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Abstract

Image-to-image retrieval involves finding the most relevant images given a query image. A practical way to
capture high-level semantic information in images is through scene graphs, which include objects and their
relationships. Of course, raw visual features of the objects and the overall image are also critical for retrieval.
By augmenting scene graphs with visual features and processing them with graph neural networks, we can
derive powerful representations that effectively address the image-to-image retrieval problem.

However, existing datasets of human-annotated scene graphs and their corresponding images are often in-
consistently labeled and cluttered with objects that are irrelevant to the image’s main content. Moreover,
attention-based graph neural networks typically overlook edge attributes—information about the relation-
ships between objects—that can be crucial for distinguishing one image from another. In this thesis, we
address these shortcomings in two ways. First, we introduce an Importance Prediction Module that lever-
ages Transformer encoders and a multi-head attention mechanism with learned queries to find an importance
score for each object and relation by combining semantic and visual cues. We then prune the scene graph,
retaining only the most significant nodes and edges. Second, we propose an Edge-Aware GATv2 layer, which
integrates edge features directly into both the attention computation and the messages exchanged between
nodes. We train this model so that the resulting graph embeddings align with semantic similarity as measured
by image captions.

We evaluate our approach and model quantitatively—comparing it against standard GNN architectures, ab-
lated variants, and alternative methods using retrieval and ranking metrics—and qualitatively, by presenting
illustrative examples. Our filtered, multimodal scene graphs processed with Edge-Aware GATv2 produce em-
beddings that capture rich information about objects, their visual appearance, and their relationships. Across
all metrics, our method outperforms competing GNN variants and retrieval techniques, demonstrating its
effectiveness for image-to-image retrieval.

Keywords — Image-to-image retrieval, Graph Neural Networks,Scene Graphs,Graph Similarity, Graph at-
tention networks, GATv2,
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Chapter 1

Extetouevn Ilepiindn ota EAAN VX

1.1 Oewpetixd YroRadeo

IToAkéc TteyVOlOYIEC TOU YENOWOTOWOLY GUCTAUNTA TEXVNTASC VONUOoUYNG €Youv QEépel Tal TEheuTalol YpovLa
EMAVACTAON 0 TOAES Plournyavieg xan amoTeAolV xploldo XOUUdTL TOANDY EQPUPUOYMV XOUMUERVAC YeNoTS.
Kémnowa mopadetyyato texvntic vonuooivng otny xadnuepvy) poc Lwr nepthopfdvouy autoodnyolueve autoxiv-
NTOL, GUCTAUOTA XATAVONONG Xl TORAYWYNE YADOGUS, LTEiXéS EQUpUOYES, TROPBAEYPELC Yiot TOV Xoupo, YETUo-
TIoTHplo X.4.

Eval avoduduevo eldoc veupwvixdy dixtiny mou To teheutaio yedvia €xel xepdloel €dagog elvol Tar VELpwVIXE
dixtua Ypdypwy, to onola Eemepvoly Tic ouvilelc TpoxAroelc Tou Tapouctdlouv ol Soués Yedpwy xau Beloxouy
EQPUPUOYES OE TOAAS TEOPBAA AT OTIOU Tal BEBOUEVA £YOUY TNV LOPYPT YRIPWY, OTWE OTA CUCTAUNTO TPOTACEWY,
TOL XOLVVIXE BiXTUA X.4L.

O xlploc otédy0¢ aUThHC TNg dimhwuatxrc epyactog elvar 1 avdxtnon ewdvoc Ye Bdon dAAY exdva, dnhady 7
avalATnon Tne mo Guolag exoVos BAoEL TOGO TOU GNUAGLOAOYIXO0) VOUATOS GCO Xol TOU OTTIXO0U TEQLEYOUEVOU
e, UE Bdon wa exdva-epdTnua. To mpdBinua autd €xel TOAES EQUPUOYEC OF CUOTAULATA TEOTACEWY Xol EYEL
pehetniel apxetd and ) PiBhioypapla. Ltnv epyacio Yo yenoULOTOACOUPE YRA(POUE GXNVAC, Ol OTOLOL TIORE Y OLY
L0 ONUOCLOAOYIXY| TEQLYPOPT] TWV OVTIXELEVWY LG EXOVAS XL TWV oYEoemY PETAE) TOUG, OE GUVBUICUOG UE
onTxég mAnpogopleg, yio i o axelfn enlluor Tou TEoBAfUATOC.

Ewdwoétepa, Yo doxpdooupe dlapopetind eidn veupmvxdv dixtiny Yedpwy, Tta omofo Yo enelepydlovton Tig
TANEOPOPIEC TWV YPAPWY OXNVAC XL TO OTTUXE YoUEAXTNELOTXE xou Vol TUPEYOUV EXPRUCTIXES AVUTAPACTICELS
v ewdvev. Enlong, Yo npotelvoupe éva dixtuo mou da evtonilel to mo onuavtxnd avtixelyevo xal T oyéoelg
HLoc exeovag, xat Yo TeOTEVOUNE TPOTIOTOLNOELS GTA VEVPWVIXA BIXTUA YRAPWY Yol XUAVTERY) OVOTUEACTAOY) Xo
eneepyaoio TwV Yedpwy oxnvic.

1.2 Alyoprdupol Opadonoinong

Ou alyobpripol oyodoroinong elvon wiar Un eMBAETOUEVT) TEXVIXH UNYoVIXAC Udinong, otnv onola Tar dedouéva
€L06B0U — CUY VA AVUTUOLOTMUEVA UE T1| LOPYT] EVOWUITMOOE®Y — OUadoTolo0vVToL o ouddes e Bdon xdmolo
HéTp0 opoldTNTaC (CUVATWS TN YEWPETEXT aTOOTION GTOVY XOEO TKV dedoUEVLY). Me autdy Tov TpoTo PTopolue
VO EVTOTIOOUUE XPUPES DOUEC OTA BEBOUEVOL XA VAL OVOY VWEIOOUUE PUOLXEC OUABOTIOCELS OE oUTd %.d. Y10
onuelo autd Yo neprypdoupe évay olyopriuo tou Yo YENOLLOTOCOUUE GTNY ERYACIN oS

O oAyoépwuog Jenks natural breaks [37] elvou évoc ohydprdupoc opadonoinone Boolopévog otnv xatovoun,
TIOU GTOYEVEL GTO VO ENAYLOTOTOWCEL T1) SLooTopd UeTaED TwV oNueiwy Tou avixouy otny (Blor xAdon xou vo
HEYLOTOTIOOEL T1) SlooTopd YeTal Slopopetindv xhdoewy. O ahydprduog haufBdvel w¢ elcodo tov aprdud Twv
XAACEWY X, UE XpNom duvaixol tpoypeaupatiopol, utohoyilel anodotxd T BéATioteg €aelg Sl wpiodol .
Q¢ xprtiplo ypnolpomolel To d¥poLoua TWV TETPAYWVIXMV ATOXAGEWY amd TOUG UEGOUS HPOUS TWV UAACEWY ol
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emhéyel Tov By wplopd Ye Tt wixpdtepn tuh. Enedh n tohumhoxdtntd tou eivan epinouv O(n2-k), epopudleto
%Vl o8 TYETIXE Wixpd UVolo BEBOUEVWV XL GE TEPLOPIOUEVO apLiud xhdoewvy e€bbou.

1.3 Metpixég

Yto onpelo avtd Va Swotunddocoupe Tic YETEIXES PE TiC omoleg 0&loAoyolvTal TOANS povtéha unyovixic udinong,
xod®g xa EWBXOTERA PETEIXES XATATAENC YE TiC onoleg a€lohoyolvTal cUVATKWS CUCTAUATE AVAXTNOYC.

1.3.1 Metpwxég Tagivounong

o AxpiBeia (Accuracy) O Adyog Twv cwoTtov TEoBhéewy Tpog Tov cuvohxd apidud Twy tpofrédewy:

TP+TN
TP+TN+FP+FN’

onouv TP = adniedxg Yetxd, T'N = ahndadg apvntind, F'P = (eudng Yetind, FIN = (eudng apvnuxd.

Accuracy =

o AxpiBeia (Precision) O Moyoc twv odndde Yetixdv mpog 1o ddpotopa twv ohndde detxdy xou Peudne

YeTndv:
TP

recision TP+ FP

o Avdéxinor (Recall) O héyog tov odndde Yetindv mpog to ddpotopa Twv ahnidog Jetixndy xan Peudaoe
OQVITLXWYV:
TP

Recall = m

o Acixtng Fi (F; Score) O appovixde péoog tne axpiPetag xon T avéxhnong:

Precision x Recall

Fi =2x .
! Precision + Recall

1.3.2 Metpuxég xatdtagng

1. NDCG (Kavovixonoinmuévo Exntwtixd Adpoioctind Képdocg) H petpunr| yetpd v noldtnta
e ®oTdTaENg ouyxplvovTtag TNy xotdtaln mou TeofBAénel éva HovTERO e TNV Wavix] xatdtolrn. ‘Eotw
rel(i) n ouvdgelr Tou aviixewévou otn Véon i e npoPhenduevne Motag xou rel™(i) n cuvdgelo oty
Worvixry xatdraln. Tote:

k * [
IDCGak =Y loreli(” NDOGOE = ook
i=1

k .

rel()

D = DeGaE:
CGOk ; lo go(i +1)’ IDCGQk

ga(i+ 1)
6nou DCG 10 exntotixd adpototixd xépdog e mpoPAéduune to€ivounonc tou poviéhou pag , xou IDCG
70 eXTTOTUXG adpoloTind xEpBoc TN Wovixfic xatdtaine ue Pdon tny Baocw ahfdew [89] .

2. Méocog Avtictpogpoc Baduoc (MRR) Xpnowonoleitar cuyvé 08 GUG THUOTA TROTAGEWY XL oVAX-
mone. Metpd 1 9éom Tou TE®TOU OYETHO) AVTIXEWEVOL OTO AMOTEAECUATIL

1L 1
M - -
RR N; rank,,’

omou N elvan 0 apriudg Twv EpWTNUATWY Xou Tank, 1 VE€oT ToL TPMTOU OYETIXOV AVTIXEWEVOU GTNY N-00TY
AMoTa.

3. Méocog 'Opog Axpifeiac (MAP) Suvunoloyilel 1o mhiloc TV OYETIHOV AVTIXEWEVLY TOU VoX-
THOMxay xou T Véon Toug o Mota TEoPBAédewy:

U
1
MAPQK = — Y  APQK,,
>

2



1.4. Tpdgpot

6mou «
1
APQK, = N, ,;,1 Precision(k) x rel(k),

xot Ny, 0 aptdude TV OYETIXOY AVTIXEWEVLY Yo TO u-00T6 epdtnuo xou rel(k) ,0 av to avtixeiyevo otny
V€on k etvon un oyetind xau 1 av eivon oyetind .

1.3.3 Metpux€g TAALVIpOUNONG
1. Méoco Anéiuto Xgdipo (MAE) H yéon andhutn diopopd petald 1oy TpoBAEndUeVmY TMV §; xou

TWV TEAYUATIXOV Y;:

MAE =

WE

1 .
N_ ‘yi*yi
=1

2. Méoco Tetpaywvixd Xdipna (MSE) H péon tetpoywvinf Swpopd petald twv TeoBAeToUevLY

Tl (,:)V Ui KO TWY TEOL O(ED{(;’)V i
7 )
N

1 L \2
MSE = ﬁ;(yz — i)

1.3.4 Metpwxég cuoyETioNng

1. Zuvteleotrc cuoyETiong Spearman Xpnollomolelton yio Vo cuyxpivel Ti¢ xatatdéels TeofAédewy
ue Tic mporyUotixéc xatotdéels. Aelyvel xatd t6co 1 oyéon petald 800 petaAnTodY unopel vo neplypapel
and o povétovn cuvdptnon. ‘Eotw R; n ¥éon tou otolyelou ¢ otny npodtn AMota xou S; 1 9€on tou o1
oeltepn. Oplloupe

di =R; = S;.

O ouvtekeothc cuoyétione Spearman dlvetal and

po=1= Ty
61OV N 0 APLYUOC TV OTOLYEIWY.

2. YvoyeTtion andoTacns Metpd 1600 TIC YPOUUIXEC 6CO XoL TIC UN Yeouuixés e€opthoels petall dlo
Tuyodov petaBAnTdy (t.y. dvuopdtwy). Xenowonoteitor dtoy 300 PETUBANTES £YOLV LoYVET U] YEMXY
oyéom, ahhd o cuvieheotiic Pearson (1) elvon mepinou 0, enedn petpd pévo ypapwuxéc eCapthoeic [81].

1.4 T'edepor

O ypdepol elvan pior onuovTiny douy) Bedouévmy Tou Teplypdpel avTixelyeva xou oyéoelg, OTwe oL Y8pTeS, To
CLOTAUATA TPOTACEWY, Ta XOLVWVIXE dixTua, Ta dixTua Tapamoundy, to Awdixtuo (1.x. Wikipedia, émou dpou
xa MNé€elg ouvdéovtan pe dhhoue 6pouc i URLS).

‘Evag cuvndiouévoc oplopds evdg ypdpou eivon to pn datetoryuévo Lebyog
G = (V. E),
6mou V' 1o 6hvoho Twv xopupdv (vertices 1) nodes) xou

EC {{z,y} |z, yecV,z#y}

10 oUvoho Twv axueyv (links petald x6uPwv). Enedd ov axuéc elvon un Swotetoryuéva Ledym, 1 oewpd tov
otolyelwy dev €yel onuaoia Eniong otoug mo amholc oplopols , dmwe autdg , Bev EMTEETOVIOL TOAATAES
oxpé eTall TV (Blwv xOuPwv.

O axpéc unopolv enione vo optotolv we dwatetaypéve Levyn (u,v) pe u,v € V. Xe auth v mepintoon o
yedpoc elvan katevOurduevos (directed), xadde (u,v) # (v, u).Avudétwe av N axph (u,v) Tautiletoa ye ™y
(v,u), T6TE 0 YPdpoc eivan un xatevdurdperos (undirected).
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1.5 Transformers

To 2017, epevvnuixy oudda tne Google (Vaswani et al. [83]) dnuooieuoe 1o dpdpo «Attention Is All You Need»,
070 omolo elonyayav Ty dpyittextovixy) Transformer.

To xiplo yapaxtnetotxd tou Transformer elvan 1 yeHor TOL UNYAVIOROD TEOGOYNS YLOL TOV EVIOTIOUS TWV TLO
YENOWWY Xl CTUAVTIXGY TUNUATLY Uiog axoloudiag. Xto onuelo autd Yo meplypddoupe to Pooixd ctoiyela
e povddac xwdixonoinorne (encoder) tne apyttextovinic Transformer, divovtog Tic xevtpixée éeg e, xaddde
Yo TNV gpyacio Yoc YenoWonoloVue xupltg auTh T Hovada.

ITpoctolpacio dedopEvmy

Alaywplopds oe tokens (tokenization): Apyixd Swywpiloupe tic elob6douc Tou povtélou oe tokens.
Anhodn, xdde eloodog petatpénetar oe avanapdotooy evonudtwone (embedding).

Kwdixonotioeig Oéong (positional encodings): Eneidy| o transformer eneepydlovtan 6ha ta tokens
TAUTOYPOVA, OL EVOWUATOOELS TwV tokens mpémel va mepLéyouy TAnpogopieg Yo T ¥éon toug otny axorouvdio.
I to oxond autd, tpootétouue oe xde token éva dlaviopa Fonc—ouvilne napaydUevo amd NUITOVIXES XaL
CUVNULTOVIXES CUVOPTHOELC—TOU UTOBEXVUEL GTO LOVTEND TN Véom Tou xdde token.

1.5.1 Kwdwxonowmthg (Encoder)

Ltov xwdixonounth elodyeton oAdxAnen 1 oxoroudio mou Yéhoupe va eneepyootel o Transformer (token embed-
dings + positional encodings) nopdiinho. Kéde eninedo xwdwonomty (layer)—ro onolo ynopel vo emavohoy-
Bdveton TOMAES PopES Yia HEYUNDTEPY) EXPEAC TIXOTNTU—TIEPLEYEL:

1. Multi-Head Self-Attention: Ye auté to uno-eninedo xdde evowudtwon token mpoBdiietan oe Tpla
Slavbopata eptdtnong (query), xiewdot (key) xow twhc (value). ‘Eneita yowpiloupe xdde npoBol oe h
xeohée, xdde pio Swouotdoewe dy. o xdde xepoakn vtohoyiloupe:

Attention(Q, K,V) = softmax(%) V.
Kdée didvuopo epdtnong ouyxplveton pe ta Slovdopato xAetdtot yio v tpoxtdouy "Boduoloyixd oxdp"
(relevance scores) . H Bdiwdpeon pe v/di xovovixonolel ta oxbp autd xou 1) softmax To peTotEénEL o€
cuvteheotéc npocoyhic pe ddpotopo 1. Eymuatiloupe petd éva otaduiopévo ddpolopa (weighted sum)
v 1pdy (values) xou, ool to emavoldBoude Yo GAec Tic xe@ahéc, 1 EVoEels (concatenation) twv
e€60wv mpoBdrlovTa oty apytxr Sidotoon.

2. TIpboYeom xouw Kavovixoroinor: Ipocdétoupe residual cuvdeon (3nhadi npocdétouye oto apyind
token v €£080 TOL UOVTENOL MOTE Vo Unv oANEEeL paydaia 1 avamopdoTact Tou ydvovtag mdavoyv
TANpogoples Yo autd) xou eapubdloupe Eva oTpdUa xavovixoroinone e e€68ou (normalization layer).

3. Feed-Forward Aixtuo: Kdde token e€660ou nepvdet and éva aveldotnto MLP e 6o ypouuxd otp-
portor xou i un ypoux) cuvdptnon (m.y. ReLU, GELU) , agot éyel culhé&el mAnpogopiec (context) and
Tov unyoviopd auto-tpocoyc (self-attention).

4. Enavéindn IlpbécVeong xow Kavovixonoinong: Ilpoodétoupe xou mdhl residual cuvdeon xou
eQopuoloupe €va oTpOua xavovixornoinone e e€68ou (normalization layer). Me autd ohoxAnpdvetou
éva eninedo xwdixomolnty, To onolo unopel vo enavakn@iel ToAEC Popéc (oTe To BIXTUO Uag Vo GUAREEEL
oxoua o ouvietec TAnpogopiec (context) yia xdde token.

1.6 Nevpwvixd Aixtua I'odpwy

‘Eva yeydho mhidoc mpoflinudtwy xou Sedopévwy umopel vo avanopactadel e ypdpouc. Xuvntopévee op-
YLTEXTOVIXES VEUPWIXADY BIXTOWY— OTwe Tor cuvENTXd (convolutional) dixtuo—3ev Pnopov va e@oploctolv
aneudelac oe ypdpoue, vt 1 dopr Toug dev eivan 00te TAéypa oUTe oxolovda (émwe amoutolv too RNNs xon
ot Transformers).




1.6. Nevpwvixd Aixtua I'pdpwy

Tuyxexpuléva, gLt cUVEETNOoY oL eQapuoleTal oe Ypdpoug Tpénel va divel to (Bla amoteréopato aveEopTATOS
e oepde pe v omola epgavilovton o xéuPor ota olvora (V, E). Me dhha Aoy, o diepyasie otoug
yedpoue TpEneL Vo elvan permutation invariant (Ty Yol TNV AvVOmapdoTooT o€ ENNESO YPAPOUL) Xan permutation
equivariant. 'Eotw V = {u1,usg, ...} xou P évac nivaxac avodidtaine (permutation matrix) nou odhdlel anhde
N oeed TV xouPwv. Tote n ouvdptnon f vy eneepyacio yedpou Teénel va xavonolet:

e Permutation invariance:
f(PKP") = f(K).

e Permutation equivariance:
F(PK PT) = P f(K).

1.6.1 Koatnyopieg Nevpwvixwv Awxtiwy I'pdowy

Ytn ouvéyela o avaAOGOUPE T AELTOURY(O OPLOUEVKDY BasIN®Y VEUROWIXGY BXTLWY Yedpwy. 'evixd, ta veup-
wVxd BixTua Yedpwy umopoly va YweloToly oe 800 XaTnyopleg:
1. Baciwopéva cto Pdopa (spectral-based): To gihtpa mou «avopelyvoouvy TANpogoplec YeTald
%x6uPwv opilovtan pe Bdon ta Wiodlaviouate Tou hamhaotavod Tivoxo Tou YedPou.

2. Baociopéva oto Xopo (spatial-based): Kdde xépfoc hopfdver minpogopies ameudeiog and toug
yertovolg Tou. Elvon ta dixtua mou ypnoiwonolodvton eupltepa otny npdln, xodoq eivon mo amodotixd
0€ UTOAOYLOTIXO XHOTOC.

1.6.2 Nevpwvixd Aixtua MetdBaocne Mnvoudtwy

To Nevpwvixd Aixtua MetdBaone Mrvupdtwy (Message Passing Neural Networks — MPNNs) [27] mopéyouv
évar YEVxS TAoLoLo yia Uainom o€ BoPES YRAPWY, UE TNV ERAVUANTTIXY EVNUEPWOT| TWV AVATUPAUCTICEWY TWYV
XOUPOV UECW KPETABOONG UNVUHATWVY amd TOUG YELTOVIX0US xOuPous. Autd Tta dixtua elvon oyedlaouéva wote
vo. elvon permutation equivariant (otnv evnuépwon xéuPwv) xot, dtav yenowonotody yia €£odo Aettoupyieg
(m.x. sum 7 mean pooling), permutation invariant (ce eninedo ohéxAnpou tou YpdPov).

Ye xdde otpodua k, xdde xéuBoc u €yel Tpéyovoa xpuET avanapdoTao R evnuépwon and To oTewuo k
oto otpuua k + 1 yivetan we e€hc:

miyl,y = AGGREGATE® ({h{M | v € N(u)}),
h{#+D = UPDATE® (b8 m() 1),

N (w)
6ToL

o N(u) elvou 10 0Ovoro TV YELTEVWY Tou XOUPou U,

AGGREGATE™ eivon pia ouvdptnon mou oéBetan v avodidrodn (m.y. ddpotopa ¥ péooc 6poc, axohou-
Yolueva and veupwvixd dixtuo),
UPDATE™® e{vou évor dlapopioldo veupwvixd dixtuo Tou cuvdudlel T "Twevy" avanogdoTaom hP UE TO

ufvupa mg\’;gu) Yio vor Tapdiyel T véa S

Yoo oAV tétolwy o TpnudTwy enttpénel ot xdle xoufo va hapPdvel otadlaxd Thnpopopies and anoyoxpuo-
pévoue x6uBouc (Yéow k hops yia k otpmpota). O Tehxéc avanapao oS TV XOuBwy unopolv vo yenot-
ponotndolv yio tpofiruarte emtmédou xouBov, eved Ye xatdhAnin €080, unopolv vo emAlcouY xou TEOoBAfuTa
EMNEDOU YRAPOL 1| aXUTNC.

1.6.3 Xuvehuxtixd Aixtua I'pdypwv

To apyixd cuvehTnd dixtuo ypdgpwy tou npdteve o Kipf & Welling [42] cuvdéer ta Sixtua ypdgpwy Tou
Booilovta oto gdopo xou oto xhpo. Aciyvel 6Tt éva BAT (cuvehixtind dixtuo Ypdpnv), tou elvon pio Tpooéy-
YO TEAOTNG TAENS TWY TOTUXOV PAoUATIXOY PIATRwY, Elval LGOBUVAUO UE ULo GUVAPTNOY UETHBAUoNG UNVULETWY
(MPNNs). Xuyxexpiuéva, 1 diodixactio etvon 1 e€he:
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Avdivom Fourier tou ypdpou: To Wbiodavicpata U tne xavovixomonuévne Aamhactovic L = Iy —
D=Y2AD™Y2 naiouv oV poAO TV MUTEVEY oL CUMUNTOVGY oF éva Ypdpo. Metotpénoviac to ofjua @
otnv WoPdon Uz (rou opller v petatporr Fourier oe ypdgpouc), Bréroupe méoo xdde “ouyvétnia” Tou
yedpou—rou opileton amd TiC WLOTWES A; TOU L—CUPUETEYEL GTO GNUA.

Poopatind @iltea: Eva ¢iltpo oty nopandve Bdon eivar i ouvdptnon go(A) = diag(ge(A1), .- -, 90(AN)),
xa eapuolovrtag éva Tétolo @iATpo ot évol GNP, EVIoYUEL 1 XaTaoTEREL xdmola WlocuyvoTa, dlvovTag:

goxx=Ugg(AN) U .

AwopopeTinéc emhoyvéc Y To go(A) ehéyyouv T6o0o Loyupd Ya avapelyody TANpopopiec and Touc YELTOVIXOUS
x6uBoug (Ta @ihtpa youniic Silevone extehody eZoudhuvon yertviaong, to piktpo udnhic diéhevong toviouy
TIC EVTOVES JLaPopEC xat 0UTw xadec).

Koéino Chebyshev (Chebyshev trick): O unoloyioude tou U eivan unoloyiouxd axpBde, yi' autéd o
Hammond et al. (2011) npooeyyilel to go(A) ue eva avdntuyue oe Chebyshev nohudvupa urixoue K: gg(A) ~
Zszo 0, Tr.(A), 6mov A = 2= A — Iy. 'Etol tpox(ntel go * * ~ Ef:o 0;. Ti.(L) x, to onofo eivan K-localized

max
3

xou utohoyiletan oe O(|E|) ypbdvo.

ITpoocéyyion mpdtne Ttd&Ne xou renormalization: ©¢étovioc K = 1, Apax = 2 xou 6 = 0] =1
Yl peloon TV Tapapétewy, tapvouye Yo to giktpo (In + D712AD~1/2)z. O Kipf & Welling enavoavov-
omolo0v (renormilize) v oyéon oe D™Y2 A D~ V/2x ue A = A+1Iy Y10 vo amopiyouy aprduntinéc aotdetec,

€70l TdpVOLY TOV TENXOS XUVOVAL YLOL TNV AVOVEWOY] TWY VATOROC TAGEWV:

HD = o (D12 AD12 HO WO,

Fevixd, éva cuvelxtind dixtuo Ypdpwy yodaivel OGO XoL TOLES ANO TIC PACUATIXEC GUVIGTWOES TOU YEApou ,
vo datnerioetl yio xdde x6ufo . Ou TEMXES aVamapaCTACELS TwV XOUPwY TEpLEY oLV TANROYOpie TGO Yid TIC
OVOUTIOPACTACELS TV YELTOVXOV XOUBWY 600 xal Yol Th SOUTH oL T1) CUVOECLUOTNTA TOU YRAPOU.

1.6.4 Graph Isomorphism Network (GIN)

O oxonde tou GIN [95] eivon v @rid€er éva veupwvind dixtuo ypdpov ue dloxprtixs ixavéTtnta aviioTtolyn Tou
teot Weisfeiler-Lehman. To GIN avave®vel v avanapdotaoy xdde x6ufou malpvovtag TNy eVeOUET®non Tng
TEONYOUUEVNG OVOTUPAOTAONS TOU Xal TO GUPOLoHA TV UVOTUPAOTACEWY TWV YELTOVX®Y XOUBwV, ol UETd
TEPVEEL aUTO TO amotéheopa and éva multi layer perceptron (MLP). Zuyxexpwéva, 6to otddio k 1 evnuépwon
yivetor we e€ng:

h{E) = MLP®W (14 W) a1 4+ Y 1),
u€EN (v)

6mou e) eivou elte wa otadepd, elte mopduetpoc mou podaivel To povTélo.

IMopdha autd, o TOAES TEAXTIXEG EQUPUOYEG— WBLalTEPA OTay oL xOpfBol £xouv TAOVGCLES AVATEIC TAGELS dp-
Yd— TO YEYOVOS OTL TO BIxTLO pog elvon amodedelypéva 660 duvatd 6co 1o teot 1-WL Bev petapedleto
andpaitnta oe xahOtepn anddoon tou Yovtélou. Movtéha énwe to GAT xow to GCN ymopel va yevixebouv
XOAOTEQO GE BEBOUEVA TTOMAGV EPUOUOY V.

1.6.5 Graph Attention Network (GAT)

Eunveuouéva anéd tov unyavioud npocoyfc (self-attention) twv Transformers, to GAT [84] tpononolotv
METAB00Y UNVUUGTWY OTA VELPWVIXE BixTud Yedpwy TpooUéTovTac Evay UNYovIoud TEOCOYAC TOU EMTEETEL
v anddoor Swpopetinol Bdpouc ot xdde yertovind xdufo. Ilponyolueva dixtua cuyxévipwvay (aggregate)
opotouopga pnvopota, eved o GAT padaivouv yetafBintolc cuVTEAEOTEC TPOCOYHAS (i TOU VoLV EugacT) oe
opLopévoug xouPoug xa ayvooly dAhouC.
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Suyxexpuéva, yio x6uPo ¢ xou xdde yeitovd tou j € N (i), unohoyilovion mpmTta oL GUVTENECTES

_ exp(e;;)
ZkeN(i) exp(eir)’

eij = LeakyReLU (a" [Wh; || Wh;]), aij

OTIOU TO €;5 EVOL O U1} XOVOVIXOTIONUEVOS GUVTEAEGTHC Ttpocoy e HETOED TV xOuPwv © xou j, Ue Ypror evig
EXTIAUBEVOUEYOL BLatvOOUOTOS @ Xou evog Tivoa Bopav W, xou 1 i 1) XAvovIXoToinuévn Tou Lop@.

H evnuépwon tng avanapdotacne Tou xouBou ¢ yivetow ye:

h; = 0( Z Qyj Whj),

JEN(d)
6mov o elvon Wi un yeopu evepyornoinon (n.y. ELU ¥ ReLU).

Téhog, punopolue va egapudécovue multi-head attention ye K xeqoléc yia meplocdtepn ex@paoTixdTNTA TOU
HOVTENOU Yog:

K
% :0(%2 3 b W“f)hj).
k=1

JEN(4)

1.6.6 GATv2

Ye wa dnuooieuon mou axololinoe to apywd GAT, o cuyypagelc €deilav 6T T GAT otpwuata €youv
TepLoploolc oTov TPéTo Tou unoloyilouv oe molwoug xéuPouc meEnel va dolel mpocoyy. Luyxexpéva, TO
xhaowd GAT Bev emitpénel oe xdde xouBo vo Boael povadnr mpocoyl| ot dlapopeTnols Yeltoves: Ghol ol
x6uPol dlvouv mpotepondTNTa oToV (Blo yeltova. Autd oupPoivel SLOTL 0 GUVTEAECTAC TPOGOYNS UTopel va
yoapTel w¢
e(hi, hj) = LeakyReLU(a] Wh; + aj Wh;),

6mov a = [a1 || az]. Eneidh o bpoc ag Wh; e€optdton ubvo ond Tov j, UTEPYEL TEVTO V0L fimax UE REYIOTN TIWH
ag Whi,.... Aéyo tne povétovne LeakyReLU xou tnc softmax, o x0uBoc jmax hofBdvel mévia to ueyahhTepo
Bdpog mpocoyc yia xde ¢ mou cuvdéetan wall Tou.

Tt vor Eemepdioouy autd to TedBAnua, ol cuyypageic npdtevay 1o GATV2 [10], tou anhde avadwtdooel Tic
TPAEELC OTOV UTOAOYIOUO TOU CUVTEAEOTH Tpocoy g, Luyxexpuléva, epapuoletal tpdta 1 LeakyReLU xou petd
0 TOANATAUCLUOUOC UE TO EXTIOUDEVOUEVO BLEvVUCUA a:

e(hs, hj) = aTLeakyReLU(W[hi | h; ])

‘Etot, o nopdyovtac LeakyReLU(W [ h; || h;]) e€optdton tawutdypovo and h; xou hj, xaw 0 cuvteheotic Tpocoyfic
unohoyileton duvopxd yior xdde Lebyog xoufwv.

