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Abstract 

This thesis investigates the diagnostic performance of large language models (LLMs) in 
complex clinical scenarios, focusing on differential diagnosis generation across medical 
specialties. As LLMs gain attention for clinical decision support, this study offers a 
structured evaluation of their accuracy and diagnostic efficiency in real-world scenarios. 

Eighty clinical cases were drawn from The New England Journal of Medicine (NEJM) 
clinicopathological series. Four LLMs were assessed: two commercial models (GPT-4o 
and o3-mini) and two open-source models (Qwen-2.5-32B and Qwen-QWQ-32B). Each 
model received the same case input and system instructions, and generated a primary 
diagnosis along with a ranked differential list, in zero-shot learning setup. To ensure 
consistency in scoring, a separate LLM, Gemini Flash 2.0 was used to verify whether the 
correct diagnosis appeared in the output, and in which rank. 

Evaluation metrics included Top-N accuracy (Top-1, Top-3, Top-5, Top-10) and a novel 
diagnostic efficiency score that considers both the rank of the correct diagnosis and the 
total number of suggestions. Comparative and statistical analyses were performed to 
assess the effects of reasoning capability, temperature variation, and model types 
(open-source vs. commercial) on the performance. 

Results showed that reasoning-enabled models outperformed non-reasoning ones , and 
commercial models generally surpassed open-source alternatives, though direct 
comparison was limited by transparency gaps. Among all language models, OpenAI’s 
o3-mini in multiple comparisons, consistently demonstrated the best performance, 
achieving both high accuracy and focused differential lists. Moreover, temperature had 
no impact on diagnostic accuracy but improved output consistency. Performance varied 
across specialties, indicating uneven generalization among models. 

This study contributes a reproducible methodology for LLM diagnostic evaluation and 
highlights the importance of moving beyond single dimension accuracy metrics toward 
more holistic assessments of clinical reasoning. As LLMs approach clinical relevance, 
future work should prioritize benchmarking tools that capture reasoning quality, 
specialty-specific performance, and resource efficiency. Small, domain-adapted models 
and multimodal capabilities represent promising directions. Overall, while strict accuracy 
evaluations still offer valuable insight into model progress and advancements, 
responsible deployment will require deeper integration with clinical workflows and 
standards. 

Keywords 

Large language models, clinical diagnosis, differential diagnosis, prompt engineering, top-N 
accuracy, diagnostic reasoning, human–AI collaboration, evaluation frameworks 
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Key Glossary 

Understanding the foundational terms used throughout this Thesis is essential for 
proceeding with the interpretation of the evaluation of LLMs in differential diagnosis 
tasks, as presented in the following chapters. 

Below the key terms and concepts are presented, so that the reader can read now 
and/or use them as references during his reading. 

- Artificial Intelligence & Generative Artificial Intelligence 

Artificial Intelligence (AI) refers to computer programs capable of performing tasks 
mimicking human intelligence using algorithms and statistical models to process 
information and make decisions, often in real-time. Generative AI refers to the creation of 
various types of content, including text, images, audio, video, and synthetic data. Artificial 
General Intelligence (AGI) is when AI reaches a point where it possesses human-like 
abilities to learn, adapt to new problems, and apply generalized learned knowledge to 
other contexts similar to an average human [1]. 

- Artificial Neural Networks 

Artificial Neural Networks (ANNs) are algorithms with an architecture inspired by the 
human brain and biological neural networks. ANNs consist of interconnected nodes, or 
artificial “neurons,” forming an input layer, hidden layers for processing information, and 
an output layer. Neural networks can learn from examples of relationships in data and are 
capable of complex pattern recognition and decision-making [1]. 

- Deep Learning 

Deep Learning (DL) is a subfield of ML that uses deep neural networks (DNNs) for data 
analysis, pattern recognition, and decision-making, with the distinct capability of 
autonomously learning crucial features for predictions with minimal human intervention. 
DNNs are multiple layers of weighted, interconnected nodes trained through supervised 
or unsupervised learning. The term “deep” refers to the number of layers within the 
neural network, ranging from several to thousands. DNNs can extract features from raw 
data using a learning algorithm called “backpropagation”. As a result, they have the 
capacity to learn from mistakes and adjust their course over time to solve problems. 
DNNs are more powerful than traditional ML algorithms but require large amounts of 
data and computational resources [1]. 

- Differential Diagnosis 

A comprehensive differential diagnosis (DDx) is a cornerstone of medical care that is 
often reached through an iterative process of interpretation that combines clinical history, 
physical examination, investigations and procedures [2]. 

- Generative models 
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Generative models are a type of ML model capable of learning the underlying probability 
distribution of data and are trained to generate similar, new unseen examples [1]. 

- Language models 

A type of generative model that learns to produce new text from text data. Natural 
language generation (NLG) creates text similar to human-written text. LLMs are neural 
network-based models with billions of text-based parameters. Similar techniques are 
used in large multimodal models (LMMs), which can also incorporate additional inputs 
such as images or audio [1]. 

In the context of LLMs, the distinction between open-source and commercial models lies 
primarily in accessibility, transparency, and licensing. 

Open-source models are publicly released with their architecture, weights, and training 
data (or data sources) made available for inspection, modification, and reuse, often under 
permissive licenses. Examples include Meta’s LLaMA family, Mistral, and Qwen. On the 
other hand, commercial models, such as GPT-4 by OpenAI or Gemini by Google, are 
proprietary systems accessed via platforms, with restricted visibility into their internal 
architecture, training data, fine-tuning processes and other technical and engineering 
characteristics, that are publicly available for the open-source ones. 

Another distinction between reasoning and non-reasoning models refers to the model's 
ability to perform based on intermediate logical steps when generating responses to 
improve the accuracy and applicability of answers generated [3]. 

- Machine Learning 
Machine Learning (ML) is a branch of AI that enables computer programs to learn from 
data by identifying patterns and improving performance through experience. ML often 
requires large datasets and benefits from iterative feedback and fine-tuning [1]. 

- Model Temperature 

Temperature is a hyperparameter of LLMs, which is a factor that affects the randomness 
and originality of the LLMs’ output. Lower temperature settings are associated with more 
prototypical and standard outputs, while higher temperature settings are associated with 
more creative and less predictable responses. Preferences for different temperature 
settings may be intuitive for certain use cases. For instance, for creative writing, one 
might prioritize higher temperature settings. For healthcare, however, it is not necessarily 
straightforward which setting will be most effective, and it may be that different clinical 
tasks for LLMs may require different settings [4]. 

- Natural Language Processing 

Natural Language Processing (NLP) is a field of AI that analyzes and processes free text 
into structured language data. NLP tasks include, but are not limited to, translation, 
semantic analysis, automatic summarization, question-answering, and speech 
recognition [1]. 
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- Prompt Engineering 

The structured design of inputs to guide LLM behavior and performance on content 
generation [5]. 

- Recurrent Neural Networks 

Recurrent neural networks (RNNs) are networks designed to process sequential data 
with temporal dependencies, such as time series or natural language, by utilizing internal 
loops that allow information to persist, essentially enabling a “memory.” This enables the 
networks to make decisions based on the input sequence and previous context rather 
than just each input independently. The recurrent connections allow RNNs to develop 
complex temporal representations critical for sequence modeling tasks such as 
language translation, speech recognition, and time series forecasting. However, RNNs 
often struggle with capturing long-distance dependencies, meaning they may have 
difficulty relating information from earlier steps in the sequence when the gaps are too 
large [1]. 

- Reinforcement Learning 

Reinforcement Learning (RL) is a type of unsupervised learning where the model learns 
to make decisions by receiving feedback as rewards or penalties in a problem-oriented 
environment. The goal is to find the optimal sequence of actions that maximizes results. 
RL uniquely maximizes reward signals instead of finding hidden structures like traditional 
ML models. Reinforcement learning from human feedback (RLHF) incorporates human 
feedback during the training process, known as “alignment” [1]. 

- Tokenization 

Tokenization is an essential pre-processing step in LLM training that parses the text into 
non-decomposing units called tokens. Tokens can be characters, subwords, symbols, or 
words, depending on the tokenization process [6]. 

- Transformer 

Transformer is a type of RNN architecture that employs self-attention, allowing it to focus 
on different parts of the input sequence simultaneously. This enables transformers to 
efficiently capture intricate relationships in input data and leverage parallelization, a 
technique that divides tasks into smaller subtasks executed concurrently across multiple 
processing units. This is particularly effective for NLP tasks involving lengthy sequences 
of speech/text [1]. 

- Zero-Shot Learning 

Zero-shot learning is a machine learning scenario in which an AI model is trained to 
recognize and categorize objects or concepts without having seen any examples of 
those categories or concepts beforehand [7]. 
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1 Introduction 

This chapter introduces the reader to context and the environment around which this 
study has been designed and implemented. The research aim of this work, its 
significance and how this Thesis project will evolve in the following chapters will be 
presented. This introduction setup is crucial before moving onto understanding the 
status and findings of current research. 

1.1 Background and Context 

Artificial intelligence (AI) in medicine has evolved significantly in recent years, shifting 
from traditional machine learning algorithms focused on structured data analysis 
towards the integration of language models and large language models (LLMs). Initially, 
AI applications in healthcare relied on algorithms designed to analyze specific datasets 
for tasks like image recognition or predictive modeling. However, the rise of LLMs has 
opened new possibilities by enabling machines to process and understand unstructured 
text data, such as medical records, research papers, and patient dialogues [8]. In Fig. 1.1 it 
is displayed how much these topics have rapidly increased during the latest years in 
research publications in PubMed (https://pubmed.ncbi.nlm.nih.gov/), a searchable 
database provided by the National Library of Medicine (https://www.nlm.nih.gov/). This 
shift allows AI to engage in more complex tasks, including diagnostic reasoning, DDx 
generation, and patient communication, thus expanding its role from assisting with 
specific tasks to potentially augmenting broader aspects of clinical decision-making and 
patient care. 

The emergence of Generative AI and LLMs has revolutionized natural language 
understanding and generation, enabling machines to perform complex cognitive tasks 
across domains. In the medical domain these models have shown potential to assist with 
clinical cases and diagnostic reasoning. The capacity of LLMs to generate structured 
differential diagnoses and synthesize case findings raises the possibility of using them as 
decision support tools in clinical practice, aimed to assist and support physicians’ work. 

Yet despite their promise, LLMs are not yet systematically validated in terms of 
diagnostic accuracy, generalizability across specialties, and their ability to reason in 
complex, real-world scenarios. Most prior work has focused on multiple 
question-answering tasks or benchmark datasets that may not reflect the complexity 
and ambiguity of actual clinical reasoning. Moreover, there is limited comparative 
analysis across different model types and parameters (e.g., reasoning-enabled vs non 
reasoning) and even less attention to how LLM performance ranges across medical 
specialties 

This Thesis works on and presents an established way of evaluating how modern LLMs 
perform when tasked with solving complex, non trivial to the point of a multiple choice 
question diagnostic cases. The cases used are drawn from The New England Journal of 
Medicine (NEJM). Through a structured comparative framework, it aims to uncover the 
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strengths, limitations, and behavioral patterns of 4 representative models across a set of 
80 diverse clinical cases. 

 

Figure 1.1: Trend of research publications on the topic of LLMs for diagnosis. 

1.2 Research Aim and Objectives 

The primary aim of this study is to evaluate the diagnostic performance of LLMs in 
complex clinical cases and to analyze how that performance varies across model 
architectures and clinical specialties. Performing this comparison in a systematic way, this 
study is not only aiming to distinguish engineering characteristics, parameters and 
language models that perform better than others, but also present a framework that can 
further enhance the establishment of systematic ways and metrics to compare models in 
future works. 

To accomplish this, the study sets out the following objectives: 

- To compare 4 LLMs — including both commercial (GPT) and open-source (Qwen) 
models — on their ability to generate accurate diagnoses across 80 real-world 
cases. 

- To evaluate model performance, in regards to their accuracy and diagnostic focus 
scores as defined in later chapters. 

- To examine the effect of model type (reasoning vs non-reasoning, commercial vs 
open-source) on diagnostic performance. 

- To assess how the models’ performance varies across different medical 
specialties. 

- To explore the influence of prompting temperature on model behavior. 

