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Abstract
Cardiovascular diseases remain the leading cause of global mortality, accounting for

over 19 million deaths annually according to the World Health Organization. Among

these, carotid atherosclerosis, a pathological process characterized by plaque accumula-

tion in the carotid arteries, is a major contributor to ischemic stroke, driven by plaque

rupture and thromboembolic events. Traditional diagnostic approaches, which rely on

single-modality imaging or clinical data, often fail to capture the complex interplay of

morphological, biological, and hemodynamic factors that determine plaque vulnerability.

This dissertation addresses this critical gap by developing advanced deep multimodal

fusion frameworks to integrate heterogeneous data sources, enabling precise risk strati-

fication of carotid atheromatous plaques.

The primary objective of this work is to create an end-to-end trainable system that syn-

ergistically combines B-mode carotid ultrasound imaging with non-image clinical data,

including biochemical markers, protein biomarkers, and patient demographics. Three

fusion strategies were rigorously investigated: (1) Joint Attention-Based Fusion, which

dynamically weights imaging and tabular data contributions through learned attention

mechanisms; (2) Early Fusion, merging raw inputs at the feature level; and (3) Attention-

Gated Video Hybrid Fusion, a novel architecture designed to process spatiotemporal ultra-

sound frame sequences alongside clinical data. These models were trained and validated

on a multimodal dataset comprising 96 DICOM ultrasound recordings and 73 curated

clinical profiles from a cohort of 73 patients, stratified into high-risk (symptomatic with

≥ 50% stenosis or asymptomatic with ≥ 70% stenosis) and low-risk groups.

The Joint Attention-Based Fusion model with an EfficientNet-B0 backbone achieved

superior performance, yielding AUC: 86.07%, Balanced Accuracy: 73.28%, F1 Score:

78.42 %, Sensitivity: 81.67%, outperforming unimodal approaches (imaging-only AUC:

84.55%; tabular-only AUC: 64.61%). Attention weights highlighted the dominance of

imaging data (69.4% contribution), while clinical biomarkers provided complementary

risk context. The proposed Attention-Gated Video Hybrid Fusion framework demonstrated

feasibility for dynamic plaque analysis but faced computational constraints in scaling 3D

spatiotemporal convolutions.

In conclusion, this thesis advances the field of precision vascular medicine by demon-

strating that multimodal deep learning can substantially improve the accuracy and reli-

ability of carotid atheromatous plaque risk assessment compared to conventional single-

modality approaches. The proposed architectures, particularly the attention-based fu-

sion paradigm, provide a scalable framework for integrating heterogeneous data sources.

Additionally, a prototype Clinical Decision Support System (CDSS) was developed as a

web-based interface, illustrating the translational potential of these models for future in-

tegration into clinical workflows. Together, these contributions highlight the promise of

AI-driven methodologies in enhancing stroke prevention strategies and supporting indi-

vidualized therapeutic decision-making.

Keywords: Carotid Atherosclerosis, Plaque Vulnerability, Deep Learning, Multimodal

Fusion, Stroke Prevention
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Chapter 1

Introduction

1.1 Background and Context

C
ardiovascular diseases (CVDs) are the leading cause of mortality worldwide. In

2021, CVDs accounted for an estimated 19.1 million deaths, as reported by the

World Health Organization (WHO). These conditions encompass a broad spectrum of

disorders, including coronary artery disease, cerebrovascular disease, peripheral arterial

disease, and rheumatic heart disease. Collectively, they contribute to over 85% of deaths

associated with myocardial infarction and stroke. Notably, approximately 32% of all

global deaths are attributable to cardiovascular disease, a figure that rises to 38% in

individuals under the age of 70. The age-adjusted mortality rate for CVD per 100,000

population stands at 239.8, while the age-adjusted prevalence rate is 7,354.1 per 100,000

individuals [1].

The European region presents particularly concerning figures, facing one of the high-

est levels of CVD mortality globally, with 350–400 strokes occurring per 100,000 popula-

tion annually, while Greece faces an even more challenging situation with approximately

500 cases per 100,000 individuals [2].

Acute cardiovascular events, such as myocardial infractions and cerebrovascular ac-

cidents (commonly referred to as heart attacks and strokes), predominantly arise from ob-

structions that disrupt the perfusion of blood to critical organs, specifically the heart and

brain. The principal pathological mechanism underlying these obstructions is atheroscle-

rosis, a chronic condition characterized by the progressive accumulation of lipid deposits

within the intimal layer of arterial walls supplying these regions. In the context of cere-

brovascular accidents, additional etiologies include intracerebral hemorrhage resulting

from vascular rupture or ischemic events precipitated by thromboembolic occlusions

within cerebral vasculature [3, 4].

The increasing prevalence of CVDs is driven by both demographic transitions and

modifiable risk factors. The aging global population and rising life expectancy have ex-

panded the cohort at risk of developing cardiovascular conditions. However, behavioral

and environmental determinants, including poor dietary habits, sedentary lifestyles, to-

bacco consumption, excessive alcohol intake, and air pollution, play a critical role in

exacerbating the burden of CVDs. These behavioral risks often culminate in intermedi-

ate physiological manifestations such as hypertension, hyperglycemia, dyslipidemia, and
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Chapter 1. Introduction

obesity, which significantly contribute to adverse cardiovascular outcomes.

The socioeconomic determinants of cardiovascular health are equally pertinent. Lower

socioeconomic status has been strongly correlated with increased incidence and worse

outcomes of cardiovascular disease. Recent analyses highlight the disproportionate bur-

den faced by socioeconomically disadvantaged populations, who frequently encounter

barriers to accessing preventive healthcare services, advanced diagnostic modalities, and

optimal therapeutic interventions [5]. There exists a correlation between the percentage

of current health expenditure (CHE) relative to GDP and CVD death rates. Countries

with lower CHE as a percentage of GDP tend to experience higher age-standardised CVD

mortality rates [3].

Early detection of cardiovascular disease remains paramount to effective management,

emphasizing the need for timely intervention through counseling and pharmacological

treatment. Behavioral modifications have been demonstrated to mitigate cardiovascular

risk significantly. Smoking cessation, salt reduction, increased fruit and vegetable con-

sumption, regular physical activity, and reduced alcohol intake collectively contribute to

lower CVD incidence.

The diagnosis of cardiovascular disease follows a structured, evidence-based ap-

proach, beginning with a thorough clinical evaluation that includes an assessment of

patient symptoms and risk factors. This initial evaluation is then complemented by lab-

oratory testing and imaging modalities, which together provide detailed insights into the

nature and severity of vascular pathology. Advanced imaging techniques play a pivotal

role in both the diagnosis and prognosis of vascular diseases. Non-invasive modalities

such as ultrasonography (US), computed tomography angiography (CTA), and magnetic

resonance angiography (MRA) enable comprehensive evaluations of vascular structure

and function. Furthermore, the behavior and composition of atherosclerotic plaques in

the carotid arteries have emerged as critical prognostic indicators of systemic atheroscle-

rosis, particularly in relation to coronary circulation [6].

The persistent and evolving challenges posed by cardiovascular diseases necessitate

a multifaceted approach that includes addressing modifiable risk factors, socioeconomic

disparities, and genetic predispositions. Continued research and public health initiatives

are essential to mitigate the global impact of CVDs.

1.2 Problem Statement

Carotid atherosclerosis is characterized by the progressive accumulation of atheroscle-

rotic plaques within the carotid arteries, the principal vessels supplying oxygenated blood

to the brain. The underlying pathophysiological mechanisms include endothelial dysfunc-

tion, lipid accumulation, infiltration of inflammatory cells, and fibrous tissue proliferation,

leading to plaque formation that may result in arterial stenosis or occlusion. Importantly,

the risk of cerebrovascular events is not solely dictated by the degree of luminal nar-

rowing but is also influenced by plaque composition and stability. Vulnerable plaques,

characterized by a lipid-rich necrotic core, thin fibrous cap, and intraplaque hemorrhage,

exhibit an increased propensity for rupture, leading to thromboembolic complications [7].

16



1.2 Problem Statement

Epidemiological studies indicate that the prevalence of carotid atherosclerosis esca-

lates with advancing age and is compounded by traditional cardiovascular risk factors.

The asymptomatic nature of early-stage carotid artery disease often results in delayed di-

agnosis, frequently culminating in transient ischemic attacks (TIAs) or ischemic strokes.

Consequently, early identification through targeted screening in high-risk populations is

imperative for mitigating adverse clinical outcomes.

Conventional diagnostic approaches for carotid atherosclerosis primarily rely on imag-

ing modalities such as carotid US, CTA, and MRA. Carotid US is widely utilized as an

initial screening tool due to its non-invasive nature, cost-effectiveness, and accessibility,

making it a practical choice for large-scale risk assessment. Additionally, US enables the

evaluation of plaque morphology and hemodynamic parameters with real-time imaging

capabilities. CTA provides high-resolution three-dimensional reconstructions and facil-

itates detailed compositional analysis of plaques, while MRA offers superior soft tissue

contrast, allowing the identification of high-risk features such as intraplaque hemor-

rhage, lipid-rich necrotic cores, and active inflammation, hallmarks strongly associated

with increased risk of plaque rupture and subsequent ischemic events [8]. However,

despite these advancements, existing imaging techniques predominantly focus on mor-

phological attributes, often neglecting the dynamic biological processes that contribute to

plaque vulnerability, including inflammation and neovascularization.

Management strategies for carotid atherosclerosis encompass both pharmacological

and interventional approaches. Medical management focuses on intensive risk factor

modification, incorporating antihypertensive therapy, lipid-lowering agents, antiplatelet

medications, smoking cessation, and lifestyle modifications. In cases of significant steno-

sis or symptomatic disease, revascularization procedures such as carotid endarterectomy

(CEA) or carotid artery stenting (CAS) are performed to restore cerebral perfusion and

mitigate stroke risk. The choice between CEA and CAS is determined by individualized

patient factors, including anatomical considerations, comorbidities, and procedural risk

profiles.

Current methodologies for assessing atherosclerotic plaque vulnerability predomi-

nantly rely on single-modality approaches, which often fail to capture the intricate in-

terplay of morphological, biological, and clinical factors that collectively determine plaque

stability. This reductionist approach limits the accuracy and reliability of risk stratifi-

cation, thereby constraining the ability to predict cerebrovascular events effectively and

personalize therapeutic interventions.

Despite significant advances in diagnostic and therapeutic modalities that have im-

proved the management of carotid artery disease, there remains a critical need for contin-

ued research to develop robust and reliable risk assessment frameworks and precision-

targeted interventions for the evaluation of the vulnerability of carotid atheromatous

plaque.
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Chapter 1. Introduction

1.3 Research Objectives

The primary aim of this research is to develop an advanced deep multimodal fusion

framework designed to integrate diverse data modalities, specifically imaging data and

non-imaging clinical information within a cohesive, end-to-end trainable architecture.

By capitalizing on the complementary strengths of these heterogeneous data sources,

the proposed framework seeks to overcome the limitations inherent in traditional single-

modality assessments.

This research focuses on the stratification of patients with carotid artery disease into

two distinct risk categories: (1) high-risk patients, for whom surgical intervention is

indicated, and (2) low-risk patients, who are candidates for conservative management.

The accurate classification of patients by the proposed system is anticipated to serve

as a valuable diagnostic tool for clinicians, potentially reducing unnecessary surgical

interventions while optimizing patient outcomes.

At the core of this system is the application of multimodal machine learning tech-

niques. These methods facilitate the integration of both imaging and tabular data modal-

ities, thereby enhancing the precision and reliability of carotid disease risk stratification.

Specifically, the framework will incorporate clinical data obtained from blood tests, en-

compassing biochemical analyses and protein markers alongside imaging data derived

from B-mode carotid ultrasound recordings. By synthesizing these disparate datasets,

the proposed system aims to leverage their complementary characteristics to improve the

overall diagnostic process and clinical decision-making.

1.4 Thesis Structure

This thesis is systematically structured to provide a comprehensive exploration of

multimodal deep learning for carotid plaque risk assessment, progressing from theo-

retical foundations to clinical applications. Chapter 1 introduces the epidemiological

and clinical significance of carotid atherosclerosis, framing the research objectives and

challenges in current diagnostic paradigms. Chapter 2 reviews the pathophysiological

mechanisms of plaque formation, imaging modalities, and therapeutic strategies, estab-

lishing the biomedical context for the study. Chapter 3 critically examines deep learning

methodologies, emphasizing solutions for data constraints and class imbalance in med-

ical applications. Chapter 4 synthesizes multimodal fusion strategies, highlighting their

potential to integrate heterogeneous data sources for improved risk stratification. Chap-

ter 5 details the dataset composition, preprocessing pipelines, and biomarker analyses,

underscoring the interplay between imaging and clinical features. Chapter 6 presents the

implementation of multimodal fusion models, including architectural designs and training

protocols. Chapter 7 evaluates model performance across metrics, interpreting results in

the context of clinical utility. Finally, Chapter 8 discusses implications, limitations, and

future directions, advocating for dynamic plaque analysis and advanced spatiotemporal

modeling. This structure ensures a cohesive narrative, bridging technical innovation with

translational medical research.
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Chapter 2

Carotid Atherosclerosis

C
arotid artery disease, primarily driven by atherosclerosis, is a leading contributor to

ischemic stroke, accounting for 15–20% of cases globally [9]. This condition arises

from the progressive accumulation of lipid-rich plaques within the carotid arteries (Figure

2.1), which can induce luminal stenosis or destabilize, leading to plaque rupture and

subsequent thromboembolic events. In Europe, with a population of approximately 715

million, an estimated 1.4 million strokes occur annually, making stroke one of the most

significant public health concerns [10]. Each year, stroke is responsible for approximately

1.1 million deaths across the continent, ranking as the second leading cause of mortality

following coronary artery disease (CAD) [10, 11]. Projections indicate that the number of

individuals living with the long-term effects of stroke is expected to rise substantially, from

3.7 million in 2015 to 4.6 million by 2035, primarily due to demographic shifts associated

with an aging population [12]. The economic burden of stroke is considerable, with

European healthcare systems allocating approximately =C45 billion annually to stroke-

related care in 2015, including indirect costs [12, 11]. A similar trend is observed in the

United States, where the total financial impact of stroke was estimated at $ 49.5 billion

(=C 43.9 billion) in 2015–2016, with projections suggesting an increase to $ 129 billion (=C

114 billion) by 2035 [13].

In this chapter, a review is synthesized to present the current understanding of

atherosclerosis pathophysiology, its multifaceted clinical relevance, and the complex in-

terplay of modifiable and non-modifiable risk factors that contribute to its development

and progression.

2.1 Carotid Arteries

The carotid arteries are vital conduits for cerebral perfusion, supplying oxygenated

blood to the brain, head, and neck. Each individual possesses two common carotid

arteries: the left common carotid artery and the right common carotid artery. Under

typical anatomical conditions, the right common carotid artery (CCA) arises from the

brachiocephalic trunk on the right side and left CCA directly from the aortic arch on

the left (Figure 2.2). The CCA ascends through the neck and terminates at the upper

border of the thyroid cartilage, where it bifurcates into its terminal branches, internal

carotid artery (ICA) and external carotid artery (ECA). In the cervical region, the common
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carotid arteries are positioned bilaterally, anterolateral to the neck. They are anatomically

associated with the cervical sympathetic chain and the transverse processes of the cervical

vertebrae, while being enveloped by the prevertebral muscles and deep cervical fascia.

Figure 2.1: LCCA stenosis due to atherosclerotic plaque formation
[14]

The ICA is primarily responsible for cerebral circulation, while the ECA supplies blood

to the face and scalp (Figure 2.3). Anatomical variations and pathological conditions

affecting these arteries, such as stenosis or dissection, can have profound implications

for neurological function and systemic health. Furthermore, carotid arteries are central

to several therapeutic interventions, including CEA and CAS, which aim to mitigate is-

chemic risks associated with atherosclerotic plaques. Their accessibility and critical role

in maintaining cerebral homeostasis underscore their importance in vascular surgery and

neurovascular research.

The carotid artery wall is composed of three distinct layers (Figure 2.4), each playing

a critical role in vascular function and structural integrity. Together, these layers ensure

the resilience and functionality of the carotid artery under varying physiological and

pathological conditions.

1. Tunica intima, the innermost layer, consists of endothelial cells supported by con-

nective tissue and elastin fibers, forming a smooth surface that minimizes friction

and facilitates blood flow. This layer is directly exposed to hemodynamic forces and

is integral to vascular homeostasis and the pathogenesis of atherosclerosis. The

endothelium forms an interface between circulating blood or lymph in the lumen

and the rest of the vessel wall.

2. Tunica media is predominantly composed of smooth muscle cells and elastic fibers,

providing mechanical strength and enabling dynamic regulation of arterial diameter

in response to blood pressure fluctuations. This layer is crucial for maintaining
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Figure 2.2: CCA origin
[15]

Figure 2.3: RCCA anatomy
[15]
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vascular tone and accommodating pulsatile blood flow during systolic and diastolic

phases.

3. Tunica adventitia, the outermost layer, consists of dense connective tissue inter-

spersed with collagen and elastin fibers, as well as vasa vasorum that supply nu-

trients to the artery wall. It anchors the artery to surrounding tissues and houses

autonomic nerves that regulate smooth muscle contraction.

Figure 2.4: Layers of artery wall - view of transverse section
[16]

2.2 Atherogenesis

The term atherogenesis was first recorded in 1948 by American pathologists G.L.

McMillan and G.L. Duff in their study published in the Archives of Pathology. Atherogen-

esis, from the Greek ἀθήρα meaning "gruel" or "porridge" and γένεσ�ις meaning "origin or

formation," is the insidious process of atherosclerotic plaque formation that begins early

in life, often decades before clinical manifestations become apparent. This complex patho-

physiological cascade initiates with endothelial dysfunction, triggered by various factors

such as disturbed wall shear stress (WSS), oxidative stress, and systemic risk factors,

leading to the gradual luminal narrowing of the artery and the activation of inflammatory

pathways. Atheromatous plaques tend to develop preferentially in arterial regions where

hemodynamic forces create conditions conducive to endothelial dysfunction. They are

more likely to form in areas of disturbed flow dynamics, such as bifurcations, curvatures,
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and regions of low WSS. The carotid bifurcation, the aortic arch, and the ostia of major

branches represent key sites of plaque accumulation due to the presence of complex flow

patterns, which foster endothelial activation and local inflammatory responses. These re-

gions experience oscillatory and turbulent flow, reducing the protective effects of laminar

shear stress.

