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Arnayopeletar 1 avtiypoy|, anodrixeuct xat dlavour| TN mopolous epyaociog, € olox-
AHPOU 1} TUAUOTOS AUTAS, Yid EUTopXd oxomd. Emitpéneton 1) avotimewon, amovixeuor xau
OLOtVOUY| Y10l OXOTIO Y] XEEDOOXOTUXO, EXTIUOEUTIXNG 1) EQELVITIXY|C PUOTG, UTO TNV TEOUTO-
Yeomn va avagepetal 1) TNy TEOEAEUONC Xt Vo Blatneeltan To ooy urvupa. Epwtuata
oL aPopoVV TN Yerorn NG epyactog Yo XepdooXOTIXG OXOTO TEENEL Vo ameudivovTal
TPOG TOV GUYYQRUPEA.

O améeig xou Ta CUUTERIOUATA TOU TEQLEYOVTOL OE aUTO TO £YYEAPO exPEAlOLY TOV
oLUYYpUPEN xoL OEV TEETEL Vo epunveudel 6Tl avTimpoownelouy Ti¢ enionueg Véoeg Tou
Edvixol Metodfou Iloauteyveiou.



ITepiAndm

H moapodoo dimhowpotin ecTidlel oTn yeron e unyovixic udidnong yio tTnv avdmtuin
AVTIXEWEVIXOY UEVOOWY extiunone tne xoatddiuhne, avtwetowriloviog Toug TEpLoptopong
OTIC TEEYOVOEC Oy VwoTixeg mpaxtixéc. H €peuva elodyet wa xawvotouo drodxaoto
Yoo TNV e€aywYT| YoeaxTNelo Txmy fyou xou embeddings xeyévou and to cOvoho Oe-
douévey DAIC-WOZ. Yuyxexpyéva, n Bidhotixn PyAudioAnalysis yenowonotinxe
yioe Ty e€aywyy| yopoxtnelo tixwy fyou xa o GloVe embeddings yio tar yopotneio i
xewévou. Toapddhnha epapudctnxe wa pédodoc eaymync Pdoel pOAwyY, Ue OXOTO TNV
ave&dptnTn eneepyasion TV YUPAXTNPIC TIXGY TOU CUUUETEYOVTO XAl TOU GUVEVTEUXTY),
wote va avadetydel 1 onupacio xdde pdrou otny extipnon g xatddiung xa 1 enidpaon
e Suvoxc TG ahknhenidpaone oty axpifela g mEdPAedne. e outh TN peAET
eqopuolovtan Teyvxég unyovixric pdinone 6mwe ta Support Vector Machines (SVM)
xou to wovtéha XGBoost. O mpwmtopynds otdyog elvon 1) ovary vepLor ToU To omOTEAEC-
HOTXOU GUVOVACUOU YORUXTNELO TIXWY X0l OAYORIIUWY Tou uTopody Vo EVIGYUCOUV TNV
oxpifeta xon TV adlomiotion Twv povtéhwy meoBiedne tne xatdding. Ta Baocixd eu-
ENUTAL DEYVOUY OTL Tl YopoxTNEIo Td Bactouéva 6To xeluevo, wiaitepa to embeddings
GloVe, umep€youv 10V TORABOCLAXMY YARUXTNPLE TGV iy 0ou, ETLTUYYdvovTag Baduoloyio
AUC 0.74 vy toe povtéra Baciopéva oto xelyevo évavtt 0.66 yia to povtéla Bactouévor
otov fyo. H uelétn diepeuvd enlong teyvixéc e€looppdnnone, emonuaivovIac 0Tl EVE 1
uedodoc SMOTE [eitiwoe v anddoom TV LOVTEAWY, 1] ETIAOYT TWYV YOEUXTNELO TLXMY
TOPUPEVEL Xplotun.

Aé&eig-xherdid: Koatddhur, Avdiuon Oukloc, Avdiuon Kewévou, Mnyavuei Mddnon,
Avtépotn Extiunon Katddhune






Abstract

This thesis focuses on using machine learning to develop objective methods for esti-
mating depression, thus addressing the limitations in current diagnostic practices. The
research introduces a novel pipeline for extracting audio features and text embeddings
from the DAIC-WQOZ dataset. Specifically the PyAudioAnalysis library was utilized for
audio feature extraction and GloVe embeddings for text features. A role-based extrac-
tion method was implemented to independently process features for the participant and
the interviewer, providing insights into the significance of each role in depression esti-
mation and the influence of interaction dynamics on predictive accuracy. In this study
machine learning techniques are applied such as Support Vector Machines (SVM) and
XGBoost models, to improve depression detection. The primary goal is to identify the
most effective combination of features and algorithms that can enhance the accuracy
and reliability of depression prediction models. Key findings indicate that text-based
features, particularly GloVe embeddings, outperform traditional audio features, achiev-
ing an AUC score of 0.74 for text-based models compared to 0.66 for audio-based
models. The study also explores balancing techniques, noting that while SMOTE im-
proved model performance, the choice of features remains critical.

Keywords: Depression, Speech Analysis, Text Analysis, Machine Learning, Automatic
Depression Estimation






Euyapiotieg

Oa Hieha va euyaplothon Vepud dhoug Toug avipmnoug Tou Pe oThpEay xou TioTedoy
oe epéva. Idwitepec euyaplotiec ogethw otov x. I'ewpyio Ntdpov, yia Ty xadodrynon
%ot TOAOTIUT UTOOTAHELEY| TOU.

Oa Hleho axdun VoL EXPEACE TNV EUYVWUOGUVN UOU OTOUSC PLAOUG XL OTNY OXOYEVELY
KoL Yot TNV GTHELEY TOUC OO AUTE ToL YPOVLOL.
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ExtevAc EAAnvixA Tlepiindn

1 Ewoaywyn

H xotddrdm amoterel wbplor oautior avamnolog moryxoouiwe Xon avTITEOCWTEVEL Ulol OTUALV-
T TEOXAN G Yior Ta ouo THUata Snubotag vyelac. H xotddidn (entong peilwy xotddiudn,
uelCov xorordAmTinn Srotapoy ) 1 XX xoc'cdcf)ku])n) elvo 1) Lo OLUOEDOUEVT) DLorTopory 1) OLd-
Yeong, mou yapoxtneileton amd eniuova younAt| B1ddecT), HELWUEVO EVOLPEROY Kol ULd GELRG,
EMNPOOVETOV CUUTTWUETOVY ToU Blotopdocouy Ty xadnuepvy| Aettoupyxdtnro 43, 47].

H xatddhudm cuvdéeton ye onuavtinr vooneotnta xou 9vnoydTnTo xou GUVOEETOL GTEVA UE
uPnAd mTocooTd autoxtoviog. Emmiéoyv, n xatddiupn cuyvd cuvumdpyet Ue SAAEC ypdViES
ac¥éveleg, oLVBUACUOE oL GUYVE 0d1NYEl ot To cofupd TeofAfuaTa uyelag an’ 6,TL Va
npoxaholoe xde ndinon yepovewuéva [53].

To mopandve xou o LPNAG T0C0GTO AUTOXTOVLKY, UToYEoURiloLY TN onuacia TNS Tpo-
Tepatonolnong tne dtdyvwong xou tng Yepameiog tne xatddidng. Tlopd tnv onuacio g
OLdyvwong, mohhol dvdpwmol e xotddhupn mapauévouy dlywe didyvmon authc AdYw Tou
otiyuatog, g éhhewng mpoofaong o umneeoieg YuyAc LYEING X0 TWY TEPLOPLOUGDY
TWY TEEYOLVOKOY Doy Vo Ty uedddmv [53, 68, 90].

H tpéyouca didyvwon tne xatddiune Baotleton oe xAvinr| eZ€Taom, YE To XPLTHARLY TOU
DSM-V va amoteholv 1t Boowxh npocéyyton [81]. Xlugpwva pe to DSM-V, névte A
TEPLOCOTEPY amd ToL axOAOLYoL CUUTTOUATO TEETEL VoL UTdpYouV Xotd Thy (Olor Teplodo
0LOo €fdouddwy. ToukdyloTov €va amd Ta CUPTTOUTA TEETEL Vo elvon elte xatodAimTixy)
odieon elte amwAeLor EVOLAPEROVTOS 1 EuyopioTNomNG, KoTe Vo Tadvounidel we xatdiiun.
LUVOAIXd, UTdEY oLV EVVEX EE(COU ONUAVTIXG CUUTTOUOTA TOU a&lohoyolV TN BiddecT) Tou
acVeEVOUC, TNV XOTWOT), TNV ATWAELNL EVOLUPEPOVTOS XAl GLUYXEVTEMOTG, xadMS Xt ahharyEg
otov Unvo, Ty avnouyla xat to Bdpoc [24, 81].

Auth n mpocéyyion Poaoileton 6TV avdTNTA TOU AcVEVOUE Vol AVAPEREL TOL CUUTTMUATY
TOU X0l VoL AmovTd 0TI EPWTHOELS TOU taTeo0. 2oTO00, AUTEC Ol AVAPORES Elval GLY VA
UTIOXEWEVIXES XL UTopEl var emnpeactoly omd Bidpopous mapdyovteg [66]. Emmiéov,
UTIOXEWEVIXOL TORAYOVTES OIS OL EXPEACELC TV AcUEV@DY, UTopolY Vo TEPLTAECOLY 1|
0Ly vwon tne xatdddng, augdvovtac Tny mdavdTnta Aavioouévng didyvewong [66]. Eva
OXOUT| LELOVEX TN TNG TEEYOVoUS UEVGdoU elvon OTL oL xAvixol ylatpol umopel var mopa-
BAéDouv TV xoTddn, extoc €dv o aclevic tapouotdler cugr onuddio VAidne [81].

Autéc ol mpoxhroelg unoypouuilouy TNV emelyouco avdyxn Yol avTIXEWEVIXES, [Baoto-
uéveg oe dedopéva Yetddoug mou Yo utootneilouv xou Yo evioylGouY T BLdYVWoT NG
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xorddhdng. O e€ehilerc ot Pngroxéc teyvohoyleg Lyelag xaL TNV TEYVNTH YONUOGULVY
TEOGPELOUY EATLOOPORES TPOOTITIXES YLAL T1) CUUTAYIPWGT] TWV TURUBOCLUXDY XAMVIXGDY -
LONOYiOEWV.

1.1 Kivnteo v tn Xuyyeapn tne Awndwpatixne Epyaciog

AEBOUEVOY TV TROBANUETWY OTIC TREYOUOES DLy VWO TIXES TIEAXTIXES, 1) U1y ovixy| udinom
amOTEAEL UEGO VLo TNV AVATTUET TIO AVTIXEWEVIXOY XAl EYXVRGY EQYUAEIWY EXTIUNONG TNG
peeatv NI

Yy mopoloa SimAwuatiny epyacio yenotuonoteitar To ohvoho dedouévwy DAIC-WOZ
YL THY €0y WYY YUEUXTNPIOTIXGY, Xol ONUtoupYoLVTOL TOMAATAG GOVORA BESOUEVWY Yid
NV oLohdyNoN TG ETBOONE HOVTEAWY Unyovixhic Udinong ot dtdyvemon tne xatddiume.

‘Ocov apopd TNV eCaywY T YUpaXTNELO TIXWY, 1) UEAETT) QUTH ETIXEVTPWVETOL OTNY ECUY WYY
NYNTIXOY YOROXTNEOTIXOY YenotwonolwvToag T BiBAodfxn pyAudioAnalysis, nyntxody
embeddings xou yAwoowwy embeddings. HopdAAnia eqgopudleton e€aywyr Bdoet pohou,
OTIOL OL TAUPATIAVE TOTIOL YOEAUXTNPLC TIXWY EEGYOVTAL EEYWELO T TOCO Yol TOV CUUHETEYOVTA
000 o Yoo ToV OLVEVTEUXTH. AUt 1 Tpoogyylon anooxomel otny olloAdynon Tng
onuaoiag xde pohou otn dadixacta TEOBAedne g xatdding. O otdyog dev ebvor
HOVO 1) eCoy YY) QUTMY TWY YOROXTNELOTXGDY, AN xou 1) a&loAdYNoT TOL XATd TOGO O
oLVBLUOUOS Toug Pmopel var evicyloel TNy axplBela Tng extiunong e xatddiume.

1.2 Yvuvewocgpopd tng Awnhwpatixns Epyaciog

Auth n Simlwpatiny epyacia TPOCPEREL OTUAVTIXEG CUVELCPOREC OTOV TOPEN TNG QUTO-
potng extiunong e xatddiuhne. O xdpieg cuvelsopéc eivan oL e€hc:

» Avdntuin Pipeline E€oywyric Xopaxtnototindy.

» Avédhuon Xopaxtnelotixoy Bdoet Pohou.

o Anuovpyio Atagopetindy Exddoewv Yuvorou Acdouévewy and to DAIC-WOZ.
 Ilpoddoc oty Autépatn Extiunon Katddiune

1.3 Aopn tou EAANvixo) Kewpévou tng Awnhwpatixng Ee-
Yoolag

H nopodoa dimhwuotixd epyacia opyavmveton o tevte xegdhata. Ilo ouyxexpiueva: Yto
Kegdharo 1 mapoucidletar yio cUVTOUN ELOOYWYT, UE OTOYO VoL BIEUXQPIVIOTEL TO EPEUVNTIXG
TEOBANUA xon T xlvTea TNG UEAETNG, EVG TapdhAnAa TERLYEAPETOL 1) GUVOALXY| Boun TNG
oimhouotixnc epyaotac. Xto Kegdhowo 2 yiveton emoxdénnon tne xotddpng xadode xou
Boaowv uedddwy TNE TEYVNTAS YONUOCUVNE TOU YENOWOTOL0UVTAL 6TO TAALGLO AUTAS TNG
epyaocioc. Yto Kegpdhowo 3 avahbovton ta epyaieia xou ol uédodol mou yenoudomolinxoy
oty epyaoia. Xto Kegpdhono 4 meplypdgpeton 1 mEtpopotiny] SIUTOL N o Tol ATOTEAECUATA
TV TEWUdTOY. 2XTo Kegdhowo 5 ouvodilovtor Ta CUUTERAOUNTA TWV TELOAUUATEDY Xl
yiveton Adyog yior UEAOVTIXEC TIPOEXTAOELS TNG EpYATiag.
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2 Ocwpentxd TroBadpo xou Xyetixeg Epyaocieg

2.1 Xvpntopato Katddiupne xow Blodeixteg

H xoarddrudn, wo toAbmioxn Swtapayry Guytnic vyelag, ennpedlet onuavTind tn ouvorcdn-
HOTIXT) XOTAO TOOT, TS YVWO TIXES AELTOURYIES, TN CoUaTXT euedio EVOS ATOPOU Xou UTOREL
enlong va exdnhodel oty owhia tou [34]. Tlapatnpolvton cdhowwuéva TpdTumo outhiog oe
dropo he YuylaTEéS BLATOEUYES, ONUELDVOVTIC YAURUXTNRIO TG OTWS 1 LOVOTOVY] OLA{ol
oty xotddhdn [54]. H xatavénon tou tpdmou ye tov omofo N xotddiupn ahhoudver
TNV AXOUCTIXT| TNG PWVAC XL O EVIOTUOUOS UETENOWWY YUPUXTNPLOTIXWY UTORO0Y Vol
TOEEYOLY TOAUTIUES TANROGORIES Yiar TN B8y Vwon), TNV alloAGYNoY NG CoBapOTNTAUS Xl
Vv Topaxoloinon tng Vepanelac 34, 54].

2.1.1 Xvprnrtopate Katddidgng xow  Enidpacy) toug otnv Optiia

To Awryvwotind xa Ltotiotixd Eyyepidio Yooy Atapoydv (DSM-5) tpocbiopilet
™V Puyoxivnuiny| SucAeltovpyla we Baocnd YapuxTNEOTIXG TG xatdiiuhng.  Auth 7
BUOAELTOUEY O GUY VS EXDNAOVETOL UECK) PELWUEVNG EVTAOTC OMALaG, BloaxOUavong, ToLx-
Mo meplEOpéVOL Xan umopel axdun va cuvdéetan e agwvia [54]. Emmhéov, n oyéon
HETAE) VELPOBLAPBBUC TV XOL PWYNTIXWY YALUXTNEIO TIXWY EVAL TOGO TOAUTAOXT) 6GO %ol
onuovtixr).  Ou odAoryéc ot puixy) TédoTn Umopoly Vo ETNEEGCOUY T BUVAULXY TNG PEV-
NTic 0800, TeploptlovTag €Tot TiC apUPmMTIXES XIVACELS Xl GUUBIAAOVTOC TEQULTERL OTIC
avouahies opthiag Tou TapatneovvTon oty xortdun [54].

Emunpbéoieta, ot avicoppoticg o1 oepotoviv, Tn viomouivn ot T Vopemveppiv dlatapdo-
couv 11 pUYULoN NG SLECTC XL TIC YVWO TIXES AELTOVPYIES, OL OTOLEC UE TN OELRd TOUG
enneedlouy TNV TEOcKdlo TNS PuVAC xou TN peuctéTnTa TN olthioc. H veupogieyuovr
xou 1 ducpliuion tou d&ova UTOYAUASUOU-UTOPUOTG-ETLVEPELOLLV (HPA) ennpedlouv 1o
AUTOVOUO VEURIXG GUCTNUA, OONYWOVIUS OF OAAXYEC OTNV TUOY TWV QPWVYNTIXWY YOEOMY
X0l OTOL AVATVEUC TG TEOTUTIAL  AUTEC OL QUGLOAOYIXES IAAOLWGELS GUYVE 081YOUY OE O
eninedo emtovioud, Peaditepo puiud outhiog xon avEnuéva opdiuata dedpwong Yetald
TV oTOUOY e xatdidn.  Wuyoxownvixol Tapdyovies, 0TS 1 XOWKVIXY andcuEGT)
XOU 1) MELWPEVT) XIVNTOTOINGT), ETULTEVOLY TEPUUTERPW AUTEC TIC ETORACELS, XMoTOVTS TNV
okl yLar Thovoto Ty T Brodet Ty yior Ty aviyveuon g xotddine [51, 77].

2.1.2 Axovotixd Xapaxtneiotixd touv Ennpedlovton and tnv Katddiupn

To cuuntodpata g xatddiuhng, propolv va petendolv CUCTNUATIXG UEGE UXOUGTIXOY
YUEUXTNELOTIXWY OTWS 1) METABANTOTATA TOU TOVOL, 0 pUUUOS outhlog, 1 BLdexela Tadong
xou Seixtec motdTNToC eV OTwe To jitter [52].

[a Tov mpoodloploud TV xatdhhnhwy Blodeixtey, eivar onpovtind va eletaoTel 1 O
adtxactio Tg opaiag. O eYXEQUAOS 0RYUVMVEL TROCWOLIXES TANPOPORIES, TaPdYEL VELPO-
HUIXEC 08N Yieg TOL EAEYYOUY TIC BRUCTNELOTNTES TWY HUMY XAl TV LoTHOY Tou oyetilovTo
ue TNV xlvnom eovnong. XN CUVEYELY, 1) P01 TOL A€pa Umd TOUG TVEVUOVES ElTe TPOXAAEL
0 BOVNOT TV PWYNTIXGY Y0pdOY (dTav 1 YAwTTida elvar XAetoTh) elte Tepvd opold uéoa
amO TN PWVNTIXY Y0pEdT (6Tav N YAOTTO elvor ocVOLXTY']). O oTouaToQapUYYIXOS UUC
oynuatiCel To %x0plo xavdhl PWVNoTG, To onoto LoodUVAUEl U €va @iATeo Tou umopel va

18



evioy0oeL 1) Vo eEacVEVIOEL TOV 1Y0 UIC GUYXEXQHIEVNC CLUYVOTNTAC.

2.2 Yvotruata Avdivong ‘Hyovu

To cuctApata avdhuong fyou eivor UTOAOYIOTIXG EpYakelor TOU EE8YOUY GTUAVTIXG TtRO-
TUTIAL OO MY NTIXA oot ouVOLALovTag encéepyacio oNpaTog xan Unyovixy| udinon. Ta
CUCTHUNTA OVEAUCTC 1Y OU YENOUWOTOOUY TEYVIXEC ECAYWYNS YUQUXTNOIO TIXWY YLl VOl
HETUTEEDOLY To OXATERYUCTA MY TIXE OHUAUTO GE AVOTOPUC TUCELC LPNAOTEPOL ETTEDOU,
ETUTEETOVTOG EQPUQUOYES OTWG 1 aviy VELUST| CUVILCUNUATWY, 1) VY VOPRLOT] OJANTH Yo 1)
to€véunon yeyovotwy [84, 75].

Boowd cuotatind tov cusTnudteny avdhuong fyou cuviidue teptiauBdvouy TNy andx-
TNON CAUATOC, TNV EEAYWYY| YOQUXTNEIO TIXWY XAl TNV EVOWUATWOT Uy ovix\S udinone.
H Suaduasta e€ayomynic yopoxTneto Tixwmy TepLAAUBAEVEL TV avBAUGT] TWV YPOVIXMY, Puo-
HoTiX@V X cepstral Topgwy yior vor GUARGBEL Lot OAOXATEWUEVT AVATIOEAC TAUOT) TOL 1) NTIX00
ofuatoc. Autd To eEAYOUEVL YURUXTNELOTIXG YENOYLOTOLOUVTAL OT GUVEYELX amd oh-
YopLiuoUS unyovixrc Udinong Yo va eVIOTcouY TEOTUTOL Xt VoL xdvouv Tpofiédelc 1
to€voproels Bdoel Tou NyNTol Tepteyopévou [84].

2.2.1 Hymtuxd Xapaxtneiotixd yie tnyv Katddidn

‘Onwe avopépinre Tapamdve, UTEOYOUY AEXETE dXOUCTIXA YOQUXTNELO TIXA TOU AELTOUR-
YoUv ¢ Blodeixteg xatddiuhng. AuTd Ta YapaXTNELO TIXE UTOEOVY Vol GUCYETIO TOVY GUECY
UE CUYXEXPUIEVA NYNTIXA YoEoXTNEWOTIXE. AUTO OMUAiVEL OTL YENOWOTOWVTIS M) TiXd
YAEOXTNELO TIXG, UTOPOUKE Vo XA HEQWMCOUNE il GopY| CUGYETION UE TNV XatddAum xou
€tol va Ty TeofhéPouue yenolonotdvTag cuo THUNTO avdhuong fyou [54, 5.

2.2.2 Enefepyacio 'Hyou
2.2.2.1 Bpayvnpédeourn Encepyacio "'Hyou

H Bpayurnpdieoun enclepyaota elvon o Teyvixr otny onola To Nyntixd orjua dlatpelton o€
Utxpd EmXOALTTOUEVYL 1 W) emixoAuTTOUEVe TAdiow (1) topddupa), Tou cuvitng Blopxolv
20-100 ythootd Tou deuteporéntou. O daywpeliouog ot tapdiupa elvar oNUAVTIXOS ETELDY
ToL MY NTHS oAUt BV Elval 0TUTIXG 6TO YpOVO, avTWETWS aUTH 1) TUNUaToTolnoT uTo¥ETEL
OTL TO U TUPAUEVEL GTAOO EVTOC xde Thauctou, Tou onuaivel OTL Ol GTATIOTIXES TOU
WBLOTNTES BV AAAGLOUY GNUUVTIXG XUTA T1) BLdEXEL QUTHS TNE CUVTOUNS TERLOBOU [85].

2.2.2.2 MeoonpéVeourn Enciepyacioc "'Hyou

Y11 yeconpdieoun enelepyacio, To NyNTd orjua apytxd Sonpeiton o€ YeYOADTEQY TUN-
HOLTOL, TTOL oVOPEQOVTAL ¢ HEcOTEOVECUN Tapddupa, Tor omolor cuVATWS xuUalvovTol OE
oudpxeta amd 1w 10 deutepdrenta. Kde ueconpdieouo turua utoBdiietou o Bpoyumpod-
Veoun enelepyaota yia T e€ayYT YapaxTEIo TIXGY. AuTd To peconpovecuo topddupa
yopoxtneilovial omd OUOLOYEVELL GTY) GUUTEQLPORE. TOUS, XhoTMVTIC XATIAANAO TOV
UTIOAOYIOUO CTATIOTIXMY YURUXTNELOTIXWY GE BAoT) TUUUTOS TEOS TUMAUAL.
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2.2.3 Hymtuxd Xapaxtneltotixd

‘Evo nyntind orjua ebvar €vag TOT0G OHUATOSC TOU UETAPEREL TANEOPORIEC EVTOS TOL EVPOUS
TWV NYNTXOY oLy voThTwy. H avarapdotaon fyou teptaufdver Tnv eCaywyn actxoy 16-
LOTATWV 1] YOEAXTNPIC TIXWY EVOS MY NTIXOU OHUATOC TOU AVTIXATOTTEILOUY TNV aX0Uo TiXY
Tou oUVieoT—10G0 67O TEBIO TOL YPOVOU GO XaL 6TO TEDLD TNG CLUYVOTNTAC—XAVDS XKoL
T GUUTIEQLPORE TOU UE TNV T8p0do Tou Yedvou. Auty| 1 dtadacta cuvAlwe cuvdudletan
UE TNV EMLAOYT| YUEAUXTNELOTIXWY, 1) oTtola TPOGOLOPIlEl Tar XUTUAANAOTERL Y OQUXTNELC TIXG!
Yoo TNV TeoBAETOEVT EQapuoyY Tou NyNTxol ofuatog. O xlptog oTody0g elvon vor e&-
oy oy yopaxTNELo Td amd Ny NTxd dedouéva (OTwe 1 opthior) TOL UTOEOVY Vo TAUREYOUY
TONOTUES TANPOQPORIES YL TNV EXTIAUBEUOT) HOVTEALV.

To nyntixd onfua donpeitar o Bpayumpdieoua ToEdIUEAL, XKoL CUYXEXPUIEVA Y oOUXTTELO-
Tixd umohoyilovtan yia xdde mopddupo.  Amd autd, utoloyiloviow GTUTIOTIXEC TUEC
oe peoonpddeopa mapdiupa Yo vao cuvoloToly oL WBLOTNTES Tou orjuatog. Trdpyouv
TONVSELIUES HETEIXES TTOU PTOPOLY VOl YENOWOTONU00V (¢ YAUpaXTNEO TN GTNY avaAuscT)
A)YOU, XU AUTH 1) EVOTNTA TEQLYPAPEL GUVTOUN OPLOUEVAL AT T YUQUXTNELO TIXE TTOU Y P1ot-
HOTOLOVUVTAL GTO OYEBUOUSO CUC TNUATWY.

