EoNIKO METZOBIO ITIOAYTEXNEIO

Y XOAH HAEKTPOAOTON MHXANIKON KATI MHXANIKON YTIOAOTISTON
TOMEAY TEXNOAOTIAY ITAHPO®OPIKHE KAI YIIOAOTISTON
EPrASTHPIO MIKPOYIOAOTIETON KAI WHSIAKON LYSTHMATON VLSI

Combining Mitigation Techniques for
Fault-Tolerant Data Transfers in SOC FPGAs

DIPLOMA THESIS

by

Konstantinos Larisis

EmfBAénwy: AHMHTPIOY SOYNTPHY
Kodnynthc E.M.IL

Adrva, ToOhog 2025






Edvix6 Metoédfio TTohuteyvelo

Yyort) Hiextpohdywyv Mnyovixov xow Mryovixey Troloyiotodv
Touac Teyvoroylaug ITAnpogpopuxric xa TroroyioT®dY
Eeyaotriplo Mixpoimohoyiotdv xan Wnplaxady Xuctnudtwy VLSI

Combining Mitigation Techniques for
Fault-Tolerant Data Transfers in SOC FPGAs

DIPLOMA THESIS

by

Konstantinos Larisis

EmBAénwy: AHMHTPIOY SOYNTPHY
Kodnynthc E.M.IL

Eyxpldnxe and tnv tpwels| eetaotnt| emitpony| Tnv 41 Ioukiou, 2025.

AHMHTPIOY YXOYNTPHY YQTHPIOY =YAHY T'EQPT'IOY AENTAPHY
Kodnyntic E.M.IL Enixovpoc Kadnyntric E.M.IL Enixoupoc Kadnyntric ITAAA

Adrva, ToOhog 2025



KONZTANTINOE AAPISHE
Awmhopatovyoc Hiextoohdyoc Mnyoavixdc
xow Mnyavixoe Troroyotwv E.M.IL

Copyright (© Konstantinos Larisis, 2025.
Me emgpOialn mavtog dixandpoatoc. All rights reserved.

Arnayopeleton 1 avTiypapr, amodrixeuct xou dlavour| Tng topolcog epyaciog, €& ohoxhipou 1
TUAUATOC QUTAS, VLol EUTTOpLxG oxomo. Emtpéneton 1 avoatinwor, amodrixeuon xou dioavouy| yia
OXOTO 1) XEEOOOXOTUNO, EXTOUOELUTIXNG 1) EPELVNTIXTS PUCTS, UTO TNV TEoUTOVEST) Var avapépeTon
1 TNYT| TEOEAEUOTG Xat VoL BtaTneelTa To Topov pvupa. Epwthuata mtou agopolv 1 yeron g
epyaoiog Yo x€pB0OoXOTIXG OXOTO TEETEL VoL AMELVUVOVTOL TTPOS TOV CUYYRUPEX.

Ov amdelg xon T GUUTERAGUATA TTOU TEPLEYOVTAL OE AUTO TO EYYPEUPO EXPEALOLY TOV GUYYRUPEN
xou Oev TEETEL Vo epunveLvdel 6TL avTitpocwreouy Tig entonueg Yéoelg Tou Edvixol Metodfiou
IToAuteyvelov.






ITepiindm

H S truue Brounyavio €xel Bldoet évay petacynuationd ta Teheutala Ypovia, uetootvovtog
ond mopadootoxéc radiation-hardened cuoxevéc oe Commercial Off-The-Shelf (COTS) SoC
FPGAs vy tic St tnuixéc anootohés tne. Auty| 1 uetdfoon ogelleton xupleyg 0 TAEOVEXTH-
HOTaL, OTWE TO UXEO XOGTOG, O UXPOS YEOVOS ELCAYWYNAS OTNY oY0pd, 1) UEYAAT UTOAOYLOTIXN
0UVon o 1 aENEVN eveMEla TNV avanTuEn LUAXohoyiopxou. 2otéco, Ta COTS SoC FP-
GAs Bev €y0UV XUTAOKEVACTEL UE TEOBLYPUPES DLOC TAUATOC, UE UTOTEAECUA Vo Efval EVGAWTA
oty oviouoa axtvoforia. Av xau 1 mpocoy | €xel oTpugel xuplwg ota ototyela enelepyasiag,
omwe ot ARM muprveg xan oL emitoyuvTég UAXOU (hardware kernels), to uncore ototyeio, mou
TepthauBdvouy xar 6houg Toug SladAoug xar BleTapée emxovwviog péoa oe éva SoC FPGA,
elvon enfong Wialtepa eudhwta o o@dhuato Aoyw axtvofollaug. Muvenog, elvon amapaitnTo
va Staogakiotel 1 ofldmotn petopopd dedouévev petall eneepyoaoth (CPU) xou emtoyyuvts
LVALXOU.

H mopodoo SimAwUatiny TeoTelvel ot OAOXANEWUEVTY), avIEXTIXT) OE GQUAUUTA EYLTEXTOVIXY),
eldwd oyedaouévn yio SoC FPGAs, ue oxond tov meEQLopiold TwV ovaTEOTOV UEUOVWHUEVEDY
ouuBdvtov (SEUS) mou ennpedlouv ta Sedopévo md@ENULOL @opTiou 0TIC HETAPORES SEBOUEVLY,
YWel vou ahhowdvouy Tn AettoupyxdTnTa Tou cuoThAuatos. H mpotewvouevn apyitexTovixy
vhoroteitoan oty mhatpdouo MPSoC UltraScale+, evowpatdvovtag unyaviogols aviextixotn-
Tog o€ opdidata, T6co 6to PL 600 xu oto PS unocUotrua. Xuvdudler tig teyvixég Triple
Modular Redundancy (TMR) xou temporal redundancy, pe evowuatouéves SuvatdTnTeS ov-
VexTIXOTNTOG OE GPAAUTH ToU LTocuo THUNTOS PS, eldixdtepa to dual-core lockstep tou emed-
epyaot) ARM Cortex R5. T v aliohdynon e allomotiag xon AmoTEASOUATIXOTNTOG
NG APYLTEXTOVIXNG, TROYUATOTOWINXE Lol TROGOUOIKOT EIGUYWY NS CPUAUATLY 6TO GUOTIU,
otnewlouevn otig teyvixég fault pruning xou saboteur insertion. Tao tepouatind anoteréopata
uTOBEWYOOLY oNUaYTXT BeEATinon 0Ty adloTio Tl TOU CUGTAUATOS, Yweic Vo emBaAAOLY UTEE-
Bohuny utoloytotixy emfBdpuvon (computational overhead) ¥ adEnomn e yenoonololuevng
neptoyne (area overhead).

A€leig-xAedd — COTS SoC FPGAs, Fault Tolerance, Spatial Redundancy, Temporal
Redundancy, Dual-Core Lockstep, ARM Cortex R5, SEU Error Injection, Reliability






Abstract

The space industry has experienced a transformation in recent years, transitioning from tradi-
tional radiation-hardened devices to Commercial Off-The-Shelf (COTS) SoC FPGAs in space
missions. This shift is primarily driven by benefits including reduced costs, shorter time-to-
market, increased processing performance, and enhanced development flexibility. However,
since COTS SoC FPGAs are not specifically designed for the harsh conditions of space, they
remain vulnerable to ionizing radiation. While much attention has been given to the vulner-
ability of processing elements such as Arm cores and hardware kernels, uncore components,
including communication interfaces, are also highly susceptible to radiation-induced faults.
Consequently, ensuring data integrity during transfers between the CPU and hardware kernel
is challenging.

This thesis proposes a comprehensive fault-tolerant architecture specifically tailored for SoC
FPGAs, aimed at mitigating Single Event Upsets (SEUs) affecting payload data during data
transfers, without altering the system’s functionality or components. The proposed archi-
tecture is implemented on the MPSoC UltraScale+ platform, incorporating fault-tolerant
mechanisms in both PL and PS subsystems. It integrates mitigation techniques such as
Triple Modular Redundancy (TMR) and temporal redundancy within the FPGA fabric,
alongside built-in PS fault-tolerant features, notably the dual-core lockstep capability of the
ARM Cortex R5 processor. A targeted fault injection campaign, involving fault pruning and
saboteur insertion, was conducted to rigorously evaluate the architecture’s resilience and ef-
fectiveness. Experimental results demonstrate significant improvements in system reliability
without imposing excessive computational or area overhead.

Keywords — COTS SoC FPGAs, Fault Tolerance, Spatial Redundancy, Temporal Re-
dundancy, Dual-Core Lockstep, ARM Cortex R5, SEU Error Injection, Reliability






Euyaplotieg

Apywnd, Yo Alela var euyaploTiow Tov emBAénovTa xadnynTy nwou, xplo Anurtelo Loovien,
YLOL TNV EUTLOTOOUVY TOU UoU EBEIEE VoL EXTIOVHOW T1) BITAWUATIXY LOU EQYACIN GTO EPYUC THRLO
Mupobnoroyiotiv xou Wngloxey Xuotnudtoy. Eriong, euyopoted depud tov urtodrigpio d1ddx-
topar HAlaw TTomokdumnpou, tov duddmtopa Iwdvvn Ltpatdxo, xadog xouw tov xadnynty| xlplo
Fewpyio Aevtdpn, yia tnv mohOtyn Pordeia xan xadodriynon toug. Téhog, Yo ko vo eu-
YUELOTHOW UEGA OO TNV XEOL LOU TOUS QIAOUC oL, YLOL TIC OUORPES G TLYUES TTIOU UOLOUGTAXIUE
XOUTA T BLIEXELY TGV POLTNTIXOV YPOVOY, UAAG xou Toug Yovelg pou, Erévn Mrouyatléhn xou
Yogoxh Aaplor, mou ue otnpiCouy ot xde pou Brua xon ywelc autols dev Ya elyo xaToPEpEL
VoL TAOW WG EDW.

Kwvotavtivoc Aaplone, ToGhiog 2025

10






Contents

Contents

List of Figures

0

Extetapévn Ilepiindn ota EAAvixd

0.1 Ewayoynd . . . .
0.2 Tlpotetvouevn ApyltexTovin) . . . . . . . . ..
0.3 A&wohdynon xow ATOTEAEGUOTO . . . . . . o o o oo
Introduction
1.1 Problem Statement . . . . . . . . ... ... .. L
1.2 Related Work . . . . . . . .
1.3 Thesis Contributions . . . . . . . . . . ... ...
1.4 Thesis Outline . . . . . . . . . . . . .
Background
2.1 Space Radiation Environment . . . . . . . ... ... . L.
2.1.1 Tonizing Radiation . . . . . .. .. .. .. ... L.
2.1.2 Radiation Effects on Electronics . . . . . . . ... ... ... .....
2.1.3  Soft Error Rate (SER) . . . .. ... .. ... ..o .
2.2 Dependability . . . . . ...
2.2.1 Faults, Errors and Failures . . . . . . . . . .. ... ... .......
2.2.2  Fault Tolerance Techniques . . . . . . . . ... .. ... ... ....
2.2.3  Dependability Metrics . . . . . .. ...
2.3 SoCFPGA . . . .
2.3.1 FPGA Architecture . . . . . . . ...
2.3.2  Zynq UltraScale+ MPSoC . . . . . . . ... ... ... ..
2.3.3  Development Tools for SoC FPGAs . . . . . ... ... ... .....
Proposed Fault-Tolerant Architecture
3.1 Overview . . . . .. L e
3.2 Offloading Data Path in a Fault-Prone Architecture . . . . . . .. .. .. ..
3.3 FT Technique 1: TMR . . . . . . . . ... . .
3.3.1 Triplication of the Offloading Data Path . . . . . . .. .. ... ...
3.3.2 AXI4-Stream Protocol . . . . . . .. ... ...
3.3.3 PLVoting . . . . . . ..



3.4 FT Technique 2: Time Redundancy

3.5 FT Technique 3: DCLS . . . . . . . . .. .
3.6 Design of Hardware Kernels . . . . . . . ... ... . ...

4 FEvaluation

4.1 Fault Injection Campaign . . . . . . . . .. ...
4.1.1 OVerview . . . . ... e
4.1.2  Step 1: Fault Pruning . . . . . . .. ... 0oL
4.1.3 Step 2: Saboteur Insertion . . . . . . .. ..o

4.2 Experimental Setup . . . . . .. ..o

4.3 Experimental Results . . . . . . . . . oo

5.1 Conclusion . . . . . . . .
5.2 Future Work . . . . . .

5 Conclusion and Future Work
Bibliography

13



List of Figures

0.2.1 Apyrtextovix) Avaopde . . . . . L
0.2.2 [TpoTetvouevn ApylTexTovin) . . . . . . . . . . .o
0.2.3 Thomnoinon cuvdptnon micwodnelac oto PL . . .. o0 o000
0.3.1 Unmitigated system . . . . . . . . . . .. Lo
0.3.2 TMR + Normal PS Voting . . . . . . . .. ... ... ... ... .. ....
0.3.3 TMR + Lockstep PS Voting . . . . . . .. ... .. .. ... ... ......
0.3.4 Three configurations compared . . . . . . .. ... ... ... ... ... ..
0.3.5 Three configurations compared . . . . . . .. ... ... ... ... ... ..
0.3.6 Execution Overhead . . . . . . . . . . . ...

2.1.1 (a) Normal operation of n-channel MOSFET, (b) Operation under positive
charge buildup (holes) due to radiation, that produces a negative threshold
voltage shift. . . . . . . . . ..

2.1.2 Single ion striking a memory cell. . . . . . . .. ..o

2.2.1 Fault Tolerance Techniques. . . . . . . . . . . . .. .. ... ... ......

2.3.1 Simplified FPGA architecture . . . . . . . . . ... ... ... .. ... ...

232LUT structure . . . . . . . . L

2.3.3 Programmable routing in FPGAs . . . . . . .. .. ... ...

2.3.4 MPSoC EG device family . . . . . .. .. ...

2.35DDR Subsystem . . ...

2.3.6 MPSoC Interconnect Architecture . . . . . . . . .. ... ... ... ...

2.3.7 Arm Cortex-R5 micro-architecture and micro-components . . . . . . . . ..

3.1.1 Proposed Fault-Tolerant Architecture . . . . . . . . . . ... ... ... ...
3.2.1 Baseline Fault-Prone Architecture . . . . . . . . . ... ... ... ......
3.2.2Block Design . . . . . .
3.3.1 Triplication of Critical IP Blocks . . . . . . . . . ... ... ... ... ...
3.3.2 FIFO-Kernel Communication: detailed view of the interface between the two

(Zoom-in of Figure 3.1.1) . . . . . . ... oL
3.3.3 AXI4-Stream signals . . . . . . ..o
3.3.4 Three-masters-to-one-slave configuration using AXI4-Stream . . . . . . . ..
3.3.5 One-master-to-three-slaves configuration using AXI4-Stream . . . . . . . ..
3.3.6 Most common implementation of 3-bit majority voter . . . . . . . .. .. ..
3.3.7 Implementation of 32-bit majority voter . . . . . . .. . ... ... L.
3.6.1 Custom IP cores: Accumulator and Offset Adder . . . . . . ... ... ...

14

34
34
36
39
39
40
41
42
43
44

47
49
49
20



4.1.1 Fault dominance and equivalence (the Boolean function is equal to an AND

GAtE) . . . 61
4.1.2 Single bit forward datapath (DDR-kernel) with highlighted fault injection tar-

get (red arrow) . ... 62
4.1.3 Single bit reverse datapath (kernel-DDR) with highlighted fault injection tar-

get (red arrow) . ... 62
4.1.4 RTL representation of Assembly code (voting), with highlighted the fault in-

jection targets after pruning (red arrows) . . . . . . ... ... 63
4.1.5 Fault Injection Components . . . . . . . . . . ... ... 63
4.1.6 LFSR Representation [?| . . . . . . . . ... 64
4.1.7 Internal Structure of Bitflip Inject IP . . . . . . .. .. ... ... 64
4.1.8 A53 Cores Acting as Saboteurs . . . . . . . . ... ... ... .. 65
4.2.1 Experimental setup used for reliability evaluation. . . . . . .. ... ... .. 66
4.3.1 Unmitigated System . . . . . . . . . .. 68
4.3.2 TMR + Normal PS Voting . . . . . . . . . .. ... ... .. ... ..... 70
4.3.3 TMR + Lockstep PS Voting . . . . . . .. .. ... ... .. ... .. .... 70
4.3.4 Three configurations compared . . . . . . . .. .. .. ... .. ... ... . 71
4.3.5 Three configurations compared . . . . . . . . ... ... ... ... ... 71
4.3.6 Execution Overhead . . . . . . . . . .. . ... 73

15



16



Chapter O

Extetopevn Iepiindn oto EAAN VX

0.1 Ewocoayowyn

H enoyn tou NewSpace oplleton w¢ 1 meplodoc and T apyéc Tou 21lou oudva €wg orUERA
xou Yoo TNElleTon amd TNV EUTOREVUATOTOMGCT TWV OO TNUIXGY dpaoTneloTATwyY.  Oloéva
XL TEQICOOTERPES IOLWTIXES ETALPE(EC ELOEQYOVTAL OTOV BLUOTNUIXG TOUEd, LOVETOVTOC VEX
ETUYELPNUATIXG HOVTEAX TIOLU GTOYEVOLY GTY| UELWOT) TOU XOGTOUG XAl TOU YeOVou dldeong oTny
ayopd. (d¢ amOTENEOUA TWV VEWY avaryxwv, 1) emhoyt) Hiextoiwy, Hiextpovinwmy xon Hiex-
Tpopnyovixwy (EEE) eaptnudtwy teivel mpog tar eunopxd Swrdéoua eloptiuata (COTS),
avTl TV EWBXE XATACHEVACUEVRDY Ko BOXACHEVLY Yior dlac Tnuxr yeror. Ilupdro mou ta
eCoptiuato COTS Bev mpoopépouy v Bla allomotion oe cuviiixeg oxtivoBollag, eivon Tohd
O OWOVOULX ot eUxoha tpooBdowua. IlapdhAnAa, oL AMATHOELS TEAYHATIXOU YPOVOU XOoL 1)
YOUNAY xaTavdheoT woybog €youv odnyHoel 0T UeTdBaon amd YeEMXnS yenone encéepyaotég
o€ o EEWBUEVPEVES UAOTIOLACELS UE ETLTAYUVTES UAXOU, xou Wiaitepa ot Field-Programmable
Gate Arrays (FPGAs).