- To identify methodological limitations and propose recommendations for future 
diagnostic AI benchmarking. 
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1.3 Significance of the Study 

This study contributes to the growing field of AI in healthcare by providing a rigorous, 
transparent, and domain-aware framework for evaluating LLMs in clinical diagnostic 
tasks. Its significance lies in several key areas, presented below: 

- Benchmarking across specialties: Unlike prior studies limited to general QA 
formats or synthetic datasets, this research evaluates LLMs on specialty-specific, 
real-world cases that reflect clinical complexity and diagnostic ambiguity. 

- Comparative design: By including both open-source and commercial models, 
and reasoning-enhanced vs baseline variants, the study sheds light on which 
architectural and functional features drive diagnostic performance. 

- Efficiency-focused evaluation: Through the use of a novel efficiency metric, the 
research emphasizes diagnostic parsimony and focus — a key principle in 
real-world clinical decision-making. 

- Feasibility insights: The study lays the groundwork for evaluating not just 
accuracy, but also computational realism, prompting strategies, and the potential 
for future integration into clinical workflows. 

This thesis aims to inform future research directions in the crossing of the diagnostic 
domain of medicine and Generative AI and contribute towards the development of 
universal evaluation standards. 

1.4 Structure of the Thesis 

The remainder of this Thesis is organized in different chapters, that mainly present an 
introduction to the topic, the main aspects of the current research through several 
published works, the methodology framework that we implemented, its results and their 
interpretation. Finally, there is a discussion in regards to the future opportunities and 
challenges of the field, accompanied by a conclusion chapter. 

In particular, these chapters are the following: 

Chapter 2: Literature Review 

Introduces reviews relevant work on LLMs in clinical diagnosis, and identifies gaps in 
current research and evaluation frameworks. 

Chapter 3: Methodology 

Details the dataset, language models, prompting strategies, scoring and statistical 
methods used in the analysis. 

Chapter 4: Results 
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Presents the quantitative findings, including Top-N accuracy, efficiency scores, and 
subgroup analyses by model type, specialty, and prompt temperature. 

Chapter 5: Discussion 

Interprets the findings in light of existing research, outlines the strengths and limitations 
of the study, and proposes directions for future work. 

Chapter 6: Conclusion 

Summarizes the study's main contributions and ponders its broader implications. 
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2 Literature Review 

This chapter provides a foundational overview of some key concepts, and prior research 
relevant to the evaluation of LLMs in healthcare and clinical diagnostics. It introduces the 
theoretical basis for diagnostic reasoning, outlines common performance evaluation 
metrics such as Top-N accuracy, and critically reviews the existing literature on LLMs in 
healthcare and DDx. 

2.1 Theoretical Foundations of Diagnostic Reasoning 

Before exploring the progress and applications of generative AI in clinical diagnosis, it is 
important to first establish common ground regarding the fundamental principles of 
diagnostic reasoning. 

Understanding the complex nature of human diagnostic reasoning is fundamental to 
evaluating the integration of LLMs into clinical practice. The field of internal medicine, 
characterized by often blurred diagnostic boundaries, is an example of the flexible and 
adaptive discipline required for accurate diagnoses. Diagnostic reasoning in this context 
is an iterative, multi-stage process, critically dependent on continuous data collection, 
the generation of plausible illness scripts, and rigorous testing of diagnostic hypotheses 
[9]. 

Clinical practice is inherently challenging, in contrast to the controlled environment of 
laboratory research where only one variable is manipulated. In patient care, clinicians 
must simultaneously manage numerous interconnected factors and parameters, with 
many degrees of freedom. Unlike other natural sciences, clinical medicine operates with 
less certainty and greater variability, relying on fuzzy fields, statistical probability rather 
than definitive mathematical analysis. Diagnosis is a cornerstone of clinical medicine, 
making the principles of diagnostic reasoning a vital component of medical education. 
Physicians employ both analytical and intuitive approaches to clinical reasoning, with the 
latter being more prevalent among experienced practitioners. However, this intuitive 
approach, while efficient, is susceptible to cognitive biases, necessitating constant critical 
thinking and the application of de-biasing techniques to ensure diagnostic accuracy [9].  

The necessity of formal instruction in clinical/diagnostic reasoning remains a point of 
debate. Some argue that this skill can only be acquired through direct patient interaction, 
independent of educators. However, experienced teachers play a crucial role in helping 
students recognize conceptual and causal links between seemingly disparate 
observations. They also foster metacognition, the conscious self-monitoring of one's 
thinking, by encouraging and guiding reflective feedback on students' thought 
processes. This process of open reflection and feedback is central to deliberate practice, 
a key theory in expertise development and maintenance particularly relevant to internal 
medicine. While deliberate practice is significant, it is not the sole determinant of expert 
performance. Individual capabilities, such as working memory capacity, which involves 
the efficient storage and retrieval of knowledge, are equally important [9]. 

11 

https://www.zotero.org/google-docs/?8UJYpS
https://www.zotero.org/google-docs/?6MQoaD
https://www.zotero.org/google-docs/?3ET6Bf


 

In total, the in-depth understanding of human diagnostic processes and activities 
provides an essential benchmark against which the performance and reasoning 
mechanisms of AI systems can be critically assessed. 

2.2 Evaluation Frameworks in Diagnostic AI 

The systematic evaluation of automated diagnostic tools has a long history, with DDx 
generators representing an early iteration of computer programs designed to aid in 
clinical reasoning. 

Back in 2012, a foundational study [10] sought to establish clear evaluation criteria for 
these systems, identifying key features such as input methods, filtering capabilities, 
consideration of various diagnostic factors (e.g., lab values, medications, demographics), 
and the inclusion of evidence-based medicine content. By applying these consensus 
criteria to a selection of four prominent DDx generators—Isabel, DxPlain, Diagnosis Pro, 
and PEPID—and testing their performance against challenging cases from the New 
England Journal of Medicine and Medical Knowledge Self Assessment Program 
(MKSAP), the research provided crucial insights into their effectiveness. The findings, 
which indicated mean scores for Isabel and DxPlain at 3.45 (on a 5-point scale) while 
Diagnosis Pro and PEPID performed lower, underscored the varying capabilities of these 
early systems and highlighted the importance of robust frameworks for assessing 
diagnostic AI. 

This historical context is essential for understanding the evolution of evaluation 
methodologies and for designing comprehensive benchmarks for modern Generative AI 
and LLMs in complex clinical cases. 

Recent advances in domain-specific LLMs have focused not only on model architecture 
but also on how clinical diagnostic performance is evaluated. MedFound, a 
176B-parameter generalist medical LLM, demonstrated high diagnostic accuracy across 
both common and rare disease categories through an evaluation framework comprising 
eight clinical metrics [11]. This framework included not only diagnostic correctness but 
also medical reasoning, summarization, and risk management, offering a broader lens 
through which to assess real-world clinical utility. Such comprehensive evaluation 
strategies support a shift from static Top-N scoring toward context-aware benchmarking 
in diagnostic AI. 

In addition, a notable study by Cabral et al. (2024) [12] directly compared the clinical 
reasoning abilities of GPT-4 with those of internal medicine residents and attending 
physicians using 20 structured case vignettes. Using the Revised-IDEA (R-IDEA) scoring 
system — a validated rubric for evaluating reasoning quality in clinical documentation — 
the LLM significantly outperformed both resident and attending cohorts in the synthesis 
of case information and problem representation. While diagnostic accuracy was similar 
across groups, GPT-4 demonstrated a slightly higher frequency of incorrect reasoning 
segments, highlighting the importance of evaluating not just outcomes but process 
quality. The study supports and verifies that LLMs must be assessed using 
multi-dimensional clinical reasoning metrics, not only accuracy-based benchmarks. 
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As LLMs are increasingly deployed in clinical and diagnostic settings, ensuring rigorous 
and transparent reporting has become a priority. The DEAL checklist (Development, 
Evaluation, Assessment of LLMs), recently proposed by Wang et al., offers a structured 
framework for documenting LLM research across two tracks: development-focused 
studies (DEAL-A) and applied evaluations (DEAL-B) [13]. Covering essential aspects such 
as model specifications, data usage, evaluation metrics, and transparency standards, the 
checklist is designed to promote reproducibility and methodological clarity for future 
work as well. This aligns with the goals of the present study, which applies a consistent 
and open evaluation framework across multiple LLMs and diagnostic domains. 

As the capabilities of LLMs expand within healthcare, the development of robust and 
realistic evaluation frameworks becomes paramount to accurately assess their diagnostic 
performance and safety. As a result, more advanced evaluation frameworks suggest the 
rubric approach. One great example of this type of evaluation is the recently released 
HealthBench [14]. 

HealthBench offers an open-source benchmark specifically designed for multi-turn 
conversational evaluation in healthcare settings. Unlike traditional multiple-choice or 
short-answer benchmarks, HealthBench leverages 5,000 multi-turn conversations, with 
responses meticulously evaluated by 262 physicians using 48,562 unique rubric criteria 
that cover diverse health contexts—ranging from emergencies to global health—and 
critical behavioral dimensions such as accuracy, completeness, instruction following, and 
communication. This comprehensive approach allows for a more realistic and 
open-ended assessment of LLM performance, grounding progress in model 
development towards applications that genuinely benefit human health. The benchmark 
has already reflected steady initial progress, with notable improvements in newer and 
even smaller, more cost-effective models. 

Rubric evaluation that is applied in HealthBench involves grading model responses based 
on conversation-specific criteria with point values from -10 to 10. Positive scores reward 
desired attributes, while negative scores penalize undesirable ones. Graders assess each 
criterion independently, awarding the points. The total score is the sum of points for met 
criteria, divided by the maximum possible score. As a result, a model's overall 
HealthBench score is the mean of its per-example scores, clipped to the range of 0 to 1. 

According to the results, performance on HealthBench has shown steady initial progress 
(GPT-3.5 Turbo at 16% to GPT-4o at 32%) and more rapid recent improvements (o3 scores 
60%). Smaller models have also significantly improved, with GPT-4.1 nano outperforming 
GPT-4o while being 25 times cheaper. 

2.3 Strengths and Limitations of Existing Approaches 

Existing approaches cover a wide range of evaluation frameworks designed, 
implemented and applied, language models assessed and methodologies followed. As a 
result, through these studies, it’s valuable to overview their strengths that further 
advance the field or the limitations that are inevitably being introduced or not being 
challenged with the current State of the Art research. 
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2.3.1 Strengths 

- Promising potential 

LLMs demonstrate promising potential in various clinical applications, including clinical 
documentation, trial design, and diagnostic support, especially when integrated 
responsibly within healthcare frameworks [14]. 

- Improving performance 

There have been numerous models and studies that have shown improving performance 
scores and evaluations. One of the most advanced and renown diagnostic LLMs to date, 
Med-PaLM 2, demonstrated state-of-the-art performance on multiple-choice and 
long-form medical question answering benchmarks [15]. The model was developed 
through domain-specific fine-tuning and tested against multiple human evaluators 
across several axes of clinical reasoning, including factuality, medical logic, and risk of 
harm. Notably, Med-PaLM 2 responses were often preferred over those of generalist 
physicians and, in some cases, even specialists. Moreover, a mid-scale evaluation of 
GPT-4’s diagnostic performance on 70 NEJM-style clinicopathological cases found that 
the model listed the correct diagnosis in its differential 64% of the time, and ranked it first 
in 39% of cases [16]. The study also introduced a DDx quality score, with GPT-4 achieving 
a mean score of 4.2 out of 5—comparable or superior to existing DDx generators. 

- Range of applications 

The increasing capabilities of LLMs have led to their exploration in high-stakes clinical 
settings like Emergency Department (ED) triage, prompting a comparative study to 
assess their proficiency against human personnel [17]. This research evaluated the triage 
performance of various LLMs, including GPT-4 based ChatGPT, Llama 3 70B, Gemini 1.5, 
and Mixtral 8x7b, using 124 anonymized case vignettes against a gold standard set by 
professional raters. The findings revealed that the best LLM models, specifically 
GPT-4-based ChatGPT, demonstrated substantial agreement with professional triage, 
performing comparably to untrained ED doctors. 

