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Abstract 

Optical Coherence Tomography (OCT) is a cornerstone in ophthalmologic imaging, 

offering visualization of important eye anatomy and notably the retina. Discrepancies between 

devices due to method of acquisition or differences in resolution and noise pose render automated 

registration highly challenging. This thesis explores the feasibility and effectiveness of a deep-

learning based approach by utilizing the existing framework of the Repeatable and Reliable 

Detector and Descriptor (R2D2).  

Images of the same retina were captured using two distinct modalities. The first was a high 

end but expensive and inaccessible device that produced clear resolution images of the retinal 

layers and the second was a portable and affordable modality but produced images that provided 

less spatial information. Three different datasets were utilized to produce three models that jointly 

learned repeatable and reliable detectors and descriptors. The first consisted of the existing images 

after application of random transformations and pairing of the original with the newly derived 

augmented images. The second utilized roughly aligned images between two different modalities 

by expert annotation and considered them as equal. This resulted in the creation of paired images 

of different modalities. The third dataset was a combination of the first two. The models gave the 

output of dense descriptors for every pixel, repeatability and reliability heatmaps, both of which 

were used to extract keypoints for registration.  

A quantitative and qualitative evaluation of the keypoints derived by the training of the 

preexisting model on the original was performed. The three models derived by the corresponding 

dataset Crafted (C), Threepoint (3P) and Omni (O) demonstrated strengths and disadvantages in 

different aspects. 3P performed the best quantitatively while C showed the best repeatability maps 

in the high-quality OCT dataset and O managed to capture keypoints in the portable OCT dataset 

in a repeatable and reliable manner. However, each model on its own was not able to produce a 

satisfying registration result based on the traditional approach of Euclidean distance based mutual 

descriptor matching. A novel fusion model with a keypoint matching approach demonstrated the 

best results in multimodal image registration. 

This thesis provides a demonstration of the ability of unsupervised or semi-supervised 

keypoint based deep learning framework for inter-device OCT image registration. While current 

results are promising, challenges remain for the pipeline to be applicable in the clinical setting. 

Future work in novel matching strategies, automated masking techniques or other image 

preprocessing steps is required to bridge the gap between deep learning research and translational 

applications in ophthalmologic imaging. 

Keywords: image registration, keypoints, R2D2, multimodal Image registration, OCT, Retina, 

Ophthalmologic Imaging 
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Chapter 1 

1.  Introduction 

 

1.1 Retina, Optical Coherence Tomography, Image 

Registration 

The eyes are the complex sensory organs responsible for vision, capable of capturing light 

and interpreting it to images. Their intricate anatomy sees the light pass through the tear film, 

cornea, aqueous humor, lens and vitreous to ultimately reach the retina. This innermost layer of 

the eye is responsible for translating incoming light to neural signals that the brain deciphers into 

vision.  

In an optimally functioning system, this chain of events enables activities central to human 

experience of life. Facial recognition, spatial navigation, appreciation of beauty and memory 

formation are only some that are facilitated. However, those can be forfeited by any pathology of 

the visual system. Specifically, diseases targeting the retina – Age-related Macular Degeneration 

(AMD), diabetic retinopathy, macular holes, retinitis pigmentosa and Stargardt’s to name a few- 

hinder the translational ability of the eye and can often lead to irreversible vision loss. Collectively, 

these retinal conditions account for a significant percentage of world blindness and are projected 

to rise in prevalence in coming years. [1, 2] 

Inarguably, one of the most vital instruments in the clinician’s toolbox to remedy the 

situation is advances in imaging modalities of the retina, with the most important being Optical 

Coherence Tomography (OCT). OCT conducts a painless and almost instantaneous examination 

that yields information of the retinal anatomy and in turn of its physiology. This breakthrough has 

significantly aided in the effort to combat retinal diseases by allowing for earlier intervention 

through timely diagnosis and an individualized approach based on the imaging.  

Despite these advancements, access to high-quality OCT imaging remains limited. It is not 

uncommon for tertiary hospitals to lack on-sight access to those modalities, more commonly in 

underserved populations, due to high cost and low portability. The obvious effect is restrictions in 

timely diagnosis and inability to supply proper medical advice in a timely manner. [3, 4]  

To provide an answer to this issue the scientific community is making efforts towards 

portable and cost-effective OCT devices. The notable efforts have thus far yielded results that 

while promising, sacrifice image quality to facilitate accessibility. It is thus warranted to explore 

whether options other than solely further improving hardware are available. One of those can be 
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the integration of machine learning approaches to enhance the image quality of low cost OCT 

devices. [5] 

Recent advancements in deep learning tasks have allowed for the completion of super-

resolution tasks with a focus on medical imaging. Among proposed architectures tailored for said 

tasks are Convolutional Neural Networks (CNNs) and more recently encoder-decoder models like 

the U-net that have proven effective in denoising, enhancement and super-resolution pipelines.  

However, a limiting step in the development of such models lies in the optimization of the 

input data. An upstream task in this workflow, to enhance potential results, is image registration. 

Image registration is the task of spatially aligning two images taken at different times, from 

different viewpoints or using different modalities to capture them.  [6-8] 

1.2 Objective of the Thesis 

This thesis aims to explore the use of artificial intelligence and deep learning procedures 

to address the challenging task of retinal OCT image registration across two different modalities. 

In pursuit of this goal, the Repeatable and Reliable Detector and Descriptor (R2D2) framework 

was selected as having the potential to identify consistent and discriminative descriptors across 

image modalities that can lead the registration process. Three different version of the R2D2 model 

were developed and fine-tuned using different strategies, including a novel dataset incorporating 

manually aligned image pairs, to investigate which iteration best supports the necessary keypoint 

extraction to guide multimodal image registration. 

The ultimate objective is to evaluate whether these models can produce keypoints capable 

of enabling a registration pipeline and, if so, which approach offers the best results. By comparing 

the output between those models this thesis aims to lay the foundation for reliable, repeatable and 

interpretable registration methods in ophthalmic imaging. The broader aim is to determine whether 

these models can produce outputs that are reliable and repeatable enough to guide a registration 

pipeline, even in the absence of explicit transformation information. While the effectiveness of the 

full registration process remains an open question, the thesis evaluates model performance both 

quantitatively and qualitatively through keypoint analysis and lays the groundwork for future 

integration into more comprehensive image alignment and enhancement pipelines. 

1.3 Structure of the Thesis 

The thesis is organized into 6 chapters. The introductory chapters aim to provide the 

foundation and basic knowledge regarding the retina, optical coherence tomography, image 

registration and the basic deep learning framework used in this thesis, the Repeatable and Reliable 

Detectors and Descriptors. The next chapters outline the processes that took place and their results. 

Finally, a chapter dedicated to conclusions and possible future improvements. Specifically: 

• Chapter 1 is a brief introduction that describes the motivation and rationale behind 

the thesis and also outlines the overall structure 
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• Chapter 2 provides a basic background along with the necessary literature review 

regarding the human retina, OCT, Image Registration and Repeatable and Reliable 

Detectors and Descriptors 

• Chapter 3 describes the methods followed, the datasets created and the initial 

training of the existing model to provide keypoints and descriptors that would 

facilitate registration 

• Chapter 4 is dedicated to the keypoint extraction process and their quantitative and 

qualitative evaluation 

• Chapter 5 reports the final findings after the application of the derived keypoints 

and descriptors in both the traditional and a model fusion approach 

• Chapter 6 summarizes the conclusions drawn and offers potential future 

continuations for the intermodal OCT image registration problem. 
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Chapter 2 

2. Background & Literature Review 

 

2.1 Retina Anatomy and Function 

The human eye is a highly specialized, fluid filled sphere-like organ, which is responsible 

for vision. It consists of three primary layers: 

• Outer: Consists of the sclera and cornea. They provide clarity for the photons 

to enter the eye and structural integrity. 

• Middle (Uvea): Consists of the iris, ciliary body and choroid, structures 

essential in vasculature and accommodation. 

• Inner: Contains the retina, the neural tissue essential for vision. 

The visual process commences as soon as light touches the tear layer that covers the cornea. 

After it passes through the cornea it travels through the aqueous humor, the lens and the hyaloid. 

The refractive power of all the aforementioned media, most important being the cornea and lens, 

guide the light towards a specialized region of the retina, which will be analyzed further later on. 

The retina is approximately 0.5mm in thickness and lies in the posterior part of the eye. Upon 

arriving at the retina, photons encounter the photoreceptor cells. These cells have the ability to 

convert light into electrical signals via a process called phototransduction, a biochemical cascade. 

This is the step in the visual process that translates the image viewed into a message the human 

brain can comprehend. It is for this reason that diseases of the retina can have a debilitating effect 

on vision. [9] 

 

Figure 1 Basic anatomy of human eye 

Area centralis, or central retina, is a specific portion of the retina located between the 

superior and posterior retinal arteries and veins. There lie the macula and fovea, areas of the retina 

that are responsible for central vision and color perception. They are also areas where retinal 
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anatomy is significantly different compared to other areas of the retina and where slight changes, 

due to degenerative diseases or other causes, can cause the greatest effect in visual acuity (VA).  

Specifically, the retina can be divided in 9 layers and each one serves a specific purpose. 

These are the following: 

• Internal Limiting Membrane (ILM): It is the innermost layer of the retina. It 

borders the retina from the vitreous humor thus forming a barrier between the two 

• Nerve Fiber Layer (NFL): This layer contains the axons of ganglion cells which 

will eventually form the Optic Nerve 

• Ganglion Cell Layer (GCL): This layer contains the bodies of ganglion cells. 

These cells receive visual information from the photoreceptor cells. 

• Inner Plexiform Layer (IPL): This is where synapses (connections) between 

bipolar and ganglion cells occur 

• Inner Nuclear Layer (INL): This is a layer mostly occupied by the bodies of 

bipolar cells. These cells are responsible for transmitting visual information from 

photoreceptors to ganglion cells 

• Outer Plexiform Layer (OPL): This is where synapses between bipolar and 

photoreceptor cells occur 

• Outer Nuclear Layer (ONL): This is where the bodies of the photoreceptor cell 

lie. Immediately on its outer part we can also discern the myoid and ellipsoid zone, which 

signify specific parts of the photoreceptor layer. 

• Retinal Pigment Epithelium (RPE): This is a layer that supports the retina. 

Forms the outer Blood Retina Barrier (BRB) and is responsible for metabolic activities of 

the outer retina.  

 

Figure 2 Visual representation of retinal layers 
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These layers maintain this structure in all areas of the retina, in varying thickness, apart 

from the fovea centralis. As mentioned before, this is an area 0.35 mm in diameter and is the area 

responsible for central vision and achieves the highest visual acuity. Here the inner retinal layers 

are displaced concentrically so that light can reach the photoreceptors with the least possible 

scattering. Also, this change in anatomy allows for the most efficient packing of cones, cells which 

specialize in high visual acuity especially in light conditions. [10, 11] 

This meticulous arrangement of the neurosensory retina, in combination with the clarity of 

the optical media is what allows unimpeded flow of photons and consequently the translation of 

the electric signals into images. However, slight changes in the macular area can significantly 

impact visual function. These changes more commonly occur in a condition called Age-Related 

Macular Degeneration (AMD). Most often, this condition can cause scotomas, which are losses of 

parts of the visual field, drops in central VA or metamorphopsias.  

AMD is the leading cause of legal blindness in the industrialized world. It is estimated that 

by 2040 around 288 million people will be affected by AMD worldwide. It is characterized by 

accumulation of extracellular deposits, otherwise known as drusen, along with progressive 

degeneration of photoreceptors and adjacent tissues. These subtle pathological changes need to be 

closely monitored to ensure the optimal visual outcome. Other than the classic clinical slit lamp 

examination, the most important imaging modality which can be used to diagnose and monitor 

AMD disease and progression is Optical Coherence Tomography (OCT). [12] 

2.2 Basics of Optical Coherence Tomography 

OCT is a completely non-invasive and non-contact imaging technique, especially useful 

for ophthalmologists, since the transparent optical media of the eye allow for an unobstructed view 

of key anatomical structures. OCT generates cross-sectional tissue images of high-resolution. 

Essentially, it mimics tissue biopsy without the necessity of an invasive intervention. Its fast-

scanning rates and ability to visualize the image in real time, combined with the higher resolution 

of OCT compared to other medical imaging modalities, such as Computed Tomography (CT) or 

Magnetic Resonance Imaging (MRI), render OCT a cornerstone for ophthalmic imaging. OCT 

resolution varies from 20 to 5 μm. [13, 14] 

OCT operates based on the principle of emitting light waves at the target tissue and 

analyzing the delay of the back reflected waves to determine the depth at which the reflection 

occurred. It uses light near the infrared spectrum and since reflected waves cannot be measured 

directly, a reference measure is used. This is achieved by splitting the beam into two separate 

paths: a reference beam toward a reflective surface with known specifications of distance length 

and a tissue beam directed towards the tissue target as seen in the figure.  



2.2 Basics of Optical Coherence Tomography 

 
18 

 

 

 

 

 

 

 

 

 

 

The reflected beams from both pathways combine, interfere and reach a detector, which 

can compare the delay of the back reflection between them. This is achieved by interferometry, 

which translates to the analysis of how these two beams combine and interfere and in turn provides 

precise information about reflectivity of the light waves at a specific depth.  

An important aspect that needs to be evaluated to achieve a reliable and reproducible 

reading is coherence. Coherence is a measure of how close in phase two signals are to each other. 

When it comes to OCT, coherence is significant because interference effects are only detectible 

when the difference in the path length that light travels between the reference and tissue target 

beam are within the coherence length of the light source. If these differences are greater than the 

given coherence length, they cannot be detected by the interferometer. Therefore, it can be easily 

inferred that low-coherence interferometry is more sensitive in imaging reflections that can 

differentiate extremely thin layers, such are those of the retina. [15]  

Time-Domain OCT (TD-OCT) 

Time-domain OCT (TD-OCT) refers to the earliest versions of OCT imaging devices. It is 

named after the fact that the position of the reference mirror is altered in a manner which produces 

interference patterns as a function of time. This motion enables the system to scan through the 

depth of the tissue by almost aligning the optical path lengths of the sample and reference arms at 

each point in time. Interference is recorded only when the light from the sample and reference 

arms has traveled nearly identical distances, allowing the detection of backscattered light from 

specific tissue depths. Because it scans each depth point sequentially, TD-OCT is relatively slow 

and less efficient than more modern approaches. 

 

Figure 3  
Schematic illustration of the basic principles of OCT. A light source emits light that is split in two beams: one directed 
to the retina and the other to the reference mirror. The reflection of those two beams is recombined and received by 

the detector. Interference occurs only when the light path length of the two reflected beams is similar. (6) 
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Spectral-Domain OCT (SD-OCT) 

More advanced OCT devices employ the usage of spectral-domain OCT (SD-OCT). In this 

instance, the reference mirror’s position remains fixed. All light reflections arising from different 

tissue depths are detected in each lateral scan, significantly reducing the examination time 

compared to TD-OCT. This is achieved by incorporating a spectrometer, which can capture 

interference patterns across a broad spectrum of wavelengths all at once. The resulting data is then 

processed using a Fourier transform so that the received signal can be simplified into the 

frequencies it is consisted of and thus can plot an accurate representation of the tissues that induced 

the back scatter. This processing negates the need of a moving part, increases speed and resolution 

and significantly reduces motion artifacts compared to TD-OCT. These advantages have rendered 

the SD-OCT the clinical standard for OCT imaging. [15, 16] 

Swept-Source OCT (SS-OCT) 

 Swept-Source OCT (SS-OCT) can be conceptualized as an advancement in SD-OCT. The 

distinction lies in its use of a tunable narrowband laser that rapidly sweeps across a broad range of 

wavelengths, typically set around 1050nm. This wavelength achieves greater tissue penetration 

and can image structures deeper than the RPE, such as the choroid. The spectrometer is replaced 

with a high speed phtotodetector that records the interference signal as the laser sweeps through 

the frequencies. Similarly, through Fourier transformation, a depth-resolved reflectivity of the 

tissues is generated. [17, 18] 

 

 

These differences, which can be found summarized in the table below, have significantly 

influenced the conceptual foundation that led to the endeavor that is this thesis. The ability to use 

more advanced methods of OCT imaging as a guide to potentially enhance lower quality OCT 

images can potentially allow for greater access to high end ophthalmic screening. By registering 

the high-resolution OCT images to their pairs of lower quality the training of a U-net model can 

be facilitated, which will be able to significantly improve the output of more accessible but less 

reliable imaging devices.  

