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ATaryopeveTal 1 avILypa®r), amodnKevoT Kot dlavoun g mapovcog epyaciag, €& oAoKAN-
POV 1N TUNHOTOG OVTNG, Yo EUTOPIKO okomo. Emtpémeton  avatdmmon, amodnkevon kot
Slovopn Y10 KOO 1N KEPOOGKOTIKO, EKTTALOEVTIKNG 1) EPEVVNTIKNG PVONG, VIO TNV TPOHTO-
Beon va avagépetal  myn Tpoéhevong Kot va. dtatnpeital to Tapodv unvouo. Epotuata
OV APOPOVV T1 YPNON TNG EPYACING Y10 KEPOOGKOTIKO GKOTO TPEMEL VO AteLOHVOVTAL TTPOG
TOV GLYYPAPEQ.

Ot amOWyELg KoL TO GUUTEPAGLOTA TTOV TEPLEXOVTOL GE AVTO TO £YYPAPO EKOPALOVY TOV GLY-
YPOPEN KoL 0V TPETEL VoL punveLBEel 0Tt avTimpocwnehovv Tig enionues Bécelc Tov EOvikon
MetooPiov [Torvteyveiov.



IIEPIAHYH

H extiunon xotdotaong (State Estimation — SE) amotekel OepeMmdec epyareio TV cLuGTNUATOV
dwxeiplong evépyelag, mopeyxovtag Eva akpBEG GTIYLOTVTIO TOV AEITOVPYIKOV GLUVONKAOV TOV GLGTI-
patog pe Péon petpnoelg cvAleydueveg amd to medio. H mapovca dwatpiPn eotidlel oty avamtuén
KavoTopwv pHefddwv vp1dtkng ektipnong kataotaong (Hybrid State Estimation — HSE), ywa v a-
E10m0INoN ETEPOYEVAV LETPNTIKDV OESOUEVDV TPOEPYOUEVOV OO TO, LETPTTIKE GLGTHLLOTO ETOTTIKOV
eAEYYov Ko GVAAOYNG dedouévav (SCADA) kot amd povadeg uétpnong eacifetov (PMU).

O mpmdTOog epeLVNTIKOG AEovag TG o TpPng eotialel otic otatikég pebodoovg HSE. Apyikd, mpotei-
VeTal £VOG EKTIUNTNG OTAOUICUEVOV EAAYIGTOV TETPOYDOV®VY TOL omoTeAELTAL 0O VO d1ad0Y K GTA-
o extTipnong, éva yua kdbe peTpnTikd cuoTNUA, KATAAANAOG Yol avafABen Tov VITAPYOVTOS AoYL-
opkoV SE pe eAdy1oTeg TPOTOTOMGELG. TN GUVEYELN, OVOTTUGGETAL £VO IGOSVVOLO LOVTELO Y10l KAOL-
owég ovvdéoaeic HVDC pe petatpomeic mnyng pevpartog katdAinio yio otatiky HSE, to omolo ena-
AnBevetan pé€cw aplBUNTIKAOV TPOGOUOUDGEMY TOV AEI0TO0VV ETEPOYEVEIC LETPNGELG EVOAAAGTOLLE-
vov peopatog (AC), pali pe petpnoelg oty mhevpd tov cuveyovg pevpartog (DC). Télog, yiveton pua
TPMOTN JlEPEHVNOTN TNG EMLOPOOTG TOV SAPOPETIKAOV TOAVAOV GYNUATOV LETPNONG PACIOET®V peda-
106 pésm PMU — pe ) popen podv 1 eyydcewv — 61N oOyKALo™ Kot v akpifeia tg HSE, {mua
7oV dev €xel peketn et emapkmg ot Piproypaeia.

O debtepog epevvnTiKOg dEovag g dtaTpiPng eotidlel oty avantvén pwoag pedddov HSE vroost-
plopevng and mpoPreyn (Forecasting-Aided State Estimation — FASE). 1o mlaicto g pebddov,
dapopeaverat £va poviélo petafacng kataotdoswy (State transition model) mov evnuepmveTol cv-
veymg pe dedopéva mpaypotikod ypdvov and PMU, Bacilopevo ot Bewpia BEATioTG 6OVINEng oe-
dopévav amd moramrlove acOntipeg (multi-sensor data fusion theory). I'a v avtipetdrion tov
nmratog e EALENYNG GLYYXPOVIGHOD LETOED Tov petpioewv SCADA kat PMU, eveouatovetot éva
emmAéov Ppa e&opdivvong ot dwdikacio FASE, Baciopévo otov alyopBuo eEopdivvong otabde-
po¥ dwaothuatog (fixed-interval smoothing algorithm) Bryson-Frazier.

21 ovvéyela, kabmg o gviomiopds Kot 1 aviyvevon esparpévov petpriioemv (bad data) amotelovv
OVOTOGTOGTO KOUUATL TOV EKTIUNTAOV KATAGTOONG, YiveTor avamtuén aiyopiBuwv encéepyaciog e-
OQUALEV®V OEOOUEVMV, GTO TANIGLO TV TPoTEWOUEV®DY neBddwv HSE, pe yprion tov eléyyov peyi-
otV Kavovikonomnpuévey vroroinwv (Largest Normalized Residual Test — LNRT).

TéNog, TPUKTIKEG TTVYEG TNG TOPOVGOS EPEVVOS AVOOEIKVVOVTOL LEGH TNG VAOTOINOMG EPYUGTNPLO-
KNG owdtaéng oto Epyactpro XHE tov Topéa Hiektpikng loyvog tov EMII, 1 omoia awoteieitan amd
eumopikég cvokevés PMU, PMU youniov K66T00G Kot ynelokd TPOGOUOIMTH NAEKTPIKMV SIKTVMV,
Kol Kafiotd dvuvartn Tn SoKIUn Kot aEoA0yNomn EQapUOYDV enonteiag Kot eAEyyov mov Pacilovtal og
GLYYPOVIGUEVO OEOOUEVE PACIOETMV.

Ag&ac-Kireona

Axpifeta, Aviyvevon ecoaipuévov dedopévov, Bertiotonoinon, Extiunon katdotaong vrootnpilo-
pevn amo mpdPrewn, Encktetapévo eidtpo Kalman, Mé0odoc otaducpévev erayictov TeTpaydvay,
Movdadec pétpnong eacibetdv, Moviéha petdfaong kotaotdoewv, OyKAon, ZOvinén 0edouévoy,
Yvotnuoto eTonteiag evpeing mEPLOYNS, TVOTHUATA UETOPOPAS GLVEYOVS PEVUATOS VYNANG TdoNng,
Y Bpudwn extipunon kotdotaons, Pnoeoxn Tpocopoinson GLGTUATOY NAEKTPIKNG EVEPYELNG.






ABSTRACT

Power system state estimation (SE) constitutes an essential function of energy management systems,
enabling operators to maintain a comprehensive awareness of system operating conditions through
available field measurements. This dissertation introduces several contributions to the research domain
of hybrid state estimation (HSE), aimed at optimally integrating heterogeneous supervisory control
and data acquisition (SCADA) and phasor measurement unit (PMU) data.

Initially, fundamental concepts of static and dynamic SE are elaborated from both mathematical and
practical implementation perspectives, followed by an introduction to the principles of HSE. Subse-
quently, key challenges associated with HSE implementations are identified, accompanied by a com-
prehensive literature review focusing on novel static and dynamic HSE methods designed to overcome
these challenges. Furthermore, a classification of existing methods is proposed based on their scope
and underlying mathematical formulations.

The contributions of this thesis first focus on static HSE methods. A weighted least squares (WLS)-
based static HSE formulation is developed, separately handling SCADA and WAMS measurements.
The principal advantages of the proposed method include its modular design and practical applicabil-
ity, making it particularly suitable for PMU integration into existing SE software through minimal
modifications. Moreover, considering the widespread adoption of high-voltage direct current (HVDC)
transmission technology, a model suitable for current source converter (CSC)-HVDC links in static
HSE implementations is proposed and validated via numerical simulations involving both SCADA
and PMU measurements on the AC side, along with diverse combinations of DC-side measurements.
Additionally, the thesis investigates the inclusion of current injection phasors from PMUs in static HSE
algorithms, examining how various current measurement configurations — whether flows or injections
— influence HSE performance, a topic inadequately addressed in prior literature.

Recognizing the increasing complexity and stochastic behavior of contemporary power systems,
transitioning toward advanced SE algorithms capable of providing enhanced system visibility and sit-
uational awareness becomes imperative. In response, this thesis proposes a hybrid forecasting-aided
state estimation (FASE) approach leveraging an extended Kalman filter (EKF) framework. The method
supplements existing static state estimators by incorporating additional information derived from the
temporal evolution of system states through multi-sensor data fusion, employing a transition model
that combines dense, real-time PMU measurements with forecasted state estimates. To address syn-
chronization discrepancies between SCADA and PMU data, a post-processing correction step based
on the modified Bryson-Frazier fixed-interval smoothing algorithm is implemented.

In the final two chapters, algorithms dedicated to detecting and suppressing bad data within the
context of the proposed HSE approaches are formulated. Additionally, practical aspects of the research
are demonstrated using a laboratory-scale experimental setup that integrates both commercial and low-
cost PMUs with a digital real-time power system simulator, thereby enabling comprehensive testing
and validation of synchrophasor-based monitoring and control algorithms.

Keywords

Accuracy, Bad data analysis, Convergence, Data fusion, Digital real-time simulation, Extended Kal-
man filter, Forecasting-aided state estimation, High voltage direct current, Hybrid state estimation,
Optimization, Phasor measurement unit, State transition models, Weighted least squares, Wide area
monitoring systems.






ITPOAOTOX

To 2020, oppdpeVOS amd To OLOAOYOVUEVMG EVOUPPUVTIKE GO TOVL AP KATA TNV TOPOVGiaoT
NG OIMAMUATIKNG OV €pYacing, amo@doion va ancvfuvim otov emPAémovia pov, Kabnynm k. Te-
opyro Koppé, pe okond va epufabdiveo mepottépw 6to mEdio TG £pYACING OV HECH TNG EKTOVIONG
ddaktoptkng drotpiPng. Ommg TpokHTTEL KO A TOV TITAO TOL TAPOVTOS GVYYPAUUATOS, TO EPEVLVN-
TIKO aTd TESTO E0TIALEL GTOVG EKTIUNTEC KOTAGTAONG CUOTNUATOV NAEKTPIKNG EVEPYELOC.

H extipnon xotdotaong anoteAet, yio mepimov oo aimva, kadiepmpévn dtadikacio eronteiog Tov
CLGTNUATOV NAEKTPIKNG EVEPYELOS KO TPOKVTTEL MG GVLELEN EVVOLDV KOl EPYOUAEIWV OO TN YPOLLLLIKY
dlyeBpa, tn otatiotikn, ™ Bewpio TOavotHTOV Kot T Bertiotonmoinor. O SemoTHOVIKOS OVTOC
YOPOKTNPOS KOOIOTA TO avTioTOr0 £pELVNTIKO TTEdI0 TPOGPOPO Yo PEATIOCELS Kol KOVOTOMES G
TOALMATTAEG TTUYEC TOV, TPOGPEPOVTAG AVTIGTOLYO TOIKIAEG EPELVNTIKES TPOKANGELS Y10 TOVS EVEPYELQL-
KoUG punyovikovs. [TapdAinia, n avantuén Kot 140061 VE®V TEXVOAOYIDOV LETPTONG GTO TAAIGLO TV
SLYYPOVOV ELEVOV IKTH®V NAEKTPIGHOV, 1 paydaio avENGT TOL OYKOL TMV UETPNTIKOV OeS0UEVOV
TPOYUATIKOV ¥POVOL Kol 1] aVENGN TG GLVOAKNG TOAVTAOKOTNTAG TMV GNUEPIVAOV GUGTNUATOV NAE-
KTPIKNG EVEPYELNG GE EMIMEDO LETAPOPAS KO OLAVOUNG, LETATPETEL TN CYETIKY| EPELVA GE TOAVETITESO
TPOPANLLOL TTOV GVVEVAOVEL TOVG TOUEIS TNG TANPOPOPIKNG, TV TNAETIKOWVOVIDV KoL TNG avaAveNg 1-
Aektpikmv diktvwv. Katd v egaetio 2020-2025, n epguvnTiky] Lov dpacTnplotTnTa EMKEVTPOONKE
oV ovaadon ETUEPOVS AEITOVPYLOV TV EKTIUNTOV KOTAGTAONS, OOTE VO, AVTOTOKPIVOVTOL OTIG
OTTOLTIGELS TV TEXVOAOYIKA OVOTTUGCOUEVAOV OIKTV®V NAEKTPIKNG evépyelag. To mapdv wévnpa amo-
oKOTEL GTNV OVOALTIKN TTopovsioon TV HeBOSMV Kl TEYVIKOV oL avortuydnkay, Kabdg Kot otnv
TEKUNPIOON TOV OMOTEAECUATOV KOl TNG GUVEICPOPES TOVG.

Axolovbwg, Bempd VTOYPEMOT| HOV VAL EKOPAC® TNV EVYVMOUOGUVT] OV TPOS OGOVS GLVEPOAY
OVGLOCTIKE GTIV OAOKAN PG TNG TAPOVCAG EPELVIC. ApyiKd, Oa NBeha va EVYOPICTHC® TO LEAT TNG
TPLEAOVS GUUPBOVAEVTIKNG EmLTPOTC, TOVG K.K. Kabnyntég Z. IMonabavasiov kat I1. ['empyiddxn, yia
Vv adtdAeunn vrootNPEN Kot kaBodnynon toug kab’ OAn tn d1dpkKelo TV oTovddV pov. Emmiéov,
opeilm WaiTtEPEG gVYOPLOTiEG 6TOVG K.K. A. Anpéa, 1. TIpovoarion, @. Kavérro ko E. Kovn, ot o-
TO101 ILE TIUNGOV LE TN GUUUETOYT TOVG OTIG EMTPOTES KPIiong TG d1aTpiPng Kot 1] GLVOPOUN TOVG TNV
TOLOTIKT] EVIGYLON TOV EPEVVNTIKOV OV £PYOL VTN PEE TOADTILY.

Oocov apopd Tovg cuvepydTeg Kot GIAOVE TOL YVAOPIoO GTN OPKELD QLTINS TG TOPEiG, OPEiA®
gykapoteg evyaplotieg otov ddaktopa unyovikd EMIT ©. Evykn, Kabdg Kot 6Toug vroyneloug dtdd-
ktopeg EMII I KapBéin, B. Notoémovro kot M. AmocstoAion, yia tig yovies culntnoes, Tig cupfou-
AEG KOl TN CLUUETOYY] TOVG GTY) GLYYPOPT] ETIGTIUOVIK®V ONUOGIEVCEDV Hov. Oa o va gvyopt-
oTNo® emiong tov ddktopa pnyovikd EMITA. Aayd, yia tnv moAdtiun fonfeid Tov oty vAomoinon
G EpYaoTNPLOKNG 01dTaéng mov a&lomomOnke oto TAaiclo TG dtaTPPC.

H owoyéveld pov otddnke apwyog oe kabe Prpa pov. Exppdlom v evyvopocivny Hov 6tovg yovelg
pov, Avtavn kot Hpd, yio v adidkonn otpién kot evOappuvon 1oug. And Kopdidg uyoploTd Kot
TN GUVTPOPO LoV, ANUNTPA, Y10 TNV KOTAVONGT], TIC TPOTPOTES TNG KL TV OVTOYN TTOV OV TPOGEOMGE
0€ AMOTNTIKEG TEPLOTACELS, TOGO TVELUOTIKA OG0 Kol NOkd. Idwaitepeg svyapiotiec opeilw Kot o
OAOVG TOVG PIAOVG LoV Y1 TNV EUTPAKTY] VTOGTNPLEN TOVS OAGL AVTA TA YPOVIAL.

To peyadtepo «evyaplotd» 10 0eihm ek Pdbovg Kapdiag otov emPAémovia pov, Kadnynm I.
Koppé, oc ehdyiotn £voeiEn euyvmpocsvvng yuo Ty Kafodynon, v aKoTATaVGT) VITOGTHPEN Kot
™V kalooHvn o emédelée amévavtt pov. H evbukpioia, n emotnpovikn Tov 0EudépKela Kot Ot ate-
AelmTeg TOpAVESELS TOV VINPENY KOOOPIOTIKNY TN EUTVELONG Kol STHPIENG KB’ OAN TV eKmTOVNoN
™G O10AKTOPIKNG S TPIPNC.

Opéomc A. Aapung
Abnva, Ioviog 2025
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Extevic eMdinvikn wepiinyn

H extipnon katdortaong (SE) evog Zvotiuatog Hiektpikng Evépyeag (ZHE) amotelel Oepehmoeg
gpyoreio Tov cvotudtov dayeipiong evépyetag (EMS). Kvprog otoyog ¢ etvan 1 amddoon pog
COPOVG KOl OAOKANPMUEVNG OTEIKOVIONG TOV TPAYLATIKOV CLVONKOV AEITOVPYIOG TOL GLGTHUOTOG,
a£10TOLOVTOG OEOOUEVE, TPOLYUATIKOD ¥POVOD, T 0010 TPOEPYOVTOL OO LETPNTIKES SIOTAEELS EYKOL-
TEGTNUEVEG GTOVG LITOGTAOUOVS. XTA CVYYPOVO, GUCTHLAT LETOPOPAS NAEKTPIKNG EVEPYELNG ETIKPOL-
TOUV 000 Pacikég Texvoloyieg GLAALOYNG peTPce®V: To Tvotnue Enontikov EAEyyov kot ZvAloyng
Agdopévov (SCADA) kat 1o oomuo Enonteiag Evpelag [eproymg (WAMS). To mollamAd mheove-
KTNUOTO TNG EVOMUATMONG GLYYPOVICUEVOV HETPNCEMV (paclBeTdv (synchrophasors) amd povadeg
pétpnong eacifetdv (PMUSs) — ot koteloynV YPNOUYLOTOIOVUEVES UETPNTIKEG CLOKEVEG GTOL GUOTH-
pata WAMS — otovg suppatikodc akyopibpovg SE mov PBacifovrar oe petprioelg SCADA, givon gv-
PEMG avayvoplopéva amd Ty oebvn emotmuoviky kowvotnta. To yeyovog avtd €xel 0dnNyNoeL otV
avamtuén minbopag pebBodmv vPpLdKNg extipunong katdotaons (HSE), ov omoleg amoskomodv otnv
Bértiom aSlomoinon aUEOTEPMV TOV UETPNTIKOV GUCTNUAT®V, Y10l T GUVOAIKA TO OMOTEAEGLOTIKT
EKTIUNOM TNG AEITOVPYIKNG KATACTOONG TOV GUGTNHUATOC. £TO TAOIGLO AT, 1 TOPOVGH SIOUKTOPIKY
dwTpiPn] eotialel oty avamnTuén Kovotopmv pefodwv vPPIdKNAG GTATIKNG KOt SUVOLIKNG EKTIUNONG
katdotoong XHE, ot onoieg cupupdrovv oty amotelecpatikdotepn ypnon perpnoemv SCADA kot
PMU, e&etalovtog v otovei otatikn (quasi-steady) katdotaom Aertovpyiog Tovg.

Kévipa EAéyyov Evépyerog & Extipnon katdotaong THE

Tov poAo Tov KevTpkoL onpeiov eneEepyaciog Kot avaAvLoNS TOL GLVOAOL TV SBEGIL®V LETPT-
TIKOV 0E00UEVOV, KO, OKOAOVOMC, TNG £K000MG KATAAANA®Y EVIOADV EAEYXOV, aVOALUPavoLY GUY-
YPOVO, VTOAOYIGTIKG GUGTILLOTO KO TTPONYUEVES EQUPLOYEG AOYICUIKOD TTOV £Vl EYKATEGTNUEVO GTO
Kévtpa EAéyyov Evépyelag (KEE) kot Baciloviar otnv te)voroyio. TANPOQOPIOV Kol ETIKOIVOVIOV.
Agdopévov 6t n ovotaon twv KEE ypovoroyeitan and tn dexoetia Tov 1950, 1 kupidtepn kot mo
oLVOETN TPOKAN O™ OV £XOLV VO AVTILETOTICOVV 01 oyYeTkéG Asttovpyieg Twv KEE tov 21° aumva,
elval M aALOTAOONG EMEKTOOT] TNG YEOYPAPIKNG KAALYNG TV NAEKTPIKAOV SIKTO®V Ko, GUVETOKO-
AovBa, n a&loonueiotn adénon Tov eumAekOpEVOV POpEmY Kot ypnot®dv. H vrootpiEn ayopadv nie-
KTPIKNG EVEPYELOS, ONUOGI®MV Kol WOIOTIKAOV SUYEPLOTAV, OVEEAPTNTOV TOPAY®YDV, KOONDS Kot dla-
POPOV KOTIYOPIDOV KOTAVIAMT®V, ONUIOVPYEL ALENUEVES ATOLTIGELS MG TPOG TNV VIOAOYIGTIKN 16Y0
Kot v a&omiotio Tov epyaieinv Tov ovyypovov KEE.

Bewpavtog 10 ZHE mg éva eviaio 6UvoAo empépoug VTOCLGTNUATOV (GVGTNIO LETAPOPES, O1KTLO
dlavoung, KaTavoAmTéS), Kabiotatal arapaitntn n ST pnon HoS OAOKANP®UEVNG ENLYVOONS TG
Katdotoong (situational awareness) € OAN TNV £KTOGT TOV, OGTE AVTO VO AEITOVPYEL ATOTEAECULATIKA
Kol [ aoQaAELa, 1), 16odvvaa, 1 Kotdotaon Tov va Bpicketat eviog mpokabopiopévav opiwv, dedo-
HEVOV CLYKEKPILEV®V EVOOYEVAOV Ko e€myevav mapoauétpov. H katdotaon evog ZHE, kabbdg kot o
Babudc emdpreldg g, tpocdtopiloviot pécm padnuatikdv pebddmv, pe Bacn tn PeAETn cVYKEKPL-
HEVOV YOPOKTNPLOTIKOV HeYeBmV Tov. ['evikd, o TANpNG TPOsdopIoUOS TG KATAGTACTG TOL OIKTVOV
o€ o 0e00UEVT] YPOVIKT GTIYUN, Uopel va emtevyBel edv gival yvootd to povtélo tov, dSnAadn M
STaéEN OA®V TV KOUP®V Kot TOV KAAOMV OV TO OTOTEAOVV KOl Ol TIHEG TV CYETIKAOV TOVS TOLPOLLE-
TPV, KOOOS ko o1 paciBéteg (phasors) tdong oe kdbe kOUPO TOL.

H évvown g extipmong katdotoong XHE e1omy6n amd tovg Schweppe et al. To 1970, pe oxond tov
BéATIoTO AEYYO TNG AELTOVPYING TOVG GE TPAYLATIKO XPpOVO, avayvopilovtag tnv £yyevi advvapio Twv
SBEcIUOV TOTE LETPNTIKOV GLGTNUATOV VO OTOODMGOLY aSIOTIGTO TNV TPAYUATIKT) AELTOVPYIKT| KO-
tdotact] Tovc. To podnuatikd poviélo g extipunong Katdotaong Paciletoar otn Bewpia extipmong,
évay KAGOO TNG OTATIOTIKNG HE EVPEID EPOPIOYN OTN UEAETN) TV GLUGTNUATMOV CVTOUATOL EAEYYOV,
Kot ypnowonotel otoyyeio and ™ Bewpio mbavortewv. To TPOPANU TS EXTIUNONG KATACTOONG
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OVAYETOL GTOV TPOGOLOPIOUO TV POGIOETMOV TAoNG 6€ GAOVE TOLG KOUPOVG TOV VIO HEAETT CLOTHLO-
TOG, Ol 070101 ATOTEAOVV, OTN YEVIKY| TEPITTWOT, TIG LETOPANTEG KATAGTACNG TOV, AELOTOIDOVTOS TIG
dwbéoueg petproelg omd 1o medio. O ekTunG KaTtdoTaong (state estimator) £yet mayliwbei wg 1 po-
vk vtoAoyloTikn oladtkacio twv KEE mov eEaceaiilel tnv KaAbtepn duvath aneikovion g Tpé-
YOVOOG KOTAGTAGNG TOV GUGTIHOTOC GE GLVONKES TpayHaTIKOV ¥pdvov. Emopévac, yivetatl avtiAnmtd
ot eniyvoon katdotaong oto XHE eivan pa évvolo mov cuvoéetan dueoca pe ta KEE, 6mov Aappdavet
YDOPO 1 GLYKEVIPWON, N EMEEEPYAGIN KOL 1 AVAALGT] TOV UETPNTIKMOV OEOOUEVOV OO TIG EYKATECTN-
pévec povadeg pétpnong. Qg ek TouTov, 1 VPLOUN AsrTovpYia TOV TPAOTOV elvar dppnKTa cLVOEdE-
pévn pe v Hmopén AmOTEAEGUATIKOV KOl E0POOTOV UNYOVICLOV ETOTTEING Kot dloyeipiong ota Te-
Agvtada.

Movaéaoec Métpnong @acifeTtdv

Ta televtaia ypdvia, o topéos tov XHE dwavier o mepiodo prlkdv kot toxémv petafolmv, ot
omoieg vayopevovtal omd S18Popovs Tapdyovies, OT®G 1 GVVENS avENon TS RTNONS NAEKTPIKNG
EVEPYELOG, OL TOAVEPIOUES O10GVVIECELS OIKTOMV GE TaryKOGHA KATpLaka, 1) arelevfépwaon g ayopdig
NAEKTPIKNG EVEPYELNS, Kot 1) VYIOTNG oNpaciog HETAPAON A TV VOIGTAUEVT TOPAYMYN EVEPYELNG
amd OpLKTA KOG TPOG TIG avavemotieg TyEs evépyeog (AIIE). Ou ev Adyw alhayég kabioTovv
avaykaio Tov eKsVYypoviopd TV vodoudv tov ZHE, kafdg kKot tnv avantuén Kot evemopdtmon Kot-
VOTOU®V ADGEMV KOl TEYVOAOYLDV O1ayEIPIONG TOVS, MGTE Vo SUVAVTOL VO avVTATOKPIOOUV GTIG VEES
AELTOVPYIKES ATOLTIOELS.

g VTl T0 TANIG10, YIVETOL EMTOKTIKY 1) OVAYKN Y10 10 0EIOMIGTO KO EKTEVH GUGTILLATO EXTOTTEING
Kot eAEyyov, T omoio givarl {OTIKNG onpaciog yio T S1acsPAAon TG ETOPKOVS, AGPAAOVS KOl OKO-
VOUKTG TOPOYNG NAEKTPIKTG EVEPYELNG GTOVS KATAVAAWTES. Ot ALEAVOUEVES QMALTIGELS OTTOLLOKPV-
opévng emonteiog Kot EAEYYOL eELTNPETOVVTAL OO TOV GTUSLOKO EKGVYYPOVIGUO TOV GYETIKOV EEOTAL-
oloV, 0 0moiog amoteAeitatl amd povadeg osOnTnpwv (sensors) Kot EnevepynTOV (actuators) wov vo-
Kewtan o Agxelpopo. H avdmtuén mponypéveov cuotnpdtov HéTpnong Kol cUTOUOTICUAOV 6€ OAO
10 €0pog twv XHE amoteiel kpiowo Prpa yuo ™ petdfoocn ota eveoun diktva nAekTpiopol (smart
grids).

Mia kopfung onuaciog e€EMEN o€ avTOV TOV TOpEN Elvan ) LETAPOOT amd AVaAOYIKES Kol NAEKTPO-
UNYOVIKEG OLATAEELS GE YNPLOKEG GUOKEVEG, YEYOVOS IOV EMTPEMEL TNV AVATTLEN Kot v1oBETNON VE®V
TEYVOAOYLDV PHETPMNOTG Ko EAEYYOVL. E1dikdtepa, 0T0 eMinedo TV GLGTNUATOV HETAPOPES, TNV TEAEL-
toio dexaetia Ppioketar oe eEEMEN 1 evpela £YKATAGTAOT LETPNTIKMOV GLOKELVMOV LYMANG aKpifetog
pe mponyupéveg dvvarodmtes. [apddetypa amotelovv o1 povadec PMU, ot omoieg kaTtarypdpovy to TAd-
TOG KOl T1] QAGIKN YOVIK TOV NUTOVOEWDDV NAEKTPIKAOV HeyeBDV te VYN akpifeta, Evd TPocEEPOLY
KaTé TOAD VYNAGTEPOVS PLOLOVG aVaPOPAS O GYEON LLE TIC CUUPATIKES OO UAKPVGUEVEG TEPLLOTIKEG
povaodeg (Remote Terminal Units — RTUs) tov cvotipoatog SCADA. Ot paciB€tec mov kataypdpovion
a6 to. PMU vroAoyilovtot kot onpoaivovtal xpovikd og mpog o otafepr| avapopd xpovov, n onoio
TUTTIKE TPOEPYETOL OO TO TAYKOGHI0 cVLGTNHO evTomicpov Béong (GPS). 1o 1010 Tveda, To d1oKo-
nTkd péca (evénc (amoledkteg, O10KOTTEG POPTIOL Kol 15YVOG) KOt TPOSTAGIOG (O1KOTTEG 001 YOV LE-
vou and nAekTpovopovs) avapaduifovior HEcm ™ dSVVATOHTNTAG ANYNG GUYXPOVICUEVOV LETPHCEMV
pacifeTmv, OnAadn aroktovv dvvatotnteg PMU. H gvpeia ypnion g véag avutg teyvoroyiag uétpn-
ong £xel odnynoetl onuepa otV avlntuén tov cvotnudtev eronteiog gvupeiag mepoyng (WAMS),
ONAadn dkTOL®V dracuvdedepéEvmy PMU mov Tapéyouv 6Toug SLoEpLoTEG EMTYVMOOT) TNG AELTOVPYIKNG
KOTAGTAOTG TOV GLUGTNUATOC OE EMIMENO KAAGUAT®V TOV OEVTEPOAETTOV. LVVETMGS, 01 povadec PMU
K0l TO EVPVTEPO TANIGL0 TV cvotnudtv WAMS amotelodv mAéov avandomacTo HEPOS TMV GVYYPO-
VOV UNYOVICU®V ETOTTEING TOV CLOTNUATOV LETOPOPAS NAEKTPIKNG EVEPYELNG.

