forced
to speculate on energy prices when bidding for reserve contracts (since those are decided before
energy market clears in some designs), which can lead to inaccuracies and risk premiums. If
co-optimization is implemented, participants no longer need to separately forecast the energy
market outcome in their reserve bids, removing a layer of uncertainty. Overall, the findings
are that co-optimization would improve system efficiency by optimizing both the fixed and
variable costs of generation in one step, yielding a more economically efficient commitment
and dispatch of resources. As a result, interest is growing in reforming European markets to
integrate energy and reserve clearing. However, this represents a significant design change – the
aforementioned study and other researchers note that adopting joint clearing in Europe would
require overcoming regulatory and computational challenges, and thus it may not materialize
immediately [8]. In the interim, improvements like better reserve sizing methods and cross-
border reserve sharing are being pursued to mitigate some inefficiencies [8]. Nonetheless, the
motivation to reduce the inefficiencies of the status quo is clear: a more integrated market design
promises enhanced reliability and lower costs as Europe’s power system evolves.

2.1.3 Belgian Market Context

Elia’s Role and System Characteristics: Belgium’s electricity system is operated by Elia, the
sole transmission system operator (TSO) responsible for high-voltage electricity transmission
and real-time system balancing. Elia operates about 19,300 km of high-voltage lines and 800
substations, supplying power to all of Belgium and connecting roughly 30 million end-users
(including those via its 50Hertz subsidiary in Germany) [9].The Belgian control area is part of the
large continental European synchronous grid, which is the most extensive synchronized power
network in the world (spanning 26 countries with approximately 860 GW of generation) [9].
This means Belgium’s grid is tightly interconnected with its neighbors (France, the Netherlands,
Germany, and via HVDC to Great Britain), and cross-border flows are significant. Elia is at the
crossroads of this network, making Belgium a critical hub for international power exchange and
a beneficiary of regional grid cooperation [9].

Within its control area, Elia’s core responsibility is tomaintain the balance between electricity
generation and consumption at all times. By law and grid code, everymarket participant (generator,
supplier, large consumer, etc.) is financially incentivized to be balanced on a 15-minute basis –
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this is done via Balancing Responsible Parties (BRPs) that must ensure their portfolio’s injections
and offtakes match in each quarter-hour interval [2]. Despite these efforts, real-time imbalances
inevitably occur (e.g. a sudden surge in demand or an unforeseen drop in a power plant’s output).
Elia continuously monitors system frequency and the overall imbalance of the Belgian control
zone. Any remaining net imbalance (after BRPs’ self-balancing and any imbalance netting with
other zones) is corrected by Elia through the activation of balancing power (reserve energy) [2].
To have this ability, Elia procures balancing capacity in advance – a set amount of generation
(or controllable demand) that stands ready to adjust output on the TSO’s request. By contracting
reserves ahead of time in dedicated balancing markets, Elia ensures the necessary resources are
available to maintain system stability [2]. Providers of these reserves are known in European
terminology as Balancing Service Providers (BSPs). Elia remunerates BSPs for being available
(capacity payment) and for any energy actually delivered during activations (energy payment),
as explained below.

Reserve Requirements in Belgium (FCR, aFRR, mFRR): Belgium’s reserve dimensioning is
designed in compliance with ENTSO-E and EU rules, aiming to cover the country’s typical
imbalances and largest potential power contingencieswith high probability (at least 99% reliability
for FRR sizing, per EU guidelines). The reserve products used are the same primary, secondary,
and tertiary reserves described in Section 2.1.1, but here we detail their current requirements and
use in the Belgian context:

• FCR (R1): As part of the synchronous European system, Belgium contributes to the collective
frequency containment reserve. The required FCR capacity for Belgium is determined
annually based on the ENTSO-E methodology (proportional to the control area’s load
and generation). As of 2024, Belgium must procure roughly 85–95 MW of FCR capacity
for normal operation. This volume can be covered by domestic resources or via cross-
border procurement within the FCR cooperation framework. In practice, Elia participates
in a regional FCR procurement cooperation with neighboring countries (such as France,
Germany, the Netherlands, etc.), holding joint auctions where FCR providers from across
the region compete. Belgium must secure at least a minimum “local FCR share” (around
25–30% of its requirement) fromunits located in Belgium, to ensure some domestic response
in case of islanding [4]. FCR in Belgium is fully symmetric (providers must deliver both
upward and downward frequency response) and is activated automatically via frequency
deviations, requiring no direct TSO control once contracted.

• aFRR (R2): Elia’s automatic FRR requirement is sized to handle the bulk of intra-period
imbalances that are too large or persistent for primary control alone. Historically set at
140 MW upward (and 140MW downward) for many years [5], the aFRR requirement has
been refined by probabilistic analysis in recent years. In 2023 the required aFRR capacity
was about 117 MW upward (with a similar magnitude downward), reflecting efficiencies
gained through dynamic dimensioning and the introduction of fast-responding resources
like batteries. Elia’s aFRR is procured on a daily basis and must be able to fully respond
within 5minutes of activation, with theAGC (automatic generation control) system continuously
adjusting the output of contracted units every 4 seconds to maintain the control area’s
interchange at its scheduled value [3]. Notably, aFRR is considered themost crucial balancing
reserve for Belgium because it fine-tunes the balance and corrects the residual control
error after FCR action. For a long time, only a few large gas-fired units from two or three
companies provided all aFRR in Belgium (hence it was a very concentrated market) [5].
Recognizing this, Elia and the regulator (CREG) took steps to open up the aFRR market
to more participants and new technologies. After pilot projects, a major redesign was
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implemented in 2020: aFRR capacity is now procured via a two-step auction that allows
new entrants (like aggregators of smaller units, renewables, and demand response) to
compete [5]. This has increased competition and diversity in aFRR provision, helping to
reduce costs and improve resource adequacy. By 2021, Elia began seeing new providers
offering aFRR, and the product is no longer exclusively the domain of large power plants.

• mFRR (R3): The manual FRR requirement covers the remaining imbalance needs beyond
what aFRR can manage. Typically, the sum of aFRR + mFRR is sized to cover the reference
incident (often the tripping of a large generating unit or import line). In Belgium, the
largest single generation unit is around 1 GW (a nuclear unit), but it is neither necessary
nor economical to hold that entire volume as spinning reserve at all times. Instead, Belgium’s
mFRR procurement is a balance between ensuring sufficient contingency coverage and
relying on shared reserves or emergency measures for extremely rare events. In practice,
Elia tends to procure on the order of a few hundred megawatts of mFRR capacity daily,
with the exact volume varying by day and hour (dynamic sizing). For example, if 117 MW
of aFRR is required, the remaining upward FRRmight be supplied by roughly 300–500+ MW
ofmFRR to reach the total FRR need (this total could be around 400–600 MW, depending on
system conditions and risk level).ThemFRR product in Belgium comes in two forms:mFRR
Standard (full activation in 15 minutes, sustainable for hours) and mFRR Flex (a shorter-
duration product introduced to increase participation, though its usage has been evolving).
Since the market liberalization, mFRR has seen significant reforms. In 2013, Elia opened
mFRR provision to decentralised resources, allowing distribution-connected generation
(e.g. CHP units, emergency generators) and demand response to participate [5]. This led
to a rapid growth in the pool of mFRR providers. By 2017, the volume of mFRR offered
by the market (over 1100 MW) far exceeded the volume Elia actually needed to contract
(typically 600–850 MW at that time), indicating healthy competition [5]. mFRR is used
when there are large or prolonged imbalances – for instance, a sudden loss of generation
that exceeds aFRR capacity, or when aFRR has been heavily deployed for several minutes
and needs relief. mFRR activations are instructed by Elia’s control room operators and can
last as long as needed to restore system balance and reserves. If a severe deficit occurs,
mFRR resources will be activated in merit order, and they can support frequency control
over an extended period, effectively backing up the faster reserves [3].

Current Procurement andActivation Processes: Elia procures its reserves through dedicated
capacity auctions and then utilizes them through amerit-order activation in real time.The procurement
(also known as the balancing capacity market) and activation (balancing energy market) are
distinct but linked processes [3]. Key characteristics of the Belgian approach include:

• Capacity Procurement:: For each reserve product (FCR, aFRR, mFRR), Elia determines the
required volume (capacity need) in advance – historically this could be yearly or monthly
for FCR, weekly or daily for aFRR/mFRR, but since recent changes, procurement is moving
to shorter intervals (e.g. daily auctions for next-day reserves) to improve efficiency and
alignmentwith forecast conditions. Elia then solicits bids frompre-qualified BSPs to supply
that capacity. The auctions are competitive, and bids typically specify a capacity price in
€/MW for being available. Elia contracts the lowest-priced offers until the requirement
is filled (merit order selection) [3]. All contracted reserve providers receive a capacity
payment (availability remuneration) for the contracted period. For example, FCR capacity
might be procured in a weekly auction for each upcoming week, whereas aFRR and mFRR
capacity are procured through daily auctions for the next day’s needs (following the implementation
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of dynamic dimensioning). Elia’s auctions calendar shows weekly and monthly tenders,
indicating that some mFRR needs are still procured with slightly longer lead times as
of now. The trend, however, is toward short-term procurement to better match reserve
sizing with actual system conditions (daily dynamic procurement for both aFRR andmFRR
is expected to become the norm). All reserve products (FCR, aFRR, mFRR) in Belgium
presently receive a capacity payment to ensure they are ready to respond [3].

• Activation and Energy Remuneration::When an imbalance occurs, Elia activates reserves
by calling off energy from the contracted BSPs (and potentially non-contracted resources
if available). For aFRR and mFRR, BSPs must submit balancing energy offers (in €/MWh)
indicating at what price they are willing to actually increase or decrease generation if
activated. The contracted aFRR and mFRR providers are obliged to offer their reserved
capacity as energy bids in the real-time balancing market (at or below a price cap), but
additional “free bids” from non-contracted units can also be offered to the TSO [3]. These
free bids are unfettered capacity that was not paid in advance, yet they can participate
in the energy market to compete with contracted reserves. When balancing is needed,
Elia sorts all available energy bids (contracted and free) in order of price – this forms the
balancing merit order for upward regulation (and similarly for downward regulation if
reducing output is needed). Elia then activates the cheapest bids first tomeet the imbalance,
paying those providers the agreed energy price (typically “pay-as-bid” formFRR in Belgium,
and a form of marginal pricing for aFRR energy under the new design). Notably, FCR
differs in that it has no separate energy payment – FCR response is automatic proportional
to frequency deviations, and FCR providers are compensated only via capacity payments.
aFRR and mFRR providers, on the other hand, receive both the capacity fee and an energy
payment for any MWh activated [3]. The activation is coordinated via the international
TSOs’ systems as well – for example, if imbalance netting can reduce the activation need
(counteracting imbalances with a neighbor), that is done before calling up reserves. After
activation, any energy delivered is settled at the applicable balancing energy price, and the
resulting imbalance price is passed on to BRPs that were short or long, thus incentivizing
them to help restore balance.

In summary, Belgium’s reserve procurement and activation processmirrors the general European
approach: procure sufficient reserve capacity through competitive auctions to guarantee availability,
then activate the least-cost resources in real time to handle imbalances. Over the past decade,
Belgium (through Elia andCREG) has significantly evolved its balancingmarket design – opening
it to new technologies (like batteries and aggregated demand), harmonizing productswith European
standards, and joining cross-border platforms for reserve exchange. These efforts in the Belgian
market context aim to ensure security of supply and economic efficiency, providing the necessary
reserves (FCR, aFRR,mFRR) atminimal cost while integrating the Belgian system into the broader
European balancing framework. The ongoing transition toward joint European platforms (e.g.
PICASSO for aFRR, which Elia connected to in 2024) will further shape Belgium’s balancing
operations, allowing for even more regional optimization and sharing of reserves across borders,
a practical response to the inefficiencies of strictly separatedmarkets and a step toward the future
target model of integrated energy and reserve markets.
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2.2 Co-Optimization of Energy and Reserves

2.2.1 Definition and Modeling of Co-Optimization
Co-optimization refers to the simultaneous joint optimization of multiple interdependent

products (here, energy and reserve services) within a single clearing mechanism. Unlike separate
markets, a co-optimized market explicitly models the coupling constraints between energy and
reserves, recognizing that the same generator capacity cannot be used to supply both at once.
In other words, any reserve capacity provided by a generator reduces the energy it can produce,
and vice versa – an inverse relationship that tightly links the two commodities [11]. For example,
a typical formulation will include constraints such as Pi + Ri ≤ P max

i for each generator i,
ensuring that its energy output Pi and reserve provision Ri together do not exceed its capacity
[11]. All resources are thus optimized together tomeet both energy demand and reserve requirements
concurrently, rather than in separate sequential steps.

From a formulation perspective, co-optimization is usually implemented as a single optimization
problem with a unified objective. The market operator minimizes the total production cost (or
maximizes social welfare) by simultaneously clearing energy and reserve schedules. A simplified
formulation can be written as a cost minimization:

min
{Pi,Ri}

∑
i

(
CE

i · Pi + CR
i · Ri

)
subject to demand-supply balance

∑
i Pi = D, reserve requirement

∑
i Ri ≥ Rreq, and generator

limits (including the coupling Pi + Ri ≤ P max
i ), among other technical constraints. Here CE

i

and CR
i represent the offer cost of energy and reserve for generator i, respectively.

In practice, more detailed Security-Constrained Unit Commitment (SCUC) models are used
for day-ahead co-optimization (incorporating generator startup costs, minimum output, etc.),
resulting in a Mixed-Integer Linear Programming (MILP) formulation, while real-time dispatch
uses a linear program with unit commitment fixed [12]. MILP formulations are widely employed
in co-optimized energy-reservemarketmodels to handle binary commitment decisions and complex
technical constraints [12]. These formulations ensure that common constraints (like generator
capacity, ramp rates, and transmission limits) are respected jointly for energy and reserves.

As an illustration, PJM’s real-time market solves a Security Constrained Economic Dispatch
that minimizes total system production cost = (energy costs + reserve costs + regulation costs,
etc.), subject to power balance, reserve requirements, generator limits and network constraints
[13].This integrated approach yields shadowprices that simultaneously produce locational energy
prices and reserve clearing prices as dual values from the same optimization run [13].

Crucially, co-optimization is not amulti-objective trade-off but a single objective optimization
that integrates multiple products. By optimizing energy and ancillary services together, the
algorithm fully captures the opportunity cost of providing reserves. Generators effectively bid
their true costs for each product, and the co-optimization algorithmdecides the optimal assignment.
This contrasts with treating the objectives separately – co-optimization finds the global least-
cost solution for meeting load and reserve needs together. As a result, markets for energy and
operating reserves are “intricately intertwined” in the clearing process, reflecting the physical
reality that providing reserve generally reduces a unit’s available energy output and vice versa
[11]. Because of this interdependence, co-optimized clearing has become a standard requirement
in many modern electricity markets – it ensures that scarce generation capacity is allocated to
energy vs. reserve in the most efficient way within one algorithm [11].

Themathematical structures used in co-optimization vary in complexity.Mixed-Integer Linear
Programming (MILP) is commonly used for day-aheadmarket co-optimization, as it can incorporate
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unit commitment decisions (on/off status of generators) and other non-convex costs (like startup
costs) [12]. In real-time or shorter intervals, a convex Linear Programming (LP) formulation is
typically sufficient since commitment is already decided; the LP co-optimizes dispatch levels and
reserve allocations for committed units.These co-optimization formulations are generally convex
or linear (after appropriate linearization of unit constraints), which allows efficient solution
even for large systems. Various enhancements like decomposition and relaxation techniques
have been proposed in research to handle the computational complexity of co-optimization,
but fundamentally the problem remains a single optimization with joint decision variables [12].
Overall, the formulation principles center on joint optimization under common constraints; ensuring,
for example, that no generator is scheduled beyond its limit across energy and reserves, and that
reserve requirements are met at minimum cost with the available capacity.

2.2.2 Economic and Operational Benefits

Co-optimizing energy and reserves yields significant economic benefits and operational efficiencies
for the power system. By clearing both products together, the market minimizes total system
production cost, which directly translates to cost savings and improved social welfare relative
to sequential procurement. In a co-optimized dispatch, the system can utilize the lowest-cost
resources to supply either energy or reserves as needed, rather than committing separate (potentially
more expensive) units solely for reserve coverage. This joint clearing inherently accounts for
generators’ opportunity costs of providing reserves (foregoing energy sales), so the solution finds
the optimal trade-off and avoids unnecessary expenditures. In practice, studies have shown that
co-optimization leads to a more efficient overall dispatch. For instance, simulations by an Alberta
system operator demonstrated that co-optimizing the energy and ancillary servicemarkets produces
a more efficient outcome overall compared to a sequential mechanism, with total system cost
savings on the order of 1–2% of annual market value in their test cases [15]. Although the
percentage savings can appear modest in normal conditions (e.g. 1-2% in years with lower prices),
they become substantial in absolute terms over a large system and grow under tighter conditions
[15]. The efficiency gains tend to be higher in periods of scarcity or high price volatility, since
co-optimization can better reallocate resources in those moments.

