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Περίληψη

Στην διπλωµατική αυτή εργασία ασχολούµαστε µε τη ϑεωρία και τις εφαρµογές του Optimal

Transport (OT), µε ιδιαίτερη έµφαση στον ϱόλο της στην ανάλυση και την ποσοτικοποίηση

της συµπεριφοράς γενίκευσης των ϐαθιών νευρωνικών δικτύων (DNN). Παρουσιάζουµε µια

διπλή προσέγγιση: αρχίζουµε µε µια αυστηρή ϑεωρητική ανάπτυξη του optimal transport

που ϐασίζεται σε ϑεµελιώδεις µαθηµατικές έννοιες (µετρικοί χώροι, ϑεωρία µέτρου και συ-

ναρτησιακή ανάλυση) και στη συνέχεια, διερευνούµε εµπειρικά τις αποστάσεις Wasserstein

στο πλαίσιο της µηχανικής µάθησης. Το ϑεωρητικό µέρος καλύπτει τις διατυπώσεις του

προβλήµατος από τους Monge και Kantorovich, τη ϑεωρία δυϊκότητας και τη γεωµετρία

του χώρου Wasserstein. Στο υπολογιστικό κοµµάτι, µελετάµε τη σύγκλιση των εµπειρι-

κών αποστάσεων Wasserstein για διάφορες περιπτώσεις δειγµατοληψίας και συναρτήσεων

κόστους, επιβεβαιώνοντας τα ϑεωρητικά αποτελέσµατα και εξετάζοντας την εξάρτησή τους α-

πό τη διάσταση. Εξερευνούµε τη χρήση των pushforward αποστάσεων Wasserstein από τους

Λουλάκη και Μακριδάκη για τη µελέτη του σφάλµατος γενίκευσης στη ϐαθιά µάθηση και

ϐλέπουµε ότι αυτές οι αποστάσεις προσφέρουν µια καλύτερη ποσοτικοποίηση του σφάλµατος

γενίκευσης από τα παραδοσιακά όρια. Είναι ενδιαφέρον ότι τα αποτελέσµατά µας αποκα-

λύπτουν ότι η συµπεριφορά σύγκλισης των αποστάσεων pushforward συχνά αποκλίνει από

την κλασική ϑεωρία ΟΤ, υποδηλώνοντας µια ϐαθύτερη αλληλεπίδραση µεταξύ της γεωµε-

τρίας των δεδοµένων και της δυναµικής µάθησης των νευρωνικών δικτύων. Τα ευρήµατά

µας αναδεικνύουν τις δυνατότητες του optimal transport στη σύγχρονη µελέτη της µηχανι-

κής µάθησης και αναδεικνύουν νέες πολλά υποσχόµενες κατευθύνσεις στην κατανόηση του

σφάλµατος γενίκευσης.

Λέξεις Κλειδιά

Optimal Transport, Απόσταση Wasserstein, Εµπειρικό Μέτρο, Μηχανική Μάθηση, Στατι-

στική Σύγκλιση, Σφάλµα Γενίκευσης.
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Abstract

This thesis explores the theory and applications of optimal transport (OT), with a par-

ticular emphasis on its role in analyzing and quantifying the generalization behavior of

deep neural networks (DNNs). We present a dual approach: a rigorous theoretical de-

velopment of optimal transport grounded in foundational mathematics (metric spaces,

measure theory, and functional analysis), and a comprehensive empirical investigation

of Wasserstein distances in machine learning contexts. The theoretical component cov-

ers the Monge and Kantorovich formulations, duality theory, and the geometry of the

Wasserstein space. On the computational side, we study the convergence of empirical

Wasserstein distances under various sampling schemes and cost functions, validating

theoretical rates and examining their dependence on dimension. We explore the use of

pushforward Wasserstein distances by Loulakis and Makridakis to study generalization

error in deep learning. We demonstrate that these distances, induced by learned fea-

ture representations, offer a tighter quantification of generalization error than traditional

bounds. Interestingly, our results reveal that the convergence behavior of pushforward

distances often deviates from classical OT theory, hinting at a deeper interaction between

data geometry and neural network learning dynamics. Our findings highlight the poten-

tial of optimal transport as a principled tool in modern machine learning and suggest

promising directions for future theoretical work on the convergence of learned transport

maps.

Keywords

Empirical Measure, Generalization error, Machine learning, Optimal transport, Statistical

convergence, Wasserstein distance.

Diploma Thesis 7





Acknowledgements

I would like to express my sincere gratitude to my supervisor, Professor Michalis Loulakis,

for his invaluable guidance throughout the thesis process. His support during my PhD

application, his introduction to advanced mathematical concepts, and his inspiring men-

torship in the field of optimal transport have been instrumental in shaping both this work

and my academic path.

I am also deeply thankful to Professor Dimitris Fotakis for sharing with me his passion for

mathematically grounded algorithms, as well as for his important guidance throughout

my studies and during the PhD application period.

I would like to thank Professor Aris Pagourtzis for his support during my undergraduate

studies and for his role in fostering a strong academic foundation.

Special thanks are due to Professor Vasilis Nakos for his continuous support, insightful

advice, and thoughtful guidance throughout the thesis process.

Most importantly, I want to thank my family — my parents, Giannis and Kaiti, for their

unconditional love, support, and belief in me, and my brothers, Dimitris and Christos,

for their patience, encouragement, and help with understanding complex mathematical

concepts.

Finally, I am deeply grateful to my friends, who provided motivation, balance, and a con-

stant reminder to take breaks during this demanding period. A special mention goes to

Asterios Tsiourvas for his help with the experimental section, including valuable discus-

sions and access to additional computational resources.

Athens, June 2025

Pantelis Emmanouil

Diploma Thesis 9





Contents

Περίληψη 5

Abstract 7

Acknowledgements 9

1 Εκτεταµένη Ελληνική Περίληψη 19

1.1 Optimal Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.2 Σφάλµα γενίκευσης και Εµπειρικά Μέτρα . . . . . . . . . . . . . . . . . . . 22

1.3 Συµπεράσµατα και Μελλοντικές Κατευθύνσεις . . . . . . . . . . . . . . . . . 24

2 Introduction 25

3 Mathematical Background 27

3.1 Metric Spaces and Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.1 Metric and Normed Spaces . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.2 Topological Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.3 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.4 Completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1.5 Compactness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Measure Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.1 Sigma Algebra and Measures . . . . . . . . . . . . . . . . . . . . . . 35

3.2.2 Measurable Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.3 Integration and Radon-Nikodym’s Theorem . . . . . . . . . . . . . . 38

3.2.4 Probability Distributions . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.5 Convergence of Measures . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2.6 Product Measures and Independence . . . . . . . . . . . . . . . . . . 46

3.3 Functional Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3.1 Normed and Banach Spaces . . . . . . . . . . . . . . . . . . . . . . . 48

3.3.2 Dual Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3.3 The Hahn–Banach Theorem . . . . . . . . . . . . . . . . . . . . . . . 53

3.3.4 Hilbert Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3.5 Weak Topologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3.6 Convexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Diploma Thesis 11



4 Optimal Transport 63

4.1 Introduction and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 Formulation of the problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3 Existence of Optimal Transport Plans . . . . . . . . . . . . . . . . . . . . . 67

4.4 Kantorovich duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.5 Wasserstein Distances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.6 Optimal Transport in One Dimension . . . . . . . . . . . . . . . . . . . . . 79

4.7 Optimal plans and quadratic cost functions . . . . . . . . . . . . . . . . . . 87

4.8 Wasserstein Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5 Empirical Measures and DNN Generalization Error 95

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.2 One-Dimensional Empirical Measures and Order Statistics . . . . . . . . . 96

5.2.1 Empirical Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.2.2 Wasserstein Convergence to Zero . . . . . . . . . . . . . . . . . . . . 97

5.2.3 Bounds for Expected Wasserstein Distance . . . . . . . . . . . . . . 99

5.3 Computational Algorithms for Optimal Transport . . . . . . . . . . . . . . . 101

5.3.1 Sinkhorn Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.3.2 Network Simplex Algorithm . . . . . . . . . . . . . . . . . . . . . . . 103

5.3.3 Algorithm for One-Dimensional Optimal Transport . . . . . . . . . . 105

5.4 Generalization Error in Neural Networks via Optimal Transport . . . . . . . 106

5.4.1 Deep Neural Networks and Error . . . . . . . . . . . . . . . . . . . . 106

5.4.2 Bounding the Generalization Error . . . . . . . . . . . . . . . . . . . 107

5.4.3 Motivation for Wasserstein Distances of Pushforward Measures . . . 109

5.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.5.1 Estimating the Empirical Wasserstein Distance . . . . . . . . . . . . 109

5.5.2 Estimating Generalization via Pushforward Wasserstein Distances . . 113

6 Conclusion 119

Appendix A: The Standard Machine — From Sets to Functions 121

Bibliography 123



List of Figures

3.1 Illustration of a measurable function: f −1(B) ∈ A for all B ∈ B . . . . . . . 36

3.2 Comparison of Riemann and Lebesgue integration. Riemann sums vertical

slices under the graph, Lebesgue sums over horizontal level sets. . . . . . 39

3.3 Illustration of Lp spaces on a finite measure space . . . . . . . . . . . . . . 42

3.4 Illustration of a pushforward measure ν = f#µ. . . . . . . . . . . . . . . . . 44

3.5 Illustration of product measure . . . . . . . . . . . . . . . . . . . . . . . . 46

3.6 Unit balls in R2
under different norms: Euclidean norm (ℓ2), maximum

norm (ℓ∞), and Manhattan norm (ℓ1). All define different shapes but induce

the same topology, illustrating norm equivalence in finite dimensions. . . . 49

3.7 Illustration of the Riesz–Markov–Kakutani theorem: positive linear func-

tionals on Cc(X ) correspond uniquely to Radon measures on X . . . . . . . 52

3.8 Visualization of a Hahn–Banach extension. The original linear functional

f0(x,0) = x is defined on the x-axis (the subspace U ), and extended to

the whole plane via f (x, y) = x + λy. We chose λ = 0 so that the exten-

sion preserves the operator norm of 1. For other values of λ, the norm

of the extension becomes

√
1 + λ2 > 1, thus violating the norm-preserving

requirement of the Hahn–Banach theorem. . . . . . . . . . . . . . . . . . 53

3.9 Hahn–Banach separation: the point x < C is separated from the convex set

C by a hyperplane f (y) = α. . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.10 Neighborhood sizes and sequence convergence under different topolo-

gies: The norm topology has the smallest neighborhoods (blue), the weak

topology has larger neighborhoods (green), and the weak-* topology has the

largest neighborhoods (orange). As the topology weakens, neighborhoods

become bigger, so sequences can vary more and still converge. Hence, some

sequences fail to converge under the norm but do converge weakly or weak-

*. More specifically: - Blue points converge to x under norm. - Blue and

Green points converge to x under weak convergence. - Blue, Green, and

Orange points converge to x under weak-* convergence. . . . . . . . . . . 56

3.11 Illustration of lower semicontinuity at x0. Left: function with a jump down

at x0, failing lower semicontinuity since lim infx→x0
f (x) < f (x0). Right:

lower semicontinuous function where lim infx→x0
f (x) ≥ f (x0). . . . . . . . . 59

Diploma Thesis 13



3.12 Subdifferential of a convex function at the nondifferentiable point x = 2. All

affine lines shown touch the graph at (2,1) and lie below it everywhere. The

subdifferential ∂f (2) consists of all slopes between −0.5 and 0.5, illustrating

that the set of subgradients at a nondifferentiable point can be a nontrivial

interval. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.13 Calculation of f ∗(1) by finding the point where the gap between the line

y = x and the function is maximized. At this point, the tangent to the

function has slope 1, matching the slope of the line. The vertical offset of

the tangent line is precisely −f ∗(1). . . . . . . . . . . . . . . . . . . . . . . 61

4.1 A conceptual illustration of optimal transport: the goal is to move mass

from the source distribution µ (blue, left) to the target distribution ν (red,

right) while minimizing transport cost. . . . . . . . . . . . . . . . . . . . . 64

4.2 Illustration of Monge’s transport map (top) and Kantorovich’s transport plan

(bottom), starting from a discrete distribution with masses 1, 2, and 1 (rep-

resented as vertical stacks) and ending at a distribution with two equal

stacks of mass 2. In Monge’s formulation, mass from each source point

must be moved entirely to a single target, which requires the middle heap

(mass 2) to be transported as a whole. In contrast, Kantorovich’s plan allows

splitting: the mass from a single source can be distributed across multiple

targets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3 Illustration of Kantorovich duality with dual potentials φ,ψ representing

fees assigned to factories and customers. Arrows with “tight” constraints

(green) correspond to active transport routes where φ(x) + ψ(y) = c(x, y),
such as φ(1) + ψ(A) = 3 + 2 = 5 = c1A and φ(2) + ψ(B) = 1 + 1 = 2 = c2B.

“Slack” edges (dashed gray) satisfy φ(x) + ψ(y) < c(x, y) and do not appear

in the optimal plan. For example, φ(1) + ψ(B) = 3 + 1 < 6 = c1B and

φ(2) + ψ(A) = 1 + 2 < 4 = c2A. The dual problem maximizes total fees∑
φ(x)dµ(x) +

∑
ψ(y)dν(y) under these constraints. . . . . . . . . . . . . 71

4.4 Example of a transshipment plan transporting µ = δ1 + δ2 to ν = 2δ4. The

nodes represent points in the network, where nodes 1 and 2 are sources

each with one unit of mass, and node 4 is the sink receiving two units. The

blue path shows mass moving from node 1 through nodes 2 and 3 to node

4, while the red path represents a cycle moving mass from node 2 through

nodes 3 and 1 before reaching node 4. The matrix π encodes the amount of

mass transported from node i to node j, where the entry πij corresponds to

this transported quantity. . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.5 Comparison of L∞ and Wasserstein distances. The L∞ distance reflects

the maximum pointwise difference between the functions and remains con-

stant, regardless of how far apart the distributions are. In contrast, the

Wasserstein distance reflects the spatial cost of transporting the mass —

increasing linearly with separation. . . . . . . . . . . . . . . . . . . . . . . 74



4.6 Visualization of two transport problems with equal W1 but different Wp

values. Yellow boxes represent the mass of µ, blue boxes represent the

mass of ν, and the multicolor boxes represent overlap. The first transport

moves mass between adjacent points, while the second involves mass at 0

moving to point 2, resulting in a higher cost for p > 1. . . . . . . . . . . . . 79

4.7 An illustration of a transport plan that violates cyclical monotonicity. The

source measure µ consists of one unit of mass at x1 and two units at x2,

while the target measure ν consists of one unit of mass at y1 and two units

at y2. The transport costs are: c11 = 10, c12 = 12, c21 = 5, and c22 = 10.

Left: In the original plan, x1 sends one unit to y1, and x2 sends its two

units to y2, for a total cost of 1 · c11 + 2 · c22 = 1 · 10 + 2 · 10 = 30. Right: In

the swapped plan, one unit from x1 is redirected to y2 and one unit from x2

is redirected to y1, while the second unit from x2 still goes to y2. The new

total cost becomes 1 · 12 + 1 · 5 + 1 · 10 = 27, which is strictly lower. In the

new plan, the pair (x1, y1) is no longer in the support. . . . . . . . . . . . 80

4.8 Illustration of the sets involved in the proof that the optimal coupling π∗ in

one dimension satisfies H(x, y) = π∗((−∞, x] × (−∞, y]) = min{Fµ(x), Fν(y)}.
The rectangle (−∞, x] × (−∞, y] (blue) is extended by the sets Axy (red),

containing all points with x ′ ≤ x and y′ > y, and Bxy (green), containing all

points with x ′ > x and y′ ≤ y. The support Γ = supp(π∗) (violet curve) avoids

at least one of these sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.9 Top: measures µ and ν with atom and uniform parts. Middle: their CDFs

Fµ and Fν. Bottom: their quantile functions F−1

µ and F−1

ν . Formulas for all

are placed around the corresponding plots. . . . . . . . . . . . . . . . . . . 84

4.10 (a) Kantorovich optimal coupling in the (x, y)-plane: red segment for the

atom at x = 0 and blue segment for the uniform part x ∈ [1,2]. (b) Mass

transport sketch from µ (bottom line) to ν (top line). The red triangle shows

transport of the atom mass
1

2
δ0 to y ∈ [0,0.5], and the blue polygon shows

transport of the uniform mass to y ∈ [0.5,1]. The top distribution is shaded

to highlight these intervals. . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.11 Shaded area A between F and G equals

∫
|F (x) − G(x)|dx, which matches∫

|F−1(t) − G−1(t)|dt using Fubini’s Theorem. . . . . . . . . . . . . . . . . . 86

4.12 Construction of the Kantorovich dual potential ϕ(x) as the pointwise in-

fimum over the functions fy(x) = c(x, y) − ψ(y), for c(x, y) = (x − y)2
and

ψ(y) = 1

2
y2

. This illustrates how ϕ can be expressed as
1

2
x2

minus a convex

function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.1 Left: True measure µ (black curve) and empirical measures µ̂3 (blue spikes)

and µ̂10 (red spikes). Right: Corresponding CDFs Fµ (black smooth curve),

Fµ̂3
(blue step function), and Fµ̂10

(red step function). . . . . . . . . . . . . . 97



5.2 Bipartite graph for discrete optimal transport with cost matrix C. Solid

blue edges correspond to the current basic feasible solution with associated

flow values. Red dashed edges are candidate edges with strictly lower cost,

advantageous to enter the basis and potentially reduce total transport cost.

This figure illustrates the original graph and feasible flow; the residual graph

used internally by the network simplex algorithm is not shown here. . . . . 104

5.3 Log-log plots of W p
p (µn, µ) vs. sample size n for µ ∼ U([0,1]d) and various

(p, d). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.4 Log-log plots of W p
p (µn, µ) vs. sample size n for µ ∼ N(0, Id) and various (p, d).112

5.5 Log-log plots of W p
p (e#µn, e#µ) vs. n for f (x) = ∥x∥2

2
, µ ∼ U([0,1]d), for

various p, d values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.6 Log-log plots of W p
p (e#µn, e#µ) vs. n for f (x) = ∥x∥2

2
, µ ∼ N(0, Id), for various

p, d values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.7 Log-log plots for f (x) = ∥x∥−1/8

2
, µ ∼ U([0,1]d), for selected p values and

d = 1,2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117



List of Tables

5.1 Estimated convergence rates (slopes) of logW p
p (µn, µ) vs. logn for µ ∼ U([0,1]d)

and different d and p values. . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.2 Estimated convergence rates (slopes) of logW p
p (µn, µ) vs. logn for µ ∼ N(0, Id)

and different d and p values. . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.3 Empirical convergence slopes for f (x) = ∥x∥2
2
, µ ∼ U([0,1]d). . . . . . . . . 114

5.4 Empirical convergence slopes for f (x) = ∥x∥2
2
, µ ∼ N(0, Id). . . . . . . . . . 117

5.5 Empirical convergence slopes for f (x) = ∥x∥−1/8

2
, µ ∼ U([0,1]d), and selected

d, p values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Diploma Thesis 17





Κεφάλαιο 1

Εκτεταµένη Ελληνική Περίληψη

Στην περίληψη αυτή, αρχικά ϑα περιγράψουµε τα ϐασικότερα αποτελέσµατα της ϑεωρίας του

Optimal Transport, και στη συνέχεια ϑα εξετάσουµε τη ϑεωρία σύγκλισης των αποστάσεων

Wasserstein µεταξύ εµπειρικών και πραγµατικών µέτρων, επαληθεύοντας τα αποτελέσµατα

πειραµατικά.

Η ϑεωρία του Optimal Transport ϐασίζεται σε έννοιες από διάφορους τοµείς των µαθηµα-

τικών. Στην παρούσα περίληψη, υποθέτουµε ότι ο αναγνώστης διαθέτει εξοικείωση µε τις

ϐασικές έννοιες των παρακάτω περιοχών, οι οποίες περιγράφονται πιο αναλυτικά στο αγγλικό

σκέλος της εργασίας :

• Μετρικοί Χώροι και Τοπολογία: Μετρικές, νόρµες, ανοιχτά/κλειστά σύνολα, σύγκλι-

ση ακολουθιών, πληρότητα, συµπάγεια.

• Θεωρία Μέτρου: σ-άλγεβρες, µέτρα, µετρήσιµες συναρτήσεις, ολοκλήρωση Lebesgue,

µέτρα πιθανότητας, push-forward µέτρα, ασθενής σύγκλιση µέτρων, µέτρα γινόµενο.

• Συναρτησιακή Ανάλυση: Χώροι Banach, δυϊκοί χώροι, ασθενείς τοπολογίες, ϑεώρη-

µα Hahn-Banach, στοιχεία κυρτής ανάλυσης.

1.1 Optimal Transport

Η ϑεωρία του Optimal Transport εξετάζει τον πιο αποδοτικό τρόπο µετακίνησης µάζας από

µια κατανοµή µ ∈ P(X ) σε µια άλλη κατανοµή ν ∈ P(Y ), δεδοµένης µιας συνάρτησης

κόστους c : X × Y → R που κοστολογεί τη µεταφορά µάζας από ένα σηµείο x ∈ X σε ένα

σηµείο y ∈ Y . Στόχος είναι η ελαχιστοποίηση του συνολικού κόστους µεταφοράς.

∆ιατυπώσεις Monge και Kantorovich Η αρχική διατύπωση του Monge (1781) αναζητά

έναν µετασχηµατισµό T : X → Y που µεταφέρει τη µ στη ν (δηλαδή T#µ = ν) και ελαχιστο-

ποιεί το συνολικό κόστος :

inf
T#µ=ν

∫
X
c(x, T (x))dµ(x)
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Ωστόσο, ο µετασχηµατισµός T δεν υπάρχει πάντα. Ο Kantorovich (1942) εισάγει την πιο

ευέλικτη έννοια του πλάνου µεταφοράς π ∈ Π(µ, ν), δηλαδή ενός µέτρου στο X × Y µε

περιθώριες κατανοµές µ και ν, και διατυπώνει το πρόβληµα ως:

inf
π∈Π(µ,ν)

∫
X×Y

c(x, y)dπ(x, y)

Σε αυτήν τη διατύπωση του προβλήµατος, αποδεικνύεται ότι, υπό κάποιες σχετικά ελαφριές

προϋποθέσεις, το ϐέλτιστο πλάνο υπάρχει.

Θεώρηµα: ΄Εστω X, Y Polish χώροι και c : X × Y → [0,+∞] µια κάτω ηµι-συνεχής συνάρ-

τηση. Τότε, υπάρχει π∗ ∈ Π(µ, ν) που επιτυγχάνει το ελάχιστο κόστος µεταφοράς, δηλαδή:∫
X×Y

c(x, y)dπ∗(x, y) = inf
π∈Π(µ,ν)

∫
X×Y

c(x, y)dπ(x, y)

∆υϊκή ϑεωρία του Kantorovich Το πρόβληµα ϐέλτιστης µεταφοράς του Kantorovich

είναι πρόβληµα κυρτής ϐελτιστοποίησης : το σύνολο των επιτρεπτών σχεδίων µεταφοράς

Π(µ, ν) είναι κυρτό, και το κόστος

∫
c dπ εξαρτάται γραµµικά από τη µεταβλητή π. Σε αυτό

το πλαίσιο, είναι ϕυσικό να εξετάσουµε τη σχετιζόµενη δυϊκή διατύπωση του προβλήµατος.

Θεώρηµα (∆υϊκό πρόβληµα Kantorovich):

inf
π∈Π(µ,ν)

∫
X×Y

c(x, y)dπ(x, y) = sup
ϕ,ψ∈Φc

{∫
X
ϕ(x)dµ(x) +

∫
Y
ψ(y)dν(y)

}
όπου το σύνολο των επιτρεπτών δυϊκών µεταβλητών είναι :

Φc =
{
(ϕ, ψ) ∈ L1(µ) × L1(ν)

∣∣∣ ϕ(x) + ψ(y) ≤ c(x, y) ∀x ∈ X, y ∈ Y
}
.

∆ιαισθητικά, σκεφτείτε ότι ένας ϐιοµήχανος ϑέλει να µεταφέρει προϊόντα από εργοστάσια

(κατανοµή µ ∈ P(X )) προς πελάτες (κατανοµή ν ∈ P(Y )), µε κόστος µετακίνησης c(x, y). Μια

εταιρεία µεταφορών προτείνει να παίρνει προϊόντα από το εργοστάσιο x χρεώνοντας φ(x) και

να τα παραδίδει στον πελάτη y χρεώνοντας ψ(y), όπου φ(x)+ψ(y) ≤ c(x, y) για όλα τα Ϲεύγη

(x, y). Το παραπάνω ϑεώρηµα δηλώνει ότι, επιλέγοντας κατάλληλες τιµές φ και ψ, η εταιρεία

ϑα χρεώσει ακριβώς όσο είναι το ϐέλτιστο κόστος µεταφοράς στον ϐιοµήχανο.

΄Οταν το κόστος είναι µια µετρική c(x, y) = d(x, y), η δυϊκότητα λαµβάνει πιο απλή µορφή:

inf
π∈Π(µ,ν)

∫
d(x, y)dπ(x, y) = sup

φ∈ Lip
1
(X )

∫
X
φ(x)d(µ − ν)(x)

όπου το supremum λαµβάνεται σε όλες τις 1-Lipschitz συναρτήσεις φ : X → R.

Η ισότητα του πρωτεύοντος και του δυϊκού προβλήµατος (δηλαδή η απουσία δυϊκού χάσµα-

τος) ισχύει υπό ήπιες υποθέσεις, όπως η κάτω ηµισυνεχεία του c και η ύπαρξη πλάνου µε

πεπερασµένο κόστος.



Αποστάσεις Wasserstein ΄Οταν τα µέτρα µ και ν ορίζονται στον ίδιο χώρο X , το κόστος

µεταφοράς είναι της µορφής c(x, y) = d(x, y)p, για κάποια p ≥ 1, ορίζουµε την απόσταση

Wasserstein τάξης p ως:

Wp(µ, ν) =
(

inf
π∈Π(µ,ν)

∫
X×X

d(x, y)p dπ(x, y)
)1/p

Η ποσότητα αυτή επάγει µια απόσταση στον χώρο Pp(X ) των κατανοµών πιθανοτήτων µε

πεπερασµένη p-οστή ϱοπή. ∆ηλαδή, η Wp ικανοποιεί όλες τις ιδιότητες µιας µετρικής : µη

αρνητικότητα, συµµετρία, τριγωνική ανισότητα και Wp(µ, ν) = 0 ⇐⇒ µ = ν.

Σε αντίθεση µε τις σηµειακές αποστάσεις µεταξύ κατανοµών, όπως η ℓ∞, η απόσταση Wasser-

stein ενσωµατώνει τη γεωµετρική δοµή του υποκείµενου χώρου X : δεν εξετάζει απλώς αν

οι κατανοµές διαφέρουν, αλλά πόσο µακριά ϐρίσκονται µεταξύ τους, µετρώντας το ελάχιστο

έργο που απαιτείται για να µεταφερθεί η µάζα της µίας κατανοµής στην άλλη.