Y11ic SoC FPGA apyitextovinée, eugavileton ouyvd 1 évvola Tou computation ofloading. H 61
adtxactior autrh TethaUBAvVEL TNV avAIEST) ATOUTNTIXWY UTOAOYIC TIXWY EQYACLOY O ETUTAYUVTEG
UAX00, Tou UloTolovToL 0To TEoYEoupuaTilouevo hoyixd pépoc (PL) tou SoC. I t Aet-
Toupyla aUTY, amouTelTalL 1) UETAPOEA dedOoPEVWY amd Tn uvhAun DDR tou Processing Subsystem
(PS) tou SoC mpog tov emtoyuVTH xou avtioteoga. To povomdtt autd opiletar wg offloading
datapath. Qotéoo, 1o COTS SoC FPGAs elvar mo eudhota otnv axtivoBolia, emeldr dev
oY EBALOVTOL PE YVOUOVA TIC EWBES BLC TAUXES CUVIAXES, UE AMOTEAEGUOL 1) UXEQOLOTNTO TCV
OEDOUEVV XATE T1) UETOPORE. UTH VoL UNY EVOL EYYUNUEVT.

Ypdhpata Aoyw axtivoBoiiag

Mot peydhn xatnyopta ogaiudte:v mou ogeilovton oty toviCouca axtivofolia Tou Slac TAUATOG
etvar T Single Event Effects (SEEs). Ipdxettan yior o@dluata mov oupfaivouy Zopvixd oe
évar o0oTtnua xan ywetlovton oe hard errors xou soft errors. Xtn mpdtn meplnTwon, To oQdA-
HorTar SNULOUEYOLY LoVIUT BAABT 6T0 AOYIO xOUXAWUY, EVE OTN) Be0TeERT TERITTMOT dNULOVEYOVY
npoowewn BAEEN. Ta soft errors ywpilovton oe Single Event Effects (SETs), to onofo ennped-
Couv toug x6uBouc Tou Aoyxol xuxhduatog xat o Single Event Upsets (SEUs), to omnofo

17



apopolY AAAAYES OTN AOYIXY| TWH TOV ATOUNXELTIXWY OTOLYEWY EVOC AOYIXOU XUXAGUATOC,
onhadr to flip-flops. I'evixotepa, 1 Simhwpatiny ectdler ota SEUs, ta onola agopolv flip
flops mou mepiéyouv wEéhuo optio, dNAwdY| bits dedopévwy xar oyt bits eréyyou. 'Etol, 7
TAnpogoplo umopel var adhotwel, ahAd 1 AEITOUEYIXOTNTO TOU CUC THUUTOS TUPUUEVEL OVETOLPT).

Teyvixég avoyng o cpdApaTa

Ou teyvinég avoyrc oe o@dhpata yweilovton og 800 xatnyopieg: Tig TeVixég error detection
XU TG TEYVIXEG recovery. MTr Te®Tr TEPITTMOT), Ol TEYVIXEG ATOCXOTONY GTNY AVIYVEUCT] TKV
OQPAUAUGTWY, EVK 0TN delTERT TEpinTwoN dlopUvouy Ta opdipata xar Bondodyv 1o cloTnua
Vo ovoxduel €meita amd oUTd. XE JPXETEC UTOAOYIOTIMEC TAATQOPUES, LTdpyouv built-in
OLVATOTNTES YLoL AvVOY 1) OE GpIApaTa, OTwe cudfalvel otn tepintwon twv SoC FPGAs.

SoC FPGAs

To SoC FPGAs anoteholv etepoyevr) devices, xadd¢ cuvoudlouy TOV ETAVATEOYQOUUATICUO
Tou uAol tou FPGA, pe tnv urohoyiotxr) dUvaun twv ARM enelepyactdv. Mdhiota, o
OEXETES PYITEXTOVXEG, OTwe otny Ultrascale+, umdpyet Stondéowun uior xevtpiny povada enel-
epyooiog mporypatixol yeovou (RPU), extoc and ) whaooixn povéda enelepyaciag yeVIXoU
oxonoV (APU). H povddo aut, oty apyttextovixy Ultrascale+, eivon Baoiouévn oe pio duddo
mupivoy ARM Cortex RS, ot omolol mapouctdlouy evilagépov we Teog TLg BUVIVOTNTES TOUG
YL AVOY T} 0T CPAAUATAL.

ARM Cortex R5
Mia Sudda muprvwy RS umopel va Aettoupyrioel oe 800 BLopopeTinég dlaTdlelg Asttoupylog:

e Split Configuration: O 800 nuprivec hettoupyolv aveldptnta o évag and Tov dAhov,
oldéTovtag Eeymplotég caches xon EeympLoTéS BIETAPES TPOG TO UTOAOLTO GOGTNUAL.

e Lockstep Configuration: O évac mupfvac amd toug 0o amoteel Eva avilypopo Tng
AOYIXNC TOU TEWTOU, EXTEADVTAC TIC (BIEC EVTOAES e Uit YPOoViXY| UG TERNOT UEQIXMDY
®x0xAwv. Mbvo o Aettoupyindg muprvag eyel TpdoPuct otn cache xan oTIg SlETAUPES UE TO
UTOAOLTO GUCTNUA, EVE xavelg umopel va elodyel mpdo¥etn Aoyiny|, 1 omola vor cuyxpeivel
TIc €€600UC TV BLO TUEHVLY xdUE ypovix| oTiyur. Me autd To tpdmO, elvan duvaty)
1N AVl VELST] CQUAIATOVY TOU CUPPBNiVOUY ECWTERIXA O Evay amd Toug BUO TUPTVES XaL
ennpedlouy TNy €£0do Tou.

YupPoréc AMAWUATIXNS
O x0pieg ouvelopopég NG Tapoloag SimAwuaTixg epyaciog elvon ot e€¥g:

o Ilpoteiveton plor apyttexToviny] avleXTIX OE GOAANINTA VIO T LETAPORH BECOUEVHDY PETAEY
NG XVPLAG UVHUNG X0t TOL ETLTAYLVTY LAXOU, 6T0 TAaicto Tou computation offloading. H
TEOTEWVOUEVY apytteEXTOVIXT| a&lomolel Ta TuTtontotnuéva IP cores tne Xilinx, dtacgaiiCov-
T0¢ TN cupPatéTNTA UE Tar LTy ovTa Epyakeior Aoylouixol g etanpeiog. H apyitextovixn
GUVOUALEL DIAPOPETIXES TEYVIXEC avOYY|C OF GQaAaTa, xaALTTOVTAS TOc0 To PL 600 %o
T0 PS uroclotnua.

18



o AVdnTuooeTaL VUG UNYAVIOUOS ELCUYWYHS CPUAUETWY OTO GUCTNUA (fault injection cam-

paign), Ye oxomd TNV allohdYNom NS TEOTEWVOUEVNS opyttexTovixrc otn Zyng Ultra-
Scale+ MPSoC mhatgopua. O unyoviopog autdg EMLTEETEL TNV EASYYOUEVT ELCAYWYT)
CQPAUNUGTWY, TEOYUUTOTOWMVTAS Lol TEOCoU0{non Tept3dAlovTog axtivofBoiiog.

Avoddeton 1) adlomiotior xan 1) avIEXTIXOTNTA OF GOANIATA TV EPUPUOLOUEVLV TEYVIXWY,
TOEEYOVTAG TOAITUIES TANPOYORIEC OYETXE UE TNV ATOTEAEOUUTIXOTNTO X0 XAUTUAAT-
AOTNTE TOUG Yl EQupUOYEC LPNATC xplowdTnTag, 6mou anawteiton LPNAG eninedo Act-
TOUPYWXAC ACPIAELS.

0.2 Ilpotewduevn ApyLttextovixn

H »xhaoowr| apyitextovixr evog SoC FPGA yio tnyv yetagopd tne mAnpogoplac and tnv DDR
OTOV EMTOYLYTH LAoU, amewovileton oto MyfAua 0.2.1 xau Soywelleton oe mévie xlpleg
EVOTNTEC YLt AOYOUS CUPHVELNC:

1.
2.

A53 | ( A53 ¥
(s || (e AXI || HW Kernel
#2 #3 -~ o
APU FL i
,,,,,,,,,,,,,,,, = AXI !
‘ _‘ DMA -m m
Output«~——— A4 3 A J

Application Processing Unit (APU): extekel tnv x0pio e@opuoy.

APU to PS Subsystem Boundary: mepthauf3dver to unoclotnua tng wviung, hoyxoig
otoxomTeg xou TN demopr) PS-PL.

. FPGA IP Cores: mepthauBdvel ta IP cores mou deyehudvouy v emxotvovia petold tng

oenopric PS-PL xou tou emtoyuvth vAxo.

Emtoyuvtic TAwol: extelel g npdlelc enclepyaciag OEG0UEVOV.

oo - PS PL

i

PSPL |
DDR | IDDRC Interface| |

intmain() |

A53 ) (A3
Core Core

oma [P0} ———

Figure 0.2.1: Apyitextovixs] Avagopdc

H mpotewvduevn apyttextoviny| facileton oTr TUpAmdve XAAGOLXT) 0EYLTEXTOVIXY| XL TNV YENOL-
HOTIOLEL (G UPYLTEXTOVIXT) AVOPOQAC (baseline). DUYAEXPWEVA, ATOTEAEL EVAY GUVOLAOUS TELDY

19



OLAPOPETIXWY TEYVIXMY OAVOYNAS OF G@IAUATA, €0TELOVTUC OTIC EVOTNTEC 0VO Xat Telol TOU OYhH-
P X X 5 P X
HOTOC, Ol 0ol TEPIEYOLY OAEC TS BleTapég emxotvwviag o éva SoC FPGA.

Teyvwxy 1: Triple Modular Redundancy (TMR)

[ v egapuoyy| g TeyvxAc authg, ebvor avoyxaiog o TEITAACIACHOS OAWY TWV XOUBeY
mou amaeTiCouY To PoVOTATL TNE TANEOYOoplag PETUED UVAUNG oL ETITOLVTY UAXOU. Apyixd,
onuovpyolvTa Tela avtlypaga TN TANpogoplag ot uvAun xo tpowdolvTal Yoo and teio di-
APORETING LovoTdTia Tpog Tn dienagr PS-PL. 3X1n cuvéyeia, tpimhacidleton 1) our Twv IP cores
mou YeUeliveL TNy emxowvwvia ot pepld Tou FPGA o mpoostideton éva ototyelo hoywc, To
omolo viomotel pla cuvdpTnomn Thetodngiog, SnhadH amogactlel xdde ypovix oTiyur To povordTt
mou Yo tpowdfoel oTov emTayLVTH UAXoU. Aol 1 mhnpogopia enelepyaoTel, ToimAactdleTo,
x&de avtiypoago diEpyetal UECH OO EVOL TEOUTEQYOV UOVOTATL Xou AmOUNXEDETOL OTY) WUVAUN.
Tnv vhornoinon e ocuvdptnone mAcodnelac avohoufdver évac muprvag RS, mpoxeiuevou va
TeowUoEL To TEAS amoTtéheoua ot xVpLa egopuoyy. H avamapdotaon tou TMR oyfuatog
ametxoviCeton 6To My rua 0.2.2.

(2] 'O [w (4]
r DMA
AXI

AXI

SC || |DMA
AXI
AXI 7'||DMA

Al

-
ﬂ

A53 A53
Core Core

SC |«
PS PL r HW Kernel
DDR | |IDDRC Interface| | >
| | ! J DMA
e L
J AN N DMA
A4 AR
Ad R AXI
A6 | N DMA S —

N
N

Figure 0.2.2: Ilpotewvouevn Apyttextoviny

H vhoroinon tng cuvdptnone mistogpndiog (voting) oto PL yivetou UE EVA GUVOUUG TIXO XUXA-
wUa, Tou anoteielton and 32 aviiypagoa evog 3-bit voter, omwe qutvetar oTo Lyrue 0.2.3.
pdxertan yior Evar xOxAwUa Ye amAt) uhoTnolno, mou Oev elodyel TEOCVETN xaducTEPNOT EX-
téheong. Avtideta, To voting oto PS mpayuotonoweiton and pio oeipd and eviohéc tou RS,
UE amoTéEAEOUA, O aUTH TN TepinTwon va tpootidetar xaductépnon extéleonc oTo GUGTNUAL.
Méhota, auth n xaductépnon edoptdton and Tov OYX0 TN TANPoQoplac xou TN CLYVOTNTA
Aertovpyiog Tou RS.

20



/ Instance #0

BIT #0

|
BIT #1 L 3 |
: DD
FROM FIFO #0 w |
- |
BIT #31 P — ) i
g : : Instance #1
BIT #0 F ‘ BIT #0
BIT #1 ™ \ \ — {BIT#
L] i J 3 -
FROM FIFO #1 . 3 | .
—_— " ft : : | .
- | ; -
BIT #31] \\ ,,,,,,,,,,,,,,,,,, /’/ BIT #31
L]
L]
L]
L]
L]
L]
BIT #0 2 0 2 T N
[ [ [ [ L : Instance #31
BIT#1 5 ° ! 37 3
: | s
FROM FIFO #2 " i 1
—_— - ; D )
= ! Z/,/ |
BIT #31 | !

Figure 0.2.3: Thomoinorn cuvdptnon mhetodmeioc oto PL

Teyvixn 2: Temporal Redundancy

H teyvue aut| Baoiletar oty petagopd xdie avtiypd@ou tTng TAnpooplus and €va dlapope-
TIXo povomdTt ue uio ypovixh) xoduotépnon. Autéd amooxonel otnv e&dhewn Tou xwddVoU
amotuylog xowvol xéufBou ctov controller tng uvAung, o omolog dev unopel va TpLTAAGIACTEL
AOY® QEYLTEXTOVIXNC.

Teyvwx? 3: Dual-Core Lockstep (DCLS)

H pltn xou tehevtala teyvixy mou eqopudleton agopd to lockstep configuration twv RS,
Tpoxelévou va eCahetpiel o xivduvog amotuylag xotvol xéufou and TN ddacio Tou vot-
ing. Ipoypatamoteiton , dnAady, voting xou omd touc dVo muphvee (EyrAua 0.2.2), ot onoiol
ouyxpeivouy Tig €£6B0UC TOUC XGVE YPOVIXT OTIYUY|. € TEPITTOOT Tou dlamio Twiel acuupwvia
HETOEY Toug, emavahauBdveTton 1) Sodixacio yior T cuyxexpévn Teddo apriuny. MdhioTa, 7

21



ulomolnon auty| 0ev elodyel tpdcdetn xaduoTépnon exTéAEoNE, CUYXELTIXG UE TNV LAOTOINGT
Tou evoc RO.

0.3 A&woAdynon xow AnoteAEcpota

Fault Pruning

[t Ty a€loAdyNon TG TEOTELVOPEVNE JEYLTEXTOVIXNG, Elval avoryxaiol 1) ELooywYT| GPAUAUATEV
oe flip-flops tou cuoTAuaTog oL TERIEYOUY WPENUN TANPOYORia, YEYOVOC BUoxoho e€anTiog
Tou TEPdoTIOU aptluod Toug xon TN duoxohiog mpdofBacng oe autd. Emouévee, epapudlovton
teyvwéc fault pruning, Baolouévec otny évvola tou fault-collapsing, mpoxewévou va peiwidet
0 cuvohixog apriudg avayxaiwy flip-flops yio elooywyr opdipatwy xon va tpocouoiwdoly
oduota o pn npocBdowa flip-flops, ye ogpdiuata oe npooBdowa flip-flops mou €youv v
(Bt enidpaon oty €€0do Tou cucthuatoc. Etotl, ue Bdon autég Tic TEYVIXES, SLOMIOTMVETAUL OTL
1 ELOOY WY1} GPAAUTLY 6T0 oot TEETEL Vo yivel uetoll v AXI FIFOs xon Tou emtoyuvTi
UAOU, oahhd %L 0TOUG EVOLIEGOUS XxaToy wenNTES Tou RS xotar T dadixacio Tou voting.