2.3.2 Limitations 

- Methodology and framework 

Numerous researchers have pointed out methodology limitations despite the apparent 
continuous performance improvements [15,16,18,19]. Current assessment rubrics lack 
formal validation, and evaluations often conflate length or verbosity with quality. Most 
current diagnostic AI benchmarks remain constrained to multiple-choice or 
single-answer formats, which do not reflect the complex, layered reasoning required in 
clinical practice. These studies echoe a growing consensus that traditional QA 
benchmarks are saturated, reductive, and ill-suited for real-world deployment, and that 
the field urgently needs dynamic, context-rich evaluation frameworks to accurately 
measure diagnostic utility. 
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- Regulations 

Despite their rapid advancement, existing approaches to evaluating and integrating 
generative AI in clinical contexts often lack the structural safeguards necessary for 
responsible adoption. A recent multidisciplinary review led by the Duke Clinical Research 
Institute highlighted that while LLMs hold promise in improving clinical documentation, 
trial design, and diagnostic support, their safe deployment is hindered by regulatory 
uncertainty, inconsistent evaluation standards, and insufficient stakeholder alignment [19]. 
This underscores the importance of developing transparent, reproducible, and clinically 
grounded frameworks, not only to assess LLM accuracy but also to ensure ethical 
integrity and data security. 

- Specialty specific 

LLMs applications shouldn’t not just cover the wide range of clinical reasoning, but also 
start to become specialty-specific, possibly by taking advantage of smaller language 
models [19]. Additionally, it has been suggested that there is a high need for 
subspecialty-aware evaluation frameworks and more granular performance audits 
before LLMs can be responsibly applied in specialty-specific diagnostic support [20]. In 
detail, LLMs’ proficiency in specialized medical subfields, such as nephrology, requires 
distinct evaluation to understand their precise strengths and limitations for clinical 
applications. A comparative study specifically investigated the medical knowledge of 
various LLMs by challenging them with 858 multiple-choice questions from the 
Nephrology Self-Assessment Program (nephSAP) . The results highlighted a significant 
performance disparity between open-source models (Llama2-70B, Koala 7B, Falcon 7B, 
Stable-Vicuna 13B, and Orca-Mini 13B), which scored between 17.1% and 30.6%, and 
proprietary models like Claude 2 (54.4%) and GPT-4 (73.3%). 

- Potential gaps between open-source and leading proprietary models 

Even though it’s not feasible to compare commercial models that usually have their 
engineering specifications hidden from the public with open-source ones, it has been 
pointed out [20] that there are knowledge gaps between them. While leading proprietary 
models demonstrate considerable competence, the general landscape of LLMs still 
presents limitations relevant to their effective integration into specialized medical training 
and patient care. 

- Over-triage and under-triage 

As for the performance on triage tasks, there is a significant limitation, their inability to 
substantially improve untrained doctors' triage performance when used as a second 
opinion, and a consistent tendency of LLMs toward overtriage was observed, contrasting 
with the undertriage by untrained doctors. However, despite these current limitations in 
achieving gold-standard performance, there has been considerable performance 
enhancements in newer LLM versions, hinting at their evolving strengths and future 
potential in this critical medical domain [17]. 

- Resources and costs 
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The escalating scale of LLMs has introduced significant computational and memory 
challenges, directly impacting their accessibility and broad application in specialized 
fields like medical diagnostics. Achieving peak performance for these models often 
necessitates an extreme number of parameters, pushing them into the trillion-parameter 
range and thereby increasing resource demands. Addressing these limitations, research 
efforts have primarily focused on two strategic approaches: fine-tuning pre-trained 
models to attain state-of-the-art results for specific tasks, and developing methods to 
reduce operational costs or accelerate training without compromising accuracy. A 
systematic review [21] of 65 publications from 2017 to December 2023 highlights various 
optimization and acceleration strategies across LLM training, inference, and system 
serving, demonstrating practical methods to mitigate resource constraints while 
maintaining cutting-edge performance. These advancements are crucial for overcoming 
the practical barriers to deploying powerful LLMs in complex clinical scenarios, 
ultimately enhancing their utility and accessibility. 

- Overestimation of performance 

Additionally, a recent systematic review and meta-analysis of 83 studies spanning from 
2018 to 2024 offers a broad evaluation of generative AI diagnostic performance 
compared to physicians [22]. The study reported a mean diagnostic accuracy of 52.1% for 
generative models, finding no statistically significant difference in performance 
compared to physicians overall or non-expert physicians. However, generative models 
performed significantly worse than expert clinicians (p = 0.007). These results underscore 
the current limitations in AI reliability for high-stakes diagnosis, especially in expert-level 
scenarios. While the findings support the use of generative AI for education and 
preliminary diagnostic support, they also highlight the risk of overestimating model 
readiness in the absence of rigorous, clinically grounded validation. 

2.4 Human-AI Collaboration in Diagnostic Reasoning 

The collaboration of human physicians and clinicians with AI is being studied in numerous 
research works during the latest years, to investigate whether this collaboration improves 
diagnostic performance, accuracy and reasoning, and also to perform comparisons 
between standalone performances. 

A randomized clinical vignette study by DeFilippis et al. [23] investigated whether access 
to GPT-4 improves diagnostic reasoning among physicians compared to conventional 
resources. According to it, while GPT-4 alone outperformed both residents and 
attendings in diagnostic accuracy, its use as a decision-support tool did not significantly 
enhance physician performance or reduce diagnostic time. This suggests that simply 
introducing LLMs into clinical reasoning workflows may not yield synergistic benefits 
without improved interaction paradigms. The study highlights a limitation in current AI 
integration strategies and reinforces the need for workflow-sensitive evaluation 
frameworks. 

Moreover, there is also the interaction of patients with LLMs. The physician-patient 
dialogue, with its emphasis on skillful history-taking, forms the solid ground of accurate 
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medical diagnosis and patient management, making the development of AI systems 
capable of diagnostic conversation a challenging field for increasing healthcare 
accessibility and quality. Addressing this challenge, a notable advancement is the 
introduction of AMIE (Articulate Medical Intelligence Explorer), an LLM-based AI system 
specifically optimized for diagnostic dialogue [24]. AMIE's innovative approach involves a 
self-play-based simulated environment coupled with automated feedback, enabling 
scalable learning across diverse disease conditions and clinical contexts. Evaluated 
against primary care physicians in a rigorous randomized, double-blind crossover study 
using text-based consultations with patient-actors, AMIE demonstrated superior 
diagnostic accuracy and outperformed human clinicians across a substantial majority of 
clinically meaningful performance axes as judged by both specialist physicians and 
patient-actors. While acknowledging the methodological limitation of using text-based 
chat, which is not yet typical in clinical practice, this research marks a significant 
milestone in advancing conversational diagnostic AI and profoundly informs the potential 
future of human-AI collaboration in complex clinical reasoning scenarios. 

Furthermore, AMIE was also evaluated as part of LLM-clinician collaboration. Across 302 
complex real-world medical cases, clinicians who received assistance from AMIE 
produced more complete differential diagnoses and demonstrated significantly higher 
Top-10 accuracy compared to those using conventional search tools or working 
unassisted [2]. The model also outperformed physicians when operating independently. 
These findings suggest that well-designed LLMs may offer a meaningful augmentation to 
physician diagnostic reasoning, particularly in high-complexity clinical contexts. 

As LLMs are increasingly integrated into complex natural language processing tasks, 
particularly in classification contexts relevant to diagnostic reasoning, understanding the 
nuances of their operational parameters becomes critical. A recent study [25] specifically 
investigated the impact of 'temperature'—a key parameter controlling response 
randomness and creativity—on LLM performance in classification tasks, using Word 
Sense Disambiguation as a case study. Unlike previous explorations focused on text 
generation, this research highlighted that temperature significantly affects the accuracy 
of LLMs in classification scenarios, underscoring the necessity of a preliminary study to 
identify the optimal temperature setting for specific tasks. The findings further revealed 
varying degrees of performance consistency across different models, with GPT-3.5-Turbo 
and Llama-3.1-70B exhibiting notable performance shifts, while GPT-4-Turbo and 
Llama-3-70B demonstrated more stable results across different temperature settings. 
This insight is vital for understanding the methodological considerations and potential 
limitations when deploying LLMs for sensitive classification tasks in complex clinical 
environments. 

Finally, prompt engineering has emerged as a key determinant of model performance 
across domains, including healthcare, pointing out how human-AI collaboration can 
further evolve and prosper. Recent reviews have highlighted some techniques for 
enhancing diagnostic inference, answer reliability, and robustness to adversarial prompts 
[5]. These techniques include simple ones, such as enabling role-playing for the model, 
giving it a specific role to play, such as a helpful assistant or a knowledgeable expert, or 
providing clear and specific guidelines. Other, more advanced ones are chain-of-thought 
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prompting (i.e. asking for step-by-step analyses) and generated-thought, where especially 
for commonsense reasoning, it allows the model to generate and utilize additional 
context that may not be explicitly present in the initial prompt. 

2.5 Explainability and Transparency in LLM-driven Diagnosis 

Successful integration of AI in medicine requires emulating doctors' reasoning for trust 
and better care, not just high accuracy. Automatic diagnosis should mirror clinical 
interaction: generating DDx, prioritizing severe conditions via exploration-confirmation, 
and explaining reasoning. While LLMs show diagnostic accuracy, their "black box" nature 
and lack of clear, interpretable DDx explanations hinder clinical adoption and trust. 

To address this, a novel approach involves the development of tailored evaluation 
datasets and innovative methodologies specifically designed to elicit high-quality DDx 
explanations from LLMs. One such pioneering effort has led to the creation of the first 
publicly available DDx dataset, comprising expert-derived explanations for 570 clinical 
notes over nine distinct clinical specialties, called Open-XDDx [26]. This dataset copes 
with the absence of specialized evaluation datasets, since a significant barrier has been 
the pervasive lack of publicly available DDx datasets that are specifically annotated with 
detailed diagnostic explanations. This scarcity severely constrains the ability to develop, 
train, and rigorously evaluate models designed to generate such explanations. This 
dataset exhibits several key characteristics, like the extended size, clinical diversity, the 
data availability for further research and rich annotations for these notes too. 

Alongside this dataset, there is a proposition of a novel framework, Dual-Inf, engineered 
to effectively harness LLMs for precise DDx explanation [26]. The fundamental design of 
Dual-Inf draws inspiration from the human diagnostic process of backward verification. 
Just as clinicians might reason forward from symptoms to formulate initial diagnoses and 
then reason backward from these potential diagnoses to confirm associated symptoms 
or findings, Dual-Inf enables bidirectional inference. This bidirectional approach is 
intended to enhance prediction correctness and the overall quality of explanations. 

Moreover, it has been suggested that Deep Reinforcement Learning (DRL) frameworks, a 
field that combines DL and RL enhance the performance on explainability [27]. This paper 
proposes an innovative solution through a novel DRL framework, which incorporates an 
agent named CASANDE. In this case, DRL is used as it is particularly well-suited for this 
challenge. It excels in sequential decision-making problems where an intelligent agent 
learns optimal actions through iterative trial and error within a dynamic environment, 
receiving rewards for desirable outcomes. This paradigm closely mirrors the iterative and 
adaptive nature of human medical diagnosis, where doctors gather information, make 
preliminary assessments, and refine their understanding based on new data. This 
framework is designed to integrate three essential aspects of a doctor's reasoning: the 
generation of a DDx, an adaptive exploration-confirmation approach to gathering 
medical evidence, and the explicit prioritization of severe pathologies during the 
diagnostic process. 
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This focus on explicitly evaluating and enhancing the explainability of LLMs represents a 
crucial step towards bridging a critical gap in automated DDx, fostering greater 
transparency, and ultimately enhancing human clinical decision-making by moving 
beyond mere accuracy to verifiable understanding. 

2.6 Ethical Dimensions and the Role of Patient Autonomy in 
LLM Deployment 

As seen in previous sections, Human and AI collaboration and communication is not only 
about the dimension of clinicians and physicians. Evaluation frameworks and latest 
research work is also about the interaction of LLMs with the patient side. 

Recent literature has begun to explore the broader societal implications of LLMs in 
medicine. For example, Armoundas, A.A. and Loscalzo, J. highlight and investigate the 
impact of LLMs on what is defined as patent agency; the patient’s capacity to engage 
efficiently with, act on, and assume responsibility for their state of health. As noted, there 
is a critical shift in the way patients engage with these technologies, moving from 
clinician-facing tools to systems that increasingly influence patient-led health decisions 
[28]. 