Avapoeipola, n eEEMEN TOV HETPNTIKAOV DTOSOUDV EXEL GUUPAALEL ATOPAGIOTIKA 0TI PEATiON TNG
Aertovpyiog TV ekTiNTOV Katdotaong. lotopikd, n emonteio tov ZHE Paciletor oe aiydpiBpovg
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EKTIUNONC KATAGTACTG TTOV YPNOUOTO00V UETPNOELS TOV cvotatoc SCADA, ot omoieg cuALEYO-
vt ard povadeg RTU. Yo autéc Tic GuvONKeS, 1) KOTAGTAGN TOL GUGTHUATOG EEAYETOL OO LETPT|GELG
POMV KL EYYVCEMV 1GYVOG Kol LETPWV TAoNG LVYADV, LECH YN YPOUUK®OV LOVTEA®V BEATICTOTOINOTG.
Qo10G0, 1 TOLOTNTO TOV EKTIUNCEMV EMNPEALETOL OO O1APOPES TNYES GPAALATOG, CLUTEPI AU OVO-
LEVNG TNG YPOVIKNG AGVUP®VIG (EALEWYNG XPOVIKNG CLVAPELNG) TV LETPHGEMV, TOL BopVBoL emtKol-
VOVIOG TOV EIGAYETOL KOTA TN UETAGOCT T®V OESOUEVOV HECH TOPOYNUEVOV OODAMV ETIKOVOVING,
KaBmg Kot TN vdBeomng 611 T0 diKTLO PpioKeETOL GE LOVIUN KATAGTAOT AE1TOoVpYing. Me TV evomud-
T0omn Tov povddwv PMU otig petpnrticég vrodopég tov XHE, yivovtor mAéov dtabéoiuec cuyypovi-
OUEVEG LETPNOELG LE VYNAOVS pLOUOVE detyLaToANYioG Kot avapopds, EMTAEOV TMV U GLYYPOVICUE-
vov copfotikev petpnoeov SCADA. 'Etot, ta ypovikd mopdbupa Aeitovpylog TV eKTIUMTOV KATd-
oTaoNG avapéveTol vo LetmBobv og TaEEg TV MymVv deVTEPOAETT®V, EVA 1) GLUPBOAN Twv PMU otnyv
eEoopaion g mapoatnpnotpdnTag Kot 6t Bedtioon g akpifetag g extipnong sivor onpoavtiky.
Emniéov, kabng o1 povédeg PMU eivar cavég va Kataypdgovy Toug QaciBETEG podV PELUATOV EK-
ne@pacpévous oe Kapteoiavég cuvtetayléves, To LOVIELO LETPNGEWMV TNG EKTIUNONG KOTAGTAONG 0
TAOTOLEITOL ONUOVTIKG KoL, LOAGTO, VO OPIGUEVEG GLVOTKES, umopel va ypapptkoromBel TAnpwc,
TPOCPEPOVTOG CUAVTIKT] BEATIOON TG EMIO0GNE TNG VITOAOYIGTIKNG dtodikaciog Tov extiunty. TéAog,
pio amd TG o ONUAVTIKES QaPLOYES TG TeXVOoLoYiag Twv PMU elvar n emtipnon g Katdotaong
tov ZHE vr6 petaforiopeveg cuvOnkeg Asttovpyiog, HECH TEYVIKOV SVVOLIKNG EKTIUNONG KOTAGTO-
ong (DSE) kot peboddwv extipnong kardotacns vroompilopevov ond npopieyn (FASE).

YBpwwn Extipnon Katrdotaong THE

[Mopd to adlopeiofiTnTo aVTd TAEOVEKTHLOTO, 1| TAPNG OVTIKATAGTOON TOV GUUPATIKOV G-
okevdVv pétpnong e PMU (1, yevikdtepa, pe 0QLEIG NAEKTPOVIKEG GLOKEVEG e duvatotnteg PMU)
TAPOUEVEL AVEPIKTY], KUPIOS AOY® OIKOVOUIK®OV KOl TEXVIKMV TEPLOPICUDV — 1] OLUAEITOVPYIKOTNTA LIE
noilootepa, vrocvotipoto Tov KEE kot ta k6ot mov oyetilovion pe tov e£omMopd, v €ykatd-
OTOGN TOL KOl TIG GYETIKES VTOOOUEG EMKOWVAOVIDV OTOTEAOVY CTLOVTIKOVG TOPAYOVTES. LVUVENTAG,
OT0 TEPLGGOTEPO GUGTNHOTO LETAPOPES, Ol GUYYPOVIGUEVEG LUETPNCELS PAGIOETMOV OV EMAPKOVV Y10,
™V emiteLEN TG TAPOLG TOPATNPNCIUOTNTOG TOL SIKTVOV, Kabiot®vTag o suotuata SCADA ao-
napoitnTa Yo v eniAvon g ektipnong Katdotaong, pe to. PMU va Agttovpyodv og copuminpopo-
TIKN Ty petpnoemv. Qg ek touTov, 1 cuvimapén twv 6vo cvotnudtov emonteiog SCADA kot
WAMS nopapével mpog 10 mopdv TPaKTIKN avayKodtnto, Le Tig HeBddovg vPPLotkng exTipnong Ko-
taotaong (HSE) va a&lomoovv tavtdypova petpnoelg mpoepyopeves oamd RTU ko PMU. Ot cuyke-
KPLLEVES TEXVIKES £XOVV TPOGEAKVGEL GNUOVTIKO EPELVITIKO EVOLOPEPOV, OTMOS AVTIKOTOTTPILETOL QIO
NV TANOOPO GYETIKAOV ONLOCLEVGEMV TNV TEAEVTAI0 OEKOETIAL.

Onwg mpoavapépOnke, avapgifoio 1 EVOOUATOOT] 0EO0UEVOV OO TOAAUTAL LETPNTIKA CLGTH-
HOTO EVICYVEL GNUAVTIKAE TNV amr0d00T TOL EKTIUNTY Katdotaons, PeAtidvovtog tOco Ty akpifela
™G EKTIUNOMG, OGO Kol TV EVPOGTIO ATEVAVTL GE ECOUAUEVO OEOOUEVA, AOY® TNG VYNANG TEPIGTELOG
petpnoemv. Qo1060, 0 GLVIVACUOG OEOOUEVAOV OO SLUPOPETIKES TNYES OV amOTEAEL OTAN dladKaL-
olo, pe ™ oyetikn Piproypapio vo evromilel 600 Paciké KATNYOPIiES TPOKANCEMV:

1) Adwapopetixoi pvBuoi ovapopds kou ypovikd acvvery ocoouévo: Ta PMU xoataypaeovy pHeTpioelg
pe onpavTikd vynAdTEPOLS pLOLOVG amd 6,1t Ta cuotipato SCADA. EmuAéov, Ta petpntikd de-
dopéval E10GYOVTOL GTOV EKTIUNTN KATAGTAONG Y®PIg vo Eac@aAleTOn 1 YPOVIKY] GLUVAPELL TOVG.
Avt| n gpoviKn dvcappovia onpaivel OTL o1 LETPNOELS OO TO TESTO OEV AVIUTPOGSHOTEVOLV OO~
paitnTa pio GLYKEKPIUEVT YPOVIKT GTIYUN TG AELTOVPYIKNG Katdotaong tov XHE. [Tépa and v
ATOVGI0 GLYYPOVICUEVOV YPOVIKOV onudveewv (timestamps) ota dedopéva SCADA, emmpoche-
TEG YPOVIKEG AGVVETEIEG TPOKVTTTOLV AOY® TUYOL®V KaBLGTEPCEMV LETAPOPAS (propagation de-
lays) t@v petpntik®v dedopévav, LEGH TV SAmV emtkovmviag, arnd to tedio tpog 1o KEE.

23



2) Awapopetikd, uetpovuevo, ueyéln xar exineoo. axpiferas: Ta 600 PHeTPNTIKE GLOTALATO GLAAEYOLV
SLPOPETIKOD TOTTOV OEGOUEVA, ONULOVPYDVTOG TPOKANGELS GTIV VAOTOINGT EPAPUOYDV VPPLOKNG
EKTIUNONG KOTAGTAONG, KAO®DS cuyvd amaitobvtal prllkég TPOTOTOMGELS KO TPOCUPHOYES GTO V-
napyov hoyiopko tov KEE. Emumiéov, evdéyetan va tpoxvyouv aptfuntikd ntiuato, yio Topd-
OEIY U KOTA TNV apyIKOTOiNoT Tov ahyopifuov ektipnong Katdotaong, o€ TEPIMTMOOT TOL Ot [LE-
TPNoELS PIYadtkdV pevpdtov and PMU ekppdlovion o€ moMkéc ovvtetayuéves. Emumiéov, ot da-
QopéG otV akpifela Tov aeOnpov tepmAékovy v avadeon Papdv GTIC LETPNOELS, EVHD ON-
HOVTIKEG ATOKAICELS 0Ta emimeda akpiBelag UmopodV vo ETNPEAGOLY APVNTIKG TNV KOTAGTAOT
(condition) Tn¢ UNTPOG KEPAOLG KoL, ETOUEVMG, TNV OELOTIOTIO TOV ATOTEAEGUATOV TNG EKTIUNONG.

[Mo ™V aVTETOTION VTOV TOV TPOKANGEMV, £xovv Tpotabdel d1popeg LEBodol otn PipAtoypapio.
Ot teyvikég otatikng extipnong kataotaong (SSE) katnyoprormotovviat pe facn 1o e0pog EQAPLOYNG
Kot TIG aAyoplOuKég Toug d1ad1Kacies, 6€ cuvaptnon He Tig Tpoavapepbeicec mpokinoelc. Ta PMU
Aertovupyodv Le cap®g VYNAOTEPOLS PLOLLOVG avaPopds cuyKkpLTikd pe To cuotinata SCADA, mapé-
YOVTOG £TG1 TOAAATAG GOVOLD LETPGEMV HETAED S1000YIKAOV EVIILEPDOTEWV TV dedopévav amd RTU.
Qo61660, 1 ATOKAEIGTIKN Xpnon petpnoev PMU og avtd ta yxpovikd dtactiuota, tlavotata dev Ha
emopkel yo v enitevén g mapatmpnoipdmrag tov XHE, kabiotdvrag to mpoPAnpa g ektipnong
KaTaotaong un emAvoo. o v avtpetdnion avtod tov {ntnuatog, &xovv avamtvydel pébodot
oV HETPLACovV TNV EMIOPOACT TNG XPOVIKNG ACLUPOVIOG GTNV akpifela TNG eKTIUNONG 1, EVOALUKTIKA,
amoKaO1GTOOV TNV TOPATNPNGILOTNTO TOV GLGTHWUATOS UETAED O0d0YIKAOV apifemv peTpRoE®V
SCADA, péoom teyvikav mpdPreyng kot a&lomoinong TV CTUTIGTIKOV YOPOKTPLOTIKOV TOV LETPN-
oemVv. E101k0TEpa, 01 TPOTEWVOUEVEG TPOGEYYIGELS TEPIAALPAVOLV TEXVIKEG OVOKATAGKEVLNG LETPNCEDV
(measurement reconstruction) pe a&lomoinomn 16Toptkdv dedopévev ard 1o cvotnua SCADA, Kabng
Kol tpocwpivi anobnkevon (buffering) tov pertpnocwv PMU. Ot televtaiec ypnoiomtoovvot yo
NV €MIALOT NG EKTIUNONG KATAGTAONS KOTA TV AQEN VEmv dedopévav and to RTU, kabiotovrog
TNV TPOGEYYIoT VT 1O1HTEPO ATOTEAEGLLOTIKY] Y10 TEPLOOIKES EKTIUNOELS KATAOTOONG GE O1OCTILOTOL
peyoAvtepa e teptddov avagopds tov SCADA. Emmpoctétms, ot diapopeg péBodot mov Exouvv mpo-
T00l Y10 TNV 0&L0ToiNoT| ETEPOYEVMV LETPNTIKMV dEGOUEVOV LTOPOVV VO KATIYOPLOTOINO0VV GE TPELS
KOPLEC OUAOEG:

1) Ot péBodor vPpdKng ektiunong Katdotaong evog otadiov (ISE) dwapoppdvouy éva gviaio po-
viédo petprioemv mpoepyopevav ard RTU koat PMU, 1o onoio a&lomoteiton yio tnv enilvon g
extipnong kotdotacns. Ot pébodot ISE odnyovv ot Bértiom Avon e HSE, vo v évvola 61t
avt tpocappdletor BEATIOTO Kot 6TOL SVO GOVOAN LETPTIGEDV.

2) MéBodot vpp1dikng ektiunong katdotoong ToAAdv otadiov (PSE): Avtéc ot pébodot dtaympilovv
Ti¢ petpfoelg RTU kou PMU, emiddovtog dtopopetikd TpofAnuate eKTipnons Katdotaong yio
KkdOe VTocVHVOLO dedopévav. ZuVNOMC, TEPIAAUPAVOLV Lia opyIKT EKTIUNOT BACIGUEVN GE LETPT-
oelc SCADA, axolovBoluevn amd pio ypoppikny ektipnon katdaotaong pe dedopévo PMU — 1 10
avtioTpoPo — dtuc@arilovtag £Tot 6Tt To S0 GVVOAN OEOOUEVMV OVTIOTOLYOVV OE EEYMPIOTA [O-
vtéha petpnoemv. O do®pioidc avtdg EMTPENEL TV EVOOUATMOON 0EO0UEVOV PACIOETMOV LE €-
AAYIOTEC TPOTOMOUCELG GTO VIAPYOV AOYIGUIKO eKTiUNoNG Katdotaons. Eviovtolg, npémet va on-
pelmBel 6T o1 cuykekpipéves PéBodoL gival TPOGEYYIGTIKES KO 1] GUYKALGY| TOVG, TNV 1o Avon
7ov mapéyeton amd TiS (BéATIoTES) peBoddovg ISE, dev elvar eyyomuévn.

3) MébBodot cvvInéng dedopévmv o€ GLOTHUATA ETLTNPOVUEVE amd ToAhamlovg acOntmpeg (FSE):
Ot ovykekpipévee péBodot mapovstdalovy dopkég opotdtneg pe toug aryopibuovg PSE, kabmg
Kot 01 dV0 0EIOTOI0VV EEYMPIGTONG EKTIUNTEG Y10 OIUPOPETIKEG TNYEG LETPNOEMV. Xe avtifeon pe
T1c neBodovg PSE, o pébodsot FSE vroroyilovv Tic EKTIUNGEIS OWTEC TAPAAANAQ, GUVOVALOVTAG
T, OMOTELEG LT TOVG PHEC® EVOG TEAMKOD OYNUATOC BEATIOTNG EKTIUNONG EAAYIOTNG SLOKVULAVOTG.
A&iler va onuelwdel 011 N epappoyn tov pebodwv FSE kabiotd amapaitntn npodmoddeon v
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AN pn Tapatnpnootnto (complete observability) tov THE péow perpricewv PMU, kéti o omoio
OgV glval TPOKTIKA EQIKTO Yol TNV TAELOVOTNTO TOV OIKTO®V. AVTO £XEL O OMOTEALECHA TNV OVOL-
YKOLOTNTA YPNIONG YELOOUETPNGEMV 1| EKTIUNCEOV/TPOPAEYE®V PeETpNTIKOV dedopévav PMU, yuo
™V eMiteLEN TANPOVE TOPATPNGIUOTNTOG.

[TapdAinia, n TAELOVOTNTO TOV EKTIUNTOV KATAGTAONG TOV ypnoiorotovvrol akopo oto KEE Bo-
oiCoviot oty Voo TG UOVIUNG KOTAGTAONG AEITOVPYIOG TOV GLGTUATOC, TOPUPAETOVTAG TNV
YPOVIKY| LETAPOAN TV GLVONKOV Agttovpyiog Kot Ty Vapén Suvoputkdv eawvopévev. Ot pébodot Tov
TPOOVOPEPOMKOY OVOLALOVTOL «OTATIKEG», VIO TV évvola OTL KAOE EKTIUNGT TOL O1VOGLLOTOG KATA-
OTOONG TOPEXETOL BAGEL EVOS KOt LOVOIIKOD GUVOAOL HETPNCEWMV, 1 EKTEAEGT) TOV EKTIUNTN YIVETOL e
pLOPOVE oV dev vepPaivovv tovg pLOUOHE avapopdc tov SCADA, evd dev a&loTo10VVTOL 1G0JV-
VOO LOVTEAQ, TTOV VOL TEPLYPAPOVY T SVVOUIKT CLUTEPLPOPA TV oToryeimv Tov XHE o petafatikn
Katdotoon Aertovpyiog. AvTég ol TaPadOYEG OTOTEAOVY AOPPOLN TG YPONG OTOKAEIGTIKA [N GLY-
YPOVIGULEVAOV KOl «OPOLDVY UETPNTIKOV 0edopévav apeyduevav and to cvotnpate SCADA. -
uepa, n e&amimon towv PMU eritpénel v avantuén texvik®v vBpdkng dSuvapkng EKTiUnong Kotd-
otaong (DSE), o1 onoieg emttpémovv v Bedpnon tov ZHE wg evdg ypovikd petafoariropevov cuoth-
patog, kabmg Kot TN HeAETN avTob VIO TOIKIAEG GLVONKEG AetTovpyiag.

Ev yével, n otatikn ektipnomn Katdotaons amodidel IKovomomTikd vtd GLVONKES O10VEL OTOTIKNG
Katdotoong Asttovpyiag, 0mov 1o THE emdéyeton oparés kot otadiokés petaforés. Xe autn v me-
pimtoon, ot petpnoetg amd 1o suotnue SCADA ernapkovv yio v enilvon g EKTIUNoNGg KATAoTAoC,
pe tig petpnoeic PMU va evioyvovv v nepicoeia petpnoewv. Eviovtolg, n av&avopevn moAvmtAoko-
mra tov cLyypoveov ZHE Adym g extetapévng dieicduong Slecmaprévng Tapaywyns, s opeidopo-
UNG PONG 10(VOG KOl TWV VEMV TEYVOAOYIDV TOL EVGMUATMOVOVTOL TNV TAELPA TG {NTnong £xet ava-
dei&el ToVg TEPLOPIoUOVE TV GTATIKAOV HOVIEA®V EKTIUNONG KATAGTAOTG. Ol 6TOYAOTIKEG OLOKVULALV-
oglg ot {ftnon kot v mopaymyn tov AIIE siedyovv onuovtikn afeforidtnto otn Asttovpyio tov
OLOTNHOTOG, KADIGTOVTOGS TIG OTATIKES LEBBOOVG GLYVE LN BEATIOTEG Y10 TNV ATOTOTTOGT TNG AELTOLP-
YIKNG KOTAOTOONG GE TPAYUATIKO YpOVO. X& TayEmg HeTAPaALOpevES 1 petofatikég cuvOnKeS Asttovp-
viog, Ta PMU amotehovv mpog to Tapdv T OV KATOAANAN TNY1 LETPNCEMV Yo TV 0EIOMIGT EKTI-
unon Katdotaong, evo ta dedopéva Tov suotnuatog SCADA propodv va a&tomoinfovv pdévo og ov-
UTANPOUOTIKEG TANPOPOPIES.

O mBavég kataotaoelg Aettovpyiag evog ZHE pmopodv yevikd va daywpiotodv o€ dvo apotPoic
amokAeOEVES GLUVONKES: TNV olovel otatikn (quasi-steady) ko T petafotikn (transient) katdotaon.
O petafoatikég cuvOnkes Aettovpyiag TPOKHTTOLY OTOV TO GUGTNUA VOIGTATOL ol EAPVIKT Ol0Tal-
poyn, OT®G vl To GEAALOTO, 01 SLOKOTTIKEG AEITOVPYIES KOl Ol ATTOTOUES LETAPOAES GTNV TTOPOAY®OYT
kot otnv {fon. Katd tv owovel otatikr Aettovpyio, 10 cOGTNHO LEIGTATOL LOVO OPYEG KO GTAA0-
KEG LETOPOAES OTNV TapAy®YN Kol 6TV CNTNON, TPOKAADVTOS AUEANTEEG LETOPOAES OTIS SVVOLIKEG
HETOPANTES KATAGTAONG, OTTWG EIVOL T TOYXVTNTO KO 1) YOVIK TEPIGTPOPNS TOV OPOUEDV OTIG GUYYPOVES
YEVVITPLEG.

Ortav 1 dvvapikn ektipnon kotdaotaons (DSE) epappoletot e cuvOnkeg olovel 6TOTIKNG AELTOVP-
Yiag, 0 0pOG «OLVOLUKN EVOEXETAL VO, Elval TapamAlavnTikoc, kabmg Bewpeitor 6TL 1 peTafoAn g
duvapukng katdotoong tov ZHE otov ypdvo, dnmg avt) oxetiCeton pe v évvolo g voTtadeiog,
elval avOTapKTN 1) GUEANTEN. X1LLOGIOAOYIKES SLUPOVIEG GYETIKA LE TNV £VVOLa KOL TNV EQAPLLOYN TV
puebodwv DSE odnynoav tovg epeuvntéc ot S1apdpOmGT) TOL OPOV KEKTIUNOT KATAGTAGT|G VITOGTH-
plopevn and tpoPreyn» (FASE). Kabmbg to chomua eedicoeton pe v mdpodo tov ypdvov, ot dio-
doykég Kataotdoelg dgv givarl aveEdptntec, aAld omotelovv onueia pag ypovooepds. H pébodog
FASE gxpetalhevetal ovth T GLGYETION, XPNOLUOTOIOVTOS VO YPOUUIKO LOVTEAO TTOL TTEPLYPAPEL
v €EEMEN TV PETAPANTOV KATAGTAGNS GTOV ¥PAHVO, 0yVODVTOS T LETAPATIKE QAVOUEVOL.

H epapuoyn tov pedddwv vppowmne svvapukng ektipnong katdotaong (DSE) mapovsidlel mpo-
KA oELg TapOUOLES Le EKEIVEG TOV GuvVaVT®OVTOL 6TV avdmtuén nebddwv SSE, dnwe 1 alomoinon un
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CLYYPOVIGUEVMV HETPNGEMV UE OAPOPETIKOVS PLOUOVS avapPopas, N ovOEKTIKOTNTO EVOVTL ECOOAE-
VOV 1] EMMTTOV PETPNOEDV, KOOMG KoL 1) S1oEIPIOT ETEPOYEVAV UETPNTIKMOV OEOOUEVWV.

YoveloQopéc TN ALBaKTOPIKN S AraTpif)g

To gpeuvNTIKO £pYO OV TEPLYPAPETAL GTNV TOPOVGA SOUKTOPIKN dtatpiPny Kiveital e dvo Paoct-
KoVg dEovec. O TpdTog AEoVag apopd TN dpdOpP®SN VRPOKOV HeBdd®MV GTATIKNG EKTIUNONG KOTA-
otaons (SSE) pe mepropiopévo aptBuo petpnoewv and PMU, evd 0 0e0TEPOC EMIKEVTIPOVETUL GTNV
avamtuén pog pefddov ekxtipnong Katdotoong vrootnpllopevng and tpopreyn (FASE), vid v na-
POVGIO ETEPOYEVDV HETPNTIKAOV OESOUEVOV LE OOPOPETIKOVS pLOLOVG avapopds. H anotedespotico-
NTO OAMV TOV TPOTEVOUEVOV TPOCEYYIGEMV SEPEVVATUL LECH EKTEVAOV TPOCOUOLDCEMY GE TPOTLTIO,
NAEKTPIKA diKTLO.

Apykd, Tapovctaletar n avamtuén pog vPpdtkng otatikng pebddov SE Baciopuévng ot fedtioto-
noinon otabuicpévov ehayiotov tetpaydvov (WLS) pe mepropiopotds wottoag. H mpotevopevn
TPoGEYyIon amoppéet amd TV evpémg yvmortr uébodo enilvong Hachtel (Hachtel’s augmented matrix)
KO TPOCOEPEL TOL AKOAOLOA TAEOVEKTILOTAL:

1) Ave&aptnn dwopdpemon tov poviéhov petpnoewv SCADA kot PMU, n onoia kabiotd ™ pé-
0000 gvéhiktn Kot KoTIAANAN Y Tig vAomowoeis ISE, PSE kot FSE, avdAioya pe tic duvatdmrecg
TOV GLOTHHOTOC drayeipiong evépyetag (EMS) kot T1g amortoelg tov KEE.

2) H mpotewvouevn datdinmon tov tpoPinuatog HSE mapakduntel opiopévong meptopiopong mon
oyetiovtar pe tn Aettovpyia twv adyopiBuwv PSE kot FSE. Zvykekpiuéva, Hécm avolvTik®y v-
TOAOYIGLMV KOl EKTEVAOV TPOCOUOIDGEMV, OmOdEKVOETOL 0Tl 0 0AyopBuog PSE dwutmpel oy
TPAEN TV W1OTNTA TNG PEATIOTNG APEPOANTTNG EKTIUNONG, TAPEXOVTOS OMOTEAEGLOTO GLYKPIGILOL
pe tov adyopibuov ISE. EmmAéov, o adyopiBpog FSE sivar epappociiog e cuotiuato Le HePIKN
napatnpnoipotnta (partial observability) amdé PMU, ywpic vo anatteitol n avoKoTockeLn 1| Tpo-
PAeyn petprioewv N n xpnon vevdouetprioewv. Téhog, ot adyopBpot PSE kot FSE givor kotdAAn-
Aot yio TV avafaden tov 101 vdpyovtog Aoyiopikob ektipnong katdotoong tov KEE pe pe-
tpnoelg PMU pe eldy1ote TpOTOTOMGELS.

3) H mpotevopevn péB0d0g amodidel EEAPETIKA UTOTEAEGUATA, VIEPTEPDOVTAS TOPOUOIOV HEBOSMV
PSE «a1 FSE 6c0v agopd v akpifeta, yopic vo avEAvEL GUOVTIKA TIC VITOAOYIGTIKES OTOLTTCELG.
H gpoappooipomra Kot 1 amoteAecpatikdTTtd TG £naANBehOVIOL HECH EKTEVOV OPOUNTIKOV
mpocopowcewv oe mpdtura diktva IEEE, ypnoiponoidviog svpéwg kKabiepopévoug deikteg emi-
d00NG EKTIUNTOV KATAGTOOTC.

4) H dwrvnoon tov poviéhov petpioemv PMU og KopTteoiovég GUVTETOYUEVES LELDVEL TN U1 YPOLL-
KO TN TA KO T 1N kuptotnta. (hon-convexity) tov mpofAniuatog Peitiotomoinong, coppditovrag
oTNV aENGT TG VTOAOYIGTIKNG ATOO0GNG TMV TPOTEWVOUEV®V alyopiOuwy.

EmumAéov, pe yvodHove TV EKTETOUEVT] EVOOUATOON TEYVOLOYIDV LETOPOPAS VYNANG TACS CLVE-
yo¥¢ pevpatog (HVDC), 1d0img Yo T S1ae0vOEoT AVAVEDGIL®Y TNYOV EVEPYELNG KOL TNV OVATTUEN
VTOOUAAGGI®V SLOGLVIEGEMV, 0L GUYYPOVOL OAYOPLOLOL EKTIUNONG KOTAGTAGNS KAAOVVTOL VO EVGM-
LLOTAVOLV 1G0OVVALO LOVTEAQ Y10l TV OKPPN ovamapdoTacT TV v AdYm oTotyelmv. Q¢ ek TOVTOV,
avartoyOnke £va 1000VVaAp0 HOVTELD Yo KAoo1kEG cuvdéoelc HVDC pe petatpomeic mnyng pedpotog
(CSC HVDC) katdAinio yio otatikny vppiokn ektipnon kotdotaons. H eykupotntd tov emainbeve-
TOL LEGM TPOGOUOIMCEMY, Bewpdvtag LETPNOELS evaAlacodpevoy pevpatog (AC) and 1o cvoTnua
SCADA «a1 andé PMU, kaBdg Ko motkilovg cuvdvacuohs LETPNOEDV GTNV TAELPA TOV GLVEXOVG
pevpatog (DC). O kipieg suvelspopég Tov Tpotevopevov aiyopibuov ISE yia diktva HVAC/HVDC
elvar ot €€Ne:
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1) Ave&dptn dapdpemon tov cuvormv petpnoewv AC kot DC, ekme@paouévmv ¢ GUVOPTAGELS
tov AC kot DC petafAntdv KatdoToons avIioToiyms, Kot TonTOYpOovVoS VTOAOYICUOS OA®MY TV
HETAPANTOV KaTAoTOONG LEGM EVIOIOV EKTIUNTY.

2) Awpdpemon TV LadnUATIKOV EEI0MGEMV TOL GLGYETILOVY TG LETAPANTEG KATAGTOONG TMV LITO-
ocvotnuatwv AC kot DC, a&lomoumvtog Tig 6YEGEIS TOV TEPLYPAPOVY TOVS LETACYNUATIOTEG CEVENG
(coupling transformers) kot T Agttovpyio TV petatponémv o€ Kabe mAevpd g Levéng HVDC,
ol omoieg ovumeptAapufavovtol 6to TPOPANUE EKTIUNONG KATACTOONG HEC® €VOG GLVOAOL U
YPOULKOV TEPLOPIGUDV 1GOTNTOC.

3) Emitevén mapatnpnopdmrog tov (evéemv CSC-HVDC pe AMyotepeg LETPNOELS, CLUYKPITIKA UE
oyeTikég nebddovg g PipAoypapiag.

