g
5

EoNIKO METEOBIO IIOATTEXNEIO
Y XO0AH HAEKTPOAOION MHXANIKON KAI MHXANIKON YTIOAOTISTON
TOMEAT TEXNOAOTIAY ITAHPOSOPIKHY KAI YTIOAOTIETON

v

A
7 NPoMHOEVS
Gh=:l

\

s

On-Device Federated Learning for Human Activity

Recognition

AITTAOMATIKH EPTAYIA

TOu

AHMHTPIOY MATYXOYKA

EnBréenwv: Tavaywwtne Toovdxag
Kadnynthc, E.M.II

Adva, Todviog 2025







Edvixé Metoofio IToauteyveio
Yyohfy Hhextpohdywy Mnyovixwmy xow Mnyovixaoy Trohoylotomy
Topeag Teyvoroyiag ITAnpogopixic Ko Troloyiotoy

On-Device Federated Learning for Human Activity

Recognition

AIMAQOMATIKH EPTAYIA
TOL

AHMHTPIOY MATXOYKA

EnBrenwv: avaywwtne Toovdxag
Kodnyntie, E.M.II

Eyxpldnxe and tnv teern eCetactinn emtpony| tnyv 20 Touviou 2025.

(Ymoypagn) (Ymoypagn) (Yroypagn)

[Movaydtne Toavdxag — Anurteloc Xolvteng Ywthptog 2001
Kodnyntic, E.M.IT Kodnyntic, E.M.IT Enixovpoc Kodnyntrc, E.M.II

Adva, Todviog 2025






NATIONAL TECHNICAL UNIVERSITY OF ATHENS
SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING
DivisiON OF TECHNOLOGY, INFORMATION AND COMPUTERS

ge

v

s

v = &
5 \ s ¢
7 npomhoE

|

On-Device Federated Learning for Human Activity

Recognition

DIPLOMA THESIS

of

DIMITRIOS MATSOUKAS

Supervisor: Panayiotis Tsanakas
Professor, NTUA

Athens, June 2025







National Technical University of Athens
School of Electrical and Computer Engineering

Division of Technology, Information and Computers

On-Device Federated Learning for Human Activity

Recognition

DIPLOMA THESIS
of

DIMITRIOS MATSOUKAS

Supervisor: Panayiotis Tsanakas
Professor, NTUA

Approved by the examination committee on 20th June 2025.

(Signature) (Signature) (Signature)

Panayiotis Tsanakas Dimitrios Sountris Sotirios Xydis

Professor, NTUA Professor, NTUA Assistant Professor, NTUA

Athens, June 2025



National Technical University of Athens

School of Electrical and Computer Engineering

Division of Technology, Information and Computers

Copyright (©) — All rights reserved.

Dimitrios Matsoukas, 2025.

The copying, storage and distribution of this diploma thesis, exall or part of it, is
prohibited for commercial purposes. Reprinting, storage and distribution for non - profit,
educational or of a research nature is allowed, provided that the source is indicated and

that this message is retained.

The content of this thesis does not necessarily reflect the views of the Department, the

Supervisor, or the committee that approved it.

DISCLAIMER ON ACADEMIC ETHICS AND INTELLECTUAL PROP-
ERTY RIGHTS

Being fully aware of the implications of copyright laws, I expressly state that this diploma
thesis, as well as the electronic files and source codes developed or modified in the course
of this thesis, are solely the product of my personal work and do not infringe any rights of
intellectual property, personality and personal data of third parties, do not contain work
/ contributions of third parties for which the permission of the authors / beneficiaries is
required and are not a product of partial or complete plagiarism, while the sources used
are limited to the bibliographic references only and meet the rules of scientific citing. The
points where I have used ideas, text, files and / or sources of other authors are clearly
mentioned in the text with the appropriate citation and the relevant complete reference
is included in the bibliographic references section. 1 fully, individually and personally
undertake all legal and administrative consequences that may arise in the event that it is
proven, in the course of time, that this thesis or part of it does not belong to me because

it is a product of plagiarism.

(Signature)

Dimitrios Matsoukas

Graduate of School of Electrical and Computer Engineering, National Technical University
of Athens

20th June 2025



ITepiAndn

Ol CUOXEVEC TEQLOPLOUEVKY LTIOAOYICTIXOY TOPWY, OTw Tot EEUTVAL XWVNTA TNAEQPLVAL
(smartphones) xou ot @opetéc cuoxeuéc (wearables), anotehovv Théov Tic Pooixéc TAATQOE-
HEC UTOAOYLO TIXHC BRaC TNELOTNTOG, TTApdyoVTaS XA NUERVA UEYIAOUS OYX0oUS EVaicINTHDY Xau
eCoToUxEUUEVKDY dedouévmy. Ta povtéha unyavixnic wddnong uropolv vo oalonotcouy auTtd
Tar BEBOUEVOL OE EQPUPUOYES OTWE 1) GEOGCT, UTOAOYIGTOV, 1) ENEEERYUTIA QUOIXAC YAWMOCOS XAl
1 mapaxorovinon tne vyetag.

H napadooiaxt| Aettovpylo unyavixic uddnone Pactleton otnv xevips) cUAAOYT dedo-
HEVWY, VETOVTAC GE XIVOUVO TNV LBIWTIXOTNTA TV YENO TWV X0l TEQLOPLLOUEVT] ATO XAVOVIGUOUG
6mwec o GDPR xow o HIPAA.

H Opoonovdiox Méinon (Federated Learning) mpoo@épet pior eVOARUXTING XATAVEUN-
HEVN TPOGEYYLOT), OTIOU 1) EXTULBEUCT) TEAYHATOTOLELTOL TOTUXA OTIC CUGKEVES, YwelC AmOGTOAT
0edopévev oe xevtpolg Slxouotéc. H undpyovoa épeuva Baoileton xuplwg ot mpocouol-
WOELS, LY VY TUPUBAETOVTOSC TEOXANTELS TOU TEAYUATIXOU XOGHUOU OTWS TEPLOPLOUOL UALXOV,
EVEQYELOXT) XATAVAAWCT) X0 Ao TAIELL B TUOV.

H napodoa epyacio vhomotel éva cbotnuo OM v to medBinua e Avayvopeiong Av-
Ypowmvne Apaotnpldtnrag (Human Activity Recognition), Baciopévo oto Flower framework,
T0 ornolo cuvtovilel TNy exnaidevon névte Android cuoxeudv. H exnoldevon xou a&lohdynon
yiveton tomxd péow TensorFlow Lite, to onolo unootne(let eZaywyn npofrédeny xat Tomxh
EXTIUOEVCT) OE GUOAEVES UE TEPLOPLOUEVOUS TOPOUG.

H nepapates a&tohdynon eetdlel tic Baoinég mpoxirioeic tng OM otnv AAA oe teeig
GEoveg: £TEpOYEVELN DEBOUEVLY, EVERYELUXT] amdbooT xat aflomoTio Bixtbou. Aelyvel 6T 1 a-
VICOXUTOVOUT| XATNYOPLOV UTOREL Va etdoeL TNy axpifBeta xotd "55%), eveéd 1 peiowon tou byxou
0EDOUEVLV avd cuoxEUT| ExEl uxpoTepn entidpaot). H evioyuorn tng tomxng exnaldeuong e Ai-
YOTEEOULS YUPOUC ETIXOWVMVING UELWVEL TNY XUTavdAmoT evépyetag xotd ‘84%, ywplc onuavtind
anoheto oxpifetoc. Téhog, 1 diakeinouoa cuppetoyn uetdver Ty anddoon €we xon 20%.

H yedhovtint| épeuva unopel va ecTidoel €lte oe o avlexTinolg alyoplduoug cuyywveu-
one (6nwe FedProx, SCAFFOLD), eite otn Siepebvnom tou avtixTunou BLopopeTixdy apyi-

TEXTOVIXWY UOVTEAWY GTY| GYECT] AmOBOCTG-EVERYELOG.

Aglesic KAeotk

Ouoonovdixry Méinon, Mnyovixh Mddnon, Avayvoeion Aviponivnge Apactneldtnrog,
Yuoxeuég teploploévey Topwy, Tomxt exnaldevon HOVTEAWY, AVICOXATAVOUT XATHYORLMY,

Kotavéhwon evépyetog, Alomotia dixtoou, TensorFlow Lite, Flower framework
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Abstract

Edge devices such as smartphones and wearables have become the primary comput-
ing platforms, generating large volumes of sensitive, user-specific data. Machine Learning
(ML) models can utilize this data for tasks in areas like computer vision, natural language
processing, and health monitoring. Traditionally, ML relies on centralized data collection,
but this approach introduces serious privacy risks and is increasingly constrained by regu-
lations such as GDPR and HIPAA. Federated Learning (FL) offers a promising alternative
by addressing privacy concerns through a decentralized training approach, where model
training occurs directly on users devices. This eliminates the need to transmit sensitive
data to a central server. However, most FL research relies in simulation-based studies
using standardized datasets, often neglecting the real-world challenges posed by hardware
limitations, energy constraints, and network instability. This thesis addresses that gap by
implementing a real-world FL system for Human Activity Recognition (HAR), which is a
privacy-sensitive task that leverages sensor data from mobile devices. HAR is selected for
its practical relevance and dependence on data commonly collected by personal devices.
The system uses a Flower-based server coordinating training across five Android smart-
phones, with on-device training and evaluation conducted via TensorFlow Lite (TFLite)
which is one of the few frameworks supporting local updates on mobile hardware.

Through experimental evaluation, the thesis quantifies how key FL challenges impact
HAR across three critical axes: data heterogeneity, energy efficiency, and network relia-
bility. Results show that extreme label imbalance can degrade model accuracy by over
55%. In contrast, when the amount of training data per client is reduced to just 10%,
model’s performance drops by only 2%, indicating the relatively low sensitivity to data
volume imbalance. Energy experiments show that increasing local training on each de-
vice while reducing the number of communication rounds can reduce energy consumption
by over 84% without compromising accuracy. Finally, network experiments reveal that
client dropouts and intermittent participation lead to up to 20% performance loss and
increased training instability, emphasizing the importance of robust aggregation strategies

in real-world deployments.

Keywords

Edge device, Machine Learning, Federated Learning, Human Activity Recognition,
TensorFlow Lite, Flower framework, Data privacy, GDPR, HIPAA, On-device training,
Data heterogeneity, Energy efficiency, Network reliability, Mobile devices, Decentralized

learning, Android, Label imbalance
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Euyaplotisg

Avaryvwptlovtag 6Tl auth 1) gpyocio anoTelel TEOIGY CUC TNUATIXNG EVOCYOANCTC XoU CU-
VTOVIOUEVNC BovAetde, Yo Aleha vo amevdive T evyaploTiee pou otoug Avip®nouc Tou
oLvéBaday oTny eniteuén auTol Tou oxomol. Apyixd Yo Helo va euyaploTHOW ToV ETBAETO-
v xadnynTh pou, xeto Ioavoryiwtn Toovdxa, mou you Edwoe TNV suxatplol Voo XOTamUG T6) Ue
€vaL TOO0 EVOLIPEROV xou TOAUBLEG Tarto Béua. Ev ouveyeio , ogeliw tic Yepuéc pou evyaplotieg
otoug umodrigroug dwdxtopes 'edpyioc Apawvdxng xon Iavayidtng Havialdémoviog yia tny
ouépto T xan Bloexr) oo THELEY| Toug o OAAL ToL GTABLAL TNE EXTOVNONS TNS EpYaciog, divovTdg
pou ornuovtix xoodrynon. Téhog o Adeha va euyopicThon Toug BIolg Pou avipToug
TOU PE TNV XoTavonom, tTnv oThelln xat Ty Vet Toug oxédr , cuvéBalay otnv eniteuin
eVOg axopa oToyou pou. ‘Olol oL TpoavaPePOUEVOL, 0 xdUe €vag amd TNV O ToU TAEURd
Hou €dwoay TNV VEANOT xou TO dpopa Vo GUVEYICW VoL TROCTIO® YLl TOUG OTOYOUS oL TIG

(QLA0B0E(EC oL,
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Extetauévn EAAnvixd Tepiindn

To teleutalar ypdvia, ot cuoxevés oo Axpo tou Auxtbou (edge devices) ue meplopt-
oUEVOUC UTIONOYLO TIXOUE TTOPOUS, OTIKC To EEUTVaL Xtvtd TRAépmva (smartphones), ot popntéc
ouoxevéc (wearables) xadde xou oL cuoxeuéc tou Aadixtoou twv Hpaypdtwy (Internet of
Things - IoT) éyouv xataotel xuplapyes UTONOYIOTIXEC TAATPOPUES, YENOUOTOOVUEVES X0
Ynuepwvd amd dioexatouuleio avidpmroug. Ol cuoxeuég auTég etvar e€omAlouéves pe TAndwe
oo INThpwv, Y., xdUERES, uxpodpumva, cuvothuata evtonopol (Global Positioning System
- GPS), emtayuvolduetpa, yupooxdma xat BIOPETPIX0VC avory VOO TES X TPy oLV UEYEAO
OY%0 TEOCHTIXWY OEdOUEVKDY. AZLOTOLOVTOC aUTES TIC TAOUCIES TINYES BEBOUEVKY, 1) Mnyovi-
xfy Mddnon (Machine Learning - ML) €yet empépet pilixéc ahhoryéc mpocpépovtag amodoTinég
Nooelc o€ Topelc OTwe 1) LYEL XL Tl YENUATOOLXOVOULXA.

‘Eva povtého unyavixrc udidnone omwe éva ot vevpwvixd dixtuo (Deep Neural Net-
work - DNN) exnatdeteton Tumind péow evoc xevipixol Stoxoplo T (server), o onolog GUAREYEL
70 GOVOAO TV BEGOUEVWY TV YeNoTwY. §26T000, 1) TEOCEY Yo auTY| eYElpel coPapég avn-
oLyleg OYETIXA UE TNV WOIWTIXOTNTA Xl OE TOAAEG TEQINTOOELS Oev anoTeAel TAéov Buvoudn
ANOom AOY® NG EXTETOPEVNS EQPUOUOYHSC XAVOVIOH®WY, OTwe ouTthc Tou evixold Kavoviouol
[Tpootaciac AeSouévwy tne Evpwnaixic Entponric (General Data Protection Regulation -
GDPR). Autéc ot avnouylec xadiotavton oxdun mo xplowes 6tay o Sedouéva €youy dxpwe
TEOCWTIXO YUEAX TN, OTWS CTOV TOULN TNG UYELNS 1) OTO YPNUATOOLXOVOUXE, OTIOU EQUQ-
uolovton awoTnEoTEROL xavoviopol onwe o Nopog mepl Popnrotntoc xar Aoyodootac otnyv
Aogdhon Yyelog (Health Insurance Portability and Accountability Act - HIPAA).

H Opoomnovdiax Mdinon - OM (Federated Learning - FL) éyet avodetydel we pia hoon
OTOL UTAEY OVTA TEOBAAUATO LOLWTIXOTNTIS, EMTEENOVTOS OE TOANOUS UTOAOYIG T0UE XOUPOUS
v EXTAOEVGOLY amtd x0voL Evol LOVTELD ywplc Vo xotvoTtotoly ta Tomixd (tpocwmixic @Uong)
oedouéva. 3e udnho eninedo, n Ouoonovdiox Mdinon hertoupyel (enavahopfBovoueva) uéoo
and tplo Paowd Bruata: 1) oL cuoxeuéc mou ocuypetéyouv (clients) exnoudebovy Tomxd éva
%00 (YEVIXS) Unyovixbd HOVTENO YENOWOTOUMVTOS To WOWTIXd Toug dedopéva, 2) oTéhvouy
TIC EVNUEPDOELS TWV ETLUEPOUS HOVTERWY OE EVOV XEVTEIXO BLUXOULO T YioL GUYYOVELVOT| (ag-
gregation) oe évo véo yevnd novtého, xou 3) 0 BlaxoUo TS HETADIBEL TO OVAVEWUEVO YEVIXO
HOVTENO TOW OTOUC CUUUETEYOVTES YLOL TOV ETOUEVO YURO EXTIUOEUOTC.

Iopd tor mAeovexTidota tou npocgépel 1 Opoonovdioxy Mdinor, avtiuetwnilel Booixég
TEOXATOELS, OTIWE 1) ETEPOYEVELX TWYV CUCKEVMDY AL XAl TV CUAAEYOUEVY BECOUEVLV XM
T XUTOVOUT] TOUG UTOREL Var Blapépel onuavTixd HEToED TWV CUOXEVMY. AV xaL UEYHAO UEpOC
NG UPLOTHUEVNS EQEUVOC ETUXEVIPWVETAUL TNV AVTIUETOTION UTGY TV {NTNUATWY, GUY VA
neploplleTon € PEAETEC TPOGOUOIWOTC TIOU YENOWOTOOLY TUTOTOMNUEVA GUVOAX BEBOUEVLY

avapopds, onwe to CIFAR-10. Tétoleg mpooeyyloeic ayvoolv ouoLHOELS TEPLOPIOUOVS TOU
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Abstract

TEAYHATIXO0) XOCUOU, OTWE Ol TEPLORIOUEVOL LUTOAOYIGTIXOL TOpOoL, 1 aoTddelo TOU BXTLOU Xou
1 Sudpxela Lwhe Tne pmataploc. Autol ol mapdyovteg elvat xplowol yior TNV TeaxTixn eQapuoYY
e Opoonovoloxhc Mdadnonc.