2.2.3.1 Xapaxtneiotixd pyAudioAnalysis

To pyAudioAnalysis arotehet pio BiAodfxn Python oyedaouévn yia epyaotec avdhuong
YOV, OTWC ECAYWYT YULUXTNELOTIXGY, TUNUATOTONCY), TAEVOUNOT Xal OTTXOToNoT).
Thomotel 600 Bpayunpdieoues 660 xou yecompdieoues yedodohoyieg enelepyaoiog. H
BuBhoxn utootneilel Bidpopeg epyaoieg avdiuong fyou, cuumepthauBavouévng g e&-
Ay WYNG YALPUXTNELO TIXGY amtd TO TEBLO TOU YPOVOU Xal TNG CLUYVOTNTAS, TNG TaEVOUNOTG,
NG TOAVOEOUNONS Xt TNG TUnuatonoinong [83].

Efvou enlong onuoavtind va onueiwidel dti undpyel tAndopa BBAodnxmy eoymy g yopox-
TNELOTIXWY 1you dtadéolues, xodeuio ue Tor Bixd Tne TheovexThApoTta xou teptoplopols. To
pyAudioAnalysis, To onolo ypnowonoleiton ot ouyxexpyévn cpyacio, TEOOPEREL Loop-
poTia UETAEY €uxOAlag YpoNS %ot EVOC LoYUEOU GUVOROU YORUXTNPLC TIXWY OYEDUCUEVHY
YLt avdAuon opAlag xon HoUohE, xAIoTOVTIS TO XUATUAANAO Yo Epyacieg extiunong
xatdiang. Qotoco, xde BBAodRxn Topouctdlel TEOXANOES (¢ TEOS TNV UTOAOYLO-
T ATOBOTIXOTNTA, TNV XALUOXWOWOTNTO X0k TN CUUBATOTNTA UE BEBOUEVI TEOYHOTIXOU
%60Uou Tou TEpLEYoLY YopLS0.

2.2.3.2 Ilpoexnadevpéva Embeddings "Hyou

H Swdwoasta avdluong fyou, omwe avagpéotnxe meonyouuévne, Tepthad3dver évor eupl
(PO EPYAUTLOY OTIWE OVAY VOPLOT) OMALIS, TAUTOTOINGT| OULATITY| XAl 0VOLY VQELOT) GUVOLCUT-
udtwv. Kevtpuic onpactag yia dheg autég Tig epyaoieg ebvon 1 avdyxn yuo anoteheo-
potixég avamopao téoelg Yyou. Iapadooluxd, yenowonotovtar handerafted yopoxtnelo-
T )Y OU, OTWE AUTE TOU TEELYEAPNXAY OTNY TEOTYOUUEVY] EVOTNTA.

Av xou T handcerafted yapaxtnplotind €youv emtiyet adloonueiwto anoteAéopata, GUV-
00e0OVTOL AT ONUAVTIXOUE TEPLOPIOUOUS. Apyixd, amoutoly eXTETONEVY YElpoxivTY Ep-
yaoio xon Aemtouepr) pOduLon Yo TpocUpUOY T O BlapopeTIXéS pyaoieg Hyou. Emmicoy,
TOL YOPOUXTNELO TIXE AUTE ATOTUTIOVOLY XUPIKG AETTOPERELES YOUUNAOY ETUTEBOU XL GUY VA
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OTOTUYYAVOUV VoL AVATORC THOOUY TANROQOoRIEC LPNAGTECOU EMITESOL, OTKWS cuVILCVT-
uota 1) To tept3dAiov. Emimiéov, Ta handcerafted yopoxtneio tixd urnopel vo etvon evaicdnto
o€ H6puBo xan cUVITXES MYOYEAPNONS, YEYOVOC TIOU UEWWVEL TNV aVUIEXTIXOTNTE TOUC.

Lot TNV AV THIETOTLOT AUTWY TV AOLVAULDY, OL EQEUVNTES YPTOYLOTIOLOUY OAOEVIL X0l TIEQLO-
c6tepo mpoexnandeupéva embeddings fyou. Autd ta embeddings eivor SioavuouaTinég
AVOTORUC TUCELS IOV ToEdryovTon amd Bordid veupmvixd dixTud eXTOUBEVUEVY OE PEYBAES
xou TowiAeC GUANOYEC BEDOUEVWY 1) OU, CUY VA UE ETOTTEUOUEVES 1| OUTOETOTTEVOUEVES
ued6douc pdinone. Xe avtideon pe to handerafted yopoxtneiotind, ta embeddings pa-
Yofvovton auTOUOTA, EMITEETOVTAS OTO UOVTELOD Vo ovaxoAUeL BEATIOTEG avVamOpUC TAGELS
v T oOMNGN GOVIETWV 0XOVGTIXMY Xat ONUACLONOYIXGY PoTBwy [49].

wav2vec 2.0: To npoexnawdeupéva embeddings fyou €youv ueydhn ahhoy) otny eneé-
gpyaoio axouoTxwy onudtey. Avdueco ota ddgopo embeddings, To wav2vec 2.0 e-
Ywellet we éva TpwTonoptaxd Loviého tou yadaivel avamapaotdoelc opthiog ancudeiag and
OXAUTERY OO TA XUUATOUORPIXG CHUATO UECE) AUTO-EMOTTEVOUEVNC pdinong. Xe avtideon ue
Ta mopadootaxd handerafted yopuxtneiotind B Ta toahondtepa embeddings vevpwvixwy
OTOwY, To wav2vec 2.0 cuAUBAVEL ATOTEAEGUATIXG TOGO YoUNAOD ETUTEDOU oXOUG TIX
not{Ba 660 xan LYNAGTEPOU ETUTEDOU YAWOGIXEC BOPES, ODNYWVTAS O XUAVTERH ATOTENED-
ot o€ mowtheg epyaoiec mou oyetilovta pe v opthia [33].

H Baow 0éa mlow amd to wav2vec 2.0 efvan 1) xwdonolnoT axatépyacTou 1you ouilag
HECW EVOC TOAVETUTEDOU CUVEAXTIXOU VEUPWVIXOU OixTOoU, Tou Tapdyet havidvouceg
avomopao Tdoele optatag.  TuAuato autdy TV AaviovovTiny YopoxTEIo TIXOY anoxe)T-
TovTal, Topduoo ue to masked language modeling otny enclepyacta Quotxic YAGooUC.
O amoxpuypévec havidvouce avamopaotdoelc tepvoly and éva dixtuo Transformer,
10 omoio xataoxeudlel cuugealoueva embeddings, culhoufdvovtog e€apThoE o OAN
™ yeovixt| oxohovdio. To poviého exmoundedeTon pe avTLIETIN: UTOAEL, OTOU TEETEL
VoL oVaYVORIGEL TN 0wo TH hatvldvouso avamopdo TaoT HETOEY TOAMGOY TORAUTAAVITIXGY,
EVIoYVOVTAC €TOL TNV EXUAUNGT) OUGLAG TIXWY X0l JLUXPLTIXY YoEAXTNELOTIXGOV [33].

2.3 Xvothpata Avdivong Keipévou

Hapduola ye tor cUCTARATA AVIAUOTG Ty 0U, UTHEYOUY BUO0 XVPLEC EPYUCIEC GTA GUOTY-
potar avdiuone xewévou. H mpdtn elvon n mpoenelepyacio xewwévou xon 1 dnutovpyio
embeddings xewEvou.

2.3.1 Ilpoenegepyacio Keiuévou

H mpoenelepyaocio xeuévou amotehel éva xployo Briua, oto omolo yetatpéneton To axatép-
YUOTO, UN OOUNUEVO XelUevo o€ Wiar BOUNUEVY HOP@T XATAAANAT Yiot avdAUGT XL LOV-
telomolnor. Auth n daduacta tepthouBdver dtdpopeg TeVIXES Yiot TNV agaipeot Yopliou
X0l AOLVETELWDY, XIG TOVTOG TO OEDOUEVOL TILO OUOLOUORPAL X oL BLOLYELOIGLIAL i TOL LOVTEANL
eneepyooiog guoxnc YAwooac (NLP).

2.3.2 Embeddings Kewpévou

Metd v npoeneepyaotia, To enouevo Brua elvan 1 e€aywyr) embeddings, mou unopel va
yivel eite yéow embeddings Aéewv eite péow embeddings npotdoewy.
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+ Embeddings A€€ewv: Teyvuéc omwe oo Word2Vec xan GloVe dnulovpyoly em-
beddings oe eninedo Aé&ng pe Bdon to cuugealoueva. To Word2Vec yonotuomnotel
oetypotorndio mapattpwy xetuévou yio T dnuiovpyia embeddings yio ueyovouéveg
AeCewg, eved To GloVe yenowonotel noyxdouia ToporyovTonolnon Unteou.

« Embeddings Ilpotdoewyv: Movicha onwe to BERT, SBERT xou to povtéha
text-embedding tn¢ OpenAl napdyouv embeddings yio oAdxhnpeg mpotdoeig 1 Ey-
YEUPOL, ATOTUTMVOVTAS ATOTEAECUATING To CUUPEAULOUEVAL.

2.3.3 GloVe Embeddings

2.3.3.1 Ewaywyn

To GloVe (Global Vectors for Word Representation) eivou pia eupéme yenotdonotol-
uevn pédodog expdinong embeddings Aé€ewv (TUXVOV BLOVUGUATIXGY OVOTOPUO TEOEWY
MEEEwV) aEIOTOLOVTOS TO TOYXOOUL O TUTIO T OLV-EUPAVIOTG AEEEWY amO EVa TOUL
xewévou. Xe avtideorn ue modaoTepec uedodoug mou ecTidlouy EiTE OTNY ToyXOCUL
Toparyovtonoinan untewou (6mwe to LSA) elte oe tomxée mpoPiédeic mopadlowy oup-
ppalopévmy (6nwe to word2vec), to GloVe cuvdBudlel amoTEAEOUATING TOL TAEOVEXTH-
Moo o Twv 000 Tpooeyyloewy wote va Topdyet embeddings mou anotunvouy 1600 TA
TOYXOOULO CTATIO TG OGO KO T1) YROUUIXY| UTOBOUT TNG OTUACTAS TwV AEEEWY.

2.3.3.2 OcwpnTtxd YnoBadpo

H Baow 16éa tiow and to GloVe etvan 6t1 1 onuacta plag AéEng umopel vo amotunwiel e€-
etdlovTog TN CLYVOTNTO PE TNV OTolal GLV-EUPavICEToL e GAAEC AEEELC OE EVa UEYTAO GO
xewévou. Muyxexpéva, to GloVe povtelomotel tor mnhixo miovotrtewy cuv-gugdviorg.
‘Eotw 600 Aéec-otoyol, @ xan j, xou dioe Aé&n-ouugpalouevo k. To mniixo twv miov-
otitwy 6Tt T0 k epgaviletor oto ouppealduevo tou i évavtt Tou j (Pi/Pji) unopel va
avadei&el TTuyéC TNg onuaciug Tou BLapoEOTOLY TO i ATd TO j.

[Ma mopdderypa, o mnhixo tng mbavotntog 0Tt 1 AEEN <0TeRed> eugavileton Ye T AEEN
<Tdyog> EVavTl TNG <aTUOC> elvon TOAD PeYahdTERPO amd TO €va, UTOBELXVIOVTIS LoYLURY
ouUoYETION PE ToV <Tdyos. Avtiteta, To TNhixo yio T AN <aépto> elvan TOAD uxpdTECO
NG LOVIDOC, UTOOEXVOOVTAS LOYURT) CUCYETION UE TOV <aTud>. IInAlxa xovtd oto éva
(m.y. v To <vepd>) Belyvouv MéEelc e&ioou oyetinéc xou Ye Tig 8o.

2.3.3.3 Awtinwor tou Moviélou

‘Eotw X n urftea cuv-eugdviong Aéewy, émou X;; eivar o aprdude gopmv mou 1 hEEn j
epgaviletar oto oupgealouevo tng Aéing i. H miavétnta 611 n Aédn k eugpavileton oto
ouuppalopevo g AEng @ elvan:

X;
Py, = X,
6ToL:
Xi =) X
k



elvan 10 GUVOAXG TAHDOC Elpavicewy cLUPEAlOUEVKDY Yia T AEEN 1.

To GloVe emdicdxet vo Bpet dtaviouota AEEEmY W; xa SLoyOouaTa AEEEWV-GUUPEACOUEVHY
W, (OOTE TO ECMOTEPXO TOUG YIVOUEVO, GUV TOUG OPOUG UETATOTIONG, Vo TEOoEYYIlel Tov
Aoy dprdpo Tou TARdoug cuV-euPdvIoNG:

Wz‘TWk +bi + by ~ log(Xix)

O mapamndve tOTog arooxonel 6To vo umopel vou yiver avtodhoryr) pOAwY AEENG XL GUUPE-
Couévou, xou OTNY XOOXOTOINCT TWY YRUUUIXMDY GYECEWY TOU CUVAVTMVTOL O oVaAOYIES
NEEEWV.

2.3.3.4 Awdwacio Exnaidevong

To povtého GloVe exmoudeleton Ye ehayioTonolnom tng cuvdeTnong

1% 2
J =3 F(Xi) (W] + b + b; — log(Xi) )

ij=1

¢ TEOS Oha ToL BlotvOoUTA AEEEWY ot GUUPEACOUEVLY Yol TOUG OPOUC UETATOTLONG,
YENOWOTOLOVTAC 6TOYaoTIXY Xardodr) xAlon A topduoleg pedodoug Bedtiotomoinone. H
exntoddeuoT) enavoropPBdveTon TEVL OTIC U1 UNOEVIXES TUES TNG UATEAS CUV-EUPAVICEDY,
EVNUEQOVOVTAS Tol BLVUOUATO X0 TOUS OPOUC (OTE Vol TPoCuplolovTan xahOTEQO OTOUG
TORUATNEOVUEVOUS AOYURIUOUE TV GUV-EUPAVICEDY.

Metd tny exmaideuot), To tehixd embedding xdde Aé&nc punopel vo Angiel we To ddpolouo
(1 0 péoog 6poc) TV Slavuoudtwy hEENC xon cUUpEaloUEVoL.

2.3.3.5 Id6tntec xou ITAeovextrpota

e I'pappixr Yrodopn: Ta GloVe embeddings anotunmdvouy ypouuixéc oyéoelg,
70 omolo T oMo TE XATIAANAL Yo AVAAOYIXES ERYAOLES (TE.X. <BoaotMdgs — <dv-
Tpac> + <yuvaixas & <Bocilooos).

+ Anodotixn Xpron LtaticTixmv: Eotidloviac 6Tic un Undevinéc cuv-eupavicels
xou otadpiCovtde tec xatdhinha, to GloVe allomolel amodotixd To oTaTIoTIXG OE-
OOUEVOL UEYIAWDY COUATOV KEWEVOU.

« Khipdxwon: To povtého unopel vor exmoudeuTel o€ TOAD UEYAAA COUATA XEWEVOL,
nopdyovtag embeddings uhnifc ToldTNTAC Yior exTETAUEVA AEEIAOYIAL

Ta GloVe embeddings amoteholv évav oyupd xou amodotixd Teémo exudinone ava-
ToEUC TACEWY AEEewY. Kwdixomololy 1660 oNUACLOAOYIXEC OGO XAl GUVTUXTIXEC XOVOV-
woéTNTee. Me tny dueon povielonolnon Twv TayxOoUwY CTATIO TIXOY CUY-EUPAVIONG,
T0 GloVe mopdyet Slavuouatixols Ymeoug UE OUCLIo TiXT) UTodoUY, EETEPVOVTAS TOAAES
TEONYOUUEVES UEVOBOUC O epyaoieg OTwe 1 opoldTnTa Xou oL avahoyleg Aé€ewv. Tao em-
beddings mou mpoxintouv amotelolv mALov Pucixd cpyahreio oE GUYYPEOVES EQPUPUOYES
NLP [48].
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2.3.4 SBERT Embeddings
2.3.4.1 Ewoaywy? oto BERT embeddings

To BERT (Bidirectional Encoder Representations from Transformers) etvou éva npewto-
Toploxd povtélo mou etcryaye 1 Google to 2018 xou dAAa&e T 6edouéva oty enelepyacio
puownc YAwooug, tpoopépovtag Bathd, embeddings Aééewv Baciopéva ota cupealo-
peva. e avtideorn ue mponyolueva povtéia mou SwBdlouy To xeluevo eite and oo TERd
mpog T 6edld elte amd Sedld mpog T aplotepd, o BERT Siaf3dlel to xelpevo augidpoua,
AopfBdvovtag uodn tor cuugealoueva TELY xou UETE TN AEEN TawToyeova. AuTH 1 oppl-
opoun mpoceyylon emteenel 6to BERT vo anotundver mo Aentég onuaoleg xou oy€oelg
ot yhdooa. To BERT yenowonotel apyitextovixny yetooynuotiot (transformer) mou
£QUEUOLEL UMY OVIOUOUS AUTOTROCOY TG (self-attention) yio vo otaduilet T onuacta xdie
AEENC o€ Wi TpdTooT ot oyéon e Tic unohoines. Ilopdyel avanapaotdoec AéEewy mou
aAhdlouv avdroya pe o cupgpealoueva, ot aviiieorn ue otatixéc embeddings 6mwe To
Word2Vec 1 to GloVe. To BERT npoexnoudedeton o€ UeYdha OOUATO XEWEVOL UE UN|
emPBAenopevee epyaoieg omwe N udoxa Mé€ewv (masked language modeling) o 1 npdB-
Aedm enduevne mpdtaone (next sentence prediction), xou ot cuvéyeio eZedixeleton oE
ouyxexpyéveg epyaoicg NLP dmwe 1 andvinon o epwtAoele, 1 avdAucT cuvotcUlotog
X0 1) AVOLY VOPLOT) OVTOTHTOV.

Qotéc0, evey To BERT Swmpénel oty xatavonorn cupgealouévewy ot eninedo hEEng, 6ev
€yeL oyeodtaotel apynd ylo va mopdyel embeddings otadepol peyédoug yio mpotdoelg
Tou unopolV va cuyxpwWoLy aneudelug. To epyooieg dmwe N onuacloloyxr| opoLdTNTY
1 1 opadomoinoy, amonteiton o povadr SlavuouoTixy avamapdoTaoT avd teodTact. To
TEOPBANUA TEOXUTTEL EMEWY Yiot Vo cuyxprdoly 600 mpotdoelc pe to BERT, mpénet v
eloay Vol pall we (ebyog, xdtt mou odnyel o LPNAG LTOAOYIETING KHGTOG.

2.3.4.2 Ewaywyr ota SBERT embeddings

To Sentence-BERT (SBERT) avtipetwnilet to npéBinua twv BERT embeddings, tpononotdv-
o Ty apyrtextovxt; tou BERT dote va Snuiovpyel pua Stmh (¥ 8iduun) dopt| dixtiovu.
'Etol xdle mpdtaom xwodixonoteiton aveldptnta oe €va didvuoua o toadepol peyédoug. Auto
omnuaivel 6Tt xdie TedTOOT TEPVE EEYWELOTA amd TO BIXTUO, TUEAYOVTIS EVOL BLEAVUCHO G To-
Yepol ufxoug Tou avamaplotd To Vonua tng tedtacns. Autéc ol embeddings mpotdoswy
UTOPOLY GTY) GUVEYELX VoL GLUYXELIOVY ATOBOTIXE Y ENOULOTOLOVTAS UTAS UETEA OUOLOTNTIC,
OTWE 1) OUOLOTNTOL CUVIULTOVOUL.

H opyitextoviny| golveton 6Ny mopaxdte emova:
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Figure 1: To BERT povtého, aptotepd, enelepydlet xou Tic 500 €16680UC ToaUTOY POV
Avtideta, To goviédo dimhol-xwdixonoint (SBERT), 8e&id, yepiletar tic et0660ug
aveZdpTnTa xan mopdAhnha, étol xdve é€oboc mapdyetar avedptnto [88].

2.4 Movtéha xou '‘Evvoieg Mrnyavixrg Mddnong

2.4.1 Movtéra Mnyavixrc Mddnong

2.4.1.1 Support Vector Machines (SVM)

To SVM ebvon emPBAemoueva Lovtéra Tagvounomng mou o Toyelouy 6To va Bpouv To BEATIOT0
unepeninedo (hyperplane), to omolo Va Soywpeiler Tic xhdoelc €Tl HGOTE Vo €Youy TO
uéytoto mepridplo (margin). Eivow wudtepo anoteheopatind o mpolhfuoto ue udhnin
OLdoToom xou Uopoly vo yenotponotoy tuphves (kernels) yia vor avTHIETWTIGOUY W Ypoy-

ud TEOBATUoTaL.
xz A o xz F O
o O

— .

DDEI

O

-
>
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Figure 2: Anodextd hyperplanes Figure 3: Bé\tioto hyperplane

2.4.1.2 Gradient Boosting

To gradient boosting etvou pior Teyvixr unyavixhc pdinong mou xataoxeudlet Eva Loy ued
TEOY VWO TG LOVTERO GUYVOLALOVTAS TOAAATAL ABUVOUN LOVTERD, GUVATKC BEVTEU ATOPAOEWY,
O €VOL LOYUPOTERO GUVOAO (ensemble). Q¢ adUvapa povtéra opilovton cuVHTWS HoVTENA
ToU omodiBouv ehapens xahUtepa amd Ty Tuyoia tpdBiedn [65]. Auth n uédodoc eotidle
0T OOPVWOT TWV GPAAUGTWY TWV TEOTYOUUEVWY HOVTEA®Y UECW NG BeATioToTolmoNg
LG OUYXEXQHIEVNG CUVERTNONC ATOAELNS Yenoulonotdvag gradient descent [25, 60].
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Kopia otovyeio Tou gradient boosting nepthoudvouv:

o ABUvapor Madntéc (Weak Learners): To 0évtpo amogdoewy yenoylomotolvto
OLUY VA AOY® TNG AMAOTNTAC TOUG XOU TNG IXAVOTNTAC TOUC VoL LOVTEAOTOLOVY OmOTE-
AEoPOTIXG U Ypopuxés oyéoelc [65].

o Ilpootetind Movtéro (Additive Model): Ot mpoPAédeic and dGhoug Toug advvopous
podntéc adpotlovton yio var oy nuaticouy 1o TeAixd anotéheoud, Ye xdie véo podnty
var EXTUOEVETOL TIAVG) OTAL UTOAEIUUATA TWY TEONYOUUEVLY Brudtony [60].

o Yuvdptnon ATOAELg (Loss Function): H emhoy? NG CUVAPTNONG ATWALLG E€UPTA-
Tow amd TOV TUTO TOU TEOPBAAUATOC Xal TEETEL Var efvan SLapoplotun yia vor SleuxoADVel
™ Behnotonoinon [22].

2.4.1.3 XGBoost

To XGBoost etvou pioe vhomoinom tou adyopiduou gradient boosting mou yenowonotel 6év-
T amogacne ws weak learners. To XGBoost €yetl yivel yvwoto yior Ty amodotixdtntd
Tou TNV eNELERYATIO UEYIADY GUVORWY BEBOPEVWLY. Evowuatovel apxetd Pootxnd yopox-
TNELO TG oL To Bloxpivouy amd dhhoug aryopiduouc gradient boosting, 6mwe 1 ixavoTNTY
Tou Vo yelplleTon amodoTixd cpond BEBOPEVA YENOWOTOLOVTAS Tov akyodprduo weighted
quantile sketch.Xuvolixd, o cuvBuaCUOE Tory OTNTOC, XAUAXWONE X ELOTLO TN ATOB0CNS
eyel xataothoel To XGBoost dnuogily emAoyn o Slaywviololg unyovixis udinong xau
EQUQUOYES GTOV TRUYUAUTING XOCUO.

2.4.2 Cross-Validation

To cross-validation amotekel yior Yeyehddn Tey Vs oTn unyovixy| pddnon yioe Ty of-
LOAOYNON NG ATOBOONG TWV HOVIEAWY XAl TNV OTOQUYT] UTEQEXTIOLOEVOTG (overfitting).
Avti va Booiletan o évay LOVo Slaywploud eXTaldeuonc-00Xiung (T, 70% exnofdevo
xou 30% Boxydy)), to cross-validation Siuyweller ta dedoyéva étol HaTe Vo eLac@alioe
altomiotn a&tohdynon. H mo dwadedouévn uédodog etvar 1 k-fold cross-validation, 6mou
Ta dedopéva exnaldevong yweiCovton oe k wodpriua péen. Xe xdie emavdindn, éva pépog
YENOWOTOLETOL ¢ GUVOAO expwonNg, EVe T udlowma k-1 pépn yenoylomoolvta yio
exnaidevon.  Auty| 1 Swodixacto emavoloufdveton k qopéc, pe xdde yépog var €xel Aet-
TOUPYNoEL WG oUYOAO emixlpwong uio gopd. H anddoon tou poviéhou xotaypdgeton e
x&e emavdindm xon o teEAxdC Belxtng anddoong elvor 0 PECOC HPOC OAWY TWY TTUYMY.
ITapdro mou n k-fold cross-validation mpoc@épet mo aliémioTn extiunomn tne avoTnTag
YEVIXELONC EVOC LOVTEAOL, UTOPEL VoL £V UTOAOYIO TS amonTNTLXY| AOY W TNG EMAVAUANT-
The poone g [78, 4].

2.4.2.1 Leave-One-Out Cross-Validation

H Leave-One-Out Cross-Validation (LOOCV) etvou pior eZedixeupévn teyviny| 6mou xdde
MELOVOUEVO DelyUo TOU GUVOLOL BEBOPEVWY YeNotuoTolelTon Ui Qopd uévo Tou kg GOVOAOD
EMXUPWONG, VK Ta UTohowta Bedopéva oynuatiCouy To cUvolo exmaidevonc. Auth 1)
Sroduxaoion emovahofBdveton n gopés (yior 1 GUVOALXS Belyporta), Swoporilovtog 6T xdie
Oelypa yenoonoteiton oxpBoe pla @opd yio emxpwon [62].