Axorov0mc, 610 TAaiclo TG StTPPnC Eyve Lo TPAOTN OLEPEVLVNOT TNG EMLOPACTS TOV SLUPOPETL-
KOV mlavav datdéemv pétpnong eactfet®v pevpatog pécw PMU — pe ) poper| podv 1 yyvoewmv
— otV VPPN pnéBodo extipnong Katdotaong ISE, agioloydvtag v anddocn e o¢ mpog T 6V-
yKAon kot v akpifeta, Ruo mov dev £xel peket et emaprmg otn Piproypagio. EmmAéov, e€etd-
oTNKOV TPOKTIKA (nTata Tov oyeTilovTot He To TEXVIKO UEPOG NG eykaTdotacns twv PMU, 6rtmgn
eMAOYTN TV onueiov PETpnong o€ eninedo KUKADOUATOS TOGO Gg OIKTLO S1OVOUNG, OGO KOl GE GLGTY-
poto peTapopdc. To evpuaTa VLTINS TS AVAALGNG KOTASEIKVOOLV OTL 1] KOTAAANAT ETIAOYT TOV O1)-
petov pérpnong tov wyadikav peopdtov and PMU eival kpioyung onpaciog yio tnv omoTeAEGLOTIKY
epappoyn tov pebddwv ISE.

AOY® ™G 0ENUEVNG TOALTAOKOTNTOG KOl GTOYXOOTIKOTNTAG TV cuyypoveov XHE, n uetdpaon og
TPONYUEVOLS OAYOPLOLOVG EKTIUNOTG KATAGTAGNS TOV TPOSPEPOLY PEATIOUEVT EMLYVMOON T®V GLVOT-
KOV AEITOVPYIOG TOV GUGTHLOTOC, OEV AMOTEAEL OTAMG Lol AvapUEVOIEVT EEEMEN, QALY OVOLYKOLOTNTOL.
Y716 avto 0 Tpicua, 0 Oe0TEPOG EPELINTIKOG AEOVOS TNG TOPOVGOS daTPIP1g £0TIALEL TNV OVATTTVEN
wog pebodov extipnong Kotdotacng ToAlmv otadiov (multi-stage) vrootpildpevng amd mpdPreyn
(FASE) Bactopévng oto enektetapévo podnuatiko eidtpo Kalman (EKF), ) onoia ivar epapudoun
0€ CLOTNUOTO TOL OeV eivan TANP®G apatnpriopa and PMU. H mpotetvopevn puébodog cuopfdict
OTNV AOTEAEGLOTIKY] OL0YEIPLON ETEPOYEVAOV UETPNTIKOV OEGOUEVOV LUE SLAPOPETIKOVS pLOLLOVS ava-
(POPAC, EVO TOPAAANAL OToLTEl EAAYIOTEG TPOTOTOMGELS OTO VPLOTAUEVO Aoyiopikd SSE. Ot kvpleg
OLVEIGQOPES TG cuvoyiloviot g eENG:

1) Bnua mpoPreyng (time update step): H yprion tov EKF o1ig Khaokég peboddovg FASE Baoiletan
og povtéda petdfaong katactdcewy (State transition models), tov onoiwv o1 Tapdpetpot £xovv
VTOAOYIGTEL EK TOV TPOTEPMV LE PAOT 10TOPIKA SEGOUEVA KO O TILEG TOVS ST POVVTOL GTOOEPES
Katd TV otegoywyn eKTiUnong KatdoTaong 6€ TPayHatiko xpovo, teplopilovios €16t TNV Kavo-
T ToVG va Tpocsapuolovtal og Tayws petaforiopueves cuvinkec. Emopévac, avti evog povté-
Lov petdpaong mov va Paciletan amokielotikd oe mpdPreyn (forecasting), n mpotevopuevn pébo-
dog FASE a&lomotet ) ypoappkn oxéon Hetald tov HeTafANTOV KATACTUGNS TOPATPNCL®Y Ao
PMU «a1 tov avtictotywv HETPGE®Y, Yid TN SIOUOpQmoT VOGS LOVTEAOV LETAPAONG TOL EVILLE-
POVETOL CLVEYMG UE OEOOUEVA TTOV OVTITPOCMTEVOVY TNV TPEXOVCO, AEITOVPYIKT] KOTAGTOGT TOL
2HE. H ocvykexpipévn mpocéyylon Paciletor otn Bewpia BEATIOTNG GVVINENG O0ESOUEVAOV OO TOA-
Lomhovg aoOntpeg (multi-sensor data fusion theory), ®ote va mapéyet pio a&lomot €K TV TPO-
TépoV (a priori) extipunon tov HETOPANTOV KOTAGTOONG Topotnpioney ard PMU.

2) Bnua 610pbwong (forward correction / measurement update step): H mieiovotnta tov pebodwv
FASE ot Biioypaoia, apopd viomomoels ISE, otig omoieg o1 petprioeig SCADA ko PMU a-
VOUELYVOOVTOL GE KOWVO HOVTELO LETPNOE®Y, OMOUTMOVTOS £TGL CNUAVTIKES TPOTOTOWCELS 1] OVTL-
KOTAGTOOT TOL LIAPYOovTog Aoyiopikol oto KEE. Xty tpotewvopevn npocéyyion, ot a priori e-
KTIUNOELS TOV TOPEYOVTOL OO TO HOVTELD peTdPoong, poll e TIG GLYYPOVIGUEVEG LETPNOELS (PO~
oBetwv, vroPfdriovtol oe Eeympiot) eneéepyacia and Tic petpnoelg SCADA, og 600 dlakpitd
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otdon ¢ dadikaciog ektipnongs. 'Etot aropedyovion mbavég mapepfacelg oto cupPatikd Aoyt
opkd SSE, 1o omoio mapapével og €xel, EvO TopIAANAO EAAYIGTOTOLEITAL ) AVTOAAAYY| OEOOUEVDV
petalhd tov otadimv TG EKTIUNGONG, YEYOVOS TTOL SIEVKOADVEL TNV EVEOUAT®ON TG LeBddoL 6TOo
VELOTAUEVO AoYiopkd Tov EMS.

3) Bnua e&opdrvvong (backward correction / smoothing step): Me okond v avtipetdmion tov (n-
TALOTOG TNG EAAELYNG YPOVIKNG GUVAPELNG LETAED TOV LETPNGEMV, 1) TPOTEWVOUEVT HEDOOOG EVO®-
patovel éva Ppa eEopddvvong ot dwdikacio EKF, Baciouévo otov adydpiBuo eopdivvong
otabepov duotnuarog (fixed-interval smoothing algorithm) Bryson-Frazier (MBF). O olyopiBpuog
MBF a&lomotel peAdovtikd chvoro HETPNOE®V, KL, LEGH TOV GTATICTIKOV TOLG YOPUKTNPLIOTL-
KOV, EMOVEKTILA PEATIOTO TO SLAVUOUO KOTAGTOONG TPONYOUUEV®Y YPOVIK®V oTtypmv. H yprion
avtiotoywv alyopiBumv dev £xet diepevvnbel evpémg oto mhaictlo twv pebodwv FASE, evo n pé-
Bodoc Rauch-Tung-Striebel (RTS) mov £xet mpotabdei o€ mponyodueveg epyacieg extBaiAietl ToAlo-
TAEC KOl 0o TNPEG VTTOBECELG OGOV aPOopa TNV 010Vel oTatikn Katdotaon Asttovpyiog tov ZHE ko
AOLTEL VITOAOYIGTIKA OCVUPOPES AVTICTPOPEG TIVAK®OV. L€ GUYKPLoN e Tov adyopiBpo RTS, n
TpoTEWVOEV HEDODOG EIVOL VTOAOYIGTIKA OTOSOTIKOTEPT, EVM 1 EPUPUOGILOTNTA TNG Elvar Alyd-
TEPO TMEPLOPIGUEVT OO TIG SLAPOPES TOPAOOYEG WG TPOG TNV AELITOLPYIKN Katdotaot tov XHE.
EmumAéov, 6Ty mpoTevOUEV TPOGEYYIOT, Ol TAPAUETPOL TOL HOVIEAOL UETAPAONG KOTACTAGEDY
evnuepavovtal puetd omd kdbe extédeon g pnebddov FASE, péom tov alyopibpuov MBF. Mg av-
TV TOV TPOTO, EVGOUATMOVETAL SLOPKDOG TANPOoPopio. amd PLEALOVTIKEG LETPNGELG GTNV EKTIUNGN
(016pBmoN) TOV TOPAPETP®Y TOL HOVTEAOL HETAROONG, LEIDOVOVTOG £TGL TOL GOAALNTO, EKTIUNONG
OV 0QEIAOVTOL GTNV EAMTY| TPOGOAPLOYN TV VPICTAUEVOV POVTEA®V TpOPAeynS Tov EKF otig
TPAYLATIKEG cLVONKES AsttovpYiag.

KaBdg o evtomopog ko 1 aviyvevon ecooipévev petpnoenv (bad data) arotehodv avondonacto
KOUUATL TOV EKTIUNTAOV KATAGTAONG, YiveTal avamtuén alyopifuwv enetepyaciog E0QUALEVOV OO0~
pévev, oto miaicto Tov tpotevopevev peboddwv ISE, PSE kat FASE, pe ypnon tov eAéyyov peyictov
KOVOVIKOTIOMIEV@V VTOAOITT®V, Bactlopevol 6e cuviBels TpakTikég TG oxeTkng Piproypapiog.

TELNOC, TPOKTIKEG TTVYEG TNG TAPOVGAG EPELVAS TOPOVGIALOVTOL OEIOTOUDVTOG EPYACTNPLOKT i~
ta&n tov Epyastpiov ZHE tov EMII, 1 onola anotereiton and cvokevég PMU tov gumopiov, PMU
YOUNAOD KOGTOLG, KOl YNPLUKO TPOGOUOIMTH NAEKTPIKAOV OIKTH®V TPOyUOTIKOD YpOVoL, Kot kabiotd
dvvatn ™ doKiun| Kat a&loAdynon adyopiBuwv eronteiog Tov Pacilovtol 6E GLYYPOVIGUEVA dEGOUEVA
eoacBetdv. H avdntuén kot pvubuiorn tov eE0mAoon Kot Tov AOYIGUIKOD TNG TEPOUATIKNG dtdTagng
TEPLYPAPOVTOL AETTOUEPDGS, EVOD TO GYETIKO KEPAAOO OAOKANPDOVETOL PLE EKTEVEIG TPOCGOUOUDCELG OLA-
yopiBuov eKTiunoNg KaTdoTaoNg 68 TPAYLATIKO ¥pOVOo Kot TV a&loAdynon g £nid00oNS TOVS, TOGO
0€ GLOTNHOTO LETAPOPAS, OGO KO GE OKTIVIKG OTKTLO SLOVOUNG.

H d1daktopikn dtotpir] OLOKANPOVETAL LE L AVAKEPUAOIMOT] TOV GNUOVTIKOTEP®OV GUUTEPUCLA-
TV OV TPOEKLYAV OO TNV TOAVETT QLT £PEVVA, EVA TOPEYOVTAL KO EVOEXOUEVES KATEVOVVGELS Yia
UEALOVTIKY] LEAETN, YOP® A0 TIC TEYVIKEG EKTIUNOMNG KOTAGTOGNG TOV 0ElOTOI0VV ETEPOYEVT LETPT)-
TIKA O£O0UEVOL.
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1. INTRODUCTION

The global power systems landscape is undergoing a period of substantial and rapid change, driven
by various factors that necessitate the modernization of infrastructure to meet contemporary opera-
tional demands [1]. The demand for high-quality power has been steadily increasing, particularly in
developing countries, while global grid interconnections have expanded significantly. Additionally,
deregulation has led to increased separation of power producers and consumers. Finally, a pivotal fac-
tor is the transition from the existing fossil fuel and nuclear generation towards an increasing reliance
on renewables, or more generally, Decentralized Energy Resources (DERS), leading to the assimilation
of more and varied energy sources into the grid [2]. This is particularly true in Europe, where the
targets set by the European Commission are promoting ambitious plans, in the member states, for the
renovation of the generation portfolio [1].

Power grids are overall shifting from a load-driven paradigm to a generation-driven system, wherein
generation dictates the operational dynamics of the system. This shift, in turn, introduces several chal-
lenges to power system operation [1]:

e The location of generation sites is determined by the availability of Renewable Energy Resources
(RES) rather than the proximity to major consumption centers.

e The inherent variability of renewable energy sources introduces substantial stochasticity in the
electric network operation, as traditional dispatchable power sources are supplanted by probabilis-
tic generation patterns. This necessitates the use of advanced prediction tools and complicates the
alignment of generation with demand compared to conventional energy sources.

e Integrating DERSs into the existing grid requires significant modifications to transmission infra-
structure. The regulatory environment surrounding transmission development is complex, involv-
ing multiple federal, state, and local regulations. This complexity can delay the construction of
new transmission lines and make it difficult to plan for future needs.

Consequently, power systems have expanded in size, their planning and operation have become
more complex, and they are pushed increasingly close to their operating limits, with the European
Network of Transmission System Operators for Electricity (ENTSO-E) interconnected system exem-
plifying this trend of stressed power systems [2]. Addressing these challenges requires more robust
and flexible power systems, which, in turn, demands the development and integration of innovative
technological solutions.

In this context, the need for more accurate and extensive monitoring and control mechanisms, sup-
ported by effective and resilient information and communication technologies, becomes imperative,
as they have become vital for sustaining power system reliability and ensuring an adequate and secure
electricity supply to consumers [2], [3].

Consequently, the synergy between secure, efficient, and economical operation of the power grid
and advanced information technologies is paramount for addressing future challenges. Electric trans-
mission systems have been at the forefront of this evolution. Notable research initiatives have focused
on the development and deployment of innovative approaches to enhance transmission system visibil-
ity, facilitated by State Estimation (SE) — an essential tool of the Energy Management System (EMS)
that enables a reliable assessment of the power system’s current operational state, thereby supporting
real-time operation and control. Additionally, ongoing research efforts seek to integrate recent techno-
logical advancements in metering infrastructure, such as Wide Area Monitoring, Protection, and Con-
trol (WAMPAC) schemes, as well as advanced network controllers such as Flexible AC Transmission
Systems (FACTS) and High Voltage Direct Current (HVDC) technologies, into the existing monitor-
ing frameworks. In summary, research in advanced monitoring methods for transmission systems can
be categorized into two main areas [4]: new algorithms and new measurement technologies.
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1.1 Motivation

This Section presents the motivation for this thesis by drawing upon recent developments in the two
core aspects of power transmission system monitoring, that is, algorithms and measurement technolo-
gies. Specifically, it highlights the importance of advanced power system SE algorithms and the ad-
vantages of synchrophasor measurement systems. It also underscores the necessity of validating the
efficacy of such innovative SE algorithms and measurement configurations, both through offline sim-
ulations and online laboratory-scale test beds.

1.1.1 Energy control centers and power system state estimation

As transmission networks continue to expand, the complexity of their operation has increased. The
growing distance between bulk generation and load centers, coupled with the integration of large-scale
renewables, introduces additional operating constraints. These factors have drawn heightened attention
to the Energy Control Center (ECC) and the methods employed for monitoring and control of trans-
mission systems [5]. Advanced computing systems and software tools within ECCs play a central role
in processing and analyzing field data, managing the vast volume of available information, and issuing
appropriate control commands. Given that ECCs date back to the 1950s, the primary challenge faced
by modern ECCs, as opposed to earlier iterations, is the rapid expansion of power grid geographic
coverage and, consequently, the substantial increase in stakeholders and users they must manage. Serv-
ing electricity markets, public system operators, private electricity providers, independent producers,
large consumers, and low-voltage (LV) consumers imposes increased demands on the computational
power and reliability of ECC tools to ensure their effective operation.

Viewing the power system infrastructure as an integration of several subsystems (e.g., transmission,
distribution networks, and consumers), it is essential to maintain a sufficient level of situational aware-
ness throughout its entirety to ensure proper operation. This means that system conditions must remain
within predefined limits based on specific endogenous and exogenous parameters. The system's state
is assessed by studying key characteristics and is determined using rigorous mathematical tools. Gen-
erally, the complete state of a power system at a given moment can be established if the system model
— comprising all nodes, branches, and their respective parameters — is known, along with the voltage
phasors at each node.

Before the introduction of power system SE, the Transmission System Operator (TSO) was tasked
with performing most of the real-time functions within the ECC, including generation and interchange
scheduling, outage monitoring and scheduling, frequency and time corrections, bias setting coordina-
tion, and emergency system restoration. These activities were guided by operational procedures estab-
lished by the planning department, which were informed by comprehensive load flow studies. How-
ever, operators frequently encountered unforeseen circumstances not encompassed by the planning
scenarios.

To address this, load flow software was installed in the ECC, allowing operators to input manually
collected data that reflected real-time conditions. Although this constituted an improvement, the oper-
ator’s load flow solutions were often compromised due to inadequate or inconsistent data, as well as
occasional gross errors in both measurements and the network model [6]. This revealed a disconnect
between the planning-based load flow analyses and the practical requirements of the TSO, establishing
a clear need for a process that could utilize various imprecise field measurements to accurately estimate
the real-time state of the system.

State estimation aims to determine the system's state based on available measurements, effectively
assigning values to all voltage phasors across the network, which constitute the system’s state varia-
bles. The state estimator has now been solidified as the only computational process within ECCs ca-
pable of producing an accurate real-time representation of a network’s condition. Thus, situational
awareness in power systems is directly linked to ECCs, where measurement data from installed
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metering devices are aggregated, processed, and analyzed. Consequently, the reliable operation of
power systems is inextricably tied to the existence of effective and robust monitoring mechanisms
within ECCs.

Traditional Supervisory Control and Data Acquisition (SCADA) systems rely on Remote Terminal
Unit (RTU) devices for power system monitoring, which provide scalar information from the field at
intervals of several seconds. In AC systems, RTUs typically report the Root Mean Square (RMS)
values of active and reactive power, voltages and currents. Early SE algorithms relied on measure-
ments of line power flows to infer bus voltage angles and magnitudes (i.e., the state variables of the
system) [7]. Direct measurement of the state was infeasible; instead, it was inferred from the low-
resolution, unsynchronized SCADA data, via nonlinear optimization models. This limitation, coupled
with the necessity of gathering a substantial volume of measurements within the ECC, compelled the
initial state estimators to make compromises that persist to this day [6]. Furthermore, SE accuracy was
often compromised due to various error sources, including temporal measurement inconsistencies,
communication noise, and the assumption of steady-state operating conditions.

1.1.2 Phasor measurement units and hybrid state estimation

The development of advanced measurement and automation systems across the entirety of power
systems is a critical step toward the transition to smart grids. The demands for enhanced remote mon-
itoring and control are being addressed through the gradual modernization of the relevant equipment,
which consists of sensor units and actuators that are subject to remote control. A significant develop-
ment in this field has been the shift from analog and electromechanical devices to digital implementa-
tions, paving the way for more advanced measurement technologies [4]. The past decade has seen the
widespread installation of high-precision measurement units with advanced capabilities, such as
Phasor Measurement Units (PMUs). PMUs are measurement devices capable of measuring not only
the amplitude but also the phase of sinusoidal quantities, while offering significantly higher reporting
rates compared to RTUs. The phasors recorded by PMUs are calculated and timestamped with respect
to a global time reference, typically derived from the Global Positioning System (GPS). In the same
vein, switching and protection devices are being upgraded through their capability to receive synchro-
nized phasor measurements, effectively gaining PMU functionalities. The advent of this novel meas-
urement technology has led to the development of Wide Area Monitoring Systems (WAMS), which
are networks of interconnected PMUs that provide situational awareness of the power system operating
conditions with sub-second granularity [4].

Undoubtedly, advancements in metering infrastructure have significantly improved state estimator
performance. Specifically, the integration of PMUs into power system measurement configurations
now enables the use of precise, synchronized phasor measurements with high sampling and reporting
rates, in addition to conventional SCADA measurements, significantly enhancing network observabil-
ity and SE accuracy. Additionally, as PMUs can record complex branch currents in Cartesian coordi-
nates, the SE measurement model is significantly simplified. Under certain conditions, it can even be
fully linearized, greatly improving the computational efficiency of the state estimator. Consequently,
state estimator execution times are expected to decrease to a few seconds.

Additionally, one of the most important applications of PMUs is dynamic state estimation, which
enables real-time power system monitoring under rapidly changing or transient conditions. With the
increasing importance of system dynamics and the need to operate transmission grids closer to their
capacity, it has become clear that conventional SCADA systems are insufficient for effective monitor-
ing during critical events. Furthermore, direct measurement of bus voltage phase angles is essential for
assessing overall system stability. Consequently, a prominent application of PMUs, and the broader
WAMS framework, is the dynamic monitoring of the system operating conditions, through Dynamic
State Estimation (DSE) methods [5]. In essence, PMUs serve as the enabling technology for DSE to

31



achieve extensive real-time system visibility and situational awareness, and provide reliable infor-
mation to downstream control and operation functions within the ECC [8].

Despite the coexistence of SCADA and WAMS monitoring systems being a practical necessity,
incorporating multi-rate, heterogeneous measurements into SE is complicated by issues such as the
absence of synchronized timing of measurements (the “time skewness” problem) and the diversity of
recorded electrical quantities. These factors often necessitate modifications to existing SE software to
handle PMU data, and can lead to algorithmic convergence issues due to large discrepancies in meas-
urement accuracy among measurement systems [9]. Research into addressing these issues has resulted
in the formulation of various Hybrid State Estimation (HSE) methods that aim to optimally combine
PMU measurements with the existing conventional measurements, and investigates the following main
topics:

1) Different mathematical models for integrating PMU and SCADA measurements into the SE prob-
lem,

2) HSE implementation considerations and feasibility studies,
3) HSE-based power system monitoring and control applications, and
4) Optimal PMU placement for HSE.

This thesis aims to contribute to the first three aspects of HSE research, by proposing novel HSE
approaches designed to enable integration of diverse measurement sources into SE, as well as demon-
strate the effectiveness of HSE in power system monitoring, as will be detailed in the following Sec-
tion.

1.1.3 Laboratory-scale platforms for PMU-based application studies

The critical importance of synchronized PMU measurements has been widely recognized across a
range of power system applications, which is reflected in the accelerating deployment of PMUs world-
wide. Beyond SE, PMUs are also used for fault location, inter-area oscillation monitoring, model pa-
rameter tuning and validation, as well as many other WAMPAC functions. A proven method for de-
veloping and validating these applications is the use of Hardware-in-the-Loop (HIL) simulation, which
enables the creation of proof-of-concept for new devices and software tools, the evaluation of the ac-
curacy and reliability of integrated solutions and the conduction of certification or pre-commissioning
tests. This thesis further illustrates practical examples and laboratory-scale configurations where HIL
simulations have been utilized to develop synchrophasor applications and validate their performance
under different scenarios [10].

1.2 Thesis outline

This Section summarizes the primary contributions and structure of the thesis, referencing the cor-
responding publications of the author.

Chapter 2 — Energy management systems and SCADA

Chapter 2 traces the historical progression and functional evolution of the EMS, highlighting how
SCADA has played a pivotal role in real-time data gathering, network monitoring, and control. The
Chapter examines the critical hardware and software components of SCADA and discusses how EMS
platforms have evolved to accommodate larger, more complex power networks. By reviewing standard
EMS applications, the Chapter establishes the context for how modern power system operations
strongly rely on the SCADA infrastructure.

Chapter 3 — Synchrophasor measurement systems

Chapter 3 provides a historical overview of time-synchronized measurements and their applications
in power systems. It describes the key components of the synchrophasor measurement system,
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including PMUs, PMU-enabled devices, time synchronization sources, and phasor data concentrators.
The Chapter elaborates on the role of each component and demonstrates their collaborative operation
as part of a comprehensive technological solution. These foundational insights introduce the reader to
the fundamentals of synchrophasor technology and its intended uses.

Chapter 4 — Power system monitoring and state estimation

Chapter 4 emphasizes the significance of continuous, real-time power system monitoring and its
close relationship with SE, a crucial function for ensuring system security and reliability. It introduces
the fundamental mathematical formulation of SE, focusing on how real-time measurements — from
both traditional SCADA and synchrophasor technologies — are leveraged to derive an estimate of the
current state. This Chapter also delves into dynamic state estimation methods, which extend the tradi-
tional static SE framework to account for rapidly changing system conditions and transient events. It
introduces the framework of Kalman filters and explains their importance in capturing system dynam-
ics and utilizing state forecasting techniques in enhancing SE performance.

Chapter 5 — Hybrid power system state estimation [R1]

This Chapter offers a new perspective on categorizing hybrid SE approaches, detailing various meth-
ods for integrating synchronized phasor measurements into power system SE. The material presented
sets the stage for the subsequent Chapters.

[R1] O. Darmis and G. Korres, “A survey on hybrid SCADA/WAMS state estimation methodologies
in electric power transmission systems,” Energies, vol. 16, no. 2, Jan. 2023.

Chapter 6 — Hybrid static state estimation under limited PMU availability [R2]-[R4]

This Chapter introduces an equality-constrained hybrid static SE algorithm that combines data from
SCADA and WAMS systems. The proposed method is founded on the widely adopted Weighted Least
Squares (WLS) approach and is applicable to both single- and multi-stage SE architectures. A key
advantage of this approach is its non-intrusive implementation, which preserves the core functions of
conventional SE software within the EMS, while improving the efficacy of existing SCADA-based
estimators.

This Chapter also presents a hybrid state estimation algorithm for AC power systems with integrated
classic HVDC links. The proposed nonlinear WLS-based method models the AC system zero injec-
tions and AC/DC coupling equations as equality constraints and calculates both AC and DC states
simultaneously.

The Chapter finally aims to assess the impact of PMU current measurement schemes on SE, by
investigating its performance (convergence and accuracy) in the presence of current flow or injection
data, as well as a combination of both. Moreover, practical considerations on technical installation
issues, e.g., the circuit-level measurement point and the utilization of instrument transformers, are dis-
cussed. The findings from the proposed analysis show that the configuration of available current meas-
urements strongly affect the SE quality, thus, explicit planning of relevant metering schemes is re-
quired.

After elaborating on the derivation and the different formulations of the proposed methods, Chapter
6 concludes with extensive numerical simulations on several IEEE benchmark systems, to evaluate
their performance and effectiveness.

[R2] O. A. Darmis and G. N. Korres, “A hybrid power system state estimator under limited PMU
availability,” IEEE Trans. Power Syst., vol. 39, no. 6, pp. 71667177, Nov. 2024.

[R3] O. Darmis, G. Karvelis, and G. N. Korres, “PMU-based state estimation for networks containing
LCC-HVDC Links,” IEEE Trans. Power Syst., vol. 37, no. 3, pp. 2475-2478, May 2022.
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[R4] T. Xygkis, O. Darmis, and G. Korres, “Impact of current measurement configuration on power
system state estimation,” in /4th Mediterranean Conference on Power Generation Transmission,
Distribution and Energy Conversion (MEDPOWER), Athens, Greece, 2024, pp. 1-6.

Chapter 7 — Forecasting-aided state estimation using multi-source, multi-rate measurements [R5]

Chapter 7 presents a multi-stage forecasting-aided SE framework with equality constraints, utilizing
the extended Kalman filter to independently process SCADA and PMU data. The conventional
SCADA-based state estimator remains unaltered and is augmented with synchronized PMU data and
a priori state information derived from the extended Kalman filter. To enhance the accuracy of the
forecasting model, an estimation fusion technique is developed, leveraging real-time PMU measure-
ments. To address measurement asynchronization and random delays, the modified Bryson-Frazier
fixed-interval smoothing algorithm is applied, combining current state information with a series of
prior FASE solutions to optimally infer the system states. Extensive numerical simulations on the IEEE
14-, 118-, and 300-bus benchmark systems demonstrate the efficacy and practical applicability of the
proposed method.

[R5] O. Darmis and G. N. Korres, “Forecasting-aided power system state estimation using multisource
multirate measurements,” IEEE Trans. Instrum. Meas., vol. 74, pp. 1-15, 2025.

Chapter 8 — Bad data processing in state estimation

As the identification and detection of erroneous measurements (bad data) constitute an integral part
of state estimators, algorithms for bad data processing are developed within the framework of the
proposed HSE methods, using the largest normalized residual test, in accordance with standard prac-
tices in the relevant literature.

Chapter 9 — Laboratory-scale PMU-based power system monitoring platform [R6]-[R9]

Chapter 9 outlines a laboratory setup for simulations in power system monitoring, using PMUs. The
setup integrates a real-time power system simulation platform with hardware PMUs and software
PDCs, and is used to replicate realistic grid conditions and monitor system behavior under various
scenarios. The key components of the experimental environment, including the power system simula-
tor, PMU devices, data acquisition systems, and time-synchronization sources, are detailed. The Chap-
ter also covers the configuration process, which includes interfacing PMUs with the simulator and the
utilization of phasor data concentrators for real-time data aggregation and filtering. Case studies on an
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Chapter 10 — Conclusions and prospects

The final Chapter summarizes the main findings of this research, emphasizing the effectiveness of
the methods that have been proposed for enhancing HSE performance and applicability. It also
acknowledges the limitations encountered during the study and proposes potential future research di-
rections.
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2. ENERGY MANAGEMENT SYSTEMS AND SCADA

The electric power system is a vast, geographically dispersed network that delivers energy to critical
sectors, including residential, commercial, and industrial facilities. As more sectors, such as transpor-
tation, are increasingly electrified, the complexity of power systems has grown significantly. To effec-
tively manage this complexity, the power system relies on computer-assisted systems for its monitor-
ing, control, and overall operation. Over time, these systems have evolved in tandem with advance-
ments in computing and communication technologies and are now known as the Energy Management
System, a term used to collectively refer to the functions of the ECC [8].