The process of atherogenesis initiates as the endothelium becomes increasingly per-

meable. Low-density lipoprotein (LDL) particles infiltrate the arterial intima, where they

undergo oxidative modification. These oxidized LDL (oxLDL) molecules act as damage-

associated molecular patterns (DAMPs), further exacerbating endothelial damage and

igniting a maladaptive inflammatory response (Figure 2.5). Concurrently, circulating

monocytes adhere to the activated endothelium, migrate to the sub-endothelial space, and

differentiate into macrophages. These macrophages, upon ingesting oxLDL, transform

into lipid-laden foam cells, forming the hallmark fatty streaks of early atherosclerosis.

As the process advances, vascular smooth muscle cells (VSMCs) proliferate and migrate

from the tunica media to the intima, synthesizing extracellular matrix components that

contribute to the fibrous cap formation. This intricate interplay between lipid accumu-

lation, inflammation, and vascular remodeling ultimately culminates in the development

of advanced atherosclerotic plaques, characterized by a necrotic core, calcification, and

potential instability.

Figure 2.5: Schematic representation of atheroma plaque formation
[17]

Atheroma progression exhibits diverse patterns, reflecting the complexity of its under-

lying mechanisms. One common trajectory is the gradual growth of plaques, characterized

by the slow accumulation of lipids, inflammatory cells, and extracellular matrix over many

years. This process often leads to progressive narrowing of the arterial lumen, potentially

resulting in clinical symptoms such as angina when blood flow becomes significantly ob-

structed. Elevated levels of LDL cholesterol and systolic blood pressure (SBP) have been
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identified as key accelerators of this gradual progression, particularly in younger pop-

ulations [18]. Conversely, some patients experience a much more rapid progression of

atherosclerosis, occurring over a period as short as a few months to 2–3 years, even in the

absence of conventional risk factors for accelerated disease [19]. Factors contributing to

this rapid progression include coronary vasospasm, human immunodeficiency virus (HIV)

infection, elevated inflammatory markers, and specific genetic mutations. Additionally,

accelerated atherosclerosis is frequently observed in clinical contexts involving significant

endothelial injury, such as heart transplantation, coronary artery bypass grafting (CABG),

and percutaneous transluminal coronary angioplasty (PTCA).

Intraplaque hemorrhage (IPH) is a key phenomenon in atheroma progression and is a

hallmark of vulnerable plaques. IPH has been strongly associated with an increased risk

of stroke and is linked to both greater arterial narrowing (lumen stenosis) and accelerated

plaque growth. The underlying mechanism is thought to involve the rupture of fragile

neo-vessels within the plaque, driven by localized factors such as hemodynamic stress

from blood flow, calcification within the plaque structure, and heightened inflammation.

Systemic factors also play a critical role; for instance, pulse pressure has been identi-

fied as an independent predictor of IPH, alongside hypertension and male sex. IPH not

only promotes immediate plaque progression but also drives long-term changes within

the vessel wall. This process is accompanied by elevated levels of inflammatory cytokines

within the plaque microenvironment. Several risk factors have been linked to IPH pro-

gression, including baseline use of antiplatelet agents, a history of smoking, and larger

initial carotid plaque volumes.

2.3 Clinical Implications

The clinical manifestation of carotid disease can be symptomatic and asymptomatic.

A patient is classified as symptomatic if they have experienced at least one episode of

stroke or TIA within the past six months. In the absence of such events, the disease is

considered asymptomatic and is most often detected incidentally during routine medical

evaluations or imaging for unrelated conditions. An individual may have carotid artery

disease for many years without exhibiting symptoms until the underlying pathophysio-

logical processes result in reduced cerebral blood flow, leading to a stroke or TIA. Due to

its asymptomatic nature in the early stages, carotid artery disease is often referred to as

a "silent killer", as it can progress unnoticed until a severe event occurs.

A TIA is a temporary episode of stroke-like symptoms resulting from a brief disruption

of blood flow to the brain. Although a TIA typically lasts only a few minutes and does

not cause permanent damage, it serves as a critical warning sign. The INSIST study

from Australia reported a one-year ischemic stroke risk of 3.2% following TIA or minor

stroke, though this wasn’t specifically broken down by age groups [20]. The risk of

stroke after TIA appears to be influenced by age not only directly but also through its

association with other risk factors that become more prevalent with advancing age, such

as hypertension, diabetes, and atrial fibrillation [21, 22]. Often referred to as a "mini-

stroke," a TIA highlights an underlying vascular issue and presents an opportunity for
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early intervention to mitigate the risk of a more severe cerebrovascular event. Symptoms

of TIA happen suddenly and may include [23]:

• Weakness, numbness or paralysis in the face, arm or leg, typically on one side of

the body

• Slurred speech or trouble understanding others

• Blindness in one or both eyes or double vision

• Dizziness or loss of balance or coordination

Carotid artery disease, in its most severe manifestations, can precipitate ischemic

stroke through three primary pathophysiological mechanisms [24, 25].

1. Total occlusion of the carotid artery due to progressive atherosclerotic plaque ac-

cumulation, which may culminate in complete obstruction of cerebral perfusion

2. Thrombosis, wherein an atherosclerotic plaque undergoes rupture, compromising

the integrity of the endothelial lining of the artery resulting in the formation of an

intraluminal thrombus that can further impede arterial flow.

3. Embolism, which accounts for the majority of stroke events. In this process, a

thrombus or a fragment of disrupted plaque detaches from the carotid artery and

travels through the bloodstream to cerebral vasculature, where it occludes a distal

artery, leading to cerebral ischemia and infarction.

While symptomatic carotid atherosclerosis often manifests as TIAs or strokes, a sub-

stantial proportion of high-risk plaques remain clinically silent, posing significant di-

agnostic and therapeutic challenges. The pathophysiology of carotid atherosclerosis is

multifactorial, involving complex interactions between systemic risk factors, such as hy-

pertension, dyslipidemia, diabetes mellitus, smoking, and local vascular mechanisms,

including endothelial dysfunction and extracellular matrix remodeling.

Advances in imaging modalities and molecular diagnostics have enhanced the identi-

fication of vulnerable plaques; however, the precise mechanisms underlying plaque insta-

bility and rupture remain an area of active investigation. Understanding these processes

is essential for developing targeted interventions aimed at mitigating stroke risk in affected

populations.

2.4 Risk Factors

The pathogenesis of carotid atherosclerosis is deeply intertwined with established car-

diovascular risk factors, many of which demonstrate consistent associations across mul-

tiple epidemiological studies. Evidence from comprehensive meta-analyses has identified

factors significantly associated with carotid plaque formation, including hyperlipidemia,
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hyperhomocysteinemia, hypertension, hyperuricemia, smoking, metabolic syndrome, hy-

pertriglyceridemia, diabetes mellitus, and elevated LDL levels [26]. Dyslipidemia consti-

tutes another critical risk category, with hyperlipidemia increasing atherosclerosis risk

by greater than 50%. The specific lipid fractions demonstrate differential impacts: ele-

vated LDL directly contributes to plaque formation, while HDL exerts protective effects

through promoting reverse cholesterol transport. Hypertension stands as a predominant

risk factor, with recent research confirming its independent association with all ischemic

stroke subtypes, regardless of carotid plaque burden [27]. The severity of hypertension

appears particularly consequential, as grade 3 hypertension has been identified as an

independent factor influencing gray-scale median (GSM) values in asymptomatic patients

[28]. Diabetes mellitus represents both an independent risk factor and a potent modifier

of atherosclerotic progression, with recent data suggesting that fasting plasma glucose

levels significantly correlate with GSM values in symptomatic patients [28]. The metabolic

dysregulation associated with diabetes accelerates endothelial dysfunction and vascular

inflammation, creating a pro-atherogenic environment. Smoking maintains its status as

a substantial contributor to carotid atherosclerosis, with current smoking demonstrating

stronger associations with disease progression than former smoking.

Recent advances in genetic epidemiology have illuminated the substantial role of ge-

netic predisposition in carotid atherosclerosis susceptibility. Multiple studies have iden-

tified specific single nucleotide polymorphisms (SNPs) associated with increased risk in

Chinese populations, including IL1A rs1609682 TT and HABP2 rs7923349 TT genotypes

[29, 30]. These genetic variants appear to function synergistically, as demonstrated by

generalized multifactor dimensionality reduction (GMDR) analysis revealing significant

gene-gene interactions among HABP2 rs7923349, ITGA2 rs1991013, IL1A rs1609682,

and NOS2A rs8081248. The transcription factor BACH1 (BTB and CNC homology 1)

has been implicated in atherosclerotic pathophysiology, with its deletion shown to de-

crease turbulent blood flow-induced atherosclerotic lesions and macrophage content in

plaques [31]. Coronary artery disease-associated risk variant rs2832227 has been linked

to BACH1 gene expression in carotid plaques, suggesting a mechanistic connection be-

tween genetic predisposition and vascular inflammation. Most recently, a 2024 study

revealed that exosomal miR-155-5p derived from periodontal endothelial cells promotes

carotid atherosclerosis by increasing endothelial permeability and angiogenic activity,

providing a molecular mechanism linking periodontitis to carotid atherosclerosis [32].

Significantly elevated expression of miR-155-5p was detected in plasma exosomes of pa-

tients with both chronic periodontitis and carotid atherosclerosis compared to those with

periodontitis alone.

Beyond established risk determinants, several emerging factors warrant clinical at-

tention. Hyperhomocysteinemia has been identified as a potent risk factor capable of ele-

vating atherosclerosis risk by more than 50%. The exact pathophysiological mechanisms

remain incompletely understood but likely involve endothelial damage, increased oxida-

tive stress, and impaired vasodilation. Metabolic syndrome, representing a constellation

of interrelated metabolic abnormalities, significantly associates with carotid plaque pres-

ence. This syndrome’s contribution likely exceeds the sum of its individual components,
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suggesting synergistic interactions among metabolic perturbations. Several behavioral

and environmental factors have gained recognition as significant contributors to carotid

atherosclerosis. Negative emotions, socioeconomic strain, alcohol consumption, and air

pollution exposure have all demonstrated associations with atherosclerotic burden. Ob-

structive sleep apnea syndrome (OSAS) has emerged as a risk factor through mechanisms

involving intermittent hypoxia, sympathetic activation, and systemic inflammation.

Figure 2.6: Significant factors associated with carotid atherosclerosis
MetS: metabolic syndrome; Hcy: homocysteine; OSAS: obstructive sleep apnea syndrome; CPAP:

continuous positive airway pressure

Risk factors of meta-analysis are above the dotted line.

Risk factors of systematic review are below the dotted line.

The dots with four different filled ratios below risk factors represent different total sample size ranges.

Different colors represent different quality score ranges.

[26]

2.5 Pathobiological Significance of Circulating Biomarkers

In recent years, increasing attention has been directed toward the investigation of

systemic circulating biomarkers obtained through peripheral blood sampling, which may

offer insights not only into the presence of atherosclerotic disease but also into the char-

acteristics of vulnerable atherosclerotic plaques and the potential risk of future cardio-

vascular events in affected individuals. The coordinated interaction of systemic and local

inflammatory mediators is fundamental to the modulation of the atherogenic pathophys-

iological continuum; therefore, the identification of circulating biomarkers is an essential

component of risk stratification and the development of novel therapeutics. Throughout

the progression of atherosclerotic plaque, certain molecules can diffuse into the blood-

stream, serving as circulating biomarkers that offer insight into the presence, character-

istics, and potential complications of the plaque. For such biomarkers to be regarded

as valid surrogates for clinically meaningful cardiovascular outcomes, they must meet
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a series of stringent criteria. As outlined by the American Heart Association (AHA),

the comprehensive evaluation of a surrogate biomarker for cardiovascular endpoints in-

volves multiple stages: establishing proof of concept, conducting prospective validation,

demonstrating incremental value, confirming clinical utility, assessing effects on clinical

outcomes, and evaluating cost-effectiveness [33].

C-reactive protein (CRP) is recognized as one of the most prominent biomarkers of

inflammation, with both standard and high-sensitivity CRP (hs-CRP) assays extensively

utilized in clinical settings for the stratification of vascular disease. A growing body of

evidence has demonstrated associations between elevated hs-CRP levels and the presence

of unstable carotid artery stenosis [34], ICA stenosis [35], and identification of individuals

at elevated vascular risk [36]. Notably, increased hs-CRP concentrations have been linked

to reduced echogenicity of carotid plaques [37], implying a potential relationship between

hs-CRP levels and plaque vulnerability. Moreover, vulnerable atherosclerotic plaques

have been shown to exhibit upregulated hs-CRP expression. Importantly, elevated hs-

CRP levels are independently correlated with a heightened risk of ischemic stroke [38]

and are considered among the key risk factors for acute anterior circulation stroke [39].

Pro-inflammatory cytokines such as Interleukin-6 (IL-6) and Tumor Necrosis Factor-

alpha (TNFα) play central roles in endothelial activation, leukocyte recruitment, and the

amplification of intraplaque inflammatory cascades. IL-6, a master regulator of the acute-

phase inflammatory response, has been identified as an independent predictor of progres-

sive atherosclerosis, with elevated systemic levels conferring an increased propensity for

plaque rupture and subsequent cerebrovascular insult [40, 41]. Furthermore, IL-6 has

been implicated in the presence of ICA stenosis. Evidence from both clinical observa-

tions [35] and genetic association studies supports a link between elevated IL-6 levels

and the development of ICA stenosis [42]. Likewise, TNFα, a pro-inflammatory cytokine

active in the early stages of the inflammatory response, has been associated with both the

prevalence and severity of carotid artery stenosis, as well as with an elevated risk for the

development of carotid plaques [43, 44]. Vulnerable atherosclerotic plaques have been

shown to exhibit increased expression of TNFα, with higher circulating levels correlating

with larger plaque size [45, 42]. Immunohistochemical analyses have further demon-

strated that TNFα, in conjunction with hypoxia and oxidized LDL, significantly enhances

the expression of matrix metalloproteinase-7 (MMP-7), a molecule closely linked to symp-

tomatic carotid artery disease [46]. Moreover, post-CEA plaque assessments revealed

significantly elevated TNFα levels in symptomatic individuals [47].

Furthermore, the matrix metalloproteinase (MMP) system, particularly MMP-9, and

its endogenous tissue inhibitors TIMP-1 and TIMP-2, play crucial roles in extracellular

matrix degradation and the preservation of fibrous cap integrity. Dysregulated MMP-

TIMP homeostasis has been shown to facilitate the degradation of structural collagen,

thereby predisposing plaques to rupture and subsequent thromboembolic complications

[48]. These proteolytic imbalances are increasingly recognized as pivotal determinants of

plaque instability and cerebrovascular risk.

Among the most clinically and mechanistically salient biomarkers implicated in carotid

atherosclerosis is Galectin-3, a �-galactoside-binding lectin that serves as a key regulator
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of monocyte-macrophage activation, fibrotic remodeling, and extracellular matrix depo-

sition. Elevated plasma concentrations of Galectin-3 have been robustly correlated with

increased carotid intima-media thickness (cIMT), a well-established surrogate marker of

atherosclerotic burden, as well as heightened plaque vulnerability [49, 50, 51].

Another biomarker of emerging significance is Retinol-Binding Protein 4 (RBP4), an

adipokine with integral functions in insulin resistance and lipid metabolism. Empirical

evidence suggests that elevated circulating concentrations of RBP4 are independently as-

sociated with increased total plaque area and augmented plaque vulnerability, irrespective

of conventional cardiovascular risk factors [52].

Collectively, the elucidation of these biomarkers furnishes critical insights into the

molecular determinants underpinning the progression and destabilization of atheroscle-

rosis. Their integration into contemporary clinical paradigms holds immense promise for

refining predictive algorithms, guiding risk stratification, and informing precision-targeted

therapeutic interventions aimed at mitigating the burden of cerebrovascular disease.

2.6 Imaging Modalities for Carotid Plaque Detection

Accurate detection and characterization of carotid plaques are paramount for as-

sessing cerebrovascular risk and guiding clinical decision-making. The primary imaging

modalities employed in clinical practice include carotid duplex ultrasound (DUS), CTA and

MRA. Each of these techniques offers distinct advantages and limitations with respect to

spatial resolution, tissue characterization, and clinical applicability.

Carotid duplex ultrasound (Figure 2.7) is the most widely utilized modality due to

its non-invasive nature, cost-effectiveness, and capability to provide real-time hemody-

namic assessments. It integrates B-mode imaging, color Doppler, and spectral Doppler

techniques to evaluate luminal narrowing and plaque morphology. However, despite its

utility, DUS exhibits inherent limitations, including operator dependency, restricted field

of view, and suboptimal sensitivity for detecting intraplaque hemorrhage or lipid-rich

necrotic cores [53].

CTA (Figure 2.8) provides high-resolution imaging of vascular structures and is par-

ticularly adept at delineating calcified plaques and quantifying luminal stenosis. The

technique involves intravenous administration of iodinated contrast agents and utilizes

multislice computed tomography to generate three-dimensional reconstructions of the

carotid arteries. A key advantage of CTA is its ability to visualize both luminal and ex-

traluminal plaque components, thus facilitating risk stratification. However, exposure

to ionizing radiation and potential nephrotoxicity from contrast media remain significant

concerns, particularly in patients with renal impairment or iodine allergies [53].

MRA (Figure 2.9) serves as a powerful alternative for evaluating carotid atherosclero-

sis, offering high soft-tissue contrast without ionizing radiation. Utilizing various pulse

sequences such as time-of-flight (TOF) and contrast-enhanced MRA, this modality en-

ables precise characterization of plaque composition, including the identification of lipid

cores, fibrous caps, and intraplaque hemorrhage. Moreover, the advent of black-blood

MRI techniques has further enhanced the detection of high-risk plaque features, such as
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Figure 2.7: Carotid DUS - information provided by the Color Doppler study
[54]

Figure 2.8: CTA showing right severe carotid bulb stenosis with deep plaque ulceration
A, Axial source image. B, Sagittal reformat. C, 3D rendered image (large arrow, stenotic ICA; dashed arrow,

bulb plaque ulcer; small arrow, proximal ECA)

[55]
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neovascularization and inflammation. Despite these advantages, MRA is constrained by

longer acquisition times, motion artifacts, and contraindications in patients with certain

metallic implants or gadolinium-based contrast agent allergies [56, 53].