 

 

Figure 4 
 Schematic representation of the basic principles behind Time-Domain, Spectral-Domain and Swept-Source Optical 

Coherence Tomography (left to right) 
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2.3 Image Registration 

2.3.1 Classification and Fundamentals of Image Registration  

Image registration, within the field of medical imaging, refers to the process of establishing 

precise spatial correspondences between images. This task enables accurate alignment and 

facilitates the transfer of essential details and information across various captures of the same 

subject. [19] This correspondence not only allows for the ability to compare anatomical structures 

to the maximal possible precision, but can also facilitate computer vision or machine learning tasks 

such as segmentation or in our case, super-resolution. 

Image registration can be categorized in various types depending on the source of the 

images and the modality used to obtain them. Unimodal registration describes the alignment of 

images obtained from a singular imaging modality, for example, multiple scans conducted using 

the same OCT) device. This type of registration is crucial in clinical settings for several reasons: 

it allows monitoring of disease progression over time, supports atlas-based segmentation 

processes, improves overall image quality through techniques such as image averaging, and 

provides essential guidance during intra-operative procedures. The process is often straightforward 

and algorithmically efficient due to the consistency in signal intensity and characteristics across 

images taken from the same device. 

On the other hand, multimodal registration involves aligning images derived from different 

imaging modalities. These modalities might have fundamentally distinct operational principles, 

such as CT and MRI, or even different OCT devices that present substantial variations in feature 

 Time-Domain OCT 

(TD-OCT) 

Spectral-Domain OCT 

(SD-OCT) 

Swept-Source OCT   (SS-

OCT) 

Light Source 
Broadband low-

coherence source 

Broadband low-coherence 

source 

Narrowband tunable laser 

(swept source) 

Typical 

Wavelength 
~810nm ~840nm ~1050nm 

Reference 

Mirror 
Moving Fixed Fixed 

Detector Type Single photodetector Spectrometer 
Single high-speed 

photodetector 

Scan Speed 
Slow (~400 A-

scans/sec) 

Fast (~20.000–70.000 A-

scans/sec) 

Very fast (100.000 – 400.000 

A-scans/sec) 

Depth 

Resolution 
Lower (~10μm) Higher (~5–7 μm) 

Comparable or higher 

(~5μm) 

Imaging Depth Limited Moderate 
High (penetrates deeper into 

choroid/sclera) 

Interference 

Capture 
One depth at a time 

All depths simultaneously 

via spectral analysis 

All depths simultaneously 

via wavelength sweep 

Advantage 
Original method; 

lower cost 
High speed; high resolution; Deep imaging; high speed; 

Table 1 

 Concise comparative summary of different Optical Coherence Tomography modalities 
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intensity and image quality. The inherent variability of multimodal images, primarily due to 

different physical properties and imaging mechanisms, introduces considerable complexity in 

accurately registering these images. Anatomical structures can exhibit markedly different 

appearances across modalities, thus requiring more advanced algorithms and methodologies to 

achieve effective alignment. 

Despite its increased complexity, multimodal registration yields significant clinical and 

research benefits. It enables the integration of complementary information derived from multiple 

imaging techniques, each specialized in capturing different tissue characteristics—CT excels in 

depicting bone structures and dense tissues, while MRI provides superior visualization of soft 

tissues. This comprehensive approach enhances the diagnostic process and improves the efficacy 

of image-guided interventions. Moreover, multimodal registration holds the potential to facilitate 

the integration and interchangeability between sophisticated and simpler imaging devices, thereby 

democratizing access to advanced clinical information and decision-making tools. Harnessing and 

expanding upon this potential is a central focus of this thesis. [20, 21] 

Image registration can also be subdivided based on who the subject of the images is. 

Intrapatient registration refers to registering images of the same person taken either from the same 

modality across time or across different modalities. Interpatient registration describes the process 

of aligning medical images between two or more different individuals. This endeavor can be highly 

challenging because of slight variations in normal anatomy across patients but yields high value 

in designing a standard frame of reference and in various research projects. [22] 

A very simplistic breakdown of the image registration process of a pair of images can be 

described as follows: an image is assigned as fixed and its counterpart as moving. Next step in the 

sequence is to apply a transformation on the moving image to align it with the fixed image. 

Transformations can be divided into different types based on their characteristics: 

i. Rigid: a fundamental transformation technique. If a rigid transformation is applied, 

distances and angles between different elements of the image remain unchanged. 

This approach is useful when the deformities between fixed and moving image are 

minimal and it is of utmost importance to maintain the existing anatomy without 

any deviation. Essentially, changes are applied only in terms of movement or 

rotation.  

ii. Affine: is a more versatile technique that can apply the changes of a rigid 

transformation but also correct for alterations in scaling and shearing. It is very 

useful in medical imaging where malleable tissues can appear different across 

modalities and in other computer vision tasks.  

iii. Projective: similar in logic, can apply all the changes that affine transformation can 

implement but also accounts for significant changes in depth variations and 

perspectives. More useful in non-medical applications, such as panoramic image 

stitching.  

iv. Non-linear deformations: this approach is recruited when none of the 

aforementioned transformations are suitable to implement the changes needed for 

an accurate registration. Each pixel can be warped individually, allowing for 

maximum leniency. [23-25] 
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Figure 5 

 a) Transformation Examples. Original retinal image (left) and corresponding transformations using different registration 

techniques (right). Rigid transformation preserves shape and size.  Affine allows for rotation, translation, scaling, and shearing, 

resulting in moderate distortion. Projective transformation simulates perspective distortions as seen from different viewpoints. 

Non-linear transformation models complex local deformations, such as tissue distortion or warping 

Figure 5 acts as a sample of how different transformation approaches yield significantly 

different results and indicates how one must choose what technique they will employ based on the 

task at hand. Specifically, the rigid transformation uses a 2×3 matrix to rotate the image by 20 

degrees and translate it by Δx = -26.68 and Δy = 210.55, while preserving shape and size. The 

transformation matrix T was applied to each image point by converting pixel coordinates [x, y] 

into homogenous form [x, y, 1]T  and computing the new location [x’, y’]T  . The retention of shape 

and size is achieved by having the transformation matrix in the form of: 

 

𝑻 = [
cos(𝜃) − sin(𝜃) 𝑡𝑥
sin(𝜃) cos(𝜃) 𝑡𝑦

 ] 

Affine transformation also applies a 2x3 matrix, but can introduce scaling and shear. This 

allows for the change of angles and shapes, but parallel lines always remain parallel. Briefly, 

projective transformation changes the image and mimics the effect of looking at it from a different 

angle and non-linear transformation, bends and wraps the image in a wave like pattern without the 

use of a transformation matrix. In this case the formula was x’=x +Δx(y), where Δx(y) = 

20sin(
2𝜋𝑦

120
). 

  

2.3.2 Classic Approaches to Image Registration  

The fundamental logic behind image registration is to locate the areas depicting the same 

structure in different images and achieve a transformation that successfully aligns these 
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corresponding regions. The approach to achieving this task has revolved around two main 

characteristics of the images, intensity-based information and feature-based representation.  

Intensity-based image registration methods align images by directly comparing their raw 

pixel values, eliminating the need for feature extraction or labelling of anatomy by experts. By 

relying solely on pixel intensities, these methods offer a straightforward approach, beneficial for 

scenarios where expert annotations are impractical or unavailable. The effective application of this 

approach relies heavily on two critical underlying assumptions. Firstly, the independence of pixel-

to-pixel intensity values; specifically, each pixel's intensity contributes independently when 

computing the loss function that guides the optimal transformation. Consequently, these methods 

inherently disregard spatial relationships, such as structural continuity or contextual anatomical 

information and can thus limit the accuracy of alignment, particularly in cases of subtle anatomical 

features or complex structures. Secondly, the stationarity of intensity relationships between pixels 

is assumed; a consistent intensity correspondence between the two images throughout the entire 

imaging field is presumed. While global intensity discrepancies—such as overall brightness or 

contrast differences—can generally be managed by these methods, spatially varying variations in 

brightness or contrast can significantly challenge this assumption. Localized intensity distortions, 

commonly arising from imaging artifacts, uneven illumination, or scanner-related inconsistencies, 

may lead to misalignments. The presence of noise or localized artifacts further exacerbates this 

issue, making the optimization landscape more complex and prone to local minima, thereby 

compromising the reliability of registration results. Most commonly used techniques employed to 

achieve this kind of registration include sum-of-squared-differences (SSD), correlation coefficient 

(CC) and mutual information (MI). All of the aforementioned share the common goal of trying to 

minimize the total difference of pixel intensities or maximizing similarity when aligning two 

images. It is therefore easily inferred that such approaches can be less robust and reliable when 

registering images with varying spatial intensity distortions.   [26, 27]  

Feature-based image registration involves feature detection and description. Immediately, 

the difference lies on the fact that spatial relationships between pixels is accounted for. However, 

the processing needed is significantly more challenging than intensity-based image registration.  

Features that can be employed are lines, polygons, contours and more usually, due to the relative 

ease of description points. Keypoints must be detected and described, which translates to extracted 

as a distinctive area of the image and represented with no change when it comes to image 

deformation in any aspect respectively. The algorithms developed to achieve these tasks are often 

referred to as detectors and descriptors. The goal for a good detector is to be able to identify stable 

and distinct regions of the images despite potential transformations.  [28, 29] 

Most notable approaches to this task are Features from Accelerated Segment Test (FAST), 

the Scale Invariant Feature Transform Keypoint (SIFT), Binary Robust Independent Elementary 

Features (BRIEF) and Oriented FAST and Rotated BRIEF Features (ORB).  

• FAST is a detector proposed by Rosten and Drummond, which aims to identify 

corners by examining the intensity of the neighboring pixels. The candidate pixel 

is identified if there exists a contiguous arc of pixels around said point which are 

significantly brighter or darker than the candidate’s intensity plus a threshold value. 
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It easily customizable as the radius of said circle can be set arbitrarily and efficient 

as only a subset of pixels in the circle is analyzed each time. In its simplicity 

however lies its disadvantage, as it can be less robust than similar models when 

faced with changes in viewpoints or other transformations. [30] 

• SIFT is a four step algorithm proposed by Lowe et al.. Initially, a detection of scale-

space extrema takes place, implemented by using a Difference-of-Gaussian (DoG) 

function. Its target is to identify keypoints which exist despite scale or orientation 

changes. Then those candidate points are localized and selected based on measures 

of their stability, i.e. points with low contrast are rejected as they are sensitive to 

noise. Then, one or more orientations are assigned to every keypoint location. This 

step ensures that all future operation will be performed on data that is transformed 

relative to assigned orientation, scale and location, rendering the results invariant 

to said changes. Lastly, local image gradients are estimated for the areas around the 

keypoint in the selected scale. This pipeline ensures that computationally expensive 

operations, like keypoint description, happen downstream, after a significant 

number of keypoints are discarded.[31]  

• BRIEF is a descriptor proposed by Calonder et al.. It is designed with increasing 

speed of feature extraction and description in mind. Specifically, BRIEF performs 

comparisons in pixel intensity within a predetermined patch. The comparison yields 

a result of 1 if the first pixel is brighter and 0 otherwise. This allows for the 

formation of a string after a concatenation of all comparisons, which acts as a 

signature around a specified keypoint. Matching of descriptors can therefore 

achieved very quickly. However, BRIEF is not immune to geometric 

transformations and is heavily reliant on intensity, rendering it more sensitive to 

noise and lighting changes.[32] 

• ORB is a combination of the FAST detector and an improved BRIEF descriptor. 

Proposed by Rublee et al., ORB is a keypoint descriptor that utilizes the advantages 

of the previously defined approaches. It utilizes FAST to define potential keypoints 

but also applies the intensity centroid method to estimate those keypoints 

orientation. After this processing it uses BRIEF to quickly assign a binary identity 

to each keypoint, with the added advantage of improving invariance to rotation.[33] 

 

The aforementioned have proven effective in a wide range of image registration and 

computer vision tasks but nonetheless suffer limitations. Challenges revolve around limited 

robustness when changes to lighting or rotation are applied and significant computational 

workload. It is evident that an alternate approach needs to be adopted to tackle increasingly 

complex registration tasks. 

2.3.3 Deep Learning Approaches to Image Registration  

While classical approaches to image registration paved the way for contemporary 

endeavors, innovations in deep learning hold great promise to overcome obstacles that were 
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previously immovable. This is reflected by the trends of published literature regarding the topic in 

recent years as also depicted in Figure 6.  This resurgence inspired the careful examination of a 

variety of Deep Learning models with a particular focus on their applicability on multimodal OCT 

registration, which led the selection of the model titled Reliable and Repeatable Detectors and 

Descriptors (R2D2). The following segment will briefly outline the most important contender 

models when the initial review was performed. 

 

Voxelmorph was proposed by Balakrishnan et al. and aims to provide solutions for image 

registration tasks where deformation is required. It is mostly utilized in volumetric medical 

imaging, especially when attempting to register CT and MRI imaging of three dimensional (3D) 

structures. Voxelmorph employs a CNN to forego an objective function for each single pair of 

images and instead applies a generalizable mapping function that is procured through training on 

the particular subset of interest. This change in approach is reported to significantly diminish time 

demanded, even on a Central Processing Unit (CPU), while achieving the same or better results 

compared to other similar networks. However, there is two main reasons this approach may not be 

the optimal fit for the current project. Firstly, deformable changes, while potentially necessary to 

achieve registration between 3D volumes of CT and MRI, may significantly alter minute details 

that are of utmost importance in diagnosis and disease progression monitoring of retinal 

pathologies. Secondly, this thesis aims to register two dimensional (2D) images, a design which 

was not the primary drive in developing Voxelmorph. [34] 

SuperPoint was proposed by DeTone et al. and presents a selfsupervised approach to 

identifying points of interest in 2D images. The focus of this effort is to negate the need of expert 

labeling of points of interest in the training dataset. This was achieved by first training the model 

on millions of synthetic images that portrayed simple geometric shapes and thus had no ambiguity 

Figure 6 
 Representation of volume of publications in Classical versus Deep Learning image registration. 
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on what and where the keypoints were. This first iteration was named MagicPoint and performed 

well in real life situations, but trailed behind classical feature extraction algorithms. To address 

this issue the authors performed arbitrary homographic transformations on real life images and 

averaged the detector’s response. Therefore, repeatability of proposed checkpoints was 

significantly increased and registration accuracy outperformed classical approaches. SuperGlue 

and later LightGlue are neural networks that were developed later to facilitate easier matching of 

the SuperPoint derived keypoints. Despite the promising results, the limited literature of the 

implementation of the aforementioned approaches in ophthalmic medical imaging, combined with 

the significant computational expense the need to train two separate networks –feature extractor 

and feature matcher- brings, render SuperPoint as not an ideal option for OCT keypoint extraction. 

[35-37] 

Universal Correspondence Network (UCN) by Choy et al. is a fully CNN optimized for 

learning accurate visual correspondences. It focuses on identifying both geometric and semantic 

correspondences. Essentially, it aims to establish correspondences based on different viewpoints 

of the same still image and also correspondences of keypoints that are similar across different 

instances. It performs better than traditional feature extractors by actively looking for examples it 

is getting wrong during the training phase, a process referred to as hard negative mining. This is 

achieved because of previously annotated ground truth data. Overall, it is a fast and highly reliable 

model but it requires a supervised setting of learning and also can be computationally expensive 

because of its dense feature extraction and hard negative mining. [38] 

Finally, Learned Invariant Feature Transform (LIFT), proposed by Moo Yi et al., is a deep 

learning pipeline that combines in a single model the full point handling array, that is detection, 

orientation estimation and feature description. Its novelty lies on the fact that while previous 

models tackled each of these problems individually, LIFT proposes to learn the aforementioned 

through a single CNN, which can facilitate better performance through the simultaneous 

optimization for all three elements. However, LIFT uses Structure-from-Motion (SfM) to 

accomplish its supervised learning. SfM identifies points of a 3D object that are consistent from 

different viewing angles and deems them important in the training process. This is not compatible 

with our task, since the OCT images are 2D slices of the same retina with no 3D viewpoint 

variation that is essential for SfM.[39]  

In conclusion, classical and deep learning approaches follow a variety of techniques to 

achieve tasks in computer vision, medical imaging and other domains where image registration is 

essential. It is also evident, that each is more suited in certain tasks than others. Of utmost 

importance is to identify which model offers the optimal approach for achieving intrapatient 

multimodal OCT registration. The required characteristics include ability to drive affine 

transformations, 2D integration in training pipeline, computationally inexpensive and ideally 

previous implementation in similar tasks to assure effectiveness in OCT images. These conditions 

are most closely fulfilled by the model Reliable and Repeatable Detectors and Descriptors (R2D2) 

 

 



2. Background & Literature Review 

 
27 

2.4 Repeatable and Reliable Detector and Descriptor 

2.4.1 Overview  

R2D2, proposed by Revaud et al. is a detection and description approach that aims to 

simultaneously produce repeatable and reliable descriptors and keypoints. Its novelty lies in 

introducing an unsupervised training loss to learn a keypoint detector, a new loss to establish 

reliable local descriptors and a combined pipeline to produce both repeatable and reliable 

keypoints. 