2.1 Energy management system overview

The EMS integrates hardware and software that enables power system monitoring and control, using
sensors and meters in a digital network. The core functionalities of an EMS include real-time data
acquisition, system parameter validation, execution of EMS software functions for predictive and di-
agnostic purposes, issuance of control commands to operational equipment, and support for operator
decision-making through advanced analytics and visualization tools. Overall, the primary objective of
an EMS is to guarantee stable, reliable, secure, and optimized power delivery across the grid [5], [11].

Historically, EMSs originated from manual dispatcher operations in the 1940s, where control relied
heavily on empirical knowledge and communication with local field operators. Early EMS designs
were based on proprietary and analog technologies, with significant reliance on manual processes for
remote data acquisition and control, facilitating automatic generation, interchange, and frequency con-
trol. The post-1970 period witnessed substantial progress in state estimation and optimal power flow
theory, particularly in response to major blackouts such as the 1977 U.S. event and similar European
incidents, which reinforced the necessity of network security assessment, dispatcher training simula-
tors, emergency corrective actions, and voltage stability monitoring. The increasing need for economic
dispatch and load management drove the evolution of optimal power flow techniques within the EMS,
incorporating security constraints to ensure operational stability (minimization of real power losses,
maintenance of a voltage profile, ensuring a predefined short-circuit capacity) [5], [11], [12].

The advent of microprocessors, enhanced communication technologies, and advancements in power
system hardware enabled the transition to digital systems. The introduction of fast, efficient algorithms
for EMS applications and advances in computing hardware have enabled the real-time implementation
of these procedures, equipping ECCs with advanced data acquisition, processing, and visualization
capabilities. As a result, contemporary EMS functionalities have significantly expanded in scope, en-
compassing the following processes [8], [12]:

1. Monitoring systems, which have evolved from legacy SCADA to digital systems that include state
estimation, bad data detection and rejection, real-time model validation, and advanced visualiza-
tion tools. These advancements ensure accurate representation of system operations and enhance
situational awareness.

2. Dispatch operations are now managed by fully digital Automatic Generation Control (AGC). AGC
integrates load frequency control, power interchange management, and power system optimization.

3. System security functions are embedded within a hierarchical control framework that supports both
monitoring and control activities. This integration strengthens the system's resilience to disturb-
ances and enhances operational reliability.

4. Advanced economy scheduling, including functionalities that enable power market participation.
This integration reflects the increasing importance of market dynamics in system operations.
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2.1.1 The EMS framework

The EMS framework, illustrated in Figure 2.1, integrates transmission and generation operation
management, simulation tools, and data acquisition/control systems. Its individual components include
[5], [12]:

e Generation operation management: Load forecasting, unit commitment, economic dispatch, and
AGC.

e Transmission operations management: Network configuration, state estimation, contingency anal-
ysis, and optimal power flow.

e Study mode simulations: Power flow studies and short-circuit analysis.

e Energy services: Services such as event analysis, scheduling, and energy accounting support both
operational and market-related aspects of the grid.

e Dispatcher Training Simulator (DTS): Simulators designed to replicate real-life scenarios, allow-
ing operators to practice and improve their response to various system conditions and contingen-
cies.

A crucial element of the EMS is the SCADA system, which acts as a vital link between the physical
power system and the computational functions of the EMS., as demonstrated in Figure 2.1.

Energy Management System

Generation Transmission Dispatcher
3 : Study Mode : S
Operation Operation : : Energy Services Training
Simulation Tools 3
Management Management Simulator

N S, S

Supervisory Control & Data Acquisition

f ! !

Generation ——>  Transmission ———>  Distribution

Figure 2.1: The typical energy management system framework [5].
The EMS functions can also be categorized based on the required response times, as depicted in
Figure 2.2, including real-time operations, pre-event planning, and post-event analysis [5], [12]:

e SCADA telemetry: Data is polled approximately every 2 seconds for the near-real-time monitoring
of operating conditions.

e AGC: Data is collected every 2-4 seconds to enable adjustments in generation output and frequency
control.

e SE and Contingency Analysis (CA): These functions typically run every 60 seconds to ensure sys-
tem stability and preparedness for potential disturbances.

e Optimal power flow and economic dispatch: These functions are executed at intervals of approxi-
mately 30 minutes to ensure the cost-effective and efficient operation of the grid.

e PMU s provide high-resolution data at 25-120 scans per second, significantly enhancing the moni-
toring process with millisecond-level granularity.
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Figure 2.2: Different energy management system time frames [5].

2.1.2 Data flow in the EMS

The schematic diagram of the hardware setup of the EMS within the modern ECC is illustrated in
Figure 2.3. The SCADA system, as will be extensively discussed in the following, plays a pivotal role
in collecting and transmitting real-time telemetered data from the field.

Field devices such as wattmeters, voltmeters, current meters, and breaker status indicators are con-
nected to RTUs, which serve as intermediaries between field equipment and the ECC. RTUSs transmit
data through communication channels to Communication Input/Output Controllers (CIOCs) located at
the ECC. This real-time data is then utilized to construct the current network topology and is processed
by the SE algorithm, which provides a reliable representation of the current system state, forming the
basis for advanced analyses [8]. The outputs of the SE algorithm serve as inputs for key EMS functions,
including power flow, optimal power flow, contingency analysis, and economic dispatch, which col-
lectively ensure the grid operates securely, reliably, and efficiently under varying conditions. Pro-
cessed information is then presented to operators through advanced visualization tools, such as screens,
dynamic mimic boards (interactive displays representing the real-time status of the power system), or
computer-generated projections [5], [8]. Additionally, computers at the ECC are capable of issuing
control commands to field devices. These commands may be executed automatically by the EMS or
manually upon operator instruction. Commands are transmitted back to field equipment via CIOCs,
communication links, and RTUs for actions such as tripping breakers, adjusting transformer tap posi-
tions, or changing generator outputs.

2.2 The SCADA system

Generation and transmission automation systems are commonly referred to as “SCADA/EMS” sys-
tems, wherein the data acquisition and control are SCADA-specific functions. Although the terms
“SCADA” and “EMS” are often used interchangeably, it is crucial to distinguish between the compo-
nents and functionalities of a modern SCADA system to understand its unique role. SCADA is an
integrated technology comprising the following elements: the RTUs or Intelligent Electronic Devices
(IEDs), the data concentrators and Merging Units (MUs), the communication system, the master sta-
tion and the Human-Machine Interface (HMI) [5].

2.2.1 Remote terminal units (RTUs)

RTUs serve as the “eyes, ears, and hands” of the SCADA system. They are responsible for acquiring
data from field devices, processing it, and transmitting relevant information to the EMS. Simultane-
ously, RTUs relay control signals from the ECC to field devices to execute operational actions [5],
[11].

Historically, RTUs operated as passive devices functioning as slaves to the master station (ECC).
However, modern RTUs are equipped with advanced computational and optimization capabilities, sig-
nificantly enhancing their role in the SCADA system. The evolution of RTUs began with the intro-
duction of microprocessor-based logic in the 1980s. Subsequent advancements in communication tech-
nologies and processing power have enhanced their efficiency, flexibility, and reliability while
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reducing manufacturing costs. Modern RTUs are modular in design, allowing for ease of assembly
and customization. They feature menu-driven user interfaces that can be adapted to specific processes,
preprogrammed control algorithms to handle a variety of tasks, and high-speed communication net-
works with built-in redundancy for improved performance and reliability. Additionally, RTUs now
adhere to standardized communication protocols, such as IEEE 1815/DNP3 and IEC 60870-5-
101/103, ensuring interoperability [5], [13].
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Figure 2.3: Hardware configuration of the energy management system [8].

A simplified view of the field deployment of RTUs is illustrated in Figure 2.4. Modern RTUs are
tasked with collecting a comprehensive set of data for each sampling period. Analog data is typically
scanned every few seconds, triggered by requests from the ECC, while status data is often compressed
by transmitting only changes in status to reduce communication traffic. The collected data — critical
for real-time system operation and control — includes breaker status, disconnect switch status, trans-
former tap settings, MW and MVAr flow measurements, voltage and current magnitudes, and phase
angle differences [5].
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Figure 2.4: SCADA measurement system deployment.

The main components of an RTU, illustrated in Figure 2.5, are elaborated as follows [5]:

Communication subsystem: The communication subsystem links the SCADA network to the
RTU's internal logic. In contemporary bidirectional communication networks, this subsystem in-
terprets commands from the ECC, initiates RTU operations, and relays control instructions to field
devices while also processing field data for transmission to the EMS. To ensure data integrity,
modern RTUs employ advanced error-checking techniques, such as parity checks or the more ro-
bust Cyclic Redundancy Check (CRC). Most modern devices also support multi-port communica-
tion, allowing for interaction with multiple master stations, peer RTUs and/or IEDs.

Logic subsystem: At the heart of the RTU lies the logic subsystem, which is responsible for pro-
cessing data, managing analog-to-digital conversions, and executing control actions. The Central
Processing Unit (CPU) within this subsystem is responsible for acquiring and processing data,
executing control functions, and managing time synchronization, which is essential for accurate
event logging. Analog data, such as voltage and current measurements, is digitized using A/D con-
verters, while binary data is used to monitor and control the status of field devices. High-speed
scanning and microprocessor interrupts enable precise sequence-of-events logging with millisec-
ond-level accuracy. By filtering signals and reporting only exceptions, the logic subsystem also
minimizes communication traffic, aiding in efficient data handling.

Termination subsystem: The termination subsystem forms the physical interface between the RTU
and external equipment, protecting it from environmental factors such as voltage surges, electro-
magnetic interference, and lightning strikes. Isolation techniques, including interposing relays and
optical isolators, safeguard digital inputs, while transducers and sensors provide electrical isolation
for analog signals. Low-level (4-20 mA) analog signal inputs are fed to the A/D converter through
fuses. Analog outputs control process variables like motor speeds, and digital outputs manage
switches like circuit breakers.

Power supply subsystem: RTUs have dedicated DC power supplies, commonly using 24 V, 48 V,
or 125 V, with combinations of different DC voltage levels frequently implemented to enhance
redundancy. In transmission and distribution systems, RTUs are powered by the substation battery,
which is designed to prevent malfunctions or safety risks from ground faults.
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e Testing and HMI subsystem: Provides built-in hardware and firmware tests, visual indicators, and
maintenance panels for diagnostics and testing. RTUs at remote locations are usually unmanned
but have built-in diagnostics and LED indicators to convey system status. Some RTUs also have
low-cost LCD/LED displays to show real-time data. Diagnostic routines monitor the hardware and
software, with faults reported to the master station. Additionally, technicians can use plug-in test
sets to simulate master station operations, enabling effective troubleshooting and maintenance.
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Figure 2.5: Remote terminal unit subsystems [5].

2.2.2 Intelligent electronic devices (IEDs)

By industry standards, an IED is defined as “any device incorporating one or more processors with
the capability to receive or send data/control from or to an external source, such as electronic multi-
function meters, digital relays, and controllers.” The adoption of IEDs has become increasingly wide-
spread due to advancements in communication infrastructure, the establishment of standardized pro-
tocols, and enhanced interoperability. These developments have enabled substations to operate with
minimal human intervention while simultaneously improving system reliability and preventing
maloperations. Thus, to appreciate the transformative impact of IEDs on power system automation, it
is important to explore their functionality in detail [5].

First introduced in the early 1980s with microprocessor-based controls, IEDs have significantly
changed power utility operations by integrating protection, automation, and data analysis capabilities
into a single platform. In contrast to traditional single-function electromechanical relays, IEDs consol-
idate multiple protection functions within one device. This integration not only lowers associated costs
but also reduces the physical footprint of relay panels and switchgear. Over time, IEDs have expanded
their functionality to include advanced features such as phasor measurement and waveform capture,
further increasing their value to modern power systems [5].

The adoption of IEDs brings numerous benefits to power utilities [5]:

¢ Reduction in installation and panel costs, combined with faster commissioning and maintenance
processes.

e Quicker recovery times after disturbances, minimizing downtime and operational disruptions.
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e By automating critical functions and incorporating adaptive settings, IEDs enhance system relia-
bility and capacity utilization while reducing losses due to incorrect settings or malfunctions.

From a design perspective, IEDs are structured for ease of programming, commissioning, and
maintenance. The versatility of IEDs is illustrated in Figure 2.6, which depicts the functional blocks
composing a typical IED. The modular hardware allows for the convenient replacement of compo-
nents, such as draw-out cards, minimizing repair times and complexity. On the software side, IEDs are
designed to independently manage protection, control, metering, and communication functions. The
device architecture supports analog and digital inputs and outputs, while also providing waveform
capture and disturbance analysis capabilities, essential for detailed event investigations. Moreover,
built-in self-monitoring and external circuit monitoring features enhance the reliability of the device,
allowing it to detect potential issues and prevent failures, thus significantly reducing downtime.

The deployment of IEDs in the field is illustrated Figure 2.7, which provides a comprehensive view
of their integration with connected devices and the diverse functionalities they handle. More specifi-
cally [5]:

e One of the most significant functionalities of IEDs is their role in protection, particularly through
the use of phasor estimation. As primary protection devices, relay IEDs offer significant improve-
ments over traditional microprocessor-based relays by reducing the need for auxiliary equipment.
For instance, modern transformer differential relays can automatically correct Current Transformer
(CT) mismatches, eliminating the need for external devices. Furthermore, the concept of open sys-
tem relaying enables software-based reconfiguration to achieve various relay functions. IEDs em-
ploy generalized numerical relay designs with specialized modules for data processing, signal scal-
ing, filtering, and A/D conversion. Event reporting and fault diagnosis are further strengths of
modern IEDs, as they can capture fault waveforms and record events such as pick-ups, trips, and
reclosures, eliminating the need for separate Digital Fault Recorders (DFRs). Events are stored in
nonvolatile memory with precise timestamps synchronized via GPS, enabling accurate event se-
quencing. Even after a blackout, IEDs facilitate fault diagnosis by retaining critical data for post-
event analysis, significantly improving restoration times and operational insights.

e |EDs also integrate metering and power quality analysis, offering significant cost savings by com-
bining protection and metering functionalities within one device. These metering capabilities allow
IEDs to measure parameters such as voltage, current, real and reactive power, and perform load
profiling. This functionality helps utilities monitor long-term system performance, supporting
commissioning, testing, and control of capacitor banks. Another standout feature of modern IEDs
is their ability to perform phasor estimation, calculating voltage and current phasors synchronized
via GPS. This capability enables the IED to function as a PMU.

e Another critical functionality is the programmable logic and breaker control integrated within
IEDs. By handling logical inputs and outputs for protection directly within the device, IEDs elim-
inate the need for external Programmable Logic Controllers (PLCs). This built-in capability allows
users to create custom logic configurations tailored to specific applications. The relay algorithms
and internal trip logic of the IED ensure precise control over circuit breakers, enhancing both op-
erational accuracy and reliability in protection calculations.

e In addition, IEDs are equipped with self- and external circuit monitoring capabilities. Self-moni-
toring functions diagnose internal issues such as hardware failures or power supply interruptions,
ensuring device reliability. Simultaneously, IEDs monitor external circuits, such as current inputs,
breaker coils, and transformer conditions, detecting potential issues and preventing false tripping,
enhancing the reliability and safety of substation operations.
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Finally, the communication capabilities of IEDs are essential for their role in modern utilities. Sup-
porting protocols such as MODBUS, DNP3, and IEC 61850, IEDs offer multi-port communication
and an open communication architecture. These features enable integration with higher-level systems
and allow easy upgrades through plug-and-play modules. Communication is supported via optical or
electrical ports, with remote access enabled through modems, allowing interaction with other IEDs
and substations [13].

2.2.3 Data concentrators and merging units (MUs)

Data concentrators play a critical role in substation automation by aggregating data from IEDs and
other field inputs, streamlining the flow of information to higher-level systems. Traditional RTUs rely
on hardwired connections to collect analog signals and status points, which are then converted into
digital form for processing. In contrast, IEDs use standardized communication protocols to transmit
the required data directly to data concentrators, which communicate within the substation via a Local
Area Network (LAN). This architecture significantly enhances scalability and reduces wiring com-
plexity [5]. Figure 2.8 illustrates the transition from traditional RTUs to modern IEDs with data con-
centrators in a substation.

MUs further advance the data acquisition process by introducing the concept of a process bus. Un-
like data concentrators that rely on LANs to aggregate information, MUs connect directly to field
equipment, digitizing signals at the source and transmitting them over the process bus LAN to IEDs
using communication protocols such as the IEC 61850-9-2 [13]. This design eliminates the need for
extensive hardwiring and simplifies substation configurations.
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Figure 2.8: Migration from RTUs, to IEDs and data concentrators, to MUs and IEDs [5].
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2.2.4 SCADA communication system

The SCADA communication system acts as the nervous system of the power grid, facilitating the
transfer of data between field equipment and the ECC. It enables real-time monitoring of parameters
such as generation levels, voltage and current magnitudes, system load, and the status of circuit break-
ers and isolators. Additionally, it transmits control commands from the control center to field equip-
ment. Initially limited to major equipment and critical buses, SCADA communication now extends to
end customers with the implementation of smart grids and home automation, allowing two-way com-
munication from generation to distribution [13], [5].

Communication protocols form the foundation of SCADA systems, defining the format for data
exchange between devices. These protocols ensure interoperability by establishing rules for data pack-
aging, addressing, and error detection. Initially, proprietary protocols limited compatibility, prompting
international organizations to standardize formats. The Open System Interconnection (OSI) model,
issued by the International Organization for Standardization (ISO) in 1984, provides a structured
framework for communication processes. SCADA systems often use Transmission Control Proto-
col/Internet Protocol (TCP/IP), with the OSI model adopted by the International Electrotechnical Com-
mission (IEC) [5]. Several widely used SCADA and smart grid protocols are illustrated in Figure 2.9,
with the most important ones briefly discussed in the following [5], [13]:

e Modbus: Originally developed for PLC communication, Modbus has become widely used in
SCADA systems, particularly between master stations and RTUS. It operates on a master-slave
model, using OSI layers 1, 2, and 7, with a CRC for error detection.

e Inter-Control Center Protocol (ICCP): Defined under IEC 60870-6, ICCP enables real-time tele-
control communication between control centers using Wide Area Networks (WANS). It is widely
adopted by utilities and system operators, employing Manufacturing Message Specifications
(MMS) for messaging.

e |EC 60870-5-101/103/104: IEC 60870-5 is an open protocol for SCADA telemetry. It follows a
hierarchical structure with six parts and companion standards, supporting telecontrol equipment in
industry-level SCADA systems.

e Distributed Network Protocol 3 (DNP3): DNP3 is an open protocol developed in Canada, using
the EPA architecture and FT3 frame format from IEC 60870-5. It supports larger data frames and
robust error detection, commonly used for communication between field devices and control sys-
tems.

e |EEE C37.118: Synchrophasor Standard: Designed for synchronized phasor and frequency meas-
urements, this standard enables precise real-time data transmission with timestamping. It has been
superseded by IEEE/IEC 60255-118-1, which supports enhanced features for synchrophasor com-
munication.

e |EC 61850: Developed for comprehensive substation automation, IEC 61850 ensures interopera-
bility across vendor systems and supports logical node modeling, advanced features such as
GOOSE messaging, and standardized configuration language. It integrates communication at pro-
cess, bay, and station levels.

The evolution of SCADA communication systems aligns with the growing complexity of smart
grids, introducing new challenges in robustness, efficiency, security, and grid reliability:

1) Robustness: Modern SCADA systems demand a robust communication and information infrastruc-
ture capable of meeting performance metrics such as low latency, high bandwidth, and fast re-
sponse times. These requirements are critical for reliable automation and control.
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2) Efficiency: The bidirectional flow of information in smart grids, spanning from domestic devices
to substations and ECCs, necessitates efficient communication. Technologies with rapid data ac-
quisition, such as PMUs, play a vital role in optimizing system controls and computing capabilities.

3) Security: The security of the communication system is paramount, given the sensitive and time-
critical nature of the data it transmits. Secure communication protocols and robust cybersecurity
measures must protect infrastructure across domains such as power plants, substations, and real-
time systems, addressing emerging threats while safeguarding privacy.

4) Impact on grid reliability: The integration of RES, demand response mechanisms, and the prolif-
eration of electric vehicles introduces significant challenges to grid reliability. Renewable energy
sources, such as wind and solar, are inherently intermittent and unpredictable, requiring sophisti-
cated forecasting and real-time adjustments to maintain balance between generation and demand.
Communication systems play a crucial role in enabling these adjustments by providing accurate,
time-sensitive data to control centers and field devices.
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Figure 2.9: SCADA and smart grid protocols [5].
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2.2.5 SCADA master stations [5]

The SCADA master station serves as the central hub for monitoring and controlling the power grid,
consisting of interconnected computers, servers, peripherals, and input/output (I/0O) systems. These
stations vary in scale, from small substation control rooms to large national transmission ECCs. Small
master stations, typically found in sub-load dispatch centers, handle a limited nhumber of RTUs and
provide basic control and monitoring. Medium-sized stations incorporate multiple servers — such as
SCADA/EMS, Information Storage and Retrieval (ISR), and development servers — with operator ter-
minals for extensive system supervision. Large-scale master stations feature redundant systems, en-
hanced security, and often a fully redundant backup station at a remote location, ensuring uninterrupted
operation during emergencies.

The hardware of a master station includes dedicated servers connected through high-speed, dual-
redundant LANS, each tasked with specific roles within a client-server environment. Key components
include the SCADA server for core functions like data collection and control command execution,
application servers for specialized tasks such as generation or distribution SCADA applications, and
ISR servers for historical data archiving and report generation. Other essential hardware includes Com-
munication Front Ends (CFEs) for data transfer, ICCP servers for inter-center communication, and
Dispatcher Training Simulator (DTS) servers for operator training. Advanced visualization systems,
like video projection systems, support large control rooms by driving dynamic mimic board displays.

The software components of a master station support both basic SCADA functions and advanced
applications tailored to specific system needs, such as generation, transmission, or distribution. Basic
SCADA functions include data acquisition, remote control, historical data analysis, database manage-
ment, reporting, and HMI functionalities. For instance, data acquisition involves collecting analog,
digital, and pulse inputs from field equipment, while remote control capabilities enable operators to
manage circuit breakers and isolators. Historical data analysis provides critical insights into post-event
scenarios, aiding in system planning and operational improvements.

Advanced SCADA applications expand these basic functionalities into domain-specific roles. Gen-
eration SCADA, often implemented as SCADA/AGC, incorporates complex energy management ap-
plications, including AGC, economic dispatch calculation, interchange transaction scheduling, unit
commitment, short-term load forecasting, and hydrothermal coordination.

Transmission SCADA builds on basic functions by integrating advanced EMS applications. These
include:

e State estimation: Processes redundant data to determine system state variables, enabling accurate
real-time monitoring.

e Contingency analysis: Simulates outages to assess potential impacts on system stability, bus volt-
ages, and power flows.

e Network configuration processor: Automatically determines system topology based on breaker
statuses and measurements.

e Optimal power flow: Solves for optimal system configurations to achieve objectives like cost min-
imization or power loss reduction under operational constraints.

Distribution automation and Distribution Management Systems (DMS) focus on enhancing reliabil-
ity and operational efficiency at the distribution level. Key functionalities include fault identification,
isolation, and service restoration, network reconfiguration to optimize distribution paths, load man-
agement and demand response to balance consumption, integration with customer and geographical
information systems, power factor and reactive power control to optimize voltage profiles, short-term
load forecasting, and three-phase unbalanced power flow studies.
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Figure 2.10 illustrates the evolution of SCADA systems from basic functionalities to advanced ap-
plications such as SCADA/AGC for generation, SCADA/EMS for transmission, and SCADA/DMS
for distribution, according to [5]. As SCADA systems incorporate these advanced features, their com-
plexity and cost increase, reflecting their expanded capabilities to meet modern grid demands.
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Figure 2.10: SCADA functions in power systems.

2.2.6 Human-machine interface (HMI) [5]

The HMI serves as an interactive platform where operators monitor and control the power system.
Its design emphasizes user-friendliness, efficiency, and error reduction, allowing operators to manage
complex systems with minimal effort. Over time, operator tools have evolved from manual devices to
sophisticated computer-based systems. In modern SCADA systems, the HMI integrates hardware and
software to provide an interface for controlling generation, transmission, and distribution systems.

The hardware components of the HMI include operator consoles equipped with multiple displays,
which offer diagnostic and graphical views tailored to industry-specific needs, enabling operators to
visualize system conditions in real-time. Alarms are incorporated into the interface with visual and
auditory notifications, ensuring operators are promptly informed of system events. Mimic diagrams, a
core feature of ECCs, offer a comprehensive visual overview of the system, displayed on LCD/LED
panels or dynamic map boards that update automatically based on system changes. Various peripheral
devices are used for generating event logs and reports.

The software components of the HMI complement the hardware by providing advanced visualiza-
tion and control capabilities. Access control mechanisms ensure system security, requiring user au-
thentication through IDs and passwords. Real-time and historical data visualization helps operators
track variables such as voltage, current, frequency, and power flow, supporting informed decision-
making. Forecasting capabilities that track historical data, and real-time changes may also be available,
to predict future system states and evaluate performance over time. Alarm processing systems compare
incoming data against predefined thresholds, triggering alarms when deviations occur, so that opera-
tors can acknowledge and filter alarms, avoiding information overload while ensuring critical issues
are addressed promptly. Logs and reports generated by the HMI system serve various organizational
needs, supporting both operational insights and regulatory compliance.
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2.2.7 Data flow in the SCADA system [5]

The data flow in a SCADA system reflects the sequential processes required to transform raw field
measurements into actionable information displayed on an operator’s console. This flow can be exam-
ined through the example of displaying a 150 kV bus bar voltage on a mimic diagram, involving sev-
eral steps, as illustrated in Figure 2.11:

1) Field measurement: A Voltage Transformer (VT) at the substation steps the 150 kV voltage down
to a manageable level (e.g., 300 V) for further processing. In addition to reducing the voltage, the
PT provides electrical isolation, protecting sensitive measurement and control equipment from the
high-voltage system.

2) Signal conversion: A voltage transducer converts the 300 V output from the PT into a 4-20 mA
analog signal. This standardized current range is less susceptible to interference over long dis-
tances, so that data transmitted to the RTU remains accurate.

3) A/D conversion: The RTU’s analog input module digitizes the 4-20 mA signal for transmission.

4) Data packaging: The digitized measurement is encapsulated into data packets according to the
communication protocol used between the RTU and the master station.

5) Transmission: The data packets are transmitted from the RTU to the master station via the estab-
lished communication network, which may include wired connections (e.g., fiber optics, Ethernet)
or wireless systems (e.g., microwave, cellular networks).

6) Processing at master station: A front-end processor or communication front-end decodes the in-
coming data packets to extract the relevant measurement information.

7) Display: The decoded data is rescaled to represent the original 150 kV value and displayed on the
mimic diagram at the corresponding bus bar, thus completing the monitoring cycle.

2.3 Substation automation [5], [14]

Substation automation (SA) has become a cornerstone of modern power systems, transforming tra-
ditional substations into intelligent, interconnected hubs of operation. By integrating advanced tech-
nologies — such as IEDs, process buses, and standardized communication protocols — SA delivers sub-
stantial benefits in operational efficiency, reliability, and scalability. Its growing adoption reflects a
critical role in meeting the demands of modern utilities, including enhanced grid resilience, reduced
operational costs, and support for RES integration. This Section explores the evolution of SA, its tech-
nical underpinnings, the transition from conventional to digital substations, and the challenges encoun-
tered during its implementation.

2.3.1 Evolution of substation automation

Historically, substations relied heavily on manual operations. Electromechanical relays and exten-
sive hardwiring formed the backbone of traditional control systems, necessitating frequent human in-
tervention for maintenance, fault isolation, and reconfiguration, and leading to operational inefficien-
cies and prolonged outages. The advent of SCADA systems marked the first step toward automation
by enabling remote monitoring and control, albeit with limited functionality and a strong dependence
on centralized control systems.

The introduction of microprocessor-based devices in the 1980s spurred the transition from manual
systems to semi-automated and later fully automated substations. IEDs revolutionized substation de-
sign by integrating protection, control, and monitoring functions into a single platform. The adoption
of digital communication, e.g., through IEC 61850, further accelerated automation by enabling seam-
less interoperability between devices from different manufacturers. These technological advances laid
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the foundation for fully integrated digital substations capable of self-diagnosis, adaptive control, and
real-time data exchange.

Field
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Figure 2.11: Data transfer from the busbar to the control center HMI [5].

2.3.2 Components of substation automation systems
A modern substation automation system typically comprises several interconnected components:
e |EDs consolidate multiple functionalities within a single device, reducing hardware requirements
and improving system responsiveness. Advanced IEDs may also support phasor measurement,
waveform capture, and real-time fault analysis.

e The process bus manages communication between field devices (e.g., sensors, actuators) and IEDs.
By digitizing signals at the source, the process bus reduces wiring complexity and minimizes signal

degradation.
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e The station bus connects IEDs, HMIs, and external systems, enabling centralized monitoring and
control. It also supports the flow of operational data across different levels of the substation.

e Serving as the primary user interface, the HMI allows operators to oversee system performance
and respond to critical events in real-time. Modern HMIs feature graphical interfaces, alarm man-
agement systems, and historical data analysis tools.

e Standardized protocols (IEC 61850, DNP3, and Modbus) enable continuous communication
among devices. IEC 61850, in particular, offers real-time peer-to-peer messaging and wide-ranging
interoperability, making it a pivotal standard for modern SA.

e Digital instrument transformers and MUs provide highly accurate measurements and aggregate
data from multiple sensors, ensuring reliable input to protection and control systems.

2.3.3 Transition from conventional to digital substations

Conventional substations rely on extensive hardwiring for control and protection, with devices op-
erating largely in isolation. Analog signal transmission over long distances often leads to interference,
compromising reliability. Additionally, these systems frequently lack scalability, to costly and time-
consuming expansions or modifications. Digital substations overcome these limitations by incorporat-
ing advanced automation technology, characterized by:

1) Scalability — Modular design strategies allow for effortless addition of new devices and functions.
2) Flexibility — Digital communication protocols enable integration with broader utility systems.