H nopoloa epyascia vntootneilel 6t 10 Ydopa uetadh mpocopolwone ot vAonolnong
TpEnel vor xohu@iel, mpoxeuévou va tpoyweroet 1 e€EMEN tng Ouoonovotaxhc Mddnone. H
eqopuoyt) tne Opoomovdiuxhic Mdinone oe mporyuatixée cuoxevée (m.y., smartphones), e
N Xehom WG pEaAlo TG epapuoyNg, umopel va avadel€el T Piwoludtnta Tou mopadelyua-
TOC aUTOV OE TRAYUATIXES CUVITIXES, £V TapdAANA va xododnyHoel 1660 TNV avamTuin
urnodopnv (federated framework) 6co xau ) BeAtiotonoinon twv akyoplduwy cuyyhvevong
(aggregation algorithm).

‘Evog dovixdg topéac yior tn doxur) tne OM oe mparypotixée ocuviixeg etvar to npdfBin-
wo tne Avayvoplone Avipdmivie Apootnpdtnrag - AAA (Human Activity Recognition
- HAR). H AAA agopd t Swodixacion autéuatng aviyveuone xat ta€vounons ovipmdnivemy
CUUTIEQLPOPMY 1| BRAC TNELOTATLY, aZloTolmVTaS dedopéva auointhpwy mou cUAAEyYovToL amd
ouoxeVEc Omwe smartphones xau wearables. Ot SpaGTnELOTNTES QUTEC UTOREL VO XUUOLVOVTOL
ond amhéc xwvhoels (m.y., mepndtnue, xohoTth otdon, Teédo) éwe o cUVIETEC GUUTERL-
popéc (m.y., payelpepa, odhynam, doxnon), nepthaBavovTos xat Epyaciec OYETIXES UE TNV
nopaxohovdnon e vyelog (m.y., avdiuon Badioyatog yior aviyVeuon TTOOEWY ¥ Topoxolo-
OONon %xopdLoxddy Tahpmv). Ol eQupUoYES TS 0TOV TEAYHUTXG XOOUO Elvor ot xou €Y 0uv
amOdEDELYEVA ONUOVTLIXY ETOEAOT) O TOUElC OTKC 1) LYEtovouxy| Tepldahdm xou 1 QUOLXT xa-
tdotoor. O evalotntog yapaxthpac Twv 6edouévev tng AAA xou 1 YeydAn mpoxTixy Tng
o&ior TNV xahotolv xotdAANAN Y T yenon tne OM. Emniéov, n AAA unogel va ulomotrn-
Vel oe undpyovta smartphones xat smartwatches, to onola Swordétouv HoN TOLS amopaitnToUS
woUNTARES, YEYOVOS oL Mo Td TN CUYXEXPWEVY EQUpUOYT Wiaitepa TpocBdotun.

[Mo va Siepeuvniet 1 evowpdtonon e OM oe mporypoatind nepiBdhioy, avoartiydnxe Eva
mheeg obotnua OM. O Blxoustic viomotinxe ue yenorn tou Flower, evég eupéng dua-
dedouévou xar avolytol hoytopxol OM, oyedlocuévou Yoo TNy uTocTHEIEY exnaidevong oe
ToMmAéC cuoxeLéS ata dxpa Tou dixtvou (edge devices). To Flower axolouldel tnv xhaowd
opyLtextoviny server-client xou mpoo@épet UPMAS Bardud TopaUETEOTOMONE Xoo TWHVTAS TO X0t
TEAANAO Yot EQELYNTIXT XPNOT. L TNV TAEURA TWV CUCXELRY, Yenoylomolunxoay smartphones
ue Aertovpywd Android. H exmaideuon xou a€loAdyNnoT TV HOVIEAWY TEOYUATOTOLOUVTOL
tomxd (on-device), pe t yerion touv TensorFlow Lite (TFLite), evoc ex twv ehdyiotwy
epyokelwv mou unootneilovy oyt uévo v eloywyn tpoPrédewv (inference), oAl xou v
Tomxh exnaidevon (training) poviéhwy ot cuoxeuvéc Ue Teptoptopévouc Topouc. To olotnua
nepthoufBdver emlong €va pépog mpoemegepyaoiog dedouévwy, LTELYUVO Yol TNV TEoETOIGL
xau Blovoun) Twv cuUVOALY Bedopévwy AAA otoug cuppetéyovteg. T vy adlohdynon g
npox g Puwootntag e OM xou v xoddtepn xatavonon 1wy cuufBiBaou®y Tou GuVE-
TayETAL, XGVE GUOXELY| €XEL TPOCUPUOC TEL WOTE VO XATAYRAPEL DLAPOPES HETEIXES X))’ O T1)
oudpxeta Tne exnotdeuong. Ou YeTpixéc auTég TEpLhoUBAVOUV: XUTAVAAWOT) EVEQYELAS, ATOXEL-
on emxowvwviog (communication latency), ypdvo exmaidevone xou axpiBetor Tou povTélou.
YUVOMXA, Ol UETPNOELS AUTEG ETUTEETOUV Uiol OAOXANEOUEVT allohdynor tne OM oe teeic
Baowolg dEoveg: amddoor, evepyeloxy| anodotixdtnta xat o&tomotior dixtoou. Ev cuveyeia

TUPOUGLALETOL OVOAUTIXOTEQD TO TEQIEYOUEVO TWV EVOTHTOV.
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Abstract

To Kegpdhawo 2 Vétel ) Yewpntind undfaideo tne mopolous SITAWUATIXAG. ZEXIVEL UE (Lot
CUYOTLTIXT| ETUOXOTNGCT] TOV Bacixmy apy @V TN Unyovixic udinong, tepthopfdvovtag Tig apyég
NG AUTO-EMOTTEVOUEVNG Uddnone (supervised learning), tn Sour TV VELPWVIXGDY BIXTULY,
xadde xou N onuacia twv uneprapauétewy (hyper-parameters), énwe o puduoc pdidnone
(learning rate), to yéyedoc noptidac (batch size) xou o aprdudc emoywyv (epochs).

ISwitepn €upoom diveton OTIC TPOXAHCELC TOU TEOXVUTTOUY and TNV UTopEYN ETEQOYEVGDY
0edouévwy (non-independent and identically distributed data - non-IID data), dnhad¥| oe
TEPITTWOELS OTIOU OL XATAVOUES DEBOUEVMV BLAPECOUY ONUOVTIXA UETAUED TWV CUUUETEYOVIWY
ouoxevwy. Auté To TEOBANU elvon Wiaitepa eupaveg oty meplntwon g AAA, omou 7
CUUTIEQLPOPE TOU EXACTOTE YENOTN TEOXAAEL ONUAVTIXY BLopopOTONCT, 6T CHUUTA TWV ol-
cUNTHELV.

Emuniéov, to xepdrato egetdlel undpyovta hoyiouxd (Federated Learning frameworks)
yioo Ty OM, 6nwe o TensorFlow Federated, FedML, PySyft xau Flower, agloloywvtac o
ue Bdon Ty uTooTARIEN CUCXELWY, TNV TeExUNeiwon xat T SuvatotnTa enéxtaong. H emhoyy
Tou Flower ogelieton o1 cuvey | Tou aVETTUEY, GTN) BLAAELTOLEYIXOTNTA UETAEY GLOPORETLXY
TAATQOPUMY XL GTNY UTOCTARIEY CUUHETEYOVTIWY CUOXEVWY UE Aettoupyixd Android.

To xepdhoto ONOXANEOVETAL UE AVAOXOTNOT TEOTYOUUEVWY CYETIXDV EQYUCLIY X0 €-
vomilel T0 xVplo pEUVNTIXG %EVO: TNV amoucia epapuoywy Ouoonovdxre Mddnone oe
TEOYHOTIXES XIVNTEG GUOXEVES, OIS O GEVAQLN TOU apOEOLY ELAicVNTES Kol WOLWTLXOL Yopa-

XThpa EQopUoYES OTwe N AAA.

To Ke@dhowo 3 eufadiver oto nedio tou mpoliriuoatoc tng AAA Eexwvoviag pe tov
enionuo oplond TOu XL LA EMCXOTNGTY| TG ONUACING TOU OF EQUPUOYES TOU TEAUYUXTIXOU
XOGUOU.

Y1n ouvéyeln e€etdlel 1000 TIC eVOoYEVElS TpoxAfioele g AAA 600 xan exciveg mou
oyetilovta edwd ye Ty OM. O evboyevelc mpoxhnoele TepthauBAvouy TNV oVICOXATAVOUY
XUTNYORLOY ()., 1 SpactnetdtTnTa *orhoTr 6140 UTERAVTITPOOWTEVETOL, EVG 1) GvdBaon
oxdhac’ elvor omévLaL), TNV OUOLOTNTA PETOEY XATNYOopl™Y (TT.)., TEPTATR €vavtl éAappo-
U tpegipatod) xou Ty evdoxatnyopwt| petaBintétnTa (T.y., Slapopéc oTov TpéTo Bddlong
petall yenotwyv). To InrAuata autd nepimAéxouy v exnaidevon xou Ty allohéynon Twv

povtédwv. Amo tny mieupd e OM, n AAA nopouctdlet emmAéov BUGXOMES, OTKG:
o 1 e&otopixeuon (SnhadY| 1 TEOCUPUOYH TOU HOVTEAOL OE OTOUIXE. YUPUXTNELOTIXE)
® 0oL AAAXYEC OTY) CUUTIERLPORE TV YENOTWOVY UE TNV TEEOJ0 TOU YEOVOU

® 1) ETEPOYEVELX GUOXEVMV (DLapopeTIXEC LTIONOYIOTIXES BuvaTdTNTES PeTad smartphones

xou wearables)

LoVt pépog Tou xepuAaiou aPlepVETOL GTY) Blayelplon Twv 6edouévev. Tlapouoidle-
Ta o Sounuévn emoxdmnon TNne potg enelepyastag 6edopévmy otny AAA: and Ty andxtnon
OEBOUEVMV PECL ETUTOYUVOLOUETEMY X0 YUPOOXOTU®Y, €m¢ To 6Tddla Tpoeneiepyaoiog 6mme
1 @uitpopiopatog YoplBou xat xavovixomonong, xadog xou oL T VxS Tunuatontoinong (seg-
mentation) xou e€oywyhc yapoaxtnelotixoy (feature extraction). IMapovoidleton yerétn me-

elntwone tou cuvohou dedouéveny UCT HAR, e éugaon o teyvixéc OTewe QUATEdELoU HECW
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dtopéoou (median filtering), Bodunepatd @iltpo Butterworth xou tunuatonoinon ue yehon
nopadlpwy (windowed segmentation).

Téhog, T0 xe@dharo ewwdyel Tar €L oUVOA BEBOPEVWY TIOL Yenoylonotjdnxay otr ot
mhwpoatiny epyacio: UCI HAR, PAMAP2, MHealth, HARSense, PhysioNet, MotionSense.
Kde ocOvoro emeréyn wote va xaAUTTEL OAO TO @doua ot TOTOUE UoUNTARLY, CUYVOTT-
te¢ Oerypatohndloc, Tohumhoxdtnta npoeneiepyaciog xat elpog dpactneotitwy. H ev Adyw
Towhopoppla EMTEENEL TNV €0pWo TN alOAGYNoT ToL cLCTHUATOC OM LTS BLUPORETIXES GUV-

UAEC OEDOUEVWY X0 GUUTERLPORMY YLENO TMOV.

To Kegdhato 4 moapoucidlel to mArpeg oo tnuo OM mou avartiydnxe yio tny a&loAdyn-
on tou tpoPAfuatoc AAA o TEaypaTIXéS CUOXEVES 6TaL dxpa Tou dixthou (edge devices). H
uTodOUT GYEOLAoTNXE UE BdoT 600 VeUEAOOELS dpyES: TNV EMEXTACLUOTNTA XOL TNV Toyelo TEL-
poortixt) oa&tohoynom. Av xou Oha Tor Telpdpato Tearylotototinxay oe Android smartphones
yenowornowwvtac to TFLite, to cbotnuo dOvatar vo unocTnellel EUPUTERT, ENEXTACILOTN T
o dAheg mhatpopues xar Machine Learning frameworks.

H newpopotind didtoln amoteheltar and évav xevipd Swxouotr xou mévte Android
smartphones, 6ha cuVSedeUEVa o Tomxd dixtuo Wi-Fi. Ou cuppetéyovteg extelolv wa An-
droid egapuoyt, n onola dayepileton TNV TOomXH EXTAldELOT XaL AgLOAOYNCT TOU UOVTEAOU,
eV® 0 Blaxouto Trg efvat LTEGHUVOC Yol TH CUYYWOVELCT] TV POVTEAWY, T1) Slovoun Twv dedo-
UEVWY XAl TOV EAEYYO TOV TEWaUdTwy. T TNV uToG THRIEN TaYEWY TELRUUATIXDY XOXAWY, TO
cboTNUA TEpLhopBdvel auTopaTOTOMNUE VY EpYORElD Yo TNV TpoeTeEepyacio TV BeBouévwy, 1
OLUUOPPOCT) VPYLTEXTOVIXWY UOVTEAWY, XOL TNV XATAYEAUPT Bacinmy UETEIXWY OTWS 0 YPOVOS
EXTIUOELOTC, 1) AMOBOGCT] TOU UOVTENOU, 1) XATAVAAWGCT) EVERYELXS X0l Ol GUVITIXESC TOU BxTUOU.

Mia amd Ti Baoinéc TEYVIXEC TEOXAACEL TTOU AVTWETWTICTNXAY GTO GYEBLICUO TOU GU-
othuatog ytav 1 aduvopio Tov TFLite va evnuepvel Tic TUpAUETEOUEC TV HOVTEAWY TEOY P~
HoTlo Tixd. Autd amodtnoe and Tov SlXople TH VoL avaicUVIETEL xou VoL ETOVAUETASIBEL 0OAOXANRO
70 YoVTELO oE %dE YOO, YEYOVOS TTOU BNULOURYEL GNUAVTIXNG UTOAOYLO TIXG X0l ETUXOLVWVIAXO
*OGTOC.

H unodoun nepthopfdver enione éva obotnuoe eneepyooioc dedoyévwv (data pipeline),
IXAVO VOl TIPOCOUOLOVEL SLAPOPES XATUO TAGELS AVOUELOYEVHDV dedouévey (non-11D) péow ehey-
YOUEVNC TUNUaToToinone xou dnuoupyiog avicoxatavounc xatnyopldv. Ol GUUUETEYOVTES, O
Sroxoplo The xou To oV TN cUAOY TG petedv (Statistics Collector) ouvepydlovtan wote va
XATAo THoOLY BuvaTh TN cuo TuaTxy agloAdynon tng OM. H allohdynom yweiletar otig e€¥g
XxaTNYOopleg: TNV ETEPOYEVELX BEBOUEVLVY, TNV EVERPYELOXY) OmOBOTIXOTNTA XL TNV adlomoTia

OxTVOL.

To Keg@dhowo 5 anotehel tov nuprva tne metpopotin’ic avdivong. Ioapouoidlet o oelpd
amo SoUNUEVA TELRAUATA, UE 0XOTd TNV a&lohOYToT TN ENidpaong Twv meptoplouwy e OM
OTNV ANO00CT| TWV UOVTIEAWY XATE UAXOS TELOV PACXOV afOVwV: ETEPOYEVELXL BEDOUEVLV,

evepyetaxy) amodotixdTnTa xou oflomotio Sixthou.

e Etepoyéveia Acdopévwv: To nelpduota Tpocouounvouy didgpopa cevdpta non-1ID

HOTOVOUMY, TEQLAUBAVOVTAUC TapadElYLaTa avicoxaTtavounc eTixetoyv (class imbalance
7 )
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avioouepolc byxou dedopévov (quantity imbalance) xadde xou tov cuvduaoud Touc.
Evoewtind, povtéha mou exToudelTNXoY UTO oxpaleC GUVITXES AVICOXATAVOUNG ETIXETOV
nopouciacay uelwon oty anddoon mou unepéPn to 55%, eved 1) uelwon tou Gyxou
dedopévov avd ouppetéyovta oto 10% elye we anotéleopa andieio oaxpifelag pOAC
2%. To anoteléopoto autd LTodetxviouy dt 1 OM eivon teploodTepo guaicVnTn oTNY

XATOVOUY| TWV ETIXETAYV, TOEE OTOV AVICOUERT] OYXO GEOOUEVWLYV.

e Evepyeiaxn AnodotixdtnTa: 'Evo chvolo meipoudtwy diepedvnoe tn oyéon e-
ToE) XATAVIAWONG EVEQYELNC Xal amOBooNg, UETUBEANOVTOC TOV optdud TWV TOTXOV
enoy v exnaidevone (local epochs). Me v adénon tng Tomxrc utoloyloTixic ent-
Bdpuvong xon TN Uelon TS CUYVOTNTIC ETUXOWOVING, 1) XUTAVIAWOT] EVERYELIS WEL-
OOnxe éwe xou 84%, ywpic andheies oty axpifela. Emmpbodeta newpdyata eZétacoy
NV enldpacT TN TOAUTAOXOTNTAUC TOU LOVTEAOU, ATOOEXYUOVTOS OTL ToL AAS LOVTENX

anodidouy opoiwe Ye Tor GOVIETA, HUTAVOURWVOVTAS CNUAVTIXG ALYOTERY) EVEQYELD.

e AZomiotio SixtVou: H enldpaon g aotadols cuVBECOTNTAS TEOGOUOLWUTXE
péow mdavoloyxhc ouppetoyfic (probabilistic participation model) cuppeteydvtwv
xou LoV amoouvdécenmy (permanent dropouts). H Siakeinouoa ouppetoy 0drynoe
oe petworn e axpifelag €wg xau 20% xou mpoxdheoe oo TdVEL oTn oUYXAOY TV Uo-
viéhov. To amoteréopoarta autd uroypauuilouy tn onuacior avIeEXTIXOY CTEATNYIXOY

ouyywvevonge (fault-tolerant aggregation).