26



2.4.3 POIuiorn Yreprnopopétpwy

H obduion urepnopouétomy nepthadBavel Tny emAOYY TwV BEATIOTWV TWOV Yo TIC UTER-
TOPAUUETEOVS EVOG OVTELOU Unyovixis udinong. Auts n dladixaota tepthauBdver ouvidwg
Tov xadoploud evog elpoug MUAVGY TYWOY Yol xGUE UTEPTUEHUETEO, TNV EXTUUBEVOT) TOU
HOVTEAOU UE BLUPORETIXOUE GLUVBLACUOUS ol TNV AELOAGYNOT TNG Anddoomg ot €va 6UVoro
emxdpwong. O otdyog elvon va Peedel wia ioopporion mou amogedyel TNy uToEXTAdELUCT
xou TNy unepexnofdevon. H pbduion twv uneprnopouétony unopel va yivel handcrafted,
Baolouevn otn dbodnon xa TNy TopatheNoT), 1 AUTOUNTA UE TN YPNOTN CUC TNUNTIXGY
pedodmv avalhtnong. O xahITERES OTEATNYIXES Yiot TN PUUULOY) UTERTORAUETEMY Elval:

To gridsearch efvar n uédodog mou emAEyInxe yio T0 TEWUUATING UELOC AUTAS TNG Ep-
yaoioc. To gridsearch etvon yior teyviny| pOduLone UTEPTUPUUETEWY TIOL EXTEAEL GUGTY-
potixd eCovTAnTx| aval|TnoT o€ €va TEoXaopLoNEVO TAEY O UTEQTIORUUETEWY. M€ AUTO
T0 TAXOLO, TO TAEYUA AV TITPOCKTEVEL OAOUC TOUS DUVATOUE GUVOUAGHOUS UTERTUOUUETOMY
xou TV avtioToywy Tov touc. To grid search afloloyel xdde cuvduooud QUTGY TWV
UTIEPTUPUUETEPWY, TIOL avTioTolyel g €va "onuelo” Tou TAEYHATOE, Ylo Vo EVTOTIGEL TO
oUVOAO TOL TPOGPEREL TN BEATIOTN AmdBOGCT, TOU HOVTEAOU, GUVHDWS UETEWVTAS T1 Yeron
SLoo TowpoVUEVNG emxbpwang [70].

2.4.4 TYmrodewypatorndio xow Ynepderyuatorndio

To aVloOXATAVEUNUEVI GUVOAX DEDOUEVKY UTOTENOUY EVAL BLOYPOVIXO TROBANUAL OTT) Uy vViXT)
udinoT, 6TOU 1 XATAVOUT] TV XAJCEWY Elvol €vTova AolH|, GLYVE 0BNYWVTIC OE HOVTEAX
UE yaunhn anddoon otig yetohngiés xhdoewe [63]. T v avtyetdmion autod, n tuyoia
unepdetyatoAndio xon uToderypatohnla etvon 8U0 BacIXEC TEYVIXES YIoL TNV ETAVITOOCA-
HOYT| TNG XAUTAVOUNC TWV XAACEWY TELY amd TNV exmaideucT) TwvV Uoviéhwy. Autéc ol
p€Yodol GToYEVOLY VoL UELWCOLY TNV PEPOANPid TOU ELOGYOUY TA AVICOXATAVEUNUEVAL OE-
douéval, dlacpaiiCovtag 6Tl Tor LOVTERX UTOEOLY Vo UGUOUY AMOTEAEOUATIXG OO OAES TIC
xhdoewe [10].

2.4.4.1 Tuyoia YroderypatoAndio

H tuyaio uroderypatoindla eyel wg 6téy0 TN peiwon Tou apriuol Twv BEBOUEVKDV TNG
TAelodNEAC xhdomne Ue Tuyaikor apaipeom BelypdTwy U€ypl vo emiteuydel 1) emduunts| oop-
potio xhdoewyv [63]. O Bodude vroderypotohndiog umopel vo putotel yLor cuyXeEXELUEVES
avoroyiee xhdoewy. Ta mopdderyua, wor avaroyio 1:1 Swacgoiler ot 1 mhetonpue
xhdom €yel Tov Blo apriud TEPITTOOEWY Ue TN Uetohngixn, eved wa avoroyio 0,5 opilet
v TAetodn@ix xhdom oo wod uéyedoc g uetodmeuic [63].

H vnoderypotohndio yewdver tnv yepohnla mpog tnv mhetohnginy| xAdon), emTeénovtog oTo
Hovtélo vo eoTLdlel o amoteleopatixd ot petodnexn xhdomn [63]. Mewdhvovtog To cuvo-
A6 uéyetoc Tou GUVOROUL BEBOPEVWLY, 1) UTOBELYaToANPia uTopel Vo emitory OVEL oAV TIXd
TNV EXTADEVOT) X0 VO UELWOEL TIC ATUUTHOELS OE UTOAOYLO TIX0UE TTOROUC, LOLUTERX YOHOHUN
Yot TOA) Peydhar GUVORoL BESOUEVLV 1 TEPLOPLOUEVY] UTOAOYIOTIXH txavdTnTa [23].
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2.4.4.2 Tuyaio YTrepdetypatoAndio

H tuyaio unepderypoatohnla tepthoufBdvel Ty adEnom Tou apriuol TwV TEPITTOOE®Y TNS
HELOPNPIXAC XABONG PE AVTLYQOPT UTORY OVTWY TURUOELYUATOVY PEYeL Vo emtteuy Vel 1 emi-
Yuunth wopporio xAdoewy. ‘Onwe xow otny uroderyuatorndla, o Bodude unepderyuator-
nlag uropel vor puioTEL Yo cuYXEXPYEVES avahoyieg XhdoEWY [63]. Xe oavtideon ue
mponyuéveg uevddoug 6mwe 1o SMOTE, n tuyaio unepderypotohndio dev dnutoupyel véa
ouvleTnd Topadelypata oAhd Bacileton anoxielsixd oe avtrypapr [10].

2.4.4.3 TYrnepoderypatorndioa SMOTE

To SMOTE (Synthetic Minority Oversampling Technique) eivou pior eupéwg ypnoonoto-
uevn pédodoc umepdELYUaTOANDIOC Yol TNV OVTYETOTION AVIGOXATAVEUNUEVLY CUVOAGDY
oedouévewy [19]. To SMOTE hertoupyel ouviétovtag véa mopadelyyata Yetohngixnc
XNAONE PACIGUEVOL GTOV YMEO YULUXTNELO TIXMY TWV LTIEYOVIWY dedouévmy. O alyoptl-
Hog emAéyet Tuyala evar Belypa petognpnric xAdong xa tpoadiopilel Toug k mAnoléotepoug
yeitovée e (ouvidoc k = 5). O mparypotinde oprdude YELTOVLY Tou XENOYLOTOL00VTAL
Yoo T Snpovpyla cUVIETIXGOY BELYHdTWwY €E0pTETL A TO AMAUTOUUEVO TOCOCTO UT-
epderypotondiog, yioo mopddelypo, Yl Sithactacpd e petogneic xidone (100% un-
spﬁswpato)\m])ia), Yenowomote{ton €vog yeltovog avd tepintwon, eve umidtepa T0G00Td
amonTOUV TEPLOGOTEPOUS YEITOVES, UEPWES POPEC UE BerypaTorndla e ovTixaTdo TaoT edv
o amartoluevog apriudg unepfBaivel to k [64]. To enduevo Brua ebvan 1 dnovpylo evog
ouvieTiXoU TaEAdELYUATOC UE TaREUBONT LETAL) TNG EMASYPEVNE TERIMTWONG Xk EVOC Ao
Toug YElTOVEC TNE, TOTOVETMVTAS TO VEO DELYHO XAUTE UAXOS TNG YRUUUY|S TTOU TOUG GUVDEEL
OTOV YWEO YopaxTnetoTixdy [64]. Auth n napepfolt| tpaypotonoteiton utohoyiloviag )
OLopoEd HETAEY TWV BLUVUCUGTWY YOQUXTNRIC TIXOY TNG EMAEYMEVNC TERITTWONS XAl TOU
yettovd tng, ToAamiaotdlovtag auTr| Tn Slopopd pe Evary Tuyalo apiud petald 0 xon 1 xon
TEOCVETOVTUC TO AMOTEAECUA OTO BLdvuoUa TNG apyixic Tepintwong. Auty 1 dladixacia
emovahofBdveton u€ypet vo emteuydel n emuunts twooppotio xhdoewv [11].

2.5 Xvuvontxy Emioxdénnon Syetinng Bl oypagpiog

H autépatn avayvopion xatdding €yet toooerxioel EVvTovo evolapépoy, xamg 1) ouLila
amoTehel Evay un ETEUBATING, OLXOVOUIXO Xl ATOUAUXEUOUEVO BLOBEX TN Yo TNV aviyveuoT
e otapayfic. H €peuva €yel elehylel and mapadootlaxéc yedddoug ue handcrafted
YUEUXTNELO TUXE X0 XAAGIXOUE A YOopilouE unyavixic udinong (6mwe SVM, GMM, HMM)
oe Pohd veupwvixd dixtua Tou PoalvouY QUTOUATO YUPUXTNEIC XY ATd TO WUO CHUA 1)

T0 QoouaToYpdpnue [55].

2.5.1 Handcrafted Xopaxtneiotixd xou ITapgadoaoioxry Mrnyavixy) Mddnon

L0 TR TOL O TABLAL, 1) AVIAUGT) ETXEVTOWUNAE OE 0XOUC TIXEL Yo TNELG TIXG (TT.). TOVIXOTY-
ToL, EVERYELY, QUOUATIXEC IIOTNTES) Xou yenotponotinxay olyderduot 6mwe SVM, GMM
xou dévtpa andgaonc. Ta anotehéopota oe Yvwo té olvola dedouévemy (t.y. DAIC-WOZ,
AVEC, Mundt-35) Sefyvouv Fl-score éo¢ 0.63 v SVM xon 0.81 yio Sévtpor andpaong
oe tadvounon xatddine [55].
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2.5.2 Boavid Mdinon

H yperon Boadoyv dixtomv (LSTM, CNN, GAN, Transformers) €yet Behticddoet onuavtixd
Vv anodoon, ue Fl-score w¢ xou 0.90 oe oplouévee perétec. Emnlong, éyouv avomtuydel
end-to-end apyitextovinég mou eneepydlovton aneulelag To WU NYNTIXG OYd, OTKE Td
DepAudioNet xat EmoAudioNet, pe Fl-score ané 0.52 éwc 0.82 [55].

2.5.3 Boaowéc Eniddoeic

To Baocwd onuelo avapopds Y to cUvoho dedouévwy DAIC-WOZ (AVEC 2016) pe
Yoouuxd SVM xou Bacuxd yopaxtneiotid eivar Fl-score 0.58 yia to nyntind orfuo. Autd
TO AMOTEAECUN YPNOWOTOLEITAL ¢ ONUELD TUYXELONG VLol UEANOVTIXG TIELQSUATAL.

3 Epvaieia xou Médoool

3.1 AnAwomn tou IlpoBAjuatog

‘Onwg meprypdpeton oty Ewoaywnyr, 1o medlo tng dimhouatixic epyaotag ebvor 1 ot
OMOYNON %ot CUYXELOY TNG AMOOOONE DlAPOP®Y TUTWY YUEAXTNEWO TIXWY ot ahyoplduwy
unyavixhc wdinong yioe Ty meofiedn tne xatddiume. H perétn nepihopfdver 500 Baoixég
epyooieg: (1) tn Snuiovpyios GUVOAGY YOEAXTNELO TGV H)YOU X0l XEWEVOU, xau (2) TNy o&-
LOAGYNON TNE AMOBOONE BLAPORWY UOVTEAWY UNY VXS HEINCNS YENOWOTOLWYTOS AUTA Tol
yopaxtneloTid. O 6Téyoc authc TG HEAETNG EVOL VOl EVIOTIOTEL O TLO ATMOTEAECUATINGS
GLVBUOUOG YUEAUXTNELC TXMY Xal ahyopilumy yio TNV TeofBiedng xatddidng.

3.2 Ilepiypopr] Xuvorou Aedopevwy

To 8edopéva Tou yenoylorotdnxay yia To Tedlo auTAC TNS BIMAWUATIXNS epYaciog TEoépyov-
Tou and N Bdon dedouévey DAIC-WOZ, n onola aroteiel utocivoho tou Distress Anal-
ysis Interview Corpus (DAIC). To DAIC efvor o tohutpomixs) GUAOYT NULOOUNUEVGLY
HAVIXOY CUVEVTEVEEWY OYEBLIOUEVLY Yo Va Bontoly ot B1dy vewon YuyohoyIXmY xATooTd-
OEWY BUCPOPLC, OTWS &Y YOS, XATAVALPY Xxon UETUTEOMATIXT BlaToEuy ) OTEES.

To cOvoho dedopévwy DAIC-WOZ eivor povadixd Adyw tne multimodal ¢long tou,
%G EVOOUATWVEL BEBOUEVA 10U, BIVTED ot XEWEVOU, xS X0t TOU XALVIXOU TAcLclou
(nptﬁopnpévsg OLVEVTEVEELC PE ELXOVIXG TEAXTOP). HepthopPBdver entong oyohacuéveg
xhvixég Poduoroyieg, omwe to PHQ-8, xadiotdvTag o moAITo ToR0 Yiot €pEuval oTnV
aviyveuon xatdiApng. XnuovTind UEEOC TWV TEOCHIUTWY UEAETWY GE AUTOV TOV TOPE
€yel adtomotfioet T multimodal SuvatdTNTES TOU GUVOLOL BEBOUEVWY Yiot TNV TEoWIN o
Tou TEdiou.

3.2.1 XvuvevtelLieic Wizard-of-Oz

‘Onwe avapépdnxe mapamdve, yia auTh Tn Simhwuatixny epyacio yenowonotfinxe to chvoro
oedouéveny DAIC-WOZ, to omolo nepapfdvet tig ouvevtetielc Wizard-of-Oz, mou ey dn-
ooy amd ToV XWOUUEVO eovixd ouvevteuxty Ellie [40].
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3.3 30vieor XYuvolou AcdouEvmy

To cOvolo dedopévwy DAIC-WOZ anoteleitar and 189 cuvedpleg, xadepio and Tic onoleg
TepLhopPdvel Eva axatépyaoTo apyelo fyou xou TNV aviioTolyn amoUyVTOQOYNCT Tou.
[oe v mepapotind a&ltoAdynon authc e dimdnuatixnc epyaoctac, 1 Baduoroyia PHQ-
8 yenowonotinxe we 1 <oirfielo eddpoucs (ground truth) vy Tov TEOGOLOPIOUS TN
mopouciog xatdiuhng otoug ouuuetéyovteg. H Suadiny| talivounor mpayuotonotiinxe
Yenowomowwvtag xatweht 10, cbugpwva pe tig odnyieg Paduordynong tou PHQ-8, ol
omoieg uTodnAdvouy 6Tt wiat Barduoroyia 10 ¥ peyoritepn elvan evdewtixr tng Meilovog
Katodhntinric Awtopayfc [17].

3.3.1 'Hyog

TNV TapoVoa EQELVA, 1) TEMTY TEOGEYYLOT APORA TNV TEOETELERYAOIA TWV AXATERYATTCV
apyelwy Myou. Evtoniotnxay xou dtopdwinxay xatectpouuevo delyyota fyou Ue T UeTa-
TEOTY| TNG HoPPHC TOug Yenotuomoinmvtag Tn Bty fimpeg.

Handcrafted yapoxtnpiotind viyou e€fydnoav yenotponownvag tn Biiovxn pyAudio-
Analysis.

H eaywyr handcrafted yopaxtnptotindy yio éva uegovouévo apyeio fyou mepthopfdve
Ta €&g Pripota

« Evtomoudg xdie expodvnone (utterance) fyou yenoyomouwvtag To apyeia omo-
MOy VI TOPOYNOTG.

o EZoywyh peconpdieouny yopaxtnelo iy (mid-term features) yio xdie expidvnon
ue TN Yeron g avticToryng ouvdptnong e Bilodrxne.

» Téhoc, yio vae Angdet o cuvoliny| avamopdotaon oe xde apyetou fyou, utoloyile-
Tl 0 PECOC 6POC TWV PECOTEOVECUMY YURUXTNPLOTIXMY OE OAEC TIC EXPWVNOELS,
TOEAY OVTAS EVOL LOVOUOIXO OLEVUOHAL YUEUXTNEIO TIXWY v apYELD Ty ou.

To embeddings e€rydnooy ye napouoLd TEOGEYYIOT: EVIOTIG TNXAY Ol EXPWVNOELS, €Ay In-
oav embeddings yio xdde expwvnomn xa ot cuvéyeta To embeddings adpoioTnxay xotd
HEcO 6p0 Yo var ooy Vel Evar LOVADLIXO AVTITPOCWTEUTIXG OLAVUGOL YAQUXTNOLO TIXCY Yol
oh6xAnEo To opyeio Nyou.

Emunicov, egapudotnxe 1 npoctyyior BaciouEVT 6TOUS POAOUC, OTIOU TOL YOQUXTNELC TIXY
e&fyInoay Ue Tapdpolo TPOTO Yo Xdie expwvnon. 2otéo0, yio xdie apyceio dnuloveyHunxay
0UO0 BLOXELTY BLAVOOHTA YORUXTNELO TIXMV: EVOL UE TOV UECO 0RO TWV YUQUXTNELC TIXWY TWV
exgwvhoewy g Ellie xou éva ue Tov €GO 0pO TV YORUXTNEIO TIXWY TOV EXPOVACEWY
TOU GUUUETEYOVTOL.

3.3.1.1 [Ilpoocéyyion Baocwouévn o Péhoug

H elaywyt) yopoxtneiotixmy ot eninedo expwvnong dlacgorilel cuvéneia ot dodtxacio
eCaywyne, avedpTnTta omd TNV TEOCEYYLoN Buclouévn 6To pdlo. AuTH 1) CUVETELXL U
enétpede Vo ouyxplvoude amoteheopaTind Ta amoteAéopota. Emmhéov, e&hydnoay xou
YOEAUXTNELO TN XEWEVOU UE TOPOUOLO TEOTO, BIEUXOAIVOVTAG TNV CUYYMVEUCT] BLapOpE-
TIXWY CUVOAWY DEBOPEVWY, OTIWS AVIAUTIXG TEQPLYRAPETAL OTNY ToRdYEUpo 3.3.3.
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O BLoyELOUOS TWVY YoRUXTNELOTIXGY Ay ou Ue Bdon Toug pOAOUG ETLTEETEL GTNY AVIAUGT)
vor hofBdver umtddn Tig eyyevels Slaopéc oTa TEdTUTA oUtAlag ot v Bivel peyohiTeRT
BapltnTa otov évay 1 tov dhho omAnty. To yopoxtneioTtind mou e&dyovion amd xdie
eOho umopolv vo avadetfouy evdeilelc edinéc Yo Tov poro. Elvar enione onuavtixd
vo onuewwdel 0Tt To yopax TNELOTIXE BACLoUEVa OTO PORO ETUTEETOUV TLO GOPY| EQUNVEla
TOU TIOLOL CUUTIEQLPORA OULANTY OOMYEL OE OPLOUEVOL ATOTEAECUOTA, OLEUXOADVOVTAS TLO
o0TOYEVUEVES TopeUPdoels 1) cuumepdopata. Emniéov, ue to vo ovielonotodvion oL pdAoL
EeYWPLOTE, Tot HOVTER UMy ovixic Udinong uropoly vo uddouy mpdTuTa EWdxd Yo xdle
e6o ywel olyyuon, BeAtidvovtag TNy axpifelo Taglvounong 1 Tahvopounong (39].

3.3.2 Keipevo

Hopopola pe tar yopoxTnELo TXd 1y ou, To TenTo Brua civon 1 tpoeneepyasio Twy amo-
poryyntopwvioeny. T'a 1o oxomd autd epapudoTnne pa Paowr) pédodog xouploldol
XEWEVOL.

To yopoxtneto Tnd xeyévou e&rydnoay yenowonowwvtog to poviého GloVe yia embed-
dings Aéewv, xodwe xou To SBERT yio embeddings npotdoswy, yio cuumAnpwuotixd
TELRUATOL.

To embeddings Aé€ewv mou yenowomotfinxoay o auth TN UEAETY TPOEQYOVTAUL and TO
mpoexmoudeuuévo povtého GloVe, exmawdeupévo ota cwyata xewévou Wikipedia 2014
xou Gigaword 5, mou mepthaufdvouv 6 dioexatopudpta tokens xan éva he€indyto 400.000
ey ywple didnplon meldv-xepoloiwy 48]. Luyxexpeva, yenotwonotinxe n 50-
oLdoTartn €xdoon Twv dvuoudtwy GloVe. H Swdwacio e€oywyc oxohovdel topduota
TEOGEYYLOT UE QUTY| TTOU YENOWOTOLAUNXE YIoL TO YoUQUXTNELOTIXG 1Y OU.

O péoocg bpoc Twv embeddings A€ewv amoTehel pLor EVPEWS YENOUWOTOLOVUEVT XO ATTAY)
pEYodo Yo TNV AmOXTNOT AVATARAOTAONG OTAVEPOD UAXOUS ULUS ATOUOY VATOPMVNONS.
Qot600, auTh N TEOCEYYIOT EYEL ONUOVTIXG TEPLOPIOHO: avTIIETOTILEL Oheg Tig AéEelg
LOOTIOL XL otyVOEL TN OElpd TwV AEEEWY o TN CUVTOXTIXY Bour, XdTL Tou pmopel vo
OONYHOEL GE ATDOAELNL CNUAVTIXDY GUPEalOUEVLY TANpogoptwy [18, 50].

Téhoc, axoroudnviac TV (Blol TEOGEYYIOT TOU YeNoWOTOLUNXE Yia TV eCorywYT| Y opox-
TNELO TV 1oL Bactouévn oe pdAoug, utoloyiCouue enlong EeymploTd TOV €GO 60 TKV
YUEAXTNELO TIXWY XEWEVOU Yia TI¢ expuwvhoelg tne Ellie xou tou cupuetéyovta.

‘Ocov agopd ta embeddings mpotdoewy, yenowwonoufinxe to SBERT xotd mapduolo
TEOTO.

3.3.3 Xuvovacpol XapaxtneltoTixwy

Mo xdde ouvedplia Tou dataset, e€dyoupe tpio yapoxtnplotixd Hyou (pyAudioAnalysis),
tplor embeddings fyou (wav2vec 2.0), tpia yapaxtneiotind xewévou (GloVe) xou tpla
embeddings npotdoewv (SBERT). Emimiéov, Snutovpyolue 800 emmAéoy yapoxtneloTtixd
UE TN oLy Y®veuon (concatenation) twv yopaxTnEloTIXGY Tou cuppetéyovta xa tng Ellie
1600 Yo TOV 10 650 xau yia To xefuevo, mou ovoudlovton «Concatenated Featuress.

Arnuovpyrioae 800 GUVOA BEGOUEVKY Yo ToL TELRdUaTd poc. To xUpto 6Uvolo Sedouévey
Tepthaufdver 6ha tor yopaxtnelotixd pyAudioAnalysis, Toa embeddings GloVe xo tov
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ouYOLAOUG Toug, xaL Yernoulomoleitar yio T Paocixés avarloec. To devtepo clvoro
0edoPEVWY, Tou yenowonoteitor yio emmhéoy Tepduota, Tepiyel Ta embeddings wav2vec
2.0 xou SBERT pall pe Tov cuvduaousd touc.

3.4 Merpwxég AZoNoynong

[Ma vae avokutody Bie€odind ot UETEXES alloAGYTOTG TOU YENOYOTOoUVTAL GE oUTY T1)
OtmhwpaTixd| epyaoia, efval amopalTnTo TEMOTA Vo TOEOUCIACTOOY XATOLES YEVIXEC TANRO-
qoplec oyeTd ue TNV o&loAdYNoT TNS SLABIXAC TAEVOUNOTC.

Yt Buadxr Tagvounor, Ta delypota TallvopolvTal Te kg VeETXd €lte wg apvnTixd. ‘Eva
TAELVOUNUEVO Belypo aviXel OE Ui amd TIg axdAoueg XaTnYoplEC:

o ANN9d¢ Oetixd (True Positive, TP): 1o deiyua to€ivopeitar 6wotd we Yetind

« Weudhg Oetixd (False Positive, FP): to delypo tadivopeiton havdaouéva wg
Yetind

o AMnOdc ApvnTixd (True Negative, TN): 1o delypa tolivopeitar cwotd we
AEVNTINO

« Weudmg Apvntixd (False Negative, FIN): 1o delyua tadvopeiton havioouéva
S 0PYNTIXO

Accuracy

H x0pta petpinr| mou yenowonoteiton yior Ty a&loAdyNom HOVTEAWY elvar GLY VA 1) accuracy,
1 omolo TeptypdpeL Tov aptiud TV woTWY TEOPAEDENMY o8 oyEor Y To GUVORXO aELiuod
TeoPAédewy. O TUTOC Yo TOV UTOAOYLOUO TG accuracy ex@edleTal e SLdpopoug TpdToUG,
oA Ghot avomoplaToly TV (Bto évvola [13]:

TruePositives + TrueNegatives

Accuracy =
4 TruePositives + TrueNegatives + FalsePositives + FalseNegatives

(1)

AxpiBeia (Precision) xow Avdxinor (Recall)
Evod Ao TixEC HETPIXES TIOU TIUEEYOLY HAAVTERT] XATAVONOT TNE ATOOOONS EVOS LOVTEAOU
ebvor 1 oxpifBetor xou 1 ovéxAno. Autég ot uetpixég ebvon WLETERA YENOWES OTOY AVTIHETW-
niloupe aviodppoma GUVoha dedopévrv [9].
H oxpiBeto yetpd 10 1060016 Twv ahniidg Yetinwdv TeoBAEdeny peTalld AWy TV VETXOY
neoBhédewy. O tinog yo Ty axplBeta etvan [9]:

TruePositives

Precision = 2
TruePositives + FalsePositives (2)

H avéxhnon yetpd 1o 106006T6 TV oAniode YeTXdY TEQITTOOEWY Tou Tadlvourinxoy
OWOTY, OE OYECT) UE OAEG TG TEAYHUTIXG VETIXES TEQIMTWOELS OTO GUVOAO BEdOpEVWY. O
T0mog yior v avdxknon eiven [9]:

TruePositives

Recall = 3
ced TruePositives + FalseNegatives (3)
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F1-Score
To F1-Score elvan pior yetpiny| mou cuvoudlel T6c0 TNy axp{Belar 660 xan TNV avdxhnon,
xou opileton we o aprovixds péooc toug. O timog v to F1-Score eivon [14]:

Precision x Recall
F1 =

~ Precision + Recall

Ye auth TN OimhwpaTind| gpyacia, yenowomotfinxe 1 uédodoc macro-averaging yio To
Fl-scroe Moyw tng onuavtixic avicoppotiag Tou undpyel 6To olvoho dedouévwy DAIC-

WOZ.