3) Reliability — Self-diagnostic capabilities and real-time fault detection minimize downtime and
boost system resilience.

4) Interoperability — Standardized protocols ensure compatibility across devices and vendors.

Overall, by replacing analog signals with digital interfaces, digital substations substantially simplify
wiring, improve data fidelity, and establish a layered architecture for efficient data flow across the
process, bay, and station levels.

2.3.4 Challenges in implementing substation automation

Implementing substation automation presents several challenges that utilities must address to fully
realize its potential. One of the most significant difficulties lies in integrating modern technologies
with legacy systems. Many substations still operate with outdated equipment and infrastructure, and
retrofitting these with advanced automation components requires meticulous planning. Compatibility
issues can arise, particularly when older systems lack the flexibility to interface seamlessly with mod-
ern IEDs and digital communication networks. Utilities must invest time and resources to ensure
smooth interoperability and avoid operational disruptions during the transition.

Cybersecurity is another pressing concern as increased digitalization introduces vulnerabilities in
the communication and control infrastructure. Automated substations depend on real-time data ex-
change, making them potential targets for cyberattacks that could compromise critical operations. Util-
ities need to implement robust security measures — encryption, intrusion detection, and role-based ac-
cess control — to protect critical assets and continuously adapt to emerging cyber threats.

Financial constraints also pose a significant barrier, especially for utilities operating in regulated
markets with tight budgets. While implementing SA promises long-term cost savings, the initial in-
vestment required for new equipment, installation costs, and personnel training can be substantial. For
many utilities, this financial burden is compounded by the need to maintain uninterrupted operations
during upgrades, which may necessitate temporary solutions that increase overall costs.

Another challenge lies in the skill gap associated with adopting advanced technologies. SA systems
require specialized knowledge for installation, operation, and maintenance, and the existing workforce
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may lack the necessary expertise. Utilities need comprehensive training initiatives to ensure that engi-
neers and operators can manage, maintain, and troubleshoot these systems.

Despite these challenges, utilities often adopt a phased approach to SA implementation, beginning
with incremental upgrades, such as gradually integrating IEDs or digital communication into selected
areas, while retaining some legacy components. This strategy helps spread costs over time and allows
for an overall smoother transition.
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3. SYNCHROPHASOR MEASUREMENT SYSTEMS

Phasor measurement units (PMUs) are measurement devices designed to record bus voltage and
line current phasors, as well as the frequency and the Rate of Change of Frequency (ROCOF) of these
signals. By employing precise time synchronization — commonly achieved through a GPS-based clock
— each measurement is tagged with its corresponding time instant, thereby enabling the concept of
synchronized phasor measurements, or synchrophasors. These high-resolution measurements have be-
come the preferred means to monitoring and analyzing modern electric power systems [4]. Over the
years, extensive research and development in PMU technology have led to a wide range of emerging
applications, including advanced situational awareness, real-time control, and dynamic stability as-
sessment. This Chapter explores the evolution of PMU technology, and the wide range of emerging
applications based on synchrophasor measurements.

3.1 Basic definitions

The concept of the phasor was introduced in 1893 by Charles Proteus Steinmetz [15]. A phasor
represents a sinusoidal signal as a complex number, encapsulating both its RMS value and phase angle.
This representation is particularly effective for analyzing power systems under steady-state conditions
at nominal frequencies, typically 50 or 60 Hz [15]. Consider a pure sinusoidal signal described by:

x(t) = X,,, cos(at + @) 3.1
where o =27z f is the angular frequency in radians per second, ¢ is the phase angle in radians, X,

is the amplitude of the signal, and Xm/\/E is its RMS value. Eq. (3.1)can also be written as:
x(t) = Re{X e} (®*} = Re{X eI} (3.2)

By suppressing the time-varying exponential term e’* the sinusoidal signal x(t) can be represented
as the complex number:

X(t) > X = (X /V2)e) = (X, /V2)(cos p+ jsin ) (3.3)

This complex number is the phasor representation of the sinusoid, with its magnitude equal to the
RMS value and its angle corresponding to the phase offset. Figure 3.1 illustrates the relationship be-
tween a sinusoid and its phasor representation. The length of the phasor equals the RMS value of the
sinusoid, and its phase angle is relative to a chosen reference axis, making the phase angle arbitrary
based on the coordinate system [8].

In addition to phasor representation, the frequency f of the sinusoidal signal is a fundamental pa-
rameter in AC systems. PMUs measure f in Hz and the ROCOF, defined as:

rocor =3 (3.4)
dt

ROCOF, expressed in Hz/s, provides critical insights into system dynamics, particularly during tran-
sient events. Both frequency and ROCOF measurements, along with synchrophasor data, are refer-
enced to Coordinated Universal Time (UTC), ensuring precise temporal alignment across all measure-
ment points [4].
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3.2 Short history of the PMU

The concept of synchronized sampling first emerged in protection systems, where measurements
were collected at substations separated by considerable distances. Important strides were made in the
1970s and 1980s with the development of computer relaying algorithms. A notable development was
the Symmetrical Component Distance Relay (SCDR), specifically designed for protecting HV trans-
mission lines, which led to the Symmetrical Component Discrete Fourier Transform (SCDFT) — a
recursive algorithm for computing symmetrical components of voltages and currents [16]. This work
underscored the value of measuring positive sequence voltages and currents over one cycle of the
fundamental frequency, provided that such measurements could be synchronized across the power
system [6]. Concurrently, the deployment of the GPS was gaining momentum, revealing its potential
as an effective means for achieving precise synchronization of power system measurements over wide
geographical areas [4].

This groundwork culminated in the development of the first prototype PMU utilizing GPS technol-
ogy by a research team at Virginia Tech in 1988 [16]. At that time, the GPS receiver clock was external
to the PMU, and due to the limited number of GPS satellites available, the clock was equipped with a
high-precision internal oscillator to ensure timekeeping in the absence of visible satellites [6]. These
prototype PMUs were subsequently deployed in several substations operated by the Bonneville Power
Administration, the American Electric Power Service Corporation, and the New York Power Authority
[17]. Macrodyne Co. was the first industrial adopter, initiating numerous demonstration projects fo-
cusing on PMU use at the transmission level. Over the years, the number of manufacturers has grown
to tens of mass producers nowadays, while deployment of PMUs in power systems is being carried out
in earnest in many countries worldwide [4].

It is noteworthy that synchrophasor measurement capability need not be the sole function or purpose
of a device; many relay manufacturers now include PMU functionalities protective relays, meters, and
fault recorders. Any device offering synchrophasor measurement can be considered a PMU (e.g., a
PMU-enabled IED), provided that its PMU functionality does not compromise other device functions
and vice versa. Because each manufacturer employs its own phasor calculation algorithms, variations
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in accuracy and latency can exist among different PMU or PMU-enabled IED models [8]. Figure 3.2
and Figure 3.3 illustrate examples of PMU-enabled IEDs from different manufacturers.

Figure 3.3: SEL-351A protection relays with PMU functionality.

Most recently, utilities and regional market operators have turned to large-scale synchrophasor tech-
nology deployments in substations, following two main strategies: (a) use of dedicated PMUs and (b)
use of PMU-enabled IEDs, including DFRs, digital protective relays, digital disturbance recorders. As
the industry begins to leverage this technology, making it a mainstream choice for enhancing system
monitoring, protection, and control, the total number of PMUs and PMU-enabled IEDs is anticipated
to grow significantly over the next five to ten years.

Maximizing the benefits of this technology will require substantial labor for substation installation,
communication standardization, data integration, and the development of appropriate visualization
tools [4]. To ensure device interoperability, the IEEE has led extensive standardization efforts. The
first PMU standard, IEEE Standard 1344, was published in 1995 [18]. Subsequent refinements pro-
duced IEEE C37.118 (2005) [19] and IEEE C37.118.1 (2011) [20], with its amendment IEEE
C37.118.1a(2014) [21], followed by IEEE C37.118.2 [22]. As of 2024, the current version, IEEE/IEC
60255-118-1-2018, was released in 2018 [23]. The IEEE standard permits PMU manufacturers to se-
lect their design approaches, providing only specifications under steady-state and dynamic testing con-
ditions. It also defines the primary performance metric, the Total Vector Error (TVE), for PMU accu-
racy evaluation and comparison. The standard IEEE C37.118.1-2011 first introduced two performance
classes: a P-class, designed for applications requiring rapid responses, such as protection, and an M-
class, offering higher accuracy for measurement applications [22]. Another important standardization
milestone is the IEEE standard C37.242-2021 [24], initially released in 2013 and revised in 2021,
which serves as a guide for the synchronization, calibration, testing, and installation of PMUs.
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3.3 PMU architecture

The architecture of PMUs varies across manufacturers, leading to differences in design and imple-
mentation. Despite these variations, identifying the fundamental components of a generic PMU is es-
sential for understanding its core architecture and operational principles. This Section examines certain
practical considerations in PMU design and provides an overview of its hardware modules, emphasiz-
ing how each component influences the overall accuracy and performance of the PMU. A typical PMU,
with its block diagram illustrated in Figure 3.4, is composed of four different modules: the data acqui-
sition system, the computation module, the synchronization sources, and the communication interface

[4].
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Figure 3.4: PMU architecture block diagram [5].

3.3.1 Data acquisition system

The data acquisition module comprises the Instrument Transformers (ITs) and current/voltage con-
verters, which adapt power system signals to the PMU’s rated input levels. Voltage and current signals
are transformed to standard input levels — typically 300 VV/5A — via appropriate CTs and PTs, ensuring
compatibility with the specifications of the signal processing stage of the device. These transformed
signals are further converted into voltage levels suitable for processing, usually within a 10V range
[5].

The signal conditioning module is responsible for adapting analog input signals for digital acquisi-
tion circuits. This module includes an anti-aliasing (low-pass) filter, which is intended to isolate the
fundamental power frequency signal from unwanted high-frequency components before A/D conver-
sion [4], [5]. The sampling rate of the A/D converter dictates the frequency response of the anti-aliasing
filters, which typically have a cut-off frequency less than half the sampling frequency to satisfy the
Nyquist criterion [4].
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A high-resolution A/D converter digitizes the analog signals. The number of A/D channels depends
on the number of signals being measured. In most PMU implementations, at least six channels are
required to accommodate three-phase voltage and current measurements. The sampling clock pulse,
provided by a crystal oscillator within the GPS module, is phase-locked with the GPS clock, ensuring
precise synchronization during A/D conversion. To optimize digital signal processing, decimation fil-
tering is applied, reducing the sampling rate while preserving measurement accuracy [5].

3.3.2 Computation module

The computation module, typically a CPU, is responsible for real-time computation of phasor esti-
mates from acquired voltage and current signals. It determines the positive sequence phasor of the
power system quantities and assigns a UTC timestamp to each measurement, obtained from the GPS
module.

Importantly, the processing capability of a PMU depends strongly on the number of input channels
processed simultaneously and on the computational complexity of the real-time algorithm used to cal-
culate (or, more appropriately, estimate) synchrophasors, frequency, and ROCOF. As it is necessary
to minimize PMU latency while maximizing its reporting rate, the choice of an estimation algorithm
and hardware suitable for the specific needs and sought performance is a critical factor. In addition,
the choice of hardware depends on several other factors such as programmability, reconfigurability,
and parallelization features. In fact, hardware for PMU implementation can range from general-pur-
pose processors to specialized chipsets, such as digital signal processors, graphical processing units,
or application-specific integrated circuits, which offer higher performance but may compromise pro-
grammability [4].

3.3.3 Synchronization sources

The time synchronization module is the basis of the synchrophasor concept and the defining feature
of a PMU, distinguishing it from conventional digital measurement devices. It enables the acquisition
of a precise time reference, used to disseminate the current time throughout the system and discipline
the synchronization of internal clocks and of the recorded measurements. Consequently, data trans-
mission speed is no longer a critical factor in the utilization of phasor data across multiple PMUs in a
WAMS [4], [6].

The synchronization source may be either internal or external to the PMU, typically relying on a
satellite receiver either directly or indirectly. External synchronization is often achieved via established
time protocols, such as the IRIG-B and the Precision Time Protocol (PTP, IEEE 1588), which relay
time information to the device. The synchronization module performs multiple critical functions [4]:
e It provides a common UTC time reference for measurement timestamps.

e It indicates the exact reporting instant of PMU measurements.
e It can be used to trigger data acquisition, depending on the chosen architecture.
e It supplies time quality indicators that must accompany the measurement data.

The IEEE C37.118.1 standard specifies a maximum allowable timing error of 1 us for PMUs. For
synchrophasor-based power system monitoring, this timing accuracy is generally considered sufficient,
as it corresponds to a phase angle error of approximately 0.02° in 50 Hz systems. However, for certain
high-speed protection applications, stricter timing accuracy (e.g., 100 ns or better) may be required to
ensure precise event localization and fault detection [8].

3.3.4 Communication interface

The communication interface enables the transmission of measurement data to any synchrophasor-
enabled device (PMU or PDC), thereby facilitating integration of the device into a broader WAMS
architecture. PMUs support contemporary communication technologies, with Ethernet being the
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predominant communication medium. PMU data is transferred over TCP or UDP over IP. Besides
copper cables, state-of-the-art PMUSs incorporate fiber optic and/or wireless network interfaces.

The IEEE C37.118.2 standard defines PMU data frame structure and specifies the format of com-
munication messages [22]. The measurement frame must include the phasor values (magnitude and
angle or real and imaginary parts) from all the PMU input channels, the frequency and ROCOF, along
with the corresponding UTC timestamp. Each frame also contains various fields to identify the data
streams, assess the quality of synchronization and signify erroneous data, as well as additional fields
typical of packet communications, such as synchronization frames, packet sizes, correction bits, and
other protocol-specific information. Message types defined in IEEE C37.118.2 include data frames
(measurement reports), configuration frames (device setup information), and command frames (con-
trol messages for PMUSs).

3.3.5 Performance and design considerations

PMU design requires a balance between cost, performance, and hardware constraints. As several
hardware elements collaborate within the PMU, their individual specifications significantly influence
the overall performance of the device. For instance, it is crucial that the anti-aliasing filter does not
introduce distortions or excessive delays in the signals being measured, especially in the passband
around the nominal system frequency. Attenuation or phase distortion can directly impact measure-
ment accuracy, while delays may influence both the synchronization of measurements and the latency
in reporting results. At the same time, the choice of real-time phasor estimation algorithms directly
impacts latency and reporting rates. Furthermore, a PMU must relay measurements at a high reporting
frequency to other PMUs or PDCs, depending on the chosen monitoring scheme. In compliance with
IEEE C37.118.2, PMU reporting rates are typically set as integer multiples of the nominal power sys-
tem cycle (20 ms for 50 Hz, 16.67 ms for 60 Hz) [19]. While traditional PMUs operate up to 120 fps,
newer high-speed PMUs following IEEE 60255-118-1 allow reporting rates exceeding 120 fps, which
must be supported without overwhelming the available network infrastructure [4].

3.4 Instrument transformers

ITs provide reduced voltage and current signals to the PMU analog inputs in the substation. Since 2010,
the IEC 60044 standard series has been gradually replaced by the IEC 61869 series, which introduces
a structured classification of ITs into two primary categories [25]:

e Conventional ITs, which include inductive CTs, inductive VTs, combined CT-VT units and capac-
itive VTs.

e Low-power Instrument Transformers (LPITs), which output low-power analog or digital signals
to measuring devices, meters, and protective or control systems. LPITs are further classified into
active and passive types based on their dependency on an external power source.

Secondary voltage and current RMS levels are typically standardized at 100 V for voltage trans-
formers and either 1 A or 5 A for current transformers, as specified in IEC 61869 and IEEE C57.13.
However, variations exist in LPITs, which may produce low-power secondary signals in the 10V range
or direct digital outputs.

The IEC 618609 series also establishes accuracy requirements for ITs based on their intended appli-
cation, whether for measurement or protection. These requirements apply equally to conventional ITs
and LPITs. The standard defines accuracy classes for CTs as 0.1, 0.2, 0.5, and 1, while for VTs, the
classes include 0.1, 0.2, 0.5, 1, and 3. Compliance with a specific accuracy class requires meeting
prescribed limits for ratio error (the percentage deviation of the transformed voltage/current ratio from
its nominal value) and phase displacement (the angular deviation between primary and secondary sig-
nals) under specified operating conditions. For instance, a class 0.5 CT, commonly used in medium-
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and high-voltage networks, must maintain a ratio error within 0.5% of the rated current and a maximum
phase displacement of 9 milliradians (mrad) [4].

In usual practice, magnetic-core VTs and CTs are employed, typically rated at class 0.5, which
allows for a maximum ratio error of 0.5% and a phase error of 6 mrad at full scale. To mitigate the
effect of the ratio and phase errors introduced by ITs, compensation algorithms are usually integrated
into commercial PMUs. However, such compensations assume accurate knowledge of IT characteris-
tics, which is often impractical and may not be reliable due to uncertainties in metrological assessments
and the impact of actual network and environmental conditions on the transducers. Therefore, trans-
ducers are a major source of uncertainty in synchrophasor measurements [4].

3.5 Phasor data concentrators (PDCs)

The Phasor Data Concentrator (PDC) is an essential component of the WAMS infrastructure, re-
sponsible for collecting, processing, and routing synchrophasor data from multiple PMUs. Any device
capable of receiving PMU measurement packets formatted according to IEEE C37.118.2 can function
as a PDC [22]. The primary role of a PDC is to merge and time-align multiple PMU data streams into
a unified dataset that can be forwarded to a higher-level synchrophasor-enabled device, such as a Super
PDC (SPDC), or stored for post-event analyses. Since each PMU dataset is timestamped, the aggrega-
tion process is relatively straightforward, as measurements with identical timestamps can be aligned
across multiple data streams [4].

3.5.1 Role of PDCs in WAMS

As illustrated in Figure 3.5, PDCs and SPDCs operate at different levels within the WAMS hierar-
chy, with specific roles depending on the application [4], [26]:

e In post-event analysis and offline applications, the PDC serves primarily as a data validation and
archival unit. It gathers synchrophasor data from various PMUs, verifies the integrity of measure-
ment packets, and stores the information in a database for future use. This function is particularly
useful for forensic analysis of grid disturbances, oscillation events, and blackouts, where archived
PMU data allows for detailed event reconstruction and diagnostics.

e In real-time applications, such as State Estimation (SE) and real-time grid monitoring, the PDC
aligns PMU measurements based on their timestamps. In such cases, latency and reliability are
critical factors, requiring the PDC to possess high computational capability. To ensure minimal
processing delays, modern PDC implementations integrate efficient data queuing mechanisms and
low-latency networking protocols.

3.5.2 Challenges in PDC implementation

Despite their essential role in WAMS, PDCs face several challenges that can impact performance

and reliability [26]-[28]:

e Packet loss and data inconsistency: Network congestion, jitter, or hardware failures can lead to
missing or out-of-order data packets, affecting time alignment and reliability. Advanced error cor-
rection and redundancy mechanisms must be implemented to mitigate these issues.

e Scalability issues: As the number of deployed PMUs increases, data processing loads on PDCs
grow exponentially. Efficient data compression and distributed computing architectures can help
address scalability concerns.

e Cybersecurity vulnerabilities: Since PDCs serve as centralized data hubs, they can be targets for
cyberattacks, such as data injections, denial-of-service, and GPS spoofing. Robust encryption and
authentication mechanisms must be integrated to ensure secure data exchange.
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The increasing adoption of software-defined networking and cloud-based PDC architectures offers
new opportunities for improving PDC performance. Future research is focusing on decentralized data
aggregation, utilizing edge computing to reduce dependence on centralized PDCs, thereby improving
resilience and fault tolerance. Al-driven data quality analysis leverages machine learning algorithms
to automatically detect and filter out erroneous PMU data, improving system reliability, and block-
chain-based data security explores blockchain technology to enhance the integrity and authenticity of
synchrophasor data exchanges in large-scale WAMS networks [26], [28].

3.6 Structure of the wide area monitoring system

WAMS are synchrophasor-based networks designed to provide real-time monitoring of both steady-
state and dynamic conditions across large-scale power transmission and sub-transmission networks.
These systems serve as an early warning mechanism against grid instabilities, playing a crucial role in
preventing cascading failures, optimizing asset utilization, and enhancing overall grid reliability [4],
[26], [29].

The architecture of a typical WAMS is illustrated in Figure 3.5. At the core of this system are PMUSs,
which function as measurement nodes deployed at critical substations. PMUs provide timestamped
measurements from all monitored buses and feeders, which can be stored locally and accessed re-
motely for post-event analysis or diagnostic purposes. However, in most applications, the phasor data
is used at locations remote from the PMUSs, where continuous data streams from multiple PMUs are
aggregated. This data transfer necessitates a communication network that comprises PMUs, commu-
nication links, PDCs to ensure the reliable transmission of field measurements to monitoring applica-
tions, conventionally located at the ECC. Individual PMU data streams are first transmitted to upper-
level PDCs, i.e., SPDCs, which mediate data sharing between ECCs or even across utilities [4], [26],
[29].

3.7 Integration of PMU-based applications in the EMS

When commercial PMUs first became available, their primary application was limited to post-event
analysis, given the high cost of the devices and the limitations of communication networks for real-
time data transmission. However, with the rapid expansion of PMU deployment and advancements in
communication infrastructure, research has increasingly focused on leveraging phasor and frequency
measurements for real-time monitoring, control, and protection of power systems [4], [5]. Overall,
WAMS are expected to revolutionize the EMS functionalities as they offer significant advantages over
the legacy SCADA system, as illustrated in Table 3.1.

One of the frequently cited advantages of WAMS is the enhancement of situational awareness by
providing operators with synchronized phasor data from critical grid nodes. However, situational
awareness alone does not sufficiently justify the significant financial investment required for deploying
WAMS. Consequently, research has concentrated on exploring PMU-based applications that provide
actionable insights for grid operation and stability. These applications include state estimation, voltage
stability monitoring, oscillation detection, transient stability assessment, and fault location [8], [30]. A
brief description of available real-time and offline production-grade phasor data applications is given
in Table 3.2 and Table 3.3, respectively, followed by their analytical description in the following Sub-
sections.

3.7.1 Power system monitoring and control [6], [8], [31]

Historically, power system monitoring depends on SE algorithms that use SCADA measurements
collected by RTUSs to estimate the voltage phasors at all system buses. Using this approach, the system
state is inferred from unsynchronized power flow and injection measurements using a nonlinear state
estimator. However, the quality of the state estimates is affected by several sources of error, including
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measurement asynchronization, communication noise introduced during data transmission through
outdated communication channels, and the assumption of steady-state grid operation. The integration
of PMU technology addresses many of these issues by providing higher reporting rates, direct obser-
vation of state variables, and synchronization of measurements to a precise time source. Furthermore,
as PMUs are capable of recording branch current phasors, the SE measurement model is simplified
and, under certain conditions, may become fully linear, offering significant advantages over conven-
tional nonlinear methods.
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Figure 3.5: Hierarchy of the phasor measurement systems [4].

Table 3.1: Comparison of SCADA and WAMS measurement systems.

Aspect

SCADA

WAMS

Measurement type

Voltage and current magnitudes, power
flows and injections

Voltage and current phasors, frequency
and ROCOF

Reporting rate

0.1-1 fps, due to bandwidth and pro-
cessing limitations

25-120, or even higher fps

Synchronization

No time synchronization

Synchronized using GPS timestamps

Lower: low-resolution A/D converters,

High: high-resolution A/D converters,
reliable data transmission, strict calibra-

Accuracy errors during data transmission tion standards and error-correction algo-
rithms
Latency High latency due to legacy communica-| Compatible with modern high-speed

tion systems

communication protocols

Application focus

Steady-state monitoring and control

Dynamic monitoring, real-time control,
and protection

Event detection

Limited to slow, large-scale events

Capable of detecting fast, localized
events
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Table 3.2: Description of real-time PMU applications [30].

Real-time applications

Functionality

Setting system operating limits (SOLs);
Event detection and avoidance

e Data-informed identification of normal range of op-
eration

e Alerts to indicate abnormal operating conditions;
Presentation and decision support tools for event
identification and correction

Congestion management

Real-time calculation of line ratings with feed through
to online monitoring tools

Fault location

e Geo-spatial display of event location

e Near real-time and historical data presentation capa-
bility

e Event type identification and display (phase-ground
vs. phase-phase fault, loss of load, loss of genera-
tion, etc.)

Power oscillations

e Oscillation detection and mode meter

e Display estimates of oscillation damping and oscil-
lation energy

e Decision support tools to deal with poorly damp-
ened oscillations

Outage restoration

e Assist in re-synchronizing of islands
e Quicker restoration by expediting forensics and
event identifications

Special protection schemes and islanding

¢ Identify precursors to events that would necessitate
islanding

e Ensure proper generation controls are in place to
manage the island, once created

State estimation

Integrate high-fidelity synchronized phasor measure-
ments in state estimators

Voltage stability

e Voltage stability indicators defined with relation to
current operating point

¢ Long and short-term trending to help operators
identify changes in system conditions

Wide-area controls

e Response-based wide-area reactive switching when
wide-area voltage instability is detected

e Response-based inter-area oscillation damping us-
ing power modulation controls

Wide-area situational awareness

Trending displays

e Display trends of system frequency at multiple lo-
cations (long and short timeframe)

e Display trends of major path flows

e Operator training for disturbance identification

Phase angle alarms and displays

e Displays that show angular separation between
critical areas in the system, with alarms

e Decision support tools to deal with alarms

e Reactive reserve monitors
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Table 3.3: Description of offline PMU applications [30].

Offline applications Functionality

Baselining tools

¢ Integrate system performance indicators (damping,
voltage stability, etc.) into EMS

e Provide seasonal reports

Baselining Use baselines

e To improve planning models

For pattern recognition and early diagnosis of ab-
normal grid events

e To setalert and alarming thresholds

e Wide area phasor angles may be better indicators
Alarming and SOL evaluation and design limiting conditions and SOLs
e Alarms and SOLs based on system damping

e Mechanisms for collecting data from PMUs

e Tools to identify significant operational parameters
involved (modes of oscillation, frequency excur-
sions, voltage impacts, etc.)

Power plant model and performance validation

¢ Validate power plant models

Generator model validation e Track power plant performance with respect to
voltage, frequency and oscillations

e Detect control failures

Forensic event analysis

e Estimate system load sensitivity to frequency

e Estimate real-time load sensitivity to voltages

e Measure and analyze dynamic load response during
FIDVR events

e Oscillation detection and mode meter
Power oscillations e Baseline oscillation damping with respect to system
operating conditions

Load model derivation

e Analysis and baselining of system frequency perfor-
Frequency stability mance and governor response distribution in inter-
connections

e Adopt processes for system model validation using

System model calibration and validation tools to compare actual event data to study results

In power systems, control is typically localized, with generators managed based on local measure-
ments and a model of the rest of the power system. In contrast, wide-area control, enabled by PMUs,
provides system-wide visibility, allowing operators to detect and mitigate disturbances in real-time.
By combining local and global control strategies, PMUs enable advanced stability control measures,
including adaptive islanding, which prevents cascading failures by intelligently separating unstable
grid sections, real-time generator rescheduling, and dynamically adjusting voltage support via reactive
power compensation.

Traditional methods for transient stability assessment involve time-domain simulations and direct
methods, which, while effective, lack the speed and adaptability required for real-time operation. Syn-
chronized PMU measurements address these limitations by offering a more accurate representation of
system dynamics. One significant advancement enabled by PMUs is the use of decision trees (DTs)
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for transient stability assessment. DT-based methods involve offline training using historical data and
simulations, creating a model that can classify real-time system conditions as stable or unstable based
on PMU measurements. This approach significantly enhances the accuracy and speed of stability as-
sessments, as PMU data provides up-to-date system conditions that improve the reliability of DT clas-
sifications. Additionally, preventive control strategies have been developed that continuously monitor
system stability margins. If instability is detected, automated corrective measures, such as generation
redispatch, controlled load shedding, and dynamic reactive power compensation, can be triggered to
prevent system collapse. These capabilities are particularly valuable in deregulated power markets,
where real-time security assessments are crucial.

Real-time stability monitoring is a crucial aspect of modern power system operation, enabling op-
erators to detect and mitigate potential instabilities before they escalate into cascading failures. PMUs
contribute to real-time stability monitoring in several areas:

1) Voltage stability monitoring: PMUs help assess voltage stability by providing real-time voltage
magnitude and phase angle data from across the grid. These measurements are used to compute
voltage security indices, which indicate proximity to voltage collapse. Unlike conventional meth-
ods that rely on offline model-based simulations, PMU-based approaches enable dynamic voltage
stability analysis by continuously monitoring grid conditions and identifying weak areas prone to
voltage instability.

2) Oscillation monitoring: PMUs assist in identifying poorly damped low-frequency (0.2 to 2 Hz)
inter-area oscillations, which can degrade power quality and lead to system instability. Real-time
oscillation monitoring systems utilize ringdown analysis and ambient data methods to identify
electromechanical oscillatory modes. By processing PMU data with algorithms such as Prony anal-
ysis and frequency domain decomposition, system operators can detect oscillations early and im-
plement damping measures to prevent instability.

3) Angle stability monitoring: Maintaining angle stability is essential for preventing loss of generator
synchronism and system-wide blackouts. PMUs provide phase angle measurements that allow real-
time tracking of angular deviations across the network. These measurements support the imple-
mentation of wide-area feedback control strategies, where corrective actions such as generator re-
scheduling or controlled islanding are triggered based on real-time stability assessments.

Additionally, historical PMU data can be effectively used in conjunction with the operations planning

model to determine operating limits for rotor angle stability, voltage stability, and small signal stabil-

ity.