L UVOANXE, T TELRAUATO AUTA TTROCHPEROLY ULl ONOXATIPWUEVT] ELXOVA TWV AVUTOPEUXTLV
ouuPBacuny Tou tpoxinTouy and TNy viornoinon tng OM oe mpaypatinés cuvdnxes. Emi-
TAEOV, ETUXVRWYOLY T1| YeNoTXOTNTA TNg unodounc mou avantdydnxe oto Kegpdhowo 4 xou
TEOCPEPOLY TEAXTIXA cuunepdopata Yo T Bedtinon tng OM oe nepiBdhhovTa XvnTwy cu-

OXEVOV.

To tehevtaio xe@dAAO CUVIETEL ToL EUPHUTA TNG ToEOVCUS BITAWUATIXAC EPYACIAC.
Arnotun@vovton eniong ol teploptopol e gpyacioc. Luyxexpyléva, emonuolvetol 6Tl 1 UAO-
moinon a&lohoyinxe oe meploptopévn xAluaxa ue LOAC Tévte cuuueTéyovieg. Emniéov dev
EVOWUUTOUNXE XATOLOC UNYOVLOUOC AoQoAoUS GUYYMVEUOTC (Secure aggregation), eved Swami-
OTWVETOL %Ol 1 avayxn yia BeEATIOUEVN uTooTHEEN TNg Tomx g exnaidevong and to TFLite.
Téhoc, mpoteivovtan dVo Baoixée xateudivoelg yeAovtixic épeuvag Tou agopolv: 1) tn Bek-
Tiwon tou undpyovtog Thastou OM mou exgedleton xUPlwE OTNY EVOOUITWOY TEONYUEVWY
ohyoplduwy aggregation xou 2) Tnv ENEXTAOT TNG TELRUUOTIXNG DIEPEVYNONG Vit VoL EEETUG TOVY
mo obvieTeg oupmeptpopéc TS OM, OTKC Yiot TUEABELY U 1) OYETT HETOED TNG OEYLITEXTOVIXAC
TOU UNYAVIXOU UOVTEAOU UE TNV ambdooT (axplBelo LOVTENOU) Xat TO oVTIGTOLYO EVERYELOX

®xOGTOC.
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Chapter

Introduction

In recent years, resource-constrained edge devices such as smartphones, wearables
and IoT devices have become the dominant computing platforms, used daily by billions
of people [1]. These devices are equipped with a wide variety of sensors (e.g., cameras,
microphones, GPS, accelerometers, gyroscopes, and biometric readers) and generate large
volume of user-centric and often sensitive data. By leveraging this rich data sources,
Machine Learning (ML) has revolutionized industries such as health, transportation, and
finance. Traditionally, a ML model like deep neural network (DNN) is trained on a central
server by data collected from every edge device [2]. However, this approach poses serious
privacy concerns and in many case it is no longer a sustainable solution due to increasing
legislative pressures such as European Commission’s General Data Protection Regulation
(GDPR) [3]. These concerns are even more critical on cases where data is highly per-
sonal such as health or finance, where there are stricter regulations like Health Insurance
Portability and Accountability Act (HIPAA) [4] which protect the privacy and security of
sensitive health-related information.

Federated Learning (FL) [5] has emerged as a solution to privacy challenges by en-
abling many computing nodes to collaboratively train a model while keeping data private.
At a high level, FL operates by iterating three core steps: i. clients locally update a shared
model on their private data, ii. they send these updates to a central server for aggregation,
and iii. the server broadcasts the updated global model back to clients for the next round
of training. Despite its promise, there are some key challenges such as the heterogeneous
nature of edge devices [6] and the collected data [7] where data distribution can signifi-
cantly vary across devices. While much of the current FL research focuses on addressing
these issues, it is often limited to simulation-based studies using standardized benchmark
datasets such as CIFAR-10 [8]. These setups overlook key real-world constraints such as
limited computational resources, network instability, and battery life which are essential
deploying FL to address practical problems.

This thesis argues that closing the gap between simulation and deployment is essential
for the evolution of FL. Demonstrating FL on real edge devices (e.g smartphones) using
a practical use case can illuminate the real-world feasibility of this paradigm and guide
both infrastructure development and algorithmic advances. An ideal application domain
to test the feasibility of real-world FL is the Human Activity Recognition (HAR) problem

[9]. HAR is the process of automatically detecting and classifying human behaviors or
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activities using sensor data collected from devices such as smartphones and wearables.
These activities can range from simple actions (e.g., walking, sitting, running) to more
complex behaviors (e.g., cooking, driving, exercising), and may also include health-related
monitoring tasks (e.g., gait analysis for fall detection or heart rate tracking for cardiac
conditions). The real-world applications are diverse and have demonstrated significant
impact in domains such as healthcare, fitness, and smart environments. HAR’s privacy-
sensitive data and significant practical value make it an ideal use case for FL. Moreover,
HAR systems can already be deployed on existing smartphones and smartwatches which
are equipped with the necessary sensors, making it an highly accessible testbed.

To explore the integration of FL in a real-world setting, a complete end-to-end FL
system was developed. The server was implemented using Flower [10] which is a widely
used open-source FL framework designed to support training across multiple edge devices.
Flower follows the standard server—client architecture and offers high customization capa-
bilities, making it suitable for experimentation and research. On the client side, Android
smartphones were used to perform local training and evaluation tasks using TensorFlow
Lite (TFLite) [11] which is one of the few frameworks that supports on-device training. The
system also includes a data preprocessing pipeline responsible for preparing and partition-
ing HAR datasets across clients. To assess the practical feasibility of FL and better under-
stand its trade-offs, the server is configured to log various metrics throughout the training
process. These metrics include energy consumption, communication latency, training time,
and model accuracy. Together, these measurements allow for a comprehensive evaluation
of FL across three key dimensions: performance, energy efficiency, and network reliability.

The contributions of this thesis are closely aligned with its motivating objectives.
First, it highlights the scarcity and real-world limitations of current ML infrastructure for
edge devices. A key challenge encountered was the inability of TFLite to programmatically
update model weights. This limitation required the full recompilation and redistribution
of the model at each training round, which increased system complexity and convergence
speed. Second, this thesis provides an experimental assessment of how key FL challenges
affect the performance of the HAR tasks. The performance-focused experiments show that
data heterogeneity can significantly degrade model accuracy and stability. Specifically,
results show that extreme label imbalance can degrade model accuracy by over 55%. In
contrast, when the amount of training data per client is reduced to just 10%, model’s
performance drops by only 2%, indicating the relatively low sensitivity to data volume
imbalance. Energy experiments show that increasing local training on each device while
reducing the number of communication rounds can reduce energy consumption by over 84%
without compromising accuracy. Finally, network experiments reveal that client dropouts
and intermittent participation lead to up to 20% performance loss and increased train-
ing instability, emphasizing the importance of robust aggregation strategies in real-world
deployments. In summary, this work provides a practical evaluation for applying FL for
HAR task on edge devices. By implementing and testing a complete FL system, it offers
empirical insights into the trade-offs, bottlenecks, and design considerations that currently
shape the feasibility and scalability of FL in real-world applications.

The structure of this thesis is organized as follows: Chapter 2 introduces the foun-
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dational concepts of ML and FL, including the core architecture of FL. and its major
challenges, such as data heterogeneity and system-level constraints. It also provides a
concise overview of relevant software frameworks, explaining the rationale behind selecting
Flower for this work. Finally, it reviews related studies focused on real-world FL imple-
mentations on edge devices. Chapter 3 provides a detailed overview of HAR, exploring its
primary use cases, common challenges, and their intersection with FL’s constraints. The
chapter also presents the six datasets selected for experimentation, which were chosen to
represent diverse sensing modalities, preprocessing methods, and activity types. Chapter
4 describes the design and implementation of the end-to-end FL system developed for this
thesis. It details both the server-side and client-side components, the integration of TFLite
for on-device training, and the mechanisms used to measure energy consumption, network
behavior, and model performance. Chapter 5 presents the experimental evaluation, struc-
tured around three key dimensions: i) model performance under non-IID and client-scaling
conditions, ii) energy consumption as a function of configuration parameters and iii) the

impact of unstable network conditions on training efficiency and convergence.
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Chapter

Foundations of Federated Learning for Edge-Based
HAR Applications

This chapter establishes the theoretical background of FL along with preliminary
concepts such as neural networks and ML while focusing on the key considerations when
it is applied to HAR related applications. Given the broad scope of the research field, the
foundations of HAR will be analyzed separately in Chapter 3.

This chapter is organized as follows: Section 2.1 presents an overview of supervised
learning and the structure of deep neural networks. Section 2.2 defines FL and distinguishes
between its cross-device and cross-silo settings. Section 2.3 formalizes the FL optimization
problem and describes the Federated Averaging (FedAvg) algorithm, which is selected
in this work as it serves as the standard and most widely adopted method for model
aggregation in the FL literature. Section 2.4 outlines key challenges in applying FL to
edge environments, including system heterogeneity, limited device resources, and data non-
IIDnesss, where data across devices varies in distribution, deviating from the assumption
of uniform and independent data. Section 2.5 evaluates existing FL frameworks for edge
deployment and provides rationale behind the selection of Flower. Finally, Section 2.6

reviews related work and identifies specific research gaps that this thesis aims to address.

2.1 Fundamentals of Machine Learning and Neural Networks

Machine Learning (ML) represents a paradigm shift in computational modeling, en-
abling systems to learn complex functions from data rather than relying on explicitly pro-
grammed rules. In supervised learning, the most common paradigm, models are trained
to minimize a loss function that measures the discrepancy between predicted outputs and
ground-truth labels. As described in the standard ML literature [2], parameters are typi-
cally optimized via gradient-based methods (e.g. stochastic gradient descent), iteratively
adjusting model weights to reduce loss and improve generalization on unseen data.

Neural Networks (NNs) form a powerful class of machine learning (ML) models. Like
classical approaches such as Support Vector Machines (SVMs) and Bayesian methods, they
are used to learn highly nonlinear relations from data. They have achieved state-of-the-
art performance in domains such as computer vision [12] and natural language processing

(NLP) [13]. Neural networks are composed of interconnected computational units called
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neurons, organized into layers as illustrated in Figure 2.1. These layers include an input
layer, which receives the raw data, one or more hidden layers, which extract intermediate
representations through transformations and an output layer, which produces the final
prediction. Each neuron performs a weighted sum of its inputs (via matrix multiplication

and bias addition) followed by a nonlinear activation function such as ReL.U or sigmoid

2].

Hidden
Input

‘ Output
R
o KO0

Figure 2.1. A generic Neural Network architecture

The ML process can be divided into two main phases: the training phase, where
the model learns patterns from data by updating its internal parameters, and the inference
phase, where the trained model generates predictions on new, unseen data. During training,

several key hyperparameters must be configured to guide the learning process:

Epochs: One epoch represents a full pass through the training dataset. Multiple epochs
allow the model to progressively refine its parameters. However, using too many epochs can
lead to overfitting, where the model memorizes the training data rather than generalizing

to new inputs.

Batch Size: This defines the number of training samples processed before the model’s
parameters are updated. Smaller batch sizes introduce more variability (or noise) into each

update, which can sometimes help improve generalization.

Learning Rate: This determines the step size used during gradient descent to update

model weights. It directly affects both the speed and stability of the training process.

In summary, ML and neural networks provide a powerful approach for building data-
driven solutions to complex tasks. The performance and behavior of these models are
influenced by the chosen architecture (e.g., number of layers, neuron types), the loss func-

tion (which quantifies prediction error), and hyperparameters like those defined above.
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2.2 Overview of Federated Learning: Principles and Use Cases

FL is a distributed ML paradigm in which model training occurs locally on multiple
clients rather than centrally on a single server. Instead of uploading raw data, each client
trains a local copy of the global model on its own private dataset and transmits only
its updated model parameters (e.g., weights or gradients) to the central server [5]. The
server then performs an aggregation step, most commonly by a weighted average method
known as Federated Average (FedAvg), to produce an improved global model, which is then
redistributed to all clients for the next round of local training. This process is illustrated

in Figure 2.2

Aggregate
Local Updates

Initialize <> Update

Global Model I —=A Global Model

—— Repeat @to@
»

«

Distribute Collect
Global Model Local Updates
Global
Weights
Local Local Local
Update 1 J Update 4
» 4 |

4
— — — — Local
w @ Training

Client 1 ient 3 Client 4

Figure 2.2. Federated Learning Framework

FL addresses the challenge of limited data availability, which along with computational
resource constraints represents one of the two fundamental challenges in ML development.
State-of-the-art models, whether deep neural networks (DNNs), convolutional neural net-
works (CNNs), recurrent neural networks (RNNs), or transformers, typically require large
datasets and significant computing power. For instance, AlphaGo which marked a land-
mark in Al development since it defeated a world champion in the game of Go, relied on
over 300,000 human-played games to achieve its breakthrough performance [14]. However,
in many domains such as finance, healthcare, mobile applications, data is isolated and
stored in separate systems or departments due to privacy regulations (e.g., GDPR |[3]),
competitive barriers, or logistical hurdles which prevents effective integration and sharing

across the organization.
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FL is categorized into cross-device and cross-silo settings [15]. Cross-device FL involves
millions of low-resource clients, such as smartphones or IoT devices, generating local data
like sensor readings or user interactions. Real-world applications include Google’s Gboard,
which enhances next-word prediction using on-device data while preserving privacy [16],
and Apple’s “Hey Siri” wake-word detection, which personalizes voice recognition without
uploading sensitive audio [17].

In contrast, cross-silo FL involves a small number of high-resource organizations, such
as hospitals or banks, collaborating to train a shared model while keeping sensitive data
private due to strict regulations like HIPAA [4] or competitive barriers [18]. Data sharing
may also be restricted within the same organization across regions due to legal constraints
[15]. This setting features abundant computational power and large datasets but faces
challenges like data heterogeneity, trust issues among competing entities, and high com-
munication costs from complex model updates [18]. Promising applications include medical
image analysis, where hospitals use FL to improve brain tumor segmentation in MRI scans
[19] and financial crime detection where banks employ frameworks like Fed-RD to identify
anomalous transactions privately [20].The differences between cross-device and cross-silo

settings are illustrated in Figure 2.3.
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Figure 2.3. Cross-Device vs Cross-Silo Federated Learning.

2.3 Formulation of the Federated Learning Pipeline

This section presents a formal definition of the FL paradigm. A typical FL pipeline

which is applicable to both cross-device and cross-silo scenarios works as follows:

1. Client Selection & Model Initialization: The server selects a subset of available

clients based on predefined conditions. For example, in mobile applications like
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Gboard, a client device is chosen only if it is idle, charging, and connected to Wi-
Fi to minimize user disruption. The server then initializes the global model with

parameters 6.
2. Model Broadcast: The initialized model is distributed to all selected clients.

3. Local Training: Each client trains the received model on its local dataset for a
predefined number of epochs (either fixed or variable). This step generates a locally

updated model for each client.

4. Upload Local Updates: Clients send their updated model parameters (e.g., weights

or gradients) back to the server.

5. Aggregation: The server collects the updates from all participating clients and

aggregates them to form a new global model.

6. Broadcast Updated Model: The server broadcasts the updated model weights
back to clients (either the same set or a newly selected subset) for the next round of

training.

7. Repeat: Steps 2-6 are repeated until a stopping criterion is met (e.g., a target

global-model accuracy or a predefined number of federated rounds).

Aggregation algorithms are the cornerstone of FL, as they combine local client updates
to optimize a global model. Although FedAvg can be considered as benchmark due to its
simplicity and effectiveness, it struggles with data heterogeneity. This a common FL
challenge that causes client drift, a phenomenon where local models, optimized on client’s
unique data, diverge from the global model which complicates the aggregation and degrades
global model’s performance.

Consequently, aggregation remains an active research area, with numerous algorithms
proposed to address different FL hurdles [21]. For example, FedProx [22]| extends FedAvg
by adding a proximal term to the local loss function, penalizing large deviations from
the global model to enhance convergence in non-IID settings. Similarly, SCAFFOLD [23]
mitigates client drift by using control variates to align local updates with the global gradient

direction, achieving faster convergence but with higher communication costs.