Οι αποστάσεις Wasserstein σχετίζονται στενά µε τη ϑεωρία ασθενούς σύγκλισης µέτρων:

• Αν ο X είναι συµπαγής µετρικός χώρος, τότε η σύγκλιση Wp(µn, µ)→ 0 ισοδυναµεί µε

ασθενή σύγκλιση µn
w
−→ µ.

Wp(µn, µ)→ 0 ⇐⇒ µn
w
−→ µ ⇐⇒ ∀f ∈ Cb(X ),

∫
f dµn →

∫
f dµ.

• Αν ο X είναι Polish αλλά όχι συµπαγής, τότε η ισοδυναµία απαιτεί επιπλέον σύγκλιση

των p-οστών ϱοπών:

Wp(µn, µ)→ 0 ⇐⇒ µn
w
−→ µ και

∫
d(x, x0)p dµn(x)→

∫
d(x, x0)p dµ(x)

Μονοδιάστατη Περίπτωση Στην ειδική περίπτωση X = Y = R µε κόστος c(x, y) = |x −y|p,
το πρόβληµα ϐέλτιστης µεταφοράς απλοποιείται σηµαντικά και επιτρέπει ϱητή λύση µέσω

των αντίστροφων συναρτήσεων κατανοµής.

΄Εστω µ, ν ∈ Pp(R) και Fµ, Fν οι συναρτήσεις κατανοµής τους. Οι αντίστροφες συναρτήσεις

ορίζονται ως

F−1

µ (t) := inf{x ∈ R | Fµ(x) ≥ t}, t ∈ (0,1).

Τότε η απόσταση Wasserstein υπολογίζεται αναλυτικά ως

W p
p (µ, ν) =

∫
1

0

|F−1

µ (t) − F−1

ν (t)|p dt.

Στην περίπτωση αυτή, το ϐέλτιστο πλάνο µεταφοράς π∗ είναι µονότονο : Αν τα (x1, y1), (x2, y2)
ανήκουν στο supp(π∗) και x1 < x2 τότε y1 ≤ y2. Το πλάνο αυτό είναι :

π∗ = (F−1

µ , F−1

ν )#λ



όπου λ είναι το µέτρο Lebesgue στο διάστηµα [0,1].

Το πρόβληµα Monge έχει λύση στην περίπτωση που το µ δεν έχει άτοµα (σηµεία µε ϑετική

µάζα): T = F−1

ν ◦ Fµ.

Η παραπάνω µονοτονική ιδιότητα οδηγεί σε έναν απλό αλγόριθµο υπολογισµού της απόστα-

σης Wasserstein στη µονοδιάστατη περίπτωση:

Για να κατασκευάσουµε το ϐέλτιστο πλάνο, ταξινοµούµε τα δείγµατα και κινούµενοι από το

µικρότερο προς το µεγαλύτερο σηµείο του µ, αναθέτουµε τη µάζα του στο µικρότερο δια-

ϑέσιµο στοιχείο του ν. Παράλληλα, προσθέτουµε το κόστος της µεταφοράς στο συνολικό µας

ϐέλτιστο κόστος. Η πολυπλοκότητα του αλγορίθµου είναι O(N logN) λόγω της ταξινόµησης,

ενώ αν τα δεδοµένα είναι ήδη ταξινοµηµένα, είναι O(N).

1.2 Σφάλµα γενίκευσης και Εµπειρικά Μέτρα

Εξετάζουµε τη σύγκλιση της αναµενόµενης απόστασης Wasserstein E[Wp(µ̂n, µ)] µεταξύ

µιας κατανοµής µ ∈ Rd και του εµπειρικού µέτρου µ̂n που προκύπτει από n ανεξάρτητα και

ισόνοµα δείγµατα Xi ∼ µ:

µ̂n =
1

n

n∑
i=1

δXi

Αποδεικνύεται ότι, µ̂n
w
−→ µ σχεδόν σίγουρα.

Επιπλέον, αν µ ∈ Pp(X ) (δηλαδή έχει πεπερασµένη p-οστή ϱοπή), ισχύει σχεδόν σίγουρα:

Wp(µ̂n, µ)→ 0.

E[Wp(µ̂n, µ)]→ 0.

Ο ϱυθµός σύγκλισης της αναµενόµενης απόστασης E[Wp(µ̂n, µ)] είναι της τάξης n−1/2
για

p = 1 και της τάξης O(n−1/d) για p , 1.

Για το αναµενόµενο κόστος µεταφοράς E[W p
p (µ̂n, µ)], έχουµε ϱυθµούς σύγκλισης της τάξης

n−p/2
για p = 1 και της τάξης O(n−p/d) για p , 1.

Σφάλµα Γενίκευσης Νευρωνικών ∆ικτύων Η παρούσα ενότητα ϐασίζεται στο [6] και

παρουσιάζει ένα νέο πλαίσιο ανάλυσης του σφάλµατος γενίκευσης ϐαθιών νευρωνικών δι-

κτύων µε εργαλεία ϐέλτιστης µεταφοράς και αποστάσεων Wasserstein, χωρίς να απαιτούνται

ισχυρές υποθέσεις για την αρχιτεκτονική τους.

Εξετάζουµε το πρόβληµα της παλινδρόµησης, όπου προσπαθούµε να εκπαιδεύσουµε ένα

δίκτυο ώστε να προσεγγίσει µια συνάρτηση-στόχο f : D → R, έχοντας πρόσβαση µόνο

στις τιµές της σε συγκεκριµένα δείγµατα εκπαίδευσης που ακολουθούν την κατανοµή µ.

΄Εστω N η κλάση νευρωνικών δικτύων πάνω στα οποία εκπαιδεύουµε, η οποία παράγει τον

χώρο συναρτήσεων VN ⊂ Lp(D). Χρησιµοποιώντας ως µετρική σφάλµατος την Lp απόσταση,



ϑέλουµε να προσεγγίσουµε το

v∗ = arg min
v∈VN

∫
D
|f − v|pdµ.

Καθώς διαθέτουµε µόνο ένα περιορισµένο δείγµα X (ω) = (X1(ω), . . . , Xn(ω)), ελαχιστοποιο-

ύµε το εµπειρικό σφάλµα

En,ω(v) =
1

n

n∑
i=1

|f (Xi(ω)) − v(Xi(ω))|p =
∫
D
|f − v|pdµn,X (ω),

όπου µn,X (ω) =
1

n

∑n
i=1
δXi (ω). ΄Εστω uX (ω) η συνάρτηση που ελαχιστοποιεί το εµπειρικό αυτό

σφάλµα.

Το συνολικό αναµενόµενο σφάλµα γράφεται :

E
[
∥f − uX ∥p

]
,

και διαχωρίζεται σε δύο συνιστώσες :

• Σφάλµα προσέγγισης : προκύπτει από τους εκφραστικούς περιορισµούς της κλάσης

VN , και δίνεται από

∥f − v∗∥p.

• Σφάλµα γενίκευσης : αποδίδεται στη διαφορά ανάµεσα στην εµπειρική και την πραγ-

µατική ελαχιστοποιούσα συνάρτηση.

∥uX − v
∗∥p.

Για να ελεγχθεί το ∥uX − f ∥p, η ανάλυση στηρίζεται σε εκτίµηση του τύπου:

∥uX (ω) − f ∥p ≤ ∥v∗ − f ∥p +Wp
[
(uX (ω) − f )#µ, (uX (ω) − f )#µN,X (ω)

]
.

Η παραπάνω εκτίµηση συνδέει το σφάλµα γενίκευσης µε την απόσταση Wasserstein µεταξύ

των push-forward µέτρων µέσω του σφάλµατος πρόβλεψης (uX − f ).

Αυτή η απόσταση µπορεί να εκτιµηθεί από πάνω µέσω της Lipschitz σταθεράς LX (ω) της

συνάρτησης (uX (ω) − f ), οδηγώντας στην πιο χαλαρή αλλά χρήσιµη ανισότητα:

∥uX (ω) − f ∥p ≤ ∥v∗ − f ∥p + LX (ω) ·Wp
(
µ, µN,X (ω)

)
.

Αν υποθέσουµε ακόµη ότι σχεδόν σίγουρα ισχύει LX (ω) ≤ LN , τότε λαµβάνουµε την αναµε-

νόµενη εκτίµηση:

E
[
∥uX − f ∥p

]
≤ ∥v∗ − f ∥p + LN · E

[
Wp(µ, µN,X )

]
.

Η παραπάνω ανάλυση εδραιώνει έναν διαχωρισµό του σφάλµατος σε δύο ερµηνεύσιµα µέρη:

(α) την ικανότητα έκφρασης του µοντέλου και (ϐ) την επίδραση της δειγµατοληψίας. Επι-

πλέον, παρακινεί τη χρήση της απόστασης Wasserstein µεταξύ των push-forward µέτρων



στην πράξη, καθώς τα ϕράγµατα που παρέχουν στο σφάλµα γενίκευσης είναι πιο αυστηρά.

Εκτίµηση Εµπειρικής Απόστασης Wasserstein Για την επαλήθευση των παραπάνω,

διεξήχθησαν αριθµητικά πειράµατα για τη µελέτη της σύγκλισης της αναµενόµενης εµπει-

ϱικής απόστασης Wasserstein E[Wp(µ̂n, µ)] σε κατανοµές στον Rd για d = 1, . . . ,10 και

p = 1, . . . ,10. Χρησιµοποιήθηκαν δύο ϐασικές κατανοµές, η οµοιόµορφη στο [0,1]d και η

κανονική N(0, Id). Η εµπειρική απόσταση υπολογίστηκε µε χρήση του αλγορίθµου network

simplex (POT ϐιβλιοθήκη), µε πολλαπλές επαναλήψεις για εκτίµηση του µέσου όρου.

Τα αποτελέσµατα επιβεβαιώνουν τη ϑεωρητική σύγκλιση O(N−p/d) για την οµοιόµορφη κα-

τανοµή, ενώ για την κανονική παρατηρείται πιο αργή σύγκλιση λόγω µη ϕραγµένου ϕορέα

του µέτρου.

Εκτίµηση Γενίκευσης µέσω Απόστασης Wasserstein των push-forward µέτρων Με-

λετήθηκε επίσης η σύγκλιση του σφάλµατος γενίκευσης εκτιµώντας τις αναµενόµενες Wasser-

stein αποστάσεις µεταξύ των push-forward µέτρων e#µn και e#µ, όπου e(x) = |(uX (ω)(x) −
f (x)| είναι το σηµειακό σφάλµα εκπαίδευσης του δικτύου.

Οι µετρήσεις δείχνουν ότι οι αποστάσεις αυτές συγκλίνουν µε ϱυθµούς συνήθως πιο αργούς

από το αναµενόµενο n−1/2
, πιθανώς επειδή η συνάρτηση e εξαρτάται άµεσα από το ίδιο το

εµπειρικό µέτρο µn, το οποίο αποτελεί και σύνολο εκπαίδευσης του µοντέλου.

Για πιο λεπτοµερή παρουσίαση των πειραµάτων και ανάλυση των αποτελεσµάτων τους, ϐλέπε

την Ενότητα 5.5.

1.3 Συµπεράσµατα και Μελλοντικές Κατευθύνσεις

Η παρούσα εργασία µελέτησε σε ϐάθος τη ϑεωρία της ϐέλτιστης µεταφοράς και των απο-

στάσεων Wasserstein, µε τελικό στόχο τη χρήση της στην κατανόηση και ποσοτικοποίη-

ση του σφάλµατος γενίκευσης σε ϐαθιά νευρωνικά δίκτυα. ΄Οπως είδαµε, οι αποστάσεις

Wasserstein, µεταξύ push-forward µέτρων παρέχουν αυστηρότερα ϕράγµατα του σφάλµα-

τος γενίκευσης σε σχέση µε τη χρήση σταθερών Lipschitz.

΄Ενα σηµαντικό εύρηµα της µελέτης ήταν ότι οι ϱυθµοί σύγκλισης των αποστάσεων µεταξύ

push-forward µέτρων συχνά αποκλίνουν από τις προβλέψεις της κλασικής ϑεωρίας για µο-

νοδιάστατα εµπειρικά µέτρα, γεγονός που αποδίδουµε στη χρήση του εµπειρικού µέτρου

τόσο για την εκπαίδευση του µοντέλου, όσο και για την αξιολόγησή του µέσω των απο-

στάσεων. Μελλοντική έρευνα ϑα µπορούσε να ασχοληθεί µε τη ϑεωρητική διατύπωση του

ακριβούς ϱυθµού σύγκλισης αυτών των αποστάσεων. Παράλληλα, ϑα µπορούσε να µελετηθεί

και η επίδραση διαφορετικών αρχιτεκτονικών και σχηµάτων δειγµατοληψίας σε αυτούς τους

ϱυθµούς σύγκλισης, συµβάλλοντας στον σχεδιασµό πιο αξιόπιστων και ϑεωρητικά τεκµηριω-

µένων αλγορίθµων ϐαθιάς µάθησης.



Chapter 2

Introduction

Optimal transport is a profound mathematical theory that seeks to answer a deceptively

simple question: given two distinct configurations of "mass" or "resources," what is the

most efficient way to transform one into the other? This fundamental inquiry dates back

to the 18th century with Gaspard Monge’s pioneering work on moving piles of earth

while minimizing effort. Centuries later, Leonid Kantorovich revolutionized the field by

rephrasing Monge’s challenging non-linear problem into a more tractable linear program-

ming framework, a contribution for which he was awarded the Nobel Prize in Economic

Sciences. In its modern incarnation, optimal transport provides not only deep theoretical

insights into disparate fields such as geometry, probability theory, and analysis, but also

powerful practical tools with broad applicability across science and engineering.

In recent years, the optimal transport framework has experienced a remarkable resur-

gence, establishing itself as an increasingly indispensable tool in applied mathematics,

data science, and machine learning. Its ability to quantify dissimilarity between complex

probability distributions in a geometrically meaningful way sets it apart from traditional

statistical divergences. For instance, while classical metrics might declare two spatially

separated but otherwise identical distributions (like two non-overlapping piles of sand)

as infinitely distant, optimal transport measures the actual cost required to shift one pile

to match the other. This inherent sensitivity to the underlying geometry of data has led

to its successful employment in diverse tasks, including image processing (e.g., image

registration and color transfer), domain adaptation (aligning data from different sources),

and generative modeling (like Wasserstein GANs).

This thesis offers a dual perspective on optimal transport, bridging fundamental theory

with cutting-edge applications. The first part provides a comprehensive theoretical expo-

sition of optimal transport, beginning from foundational mathematical concepts. Recog-

nizing that optimal transport draws upon a rich tapestry of advanced mathematics, we

construct this theoretical groundwork carefully, assuming little specialized prior knowl-

edge beyond a standard university-level background. We progressively establish the nec-

essary mathematical foundations, including the topology of metric spaces, essential con-

cepts from measure theory (such as σ-algebras, measurable functions, integration, and

properties of probability distributions), and key elements of functional analysis (includ-
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ing normed spaces, dual spaces, and weak topologies). Building upon this, we formally

define the classical Monge problem and its more flexible Kantorovich relaxation. We then

delve into crucial theoretical results, exploring the existence of optimal transport plans,

the powerful duality theory (including Kantorovich-Rubinstein theorem that reveals the

role of Lipschitz functions), the explicit solution in the one-dimensional case, and the

formal definition and properties of Wasserstein metrics and their associated spaces. Our

theoretical treatment extensively draws upon seminal works in the field, including those

by Villani [8] and Santambrogio [7], ensuring a rigorous yet accessible foundation.

The second part of this thesis transitions from theoretical foundations to practical inves-

tigations, conducting a series of numerical experiments to explore the empirical behavior

and applications of optimal transport in high-dimensional settings. We begin by exam-

ining the convergence rates of empirical Wasserstein distances, studying how well finite

samples approximate the underlying true distributions. This investigation is informed

by theoretical bounds derived from the works of researchers such as Bobkov, Ledoux

[1]. Subsequently, we explore various efficient computational methods for solving optimal

transport problems, ranging from general algorithms like Sinkhorn’s algorithm and the

Network Simplex Algorithm to specialized algorithms tailored for one-dimensional cases.

Finally, we apply these insights to a critical challenge in modern machine learning: the

analysis of generalization error in deep learning. Here, we leverage recent theoretical

developments put forth by Loulakis and Makridakis in [6], which utilize pushforward

Wasserstein distances to quantify the error arising from training deep neural networks

on finite samples rather than the entire data distribution. Understanding how this gener-

alization error depends on factors like the number of training samples (N) is paramount. It

not only deepens our comprehension of why and how deep learning algorithms generalize

but also provides crucial guidance for practical considerations, such as determining the

optimal number of training samples required to achieve a desired level of accuracy.

By meticulously navigating both the rigorous theoretical landscape and the practical

computational challenges of optimal transport, this thesis aims to contribute to a deeper

understanding of its mathematical underpinnings and its growing relevance in addressing

complex problems in data science and machine learning.



Chapter 3

Mathematical Background

3.1 Metric Spaces and Topology

3.1.1 Metric and Normed Spaces

Definition 3.1 (Metric Space). Let X be a nonempty set. A function d : X ×X → R is called

a metric on X if it has the following properties:

• Non-negativity: d(x, y) ≥ 0 for all x, y ∈ X , and d(x, y) = 0 if and only if x = y

• Symmetry: d(x, y) = d(y, x) for all x, y ∈ X

• Triangle inequality: d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X

If d is a metric on X , the pair (X, d) is called a metric space.

For any set X , a trivial example of a metric space is (X, d), where d is the discrete metric:

d(x, y) =

0, if x = y

1, if x , y

Definition 3.2 (Normed Space). Let X be a vector space over K (R or C). A norm on X is

a function ∥ · ∥ : X → R that has the following properties:

• Non-negativity: ∥x∥ ≥ 0 for all x ∈ X , and ∥x∥ = 0 if and only if x = 0

• Absolute homogeneity: ∥λx∥ = |λ|∥x∥ for all x ∈ X, λ ∈ K

• Triangle inequality: ∥x + y∥ ≤ ∥x∥ + ∥y∥ for all x, y ∈ X

If ∥ · ∥ is a norm on X , the pair (X, ∥ · ∥) is called a normed space.

A norm ∥ · ∥ induces the metric d(x, y) = ∥x − y∥.
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We will highlight some important examples of normed (metric) spaces.

• Rm with the Euclidean norm and metric: For x, y ∈ Rm , the Euclidean norm is:

∥x∥2 =
√
x2

1
+ x2

2
+ · · · + x2

m ,

and the induced metric (Euclidean distance) is:

d2(x, y) = ∥x − y∥2 =

√√
m∑
i=1

(xi − yi)2.

• Rm with the p-norm and metric: For 1 ≤ p < ∞, the p-norm is:

∥x∥p =

 m∑
i=1

|xi |
p


1

p

,

and the induced metric is:

dp(x, y) = ∥x − y∥p =

 m∑
i=1

|xi − yi |
p


1

p

.

• Rm with the infinity norm and metric: The infinity norm is:

∥x∥∞ = max{|x1|, |x2|, . . . , |xm |},

and the corresponding metric is:

d∞(x, y) = ∥x − y∥∞ = max
i
|xi − yi |.

• Sequence space ℓp with the p-norm: The space

ℓp =

x = (x1, x2, . . . ) : ∥x∥ℓp =

 ∞∑
i=1

|xi |
p


1

p

< ∞


has the metric:

dℓp (x, y) =

 ∞∑
i=1

|xi − yi |
p


1

p

.

• Sequence space ℓ∞ with the supremum norm:

ℓ∞ =

{
x = (x1, x2, . . . ) : ∥x∥∞ = sup

i∈N
|xi | < ∞

}
,

with the metric:

d∞(x, y) = sup
i∈N
|xi − yi |.



• Function space Lp(Ω) with the p-norm: For a measure space (Ω, µ), the norm is:

∥f ∥p =

(∫
Ω

|f (x)|p dµ(x)
) 1

p

.

The induced metric is:

dp(f, g) =
(∫
Ω

|f (x) − g(x)|p dµ(x)
) 1

p

.

• Space of continuous functions C(A) on a compact set A, with the supremum norm:

∥f ∥∞ = sup
x∈A
|f (x)|

The induced metric is:

d∞(f, g) = sup
x∈A
|f (x) − g(x)|

3.1.2 Topological Concepts

We will now introduce some important topological concepts, such as convergence, open

and closed sets.

An open set is a general topological concept, but in this analysis, we will limit ourselves

to metric spaces.

We will call the set Bd(x0, ϸ) = {x ∈ X : d(x, x0) < ϸ} an open ball centered at x0 with

radius ϸ.

Definition 3.3 (Open set). Let (X, d) be a metric space and G ⊂ X . G is called open if for

every x ∈ G, there exists ϸx > 0 such that Bd(x, ϸx ) ⊂ G.

Definition 3.4 (Convergence of sequence). Let (xn) be a sequence in metric space (X, d).
We say that (xn) converges to x ∈ X and denote xn → x if:

∀ϸ > 0 ∃n0 ∈ N : n ≥ n0 ⇒ d(xn, x) < ϸ

It can be proven that the limit is unique and that if xn → x and yn → y, then d(xn, yn)→
d(x, y).

Definition 3.5 (Closed set). A subset F ⊂ X is called closed if its complement F c is open.

In a metric space (X, d), F is closed if and only if for every sequence (xn) in F that converges

to x ∈ X : xn → x, we have that x ∈ F .

Some important results about open and closed sets state that:

• A finite intersection or union of open (closed) sets is open (closed).

• An infinite union of open sets is an open set.

• An infinite intersection of closed sets is a closed set.



Definition 3.6 (Interior). Let A be a subset of a metric space (X, d). The interior of A,

denoted as int(A) or A◦, is the set of all interior points of A. A point x ∈ A is called an

interior point if there exists r > 0 such that the open ball B(x, r) is entirely contained in A:

B(x, r) ⊆ A.

The interior of A is the largest open set contained within A.

Definition 3.7 (Closure). The closure of a set A, denoted A, is the smallest closed set

containing A. It can be defined equivalently as:

A = A ∪ A′,

where A′ is the set of all limit points of A, meaning points x such that there exists a

sequence (xn) in A with xn → x. Alternatively, A is the intersection of all closed sets

containing A.

Definition 3.8 (Boundary). The boundary of a set A, denoted as ∂A, consists of all points

that are neither purely interior nor purely exterior to A. Formally,

∂A = A \ int(A).

Equivalently, a point x belongs to ∂A if every open ball B(x, r) intersects both A and Ac.

Definition 3.9 (Dense set). A subset A ⊂ X is called dense in X if its closure is the entire

space:

A = X.

This means that every open set in X contains at least one point of A. Equivalently, for every

point x ∈ X , there exists a sequence (an) ⊂ A such that an → x in the metric d.

Definition 3.10 (Separable space). A metric space (X, d) is called separable if it contains

a countable dense subset. That is, there exists a countable set D ⊂ X such that

D = X.

This means that every point of X can be approximated arbitrarily well by points from D,

i.e., for every x ∈ X , there exists a sequence (dn) ⊂ D such that dn → x.

Examples:

• Rn with the standard Euclidean metric is separable, since the set of rational points

Qn is a countable dense subset.

• Rn with the discrete metric d(x, y) = 1 for x , y is not separable. In this case, no

countable subset can be dense, since every singleton {x} is an open set, meaning that

the closure of any countable set is just itself and cannot cover the whole space.



3.1.3 Functions

Continuity is one of the most important properties of functions, ensuring that small

changes in the input lead to small changes in the output.

Definition 3.11 (Continuous function). A function f : X → Y is called continuous if it

the inverse image of open sets is open, that is, for every open set U ⊂ Y , the set f −1(U ) is

open in X .

When the function is defined between metric spaces, the above definition is equivalent to

the ϸ − δ definition we are familiar with.

Definition 3.12 (Epsilon-delta definition). A function f : X → Y between metric spaces

(X, dX ) and (Y, dY ) is continuous at a point x ∈ X if for every ϸ > 0, there exists δ > 0

such that for all y ∈ X ,

dX (x, y) < δ ⇒ dY (f (x), f (y)) < ϸ.

If this holds for all x ∈ X , we say that f is continuous.

The following important theorem links continuity of functions to sequence convergence.

Theorem 3.1. A function f : X → Y is continuous if and only if it preserves the limit of

sequences: whenever xn → x in X , we have f (xn)→ f (x) in Y .

The above ϸ − δ definition of continuity ensures that small δ changes of the input result

in small ϸ changes of the output. However, δ may depend on x. Uniform continuity is a

stronger condition, that ensures that δ is independent of x.

Definition 3.13 (Uniform continuity). A function f : X → Y is uniformly continuous if

for every ϸ > 0, there exists δ > 0 such that for all x, y ∈ X ,

dX (x, y) < δ ⇒ dY (f (x), f (y)) < ϸ.

Unlike standard continuity, δ is chosen independently of x.

It is apparent that a uniformly continuous function is continuous. The opposite is not

generally true: Take for example f (x) = x2
. While it is continuous, for large x values, even

small changes of x can cause arbitrarily large changes of f (x).

There exists a similar theorem linking uniform continuity to Cauchy sequences. We will

first define Cauchy sequences as sequences whose terms get arbitrarily close to each

other as n increases.

Definition 3.14 (Cauchy sequence). A sequence (xn) in a metric space (X, d) is called

Cauchy if for every ϸ > 0, there exists an integer N such that for all m, n ≥ N ,

d(xm , xn) < ϸ.



Theorem 3.2. A function f : X → Y is uniformly continuous if and only if it preserves

Cauchy sequences, i.e., if (xn) is a Cauchy sequence in X , then (f (xn)) is a Cauchy sequence

in Y .

The final notion of continuity we will explore is Lipschitz continuity, where there is a

bound L on how fast a function can change.

Definition 3.15 (Lipschitz continuity). A function f : X → Y is Lipschitz continuous if

there exists a constant L ≥ 0 such that for all x, y ∈ X ,

dY (f (x), f (y)) ≤ LdX (x, y).

.

3.1.4 Completeness

Now, we will focus on convergent and Cauchy sequences. It can be easily shown that

every convergent sequence is Cauchy. However, the opposite is not always true. Take for

example the sequence (an) of decimal approximations of

√
2 on Q. While the elements

of (an) get closer to each other as n → ∞, thus it is Cauchy, it does not converge to any

point of Q.

An important result states that if a Cauchy sequence has a convergent subsequence, then

the sequence itself is convergent.

Theorem 3.3. Let (X, d) be a metric space, and let (xn) be a Cauchy sequence in X . If (xnk )
is a subsequence of (xn) that converges to some limit L ∈ X , then (xn) converges to L.

Definition 3.16 (Complete Metric Space). A metric space (X, d) is complete if every

Cauchy sequence (xn) in X has a limit in X . That is, if for every ϸ > 0 there exists

N ∈ N such that for all m, n ≥ N ,

d(xm , xn) < ϸ,

then there exists some x ∈ X such that xn → x as n → ∞.

Examples of complete metric spaces include Rn with the Euclidean or the p-metric, all

discrete metric spaces and the space of continuous functions with the supremum norm.

Any closed subset of a complete metric space is also complete.