PMUs have also been instrumental in grid integration of renewable energy sources, where their
high-precision measurements aid in monitoring and controlling variable generation from wind and
solar plants. They assist in managing voltage and frequency stability challenges associated with high
penetration of renewables, thereby enhancing grid adaptability to fluctuating power injections. Addi-
tionally, PMUs contribute to load modeling and demand response by capturing real-time voltage and
frequency fluctuations, which helps in refining load models and improving demand-side management
strategies, enhancing grid flexibility and efficiency.

Adaptive system restoration is also a critical aspect of power system resilience, aiming to minimize
downtime and economic losses following blackouts. Traditional restoration strategies, based on pre-
computed simulations, often fail due to discrepancies between assumed and actual system conditions.
In contrast, PMU-based restoration leverages real-time wide-area measurements to dynamically adjust
restoration actions. The integration of PMU data enables precise monitoring of phase angles at key
buses, allowing for optimized reconnection of system islands while preventing excessive angular dif-
ferences that could destabilize the network. Additionally, PMUs support real-time generation-load re-
scheduling within system islands, ensuring synchronization before reclosing attempts.

64



3.7.2  Power system protection [6], [8]

Synchronized phasor measurements have significantly advanced power system protection by ad-
dressing longstanding challenges, including the protection of series-compensated and multi-terminal
lines, as well as the limitations in setting out-of-step relays. In many situations the capability to meas-
ure a remote voltage or current on the same reference as local variables has greatly enhanced the ac-
curacy and reliability of protection functions. In some cases, communication of synchronized meas-
urements between line terminals suffices, while in others, wide-area data exchange is necessary to
ensure effective fault detection. Phasor measurements are particularly beneficial for protection func-
tions with inherently slower response times, where measurement latency does not compromise perfor-
mance. This is particularly relevant for backup protection functions of distance relays and protection
functions concerned with managing angular or voltage stability of networks, which can effectively
utilize PMU measurements with propagation delays of up to several hundred milliseconds.

Differential protection, a well-established principle for buses, transformers, and generators, has his-
torically lacked direct application to long transmission lines due to the absence of synchronized meas-
urements. Transmission lines incorporating series compensation, FACTS devices, or multi-terminal
configurations pose unique protection challenges, which have traditionally been addressed using dif-
ferential-like schemes such as phase comparison. However, the increasing availability of synchronized
phasor measurements and advanced communication infrastructure now enables the implementation of
true differential protection for such complex network configurations. PMUs also enable distance pro-
tection schemes by offering synchronized fault detection and location capabilities. By accurately iden-
tifying fault locations, PMUs contribute to faster restoration times and reduced operational disruptions.

Moreover, PMUs have expedited the development of adaptive out-of-step protection, which adjusts
relay settings dynamically based on real-time grid conditions, thereby enhancing protection system
reliability and selectivity. Out-of-step conditions, where a group of generators loses synchronism with
the rest of the system, can precipitate large-scale grid failures. Traditional out-of-step relays use pre-
defined impedance relay zones, determined through extensive transient stability simulations, to distin-
guish between stable and unstable power swings. However, in highly interconnected power systems,
these settings quickly become outdated, leading to misoperations that may exacerbate cascading fail-
ures. By leveraging time-series analysis, PMU-based out-of-step relays can dynamically assess evolv-
ing angular swings and predict stability outcomes. This approach enables timely corrective actions,
such as controlled islanding or generator tripping, to prevent widespread system collapse. Initially,
adaptive out-of-step protection can be applied to known system separation points, with gradual expan-
sion to more complex network configurations as experience and data availability improve.

The performance of backup protection, particularly in distance relays, has been a subject of debate
due to the risk of unnecessary tripping caused by load encroachment during system disturbances. Zone
3 of distance relays, traditionally used for remote backup protection, has been identified as particularly
susceptible to misoperation, leading to proposals advocating its removal. However, a complete elimi-
nation of remote backup protection could compromise system security in scenarios where no other
protection mechanism is available. Instead, a more refined approach is required to ensure that backup
protection remains effective while avoiding unintended tripping under high-load conditions. PMU
measurements offer a viable solution to mitigate this issue by providing real-time data that can differ-
entiate between actual faults and load encroachment. In scenarios where a distance relay's Zone 3 is
triggered, PMU data can be utilized to assess whether the event corresponds to a genuine fault or a
load-induced condition. If a significant negative-sequence current is detected, indicating an unbalanced
fault, the relay trip is justified. Conversely, if the currents remain balanced, the event may either cor-
respond to a three-phase fault on an adjacent circuit or a loadability violation. To further refine the
decision-making process, PMUs installed at the terminals of the lines backed up by the relay in
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question can analyze the ratio of positive-sequence voltage to current. If none of these PMUs detect a
fault in their primary protection zones, the Zone 3 pickup must be attributed to a loadability violation
rather than an actual fault. In such cases, supervisory control can dynamically block the operation of
the backup relay, preventing unnecessary tripping.

3.7.3 Commercial synchrophasor applications

In the early 2010s, commercial synchrophasor applications were primarily focused on offline anal-
ysis, model validation, post-event diagnostics, and limited real-time visualization. At that time, com-
mercial software such as SEL-3378 Synchrophasor Vector Processor (SVP), now superseded by the
SEL-3555 Real-Time Automation Controller (RTAC), combined with the SEL SynchroWave Moni-
toring software, ABB PSGuard, Alstom Psymetrix’s PhasorPoint (later integrated into GE Vernova),
and Electric Power Group’s (EPG) Real-Time Dynamics Monitoring System (RTDMS) had begun
enabling applications such as wide-area situational awareness, voltage and frequency stability moni-
toring, power swing and oscillation detection, and event-driven data archiving. However, these tools
were still considered to be under development and lacked the maturity required for production-grade
deployment. Over the past decade, the increased deployment of PMUs and the expansion of their ap-
plications have been driven by advancements in both communication infrastructures (e.g., optical fiber,
Gbps networks, and 5G) and embedded microprocessor technology, enabling enhanced real-time pro-
cessing and data exchange capabilities. Modern PMU-enabled devices now support low-latency con-
trol actions, advanced analytics, and integration with Al-driven decision support systems. Widespread
deployment has improved, notably through initiatives like NASPI in North America, which continues
to coordinate stakeholders in developing robust applications and promoting deployment strategies. In
Europe, ENTSO-E and various national TSOs have expanded synchrophasor integration into WAMS,
supporting cross-border coordination and renewable integration. Although challenges remain, partic-
ularly in data quality assurance, cybersecurity, and organizational adoption, synchrophasor applica-
tions are increasingly recognized by TSOs as essential tools for real-time grid reliability, resilience,
and control. Table 3.4 indicates the relative priorities for phasor application development, according
to report [30].

Implementation of synchrophasor applications is also facing various challenges. First, even though
phasor technology hardware is mature, there is the challenge of how to build PMUs that can perform
effectively and consistently at sampling rates upwards of 120 frames per second, to meet oscillation
monitoring needs, and the challenge of developing and maintaining a secure communications system
dedicated to transfer of phasor data that can deliver data and control directives fast enough to support
interconnection-wide monitoring, analysis and automated controls. In terms of application-specific
research, the most pressing need is for baselining analyses, since good baselining feeds a wealth of
other real-time and planning priorities including event diagnosis, alarm-setting, system operating lim-
its setting, smarter real-time trending, validation of dynamic power system and power plant models,
and development of intelligent operator decision support tools. As with all new technologies, extensive
end user training will be needed to successfully transition phasor technology into full use as a real-
time operational tool. Operations personnel need to see how phasor data and applications can improve
their ability to reliably operate the system. Applications and interfaces must be developed that make
terabytes of data easy to visualize and interpret, including measures such as phasor-informed alerts
and alarms, so that when operators need to deal with an emerging grid situation, they can access tools
to use the data constructively, or receive intelligent decision support options based on phasor system-
enabled options. The experimental synchrophasor network developed in Chapter 9 of this thesis con-
tributes to the necessity of developing more reliable and useful applications to improve power system
operation and reliability, as well as providing education and training to relevant personnel.
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Table 3.4: Priority of PMU-based application integration [30].

Priorit
AR Real-time operations|Day-ahead oerations Asset management
Alarming and setting SOLS High Low Low
Baselining High High High
Congestion management Medium High Medium
Fault location Medium Low Low
Power oscillations High Medium Medium
Frequency stability High Low High
Operations planning Low High Medium
Outage restoration High Low Low
Resource integration Medium Low High
Special protection schemes and islanding Low Medium High
State estimation High Low Low
Voltage stability High Low Low
Wide-area controls High Low High
Forensic analysis Medium Medium High
Generator and load model validation Low High High
System model validation Low High High
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4. POWER SYSTEM MONITORING AND STATE ESTIMATION

Power system monitoring is one of the most fundamental responsibilities of a system operator, who
must continuously assess system conditions to ensure grid operation remains within predefined safety
and reliability thresholds. Ideally, operators would have complete visibility of system attributes, such
as bus voltages, line power flows, and frequency deviations. However, due to the significant cost of
extensive measurement infrastructures, ECCs typically rely on a limited set of critical measurements
[12].

State estimation (SE) is the process of determining the values of unknown state variables within a
system by using available real-time measurements and predefined criteria. This technique is widely
employed in contexts where measurement errors could affect data integrity. Historically, SE was used
to predict the positions of aerospace vehicles via noisy radar data and other imprecise sensor inputs.
In power systems, SE is regarded as a fundamental function of the ECC, essential for real-time moni-
toring, control, and contingency analysis in the EMS.

4.1 Power system monitoring and security

Power system monitoring involves continuous assessment of system conditions to ensure that all
operational parameters remain within acceptable limits. Typical parameters monitored in power sys-
tems include substation voltages, transmission power flows, generator active and reactive power out-
put, total system load, interchange schedules, system frequency, and the status of circuit breakers and
switches. These parameters are critical for evaluating system performance and identifying potential
violations that may necessitate preventive or corrective control actions [12].

4.1.1 Security concepts and contingency analysis

Power system security refers to the system’s ability to withstand disturbances while maintaining a
reliable electricity supply. A higher level of security corresponds to a lower likelihood of load loss or
widespread blackouts. Security-driven control actions are therefore designed to [32]:

1) Prevent cascading failures by ensuring the system can withstand disturbances.

2) Mitigate risks to critical grid infrastructure, protecting transmission lines, generators, and substa-
tions from damage.

A fundamental tool for assessing system security is contingency analysis, which evaluates the sys-
tem’s response to potential equipment failures or generator outages. A contingency is defined as the
unexpected loss of transmission lines, transformers, or generation units, which could push the system
into an insecure or emergency state. To determine whether the current operating state is secure, a set
of single and multiple contingency scenarios must be simulated. These simulations utilize steady-state
power flow analysis, where system constraints, such as transmission line thermal limits and voltage
stability margins, are evaluated under different contingency conditions. If a contingency threatens sys-
tem security, two main strategies can be implemented [11], [32]:

1) Preventive control actions: Modify the system’s operating state before the contingency occurs.
2) Corrective control actions: Implement real-time responses to mitigate the impact of the contin-
gency after it occurs.

The power system security levels are defined based on the economy-security functions of the EMS,
which use the SE results to determine real-time security conditions. Figure 4.1 illustrates the hierar-
chical classification of security levels, which guides appropriate control (C) and preventive (P) actions,
while transitions caused by operations, contingencies, or accidental actions are indicated by arrows
[11], [32]:
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Secure (Level 1): All loads are supplied without violating operating limits, and the system can
withstand any contingency without requiring post-event corrective action.

Correctively Secure (Level 2): Similar to Level 1, all loads are supplied without operating limit
violations. However, in this case, potential violations from contingencies can be corrected with
control actions, primarily focused on active power control. This level is more cost-effective but
relies on post-contingency corrections, determined in advance using optimal power flow with se-
curity constraints.

Alert (Level 3): All loads are supplied, but some contingency-related violations cannot be corrected
without load loss. Preventive generation rescheduling and network reconfiguration, based on opti-
mal power flow with contingency constraints, are necessary to restore security.

Correctable Emergency (Level 4): Some operating limits are exceeded, but corrections can be ap-
plied without load loss. Emergency control actions restore system security to Level 3 or higher.

Noncorrectable Emergency (Level 5): Operating limits are violated, and load shedding is required
to maintain stability. The optimal amount and location of load curtailment are determined using
security-constrained optimal power flow.

Restorative (Level 6): While operating limits are no longer exceeded, load shedding has occurred.
Restorative control measures aim to return the system to a more secure state, ideally Levels 1 or 2.

C
Level 1
_»
Secure
P Level 2
Correctively Secure
Level 3
™ Alert c
C
Level 4
Correctable
Emergency
Level 5
Noncorrectable <
Emergency
L Level 6

Restorative

Figure 4.1: Power network static security levels.

4.1.2 Situational awareness [33]

A widely accepted definition of situational awareness is “the perception of elements in the environ-

ment within a certain time and space, the comprehension of their significance, and the projection of
their status into the near future.” More specifically, the three levels of situational awareness are:

Perception: The operator must accurately perceive the status, attributes, and dynamics of environ-
mental variables.

69



e Comprehension: The information gathered from perception needs to be synthesized through inter-
pretation, pattern recognition, and evaluation.

e Projection: The operator must be able to extrapolate this data to anticipate future states and develop
an appropriate action plan.

These principles are widely applied in critical decision-making environments such as aviation, air
traffic control, military operations, and power system control rooms. In the context of a control room
in the ECC, operators rely on advanced visualization and decision-support tools like SE to enhance
situational awareness. Errors made by operators often stem from gaps in situational awareness, where
critical information is overlooked (perception failure), system conditions are misinterpreted (compre-
hension failure), future contingencies are underestimated (projection failure). Therefore, the goal is to
enhance control room environments with visualization tools to aid perception, provide robust data
analysis systems for comprehension, and support operators in making and executing decisions effec-
tively at the projection level.

4.2 Power system state estimation fundamentals

In 1970, Schweppe et al., having recognized the inherent inability of measurement systems to cap-
ture the actual state of a power system, introduced power system state estimation into their study, with
the ultimate goal of optimally controlling their operation in real time [34]. The mathematical model
they proposed derives from estimation theory — a branch of statistics with broad application in the
study of Automatic Control Systems — and incorporates elements of probability theory. The purpose
of state estimation is to define the system state based on the available measurements; in other words,
to assign values to the voltage phasors of all the nodes in the system under study, which in the general
case constitute its state variables. SE has become established as the computational procedure capable
of producing the most faithful possible depiction of a network’s current state under real-time conditions
in the ECC.

4.2.1 The role of power system state estimation in the EMS

The usefulness of SE is typically juxtaposed with that of power flow analysis, which in the 1950s
was the first computational tool for depicting the steady state of a power system corresponding to a
given operating point at which the system generates, transfers, and distributes electric power [32]. In
power flow analysis, one calculates the voltage phasors of all the nodes, as well as the active and
reactive power flows in all the branches of the system. Although both SE and power flow analysis
computationally rely on the same electrical quantities — that is, on the solution of the same mathemat-
ical equations — and represent the system state using static analysis models, their qualitative differences
are quite significant. Generally, power flow analysis computes the operating state of the system for a
snapshot of its steady state, based on available values of electrical quantities. On the other hand, SE
provides the most probable state of the system, treating the available data as measurements with their
corresponding accuracies. In other words, SE is a real-time computational tool for processing meas-
urements, whereas power flow analysis is a computational procedure that cannot function reliably in
real time, given that it is not designed to detect and filter the errors realistically present in any meas-
urement data [35].

More specifically, unlike power flow analysis, the available values of electrical quantities are treated
as measurements within the context of state estimation. They are therefore associated with specific
errors and modeled as random variables whose variances depend on these errors. A direct consequence
of this modeling is that the state estimator functions as a filter for the available “raw” data, as it can
assess their quality, identify potential gross measurement errors, and reduce the noise that distorts
them. Power flow analysis does not offer any of these capabilities, since its modeling does not support
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evaluating input values and does not exhibit adaptability with respect to them. Finally, SE is formulated
as an optimization problem whose solution is based on examining an overdetermined system of equa-
tions, i.e., it is designed to manage a surplus of data. Power flow analysis, in contrast, is about finding
the unique solution to a system of algebraic equations, where surplus data are not desirable. State
estimators were already being used in ECCs in the 1970s, aiming to ensure the reliable operation of
transmission systems through real-time measurements obtained from the terminal units of SCADA
systems [36]. Over the years, the specific functions have evolved in terms of both their computational
core and the algorithms used, while alternative methods have been proposed for the optimization prob-
lem upon which SE is based. Historically, the chief difficulties impeding state estimators arose from
the inability to obtain synchronized measurements from distributed terminal units and from inadequate
measurement infrastructure in distribution networks [37]. As a result of these shortcomings, only trans-
mission systems were sufficiently monitored — synchronization was dismissed because of the slowly
varying conditions of power systems during steady-state operation — while distribution networks were
effectively unmonitored due to a lack of measurement data, which made running state estimators im-
possible. The need to monitor distribution networks led to gradually introducing pseudo-measurements
into the set of available data so that the condition of sufficient data redundancy could be met. Pseudo-
measurements refer to values that have not actually been measured but are products of forecasting or
of processing historical data.

In Figure 4.2, the data flow diagram of a typical SE implementation in the ECC is presented. More
specifically, state estimators generally comprise the following functions [5], [38]:

e Topology processor: the status of switches and circuit breakers are processed to determine the
current network topology, and the system model is updated in real-time to reflect network recon-
figurations.

e Observability analysis: determines whether the available set of field measurements is sufficient to
uniquely estimate the system state. If full observability is not achieved due to insufficient meas-
urements, the system may be divided into observable islands where SE can be applied separately,
or observability can be reinstated using pseudo-measurements, that is, estimated measurement
values based on historical or forecasted data.

e State estimation algorithm: uses an optimization process to derive the estimated state of the net-
work from available real-time measurements over a specific time frame.

e Bad Data (BD) detection and identification: an algorithm that detects, identifies, and eliminates
gross measurements in the dataset, based on the statistical properties of measurements. Depending
on the employed SE algorithm, this step may be integrated directly in the estimation process, or it
can be a postprocessing step; in the latter case, if BD are detected and eliminated, the SE process
IS repeated.

e Topology error identification & system parameter estimation: detects topology errors caused by
incorrect reporting of switching component statuses, and diagnoses incorrect line impedances or
transformer tap settings that affect SE accuracy. Finally, parameter estimation is executed, updat-
ing the network model with the most probable system parameters based on the SE solution.

The outputs of the state estimator serve as critical inputs for multiple downstream EMS applications,
including contingency analysis and security monitoring, economic dispatch and optimal power flow,
as well as voltage stability assessment and control [5], [38].
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Figure 4.2: Data flow diagram of SE, from the field sensors to the ECC.

4.2.2 SCADA measurements and state estimation

Accurate SE results are directly correlated to the quality and reliability of the measurement data

available. SCADA-based SE primarily relies on the following types of real-time measurements: bus
voltage magnitudes, bus voltage angle differences between buses, active and reactive power injections
into buses, active and reactive power flows in branches, and branch current flow magnitudes. In cases
where direct measurements are unavailable or insufficient, pseudo-measurements are usually consid-
ered in the form of target bus voltage magnitudes and/or angles, target active-reactive branch power
flows, and estimated or forecasted active-reactive power injections. Each measuring device of course
introduces some level of random error; thus, SCADA measurements typically contain errors due to
[32]:

Instrument transformers: ITs are the primary field measurement devices that introduce errors stem-
ming from saturation, nonlinearity, and hysteresis effects, leading to distorted signal outputs. Over
time, instrument transformers degrade due to exposure to temperature variations, humidity, me-
chanical stress, and transient phenomena. Poor precision classes of CTs/VTs also exacerbate meas-
urement inaccuracies

Measurement transducers: Measurement transducers exhibit nonlinear behavior under extreme op-
erating conditions, such as light load conditions (low current values cause nonlinearities in CTs),
while wiring issues can cause voltage drops and signal attenuation.

Communication noise: Communication links introduce random noise due to electromagnetic inter-
ference from nearby equipment, harmonics affecting sensor readings, and inductive or capacitive
coupling between measurement circuits.

Data loss and random communication delays: SCADA data transmission occurs over various net-
work types (serial, IP-based, fiber-optic, or microwave). Failures in communication channels can
cause measurement loss and random propagation delays affecting measurement synchronization.
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e Time skewness: SCADA measurements are not inherently synchronized, leading to time skewness
among different sensors.

4.3 Evolution of power system state estimation algorithms

The state estimator has served as an integral computational and operational unit of ECCs ever since
the introduction of digital computers for the development of the EMS in the mid-1960s. The first pro-
posals for monitoring transmission systems using estimation theory had already appeared in the late
1960s. From 1970 onward, and for at least four decades, the static state estimation model proposed by
Schweppe et al. constituted the main field of study for transmission-system state estimation. Under the
static model, initially formulated in 1968 [34], the time parameter is excluded from the study of the
system state; effectively, the estimation process handles measurement sets as snapshots, owing to the
lack of measurement synchronization and the delays involved in data transmission. In parallel, a con-
cise description of an equivalent dynamic model was provided. Finally, organizing the static model as
an optimization problem solved via the WLS method [39] emerged as the most popular technique for
studying SE in electric power systems.

A significant contribution to the evolution of the WLS static model came from the research led by
Monticelli on the development of the fast decoupled method for solving the problem [40] and on the
formulation of generalized state estimation, which treats analog measurements, switch states, and the
electrical parameters of lines as a single set of interacting measurement data [41]. Within the context
of generalized state estimation, both digital and analog measurement data were jointly processed, and
in essence, topology processing was integrated in such a way as to permit the detection of unacceptable
data. This methodology was founded on modeling sections of the system/network at the level of phys-
ical linkage — namely, by considering unknown line impedance values or switch states as additional
state variables.

Comparative studies led by Wu on numerical stability, computational efficiency, and implementation
complexity for various methods proposed over time for solving the WLS static model [42], [43] helped
address the problem of ill-conditioned matrices arising during model solution. These matrices possess
eigenvalues close to zero, making it difficult to solve the system of equations. These studies included
the normal equations method, orthogonal factorization, the hybrid method, the use of equality con-
straints in the normal equations, and the Hachtel augmented matrix method. Critical factors influencing
the solution of the WLS static model include virtual measurements for zero injection nodes and current
measurements. The combination of zero-injection measurements with high weighting factors is one of
the main causes of ill-conditioned matrices. Modeling such virtual measurements as equality con-
straints during model solution has contributed to mitigating this issue. Moreover, introducing current
magnitude measurements — primarily studied in [44], [45] — represents a notable advancement in the
development of the WLS static model, as these require special handling relative to other measurement
types. Finally, incorporating inequality constraints into the model [46] has ensured compliance with
prevailing system operating limits.

One of the most important features of state estimators is robustness with respect to measurement
sets that exhibit large variations in individual accuracies and in cases of outliers containing unaccepta-
ble errors (bad data). WLS SE has an inherent weakness in handling such measurement sets [32],
leading to the proposal of various solution-method variants under these conditions [47], [48]. To ensure
robustness, several alternative formulations of the SE problem have been developed, with the most
notable being Least Absolute Value (LAV) estimation, nonquadratic estimators, and the least median
of squares estimator, all evaluated post-hoc in [49]. In conjunction with any SE method, the projection
statistics technique has been proposed as a means of enhancing estimator robustness in power systems
by identifying leverage points in the measurement set — i.e., points corresponding to outlier measure-
ments in the Cartesian coordinate system [50]. A reference point for state estimator robustness is the
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work of Huber [51], who systematized the generalized maximum likelihood estimation for minimizing
the general Huber function. The corresponding generalized estimator (Huber M-estimator) aided in
implementing generalized estimator models in power systems [52]-[54].

4.4 Weighted least squares state estimation

The objective of SE is to determine the most likely state of the system based on the quantities that
are measured. One way to accomplish this is by Maximum Likelihood Estimation (MLE), a method
widely used in statistics [55]. The measurement errors are assumed to have a known probability dis-
tribution with unknown parameters. The joint probability density function for all the measurements
can then be written in terms of these unknown parameters. This function is referred to as the likelihood
function and will attain its peak value when the unknown parameters are chosen to be closest to their
actual values. Hence, an optimization problem can be formulated to maximize the likelihood function
as a function of these unknown parameters. The solution will give the maximum likelihood estimates
for the parameters of interest [32], [38].

4.4.1 The measurement model

The fundamental problem of SE, solved using the SE algorithm, is essentially solving an overdeter-
mined system of nonlinear equations. This problem is mathematically represented using the measure-
ment model, which describes the relationship between the state variables and the measurements, gen-
erally given by [32], [38]:

z=h(x)+e 4.1
where h(-) e R" — R™ is the vector of nonlinear functions relating the measurement vector z e R™ to

the true (unknown) state vector x e R", and e e R™ is the random vector of measurement errors. The
random vector e is primarily used to model the errors of the measuring instruments that record the
quantities, while it may also include errors arising during data transmission, as well as any introduced
communication noise, according to Section 4.2.2. Note that vectors and matrices shall be henceforth
denoted by boldface throughout the thesis.

The measurement set zeR™ can thus be represented in terms of the state vector x e R" of the
system via the measurement model (4.1). Generally, as far as non-dynamic state estimators are con-
cerned, the state vector comprises either bus voltage magnitudes and phase angles or the real and im-
aginary parts of bus voltage phasors, depending on whether it is expressed in polar or rectangular
coordinates, respectively. Thus, assuming a power system with N buses, the bus voltage phasors are
V, =V, £6, =Vrk + IVik, k=12,...,N, and the state vector is defined as:

T

in polar coordinates, or:
N
X = ':VR,l Vez " Van Vig Vig - VI,N:I (4.3)

in rectangular coordinates. When phase angle measurements are included in the measurement vector,
the state vector comprises n=2N state variables, that is, N voltage magnitudes (or real parts) and N
voltage angles (or imaginary parts). When the measurement set does not contain phase angle data, one
bus is chosen as reference, and its angle is set equal to an arbitrary value, such as zero. In this case, the
state vector will have n=2N —1 elements, N bus voltage magnitudes (or real parts) and N — 1 phase
angles (or imaginary parts).
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4.4.2 Maximum likelihood estimation

The normal Probability Density Function (PDF) for a scalar random variable z is defined as:

P(2) =——=oxp —3(2‘—”}2 44
270° 2\ o .

where u = E(z) is the expected or mean value of z, and ¢ is the standard deviation of z. The shape of
the PDF p(z) is dependent on the parameters x and o.

Defining random variable u :Z_—ﬂ, yields:
O

1

E(u):;(E(z)—,u):O (4.5)

1 o’
Var(u)=—Var(z—u)=—=1 (4.6)

O O

Hence, the new PDF can be written as:
L

DO(u)=———=e 2 4.7
(u) N (4.7)

Figure 4.3 illustrates the plot of ®(u), which is referred to as the standard normal PDF.
Next, the study is specified for the case of electric power systems. Suppose there is a set of meas-
urement data z for a sample of electrical quantities, which consists of voltages, currents, and powers.

According to measurement theory, the random vector of measurement errors e € R™ follows a multi-
variate normal distribution with mean E(e) =0 and covariance Cov(e)=R,ie., e ~ N (0, R) , then,

via (4.1), it holds that:
z~ N (h(x),R) 4.8)
We now consider a joint PDF that represents the probability of observing m independent normally
distributed measurements z;,z,,--, z,,, with z; ~ N(hi(x),aiz) . Assuming that the measurement er-
rors are independent random variables, R is a diagonal matrix with elements Giz , and the joint PDF of

the random measurement vector z=[z, z, --- zm]T can be expressed as the product of the individual
PDFs:

m m m h 2
i=1 i=1

270, i=1 Oj

(4.9)

= —enp[ 1200 R (z-hw)
Jen)R T\ 2

m
where |R|= Haiz . Function p(z|x) = L(x) is referred to as the likelihood function for the measure-
i=1
ment vector z, which quantifies the probability of observing the particular set of measurements, i.e.,
the elements of z, for a given state vector x.
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Figure 4.3: Standard normal Gaussian distribution PDF.

The objective of MLE is to calculate the values of the distribution parameters 8, which maximize
the likelihood function. For the Gaussian distribution it holds that 8 = («,0), so in our case the MLE

aims to maximize the likelihood L(u, R) = p(z| u, R) . Considering that # = h(x) and assuming that
Cov(z) = R is a known constant matrix, this is equivalent to maximizing (4.9):
X :=arg max L(x) (4.10)

xeR"
In solving optimization problem (4.10) it is common to replace the likelihood function with its nat-
ural logarithm, the so-called log-likelihood function ((x), which simplifies the differentiation in-

volved in the optimization process. This function is expressed as:
((X)=InL(x)= —% In(27) —% In|R| —%(z —~ h(x))T R™(z-h(x)) 4.11)

Thus, the problem of maximizing the log-likelihood function is equivalent to minimizing the term
J(X)=(z- h(x))T R™(z-h(x)), yielding the following formulation of the SE problem:

X:=arg m]ierJ(x)=(z—h(x))T R (z-h(x)) (4.12)

The term J(x) is referred to as the WLS objective function, as it represents the weighted sum of the
squared residuals, where R™* provides the weights. By expanding J(x) into individual measurement

terms, (4.12) yields:

m
$=argmin J(x) =Y wi (z; —h (x))° (4.13)
XEIRn i=1
where w; :iz.

Oj
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4.5 Power system modeling for state estimation

Regarding the modeling of the electric grid and its individual components in the context of the
classic Static State Estimation (SSE) problem, the power system is assumed to operate in a steady-
state condition. This implies that all loads, power flows, transmission lines, and shunt admittances
within the network are three-phase and symmetric quantities. These assumptions justify the use of the
single-phase positive-sequence equivalent circuit for system modeling and greatly simplify the math-
ematical formulation of SE, although their universal validity is not entirely guaranteed. All quantities
are henceforth expressed in per-unit (pu) values. The following Sections describe the most common
component models used in SE.