AUC

To AUC-ROC (Area Under the Receiver Operating Characteristic Curve) eivor pio
EVPEWC YENOLLOTOLOVUEVY UETEWXY Yiot TNV alOAOYNOT) BLUdIXWY Tadlvountady. Metpd tnv
IXAVOTNTOL EVOC HOVTEROU VoL Slopivel UETAC) VETIXWY X dpYNTIXDY XAACEWY OE OAAL To!
mdavd xotdeha todvounone [87).

H xauntdin ROC eivor o ypapuer| avamapdotaon mou oyeddlet tov Pudud Aindaocg
Ocuxwv (TPR) otov dCova y évavtt tou Puduod Weudde Oetixédyv (FPR) otov &E-
ovo X ylo 0dpopeg TWES xatw@hiov. Kdde onuelo oty xoumdin aviictoyel oe éval
CLYXEXPLEVO XATOPAL, Tou xadopilel i ol tpoliédelc Tadivopoiviar kg VeTixéS 1 opv-
nuxée [87].

TP

TPR= 5N 4)
FP

FPR_FP+TN (5)

To AUC (EuBodév xdtw and v xaumiAn) avomoplotd To oUVoAXd eUBaddy xdtw omd
outh Y VAN ROC xon mapéyet o povodidotatn T mou cuvolilel Ty anddoon
TOU JOVTENOU:

o Eva AUC (oo ye 1 unodnhmvel téhetol SLdxpton YeTod) TwV XAJCEWY.
» Eva AUC (oo ye 0.5 umtodnhdvel anddoon ton e tuyaio oot

o Tweéc xovtd 610 1 UTOBNAMVOLY XUAVTERY] ATOBOGCT] HOVTEAOU, EVE TYWES XOVTH GTO
0 LTOBNAWVOLY PTWYY| ATOBOCT.

4 llepopatixry ASiohdynon

Y autd To xEPIAMO, CUINTAPE TN SOUN) TWV TELPUUATOY XL TO ATOTEAECUATA TOU ToRd-
youv. ‘Oneg avagéplnxe oo Teonyolueva xE@dAotd, 0 6TOY0S QUTHS TNG OITAWUATIXNAG
ebvon 1 meOPBAedn e xatddiuhne Bdon tng owhiog evog atopou. T'a to oxomd auto,
yenowonoiinxe 1o civoro dedouévewy DAIC-WoZ yio tnv extéheon tov axdhouvdwy
TELQOUATV.
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4.1 Aopn Ieipapdtwy xow AnoTeEAECUATA

To cOvoha BEBOPEVGLYV TOU YENOWOTOUVTOL GE oUTH TN MEAETYN TepLAouPdvouy TEELg
Baocolg TOTOUG YUEAXTNELOTIXMY:  YOEUXTNEWOTIXG BACLONEVA GTOV Y0, YUQUXTNELO-
Tixd Poactoyévo 0TO XEMUEVO XaL TOAUTEOTUXE YoEUXTNELOTIXG Tou oynuatilovton ue T
CUYYOVEUOT] TWV OVITORUC TACEWY Nyou ot xeweévou. o xdde timo e&rfydnoav tpeig
TOEUANXYES Yot Vo xahu@doly dlaopeTtixnd medta opantov. Ilpwtov, Agdnxay yopox-
TNELOTXE. TTOU AVATORIGTOUY OAOXANPO TOV 1Y 0, GUVOLALOVTIC TOCO TOV GUUUETEYOVTA
oco xou Ty Ellie. Acltepov, e&fydnoav yopoxtneloTind Tou avTioToLyo0V AmOXAELo-
Tid oty opaia Tou ouppeTéyovta. Toeltov, onuoupyRinxe pla oLy WVELST) EEYWELOTMY
YUEUXTNELO TIXGY Yiot ToV cUUPETEYovTa xou Ty Ellie, dote va dratnendolyv mhnpogopicg
EWWES Yo TOV oMo, AuTH 1) Bour| EMITEENEL GTNV avdhucT) vor AauBdvel uTOdT T aTou-
G YOPOXTNELO TIXG TV OUANTOVY XS %o TG CUVOUAOUEVES UAANAETIOPYOELS TOUG OF
OLAPOPES LOPPES DEDOUEVLYV.

Yo melpdatd pog yenotponotiooue povtéha Support Vector Machines (SVM) xou XG-
Boost. Autd ta povtéda emAéy oy AoYw TNS Loy LeNc amdB001C TOUSC X0l TWY CUUTANEMW-
HOLTIXWY TAEOVEXTNUATWY TOL €Y0UV ETUOEIZEL OE TPONYOUUEVES UEAETEC OE EPYOGIES OTLC
1 VoY VLo cuvatoUuatog oty outhior xar 1 avdAvor cuvaioiuatog. MeAéteg €youv
oetlel 6T T SVM ouyvd emTuyydvouy aviorywvioTixn 1 avotepn oxpifBeia, eve 1o XG-
Boost umogel vo atonol|oet Ty BEATIOTOTOMOT YoQoXTNEIC TIXWY Yo VoL GTACEL OE ETUTEDN
axplBetac ouyxplowa ye poviéha Badidc udinone, oAAd ue UXEOTERT, UTOROYIG TIXT) TOAL-
mhoxotnta [45, 30, 32, 44].

H pdduon twv uneprapauétowy éyive ue yenon GridSearch ce cuvduacud pe LOOCYV,
Yo var eEETAGTOUY BlEEOBIXE O GUVBLCUOL TUPUUETEWY EVE UEYLOTOTOLEITOL 1) YPHON) TCV
dedouévwy [69].

o Ty exmaldeuon TV LOVIEAY, €QupudcTnxe emiong yeipoxivitn wédodog Leave-
One-Out cross-validation (LOOCV). H LOOCV nepthopfdver v enavolauBovouevn
exntoddEVGT) TOU HOVTENOL GE GAa Ta DebypoTa eExTOg amd €va, To omtolo yenoylomoleiton Yo
doxur). Auty| 1 Saducacior emavolouPBdveton yio xdde Selyua, eacpariloviag auepdANTTY
extiunon e anédoong ywelc Lexweioté clvoho emxbpwone. Auth 1 TpocEYyioT dlio-
@oAilel 6TL To poviého doxaudletan o delypa mou dev €yel del moté metv. Eivow enlong
TOA) oNUoVTXG Vo onueiwel 6TL, oe xdie enavdhndr, dnuiovpyeiton Eva véo oTiypoTUTO
TOU POVTEAOU Yl Vo amo@euy Vel Sloppor| TAnpogoplag, Snhady va pnv ennpedloviol ot
TEOPBAEPEC TOU TEEYOVTOC POVTEAOL amd TEOMYOUUEVES eMAvVOAAPELS, SlaTnenvTag £Tot
TNV oxepoudTNT TNE OLadixaciog cross-validation.

Metd v emhoyy| TwV PEATIOTOV TUPAUETEWY Ko TNV EXTULOEUCT| TOU HOVTEAOU, ToEd-
youue Todvounoelg Y xdde cOvolo doxung, onhadt Y xdde delypo doxurg.  Opi-
CoUUE TIC OLYXEVTPWTIXES TEOPBAEPEC TOU GUVOROL BOXIUNG KOS TO GUVORO OAWY TKV Tal-
VOUNOEWY, ETTEENOVTAC HoG Vo UToAoyioouue peTpixéc omwe to Fl-macro, tny axp{Bela
xo 10 AUC ypnoyomoidvTog aUTES TS OUYXEVTROTIXES TPoBAEdeLC.

Ov mopaxdtew mivaxeg mapéyouy Ta amoteréopato TV OledoyVéviny Tewpaudtwy. Eivo
onuavtixd va onpewwiet 6t 1 Axpifela, To Fl-macro xou 1o AUC urnoloyiCovtan cuyxev-
TowTixd oe 6Aa to folds Tou LOOCV yio va mapéyouy GUVOMXES EXTIUYOELS OmOBOOT.

Y€ auTtd T0 (EPIANO ToPOVCLALOVUE TNV UTOB0GT) BUO EXTABEUUEVLY LOVTEAWY UNYAVIXNG
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udinone oto xVELo GUYOAO BEBOUEVKY, YPNOULOTOLOVTUG To TElal BLoxELTe GUVORL Y oo~
TNELOTIXGY.  LUYXEXPWEVY, oL Tiivaxeg mepthopBdvouy Tig e€AC xaTnyopleg yopuxTneLo-
TIXOV: YAPOXTNELOTIXG TToU Tpogpyovtar omd oldxhnea ta apyeio Yyou (Whole Audio),
YOEUXTNELO T TTIOU TEOXUTTOUV ol TN CUYYWVEUOT] TV dedouevey tne Ellie ye autd
TV oupueTeydvTwY (Concat) xon YoEaxTNEIoTIXE TOU EE8YOVTAL ATOXAEIG TIXG, omd TOUC
ovupetéyovtee (Participants).

ArnoteAéopota

Eivor enlong onuovtind va onueiwdet 6tt, enedr) To ohvoho dedopévey DAIC-WoZ eivou
avio6ppoTo, yenoworololue xuplwe Tic TWée AUC yia Tov mpoodloploud tng ambédoong
evog poviehou. Enouévee, otoug enduevoug mivaxeg emoruotveton 1 xoahOtepn Ty} AUC
Y xéde utoovolo dedopévmy [31].

SVM ‘ XGBoost
Whole Audio Concat Participant ‘ Whole Audio Concat Participant
acc 0.70 0.70 0.70 0.72 0.71 0.73
f1 0.41 0.41 0.41 0.61 0.45 0.59
auc 0.50 0.50 0.50 0.61 0.52 0.59

Table 1: Using the pyAudioAnalysis Audio Features.

SVM ‘ XGBoost
Whole Audio Concat Participant ‘ Whole Audio Concat Participant
acc 0.77 0.78 0.73 0.74 0.74 0.71
f1 0.70 0.73 0.59 0.64 0.63 0.58
auc 0.69 0.72 0.59 0.63 0.62 0.58

Table 2: Using the Glove Word Embeddings.

SVM | XGBoost
Whole Audio Concat Participant ‘ Whole Audio Concat Participant
acc 0.74 0.78 0.70 0.74 0.74 0.73
f1 0.69 0.73 0.41 0.64 0.63 0.60
auc 0.69 0.72 0.50 0.63 0.62 0.60

Table 3: Using the Concatenated pyAudioAnalysis and GloVe Features.

Ou petpinéc otov Iivaxa 1 delyvouv étL Oha tor povtédo SVM amotuyydvouv v Slonpl-
VoV PETOEY ToV 600 xhdoewy, Teofiénovtag otadepd wovo Ty Thetodnpodon xAdon oe
oha Toe oOvoha doxauwy. H T AUC 0.5, xatd tov oploud, utodninver EAAeLr dloxpt-
wwehe avotntag [92]. Emmiéov, to yovtého XGBoost v to «Whole Audios xou tov
<Participant> divouv ehagpig xarbTepa anoteréopata, evey To «Concats elvar o xovtd
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oTnv Tuyala emAoYT. AuTéC oL TapaTNENOES UTOBEYOOLY OTL OG0 Toe SVM 660 xou Ta
XGBoost duoxokeovton pe to handerafted yopoxtneiotixd fyou.

‘Onwe gatveton otov Ilivaxa 2, 1660 Tar wovtéha SVM 600 xon XGBoost amodidouv
xohOtepa pe to embeddings GloVe, wotdco ta anoteAcopata TAUpUUEVOUY UTOBEATIO T
H xohOtepn Paduoroyla péyer otiyurc diveton and to poviého SVM «Concats ye AUC
72.

Emniéov, o Ilivaxag 3 dely Vel 6TL 1) GUYYOVEUCT) YUQUXTNELOTIXMY AYOU X XEWEVOL OEV
Behtiwver TNV amddooT oE oyéon Ue TN yerion wovo Twv embeddings xewévou, evioyvovTag
TO CUUTEPUOUA OTL Tol HOVTEAD BUoXOAEVOVTAL PE Ta YapoxTneloTixd py AudioAnalysis.

4.1.1 TYrnodeiypatoindia (Undersampling)

[o voe avtipetomio tel 1 avicopporion Twv xAdoewy, yenotonot|inxay 800 eVahhaxTIXES
mpooeyyioeic. H mpdtn nmpocéyylon mepthaufBdver tnv yewpoxivitn e€looppdnnoy Tou
GUVOAOU BEBOUEVLY, OV ETULTELYUNXE UE TUYla apatpeaT) CUYXEXEWWEVOU 0ptduo0 BELYUdTWY
ond Ny TAeloPnpovon xhdon Tety ond TNV EXTEREST) TWV TELRAUUETLY [7].

ArnoteAécpato
SVM ‘ XGBoost
Whole Audio Concat Participant ‘ Whole Audio Concat Participant
acc 0.59 0.59 0.59 0.68 0.63 0.60
f1 0.37 0.37 0.37 0.67 0.60 0.56
auc 0.50 0.50 0.50 0.66 0.60 0.57

Table 4: Using the Balanced Audio-Based Dataset.

SVM ‘ XGBoost
Whole Audio Concat Participant ‘ Whole Audio Concat Participant
acc 0.70 0.75 0.60 0.68 0.70 0.61
f1 0.68 0.74 0.60 0.66 0.67 0.46
auc 0.68 0.74 0.60 0.66 0.67 0.53

Table 5: Using the Balanced Text-Based Dataset.

‘Onwe gatvetar otov Iivaxa 4, to cOvolo dedouevemy Bactopévo otov Ayo delyvelr 6T
1 €€1o0ppomNon Bev BeATIOVEL TNV anddoon Twv woviédnv SVM. Avtideta, to poviéha
XGBoost mopouatdlouv uixey| Behtiwon, ye to xolUtepo poviého («Whole Audio») va
au&dver to AUC and 61 oe 66. Ilapduola tdom napatneeiton ot 6To GUVOAO BEBOUEVELV
Bactopévo oto xeluevo, omwg galvetar otov Ilivoxa 4.6. Edw, to xahitepo poviéio
ond 1o apyd melpoya («Concat> SVM) mopovotdlel pxpry Bertiwon pe tn yepoxiv-
Nt elooppdmnot. 261600, TA AMOTEAEGUATA YO TO CUYYWVEUUEVO GUVOAOD BEBOUEVLV
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SVM ‘ XGBoost

Whole Audio Concat Participant ‘ Whole Audio Concat Participant

acc 0.70 0.75 0.59 0.72 0.71 0.63
f1 0.69 0.74 0.37 0.70 0.70 0.58
auc 0.59 0.50 0.37 0.7 0.7 0.59

Table 6: Using the Balanced Concatenated Audio-Text Dataset.

Ay ou-xeyévou, Tou Tapouctdlovar otov Iivaxa 4.7, anoxhivouy and autd TwV TEONYOU-
HEVWY GUVOAGY. Xnuavtixd, dev undpyel cuvolixy| Behtinon - mpwv Ty elloopednnon,
10 x0AUTEPO PovTého elye AUC 72, eved petd v eliooppdmnon to AUC tou xolbtepou
novtérou pewwdnxe oe 70.

4.1.2 TYrepdetypatoindic SMOTE

[oe tepontépw avVTETOTION TG aVoopeoTiag XAdoewy, yenotono|dnxe uo dedtepn
uédodoc, n unepderyuatoindio SMOTE.

ArnoteAéopoTa
SVM ‘ XgBoost
Whole Audio Concat Participant ‘ Whole Audio Concat Participant
acc 0.70 0.70 0.70 0.69 0.63 0.60
f1 0.41 0.41 0.41 0.63 0.55 0.53
auc 0.50 0.50 0.50 0.62 0.55 0.53

Table 7: Using the Audio-Based SMOTE Dataset.

SVM ‘ XgBoost
Whole Audio Concat Participant ‘ Whole Audio Concat Participant
acc 0.62 0.72 0.59 0.68 0.69 0.61
f1 0.59 0.69 0.56 0.61 0.65 0.54
auc 0.62 0.70 0.58 0.61 0.65 0.54

Table 8: Using the Text-Based SMOTE Dataset.

‘Onwg gaiveton oty table 7, n unepderypatoinla SMOTE 6ev fondd to povtého SVM
oL TEOBAETEL U6V TNV TAELOYNPONGI XAACT) 0TO GUVOAO BECOUEVWLY BaCIOUEVO GTOV 1yO.
Emniéov, ta anoteréoparta nou tpoéxuday ue ) yeron e SMOTE 1600 yia to olvoro
0EDOUEVWV BUCLOUEVO GTO XEUEVO OGO XAl VLo TO GUYYWVELUEVO GUVOAD 1Y OU-XEWEVOU
TOEUUEVOLUY GUVETH| ME oUTE TOU EMLTEDY UMMV PE TNV oy x| UéVodo.
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SVM ‘ XgBoost

Whole Audio Concat Participant ‘ Whole Audio Concat Participant

acc 0.74 0.72 0.70 0.72 0.69 0.60
f1 0.71 0.69 0.41 0.68 0.65 0.52
auc 0.73 0.70 0.50 0.68 0.65 0.52

Table 9: Using the Concatenated Audio-Text SMOTE Dataset.

4.2 Svprninpowpotixd Ieipdpoata

Metd v avdhucT TwV amoTEAECUATOY TOU TOEOUGLAGTIXAY TOQAUTEVE, XATUATYOUNE GTO
CUUTEQUGHA OTL, OTO TANCLO TWV TELRUUATOY UUS, TO YUPAXTNELO TIXE 10U OEV TOREYOUV
IXAVoOTONTIXY améd0oT oty TEOBAedN TNg xaTdIALPNC YENoHLOTOWOVTAUC TO GUVOLO Ot-
douévev DAIC-WOZ, axdun xon 6toav epoapuolovian TeVixég eCl00ppeoTNoTNG OEDOUEVHY
TOU GTOYEVOLY GTNV AVTYWETWTICT| TG AVIO0PEOTIAS XAJCENMY. AUTO UTOONAGYVEL 6TL Ot
AVOTORUC TUGELS YYOL TOU YENOWOTOWINXaY EVOEYETOL VoL UNV €)0UV ETUEXY| OLOXELTIXT)
IXAVOTNTA Yol QUTY TNV epyaoio.

XNy enouevn evoTnTa, Yo eEEPELVACOUUE TNV VAOTOINGT EVOANIXTIXWY TEY VXY embed-
ding Yy ou xou xeévou yia vor aELOAOYHGOUNE oV TiLo TEoNYUEVES uéYodoL eCorywyhS Y opo-
TNELO TV UTToPOVY VoL BEATIOC0LY T Bi1dxplon HETAED TV 800 XAJOEWY 0TO GUVOAO Be-
douévey DAIC-WOZ. Autéc ol uédodol unopet va aglonototy Baditepee cuppealdueves
TANEooplec | o €LEAYUEVY) UOVIENOTIOMNOT] TWV YEOVIXMY OQUVOXGY, EVOEYOUEVHS
Bertidvovtag Ty axp{Bela Tne medPBAedng.

Etvou enlong onuovtind vo onueiwidel 6t 1 ntpocéyyior Bactouévn otoug pdbroug, Tou Ot-
oy wpeilel Ta dedopéva Pe Bdom ToUg POAOUS TKVY OUANT®Y, dev BeATiwaoe Tn Sudxplon Yetalld
AT MTTINGDVY X U1 XUt dMTTINOY aTtOpeY. AEBOUEVNE TNE TEPLOPLOUEVNC CUVELTQOQRAC
e, Vo amoxhelcouue o oUVoha BEBOPEVLY BaClopéva OE POAOUC Omd TaL ETOUEVOL TELRS-
HOLTL, (YOTE VOl ATAOTOLACOUUE TNV oVEAUGT XU VoL ETIXEVTPWUOUUE OE TO UTOGYOUEVES
AVATUPAOC TAOELS Y UPUXTNOLO TIXWV.

Téhog, Ta MERAPUTA TOL THEOLCLALOVTAL TUEAUXYTEL GTOYEVOLY GTO VA ARGy OLY TANRO-
QOPIEC OYETIUY UE TOUG TEQLOPLOUOUS TV UPYIXMY TELQUUATWY %ot Vo VTOTicouv miavég
xatevdOvoelg vy ueAhovTixy €peuva. Méow cuoTNUTiXG ACLOAOYNONG EVAAAUXTIXGY
TEY VXY EVOWHATOONG Xl TEOCEYYIoEwY Yovieromoinone, eaniCoupe vor amoxohiouye
TOEAYOVTES TTOL GUUBAANOLY G BeATwEVT aviyveuon TN xotddng xon vor utooTne(E-
OUME TNV VETTUEN TLO AMOTEAEOUATINWY DLy VWG TIXWY EQYOUAEIWY.

‘Ocov agopd Ta yopaxTnetoTixd you, yenotuonotovue to embeddings ¥jyouv wav2vec 2.0.
Arnoteréopara

‘Onwe umopovue va dovue and tov wivoxa table 10, n avanapdotaon wav2vec 2.0 odnyel
oo (dto anotéleopa pe To handcrafted yopaxtneiotind pyAudioAnalysis, mpofiénovtog
HOvo TNV opvnTixy xhdon.  Auth 1 opoldtnTa 6TV anddoon unopet va e&nyndel amod
Toug eyyevelg meplopiopols Twv wav2vec 2.0 embeddings 6tav avtietwniCouv cofopt
AVIGOPEOTOL XAJGEWY.

Mmopolue va umodécouue 6T 1 Buoxolla otny TEoBhedn Tng eAdyloTnG ¥AdONE OEV
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SVM XGBoost

Whole Audio Whole Audio
acc 0.70 0.72
f1 0.41 0.61
auc 0.50 0.61

Table 10: Using the wav2vec 2.0 Dataset.

oyetiletal e TOV TOTO TV YORAUXTNPIG TIXWY TOU YENOWOToouVTAL, 0AAd cucyeTileTon
EVTOVAL UE TNV OVIOOPEOTEA TV XAdoEwY. Emouévne, yla Ty avTWETOTLON ToU TEoBAY-
potog g extipnong tne xatdiiupng Bdoet ouihlag, ol xahltepeg Tpooeyyioeig Yo Yitorv:

» Bektotonoinon tou wav2vec 2.0 end-to-end pe otaduiopévn anwheio yioo Ty av-
TIETOTIOT TN OVIGOPEOTHAS XALCEMV.

» Auwrthpnon 1 Bertivon Tng anwielog Towutiopopplag xotd T SLdEXELN TNE EXTALdELCTNC
yioo TNV TEOANN TNg xatdppeuone Tedmou ota embeddings.

o Xpron enadénong SEBOUEVLV Xal TEO-EXTUOEUCT OE GYETXE GUVOAY BEBOPEVKV
YL TOV EUTAOUTIOUS TGV YURUXTNRLOTIXWOY TNG EALYLOTNG XAAOTS.

o Ilepopatiopds ye mponyuévous Taclvountes N Teooeyyioelc cuvohou yia xahiTeEEN
aviyveuon Tng eAdyLoTNg xAdoTG.

‘Ocov agopd Tta metpdpata mou PBaciCovion 6To XelUevo, OTwe avapépUnxe TopAUTdvVe,
yenowornotovue to Sentence-BERT (SBERT). Anotehéoporta:

SVM XGBoost
Whole Audio Whole Audio
acc 0.77 0.79
f1 0.72 0.74
auc 0.71 0.73

Table 11: Using the SBERT Dataset.

Arné Tov Ilivaxa table 1, n udmidteen Ty AUC nou emtebydnxe yenowwonowdvag em-
beddings GloVe etvor 0.69 pe 1o povtého XGBoost. (261600, 6mws gaivetar otov Ilivaxa
table 4.12, 1 ypfon twv SBERT embeddings ye to povtého XGBoost amodidet wio BeATi-
ouévn T AUC 0.74, omwe avouevoTtay.

4.3 AZ&LoAoYTMNOT ATOTEAECUATWY

Yta mewpduota tou PociCovial 0Toug POAOUG, To ATOTEAEGUOTO ATV OCUVETY %ol OEV
edeilav oagr| Bedtinon oty mpoBiedn tne xatddung. To apyixd mepduato amoxdiuday
ot ta povtéda SVM Buoxoheltnxay ye to handcrafted yopoxtneiotind fyou (pyAudio-
Analysis). Ta povtéha XGBoost enédetloy ehapps XoAOTERT) amdB00o UE TOL YUpUXTNELO-
TIXG A0V, AR TOL ATOTEAEOUATO TIUREUELVOLY UMV LXAVOTIONTIXA.
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To yapoxtnplotxd mou Boaociloviar oto xelyevo (embeddings GloVe) anédwoov Belti-
ouéva anoteréopata toco yia T SVM 6co xon yia ta XGBoost, pe 1o poviého SVM
"Concat” vo emtuyydvet o vpnidtepo AUC 72 (Ilivaxag 2). Qotéc0, 1) ouyyhveLsT) Twy
YOEAXTNELO TIXWY 10U XU XEWEVOL OEV BEATIOOE e CUVETELX TNV ATOOOOT], UTOONAGVOVY-
TOG OTL TO LOVTERA BUGXOAEDTNHAY VO EVOWUATMOCOUY ATOTEAECUUTIXNG TOL Y oQUXTNELO TIX
pyAudioAnalysis.