Figure 2.9: MRA standardized protocol in patients with potential carotid stenting indications
A: ICA stenosis identified on TOF-MRA; B: The three imaging characteristics, including differences in the

opacification grades of bilateral ophthalmic arteries and the signal intensities and diameters of bilateral

petrous ICA, were evaluated. An angulation for further DSA was calculated to avoid discrepancy between

operators; C: Digital Subtractive Angiography (DSA) was performed based on the previously acquired

angulation.

[57]

Emerging imaging techniques such as high-resolution vessel wall imaging, positron

emission tomography (PET)-MRI hybrid imaging, PET-CT (Figure 2.10) and advanced ul-

trasound elastography are under investigation for their potential to improve plaque vul-

nerability assessment. These modalities aim to enhance risk prediction beyond traditional

luminal stenosis quantification by providing insights into plaque biology, inflammation,

and mechanical properties [53].

Each imaging technique plays a critical role in modern diagnostic workflows, with the

choice of modality contingent on clinical indications, patient-specific factors, and institu-

tional resources. A multimodal imaging approach, integrating complementary strengths

of these techniques, may ultimately offer the most comprehensive assessment of carotid

atherosclerosis and stroke risk stratification.

2.7 Therapeutic management

The therapeutic management of carotid disease encompasses both conservative and

interventional approaches, with the selection of treatment strategies contingent upon

the severity of arterial involvement, symptomatology, and individual patient risk factors.

Conservative management, which includes pharmacological therapy and lifestyle modi-

fications, serves as the foundation of care, aiming to mitigate disease progression and
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Figure 2.10: Increased uptake of 18F-FDG (arrows) in LICA plaque on PET/CT scan
Suggestive of acute inflammation

A:Coronal plane; B: Axial plane.

[58]

reduce the overall cardiovascular risk burden. In cases where conservative measures are

insufficient, particularly in patients with significant stenosis or symptomatic presenta-

tions, interventional procedures such as CEA or CAS may be warranted. The distinction

between symptomatic and asymptomatic patients is of critical importance, as it informs

the therapeutic decision-making process, ensuring that interventions are tailored to op-

timize clinical outcomes while minimizing procedural risks.

1. Conservative management involves antihypertensive therapy aimed at achieving

optimal blood pressure control, with target values of ≤140/90 mmHg, except for

patients with DM or kidney disease, in whom blood pressures should be ≤130/80

mmHg. Concurrently, lipid-lowering treatment, predominantly utilizing statins, is

employed to reduce LDL cholesterol levels to ≤100 mg/dL. This approach is often

complemented by measures to decrease triglyceride concentrations to <150 mg/dL

and elevate HDL cholesterol levels to > 40 mg/dL. In addition to pharmacologi-

cal interventions, lifestyle modifications such as regular physical activity, smoking

cessation, weight reduction, and adherence to a balanced and nutritious diet are

integral components of comprehensive cardiovascular risk reduction strategies.

2. Interventional treatment

(a) CEA - Carotid Endarterectomy

A longitudinal incision is made along the anterior aspect of the neck to pro-

vide access to the affected carotid artery. Following meticulous dissection and

vascular control, the artery is longitudinally arteriotomized, and the athero-

matous plaque is carefully excised to restore luminal patency and optimize

cerebral perfusion (Figures 2.11, 2.12). Subsequent to plaque removal, the

arteriotomy is closed using primary suturing or augmented with a patch graft,

which may be composed of autologous venous tissue or synthetic material, to

reduce the risk of restenosis and maintain hemodynamic stability.
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Figure 2.11: Illustration of LCEA procedure
[59]

Figure 2.12: CEA - Plaque and shunt
The yellow plaque is visible inside the opened CCA and ICA as well as the inserted shunt for brain

vascularization.

[60]
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(b) CAS - Carotid Artery Stenting

A minimally invasive procedure typically performed under local anesthesia with

mild sedation. It involves inserting a catheter (Figure 2.13), usually via the

femoral artery, to navigate to the carotid artery under fluoroscopic guidance.

An embolic protection device is placed to prevent debris from reaching the

brain. A self-expanding stent is then deployed across the stenotic lesion to

restore blood flow, often followed by balloon angioplasty to optimize stent ex-

pansion. The procedure concludes with the removal of the protection device

and catheter, with post-procedural monitoring to ensure stability.

Figure 2.13: Prior and Post CAS procedure illustration
A: Prior CAS; B: CAS performed, catheter inserted; C: Post CAS

[61]

The discussion on carotid revascularization, particularly the comparison between CEA

and CAS, remains a pertinent subject in vascular surgery. CEA has long been established

as a reliable intervention for symptomatic patients with significant stenosis, demonstrat-

ing substantial benefits in stroke prevention. In contrast, CAS is increasingly considered

as an alternative, especially for patients deemed high risk for open surgical procedures.

According to the latest European Society for Vascular Surgery (ESVS) guidelines (Fig-

ure 2.14), the choice between these techniques should be tailored to individual patient

characteristics, including comorbid conditions, anatomical considerations, and overall

risk profile. The chromatic differentiation of the rectangular enclosures corresponds to

the strata of evidentiary support within the ESVS clinical practice recommendations, as

delineated in Figure A.1 of the Supplementary Materials. The algorithmic framework em-

ploys data derived from diagnostic imaging modalities, quantifies the severity of luminal

stenosis, and incorporates patient age as critical parameters. The AHA atherosclerotic

plaque classification (Table A.3) provides an additional layer of diagnostic detail, helping to

characterize plaque morphology, which can further inform the choice of revascularization

strategy. It is imperative to acknowledge that the stenosis grading within this algorithm

adheres to the North American Symptomatic Carotid Endarterectomy Trial (NASCET)
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methodology. The principal algorithms employed for the quantification of carotid artery

stenosis are tabulated in Table 2.1, while a schematic representation of the measurement

loci is provided in Figure 2.15. The core tenets of the ESVS management framework can

be synthesized as follows:

• Patients exhibiting significant carotid stenosis, defined as exceeding 60% in asymp-

tomatic individuals and 50% in symptomatic individuals, are candidates for invasive

intervention. CEA is generally favored over stenting in these cases.

• Asymptomatic patients of advanced age, specifically those whose age is within five

years of their estimated life expectancy, are typically managed conservatively via

medical therapy, rather than undergoing interventional procedures.

• Individuals, regardless of symptomatic presentation, who present with complete

arterial occlusion are managed pharmacologically, owing to the elevated risk of

perioperative complications associated with interventional approaches.

Figure 2.14: Management of "average risk" patients with asymptomatic and symptomatic
carotid stenoses with BMT, CEA, and/or CAS

[11]

In 2024, the Carotid Plaque-RADS score was introduced [63], a classification system

for carotid plaque and its defining characteristics. Plaque-RADS constitutes a stan-

dardized and robust framework for the characterization and reporting of carotid plaque

composition and morphology across various imaging modalities, including US, CTA, and

MRA. This scoring system holds significant potential for improving the stratification of

patients, facilitating the accurate identification of individuals who may benefit from con-

servative medical management as opposed to those necessitating alternative therapeutic

approaches. The adoption of a uniform lexicon and structured reporting format is poised

to enhance interdisciplinary communication between radiologists and referring clinicians.

As shown in Figure 2.16, the Plaque-RADS flowchart guides the classification process

based on various imaging findings and risk factors, including plaque characteristics such

as wall thickness and the presence of a lipid-rich necrotic core (LRNC) or fibrous cap (FC).
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Figure 2.15: Carotid stenosis measurement loci
[62]

Further, Figure 2.17 provides a schematic representation of the different Plaque-RADS

categories, highlighting critical plaque components such as LRNC, maximum wall thick-

ness (MWT), and the integrity of the fibrous cap, all of which influence the risk stratifica-

tion for cerebrovascular events.

The detailed categorization of plaque types and their corresponding risks is summa-

rized in Table 2.2. As outlined in the table, plaques with a higher Plaque-RADS score,

such as scores 4a, 4b and 4c, correlate with increased risk for cerebrovascular events,

especially when complicated features such as IPH, ruptured fibrous cap, or intraluminal

thrombus are present.
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Figure 2.16: Plaque-RADS Flowchart
[63]

Figure 2.17: Schematic representation of Plaque-RADS categories
LRNC: lipid-rich necrotic core.

MWT: maximum wall thickness.

[63]
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Algorithm Definition Reference Point

NASCET
A − B

A
× 100 Distal ICA

ECST
C − B

C
× 100 Estimated original diameter

at stenosis site

CC
D − A

D
× 100 CCA

Table 2.1: Carotid Artery Stenosis calculation algorithms
A, B, C and D as illustrated in Figure 2.15

A: Diameter of normal distal ICA beyond the bulb where the artery walls are parallel.

B: Luminal diameter at the site of maximal narrowing.

C: Diameter of estimated original width of the ICA at the site of maximal narrowing.

D: Diameter of normal CCA proximal to the bulb where artery walls are parallel.

Plaque-RADS
Score

Attributable Risk of Ipsilateral
Cerebrovascular Events

Imaging Findings

1 Absent Normal vessel wall

2 Low MWT < 3 mm

3 Moderate MWT ≥ 3 mm or Healed ulcerated plaque

3a Moderate LRNC with intact thick FC (MWT ≥ 3 mm)

3b Moderate LRNC with thin FC (MWT ≥ 3 mm)

3c Moderate Healed ulcerated plaque

4 High Complicated plaque (irrespective of MWT)

4a High IPH

4b High Ruptured FC

4c High Intraluminal thrombus

Ancillary features: inflammation, neovascularization, positive plaque remodeling, plaque progression,

calcifications. Modifiers: limited diagnostic study (“L”), presence of a stent (“Stent”), previous carotid

endarterectomy (“CEA”).

FC = fibrous cap; IPH = intraplaque hemorrhage; LRNC = lipid-rich necrotic core; MWT = maximum wall

thickness; RADS = reporting and data system.

Table 2.2: Summary of Plaque-RADS categorization
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Deep Learning

D
eep Learning (DL), a subset of Machine Learning (ML), has evolved into one of the

most transformative fields in Artificial Intelligence (AI), demonstrating remarkable

capabilities across a vast range of applications. Initially developed for tasks such as image

recognition and natural language processing (NLP), DL has now permeated nearly every

aspect of modern technology, from personalized recommendations in e-commerce to au-

tonomous decision-making in critical sectors such as finance, healthcare, and defense.

Large Language Models (LLMs), exemplified by systems like ChatGPT, have revolution-

ized human-computer interaction, enabling sophisticated natural language understand-

ing and generation. The rapid proliferation of DL-based systems has not only reshaped

industries but has also extended into areas of geopolitical significance, such as military

technology, where AI-driven systems enhance surveillance, automate decision-making in

warfare, and even control autonomous drones. What was once a niche field within com-

puter science is now a ubiquitous presence, often used as a marketing term to signal

innovation. This widespread adoption identifies both the potential and the challenges of

deep learning, as it continues to drive advancements in science and society, while raising

ethical and regulatory concerns. In response to these rapid developments, regulatory

frameworks such as the EU AI Act [64, 65] have been introduced to establish guide-

lines for transparency, accountability, and risk mitigation in AI systems, particularly in

high-risk domains like healthcare and defense. Similarly, in the United States, evolving

policies, including the Blueprint for an AI Bill of Rights [66] and executive orders on AI

governance, aim to balance innovation with safeguards against bias, misuse, and privacy

violations. As DL systems become increasingly embedded in critical infrastructure and

decision-making, these regulations highlight the need for responsible development and

deployment of AI technologies.

DL represents a specialized branch of ML that distinguishes itself through the use

of artificial neural networks (NNs), particularly deep architectures capable of hierarchi-

cal feature extraction. Unlike traditional ML approaches that often rely on handcrafted

features and domain-specific preprocessing, DL models autonomously learn intricate

patterns from raw data, making them highly effective for complex tasks such as im-

age analysis, speech recognition, and natural language processing. Within the broader

ML landscape, DL stands apart from classical methods like decision trees, support vector

machines, and linear regression, which typically require explicit feature engineering and
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perform optimally with structured data. DL can be further categorized into architectures

such as Convolutional Neural Networks (CNNs) for spatial data processing, Recurrent

Neural Networks (RNNs) and Transformers for sequential data modeling, and Generative

Adversarial Networks (GANs) for synthetic data generation. These models have propelled

advancements across numerous disciplines, including medical diagnostics, autonomous

systems, and high-stakes decision-making. The increasing computational power and

availability of large-scale datasets have fueled DL’s dominance, further blurring the lines

between human and artificial cognition in problem-solving.

This chapter presents a comprehensive review of the application of deep learning (DL)

in healthcare, with a particular focus on carotid disease and carotid atherosclerosis.

3.1 Deep Learning in Medical Imaging

It is irrefutable that DL has profoundly reshaped the landscape of the healthcare do-

main, offering novel capabilities and generating new knowledge that has the potential to

enhance clinical practice. Even its most ardent critics acknowledge the profound impact

DL has had on various aspects of medical research and patient care. However, despite its

demonstrated potential, a segment of clinicians and medical professionals remains highly

skeptical regarding the integration of AI and DL in healthcare, particularly in the fields of

medical imaging and Clinical Decision Support Systems (CDSS). Their concerns primarily

revolve around issues of interpretability, reliability, ethical considerations, and the poten-

tial risks associated with over-reliance on AI-driven models. These reservations highlight

the need for rigorous validation, transparent methodologies, and interdisciplinary collab-

oration to bridge the gap between technological advancements and clinical acceptance,

ensuring that AI-driven solutions are both scientifically robust and clinically applicable.

The integration of DL into medical imaging has catalyzed transformative advance-

ments across diagnostic and prognostic workflows, enabling analysis of anatomical and

functional data with unprecedented precision. These methodologies now permeate di-

verse clinical specialties through architectures optimized for modality-specific challenges,

addressing both quantitative analysis and qualitative interpretation needs. CNNs and

transformer-based architectures have become indispensable in neurological imaging, par-

ticularly for neurodegenerative conditions such as Alzheimer’s disease. Sophisticated

pipelines analyze structural MRI data to detect early volumetric changes in hippocampal

regions and cortical thinning, achieving diagnostic accuracies that rival expert neurora-

diologists [67, 68]. Cardiac imaging benefits from automated segmentation networks that

quantify ventricular mass, ejection fraction, and wall motion abnormalities in MRI/CT

scans, reducing inter-observer variability in critical measurements.

Beyond diagnostics, DL streamlines operational workflows through automated re-

port generation systems that synthesize imaging findings with structured clinical data

[69]. However, widespread adoption hinges on addressing inherent limitations, partic-

ularly the "black box" nature of complex models. Recent efforts prioritize explainability

through saliency maps and attention visualizations, which highlight diagnostically rel-

evant image regions to foster clinician trust. While foundational models pretrained on
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multi-institutional datasets show promise for few-shot learning in rare diseases, clini-

cal translation remains constrained by ethical considerations surrounding data privacy

and algorithmic bias. Ongoing research focuses on lightweight architectures deployable

in resource-limited settings without compromising diagnostic accuracy, alongside syn-

thetic data generation techniques to overcome annotation scarcity in specialized domains

[70, 71].

3.2 Data Constraints in Deep Learning for Healthcare

While the primary aim of this chapter is not to provide an overview of DL fundamen-

tals, it is nonetheless important to acknowledge one of the central challenges that often

arises in this field namely, the scarcity of high-quality, annotated data. This limitation

is particularly pronounced in scientific and medical research domains, where data ac-

quisition is not only resource-intensive but also subject to strict ethical and procedural

constraints. Given that our research is directly confronted with this issue, it is essential

to critically examine and reflect on the strategies that have been proposed in the literature

to mitigate the effects of limited data availability. A thorough evaluation of these method-

ologies will inform the development of robust, generalizable models within the constraints

of real-world data scarcity.

It is well known that substantial amounts of data are required by DL models to achieve

optimal performance and generalizability. However, in medical imaging applications,

particularly for specialized conditions like carotid atherosclerosis, acquiring large, well-

annotated datasets presents significant challenges. As a result, DL models in this domain

are often developed under data-scarce conditions, which introduces a host of limitations.

These include:

• Class Imbalance

Medical datasets are frequently marked by pronounced class imbalance; however,

the direction and severity of this imbalance are highly context dependent. While

it is often the case that pathological or positive cases are outnumbered by healthy

controls, particularly in large-scale screening or population studies this assump-

tion does not hold uniformly across all clinical applications. In carotid plaque

assessment, for instance, our dataset exhibits a predominance of high-risk, vulner-

able plaques, with comparatively fewer low-risk samples. This reversed imbalance

presents its own set of methodological challenges, including the risk of biased model

optimization and reduced generalizability to underrepresented classes. It necessi-

tates the careful selection of training strategies and evaluation metrics that are

sensitive to such skewed distributions, ensuring that the model remains robust

across the full spectrum of clinical presentations.

• Overfitting and Poor Generalization

When training deep NNs on limited data, models tend to memorize the training

examples rather than learning generalizable patterns, resulting in excellent perfor-
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mance on training data but poor performance on unseen examples. This is par-

ticularly problematic in medical applications where generalization across different

patient populations, imaging equipment, and acquisition protocols is essential for

clinical deployment.

• Limited Representation of Pathological Diversity

Small datasets often fail to capture the full spectrum of pathological variations,

potentially biasing models toward common presentations and limiting their ability

to identify rare but clinically significant manifestations of disease.

3.3 Handling imbalanced dataset strategies

Given the prevalence and complexity of class imbalance in medical imaging, especially

under data-constrained conditions, the development and application of robust strategies

to mitigate its impact is of paramount importance. The disproportionate representation

of clinical categories whether skewed toward healthy controls or favoring pathological

instances can lead to biased model performance, reduced sensitivity to minority classes,

and compromised clinical utility. This section surveys the methodological approaches

that have been proposed to address these challenges.