This transformation raises pressing questions about autonomy, equity, and global 
disparities in access and understanding. This shift enhances precision medicine and the 
accessibility to medical care. Furthermore, the individuals’ engagement with their health 
under improved health literacy that usually follows digital literacy helps achieve better 
understanding of their disease, the available types of treatment and individual 
decision-making in general. 
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3 Methodology 

This chapter outlines the framework applied to evaluate the diagnostic performance of 
LLMs on complex clinical cases. The goal is to systematically compare the capabilities of 
4 LLMs of different characteristics each, when applied to real-world diagnostic tasks 
drawn from a reliable, reputable and filled with challenging cases medical source, such 
as the NEJM. 

3.1 Clinical Case Dataset 

This section is about the presentation and analysis of the dataset used for the LLMs’ 
evaluation, in terms of source and content too. 

3.1.1 Source and Selection Criteria 

The dataset used in this study consists of 80 clinical case reports sourced from the Case 
Records of the Massachusetts General Hospital series, published in the NEJM. The 
complete list of these cases used can be found online [29]. 

 

Figure 3.1: Clinical cases per year. 

The dataset of cases belongs to the 2-years timespan of January 2021 to December 2022 
(Fig. 3.1). This subset has been successfully used in other studies [16,18]. As of May 2025, 
there are 7119 clinical cases available, being dated from 1923 up to 2025. Other than 
these cases, NEJM offers a wide range of material that can be used by medical 
professionals or nowadays for scientific research in the biomedical field. Images in Clinical 
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Medicine, Hospital Reports and Clinical Department are namely just some of the data 
categories available. 

As for the Case Records of the Massachusetts General Hospital series, these are widely 
regarded as gold-standard diagnostic exercises in internal medicine, featuring complex, 
real-world patient presentations and multidisciplinary clinical reasoning since the 1950s 
[18]. Cases were selected from publicly accessible NEJM archives, with the inclusion 
criteria being the presence of a clear final diagnosis for each case, and also the presence 
of it in other research studies so that any comparisons among them would be performed 
on the same data. 

One important factor that was taken into account for exclusion of data would be the 
possible presence of these cases in the training dataset of some models. However, it has 
been shown that there is no significant difference in performance of LLMs before and 
after the pre-training cutoff date [18,20], pointing out that these cases were not explicitly 
included in the training data. Still, this is noted down as a potential limitation of this 
research study. The only way to cope with it, is to choose cases that are released after 
the cut off date of each model. 

3.1.2 Specialty Distribution 

According to NEJM, each case belongs to one or more medical specialties, so these 
labels serve like tags for each clinical case. 

Specialties represented include neurology, infectious disease, rheumatology, cardiology, 
oncology, gastroenterology, and others. Some specialties are more common among 
others in the 2-year span that the 80 cases were spread. However, this dataset provides 5 
categories present in at least 25 cases. Table 3.1 and Fig. 3.2 display all the medical 
specialties present in at least one case of the 80 available. 

Medical Specialty Count Medical Specialty Count 

Hematology/Oncology 39 Endocrinology 9 

Infectious Disease 35 Ophthalmology 7 

Surgery 33 Nephrology 7 

Emergency Medicine 30 Psychiatry 7 

Neurology/Neurosurgery 26 Geriatrics/Aging 4 

Rheumatology 20 Otolaryngology 4 

Gastroenterology 17 Obstetrics/Gynecology 3 

Pulmonary/Critical Care 16 Orthopedics 2 

Genetics 15 Urology/Prostate Disease 1 
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Cardiology 13 Medical Ethics 1 

Allergy/Immunology 10 Radiology 1 

Pediatrics 10 Public Health 1 

Dermatology 9   

Table 3.1: Medical specialties distribution in the Case Records of the Massachusetts General 
Hospital dataset. 

 

Figure 3.2: Most common medical specialties in the NEJM dataset used (Years 2021-2022). 

So, the distribution of clinical specialties in the dataset is not uniform, with a higher 
representation of cases in domains such as Hematology/Oncology and Infectious Disease, 
and relatively few cases from specialties like Radiology. As a result, we will present 
performance comparisons only for the top 5 medical specialties, setting a threshold of 25 
appearances, to find potential areas where LLMs perform their best or worst. 

3.2 Overview of Research Design 

This study adopts a comparative research design aimed at evaluating the diagnostic 
performance of LLMs across complex clinical cases. The investigation is structured as a 
performance benchmark using real-world clinical scenarios. Specifically, the study 
examines how different LLMs—varying in several characteristics like being 
reasoning-enabled or not and their temperature, perform in the task of DDx generation in 
general, and across several medical specialties too. 
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Figure 3.3: Flowchart that presents the overview of the evaluation framework implemented. 

The design involves 4 LLMs, each tasked with providing diagnostic predictions for a 
dataset of 80 clinical case reports published in the NEJM. Each model processes the 
same set of case inputs, ensuring a within-subjects comparison that controls for 
variability in clinical content. The diagnostic outputs are subsequently evaluated on their 
accuracy using standardized metrics, with additional analyses addressing diagnostic 
focus and performance variation across several dimensions. 

To ensure fair and consistent evaluation across models, all diagnostic outputs were 
assessed against the reference diagnoses provided at the conclusion of each NEJM 
case. To mitigate semantic variability (e.g., differences in terminology, contextual 
synonyms such as “tuberculous meningitis” vs. “central nervous system tuberculosis”), 
the correctness of each model’s response was reviewed by a secondary LLM (Gemini 2.0 
Flash), to take into account medical synonymy and conceptual equivalence. This 
methodological choice was made to reduce evaluation bias introduced by non-expert 
human medical knowledge limitations, and automate the stage of the evaluation too. An 
alternative, more advanced approach with potential for more advanced capabilities 
would be to assign the evaluation to physicians. Both approaches have already been 
successfully applied in research [2,16,18]. 
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Statistical analyses are conducted to determine whether observed performance 
differences across model types are statistically significant. Finally, the study also 
considers the ethical implications of using LLMs in clinical decision support contexts, 
particularly in reliability, transparency, and replicability. 

An overview of the workflow followed with this evaluation framework is displayed in the 
flowchart of Fig. 3.3. 

3.3 Language Models Evaluated 

This study evaluates the diagnostic performance of 4 LLMs, selected to represent key 
dimensions of interest: reasoning-enabled vs. non-reasoning, open-source vs 
commercial and lower temperature vs higher. As for the temperature, the comparisons 
were performed between the default value, which was 1.00 and a lower one, that was set 
to 0.10. The assessment is under zero-shot learning, meaning that there were no 
examples or specific training provided to these models to perform the required tasks. 
The LLMs assessed are: 

- GPT-4o 

This model is a language model developed and released by OpenAI in May 2024. It’s a 
non-reasoning model. For this model a comparison in regards to the temperature setting 
impact was conducted too (low temperature vs higher). 

- o3-mini 

This model is a language model developed and released by OpenAI in January 2025. It 
represents the most cost-efficient model in their reasoning series. 

- qwen 2.5-32B 

This model is an open-source language model released by Alibaba Cloud in September 
2024. It’s a non-reasoning model, with 32B parameters. For this model a comparison in 
regards to the temperature setting impact was conducted too (low temperature vs 
higher). 

- qwen QwQ-32B 

This model is an open-source language model released by Alibaba Cloud in March 2025. 
It’s a reasoning model, with 32B parameters. 

Each of these LLMs received the same clinical case input text and was prompted to 
respond with its DDx, with options ranked in order of likelihood. More details about 
prompting and output handling are available in Section 3.4. 

To ensure consistent input/output handling and efficiency, all runs were made via API 
integration in Google Colab (https://colab.research.google.com/). The main parts of the 
code can be found in Appendices 8.1.1 and 8.1.2. 
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Parameters other than the temperature, such as top-p sampling, and max tokens were 
kept constant to the default ones across models to isolate the parameters under 
examination and limit other impacting factors. 

Finally, these models responded using their knowledge after their training, without 
performing web searches that could lead to finding the right answer even by explicitly 
finding the solutions of these cases. 

3.4 Prompting Strategies and Output Structuring 

I am running an experiment on a clinicopathological case conference to see how your 
diagnoses compare with those of human experts. I am going to give you part of a medical 
case. These have all been published in the New England Journal of Medicine. You are not 
trying to treat any patients. As you read the case, you will notice that there are expert 
discussants giving their thoughts. In this case, you are "Dr. LLM", an AI language model 
that is discussing the case along with human experts. 

A clinicopathological case conference has several unspoken rules. The first is that there is 
most often a single definitive diagnosis (though rarely there may be more than one), and it 
is a diagnosis that is known today to exist in humans. The diagnosis is almost always 
confirmed by some sort of clinical pathology test or anatomic pathology test, though in 
rare cases when such a test does not exist for a diagnosis the diagnosis can instead be 
made using validated clinical criteria or very rarely just confirmed by expert opinion. You 
will be told at the end of the case description whether a diagnostic test/tests are being 
ordered, which you can assume will make the diagnosis/diagnoses. 

After you read the case, I want you to give two pieces of information. 

The first piece of information is your most likely diagnosis/diagnoses. You need to be as 
specific as possible -- the goal is to get the correct answer, not a broad category of 
answers. You do not need to explain your reasoning, just give the diagnosis/diagnoses. 

The second piece of information is to give a robust differential diagnosis, ranked by their 
probability so that the most likely diagnosis is at the top, and the least likely is at the 
bottom. There is no limit to the number of diagnoses on your differential. You can give as 
many diagnoses as you think, but they must be reasonable, so limit your answers 
accordingly to those that make sense. You do not need to explain your reasoning, just list 
the diagnoses. Again, the goal is to be as specific as possible with each of the diagnoses. 

Figure 3.4: The system settings provided to the LLMs. 

Each LLM received the full narrative text of the clinical case description (excluding 
doctors’ diagnosis and the final diagnosis) as input, and was prompted to generate a 
diagnostic impression in a standardized format. Moreover, these cases included images, 
which were excluded since not all models had visual capabilities. Still, the narrative text 
of these cases included the description and the diagnostic findings of these medical 
images. 
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The system settings used for each of them are inspired and based on the corresponding 
system settings used in similar works [16] and are presented in Fig. 3.4. 

Most Likely Diagnosis: 

• Tuberculous meningitis 

Differential Diagnosis (ranked by probability): 

1. Tuberculous meningitis  
2. Partially treated bacterial meningitis (e.g., pneumococcal meningitis with secondary 
vasculitic infarcts) 
3. Listeria monocytogenes meningitis  
4. Fungal meningitis (such as cryptococcal meningitis) 
5. Varicella-zoster virus vasculopathy  
6. Neurosyphilis 

Figure 3.5: Structured Output from LLM. 

The models were prompted to respond with their primary diagnosis, followed by a 
ranked DDx list, reflecting plausible alternative etiologies. This format mirrors clinical 
reasoning workflows and facilitates use of Top-N accuracy metrics. An illustrative model 
output is provided in Fig. 3.5. 

3.5 Output Evaluation 

Output evaluation has been performed using the Gemini 2.0 Flash. The prompt used for 
this evaluation is provided in Fig. 3.6. 

I have a series of medical cases from The New England Journal of Medicine. For each 
case, I will provide: 

The final diagnosis. 
A list of predicted diagnoses. 
Your task is to identify whether any of the predicted diagnoses correctly matches the final 
diagnosis based on meaning and clinical context, not exact wording, case sensitivity, or 
word order. 

For example, if the final diagnosis is "Osteopenia", and option 2 says "Decreased bone 
density (Osteopenia)", you should respond: "Diagnosis predicted correctly in position 2" 

 even if the phrasing is not identical. 

However, if none of the options capture the correct diagnosis in substance or intent, 
respond: "No correct answer" 

Focus on the conceptual match rather than exact textual similarity. 

Figure 3.6: Prompt provided to Gemini Flash 2.0, the LLM that worked as an evaluator. 
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3.6 Evaluation Metrics 

The evaluation of model performance was based on two dimensions: The primary was 
the diagnostic accuracy. The secondary is diagnostic efficiency, as defined below. These 
metrics were chosen to reflect both the correctness but also the relevance and the 
efficiency of language model outputs in clinical diagnostic tasks. The primary goal was to 
assess how often each model correctly identified the true diagnosis—either as the top 
prediction or within its broader differential list—while also capturing how broad each 
diagnosis was. 

3.6.1 Top-N Accuracy 

The primary quantitative metric used to assess diagnostic performance was Top-N 
accuracy, a commonly applied measure in medical AI evaluations [18]. This metric 
captures whether the correct diagnosis appears within the top N ranked outputs 
returned by a model, assuming these are ordered by probability, descending. 
Specifically, this study computed Top-1, Top-3, Top-5 and Top-10 accuracy values for 
each model across all cases. 