Ewcaywyn Saboteur

O pnyaviopodg pe tov onolo ewodyovial opdluota oto ouyxexpiuéva flip-flops otneiletar oty
alhory) TG Aoy e peTaC dvo dadoyxay flip-flops, to omolo mpayuotonoeitan amd
0L xUXhGUATY, TOug saboteurs. Yuyxexpléva, ol saboteurs eAéyyovton e€wtepd, xadopi-
Covtag mote autol Va elvor evepyol xou Vo €l0dyouy cQIAIATY, UE ATOTEAEOUN Vo UTOREL Vo
eutuotel e€wtepind o pudude eloaywyhc ogaludtwy oto abotnua (SER).

IMTelpapatind Anoteréopata

O x0ptec petpixée yioo Ty o€lohéynon tou cuotiuatag ebvor 1 ouvdptnon ofomotioc (Relia-
bility curve) xo o yéoog ypévo amotuyiog (MTTE). Iopdhhnia, petpétoar téc0 ToO resource
utilization and tn yepla Tou PL, 660 %o 1 xordlotepn extéheone Aoyw Tou voting. )¢ emitoryuv-
¢ VAXOU oo tetpduata, emhéyeTon Evag accumulator xou évag offset adder, 500 xuxdduota ye
BLOPOPETIXG YopoxTNEo Td emedepyaoiog. Xta dtorypduuata 0.3.1, 0.3.2 xar 0.3.3, amewcovile-
Tou 1) oLVAETNOT aloTo Tlag Yo Tl BlapopeTixo configurations xou yior Toug 600 ETTAYUVTES
LALXOU.

Hapatneolue 61t o cbotnua tou offset adder graver otnv anotuyio yenyopdTepa and autod
Tou accumulator, povo ot nepintworn tou TMR pe normal PS voting. Auté cupfaivet, dott
€yovtag auirioel TNy adlomiotior Tou povoratiod péow Tou TMR, 1o Tufua oo omoio ogethovton
Ol TEQLOOOTEPES AMOTLYIEG TOU cUCTAUATOC etvar To PS voting. Apa, dedopévou 6T mapdyovion
TeplocoTEpa 6edouéva and Tov offset adder otnv €€odo, neplocdTeEpa HedOUEVY Var uToBANToLY
ot Sdixacia Tou voting, pe amotéheopa va audveton 1) miavdTnTo anotuylag o oyéon e
To cUoTNUA Tou accumulator.

Eniong, mapatnpolue éva optllovtio tufua ot xopumiin a&lomotiog Tou unmitigated cuotruo-
T0¢ e Tov accumulator. Auté ogelietan 6TOV TEOTO UE TOV OTOlO BLECdYOVTOL OL UETPHOELS OTA
TELRAUATA, UTIGEYEL OE OAES TG XOUTOAES, OAAS Elvol 0pUTO POVO OE AUTY TN TEPITTWOT), Yiati 1)

22



Sudipxetar Tou efvan LYXEIoWY YE TO GUVOAMXS Ypdvo Tou Suipxel To Telpopo (uéypt Onhadr To
c0GTNUOL VoL PTEoEL GTNV amoTuyia).

Arnéd ta Swypdupota 0.3.4 o 0.3.5, SLIMIOTOVOUUE TWE 0 PECOS YEOVOC amoTuylog Tou
ovotiatog ue TMR elvon xotd 120 @opéc peyahbtepog amd aUTOV TOU CUCTAUNTOS UE TNV
QP YLTEXTOVIXT| OVAPORAS, EVe bTay Tpoc¥ETouue xat To lockstep voting o ypdvog autog yiveto
%ot 9290 popeg PEYANDTEROS, OE OYECT| UE TO APYIXO.

Unmitigated System

Accumulator
Offset Adder

Reliability
o
(8]

o
~
T
L

0 50 100 150 200
t(us)

Figure 0.3.1: Unmitigated system

Oocov agopd o resource utilization, to TMR 8ev xotohaufBdver mévew ano to 3% evog ouy-
AEXPWEVOU Tesource, UTOOELXVUOVTOC OTL 1) TROTEWOUEVT] ORYLTEXTOVIXT) BEV euntod{lel TNy avdm-
Tuln mpodoletwy emtayuvTOY LAXoL oto FPGA. Téhoc, mupatnpolue Wi yoouuxr, oyéon
HETOEY xoduo TéRNOT EXTENEDTC (x0xdot RB), Moyw voting, ot 6yxou TAnpogoplag, To omoio
Topouével oTadepd TOoo oe normal 6co xou oe lockstep voting.

23



Reliability

Reliability

TMR + Normal PS Voting

Accumulator
Offset Adder

0 5 10 15 20
t(ms)
Figure 0.3.2: TMR + Normal PS Voting
1 TMR + Lockstep PS Voting
Accumulator
0.9 Offset Adder | |
0.8 8
0.7 1
0.6 .
0.5 7
04 8
0.3 .
0.2 .
0.1 7
0 1 L ! L L
0 100 200 300 400 500 600 700 800

t(ms)

Figure 0.3.3: TMR + Lockstep PS Voting

24



Reliability

Reliability

0.9

0.8

0.7

0.6

<
w

<
~

0.3

0.2

0.1

0.9

0.8

0.7

0.6

Q
a

©
~

0.3

0.2

0.1

Accumulator

Unmitigated
TMR + Normal PS Voting
TMR + Lockstep PS Voting

log10(t) (ns)

Figure 0.3.4: Three configurations compared

Offset Adder
Unmitigated
TMR + Normal PS Voting
- TMR + Lockstep PS Voting
4 5 6 7 8

log10(t) (ns)

Figure 0.3.5: Three configurations compared

25




Configuration Module LUTs | FFs | BRAM
Unmiticated AXI DMA (2) 898 | 1400 0
nmitigate AXI SMC (1) 1691 | 2509 0
AXI DATA FIFO (2) | 160 | 130 8
: AXI DMA (6) 2694 | 4200 0
TMR + Normal PS Voting AXI SMC (3) 5061 | 7527 0
AXI DATA FIFO (6) | 480 | 390 24
. AXI DMA (6) 2694 | 4200 0
TMR + Lockstep PS Voting AXI SMC (3) 5061 | 7527 0
AXI DATA FIFO (6) | 480 | 390 24

Table 1: Resource Utilization (o aptdudc otny napévieon avtimpoonnelel Tov optdud tTwy
avTypdgpwy tou ouyxexpyévou IP oto FPGA)

X 105

12 +

10+

R5 Cycles
o0

(=]
T

0 100 200 300 400 500
Data Size (KB)

Figure 0.3.6: Execution Overhead

26



Chapter 1

Introduction

The NewSpace era is considered the period from the beginning of the 21st century till now and
is defined by the commercialization of space activites, meaning that more and more private
companies enter the space industry, prompting the development of new business models,
focused on minimizing costs and shortening time-to-market. In the context of minimizing
costs, a reduction in size and complexity of spacecrafts was introduced with focus on micro
satellites, known as CubeSats. Furthermore, shorter operational lifespan and transition to
Low Earth Orbit (LEO) took the place of 10-15 year lifespan and Geostationary Earth
Orbit (GEO) of older missions [1]. As a result, the choice of Electrical, Electronic and
Electromechanical (EEE) components, has favored Commercial Off-The-Shelf (COTS) parts,
instead of space-qualified components which are specifically engineered to withstand the harsh
conditions of space, but they are neither readily available in the market nor cost-effective [2].

The strict requirements for real-time performance and low power consumption, has forced
the space industry to transition from general-purpose processors, such as CPUs and micro-
controllers, to advanced hardware accelerators, like the Field-Programmable Gate Arrays
(FPGASs), in order to perform intensive tasks, like Digital Signal Processing (DSP) or Al
acceleration, in the context of space-specific applications e.g. Earth Observation (EO) [3-6].

However, COTS System-on-Chip (SoC) FPGAs are inherently more susceptible to radiation,
as they are typically developed without considering radiation effects, so their reliability in
orbit is uncertain [2]. To address this issue, space engineers have employed a practice known
as up-screening, which is subjecting COTS components to rigorous testing to evaluate their
suitability for space missions. Although up-screening cannot offer the same level of reliability
as radiation-hardened components, it helps engineers better understand potential failure
modes and causes. Also, for digital components, many system-level redundancies can be
implemented due to the availability of a large programmable memory, which aim to mitigate
the effects of radiation. [1,2].

1.1 Problem Statement

In the context of SoC FPGAs, the concept of computation offloading is frequently encoun-
tered. This term refers to the delegation of computationally intensive tasks to a separate

27



processing entity, typically a hardware accelerator instantiated within the FPGA fabric. Con-
sequently, data must be transferred from a memory location, commonly the DDR memory
within the Processing System (PS), through various architectural components to the accel-
erator (or kernel) implemented in the Programmable Logic (PL), and back again. In the
following, this data transfer route will be referred to as the offloading datapath.

However, under radiation-prone environmental conditions, the integrity of data traversing
the offloading datapath cannot be guaranteed. This concern is substantiated by findings in
the relevant literature. For instance, in work [7], a reliability analysis of the Advanced eX-
tensible Interface (AXI) Interconnect Intellectual Property (IP) Core is presented, revealing
that this component may introduce errors during data transmission. The AXI Interconnect
is a Xilinx IP Core, which facilitates communication among AXI masters and slaves with
heterogeneous interface characteristics, such as differing data widths, protocols, clock do-
mains, and connectivity patterns (e.g., one-to-many or many-to-one). It typically serves as a
critical node within the offloading datapath. Further support for this observation is provided
in work [8], where the authors conduct a comprehensive reliability evaluation of a complete
PL subsystem designed for matrix multiplication. This subsystem includes the accelerator,
its interface components, interconnect structures, and optionally, a local memory. Through a
modular testing approach, the study demonstrates that interconnect structures, specifically
the AXI Direct Memory Access (AXI DMA) IP Core and the AXI Interconnect IP Core, ex-
hibit a high susceptibility to faults and should therefore be taken into account in the design
of fault-tolerant systems. Similar conclusions are drawn in [9)].

Moreover, the authors in [10] conducted a comprehensive reliability analysis focusing specifi-
cally on the uncore components within a SoC. Uncore components, distinct from the process-
ing elements, encompass critical subsystems such as the DDR memory subsystem, caches,
AXT interfaces, and logic interconnects. These components play pivotal roles, particularly
within the offloading datapath of the system. The analysis revealed significant vulnerabil-
ities in the crossbar interconnects and the DDR controller, highlighting their susceptibility
to faults. Consequently, these components have been identified as potential sources of er-
rors during data transfers between DDR memory and the hardware kernel, emphasizing the
importance of addressing reliability concerns in these areas.

1.2 Related Work

A limited but growing body of research has focused on developing mitigation techniques
for ensuring reliable data transmission in SoC architectures. Lézaro et al. [11] explored
redundancy mechanisms specifically tailored for internal buses interfacing with low-speed pe-
ripherals. The authors introduced a solution based on a redundant system architecture and a
custom IP Core, referred to as AXILiteRedundant. This IP Core replicates the signals from a
single slave interface to three separate master interfaces, each connected to an external redun-
dant peripheral. Additionally, it incorporates a Triple Modular Redundancy (TMR) voter,
which determines the correct master value to be transmitted to the slave interface. The IP
Core provides feedback to the processor, indicating whether all three masters agreed, whether
one diverged but could be corrected via majority voting, or whether all three produced dif-
fering values, signaling the presence of a fault. The study details how the AXI protocol

28



was adapted to accommodate this redundancy scheme and elaborates on the architectural
components of the proposed solution. The authors conclude that their method improves
the resilience of interconnects and peripheral IPs, while maintaining resource efficiency and
incurring minimal power overhead when implemented on FPGAs.

In work [12], a parity-based Dual Modular Redundancy (DMR) method is proposed to en-
hance the reliability of data transfers between processing cores and FPGA-based accelerators.
The approach emphasizes minimal structural modifications to the interface designs generated
by Vivado. The proposed architecture includes both an encoder and a decoder: the encoder
duplicates the input data frame, partitions it into groups, and appends parity bits to each
group. The decoder reconstructs the output data by selecting a valid channel for each group
based on the recalculated and received parity bits, thus ensuring data correctness in the ab-
sence of detected errors. The results indicate that this scheme approaches the fault tolerance
of TMR-based methods, while offering advantages in terms of reduced power consumption
and area utilization.

Bertozzi et al. [13] conducted a comparative analysis of various coding schemes used to detect
transmission errors and examined their trade-offs in energy efficiency and reliability for on-
chip communication links. Their study evaluates Hamming codes, Cyclic Redundancy Check
(CRC) codes, and simple parity bit schemes. Hamming codes are capable of correcting
single-bit errors, while CRC and parity methods rely on retransmission to address errors.
The findings suggest that, for the studied schemes, particularly CRC and Hamming codes,
retransmission is generally more energy-efficient than on-the-fly error correction. CRC codes,
although highly effective for error detection, do not inherently support correction and are
computationally influenced by the choice of generator polynomial.

A broader perspective is presented by Mach et al. [14], who provide a comprehensive survey of
existing protection techniques for mitigating transient faults in on-chip interconnects. Their
work is particularly relevant to embedded processors used in safety- and mission-critical do-
mains, such as automotive and aerospace applications. The authors classify fault-tolerant
strategies into three categories: information redundancy, temporal redundancy, and spatial
(hardware-based) redundancy. Information redundancy involves the use of parity bits and
Error Detection and Correction (EDAC) schemes, such as Single Error Correction, Double
Error Detection (SECDED), and is suitable for high-performance systems, albeit with in-
creased complexity. Temporal redundancy, better suited for low-performance systems, relies
on repeated execution over time but necessitates careful modeling of fault durations. Spa-
tial redundancy techniques, such as TMR, are simpler to implement but incur significant
overhead in terms of area and power. The study highlights that the selection of an appropri-
ate mitigation technique should be guided by application-specific requirements, operational
conditions, and the feasibility of modifying external system components.

1.3 Thesis Contributions

The contributions of this thesis are outlined as follows:

e A fault-tolerant architecture is proposed for data transmission between the main mem-
ory and the hardware kernel during computation offloading. The solution leverages

29



standard Xilinx IP cores, ensuring compatibility with existing Xilinx software inter-
faces. It combines different fault-tolerant techniques, targeting both the PS and the
PL subsystem.

e A custom fault injection campaign is developed to evaluate the proposed fault-tolerant
architecture on the Zynq UltraScale+ MPSoC. This fault injection mechanism enables
controlled generation of errors and facilitates quantitative assessment of the design
behavior under fault conditions.

e The reliability and error resilience of the proposed fault-tolerant techniques are system-
atically analyzed, providing insight into their effectiveness and suitability for safety-
critical applications.

1.4 Thesis Outline

This thesis is organized as follows:

e Chapter 2 — Background: This chapter presents essential background information
and foundational concepts relevant to this research.

e Chapter 3 — Proposed Fault-Tolerant Architecture: This chapter presents the
proposed fault-tolerant architecture aimed at improving the dependability of data trans-
fers in SoC FPGAs.

e Chapter 4 — Evaluation: This chapter outlines the evaluation methodology and
results for the proposed fault-tolerant architecture.

e Chapter 5 — Conclusion and Future Work: The final chapter summarizes the
key contributions and findings of the thesis. It also discusses limitations and outlines
directions for future research.

30



Chapter 2

Background

This chapter provides essential background information and foundational concepts pertinent
to the research undertaken in this thesis. The discussion begins by exploring the Space Radi-
ation Environment, detailing the types and effects of ionizing radiation encountered in space.
Emphasis is placed on differentiating cumulative radiation effects from single-event effects
(SEEs), with a particular focus on the mechanisms underlying SEEs and their implications
for electronics. Subsequently, the chapter delves into the concept of Dependability, intro-
ducing key terminologies critical for understanding system resilience. It clearly defines the
interrelated concepts of faults, errors, and failures, and elaborates on various fault tolerance
techniques employed to mitigate these issues. The metrics used to quantify dependability,
including Reliability and Mean Time to Failure (MTTF), are elaborated upon to provide
a comprehensive understanding of system performance evaluation. Lastly, the chapter ad-
dresses the architecture and characteristics of SoC FPGAs, particularly highlighting the
Zynq UltraScale+ MPSoC used as the platform for this study. The FPGA architecture is
described, including its logic blocks, programmable routing resources, and specialized hard-
ware elements. Additionally, a detailed examination of the MPSoC’s integrated processing
units, memory subsystems, and interconnection infrastructure is presented, with a specific
focus on the Arm Cortex-R5 processor group and its configurations for fault tolerance. The
chapter concludes by introducing development tools, which facilitate hardware and software
co-design.

Contents
2.1 Space Radiation Environment . . . . . ... ... ... ....... 33
2.1.1 Ionizing Radiation . . . . . .. .. ... ... ... 33
2.1.2 Radiation Effects on Electronics . . . . ... ... .. ... .... 33
2.1.3  Soft Error Rate (SER) . . . . . ... ... ... ... .. ... 34
2.2 Dependability . . . . . . ... oo e e e e e e e e 35
2.2.1 Faults, Errors and Failures . . . . . . . .. ... ... .. ... ... 35
2.2.2  Fault Tolerance Techniques . . . . . . . . ... ... ... ..... 35
2.2.3 Dependability Metrics . . . . . .. ... oo 37
2.3 SoC FPGA . . . . e e e e e e e e e e 38



2.3.1 FPGA Architecture . .. .. ...
2.3.2  Zynq UltraScale+ MPSoC . . . . .
2.3.3  Development Tools for SoC FPGAs

32



2.1 Space Radiation Environment

2.1.1 Ionizing Radiation

Ionizing radiation is made up of particles with sufficient energy to fully dislodge an electron
from its orbit, resulting in a positively charged atom. The particles associated with ionizing
radiation in space are categorized into three main groups relating to the source of the radiation
[15,16]:

e Protons and electrons trapped in the Van Allen belts
e Cosmic ray protons and heavy ions
e Protons and heavy ions from solar flares.