Every incomplete metric space X has a completion, which is a larger complete space X̂

containing X as a dense subset. Intuitively, for each Cauchy sequence in X , X̂ contains its

limit; that is, it contains all points of X , as well as all "gaps" X might have. For example,

R is the completion of Q.



3.1.5 Compactness

We first present the topological definition of compactness.

Definition 3.17 (Compact Set). A subset K of a metric space (X, d) (it could be K = X ) is

compact if, for every open cover {Ui} of K (K ⊆
⋃
i Ui , where each Ui is open), there exists

a finite subcover {Ui1 , Ui2 , . . . , Uik } such that K ⊆
⋃k
j=1
Uij .

An important result by Bolzano and Weierstrass links compactness with subsequence

convergence.

Theorem 3.4 (Bolzano-Weierstrass). A subset K of a metric space (X, d) is compact if and

only if every sequence in K has a convergent subsequence: If (xn) is a sequence in K, there

exists a subsequence (xnk ) that converges to some x ∈ K:

lim xnk = x

We now extend the usual definition of bounded sets to metric spaces.

Definition 3.18 (Bounded set). A subset A of a metric space (X, d) is called bounded if

there exists a point x0 ∈ X and a real number M > 0 such that

d(x, x0) ≤ M, ∀x ∈ A.

This means that all points of A lie within some ball of finite radius centered at x0.

Let (X, d) be a metric space. Every compact subset of X is closed and bounded. If K

was not closed, we could take a sequence converging in X \ K, thus every subsequence it

has would also converge outside the set. If K was unbounded, we could take a sequence

escaping every bounded set, thus every subsequence would be non convergent.

When X is Rn equipped with the Euclidean norm, the above relation goes both ways:

Theorem 3.5 (Heine-Borel). A subset of Rn is compact if and only if it is closed and

bounded. This theorem extends to all finite dimension spaces.

It is also simple to show that every compact subset K of a metric space is complete. If it

weren’t complete, there would exist a Cauchy sequence that does not converge in K, thus

every subsequence it has would not converge in K, thus it would not be compact.

An important theorem links compactness with completeness and total boundedness.

Definition 3.19 (Totally bounded set). A subset K of a metric space (X, d) is called totally

bounded if for every ϸ > 0, there exist m ∈ N and x1, . . . , xm ∈ X such that:

X ⊂
m⋃
i=1

B(xi , ϸ)



To give some intuition, a bounded set can fit inside a large ball, while a totally bounded

set can be covered by finitely many small balls of any given radius. In finite dimension

spaces, like Rn, the two concepts are equivalent; in infinite dimension spaces, however,

this is not the case. While a totally bounded set is always bounded, there exist sets, like

the unit ball in C([0,1]) (or any infinite dimension space) that are bounded but not totally

bounded.

An important result states that a subset K of a metric space (X, d) is totally bounded

if and only if every sequence (xn) in K has a Cauchy subsequence. This leads to the

following theorem.

Theorem 3.6. A subset of a metric space is compact if and only if it is totally bounded and

complete.

An important property of totally bounded spaces is that they are separable (take the

sequence of balls with radius
1

n that cover the space for every n). This immediately leads

to the following result:

Theorem 3.7. Every compact space is separable.

Now, we will highlight some interesting properties of continuous functions defined on

compact sets.

• Every continuous function on a compact metric space is uniformly continuous.

• If f : X → Y is continuous and X is compact, then f (X ) is compact in Y . In general,

a continuous function maps compact sets to compact sets.

• A continuous function on a compact space attains its maximum and minimum

values.

• If f : X → Y is a continuous bĳection (1− 1 and onto) from a compact space X to Y ,

then its inverse f −1
is also continuous.



3.2 Measure Theory

3.2.1 Sigma Algebra and Measures

Let X be a set. We would like to assign a probability (or, in more general cases, a measure)

to subsets of X . We will define the σ-algebras as the collections of sets we can assign

probabilities to. Ideally, we would like to be able to assign a probability to every subset;

however, as we will see later, this is not always possible.

Definition 3.20 (σ-algebra). A σ-algebra on a set X is a subset of the power set of X

F ⊂ P(X ) that satisfies the following properties:

• It contains the empty set: ∅ ∈ F .

• It is closed under complements: If A ∈ F then X \ A ∈ F .

• It is closed under countable unions: If A1, A2, . . . ∈ F then
⋃∞
n=1

An ∈ F .

Some examples of σ-algebras are:

• The trivial σ-algebra on X : {∅, X }.

• The set P(X ) of all subsets of X .

• Let C be a collection of subsets of X . The σ-algebra generated by C, σ(C), is the

smallest σ-algebra containing C.

• The Borel σ-algebra on a metric space X , B(X ), is the σ-algebra generated by the

collection of open sets on X . B(R) is of particular interest to us, as it contains all

intervals of R. For metric spaces, the Borel σ-algebra can also be generated by the

collection of all closed sets, or by ϸ-balls.

Let X be a set and A a σ-algebra on X . We call (X,A) a measurable space. Now, we will

define measures on measurable spaces.

Definition 3.21 (Measure). Let (X,A) be a measurable space. We define a measure on

(X,A) a function µ : A → [0,∞] that satisfies the following:

• Null empty set: µ(∅) = 0.

• Countable additivity: If (An) is a sequence of disjoint elements in A: µ(
⋃∞
n=1

) =∑∞
n=1

µ(An),

Then, we call (X,A, µ) a measure space.

A signed measure is a measure that can also take negative values.

A measure space where µ(X ) < ∞ is called a finite measure space.

Some examples of measures include:

• The counting measure, where µ(A) is the number of elements in A (∞ if they are

infinite).



• The Dirac measure δx0
, where we select an element x0 ∈ X and let δx0

(A) = 1 if

x0 ∈ A and δx0
(A) = 0 else.

• The Lebesgue measure λ on Rn, which generalizes the notion of length/area/volume

on intervals to B(Rn).

The only requirement we have for the Lebesgue measure is that λ(I) = volume(I) for every

interval I. Ideally, we would like to define the Lebesgue measure on P(Rn); however, this

extension is not possible while the countable additivity property holds.

Some important properties of measures are:

• Monotonicity: If A ⊆ B, then µ(A) ≤ µ(B).

• Finite Additivity: If A, B are disjoint measurable sets, then

µ(A ∪ B) = µ(A) + µ(B).

• Subadditivity: For any countable collection {An},

µ

 ∞⋃
n=1

An

 ≤ ∞∑
n=1

µ(An).

• Continuity from Below: If An ⊆ An+1, then

µ

 ∞⋃
n=1

An

 = lim
n→∞

µ(An).

• Continuity from Above: If An ⊇ An+1 and µ(A1) < ∞, then

µ

 ∞⋂
n=1

An

 = lim
n→∞

µ(An).

3.2.2 Measurable Functions

Definition 3.22. Let (X,A) and (Y,B) be measurable spaces, meaning A and B are σ-

algebras on X and Y , respectively. A function f : X → Y is said to be A/B-measurable if

for every B ∈ B, the preimage f −1(B) ∈ A.

We will often simply say that a function is measurable if the underlying σ-algebra is clear

from context (e.g., the Borel σ-algebra on Rn).

(X,A) (Y,B)

A ∈ A
B ∈ Bf

f −1(B) = A

Figure 3.1. Illustration of a measurable function: f −1(B) ∈ A for all B ∈ B



The reason we require a function X to be measurable is that, when we define a measure

µ on F , we want to be able to assign values to sets of the form µ(X ∈ A) for some A ⊆ R

(or more generally, for some subset of a metric space). For such expressions to make

sense, the set {X ∈ A} = X−1(A) must belong to the domain of µ, that is, the σ-algebra F .

Hence, the measurability condition ensures that the preimages of Borel sets under X are

measurable and thus compatible with the structure of the measure space.

Below are some examples of measurable functions.

Proposition 3.1. Let (X,A) be a measurable space. Then:

1. Any constant function f (x) = c is measurable.

2. The identity function f (x) = x is measurable.

3. Any continuous function is measurable, since the preimage of every open set is open

and open sets generate the Borel σ-algebra.

4. If f, g : X → R are measurable, then so are f + g, f · g, max(f, g), min(f, g), and |f |.

5. If (fn)n∈N is a sequence of measurable functions, then the functions

sup fn, inf fn, lim sup fn, lim inf fn, lim fn (if it exists)

are all measurable.

6. If f : X → Y is (A,B)-measurable and g : Y → Z is (B,C)-measurable, then the

composition g ◦ f : X → Z is (A,C)-measurable.

Now, we will talk about σ-algebras generated by functions.

Given a function f : Ω → E from a set Ω to a measurable space (E,E), we define the

σ-algebra generated by f as

σ(f ) := {f −1(A) : A ∈ E} ⊆ F .

This is the smallest σ-algebra on Ω with respect to which f is measurable. Intuitively, it

captures all the information about Ω that is "visible" through f .

In the context of probability theory, if X : Ω → R is a random variable, then σ(X ) is the

collection of events that can be determined by observing the value of X .



3.2.3 Integration and Radon-Nikodym’s Theorem

Having defined measurable functions, we now turn to the notion of integration with

respect to a measure. We will begin by defining the integral for non-negative simple

functions, then extend it to general non-negative measurable functions, and finally to

integrable functions. After establishing the properties of the Lebesgue integral, we will

present one of the central results in measure theory: the Radon-Nikodym theorem, which,

under certain conditions, allows us to express one measure as a density with respect to

another.

We start by defining the integral for non-negative simple functions.

Definition 3.23. Let (X,F , µ) be a measure space. A function f : X → [0,∞) is called a

simple function if it can be written as

f (x) =
n∑
i=1

ai⊮1Ai (x),

where ai ≥ 0 and Ai ∈ F are disjoint. The integral of f with respect to µ is defined as∫
X
f dµ =

n∑
i=1

aiµ(Ai).

We extend the integral to non-negative measurable functions by approximation via simple

functions.

Definition 3.24. Let f : X → [0,∞] be measurable. Define∫
X
f dµ = sup

{∫
X
s dµ : 0 ≤ s ≤ f, s simple

}
.

For a general real-valued measurable function f , we write f = f + − f − and define∫
X
f dµ =

∫
X
f + dµ −

∫
X
f − dµ,

provided at least one of the two integrals is finite.

Comparison with the Riemann Integral The Riemann and Lebesgue integrals both

aim to assign a meaningful "area under the curve" for real-valued functions, but they do

so in fundamentally different ways. The Riemann integral partitions the domain of the

function (typically an interval) and sums up rectangles whose heights are determined by

function values over each subinterval. Formally, it approximates the integral by∫ b

a
f (x)dx ≈

n∑
i=1

f (x∗i )(xi − xi−1),

where x∗i ∈ [xi−1, xi] are sample points and the partition becomes finer.



In contrast, the Lebesgue integral partitions the range of the function and measures

the size (under a measure µ) of the preimages of these range slices. For non-negative

functions, this leads to an approximation of the form∫
f dµ ≈

n∑
i=1

yi µ(f −1([yi−1, yi))).

This shift in perspective offers several advantages. Lebesgue integration handles a broader

class of functions, including those with too many discontinuities for Riemann integration,

and it interacts better with limits, allowing the development of powerful convergence

theorems.

x

f (x)

Riemann: vertical slices

x

f (x)

Lebesgue: horizontal slices

Figure 3.2. Comparison of Riemann and Lebesgue integration. Riemann sums vertical
slices under the graph, Lebesgue sums over horizontal level sets.

Some important properties of Lebesgue integrals are:

• Linearity. For all a, b ∈ R:∫
(af + bg)dµ = a

∫
f dµ + b

∫
g dµ.

• Monotonicity. If f ≤ g almost everywhere, then:∫
f dµ ≤

∫
g dµ.

• Absolute Integrability. If f is integrable, then |f | is integrable and:∣∣∣∣∣∫ f dµ
∣∣∣∣∣ ≤ ∫

|f |dµ.

If we want to integrate over A ⊂ X , we write

∫
A
f dµ :=

∫
f · 1A dµ.



A property P(x) is said to hold almost everywhere if it fails only on a set of measure zero:

µ({x ∈ X : P(x) fails}) = 0.

In measure theory, the behavior of a function is unaffected by changes on sets of measure

zero. As a result, functions that are equal almost everywhere are considered equivalent.

Convergence Theorems A fundamental question in analysis is under what conditions

we can interchange the limit and the Lebesgue integral. That is, given a sequence of

measurable functions {fn} and a pointwise limit f = limn→∞ fn, when does the following

hold?

lim
∫
fn dµ =

∫
lim fn dµ

From the following example, we can see that the limit and the integral cannot always be

interchanged.

Example 3.1. Consider the sequence of functions fn(x) defined by:

fn(x) =

n, 0 < x ≤ 1

n ,

0, otherwise.

This sequence converges pointwise to the zero function f (x) = 0. Now, let’s examine both

the limit of the integrals and the integral of the limit:

For each n, we compute: ∫
1

0

fn(x)dx = n ·
1

n
= 1.

Thus,

lim
∫

1

0

fn(x)dx = 1

.

Since fn(x)→ 0 pointwise, the integral of the limit function is:∫
1

0

0dx = 0.

Thus, we have

lim
∫

1

0

fn(x)dx = 1 but

∫
1

0

lim fn(x)dx = 0.

This shows that the limit and integral cannot be interchanged.



Unlike the Riemann integral, the Lebesgue integral offers powerful tools to answer this

question.

Theorem 3.8 (Monotone Convergence Theorem (Beppo Levi)). Let {fn} be a sequence of

non-negative measurable functions such that fn(x) ↑ f (x) for all x. Then,∫
fn dµ ↑

∫
f dµ.

Theorem 3.9 (Fatou’s Lemma). Let {fn} be a sequence of non-negative measurable func-

tions. Then, ∫
lim inf fn dµ ≤ lim inf

∫
fn dµ.

Theorem 3.10 (Dominated Convergence Theorem). Let {fn} be a sequence of measurable

functions such that fn → f pointwise almost everywhere and there exists an integrable

function g with |fn(x)| ≤ g(x) for all n and a.e. x. Then,∫
fn dµ →

∫
f dµ.

Theorem 3.11 (Bounded Convergence Theorem). Let {fn} be a sequence of measurable

functions such that fn → f pointwise almost everywhere and |fn | ≤ M for some constant

M < ∞, and µ(X ) < ∞. Then, ∫
fn dµ →

∫
f dµ.

The Lp Spaces Let (X,F , µ) be a measure space and f be a measurable function X → R.

For 1 ≤ p < ∞, we define the p-norm of f as follows:

∥f ∥p =

(∫
|f (x)|pdµ(x)

)1/p

.

We define the Lp space as the normed vector space induced by the p-norm:

Lp(X,F , µ) =
{
f : X → R | ∥f ∥p < ∞

}
,

To properly extend the notions of supremum and infimum to the measure theoretic set-

ting, we use the essential supremum and essential infimum, which disregard sets of

measure zero and are well-defined for equivalence classes of measurable functions.

• The essential supremum of f is defined as

ess sup f (x) := inf {M ∈ R : µ ({x ∈ X : f (x) > M}) = 0} .



• The essential infimum of f is defined as

ess inf f (x) := sup {m ∈ R : µ ({x ∈ X : f (x) < m}) = 0} .

We can now define the supremum norm as:

∥f ∥∞ = ess sup |f (x)|.

The L∞ space is defined as:

L∞(X,F , µ) =
{
f : X → R | ∥f ∥∞ < ∞

}
,

In the case of finite measure spaces, the Lp spaces can be ordered as follows:

L∞ ⊆ Lq ⊆ Lp for 1 ≤ p ≤ q ≤ ∞.

This ordering reflects the fact that if f ∈ Lq, then f ∈ Lp for p ≤ q. Intuitively, higher

powers impose stricter conditions on the function f , as the function needs to be more

"well-behaved" in terms of its integrability.

Another important property of Lp spaces is that they are complete.

L
1

L
2 L

∞

Figure 3.3. Illustration of Lp spaces on a finite measure space

The Radon-Nikodym Theorem In measure theory, we often encounter situations where

two measures are related in such a way that one can be thought of as having a density with

respect to the other. The Radon-Nikodym theorem formalizes this idea: if one measure

is absolutely continuous with respect to another, then it can be expressed as an integral

involving a suitable density function.

Definition 3.25 (Absolute Continuity). Let µ and ν be two measures on the same measur-

able space (Ω,F ). We say that ν is absolutely continuous with respect to µ: ν ≪ µ, if for

every measurable set A ∈ F ,

µ(A) = 0 ⇒ ν(A) = 0.

This means that ν does not assign positive measure to sets that are negligible under µ.

Theorem 3.12 (Radon-Nikodym). Let (Ω,F ) be a measurable space, and let µ and ν

be σ-finite measures on F (countable sums of finite measures). If ν ≪ µ, then there



exists a unique (up to µ-almost everywhere equality) non-negative measurable function

f : Ω→ [0,∞) such that

ν(A) =
∫
A
f dµ for all A ∈ F .

This function f is called the Radon-Nikodym derivative of ν with respect to µ, and we

write:

f =
dν

dµ
.

In the following section, we will see how the Radon-Nikodym derivative formalizes the idea

of density functions from probability theory.

3.2.4 Probability Distributions

Let (Ω,F ) be a measurable space. A probability measure P is a measure where P(Ω) = 1,

and it is defined on a measurable space (Ω,F ). A measurable function defined on a

probability space (Ω,F ,P) is called a random variable.

For a random variable X defined on a probability space, we define its expected value (or

mean) as:

E(X ) =
∫
X dP.

The variance of a random variable X is defined as:

Var(X ) = E(X2) − (E(X ))2,

which gives a measure of how spread out the values of X are around its mean.

Distribution of a Random Variable We now explain the connection between probabil-

ity density functions (pdfs) and the Radon-Nikodym theorem. To do this, we begin by

introducing the notion of pushforward measures, which allow us to rigorously define the

distribution of a random variable.

Let (X,A) and (Y,B) be measurable spaces, and let f : X → Y be a measurable function.

If µ is a measure on (X,A), the pushforward measure f#µ on (Y,B) is defined by

f#µ(B) := µ(f −1(B)), for all B ∈ B.

This defines a measure on Y that describes how µ is transported via f .

Let X : Ω→ R be a real-valued random variable on a probability space (Ω,F ,P). Then the

distribution PX of X is the pushforward measure X#P, defined by

PX (A) = X#P(A) = P(X ∈ A), for Borel sets A ⊆ R.

This measure PX := X#P is a probability measure on R.

If PX ≪ λ, where λ is the Lebesgue measure, then PX admits a density f ∈ L1(R) such



X Y
f

f −1(B)

µ

B

ν

f#µ(B) = µ(f −1(B)) for B ⊆ Y

Figure 3.4. Illustration of a pushforward measure ν = f#µ.

that

P(X ∈ A) =
∫
A
f dλ.

The function f is called the probability density function (pdf) of X .

This construction generalizes naturally to random variables taking values in more general

spaces.

Let X : Ω → R be a real-valued random variable with distribution µ = X#P, and suppose

µ ≪ λ, where λ is the Lebesgue measure. Let f = dµ
dλ denote the corresponding probability

density function (pdf). Then, for any measurable function h : R → R such that h(X ) ∈
L1(P), the expected value of h(X ) is given by

E[h(X )] =
∫
Ω

h(X (ω))dP(ω) =
∫
R
h(x)f (x)dx.

This identity shows how integration with respect to the original probability measure P can

be expressed as integration against the pdf of the pushforward measure µ.

The cumulative distribution function (CDF) of a random variable X is defined as:

FX (x) = P(X ≤ x) =
∫ x

−∞

fX (t)dt,

where fX (t) is the probability density function (PDF), if it exists.

The CDF FX (x) gives the probability that the random variable X takes a value less than

or equal to x. It is a non-decreasing, right-continuous function that converges to 0 as

x → −∞ and to 1 as x → +∞.

We call two random variables X and Y identically distributed and write X
d
= Y if they

have the same distribution. Equivalently, their CDFs should be equal:

FX (x) = FY (x), ∀x ∈ R



Discrete Distributions A discrete random variable has a countable set of values, each

with a certain probability. Let X be a discrete random variable with possible values

x1, x2, . . ., and associated probabilities pi = P(X = xi), where
∑
i pi = 1. The probability

mass function (PMF) of X is given by:

PX (x) = P(X = x).

The expected value is computed as:

E(X ) =
∑

xiPX (xi)

While this discrete formulation may initially appear different from the continuous setting,

it also arises naturally from the Radon-Nikodym theorem, as we demonstrate below.

Let Ω = {x1, x2, x3, . . . } be a countable sample space equipped with the sigma-algebra

F = 2
Ω

. Suppose P is a discrete probability measure on (Ω,F ). We consider the counting

measure µ on Ω (remember that µ(A) = |A|).
Since µ(A) = 0 ⇒ PX (A) = 0, the measure PX is absolutely continuous with respect to µ.

[Note that PX is not absolutely continuous with respect to the Lebesgue measure λ, since

it could give positive probability on sets like {0}, that have λ({0}) = 0.] Therefore, by the

Radon-Nikodym theorem, there exists a measurable function p : Ω→ R+ such that:

PX (A) =
∫
A
p dµ =

∑
x∈A

p(x), ∀A ⊆ Ω.

The function p = dPX
dµ is the Radon-Nikodym derivative of PX with respect to µ, and corre-

sponds exactly to the probability mass function (PMF) of P. That is, for each x ∈ Ω:

p(x) = P({x}).

3.2.5 Convergence of Measures

In measure theory and probability, there are several different types of convergence for

sequences of random variables and measures. These types vary in strength, and we

summarize the relationships between them below.

Almost Sure Convergence A sequence of random variables (Xn) converges almost surely

(or with probability 1) to a random variable X if

P
(

lim
n→∞

Xn(ω) = X (ω)
)
= 1.

This is the strongest form of convergence, as it implies pointwise convergence for almost

every outcome.

Convergence in Probability We say that Xn converges to X in probability if for all ε > 0,

lim
n→∞
P(|Xn − X | > ε) = 0.



Almost sure convergence implies convergence in probability.

Convergence in Lp A sequence (Xn) converges to X in Lp for p ≥ 1 if

lim
n→∞
E[|Xn − X |p] = 0.

This implies convergence in probability (via Markov’s inequality).

Weak Convergence of Measures A sequence of probability measures (µn) on a metric

space (X, d) converges weakly to a measure µ if for all bounded continuous functions

f : X → R,

lim
n→∞

∫
f dµn =

∫
f dµ.

This form of convergence is central in optimal transport, particularly in the convergence

of empirical measures and in the definition of Wasserstein distances.

Convergence in Distribution Also known as convergence in law, when Xn and X are

real-valued random variables Xn
d
→ X means that the cdf of Xn converges to the cdf of X :

lim
n→∞

Fn(x) = F (x) ∀x ∈ R

In the general case, convergence in distribution is equivalent to weak convergence of the

pushforward measures µn = Xn#P toward µ = X#P. Convergence in probability (which is

implied by convergence in Lp or almost sure convergence) implies convergence in distri-

bution.

3.2.6 Product Measures and Independence

Let (X,A, µ) and (Y,B, ν) be two measure spaces. The product σ-algebraA⊗B on X×Y is

the smallest σ-algebra containing all measurable rectangles A × B with A ∈ A and B ∈ B.

A measure π on (X × Y,A ⊗ B) is called a product measure if π(A × B) = µ(A)ν(B) for

all A ∈ A and B ∈ B. That is, the measure of each rectangle A × B is the product of

the measures of each of its sides, as illustrated graphically below. The existence and

uniqueness of the product measure µ ⊗ ν is guaranteed when both µ and ν are σ-finite.

Ω1

Ω2

p1 = P1(A)

p2 = P2(B) p1 · p2 = P1 ⊗ P2(A × B)

Ω1 ×Ω2

Figure 3.5. Illustration of product measure



Theorem 3.13 (Tonelli-Fubini’s Theorem). For a nonnegative measurable function f :
X × Y → R (or integrable if f is signed), the integral with respect to the product measure

satisfies:∫
X×Y

f (x, y)d(µ ⊗ ν)(x, y) =
∫
X

(∫
Y
f (x, y)dν(y)

)
dµ(x) =

∫
Y

(∫
X
f (x, y)dµ(x)

)
dν(y).

This theorem is fundamental in defining expectations over multivariate distributions.

Corollary 3.1. If X ≥ 0 is a random variable, then:

E[X ] =
∫ ∞

0

P(X > t)dt,

a classic identity obtained by applying Tonelli’s theorem to the function 1{X>t}.

Independence

Definition 3.26 (Independent Events). Let (Ω,F ,P) be a probability space. Two events

A, B ∈ F are said to be independent if

P(A ∩ B) = P(A)P(B).

This notion extends to random variables, as illustrated below.

Definition 3.27 (Independent Random Variables). A collection of random variablesX1, . . . , Xd

defined on a common probability space is said to be independent if for every choice of Borel

sets A1, . . . , Ad ⊆ R,

P(X1 ∈ A1, . . . , Xd ∈ Ad) =
d∏
i=1

P(Xi ∈ Ai).

That is, the probability of all the random variables simultaneously taking values in their

respective sets factors into the product of the individual probabilities.

Equivalently, the push-forward measure of the joint distribution of (X1, . . . , Xd) is the

product of the marginal distributions:

P(X1,...,Xd) = PX1
⊗ · · · ⊗ PXd .

That is, X is independent if its joint law is the product of the marginal laws.

Connecting to classical probability, random variables X1, . . . , Xn are independent if and

only if:

P(X1 ≤ x1, . . . , Xn ≤ xn) =
n∏
i=1

P(Xi ≤ xi).

If they admit densities, then independence implies:

fX (x1, . . . , xn) =
n∏
i=1

fXi (xi).



3.3 Functional Analysis

3.3.1 Normed and Banach Spaces

We begin our functional analysis background with the concept of Banach spaces. Recall

that a normed space is a vector space equipped with a norm, that induces a metric

d(x, y) = ∥x − y∥, and thereby a topology on X .

Definition 3.28 (Banach Spaces). A normed space (X, ∥ · ∥) is called a Banach space if it

is complete: every Cauchy sequence (xn) in X has a limit in X .

Completeness ensures the space is robust under limits and infinite processes.

An important consequence of completeness concerns the convergence of series: if
∑∞
n=1

xn

is a series in X , it converges if and only if the sequence of partial sums sn =
∑n
k=1

xk is a

Cauchy sequence. Thus, the ability to define infinite linear combinations is tightly linked

to completeness.

Conversely, if every absolutely convergent series in a normed space converges (i.e.,
∑
∥xn∥ <

∞ ⇒
∑
xn converges), then the space must be complete. This makes Banach spaces the

natural setting for series expansions.

Finite-Dimensional Spaces

Definition 3.29 (Equivalent norms). Two norms ∥ · ∥1 and ∥ · ∥2 on a space X are said to

be equivalent if there exist constants c, C > 0 such that for all x ∈ X ,

c∥x∥1 ≤ ∥x∥2 ≤ C∥x∥1.

Equivalent norms induce the same topology, and thus the same notions of convergence,

continuity, and compactness.

The theorem below highlights the most important properties of finite-dimensional normed

spaces.