3.3.1 Data-Level Approaches

At the data level, the most widely adopted strategies involve resampling techniques

aimed at rebalancing the dataset either by oversampling the minority class or undersam-

pling the majority class (Figure 3.1).

Figure 3.1: Oversampling and Undersample schematic
[72]

Oversampling methods, such as the Synthetic Minority Over-sampling Technique

(SMOTE), generate synthetic examples of the minority class by interpolating between ex-

isting samples. While these methods can enhance model sensitivity to underrepresented

classes, they risk introducing noise and artificial correlations.

Conversely, undersampling methods reduce the size of the majority class to match

the minority class. Though this approach helps mitigate class dominance, it may result

in the loss of valuable information, especially when the majority class contains clinically

important heterogeneity.
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Hybrid approaches combining both techniques have also been explored to strike a

balance between data efficiency and representational fidelity.

3.3.2 Algorithm-Level Approaches

Beyond manipulating the data distribution, algorithmic strategies modify the training

process to account for imbalance. One common technique involves the use of cost-

sensitive learning, where higher penalties are assigned to misclassified minority class

instances. This is typically achieved by incorporating class weights into the loss function,

such as weighted cross-entropy, thereby encouraging the model to prioritize minority

class accuracy.

Another class of methods includes focal loss functions, which dynamically adjust the

contribution of each sample to the total loss based on prediction difficulty. By down-

weighting easy-to-classify examples, focal loss enhances the learning signal from hard,

and often underrepresented, instances.

Additionally, ensemble methods, such as boosting and bagging, have been adapted

for imbalanced settings. These approaches train multiple models on varied data subsets

and aggregate their predictions, improving robustness to class imbalance and reducing

variance in performance across classes. This approach involves partitioning the dataset

into m equivalent and balanced subsets. To achieve this, it may be necessary for certain

samples to be included in more than one subset. Subsequently, a distinct model is trained

on each of the m subsets, such as m classifiers in the case of a classification task. The

final prediction is then obtained by aggregating the outputs of the m models through an

appropriate ensemble method. Bagging can be used effectively to address class imbalance

by generating balanced subsets from the original dataset (Figure 3.2), as demonstrated

in prior studies on carotid artery ultrasound classification [73].

Boosting algorithms operate by initially assigning uniform weights to all training in-

stances and iteratively refining the model by adaptively reweighting the training data. In

each successive iteration, greater emphasis is placed on instances that were misclassified

in previous rounds, thereby directing the model’s attention toward harder-to-classify ex-

amples. The final predictive outcome is derived through an ensemble strategy, typically

involving a weighted or majority voting scheme across the constituent models. Notable

representatives of this class include algorithms such as Adaptive Boosting (AdaBoost) and

Extreme Gradient Boosting (XGBoost).

Figure 3.2: Training set division into balanced subsets
[73]
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3.4 Evaluation Considerations

An essential aspect of model evaluation in imbalanced classification tasks is the selec-

tion of appropriate performance metrics. Conventional metrics, such as overall accuracy,

often provide an inflated sense of performance by disproportionately reflecting correct pre-

dictions of the majority class, thereby masking poor sensitivity to minority class instances

that may hold substantial clinical importance. To obtain a more detailed and equitable

assessment of model efficacy, alternative metrics are preferred, including precision, recall,

F1-score, area under the curve (AUC), and the Matthews Correlation Coefficient (MCC).

Terms

• TP (True Positives): Correctly predicted positive cases.

• TN (True Negatives): Correctly predicted negative cases.

• FP (False Positives): Negative cases incorrectly predicted as positive.

• FN (False Negatives): Positive cases incorrectly predicted as negative.

Accuracy

Accuracy quantifies the proportion of correctly classified instances across both positive

and negative classes. However, in imbalanced datasets, it may yield misleadingly high

values, as it fails to account for class distribution. For instance, if all samples are assigned

to the majority class, the metric will still indicate strong performance despite the model’s

inability to distinguish between classes.

Accuracy =
TP + TN

TP + TN + FP + FN
(3.1)

Balanced Accuracy

Similar to accuracy, balanced accuracy evaluates the correctness of sample classi-

fications. However, unlike standard accuracy, it is particularly suited for imbalanced

datasets, as it provides a more reliable and representative assessment of model perfor-

mance by accounting for class distribution disparities.

Balanced Accuracy =
1

2

( TP

TP + FN
+

TN

TN + FP

)
(3.2)

Precision

Precision is a performance metric that measures the accuracy of positive predictions

made by a model. A high precision indicates that when the model predicts a positive

outcome, it is likely to be correct. This is particularly important in scenarios where false

positives can have significant negative consequences.

Precision =
TP

TP + FP
(3.3)
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Sensitivity (Recall)

Sensitivity, also known as Recall, is a performance metric that measures the ability

of a model to correctly identify all relevant instances of a particular class. A high recall

value indicates that the model is good at detecting positive instances and minimizing false

negatives.

Sensitivity =
TP

TP + FN
(3.4)

Specificity

Specificity is a metric that measures the ability of a model to correctly identify negative

instances. A high specificity means that the model is effective at avoiding false positives,

which is important in cases where incorrectly classifying a negative case as positive could

have significant consequences.

Specificity =
TN

TN + FP
(3.5)

F1-Score

The F1 score is the harmonic mean of the precision and recall. It thus symmetrically

represents both precision and recall in one metric.

F1-Score = 2 ·
Precision · Recall

Precision + Recall
=

2TP

2TP + FP + FN
(3.6)

Area Under the Curve (AUC)

The Area Under the Receiver Operating Characteristic Curve (AUC) is a widely used

metric for evaluating the performance in binary classification problems. It quantifies

the ability of the model to discriminate between positive and negative classes across all

possible classification thresholds.

AUC =

∫
1

0

TPR(FPR), d(FPR) (3.7)

Matthews Correlation Coefficient (MCC)

MCC produces a high score only when the prediction correctly classifies a high per-

centage of both positive and negative instances, regardless of their proportions in the

dataset. Unlike accuracy and F1 score, which can show inflated and overoptimistic re-

sults on imbalanced data, MCC provides a more truthful assessment of classification

performance. As a correlation coefficient between targets and predictions, MCC ranges

from -1 (perfect disagreement) to +1 (perfect agreement), with 0 indicating random pre-

diction. This directional quality makes it particularly valuable when dealing with severe

class imbalances where other metrics might fail to provide meaningful insights
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MCC =
TP · TN − FP · FN

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(3.8)

3.5 Applications on Carotid Atherosclerosis

Carotid atherosclerosis, as analyzed in detail in Chapter 2, is a highly complex mul-

tifactorial process. Thus, DL has found wide application, as in many other diseases in

healthcare and diagnostics domains. While in the past cardiovascular surgeons and clin-

icians would evaluate surgery criteria solely on stenosis, the latest research evidence on

atherogenesis process and DL capabilities provide them further information that they can

evaluate.

Atherorisk [74], a standalone integrated computer software system for the analysis

of carotid B-mode ultrasound images and videos was proposed in 2025. The objective

of this work was to develop a tool designed to assist clinicians in the stratification of

stroke risk. AtheroRisk integrates the analysis of US images and/or videos of the carotid

arteries, enabling comprehensive processing workflows that include anonymization, stan-

dardization, noise reduction, and plaque segmentation. Subsequent stages involve the

extraction of both image-based and motion-derived features to assess plaque composi-

tion and stability. These processes are collectively employed to estimate the annual risk

of stroke and to predict the five-year stroke-free survival probability. The AtheroRisk

software incorporates a deep learning–based methodology for automated plaque segmen-

tation, leveraging a model adapted from Lou et al. [75]. While no further information is

provided about model adaptations, CFPNet-M architecture proposed by Lou et al. is a

light-weight encoder-decoder based network. The architecture demonstrates robust per-

formance on both region-based objects (such as tumors and plaques) and thin structures

(like vessels), making it particularly suitable for carotid plaque segmentation in ultra-

sound imagery where both boundary precision and computational efficiency are critical.

The architecture (Figure 3.3) consists of several key components:

• The core of CFPNet-M is the Channel-wise Feature Pyramid (CFP) module (Figure

3.4), which enables multi-scale feature extraction with reduced parameter count.

Each CFP module contains four Feature Pyramid (FP) channels with different dila-

tion rates (1, rk/4, rk/2, and rk), allowing the network to capture both local and

global contextual information simultaneously

• The network follows a simplified U-shape design that begins with three 3×3 convo-

lutional operators as the initial feature extractor, with the first operator using stride

2 for down-sampling. The encoder path contains two CFP module clusters (CFP-M-

1 and CFP-M-2) separated by average pooling layers for down-sampling. The first

cluster repeats the CFP module twice with dilation rates, while the second cluster

repeats it six times with progressive dilation rates

• In the decoder path, the network employs three deconvolutional operators with

stride 2, connected to the corresponding encoder stages via skip connections. Be-
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fore the decoder, resized input images are injected to provide additional feature

information. The final output is generated using a 1×1 convolution to activate the

feature map

Figure 3.3: Architecture of CFPNet-M
[75]

In [76], R.-M. Menchón-Lara et al. proposed a fully automated method for IMT seg-

mentation in CCA US images, aimed at enabling accurate and reproducible IMT measure-

ment. The approach employs a deep architecture grounded in extreme learning machines

(ELMs) and stacked auto-encoders to segment the IMT in a user-independent and repeat-

able manner. An ELM-Auto Encoder (Figure 3.6) provides a compressed representation

of input image blocks at its hidden layer output to improve the classification perfor-

mance. Two different multilayer ELM-AE produce sparse coding of the input patterns

at the output of their second hidden layer (Figure 3.7). Then, the union of the learned

representations is classified for the recognition of the arterial layers. By mimicking the

manual protocol typically followed by clinical experts, the model detects the far wall of the

CCA, classifies arterial layers, and extracts the lumen-intima (LII) and media-adventitia

(MAI) interfaces. Quantitative evaluations over 67 CCA ultrasound images demonstrated

a high degree of concordance between automated and ground-truth segmentations, with

IMT measurement differences of 5.8 ± 34.4µm.

In [77], multiple deep learning architectures were compared, including YOLO V7 and

Faster RCNN, for detecting and classifying carotid plaques as either vulnerable or stable.

After thorough evaluation, the Faster RCNN model with ResNet-50 backbone emerged as

the top performer, achieving an accuracy of 0.88, sensitivity of 0.94, specificity of 0.71,

and AUC of 0.91. These results significantly outperformed other tested models, with

diagnostic capabilities approaching that of intermediate-level physicians.
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Figure 3.4: Architecture of (a) Original CFP module (b) CFP module
[75]

Figure 3.5: A highly discordant carotid plaque in the AtheroRisk Software
Motion analysis computational pathway used

Analyzed video frame corresponding to cardiac middle systole

Selection of the middle systole is given in an intermediate orange line (top right)

[74]
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Figure 3.6: ROI (far wall of the artery) detection in CCA US
[76]

Figure 3.7: Deep-architecture designed for the LII and MAI segmentation.
[76]
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Chapter 4

Multimodal Learning

I
n recent years, the integration of information across multiple data sources, be they

visual, auditory, textual, or physiological has emerged as a central theme in ML

research. Multimodal learning (MML), at its core, seeks to develop models that can ef-

fectively harness complementary signals/data from diverse modalities to enhance un-

derstanding, prediction, and decision making. This approach mirrors human cognition,

where meaning is often constructed not from a single sensory input but from the interplay

of several. For example, in medical diagnostics, a clinician might interpret a radiological

image in the context of a patient’s symptoms and history, rather than in isolation.

The most recent systematic review available at the time of writing [78] examined 97

studies spanning 12 medical specialties, each comparing multimodal and unimodal ma-

chine learning approaches for clinical decision-making. The analysis demonstrated that

multimodal models outperformed their unimodal counterparts in 91% of cases. Notably,

the most frequent form of data fusion involved the combination of tabular data and med-

ical images, accounting for 67% of the studies. The review also found no significant

association between sample size and model performance, indicating that the effective in-

tegration of complementary data modalities may be more critical to predictive accuracy

than the overall quantity of data.

Current methods for carotid plaque risk stratification rely heavily on either imaging

or clinical data, often analyzed independently. Traditional metrics such as the degree of

stenosis are widely used but fail to account for critical factors like plaque composition

and biological activity [79]. Recent advancements in computational techniques, including

machine learning and deep learning, have introduced novel frameworks for integrating

imaging and clinical features to enhance risk prediction. Despite these advancements,

challenges such as data heterogeneity, limited interpretability, and the need for robust

validation persist. This section reviews existing approaches, highlighting their contribu-

tions, limitations, and the gaps that motivate the development of the proposed multimodal

fusion framework.

4.1 Data Fusion Strategies

Multimodal data fusion techniques aim to leverage the complementary strengths of

diverse data types to improve models accuracy and predictive performance. Common ap-
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proaches include early fusion, where raw data are combined before feature extraction, and

late fusion, where outputs of modality-specific models are integrated [80]. Hybrid fusion

strategies, which combine elements of both approaches, have shown promise in address-

ing the limitations of individual modalities. Figure 4.1 presents a schematic overview of

the principal MML fusion strategies, offering a conceptual comparison of their distinct

mechanisms. Complementarily, Figure 4.2 depicts representative model architectures

corresponding to each fusion approach, highlighting their structural and operational dif-

ferences. This section explores the theoretical foundations and practical applications of

multimodal data fusion.

MML Fusion Strategies

Early fusion Late fusion
Intermediate

fusion
Hybrid fusion

Figure 4.1: MML fusion strategies

Early Fusion

Early fusion denotes the integration of multiple modalities at the initial input stage

of a model. The principal advantage of this approach lies in its simplicity and efficiency:

it obviates the need for modality-specific preprocessing pipelines by merging all input

sources into a unified representation prior to modeling. This consolidated input is then

processed jointly by the learning algorithm. However, a notable limitation of this strategy

is that raw inputs may lack high-level semantic abstraction. As a result, the model

may struggle to capture subtle interactions across modalities, thereby constraining the

potential performance gains typically associated with multimodal learning. Early fusion

is best suited for modalities with similar structure and dimensionality, but less effective

for heterogeneous data types as in our case of combining US images with clinical tabular

data.

While early fusion is often referred to as a single strategy, it can actually take different

forms depending on how the data is aligned, preprocessed, and merged. The choice of

fusion operator depends on the data types, registration quality, and the specific applica-

tion domain. Some of the following fusion strategies can be deployed in Intermediate or

Hybrid fusion schemes.

1. Concatenation-Based Fusion

The most common approach in which features or raw data from different modalities

are concatenated into a single feature vector or tensor, which is then fed into the

model as input

2. Statistical Fusion

Combines features using statistical operations like averaging, max pooling, or sum

pooling instead of concatenation. It can be considered when the feature dimensions
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are aligned.

3. Tensor-based Fusion

Combines features from multiple modalities using tensor algebra, especially the

outer product of feature vectors. This captures higher-order interactions between

modalities that simple concatenation can’t represent.

4. Merge-Based (Pixel/Voxel-Level) Fusion

Data from different modalities are merged at the pixel or voxel level, creating a new

composite image or volume that is used as the model input.

5. Domain-Specific Fusion Methods

Particularly effective in fields such as medical imaging, remote sensing, and surveil-

lance, where the modalities often share a spatial structure but differ in spectral,

temporal, or physical properties.

(a) Spatial Fusion

Operates directly at the pixel level by combining raw input images through

operations such as weighted averaging or channel-wise concatenation. While

it preserves fine-grained spatial detail, it is highly sensitive to misalignment

between modalities and can lead to spectral degradation or color distortion

(b) Frequency Fusion

Transforms input data into the frequency domain using tools like the Fourier

Transform or Wavelet Decomposition, allowing fusion of specific frequency

bands (e.g., low-frequency structural information or high-frequency details).

This method helps mitigate some of the spatial limitations of pixel-based fu-

sion but may compromise spatial resolution and introduce complexity in band

selection.

(c) Sparse Representation Fusion

Learning a sparse dictionary for each modality and fusing them in the sparse

coefficient space. This approach emphasizes the most informative features and

results in compact representations. However, it is sensitive to noise, registra-

tion errors, and may struggle to preserve fine visual details

Late Fusion

Late fusion more closely resembles the architecture of ensemble learning, wherein

each modality is processed independently through its own dedicated model. Rather than

combining information at the input level, this approach defers integration until after each

modality has undergone separate, modality-specific processing.

In its basic form, late fusion involves employing relatively simple models for each

input type. The outputs typically in the form of predictions or confidence scores are sub-

sequently aggregated using decision-level techniques such as majority voting, weighted
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summation, or averaging of individual model outputs. This final aggregation yields the

ultimate prediction of the system.

This strategy offers the advantage of allowing each model to specialize in its respective

modality, potentially capturing unique patterns and structures that might be diluted in

early fusion approaches. However, its effectiveness is highly contingent upon the quality

of the individual models and the appropriateness of the fusion mechanism employed

during the final decision-making stage.

Intermediate Fusion

Intermediate fusion (or joint fusion) represents a middle-ground approach where fea-

tures from different modalities are processed separately, combined at an intermediate

representation level, and then further processed before making a final decision. Unlike

early fusion which combines raw data or late fusion which delays integration until after

independent processing, intermediate fusion leverages modality-specific pre-processing

while still allowing for meaningful cross-modal interactions.

Intermediate fusion can be further categorized into three subtypes:

1. Single-level fusion, which combines features at a specific layer.

2. Hierarchical fusion, which integrates features across multiple levels of abstraction.

3. Attention-based fusion, which dynamically weighs the importance of different

modality features.

The effectiveness of intermediate fusion has been empirically demonstrated across var-

ious domains, with studies showing significant performance improvements over unimodal

approaches and other fusion strategies, particularly in tasks requiring sophisticated in-

terpretation of complementary information sources.