1.7 Ilpozewvéuevo Movtélo

1.7.1 Xuveicpopd
Ou ouvelopopéc authc TNe SIMALUATXAC EpYasiag PTopoLY Vo GUVOPLETOUY w¢ e&ng:

o XpnoionoloUue Ypd@oug oxnvic — oamd 1o cUVoAo dedopévey Panoptic Scene Graph Generation — »ou
onUXEC TANPOPORIEC Yiol TAL AVTIXEIUEVA XAl TN CUVOMXY| EXOVA, (OTE VO TROYUATOTOLCOUUE oVEXTNOT
e o ouolag edvoc Bdoel emdvac-epwthuatoc. Ol Ypd@ol oxnvic Tapéyouv onUaclohoYIXéS TANpO-
QOplEC YLl TO AVTIXEUEVOL X0 TS OYETELC TOUC ETUTEENOVTOC UOC OE CUVOLAOUS UE OTTIXES TANEOPOpRIES Vo
oynuatiooupe TAOVUCLES UVOUTUPAC TACELS YOl TLC ELXOVES UECL YEAPWY.

o XpnoiwonoloUue €vay xwdixonownty transformer oe cuvbuaoud pe éva eninedo multi-head attention pe ex-
TOULBEVOUEVOL EPWTHUOTA, VIOl TNV XATACKELT] EVOS LOVTEAOU IOV, AoBEVOVTOC T OVOUATA TV AVTIXEWEVRY
X0 TV OYECEDY TOUG, XoHOG Xl TIC OTTIXES TANEOQPOP(EC oL Lol CUVOALXY| VATAEAO TACT] TNG ELXOVAC,
TPOPAETEL TOL O OMUAVTIXE AVTIXEIPEVOL XU OYECELS OTOV YpPdWo TN ewxxdvas. Metd, epapudélovye évoy
TEOTEWVOUEVO oAYbprdpo pLhTpopiopatog Tou agotpel Toug U oNuavTeols xOUBoUEC TWY YEAPKV.
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o Aoxiudlouye Bi1dpopo VEUpnVIXE dIXTUN YEPWY Xl TPOTE(VOUUE Uidt TPOTOTOLNUEVY] €XBOGT] TOU GTPOUATOS
GATv2, n onola elodyel TANpoPoplEe Yo TIC OYECELS TWYV OVTIXEWEVKY GTOV UTONOYIGHO TOU GUVTEAECTH
TPOGOYNC oL OTNV TOEAY WY UNVUUET®Y UeTOED TV XOUPwV.

e Ilpoteivouye Bertiotonotioelc otn pof enelepyaoiog (pipeline) xou otny dpyttexTovny| pag, xat eEnyolue
T0c0TIXd Xan otoTixd TN dtowodnTiny (intuition) o to xivnted poac tiow and xdle andgpoaon, xadde o
NV eNBECT] TOUC GTO YOVTEND Hag.

1.7.2 30Ovolo 5edouévwy

Xenowonololpe Tic exdvee tov Ppioxovion 1660 oto PSG ovvoho dedopévwv (Panoptic Scene Graph Gener-
ation dataset) 600 xou 010 MS-COCO ocivoho dedopévev. To npdhto cUvoho SeBouévmy pac TopEyeL Ypdpous
oxnvic yio xdde etdva, xadde xat TIC CUVTETAYHEVES TWY AVTIXEWEVKDY 6Ty exova (bounding boxes), evd to
0e0TEPO GUVOAO BEBOPEVWV UOC TOREYEL TEVTE TPOTACELS YLol XAUE EXOVO TOU TNV TERLYPAPOUYV CNUACLONOYLXAL.

1.7.3 X0volo I'pdpwv Acdopévwy (Graph Dataset)

Mo v xataoxeur] Twv Yed@wy Tou Bo YENOWOTOLCOUUE TopaXdTw, deyxd e@upuoloute TOV TROTUcLIXO
(sentence) xat tov ontixd (vision) Transformer tou povtéhov OpenCLIP ViT H 14 laion2b s32b_b79k
oe x&le avtxelyevo g ewdvag. Luyxexpuuéva, yio xdde avtixelpevo eEdyoupe ULl TEOTUCLIXY EVOWUATKOT
dlaotdoswe 1024 yior To dvoud TOU XaL Wa OTTXH) EVOWHUATWOT BlaoTdosws 1024 yio To TUAU TNE €XOVAS TOU
avtiotolyel oe auTH. 3TN CUVEYELD, EMEXTEVOUUE TNV OTTIXY EVOWUITWOT TEOGUETOVTOG TEVIE XAUVOVIXOTOLY-
pévoug aptipolc Tou VTG TOL(oUY GTIC CUVTETAYHEVES xat To epuBaddy tou mAasiou mepoplopol (bounding
box), oynuatilovtag étol onuxy evowpdtnon dotdoene 1029. H el avaropdotacy xdide avtixetuévou
TEOXOTTEL Ad TN CUVEVKOTY] TNG TEOTACLOXAC XOL TNG OTMTIXAC EVOWUATWONG, UE SlaoTatxdtnta 2053. Tot Tig
oyéoelc UETAED AVTIXELUEVWY YPNOWOTOLOUUE UOVO TROTAGLUXT| EVOWOUATOOT), Xoig BEV UTEPYOUY Yo QUTES
mhaiota meploptopot. Emmiéov, oe xdlde ypdpo mpoolétoupe pio YEVIXY OTTIXY EVOWUATWOY OAOXANENC NG
emdvag, 1 onola cuvdEetar we dhoug Toug dhhouc x6uBouc Yéow axpmy yweic TAnpogopio (zero embedding).
Téhoe, doywpllovpe to ovvoho dedopévwv oe et exnaideuonc (train), emdpwone (validation) xon doxurc
(test), To omola Topapévouy Ta (Bla YLor GAa ToL LOVTERX TTOU TapoLGLALOVTOL GTY) CUVEYEL.

CLIP VIT

Visual Feature Embeddings

D
DO DO
Concatenate
orcanae £ (5 (B
holding m m m
Person Tennis racket

[E— C\{IP Sentence

Tennis ball

Figure 1.7.1: T'iat Tov oyNUaTIond TV YRAPWY YONOHLOTOLOVUE TOL OVOUATO TV OVTLXELIEVMY XOL TWV CYECEWY
petol Toug and 1o PSG alvolo Sedouévmv, xadde xar tn dopn tou yedgou. Ta Tic ontiée mhnpogoples twv
AVTIXEWEVOV XU TNE EXOVAS Yenotponololue tov ontixd Transformer tou povtéhou CLIP. ‘Eneita, yia to
aVTLXELUEVOL TOU YRAPOU EVVOVTUL Ol TPOTUCLAXES XAl OL OTTIXES EVOWHUATOOELS TOUG.

1.7.4 Movtélo neoBAedng oNUAVTIXOTNTOS
Boouxr akfdeia

Q¢ «Boowh ahfdeioy yio TS TWES OMUAVTIXOTNTOC TWV AVTIXEWEVRY TOU YPPOU YENOLLOTOLOVUE TN UECT T
TOU ECOTEPIXOD YIVOUEVOU TWV TROTACLIXY EVOWUATMOTENDY TWY OVOUATMY TWV OVTIXEWUEVOV UE AUTES TV TEVTE
TPOTACEWY TOL TEPLYPGPoLY TNV ewdva.  Avtiotorya, yia tpimhétee (avtixeipevo 1, oyéon, avixeiyevo_2)
oynuatilovue t gedon «avixelyevo_1 oyéon avuxelyevo_2» and ta ovopata tou PSG cuvohou dedopévev,
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unohoY{{oVUE TNV TEOTAGLAXY] EVOWUATOGN TNE PREoNS AUTAS Xat ovE TOpVOUKE TN UEOT T TOU ECWTERXOD
YIVOUEVOU PE TIC EVOWUATWOOELS TWV TEOTICEWV.

Iiot matpdiBerypa, av évag Yedpos oxnvic Teptéyel To avTXElUEVD «EVIpOTOCy xou «YdTay Pe TN oyéon «xoltdlew
xou Wia o TG TPOTAGELS TTOL TEPLYPAPoLY TNy ewxdva elvar «Muia yuvaixa xoitdlet 0o ydtec», Téte N foduohoyio
ONUAVTIXOTNTAS Yot TOV «GvIpnno» elvol TO E0KTEPLXO YIVOUEVO TNE EVOWUATWONE «EvIpwTogy UE TIC TEOTAOELS
(U€ooc BPOC ECWTEPIXDY YLVOUEVDY OF ONEC TIC TPOTAOELS), AvVTIOTOLYA YLOL TN KYETO», XOL Yol TNV TELTAETO
«Gvdpwnog xottdlel ydtoy unohoyiloupe TO ECWTEPG YIVOUEVO TNG EVOWUATWONS TS Qedone «avidpwnog
XOLTALEL YATOY PE TIC EVOWUATOOELS TWV TEOTACEWY TOU TERLYEAPOLY TNV ELXOVAL.

3téxog Tou LovIiélou

Exnowdedoupe éva yovtéro mou yia xdde ypdpo mpoflAémel molo avTixelyeva xou moleg TELMAETEC YewpolvTol
onuavtixéc. To povtého hauPdver we elcodo v evowudtmor tou avixeyévou 1 (npotacioxd || ontixh), v
TEOTACLANY| EVOWUETWON TNG OYEONG UETUEY TOV AVTIXEWEV®Y, TNV EVOOUATOOT TOU AVTIXEWEVOL 2 (TpoToot-
ooeh] || omTin), Wior cLVOAMXY) TEOTAGLAXY] EVOWUATWOY TOU TEQLYPEPEL OAOXANEO TOV YPAPO XalL [l GUVORLXT
oY EVOWPATWOT TN edvag. ‘Otay Vélouye vo TeofAEPouUe T SNUAVTIXOTNTO LOVO EVOG AVTIXEWIEVOU avTi
TELMAETOG, AVTIXHO TOOUE TNV EVOWUETWOT TS OYECTE YO TOU OVTLXELUEVOU 2 UE BLaVOOUATO UNOEVIXWY THLWY.

JUVOMXY TEOTACLAXY] EVOWIATWOT YIX TOV YEAPO

It v Toipdry OUPE T CUVOAXT| TIEOTACLOXY) EVOWUATWOT) TOU Yedpou xdlde edvag, Eextviyue oynuatilovtac évoy
YEdpo TOL TEQLMOWPAVEL UOVO TOL OVOUOTA TV UVTIXEWWEVOV XL TWY OYECEWV (Ywplc OTTiXéC TANPOQOpiES).
Kdde x6uBoc otov ypdgo @épel TNy mpoTacloxy] EVOWUAT®WOT Tou avTioTolyou avTixeluévou ¥ oxéone. Eneita,
petatpénoupe xdde oyéon oe Zeywpeiotd x6uPo, dnuoupydvtac éva diwepéc ypdgo (bipartite graph) petalld
XOUPOV-AVTIXEWEVWY Xl XOUPwY-oyéoewy. Exnoudedouue évav un emBienouevo aryoprduo InfoGraph oto oet
eEXTUBEVOTNG, X0l GUAAEYOUUE TIC EVOWUNTMOOELS TIOU TORAYEL Yiol xdde yYpdpo xatd tn Sidpxelo tne exnaldevong.
INo o oeT emcbpnong xan Soxnc, yenotdonotolue Ti¢ npoPieicioes evonuatiaoelg Tou (Blou akyoplduou. H
TENXN AUTY EVOWUATWOT xwdonolel TANpogopleg yiol T cuvolixy) Sour Tou Yo, xadde xou Yo GAa To
avTIXElPEVOL XOUL TIC OYECELS TTIOU TEQLEYEL.

ApyttexTOoViXN

IIpwv g elodyouvue oT0 HovTERD TPOBAEPNG oNuavTIXOTNTOS , ToupVAUE Xodé pla amo TS b EVOWHATMOELS TOU
neprypdape mopandve omo éva ypouuixd otpoua teoBolic Yo va to tpofdhoupe oty (Bla didotaor . Meta
Toupvape ouTd To tokens amo éva cloTno xwdxonowt transformer , o omofog Sluécou Tou unyovicpoH
pocoyNc Tou Slodétel , avavedvel xdle evowudtworn dedouévev ue Bdorn Tic dAAeg, divovtac éugoon ota
To onuovTixd onueio xode plag . Etol o xwdixanowntic tranformer mapdyel 5 avoavewpéva token €va yior xdde
eloodo . Meta matpvdue ta avavewuéva token aro éva multi head attention otpwyus ye exnoudevdpeves epwTioelg
(queries) , yio TRV TapAY WY OXOUAL TUO EXPEACTINWY EVOWUATOOEWY . Telxd xdvouue mean pooling (péon
TITH) TIC EVOWUOTOOELS QUTES X0l TUEVEPE TNV GUVOMXH EVowUdTwor ano éva uxeo MLP yio va tdpouye tehixd
plor oELOULTINY TWH OMUAVTIXOTNTOC Yo To avTxeluevo 1 tny teimhéta . H ouvolur apyitextoviny goivete oto
oynua 1.7.2

Exnaidcsuon

INo v exnaidevon tou yovtéhou nedPBiedng onuavtixdtntoc xotaoxeLdlovue €va GUVOLRO BeBoPévwy and To
oet exnaidevone. Ta xdde avteiyevo oe xdde emdva mepthopfdvouye éva delypo tne popghc (evowudtwon
avixewévou 1 (mpotoaotond || omtixn), undevixd didvuopa, pndevixd didvuoud, YEVIXY OTTIXH EVOOUATWON,
YEVIXT TROTACLOXT EVOWUATOOT YPdpou) xou TNV «Pacinh ohfdetoy tTne onuavtixdtntag Tou avuxeluévou. Iupo-
polwg, yior xde tpimhéta oynuatiCouue delyporo Tne Lopghc (evowudtwan avtixelwévou 1, evonudtnon oyéong,
EVOWUETWON OVTIXEWEVOU 2, YEVIXH OTTIX EVOWUATWOT), YEVIXT TEOTAGLOXY EVOWUATOOTN YRAPOU) YE TNV ov-
tiotoyn «Baowxry akfdeioy. To poviého exmoudeleton OOTE Vo EAAYLOTOTOE! TO UECO TETPAYWVIXO CQIAUIL
(mean squared error) YeTal TwV TPOPAETOUEVODV THIOY ONUAVTIXOTNTAS Xou TN «Baotxric odidelacy i xéde
avTixelyevo 1 TpimhéTaL
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SCORE

MLP
‘ MEAN POOL ’
| | | |
‘ emb 1 ‘ ‘ emb 2 ’ ‘ emb 3 ’ ‘ emb 4 ’
querry 1
querry 2
MULTIHEAD ATTENTION
querry 3
querry 4
updated emb. ’ ‘ updated emb. ’ ‘ updated emb. ’ ‘ updated emb. ’ ‘ updated emb.

TRANSFORMER ENCODER

object 1 emb. ’ ‘ relation emb. ’ ‘ object 2 emb. ’ ‘ global visual emb. ’ ‘

global graph
sen.emb.

Figure 1.7.2: H apyitextovixn tou povtéhou mpoPBhedne onuovtxdmrog: o eicodo hopfdvel tévte

TWT) ONUAVTIXOTNTAC.

evowpatooels (avuxeiyevo 1, oyéon, avixelyevo 2, yevixh ontinf EVoOWPETnoT EOVaS, YEVIXT TPoTaoLoxA
EVOWUETWON Yedpou). Apyixd nepvd autés péow evie xwdomownth Transformer, o omolog avove®ver Tig
EVOOUATMOELS. L1 GUVEYELD, Ol AVAVEWUEVES EVOWUUTOOELS Yenoylonolodvial og xhedid (keys) xon tipéc
(values) oe éva otpdpa multi-head attention pe exnondevdueva epwtiyata (queries). Téhog, unoloyileton o
HEoOC HPOC TWV TUPAYOUEVLV EVOWHATOOEWY Xal dUTOC Tpopodoteiton ot éva wxpd MLP mou bivel v tehud
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1.8. Exmnoidevon Nevpwvixold Awxtiou I'pdpou

1.8 Exrnaidcsuon Nevpwvixod Awxtdou I'pdpou

Boowxr arhdeia

Io v exmaldeucy tou veupwmvixol dixthou yedpou, we «Baoxy ohrfidelor» e opotdTnTos YeTal 800 eXOVWY
nabpvoupe TN péon TN TN opotdTNTog PETAED xdde Buddoc and TIC TEVTE TPOTACELS TOU TEPLYPAPOLY TNV Xdie
ewdva (oo 25 Lebym yio xdde Lebyog emxdvov). H «Baond ohfdeias yior T SNUOyTIXOTATA TWV AVTIXELUEVOV
X0l TOV TELTAETWY OE Lol Etxovar opiletal OTwe TEPLYRAPNXE GTNY TEONYOUUEVT EVOTNTA.

KA\d&depa yedpov

IIpwv mepdoouye TOUG YPAPOUS amd TO VEUPWVIXG BIXTUO YEAPWVY Yot VAl TOEEEOUUE Widt YEVIXT| EVOWOUATWOT),
xhadevouue xdmotoug xouPoug xou axpés. Koatd tn ddpxeia tne exnaldeuong, yio xdde exéva 6TO OET ex-
Taldeuvong yenoiwonotolue T Bacwxr oAleldl TS CNUAVTIXOTNTOC TV AVTIXEWEVLY Yld Vo SYNuaTicouue pia
Mota e autd. Apyind egappdlovpe éva dpto Tic (threshold): dmolo avtixeiyevo éyel Tiur onuavTixGTNToS T8V
and autd, yopuxtneileton onuavtixd (label 1). Xtn cuvéyewa tpéyoupe Tov olydprduo Jenks natural breaks pe
dVo xhdoec otie Tée onuavuxdtntac xou Yewpodue onuavtixd (label 1) ta avtixeipeva tov opadorolovvto
oTnVv xhdom pe Tic uPnhotepec Twée. Télog, T0 GUVORO TV GNUAVTIXGY AVTIXEWEVKY 0plleTol WS 1) VKT TeV
800 cuvehwy. AvtioTouya, egapudloupe Ty Bio Sadiacia yio v Bpolue Tig onuavtixés Teimhétes (avtixelpevo
1, oyéon, avtxelyevo 2) e emdvoc.

Y ouvéyewa, guhtpdpouye xdlde Ypdpo oto oet exmaldevone we e€hg: xpatdue Toug xouBouc—avTixelueva Tou
€ouV 1o YapaxTNELOTEL ONUUVTIXG XAl OAOUS TOUC XOUBOUC TOU GUUUETEYOUY OE XATOL CNUAVTIXT TEITAET.
Emniéov, o x6ufog ue tn yevr omTixt| eVoWUAT®on Tou Yedpou Yewmpelton mévto onuavTinds xal TopaUéveL UETH
To @uktpdplopa, woll ye dhec Tic axpéc Tou mpog Toug emheypévouc xoufouc. ‘Eva nopddelypa tne diadxosciog
gatvetar oty Ewdva 1.8.1 . Aoxwpdooye enlong pio éxdoon tou ahyoplduou xhadéuatoc mou Sotneel pévo ta
TAEOV ONUAVTIXG avTIXEUEVE, UAAG 1) ATOBOCT) TOU UOVTEAOU HTAY ENAPEOS YAUNASTERT).

H yperion tou ahyopidpou Jenks mpoéxule and tnv mapathenon Ot oL TWES ONUOVTIXOTNTOG TV OVTIXEWWEVOY
oe BlapopeTinés embves napousiolay Yeydhn domopd. ‘Etol éva amhd dplo (we xplthpto Tng oNuavTiXoTNToC)
dev Vo ftay apxetd cuvenéc yio OheC Tic edvec. Eminhéov, enedr| o Jenks elvar odydprdpoc cuotadonoinong
Boolopévos oty xatavouh Twy TV, urnopel va Ppet «puotxdy cUvopa avdueoo ot d0o xNdoete (Udmhéc xou
Yopnhéc Twéc), mpoocapuolovtde to oe xdde ewdva. Iopdpola, xou ohydprduol 6twe o k-means mdovév vo
AELTOURYOUV IXOVOTOLNTIXG.

Graph 1 Graph 1 Filtered

Figure 1.8.1: ¥to x\&Beua Twv Ypdpwy xpatdue uévo xduPouc/avtxelueva mou elte eivor onuavtind eite
AMOTEAOUV UEPOC LG CNUAVTIXNS TELTAETOC.

Exnaidcuon

Iepvdpe xdde xhadeyévo ypdpo S and éva vevpwvixd dixtuo yedypou (GNN) yio vo Tdpoupe ot EVOOUATKOON
g(9) € R4 Kotd tn didpxera tne exmaidevone nadlpvouye Levyn Yedpwy (Si, Sj) xou PETpGUE TNY OUOLOTNTA TV
EVOWUATOOEWY Tou TeoxinTtouy uéow tou GNN, uéow tou ecwtepinol YLIvopévou Toug:
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Chapter 1. Extetopévn Ieptindmn ota EAAnvixd

xat {nrdpe amd To BixTud Wog N Tir auth vor efvon (Blot e THY OMOLOTNTA TWY B0 ELXOVWY:

5 5
S(IZ', Ij) = % Z Zci,k Cj,l5

k=1/=1

omou ¢; 1, elvon 1 evowpdtonon wlac and Ti¢ npotdoelc Tou teplyedpouy Ty exdva I;. ‘Etol ehaylotonololue to
TETPAYWVIXO CQAAUAL

2
X0l EXTUOEVOUPE TO UOVTENO (DOTE Ol EVOWUATOOELS Tov Tapdyet To GNN va xadpeptilouy ) onuaciohoyixy
oUOOTNTA TWV EWOVKY Bdoel Twv Tpotdoety Toug. To cuvolxd pipeline galveton oty Ewdva 1.8.2.

[Objects and Triplets for image 1] @ [ Captions for image 1
g(s1)*g(s2) =
G(s1,52)
[ODJECTS and Triplets for image 2] Sim k [ Captions for image 2
Training Loss
Graph 1 Filtered Graph 1 L = ||S(s1,52) - G(s1,52)|["2
(D] (D ]
(515) (B]=) (BI=] (5]=])
(D | (D] (BIn] ; D MyGNN
08 CEHB) i
Graph 2 Filtered Graph 2
(o15])
(D | (DO (DO MyGNN
08 CaHBJ CEH D]

Figure 1.8.2: H cuvohixy| diadixacta exmaldevone tou povtéhou yoc. Apyind @uitpdpouue Toug ypdpouc,
EMELTAL TOUG TEQPVAUE OO €V VEURWVIXOS BIXTUO YEAPWY TOU TUREYEL Ul GUVORXTY EVOWUATWOT Yo xdde
yedpo. Télog, ouyxpivovtae (uéow MSE) v opoidtnta 800 ypdpwy ye Ty tporypatixy ogoidtnta Bdoet tne
Baowic ahidelog, exnoudelouue T0 UOVTEND Hag.

1.8.1 IIpdétaocyn Nevpwvixod Awxtbou I'pdpou

"Evo suvHOUEVO HELOVEXTIUO TTOAADV OPYLTEXTOVIXMY VELPWIXODY dWTO0Y Yedpwy (T.y. GAT, GIN x.An.) civo
OTL XOTE TNV AVTAAAXY Y| UNVURETOY BEV aElOTOLOUVTOL Ol EVOWOUATWOELS TWV OYECEWY OTIC UXUES, KUE ATOTENECUA
var ydvetow mAnpogoplor Tou Yo unopodoe Vo eVIoYVCEL TNV EXPEOC TIXOTNTO TOU UOVTENOU. XTOUC YEAPOUS
poc xdde axur| @épel mholoteg mAnpogopies yia T oyéon petodd TV aVTIXEWEVLY (Ty. «Evipwroc—railel
pe—ox0hox»). Qotdoo, mponyolueves uedodol avixtnone exdvoe Bdoel exévas elte mapaBAEnouy EVIENGDS
autéc Tic TAnpogopiee [99] eite Tic ypnowonooly pdvo oto teAixd 6Tddlo Tou ohyopiduou avixtnone [90], avti
VoL TLS EVOWUATOVOUY XTd T1 Bidpxela Tne Yetddoone unvupdtony oto GNN.

Ipoteivouye pia tpononoinoy tou GATV2 cuvelxtixol Sixtdou nou alomolel TIC EVOWUATOCEL OYECEWY OTIC
oaxUEC TOCO YLoL TOV UTOAOYLOUO TOU GUVTEAEGTH TEOCOYNHC OGO XoL YOl Tr UETADOOY Unvuudtwy and xdéuBo
oe xopPo. Ilponyoluevee mpoondleies evowpdtwons Twv TANeogopldv oxuwy oto GAT yenowonooloay Tig
oXpES UOVO OTOV UTIONOYLOUS TOL GUVTEAEG T Tpoooyhc e;; (Ue concatenation [z;||e;;]|z;]) xou mpooupeTind
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1.8. Exmnoidevon Nevpwvixold Awxtiou I'pdpou

ELOAYAYOV TIC EVOWUUTOOELS oxXu®Y Wovo 6to teheutaio otpdypa tou GNN [13]. Avtideta, epeic ewodyoupe Tic
EVOWUATWOOELS OXUWY OO TO TEMTO CTEMUA TN APYLITEXTOVIXNE, MOTE TA ENOUEVA OTEMMATI Vo udouy Teplo-
GOTEPO EXPPAUCTIXEC AVATAUPAUOTATELS, YVWellovTag 1660 TIC EVOOUUTWOELS XOUPwY 600 xou axpwy. Emmiéov,
yenowonoolpe npdén adpoiopatoc avti Yl TNy €veoT TV evonuathotwy (concatenation) t6co ot yetddoon
UNVUUATOY 600 Xol GTOV UTOAOYIOUO Tou GUVTEAESTY) Tpocoyrc. Emeldr] ol xéufol avtixelpévwy @gépouy mpo-
TACLOXES X0l OTUTIXES EVOWUATOOELS EVE) Ol EVOWHUATNOOELS aXUOVY Elvat pévo mpotaotaxés, apyxd dioywpilouye
v xdde yeltova j T EVOWUATOOE 2; OF z;e"t xou z3"°. Yto npotoaotaxd xou ontuxd xopudtt epapudélovye
YeopXd o TpmUaTe TEoBoANC:
text/ text vis/ vis !
Z] = Wt Z] B Z_] = W’U Z] 5 eij = We eij,

6mou Wy € RéoueXdiexe 1} € RbousXdvis T/, € Rout Xdedse . "Ereita, yio x&e yeitova j oymuotiloupe pio pewt
EVOOUATOHON

! texts / vis/

7= (5" +eiy) | 25,

eve o x6uPoc i datneel TNV apye Tou evowpdtwon z; = zi%|2YS. Téhoc, epupubdlovpe Tov ¥haowxd
unyaviopd npocoyhc tou GATV2 méve OTIC VEES QUTEC UEIXTESC EVOWHATOOELS:

T ’ exp(es;) ’ /
eij = a LeakyReLU(Wag [ 2|25 ]), auj = y 7= 0( g aij Wi Z)
’ ( i) T Yken exple) JEN(i) J ’

Me autdV TOV TPOTO 0L EVOWUATOOELS TV xOUBWY UETY TO TEHOTO OTpOUA TERIEYOLY 1HOY Yeroes TANpopopieg
yior To avTxe(peva xot Tig oy€oels Tous. Aedopévou OTL Ol EVOWHATOOELS UXUMY JEV OVOVEDVOVTAL GE AUTO TO
oTpWua, To eEnduEVa oTpmuaTa Yenotuonototy xhooixd GATV2 otpduata ywpeic mepontépw YeNoN TWV AXUOV.
Mo avamaipdoTacT) ToU PNy oviopol HETAB0oNE UNVUdTKY golvetol 6to Xyruo 1.8.3.

zZi

= -
]
D 3

_—

Figure 1.8.3: H Siobixaocio yetddoone unvupdtwy Tou yYenoLlloToloUUe 6TO TEWTO OTEOUO TOU HOVTIEAOU UAC.
ITpocWétoupe 610 TEOTACLONS PEEOS TNG EVOWUATWONS TWV XOUBWY, TOU TAUEAYOUY UNVOUATO Yo GAAOUC
%xOUPoug, TNV TRPOTUCLUXY EVOWUATWOT TwV OYEcenY WeTald Toug. Me auTtéy TOV TEOTO Ol EVOWUATHOOELS TOU
TEOXVTITOUV Amd TO OTPWUN AUTO TERLEYOLY TANPOPOEIEC TOCO YL Tal AVTIXEUEVO 6GO oL YOl TS OYECELS
petagd Touc.

1.8.2 Inference

Koatd tn dudpxeia tou inference, yia xdde exxdva—ypdpo oto oet doxiunc unohoyi{ovue TewTA TIC TWWES OTUaV-
TXOTNTOG VLo xGde ovTXe(levo xan TEITAETA XENOLHOTOLOVTOS TO HovTého poPhedne onuavtixdttos. Eneita,
OTWS XATE TNV EXTOUBEUOT), EMAEYOUUE ToL ONUOVTIXG avTixe{leva xar TpLAéTeS eqapuélovtas (1) éva bplo Tyuhc
xou (ii) Tov ahybprduo Jenks natural breaks, xou nafpvoupe Ty évwon twv anotereoudtwy. Me outh T pdoxa
QUATpoplopatog XAaBEVOUVUE TOV YPAPO, APULPMVTIS WUN oNUavTixols xéuBouc xon axués. Tehixd, nepvdye tov
XAOBEPEVO YPAPO amd TO VEUPOVIXG BIXTUO YPdPOL Yo Vo AGBOUUE Ul CUVORXTY EVOWUATWOT, Xol 1) TEof-
Aemouevn ogotdTNTa 800 EMdVWY BIVETAUL and TO ECHTEPIUS YIVOUEVO TV AVTIOTOLYWY EVOWHATOOEMY Tous. H
oladuaota inference gofvetan oto Lyrua 1.8.4.
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Prediction input

object sentence emb
object visual emb
global visual emb
- Prediction Module
infograph emb

Graph 1 Jenks Filtered Graph 1
D D
D@ D@ D] [BYa]
[ D ] (D] (DO g MyGNN
8 ©CaHD] Do
Jenks H
Graph 2 Filtered Graph 2
gl
(D] DO [B15] 5 pu— MyGNN
D8 CEHD] CEH D]

Figure 1.8.4: Kotd ) Sdpxeia tne npoPredng, opyxwd grhtpdpouue toug yedpoug Bdoel twv mpoBiédewy yio
ONUOYTIXG oV TUIXElPEVOL XL TEITAETES o6 TO POVTENO TEOBAEPNG ONUAVTIXOTATAS. 2 TN GUVEYEL, TEPVAMUE TOUG
PLATEOPLOPEVOUC YRAPOUS OO €VOL VELEWVIXO BIXTUO YEAPWY EXTUUBEVUEVO OIS TEpLYPAYPoE THPATAVE.
Télog, 1 opoloTNTA 800 YEAPWV—EXOVWY BIVETAUL Ad TO ECWTEPIXS YLVOUEVO TWV AVTIOTOLY WY EVOWUATWOCEWY.
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1.9. Iewapotxd Mépoc

1.9 Ileipopotind Meépog
1.9.1 XdOvolo Acdopévwyv

INo o melpapatind YE€EOS YENOWOTOCUUE EXOVESC OV LTdpyouv Ttawtdypova ato PSG olvolo Bedouéverv
xar oto MS-COCO. To PSG dataset magéyet ypdpoug oxnvic udnhodtepng noidtntag o oyéon ue to Visual
Genome (elvon ouctaotnd pa «xadopdtepny €xdoor), eve to MS-COCO pac divel névte npotdoelc yia xdide
ELXOVA TIOU TEPLYPAPOLY TO TEPLEYOUEVS NS PE onuaclohoyxd tedémo. Ileplopiothinoue oTic xoLvéES edveg
%ol TV dV0 GUVOALY, MaTE va Eyoupe dladéoiues TEOTATELS Yiot TOV UTOAOYLOMO Tne «PBaowxic odfdetacy e
OUOLOTNTAS UETAED ELXOVWY, XoME Xl YPAPOUE oXNVAC Yiot AUTES.

‘Eneita ywpllovye tuyaio to chvoho dedopévev ot 80 % yio to oet exnaidevone, 12 % yio to oet emxdpwong
(validation) xon 8 % vyio 1o oet doxphc (test). Tuyxexpwéva, xatoliyoupe pe 37 352 edvec yio exnaidevot),
5 603 yio emixOpwon xou 3 736 yior Soxuun.

Ou ypdpoL oxnvic TeEpLé UV GUYXEXPUIEVES XUTNYORIEC AVTIXEWEVWLY Xou oyéoewy. o va Tic enegepyaotolye,
XATAUOHEVALOUPE TIC TTPOTACLOKES EVOWUATOOELS TOUS XPNOLLOTOLWVTAS Tov Tpotactoxd (sentence) Transformer
tou povtéiou OpenCLIP ViT H 14 laion2b_s32b_b79k. Emniéov, yenouonotodye tov ontixd (vision)
Transformer tou (8louv pOVTEAOL Yial Vo AABOUHE OTTIHES EVOWUATOOELS TWV AVTIXEWEVLY GTOUC YRA(POUC.

INo v Boower) Twwh e opotdnTag 800 ewdVeV TalpVoule TIC TEVTE TPOTACELC TOU TMEPLYEdpouY xdle eixdva
O TLC UETATPEMOVUE OE EVOWUINTWOELS YPNOWOTOLOVTAS TO WovTtélo all-mpnet-base-v2 and tn PBriodrxn
sentence-transformers tn¢ Python. ‘Onw¢ avagépaue napamdve, unoroyiCoupe v opoldtnTa Yiot xdde
Ledyog npotdoewy (5x5 = 25 cuyxpioelc) xou Todpvoule Tov Péco Gpo auT®Y Yia va Ttpoxldel 1 tehinh Tt
opodtntoc (ground-truth).