2.4 System and Data Challenges in Edge-Based Federated

Learning

This section outlines the major challenges of deploying FL in real-world edge envi-
ronments. Edge devices are computing units such as smartphones, smartwatches, and IoT
sensors that are located near the data source and perform local processing instead of re-
lying on centralized servers. These devices commonly operate under constraints such as
limited connectivity, energy, and computational resources. The key challenges examined

in this context include system heterogeneity, resource scarcity, and data heterogeneity.
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2.4.1 System Heterogeneity

FL system must operate across a wide variety of devices, each with different hardware
capabilities, operating systems, and network conditions. Edge devices vary in CPU per-

formance, memory availability, energy constraints, and connectivity (e.g., 4G, 5G, Wi-Fi)

[6].

2.4.2 Resource Scarcity

Edge devices are typically constrained in processing power, RAM, and battery life.
These limitations restrict the size of models that can be trained locally and the frequency
of communication with the server. Addressing these constraints is essential for scalable

and energy-efficient FL systems [24].

2.4.3 Data Heterogeneity

Data non-IIDness is perhaps the most pervasive challenge across all FL deployments.
Given its critical importance, we will now analyze it in greater depth. In statistics, the
IID assumption means that the data is independent and identical distributed, and it is
foundational to the ML concept. Independence means that samples do not influence each
other, while identical distribution means that all samples originate from the same underly-
ing probability distribution. An IID example is the well-known coin-toss experiment: each
flip is independent, and a fair coin yields a constant head-vs-tail probability over time (e.g.,
p(head) = 40%, p(tail) = 60%). In contrast, HAR data are strongly temporally correlated,
and each user’s gait patterns vary according to factors such as age and gender [25], violating
both independence and identical distribution. This distinction matters because standard
ML practices, such as train/test splits rely on the assumption that unseen data follow the
same distribution as the test set used for validation. In federated settings, non-IIDness is

inevitable, since each client’s data reflects unique habits and device characteristics [7].

2.5 Software Frameworks for FL on Edge devices

Selecting an appropriate framework is a critical decision for both research and practi-
cal deployment of FL. Although numerous frameworks have been proposed, the diversity
of implementations and the absence of comprehensive comparative surveys make choos-
ing one for real-world use non-trivial. For the purposes of this thesis, the framework
must support cross-device configurations on heterogeneous edge hardware and enables effi-
cient communication. Although the experiments will be conducted exclusively on Android
smartphones, the chosen framework should offer portability to other edge or IoT platforms
(e.g., Raspberry Pi) in order to meet FL broader requirements for the cross-device setting.

A quick review of popular Federated Learning (FL) frameworks showed that most
frameworks, including TensorFlow Federated (TFF) [26] and FATE [27], are intended
primarily for simulation environments. This design focus limits their applicability for

on-device execution in edge scenarios. A recent and highly useful comparative study eval-
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uated fifteen frameworks based on key criteria such as support for heterogeneous hardware,
aggregation algorithms, and privacy-preserving features (e.g., weight encryption, differen-
tial privacy, secure aggregation) [28]. Among these, PySyft [29], FedML [30], and Flower
[10] emerged as the most suitable for real-world edge deployments as they are compatible
with various devices and operating systems

To guide the final selection, each of these three frameworks was examined across three

primary dimensions:

e Development Activity: Is the framework under active maintenance and frequent

updates?

e Ease of Deployment: How straightforward is it to install, configure, and deploy

the framework on diverse devices?

e Documentation Quality: Does the framework provide clear, comprehensive guides

and examples for various use cases?

PySyft was excluded due to its lack of Android support. This narrowed the focus to
FedML and Flower. Flower was ultimately selected as the framework of choice because it
provides comprehensive documentation and includes examples demonstrating FL deploy-
ment on Android devices. Although advanced privacy-preserving features such as secure
aggregation and differential privacy are not fully supported, this limitation does not con-
flict with the research objectives, which primarily focus on addressing system and data
heterogeneity.

Flower’s key strengths also include its communication, language, and ML-framework
agnostic design. It supports multiple communication protocols (gRPC, REST), program-
ming languages (Python, Java, C++), and machine learning backends (TensorFlow, Py-
Torch, Keras). Moreover, Flower is compatible with a wide range of operating systems,
including Linux, macOS, Windows, Android, and iOS, making it well-suited for our appli-

cation.

2.6 Related Work and Research Gaps

Since its emergence as a research field, FL has attracted significant attention from
the ML community. Most existing studies have focused on theoretical formulations and
simulation-based experiments, addressing key challenges such as data heterogeneity (non-
IIDness), communication efficiency, privacy, scalability, aggregation algorithms, and energy
consumption. For instance, the authors in [31] introduced FedNAS to address the challenge
of non-IID data distributions by using neural architecture search to identify the optimal
model configurations depending on the used dataset. Communication efficiency has been
improved through techniques like model update sparsification and quantization, which
significantly reduce bandwidth usage [32|. Scalability issue which are often caused by
intermittent or unreliable communication between edge devices and central servers have
been tackled using asynchronous aggregation methods which allow clients to send updates

independently [33]. Additionally, the energy impact of FL has been studied. For example,
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[34] showed that in certain configurations, FL can consume up to twice the energy of
centralized training, which highlighs the importance of using strategies that balance model
accuracy with energy efficiency. Although these topics are critical to FL research, the vast
majority of studies remain limited to simulation environments. Comparatively few works
explore the practical implementation of FL in real-world settings.

In contrast to the simulation-based literature, a smaller but growing number of studies
have explored real-world FL deployments on heterogeneous hardware. For example, the
authors in [35] implemented the FedAvg algorithm on a testbed of five Raspberry Pi 4
devices connected via Wi-Fi using a TCP-based socket interface. Their experiments, are
based on the CIFAR-10 dataset and examine factors such as client participation, local
training epochs, data heterogeneity, and client mobility. These findings contribute useful
observations for FL deployment in the IoT context.

In [36], the authors explore on-device FL using the Flower framework over Android
smartphones and Nvidia Jetson TX2 embedded devices. This study also uses the CIFAR-
10 dataset, but also extend the evaluation beyond model performance by examining energy
consumption and network overhead in FL settings.

Authors at [37] proposed the FedloT platform and FedDetect algorithm for anomaly
detection on nine Raspberry Pi 4Bs, using MQTT for communication. This setup utilized
the N-BaloT dataset 38|, which captures network traffic generated by malware attacks
such as Distributed Denial of Service (DDoS) on IoT devices.

While these studies have successfully demonstrated FL execution on physical edge
hardware, their experimental setups are limited in scope. The studies in [35] and [36]
rely on CIFAR-10 which a standard image classification benchmark dataset that does
not capture the complexities of real-world applications like HAR. As a result, it does not
address critical domain-specific challenges such as class imbalance, sensor noise, or temporal
data dependencies. In contrast, the work in [37] is more realistic in scope due to its use of
IoT-relevant anomaly detection data. However, it focuses primarily on model performance,
without analyzing other critical aspects such as energy consumption or network usage which
are both essential for evaluating FL feasibility in constrained environments. This thesis
aims to bridge this gap by implementing and evaluating an FL system using real-world,
non-IID HAR data on heterogeneous Android smartphones, while also focusing on both

energy efficiency and communication performance.
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Chapter

Human Activity Recognition: Foundations, Challenges,

and Data Considerations

This chapter establishes the theoretical foundations of the HAR problem and explains
the rationale behind selecting this as the topic of research. But before presenting the core
concepts, it is important to provide the formal definition. HAR is the process of automat-
ically detecting and classifying human behaviors or activities using sensor data collected
from devices such as smartphones and wearables. These activities can range from simple
actions (e.g., walking, sitting, running) to more complex behaviors (e.g., cooking, driv-
ing, exercising), and may also include health-related monitoring tasks (e.g., gait analysis
for fall detection or heart rate tracking for cardiac conditions). The real-world applica-
tions are diverse and have shown great promise, as demonstrated by their use in domains
such as healthcare, fitness, and smart environments. This chapter is organized as follows:
Section 3.1 presents the motivation for selecting HAR as a representative case study for
evaluating FL in a practical and privacy-sensitive domain. Section 3.2 discusses traditional
and FL-specific challenges in HAR. Section 3.3 describes the characteristics of HAR data
on smartphones, including acquisition, preprocessing, and feature extraction. Section 3.4

provides an overview of the six public datasets used in this study.

3.1 DMotivation for Selecting HAR as a FL Use Case

3.1.1 Why HAR is Suitable for Federated Learning on Edge Devices

The primary motivation for selecting a HAR dataset in this thesis is based on its
suitability as a proof-of-concept application for FL on edge and IoT devices. It is as a
highly promising technology, which is already integrated into numerous fitness and health
applications [39] [40]. More crucially, it involves the processing of highly sensitive user
data, making it well aligned with the privacy-preserving nature of the FL framework.
Other viable FL applications on edge devices include Network Intrusion Detection Sys-
tems (NIDS). These have been extensively studied in recent research [41] [42] [43] and are
supported by well-documented datasets such as Edge-1ToTset [42]. However, they typically
require domain-specific expertise in cybersecurity and network engineering as well as ac-
cess to specialized test environments, such as simulated industrial networks or malware

detection frameworks. In contrast, a HAR application can be built and evaluated using
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data collected from everyday devices, without requiring extensive knowledge in the net-
work engineering field. Furthermore, HAR benefits from a wide range of publicly available
and well-documented datasets, making it a practical and accessible choice for research in
this field. Below are the key factors that support the selection of HAR for this thesis:

e Feasibility of Real-World Deployment
HAR data can be collected passively in real time with minimal user burden, enabling
scalable on-device processing. Moreover, the use of personal smartphones as data
collection devices make it a feasible and no-cost approach as it requires no additional

hardware.

e Sensor Availability
Modern smartphones and wearables are equipped with accelerometers, gyroscopes,
and physiological sensors (e.g., heart rate monitors), making them ideal platforms
for HAR data collection [44].

e Practical Relevance
HAR supports applications in healthcare (e.g., monitoring elderly patients), fitness
tracking, rehabilitation, and safety systems (e.g., detecting driver drowsiness) [39]
[40].

e Privacy Requirements
Activity data can reveal sensitive information, such as daily routines, sleep patterns,

or health conditions, necessitating privacy-preserving approaches like FL [45].

e Alignment with FL
As discussed in Chapter 2, FL: enables collaborative model training across distributed
devices without sharing raw data, enhancing privacy and reducing communication
overhead [46]. This makes FL particularly suited for HAR, where data is generated
by heterogeneous edge devices [47].

3.1.2 Real-World Applications of HAR in Health Domain

This section provides a deeper exploration into real-world applications of HAR with
a particular focus on the health domain. In health monitoring, HAR facilitates remote
cardiac monitoring and arrhythmia detection by analyzing physiological signals such as
heart rate and electrocardiogram data, enabling timely interventions for cardiovascular
conditions [39]. In clinical diagnosis, HAR supports the detection of gait abnormalities
associated with neurodegenerative diseases, such as Parkinson’s or Alzheimer’s, by analyz-
ing movement patterns to aid in early diagnosis and treatment planning [46]. For mental
health, HAR leverages wearable sensors to monitor stress through physiological markers
like electrodermal activity (EDA) and skin temperature, as demonstrated in studies using
multimodal data to classify self-reported stress and mental health states in college students
with high accuracy [48|. In safety applications, HAR plays a critical role in detecting driver
drowsiness using biosignals, such as heart rate and breathing rate, measured by wireless

wearables like the BioHarness 3, to alert drivers and prevent accidents [49]. Collectively,
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these diverse applications highlight HAR’s potential to enhance individual well-being, sup-

port clinical decision-making, and promote safety in real-world environments.

3.2 HAR Challenges and Its Integration with FL

Deploying HAR systems in real-world settings presents significant challenges, both
inherent to HAR and specific to FL. These challenges can be broadly categorized into two
groups: intrinsic challenges inherent to HAR itself, and challenges specific to deploying
HAR in FL setting.

3.2.1 Intrinsic HAR Challenges

HAR datasets are inherently non-IID (refer to Chapter 2.4 for a detailed analysis of the
non-IID problem). Sensor signals vary significantly depending on the user, the placement of
the device on the body, and the specific hardware used. As a result, the same activity can
produce different signal patterns across individuals and contexts, making generalization
difficult and increasing the risk of overfitting to user- or environment-specific features [47].

Researchers have further characterized this non-IID nature using the concepts of:

e Intraclass Variability
The same activity (e.g., "walking") can appear very differently depending on the
user’s gait, device placement, or walking speed. This variability complicates classifi-
cation and increases the likelihood of false negatives, requiring robust and adaptable

models.

e Interclass Similarity
Different activities (e.g., brushing teeth vs. eating) may produce similar sensor sig-
nals. This overlap introduces ambiguity and misclassification risks. Such challenges
can be addressed, to some extent, by incorporating multi-sensor or multimodal data

(e.g., using sensors on the wrist, ankle, and chest) [9].

Another major challenge is class imbalance. Most HAR datasets are dominated by
common, low-effort activities (e.g., sitting, standing), while rarer or more complex behav-
iors (e.g., stair climbing, jumping) are underrepresented. This imbalance biases the model
toward majority classes, reducing performance on infrequent but often more critical activ-
ities. Finally, HAR systems are affected by concept drift; that is the phenomenon whereby
user behavior and activity patterns change over time due to factors such as aging, injuries,
seasonal variations, or lifestyle changes. Without mechanisms for continual or online learn-
ing, static HAR models degrade in performance as the underlying data distribution shifts
[9] [50].

This thesis addresses intraclass variability, interclass similarity, and class imbalance,
as these are intrinsic characteristics of HAR datasets (the datasets used in this study are
no exception). However, addressing concept drift requires temporary data to track changes

in activity patterns over time, which falls outside the scope of this work.
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3.2.2 FL Challenges in HAR Deployments

Applying Federated Learning to HAR introduces an additional set of challenges:

e Need for Personalization
Generic FL models trained across a diverse population often fail to capture the
nuances of individual movement patterns, particularly for groups such as older adults,
individuals with disabilities, or those engaged in specialized activities (e.g., sports
training or physical therapy). HAR applications demand personalized models, which

poses significant technical challenges in the federated paradigm [50].

e Amplified Concept Drift
Although FL offers privacy advantages, it also inherits the same vulnerability to
concept drift as centralized models. However, adapting to drift in FL is more complex,
as data remains decentralized. Continual learning must be implemented without
accessing historical data and with minimal communication overhead. Without drift-

aware mechanisms, FL-HAR models risk becoming outdated over time [50].

e Privacy Leakage Risks
While FL avoids direct transmission of raw data, model updates can still leak sensitive
behavioral information (e.g., gesture-specific gradients). In domains like healthcare,
where data sensitivity is paramount, untrusted aggregation servers may pose a risk.
This requires the use of secure aggregation protocols or other privacy-enhancing

technologies to ensure robust protection [51].

e Device Heterogeneity
Edge devices involved in FL (e.g., smartphones, smartwatches, fitness trackers) vary
widely in computational power, memory and battery life. Although smartphones
may handle training reasonably well, resource-constrained devices may struggle to
complete even a single training round. These disparities lead to issues such as client

dropout, slower convergence, and poor global model quality [47].

While challenges such as the need for personalization, amplified concept drift, and
privacy leakage risks represent important areas of research in FL, they are not the focus of
this thesis. Instead, this work specifically addresses the challenge of device heterogeneity.
The primary objective is to investigate how variations in computational resources across
edge devices impact FL performance, and how these constraints can be managed to enable

efficient and reliable training.

3.3 Human Activity Data Characteristics and Preprocessing

A typical HAR pipeline consists of data acquisition, feature preprocessing, feature
extraction and then the training step. This section, will provide details for each part of
the process except the training step, which is examined in depth in the implementation

and experimentation section of this thesis (Chapter 4.1).
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3.3.1 Sensor Modalities and Data Acquisition Methods

In HAR, sensor data is acquired from either external wearable devices (e.g., heart
rate monitors, electrodermal sensors connected via Bluetooth) or from embedded sensors
in smartphones and smartwatches (e.g., integrated accelerometers and gyroscopes). The
data can then be processed in three main ways. First, it can be processed locally on
the device itself using its CPU resources. Second, it can be streamed to a centralized
application server for processing, which is useful when a single device lacks sufficient data
or computational power. Third, as in the case of this thesis, FL can be used. This approach
allows each device to train a local model independently, while only sharing model updates.
These updates are then aggregated across to form a single global model.

Typically used sensors are mechanical like accelerometers which measure the acceler-
ation along x,y and z axis, and gyroscopes which measure the rotational movement (roll,
pitch, yaw). There are also Physiological Sensors like Photoplethysmography (PPG) which
detect blood flow for heart rate monitoringl [52] [53]. Finally there are case where Biochem-
ical Sensors are utilized which they monitor glucose or hydration in advanced wearables
[44].

Currently, all smartphones are equipped with accelerometers and gyroscopes and there
is a plethora of accessories available that augment smartphones sensoring capabilities which

can further enhance the application range of smartphone-based HAR.

3.3.2 Preprocessing of sensor data

Preprocessing is a critical step in the ML pipeline, especially when working with
sensor data, which is often noisy, inconsistent, and incomplete. The goal is to transform
raw sensor readings into a clean, structured format suitable for analysis and model training.