Theorem 3.14 (Characterization of Finite-Dimensional Normed Spaces). Let (X, ∥ · ∥) be a

normed vector space. The following statements are equivalent:

1. X is finite-dimensional.

2. The closed unit ball B = {x ∈ X : ∥x∥ ≤ 1} is compact in the norm topology.

3. All norms on X are equivalent, thus they induce the same topology.

4. X is Banach (complete) and has the Heine–Borel property (every closed and bounded

subset of X is compact).

This theorem tells us that every finite dimensional space behaves exactly as Rn with some

norm, so we can use our geometric intuition. It highlights a key difference between finite

and infinite-dimensional analysis: compactness, completeness, and topology are tightly

coupled in finite dimensions, but diverge in infinite-dimensional settings.
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∥ · ∥∞
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Figure 3.6. Unit balls in R2 under different norms: Euclidean norm (ℓ2), maximum norm
(ℓ∞), and Manhattan norm (ℓ1). All define different shapes but induce the same topology,
illustrating norm equivalence in finite dimensions.

The figure above illustrates how different norms on R2
induce the same topology. The

example below shows how in an infinite-dimensional Banach space like ℓ2, the Heine-

Borel property does not hold.

Example 3.2. Consider the sequence (en) in the infinite-dimensional Hilbert space ℓ2, where

en = (0,0, . . . ,0,1,0, . . .),

with the 1 in the n-th position and zeros elsewhere. This sequence lies in the unit ball but

has no convergent subsequence since for any m , n,

∥en − em∥2 =
√

2.

This example demonstrates the failure of compactness of the unit ball in infinite-dimensional

spaces, contrasting the finite-dimensional case.

Schauder Bases and Separability In infinite-dimensional spaces, we generalize the

notion of a basis to that of a Schauder basis. A sequence (xn) in a Banach space X is a

Schauder basis if every element x ∈ X has a unique expansion

x =
∞∑
n=1

anxn,



where the series converges in norm. The existence of such a basis implies that X is

separable, meaning it has a countable dense subset.

3.3.2 Dual Spaces

We begin by introducing bounded linear operators and functionals, which are essential

for defining dual spaces and stating the Hahn–Banach theorem.

Definition 3.30 (Linear Operators). Let X and Y be vector spaces. A map T : X → Y is

called a linear operator if for all x1, x2 ∈ X and λ ∈ R (or C), we have

T (x1 + x2) = T (x1) + T (x2), T (λx) = λT (x).

Definition 3.31 (Bounded Linear Operators). If X and Y are normed spaces, a linear

operator T : X → Y is bounded if there exists a constant C ≥ 0 such that

∥T (x)∥Y ≤ C∥x∥X for all x ∈ X.

The smallest such C is called the operator norm of T , given by

∥T∥ = sup
∥x∥≤1

∥T (x)∥ = sup
∥x∥=1

∥T (x)∥

Below are some important properties of linear operators:

• In normed spaces, boundedness of an operator is equivalent to continuity.

• Let B(X, Y ) denote the space of all bounded linear operators from X to Y , equipped

with the operator norm. If Y is a Banach space, then so is B(X, Y ).

• If X is finite-dimensional, then all linear operators T : X → Y are automatically

bounded, regardless of the norm.

Definition 3.32 (Linear Functionals). A linear functional is a linear map f : X → R (or C).

It is bounded if it is bounded as an operator. That is,

∥f ∥ = sup
∥x∥≤1

|f (x)| < ∞.

An example is given by integration: for a fixed g ∈ L2
, the map f (φ) =

∫
φ(x)g(x)dx

defines a bounded linear functional on L2
. Its norm is given by

∥f ∥ = sup
∥φ∥2=1

∣∣∣∣∣∫ φ(x)g(x)dx
∣∣∣∣∣ ≤ ∥g∥2,

with equality achieved when φ = g/∥g∥2, hence

∥f ∥ = ∥g∥2.



The Dual Space The dual space of a normed vector space X , denoted X ∗, is the space

of all bounded linear functionals on X :

X ∗ = B(X,R)

Equipped with the operator norm, X ∗ is a Banach space.

Some examples of dual spaces follow. We use the symbol � to denote that two spaces are

isometrically isomorphic; that is, they are isomorphic as vector spaces and the isomor-

phism preserves the norm (distance).

• For finite-dimensional X � Rn, we have X ∗ � Rn again.

• If 1 < p < ∞, then (Lp)∗ = Lq, with 1/p + 1/q = 1.

• If C[a, b] is the space of continuous functions on [a, b], its dual is isometrically

isomorphic to the space of signed Borel measures.

Riesz Representation Theorem This last example is very important in the context of

optimal transport. It is a special case of Riesz’s Representation Theorem, which we will

state now. First, we must make some definitions.

Definition 3.33 (Locally Compact Space). A topological space X is locally compact if every

point x ∈ X has a neighborhood whose closure is compact.

Definition 3.34 (Radon Measure). A Borel measure µ on a locally compact space X is a

Radon measure if it is

• locally finite: µ(K) < ∞ for every compact K ⊆ X ,

• inner regular: for every Borel set B, µ(B) = sup{µ(K) : K ⊆ B, K compact}, thus it can

be approximated by measures on compact sets.

Theorem 3.15 (Riesz–Markov–Kakutani Representation Theorem). Let X be a locally com-

pact space and Cc(X ) the space of continuous functions on X with compact support. Then

every bounded linear functional L : Cc(X ) → R is represented uniquely by a signed Radon

measure µ on X such that

L(f ) =
∫
X
f dµ for all f ∈ Cc(X ).

Thus, the dual space of Cc(X ) can be identified with the space of signed Radon measures

on X :

(Cc(X ))∗ = Mr(X )

The norm on Cc(X ) is the supremum norm ∥f ∥∞ = sup |f (x)|, and the dual norm on Mr(X )
is the total variation norm:

∥µ∥TV = sup
∥f ∥∞≤1

∣∣∣∣∣∫
X
f dµ

∣∣∣∣∣ .



Using the Hahn decomposition X = A+ ∪ A−, where µ is non-negative on A+ and non-

positive on A−, we have

∥µ∥TV = µ(A+) − µ(A−),

which sums the positive and negative masses of µ. For probability measures, ∥µ∥TV = 1.

In the context of this thesis, we will mainly focus on locally compact Polish spaces (com-

plete separable metric spaces) X . In these spaces, all finite Borel measures on them are

Radon. So the above theorem tells us that the dual of Cc(X ) is the space of finite Borel

measures M(X ).

With the extra assumption that X is compact, Cc(X ) = Cb(X ). In this case, the Riesz

Representation Theorem identifies the dual of Cb(X ) with the space of finite signed Radon

measures on X .

Cc(X ) Cc(X )∗

Radon measures on X

duality

L(
f )
=

∫ f d
µ

integration

Function space Dual space

Measure space

f ∈ Cc(X ) L ∈ Cc(X )∗

µ ∈ M(X )

Figure 3.7. Illustration of the Riesz–Markov–Kakutani theorem: positive linear functionals
on Cc(X ) correspond uniquely to Radon measures on X .



3.3.3 The Hahn–Banach Theorem

A foundational result in functional analysis, the Hahn–Banach theorem allows us to

extend bounded linear functionals from subspaces to the whole space without increasing

the norm.

Theorem 3.16 (Hahn–Banach). Let X be a normed vector space, Y ⊂ X a linear subspace,

and f0 : Y → R a bounded linear functional. Then there exists a bounded linear functional

f : X → R such that

f |Y = f0 and ∥f ∥ = ∥f0∥.

Figure 3.8. Visualization of a Hahn–Banach extension. The original linear functional
f0(x,0) = x is defined on the x-axis (the subspace U ), and extended to the whole plane via
f (x, y) = x + λy. We chose λ = 0 so that the extension preserves the operator norm of 1.
For other values of λ, the norm of the extension becomes

√
1 + λ2 > 1, thus violating the

norm-preserving requirement of the Hahn–Banach theorem.



Geometric Interpretation. An alternative geometric version of the theorem states that

for any closed convex set C ⊂ X and point x < C, there exists a continuous linear

functional that separates x from C, i.e.,

f (x) < inf
y∈C

f (y).

C

x < C

f (y
) =
α

f (x) < α

Figure 3.9. Hahn–Banach separation: the point x < C is separated from the convex set C
by a hyperplane f (y) = α.

Some important consequences of the Hahn-Banach theorem are:

• Dual spaces separate points: For x , y in X , there exists f ∈ X ∗ such that f (x) ,
f (y).

• Any normed space embeds isometrically into its bidual X ∗∗ via the canonical map

x 7→ x̂, where x̂(f ) = f (x).

• The norm of an element x ∈ X can be recovered from the dual space:

∥x∥ = sup
f ∈X∗

∥f ∥=1

|f (x)|.

Fundamental Theorems for Banach Spaces

The following theorems are cornerstones in the analysis of bounded linear operators

between Banach spaces.

Uniform Boundedness Principle (Banach–Steinhaus). Let X be a Banach space and

{Ti} ⊂ B(X, Y ) a family of bounded linear operators such that for every x ∈ X , the set

{∥Tix∥Y } is bounded. Then, the operator norms ∥Ti∥ are uniformly bounded.

{
∀x ∃Mx : ∀i ∥Tix∥Y ≤ Mx

}
⇒

{
∃M ∀i : ∥Ti∥ ≤ M

}
Open Mapping Theorem. Let T : X → Y be a bounded linear operator between Banach

spaces that is surjective. Then T maps open subsets of X to open subsets of Y .

Closed Graph Theorem. Let T : X → Y be a linear operator between Banach spaces. If

the graph of T , defined as {(x, Tx) ∈ X × Y }, is closed in X × Y , then T is bounded.



3.3.4 Hilbert Spaces

Although not central to our main results, we include a short section on Hilbert spaces for

the sake of completeness.

Definition 3.35 (Hilbert Space). An inner product space is a vector space H equipped with

an inner product ⟨·, ·⟩ and the induced norm ∥x∥ =
√
⟨x, x⟩. If H with this norm is complete,

we call H a Hilbert space. Thus, H is a Banach space whose norm comes from an inner

product.

Some examples of Hilbert spaces are:

• Rn with the standard dot product.

• The sequence space ℓ2 = {x = (xn) :
∑
|xn |2 < ∞} with ⟨x, y⟩ =

∑
xnyn.

• The space L2(Ω) of square-integrable functions with ⟨f, g⟩ =
∫
Ω
f (x)g(x)dx.

Hilbert spaces behave much like Euclidean spaces, with an inner product structure that

allows notions of angles, orthogonality, and projections—making geometric intuition and

techniques applicable in infinite-dimensional settings.

One of the most elegant features of Hilbert spaces is the intimate connection between

vectors and functionals.

Theorem 3.17 (Riesz Representation Theorem (Hilbert Space Version)). For every bounded

linear functional ϕ ∈ H∗ on a Hilbert space H, there exists a unique vector y ∈ H such that

ϕ(x) = ⟨x, y⟩ for all x ∈ H.

That is, every continuous linear functional can be written as an inner product with a fixed

vector.

This result is powerful because it translates abstract functionals into concrete vectors: we

can “represent” any functional just by finding the right vector to plug into the inner prod-

uct. Moreover, this correspondence is isometric and bĳective, meaning that the Hilbert

space H is isometrically isomorphic to its dual H∗. Thus, H∗ � H.

Geometrically, the theorem says that linear functionals "point" in the direction of the

vector y. The action of the functional is fully determined by projecting any input x onto

this direction via the inner product.



3.3.5 Weak Topologies

In normed vector spaces, there are important topologies weaker than the standard topol-

ogy induced by the norm. Note that we call a topology T1 weaker than a topology T2 iff

convergence of a sequence in T2 implies its convergence in T1.

Definition 3.36 (Weak Convergence). Let X be a Banach space. A sequence (xn) ⊂ X is

said to converge weakly to x ∈ X (written xn ⇀ x ) if

f (xn)→ f (x) for all f ∈ X ∗.

That is, all bounded linear functionals behave continuously under the sequence. The

weak topology is the coarsest topology that makes all functionals in X ∗ continuous.

Definition 3.37 (Weak-* Convergence). Let X ∗ be the dual of X . A sequence (fn) ⊂ X ∗

converges weak-* to f ∈ X ∗ (written fn
∗
⇀ f ) if

fn(x)→ f (x) for all x ∈ X.

The weak-* topology on X ∗ is weaker than the weak topology because it requires conver-

gence only when evaluated at points x ∈ X , that is, fn(x)→ f (x) for all x ∈ X . In contrast,

weak convergence in X ∗ requires g(fn)→ g(f ) for all g ∈ X ∗∗, an (in principle) larger set of

test functionals that includes the evaluations x̂ ∈ X ∗∗ defined by x̂(f ) = f (x).

Xx

Figure 3.10. Neighborhood sizes and sequence convergence under different
topologies: The norm topology has the smallest neighborhoods (blue), the weak
topology has larger neighborhoods (green), and the weak-* topology has the largest
neighborhoods (orange). As the topology weakens, neighborhoods become bigger,
so sequences can vary more and still converge. Hence, some sequences fail to
converge under the norm but do converge weakly or weak-*. More specifically:
- Blue points converge to x under norm.
- Blue and Green points converge to x under weak convergence.
- Blue, Green, and Orange points converge to x under weak-* convergence.



Compactness plays a central role in analysis, since it ensures that all sequences have

convergent subsequences. In infinite-dimensional normed spaces, compactness in the

norm topology is rare, but weak compactness provides a useful substitute.

Theorem 3.18 (Banach–Alaoglu). Let X be a normed space. The closed unit ball in X ∗, the

dual space of X , is compact in the weak-* topology.

This behavior is highlighted by the example below.

Example 3.3. In ℓ∞, consider the sequence en = (0, . . . ,0,1,0, . . . ) with 1 in the n-th

position. It lies in the unit ball of ℓ∞ and does not admit a norm-convergent subsequence,

since ∥en − em∥ = 1 for n , m, thus the subsequences are not even Cauchy.

We now view this sequence as functionals in the dual space ℓ∞ = (ℓ1)∗. Each fn is the

sequence (0,0, . . . ,0,1,0, . . . ) ∈ ℓ∞, and is viewed as a functional on ℓ1 via the standard

dual pairing: fn(x) = xn for x ∈ ℓ1. We can check that

fn(x) = xn → 0 for all x ∈ ℓ1.

This shows that fn
∗
⇀ 0 in the weak-* topology.

Reflexive Spaces Recall that any normed space X embeds isometrically into its bidual

X ∗∗ via the canonical map J : X → X ∗∗ defined by

J(x)(f ) = f (x) for all f ∈ X ∗.

Definition 3.38 (Reflexive Space). A Banach space X is said to be reflexive if the canonical

embedding J is surjective, i.e., every element of X ∗∗ arises as evaluation at some x ∈ X .

A reflexive space X is obviously isometrically isomorphic to its bidual X ∗∗. The main

significance of reflexivity lies in its compactness properties:

Theorem 3.19 (Kakutani). If X is reflexive, then the closed unit ball in X is compact in the

weak topology.

This result complements the Banach–Alaoglu theorem, which guarantees weak-* com-

pactness of the closed unit ball in the dual space X ∗. Reflexivity ensures that compactness

extends from the dual space back to the original space X , providing stronger convergence

properties.

Below are some examples of reflexive and non-reflexive spaces.

• Every Hilbert space is reflexive.

• The Lebesgue spaces Lp(Ω) are reflexive for 1 < p < ∞.

• If X is reflexive, then its dual X ∗ is also reflexive.

• The spaces L1(Ω) and L∞(Ω) are not reflexive.

• The sequence space ℓ1 is not reflexive, while ℓ2 is.



Weak Convergence of Measures Recall that we defined weak convergence of measures

(µn) on a topological space X by

µn ⇀ µ if

∫
f dµn →

∫
f dµ for all f ∈ Cb(X ).

By the Riesz Representation Theorem, we can interpret each function in Cb as a continu-

ous linear functional on the measure space M(X ). Hence, the weak convergence of mea-

sures defined above—that is, µn → µ if and only if

∫
f dµn →

∫
f dµ for all f ∈ Cb(X )—can

be interpreted as convergence with respect to all continuous linear functionals f ∈ Cb(X ),
viewed as functionals acting on measures via

f (µn) :=
∫
f dµn,

so that

f (µn)→ f (µ) for all f ∈ Cb(X ).

Note that according to the definitions above, the convergence we describe is the weak-*

convergence of measures, as it corresponds to the weak-* topology onM(X ), the dual of

Cb(X ). However, for simplicity and in line with common terminology in the literature, we

will refer to it simply as weak convergence of measures throughout this thesis. We will

not consider the (true) weak topology on M(X ), as the dual of M(X ) is not tractable in

our setting and plays no role in our analysis.

Topology on Probability Measures. If X is a Polish space (a complete separable met-

ric space), the space of probability measures P(X ), equipped with the weak (or narrow)

topology, is metrizable (it can be described using a metric).

If we take a sequence of probability measures, under a condition called tightness — which

means that for every small ε > 0, there is a compact set K ⊂ X such that all measures in

the sequence assign at least 1−ε probability to K — that sequence has a weakly convergent

subsequence. This result is known as Prokhorov’s theorem.

Example 3.4. Let xn → x in a Polish space X . Then the sequence of Dirac measures δxn
converges weakly to δx in P(X ), since∫

f dδxn = f (xn)→ f (x) =
∫
f dδx for all f ∈ Cb(X ).



3.3.6 Convexity

We begin by introducing the basic concepts of convex sets and convex functions, which

form the foundation of convex analysis. Because convex functions can be nondifferen-

tiable or take infinite values, we also define lower semicontinuity, a key property for

ensuring well-behaved functions.

Definition 3.39 (Convex Set). Let X be a vector space. A set C ⊂ X is convex if for every

x, y ∈ C and λ ∈ [0,1],
λx + (1 − λ)y ∈ C.

Definition 3.40 (Convex Function). A function f : X → (−∞,∞] is convex if its epigraph

epi(f ) := {(x, t) ∈ X × R : f (x) ≤ t}

is a convex set. Equivalently, for all x, y ∈ X and λ ∈ [0,1],

f (λx + (1 − λ)y) ≤ λf (x) + (1 − λ)f (y).

Definition 3.41 (Lower Semicontinuity). A function f : X → (−∞,∞] is lower semicontin-

uous (l.s.c.) if for every x ∈ X and any sequence (xn) in X converging to x,

lim inf
xn→x

f (xn) ≥ f (x).

Lower semicontinuity ensures that f does not jump downward abruptly and is critical in

guaranteeing the existence of minimizers of f .

x

f (x)

x0

not l.s.c.

lim infx→x0
f (x)

x

f (x)

x0

l.s.c.

lim infx→x0
f (x)

Figure 3.11. Illustration of lower semicontinuity at x0. Left: function with a jump down at
x0, failing lower semicontinuity since lim infx→x0

f (x) < f (x0). Right: lower semicontinuous
function where lim infx→x0

f (x) ≥ f (x0).

Subdifferential As mentioned earlier, convex functions may fail to be differentiable ev-

erywhere. Nonetheless, they admit a powerful generalization of derivatives called subgra-

dient.

Intuitively, a subgradient p ∈ X ∗ at a point x ∈ X provides a linear underestimate of the



function f near x. That is, the affine function

y 7→ f (x) + p(y − x)

lies below the graph of f and touches it at x. The linear functional p belongs to the dual

space X ∗ of continuous linear functionals on X .

Definition 3.42 (Subdifferential). The subdifferential of f at x, denoted ∂f (x), is the set of

all subgradients at x:

∂f (x) := {p ∈ X ∗ : f (y) ≥ f (x) + p(y − x) for all y ∈ X }.

The subdifferential generalizes the classical gradient: if f is differentiable at x, then

∂f (x) = {∇f (x)}.
Importantly, ∂f (x) is always a closed, convex set. It may be empty at boundary points

of the domain but is nonempty for points in the interior of dom(f ). For proper, convex,

lower semicontinuous functions, the subdifferential is nonempty at every point in the

interior of dom(f ). Intuitively, this reflects the fact that convex functions always admit

supporting hyperplanes at interior points—a consequence of the separation theorems of

convex analysis (related to Hahn-Banach). In contrast, at boundary points of the domain,

∂f (x) may be empty.

x

f (x)

λ = −0.5

λ = 0.5

f

2

1

Figure 3.12. Subdifferential of a convex function at the nondifferentiable point x = 2. All
affine lines shown touch the graph at (2,1) and lie below it everywhere. The subdifferential
∂f (2) consists of all slopes between −0.5 and 0.5, illustrating that the set of subgradients
at a nondifferentiable point can be a nontrivial interval.



Legendre–Fenchel Transform and Convex Duality The Legendre–Fenchel transform

(or convex conjugate) is a key tool for representing convex functions in dual variables.

Definition 3.43 (Convex Conjugate). Given a function f : X → (−∞,∞], its convex conju-

gate f ∗ : X ∗ → (−∞,∞] is defined by

f ∗(p) := sup
x∈X

(
p(x) − f (x)

)
.

One way to understand the convex conjugate is to think about lines with a fixed slope p

that lie below the graph of the function f . Among all such lines, we want to find the one

with the highest possible offset.

More precisely, suppose we want a line with slope p and offset b such that for all x in the

domain of f ,

p(x) + b ≤ f (x).

There may be many values of b satisfying this, but we want the largest such offset.

Rearranging, we get

b ≤ f (x) − p(x) for all x.

The largest b that works must be less than or equal to the smallest value of f (x) − p(x)
over all x, so

b = inf
x

(
f (x) − p(x)

)
= − sup

x

(
p(x) − f (x)

)
= −f ∗(y).

That is, for a fixed slope p, the intercept of the highest affine function lying below f is

−f ∗(p), and thus the convex conjugate f ∗(y) encodes this offset information.

x

f (x)
y = x

max{1 · x − f (x)}

−f ∗(1)

Figure 3.13. Calculation of f ∗(1) by finding the point where the gap between the line
y = x and the function is maximized. At this point, the tangent to the function has slope 1,
matching the slope of the line. The vertical offset of the tangent line is precisely −f ∗(1).



Regardless of whether f is convex or not, f ∗ is a convex function.

From the definition of convex conjugate functions, we can easily derive the Fenchel-Young

inequality: For every x ∈ X and p ∈ X ∗:

f (x) + f ∗(p) ≥ p(x).

Taking the convex conjugate twice yields the biconjugate f ∗∗ := (f ∗)∗, which satisfies:

f ∗∗ ≤ f.

This inequality holds because the biconjugate f ∗∗ is constructed as the supremum over

all affine functions that underestimate f . More concretely, for any p ∈ X ∗,

p(x) − f ∗(p) ≤ f (x)

by the definition of f ∗ as a supremum. Since f ∗∗(x) is the supremum of all such affine

functions, it follows that

f ∗∗(x) = sup
p∈X∗
{p(x) − f ∗(p)} ≤ f (x).

In fact, f ∗∗ is the greatest convex, lower semicontinuous function that does not exceed f .

It is also called the convex lower semicontinuous envelope of f .

The Fenchel–Moreau theorem states that if f is proper (not infinite everywhere), convex,

and lower semicontinuous, then

f = f ∗∗.

Concave functions are defined as functions whose negative is convex. All the above

concepts and results extend naturally to the concave setting by working with −f .



Chapter 4

Optimal Transport

4.1 Introduction and Motivation

Optimal transport is the mathematical theory concerned with finding the most efficient

way to move mass from one probability distribution to another, given a specified cost

of transportation. Its origins trace back to the work of Gaspard Monge in 1781, who

posed the problem in the context of civil engineering: how can one move a pile of soil to a

desired configuration while minimizing the total effort? In Monge’s formulation, each unit

of mass from the source must be transported to a single destination, reflecting a physical,

one-to-one reallocation of material.

This question, while natural in physical and economic settings, poses nontrivial analytical

challenges. Monge’s original formulation does not always admit a solution, especially

when the mass must be split or redistributed in more flexible ways. In the 20th century,

Leonid Kantorovich introduced a relaxed formulation based on transport plans rather

than maps, which allowed for splitting and led to a convex optimization problem. This

relaxation made the theory more robust and opened the door to deep analytical and

geometric insights.

Beyond its origins, optimal transport has become a powerful tool in modern mathemat-

ics, with connections to analysis, geometry, partial differential equations, and probability

theory. In recent years, it has also gained significant traction in machine learning and

statistics, where comparing and manipulating probability distributions is a central task.

The Wasserstein distances, which arise from optimal transport costs, provide a meaning-

ful geometry on the space of probability measures and are now widely used in generative

modeling, domain adaptation, and robust statistical inference.

This section develops the mathematical foundations of optimal transport. We begin by

introducing the Monge and Kantorovich formulations and the associated cost minimiza-

tion problems. We then present key theoretical results, including the existence of optimal

transport plans and the duality theory that characterizes them. We introduce Wasser-

stein distances and explore their topological and geometric properties. These results will

provide the theoretical basis for the experiments in the next part of this thesis, where

Wasserstein distances are used to study empirical distributions.

The presentation is based primarily on Villani’s Topics in Optimal Transport [8] and

Santambrogio’s Optimal Transport for Applied Mathematicians [7],
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Figure 4.1. A conceptual illustration of optimal transport: the goal is to move mass from
the source distribution µ (blue, left) to the target distribution ν (red, right) while minimizing
transport cost.

4.2 Formulation of the problem

We formalize the problem of transporting mass efficiently from a source to a target distri-

bution, minimizing an associated cost function. Recall that a Polish space is a complete

separable metric space. Below, we will restrict our discussion to Borel probability mea-

sures on Polish spaces. Let (X, µ) and (Y, ν) be the source and target probability spaces.

Let c : X × Y → [0,+∞] be a measurable cost function, which tells us what the cost of

transporting a unit of mass from x to y is.

Monge’s Formulation In the classical Monge problem, we seek a measurable map T :
X → Y that pushes the measure µ onto ν. Using the notation of push-forward measures,

we can state that:

T#µ = ν

Equivalently, for any measurable set B ∈ Y:

ν(B) = µ(T−1(B))

Using a standard approximation argument (see Appendix A for details), this condition is

equivalent to requiring: ∫
X

f dT#µ =

∫
Y

f dν ∀f ∈ Cb(Y)

∫
X

(f ◦ T ) dµ =
∫
Y

f dν ∀f ∈ Cb(Y)

We can now formulate Monge’s problem:



Monge’s Problem: Find a measurable map T : X → Y which minimizes

M[T ] =
∫
X

c(x, T (x))dµ(x).

Formally, solve

inf
T
{M[T ] : T#µ = ν} .

The map T can be interpreted as transporting mass located at point x to the location T (x).
This interpretation reveals a fundamental limitation of Monge’s problem: it does not allow

for splitting mass.

For example, consider the case where µ = δ0, meaning all the mass is concentrated at

point 0, and ν = 1

2
δ1 +

1

2
δ2, meaning we wish to transport half of the mass to point 1 and

the other half to point 2. Under Monge’s formulation, this is impossible: the entire mass

at 0 must be transported to a single point, since T is a function.

This illustrates why existence of solutions is not guaranteed in the Monge problem.