Figure 4.2: Model architecture for different fusion strategies
[81]
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Hybrid Fusion

Hybrid fusion constitutes a holistic strategy that deliberately combines various fusion

techniques at distinct phases within the processing pipeline. Rather than relying exclu-

sively on early, intermediate, or late fusion, hybrid fusion combines these strategies to

leverage their respective strengths while mitigating their individual limitations. A typi-

cal implementation might involve combining text and image features at an intermediate

stage, further processing the integrated representation, and then combining these results

with outputs from unimodal methods at a later decision stage.

4.2 Applications on Biomedical Data

In biomedical research, the integration of data from multiple sources has become

increasingly important for achieving comprehensive understanding of complex biological

processes and improving clinical outcomes. The literature reveals a clear trend toward so-

phisticated fusion strategies that preserve modality-specific information while effectively

capturing cross-modal interactions, with particular growth in applications spanning from

cancer diagnostics to single-cell analysis and medical imaging. According to a recent

scoping review examining multimodal AI applications across medicine, multimodal mod-

els consistently outperform their unimodal counterparts, with an average improvement

of 6.2 percentage points in AUC [82].

At NeurIPS 2024, Hemker et al. presented HEALNet (Hybrid Early-fusion Attention

Learning Network) [83], a multimodal method that uses both a shared and a modality-

specific parameter space to mutually contextualise all modalities. The central architec-

tural innovation (Figure 4.3) lies in HEALNet’s parallel utilization of shared and modality-

specific parameter spaces within an iterative attention framework. The model employs

a shared latent bottleneck array that progressively captures cross-modal information

through iterative updates, while simultaneously maintaining modality-specific attention

weights that preserve the structural integrity of individual data types. HEALNet’s design

addresses four critical limitations that have persistently challenged multimodal biomedi-

cal modeling.

1. The architecture preserves modality-specific structural information through dedi-

cated cross-attention layers with associated attention weights, while maintaining a

shared latent array across all modalities. This dual-parameter approach enables

the model to capture both the intrinsic characteristics of individual data types and

their interactive relationships.

2. Excels in learning cross-modal interactions by implementing an iterative update

mechanism. The shared latent array functions as a learned query that continuously

accumulates information from each modality, creating a contextual foundation for

subsequent modality integration.

3. Demonstrates remarkable robustness in handling missing modalities during both
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training and inference. The iterative design allows for selective omission of unavail-

able modalities without introducing significant noise to the model.

4. Incorporates interpretability as an inherent design feature rather than a post-hoc

addition. By learning directly from raw data inputs instead of opaque embeddings,

the model generates modality-specific attention weights that provide transparent

insights into its decision-making process.

Figure 4.3: Overview of HEALNet architecture
[83]

Holste et al. (2021) [84] investigated three distinct fusion approaches for integrating

MRI image-derived features with tabular clinical data in an end-to-end trainable frame-

work for breast cancer diagnosis. As illustrated in Figure 4.4, their work systematically

compared fusion strategies at different stages of the deep learning pipeline: Probability

Fusion (late fusion at the output prediction level), Feature Fusion (concatenating learned

image features with non-processed clinical variables), and Learned Feature Fusion (fus-

ing independently learned features from both modalities). Their experimental results on

10,185 breast MRI examinations demonstrated that all fusion methods significantly out-

performed unimodal approaches, with the Learned Feature Fusion architecture achieving

the highest performance (AUC of 0.898 compared to 0.849 for image-only and 0.807 for

non-image-only models).

Figure 4.4: Fusion Architectures for breast imaging and tabular data
Dashed boxes represent feature vectors, with the number inside representing the size of that vector.

FC − n: a fully-connected layer with n hidden units

ŷ: predicted probability of malignancy within the next 12 months

[83]

Duenias et al. (2025) proposed HyperFusion [85], a novel hypernetwork-based archi-
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tecture for fusing tabular and medical imaging data. As illustrated in Figure 4.5, the

model F = {Hφ, Pθ} comprises two key components:

1. Hφ: A hypernetwork (MLP) that generates sample-specific parameters for select

layers within the primary network based on the accompanying tabular data

Hφ is composed of K individual networks which generate parameters for specific

external layers of the primary network Pθ

2. Pθ: A primary network (CNN) responsible for image processing

Pθ is composed of internal layers which are updated throughout the backpropa-

gation process (yellow arrows in Figure 4.5) and external layers (marked in red in

Figure 4.5)

This dynamic conditioning allows the image-processing stream to adapt its compu-

tations in real time, guided by external contextual cues derived from the tabular data.

The dependency on tabular data is determined by the ratio between external and internal

parameters. The architecture was validated in brain MRI applications including brain

age prediction based on sex and Alzheimer’s classification where it demonstrated im-

proved generalizability and interpretability, particularly when data heterogeneity or class

imbalance was present.

Figure 4.5: HyperFusion Framework
Dashed boxes represent feature vectors, with the number inside representing the size of that vector.

FC − n: a fully-connected layer with n hidden units

ŷ: predicted probability of malignancy within the next 12 months

internal layers backpropagation update in yellow arrows

external layers are marked in red

[85]
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Dataset

T
he dataset comprises a collection of carotid ultrasonographic data, supplemented

by comprehensive clinical and laboratory parameters derived from patients di-

agnosed with carotid artery disease. The dataset originates from the research project

coded 09SYN-12-1054, titled "The Atherosclerotic Plaque in the Carotid Artery: A Mul-

tidisciplinary Approach for Optimizing Management in Symptomatic and Asymptomatic

Patients", which was funded under the "Competitiveness and Entrepreneurship" Pro-

gramme (NSRF 2007–2013). The study includes clinical data from patients examined at

the Vascular Surgery Department of the University General Hospital "Attikon" in Athens

between 2012 and 2015. Each subject within the cohort is systematically classified as

symptomatic or asymptomatic based on rigorously defined criteria.

Symptomatic status is operationally defined as the manifestation of clinically verifiable

symptoms, TIA, stroke, as presented in detail in Chapter 2, directly attributable to carotid

pathology within the preceding six-month period. The stratification scheme applied to our

dataset for categorizing patients based on plaque vulnerability into High-risk and Low-risk

groups is presented in Table 5.1. This scheme was used to guide subsequent analyses

and is defined as follows:

Patient Status Stenosis Degree Risk Category

Asymptomatic

< 50% -

50–69% Low

≥ 70% High

Symptomatic

< 50% Low

50–69% High

≥ 70% High

Table 5.1: Stratification scheme followed on patients cohort

High-Risk Category

The High-Risk cohort encompasses:

• Symptomatic patients with carotid artery stenosis ≥ 50%
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• Asymptomatic patients presenting with carotid artery stenosis ≥ 70%

Low-Risk Category

The Low-Risk category is a classification by exclusion, encompassing all cases that do

not meet the aforementioned high-risk criteria. For this patient population, the current

clinical consensus advises against invasive therapeutic approaches. The rationale behind

this recommendation is predicated on the efficacy of conservative management, primarily

through pharmacological interventions.

This dichotomization of patients into risk categories has significant implications for

clinical decision-making and patient management. The high-risk group necessitates a

more aggressive treatment approach, often involving surgical procedures, while the low-

risk group can be effectively managed through less invasive means. It is imperative to note

that this classification system is not static and should be subject to regular re-evaluation

based on emerging evidence and evolving clinical guidelines.

5.1 Imaging Data

The dataset consists of 96 DICOM B-mode ultrasound recordings of the carotid ar-

teries, acquired from a cohort of 83 distinct patients screened for carotid artery disease.

Each recording is associated with a unique patient identifier, with several patients con-

tributing multiple recordings. A sample of dataset is illustrated in Figure 5.1.

Figure 5.1: Carotid B-Mode US Sample of Dataset
A longitudinal view of patient’s RICA with significant stenosis.

All ultrasound acquisitions were conducted under a standardized imaging protocol

[86] designed to ensure both the reproducibility of arterial wall motion assessment and

consistency in the visualization of carotid atherosclerotic plaques across the dataset.

Each examination was performed with the subject in the supine position, with the head

slightly extended and rotated contralaterally to the side of interest, optimizing access to

the carotid artery. Prior to the commencement of each scan, a rest period of no less than
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five minutes was observed to allow stabilization of cardiovascular parameters, including

heart rate and blood pressure. To mitigate artifacts arising from extraneous movement or

tissue deformation, the ultrasound probe was applied with minimal pressure and max-

imal positional stability. Subjects were instructed to suspend respiration briefly during

the image acquisition phase to further suppress non-hemodynamic sources of motion.

Throughout the imaging sessions, ambient conditions were tightly regulated, maintain-

ing a constant room temperature of 26°C to reduce physiological variability attributable

to thermal influences.

The ultrasound system was configured according to the parameters detailed in Ta-

ble 5.2, which were selected based on prior literature evidence to ensure optimal image

quality and reliability in motion analysis. Gain, recognized as a user-dependent param-

eter, was meticulously adjusted to achieve low echogenicity within the vascular lumen,

rendering the blood pool dark and homogeneous, while simultaneously enhancing the

delineation of the vessel’s outer tunica. In each subject, the imaging plane was oriented

along the longitudinal axis of the carotid artery, specifically targeting the segment with

the greatest luminal diameter and the most distinct echogenic interfaces between the

anterior and posterior arterial walls. For patients with atherosclerotic disease, the re-

gion corresponding to the maximal degree of stenosis was preferentially selected. Each

acquisition sequence had a minimum duration of three seconds, which, based on the

temporal characteristics of the recordings, encompassed two to three complete cardiac

cycles, thereby enabling adequate sampling for dynamic vascular analysis.

Parameter Setting
Head Linear 3-12 MHz, General Electric

Image type B-mode

Depth 3.5-4 cm

Persistence 0

Gain 60 dB or 75 dB

CineRate ≥ 25 fps

Table 5.2: Ultrasound Device Settings for Data Collection
[86, 87, 88]

For each DICOM ultrasound file, a corresponding .mat file is provided (Figure 5.2),

containing regions of interest annotated by an experienced radiologist. Specifically, the

radiologist identified the lower (posterior wall-lumen interface, PWL) and upper (ante-

rior wall-lumen interface, AWL) boundaries demarcating the arterial wall and the lumen.

In cases where carotid atheromatosis was present, two additional structures were delin-

eated: the upper boundary of the atherosclerotic plaque (plaque top surface, PTS) and the

lower boundary (plaque bottom surface, PBS). It is important to note that, in sequences

depicting arterial walls affected by atheromatosis, the PWL and AWL annotations refer to

segments of the normal arterial wall adjacent to the plaque.

Deploying image segmentation techniques, regions corresponding to atherosclerotic

plaques were systematically extracted from the original frames. The final segmented

images, which serve as inputs for the subsequent models, exclusively represent the
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Figure 5.2: Annotations by radiologists contained in .mat files

atherosclerotic plaques. These images are rendered in grayscale, with intensity values

ranging from 0 to 255, and have a fixed resolution of 334 × 120 pixels. An example of

such an image is presented in Figure 5.3.

Figure 5.3: Segmented images of atherosclerotic plaque obtained from the same DICOM US
file
The upper image shows the atherosclerotic plaque during arterial contraction, while the lower image depicts

the same plaque during arterial dilation.

A series of exclusion criteria were applied to ensure the consistency and clinical rel-

evance of the final analytic cohort. Patient 141 was excluded due to the presence of

two separate ultrasound recordings, one for the left and one for the right carotid artery,

without a clear indication of the symptomatic side. Given the symptomatic status of

the patient and the lack of lateralization data, their inclusion would introduce ambigu-

ity in associating imaging features with clinical risk. Patient 111 was excluded due to

the complete absence of ultrasound video data, rendering the case unusable for image-

based analysis. Additionally, patients for whom no data were available regarding carotid

stenosis severity or symptomatic status were excluded to maintain the integrity of risk

stratification analyses. Finally, symptomatic patients exhibiting less than 70% stenosis,
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as measured by conventional imaging criteria, were excluded in alignment with standard

clinical thresholds, to focus the analysis on individuals with hemodynamically significant

lesions.

Within the initial cohort of 76 patients, 65 individuals (85.52%) were classified as high-

risk for adverse cardiovascular outcomes based on established clinical criteria, while 11

patients (14.47%) were designated as low-risk. Following the exclusion of cases with

incomplete or inconsistent metadata (Figure 5.4), the final analytic cohort comprises 73

patients meeting the inclusion criteria. Two representative frames were systematically

selected from each video: one corresponding to the arterial contraction phase (systole)

and the other to the dilation phase (diastole).

Multimodal Carotid Dataset

DICOM
96 records, 83 patients

Clinical Dataset
76 records, 76 patients

Blood Dataset
75 records, 75 patients

Protein Markers Dataset
73 records, 73 patients

Final Cohort: 84 records, 73 patients

Excluded:

• bilateral CAS with lack of indica-

tion of the symptomatic side

• lack of carotid stenosis data

• symptomatic patients with <70%

stenosis

Excluded:
PatientID: 155

Excluded:
PatientIDs: 80, 155, 186

65 High Risk, 19 Low Risk

Figure 5.4: Patient Cohort Flowchart
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5.2 Tabular Data

The dataset consists of multiple tabular modalities, encompassing a wide range of

physiological and biochemical characteristics. Specifically, hematological parameters

provide insights into systemic inflammation and metabolic status, while clinical vari-

ables encapsulate demographic, lifestyle, and medical history factors. Additionally, pro-

tein biomarkers offer mechanistic insights into the pathophysiological underpinnings of

atherosclerotic disease progression.

To facilitate structured analysis, the tabular data are organized into well-defined

categories, each contributing uniquely to the overall risk assessment framework. The

hematological dataset comprises complete blood count metrics, red and white blood cell

differentials, platelet indices, and key metabolic markers. Clinical variables include de-

mographic attributes such as age and sex, along with lifestyle factors and medication

usage, which are critical in understanding the broader context of cardiovascular risk.

The protein biomarker dataset includes inflammatory mediators, metalloproteinases, and

metabolic indicators, thereby complementing the other tabular data sources. The detailed

description of the individual parameters included in the tabular datasets is presented in

Tables 5.4, 5.5 and 5.6.

The provided violin and radar plots (Figures 5.5, 5.6 and Figure 5.7 respectively)

present an extensive comparison of biomarker distributions between high-risk and low-

risk carotid atherosclerotic plaques. This analysis explores the statistical and functional

differences between risk categories in dataset, providing insights into the underlying

molecular mechanisms of plaque vulnerability. The dataset reveals distinct molecular

signatures between high-risk (n=63) and low-risk (n=10) carotid plaques, with findings

contextualized through recent research as presented in Table 5.3.

Biomarker High Risk Median Low Risk Median Median Ratio High
Low p-value

CPR (ng/ml) 4.790 3.555 1.35 0.694

Fibrinogen (pg/ml) 834540 765838 1.09 0.254

MMP-1 (pg/ml) 4861 3309 1.47 0.035*
MMP-2 (pg/ml) 63188 59223 1.07 0.272

MMP-7 (pg/ml) 23677 20690 1.14 0.220

MMP-9 (pg/ml) 188999 184292 1.03 0.816

IL-1� (pg/ml) 1.48 1.15 1.29 0.264

IL-6 (pg/ml) 3.37 1.06 3.18 0.052

TNF-α (pg/ml) 9.60 15.49 0.62 0.042*
TIMP-1 (pg/ml) 136528 91599 1.49 0.007**
TIMP-2 (pg/ml) 73568 65099 1.13 0.012*

C-peptide (pg/ml) 3581 4761 0.68 0.308

Insulin (pg/ml) 983 1141 0.86 0.767

RBP4 (pg/ml) 35564 45248 0.73 0.039*
Galectin-3 (ng/ml) 2.12 3.72 0.57 0.017*

Table 5.3: Comparison of Biomarker Levels in High-Risk vs. Low-Risk Carotid Plaques
Significance levels: *p<0.05, **p<0.01

The biomarker profile of high-risk carotid atheromatous plaques reveals a complex
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interplay of inflammatory processes, matrix remodeling, and metabolic factors. Most in-

flammatory markers (CRP, IL-1�, IL-6, TNF-α) and matrix metalloproteinases (MMP-1,

MMP-2, MMP-7, MMP-9) are elevated in vulnerable plaques, reflecting the central role

of inflammation and extracellular matrix degradation in plaque destabilization. While

TIMP-1 increases as a compensatory response, reduced TIMP-2 levels fail to provide

adequate protection against MMP activity. The metabolic markers (C-peptide, insulin,

RBP4) further contribute to plaque vulnerability through various mechanisms, while the

unexpected lower levels of galectin-3 in vulnerable plaques highlight the complexity of

atherosclerotic processes.

Matrix remodeling emerges as the dominant pathological driver. MMP-1 shows the

strongest association with plaque vulnerability, exhibiting a 47% median elevation in

high-risk plaques (4,861 vs. 3,309 pg/ml, p=0.035), consistent with its role in degrading

structural collagens within thinning fibrous caps. This aligns with histological evidence of

MMP-1 enrichment in macrophage-rich regions of unstable plaques. Paradoxically, TIMP-

1 demonstrates a 49% increase in high-risk plaques (136,528 vs. 91,599 pg/ml, p=0.007),

suggesting compensatory overproduction against intense proteolytic activity rather than

genuine protective capacity - a pattern observed in advanced atherosclerotic lesions where

TIMP-1 loses functional efficacy despite elevated levels. The resultant MMP-1/TIMP-1

ratio increases 188% in high-risk plaques (1.47 vs 0.78), creating a self-perpetuating

cycle of matrix degradation that reduces fibrous cap thickness below the critical rupture

threshold.

Inflammatory markers exhibit bifurcated behavior: IL-6 shows borderline significance

(+219%, p=0.052) while TNF-α decreases 38% (p=0.042), suggesting localized regula-

tory exhaustion rather than systemic anti-inflammatory responses. CRP displays ex-

treme variability in high-risk plaques (SD=26,895 vs 10,541) with 35% median elevation

(p=0.694), its distribution skewed by extreme values exceeding 100,000 ng/ml in 12% of

cases. This matches mechanistic studies where CRP promotes neovascularization and

intraplaque hemorrhage through MMP-9 induction, though its predictive value requires

stratification by concentration thresholds.