More dramatic benefits have been quantified for larger systems. A recent European analysis
estimated that implementing co-optimization in the day-ahead market across EU member states
could save around €1.3 billion per year in operational costs system-wide, compared to the current
sequential clearing of energy and reserves [14]. These savings represent the increase in total
social welfare (producer plus consumer surplus) from jointly optimizing the procurement of
balancing capacity with energy, rather than procuring reserves in a separate process. The same
study found that if certain forecast uncertainties are not mitigated by intraday adjustments, the
efficiency gains from co-optimization would nearly double, up to roughly €2.3 billion annually in
the EU context, indicating co-optimization’s value grows when the system faces more real-time
uncertainty [14].The economic intuition is that co-optimization properly accounts for fixed costs
and opportunity costs in the scheduling process. Under sequential designs, generators might
withhold or mis-price capacity due to uncertain future reserve needs or fixed start-up costs not
reflected in energy market clearing. Co-optimization, by optimizing both fixed and variable costs
together, commits the right mix of units and yields a lower total production cost for meeting both
energy demand and reliability requirements [14]. In other words, the algorithm can choose an
efficient commitment (perhaps committing an extra unit whose cost is justified because it can
serve both energy and reserve needs), whereas a sequential process might either fail to commit
that unit (causing a shortage of reserves or use of a costlier unit) or commit it too early without
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using it efficiently.
Beyond pure costminimization, co-optimization brings operational benefits in terms of system

flexibility and reliability. It provides system operators with enhanced flexibility because the
market solution explicitly reserves headroomon generators for contingency and regulation needs
in an optimal way.This reduces the likelihood of reserve shortfalls and reduces reliance on out-of-
market actions. By procuring reserves jointly with energy, the system avoids over-procurement
of reserves that can occur when energy and reserves are procured separately with conservative
margins. In a sequential approach, operators might procure more reserves than economically
necessary (or commit extra units) to ensure reliability, since the energy market did not account
for those needs. Co-optimization avoids this by allocating just the necessary reserves from the
most cost-effective sources, thereby trimming excess and associated costs. For example, if a
generator that was providing only spinning reserve in a sequential market could actually have
served some energy at low cost, co-optimization will utilize that generator for energy up to the
point it is optimal and only the remainder of its capacity (or another unit’s capacity) for reserves,
achieving a more balanced utilization. This reduces reserve surpluses and directs capacity to
where it has the highest value.

Another key benefit is the improved ability to integrate renewable energy and other uncertain
resources. Co-optimizedmarkets canmore efficiently handle variability by adjusting the combined
energy/reserve dispatch as conditions change, whereas sequential markets might commit reserve
units day-ahead based on forecasts and then find those commitments suboptimal when real-
time conditions differ. The co-optimization framework inherently provides built-in incentives
for flexibility, units that can ramp quickly or respond are valued either through energy or reserve
deployment as needed, all through the same optimization. Studies have noted that co-optimization
helps avoid the pitfall of inflexible unit commitments blocking the deployment of cheaper resources.
By selecting a mix of unit commitments not constrained by rigid minimum output levels, the
system can rely as much as possible on low marginal-cost generation (such as wind, solar, or
efficient gas units) to serve energy, while still maintaining reserves by committing additional
flexible capacity if needed [14]. This ability to continuously re-dispatch resources for the most
economic solution (within reliability constraints) means the system can respond to wind/solar
forecast errors or demand fluctuations more economically. Indeed, case studies indicate that
failing to co-optimize in high-renewable systems leads to higher production costs and potentially
inefficient use of renewable output – co-optimizationmitigates these issues by efficiently redistributing
reserve assignments and energy output among resources when renewables deviate from forecast
[19]. Overall, the joint approachminimizes the total required online capacity to meet both energy
and reserve needs, which translates to lower fuel usage and lower costs to consumers, while still
ensuring reliability criteria are met.

In summary, co-optimization improves system welfare by cost-minimization, yields lower
electricity prices on average (since cheaper resources are better utilized), and enhances operational
flexibility by optimally managing the trade-offs between energy production and standby reserve
provision. It prevents scenarios where generators are kept idle for reserves despite higher-cost
units running for energy, thereby eliminating those inefficiencies. Empirical analyses and simulations
consistently show that a co-optimized dispatch achieves equal or lower total system cost compared
to sequential dispatch in the same conditions [15][14].The benefits become particularly pronounced
during tight system conditions or high impact events, where co-optimization’s ability to shuffle
resources towhere they aremost needed (energy vs reserve) in real time can avoid costly emergency
actions. Co-optimized markets also send better price signals: when reserves are scarce, the joint
optimization will reflect that scarcity in both energy and reserve prices, improving investment
incentives for flexible capacity. This holistic pricing is a direct result of co-optimization and is
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necessary for efficient long-runmarket signals for reliability. In contrast, sequential designs often
rely on administratively determined adders or opportunity cost payments to handle scarcity
pricing, which may not fully capture the true system marginal cost when resources are limited.
Co-optimization inherently produces transparent scarcity pricing by co-clearing energy and reserves
under constraints, thereby improving the economic signals for new capacity and flexibility.

2.2.3 Comparison to Sequential Clearing

Under a sequential market design, the energy market is cleared first (e.g. day-ahead energy
auction), and then ancillary services or reserves are procured in subsequent auctions (e.g. a
separate reserve market). This was historically the paradigm in many regions (and remains so
in parts of Europe). There are important conceptual and operational differences between this
sequential clearing and a co-optimized (simultaneous) clearing. In sequential designs, the reserve
auction must take the results of the energy market as given – generators already committed for
energy can only offer any leftover capacity for reserves, and generators not selected for energy
might offer into reserves if they are still available. Because the markets are not solved together,
generators have to internalize their opportunity costs for one product when participating in
the other. For instance, a generator bidding into a standalone reserve market will include the
opportunity cost of not selling energy with that capacity. This often makes reserve procurement
more expensive or inefficient, since the energy market’s outcome might not have been the cost-
minimal way to also meet reserve needs. Sequential clearing thus inherently relies on complex
opportunity cost pricing to approximate the coordination that co-optimization would naturally
achieve [17]. In practice, this can lead to inconsistent or suboptimal dispatch: a generator that
is cheapest to provide a reserve may not be selected if its opportunity cost (due to earning
revenue in energy market) is high, causing the system to turn to a costlier unit for reserves. Co-
optimization eliminates that inconsistency by evaluating the trade-off within one optimization
– the unit will be assigned to whichever role yields the least system cost overall.

One key inefficiency in sequential dispatch is themisrepresentation of costs and inflexibilities.
The energy market clearing in isolation may not commit some units that have high start-up costs
or minimum output levels, because those costs might outweigh their value for energy alone.
However, those units might have been very valuable for providing reserves. In sequential designs,
the absence of co-optimization means such units could be left offline in the energy stage, only to
find later that the system is short of reserves and must commit a unit on an emergency or out-of-
market basis. This is a less efficient outcome. Alternatively, the system operator might procure
extra reserves in the second stage to compensate for not having jointly optimized – effectively
carrying a higher reserve margin “just in case,” which increases costs. Studies have highlighted
that sequential clearing tends to result in an inefficient commitment of resources due to the
inability to properly account for fixed costs across markets. Fixed start-up and no-load costs get
“spread” incorrectly: the energy market might not commit a unit because it cannot recover its
cost on energy alone, but the reserve market would then have to either induce that unit online
via a high reserve price or suffer a shortage. Co-optimization addresses this by considering both
energy and reserve revenue for each unit simultaneously, so units with higher fixed costs can still
be committed if they provide combined value in energy + reserve that justifies it. The result is a
more efficientmix of online capacity. As a 2024 ACER report noted, in sequential designs the fixed
costs are prone to misrepresentation (or not fully reflected), leading to suboptimal commitment,
whereas co-optimization “improves overall efficiency by accurately optimizing both fixed and
variable costs, resulting in better resource allocation” [14]. In essence, co-optimization picks up
options that a sequential market would miss because it looks at the big picture.
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The dispatch outcomes can also differ in how reserves are utilized. In a sequential market,
once the reserve capacity is procured, it’s often held idle unless an emergency occurs.The energy
dispatchwon’t normally encroach on that reserved capacity.Thismeans there could be simultaneous
situations where some generators are backed down (or even offline) holding reserve, while other
more expensive generators are running at full output tomeet load – a clear inefficiency. Sequential
dispatch might then require manual intervention to rebalance if, for example, a transmission
constraint could be relieved by using some reserve capacity for energy, but the market design
doesn’t allow it. Co-optimization automatically handles such situations: since it co-clears, it will
dispatch those reserves for energy if it is economic and if reliability constraints (like minimum
reserve levels) are still satisfied. This leads to a more efficient dispatch, especially under stressed
conditions. In fact, co-optimization can be seen as always operating on the efficient frontier of
the trade-off between energy and reserves, whereas sequential solutions may operate interior to
that frontier (not fully utilizing resources). Simulations comparing the two approaches frequently
illustrate scenarios where sequential dispatch either fails to utilize available flexible capacity or
pays more to reconfigure the dispatch after the fact. One analysis found that while not every hour
sees large differences, on the whole a co-optimized dispatch had lower total costs and avoided
out-of-merit commitments that were occasionally needed under sequential dispatch [15]. On
average, about 40% of hours showed lower total system production cost under co-optimization
in that study, with the biggest divergences during high-price periods or contingencies [15].

Another inefficiency of sequential markets is related to price signals and market power. In
a sequential reserve market, suppliers may have an incentive to strategically bid high prices
for reserves if they anticipate that energy commitments will limit competition (since many units
might already be tied up serving energy).This can inflate reserve prices. Co-optimizationmitigates
that by considering all supply simultaneously – if a unit tries to withhold reserve or bid too high,
the algorithm could choose an alternate energy/reserve configuration to avoid that cost.Thus, co-
optimization tends to produce more competitive outcomes. Additionally, sequential markets may
have to enforce ad-hoc corrections to reflect the value of reserves. For example, several systems
introduced Operating Reserve Demand Curves (ORDC) or administrative adders to energy prices
to approximate the “missing money” for reserves in an energy-only dispatch. These mechanisms
are essentially attempts to incorporate some co-optimization principles back into a sequential
framework by increasing energy prices when reserves are scarce (to signal committing more
capacity). While ORDC has benefits, it’s conceptually simpler in a co-optimized market where
scarcity pricing arises naturally from the joint optimization (the reserve requirement constraint’s
shadow price will feed into energy prices when reserves are tight) [18]. In sequential designs
without co-optimization, it’s harder to get these prices right. Thus, co-optimization not only
improves dispatch efficiency but also yields consistent pricing for energy and reserves that reflects
their true scarcity values in each interval.

From an operational standpoint, sequential dispatch can also complicate system control.
Because energy and reserve are decided separately, operators sometimes must perform iterative
adjustments: e.g., clear energy, then see if reserve requirement is met; if not, commit another
unit for reserve, which then also provides energy (potentially causing excess energy or need to
back down others). This iterative process is less transparent and can result in non-optimal or
delayed decisions. Co-optimization provides a single-step solution that meets all requirements
at once, avoiding such iterations. It has been noted that in systems with significant uncertainty
(like high renewables), a decentralized or sequential design struggles to “discover” the efficient
outcome, since it’s essentially solving amyopic sub-problem first [17]. By contrast, the integrated
optimization can find a secure and economical dispatch considering uncertainty margins all at
once (especially if stochastic or robust extensions are included). In sequential setups, reserve
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capacity may also lack a real-time reallocation mechanism – for example, Europe traditionally
had no real-time market for reserve capacity; once reserves were procured day-ahead, they were
fixed, whichmeant the system could not adjust reserve procurement if the energy outcome in real
time was different [17]. Co-optimization in real-time (as done in many US markets) constantly
readjusts the allocation between energy and reserves every dispatch interval, which greatly
improves system response to changing conditions.

To illustrate an inefficiency: imagine a simple systemwith two generators, A and B. A has low
energy cost but limited capacity, B has higher cost but larger capacity. Suppose the system needs
X MW of energy and Y MW of reserve. A sequential market might clear generator A for energy
up to X (because it’s cheapest) and then procure Y of reserve from generator B (assuming A is at
capacity so B is next available for reserves). But it’s possible that a more efficient solution would
be to back off A a little (produce slightly less energy from A, and let B produce some energy) so
that A retains some headroom to provide part of the reserve. That way, both units share energy
and reserve provision in a cost-minimizing way. A sequential market can miss this configuration
because once A is maxed out in energy, it wasn’t considered for reserves. A co-optimization
would find the optimal mix – perhaps A provides some reserve (reducing its energy), and B
increases energy output – if that lowers total cost given their offer prices. This kind of subtle
trade-off is automatically handled in co-optimization, but would require guesswork or ex-post
adjustments in a sequential context. In summary, sequential dispatch is suboptimal except in
trivial cases, and numerous studies and trials have confirmed that joint clearing dominates it in
efficiency [18][15]. Co-optimization resolves the illustrative inefficiencies of sequential dispatch
by ensuring no cheap reserve capacity is left idle while expensive energy is produced elsewhere,
and by avoiding procurement of reserves from high-cost units when lower-cost units could have
provided it if scheduled differently.

2.2.4 Global Implementations and Practices

Co-optimized energy and reservemarkets have been implemented inmany regions, particularly
in the United States, while other regions like Europe are now evaluating or moving toward
this design. In U.S. wholesale markets operated by ISOs/RTOs, co-optimization of energy and
ancillary services is a well-established practice. For example, PJM, MISO, NYISO, CAISO, and
ISO-NE all clear their day-ahead and real-time markets with co-optimization. PJM introduced
coordinated ancillary service markets in the early 2000s – by 2001 PJMwas co-optimizing energy,
regulation, and contingency reserves in an integrated market clearing process [16]. Similarly,
NYISO has, since its start, co-optimized energy and reserves in real time, finding the least-cost
way tomeet load andmultiple reserve requirements every fiveminutes [16]. In ISONewEngland,
the market software co-optimizes energy and reserves such that the day-ahead commitment and
real-time dispatch minimize total cost while respecting reserve needs (TMSR, TMNSR, TMOR
products) [16]. MISO launched its ancillary services market in 2009 explicitly as a co-optimized
addition to its energy market – both day-ahead and real-time markets in MISO simultaneously
clear energy alongside spinning and supplemental reserves (and regulation) [16][18]. The co-
optimization in these markets is achieved through the SCUC/SCED algorithms described earlier,
yielding locational marginal prices for energy and corresponding reserve clearing prices for
different reserve products at each location or zone. California ISO (CAISO) also implemented
co-optimization when it restructured its market in 2009; CAISO procures its spinning reserve,
non-spinning reserve, and regulation up/down together with energy in the integrated day-ahead
market and again in real-time dispatch.The prevalence of co-optimization in U.S. markets is such
that it is considered a standard design – any ISO with centrally dispatched energy markets also
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includes ancillary services in that dispatch to ensure efficiency.
These implementations have demonstrated the feasibility and benefits of co-optimization at

scale. Market monitors report that co-optimization has reduced production costs and improved
price formation by reflecting reserve shortages in energy prices. A co-optimized market will
produce scarcity pricing when reserves are tight – for instance, if a certain reserve category
becomes the binding constraint, the shadow price of that constraint is added to energy prices
(in addition to creating a reserve price). This was evident in events such as tight winter or
summer conditions where energy prices in ISO-NE, NYISO, etc., spiked in part due to reserve
scarcity being co-optimized. Such outcomes incentivize generators to be available and flexible. In
contrast, regions without co-optimization historically saw situations with flat energy prices even
as operators struggled to maintain reserves (needing out-of-market actions). The U.S. experience
also shows the operational benefits: system operators use a single platform to deploy energy
and reserves, which simplifies dispatch and improves reliability. For example, if a transmission
constraint or sudden generator outage occurs, the co-optimized real-time dispatch can automatically
redispatch units to provide needed reserves or energy where required, instead of relying on
a pre-contracted reserve that might not be in the right location. This leads to fewer manual
interventions.

As for illustrative examples, consider PJM’s reservemarket: PJM co-optimizes several reserve
products (regulation, synchronized reserve, non-synchronized reserve, etc.) with energy every
five minutes. In practice, this means a generator in PJM can set the price for both energy and
reserve if it is themarginal resource for both simultaneously (with appropriate adders). If reserves
become scarce, the co-optimization algorithm will allow energy prices to rise (through reserve
penalty factors) to reflect that scarcity, thereby either attracting more supply or curbing demand.
Thismechanismwas not present before co-optimization – it had to be introduced via administrative
pricing rules. Co-optimization in PJM has also reduced the need for separate “uplift” payments for
reserves, because the integrated market more efficiently compensates resources through market
clearing prices [13]. MISO’s implementation in 2009 similarly led to more consistent pricing and
reduced its reliance on emergency actions.

In contrast, Europe’smarkets have traditionally used sequential clearing for balancing reserves.
Typically, European TSOs procure reserve capacity (for frequency restoration or replacement
reserves) in separate auctions (day-ahead or evenweeks ahead), and the day-ahead energymarket
(managed by the power exchange using the Euphemia algorithm) clears without considering
those reserves. The result is the separation of energy trades from reserve procurement. This
approach has been identified as a source of inefficiency, especially as renewable penetration
increases and the value of flexibility rises. Europe is now actively exploring co-optimization
as part of market design reforms. The EU Electricity Balancing Guideline (EBGL) introduced
the concept of a “market-based allocation” of cross-zonal capacity for reserves, which is an
intermediate step: e.g. in the Nordic countries, up to 10% of transmission capacity can be reserved
for exchange of reserves before the energy market, based on a separate optimization. While this
improves efficiency somewhat, it still is a two-step process. Full co-optimization would instead
allocate cross-zonal capacity between energy and reserve entirelywithin one simultaneous auction.
Recent studies under EU regulators (ACER) have strongly endorsed moving to a co-optimization
approach for the day-aheadmarket coupling algorithm, citing the largewelfare gains (the €1.3b/year
savings mentioned earlier) [14]. As of 2024, ACER and the European Commission are consulting
on amendments to enable co-optimised clearing of balancing capacity with energy in day-ahead.
The barriers to adoption in Europe have been partly technical and partly institutional. One
challenge is that Europe’s day-aheadmarket currently uses “portfolio” bidding (generators submit
aggregate supply curves per company, not unit-specific offers with detailed constraints). Co-
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optimization typically requires unit-specific offers to account for each plant’s reserve capability
and constraints. Integrating unit-based co-optimization into the existing market framework (and
algorithmEuphemia) is a non-trivial task [17].There are concerns about computational complexity
when adding reserve capacity variables and constraints into the pan-European market coupling,
which already involves thousands of bids and network constraints. However, research and pilot
studies suggest it is feasible with modern solvers and computational power, especially if done
in a simplified way or with proper decomposition. Another barrier has been the coordination
between countries – reserve procurement has historically been a national TSO responsibility, and
co-optimizing at an international level means TSOs entrust part of their reserve sizing to a central
market mechanism.This requires regulatory alignment and agreement on cost-sharing for cross-
border reserve activation. Despite these hurdles, several European initiatives are underway. The
Nordic Balancing Model is moving toward closer integration of energy and reserves (though
not full co-optimization yet), and ENTSO-E conducted an Implementation Impact Assessment
detailing pathways for one-step vs two-step co-optimization in Europe [17]. The general trend
is that Europe recognizes the inefficiency of strict sequential markets in a future with high
renewables, and is gradually introducing co-optimization concepts.