As mentioned in the previous chapters, most image registration and matching pipelines rely 

heavily on finding keypoints that are repeatable across variations of the same image, in order to 

establish them as guiding points during matching. While this quality is essential, solely focusing 

on this criterion can significantly limit the accuracy of the matching process, since repeatability 

does not guarantee that these keypoints will be useful or reliable. This is due to the fact that in 

many images where patterns repeat themselves, i.e. squares on a chess board or hyporeflective 

areas in OCT images, keypoints are consistently repeatable but suffer from decreased reliability 

due to their self-similarity. Essentially, since a keypoint is highly repeatable but lacks uniqueness, 

it can provide little to no valuable information when it comes to image alignment. This point can 

be further explained in figure 7. 

Therefore, R2D2 provides the user with an important distinction on the extracted 

keypoints. Repeatable keypoints are procured, which determine their ability to be distinguishable 

features of the input image. This is paired with their reliability score that facilitates a more accurate 

matching process. In a nutshell, R2D2 can sort keypoints based on repeatability and reliability 

scores and provide the user with the optimal pathway for the matching endeavor. 

Understanding this potential advantage acts as a motivation for R2D2 to jointly learn 

descriptor reliability and keypoint repeatability. The output to describe the two happens in two 

separate manners. First is through a score assigned to each keypoint that is the product of 

repeatability times reliability and secondly through maps that annotate distinctively the reliability 

and repeatability scores for every pixel in the image. This will be analyzed further later in this 

thesis. It is this integrated method that allows R2D2 to avoid highly repeatable but not distinctive 

regions for all its downstream tasks.[40] 

Figure 7 
 Demonstration of difference between repeatability and reliability. In the first input image (left) repeatable description 
can only be found in the center area where also reliability is high due to the uniqueness of the pattern. In the second 
input image (right), while repeatable keypoints can be found throughout the image but none of them are reliable due 

to inherent self-similarity. 
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2.4.2 Architecture and Loss functions 

The R2D2 architecture adopts the backbone of a previously adopted L2-Net, which is also 

a compact descriptor extractor, with specific adjustments to better accommodate the output of both 

descriptors and reliability and repeatability maps after the input of a single image, irrespective of 

resolution.[41] 

Specifically, while the L2-Net was originally designed to extract discriminative local 

descriptors from isolated small image patches of 32x32 and produce one descriptor per pass, R2D2 

modifies the architecture to operate on whole images of any size or resolution and produces dense 

descriptors for every pixel and two confidence maps, one for repeatability and one for reliability. 

These adjustments facilitate the annotation of every pixel with a descriptor, a repeatability and a 

reliability score. [42] 

The input image is first passed through a sequence of 3x3 convolution layers with batch 

normalization and Rectified Linear Unit (ReLu) activation functions through each step. The first 

correction R2D2 makes on the L2 backbone is to omit any downsampling in an effort to increase 

spatial resolution. Instead, it recruits dilated convolutions to enlarge the receptive field without 

compromising resolution or increasing kernel size. Dilated convolutions are able to provide this 

advantage by introducing gaps between kernel elements, effectively allowing the creation of 

relations between pixels that are further away than the kernel size might suggest. This is a critical 

step, as the target is to derive a descriptor for every single pixel, thus any downsampling or 

reduction of resolution is significantly opposed to the system philosophy. 

Another adjustment is the replacement of the final 8x8 convolutional layer with a sequence 

of three 2x2 convolutional layers. This change can significantly reduce the number of weights 

without compromising accuracy. 

The output of the final convolutional layer is a dense tensor of shape HeightxWidthx128. This 

tensor is the precursor for three of the network’s output. First, l2 normalization is applied on to 

produce a descriptor of size HeightxWidthx128, able to be used for Euclidean-distance matching. 

Therefore, every single pixel has its own descriptor.  

Simultaneously, the same precursor is passed through an elementwise square operation, 

which squares each feature value individually. By applying this operation, strong activations are 

amplified and noisy areas are suppressed. Then two parallel 1x1 convolutional layers are applied 

which reduce the tensor to single scalar value for each pixel and therefore produces two separate 

maps. These maps are spatially normalized using a softmax function. 

Overall, this network is able to output a descriptor, as well as a repeatability and reliability 

score for every single pixel with a single forward pass on a full resolution image. This capacity 

can only be achieved through carefully designed and applied loss functions and training objectives. 
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 R2D2 recruits a careful selection of loss functions and training objectives designed to 

optimize repeatability and reliability outcomes. They can be divided in two categories: 

repeatability losses and reliability losses. This distinction happens because repeatability and 

reliability are tow complementary aspects that must be predicted separately.  

Learning repeatability revolves around the following functions. The authors claim that 

standard supervised training does not allow for the identification of novel detectors but rather 

copies existing ones and limits the results based on the shortcomings of each original method 

employed. This is why repeatability is a self-supervised task. This is achieved by applying the idea 

of maximization of cosine similarity between the repeatability maps of the two images over many 

small patches to avoid assumptions of zero occlusions or warp artifacts. Boiled down the network 

is encouraged to produce similar repeatability responses at corresponding locations with a loss that 

promotes the covariance between the repeatability maps. Self-supervision is achieved through the 

process of synthesizing a new image based on the existing one and thus already knowing the 

required transformation to fully align the two. This Cosim loss can be described as: 

𝐿𝑐𝑜𝑠𝑖𝑚(𝐼, 𝐼′, 𝑈) = 1 −
1

|𝑃|
∑ 𝑐𝑜𝑠𝑖𝑚(𝑆[𝑝], 𝑆′𝑈[𝑝])

𝑝∈𝑃

 

where: 

• I: original image 

• I’: transformed version of the image created after applying a known transformation 

• U: a dense correspondence field, ground truth where U[i, j]=[i’, j’] if i,y represents 

a pixel in I and i’, j’ represents the same pixel in I’ 

• S: a repeatability heatmap generated by the network for image I 

• S’: a repeatability heatmap generated by the network for image I’ 

• P: the set of all overlapping NxN patches in the image domain 

• Cosim(a,  b): standard cosine similarity between vectors a, b. Measures angular 

similarity and not magnitude. This helps lower the dissimilarity based on different 

intensity values in OCT imaging. 

Figure 8  
A representation of R2D2 architecture 
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This ensures that all local maxima in S will correspond with the ones at S’U. However, this 

loss function can easily be minimized by applying constant values to S and S’U. This is combatted 

by also applying a second loss function that intends to maximize contrast between keypoint and 

surrounding pixel, or in other words peakiness. This is achieved through the following function: 

𝐿𝑝𝑒𝑎𝑘𝑦(𝐼) = 1 −
1

|𝑃|
∑( 𝑆𝑖𝑗(𝑖,𝑗)∈𝑝

𝑚𝑎𝑥 −  𝑆𝑖𝑗(𝑖,𝑗)∈𝑝
𝑚𝑒𝑎𝑛 )

𝑝∈𝑃

 

Overall, the final repeatability loss is: 

𝐿𝑟𝑒𝑝(𝐼, 𝐼′, 𝑈) =  𝐿𝑐𝑜𝑠𝑖𝑚(𝐼, 𝐼′, 𝑈) + 𝜆 (𝐿𝑝𝑒𝑎𝑘𝑦(𝐼) + 𝐿𝑝𝑒𝑎𝑘𝑦(𝐼′)) 

where λ determines the weight of the peaky loss in the overall repeatability loss.  

 

Learning reliability involves assigning a confidence value for each descriptor ranging from 

0 to 1 or otherwise Rij∈ [0, 1]. Higher values indicate greater reliability or in other words 

discriminating ability. The basic logic behind this approach comprises of vector comparison 

between the images. To be more specific, each descriptor from the image I is compared to all 

descriptors from the image I’. Since the applied transformation is known, then the corresponding 

descriptor is also known. This comparison can yield a rank of all the candidates with the goal of 

the true correspondence been at the top of this list. To translate this into a function a global metric 

called Average Precision (AP) is recruited. AP is a ranking based evaluation metric that combines 

precision and recall to measure the quality of the ranked results. In order to introduce an 

optimizable AP that can significantly contribute in the training process, the authors used a 

differentiable approximation of the AP, annotated as fAP. [43]  

Overall, the relative function is the following: 

 

𝐿𝐴𝑃 =
1

𝐵
∑(1 − 𝑓𝐴𝑃(𝑝𝑖𝑗))

𝑖𝑗

 

where: 

• B: number of patches in the batch 

• Σij: the summation over all pixel locations 

• p: the patch centered at pixel (i,j) 

      

To make sure that areas that are less distinctive are omitted the function is further optimized 

to look like this: 

𝐿𝐴𝑃,𝑅 =
1

𝐵
∑(1 − 𝑓𝐴𝑃(𝑝𝑖𝑗)𝑅𝑖𝑗 +

𝑖𝑗

𝜅(1 − 𝑅𝑖𝑗))  

where: 
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• B: number of patches in the batch 

• fAP: Differentiable Average Precision score for given patch 

• Rij: Reliability score predicted by the network 

• κ: a hyperparameter [0,1] to indicate the minimum expected AP per patch. 

 

A more intuitive translation of this formula that can aid in tis comprehension is that 

keypoints will receive a high reliability score when their Average Precision score is also high as 

determined by 1-fAP(pij)Rij.  The hyperparameter κ allows the model to determine how strict it 

wants to be in terms of allowing less discriminatory areas to be included. When increasing the κ 

value, lower assigned reliability values penalize the function, and thus descriptors with greater AP 

values become more important in the training process. The authors report that a value of κ=0.5 

returns satisfactory results in practice but fine-tuning may be beneficial in certain tasks. [40] 

 

2.4.3 Inference and Existing Models 

During the extraction process, R2d2 models aim to extract repeatable and reliable 

keypoints from full resolution images. Other than the steps described earlier, R2D2 aims for scale 

invariability of derived keypoints and this is why it is not limited to a single image resolution. 

Irrespective of the size of the input image, it is rescaled, starting from the maximum of 1024 pixels 

as defined by the picture’s largest dimension and is progressively downsampled till it reaches 256 

pixels. It is important to make the distinction that this downsampling only happens during the 

extraction phase of the algorithm and not the training, since – as mentioned before – any such 

processing would result in the inability to produce a descriptor for every single pixel. At each 

different scale, the model produces the three desired outputs. For the keypoints to be meaningful 

in matching tasks, sparseness is essential and it is achieved by choosing only local maxima from 

the repeatability maps by applying a non-maximum suppression. Only pixels with repeatability 

values greater than their surrounding ones are included. Also, thresholds for repeatability and 

reliability values are defined at the beginning of the extraction process. Authors suggest a 0.7 score 

for both as satisfactory.  [40, 44] 

Pre-existing models have been trained using three distinct datasets, in an effort to increase 

the range of applicability. Those datasets, similar to the models previously reported, do not contain 

medical images, but rather web images and the Aachen Day Night dataset. [45] Each of these 

datasets provided 4000 images. Although no medical images were included in the training process 

of these models, numerous iterations of the R2D2 in those tasks have been really promising. [46-

52] Interestingly, many of these endeavors have taken place in the realm of OCT imaging.  

Specifically, R2D2 has been used to provide the framework for successful registration of 

image fundus photos. The increasing prevalence of retinal pathology and the necessity to create a 

comprehensive pipeline to diagnose pathologies and assess disease progression is the driving force 

behind those approaches, similar to the motivation behind this thesis. The application of R2D2 as 
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described earlier, was rigorously evaluated on the Fundus Image Registration Dataset (FIRE). 

[53]This dataset provides image pairs taken at the Papageorgiou Hospital, Aristotle University of 

Thessaloniki, that can be divided into three distinct groups. The first, contains image pairs with 

large space overlaps and no significant anatomical differences. The second group contain pairs of 

images that have undergone significant affine or rigid transformations and also contain images of 

non-healthy fundi. Lastly, the third group contained pairs of images with very limited overlap, 

which resulted in limited shared anatomical points. Villar et al. trained the existing R2D2 model 

on a different fundus photo dataset. They generated images after applying transformations on the 

original dataset fundus images to create the pairs necessary for training. The new model was 

applied on the FIRE dataset and was evaluated based on the accuracy of the image registration 

after some processing steps, like the application of Random Sample Consensus (RANSAC) to 

exclude outlier keypoints. The accuracy was based on a registration score. This score was 

calculated through the following processes. Initially, an error in pixels was computed for each 

image pair based on ground truth correspondences. A threshold is defined and any registration that 

falls below this threshold is considered successful. The percentage of successful registrations is 

plotted by varying the threshold from 0 to 25 pixels and the derived area under the curve acts as 

the score. For the first group, the proposed model achieved a near perfect score of 0.9275, for the 

second group the performance dropped to 0.726 and finally the most challenging pairs reported a 

0.352 score. Those scores show the potential of R2D2 to facilitate image registration with minimal 

to none expert input even on the most challenging cases.[54, 55] 

The authors proceeded to implement in similar approach to achieve inter device OCT 

image registration. However, the rationale was significantly different to what this thesis proposes. 

Essentially, the fundus images that were derived from each OCT device were used for registration 

purposes. This acted as a preparatory step to determine the “slice” of OCT that needed to be 

selected from each image modality to allow for the optimal inter device image registration. After 

the slice selection, the authors proposed to use a layer instead of simple keypoints to guide the 

registrations process and specifically the innermost retinal layer, the ILM. This required the 

annotation of said layer to register two similar in quality OCT devices. [56] 

This brief review of related work highlights the use of fundus images as a means to achieve 

image registration both for fundus and OCT scan registration task. This approach occurs with good 

reason, as fundus photographs provide high contrast views of retinal anatomical marks such as the 

defining vasculature or other distinctive anatomical locations. On the other hand, OCT captures 

cross sectional details of retinal microstructures with significantly diminished ability to identify 

features and edges, the hallmarks of feature-based image registration. Additionally, the presence 

of noise and device specific contrast patterns compared to uniform representation of fundus images 

make the task of OCT based image registration inherently more challenging.[57-59] 
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However, it is this complexity that renders the development of such a pipeline valuable. 

An algorithm capable of handling the intricacies that OCT scans yield can impact the field of 

ophthalmologic imaging in a manner which will allow increased accessibility and portability and 

subsequently earlier disease detection, optimal treatment outcomes and comprehensive 

monitoring.

Figure 9 
 Comparison of fundus photography versus OCT images. The fundus photograph (left) provides high 
contrast landmarks that can easily act as features in order to drive keypoint detection. Those include 

vessels, the optic nerve head and other possible defining anatomical landmarks. On the other hand, the 
OCT image (right) lacks those distinctive features, hence increases the complexity of reliable and robust 

keypoint detection. 
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Chapter 3 

3. Reliable and Repeatable Detectors and 

Descriptors for Inter-Device OCT Alignment 

 

3.1 Data Acquisition and Preprocessing 

3.1.1 Device Overview 

In our investigation towards multimodal image registration, two spectral domain OCT 

devices with distinctively different clinical utilities were employed.  On one hand, the high-end 

Cirrus HD- OCT (Carl Zeiss Meditec, Dublin, CA) and the portable KUOS -O100 (Philophos, 

Daejeon, South Korea). Each device offers a unique set of advantages and limitations and provide 

an ideal scenario to evaluate the applicability of our pipeline. Both employ SD-OCT to provide 

their images. The spectral domain of the Cirrus HD-OCT is well documented, the KUOS -O100 

was confirmed to be SD-OCT after personal communication with its developers. [60, 61] 

The Cirrus HD-OCT device (Carl Zeiss Meditec, Dublin, CA), is a widely recognized OCT 

modality and commonly used by specialized ophthalmologic clinics for its high-quality derived 

images. It generates cross-sectional images of the retina that visualize intricate retinal structures 

and hence facilitate precise disease monitoring and clinical assessment. This system excels in 

contrast clarity and easy identification of retinal layers, delivering images with comparatively 

greater clarity and clinical information. Also, the Cirrus also benefits from a wider field of view, 

which allows the capture of a more expanded area of the retina. The pictures derived are 1920x991 

in resolution and include a view of the fundus to annotate the slice used for the cross-sectional 

view. 