Kantorovich’s Relaxation To resolve this issue, Kantorovich proposed a relaxed formu-

lation of the problem. Instead of searching for transport maps T , he considered transport

plans, also known as couplings, between the measures µ and ν.

A coupling π ∈ P(X × Y) is a joint probability measure on X × Y with marginals µ and ν,

meaning that for all measurable sets A ⊂ X and B ⊂ Y, we have:

π(A × Y) = µ(A), π(X × B) = ν(B).

Let Π(µ, ν) denote the set of all such couplings. Using the standard characterization via

integration (see Appendix A), a measure π ∈ P(X × Y) belongs to Π(µ, ν) if and only if, for

all (φ,ψ) ∈ L1(µ) × L1(ν), we have:∫
X×Y

[φ(x) + ψ(y)]dπ(x, y) =
∫
X

φ(x)dµ(x) +
∫
Y

ψ(y)dν(y).

Kantorovich’s optimal transport problem then consists of minimizing the total transporta-

tion cost over all admissible couplings:

Kantorovich’s Problem: Find a transport plan π ∈ Π(µ, ν) that minimizes the total

transport cost:

I[π] =
∫
X×Y

c(x, y)dπ(x, y).

Formally, solve

inf
π
{I[π] : π ∈ Π(µ, ν)}



Monge

µ ν

Kantorovich

µ ν

Figure 4.2. Illustration of Monge’s transport map (top) and Kantorovich’s transport plan
(bottom), starting from a discrete distribution with masses 1, 2, and 1 (represented as
vertical stacks) and ending at a distribution with two equal stacks of mass 2. In Monge’s
formulation, mass from each source point must be moved entirely to a single target, which
requires the middle heap (mass 2) to be transported as a whole. In contrast, Kantorovich’s
plan allows splitting: the mass from a single source can be distributed across multiple
targets.

Convexity and Existence of Solutions Compared to Monge’s problem, Kantorovich’s

formulation exhibits significantly better mathematical behavior. One of its main strengths

is that, as we will see in the next section, it always admits a solution under very mild

assumptions.

A key reason for this improved behavior is that the admissible set Π(µ, ν) is convex.

Intuitively, this means that if two different transport plans π1 and π2 satisfy the marginal

constraints, then so does any weighted average of them.

Proof. Let π1, π2 ∈ Π(µ, ν) and let λ ∈ [0,1]. Define the convex combination

π := λπ1 + (1 − λ)π2.

Then π ∈ P(X × Y) and is easily seen to have the correct marginals. Indeed, for any

measurable set A ⊂ X,

π(A × Y) = λπ1(A × Y) + (1 − λ)π2(A × Y) = λµ(A) + (1 − λ)µ(A) = µ(A),

and similarly, π(X × B) = ν(B) for all B ⊂ Y. Hence, π ∈ Π(µ, ν), proving that Π(µ, ν) is

convex. □

In contrast, Monge’s problem can be seen as minimizing the transport cost I[π] over

the subset of transport plans π ∈ Π(µ, ν) that are induced by transport maps. More

precisely, these are measures π supported entirely on the graph of some measurable map



T : X → Y, meaning

π
(
{(x, y) ∈ X × Y : y = T (x)}

)
= 1.

This subset of transport plans is generally not convex. To see why, consider two such

plans π1 and π2, induced by maps T1 and T2, respectively. Their convex combination π =
1

2
(π1+π2) typically assigns positive mass to points (x, T1(x)) and (x, T2(x)) simultaneously,

thus "splitting" mass from x between two locations. As a result, π cannot be represented

as a transport plan induced by a single map T , because it is not concentrated on the

graph of any function.

This lack of convexity — in stark contrast to the structure of Π(µ, ν) — is a key reason

Monge’s problem often fails to admit minimizers.

4.3 Existence of Optimal Transport Plans

In this section, we will formally prove that Kantorovich’s problem admits minimizers.

We will first focus on the case where the underlying spaces are compact, and the cost

function is continuous.

Theorem 4.20 ([7, Theorem 1.4]). Let X and Y be compact metric spaces, and let µ ∈ P(X ),
ν ∈ P(Y ). Assume the cost function c : X × Y → R is continuous. Then there exists at least

one optimal transport plan π∗ ∈ Π(µ, ν) such that∫
X×Y

c(x, y)dπ∗(x, y) = inf
π∈Π(µ,ν)

∫
X×Y

c(x, y)dπ(x, y).

Proof. We want to show that the space Π(µ, ν) is compact and metrizable under the weak-*

topology on measures. This ensures that every sequence (πn) inΠ(µ, ν) has a subsequence

converging weakly-* to some measure π∗, meaning that for every f ∈ Cb(X × Y ),∫
f dπnk →

∫
f dπ∗.

This guarantees the existence of a minimizer for the problem.

Since X and Y are compact metric spaces, their product X × Y is also a compact metric

space. By the Riesz Representation Theorem, the dual of Cb(X × Y ) can be identified as

the space of signed Borel measures M(X × Y ).

Because Cb(X × Y ) is a Banach space, the Banach–Alaoglu theorem implies that the

unit ball in M(X × Y ) is compact under the weak-* topology. Moreover, since X × Y is

compact, the weak-* topology on M(X ×Y ) is metrizable
1
, and hence weak-* compactness

is equivalent to sequential compactness. Since every π ∈ Π(µ, ν) is a probability measure

with norm 1, it lies in this unit ball. Therefore, any sequence πn in Π(µ, ν) has a weak-*

convergent subsequence πnk → π∗.

1
This follows from Prokhorov’s theorem, which states that the weak-* topology on probability measures is

metrizable if the underlying space is Polish (separable and complete metric).



It remains to verify that π∗ also belongs toΠ(µ, ν) (that the set is closed). For any f ∈ Cb(X ),
we have by the marginal constraint∫

X×Y
f (x)dπnk (x, y) =

∫
X
f (x)dµ(x).

Passing to the limit, using the weak-* convergence, we get∫
X×Y

f (x)dπ∗(x, y) = lim
k→∞

∫
X×Y

f (x)dπnk (x, y) =
∫
X
f (x)dµ(x).

Similarly, for any g ∈ Cb(Y ),∫
X×Y

g(y)dπ∗(x, y) =
∫
Y
g(y)dν(y).

Thus, π∗ has marginals µ and ν, so π∗ ∈ Π(µ, ν).

This shows Π(µ, ν) is weak-* compact, proving the existence of a solution.

□

While the existence of optimal transport plans is classical for compact metric spaces with

continuous cost functions, the result extends naturally to Polish spaces.

Theorem 4.21 (Existence of Optimal Transport Plan in Polish Spaces). Let X, Y be Polish

metric spaces, and let µ ∈ P(X ), ν ∈ P(Y ) be probability measures. Assume the cost

function c : X × Y → [0,+∞] is continuous. Then there exists a transport plan π∗ ∈ Π(µ, ν)
minimizing the Kantorovich problem

inf
π∈Π(µ,ν)

∫
X×Y

c(x, y)dπ(x, y).

Proof. When X and Y are not compact, the dual of C0(X × Y ) is the space of Radon

measures M(X × Y ), but Cc(X × Y ), its predual in the general setting, is not a Banach

space. Hence, the Banach–Alaoglu theorem does not directly yield compactness. Instead,

we apply Prokhorov’s theorem, which guarantees relative sequential compactness under

the condition of tightness.

We will show that Π(µ, ν) is tight. Recall that tightness means that for every small ε > 0,

there exists a compact set K ⊂ X × Y such that all measures π in the set satisfy

π(Kc) < ε.

Since X and Y are Polish spaces, every finite Borel measure on them is Radon, and thus

inner regular (i.e., can be approximated by measures supported on compact sets). In

particular, this applies to µ and ν, so there exist compact sets KX ⊂ X and KY ⊂ Y such

that

µ(X \ KX ) <
ε

2
and ν(Y \ KY ) <

ε

2
.



Now consider the product set KX ×KY ⊂ X × Y , which is compact. For any π ∈ Π(µ, ν), we

estimate:

π
(
(X × Y ) \ (KX × KY )

)
≤ π(X × (Y \ KY )) + π((X \ KX ) × Y ) = ν(Y \ KY ) + µ(X \ KX ) < ε.

Therefore, Π(µ, ν) is tight, and by Prokhorov’s theorem, relatively compact in the topology

of weak convergence of measures. Since Π(µ, ν) is closed (under weak convergence), it is

sequentially compact.

Now, let (πn) ⊂ Π(µ, ν) be a minimizing sequence. By compactness, there exists a subse-

quence (πnk ) that converges weakly to some π∗ ∈ Π(µ, ν). Hence,∫
c dπ∗ = lim

k→∞

∫
c dπnk = inf

π∈Π(µ,ν)

∫
c dπ,

and so the infimum is attained at π∗. □

The theorem remains valid if the cost function c : X × Y → [0,+∞] is merely lower

semicontinuous and bounded from below. In that case, the map

π 7→

∫
X×Y

c(x, y)dπ(x, y)

is lower semicontinuous with respect to weak convergence of measures. A full proof of

this fact can be found in standard references such as [7, Theorem 1.7].



4.4 Kantorovich duality

The Kantorovich formulation of optimal transport is a linear program over the space

of probability measures. It is natural to ask whether there exists a corresponding dual

problem, and whether strong duality holds. The answer is yes, under general assumptions

— a remarkable fact taking into account the infinite-dimensional nature of the problem.

Theorem 4.22 (Kantorovich duality [8, Thm 1.3]). Let (X, µ), (Y, ν) be probability Pol-

ish spaces, c : X × Y → [0,+∞] a lower semi-continuous cost function. Define I[π] =∫
X×Y

c(x, y)dπ(x, y) as above and J(φ,ψ) =
∫
X
φ(x)dµ(x) +

∫
Y
ψ(y)dν(y). Define the set of

admissible plans Π(µ, ν) as above and Φc as the set of all measurable functions (φ,ψ) ∈
L1(dµ) × L1(dν) such that φ(x) + ψ(y) ≤ c(x, y) µ ⊗ ν-almost surely. Then,

inf
Π(µ,ν)

I[π] = sup
Φc

J(φ,ψ) (4.1)

Proof. This proof sketch relies on a minimax principle – Fenchel–Rockafellar duality –

valid due to convexity and lower semi-continuity assumptions. Recall that M+(X × Y ) is

the space of nonnegative Borel measures on X × Y .

inf
Π(µ,ν)

I[π] = inf
M+(X×Y )

I[π] +

0, if π ∈ Π(µ, ν)

+∞, else


Notice that the indicator function of the constraint π ∈ Π(µ, ν) can be expressed as:

sup
(φ,ψ)

{∫
X
φ(x)dµ(x) +

∫
Y
ψ(y)dν(y) −

∫
X×Y

[φ(x) + ψ(y)]dπ(x, y)
}

This dual expression arises from enforcing the marginal constraints via Lagrange mul-

tipliers (φ,ψ), which play the role of pricing functions on the source and target spaces.

Substituting into the expression above and using the min-max principle, we obtain:

inf
Π(µ,ν)

I[π] = inf
π∈M+(X×Y )

sup
(φ,ψ)

{∫
X
φ(x)dµ(x) +

∫
Y
ψ(y)dν(y) −

∫
X×Y

[φ(x) + ψ(y) − c(x, y)]dπ(x, y)
}

= sup
(φ,ψ)

inf
π∈M+(X×Y )

{∫
X
φ(x)dµ(x) +

∫
Y
ψ(y)dν(y) −

∫
X×Y

[φ(x) + ψ(y) − c(x, y)]dπ(x, y)
}

= sup
(φ,ψ)

∫
X
φ(x)dµ(x) +

∫
Y
ψ(y)dν(y) − sup

π∈M+(X×Y )

∫
X×Y

[φ(x) + ψ(y) − c(x, y)]dπ(x, y)


Notice that if c(x, y) ≥ φ(x)+ψ(y) almost surely, the right supremum is achieved for π = 0.

On the other hand, if there exists a point where c(x, y) < φ(x)+ψ(y), choosing π be a Dirac

mass at this point with very large mass, we see that the supremum is infinite. Thus,

inf
Π(µ,ν)

I[π] = sup
(φ,ψ)


∫
X
φ(x)dµ(x) +

∫
Y
ψ(y)dν(y) −

0, if (φ,ψ) ∈ Φc

+∞, else


= sup
Φc

{∫
X
φ(x)dµ(x) +

∫
Y
ψ(y)dν(y)

}
= sup
Φc

J(φ,ψ)



□

Now, we build intuition behind the dual problem formulation. Imagine you are an in-

dustrialist who needs to transport goods from factories to customers, where the trans-

portation cost from factory x to customer y is c(x, y). Your goal is to minimize the total

transportation cost.

A friend offers to handle the transportation, charging a fee φ(x) per product taken from

factory x and a fee ψ(y) for delivering a product to customer y. He guarantees that for

every factory-customer pair (x, y), the combined fee does not exceed the transportation

cost:

φ(x) + ψ(y) ≤ c(x, y).

Kantorovich’s duality theorem states that by carefully choosing these fees (which can be

positive or negative), the total fees collected are equal to the minimal transportation cost:

min
Π(µ,ν)

∫
X×Y

c(x, y)dπ(x, y) = max
φ(x)+ψ(y)≤c(x,y)

∫
φ(x)dµ(x) +

∫
ψ(y)dν(y).

When equality holds for a pair (x, y), the transport along that route is tight and forms part

of the optimal transport plan. Routes where the inequality is strict are not used. Thus,

the dual potentials φ and ψ act as prices or potentials that reveal the structure of optimal

transportation.

This dual perspective transforms the primal problem into a maximization over pricing

functions, and strong duality ensures these two problems have the same value.

Factory 1

Factory 2

Customer A

Customer B

φ(1) = 3

φ(2) = 1

ψ(A) = 2

ψ(B) = 1

c1A = 5

c2B = 2

c
1B =

6 c2A
= 4

Figure 4.3. Illustration of Kantorovich duality with dual potentials φ,ψ representing fees
assigned to factories and customers. Arrows with “tight” constraints (green) correspond to
active transport routes where φ(x)+ψ(y) = c(x, y), such as φ(1)+ψ(A) = 3+2 = 5 = c1A and
φ(2)+ψ(B) = 1+1 = 2 = c2B. “Slack” edges (dashed gray) satisfy φ(x)+ψ(y) < c(x, y) and
do not appear in the optimal plan. For example, φ(1) + ψ(B) = 3 + 1 < 6 = c1B and φ(2) +
ψ(A) = 1 + 2 < 4 = c2A. The dual problem maximizes total fees

∑
φ(x)dµ(x) +

∑
ψ(y)dν(y)

under these constraints.

The Metric case By limiting our analysis to specific cost function classes, we can gain

more structure on the dual problem. Below, we will focus on cost functions on X ×X that

are metrics c(x, y) = d(x, y). This case arises often in practical problems, when we want



to transport probability distributions living on the same space, since properties such as

the triangle inequality and symmetry typically hold.

Let X be a Polish space. Recall that a function f : X → R is Lipschitz if there exists L > 0

such that ∀x, y ∈ X : |f (x) − f (y)| < Ld(x, y). The smallest such constant is called the

Lipschitz constant of f , and we denote it by:

∥f ∥Lip = sup
x,y

|f (x) − f (y)|
d(x, y)

.

The space of all Lipschitz functions on X is denoted by Lip(X ). We also denote the unit

ball of Lip(X ) as Lip
1
(X ):

Lip
1
(X ) =

{
φ ∈ Lip(X ) : ∥φ∥Lip ≤ 1

}
.

Theorem 4.23 (Kantorovich-Rubinstein theorem [8, Thm 1.3]). Let X be a Polish space,

d a lower semi-continuous metric on X . Let Td(µ, ν) = infπ∈Π(µ,ν) I[π] be the optimal trans-

portation cost defined as above. Then,

Td(µ, ν) = inf
Π(µ,ν)

I[π] = sup
Lip

1
(X )

∫
X
φd(µ − ν) = sup

{∫
φd(µ − ν) : ∥φ∥Lip ≤ 1

}
(4.2)

Remark 1. The Kantorovich-Rubinstein distance defines a norm on signed measures with

finite first moment. Let M̃(X ) denote the set of all finite signed Borel measures σ on X such

that
∫
d(x, x0)d|σ |(x) < ∞ for some (hence any) x0 ∈ X . Then the KR norm of σ ∈ M̃(X ) is

defined as:

∥σ∥KR = sup
Lip

1
(X )

∫
X
φdσ

Kantorovich-Rubinstein’s theorem then yields:

Td(µ, ν) = ∥µ − ν∥KR.

This implies mass invariance of the transportation cost when the cost is a metric: adding

common mass to both measures does not affect their transportation cost. Formally, for

any finite Borel measure σ:

Td(µ + σ, ν + σ) = Td(µ, ν)

Equivalently,

Td(µ, ν) = Td([µ − ν)]+, [ν − µ]+)

The above observation seems intuitively clear; if we want to transport some mass from

µ + σ to ν + σ, we can just transport µ to ν and leave the σ mass in place. However,

for this property to hold, it is crucial for the cost function to be a metric and for the

triangle inequality to hold. Conversely, suppose that µ = δ−1, ν = δ1, σ = δ0 and

c(x, y) = (x − y)2
. Then, Td(µ, ν) = ((−1) − 1)2 = 4, while to transport µ + σ to ν + σ, we

can transport the mass from −1 to 0 and the mass from 0 to 1, leading to a smaller cost



of Td(µ + σ, ν + σ) = 1
2 + 1

2 = 2.

In the case that the cost function is a metric, the total cost depends only on the difference

between the measures µ and ν. Then, Kantorovich’s optimal transportation problem is

equivalent to the Kantorovich-Rubinstein transshipment problem.

In the transshipment problem, we want to minimize the transportation cost but the set

of admissible plans changes from the distributions with marginals µ and ν to those that

satisfy a flow conservation constraint, ensuring that in the end, the change in mass at

each point is the difference between the target and the initial distribution:

Td(µ, ν) = inf {I[π] : π[A × X ] − π[X × A] = (µ − ν)[A]} (4.3)

Intuitively, in this problem, we do not have to directly transport mass from a point x of

the initial distribution to a point y of the target distribution. Instead, we are allowed to

use any number of intermediate nodes for transshipment. The transshipment plan π now

encompasses all mass movements between sources, transshipment points and destina-

tions. Assuming for simplicity that the distributions µ and ν are disjoint, the condition

in (4.3) guarantees that if x is a source point, the mass µ(x) leaves this point, while any

mass transshipped at this point has a net zero effect on the balance. At transshipment

points, the mass entering the point equals the mass leaving it. A destination point y has

a net mass gain of ν(y), while some other mass may get transshipped there.

This is highlighted in the example of a transshipment plan below.

1 2 3 4

Blue path: 1→ 2→ 3→ 4

Red path: 2→ 3→ 1→ 4

π =


0 1 0 1

0 0 2 0

1 0 0 1

0 0 0 0


Figure 4.4. Example of a transshipment plan transporting µ = δ1 + δ2 to ν = 2δ4. The
nodes represent points in the network, where nodes 1 and 2 are sources each with one unit
of mass, and node 4 is the sink receiving two units. The blue path shows mass moving
from node 1 through nodes 2 and 3 to node 4, while the red path represents a cycle moving
mass from node 2 through nodes 3 and 1 before reaching node 4. The matrix π encodes the
amount of mass transported from node i to node j, where the entry πij corresponds to this
transported quantity.

In general, this is a strongly relaxed version of the optimal transportation problem. How-

ever, in the case where the cost function is a distance, the two problems are equiva-

lent. That is because when the triangle inequality holds, there is no benefit in grad-

ually transporting mass from x to y through x1, . . . , xn over transporting it directly:

c(x, y) ≤ c(x, x1) + · · · + c(xn, y). This equivalence highlights the geometric role of the

metric: when the cost satisfies the triangle inequality, no detour via intermediate points

can reduce transport cost.



4.5 Wasserstein Distances

The optimal transport formulation naturally gives rise to a family of metrics between

probability measures known as Wasserstein distances. To appreciate their significance,

consider two distributions with disjoint supports, such as indicator functions f (x) = 1[0,1]

and gλ(x) = 1[λ,λ+1] for λ > 1. Traditional function distances, like Lp or supremum

distance, yield a constant value (2
1/p

for Lp or 1 for supremum distance), regardless of

how far apart λ makes the supports. These metrics fail to account for the actual spatial

displacement between the distributions on the horizontal axis.

In contrast, the Wasserstein distance is defined as the solution to an optimal transport

problem, uniquely quantifying the minimum cost of physically moving mass from one dis-

tribution to another, thereby directly incorporating the spatial arrangement and distance

between their supports. In particular, the p-Wasserstein distance Wp uses as a cost func-

tion the p-th power of the ground distance. Thus, in our example, the optimal transport

cost W p
p between the distributions would be λp, as the entire distribution is effectively

shifted by λ units. Consequently, the p-Wasserstein distance Wp(µ, ν) itself would be λ.

x

f (x)

0 1

gλ(x)

λ λ + 1

Wasserstein distance W = λ
∥f − gλ∥∞ = 1

Figure 4.5. Comparison of L∞ and Wasserstein distances. The L∞ distance reflects the
maximum pointwise difference between the functions and remains constant, regardless
of how far apart the distributions are. In contrast, the Wasserstein distance reflects the
spatial cost of transporting the mass — increasing linearly with separation.

Now, let us formally define the p-Wasserstein distance.

Definition 4.44 (p-Wasserstein Distance). Let (X, d) be a Polish (complete separable)

space, and let P(X ) denote the space of all Borel probability measures on X . Let µ, ν ∈ P(X )
and p ≥ 1. The p-Wasserstein distance is defined as

Wp(µ, ν) :=
(

inf
π∈Π(µ,ν)

∫
X×X

d(x, y)p dπ(x, y)
)1/p

,

where Π(µ, ν) denotes the set of all couplings of µ and ν (all probability measures on

X × X with marginals µ and ν). The 1-Wasserstein distance is also called Earth Mover’s

Distance.



In order for Wp(µ, ν) to be finite, both µ and ν must have finite p-th moments. Indeed, if

π ∈ Π(µ, ν) is any coupling,

Wp(µ, ν) =
(

inf
π∈Π(µ,ν)

∫
X×X

d(x, y)p dπ(x, y)
)1/p

≤

(∫
X×X

(
d(x, x0) + d(x0, y)

)p dπ(x, y)
)1/p

(Triangle inequality)

≤

(∫
X×X

d(x, x0)p dπ(x, y)
)1/p
+

(∫
X×X

d(x0, y)p dπ(x, y)
)1/p

(Minkowski)

=

(∫
X
d(x, x0)p dµ(x)

)1/p
+

(∫
X
d(y, x0)p dν(y)

)1/p
.

We define the Wasserstein space:

Pp(X ) :=
{
µ ∈ P(X )

∣∣∣∣∣ ∫
X
d(x0, x)p dµ(x) < ∞ for some (hence any) x0 ∈ X

}
,

on which Wp is a well-defined metric.

The quantity

W p
p (µ, ν) = inf

π∈Π(µ,ν)

∫
X×X

d(x, y)p dπ(x, y),

represents the minimal total cost of transporting the mass of µ to match that of ν under

the cost function dp. The 1/p exponent ensures thatWp has the same units as the ground

metric d, and is essential for Wp to be a metric.

We will now prove that the Wasserstein distance is a metric.

Theorem 4.24. [7, Proposition 5.1] Let (X, d) be a Polish space and p ≥ 1. ThenWp defines

a metric on the space Pp(X ) of probability measures with finite p-th moment.

Proof. Let µ, ν, σ ∈ Pp(X ).

(1) Non-negativity and identity of indiscernibles: By definition, Wp(µ, ν) is the infimum

of a non-negative function, so Wp(µ, ν) ≥ 0. If µ = ν, the diagonal coupling

π(x, y) = δx (y)µ(x)

yields zero cost, since x = y π-almost everywhere. Conversely, if Wp(µ, ν) = 0, then there

exists an optimal coupling π ∈ Π(µ, ν) such that x = y π-almost everywhere. Hence, for

any test function f : X → R,∫
X
f (x)dµ(x) =

∫
X×X

f (x)dπ(x, y) =
∫
X×X

f (y)dπ(x, y) =
∫
X
f (y)dν(y).

Since this holds for all f ∈ Cb(X ), we conclude that µ = ν (from the Riesz Representation

Theorem). Therefore, Wp(µ, ν) = 0 ⇐⇒ µ = ν, as required.

(2) Symmetry: If π ∈ Π(µ, ν), then the measure πrev
, defined by πrev(A × B) = π(B × A),



belongs to Π(ν, µ), and since d(x, y)p = d(y, x)p, the cost is unchanged. Hence, Wp(µ, ν) =
Wp(ν, µ).

(3) Triangle inequality:

Before proving the triangle inequality, we state an important lemma that enables the

construction of a joint coupling of three measures from pairwise couplings.

Theorem 4.25 (Gluing Lemma). Let π ∈ Π(µ, σ) and η ∈ Π(σ, ν). Then there exists a

probability measure γ ∈ P(X × X × X ) such that the marginal of γ on (x, y) is π and the

marginal of γ on (y, z) is η.

Proof. The existence of γ ∈ P(X × X × X ) with the desired marginals follows from the Dis-

integration Theorem. Given π ∈ Π(µ, σ) and η ∈ Π(σ, ν), there exist families of probability

measures {πy}y∈X and {ηy}y∈X such that

π(A × B) =
∫
B
πy(A)dσ(y), η(B × C) =

∫
B
ηy(C)dσ(y),

for measurable sets A, B, C ⊆ X .

Define γ on measurable rectangles by

γ(A × B × C) :=
∫
B
πy(A)ηy(C)dσ(y).

This extends uniquely to a probability measure on X3
.

Its marginals satisfy

γ(A × B × X ) =
∫
B
πy(A) · ηy(X )︸︷︷︸

=1

dσ(y) =
∫
B
πy(A)dσ(y) = π(A × B),

and

γ(X × B × C) =
∫
B
πy(X )︸︷︷︸
=1

·ηy(C)dσ(y) =
∫
B
ηy(C)dσ(y) = η(B × C),

since πy and ηy are probability measures for σ-a.e. y.

Thus, γ has marginals π and η as required. □

Now, we prove that Wp satisfies the triangle inequality.

Let π ∈ Π(µ, σ) and η ∈ Π(σ, ν) be optimal couplings, i.e., minimizers for Wp(µ, σ) and

Wp(σ, ν), respectively. By the gluing lemma, there exists a measure γ on X × X × X with

marginals π(x, y) and η(y, z). Let θ be the marginal of γ on (x, z); then θ ∈ Π(µ, ν). Applying

Minkowski’s inequality:



Wp(µ, ν) ≤
(∫

X×X
d(x, z)p dθ(x, z)

)1/p

(Wp is the infimum)

=

(∫
X×X×X

d(x, z)p dγ(x, y, z)
)1/p

≤

(∫
X×X×X

(d(x, y) + d(y, z))p dγ(x, y, z)
)1/p

(Triangle inequality)

≤

(∫
X×X

d(x, y)p dπ(x, y)
)1/p

+

(∫
X×X

d(y, z)p dη(y, z)
)1/p

(Minkowski)

= Wp(µ, σ) +Wp(σ, ν).