To give a concrete example from Europe: currently in Spain and Portugal (MIBEL), energy
is cleared day-ahead, and then secondary reserve (aFRR capacity) is procured afterward in a
separate process at the national level.This is the “common” European sequential structure [18]. If
co-optimizationwere introduced, Spain and Portugal would, in the day-aheadmarket, simultaneously
procure some amount of reserve capacity while clearing energy, potentially using cross-border
capacity more efficiently. The benefit would be that a plant in Portugal could be assigned to
provide reserve for Spain if it’s overall cheaper, as part of the market coupling result – something
that today cannot happen because reserves are arranged separately. The ACER study’s case
simulations indeed modeled such scenarios and found large savings by allowing this cross-
border, co-optimized allocation of resources [14]. The status as of now is that no European
power exchange has full co-optimization of energy and reserve in production, but steps are being
taken. The Nordic region’s trial of market-based reserve capacity allocation and the EU-wide
consultations indicate that within a few years, a form of co-optimized day-ahead market might
be implemented. The barriers being tackled include updating algorithms (Euphemia) to handle
co-optimization, changing bidding formats to include reserve offers or linkages, and ensuring
fair and transparent governance for how reserve costs are recovered and priced. Stakeholders
in Europe also discuss the complexity: some worry that co-optimization adds more complexity
to markets that are already adjusting to flow-based transmission allocation and other changes.
However, lessons fromU.S. ISOs provide a blueprint showing that these challenges can bemanaged
and that the efficiency gains outweigh the complexities in the long run.

In other regions, co-optimization adoption varies. Australia’s NEM, for instance, until recently
did not co-optimize FCAS (frequency control ancillary services) with energy in dispatch, but it
has a rapid 5-minute dispatch with separate but coordinated procurement of reserves. There are
ongoing discussions in Australia about moving closer to a co-optimized system as the needs for
fast reserves grow. Some markets with less centralized dispatch (like certain Latin American
countries) still use sequential methods or heuristic dispatch for reserves. But the global trend is
clearly moving toward co-optimization as a best practice for modern electricity markets. Even
ERCOT in Texas, which historically operated an energy-only market without co-optimization
(relying on an administrative ORDC for scarcity pricing), decided to implement real-time co-
optimization by 2020–2021 to improve efficiency and unit commitment in its market. In ERCOT’s
case, previously, ancillary services were procured day-ahead and not optimally re-dispatched
in real time, meaning sometimes units carrying reserve were not used for energy even when
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it was economic to do so. The introduction of real-time co-optimization in ERCOT aimed to
“dispatch the most economical resources to provide energy in real time, while assigning reserve
responsibilities to other available resources,” thereby finding the most efficient solution every
5 minutes [20]. This was a significant design change intended to reduce production costs for
consumers and improve reliability by allowing themarket to adjust ancillary service deployments
on the fly [20]. It also highlights that even energy-only markets see value in co-optimization;
by 2021, ERCOT received regulatory approval to implement it, overcoming initial stakeholder
concerns about implementation cost and complexity [20].

In conclusion, co-optimization of energy and reserves is increasingly recognized and implemented
as an essential feature of efficient electricity market design worldwide. The U.S. ISO markets
serve as successful examples, having integrated co-optimization for over a decade or more with
demonstrated benefits in cost savings and reliable operations. European markets are on the cusp
of adopting similar mechanisms, driven by the need to handle large-scale renewable integration
and to eliminate inefficiencies of their current sequential approach. Technical and regulatory
challenges remain, such as modifying the market coupling algorithm and aligning stakeholder
interests, but ongoing studies and pilot projects are paving the way for co-optimization in Europe
in the near future. The overarching lesson from global implementations is that co-optimization
improves both economic efficiency, by minimizing total costs and producing correct market
signals – and operational robustness, by utilizing resources in the most flexible manner. As
power systems worldwide continue to evolve (with higher renewables, storage, and demand
response participation), the ability to co-optimize multiple services will be even more critical to
ensure reliability is maintained cost-effectively. Therefore, we can expect the concept of energy-
reserve co-optimization to become a standard component of market design in more regions as
they reform their electricity markets for the future.

2.3 Battery Energy Storage Systems (BESS) inMarketOperations

2.3.1 Technical Capabilities of BESS

Battery energy storage systems have distinct technical capabilities that make them highly
flexible resources in power markets. Ramp rate refers to how quickly a BESS can change its
output, and modern lithium-ion batteries can ramp from zero to full power in seconds or less
– much faster than conventional generators [21]. For example, a large BESS has been shown to
increase output by over 100 MW in under five seconds, far outpacing the response of typical
thermal power plants [22]. Likewise, BESS exhibit very short response times, meaning they
can go from idle to full discharge almost instantaneously (often sub-second) [23]. This rapid
responsiveness enables batteries to provide immediate support to the grid for balancing and
frequency control.

Another key attribute is efficiency. BESS have high round-trip efficiency, usually in the range
of 85–95%, meaning most of the energy put into storage can be recovered on discharge [24]. High
efficiency makes batteries effective at energy shifting with minimal losses. Storage duration (the
maximum time a battery can sustain discharge at rated power) varies by system design; many
grid-scale Li-ion BESS are designed for 1–4 hours of output, while other technologies like flow
batteries can achieve even longer durations albeit at lower power density [21][24]. Cycle life is
also an important capability; batteries can perform a finite number of charge/discharge cycles
before degradation significantly reduces capacity. Advanced batteries now offer thousands of
cycles over their lifetimes, which translates to years of operation under typical use [25].

In operating a BESS, tracking the state of charge (SoC) andmanaging degradation are critical.

35



The battery management system continuously monitors SoC and state of health to ensure the
cells operate within safe limits [21]. The SoC (expressed as a percentage of full charge) dictates
howmuch energy is available or if the battery needs recharging, which in turn constrains market
dispatch. Degradation modeling is incorporated into many BESS control strategies because each
charge–discharge cycle contributes to batterywear and capacity fade [26]. Researchers emphasize
that ignoring degradation in operational scheduling can lead to suboptimal long-term outcomes,
since a battery has a limited useful life measured in cycles [26]. Instead, operators must balance
short-term market profits with long-term battery health. This is often done by assigning a cost
to battery use or limiting deep cycles in optimization models [25][26]. In practice, advanced
optimization and forecasting tools are used to maximize revenue from energy markets while
minimizing unnecessary cycling, thereby extending battery life [27]. In summary, BESS combine
fast and efficient power response with the need for careful SoC management and degradation-
aware operation.

2.3.2 Participation in Energy and Reserve Markets

Battery storage resources are now actively participating in energy and ancillary service
markets, but certain eligibility criteria and technical requirements apply. Many market operators
have definedminimum size and performance standards for storage. For instance, in U.S. wholesale
markets a BESS typically must be at least 100 kW to qualify, ensuring it can be effectively
dispatched by the market operator [28]. Some reserve products also require a resource to sustain
output for a specified duration (e.g. 30 or 60 minutes), which batteries must be sized to meet.
Market rules have evolved in recent years (e.g. FERC Order 841 in the U.S.) to accommodate
storage by recognizing its unique charge/discharge characteristics and removing barriers to entry
[28]. Under these rules, an electric storage resource is broadly defined as any resource capable
of receiving energy from the grid and injecting it back later, regardless of technology or location
[28].This allows BESS on the transmission system, distribution system, or even behind-the-meter
to participate so long as they meet the technical requirements. Grid operators also implement
state-of-chargemanagement constraints in their dispatch algorithms to ensure batteries providing
reserves have sufficient energy when called upon [24].

BESS act as flexible bidirectional assets in markets. Unlike conventional generators, a battery
can function both as a supply resource (discharging power to the grid) and as a load (charging
from the grid) depending on system needs. This flexibility means a single BESS can bid into both
energy supply and energy demand segments of the market, or provide upward and downward
reserve capacity as needed. Market participation models have been adapted to reflect this dual
nature, for example, allowing batteries to set the market price when discharging, or to pay for
energy when charging, within the same framework. Treating storage as both generation and
load improves market efficiency by letting the battery respond to price signals in either direction
[28]. In practice, a battery might be instructed to charge (act as demand) during times of excess
supply or low prices, then later discharge (act as supply) when power is needed. System operators
value this agility; a BESS can rapidly switch from charging to discharging mode, providing fast
regulation up or down for frequency balancing [23]. In ancillary service markets, batteries have
proven especially adept at frequency regulation and contingency reserves. They can satisfy strict
performance requirements such as ramping nearly instantaneously and accurately following
dispatch signals. Overall, BESS are recognized as a new category of market participant offering
high flexibility, and regulatory changes continue to refine their participation rules (including
allowing aggregated smaller batteries to enter markets in some regions).
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2.3.3 Economic Role and Limitations

In market operations, BESS play several economic roles, but they also face limitations. A
primary application is energy arbitrage; buying electricity when prices are low (charging) and
selling it when prices are high (discharging). By shifting energy in time, battery operators can
earn the price differenceminus losses.This can help flatten demand peaks and reduce curtailment
of renewables. For instance, a battery might charge using surplus solar generation at midday and
discharge during the evening peak, profiting from the price spread and providing relief to the grid
[24]. However, the pure arbitrage profits for a given battery are limited by the spread between
off-peak and peak prices and the battery’s efficiency and capacity. Studies show that arbitrage
alone can be a thin margin business, and operators often seek multiple revenue streams.

BESS are highly valued for providing ancillary services such as frequency regulation, spinning
reserve, and fast frequency response.Their fast response times give them an advantage in frequency
control services. A BESS can inject or absorb power within milliseconds to correct frequency
deviations, helping to stabilize the grid almost instantaneously [21]. In fact, batteries have successfully
delivered sub-second frequency regulation and improved overall grid stability, outperforming
slower resources in this role [21].Many grid operators compensate fast-responding storage through
performance-based regulation markets, making frequency regulation one of the more lucrative
services for batteries. Batteries can also provide spinning reserve (standing ready to supply
power if a generator trips) and even black start capability for restarting a grid, provided they
are configured to do so. By supplying these reserves, a battery earns payments for availability
and actual energy delivery during contingencies.

To maximize economic return, battery projects often pursue value stacking, i.e. providing
multiple services and revenue streams. A single BESS can simultaneously or sequentially participate
in energy arbitrage, frequency regulation, voltage support, capacity markets, and other services
as allowed by themarket rules. By stacking value streams, the asset’s utilization is higher, potentially
increasing total revenue and improving project economics [24]. For example, a utility-scale battery
might do energy arbitrage daily and also offer regulation service in between, or defer an infrastructure
upgrade (earning a reliability service value) while also earning market revenues. Successful
demonstration projects have shown that stacking ancillary service revenues with energy trading
can significantly shorten the payback period of a battery investment. The issue of degradation,
however, becomesmore pronouncedwith aggressive use. Each additional service or cycle contributes
to battery wear, so there is a trade-off between capturing more revenue and consuming the
battery’s life. Operating a BESS for maximum short-term profit without regard to degradation
can lead to early battery replacement and erode the long-term economic viability [26][27]. To
address this, operators incorporate degradation costs into their dispatch decisions – effectively a
marginal cost for using up battery life [27]. Strategies like limiting depth of discharge, resting the
battery when revenues are low, or reserving some capacity for high-value periods are employed
to manage degradation while stacking services [25][27].

Despite their many benefits, BESS still face policy and regulatory barriers that can limit their
economic deployment. One key barrier historically has been the unclear asset classification of
storage, neither pure generation nor load, which led to rules and tariff structures not designed for
batteries. In some jurisdictions, this resulted in “double charging” of grid fees, where a battery
pays network charges both when charging (as a consumer) and again when discharging (as a
generator supplying energy) [29].This double charging places storage at a competitive disadvantage
relative to traditional power plants and has made some battery projects uneconomical until
regulators intervened to remove such fees [29]. Other limitations have includedminimumduration
requirements or performance rules that were originally tailored to conventional generators,
effectively excluding shorter-duration or fast-cycling batteries from certain markets. Progress
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is being made: for instance, regulatory reforms in the EU and US now mandate more storage-
friendly market rules, such as allowing batteries to provide multiple services without violating
exclusivity provisions and ensuring they are not penalized when switching between charge
and discharge roles [28][29]. Finally, uncertainty in policy (e.g. how storage can participate in
capacity markets, or who can own and operate storage under utility regulations) can impede
investment. Clear policy frameworks that recognize the unique operating characteristics of BESS
are crucial to unlock their full economic value. As these barriers are addressed, BESS are expected
to play an increasingly prominent role in energy and reserve markets, providing flexibility and
supporting the transition to a more dynamic, renewable-rich grid.

2.4 Modeling Battery Storage in Market Clearing

2.4.1 Battery Integration in Co-Optimized Clearing

In a co-optimized market clearing, the dispatch of energy and reserve capacity is determined
simultaneously within one optimization framework [31]. This approach allows the market to
optimally trade off the same megawatt of battery capacity between providing energy or reserves,
recognizing that a unit of capacity cannot serve both at the same time [31]. By jointly clearing
energy and ancillary services, the market accounts for the opportunity cost of using a battery
for reserve (foregoing energy production) or vice versa. This leads to more efficient outcomes:
for example, an analysis by the Alberta system operator comparing sequential vs. co-optimized
clearing found that co-optimization was more cost-effective overall [32]. In fact, most organized
power markets now implement co-optimization in their day-ahead and/or real-time markets
to capture these efficiency and reliability benefits [31]. The European Union’s 2017 Electricity
BalancingGuideline alsomandates that reserve capacity procurement be co-optimized and coupled
with the energymarket, reflecting the importance of this integration in futuremarket design [33].

BESS Participation inUp/DownReserve Products: Co-optimization is especially advantageous
for battery energy storage systems (BESS) because it unlocks their full flexibility in both energy
and reserve markets. In a co-optimized dispatch, a battery can be scheduled to provide energy
and simultaneously offer upward and downward reserves within the same interval (subject to
its capacity limits and state-of-charge). Upward reserve (contingency or regulation up) requires
the battery to have headroom to increase output (i.e. discharge more if needed), while downward
reserve requires room to decrease output or increase charging (i.e. the ability to absorb excess
energy). Co-optimization naturally enforces these requirements by ensuring the battery’s dispatch
level and reserve awards are feasible together. For instance, if a battery is dispatched at mid-
range, it could simultaneously offer reserve-up by reserving some charged energy to inject,
and reserve-down by reserving charging capacity to soak up surplus power. System operators
often impose constraints to guarantee deliverability of reserves from BESS: the battery must
maintain sufficient state-of-charge (SoC) to deploy upward reserves and sufficient empty capacity
to deploy downward reserves when called. In Germany’s primary reserve market, for example,
regulations require a battery providing frequency reserve to sustain an adequate SoC range
for the entire service period, effectively mandating that a certain energy volume be held in
reserve [37]. Co-optimized market clearing algorithms include these SoC-coupled constraints to
ensure any reserve awarded to a BESS can be honored. Consequently, large-scale batteries have
rapidly become major providers of ancillary services – for instance, in 2023 batteries provided
the majority of the California ISO’s regulation up and down capacity requirements [36]. Many
early battery projects derived most of their revenue from frequency control reserves, and by 2018
a significant portion of installed battery capacity (especially in Europe) was participating in fast
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frequency response markets. This ability to switch roles quickly between charging, discharging,
and standby reserve makes batteries ideal candidates for co-optimized dispatch.

Simultaneous Energy and Reserve Dispatch – Benefits of Flexibility: The flexibility of BESS
in co-optimization yields several benefits for both system and asset owners. From the system
perspective, co-optimized dispatch minimizes total production cost by allocating battery output
to whatever service is most valuable each interval [31]. If the energy price is high, themarket may
discharge the battery for energy; if reserve scarcity is acute, the battery may instead hold back
capacity for reserves, all decided in one optimization run. This dynamic allocation leads to lower
overall costs and improved reliability, as evidenced by studies in both industry and academia.
The AESO study noted above concluded that co-optimization saved costs relative to a sequential
market design [32]. Likewise, computational experiments by Pavić et al. (2019) confirmed that a
single MILP optimization can efficiently dispatch energy and reserves for all resources, capturing
lost opportunity costs and reducing the need for out-of-market uplifts [34]. Co-optimization also
produces transparent pricing for reserves that reflect their true opportunity cost (the foregone
energy profit), thereby properly compensating storage providers for reserve provision [31]. From
the battery owner’s perspective, the co-optimized framework opens multiple revenue streams. A
BESS can earn energymargin and reserve payments in the same time frame, or whichever is more
profitable at that moment. This often increases the asset’s total earnings compared to an energy-
only operation. For example, a recent study demonstrated that when batteries optimize state-of-
charge and bid into co-optimized energy/reservemarketswith SoC-dependent offers, their profits
can increase by 30–150% relative to simpler strategies [35]. Empirical market data also show
batteries shifting towards energy arbitrage during peak price hours while still capitalizing on
regulation serviceswhen profitable. In summary, co-optimization fully leverages battery flexibility:
it improves social welfare (since the battery is usedwhen andwhere it provides the greatest value)
and it rewards the battery with revenue from all compatible services in each interval. Sioshansi
(2014) noted that when generators behave competitively, introducing storage generally increases
overall welfare by smoothing supply and demand imbalances [43]. Co-optimization is the market
mechanism that ensures these welfare gains from storage are realized in practice by optimally
allocating the resource’s capacity.