These particles are responsible for the two general categories of radiation effects in micro-
electronics, cumulative effects and single event effects (SEEs).

2.1.2 Radiation Effects on Electronics
Cumulative Effects

Total Tonizing Dose (TID) results from gradual degradation caused by the accumulated en-
ergy absorbed by a material. In a metal-oxide semiconductor (MOS) device, like a tran-
sistor, electron-hole pairs generated within the gate oxide are rapidly separated due to the
electric field present in the space charge region (Figure 2.1.1). The high-mobility electrons
swiftly move away, while the slower-moving holes drift in the opposite direction. These holes
encounter various trapping sites within the oxide (crystalline flaws), where they are read-
ily captured. Therefore, charge buildup is induced, leading to parametric failures, such as
changes in device characteristics, like leakage current and threshold voltage, or even complete
functional breakdowns |16, 17].

Single Event Effects (SEE)

A Single Event Effect (SEE) is a spontaneous event, that occurs when radiation particles
interact with the semiconductor lattice of transistors, transferring energy to its atomic struc-
ture. This interaction can create depletion regions within the transistor (Figure 2.1.2) by
leaving behind an excess of charge carriers, either electrons or holes. The resulting imbalance
can alter the flow of electrical current, either initiating or interrupting it, depending on the
nature and direction of the generated charges. SEEs are generally categorized into two main
types: soft errors and hard errors. Soft errors are temporary issues specific to the device,
typically appearing as transient pulses or bit flips. The most common types are the Single
Event Transient (SET) and the Single Event Upset (SEU), which may appear as a transient
signal (spike) in combinational logic, or as a bit flip in memory cells in sequential logic. SETs
can transform into SEUs, if the occurrence of the signal spike happens at the same time with
the clock edge, which may store a wrong value in the memory element. Resetting the device
or rewriting the data can correct the SEUs. Another type of soft error is the Single Event
Functional Interrupt (SEFI), when the device ceases normal operations. SEFI generally oc-
curs when an SEU affects the control circuitry, placing the device in an unintended state. In

33



(a) Gate Field
oxide oxide
Source Gate Drain l
T +Vg = -EIT T
\ nm = v\ \ nm Ji
Conducting inversion channel (positive Vg)
p-type silicon
Substrate
(b) Gate Field
oxide oxide
Source Gate Drain l
+VG =0

[ bttt |

[

Positive oxide trapped charge

[

Channel turned on with V; =0

p-type silicon

Substrate

Figure 2.1.1: (a) Normal operation of n-channel MOSFET, (b) Operation under positive
charge buildup (holes) due to radiation, that produces a negative threshold voltage shift.

the case of FPGA devices, it is usually related to SEUs in configuration memory and often
requires a power reset to recover [18]. On the other hand, hard errors are typically more se-
vere and may lead to permanent damage. A Single Hard Error (SHE) causes a lasting change
in the device’s operation, such as a stuck bit in memory [16]. TID as well as hard errors are
beyond the focus of our investigation. In this thesis, we explore the effects of the SEUs, that
produce corrupt data in the output of the system, without affecting its functionality.

Input
Low
Output Via
L] T
- off High on
lon
Vi
L o+ | |+ | Ler | ALe+ ]| Lo+ |
= —

Figure 2.1.2: Single ion striking a memory cell.

2.1.3 Soft Error Rate (SER)

The Soft Error Rate (SER), which is the rate of SEU/SET occurence, is expressed in Failure
in Time (FIT) units. One FIT unit equals one soft error per billion hours of operation.

34



Because SEUs/SETs are statistically independent, we can add multiple SERs to extract the
total SER for a device. For example, a 32-bit register with SER of each bit equal to 100 FIT,
has a total SER of 3200 FIT.

2.2 Dependability

2.2.1 Faults, Errors and Failures

According to [19], in fault-tolerant design, three main concepts are crucial: faults, errors,
and failures. These are linked in a cause-and-effect chain, faults lead to errors, and errors
can result in failures.

e A fault refers to a flaw or defect in hardware or software. This could be a physical
issue, like a short in a circuit or a software problem, such as a programming loop that
doesn’t terminate. Essentially, it’s something abnormal that has the potential to cause
incorrect operation (physical universe).

e An error occurs when a fault causes the system to behave incorrectly or produce an
incorrect result. For example, if a fault in a circuit changes a signal that should be a
logic 0 to a logic 1, that’s an error. The fault has caused the system to operate wrongly,
leading to this error (information universe).

e A failure happens when an error affects the overall system’s ability to function as
intended. It means the system no longer meets its expected performance or behavior.
For instance, a control line in a circuit may still work electrically (despite a fault), but
if it doesn’t turn a valve on or off as expected, then the user experiences a failure, even
if the system appears operational from a technical standpoint (external universe).

2.2.2 Fault Tolerance Techniques

Fault tolerance techniques is one way to attain dependability for a system. Fault tolerance
aims to failure avoidance and can be split into two categories: error detection and system
recovery, as shown in Figure 2.2.1. Typically, after a fault is handled, corrective maintenance
is performed to eliminate the faults that were identified. The key difference between fault
tolerance and maintenance is that maintenance involves intervention by an external party.
In closed systems, like the hardware on a deep space probe, removing faults is not feasible in
practice. Rollback and rollforward recovery methods are triggered after an error is detected.
In contrast, compensation can be used, either when needed or on a regular basis, based on
specific times or events, regardless of whether an error has actually been detected. In this
thesis, we apply techniques on the domain of error detection and error handling. We do not
explore fault handling techniques [19].

Triple Modular Redundancy (TMR)

Triple Modular Redundancy (TMR) is a highly effective method for masking errors and
enhancing the reliability. This approach involves creating three identical copies of the cir-
cuit/module. Their outputs (and sometimes inputs) are fed into a voter circuit/module,

35



— Concurrent

— Error Detection

—> Preemptive

—> Rollback

Fault-Tolerance

—* Error Handling — Rollforward

L » Compensation

—* Recovery —

— Diagnosis

— Isolation

L» Fault Handling

—> Reconfiguration

—— Reinitialization

Figure 2.2.1: Fault Tolerance Techniques

which selects the majority result to determine the correct output. To eliminate the risk of
a single point of failure, the voter itself is often replicated three times. TMR extends the
operational reliability of the system, providing a window of time for fault handling before
additional failures occur and compromise the entire system. When this technique is applied
in a group of processor cores, it is referred to as Triple-Core Lockstep (TCLS).

Duplication with comparison

Duplication with comparison is a redundancy technique where two identical systems run in
parallel and their outputs are compared to detect errors. While this method can identify
that an error occurred, it cannot determine which module is faulty. It also has limitations,
such as the potential for both modules to fail the same way due to shared input errors or

comparator faults. When this technique is applied in a group of processor cores, it is referred
to as Dual-Core Lockstep (DCLS).

Cyclic Redundancy Check (CRC)

Cyclic Redundancy Check (CRC) is a form of redundant coding (information redundancy)
widely used for detecting upsets. CRCs are capable of identifying errors across millions of

36



bits using just a single CRC value. Due to its high redundancy, even a single-bit change in the
configuration leads to a significantly different CRC result. However, CRCs cannot pinpoint
the exact location of an error, which limits their use to detection, rather than correction.
CRC calculation is based on the remainder from a specialized polynomial division.

Stand-by Sparing

In this method, one module functions normally while one or more additional modules remain
inactive as backups or spares. When a fault detection system identifies that a module has
failed, it also determines which specific module is affected. Once the faulty module is identi-
fied, it is taken out of operation and replaced by a standby module. This reconfiguration is
conceptually similar to a switch selecting output from one of the modules. The switch uses
error information from the detection system to choose which module’s output to use. If all
modules are functioning properly, only one continues to operate, while the others remain on
standby, ready to take over if needed.

Time Redundancy

The concept of time redundancy is to attempt to reduce the amount of extra hardware at
the expense of additional time. The same task is performed two and three times and then
the results are compared to determine if a discrepancy exists. It is often used as a method
to distinguish between transient errors and permanent errors.

Watchdog Timer

A watchdog timer is a hardware or software-based timer designed to reset a system if it isn’t
regularly "kicked" or "fed." In embedded systems, the main code usually runs in a loop, and
the timer is reset during each loop cycle to prevent an unintended system reset. Because
embedded systems often run unattended and may control critical functions, developers use
timer to quickly recover from issues that might cause the system to freeze. It’s common for
these systems to have a backup firmware or a reliable version stored on flash memory. If
the timer is triggered too many times in a row, the system may automatically switch to this
backup image, replacing the current one in an attempt to restore normal operation. This
behavior is important to consider when debugging, as it could lead to unintentional firmware
switching during system analysis.

2.2.3 Dependability Metrics
Reliability

The reliability of a system, or of an individual component, is defined as the probability that
the system (or component) operates correctly, i.e., it has not experienced a failure [20]. The
time to failure can be modeled using a random variable T. In continuous-time systems, T
is typically represented as a continuous random variable with a sample space of [0, o] and
a measurement space of [0,1]. However, in the context of digital systems, discrete random
variables are more appropriate due to the inherently quantized nature of digital time repre-
sentation. Accordingly, the sample and measurement spaces are discrete. The probability

37



mass function (PMF) of a discrete random variable is defined as:
pr(t) = P(T' =1) (2.2.1)

In this thesis, the random variable T, denotes the probability that a system failure occurs
within the interval between the previous quantized time point ¢, ; and the current time
point t,. Thus, T describes a time interval in which a failure occurs, rather than an absolute
failure time. To formally derive the mathematical expression for the reliability metric, the
cumulative distribution function (CDF) of T must be defined:

t

Fr(t) = P(T <t) = Y pr(k) (22.2)

This function expresses the probability that a failure has occurred by time t. Using the CDF,
the reliability function R(t) is given by:

R(t):=1— Fp(t) = P(T > t) (2.2.3)

This represents the probability that a failure has not occured by time ¢.

Mean Time to Failure (MTTF)

The Mean Time to Failure (MTTF) quantifies the average operational time of a system before
a failure occurs, under specified environmental conditions. It is calculated as the expected
value of the random variable T. Given that T represents a time interval in discrete systems,
MTTF also corresponds to an expected interval of failure occurrence rather than an absolute
timestamp:

MTTF = E[T] =) k- pr(k) (2.2.4)

2.3 SoC FPGA

SoC FPGAs are integrated semiconductor devices that combine embedded processor cores,
often based on ARM architectures, with FPGA fabric. This heterogeneous architecture
enables the coexistence of software programmability with hardware reconfigurability, offering
a balance between development flexibility and computational efficiency.

2.3.1 FPGA Architecture

FPGASs are reconfigurable digital integrated circuits consisting of three primary components:
logic blocks, input/output (I/O) blocks, and programmable routing resources, as illustrated
in Figure 2.3.1. Logic blocks implement portions of the desired circuit functionality, while I/O
blocks manage communication between the FPGA and external systems. The programmable
routing infrastructure enables flexible interconnection between logic blocks and 1/0 blocks,
allowing the FPGA to be configured for a wide range of applications.

In SRAM-based FPGAS, such as those produced by Xilinx, the configuration of logic blocks
and routing resources is controlled by configuration memory implemented with SRAM cells.

38



1/0 block

Programmable
routing

Figure 2.3.1: Simplified FPGA architecture

These SRAM cells typically function either as inputs to multiplexers or as gate control
signals for pass transistors, effectively operating as configurable switches. At the core of each
logic block are components known as Look-Up Tables (LUTSs), which are used to implement
combinational logic functions. The structure of a typical LUT is shown in Figure 2.3.2.
Each LUT can realize any Boolean function of its input variables by configuring its output
bits to represent the corresponding truth table. Additionally, logic blocks include flip-flops
that support sequential logic operations by storing intermediate values. These flip-flops are
connected to LUTs via localized interconnects [21].

2 inputs
_-.
4
e
SRAM Out
cells -
-]

Figure 2.3.2: LUT structure

In island-style FPGAs, such as those offered by Xilinx, logic blocks are surrounded by hor-
izontal and vertical routing channels. These channels can be connected to the inputs and
outputs of logic blocks via programmable switches. At the intersection of horizontal and
vertical wires, switch blocks, also composed of programmable switches, enable cross-channel
connectivity, as shown in Figure 2.3.3.

Modern FPGAs also integrate specialized hardware resources beyond basic logic and routing.
These include high-speed memory elements, such as Block RAMs (BRAMs), which support
concurrent read and write operations, and Digital Signal Processing (DSP) blocks, which are

39



Programmable routing switch

Short
- wire
It;‘;)g']: segment
0C:
// - _‘_"i-u.._\_‘
/' Connection
block
Long
Programmable wire
connection segment
switch
/ block
\ Dok
— “

Figure 2.3.3: Programmable routing in FPGAs

optimized for performing arithmetic operations in applications such as signal processing and
machine learning.

Hardware Description Language

HDLs such as VHDL and Verilog are used to model digital circuits at various abstraction
levels, from high-level behavior to gate-level implementations. They support simulation,
allowing designers to verify functionality before synthesis and hardware deployment. In
synthesis, RTL (Register-Transfer Level) descriptions are converted into netlists suitable for
FPGA implementation. RTL focuses on the flow of data between registers and the logic
that processes it. Despite offering precise control over hardware, HDLs are complex and
require familiarity with hardware concepts. Simulation, debugging, and synthesis are often
time-consuming, particularly when resolving timing issues or working under tight deadlines.

Computer-Aided Design (CAD) Flow

The FPGA design flow begins with synthesis, where HDL code is translated into a netlist
composed of basic logic gates. This netlist is then optimized for resource usage and timing
constraints, preparing it for physical implementation. Next is placement, where logic ele-
ments are mapped to specific physical locations on the FPGA. Placement aims to minimize
wire length, balance logic usage, and reduce critical path delays, while considering routing
feasibility. Following placement, the routing phase connects the inputs and outputs of logic
blocks using the FPGA’s programmable interconnects. The router iteratively refines the
design to meet timing and congestion constraints. The final stage is bitstream generation,
which produces a binary file containing all configuration data (logic functions, placement,
routing, and I/O settings) used to program the FPGA hardware.

40



2.3.2 Zynq UltraScale+ MPSoC

Architecture Overview

The EG family of devices, which serves as the platform for the design and evaluation of
the proposed system architecture, comprises several integrated components, as illustrated in
Figure 2.3.4. The following discussion focuses on the components most relevant to the scope
of this thesis.

Processing System
Application Processing Unit

Arm® ‘ NEON™

High-Speed

Graphics Processing Unit
Connectivity

ARM Mali™-400 MP2

— DisplayPort vi.2a
Cortex ®-A53 ’F,m,,gpmu,\ Geometry Pixel
Processor Processor 4 |2 ST

{ Mem/<]
FCache I nagement | Trace
wParty | wE Mecrocel (1 |

SATA31
Memory Management Unit PCle®10/2.0
B4KB L2 Cache il

General Connectivi

System
Functions M Usszo |

Multichannel DMA

Vector Floating
Arm@® Point Unit
Cortex®-R5 e ’YF oC

128KB QZKBH)ECHE EZKB DCBChE
TCM WECC ECC

Config AES
Decryption,

Secure Boot
I‘ Vo"ageflenv
Functional o

Safsty TrustZone
High-Speed Connectivity

GTH

SPI
WDTTImS's, Quad SPINOR
V esets,
Clocking & Debug SN
SD/eMMC

Storage & Signal Processing

Block RAM General-Purpose 1/0
GTY
UltraRAM High-Performance HP /0 —
100G EMAC

et

Figure 2.3.4: MPSoC EG device family

The SoC incorporates two primary processing units: the Application Processing Unit (APU)
and the Real-Time Processing Unit (RPU). The APU consists of four 64-bit Arm Cortex-
A53 MPCores, capable of operating in single-core, symmetric multi-processing (SMP), or
asymmetric multi-processing (AMP) configurations. In contrast, the RPU includes two 32-
bit Arm Cortex-R5F MPCores, designed for real-time execution [22].

In addition, the device provides a PS—PL interface, which facilitates communication between
the two subsystems through AXI4 interconnects, serving as the primary channels for data
exchange and includes:

Six 128-bit/64-bit/32-bit High Performance (HP) Slave AXI interfaces from PL to PS,
four HP AXT interfaces from PL to PS DDR and two high-performance coherent (HPC)
ports from PL to cache coherent interconnect (CCI).

Two 128-bit/64-bit/32-bit HP Master AXI interfaces from PS to PL.

One 128-bit /64-bit /32-bit interface from PL to RPU in PS (PL to LPD) for low latency
access to OCM.

One 128-bit/64-bit/32-bit AXI interface from RPU in PS to PL (LPD to PL) for low
latency access to PL.

One 128-bit AXI interface (ACP port) for I/O coherent access from PL to Cortex-A53
41



cache memory. This interface provides coherency in hardware for Cortex-Ab3 cache
memory.