1.9.2 Aentopépeieg poviEAoL TEOPBAEDPNC ONUAVTIXNOTNTAC

O Boownde oyedaouds tou poviéhou mpdPredne onuavtixdtnrog neptypdpeton oty Evétnra 1.7.4 xou gaiveton
oto Yyfuo 1.7.2. T 0 yevixh mpoTaolonr] eVOOUAT®ON TOU YEd(Pou Tou BIVOUUE 6TO UOVTEAD w¢ €l00d0
(extée dANwYV), exmoudedoaye évo un emPBrendpevo wovtého InfoGraph yio 120 enoyée, puduilovtog tny €€086
Tou ot Sdotaon 1024. 'Erneita, xdde elcodog oto poviého mpofdiieton oe Sidotaon 1536 péow evoc ypouuixol
OTPWHATOS — UEYUAUTERY 1) xpoTERN SO TAOT Yia AUTES TIC TPoBolég pelwve TNV anddoor Tou HOVTEAOU Hag.

I tov xwdixomounty) tou Transformer Berxape dtu tpla oTpdpaTa, TO XodEVa Ue 32 xeQuréc Tpocoy g, EdLvay To
xoAUTEPa amoTteAéopata. Metd to teheuTtaio OTPOUA TOU XWOLXOTOLNTY), OL AVAVEWUEVES EVOWUATMOELS TEEVODY
and évo emmAéov multi-head attention otpdpo pe exmoudevdpevo epwthdata (queries). Xe avtd to oTpMUA
Yenowonololye 4 exmoudeuOUEVO EpOTALATA Xalt TEAL 32 XEQUAEC TEOCOYNHC. TN CUVEYELX EVEOVOVTAL Ol TEGOERLS
TPOXUTTOVOES EVOWUATWOELC e M1 Tou YEoou 6oL TOUC oL 1) TEOXVTITOUCA EVOWUATWOT| Teo@odoTelToL oE
éva pixpd MLP 800 otpwudteyv e ouvaptioels evepyonoinone GeLU. To npodto otpdua Tou MLP peuwdver
dldotaom and 1536 oe 768, eved o deltepo and 768 oe 1, mou elvan 1) TENXT) TWWH-ATOTEAECUO TNG ONUAVTIXOTNTAS.

Exnaidcuon

Exnowdedooye éva eviaio povtého va evtonilel 1600 T GNUAVTIXG AVTLXEIUEVO 600 Yol TIC CNUAVTIXEC TPLTAETES
EVOC YRAPOU. DUYXEXPWEVA, TO GUVORO BEBOPEVWY eEXTIAlBEUOTE TEPLEYEL Yiot XADE Ypd(PO ONEC TIC TEITAETES TOU
(avTixelyevo 1, oyéom, aviixelyevo 2) xou 6ha tar povd avtixeipeva we Seiypata e poperc (avtixeipevo 1, 0,
0). H emdoy auth €yive enedn Slamotdroope 6Tl éva evialo povtého mou yelplleton TauTéY POV TELTAETES Xal
povd avtixeiueva elye cuvolixd xahiTepn ambddoo,.

Aentopépeieg exnaldsuong

Exnoudetooue to yovtého poc yio 10 emoyée ypnotponowwdvtoe tov Bedtiotonownts Adam pe pudud exuddnone
1 x 1075 xou cUVEpTNON CYINIATOS , TO Péoo TETpaywVIXG o@dhpa (mean squared error). Xto ceT dedouévev
yenowonojooue batch size 32, téooepic diepyooieg epyaoiaug (worker threads) xou tuyofo avoxdreya twv
derypdrov (shuffling) oe xdde enoynR. T va meplopicovpe to overfitting epopudoaye dropout 0.2 oe xdide
oTpwpa Tou xwdonowty Transformer. Emniéov, ypnowonoooue Ypovompoypoudotio T Tou puduol ex-
uddnone (learning rate scheduler) mou molamhactdler o puIUS expdidnone enl 0.9 petd and x&de emoyr| xou
early stopping Ue uTOUOVY| TELOY ETOY V.
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Boouxh alAOeior xaouw petpixéc

To povtého pog tpoPiénet aprduntixée tpée s € [0, 1] mou avamaploToly 1 GUUVTIXOTNTA EVOC AVTIXEWWEVOU
1 teimAétoc. H pdoxa nou xodopilel mola avtixelyeva xon totmAéteg elval onuavtixd ot pla eixéva TeoxUTTEL OE
dVo Bruarto:

1. 'Opro Tiwnc: xdde avtixeipevo 1 tpumhéta pe s > 0.4 Yewpeitar onpovTins.

2. Jenks natural breaks: egoapuéloupe tov odybdprdpo Jenks pe d0o xhdoeic otic Twée s. Av To eAdyLoTo
OX0P TN KONUAVTIXACH XAAOTG Xoll TO UEYLOTO OXOP TNG KUN-CNUAVTIXACY XAAONG Slopépouy xotd Aydtepo and
0.1, t61e evomotolye Tig BV xAdoelc xou Yewpolue Oho Tor SelyUoTo ONUAVTIXG.

To tehind oOVONO VTIXEWEVLY (xou TRLTAETHOV) oL 6TN pdoxa yapoxtnellovton onuavTixd eivat 1) EveoTn auToy
mou emAEyOnxay xou ue g 80o pedddoug.

Io xdde exdva aglohoyolpe Tic ouveyelc tpofiédelc Tou yovtéhou ue tig Tiée g «Booic ahidetagy yenot-
HOTIOLMVTAS TOUG oLVTEAEGTEC Spearman’s r, Distance Correlation, MSE xou MAE. Avtictouya, yia tic Suabixéc
etixétec (doxa) ouyxpivoupe Tic TpofBrédeis e T udoxa e «Boaoxfc aAIELICY YENOULOTOUDYTIS TIC UETEIXES
Accuracy, Precision, Recall xou F1-score.

IMo mopdderyyor, yior plor ecova e entd avtixelyeva, ol ground-truth tée onuavtidtnTog xan ol avtioTtolyeg
duodéc eTixétec elvon

[0.1266, 0.1266, 0.4529, 0.4529, 0.3555, 0.0772, 0.0389] — [0, 0, 1, 1, 1, 0, 0],
eved oL Tpofiédelc Tou povtélou yag eivon

0.2829, 0.0723, 0.4650, 0.4475, 0.3467, 0.0323, 0.0413] — [1,0, 1, 1, 1, 0, 0].

IMTocotixH Avdiuor

Yy evotnra autr) Yo allohOYHOOUPE TNV AmodoTXOTHTA TOU HOVTEAOU TRdBAedne onuavtixdtntag. Luyxpel-
VOUUE Ylot TOV AOYOo autd 800 HOVTEAN: TO TPWTO YENOWOTOLEl UETE Tor oTpwuaTd Xwdxonomnty Transformer
éva otpduo multi-head attention pe exmoudevdyeva gpwtipata xou to dedtepo oyt Emlong afoloyolue v
IXAVOTNTA TWV HOVTEAWY LIS EEXWELOTA Yio ToL AVTIXELUEVA Yol TLC TEITAETES.

Model Spearman Avg Dist. Corr. Avg MSE Avg MAE

Me exnawdeudyuevee epwthioeic(queries) 0.6655 0.8556 0.0100 0.0755

Xwplc exmoudevdyeves epwthioeic(queries) 0.6596 0.8529 0.0102 0.0763
Model Acc. Prec. Rec. F1

Me exnadevdpeves epwtioelc(queries) 0.8267 0.8445 0.8356 0.8400
Xoplc exnoudevduevee epwthoeic(queries) 0.8214  0.8340 0.8390  0.8365

Table 1.1: ITpoPBAédelc oNUAVTIXOTNTAUS TEITAETAOV Yot AVTIXEUEVO GTO GET BOXAC.

Model Spearman Avg Dist. Corr. Avg MSE Avg MAE

Me exnoudeudpeves epwtiioeic(queries) 0.5829 0.7690 0.0093 0.0694

Xwplc exnoudevdyeves epwtioeic(queries) 0.5813 0.7671 0.0094 0.0699
Model Acc. Prec. Rec. F1

Me exnondevdpevee epwthioeic(queries) 0.7891 0.6866 0.6818 0.6842
Xoplc exnoudevduevee epwthoeic(queries) 0.7814  0.6707 0.6826  0.6766

Table 1.2: TTpoPBrédelc onuavTixdTTOC VLol AVTIXEUEVO OTO CET BOXLUNS.
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1.9. Iepapotind Mépog

ANyoprdpog Evwone  Xe autd o onuelo alohoyolue Tov ahyoptdpo xAadépatog Tou Teplypdaue mopo-
Tévew oto vo Peloxel To onpovtind avtixelyevo. Av xou o axp{Beto oto 81 % umopel va goiveton ixer, onueln-
voupe 6T 1 Paouxr] oAAdeisl YLol T ONUAVTIXOTNTA TWY avTIXEWEVGLY Exel HopuPo xou A&l oe xdmoleg tepintwoEelg
Aoy ToL TEdTOUL LTOAOYIoUOU Tne. T Tapdderyua, av dVo avtixelpeva otov Yedgo éxouv Ty (Bla etixéta («av-
Yownocy ), xau ta dVo Yo AdBouv Ty Blar TR oNUAVTIXGTNTUS, EVEH UTOPYEL TEPITTWON Vo elval H6vo 0 Evog
"avipwnoc" onuavtnds oty exdva , Oyt Xt ot dVo.

Model Acc. Prec. Rec. F1

Me exnadevdpeves epwthioeic(queries) 0.8127 0.8095 0.8109 0.8102
Xwplc exmoudeudpeve epwthoeic(queries)  0.8051  0.7964  0.8123  0.8042

Table 1.3: ITpoBAédelc oNUAVTIXOTNTAC AVTIXEWEVWY, UETE TNV EVWOT] TOV TPOBAETOUEVWY OS TNUAVTIXEDY
AVTIXELUEVRY PE EXELVA TTOU CUUUETEYOUY GE ULOL GNUOVTIXY TELTAETA.

ITototix Avdiuon

Yo onpelo awtd moapoucidlouvpe Uepixd mopadeiyuata tpoBrédewy Tou HOVTENOU TEOBREPNC ONUAYTIXOTNTAG.
Y toug Ypdpoug EMGNUOIVOUUE UE TPAGLVO YEMUO ToL AVTIXEIUEVA TTOU TROBREQPUNXAY WG CTUOVTIXG XoL UE XOXHLVO
oTd Tou TEoBAEPUNXay un onuoyTd. AvtioTolya, ol TEITAETES IOV YAPUXTNEICTNXAY CTUOVTIXEG CNUELDVOVTOL
HE TPAOLYO GTO YPOUO TN OYECTC, EVE) OL U1) ONUAVTIXES UE XOXXLVO.

L

going
in front of down

@ = @

Figure 1.9.1: TTopdderyya pag emévag e ToV Ypdpo e, 6mou @oivovTal ot TEoBAEPELS TOU WOVTEROL HOC.
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holding

X
R

walking
o]

Pavement beside

in front of Building

i

in front of Cardboard

.

Figure 1.9.2: Ilopatnpodpe dti napdho mou ol neptocdtepes npoBAédelc Tou wovtéhou yog elvon dionanTixd
OWOTES, LTdEYOLY AdUT- .x. €8¢ To “cardboard” mpofBiépinxe wg oNUAVTIXG EVE Bev QalvETL GTNV EXOVA.

7

holding

on

attached
to

slicing

Dining
table

Figure 1.9.3: To yovtého poc aflohoyel cwotd otny emdva ta aviixelpeva mou elvor onpovtixd Stoncdntixd,
xaddde xou Tic onpavtixée evépyete ot auth (slicing, holding).
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1.9. Iewapotxd Mépoc

1.9.3 Aentopépeiegc Nevpwvixol Awxtbou I'edpwy
ApyrteExTOoViXn

‘Onwe neptypdope oty Evétnra 1.8.1, to povtého mou npotelvape — GATV2 pe eniyvwon twv axuodv (Edge
Aware GATV2) — €yel ¢ TpAOTO GTEOUA TO GTPOWI TOU TPOTEIVAUE X0t XATOTLY Yenoldonotel dhha 8o otpdpota
amhot GATv2. O xbéufot Tou YpdYou Pépouy evowuatdaoels dlotdoewy 2053 (1024 mpotactoxt evowudtewon +
1029 ot EVOWUETWOT)), EVHD O UXUES PEPOUY EVOWUATMOOELS OYECENY dlaotdoeny 1024. 1o mp®to oTphua
(Edge Aware GATV2) ntpofdloupe To TPOTACLONG X0l OTTIXG XOUUETL TV EVOWUATWOOENY TwV xOufuy ot 1024
dlaotdoelc To xadéva, UEow EVOC YRoUUIXO) OTROUATOC TEOBOATC.

Ot xahOtepec TopopéTeol yia To LoVTEND pac Atav Tplo oTpmduat, Onwe Teptypddaue Topamdve, UE Sl TAOELS
[3072, 2048, 2048] avtioTorya. AUTEC 0oL BLACTACELS AELTOUPYOUY OOV UTOXWIKOTONTAS OTO TEWTO CTEOUN
(ue peyahlTepn BdoTacT apyixd xot UELwUEVES oTo eToUeva). AluoInuxd, 610 TPdTO oTEMUA AUEAVOUUE
TN dldotooy) eNEdY) TO0 HOVTEAO GUYXEVTPOVEL TANEOQopleg and xoufouc xa oyéoelc péow tou adpolopatog:
auth 1 eméxtoon g ddotaong Pondd to bixTuo va amopovmoel T Bacxéc OYECELS XoL VAL QLATEUEEL TOV
Y6puBo mou evdéyetar va elodyel 1 TEdEN Tou adpoloyatoc. Emmiéoyv, omwe cuvndiletar oe GNNs xaw CNN,
dev epapuolouye residual oUvdeon 010 TEWTO CTEWUA, EVE GTA BUO ETOUEVA oTpOUTA TeocVéTouue residual
ouvdéaoelc Yo va amoteédoupe To oversmoothing t0v EVeWUAT®OoEWY TwV XOUPwy.

Metd t0 npdhTo oTEOUA (TO JXG YOS, TTOU EVOWUATMOVEL TIC TANPOPORIES OXUDY), TEPVIUE TIC AVAVEWHUEVES VO~
TOPAC TAOELS TWY XOUPOY 6TO ENOUEVO oTPMUA axp3As we €xouv. Metd to deltepo xou to Tpito oTpdua (Amhd
GATvV2 otpoyata) epappdlovpe ouvdptnon evepyonoinone ReLU otic evowpatdoec twv xopPov. Tehxd,
TO{PVOUPE TNV TEMXY AVATaEAC TAGT] YId TOUS YRAPOUC ,TAOVMVTUC TIC EVOWUATOOELS TwY xOUBwY Tou mpoxin-
Touv ano ta otpuota GNN mou neprypddape omd éva ypauuixd otpwua tpoBolrc oe 2048 dlactdoeic xou
unohoy({loupe ToV U€GO 6RO AUTOV WS TN CUVOAXT| TEAXT] EVOWUITWOT Yot TOV YEdpo.

Aoxiudlouye eniong didpopes GANES HPYLTEXTOVIXES VEUPWVIXMDY DIXTUWV YRAPWY Xwpelc TO TPOTEVOUEVO OTRMUA
HOC YLoL oLYXELTIXOUE oxomolc.  Muyxexpéva, yia wovtéda ye otpopata GAT xoa GATv2 Perxaue éti ol
xahOtepec dlaotdoels ftay [3072,2048,2048], eved yioo GCN xouw GIN Atav [2048, 2048, 2048], ye Tic uvndloineg
hemtopépeteg xan puduloels 1660 6To PoVTEAO 660 xou oTNY Slodixacior exTalBevons Tou, Vo TUPUHEVOLY OTIWG
TEQLY PAPIHOLY TUPATEVCD.

Aentopépeieg exnaidesuong

Exnoudetoope to povtéha pac yio 60 emoyée yenowonotdvtoc tov Adam optimizer pe pudué expdidinone 1074
yioo Tic mpwdteg 20 emoyég. Xt umdhoineg emoyég eoppocope scheduler mou peuwdvel 1o pudud exudinong
xotd 10 % petd and xdde enoyh. T tic nopopétpouc tou Adam YENoWOTOoUUE TIC TPOETUAEYUEVES TUIEC
(B1 = 0.9, B2 = 0.999). To batch size oplotnxe oe 32 xa egappdoaye dropout 0.1 oe xdde cuvelxtxd
otpopa. T va meptoploovpe mepantépw TNy unepextaldevon (overfitting) yenowonotiooue tpdwen daxonh
(early stopping) pe unouovy (patience) 20 enoydv.

AZLoNbYTMoM LovTEAOL

To oet doxuhc mepthopPBdver 3736 edvee. T xdde edva—epdtnuo— talvopolue (ranking) g um-
OhoLTEC ELXOVEC UE BAoT TNV OUOLOTNTA TOUG OTNV EXOVA-ERMOTNUI, UTOANOYIOUEVY] WC ECWTERPIXO YIVOUEVO TWV
EVOWUATOOEWY TOU TORTYAYOY To VEUR®VIXE BixTua Ypdpwy. 3TN cuvéyelo ouyxpivoupe T Aota xatdtadng
TOU WOVTEAOU Hag UE AUTY| TOL TPOXUTTEL amd TNV «Bacuxr oArfdelon NS opoldTNTAC EXOVWY. XENOLLOTOLO0UE
g petpixéc NDCG, MAP, MRR xaw Recall yio tnv a&iohdynon.

‘Onwe Qolvetal 6TOUE TUVAXES, TO HOVTIEND HOG UE ELOAYWYY| TANPOPORLOY OXUMY GTO TEWTO oTpwud EETEpVE Ta
unéhowna povtéha. Yreptepel xou tou povtéhou IRGS [99] , to onolo dev ypnoipwonolel 001e onTIXéC TANPOYORIES
v Tar avTixelyevo obte mAnpogoplee Yo Tic axpéc. Emmhéov, mopatneolue OTL Tor HOVTEAX UE UMY OVIOHOUS
npocoyfc (GAT, GATV2) emttuyydvouy yevxd xahltepn anddoon o clyxplom Ue Topadootoxd LovTéha OTwe
70 GCN xou to GIN.
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Chapter 1. Extetopévn Ieptindmn ota EAAnvixd

Model @1 @5 @10 @20 @30 @40 @50
Edge Aware GATv2 0.8803 0.8926 0.8994 0.9081 0.9143 0.9185 0.9216
MyGATv2 0.8779  0.8908 0.8983  0.9071 09134 0.9176  0.9206
MyGAT 0.8758  0.8903  0.8969  0.9060  0.9120 0.9164  0.9197
MyGCN 0.8690  0.8792  0.8865  0.8963  0.9030  0.9080  0.9116
MyGIN 0.8432 0.8613 0.8699  0.8815  0.8897  0.8950  0.8992
IRSGS GCN 0.7401 0.7502  0.7559  0.7647  0.7734  0.7817  0.7891
IRSGS GIN 0.6979  0.7120 0.7217  0.7341 0.7433  0.7513  0.7580
Table 1.4: NDCGQk vyt tat povtéra.
Model @1 @5 @10 @20 @30 @40 @50
Edge Aware GATv2 0.9119 0.9269 0.9070 0.8782 0.8558 0.8363 0.8184
MyGATv2 0.9069  0.9257 0.9049 0.8760 0.8534 0.8336  0.8157
MyGAT 0.9020 0.9241 0.9031 0.8732 0.8499  0.8301 0.8125
MyGCN 0.8943 0.9119 0.8878 0.8563 0.8337  0.8138  0.7959
MyGIN 0.8506  0.8857  0.8600  0.8285  0.8061 0.7874  0.7706
IRSGS GCN 0.6603  0.7331 0.6968  0.6495 0.6202  0.5989  0.5825
IRSGS GIN 0.5803  0.6635 0.6322  0.5901 0.5640  0.5456  0.5303
Table 1.5: MAP@k yio tot povtéa.

Model MRR

Edge Aware GATv2 0.9469

MyGATv2 0.9448

MyGAT 0.9425

MyGCN 0.9347

MyGIN 0.9080

IRSGS GCN 0.7703

IRSGS GIN 0.7059

Table 1.6: MRR vyt tar povtéra.

Model @1 @5 @10 @20 @30 @40 @50
Edge Aware GATv2 0.9119 0.8802 0.8512 0.8060 0.7619 0.7144 0.6639
MyGATv2 0.9069  0.8757  0.8488  0.8039  0.7597  0.7124  0.6616
MyGAT 0.9020 0.8722  0.8419 0.7989  0.7558  0.7092  0.6604
MyGCN 0.8943  0.8531 0.8236  0.7806  0.7377  0.6929  0.6458
MyGIN 0.8506  0.8199 0.7932  0.7500  0.7119  0.6687  0.6244
IRSGS GCN 0.6603  0.6111 0.5759  0.5325  0.5036  0.4803  0.4559
IRSGS GIN 0.5803  0.5402  0.5174 0.4839 0.4560 0.4316  0.4099

Table 1.7: Precision@k yio tar povtéra.
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1.9. Iewapotxd Mépoc

ITeipopatixyy Merétn Analoiprc (Ablation Study)

YNy evéTnTa QUTH MEAETAUE TNV enidpaon BlapopeTixwdv otolyelwy Tou pipeline ye pio mepapoTiny weAETN
ATAAOLPNC. BUYHEXQUIEVO GUYXEIVOUUE TNV am6d00T) TWV TUpaxdTony "UElwUEvwY" eXBOCEWY TOU HOVTENOU UaC:

-KAd&depo (Pruning): ywpelc xAddepa tewv ypdpov.

-Multi-head Attention: ywplc to otp®ua multi-head attention ye exmoudeudueva epwthuaTa 0TO
povTélo mEoBAedne onuaVTIXOTNTAC.

-Ewcaywyh nAnpogopidy axphc (Edge Injection): ywplc eloaywmyh TANpogopldy oxuhc oto
HOVTENO pac.

-T'evix ontixf evoopdtwon (Global): ou ypdgol dev mepiéyouv x6ufo Ue 0 YEVIXH OTTIXH

EVOOUATOON TNG EMOVIC.

-Enpavtixétnta teinietodv (Triplet Significance): xotd 1o xA&depo Yewpolue onuavtind pévo
T avTXelyeva Tou TEOBAETOVTOL ONUOVTIXEL.

-EnpavtixétnTa aviixetwévoyv (Object Significance): xotd to xA&depor Yewpodue onuavtixd
HOVO ToL avTIXElUEVAL IOV €lval U€p0g XAmoLlag oNUovTIXAS TEITAETAC.

-Ontuxég nAnpogopics (Visual Information): ol ypdyot dev mepiéyouy xopio ontnd| TAnpogopia,
o0TeE Yyl Tat avTixelpeva o0Te yiol Tov x0ufo Ue TN YEVIXY OTTIXY] EVOWUATWOT).

Model @1 @5 @10 @20 @30 @40 @50

Edge Aware GATv2 0.8803 0.8926 0.8994 0.9081 0.9143 0.9185 0.9216
-Edgelnjection 0.8779  0.8908  0.8983 0.9071 09134 0.9176  0.9206
-Global 0.8426  0.8572  0.8653 0.8743  0.8808  0.8856  0.8893

-TripletSignificance 0.8721  0.8848  0.8921 0.9006  0.9074  0.9120  0.9150
-ObjectSignificance 0.8035 0.8160 0.8234 0.8348 0.8424 0.8485  0.8529
-Pruning 0.8758  0.8909  0.8979  0.9065  0.9128  0.9170  0.9202
-MultiheadAttention 0.8791  0.8925  0.8992  0.9079  0.9141 0.9184  0.9214
-Visuallnformation 0.7518  0.7719  0.7841  0.8002  0.8115 0.8206  0.8271

Table 1.8: NDCG@k yio Tl SLopopeTinég EXBOYES TOU LOVTENOL Hag.

Model @1 @5 @10 @20 @30 @40 @50

Edge Aware GATv2 0.9119 0.9269 0.9070 0.8782 0.8558 0.8363 0.8184
-Edgelnjection 0.9069  0.9257 0.9049 0.8760 0.8534 0.8336  0.8157
-Global 0.8555 0.8841 0.8581 0.8238 0.7979  0.7770  0.7586

-TripletSignificance 0.8953 09171  0.8954 0.8664 0.8426  0.8230  0.8053
-ObjectSignificance 0.7808  0.8279  0.7969  0.7559  0.7295  0.7088  0.6915
-Pruning 0.9071 09240 0.9030 0.8746  0.8520 0.8324  0.8146
-MultiheadAttention  0.9109  0.9262  0.9065 0.8776  0.8553  0.8358  0.8180
-Visuallnformation 0.6777  0.7534 0.7234  0.6873  0.6645 0.6470  0.6326

Table 1.9: MAP@k yio ti¢ BlapopeTinéc exB0YEC TOL HOVTEAOU UaC.
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Chapter 1. Extetopévn Ieptindmn ota EAAnvixd

Model MRR

Edge Aware GATv2  0.9469
-Edgelnjection 0.9448
-Global 0.9095

-TripletSignificance 0.9371
-ObjectSignificance 0.8587
-Pruning 0.9439
-Multihead Attention  0.9462
-Visuallnformation 0.7881

Table 1.10: MRR vy Ti¢ SlopopeTinéc eXBOYES TOU HOVTENOL UAC.

Model @1 @5 @10 @20 @30 @40 @50

Edge Aware GATv2 0.9119 0.8802 0.8512 0.8060 0.7619 0.7144 0.6639
-Edgelnjection 0.9069  0.8757  0.8488 0.8039  0.7597  0.7124  0.6616
-Global 0.8555  0.8153  0.7857  0.7372  0.6930  0.6487  0.6039

-TripletSignificance 0.8953 0.8655  0.8374 0.7899  0.7481  0.7021  0.6520
-ObjectSignificance 0.7808  0.7378  0.7048 0.6613  0.6210  0.5826  0.5429
-Pruning 0.9071  0.8724  0.8477 0.8012 0.7594  0.7120  0.6619
-MultiheadAttention  0.9109  0.8799 0.8515 0.8057 0.7620 0.7143  0.6637
-Visuallnformation 0.6777  0.6509  0.6287  0.6000  0.5714  0.5435  0.5129

Table 1.11: Precision@k yia ti¢ Slapopetinéc exdoyéc Tou OVTEAOU UOg.

Ané toug nopamdve mivaxeg elvon @avepd 6Tl T0 UOVTEAD MG UTEPEYEL OAWY TWV GAAWY EXBOYMY OE OAEC TIC
petpwés. Iapatnpolue duwe 6Tl o€ OPLOUEVES UETELXES 1) aGBOGT| TOU EIVAL APXETY XOVTLVY HE GAAeC "Uelwuéveg"”
exBoYEC. LUYHEXQWEVA, TO LOVTENO Hag Vol OYETIXA XOVTA OTIC EXBOYEC YwplC XAADEU TWV YRAUPWY Ko Ywelc
ELOAYOYT] TANPOGORLOY axidv. Autd unopel vo cuUBalveL ETEWDY| OL OTTIXEG EVOWUNTMOELS TWY AVTIXEEVLY TOU
Yedpou meptéyouv 1T oEXeTH TANEOPORi, XAICTMVTAS TI EVOWHATMOOELS aXUwY AYoTepo xplowes. Emniéoy,
xodog To Yovtého CLIP mou yenollomololue yio TiG TEOTUCIAXES X0 OTTIXEC EVOWHUATOOELS EYEL eXToUdEUTEL
oe Lelvyn emdvwv—npotdocwy (mapping exdvac xou Aeldvtac otov Blo ympo), urnopel va avtiel tic Bacixée
oyéoelc PETOED TOV AVTIXEWEVLY LEGW TOL XOUPou e TN YEVIXT omTixy TAnpogopia yiot 6AN TNV exova, Ywelc va
yeedletan vo Tig pddel eldxd xatd Ty exnaldevon. Ilopd ) wxpen Swupopd ot optopéves "petwuévec" exdoyéc,
TO TPOTELVOUEVO UoVvTéNO Blatneel otodepd TNy xopugaio anddoor oe dheg Tig Yetpnéc. Téhog, 1 exdoyy| ywelc
*AGBepa Yedpwy anodidet enlong xoAd, SLOTL o8 aPYLTEXTOVIXES Ue unyoviopols tpocoy e 6nwe GAT xou GATv2
oL GyYENOTEC EVOWUATMOOELS XOUP®V UTOopoUY Vo AVl VELOVTAL AUTOUATA: woTHo0, N Tpocdixy @ihtpopiopatog
Yedpwy BeATIGVEL TECUUTERW T AMOTENECUITAL.

And ta mopandve amotehéopota Elvol TPOPAVES OTL OL OTTIXEC TANPOPOPIES TWV AVTIXEWWEVWY ol 0 XOUPBoC
ME TN YEVIXY) OTTX AVOTOREOTOCT, TNE EXOVOC TROCPEROLY CNUOVTX Winomn otny anddoor. Emmiéov, o
ahyobprduoc xhodépatog mou emhé€aue Yo Toug xOpBouc Tou Yedpou amodldel TOAD xahltepa oe oyéom ue
anhobotepe evaAhoxTiXéS pedddouc.

Ye autd 1o onpeio doxwdloupe To LOVTELD oG xou 500 exdoyéc Tou — Wwia ywelc ¥AIBeU TwV Ypdpwy xou Ui
Ywele ELoaywYH TANPOPOPLOY axUY — GE Ypd@poug Tou dev meptéyouv xadohou ontixés TAnpopopies. Autod
dev yviveton v va Bedtiotonomdel n anddoor| Toug (puond omodidouy yewdtepa), oAAGL Yot Vo UETPHIOOUUE
o xadapd TNV enidpaoy) TOU XAABEUATOS XoL TNG ELCAYWYNE TANEOPOELHY UXPDV: GE AUTOVS TOUS YEAPOUS Ol
dlapopéc elvan o eupavels.
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1.9. Iewapotxd Mépoc

Model Q1 @5 @10 @20 @30 @40 @50

Edge Aware GATv2 0.7518 0.7719 0.7841 0.8002 0.8115 0.8206 0.8271
-Edgelnjection 0.7465  0.7604  0.7727 0.7882  0.7994  0.8084  0.8153
-Pruning 0.7475  0.7601  0.7683  0.7808  0.7893  0.7961  0.8017
-Edgelnjection,Pruning  0.7414  0.7529  0.7617  0.7741  0.7826  0.7897  0.7954

Table 1.12: NDCG@k yiot S1opopeTnég EXBOYES TOU LOVTEROU HAC XAl YRAPOUC Ywpelc onTixée TAnpopoples.

Model @1 Q@5 @10 @20 @30 @40 @50

Edge Aware GATv2 0.6777 0.7534 0.7234 0.6873 0.6645 0.6470 0.6326
-Edgelnjection 0.6724  0.7388  0.7057  0.6694  0.6463  0.6287  0.6143
-Pruning 0.6761  0.7416  0.7065 0.6659  0.6404  0.6210  0.6051
-Edgelnjection,Pruning  0.6510  0.7268  0.6947  0.6538  0.6286  0.6096  0.5943

Table 1.13: MAP@k i Sopopetinés exdoy€g ToU HOVTENOU MG X0 YRAPouS ywelc ontixés TAnpopoples.

Model MRR
Edge Aware GATv2 0.7881
-Edgelnjection 0.7798
-Pruning 0.7815
-Edgelnjection,Pruning  0.7658

Table 1.14: MRR vyt StapopeTinés exdoyEC TOU LOVTEAOU oG X0 YRAPOUS Ywelc omTixée Thnpopoples.

Model @1 @5 @10 @20 @30 @40 @50

Edge Aware GATv2 0.6777 0.6509 0.6287 0.6000 0.5714 0.5435 0.5129
-Edgelnjection 0.6724 0.6232 0.6069 0.5770 0.5496  0.5226  0.4958
-Pruning 0.6761  0.6278  0.6015  0.5637  0.5323  0.5027  0.4737
-Edgelnjection,Pruning  0.6510  0.6140  0.5875  0.5519  0.5208  0.4920  0.4641

Table 1.15: Precision@k yia SiapopeTtinéc exdoy£éc Tou OVTEAOU UaC Xol YEdPoug ywelc ontixég Thnpogoplies.
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Chapter 1. Extetopévn Iepihndn ota EAAnvid

A6 toug nivaxeg autolg gaivetan Eexdiopa 6Tl To LOVTEND UoC BEATIOVETAL PE TO XAADEUA TV YEAPLY XOL THY
ELOAY WYY TANPOPOELLY YLAL TLC UXPES, OTWS axEBAOC TEQUUEVOE.
1.9.4 IlowoTixd AmoteAéopata

Yy evotnTa auTH ToEoUGCLACOUPE XATOL TTOLOTIXA AMOTEAECUOTA TOU HOVTEAOU Hog. Xuyxplvouue eniong
EVOELXTIXG AMOTEAESUATA TOU HOVTEAOU UE T «Pooixr| ahfdeioy xan ue dhAec exdoyéc Tou, yio v Tovicoupe Ta
WBLOUTERA Y AUEAXTNELOTIXG TOU.