2.4.2 Battery Integration in Sequential Clearing

Not all power markets currently co-optimize reserves with energy, some organize these
products in sequential stages. In a sequential market clearing design, the energy market and
reserve market are run separately (one after the other), rather than in a single joint optimization.
Historically, many European electricity markets followed a sequential paradigm, with the day-
ahead energy auction clearing first, and ancillary or balancing reserves procured in subsequent
processes [38]. Under this approach, the allocation of battery capacity between energy and reserves
is not decided simultaneously, which can lead to suboptimal or biased outcomes. Importantly, if
a BESS is participating in sequential markets, it might end up being utilized in only one domain
at a time (depending on the clearing sequence and rules), either the energy market or the reserve
market, but not fully in both as in co-optimization.

“Energy-Only” vs. Reserve Participation in Sequence: In some sequential setups, batteries
have been used primarily in the energymarket stepwhile largely excluded from reserve commitments.
For example, if the day-ahead energy market clears without considering reserves, a battery
will simply schedule charge/discharge for arbitrage and may not hold any capacity for reserve
services. Early studies on storage often focused on such energy-only arbitrage participation.
Sioshansi et al. (2009) examined the arbitrage value of a 1MW storage in the PJMmarket (without
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reservemarket participation) and showed that even just price arbitrage could yieldmodest profits
and some load leveling benefits [42]. However, ignoring reserves in this way misses additional
value streams and system services.More recent Europeanmarket simulations confirm that treating
battery storage as energy-only leads to lower revenues and potentially higher system costs compared
to allowing multi-market participation [38][33]. In practice, sequential designs can inadvertently
force a BESS to choose one market. For instance, if a battery is fully scheduled to charge or
discharge in the energymarket, it has no residual capacity for reserves cleared afterwards. Conversely,
if a battery is procured entirely for reserve capacity in a prior stage, it may then sit idle in the
energy market even if energy prices later spike – an inefficient outcome from a social viewpoint.

Reserve-First vs. Energy-First Assignment: The sequence in which markets clear matters for
battery utilization. Two extreme approaches are conceivable in a sequential framework: reserve-
first, where reserve procurement occurs before energy dispatch, and energy-first, where the
energymarket clears first. Each approach has drawbacks for batteries. In a reserve-first sequence,
a BESS might be locked into providing standby reserve, charging or discharging minimally to
preserve SoC, even if that battery could have been used to supply energy more cheaply than a
generator during the energymarket that follows.This can lead to higher energy costs, as found in
a comparison by AESO where holding capacity for reserves before energy dispatch tended to be
less cost-efficient than an integrated approach [32]. On the other hand, an energy-first sequence
(common in traditional setups) commits the battery’s output in the energymarket without regard
to reserve needs. The battery may chase energy arbitrage profits and end up fully charged or
discharged, leaving no flexibility to respond if a reserve deployment is required later. The lost
opportunity to provide reserves in this case is not accounted for during energy scheduling, so
the system may end up calling on more expensive or slower resources for reserves. Researchers
have noted that under sequential clearing, the market can experience production cost increases
and revenue inadequacies that co-optimization would avoid, due to this misallocation of flexible
capacity [34][44]. In summary, whether reserves are cleared first or second, any strictly sequential
process fails to consider the coupling between a battery’s energy and reserve roles at a given time.
This decoupling leads to either over-commitment in one market or under-utilization in the other.

Hybrid and Balanced Allocation Strategies: To mitigate the inefficiencies of strict sequential
clearing, various hybrid approaches for battery allocation have been proposed. One strategy is for
the battery owner to proactively split its capability between markets; for example, withholding
some capacity from the energy market to later offer as reserves (or vice versa). However, doing
this optimally is complex and requires forecasting prices in both markets. Recent research has
thus focused on coordinated optimization techniques that span multiple market stages. Finhold
et al. (2023) develop a rolling horizon optimization for a “virtual battery,” which computes the
optimal distribution of a battery’s flexibility between the day-ahead energy market and the
balancing reserve market [38]. Their framework effectively simulates a quasi-co-optimization
by iterating between markets and using updated forecasts, allowing the battery to achieve a
balanced participation that maximizes its total profit across both markets. Similarly, Pandžić
et al. (2020) proposed a bi-level optimization model for a battery participating in sequential
European markets, where the upper level represents the battery’s strategic offering (as a price-
maker in reserves and price-taker in energy) and the lower level simulates market clearing [33].
Such models aim to “fill the gap” between fully sequential and fully co-optimized designs by
guiding batteries to an optimal mix of energy and reserve deployment. For instance, the battery
might charge cheaply in day-ahead energy, then reserve that energy for lucrative balancing
deployment, or provide capacity in the reserve market but adjust its energy bids accordingly.
Case studies in the German market have shown that these coordinated bidding strategies can
significantly increase battery profits and improve system outcomes compared to naive sequential
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participation [33][38]. Another line of work considers ex-post adjustments: for example, after an
initial energy market run, the system operator could allow a second-stage re-dispatch where
batteries reposition to provide reserves (a “reserve coupling” step). Such hybrid market designs
are still evolving, but they indicate that even without true co-optimization, it is beneficial to
allow batteries to rebalance between energy and reserve commitments in a coordinated way.
Indeed, numerical experiments by Chen et al. (2010) demonstrated that significant “room” can be
available in real-time operations for shifting energy to reserves or vice versa, and that utilizing
this room via improved market design can yield cost savings [44]. In practical terms, as battery
fleets grow,market operators like ISONewEngland and ERCOT aremoving away from sequential
scheduling towards co-optimization (planned by 2025) to fully harness battery flexibility [31].
Until then, advanced optimization tools at the participant level (or multi-stage market processes)
serve as interim solutions to achieve amore balanced battery allocation under sequential clearing.

2.4.3 Mathematical Approaches to Modeling BESS

The integration of BESS intomarket clearing formulations introduces uniquemodeling challenges.
Battery operation is an inherently inter-temporal decision process: charging or discharging in
one period affects the energy available in later periods. Moreover, batteries have non-trivial
constraints like state-of-charge limits andmutually exclusive charge/discharge states. Researchers
have employed a range ofmathematical approaches to accuratelymodel these features inmarket-
clearing algorithms, fromdetailedmixed-integer formulations to simplified convex approximations.

Mixed-Integer Linear Programming (MILP) Formulations: The most common approach to
model batteries in market clearing (e.g. unit commitment or economic dispatch problems) is to
use MILP. In a MILP model, binary decision variables are introduced to capture the non-linear
aspects of battery operation, primarily the fact that a battery cannot charge and discharge at the
same time.This is often represented by a binary indicator yt for each time period that takes value
1 if the battery is in charging mode and 0 if in discharging mode (or vice versa).The charging P ch

t

and discharging P dis
t power variables can then be constrained with big-M linear inequalities:

P ch
t ≤ Pmax yt, P dis

t ≤ Pmax (1 − yt), yt ∈ {0, 1},

where Pmax is the battery’s maximum charge or discharge rate. These constraints ensure
that in any interval t, only one of P ch

t or P dis
t can be positive (the other is forced to zero by the

binary yt) – thus no simultaneous charge and discharge occurs.This binary enforcement is crucial
because the naive alternative (allowing a single continuous net power variable that could be
positive or negative) would make the problem nonlinear or could allow unphysical simultaneous
operations if linearized. Indeed, Chen & Baldick (2021) note that “binary variables are in general
required due tomutual exclusiveness of charging and dischargingmodes” in storage formulations
[40].

MILP formulations also handle other on/off logical constraints, such as limiting the number of
charge/discharge cycles or enforcing minimum online times if a battery unit has discrete modes.
Another key set of MILP constraints are those tracking the state-of-charge (SoC) over time. The
SoC is essentially the energy balance of the battery, and it links consecutive time periods. A
typical SoC update equation used in many market models is:

SoCt = SoCt−1 + ηc P ch
t ∆t − 1

ηd
P dis

t ∆t, ∀t,

where ηc and ηd are the charge and discharge efficiency (fractions), and ∆t is the interval
duration (e.g. 1 hour).This linear difference equation accumulates the charged energy and subtracts

41



the discharged energy (accounting for losses) to give the new SoC. Along with it, bounds are
enforced: SoCmin ≤ SoCt ≤ SoCmax for all t, where SoCmax is the battery’s usable energy
capacity. Inter-temporal constraints like these turn what would otherwise be a set of independent
single-period optimizations into a linked multi-period problem.

In power system markets, this is handled either by including the battery constraints in the
centralized optimization (as some ISOs do for pumped hydro and are extending to batteries per
FERC Order 841 [39]) or by requiring participants to manage SoC externally. The MILP approach
explicitly incorporates SoC constraints into the market clearing. For example, Midcontinent
ISO has experimented with adding binary battery models to its day-ahead unit commitment,
finding that it can capture the economic trade-offs but with some computational cost penalty
[50]. Tightening constraints (e.g. using valid inequalities) can help mitigate the MILP complexity.
Overall, MILP provides a rigorousway tomodel the binary and coupling decisions for BESS, at the
expense of higher computational complexity. It ensures that if a battery is scheduled to provide
reserve, the SoC and power capacity are there to back it up, and if the battery is scheduled to
charge or discharge, those decisions respect its physical limitations and inefficiencies.

Convex and Linearized Approaches: Given the computational burden of MILP (especially
with large numbers of time periods or battery units), researchers have explored convex approximations
of the batterymodeling problem. One common relaxation is to omit or relax the charge/discharge
exclusivity constraint. By allowingP ch

t andP dis
t to be nonzero simultaneously in themathematical

model (effectively treating the battery as capable of “fractional” charging and discharging at
the same time), the problem becomes linear and convex, since the binary yt can be dropped.
The resulting linear program (LP) can be solved faster, but it may yield an physically infeasible
dispatch (with overlapping charge/discharge) if taken literally. To copewith that, system operators
sometimes use the net dispatch from the LP and count on the fact that in practice a battery cannot
do both at once. For example, an LP might dispatch a battery to charge 50 MW and discharge
50 MW in the same interval (which net to 0, appearing to satisfy balance). In reality, the battery
would simply sit idle (0 MW net), which is feasible but the SoC trajectory would differ. As a
consequence, the optimized SoC from a relaxed model is typically a lower bound on the true SoC
(since any simultaneous charge-discharge in the math model would cancel out net energy but
actually could have been used to raise SoC). This can lead to suboptimal or unexpected results if
not corrected. Recent work has proposed smarter convex formulations that preserve feasibility.
For instance, one method is to split a battery into multiple fictitious sub-batteries that can be
independently charged or discharged. By aggregating many small charge/discharge decisions
(each of which can be modeled as always either charging or discharging at the continuum limit),
the composite model can approximate a convex hull of the battery’s operating region [32]. This
approach, developed by Tindemans et al. (2024), yields a linear program whose solution can be
mapped back to a physically achievable dispatch for the real battery, eliminating the simultaneous
charge/discharge issue. Other convexification techniques include adding penalty terms for simultaneous
charging and discharging or using piecewise linear loss models to avoid binary variables [31].
The goal of all these methods is to strike a balance between accuracy and tractability: a fully
detailed MILP may be too slow for real-time market clearing with hundreds of intervals, whereas
a relaxed LP might be fast but require out-of-model corrections. Convex approximations try
to get the best of both: fast solving and near-physical accuracy. It’s worth noting that many
ISOs initially implemented very simple battery models (treating them as either negative loads or
simple generators with no SoC constraints) in their markets, and only in recent years havemoved
to more rigorous formulations. For example, prior to 2023, several U.S. ISOs did not actively
optimize battery SoC in dispatch, they relied on participants to manage it, meaning the market
solution could inadvertently drive a battery to empty or full if left unchecked [49][40]. By late
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2023, ISOs like CAISO introduced state-of-charge constraints directly into their market software
to prevent such outcomes and to allow look-ahead dispatch to manage energy limits [39]. This
evolution underscores the importance of proper BESSmodeling: without inter-temporal constraints,
a market might naively overuse a battery early and have nothing left later, or schedule infeasible
patterns.

Inter-Temporal Optimization: Rolling Horizon vs. Snapshot Methods: Because batteries link
across time, optimizing their use requires a multi-period outlook. In other words, the dispatch at
hour t should consider needs at hour t + 1, t + 2, etc., to avoid myopic decisions (like a battery
discharging completely in the morning only to find there is no capacity left for the evening
peak). There are two broad approaches to incorporate this foresight in market clearing. The first
is a rolling horizon optimization, where the market (or the battery’s internal scheduler) solves a
multi-period optimization over a future horizon and updates it frequently. This is analogous to
model predictive control. For instance, the California ISO’s real-time dispatch employs a multi-
interval lookahead: every 15-minute market run actually optimizes over the next 65 minutes
of intervals, and the day-ahead market optimizes over the full 24-hour horizon, specifically to
account for energy-limited resources like storage [36]. This means the market software may
deliberately charge or hold back a battery in the current interval if it anticipates higher value
for that energy in a later interval. A notable result of this is that a battery can be dispatched
to charge even when prices are relatively high if the algorithm foresees an extreme price spike
later, essentially the market performs arbitrage on behalf of the battery to position it for future
reliability needs. Such behavior was observed in CAISO, where at times batteries are instructed to
charge at a loss (negative profit for that interval) because the advisory prices for upcoming hours
justify it with an overall gain [36]. Rolling horizon optimization thus ensures inter-temporal
constraints (SoC limits, cycle limits) are respected over time and avoids end-period effects by
constantly re-solving as time moves forward.

In contrast, a snapshot optimization (ormyopicmethod)would clear each time period independently
or only consider a very short window, without linking SoC from one period to the next beyond
maybe a trivial carry-over. A pure snapshot method is not used in any serious market for battery
scheduling, since it would clearly fail to prevent infeasible outcomes; the battery could be scheduled
to fully discharge every hour if each hour is optimized in isolation, which is inconsistent. However,
some simplifiedmarket implementations have effectively treated storagemyopically by requiring
the resource to manage its own SoC. For example, an ISO might clear the battery as a generator
or load in each interval based on bids, and it is the battery operator’s responsibility to ensure it
doesn’t over-discharge; themarket itself doesn’t enforcemulti-interval feasibility.This is essentially
a manual “snapshot” approach and was common prior to storage-specific market rules. It often
led to conservative operation (battery owners self-imposed SoC limits to avoid being caught
empty when needed). With FERC Order 841 in the U.S., markets are now moving away from
that: the Order required ISOs to implement bidding parameters for storage (like minimum SoC
or maximum run time) and to account for state of charge if needed [39]. The modern trend
is therefore towards rolling-horizon optimization in centralized markets, as it yields superior
results for storage deployment. Studies have quantified the value of lookahead: for instance,
an ISO simulation showed that explicitly optimizing storage with a 24-hour horizon increased
systemwelfare and avoided the need for out-of-market adjustments, whereas a myopic approach
either left money on the table or required manual SoC management [40][36]. Rolling horizon
schemes do introduce computational complexity, so sometimes a compromise is used: a limited
lookahead (e.g. 3–4 hours) or a two-step approach (optimize a long horizon coarsely, then refine
the near-term schedule). In summary, rigorous modeling of BESS in market clearing calls for
MILP or convex formulations to handle the charge/discharge decisions and SoC constraints, and
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a multi-interval optimization timeframe to properly schedule the battery’s energy over time.
Both academic studies and real-world implementations have shown that these mathematical
considerations – non-convex formulations vs. relaxations, and rolling horizons – critically impact
the efficiency of battery utilization in electricity markets [35][40][36]. As batte3y participation
grows, continuing to improve these modeling approaches (e.g. faster algorithms for MILPs or
improved convex relaxations) is an active area of research and a practical necessity for market
operators to maintain reliability and economic efficiency with storage-rich grids.

2.5 Empirical Studies and Welfare Analysis

2.5.1 Co-Optimization vs. Sequential Clearing
Electricity market designs that co-optimize energy and ancillary services (reserves) have

been shown to achieve higher overall welfare compared to sequential clearing (clearing reserves
in a separate stage after energy). Multiple studies have compared these paradigms’ outcomes
on system-wide costs and reliability. Co-optimization inherently accounts for the opportunity
costs between energy and reserve provision in one step, whereas sequential markets may lead
to suboptimal commitments. For instance, a recent European analysis found that simultaneous
day-ahead clearing of energy and reserve could save about €1.3 billion per year EU-wide relative
to the current sequential approach [46]. In contrast, an intermediate “market-based” sequential
design (allocating some cross-zonal capacity to reserves first, as practiced in the Nordic countries)
yields only around €160–239 million in annual savings, underscoring the efficiency gap [46]. Key
differences observed include:

• SystemCosts:Co-optimization yields lower total production cost and higher social welfare
than sequential clearing. Simulations for Central Europe show 3̃–4% efficiency gains with
co-optimization (translating to over €1.2 billion/year cost savings), whereas the sequential
design leaves more expensive units online to meet reserve needs [46][47]. These savings
come from better allocation of generation to simultaneously meet energy and reserve
requirements at least cost.