One 128-bit AXI interface (ACE Port) for fully coherent access from PL to Cortex-A53.
This interface provides coherency in hardware for Cortex-A53 cache memory and the
PL.

Beyond the processing units, the device integrates a DDR Subsystem capable of servicing
read and write transactions from six application host ports. These ports interface with the
DDR controller via AXI bus protocols and are implemented as six AXI slave ports:

Two 128-bit AXI ports serve data from the Arm Cortex-A53 CPUs, RPU (Cortex-R5F
and LPD peripherals), GPU, high-speed peripherals (USB3, PCle, and SATA), and HP
ports (HPO and HP1) from the PL, all routed through the CCI.

One 64-bit AXI port is exclusively connected to the Arm Cortex-R5F CPUs.

One 128-bit AXI port handles transactions from the DisplayPort and the HP2 port
from the PL.

One 128-bit AXI port supports data from the HP3 and HP4 ports from the PL.
One 128-bit AXI port serves the General DMA engine and HP5 from the PL.

The internal structure of the DDR Subsystem is depicted in Figure 2.3.5. The MPSoC also

From From
From From From From S_AXI_HP1_FPD  S_AXI_HP3_FPD
RPU coro CCMO0 S_AXI_HPO_FPD and and

and DisplayPort  s_AXI_HP2_FPD FPD_DMA

AX1 .—L| .‘L| .‘L| .‘L| FL| FL

Performance [ [} [R [ S} Lt
Monitor I lr I lr

XMPUO H XMPU1 |—| XMPU2 H XMPU3 H XMPU4 H XMPU5 |

T

DDR QoS Controller

AXlto
From Top APB

| 3 T

DDR Memory Controller

!

DDR multiPHY

!

DDR3, LPDDR3, DDR4, LPDDR4
Standard DDR Memory Interface

Figure 2.3.5: DDR Subsystem

includes a dedicated Platform Management Unit (PMU), a user-programmable processing
subsystem tasked with power management, error handling, and optional execution of a Soft-
ware Test Library (STL) for functional safety applications. Among its responsibilities is the
detection and handling of lockstep errors in the Cortex-R5F cores, a topic discussed in detail
in Section 2.3.2. All components within the MPSoC, including the PL, are interconnected via

42



a multi-layer, non-blocking Arm Advanced Microprocessor Bus Architecture (AMBA) AXI
interconnect. This high-performance interconnect supports multiple simultaneous master-
slave transactions, ensuring efficient communication across the system. The architecture of
this interconnect is illustrated in Figure 2.3.6.

Date Bus Widh NS :
I Advanced QoS Regulstors BE a0 Tmscusis - rrmy >
a DOR QoS and OVN @ 20 sosionBios
Programmable
l XMPUs OCM Memory E SMMU Translation Buffer Un2
PL Syshan Zway Cache Mon-Caherent
ing Read/Write Buffer Deph C cherent Mester Mg fer
APMS * Coherent Mest
; 0P Ousand o _
S TERcone * e - O Cereer
Master slave)
e M_AXI_HFMO_LPD
Gic i a o
I Switch 2 o a oo = =z
[} 3 o [ }
[ ) = g = e R~ g3
™ 0 e S_AX|_ACP_FPD g =& E I
APU i T z I % -
MPCore S AN ACEFPD % 2 %% 3% E
w d wa o = =
+ D) Caesight o " L
== = = $
o i :
- o
ccl =k = g
e Coherency _napuypm
¥ And |‘_|
2 Bypass 51 e =
Z 2 PI
o
M2 M1 MO DW
:
¥
SHMU TCU -
¥ GPU PPs -
2
*-,...... GFU cl E
[l 2
o
=
=]
@

|OP Inkound

' T T - -

! Y

i S0 S1 52 53 54 S5
: e U T DDR Memory Controller i mms [0

| (e e )|

Figure 2.3.6: MPSoC Interconnect Architecture

Arm Cortex-R5

The Arm Cortex-R5 processor group can be configured to operate with either a single core or
a pair of cores. Its behavior and functionality vary depending on the selected configuration,
which determines the mode of operation and available fault tolerance mechanisms [23]:

e Single CPU: This mode features a single R5 core operating independently.

e Twin CPU: This configuration includes two distinct, independent Cortex-R5 cores.
Each core possesses its own private cache memory, debug infrastructure, and system
bus interfaces. While the cores do not interact directly within the processor group,
inter-core communication can occur through other components of the SoC. Parameters
such as cache size can be configured separately for each core, offering greater design
flexibility.

43



e Redundant CPU (Lockstep Mode): In this configuration, the group operates with
one active core accompanied by a redundant replica of the core’s logic. The redundant
logic receives identical input signals and shares the same cache memory with the main
core, allowing a single cache structure to serve both. Although the redundant logic
executes operations in synchrony with the main processor, it does not influence system
behavior. All system-facing outputs are generated solely by the main core. Optional
comparator circuits can be implemented to monitor consistency between the outputs of
the active and redundant logic. These comparators use dedicated input and output sig-
nal lines, DCCMINP|7:0], DCCMINP2[7:0], DCCMOUT]|7:0], and DCCMOUT2|7:0],
to interact with the broader SoC.

e Split/Lock: This configuration provides two R5 cores capable of operating in one of
two modes. In Split Mode (performance mode), both cores run independently, similar to
the twin-core configuration. In Lock Mode (safety mode), the cores operate in lockstep
for increased fault tolerance. Transitions between these modes are restricted to power-
on reset states. The configuration is controlled via the SLCLAMP and SLSPLIT input
signals, which dictate the operational mode during system initialization.

OPU-DE DPU-CTL CPU-FPU DPU-FREGEANK

4%} (B%) (10%) (T%)
- PFU - DPU-LDST DPU-DP (7%) DPU-BR
(&%) (1%} (1%}
OPLU-CP DPU-REGBANK DPU-CPSR
(5%) (B%) 3%)
DPU
I
Y
MPU
= (%) - LSuU =
| (10%,)
CACHE-LOGIC
v (1%}
FCACHE Ctrl, D-CACHE Ctrl,
4%} - - [4%) ~ Y
LLFPF AXl & AHB
(4%)
k. ¥
»
CAGHE-AXIM CACHE-STB
{12%) 14%)

k.

A Y

r

r

Y

IF_ICACHE

IF_CACHE-AXIM

IF_DCACHE

IF_uSCU

F_TCM

ECC

ECC

ECC

ECC

Figure 2.3.7: Arm Cortex-R5 micro-architecture and micro-components

44




2.3.3 Development Tools for SoC FPGAs

Xilinx provides two primary development tools for SoC FPGA design: the Vivado Design
Suite and the Vitis Unified Software Platform. The Vivado Design Suite is a comprehensive
toolchain for hardware design, simulation, synthesis, and implementation targeting Xilinx
FPGAs and SoCs. It supports design entry through HDL languages (VHDL/Verilog) and
schematic-based methods, with advanced capabilities for logic synthesis, placement, and
routing. Vivado also provides detailed reports on performance and resource utilization, facil-
itating early design optimization. The Vitis Unified Software Platform supports application
development across Xilinx devices, enabling efficient software development for embedded
systems and hardware acceleration. Vitis abstracts low-level hardware complexity, allowing
both hardware and software engineers to collaborate effectively within a unified co-design
environment.

45



Chapter 3

Proposed Fault-Tolerant Architecture

This chapter introduces the proposed fault-tolerant architecture developed to enhance the
dependability of SoC FPGA-based systems, specifically addressing vulnerabilities associated
with the offloading datapath. Initially, the chapter provides a comprehensive overview of
the overall fault-tolerant architecture, clearly segmenting it into distinct components and the
baseline offloading data path in a fault-prone architecture is described to establish a reference
point for evaluating fault-tolerance enhancements. Following this baseline, the chapter details
three fault-tolerance techniques: Triple Modular Redundancy (TMR), Time Redundancy,
and Dual-Core Lockstep (DCLS). Each technique is thoroughly examined, outlining how
they are integrated into the architecture to mitigate potential faults and their specific roles
within different segments of the data path. Lastly, the chapter presents the design of custom
hardware kernels, an accumulator and an offset adder, implemented for systematic evaluation
of the proposed fault-tolerant architecture, due to their diverse operational characteristics.

Contents

3.1 Overview . . .. i i e e e e e e e e e e e e e e e e e e e e 47
3.2 Offloading Data Path in a Fault-Prone Architecture ... .. .. 48
3.3 FT Technique 1: TMR . . ... . ... ... 48

3.3.1 Triplication of the Offloading Data Path . . . . . . ... ... ... 48

3.3.2  AXI4-Stream Protocol . . . . . . ... oL 51

3.33 PL Voting . . . . . . . .. 54
3.4 FT Technique 2: Time Redundancy . ... ............. 54
3.5 FT Technique 3: DCLS . . . . . . ... ... ... 56
3.6 Design of Hardware Kernels . . . . . . ... ... .......... 56

46



3.1 Overview

A high-level representation of the SoC FPGA incorporating the proposed fault-tolerant ar-
chitecture is illustrated in Figure 3.1.1. This architecture aims to mitigate the effects of
radiation in the offloading datapath, as we discussed in the previous chapter.

O [
r DMA
AXI

Core

3 #1 Al o AXI 3
| A2 =~ |
| A53 \( A53 a2 7] sc |<[|oma !
| Core || Core ! —l N |
) ! ! AXI |
“ | .l || AXI [7'||DMA !
\ /! 'l sc | ! |
. - PS PL [ HW Kernel | |
DDR | |DDRC Interface ‘_J—( e | |

L] J DMA |

L. g AXI |

J ! ] DMA |

A4 ! I |

AS ! AXI n :

A6 \ DMA o~

Figure 3.1.1: Proposed Fault-Tolerant Architecture

In the figure, the connectors indicate the direction of data flow: unidirectional connectors
denote a single direction of data transfer, while bidirectional connectors represent data ex-
change in both directions. For clarity and to facilitate comprehension, the architecture is
divided into distinct sections. This segmentation serves to highlight the specific areas ad-
dressed within this thesis, the application of fault-tolerant techniques, and the methodologies
employed. The sections are defined as follows:

1. Application Processing Unit (APU): Executes the main application.

2. APU to PS Subsystem Boundary: Comprises uncore components, including the DDR
subsystem, crossbar switches, and the PS-PL interface.

3. AXI Interconnect and IP Cores in the FPGA Fabric: Facilitates communication be-
tween the PS-PL interface and the hardware kernel. This section also incorporates
additional logic to support the implementation of fault-tolerant techniques.

4. Hardware Kernel: Performs the core data processing tasks.

5. Real-Time Processing Unit (RPU): Plays a critical role in the proposed fault-tolerant
architecture.

47



The fault-tolerant techniques presented in this thesis target Sections 2, 3, and 5. Accordingly,
Sections 1 and 4 are assumed to be fault-free within the scope of this work. Although
additional components, such as the AXI Interconnect and Processor System Reset IP cores
are part of the system, they are not considered integral to the fault-tolerant architecture.
Their role is limited to the orchestration and configuration of the offloading process and they
are considered fault-free in the context of this thesis. Sections 3.3, 3.4, and 3.5 present the
application of TMR, Time Redundancy, and DCLS, respectively, detailing where, how, and
why each technique is integrated into the proposed architecture.

3.2 Offloading Data Path in a Fault-Prone Architecture

In the baseline fault-prone architecture shown in Figure 3.2.1, input data designated for
processing by the hardware kernel are stored in a predefined DDR memory region. These
data originate either from the application running on the PS or from an external source (e.g.,
sensor), and are transferred via DMA. The application configures an AXI DMA controller
with the base memory address and transfer size, then initiates the transfer. The AXT DMA
core, acting as an AXI master, fetches the data from DDR through one of the HP AXI slave
interfaces of the PS—PL interconnect.

The memory request passes through the AXI SmartConnect IP Core (AXI SC), a protocol-
and bandwidth-optimized interconnect that supports heterogeneous AXI interfaces and han-
dles data width, protocol, and clock domain adaptation. The HP interface connects, via a
hierarchical cascade of crossbar switches, to one of the AXI ports of the DDR subsystem.
These crossbars function as switching fabrics that route memory requests from various pe-
ripherals (e.g., PL, DMA, DisplayPort) to the DDR Controller (DDRC), which returns the
requested data to the DMA. The DMA temporarily buffers the data in its internal FIFO,
then streams it via the AXI4-Stream protocol to an AXI4-Stream Data FIFO IP Core, which
serves as a buffering interface to the kernel. The process is mirrored for output data: once
processing is complete, the kernel sends the results through an output FIFO to the AXI
DMA, which writes them back to DDR upon being triggered by the PS application.

Figure 3.2.2 illustrates the baseline fault-prone architecture implemented in Vivado Block
Diagram. This is used as a reference design, around which the rest of the architecture will
be developed. The block labeled Zynqg MPSoC represents the PS in Figure 3.2.1 and is
responsible for configuring all components within the subsystem (controls the AXI DMAs,
as well as the input and output data streams).

3.3 FT Technique 1: TMR

3.3.1 Triplication of the Offloading Data Path

The proposed TMR scheme enhances reliability by triplicating all critical nodes in the of-
floading datapath between PS and PL, as illustrated in Figure 3.1.1. Initially, input data
are triplicated and stored in three separate DDR regions (A1, A2, A3, Figure 3.1.1). This
redundancy ensures that a single-bit fault in one memory region does not affect all replicas,
which would render TMR ineffective. Regarding the DDRC, although it is a shared resource,

48



int main() )

Al

AXI
oma [ L FFO —
AXI !

SC 1
oA

HW Kernel

>
o
()
»

PS PL
DDR | IDDRC Interface

Output~——————— A4 —‘

Figure 3.2.1: Baseline Fault-Prone Architecture

axis_data_fifa_0
2 s.axis
b s_axis aral310] MxIS —F
4 s _axis_fready m_axis_tdatal31:0]
b s_axis tvalid m_axis_tready <
dl 3_enis_arestn m_axis_tvalid >
s axis_aclk
axidma o
AX14Stream Data FIFO
M_AXI_MM2S i
- axi_sme
e ra——— o i
s_axilite_ack ey -+ S00_ax1 .i.
m_axi_ mm2s_ack R | adk B Moo_sa [
m_axis_mm2s_tralid > g
axi_resetn arsem miig
mm3s_prmiy_reset_out_n
mm2s_inrout AXT smartCannedt
X Direck Memory Access
J iry
— ) accumlo_o axi e 1 zyne_ultra_ps_e_0
' I b . 2|4 5.20_HPO_FPD
3 —E 2+ soo_on W H e
» 5 tdatal31:0) "k = - X " S.AXI_HPLFPD o !
m_rdats(310] adk BEE Mog_ax [ M_EXI_HPMO_FPD - e
» s valid RTL m_tlast aresem ) adhpmd_fpd_ack I_resemd e
s tready g =u sacihp0_fod_adk G
oy mtvalid > vy L adk o pl_clko
S X SmartConned: L.
aresetn mTly<] = pLps_irq0L0:01 UltraSCALET
accurmlo_vi_o . axis_data fifo 1 Zyrq UltraScalet MPSoC
Emy
¥ s_axis_tatal3 10]
b s_axis tast
4 s_ais_tready M_A)S 4 F
b s_axis_valid
axidma_l 5_axis_aresetn
s_ais_aclk
4 5. LTE ‘
S+ 5405 2MM LA SZMM FX14Stream Data FIFO
s_axilite_ach s2mm_pmiy_reset out_n
m_sxis2mm_aclk s2mm_imrout
axi_resstn

AXI Direct Memory Access

Figure 3.2.2: Block Design

it cannot be replicated or bypassed, due to MPSoC constraints. Furthermore, data isolation
is reinforced by routing each data replica through a separate PS-PL AXI slave port (S0, S1,
S3), ensuring traversal through independent crossbar switches cascades, utilizing all three of
them, that exist in the SoC (Figure 2.3.6).

49



This selection avoids shared interconnects (e.g., S1 and S2 share a crossbar), eliminating
potential single points of failure, since crossbar logic typically includes sequential elements
such as arbiters, making it is susceptible to soft errors and therefore must be encompassed
in the fault-tolerant scheme. The TMR implementation includes also, in the PL subsystem,
three AXI SmartConnect IPs, six AXI DMA controllers (three for input, three for output),
and six AXI4-Stream FIFOs, depicted in Figure 3.3.1. Each selected AXI slave port connects
to a distinct SmartConnect, which connects to two DMA cores: one for reading from DDR,
the other for writing back processed data, while each DMA is paired with a dedicated AXI4-
Stream FIFO, as shown in Figure 3.1.1.

/ AXI \ . AXI N
y sc . / DMA .

AXI AXI ! AXI AXI !
| |
.| sc > sc ' DMA » DMA '

\ AXI / \ AXI /
~ sSC ’ N DMA ,

Figure 3.3.1: Triplication of Critical IP Blocks

The outputs of the three input FIFOs are routed to a majority voter module, which connects
to the AXI4-Stream slave interface of the kernel. Only the payload lines of each FIFO are
connected to the voter (Figure 3.3.2), while control signals are wired directly to the kernel,
with additional logic to support the three-to-one, master-to-slave interface configuration. A
similar strategy is applied to the kernel’s output, with its AXI4-Stream master interface
connected in parallel to the three output FIFOs (Figure 3.3.2).