Key preprocessing steps include:

e Data alignment and interpolation
The step typically involves aligning sensor data and interpolating missing values,
as sensor measurements are rarely uniformly sampled especially on general-purpose
devices, where the sampling rate acts more as a suggestion to the operating system
rather than a strict constraint [54]. Additionally, it is often necessary to synchronize
measurements across multiple sensors (e.g., gyroscope and accelerometer) so that
rotation matrices can be accurately applied to acceleration vectors. This is commonly

achieved using linear interpolation to fill in missing values in all sensor streams [55].

e Noise filtering
Once data is aligned, noise filtering is applied to smooth the signal. Common
techniques include median filtering and low-pass filtering (LPF) to attenuate high-
frequency noise. Research suggests that setting a low-pass filter cut-off frequency
at 25 Hz retains over 99% of the relevant information when starting from a 100 Hz
signal, making it sufficient for most HAR applications while also conserving energy
[56].
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e Data normalization
Following denoising, data normalization is often performed to bring all values to a
common scale. This helps account for inter-individual differences and sensor variabil-
ity, allowing the ML model to focus more on patterns rather than raw magnitudes.
Common normalization techniques include Min-Max scaling (0 to 1) and standard-

ization (zero mean and unit variance).

e Data segmentation

A particularly important step in HAR preprocessing is data segmentation, which
involves dividing continuous sensor data into time windows that are likely to contain
discrete activities. This process enables the mapping of time-series signals to labeled
actions (e.g., walking, sitting) and is often referred to as activity detection. Although
manual segmentation is possible, it is prone to frequent errors and also impractical
due to the sheer volume of data typically involved in HAR tasks. Instead, automated
techniques like sliding windows (with or without overlap) or energy-based methods
(thresholding based on signal magnitude) are commonly used to segment the data
[57].

e Feature extraction
Once segmented, feature extraction is performed to convert raw time-series data into
meaningful descriptors. There are two general approaches: one is handcrafted and
the other automated [58|. Handcrafted feature extraction relies on domain expertise
to derive informative metrics from the data, such as time-domain features (mean,
standard deviation), frequency-domain features (FFT, Power Spectral Density), or
application-specific features (zero-crossing rate, peak acceleration) [59]. For instance,
in [49], heart rate and breathing rate signals were transformed using FFT, and their
corresponding PSD values were used as input to a neural network model. In contrast,
deep learning models such as DNNs or CNNs often learn relevant features directly
from raw time-series data. These models are capable of identifying complex patterns

automatically and typically generalize well across related tasks [57].

Although this thesis does not experimentally evaluate different preprocessing schemes,
a diverse set of datasets has been selected to represent various preprocessing levels from
raw sensor data to manually extracted features. These datasets are presented in detail in

Chapter 3.4.

3.3.3 Case Study: Preprocessing Pipeline in the UCI Smartphone HAR
Dataset

A representative example of an HAR preprocessing pipeline can be found in the UCI
Smartphone HAR dataset [60]. In this dataset, data was collected from triaxial linear
accelerometers and gyroscopes at a sampling rate of 50 Hz. To reduce noise, the signals
were first processed using a median filter followed by a third-order Butterworth low-pass
filter [61]. Based on their analysis, a cut-off frequency of 20 Hz was chosen, as it pre-

served over 99% of the signal energy which alignes with the findings mentioned from a
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revious study [56]. For segmentation, the data was divided into fixed-width 2.56-second
sliding windows with a 50% overlap to capture sufficient temporal context while main-
taining data continuity. From the raw triaxial sensor readings, additional features were
derived, including Euclidean magnitudes and time derivatives. Further feature engineer-
ing was performed by transforming time-domain signals into the frequency domain using
the Fast Fourier Transform (FFT). Additional time-domain features such as mean, corre-
lation, and autoregression coeflicients were also computed. In total, these steps yielded
a H61-dimensional feature vector for each windowed segment, forming the input to the
machine learning model.

To evaluate the performance of FL in HAR systems, diverse datasets are essential
for capturing a wide range of activities, sensor modalities, and real-world conditions. The
following section introduces six publicly available datasets used in this thesis, detailing
their sensor configurations, activity sets, and preprocessing methods. Each dataset offers
unique characteristics such as different preprocessing levels, feature extraction techniques,
and activity classification schemes which enable a robust evaluation of FL performance

across both controlled and real-world HAR scenarios.

3.4 Overview of HAR Datasets Used in This Thesis

The datasets listed below range from raw sensor signals such as those found in the
MotionSense dataset, to thoroughly processed feature vectors, like the 561-dimensional fea-
tures used in the UCI HAR using Smartphones dataset. The data collection hardware also
varies significantly, from general-purpose smartphones (e.g., Samsung Galaxy S2, iPhone
6) to specialized wearable devices like the ActiGraph GT3X+, which is specifically de-
signed for health-related monitoring. The applicability of FL. becomes clear even in these
basic HAR scenarios, as many datasets and devices capture sensitive physiological data,
such as ECG and heart rate. By training models locally on user devices and avoiding the

need to transmit raw data, FL reduces the risk of exposing personal health information.

¢ HARSense
The HARSense dataset comprises triaxial accelerometer and gyroscope data collected
from smartphones (Poco X2 and Samsung Galaxy A32s) mounted on the waist and
front pockets of 12 subjects aged over 23 years and weighing over 50 kg. It includes
six activities of daily living (ADLs): walking, standing, sitting, running, upstairs, and
downstairs, performed in a laboratory setting except for running, which occurred on
a football playground. The dataset provides raw triaxial acceleration (linear and
gravity), rotational rate, and rotational vector at an unspecified sampling rate. One
notable limitation is the lack of documentation regarding preprocessing steps, which

may affect reproducibility and comparability with other datasets. [62]

¢ HAR Using Smartphones
The UCI Human Activity Recognition Using Smartphones dataset available via the

UCI Machine Learning Repository includes triaxial accelerometer and gyroscope data
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collected at 50 Hz from a waist-mounted Samsung Galaxy S II smartphone carried

by 30 subjects. The preprocessing pipeline is discussed Chapter 3.3.3 [60]

PAMAP2

The PAMAP2 Physical Activity Monitoring dataset, accessible through the UCI
Machine Learning Repository, comprises data from three Colibri wireless inertial
measurement units (IMUs) sampled at 100 Hz, placed on the dominant wrist, chest,
and ankle, and a BM-CS5SR heart rate monitor sampled at approximately 9 Hz.
Each IMU includes two 3-axis accelerometers, a 3-axis gyroscope, and a 3-axis mag-
netometer providing 52 raw sensory attributes with missing values marked as NaN.
Nine subjects (8 males, 1 female aged 27.22 £ 3 years old) performed 12 protocol
activities (lying, sitting, standing, walking, running, cycling, Nordic walking, iron-
ing, vacuum cleaning, rope jumping, ascending stairs, descending stairs). Data is
segmented using 5.12-second sliding windows with 1-second shifts (approximately
0.8 overlap), with features extracted in time (e.g., mean, variance) and frequency
domains (e.g., FFT-based energy) for acceleration, and mean and gradient for heart

rate [63].

MotionSense

The MotionSense dataset consists of time-series accelerometer and gyroscope data
from iPhone 6s smartphones, collected from 24 subjects performing six activities:
walking, jogging, sitting, standing, upstairs, and downstairs. Data is sampled at 50
Hz, with sensors typically placed in pockets or hands, reflecting real-world variability.

The dataset provides raw inertial data without precomputed features [64].

MHealth

The MHealth dataset, hosted by the UCI Machine Learning Repository, comprises
multimodal sensor data from 10 subjects performing 12 activities, including walking,
running, jumping, cycling, and sedentary tasks. Sensors include triaxial accelerome-
ters, gyroscopes, and magnetometers placed on the chest, right wrist, and left ankle,
with two-lead electrocardiogram (ECG) data, all sampled at 50 Hz. Except for clas-
sical activity recognition MHealth is also ideal for clinical HAR applications, such as

cardiovascular health monitoring and mobility disorder detection [65].

PhysioNet Acceleration Data

This dataset includes triaxial accelerometer data collected at 100 Hz from a thigh-
worn sensor (Actigraph GT3X +) worn by 20 subjects during walking, stair climbing,
and driving. The dataset provides raw acceleration signals without precomputed
features |66].
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System Architecture and Experimental Setup

This chapter presented the infrastructure and experimental setup developed to eval-
uate the HAR problem using FL. The two main design considerations that guided the
development were scalability and the ability to support rapid experimentation.

Scalability was prioritized due to the challenges introduced by system heterogeneity
in on-device FL deployments, as discussed in Section 2.4. By leveraging Flower’s modular
and ML-agnostic architecture, the system was designed to scale across a wide range of
heterogeneous clients, such as smartphones and Raspberry Pi devices, while maintaining
compatibility with various machine learning frameworks, including TensorFlow, PyTorch,
or event custom-built solutions. Although the experiments in this thesis are conducted
solely on Android devices running TensorFlow Lite (TFLite) [11], it is important for the
infrastructure to remain compatible with a broad range of devices and platforms in order
to ensure that the system is extensible to other use cases and not narrowly tailored to this
specific application.

Rapid experimentation was the second major design focus since as demonstrated in
Chapter 5, the space of hyperparameters and evaluation metrics is both large and multidi-
mensional. To support this, the system provides tools to easily create and modify datasets
according to experimental needs, build and port TFlite models with varying architectures,
and systematically log critical metrics such as model accuracy, training time, energy con-
sumption, and network utilization. Additionally, the infrastructure automates the genera-
tion of informative visualizations including accuracy /loss plots, convergence speed graphs,
and energy consumption diagrams which is highly useful tool that enables faster insights

and iterative tuning.

4.1 System Overview and Design Considerations

This section provides a high-level overview of the FL system developed for this thesis.
The objective is to enable a group of Android smartphones to collaboratively train a shared
machine learning model under the coordination of a central server without exchanging raw

user data. The experimental setup consists of:

e A central FL server, implemented in Python, running on a personal laptop (MacBook
Pro 2012, Intel i5, 16GB RAM).
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e Five Android smartphones, each running a custom FL application and acting as a

client.

e A local Wi-Fi network used to exchange model updates between the server and

clients.

The FL process follows the standard server—client paradigm, as shown in Figure 2.2,
where the server sends a global model to the clients, clients train locally, and then send
model updates back for aggregation. However, a key distinction is that instead of requiring
clients to store their own local datasets, both training and test data are transmitted by the
server during the initial discovery phase, when it waits for clients to connect. This approach
enables centralized control over dataset allocation and support faster experimentation.
Additionally, to maintain consistent performance tracking throughout the experiment, each
client evaluates the updated global model on its local test data at the end of every training

round. Figure 4.1 illustrates the testbed used during experiments.

Figure 4.1. Federated Learning Testbed

The Android smartphones used as clients in the experiments vary in hardware specifi-
cations, providing a realistic representation of system heterogeneity. Table 4.1 summarizes

the key characteristics of each device used in the testbed.

Table 4.1. Specifications of Mobile Devices Used on the FExperiments

Device Name Release Date CPU RAM  Android
Realme GT Neo 2 (RMX3370) 2021 Snapdragon 870 8 GB 12
Samsung Galaxy A5 (SM-A510F) 2016 Snapdragon 615 2 GB 7
Samsung Galaxy J7 (SM-J730F) 2017 Exynos 7870 3 GB 8
Samsung Galaxy S10+ (SM-GI75F) 2019 Snapdragon 855 6 GB 12
Xiaomi Redmi 9C (M2006C3MNG) 2020 Helio G35 2GB 10
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4.1.1 Technical Considerations

The system’s design was significantly impacted by an infrastructure limitation. Specif-
ically, TFLite which is used for on-device training, does not currently support program-
matically setting model weights. As a result, during each aggregation round, the server
must recompile and transmit the entire TFLite model to the clients, rather than simply
sending the updated weights for clients to apply to their existing models.

This limitation introduces both time and communication overhead. Converting a
TensorFlow model to the TFLite format takes approximately 15-20 seconds which is often
longer than the actual training time on the client device. Additionally, transmitting the
entire TFLite model significantly increases data transfer. For example, a model with
around 300 parameters results in a file size of roughly 42KB, whereas transmitting only the
weights would require just 1.2KB. While this overhead may be negligible for large models
where training time dominates and TFLite’s metadata is relatively minor, it becomes a
critical bottleneck in edge scenarios involving small models and short training durations.
Therefore, both the conversion delay and communication cost are explicitly accounted for

in the experimental analysis.

4.2 Android Client Application: Design and Implementation

The client component is implemented as an Android application written in Java, based
on Flower’s official example for FL on Android devices [67]. To join the FL process, the
user must open the application, type server’s IP address and port number, and then press
the "Connect" and “Train” button. This action signals to the server that the device is ready
to participate in training. Then once the predefined number of clients have connected, the
server will initiate the FL process. Android application’s user interface is illustrated in
Figure 4.2.

As previously noted, TFLite was selected as the ML framework for this implemen-
tation, despite its current limitation of not allowing programmatically setting model’s
weights. The primary motivation behind this choice was TFLite’s extensive documen-
tation, and broad cross-language compatibility which includes support for Java, C+-+,
Python, and Swift. This makes it well-suited for heterogeneous system environments. Ad-
ditionally, TensorFlow offers reliable tools for converting standard TensorFlow models into
the TFLite format.

Alternative frameworks such as PyTorch Mobile and Deeplearning4j were also con-
sidered. However, PyTorch Mobile currently lacks on-device training capabilities and it is
solely used for inference using a pretrained model. In contrast, while Deeplearning4j does
support training, has a relatively small user base, limited documentation, and only support
only the Java language which making it less suitable for heterogeneous environments.

The client application is composed of three key Java classes:

e MainActivity.java: This class handles the main activity lifecycle, manages com-
munication with the server via gRPC, and orchestrates the training and evaluation

processes.
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Figure 4.2. Android Client Application

e Dataloader.java: This class is responsible for loading and managing the dataset
received from the server. It parses the feature and label arrays into a PyTorch-like
format, enabling batched data access. Batching is essential for efficiency, especially
when large datasets are used which cannot fit entirely in memory. It also acts as a
training hyperparameter which influence both performance and convergence speed.

Batches are retrieved incrementally using the .next () method. Example usage:

trainLoader = new Dataloader(X_train, y_train, batchSize, numFeatures);
BatchOfData trainBatchOfData = trainlLoader.next();

float[][] X_train_batch = trainBatchOfData.getX();

float[] y_train_batch = trainBatchOfData.getY();

testLoader = new Dataloader(X_test, y_test, batchSize, numFeatures);
BatchOfData testBatchOfData = testLoader.next();

float[][] X_test_batch = testBatchOfData.getX();

float[] y_test_batch = testBatchOfData.getY();

TensorFlowModelWrapper.java: This class reconstructs the model on the client using
the architecture metadata and weights received from the server. The metadata includes
input size, number of hidden layers, hidden layer size, and number of outputs. The model
is then compiled into a form usable by TFLite. To mimic a PyTorch-like format, this class

provides fit() and evaluate() methods:

e fit(): Takes a training DataLoader and the number of epochs as input, and performs

model training.
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evaluate(): Takes a test DataLoader and returns performance metrics, including

accuracy, true labels, and predicted labels.
Example usage:

TransferLearningModelWrapper modelWrapper =
new TransferLearningModelWrapper (formatModelFile(modelFile),

inputLayer, hiddenlLayer, outputlayer);

// Training

modelWrapper.fit(trainLoader, n_epochs);

// Evaluation

Metrics metrics = modelWrapper.evaluate(testLoader);
float accuracy = metrics.getAccuracy();

float[] yTrue = metrics.getYtrue(Q);

float[] yPred = metrics.getYpred();

Server-Side Architecture

The server was implemented in Python using the Flower framework, an popular open-

source platform for FL. One of Flower’s core strengths lies in its flexibility since it allows

custom server-side logic to be defined without altering the framework’s underlying source

code

. The implementation follows the standard FL cycle described in Section 4.1.1 and

integrates additional components for training control, monitoring, and experiment automa-

tion.

The server controls a combination of ML hyperparameters (such as the number of local

training epochs) and system-level parameters (such as the minimum number of clients

required to begin a training round). ML hyperparameters affect the learning dynamics

and
distr

model behavior, system parameters determine how the FL process is orchestrated in

ibuted settings. The key parameters configurable at the server include:

Number of Local Epochs: The number of epochs each client uses to train on its

local dataset before sending updates.

Number of Federated Rounds: The total number of global training rounds to be

executed.

Minimum Clients per Round: The minimum number of clients required for

training to proceed.

Target Clients per Round: The number of clients the server attempts to gather

before initiating a training round.

For example, if the minimum client threshold is set to 3 and the target is 5, then

training will begin once 5 clients are available, but can continue as long as at least 3

remain active.
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Training data is prepared by the internal Data Factory module and structured accord-

ing to a standardized directory format (as described in Section 4.4):

dataset_name/
X_train/
partition_O0.txt
partition_1.txt
X_test/
partition_O0.txt
partition_1.txt

y_train/
partition_O0.txt
partition_1.txt

y_test/
partition_0.txt
partition_1.txt

Each partition idx.txt file corresponds to a specific client, with the partition index
indicating the client ID. This structure allows the server to map data partitions directly
to participating clients during the federated training process.