Hence, all metric properties are satisfied. □

Relation between W1 and Wp Now, we will explore the comparison between W1 and Wp

for p > 1.

Theorem 4.26. Let (X, d) be a metric space. For every p ≥ 1 and any µ, ν ∈ Pp(X ),

Wp(µ, ν) ≥ W1(µ, ν).

In the case where X is bounded, with diameter D = supx,y∈X d(x, y) < ∞, we also have that

Wp(µ, ν)p ≤ Dp−1W1(µ, ν).

Proof. By Jensen’s inequality applied to the convex function t 7→ tp (with p ≥ 1), for any

coupling π: (∫
d(x, y)dπ(x, y)

)p
≤

∫
d(x, y)p dπ(x, y).

Taking the infimum over all couplings π, we get

W1(µ, ν)p ≤ Wp(µ, ν)p ⇐⇒ W1(µ, ν) ≤ Wp(µ, ν).

In the case where the space is bounded, we have

d(x, y)p ≤ Dp−1d(x, y),

so for any coupling π ∈ Π(µ, ν)∫
d(x, y)p dπ(x, y) ≤ Dp−1

∫
d(x, y)dπ(x, y).

Taking the infimum over π, we get

Wp(µ, ν)p ≤ Dp−1W1(µ, ν).

□



We illustrate this behavior in the following example.

Example 4.5. Let µ = δ0. We consider two different target measures.

Case 1 (Symmetric): Let ν1 =
1

2
δ−r+

1

2
δr for some r > 0. Then, the unique optimal transport

plan moves half of the mass from 0 to −r and half to r. For any p ≥ 1, we compute:

W1(µ, ν1) =
1

2
r +

1

2
r = r,

Wp(µ, ν1) =
p

√
1

2
rp +

1

2
rp = r.

So W1 = Wp. This equality holds because all transported mass moves the same distance.

Case 2 (Asymmetric): Now let ν2 = (1 − ε)δ0 + εδD, with 0 ≪ D and ε ≪ 1. The transport

plan sends a small amount of the mass to a distant point:

W1(µ, ν2) = D · ε,

Wp(µ, ν2) =
p√
εDp = D · p√ε.

For small ε, we have W1 ≈ 0, while Wp = D · ε1/p, which can be much larger than W1.

We observe that W1 = Wp only in very symmetric configurations where all mass travels

equal distances. In general, higher-order Wasserstein distances penalize long-range mass

transport more, causing Wp ≫ W1 when even a small portion of mass is transported far.

Remark 2. As seen in the section on duality, the Wasserstein-1 distance W1 admits the

Kantorovich–Rubinstein dual representation (since its cost function is a distance metric):

W1(µ, ν) = sup
{∫

f d(µ − ν) : f ∈ Lip
1

}
.

This duality implies that W1(µ, ν) only depends on the signed measure µ − ν. That is, if

µ1 − ν1 = µ2 − ν2, then W1(µ1, ν1) = W1(µ2, ν2). Moreover, this dual formulation often makes

W1 easier to compute or approximate than higher-order Wasserstein distances Wp with

p > 1, since it avoids the explicit search over transportation plans and can be approached

via optimization over Lipschitz functions.

Example 4.6. Let µ1 =
1

2
δ0 +

1

2
δ1, ν1 =

1

2
δ1 +

1

2
δ2, and µ2 = δ0,ν2 =

1

2
δ0 +

1

2
δ2. We can

easily check that µ1 − ν1 = µ2 − ν2 =
1

2
(δ0 − δ2), so, by Kantorovich–Rubinstein duality, we

expect that W1(µ1, ν1) = W1(µ2, ν2). Indeed, one can easily verify that they are both equal

to 1.

However, computing the Wp distance reveals a difference.

For (µ1, ν1), one optimal plan moves mass:

0.5 : 0→ 1, 0.5 : 1→ 2 so Wp(µ1, ν1)p = 0.5 · 1p + 0.5 · 1p = 1.



For (µ2, ν2), an optimal plan moves mass:

0.5 : 0→ 0, 0.5 : 0→ 2 so Wp(µ2, ν2)p = 0.5 · 2p =⇒ Wp(µ2, ν2) = 2

p−1

p > 1.

For instance, W2 =
√

2 ≈ 1.41, W4 = 2
3/4 ≈ 1.68, and W100 ≈ 1.99.

This example illustrates that althoughW1 depends only on the difference µ−ν, higher-order

Wasserstein distances Wp for p > 1 are sensitive to the specific transportation plan and

penalize long-range transport more heavily.

µ1 → ν1

0 1 2

µ2 → ν2

0 2

Figure 4.6. Visualization of two transport problems with equal W1 but different Wp values.
Yellow boxes represent the mass of µ, blue boxes represent the mass of ν, and the multicolor
boxes represent overlap. The first transport moves mass between adjacent points, while
the second involves mass at 0 moving to point 2, resulting in a higher cost for p > 1.

4.6 Optimal Transport in One Dimension

We now focus on the special case of optimal transport between one-dimensional proba-

bility measures, where the problem admits an elegant and explicit solution.

Let µ, ν ∈ Pp(R), i.e., probability measures on R. Denote their cumulative distribution

functions (CDFs) by

Fµ(x) := µ((−∞, x]), Fν(x) := ν((−∞, x]),

and define their quantile functions by

F−1

µ (t) := inf{x ∈ R : Fµ(x) ≥ t}, t ∈ [0,1],

and similarly for F−1

ν .

Theorem 4.27 (Optimal Transport in One Dimension). [7, Sections 2.1–2.2] Let µ, ν be

probability measures on Rwith cumulative distribution functions Fµ, Fν, and let λ denote the

Lebesgue measure on [0,1]. Then the unique optimal plan π∗ for the cost c(x, y) = d(x − y),
with d continuous and convex, is

π∗ = (F−1

µ , F−1

ν )#λ, H(x, y) := π∗ ((−∞, x] × (−∞, y]) = min{Fµ(x), Fν(y)},

and the optimal transport cost is

min
π∈Π(µ,ν)

∫
d(x − y)dπ(x, y) =

∫
1

0

d(F−1

µ (t) − F−1

ν (t))dt.



Proof. We begin by introducing the notion of cyclical monotonicity.

Definition 4.45 (Cyclical Monotonicity). A subset Γ ⊂ R2 is said to be cyclically monotone

with respect to a cost function if for all (x1, y1), (x2, y2) ∈ Γ, the following inequality holds:

c(x1, y1) + c(x2, y2) ≤ c(x1, y2) + c(x2, y1).

This property captures the idea that swapping destinations between matched points can-

not reduce the total transport cost.

An important theorem in optimal transport theory states that every optimal transport

plan is supported on a cyclically monotone set. That is, if π is an optimal coupling, then

the set of points (x, y) that it moves mass between must satisfy the inequality above. The

full proof of this result is technical and can be found in [5, Theorem 2.3].

Intuitively, if both (x1, y1) and (x2, y2) belong to the support of a transport plan, this

means that mass is being transported from x1 to y1 and from x2 to y2. If the inequality

does not hold, we could instead move as much mass as possible from x1 to y2 and from x2

to y1, which would lower the total transport cost. In that case, at least one of the original

pairs should not appear in the support of an optimal plan. Therefore, optimality requires

the support of the plan to satisfy cyclical monotonicity.

Original Plan

x1 x2

y1

y2

10 10 10

Swapped Plan

x1 x2

y1

y2

12

5 10

Figure 4.7. An illustration of a transport plan that violates cyclical monotonicity. The
source measure µ consists of one unit of mass at x1 and two units at x2, while the target
measure ν consists of one unit of mass at y1 and two units at y2. The transport costs are:
c11 = 10, c12 = 12, c21 = 5, and c22 = 10. Left: In the original plan, x1 sends one unit to
y1, and x2 sends its two units to y2, for a total cost of 1 · c11 + 2 · c22 = 1 · 10 + 2 · 10 = 30.
Right: In the swapped plan, one unit from x1 is redirected to y2 and one unit from x2 is
redirected to y1, while the second unit from x2 still goes to y2. The new total cost becomes
1 · 12 + 1 · 5 + 1 · 10 = 27, which is strictly lower. In the new plan, the pair (x1, y1) is no
longer in the support.



We will first focus on the case where d is strictly convex.

We know from Section 3.3 that the Kantorovich problem admits a minimizer π∗. From

the discussion above, we know that its support Γ = supp(π∗) is a cyclically monotone set.

In our setting with cost c(x, y) = d(x − y), where d is strictly convex, the cyclical mono-

tonicity condition can be shown to imply the following:

Claim: For every (x1, y1), (x2, y2) ∈ Γ, if x1 < x2, then y1 ≤ y2. This follows from a simple

convexity argument.

Proof. Assume x1 < x2 and y1 > y2, let a = x1 − y1, b = x2 − y2, δ = x2 − x1 > 0,

∆ = y1 − y2 > 0 and define t = ∆
δ+∆ ∈ (0,1). Then we can write the cross differences as

convex combinations:

x1 − y2 = (1 − t)a + tb, x2 − y1 = ta + (1 − t)b.

Using the strict convexity of d, we have:

d(x1 − y2) + d(x2 − y1) = d
(
(1 − t)a + tb

)
+ d

(
ta + (1 − t)b

)
< (1 − t)d(a) + td(b) + td(a) + (1 − t)d(b)

= d(a) + d(b)

= d(x1 − y1) + d(x2 − y2),

This contradicts the cyclical monotonicity condition for (x1, y1), (x2, y2), and thus such

a configuration cannot exist in the support of an optimal transport plan. Therefore, if

x1 < x2, it must be that y1 ≤ y2. □

We now define the sets:

Axy = (−∞, x] × (y,+∞), Bxy = (x,+∞) × (−∞, y].

Claim: For every (x, y) ∈ R2
, π∗(Axy) and π∗(Bxy) cannot be nonzero at the same time.

Proof. Suppose for contradiction that both π∗(Axy) > 0 and π∗(Bxy) > 0. Then there exist

pairs (x1, y1) ∈ Axy ∩ Γ and (x2, y2) ∈ Bxy ∩ Γ. By the definition of Axy and Bxy, we must

have:

x1 ≤ x < x2, y1 > y ≥ y2.

Thus, x1 < x2 and y1 > y2, which contradicts the monotonicity of Γ established earlier.

Therefore, both sets cannot carry mass simultaneously. □



Consider now the cumulative distribution function of π∗, denoted H(x, y). From the

previous claim, we know that π∗(Axy) · π∗(Bxy) = 0. Therefore, at least one of the sets

(−∞, x] × (−∞, y] ∪ Axy = (−∞, x] × R, (−∞, x] × (−∞, y] ∪ Bxy = R × (−∞, y]

has the same π∗-measure as (−∞, x] × (−∞, y], while the other set may have larger mea-

sure. Hence,

H(x, y) = π∗((−∞, x] × (−∞, y]) = min {µ((−∞, x]), ν((−∞, y])} = min{Fµ(x), Fν(y)}.

(−∞, x] × (−∞, y]

Axy = (−∞, x] × (y,+∞)

Bxy = (x,+∞) × (−∞, y]

Γ = supp(π∗)

x

y

Figure 4.8. Illustration of the sets involved in the proof that the optimal coupling π∗ in
one dimension satisfies H(x, y) = π∗((−∞, x] × (−∞, y]) = min{Fµ(x), Fν(y)}. The rectangle
(−∞, x] × (−∞, y] (blue) is extended by the sets Axy (red), containing all points with x ′ ≤ x
and y′ > y, and Bxy (green), containing all points with x ′ > x and y′ ≤ y. The support
Γ = supp(π∗) (violet curve) avoids at least one of these sets.

In the case where c is convex but not strictly convex, we can approximate it by a sequence

of strictly convex functions cε → c, whose corresponding optimal transport plans πε

converge to an optimal plan for c. This justifies extending the result to the general convex

case (see, e.g., [7, Theorem 2.9]).

Now, we will show that π∗ = (F−1, G−1)#λ, where λ denotes the Lebesgue measure on

[0,1]. By construction, the marginals of π∗ are µ and ν. We just have to show that its cdf

is min{F (x), G(y)}.

(F−1, G−1)#λ ((−∞, x] × (−∞, y]) = λ
(
(F−1, G−1)−1 ((−∞, x] × (−∞, y])

)
= λ

({
t ∈ [0,1] : F−1(t) ≤ x and G−1(t) ≤ y

})
= λ ({t ∈ [0,1] : t ≤ F (x) and t ≤ G(y)})

= λ ([0,min{F (x), G(y)}])

= min{F (x), G(y)}.



Finally, we calculate the optimal cost. The last equality follows from the change of vari-

ables formula and standard approximation arguments (see Appendix A).

∫
R2

d(x − y)dπ∗(x, y) =
∫
R2

d(x − y)d
(
(F−1

µ , F−1

ν )#λ
)

(x, y)

=

∫
1

0

d
(
F−1

µ (t) − F−1

ν (t)
)
dt.

□

The above theorem is very useful in calculating Wasserstein distances between 1d mea-

sures.

Corollary 4.2. Let µ, ν be probability measures on R with finite p-th moments, and let

F−1

µ , F−1

ν : [0,1]→ R denote their quantile functions. Then

W p
p (µ, ν) =

∫
1

0

∣∣∣F−1

µ (t) − F−1

ν (t)
∣∣∣p dt.

Proposition 4.2. Let π∗ be an optimal coupling forWp(µ, ν) in dimension one. Then supp(π∗)
is monotone:

x1 < x2 ⇒ y1 ≤ y2 for all (x1, y1), (x2, y2) ∈ supp(π∗).

The above statements are especially useful for numerical computations, since for empiri-

cal measures µn =
1

n

∑n
i=1
δxi and νn =

1

n

∑n
i=1
δyi , sorted increasingly, the optimal coupling

simply pairs xi with yi , and

W p
p (µn, νn) =

1

n

n∑
i=1

|xi − yi |
p.

Theorem 4.28 (Existence of Monge solution). Let µ be an atomless (assigns zero proba-

bility to points) probability measure on R, and let ν be any probability measure on R. Then

the Monge problem

min
T#µ=ν

∫
R
|x − T (x)|p dµ(x)

admits a unique solution given by the monotone transport map

T (x) = F−1

ν (Fµ(x)).



When µ is atomless, the map T (x) = F−1

ν (Fµ(x)) is well-defined and provides an optimal

transport from µ to ν. The induced plan (id, T )#µ coincides with the Kantorovich coupling

(F−1

µ , F−1

ν )#λ, since µ = (F−1

µ )#λ and for almost every t ∈ [0,1],

x = F−1

µ (t) =⇒ T (x) = F−1

ν (t).

This construction relies on the continuity and monotonicity of Fµ, which together ensure

that F−1

µ is a bĳection, thus associating each t with a unique x. However, if µ has atoms,

this bĳection fails due to jumps in Fµ, resulting in ambiguities in defining T and potentially

causing the Monge problem to have no solution.

Example 4.7. Consider the probability measures on R:

µ = 1

2
δ0 +

1

2
Uniform(1,2), ν = Uniform(0,1),

and a cost function of the form c(x, y) = d(x − y).
Note that in this case, the optimal transport plan depends only on the source and target

distributions µ and ν.

We first compute the cumulative distribution functions (CDFs) Fµ, Fν and their respective

quantile functions F−1

µ , F−1

ν .

x

0.5

µ = 1

2
δ0 +

1

2
Uniform(1,2)

y

ν = Uniform(0,1)

x

Fµ(x)

Fµ(x) =


0, x < 0,
1

2
, 0 ≤ x < 1,

x
2
, 1 ≤ x ≤ 2,

1, x > 2
y

Fν(y)

Fν(y) =


0, y < 0,

y, 0 ≤ y ≤ 1,

1, y > 1

t

F−1

µ (t)

F−1

µ (t) =

0, 0 ≤ t < 0.5,

2t, 0.5 ≤ t ≤ 1

t

F−1

ν (t)

F−1

ν (t) = t, t ∈ [0,1]

Figure 4.9. Top: measures µ and ν with atom and uniform parts. Middle: their CDFs Fµ
and Fν. Bottom: their quantile functions F−1

µ and F−1

ν . Formulas for all are placed around
the corresponding plots.



We will now solve Kantorovich’s problem. The optimal plan π∗ is induced by the coupling

π∗ = (F−1

µ , F−1

ν )#λ,

and pairs points according to

(
F−1

µ (t), F−1

ν (t)
)
=

(0, t), 0 ≤ t < 0.5,

(2t, t), 0.5 ≤ t ≤ 1.

We will now try to solve Monge’s problem. We try to define the transport map

T (x) = F−1

ν (Fµ(x)) =

F
−1

ν (0.5) = 0.5, x = 0,

F−1

ν

(
x
2

)
= x

2
, 1 ≤ x ≤ 2.

However, this is not a valid transport map since it sends the entire mass at x = 0 to a single

point 0.5, contradicting the requirement that a measurable map push µ exactly to ν.

Because µ has an atom of mass 1/2 at 0, a transport plan must send this mass to a set

of positive measure in ν. Since T assigns only one image to each point, it cannot spread

the mass over the interval. Thus, no Monge map exists, even though the Kantorovich plan

does.

x

y

1 2

0.5

1

0

Kantorovich coupling

supp(µ)

supp(ν)

0 0.5 1 2

Mass transportation sketch

Figure 4.10. (a) Kantorovich optimal coupling in the (x, y)-plane: red segment for the atom
at x = 0 and blue segment for the uniform part x ∈ [1,2]. (b) Mass transport sketch from
µ (bottom line) to ν (top line). The red triangle shows transport of the atom mass 1

2
δ0 to

y ∈ [0,0.5], and the blue polygon shows transport of the uniform mass to y ∈ [0.5,1]. The
top distribution is shaded to highlight these intervals.

Wasserstein distance calculation:

Using the quantile functions, the p-Wasserstein distance satisfies

W p
p (µ, ν) =

∫
1

0

∣∣∣F−1

µ (t) − F−1

ν (t)
∣∣∣p dt = ∫

0.5

0

|0 − t |pdt +

∫
1

0.5
|2t − t |pdt

=

∫
1

0

tpdt =

[
tp+1

p + 1

]1

0

=
1

p + 1
.

Therefore,

Wp(µ, ν) =
(

1

p + 1

) 1

p

.



In one dimension, we can calculate the W1 distance using an even simpler formula.

Theorem 4.29 (1D Wasserstein–CDF Identity). [7, Proposition 2.17] Let µ and ν be prob-

ability measures on R with cumulative distribution functions F . Then:

W1(µ, ν) =
∫
R
|F (x) − G(x)| dx.

Proof. Note that we just have to prove that∫
1

0

∣∣∣F−1(t) − G−1(t)
∣∣∣ dt = ∫

R
|F (x) − G(x)| dx.

Define the set A ⊂ R2
by

A := {(x, t) ∈ R × [0,1] : min(F (x), G(x)) ≤ t ≤ max(F (x), G(x))} .

This region lies vertically between the two graphs F (x) and G(x), depending on which is

larger.

Geometrically, one can reinterpret the set A as:

A = {(x, t) ∈ R × [0,1] : min(F−1(t), G−1(t)) ≤ x ≤ max(F−1(t), G−1(t))}.

That is, for fixed t, the set of x for which t lies between F (x) and G(x) is exactly the interval

from min(F−1(t), G−1(t)) to max(F−1(t), G−1(t)).
We compute the Lebesgue measure of this set L(A) in two ways using Fubini’s Theorem.

L(A) =
∫
R

∫ max(F (x),G(x))

min(F (x),G(x))
dt dx =

∫
R
|F (x) − G(x)|dx.

L(A) =
∫

1

0

∫ max(F−1(t),G−1(t))

min(F−1(t),G−1(t))
dx dt =

∫
1

0

|F−1(t) − G−1(t)|dt.

This proves the identity. □

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

0.2

0.4

0.6
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x

t

F (x)
G(x)

Figure 4.11. Shaded area A between F and G equals
∫
|F (x) − G(x)|dx, which matches∫

|F−1(t) − G−1(t)|dt using Fubini’s Theorem.



4.7 Optimal plans and quadratic cost functions

Recall from the Kantorovich duality theorem (Chapter 3.4) that the optimal transport cost

can be expressed as

inf
π∈Π(µ,ν)

∫
c dπ = sup

φ,ψ
φ(x)+ψ(y)≤c(x,y)

(∫
φdµ +

∫
ψdν

)
.

The functions φ and ψ that achieve the supremum are known as Kantorovich potentials.

These potentials represent a pricing scheme assigning values to mass at points x ∈ X and

y ∈ Y , constrained by the transport cost function c : X × Y → R ∪ {+∞}.
To analyze their structure, the notion of c-concavity plays a central role.

Definition 4.46 (c-Concavity). Let c : X × Y → R ∪ {+∞} be a cost function. A function

φ : X → R ∪ {−∞} is called c-concave if there exists a function ψ : Y → R ∪ {−∞} such that

φ(x) = inf
y∈Y

[
c(x, y) − ψ(y)

]
.

Equivalently, φ can be expressed as the c-transform of ψ:

φ = ψc, where ψc(x) := inf
y∈Y

[
c(x, y) − ψ(y)

]
.

Similarly, the c-transform of φ is given by

φc(y) := inf
x∈X

[
c(x, y) − φ(x)

]
.

This definition generalizes the classical notion of concavity and the Legendre-Fenchel

transform from convex analysis, adapting it to the cost structure c.

Some important properties regarding c-concave functions are:

• For every function φ,

φcc = (φc)c ≥ φ,

with equality if and only if φ is c-concave.

This shows that the double c-transform acts as a c-concave envelope of φ - φcc is

the smallest c-concave function that is larger than φ.

• Regardless of whether φ is c-concave, φc is always c-concave.

Kantorovich Potentials A fundamental result in optimal transport theory states that

the optimal potentials φ,ψ solving the Kantorovich dual problem can be chosen to be

c-concave, satisfying

φ = ψc and ψ = φc.

This characterization ensures that φ and ψ are tightly coupled through the cost function

and encode the intrinsic geometry imposed by c.



The dual constraint

φ(x) + ψ(y) ≤ c(x, y), ∀(x, y) ∈ X × Y,

forces this c-transform relationship (by taking ψ(y) to the other side and taking the infi-

mum over y. Moreover, on the support of any optimal transport plan π, equality holds:

φ(x) + ψ(y) = c(x, y), for (x, y) ∈ supp(π).

The dual potentials are unique up to additive constants; that is, if (φ,ψ) is optimal, then

so is (φ + a, ψ − a) for any a ∈ R.

Example 4.8 (Quadratic cost). Let X = Y = Rd and consider the quadratic cost function

c(x, y) =
1

2
∥x − y∥2.

In this setting, the c-transform of a function ψ : Rd → R ∪ {−∞} is

ψc(x) = inf
y∈Rd

{
1

2
∥x − y∥2 − ψ(y)

}
.

By expanding the squared norm, we have

ψc(x) =
1

2
∥x∥2 − sup

y∈Rd

{
⟨x, y⟩ −

(
ψ(y) +

1

2
∥y∥2

)}
.

Define the function

u(y) := ψ(y) +
1

2
∥y∥2,

which is a proper function on Rd. Then,

ψc(x) =
1

2
∥x∥2 − u∗(x),

where u∗ denotes the Legendre–Fenchel conjugate of u.

Since u∗ is convex by definition, ψcis a semiconvex function (a quadratic term minus a

convex function).

Thus, in the quadratic cost case, c-concave functions are precisely functions of the form

φ(x) =
1

2
∥x∥2 − u∗(x),

where u∗ is convex. This characterization is fundamental for Brenier’s theorem, which

states that the optimal transport map for the quadratic cost is given by the gradient of a

convex function.
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Figure 4.12. Construction of the Kantorovich dual potential ϕ(x) as the pointwise infimum
over the functions fy(x) = c(x, y)−ψ(y), for c(x, y) = (x −y)2 and ψ(y) = 1

2
y2. This illustrates

how ϕ can be expressed as 1

2
x2 minus a convex function.

c-superdifferential We define the c-superdifferential of a c-concave function φ as the

set

∂cφ := {(x, y) ∈ X × Y | φ(x) + φc(y) = c(x, y)}.

This generalizes the classical subdifferential of a convex function and characterizes the

set of optimal transport pairs.

For every x ∈ X such that φ(x) > −∞, the c-superdifferential at x,

∂cφ(x) := {y ∈ Y | φ(x) + φc(y) = c(x, y)},

is nonempty.

Plan Optimality The following result shows that a valid transport plan is optimal if and

only if its support lies in the c-superdifferential of a c-concave function.

Theorem 4.30. Let X, Y be Polish spaces, µ ∈ P(X ), ν ∈ P(Y ), and let c : X × Y → [0,+∞]
be a lower semicontinuous cost function. A transport plan π ∈ Π(µ, ν) is optimal for the

Kantorovich problem if and only if there exists a c-concave function φ : X → R ∪ {−∞} such

that

supp(π) ⊂ ∂cφ.

Moreover, the functions φ and φc are Kantorovich potentials, i.e., they attain the supremum

in the dual problem.



Proof. We divide the proof into two parts.

(=⇒) Optimality implies support on ∂cφ:

Assume π ∈ Π(µ, ν) is an optimal transport plan for the cost c. By Kantorovich duality,

there exists a pair of c-concave functions φ : X → R ∪ {−∞} and φc : Y → R ∪ {−∞} such

that

φ(x) + φc(y) ≤ c(x, y) for all (x, y) (since they are c-concave),

and ∫
X
φ(x)dµ(x) +

∫
Y
φc(y)dν(y) =

∫
X×Y

c(x, y)dπ(x, y) ⇐⇒∫
X×Y

{
φ(x) + φc(y) − c(x, y)

}
dπ(x, y) = 0.

Since φ(x) + φc(y) − c(x, y) ≤ 0 always, equality in the integral implies that

φ(x) + φc(y) = c(x, y) for π-almost every (x, y).

By definition of the c-superdifferential, this means (x, y) ∈ ∂cφ for π-almost every (x, y):

supp(π) ⊂ ∂cφ.

(⇐=) Support on ∂cφ implies optimality:

Suppose that π ∈ Π(µ, ν) is such that (x, y) ∈ ∂cφ for π-almost every (x, y), where φ is

c-concave. Then, by definition of the c-superdifferential,

φ(x) + φc(y) = c(x, y) for π-almost every (x, y).

Therefore, ∫
X×Y

(
φ(x) + φc(y)

)
dπ(x, y) =

∫
X×Y

c(x, y)dπ(x, y) ⇐⇒∫
X
φ(x)dµ(x) +

∫
Y
φc(y)dν(y) =

∫
X×Y

c(x, y)dπ(x, y).

Thus, since (φ, φc) is an admissible pair in the dual formulation, the above equality shows

that π is optimal and φ, φc are Kantorovich potentials. □

When ∂cφ(x) is a singleton for µ-almost every x, the optimal plan is induced by a mea-

surable map T : X → Y , with

T (x) = y such that (x, y) ∈ ∂cφ.