• Reserve Procurement Efficiency: Under sequential clearing, reserve auctions conducted
prior to or after energy markets can misrepresent generators’ fixed costs and lead to
inefficient unit commitment [46]. Generators might be scheduled in the energy market
without considering reserve needs (or vice versa), requiring last-minute adjustments. Co-
optimization avoids this by optimally committing resources for both energy and reserves
in one pass, resulting in more efficient reserve procurement and lower reserve prices.
Studies report that separate clearing creates uncertainty and even counter-intuitive dispatch
outcomes under high reserve demands, whereas joint clearing modestly improves welfare
and reliability when reserve requirements are high [47]. In other words, co-optimization
becomes especially valuable as reserve needs increase (e.g. withmore renewables or variability)
[47].

• Curtailment and Renewable Integration: Co-optimization can reduce renewable energy
curtailment relative to sequential markets.The joint clearing ensures that cheap renewable
generation is not unnecessarily withheld due to reserve obligations. By optimizing energy
and reserves together, the system can utilize renewable outputmore fullywhile still procuring
reserves efficiently. In scenarios with high wind penetration, lack of co-optimization has
been shown to cause inefficient use of wind (e.g. curtailment or spillage) and higher costs,
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whereas a co-optimized approach better harnesses available wind generation [47]. This
leads to greater overall welfare (supply meets demand at lower cost) and aligns market
dispatch with reliability needs without unduly constraining renewables.

Empirical evidence from existing market implementations corroborates these findings. In
U.S. RTO markets (like ISO-New England and MISO), real-time co-optimization of energy and
reserves is standard and is credited with minimizing operating costs while meeting reserve
margins [46].The European context, until recently, relied on sequential reserve procurement after
day-ahead energy market clearing, which studies indicate has left significant welfare gains on
the table. The push for co-optimized day-ahead markets in Europe (pursuant to EU regulations)
is driven by these quantified benefits in cost reduction and efficiency. Overall, the literature
strongly indicates that co-optimization dominates sequential clearing in terms of total welfare
outcomes: it lowers system operating costs, leads to more optimal reserve procurement, and
avoids scenarios where inflexible scheduling in sequential designs causes price distortions or
unnecessary curtailment of low-cost resources [46][47]. Sequential designs tend to require more
out-of-market corrections and incur higher reserve procurement costs, as seen in past European
market outcomes. Notably, when intraday adjustments are limited, the efficiency gains from co-
optimization become even more dramatic; one study noted potential savings could double (to
€̃2.3 billion/year in Europe) if the system cannot fully readjust post-day-ahead, highlighting how
valuable co-optimization is under inflexible conditions [46]. Thus, across a range of empirical
simulations, co-optimized clearing consistently improves social welfare compared to the traditional
sequential paradigm.

2.5.2 Role of BESS in System-Wide Welfare
Battery Energy Storage Systems (BESS) have emerged as pivotal assets for improving overall

system welfare by providing flexibility. A BESS can charge during low-demand or low-price
periods and discharge during peaks, a practice known as peak shaving, which reduces the need
for expensive peaking generation. Numerous studies demonstrate that introducing BESS into
power systems yields production cost savings and reliability improvements. For example, an
early economic assessment on small isolated power systems showed that using storage for peak
shaving and primary reserve significantly lowered operational costs [48]. In those case studies
(Spanish islands), batteries supplying reserve and peak power led to measurable fuel and cost
savings, underlining thewelfare gains from evenmodest storage deployment [48]. Recent research
has further quantified the system-wide benefits and sensitivities of BESS integration:

• Sensitivity to Size and Efficiency: The welfare impact of storage is highly sensitive to
its size (energy/power capacity) and round-trip efficiency. An optimally sized BESS can
maximize net benefits by providing just enough reserve and energy-shifting capacitywithout
excessive idle investment. If the battery is too small, the system forgoes potential savings;
too large, and diminishing returns set in. Adeyemo et al. (2025) found an optimal storage
capacity thatminimized total operating costs for a given system by allowing the displacement
of costly generators kept online for reserves [49]. By providing spinning reserve from
a BESS, the system could turn off or avoid running additional thermal units solely for
reserve requirements, thereby cutting fuel consumption and emissions [49]. On the other
hand, round-trip efficiency (the percentage of energy retained from charge to discharge)
determines how effectively storage can arbitrage energy. A high-efficiency BESS (e.g.
90%+) deliversmost of the charged energy back to the grid, maximizing its economic value,
whereas a lower-efficiency device loses more energy as heat and provides a smaller net
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benefit. Studies indicate that improving battery efficiency directly translates to greater
system cost savings and emissions reductions – for instance, a report notes that higher
round-trip efficiency leads to more fuel displacement and pollution avoided per MWh
cycled [50]. Thus, the assumptions about battery efficiency play a large role in welfare
analysis: an 80–90% efficient storage yields significantly more arbitrage and peaking value
than one at 60%. In practice, modern lithium-ion BESS often exceed 85% efficiency, enabling
substantial welfare contributions through loss reductions [50].

• Degradation and Lifetime Costs: Battery degradation is another critical factor in welfare
analysis. Each charge-discharge cycle incurs somewear and tear on the battery, effectively
consuming a fraction of its finite lifetime. If degradation costs are not considered, models
may overestimate the frequency with which a BESS should be cycled for small arbitrage
gains. Recent studies embed battery degradation costs into operation planning to ensure
dispatch decisions remain economically optimal over the battery’s life. Yang et al. (2023)
show that incorporating degradation in the optimization avoids overly aggressive cycling
that would shorten battery life and lead to higher effective costs, thereby moderating the
dispatch to balance short-term gains with long-term asset value [51]. Similarly, Schade
et al. (2024) report that better representation of battery degradation in dispatch models
leads to more prudent use of the battery (e.g. reserving cycles for higher-value periods),
ultimately increasing the net welfare by extending battery life and reducing replacement
costs [52]. In summary, accounting for degradation moderates the theoretical welfare
contribution of BESS; the net benefit is still positive, but somewhat lower once battery
wear costs are internalized. This sensitivity highlights that policy and market signals (like
paying for throughput or cycling costs) may be needed to fully capture welfare-optimal
behavior for storage owners.

• Impact on Peak Shaving, Reserves, and Ramping: BESS can have a transformative impact
on peak shaving and ancillary service provision. By discharging during peak demand
hours, storage lowers the peak net load, reducing the need to commit expensive peaker
plants. This peak shaving not only cuts generation costs but can also defer investments
in generation capacity and grid infrastructure. Analyses by NREL have noted that batteries
effectively ensure adequate peaking capacity by replacing some gas-fired peakers, especially
when pairedwith renewables to shift their output to peak hours [50]. In providing operating
reserves, BESS can respond faster andmore precisely than thermal generators. An appropriately
sized BESS can supply spinning or fast-frequency reserves, meaning fewer thermal units
must be kept running at part-load for contingency purposes.This improves overall efficiency
since generators no longer need to be committed solely for reserve capacity [49]. The
flexibility of batteries also contributes to ramping support: grids with high renewables
face steep ramp-up or ramp-down periods (for example, solar output drops in the evening).
BESS can smoothly handle these ramps by discharging or charging rapidly, whichmaintains
system balance without requiring quick-start gas plants. Case studies have shown that
even a single large battery can significantly reduce the net ramping requirement from
conventional generators, improving system stability and lowering wear on thermal plants.
In summary, the presence of BESS enhances system-widewelfare by shaving peak demand,
providing reserve capacity more efficiently, and offering rapid ramping support, all of
which lead to lower operating costs, improved reliability, and reduced emissions [48][49][50].
These benefits are sensitive to the technical parameters discussed (size, efficiency, degradation),
but across many studies the qualitative finding is consistent: integrating storage yields a
positive net welfare effect, especially as renewable penetration and flexibility needs grow.
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2.5.3 Real-World Applications and Case Studies

The theoretical advantages of co-optimization and storage have been explored in simulations,
and increasingly evidence is emerging from real-worldmarket implementations. Europeanmarket
applications provide valuable case studies. In the Nordic countries, a sequential market-based
reserve allocationmechanism has been in place, whereby a day-ahead balancing capacity auction
allocates cross-zonal transmission capacity for reserves before the energy market clears. This
approach, used inNorway, Sweden, Finland, andDenmark, has enabled some cross-border reserve
sharing and improved efficiency over purely national, sequential procurement. However, studies
suggest that while this Nordic model yields modest benefits, it does not capture the full potential
welfare gains of a simultaneous co-optimization. The ACER consultancy report noted that the
market-based allocation (Nordic-style sequential clearing) achieved only a small fraction (1̃5%)
of the welfare gains that true co-optimization would deliver in Europe [46]. This finding has
informed ongoing policy discussions in the EU, and as of 2024 the EU ismoving towards implementing
co-optimized day-ahead markets for energy and reserves. The Nordic experience thus serves as
a real-world stepping stone: it proves that integrating reserves across zones brings benefits, but
also that a more integrated clearing (co-optimization) could save roughly an additional billion
euros annually [46].

Germany and the UK offer contrasting cases in national market design and the role of storage.
Germany traditionally procures reserves after the day-ahead energy market (sequentially) and
experienced a notable experiment in 2018–2019 with the so-called “mixed price” system. Under
that scheme, Germany tried to combine energy and reserve capacity bids in the balancing reserve
market to account for energy opportunity costs. In practice, this partial integration was short-
lived: it led to a persistent upward trend in reserve capacity prices and required frequent operator
interventions to maintain system balance, prompting its cancellation by mid-2019 [48]. Analyses
of the mixed price episode indicated that the design inadvertently penalized flexible providers
and created gaming opportunities, resulting in inefficiencies. The lesson from Germany’s case
was that poorly designed sequential markets (or half-measures toward co-optimization) can
yield worse outcomes: during those nine months, reserve costs spiked and significant out-of-
market actions were needed to keep the system in check [48]. Germany has since reverted
to conventional separate auctions, but the experience has fueled interest in more robust co-
optimization methods to avoid such issues in the future. Additionally, Germany has been a
leader in deploying BESS for primary frequency control; batteries have been participating in the
German primary reserve (FCR) market for several years, successfully providing fast frequency
response. This real-world deployment demonstrates how storage can improve reliability and
reduce dependence on thermal plants for frequency regulation.While data on system-widewelfare
impact in Germany are still emerging, the trend of battery participation has been positive –
frequency control costs have fallen, in part due to high-performance battery response displacing
conventional units.

The United Kingdom has become a frontrunner in large-scale battery adoption and offers
insights from both simulation studies and actual market data. The UK currently has the highest
installed grid-scale BESS capacity in Europe (over 1.7 GW by some estimates) and one of the
most active ancillary service markets for storage [54]. This is driven by the UK’s aggressive
renewable targets (e.g. a net-zero power system by 2035) and the need for flexibility on an island
grid with limited interconnections. Market data from recent years show that UK batteries earn
revenue through diverse streams: fast frequency response services (like Dynamic Containment),
the BalancingMechanism (energy balancing actions), andwholesale energy arbitrage. A Rabobank
analysis noted that the UK’s strong policy support and multiple revenue opportunities (capacity
markets, ancillary services, arbitrage) make it particularly attractive for BESS investment [54].
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The real-world performance has validated many theoretical benefits of storage. For example,
during peak evening hours or rapid wind ramps, National Grid has increasingly turned to battery
assets for balancing. This has improved response times and reduced reliance on standby gas
plants. It was observed that as more batteries entered the frequency response markets, the prices
for those services declined (by 2023, UK frequency response prices fell to less than half the
European average), indicating that BESS are providing these services at lower cost [54]. However,
this also introduces a new dynamic: as battery capacity grows, revenue from a single service
can erode (a sign of market saturation). Operators and investors in the UK are responding by
“stacking”multiple value streams (participating in energy arbitrage, reserve, and capacitymarkets
concurrently) to maintain profitability. Overall, the UK’s case confirms that storage can enhance
system welfare: it contributes to peak shaving (batteries routinely reduce demand peaks, which
in turn defers some network reinforcement), reserve sufficiency (the system comfortably meets
reserve requirements with less spinning thermal capacity), and accommodates steep renewable
output changes (mitigating wind variability). At the same time, it highlights the importance
of market design: the UK is exploring adjustments like local flexibility markets and revised
reserve products to ensure that the full value of BESS is captured and that revenue signals remain
adequate as the fleet grows [54].

Other European regions and studies provide additional context. Several Nordic andUK simulation
studies (e.g., using historical demand and weather data) reinforce these empirical trends. For
instance, in Scandinavia, models show that allowing batteries and flexible demand to participate
in reserve markets greatly improves adequacy during winter peaks and high wind periods. In
Southern Europe, case studies have examined high solar systems, they find that storage smooths
out the solar variability and preventsmidday over-generation frombeingwasted, thereby increasing
the utilization of renewable energy and raising overall welfare (by reducing curtailment and
lowering reserve procurement of gas plants). Real-world trial programs, such as pilot battery
projects in Italy and Spain providing fast reserves, have reported improved frequency control
performance and cost savings for the TSO. In summary, the growing body of real-world evidence
from Europe confirms the literature’s main points: co-optimization of energy and reserves leads
to substantial cost savings and more efficient resource use, and BESS deployment contributes
significantly to system flexibility, reliability, and reduced operating costs. These case studies also
offer practical insights – for example, they underscore the need for appropriate market rules
(to avoid unintended consequences like Germany’s 2019 episode) and illustrate that the value of
storage can evolve as more is added to the system (as seen in the UK, where initial high revenues
for fast response services have moderated over time with increased competition). Policymakers
andmarket operators are leveraging these insights to refinemarket designs for maximizing social
welfare in a renewable-heavy grid.

2.5.4 Temporal Effects and Value Variability

Another crucial aspect of welfare analysis is the temporal variability of value from storage
and co-optimization. The economic benefits of these resources are not uniform across all times;
instead, they fluctuate with seasonal patterns, daily demand cycles, and extreme events. Studies
have highlighted that the value of energy arbitrage and reserve provision depends strongly
on timing. For example, an analysis across European electricity markets found that arbitrage
opportunities (and thus the profitability of storage) differ widely by region and time: markets that
are less integrated or have larger price volatility offer greater arbitrage value, whereas highly
integrated markets with smoother price profiles yield lower arbitrage gains [55]. This implies
that the welfare contribution of a storage or co-optimization approach can be more pronounced
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in systems with sharp temporal price swings. Within any given market, seasonal trends play a
significant role. During winter months in northern Europe, demand peaks in the evening are
higher (due to heating and lighting), often causing higher prices – storage has more valuable
opportunities to charge off-peak (night) and discharge at the evening peak, increasing its earnings
and welfare impact. In summer or low-demand periods, the peak-trough spread may be less
pronounced, slightly reducing arbitrage value. Empirical price data confirm these trends: one
illustrative analysis of storage operating in the UK found markedly different optimal operations
between winter and summer scenarios, corresponding to the differing demand and price patterns
[56]. The storage would cycle more and earn higher revenues in winter when price spikes were
frequent, whereas in summer it cycled less due to flatter demand. Seasonal renewable patterns
also matter. For instance, in spring with abundant solar production, midday power prices can
collapse (even go negative), which gives storage cheap charging opportunities and then profitable
discharge later. Thus, the value per MWh of storage use can be significantly higher in certain
seasons (or days) that have greater imbalance between supply and demand.

Daily and weekly demand patterns further drive variability in storage value. Weekdays tend
to have higher peaks (industrial and commercial activity) andmore pronouncedmorning/evening
ramp events, whereas weekends generally exhibit lower, flatter load profiles. This leads to a
consistent weekday-weekend effect observed in arbitrage revenues [56]. On weekdays, batteries
often see two cycles (morning and evening peaks) with substantial price differences, making
arbitrage highly lucrative on those days. In contrast, during weekends the peak demand is lower
and mid-day troughs (especially with solar) can be higher, so price spreads shrink; storage may
only do a single shallow cycle or even sit idle if spreads don’t cover efficiency losses. Poonyth
(2020) analyzed UK price data and noted clear patterns: arbitrage revenues fluctuated on a daily
basis, withweekday peaks yielding significantly higher returns thanweekends, and these patterns
repeated weekly [56]. Over the course of a year, these daily/weekly fluctuations contribute to
seasonal averages – e.g. more high-value days in winter, fewer in summer. The implication for
system-wide welfare is that the marginal value of storage (in MWh saved or shifted) is not
constant: it is high during periods of stress or high demand (when storage averts expensive
generation or blackouts) and lower when the system is mostly in surplus.

Moreover, extreme events can greatly skew the temporal distribution of storage value. An
analysis of the 2014 “Polar Vortex” winter in the US PJM system found that just a handful of
extreme cold days contributed a disproportionate share of the annual arbitrage profits for a
storage device [57]. During those days, electricity prices spiked to many times their normal
level due to fuel shortages and high demand, and a storage unit that was available could earn as
much in one event as it might in weeks of normal operations. Salles et al. (2017) quantified this,
showing that accounting for such rare but extreme events significantly increases the long-run
average value of storage in PJM – essentially, resource adequacy and resilience events create
very high shadow prices that storage can capitalize on [57]. From a welfare perspective, this
means that storage provides not only routine day-to-day cost savings but also a form of insurance
value during crises (by preventing involuntary load shedding or reducing reliance on extremely
expensive peaking generators). However, it also makes the revenue stream of storage quite
variable year-to-year, as it depends on the occurrence of such events.

In summary, temporal effects are crucial in evaluating system-widewelfare from co-optimization
and storage. Seasonality affects demand peaks and renewable output patterns, thereby influencing
how often and how profitably storage is used across the year. Weekday vs. weekend and diurnal
cycles create regular intra-week variability in value, with weekdays typically offering greater
benefits for storage and flexible resources thanweekends [56]. And finally, rare events and outlier
days can contribute outsized value, highlighting the importance of considering not just average
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conditions but also volatility and extreme scenarios in welfare analyses [57]. Grid operators and
planners incorporate these temporal factors by, for example, examiningmultiple year types (peak
year vs normal year) when assessing storage investments or by designing time-differentiated
price signals (such as higher reserve requirements or scarcity pricing in peak seasons) to ensure
that the value of flexibility is reflected. Overall, acknowledging the variability of storage value
over time leads to more robust and realistic welfare analysis, ensuring that co-optimization
strategies and BESS deployments are evaluated under the full spectrum of operating conditions,
from typical days to system stress events.