Lot Ty oy TWETOTLON TNE aVIo0pEoTiae XAACEWY, EQURUOCTIXAY YEWOXIVNTN EELIGOPEOTN T
xou umepderypatoAndioc SMOTE. H yewpoxivntn e€looppdnnon napelye uio pixet| Bertiwon
v to povtého SVM "Concat” 610 oUvolo dedopévwy mou Pocileton 670 xeipevo, ahhd
oev Bertinoe otolepd To AMOTEAEOUUTA OE OAX To GUVORX DEDOUEVWLY Xai Tor povTéla. H
unepodetypatoAnpioc SMOTE 6ev evioyvoe onuaviixd to goviého SVM xou mopelye povo
war puxet| Bertionon v to yovtého XGBoost.

To xohbtepa anoteréopata oe 6Aa tor tetpdparto Aoy éva AUC 0.66 yia yopoxtnolotixd
fyou, 0.74 yio yopaxtnetoTid xeyevou xon 0.73 yio cuyywveudéva yapaxtnelotxd. ‘Ocov
QUPORAL TAL YAUPAUXTNEIGTIXE 1) 0u, 1 ubnAoTeET Borduoroyio F1-macro nou emitelydnxe frav
0.67, yeyovog mou umodnhavel wa uxer| Bertinon and tn baseline Boduoroyia 0.58.

Emuniéov, ta npécieta nepduata mou dielrydnooy Edetloy 6TL:

e Ovembeddings wav2vec 2.0 am6 uéveg toug dev EMADOLY EYYEVOS TO TEOBANUA TNG
OVLG0PEOTOC XAAOEWY, TERLOPILOVTAS TO TAEOVEXTNUE Toug évavTt Twv handcrafted
YAROXTNELOTXOY OTNY TEOBAEd Tng ehdytotng xhdone.

« Emmiéov, ta mewpdpota mou BaciCovton oto xeipevo yenowonowwvtac embeddings
meotdoewv SBERT édeiav Beitiwpévec twéc AUC.

5 Xvunepdopata xaw MeAloviixég Ilpoextdoslc

H rapoloa dimhwyatins e£€tace Ty anoteAeopatixdTnTo TN extiunong xotddiung péow
e oo pe TN yenon pnyovixic udinong, e otdyo TV avdmtuln evog ollomoToU
QUTOUATOU GLUC TAUATOS EXTUNONG xaTddApNC. Me xivnTeo TNV avdyxn yior avTIXEWUEVIXd,
OEDOUEVOC TEAPT] EQYUAELN TOU GUUTANEMVOUY TIC XAMVIXES allohOYTHOELS, adloTotinxe To
oOvoho dedopuéveny DAIC-WOZ yio Ty e€orywyr) xou avdAuGT) Ny NTIXOY Yol YoUpoXTNELOo-
TV xewévou. Kawvotduo otolyeio anotéhese 1 avdAuom yopoxtnoto Tixwy Bacel poAny,
OtoywpelCovtog TNV oUthiot GUUUETEYOVTOL XoL CUVEVTEUXTT, UE OXOTO TNV XUAUTERY AmOTOT-
0O TNG BLVAULXTS TV XAVIXWY oLVEVTELEEWY. OL Baocwéc cuvelo@opéc tepthoudvouy
ToV oyedlaoud evog multimodal cuUGTAUNTOS EEUYWYAC YARUXTNELOTIXAY, TNV EICAYWYTN
TAouclou avdAuong BAceEl POAWY XAl TN CUC TNUOTIXY AELOAGYNOT) TNG ENDEACTC TWY CUV-
OUOOUMY YORUXTNELC TIXWY Xl POAWY TNV ATdO00T).

To mewpopotind anoteAéopota E0e1oy OTL TO YUPUXTNOIGTIXE XEWEVOU UTEQEYOUV TWV
nynuxwy, pe 1o péytoto AUC va @tdver to 0,74 évavt 0,66 yio tov ¥yo. H avdiuvon
Bdoer poAwv uTodEVOEL TWIAVE OPELT OTNV AmOTUTWON TNG UAANAETBPUONG, OAAS U
ACLVETH amoteAéouaTa, LTOYEUUUILOVTAS TNV avdyxn Yo o EEEAYUEVO HOVTEAN OLOAO-
you. Ilepiopiopol tepthapfdvouy 1o uxpd uéyedoc tou DAIC-WOZ xou 1 yeriorn nopa-
dootaxwy ahyoplduwy. Mehhovtnée xateudivoels agopolv TV evenUdTwor Podindy
vELpwVIXGOY dxtiwy (m.y. RNN, LSTM, transformers), tnv enéxtoon oe multimodal
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0edouéva (exppdoelc TPOGHOTO, PUOLOROYIXS oYuata), To cUvieTes TeEYVIXEC oOVTINENG
YUEAUXTNELO TIXGY o TN Yeror transfer pdinone. Xuvohixd, n epyacio mpowdel TV auTod-
wotn extiunomn e xotddiung, elodyovac véeg UeddBoug xou ETOTUUVOVTIC TEOXAACELS
%o BUVITOTNTES Yia Pehtiwon.
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Chapter 1

Introduction

Depression is a leading cause of disability worldwide and represents a major challenge
for public health systems. Depression (also major depression, major depressive disorder,
or clinical depression) is the most prevalent mood disorder, characterized by a persis-
tently low mood, diminished interest in activities, impaired cognitive function, and a
range of symptoms that disrupt daily functioning [43, 47]. According to the World
Health Organization, an estimated 280 million people, including 5% of all adults, have
experienced depression [71].

Beyond its high prevalence, depression is associated with significant morbidity and
mortality. It is closely linked to high rates of suicide, with approximately 50% of
individuals who have committed suicide having a primary diagnosis of depression .
Suicide remains one of the leading causes of death among young adults worldwide,
highlighting the urgent need for effective identification and intervention strategies [68,
90]. Additionally, depression frequently coexists with other chronic diseases, leading to
more severe health outcomes than either condition would cause on its own [53].

These findings, along with the high suicide rate, highlight the importance of prioritiz-
ing the diagnosis and treatment of depression as a public health issue in order to lower
disability rates, reduce disease burden, and mitigate depression’s major complications
at the individual level. Early detection and intervention are critical, as untreated de-
pression can lead to chronic disability, reduced productivity, and increased healthcare
costs [82]. Despite this, many individuals with depression remain undiagnosed or un-
dertreated due to stigma, lack of access to mental health services, and limitations in
current diagnostic methods [53, 68, 90].

The current diagnosis of depression is based on a clinical examination, with the DSM-V
criteria being the standard approach [81]. To be diagnosed with depression, a person
must exhibit persistent symptoms for more than two weeks. According to the DSM-
V, five or more of the following symptoms must be present during the same two-week
period, indicating a change from previous functioning. At least one of these symptoms
must be either a depressed mood or a loss of interest or pleasure to classify as depression.
In total, there are nine equally important symptoms that assess the patient’s mood,
fatigue, loss of interest and concentration, as well as changes in sleep, agitation, and
weight [24, 81].
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This approach relies on the patient’s ability to report their symptoms and respond to
the physician’s questions. However, these reports are often subjective and can be in-
fluenced by factors such as recall biases (e.g., downplaying or exaggerating symptoms),
cognitive limitations (e.g., memory of episodes and environment, causal inference), and
social stigma [66]. Additionally, subjective factors like patients’ expressions, cultural
background, and attitudes can complicate the diagnosis of depression, increasing the
likelihood of misdiagnosis [66]. Another drawback to the current method is that clini-
cians may overlook depression unless the patient shows clear signs of sadness. Patients
often emphasize physical symptoms, making it hard to tell if a symptom is due to de-
pression or another condition [81]. Moreover, a major drawback of the current method
is that clinical symptoms must persist for at least two weeks to confirm a diagnosis of
depression, which can lead to limited care or treatment for patients during the early
stages of the disorder [24].

These challenges underscore the urgent need for objective, data-driven methods to
support and enhance the diagnosis of depression. Advances in digital health technologies
and artificial intelligence offer promising avenues to complement traditional clinical
assessments. For instance, machine learning algorithms can analyze complex patterns
in speech, facial expressions, and language use that may be indicative of depression,
potentially enabling earlier and more accurate detection [86]. Wearable sensors and
mobile apps can continuously monitor behavioral and physiological signals, providing
real-time data that can inform diagnosis and treatment [59]. Such objective measures
could reduce reliance on subjective self-report and help overcome barriers related to
stigma and cultural differences.

1.1 Motivation

Given the subjectivity and delays inherent in the current diagnostic practices, machine
learning offers a promising avenue for developing more objective and timely tools for
depression estimation. Machine learning is increasingly being utilized for depression
estimation, with researchers focusing on the collection and analysis of mental-health
related data and also the development of models for depression prediction. This thesis
focuses on the development of a pipeline that utilizes a feature extraction mechanism.
Specifically, the DAIC-WOZ dataset is utilized to extract features, and multiple versions
of the dataset are created to evaluate the predictive performance of machine learning
models in diagnosing depression.

In terms of feature extraction, this study focuses on extracting audio features using the
pyAudioAnalysis library, as well as audio embeddings from interview recordings and text
embeddings derived from their transcriptions. Another aspect of the feature extraction
process involves role-based extraction, where the aforementioned types of features are
separately extracted for both the participant and the interviewer. This approach is
intended to assess the significance of each role in the depression prediction process.
The objective not only to extract these features but also to evaluate whether their
combination could enhance the accuracy of depression estimation. The combination
involved integrating both the different types of features (audio and text) and the role-
based aspect.
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1.2 Thesis Contribution

This thesis makes several significant contributions to the field of automatic depression
estimation through feature extraction and machine learning. The primary contributions
are as follows:

e Development of a Feature Extraction Pipeline:

Introduction of a novel pipeline for extracting audio features, audio embeddings,
and text embeddings from the DAIC-WOZ dataset.

* Role-Based Feature Analysis:

Implementation of a role-based extraction method that independently processes
features for both the participant and the interviewer. This approach offers new
insights into the significance of each role in depression estimation, highlighting
the influence of interaction dynamics on predictive accuracy.

¢ Creation of Different Dataset Versions:

Generation of multiple dataset versions, each incorporating different combinations
of extracted features. This enables a comprehensive evaluation of how feature sets
affect model performance and contributes to optimizing predictive accuracy.

« Advancements in Automatic Depression Estimation (ADE):

Application of machine learning techniques to the extracted features to improve
depression detection. The proposed methods support the development of reliable
tools for the diagnosis and monitoring of depression.

These contributions not only advance the academic understanding of depression esti-
mation but also have practical implications for the development of more accurate and
accessible diagnostic tools in mental health care. In contrast to previous studies, this
thesis introduces a role-based feature extraction approach, enabling a more nuanced
analysis of interaction dynamics in depression estimation.

1.3 Thesis Outline

This thesis is organized into five chapters. The initial chapters provide the foundational
theoretical knowledge essential for this thesis, covering both the topic of depression
and the technical aspects such as feature extraction, machine learning techniques, and
models. The latter part of the thesis is primarily focused on the experimental work,
detailing the methodologies employed and the results obtained. More specifically:

« The present chapter (Chapter 1) provides a brief introduction, aiming to clarify
the research problem and the motivation behind the study, while also outlining
the overall structure of the thesis.

o Chapter 2 introduces an overview of depression and also the key concepts of
artificial intelligence that are utilized for the scope of this thesis.
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o Chapter 3 discusses the materials and methods used, provides an overview of the
data, and describes the modeling approaches employed in the study.

o Chapter 4 details the experimental setup, presents the results obtained, and in-
cludes a discussion of the findings.

o Chapter 5 concludes the thesis and proposes directions for future research in
automatic depression estimation.
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Chapter 2

Background and Related Work

2.1 Depression Symptoms and Biomarkers

Depression, a complex mental health disorder, significantly impacts an individual’s
emotional state, cognitive functions, physical well-being and can also manifest in the
individual’s speech [34]. Altered speech patterns in individuals with psychiatric disor-
ders are observed, noting characteristics such as monotone speech in depression [54].
Understanding how depression alters voice acoustics and identifying measurable fea-
tures can provide valuable insights into diagnosis, severity assessment, and treatment
monitoring [34, 54].

2.1.1 Symptoms of Depression and Their Impact on Speech

The Diagnostic and Statistical Manual of Mental Disorders (DSM-5) identifies psy-
chomotor impairment as a key symptom of depression. This impairment often presents
through reduced speech volume, inflection, lack of content variety, and can even be
linked to muteness [54]. In addition, imbalances in serotonin, dopamine, and nore-
pinephrine disrupt mood regulation and cognitive functions, which in turn affect vocal
prosody and speech fluency. Neuroinflammation and dysregulation of the hypothalamic-
pituitary-adrenal (HPA) axis influence the autonomic nervous system, leading to changes
in vocal fold tension and respiratory patterns. These physiological alterations often re-
sult in flatter intonation, slower speech rate, and increased articulation errors among
individuals with depression. Psychosocial factors, such as social withdrawal and reduced
motivation, further compound these effects, making speech a rich source of biomarkers
for depression detection [51, 77].

Moreover, the relationship between neurotransmitters and vocal characteristics is both
complex and significant. For instance, gamma-aminobutyric acid (GABA), a neuro-
transmitter linked to increased susceptibility to depression and suicidality, has been
shown to influence muscle tonicity. Alterations in muscle tension can affect the dynam-
ics of the vocal tract, thereby restricting articulatory movements and further contribut-
ing to the speech abnormalities observed in depression [54].

In Summary the core symptoms of depression and their effects on speech are as follows:
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1. Emotional Changes: Persistent sadness, anhedonia (loss of interest), and feel-
ings of hopelessness. Positive emotions correlate with a higher-pitched, louder,
and faster voice, while negative emotions are characterized by lower volume, slower
speech, and longer pauses [54].

2. Cognitive Impairment: Difficulty concentrating and making decisions. Cogni-
tive load increases pause frequency and duration in speech [34].

3. Behavioral Changes: Social withdrawal and reduced activity levels. This can
contribute to reduced speech volume or monotone speech [54].

4. Physical Symptoms:

Psychomotor impairment manifests as reduced speech volume, inflection,
lack of content variety, and can even lead to muteness [54].

Muscle tension, especially in the neck, shoulders, and jaw, affects the larynx
and vocal cords, leading to a strained or constricted voice.

Reduced facial expression affects articulation, decreasing precision and clar-
ity of speech [54].

Alterations in respiratory muscles affect subglottal pressure, impacting speech
production [37].

Neurochemical imbalances (serotonin, dopamine, norepinephrine) disrupt
mood regulation and cognitive functions, influencing vocal prosody and speech
fluency.

Neuroinflammation and dysregulation of the hypothalamic-pituitary-adrenal
(HPA) axis impact the autonomic nervous system, causing changes in vocal
fold tension and respiratory patterns, resulting in flatter intonation, slower
speech rate, and increased articulation errors.

Changes in gamma-aminobutyric acid (GABA) levels affect muscle tonicity,
restricting articulatory movements and contributing to speech abnormalities

[54].

2.1.2 Acoustic Features Affected by Depression

The symptoms of depression, though often subtle, can be systematically measured
through acoustic features such as pitch variability, speaking rate, pause duration, and
voice quality markers like jitter [52].

In order to determine the appropriate biomarkers, it is important to examine the process
of speech. The brain organizes prosodic information, produces neuromuscular instruc-
tions that control the activities of muscles and tissues related to phonation movement.
Next, the airflow stream out of the lungs either causes the vocal cords to vibrate (when
the glottis is closed) or passes through the vocal cord smoothly (when the glottis is
open). The oropharyngeal muscle forms the main channel of phonation, which is equiv-
alent to a filter that can amplify or attenuate the sound of a specific frequency.
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The vocal changes that occur due to depression and affect the aforementioned processed
can be measured by characteristics of the speech signal. The most notable affected
acoustic characteristics in depression are the following:

. Speech production: Lower in depressed individuals.
. Pitch and Intonation: Lower in depressed individuals

. Intensity of sound: Lower in depressed individuals

1
2
3
4. Pause length and speech-to-pause ratio: Higher in depressed individuals
5. MFCCs: Analyze subtle differences in voice emotion.

6

. Fundamental Frequency (F0): Generated by vocal cord vibrations, is lower in
depressed individuals.

7. Zero-Crossing Rate (ZCR): Rate at which a signal crosses the zero amplitude axis.
Used to differentiate voiced from voiceless sounds.

8. Harmonic-to-Noise Rarion (HNR): Reflects the strength of harmonic signals rel-
ative to noise.

In conclusion voice acoustic features hold promise as objective biomarkers for depres-
sion, with potential applications in monitoring treatment progress. Machine learning
models can be used to predict depression severity and assess treatment response [58].

2.2 Audio Analysis Systems

Audio analysis systems are computational tools that extract meaningful patterns from
audio signals by combining signal processing and machine learning. Audio analysis sys-
tems use feature extraction techniques to transform raw audio signals into higher-level
representations, enabling applications such as emotion detection, speaker recognition,
and event classification [84, 75].

Key components of audio analysis systems typically include signal acquisition, feature
extraction, and machine learning integration. The feature extraction process involves
analyzing temporal, spectral, and cepstral domains to capture a comprehensive rep-
resentation of the audio signal. These extracted features are then used by machine
learning algorithms to identify patterns and make predictions or classifications based
on the audio content [84].

Audio features are categorized into three groups: high-level, mid-level, and low-level.
High-level features describe abstract characteristics like rhythm, melody, tempo, and
mood, while mid-level features focus on pitch, beat patterns, and MFCCs (Mel-Frequency
Cepstral Coefficients). Low-level features include statistical measures such as amplitude
envelope, energy, and zero-crossing rate. These features are extracted over different time
frames: instantaneous (20-100 milliseconds), segment-level (2-20 seconds), and global
(entire audio). Time-domain extraction reveals properties like signal energy and am-
plitude, while frequency-domain analysis uncovers spectral content and band energy.
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Together, these features enable the manipulation of audio signals, such as noise reduc-
tion and balancing time-frequency ranges, making them essential for tasks like speech
processing, music analysis, and sound classification [75].

2.2.1 Audio Features for Depression

As mentioned in section 2.1, there are several acoustic characteristics that act as in-
dicators for depression, depression biomarkers. These characteristics can be directly
related to specific audio features. This means that by using audio features, we can
establish a clear correlation with depression and thus predict it using audio analysis
systems [54, 58].

The following Table (table 2.1) shows the connection between depression symptoms
and audio features.

Table 2.1: Depression Symptoms Related to Speech and Corresponding Acoustic Fea-
tures for Tracking

Depression Symptoms (Speech) Acoustic Features for Tracking
Reduced speech volume Loudness: Measures the intensity of
speech, which is often lower in de-
pressed individuals.

Monotonous or flat speech prosody Fundamental Frequency (F0): Tracks
pitch variations, which tend to de-
crease in depression, leading to
monotony.

Frequent pauses or slowed speech Pause Duration and Variability:
Quantifies the length and frequency
of pauses, which are longer and more
frequent in depression.

Limited variability in speech content Mel-Frequency Cepstral Coefficients
(MFCCs): Reflect subtle changes in
vocal tract dynamics and emotional
tone.

Hoarse or rough voice quality Harmonic-to-Noise Ratio (HNR):
Measures the ratio of harmonic sound
to noise, which decreases in depres-
sion.

Reduced articulation or slurred speech | Zero-Crossing Rate (ZCR): Tracks
transitions between voiced and voice-
less sounds, often altered in depres-
sion.

Slowed speech rhythm Speech Rate: Monitors the number of
words spoken per minute, which tends
to decrease in depression.
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2.2.2 Audio Processing

2.2.2.1 Short-Term Audio Processing

Short-term processing is a technique in which the audio signal is divided into small over-
lapping or non-overlapping frames (or windows), typically lasting 20-100 milliseconds.
The split into windows is important because sound signals are not static over time, on
the contrary this segmentation assumes that the signal remains stationary within each
frame, meaning its statistical properties do not change significantly during this short
duration [85].

2.2.2.1.1 Mathematical Basis

Given a sound signal z(n),n =0,..., N — 1 that is N samples long. At each processing
step the signal is multiplied with a shifted version of a finate duration window function
w(n). The resulting signal at the ith step is the following:

zi(n) =z(n)wn—-—m;), i=0,...,K—1

where K is the number of frames and m; is the number of samples by which the window
is shifled in order to obtain the ith frame. Also important metrics are the window length
W, and the step size Wg.

The total number of segments in which the signal is divided is calculated as:

N —-W,
TR
S
[85]
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Figure 2.1: Signal Splitting in Windows [38].

2.2.2.2 Mid-Term Audio Processing

In mid-term processing, the audio signal is initially divided into larger segments, referred
to as mid-term windows, which typically range in duration from 1 to 10 seconds. Each
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mid-term segment undergoes short-term processing to extract features. These mid-term
windows are characterized by homogeneity in their behavior, making it appropriate to
compute statistical features on a segment-by-segment basis.

In many practical applications, mid-term feature extraction is employed to achieve a
more comprehensive representation of the audio signal over extended periods. Instead
of generating multiple feature vectors for each mid-term segment, it is often preferable
to produce a single, consolidated feature vector that represents the entire sound. This is
accomplished by averaging the statistical features derived from the mid-term segments,
resulting in a unique vector [85].

2.2.3 Audio Features

An audio signal is a type of signal that carries information within the range of audio
frequencies. Audio representation involves extracting key attributes or characteristics
of an audio signal that reflect its acoustic composition—both in the time domain and
frequency domain—as well as its behavior over time. This process is typically paired
with feature selection, which identifies the most suitable features for the intended ap-
plication of the audio signal. The primary objective is to extract features from audio
data (such as speech) that can provide valuable information for training models.

The audio signal is divided into short-term windows, and specific characteristics are
calculated for each window. From these, statistical values are computed over medium-
term windows to summarize the signal’s properties. There are numerous metrics that
can be employed as features in audio analysis, and this section briefly describes some
of the features used in system design.

Analyzing audio signals involves extracting various features that can be categorized into
several types. These features are essential for understanding and processing audio data
in applications like speech recognition, music classification, and audio event detection.
Below is a comprehensive list of different types of audio features:

2.2.3.1 Time-Domain Features

o Amplitude Envelope: Captures the overall amplitude changes over time in an
audio signal.

« Root-Mean-Squared Energy (RMS): Measures the average energy level of
the signal.

o Zero Crossing Rate (ZCR): Indicates how often the signal crosses the zero
amplitude.

o Mean Absolute Value (MAV): Reflects the average absolute amplitude of the
signal.

« Standard Deviation (SD): Measures the variability of the signal’s amplitude.

o Kurtosis and Skewness: Provide insights into the distribution of the signal’s
amplitude.
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2.2.3.2 Frequency-Domain Features

+ Mel-Frequency Cepstral Coefficients (MFCCs): Capture the spectral en-
velope of an audio signal.

e Spectral Centroid: Measures the weighted mean of the frequency components.

« Band Energy Ratio: Compares the energy levels across different frequency
bands.

o Spectrogram: A visual representation of the frequency content over time.

e Spectral Flux: Measures the rate of change of the spectral power distribution
over time.

» Spectral Rolloff: The frequency below which a certain percentage of the signal’s
total energy is contained [67, 89, 73].

2.2.3.3 Perceptual Features

+ Gammatone-Frequency Cepstral Coefficients (GFCCs): Formed by pass-
ing the spectrum through a Gammatone filter bank.

« Bark-Frequency Cepstral Coefficients (BFCCs): Based on the Bark scale.

» Power-Normalized Cepstral Coefficients (PNCCs): Designed to improve
robustness against noise and channel effects [73].

2.2.3.4 Dynamic Features
o Delta Coefficients: Represent the rate of change of static features over time.
o Acceleration Coefficients: Measure the rate of change of delta coefficients.
o Temporal Trajectories: Describe the evolution of features over longer intervals
(67, 89].
2.2.3.5 Cepstral Features

+ Mel-Frequency Cepstral Coefficients (MFCCs): Capture the spectral en-
velope of an audio signal.

« Gammatone-Frequency Cepstral Coefficients (GFCCs): Similar to MFCCs
but use a Gammatone filter bank.

« Bark-Frequency Cepstral Coefficients (BFCCs): Based on the Bark scale
[73].

2.2.3.6 Prosodic Features
o Pitch: The perceived highness or lowness of a sound.

e Intonation: The rise and fall of pitch in speech.
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» Speed of Speech: Influences the perception and understanding of spoken lan-
guage [89, 73].

2.2.3.7 Chroma Features

o Chroma Energy Normalized (CENS): Represents the distribution of energy
across different musical notes.

e Chroma STFT: A short-time Fourier transform representation of chroma fea-
tures [67].

2.2.3.8 Other Features

o Autocorrelation: Measures the similarity of the signal with itself at different
time lags.

« Cross-Correlation: Measures the similarity between two different signals [89].

2.2.4 pyAudioAnalysis Features

pyAudioAnalysis is a Python library designed for audio analysis tasks such as feature ex-
traction, segmentation, classification, and visualization. It implements both short-term
and mid-term processing methodologies. The library supports various audio analysis
tasks, including feature extraction from time and frequency domains, classification,
regression, and segmentation [83].

The following Table contains the short-term audio features that the library extracts:

It is also important to note that there is a variety of audio feature extraction libraries are
available for affective computing, each with distinct strengths and limitations. OpenS-
MILE is widely recognized for its comprehensive set of low-level descriptors, including
pitch, energy, and spectral features, and is frequently used in emotion recognition chal-
lenges. Librosa, a Python-based library, offers a flexible framework for audio analysis,
allowing for rapid prototyping and custom feature extraction, though it is less spe-
cialized for affective signals. pyAudioAnalysis, used in this thesis, provides a balance
between ease of use and a robust set of features tailored for speech and music analy-
sis, making it suitable for depression estimation tasks. However, each library presents
challenges in terms of computational efficiency, scalability, and compatibility with real-
world noisy data.

2.2.5 Pretrained Audio Embeddings

The process of audio analysis, as previously mentioned, encompasses a wide range
of tasks such as speech recognition, speaker identification, and emotion recognition.
Central to all these tasks is the need for effective audio representations. Traditionally
handcrafted audio features, like those described in the earlier section, are used.

Although handcrafted features have achieved notable success, they come with signif-
icant limitations. First, they require a great deal of manual effort and fine-tuning to
adapt to different audio tasks. Additionally, these features primarily capture low-level
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Index Name Description

1 Zero Crossing Rate | The rate of sign-changes of
the signal during the duration
of a particular frame.

2 Energy The sum of squares of the
signal values, normalized by
the respective frame length.

3 Entropy of Energy | The entropy of sub-frames’
normalized energies. It can be
interpreted as a measure of
abrupt changes.