This symmetrical design ensures full triplication in both directions. Importantly, the forward
(DDR-to-kernel) and return (kernel-to-DDR) paths are independent to each other, since a
fault occurring in one path is effectively overwritten or cleared when new data propagate
through the same hardware in the reverse direction. This allows shared hardware resources,
such as SmartConnect [Ps, PS—PL interfaces, internal crossbars, and the DDRC, to be reused
across both paths without cross-contamination.

Since FIFO buffers are used in the aforementioned implementation, the problem of the ap-
propriate FIFO buffer sizing arises. The depth of the FIFO buffers depends heavily on the

50



TDATA

FIFO [31:0]
TDATA TDATA
== [31:0] Vot [31:0]
oter ( \
TDATA Slave
FIFO [31:0] Interface
TDATA HW K |
31:0 erne
FIFO 20
TDATA TDATA
[31:0] [31:0] Master
FIFO Interface
TDATA

FIFO O - /

Figure 3.3.2: FIFO-Kernel Communication: detailed view of the interface between the two
(Zoom-in of Figure 3.1.1)

rate at which data is produced or consumed from or to the hardware kernel and the rest of
the PL memory system. Since our implementation serves as a generic framework, the FIFO
sizing is out of scope of this thesis and left as a design variable to the end-user.

3.3.2 AXI4-Stream Protocol

The AXI4-Stream protocol is a standard interface designed for unidirectional data transfers
between components. It enables communication from a single master, which produces data,
to a single slave, which consumes it. Additionally, the protocol is scalable and supports more
complex configurations involving multiple masters and slaves. AXI4-Stream facilitates the
construction of generic interconnects capable of performing upsizing, downsizing, and rout-
ing operations by supporting multiple data streams over a shared set of signals [24]. The
essential interface signals for AXI4-Stream are illustrated in Figure 3.3.3. In its simplest im-
plementation, the AXI4-Stream interface includes the following signals: TVALID, TREADY,
TLAST, and TDATA. Data transfer occurs when both TVALID and TREADY are asserted
simultaneously. This two-way handshake mechanism allows both the master and the slave
to control the data flow rate. The TVALID signal, asserted by the master, indicates that
valid data is available, whereas the TREADY signal, asserted by the slave, indicates that it is
ready to receive data. Importantly, once a master asserts TVALID, it must remain asserted
until the handshake is completed. A master cannot delay asserting TVALID in response to
TREADY. However, a slave is permitted to wait for TVALID before asserting TREADY,
and it may also deassert TREADY prior to TVALID being asserted [24].

o1



| AXl4-stream |

—— ACLK
—> ARESETn
— TVALID
—> TREADY
> TDATA
— TSTRB
— TKEEP
— TLAST
— TID

—> TDEST

—— TUSER

Figure 3.3.3: AXI4-Stream signals

Handshake Synchronization in TMR Systems

As discussed in the preceding section, three FIFOs must interface with the kernel using the
AXI4-Stream protocol, either in a three-masters-to-one-slave or one-master-to-three-slaves
configuration. These configurations are implemented without an AXI interconnect.

In the three-masters-to-one-slave configuration, the slave should receive a logic high on its
TVALID input only when all three masters have asserted their respective TVALID signals,
indicating that they are each ready to transmit valid data. To enforce this condition, a logical
AND gate is inserted, as depicted in Figure 3.3.4. However, the routing of the TREADY
signal from the slave back to the masters presents challenges. A given master should only
see a logic high on its TREADY input when the slave has asserted TREADY and the other
two masters have also asserted their TVALID signals. This condition is enforced by inserting
three logical AND gates, with their outputs routed to the corresponding master TREADY
input. This prevents scenarios where one master perceives the handshake as complete (due to
high TREADY and its own asserted TVALID) while the other two masters are still idle and
the slave waits for TVALID assertion, resulting in synchronization errors. Such a situation is
problematic in designs where the slave does not wait for TVALID to assert before asserting
TREADY.

Conversely, in the one-master-to-three-slaves configuration, the master should only perceive a
logic high on its TREADY input when all three slaves have asserted their respective TREADY
signals, signifying readiness to receive data. Again, a logical AND gate is required to generate
the appropriate TREADY feedback to the master, as shown in Figure 3.3.5. In this setup,
the TVALID signal from the master must only be considered valid by a given slave when
both the master has asserted TVALID and the other two slaves have also asserted their
TREADY signals. This ensures that all slaves are prepared to receive the data concurrently.
Without this gating mechanism, one slave may perceive a valid handshake and read the data
prematurely, while the other two are not yet ready, leading to non-synchronization. This

52



again highlights the necessity of synchronizing handshake signals through logical AND gates,
as shown in Figure 3.3.5, to maintain consistency across all data paths.

MO_TVALID MI1_TVALID
Master 0 MO_TREADY
A C <
€
M2_TVALID
MI_TVALID > ‘ MO_TVALID S_TVALID
Master #1 e ' Slave
A M1_TREADY/"_ .: _______ S_TREADY
N
M2_TVALID
M2_TVALID MO_TVALID
MESED e M2_TREADY /¢!
N
M1_TVALID

Figure 3.3.4: Three-masters-to-one-slave configuration using AXI4-Stream

S1 TREADY
<
it ')'__j
i S0_TVALID
52 TREADY o TREADY | Stave#
S0_TREADY
MTVALD | = 7 :—\‘ S1_TVALID
[ ,J A -
Master i
M_TREADY : s TREADY | Slave#l
52 TREADY
S2_TVALID
S0_TREADY
! Slave #2
| S2 TREADY
S "
JE— ./
S1 TREADY

Figure 3.3.5: One-master-to-three-slaves configuration using AXI4-Stream

93



3.3.3 PL Voting

The Boolean majority function evaluates to logic high when at least two of its three input
variables are asserted (i.e., are logic high), and to logic low otherwise. It can be mathemati-
cally expressed as:

V=XY+YZ+XZ (3.3.1)

The corresponding truth table is provided in Table 3.1, and the most commonly used com-
binational logic implementation of the 3-input majority voter is shown in Figure 3.3.6.

X|Y|Z|V x ]

0101010 A :

0/0]11]0

011]01]0 (— : 3 : v

0|1 ]1]1 z —

110]0]0

1(0]1]1 x — |

1(1]0]1 z —37

111 ]1]1

Figure 3.3.6: Most common

Table 3.1: Truth table for 3-bit implementation of 3-bit majority

majority voter voter

Although the majority voter architecture depicted in Figure 3.3.6 may be susceptible to faults
under certain conditions (and more robust alternatives exist [25]) this design is nonetheless
adopted in the present work. The rationale for this choice lies in the operational context:
SETs are not considered within the scope of this thesis and the voter is composed exclusively
of combinational logic gates. As such, the likelihood of a transient fault manifesting and
propagating through the circuit is minimal. Therefore, the majority voter is assumed to
operate error-free for the purposes of this implementation. As illustrated in Figure 3.3.7, the
voter module comprises 32 instances of the 3-bit majority voter. Each instance processes
one bit from each of the three 32-bit data words arriving from the input FIFOs. It performs
bitwise voting and writes the resulting value to the corresponding bit position in the output,
as further detailed in Figure 3.3.7. It is important to highlight that this implementation does
not introduce any execution overhead to the system, as the voting mechanism is completed
within a single AXI clock cycle. Furthermore, the impact on the critical path is minimal,
involving only two logic gates.

3.4 FT Technique 2: Time Redundancy

To overcome the architectural limitations of the DDRC, as discussed in Section 3.3.1, and
to introduce redundancy at this critical point, a combination of spatial redundancy, as em-
ployed in TMR, with time redundancy is presented, forming a hybrid redundancy scheme
and thereby enhancing fault tolerance in systems where duplicating memory controllers is not
feasible. Specifically, the risk of a single point of failure within the DDRC can be mitigated

54



/ Instance #0

N
N

‘ Di
BIT#0 [ ‘ ‘
BIT#1 3 |
: L - = pE
FROM FIFO #0 \ — J
i - |
BIT #31 gl > i
Ny a : Instance #1
BIT #0 F | 3 BIT #0
BIT#1 ™ \ : — | BIT#1
_ — =) _
FROM FIFO #1 . | .
—_— . b | .
. - ! .
BIT #31] \\ ,,,,,,,,,,,,,,,,,, . BIT #31
L]
L]
L]
L]
L]
L]
BIT #0 2 0 2 . N
[ [ [ [ L / Instance #31
BIT#1 5 ° ! 37
. |
FROM FIFO #2 " i
—_— - | ™ LS
BIT #31 |

Figure 3.3.7: Implementation of 32-bit majority voter

by issuing the three data transfers (through the 3 identical paths) from DDR memory to
the kernel, separated by a predefined time offset. The first data copy is routed to the first
input FIFO at time ¢, the second copy to the second FIFO at time ¢ + ¢,ffs, and the third
copy to the third FIFO at time ¢ + 2 * ¢,f5e¢. This redundancy is implemented by invoking
the software routine responsible for configuring the AXI DMA IPs and initiating the data
transfers three times, each with the appropriate delay. It is important to note that, due to
the AXI4-Stream synchronization mechanism described in Section 3.3.2, the system ensures
that the actual processing begins only after the third copy has arrived and has been stored
in the corresponding FIFO. This synchronization guarantees data alignment across the three
replicas. A similar procedure is applied in the reverse direction, from the output FIFOs
back to DDR memory, maintaining the same principles of hybrid redundancy and timing
separation.

95



3.5 FT Technique 3: DCLS

Once the data have been transmitted back to the DDR memory, each copy is stored in a
distinct memory region, specifically A4, A5, and A6 (Figure 3.1.1). Similar to the PL, a
dedicated hardware or software block must perform majority voting on each triad of values to
derive the final, reliable result that will subsequently be utilized by the application. Since it
is not feasible to introduce additional logic within the DDR subsystem, the voting operation
must be delegated to an external processing core, such as the Cortex-A53 or Cortex-R5F.

However, this solution introduces certain challenges. Modern processors are increasingly
susceptible to soft errors, primarily due to aggressive device scaling. Various strategies ex-
ist to protect processor cores from soft errors, spanning multiple stages of the design and
manufacturing process. Some processors adopt radiation-hardened-by-process (RHBP) tech-
nologies [26], while others rely on commercial fabrication methods that incorporate fault-
tolerance mechanisms such as lockstep execution [27,28|, redundant multithreading [29], or
architectural-level protections integrated directly into the processor pipeline [30].

To mitigate the risk of a single point of failure during the voting process, our architecture
utilizes the lockstep execution feature of the Cortex-R5F, as detailed in Section 2.3.2. In the
event of a lockstep error (classified as a system-level error) the error is detected via a bit
assertion in the PMU GLOBAL error status register. This assertion triggers an interrupt in
the PMU, which then invokes the RPU Lockstep Error Handler routine stored in PMU RAM.
The handler routine is responsible for executing a rollback-recovery technique, selectable by
the user. For instance, one possible strategy involves re-executing the voting procedure. This
may help to distinguish between transient faults introduced during the voting process itself
and pre-existing mismatches in the input data. In the former case, a repeated voting attempt
may succeed without triggering another lockstep error. In the latter case, however, the
processing core lacks the information necessary to identify the faulty bits, and re-execution is
likely to produce the same fault condition. In our implementation, we adopt a straightforward
approach: the voting operation is retried until it completes without triggering a lockstep error.
While functionally correct, this method can be time-consuming, particularly in scenarios
where repeated voting attempts consistently result in errors.

3.6 Design of Hardware Kernels

As an initial step towards the evaluation of our fault tolerant architecture, a custom hardware
design was developed to support systematic analysis and experimentation. The architecture
was deliberately kept simple to reduce design complexity, while still incorporating the core
functionalities necessary for meaningful evaluation. To this end, two fundamental hardware
circuits were implemented: an accumulator and an offset adder. This selection enables the
evaluation of fault mitigation techniques on two distinct types of processing behavior, one
involving temporal storage and aggregation of input values (the accumulator), and the other
performing stateless, input-independent arithmetic operations (the offset adder).

56



Accumulator

The accumulator is designed to temporarily store a fixed number of input values (in this case,
ten) and subsequently compute their sum. The module is compliant with the AXI4-Stream
interface, which provides the necessary handshake signals for receiving input values and trans-
mitting the computed result, as illustrated in Figure 3.6.1a. Functionally, the accumulator
operates as a finite state machine (FSM) comprising three states: IDLE, CALCULATE, and
SEND. In the IDLE state, the module accepts incoming data transactions until the internal
buffer reaches its capacity. Once ten values have been received, the FSM transitions to the
CALCULATE state, where the summation is performed. Finally, in the SEND state, the
accumulated result is transmitted to the downstream component.

Offset Adder

The offset adder performs addition of a predefined offset to each incoming value. Like the
accumulator, it is also compliant with the AXI4-Stream protocol, supporting all necessary
handshake signals for data reception and transmission, as shown in Figure 3.6.1b. This mod-
ule also follows a finite state machine structure with three states: IDLE, CALCULATE, and
SEND. In the IDLE state, the module awaits an input value. Upon reception, it transitions to
the CALCULATE state, where the offset is added to the input. The result is then forwarded,
in the SEND state, to the next stage in the data path.

accuml0 0

offsetl0_1
ZE—>s =
= m === | -
- P s tdata[31:0] - > i =) m e
) m_tdata[31:0 - = P s tdata[31:0] =
— P s_tvalid - m_tdata[31:0] pr =
RTL m tlast b — — P s tvalid
— 4 s _tready . - RTL m_tlast b —
m_tvalid » — — o s_tready -
- clk - m_tvalid P —
m _tready € =— - clk N
Q0 aresetn m tready 4 —
-Q aresetn
accumlO_vl_0
offsetl0 v1 0
(a) Accumulator IP (b) Offset Adder IP

Figure 3.6.1: Custom IP cores: Accumulator and Offset Adder

57



Chapter 4

Evaluation

This chapter presents the evaluation methodology and experimental results of the proposed
fault-tolerant architecture. The evaluation begins with a detailed description of the fault
injection campaign, employing a uniform fault injection technique targeting both the PS
and the PL subsystem of the SoC FPGA. The fault injection campaign is structured into
two main steps: fault pruning and saboteur insertion. Fault pruning effectively reduces the
complexity of the fault space, identifying critical points within the system where faults are
most impactful. Saboteur insertion involves embedding dedicated hardware components to
simulate bit-flip faults, facilitating systematic and controlled fault injection. Following this,
the chapter describes the experimental setup, including hardware specifics such as the Xilinx
ZCU102 MPSoC development board used for implementation. The setup enables precise
measurement of system dependability metrics, under varying fault-tolerance configurations.
The chapter concludes by presenting and analyzing experimental results obtained from testing
the two distinct hardware kernels. The results illustrate the impact of different fault-tolerant
techniques on system reliability, resource utilization and execution overhead, highlighting
improvements and trade-offs associated with each method.

Contents
4.1 Fault Injection Campaign. . . . . . . . . . ... oo 59
4.1.1 Overview . . . . .o 59
4.1.2  Step 1: Fault Pruning . . . . . ... ... ... ... ... ... 60
4.1.3 Step 2: Saboteur Insertion . . . . . . .. ... 63
4.2 Experimental Setup . . . ... ... ... . . 000000000 oL 65
4.3 Experimental Results . . ... ... ... ... ............ 67

58



4.1 Fault Injection Campaign

4.1.1 Overview

Existing fault injection techniques in processor-based architectures, provoked by radiation,
can be classified in the following main categories:

e Radiation ground testing
e Hardware/Software Implemented Fault Injection
e Simulated Fault Injection

The first involves exposing the design under test (DUT) to a controlled radiation beam that
induces physical events representative of real-world fault conditions. The second technique
also operates on the physical device. However, fault events are emulated through software rou-
tines that run concurrently with the application program. These routines alter the contents
of memory cells, such as registers and internal memory, which are typical targets for SEUs.
Finally, the third approach relies on a HDL model of the device, wherein code modifications
are implemented to simulate run-time faults across various components of the system [31].

In the context of SoC FPGAs, fault injection can target either the PS or the PL subsystem.
For the PL, most FPGA-based fault injection campaigns operate by modifying the configu-
ration memory. This is typically achieved by altering the design’s bitstream to inject faults,
which is then reloaded into the FPGA. The modified bitstream causes the FPGA to operate
with intentional configuration errors, potentially resulting in deviations from the intended
design behavior [32,33].

To evaluate the robustness of the proposed fault-tolerant architecture, a uniform fault injec-
tion approach is employed, targeting both PS and PL subsystems. This method emulates
fault occurrences by directly manipulating the logical values of selected system elements dur-
ing execution. The fault injection campaign is performed on the physical device, specifically
the Xilinx Zynq UltraScale+ MPSoC FPGA, where the proposed architecture is assumed to
be deployed. The overall procedure consists of two primary steps:

1. Fault Pruning
2. Saboteur Insertion

The initial step in any fault injection campaign involves defining the fault space, a multi-
dimensional space in which each dimension represents a specific aspect of a fault. These
typically include:

e When the fault occurs (temporal dimension)
e How the fault manifests (fault type or value change)
e Where in the system the fault is located (spatial dimension)

Given that our study focuses on SEUs, the relevant fault locations are limited to D flip-flops
(DFFs) within the logic blocks of the system. These are included in components along the
offloading datapath, as described in Section 3.2, such as DFFs in the DDRC, AXI interfaces,
and FIFOs, as well as DFFs within the register file of the Cortex-R5F cores, which are used

99



during PS voting. These flip-flops exclusively store data bits, excluding control bits that
affect system operation and inter-block connectivity. The fault type is defined as a bit-level
transition, either from logic "1’ to logic 0’ or vice versa. The temporal dimension consists
of discrete time instants, each corresponding to individual clock cycles, starting from the
initiation of the system’s operation. Ideally, fault injection experiments aim to assess system
behavior under every point in this fault space, with each point representing a unique fault
scenario [34]. However, due to the large size and complexity of this space, exhaustive testing
is often infeasible. To address this challenge, pruning techniques are employed to reduce the
number of fault scenarios that need to be tested, thereby making the process tractable.