2.6 Identified Gaps and Research Direction

2.6.1 Literature Gaps

Insufficient modeling of hybrid strategies in sequential models

A clear gap in prior work is the lack of models that capture hybrid operational strategies
across sequential electricity market stages (e.g. joint participation in day-ahead, intraday, and
balancing markets). Traditional market designs and many studies treat these stages separately
(sequential clearing), which can lead to suboptimal outcomes and missed synergies [58][59].
In fact, the conventional sequential approach has been shown to introduce efficiency losses
compared to integrated optimization, as it cannot fully coordinate energy and ancillary services
or co-located resources in one framework [58][59]. For example, co-optimizing energy and reserves
together generally yields more cost-efficient dispatch than procuring them sequentially, yet most
models in the literature do not allow such co-optimization. Recent research confirms this shortcoming:
Zhu et al. (2023) note that no existingmethod simultaneously optimizes a battery hybrid system’s
bids in the day-ahead market, balancing market, and real-time operation under one strategy.
Their work fills that gap with a newmulti-market EMSmodel, underscoring that previous studies
did not consider fully coordinated strategies across sequential markets (e.g. a battery providing
both arbitrage and balancing services in tandem) [60]. In summary, the literature has focused
on sequential market models in isolation, without adequately modeling hybrid or coordinated
strategies that span multiple market layers, a gap this thesis will address.

Lack of Belgian-context empirical simulation studies

There is a noticeable underrepresentation of studies applying these models and strategies to
the Belgian electricity market context. Most academic case studies on storage and market design
have been conducted for large systems (e.g. U.S. RTOs or multi-national EU markets) or use
generalized data, with very few focused specifically on Belgium’s market conditions. This gap
is partly due to the nascent status of battery storage in Belgium – as of 2021, Belgium had very
limited battery capacity installed, and even lacked consolidated data on storage operations [61].
The International Energy Agency reported that battery storage was “not yet part of mandatory
energy statistics” in Belgium, highlighting the historically low deployment and analysis of storage
in the country [61]. Consequently, tailored simulation research for Belgium has been scarce.
Only recently have a handful of studies begun to incorporate Belgian market data. For instance,
Mercier et al. (2023) included Belgium in a pan-European arbitrage study and showed that unique
local factors (like Belgium’s storage grid fees) can significantly impact storage profits. Their
inclusion of Belgian-specific tariffs, which reduced arbitrage value by 20–50%, underlines the
importance of context, yet such detailed local analyses are the exception [62]. Similarly, Paredes
and Aguado (2024) demonstrate a battery revenue-stacking strategy using Belgian day-ahead and
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aFRR market data, achieving a 17% profit increase by optimally combining energy and reserve
trading [63]. In another example, Gonzalez-Saenz and Becerra (2024) optimize a battery operating
on Belgium’s day-ahead market to study arbitrage and degradation trade-offs [64]. These few
studies show growing interest in Belgium, but they each cover limited aspects (one focuses
only on spot vs. reserve stacking, another only on day-ahead arbitrage). There remains a gap in
comprehensive, Belgium-specific simulations that consider multiple services, longer time spans,
and welfare implications under realistic Belgian market constraints. In summary, the empirical
literature has yet to extensively examine how proposed market models perform under Belgium’s
unique market design and upcoming energy transition (e.g. nuclear phase-out), a gap the present
thesis aims to fill.

Underrepresentation of seasonality and intra-week value variation

A third gap is that manymodels do not capture seasonal and intra-week variations in storage
operation and value. Numerous storage studies simplify the temporal domain – for example,
optimizing over a single representative day orweek, which risks overlooking longer-term patterns.
Sioshansi et al. (2021) identify the choice of modeling horizon as a critical challenge, noting that
too short a horizon leads to myopic decisions for storage dispatch [65]. Indeed, a systematic
review byWeitzel and Glock (2018) found that most operational strategies for stationary batteries
focus on short-term (daily/hourly) management, with little attention to multi-week or seasonal
dynamics [67]. In practice, storage profitability and optimal use can varywidely betweenweekdays
andweekends or betweenwinter and summer, especially in systems with renewable fluctuations.
However, these effects are often under-modeled.Many studies rely on time-aggregation techniques
(e.g. a few typical days) that are suitable for short-duration storage but insufficient for capturing
multi-day energy shifting [66]. Recent research confirms this limitation: Mantegna et al. (2024)
show that using isolated representative days can substantially misestimate the value of long-
duration storage, failing to account for carry-over of energy across days. They emphasize that
properly modeling multi-day storage requires simulations spanning entire seasons or year-round
with chronological detail [66]. In short, the literature has largely underrepresented seasonal
cycles and intra-week variability, an important gap since storage operational strategy (and its
economicwelfare impact) can changewhen viewed over continuousweeks andmonths. Addressing
this gap calls for usingmulti-season,multi-day scenario analyses to capture how storage operation
in one day influences the next, and how value stacks up across diverse conditions. This thesis
responds by considering a year-round scope with seasonal and weekly granularity, ensuring that
conclusions account for temporal value variations that prior sequential models often neglect.

2.6.2 Contribution of This Thesis

Development of co-optimized and sequential models with battery storage

To address the first gap, this thesis develops two complementarymarketmodeling approaches
for battery storage participation: a co-optimizedmodel and a sequentialmodel. In the co-optimized
framework, energy and reserve markets (and other services) are cleared together in an integrated
optimization, allowing battery storage to optimally allocate its capacity between multiple uses in
a single optimization run. In the sequential framework, the markets are cleared in their natural
sequence (e.g. day-ahead followed by balancing), reflecting current practice, but the battery’s
strategy is modeled across these stages, enabling evaluation of “hybrid” strategies within the
sequential process. By formulating both models, we can explicitly capture the strategic and
outcome differences when a battery (or hybrid system) operates under joint optimization versus
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sequential market clearing. This is a novel contribution because prior studies typically analyze
either a co-optimization approach or a sequential approach in isolation, whereas here they are
developed side by side under consistent assumptions.Themodels incorporate battery operational
constraints (state-of-charge dynamics, capacity limits, efficiency, degradation, etc.) and allow
the battery to provide multiple services. Through this development, the thesis provides a more
comprehensive toolset to evaluate how hybrid strategies (simultaneous energy arbitrage, reserve
provision, etc.) perform under eachmarket design. In doing so, it fills the literature gap by offering
a rigorous comparison: how does a battery’s optimal behavior and the resulting market outcomes
differ between a co-optimizedmarket versus the conventional sequential market structure?These
new models will enable insights into the efficiency gains of co-optimization and identify any
shortcomings of sequential designs in accommodating storage resources.

Empirical evaluation using multi-season, multi-day scenarios

To overcome the underrepresentation of long-term variability, the thesis conducts extensive
simulations across multiple seasons and days. Rather than evaluating the models on a single
typical week, we use multi-season, multi-day scenarios that cover a wide range of temporal
conditions (e.g. winter peak vs. summer low demand, weekdays vs. weekends, renewable output
patterns, etc.).The developedmodels are applied over consecutive days spanning different seasons
to ensure that inter-day coupling and seasonal supply/demand variations are accounted for. This
approach explicitly captures intra-week effects (such as a battery reserving energy over several
days of high prices) and seasonal differences (such as lower solar generation in winter or higher
demand peaks in summer). By testing the market models on these rich scenarios, the thesis can
evaluate storage operation and economic outcomes in a manner that reflects real-world temporal
complexities. This is a significant contribution beyond most existing studies, which often use
limited time horizons or representative periods. Our multi-season evaluation will illustrate, for
instance, how the value of battery storage and its optimal scheduling might be higher in one
season (e.g. winter, with volatile prices) than another, or how a multi-day cold spell vs. a windy
week impact the sequential vs. co-optimized dispatch differently. Ultimately, this comprehensive
temporal analysis provides more robust evidence on the performance of each market model,
ensuring that the conclusions drawn are valid under varied and realistic time-varying conditions,
thereby directly addressing the literature gap on seasonality and long-horizon modeling.

Comparative welfare analysis with realistic Belgian market assumptions

Finally, this thesis contributes a detailed welfare analysis of the proposed market designs
under realistic Belgianmarket conditions, helping to fill the noted context gap. All simulations are
grounded in Belgian data and policy settings. For example, using actual Belgian demand profiles,
generation mix, price statistics, and market rules (including those specific to Belgium such as
capacity remuneration mechanisms or imbalance price structure). By calibrating the models to
Belgium’s context, we ensure that results reflect the operational constraints and costs relevant
to Belgium’s power system (e.g. the limited nuclear capacity post-2025, or the import/export
capabilities of the Belgian grid). The thesis evaluates not just private profits for the battery, but
also the broader economic welfare impacts of co-optimized vs. sequential market operation. This
means comparing outcomes like total system cost, consumer surplus, producer revenues, and
possibly reliability metrics between the two market designs. Such a welfare comparison under
Belgian assumptions is rarely seen in prior literature; it effectively asks: if Belgium were to
implement a co-optimizedmarket for energy and reserves (with substantial storage participation)
instead of the current sequential structure, what would be the net benefit to society?The analysis
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will quantify differences in efficiency (e.g. production cost savings or price reductions) and distributional
effects (how surplus is allocated between consumers, producers, and storage owners) in each
model. By doing so, the thesis provides empirically-backed insights for Belgianmarket stakeholders
and policymakers. In summary, the research not only pioneers a Belgium-focused application
of advanced market models for storage, but also offers a comparative welfare perspective. This
addresses the gap in empirical simulations for Belgium and delivers practical implications: whether
integrating battery storage via co-optimization yields appreciable welfare gains over the status
quo, under the realisticmarket dynamics and constraints of Belgium. Together, these contributions,
bothmethodological and context-specific, push the state of the art in line with the identified gaps,
offering both new theoretical frameworks and regionally pertinent findings.
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Κεφάλαιο 3

Methodology

3.1 Study Objective
This work quantifies the daily social-welfare uplift (in €/day) obtained by clearing Belgian

day-ahead energy and reservemarkets jointly rather than sequentially, while explicitlymodelling
Battery Energy Storage Systems (BESS).

As electricity systems evolvewith increasing shares of renewables and decentralised flexibility,
the coordination between energy and reserve markets becomes increasingly critical. Traditional
sequential clearing frameworks—where reserves are procured prior to energy—may yield suboptimal
system dispatch, fail to exploit synergies across services, and limit the value extracted from
flexible assets such as batteries.

In this context, co-optimisation is proposed as a promising design alternative that can internalise
system constraints and opportunity costs across services. This thesis models and compares both
clearing paradigms under realistic operational constraints using a detailedMILP unit commitment
formulation tailored to the Belgian power system.

The evaluation centres on welfare gains from BESS participation and improved scheduling
efficiency, accounting for battery degradation costs, system ramping limits, and reserve delivery
requirements. Four representativeweekdays—Winter, Spring, Summer andAutumn—are analysed,
each resolved at 96 fifteen-minute intervals (Section 3.2), ensuring adequate temporal granularity
for capturing reserve activation and SoC evolution.

3.2 Temporal Granularity and Representative Days
The modelling horizon spans a full operational day, discretised into 24 hours × 4 = 96 time

intervals of 15 minutes each. This fine-grained temporal resolution is essential for accurately
capturing operational constraints such as generator ramping limits, the activation timing and
sustain duration of upward and downward reserves (both aFRR and mFRR), and the dynamic
behaviour of Battery Energy Storage Systems (BESS), including state-of-charge (SoC) transitions
and non-simultaneous charge/discharge operations.

Unlike rolling or multi-day optimisation horizons, this fixed 96-step setup simplifies the
implementationwhile preserving sufficient granularity to evaluate short-termflexibility, particularly
for fast-responding assets such as batteries and gas turbines. It also aligns with the activation
periods used in real-time balancing markets operated by the Belgian TSO, Elia.

To capture seasonal diversity and reduce computational burden, a scenario reduction technique
is applied to historical data from 2019 to 2022. Specifically, net-load time series—defined as
total system demand minus renewable generation (wind, PV, run-of-river)—are aggregated at
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daily resolution and clustered using the k-means algorithm. Four clusters are selected, each
representing a prototypical weekday in one of the four meteorological seasons (Winter, Spring,
Summer, Autumn).

This seasonal classification ensures that the chosen test days are statistically representative
of typical Belgian grid conditions across the year, balancing variations in demand, renewable
availability, and flexibility needs.Themethodology closely follows the clustering approach outlined
in [68], which has been widely adopted in power system operations research.

All models are solved independently for each representative day, and results are aggregated
to draw conclusions about annualisedwelfare benefits, flexibility gaps, and technology contributions.

3.3 Resource Portfolio
The simulated Belgian power system comprises a diverse portfolio of generation and storage

technologies, each representedwith a level of detail appropriate to their operational characteristics
and role in flexibility provision. The model distinguishes between the following asset classes:

• Thermal Units: Includes Combined Cycle Gas Turbines (CCGT), Open Cycle Gas Turbines
(OCGT), coal, biomass, and other fossil-fuelled or dispatchable units. Each generator is
characterised by a piecewise-linear heat-rate curve, ramping limits, minimum up/down
times, start-up costs, and no-load costs.These units form the primary source of dispatchable
generation and participate actively in both energy and reserve provision.

• Nuclear Units: Treated as baseload generators with fixed availability and zero marginal
cost. For realism, these units are excluded from reserve provision due to physical and
regulatory limitations on fast-response capabilities. Their generation profile is assumed to
be flat, representing inflexible operation over the optimisation horizon.

• Hydropower (Pumped Storage): Pumped-storage units (PS) are included only in the co-
optimised models. They are modelled with generation and pumping capabilities, cycle
efficiency, reservoir capacity, and inter-temporal state-of-charge constraints. In sequential
models, PS generation and pumping are treated as fixed, based on historical operation data,
to isolate the marginal benefit of optimising battery storage.

• Run-of-River, Wind, and Solar (RES): These are modelled as exogenous time series and
treated as non-dispatchable resources with zero marginal cost. Their output is deducted
from the demand to form the net-load curve that must be met by dispatchable and flexible
units.

• Battery Energy Storage Systems (BESS): Two lithium-ion battery units are modelled in
detail. Each is defined by its maximum power (MW), energy capacity (MWh), round-trip
efficiency, charge/discharge efficiency, and a cycle degradation cost (€/MWh cycled). BESS
units participate in both energy arbitrage and reserve provision depending on the scenario.
Their operation is governed by state-of-charge dynamics and a binary mode variable to
enforce non-simultaneous charging and discharging.

This granular modelling of the resource portfolio ensures that each technology’s physical
constraints and economic characteristics are accurately captured. This enables a fair comparison
of flexibility contributions across resources and supports a robust quantification ofwelfare benefits
from co-optimising energy and reserve markets.
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3.4 Reserve Products
In Belgium, the Transmission SystemOperator (TSO), Elia, is responsible for procuring balancing

services tomaintain real-time system frequency and security of supply.These services are divided
into two main categories of frequency restoration reserves:

• Automatic Frequency Restoration Reserve (aFRR): also known as secondary control, aFRR
is activated automatically via a centralised control signal from Elia’s control room. It is
deployed within a few seconds and sustained over a 15-minute period, ensuring rapid and
continuous response to frequency deviations. Assets participating in aFRR must comply
with stringent requirements in terms of response time, telemetry, and controllability.

• Manual Frequency Restoration Reserve (mFRR): also referred to as tertiary control, mFRR
is activated manually by Elia and typically used to relieve aFRR or restore reserves after
a major system event. It is commonly delivered through contracted capacity from large
generators or aggregators and must begin ramping within 15 minutes of activation.

Both upward and downward directions are procured for each reserve product, ensuring that
flexibility is available to both increase and decrease generation or consumption when needed.
These reserves are cleared via dedicated procurement mechanisms, often through daily or weekly
auctions.

Table 3.1 summarises the key operational parameters of each reserve product in terms of
delivery time, sustain duration, and directional coverage:

Πίνακας 3.1: Reserve product definition

Product Direction Delivery time Sustain
aFRR Up / Down 15 s 15 min
mFRR Up / Down 15 min 15 min

Themodelling framework in this thesis reflects these definitions by enforcing reserve-specific
constraints on delivery duration,minimumactivation time, and sustained provision.The flexibility
resources—such as conventional generators and BESS—are required to meet these performance
criteria when scheduled for reserve provision in either the co-optimised or sequential clearing
configurations.This fidelity ensures a realistic comparison between differentmarket design scenarios.

3.5 Mathematical Formulations

3.5.1 Joint Energy–Reserve MILP (CO-OPT)
Decision variables include generation pg,t, commitment wg,h, start-up zg,h, reserve provision

sg,t,r , pumped-storage variables, and BESS charge/dischargewith binarymodewhen commitment
binaries are active. The objective (Eq.⁇) minimises fuel, start-up, no-load and cycle costs subject
to energy balance, reserve requirements, ramping, min-up/down, and SoC constraints.