Another important hyperparameter is the model configuration, which is handled by
the Model Factory which is an internal component of our infrastructure that automates
the construction of DNN models. In this thesis, experimentation was focused exclusively
on DNNs, as they provided sufficient performance while remaining efficient to train on
resource-constrained devices. Early experimentation confirmed that simple DNNs were
able to achieve satisfactory performance even with limited client data, which aligned with
the thesis goals.

The Model Factory allows the user (or the server) to define arbitrary DNN configura-
tions, including the number of hidden layers and the size of each hidden layer. Models are
initialized using the Adam optimizer with a predefined learning rate and can be created
with either randomly initialized weights or custom weights. The ability to load custom
weights into a newly created model is what enables the core FL functionality, since after
each round, the server can compile a new model loaded with the aggregated weights and
send it to the clients for the next round of training.

The final key server-side component is the Statistics Collector. Once the federated
learning process is complete, this module performs two essential tasks. First, it records
all relevant metrics as outlined in Section 4.5 into a csv file. Second, it generates a set
of visualizations and summary statistics that enable quick evaluation of each experiment’s
outcome without the need for manual data analysis. This level of automation is particu-

larly important given the large number of hyperparameter combinations explored in our
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experiments.

The following outputs are automatically generated:

e accuracy_loss_plot.png: Accuracy and loss of the global model on the test set

across all federated rounds.

e performance_scores.png: Final model performance summary, including the confu-

sion matrix, precision, recall, F1-score, and accuracy per class and overall.
e training_time_plot.png: Training time per round and cumulative training time.

e charge_drop_plot.png and voltage_drop_plot.png: Per-device and per-round bat-
tery charge and voltage drops.

e useful_stats.txt: Summary statistics, including the number of rounds, maximum
number of participating clients, number of test samples, client participation per

round, and relevant network metrics.

4.4 Dataset Processing and Partitioning Infrastructure

The final component of the infrastructure is the Data Factory, which is responsible for
loading, processing, and formatting datasets in a way that the server can understand. The
first step involves creating dataloaders for each dataset. These dataloaders convert the raw
dataset into a unified .csv format, where all features are included and the activity labels
are stored in a dedicated "activity" column. This unification is essential because datasets
vary significantly in their original formats. For example, MHealth stores a separate .txt
file for each subject, while MotionSense organizes data into a directory per subject, with
separate .txt files for each activity type. A consistent format simplifies the preprocessing
and integration.

After loading, the dataset is partitioned using a function called split to client, which
takes a train-test split of the entire dataset and partitions it randomly among N clients.
The random seed can be specified to ensure reproducibility. The user can also choose
between two FL testing configurations: a single, shared test set used by all clients, or
individual test sets assigned to each client. The pipeline supports both configurations by
assigning the correct test set to each client during the data distribution process.

The Data Factory also provides control over the number of samples allocated to each
client, enabling the simulation of real-world scenarios where data volumes are unevenly
distributed across clients.

Finally, the function class imbalance is used to simulate class imbalanceness,which
is an important aspect of non-IID experiments. Since original datasets are not perfectly
balanced, normalization is first applied via upsampling or subsampling. Then, user-defined
imbalance ratios are used to simulate varying label distributions across clients.

Once partitioned, the client data is stored using the save client data function in the
directory structure that is expected by the server. The following example illustrates how

the MotionSense dataset is loaded, processed, and prepared for use in a FL experiment:
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First, the dataset is loaded, and all features are scaled using the Standard Scaler to

ensure consistent value ranges across inputs.

The data is then split into training and testing sets using a 70%-30% ratio. Since this
process involves shuffling the data, a random seed is used to ensure reproducibility

across runs.
Next, the training set is partitioned among 5 clients to simulate a federated setup.

To simulate class imbalance, each client receives a version of the dataset where one
of the six activity classes is reduced to 20% of its original size. This is done in a
round-robin fashion, meaning that each client has a different class underrepresented
in order to ensure the distribution diversity of labels across clients. Before applying
the imbalance, the dataset is first balanced using the downsampling technique to

ensure equal class distribution.

# load MotionSense dataset

dfé

= dataloading.load_data6()

# apply train test split

X_train, y_train, X_test, y_test, labels = dataloading.train_test_split(

dfé,

test_size=0.3,
scaler_type="standard",
should_map_labels=True,

random_seed=42

# partition data to 5 clients

client_data = dataloading.to_client(

data=(X_train, y_train, X_test, y_test),

max_clients=5

# define class ratio list

class_ratio_list = [

(0.2, 1.0, 1.0, 1.0, 1.0, 1.0],
(1.0, 0.2, 1.0, 1.0, 1.0, 1.0],
(1.0, 1.0, 0.2, 1.0, 1.0, 1.0],
(1.0, 1.0, 1.0, 0.2, 1.0, 1.0],
(1.0, 1.0, 1.0, 1.0, 0.2, 1.0]

# apply the class ratio list

client_data_im = []
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for idx, (X_train, y_train, X_test, y_test) in enumerate(client_data):
class_ratio = class_ratio_list[idx]
X_train_im, y_train_im, X_test_im, y_test_im = dataloading.class_imbalance(
(X_train, y_train, X_test, y_test),
class_ratio,

balance="downsampling"

# save client data

dataloading.save_client_data(client_data_im,"test", labels)

4.5 Experimental Setup and Measurement Metrics

To gain meaningful insights into the behavior of HAR under a FL setup, a compre-
hensive set of metrics is measured to reflect model performance, with special emphasis
placed on the unique challenges of deploying FL on edge devices in the context of HAR, as
discussed in Sections 2.4 and 3.2. These challenges include system heterogeneity, energy
constraints, network availability, and the non-IID nature of HAR datasets.

The collected metrics are grouped into four main categories: performance, training
time, energy consumption, and network usage. As previously noted, all of these met-
rics are automatically gathered and logged by the Statistics Collector component of the

infrastructure.

4.5.1 Model Performance Metrics

The performance evaluation of each model will be based on confusion matrix, accu-
racy, precision, recall, and Fl-score which is a standard set of classification metrics. The
confusion matrix is a crucial evaluation tool for classification problems. It visualizes the
model’s predictions by comparing them with the actual ground truth labels which allows
the identification of patterns in class confusion. For example, a model may more frequently
misclassify the activity "running" as "walking upstairs" rather than as "standing". The

confusion matrix reveals such tendencies by displaying the counts of:

e True Positives (TP): Correct predictions where the model correctly identifies a

sample as belonging to a particular class.

e True Negatives (TN): Correct rejections where the model correctly identifies a

sample as not belonging to a particular class.

e False Positives: Incorrect predictions where the model incorrectly classifies a sam-

ple as belonging to a class it does not.

e False Negatives (FN): Missed predictions where the model fails to identify a sam-
ple that actually belongs to a class.

The following evaluation metrics can be derived from the confusion matrix:
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e Accuracy: The proportion of correct predictions (both true positives and true neg-
atives) out of all predictions. It is the most commonly used metric for evaluating
classification models. However, in the presence of class imbalance which is common
in HAR datasets the accuracy metric can be misleading. For example, if a particu-
lar activity dominates the dataset, a model might achieve high accuracy simply by

predicting that class most of the time, while performing poorly on minority classes.

e Precision: The proportion of correct positive predictions out of all positive predic-

tions made by the model. It reflects the model’s ability to avoid false positives.

e Recall: The proportion of correct positive predictions out of all actual positives. It

reflects the model’s ability to capture all relevant instances.

e F1-Score: The harmonic mean of precision and recall. It provides a balanced view
of a model’s performance, which is especially useful in cases where there is an uneven
class distribution or where both false positives and false negatives carry significant
costs. The Fl-score can be treated as a single metric that effectively captures a
model’s overall classification performance, particularly in scenarios where accuracy

alone may be misleading.

4.5.2 Training Time Measurement

FL convergence speed is measured by the per-round training time and the total train-
ing. As explained in Section 4.1.1, TFLite introduces an additional time overhead, since
the model must be recompiled at the start of each round. To account for this, two dis-
tinct training time metrics are reported. The first, referred to as training time, captures
only the time spent on the actual training process, excluding compilation. The second,
training time with compilation, includes the time required for model recompilation. This
distinction is essential for identifying differences between delays caused by infrastructure

limitations and those inherent to the training process itself.

4.5.3 Energy Consumption Estimation

Energy consumption on Android devices is measured using the BatteryStats API. An
initial alternative considered was the built-in battery usage profiler available in Android
Studio. However, this tool has several limitations, since it lacks support for older Android
versions and requires a wired connection with the development PC which introduces bias
by charging the device during profiling. These limitations make it unsuitable for fast,
repeatable, and scalable experimentation.

Hardware power monitors were also evaluated as an option. Although they offer high
accuracy and fine-grained energy measurements, their use was deemed impractical. Each
device must be physically wired to the monitor, which significantly limits scalability. More-
over, these monitors measure the total power consumption of the device, including back-
ground processes, Wi-Fi activity, and screen usage which introduces the same variability

issues found in software-based methods.
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Given these constraints, the BatteryStats API was selected for its practicality and
ease of integration. It allows automated, scalable energy measurement directly within the

application code and provides access to key energy-related metrics, including:

e Battery voltage (Volts)

Battery Capactiy

Charge (mAh)

Instantaneous and average current (mA)

Battery temperature

This approach supports a wider range of Android versions, does not require any ex-
ternal hardware, and fits well with our goal of fast and repeatable experimentation.

To improve measurement accuracy and reduce noise, several controls were applied
during the experiments. First, all unnecessary background applications and services were
disabled to minimize extraneous energy consumption. Next, Airplane mode was enabled
to eliminate power usage from cellular connections, while Wi-Fi was kept active to support
federated communication. Finally, the screen brightness was set to its minimum level
to reduce display-related power draw. Although these adjustments do not eliminate all
external influences, they help ensure that energy measurements are standardized across
devices and experimental runs.

While not as precise as hardware-based methods, this approach is considered a reason-
able tradeoff between accuracy and scalability, making it well-suited for the experimental
requirements of this study.

Since the BatteryStats API provides real-time readings of battery charge (in mAh)
and voltage (in volts), these values can be used to compute the energy consumption for

each FL communication round using the following formula:

Energy(round; device) = ChargeDrop(round; device)-AvgV oltage(round; device) (mWh)
(4.1)
Where the charge drop for each round and device is calculated by recording the battery
charge at the start and end of the round and taking the difference. The average voltage
for the round is computed as the mean of the voltage values recorded at those two time
points.
Then, the total energy consumption for a given device is obtained by summing its

energy usage across all communication rounds, as shown in Equation 4.2:

R
Erotar(d) = Y _ Energy(r, d) (4.2)

r=1

where:

e Eiotal(d) is the total energy consumed by device d,
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e Energy(r,d) is the energy used by device d during round r,

e R is the total number of communication rounds in the Federated Learning process.

4.5.4 Network Quality Monitoring

Several network-related metrics are measured throughout the training process to assess

how network conditions affect FL performance. These metrics offer a comprehensive view

of each client’s network environment, helping explain performance variations and potential

training disruptions across devices. These include:

e RSSI (Received Signal Strength Indicator): This metric is captured from An-

droid’s WifiManager before each training round. RSSI reflects the strength of the
Wi-Fi signal received by the device, typically measured in dBm. It is a critical indi-
cator of network quality, as poor signal strength can lead to increased latency, packet
loss, or disconnections. These factors directly affect the stability and reliability of

FL on edge devices.

Latency: Measured using ping requests sent from the client device to the FL server.
This metric helps estimate the time delay in client-server communication, which can

influence synchronization and overall training speed.

Download and Upload Speeds: To assess data transfer rates, a lightweight aux-
iliary HTTP server was developed using Flask and deployed alongside the Flower
server. By sending and receiving a dummy 10MB file from each client, it can esti-
mate both download and upload speeds under real-world conditions. This provides a
more accurate evaluation of how network throughput may influence communication

efficiency during the FL. communication rounds.
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Chapter

Systematic Experimental Evaluation of Federated Learn-

ing on HAR Tasks

This chapter assess the practical feasibility and trade-offs of applying FL to the HAR
problem using a real-world mobile device setup. The experiments are structured around
three key dimensions, each reflecting major challenges inherent to the FL paradigm, espe-

cially when deployed on edge devices, as outlined in Section 2.4.

1. Performance experiments investigate how the resulted model behaves under var-
ious non-IID conditions and different client scaling configurations, given the critical

impact of data heterogeneity in FL systems.

2. Energy experiments explore the energy demands of FL on edge devices, focusing
on how model size, number of local epochs, and training rounds affect accuracy,

energy footprint, and convergence speed.

3. Network experiments evaluate the consequences of limited network availability
which is a common issue on edge devices [32], by analyzing how unstable client par-

ticipation and network dropouts influence model performance and training efficiency.

5.1 Experimental Setup and Methodology

Each experiment is conducted on five Android smartphones unless stated otherwise
due to specific experimental requirements. These devices differ in compute power, memory
capacity, and Android OS version. Their specifications are summarized in the table 4.1.

Table 5.1 illustrates all the experimental hyperparameters which are available by the
implemented infrustructure (as described in Chapter 4) grouped into three main categories:
data, model, training. The data category includes parameters related to the dataset used
and how it is handled like the strategy selected for test set evaluation (e.g., global vs.
per-client), and then modifications applied to generate synthetic variants, as described in
Section 5.2. The model category contains the parameters related to DNNs model archi-
tectures, since only this is supported at this stage. There are the number of hidden layers,
hidden layer size, and learning rate. Training category include the number of participating
clients , the number of federated communication rounds, and the number of local training

epochs.
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Table 5.1. Summary of Configurable Parameters in Federated Learning Ezrperiments

Parameter Category Description Comments
dataset _id Dataset Choice of HAR dataset Datasets differ in number of
classes, sampling rate, etc.
class_ratio Dataset Controls class imbalance per Simulates non-IID label distri-
client butions.
volume knob Dataset Controls data volume per client Tests quantity-skew scenarios.
test _strategy Dataset Shared vs per-client test set default value: Shared test set
hidden layer sizes Model Neural-network architecture default value: [x, 10, 10, y]
(where x: input features, y:
output classes)
learning rate Model Step size for gradient updates  default value: 1073
n_ clients Training  Number of participating clients default value: 5 (unless spec-
ified otherwise for experiment
requirements)
n_epochs Training  Local training epochs per default value: 3 (unless spec-
round ified otherwise for experiment
requirements)
n_rounds Training  FL communication rounds Typical range: 20-100 rounds,

depending on the experiment

In order to narrow down the parameters needed to be varied in each experiment,
a series of exploratory runs was conducted to establish reasonable default values. This
preliminary phase was essential to avoid unnecessary reconfiguration of every parameter
in each experiment, which would be impractical given the large number of hyperparame-
ters involved. Based on empirical observations from experiments conducted across all six
datasets, a lightweight neural network with two hidden layers of 10 units each, trained for 3
local epochs per round, was found to provide stable and reliable performance. The number
of FL communication rounds was set to 20, as increasing it beyond this value in most of
the cases examined yielded diminishing returns. However, this parameter may be adjusted
as needed in specific experiments that require additional training. Additional parameters,
such as batch size and learning rate, were fixed at 32 and 0.01, respectively. These were
found to have a less significant impact on performance compared to model architecture,
and including them in the hyperparameter search space would unnecessarily increase the

experiments complexity.

Finally, all experiments in this thesis use a consistent evaluation procedure based on
a single global test set, created by applying a 70%-30% train-test split before partitioning
the data across clients. Although using per-client test sets can provide insight into client-
specific performance and reveal heterogeneity among participants, this thesis focuses on
evaluating the performance of the resulted global model. Since this global model is ulti-
mately intended for deployment on new or unseen devices, a centralized test set offers a
more representative measure of its generalization ability. Moreover, a shared evaluation
test set provides uniform metric for comparing model performance across experimental

conditions

To ensure statistical significance and reproducibility, each experiment was conducted
three times using fixed random seeds (42, 1082, 2025).
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5.2 Impact of Data Heterogeneity and Client Scaling on Model

Performance

The first set of experiments will examine how HAR data characteristics influences
model dynamics in the FL setup across two key dimensions. The first experiment focuses
on how the inherent characteristics of HAR datasets impact model performance. As dis-
cussed in Chapter 3, HAR data can be collected using various sensors, including accelerom-
eters, gyroscopes, and PPG using both general-purpose (e.g. smartphones, smartwatches)
and specialized wearable devices (e.g., medical-grade wearables). These datasets differ in
sensor type and placement (e.g. wrist, ankle, chest) as well as in other aspects such as pre-
processing pipelines, feature representation (raw vs. handcrafted features), sampling rates,
and activity diversity. A broad set of six publicly available HAR datasets was selected to
ensure that these characteristics were well represented.