These metrics reflect clinically relevant thresholds, as real-world diagnostic support 
systems often aid clinicians by suggesting a list of leading candidates rather than a single 
definitive answer. High Top-N accuracy indicates the model’s ability to generate a useful 
DDx, even when the top guess may be incorrect. 

To qualify as a match, a diagnosis had to be conceptually equivalent to the reference 
diagnosis, either by exact match, accepted clinical synonym, or established diagnostic 
category (e.g., “acute myeloid leukemia” accepted as correct for “AML, M2 subtype”), as 
evaluated by the LLM Gemini 2.0 Flash. 

3.6.2 Diagnostic Focus 

In addition to diagnostic accuracy, this study evaluated the diagnostic efficiency of each 
language model—defined as a composite measure reflecting both the rank of the correct 
diagnosis and the total number of diagnostic hypotheses provided. This metric captures 
how focused and parsimonious the model's DDx is, which are important indicators of 
clinical usability. 

For each case where the reference diagnosis appeared within the model’s differential 
output, the model’s rank position of the correct diagnosis was recorded. However, rather 
than assessing rank alone, efficiency and focus were contextualized by the total number 
of differential diagnoses generated. For example, a correct diagnosis appearing 3rd in a 
list of 5 options reflects higher quality of diagnosis than one appearing 3rd in a list of 10. 

To quantify this, the diagnostic Smoothed Weighted Focus (SWF) was defined as: 
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𝑖

This formula gives higher scores to models that both: 

- rank the correct diagnosis closer to the top, and 

- generate a shorter, more targeted list of suggestions. 

For every extra diagnosis that is added after the correct one, the score is getting lower, 
since the numerator is decreased. 

The above formula is graphically depicted in Fig. 3.7 with a Heatmap and in Fig. 3.8, with 
a 3D plot. 

In principle, it is inspired by the Discounted Cumulative Gain (DCG), a formula that is used 
in Information Retrieval systems, such as Search Engines. It rewards early correct 
answers and adds a penalty for later ones, similarly to the measurement we need to 
perform for the LLMs’ focus score. 

 

Figure 3.7: Smoothed Weighted Focus (SFW) Heatmap. 

Some examples: 

- The ideal scenario where a correct diagnosis ranked 1st out of 1, the score hits the 
maximum value, which is 1. 

- A correct diagnosis ranked 1st out of 2, produces a score of approximately 0.67. 

- A correct diagnosis ranked 3rd out of 6 produces a score of approximately 0.14. 
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- A missed diagnosis receives a score of 0. 

This approach allows comparison not only of whether models are accurate, but also how 
directly they reach accurate conclusions. 

Note, that for each model the average rank and also the average of total diagnoses were 
calculated. Since these numbers are decimals, rounding to the closest integer was 
required to be applied for the average total diagnoses of each model, causing minor 
differences, but without affecting the score and the comparison quality, 

 

Figure 3.8: Smoothed Weighted Focus (SFW) 3D Surface Plot. 

3.7 Statistical Analysis 

Statistical analysis was performed to compare diagnostic performance across models 
and conditions. 

To begin with all 4 models were compared at once, using Friedman's Test. This is a 
non-parametric statistical test used to investigate whether groups of three or more 
repeated measurements differ from each other. In our case, it was used to investigate 
whether the models’ performance and focus differences are statistically significant or not. 
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For Friedman's Test it’s a prerequisite to calculate means and medians based on common 
cases across the models. Therefore, it was applied in two different ways: 

1. For the first run, only cases that were correctly diagnosed at any rank were 
included. This way, it was ensured that the cases used would be common across 
all models. However, this approach introduced the drawback of punishing and not 
letting models be evaluated on their full potential, if for example they got the right 
diagnosis on cases that others failed. 

2. To resolve this issue mentioned in the previous paragraph, the second run 
included all the cases, introducing a constant value per model, for every case that 
it failed to diagnose. This value was set as the maximum rank of each model, 
increased by 5, meaning that we assumed that if each model had 5 extra 
attempts, it would have matched the golden standard diagnosis. The default 
values for each model as calculated, are displayed in Table 3.2, and they were 
assigned to all cases that were not correctly diagnosed, per model. This way, it 
was allowed to use Friedman’s Test but without omitting cases of our dataset. 

Both approaches have been used in the following runs of statistical tests, and each time 
the approach that is used is mentioned explicitly. 

 gpt-4o o3-mini qwen-2.5-32b qwen-qwq-32b 

Default Rank 14 11 19 13 

Table 3.2: Calculated default Ranks for missed diagnoses. Set to be as max rank plus 5. 

Moreover, pairs of models and their runs have been compared using the Wilcoxon Signed 
Rank Test. This test is especially useful for ranked or ordinal data. It provides an excellent 
alternative for analyzing repeated measures or paired observations without requiring a 
normal distribution. In particular, the following comparisons have been performed: 

- Several comparisons between models, to identify if any of them performs better 
than the rest. 

- Comparisons of GPT-4o and qwen 2.5-32B runs, setting different temperature 
settings. (Low Temperature, set to 0.10 vs High Temperature, set to 1.00) 

- Comparisons of GPT-4o versus o3-mini and qwen 2.5-32B versus qwen QwQ-32B to 
examine the factor of reasoning. 

Furthermore, the presence or absence of a correct diagnosis within a given Top-N 
threshold (N = 1, 3, 5) was examined. McNemar's Test was used due to the paired nominal 
nature of the outcome (correct vs incorrect in the same case). This is a statistical test 
used to analyze paired nominal data, particularly in 2x2 contingency tables, to determine 
if there's a significant difference in proportions between two related groups 

Finally, with the Kruskal Wallis Test it was investigated whether there was statistically 
significant difference on the models’ performance across specialties. This is a 
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non-parametric statistical test used to determine if two or more independent samples 
originate from the same distribution. 

All statistical tests were conducted using the web application 
https://www.statskingdom.com/index.html and also verified in Microsoft Excel or Python 
scripts run in Google Colab. 

All confidence intervals were computed at the 95% level. 

3.8 Environment Setup 

To ensure reproducibility and consistency, all model evaluations were conducted within 
the controlled computational environment of Google Colab. 

The OpenAI models were triggered via the company’s API. As for the Qwen models at the 
time of the writing of this Thesis Project, they could be found in the Groq collection 
(https://groq.com/), and they were triggered via its API. For both cases, registration is 
required and also an API key creation too. 

Each model was evaluated independently, without access to prior case results, and in 
different sessions. The code is available in Appendices 8.1.1 (OpenAI API) and 8.1.2 (Groq 
API). 

3.9 Ethical Considerations 

For this study no human or patient-identifiable data were used, since all data provided by 
NEJM Case Records are anonymous yet real life medical scenarios. 

Key ethical aspects addressed in this study include: 

- Clinical non-deployment: All models were used purely for research and 
evaluation purposes. No model was deployed in a real-time clinical setting or 
exposed to other live patient data. This study is about LLM comparison and 
benchmarking, not an endorsement of LLMs for clinical decision-making. 

- Publication compliance: The use of NEJM content was limited to publicly 
available material and cited appropriately. No copyrighted images or other data 
were used. 
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4 Results 

This chapter presents the results of the diagnostic performance evaluation of 4 LLMs 
across 80 complex clinical cases. The analysis is organized around statistical metrics 
such as mean and median, Top-N accuracy and diagnostic focus. 

All analyses directly follow the methodology described in Chapter 3. Metrics like Top-N 
accuracy and SWF are reported per model. Furthermore, head to head statistical 
comparisons are included to assess significant differences between models. 

4.1 Overall Model Performance 

The mean and the median rank of correct diagnosis for each model is presented in Fig. 
4.1, considering all cases that were correctly diagnosed for each model. SD for means are 
respectively 2.23, 1.53, 3.57, 2.58. Apparently, gpt-4o and o3-mini lead the performances, 
having the lowest means and medians. 

For Friedman's Test it’s a prerequisite to calculate means and medians based on the same 
cases. As a result, we applied it for 2 perspectives, as described in Section 3.7. 

 

Figure 4.1: Mean and Median Rank, taking into account all cases that were correctly diagnosed 
per Model, at any Rank. 

The first was to consider all cases correctly diagnosed by all models. The results are in 
Fig. 4.2. SD for means are respectively 1.65, 1.34, 2.74, 2.76. Having set the Ho as the 
hypothesis that all the ranks of the models have no statistically significant differences, 
the hypothesis was rejected (p=0.00008). 
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As a result, the Ranks of some models are not considered to be equal. In other words, the 
difference between the Ranks of some models is big enough to be statistically 
significant. Again, o3-mini and gpt-4o are performing the best. 

 

Figure 4.2: Mean and Median Rank, taking into account all cases that were correctly diagnosed by 
all language models, at any Rank. In other words, excluding cases that at least one model failed to 
diagnose correctly. 

The second perspective was about taking into account all cases, setting a default Rank 
for cases where the diagnosis was missed, as described in Section 3.7. 

The results are in Fig. 4.3. SD for means are respectively 5.10, 3.59, 6.41, 5.27. Having set 
the Ho as the hypothesis that all the ranks of the models have no statistically significant 
differences, the hypothesis was rejected again, with even higher power (p=3.0649e-8). In 
result, the ranks of some models are not considered to be equal. In other words, the 
difference between the ranks of some models is big enough to be statistically significant. 
Similarly with the previous approach, o3-mini primarily and gpt-4o too, are performing 
the best. 

It’s important to notice that for the calculation of means and medians in Fig. 4.1, only 
cases in which the model produced the correct diagnosis within its output were included 
in the analysis. Similarly, for calculations in Fig. 4.2, all cases where at least one model 
failed to diagnose it correctly were excluded, to allow for statistical testing with 
Friedman’s Test. On the other hand, introducing the default Ranks, even if these are 
calculated per model, according to their overall performance introduces another 
potential bias. As a result, Top-N accuracy metrics that are following in the next section, 
should and were used in parallel to capture diagnostic coverage and performance on the 
full case set. 
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Figure 4.3: Mean and Median Rank, taking into account all cases and by setting default Ranks for 
misses. 

Finally, according to these stats, there is an apparent improved performance by the 
o3-mini model. To investigate whether this is statistically significant, the Wilcoxon Signed 
Rank Test was performed for head to head comparison of o3-mini with the rest of the 
models. Again, 2 different tests we run, including all the cases with default Ranks for 
missed diagnoses in the first, and including only the mutually correct diagnoses in the 
second. 

 gpt-4o qwen-2.5-32b qwen-qwq-32b 

o3-mini p=0.02809 < 0.05 p=6.127e-7 < 0.05 p=5.685e-7 < 0.05 

Table 4.1: p-value for Wilcoxon Signed Rank Test comparisons between o3-mini and the rest of the 
models, including all cases, with default Ranks for missed diagnoses. 

 gpt-4o qwen-2.5-32b qwen-qwq-32b 

o3-mini p=0.5327 > 0.05 p=0.00017 < 0.05 p=0.02692 < 0.05 

Table 4.2: p-value for Wilcoxon Signed Rank Test comparisons between o3-mini and the rest of the 
models, including only cases where all models were correct. 

According to these tests, results showed that the o3-mini better performance against any 
other model is statistically significant, as shown in Table 4.2 (using all the cases, with 
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default Ranks). Regarding the comparisons when only the cases with mutually correct 
diagnoses were included, again o3-mini surpassed both queen models, but not the 
gpt-4o, as shown in Table 4.3. 

4.2 Top-N Accuracy 

In this section, the results of the Top-N metric are presented, to approach a more 
complete description of performance for each model. Table 4.3 includes the accuracy for 
N={1, 3, 5, 10}. Then, detailed graphs are presented in Fig. 4.4, Fig. 4.5, Fig. 4.6, Fig. 4.7 and 
Fig. 4.8. 

 Top-1 Top-3 Top-5 Top-10 

gpt-4o 42.50% 57.50% 68.75% 78.75% 

o3-mini 47.50% 63.75% 80.00% 83.75% 

qwen-2.5-32b 18.75% 46.25% 57.50% 77.50% 

qwen-qwq-32b 31.25% 48.75% 55.00% 65.00% 

Table 4.3: Overall stats for Top-N accuracy of all 4 language models. 