 

 

 

 

 

 

 

 Figure 10  
A depiction of the different OCT devices and the respective images they produce. On the top 

left, a portable OCT device which is significantly cheaper and easier to operate but suffers 
from low Signal to Noise ratio, small field of view and limited resolution. On the top right, a 

high-quality commercial OCT system can cause over $50,000 and can weigh over 50 
pounds. Below each is the respective cross-section of the area they produce. 
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The KUOS -O100 (Philophos, Daejeon, South Korea) represents a different approach to 

OCT imaging that aims for its applicability outside the traditional clinical setting. It benefits from 

significant advantages in the areas of portability, accessibility, affordability and ease of operation. 

Those render this type of OCT modalities as perfect candidates for use in either resource limited 

or remote healthcare environments and can provide an exhilarating prospective of home OCT 

imaging. Images derived are 1024x512 in resolution. These benefits come at the cost of lower 

quality images that, while they may be useful in the diagnosis of easy to distinguish retinal 

pathologies, lack the needed output to discern minute retinal changes that often predispose to 

severe ocular illness. The output images frequently exhibit increased levels of noise, reduced 

contrast between retinal layers and more frequent artifacts. Overall, this OCT system is extremely 

efficient from a portability point of view but have limitations in terms of distinction of finer 

changes in retinal anatomy.  

Those inherent disparities between the two devices acts both as motivation to develop an 

algorithm to achieve super resolution of the portable device images but also pose a great challenge 

in the registration process. The goal of this thesis is to achieve the production of detectors and 

descriptors that can overcome these significant challenges. This endpoint influenced the strategy 

of dataset construction, preprocessing and subsequent model training. 

3.1.2 Data Acquisition and Initial Challenges 

We collected retinal images to form a total of 84 pairs, each consisting of one image derived 

by the high-end and one by the portable OCT device. The images that formed the pairs were 

obtained within the same clinical session. The concurrent acquisition ensured minimal anatomical 

variation between paired scans; a step critical in the effort to achieve robust alignment. 

The retinas scanned were carefully curated to include both healthy retinas and those 

diagnosed with AMD, hence both normal anatomy and one of the most common and debilitating 

retinal diseases could be represented in our cohort. Other retinal pathologies were excluded to 

streamline dataset consistency and to facilitate focused analysis specific to AMD-related changes. 

Pairings between the scans were derived by choosing the slice of both that most accurately depicted 

the foveal pit, hence ensuring close correlation between image points. 

 

 

 

 

 

 

 

Figure 11  
Example of an image pairing. On the left the picture derived form the HD-OCT device and on 
the right the picture derived from the pOCT device. Notice the significant differences in field 

of view, orientation and scaling between the images of the same retina. AMD related 
anatomical alterations can be seen. 
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The pairings immediately revealed significant challenges that could be encountered due to 

inherent differences between the images of the same retina. The commercial OCT device captured 

more expansive retinal regions while the portable OCT (pOCT) demonstrated comparatively 

smaller in scope retinal areas, often resulting in a field mismatch. Additionally, variations in 

rotation and inconsistent magnification characterized the pOCT images compared to the stationary 

Cirrus HD-OCT significantly increased the complexity of the task at hand.  

Prior to moving forward with any preprocessing of the datasets, an existing model of the 

R2D2 was applied without any specific fine-tuning on training to assess the progress that can be 

made through specific alterations. After applying the extraction algorithm, no keypoints were 

derived. To further investigate the output, the repeatability and reliability maps were qualitatively 

evaluated. Figure 12 shows the maps for a specific image pair that were representative of all 84 

image pairings.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The reason for the inability to produce any keypoints can inferred by simply examining the 

reliability maps. Not a single pixel achieved a value significant enough to be depicted on the map, 

let alone to surpass the threshold which is set at 0.7 for both repeatability and reliability in the 

default model. However, repeatability maps can outline somehow accurately the anatomy of the 

Figure 12  
Representative reliability and repeatability maps after raw application of existing 

pretrained R2D2 model. Top row from left to right shows the image derived from the HD-
OCT device, its reliability and then its repeatability map. Bottom row from left to right 

shows the image derived from the pOCT, its reliability and repeatability maps. 
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retina and individual layers in the HD-OCT data but this happens because low repeatability scores 

are assigned to retinal structures and higher repeatability scores on the hypo-reflective areas that 

annotate the hyaloid and areas posterior to the choroid. This highlights the importance of the 

premise of R2D2, that suggests that not all repeatable keypoints can be used effectively in 

alignment tasks. The task seems to be more challenging when it comes to the pOCT data as no 

concrete information regarding the retinal anatomy can be derived from the maps. Therefore, it is 

evident that further training and fine tuning must take place for the model to provide usable points 

of reference.  

 

3.1.3 Approach towards a rough affine alignment.  

A logical first approach to tackling most of the issues that arose during initial image pairing 

is to roughly align the images to overcome the inherent discrepancies between the images.  While 

this seems counter-intuitive, as this is the goal of this project overall, the alignment does not have 

to be perfect and it will only be used in the training of the model to hopefully provide a solid 

foundation for clinical applicability without the need for further supervision.  The choice of 

applying an affine transformation to achieve this goal was guided by specific considerations 

regarding anatomical integrity, complexity of matching elements and practical feasibility. 

As described earlier in this thesis, an affine transformation is optimal for a number of 

reasons. Firstly, simple rigid transformations, which allow only rotation, are not suitable to achieve 

the aligning of the images due to the intricacies in scaling and skewing introduced by the pOCT 

images. Rigid transformations typically cannot accommodate these dimensional discrepancies, 

resulting in incomplete registrations that do not suffice. On the other hand, more complex non-

linear transformations are computationally expensive and also pose significant clinical risks. 

Specifically, deformable changes especially in the RPE layer can significantly alter the retinal 

structure and in turn be misinterpreted by the clinician as erroneous pathological changes. 

Projective transformations can essentially accommodate for scaling and skewness differences, but 

their advantage is to correct for angle of perspective, a trait useful in panoramic image stitching, 

but of little value in medical image registration. Overall, affine transformations offer a solution 

that can compensate for differences in rotation, translation and scaling without compromising the 

anatomical validity of the retinal structures, as a key element of affine transformations is to keep 

parallel lines parallel.  

Another compelling factor to employ affine transformations for this early alignment, is its 

simplicity. Essentially, the application of affine transformations requires the matching of at least 

three corresponding keypoints to produce the desired outcome. This translates, for our task, that if 

three anatomical points between the HD-OCT and pOCT images are correlated for each pair, we 

will have an initial alignment of the images that will play a pivotal role in model training later in 

the pipeline. [62] 
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In order to increase the robustness of the matched keypoints, 5 ophthalmologists – 4 

residents and a fellow with clear understanding of retinal OCT imaging – were tasked to deliberate 

in the choosing of these landmark points. Using a custom-developed, interactive Python based 

software application, the ophthalmologists consulted and chose in succession the points that they 

deemed as corresponding between the HD-OCT and pOCT image pairs. Mostly, the foveal pit was 

used as a guiding anatomical landmark. Other key landmarks that were used for pixel 

correspondence were areas were pathology could be discerned, i.e. drusen, or areas of thinning or 

thickening of retinal layers. All 5 ophthalmologists had to agree before proceeding to the next pair. 

No disagreements were recorded during this process. This expert-driven selection process ensured 

minimal observer variability and maximized the anatomical accuracy of alignment. The HD-OCT 

were chosen as the fixed image and the pOCT as the moving image. This involvement of 

ophthalmologists in the pretraining phase of the model development highlights once more the need 

for interdisciplinary approach to machine learning driven applications in the medical field. Figure 

13 provides an example of images prior and after alignment.  

 

 

 

 

 

 

 

Figure 13 
 Example of rough affine transformation. On the left we can see the fixed p-OCT image. Top right is the 

original image provided by HD-OCT and bottom right is the resulting image after expert annotated 
keypoint affine transformation. 
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3.2 Dataset Creation 

As discussed earlier, previous works that employed R2D2 utilized synthetic images 

generated from the original dataset to further train the preexisting models. This is done in an effort 

to finetune and optimize the derived model to accomplish the keypoint detection and description 

for the dataset it is intended. However, the challenges that the discrepancies between the image 

pairs pose may require an alternative approach.  

The development of reliable datasets to finetune existing R2D2 models was a central 

component of this thesis’ approach to multimodal OCT image registration. The quality and 

representativeness of training data is of paramount importance for the success of the model 

application. To this end, the creation of three separate yet interrelated datasets was performed in 

an effort to see which would yield greater results and potentially shed a light on how to optimally 

train R2D2 towards image registration between distinctly different images. The three datasets are 

the following: 

• Crafted (C): This dataset was generated based on the premises outlined in the 

original R2D2 model and the related literature. It was synthetically generated to 

simulate realistic image transformations. All of the original images were resized 

to 256x128 to ensure computational affordability in the training stage. Each of the 

resulting images was treated as image I and synthetically generated images can be 

conceptualized as image I'. Transformations applied to the original images 

included a random combination of rotation, scaling, translation and perspective 

distortions at varying degrees of magnitude. Each reference image underwent three 

separate transformations, that resulted in three unique variants. The end result was 

a dataset that consisted of 504 image pairs and a dense optical flow field (aflow) 

that describe the pixel correspondence between I and I'. This setup is the input 

needed to train the existing R2D2 models. The main objective of this dataset is to 

enable the model to learn transformations in a controlled setting, where every 

pixel's transformation is precisely known. The controlled transformation 

parameters ensure that every pixel in the transformed image has a known 

correspondence in the original, enabling an accurate supervision that is not 

possible in real world datasets. 

• Three-Point (3P): This dataset was generated in an effort to bridge the modality 

gap between different OCT acquisition systems. As mentioned previously, experts 

annotated 3 corresponding keypoints for every pair of images. This resulted in a 

rough affine transformation that aligned the retinal anatomy between images. The 

result of this process was 79 image pairs of the same retina, captured by a different 

modality and roughly aligned. Each pair consists of image A and B from the pOCT 

and HD-OCT respectively. In order to abide by the model's input demands 

however, an image pair and the dense optical field flow that connects them is 

required. To achieve that in a manner that has the potential to assist the model in 

learning modality-invariant descriptors, each image B was then treated as a source 
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image and subjected to the same transformation pipeline used in the C dataset. 

Specifically, seven random transformations were applied to each image B, 

generating transformed images B'. For every transformation, a corresponding 

dense optical flow field was computed, encoding pixel-level correspondences 

between B and B'. This allows for the creation of a dataset consisting of 553 image 

pairs and the aflow. These image pairs are A, B' and the B—>B' aflow. Although 

there is no precise supervision between A and B', this dataset organization 

encourages the model to consider A and B semantically equivalent, despite the 

inherent differences. This was an endeavor to allow the model to learn descriptors 

that are invariant not only to geometric distortions but also to cross device 

differences.  

• Omni (O): this dataset was conceptualized in an attempt to explore whether 

combining the C and 3P datasets could lead to improved model performance in the 

task of multimodal OCT image registration. While C dataset offers precise pixel 

level supervision in a precisely self-supervised manner but in a fully synthetic but 

geometrically varied setting, the 3P dataset introduces real world modality 

differences with the best approach to overcome inter device dissimilarities but 

without the precision of pixel correspondence. Hence, they both share advantages 

and limitations. The O dataset was created to fuse the two, having as an objective 

to benefit from their potential. Half of its image pairs randomly came from the P 

dataset and the rest from the 3P dataset, resulting in a balanced dataset consisting 

of 500 image pairs in total. 

 

3.3 Model Training 

The fine-tuning experiments conducted leverage a pre-trained R2D2 model, which the 

authors refer to as fasterr2d2.pt. This model was extensively trained using diverse general imaging 

datasets, as described earlier. Notably, web images, Aachen Day/night synthetic pairs and their 

optical flow pixel correspondences between the original and the synthetically created image pairs. 

The pretrained model was fine-tuned specifically for multimodal retinal OCT images. Image pairs 

were consistently structured in directories, each containing two RGB retinal OCT images in .png 

format and their associated optical flow fields (aflow.pt). The image pair contained in each 

directory depended on the dataset used to further train the existing model. 

Training parameters remained mostly consistent with what was used to train the original 

model to maximize compatibility and preserve learned generalizations. All three new models were 

derived after training for twenty epochs. The number was selected based on empirical evidence 

from previous iterations done by the author during the process of choosing the approach most 

suitable for the task. Other hyperparameters were set up as follows: 

• Batch Size: set to 1 due to hardware limitations, ensuring memory efficiency during 

gradient computation and backpropagation 
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• Learning rate: 1e-4, a conservative learning rate used in the original training 

• Weight decay: 5e-4, in alignment with the original training setting 

• Optimizer: Adam, also used in the original training successfully 

• Patch Size: 16, matching the pretrained model and ensuring compatibility[63] 

 

The training script preserved the logic of the model provided by the R2D2 team. No 

changes were performed on the process during the three different iterations other than the location 

of input dataset directory and output model names and locations. The pretrained weights provided 

a stable initialization point. Average loss per epoch was logged for each iteration. During the fine-

tuning process, occasional instances of Not a Number (Nan) loss values were encountered. Upon 

inspection, these anomalies were traced to image pairs where the synthetic transformation 

contained large empty or near black regions.   When such areas were inadvertently sampled as 

image patches they produced degenerate input to the loss functions. Since these regions do not 

contribute meaningful supervision and can destabilize training, the adopted strategy was to 

automatically detect and skip such batches whenever a Nan loss was computed. Given that the 

overall dataset remained diverse and the majority of patches were unaffected, skipping did not 

negatively impact convergence or generalization. Upon training completion, three models were 

derived C.pt, 3P.pt and O.pt. Figure 14 shows the progression of the training loss during the 

training process for each model. 

 

Figure 14 
Graph demonstrating the progression of average training loss for each model across 20 epochs 

 

All three models were initialized from the same checkpoint and trained under identical 

conditions. Among the three, the 3P model consistently achieved the lowest loss values across the 

training period, ending with the lowest average loss value, 0,8674. It also demonstrated the steepest 
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loss reduction in the earlier epochs. This early convergence suggests that the manually annotated 

affine pairs in the 3P dataset and the logic of considering image A and B as semantically 

equivalent, offered the foundation for keypoint detection and description. Additionally, 3P offered 

the lowest standard deviation of the three, indicating stable and consistent training progression 

with minimal oscillation. This is an encouraging first step in showing that semi-supervised learning 

is a viable approach to this endeavor.  

The O model followed closely behind in terms of performance in training, converging to a 

final loss of 0.818 in the last epoch. It begun with the highest initial loss, which can be explained 

due to the greater heterogeneity of the training dataset. Nevertheless, it maintained a stable learning 

curve and was constantly in the middle of the three different models in terms of performance. This 

trajectory reenforces the value of combining diverse data sources. 

Surprisingly, last in term of performance was the C model, even if by a close margin. The 

initial expectation that this model would be the best performer was based on the fact that the pairs 

of images that were input in the model were synthetic image data with precise control over 

transformations and accurate ground truth correspondences. Also, this was the rationale that was 

applied in relative work in the literature. Therefore, it was expected that the C dataset would 

provide the optimal training conditions for fine-tuning. On the contrary, the C model 

underperformed reaching a minimum loss of 0.9125 over the 20 epochs. These findings suggest 

that while synthetically crafted image pairs can support initial convergence, they may lack the 

variability necessary for robust keypoint descriptor learning in complex multimodal retinal data.   

In summary, all three models demonstrated successful convergence under identical training 

conditions but also demonstrated differences in how each dataset shaped the learning process. The 

3P model’s rapid and stable decline validates our underlying rationale that, once expert annotations 

are applied to bring paired images into alignment, each member of the pair can be treated as 

semantically equivalent for training purposes, at least in terms of loss behavior. The O model’s 

intermediate performance does not support the viewpoint that the combination of datasets can 

supply the model with both the precise geometric alignment of synthetic image pairs and the 

variability of multimodal OCT pairings to such an extent as to overcome annotated image pairs. 

Meanwhile, the lower unexpected ranking of the C model suggests that synthetic precision, while 

useful, may not be beneficial when it comes to OCT images due to the inherent noise and lack of 

distinctive features in those. To access practical utility however, we must examine the keypoints 

and descriptors derived by each network. 
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Chapter 4 

4. Keypoint Extraction & Evaluation 

To enable a direct and reliable comparison of the three detection models – C, 3P, O – all 

models were applied on the 84 intermodal image pairs. The primary objective is to extract and 

evaluate repeatable and reliable detectors and descriptors for each model under identical conditions 

and subsequently analyze their utility into downstream task of image registration. All models were 

initialized on the same pretrained R2D2 checkpoint under identical conditions and architecture, 

differing only in the datasets used. Hence, any observed differences in keypoint quality, quantity 

or score can be attributed solely on the effect of the training data itself. The inference setup was 

designed to neutralize external factors by keeping all parameters constant during the three runs. 