Ané to amoteléopota autd yiveton egpavic 1 owoth aflomolnon T060 TS GNUACIOAOYIXNEC TANEooplas ard
TOUG YPAPOUS OO XAl TWV OTTIXWY TANEOPOPLAY TWYV EXOVKOY. LTO TEMOTO TUPAUDELYHA , 1) EXOVO TOU oVUXTE
TO HOVTENO POg Elvol TOAD TUPOUOLL UE TNV EXOVa—EpGTNA (X oL 800 €xouy Yold undBatpo Tou LTOBNAGYVEL
xivnor, ta (Bl avtixeipeva xou Topduoles dpdoelc). 110 Je0Tepo TapddELY X , GAEC OL IVAXTOUEVES ELXOVES EYOULV
UTAE YHTESO, TOEONO OV TO OET SOXUYNC TEPLEYEL XU TEAOLVOL YHTESH UE TUPOUOLO ONUACLONOYLXO TEPLEYOUEVO.
H ouvbuaopévn yefion tne onpaclohoyxric TAneogoplac amd toug Yedpoug @aiveton axdun mo xodopd ota
napodelypota 5-7. Xto mapddelyua 6 , pdhiota, tovilouue OTL TOROTL N EXOVO-EROTNUA Vol EYYPwWUN, TO
HOVTENO OIS AVOXTEL L0l ACTIPOHOURT] ELXOVOL UE AVTIOTOLYO GTUICLONOYIXS YopaX TR
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Chapter 1. Extetapévn Ieplindn oto EXAnvixd

Figure 1.9.4: Y10 nopdBetypo AUt TO UOVTENO oG OVOXTE ETUTUYXOC TNV THO GUOLL EXOVA UE BAoT TIC OTTIXEG
Thnpopoplec. Aplotepd gaivetal 1 edva-—€p@TNUYL, Be€ld Tdve oL To GUoleS exdVES Ue Bdomn T «Baouxr
oAfdeLoy, eV BeELd ®dTw oL EdVES ToU avoxTHINXAY and TO UOVTEND HOG.

Figure 1.9.5: Apiotepd @aiveton 1 eixdvo—epdtnua, de€ld mdve oL To OUoleg edves Ue Bdor T «Baoixr
oAfdeLoy, eV BeELd ®Tw oL EOVES TOU avoxTHITXAY and TO UOVTENO HOG.
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1.9. Iepapotind Mépog

Ané ta mopandve napadelypato (1.9.4,1.9.5) goiveton 6T1, TopdAO TOL OE UPXETEC TEPITTWOELS TO HOVTEAD UG
Vo TA DLUPOPETINEG EOVES omod T «PBooiny) ahrfilelan, T ATOTEAECUAUTA TOU TORUUEVOLY HPXETE TOEOUOLL UE
MY EOVO—ERMOTNON.

Y10 onuelo autéd ToEoUCLELOUPE EVIEXTIXG TaPABElYHOTA TOU AVABELXVIOUY TNV IXOVOTNTO TOU UOVTEAOU UoG
—AOY® TNG ELOAYOYNE TANPOPORLOY UXUMY OTO TEMTO OTEWUO— VO OVUXTE EXOVEC UE TAOUCLOTEQO OTUUOL-
ONOYIUO YOPOUXTHPO OE OYECT| UE TLC OYEOELS XL TIC DPAOELS UETUEY TWV AVTIXEWEVWY. SUYXEXPUIEVD, DElyVouUE
TNV EXOVO—ERO TN X0 TOV XAUBEPEVO YRAPO TNG, XoME Xl TNV EXOVOL Xl TOV YEAPO Tou avaxTrdnxay and
t0 Edge Aware GATv2 (pe minpogopiec oxpodv) xau, avtiotoiya, and v exdoyt mou yenowornotel wévo ta
amhd otpdpate GATV2 (xwelc 1o TEMTO oTPMUA ETAYWYNS TANPOPOPLDY OXUOY).
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Figure 1.9.6: Yto nopddelyua, T0 HOVIEAO UAC UE ELOAYOYT] TANEOQORLOY AXUNAC ALY VEVEL GWOTE OTL 1) oYEaT
oty emdvo—epnnom elvan o «dvdpwrog xpoatder (holding) to pénahoxr, xou oyt «Bopdet (swinging) tnv pndha»
pe autd.

TopddAnha, magovoidloupe napadelyota Yo Yedpouc Tou dev TEpLEYoUY XadOhoU OTTIXEC TTANEOPOpRieS, WaTe
vor ovadel&oupe axdun TEPLOGHTERO TNV IXAVOTNTA TOU LOVTENOU LIS VOL OVLYVEVEL OWOTE TIC OYECELS TWY av-
TIXEWEVWY PECW TWY EVOWHATOOEDY UXUMV. M€ AQUTEC TIC TERPLTTWOELS, 6ToU oL x6pfol PEPOLY UOVO CTUAOL-
ONOYINEC EVOWUATWOELS, Ol TANPOPOPIES OTIC AXUES ATOXTOUY axOUA THO XPIOWO POAO GTNY AVEXTNOT EXOVKV.
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Figure 1.9.7: Yo aplotepd goiveton 1 exovo—epadtnue. 1Idve 8e€id n emdva mou avéxtnoe to xohbTepo
wovtéro poc (Edge Aware GATV2), to onolo yenowonoel mhnpogopies i g axuéc-oyéoels. Kdtw 8edid n
exdva Tou ovaxTd o {Blo povtého ywelc eloaywyh TAnpogopldy Y Tic axpée (GATV2).

Y10 nopondve tapddetyuo (1.9.7) o HovTélo Yag UE ELC0YWYT) TANPOQOPLOY XU avaXTd EMOVES UE TN OWOTH
oyéon uetadd Twv avtxepévey. To poviého pog evtonilel 6Tl n oyéon aviueca 6Tov «avipwno» xow TNy «cavida
TOL OEPYy» oTNV EwdVa-Epd U elvan To «mtailew (playing), evdd to poviélo ywelc TANpopoples oy ovoxTd
emdva pe tn oyéon «xpotdew (holding).

1.10 Xvunepdopota

Yty mopodoa BITAWUATIXY ELOAYOUE ONTIXES TANEOPORIEC OTNY AVAXTNON EMOVLY UE YPNON YEAPWY OXNVAC.
Yuyxexpyéva, mpoteivoue €va yovtého mpoPhedng onpovtixétnTag To onolo exmaudedeton Kdote va dlaxplvel
T onuavTixd avtixelyeva oe évay ypdpo—exova pe Bdon t6co To (Bl Tor avTIXElPEVR 0G0 XL TS OTTIXEG
TAneogoplec toug. ‘Emeita, oyedidooue évay alyopiduo xAobBEUaTos TV Yedpny ou dlatnpeel uévo ta TAéov
ONUOYTIXG AV TIXE(UEVO XoL TIC OYECELS Touc. AuTd Ta Buata eunvedotnxay and tnyv napatipnon 6t to avolo
dedopévewv Panoptic Scene Graph Generation nepléyel ToOAG AoHUAVTO AVTLXEUEVA GTIC ONUELDCELS TOU.

Eiodyaue ontixéc mAnpogopieg yiar Tor avTixelevo 0Toug Yedpoug pag, xadag xat £vay xOUfo Ue YEVIXY omTxh
EVOWUATOOT OAOXANENG TNG EXOVAS, XUTAOXELALoVTIC €TOL TAOUGLIOUE GE TANEOYOpla YEAPOUS YL XEVE exdva.
Ity eneepyaoio aUTOY TV YRAPOY TEOTEIVOUE XAl YPNOLOTOWCOUE Uiot TPOTIOTIOLNUEVT] €xBooT) Tou GATV2
TOU EVOWUATOCEL TOGO GTOV UTOAOYLIOUS TWV GUVTEAEGTOV TPOCOYHC 600 Xl GTY) UETABOCT) UNVUUATLY HETAUED
XOUBWY TIC EVOWPATOOELS TV OXUOV-OYECEWY. Me autdv Tov Tpémo, To BixTud pog elvor xavé vo tapdyetl To
ONUACLONOYIXE TAOUGIES OVAUTURACTAOELS TWY YRAPWY.

Aoxwdoape 818popous TOTOLE VEupLVIXGY dixTiwY Yedpwy (GCN, GIN, GAT, GATv2) xou tn St pog Ted-
toon (Edge Aware GATv2), 0Zl0hoYOVTAC THY amdBO0T TOUG E UETPXES TIOU YENOWLOTIOLOUVTOL GE GUC THUATA
npdtoone o avéxtnone (MRR, MAP, NDCG, Precision). To poviého poc (Edge Aware GATv2) Eenépaoe
Oha ToL UTIONOLTIAL OE XGVE PETELXT), OV XOUL OE OPLOUEVEG TEPLITAOELS Ol dlapopés tay pxpéc.Ia va Siepeuvroouue
TEQULTEP® TLC BUVATOTNTES XU TOUG TMEPLOPLOUOUE TOU, TOROUCLICUUE EVOEXTIXG TapadelyUota avdxTnong 6mou
avadelydnxay 1600 ol TAEOVEXTAUATO 660 ol Ol odUVOUiES Tou LoVTEROU.
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1.11. Melovtiéc xoateudivoelc

1.11 MeArovtixéc xateLIVVOELS

Tehewdyvovtag auth TNy dotelfn, mpotelvouue xdmoteg uehhovtinée Wwéeg xou xatevdivoelg yio T Behtiwon g
am6d00NE HOVTEAWY avAXTNONG EXOVag Ye Bdon exdva.

o Apywd, éva onuUavTIXG XOUUSTL TOU UEWDVEL TNV ATOBOTIXOTNTA TOU HOVTENOU Wag elvon o umoloyloudeg
e «Boaoixic ahfielacy YLoL T ONUAVTIXOTNTA OVTIXEWEVOY X0t TRITAETGY ot Wi exxdva. o alidmioteg
TWES ONUAVTIXOTNTAS O OPLOPEVES AVUICUEVES TEQLTTWOELS TLOTELOLUE OTL Yot BEATIOGOUY TN GUVOAXT
am6d00T) TOU LOVTENOL Hag.

o 'Evac meploplopoc otny avanapdotaoy) twy oyéoewy oto PSG elvan 611 ot ypdpol mou yenowonotidnxoy
elvon un xoteutuvdpevol, pe o (Blo label xou otic BVo dlevtivoelg. T'a mapddetypa, av 1 oyéon uetagd
Tou xouBou «ypaelo» xou Tou «TOTNELOLY Elval «TaVKY», TOTE oTNV avtiotpopn diebduvon éyouue eniong
«ypapelor —«mdvew» —«ToThpLY, EVE To owotd Yo ftay v yenowonoteito to label «xdtw». H eloaywyy
xateuduvopeveY oxuey ue opdd labels Yo unopolioe va Behtidoet tepautépw Ty anddoon tou Edge Aware
GATv2, 1o onolo aflonotel tic mhnpogoplec otic axpéc.

o Ilopdro mou 1o Edge Aware GATV2 eiodyel Ti¢ TANPOQPORIEC XUV UOVO GTO TEHOTO GTEOUO XAl OUTEG
HETAPEPOVTAL OTOL EMOUEVA, L0l APYLTEXTOVIXT| TTOU YPTNOWLOTOIEL ENAVUAUUBOVOUEVOL TS EVOOUNTWOEL OX-
MOV ot xdde oTEOUN — OIS YIVETOL UE TIC EVOWUATMOOELS TV XOUPwY — Vol TEETEL VAL AVOVEWVEL TOTO
TG EVOWHATOOES TV xOUBwy 600 %ot TwV axudy oe xdle eninedo. Emmiéov, n yeron dapopeTindy
CUVOPTACEWY YLOL TNV POy WY T TS GUVORXAG EVOLUATOONS YEAQOoU extos Tng péone tuhg (.. atten-
tion pooling) pnopel va Behtidoet To povtého pac. Téhog, n npdtooy poac (Edge Aware GATV2) Yo npénel
vo a&tohoyniel xan oe SopopeTind ohvoha SeBOUEVLV aVEXTNONG EXOVWY.

o Enlong, og auth tn SlatelB3r| SOXUUACOUE TIC XAAOUES APYLTEXTOVIXES VEUROWIXWY DixTOwY Yedpwv—GCN,
GAT, GIN xou GATv2. Qot600, ToMES GUYYPOVES UPYITEXTOVIXEC TIOU EVOWUATOVOUY TANROQopleS
oY Yot mopolooy VoL SoXIUAoTOVY Yol ToV oXom6 pog. Emmiéov, da ftay yerioo vo eEepeuvcoupE TNy
an6doon tou pipeline ye SlopopeTind wovtéla yior TNV e€ay WYY TEOTATLUKDV XL OTTIXMY EVOWHUATOCEWY
TV X0UPwY, Kote va BeAtindel 1 ToOTNTA TWY EVOWHATOOENY 0TOUS YRA(POUS.
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Chapter 2

Introduction

Artificial intelligence technologies have, in recent years, become a leading driver of technological innovation,
transformed industries, and become a critical part of many widely used applications. A few examples of
artificial intelligence in our everyday lives include self-driving vehicles, speech and language recognition and
production systems, medical applications like cancer detection, pharmaceutical applications for molecular
structure properties, recommender systems widely used in social media and on the web, weather prediction,
stock market analysis, etc.

One emerging class of neural networks gaining traction in recent years is graph neural networks (GNNs),
which are capable of handling data in graph form. GNNs overcome the challenges of graph-structured
data, which—unlike images with a regular grid—cannot be processed easily by convolutional networks. This
advancement has been crucial for domains naturally described by graphs, such as social networks, molecular
structures, and even images, where scene graphs can represent objects along with their connections and
relationships, providing rich semantic information.

The main focus of this thesis is image-to-image retrieval: retrieving the most relevant images, judged by
both semantic and visual information, given a query image. Image retrieval has numerous applications in
recommendation systems and has been explored from many angles. Traditional approaches—such as process-
ing images with a convolutional network or a vision transformer and comparing their embeddings—ignore
the rich semantic information contained in images. Instead, we will utilize scene graphs, which provide a
structured semantic representation of images, alongside visual features of objects and the entire image to
achieve a more comprehensive semantic and visual representation for retrieval.

Specifically, we will explore different GNN variants that, given fused information, namely scene graphs
enriched with visual features, can generate representations of images suitable for semantic and visual image-
to-image retrieval. We will also propose a model that determines the relative importance of each object and
relation in the scene. Furthermore, since some literature already explores the technique of utilizing scene
graphs for image retrieval, we will propose improvements and modifications to existing GNN layers and to
our pipeline to achieve superior performance.

Specifically, the outline of this thesis is as follows:

e First, we discuss the theoretical background of machine learning concepts, covering general ideas in
deep learning and artificial intelligence, and the technologies used in our work. We then focus on graph
theory and each GNN variant we will use, exploring these networks theoretically, explain their key
characteristics, advantages, and limitations, and discuss how existing methods address those limitations.

e Next, we discuss the task of image-to-image retrieval and review existing ideas in the literature, high-
lighting the motivations behind our contributions.

e Finally, we propose our pipeline for image-to-image retrieval. We introduce a module to predict the
important parts of an image (objects and relationships) and a GATv2-inspired layer that incorporates
edge information into message passing, thus enhancing the use of semantic information. We explain
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the intuition behind our design decisions and analytically present our models’ performance. We also
explore different GNN variants, compare their results quantitatively and qualitatively, and highlight
both the advances and limitations of our model.
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Chapter 3

Machine Learning

Machine learning is a branch of computer science focused on creating algorithms and statistical models that
learn from data, recognize patterns, and then make predictions or generate outputs on their own. In recent
years, improvements in computational power, data availability, and algorithm design have turned machine
learning into one of the fastest-growing and most influential areas of research. At its core, the aim is to build
systems that improve their performance on a task by processing large amounts of data—much like humans
improve with practice and experience.

The roots of machine learning trace back to early statistical methods and pattern-recognition techniques.
Simple techniques—such as clustering algorithms, support vector machines, and decision trees—showed how
computers could extract useful structure from data for tasks like grouping and classification. However, the
field truly took off with the arrival of deep learning. This shift enabled breakthroughs in image recognition,
speech processing, and natural language understanding that were previously out of reach.

Machine learning now includes a wide range of techniques and applications. Large language models pro-
duce human-level text, powering chatbots, translation tools, and code-generation assistants. Vision mod-
els—whether convolutional networks or transformer-based architectures—interpret images and video with
superhuman accuracy. Generative models can create realistic images, audio, and even video from scratch.
Graph neural networks capture relationships in complex structures like social networks or molecular graphs,
and multimodal systems integrate insights across text, vision, and audio. Together, these advances are
transforming industries, producing scientific discoveries, and incorporating artificial intelligence systems into
everyday products.

Contents
3.1 Machine Learning Types . . . . . . . o o v v it i i i it ittt e i it e 35
3.2 Embeddings . . . . . ¢ ¢ o i i i e e e e e e e e e e e e e e e e e e e e e e e e e 35
3.3 Clustering Algorithms . . . . . .. .. . i i i e 36
3.4 Deep Learning . . . . . . . o 0 i i i i i it e e e e e e e e e e e e e e e e e e e e 37
3.4.1  Perceptron . . . . ... e 37
3.4.2  Multilayer Perceptron (MLP)) . . . . .. .. .. ... ... 37
3.4.3 Convolutional Neural Networks (CNNs) . . . ... ... ... ... ......... 38
3.4.4 Transformers . . . . . . . .. e e 39
3.4.5  Autoencoders . . ... 43
3.4.6 CLIP (Contrastive Language-Image Pre-training) . . . . ... ... ... ... .. 44
3.5 Training Process . . . . . . . . . i i i i i i e e e e e e e e e e e 45
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3.5.6 Model Evaluation
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3.1. Machine Learning Types

3.1 Machine Learning Types

Machine learning algorithms can be grouped by how a model learns from data. Depending on the problem
and the available dataset, different training paradigms and goals (loss functions) can be utilized to extract
information. Different types of machine learning enable us to tackle a wide range of tasks using whatever
data is available.

Unsupervised learning

The model learns from unlabeled data. It discovers structure by analyzing relationships between data points
rather than relying on explicit labels. Common algorithms include clustering methods (e.g. k-means [58],
DBSCAN |[23]) and dimensionality-reduction techniques (e.g. PCA [35]).

Supervised learning

Each input is paired with a target output. The model learns to generalize from those examples so it can
predict correct outputs on unseen inputs. This is the most used category, encompassing support vector
machines [16] , decision trees [57], and many neural-network architectures.

Semi-supervised learning

A hybrid between supervised and unsupervised learning, where only a small portion of the data is labeled.
Algorithms maximize learning by leveraging both labeled and unlabeled examples. Common applications
include image classification when annotating every image is impractical.

Reinforcement learning

Rather than fixed input—output pairs, the model learns by interacting with an environment and receiving
feedback (rewards or penalties). Widely used in robotics, game engines (e.g. AlphaGo [61]), and autonomous
control.

Multitask learning

A single model is trained simultaneously on multiple related tasks, sharing representations to improve per-
formance on each. For example, a neural network might learn to recognize both objects and their attributes
in an image.

Transfer learning

Knowledge learned on one task or domain is transferred to improve learning on a different, but related, task.
Pretrained language models (like BERT [18]) fine-tuned for sentiment analysis are a common example.

Few-shot / One-shot / Zero-shot learning

Models are designed to generalize from very few (few/one) or no (zero) labeled examples of a new class.
Techniques often rely on metric learning or prompt-based adaptation in large pretrained models.

3.2 Embeddings

Embeddings are vector representations of data—objects, concepts, or relations—designed so that similar
items lie close together in vector space. The key idea is that geometric proximity reflects semantic or
structural similarity, allowing us to distinguish between different types of data. In other words, embeddings
can summarize rich information about inputs, and by choosing different objectives we can emphasize the
aspects most relevant to our task.

A familiar example is sentence embeddings, where sentences with similar meaning map to nearby vectors [69].
Likewise, image embeddings place visually or semantically related images close together. Popular models for
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Figure 3.2.1: Example of the projection of word embeddings in two dimensions [51].

producing embeddings include Sentence-BERT [69] for text, and visual backbones like ResNet—or more
recent vision-language models such as CLIP [67] and BLIP [54]—for images.

3.3 Clustering Algorithms

Clustering is an unsupervised machine-learning technique in which input data—often represented as embed-
dings—are grouped into clusters based on a similarity measure (typically geometric distance in the embedding
space). By automatically assigning data points to clusters, we can uncover hidden structure, identify natural
groupings, and even generate provisional labels for downstream tasks.

e k-means:The algorithm picks in the start some random points in the grid called centroids and assignes
each data point to the centroid which is closer to it, then the position of the centroids is updated by
finding the average position of all data points assigned to it . This process repeats until the data points
assigned to each centroid does not change. As the process suggest k means is a centroid based clustering
algorithm [58].

e DBSCAN: DBSCAN |23]is a density-based clustering algorithm , unlike k means where the clusters
have spherical form the clusters forming from DBSCAN can have arbitrary shapes. It first finds core
points which are points whith a sufficient number of neighbors within a radius specified by a hyperpa-
rameter e , then each of the points within this radius is assigned to the cluster of the core point and
for each of the newly assigned points,if within a radius e exist another point not already assigned to a
cluster then it is assigned also to the same cluster . DBSCAN also handles properly outliers because
after processing all points any point that is not assigned to a cluster is labeled as noise .

e Jenks natural breaks: This is a distribution based clustering algorithm , that seeks to minimize the
variance of data points within the same class and maximize the variance between classes. As k-means,
jenks takes the output number of classes m as input and then calculates for each possible partition of
the data points into m classes ,the sum of squared deviations from the class means . Then chooses the
split with the lower value .As this process is very data intensive ,it is best used when we have small
datasets and a low number of output classes [37].
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3.4 Deep Learning

Deep learning can be defined as the process of transforming raw input data into successively more ab-
stract—and ultimately meaningful—representations using neural networks. Mathematically, neural networks
are based in the Universal Approximation Theorem, which states that a feedforward network with a single
hidden layer of sufficient width can approximate any continuous function on a compact domain. Deep learn-
ing is a subset of machine learning that builds and trains neural networks—models loosely inspired by the
layered, interconnected structure of neurons in the brain. In recent years, deep learning has come to domi-
nate both research and applications in machine learning and artificial intelligence, achieving state-of-the-art
results across fields such as computer vision, natural language processing, and robotics.

3.4.1 Perceptron

A perceptron [71]is a simple algorithm for binary classification. Given an input vector = (z1,22,...,Zp),
each feature z; is multiplied by a learnable weight w;, and the weighted sum is passed through a Heaviside
step (threshold) function:
y- b if 27wz + b >0,
0, otherwise,

where b is a bias term. The output y € {0, 1} is the predicted class label. By replacing the step function with
a linear activation, a perceptron can be generalized to produce a continuous scalar output for regression.

Input

Weight

Metwork

" . Activation function
II'I|'HJI FIJI:II'_'III::II'I

Figure 3.4.1: A simple perceptron model .

3.4.2 Multilayer Perceptron (MLP))

A multilayer perceptron [72] is a feedforward neural network that stacks multiple layers of perceptron-like
units, both in width (multiple neurons per layer) and depth (multiple layers). Concretely, an MLP with L
layers transforms an input z via:

h) — U(W(l)x + b(l)),
h2) — J(W(Q)h(l) + b(2))’

n) — O‘(W(L)h(L_l) + b(L))7

where each W) and b are learnable weights and biases, and o(-) is a nonlinear activation (e.g., ReLU,
sigmoid, or tanh). The final layer’s output h(E) can be passed to a softmax for classification or used directly
in regression. By combining multiple layers, an MLP can learn complex, non-linear functions of its inputs.

The real strength of neural networks lies in their ability to learn complex, non-linear mappings. This capability
arises because the activation functions between layers are non-linear. Furthermore, both the depth (number of
layers) and the width (number of neurons per layer) of a network contribute to its expressive power, enabling
it to approximate highly intricate functions. Some of the most popular non-linear activation functions are:
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e ReLU (Rectified Linear Unit):
ReLU(z) = max(0, ).

It outputs zero for negative inputs and is linear for positive inputs. ReLU encourages sparse activations
and is easy to compute, which helps deep networks train faster [62].

e Sigmoid:

B 1

Cl4e

This “logistic” function squashes any real input into (0,1). It was historically popular for binary
classification and provides smooth gradients, but can suffer from vanishing gradients when |z| is large

(8]
e Tanh (Hyperbolic Tangent):

o(x)

€T x

e’ —e

tanh(z) = ———.
et +e "
Tanh squashes inputs into (—1,1) and is zero-centered, which often helps optimization converge more

quickly than sigmoid.
e GELU (Gaussian Error Linear Unit):

GELU(z) =z - ®(z) where ®(z)=1[1+ erf(%)].

Equivalently (approximate): x-¢(1.702x). GELU weights inputs by their probability under a standard
normal distribution, letting values pass through in a “soft,” probabilistic manner rather than a hard

cutoff. This often yields smoother gradients and slight performance gains in transformer architectures
[32].

e SiLU (Sigmoid Linear Unit, also called “Swish”):
SiLU(z) =z - o(x).

SiLLU multiplies the input by its sigmoid. Unlike ReLU’s abrupt zeroing, SiLU smoothly “gates” negative
values, retaining a small nonzero slope. This smoothness can improve performance in deep networks,
since gradients never fully vanish for x < 0 [68].

3.4.3 Convolutional Neural Networks (CNNs)

Convolutional neural networks are a class of deep learning models most commonly used for image processing,
though they have also been applied successfully to video classification, speech recognition etc. For many
years, CNNs were the de facto standard in computer vision before transformer-based architectures emerged.

A typical CNN consists of three main types of layers:

1. Convolutional Layers:

Each convolutional layer applies a set of learnable kernels (filters) to its input feature maps. A kernel
is a small 2D matrix of weights that “slides” over the image (or previous feature map), computing a dot
product at every spatial location. Intuitively, each kernel learns to detect a specific local pattern—edges,
textures, or more complex shapes. Historically, fixed filters like Sobel operators computed image gra-
dients; in a CNN, these kernels are learnable, allowing the network to discover intricate, data-specific
features. After each convolution, a non-linear activation (commonly ReLU, max(0, z)) is applied so
the network can model complex, non-linear relationships.

2. Pooling Layers:
Pooling layers perform downsampling to reduce the spatial dimensions (height and width) of feature
maps. By summarizing small neighborhoods (e.g., 2 x 2 windows), pooling layers increase transla-
tion invariance, reduce the number of parameters, and mitigate overfitting. Common choices include
max-pooling (taking the maximum value in each window) and average-pooling (taking the average).
Convolutional and pooling layers are typically interleaved several times, enabling the network to learn
hierarchical features—from low-level edges in early layers to high-level object parts in deeper layers.
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3. Fully Connected (Dense) Layers:
After multiple rounds of convolution and pooling, the remaining feature maps are flattened into a one-
dimensional vector. This vector passes through one or more fully connected layers to produce the final
output—often a softmax-normalized vector for classification or a continuous embedding for regression
or retrieval tasks.

By stacking convolutional and pooling layers [46], a CNN can learn increasingly abstract representations:
early layers capture local edge features, middle layers capture textures or shapes, and deeper layers capture
object-level concepts. The non-linear activations (e.g., ReLU) after each convolution are essential for modeling
the complex patterns present in images.

C3: f. maps 16@10x10
C1: feature maps S4: f. maps 16@5x5

INPUT
3232 6@28x28

S2: f. maps
6@14x14

I
Full conAection ‘ Gaussian connections

Convolutions Subsampling Convolutions ~ Subsampling Full connection

Figure 3.4.2: Architecture of one of the first cnn proposed, LeNet.[49]

3.4.4 Transformers

In 2017, a research team at Google (Vaswani et al.) published the now-influential paper “Attention Is All
You Need”|83], which introduced the first Transformer model.

The main characteristic of the Transformer is its use of the attention mechanism to identify the most impor-
tant parts of a sequence. Transformers replaced recurrent architectures such as LSTMs for sequential data.
Whereas RNNs process one token at a time—carrying hidden states forward—Transformers are fed the entire
input sequence (e.g., up to 512 tokens) in parallel. The model then learns to “attend” to the most relevant
tokens for tasks like next-word prediction, translation, or other NLP applications.

Below we describe the basic Transformer architecture as introduced in that original paper, without diving
into every detail, but still capturing the essential ideas.

Input Preparation

Tokenization and Embeddings First, we tokenize our inputs (e.g., splitting a sentence into words or
subword tokens). Each token is then mapped to a learned embedding vector of size diodel- If our vocabulary
has size V', we have an embedding matrix

E € RVdeodel .

Positional Encodings Because Transformers see all tokens at once, they need a way to know each token’s
position in the sequence. We add a positional encoding—often a sine/cosine-based vector—to each token
embedding. Intuitively, this tells the model “which slot” each token occupies, so “word 3” doesn’t get confused
with “word 7.”

Encoder

The encoder stack is fed the entire source sequence (token embeddings + positional encodings) in parallel.
Each encoder layer (repeated N times) contains:

1. Multi-Head Self-Attention
In this sublayer, every token’s embedding is linearly projected into three vectors: a query, a key, and a
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value. We split those projections into h “heads,” each of dimension dy. Within each head, we compute

Attention(Q, K, V) = softmax(%) V.

Intuitively, each query vector (for one token) is compared (via dot product) to all key vectors (one
for every token), yielding a “relevance score” for each token-to-token pair. Dividing by v/dj stabilizes
gradients, and applying softmax turns those scores into attention weights that sum to 1 across the
sequence. Finally, those weights multiply the corresponding value vectors to produce a weighted com-
bination, highlighting the tokens most relevant to the current token. After doing this in all A heads,
we concatenate their outputs and project back to dimension dyoge1. At a high level, self-attention lets
each encoder token gather information from every other token in one shot.

2. Add & Normalize
We add a residual (skip) connection from the input of the self-attention sublayer to its output and then
apply layer normalization. This “Add & Norm” step stabilizes training and allows very deep stacks of
layers.

3. Feedforward Network
Next, each token’s attended output passes through a small, position-wise MLP (a fully connected
network applied independently to each position). In practice, this MLP has two linear layers with a
ReLU (or GELU) in between. This feedforward block further transforms each token’s representation.
Intuitively, the feedforward layer adds a nonlinear “reshaping” of each token’s vector after attention has
collected context.

4. Add & Normalize
Finally, we add another residual connection (from the input of the feedforward sublayer to its output)
and apply layer normalization again. That completes one encoder layer. Repeating these four substeps
N times yields the encoder’s final outputs—one vector per source token, each richly informed by the
entire input.

Decoder

The decoder also consists of N identical layers, each containing three main substeps, with residual connections
and layer normalization after each:

1. Masked Self-Attention:
The decoder receives the target sequence shifted one position to the right (so that, when predicting
token i, it only “sees” tokens 1 through ¢ — 1). Positional encodings are added just as in the encoder.
In this masked self-attention sub-layer, each token’s embedding attends to all earlier tokens in the
decoder—but cannot attend to any future positions. Concretely, we compute the same scaled dot-
product attention

Attention(Q, K, V) = SOftmaX(%) Vi

but apply a triangular “look-ahead” mask so that position ¢ has zero attention weight for positions > 4.
This prevents the decoder from “cheating” by looking at tokens it should not yet know.

2. Encoder—Decoder Multi-Head Attention:

Next, each decoder position re-focuses on the source sentence by treating its masked-self-attention
output as the “queries,” while the encoder’s final output vectors serve as “keys” and “values.” In other
words, each token in the decoder asks, “Given what I have produced so far, which tokens in the
encoder’s output are most relevant right now?” This cross-attention again uses the familiar scaled dot-
product formula, but now all source positions are “known,” so no masking is needed. The result is a
new representation for each decoder token that blends its own prefix information with encoded source
context.

3. Feedforward Network:
Finally, each token’s vector from the cross-attention step passes through a small position-wise MLP
(two linear layers with a ReLU or GELU in between). This feedforward block further transforms each
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vector independently, injecting nonlinearity after the model has already combined decoder prefix and
encoder context.

Repeating these three sub-layers N times (always before and after each one there is a residual connection and
layer normalization respectively) yields the decoder’s final hidden vectors—one per target position. A final
linear projection and softmax over the vocabulary produce a probability distribution for each next token:

Softmax(o); = L(Oj) j=1,...,V.

V b
Zk=1 exp(ox)

During training, these probabilities are compared to the true next tokens via cross-entropy. During inference,
tokens are generated one by one: starting from a special (BOS) token, the decoder predicts token 1; that
token is appended, and the decoder runs again (with the new prefix) to predict token 2, and so on until
(EOS) is produced or a length limit is reached.