4.5.1 AC transmission line

Transmission lines are represented by the two-port = equivalent model. The model of such a trans-
mission line, which connects from bus i to bus /, consists of a series complex admittance ¥; = gj; + jb;

and two shunt complex admittances g; = gg; + jbg; and Vg = ¥, one connected to bus i and the

other to bus j. The structure of the model is illustrated in Figure 4.4.

I ¥ij = 9; + by I
i o o j
Ysij = 9sij + J0g Ysii = Ysi

Figure 4.4: Transmission line pi-equivalent model.

The complex currents I;; and T;; can be expressed as functions of the complex voltages V; and V; at

I:ij _ {yij +~ysij ) _yij~ “:\Z. } @.14)
I =V Vi + Vi ||V
4.5.2 Transformers

The actual transformer located at bus i of branch i— j is modeled as an ideal transformer with

the terminal buses:

complex tap ratio fij; :tijej(/"j , Where t;; is the tap ratio magnitude in p.u. and ¢;; is the phase shift

angle, in series with an equivalent admittance ¥; = g;; + jb;, as illustrated in Figure 4.5. The terminals
of the actual transformer correspond to buses i and j, and k is an intermediate virtual bus. The node

equations for the two-port network are obtained by appropriately expressing the currents fkj and fji

in terms of the admittance matrix of branch k — j and voltages \7k and \7j :

i
e | L% ¥ JLY
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Figure 4.5: Phase-shifting transformer equivalent model.

Substituting T =% and V=V, in (4.15) gives the complex current flows T;; and T
sending and receiving ends of the actual transformer respectively, expressed in terms of the 2x2 ad-
mittance matrix and the respective terminal voltages:

Fu}: 6%~ {\7.} “.16)
Iji _ﬁijyij yij VJ’

The AC transmission lines, transformers and phase shifters, or any combination of such components
connected in series, can be modeled using a common branch model. This consists of a standard -
model, with total series admittance j; =g;+ jb; and two shunt complex admittances

Ysij = Osij + Jbgij and Y = gg;i + Jbgi , connecting the two ideal phase-shifting transformers existing
at each end of the branch, as shown in Figure 4.6. The complex current flows fij and I

ji» at the

4.5.3 General branch model

ji» at the i and

j ends of the branch respectively, can then be expressed in terms of the 2x 2 branch admittance matrix
and the respective terminal voltages:

P}: (Ve + %) —fn%, {\7'} (4.17)
i <, )Y |

ji 9y G (T ) LV
. 11, Ji. = ' N
.y ij Yij =Gij t Jb”;v_@:lii
: A
\ A - ioji
nij =tije ) nji :tjie J
Vi ysij ysji Vj

Figure 4.6: General branch model.
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Thus, for instance, if fi; =f; =1.0, the result is an equivalent =-model of a transmission line; if

M =1.0 and Ay, =tjiej¢ji , then the result is a phase-shifting transformer with tap located on the ; bus

side in series with a transmission line.

4.5.4 Shunt elements
Shunt elements can be either capacitors or inductors and are used to control voltage or reactive
power. They are represented by a shunt imaginary admittance ¥; = jb,. The sign of the admittance

value determines the type of shunt element: if b, >0, §; corresponds to a shunt capacitor, while if
b, <0, it corresponds to a shunt inductor. The model structure is illustrated in Figure 4.7.

L

Figure 4.7: Shunt element equivalent model.

4.5.5 Loads and generators

Constant power loads and generators connected to a bus i are represented as equivalent complex
power injections and, therefore, have no impact on the network model. A generator has a complex

injection §Gi = Py; + 1Qg; With positive active power, while a constant power load has a complex in-
jection Sp; = Py; + jQp; with negative active power. In contrast, constant admittance loads affect the
network model and are represented as shunt complex admittances ¥; = g; + jb; . Table 4.1 illustrates
the models for constant admittance loads, constant power loads, and generators, respectively.

Table 4.1: Active and reactive power injection conventions.

Element Injected active power (P) | Injected reactive power (Q)
Constant admittance load P>0orP<0
Constant power load P<0 Q>00rQ<0
Generator P>0

4.6 The SCADA measurement function

Let us assume a power system with N buses and M branches, and consider a generalized bus i of
this system with complex voltage V, :Viej‘Si , as illustrated in Figure 4.8. An equivalent shunt admit-
tance ; is connected to bus 7, representing any combination of capacitors, inductors, or constant ad-

mittance loads. The generator connected to bus i injects a complex power §Gi , While the corresponding

constant power load absorbs a complex power S Di -
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Now, we assume that branch » connects bus i to bus j, with the complex voltage at bus j denoted by
\7j :Vje’5i . Branch & could be a transformer, a transmission line, or a transformer in series with a
transmission line, represented in general by (4.17).

~N
Sei| - Vi
i |V, 8 _
1:1y . Ayl
Yij !
j
-
i~ in; A Io;
] 1j o =t.. ji
~ . f: =t.e N . N, =t.e
Spi Vi U Ysij Ysii e
Figure 4.8: General bus-branch model.
4.6.1 State vector in polar coordinates
When  expressing the  state  vector xeR" in  polar  coordinates, i.e.,

X=[Vy V, - Vy & & - Sy ]T , the conventional SCADA measurements derived from each meas-
urement point, which include branch power flows, bus power injections and bus voltage and branch
current magnitudes, need to be expressed via the measurement function h(x) in terms of these state
variables, i.e. the bus voltage magnitudes V, and angles 6, , k=1,2,...,N..

To formulate the measurement function for each measurement type, let us consider the general bus
i of Figure 4.8, along with the measured quantities deriving from this bus: the voltage magnitude V;,

the branch current magnitude 1;;, the active B; and reactive Q;; power flow on branch i j, and the

ij »
active and reactive power injections at bus 7, denoted by P, and Q;, respectively.
According to (4.17), the expression of complex current fij is:

Iy =t (T + 9 )Vi — 5059 (4.18)

io;

I and ﬁ —t e“oJI

The real and imaginary parts of current flow phasors are obtained as:
g =Re(T; ) Vi ((gg; + 9j) cos &, — (bg; +by)sin ;)

— itV (gij cos(5; —Agy) — by sin(o; —Agy ))

(4.19)

IIIJ Im(li ) ij l((gS'J +g'l)sm5 +(bs” +b )COS5) (4 20)
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The magnitude of current fij =1;£6; interms of V;, V;, 6; and &; is then given by:

hy, (X) =1 = Jm“m” $m/+qw+mw(apm%+ﬁﬁm%) (4.21)

where:
Cy =t ((9g +95)° + (b +D;)°)

D; =t} [(gij cos(Ag;) +by sin(quij))2 +(bij cos(Ag;) - 0 Sin(Aq)ij))Z}
Ejj = t,:;’t“ |:(gsij + gij)(gij cos(Ag;j) +b; Sin(A(P.j))+ (bgj; +bij)(bij cos(Ag;) — 9jj Sin(A(Dij)):|
I:ij = Ij ji [(gsu + glj)(blj COS(AQU) gu SII’](A(DU))— (bsij + bij)(gij COS(Agﬁlj) + bij Sin(A@lj))]

We now consider the complex power flow on branch i—j from bus i to bus j, given by
S V,IIJ =R + jQ; - Substituting V; =V;(cos s, + jsing;), = Igj + jl;;; and using (4.19), (4.20)
we obtain:

he, (X) =P =17 (gg; + 05)Vi* —tt; VY, (gij cos(d;; +Agy;) +1y sin(d +A§0|j)) (4.22)

hQ (X) QI] - tlj (bsu +b|J)V +t|jtJIVV ( ij COS(é}j +A¢|j)_ gij Sin(éij +A¢ij)) (4-23)

where B; and Q; denote the active and reactive power flow on branch i—j, and &; =& —9;.
Using (4.18), the complex current injection at bus 7, can be written as:
I = {Vi + >t (ysij + Vi )J\Z - > A (4.24)
jea(i) jea(i)
for i=1,...,N, where a(i) is the set of buses adjacent to bus i. This expression can be rewritten in
matrix form as:
=YV (4.25)
where 1 is the vector of nodal current injections, with elements fi , 1=1...,N, Vis the vector of nodal

voltages \7i, i=1..,N,and Y =G+ JB is the bus admittance matrix, with elements:

Vi =G + By =—;1; 9 (4.26)
Vi =G; + B =¥ + Z ty (ysij + yij) (4.27)
and: o

Gij = —tjit;; (gij cos(Ago,j)+b,j sin(Ago,j)) (4.28)
Bij =—tit;i (b,j cos(Ag;) — 0jj sin(A«p,j)) (4.29)
+ Y ti?(gsij +05) (4.30)

jea(i)
B; =b+ _Z(:_)tu?(bsij +D;) (4.31)

jea(i

The complex power injection at bus i is given by:
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S =Vili =R +JQ (4.32)
Applying (4.24) to (4.32) yields the equations of the active and reactive power injection at bus i, de-
noted by P and Q,, respectively:

jea(i) jea(i)
jea(i) jea(i)
Finally, the voltage magnitude measurement measures the state variable V; directly:
h, () =V, (4.35)

4.6.2 State vector in rectangular coordinates

When the state vector is in rectangular form, i.e., x:= I:VR,l Ve2 " Ven Vi1 Vio - Vi ]T , then,
considering again the general bus of Figure 4.8, we can calculate the elements of the measurement
function h(x) in terms of the real and imaginary parts of bus voltage phasors, Vi, and V,, respec-
tively, with k=1,2,...,N .

Via (4.19), (4.20) we have:

IR :ti? ((gsij +0i)Vr,i — (bgj +1; )Vl,i)

— Gyt |:(gij cos(Ag;) +1Dy; Sin(Aﬂj))VR,j _(blj cos(Ag;) — ;; Sin(Aﬂj))Vl,jJ 0
Lij = ti? [(gsij +0;)Vyi + (b + by )VR,i] 437
~tt; [(gij cos(Agy) +bysin(Ag) )V, ; +(by cos(Agy) - gy sin(Agy) Ve, j] #37

The magnitude of current fij =1;j£6; interms of Vi, Vi, Vg ; and V, j is then given by:
hlij (x)= Lij :\/m: 438)

\/Cij (VRZ,i +V,2 ) +D; (Vé [ +VE ) + 2By (Ve Ve j +ViVij )+ 2F; (ViVe j ~VeVi ;)

~ ~k

We now consider the complex power flow on branch i—j, §ij =Vil

ilij = By + JQ; . Substituting

Vi =V + V)i, Tj =g+ ily;; and using (4.36), (4.37) we obtain:

ij
he, (X) =P :tijg(gsij + gij)(VRZ,i +VI:7_i)
—t;t;Vi, [(gij cos(Ag; )+l sin(Ag; ))VR,J- - (bij cos(Ag;) — g Sin(Ag; ))V,,j J (4.39)
~tytVi [(bij cos(Agy) - gy Sin(Agy) Ve ; +(9; cos(Ag;) +by sin(agy) |V, j}
hQij (X)=Q; = _ti? (bg;j + bij)<VR2,i +Vlﬁ)
+tt5iVR) [(bij cos(A(pij)— 9ij sin(AgaU-))VR,j +(gij <:os(A(pij)+bij sin(A(pij))VLj] (4.40)
—titiVi, [(gij cos(Aga,j)erij sin(Ago.j))VR’j —(bij cos(Aqa,j)— 9ij sin(A(p,j))Vl'j]

where B; and Q; denote the active and reactive power flow on branch i—j.
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The equations of the active and reactive power injection at bus i, denoted by P, and Q; respectively,
can be expressed using B; and Qj; as follows:
hy () =P =g; (V5 +V3)+ X Ry =
jea(i)
Gy (Vai +Vi5 ) +Vai X (GiVrj —BiVij)+Vii X (BiVej+GiVi;)
jea(i) jea(i)
hQi (X)=Q =-h (VRZ,i +V|ﬁ)+ Z Qi =
jea(i)

—B;i (VRz,i +VI,2i)+VR,i Z (_BijVR,j _Gijvl,j)"'vl,i Z (GijVR,j _Bijvl,j)
jea(i) jea(i)

(4.41)

(4.42)

Finally, the measured voltage magnitude of bus i is expressed as:

h, (x) =V; = V3 +V (4.43)

4.6.3 Measurement model formulation

Using (4.21)—(4.35) and (4.38)—(4.43) for the polar and rectangular formulation of the state vector,
respectively, the SCADA measurements may be expressed with respect to the state variables. If we
consider the general bus i of Figure 4.8, we can write the elements of z that correspond to the measured
quantities (denoted by superscript m) deriving from bus i, as follows:

_Vim_ _h\/i (%) ] ey,
Ii’jn hIij (x) e
pm hpij (x) €p.

V= + (4.44)
Qi;'n hQij (X) eQij

pm | | he(¥) | |en

Q"] ™)) [%

where e, represents the additive random Gaussian noise of measurement z . By generalizing (4.44)

for each measured bus i and branch i— j, the complete measurement model of the SE problem for the
entire power system is derived as:

Zy [h(x)] [ey

Z hy (x) €

Zp, hF,f (x) ep,

20, || Mo, 00| " e, @4
| |[ha(®) ]| |
2] [he0o ] [ |

where z, is the vector of voltage magnitude measurements, z, is the vector of current magnitude
measurements, zp , Z, are the vectors of active and reactive power flow measurements, and zp , zq,

are the vectors of active and reactive power injection measurements.
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4.7 PMU-based state estimation

Following the derivation of the measurement functions h(x) and the Jacobian matrix H(x) for the

conventional SCADA measurements, this section presents their corresponding elements when only
PMU measurements are incorporated in the SE measurement vector.

As previously discussed, the SCADA-based SE techniques use bus voltage and current magnitude
measurements, along with active and reactive power flows and injections in lines and buses, respec-
tively. In this case, the measurement function is a vector of nonlinear functions based on the power
flow analysis model, as demonstrated in Section 4.6. In contrast, since PMUs can directly measure
voltage and current phasors, it becomes possible to formulate a linear measurement model, when the
state vector is expressed in Cartesian coordinates. Thus, the exclusive usage of synchronized phasor
measurements enables the formulation of the SE problem into a linear form, essentially expressed as
a linear regression problem with a noniterative solution.

4.7.1 State vector in polar coordinates

To make this Chapter of the thesis comprehensive and self-sufficient, it is important to include the
derivation of the nonlinear PMU-based SE measurement model. When expressing the state vector in
polar coordinates, the synchrophasor measurements derived from each measurement point, which typ-
ically include bus voltage and branch current phasors, need to be expressed via the measurement func-
tion h(x) in terms of the bus voltage magnitudes V, and angles 6, , with k=1,2,...,N .

Let us consider the general bus i of Figure 4.8, along with the measured phasors deriving from bus
i- the voltage phasor V. =V. £&; and the current phasor fij = 1;;£6; onbranch i— j . These two phasors

yield a total of four measurands, that is, the voltage magnitude V;, the voltage phase angle J;, the

branch current magnitude 1;;, and the branch current phase angle & .

ij »

Via (4.21) we already have the current magnitude equation, and via (4.35) we have the voltage
magnitude equation, as these measurements also exist in the SCADA measurement systems. As the
voltage angles are state variables, we simply write:

hs (X) =4, (4.46)

Finally, the current phase angle &; can be expressed as:

[
hy (X) = 6; =arctan Ll By
! IRji

arctan ((gsu +g”)sm5 +(bsu +D; )COS5) ijLji (gij Sin(5' —A(/},-)-I-b-- COS(5J- —A(/}Ij))
,fv,((gs” +0;j) €08 &, — (bg; +by)sin &; ) ~tt;V; ( g cos(S5; - Agy) — by sin(5; — Agy))

(4.47)
It should also be noted that both voltage and current phasor measurements can be expressed in rectan-

gular coordinates, that is, as V; =Vr;+JV,; and fij = Igjj + il , respectively. In this case, we can

write:
h/m (X) =VRr; =V, cos g, (4.48)
h,“ (X)=V,; =V;sing, (4.49)
hl . (X) = IR,ij =
(4.50)

t; I((gs”+gu)cosé (b +105)sin & )tV ( 95 cos(S; — Agy) by sin(5; —Agy))
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hl,yi- (x)= Il,ij =

]

) _ _ 4.51)

J )

Given that (4.47) can be undefined when the denominator is zero, and, (4.48), (4.49) introduce non-
linearities to h(x), it is a well-established practice to consider voltage phasor measurements in polar
coordinates and current phasor measurements in rectangular coordinates [9]. Thus, using (4.35), (4.46)
, (4.50) and (4.51) the PMU measurements may be expressed with respect to the state vector in polar
coordinates. If we consider again the general bus i of Figure 4.8, we can write the elements of z that
correspond to the measured quantities (denoted by superscript m) deriving from bus i, as follows:

V" =h, (X)+e, =V +ey, (4.52)
Ilg],lj = hIR,ij (X) +e|R,ij = IR,IJ +e|R,ij (454)
I =h, ()+e, =l;+e (4.55)

where e, denotes the additive random Gaussian noise of measurement z .
By generalizing (4.52)—(4.55) for each PMU-measured bus i and branch i— j, the complete PMU
measurement model for the entire power system is derived as follows:

2, | [h(X)] [ey
Zs hs () €s
o |70 00| ey (4.56)
7, _h,l(x)_ ey

where z, , zs are the vectors of voltage magnitude and angle measurements, respectively, and z, ,

z), are the vectors of current magnitude and angle measurements, respectively.

4.7.2 State vector in rectangular coordinates

By expressing the state vector in rectangular coordinates, the PMU measurement model is linear-
ized, given that the voltage phasors are provided to the estimator in rectangular form. More specifi-
cally, we may write all measurement equations as linear functions of the real and imaginary parts of
bus voltage phasors, Vg and V|, respectively, with k=1,2,...,N .

The real and imaginary parts of bus voltage phasors are directly measured state variables, therefore:
hy,, (X) =Vg; (4.57)

h, () =V, (4.58)
Considering the current phasor measurements in rectangular coordinates, (4.50), (4.51), we obtain:

hi,, () =lgrjj =t; ((gsij +0j)Vr;i — (bgj + by )Vl,i)
— it |:(gij cos(Agy;) + by sin(Ag; ))VR,j _(blj cos(Ag;) — j; SIN(Ag; ))Vl,j J
hy,, () =15 =t [ (95 +93)Vy; + (b +by Ve, |

—tiit;i [(gij cos(A(p,j)erij sin(Ago,j))V,,j +(bij cos(A(p,j)— Jij sin(Aga,j))Vle]

(4.59)

(4.60)
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Thus, using (4.57)—(4.60) the PMU measurements may be expressed through linear functions with
respect to the state vector in rectangular coordinates. If we consider again the general bus i of Figure
4.8, we can write the elements of z that correspond to the measured quantities (denoted by superscript
m) deriving from bus i, as follows:

Vei =h, (X)+ey, =Vg;+ey,, (4.61)
Vi =h, (x)+ey,, =V +ey, (4.62)
Ry =i, (O+e, =l +e, (4.63)
W =hy, ()+e =1;+e (4.64)

where e, denotes the additive random Gaussian noise of measurement z .

By generalizing (4.61)—(4.64) for each PMU-measured bus i and branch i— j, the complete PMU
measurement model for the entire power system is derived as follows:

_ZVR ] _h,R (X)] _evR ]
Zy, _ hy, (X) N ey, 4.65)
Z, h,R(x) e
, | ()] |8,

where z, , z, are the vectors of voltage magnitude and angle measurements, respectively, and z,_,

z) are the vectors of current magnitude and angle measurements, respectively.

4.8 Solution of the SE problem

The SCADA and PMU measurement models can be used to formulate and solve the nonlinear and
linear SE problems, respectively.
4.8.1 Nonlinear state estimation

As discussed in Section 4.4, the general SE problem can be formulated as the minimization of J(X)
via (4.12) or the equivalent expression (4.13). For the case of an overdetermined nonlinear measure-
ment model, that is, z=h(x)+e with z,e e R™, xeR" and m>n, the first order optimality condi-
tions will have to be satisfied at the minimum of J(X):

VJ(X)=&]a—ix)=—HT(x)R‘l(z—h(x)):O (4.66)

ah(x)

where H(X) = is the Jacobian matrix of h(x) . Expanding the gradient VJ(X) around a current

estimate X using a first-order Taylor series expansion, yields:
VI(X) zVJ(x(i))+V2J(x(i))(x—x(i)) (4.67)

d%J(x)
ox'

where V2J (x)= Ignoring the second-order derivatives of h(x) in calculating V2J (X) re-

sults in the following approximation:

V23 (x) = HT (X)RH(X) (4.68)
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Using the Gauss-Newton iterative solution scheme gives:
x () = —(VZJ (x(i)))_l Vi) o
XD = xO 4 (HT (xO)RH (x(i)))_l HT (x")R™(z2-h(x")) =
AXO = X0 —x® = (HT (x)RH (x(‘)))*1 HT (x®)R™(z—=h(x))

where superscript (i) now denotes the iteration index, X" is the estimated state vector at the i-th

(4.69)

iteration, and Ax"" is the i-th incremental correction or update. G(x):=HT (X)R™H(x) is called the
gain matrix, which is sparse, positive definite and symmetric. Matrix G(X) is typically not inverted,

but is instead decomposed into its triangular factors and the following sparse linear set of the so-called
Normal Equations (NE) is solved using forward/back substitutions at each iteration (i):

G(xM)Ax® = HT (x")R ™ (z-h(x)) (4.70)

The iterative solution of (4.70) requires an initial guess to be made for the state vector x© . As in
the case of the power flow solution, this guess typically corresponds to the flat voltage profile, where
all bus voltages are assumed to be 1.0 pu and in-phase with each other. The iterative algorithm for
solving the WLS SE problem is outlined in Algorithm 4.1.

4.8.1.1 The SCADA measurement Jacobian matrix
Given the measurement model (4.45), the structure of the SCADA measurement Jacobian can be
derived for both polar and rectangular expressions of the state vector:

] ] [ oh, ohy ]
o ohy SC' Z%
N 06 RO
8h|:)f ahpf ahpf 8hPf
oh(x) | ov as oh(x) _| Ve M
H(x) = = or H(x)= = 4.71)
ox | ohg ohg ox | Ohg, dhg,
N 86 Vg W
Sy oy ohe Oy
N 8o Ny oV,
8hQ. ahQI ahQ. ath
LoV do | EXE

where V :=[V, V, - V], 6:=[8, - Sy Ve =[Vay Ve - Van | and V, =[Vi, - Viy | -
The non-zero derivatives of (4.71), i.e., the non-zero elements of H(x), can be calculated according to
(4.21)—(4.35) and (4.38)—(4.43), for polar and rectangular coordinates, respectively, and are explicitly
presented in Appendix A.
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Algorithm 4.1: Nonlinear WLS state estimation.

1) Initialize the iteration index i <— 0 and set the state vector x© at flat start.

2) Calculate the gain matrix G(X(i)) .
3) Calculate the right-hand side of (4.70), t0=HT (X(i))Rfl(Z — h(x(i))) .
4) Decompose G(Xx") and solve (4.70) for Ax" .

5) Check for convergence: If HAX(i)” <&, where ¢ is the convergence tolerance, then X < x4+ Ax®

and terminate the algorithm. Else, XU « x® + Ax® | j «i+1 and return to Step 2.

4.8.2 Linear state estimation

The linear nature of the PMU-based SE problem results in the formulation of a linear regression
model. The MLE problem of maximizing the log-likelihood function is equivalent to minimizing the

objective function J(X) = (Z — HX)T R (Z — HX) , yielding the following formulation of the state es-

timate:
X :=arg min J(Xx) 4.72)

xeR"

The first order optimality conditions will have to be satisfied at the minimum of J(X):

2J (X) _

VI(X)= ~H'R™(z-Hx)=0 (4.73)

Expanding the gradient VJ(X) around the estimate xW using a first-order Taylor series expansion as
in (4.67), and ignoring the second-order derivatives of h(X) results in the following approximation of

V2J(x):
V2I(x)*HTRH (4.74)
Using the Gauss-Newton numerical method yields:
X0 = O (923 (x)) v (x) &
X = x® 4 (HTR™H )71 HTR™(z-HxO)
Gk=H'Rz (4.75)

In contrast to the iterative Gauss-Newton numerical method for solving the nonlinear WLS SE prob-
lem, the state estimate of the linear WLS problem is provided by the closed-form solution (4.75).
Algorithm 4.2 presents the general solution of the linear SE.

Algorithm 4.2: Linear WLS state estimation.
1) Calculate the gain matrix G=H'R™H .

2) Calculate H'Rz.
3) Decompose G and solve (4.75) for X .
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4.8.2.1 The PMU measurement Jacobian matrix

Given the measurement model (4.45), the structure of the PMU measurement Jacobian matrix can
also be derived for both polar and rectangular expressions of the state vector:

o] oh, oh,,
EVaRT) Vg 0V,
oh; ohy Ny My
oh(x) | oV 0o oh(x) _| Vr OV
H(x) = or H= 4.76
=" =| on, an,, ox | oh_ oh, (47
N 0o Ny OV,
oh, oy, oh, ah,
L oV 00 | _8VR vV, |
where V=V, V, -V ]T, d:=[6 6, - Oy ]T, Vg = I:VR,l VRa2 VR,N]T and

V, = [V|,2 - ViN ]T . For the case of polar coordinates, the non-zero elements of H(x) can be calcu-

lated according to (4.35), (4.46), (4.50) and (4.51), and are analytically presented in Appendix A. For
rectangular coordinates, the PMU measurement model becomes linear and can be written as:

z=Hx+e (4.77)

where the Jacobian matrix H is now constant, with the following structure:

VRi Vi, VR Vi
1 o o o . Vle
H=|:- 0 1 0 0 VIT
- t3(g +05) (g +y) - titiDy titiEy ..-élgij Jjeal)  (4.78)
- B by +by) (065 +0y) o titiEy ~tit;iDy i
Djj = gjj cos(A(pu-)erij sm(A(pu-)
Ejj = by cos(Ag;) — g5 sin(Ag;)

4.8.3 Observability concepts

The feasibility of a system-wide SE solution depends on the number and distribution of measure-
ment points within the network. This concept is known as observability: a system is considered ob-
servable only when it has sufficient measurements to reconstruct the complete system state. Since the
steady state of a power system is defined by two independent variables (voltage magnitude and angle)
at each bus, at least twice the number of nodes must be measured to achieve observability, as discussed
in Table 4.2.

In an underdetermined system, the SE problem is not solvable, as there are insufficient measure-
ments to uniquely determine the system state. In a determined system, while a solution is feasible, the
absence of redundant measurements means that there is no capacity to account for measurement accu-
racy (weights) or detect erroneous measurements. By contrast, an overdetermined system, which con-
tains more measurements than necessary, enhances the robustness of SE by enabling bad data detection
and elimination.
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Table 4.2: Levels of system observability [56].

System Number of . .
. Ramification
classification measurement points
. Less than twice the number of | Infinite solutions: not enough information is
Underdetermined .
system buses available to solve the SE problem
One exact solution: no measurement redun-
. Approximately equal to twice dancy means the SE is prone to bad data. Meas-
Determined gy
the number of system buses urements must be distributed across the system
to achieve observability
Redundancy: measurements are weighted
. Greater than twice the number | based on their accuracy to calculate the SE so-
Overdetermined . . L
of system buses lution. SE is resilient to erroneous measure-
ments

Generally, numerical models of observability analysis constitute the mathematical expression of the
corresponding topological approaches; however, their equivalence cannot be guaranteed. According to
the IEEE institute's technical report [57], two types of observability are distinguished. Topological
observability is verified through graph theory without considering the parameters of the actual model
of the system under study and the weighting coefficients of the measurements, and it does not include
floating-point arithmetic operations. In contrast, numerical observability is verified through numerical
calculations related to the triangulation of the gain matrix or the Jacobian matrix of the system under
study.

Observability in power systems is rigorously defined within both the topological and numerical
frameworks [32], [38]. According to the topological approach, a system is called observable when a
spanning tree can be formed, consisting of branches of the system for which power flow measurements
are available, which is of full degree, that is, it includes all the nodes of the system. If this condition
cannot be fulfilled, the system is considered unobservable and is partitioned into observable islands,
which may even degenerate into isolated nodes.

According to the numerical approach, a system is observable when its Jacobian matrix is of full rank
or, equivalently, its gain matrix is of full rank or, equivalently, is invertible. The rank of a matrix is
defined as the dimension of the vector space that can be generated by its column vectors — that is, it
equals the number of its linearly independent columns (it is proven that this is equal to the correspond-
ing number of its rows). Consequently, for a full-rank Jacobian matrix, it holds that:

rank {H} = min{m,n} (4.79)

that is, the rank of the matrix is equal to the smaller of its two dimensions. For overdetermined systems
m>n, and thus rank { H} =n. Generally, the invertibility of the gain matrix G is the most common

condition for checking the observability status of a system [35].

4.8.4 Properties of the gain matrix

Apart from numerical observability analysis methods relying on its study, the gain matrix G repre-
sents a critical structure of the WLS SE model, with the following properties [35], [38]:

1) In general, it is a non-negative definite matrix, i.e., its eigenvalues are non-negative. It is positive
definite for fully observable networks.

2) It is structurally and numerically symmetric and sparse, yet less sparse compared to H.

3) It is characterized as an ill-conditioned matrix, making its factorization a necessary procedure for
reliably solving the SE problem.
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4) It quantifies the accuracy of the state estimation results.
5) It contains all relevant information about the type, location, and accuracy of the available meas-
urements.