Each model was applied to the entire dataset using a multi-scale keypoint extraction 

strategy, as described in the original R2D2 framework. At each scale level, the model produced 

pixelwise descriptors (128-dimensional), a repeatability heatmap, and a reliability heatmap. Local 

maxima in the repeatability map were selected using a 3×3 non-maximum suppression (NMS) 

operator. These candidate keypoints were then filtered based on their reliability and repeatability 

scores. The same thresholds were applied on all model runs. Due to the poor results of the original 

pretrained model, very conservative thresholds were set for both reliability and repeatability. 

Specifically, 0.1 score was set as a minimum requirement compared to 0.7 set by the original 

authors.[63] 

The images were processed at multiple scales. They were progressively downscaled using 

a factor of 20.25 until 256x128 resolution. At each scale keypoints were extracted, rescaled to the 

original image coordinates and stored. A score was assigned at each keypoint that was equal to the 

product of the repeatability and reliability scores and the top 5000 keypoints for each image were 

saved. The output of this process included the keypoint coordinates, the scale at which they were 

extracted, their scores and a dense descriptor for each. In a later process, repeatability and 

reliability maps were visualized for all images to better comprehend the distribution and quality of 

extracted keypoints.  

4.1 Methods and Quantitative Results.  

To evaluate the performance and robustness of the three trained R2D2-based models a 

comprehensive quantitative analysis pipeline was implemented to assess both cross-model and 

intra-model differences in keypoint detection and confidence. The objective was to systematically 

determine how each model performed on retinal image pairs acquired from our two distinct 

imaging modalities. As a foundational step, key metrics were calculated for each image and each 

model. These included the total number of detected keypoints, the mean keypoint score across all 

keypoints, which comprised of the product of reliability and repeatability score as described 

earlier, the standard deviation of descriptor scores, and the average score of the 10 keypoints that 

held the highest score. These metrics formed the basis for all subsequent statistical comparisons 
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and were selected to capture both the density and quality of detected features. To assess model 

performance independently of modality, the average score of the top 10 keypoints was compared 

across the three models.  Intra-model consistency across modalities was also evaluated. For each 

model, HD_OCT and pOCT image performance was compared using the same three metrics 

(number of keypoints, average score of derived checkpoints and average score of the top 10 

keypoints). For every image pair, the difference in scores between HD_OCT and pOCT images 

was calculated.  

 

 

 

 

 

 

 

 

 

 

 

 

Furthermore, descriptive assessment of keypoint extraction failure was conducted. Since a 

minimum of three keypoints is required to compute an affine transformation, any image for which 

a model produced three or fewer keypoints was considered a failure case for downstream 

registration. For each model and imaging modality (HD_OCT and pOCT), the total number of 

such failure cases was counted. These values were reported alongside the total number of evaluated 

images per category, and the corresponding percentage of failure cases was computed. This 

allowed a clear comparison of each model’s capacity to produce geometrically useful keypoints 

across image types. No inferential statistics were applied in this context, as the goal was to 

characterize frequency and severity of insufficient keypoint extraction rather than test formal 

hypotheses. In addition to failure rate analysis, the variability of keypoint descriptor confidence 

scores was examined by comparing the standard deviation of scores produced per image across 

models. Higher standard deviation values reflect greater fluctuation in descriptor confidence 

within an image, whereas lower values suggest more uniform keypoint confidence. For each 

model, the standard deviation was computed for all images in the dataset, and the resulting 

distributions were compared pairwise between models. To analyze differences in keypoint 

detection behavior between AMD and normal cases, each image pair was annotated with a 

corresponding diagnostic label. For each model, independent comparisons were made between the 

Figure 15. 
 Distribution of top-10 average keypoint scores for each model. The x-axis represents the 

average score of the top 10 keypoints detected in each image, and the y-axis indicates the 
density of these values across the dataset. 3P shows a tightly clustered distribution with 

consistently high scores, indicating reliable confidence across images. C displays a bimodal 
distribution, with a portion of detections near zero and another near 0.27, while O shows 

high variance with a notable concentration of scores near zero. KDE curves are overlaid to 
facilitate comparison of density trends. 
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AMD and normal groups for four key metrics: mean score, top-10 average score, number of 

keypoints, and score variability. For all aforementioned comparisons, the Shapiro–Wilk test was 

first applied to assess the normality of the relevant distributions. Depending on the outcome, either 

a paired t-test or the non-parametric Wilcoxon signed-rank test was conducted for within-subject 

comparisons, and either an independent-samples t-test or a Mann–Whitney U test for between-

group comparisons. A significance level of α = 0.05 was used throughout, except in pairwise inter-

model comparisons where Bonferroni correction was applied to account for multiple testing 

(adjusted α = 0.0167). 

Comparison of top-10 average keypoint scores across the three models was performed 

using pairwise Wilcoxon signed-rank tests with Bonferroni correction (α = 0.0167). The difference 

between C and 3P was statistically significant (p < 0.001), as was the difference between 3P and 

O (p < 0.001). No significant difference was observed between C and O (p = 0.108). The median 

scores for C, 3P and O were 0.233, 0.308, 0.233 respectively.  Average metric values for HD_OCT 

and pOCT images were also computed for each model. C extracted on average 11.3 keypoints for 

HD_OCT (mean top-10 score = 0.049, mean score = 0.040) and 5000.0 for pOCT (mean top-10 

score = 0.273, mean score = 0.164). O detected 1.37 keypoints for HD_OCT (mean top-10 score 

= 0.038, mean score = 0.036) and 1092.89 keypoints for pOCT (mean top-10 score = 0.286, mean 

score = 0.101). 3P yielded 5000.0 keypoints for HD_OCT (mean top-10 score = 0.315, mean score 

= 0.249) and 4975.08 for pOCT (mean top-10 score = 0.291, mean score = 0.101). Intra-model 

modality comparisons were conducted for each model separately. For C, statistically significant 

differences were observed in top-10 scores (mean difference = –0.2235, p < 0.001), number of 

keypoints (–4988.67, p < 0.001), and mean scores (–0.1232, p < 0.001). O also showed significant 

reductions on HD_OCT in top-10 score (–0.2489, p < 0.001), number of keypoints (–1091.52, p < 

0.001), and mean score (–0.0656, p < 0.001). In contrast, 3P demonstrated significantly higher 

performance on HD_OCT compared to pOCT in top-10 scores (mean difference = 0.0241, p < 

0.001), number of keypoints (24.92, p = 0.023), and mean score (0.1482, p < 0.001). The failure 

rate, defined as the number of images with three or fewer detected keypoints, was also recorded. 

C failed in 57.1% of HD_OCT images and 0% of pOCT; O failed in 91.7% of HD_OCT and 0% 

of pOCT; 3P failed in 0% of both HD_OCT and pOCT. To assess variability in keypoint descriptor 

confidence, standard deviation of scores was compared between modalities within each model. C 

showed significantly lower variability in HD_OCT (mean difference = –0.0193, p < 0.001), as did 

O (–0.0551, p < 0.001) and 3P (–0.0261, p < 0.001). Inter-model comparisons of standard deviation 

of scores were also performed across all images. C was found to be significantly less variable than 

both O (p = 0.0020) and 3P (p < 0.001), while no significant difference in variability was observed 

between O and 3P (p = 0.198). Regarding AMD versus normal comparisons, no statistically 

significant differences were observed for any model across any metric. For the 3P model, the 

difference in mean score between AMD and normal cases was not significant (p = 0.810), nor was 

the difference in top-10 average score (p = 0.643), number of keypoints (p = 0.896), or score 

variability (p = 0.481). Similarly, for the O model, no significant differences were observed in 

mean score (p = 0.902), top-10 average score (p = 0.765), number of keypoints (p = 0.863), or 

score variability (p = 0.637). The C model also yielded nonsignificant results across all metrics: 

mean score (p = 0.486), top-10 average score (p = 0.344), number of keypoints (p = 0.406), and 

score variability (p = 0.290) 
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Number of Keypoints per Model x Modality 

Model Modality Mean Number of 

Keypoints 

Percentage 

(%) 

Crafted HD 11.33 0.23 

Crafted p 5000 100% 

Omni HD 1.37 0.03 

Omni p 1093 21.86 

Threepoint HD 5000 100 

Threepoint p 4975 99.5 
Table 2  

Mean number of keypoints detected per model and modality, along with their percentage relative to the theoretical 
maximum (5000 keypoints). While 3P consistently reaches or nearly reaches this maximum across both modalities, C 

and O show severe degradation in HD_OCT images, producing less than 1% of possible keypoints on average. 

The comparison of the top-10 average keypoint scores among the three fine-tuned models 

reveals meaningful information in model behavior and keypoint quality. The results indicate a 

clearly significant advantage of the 3P model over its two counterparts. No statistically significant 

differences are found between C and O. This quantitative finding validates the rationale used for 

training the 3P model and allows for similar future applications in the keypoint extraction pipeline. 

The top-10 average key score metric captures the model’s ability to assign higher confidence to 

the most relevant or potentially more robust features in the image. It is noteworthy to mention that 

while the C model was expected to perform the best due to the similar logic of the training dataset 

to the one used in the original R2D2 paper, it did not manage the expected results. Additionally, 

the assumption that the O model could gain an advantage of both rationales – the precise pixel 

correspondence of the C dataset and the multimodal invariance the 3P model theoretically offered, 

did not materialize as it also underperformed quantitatively in this metric. This suggests that the 

integration of the two datasets in the O model potentially did not have a synergistic effect and 

indicates that the learning process in this model was more heavily influenced by the C rather than 

the 3P dataset. Also, no differences noted between AMD and normal groups across all models 

suggest that model behavior is consistent, at least in terms of quantitative results.  

The averaged performance metrics across modalities further clarify the differential 

capabilities of the three models and reinforce the earlier statistical conclusions. The 3P model once 

again stands out, achieving not only the highest mean top-10 keypoint scores in both HD_OCT 

(0.315) and pOCT (0.291), but also maintaining a consistently high keypoint count near the 

maximum (5000 and 4975.08, respectively). These results suggest that 3P is not only capable of 

detecting keypoints, but also that these keypoints are assigned high confidence values. In contrast, 

the C and O models demonstrate a severe performance drop when transitioning from portable OCT 

images to high-definition OCT images, and admittedly puzzling result. While they extract more 

than 1000 keypoints on average in pOCT, their keypoint count plummets to just 11.3 and 1.37 on 

HD_OCT. A similar trend is evident in their mean top-10 scores, dropping from 0.273 in pOCT to 

just 0.049 in HD_OCT for C and 0.286 in pOCT to 0.049 in HD-OCT. These limitations further 

highlight the challenge of tackling multimodal OCT registration. Despite relatively good 

performance from all the models on the pOCT images, the low scores and very low number of 
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keypoints derived from C and O on the HD OCT images make the registration task using keypoints 

from these two models almost impossible. This realization is further supported by the fact that the 

repeatability and reliability thresholds set for keypoint extraction were already significantly lower 

compared to what the authors originally suggested -0.1 compared to 0.7- hence even these low 

standards could not be met by two out of the three trained models. Also, 3P’s apparent success 

comes into question under the same rationale. The permissive thresholds have allowed for high 

detection counts, perhaps suggesting that very weak keypoints are extracted. This reasonable doubt 

can only be confirmed or rejected when performing a qualitative assessment or during the image 

registration procedure.  

Finally, as mentioned earlier, at least 3 points are required to produce the matrix for the 

affine transformation needed to perform image registration. As such, any image that has less than 

three points annotated after the extraction process cannot be introduced in a registration pipeline. 

This limitation further highlights the shortcomings of C and O in this domain as the failed to 

overcome this barrier in 51.7% and 91.7% of HD-OCT images respectively. These failures 

occurred under very relaxed score thresholds, a condition that underscores their inability to be 

employed in the requested pipeline. On the contrary, 3P was able to produce close to the max 

number of possible keypoints in both modalities. These results decisively disqualify C and O from 

use in image registration.  

Despite the 3P’s model seeming superiority in across all metrics, its value as a meaningful 

keypoint extractor and subsequently its decisive addition in an automated or semi-automated 

image registration pipeline remains to be seen. High numerical scores and ability to produce 

consistently the necessary number of require keypoints are not sufficient on their own to guarantee 

anatomical relevance, especially in the context of retinal OCT images where spatial 

correspondence of keypoints to anatomical landmarks is vital for registration. It is still a possibility 

that the promising results thus far are a result of lenient thresholds or that the derived keypoints 

are anatomically uninformative. By that, it is implied that if keypoints describe areas in the hyaloid 

-anterior to the retina- or posterior to the choroid where signal intensity is almost nonexistent in 

both modalities, then they cannot be the guiding force in a registration task as the results will 

certainly be unreliable. To make the distinction between useful and unreliable model, a qualitative 

assessment of derived keypoints is necessary. This can be achieved by examining the output of 

repeatability and reliability maps versus the original images. In this manner, it can be decided if 

the keypoints derived truly align with relevant retinal landmarks or are instead the result of 

statistically inflated but functionally arbitrary detections. 

 

 

4.2 Qualitative Evaluation  

To qualitatively assess the anatomical relevance of derived keypoints by each model it is 

imperative to explore their distribution in the image and their relative repeatability and reliability 

scores by carefully examining the corresponding heatmaps. This analysis focuses on whether those 
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maps consistently outline retinal layers and have the ability to disregard areas with high noise or 

little to no relevant clinical information. To be more specific, areas anterior to the ILM or posterior 

of the choroid lack the ability to guide image registration as they do not have any localizable 

anatomical landmarks. This was also the limitation of the original pre-fine-tuned model, as 

mentioned earlier, which tended to assign the highest scores to homogenous areas, low information 

areas while suppressing key regions of retinal anatomy – thus undermining any cross-modal 

registration effort. (Fig. 12) 

The rationale behind this qualitative evaluation approach was to systemically assess all the 

repeatability and reliability maps derived by each model. Initially, HD-OCT and pOCT images 

were evaluated independently to determine model performance on each set. Subsequently, maps 

of different modality pairs were compared. Pattern recognition was the main objective of this 

process. Within the scope of this process is to determine which model better assigns keypoints 

scores based on the criteria mentioned previously, if any model is superior in terms of providing a 

similar distribution of keypoints across modalities and also to determine the reason behind low 

reliability performance for the C and O group. The following section is dedicated to going over 

some representative such maps to further delve into how the models C, 3P and O function and if 

the quantitative results are also corroborated here or if new information becomes available that 

alters the rankings of the models.  

 

4.2.1 HD-OCT repeatability and reliability heatmaps evaluation across models  

The qualitative assessment of the repeatability and reliability maps revealed important 

distinctions in model behavior with special focus in their potential to emphasize anatomically and 

clinically relevant regions while suppressing background noise. The C model consistently 

demonstrated the most desirable properties in its repeatability maps. Areas within the retinal 

contour, that is between the ILM and Choroid layers, were densely populated with high scoring 

keypoints while areas of little to no anatomical relevance were correctly suppressed. This spatial 

selectivity can be critical as it decreases the likelihood of erroneous and arbitrary matching of areas 

lacking valuable spatial information. This exceptional performance creates a stark difference 

compared to the very poor results C had in its quantitative analysis. This further highlights how 

challenging the process of keypoint extraction and multimodal image registration can be as 

quantitative and qualitative results may be significantly different, hence calling for an inventive 

solution.  

In contrast, the repeatability heatmaps by the 3P and O models demonstrated similar profile 

with lower discriminative ability. Although both models were capable of vaguely outlining the 

retinal contour, they frequently annotated high repeatability scores for pixels that fell outside the 

field of relevance. While this is not unexpected given the definitions provided earlier, where 

reliability is used as a metric to rule out repetitive areas, it is a significant disadvantage of these 

two models compared to C. Those results however fail to explain the disparity displayed earlier, 

where 3P achieved by far the greater performance in all areas when it came to HD-OCT images.  
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 The answer to this paradox is given by careful examination of the reliability maps. Both 

C and O models had mostly completely empty reliability maps, indicating their weakness in 

finding and extracting reliable scores for their keypoints. This sparsity of any scores in reliability 

maps especially nullifies any exceptional repeatability performance and clearly explains why C 

and O failed to produce many times more than the 3 necessary keypoints to guide affine alignment. 

However, we must keep in mind the exceptional performance of C in repeatability and aim to take 

advantage of its annotations downstream in the pipeline. 

One of the most challenging interpretations is that of the 3P reliability maps. While it 

justifies its excellent performance in our previous analysis, it underscores one of the model’s 

limitations. High reliability scores were assigned to areas lacking anatomical marks or textual 

information of clinical interest. Conversely, areas which would ideally be marked with high scores, 

had almost always a zero or near zero score. This inverse scoring pattern undermines the 

superiority demonstrated earlier and renders the ranking of the trained models highly ambiguous. 