The Quadratic Cost Case [8, Theorem 2.12]

We now focus on the case where the cost function is the squared Euclidean distance:

c(x, y) =
1

2
∥x − y∥2,

with x, y ∈ Rd. This setting enjoys remarkable geometric and analytic structure, and

enables us to identify optimal transport plans as being supported on subdifferentials of

convex functions. We state below two fundamental theorems: the Knott–Smith optimality

criterion, which characterizes a plan’s optimality similarly to the previous theorem, and

Brenier’s theorem, which shows that optimal transport maps in this setting are gradients

of convex functions.

Theorem 4.31 (Knott–Smith Optimality Criterion). Let µ, ν ∈ P2(Rd) be probability mea-

sures with finite second moments. A transport plan π ∈ Π(µ, ν) is optimal for the Kantorovich

problem with cost c(x, y) = 1

2
∥x − y∥2 if and only if there exists a convex, lower semicontin-

uous function φ : Rd → R ∪ {+∞} such that

supp(π) ⊂ Graph(∂φ),

that is, y ∈ ∂φ(x) for π-almost every (x, y). Moreover, the pair (φ, φ∗) minimizes the dual

Kantorovich problem.

Theorem 4.32 (Brenier’s Theorem). Let µ, ν ∈ P2(Rd), and suppose that µ is absolutely

continuous with respect to Lebesgue measure. Then, there exists a unique optimal transport

plan π, and it is induced by a transport map T : Rd → Rd of the form

T (x) = ∇ϕ(x),

where ϕ : Rd → R is a convex function. That is, the optimal plan is π = (id, T )#µ.

These results rely on the fact that for the quadratic cost, the c-concave potentials are

closely related to convex conjugate functions; in fact, they are convex conjugates up to a

quadratic term. More precisely, as we saw, any c-concave function φ can be written as

φ(x) =
1

2
∥x∥2 − u∗(x),

where u∗ is the convex conjugate of a proper function u : Rd → R ∪ {+∞}. The associated

c-transform φc then satisfies

φc(y) =
1

2
∥y∥2 − u(y),

so that φ and φc form a pair of convex conjugates (modulo the quadratic term). The

Knott–Smith theorem follows by exploiting this structure, while Brenier’s theorem uses

the differentiability properties of convex functions and uniqueness of subgradients almost

everywhere. For detailed proofs of both theorems, see [8, Villani, Theorem 2.12].



4.8 Wasserstein Spaces

Let (X, d) be a metric space. For any p ≥ 1, we define the Wasserstein space Pp(X ) as the

set of Borel probability measures µ on X with finite p-th moment:

Pp(X ) :=
{
µ ∈ P(X ) :

∫
X
d(x0, x)p dµ(x) < ∞

}
for some (and hence all) x0 ∈ X . The p-Wasserstein distance between µ, ν ∈ Pp(X ) is

defined as

Wp(µ, ν) :=
(

inf
π∈Π(µ,ν)

∫
X×X

d(x, y)p dπ(x, y)
)1/p

.

The Compact Case When X is compact, every Borel probability measure automatically

has finite p-th moment, so Pp(X ) = P(X ). In this case, convergence in Wasserstein

distance is equivalent to weak convergence of measures:

Theorem 4.33. Let X be compact. Then, for µn, µ ∈ P(X ),

Wp(µn, µ)→ 0 ⇐⇒ µn ⇀ µ.

Proof. It suffices to prove the result for W1, since for any p ≥ 1, the inequalities

W1(µ, ν) ≤ Wp(µ, ν) ≤ diam(X )
p−1

p W1(µ, ν)1/p

imply that convergence in W1 is equivalent to convergence in Wp on compact X .

(⇒) Suppose W1(µn, µ)→ 0. From the dual formulation of W1,

W1(µn, µ) = sup
ϕ∈Lip

1
(X )

{∫
ϕ dµn −

∫
ϕ dµ

}
,

so for every 1-Lipschitz function ϕ, we have∫
ϕ dµn →

∫
ϕ dµ.

By linearity, this extends to all functions in Lip(X ). By the Portmanteau theorem, this is

enough to show that the convergence holds for all f ∈ C(X ). Hence, µn ⇀ µ.

(⇐) We omit the full proof of this implication but sketch the main idea. To show conver-

gence in W1, consider a subsequence along which W1(µn, µ) converges to its limsup. By

the dual formulation of W1, for each n there exists a 1-Lipschitz function ϕn such that

W1(µn, µ) =
∫
ϕn d(µn − µ).

After some normalization and using the Arzelà–Ascoli theorem, there exists a uniformly

convergent subsequence, ϕnk → ϕ ∈ Lip
1
(X ). Using the uniform convergence of ϕnk and



the weak convergence µnk ⇀ µ, we conclude that

W1(µnk , µ) =
∫
ϕnk d(µnk − µ)→

∫
ϕ d(µnk − µ)→ 0,

Thus, W1(µnk , µ) → 0 =⇒ lim supW1(µn, µ) ≤ 0, thus W1(µn, µ) → 0. For a complete

proof, see [8, Theorem 7.12]. □

The General Polish Case If X is a Polish space, then Pp(X ) is also Polish under the

Wasserstein metric. In this more general setting, convergence in Wp is stronger than

weak convergence — it also requires convergence of p-th moments.

Theorem 4.34. Let X be Polish, and µn, µ ∈ Pp(X ). Then:

Wp(µn, µ)→ 0 ⇐⇒

µn ⇀ µ,∫
X
d(x0, x)p dµn(x)→

∫
X
d(x0, x)p dµ(x).

This tells us that Wp metrizes a stronger topology: the topology of weak convergence plus

convergence of p-th moments.

A complete proof can be found in [8, Theorem 7.12].

Remark 3. In the compact case, the function x 7→ d(x0, x)p is continuous and bounded,

hence lies in Cb(X ). Therefore, weak convergence already implies convergence of p-th

moments, and no additional condition is needed.

The example below highlights how, in the non-compact case, weak convergence is not

sufficient to guarantee convergence in Wasserstein distance. The key issue is that weak

convergence alone does not control the tails of the distribution — that is, the p-th moments

may fail to converge.

Example 4.9. Let X = R, and consider the sequence of measures

µn =
(
1 −

1

n

)
δ0 +

1

n
δn, µ = δ0.

Then µn ⇀ µ, since for any bounded continuous function f ,∫
f dµn =

(
1 −

1

n

)
f (0) +

1

n
f (n)→ f (0) =

∫
f dµ.

However, the Wasserstein distance does not converge to zero. For any p ≥ 1, we compute:

Wp(µn, µ)p =
1

n
|n − 0|p = np−1 → ∞.

Hence Wp(µn, µ) ̸→ 0, and in fact diverges. This is because the p-th moments do not

converge: ∫
|x |p dµ(x) = 0, while∫

|x |p dµn(x) =
(
1 −

1

n

)
· 0 +

1

n
· |n|p = np−1 → ∞.





Chapter 5

Empirical Measures and DNN Generalization Er-

ror

5.1 Introduction

In this section, we investigate how the Wasserstein distance between a reference proba-

bility measure and its empirical approximation depends on the number of samples used.

Specifically, we examine the convergence behavior of Wp(µn, µ), where µn is the empirical

measure obtained from n i.i.d. samples drawn from a target distribution µ. This analysis

is carried out for various dimensions d and Wasserstein exponents p, and later extended

to include pushforward measures arising from neural network outputs.

The structure of this section is as follows. We first present theoretical results on the con-

vergence rates of empirical measures in Wasserstein distance, which serve as a bench-

mark for interpreting our experimental findings. We then review classical and modern

computational algorithms for computing Wasserstein distances, with a focus on both ex-

act methods (such as network simplex and linear programming) and scalable approximate

techniques (such as the Sinkhorn algorithm).

Next, we explore how the empirical prediction error of neural networks, in classical su-

pervised regression tasks, is related to the Wasserstein distance between the true output

distribution and the empirical distribution of the network’s outputs. This provides a

probabilistic view of model accuracy beyond traditional loss metrics.

Finally, we present a range of experiments illustrating these phenomena. We show how

Wasserstein distances behave across varying sample sizes, dimensions, cost exponents

p, and network architectures. Our results provide insight into both the computational

and statistical aspects of Wasserstein metrics in practical settings.
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5.2 One-Dimensional Empirical Measures and Order Statistics

In this section, we introduce the notion of empirical measures in one dimension and recall

key results on their convergence. Our focus lies on their convergence in Wasserstein

distance, both in the almost sure sense and in expectation. A key tool in this analysis

is the classical Glivenko–Cantelli theorem, which provides a strong form of convergence

for the empirical distribution function and underpins much of the theory surrounding

empirical optimal transport.

5.2.1 Empirical Measures

Let (Xi)ni=1
be an i.i.d. sample of random variables taking values in a Polish space X, with

common distribution µ. The empirical measure µn associated with the sample is defined

as

µ̂n :=
1

n

n∑
i=1

δXi ,

where δx denotes the Dirac measure concentrated at the point x ∈ X.

The empirical measure µ̂n is a random probability measure supported on the sample

{X1, . . . , Xn}. It provides a concrete realization of the law µ based on observed data and

plays a fundamental role in sampling-based methods. In particular, empirical measures

are essential in numerical approximations of probability distributions, as they are natu-

rally suited for implementation on computers.

An empirical measure µ̂n almost surely weakly converges to µ:

P(µ̂n
w
⇀ µ) = 1.

Proof. Fix a countable dense subset {fk} ⊂ Cb(X ) in the topology of uniform convergence.

By the strong law of large numbers (SLLN), we have for each k,∫
fk dµ̂n =

1

n

n∑
i=1

fk(Xi)
a.s.

−−−→ E[fk(X1)] =
∫
fk dµ.

Since the set {fk} is countable, the convergence

∫
fk dµ̂n →

∫
fk dµ holds almost surely for

all k.

Since convergence a.s. holds on a countable dense set {fk} ⊂ Cb(X ), and the functionals

ν 7→
∫
fk dν determine the weak topology, we conclude that µ̂n

w
⇀ µ almost surely.

See Varadarajan’s theorem in [3, Section 11.4.1]. □
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Figure 5.1. Left: True measure µ (black curve) and empirical measures µ̂3 (blue spikes)
and µ̂10 (red spikes). Right: Corresponding CDFs Fµ (black smooth curve), Fµ̂3

(blue step
function), and Fµ̂10

(red step function).

When the underlying measure is supported on the real line R, we have stronger conver-

gence guarantees for the empirical distribution function. The Glivenko–Cantelli theorem

states that the empirical distribution function converges uniformly almost surely to the

true distribution function.

Theorem 5.35 (Glivenko–Cantelli). [3, Theorem 11.4.2] Let {Xi}∞i=1
be i.i.d. random vari-

ables with common distribution µ on R and distribution function F . Denote by Fn the

empirical distribution function associated with the first n samples. Then, almost surely,

sup
x∈R
|Fn(x) − F (x)| → 0 as n → ∞.

A detailed proof of this result can be found in classical probability textbooks such as [3].

5.2.2 Wasserstein Convergence to Zero

Let (X, d) be a Polish metric space. We denote by Pp(X ) the space of all probability

measures on X with finite p-th moment:

Pp(X ) :=
{
ν ∈ P(X ) :

∫
d(x0, x)p dν(x) < ∞ for some x0 ∈ X

}
.

Let µ a probability measure on Pp(X ) and µ̂n be the empirical measure associated with

i.i.d. samples {Xi}ni=1
drawn from µ.

Theorem 5.36. The empirical measures µ̂n converge to µ in the p-Wasserstein metric almost

surely:

Wp(µ̂n, µ)
a.s.
−−−→ 0.

Proof. As highlighted before, for probability measures on a Polish space, convergence in

Wp is equivalent to the combination of weak convergence and convergence of the p-th

moments. We have already established weak convergence in the previous subsection, so

it remains to show that∫
d(x0, x)p dµ̂n(x)→

∫
d(x0, x)p dµ(x) almost surely.



By the Strong Law of Large Numbers applied to the function f (x) = d(x0, x)p, we have∫
d(x0, x)p dµ̂n(x) =

1

n

n∑
i=1

d(x0, Xi)p
a.s.
−−−→ E[d(x0, X )p] =

∫
d(x0, x)p dµ(x).

Therefore, we conclude that

Wp(µ̂n, µ)
a.s.
−−−→ 0.

□

Now, we focus on the convergence of the average (expected) value of the Wasserstein

distance Wp to zero. In the following, we restrict our attention to probability measures

with finite p-moments in the space Pp(R).

Theorem 5.37. [1, Theorem 2.14] Let µ ∈ Pp(R), and µ̂n the associated empirical measure.

Then,

E[Wp(µ̂n, µ)]→ 0.

Proof. The result follows from the special structure of the Wasserstein distance in one

dimension. Recall that in that case, the Wasserstein distance admits the explicit formula:

W p
p (µ̂n, µ) =

∫
1

0

∣∣∣F−1

n (t) − F−1(t)
∣∣∣p dt,

where F−1

n and F−1
denote the empirical and true quantile functions, respectively.

Using an analogue of the Glivenko–Cantelli theorem for quantile functions, one obtains

that F−1

n → F−1
almost surely, and after a non-trivial argument which is omitted, we get:

E
[
W p
p (µ̂n, µ)

]
→ 0.

Finally, applying Jensen’s inequality gives:

E[Wp(µ̂n, µ)] ≤
(
E[W p

p (µ̂n, µ)]
)1/p
→ 0.

For a detailed proof of this result, see [1, Theorem 2.14]. □

Now that we have established the convergence of the expected Wasserstein distance to

zero, we turn our attention to quantitative bounds. Specifically, we aim to understand how

fast the empirical measure µ̂n converges to the true measure µ in Wasserstein distance

as the number of samples n increases.

We will focus on deriving upper bounds for E[Wp(µ̂n, µ)] in terms of n, with particular

emphasis on the case where µ is a probability measure on R with finite p-th moment.



5.2.3 Bounds for Expected Wasserstein Distance

We now present several non-asymptotic results on the convergence of empirical measures

in Wasserstein distance, focusing on the one-dimensional case.

Let µ be a probability measure on R with finite 1-st moment, cumulative distribution

function F and density function f .

We define the median of a random variable X as a value m ∈ R such that:

P(X ≤ m) ≥
1

2
and P(X ≥ m) ≥

1

2
.

This definition allows for non-uniqueness, especially when the distribution function has

a flat or discontinuous region around the 0.5 level.

We first establish lower and upper bounds for E[W1(µ̂n, µ)].

Theorem 5.38. [1, Theorem 3.1] Let m be a median of X . There exists a constant c > 0,

such that

E[W1(µ̂n, µ)] ≥
c
√
n
E[|X −m |].

Theorem 5.39. [1, Theorem 3.2] Define:

J1(µ) :=
∫ ∞

−∞

√
F (x)(1 − F (x))dx.

Then,

E[W1(µ̂n, µ)] ≤
1
√
n
J1(µ).

From these bounds, we conclude that the expected Wasserstein-1 distance converges to

zero at the rate of order 1/
√
n, provided the underlying measure has finite (2 + ϸ)-th

moment for some ϸ > 0.

Now, we will give an upper bound for E[Wp(µ̂n, µ)], assuming that µ ∈ Pp(X ) has finite

(2p + ϸ)-th moment for some ϸ > 0.

Theorem 5.40. [1, Theorem 5.3] Define:

Jp(µ) :=
∫ ∞

−∞

[F (x)(1 − F (x))]p/2

f (x)p−1
dx.

Then,

E[W p
p (µ̂n, µ)] ≤

(
5p
√
n + 2

)p
Jp(µ).

E[Wp(µ̂n, µ)] ≤
5p
√
n
J1/p
p (µ).

Thus, we obtain a convergence rate of order n−p/2
for E[W p

p (µ̂n, µ)].



For detailed proofs of the above results, see [1, Theorems 3.1, 3.2, 5.3], where the authors

develop these bounds in the one-dimensional setting with sharp constants.

These results are also highlighted in the paper On the Rate of Convergence in Wasserstein

Distance of the Empirical Measure by Fournier and Guillin [4, Theorem 1].

Theorem 5.41. Let µ be a probability measure on Rd with finite q-th moment for some

q > p ≥ 1, and let µ̂n denote the empirical measure based on n i.i.d. samples from µ. Define

Mq
q (µ) :=

∫
Rd
∥x∥q dµ(x).

Then there exists a constant C = C(d, p, q) such that:

E
[
W p
p (µ̂n, µ)

]
≤ C Mp/q

q (µ)


n−1/2 + n−(q−p)/q if p > d/2 and q , 2p,

n−1/2 log(1 + n) + n−(q−p)/q if p = d/2 and q , 2p,

n−p/d + n−(q−p)/q if p ∈ (0, d/2) and q , d
d−p .

Note that when µ admits sufficiently high moments, the second term n−(q−p)/q
becomes

negligible compared to the main rate.

For the special case where µ is the uniform distribution on [0,1]d, sharper asymptotic

rates for E[W p
p (µ̂N , µ)] have been derived using methods from statistical physics. In par-

ticular, from the scaling relation (4) in [2], we have:

Np/d E[W p
p (µ̂N , µ)] =


O(Np/2) if d = 1,

O((logN)p/2) if d = 2,

e(p)
d + O(N−γ) if d > 2,

.

Therefore, the convergence rate of E[W p
p (µ̂N , µ)] is approximately:

E[W p
p (µ̂N , µ)] ≈

O(N−p/2) if d = 1,

O(N−p/d) if d ≥ 2.

We shall verify these theoretical convergence rated in the conducted experiments.



5.3 Computational Algorithms for Optimal Transport

Solving the optimal transport problem in its full generality is analytically and computa-

tionally challenging, especially for continuous probability measures supported on high-

dimensional spaces. Since direct numerical optimization over such measures is infinite-

dimensional and typically infeasible, practical approaches rely on discrete approximations

derived from empirical samples, reducing the problem to a finite-dimensional linear pro-

gram that is amenable to specialized algorithms.

Let µ =
∑n
i=1
aiδxi and ν =

∑m
j=1
bjδyj be discrete probability measures on spaces X and

Y, supported on points {x1, . . . , xn} ⊂ X and {y1, . . . , ym} ⊂ Y. Given a cost function

c : X ×Y → R+, the discrete optimal transport problem becomes:

min
π∈Rn×m

n∑
i=1

m∑
j=1

cij πij subject to

m∑
j=1

πij = ai ,
n∑
i=1

πij = bj, πij ≥ 0.

This is a classical linear programming problem with n × m variables and n + m equality

constraints. The solution π∗ is the optimal transport plan, and the optimal value of the

objective function defines the optimal transport cost between µ and ν.

Trying to solve the discrete optimal transport problem using generic linear programming

algorithms, such as the simplex or interior point methods, quickly becomes computation-

ally prohibitive for large-scale problems due to the high dimensionality and complexity

of the constraints. To address this, more efficient and application-specific algorithms

have been developed. These include specialized linear programming solvers, such as the

network simplex algorithm, and modern iterative approximations like the Sinkhorn al-

gorithm. In the special case of balanced discrete measures with equal cardinality and

uniform weights, the optimal transport problem reduces to a linear assignment problem,

for which the Hungarian algorithm provides an exact polynomial-time solution. More-

over, when the measures are supported on the real line, highly efficient exact solvers

based on sorting and cumulative distribution functions become available, offering near-

linear complexity. In the following subsections, we examine these algorithms in more

detail.

5.3.1 Sinkhorn Algorithm

The Sinkhorn algorithm provides an efficient way to approximate the discrete optimal

transport problem by introducing an entropic regularization term. This regularization not

only ensures the uniqueness and smoothness of the solution, but also leads to a scalable

iterative algorithm.

Let µ =
∑n
i=1
aiδxi and ν =

∑m
j=1
bjδyj be two discrete probability measures supported on

finite sets X = {x1, . . . , xn} and Y = {y1, . . . , ym}. Let C ∈ Rn×m be the cost matrix with

entries Cij = c(xi , yj). The entropically regularized optimal transport problem is defined as



min
π∈Rn×m+

⟨C, π⟩ − εH(π)

subject to π1m = a,

π⊤1n = b,

where H(π) := −
∑n
i=1

∑m
j=1
πij log πij denotes the entropy of the transport plan π, 1n denotes

the n-dimensional vector of ones, and ε > 0 is the regularization parameter. The entropic

regularization encourages smoother, more diffuse transport plans by promoting higher

entropy. Since the entropy function is strictly concave, the regularized problem is strictly

convex, ensuring a unique optimal solution.

Lagrangian formulation: Introducing dual variables κ ∈ Rn and λ ∈ Rm to enforce the

constraints, the Lagrangian reads

L(π, κ, λ) = ⟨C, π⟩ − εH(π) + κ⊤(a − π1m) + λ⊤(b − π⊤1n)

=
∑
i,j

(
Cijπij + επij log πij − κiπij − λjπij

)
+ κ⊤a + λ⊤b

Differentiating with respect to πij and setting to zero gives

Cij + ε(1 + log πij) − κi − λj = 0

⇐⇒ log πij =
κi + λj − Cij

ε
− 1

⇐⇒ πij = e
−1 exp

(κi
ε

)
exp

(
λj
ε

)
exp

(
−
Cij
ε

)
.

Define the Gibbs kernel matrix

K := exp
(
−
C

ε

)
∈ Rn×m+

where the exponential is taken elementwise, and positive scaling vectors

u := e−1 exp
(κ
ε

)
∈ Rn+, v := exp

(λ
ε

)
∈ Rm+ .

Then the optimal transport plan can be expressed compactly as

πε = diag(u)K diag(v).

The constraints become

πε1m = diag(u)Kv = a, and (πε)⊤1n = diag(v)K⊤u = b.

Elementwise, these read

ui(Kv)i = ai , ∀i, and vj(K⊤u)j = bj, ∀j.



Sinkhorn iterations: The marginal constraints can be enforced by iteratively updating u

and v as

u(k+1) =
a

Kv(k) , v(k+1) =
b

K⊤u(k+1) ,

where the divisions are elementwise. Starting from an initial guess (e.g., u(0) = 1n), the

iterations alternate updates of u and v until convergence.

The resulting πε = diag(u)Kdiag(v) approximates the entropic regularized optimal trans-

port plan. The algorithm converges under mild conditions, such as strictly positive entries

in K, which is ensured when ε is not too small and the cost matrix C does not have ex-

tremely large values. The quality of approximation depends on ε: smaller values give a

plan closer to the true optimal transport plan but can cause numerical instability.

Sinkhorn’s simplicity, differentiability, and ease of parallelization make it highly suitable

for large-scale optimal transport computations. However, in our setting, we require high-

accuracy solutions, which correspond to very small values of the regularization parameter

ε. In this regime, the Sinkhorn algorithm becomes slow to converge and suffers from

numerical instability due to the vanishing entries in the Gibbs kernel, making it less

practical for our purposes.

5.3.2 Network Simplex Algorithm

The network simplex algorithm is a specialized variant of the classical simplex method,

optimized for solving minimum-cost flow problems on graphs. In discrete optimal trans-

port, the problem can be viewed as finding a feasible flow π ∈ Rn×m+ on a bipartite graph

G = (V, E), where the vertex set consists of n supply nodes and m demand nodes, and

edges connect every supply node i to every demand node j with cost Cij. The marginal

constraints translate directly to flow conservation: each supply node i must send exactly

ai units of mass, and each demand node j must receive exactly bj units.

This structured flow problem enables the network simplex algorithm to efficiently navigate

feasible solutions by exploiting the sparsity and topology of the bipartite network.

In this network setting, feasible solutions correspond to flows that satisfy the mass con-

servation constraints. A basic feasible solution to the linear program has at most n+m−1

non-zero entries in π, corresponding to a spanning tree of the bipartite graph. These tree

structures play a central role in the network simplex algorithm: the algorithm maintains a

current tree solution and explores adjacent trees by pivoting along cycles. The tree is em-

bedded in the residual graph induced by the current flow, and each pivot step temporarily

adds a non-tree edge, forming a unique cycle along which flow can be redistributed to

reduce cost.

At each iteration, the algorithm attempts to insert a non-tree edge (an edge with zero

flow) into the current tree, which induces a unique cycle. It then adjusts the flows along

the cycle in a direction that reduces the total transport cost. This adjustment respects

the capacity constraints (non-negativity of π) and results in a new feasible basic solution

corresponding to a different tree.



To decide which non-tree edge to enter (i.e., which pivot to perform), the algorithm com-

putes reduced costs using the current dual variables (αi) for supply nodes and (�j) for

demand nodes. For an edge (i, j), the reduced cost is

C̄ij = Cij − αi − �j.

Only edges with negative reduced cost are considered for pivoting, ensuring descent in

objective value.

The algorithm maintains dual feasibility throughout, and terminates when no negative

reduced-cost edge remains, at which point the current tree solution is optimal. The dual

variables α, � can be interpreted as potentials (or prices) associated with the supply and

demand nodes, and the reduced cost expresses the gain or loss from rerouting flow.

The network simplex algorithm is exact and efficient for moderate-sized instances. It

leverages the sparse and combinatorial structure of transport problems, and its perfor-

mance can be further improved using advanced data structures (e.g., dynamic trees) and

warm starts (starting from a previous solution with slightly perturbed data). However,

its worst-case complexity is exponential, and it is not used for very large-scale or noisy

problems.
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Figure 5.2. Bipartite graph for discrete optimal transport with cost matrix C. Solid blue
edges correspond to the current basic feasible solution with associated flow values. Red
dashed edges are candidate edges with strictly lower cost, advantageous to enter the basis
and potentially reduce total transport cost. This figure illustrates the original graph and
feasible flow; the residual graph used internally by the network simplex algorithm is not
shown here.

All computations of Wasserstein distances between multidimensional empirical distribu-

tions were carried out using the network simplex algorithm.



5.3.3 Algorithm for One-Dimensional Optimal Transport

In the one-dimensional case, we leverage a specialized approach that exploits the struc-

ture of the problem to efficiently and exactly solve the empirical optimal transport (OT)

problem.

In this subsection, we describe the algorithm implemented by functions such as emp_-

1d_pot, which computes the Wasserstein distance and optimal transport plan between

weighted empirical measures.

We consider the cost function c(x, y) = d(x − y), where d : R → R+ is a convex function.

From the theoretical results in the previous section, the optimal transport plan π∗ between

two probability measures µ and ν supported on R is induced by the coupling

π∗ = (F−1

µ , F−1

ν )#λ,

where F−1

µ and F−1

ν are the generalized inverse (quantile) functions of µ and ν, and λ is

the Lebesgue measure on [0,1].

A key property of this coupling is its monotonicity: it matches the mass in increasing

order without crossings. This structure enables a highly efficient algorithm to compute

the optimal transport cost between discrete empirical measures.

We first sort the support locations {xi} and {yj} in increasing order (if they are not al-

ready sorted). Then, starting from the smallest indices, we iteratively transfer mass

α = min(wi , wj) from xi to yj, accumulate cost α · d(xi − yj), and subtract α from the

available masses wi and wj. When the mass at either point is exhausted, we advance the

corresponding index and proceed.

Algorithm 5.1: Greedy algorithm for one-dimensional optimal transport

1. Sort the point locations x[1..n] and y[1..m] in increasing order along with their

weights u[1..n], v[1..m].