4 Spectral Centroid | The center of gravity of the
spectrum.

5 Spectral Spread The second central moment of
the spectrum.

6 Spectral Entropy | Entropy of the normalized
spectral energies for a set of
sub-frames.

7 Spectral Flux The squared difference be-

tween the normalized mag-
nitudes of the spectra of the
two successive frames.

8 Spectral Rolloff The frequency below which
90% of the magnitude dis-
tribution of the spectrum is
concentrated.

9-21 MFCCs Mel Frequency Cepstral Coef-
ficients form a cepstral repre-
sentation where the frequency
bands are not linear but dis-
tributed according to the mel-
scale.

22-33 Chroma Vector A 12-element representation
of the spectral energy where
the bins represent the 12
equal-tempered pitch classes
of western-type music (semi-
tone spacing).

34 Chroma Deviation | The standard deviation of the
12 chroma coefficients.

Table 2.2: Audio Features Extracted by pyAudioAnalysis [83].
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acoustic details and often fail to represent higher-level information, such as emotions
or environmental context. Furthermore, handcrafted features can be sensitive to back-
ground noise and recording conditions, which reduces their robustness.

To address these shortcomings, researchers have increasingly utilized pretrained audio
embeddings. These embeddings are vector representations generated by deep neural
networks trained on large and diverse collections of audio data, often using supervised
or self-supervised learning methods. Unlike handcrafted features, these embeddings
are learned automatically, allowing the model to discover optimal representations for
capturing complex acoustic and semantic patterns [49].

A notable example of this approach is the work by Kong et al. (2019) on Pretrained Au-
dio Neural Networks (PANNs). The PANNs architecture, particularly the Wavegram-
Logmel-CNN model, combines learnable waveform-based features (wavegram) with tra-
ditional Mel-spectrogram inputs to leverage complementary information from raw audio
and spectral representations.

PANNSs achieved excellent results on audio tagging tasks, performing better than tra-
ditional feature-based methods and even other deep learning models that were trained
from scratch. What makes PANNs especially valuable is that the audio embeddings
they produce can be used for many different tasks. For example, these embeddings
worked well for classifying different acoustic environments and detecting specific sound
events. This flexibility shows that pretrained audio embeddings are powerful and can
serve as general-purpose representations for a variety of audio analysis applications [42].

2.2.6 wav2vec 2.0

As discussed earlier, pretrained audio embeddings have revolutionized audio signal pro-
cessing by providing transferable representations learned from large-scale data. Among
these, wav2vec 2.0 stands out as a landmark model that learns speech representations
directly from raw audio waveforms through self-supervised learning. Unlike traditional
handcrafted features or earlier neural network embeddings, wav2vec 2.0 effectively cap-
tures both low-level acoustic patterns and higher-level linguistic structures, leading to
improved results across a variety of speech-related tasks [33].

The wav2vec 2.0 framework is designed for self-supervised learning of speech represen-
tations by masking segments of latent audio features and training the model to solve
a contrastive task over discrete, quantized speech units. More specifically, the model
first learns powerful representations from large amounts of unlabeled speech audio.
Subsequently, it is fine-tuned on smaller sets of transcribed speech data, outperform-
ing previous semi-supervised approaches that relied heavily on labeled data. This is
particularly important because, although neural networks generally benefit from large
volumes of annotated data, such labeled datasets are often scarce and expensive to
obtain.

The core idea behind wav2vec 2.0 is to encode raw speech audio using a multi-layer con-
volutional neural network, producing latent speech representations. Portions of these
latent features are then masked, in a manner similar to masked language modeling in
natural language processing. The masked latent representations are passed through
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a Transformer network, which constructs contextualized embeddings by capturing de-
pendencies across the entire sequence. The model is trained with a contrastive loss,
where it must correctly identify the true latent representation from a set of distractors,
thereby encouraging the learning of meaningful and discriminative features [33].

2.2.6.1 wav2vec 2.0 Architecture

The model architecture consists of several key components, as pictured in Figure 2.2:

o A multi-layer convolutional feature encoder defined as a function:

f:X—>2Z
which takes raw audio input X and produces latent speech representations
Zi,...,Z7

over T' discrete time steps.

These latent representations are then fed into a Transformer network
g:Z2—=¢C

which generates contextualized outputs
Ci,...,Cr

that capture information from the entire audio sequence.

To enable the self-supervised learning objective, the continuous latent outputs of
the feature encoder are discretized into quantized representations q; through a
quantization module.

Z— Q

The following provides a detailed analysis of each component of the model:

1.

Feature Encoder: The feature encoder is composed of multiple blocks, each
containing a temporal convolutional layer followed by layer normalization and a
GELU activation function. Before processing, the raw waveform input is normal-
ized to have zero mean and unit variance, which helps stabilize training. The
encoder’s total stride determines the temporal resolution of the latent representa-
tions, i.e., the number of time steps 1" that are subsequently input to the Trans-
former network.

Contextualized Representations with Transformers: The latent speech
representations produced by the feature encoder are passed to a context network
based on the Transformer architecture. Rather than using fixed positional em-
beddings that encode absolute positions, wav2vec 2.0 employs a convolutional
layer to provide relative positional information. The output of this convolutional
layer is combined with the input representations, followed by a GELU activation
and layer normalization, which improves the model’s ability to capture relative
positional dependencies in the speech signal.
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3. Quantization Module: For the self-supervised training objective, the con-
tinuous latent representations z from the feature encoder are discretized into a
finite set of speech units using product quantization. This approach was shown
to be effective in previous work that first learned discrete speech units and then
trained contextualized models. Product quantization works by selecting quan-
tized vectors from multiple codebooks and concatenating them to form a discrete
representation. Specifically, given G codebooks (also called groups), each con-
taining V entries e € RV*#¥ the model selects one entry from each codebook.
These selected vectors ey, ..., eq are concatenated and passed through a linear
transformation

R? — Rf

to produce the final quantized representation q € R/.

To allow the selection of discrete codebook entries to be differentiable, wav2vec 2.0
employs the Gumbel softmax technique. Using the straight-through estimator,
the model performs G hard Gumbel softmax operations. The feature encoder
output z is first mapped to logits 1 € R*V and the probability of selecting the
v-th entry in the g-th codebook is calculated as:

exp (122

Zk lexp(gk+nk)7

Pgv = (2.1)

where 7 is a non-negative temperature parameter controlling the softness of the
distribution, n = —log(—log(u)) represents Gumbel noise, and w are samples
drawn uniformly from the interval U(0,1). During the forward pass, the discrete
codeword 7 is selected as

1= arg m]axpgvj,

while during the backward pass, gradients are propagated through the softmax
outputs using the straight-through estimator, enabling end-to-end differentiable
training.

Contrastive loss

L
Context C
representations
Transformer
Masked
Quantized é é
representations Q @

Latent speech Z
representations

CNN

Figure 2.2: Illustration of our framework which jointly learns contextualized speech
representations and an inventory of discretized speech units [33]
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2.2.6.2 wav2vec 2.0 Training
Self-Supervised Pre-Training

The core innovation in wav2vec 2.0 is it’s self-supervised pre-training objective, which
is inspired by masked language modeling (as used in BERT for text). The pre-training
process involves the following steps:

o Masking: A certain proportion of the latent representations output by the fea-
ture encoder are randomly masked. These masked representations are replaced
with a learned mask vector before being fed into the context network.

o Contrastive Learning Objective: For each masked time step, the model is
tasked with identifying the correct quantized latent audio representation from a
set of distractors. This is a contrastive task: the model must distinguish the
true quantized representation from several negative samples. The contrastive loss
encourages the model to learn representations that are predictive of the underlying
speech content, even in the absence of labels.

e Joint Learning: The model jointly learns the quantization codebooks and the
contextualized speech representations. This end-to-end approach is more effective
than previous methods that learned discrete units and contextual representations
in separate steps.

Fine-Tuning for Speech Recognition

After pre-training on large amounts of unlabeled speech, wav2vec 2.0 can be fine-tuned
for downstream speech recognition tasks using a relatively small amount of labeled data.
The pre-trained model is connected to a linear layer and trained with Connectionist
Temporal Classification (CTC) loss on transcribed speech. Fine-tuning adapts the
learned representations for the specific task of speech-to-text conversion.

In conclusion, wav2vec 2.0 represents a major step forward in self-supervised learn-
ing for speech. By learning powerful and transferable representations from raw audio,
it greatly reduces the need for large labeled datasets and opens up new possibilities
for speech recognition in low-resource languages and domains. The model’s archi-
tecture—combining a CNN encoder, Transformer context network, and quantization
module—enables it to capture both local and global patterns in speech, making it a
versatile foundation for a wide range of speech processing tasks [33].

2.3 Text Analysis Systems

Similarly to Audio Analysis Systems, there are two main tasks with the Text Analysis
Systems. The first is Text Preprocessing and Generating Text Embeddings.

2.3.1 Text Preprocessing

Text preprocessing is a crucial step that transforms raw, unstructured text into a
structured format suitable for analysis and modeling. This process includes several
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techniques to remove noise and inconsistencies, making the data more uniform and
manageable for NLP models. Key techniques include:

o Segmentation: Breaking down text into sentences or smaller units.
o Tokenization: Splitting text into individual words or tokens.
o Lowercasing: Converting all text to lowercase for uniformity.

« Removal of Punctuation and Special Characters: Removing non-alphanumeric
characters.

o Stopword Removal: Removing common words like "the,” ”"and,” etc., that do
not add much value to the meaning.

» Stemming/Lemmatization: Reducing words to their base form to reduce vo-
cabulary size. Lemmatization preserves the meaning by converting words to their
base form using dictionaries, unlike stemming, which may lose meaning.

o Text Normalization: Standardizing words to their canonical form (e.g., "real
time” to "realtime”) [27].

2.3.2 Text Embeddings

After preprocessing, the next step is the embeddings extraction, which can be done
using either Word Embeddings or Sentence Embeddings.

« Word Embeddings: Techniques like Word2Vec and GloVe create word-level
embeddings based on word contexts. Word2Vec uses windowed text sampling to
create embeddings for individual words, while GloVe uses global matrix factor-
ization.

» Sentence Embeddings: Models like BERT, SBERT and OpenAl’s text-embedding
models generate embeddings for entire sentences or documents, capturing contex-
tual semantics effectively.

2.3.3 GloVe Embeddings

2.3.3.1 Introduction

GloVe (Global Vectors for Word Representation) is a widely used method for learning
word embeddings—dense vector representations of words—by leveraging global word co-
occurrence statistics from a corpus. Unlike earlier methods that focus either on global
matrix factorization (like LSA) or local context window predictions (like word2vec),
GloVe effectively combines the strengths of both approaches to yield embeddings that
capture both the global statistical information and the linear substructure of word
meaning.

Traditional approaches to word embeddings fall into two main categories:

* Global Matrix Factorization Methods: Techniques such as Latent Seman-
tic Analysis (LSA) decompose large matrices (e.g., term-document or term-term
matrices) to capture statistical information about word occurrences in a corpus.

29



While these methods efficiently use global statistics, they often fail to capture cer-
tain linguistic regularities, such as analogical relationships (e.g., “king” — “man”
+ “woman” & “queen”).

« Local Context Window Methods: Models like skip-gram and CBOW (con-
tinuous bag-of-words) predict words based on their local context windows. These
methods excel at capturing fine-grained semantic and syntactic relationships but
do not fully exploit the global co-occurrence statistics present in the corpus.

GloVe was designed to bridge this gap by constructing word vectors that directly encode
the ratios of co-occurrence probabilities, which are shown to be particularly informative
for distinguishing word meanings.

2.3.3.2 Theoretical Foundation

The core insight behind GloVe is that word meaning can be captured by examining how
frequently words co-occur with other words across a large corpus. Specifically, GloVe
models the ratios of co-occurrence probabilities. Consider two target words, ¢ and 7,
and a context word k. The ratio of probabilities that k& appears in the context of i
versus j (Py,/Pj) can highlight aspects of meaning that differentiate i from j.

For example, the ratio of the probability that “solid” appears with “ice” versus “steam”
is much greater than one, indicating a strong association with “ice.” Conversely, the
ratio for “gas” is much less than one, indicating a strong association with “steam.”
Ratios close to one (e.g., for “water”) indicate words equally related to both.

2.3.3.3 Model Formulation

Let X be the word-word co-occurrence matrix, where X;; is the number of times word
J appears in the context of word i. The probability that word k£ appears in the context
of word 7 is:

X
Py, = Xf
where
Xi=Y Xu
k

is the total number of context word appearances for word .

GloVe seeks to find word vectors w; and context word vectors wj, such that their dot
product, plus bias terms, approximates the logarithm of the co-occurrence count:

This formulation is motivated by the desire for the model to be invariant to the ex-
change of word and context word roles, and for the vector space to encode the linear
relationships found in word analogies.
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2.3.3.4 Weighted Least Squares Objective

A naive approach would factorize the log co-occurrence matrix directly. However, this
would treat all co-occurrences equally, including rare or zero co-occurrences, which are
noisy and less informative. To address this, GloVe introduces a weighted least squares
regression objective:

ij=1
where V' is the vocabulary size, and f(z) is a weighting function that controls the
influence of each co-occurrence pair. The function f(x) is designed to:

» Be zero when x = 0 (so pairs that never co-occur do not contribute).

o Increase with x, so frequent co-occurrences are given more weight.

« Saturate for very large z, to prevent extremely frequent pairs from dominating.

A common choice for the weighting function is:

flz) = <xjx> i 2 < Tmax
1 otherwise

with typical values a = 0.75 and z,., = 100.

2.3.3.5 Training Procedure

The GloVe model is trained by minimizing the objective function J over all word
and context word vectors and bias terms, using stochastic gradient descent or simi-
lar optimization methods. The training process iterates over the nonzero entries of
the co-occurrence matrix, updating the vectors and biases to best fit the observed log
co-occurrence counts.

After training, the final embedding for each word can be taken as the sum (or average)
of its word and context word vectors.

2.3.3.6 Properties and Advantages

e Linear Substructure: GloVe embeddings capture linear relationships, making
them suitable for analogy tasks (e.g., “king” — “man” 4+ “woman” & “queen”).

» Efficient Use of Statistics: By focusing on nonzero co-occurrences and weight-
ing them appropriately, GloVe efficiently leverages the vast statistical information
present in large corpora.

e Scalability: The model can be trained on very large corpora, producing high-
quality embeddings for extensive vocabularies.
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GloVe embeddings are a powerful and efficient way to learn word representations that
encode both semantic and syntactic regularities. By directly modeling the global co-
occurrence statistics of words, GloVe produces vector spaces with meaningful substruc-
ture, outperforming many previous methods on tasks such as word similarity and anal-
ogy. The resulting embeddings have become a standard tool in modern NLP pipelines
[48].

2.3.4 SBERT Embeddings

2.3.4.1 Introduction to BERT Embeddings

BERT stands for Bidirectional Encoder Representations from Transformers. It is a
groundbreaking model introduced by Google in 2018 that revolutionized natural lan-
guage processing (NLP) by providing deep, contextualized word embeddings. Unlike
previous models that read text either left-to-right or right-to-left, BERT reads text
bidirectionally, meaning it considers the entire context of a word by looking at the
words before and after it simultaneously. This bidirectional approach allows BERT to
capture more nuanced meanings and relationships in language.

BERT uses a transformer architecture that employs self-attention mechanisms to weigh
the importance of each word in a sentence relative to others. It generates word rep-
resentations that change depending on the context, unlike static embeddings such as
Word2Vec or GloVe. BERT is first pre-trained on large corpora with unsupervised
tasks like masked language modeling and next sentence prediction, and then fine-tuned
on specific NLP tasks such as question answering, sentiment analysis, or named entity
recognition.

However, while BERT excels at understanding word-level context, it was not originally
designed to produce fixed-size sentence embeddings that can be directly compared. For
tasks like semantic similarity or clustering, a single vector representation per sentence
is needed. The problem arises because to compare two sentences using standard BERT,
both sentences must be input together as a pair, which leads to high computational
costs. For example, comparing 10,000 sentences pairwise would require processing about
50 million pairs, making real-time or large-scale applications impractical.

2.3.4.2 Introduction to SBERT Embeddings

Sentence-BERT (SBERT) addresses this limitation by modifying the original BERT ar-
chitecture to create a dual (or twin) network structure where each sentence is encoded
independently into a fixed-size vector embedding, as shown in fig. 2.4. This means each
sentence is passed through the network separately, producing a fixed-length vector that
represents the sentence’s meaning. These sentence embeddings can then be compared
efficiently using simple similarity measures like cosine similarity.

The benefits of SBERT include scalability, enabling fast, large-scale semantic search
and clustering; efficiency, by drastically reducing computational costs through avoiding
pairwise input processing; and practicality, making it suitable for real-world applications
such as information retrieval, duplicate detection, and question answering.[79].
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Figure 2.3: BERT Architecture [88].
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Figure 2.4: The non-Siamese (cross-encoder) model, shown on the left, processes both
inputs simultaneously. In contrast, the Siamese (bi-encoder) model on the right han-
dles inputs independently and in parallel, so each output is generated without de-
pending on the other [88].
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2.3.4.3 SBERT Architecture and Training

SBERT is fine-tuned on datasets such as the Stanford Natural Language Inference
(SNLI) and Semantic Textual Similarity (STS) datasets. The main training objectives
are:

1. Classification Loss: Used for natural language inference tasks, where the model
learns to classify the relationship between sentence pairs (e.g., entailment, con-
tradiction, neutral).

2. Regression Loss: Used for semantic similarity tasks, where the model learns to
predict a similarity score between pairs of sentences.

These objectives ensure that semantically similar sentences are mapped close together
in the embedding space, while dissimilar sentences are mapped further apart.

Since BERT outputs a sequence of token embeddings, SBERT applies a pooling opera-
tion to generate a single fixed-size vector for each sentence. The most effective pooling
strategy found is mean pooling, which averages the token embeddings. Alternatives like
max pooling and using the [CLS] token were also explored, but mean pooling generally
yields the best results [79].

2.3.4.4 SBERT Use Cases
SBERT embeddings are widely used for:

e Semantic Search: Retrieving documents or passages based on semantic similarity
to a query.

o Clustering: Grouping similar sentences or documents for tasks like topic modeling.

» Paraphrase Identification: Detecting duplicate or near-duplicate questions in fo-
rums or databases.

o Information Retrieval: Matching user queries to relevant answers or documents
(79, 20].

2.3.4.5 Advantages and Limitations of SBERT

SBERT allows precomputing embeddings for large corpora, enabling rapid similarity
searches using vector operations. As far as semantic quality, SBERT embeddings cap-
ture deeper semantic relationships than simple word averaging or the [CLS] token ap-
proach. Additionally SBERT’s architecture supports large-scale applications that would
be infeasible with vanilla BERT.

However SBERT’s performance is dependent on the quality and diversity of its training
data. For highly nuanced or context-specific tasks, further fine-tuning may be necessary.

In conclusion SBERT represents a significant advancement in sentence embedding tech-
nology, addressing the limitations of BERT for semantic similarity tasks. Its efficiency,
semantic richness, and scalability make it a crucial tool in both research and industry,
powering applications [79, 20, 88].
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2.4 Machine Learning Theoretical Background

This section provides a comprehensive theoretical overview of artificial intelligence and
machine learning, for understanding the methodologies employed in this thesis.

2.4.1 Algorithms
a. Support Vector Machines

Support Vector Machines (SVMs) in machine learning are supervised learning models
that are used for data-driven modeling and classification.

The Support Vector Machine (SVM) algorithm operates by creating a decision bound-
ary, referred to as a hyperplane, to separate data points into distinct classes within a
high-dimensional feature space [76]. Specifically, in a two-dimensional space, the hyper-
plane is a line that partitions data points into two classes. Extending this concept, in an
N-dimensional space, a hyperplane is defined as having (N-1) dimensions, facilitating
the classification process [74].

For a given classification problem, multiple hyperplanes may be viable. However, the
objective of the SVM is to identify the hyperplane that maximizes the distance between
the hyperplane and the closest data points from each class, i.e. the margin [76]. A larger
margin increases confidence in classification because it shows a clear separation between
the decision boundary and the nearest data points. Thus, the margin indicates how
well the classes are separated within the feature space [74].

The data points closest to the hyperplane are known as support vectors. These sup-
port vectors determine the hyperplane’s position and orientation, greatly affecting the
SVM’s classification accuracy. In fact, SVMs are named after these support vectors
because they "support” or define the decision boundary. Support vectors are essential
for calculating the margin [74].
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2.4.1.1 Hard and Soft Margin

o Hard Margin SVM: This is the ideal scenario where a decision boundary perfectly
separates all data points, with no misclassifications.

e Soft Margin SVM: This approach allows some data points to be misclassified or
lie within the margin, balancing margin maximization and error minimization.

2.4.1.2 Mathematical Formulation
For a linearly separable dataset, the model can be defined mathematically as follows:
function = sign(wx + b)
where the hyperplane that we mentioned above is wx + b = 0.
For every data-point the following constraints are enforced:
e wx —b2>1, fory, =+1

e wx —b< 1, fory, =—1

J

The SVM optimization problem is to minimize the norm of w, [|[w|| = />, w? and
enforcing the constrain y;(wz; — b) > 1 for every data-point.

2.4.1.3 Parameters

When using Support Vector Machines (SVMs), several key parameters need to be tuned
for optimal performance. The parameters we tuned in our experiments are the following;:

o Kernel Function: Most commonly used ’linear’; "poly’, 'rbf’, 'sigmoid’. Different
kernels allow SVMs to handle different types of data. For example, linear kernels
are suitable for linearly separable data, while RBF kernels are more versatile for
non-linear data.

» Regularization Parameter (C): Controls the trade-off between margin maximiza-
tion and misclassification error. A higher value of C means a higher penalty for
misclassifications, potentially leading to overfitting. Increasing C can lead to more
complex models that fit the training data better but may not generalize well to
new data. Often set to 1.0, but needs tuning based on the dataset.

o Kernel Coefficient (Gamma): Used in RBF, polynomial, and sigmoid kernels. It
determines how much influence a single data point has on the decision boundary.
A smaller gamma value means a larger influence of each data point, potentially
leading to overfitting. Often set to ’scale’ or auto’, which automatically computes
gamma based on the data.

b. Gradient Boosting

Gradient boosting is a machine learning technique that builds a strong predictive model
by combining multiple weak models, typically decision trees, into a stronger ensemble
model. As weak models can be defined models that are only slightly better than random
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guessing [65]. This method focuses on correcting errors of earlier models by optimizing
a loss function through gradient descent [25, 60].

Key components of gradient boosting include:

o Weak Learners: Decision trees are commonly used due to their simplicity and
ability to model non-linear relationships effectively [65].

o Additive Model: Predictions from all weak learners are summed to form the final
output, with each new learner trained on residuals from previous steps [60].

o Loss Function: The choice of loss function depends on the problem type and must
be differentiable to facilitate optimization [22].

Gradient boosting has become a cornerstone in machine learning due to its flexibility
and effectiveness in handling structured data [22].
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Figure 2.8: Simple gradient boosting example [57].
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c. XGBoost

XGBoost, short for eXtreme Gradient Boosting, is a powerful machine learning library
that utilizes gradient boosted decision trees to enhance predictive performance.

XGBoost has become renowned for its scalability and efficiency in handling large
datasets. It incorporates several key features that distinguish it from other gradi-
ent boosting algorithms, such as its ability to handle sparse data efficiently using the
weighted quantile sketch algorithm. Additionally, XGBoost offers robust regulariza-
tion techniques, including L1 and L2 penalties, to prevent overfitting. Its parallel tree
structure and cache-aware block design enable fast computation on multicore systems,
making it highly suitable for complex data analysis tasks. Overall, XGBoost’s combi-
nation of speed, scalability, and robust performance has made it a popular choice in
machine learning competitions and real-world applications.

2.4.2 Cross-Validation

Cross-validation is a fundamental technique in machine learning for evaluating model
performance and avoiding overfitting. Instead of relying on a single train-test split (e.g.,
70% training and 30% testing), cross-validation systematically partitions the data to
ensure robust evaluation. The most widely used method is k-fold cross-validation, where
the training data is divided into k equal partitions. In each iteration, one partition is
used as the validation set, while the remaining k-1 partitions are used for training.
This process repeats k times, with each partition serving as the validation set once.
The model’s performance is recorded for each iteration, and the final performance
metric is the average across all folds. While k-fold cross-validation provides a more
reliable estimate of a model’s generalization ability, it can be computationally intensive
due to its iterative nature. Despite this, it remains a cornerstone of model evaluation,
especially when integrated with techniques like grid search for hyperparameter tuning
[78, 4].

2.4.2.1 Leave-One-Out Cross-Validation

Leave-One-Out Cross-Validation (LOOCV) is a specialized cross-validation technique
where each individual observation in the dataset serves as the validation set once, while
the remaining observations form the training set. This process is repeated n times (for
n total samples), ensuring every data point is used exactly once for validation [62].

LOOCYV is ideal for small datasets because it minimizes the use of available training
data, unlike k-fold validation, which reserves a portion of data for validation. This
minimizes bias in performance estimation and ensures robust hyperparameter tuning
during gridsearch [1, 91]. By averaging results across all iterations, LOOCV provides a
nearly unbiased estimate of model generalization error [62, 91]. Additionally, gridsearch
with LOOCYV mitigates the overfitting risk by evaluating hyperparameters across diverse
training-validation splits and thus reducing the likelihood of overfitting to a specific
subset. This is crucial for small datasets, where random splits might disproportionately
affect model evaluation [1]
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A key limitation of LOOCYV is its potential for high variance in error estimation because
each iteration trains the model on nearly identical datasets (n-1 samples), the resulting
performance metrics are highly correlated and and may fail to reliably capture the
model’s true generalization ability [1].

2.4.3 Hyperparameter Tuning

Hyperparameters are essential external variables in machine learning that optimize
model training. They are set manually before training and control how the model
learns from data. By defining these hyperparameters, the model’s development can
be tailored to achieve specific goals, influencing its structure and behavior. This op-
timization is crucial for improving model performance and ensuring it meets desired
outcomes. Hyperparameters are often associated with a model’s architecture, learning
rate, and complexity. In contrast, parameters are internal values that a model learns
and continually updates during training to find the optimal settings that best fit the
data [12, 61].