4.1.2 Step 1: Fault Pruning

In our methodology, we employ a fault pruning technique known as fault collapsing [35].
Fault collapsing is based on the principle of fault equivalence and fault dominance. Two
faults are equivalent if every test detecting one also detects the other. On the other hand,
Fault A dominates fault B if all tests for B are a subset of A’s tests . Tests are combinations
of inputs, that given a fault, result in faulty output.

In Figure 4.1.1, purple DFFs are initial targets. After pruning, gray DFFs are eliminated.
For instance:

e Bitflips in FF1 and FF2 are equivalent, as both produce inverted values at the input
of the logic block.

e A bitflip in FF7 dominates FF4. The former causes faulty output for all 9 input
combinations, while FF4 causes faults only for a subset (e.g., 101 and 111).

e Bitflips in FF8 are unique and cannot be pruned.

Pruning also mitigates the challenge of inaccessible flip-flops in uncore components (e.g.,
DDRC, crossbar switches). In the forward data path (DDR to kernel), illustrated in Figure
4.1.2, logic blocks perform only non-transformational operations (e.g., data transfer or upsiz-
ing), so all flip-flops are equivalent from the SEU perspective. Thus, fault injection is applied
only to the last DFF in the FIFO. For 32-bit data, and three replicas, this results in:

32 flip-flops - 3replicas = 96 fault injection targets (forward path) (4.1.1)

In the reverse path (kernel to DDR), shown in Figure 4.1.3, faults are injected at the first DFF
in the cascade, again 96 targets in total. Importantly, injecting faults after the kernel output
and before branching is invalid, as faults in each branch are neither dominant nor equivalent
to faults in the shared upstream node (as seen in Figure 4.1.1, blue and red arrows).

To determine the fault injection targets during voting, we analyze the R5F assembly code
for the majority voting routine:

60



— _FF1 FF2 — —+ FF8 ———
P Boolean Function /

. FF3 FF4 D FF7 FF9 ——

».._FF5 FF6 > _FF10 ——

FF1 FF2 — —+ FF8 ——

Boolean Function

FF3 FF4 D FF7 FF9 —

»._FF5 FF6 L ~_FF10 —

Figure 4.1.1: Fault dominance and equivalence (the Boolean function is equal to an AND

gate)
ldr r0, A4
Idr r1, A5
ldr r2, A6

and r3, r0, rl
and 14, r0, r2
and 5, rl, r2
orr r6, r3, 15

orr r7, 14, 16
str A7, r7

To better understand the relations between fault injection targets, Figure 4.1.4 illustrates
the RTL description of the Assembly routine. Only registers r3, r4, r5 are retained for fault
injection, as shown in Figure 4.1.4:

e 17 dominates r6: r7 can be removed.
e 16 dominates r3 and r5: r6 can be removed

Thus, 96 additional fault targets are identified in these registers (32 bits x 3 registers). In
total, we have selected 288 FFs (384 FFs, in case of dual-core) for fault injection, as shown
in Table 4.1.

61



i

MEMORY | T N -
CELLS | | | ‘ | ST g
| I ! | ! H |
BLOCK r P | f |
BIT# —— .| - - 1 L O BE e,
| rFF LOGIC FF =~ FF LOGIC FE I = FF FF h
! ! | : | N )
| \ / \ // e
| WAL DT T T T T T T T T T b iy
______ !
BIT #1
DDR - DDRC — SWITCH — SWITCH |+ PSPt | . Axisc ' - AXIDMA — AXIFIFO — Voter - HW
INTERFACE Kernel
IEIT #2
| = S=p—m
| 1
| BLOCK |
TR tocic T T

Figure 4.1.2: Single bit forward datapath (DDR-kernel) with highlighted fault injection

DDR — DDRC

target (red arrow)

A
@
=}
e

PS-PL

SWITCH INTERFACE

SWITCH —

~— AXISC

~— AXI DMA — AXI FIFO —

Figure 4.1.3: Single bit reverse datapath (kernel-DDR) with highlighted fault injection

target (red arrow)

Location

Flip-Flops (32-bit per replica)

Number of Replicas

Total Targets

Forward Path 32 3 96
Reverse Path 32 3 96
Voting Registers 32 3or6 96 or 192
Total 288 or 384

Table 4.1: Summary of Fault Injection Targets

62




r0

_IE

rl —

r7

r2

Figure 4.1.4: RTL representation of Assembly code (voting), with highlighted the fault
injection targets after pruning (red arrows)

4.1.3 Step 2: Saboteur Insertion

A saboteur is a dedicated VHDL component integrated into the original model to introduce
faults. Its role is to modify the value or timing characteristics of one or more signals upon fault
injection. During normal system operation, the component remains inactive. To simulate a
bitflip in a DFF during a clock cycle, the saboteur performs an XOR operation on the DFF
output with a logic ’1’, effectively inverting its value. As illustrated in Figure 4.1.5a, the
downstream DFF thus receives an inverted signal in the subsequent clock cycle.

FF 4>{ Saboteur }—» FF

bitflip inject v2 7 0

.7 XoR N Gl
\

/ \ aresetn RTL outdata[31:0]
!
V1 ' indata[31:0]

\ /

N\ 7/

A P bitflip_inject v2 7 v1 0

(a) Bitflip Saboteur (b) Custom IP: Bitflip Inject

Figure 4.1.5: Fault Injection Components

To control saboteur activation, a custom Vivado IP, referred to as bitflip inject, was developed
(Figure 4.1.5b). This IP comprises 32 saboteur replicas, each mapped to a corresponding
bit of a 32-bit input word. Accordingly, six instances of the IP are integrated into the
system design. The IP remains in reset during normal execution and is released when fault
injection commences. However, it does not support dynamic configuration to target specific
bits. Instead, it relies on a predefined SER, determined by the system clock and the IP’s
internal structure, which is based on reseeded linear-feedback shift registers (LFSRs) for

63



pseudorandom fault injection.

An LFSR is a shift register where the input bit is generated from selected “tap” bits of
the current state, typically combined through an XOR gate. In Fibonacci LFSRs, these taps
define a feedback polynomial. For instance, selecting the 8 and 5% bits yields the polynomial
2® + 2% + 1. If this polynomial is primitive, the LFSR is maximal-length, cycling through all
2™ — 1 non-zero states. The initial (non-zero) configuration of the register is termed the seed.
Despite their deterministic nature, LFSRs can serve as pseudorandom number generators
(PRNGs) when designed with sufficiently long periods appropriate for the application [36,37].
The sequence’s randomness can be extended by reseeding, as described in [38].

1 11 1314 16

’_‘lllllllléﬂ!;mjlqll

Figure 4.1.6: LFSR Representation [?]

Figure 4.1.7 presents the internal architecture of the bitflip inject IP. The LFSR initializes a
down-counter, which activates the saboteur when it reaches zero. The LFSR simultaneously
advances to its next state, increasing the counter by one. Once the counter reaches a value
corresponding to the LFSR’s full cycle length, a new seed is loaded into the LFSR, and the
process repeats. The architecture ensures that the sequence of seeds lasts throughout the
experiment and differs across all target flip-flops, ensuring statistical independence of bitflips.
This design guarantees controlled fault injection at a defined SER. The SER for each bit is

Counter

Seed

16-bit LFSR

Init

Downcounter

Trigger

FF Saboteur FF

Figure 4.1.7: Internal Structure of Bitflip Inject IP

computed as follows:

In a complete LFSR cycle, the number of injected bitflips is 2! — 1, while the total number
64



of clock cycles is (2% — 1) - 216/2. Hence:
216 -1 s )
SER = 55 1) 252 = 27 errors/bit/Topek (4.1.2)

By adjusting the PL clock frequency, the effective SER can be tuned to the desired level.

For flip-flops within the Cortex-Rb5 register file, direct saboteur insertion is infeasible. There-
fore, an emulation of the lockstep configuration is performed: in split mode configuration
, both R5 cores run identical code independently. Each core performs a voting operation,
illustrated in Figure 4.1.4, using shared memory locations to temporarily store intermediate
values in the voting process. This setup allows external exposure of the registers to the
element performing the bitflips, which in this case are two A53 cores, acting as saboteurs.
The final Ab3 core performs the voting comparison between the outputs of the two R5 cores.
It then signals a lockstep error to the Platform Management Unit (PMU) by writing to a
designated global register, as depicted in Figure 4.1.8.

) " int main() \\ To PMU AS
/ { \ A6
x /__\
g 74
. ) B Bl=13 R5F Core
} B g A53 4 —
" 2 Core #1 Bz s j #0
A53 A53 #0 out
Core #0 Core #3 ¥4 ()
A53 B4=r3 R5F Core
= >
Core #2 S§= :g — ] i
#1 out li;)
DDR

Figure 4.1.8: A53 Cores Acting as Saboteurs

4.2 Experimental Setup

We selected the Xilinx ZCU102 MPSoC development board as the implementation and eval-
uation platform for our study. This platform is based on the Zynq UltraScale4+ XCZU9EG-
2FFVB1156 MPSoC, which belongs to the EG family of Xilinx’s Zynq UltraScale+ devices.
The PL subsystem of the device includes the resources summarized in Table 4.2:

To compute the Reliability and the MTTF of the proposed architecture, as discussed in Sec-
tion 2.2.3, it is necessary to estimate the PMF of the time-to-failure distribution. This can
be achieved either through analytical modeling or via empirical measurement through exper-
imentation. In this thesis, we adopt the experimental approach. The complete experimental
setup is illustrated in Figure 4.2.1.

65



Resource Quantity
System Logic Cells 599,550
CLB Flip-Flops 548,160
CLB LUTs 274,080
Distributed RAM (Mb) 8.8
Block RAM (Mb) 8.1
DSP Slices 2,520
Maximum I/O Pins 328

Table 4.2: FPGA resources available on the Zynq UltraScale+ XCZU9EG device.

hitstream
SD contents bi:;.
(timestamps) ry
P P
..--)" e
F Y
! Fault Tolerant Architecture + Fault \
1 Injection Setup !
\ I
. N ’
Dy ”
S - - = -
SD

Figure 4.2.1: Experimental setup used for reliability evaluation.

Each experimental run consists of the following steps:
1. The main application offloads data to the PL.
2. The hardware kernel processes the data and returns the results to the PS.

3. The output data are evaluated using either standard voting (single-core) or lockstep
voting (dual-core) mechanisms.

4. The resulting output is compared against a predefined golden output to detect discrep-
ancies. In the event of a mismatch, the PS records the timestamp of detection (relative
to the start of the experiment) onto an SD card and initiates a new run. Otherwise,
the offloading process is repeated without resetting the experimental run.

It is important to note that a saboteur is activated at the beginning of the first experiment
and remains enabled throughout all subsequent runs. Additionally, the timing measurements
reflect only the effective processing time, excluding delays associated with simulating lockstep

66



operation (execution overhead from lockstep operation is measured separately) and data
storage. Specifically, the overhead from accessing and writing to the SD card is omitted.

Table 4.3 shows the testing parameters, with which we run our experiments in the develop-
ment board.

Parameter Value
Clock Frequency (PL) 100 MHz
Clock Frequency (R5) 100 MHz
Clock Frequency (A53) 1.2 GHz
Soft Error Rate (SER) 3000 errors/bit/second
Data Size 10 KB
Number of Experimental Runs 50000

Table 4.3: Experimental configuration and fault model parameters.

The selection of the above specifications was made with the goal of optimizing the accuracy of
the PMF estimation, minimizing the total experimental execution time, and ensuring correct
operation during simulation.

Regarding the Soft Error Rate (SER), it is crucial to strike an appropriate balance. If the
SER is too low, approaching the naturally occurring rates in real space environments, faults
that lead to failures would occur too infrequently, significantly increasing the time required to
complete all experimental runs. On the other hand, if the SER is too high, the system would
become overwhelmed by faults, preventing the fault-tolerant architecture from effectively
demonstrating its mitigation capabilities.

With respect to the operating frequencies of the A53 and Rb5f cores, the A53 cores are
configured to run at a significantly higher frequency than the R5f. This ensures that, from the
R5f’s point of view, fault injection into the shared memory appears instantaneous, simulating
the way SEUs occur in real-world scenarios.

The choice of 50,000 experimental runs provides a good statistical basis for estimating the
PMF in our simulation. While increasing this number would improve the accuracy of the
PMF, it would also lead to a proportional increase in total experimental execution time.

Finally, the data size should be treated as a user-defined parameter, as the proposed architec-
ture is intended to serve as a generic framework. For the purpose of this study, we arbitrarily
select a value of 10KB, and based on the experimental results, we analyze how varying the
data size affects the reliability.

4.3 Experimental Results

As discussed in earlier sections, we evaluate the proposed fault-tolerant architecture by con-
sidering two types of hardware kernels implemented in the PL: an accumulator and an offset
adder. Figure 4.3.1 illustrate the reliability of both systems in the absence of any fault-
tolerant mechanisms.

67



Unmitigated System

Accumulator

09 L Offset Adder | |

0.8 1

0.7 7

Reliability
o (=]
= [3)]

o
w
T
1

0.2 - B

0 50 100 150 200
t(us)

Figure 4.3.1: Unmitigated System

Based on the figure, several observations can be made. The calculated MTTF for the
accumulator-based system is 10.589 pus, while the offset adder-based system exhibits an
MTTF of 31.987 us. Ideally, the MTTF should correspond to the steepest point of the relia-
bility curve, indicating the most probable failure region. However, due to the non-Gaussian
nature of the experimental PMF derived from our fault injection campaign, this condition
does not hold in our case.

Furthermore, the system utilizing the accumulator kernel exhibits earlier failure under fault
conditions. The accumulator kernel inherently accumulates multiple values, consequently
aggregating the probability of fault occurrence across multiple input values. Conversely, the
offset adder kernel processes individual numbers independently, significantly reducing the
likelihood that a single faulty input will propagate through to an erroneous system state.
On the other hand, the offset adder kernel demands the transfer of larger data volumes
between the PS and the PL, given that no internal data reduction occurs. In contrast,
the accumulator kernel performs internal data reduction, substantially decreasing the output
data size relative to the input data (e.g. ten input numbers into a single output value). Thus,
the offset adder kernel incurs increased data movement, which inherently exposes the system
to more extensive fault-prone interactions across communication interfaces. This exposure
amplifies the probability of fault occurrence in data transfer, particularly in the reverse
data path (from PL to PS). Analyzing these factors together, it becomes apparent that the
accumulator kernel’s susceptibility predominantly arises from faults in the forward data path
(input accumulation), whereas the offset adder kernel is predominantly sensitive to faults
in the reverse data path (output data transfer). Although determining the dominant effect

68



analytically without empirical evidence is challenging, in this case, the accumulator kernel’s
vulnerability to forward path faults surpasses the offset adder’s vulnerability to reverse path
faults.

Additionally, in the case of the accumulator-based system, the reliability curve flattens be-
tween 15 us and 27 us. This phenomenon is a consequence of the experimental setup. During
each experimental run, failures can only be detected at specific time intervals, namely, when
the software compares the actual output with the golden output. In the intermediate time
intervals, when data is being transmitted to the PL, processed, and returned, no output
verification occurs, and thus, no failures can be observed. Although such flat segments in the
reliability curve occur in all configurations, they become visible only in this specific config-
uration because the time to failure is particularly short and comparable to the duration of
these verification gaps. As a result, such behavior is observable primarily in configurations
that tend to fail shortly after the beginning of the experiment.

TMR (spatial and temporal) addition in the architecture

Figure 4.3.2 show the impact of introducing TMR in both the forward and return paths, while
retaining standard voting mechanisms in the PS. Compared to the baseline configuration,
the MTTF improved by an average factor of 120. In particular, the MTTF reached 2.29 ms
for the accumulator-based system and 0.96 ms for the offset adder.

Despite the overall reliability improvement, the offset adder system exhibits a shorter MTTF
compared to the accumulator-based system. This is due to the influence of the implemented
TMR scheme, which has shifted the most probable point of failure from the communication
interface to the PS-level voting mechanism. The accumulator system benefits more from
this change, as it involves less data passing through the voting stage, resulting in a greater
improvement in reliability.

Lockstep PS Voting addition in the architecture

Lastly, we incorporate lockstep voting within the PS to further enhance system reliability.
Figure 4.3.3 depict the resulting reliability curves when the complete fault-tolerant archi-
tecture is applied. Compared to the baseline configuration, MTTF increases by an average
factor of 9290. The MTTF reaches 110.9 ms for the accumulator system and 259.5 ms for
the offset adder system.