3.5.2 Nomenclature
Sets:

G Set of generation units, indexed by g
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B Set of battery storage systems, indexed by b

P Set of pumped storage units, indexed by p

R Set of reserve products, indexed by r

T Set of time periods, indexed by t

Parameters:

• MCg Marginal cost of generator g [/MWh]

• Kg, Sg No-load and start-up cost for generator g [/h, ]

• P min
g , P max

g Minimum and maximum generation of g [MW]

• Rr,max
g Reserve provision capacity of generator g for product r [MW]

• ηch
b , ηdis

b Charge/discharge efficiency of battery b [--]

• P max
b , Emax

b Max power and energy capacity of battery b [MW], [MWh]

• CycleCostb Battery cycling cost [/MWh]

• ∆t Time step duration [h]

• Dt Demand at time t [MW]

• RRr
t Reserve requirement at time t for product r [MW]

Variables:

pg,t Power output of generator g at time t (MW)

sr
g,t Reserve provision of generator g for product r at time t (MW)

pch
b,t, pdis

b,t Charging/discharging of battery b (MW)

socb,t State-of-charge of battery b (MWh)

sr
b,t Reserve provision of battery b for product r (MW)

lt, l
neg
t Positive and negative load shedding (MW)

3.5.3 Problem Formulation

The day-ahead co-optimization problem is formulated as:

min
∑
t∈T

∑
g∈G

(MCg, t · pg,t + Kg · wg,t + Sg · zg,t) + 3000 · lt + 3000 · l
neg
t +

∑
b∈B

CycleCostb · (pch
b,t + pdis

b,t)


(1)

subject to:
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∑
g∈G

pg,t +
∑
b∈B

pdis
b,t −

∑
b∈B

pch
b,t + lt − l

neg
t = Dt ∀t ∈ T (2)

pg,t +
∑
r∈R

sr
g,t ≤ P max

g · wg,t ∀g ∈ G, t ∈ T (3)

pg,t ≥ P min
g · wg,t ∀g ∈ G, t ∈ T (4)

sr
g,t ≤ Rr,max

g ∀g ∈ G, r ∈ R, t ∈ T (5)∑
g∈G

sr
g,t +

∑
b∈B

sr
b,t ≥ RRr

t ∀r ∈ R, t ∈ T (6)

socb,t = socb,t−1 + ηch
b · pch

b,t−1 · ∆t − 1
ηdis

b

· pdis
b,t · ∆t ∀b ∈ B, t > 0 (7)

0 ≤ socb,t ≤ Emax
b ∀b ∈ B, t ∈ T (8)

pdis
b,t +

∑
r∈R↑

sr
b,t ≤ P max

b ∀b, t ∈ T (9)

pch
b,t +

∑
r∈R↓

sr
b,t ≤ P max

b ∀b, t ∈ T (10)

1
ηdis

b

·

pdis
b,t +

∑
r∈R↑

sr
b,t

 · ∆t ≤ socb,t−1 ∀b, t ∈ T (11)

ηch
b ·

pch
b,t +

∑
r∈R↓

sr
b,t

 · ∆t ≤ Emax
b − socb,t−1 ∀b, t ∈ T (12)

Constraints (2) enforce energy balance. Constraints (3)-(4) ensure that generator power and
reserves do not exceed limits. Constraints (5)-(6) enforce unit and system reserve requirements.
Constraints (7)-(12) model battery dynamics, including SoC updates, converter capacity, and
energy availability for reserve activation.

3.5.4 Sequential Clearing
Step 1: Reserve Sub-problem Opportunity-cost formulation after Avila2018:

3.5.5 Nomenclature
Sets:

G Set of generation units, indexed by g

B Set of battery storage systems, indexed by b

R Set of reserve products, indexed by r

T Set of 15-minute time periods, indexed by t

H Set of hourly time intervals, indexed by h

Parameters:

• MCg,t Marginal cost of generator g at time t [/MWh]

• Kg, Sg No-load and start-up cost of generator g [/h, ]
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• P min
g , P max

g Minimum and maximum generation of g [MW]

• Rr,max
g Maximum reserve capability of g for product r [MW]

• ηch
b , ηdis

b Charge/discharge efficiency of battery b [--]

• Emax
b , P max

b Energy and power capacity of battery b [MWh], [MW]

• InitialSoCb Initial state-of-charge of battery b [MWh]

• RRr
t System-level reserve requirement for product r at time t [MW]

• λt Market clearing price for energy at time t [/MWh]

Variables:

• pg,t Scheduled power output of generator g at time t [MW]

• sr
g,t Reserve provision by generator g for product r at time t [MW]

• wg,h Binary commitment status of generator g at hour h

• zg,h Binary start-up indicator for generator g at hour h

• cg,t Generation cost proxy variable for generator g at time t []

• sr
b,t Reserve provision by battery b for product r at time t [MW]

• socb,t State-of-charge of battery b at time t [MWh]

3.5.6 Problem Formulation

The reserve-only model without pumped storage is formulated as:

min
∑
t∈T

∑
g∈G

OCFg,t(sgt+mF RR+sgt+aF RR)+
∑
t∈T

∑
g∈G

C(P −
g +sgt−mF RR+sgt−aF RR)+

∑
h∈H

∑
g∈G

Kg·wg,h+Sg·zg,h

(1)
subject to:
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pg,t ≤ P max
g · wg,h ∀g ∈ G, t ∈ T, h = ⌊t/4⌋ (2)∑

g∈G

sr
g,t +

∑
b∈B

sr
b,t ≥ RRr

t ∀r ∈ R, t ∈ T (3)

∑
r∈R

sr
g,t ≤ Rr,max

g ∀g ∈ G, t ∈ T (4)
∑
r∈R

sr
b,t ≤ P max

b ∀b ∈ B, t ∈ T (5)

socb,t = socb,t−1 ∀b ∈ B, t > 0 (6)
1

ηdis
b

·
∑

r∈R↑

sr
b,t · ∆t ≤ socb,t−1 ∀b ∈ B, t ∈ T (7)

ηch
b ·

∑
r∈R↓

sr
b,t · ∆t ≤ Emax

b − socb,t−1 ∀b ∈ B, t ∈ T (8)

zg,h ≥ wg,h − wg,h−1 ∀g ∈ G, h ∈ H (9)
h∑

q=h−UTg+1
zg,q ≤ wg,h ∀g ∈ G, h ≥ UTg − 1 (10)

h+DTg∑
q=h+1

zg,q ≤ 1 − wg,h ∀g ∈ G, h ≤ 23 − DTg (11)

Constraints (2) enforce that generation does not exceedmaximum capacity. Constraints (3) ensure
that system-wide upward and downward reserve requirements are met. Constraints (4) and (5)
limit the reserve capacity of generators and batteries. Constraints (6)–(8) model battery state-of-
charge dynamics and energy feasibility. Constraints (9)–(11) enforce generator startup logic and
minimum up/down time constraints. The opportunity cost function OCFg,t in (1) is defined based
on the difference between marginal costs and energy prices, with a piecewise logic depending
on the sign of MCg,t − λt.

3.6 Opportunity Cost Function

OCFg,t(sr
gt, wgt; λt) =


0, if wgt = 0(

MCg

4 − λt

)
·
(
P −

g + smFRR
gt + saFRR

gt

)
, if wgt = 1,

(
MCg

4 − λt

)
≥ 0(

MCg

4 − λt

)
·
(
−smFRR

gt − saFRR
gt

)
, if wgt = 1,

(
MCg

4 − λt

)
≤ 0

(OCF)

Step 2: Energy Sub-problem Commitmentmay befixed to reserve decisions. Pumped-storage
is also fixed to historical Gen/Pump since there is no way to decompose it into reserve and energy
without adding additional inefficiencies to the model which ultimately tries to isolate BESS value.

3.6.1 Nomenclature
Sets:

G Set of generation units, indexed by g
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B Set of battery storage systems, indexed by b

T Set of time periods (15-minute intervals), indexed by t

H Set of hourly intervals, indexed by h (H = 24, h = ⌊t/4⌋)

Parameters:

• MCg Marginal cost of generator g [/MWh]

• Kg, Sg No-load and start-up cost for generator g [/h, ]

• P min
g , P max

g Minimum and maximum generation of g [MW]

• Rmax
g Ramp up/down limit of generator g [MW/15min]

• ηch
b , ηdis

b Charge/discharge efficiency of battery b [--]

• P max
b , Emax

b Power and energy capacity of battery b [MW], [MWh]

• CycleCostb Battery cycling cost [/MWh]

• λt Energy price forecast at time t (if arbitrage enabled) [/MWh]

• ∆t Time step duration [h]

• Dt System demand at time t [MW]

• p
ps
t Net generation from pumped storage (fixed) [MW]

• pren
t Renewable generation at time t [MW]

• wfixed
g,h Fixed commitment status of generator g at hour h (0 or 1)

Variables:

pg,t Power output of generator g at time t (MW)

wg,h, zg,h Commitment and startup status of generator g at hour h

pch
b,t, pdis

b,t Charging/discharging power of battery b at time t (MW)

socb,t State-of-charge of battery b at time t (MWh)

lt, l
neg
t Positive and negative load shedding at time t (MW)

3.6.2 Problem Formulation
The energy-only market clearing problem minimizes generation and load-shedding costs,

while satisfying demand and respecting operational constraints:

1/4∗min
∑
t∈T

∑
g∈G

cg,t+
∑
tinT

VOLL·(lt+l
neg
t )+

∑
t inT

∑
b∈B

CycleCostb·(p
ch
b,t+pdis

b,t)+
∑

g inG

∑
tin

·Kg ∗ wgt + Sg ∗ zgt

(3.1)
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subject to:

∑
g∈G

pg,t +
∑
b∈B

(pdis
b,t − pch

b,t) + pren
t + p

ps
t + lt − l

neg
t = Dt ∀t ∈ T (2)

pg,t ≤ P max
g · wg,h(t) ∀g ∈ G, t ∈ T (3)

pg,t ≥ P min
g · wg,h(t) ∀g ∈ G, t ∈ T (4)

pg,t − pg,t−1 ≤ 15 · Rmax
g ∀g ∈ G, t > 0 (5)

pg,t−1 − pg,t ≤ 15 · |Rmin
g | ∀g ∈ G, t > 0 (6)

zg,h ≥ wg,h − wg,h−1 ∀g ∈ G, h > 0 (7)
t∑

q=t−UTg+1
zg,h(q) ≤ wg,h(t) ∀g ∈ G, t ≥ UTg − 1 (8)

t+DTg∑
q=t+1

zg,h(q) ≤ 1 − wg,h(t) ∀g ∈ G, t ≤ 95 − DTg (9)

socb,t = socb,t−1 + ηch
b · pch

b,t · ∆t − 1
ηdis

b

· pdis
b,t · ∆t ∀b ∈ B, t > 0 (10)

0 ≤ socb,t ≤ Emax
b ∀b ∈ B, t ∈ T (11)

1
ηdis

b

· pdis
b,t · ∆t ≤ socb,t−1 ∀b ∈ B, t > 0 (12)

ηch
b · pch

b,t · ∆t ≤ Emax
b − socb,t−1 ∀b ∈ B, t > 0 (13)

pdis
b,t ≤ P max

b · modeb,t ∀b ∈ B, t ∈ T (14)
pch

b,t ≤ P max
b · (1 − modeb,t) ∀b ∈ B, t ∈ T (15)

Constraints (2) ensure energy balance, including renewables and pumped storage. Constraints
(3)-(4) apply generator capacity limits. Constraints (5)-(6) enforce ramping limits. Constraints
(7)-(9) model startup logic and minimum up/down times. Constraints (10)-(13) handle battery
energy dynamics and availability. Constraints (14)-(15) prevent simultaneous battery charging
and discharging via a binary mode variable.

3.6.3 Battery Model

SoCt = SoCt−1 + ηch pch
t−1∆t − 1

ηdis
pdis

t ∆t

Non-simultaneous charge/discharge is enforced via modet ∈ {0, 1}.

3.6.4 Dual–Price Extraction Methods

1. LP-Relax — drop binaries, solve LP once (lower bound, fast).

2. Fixed-Binary LP (FB-LP) — fix binaries at MILP optimum, re-solve LP (tighther).
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3.7 Scenario Matrix
To assess thewelfare impacts of alternativemarket-clearing approaches and storage participation

levels, five distinct scenarios are constructed and evaluated independently across each representative
day. These scenarios differ in the degree of co-optimisation, the inclusion of Battery Energy
Storage Systems (BESS), and the treatment of Pumped-Storage (PS) units. Table 3.2 summarises
the configuration of each scenario:

Πίνακας 3.2: Scenarios solved per season

Scenario Energy model Reserve model BESS PS
CO-OPT Joint MILP — — / in Optimised
CO-OPT-BESS Joint MILP — In Optimised
SEQ-STD MILP (λ) OCF — Fixed hist.
SEQ-BESS-E MILP + BESS OCF E-only Fixed hist.
SEQ-BESS-ER MILP + BESS OCF + BESS Both Fixed hist.

In the CO-OPT scenarios, energy and reserve decisions are cleared simultaneously through a
joint MILP formulation. BESS may be excluded or included (CO-OPT-BESS) depending on the
storage policy under evaluation. PS units are always optimised endogenously in the co-optimised
path.

In contrast, the SEQUENTIAL scenarios decompose market clearing into two steps: a reserve
MILP using an Opportunity Cost Function (OCF) and a subsequent energy MILP with fixed
commitment (w∗) and historical PS schedules. SEQ-BESS-E enables BESS participation only in
the energy sub-problem, while SEQ-BESS-ER activates BESS in both reserve and energy stages.

This design enables a structured comparison of co-optimised vs. sequential clearing and
isolates the incremental value of BESS flexibility under different market roles.

3.8 Software and Solver Settings
All models are implemented in Python 3.11, leveragingmodern scientific computing libraries

and optimisation tools to ensure reliability, scalability, and reproducibility.Themodelling environment
uses:

• pandas 2.2— for structured datamanipulation, time-series handling, and efficient tabular
input/output;

• NumPy 1.26 — for fast numerical operations on large arrays and matrix-like structures;

• seaborn 0.13 — for generating publication-quality plots, including dispatch time series,
SoC profiles, and comparative welfare bars.

Optimisation is performed usingGurobi Optimizer 11.0.2, a state-of-the-art solver for large-
scale mixed-integer linear programming (MILP). The solver configuration is tuned for robust yet
efficient performance using the following settings:

• MIPGap = 0.1%— ensures that the optimality gap between the best known feasible solution
and the bound is less than 0.1%, balancing precision and runtime;

• Heuristics = 0.05 — allocates 5% of the time to solution heuristics, accelerating the
discovery of good feasible solutions early in the solve;

63



• Presolve = 2— enables aggressive presolving, reducingmodel size and tightening bounds
before the main branch-and-bound search.

All optimisation runs are conducted on a high-performancemachinewith 64-bit architecture,
and results are exported in CSV format for post-processing, plotting, and scenario comparison.

3.9 Workflow Overview

The modelling framework follows a modular and reproducible workflow consisting of four
key stages: data preprocessing, model execution (co-optimised and sequential), post-processing,
and output visualisation. The entire pipeline is illustrated in Figure 3.1, which captures the logic
and data dependencies between different modelling paths.
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Σχήμα 3.1: End-to-end workflow of the energy and reserve co-optimisation framework.

• Data Ingestion&Validation: Raw input datasets are collected and parsed into a structured
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format.These include 96-step demand and renewable profiles, generation fleet specifications
with piecewise heat-rate curves, reserve requirements for each product and timestep,
and fuel price data. All components are merged and stored as a cleaned pickle object
(prepared_data.pkl) to accelerate repeated runs and ensure consistency.

• BranchA—Co-Optimisation Path:A singleMILPmodel is constructed that jointly schedules
energy dispatch, reserve allocation, unit commitment, and BESS operation. The full set of
decision variables includes energy generation (pg,t), commitment (wg,h), start-up indicators
(zg,h), reserve provision (sr

g,t), and BESS SoC/directionality.The objective functionminimises
fuel, no-load, start-up, and battery degradation costs, subject to energy and reserve balance,
technical limits, and dynamic constraints. The result includes the optimal dispatch plan
and a set of implicit dual prices (λt) when needed.

• Branch B — Sequential Path:

– (i) Reserve Sub-Problem: An OCF-based MILP is solved using exogenous λt to
optimise reserve provision and unit commitmentwithout pumped-storage flexibility.

– (ii) Energy Sub-Problem: Based on fixed reserve commitment, a secondMILP solves
energy dispatch. BESS may be optionally activated here, and arbitrage revenue is
considered if enabled. PS generation/pumping is fixed to historical values to avoid
price endogeneity.

• Post-Processing: Results from each scenario are exported to CSVs and visualised through
Python scripts. Outputs include stacked dispatch plots, SoC trajectories, and comparative
bar charts of welfare, commitment, and reserve coverage metrics. These support detailed
scenario evaluation and year-round extrapolation.

3.10 Assumptions and Limitations
To ensure tractability and interpretability of results, the proposed modelling framework

adopts several simplifying assumptions.While these do not compromise the core research objective—
quantifying the welfare impact of energy-reserve co-optimisation—they should be considered
when interpreting results:

• Single-node abstraction: The entire Belgian power system is modelled as a single node,
thereby neglecting intra-zonal transmission constraints, line losses, and voltage issues.
This assumption is consistent with most operational planning models used in academic
literature and reflects the zonal structure of Belgium in the European market coupling
scheme.

• Perfect foresight: Forecasts of system demand and renewable energy production (wind,
PV, run-of-river) are assumed to be known with perfect accuracy for the full 24-hour
horizon. This allows the model to isolate structural differences between market designs,
free from the confounding effects of forecast uncertainty.

• Externalities excluded: The model does not consider CO₂ pricing, scarcity premiums,
or uplift charges. While these costs are relevant in practical market operations, their
exclusion allows for a clearer attribution ofwelfare changes to themarket-clearing architecture
(co-optimised vs. sequential). The study thus focuses on relative economic performance
rather than absolute cost comparisons.
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• Fixed pumped-storage in sequential runs: In all sequential configurations, the pumped-
storage plant operates on a fixed, historical dispatch profile and does not participate in
optimisation. This design choice avoids circular dependencies in energy price formation
(i.e., dual variable endogeneity) and ensures comparability between BESS and PS contributions
to system flexibility.