Identifying hyperparameters requires understanding the specific machine learning algo-
rithm being used, as each model has its unique set of configurations [61].

Hyperparameter tuning involves selecting the best values for a machine learning model’s
hyperparameters. This process typically includes setting a range of possible values for
each hyperparameter, training the model with different combinations, and evaluating
performance on a validation set. The aim is to find a balance that avoids underfitting
and overfitting. Hyperparameter tuning can be done manually, relying on intuition and
observation, or automatically using systematic search methods. The best strategies for
hyperparameter tuning are:

o Gridsearch: Gridsearch is the method chosen for the experimental part of this
thesis. Gridsearch is a hyperparameter tuning technique that systematically per-
forms an exhaustive search over a predefined grid of hyperparameters. In this
context, the grid represents all possible combinations of hyperparameters and
their corresponding values. Grid search evaluates each combination of these hy-
perparameters, that correspond to a "grid” point, to identify the set that yields
the best model performance, typically measured using cross-validation [70].

¢ Randomized Search

» Bayesian Optimization[61]

2.4.3.1 Hyperparameters in Support Vector Machines (SVMs)

Support vector machines are highly dependent on hyperparameters like the kernel type,
regularization parameter and gamma.

2.4.3.2 Hyperparameters in XGBoost

In XGBoost, there are two main types of hyperparameters: tree-specific and learning
task-specific.
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Hyperparameter Description and Effect

Kernel Type Defines the type of decision boundary (e.g., linear,
polynomial, radial basis function).

Regularization Parameter (C) | Controls the trade-off between fitting the training
data closely and maintaining a smooth decision
boundary.

- Small C: More generalized model

- Large C: Focuses on fitting training data

Gamma () Determines the influence of a single training point.
- High ~: Captures fine-grained patterns, risks
overfitting
- Low ~: Smoother, more generalized decision
boundary

Table 2.3: Summary of SVM Hyperparameters [26]

o Tree-specific hyperparameters control the construction and complexity of the de-
cision trees.

» Learning task-specific hyperparameters control the overall behavior of the model
and the learning process [8].

Parameter Description and Effect

max_depth Maximum depth of a tree. Deeper trees can capture more
complex patterns in the data, but may also lead to overfit-
ting.

min_child_weight Minimum sum of instance weight needed in a child. This

parameter can be used to control the complexity of the de-
cision tree by preventing the creation of too small leaves.

subsample Percentage of rows used for each tree construction. Low-
ering this value can prevent overfitting by training on a
smaller subset of the data.

colsample_bytree Percentage of columns used for each tree construction.
Lowering this value can prevent overfitting by training on
a subset of the features.

Table 2.4: Decision Tree Parameters [8].
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Parameter Description and Effect

eta (Learning Rate) Step size shrinkage used in updates to prevent overfit-
ting. Lower values make the model more robust by taking
smaller steps.

gamma Minimum loss reduction required to make a further parti-
tion on a leaf node of the tree. Higher values increase the
regularization.

lambda L2 regularization term on weights. Higher values increase
the regularization.

alpha L1 regularization term on weights. Higher values increase

the regularization.

Table 2.5: Learning Parameters [8].

2.4.4 Under and Oversampling

Imbalanced datasets are a pervasive issue in machine learning, where the distribution
of classes is heavily skewed, often leading to models that perform poorly on minor-
ity classes [63]. To address this, random oversampling and undersampling are two
fundamental techniques used to re-balance class distributions before training machine
learning models. These methods aim to mitigate the bias introduced by imbalanced
data, ensuring that models can learn effectively from all classes [10].

2.4.4.1 Random Undersampling

Random undersampling involves reducing the number of majority-class instances by
randomly removing examples until a desired class balance is achieved [63], without
considering the importance or informativeness of the examples [10]. The degree of
undersampling can be adjusted to achieve specific class ratios. For example, a 1:1 ratio
ensures that the majority class has the same number of instances as the minority class,
while a 0.5 ratio sets the majority class at half the size of the minority [63].

Undersampling reduces bias toward the majority class, enabling the model to focus
more effectively on the minority class [63]. By reducing the overall dataset size, under-
sampling can significantly speed up training and reduce computational resource require-
ments, which is especially beneficial for very large datasets or limited computational
capacity [23].

However there are a few disadvantages to this method. Random removal of majority
instances may discard valuable data, leading to underfitting or reduced model perfor-
mance [23]. Also if critical boundary examples are removed, the model may struggle to
learn decision boundaries accurately [63].

Random undersampling is most effective when the majority class contains redundant or
less informative examples. It is often used in scenarios where computational efficiency
is a priority or when the dataset is too large to process in its entirety [63].
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2.4.4.2 Random Oversampling

Random oversampling involves increasing the number of minority-class instances by
duplicating existing examples until a desired class balance is achieved. Like undersam-
pling, the degree of oversampling can also be adjusted to achieve specific class ratios
[63]. Unlike advanced methods like SMOTE, random oversampling does not create new
synthetic examples but relies solely on replication [10].

Random oversampling offers several advantages. By increasing the representation of
the minority class, it enhances the model’s ability to learn patterns from these critical
examples, improving minority-class performance [63]. Additionally, it retains all original
data points, ensuring that no critical information is discarded during the process [10].
However, there are notable disadvantages to this method. Repeated duplication of
minority examples can lead to overfitting, where the model memorizes the duplicated
instances rather than generalizing from them [23]. The larger dataset size resulting from
oversampling may also increase computational costs, slowing down training, particularly
for computationally intensive algorithms [63]. Furthermore, since no new examples are
generated, the model may not learn diverse patterns within the minority class, limiting
its ability to generalize effectively [10].

Random oversampling is particularly effective when the minority class is small but
contains critical information. It is often used as a baseline method before exploring

more advanced techniques like SMOTE or ADASYN [63].

2.4.4.3 SMOTE Oversampling

SMOTE (Synthetic Minority Oversampling Technique) is a widely used oversampling
method designed to address class imbalance in datasets. SMOTE overcomes the lim-
itation of random oversampling by generating synthetic examples, thereby improving
the model’s ability to learn decision boundaries for the minority class [19].

SMOTE operates by synthesizing new minority class examples based on the feature
space of existing data. The algorithm selects a minority class instance at random and
identifies its k nearest neighbors (typically k = 5). The actual number of neighbors used
to generate synthetic samples depends on the oversampling percentage required; for
example, to double the minority class (100% oversampling), one neighbor per instance
is used, while higher oversampling rates involve more neighbors, sometimes sampled
with replacement if the required number exceeds k [64].

The next step is to create a synthetic example by interpolating between the selected in-
stance and one of its neighbors, placing the new instance along the line connecting them
in the feature space [64]. This interpolation is performed by calculating the difference
between the feature vectors of the selected instance and its neighbor, multiplying this
difference by a random number between 0 and 1, and adding the result to the original
instance’s vector. This process is repeated until the desired class balance is achieved
[11].

The steps in SMOTE are: first the random selection of an instance of the minority class.
The next step is the identification of the k nearest neighbors of said instance. Lastly, a
synthetic example is created by interpolating between the selected instance and one of
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its neighbors [80]. SMOTE is often integrated into machine learning pipelines, where
it is applied only to training data during cross-validation to prevent data leakage and
ensure realistic performance evaluation [36].

Generalization: The synthetic examples encourage the model to create larger, more gen-
eral decision regions for the minority class, reducing overfitting [35]. However, SMOTE
may generate synthetic samples in overlapping class regions, potentially introducing
noise. To address this, variants such as Borderline-SMOTE and ADASYN have been
developed to focus synthetic sample generation on harder-to-learn or borderline cases,
improving robustness [41].
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Figure 2.9: SMOTE Oversampling [29].

2.5 Related Work

Automatic depression recognition has gained significant attention in medicine, psychol-
ogy, and computer science. This growing interdisciplinary interest reflects the urgent
need to develop objective, efficient, and scalable methods for detecting depression, a
mental health disorder that affects millions globally and often goes undiagnosed or un-
treated. Researchers have concentrated on analyzing differences in facial expressions,
body postures, speech patterns, physiological signals, and audio cues between depressed
individuals and the general population to predict depression levels. These behavioral
and physiological markers provide critical insights into the subtle manifestations of
depression, enabling more accurate and timely diagnosis.

As discussed in section section 2.1, speech has been established as an effective biomarker
for depression, validating the pursuit of speech depression recognition (SDR) research.
The unique advantages of speech signals include their non-intrusive nature, the pos-
sibility of remote data collection, and cost-effectiveness compared to other diagnostic
modalities such as neuroimaging or biochemical tests. This makes SDR particularly
suitable for continuous monitoring and large-scale screening, especially in resource-
limited settings or telehealth applications.

SDR has evolved significantly over time, transitioning from traditional approaches re-
lying on hand-crafted features to advanced deep learning architectures. This evolution
has also seen a shift from focusing solely on acoustic features to incorporating multiple
complementary features, thereby enhancing the accuracy and robustness of depression
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detection systems. The progression of Speech Depression Recognition can be broadly
categorized into the following stages:

o Early Stage: Hand-crafted Features and Traditional Machine Learning: In the
initial phase of SDR research, the focus was on identifying and extracting acous-
tic features that correlate with depressive symptoms. Researchers experimented
with various feature sets, including prosodic features (e.g., pitch, energy), spectral
features, and voice quality measures, to improve predictive performance. Tra-
ditional machine learning algorithms such as Support Vector Machine (SVM),
Hidden Markov Model (HMM), Gaussian Mixture Model (GMM), and K-means
clustering were extensively utilized. These methods depended heavily on domain
expertise to manually engineer relevant features and were foundational in estab-
lishing the relationship between speech patterns and depression.

o Shift to Deep Learning: Deep neural networks were employed both as classifiers
using hand-crafted features and as end-to-end architectures that automatically
learned high-level features from raw audio signals or spectrograms. Various neu-
ral network architectures, including Convolutional Neural Networks (CNN), Re-
current Neural Networks (RNN), Long Short-Term Memory networks (LSTMs),
and Transformers, were explored for their potential in improving SDR accuracy
[55].

2.5.1 Hand-Crafted Features and Traditional ML

The most frequently used datasets in SDR research include the following.

Dataset Modality Label Number of Subjects Number of Clips Duration
Mundt-35 Audio HAMD QIDS 35 patients - -

AVEC2013 Audio/Video BDI-II 84 patients 150 chips 20-50m

AVEC2014 Audio/Video BDI-II 84 patients 300 clips 6s-4m

DAIC-WOZ Audio/Video/ECG/GSR PHQ-8 189 patients 189 clips Wizard-of-Oz 5-20m
E-DAIC Audio/Video PHQ-8 351 patients 275 clips -

Bipolar corpus Audio/Video YMRS MADRS 46 depressed, 49 control 218 clips At most 3.7m
MODMA Audio/EEG HRSD DSM-IV 23 depressed, 29 control 1508 clips At most 2.45m

Table 2.6: Summary of Datasets Used in Speech Depression Recognition [55].

The following tables summarize the existing research on depression, highlighting the
key findings. Notably, the studies by Nasir, Gong, and Pampouchidou are particularly
relevant to this investigation, as they all utilize the DAIC-WOZ dataset and utilize
Support Vector Machines (SVM) and Decision Trees, respectively [55].
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Method Paper Dataset Performance

GMM Helfer et al. 2013 Mundt-35 AUC 0.76

Williamson et al. 2013 AVEC2013 | MAE/RMSE 5.75/7.42
Williamson et al. 2014 AVEC2014 | MAE/RMSE 6.52/8.50

SVM Cummins et al. 2013 Mundt-35 Accuracy 66.9%

Nasir et al. 2016 DAIC-WOZ | F1 0.63

Gong et al. 2017 DAIC-WOZ | MAE/RMSE 3.96/4.99
LR Jan et al. 2017 AVEC2014 | MAE/RMSE 6.14/7.43

Jayawardena et al. 2020 DAIC-WOZ | RMSE 6.84
Decision Tree | Pampouchidou et al. 2016 | DAIC-WOZ | F1 (D/N) 0.52/0.81

Table 2.7: Some traditional classification and regression algorithms applied in speech
depression recognition (SDR) [55].

2.5.2 Deep Learning

The following Table also summarizes the results from studies that have used Deep
Classifiers and hand-crafted features.

Method Paper Dataset Performance
LSTM Alhanai et al. 2018 | DAIC-WOZ | MAE/RMSE 4.97/6.27
Du et al. 2018 BD UAR/UAP/Accuracy

0.651/0.678/65.0%
Salekin et al. 2018 | DAIC-WOZ | F1/Accuracy 0.901/90%

CNN Yang et al. 2017 DAIC-WOZ | MAE/RMSE 5.163/5.974

Huang et al. 2020 | DAIC-WOZ | F1/Accuracy 0.700/82.9%
GAN Yang et al. 2020 DAIC-WOZ | MAE/RMSE 4.634/5.520
Transformer | Sun et al. 2021 E-DAIC RMSE 3.783

Table 2.8: Deep classifiers applied in SDR and their performance

Lastly there are studies that create an end to end deep architecture that pushes raw
signal or spectrogram into its model to learn and give results. Two notable studies are:

» DepAudioNet [56]: Uses DCNN to extract high-level feature from raw wave and
LSTM to learn the temporal change of Mel scale filter feature. The F1 score is
52%.

o EmoAudioNet [46]: Uses DCNN and MFCC-based CNN for spectrum analysis.
The F1 score is 82% [55].
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Figure 2.10: End to End Deep Architecture Framework [55].

2.5.3 Baseline Results

The baseline using the DAIC-WOZ dataset was set by the 2016 Audio-Visual Emotion
Challenge and Workshop (AVEC 2016), a competition event aimed at comparison of
multimedia processing and machine learning methods for automatic audio, video, and
physiological analysis of emotion and depression. Specifically the results for depression
classification are as follows. Performance is measured in F1 score for depressed and not
depressed classes as reported through the PHQ-8.

A linear support vector machine was trained using stochastic gradient descent, where
the loss is calculated one sample at a time and the model is updated sequentially. The
model was validated on the development set, and a grid search was performed for opti-
mal hyperparameters for both audio and video data separately. The features used were
taken from the baseline features provided for both modalities.

‘ Partition Modality ~ F1 Score Precision Recall ‘
Development  Audio 462 (.682) .316 (.938) .857 (.540)
Development  Video 500 (.896) .600 (.867) .428 (.928)
Development Ensemble .500 (.896) .600 (.867) .428 (.928)
Test Audio 410 (582) 267 (.041) .889 (.421)
Test Video 583 (.851) .467 (.938) .778 (.790)
Test Ensemble .583 (.857) .467 (.938) .778 (.790)

Table 2.9: Performance metrics for different modalities on Development and Test par-
titions.

The baseline performance for the audio feature set is established with an F1-Score of
0.58, which will serve as the reference point for comparing the results of subsequent

experiments.
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Chapter 3

Materials and Methods

3.1 Problem Statement

As described in Section 1.1, Motivation, the scope of this thesis is to evaluate and
compare the performance of various feature types and machine learning algorithms for
predicting depression. The study involves two main tasks: (1) generating audio and
text feature sets, and (2) assessing the performance of various machine learning models
using these features. This study aims to identify the most effective combination of
features and algorithms that can enhance the accuracy and reliability of depression
prediction models.

3.2 Dataset Description

The data used for the scope of this thesis is the DAIC-WOZ database that is subset of
the Distress Analysis Interview Corpus (DAIC). The DAIC is a multimodal collection of
semi-structured clinical interviews designed to aid in diagnosing psychological distress
conditions, including anxiety, depression, and post-traumatic stress disorder. Each
interview session includes synchronized audio recordings, transcriptions, and expert-
annotated depression scores based on standardized clinical assessments. The dataset
encompasses a diverse participant pool in terms of age, gender, and ethnicity, although
some demographic groups remain underrepresented, potentially limiting generalizabil-
ity.

The annotation process for the DAIC is carried out by trained clinicians who assign
depression severity ratings to each session. This rigorous approach ensures a high degree
of reliability in the annotations; however, it also introduces an element of subjectivity,
as clinical judgment can vary between annotators. Additional known limitations of the
dataset include its relatively modest sample size and the somewhat artificial nature of
the interview setting, which may not fully capture the complexity and variability of
real-world clinical interactions [40].

78



The DAIC is structured around four distinct interview formats, each designed to elicit
different types of participant responses:

e Face-to-Face: Direct interaction between the participant and a human inter-
viewer conducted in person.

» Teleconference: Remote interaction between the participant and a human in-
terviewer conducted via a teleconferencing system.

e Wizard-of-Oz: Interaction with an animated virtual interviewer named Ellie,
whose responses and behaviors are controlled in real-time by a human operator
located in a separate room.

o Automated: Interaction with Ellie functioning as a fully automated agent, en-
gaging with the participant without any human intervention.

For the interviews, participants were selected from two distinct populations within the
greater Los Angeles metropolitan area:

e Veterans: Individuals were recruited on-site at a US Vets reintegration facility in
Southern California.

o General Public: Additional participants were sourced via online advertisements
posted on Craigslist.org, broadening the demographic representation within the
dataset [40].

All participants were fluent speakers of English, and all interviews were conducted in
English to maintain consistency. Each participant underwent assessments for depres-
sion, PTSD, and anxiety, utilizing standardized psychiatric questionnaires to ensure
reliable and comparable measurements across the dataset [40].

The semi-structured interviews followed a set progression; the initial phase involved
neutral questions used to establish rapport and ensure participant comfort. The inter-
views then transitioned to a symptom exploration phase, where specific questions about
symptoms and events related to depression and post-traumatic stress disorder (PTSD)
were asked. Lastly, the conclusion phase involved a “cool-down” session, designed to
ensure that participants did not leave in a distressed state [40].

The DAIC-WOZ dataset is unique due to its multimodal nature, incorporating audio,
video, and text data, as well as its clinical context (semi-structured interviews conducted
with a virtual agent). It also features annotated clinical scores, such as the PHQ-8,
making it a valuable resource for research in depression detection. A significant portion
of recent studies in this area have leveraged the dataset’s multimodal capabilities to
advance the field.

3.2.1 Wizard-of-Oz Interviews

As stated above, for this thesis, the DAIC-WOQOZ dataset was utilized, which includes
the Wizard-of-Oz interviews, conducted by the animated virtual interviewer, Ellie. In
these interviews, participants were situated alone in a room with a large computer
screen displaying Ellie. Ellie’s interactions were controlled by two operators: one man-
aged non-verbal cues, such as nods and facial expressions, while the other handled verbal
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responses. Ellie utilized a predefined set of utterances, incorporating pre-recorded au-
dio and pre-animated gestures and facial expressions, which were based on behaviors
observed in face-to-face interviews [40].

An example excerpt from a Wizard-of-Oz interview is shown below:
Ellie: Who'’s someone that’s been a positive influence in your life?
Participant: Uh my father.

Ellie: Can you tell me about that?

Participant: Yeah, he is a uh

Participant: He’s a very he’s a man of few words

Participant: And uh he’s very calm

Participant: Slow to anger

Participant: And um very warm very loving man

Participant: Responsible

Participant: And uh he’s a gentleman has a great sense of style and he’s a great cook.
Ellie: Uh huh

Ellie: What are you most proud of in your life?

Figure 3.1: Wizard-of-Oz Interview Sample [40]

3.2.2 Dataset Composition

The DAIC-WOZ dataset consists of 189 sessions, each comprising a raw audio file and
its corresponding transcription. Although pre-extracted feature files are available for
all sessions, they were not utilized in this thesis. This decision was made because
existing studies have already explored these features extensively. Instead, the focus of
this research was to investigate how alternative types of features, extracted through
novel methods, might contribute to improving the accuracy of depression estimation.
Additionally, three CSV files are provided, which collectively contain participant IDs,
PHQ-8 binary labels and scores, as well as gender information for both the training
and test sets.

For the experimental evaluation of this thesis, the PHQ-8 score was used as the ground
truth for determining the presence of depression in participants. Binary classification
was performed using a threshold of 10, in accordance with the PHQ-8 scoring guidelines,
which indicate that a score of 10 or higher is suggestive of Major Depressive Disorder
[17]. This approach ensures that the classification of depression aligns with established
clinical standards.

3.3 Data Pre-processing and Feature Extraction

Data pre-processing and feature extraction are crucial steps in preparing raw data for
analysis and machine learning tasks. For audio data, pre-processing involves techniques
such as resampling and filtering, while feature extraction transforms raw audio signals
into meaningful representations like spectrograms or Mel-frequency cepstral coefficients
(MFCCs) [3]. In contrast, text data pre-processing typically includes tokenization and
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normalization, with feature extraction methods like bag-of-words or embeddings to
represent text in a format suitable for modeling.

3.3.1 Audio

In this research, the first approach is the pre-processing of the raw audio files. Corrupted
audio samples were identified and corrected by converting their format using the ffmpeg
library.

Handcrafted audio features were extracted using the pyAudioAnalysis library, while
more advanced features were obtained, for additional experiments, by extracting Wav2-
Vec2.0 embeddings.

The handreafted feature extraction for a single audio file involves the following steps:
o Identify every utterance in the audio using the transcription file.

o Extract mid-term features for each utterance using the mid-term function pro-
vided by the library.

o Finally average the mid-term features across all utterances; thus obtain a single
feature vector as a comprehensive representation per audio file.

The embeddings were extracted using a similar approach: each utterance within the
audio file was identified, embeddings were extracted for each utterance, and then these
embeddings were averaged to obtain a single representative feature vector for the entire
audio file.

Additionally, a role-based approach was implemented where features were similarly
extracted for each utterance. However, for each file, two distinct feature vectors were
generated: one by averaging the features of Ellie’s utterances and one by averaging
the features of the participant’s utterances. This approach allowed for the creation of
separate feature vectors for Ellie and the participants.

3.3.1.1 Role-Based Approach:

Extracting features at the utterance level ensures consistency in the feature extrac-
tion process, independent of the role-based approach. This consistency enabled us to
compare results effectively. Furthermore, we also extracted text features in a similar
manner, which facilitated the concatenation of different datasets, as detailed in sec-
tion 3.3.3.

Separating audio features based on roles enables the analysis to account for the in-
herent differences in speech patterns and also to give more significance to one or the
other speaker. Features extracted from each role can highlight role-specific cues. In this
case, participant speech features might be more indicative of emotional or psychologi-
cal states, while interviewer features could reflect conversational control or elicitation
strategies. It is also important to note that role-based features allow clearer interpre-
tation of which speaker’s behavior drives certain outcomes, facilitating more targeted
interventions or insights. Additionally by modeling roles separately, machine learning
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models can learn role-specific patterns without confusion, enhancing classification or
regression accuracy [39].

3.3.2 Text

Similar to the audio features, the first step is the pre-processing of the transcriptions.
To that end, a basic text cleaning method was implemented. Briefly the text cleaning
entails removal of punctuation, lower-casing, removing filler words like “uhm”. Ad-
ditionally based on the provided transcriptions, the cleaning also entailed removing
phrases or words inside parentheses. These parentheses are not part of the utterance
but serve as descriptors, for example “(welcome)” when the utterance contains greeting
ect.

Text features were extracted using the GloVe model for word embeddings, as well as
SBERT for contextualized sentence embeddings, for additional experiments.

The word embeddings used in this study were obtained from the pre-trained GloVe
model trained on the Wikipedia 2014 and Gigaword 5 corpora, which includes 6 billion
tokens and a vocabulary of 400,000 uncased words [48]. Specifically, the 50-dimensional
version of the GloVe vectors was utilized. The extraction process follows a similar ap-
proach to the one used for audio features. For each transcription, we extracted embed-
dings for every word in each utterance. These word embeddings were then averaged
across the entire utterance. Finally, to obtain the text feature vector for the entire
transcription, we averaged the feature vectors across all utterances.

Averaging word embeddings is a widely used and straightforward method for obtaining
a fixed-length representation of a transcription. However, this approach has a signif-
icant limitation: it treats all words equally and disregards word order and syntactic
structure, which can result in the loss of important contextual information. To over-
come these drawbacks, more advanced techniques have been developed. Contextualized
embeddings, such as those generated by models like BERT, produce dynamic word vec-
tors that change according to the surrounding context. Furthermore, methods like
weighted averaging or attention mechanisms can assign varying importance to different
words during aggregation, enhancing the quality of the resulting representation. Other
alternatives include sentence- or document-level embedding models, such as Doc2Vec
or transformer-based encoders, which explicitly capture word order and contextual re-
lationships. For the score of this thesis we only use the averaging technique [18, 50].

Lastly, following the same approach used for role-based extraction of audio features,
we also average the text features separately for Ellie’s and the participant’s utterances.
This process generates separate feature vectors for each session, one for Ellie’s utterances
and one for the participant.

Regarding sentence embeddings, SBERT was used to generate contextualized embed-
dings for each utterance, which were then averaged across the entire transcription. Mir-
roring the approach applied to audio features, embeddings were averaged separately for
the participant’s and Ellie’s utterances within each session, producing distinct feature
vectors that effectively capture the semantic content of their speech. This averaging
strategy yields fixed-length representations while retaining rich contextual information.
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Figure 3.2: Feature extraction process either from audio file or transcription file.

» Ellie’s Features

3.3.3 Feature Combinations

As depicted in fig. 3.2, for each session, we extract three audio features (pyAudioAnal-
ysis), three audio embeddings (wav2vec 2.0), three text features (GloVe) and three
sentence embeddings (SBERT). Additionally, we create two additional features by con-
catenating the participant’s and Ellie’s features for both audio and text, resulting in
"Concatenated Features’ This approach aims to investigate whether combining features
from both roles improves model performance.

We created two datasets for our experiments. The main dataset includes all pyAudio-
Analysis features, GloVe embeddings, and their combination, and is used for the pri-
mary analyses. The second dataset, used for additional experiments, contains wav2vec
2.0 and SBERT embeddings along with their combination.

To create the afformentioned combination of audio and text features, we concatenate the
full set of audio features with the full set of text features, resulting in a comprehensive
multimodal feature set. This fusion aims to explore whether integrating both audio
and textual information can enhance model performance.

It is noteworthy that Ellie’s features are not used independently, as each experiment fo-
cuses on assessing the participant’s depression, making the inclusion of the participant’s
data necessary.

The distinct datasets that are created through the aforementioned extraction process
are summarized in table 3.1.