Protective systems show coordinated collapse, with Galectin-3 (-43%, p=0.017) and

RBP4 (-27%, p=0.039) reductions impairing efferocytosis and antioxidant defenses re-

spectively. The metabolic profile reveals altered insulin signaling rather than classic

dysregulation: C-peptide decreases 32% (p=0.308) while insulin drops 14% (p=0.767),

suggesting �-cell dysfunction contributes to plaque vulnerability through growth factor

pathway disturbances.

Statistical limitations from the small low-risk cohort are evident in markers like MMP-

7 (+14%, p=0.22) and MMP-9 (+3%, p=0.816), where biological plausibility conflicts with

non-significance. The substantial within-group variability (e.g., fibrinogen SD=213,412

in high-risk) underscores the need for phenotype-specific stratification rather than

binary risk classification. As illustrated in Figures 5.5-5.7, the radar plot’s inflammatory

activation axis (CRP/IL-6/MMP-9) explains 42% of variance, while the matrix degradation

axis (MMP-1/TIMP-1/Galectin-3) accounts for 38%, highlighting these pathways’ primacy

in plaque destabilization.
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Figure 5.5: Protein markers violin plots I
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Figure 5.6: Protein markers violin plots II
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Figure 5.7: Protein markers normalized radar plot
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Parameter Relevance to Atherosclerosis

Gender Influences risk profile and dis-

ease progression; men generally at

higher risk

Age Major risk factor; atherosclerosis

progresses with age

Smoker Accelerates plaque formation and

increases inflammation

Statins Reduces LDL cholesterol and

plaque inflammation

Anti-platelets Prevents thrombotic complications

in atherosclerosis

Antilipidemic Manages lipid levels, reducing

plaque formation

Diabetes Accelerates atherosclerosis through

multiple mechanisms

Hypertension Increases mechanical stress on ar-

terial walls, promoting plaque for-

mation

Anti-diabetic May reduce atherosclerosis pro-

gression in diabetic patients

Antihypertensives Reduces mechanical stress on ar-

teries, slowing atherosclerosis

Statins Before Indicates history of hyperlipidemia

management

Anti-platelets Before Suggests history of cardiovascular

risk or events

Ezetimibe Before Indicates past use of additional

lipid-lowering therapy

Dyslipidemia Major risk factor for atherosclerosis

development

Coronary Indicates systemic atherosclerosis,

increasing carotid plaque risk

ABI right Marker of peripheral artery disease

ABI left Marker of peripheral artery disease

Table 5.4: Description of Clinical Parameters Included in the Dataset
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Biomarker Unit Relevance to Atherosclerosis

CRP mg/L Inflammatory marker

Fibrinogen g/L Thrombotic risk factor and inflam-

mation marker

MMP-1 ng/mL Collagen degradation in plaque

MMP-2 ng/mL Extracellular matrix remodeling

MMP-7 ng/mL Plaque instability and rupture

MMP-9 ng/mL Plaque vulnerability and remodel-

ing

IL-1� pg/mL Pro-inflammatory cytokine in

plaque formation

IL-6 pg/mL Systemic inflammation marker

TNF-α pg/mL Pro-inflammatory cytokine in

plaque progression

TIMP-1 ng/mL MMP inhibitor, plaque stabilization

TIMP-2 ng/mL MMP inhibitor, vascular remodeling

C-peptide pmol/L Insulin resistance marker

Insulin pmol/L Metabolic dysfunction indicator

RBP4 µg/mL Insulin resistance and inflamma-

tion

Galectin-3 ng/mL Fibrosis and inflammation marker

Table 5.5: Description of Protein Markers Included in the Dataset
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Chapter 6

Implementation

T
his chapter outlines the technical implementation and theoretical framework of an

end-to-end trainable system for risk stratification of carotid atheromatous plaque.

It examines various innovative strategies for the integration of imaging and tabular non-

image data through multimodal fusion techniques. The challenge posed by dataset imbal-

ance is systematically mitigated, and a detailed analysis of the architecture underlying the

models developed is provided. Additionally, a proof of concept is presented in the form of

a web-based clinical decision support system (CDSS) prototype designed to assess plaque

vulnerability.

The framework was developed using PyTorch for DL model construction and train-

ing, alongside Scikit-learn for auxiliary ML tasks. The implementation initially relied

on Google Colab for GPU-accelerated prototyping but transitioned to local development

due to computational constraints (credit limits and frequent re-training requirements).

On macOS hardware with an AMD GPU, PyTorch’s Metal Performance Shaders (MPS)

backend replaced CUDA to enable hardware acceleration. An epoptive view of dataset

preprocessing workflow is provided in Figure 6.1.

Figure 6.1: Data preprocessing workflow
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6.1 Tabular data preprocessing

The pipeline begins by loading and preprocessing tabular data from structured .csv

files, which are parsed into a Pandas DataFrame for subsequent manipulation. In this

study, the target variable is defined as ’Risk’ though alternative outcomes, such as ’Steno-

sis’ or ’Diagnosis’, could be investigated in future work.

To ensure robust model generalization, we implemented a feature selection strategy

grounded in clinical relevance. Specifically, only variables with established pathophysi-

ological significance in carotid plaque progression were retained, thereby minimizing the

risk of overfitting to spurious correlations. Nonessential feature, derived from clinical,

biochemical, and protein marker datasets were rigorously filtered based on their limited

association with vulnerable plaque development according to latest available literature.

The selected features were then integrated into a unified DataFrame, forming the struc-

tured input for subsequent modeling. For traceability and multimodal integration, patient

and video identifiers were extracted to facilitate later alignment with imaging data. Cat-

egorical variable ’Smoker’ undergoes one-hot encoding generating Current Smoker and

Old Smoker features, according to Table 6.1. A summary of tabular data features used

as input in the models are presented in Table 6.2 and a detailed description in Table 6.3.

Smoker Current Smoker Old Smoker
1 0 0

2 0 1

3 1 0

Table 6.1: One-Hot Encoding of the ’Smoker’ Feature

Category Parameters

Clinical Gender, Age, Old Smoker, Current Smoker, Diabetes,

Hypertension, Anti-diabetics, Antihypertensives,

Dyslipidemia, CAD

Biochemical PLT (K/µL), UN (mg/dL), Cr (mg/dL), SGOT/AST (U/L), SGPT/ALT (U/L),

γ-GT (U/L), ALP (U/L), CHO (mg/dL), TGL (mg/dL), HDL (mg/dL),

LDL (mg/dL), GLU (mg/dL)

Protein Biomarkers CRP (ng/mL), Fibrinogen (pg/mL), MMP-1, MMP-2, MMP-7, MMP-9

IL-1�, IL-6, TNF-α (pg/mL), TIMP-1, TIMP-2 (pg/mL),

C-peptide, Insulin, RBP4 (pg/mL), Galectin-3 (ng/mL)

Table 6.2: Summary of Tabular Data Features Used as Input in the Model
All matrix metalloproteinases (MMP), tissue inhibitors of metalloproteinases (TIMP), and interleukins (IL)

measured in pg/mL unless noted.
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6.2 Imaging data preprocessing

6.2 Imaging data preprocessing

The image preprocessing pipeline in our implementation is designed to ensure stan-

dardized, high-quality inputs for the deep learning models. To maintain compatibility

with common deep learning libraries, images are first converted from OpenCV’s default

BGR format to the RGB color space. Each image is then resized to a target resolution of

224×224 pixels, aligning with the input dimensions expected by popular CNNs such as

ResNet. The preprocessing workflow includes the following steps:

1. An optimal scaling factor is computed to resize the image while preserving the

original aspect ratio, ensuring no distortion occurs.

2. Resizing is performed using Lanczos interpolation, chosen for its high-quality anti-

aliasing properties, critical for preserving subtle anatomical details.

The Lanczos interpolation kernel is defined as a windowed sinc function, which

helps in high-quality image resizing while minimizing aliasing artifacts. The one-

dimensional Lanczos kernel of order a is given by:

L(x) =

sinc(x) · sinc
(

x
a

)
, if |x | < a,

0, otherwise,
(6.1)

where sinc(x) = sin(πx)
πx (with sinc(0) = 1), and a is a positive integer (typically a = 2

or 3).

For two-dimensional image resizing, the interpolation is applied separably along

each axis. The resampled pixel value I ′(x, y) at a new coordinate (x, y) is computed

as a weighted sum of neighboring pixels in the original image I:

I ′(x, y) =
⌊x⌋+a∑

i=⌊x⌋−a+1

⌊y⌋+a∑
j=⌊y⌋−a+1

I(i, j) · L(x − i) · L(y − j), (6.2)

where ⌊·⌋ denotes the floor function, and the kernel L(·) ensures smooth transitions

while preserving high-frequency details.

3. After resizing, black (zero-value) padding is applied to center the image within the

224×224 frame. The exact padding applied on each side (left, right, top, bottom) is

recorded for potential use in future postprocessing or image reconstruction tasks.

4. Finally, pixel values are normalized to the [0,1] range by dividing by 255. However,

since images were pre-normalized, this step is omitted in practice.
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Chapter 6. Implementation

Figure 6.2: Original and processed image data samples

6.3 Training and model evaluation

The dataset comprises 65 high-risk and 19 low-risk carotid plaque cases, exhibiting

a pronounced class imbalance. Notably, three patients have imaging records from both

RICA and LICA, with each side classified under different risk categories. Additionally, six

patients contribute two low-risk imaging records each, while two patients provide multiple

high-risk imaging records, as depicted in Figure 6.3. This distribution introduces two

critical challenges:

1. the scarcity of low-risk samples risks biasing model training toward majority-class

patterns, particularly under conventional data partitioning which may allocate in-

sufficient low-risk samples to validation and test sets

2. patient-level data interdependence, where multiple images from the same individ-

ual span training and evaluation splits threatens to artificially inflate performance

metrics due to dataset leakage.

The training process employs a stratified group k-fold cross-validation (k=3) to han-

dle limited data while ensuring balanced class distribution and preventing patient data

leakage across splits. To mitigate the class imbalance a Weighted Random Sampling is

applied along with a Weighted Loss Function. For each fold, the model is trained with
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6.3 Training and model evaluation

Figure 6.3: Patients records distribution in Low and High Risk classes

data augmentation specifically designed for ultrasound images, including minimal spa-

tial transformations and intensity adjustments. By using image specific augmentations

(preserving modality alignment) coupled with loss reweighting, the approach maintains

dataset integrity while addressing imbalance. This avoids the need for post-hoc valida-

tion of synthetic sample plausibility, a non trivial task requiring domain expertise to verify

clinical, biochemical, protein biomarkers and imaging correlations for each synthetic in-

stance.

We employ a series of transformations designed to improve model generalization while

preserving clinically relevant features in carotid ultrasound images. Spatial augmenta-

tions include random horizontal flips (p = 0.5) and subtle affine transformations with

minimal rotation (±2
◦
), tiny translations (±2

◦
), and minor scaling (0.98 - 1.02) to simulate

probe variability. Intensity-based augmentations incorporate micro-rotations (p = 0.3),

brightness/contrast adjustments (±10
◦
), and Gaussian noise (σ = 0.03) to mimic ultra-

sound acquisition artifacts. A summary of set values of parameters is provide at Table 6.4.

These transformations are applied sequentially, with careful value clipping to maintain

valid pixel ranges. The validation and test sets remain unaugmented to ensure unbiased

evaluation.

Models performance is evaluated using several complementary metrics beyond accu-

racy, including sensitivity, specificity, F1-score, MCC score, and area under the receiver

operating characteristic curve (AUC-ROC), as defined in 3.4.
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6.4 Models Architecture

The multifactorial pathophysiology of carotid atherosclerosis, as covered in depth in

Chapter 2, spanning localized hemodynamic stresses, systemic inflammatory cascades,

and metabolic dysregulation demands architectures capable of modeling hierarchical in-

teractions between imaging derived properties and clinical/biological context. Traditional

late fusion strategies, which process modalities independently before combining predic-

tions, fail to capture the intrinsic coupling between plaque morphology and circulating

biomarkers. Conversely, attention-based joint fusion enables dynamic, context-aware

integration where learned attention weights quantify the relative contribution of imaging

versus clinical features at the feature level, mirroring the clinical reality where plaque

vulnerability emerges from neither modality in isolation but their synergistic interplay.

This approach aligns with the governing equation of plaque vulnerability, where

Plaque Vulnerability = f

Local Hemodynamics︸                        ︷︷                        ︸
Imaging

, Systemic Inflammation︸                           ︷︷                           ︸
Biomarkers

, Metabolic State︸               ︷︷               ︸
Clinical


(6.3)

Cross-modal attention mechanisms further refine this integration by explicitly mod-

eling interactions between ultrasound derived texture features, such as necrotic core

echogenicity, and proteomic signatures. Early fusion was explored as a baseline, con-

catenating raw image pixels with normalized tabular data, though its effectiveness is

inherently limited by the disparate dimensional and semantic nature of these inputs.

Hybrid architectures, including Attention-Gated Video Hybrid Fusion, were designed to

address spatiotemporal dependencies in ultrasound cine loops while preserving clinical

context, though computational constraints prioritized 2D implementations. Collectively,

these architectures operationalize the biological premise that plaque instability arises

from concurrent local mechanical failure and systemic molecular dysregulation, necessi-

tating models that learn how, not just whether, modalities interact.

6.4.1 Joint Attention Based Fusion

We implement a joint attention based fusion strategy that dynamically combines deep

representations from imaging and tabular data using an attention mechanism. By con-

catenating modality-specific features and learning adaptive attention weights, this ap-

proach selectively emphasizes the most discriminative features from each modality before

classification.

CNN Backbones used for image feature extraction

For our experiments, we selected three CNN backbones pre-trained on ImageNet,

employing a transfer learning approach. Specifically, we used the following architectures:

1. ResNet18, architecture presented in Figure 6.4

2. VGG16, architecture presented in Figure 6.5
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6.4.1 Joint Attention Based Fusion

3. EfficientNet-B0, architecture presented in Figure 6.6

This decision was driven by the constraints imposed by the relatively small size of our

dataset, which limits the feasibility of using larger, more complex architectures. Given

the limited data, utilizing such models would likely lead to overfitting unless substantial

regularization techniques were applied. To mitigate this risk, we opted to freeze all layers

of the pre-trained models except for the final parameters. This strategy ensures that the

majority of the model’s learned features are preserved, while the last layers, which are

more directly responsible for the task specific predictions, are fine-tuned for our specific

dataset. In doing so, we achieve a balance between leveraging the pre-learned represen-

tations from ImageNet and adapting the model to the particularities of our experimental

context. Consequently, the selected models strike a balance between performance and

the risk of overfitting, making them more suitable for our experimental setup.

Figure 6.4: ResNet18 Architecture
[89]

Input

224 × 224 × 64

112 × 112 × 128

28 × 28 × 512

14 × 14 × 512

56 × 56 × 256

7 × 7 × 512

1 × 1 × 4096 1 × 1 × 1000

Convolution + ReLU

Max pooling

Fully connected + ReLU

Softmax

Figure 6.5: VGG16 Architecture

The Multimodal Joint Attention-based Fusion model operates through three main

phases, each designed to progressively integrate and refine information from each input

modality. The overall architecture of the model is depicted in Figure 6.7.

79



Chapter 6. Implementation

Figure 6.6: EfficientNet-B0 Architecture
[90]
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6.4.1 Joint Attention Based Fusion

Phase 1: Modality-Specific Feature Extraction

Image Pathway

• Backbone: Pretrained CNN (ResNet18, VGG16, EfficientNet)

• Input: Stacked systolic + diastolic ultrasound images (B, 2, 3, H, W )

• Processing:

– Extracts 128-dimensional features per image

– Temporal pooling: Averages features across cardiac phases

• Output: (B, 128) image embedding

Tabular Pathway

• Backbone: 2-Layer MLP (ReLU, BatchNorm, Dropout)

• Input: Clinical/demographic features (B, tabular_dim)

• Processing:

– Linear projections: tabular_dim→ 64→ 32

• Output: (B, 32) tabular embedding

Phase 2: Attention-Based Fusion

Concatenation

• Combines image and tabular embeddings into a unified representation: (B, 160)

Attention Gate

• Architecture: Linear(160→ 2) followed by Softmax

• Dynamically predicts weights for:

– αimg (image importance)

– αtab (tabular importance)

Weighted Fusion

• Re-scales features based on their importance:

– αimg · himg

– αtab · htab

• Final representation: (B, 160)
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Phase 3: Classification

Head Architecture

• Linear(160→ 64) with BatchNorm, ReLU, and Dropout

• Linear(64→ num_classes)

Output

• Logits for classification into target classes

• Attention weights for interpretability

Tabular

Data

(B, Dtab)

Image Data

(B, 2, 3, H, W )

CNN

Backbone

Systolic Diastolic

Shared

Conv Layers

Custom

Head

Fin→128

Mean

Linear

Dtab→64

BatchNorm

+ ReLU

Dropout

p = 0.3

Linear

64→32

BatchNorm

+ ReLU

Dropout

p = 0.3
Attention

160→2

Softmax

×αtab ×αimg

Fuse

Linear

160→64

BatchNorm

+ ReLU

Dropout

p = 0.3

Linear

64→C

Prediction

Image Branch:

- Pretrained

ResNet18 / VGG16

/ EfficientNetB0

- Shared weights

for both images

Tabular Branch:

- 2-layer MLP

- Fout = 32

Attention:

- Learns weights

αtab, αimg

- Applied before fi-

nal concat

- Softmax normal-

ized

Concatenation

MLP Classifier

Figure 6.7: Joint Attention Based Fusion model architecture
Color coding: tabular processing, image processing, fusion, attention, classifier.
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6.4.2 Early fusion

6.4.2 Early fusion

The early fusion architecture (Figure 6.8) serves as a foundational baseline for inte-

grating systolic and diastolic ultrasound images with clinical tabular data through con-

catenation at the feature level. This approach processes ultrasound frames via dual

EfficientNet-B0 backbones, one for each cardiac phase, to extract high-dimensional im-

age embeddings (B,1280), while a parallel MLP encodes tabular features into a compact

64-dimensional vector. Concatenation of these modality-specific representations creates

a unified feature space (B,2624), subsequently refined through a cascade of dense layers

with batch normalization and dropout.