These assumptions represent deliberate modelling choices that strike a balance between realism,
computational feasibility, and methodological transparency. Future extensions could explore
network-awaremodels, uncertainty-aware unit commitment, or the impact of different regulatory
mechanisms on welfare redistribution.

3.11 Key Performance Indicators
To evaluate the effectiveness of each market design and asset participation strategy, the

following set of Key Performance Indicators (KPIs) is computed for each representative day and
scenario:

• Total Welfare (€/day): The objective value of each MILP run, comprising fuel costs, start-
up costs, no-load costs, and reserve procurement costs.This serves as the primary economic
benchmark for comparing the co-optimised and sequential market-clearing paradigms, as
well as the impact of BESS integration.

• BESSUtilisation:Captures the operational intensity of the Battery Energy Storage Systems
in terms of:

– Energy throughput (in MWh): total energy charged and discharged across the 24-
hour horizon.

– Cycles per day: number of full charge-discharge cycles completed, accounting for
partial cycling via cumulative throughput.

This KPI is essential for assessing the economic value extracted from BESS assets and
inferring potential degradation impact.

• Price–Cost Gap (λt −MCg,t):Measures the difference between the market-clearing price
(λt) and the marginal cost of each thermal generator (MCg,t). A persistently positive
spread indicates infra-marginal rent andmay reflect system scarcity or inefficient dispatch.
This metric also reveals the arbitrage opportunity window for storage participation.

These KPIs provide a multi-dimensional lens for interpreting system performance—spanning
economic efficiency, flexibility adequacy, storage valuation, and pricing behavior—and are reported
in comparative tables across all seasonal and technological scenarios.
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Κεφάλαιο 4

Results and Discussion

This chapter presents and interprets the results obtained from solving the optimisationmodels
described in the methodology. Each scenario is evaluated on eight representative weekdays for
each of the four seasons, as established in Section 3.2. The aim is to quantify the welfare benefits
of co-optimising energy and reserve markets compared to sequential clearing and to assess the
operational value of Battery Energy Storage Systems (BESS).

Results are analysed across key performancemetrics such as total system cost, BESS utilisation,
and pricing behaviour. Visualisations and tables are used to highlight how modelling choices,
market design, and storage integration affect social welfare and flexibility outcomes.

Table 4.1 reports the total system costs per scenario and season as extracted from the full
model results. It confirms that the lowest costs occur under co-optimised clearing with full BESS
and pumped-storage integration, while sequential designs suffer due to lack of coordination and
limited flexibility utilisation.

tabularx

Πίνακας 4.1: Average daily system cost by day-type and scenario (€/day)

Day type Co-Opt
w/ BESS

Co-Opt
no BESS

Fixed
Dispatch

20/80 split Energy-
only

Seq no
BESS

AutumnWD 6 241 269 6 278 530 6 373 729 6 267 842 6 304 199 7 664 483
WinterWD 3 968 637 3 941 538 4 008 415 3 978 388 3 983 981 4 613 577
SpringWD 5 378 521 5 390 198 5 393 305 5 393 353 5 379 843 6 269 680
SummerWD 5 993 820 6 003 449 6 013 115 6 036 618 6 007 306 6 920 496
AutumnWE 3 953 697 4 052 940 3 960 096 3 983 826 3 954 021 4 679 882
WinterWE 2 845 262 2 851 659 2 881 236 2 867 185 2 890 955 3 302 000
SpringWE 3 638 806 3 974 958 4 217 640 4 246 717 4 102 984 5 085 623
SummerWE 3 987 549 3 995 056 4 021 940 4 036 272 4 028 603 5 044 961

4.1 Welfare Comparison Across Market Designs
Table 4.1 summarises the total daily system cost (in €/day) for each scenario, averaged across

the four representative days. The co-optimised model with BESS (CO-OPT-BESS) consistently
yields the lowest total cost, demonstrating the combined benefit of joint market clearing and
battery integration. In contrast, the sequential clearing models (SEQ-STD, SEQ-BESS-E, SEQ-
BESS-ER) incur higher system costs due to suboptimal commitment and reserve scheduling.
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Σχήμα 4.1: Relative annual welfare benefit of cooptimization design with battery storage
against other designs.

Figure 4.2 displays a comprehensive cost comparison across all scenarios and seasons, reinforcing
the numerical trends of Table 4.1. Co-optimised scenarios clearly outperform all sequential designs.
It would be interesting to see what is the cause of the discrepancy between the two extremes of
all scenarios, the co-optimization model with battery storage and the sequential model without
battery storage. Such breakdown of the cost difference is given in Figure 4.3 and reveals that
the biggest source of inefficiency to the sequential model is the suboptimal unit commitment
decisions that are present due to the energy price forecast error in the sequential step and the
use of faster and more expensive generators in the day-ahead reserve procurement. Next source
of inefficiency is Battery Storage utilization which provides for a cost-effective and fast resource.
The smallest of the inefficiencies is from pumped storage utilization, which for the sequential
models, was fixed to a timeseries from aggregated historical data on pumped storage.

Σχήμα 4.2: Comprehensive system cost comparison across scenarios.

Figure 4.4 illustrates the relative percentage cost increase of all non-optimal scenarios with
respect to the CO-OPT-w/BESS benchmark. It highlights that the SEQ-NoBESS split configuration
is the least efficient, incurring up to 10% higher cost in Winter. Even scenarios that allow BESS
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Σχήμα 4.3: Inefficiency sources breakdown.

to participate in all services (e.g., SEQ-BESS Reserve and Energy) perform worse than full co-
optimisation, confirming that without joint clearing, flexibility is underutilised.

The detailed scenario analysis reveals that co-optimised market configurations consistently
outperform sequential clearing, especially when both pumped storage and BESS are allowed to
participate fully. The Autumn and Spring weekdays show the largest cost gaps, suggesting that
these periods benefit most from flexible resource scheduling. Among sequential configurations,
enabling BESS for both energy and reserves reduces costs significantly, but still underperforms
compared to co-optimisation.The radar plot in Figure 4.4 further illustrates the relative performance
of each configuration against the optimal CO-OPT-w/BESS benchmark.

To better understand how these costs build up across model constraints and design decisions,
Figure 4.5 presents a waterfall decomposition of total cost from the best-case (CO-OPT-BESS) to
the worst-case (SEQ-noBESS). The most prominent step-ups occur when:

• BESS is excluded from reserves (SEQ-BESS-EnergyOnly),

• Energy and reserve markets are decoupled (SEQ vs CO-OPT),

• Flexibility assets are excluded entirely (SEQ-noBESS).

Finally, Figure 4.6 shows a two-dimensional plot of the system benefit from co-optimisation
(x-axis) and from BESS deployment (y-axis). Each point represents a season. This visual confirms
that the two benefits are complementary but not equivalent—Winter benefits more from market
coordination, while Autumn gains are mostly attributable to storage.

Taken together, these results validate the hypothesis that joint clearing of energy and reserve
markets unlocks latent system efficiencies otherwise lost in sequential models. BESS enhances
this benefit by dynamically shifting energy and reserve capacity. However, full value is only
realised when both market design and asset flexibility are aligned.
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Σχήμα 4.4: Relative cost increase (%) over CO-OPT-w/BESS across seasons and
configurations COOPT-NoBESS, SEQ-w/BESS, SEQ-NoBESS .

Σχήμα 4.5:Waterfall breakdown of system cost from optimal to worst-case configuration
across all seasons.
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Σχήμα 4.6: System value of co-optimisation and BESS deployment by season.

4.2 Impact of BESS Participation

This section isolates and qualitatively assesses the operational and economic impacts of
Battery Energy Storage System (BESS) participation across different market designs.We compare
three representative scenarios: SEQ-BESS-EnergyOnly (energy-only BESS), SEQ-BESS-ER (energy
+ reserves), and CO-OPT-w/BESS (co-optimised dispatch with BESS).

4.2.1 Sensitivity Analysis

Σχήμα 4.7: Sensitivity of the model to different BESS configurations.

While total cost metrics were analysed across all scenarios in Section 4.1, here we focus
on the relative behaviour of BESS-enabled configurations against the base-case SEQ-NoBESS
configuration. Among these, SEQ-w/BESS-FixedDispatch consistently achieved the lowest daily
cost, benefitting from simultaneous scheduling of energy and reserves, andmore efficient utilisation
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of flexibility since the battery storage dispatch for energy was directly taken from the overally
optimal COOPT-w/BESS model.

The addition of some percentage of battery capacity to reserves in sequential scheduling
(SEQ-BESS-20/80split) moderately improved performance compared to SEQ-BESS-EnergyOnly.
However, the lack of joint optimisation still limited the system’s ability to fully capitalise on
BESS flexibility, leading to suboptimal dispatch sequences and higher overall cost. That is why
the configuration with the fixed BESS dispatch profile from the co-optimized model performed
the best. Figure 4.7 shows exactly that.

4.2.2 Economic Response to Price Signals

Figure 4.8 provides further insight using cross-correlation analysis between marginal prices
and BESS activity in an Autumn weekday. The analysis uses Pearson correlation coefficients
defined as:

ρ(dis)
ℓ = corr

(
λt+ℓ, P dis

t

)
with 15-minute lags. Without co-optimization (baseline), discharge is weakly correlated with
price across all lags, suggestingmisalignmentwith economic signals.When running a co-optimized
mode (CO-OPT-w/BESS), strong positive correlation emerges at short lags for discharge and
charge, reflecting anticipatory behaviour that mirrors optimal dispatch 4.9.

Σχήμα 4.8: Cross-correlation between BESS charging/discharging and marginal prices
under SEQ-BESS-EnergyAndReserve for Autumn.

Σχήμα 4.9: Cross-correlation between BESS charging/discharging and marginal prices
under CO-OPT-w/BESS for Autumn.
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This shift in behavioural dynamics is key: under co-optimised operation, batteries anticipate
price surges and valleys with strategic charging and timely discharging. This enhances system-
wide dispatch efficiency by smoothing ramping needs and reducing reliance on expensive units
dispatched during high stress scenarios.

In conclusion, BESS participation improves system economics and flexibility, but only under
designs that coordinate its use across services. Co-optimisation enables this alignment, translating
into more responsive operation, improved arbitrage logic, and measurable reductions in system
cost.

4.3 Temporal Behaviour of Dispatch and Prices

This section explores the hourly evolution of key operational variables under the CO-OPT-
BESS scenario across seasons. Through time series plots, we examine how generator dispatch,
battery behaviour, and marginal prices unfold during a representative weekday for each season.
The aim is to highlight how co-optimised market design coordinates dispatch decisions and
leverages the flexibility of Battery Energy Storage Systems (BESS).

Figures 4.10--4.11 show the hourly dispatch profiles by fuel type for each season, compared
against the load trajectory. These stacked plots illustrate the composition of generation (nuclear,
wind, solar, waste, pumped storage, etc.) and the role of batteries in absorbing or supplying power.

Σχήμα 4.10: Autumn weekday dispatch by fuel type vs. load under CO-OPT-BESS.

In Autumn (Figure 4.10), dispatch is largely driven by wind and nuclear generation, with
battery discharging complementing evening peaks. Short charging windows are visible during
midday. In Spring (Figure 4.11), a clear solar-dominant period appears from 10:00 to 17:00, during
which BESS units charge aggressively, reaching near-full state-of-charge before discharging into
the evening. Summer dispatch also features sustained solar injection, with battery operations
concentrated between 14:00–19:00. InWinter, load is higher and solar generation limited, resulting
in flatter dispatch with wind and nuclear covering base-load and minimal BESS activity due to
compressed price spreads.

To complement the dispatch plots, Figures 4.12--4.13 show the alignment of marginal prices
λt with BESS power and SoC. BESS units systematically charge when λt is low and discharge
during price peaks, though the extent of this arbitrage varies seasonally.
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Σχήμα 4.11: Spring weekday dispatch by fuel type vs. load under CO-OPT-BESS.

Σχήμα 4.12: Marginal price (λt) and BESS operation for a representative Autumn
weekday under CO-OPT-BESS.
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Σχήμα 4.13: Marginal price (λt) and BESS operation for a representative Spring weekday
under CO-OPT-BESS.

Σχήμα 4.14: Price spread and BESS power output on an Autumn weekday under CO-
OPT-w/BESS.
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Σχήμα 4.15: Price spread and BESS power output on a Spring weekday under CO-OPT-
w/BESS.

In Spring and Autumn (Figures 4.13 and 4.12), BESS cycles 2–3 times daily to exploit multiple
price peaks. Summer displays a narrower price range and hence fewer cycles, while Winter has
the flattest λt profile, leading to near-zero battery activity.

Figures 4.14--4.15 further reinforce these insights by overlaying price spreads (peak–valley
difference) and BESS power output. High spreads correlate with effective arbitrage (Autumn and
Spring), while compressed spreads (Winter) lead to under-utilisation.

InAutumn and Spring, the spread–output alignment indicates efficient arbitrage: BESS charges
just before price valleys and discharges into peaks. In Summer, while spread exists, it is narrower
and more temporally concentrated. Winter's spread is relatively flat, resulting in almost no BESS
dispatch despite ample wind coverage.

Overall, these temporal results confirm that co-optimised scheduling effectively synchronises
BESS activity with system value signals. By anticipating both energy and reserve requirements,
the market design enables BESS to perform dual services without compromising reliability or
missing price signals. Seasonal variability shapes the arbitrage potential and dispatch rhythm,
further justifying adaptive and integrated market strategies.

In summary, co-optimised operations not only reduce system cost but also produce smoother,
more economically efficient dispatch outcomes. Seasonal trends such as solar abundance in Spring
and higher demand in Winter directly influence the value and role of flexibility assets, and these
are best captured under integrated clearing mechanisms.

77



Κεφάλαιο 5

Conclusion

5.1 Conclusion

The results presented in this chapter affirm the central hypothesis of this thesis: co-optimising
energy and reservemarkets, especiallywhen supported by Battery Energy Storage Systems (BESS),
yields significant system-level benefits.These benefits include lower total system costs, improved
operational flexibility, and more efficient price-responsive dispatch.

5.1.1 Welfare Gains from Co-optimisation and Storage

The co-optimised scenario with BESS participation (CO-OPT-w/BESS) consistently achieves
the lowest total system cost across all seasons (Table 4.1). Compared to the worst-performing
sequential variant (SEQ-noBESS), yearly cost savings exceed €0.18mil compared to the sequential
model and battery storage adds another €0.06mil. On average, full co-optimisation and storage
integration lower system costs by up to 10% (Figure 4.4). This is corroborated by the waterfall
decomposition (Figure 4.5), which shows that excluding BESS or decoupling energy and reserve
markets results in progressively higher costs.

Importantly, the relative impact of co-optimisation and storage is not uniform across seasons.
For example, the Winter system benefits more from improved coordination of reserves and
ramping flexibility, while Autumn sees stronger gains from storage-enabled arbitrage and renewables
integration (Figure 4.6). This illustrates that co-optimisation and BESS play complementary, but
not interchangeable, roles in system cost reduction.

5.1.2 Role and Efficiency of BESS Participation

The inclusion of BESS in energymarket (SEQ-BESS-EnergyAndReserve) outperforms energy-
only participation (SEQ-BESS-EnergyOnly) of battery storage in terms of cost. However, neither
scenario reaches the economic efficiency of co-optimised dispatch. (Figure 4.7). Moreover, battery
cycling in the sequential cases is less aligned with marginal price signals, resulting in lower
arbitrage revenue and fewer efficient dispatch cycles (Figures 4.9–4.8).

Quantitatively, the daily net benefit from BESS increases from €26,187.53 (SEQ-BESS-ER)
to €162,919.48 (CO-OPT-BESS), driven by higher arbitrage revenue and better cycling efficiency.
This underlines the importance of integratedmarket access and predictive scheduling in unlocking
full BESS value.
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5.1.3 Operational and Temporal Dynamics
The temporal dispatch analysis reveals that co-optimised scheduling leads to smoother generation

profiles, better load-following, and more adaptive use of flexibility assets. For instance, in Spring,
solar generation triggersmultiple battery cycles to absorbmidday excess and cover evening peaks
(Figure 4.11), whereas Winter sees flatter prices and minimal BESS dispatch. These dynamics are
reflected in the marginal price profiles and spread–output correlations (Figure 4.14, reinforcing
the need for seasonally-aware market design.

Policymakers and system operators should thus prioritise integrated clearing algorithms,
flexible scheduling frameworks, and revenue mechanisms that fairly compensate storage for
multi-service contributions.

5.1.4 Limitations and Future Work
While the results are robust and policy-relevant, several simplifying assumptions must be

acknowledged:

• Network effects such as transmission constraints and zonal pricing were not modelled,
potentially underestimating congestion-related redispatch costs, reserve trade inefficiencies
and intergration of battery storage to a much larger network with more nodes.

• Perfect foresight of demand and renewable outputwas extracted from aggreagated historical
data, ignoring uncertainty and reserve overprovisioning for forecast errors.

• BESS modelling simplified cycling degradation and excluded market bidding behaviours,
potentially overstating revenue potential.

Future work could address these limitations through stochastic or robust formulations, real-
time imbalance market modelling, and the inclusion of locational marginal pricing or zonal
coordination frameworks.

Conclusion
This thesis provides a rigorous quantitative evaluation of co-optimisation and BESS participation

in the Belgian electricitymarket.Through a detailed simulation-based framework, it demonstrates
the substantial benefits of integratedmarket design and flexible storage deployment.The findings
offer actionable insights for regulators and system planners seeking to balance reliability, cost-
efficiency, and the evolving role of storage in power systems.
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