Figure 4.4: Overall stats for Top-N accuracy of all 4 language models. 

35 



 

Figure 4.5: Top-1 accuracy of all 4 language models. 

Figure 4.6: Top-3 accuracy of all 4 language models. 
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Figure 4.7: Top-5 accuracy of all 4 language models. 

Figure 4.8: Top-10 accuracy of all 4 language models. 

In all these metrics, o3-mini is apparently ahead by narrow or wide margins. The 
statistical significance of these differences were examined in detail using McNemar’s Test 
for Top-1, Top-3 and Top-5 accuracy dimensions. 
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4.2.1 Top-1 Accuracy 

- o3-mini vs gpt-4o 

There were 11 cases where o3-mini hit the Top-1 limit while the gpt-4o didn’t. On the other 
hand, there were 7 cases where the performance was reversed. 

Therefore, according to McNemar’s Test there is not enough evidence to suggest there is a 
significant difference between the 2 models (p=0.3458) for the Top-1 accuracy dimension. 

- o3-mini vs qwen-2.5-32b 

There were 25 cases where o3-mini hit the Top-1 limit while the qwen-2.5-32b didn’t. On 
the other hand, there were 3 cases where the performance was reversed. 

Therefore, according to McNemar’s Test a significant difference was found between the 2 
models (p=0.00003) for the Top-1 accuracy dimension. 

- o3-mini vs qwen-qwq-32b 

There were 26 cases where o3-mini hit the Top-1 limit while the qwen-qwq-32b didn’t. On 
the other hand, there were 3 cases where the performance was reversed. 

Therefore, according to McNemar’s Test a significant difference was found between the 2 
models (p=0.00002) for the Top-1 accuracy dimension. 

4.2.2 Top-3 Accuracy 

- o3-mini vs gpt-4o 

There were 14 cases where o3-mini hit the Top-3 limit while the gpt-4o didn’t. On the 
other hand, there were 9 cases where the performance was reversed. 

Therefore, according to McNemar’s Test there is not enough evidence to suggest there is a 
significant difference between the 2 models (p=0.2971) for the Top-3 accuracy dimension. 

- o3-mini vs qwen-2.5-32b 

There were 22 cases where o3-mini hit the Top-3 limit while the qwen-2.5-32b didn’t. On 
the other hand, there were 2 cases where the performance was reversed. 

Therefore, according to McNemar’s Test a significant difference was found between the 2 
models (p=0.00004) for the Top-3 accuracy dimension. 

- o3-mini vs qwen-qwq-32b 

There were 22 cases where o3-mini hit the Top-3 limit while the qwen-qwq-32b didn’t. On 
the other hand, there were 2 cases where the performance was reversed. 

Therefore, according to McNemar’s Test a significant difference was found between the 2 
models (p=0.01059) for the Top-3 accuracy dimension. 
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4.2.3 Top-5 Accuracy 

- o3-mini vs gpt-4o 

There were 15 cases where o3-mini hit the Top-5 limit while the gpt-4o didn’t. On the 
other hand, there were 6 cases where the performance was reversed. 

Therefore, according to McNemar’s Test a significant difference was found between the 2 
models (p=0.04953) for the Top-5 accuracy dimension. 

- o3-mini vs qwen-2.5-32b 

There were 25 cases where o3-mini hit the Top-5 limit while the qwen-2.5-32b didn’t. On 
the other hand, there were 4 cases where the performance was reversed. 

Therefore, according to McNemar’s Test a significant difference was found between the 2 
models (p=0.0001) for the Top-5 accuracy dimension. 

- o3-mini vs qwen-qwq-32b 

There were 22 cases where o3-mini hit the Top-5 limit while the qwen-qwq-32b didn’t. On 
the other hand, there were 4 cases where the performance was reversed. 

Therefore, according to McNemar’s Test a significant difference was found between the 2 
models (p=0.00042) for the Top-5 accuracy dimension. 

4.3 Reasoning vs Non-Reasoning Models 

In this section we will be comparing models of the same family, as for the impact of the 
reasoning factor on the Top-N accuracy. 

In particular, we will be comparing o3-mini (reasoning enabled) versus gpt-4o (non 
reasoning) by OpenAI and qwen-qwq-32b (reasoning enabled) versus qwen-2.5-32b (non 
reasoning) by Alibaba Cloud. 

4.3.1 Top-1 Accuracy 

- o3-mini vs gpt-4o 

This comparison has already been presented in Section 4.2.1. According to McNemar’s 
Test, there is not enough evidence to suggest there is a significant difference between the 
2 models (p=0.3458) for the Top-1 accuracy dimension. 

- qwen-qwq-32b vs qwen-2.5-32b 

There were 14 cases where qwen-qwq-32b hit the Top-1 limit while the qwen-2.5-32b 
didn’t. On the other hand, there were 4 cases where the performance was reversed. 

Therefore, according to McNemar’s Test a significant difference was found between the 2 
models (p=0.01842) for the Top-1 accuracy dimension. 
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4.3.2 Top-3 Accuracy 

- o3-mini vs gpt-4o 

This comparison has already been presented in Section 4.2.2. 

According to McNemar’s Test, there is not enough evidence to suggest there is a 
significant difference between the 2 models (p=0.3458) for the Top-3 accuracy dimension. 

- qwen-qwq-32b vs qwen-2.5-32b 

There were 13 cases where qwen-qwq-32b hit the Top-3 limit while the qwen-2.5-32b 
didn’t. On the other hand, there were 15 cases where the performance was reversed. 

According to McNemar’s Test, there is not enough evidence to suggest there is a 
significant difference between the 2 models (p=0.7055) for the Top-3 accuracy dimension. 

4.3.3 Top-5 Accuracy 

- o3-mini vs gpt-4o 

This comparison has already been presented in Section 4.2.3. 

According to McNemar’s Test a significant difference was found between the 2 models 
(p=0.04953) for the Top-5 accuracy dimension. 

- qwen-qwq-32b vs qwen-2.5-32b 

There were 16 cases where qwen-qwq-32b hit the Top-5 limit while the qwen-2.5-32b 
didn’t. In contrast, there were 14 cases where the performance was reversed. 

According to McNemar’s Test, there is not enough evidence to suggest there is a 
difference between the 2 models (p=0.715) for the Top-5 accuracy dimension. 

4.4 Temperature Impact 

In this section, we are investigating the impact of temperature for the non-reasoning 
models. The default temperature for gpt-4o and qwen-2.5-32b is 1.00. Another run has 
been completed for these models, changing only the temperature to 0.10, as described 
in Section 3.3. 

Therefore, by performing head to head tests with McNemar’s Test, the potential impact of 
temperature setting on the diagnostic performance is presented below. 

4.4.1 Top-1 Accuracy 

- gpt-4o (low temperature) vs gpt-4o (high temperature) 

There were 4 cases where gpt-4o (low temp) hit the Top-1 limit while the gpt-4o (high 
temp) didn’t. On the other hand, there were 6 cases where the performance was 
reversed. 
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According to McNemar’s Test, there is not enough evidence to suggest there is a 
significant difference between the 2 models (p=0.5271) for the Top-1 accuracy dimension. 

- qwen-2.5-32b (low temperature) vs qwen-2.5-32b (high temperature) 

There were 4 cases where qwen-2.5-32b (low temp) hit the Top-1 limit while the 
qwen-2.5-32b (high temp) didn’t. On the other hand, there were 3 cases where the 
performance was reversed. 

According to McNemar’s Test, there is not enough evidence to suggest there is a 
significant difference between the 2 models (p=0.7055) for the Top-1 accuracy dimension. 

4.4.2 Top-3 Accuracy 

- gpt-4o (low temperature) vs gpt-4o (high temperature) 

There were 5 cases where gpt-4o (low temp) hit the Top-1 limit while the gpt-4o (high 
temp) didn’t. On the other hand, there were 5 cases where the performance was 
reversed. 

According to McNemar’s Test, there is not enough evidence to suggest there is a 
significant difference between the 2 models (p=1.00) for the Top-3 accuracy dimension. 

- qwen-2.5-32b (low temperature) vs qwen-2.5-32b (default temperature) 

There were 6 cases where qwen-2.5-32b (low temp) hit the Top-3 limit while the 
qwen-2.5-32b (high temp) didn’t. On the other hand, there were 12 cases where the 
performance was reversed. 

According to McNemar’s Test, there is not enough evidence to suggest there is a 
significant difference between the 2 models (p=0.1573) for the Top-3 accuracy dimension. 

4.4.3 Top-5 Accuracy 

- gpt-4o (low temperature) vs gpt-4o (high temperature) 

There were 5 cases where gpt-4o (low temp) hit the Top-1 limit while the gpt-4o (high 
temp) didn’t. On the other hand, there were 5 cases where the performance was 
reversed. 

According to McNemar’s Test, there is not enough evidence to suggest there is a 
significant difference between the 2 models (p=0.3173) for the Top-5 accuracy dimension. 

- qwen-2.5-32b (low temperature) vs qwen-2.5-32b (high temperature) 

There were 7 cases where qwen-2.5-32b (low temp) hit the Top-5 limit while the 
qwen-2.5-32b (high temp) didn’t. On the other hand, there were 10 cases where the 
performance was reversed. 

According to McNemar’s Test, there is not enough evidence to suggest there is a 
significant difference between the 2 models (p=0.4669) for the Top-5 accuracy dimension. 
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4.5 Diagnostic Focus 

The diagnostic focus as defined in Section 3.6.2 has been measured and displayed in Fig. 
4.9 and Fig. 4.10. The first shows the mean and median total diagnoses for each model. 

According to Friedman’s Test, having set the Ho as the hypothesis that all the diagnosis 
counts of the models have no statistically significant differences, the hypothesis was 
rejected (p=0). In result, the number of total diagnoses per model during the differential 
are not considered to be equal. 

Figure 4.9: Mean Total Diagnoses of all 4 language models. 

As for the second one, it reveals a trend towards having o3-mini as the model that 
combines high accuracy and the fewest options in its differential, offering focused and 
higher-quality differentials. 
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Figure 4.10: Diagnostic Focus of all 4 language models. 

4.6 Specialty-Specific Performance 

As described in Section 3.1.2 and in particular Table 3.1, the dataset is not balanced for 
the specialty dimension. 

However, picking the top 5 specialties in terms of representation, the results for Top-N 
accuracy N={1, 3, 5} are presented in Table 4.4, Table 4.5 and Table 4.6. 

Top-1 accuracy gpt-4o o3-mini qwen-2.5-32b qwen-qwq-32b 

Hematology/Oncology 43.59% 51.28% 20.51% 35.90% 

Infectious Disease 37.14% 48.57% 11.43% 25.71% 

Surgery 36.36% 42.42% 12.12% 30.30% 

Emergency Medicine 46.67% 46.67% 16.67% 43.33% 

Neurology/Neurosurgery 34.62% 46.15% 11.54% 30.77% 

Table 4.4: Top-1 accuracy of all 4 language models for the 5 well represented specialties of the 
dataset. 

Top-3 accuracy gpt-4o o3-mini qwen-2.5-32b qwen-qwq-32b 

Hematology/Oncology 58.97% 66.67% 43.59% 61.54% 

Infectious Disease 51.43% 62.86% 45.71% 42.86% 
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Surgery 48.48% 63.64% 42.42% 39.39% 

Emergency Medicine 63.33% 70.00% 53.33% 60.00% 

Neurology/Neurosurgery 46.15% 65.38% 42.31% 38.46% 

Table 4.5: Top-3 accuracy of all 4 language models for the 5 well represented specialties of the 
dataset. 

Top-5 accuracy gpt-4o o3-mini qwen-2.5-32b qwen-qwq-32b 

Hematology/Oncology 66.67% 79.49% 51.28% 61.54% 

Infectious Disease 62.86% 80.00% 54.29% 54.29% 

Surgery 57.58% 78.79% 54.55% 45.45% 

Emergency Medicine 80.00% 90.00% 66.67% 73.33% 

Neurology/Neurosurgery 57.69% 80.77% 57.69% 46.15% 

Table 4.6: Top-5 accuracy of all 4 language models for the 5 well represented specialties of the 
dataset. 

Kruskal Wallis  gpt-4o o3-mini qwen-2.5-32b qwen-qwq-32b 

p-value 0.5256 0.9718 0.8894 0.327 

Table 4.7: Kruskal Wallis Test p-value for performance differences per model, per specialty 
showed statistically no significant difference in any of them. 