3.4 Evaluation Metrics

To thoroughly analyze the evaluation metrics used in this thesis, it is essential to first
introduce some general information on the evaluation of binary classification.

In binary classification instances are classified as either positive or negative. A classified
instance belongs in one of the following categories:

» True Positive (TP): the instance is correctly classified as positive
o False Positive (FP): the instance is incorrectly classified as positive
o True Negative (TN): the instance is correctly classified as negative

 False Negative (FN): the instance is incorrectly classified as negative
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Feature Type | Second Level Third Level Feature
Vector
Length
Whole Audio Features 136
pyAudioAnalysis Participant’s Features 136
Ellie’s Features 136
Audio Concatenated Features 136
Whole Audio Features 768
wav2vec 2.0 Participant’s Features 768
Ellie’s Features 768
Concatenated Features 768
Whole Audio Features 50
GloVe Participant’s Features 50
Ellie’s Features 50
Text Concatenated Features 50
Whole Audio Features 384
SBERT Participant’s Features 384
Ellie’s Features 384
Concatenated Features 384
Whole Audio Features 186
pyAudioAnalysis and GloVe Participant’s Features 186
Ellie’s Features 186
Concatenation Concatenated Features 186
Whole Audio Features 1152
wav2vec 2.0 and SBERT Participant’s Features 1152
Ellie’s Features 1152
Concatenated Features 1152
Table 3.1: Summary of Datasets.
Accuracy

The primary metric used for model evaluation is often, accuracy, which describes the
number of correct predictions over the total number of predictions. The formula for cal-
culating accuracy is expressed in various ways, but they all represent the same concept

[13].

TruePositives + TrueNegatives

Accuracy =

TruePositives + TrueNegatives + FalsePositives + FalseNegatives

(3.1)

One of the main drawbacks of accuracy is its failure to consider class distribution in
the data. This means that even if a model struggles to predict the minority class, it
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Figure 3.3: Confusion Matrix [16].

can still achieve a high accuracy if the majority class is sufficiently large [6].
Precision and Recall

Alternative metrics that provide a better understanding of a model’s performance are
precision and recall. These metrics are especially useful when dealing with imbalanced
datasets [9].

Precision measures the proportion of true positive predictions among all positive pre-
dictions. The formula for precision is [9]:

TruePositives

(3.2)

Precision =

TruePositives + FalsePositives

Recall, measures the proportion of true positive cases correctly classified, over all actual
positive cases in the dataset. The formula for recall is [9]:

TruePositives

Recall = (3.3)

TruePositives + FalseN egatives

F1-Score

The F1-Score is a metric that combines both precision and recall, and is defined as their
harmonic mean. The harmonic mean is considered more appropriate for ratios, such as
precision and recall, compared to the arithmetic mean. The principle behind this score
is to create a metric that weighs the ratios in a balanced way, requiring both to have a
higher value for the F1-score to rise. The formula for the F1-Score is [14]:

Precision x Recall
=

~ Precision + Recall

There are different averaging methods for calculating F1-scores. These methods differ
based on whether they consider each class’s support value, which refers to the number
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Method Name Description Usage
Macro-Averaging Computes the arithmetic mean of all Useful for imbal-
per-class Fl-scores, treating all classes | anced datasets.
equally.
Weighted Averaging | Computes the mean of all per-class Accounts for the
F1-scores, weighted by the frequency proportion of
of each class in the dataset. each class’s oc-
currences.
Micro-Averaging Sums the true positives (TP), false Closely aligns
negatives (FN), and false positives with overall ac-
(FP) to determine the global average | curacy.
F1-score.

Table 3.2: Averaging Methods for calculating F1-Score

of occurrences of a class in the dataset. Depending on the dataset, a different method
may be preferred [21].

In this thesis, the macro-averaging method was utilized due to the significant imbalance
present in the DAIC-WOZ dataset.

AUC

AUC-ROC (Area Under the Receiver Operating Characteristic Curve) is a widely used
metric for evaluating binary classifiers. It measures a model’s ability to distinguish
between positive and negative classes across all classification thresholds [87].

The ROC curve is a graphical representation that plots the True Positive Rate (TPR)
on the y-axis against the False Positive Rate (FPR) on the x-axis for various threshold
values. Each point on the curve corresponds to a specific threshold, which determines
how predictions are classified as positive or negative [87].

TP

TPR = ——M— 4

R TP+ FN (3)
FP

FPR=p5 7N (3:5)

The AUC (Area Under the Curve) represents the total area under this ROC curve and
provides a single scalar value to summarize the model’s performance:

e An AUC of 1 indicates perfect discrimination between classes.
o An AUC of 0.5 suggests no better performance than random guessing.

e Values closer to 1 indicate better model performance, while values closer to 0
indicate poor performance.
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Figure 3.4: Receiver Operating Characteristic (ROC) Curve [15].

AUC-ROC is valuable because it measures model performance independently of any
threshold and remains robust with imbalanced class distributions. By computing the
area under the ROC curve, it summarizes a model’s ability to distinguish positive from
negative classes across all thresholds [2].

Perfect model
True positive rate 4\

N Better quality

>
False positive rate
il

Figure 3.5: ROC Curve Interpretation [15].
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Chapter 4

Experimental Evaluation

In this chapter, we discuss the experimental setup and the results related to the classi-
fication problem we are addressing. As mentioned in earlier chapters, the goal of this
thesis is to predict whether a person can be diagnosed with depression based on their
speech. For this, the DAIC-WoZ dataset was used to perform the following experiments.

4.1 Experimental Setup and Results

In table 3.1, the distinct datasets derived from the original DAIC-WOZ dataset are
presented. The same experiments are performed across all feature set of the primary
dataset (pyAudioAnalysis and Glove) in order to extract useful information, such
as whether audio and text contribute equally to the estimation of depression or to
examine whether a role-based approach is beneficial in yielding more accurate results.

The datasets used in this study consist of three main types of features: audio-based,
text-based, and multimodal features formed by concatenating audio and text represen-
tations. For each type, three variants were extracted to capture different speaker scopes.
First, features representing the entire audio, combining both the participant and Ellie,
were obtained. Second, features corresponding exclusively to the participant’s speech
were extracted. Third, a concatenation of separate features for the participant and Ellie
was created to preserve role-specific information. This structure allows the analysis to
consider individual speaker characteristics as well as their combined interactions across
different modalities.

In our experiments, we used Support Vector Machines (SVM) and XGBoost mod-
els. These models were chosen due to their strong performance and complementary
strengths demonstrated in prior research across tasks such as speech emotion recogni-
tion and sentiment analysis. Studies have shown that SVM often achieves competitive
or superior accuracy, while XGBoost can leverage feature optimization to reach accu-
racy levels comparable to deep learning models but with less computational complexity
[45, 30, 32, 44].

Hyperparameter tuning was performed using GridSearch combined with LOOCV to
exhaustively explore parameter combinations while maximizing data utilization [69].
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Model Parameter Values

SVM
« C:[0.1, 1, 10, 100]
o gamma: [0.1, 1, 10]
o kernel: [linear, rbf]
These parameters are used to tune the SVM model for opti-
mal performance.
XGBoost

« max depth: [3, 5, 7]

« min child weight: [3, 5, 7]

o learning rate: [0.1, 0.01, 0.001]

 subsample: [0.5, 0.7, 1]
These parameters are crucial for adjusting the complexity
and performance of the XGBoost model.

Table 4.1: Parameter Values for GridSearch

For model training, a manual Leave-One-Out cross-validation method is also imple-
mented. LOOCV involves iteratively training the model on all samples except one,
which is used for testing. This process repeats for each sample, ensuring unbiased per-
formance estimation without a separate validation set. This approach ensures that the
model is tested on a sample that has never been seen before. It is also very impor-
tant to note that, in each iteration, a new instance of the model is created to prevent
information leakage, i.e., prevent information from previous iterations influencing the
predictions of the current model, thus maintaining the integrity of the cross-validation
process.

After selecting the optimal model parameters and training the model, we generate
classifications for each test set, i.e. for each test instance. We define the aggregated
test set predictions as the combination of all classifications, allowing us to calculate
metrics such as Fl-macro, accuracy, and AUC using these aggregated predictions.

The tables 5.1-5.9 provide detailed results of the experiments conducted. It is important
to note that the Accuracy, F1-macro and AUC are computed by aggregating predictions
across all LOOCYV folds to provide overall performance estimates.

In this chapter, we present the performance of two trained machine learning models
across the primary dataset, utilizing the three distinct feature sets. The results are or-
ganized in tables that illustrate the features extracted from the audio files. Specifically,
the tables include the following feature categories: features derived from the entire
audio files (Whole Audio), features obtained from concatenating Ellie’s data with the
participants’ (Concat), and features extracted solely from the participants (Partici-
pants).
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Results:

It is also important to note that because the DAIC-WoZ dataset is imbalanced, we
predominantly use the AUC values to determine the performance of a model, thus
in the following tables the best AUC value for each Sub-Dataset is highlighted. As
mentioned previously, Accuracy is not an ideal metric when dealing with an imbalanced
dataset. The same is true for Fl-score, which balances precision and recall, it focuses
on the positive class and ignores true negatives, which can be problematic when both
classes are important or when the dataset is severely imbalanced [31]. The metrics

SVM ‘ XGBoost
Whole Audio Concat Participant ‘ Whole Audio Concat Participant
acc 0.70 0.70 0.70 0.72 0.71 0.73
f1 0.41 0.41 0.41 0.61 0.45 0.59
auc 0.50 0.50 0.50 0.61 0.52 0.59

Table 4.2: Using the pyAudioAnalysis Audio Features.

SVM ‘ XGBoost
Whole Audio Concat Participant ‘ Whole Audio Concat Participant
acc 0.77 0.78 0.73 0.74 0.74 0.71
f1 0.70 0.73 0.59 0.64 0.63 0.58
auc 0.69 0.72 0.59 0.63 0.62 0.58

Table 4.3: Using the Glove Word Embeddings.

SVM ‘ XGBoost
Whole Audio Concat Participant ‘ Whole Audio Concat Participant
acc 0.74 0.78 0.70 0.74 0.74 0.73
f1 0.69 0.73 0.41 0.64 0.63 0.60
auc 0.69 0.72 0.50 0.63 0.62 0.60

Table 4.4: Using the Concatenated pyAudioAnalysis and GloVe Features.

in 4.2 indicate that all the SVM models fail to distinguish between the two classes,
consistently predicting only the majority class across all test sets. The AUC value of 0.5,
by definition, indicates no discriminative ability [92]. Additionally, the XGBoost models
for "the Whole Audio” and "Participant” give slightly better results while "Concat” is
closer to random choice. These observations indicate that both SVM and XGBoost
struggle with the handcrafted audio features.

As shown in 4.3, both the SVM and XGBoost models perform better with GloVe
embeddings, yet the results remain suboptimal. The best score so far is given by the
SVM Model "Concat” with AUC of 0.72.
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Additionally, 4.4 shows that concatenation of audio and text does not improve upon
using text embeddings alone, reinforcing the conclusion that the models struggle with
the pyAudioAnalysis features.

4.1.1 Undersampling

In order to account for class imbalance, two alternative approaches were employed. The
first approach involves manually balancing the dataset, that was achieved by randomly
removing a specified number of instances from the majority class prior to conducting
experiments. This method aims to create a balance between the number of samples in
the two classes, a process commonly referred to as random undersampling. However,
a limitation of this approach is that our original dataset was already limited in size,
so balancing by reducing the number of instances in an already small dataset can lead
to significant loss of valuable information, loss of data diversity or insufficient minority
class representation [7]. As a result undersampling did not substantially improve the
results of the models.

Results:
SVM ‘ XGBoost
Whole Audio Concat Participant ‘ Whole Audio Concat Participant
acc 0.59 0.59 0.59 0.68 0.63 0.60
f1 0.37 0.37 0.37 0.67 0.60 0.56
auc 0.50 0.50 0.50 0.66 0.60 0.57
Table 4.5: Using the Balanced Audio-Based Dataset.
SVM | XGBoost
Whole Audio Concat Participant ‘ Whole Audio Concat Participant
acc 0.70 0.75 0.60 0.68 0.70 0.61
f1 0.68 0.74 0.60 0.66 0.67 0.46
auc 0.68 0.74 0.60 0.66 0.67 0.53

Table 4.6: Using the Balanced Text-Based Dataset.

As illustrated in table 4.5, the Audio-Based Dataset reveals that balancing does not
enhance the performance of SVM models. In contrast, XGBoost models exhibit a slight
improvement, with the best-performing model ("Whole Audio”) increasing its AUC
from 0.61 to 0.66. A similar trend is observed in the Text-Based dataset, as shown
in table 4.6. Here, the best-performing model from the original experiment (”Concat”
SVM) demonstrates a slight improvement with manual balancing. However, the results
for the Concatenated Audio-Text Dataset, presented in table 4.7, diverge from those of
the previous datasets. Notably, there is no overall improvement; before balancing, the
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SVM ‘ XGBoost

Whole Audio Concat Participant ‘ Whole Audio Concat Participant

acc 0.70 0.75 0.59 0.72 0.71 0.63
f1 0.69 0.74 0.37 0.70 0.70 0.58
auc 0.59 0.50 0.37 0.7 0.7 0.59

Table 4.7: Using the Balanced Concatenated Audio-Text Dataset.

best model achieved an AUC of 0.72, whereas after balancing, the best model’s AUC
decreased to 0.7.

4.1.2 SMOTE Oversampling

To further address class imbalance, a second method, SMOTE oversampling, is uti-
lized. As outlined in the theoretical section of this thesis, SMOTE generates additional
instances for the minority class, thereby increasing the total number of samples. No-
tably, to prevent information leakage, SMOTE is applied within the Leave-One-Out
framework to ensure that oversampling occurred after removing the test instance from
the dataset.

Results:
SVM ‘ XgBoost
Whole Audio Concat Participant ‘ Whole Audio Concat Participant
acc 0.70 0.70 0.70 0.69 0.63 0.60
f1 0.41 0.41 0.41 0.63 0.55 0.53
auc 0.50 0.50 0.50 0.62 0.55 0.53
Table 4.8: Using the Audio-Based SMOTE Dataset.
SVM ‘ XgBoost
Whole Audio Concat Participant ‘ Whole Audio Concat Participant
acc 0.62 0.72 0.59 0.68 0.69 0.61
f1 0.59 0.69 0.56 0.61 0.65 0.54
auc 0.62 0.70 0.58 0.61 0.65 0.54

Table 4.9: Using the Text-Based SMOTE Dataset.

As shown in table 4.8, SMOTE oversampling does not help with the SVM model only
predicting the majority class in the Audio-Based Dataset. Additionally, the results ob-
tained using SMOTE for both the Text-Based and Concatenated Audio-Text Datasets
remain consistent with those achieved by the original method. The theory of SMOTE
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SVM ‘ XgBoost

Whole Audio Concat Participant ‘ Whole Audio Concat Participant

acc 0.74 0.72 0.70 0.72 0.69 0.60
f1 0.71 0.69 0.41 0.68 0.65 0.52
auc 0.73 0.70 0.50 0.68 0.65 0.52

Table 4.10: Using the Concatenated Audio-Text SMOTE Dataset.

indicates that in cases where the classifier is biased towards the majority class, as
observed with the SVM models, SMOTE may not significantly enhance prediction ac-
curacy [5, 72, which is consistent with our results. It is also of importance to note that
SMOTE is less effective in high-dimensional feature spaces, because it generates syn-
thetic samples by interpolating between neighboring examples and can fail to capture
more complex patterns [28].

4.2 Additional Experiments

After analyzing the results presented above, we conclude that, within the scope of
our experiments, the audio features do not provide satisfactory performance in pre-
dicting depression using the DAIC-WOZ dataset, even when employing data-balancing
techniques aimed at mitigating class imbalance. This suggests that the audio repre-
sentations used may lack sufficient discriminatory power for this task. In contrast, the
text embeddings employed, yielded slightly better outcomes, indicating that linguis-
tic features may capture more relevant information related to depressive states in this
dataset.

In the following section, we will explore the implementation of alternative audio and text
embedding techniques to assess whether more advanced feature extraction methods can
improve the discrimination between the two classes in the DAIC-WOZ dataset. These
methods may leverage deeper contextual information or more sophisticated modeling
of temporal dynamics, potentially enhancing predictive accuracy.

It is also important to note that the role-based approach, which differentiates data
based on speaker roles, did not enhance the differentiation between depressed and
non-depressed individuals. Given its limited contribution, we will exclude role-based
datasets from subsequent experiments to streamline the analysis and focus on more
promising feature representations.

Finally, the experiments presented below aim to provide insights into the limitations
of the original experiments and to identify potential directions for future research. By
systematically evaluating alternative embedding techniques and modeling approaches,
we hope to uncover factors that contribute to improved depression detection and inform
the development of more effective diagnostic tools.

Regarding audio features, we utilize wav2vec 2.0 audio embeddings, which represent a
significant advancement over handcrafted features by leveraging self-supervised learn-
ing on large-scale speech data. To enable direct comparison with previous results, we

93



employ both Support Vector Machine (SVM) and XGBoost models, which are well-
established classifiers in this domain. Additionally, we will directly use the wav2vec 2.0
model in an end-to-end manner to evaluate whether it can achieve improved perfor-
mance by capturing richer audio representations.

SVM XGBoost
Whole Audio Whole Audio
acc 0.70 0.72
f1 0.41 0.61
auc 0.50 0.61

Table 4.11: Using the wav2vec 2.0 Dataset.

As we can see from the table table 4.11, the wav2vec 2.0 representation leads to the same
result as the pyAudioAnalysis handcrafted features in predicting only the negative class.
This similarity in performance can be explained by intrinsic limitations of wav2vec 2.0
embeddings when handling severe class imbalance.

Specifically, wav2vec 2.0 embeddings suffer from mode collapse, where the learned rep-
resentations focus on a limited subset of modes in the feature space, causing reduced
expressiveness for minority classes. This problem is worsened by highly skewed code-
book distributions during training, where dominant modes are over-represented and
minority class features are under-represented or neglected. As a result, the embeddings
fail to capture the distinctive characteristics of the positive class, making it difficult for
classifiers to differentiate it despite data-level balancing techniques like oversampling
or undersampling. Therefore, the wav2vec 2.0 embeddings do not inherently solve the
class imbalance problem because their representation learning is biased toward major-
ity class modes, limiting their ability to improve minority class prediction beyond what
handcrafted features achieve.

Thus, we can assume that the difficulty in predicting the minority class is not related to
the type of features used but is strongly correlated with class imbalance. Therefore, to
address the problem of speech-based depression estimation, the best approaches would
be to:

To address class imbalance in wav2vec 2.0-based models, the approach involves fine-
tuning the model end-to-end using a weighted loss function that prioritizes under-
represented classes during training. This is combined with maintaining or enhancing
diversity loss mechanisms to prevent mode collapse in embedding spaces, ensuring the
model captures nuanced acoustic variations across all classes. Data augmentation tech-
niques like speed perturbation or noise injection are applied alongside pre-training on
domain-related datasets to amplify minority class features and improve generalization.
Finally, the framework incorporates experiments with advanced classifiers — such as
XGBoost or SVM ensembles — to optimize decision boundaries for better minority class
detection while maintaining overall performance.

Regarding the text-based experiments, as mentioned above, we employ sentence em-
beddings instead of word embeddings, as sentence embeddings capture the contextual
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meaning of entire sentences rather than isolated words. Specifically, we utilize Sentence-
BERT (SBERT), as mentioned before, is designed to generate semantically rich and
context-aware sentence representations.

SVM XGBoost
Whole Audio Whole Audio
acce 0.77 0.79
f1 0.72 0.74
auc 0.71 0.73

Table 4.12: Using the SBERT Dataset.

From Table table 4.3, the highest AUC value achieved using GloVe embeddings is
0.69% with the XGBoost model. However, as shown in Table table 4.12, using SBERT
sentence embeddings with the XGBoost model yields an improved AUC value of 0.74,
as was expected.

4.3 Result Discussion

Regarding the role-based approach in the experiments, the results are inconsistent and
do not provide clear evidence on whether separating features by speaker role improves
depression prediction.

The initial experiments revealed that SVM models struggled with handcrafted audio
features (pyAudioAnalysis), often failing to outperform random guessing, as indicated
by AUC scores close to 0.50(Table 4.2). XGBoost models demonstrated slightly better
performance with audio features, but the results remained suboptimal.

Text-based features (GloVe embeddings) yielded improved results for both SVM and
XGBoost, with the "Concat” SVM model achieving the highest AUC of 0.72. However,
concatenating audio and text features did not consistently enhance performance, sug-
gesting that the models struggled to effectively integrate the pyAudioAnalysis features.

To address class imbalance, manual balancing and SMOTE oversampling were imple-
mented. Manual balancing provided a slight improvement for the "Concat” SVM model
in the text-based dataset, increasing AUC to 0.74, but it did not consistently improve
results across all datasets and models. SMOTE oversampling did not significantly en-
hance the SVM model and only provided a marginal improvement for the XGBoost
model. This finding is consistent with the theory that SMOTE may not be effective
when the classifier is heavily biased towards the majority class.

The best results across all experiments were an AUC of 0.66 for audio features, 0.74
for text features, and 0.73 for concatenated features. Regarding audio features, the
highest F'1-macro score achieved was 0.67, which indicates a slight improvement from
the baseline score of 0.0.58.

Furthermore the additional experiments that were conducted showed that:
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o wav2vec 2.0 embeddings alone do not inherently resolve the class imbalance prob-
lem, limiting their advantage over handcrafted features in minority class predic-
tion.

o Moreover, the text-based experiments using SBERT sentence embeddings showed
improved AUC values compared to previous word embedding approaches (e.g.,
GloVe), indicating that semantically rich, context-aware sentence representations
are more effective for depression detection in this dataset.

In summary, the findings suggest that text-based features are more informative than
audio features for depression detection in this dataset. While balancing techniques
can offer marginal improvements, the choice of features appears to be the most critical
factor influencing model performance.
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Chapter 5

Conclusion and Future Work

This thesis investigated the efficacy of speech-based depression estimation using ma-
chine learning techniques, focusing on developing a robust pipeline for automatic de-
pression assessment. The motivation behind this work stems from the urgent need for
objective, data-driven tools that can complement traditional clinical evaluations. Con-
ventional assessments often suffer from subjectivity, recall bias, and the pervasive social
stigma surrounding mental health disorders, which may hinder accurate diagnosis and
timely intervention.

By leveraging the DAIC-WOZ dataset, a widely recognized resource in depression esti-
mation, this study aims to mitigate these challenges through the systematic extraction
and analysis of both audio and text features. A novel aspect of this research was the
incorporation of a role-based feature analysis, distinguishing between participant and
interviewer contributions in speech, thereby aiming to capture the dynamics of clinical
interviews.

The primary contributions of this thesis are threefold:

o First, a comprehensive feature extraction pipeline was designed, encompassing
both handcrafted audio features and advanced text embeddings, facilitating a
multimodal approach to depression detection. This pipeline enabled the explo-
ration of complementary information contained in speech acoustics and linguistic
content.

e Second, the introduction of a role-based analysis framework allowed for the sep-
arate extraction and evaluation of features corresponding to the participant and
the interviewer. This separation was intended to provide deeper insights into how
each interlocutor’s behavior influences predictive modeling, an area that remains
relatively underexplored in existing literature.

o Third, by generating multiple dataset variants reflecting different combinations of
features and speaker roles, the study systematically assessed the impact of these
factors on classification performance, providing a better understanding of their
relative importance.

Experimental results, detailed in Chapter 4, revealed that text-based features generally
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outperformed audio features, with the highest area under the curve (AUC) reaching
0.74 for text models compared to 0.66 for audio models. This finding underscores the
rich semantic information captured by text embeddings, which may provide more in-
formation than acoustic cues alone. The role-based analysis further suggested potential
benefits in modeling the interactive aspects of clinical interviews, although results were
inconsistent, indicating that more sophisticated approaches—such as modeling sequen-
tial dialogue dynamics—may be necessary to fully exploit this dimension.

Despite these advances, several limitations must be acknowledged.

o The DAIC-WOZ dataset, while valuable, is relatively small and may not ade-
quately represent the full variability of speech and behavioral patterns seen in
diverse populations. This limitation constrains the generalization of the findings
and highlights the need for larger, more heterogeneous datasets.

o Additionally, the study primarily employed traditional machine learning algo-
rithms, such as SVM and XGBoost, which, while effective, may lack the capacity
to capture complex temporal and contextual dependencies inherent in speech and
language data. Incorporating deep learning architectures could address this gap
by enabling end-to-end learning and richer feature representations.

o Furthermore, the role-based analysis was limited to feature-level separation with-
out explicitly modeling the temporal interplay between speaker turns, which could
be critical for understanding conversational dynamics relevant to depression.

Building on the related work discussed in Chapter 2, several promising avenues for
future research emerge:

o Integrating advanced deep learning models—such as recurrent neural networks
(RNNs), long short-term memory networks (LSTMs), and transformer-based ar-
chitectures—could significantly enhance the modeling of sequential and contextual
information in both speech and text modalities. These models have demonstrated
success in related domains and hold promise for improving depression estimation
accuracy.

» Expanding the scope of analysis to include additional modalities, such as facial ex-
pressions, physiological signals (e.g., heart rate variability, galvanic skin response),
and behavioral cues, could improve the robustness and ecological validity of au-
tomatic depression detection systems. Multimodal fusion techniques, especially
those leveraging attention mechanisms and hierarchical modeling, offer a powerful
means to capture the complex interplay of verbal and nonverbal signals in mental
health assessment.

o Given that simple concatenation of audio and text features did not consistently
enhance performance, future work could explore more sophisticated fusion strate-
gies, such as late fusion methods (e.g., ensemble voting) or cross-modal attention
mechanisms, to better integrate complementary information from different modal-
ities.

o Transfer learning and domain adaptation techniques represent a promising solu-
tion to the challenge posed by limited dataset sizes, enabling models to leverage
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knowledge from related tasks or larger corpora to improve generalization.

In conclusion, this thesis advances the field of automatic depression estimation by in-
troducing a novel feature extraction pipeline and exploring the impact of role-based
analysis on model performance. The results demonstrate the potential of machine
learning to support and enhance the diagnosis of depression, while also identifying key
challenges and opportunities for future research.
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