The remaining four experiments are designed to explore the effect of non-IID data,
which as discussed in Chapter 2.4 represents a core challenge in FL. In addition to the
inherent non-IID characteristics present in the datasets due to user and sensor specific
variations, synthetically partitioned datasets are also introduced using the methods de-
scribed in [7]. These synthetic partitions allow precise control over the size of skew levels
(e.g., low, moderate, high) enabling targeted investigation into the effects of data imbal-
ance. However, unlike real-world datasets, such synthetic partitions cannot fully replicate
the complex and often subtle correlations found in naturally decentralized data. Using
both real and synthetic non-IID distributions, a series of experiments is conducted to
evaluate different types of statistical heterogeneity. The second experiment explores la-
bel skew, where certain activity classes are missing or underrepresented in specific clients.
This is common in HAR settings, where frequent activities like walking or sitting tend to
dominate, while rare actions such as falling or cycling appear less often. Next quantity
skew is investigated where clients possess unequal volumes of training data. This scenario
reflects natural disparities among users, where some may generate far more sensor data
than others due to differences in usage patterns or device availability. Next the mix skew
is investigated by combining both label and quantity imbalances in order to create a more
complex and realistic non-IID scenario making FL model’s ability to generalize and con-
verge effectively even more challenging. Finally, client scaling is explored by gradually
increasing the number of participating clients while maintaining their true non-IID data
structure. Monitoring model’s ability to scale provides the most accurate assessment of its

expected performance under real-world conditions.

5.2.1 Model Evaluation Across HAR Datasets

To evaluate the model’s performance across the six different datasets, the data is shuf-
fled and randomly split among five clients. This approach removes the inherent non-IIDness
of the original datasets. This setup is intended to isolate the impact of dataset-specific
properties without introducing additional skew or imbalance. All the other experimental

parameters are set to their default values, as defined in Table 5.1.
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Chapter 5. Systematic Experimental Evaluation of Federated Learning on HAR Tasks

As shown in Figure 5.1, accuracy converges rapidly across all datasets. Most models
reach over 95% of their final accuracy by round 6, regardless of dataset characteristics
such as preprocessing pipeline, number of activity labels or number and type of sensor
modalities. Among all datasets, PAMAP2 achieved the highest final accuracy ( 98%),
while MHEALTH, PhysioNet Accelerometry, and UCI Smartphone HAR performed slightly
worst, achieving accuracies in the range of 87%-90%. MotionSense and HAR-Sense had

the lowest performance, with final accuracies between 76% and 79%.

Accuracy Convergence Across HAR Datasets

HARSense
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MotionSense
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Figure 5.1. Model Accuracy Convergence on Diverse HAR Datasets under IID Conditions

As show in confusion matrices presented in 5.2, MotionSense and PhysioNet datasets,
despite achieving relatively high overall accuracy, exhibit a clear bias toward dominant
classes such as walking and sitting. Models trained on these datasets tend to misclassify less
frequent activities, resulting in substantially lower macro-averaged F1-scores. In contrast,
datasets with more balanced class distributions, such as PAMAP2 and MHEALTH show
greater alignment between accuracy and F1 metrics, indicating that the models perform
more consistently across all activity classes.

Although this thesis does not intend to assess the impact of individual dataset char-
acteristics such as preprocessing methods or feature extraction techniques, some inter-
esting observations emerged from this experiment. First, datasets generated from raw
smartphone sensors (e.g., accelerometers, gyroscopes) resulted in poorer model perfor-
mance compared to those created using richer multi-sensor configurations, even when
the latter included a greater number of activity classes. For instance, MHEALTH (raw,
multi-sensor) and PAMAP2 (preprocessed, multi-sensor) both consistently outperformed
simpler, smartphone-only datasets. Moreover, the highest performance was achieved on
PAMAP2, which combines multiple synchronized sensors, extensive preprocessing, and a
well-balanced class distribution.

Regarding training time (see Figure 5.3), a key observation is that model compila-

tion dominates the overall runtime especially in smaller models. Across all datasets, the
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Chapter 5. Systematic Experimental Evaluation of Federated Learning on HAR Tasks

compilation step consumed up to 75% of total training time. Furthermore, while training
time without compilation remained relatively stable, training time including compilation
fluctuated significantly. This variation occurs since in contrast to the server, smartphones
were dedicated exclusively for the FL task so there where no other processes consuming
system resources. These figures clearly illustrate how server capabilities can impact con-
vergence speed, even though as discussed in Chapter 4.1.1, the compilation overhead only

exists because of TFLite’s inability to programmatically update model weights.

5.2.2 Effect of Label Imbalance Across Clients

All skew experiments (label, quantity, and mixed) are conducted using the HARSense
dataset since as shown in Experiment 5.2.1, HARSense was the overall worst-performing
dataset while maintaining relatively equal accuracy across all labels. In contrast, Mo-
tionSense showed even lower overall performance but exhibited significant imbalance in
label-wise accuracy, making it less suitable for controlled skew analysis. The test examines
three levels of label skewness low, moderate, and extreme in which every client will be
assigned with a dataset that completely misses 1,3 or 5 labels out of 6 respectively. Labels
are removed in a round-robin fashion to ensure balanced distribution of missing classes
across clients. For example, in the low-skew setting, if Client 1 has access to labels 2
through 6, then Client 2 will have labels 1 and 3 through 6, and so on.

As shown in Figure 5.4, under the low level of label skew, the model still converges
relatively well, reaching approximately 72% accuracy, slightly below the baseline for the
non-skewed configuration ( 79%). The corresponding confusion matrix shown in Figure
5.5 shows relatively balanced performance across most labels, though increased misclassi-
fication is observed for dynamic activities such as walking, downstairs, and upstairs.
For instance, of the 7490 walking samples, 3480 are misclassified as upstairs while only
3640 are correctly identified. Notably, upstairs does not degrade significantly, likely be-
cause this label is still present in the training sets of all five clients as we can see from the
distribution of test samples provided on table 5.2.

At the moderate skew level, where each client sees only three out of six labels, ac-
curacy plateaus at around 40% and confusion across labels becomes markedly worse. As
expected, downstairs deteriorates further, and walking continues to exhibit significant
misclassification. Interestingly, upstairs now also becomes more error-prone, aligning with
the fact that it is no longer present in every client’s training data.

At the extreme level of label skew, the model fails to converge and stabilizes at ap-
proximately 22% accuracy. The confusion matrix reveals widespread misclassifications,
but also highlights an interesting pattern in how predictions are distributed. Specifically,
the model disproportionately favors certain labels such as standing, downstairs, and
upstairs despite the fact that these labels have no clear advantage in sample size within
either the training or test sets. One possible explanation for this behavior is that labels
that frequently appear together on the same client such as downstairs and upstairs can
reinforce each other during local training, leading to their overepresentation in the global

model. Conversely, labels that are isolated to a single client such as running or walk-
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5.2.3 Effect of Data volume on Model Performance
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Figure 5.4. Effect of Progressive Label Skew on Model Accuracy
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Figure 5.5. Confusion Matrices Under Increasing Label Skew Intensity

ing and lack cross-client occupation tend to be underrepresented or even ignored during
prediction. However, this reasoning does not fully account for the strong prediction bias
toward the standing class, which also appeared on only one client. This highlights the
fact that there are numerous local training dynamics that also influence the prediction
like label co-occurrence and client specific data distributions. While such extreme label
distributions may be rare in practical deployments, this experiment raises an important
and underexplored question. To what extent can FL systems effectively propagate label
knowledge across clients in the presence of missing label distributions? Based on our obser-
vations, improving this type of cross-client knowledge transfer could significantly enhance

FL performance in non-IID settings and it is an interesting direction for future research.

5.2.3 Effect of Data volume on Model Performance

Quantity skew experiments evaluate low, moderate, and extreme levels of data imbal-
ance by assigning each client 60%, 30%, or 10% of the original training data respectively.
From the accuracy convergence plot 5.6, it is clearly observed that the amount of

local data significantly influences both convergence speed and final model performance.
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Table 5.2. Per-Client Label Distribution Across Label Skew Configurations

Level Client Running Sitting Standing Walking Downstairs Upstairs

1 0 3593 39593 3593 3993 3593
2 3971 0 3571 3571 3971 3571
1/6 3 3485 3485 0 3485 3485 3485
4 3516 3516 3516 0 3516 3516
) 3611 3611 3611 3611 0 3611
Total 14183 14205 14291 14260 14165 17776
1 0 3593 0 3593 0 3593
2 3971 0 3571 0 3971 0
3/6 3 0 3485 0 3485 0 3485
4 3516 0 3516 0 3516 0
5 0 3611 0 3611 0 3611
Total 7087 10689 7087 10689 7087 10689
1 3993 0 0 0 0 0
2 0 3571 0 0 0 0
3 0 0 3485 0 0 0
5/6 4 0 0 0 3516 0 0
) 0 0 0 0 3611 3611
Total 39593 3571 3485 3516 3611 3611

In the low quantity skew setting the model reaches nearly 79% accuracy by round 20
which is almost identical to the baseline case where 100% data is present in each client.
With moderate skew (30%), convergence slows slightly and plateaus around 78%, while in
the extreme case (10%), the model still reaches 77% but with even slower convergence.
This result highlights that even with limited data, the model can maintain reasonable
performance likely due to the preserved label balance and the relatively simple architecture
that does not require large amount of data to generalize well. While the confusion matrices
(see Figure 5.7) show a gradual decline in classification performance as the skew increases,
no consistent misclassification pattern clearly emerges across all levels. Table 5.3 shows the
distribution of train set label counts for each client and quantity skew level. An interesting
extension to this experiment would be to explore uneven data distribution among clients
in order to explore how clients with less data may benefit from those with more, and vice

versa.

5.2.4 Combined Label and Quantity Skew

To further examine the challenges posed by non-IID data, mix skew experiments were
conducted by combining both label and quantity skew. Specifically, two configurations
were tested: a moderate level, in which each client was assigned only 30% of the original
training data and 3 out of 6 labels were omitted; and an extreme level, where clients
received just 10% of the training data and 5 out of 6 labels were missing. In the moderate
setting, convergence was still achieved, reaching 49% accuracy by round 20. In contrast,

in the extreme setting, convergence was nearly halted, with accuracy stagnating around
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5.2.4 Combined Label and Quantity Skew

Table 5.3. Per-Client Training Sample Counts in Quantity Skew Ezperiments

Level Client Running Sitting Standing Walking Downstairs Upstairs

1 2156 2156 2156 2156 2156 2156
2 2143 2143 2143 2143 2143 2143
60% 3 2091 2091 2091 2091 2091 2091
4 2110 2110 2110 2110 2110 2110
5 2167 2167 2167 2167 2167 2167
Total 10667 10667 10667 10667 10667 10667
1 1078 1078 1078 1078 1078 1078
2 1071 1071 1071 1071 1071 1071
30% 3 1046 1046 1046 1046 1046 1046
4 1055 1055 1055 1055 1055 1055
5 1083 1083 1083 1083 1083 1083
Total 5333 5333 5333 5333 5333 5333
1 359 359 359 359 359 359
2 357 357 357 357 357 357
10% 3 348 348 348 348 348 348
4 352 352 352 352 352 352
5 361 361 361 361 361 361
Total 1777 1777 1777 1777 1777 1777
Table 5.4. Per-Client Training Sample Counts in Mized Skew Ezperiments
Level Client Running Sitting Standing Walking Downstairs Upstairs
1 1078 0 1078 0 1078 1078
2 0 1071 0 1071 0 1071
Moderate 3 1046 0 1046 0 1046 0
4 0 1055 0 1055 0 1055
5 1083 0 1083 0 1083 0
Total 3207 2126 3207 2126 3207 3204
1 359 0 0 0 0 0
2 0 357 0 0 0 0
Extreme 3 0 0 348 0 0 0
4 0 0 0 352 0 0
5 0 0 0 0 361 361
Total 359 357 348 352 361 361
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Figure 5.6. Impact of Data Volume Imbalance on Model Accuracy
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Figure 5.7. Confusion Matrices Under Different Levels of Quantity Skew

22%. The confusion matrices are shown in Figure 5.9, and the corresponding training-set
label distributions are detailed in Table 5.4.

5.2.5 Model Behavior Under Varying Client Participation

In this experiment, the number of participating clients is progressively increased from 2
to 5 in order to evaluate how model performance scales with broader client participation. It
will be conducted using the MotionSense dataset since in the dataset variation experiments
it had the weakest overall performance while it was collected from a relatively large pool
of 24 subjects. This subject diversity makes it ideal for examining how incremental client
participation affects model generalization. In comparison, the similarly underperforming
HARSense dataset includes data from only 12 subjects. To preserve the non-IID nature of
the dataset, each of the five available clients train data was assigned only the portion of
data associated with a single subject, as indicated by the dataset’s subject id attribute.
As a result, when training with five clients, the global model was constructed using data
from only 5 out of the 24 total subjects (approximately 20% of the available data). The test

set, however was sampled from the entire dataset to preserve the original class distribution.
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Figure 5.8. Effect of Combined Label and Quantity Skew on Model Performance
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Figure 5.9. Confusion Matrices Under Different Levels of Combined Label And Quantity
Skew

To establish a reference for the upper bound of performance under these constraints, an
additional experimentation run was conducted in which data from all 24 subjects was evenly
distributed across the five clients. In order to retain the subject-level non-IID structure
and have a more realistic deployment scenarios the subjects were grouped in contiguous
blocks rather than being randomly shuffled. For example, subjects 1 to 5 were assigned to
client 1, subjects 6 to 10 to client 2, and so on.

To provide a baseline under ideal conditions, the same client scaling analysis was also
repeated using IID data, allowing a direct comparison of how scaling affects FL performance
under both IID and non-IID settings.

As shown in Figure 5.10, in the IID setting, model performance improved slightly as
the number of clients increased. Accuracy range from approximately 0.77 with 2 clients
to just above 0.78 with 5 clients. Convergence was stable across all configurations, with

very low variance between rounds. This behavior is expected since under IID conditions,
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Figure 5.10. Impact of Client Count on Model Accuracy (11D Setting)

while increasing the number of clients adds more data per round, the underlying statistical
distribution remains virtually unchanged. As a result, the global model is exposed to
equivalent representative samples, leading to marginal improvements in generalization.

In contrast, Figure 5.11 reveals a more complex pattern under the non-1ID setting.
Here, both accuracy and convergence are highly sensitive to the number of participating
clients. With only 2 clients, the model struggles to converge, fluctuating heavily and
achieving only 27-30% accuracy. As the number of clients increases to 3 and 4, accuracy
improves to approximately 35-40%, though the high variability between rounds persists.
With 5 clients, accuracy rises further to above 40%, but the instability persists.

One likely explanation for this fluctuation is inter-subject variability as described on
Chapter 3.2.1. Even within a lab-controlled HAR dataset, subjects differ in movement pat-
terns (e.g., gait, walking speed), and phone placement may vary slightly even if scripted.
In real-world settings, such variability would likely be even more pronounced. These obser-
vations demonostrate the potential value of model personalization, where the global model
is fine-tuned to adapt to a specific user’s data after FL training is completed. This step
could mitigate some of the generalization issues caused by diverse local data.

Interestingly, the upper-bound configuration where data from all 24 subjects was
evenly distributed across 5 clients, did not lead to a dramatic improvement in accuracy
as originally expected. While it did provide a more stable training curve it reaches an
accuracy of approximately 35%.This suggests that even with access to a broader subject
pool, the model struggles to learn a truly global representation. It may indicate that 24
subjects are still insufficient to fully capture the diversity of HAR especially in non-I1D
settings. This experiment highlights the significant impact of data heterogeneity on model
generalization, as discussed in Chapter 2.4.3. In this case, the non-IID nature of the data
stems primarily from subject-level variability differences in movement patterns, behavior,

or sensor placement while the datasets across clients are otherwise balanced in size and

E Diploma Thesis
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Figure 5.11. Impact of Client Count on Model Accuracy (non-IID Setting)

class distribution. In real-world scenarios, where both label imbalance and data quantity
skew are more pronounced, this issue is likely to be even more severe. Given how impor-
tant this challenge is to the practical deployment of FL for HAR, further investigation is
essential. Specifically, it would be valuable to explore alternative aggregation algorithms
designed to handle non-IID data more effectively such as FedProx, SCAFFOLD and to as-
sess whether they offer better robustness and convergence in the presence of diverse client

distributions.

5.3 Energy Efficiency Trade-offs in Federated Learning

A core concern when deploying FL on mobile or edge devices is energy consumption.
These devices operate with inherently limited energy resources, and training over many
communication rounds can result in significant battery drain. Therefore, energy efficiency
is a critical consideration in the design and deployment of FL systems.

The total energy consumed by an edge device during training process can be expressed
as

E = FEyet + Ec + Esysv (5-1)

where Fyt is the energy used for network communication, F. is the energy consumed
during computation, and Egy¢ accounts for system-level energy costs (e.g. OS overhead and
background processes)|68].

While E,et and FE. are directly influenced by design parameters such as the number
of local epochs, communication rounds and model size, Eys is largely unrelated to these
variables and is instead determined by hardware-specific factors. As a result, we can
perform grid search over the parameters that influence Eyet and E. to identify the optimal

balance between energy consumption and model performance. This tuning process is
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guided by two key observations. First in wireless environments, communication energy
cost (FEhet) is not negligible and can become a significant factor especially in settings where
the local model is lightweight and requires minimal computation, as is often the case in
HAR tasks. So by increasing the number of local training epochs per round, the total
number of communication rounds required for convergence can be reduced. This, in turn
reduces communication overhead and overall energy consumption. This insight leads to the
local vs. global computation trade-off, where more on-device training may reduce costly
network communication. Second, larger DNN models, with more layers and parameters
demand more energy for local training, but they tend to achieve better performance. This
introduces the energy vs. performance trade-off, where the challenge lies in balancing
computational cost with model accuracy. The objective of this section is to experimentally
evaluate both of these trade-offs.