Furthermore, using the Kruskal Wallis Test, there was no statistically significant difference 
in the performance of any of the 4 models, in any of the 5 specialties, as shown in Table 
4.7. For this statistical test, the default Ranks, as calculated in Section 3.7 were used. 
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5 Discussion 

This study presents a structured and comparative evaluation of LLMs on complex clinical 
diagnostic tasks, using real-world case data from the NEJM. In this chapter, there will be 
a discussion about its results, presented in the previous chapter. 

Firstly, an interpretation of these results will be presented, with its core findings and 
potential conclusions. In addition, there will be some comparisons of this research results 
with corresponding results published on other research work. Finally, the strengths and 
the limitations of this project will be discussed, together with some interesting related 
work ideas that are recommended and should be considered to be performed soon. 

5.1 Interpretation of Results 

In this section, the most important conclusions drawn from the evaluation results will be 
presented. Where applicable, these will be grouped with their statistical tests and power. 

5.1.1 o3-mini performance 

According to multiple comparisons presented Chapter 4 o3-mini is the LLM that performs 
the best according to multiple metrics and statistical tests, in terms of performance and 
diagnostic focus as well. 

Firstly, o3-mini had the lowest mean and median values across all models, using 3 
different approaches, as shown in Table 5.1. As described in Section 3.7, the latest one is 
the most reliable one, since it allows for inclusion of cases where not all models were 
successful, and it will be used in the following results interpretations. 

Approaches Mean SD Median 

All successfully diagnosed cases 
for each model included 2.09 1.53 1 

All mutually successfully diagnosed 
cases for all models included 1.83 1.34 1 

All cases using default Ranks 
included 3.54 3.59 2 

Table 5.1: Overall Mean & Median scores for o3-mini were the lowest among all models in 3 
different approaches. 

Additionally, according to Friedman's Test the differences between the models’ accuracy 
is statistically significant, with strong power, p=3.0649e-8. Moreover, as shown in Table 4.1, 
o3-mini was the most accurate of all 4 models (Wilcoxon Signed Rank Test, p=0.02809, 
p=6.127e-7, p=5.685e-7). 
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As for the Top-N metric, again o3-mini had the highest scores across all N variants (1, 3, 5, 
10) with its score being 47.50%, 63.75%, 80.00%, 83.75% respectively. Using McNemar’s Test 
for N=1, 3, 5, it was shown that o3-mini out-performed with statistical significance both 
Qwen models in these N variants, and gpt-4o for N=5. 

Finally, o3-mini hit the best scores in diagnostic focus. It had the lowest Mean (5.84) and 
Median (6) values for the total diagnoses their output had and also the highest score in 
the custom SFW metric that we defined in Section 3.7, with 20.96%, achieving something 
that was impressive: o3-mini had the highest accuracy, with the fewest suggestions in 
its differential diagnoses, among all LLMs. 

5.1.2 Reasoning impact 

The impact of having a model to be reasoning-enabled appears to be helping towards 
the performance improvement of LLMs. 

The Qwen reasoning-enabled model (qwen-qwq-32b) outperformed the qwen 
non-reasoning model (qwen-2.5-32b) for Top-1 accuracy (McNemar’s Test, p=0.01842) and 
the o3-mini which is reasoning-enabled outperformed the gpt-4o for Top-5 accuracy 
(McNemar’s Test, p=0.04953). 

On the other hand, there is no category or statistical test that showed the opposite 
impact for reasoning-enabled models. 

5.1.3 Temperature impact 

In Section 4.4 the impact of model temperature setting was studied and investigated 
across different values. By definition lower temperatures lead to less random results and 
more deterministic behaviors by LLMs. In healthcare and clinical diagnostics this is a 
desired outcome, since reproducibility is an important factor for any assistance provided 
by Generative AI. 

According to our results, higher or lower temperature is not impacting the accuracy 
scores for Top-N metrics. In all the head to head comparisons between model variations 
with low (0.10) and the higher temperature (1.00) there was no statistically significant 
difference, using McNemar’s Test, in any of the Top-N metrics (N=1, 3, 5). In fact, the 
statistical power of these tests never dropped below 15%, providing strong evidence that 
any differences noted should be considered random. 

5.1.4 Per medical specialty performance 

As for the LLMs performance per medical specialty, across the 5 ones that had adequate 
samples (threshold set to 25 cases) it was shown with the Kruskal Wallis Test that there 
was no statistically significant difference among them, for any of the LLMs. (gpt-4o - 
p=0.5256. o3-mini - p=0.9718, qwen-2.5-32b - p=0.8894, qwen-qwq-32b - p=0.327). 

Still, even if the following were not justified in the statistical test, it was apparent that all 
LLMs performed their best in Emergency Medicine for almost every N. On the other 
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hand, in many cases Surgery and Neurology/Neurosurgery were the domains where 
LLMs failed the most. 

In total, it’s not fair to come to conclusions because of the imbalanced dataset for the 
medical specialty dimension, but the performance in some domains such as Emergency 
Medicine, Surgery and Neurology/Neurosurgery, might be hinting towards a direction for 
the performance of the state of the art language models, and for future research in 
clinical diagnosis too. 

5.1.5 Open-source vs. Commercial performance 

According to the results, the two models that had the best performance were those 
developed by OpenAI, which are the ones that have commercial license. On the other 
hand, those that are open source did not score as high. Given this, one could argue that 
the commercial LLMs outperform the open-source ones. However, this argument is quite 
a generalization and can not be justified under the conditions set in this study. 

As pointed out in the Key Glossary, technical and engineering parameters are not always 
clearly and publicly available for commercial models. This limitation makes it difficult to 
fairly compare them with open-source models, since for such comparison it would be 
required that models of the same computing power and purpose are compared. 

There are technical aspects, such as the number of parameters used for a model, that 
are absolutely crucial for its performance [21]. In this research for example, while for 
Qwen models it’s documented that they are engineered with 32B parameters, the 
number of parameters for OpenAI’s models are not officially disclosed. 

As a result, this topic is not addressed by this research, and it is considered open for 
future research. 

5.2 Comparison with Previous Studies 

In recent years, numerous research papers on the performance and impact of LLMs on 
DDx have been published. Actually, some of them have even influenced and inspired this 
Thesis Project. 

To begin with, the dataset available by NEJM has already been used in numerous works 
[2,16,18]. The evaluation in these works [16,18] focuses mainly on the quality of the DDx, 
and it was performed by physicians. Therefore, a direct comparison of the results is not 
feasible. This is a different approach, focusing on evaluating the quality of the reasoning, 
and the context of the DDx, without focusing strictly on the accuracy. 

The evaluation process that this Thesis Project has implemented is similar to the one 
presented in some other work [2] where one of the main evaluation metrics was the 
Top-N accuracy, automatically run by a non-participating LLM (Med-PaLM 2). The 
evaluated model in this case was the Articulate Medical Intelligence Explorer (AMIE), 
developed by the research team, whose metrics were compared against other sides, 
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such as clinicians, clinicians synergy with AMIE and clinicians assisted by Internet Search, 
but also against GPT-4. 

A direct comparison of results is not fair and consistent since different LLMs fed with 
different prompts have been used as raters in these 2 works. In our case, the prompt 
used for the rater LLM Gemini 2.0 Flash was explaining the process in detail, as shown in 
Fig. 3.3. On the other hand, in McDuff, D., Schaekermann, M., Tu, T. et al. [2] work, the 
prompt was much more concise and strict as shown in Fig. 5.1. 

As Fig. 5.2 displays, GPT-4 and AMIE were evaluated for their Top-N accuracy metric for 
N=1, 3, 5 starting from ~30% and increasing up to approximately 50-55% as N increases 
too. On the other hand, for this research o3-mini and gpt-4o that were proved to be the 
best performers LLMs, had their Top-N metric range respectively according to Table 4.3 
from 42,50% up to even 80.00%, as N goes higher. 

Is our predicted diagnosis correct (y/n)? Predicted diagnosis: [diagnosis], True 
diagnosis: [label] 
 
Answer [y/n]. 

Figure 5.1: Prompt used for the evaluator LLM in McDuff, D., Schaekermann, M., Tu, T. et al.work. 

However, primarily o3-mini and secondarily gpt-4o are more advanced, released later 
than gpt-4, and have been proven to perform better in health care tasks, evaluated on 
the HealthBench [14], as seen in Fig. 5.3. Therefore, results hint to potentially improved 
performance by the more advanced and State of the Art LLMs. 

 

Figure 5.2: Retrieved from McDuff, D., Schaekermann, M., Tu, T. et al. work. Comparison of the 
percentage of DDx lists that included the final diagnosis for AMIE versus GPT-4 for 70 cases. We 
used Med-PaLM 210, GPT-46 and AMIE as the raters—all resulted in similar trends. Points reflect 
the mean; shaded areas show ±1 s.d. from the mean across 10 trials. 

Moreover, these studies did not include or mention the value of LLMs’ diagnostic focus 
and efficiency, which was introduced in this work. 

As for the temperature impact, in other research, it has been shown that it is a 
hyperparameter with low or no impact on accuracy scores [25]. Our research verified this 
outcome. Still, even if temperature appears to be an irrelevant setting since it’s not 
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impacting the performance of any language model, it’s important not to ignore its role by 
definition, the improvement of determinism and reproducible diagnoses. 

 

 

Figure 5.3: Retrieved from HealthBench: Evaluating Large Language Models Towards Improved 
Human Health by Arora RK, Wei J, Hicks RS, Bowman P, Quiñonero-Candela J, Tsimpourlas F, et al 
HealthBench performance of OpenAI models over time. 

Finally, the reasoning process and diagnostic reasoning in principle is known to be crucial 
for Medical Doctors [9,30]. Similarly for LLMs, this feature that is intended to mimic the 
process followed by humans was found to improve the LLM performance on DDx. 

5.3 Strengths and Limitations 

For this research, there are a number of methodological strengths that enhance the 
robustness of the findings. First, the study design employed a set of 80 clinically 
validated cases spanning a wide range of specialties, ensuring both realism and 
diagnostic diversity. The inclusion of models of different characteristics allowed for 
meaningful insights on comparisons of several dimensions. Moreover, these language 
models are part of the State of the Art on Generative AI and LLMs, a field that has been 
progressing exponentially during the last years. Another strength is using meaningful and 
informative evaluation metrics. The combination of Top-N accuracy with the custom 
metric of SWE, allows for insights on both correctness and diagnostic focus as well. In 
addition, this research and the framework that was applied can be reproduced with 
different models under evaluation, since both the metrics and the dataset are publicly 
available and ready to be used. 
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On the other hand, several limitations must be acknowledged. First, even if the 
evaluation process covered several aspects of performance and avoided introducing 
major bias, it is still subject to potential secondary ones. To begin with, the requirements 
of some rank-based statistical tests (Friedman's Test, Wilcoxon Signed Rank Test) led to 
having to exclude cases with completely missed diagnoses by at least one model. This 
approach certainly masked some of the performance gaps among models, and this is 
why it was handled by allowing all the cases in these statistical tests, by setting a custom 
default value for all the missed diagnoses. This approach resolves the aforementioned 
issue, and it was preferred. Still, we need to point out the fact that introducing the 
calculated default Ranks introduces a potential minor bias in the evaluation process. 
Secondly, although specialty-specific performance was analyzed, uneven case 
distributions across specialties limited the ability to draw statistically robust conclusions 
in underrepresented domains. Moreover, this study focused exclusively on diagnostic 
generation and did not assess the quality of the reasoning by each LLM, which is critical 
for real-world cases. This aspect of evaluation would require at least one Medical Doctor 
to perform the evaluation of each model output. 

5.4 Methodological Recommendations for Future Research 

As the diagnostic capabilities of LLMs continue to evolve, so too must the methodologies 
used to evaluate their performance in clinical settings. While this study offers a 
structured and comparative analysis of several state-of-the-art models, it also highlights 
areas where future research can further improve and evolve the status of Generative AI in 
the field of healthcare and DDx. 

Stratified Evaluation Using Balanced, Specialty-Specific Datasets 

The current study demonstrated notable performance variability across clinical 
specialties. However, due to uneven representation in the dataset, certain specialties 
were excluded from comparative analysis. Future studies should aim to construct 
balanced specialty-specific datasets to enable more reliable evaluations of model 
behavior across medical domains. This could involve curating subsets of cases that are 
equated for complexity, length, and diagnostic ambiguity, thereby allowing researchers 
to isolate performance trends specific to specialties. 