Some of the reasons for the complete domination of Transformers for many tasks are their ability to process
multiple sequences in parallel—speeding up training and improving generalization—and their support for
model parallelism when a single GPU/TPU is insufficient. This high degree of parallelism has driven state-
of-the-art performance in NLP and enabled extensions into vision, speech, and beyond.

Vision Transformers

In 2020, a Transformer-based architecture for computer vision—called the Vision Transformer (ViT)—was
proposed [20]. ViT’s overall design closely follows the original Transformer for language, but replaces “words”
with fixed-size image patches.

First, each input image is divided into a grid of non-overlapping square patches of size P x P. Each patch
is then flattened into a P? - C—dimensional vector (where C' is the number of color channels) and linearly
projected into a dpoqe1—dimensional embedding. In addition to these “patch embeddings,” ViT prepends a
learnable [CLS] token to the sequence, whose final embedding serves as the image representation. As in the
original Transformer, we also add a learned positional encoding to each patch (and to [CLS]) so that the
model retains information about each patch’s location within the image.

These patch +[CLS] embeddings form a sequence of length N +1 (where N = & ;QW with H the height of the
image and W its width) that is fed into a standard Transformer encoder (multiple layers of multi-head self-
attention and feedforward blocks with residual connections and layer normalization). Because self-attention
can directly link any two positions in the sequence, ViT naturally captures relationships between distant
patches—e.g. it can attend to a patch in the top-left corner and one in the bottom-right simultaneously.

After passing through all Transformer layers, the final hidden state corresponding to the [CLS] token is typ-
ically used as a global image embedding for downstream tasks (classification, detection, etc.). Alternatively,
one can average-pool or max-pool over all patch embeddings.

ViTs often require more pretraining data than convolutional networks—because they lack the built-in locality
and translation equivariance of convolutions—but they also have much greater model capacity and have
demonstrated sufficient robustness in many adversarial settings. Well-known ViT variants include ViT-B/16,
DeiT (Data-efficient Image Transformers) [82], and Swin Transformer [56] , among others.

comparison between vits and cnns

Although past research suggested that ViTs might be more robust under adversarial attacks, more thorough
studies have shown that under the same training parameters—with identical regularization, data augmen-
tations, and adversarial-training samples—CNNs can actually perform better than ViTs, so in this regard
the question remains open [5][75]. In terms of robustness to noise, ViTs exhibit lower misclassification errors
on a variety of noise types than comparable CNNs, which can be attributed to their attention mechanism
allowing them to capture global content in images [65]. Moreover, a crucial metric for vision models is out-
of-distribution generalization, where ViTs often generalize better. However, recent studies have highlighted
that some of the advantages of ViTs might be due to more recent and better training protocols rather than
the architecture itself.
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Figure 3.4.4: Model overview of the original ViT architecture: an image is split into fixed-size patches, each
linearly embedded with position embeddings, and fed to a Transformer encoder with a learnable
classification token .[20]

In terms of computational speed and complexity, ViTs often perform better with fine-grained, high-resolution
inputs because their patch-based tokenization does not rely on pooling to down-sample, which can cause CNNs
to lose subtle details and struggle to adapt to very large images—although hybrid solutions like HIRI-ViT
have been proposed to address this [97] . On the other hand, CNNs’ pooling and convolutional layers leverage
weight sharing to greatly reduce parameter counts and FLOPs, leading to faster training and often better
generalization on smaller datasets

3.4.5 Autoencoders

An autoencoder [33] is a type of neural network most often used in an unsupervised manner to learn lower-
dimensional representations of data (in the form of embeddings). It consists of an encoder and a decoder,
which are neural networks. If we define the input data as € R™ (an n-dimensional vector), then the encoder
learns a function

¢(z): R* - R™

with m < n. The decoder is another network that learns a function
g(gb(x)) : R™ — R™,

mapping the latent representation back to the original dimensionality. Typically, the decoder is trained so
that

9(d(x)) = x

through a loss function during training. In this way, the latent representation ¢(z) retains as much information
as possible from the original vector x, allowing the decoder’s output to closely match the input. Thus, the
encoder learns a compressed, lower-dimensional representation of the data that can be used by subsequent
machine learning algorithms.

The most common choice for a loss function is the mean squared error (MSE), since reconstruction is a
regression task:

Lyvise = % Z(Iz - Q(¢(f))i)27

i=1

which the model minimizes—reaching zero when x; = ¢(¢(Z));. One obvious application of autoencoders
is data compression: they achieve nonlinear dimensionality reduction at lower computational cost than
PCA. They also excel at denoising (for example, removing noise from images or audio) and underpin many
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computer-vision pipelines. Moreover, the simple autoencoder architecture forms the backbone of several vari-
ants—variational autoencoders [39]-that we will discuss subsequently, denoising autoencoders [86], contrastive
autoencoders, and others. The basic architecture of an autoencoder can be seen in figure 3.4.5.

Variational Autoencoders

Although variational autoencoders [39] share many architectural features with simple autoencoders, their
objectives and mathematical formulations differ substantially. VAEs are generative models that learn to
produce new samples resembling the input distribution, yet they can also be applied to many of the same
tasks as simple autoencoders.

Unlike deterministic autoencoders, VAEs encode each input into a probability distribution g4(z | ) over
latent variables rather than a single point. Specifically, they assume this distribution is Gaussian, so the
encoder outputs only the mean u(x) and standard deviation o(x), which fully parameterize

N (p(a), diag(o(2)%)).

During training (and at inference), the encoder maps an input z to a Gaussian distribution

as(z | ) = N (u(z), diag(o(z)?)),

outputting only the vectors p(z) and o(x). A latent sample z ~ gg(z | =) is then drawn and fed into the
decoder, which generates a reconstruction z’ that should assign high likelihood to the original z.

The VAE loss is usually written as

N
Lyae = Nz[ cascleollogpo(i | 2)] + Dicuag(= | 2) | p(2))).

where the second term is the Kullback—Leibler divergence, a regularization that pushes the encoder’s distri-
bution toward the standard normal prior p(z) = N(0,I).

3.4.6 CLIP (Contrastive Language—-Image Pre-training)

CLIP (Contrastive Language-Image Pre-training) is a vision—language model developed by OpenAl [67],
which aims at closing the gap between images and text descriptions. For this task, it is trained on 400
million (or larger for more recent variants) image—to—text pairs available online in a contrastive manner,
enabling it to learn a wide range of visual concepts and associate them with their textual descriptions. It
does this by learning to project the embeddings produced for both text and images into a common latent
space.
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Moreover, CLIP has demonstrated an exceptional leap in zero-shot classification, which is not present in
most other vision models. That means its embeddings for images and text can be used reliably on datasets
not seen during training. This capability arises from the multimodal training scheme—matching images with
their captions—and from using internet-sourced images for each training sample. The zero-shot capability is
crucial for tasks like image retrieval, where concepts such as relations between objects are hard to classify,
and where different datasets may contain different object classes.
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Figure 3.4.6: The training process of clip on the left and inference on the right .[67]

Encader

CLIP utilizes transformers to encode both images and text, learning to match textual descriptions with
images. The contrastive style of training pushes matched-pair embeddings closer together and unmatched
pairs further apart—thereby mapping both text and visual embeddings into a shared space. For example, a
picture of “a man walking with a dog” will be mapped closely (by the vision encoder) to the output of that
same description (by the text encoder).

For example, openclip  ViT _H 14 laion2b_s32b_ b79k [7] used later in this thesis uses a ViT-H/14
vision transformer to encode images (i.e., it splits each image into 14 x 14 patches) and is trained on the
LAION-2B dataset [74](/2 billion image—text pairs scraped from the web). For the text encoder, it uses the
same basic CLIP text Transformer—a 12-layer Transformer with 512-dimensional hidden states, 8 attention
heads, a 32000-token BPE vocabulary, and a maximum sequence length of 77 tokens. Both the image
and text encoders project into a shared 1024-dimensional embedding space. Finally, it is trained with the
standard contrastive (InfoNCE) loss [64], which pulls matching image—text embeddings together and pushes
non-matching pairs apart.

Applications of CLIP’s architecture span image retrieval and ranking, visual question answering, zero-shot
classification, content moderation, and automatic captioning (text generation). Of these, image retrieval and
ranking and visual question answering are especially important for this thesis.

3.5 Training Process

In this section, we will discuss the basic process followed in most machine learning tasks: from the data types
used by common models and tasks to the training of the actual networks, as well as inference and evaluation.
We present these topics in general, but we will examine in greater detail those aspects most relevant to our
work.

3.5.1 Data Types

As discussed above, machine learning aims to find patterns in data. Because data can take many forms,
artificial intelligence models have expanded into diverse areas of computer science, robotics, and more. Here,
we briefly discuss some of the most relevant data types and the models commonly used to handle each.
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e Text Data: Natural language processing (NLP) was one of the first fields where deep learning achieved
exceptional success. Deep architectures—most prominently Transformers—are now capable of process-
ing raw text, learning contextual representations, and understanding linguistic concepts. Large language
models (LLMs) leverage vast amounts of text available on the internet to train effectively.

e Image Data: Computer vision is now completely dominated by deep learning models. Convolutional
Neural Networks (CNNs) made a breakthrough in image classification and feature extraction, and
more recently Vision Transformers (ViTs) [20] have achieved state-of-the-art performance on many
tasks. These architectures can classify objects, segment scenes, and extract high-level features with
unprecedented precision.

e Tabular Data: Tabular (or structured) data appear in spreadsheets and relational databases, where
each row represents an instance and each column corresponds to a feature. Traditional models such
as decision trees, random forests and Multilayer Perceptrons (MLPs) are widely used here. More
recent work has also adapted Transformer-based architectures and specialized neural networks to handle
tabular inputs, often outperforming classical methods [36].

e Time Series Data: Time series data consist of sequences of values indexed by time (e.g., sensor
readings in robotics, financial market prices, or weather measurements). Common models include
Recurrent Neural Networks (RNNs) [22], Long Short-Term Memory networks (LSTMs) [34], Gated
Recurrent Units (GRUSs)[15]. These architectures capture temporal dependencies and trends, making
them well suited for forecasting, anomaly detection, and control tasks.

e Graph Data: Graph-structured data encode relationships between entities, such as social networks,
molecular structures, or knowledge graphs. Graph Neural Networks (GNNs) are specifically designed to
operate on graphs by aggregating information from each node’s neighbors to learn expressive representa-
tions. Graph data and GNNs are most relevant to our work but also find applications in recommendation
systems, biology, chemistry, transportation, and many other fields.

3.5.2 Training

Neural networks consist of interconnected layers of perceptrons. Each perceptron’s output depends on learn-
able weights assigned to its incoming connections. During training, we adjust these weights so that the
network’s outputs approximate our desired values. However, when a network contains many weights and its
nodes influence each other, a key question arises: how do we find weight values that yield sensible predictions
for our task (i.e., so that the model’s outputs match the true target values)? Firstly, we need to discuss
loss functions. Loss functions are used to quantify the difference (often through an arithmetic measure)
between our model’s predictions and the expected ground-truth values of our dataset. Our model is trained
to minimize this loss function. Of course, depending on the task at hand, different loss functions may be
better suited for a problem. Some of the most common choices are:

1. Mean Squared Error (MSE)
Arguably the most popular loss function for regression tasks is the Mean Squared Error (MSE). This
is defined as the average of the squared differences between the target and the prediction of a model:

1 & 2
MSE = N;(yi — i)

where N is the number of samples, y; is the true value, and g; is the predicted value. MSE is usually
used in regression tasks where we want to predict scalar values. The squaring in the terms makes this
function sensitive to outliers, which can be either a benefit or a drawback depending on the task.

2. Mean Absolute Error (MAE)
The Mean Absolute Error calculates the average absolute difference between the predicted values and
the actual target values:

1
MAE = N;‘yz — i
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Unlike MSE, we do not square the terms, so this function does not heavily penalize outliers. As a
result, MAE is more robust to outliers and is suitable for tasks where large differences are expected but
should not dominate the gradient updates.

3. Huber Loss (Smooth Mean Absolute Error)
Huber loss combines the benefits of Mean Squared Error (MSE) and Mean Absolute Error (MAE). It
uses a quadratic term when |f(z) — y| < § (like MSE), making it sensitive to small errors, and a linear
term when |f(z) —y| > J (like MAE), making it robust to outliers.

1(f(@) —y)?, if [ f(2) —y| <4,
S|f(x) —yl— 182, if |f(x) —yl >4,

where ¢ is the threshold between quadratic and linear behavior, y the true value, and f(z) the prediction.

Ly, f(z)) =

4. Binary Cross-Entropy Loss
Used in binary classification, Binary Cross-Entropy (BCE) measures the difference between the true
labels y; € {0,1} and predicted probabilities p;. It’s defined as

N
BCE = —% Z[y log(pi) + (1 — y;) log(1 — p;)],

where N is the number of samples. The logarithm strongly penalizes wrong predictions with high
probability in the other class.

5. Hinge Loss
Most frequently used in support vector machines, hinge loss is a loss function designed to maximize
the margin between two classes. Specifically for a classifier with true label ¢t € {—1,41} and predicted
score ¥, the loss is
Ly, t) = maX(O, 1—¢- y),

6. InfoNCE
InfoNCE (Info Noise Contrastive Estimation) [64] is a contrastive loss used for self-supervised or unsu-
pervised representation learning. For each anchor z, we sample one positive example z1 (highly similar
under the task) and N — 1 negatives {z; } at random from the dataset. The loss is then

exp(s(f(z), f(z1)))
exp(s(f (@), f(27))) + iy exp(s(f(2), (7))
Here s(f(z), f(2™)) measures similarity between the anchor and its positive, and the denominator sums

over similarity scores for the positive and all negatives. The logarithm encourages the positive pair’s
similarity to dominate those of the negatives.

Lintonce = —E|log

Because, as we have discussed, neural networks can be seen as nonlinear function estimators, the problem
of adjusting the weights is equivalent to a nonlinear optimization problem for which gradient descent is a
common method. As the name suggests, gradient descent uses the gradient of the loss function with respect
to each weight to update those weights. The logic behind this is fairly simple, since the model’s output
depends on each weight, we should move the weights in a direction that reduces the loss. That direction is
given by the negative gradient. Specifically, if w; is the current weight and L is the loss function, the update
rule is

oL
Wi4+1 =W — 1N w.’
t
where 77 > 0 is the learning rate.

Of course, depending on how frequently the weights are updated, we can have different types of gradient
descent( eg if we update the model parameters after evaluating each training point or a group of them):

1. Stochastic Gradient Descent (SGD) updates parameters very frequently—after every single train-
ing example. Its noisy gradients can sometimes harm convergence, and it can be computationally
expensive on large datasets.
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2. Batch Gradient Descent computes the gradient over the entire training dataset and updates the
parameters once per epoch, after all training points have been evaluated.

3. Mini-Batch Gradient Descent splits the training dataset into small batches. For each batch, we
compute the gradient over that subset and update the parameters. This approach leads to more stable
convergence and requires less memory than full batch gradient descent.

We can also use different update functions, which give rise to various optimizers. Here we will descuss briefly
some of the most common :

1. Adagrad (Adaptive Gradient Algorithm):
Adagrad [21] is especially useful when we have limited useful data for a problem. It adjusts the learning
rate dynamically for each parameter based on its gradient history. By assigning larger learning rates
to parameters with infrequent updates, it becomes particularly beneficial on sparse data.

We firstly accumulate squared gradients:

n ( oL )2
Ty =Ty — ) .
t t—1 D,
Then the update rule is
n oL
W1 = Wt —

VT Fe Ow
where 7 is a global learning-rate hyperparameter, € a small constant to avoid division by zero always
and L the value of the loss function .

2. Adam (Adaptive Moment Estimation):

The adaptive moment estimation optimizer [40] is one of the most often used optimizers, due to its
ability to work well with large datasets and big models. In Adam, each parameter has its own learning
rate, which depends on past gradients of that weight and adapts as more gradients are calculated. A
key feature of Adam is momentum, meaning the update term m; is affected by past gradients—this
helps each weight smooth its update “trajectory” by controlling the influence of gradient outliers. At the
same time, like Adagrad, Adam adjusts the learning rate based on the square of past gradients—here
via a weighted mean.

OL OL \?2
my = frme—1 + (1 — 1) EI v = Bavg—1 + (1 — fa) (%) .
t t
Bias-corrected estimates:
~ my N V¢
my = 1_7%, UV = 1—765
Then the update rule is
m
Wi41 = W — N \/@—7:_6
t

where 7 is a global learning-rate hyperparameter, € a small constant to avoid division by zero always
and L the value of the loss function .

Introducing a learning-rate scheduler—which adjusts n over time—can further improve training and gener-
alization by, for example, reducing 7 as training progresses.

3.5.3 Overfitting

One of the most common problems with large-scale neural network models that have many parameters is
overfitting: the model fits the training dataset very well but cannot generalize to unseen data. Overfit-
ting usually occurs when the training set is too small for the task or contains many irrelevant examples.
Additionally, the number of training epochs and the choice of optimizer can influence overfitting.
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3.5.4 Underfitting

3.5.5 Preventing Overfitting

1. Decrease network complexity.
By reducing the size of the model, we limit its capacity to memorize the training data, forcing it to
learn only the most relevant features and thereby generalize better.

. Data augmentation.
Commonly used in computer vision, data augmentation applies transformations—such as rotation,
horizontal or vertical flipping, brightness adjustment, and noise addition—to existing images. This
effectively increases the size of the training dataset, encouraging the model to generalize.

. L2 regularization.
A common symptom of overfitting is excessively large weight values in certain connections. L2 regular-
ization penalizes the sum of squared weights, discouraging large weights and reducing overfitting.

Underfitting occurs when the model cannot fit the training data and cannot generalize to new data. This
happens when the model’s capacity is insufficient to learn the underlying patterns of the task, and we must
increase its complexity. Because underfitting is easier to detect and typically straightforward to remedy, we
will not discuss it further.

Several techniques have been proposed to prevent or mitigate overfitting in large neural networks. Here are
some of the most commonly used methods:
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4. Dropout.
During training, dropout randomly ignores a subset of neurons and their connections. This forces the
model to produce accurate outputs using different subsets of neurons, which improves generalization
[79].

5. Early stopping.
By monitoring training and validation loss curves, we can detect overfitting when the validation loss,
after initially decreasing, begins to increase while the training loss continues to decrease. At the
point when validation loss starts to rise (i.e., the epoch when overfitting begins), we save the model
parameters. These parameters typically generalize better to unseen data.

3.5.6 Model Evaluation
After training, we use appropriate metrics—depending on the task—to analyze our model’s performance on
unseen data. Below are some of the most common evaluation metrics, including those we use in our work.

Classification metrics

1) Accuracy is the ratio of correct predictions to the total number of predictions. Formally,

TP + TN
TP + TN + FP + FN’

Accuracy =

where TP = true positives, TN = true negatives, FP = false positives, and FN = false negatives.

2) Precision is the ratio of true positives to the sum of true positives and false positives. It is especially
appropriate when false positives are costly. Formally,

Precisi TP
recision = ————.
TP +FP

3) Recall is the ratio of true positives to the sum of true positives and false negatives. It is important when

false negatives are costly. Formally,
TP

l= ———.
Reca. TP+ FN

4) F1 Score is the harmonic mean of precision and recall. It balances the two when we need a single measure.

Formally,
Precision x Recall

X .
Precision + Recall

=2

Ranking metrics

1) NDCG Score (Normalized Discounted Cumulative Gain) [89] measures ranking quality by comparing
the predicted ranking to an ideal ranking. Let rel(7) be the relevance score of the item ranked at position 4
and rel*(7) be the relevance of the item at position 7 in the ideal ranking. Then

k . k .

rel(1) rel” (i) DCGak

D =) o P =y ——=~ ND _ Dk
coak ;logz(iﬂ)’ ceak ;1og2(z'+1)’ CCCk = heGar

where DCG the Discounted Cumulative Gain , a measure of the ranking quality of a model , and IDCG the
ideal discounted cumulative Grain (by the ground truth values of a dataset ) .

2) Mean Reciprocal Rank (MRR) is one of the most used metrics for evaluating the quality of recommen-
dation and retrieval systems. It measures the position of the first relevant item in the ranked list produced
by the prediction algorithm:

1 1
MRR = —
N;rankn’
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where NN is the number of queries and rank,, is the position of the first relevant item in the results list. MRR
values range from 0 to 1, with 1 indicating that the first item retrieved is always relevant.

3) Mean Average Precision (M AP@Fk) MAP considers the number of relevant items retrieved as well as
their position on the list .

U
1
MAPOK = = ;AP@Ku
where, APQK is computed by summing the precision at each rank ¢ (with 1 < ¢ < K) where a relevant item
appears, and then dividing by the number of relevant items in the top-K.

K
1
APQK = N};Precision(k) x rel(k)

Where rel(k) is 1 if the object at position k is relevant and 0 otherwise, and N the number of relevant items
retrieved withing the top K predictions . As with MRR it takes values from 0 to 1 , whith 1 indicating the
ideal ranking where all relevant items are placed at the top of the retrieved list .

4) Rank accuracy Rank accuracy measures how well a predicted ranking matches a ground-truth ranking.
Specifically, for two lists of n elements, let p; be the item at position ¢ in the predicted list and ¢; the item

at position ¢ in the true list. Then
n

1
RankAcc = — 1(p: = t;),
ankAcc = — Z:ZI (p )
where 1(+) is the indicator function (1 if the items match, 0 otherwise).

Regression metrics

1) Mean Absolute Error (MAE) computes the average absolute difference between predicted values and

true values:
N
Z@z =i
i=1

2) Mean Squared Error (MSE) computes the average squared difference between predicted values and
true values:

MAE =

2=

N

1 A\ 2
MSE = N;(yi — )"

Correlation metrics

1) Spearman correlation is used on ranked data to determine how well the relationship between two
variables can be described by a monotonic function. Specifically, for two ranked lists, let R; be the rank of
element ¢ in the first list and .S; its rank in the second. Define the rank-difference

d; =R; — 5;.
Spearman’s p is then
63 d;
n(n? —1)
For example, given a list of objects [a1, az,...] and two sets of scalar scores [0.1,0.2,...] and [0.3,0.4,...],

you rank each list by importance and compute p to see how well the second list preserves the ordering of the
first.

ps=1-—

2) Distance Correlation In contrast to Pearson’s correlation, distance correlation measures both linear and
nonlinear associations between two random variables (or vectors). Sometimes two variables have a strong
nonlinear relationship—even though Pearson’s r is near zero, they are in fact highly dependent. Distance
correlation detects any kind of dependence [81].
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1. Given samples {x;}? ; and {y;}7;, form the pairwise distance matrices
aij = |wi — x|, by = lyi — vl

Intuitively, a;; and b;; capture how far apart each pair of observations is on each variable.

2. Double-center each matrix by subtracting row- and column-means and adding back the grand mean:

1
j = Q5 — § Qi — — § a’k] ﬁ § Ak,
k.l

and similarly for B;;.
3. Compute the distance covariance and distance variances:
dCov?(X,Y) e ZA” Byj, dVar’(X)=dCov?(X,X), dVar’(Y)=dCov?(Y,Y).
i.J

4. Finally, the distance correlation is

dCov(X,Y)
V/dVar(X) dVar(Y)’

dCorr(X,Y) =

with the convention that dCorr = 0 if either marginal distance variance is zero.
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Chapter 4

Graphs

Graphs are an important data structure in computer science and in many areas of physics, biology, chemistry,
etc. With graphs, we can represent objects and structures such as maps (e.g., Google Maps), molecules (e.g.,
molecular structures like proteins), social networks (e.g., Facebook friend connections), citation networks,
the Internet (e.g., Wikipedia, where terms and words link to other terms or URLs), etc. The ability of
graphs to represent a wide range of objects whose structure is not a regular grid (i.e., unlike the pixels in an
image, which connect only to their immediate neighbors) has made graph theory a heavily researched area
by mathematicians, computer scientists, chemists, etc.

4.1 Graph Theory Basics

There are a handful of ways to define graphs in graph theory, so here we define the most common ones that
are most relevant to our work.

A common definition of a graph is an ordered pair G = (V, E). (The term “unordered” means that the order
of the lists does not matter, since graphs have no inherent order. In other words ,you cannot say “this is
the first node” of a graph.This is the key distinction between graphs and other data structures like trees or
binary trees.) Here:

e V is the set of vertices or nodes.

e £ C {{z,y} | x,y € V and © # y} is the set of edges (links between nodes). Because sets cannot
contain the same element multiple times, multiple edges between the same two nodes are not allowed.

Edges can be ordered pairs or unordered pairs. Specifically, edges are pairs like (u,v), where u and v are
vertices of the graph (u,v € V). Ordered pairs mean that the order of the pair matters, so (u,v) is a different
edge than (v,u). Unordered pairs mean that {u,v} and {v,u} are considered the same. This distinction
corresponds to directed and undirected graphs: directed graphs have ordered pairs as edges, and undirected
graphs have unordered pairs.

These definitions apply formally to simple directed graphs and simple undirected graphs. One can extend
them to structures where multiple edges between the same nodes are allowed—these are called directed or
undirected multigraphs—which we will not discuss further in this thesis.

Extending the above definitions, a graph where each edge is assigned a numerical value (weight) is called
a weighted graph; otherwise, it is called an unweighted graph. Moreover, a graph in which nodes and edges
carry arbitrary feature vectors is called an attributed graph.

Below are definitions of some fundamental graph-theoretic concepts:
1. Adjacency. A node u is called adjacent to a node v if there exists an edge between u and v.
2. Degree.
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e In a directed graph, the in-degree of a node is the number of edges arriving at that node; the
out-degree is the number of edges departing from it.

e In an undirected graph, the degree of a node is simply the number of edges incident to that node.

3. Self-loop. A self-loop is an edge that connects a vertex to itself. (Simple graphs, as defined above, do
not include self-loops.)

4. Path. A simple path in a graph is a sequence of vertices
V1,V2y...,Un
such that each consecutive pair (v;,v;41) is an edge, and no vertex appears more than once. If vy = vy,
the sequence forms a cycle (or closed path).
5. Cycle. A cycle is a path in which the first and last vertices are the same.
6. Isolated Node. An isolated node is a node with degree 0.

7. Adjacency Matrix. The adjacency matriz of a graph is a square matrix that represents the set of
edges. The rows and columns of this matrix correspond to the vertices, and the entry at row 4, column
7 indicates whether vertices 7 and j are adjacent. In the simple graphs we discussed, the adjacency
matrix contains 0 or 1 to indicate the absence or presence of an edge, respectively.

8. Spectral Representation. The adjacency matrix can be diagonalized, and its eigenvalues and eigen-
vectors give rise to the spectral representation of the graph, which we will discuss briefly later.

4.2 Graph Types

1. Bipartite graphs are graphs whose vertex set can be partitioned into two subsets, U and V, such
that every edge connects a vertex in U with a vertex in V.

2. Heterogeneous graphs are graphs whose nodes and/or edges may be of different types (each type can
have its own identifier space). A typical example is a social network, where users, posts, and hashtags
form distinct node types, and edges encode various interactions.

3. Scene graphs represent a visual scene by explicitly encoding objects, their attributes, and the relation-
ships between objects. In many computer-vision tasks we care not only about which objects are present
but also about how they interact—for example, whether a person is holding or throwing a ball. Each
object (node) is linked to others through labeled edges such as “holding” or “throwing.” This structured
representation is useful for visual question answering (VQA), image captioning, image retrieval, and
other tasks that bridge vision and language modalities.

“re wearing — glasses

NS

man — feeding —+ horse

! '

holding eat from

I bucket —

Figure 4.2.1: An example of the scene graph of an image [1].
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4.3 Graph Similarity

The ability of graphs to represent many important real-world data structures makes graph comparison crucial
for numerous tasks. For example, in social networks, similar neighbor graph structures (or features) for
different people may indicate shared interests. Furthermore, similar molecular or protein structures often
exhibit similar properties. For these applications, it is important to have consistent metrics to assess graph
similarity from multiple perspectives (node features, topology, etc.). Here, we discuss some of the most
common graph-similarity techniques in the literature.

2) Algorithmic Comparison / Graph-Edit Distance Since Graph Isomorphism sits in NP but isn’t
known to be NP-hard (and is widely conjectured to be NP-intermediate), practical systems typically fall
back on approximate metrics such as graph-edit distance (GED). GED is the minimum total cost of an
edit sequence that transforms one graph into another, where allowed operations are node or edge insertion,
deletion, or substitution. Formally,

k

GED(g1, g2) = min aer
(91,.92) (el,...,ewe?’(ghgz); )

where P(g1,g2) is the set of all edit paths turning g; into a graph isomorphic to go, and c(e;) > 0 is the cost
of each edit operation e;.

Because computing exact GED is NP-hard, most applications rely on polynomial-time approximations. A
common approach builds a cost matrix whose rows and columns correspond to nodes; entry (u,v) encodes
the cost of matching node v in one graph to node u in the other (including node substitution, plus insertion
or deletion of incident edges). An approximate GED is then obtained by solving the resulting assignment
problem. The Hungarian algorithm [47] solves this in O(n?) time, but in practice the Volgenant—Jonker
method [38]—with graph preprocessing to rule out unlikely matches and efficient data structures—runs
much faster while still O(n?) in the worst case. Other popular approximations include beam search [63] and
A*-based search heuristics.

3) 1-WL test The 1-WL test is an approximate algorithm which tests graphs for graph isomorphism. It is
an iterative algorithm which aims at capturing the structure of the graph by refining node labels (or colors).
Specifically, at the start each node is given an initial color (label), which could be the same for every node or
depend on a characteristic of the nodes (commonly their degree). Then, in each iteration the node labels are
updated by hashing the previous label of the node together with the labels of all of its adjacent nodes into a
single new node. This process is repeated until no new labels appear or after a fixed number of iterations.

3) Graph kernels Graph kernels are functions that produce outputs which contain information about a
wide range of properties of graphs . This graph representations can be used to compare the graph structure ,
content or more specific properties of them . Formally a kernel maps a graph x via a function ¢ to a Hilbert
space (a space where we can define an inner product <¢(y), ¢(x’)>) then a kernel function £ : G x G — R
computes the similarity of the graphs in this new space . One important property of kernel methods is that
the comparison between different data points (graphs) does not need the explicit calculation of ¢(y) which
can be computationally expensive, but we can do the comparison by calculating only k(¢(x),¢()’)) in the
input space which can in a lot of cases be more efficient. This is known as the kernel trick . Well-known
kernels include:

e Weisfeiler—-Lehman (WL) subtree kernel:
Based on the 1-WL test, Shervashidze et al. [77] defined a kernel function that runs the WL-test
algorithm and, at each iteration ¢, records the number of occurrences of each node label in a histogram
¢+(G). After h iterations, these histograms are concatenated into one feature vector for the graph,

[QSO(G)a ¢1(G)7 sy ¢h(G)]a

and the kernel between two graphs G and H is computed as the inner product of their concatenated
histograms.
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¢ Random—walk kernel

One of the most famous graph kernels is the random—walk kernel [26], which counts the number of
matching walks between two graphs G and G'. By a “walk” we mean a sequence of nodes (ug, u1,. .., uj)
where each (u;—1,u;) is an edge. Directly counting matching walks is expensive, so we first build the
product graph G = G x G’. Tts nodes are all pairs (u,u') with u € V(G), v’ € V(G’), and we connect
(u,u’) to (v,v") if and ouly if (u,v) € E(G) and (v',v') € E(G'). It can then be shown that the total
number of length-k matching walks equals the number of length-k walks in Gy .More formally, for a
graph with adjacency matrix Ay, the (i, j)-entry of A% equals the number of walks of length k from
node 7 to node j. Hence, if A, is the adjacency matrix of the product graph and ) is a decay factor,
one common definition is:

K(G,G") Z)\’“ 17451

where 1 is the all-ones vector.

e Subgraph—matching kernel:
The subgraph—matching kernel [44] counts how many subgraph structures of up to k size are common
between two graphs. More concisely, k is usually set small for computational-complexity reasons. For
every i between 2 and k, we count, for each possible graph with i nodes, how many occurrences of
this graph exist in both G and G’. Then we concatenate these results for each i, and by multiplying
the concatenated histograms (the kernel function) we get a pretty expressive measure of structural
similarity between the graphs.

To compute this kernel, one constructs the (weighted) product graph of the two inputs and then
performs clique enumeration on it, summing the weights of all cliques to obtain the final kernel value.
Specifically, given two graphs G and G’, as with the random-walk kernel we first build the product
graph G x G’ and assign to each node (u,u’) a weight kv (u,u’) (vertex-similarity) and to each edge
((u,u'), (v,0")) a weight kg ((u,v), (v',v")). It can then be shown that each clique in this product graph
corresponds to a subgraph isomorphism in the originals (since an edge in the product graph means
(u,v) € E(G) and (v/,v") € E(G'); a clique thus represents a matched subgraph). The weight of each
clique implements the weighted version of the kernel. For each clique (matching) ¢ we compute

K(G,G') = Z A(¢)Hmv(v,¢(v)) H k(e v(e)),

$€B(G,G") vES e€SxS

which gives us the weighted formulation of the kernel.

e Shortest—path kernel:
The shortest—path kernel [9] calculates how many shortest paths of each length exist in two graphs
and then concatenates those counts for comparison. For the case of labeled graphs, we can simplify by
computing the shortest—path graph of G, denoted S(G) = (V, E;), where V is the same set of nodes as
in G and
E; = { (u,v) | there is a path between u and v in G}.