The introduction of lockstep PS voting has shifted the most probable point of failure from the
PS voting mechanism back to the communication interface. Based on the characteristics of
the unmitigated system, this shift inherently favors the offset adder kernel. The MTTF values
for all configurations are summarized in Table 4.4, while Figures 4.3.4 and 4.3.5 illustrate
the comparative effects of the applied fault-tolerant techniques.

Resource Utilization and Execution Overhead

While the dependability metrics are very important in analysizing fault-tolerant systems, it
is equally important to evaluate the system in terms of resources utilization and execution
overhead. Table 4.5 presents the resource utilization in terms of LUTs, FFs and BRAM for key

69



Reliability

Reliability

TMR + Normal PS Voting

Accumulator
Offset Adder

0 5 10 15 20
t(ms)
Figure 4.3.2: TMR + Normal PS Voting
1 TMR + Lockstep PS Voting
Accumulator
0.9 Offset Adder | |
0.8 8
0.7 1
0.6 .
0.5 7
04 8
0.3 .
0.2 .
0.1 7
0 1 L ! L L
0 100 200 300 400 500 600 700 800

t(ms)

Figure 4.3.3: TMR + Lockstep PS Voting

70



Reliability

Reliability

0.9

0.8

0.7

0.6

<
w

<
~

0.3

0.2

0.1

0.9

0.8

0.7

0.6

Q
a

©
~

0.3

0.2

0.1

Accumulator

Unmitigated
TMR + Normal PS Voting
TMR + Lockstep PS Voting

log10(t) (ns)

Figure 4.3.4: Three configurations compared

Offset Adder
Unmitigated
TMR + Normal PS Voting
- TMR + Lockstep PS Voting
4 5 6 7 8

log10(t) (ns)

Figure 4.3.5: Three configurations compared

71




data movement and interconnect modules, specifically, the AXI DMA, AXI SMC, and AXI
Data FIFO, across three different configurations: No Fault Tolerance, TMR Only, and TMR
with PS Lockstep Voting. In all fault-tolerant configurations, the number of instantiated
modules increases accordingly, leading to a rise in resource consumption.

It can be observed that no configuration utilizes more than 3% of the device’s total capacity
for any specific resource. This indicates that the implementation is not resource-intensive
and leaves ample space for the end user to develop additional hardware kernels within the
remaining PL. Furthermore, the number of resources has increased threefold, as expected
with the application of TMR schemes.

Regarding execution overhead, there are two primary contributing factors: temporal redun-
dancy and the PS voting mechanism. In the first case, the overhead introduced by temporal
redundancy depends on the time required for the processor to initiate the data transfer,
specifically, the time taken to write to a designated register. Experimental measurements
have shown that this process takes approximately 100 processor cycles, which corresponds
to the execution time of a simple software routine. Given that this duration is negligible
compared to the overhead introduced by PS voting, it is excluded from the total execution
overhead calculation. In the second case, the overhead due to PS voting is a function of both
the data size and the operating frequency of the R5 processor. In Figure 4.3.6, the execution
overhead is shown in R5 cycles at an operating frequency of 100MHz, which is the frequency
used in our experiments. A linear relationship is observed between the execution overhead
and the data size. This linearity is a result of the deterministic nature of the voting process,
which we enforce by optimizing cache utilization during the operation.

It is important to note that the voting algorithm is not configurable by the end user. Users
cannot modify or interfere with the way data is fetched, voted upon, or written back to
memory. It should also be noted that the reported execution overhead corresponds to a single
voting operation over the entire data size. In the event of a lockstep error, the execution
overhead may increase, depending on the recovery mechanism selected by the user. For
instance, in our implementation, we choose to repeat the voting process upon detection of
a mismatch, which results in additional overhead. Finally, the execution overhead remains
unchanged regardless of whether single or lockstep voting is employed. This is a significant
advantage, as it allows us to enhance system reliability without incurring additional execution
overhead.

Kernel Configuration MTTF
Accumulator | No Fault Tolerance 10.597 us
Accumulator | TMR Only 2.29 ms
Accumulator | TMR + PS Lockstep Voting | 110.9 ms
Offset Adder | No Fault Tolerance 31.987 ps
Offset Adder | TMR Only 0.96 ms
Offset Adder | TMR + PS Lockstep Voting | 259.5 ms

Table 4.4: Summary of MTTF Values for Different Configurations

72



Configuration Module LUTs | FFs | BRAM
Unmiticated AXI DMA (2) 898 | 1400 0
gate AXI SMC (1) 1691 | 2509 0
AXI DATA FIFO (2) | 160 | 130 8
: AXI DMA (6) 2694 | 4200 0
TMR + Normal PS Voting AXI SMC (3) 5061 | 7527 0
AXI DATA FIFO (6) | 480 | 390 24
. AXI DMA (6) 2694 | 4200 0
TMR + Lockstep PS Voting AXI SMC (3) 5061 | 7527 0
AXI DATA FIFO (6) | 480 | 390 24

Table 4.5: Resource Utilization (the number in parentheses represent the number of
instances regarding each IP

X 105

12 +

10+

R5 Cycles
o0

(=]
T

0 100 200 300 400 500
Data Size (KB)

Figure 4.3.6: Execution Overhead

73



Chapter 5

Conclusion and Future Work

5.1 Conclusion

This thesis presented a comprehensive approach to achieving fault-tolerant data transfers
COTS SoC FPGAs deployed in radiation-prone environments, with a particular focus on
space applications. The proposed methodology leverages standard Xilinx IP cores, ensur-
ing seamless integration and full compatibility with existing Xilinx design tools. Proof-of-
concept designs were implemented on an MPSoC Ultrascale+ ZU102, featuring a quad-core
Arm Cortex-Ab53 application processor and a dual-core Arm Cortex-R5F real-time proces-
sor. Importantly, all techniques introduced in this thesis are easily replicable on any board
with similar specifications, using the same standard components and IP libraries provided
by Xilinx. These resources are widely available and relatively low-cost compared to alterna-
tive solutions, enhancing the scalability and practicality of the proposed methodology. The
fault-tolerant techniques developed in this work include spatial and temporal redundancy, as
well as dual-core lockstep, targeting both the PL and PS subsystems. Two combinations of
these techniques were evaluated in terms of reliability, MTTF and execution overhead, and
compared against an unmitigated baseline design. A custom fault injection campaign was
designed to systematically assess the effectiveness of the proposed fault-tolerant techniques.
Experimental results demonstrated significant improvements in error resilience, validating
the suitability of the architecture for safety-critical space missions using cost-effective COTS
FPGA platforms.

5.2 Future Work

Although the architecture presented achieves substantial improvements in fault tolerance,
several areas warrant further investigation:

e Sampling-Based PS Voting: Instead of performing voting over the entire data pay-
load, a sampling-based approach could be explored, where only a subset of the data is
checked for discrepancies. This method could significantly reduce the execution over-
head introduced by the voting process.

e Integration with Fault-Tolerant Processing Elements: The current approach

74



focuses on securing data transfers (i.e., the communication interfaces) rather than the
processing elements themselves, such as the main application or hardware kernels. In-
tegrating the proposed techniques with fault-tolerant processing components could fur-
ther enhance the system’s overall reliability.

Real-Time Adaptive Fault Tolerance: Investigating dynamic reconfiguration tech-
niques may enable systems to adjust their fault-tolerance mechanisms in real time based
on environmental conditions, such as measured radiation levels. This would allow for
better optimization of both performance and resource usage.

Software Support and Abstraction: Developing a user-friendly abstraction layer,
including APIs and support libraries, could simplify the deployment of the proposed
architecture. This would facilitate adoption by end users and enable easier integration
into diverse applications.

)



Bibliography

1]

2l

13l

4]

[5]

(6]

7]

8]

19]

[10]

|11

G. Brunetti, G. Campiti, M. Tagliente, and C. Ciminelli, “Cots devices for space missions
in leo,” IEEE Access, vol. 12, pp. 76478-76514, 2024.

H. Bokil, “Cots semiconductor components for the new space industry,” in 2020 4th
IEEE Electron Devices Technology Manufacturing Conference (EDTM), pp. 1-4, 2020.

A. Pérez, A. Rodriguez, A. Otero, D. G. Arjona, Jiménez-Peralo, M. Verdugo, and
E. De La Torre, “Run-time reconfigurable mpsoc-based on-board processor for vision-
based space navigation,” IEEE Access, vol. 8, pp. 59891-59905, 2020.

A. Rodriguez, L. Santos, R. Sarmiento, and E. De La Torre, “Scalable hardware-based
on-board processing for run-time adaptive lossless hyperspectral compression,” IEEE
Access, vol. 7, pp. 10644-10652, 2019.

V. Leon, I. Stamoulias, G. Lentaris, D. Soudris, D. Gonzalez-Arjona, R. Domingo,
D. Merodio Codinachs, and I. Conway, “Development and testing on the european space-

grade brave fpgas: Evaluation of ng-large using high-performance dsp benchmarks,”
IEEE Access, vol. 9, pp. 131877-131892, 09 2021.

X. Iturbe, D. Keymeulen, E. Ozer, P. Yiu, D. Berisford, K. Hand, and R. Carlson, “An
integrated soc for science data processing in next-generation space flight instruments
avionics,” pp. 134-141, 10 2015.

C. De Sio, S. Azimi, and L. Sterpone, On the Fvaluation of SEU Effects on AXI Inter-
connect Within AP-SoCs, pp. 215-227. 07 2020.

F. Benevenuti and F. L. Kastensmidt, “Reliability evaluation on interfacing with axi and
axi-s on xilinx zynq-7000 ap-soc,” in 2018 IEEE 19th Latin-American Test Symposium
(LATS), pp. 1-6, 2018.

F. Benevenuti and F. Kastensmidt, Analyzing AXI Streaming Interface for Hardware
Acceleration in AP-SoC Under Soft Errors, pp. 243-254. 01 2018.

H. Cho, C.-Y. Cher, T. Shepherd, and S. Mitra, “Understanding soft errors in uncore
components,” in 2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC),
pp. 1-6, 2015

J. Lazaro, A. Astarloa, A. Zuloaga, J. Araujo, and J. Jiménez, “Axi lite redundant
on-chip bus interconnect for high reliability systems,” IEEE Transactions on Reliability,
vol. 73, no. 1, pp. 602-607, 2024.

76



[12] A. C. R. Alves, L. F. Q. Silveira, M. E. Kreutz, and S. M. Dias, “A parity-based dual
modular redundancy approach for the reliability of data transmission in nanosatellite’s
onboard processing,” IEEE Access, vol. 12, pp. 90815-90828, 2024.

[13] D. Bertozzi, L. Benini, and G. De Micheli, “Error control schemes for on-chip commu-
nication links: the energy-reliability tradeoff,” IEEFE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 24, no. 6, pp. 818-831, 2005.

[14] J. Mach, L. Kohutka, and P. Cicak, “On-chip bus protection against soft errors,” Elec-
tronics, vol. 12, 11 2023.

[15] Nasa, “Why space radiation matters.” | 2017.
[16] K. LaBel, M. Gates, A. Moran, P. Marshall, J. Barth, E. Stassinopoulos, C. Seidleck,

and C. Dale, “Commercial microelectronics technologies for applications in the satellite
radiation environment,” in 1996 IEEE Aerospace Applications Conference. Proceedings,
vol. 1, pp. 375-390 vol.1, 1996.

[17] R. Maurer, M. Fraeman, M. Martin, and D. Roth, “Harsh environments: Space radiation
environment, effects, and mitigation,” vol. 28, 01 2008.

[18] AMD, “Single-event upset mitigation selection guide application note,” Tech. Rep.
XAPPI987, AMD, March 2008. Revision 1.0.

[19] B. W. Johnson, Design and Analysis of Fault-Tolerant Digital Systems. Reading, Mas-
sachusetts: Addison-Wesley, 1989.

[20] A. Benso and P. Prinetto, Fault Injection Techniques and Tools for Embedded Systems
Reliability Fvaluation. 01 2003.

[21] V. Betz, J. Rose, and A. Marquardt, Architecture and CAD for Deep-Submicron FPGAs.
Boston, MA: Springer, 2004.

[22] Xilinx Inc., Zyng™ UltraScale+™ MPSoC Data Sheet: Overview (DS891). Xilinx, 2025-
03-18. Document DS891, Version 1.11.1.

[23| Xilinx Inc., Zynq UltraScale+ Device Technical Reference Manual (UG1085). Xilinx,
2025-03-21. Document UG1085, Version 2.5.

[24] ARM Ltd., AMBA 4 AXI4-Stream Protocol Specification Version 1.0, 2010.

[25] P. Balasubramanian, K. Prasad, and N. E. Mastorakis, “A fault tolerance improved
majority voter for TMR system architectures,” CoRR, vol. abs/1605.03771, 2016.

[26] N. F. Haddad, R. D. Brown, R. Ferguson, A. T. Kelly, R. K. Lawrence, D. M. Pirkl,
and J. C. Rodgers, “Second generation (200mhz) rad750 microprocessor radiation eval-
uation,” in 2011 12th European Conference on Radiation and Its Effects on Components
and Systems, pp. 877-880, 2011.

[27] X. Tturbe, B. Venu, and E. Ozer, “Soft error vulnerability assessment of the real-time
safety-related arm cortex-rb cpu,” in 2016 IEEE International Symposium on Defect and
Fault Tolerance in VLSI and Nanotechnology Systems (DFT), pp. 91-96, 2016.

7



28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

X. Iturbe, B. Venu, E. Ozer, J.-L. Poupat, G. Gimenez, and H.-U. Zurek, “The arm
triple core lock-step (tcls) processor,” ACM Transactions on Computer Systems, vol. 36,
pp. 1-30, 06 2019.

M. Barbirotta, F. Menichelli, A. Cheikh, A. Mastrandrea, M. Angioli, and M. Olivieri,
“Dynamic triple modular redundancy in interleaved hardware threads: An alternative

solution to lockstep multi-cores for fault-tolerant systems,” IEEE Access, vol. PP, pp. 1—
1, 01 2024.

J. Mach, L. Kohutka, and P. Ciéék, “In-pipeline processor protection against soft errors,”
Journal of Low Power FElectronics and Applications, vol. 13, no. 2, 2023.

G. Cardarilli, F. Kaddour, A. Leandri, M. Ottavi, S. Pontarelli, and R. Velazco, “Bit flip
injection in processor-based architectures: a case study,” in Proceedings of the Eighth
IEEE International On-Line Testing Workshop (IOLTW 2002), pp. 117-127, 2002.

N. A. Harward, M. R. Gardiner, L. W. Hsiao, and M. J. Wirthlin, “Estimating soft pro-
cessor soft error sensitivity through fault injection,” in 2015 IEEE 23rd Annual Interna-

tional Symposium on Field-Programmable Custom Computing Machines, pp. 143-150,
2015.

G. L. Nazar and L. Carro, “Fast single-fpga fault injection platform,” in 2012 IEEE
International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology
Systems (DFT), pp. 152-157, 2012.

M. Stojcev, “Alfredo benso, paolo prinetto, editors, fault injection techniques and tools
for embedded systems reliability and evaluation, kluwer academic publishers, boston,
2003. hardcover, pp 241, plus xiv, isbn 1-4020-7589-8.,” Microelectronics Reliability,
vol. 46, pp. 1396-1397, 08 2006.

L. Berrojo, I. Gonzalez, F. Corno, M. Reorda, G. Squillero, L. Entrena, and C. Lopez,
“New techniques for speeding-up fault-injection campaigns,” in Proceedings 2002 Design,
Automation and Test in Europe Conference and Exhibition, pp. 847-852, 2002.

R. S. Durga, C. K. Rashmika, O. N. V. Madhumitha, D. G. Suvetha, B. Tanmai, and
N. Mohankumar, “Design and synthesis of lfsr based random number generator,” in 2020
Third International Conference on Smart Systems and Inventive Technology (ICSSIT),
pp. 438-442, 2020.

“Application notes, efficient shift registers, lfsr counters, and long pseudo-random se-
quence generators (xapp052).”

P. S. Dilip, G. R. Somanathan, and R. Bhakthavatchalu, “Reseeding lfsr for test pattern
generation,” in 2019 International Conference on Communication and Signal Processing
(ICCSP), pp. 0921-0925, 2019.

78



	Contents
	List of Figures
	Εκτεταμένη Περίληψη στα Ελληνικά
	Εισαγωγή
	Προτεινόμενη Αρχιτεκτονική
	Αξιολόγηση και Αποτελέσματα

	Introduction
	Problem Statement
	Related Work
	Thesis Contributions
	Thesis Outline

	Background
	Space Radiation Environment
	Ionizing Radiation
	Radiation Effects on Electronics
	Soft Error Rate (SER)

	Dependability
	Faults, Errors and Failures
	Fault Tolerance Techniques
	Dependability Metrics

	SoC FPGA
	FPGA Architecture
	Zynq UltraScale+ MPSoC
	Development Tools for SoC FPGAs


	Proposed Fault-Tolerant Architecture
	Overview
	Offloading Data Path in a Fault-Prone Architecture
	FT Technique 1: TMR
	Triplication of the Offloading Data Path
	AXI4-Stream Protocol
	PL Voting

	FT Technique 2: Time Redundancy
	FT Technique 3: DCLS
	Design of Hardware Kernels

	Evaluation
	Fault Injection Campaign
	Overview
	Step 1: Fault Pruning
	Step 2: Saboteur Insertion

	Experimental Setup
	Experimental Results

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