Scaling Up: Leveraging Full-Scope Datasets 

Although 80 NEJM cases provided a robust foundation for this study, the full NEJM Case 
Records archive represents a far larger resource. Future studies should consider scaling 
to hundreds or thousands of cases, leveraging automated pipelines for prompt 
generation, response logging, and scoring. A larger dataset would not only increase 
statistical power but also allow for longitudinal evaluation, such as tracking performance 
across case types, publication years, or patient demographics. 

Incorporating Visual Data into Diagnostic Evaluation 

With the advent of multimodal LLMs, diagnostic reasoning is no longer limited to textual 
input. Many NEJM cases include key clinical images (e.g., medical imaging, pathology 
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slides, dermatological findings), which are essential to diagnostic accuracy in real-world 
settings. Future evaluations should incorporate these elements, allowing for visual-text 
multimodal prompting. 

Developing a Diagnostic Reasoning Evaluation Framework 

While Top-N accuracy and Weighted Efficiency metrics are informative, they do not fully 
capture the reasoning quality, explanatory coherence, or clinical appropriateness of LLM 
responses. There is a need to develop a standardized framework for evaluating the 
qualitative dimensions of diagnostic reasoning, including aspects such as the presence 
of hallucinations or unsafe recommendations, the logical coherence of differential 
construction or the justification of any action and medical exam requested Such a 
framework would most likely require human-in-the-loop evaluation, rubric-based 
scoring, or even new LLMs working as evaluators, trained specifically on clinical 
argumentation. 

As LLMs move from experimental use to potential clinical integration, research 
methodologies must evolve to evaluate not only whether these systems are correct, but 
how, why, and under what conditions their reasoning is clinically trustworthy. 

Computational Efficiency and Small Language Models Evaluation 

Beyond diagnostic accuracy, the optimization of computational efficiency and cost for 
LLMs remains underexplored and lately starts to attract more and more research interest 
[31]. Many of the most accurate models are resource-intensive, requiring significant 
resources. Future work must address whether these models can realistically be 
deployed for clinical usage and how they might be optimized for real-time co-piloting 
with medical professionals. This leads also to evaluation of small language models and 
whether they can offer a balance in the performance - efficiency trade off, potentially by 
being trained and gaining expertise on specific specialties. 
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6 Conclusion 

This chapter summarizes the findings from our methodology's implementation in 
Generative AI and LLM performance for DDx. It also offers final reflections on the subject, 
building upon the previous chapter's presentation of the implementation. 

6.1 Summary of Findings 

This thesis presented a structured and reproducible methodology for evaluating the 
diagnostic capabilities of LLMs in complex, real-world clinical scenarios. The evaluation 
framework combined traditional Top-N accuracy metrics with a novel diagnostic 
efficiency score, reflecting both the position and the value of correct diagnostic 
suggestions. This dual approach allowed for a more holistic assessment of diagnostic 
focus and clinical usability as well. 

In general, the results revealed an improvement in LLM diagnostic performance and 
accuracy compared to earlier studies, reflecting ongoing advancements in model design 
and engineering. Notably, reasoning-enabled models consistently outperformed their 
non-reasoning counterparts, underlining the importance of structured thinking processes 
in clinical tasks, similarly with physicians and clinicians. On the other hand, temperature 
variation did not significantly influence diagnostic accuracy. Higher temperatures 
generally provide more consistent but not more accurate responses. 

Among the models evaluated, proprietary language models by OpenAI outperformed 
open-source alternatives. However, due to the lack of transparency regarding model 
architecture, parameter count, and training data in commercial systems, direct 
comparisons remain partially constrained. Nevertheless, OpenAI’s o3-mini model 
emerged as the most effective across both performance and diagnostic focus metrics, 
combining strong Top-N accuracy with concise, high-quality differential lists. 

The analysis also revealed notable variation in model performance across medical 
specialties, suggesting that general-purpose LLMs do not generalize uniformly across 
clinical subdomains. This finding underscores the need for specialty-specific evaluations 
when considering real-world use in diverse clinical environments. 

Finally, statistical analysis using non-parametric tests such as the Friedman test 
confirmed that the observed differences in model performance were statistically 
significant. These findings reinforce the necessity of rigorous, comparative evaluation 
frameworks when interpreting and applying generative AI technologies in healthcare and 
clinical diagnosis in particular. 

6.2 Final Reflections 

The diagnostic performance of LLMs continues to improve rapidly, with recent advances 
demonstrating increasingly competent reasoning in clinical tasks. However, as 
capabilities evolve, so must the methods used to assess them. This thesis reinforces the 
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need for the next step in advanced benchmarking tools that can automate and scale 
evaluation across diverse and complex medical domains. Encouragingly, initial steps in 
this direction have already been taken in current trending research, including structured 
grading rubrics, and more advanced evaluation frameworks. 

The field is clearly shifting away from constrained, multiple-choice question benchmarks 
and toward more complex and realistic clinical challenges. This study contributed to that 
shift by evaluating model performance on open-ended DDx tasks derived from authentic 
clinical case reports. Future evaluations should continue to expand into even more 
advanced tasks, such as patient history-taking, effective selection and justification of 
diagnostic tests, and patient-specific management strategies. These tasks more closely 
resemble real-world medical ones and demand not just correctness but clinical 
judgment as well. 

Another emerging trend is the move beyond single-dimensional accuracy metrics. While 
Top-N scores remain useful for establishing baseline performance, they fail to capture 
the full spectrum of qualities required in clinical AI tools—such as reasoning 
transparency, rubric-based quality, communication clarity, patient empathy, and 
questioning techniques. The development of multi-dimensional evaluation frameworks 
will be essential for responsibly guiding LLM integration into clinical workflows. 

 

Figure 6.1: Transition for Phase 1 to Phase 2. Shifting from quiz questions towards complex real 
world scenarios. Shifting from one dimension evaluation scores towards advanced frameworks 
and quality evaluation with rubric criteria.  

At the same time, the dominance of large proprietary models raises practical concerns 
about accessibility and computational cost. There is increasing interest in smaller, more 
efficient models that are fine-tuned for specific specialties or use cases. These 
lightweight models may offer a more sustainable and democratized path to clinical 
deployment, particularly in resource-limited settings. 

Finally, despite the growing complexity of evaluation frameworks, simple zero-shot 
diagnostic tasks still hold value. They offer a quick and interpretable snapshot of the 
current status of generative AI capabilities. When combined with deeper evaluation 
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tools, these zero-shot assessments remain an important component of an evolving and 
layered benchmarking environment. 

In summary, the future of diagnostic AI lies not only in more powerful models but also in 
the design of meaningful, transparent, and context-aware evaluation systems and 
frameworks. As models approach clinical utility, the emphasis must shift toward 
real-world applicability, responsible integration, and human-AI collaboration. 

6.3 Data availability 

Cases used, the models’ responses, and their scoring per case are all available upon 
request. 
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8 Appendices 

8.1 Source Code 

8.1.1 OpenAI API integration 
%%capture 

!pip install openai httpx --upgrade --quiet 

 
import asyncio 

from openai import AsyncOpenAI 

import os 

import shutil 

 

API_KEY = "sk****" 

MODEL = "gpt-4o" 

TEMPERATURE = 1.00 

DRIVE_WORKSPACE = "/content/drive/MyDrive/ΕΜΠ/Master/My Thesis/PartB/colab/"; 
INSTRUCTIONS_PATH = DRIVE_WORKSPACE + "system_instructions.txt" 

INPUT_DIR = DRIVE_WORKSPACE + "cases" 

OUTPUT_FOLDER = "log" 

OUTPUT_DIR = OUTPUT_FOLDER + "/" + MODEL 

 

def clear_directory(directory_path): 

    if os.path.exists(directory_path): 

        for filename in os.listdir(directory_path): 

            file_path = os.path.join(directory_path, filename) 

            try: 

                if os.path.isfile(file_path) or os.path.islink(file_path): 

                    os.unlink(file_path) 

                elif os.path.isdir(file_path): 

                    shutil.rmtree(file_path) 

            except Exception as e: 

                print(f"Failed to delete {file_path}: {e}") 

        try: 

            os.rmdir(directory_path) 

        except Exception as e: 

            print(f"Failed to delete directory {directory_path}: {e}") 

 

 

with open(INSTRUCTIONS_PATH, "r") as file: 

    system_instructions = file.read() 
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clear_directory(OUTPUT_FOLDER) 

os.makedirs(OUTPUT_DIR) 

client = AsyncOpenAI(api_key=API_KEY) 

 

 

async def main(): 

  for filename in os.listdir(INPUT_DIR): 

    if not filename.endswith(".txt"): 

      continue 

    file_path = os.path.join(INPUT_DIR, filename) 

    with open(file_path, "r") as file: 

        case_description = file.read() 

        base_filename = os.path.splitext(filename)[0] 

        case_log_file = os.path.join(OUTPUT_DIR, f"{base_filename}.log") 

 

        with open(case_log_file, "w") as log_file: 

          content = [ 

              {"type": "text", "text": f"{case_description}\n"} 

          ] 

 

          response = await client.chat.completions.create( 

              model=MODEL, 

              messages=[ 

                  {"role": "system", "content": system_instructions}, 

                  {"role": "user", "content": content}], 

              temperature=TEMPERATURE 

          ) 

 

          answer_text = response.choices[0].message.content 

          log_file.write(f"{answer_text}") 

 

await main() 

 
!zip -r /content/gpt-4o.zip /content/log/gpt-4o 

from google.colab import files 

files.download("/content/gpt-4ο.zip") 

8.1.2 Groq API integration 
 
!pip install groq 
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import asyncio 

import os 

import shutil 

from groq import AsyncGroq 

 

API_KEY = "sk****" 

MODEL = "qwen-2.5-32b" 

TEMPERATURE = 1.00 

DRIVE_WORKSPACE = "/content/drive/MyDrive/ΕΜΠ/Master/My Thesis/PartB/colab/"; 
INSTRUCTIONS_PATH = DRIVE_WORKSPACE + "system_instructions.txt" 

INPUT_DIR = DRIVE_WORKSPACE + "cases" 

OUTPUT_FOLDER = "log" 

OUTPUT_DIR = OUTPUT_FOLDER + "/" + MODEL 

 

 

def clear_directory(directory_path): 

    if os.path.exists(directory_path): 

        for filename in os.listdir(directory_path): 

            file_path = os.path.join(directory_path, filename) 

            try: 

                if os.path.isfile(file_path) or os.path.islink(file_path): 

                    os.unlink(file_path) 

                elif os.path.isdir(file_path): 

                    shutil.rmtree(file_path) 

            except Exception as e: 

                print(f"Failed to delete {file_path}: {e}") 

        try: 

            os.rmdir(directory_path) 

        except Exception as e: 

            print(f"Failed to delete directory {directory_path}: {e}") 

 

 

with open(INSTRUCTIONS_PATH, "r") as file: 

    system_instructions = file.read() 

 

 

clear_directory(OUTPUT_FOLDER) 

os.makedirs(OUTPUT_DIR) 

 

 

async def main(): 

  client = AsyncGroq(api_key=API_KEY) 

  for filename in os.listdir(INPUT_DIR): 

    if not filename.endswith(".txt"): 
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      continue 

    file_path = os.path.join(INPUT_DIR, filename) 

    with open(file_path, "r") as file: 

        case_description = file.read() 

        base_filename = os.path.splitext(filename)[0] 

        case_log_file = os.path.join(OUTPUT_DIR, f"{base_filename}.log") 

 

        with open(case_log_file, "w") as log_file: 

 

          content = [ 

              {"type": "text", "text": f"{case_description}\n"} 

          ] 

 

          stream = await client.chat.completions.create( 

              model=MODEL, 

              messages=[ 

                  {"role": "system", "content": system_instructions}, 

                  {"role": "user", "content": content} 

              ], 

              temperature=TEMPERATURE, 

              max_completion_tokens=4096, 

              stream=True, 

              stop=None 

          ) 

 

          response_text = "" 

          async for chunk in stream: 

              response_text += chunk.choices[0].delta.content or "" 

 

          log_file.write(f"{response_text}") 

 

await main() 

 

!zip -r /content/qwen-2.5-32b.zip /content/log 

from google.colab import files 

files.download("/content/qwen-2.5-32b.zip") 
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