The first experiment investigates the local computation vs global communication
trade-off by keeping the total number of gradient descent steps constant, while varying the
ratio between local epochs and global communication rounds. For example, configurations
such as 4 epochs x 25 rounds and 5 epochs x 20 rounds result in the same number of total
updates, but distribute the workload differently between local computation and network
communication. This allows us to assess whether increasing local training per round while
reducing the number of communication rounds can lead to more energy-efficient training
without compromising performance.

The second experiment examines how model size affects energy consumption, train-
ing time, and accuracy, aiming to identify the smallest model that delivers acceptable
performance while consuming the least energy.

As described in Chapter 4.5.3, the energy consumption during the FL process for
each round and device is calculated using equation 4.1, while the total energy required to
produce the final global model is computed using equation 4.2. However, among the five
client devices used in the experiment (see Table 4.1), Samsung SM-A510F did not expose
charge and voltage metrics, and Xiaomi M2006C3MNG consistently produced unreliable
or inconsistent readings. As a result, the average energy consumption was calculated using
data from the remaining three devices. Additionally, to estimate the total energy cost
across all five clients, the energy usage of the two excluded devices was approximated
using the mean consumption of the three valid devices.

Both of these experiments use the same low-level label skewed dataset configuration
described in Section 5.2.2 as it more accurately reflects the non-IID data distributions

encountered in real-world federated learning deployments.

5.3.1 Balancing Local Computation and Communication for Energy Ef-
ficiency

In this experiment, the total number of stochastic gradient descent steps is fixed at
100, while the configuration of local training epochs and federated communication rounds
is varied. The four training setups evaluated are: 1x100, 2x50, 4x25, and 10x10.

As shown in the top part of Figure 5.12, energy consumption per device decreases
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Figure 5.12. Energy-Accuracy Trade-off: Local Epochs vs Communication Rounds. Top:
Total energy consumption per device (in mWHh) across varying local epoch and communica-
tion round configurations. Bottom: Final model accuracy (blue bars, left y-azis) vs. total
energy consumption (red line, right y-axis).

consistently as the number of communication rounds is reduced. This pattern is observed
across all three devices with valid energy readings (Realme RMX3370, Samsung SM-G975F,
Samsung SM-J730F) and aligns with expectations that fewer global updates which mean
fewer network transmissions are typically more energy-intensive than local computation.
Another interesting observation is that Realme RMX3370 which the newest most cabable
device in the group, consumes less energy than the older Samsung models across all config-
urations. This highlights how hardware efficiency plays a substantial role in total energy
usage in FL deployments.

The bottom part of Figure 5.12 shows the final model accuracy alongside the total
combined energy consumption for each configuration. Total energy across all five clients

(including estimates for the two with missing data) is as follows:

1x100: 2023.99 mWh

2x50: 1166.49 mWh

4x25: 655.75 mWh

10x10: 319.37 mWh

While the highest accuracy is achieved with 1x100 setting, the accuracy difference
between this and the more energy-efficient 10x10 configuration is marginal. Thus, the
energy cost of frequent communication is not justified by the relatively small performance

gains. One possible explanation for why more communication rounds may lead to improved
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accuracy is that more frequent model aggregation helps the global model better integrate
the diverse data patterns learned by individual clients. As demonstrated in the non-IID
experiments in Sections 5.2.2, 5.2.3, and 5.2.4, this effect is particularly important when
client data distributions are highly non-IID.

The most important takeaway though, is the dominant role of communication rounds
in energy consumption. Between the most communication-intensive configuration (1x100)
and the most efficient one (10x10), total energy use drops by over 84%, while accuracy re-
mains nearly unchanged. This demonstrates that energy savings in FL can be significantly

optimized by adjusting the balance between local computation and global synchronization.

5.3.2 Impact of Model Complexity on Energy Consumption

Impact of Model Size on Energy Consumption and Accuracy
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Figure 5.13. Impact of Model size on Accuracy

In this experiment, the impact of increasing model complexity on both energy con-
sumption and accuracy is evaluated. Five fully connected neural network configurations

are tested, with the same input and output dimensions but varying hidden layer sizes:
e modell: [16, 5, 5, 6]
e model2: [16, 10, 10, 6]
e model3: [16, 16, 16, 6]
e modeld: [16, 32, 32, 6]
e model5: [16, 64, 64, 6].

Figure 5.13 shows how model accuracy evolves over federated rounds. As expected,
larger models consistently achieve better performance. The smallest model converges to

just over 55% accuracy, while the largest model5 reaches approximately 90%. Accuracy
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Figure 5.14. FEnergy Cost vs Accuracy for Varying Model Architectures. Top: Total
energy consumption (in mWh) per device for different neural network configurations. Bot-
tom: Final model accuracy (blue bars, left y-axis) versus total energy consumption (red
line, right y-azis)

steadily improves with model size, however after the model4 gains start to wear out which
indicates diminishing returns beyond this point.

The top part of Figure 5.14 illustrates the energy consumption per device across all
tested model architectures, while the bottom part shows the final accuracy of the global
model along with the total energy consumed to reach that accuracy. One counter-intuitive
observation is that, although model accuracy improves significantly, from approximately
55% for the smallest model to 90% for the largest, the total energy consumption remains

relatively stable across all configurations:
e modell: 1120.14 mWh
e model2: 1073.27 mWh
e model3: 977.59 mWh
e model4: 1053.28 mWh
e model5: 1073.27 mWh

There are two possible explanations for this. First, the increase in model size may be
relatively small compared to the computational capabilities of the devices, meaning that
the additional workload does not substantially affect power consumption. Second, after
monitoring CPU load using Android Studio, it was observed that CPU usage clipped at
around 13% for each device. This is due to restrictions imposed by the Android OS, which

limits the CPU resources allocated to any single app. As a result, larger models may not
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increase CPU usage but instead extend the computation time. Although this leads to
higher overall energy consumption, the nature of this trade-off remains largely unexplored.

Nevertheless, these findings highlight the need for further investigation into the re-
lationship between model architecture and energy consumption. While as seen from the
accuracy improvements, model size clearly influences performance. On this specific examle
its impact on energy efficiency remains less straightforward. Given the results from the
previous experiment, where training configuration significantly affected energy usage, fu-
ture work should explore how architectural choices can affect both the accuracy and the

energy efficiency.

5.4 Robustness of FL. Under Network Variability

Network conditions directly influence the convergence time of FL, as each FL round
consists of both computation and communication phases. In our initial tests, we eval-
uated the impact of varying signal quality which is measured using RSSI values, where
approximately —35dBm indicates strong signal strength and —78dBm indicates poor signal
strength. However, no significant fluctuation in convergence time was observed, regard-
less of network quality. This outcome was expected, as the experimental setup involved
relatively small models with few trainable parameters since over the course of 75 rounds,
approximately 3.72 MB of data was received and 0.52 MB was transmitted by each client.
Given these small communication payloads, variations in network bandwidth or signal
strength were found to have a negligible impact on overall training time. As a result, at-
tention was directed toward two more critical aspects of network conditions in FL systems.
First, due to unstable connections, clients may occasionally fail to participate in a given
round. This leads to the question: How robust is the global model when client availability
is probabilistic rather than guaranteed? Second, the scenario of permanent client dropouts
was considered, in which clients may leave the training process entirely. The key question
here is: To what extent does model performance degrade as the pool of participating clients
shrinks over time?

Both of these experiments use the same low-level label skewed dataset configuration
described in Section 5.2.2 as it more accurately reflects the non-IID data distributions

encountered in real-world federated learning deployments.

5.4.1 Impact of Intermittent Client Participation

To emulate the conditions of probabilistic client availability, each client is configured
to participate in any given round with a probabilitya € {25%,50% 75% 100%}. This is
implemented by modifying the server logic to probabilistically include each client’s updates
in the aggregation step based on the specified value of a, while still maintaining five clients
as available participants throughout the experiment.

Figure 5.15 presents the model accuracy over time for each availability level as well as
a corresponding chart showing the number of clients participating in each round under the

different values of a. As illustrated, reduced client availability leads to slower convergence
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Figure 5.15. Model Convergence Stability under Probabilistic Client Participation

and increased instability in model accuracy. At 75% participation, fluctuations in accuracy
become immediately noticeable. While these fluctuations do grow more pronounced as par-
ticipation rates decrease further, the increase is not as dramatic as one might expect. Our
intuition is that, because FedAvg is not inherently robust to non-IID data, the algorithm
may already be operating near its limits even at 75% participation. As a result, further
reductions in participation have a less noticeable impact, since the performance degrada-
tion is already substantial. It is possible that with more robust aggregation methods, such
as FedProx or SCAFFOLD, we would observe a more pronounced drop in accuracy and a
sharper increase in instability as client availability decreases. Understanding how different
aggregation strategies respond to varying client availability in non-IID settings is an im-
portant direction for future research, as non-IID data remains one of the core challenges

and open issue in federated learning bibliography.

5.4.2 Model Resilience to Permanent Client Dropout

These experiments are conducted over a total of 40 federated rounds. The permanent
client dropouts are simulated by removing 1, 2, 3, and 4 clients respectively at round
40 when the model has undergone a substantial amount of training. These scenarios
are compared against a benchmark case in which all clients remain active throughout

the training process. To implement this setup, the server’s maximum number of clients

Diploma Thesis E




Chapter 5. Systematic Experimental Evaluation of Federated Learning on HAR Tasks

required to initiate training is set to 5, and the minimum number of clients required to
continue training is set to 1. The specified clients are then manually disconnected after
round 20.

Impact of Mid-Training Client Dropout
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Figure 5.16. Effect of Permanent Client Dropout on Model Accuracy and Stability

The results are illustrated in Figure 5.16. When only one or two clients are removed
after round 20, the impact on model performance is relatively modest. Although the
final accuracy levels off sooner and does not continue improving as it does in the full-
client scenario, the model still manages to maintain a respectable accuracy in the range of
81-83%. However, when three clients drop out—Ileaving only two active participants—the
degradation becomes more pronounced. Accuracy declines to approximately 75%, and the
model begins to exhibit greater variance across rounds, signaling reduced stability. The
most severe scenario occurs when four clients are dropped, leaving only a single device to
continue training. In this case, convergence effectively halts, and accuracy drops sharply
to around 65%. This dramatic collapse underscores the critical importance of client di-
versity in federated learning: with data coming from just one user, the model lacks the
heterogeneity required to generalize well, resulting in overfitting and poor performance.
These findings highlight a critical challenge in federated learning: resilience to adversarial
attacks. The significant performance degradation observed in the absence of honest par-
ticipants underscores the system’s vulnerability to malicious clients. This raises concerns
about the robustness of federated learning against data poisoning or model manipulation
attacks, even though this experiment focused on a completely different issue. Addressing

this vulnerability is also an important direction for future research.
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Conclusions and Future Directions

6.1 Summary of Contributions

This thesis evaluated the application of the FL paradigm in a real cross-device sce-
nario, focusing specifically on the HAR task. In contrast to the majority of existing FL
literature, which heavily relies on simulation-based environments and synthetic datasets,
this work addressed the practical constraints, trade-offs, and systemic limitations encoun-
tered when deploying FL on real mobile hardware. To support this evaluation, a complete
end-to-end FL system was developed, using Android smartphones as client devices for on-
device training (using TFLite) and a server implemented with the Flower framework. All
devices were connected via a local Wi-Fi network, enabling real-time communication and
coordination between clients and the central server during the FL process. The system
was tested using six publicly available HAR datasets, selected for their diversity in sens-
ing modalities, preprocessing techniques, and activity types. From the experiments, the

following core insights were derived:

e Impact of Non-IID Data on Model Performance: Client scaling experiments
(Chapter 5.2.5) demonstrated that even when data was relatively balanced and col-
lected under controlled conditions, differences in subject behavior, sensor positioning,

and hardware characteristics led to significant convergence variance.

e Energy Efficiency Through Training Configuration: Although HAR can be
addressed using relatively lightweight neural networks, energy consumption remains
a significant concern. Energy experiments (Chapter 5.3.1) showed that increasing
the number of local training epochs while reducing the number of communication
rounds reduced the total energy usage by up to 6x, without compromising model

accuracy. This demonstrates a practical trade-off for energy-aware FL deployments.

e Sensitivity to Network Variability: Network experiments revealed that FL per-
formance is highly sensitive to client dropout and intermittent availability. Even
moderate reductions in client participation introduced instability and delayed con-
vergence. These results underscore the need for more robust aggregation algorithms

to ensure reliability in real-world scenarios.

In summary, this thesis demonstrates both the potential and limitations of FL in real-

istic edge-device scenarios, while through the experimental findings, it provides empirical
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guidance for future research directions.

6.2 Limitations

Although this work provides valuable insights, it also has certain limitations that

should be acknowledged:

e System Heterogeneity: Although devices used in the experiments varied in hard-
ware capabilities and Android OS versions, no dedicated experiments were conducted
to isolate or quantify the impact of system heterogeneity on convergence speed or
model performance. While the study explores the three key aspects of FL (perfor-
mance, energy consumption, and network behavior), this fourth dimension remains
an important unexplored area. An interesting experiment would be to investigate
the impact of devices with limited computational capabilities relative to the rest of

the client pool on the overall system performance and convergence

e Partial Energy Data: Energy measurements were only available for three out of
five devices. For the two devices with missing or unreliable sensor data, energy
consumption was estimated using the average of the remaining devices. While this
approximation provided a practical workaround, it may not reflect the true energy

dynamics of those devices.

e Limited Device Scale: The evaluation was conducted on five Android smart-
phones, which is sufficient to demonstrate cross-device behavior but does not cap-
ture the complexities and scalability challenges of large-scale deployments which may

involve even millions of edge devices.

6.3 Directions for Future Research

Future work can be organized into two primary directions: i) extensions to the existing
framework and ii) broadening the scope of experimentation.

The first direction involves enhancing the current FL framework by incorporating
more robust aggregation algorithms, such as FedProx and SCAFFOLD, and evaluating
their performance against the baseline FedAvg approach within the HAR context. These
methods are specifically designed to address non-IID data distributions which is the most
critical challenges identified in this thesis. As shown in the client scaling experiment with
non-I1ID data (Chapter 5.2.5), evaluating these algorithms under realistic conditions may
provide deeper insight into their potential for improving convergence and system stability.

The second direction involves expanding the scope of experimentation to explore new
dimensions of FL behavior. For instance, the label skew experiments (Chapter 5.2.2)
raise the question of how effectively FL systems can propagate label knowledge when cer-
tain classes are completely missing from some clients. Improving this type of cross-client
knowledge transfer could significantly enhance model performance in highly skewed or frag-

mented data settings. Similarily, the quantity skew experiments (Chapter 5.2.3) suggest
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that further exploration is needed into how uneven data distributions impact collaboration
among clients. In particular, it would be valuable to examine whether clients with limited
local data can benefit from those with richer datasets, and how this imbalance influences
global model performance.

Another key area for future research concerns the relationship between model archi-
tecture and energy efficiency. While this thesis explored varying model sizes, the con-
nection between architectural complexity and energy consumption remains underexplored.
As demonstrated in Chapter 5.3.2 future work should investigate how model architecture
choices affect both accuracy and energy efficiency. Constructing energy-to-accuracy trade-
off curves could be valuable tool to identify the optimal balance for resource-constrained
edge deployments.

Finally, results from the network-related experiments suggest that current FL work-
flows are highly sensitive to partial client participation. As shown in Chapter 5.4.1, de-
creasing client availability due to intermittent connectivity can lead to increased instability
and reduced model accuracy, especially under non-IID data distributions. Exploring more
robust aggregation algorithms, such as FedProx or SCAFFOLD, may help mitigate this
degradation by better handling the effects of data heterogeneity. Chapter 5.4.2 further
highlights the challenge of permanent client dropout, where the removal of participants
led to significant performance losses. Although the experiment did not explicitly target
adversarial attacks, the results highlight FL’s vulnerability to scenarios involving mali-
cious clients, where techniques such as model poisoning can significantly degrade model
performance. Addressing these robustness challenges is essential for enabling reliable FL

deployment in real-world, non-IID, and potentially adversarial environments.
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Machine Learning

Neural Network

Support Vector Machine

Deep Neural Network

Convolutional Neural Network
Recurrent Neural Network

Rectified Linear Unit

Federated Learning

General Data Protection Regulation
Health Insurance Portability and Accountability Act
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gRPC Remote Procedure Call

Human Activity Recognition
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REST Representational State Transfer

TCP Transmission Control Protocol
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NLP Natural Language Processing
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CPU Central Processing Unit

SCAFFOLD Stochastic Controlled Averaging for Federated Learning
TFF TensorFlow Federated
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FEFT Fast Fourier Transform

IMU Inertial Measurement Unit

LPF Low Pass Filter

NIDS Network Intrusion Detection Systems
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