2. Initialize indices i ← 1, j ← 1.

3. Initialize remaining masses wi ← u[i], wj ← v[j].

4. Initialize cost← 0.

5. Initialize empty list Π← [] to store transport plan tuples (xi , yj, α).

6. While i ≤ n and j ≤ m:

a) Set α ← min(wi , wj).

b) Update cost← cost + α · d(x[i] − y[j]) and append (x[i], y[j], α) to Π.

c) Update wi ← wi − α, wj ← wj − α.

d) If wi = 0, increment i ← i + 1. If i ≤ n, set wi ← u[i].

e) If wj = 0, increment j ← j + 1. If j ≤ m, set wj ← v[j].

7. Return cost and transport plan Π.



This procedure constructs the optimal coupling π∗ exactly and computes the Wasserstein

distance with complexity O(n logn +m logm) due to sorting, or O(n +m) if the inputs are

already sorted. Its simplicity and computational efficiency make it particularly well-suited

for empirical applications involving cost functions such as |x − y|p.

5.4 Generalization Error in Neural Networks via Optimal Trans-

port

This chapter explores a novel framework for analyzing the generalization error of Deep

Neural Networks (DNNs), drawing upon the paper “A new approach to generalisation er-

ror of machine learning algorithms: Estimates and convergence” by Loulakis and Makri-

dakis (2023) [6]. Unlike many traditional approaches that rely on specific structural

assumptions about the neural network architectures, this work provides a more general

methodology by leveraging the powerful tools of optimal transport theory and Wasserstein

distances.

5.4.1 Deep Neural Networks and Error

Deep Neural Networks have become ubiquitous in various machine learning tasks, includ-

ing function approximation and regression. In this chapter, we focus on the regression

problem of learning an unknown target function f : D → R from data, where D ⊂ Rd.

Assume that we have a class of Deep Neural Networks N , which induces a corresponding

function space VN ⊂ Lp(D). Our goal is to find a function v∗ ∈ VN that minimizes the true

Lp risk given by the integral

v∗ = arg min
v∈VN
E, where E(v) =

∫
D
|f (x) − v(x)|p dx,

assuming such a minimizer exists.

However, since the target function f is unknown except at a finite set of sampled points

X = (X1, . . . , XN ), we do not have direct access to the integral above. Instead, we minimize

the empirical risk

uX (ω) = arg min
v∈VN

EN,ω(v), where EN,ω(v) :=
1

N

N∑
i=1

|f (Xi(ω) − v(Xi(ω))|p,

which approximates the integral by averaging the Lp error over the training data. The

resulting function uX (ω), known as the probabilistic deep neural network interpolant, is

the data-driven approximation to f constructed from the available samples.



Note that the true risk E(v) can be written more compactly using a probability measure µ

on D, representing the (unknown) distribution of the input data. Specifically,

E(v) =
∫
D
|f (x) − v(x)|p dµ(x).

This expresses the expected Lp error with respect to the true distribution of inputs.

Similarly, for a given sample X = (X1, . . . , XN ), we define the empirical measure

µN,X (ω) :=
1

N

N∑
i=1

δXi (ω),

where δx denotes the Dirac delta at point x. Using this, the empirical risk becomes

EN,ω(v) =
∫
D
|f (x) − v(x)|p dµN,X (ω)(x),

which approximates the true energy functional by integrating over the empirical distribu-

tion of the training data.

In practice, our goal is to bound the total error between the unknown target function f

and the learned interpolant uX (ω), measured in the Lp norm:

E
{
∥f − uX (·)∥pp

}
.

This error can be naturally decomposed into two distinct contributions:

• The approximation error, which stems from the expressive limitations of the func-

tion class VN . Even with full knowledge of f , we may not be able to represent it

exactly within VN . This component is quantified by the best possible approximation

of f within VN :

inf
v∈VN
∥f − v∥p = ∥f − v

∗∥.

• The generalization error, which arises from the fact that we only have access to

finitely many training samples X1, . . . , XN , and therefore must rely on the empirical

minimizer uX (ω) instead of the ideal minimizer v∗ of the full risk. This term cap-

tures the discrepancy introduced by replacing the true data distribution µ with the

empirical measure µN,X (ω).

5.4.2 Bounding the Generalization Error

A key challenge in analyzing the generalization error is that the interpolant uX (ω) is itself

a random function, determined by the random sample X . As such, the map ω 7→ uX (ω)
introduces additional complexity, making standard concentration techniques difficult to

apply directly. This motivates the development of alternative analytical tools that can

handle this dependence more robustly. We will describe a framework introduced by

Loulakis and Makridakis in [6], which leverages tools from optimal transport theory to



provide meaningful bounds on the generalization error in terms of Wasserstein distances

between the empirical and true data distributions.

Theorem 5.42 (Estimate of the Generalization Error [6, Theorem 4.1]). Consider for each

ω ∈ Ω, the empirical risk minimization problem minv∈VN EN,ω(v), and denote its solution by

uX (ω). Assume that f is Lipschitz, and let us denote the Lipschitz constant of uX (ω) − f by

LX (ω). Then, for each ω ∈ Ω, and for any ϕ ∈ VN , the following bound holds:

∥uX (ω) − f ∥p ≤

 1

N

N∑
i=1

|ϕ(Xi(ω)) − f (Xi(ω))|p
1/p

+ LX (ω)Wp(µ, µN,X (ω)),

where Wp denotes the p-Wasserstein distance between the true data distribution µ and the

empirical measure µN,X (ω).

Furthermore, if LX ≤ LN almost surely for some constant LN > 0, then we have the following

expectation bound:

E
[
∥uX (·) − f ∥p

]
≤ inf
ϕ∈VN
∥ϕ − f ∥p + LN E

[
Wp(µ, µN,X )

]
= ∥v∗ − f ∥p + LN E

[
Wp(µ, µN,X )

]

Proof. Notice that(∫
D
|uX (ω)(y) − f (y)|p dµ(y)

)1/p

= Wp ((uX (ω) − f )#µ, δ0)

≤ Wp
(
(uX (ω) − f )#µN,X (ω), δ0

)
+Wp

(
(uX (ω) − f )#µ, (uX (ω) − f )#µN,X (ω)

)
=

 1

N

N∑
i=1

|uX (ω)(Xi(ω)) − f (Xi(ω))|p
1/p

+Wp
(
(uX (ω) − f )#µ, (uX (ω) − f )#µN,X (ω)

)
≤

 1

N

N∑
i=1

|ϕ(Xi(ω)) − f (Xi(ω))|p
1/p

+Wp
(
(uX (ω) − f )#µ, (uX (ω) − f )#µN,X (ω)

)
.

The first inequality uses the triangle inequality, and the last uses the fact that uX (ω)
minimizes the empirical risk.

To bound the second term, note that for any g ∈ Lip
1
, the map x 7→ uX (ω)(x) − f (x) is

LX (ω)-Lipschitz, so

Wp
(
(uX (ω) − f )#µ, (uX (ω) − f )#µN,X (ω)

)
=

(
inf

π∈Π(µ,µN,X (ω))

∫
D×D
|(uX (ω)(x) − f (x)) − (uX (ω)(y) − f (y))|p dπ(x, y)

)1/p

≤

(
inf

π∈Π(µ,µN,X (ω))

∫
D×D

LX (ω)p|x − y|p dπ(x, y)
)1/p

= LX (ω)Wp(µ, µN,X (ω)).

This completes the proof of the pointwise estimate.



To obtain the expectation bound, observe that for any fixed ϕ ∈ VN ,

E

 1

N

N∑
i=1

|ϕ(Xi(ω)) − f (Xi(ω))|p
 = ∫

D
|ϕ(x) − f (x)|p dµ(x),

since Xi(ω) are i.i.d. with law µ. Using this together with the assumption LX (ω) ≤ LN , we

obtain

E
[
∥uX (·) − f ∥p

]
≤ ∥ϕ − f ∥p + LN E

[
Wp(µ, µN,X )

]
.

Taking the infimum over ϕ ∈ VN completes the proof. □

This result provides a decomposition of the expected error E
[
∥uX (·) − f ∥p

]
into two in-

terpretable contributions. The first term, ∥f − v∗∥p, corresponds to the approximation

error, which reflects the expressiveness of the function class VN , while the second term,

LN E
[
Wp(µ, µN,X )

]
, captures the generalization error.

Together, these two terms isolate the sources of error in data-driven learning with neural

networks: one intrinsic to the model class, and the other induced by sampling.

5.4.3 Motivation for Wasserstein Distances of Pushforward Measures

The motivation behind our experimental study of pushforward Wasserstein distances

stems directly from the structure of the generalization error estimate. As highlighted in

Remark 4 of [6], the Monte Carlo integration error is ultimately governed by the quantity

Wp
(
(uX (ω) − f )#µ, (uX (ω) − f )#µN,X (ω)

)
,

rather than by the more commonly used upper bound involving the Lipschitz constant,

LX (ω)Wp(µ, µN,X (ω)).

While the latter offers a general bound, it can be extremely loose in practice due to the

difficulty of tightly estimating the Lipschitz constant LX (ω) of the error function uX (ω)− f .
Instead, directly computing the Wasserstein distance between the pushforward measures

provides a more refined and realistic measure of the empirical error. This motivates our

decision to investigate and estimate this quantity directly in the experiments. We expect

these pushforward Wasserstein distances to be significantly smaller and to yield tighter

and more informative control over the generalization error.

5.5 Experiments

5.5.1 Estimating the Empirical Wasserstein Distance

We conduct numerical experiments to investigate the convergence behavior of empirical

Wasserstein distances in high dimensions. Specifically, we compute the Wasserstein

distance between an empirical measure µ̂n and the underlying true measure µ for varying



sample sizes n. Our goal is to observe how this distance decreases as n increases and to

compare the empirical convergence rates with theoretical predictions.

Setup We consider two types of underlying distributions:

• Uniform: µ = U([0,1]d)

• Gaussian: µ = N(0, Id)

For each distribution, we fix a reference measure (the "true" distribution), represented

by 1000 i.i.d. samples. We verified that increasing the number of reference samples

beyond 1000 does not significantly affect the computed Wasserstein distance, justifying

this choice.

To compute empirical Wasserstein distances, we generate N i.i.d. samples from the same

distribution to construct an empirical measure µ̂N , with N ranging up to 800. For each N ,

we repeat the experiment 100 times and average the results to estimate the expected em-

pirical Wasserstein distance. This Monte Carlo average converges well with this number

of iterations.

The experiments are performed for dimensions d = 1, . . . ,10 and Wasserstein exponents

p = 1, . . . ,10. For the uniform case, we generate the "true" distribution using a Halton

sequence for better uniformity:

Halton(i) =
[
1

2
,
1

4
,
3

4
,
1

8
, . . .

]
Empirical samples are drawn using standard pseudo-random generators. The Wasser-

stein distance is computed using the emd2 function from the Python POT library, which

uses the network simplex algorithm and provides an exact solution to the discrete opti-

mal transport problem.

Results and Analysis Below, we present log-log plots of the averaged Wasserstein dis-

tances E[Wp(µ̂N , µ)] versus sample size N , for various dimensions d and exponents p. We

include both the uniform and Gaussian cases.

The theoretical rate for convergence of empirical measures under Wasserstein distance

is O(N−p/d) for the uniform distribution. For the Gaussian case, the decay is typically

slightly slower due to the unbounded support.

To estimate the empirical convergence rates, we perform a linear regression on the log
10

(N)
vs. log

10
(Wp) data and extract the slope.

We first present the uniform case results. They confirm the expected convergence behav-

ior of empirical Wasserstein distances. The empirical slopes closely match the theoretical

rate of −p/d. For the Gaussian distribution, the convergence is slower, due to the distri-

bution’s unbounded support and heavier tails.



Figure 5.3. Log-log plots of W p
p (µn, µ) vs. sample size n for µ ∼ U([0,1]d) and various

(p, d).



Figure 5.4. Log-log plots of W p
p (µn, µ) vs. sample size n for µ ∼ N(0, Id) and various (p, d).



Table 5.1. Estimated convergence rates (slopes) of logW p
p (µn, µ) vs. logn for µ ∼ U([0,1]d)

and different d and p values.

Dimension d p = 1 p = 2 p = 3 p = 4 p = 5 p = 6 p = 7 p = 8 p = 9 p = 10

1 -0.50 -0.99 -1.47 -1.93 -2.39 -2.85 -3.29 -3.69 -3.96 -4.09

2 -0.43 -0.85 -1.27 -1.70 -2.12 -2.54 -2.97 -3.38 -3.67 -3.83

3 -0.33 -0.66 -0.99 -1.32 -1.66 -1.99 -2.33 -2.66 -2.99 -3.28

4 -0.27 -0.54 -0.81 -1.08 -1.35 -1.62 -1.89 -2.16 -2.43 -2.69

5 -0.22 -0.45 -0.68 -0.91 -1.13 -1.36 -1.59 -1.82 -2.05 -2.28

6 -0.19 -0.39 -0.58 -0.78 -0.98 -1.18 -1.38 -1.58 -1.77 -1.97

7 -0.17 -0.34 -0.52 -0.69 -0.87 -1.04 -1.22 -1.40 -1.58 -1.75

8 -0.15 -0.31 -0.47 -0.62 -0.78 -0.94 -1.10 -1.26 -1.42 -1.58

9 -0.14 -0.28 -0.42 -0.57 -0.71 -0.86 -1.01 -1.15 -1.30 -1.45

10 -0.13 -0.26 -0.39 -0.52 -0.65 -0.79 -0.92 -1.06 -1.19 -1.33

Table 5.2. Estimated convergence rates (slopes) of logW p
p (µn, µ) vs. logn for µ ∼ N(0, Id)

and different d and p values.

Dimension d p = 1 p = 2 p = 3 p = 4 p = 5 p = 6 p = 7 p = 8 p = 9 p = 10

1 -0.48 -0.91 -1.24 -1.45 -1.60 -1.73 -1.86 -1.95 -1.98 -2.28

2 -0.40 -0.74 -1.01 -1.23 -1.39 -1.52 -1.63 -1.77 -1.84 -1.95

3 -0.30 -0.58 -0.82 -1.03 -1.20 -1.35 -1.49 -1.62 -1.71 -1.82

4 -0.24 -0.46 -0.66 -0.83 -1.00 -1.17 -1.29 -1.42 -1.62 -1.75

5 -0.20 -0.40 -0.58 -0.75 -0.92 -1.07 -1.21 -1.35 -1.47 -1.59

6 -0.18 -0.35 -0.51 -0.67 -0.82 -0.97 -1.11 -1.23 -1.36 -1.48

7 -0.16 -0.31 -0.46 -0.60 -0.74 -0.88 -1.01 -1.14 -1.26 -1.38

8 -0.14 -0.28 -0.42 -0.55 -0.69 -0.82 -0.94 -1.06 -1.19 -1.32

9 -0.13 -0.26 -0.38 -0.51 -0.63 -0.75 -0.88 -0.99 -1.11 -1.23

10 -0.12 -0.24 -0.36 -0.47 -0.59 -0.71 -0.82 -0.93 -1.05 -1.16

5.5.2 Estimating Generalization via Pushforward Wasserstein Distances

Setup To empirically investigate the convergence of the generalization error through

the lens of pushforward Wasserstein distances, we consider a function f (x) and a data

distribution µ. We train a fully connected neural network with residual connections to

learn this function using SGD with a learning rate of 0.01, up to 2000 epochs or until the

empirical loss drops below 0.02. The loss we use is the empirical Lp distance:

L(f̂ , f ) =

1

n

n∑
i=1

|f̂ (xi) − f (xi)|p
1/p

.



Pushforward Error Distributions After training, we compute the pointwise error e(x) =
|f̂ (x) − f (x)|. This induces two probability measures:

• The empirical pushforward measure e#µn, based on the training sample {xi}ni=1
.

• The true pushforward e#µ, which can be approximated using a large empirical mea-

sure.

Since both measures live on R, we can compute W p
p (e#µn, e#µ) exactly in 1D using

ot.emd2_1d from the POT library.

We conduct 3 different experiments:

• We consider f (X ) = ∥x∥2
2

and µ ∼ U([0,1]d), using a Halton distribution of d · 215

points to simulate it. We vary the empirical/training sample size

n ∈ {32,64,128,256,512,1024,2048,4096,8192,16384} · d, and repeat the exper-

iment for dimensions d ∈ {1, . . . ,10} and Wasserstein exponents p ∈ {1,2,5}. Each

setting is averaged over 1000 Monte Carlo trials to reduce variance.

• We consider f (X ) = ∥x∥2
2

and µ ∼ N(0, Id), using an empirical distribution of d · 220

points to simulate it. We vary the empirical/training sample size

n ∈ {4000,8000,16000,32000,64000,128000} · d, and repeat the experiment for

dimensions d ∈ {1, . . . ,4} and Wasserstein exponents p ∈ {1,2,5}. Each setting is

averaged over 200 Monte Carlo trials.

• We consider f (X ) = ∥x∥−1/8

2
and µ ∼ U([0,1]d), using the Halton distribution of 2

16

points to simulate it. We vary the training sample size

n ∈ {250,500,1000,2000,4000,8000,16000}, and repeat the experiment for pairs

of dimensions and Wasserstein exponents

(d, p) ∈ {(1,1), (1,2), (1,3), (1,5), (2,1), (2,2), (2,7), (2,9), (2,12), (2,15)}. Each set-

ting is averaged over 200 Monte Carlo trials.

Results The average values of W p
p (e#µn, e#µ) are plotted against n in log-log scale, and

linear regression is applied to estimate convergence rates. The results are presented on

the following graphs and tables.

Table 5.3. Empirical convergence slopes for f (x) = ∥x∥2
2
, µ ∼ U([0,1]d).

p d = 1 d = 2 d = 3 d = 4

1 -0.53 -0.52 -0.56 -0.58

2 -0.52 -0.52 -0.54 -0.55

5 -0.52 -0.54 -0.46 -0.39

Since the pushforward measures are supported on the real line, classical results predict

that W p
p between an n-point empirical measure and the corresponding true distribution

should scale as n−p/2
. However, our experiments do not always exhibit this rate. A



Figure 5.5. Log-log plots of W p
p (e#µn, e#µ) vs. n for f (x) = ∥x∥2

2
, µ ∼ U([0,1]d), for various

p, d values.



Figure 5.6. Log-log plots of W p
p (e#µn, e#µ) vs. n for f (x) = ∥x∥2

2
, µ ∼ N(0, Id), for various

p, d values.



Table 5.4. Empirical convergence slopes for f (x) = ∥x∥2
2
, µ ∼ N(0, Id).

p d = 1 d = 2 d = 3 d = 4

1 -0.49 -0.48 -0.48 -0.49

2 -0.38 -0.42 -0.39 -0.50

5 -0.31 -0.32 -0.29 -0.24

Figure 5.7. Log-log plots for f (x) = ∥x∥−1/8

2
, µ ∼ U([0,1]d), for selected p values and

d = 1,2.



Table 5.5. Empirical convergence slopes for f (x) = ∥x∥−1/8

2
, µ ∼ U([0,1]d), and selected d,

p values.

d = 1 p = 1 p = 2 p = 3 p = 5

-0.49 -0.68 -0.64 -0.60

d = 2 p = 1 p = 2 p = 7 p = 9 p = 12 p = 15

-0.50 -0.85 -1.58 -1.89 -2.35 -2.82

plausible explanation is that the functions defining the pushforward measures are not

fixed in advance; instead, they are themselves learned from the empirical data. Conse-

quently, the error distributions—and hence the pushforward measures—are coupled with

the empirical measure, breaking the independence assumptions typically required for

classical convergence results. This dependence likely alters the effective complexity of the

pushforward measure and slows down the convergence compared to the theoretical n−p/2

rate.

These findings validate the refined view proposed in [6], namely that the pushforward

Wasserstein distance Wp(e#µn, e#µ) provides a sharper and more stable measure of gen-

eralization than rough bounds involving global Lipschitz constants. Additionally, the

empirical rates confirm that generalization improves predictably with increasing sample

size, and that optimal transport tools are not only theoretically sound but also practically

computable and insightful.



Chapter 6

Conclusion

This thesis rigorously explored the applications of optimal transport theory, specifically

Wasserstein distances, to advance our understanding of generalization in deep learning,

complementing theoretical foundations with empirical validation.

Our experimental investigations first confirmed the expected convergence rates of em-

pirical Wasserstein distances, demonstrating their reliable behavior in high-dimensional

settings across various distributions. More significantly, we applied the optimal transport

framework to analyze the generalization error of deep neural networks, building upon re-

cent theoretical developments by Loulakis and Makridakis. Our results underscore that

pushforward Wasserstein distances offer a remarkably sharper and more stable measure

of generalization error compared to traditional Lipschitz-based bounds. A key empirical

observation was that the observed convergence rates for these pushforward measures

frequently deviated from classical theoretical predictions for one-dimensional empirical

measures. We posited that this discrepancy arises from the intrinsic coupling between

the learned error function, which defines the pushforward measure, and the finite empir-

ical data from which it is derived.

This work not only validates the practical utility of optimal transport in quantifying com-

plex aspects of deep learning but also opens compelling avenues for future research.

Foremost among these is the critical need to theoretically formulate the precise conver-

gence rates for pushforward Wasserstein distances when the underlying map is dynam-

ically learned by a neural network. Such a theoretical breakthrough would explain the

empirically observed behaviors and provide deeper insights into the interplay between

model complexity, training data characteristics, and generalization performance. Further

work could also explore the impact of specific neural network architectures and sampling

methodologies on these novel convergence rates, ultimately contributing to the design of

more theoretically grounded and robust deep learning algorithms.
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Appendix A: The Standard Machine — From Sets

to Functions

In this thesis, many measure-theoretic properties are first stated for sets and then equiva-

lently reformulated for integrals against functions. The following 4-step procedure, which

we call the standard machine, formalizes this transition from set-level conditions to func-

tional formulations.

The Standard Machine Suppose we want to verify a property P involving a measure µ

that is initially given as a statement about measurable sets, e.g., for all measurable sets

A ⊆ X,

P(A) holds.

To extend P to hold for integrals against measurable functions, we proceed as follows:

1. Indicator functions: By assumption, P holds for characteristic functions 1A of

measurable sets A ⊆ X. That is,

P(1A) holds for all measurable A.

2. Simple functions: Since any simple function s : X → R can be written as a finite

linear combination of indicator functions,

s =
n∑
i=1

λi1Ai , λi ∈ R, Ai ⊆ X measurable,

and P is linear (or otherwise compatible with finite sums and scalar multiplication),

it follows that P(s) holds.

3. Positive measurable functions: Every positive measurable function f : X → [0,∞]
can be approximated pointwise by an increasing sequence of simple functions {sn}

with

sn ↑ f pointwise as n → ∞.

By monotone convergence arguments (e.g., Monotone Convergence Theorem), P

extends to all positive measurable functions f .

4. General measurable functions: For any measurable function g : X → R, write

g = g+ − g−,
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where g+ = max(g,0) and g− = max(−g,0) are positive measurable functions. Since

P holds for g+ and g−, linearity (or suitable compatibility) ensures P(g) holds for all

measurable functions g.

Depending on the context, the class of test functions g may be restricted to bounded

continuous functions Cb(X) or other subclasses, but the approximation idea remains

essentially the same.

Example 6.10. Pushforward Measures

Recall the pushforward condition:

T#µ(B) = µ(T−1(B)) ∀B ⊆ Y measurable.

Using the standard machine, this implies that:∫
Y

f (y)d(T#µ)(y) =
∫
X

f (T (x))dµ(x) ∀f ∈ Cb(Y).

This equivalence follows by applying the four-step standard machine to extend from char-

acteristic functions 1B to all bounded continuous functions f .



Bibliography

[1] Sergey Bobkov and Michel Ledoux. One-Dimensional Empirical Measures, Order Statis-

tics, and Kantorovich Transport Distances, volume 261 of Memoirs of the American

Mathematical Society. American Mathematical Society, Providence, RI, 2019.

[2] Sergio Caracciolo, Claudio Lucibello, Giorgio Parisi, and Giorgio Sicuro. Scal-

ing hypothesis for the euclidean bipartite matching problem. Physical Review E,

90(1):012118, 2014.

[3] R. M. Dudley. Real Analysis and Probability, volume 74 of Cambridge Studies in

Advanced Mathematics. Cambridge University Press, 2 edition, 2002.

[4] Nicolas Fournier and Arnaud Guillin. On the rate of convergence in wasserstein

distance of the empirical measure. Probability Theory and Related Fields, 162(3-

4):707–738, 2015.

[5] Wilfrid Gangbo and Robert J. McCann. The geometry of optimal transportation. Acta

Mathematica, 177(2):113–161, 1996.

[6] Michail Loulakis and Charalambos G. Makridakis. A new approach to generalisation

error of machine learning algorithms: Estimates and convergence. arXiv preprint

arXiv:2306.13784, 2023.

[7] Filippo Santambrogio. Optimal Transport for Applied Mathematicians: Calculus of Vari-

ations, PDEs, and Modeling, volume 87 of Progress in Nonlinear Differential Equations

and Their Applications. Birkhäuser, 2015.

[8] Cédric Villani. Topics in Optimal Transportation, volume 58 of Graduate Studies in

Mathematics. American Mathematical Society, 2003.

Diploma Thesis 123


	greekgreekΠερίληψη
	Abstract
	Acknowledgements
	Εκτεταμένη Ελληνική Περίληψη
	greekenglishOptimal Transport
	Σφάλμα γενίκευσης και Εμπειρικά Μέτρα
	Συμπεράσματα και Μελλοντικές Κατευθύνσεις

	Introduction
	Mathematical Background
	Metric Spaces and Topology
	Metric and Normed Spaces
	Topological Concepts
	Functions
	Completeness
	Compactness

	Measure Theory
	Sigma Algebra and Measures
	Measurable Functions
	Integration and Radon-Nikodym's Theorem
	Probability Distributions
	Convergence of Measures
	Product Measures and Independence

	Functional Analysis
	Normed and Banach Spaces
	Dual Spaces
	The Hahn–Banach Theorem
	Hilbert Spaces
	Weak Topologies
	Convexity


	Optimal Transport
	Introduction and Motivation
	Formulation of the problem
	Existence of Optimal Transport Plans
	Kantorovich duality
	Wasserstein Distances
	Optimal Transport in One Dimension
	Optimal plans and quadratic cost functions
	Wasserstein Spaces

	Empirical Measures and DNN Generalization Error
	Introduction
	One-Dimensional Empirical Measures and Order Statistics
	Empirical Measures
	Wasserstein Convergence to Zero
	Bounds for Expected Wasserstein Distance

	Computational Algorithms for Optimal Transport
	Sinkhorn Algorithm
	Network Simplex Algorithm
	Algorithm for One-Dimensional Optimal Transport

	Generalization Error in Neural Networks via Optimal Transport
	Deep Neural Networks and Error
	Bounding the Generalization Error
	Motivation for Wasserstein Distances of Pushforward Measures

	Experiments
	Estimating the Empirical Wasserstein Distance
	Estimating Generalization via Pushforward Wasserstein Distances


	Conclusion
	Appendix A: The Standard Machine — From Sets to Functions
	Bibliography