However, 3P tends to produce stark contrasts between highly reliable and non-reliable points right 

at the ILM and hyaloid border and at the RPE as well. This high gradient may be useful in 

determining the boundaries of the retinal contour and can perhaps be utilized downstream.  

This model behavior remained consistent throughout the dataset despite the absence or not 

of pathology. This allows us to make generalized conclusions based on the patterns described 

above and also demonstrated in Figure 16. The C model stands out in its ability to localize 

keypoints rich in anatomical information with concurrent suppression of irrelevant areas or areas 

that would not be ideal to include in an OCT multimodal image registration task. However, its 

inability to assign high reliability scores in a similar manner significantly impairs its value in 

extracting the optimal descriptors. The 3P and O models exhibit more general and not specified 

repeatability maps, with O producing the least desired reliability maps, both explaining its low 

performance in quantitative analysis and also rendering it last in model performance. 3P also 

produces misattributed reliability maps, a fact that adds an additional challenge in robust 

registration. 

Nevertheless, the models thus far show a complementary profile in terms of their keypoint 

extraction ability. C’s excellent repeatability performance and 3P’s reliability maps that can 

successfully showcase the retinal borders can be fused to produce a combined approach to the 

registration process. 
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Figure 16 
Repeatability (left column) and reliability (right column) heatmaps generated by the three evaluated models—

Crafted (C), Three Point (3P), and Omni (O)—for a representative HD-OCT image (top). The C model produces 
a highly selective repeatability map which also” catches” the detached hyaloid contour, while suppressing 

irrelevant regions. However, its corresponding reliability map is nearly empty, explaining its limited keypoint 
utility despite high spatial precision. The 3P model displays a broader and noisier repeatability map and a 

reliability map with high scores in clinically irrelevant areas, failing to emphasize meaningful structures. The O 
model shows minimal output in both maps, reflecting its overall poor feature extraction performance in HD-

OCT scans. 
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4.2.2 pOCT repeatability and reliability heatmaps evaluation across models  

When examining pOCT images, model behavior exhibited similarities compared to its 

earlier output on HD-OCT images, however certain aspects shifted substantially. The C model 

continued its excellent outputs in repeatability maps, assigning high repeatability scores to areas 

corresponding to retinal structures. The difference lied on the model’s ability to suppress areas of 

low clinical significance diminished and high repeatability scores were also assigned at the hyaloid 

and posterior to the choroid. Hence, this model’s capacity of discerning between areas of retinal 

contour and noise did not have the same impressive results in this instance. Nevertheless, it is easy 

to locate the retinal layers when observing C’s repeatability maps, despite its diminished 

performance in this front. Surprisingly, the reliability maps improved when examining the lower 

quality images of the portable OCT modality. In contrast to the sparsely populated maps produced 

previously, pOCT reliability maps included more areas within retinal layers but, similarly to the 

repeatability output, high scores in the choroidal region or the hyaloid limited the discerning 

potential of these keypoints. 

The 3P model demonstrated the most invariable output between the two modalities, 

exhibiting similar performance and keypoint distribution in both. This is an expected outcome 

since it is the model that most “forced” the training algorithm to consider the two modalities equal 

and as such should produce invariant results, at least in theory. In actuality, the repeatability maps 

continued to capture retinal contour efficiently, with similar prowess in isolating retinal contour 

compared to other structures of the eye. Similarly, the reliability maps followed the same pattern; 

low emphasis on clinically relevant regions and high assigned scores in the rest with a strong 

contrast across the two. However, in this instance the margins were less clear compared to the HD-

OCT output, a result that may be attributed to the high noise of the pOCT images.   

The most notable improvement was observed in the output of the O model. While its 

repeatability maps remained broadly similar to those seen in HD-OCT, with diffuse and less 

selective keypoints, its reliability maps demonstrated a marked improvement. Compared to the 

almost non-existent assignment of scores in the HD-OCT images, the pOCT reliability maps 

accurately captured the spatial profile of the retinal contour, but also scored highly in regions 

outside of it. Among the three, O may have achieved its most balanced and modality-aligned 

scoring in the pOCT, perhaps suggesting a potential for modality specific optimization. 

Overall, these results illustrate distinct model-specific behaviors with respect to modality. 

The 3P model exhibits the greatest consistency, maintaining similar performance across both HD-

OCT and pOCT. The C model, while superior in HD-OCT due to its highly selective repeatability 

maps, experiences a slight decline in specificity on pOCT, though with improved descriptor 

reliability. Conversely, the O model shows limited utility on HD-OCT but a notable improvement 

in reliability scoring when applied to pOCT data. This shift may point to the potential of modality-

specific optimization for enhancing registration performance in future work. Once more, no model 

clearly dominates in both repeatability and reliability fields, with each demonstrating significant 

advantages and drawbacks in extracting the ideal keypoints. This raises the question whether each 

can be used on its own to provide the optimal image registration pipeline or if a fusion approach 
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may benefit from each model’s strengths. Figure 17 presents a pOCT image with representative 

for the group repeatability and reliability maps for each model.    
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Figure 17.  

Representative repeatability (left column) and reliability (right column) heatmaps from a pOCT 
image for the three evaluated models: Crafted(C), Three Point (3P), and Omni (O). The C model 
displays acceptable repeatability along the retinal contour but fails to clearly demarcate it from 
areas of low clinical significance. Reliability output improves compared to HD-OCT, with more 

populated maps. The 3P model exhibits consistent behavior with similar repeatability profiles to 
those of the HD-OCT images and a reverse to the desired output in the reliability maps with less 

clear distinction of the retinal contour borders. The O model retains diffuse repeatability but 
shows the most notable improvement in reliability maps, with scores that better align with the 

retinal anatomy. This convergence between detection and confidence suggests improved 
coherence in keypoint selection for the O model in pOCT images. 
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4.2.3 Intramodality keypoint correspondence evaluation  

Having evaluated each model’s repeatability and reliability performance within individual 

modalities, the next vital step to assess was to examine how consistently each model identifies 

corresponding anatomical features across modalities. This step aims to address a critical 

requirement for multimodal image registration, which is that the extracted keypoints must not only 

be reliable and repeatable but also consistent across domains. If a model assigns its top scoring 

keypoints to anatomically analogous areas across modalities, it demonstrates potential to 

successfully guide the image registration objective.  On the other hand, if said model scatters the 

keypoints in distinct areas across the modalities, then no meaningful correspondence can be 

achieved despite any optimization processes. 

Unlike sections 4.2.1 and 4.2.2, which focused on keypoint metric evaluation and 

qualitative assessment of heatmaps for each individual model on any one given modality at a time, 

this chapter concentrates on a sparse set of highest performing keypoints selected for downstream 

use. This approach can illuminate the process of how a model will perform in practical applications 

where only a specific subset of keypoints can be used to define the transformation.  Given the high 

failure rate the O model returned and to ensure a meaningful comparison, 5 pairs were the O model 

produced more than the minimum number of required keypoints was produced, were selected. The 

keypoints were plotted on top of the images and a color grading was applied indicating the highest 

to lowest scoring keypoint based on color. 

The results of the comparison further highlight the significant intricacies and challenges 

that inhibit a straightforward approach to multimodal image registration. While each, image may 

yield repeatable and reliable keypoints, if those do not correspond across modalities, there is 

almost no viable solution to define an accurate transformation matrix. This also applies in our case. 

The C model’s top 100 performers annotate a very narrow retinal area close to the RPE or Optic 

Nerve Head in most cases, when applied on HD-OCT images, while the keypoints in the pOCT 

counterpart are more widely scattered and seldom correspond in their location. 3P almost 

completely misses the retinal contour in both instances. While the keypoint distribution is similar 

across modalities, it does not reflect meaningful structures and it is highly doubtful whether they 

can help navigate an accurate affine transformation. The O model rarely achieves greater than three 

keypoint in the OCT images and when it does, they are representative of a small area that almost 

never corresponds with keypoints of the pOCT images.  

Taking into account all of the aforementioned data, it is safe to draw specific conclusions. 

Firstly, the consideration of two roughly affined images as equal in terms of model training is a 

valid approach that can be corroborated both quantitatively and qualitatively and can be applied in 

future keypoint extraction endeavors. Additionally, quantitatively discouraging results do not 

necessarily imply poor overall model performance as certain advantages of the lower scoring C 

and O models were discovered when carefully examining the distribution of the heatmaps. Finally, 

traditional approaches to image registration in our instance may have a more challenging 

application. Alternative approaches leveraging the advantages of each model may be warranted. 
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Figure 18 
Top 100 keypoints visualized for Pair 4 across all models and modalities. The CRAFTED model produces 

anatomically plausible keypoints along the RPE in HD-OCT, but its pOCT output is spatially diffuse and lacks 
correspondence. The THREEPOINT model shows a consistent distribution across modalities, but fails to target retinal 
structures, reducing its geometric value. The OMNI model produces moderately reliable keypoints in pOCT, but yields 
few or no meaningful keypoints in HD-OCT, eliminating the possibility of defining an accurate transformation. Overall, 

these results underscore the difficulty of establishing cross-modality correspondence even when intra-modality 
repeatability and reliability appear adequate. 
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Chapter 5 

5. Registration 

Following the extensive evaluation of keypoints through both quantitative and qualitative 

metrics for all three models, the next logical step was to assess the utility of these keypoints and 

their corresponding descriptors in the context of the registration task that is the main purpose of 

this thesis. While a thorough analysis of repeatability and reliability scores and ability to describe 

anatomically relevant areas is vital in determining the optimal approach, the ultimate test of a 

keypoint detection and description system lies in its capacity to drive robust and accurate image 

alignment. This chapter introduces and implements a registration pipeline that leverages the 

previously extracted keypoints and descriptors to estimate inter-device retinal image alignment. 

Firstly, a traditional approach is implemented that uses the existing models in a straightforward 

manner and later a fusion of the models to take advantage of their independent strengths is explored 

to determine if it can produce better results. 

 

5.1 Descriptor Based Registration Using Three Different 

Models 

As already applied in earlier iterations of R2D2 in image registration pipelines, the process 

is structured around three main pillars, Euclidean distance, geometric model estimation via 

RANSAC and image alignment through affine transformation. [56] 

Euclidean distance refers to a similarity matrix valuable in machine learning and computer 

vision. The Euclidean distance d of two data cases (x1, x2) is defined as the square root of the sum 

of the squared differences.  

𝑑(𝑥𝑖, 𝑦𝑖) = √∑|𝑥𝑖 − 𝑦𝑖|2 

In high dimensional descriptor matching tasks, as is the one tackled here, Euclidean 

distance is used as a quantitative measure of similarity between the keypoints that are described 

by the descriptor vectors. A lower distance implies greater similarity between descriptors, which 

in theory can be translated, as a criterion to drive matches between images. In our context, 

Euclidean distance is used to compare the similarities between our 128-dimensional descriptors. 

Mutually closest pairs, which means  that if descriptor A in the first image has closest to it in terms 

of Euclidean distance descriptor B of the second image, then descriptor B must also have descriptor 

A as its closest, will reveal a small set of correspondences that will serve as drivers of 

transformation estimation in the registration pipeline. [64] 
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Random Sample Consensus, which is also abbreviated as RANSAC, is a robust estimation 

method for models that require fitting in the presence of outliers. It creates several models in 

succession, each containing a random number of samples each time.  Each model is fitted into each 

subset, and then the number of points that agree with the model based on a predefined threshold 

value. The model with the highest number of inliers is considered the best. It can vital in estimating 

the affine transformation needed to guide image alignment as many corresponding keypoints may 

be output by our Euclidean distance metric and RANSAC can reliably filter out any unreliable 

matches.[55, 65] 

Hence, each image pair had its descriptors loaded that corresponded to the pixel location 

of the checkpoints. Descriptor matching was performed using their Euclidean distance between 

the HD-OCT and pOCT images. A mutual nearest neighbor strategy was employed, as described 

previously, which helped eliminate ambiguous matches and reduce the possibilities of erroneous 

correspondences. Following this, the corresponding keypoint coordinates of the descriptor matches 

were extracted and through the application of RANSAC an optimal affine transformation was 

calculated. If less than three inliers were found, the affine transformation calculation was not 

possible as described earlier. This registration pipeline took place independently for each model 

across all 84 intermodal pairs. Also, the number of mutual matches, the mutual match ratio - the 

number of mutual matches divided by the number of total descriptors – and the average and 

standard deviation of the Euclidean distance for each model were calculated. A maximum of the 

50 matches was applied to avoid increased noise. 

Quantitative analysis of the descriptors match revealed substantial differences in behavior 

among C, 3P and O. On average, the number of mutual matches per image pair was highest for 3P 

(50), followed by C (6.3), and lowest for O (1.095). This suggests that while 3P produces a larger 

number of descriptor correspondences, O often fails to generate enough confident matches to guide 

reliable image alignment. However, when considering the mutual match ratio—defined as the 

proportion of descriptors from the smaller descriptor set that participate in mutual nearest neighbor 

matches—C exhibited the highest value (0.509), whereas 3P had the lowest (0.01). This indicates 

that although 3P produces more matches in absolute terms, only a small fraction of its descriptors 

is successfully matched, potentially due to an overabundance of non-discriminative or redundant 

features. In contrast, C’s high match ratio reflects a more efficient and targeted descriptor set. 

Lastly, the average Euclidean distance between matched descriptors further illustrates this 

divergence: 3P had the lowest mean distance (0.154), suggesting more similar or tightly clustered 

descriptors, while C had the highest (0.436), potentially implying poorer descriptor precision or 

noisier matches. Taken together, these metrics suggest that while 3P excels in producing numerous 

close descriptor matches, C maintains a higher match efficiency, and O underperforms in both 

aspects.  

Following the matching process, affine transformations were estimated using RANSAC 

for each image pair based on the mutually matched descriptors. After this process, if inlier matches 

were less than 3 the models could not produce a transformation matrix and thus in these instances 

the model failed. Specifically, C failed in 46.4% of cases, O in 92.8% of cases while 3P achieved 

a 100% success rate. Arbitrarily, pOCT were assigned the role of the moving image and HD-OCT 

that of the fixed image. The resulting affine matrices were applied to produce a warped moving 

image. Figures 19 contains representative examples of the registration results, illustrating how the 

models would transform the images to achieve registration.  
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 Figure 19  
Representative registration results from all three models across six image pairs. In each case, the computed 

affine transformations fail to achieve meaningful alignment, highlighting the models’ inability to guide successful 
image registration. 
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A visual qualitative inspection of the applied transformations revealed a consistent and 

substantial failure to achieve anatomical alignment. In all the instances, the warped images bore 

no resemblance to the fixed images, with significant distortions and extremely aggressive 

transformations applied. This discrepancy suggests that the rationale before applying the matching 

of keypoints may be flawed in our instance. The O model displayed the worst performance by not 

being able to produce a transformation in almost all cases, due to limited number of keypoints, 

matches or inliers. In the few instances that the model produced a transformation, it was extreme 

and resulted in tremendous scaling changes, which in no way correspond to true alignment with 

the original image.  On the other hand, the 3P managed to produce a transformation matrix in all 

cases, but did not perform better in terms of alignment. Once more, transformations were 

aggressive in scaling or overly skewed, without the ability to align corresponding anatomical 

landmarks. Finally, the C model, despite yielding a higher match ratio, was also unable to produce 

meaningful transformation, following the same shortcomings as the previous two.  

These observations solicited a careful inspection of the derived transformation matrices to 

examine how the models did not manage the required task. During this examination, the initial 

hypothesis that all models applied aggressive transformations was further validated. Specifically, 

3P and O model provided translations that often exceeded 5000 pixels, near 5 times the size of the 

image, which in no way can correspond to real anatomical alignment. These extreme values also 

explain why many warped images were completely empty after transformation, as the original 

image was shifted outside the original frame. The C model, while more conservative, also 

exceeded 500 pixels in translation, significantly overshooting any meaningful transformations. 

Scaling was also aggressive, reaching values of 20x, and inevitably producing unreliable results. 

Finally, rotation estimates were similarly erratic across all models. While the median rotation for 

each model were modest, the distribution was marked by extremes, numerous cases exceeding 90 

degrees and several flipping the image completely upside down. The combination of these extreme 

metrics can in no way reveal meaningful transformations.  

The complete failure of all three models in such a similar manner suggests that the root of 

the issue lies on the matching process rather than model performance. This conclusion is derived 

based on the significant differences in model behavior both quantitatively and qualitatively, as 

reported previously, which comes in stark contrast with the complete collapse of all models during 

the registration process in almost identical ways. This can be further reviewed by examining the 

matches that were procured after applying the rationale of mutually exclusive pairs guided by 

Euclidean distance. 