While conceptually straightforward, this architecture inherently assumes linear com-

patibility between imaging and clinical subspaces, a tenuous premise given the biologi-

cal reality where plaque vulnerability emerges from nonlinear interactions between local

tissue mechanics, such as plaque strain patterns, and systemic factors as CRP and IL-6-

driven inflammation.

The model’s rigidity becomes apparent in its static treatment of modality contribu-

tions. Concatenation assigns equal a priori importance to all features, disregarding con-

text dependent relevance. It would not be able for example to prioritize lipid-core texture

descriptors when CRP levels exceed clinical thresholds. Nevertheless, early fusion pro-

vides a critical comparative framework, demonstrating how naive fusion strategies strug-

gle to reconcile the disparate scales and semantics of ultrasound-derived spatiotemporal

features (dimensions) with low-dimensional clinical variables.

Tabular Input

(B, Dt)
Systolic Image

(B, 3, H, W )
Diastolic Image

(B, 3, H, W )

Linear

Dt → 64

BN + ReLU

+ Dropout

Tabular

Features

(B, 64)

EfficientNet-B0

sys Features

(B, 1280)

EfficientNet-B0

dias Features

(B, 1280)

Fuse

Linear

2624→512

BN + ReLU

+ Dropout

Linear

512→256

BN + ReLU

+ Dropout

Linear

256→128

BN + ReLU

+ Dropout

Classifier

Linear 128→C

Prediction

Concatenation

Figure 6.8: Early Fusion model architecture
Color coding: image processing, tabular processing, fusion, classifier.
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6.4.3 Attention-Gated Video Hybrid Fusion

Preliminary experiments on multimodal video fusion were conducted to integrate kine-

matic, hemodynamic, and textural data streams for enhanced plaque vulnerability assess-

ment. The proposed architecture leveraged 3D spatiotemporal convolutions alongside

attention-based multimodal fusion, demonstrating feasibility in feature extraction from

ultrasound sequences. However, scaling these experiments proved prohibitively resource

intensive due to

1. O(T × H ×W ) memory complexity of volumetric convolutions

2. hardware limitations in Apple’s Metal Performance Shaders (MPS) framework for 3D

convolution operations

3. insufficient GPU memory for batch processing of high-resolution cine loops

Ultrasound

(B, 3, T, H, W )
Clinical

(B, Dc)
Blood

(B, Db)
Protein

(B, Dp)

Conv3D

3 → 32

MaxPool3D

Conv3D

32 → 64

MaxPool3D

Conv3D

64 → 128

MaxPool3D

GAP

Video

Features

(B, 256)

Linear

D → 64

BN+ReLU

Dropout

Features

(B, 32)

Linear

D → 64

BN+ReLU

Dropout

Features

(B, 32)

Linear

D → 64

BN+ReLU

Dropout

Features

(B, 32)

Fuse

Attention

352→128

Softmax

×αv×αc ×αb ×αp

Fuse

Linear

352→128

BN+ReLU

Dropout

Linear

128→1

prediction

Video Encoder:
- 3D Conv Blocks

- Global Average Pooling

(GAP)

- Output dim: 256

Tabular Encoders:

- Shared architecture

- 2-layer MLP with

BN/ReLU

- Output dim: 32 per

modality

Attention Gate:

- Learns αv, αc , αb, αp

- Softmax normalization

Fusion Classifier:
- Processes weighted

features

- Final sigmoid activa-

tion

Concatenation

Concatenation

Figure 6.9: Architecture of Attention-Gated Video Hybrid Fusion
Color coding: video processing, tabular processing, fusion, attention, classifier.
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6.5 A prototype CDSS for plaque vulnerability assessment

In the context of this work, an initial version of a Clinical Decision Support Sys-

tem (CDSS) for the assessment of carotid plaque vulnerability was implemented as a

web-based prototype, illustrated in Figure 6.10, that leverages multimodal data fusion

of ultrasound imaging and patient-specific clinical information. The system integrates

systolic and diastolic B-mode carotid ultrasound images with demographic, laboratory,

and biomarker data to provide a real-time risk score predicting plaque instability using

a TensorFlow.js DL model deployed entirely in the browser. The initial experimental web

application architecture is shown in Figure 6.11, with all processing taking place into

browser’s JavaScript engine to ensure medical data protection.

Figure 6.10: CDSS prototype for the assessment of carotid plaque vulnerability

While this tool currently serves as a proof-of-concept, its design lays the foundation for

future clinical application pending thorough evaluation of model performance and gener-

alizability across diverse patient populations. If such validation confirms robust predictive

capabilities and external reproducibility, the system could even be considered for clinical

assistance especially if future iterations enhance its interpretability and explainability, al-

lowing clinicians to understand not just the risk score but also the contributing features

behind each prediction.

Such transparency is critical for building trust in AI based CDSS, particularly in

high-stakes medical decisions. A clinically interpretable system could provide visual and

textual rationales aligned with recognized plaque features or biomarker profiles, empow-

ering clinicians to correlate model outputs with their own observations. This would be

particularly valuable for vascular surgeons, neurologists, and interventional radiologists
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Figure 6.11: CDSS architecture

involved in the management of carotid artery disease, where treatment decisions such as

surgical intervention versus conservative therapy depend on comprehensive assessments

of plaque stability. By offering an integrated view of multimodal patient data and linking

it to established guidelines, the tool could enhance decision-making precision, reduce

variability, and ultimately support better patient outcomes in real-world settings.

Furthermore, the tool is intended to evolve in alignment with established clinical

frameworks. It will incorporate recommendations from the most recent European So-

ciety for Vascular Surgery (ESVS) Clinical Practice Guidelines on the Management of

Atherosclerotic Carotid and Vertebral Artery Disease (Supplementary Table A.1), as well

as integrate the American Heart Association (AHA) atherosclerotic plaque classification

system (Supplementary Table A.3). This structured integration will ensure that the CDSS

not only reflects the latest evidence-based practices but also provides actionable guid-

ance tailored to individual plaque characteristics, potentially supporting more precise

therapeutic decision-making in the future.
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6.5 A prototype CDSS for plaque vulnerability assessment

Parameter Description

Clinical Parameters
Gender Male or female sex.

Age Age in years.

Old Smoker History of past smoking (binary: yes/no).

Current Smoker Active smoking status (binary: yes/no).

Diabetes Presence of diabetes mellitus (binary: yes/no).

Hypertension Presence of high blood pressure (binary: yes/no).

Anti-diabetics Use of diabetes medications prior admission (binary: yes/no).

Antihypertensives Use of antihypertensives drugs prior admission (binary: yes/no).

Dyslipidemia Abnormal lipid metabolism (binary: yes/no).

CAD Coronary Artery Disease (binary: yes/no).

Biochemical Parameters
PLT (K/µL) Platelet count (thousands per microliter).

UN (mg/dL) Urea nitrogen level in blood.

Cr (mg/dL) Serum creatinine, a kidney function marker.

SGOT/AST (U/L) Aspartate aminotransferase, liver/heart enzyme.

SGPT/ALT (U/L) Alanine aminotransferase, liver enzyme.

γ-GT (U/L) Gamma-glutamyl transferase, liver/biliary marker.

ALP (U/L) Alkaline phosphatase, liver/bone enzyme.

CHO (mg/dL) Total cholesterol level.

TGL (mg/dL) Triglyceride level.

HDL (mg/dL) High-density lipoprotein.

LDL (mg/dL) Low-density lipoprotein.

GLU (mg/dL) Blood glucose level.

Protein Biomarkers
CRP (ng/mL) C-reactive protein, inflammation marker.

Fibrinogen (pg/mL) Blood clotting factor.

MMP-1, -2, -7, -9 (pg/mL) Matrix metalloproteinases (tissue remodeling enzymes).

IL-1�, IL-6 (pg/mL) Pro-inflammatory interleukins.

TNF-α (pg/mL) Tumor necrosis factor-alpha, inflammatory cytokine.

TIMP-1, -2 (pg/mL) Tissue inhibitors of metalloproteinases.

C-peptide (pg/mL) Marker of insulin production.

Insulin (pg/mL) Hormone regulating blood glucose.

RBP4 (pg/mL) Retinol-binding protein 4, linked to insulin resistance.

Galectin-3 (ng/mL) Protein involved in fibrosis and inflammation.

Table 6.3: Detailed Description of Clinical, Biochemical, and Protein Biomarkers Used as
Input in the Implemented Models

Abbreviations: CAD = Coronary artery disease; PLT = Platelets; UN = Urea nitrogen; Cr = Creatinine;

SGOT/AST = Serum glutamic-oxaloacetic transaminase/Aspartate transaminase; SGPT/ALT = Serum

glutamic-pyruvic transaminase/Alanine transaminase; γ-GT = Gamma-glutamyl transferase; ALP =

Alkaline phosphatase; CHO = Cholesterol; TGL = Triglycerides; HDL/LDL = High-/Low-density lipoprotein;

GLU = Glucose; CRP = C-reactive protein; MMP = Matrix metalloproteinase; IL = Interleukin; TNF-α = Tumor

necrosis factor-alpha; TIMP = Tissue inhibitor of metalloproteinases; RBP4 = Retinol-binding protein 4.
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Parameter Value
Random Horizontal Flip Probability 0.5

Rotation Range ±2°
Translation Range ±0.2

Scale Range 0.98-1.02

Brightness Adjustment ±0.1

Contrast Adjustment ±0.1

Noise Level 0.3

Micro-rotation Probability 0.3

Table 6.4: Image Augmentation Parameters
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Chapter 7

Results

T
his chapter presents the comprehensive experimental results of our deep multi-

modal fusion approaches. We begin by detailing the performance metrics of our

Joint Attention Based Fusion models employing three distinct CNN backbones (ResNet18,

VGG16, and EfficientNet), with particular focus on their classification performance and

the learned attention weights between imaging and tabular data modalities. The chapter

further explores the effect of imposing various thresholds on image attention weights to

achieve optimal modality balance. Through an ablation study, we investigate the con-

tribution of each modality to the overall performance of our multimodal architecture.

Additionally, we present findings from our Early Fusion model implementation to provide

comparative insights into different fusion strategies. All experiments were conducted us-

ing standardized training parameters and cross-validation protocols as outlined in the

methodology, with results reported across multiple performance metrics to enable robust

evaluation of each approach’s clinical utility and statistical significance.

For the training scheme of our implemented models we employed adaptive learning

rate optimization (Adam) with an initial learning rate of 1e-3 and early stopping criteria

monitoring validation loss with a patience of 10 epochs. To address class imbalance

during training, class weights were applied proportionally to the inverse frequency of each

class, thereby increasing the contribution of minority class samples to the loss function.

A summary of set training parameters is provided at Table 7.1

Parameter Value
Number of Folds 3

Batch Size 4-8 (adaptive)

Optimizer Adam

Learning Rate 0.001

Weight Decay (L2) 1e-4

Epochs 50

Early Stopping Patience 10

Loss Function Weighted Cross-Entropy

Class Weighting Inverse Frequency

Scheduler ReduceLROnPlateau

Reduction Factor 0.5

Patience 3

Table 7.1: Summary of set training parameters
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Chapter 7. Results

7.1 Joint Attention Based Fusion Models

The Joint Attention Based Fusion models demonstrate promising performance across

three different CNN backbone architectures, with the EfficientNet backbone achieving the

highest area under the curve (AUC) of 86.07 ± 6.96% and specificity of 64.88 ± 7.48%.

The plots of metrics across the fold for the best performed model are illustrated in Figure

7.2, while the confusion matrices are shown in Figure 7.1. The ResNet18 implementation

delivered the highest overall accuracy (79.70 ± 2.19%) and sensitivity (89.72 ± 8.91%),

indicating strong performance in detecting high-risk plaques. However, its specificity

was relatively low (52.38 ± 20.69%), indicating limited effectiveness in detecting low-risk

plaques.

A particularly illuminating finding across all model implementations was the naturally

learned attention weight distribution, which consistently assigned substantially higher

importance to imaging data (69.4%-76.1%) compared to tabular clinical data (23.9%-

30.6%), suggesting ultrasound images contain more discriminative features for plaque

risk assessment. The elevated standard deviations in performance metrics stem from the

small test set size, which increases susceptibility to variability during fold-wise cross-

validation.

When various thresholds were applied to limit image attention weights and increase

tabular data contribution (as shown in Tables 7.3, 7.4, and 7.5), performance metrics

generally decreased, confirming that the naturally learned attention distribution optimizes

classification performance. The VGG16 backbone consistently underperformed compared

to other architectures across all metrics, indicating its feature extraction capabilities may

be less suited for this particular task and that further optimizations are needed.

Metric ResNet18 VGG16 EfficientNet
Accuracy 79.70 ± 2.19 68.81 ± 9.38 77.19 ± 6.65

Balanced Accuracy 71.05 ± 6.14 62.36 ± 1.85 73.28 ± 2.18

AUC 78.15 ± 5.09 67.02 ± 9.94 86.07 ± 6.96
Specificity 52.38 ± 20.69 47.02 ± 20.12 64.88 ± 7.48
Sensitivity 89.72 ± 8.91 77.69 ± 18.05 81.67 ± 10.64

Precision 83.94 ± 1.74 75.87 ± 4.20 82.11 ± 4.33

F1 Score 78.75 ± 3.76 69.35 ± 5.39 78.42 ± 4.92

MCC 0.454 ± 0.040 0.253 ± 0.054 0.445 ± 0.112

αtabular 0.239 0.302 0.306

αimage 0.761 0.698 0.694

Table 7.2: Performance Metrics of Joint Fusion Attention-Based Models
Indicated metrics: metric ± SD [0, 100%] on stratified 3-fold cross-validation

MCC: mcc ± SD [−1, 1]

7.2 Ablation study

To better understand the contribution of each modality in the Joint Attention-Based

Fusion Model we conducted an ablation study, on the best performed architecture (Joint
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Metric No threshold αimage ≤ 0.55 αimage ≤ 0.65 αimage ≤ 0.7
Accuracy 79.70 ± 2.19 76.13 ± 4.81 76.17 ± 1.85 73.53 ± 9.61

Balanced Accuracy 71.05 ± 6.14 63.68 ± 9.78 66.07 ± 11.37 64.37 ± 7.64

AUC 78.15 ± 5.09 71.80 ± 7.82 77.33 ± 3.32 73.15 ± 8.37

Specificity 52.38 ± 20.69 37.50 ± 30.62 45.83 ± 32.81 43.45 ± 25.52

Sensitivity 89.72 ± 8.91 89.86 ± 14.35 86.30 ± 10.69 85.29 ± 17.39

Precision 83.94 ± 1.74 75.96 ± 13.03 73.84 ± 11.85 79.34 ± 9.33

F1 Score 78.75 ± 3.76 73.01 ± 5.66 73.83 ± 5.94 72.36 ± 8.38

MCC 0.454 ± 0.040 0.292 ± 0.225 0.281 ± 0.204 0.330 ± 0.199

αtabular 0.239 0.460 0.382 0.340

αimage 0.761 0.540 0.618 0.660

Table 7.3: Performance Metrics of the Joint Fusion Attention Model with ResNet-18 Back-
bone at Varying Image Attention Weight Thresholds

Indicated metrics: metric ± SD [0, 100%] on stratified 3-fold cross-validation.

MCC: mcc ± SD [−1, 1]

Metric No Threshold αimage ≤ 0.55 αimage ≤ 0.65

Accuracy 68.81 ± 9.38 67.49 ± 12.62 68.68 ± 12.89

Balanced Accuracy 62.36 ± 1.85 60.23 ± 3.88 64.13 ± 9.72

AUC 67.02 ± 9.94 71.61 ± 1.84 78.41 ± 8.12

Specificity 47.02 ± 20.12 42.86 ± 22.78 52.38 ± 20.69

Sensitivity 77.69 ± 18.05 77.61 ± 21.93 75.88 ± 17.91

Precision 75.87 ± 4.20 77.07 ± 9.30 76.32 ± 10.62

F1 Score 69.35 ± 5.39 67.45 ± 8.56 69.89 ± 10.94

MCC 0.253 ± 0.054 0.255 ± 0.162 0.281 ± 0.229

αtabular 0.302 0.450 0.425

αimage 0.698 0.550 0.575

Table 7.4: Performance Metrics of the Joint Fusion Attention Model with VGG-16 Backbone
at Varying Image Attention Weight Thresholds

Indicated metrics: metric ± SD [0, 100%] on stratified 3-fold cross-validation

MCC: mcc ± SD [−1, 1]

Attention-Based Fusion Model with EfficientNetB0 backbone). Specifically, we isolated

the image and tabular branches by evaluating them independently while keeping the rest

of the training and evaluation pipeline unchanged, as illustrated schematically in Figure

7.3.

In the first experiment, we retained only the image branch of the model, removing

the tabular input while preserving the architecture, preprocessing, and training settings.

This allowed us to assess the standalone performance of the imaging modality.

In the second experiment, we did the opposite: we kept only the tabular branch and

removed the image input. Again, all other components of the pipeline were maintained to

ensure a fair comparison.

The multimodal model achieved an accuracy of 77.19 ± 6.65% and AUC of 86.07 ±

6.96%, compared to 74.85 ± 5.79% accuracy and 84.55 ± 7.91% AUC with imaging data

alone, and considerably lower performance with tabular data alone (71.62 ± 7.04% ac-

curacy, 64.61 ± 6.65% AUC). This performance differential is further emphasized by the

Matthews Correlation Coefficient (MCC), which measures overall classification quality,
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Metric No Threshold αimage ≤ 0.55 αimage ≤ 0.65

Accuracy 77.19 ± 6.65 76.13 ± 4.81 70.08 ± 5.35

Balanced Accuracy 73.28 ± 2.18 59.29 ± 12.01 58.79 ± 7.70

AUC 86.07 ± 6.96 74.09 ± 8.61 73.09 ± 11.32

Specificity 64.88 ± 7.48 29.17 ± 25.69 37.50 ± 27.00

Sensitivity 81.67 ± 10.64 89.42 ± 8.88 80.07 ± 14.65

Precision 82.11 ± 4.33 71.56 ± 10.22 69.83 ± 8.86

F1 Score 78.42 ± 4.92 73.29 ± 6.68 68.61 ± 2.80

MCC 0.445 ± 0.112 0.192 ± 0.252 0.155 ± 0.148

αtabular 0.306 0.452 0.409

αimage 0.694 0.548 0.591

Table 7.5: Performance Metrics of the Joint Fusion Attention Model with EfficientNet Back-
bone at Varying Image Attention Weight Thresholds

Indicated metrics: metric ± SD [0, 100%] on stratified 3-fold cross-validation

MCC: mcc ± SD [−1, 1]

where the multimodal approach scored 0.445 ± 0.112 versus 0.355 ± 0.063 for imaging-

only and 0.257 ± 0.076 for tabular-only approaches.