On each edge (u,v) € Ey we assign a weight dg(u,v) (for example, the length of the shortest path in
G between u and v). Then the base kernel

dg(u,v) + de (v, 0") if (u,v) € Eg(G) and (v/,v") € Ey(G'),

0 otherwise.

Ko (), (/1)) = {
Finally, the full shortest—path kernel is

K(S@G),8@G)) = Y > (e

e€EF,(G)e'eEs(G")

e Graphlet kernel:
The graphlet kernel [76] is similar to the subgraph-matching kernel, but the subgraphs we count are
drawn from a predefined set of small “graphlets”. Specifically, in the subgraph-matching kernel we
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4.3. Graph Similarity

count, for each possible graph with k£ nodes, its occurrences in the two target graphs. With the graphlet
kernel, we fix a pool of simple graphlets (e.g., all connected induced subgraphs up to size k) and count
only those occurrences, building feature histograms from that pool.

4) GNN-based comparison Many recent developments in graph comparison utilize deep learning tech-
niques such as GNNs to create both node-level and graph-level representations. These embeddings can be
used to compare graphs locally or globally, capturing information about both topology and the individual
elements. These techniques can then be trained in a task-specific manner, making them suitable for various
applications. For example, in this thesis we will utilize GNNs to produce embeddings describing images for
the task of image retrieval.
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Chapter 5

Graph Neural Networks (GNNs)

Graph Neural Networks (GNNs) are a class of artificial neural networks specialized for tasks where the input
data is in graph form.

In recent years, the use of these networks has increased, because a wide range of problems and datasets
can be represented as graphs. Examples include social networks, which describe the interactions of people
and their interests; scene graphs, which describe the relationships among objects in images; and molecular
graphs, where nodes represent atoms and edges represent bonds. Tools like PyTorch Geometric [24] have
helped standardize the representation and processing of these graph structures.

5.1 Applications

GNNs can be used for different types of predictions:

e Node-level prediction, where the goal is to predict labels or properties for individual nodes within a
graph. Common examples are recommendation systems [98] and social networks, where we learn node
representations that capture interests, connections, etc.

e Edge-level prediction, where the goal is to predict whether a connection exists between two nodes,
or to classify the type of connection. An application is molecular structure modeling, where predicting
links between atoms can determine different properties of the molecule or protein [27].

e Graph-level (global) prediction, where the entire graph is assigned a single label or property. Used
in image retrieval with scene graphs (as described in this thesis) [99], and in any task where a global
summary of the graph is needed.

5.2 Permutation Invariance

The need for neural network models specific to graph data arises from the fact that usual neural archi-
tectures—such as convolutional neural networks—cannot be applied directly to graphs, which are neither
grid-like nor sequential (as in RNNs or transformers).

One might represent a graph by its adjacency matrix, but any operation on that matrix can yield different
results depending on the ordering of its nodes. This is problematic because, as defined in the previous chapter,
a graph is an unordered pair G = (V, E). In other words, a function that processes the nodes of the graph
should not depend on the order of nodes or edges in the adjacency list or node list—instead, the resulting
representation for each node must be identical for any permutation of the nodes and adjacency. This property
is called permutation invariance.Furthermore, our GNN function should ideally be permutation equivariant,
meaning that permuting the input graph’s nodes (and its adjacency list) results in the same permutation
of the output node representations. More formally, suppose K denotes either the adjacency matrix or an
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adjacency list derived from the node set V' = {v1,vq,...}. Let P be a permutation matrix that reorders the
nodes. Then a graph-processing function f should satisfy:

e Permutation invariance:

f(PEPT) = f(K).

e Permutation equivariance:
f(PKP") = P f(K).

Here, P is a permutation matrix. Permutation invariance means that f does not depend on the arbitrary
ordering of rows and columns in the adjacency matrix, while permutation equivariance means that if we
permute the adjacency matrix by P, then the output of f is permuted in the same way. Functions such as
summing or averaging node features over all vertices are permutation invariant, while typical GNN message-
passing layers (e.g., GraphSAGE [28] or GCN [42]) are permutation equivariant, since they aggregate neighbor
information in a way that does not depend on any fixed node ordering. GNNs are designed most often to collect
each node’s 1-hop neighbors’ features, use a permutation-invariant aggregation (e.g., sum), and then compute
node updates in a way that remains permutation-equivariant.

5.3 Graph Isomorphism

Although the graphs we will visit in our work contain rich node embeddings and most GNNs will have
sufficient capacity to distinguish them and produce rich representations, it is important to mention graph
isomorphism as a measure of the distinguishable power of our models and a fundamental task in graph
theory. Graph isomorphism determines whether two graphs share exactly the same structure, differing only
by a relabeling of nodes. Formally, let G; = (V, E) and G2 = (V', E’) be two graphs with adjacency matrices
A; and A, and, if node features are present, feature matrices X; and Xs. Graphs G7 and G4 are isomorphic
if there exists a permutation matrix P such that

PAPT=4;, and PX; = X,.

In other words, by permuting the rows and columns of A; (and accordingly reordering the rows of X7), one
recovers exactly As (and X5).

Deciding whether two arbitrary graphs are isomorphic is believed to belong in a class of problems known
as NP-intermediate. While graph isomorphism is not known to be NP—complete, no polynomial-time al-
gorithm is guaranteed to solve all cases. Nevertheless, powerful approximate tests—most notably the We-
isfeiler-Lehman (WL) algorithm—effectively distinguish nonisomorphic graphs in many practical situations
[91].

5.4 GNN variants

GNNs generally fall into two categories:

e Spectral-based GNNs, where the filters for aggregating information are defined in terms of the graph
Laplacian’s eigenbasis.

e Spatial-based GNNs, where aggregation is performed directly on each node’s neighborhood in the
graph. Spatial-based GNNs are currently more commonly used and are more computationally efficient,
since they do not require computing eigenvalues or eigenvectors of large matrices.

In this section, we will discuss some of the most notable GNN variants and how they handle and update
graph data differently. We begin with the most general framework—Message Passing Neural Networks
(MPNNs)—into which many other GNN architectures can be cast.
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5.4.1 MPNNs

Message-Passing Neural Networks (MPNNs) provide a general framework for learning on graph-structured
data by iteratively updating node representations through message-passing operations. Originally introduced
by Gilmer et al [27] , MPNNs are designed to be permutation-equivariant—an essential property when pro-
cessing graphs, since nodes have no inherent ordering. In essence, MPNNs perform spatial graph convolutions:
just as a CNN kernel aggregates information from neighboring pixels, an MPNN node aggregates information
from its neighboring nodes.

At each layer k, every node u has a hidden state h&k). The message-passing update from layer k to layer
k 4+ 1 can be written as follows:

A+ — UPDATE® (R0, miy)

k
N)s My = AGGREGATE® ({1 | v € N(u)}),

(

where:

e N(u) is the set of neighbors of node w.

o AGGREGATE™ is a permutation-invariant function (for example, a sum or mean followed by a neural

network) that combines the hidden states of all neighbors of u into a single message mgl\;zu).

e UPDATE™ is another differentiable function (e.g., a neural network) that takes the current hidden
state hq(f) and the aggregated message mg\lfczu), producing the next hidden state hq(fﬂ).

Multiple message-passing layers can be stacked so that information propagates across farther reaches of the
graph. After K layers, each node’s representation th) encodes not only its own features but also structural
information from nodes up to K hops away. These learned node embeddings can be used directly for node-
level tasks—such as predicting node labels or link existence—or further aggregated (e.g., summed or averaged)
across all nodes to form a global graph representation that summarizes the entire graph’s content (commonly
used in graph-level classification).

\/\ . g

hy

&h Q(_ d / y ' ® F & i\l
a by

Figure 5.4.1: Aggregation of information from neighbor nodes and an illustration of k-hop messages
between nodes.

5.4.2 Graph Convolutional network

A GOCN [42] can be viewed as applying learnable frequency—domain filters to signals that live on the graph’s
nodes. The original Graph convolutional network proposed by Kipf & Welling bridges the gap between
spectral based and spatial based gnns, showing that GCN which is a first order approximation of localized
spectral filters on graphs is equivalent to a message passing formula which is associated with MPNNs . Here
we explain the steps of this results which highlight the operations of spectral GCNs as well as the baseline
GCN proposed by Kipf and Welling.
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e Graph Fourier basis. The eigenvectors U of the (normalized) Laplacian L = Iy — D~/2AD~1/2
play the role of “sines and cosines” on the graph. Transforming a signal  into this basis, U Tz (which
define the graph Fourier transform) , tells us how much the signal contains every “graph frequency”
which is defined by the eigenvalues of the Laplacian A;.

e Spectral filter. A filter is any diagonal function go(A) = diag(ge(A1),...,90(An)). Multiplying each
Fourier coefficient by gg()\;) emphasises or suppresses that frequency, giving

goxx = Uge(A)U x.

Different choices of go(A) therefore control how strongly a node mizes information with its neighbours
(low—pass filters perform neighbourhood smoothing, high—pass filters accentuate sharp differences, and
o on).

e Chebyshev trick.(ChebNet [17]) Computing U is impractical as it is computationally expensive to
perform this matrices multiplications , so Hammond et al.(2011) [29] approximate gg(A) by a length-K
Chebyshev expansion fozo 0}, T (A), where A = 2~ A —Iy. Which gives as gg*z ~ Zﬁio 05, Ty (L) x.
Because T}, (f/) is a k-hop polynomial in L, the resulting filter is K-localized as the Kth-order polynomial
in the Laplacian depends only on nodes at maximum K steps away from the target node . Also this

order K Chebyshev expansion can be evaluated in O(|E|) time.

e First-order and renormalisation. Setting K = 1 , Amax to 2 and 90 and 41 of the Chebysev
polynomials to 1 , further decrease the number of learnable parameters and it is expected that the
other parameters of the neural network will learn to adjust to the scale changes caused by this factors
gives the simple operator (IN + D_I/QAD_1/2):B. Kipf & Welling [42] re-normalize it to D-1/2AD-1/?
with A = A + Iy to avoid numerical instabilities, leading to the layer rule

HE — o( D2 AD- 2 HOW W),

In short, a GCN learns how much of each graph frequency to keep and implements that choice with fast, local-
ized polynomial filters, turning the graph’s connectivity into a powerful convolutional operator.Furthermore
GCN uses a layer-wise propagation rule as other GNN variants of the spatial type ,and it is generally known
that in a wide range of applications is capable of encoding both the graph structure and the node features of
it .

5.4.3 GIN (Graph Isomorphism Network).

The goal of GIN [95] is to create a GNN with the same distinguishing capability for graphs as the Weisfeiler—
Lehman test (1-WL). In GIN, each node’s embedding is updated by aggregating its own previous embedding
together with the sum of its neighbors’ embeddings, and then passing the result through a multi-layer
perceptron (MLP).

The update rule for GIN at layer k is then :

hk) = MLP<k>((1+a(’f))h<f—1) + Y hgjf*)),
ueN (v)

where £(*) is either a learnable scalar or a fixed constant (e.g., zero). By choosing an MLP with sufficiently
large hidden dimensions, one can ensure that the mapping from the summed neighborhood embeddings to
the new embedding is also injective ( unique inputs lead to unique outputs) .

Xu et al. [95] showed that, under these conditions, there exist parameters for the MLP and enough hid-
den units such that this GIN network is provably as powerful as the 1-WL test in terms of discriminative
power (i.e., the ability to distinguish non-isomorphic graphs based on their structure).However, in many
practical settings—especially when nodes already carry rich, highly discriminative features (e.g., scene-graph
embeddings, visual or language features)—that extra “1-WL power” often doesn’t translate into better task
performance; models like GAT or GCN, with their attention mechanisms or simpler inductive biases, can
actually generalize more effectively on real-world data.
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5.4.4 Graph Attention Networks (GAT)

Introduced by [84], Graph Attention Networks (GATS), inspired by the self-attention mechanism in trans-
former models, augment the message-passing process with a learnable attention mechanism that allows each
node to weight its neighbours differently. Earlier graph-convolutional models aggregate neighbour features
uniformly. GATs instead learn attention coefficients that emphasize the most relevant neighbours.

For each node i and neighbour j € N'(i), GAT computes

T exp(eij)
e;; = LeakyReLU(a' [Wh; ||Wh;]|), «; = .
! ( [ H j]) ! Zkex\/(i) exp(eik)

where e;; is the unnormalized attention score between nodes ¢ and j, computed via a learnable vector a and
weight matrix W. The normalized coefficient o;; determines how much node j contributes when updating
node 1.

The updated feature for node 7 is then
fli = 0'( Z OzijWhj),
JEN(9)
where o(+) is a nonlinear activation (e.g., ELU or ReLU).

A multi-head variant improves expressiveness by computing K independent attention heads and then aver-
aging (or concatenating) their outputs. With averaging, for example:

K
W=o( 3 3 ol W),
k=1jeN (i)

(k)

where each head k has its own parameters W*) and a(®),| producing coefficients ;" via the same Equations.

—

concat/avg
~ h/
1

Figure 5.4.2: The single-head attention mechanism and the multi-head extension in the original GAT
architecture [84].

5.4.5 GATv2

In a follow-up paper, the GAT authors showed that original GAT layers are limited in expressivity because
their attention coefficients do not allow each node to attend differently to its neighbors based on its own
features. Concretely, in GAT the unnormalized score can be written as

e(hi,h;) = LeakyReLU(a] Wh; + a] Wh;),
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where a = [a; || az]. Because the term a; W h; depends only on j, there is always some node jmax whose
a; Wh, s largest among all j € V. By monotonicity of LeakyReLU and the softmax, jmax attains the

Jmax

highest attention weight for every query node i. In other words, GAT’s attention ranking is identical (static)
for all 4.

To fix this, GATv2 [10] reorders the operations so that the ReLU nonlinearity applies before the dot product
with a. Now the unnormalized attention becomes

e(hi,h;) = a' LeakyReLU(W [h; | hy]).

Because LeakyReLU(W | h;||h;]) jointly depends on both h; and h; before multiplying by a, this attention
is no longer reducible to a single affine map, and thus it can be “dynamic” (different for each query node 7).

It should also be mentioned that although the GAT-style attention calculation and the GATv2-style attention
is known to work well in many scenarios with graph data. In principle we can use any type of attention like
the ones from other deep learning models [4].

kO k1 k2 k3 k4 k5 k6 k7 k8 k9 kO k1 k2 k3 k4 k5 k6 k7 k8 k9

0.10 0.10 0.07 0.08 0.08 0.11 0.09 0.20 0.08 q{} -0. 0.00 0.00 0.01 0.01 0.00 0.00 0.02 0.01 0.00
05 0.10 0.10 0.04 0.04 0.04 0.13 0.06 [URek:y 0.04 q]_ O.E‘lEI 0 01 0.01 0.00 0.01 0.01 0.00 0.02
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Figure 5.4.3: The original gat produces static attention in contrast to GATv2 which produces dynamic .
For example here in the simple gat every nodes attends the most on node 8 , while in GATv2 every node
attends to different nodes.[10]

5.4.6 Graph Autoencoders

Extending the idea of autoencoders to graphs, a graph autoencoder not only projects each node into a low-
dimensional embedding but also preserves—and can reconstruct—the graph’s original structure. Specifically,
given a graph G = (V, F) with node set V' and adjacency matrix A, a graph autoencoder uses graph neural
networks (most often graph convolutional networks) to encode the feature matrix X € RV*? and the adja-
cency A into a latent representation Z € RV*? with d’ < d. The decoder then reconstructs the adjacency
via a sigmoid of the inner product of latent vectors [87]:

Az’j = O'(Z;ij),
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where o is the logistic sigmoid. Intuitively, connected nodes yield a high dot product and disconnected nodes
yield a low one. In the simplest case, the reconstruction loss is the binary cross-entropy over all pairs:

Lrecon = — Z |:A” IOg Aij + (1 — A”) log(l — A”)i| .

.3

A Variational Graph Autoencoder (VGAE) extends this framework by making the encoder output a
probability distribution for each node’s embedding—usually a Gaussian parameterized by p; and o;. During
training, one samples

zi ~ N (p;, diag(o7))
and applies a KL-divergence penalty to encourage each node’s distribution to stay close to a standard normal
prior. This probabilistic extension yields a smoother, generative latent space for graph-based data [41].

5.5 Over-smoothing

Over-smoothing is a common problem in message-passing GNNs: after several rounds of aggregation, node
representations tend to become nearly identical, making them less discriminative for downstream tasks. This
issue grows worse as we stack more layers, since repeated averaging of neighboring features forces distinct
embeddings to converge.

While over-smoothing can ruin node representations for many graph tasks, its effects are most intuitively
obvious in node classification. As we discussed above, GNN message-passing lets neighboring nodes share
information so that nodes at small graph distances end up with similar embeddings. But there is no built-in
mechanism to prevent distant nodes from also collapsing together. The receptive field of a GNN is controlled
by its depth, and by analogy with CNNs on images—where hundreds of layers deepen the receptive field—one
might expect that deeper GNNs should be more expressive and better at capturing global structure. In
practice, however, most GNNs are kept very shallow (e.g. 3-5 layers). Graphs differ radically from images in
both topology and scale, and beyond a task-dependent “sweet spot” in depth, oversmoothing predominates:
node embeddings become so uniform that, for example, a node classifier can no longer distinguish classes and
performance degrades.

A great deal of research now focuses on mitigating GNN oversmoothing, but it is important to remember
that—under common assumptions about graph structure—oversmoothing is mathematically inevitable as

depth grows. Xu et al. (2018) [95] define the influence Ik (u,v) of an initial node feature h? on a final
(K)

representation h, ° by summing all entries of the Jacobian
oy
ony
In other words,
Ig(u,v) = 17 ‘Z};%;) 1,

where 1 is the all-ones vector. This quantity measures how much the initial embedding of node u contributes
to the final embedding of node v. Xu et al. [95] show that for standard GNNs using (self-loop) mean
aggregation which can be extended to weighted aggregation,

IK(U7U) X pG7K(’U|’U/),

is the probability of reaching v after K steps of a random walk starting from u. As K — oo, these random-
walk probabilities converge to the stationary distribution, so every node influences every other node roughly
equally (the probability of ending in v in the random walk becomes independant of u so they no longer
depend on the starting point of the node ) . Consequently, node features become indistinguishable—i.e.,
over-smoothed.

Because deeper GNNs amplify this convergence, stacking many layers can hurt performance by washing out
local differences in node features.

There have been several metrics proposed to measure oversmoothing in GNNs, although a unified definition
of what such a metric should capture does not yet exist. Rusch et al. [73] propose that a good measure should:
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1. detect when node features converge to a constant node vector,
2. capture this convergence in a strict, exponential form, and
3. avoid degenerate choices for similarity functions.

Some of the most common metrics are:

e Dirichlet energy , [11],[78] which quantifies the smoothness of node representations over edges:

n 1 n n) 2
BOXO) = S - X

i€V jeN (i)

e Mean average distance (MAD) , [73] which measures the average pairwise distance (or similarity)
of neighboring embeddings but fails to satisfy all of Rusch et al.’s conditions:

(T y(n)
1 (X;) X;
oty = Ly 3 (1o ST
VIE & 1XIx
—— Dirichlet energy -+ MAD —— Dirichlet energy === MAD —— Dirichlet energy ==+ MAD
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Figure 5.5.1: Dirichlet energy and Mean Average Distance (MAD) of layer-wise node features Xn
propagated through a GAT, GCN and GraphSAGE for three different graph datasets, (left) small-scale
Texas graph, (middle) medium-scale Cora citation network, (right) large-scale Facebook network
(Cornell).[73]

Several simple techniques help mitigate over-smoothing:

1. Concatenation. Instead of replacing the old embedding entirely, GraphSAGE [28] concatenates the
previous node representation h, with the updated message:

UPDATEconcat (hru; Ma(u)) = [ UPDATEpase(huy mar(uy) || ] -
This preserves the original information so that later layers do not fully overwrite earlier signals.
2. Residual (skip) connections. One can add a weighted shortcut from the previous embedding:
UPDATE;¢s(hu, mpr(u)) = @1 © UPDATEpase (b, mar(w)) + @2 D,

where a1, ag are learnable or fixed scalars. This approach, akin to residual blocks in CNNs [31], allows
gradients and features to flow more directly from earlier layers. Architectures using this idea have
shown significant improvements [52, 14].

3. Jumping Knowledge connections. Instead of using only the last layer’s embedding, Jumping
Knowledge [94] builds the final node representation by combining features from every message-passing

layer. For node u with layer-wise embeddings h&o), hgl), ceey h&K), one sets
zu = fuc (hD B[ | ATO),

where || denotes concatenation and fjx can be a max-pool, an LSTM aggregator, or a linear projection.
By pulling information from all layers, Jumping Knowledge mitigates over-smoothing and preserves both

shallow and deep signals.
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4. Regularization and normalization. A simple yet effective strategy is to penalize oversmoothing
metrics (e.g. Dirichlet energy [101]), normalize embeddings (e.g. PairNorm [100]), or inject noise by
randomly dropping edges or connections (e.g. DropEdge [70], Graph DropConnect [30]).

In practice, these concatenation and residual strategies often make training deeper GNNs more stable and
reduce over-smoothing. They are especially effective on node classification tasks in networks exhibiting
homophily—that is, when a node’s label is closely tied to its immediate neighborhood.
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Chapter 6

Image Retrieval

Image retrieval is the problem of ranking images from a database based on their similarity to a query. Methods
can be grouped into three categories—text-based, vision-based (content-based), and scene-graph-based—each
relying on different types of queries or features. In this thesis, we focus on scene-graph-based image-to-image
retrieval but begin with brief introductions to text-based and vision-based approaches to highlight shared
ideas.

6.1 Text-Based Retrieval

Text-based image retrieval involves matching textual descriptions with visual content, aiming to find the
most appropriate images in response to a user’s request. Various methods, ranging from early keyword-based
retrieval techniques to modern deep learning—based models, have been proposed to enhance the accuracy
and efficiency of this process. Some of the most recent approaches involve training large vision-language
models on pairs of images and textual descriptions, such as CLIP [7] and BLIP [54], which can match
images with captions. Furthermore, scene-graph—based retrieval can be viewed as a subcategory of this
type because scene graphs encode textual representations of images and their relations, providing a more
structured representation than pure captions.

Some notable examples of image-to-text retrieval relevant to our work utilize and analyze scene graphs.
Wang et al. [88] construct scene graphs for images and textual graphs for captions, capturing rich semantic
information in both modalities, then fuse this information using a hierarchical attention network to compute
similarity between textual descriptions and images. Liu et al. [92] construct graphs from captions and
images, then use a multi-view fusion network to explore cross-modal relationships between the scene and
textual graphs.

6.2 Vision-Based Retrieval (Content-Based Image Retrieval, CBIR)

Content-Based Image Retrieval (CBIR) [66],[85] uses a query image to retrieve similar images by comparing
automatically extracted visual features—such as shapes, color, texture, and spatial layout or nowadays visual
embeddings. Early CBIR systems relied on hand-crafted descriptors such as color histograms, SIFT or SURF
local features [55],[6], and edge/texture filters [50]. These traditional methods were often sensitive to changes
in illumination, viewpoint, or background clutter and lacked the ability to capture high-level semantics.

With the advent of deep learning, particularly convolutional neural networks (CNNs), CBIR systems now can
easily detect objects from a wide range of categories within images and they can typically extract features
from a pre-trained CNN’s final layers to produce highly rich global representations for images . These
learned features encode object presence, context, and other semantic attributes rather than just low-level
pixel patterns or geometric features of the scene (blobs , gradients etc) . Some architectures also leverage raw
pixel data alongside CNN features to achieve finer detail. Each image is converted into a compact feature
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vector, and similarity between two images (or parts of them) is measured via a distance or similarity function
(e.g., cosine similarity or Euclidean distance) between their vectors.

A key objective in modern CBIR is to design models as well as comparison functions that achieve both
high inter-class separation (ensuring that images from different categories lie far apart in feature space) and
strong intra-class compactness (ensuring that images of the same category cluster closely). This ensures
that relevant images are retrieved accurately while irrelevant ones remain distant , a process which we also
discussed generally for embeddings. Deep learning techniques—such as triplet loss or contrastive loss—are
commonly used to train CNN embeddings that satisfy these constraints. Many content-based methods do
not rely on textual annotations (in inference time) ; they use visual features alone, which is advantageous
when annotations are missing or unreliable. However, because CBIR focuses on visual similarity, it may fail
to distinguish semantically different images that although depict similar semantically things, the low-level
appearance characteristics of them are not easily distinguished by computer vision models like CNNs and
ViTs ( for example a black and white image might have a completely different embedding representation from
a colored one even if they show the same things in the scene ) .

6.3 Scene-Graph-Based Retrieval

Scene-graph-based retrieval addresses the semantic limitations of CBIR by explicitly modeling objects and
their relationships. A scene graph represents an image as a structured graph in which nodes correspond to
detected objects (including labels and attributes), and edges encode pairwise relations such as “on top of,”
“next to,” or “holding.” Many CBIR systems can detect objects in an image, but in many cases this is not
enough for semantic retrieval. Which objects interact and the relations describing these interactions can
contain crucial information for improved retrieval. For example, two images might both contain a “person”
and a “dog,” but the first could depict “a person looking at a dog” while the second shows “a person walking
with a dog.” This distinction is obviously important for the retrieval process. Moreover, as described above,
the advantages of CBIR systems in capturing visual information should not be downplayed; many systems
therefore aim to bridge the gap between visual and semantic image retrieval, as we discuss below.

There exist a handful of datasets with human-annotated scene graphs, such as Visual Genome [45] (which fea-
tures diverse object and relationship categories, although some annotations suffer from poor quality); cleaner
subsets like the PSG (Panoptic Scene Graph) dataset [96]; the Open Images dataset [48] (which provides
rich object annotations, including segmentation masks, but covers fewer object classes and relationships than
Visual Genome); and CLEVR [60] (containing synthetic 3D objects and their relationships—placements and
attributes—typically used for relational question answering).

Many automated scene-graph generation and comparison models have been proposed [93],[102]. Models for
automatic scene-graph generation typically begin with an object detector (e.g., Mask R-CNN or Faster R-
CNN) to identify object instances and their bounding boxes. Once detection is complete, a scene graph is
constructed: each node represents an object class (often with attributes), and each edge denotes a relationship
between two nodes. After obtaining scene graphs for our images, we must compare them. Approaches range
from algorithmic methods such as graph-edit distance (GED) to deep-learning techniques based on graph
neural networks (GNNs).

For example, Chaidos et al. [12] utilized an unsupervised retrieval framework using graph autoencoders with
GED as a similarity measure between two image graphs for semantically enhanced image-to-image retrieval.
Moreover, Dimitriou et al.[19] utilized GNNs to represent images as their graph embeddings, training them
so that embedding similarity approximated GED, and used these embeddings to produce counterfactual
explanations. Especially important for this thesis is the work of Yoon et al. [99], who used scene graphs
processed by GNNs to produce embeddings that match the textual representation of images, giving the
model a semantic description of their contents and connections. Also Maheshwari et al.[59] employed graph
convolutional networks with a contrastive ranking loss to perform image-to-image retrieval.

Some systems also enrich node features with CNN-derived visual descriptors before the GNN stage. By
fusing structural cues from the scene graph with visual cues from the raw image, they preserve both high-
level semantics and fine-grained visual features. For example, Wang et al. (2023) [90] insert CNN features at
every node, then run a GNN to obtain a global embedding and compute local comparisons between nodes,
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substantially boosting retrieval accuracy by combining structural relations with visual context.
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Chapter 7

Proposal

In this section, we first propose a model trained to predict the important objects and triplets (object 1,
relation, object 2) in an image’s scene graph. We then introduce a modified GATv2 layer that processes
these graphs for the image-to-image retrieval task. We will analytically justify all our design decisions, both
empirically and intuitively. We begin by listing the main contributions of this thesis and then thoroughly
explain the entire pipeline of our model.

7.1 Contributions

The contributions of this thesis can be summarized as follows:

e We utilize both the scene graphs of images—obtained from the Visual Genome dataset—and visual
information for the objects and the image as a whole to perform image retrieval based on query images.
Scene graphs provide semantic details about objects and their relations. Since this has been explored
before, we introduce new methods to process these graphs and combine textual and visual information
for more expressive graph data.

e We use a transformer encoder with an additional multi-head attention module with learned queries to
build a model that, given textual and visual object features plus global image information, predicts the
importance of objects and relations in a scene graph. We then propose a pruning algorithm that removes
the many unimportant nodes present in the annotations of the Panoptic Scene Graph Generation
dataset, which, although a cleaner version of the Visual Genome dataset, still contains abundant purely
and inconsistently annotated scene graphs.

e We explore various graph neural networks and introduce a GATv2-like layer that incorporates edge
embeddings into the attention computation and message passing. Our aim is to generate rich graph-
level embeddings for the task of image-to-image retrieval using as much available information for our
images-graphs as possible.

e We propose several optimizations to our pipeline and architecture, and we explain ,empirically and
intuitively ,their motivations and their actual effectiveness for image-to-image retrieval.

7.2 Proposed Model

Here, we describe the pipeline we propose for image-to-image retrieval and analyze each of its components
in detail.

7.2.1 Graph Dataset

Dataset We use images from the intersection of the PSG (panoptic scene graph generation) and MS COCO
datasets. From PSG, we obtain the scene graph and bounding-box coordinates for each object in an image.
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From MS COCO, we use five captions per image, the similarity between the captions of two images serves
as their ground-truth semantic similarity.

Graph construction For the construction of the graphs on which we apply GNNs to produce final em-
beddings, we use the sentence and vision transformers of the OpenCLIP ViT H 14 laion2b s32b b79k
model to obtain, for each object in the intersected dataset described above, a 1024-dimensional sentence
embedding and a 1024-dimensional visual embedding. To the visual embedding, we append five normalized
values—the bounding-box coordinates and the object’s area in the image—yielding a 1029-dimensional visual
vector. We then concatenate this with the sentence embedding to form a 2053-dimensional node embedding.
We also use the sentence transformer to obtain 1024-dimensional embeddings for relations—since relations
lack bounding boxes, they have only textual embeddings. Furthermore, we obtain a global visual embedding
for the whole image using the same visual transformer; we pad this vector with zeros to 2053 dimensions and
connect this global node to every other node (we do not have embeddings for this edges so we use embeddings
with only zeros). Finally, we split the dataset into train, validation, and test sets (referred to hereafter as
the train, val, and test splits), which remain fixed during training, validation, and testing.An illustration of
the graph construction process can be seen in figure 7.2.1

. Visual Feature Embeddings
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|
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D
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Figure 7.2.1: Object and relation names, together with the graph structure , are taken from the PSG
dataset. Visual information for each object is extracted by applying the CLIP visual transformer to its
bounding box. Each graph node is the concatenation of its textual and visual embeddings, whereas each
edge stores only the textual embedding of its relation.

7.2.2 Importance Prediction Module

Ground-Truth Scoring. As a ground-truth importance score for single objects, we use the average dot
product between the sentence embedding of the object label and the sentence embeddings of the five captions
for that image. For triplets, we form the phrase “object; relation objects” using the PSG labels, obtain its
sentence embedding, and compute its average dot product with the caption embeddings. For example, if a
scene graph contains the objects “person” and “cat” with the relation “looking,” and one caption is “A woman
looking at two cats,” then the importance score for “person” is the dot product of the embedding of “person”
with the caption embeddings (averaged over all captions), likewise for “cat,” and for the triplet we compute
the dot product of the embedding of “person looking cat” with the caption embeddings.

Task Setup. We train an importance prediction module to identify, for each graph, which node-objects and
which triplets (object 1, relation, object 2) are most important. The model takes as input: the embedding
for object 1 (its concatenated textual and visual embeddings), the textual embedding for the relation, the
embedding for object2, a global textual embedding for the graph (described below), and a global visual
embedding for the whole image. To enable both triplet and object importance prediction, we can zero out
the relation and object 2 embeddings; in that case, the model predicts only the importance of object 1.

Global Textual Embedding. For the global textual embedding, we first constructed text-only versions of
our scene graphs, promoted each edge to a node (forming a bipartite graph), and then trained an unsupervised
Infograph algorithm [80] on the train split to produce textual embeddings for each image. For the training
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split, we use embeddings generated by Infograph during training; for validation and test, we use the Infograph
model’s predictions. This global embedding captures the overall structure and object labels of the graph,
which intuitively helps our module determine importance.