Table 3   
Summary of key geometric characteristics derived from the affine transformation matrices computed by each model 

 

Summary of Affine Transformation Metrics by Model 

Model Mean 

Translation 

(px) 

Max 

Translation 

(px) 

Mean 

Scale 

Max 

Scale 

Mean 

Rotation 

(°) 

Rotation 

Std Dev (°) 

Crafted 649.14 1769.12 0.25 2.23 8.95 98.23 

Threepoint 970.97 7720.44 1.34 13.31 −9.30 91.08 

Omni 1259.47 5061.63 4.36 22.51 −35.96 65.84 
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Figure 20  
Qualitative visualization of keypoint matching results across three models (Crafted, ThreePoint, and Omni) for seven representative 

image pairs. Each row corresponds to a different pair, with models compared left to right. Lines indicate matched descriptors between 
fixed and moving images 
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Upon careful inspection of the matched keypoints the descriptor Euclidean distance 

produced, it is easy to discern the root cause of the misalignment produced during the traditional 

approach of the registration process. Figure 20 shows some representative pairs across all models. 

The matched keypoints rarely correspond to corresponding anatomical areas. Instead, there is there 

is a recurring pattern of spatial inconsistency.  Also, it is often observed that keypoints that describe 

a certain area of a retinal layer in one modality, i.e. the nasal side of the RPE, scatter across the 

entirety of the RPE or even entirely irrelevant anatomies in the other modality and vice versa, 

indicating a flaw in the rationale of keypoint matching as this pattern of matching cannot possibly 

produce meaningful results. The matching logic of the mutual nearest neighbors in Euclidean 

descriptor space assumes that similar descriptors represent similar anatomy. However, it is evident 

in our case that similar descriptors frequently correspond to structurally unrelated or distant 

regions, hence compromising alignment robustness. 

The Euclidean distance approach assumes that descriptor similarity correlates with 

anatomical correspondence across images. As is clearly demonstrated, this assumption does not 

bear truth in multimodal image registration as our images exhibit varying contrast levels and 

significant noise artifacts. One of the key limitations arises in this setting arises from the sensitivity 

of Euclidean distance to local intensity variations. A subset of our images exhibits speckle noise – 

a granular interference patter that reduces image quality – which can cause descriptors to become 

distorted and less distinctive. Descriptors can become biased by local noise and reflect that during 

the comparison process, where noise distortions can produce matches that do not correspond to 

true anatomical similarity but rather similar intensity between images. Hence, erroneous matches 

are created which lead to the disappointing results presented earlier. These observations point to a 

deeper limitation in similarity metrics and traditional approaches in medical image registration 

where noise is present and call for an alternative approach to better utilize the advantages of trained 

models. [66-69]  

 

5.2 Fusion Approach to Registration 

As the results of the traditional application of the R2D2 models thus far returned 

underwhelming results, an alternative approach is required to proceed. The proposed approach 

aims to use all three fine-tuned models and leverage its advantages to achieve the optimal result.  

Initially, a pressing matter that was discovered during the earlier iterations was the 

assignment of keypoints to areas with little to no anatomical relevance to the retinal contour. As it 

was earlier observed, the 3P model exhibited very stark contrasts in reliability scores when 

transitioning form the hyaloid to the ILM and also when transitioning from areas posterior to the 

choroid to the choroid or RPE. This difference in reliability values is more easily recognizable in 

HD-OCT reliability maps as also shown in Fig.16 and 17. These two interfacces motivated the use 

of a column-wise gradient based detection algorithm to localize the ILM and the RPE and choroid 

limits using only the model’s reliability output. Specifically, the methodology involved processing 

the HD-OCT images from the dataset and the reliability maps were produced. Each column of said 

map was scanned from top to bottom to locate the first band of 10 or more consecutive pixels with 

reliability scores below 0.05. Those values were determined after observation of the map output 

and after other values were also tried and disregarded. The zone found would represent the ILM. 
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A similar approach was used, scanning from the bottom-up to locate the choroid or the RPE. Also 

the restriction of the RPE or choroid layer to be located at least 20 pixels below the corresponding 

ILM was applied. To ensure continuity across columns and avoid anatomical discontinuity due to 

the potenital inability of the approach to locate the wanted band, missing ILM and RPE/Choroid 

values were interpolated using the closest neighboring valid values. Once the two boundaries were 

finalized, a binary gate mask was constructed by marking as valid pixels all pixels between the 

two boundaries.  The results, while not perfect, manage to contain the majority of the later derived 

keypoints within anatomically relevan regions.  

Attempts to apply the same logic in pOCT images failed the qualitative control. The 

gradient is not that evident in any of the three models’ repeatability or reliability maps. However, 

an approach was needed to ensure that keypoints far away from the retinal contour were excluded. 

To adress this challenge, an alternative masking strategy was employed. While the retinal 

boundaries were not as clearly demarcated, the generalized pattern remained the same; areas 

relevant to retinal contour were assigned lower reliability valued compared to their hyaloid or 

posterior to the choroid areas. This observation led to a patch-based masking strategy that favors 

areas with lower assigned reliability scores. In this approach, the pOCT reliability map is divided 

vertically into non-overlapping patches of 80 pixels in height. For every patch, we count the 

number of pixels whose reliability score falls below a certain threshold and assign a percentage 

that needs to be under that threshold to qualify as a relevant patch. After careful inspection of 

reliability maps and the trial of many alternative values, the optimal for our scenario were the 

threshold of value 0.4 and at least 50 of the 80 pixels to be assigned a lesser than threshold value. 

Overall, the 3P model contributed to this approach by setting such boundaries which would ideally 

constrain the allocation of keypoints to anatomically rich in information region. 

Our previous qualitative evaluation of repeatability and reliability maps revealed great 

performance by the C model on all repeatability maps and an enhanced prowess of the repeatability 

maps of the O model towards pOCT images. To leverage both models’ strenghts, fused 

repeatability maps were computed for the two models. The repeatability maps were extracted and 

added element-wise to form a fused maps. Scores were added to produce the final score. The 

multiplication of the scores was avoided as O frequently assigned 0 values and hence would 

completely alleviate the stellar scores the C model assigned in some instances.  

The extracted keypoints were filtered based on the 3P model’s masks. Each fused 

repeatabiliy map was then masked by its corresponding anatomical gate following the following 

pattern.  

 

𝑅𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑(𝑥, 𝑦) =  𝑅𝑓𝑢𝑠𝑒𝑑(𝑥, 𝑦) ∙ 𝑀(𝑥, 𝑦) 

This ensured that only points within the previously defined masks were eligible to be 

considered keypoints.  

From each filtered fuse map a similar logic was applied for the extraction of keypoints as 

before. Specifically, 400 top scoring keypoints were extracted using non-maximum suppression 

over a 3x3 window. Only local maxima were candidates. Keypoints were thus extracted 

independently for both HD-OCT and pOCT images. To avoid the Euclidean distance shortcomings 
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described earlier, only the coordinates and associated scores of the keypoints were saved and not 

their 128-dimensional descriptors.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To implement keypoint matching a more straightforward approach of spatial nearest-

neighbor was applied. For each image in one modality the nearest keypoint in its counterpart was 

found using a k-d tree structure. Similarly to the traditional approach, RANSAC was employed to 

identify inliers and compute the necessary affine transformation to warp the pOCT images. They 

were chosen for consistency and ease of comparison with the previous model. In this instance, all 

image pairs had at least 3 inliers which resulted in no failed registration attempts. [70, 71] 

 

Figure 21 
Representative example of the fusion model approach. Keypoints are overlaid on the images and color 

coded based on their derived fused score. The red hue represents the mask applied to each image. While 
not perfectly demarcating the retinal structure boundaries, it manages to significantly reduce the amount of 

potential keypoints outside the retinal contour 
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Figure 22 
Representative examples of affine alignment using the fusion approach. While not 

perfect they outperform the traditional approach and, in some cases, reach acceptable 
results. However, exaggerated transformations that distort the warped image can also 

be found here. 
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Upon initial inspection, the fusion approach significantly outperforms the traditional 

descriptor-Euclidean distance approach. Images are always in frame and in some cases, results are 

close to excellent.  Careful inspection of the transformation matrices backs up this initial 

assessment. The translations are limited to a maximum of 432 pixels compared to the 7000 of the 

worst performing O model and also scaling is significantly more conservative with a mean value 

of 0.83 compared to the very small value of 0.25 of the crafted model and the aggressive 4.36 of 

the omni model. Additionally, rotation had an extremely tight distribution that prevented 

significant misalignment of the warped image. Overall, the fused model is vastly more 

conservative and controlled across all transformation parameters, avoiding erratic and aggressive 

transformation. This conservative approach is the reason that some pairings produce an acceptable 

result that can be used in our pipeline of eventual super resolution. Such examples can be seen in 

a checkerboard form in figure 23. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23 
The two most successful example of the fused model application, 

showing both the HD_OCT and the transformed pOCT image in a 

checkerboard composite. While not perfect they manage to closely align 

the main retinal structures with slight vertical misalignment of the 

layers. It is a promising beginning that possibly suggest that future 

minor alterations may produce a more robust and reproducible result. 
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Chapter 6 

6. Discussion and Future Directions 

 This thesis set out to evaluate the feasibility of registering inter device OCT images 

through a deep learning keypoint detection and description strategy. By recruiting the R2D2 

framework the possibility of deriving transformation that aligned images across different imaging 

modalities was explored. The results yielded suggest that even in the challenging setting of 

multimodal OCT registration, a learned detector-descriptor model can provide meaningful 

correspondences, especially after careful evaluation of repeatability and reliability maps. 

Multimodal OCT registration is inherently challenging due to a variety of factors. Firstly, 

OCT images are characterized by texture-based ambiguity and presence of speckle noise. To make 

matters worse, texture and noise can vary across devices, thus rendering correspondences even 

more difficult. Additionally, OCT images lack the crystal-clear anatomical landmarks that other 

ophthalmologic examinations provide such as fundus photography or corneal pachymetry maps.  

Given these limitations, previously adopted approaches in similar tasks and field, failed to produce 

a reliable result in our case. A potential exploration of a different similarity metric, other than 

Euclidean distance, may be the next step in optimizing the utilization of derived descriptors. 

Extremely promising was the valuable results derived by considering two images derived 

from different modalities as essentially equally and treating them as such in the training pipeline. 

Introducing expert annotated correspondences between the HD-OCT and pOCT images through 

this process allowed for the development of two extra models, which provided invaluable 

information in the development of the fused model. Additionally, the minimum input that experts 

need to make – only three corresponding points between the images- is enough to generate multiple 

new pairs for training, essentially providing the foundation for a semi-supervised approach, as the 

correspondence between the original and warped image is calculated immediately after the initial 

application of the transformation. 

Among all the models tested, a fusion of the C, 3P and O yielded the most usable results. 

This further highlights the importance of the rationale of considering two images of different 

modalities as equal after initial expert driven rough alignment. Each model on its own however 

failed to produce any meaningful results. Quantitatively, 3P achieved the greatest number of 

keypoints, while C and O struggled to produce keypoints high in reliability values. The distribution 

of the C keypoints when it came to repeatability scores greatly captured the retinal contour and 

was a deciding factor in the level of “success “the fused model achieved. 

Despite promising outcomes, several limitations remain. As this was a study in the 

feasibility of multimodal image registration, the generalizability of the proposed pipeline was not 

evaluated in this thesis. This work acts as a proof of plausibility rather than a general-purpose 

solution. The next logical step would be to apply the rationale of the fusion model to an external 

dataset of paired OCT scans of the same or different modalities to test for potential overfitting in 

our approach. 

Another limitation is that our current pipeline does not integrate anatomical annotations 

such as retinal layer boundaries. This happened intentionally to assess the plausibility of only a 
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deep learning registration approach. The incorporation of segmentation masks can greatly improve 

the outcome of our framework, as one of the most limiting steps in our pipeline was to determine 

a sufficient method to exclude keypoints that returned no useful anatomical transformation. 

However, such an approach introduces the need for expert annotations that require a significant 

amount of time and effort. This contradicts in principle the philosophy of this thesis and also is 

unnecessarily resource intensive, as we have already established that passable alignment can 

happen by simply annotating only three corresponding keypoints. This obstacle can be tackled by 

also developing a deep learning layer segmentation model that will be able to automatically 

annotate retinal layers across different modalities and thus keep the process annotation-free. Such 

an effort is a logical next step and annotation of layers in the existing dataset has already begun 

towards this end.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Finally, it is important to mention that this thesis in no way is ready to act as a clinical 

registration tool. Its contribution lies on the demonstration of the feasibility of extracting keypoints 

and descriptors both repeatable and reliable that have the potential to guide successful OCT inter 

device image registration, should certain conditions be met. These findings allow for future 

exploration of a different approach in matching keypoints or descriptors, alternative ways of 

introducing masking or approaching the issue in a totally new manner as it is already established 

that fine-tuned R2D2 is a valuable ally in this endeavor. Such a breakthrough would bring the 

possibility of automated multimodal OCT image registration closer to the clinical setting and help 

bridge the gap between deep learning, image analysis and clinical ophthalmic practice. 

Figure 24 
Example of already existing retinal layer annotations in an effort to 

develop a layer segmentation framework to facilitate accurate masking 



 

 
67 

Bibliography  
 

[1] C. Zhou, S. Li, L. Ye, C. Chen, S. Liu, H. Yang, et al., "Visual impairment and blindness caused by 
retinal diseases: A nationwide register-based study," J Glob Health, vol. 13, no. pp. 04126,2023 
doi: 10.7189/jogh.13.04126. 

[2] M. Fleckenstein, S. Schmitz-Valckenberg, and U. Chakravarthy, "Age-Related Macular 
Degeneration: A Review," Jama, vol. 331, no. 2, pp. 147-157,2024 doi: 10.1001/jama.2023.26074. 

[3] F. J. Rodríguez, G. Staurenghi, and R. Gale, "The role of OCT-A in retinal disease management," 
Graefes Arch Clin Exp Ophthalmol, vol. 256, no. 11, pp. 2019-2026,2018 doi: 10.1007/s00417-018-
4109-3. 

[4] R. Chopra, S. K. Wagner, and P. A. Keane, "Optical coherence tomography in the 2020s-outside 
the eye clinic," vol. 35, no. 1, pp. 236-243,2021 doi: 10.1038/s41433-020-01263-6. 

[5] G. Song and E. T. Jelly, "A review of low-cost and portable optical coherence tomography," vol. 3, 
no. 3, pp.,2021 doi: 10.1088/2516-1091/abfeb7. 

[6] S. Umirzakova, S. Mardieva, and S. Muksimova, "Enhancing the Super-Resolution of Medical 
Images: Introducing the Deep Residual Feature Distillation Channel Attention Network for 
Optimized Performance and Efficiency," vol. 10, no. 11, pp.,2023 doi: 
10.3390/bioengineering10111332. 

[7] K. Yamashita and K. Markov, Medical Image Enhancement Using Super Resolution Methods: 
Computational Science – ICCS 2020. 2020 May 25;12141:496-508. doi: 10.1007/978-3-030-50426-
7_37. 

[8] K. A. Thakoor, A. Carter, G. Song, A. Wax, O. Moussa, R. W. S. Chen, et al., "Enhancing Portable 
OCT Image Quality via GANs for AI-Based Eye Disease Detection," Cham, 2022, pp. 155-167. 

[9] P. E. Ludwig, R. Jessu, and C. N. Czyz, "Physiology, Eye," in *StatPearls*, vol., Ed.^Eds., ed., 
Treasure Island (FL): StatPearls Publishing, 2025. 

[10] H. Kolb, "Simple Anatomy of the Retina," in *Webvision: The Organization of the Retina and Visual 
System*, vol., H. Kolb, E. Fernandez, B. Jones, and R. Nelson, Ed.^Eds., ed., Salt Lake City (UT): 
University of Utah Health Sciences Center, 1995. 

[11] B. D. Kels, A. Grzybowski, and J. M. Grant-Kels, "Human ocular anatomy," Clin Dermatol, vol. 33, 
no. 2, pp. 140-6,2015 doi: 10.1016/j.clindermatol.2014.10.006. 

[12] M. Fleckenstein, T. D. L. Keenan, R. H. Guymer, U. Chakravarthy, S. Schmitz-Valckenberg, C. C. 
Klaver, et al., "Age-related macular degeneration," Nature Reviews Disease Primers, vol. 7, no. 1, 
pp. 31,2021 doi: 10.1038/s41572-021-00265-2. 

[13] S. Aumann, S. Donner, J. Fischer, and F. Müller, "Optical Coherence Tomography (OCT): Principle 
and Technical Realization," in *High Resolution Imaging in Microscopy and Ophthalmology: New 
Frontiers in Biomedical Optics*, vol., J. F. Bille, Ed.^Eds., ed., Cham (CH): Springer, 2019. 