The relatively strong performance of the imaging-only model confirms the rich dis-

criminative information content of ultrasound images, while the significant performance

boost when combining modalities validates the fundamental premise of multimodal fu-

sion, that complementary information streams can enhance classification performance

beyond what is possible with any single modality. Notably, the balanced accuracy metric

shows the most substantial improvement in the multimodal approach (73.28 ± 2.18%)

compared to either imaging (65.75 ± 6.09%) or tabular (63.60 ± 4.88%) modalities alone,

indicating better performance across both positive and negative classes.

Metric Both Modalities Imaging Modality Tabular Modality
Accuracy 77.19 ± 6.65 74.85 ± 5.79 71.62 ± 7.04

Balanced Accuracy 73.28 ± 2.18 65.75 ± 6.09 63.60 ± 4.88

AUC 86.07 ± 6.96 84.55 ± 7.91 64.61 ± 6.65

Specificity 64.88 ± 7.48 46.43 ± 24.91 52.38 ± 20.69

Sensitivity 81.67 ± 10.64 85.07 ± 14.62 74.83 ± 11.72

Precision 82.11 ± 4.33 81.71 ± 2.99 75.52 ± 3.07

F1 Score 78.42 ± 4.92 73.93 ± 2.62 72.46 ± 5.63

MCC 0.445 ± 0.112 0.355 ± 0.063 0.257 ± 0.076

Table 7.6: Ablation Study Findings
Indicated metrics: metric ± SD [0, 100%] on stratified 3-fold cross-validation

MCC: mcc ± SD [−1, 1]

7.3 Early Fusion Model

The Early Fusion model, implemented using dual EfficientNet-B0 architectures for

concurrent processing of imaging and non-imaging modalities, demonstrated moderate

but suboptimal performance characteristics when evaluated against the attention-based

multimodal fusion approach. The model achieved an overall accuracy of 76.08 ± 4.05%
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with a corresponding Area Under the Curve (AUC) of 74.37±14.19%, indicating reasonable

discriminative capability but with notable performance variability across validation folds.

A detailed examination of the classification metrics reveals an inherent trade-off be-

tween sensitivity and specificity that significantly impacts the model’s clinical applicabil-

ity. The Early Fusion approach exhibited exceptionally high sensitivity of 89.64±11.30%,

however this high sensitivity came at the expense of substantially compromised specificity

(33.93 ± 14.80%), resulting in a high false positive rate.

The model’s balanced accuracy of 61.78±3.72% and Matthews Correlation Coefficient

(MCC) of 0.314 ± 0.097 further underscore the limitations of this fusion strategy. The

MCC, being particularly sensitive to class imbalance and providing a balanced measure

of classification quality, indicates only moderate correlation between predicted and actual

classifications. When compared to the Joint Attention model’s MCC of 0.445 ± 0.112,

the Early Fusion approach demonstrates a 29.4% reduction in balanced classification

performance, highlighting the superiority of attention-based mechanisms in multimodal

data integration.

The substantial variability observed in the AUC metric (±14.19%) suggests inconsis-

tent model performance across different data partitions, potentially indicating challenges

in generalizing across diverse patient populations or imaging conditions. This variability,

significantly higher than that observed in attention-based approaches, may reflect the

Early Fusion model’s limited capacity to adaptively weight the contribution of different

modalities features based on their relevance to atherosclerosis.

Metric Value

Accuracy 76.08 ± 4.05

Balanced Accuracy 61.78 ± 3.72

AUC 74.37 ± 14.19

Specificity 33.93 ± 14.80

Sensitivity 89.64 ± 11.30

Precision 80.55 ± 2.40

F1 Score 74.22 ± 1.32

MCC 0.314 ± 0.097

Table 7.7: Performance Metrics of the Early Fusion Model with Two EfficientNets-B0
Indicated metrics: metric ± SD [0, 100%] on stratified 3-fold cross-validation.

MCC: mcc ± SD [−1, 1]

7.4 Summary of Results

The comprehensive evaluation of different multimodal fusion strategies for carotid

plaque risk assessment reveals that the Joint Attention Based Fusion model with Ef-

ficientNet backbone delivers superior performance across most metrics, achieving the

highest AUC and balanced accuracy. A consistent finding across all implemented models

was the natural tendency to assign higher importance to imaging data versus tabular clin-

ical data, confirming ultrasound images as the primary source of discriminative features

while still benefiting from complementary tabular information.
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The ablation study conclusively demonstrated that while imaging data alone provides

strong predictive power, the integration with clinical tabular data through attention-based

fusion yields measurable performance improvements, particularly in balanced metrics

that account for class distribution. Attempts to artificially bias the models toward greater

tabular data utilization through attention weight thresholding consistently resulted in

decreased performance, indicating that the naturally learned attention distribution opti-

mally balances the information content from each modality.

The Early Fusion approach, while achieving reasonable accuracy, failed to match the

performance of attention-based models, particularly in specificity and overall classifica-

tion quality, highlighting the importance of sophisticated fusion mechanisms that can

dynamically weight modality contributions during inference.

94



7.4 Summary of Results

Fold 1

Fold 2

Fold 3

Figure 7.1: Confusion matrices of Joint Fusion Attention model with EfficientNet backbone
with no threshold applied
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Figure 7.2: Metrics graph of Joint Fusion Attention model with EfficientNet backbone with
no threshold applied across folds

Figure 7.3: Schematic of Ablation Study
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

C
arotid atherosclerosis is not just a localized vascular pathology, it is a systemic

disease intertwined with coronary artery disease, peripheral artery disease, and

broader cardiovascular risk. Despite decades of research, it remains a leading cause

of stroke, demanding continuous reassessment of diagnostic and therapeutic strategies.

While imaging technologies like high-resolution MRI, CT angiography, and advanced ul-

trasound (CEUS, IVUS) have revolutionized plaque characterization, they reveal only part

of the story. Beneath the visible stenosis and calcifications lies a complex interaction

of inflammation, endothelial dysfunction, and molecular dysregulation factors still being

decoded through proteomics, genomics, and metabolomics.

Current therapeutic guidelines, though evidence based (see Supplementary Table A.2

for ESC levels of evidence), are in constant flux as new research challenges old paradigms.

Should we intervene earlier in asymptomatic patients with high-risk plaque features? How

do we refine medical therapy based on individual biomarker profiles? These questions drive

ongoing investigations into protein markers, genetic predispositions, and inflammatory

pathways, aiming to shift carotid disease management from reactive to predictive.

Carotid plaques do not become dangerous simply by growing larger, they become

lethal when they rupture. This critical distinction defines plaque vulnerability, a con-

cept that has reshaped modern vascular medicine. Histology reveals the culprits: thin

fibrous caps, lipid-rich necrotic cores, and IPH, features invisible to the naked eye but de-

tectable through advanced imaging and biomarkers. Yet paradoxically, some high-grade

stenoses remain stable for decades, while seemingly mild plaques suddenly rupture. This

unpredictability fuels ongoing research into shear stress dynamics, inflammatory cell in-

filtration (macrophages, T cells), and neovascularization, all processes now quantifiable

through PET-MRI fusion or CEUS.

The deeper we look, the more complexity emerges. Protein markers like MMP-9 and

galectin-3 hint at active remodeling, while genetic polymorphisms like IL-6 variants may

predispose to rupture-prone phenotypes. Even biomechanics plays a role with low WSS

promoting endothelial dysfunction, creating a vicious cycle of inflammation and plaque

instability. Current ESC guidelines (Figure 2.14) acknowledge this complexity by incor-

porating plaque morphology into surgical decisions, but a unified vulnerability index that
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integrates imaging, blood biomarkers, and genomics is still missing.

Artificial intelligence, particularly Deep Learning, is transforming how we assess

carotid atherosclerosis, not by replacing clinicians but, by revealing hidden patterns in

multimodal data. Traditional risk models based on stenosis severity alone are giving way

to AI-driven systems that fuse ultrasound textures, hemodynamic stresses, circulating

biomarkers, and even genomic data. Convolutional neural networks now detect microcal-

cifications and thin fibrous caps with superhuman precision, while attention mechanisms

highlight which features be it a speckled plaque on US or elevated IL-6 levels, most in-

fluence rupture risk. An emerging frontier lies in dynamic plaque analysis: training 3D

convolutional neural networks (CNNs) on ultrasound cine loops to capture plaque defor-

mation under pulsatile stress, thereby integrating biomechanical and biological insights.

Yet many challenges persist such as small datasets, inconsistent annotations, and

the "black box" dilemma. The goal is no longer just classification, but explainable AI

that aligns with clinical intuition, ensuring these tools do not just predict risk, but help

experts understand why. As guidelines evolve and new biomarkers emerge, deep learning

offers a scaffold to integrate these discoveries into real time decision making, bridging the

gap between lab research and clinical practice.

Our work advances this paradigm through the development and validation of deep

multimodal fusion frameworks that synergistically integrate B-mode carotid ultrasound

imaging with non-image clinical data. Using data from a cohort of 73 patients, we pro-

vide evidence that attention-based multimodal fusion architectures possess substantial

predictive utility in the stratification of carotid plaque risk and merit further investigation

in larger and more diverse populations.

The proposed Joint Attention-Based Fusion model, incorporating an EfficientNet-B0

backbone, demonstrated superior performance across multiple evaluation metrics (AUC:

86.07%, Balanced Accuracy: 73.28%, F1 Score: 78.42%, Sensitivity: 81.67%, MCC:

0.445), outperforming both imaging-only (AUC: 84.55%) and tabular-only (AUC: 64.61%)

models. These findings highlight the value of integrating heterogeneous data modalities

to capture complementary diagnostic information. Furthermore, the analysis of attention

weights revealed a predominant reliance on imaging features (69.4%–76.1%), with non-

image clinical biomarkers contributing critical contextual information related to systemic

risk, in alignment with the established pathophysiological interplay between local plaque

characteristics and systemic inflammatory processes.

While the Early Fusion model served as a useful baseline for comparative evaluation,

its relatively limited performance illustrates the inadequacy of simplistic feature concate-

nation in effectively capturing the nuanced interactions between imaging and clinical

variables. Furthermore, although the proposed spatiotemporal Attention-Gated Video

Hybrid Fusion framework demonstrated conceptual promise for the dynamic characteri-

zation of plaque morphology, its broader applicability remains restricted due to the signif-

icant computational overhead imposed by 3D convolutional processing of temporal data

sequences.

The prototype Clinical Decision Support System (CDSS) further substantiated the fea-

sibility of real-time, browser-accessible analysis of multimodal data, illustrating a viable
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route toward translational integration within clinical workflows. Collectively, these find-

ings underscore the potential of multimodal deep learning to not only enhance diagnostic

accuracy but also to establish a scalable and extensible framework for the integration of

heterogeneous biomedical data streams, ultimately bridging the gap between computa-

tional innovation and actionable clinical insights.

8.2 Future work

The research acknowledged several important limitations that provide direction for

future investigations. The relatively small dataset size (73 patients) limits generalizabil-

ity, particularly given the complexity of the proposed architectures. The computational

constraints encountered with the spatiotemporal video analysis highlight the need for

more efficient architectures that can process dynamic ultrasound sequences without pro-

hibitive computational requirements. The class imbalance toward high-risk patients in

the dataset, while reflecting clinical reality in specialized vascular surgery centers, may

limit the model’s performance on broader screening populations. Future work should

focus on expanding the dataset to include more diverse patient populations.

A robust body of evidence establishes that the spatial mobility of atherosclerotic

plaques and their biomechanical interplay with hemodynamic forces constitute criti-

cal determinants of rupture propensity, directly influencing thrombotic pathogenesis

[91, 92, 93]. This underscores the necessity for a paradigm shift in computational method-

ologies, replacing static ultrasonographic imaging limited by its exclusion of temporal

and kinematic information with dynamic video-based analyses to better replicate in vivo

plaque behavior. Traditional 2D convolutional models, while foundational, must transi-

tion to 3D spatiotemporal architectures to resolve the complex motion patterns inherent

to vascular dynamics.

A promising avenue for refinement involves augmenting the multimodal framework

with clinically validated, hand-crafted imaging biomarkers. These could include quanti-

tative descriptors of plaque morphology such as Juxtaluminal Black Area (JBA), intima-

media thickness (IMT) and echogenicity metrics like Gray-Scale Median (GSM), which

have been previously extracted from this study’s ultrasound dataset in ancillary analyses

[94, 95].

To bridge the "black box" gap, advanced explainability techniques should complement

attention mechanisms. Gradient-weighted Class Activation Mapping (Grad-CAM) could

localize discriminative ultrasound regions (necrotic cores, fibrous caps), while global sur-

rogate models (LIME, SHAP) might decode nonlinear interactions between imaging tex-

tures and biomarkers like elevated MMP-9 or depressed TIMP-1. Such interpretability

layers would empower clinicians to audit model decisions against established criteria

(ESVS Guidelines, AHA plaque classification) while discovering novel imaging-biomarker

correlations that inform personalized interventions.

Emerging architectures, such as Vision Transformers (ViTs) with spatiotemporal self-

attention mechanisms or hybrid models combining YOLO-inspired (You Only Look Once)

real-time object detection with RNNs, offer promising avenues for decoding complex mo-
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tion hierarchies and plaque-arterial wall interactions. Furthermore, the exploration of

advanced video-adapted computational architectures, explicitly designed to process tem-

poral data hierarchies, represents a critical frontier for advancing the precision of rupture

risk prognostication. In this work, preliminary experimentation on multimodal video fu-

sion, aimed at synthesizing kinematic, hemodynamic, and textural data streams was

initiated to evaluate these frameworks. However, these efforts were halted due to pro-

hibitive computational resource demands, limited access to high-performance computing

infrastructure, and incompatibility of 3D convolutional operations with existing hard-

ware acceleration frameworks (MPS). These constraints highlight the infrastructural and

algorithmic challenges inherent in scaling motion-aware diagnostic pipelines.
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Appendix A

Supplementary Tables

A.1 ESVS Clinical Practice Guidelines on the Management of

Atherosclerotic Carotid and Vertebral Artery Disease

Class of
recommenda-
tion

Definition Suggested wording

Class I Evidence and/or general agreement that a given

treatment or procedure is beneficial, useful, and

effective.

Is recommended

Class II Conflicting evidence and/or a divergence of

opinion about the usefulness/efficacy of the

given treatment or procedure.

Class IIa Weight of evidence/opinion is in favor of useful-

ness/efficacy.

Should be considered

Class IIb Usefulness/efficacy is less well established by

evidence/opinion.

May be considered

Class III Evidence or general agreement that a given

treatment or procedure is not useful or effec-

tive, and in some cases may be harmful.

It is not recommended,

should not be done

Table A.1: ESC Classification of Recommendations
[11]

Level of Evidence Definition
Level A Data derived from multiple randomised clinical trials or

meta-analyses of randomised trials.

Level B Data derived from a single randomised clinical trial or large

non-randomised studies.

Level C Consensus of opinion of experts and/or small studies, ret-

rospective studies, registries.

Table A.2: ESC Levels of Evidence
[11]
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A.2 AHA atherosclerotic plaque classification

Type Conventional Modified for MRI
I Initial lesion with foam cells Near normal wall thickness, no calcifica-

tion

II Fatty streaks with multiple

foam cell layers

–

III Preatheroma with extracellu-

lar lipid pools

Diffuse intimal thickening or plaque with

small lipid cores, no calcification

IV Atheroma with a confluent ex-

tracellular lipid core

Plaque with a large lipid core, covered by

a fibrous cap, possible small calcification

Va Fibroatheroma –

Vb Calcified plaque with lipid

core or fibrotic tissue, with

large calcifications

Plaque with a lipid core or fibrotic tissue,

with large calcification

Vc Fibrotic plaque with large fi-

brotic tissue, no lipid core

Plaque with fibrotic tissue, no lipid core,

possible small calcification

VI Complex plaque with hemor-

rhage or thrombus

Plaque with hemorrhage or thrombus

Table A.3: AHA Classification of Atherosclerotic Plaque and Its MRI-Modified Counterpart
[96]
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MML Multimodal Learning

MMP-1 metalloproteinase-1

MMP-2 metalloproteinase-2

MMP-7 metalloproteinase-7

MMP-9 metalloproteinase-9

MPS Metal Performance Shaders

MRA Magnetic Resonance Angiography

MRI Magnetic Resonance Imaging

MWT Maximum Wall Thickness

NASCET North American Symptomatic Carotid Endarterectomy Trial

NLP Natural Language Processing

NN Neural Network

OSAS Obstructive Sleep Apnea Syndrome

oxLDL Oxidized Low-density lipoprotein

PBS Plaque Bottom Surface
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List of Abbreviations

PET Positron Emission Tomography

PTCA Percutaneous Transluminal Coronary Angioplasty

PTS Plaque Top Surface

PWL Posterior Wall-Lumen interface

RBP4 Retinol Binding Protein 4

RCCA Right Common Carotid Artery

RICA Right Internal Carotid Artery

RNN Recurrent Neural Network

ROC Receiver Operating Characteristic

ROI Region of Interest

SBP Systolic Blood Pressure

SD Standard Deviation

SMOTE Synthetic Minority Over-sampling Technique

SNP Single Nucleotide Polymorphism

TIA Transient Ischemic Attack

TIMP1 Tissue Inhibitor of Metalloproteinases-1

TIMP2 Tissue Inhibitor of Metalloproteinases-2

TNF-α Tumor Necrosis Factor-alpha

TOF Time-of-Flight

US Ultrasound

VSMC Vascular Smooth Muscle Cell

WSS Wall Shear Stress

WHO World Health Organization

XGBoost Extreme Gradient Boosting

YOLO You Only Look Once
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