Architecture. Before inputting them to the importance prediction module, we pass each of the five embed-
dings through a linear projection layer to project them into a common dimension. We then feed these tokens
through a transformer encoder that, via its self-attention mechanism, updates each embedding based on the
others—highlighting the most salient features. The transformer encoder thus produces five updated embed-
dings, one per input token. Next, following Arar et al., we apply a multi-head attention layer with learned
queries [3] to derive even more task-specialized embeddings. Finally, we pool the resulting embeddings and
pass them through a small MLP to obtain a scalar score for the triplet or object.The overall architecture of
our model is visualized in 7.2.2.

MLP
‘ MEAN POOL ’
‘ emb 1 ‘ ‘ emb 2 ’ ‘ emb 3 ’ ‘ emb 4 ’
querry 1
querry 2
MULTIHEAD ATTENTION
querry 3
querry 4
updated emb. ‘ ‘ updated emb. ‘ ‘ updated emb. ’ ‘ updated emb. ’ ‘ updated emb.

TRANSFORMER ENCODER

global graph
sen.emb.

object 1 emb. ‘ ‘ relation emb. ‘ ‘ object 2 emb. ’ ‘ global visual emb. ’ ‘

Figure 7.2.2: The architecture of our importance prediction module, the model takes as input 5 embeddings
(object1,relation,object2,global visual embedding, global graph sentence embedding) and firstly passes them
through an transformer encoder, then the updated embeddings are passed as keys and values through a
multihead attention module with learned query embeddings. Finally we pool the resulting embeddings and
pass them through a small mlp to produce a final scalar score.

Training. To train the importance prediction module, we construct a dataset from the train split. For each
object in each image, we include a sample of the form (object; embedding, zero embedding, zero embedding,
global visual embedding, global graph textual embedding) with its ground-truth object score. We also
include samples for each triplet—(object; embedding, relation embedding, objects embedding, global visual
embedding, global graph textual embedding)—with its ground-truth triplet score. We train the model by
minimizing the mean squared error between its predictions and the ground-truth scores.
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7.2.3 Graph Neural Network Training

Ground Truth The ground truth similarity between two images is taken as the average similarity between
each pair of their captions (because we have 5 captions for each image we have 25 pairs) . Furthermore the
ground truth importance between an object or triplet in an image and the image is taken as described in the
previous section 7.2.2 .

Graph pruning Before we pass our graphs through a graph neural network to produce a global embedding
for them, we perform a filtering of the nodes and edges . Specifically during training for each image in the
train split , we use the ground truth importance values for the objects , to form a list of scalar values . We
then firstly apply a threshold to this values , saying that every object above this value is important (labeled
as 1) . Also we apply the Jenks natural breaks algorithm to this values and we label the objects which where
clustered in the cluster with bigger values as important (1) . Finally the important objects are the union of
this two methods and every object not included is considered unimportant. Similarly we do the same thing
for every triplet in the image , finding which triplets (object 1, relation, object 2 ) are important.

We then for each graph in the train split mask our the nodes: We keep the nodes that are important (label
them as 1 in the mask ) . We also keep all the nodes that are part of an important triplet (so if a triplet
object 1, relation , object 2 is important we keep object 1 and object 2 ) . So our final node list consists of
the union of this two . Moreover the global visual embedding node is considered important . Finally we keep
only the subset of the original edges which connect nodes that are important. An example of the pruning
process can been seen in figure 7.2.3, the global visual node as it was labeled as important is always kept as
well as its connections with the nodes after pruning (in the example we excluded the global node for optical
clarity) .We also tried versions for our model where we kept only the important objects only , not the ones
that are part of an important triplet, but the model performed slightly worse in this case.

The intuition behind the Jenks algorithm is that, from observing importance scores across images, we noticed
high variance among clearly important objects, so a fixed threshold alone was insufficient. Moreover, because
Jenks natural breaks is a distribution-based method, it finds a natural boundary in the scalar scores, although
alternatives such as k-means clustering could also be suitable.

Graph 1 Graph 1 Filtered
1

Figure 7.2.3: For pruning our graphs , we keep only the union of nodes that are important (labeled as 1) ,
and nodes that are part of important triplets (here denoted as 1 in the edge ) .

GNN We pass each pruned graph S through our GNN to obtain an embedding g(5) € R?. During training
we draw graph pairs (S;,.5;), measure their similarity with the dot product

f(Si,55) = (8(5i), 8(55)),

and ask it to match the average caption similarity

where c; ;, is the embedding of the k-th caption of image I;. We minimize the mean-squared error

Lij = (f(Siij) - S(Iivfj))z’

thereby training the graph embeddings to mirror the semantic similarity implied by the captions. The full
training pipeline is shown in Figure 7.2.4.
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Figure 7.2.4: Our training pipeline . We firstly prune our graphs based on the important objects and
triplets in them, then we pass this graphs through a gnn model to produce global embeddings for them .
Finally we compare the similarity of two graphs with the ground truth similarity of them obtained by their
captions and train with mean squared error loss.
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7.2.4 Graph Neural Network Proposal

One main issue with common GNN architectures (e.g., GAT, GIN) is that, during message passing, edge
embeddings often go unused—reducing model expressivity by ignoring useful information. In our scene
graphs, each edge carries a textual relation (e.g., “person—playing with—dog”), but prior image-to-image
retrieval methods either discard these relations entirely [99] or only use them at final matching (e.g., via
graph-matching scores) [90], rather than enriching the messages passed between nodes.

We propose a GATv2-style layer that incorporates edge embeddings both in the attention-coefficient com-
putation and in the message updates. Previous attempts to integrate edge information into GAT or GATv2
architectures have used edge embeddings only in the attention score e;;, concatenating them with the node
embeddings z; and z;, and then optionally re-injecting edge embeddings in the final GNN layer [13]. In
contrast, we argue that the first GAT layer should already integrate edge embeddings, and that subsequent
layers should learn node representations informed by both node and edge features. Moreover, we replace con-
catenation with summation of edge and node embeddings for both message passing and attention calculation.
Since our node embeddings combine textual and visual features and our edge embeddings are purely textual,
we first split each neighbor’s embedding z; into z;-CXt and z}fis. We then apply separate linear transforms:

’
Z;ext =W, Z;ext7 W, € Rout ><Cltext7

- .
Z}/IS =W, Z}/lS7 W, € Rdout ><dv1s7

e, =Weey, W, € RlouwXdease,

We then reassemble the neighbor’s embedding by adding the projected edge to its textual part and concate-
nating with its visual part:
ZI- _ [Zt_ext' =+ el__ H z\_/is']
J J i |l %5

The to be updated node z; remains [z4*"||z}’].

Finally, we apply standard GATv2 attention over these mixed embeddings:

eij = a' LeakyReLU(Wa [ 2 || z;1),

i — exp(e;;) 7
Z exp(eik)
kEEN (4)
z; = cr( Z ;i Wi, z;>
JEN (D)

In this way, the node embeddings produced by the first layer already encode useful information from both
nodes and edges. Because edge embeddings themselves are not updated in that layer, subsequent layers revert
to standard GATv2 blocks without additional edge injection. An illustration of the message passing used in
this layer can be seen in figure 7.2.5

7.2.5 Inference

During inference, for every image—graph in the test set we first compute a scalar importance score for each
object and triplet using the trained importance-prediction module described above. As in training, we
label objects and triplets as important by taking the union of (i) a fixed threshold and (ii) Jenks natural
breaks. With these predicted importance labels we prune the graph exactly as in training. The filtered
graph is passed through the GNN we trained, as discussed above—either our proposed model or alternative
backbones evaluated in the experiments section—to obtain a global graph embedding. Finally the predicted
similarity between two images (graphs) is the dot product of their embeddings. We illustrate the inference
phase in figure 7.2.6
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Figure 7.2.5: The message passing we perform in the first layer of our model. We add the textual parts of
the node embeddings with the edge embeddings and form new nodes that contain information for both the
edges and nodes , then we perform GATv2 attention with this new destination nodes.
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Figure 7.2.6: During inference , firstly we filter our graphs based on the importance of each object and
triplet in them , with the use of the importance prediction module , and then we pass them through a GNN
, trained as discussed above. Finally the similarity of two images-graphs is obtained by the dot product of
their resulting embeddings.
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Chapter 8

Experiments

In this chapter we will discuss the various experiments conducted to evaluate the effectiveness of each part
of our pipeline and proposed models discussed above. Also information about the dataset we used and the
metrics to evaluate our models will be given .We will also present the hyperparameters and implementation

choices, and explain the intuition behind each.

Finally we will present the results for different GNN variants and compare the effectiveness of our model with
or without different important features of it . We will also present qualitative results for the ground truth

most similar images for example query images, as well as the results of our model .
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8.1 Preliminaries

8.1.1 Dataset

We used images common to both the Panoptic Scene Graph Generation (PSG) dataset and the MS-COCO
dataset. As discussed above, we selected these because PSG provides better in quality scene-graph annotations
for the images, than Visual Genome annotations which often contain noise, irrelevant information, and an
inconsistent set of object and relation classes. We further restricted our set to images that also appear in
MS-COCO, since we needed their captions to construct ground-truth similarities between image pairs (see
Section 7.2). We used the intersection of images from these two sources without discarding images based on
graph density.

We then randomly split the resulting dataset into 80 % training, 12 % validation, and 8 % test subsets. This
yielded 37352 images for training, 5603 for validation, and 3 736 for testing.

This scene graphs use a predetermined vocabulary of object and relationship names. To process them as
described above, we first converted each name into an embedding via the sentence-transformer component
of the OpenCLIP_ViT_H_14_laion2b_s32b_b79k model. We also used that model’s visual transformer to
obtain visual embeddings for every object.

For the ground-truth similarity between two images, we took five captions per image and converted them
into sentence embeddings using the all-mpnet-base-v2 model from the sentence-transformers library
in Python. As discussed above, we then computed the average of all pairwise similarities between the five
captions of each image pair to yield the final ground-truth similarity score.

8.2 Importance prediction module details

8.2.1 Architectural Decisions and Hyperparameters

The basic outline of the importance-prediction module is described in Section 7.2.2 and illustrated in Fig-
ure 7.2.2. For the graph-textual embedding, we trained an Infograph self-supervised model for 120 epochs
with an output dimension of 1024. Each input token is then projected to 1536 dimensions via a linear
layer—deviating from this size (either up or down) negatively impacts performance.

For the transformer encoder, we found that three encoder layers with 32 attention heads each, yielded the
best results. After the encoder, the updated tokens pass through a multi-head attention layer with learnable
queries: we use 4 queries and project the output again to 1536 dimensions, we also again use 32 attention
heads for this layer. We aggregate the four resulting embeddings using mean pooling and feed them into a
simple two-layer MLP with GeLU activations. The first MLP layer reduces the 1536-dimensional vector to
768 dimensions, and the second layer maps 768 dimensions down to a single scalar output.

8.2.2 Training

We trained a single model to predict both object importance and triplet importance. In our dataset, triplet
samples take the form (object,, relation, object,), while singleton samples replace the relation and second
object with zeros (object, 0, 0), prompting the model to predict only the importance of object,. We adopted
this unified approach because it yielded slightly better performance than training separate models for object
and triplet importance.

8.2.3 Training Details and Hyperparameters

We trained our model for 10 epochs using the Adam optimizer with a learning rate of 1 x 107° and mean
squared error loss. The data loader used a batch size of 32, four worker threads, and random shuffling each
epoch.

To mitigate overfitting, we applied a dropout rate of 0.2 to each transformer encoder layer. We also employed
a learning rate scheduler that multiplies the learning rate by 0.9 after every epoch and implemented early
stopping with a patience of 3 epochs.
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8.2.4 Ground Truth and Metrics

Our model predicts a scalar score s € [0, 1] representing the importance of each object or triplet in an image.
Binary importance labels (important-unimportant) are derived from these continuous scores in two steps:

1. Thresholding: We mark any element with s > 0.4 as important.

2. Jenks Natural Breaks: We apply Jenks clustering with two classes. If the minimum score of the
“important” class and the maximum score of the “unimportant” class differ by less than 0.1, we merge
all elements into the important class.

The final set of important objects (and triplets) for each image is taken as the union of the elements selected
by these two methods.

For each image, we evaluate the continuous predictions against ground truth using Spearman’s rank corre-
lation coefficient ,Distance correlation, MSE and MAE (see Section 3.5.6). For the resulting binary labels
(important vs. unimportant), we compute accuracy, precision, recall, and F1 score (see Section 3.5.6).

Example. For one image with seven objects, the ground-truth scalar importance scores and their binary

labels are
[0.1266,0.1266, 0.4529, 0.4529, 0.3555,0.0772,0.0389] — [0,0, 1,1, 1,0, 0],

and our model’s predictions are

[0.2829,0.0723, 0.4650, 0.4475, 0.3467,0.0323, 0.0413] — [1,0,1,1,1,0,0].

8.2.5 Quantitative results

In this section we evaluate the performance of our importance—prediction module. We also examine the effect
of the multi-head attention layer with learned queries by comparing the full model (Learnable Queries)
to a version without it (No Learnable Queries). The alternative architecture still uses three transformer—
encoder layers (adding more did not help) followed by mean pooling and the same MLP described earlier.
Although the model is trained on the combined dataset (objects + triplets), we report results separately for
triplet prediction and object prediction.

We evaluate our models in two "levels" .With the regression metrics we evaluate the ability of our model to
predict the scalar importance scores for objects and triplets (eg for the example in section 8.2.4 the scalar
scores for the first object are 0.1266 in the ground truth scores and 0.2829 for our models prediction) .
Similarly with the classification scores we compare the masks we would get with our algorithm (thresholding
& Jenks) from the ground truth scalar scores and the scalar predictions. The results shown are the average
results for the metrics individually calculated for each image.

Model Spearman Avg Dist. Corr. Avg MSE Avg MAE
Learnable Queries 0.6655 0.8556 0.0100 0.0755
No Learnable Queries 0.6596 0.8529 0.0102 0.0763
Model Acc. Prec. Rec. F1
Learnable Queries 0.8267 0.8445 0.8356 0.8400

No Learnable Queries 0.8214  0.8340 0.8390 0.8365

Table 8.1: Triplet-importance results on the test set, split into regression (top) and classification (bottom)
metrics.
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Model Spearman Avg Dist. Corr. Avg MSE Avg MAE
Learnable Queries 0.5829 0.7690 0.0093 0.0694
No Learnable Queries 0.5813 0.7671 0.0094 0.0699
Model Acc. Prec. Rec. F1
Learnable Queries 0.7891 0.6866 0.6818 0.6842

No Learnable Queries 0.7814  0.6707 0.6826 0.6766

Table 8.2: Object-importance results on the test set, split into regression (top) and classification (bottom)
metrics.

Union Algorithm Because object-level accuracy is still modest, we also mark an object as important if it
belongs to a triplet predicted important. This union improves object metrics:

Model Acc. Prec. Rec. F1

Learnable Queries 0.8127 0.8095 0.8109 0.8102
No Learnable Queries 0.8051  0.7964 0.8123 0.8042

Table 8.3: Object-importance metrics after taking the union of predicted-important objects and objects
inside predicted-important triplets.

Although an 81% accuracy may appear low for graph filtering, we emphasize that the ground-truth labels
are noisy.For example when two instances share the same class (e.g. person) but only one is visually salient,
both are marked important. This noise lowers the maximum achievable accuracy, so we assess the module
mainly through its downstream impact on the full system.

8.2.6 Qualitative Results

To illustrate the behavior of our importance-prediction module, the following figures show example images
from the PSG dataset alongside their corresponding scene graphs. In each graph, nodes predicted as important
by our model are colored green, while those deemed unimportant appear in red. Edges that belong to
triplets classified as important are likewise drawn in green, with all remaining edges in red. As the examples
demonstrate, our module effectively suppresses many irrelevant objects and relations—shown in red—and
consistently highlights the truly salient elements of the scene in green.

&

going
in front of down

@ = @

Figure 8.2.1: An example of an image with its graph, illustrating our model’s predictions.
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@ holding d

walking

0

@ in front of Building
in front of Cardboard

Figure 8.2.2: We observe that although most of our model’s predictions are intuitively correct, there are
errors. For example, here “cardboard” was predicted as important even though it does not appear in the
image.

,

attached
to

slicing

Dining
table

Figure 8.2.3: Our model correctly identifies in the image the objects that are intuitively important, as well
as the key actions (slicing, holding).
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8.3 GNN Details

In this section, we discuss the details of our GNN model, as well as standard GNNs and the parameters
used for their architectures and training. All of our models were implemented using the PyTorch Geometric
library, which provides the GNN layers we employ (GATv2 convolutional layers, GAT convolutional layers,
GCN convolutional layers, and GIN convolutional layers).

8.3.1 Model Architecture

As described in Section 7.2.4, our model—Edge Aware GATv2—uses our proposed modified GATv2 layer
in the first convolutional layer. In subsequent layers, it employs the standard GATv2 layer. This design is
intentional: in the first layer, our model integrates information about neighbor-node embeddings and edge
embeddings into the node representations. While the node embeddings update, the edge embeddings remain
fixed, as simple techniques to update them proved troublesome and did not yield performance gains.

As mentioned in Section 7.2.4, our node embeddings have 2053 dimensions (1024 textual + 1029 visual) and
our edge embeddings have 1024 dimensions. We first split each node embedding into its textual and visual
components, then project both parts through separate linear layers to 1024 dimensions each. During message
passing, we add the edge embedding to the textual part of each updated node embedding, as described above.

Our model performs best with three layers of dimensions [3072, 2048, 2048|. This decoder-like architecture—in
which the first layer expands dimensionality—is intuitively sound: combining textual and edge embeddings
inevitably introduces noise, so mapping to a higher-dimensional space helps to isolate their most informative
features (Similar to the up-projection used in Graph U-Nets to refine noisy graph signals [25]). Furthermore,
following standard practice with residual connections for GNNs as well as CNNs [31],[52], we omit a residual
connection in the first layer (immediately after the node update) but include one in the second and third
layers to stabilize training and prevent oversmoothing (see Section 5.5). This choice is particularly important
for our custom layer, since a first-layer residual would dilute the injected edge information.

After the first layer (our custom Edge Aware GATV2 layer), we pass the node embeddings directly—without
a ReLU activation—to the next layer. In contrast, after the second and third layers, we apply a ReLU
activation (before their residual connections), which slightly improves performance and ensures we retain all
salient information from the first layer. Finally, we project the resulting node embeddings through a linear
layer to 2048 dimensions and mean-pool them to obtain the final graph-level embedding.

We also evaluated different GNN variants using the same design choices as above—except that the first layer
was the same as the subsequent layers rather than custom. Specifically, we tried GAT, GCN, and GIN, as
well as GATv2 without our custom first layer. Our model still achieved the best performance. For some of
these variants, increasing the first-layer dimension did not yield significant gains. For GAT and GATv2, we
used dimensions [3072, 2048, 2048]; for GCN and GIN, the optimal dimensions were [2048, 2048, 2048|.

8.3.2 Training Details

We trained all models for 60 epochs using the Adam optimizer with a learning rate of 10~* for the first 20
epochs. Thereafter, we applied a scheduler after each epoch that reduced the learning rate by 10%. We used
the default Adam parameters (8, = 0.9, 2 = 0.999). The batch size was 32, and we applied a dropout rate
of 0.1 to each convolutional layer. To avoid overfitting, we used early stopping with a patience of 20 epochs.

8.3.3 Model Evaluation

Our test set consisted of 3,736 images. We used each image in turn as a query and ranked the remaining
images by the dot-product similarity of their embeddings produced by our GNN models. We also compared
these rankings against the ground-truth rankings and similarity scores, as described previously. For the
metrics which require a ground truth, specific in number relevant items (MRR, MAP, Precision) , we used
the first 50 most relevant items in the ground truth list. The evaluation metrics we employed are NDCG,
MAP, MRR, and Precision (Section 3.5.6).

Our model, which uses a custom GATv2-like first layer to inject edge information, outperforms the other
variants, as shown in the metrics tables. It also surpasses IRSGS [99], which lacks both visual embeddings
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Model @1 @5 @10 @20 @30 @40 @50

Edge Aware GATv2 0.8803 0.8926 0.8994 0.9081 0.9143 0.9185 0.9216
MyGATv2 0.8779  0.8908 0.8983 0.9071 09134 09176  0.9206
MyGAT 0.8758 0.8903  0.8969  0.9060 0.9120 09164  0.9197
MyGCN 0.8690  0.8792  0.8865  0.8963  0.9030  0.9080  0.9116
MyGIN 0.8432 0.8613 0.8699  0.8815  0.8897  0.8950  0.8992
IRSGS GCN 0.7401  0.7502  0.7559  0.7647  0.7734  0.7817  0.7891
IRSGS GIN 0.6979  0.7120 0.7217  0.7341  0.7433  0.7513  0.7580

Table 8.4: NDCG@k across models, as it can be seen our model with edge embeddings injection in the first
layer outperforms other variants.

Model @1 @5 @10 @20 @30 @40 @50

Edge Aware GATv2 0.9119 0.9269 0.9070 0.8782 0.8558 0.8363 0.8184
MyGATv2 0.9069  0.9257 0.9049 0.8760 0.8534 0.8336  0.8157
MyGAT 0.9020 0.9241 0.9031 0.8732 0.8499 0.8301  0.8125
MyGCN 0.8943 0.9119 0.8878 0.8563  0.8337  0.8138  0.7959
MyGIN 0.8506  0.8857  0.8600  0.8285  0.8061 0.7874  0.7706
IRSGS GCN 0.6603  0.7331  0.6968  0.6495 0.6202  0.5989  0.5825
IRSGS GIN 0.5803  0.6635 0.6322  0.5901  0.5640  0.5456  0.5303

Table 8.5: MAP@Qk across models

and edge information in its retrieval process. Moreover, attention-based architectures (GATv2 and GAT)
consistently outperform traditional GCN and GIN layers.
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Model MRR

Edge Aware GATv2 0.9469

MyGATv2 0.9448

MyGAT 0.9425

MyGCN 0.9347

MyGIN 0.9080

IRSGS GCN 0.7703

IRSGS GIN 0.7059

Table 8.6: MRR across models

Model @l @5 @10 @20 @30 @40 @50
Edge Aware GATv2 0.9119 0.8802 0.8512 0.8060 0.7619 0.7144 0.6639
MyGATv2 0.9069 0.8757 0.8488 0.8039 0.7597 0.7124 0.6616
MyGAT 0.9020 0.8722 0.8419 0.7989 0.7558 0.7092 0.6604
MyGCN 0.8943 0.8531 0.8236 0.7806 0.7377 0.6929 0.6458
MyGIN 0.8506 0.8199 0.7932 0.7500 0.7119 0.6687 0.6244
IRSGS GCN 0.6603 0.6111 0.5759 0.5325 0.5036 0.4803 0.4559
IRSGS GIN 0.5803 0.5402 0.5174 0.4839 0.4560 0.4316 0.4099

Table 8.7: Precision@k across models
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8.4

Ablation Study

In this section, we highlight the effectiveness of various design choices and model variants. We compare our
best model, Edge Aware GATv2, against several ablated versions:

-Pruning: without graph filtering.

-Multi-head Attention: without the multi-head attention with learned queries in the importance
prediction module.

-Edge Injection: without injecting edge embeddings in the first custom layer.
-Global: without global visual embeddings in the graphs.

-Triplet Significance: filtering based solely on object importance (ground truth for training, predicted
importance for inference) instead of our union algorithm 7.2.3.

-Object Significance: filtering by retaining only objects that are part of an important triplet and
their corresponding edges.

-Visual Information: without any visual information in the graphs.

The performance of this ablated versions compared to our best Edge Aware GATv2 model can be found in
the following tables.

Model @1 @5 @10 @20 @30 @40 @50

Edge Aware GATv2 0.8803 0.8926 0.8994 0.9081 0.9143 0.9185 0.9216
-Edge Injection 0.8779  0.8908  0.8983  0.9071 0.9134 09176  0.9206
-Global 0.8426  0.8572  0.8653  0.8743  0.8808 0.8856  0.8893

-Triplet Significance 0.8721  0.8848  0.8921  0.9006  0.9074 0.9120 0.9150
-Object Significance 0.8035 0.8160 0.8234 0.8348 0.8424  0.8485  0.8529
-Pruning 0.8758  0.8909  0.8979  0.9065 0.9128 0.9170  0.9202
-Multi-head Attention 0.8791  0.8925 0.8992  0.9079 0.9141 0.9184 0.9214
-Visual Information 0.7518  0.7719  0.7841 0.8002 0.8115 0.8206  0.8271

Table 8.8: Ablation study: NDCG@k across variants.

Model @1 @b @10 @20 @30 @40 @50

Edge Aware GATv2 0.9119 0.9269 0.9070 0.8782 0.8558 0.8363 0.8184
-Edge Injection 0.9069  0.9257  0.9049 0.8760 0.8534 0.8336  0.8157
-Global 0.8555  0.8841  0.8581  0.8238  0.7979  0.7770  0.7586

-Triplet Significance 0.8953 09171 0.8954 0.8664 0.8426  0.8230  0.8053
-Object Significance 0.7808  0.8279  0.7969  0.7559  0.7295  0.7088  0.6915
-Pruning 0.9071  0.9240 09030 0.8746  0.8520 0.8324  0.8146
-Multi-head Attention 0.9109  0.9262  0.9065 0.8776  0.8553  0.8358  0.8180
-Visual Information 0.6777 0.7534 0.7234  0.6873  0.6645 0.6470  0.6326

Table 8.9: Ablation study: MAP@Qk across variants.
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Model MRR
Edge Aware GATv2 0.9469
-Edge Injection 0.9448
-Global 0.9095

-Triplet Significance 0.9371
-Object Significance 0.8587

-Pruning 0.9439
-Multi-head Attention 0.9462
-Visual Information 0.7881

Table 8.10: Ablation study: MRR across variants.

Model @1 @b @10 @20 @30 @40 @50

Edge Aware GATv2 0.9119 0.8802 0.8512 0.8060 0.7619 0.7144 0.6639
-Edge Injection 0.9069  0.8757  0.8488  0.8039  0.7597  0.7124  0.6616
-Global 0.8555  0.8153  0.7857  0.7372  0.6930  0.6487  0.6039

-Triplet Significance 0.8953  0.8655  0.8374 0.7899  0.7481  0.7021  0.6520
-Object Significance 0.7808  0.7378  0.7048  0.6613  0.6210  0.5826  0.5429
-Pruning 0.9071  0.8724  0.8477  0.8012 0.7594 0.7120  0.6619
-Multi-head Attention 0.9109  0.8799 0.8515 0.8057 0.7620 0.7143  0.6637
-Visual Information 0.6777  0.6509  0.6287  0.6000 0.5714  0.5435  0.5129

Table 8.11: Ablation study: Precision@k across variants.

There are a lot of things we can deduce from the above tables. First of all, our full model outperforms
other variants on almost all metrics. But we should also mention that our model’s metrics are very close
to those without edge injection and without pruning. The former is understandable, since the node textual
embeddings, the global visual embedding, and the node visual embeddings can capture scene information
without explicit edge features. We can also assume that, because our visual model is CLIP—which is trained
on text-to-image pairing—it may capture the most significant relations in an image and encode them in the
global visual embedding, reducing the need to fuse edge data into the node textual embeddings. Apart from
that, even if the difference is small, our model still performs consistently better than the non—edge-injection
variant. Also, the model without graph pruning has similar scores across all metrics, likely because our GAT
attention models can identify important objects through the visual node embeddings without pre-filtering.
However, errors in our importance-prediction module’s predictions also hurt performance. On the other hand,
our full model still outperforms it slightly, so pruning is indeed beneficial.

All other ablated versions show a significant reduction in performance. From the metrics, it is obvious
that visual information in our graphs significantly improves our model’s expressivity and capacity. Another
vital component is the union algorithm used for graph filtering, as alternative filtering strategies (—Triplet
Significance, ~Object Significance) lead to substantial performance drops. Furthermore, the global node is
crucial for performance gains, which makes sense since CLIP’s visual embeddings are already capable of
text-to-image ranking, and our graph structure further enhances this ability.

Here, we also perform experiments for the architecture of our model and graph-pruning, on graphs with
only textual object information and of course no global visual nodes. Although visual features are clearly
essential for peak performance, evaluating these components in a purely text-only setting lets us see their
individual impact: both the pruning mechanism and the injection of edge information in the first GATv2
layer yield noticeably larger relative gains when no visual cues are available. The tables below illustrate these
effects—not because they rival our best multimodal model overall, but to show that these components and
tactics could still be beneficial in other contexts where visual data is absent.
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Model Q@1 @5 @10 @20 @30 @40 @50

Edge Aware GATv2 0.7518 0.7719 0.7841 0.8002 0.8115 0.8206 0.8271
-Edge Injection 0.7465 0.7604  0.7727  0.7882  0.7994  0.8084  0.8153
-Pruning 0.7475  0.7601  0.7683  0.7808  0.7893  0.7961  0.8017

-Edge Injection,Pruning 0.7414  0.7529  0.7617  0.7741  0.7826  0.7897  0.7954

Table 8.12: Ablation subset: NDCG@k

Model Q1 @b @10 @20 @30 @40 @50

Edge Aware GATv2 0.6777 0.7534 0.7234 0.6873 0.6645 0.6470 0.6326
-Edge Injection 0.6724 0.7388  0.7057  0.6694 0.6463  0.6287  0.6143
-Pruning 0.6761  0.7416  0.7065  0.6659  0.6404 0.6210  0.6051

-Edge Injection,Pruning 0.6510  0.7268  0.6947  0.6538  0.6286  0.6096  0.5943

Table 8.13: Ablation subset: MAP@Qk

Model MRR
Edge Aware GATv2 0.7881
-Edge Injection 0.7798
-Pruning 0.7815

-Edge Injection,Pruning  0.7658

Table 8.14: Ablation subset: MRR

Model Q1 Q@5 @10 @20 @30 @40 @50

Edge Aware GATv2 0.6777 0.6509 0.6287 0.6000 0.5714 0.5435 0.5129
-Edge Injection 0.6724  0.6232  0.6069  0.5770  0.5496  0.5226  0.4958
-Pruning 0.6761  0.62v8  0.6015  0.5637  0.5323  0.5027  0.4737

-Edge Injection,Pruning 0.6510 0.6140 0.5875  0.5519  0.5208  0.4920  0.4641

Table 8.15: Ablation subset: Precision@k
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From the tables, it is evident that both graph pruning and edge injection in the first layer yield substantial
performance gains—gains that are even more pronounced in a text-only setting than when visual informa-
tion is available. This underscores how critically graph quality drives our retrieval results and suggests that
further improvements to the importance-prediction module could deliver additional score boosts. One might
also imagine applying a purely statistical pruning algorithm—based on node and edge labels or graph struc-
ture—without any visual cues; while such an approach would likely be less accurate, it points to promising
directions for future work beyond the scope of this paper.

8.5 Qualitative Results

In this section, we present qualitative results for our best model, and compare its predictions with the ground-
truth most similar images for a handful of query images. We also contrast results from some ablated models
to highlight our model’s unique strengths.

Firstly, we show example results for the top three most similar retrieved images for several query images.
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From these examples, it is clear that our model retrieves relevant images under all scenarios, using both
visual and semantic information. In the first example the top retrieval is visually very close to the original
(both are blurred by the motorcycle’s motion). In the second example ,all the tennis courts in the retrieved
images are blue, even though our dataset also contains green and sand courts. The semantic information
from the scene graphs is especially evident in examples 5-7: Example 5 retrieves a horse in snow exactly as
in the query. Moreover in Example 6 , the first retrieved image is semantically the same as the query—a
woman walking with an umbrella—and our model successfully retrieves it even though the query is in color
and the retrieved image is in black and white.Furthermore example 7 returns cakes decorated with drawn
animals, just like the query image.

Now we compare additional results of our best model with the ground-truth most similar images. In the
following examples, on the left we show the query image; on the top right, the two ground-truth most similar
images; and on the bottom right, our model’s top two predictions.

Figure 8.5.1: In this example, our model successfully retrieves the most similar image based on visual cues,
even better than the ground truth. Query image on the left . Top right ground truth most similar images ,
and down right our best models predictions.
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Figure 8.5.2: Query image on the left - top right ground truth most similar images , and down right our
best models predictions.

Figure 8.5.3: Query image on the left - top right ground truth most similar images , and down right our
best models predictions.
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The above examples (8.5.1,8.5.2,8.5.3) serve as confirmation that, even when our model retrieves different
top results than the ground-truth most similar images, those results remain highly relevant and can, in some
cases, be even better than the ground truth.

We will now showcase examples where the effectiveness of our model’s injection of edge embeddings—which
incorporates information about object relations—allows it to retrieve more semantically relevant results than
a model without this modified GATv2 layer. First, we present an example comparing the retrieved images
of our Edge Aware GATv2 model with those from the simple MyGATv2 model, where the only distinction
is that the former injects edge information in the first layer while the latter does not. We expect that when
object relations are important and not easily deduced, our Edge Aware model will perform better.