[14] B. E. Bouma, J. F. de Boer, D. Huang, I. K. Jang, T. Yonetsu, C. L. Leggett, et al., "Optical 
coherence tomography," Nat Rev Methods Primers, vol. 2, no. pp.,2022 doi: 10.1038/s43586-022-
00162-2. 

[15] K. Irsch, "Optical Principles of OCT," in *Albert and Jakobiec's Principles and Practice of 
Ophthalmology*, vol., D. Albert, J. Miller, D. Azar, and L. H. Young, Ed.^Eds., ed., Cham: Springer 
International Publishing, 2020. 

[16] J. S. Schuman, "Spectral domain optical coherence tomography for glaucoma (an AOS thesis)," 
Trans Am Ophthalmol Soc, vol. 106, no. pp. 426-58,2008 doi:  

[17] F. Xia and R. Hua, "The Latest Updates in Swept-Source Optical Coherence Tomography 
Angiography," vol. 14, no. 1, pp.,2023 doi: 10.3390/diagnostics14010047. 

[18] M. Bhende, S. Shetty, M. K. Parthasarathy, and S. Ramya, "Optical coherence tomography: A guide 
to interpretation of common macular diseases," Indian J Ophthalmol, vol. 66, no. 1, pp. 20-35,2018 
doi: 10.4103/ijo.IJO_902_17. 

[19] M. Chen, N. J. Tustison, R. Jena, and O. Colliot, "Image Registration: Fundamentals and Recent 
Advances Based on Deep Learning," in *Machine Learning for Brain Disorders [Internet]*, vol., O. 
Colliot, Ed.^Eds., ed., United States: Humana, 2023. 



 

 
 

[20] J. Liu, G. Singh, S. Al'Aref, B. Lee, O. Oleru, J. K. Min, et al., "Image Registration in Medical 
Robotics and Intelligent Systems: Fundamentals and Applications," Advanced Intelligent Systems, 
vol. 1, no. 6, pp. 1900048,2019 doi: https://doi.org/10.1002/aisy.201900048. 

[21] V. B. Sivaraman, M. Imran, Q. Wei, P. Muralidharan, M. R. Tamplin, I. M. Grumbach, et al., 
"RetinaRegNet: A zero-shot approach for retinal image registration," Computers in Biology and 
Medicine, vol. 186, no. pp. 109645,2025 doi: https://doi.org/10.1016/j.compbiomed.2024.109645. 

[22] Y. Fu, Y. Lei, T. Wang, W. J. Curran, T. Liu, and X. Yang, "Deep learning in medical image 
registration: a review," Phys Med Biol, vol. 65, no. 20, pp. 20tr01,2020 doi: 10.1088/1361-
6560/ab843e. 

[23] P. Arora, R. Mehta, and R. Ahuja, "An adaptive medical image registration using hybridization of 
teaching learning-based optimization with affine and speeded up robust features with projective 
transformation," Cluster Computing, vol. 27, no. 1, pp. 607-627,2024 doi: 10.1007/s10586-023-
03974-3. 

[24] C. Li, J. Sun, X. Zhang, L. Zhang, X. Sun, and L. Wang, "An seamless stitching method for large 
field equivalent center projection image based on rotating camera," Sci Rep, vol. 14, no. 1, pp. 
29170,2024 doi: 10.1038/s41598-024-80295-4. 

[25] Y. Rong, M. Rosu-Bubulac, S. H. Benedict, Y. Cui, R. Ruo, T. Connell, et al., "Rigid and Deformable 
Image Registration for Radiation Therapy: A Self-Study Evaluation Guide for NRG Oncology 
Clinical Trial Participation," Pract Radiat Oncol, vol. 11, no. 4, pp. 282-298,2021 doi: 
10.1016/j.prro.2021.02.007. 

[26] M. Abdel-Basset, A. E. Fakhry, I. El-Henawy, T. Qiu, and A. K. Sangaiah, "Feature and Intensity 
Based Medical Image Registration Using Particle Swarm Optimization," J Med Syst, vol. 41, no. 12, 
pp. 197,2017 doi: 10.1007/s10916-017-0846-9. 

[27] A. Myronenko and X. Song, "Intensity-based image registration by minimizing residual complexity," 
IEEE Trans Med Imaging, vol. 29, no. 11, pp. 1882-91,2010 doi: 10.1109/tmi.2010.2053043. 

[28] Y. Ono, E. Trulls, P. Fua, and K. M. Yi, "LF-Net: Learning local features from images," Advances in 
neural information processing systems, vol. 31, no. pp.,2018 doi:  

[29] A. Okorie and S. Makrogiannis, "Region-based image registration for remote sensing imagery," 
Computer Vision and Image Understanding, vol. 189, no. pp. 102825,2019 doi: 
https://doi.org/10.1016/j.cviu.2019.102825. 

[30] E. Rosten, R. Porter, and T. Drummond, "Faster and better: a machine learning approach to corner 
detection," IEEE Trans Pattern Anal Mach Intell, vol. 32, no. 1, pp. 105-19,2010 doi: 
10.1109/tpami.2008.275. 

[31] D. G. Lowe, "Distinctive Image Features from Scale-Invariant Keypoints," International Journal of 
Computer Vision, vol. 60, no. 2, pp. 91-110,2004 doi: 10.1023/B:VISI.0000029664.99615.94. 

[32] M. Calonder, V. Lepetit, C. Strecha, and P. Fua, "BRIEF: Binary Robust Independent Elementary 
Features," in Computer Vision – ECCV 2010, Berlin, Heidelberg, 2010, pp. 778-792. 

[33] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, "ORB: An efficient alternative to SIFT or SURF," 
in 2011 International Conference on Computer Vision, 2011, pp. 2564-2571. 

[34] G. Balakrishnan, A. Zhao, M. R. Sabuncu, J. Guttag, and A. V. Dalca, "VoxelMorph: A Learning 
Framework for Deformable Medical Image Registration," IEEE Trans Med Imaging, vol. no. 
pp.,2019 doi: 10.1109/tmi.2019.2897538. 

[35] D. DeTone, T. Malisiewicz, and A. Rabinovich, "SuperPoint: Self-Supervised Interest Point 
Detection and Description," in 2018 IEEE/CVF Conference on Computer Vision and Pattern 
Recognition Workshops (CVPRW), 2018, pp. 337-33712. 

[36] P. E. Sarlin, D. DeTone, T. Malisiewicz, and A. Rabinovich, "SuperGlue: Learning Feature Matching 
With Graph Neural Networks," in 2020 IEEE/CVF Conference on Computer Vision and Pattern 
Recognition (CVPR), 2020, pp. 4937-4946. 

[37] P. Lindenberger, P.-E. Sarlin, and M. Pollefeys, LightGlue: Local Feature Matching at Light Speed, 
2023. 

[38] C. Choy, J. Gwak, S. Savarese, and M. Chandraker, "Universal Correspondence Network," vol. no. 
pp.,2016 doi: 10.48550/arXiv.1606.03558. 

[39] K. Yi, E. Trulls, V. Lepetit, and P. Fua, LIFT: Learned Invariant Feature Transform vol. 9910, 2016. 
[40] J. Revaud, P. Weinzaepfel, C. De Souza, N. Pion, G. Csurka, Y. Cabon, et al., R2D2: Reliable and 

Repeatable Detectors and Descriptors for Joint Sparse Keypoint Detection and Local Feature 
Extraction, 2019. 



  

 

[41] Y. Tian, B. Fan, and F. Wu, L2-Net: Deep Learning of Discriminative Patch Descriptor in Euclidean 
Space, 2017. 

[42] R. Bhuiyan, J. Abdullah, N. Hashim, and F. Al Farid, "Deep Dilated Convolutional Neural Network 
for Crowd Density Image Classification with Dataset Augmentation for Hajj Pilgrimage," vol. 22, no. 
14, pp.,2022 doi: 10.3390/s22145102. 

[43] E. Zhang and Y. Zhang, "Average Precision," in *Encyclopedia of Database Systems*, vol., L. Liu 
and M. T. ÖZsu, Ed.^Eds., ed., Boston, MA: Springer US, 2009. 

[44] A. Husham Al-Badri, N. Azman Ismail, K. Al-Dulaimi, G. Ahmed Salman, and M. Sah Hj Salam, 
"Adaptive Non-Maximum Suppression for improving performance of Rumex detection," Expert 
Systems with Applications, vol. 219, no. pp. 119634,2023 doi: 
https://doi.org/10.1016/j.eswa.2023.119634. 

[45] T. Sattler, W. Maddern, C. Toft, A. Torii, L. Hammarstrand, E. Stenborg, et al., Benchmarking 6DOF 
Outdoor Visual Localization in Changing Conditions, 2018. 

[46] F. Lu, D. Zhou, H. Chen, S. Liu, X. Ling, L. Zhu, et al., "S2P-Matching: Self-Supervised Patch-
Based Matching Using Transformer for Capsule Endoscopic Images Stitching," IEEE Transactions 
on Biomedical Engineering, vol. 72, no. 2, pp. 540-551,2025 doi: 10.1109/TBME.2024.3462502. 

[47] J. Wang, H. Li, D. Hu, R. Xu, X. Yao, Y. K. Tao, et al., "Retinal IPA: Iterative KeyPoints Alignment 
for Multimodal Retinal Imaging," in Medical Optical Imaging and Virtual Microscopy Image Analysis, 
Cham, 2025, pp. 119-129. 

[48] L. Zeyuan, Z. Zirui, C. Wenguang, W. Yi, C. Huaiyu, and C. Xiaodong, "A novel learning-based 
keypoint matching framework for toric intraocular lens navigation during cataract surgery," in 
Proc.SPIE, 2024, p. 1323907. 

[49] W. Zhao, X. Xu, J. Xie, L. Cheng, and Z. Zhang, "Detection Method of Eye Rotation Angle in 
Cataract Surgery Based on Depth Feature Matching," Journal of Computer-Aided Design & 
Computer Graphics, vol. 36, no. 9, pp. 1407-1417,2024 doi: 10.3724/SP.J.1089.2024.19997. 

[50] D. Rivas-Villar, Á. S. Hervella, J. Rouco, and J. Novo, "ConKeD: multiview contrastive descriptor 
learning for keypoint-based retinal image registration," Medical & Biological Engineering & 
Computing, vol. 62, no. 12, pp. 3721-3736,2024 doi: 10.1007/s11517-024-03160-6. 

[51] M. Sommersperger, P. Matten, T. Wang, S. Dehghani, J. Nienhaus, H. Roodaki, et al., "Context-
aware real-time semantic view expansion of intraoperative 4D OCT," IEEE Transactions on Medical 
Imaging, vol. no. pp. 1-1,2025 doi: 10.1109/TMI.2025.3528742. 

[52] Y. Hu, M. Gong, Z. Qiu, J. Liu, H. Shen, M. Yuan, et al., "COph100: A comprehensive fundus image 
registration dataset from infants constituting the “RIDIRP” database," Scientific Data, vol. 12, no. 1, 
pp. 99,2025 doi: 10.1038/s41597-025-04426-w. 

[53] C. Hernandez-Matas, X. Zabulis, A. Triantafyllou, P. Anyfanti, S. Douma, and A. A. Argyros, "FIRE: 
Fundus Image Registration dataset," Modeling and Artificial Intelligence in Ophthalmology, vol. 1, 
no. 4, pp. 16-28,2017 doi: 10.35119/maio.v1i4.42. 

[54] D. Rivas-Villar, Á. Hervella, J. Rouco, and J. Novo, "Joint keypoint detection and description 
network for color fundus image registration," Quantitative Imaging in Medicine and Surgery, vol. 13, 
no. pp. 4540-4562,2023 doi: 10.21037/qims-23-4. 

[55] M. A. Fischler and R. C. Bolles, "Random sample consensus: a paradigm for model fitting with 
applications to image analysis and automated cartography," Commun. ACM, vol. 24, no. 6, pp. 381–
395,1981 doi: 10.1145/358669.358692. 

[56] D. Rivas-Villar, A. R. Motschi, M. Pircher, C. K. Hitzenberger, M. Schranz, P. K. Roberts, et al., 
"Automated inter-device 3D OCT image registration using deep learning and retinal layer 
segmentation," Biomedical Optics Express, vol. 14, no. 7, pp. 3726-3747,2023 doi: 
10.1364/BOE.493047. 

[57] X. Feng and G. Cai, "Retinal Mosaicking with Vascular Bifurcations Detected on Vessel Mask by a 
Convolutional Network," vol. 2020, no. pp. 7156408,2020 doi: 10.1155/2020/7156408. 

[58] S. Mukherjee, T. De Silva, P. Grisso, H. Wiley, and D. L. K. Tiarnan, "Retinal layer segmentation in 
optical coherence tomography (OCT) using a 3D deep-convolutional regression network for 
patients with age-related macular degeneration," vol. 13, no. 6, pp. 3195-3210,2022 doi: 
10.1364/boe.450193. 

[59] K. Akyol and B. Şen, "Keypoint detectors and texture analysis based comprehensive comparison 
in different color spaces for automatic detection of the optic disc in retinal fundus images," SN 
Applied Sciences, vol. 3, no. 9, pp. 774,2021 doi: 10.1007/s42452-021-04754-7. 



 

 
 

[60] A. Sharma, J. D. Oakley, J. C. Schiffman, D. L. Budenz, and D. R. Anderson, "Comparison of 
automated analysis of Cirrus HD OCT spectral-domain optical coherence tomography with stereo 
photographs of the optic disc," Ophthalmology, vol. 118, no. 7, pp. 1348-57,2011 doi: 
10.1016/j.ophtha.2010.12.008. 

[61] W. Wang, D. A. Miller, H. B. Price, X. Yang, W. J. Brown, and A. Wax, "High-Performance, Low-
Cost Optical Coherence Tomography System Using a Jetson Orin Nano for Real-Time Control and 
Image Processing," Transl Vis Sci Technol, vol. 14, no. 3, pp. 24,2025 doi: 10.1167/tvst.14.3.24. 

[62] J. Flusser and T. Suk, "A moment-based approach to registration of images with affine geometric 
distortion," IEEE Transactions on Geoscience and Remote Sensing, vol. 32, no. 2, pp. 382-
387,1994 doi: 10.1109/36.295052. 

[63] J. Revaud, C. De Souza, M. Humenberger, and P. Weinzaepfel, "R2D2: Reliable and Repeatable 
Detector and Descriptor," ed: NAVER LABS Europe. 

[64] A. Ultsch and J. Lötsch, "Euclidean distance-optimized data transformation for cluster analysis in 
biomedical data (EDOtrans)," BMC Bioinformatics, vol. 23, no. 1, pp. 233,2022 doi: 
10.1186/s12859-022-04769-w. 

[65] J. M. Martínez-Otzeta, I. Rodríguez-Moreno, I. Mendialdua, and B. Sierra, "RANSAC for Robotic 
Applications: A Survey," Sensors, vol. 23, no. 1, pp. 327,2023 doi:  

[66] C. A. N. Santos and N. D. A. Mascarenhas, "Patch similarity in ultrasound images with hypothesis 
testing and stochastic distances," Computerized Medical Imaging and Graphics, vol. 74, no. pp. 37-
48,2019 doi: https://doi.org/10.1016/j.compmedimag.2019.03.001. 

[67] C. A. N. Santos and N. D. A. Mascarenhas, "Geodesic Distances in Probabilistic Spaces for Patch-
Based Ultrasound Image Processing," IEEE Transactions on Image Processing, vol. 28, no. 1, pp. 
216-226,2019 doi: 10.1109/TIP.2018.2866705. 

[68] C. A. N. Santos, D. L. N. Martins, and N. D. A. Mascarenhas, "Ultrasound Image Despeckling Using 
Stochastic Distance-Based BM3D," IEEE Transactions on Image Processing, vol. 26, no. 6, pp. 
2632-2643,2017 doi: 10.1109/TIP.2017.2685339. 

[69] J. Schottenhamml, T. Würfl, S. B. Ploner, L. Husvogt, B. Hohberger, J. G. Fujimoto, et al., "SSN2V: 
unsupervised OCT denoising using speckle split," Scientific Reports, vol. 13, no. 1, pp. 10382,2023 
doi: 10.1038/s41598-023-37324-5. 

[70] R. Panigrahy, "An Improved Algorithm Finding Nearest Neighbor Using Kd-trees," Berlin, 
Heidelberg, 2008, pp. 387-398. 

[71] J. H. Friedman, J. L. Bentley, and R. A. Finkel, "An algorithm for finding best matches in logarithmic 
expected time," ACM Transactions on Mathematical Software (TOMS), vol. 3, no. 3, pp. 209-
226,1977 doi:  

 