For this reason, we include the filtered scene graphs for the query image as well as those for the images
retrieved by our models, and highlight which relations should influence the retrieval process.
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Figure 8.5.4: In this example, our best model—which incorporates edge embeddings in message
passing—correctly identifies that the relation between the person and the baseball bat is “holding” rather
than “swinging”. In the left the query image - in the top right our best models prediction and down right

the same model without edge injection (MyGATv2) .

As mentioned above, in most cases the results of our models are very close, because visual information alone
is often enough for good retrieval. To further illustrate the ability of the edge-injection layer, we showcase
examples of the different retrieved images from Edge Aware GATv2 and the same model without edge injection
(MyGATv2) using input graphs without visual information, as we did in the ablation study section.
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Figure 8.5.5: On the left, a query image; on the top right, our best model’s predictions (graphs without
visual information); on the bottom right, predictions from the same model without edge injection.
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Figure 8.5.6: On the left, a query image; on the top right, our best model’s predictions (graphs without
visual information); on the bottom right, predictions from the same model without edge injection.
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The above examples (8.5.5,8.5.6) firstly make clear that our model can in fact use the edge embeddings to
retrieve better images. In the first example, our model correctly retrieves an image where the relation between
the “Person” and the “Surfboard” is “Playing” and not “Holding.” In the second example, interestingly, the
retrieved image for the model without edge injection (bottom right) is the most similar based on ground-
truth scores. Visually, that image does look more similar to the query, but the graph retrieved by our best
model—with edge injection—has a structure that aligns more closely with the query graph.That can happen
and shows that many of the graphs in our dataset are very noisy and not annotated consistently.
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Conclusion

9.1 Reflecting on the findings

In this thesis, we addressed the problem of incorporating visual features into image retrieval via scene graphs.
We began by reviewing the basic machine-learning concepts used in our proposal, then proceeded to describe
our models in detail and to evaluate them both quantitatively and qualitatively.

Specifically, we introduced an importance-prediction module based on a transformer encoder with a multi-
head attention layer and learned queries. This module identifies the most significant objects and triplets
(object 1, relation, object 2) in a scene graph by combining object names, their visual embeddings, and the
visual features of the full image. Next, we proposed a pruning algorithm that takes these predictions and
filters each graph, retaining only the most relevant objects and relations. For ground-truth association of an
object or triplet with the image, we compare their embeddings with the embeddings of the image captions.
This step was motivated by observing that many graphs in the Panoptic Scene Graph Generation dataset
contain irrelevant items and inconsistent annotations. We also evaluated an ablated version of this model
without the multi-head attention with learned queries layer and compared their performance.

We then fused the object-level visual information with the textual information for these objects, and we
added a global node containing only the full-image visual features, thus constructing a richer, multimodal
graph. To process these graphs, we designed an Edge-Aware GATv2 layer that incorporates edge embeddings
directly into message passing and attention calculations for each node. Our network comprises one such
Edge-Aware GATv2 layer followed by standard GATv2 layers: the former captures edge-specific information
that traditional GNNs ignore, while the latter refines node representations. Our intuition was that scene
graphs often encode useful semantic information in their edges—information that can enhance retrieval but
is typically overlooked either because traditional GNNs do not use edge embeddings or because many edges
in the Visual Genome and Panoptic Scene Graph Generation datasets are semantically weak.

We also experimented with multiple GNN architectures—GCN, GIN, GAT, and GATv2—on top of our
proposed Edge-Aware layer and evaluated their performance using commonly used metrics for image retrieval
and ranking: MRR, MAP, NDCG, and Precision. With these metrics, we first note that models using the
GATV2 layer outperformed the others. Specifically, for NDCG@1, Edge-Aware GATv2 achieved results similar
to, but slightly better than, the same model with standard GATv2 (no edge injection) or with GAT layers.
These models outperformed the GCN and GIN baselines by 1 % and 2 % in MRR, 1.5 % and 3 % in NDCG@5,
and showed generally higher scores across all metrics. Overall, our best model was Edge-Aware GATv2, which
led in every metric, though the gains over standard GATv2 and GAT were modest.

To further validate each component of our pipeline, we evaluated ablated versions of Edge-Aware GATv2.
The results showed that both pruning and edge injection indeed boost performance. We also demonstrated
that incorporating object-level visual information and our global visual node significantly improves retrieval
performance, and that the multi-head attention layer with learned queries for importance prediction enhances
overall accuracy.
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On the other hand, since our multimodal graphs are already highly expressive, we assessed the impact of
pruning and the Edge-Aware GATv2 layer on graphs containing only textual information. In this context, we
observed even clearer improvements across all metrics, underscoring the value of edge injection and pruning.
We also presented qualitative results indicating that edge injection in fact influenced our model’s decisions.

Finally, we presented qualitative results highlighting different aspects of our model and illustrating how it
outperforms its ablated variants.

9.2 Future Work

Last but not least, building on our ideas and the work we presented, we would like to suggest future ideas
that can maybe improve the performance of image-to-image retrieval models.

e Firstly, for the improvement of the importance prediction module, the most important aspect that
decreases its effectiveness is judged to be the computation of the ground-truth similarity scores. That
is why an improved algorithm for the calculation of these scores is believed to further improve the
performance of this module and, as a consequence, enable better filtering of our graphs—possibly by
combining information from the triplets and the objects-in-scene graph to determine which part of the
image each object is referring to.

e An algorithmic translation of the relations in the Panoptic Scene Graph Generation dataset—unlike
our current undirected approach, which uses identical edge embeddings for both directions of a node
pair—could enrich our graphs. For example, if the relation between a person and an object is “on,” the
reverse relation from the object back to the person would be “under.” In theory, this asymmetry could
inject additional semantic information into our graphs and help any edge-aware GNN better capture
and utilize edge-specific features.

e Although our Edge Aware GATv2 layer injected edge information into the nodes only in the first
layer of our network, this information persists into subsequent layers. An architecture for a layer
that incorporates edge information and can be stacked in multiple layers should update both the edge
embeddings and the node embeddings at each layer. Furthermore, different pooling functions other
than the sum we used for aggregating edge and node information should be explored. Moreover, this
GNN architecture can be tested on additional datasets where edge information is more important and
can influence task performance in a more drastic manner.

e Although in this thesis we experimented with the most popular GNN architectures—GCN, GAT, GIN,
and GATv2—we can test additional models, some of which are already relational (incorporating edge
information in their algorithms) and, for others, explore ways to adapt them to use edge information.
Furthermore, different visual and textual embedding models could boost our model’s performance.

100



Chapter 10

Bibliography

1]
2]
3]
4]

[5]
[6]

7]
18]
19]

[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
(18]

[19]

Agarwal, A., Mangal, A., and Vipul. Visual Relationship Detection using Scene Graphs: A Survey.
2020. arXiv: 2005.08045 [cs.CV]. URL:

Alaghbari, K. et al. “Deep Autoencoder-Based Integrated Model for Anomaly Detection and Efficient
Feature Extraction in IoT Networks”. In: IoT 4 (Aug. 2023), pp. 345-365. DOI: 10.3390/10t4030016.
Arar, M., Shamir, A., and Bermano, A. H. Learned Queries for Efficient Local Attention. 2022. arXiv:
2112.11435 [cs.CV]. URL:

Bahdanau, D., Cho, K., and Bengio, Y. Neural Machine Translation by Jointly Learning to Align and
Translate. 2016. arXiv: 1409.0473 [cs.CL]. URL:

Bai, Y. et al. Are Transformers More Robust Than CNNs? 2021. arXiv: 2111.05464 [cs.CV]. URL:

Bay, H., Tuytelaars, T., and Van Gool, L. “SURF: Speeded up robust features”. In: vol. 3951. July
2006, pp. 404-417. 1SBN: 978-3-540-33832-1. DOI: 10.1007/11744023_32.

Beaumont, R. LARGE SCALE OPENCLIP: L/14, H/14 AND G/1/ TRAINED ON LAION-2B.
LAION Blog, [Online; accessed 18-June-2025]. Sept. 2022.

Bishop, C. “Pattern Recognition and Machine Learning”. In: vol. 16. Jan. 2006, pp. 140-155. DOI:
10.1117/1.2819119.

Borgwardt, K. M. and Kriegel, H.-P. “Shortest-Path Kernels on Graphs”. In: Proceedings of the Fifth
IEEE International Conference on Data Mining. ICDM ’05. USA: IEEE Computer Society, 2005,
pp- 74-81. 1SBN: 0769522785. DOI: 10.1109/ICDM.2005.132. URL:

Brody, S., Alon, U., and Yahav, E. How Attentive are Graph Attention Networks? 2022. arXiv: 2105.
14491 [cs.LG]. URL:

Butler, S. and Chung, F. “Spectral Graph Theory”. In: Dec. 2013, pp. 811-824. 1SBN: 9781466507289.
DOI: 10.1201/b16113-54.

Chaidos, N. et al. SCENIR: Visual Semantic Clarity through Unsupervised Scene Graph Retrieval.
2025. arXiv: 25605.15867 [cs.CV]. URL:

Chen, J. and Chen, H. Edge-Featured Graph Attention Network. 2021. arXiv: 2101.07671 [cs.LG].
URL:

Chen, M. et al. Simple and Deep Graph Convolutional Networks. 2020. arXiv: 2007.02133 [cs.LG].
URL:

Cho, K. et al. Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine
Translation. 2014. arXiv: 1406.1078 [cs.CL]. URL:

Cortes, C. and Vapnik, V. “Support-vector networks”. In: Chem. Biol. Drug Des. 297 (Jan. 2009),
pp- 273-297. DOI: 10.1007/%2FBF00994018.

Defferrard, M., Bresson, X., and Vandergheynst, P. Convolutional Neural Networks on Graphs with
Fast Localized Spectral Filtering. 2017. arXiv: 1606.09375 [cs.LG]. URL:

Devlin, J. et al. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding.
2019. arXiv: 1810.04805 [cs.CL]. URL:

Dimitriou, A. et al. Structure Your Data: Towards Semantic Graph Counterfactuals. 2024. arXiv:
2403.06514 [cs.CV]. URL:

101


https://arxiv.org/abs/2005.08045
https://doi.org/10.3390/iot4030016
https://arxiv.org/abs/2112.11435
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/2111.05464
https://doi.org/10.1007/11744023_32
https://doi.org/10.1117/1.2819119
https://doi.org/10.1109/ICDM.2005.132
https://arxiv.org/abs/2105.14491
https://arxiv.org/abs/2105.14491
https://doi.org/10.1201/b16113-54
https://arxiv.org/abs/2505.15867
https://arxiv.org/abs/2101.07671
https://arxiv.org/abs/2007.02133
https://arxiv.org/abs/1406.1078
https://doi.org/10.1007/%2FBF00994018
https://arxiv.org/abs/1606.09375
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2403.06514

Chapter 10. Bibliography

[20]
[21]
22]

23]

[24]
[25]
[26]
27]
(28]
[29]
[30]

[31]
32]

[33]
[34]
[35]
[36]

[37]
[38]

130]
40}
ja1)
j42]
j43)
j44]
jas)
Ja6]

[47]

Dosovitskiy, A. et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale.
2021. arXiv: 2010.11929 [cs.CV]. URL:

Duchi, J., Hazan, E., and Singer, Y. “Adaptive Subgradient Methods for Online Learning and Stochas-
tic Optimization”. In: Journal of Machine Learning Research 12 (July 2011), pp. 2121-2159.

Elman, J. “Finding structure in time”. In: Feb. 2020, pp. 289-312. 1SBN: 9781315784779. DOI: 10.
4324/9781315784779-11.

Ester, M. et al. “A density-based algorithm for discovering clusters in large spatial databases with
noise”. In: Proceedings of the Second International Conference on Knowledge Discovery and Data
Mining. KDD’96. Portland, Oregon: AAAI Press, 1996, pp. 226—231.

Fey, M. and Lenssen, J. E. Fast Graph Representation Learning with PyTorch Geometric. 2019. arXiv:
1903.02428 [cs.LG]. URL:

Gao, H. and Ji, S. Graph U-Nets. 2019. arXiv: 1905.05178 [cs.LG]. URL:

Gértner, T., Flach, P., and Wrobel, S. “On Graph Kernels: Hardness Results and Efficient Alterna-
tives”. In: vol. 129-143. Jan. 2003, pp. 129-143. 1SBN: 978-3-540-40720-1. DOI: 10.1007/978-3-540-
45167-9_11.

Gilmer, J. et al. Neural Message Passing for Quantum Chemistry. 2017. arXiv: 1704.01212 [cs.LG].
URL:

Hamilton, W. L., Ying, R., and Leskovec, J. Inductive Representation Learning on Large Graphs. 2018.
arXiv: 1706.02216 [cs.SI]. URL:

Hammond, D. K., Vandergheynst, P., and Gribonval, R. Wawvelets on Graphs via Spectral Graph
Theory. 2009. arXiv: 0912.3848 [math.FA]. URL:

Hasanzadeh, A. et al. Bayesian Graph Neural Networks with Adaptive Connection Sampling. June
2020. DOI: 10.48550/arXiv.2006.04064.

He, K. et al. Deep Residual Learning for Image Recognition. 2015. arXiv: 1512.03385 [cs.CV]. URL:
Hendrycks, D. and Gimpel, K. Gaussian Error Linear Units (GELUs). 2023. arXiv: 1606 . 08415
[cs.LG]. URL:

Hinton, G. and Salakhutdinov, R. “Reducing the Dimensionality of Data with Neural Networks”. In:
Science (New York, N.Y.) 313 (Aug. 2006), pp. 504—7. DOL: 10.1126/science.1127647.

Hochreiter, S. and Schmidhuber, J. “Long Short-Term Memory”. In: Neural Computation 9 (Nov.
1997), pp. 1735-1780. DOI: 10.1162/neco.1997.9.8.1735.

Hotelling, H. “Analysis of a complex of statistical variables into principal components.” In: Journal of
Educational Psychology 24 (1933), pp. 498-520. URL:

Huang, X. et al. TabTransformer: Tabular Data Modeling Using Contextual Embeddings. 2020. arXiv:
2012.06678 [cs.LG]. URL:

Jenks, G. F. “The Data Model Concept in Statistical Mapping”. In: 1967. URL:

Jonker, R. and Volgenant, T. “A shortest augmenting path algorithm for dense and sparse linear
assignment problems”. In: Computing 38 (1987), pp. 325-340. URL:

Kingma, D. P. and Welling, M. Auto-Encoding Variational Bayes. 2022. arXiv: 1312.6114 [stat.ML].
URL:

Kingma, D. P. and Ba, J. Adam: A Method for Stochastic Optimization. 2017. arXiv: 1412 . 6980
[cs.LG]. URL:

Kipf, T. N. and Welling, M. Variational Graph Auto-Encoders. 2016. arXiv: 1611.07308 [stat.ML].
URL:

Kipf, T. N. and Welling, M. Semi-Supervised Classification with Graph Convolutional Networks. 2017.
arXiv: 1609.02907 [cs.LG]. URL:

Kolluri, J. et al. “Reducing Overfitting Problem in Machine Learning Using Novel L1/4 Regularization
Method”. In: June 2020, pp. 934-938. DOI: 10.1109/ICOEI48184.2020.9142992.

Kriege, N. and Mutzel, P. Subgraph Matching Kernels for Attributed Graphs. 2012. arXiv: 1206.6483
[cs.LG]. URL:

Krishna, R. et al. Visual Genome: Connecting Language and Vision Using Crowdsourced Dense Image
Annotations. 2016. arXiv: 1602.07332 [cs.CV]. URL:

Krizhevsky, A., Sutskever, I., and Hinton, G. “ImageNet Classification with Deep Convolutional Neural
Networks”. In: Neural Information Processing Systems 25 (Jan. 2012). DOI: 10.1145/3065386.
Kuhn, H. W. “The Hungarian method for the assignment problem”. In: Nawval Research Logistics
Quarterly 2.1-2 (1955), pp. 83-97. DOL: https://doi.org/10.1002/nav.3800020109. eprint: URL:

102


https://arxiv.org/abs/2010.11929
https://doi.org/10.4324/9781315784779-11
https://doi.org/10.4324/9781315784779-11
https://arxiv.org/abs/1903.02428
https://arxiv.org/abs/1905.05178
https://doi.org/10.1007/978-3-540-45167-9_11
https://doi.org/10.1007/978-3-540-45167-9_11
https://arxiv.org/abs/1704.01212
https://arxiv.org/abs/1706.02216
https://arxiv.org/abs/0912.3848
https://doi.org/10.48550/arXiv.2006.04064
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1606.08415
https://arxiv.org/abs/1606.08415
https://doi.org/10.1126/science.1127647
https://doi.org/10.1162/neco.1997.9.8.1735
https://arxiv.org/abs/2012.06678
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1611.07308
https://arxiv.org/abs/1609.02907
https://doi.org/10.1109/ICOEI48184.2020.9142992
https://arxiv.org/abs/1206.6483
https://arxiv.org/abs/1206.6483
https://arxiv.org/abs/1602.07332
https://doi.org/10.1145/3065386
https://doi.org/https://doi.org/10.1002/nav.3800020109

(48]

[49]
[50]
[51]

[52]
[53]
[54]
[55]
[56]
[57]
[58]
[59]
[60]

[61]
162]

[63]
[64]
[65]

[66]

(67]
[68]
[69]
[70]
[71]
[72]
(73]

[74]

Kuznetsova, A. et al. “The Open Images Dataset V4: Unified Image Classification, Object Detection,
and Visual Relationship Detection at Scale”. In: International Journal of Computer Vision 128.7 (Mar.
2020), pp. 1956-1981. 1SsN: 1573-1405. DOI: 10.1007/s11263-020-01316-z. URL:

Lecun, Y. et al. “Gradient-Based Learning Applied to Document Recognition”. In: Proceedings of the
IEEE 86 (Dec. 1998), pp. 2278-2324. DOI: 10.1109/5.726791.

Levesque, V. “Texture Segmentation Using Gabor Filters”. In: (Jan. 2001).

Li, D., Zhang, J., and Li, P. “TMSA: A Mutual Learning Model for Topic Discovery and Word
Embedding”. In: May 2019, pp. 684-692. 1SBN: 978-1-61197-567-3. DOI: 10.1137/1.9781611975673.
T7.

Li, G. et al. DeepGCNs: Can GCNs Go as Deep as CNNs? 2019. arXiv: 1904.03751 [cs.CV]. URL:
Li, H. et al. “Keeping Deep Learning Models in Check: A History-Based Approach to Mitigate Over-
fitting”. In: IEEE Access 12 (2024), pp. 70676-70689. 1sSN: 2169-3536. DOI: 10.1109/access.2024.
3402543. URL:

Li, J. et al. BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Under-
standing and Generation. 2022. arXiv: 2201.12086 [cs.CV]. URL:

Lindeberg, T. “Scale Invariant Feature Transform”. In: vol. 7. May 2012. DOI: 10.4249/scholarpedia.
10491.

Liu, Z. et al. Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. 2021. arXiv:
2103.14030 [cs.CV]. URL:

Loh, W.-Y. “Classification and Regression Trees”. In: Wiley Interdisciplinary Reviews: Data Mining
and Knowledge Discovery 1 (Jan. 2011), pp. 14-23. pOI: 10.1002/widm.8.

MacQueen, J. “Some methods for classification and analysis of multivariate observations”. In: 1967.
URL:

Maheshwari, P., Chaudhry, R., and Vinay, V. “Scene Graph Embeddings Using Relative Similarity
Supervision”. In: ArXiv abs/2104.02381 (2021). URL:

Marois, V. et al. On transfer learning using a MAC model variant. 2018. arXiv: 1811.06529 [cs.CV].
URL:

“Mastering the Game of Go with Deep Neural Networks and Tree Search”. In: (May 2016).

Nair, V. and Hinton, G. “Rectified Linear Units Improve Restricted Boltzmann Machines Vinod Nair”.
In: vol. 27. June 2010, pp. 807-814.

Neuhaus, M., Riesen, K., and Bunke, H. “Fast Suboptimal Algorithms for the Computation of Graph
Edit Distance”. In: Aug. 2006, pp. 163-172. 1SBN: 978-3-540-37236-3. DOI: 10.1007/11815921_17.
Oord, A. van den, Li, Y., and Vinyals, O. Representation Learning with Contrastive Predictive Coding.
2019. arXiv: 1807.03748 [cs.LG]. URL:

Paul, S. and Chen, P.-Y. Vision Transformers are Robust Learners. 2021. arXiv: 2105.07581 [cs.CV].
URL:

Qazanfari, H., AlyanNezhadi, M. M., and Khoshdaregi, Z. N. Advancements in Content-Based Im-
age Retrieval: A Comprehensive Survey of Relevance Feedback Techniques. 2023. arXiv: 2312.10089
[cs.CV]. URL:

Radford, A. et al. Learning Transferable Visual Models From Natural Language Supervision. 2021.
arXiv: 2103.00020 [cs.CV]. URL:

Ramachandran, P., Zoph, B., and Le, Q. V. Searching for Activation Functions. 2017. arXiv: 1710.
05941 [cs.NE]. URL:

Reimers, N. and Gurevych, 1. Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks.
2019. arXiv: 1908.10084 [cs.CL]. URL:

Rong, Y. et al. DropFEdge: Towards Deep Graph Convolutional Networks on Node Classification. 2020.
arXiv: 1907.10903 [cs.LG]. URL:

Rosenblatt, F. “The perceptron: A probabilistic model for information storage and organization in the
brain [J]”. In: Psychol. Review 65 (Nov. 1958), pp. 386-408. DOI: 10.1037/h0042519.

Rumelhart, D., Hinton, G., and Williams, R. “Learning Representations by Back-Propagating Errors”.
In: Sept. 2002, pp. 213-222. 1SBN: 9780262281744. DOI: 10.7551/mitpress/1888.003.0013.

Rusch, T. K., Bronstein, M. M., and Mishra, S. A Survey on Oversmoothing in Graph Neural Networks.
2023. arXiv: 2303.10993 [cs.LG]. URL:

Schuhmann, C. et al. LAION-5B: An open large-scale dataset for training next generation image-text
models. 2022. arXiv: 2210.08402 [cs.CV]. URL:

103


https://doi.org/10.1007/s11263-020-01316-z
https://doi.org/10.1109/5.726791
https://doi.org/10.1137/1.9781611975673.77
https://doi.org/10.1137/1.9781611975673.77
https://arxiv.org/abs/1904.03751
https://doi.org/10.1109/access.2024.3402543
https://doi.org/10.1109/access.2024.3402543
https://arxiv.org/abs/2201.12086
https://doi.org/10.4249/scholarpedia.10491
https://doi.org/10.4249/scholarpedia.10491
https://arxiv.org/abs/2103.14030
https://doi.org/10.1002/widm.8
https://arxiv.org/abs/1811.06529
https://doi.org/10.1007/11815921_17
https://arxiv.org/abs/1807.03748
https://arxiv.org/abs/2105.07581
https://arxiv.org/abs/2312.10089
https://arxiv.org/abs/2312.10089
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/1710.05941
https://arxiv.org/abs/1710.05941
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1907.10903
https://doi.org/10.1037/h0042519
https://doi.org/10.7551/mitpress/1888.003.0013
https://arxiv.org/abs/2303.10993
https://arxiv.org/abs/2210.08402

Chapter 10. Bibliography

[75]

[76]

[77]

(78]

[79]
[80]
[81]
(82]
[83]
[84]
[85]
[86]
[87]
[83]
[89]

[90]

[91]
92]
93]
94]
[95]

196]
197]

193]

199]

[100]

Shao, R. et al. On the Adversarial Robustness of Vision Transformers. 2022. arXiv: 2103 . 15670
[cs.CV]. URL:

Sherashidze, N. et al. “Efficient Graphlet Kernels for Large Graph Comparison”. In: 12th International
Conference on Artificial Intelligence and Statistics (AISTATS), Society for Artificial Intelligence and
Statistics, 488-495 (2009) 5 (Jan. 2009).

Shervashidze, N. et al. “Weisfeiler-Lehman Graph Kernels”. In: Journal of Machine Learning Research
12 (2011), pp. 2539-2561.

Shuman, D. I. et al. “The emerging field of signal processing on graphs: Extending high-dimensional
data analysis to networks and other irregular domains”. In: IEEFE Signal Processing Magazine 30.3
(May 2013), pp. 83-98. 1sSN: 1053-5888. DOI: 10.1109/msp.2012.2235192. URL:

Srivastava, N. et al. “Dropout: A Simple Way to Prevent Neural Networks from Overfitting”. In:
Journal of Machine Learning Research 15 (June 2014), pp. 1929-1958.

Sun, F.-Y. et al. InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning
via Mutual Information Mazimization. 2020. arXiv: 1908.01000 [cs.LG]. URL:

Szekely, G., Rizzo, M., and Bakirov, N. “Measuring and Testing Dependence by Correlation of Dis-
tances”. In: The Annals of Statistics 35 (Apr. 2008). DOI: 10.1214/009053607000000505.

Touvron, H. et al. Training data-efficient image transformers distillation through attention. 2021.
arXiv: 2012.12877 [cs.CV]. URL:

Vaswani, A. et al. Attention Is All You Need. 2023. arXiv: 1706.03762 [cs.CL]. URL:

Velickovié, P. et al. Graph Attention Networks. 2018. arXiv: 1710.10903 [stat.ML]. URL:

Veltkamp, R. and Tanase, M. “Content-Based Image Retrieval Systems: A Survey”. In: Technical
report, Utrecht University (Nov. 2000).

Vincent, P. et al. “Extracting and composing robust features with denoising autoencoders”. In: Jan.
2008, pp. 1096-1103. po1: 10.1145/1390156.1390294.

Wang, D., Cui, P., and Zhu, W. “Structural Deep Network Embedding”. In: Aug. 2016, pp. 1225-1234.
DOI: 10.1145/2939672.2939753.

Wang, G., Shang, Y., and Chen, Y. Scene Graph Based Fusion Network For Image-Text Retrieval.
2023. arXiv: 2303.11090 [cs.CV]. URL:

Wang, Y. et al. A Theoretical Analysis of NDCG Type Ranking Measures. 2013. arXiv: 1304 .6480
[cs.LG]. URL:

Wang, Y. et al. “Hi-SIGIR: Hierachical Semantic-Guided Image-to-image Retrieval via Scene Graph”.
In: Proceedings of the 31st ACM International Conference on Multimedia. MM ’23. Ottawa ON,
Canada: Association for Computing Machinery, 2023, pp. 6400-6409. 1sBN: 9798400701085. DO1: 10.
1145/3581783.3612283. URL:

Wikipedia contributors. Graph isomorphism. [Online; accessed 18-June-2025]. 2025. URL:

Wu, J. et al. “Multi-view inter-modality representation with progressive fusion for image-text match-
ing”. In: Neurocomputing 535 (2023), pp. 1-12. 1sSN: 0925-2312. DOI: https://doi.org/10.1016/j.
neucom.2023.02.043. URL:

Xu, D. et al. Scene Graph Generation by Iterative Message Passing. 2017. arXiv: 1701.02426 [cs.CV].
URL:

Xu, K. et al. “Representation Learning on Graphs with Jumping Knowledge Networks”. In: Advances
in Neural Information Processing Systems. Vol. 31. 2018, pp. 5469-5479.

Xu, K. et al. “How Powerful Are Graph Neural Networks?” In: International Conference on Learning
Representations (ICLR). 2019. URL:

Yang, J. et al. Panoptic Scene Graph Generation. 2022. arXiv: 2207.11247 [cs.CV]. URL:

Yao, T. et al. HIRI-ViT: Scaling Vision Transformer with High Resolution Inputs. 2024. arXiv: 2403.
11999 [cs.CV]. URL:

Ying, R. et al. “Graph Convolutional Neural Networks for Web-Scale Recommender Systems”. In:
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery amp; Data
Mining. KDD ’18. ACM, July 2018, pp. 974-983. DOI: 10.1145/3219819.3219890. URL:

Yoon, S. et al. Image-to-Image Retrieval by Learning Similarity between Scene Graphs. 2020. arXiv:
2012.14700 [cs.CV]. URL:

Zhao, L. and Akoglu, L. PairNorm: Tackling Oversmoothing in GNNs. 2020. arXiv: 1909 . 12223
[cs.LG]. URL:

104


https://arxiv.org/abs/2103.15670
https://arxiv.org/abs/2103.15670
https://doi.org/10.1109/msp.2012.2235192
https://arxiv.org/abs/1908.01000
https://doi.org/10.1214/009053607000000505
https://arxiv.org/abs/2012.12877
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1710.10903
https://doi.org/10.1145/1390156.1390294
https://doi.org/10.1145/2939672.2939753
https://arxiv.org/abs/2303.11090
https://arxiv.org/abs/1304.6480
https://arxiv.org/abs/1304.6480
https://doi.org/10.1145/3581783.3612283
https://doi.org/10.1145/3581783.3612283
https://doi.org/https://doi.org/10.1016/j.neucom.2023.02.043
https://doi.org/https://doi.org/10.1016/j.neucom.2023.02.043
https://arxiv.org/abs/1701.02426
https://arxiv.org/abs/2207.11247
https://arxiv.org/abs/2403.11999
https://arxiv.org/abs/2403.11999
https://doi.org/10.1145/3219819.3219890
https://arxiv.org/abs/2012.14700
https://arxiv.org/abs/1909.12223
https://arxiv.org/abs/1909.12223

[101] Zhou, K. et al. Dirichlet Energy Constrained Learning for Deep Graph Neural Networks. 2021. arXiv:
2107.02392 [cs.LG]. URL:

[102] Zhu, G. et al. Scene Graph Generation: A Comprehensive Survey. 2022. arXiv: 2201.00443 [cs.CV].
URL:

105


https://arxiv.org/abs/2107.02392
https://arxiv.org/abs/2201.00443

	Contents
	List of Figures
	Εκτεταμένη Περίληψη στα Ελληνικά
	Θεωρετικό Υπόβαθρο
	Αλγόριθμοι Ομαδοποίησης
	Μετρικές
	Μετρικές Ταξινόμησης
	Μετρικές κατάταξης
	Μετρικές παλινδρόμησης
	Μετρικές συσχέτισης

	Γράφοι
	Transformers
	Κωδικοποιητής (Encoder)

	Νευρωνικά Δίκτυα Γράφων
	Κατηγορίες Νευρωνικών Δικτύων Γράφων
	Νευρωνικά Δίκτυα Μετάβασης Μηνυμάτων
	Συνελικτικά Δίκτυα Γράφων
	Graph Isomorphism Network (GIN)
	Graph Attention Network (GAT) 
	GATv2

	Προτεινόμενο Μοντέλο
	Συνεισφορά
	Σύνολα δεδομένων
	Σύνολο Γράφων Δεδομένων (Graph Dataset)
	Μοντέλο πρόβλεψης σημαντικότητας

	Εκπαίδευση Νευρωνικού Δικτύου Γράφου
	Πρόταση Νευρωνικού Δικτύου Γράφου
	Inference

	Πειραματικό Μέρος
	Σύνολο Δεδομένων
	Λεπτομέρειες μοντέλου πρόβλεψης σημαντικότητας
	Λεπτομέρειες Νευρωνικού Δικτύου Γράφων
	Ποιοτικά Αποτελέσματα

	Συμπεράσματα
	Μελλοντικές κατευθύνσεις

	Introduction
	Machine Learning
	Machine Learning Types
	Embeddings
	Clustering Algorithms
	Deep Learning
	Perceptron
	Multilayer Perceptron (MLP))
	Convolutional Neural Networks (CNNs)
	Transformers
	Autoencoders
	CLIP (Contrastive Language–Image Pre-training)

	Training Process
	Data Types
	Training
	Overfitting
	Underfitting
	Preventing Overfitting
	Model Evaluation


	Graphs
	Graph Theory Basics
	Graph Types
	Graph Similarity

	Graph Neural Networks (GNNs)
	Applications
	Permutation Invariance
	Graph Isomorphism
	GNN variants
	MPNNs
	Graph Convolutional network 
	GIN (Graph Isomorphism Network).
	Graph Attention Networks (GAT)
	GATv2
	Graph Autoencoders

	Over‐smoothing

	Image Retrieval
	Text-Based Retrieval
	Vision-Based Retrieval (Content-Based Image Retrieval, CBIR)
	Scene-Graph-Based Retrieval

	Proposal
	Contributions
	Proposed Model
	Graph Dataset
	Importance Prediction Module
	Graph Νeural Νetwork Training
	Graph Neural Network Proposal
	Inference


	Experiments
	Preliminaries
	Dataset

	Importance prediction module details
	Architectural Decisions and Hyperparameters
	Training
	Training Details and Hyperparameters
	Ground Truth and Metrics
	Quantitative results
	Qualitative Results

	GNN Details
	Model Architecture
	Training Details
	Model Evaluation

	Ablation Study
	Qualitative Results

	Conclusion
	Reflecting on the findings
	Future Work

	Bibliography