G can be built and stored as a sparse matrix for computational efficiency and memory considera-
tions. Consider the measurement Jacobian H and the covariance matrix R for a set of m measure-
ments, each one corresponding to a single row, as shown below:

Hl Rll 0 A O

H - "!2 R= 0 Ry .0 0
o 0 -. 0

H, 0 0 R

Then, the gain matrix can be written as:

m m
G=Y G => HR'H (4.80)
i=1 i=1

Since H; in (4.80) are very sparse row vectors, their product will also yield a sparse matrix, and

nonzero terms in G can thus be calculated and stored in sparse form. The sparsity pattern of G de-
pends on the type of available measurements. When only power flow measurements are present, the
gain matrix shares the same sparsity pattern as the corresponding admittance matrix ¥, which repre-
sents the branches where power flow measurements exist. However, the inclusion of SCADA-based
bus injection measurements alters this pattern, as an injection measurement introduces additional non-
zero elements in the gain matrix structure. These elements correspond to all branches connected to the
measured node. In an extreme case where injection measurements are available at every node, the gain
matrix has a sparsity pattern similar to the square of the network admittance matrix. Note that although
the gain matrix is generally less sparse than the ¥ matrix, it is still very sparse for large networks,
justifying the use of sparse matrix techniques [38].

The factorization of the gain matrix has been the subject of extensive study, as will be discussed
extensively in Subsection 4.9, because it is less sparse compared to the Jacobian matrix. The gain
matrix G can be written as a product of a lower triangular sparse matrix and its transpose. This is called
the Cholesky decomposition of G, details of which are given in [38]. The decomposed form of G will
be:

G=LL (4.81)

Note that this decomposition may not exist for systems which are not fully observable, and as a result,
an SE solution cannot be obtained for such (unobservable) systems. Triangular factors of G are not
unique, and extracting these factors must be carried out in a manner that preserves their sparsity as
much as possible. There are several methods for optimizing the sparsity of the resulting L factors,
through elementary row operations, which yield row-equivalent forms of G prior to factorization, as
well as through appropriate algorithms during the factorization process [58]. Specifically, for the
Cholesky method, the sparsity of L is preserved via the minimum-degree or Tinney-2 ordering algo-
rithm — so named after its proponent [35].

An especially important property of the matrix is that its inverse G_l()A() coincides with the covari-

ance matrix of the WLS SE solution. Since the nonlinear WLS static model provides an asymptotically
unbiased estimator of the state vector x, we have:

E(X) = X (4.82)
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In other words, the mean value of the WLS state estimates one would obtain for different realizations
(in terms of measurement values) of the same set of available measurements equals the actual system
state [39]. Furthermore, by solving (4.66) after linearizing A(x) in the neighborhood of the estimate X
, it can be shown that the covariance matrix Cov(X) is given by [34]:

Cov(R) = E[(x—k)(x—k)T]:G‘l(k) (4.83)

Consequently, the i-th diagonal element of G™}(X) coincides with the variance of the estimated state
variable %;, i.e.,

Var(%,) = [G‘l(k)] (4.84)

i

Finally, the information content of the gain matrix is sufficient to provide full knowledge regarding
the available measurements in a system under study. It can be shown that within the DC model frame-
work, the Jacobian matrix H — and therefore the gain matrix — can be expressed as a function of its
incidence matrix, which encodes how branches and nodes are interconnected. Hence, in numerous
studies the i-th row of the Jacobian matrix uniquely encodes the type and topological characteristics
of the i-th measurement [35]. Furthermore, based on (4.80), the matrix G;, corresponding to the meas-
urement Z;, also incorporates its accuracy through the weighting factor Rﬁl =0; 2 Consequently, the
gain matrix, expressed as the sum of the individual terms G;, i=1,2,...,m, contains all the pertinent
information. This property makes it a valuable tool for optimizing the design of measurement infra-
structures in electric power systems [35].
4.8.5 Forward/back substitutions [38]

Assuming that the gain matrix is properly decomposed into its Cholesky factors L and L', the next
step is to solve the NE for Ax®

LL" Ax D = ® (4.85)
where tO =HT (x(i))R_l (z — h(x(i))) . This solution is obtained in two steps:

1) Forward substitution: Let L' AxU*D = u, and obtain the elements of u starting from U; by using
substitutions in the transformed equation Lu =t® . The top row will yield the solution for
U; =t /Ly, . Substituting for u; in the rest of the rows will reduce the set of equations by one.

Repeating the same procedure for u;, i =2,3,...,n sequentially, will yield the entire solution for u.

2) Back substitution: Now that u is available, use L' Ax™D = u to back-substitute and solve for the
entries of AX(*Y  This time, the substitutions should start at the bottom row, where the last element
of the solution vector is obtained as Ax{"™ =u, /Ly, - Substituting for it in the remaining rows, the
back substitution process can continue until all entries are calculated.

Note that both the forward and back substitution steps proceed very efficiently due to the sparse struc-
ture of the triangular factor L.

4.9 Alternative formulations of the WLS state estimator [38]

The WLS SE problem can typically be solved efficiently using the NE, as outlined in the previous
Section, particularly with modern computational capabilities. However, it is well established that under
certain conditions — commonly encountered in practice — the NE approach may suffer from numerical
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instabilities. These instabilities can prevent the solution algorithm from converging to an acceptable
solution or, in some cases, lead to divergence. In this Section, the limitations of NE are first discussed,
along with well-established alternative techniques that offer improved numerical robustness.

4.9.1 Numerical weaknesses of the NE formulation

Let us first recall, from the previous chapter, that the WLS SE leads to the iterative solution of the
so-called NE:

G(xM)Aax® = HT (x(”)R-l(z -h(x“))) (4.86)

Equation (4.86) is solved by Cholesky factorization of G and forward/backward substitutions. Since
G is positive definite for observable systems, pivoting is not necessary; however, prior to its decom-
position, G' must first be symmetrically permuted to preserve sparsity. As G is, in general, less sparse
than the bus admittance matrix, solving the NE requires significantly more computations than the cor-
responding power flow solution for the same network [38].

Another important property of G, mentioned in Subsection 4.8.4, is the numerical ill-conditioning
of the NE. A linear equation system is said to be ill-conditioned if small errors in the entries of the
coefficient matrix and/or the right-hand side vector translate into significant errors in the solution vec-
tor. The more singular a matrix is, the more ill-conditioned its associated system will be [38]. The
degree to which a system is ill-conditioned can be quantified by a measure called the condition number,
which is defined as:

K(A) =] Al | A7 (4.87)

This value is equal to unity for identity matrices and tends to infinity for matrices approaching singu-
larity. Condition numbers are typically approximately computed, due to the high computing cost of x
as evident from its definition. One such approximation which yields a good estimate of the condition
number is the ratio A, /Amin Where A, and A, are the largest and smallest absolute eigenvalues,

respectively, of a normalized matrix. It can also be shown that:
K(ATA) = (x(A)) (4.88)

which means that the NE are intrinsically ill-conditioned [38].

Although such cases are rarely found in practice, a combination of too low a termination threshold
and severe ill-conditioning may cause convergence problems or even divergence. Given expression
(4.80) of the gain matrix, it becomes clear that the coexistence of measurements with large variations
in their accuracy leads to extreme values (both negative and positive) in the elements of G. An example
of this is the use of very large weighting factors to enforce virtual measurements. Consequently, this
is cited as the principal reason for its generally ill-conditioned nature [43]. Another cause of this in-
herent property is the frequent presence of lines/branches with low series impedance, as well as short
and long lines simultaneously present at the same bus [59]. Finally, a large proportion of injection
measurements can create (or nearly create) linear dependencies of the rows of G among those meas-
urements. As those dependencies accumulate, the gain matrix inherits these near-linear relationships,
which significantly degrades its numerical conditioning [38].

In the following sections, several alternative techniques which try to circumvent the shortcomings
of the NE by avoiding the use of G and/or handling virtual measurements in a more effective manner,
are discussed.
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4.9.2 Alternative methods of gain matrix factorization [38]

In addition to the widely used Cholesky factorization, there are alternative methods that provide
improved numerical stability. These approaches can be particularly beneficial in handling ill-condi-
tioned systems and minimizing the risk of computational errors.
4.9.2.1 Orthogonal factorization

Orthogonal factorization (or QR decomposition) provides a numerically stable alternative to Chole-

sky factorization. In this method, matrix H’ =WY?H , with W = R , 1s decomposed into two ma-
trices: an orthogonal matrix Q and an upper trapezoidal matrix R :

U
H'=QR =[Q, QO]{O}QnU (4.89)
Applying this factorization to the NE, yields:
UAx =QIW Y2 (z—h(x)) (4.90)

which is the key equation in this approach and is solved for AX via back substitution.

The main advantages of orthogonal factorization lie in avoiding the explicit computation and fac-
torization of G = H'"H', while being more numerically robust than the LU factorization, since it does
not rely on scalar pivots. Although constructing the orthogonal matrix @ can be computationally ex-
pensive, optimizations such as square-root-free implementations of the Givens rotations make the pro-
cess viable for large systems.

4.9.2.2 Hybrid factorization

The hybrid factorization method combines elements of both the Cholesky and orthogonal factoriza-
tions. The key observation here is that the matrix U obtained from the orthogonal factorization corre-
sponds to the same Cholesky factor of the gain matrix G. Thus, instead of computing G explicitly, U
can be obtained using orthogonal transformations on H', and then AX is obtained via

UTUAX = HTwY? (Z — h(X)). This hybrid method leverages the numerical stability of orthogonal
transformations while retaining computational efficiency, since there is no need to keep track of Q.
4.9.2.3 Peters and Wilkinson

The Peters and Wilkinson method introduces another alternative by performing an LU decomposi-
tion on the matrix H’, transforming the NE into L' LAy = L'wY? (z—h(x)) with Ay =UAX. Vector

Ay is first computed by Cholesky factorization of L' L and forward/backward substitution, and then

AX is obtained by backward substitution. The main advantage of this scheme is the fact that L' L is
less ill-conditioned than G=H'"H".

4.9.3 Equality-constrained WLS state estimation

As already stated in Section 4.2, usage of virtual measurements is commonly implemented into SE.
As already discussed, very accurate virtual measurements, such as zero injections, can be included
directly in the measurement vector z, with very high weights (very low variances) in the covariance
matrix R. This, however, may lead to ill-conditioning of the gain matrix. A straightforward method for
avoiding the usage of large weighting factors is to model these measurements as explicit constraints in
the WLS problem, as follows:
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[Zi —h(X) jz —_eTRLe

m
X :=arg mxan(x) =>

- (4.91)

st.c(x)=0

where ¢(X) =0 represents accurate virtual measurements, such as zero power or current injections that

are now excluded from z and A(x). This problem is solved using the method of Lagrange multipliers,
with Lagrangian function:

L(X,2) =J(x)+ 2" e(x) (4.92)

The first-order optimality conditions are written as:

LA _ g —HT ()R (2-h(x))+CT (x)2=0

r™ (4.93)
M =0<¢(x)=0

o

ac(x)

where C(X) = is the Jacobian of ¢(x).

Following a similar procedure to Section 4.8.1 in order to solve the nonlinear equations (4.93), the
Gauss-Newton method yields the following linear system:

G cT(x ) [ax®] | HT (xR (z-h(x)) w04
c(x®) 0 24) —e(x) 94)
Note that the matrix R™ no longer has large values, which eliminates one of the main sources of
ill-conditioning. However, the drawback of (4.94) lies in its coefficient matrix being indefinite. This
means that row pivoting to preserve numerical stability must be combined with sparsity-oriented tech-
niques during LU factorization, destroying the initial symmetry. More sophisticated techniques, capa-
ble of resorting on-the-fly to 2x2 pivots to preserve the symmetry have been developed to deal with
indefinite matrices. Other block-pivot approaches have been presented in which the pivot size is de-
cided in advance based on available measurements [38].
It is worth mentioning that the condition number of the coefficient matrix in (4.94) can be further
improved by simply scaling the term of the Lagrangian corresponding to the objective function, yield-
ing:

L(X, ) =al(x)+ A ¢(x) (4.95)

It is easy to show that the scaling factor a has no influence on the estimated state and that 4, =a4 . The

equation system that must be solved at each iteration is:

aG(x®) cT(x)|[ax®] [aHT (x")R* (z-h(x?)) w6
C(X(i)) 0 zs(i+1) B —c(x(‘)) .
Very low condition numbers are obtained when a is chosen as [38]:
a= (4.97)

a=———— 0
max(R;;") i R
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It should be noted that a =1 might lead to condition numbers which are actually worse than that of
the conventional G, because the values Rﬁl are usually very large compared to the coefficients of C.

This flexibility is not possible in the conventional approach, where scaling the objective function has
no effect on x(G). Hence, this is another advantage of modeling virtual measurements as equality

constraints.

4.9.4 Hachtel’s augmented matrix approach

Similar to virtual measurements, regular measurement equations can be written as equality con-
straints if the associated residuals are retained as explicit variables. In this approach, the WLS problem
can be restated as:

X :=arg min J (x) = r'R7r
st. r=z-—h(x) (4.98)
c(x)=0
The resulting Lagrangian will have two sets of Lagrange multipliers, 4 and u:
L1 A,u)=3(r)+2"cx)+p' (r—z+h(x)) (4.99)

Linearizing the first order optimality conditions and using r = —Ru , the following system of equations
will be obtained:

0 CcT(xD)y HT(xD) || ax® 0
c(x® o0 0 A= —e(x®) (4.100)
Hx®) o R || a8 z-h(xD)

The coefficient matrix in (4.100) is called the Hachtel's matrix. Note that (4.100) will become iden-
tical to (4.94) if u is eliminated. Hence, this is the most primitive or augmented formulation and, ac-
cording to the theory discussed above, lower condition numbers are expected. On the other hand, since
the Hachtel's matrix is very sparse, solving the above system is not particularly expensive in terms of
arithmetic operations, but a more involved logic is needed to control and track the required row pivot-
ing [38]. As in the case of (4.94), the condition number of the Hachtel's matrix can be further improved
if the residual weights are properly scaled. This is achieved simply by using a scaling factor as in (4.95)
, yielding:

0 CT(xDy HT(x®) || ax® 0
c(xy 0 0 D 1= —e(x) (4.101)
HxD) 0 —a™R || 4| | z-h(xD)

4.10 Power System Dynamic State Estimation

Power systems, by design, operate under hierarchical monitoring and control systems to manage a
wide range of dynamic phenomena, varying across multiple time scales. As discussed in the previous
Chapter, historically, SSE models and methods have formed the backbone of the EMS for power sys-
tem visibility and situational awareness, assuming the system operates in a steady state. However, the
increasing complexity of power grids due to the large-scale DER integration, complex loads, and new
demand-side technologies has exposed the limitations of these traditional static models. Dynamic
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characteristics — such as variations in demand and renewable energy supply — cause frequent and un-
predictable shifts in the system’s state. These stochastic variations in generation and load introduce
uncertainties, often rendering SSE methods insufficient for real-time operation. To address these chal-
lenges, Dynamic State Estimation (DSE) has emerged as a critical tool, enabling the accurate tracking
of power system dynamics. DSE not only helps capture fast-changing states like rotor angles and gen-
erator speeds but also enhances control and protection strategies, particularly under scenarios of high
system uncertainty [60].

4.10.1 Dynamic state estimation motivations and background

The power grid is experiencing profound changes in generation mixes and load compositions, par-
ticularly due to the increasing penetration of intermittent, stochastic and power electronics-interfaced
non-synchronous renewable generation and DERs [60]. These changes manifest as new types of sys-
tem dynamics that static models fail to capture. For example, stochastic fluctuations in renewable gen-
eration, driven by variations in weather conditions, can cause rapid changes in system states, such as
voltage and rotor speed. These fast dynamics present a challenge for traditional EMS, which rely on
SCADA systems that update data only every few seconds or minutes, making them inadequate for
capturing real-time system fluctuations [60], [61]. Thus, DSE offers several compelling benefits in this
evolving landscape. With the proliferation of PMUs, capable of providing synchronized measurements
across the power grid at much higher resolutions, DSE tools can now be implemented to significantly
enhance system monitoring, control, and protection [61]. Some of the key applications of DSE include
[60], [62]:

e Power system monitoring: By providing accurate estimates of dynamic state variables and dynamic
state trajectory tracking, DSE enables real-time modal analysis, crucial for identifying system os-
cillations, as well as bus frequency, ROCOF and center of inertia frequency estimation, data quality
detection and correction — e.g., against cyber-attacks — and anomaly detection.

e [mproved control strategies: DSE supports both local and wide-area control by accurately estimat-
ing dynamic states, such as rotor speeds and voltage angles. These states can then be used as inputs
for more precise control of excitation systems in generators or FACTS, improving the system’s
overall response to disturbances.

o Enhanced protection systems: One of the most significant contributions of DSE is its ability to
improve the reliability of power system protection schemes. Traditional protection systems rely on
pre-set relay settings, which may not be robust against fast-changing conditions. DSE, on the other
hand, allows for real-time fault detection by cross-referencing PMU data with dynamic models.
This enables more adaptive protection mechanisms, which can prevent blackouts and better man-
age generator stability during out-of-step events.

e Model validation and parameter calibration: Online tracking and identification of system model
parameters, including those for synchronous machines, dynamic loads, wind farms, and other
power electronics-interfaced DERs, has been an important application of DSE. By continuously
validating and updating these models, DSE contributes to more reliable dynamic security assess-
ments, allowing operators to predict and react to potential system instabilities.

Under this premise, in parallel with the development of the WLS SSE model, DSE models have also
been studied, albeit to a lesser extent. Despite being initially mentioned in the 1970s [63], [64], it was
only in recent years that the power system community has picked up the momentum in DSE research.
Part of the reason was the lack of appropriate metering infrastructure, like PMUs and MUs that are
being widely deployed to capture the appropriate dynamics in power systems. Feasibility studies using
PMU measurements for DSE are reported in [65], and, subsequently, various Kalman filter (KF)-based
techniques, such as Extended Kalman Filter (EKF), Unscented Kalman Filter (UKF) [66], Ensemble
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Kalman Filter (EnKF), Particle Filter (PF) and their variants [67] have been applied to DSE. Data-
driven DSE [68], observability analysis to guide measurement selection [69], and the enhancement of
robustness against bad data and parameter errors are also developed in [70], [71].

4.10.2 Dynamic state estimation framework

To address the diverse operational conditions in power systems, this section presents the unified
DSE framework that integrates various SE techniques. These methods differ in their ability to handle
fully dynamic versus quasi-steady conditions and their applicability under specific operating scenarios.

4.10.2.1 Quasi-steady state vs. transient conditions

Power system states can generally be classified into two mutually exclusive primary operating con-
ditions: quasi-steady and transient. Transient operating conditions occur when the system experiences
a sudden disturbance (e.g., faults, switching events, or rapid changes in generation/load). During these
events, the dynamic states evolve according to differential equations. The system's behavior under
transient conditions is captured by the following set of differential-algebraic equations [62]:

%(t): f (x(t),u(t), p) (4.102)
0=c(x(t),u(t), p) (4.103)

where X € R" denotes the state vector comprising algebraic state variables, such as voltage and current
phasors, as well as dynamic states, such as rotor angles and speeds, U is the input vector (e.g., control
inputs), p represents system parameters, and f(-), ¢(-) are nonlinear functions representing the sys-

tem’s differential and algebraic equations, respectively. In this case, (4.102) captures the rapid evolu-
tion of the dynamic states over time, and (4.103) consists of the algebraic constraints of the system
(e.g., power flow equations) that must be satisfied.

During quasi-steady operation, the system experiences slow and gradual changes in load or renew-
able generation. In this case, generators and controllers respond effectively to maintain system balance,
with negligible variations in the dynamic states (e.g., rotor speed and angle). Mathematically, the quasi-
steady state is described by the following set of algebraic equations, where dynamic state changes are
assumed to be minimal [62]:

0~ f(x(t),u(t), p) (4.104)
0=g(x(t),u(t), p) (4.105)
Under quasi-steady conditions, changes in state variables over time are slow, so 8)2?) ~ 0. This justi-

fies the use of static or quasi-dynamic state estimators, which assume that the system is approximately
at equilibrium, with no rapid changes in dynamic states, as will be discussed in the following.

4.10.2.2 Discrete-time models

Both quasi-steady and transient operating conditions are expressed in continuous-time models via
(4.102)—(4.105), which are then discretized for practical use in SE. The state-space representation in
discrete time is given by [62]:

X1 = T (Xio U, P)+ W (4.106)
z, =h(X, U, p)+eg (4.107)

where X, represents the discrete-time state vector at time step k, W, , is the error vector accounting

for model approximation and time discretization errors, €, is the measurement error vector, and the
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algebraic constraints c(-) are processed together with the incoming measurement vector z, via the
nonlinear measurement function h(-). The random vectors w, and e, are usually assumed to be nor-
mally distributed with zero mean and covariance matrices Q. and R, respectively. Note that they are

the superposition of different sources of noise/errors (e.g. from sensors, communication channels, or
models) and may not follow a Gaussian distribution in practice [72].

4.10.2.3 Dynamic state estimation methods
DSE in general is a nonlinear filtering problem that can be formulated using recursive state-space
models. In DSE, the goal is to estimate the state vector X, given all available measurements up to the

current time step k. This is typically accomplished using the Kalman filter (KF) framework, through a
combination of prediction (or time update) and filtering (or measurement update) steps:

1) Prediction step: This step predicts the state at the next time step based on past data. Using the state
estimates from the previous time step k-1, i.e., X,_;, with the corresponding covariance matrix

P._1 , the predicted state at time £ is calculated via (4.106) directly, or through a set of points drawn

from the probability distribution of the estimated state vector, which is dependent on the assumed
probability distribution of w, .

2) Update step: Once measurements Z, become available, the predicted state is updated using the

measurements at time step & to estimate the state vector X, and the covariance matrix P, .

Several variants of the KF can be used depending on the level of nonlinearity in the system and on
how the state statistics are propagated, such as [65], [73], [74]:

e The EKF linearizes the system’s nonlinear equations around the current operating point, via a Tay-
lor series expansion. It is a common method for implementing SE in mildly nonlinear systems, but
its accuracy and applicability are limited by the quality of the linearization.

e The UKF, originally derived from the Unscented Transform (UT), improves upon the EKF by using
deterministic sampling techniques to select a set of samples — referred to as sigma points — which
represent the a priori state statistics to be propagated through the nonlinear system. UKF provides
a more accurate approximation of the state probability distribution, particularly for highly nonlin-
ear systems, while avoiding calculation of the derivatives of the nonlinear equations.

e The EnKF leverages a Monte Carlo-based sampling technique, where an ensemble of possible
states is maintained, and each member of the ensemble is updated based on the system dynamics
and available measurements. This method is particularly effective for large-scale systems with sig-
nificant uncertainties, as it estimates the covariance of the states through the ensemble, providing
a more computationally feasible solution than other KF variants for high-dimensional systems.

e Similar to EnKF, PFs approximate the state probability distribution using a set of particles, each
representing a possible system state. These particles are propagated through the system's nonlinear
dynamics, and their distribution is updated based on new measurements. PFs are very flexible and
can handle highly nonlinear systems and non-Gaussian noise, but they can be computationally
Intensive.

4.10.3 Dynamic state estimation under quasi-steady operation

When DSE is applied to quasi-steady state operating conditions, the “dynamic” denomination may
be misleading, as the system dynamics associated with the stability concept are assumed to be ab-
sent/negligible. Semantic arguments in the SE context over the meaning of DSE have led researchers
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to coin the terms Forecasting-Aided State Estimation (FASE) and Tracking State Estimation (TSE)
[62], [75].

4.10.3.1 Forecasting-aided and tracking state estimation principles

In SSE methods, each measurement set is processed independently, disregarding any temporal cor-
relation between successive states. However, as the system evolves over time, successive snapshots
are not independent but are part of a continuous time evolution of the system. FASE takes advantage
of this fact by constructing a dynamic model that links consecutive states through a forecasted state
trajectory. The assumption of quasi-steady operating conditions in power systems leads to the concept
of static-state dynamics, that is, the time evolution (or sequence) of steady-state bus voltage phasors,
while disregarding transients [ 75]. In normal operation, power systems remain in a steady-state regime,
with variables such as bus voltages, power flows, and transformer taps changing incrementally. FASE
is designed to estimate this static-state dynamic behavior, incorporating the system's natural time evo-
lution and providing more accurate state estimates, when the system undergoes small but continuous
changes.

FASE is a particular application of DSE under quasi-steady conditions, where system states evolve
slowly and are driven primarily by stochastic changes in demand and generation, simplifying the tran-
sition model to a linear equation. The typical FASE state-space model is written as [62]:

z, =h(x, p) +e (4.109)

where X, now represents only the algebraic state variables that specifically refer to bus voltage mag-
nitudes and angles, F is the state transition matrix representing the linear evolution of states between
time steps, and g, is a trend vector, which incorporates the effects of control inputs u, .

TSE is an oversimplified version of FASE, where the state transitions are assumed to be minimal,
represented by small random fluctuations. The TSE state-space model is expressed as:

TSE works well for systems that remain relatively unchanged over time but struggles to track any
significant changes to state variables. With the increasing penetration of DERs and flexible loads, the
evolution of states over time cannot be simply replaced by a white Gaussian noise [12], [52]. This
scenario is further aggravated in the presence of changes in network topology and parameters owing
to line or transformer switching or switching of capacitor banks or shunt reactors. As a result, it be-
comes a challenge to adopt TSE for practical applications.

4.10.3.2 Evolution of forecasting-aided state estimation

The concept of FASE emerged in the late 20" century as an extension of traditional SE methods.
Early efforts began in the 1970s, with the aim of tracking the time evolution of the power system state
using relatively simple models [63], [76]-[78]. These naive models lacked any genuine forecasting
ability and used the most recent state estimate as a prediction for the next time step, assuming minimal
state variation between consecutive time steps.

Despite the limitations of these early models, they established the foundation for further work in
FASE. In particular, the need for a more sophisticated dynamic estimation process became evident,
leading to the development of models that could better capture the time-varying nature of power sys-
tems. By the 1980s, innovation analysis was incorporated into FASE, where the difference between
predicted and actual measurements (the innovation vector) was used to detect anomalies, including
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sudden variation of system states, bad data, and errors in network topology [79], [80]. More sophisti-
cated dynamic models were proposed in [81], [82]; these models were adaptative in the sense that their
parameters are estimated online — using exponential smoothing and KF techniques — according to
identifiable patterns of system state temporal evolution. This led to improved forecasting accuracy and
more efficient handling of anomalies.

In the late 1990s and early 2000s, significant strides were made with the introduction of Artificial
Neural Networks (ANNs) and pattern analysis techniques in FASE [83]-[86]. The advances made,
pertained to real-time topology identification through the pattern analysis of raw measurements — both
analog and binary — and the utilization of normalized innovations in the form of ANN input variables
for data debugging (identification of bad data and misconfigured network branches). Researchers have
also explored the combination of fuzzy logic with FASE, particularly for handling rapid, large-scale
load changes [87], [88]. Finally, improvements in bad data processing and pseudo-measurements pro-
vision were achieved by means of FASE: the solution to the open problem of bad data detection/iden-
tification in critical measurements and sets via innovation analysis [89]; the use of forecasted values
as pseudo-measurements together with respective error covariances (weights in the WLS SE), auto-
matically generated at the forecasting step [90].

4.10.3.3 FASE mathematical framework

The mathematical formulation of FASE is based on the state space model involving (4.108) and
(4.109): the state transition (or state) and the measurement (or observation) equations, respectively.
Eliminating the parameter vector p from the unknown variables and assuming that the states refer to
only voltage phasors, the FASE state-space model becomes [62], [75], [81]:

where subscript k denotes the discrete time instant t,, F, € R™" is the diagonal state transition matrix
for transition t, —t,,;, vector g, € R" captures the trend of the state trajectory, h, : R" — R™ is the

vector of nonlinear functions relating the measurement vector z, € R™ to the state vector X, € R",
with n<m, random vectors €, and w, are the independent Gaussian measurement and transition
errors, respectively, with E(w, ) =E(e,) =0, Cov(w,)=Q, and Cov(e, ) =R,.

To establish the FASE model, some important considerations on power system operations are usu-
ally assumed [75]:

e the time frame of interest is considered small, of the order of few minutes;
¢ alinear function properly represents the transition trajectory between consecutive states;
e control variables are not included in g, since their effect is much faster than the adopted time
frame.
Generally, the elements of the forecasting model parameters F,, g, and Q, are not known a priori

and need to be estimated. FASE methods typically rely on historical time-series data to estimate these
parameters. The most widely used forecasting techniques in FASE are time-series methods and statis-
tical models, which have been adapted from general forecasting applications to fit the specific needs
of power systems [75].

The exponential smoothing method, often employed in FASE, generates forecasts by taking
weighted averages of past observations, with weights that decrease exponentially as the observations
get older. A key advantage of exponential smoothing is its simplicity and ability to be converted into a
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state-space form, where the state transition matrix is derived from the smoothing parameters. Widely
used approaches are exponential smoothing regression or recursive least squares [81], [82], [87], [91],
[92]. The FASE algorithms that have been proposed so far and rely on exponential smoothing methods
have considered the state transition matrix as diagonal. This means that no correlation between state
variables is assumed. Further research is required to evaluate whether correlation contributes to a better
state forecasting capability, and in view of the increase in computational burden, a possible inclusion
of correlation should be carefully examined. Various FASE methods have also employed ANNs for
state forecasting [85], [86], [89], [93]. ANNSs are capable of modeling complex, nonlinear relationships
between system states, which can be useful for predicting the state trajectory under quasi-steady con-
ditions. However, the practical benefits of ANNs over traditional linear models have been limited, and
further research is required to justify their computational complexity in real-time FASE applications.
The one-step ahead state forecast, denoted by X,y , is obtained using information on the system
behavior up to time step &; this is also known as a priori state estimate. The parameters F, and g, are

usually defined according to the Holt's two-parameter linear exponential smoothing method, due to its
simple implementation [75]:
Xk = A + By

By = B(Ac = A1)+ (1= P)By 4
where A, and B, are the estimates of the level and the trend of the state variables, respectively, and
o and S are the corresponding scalar smoothing parameters, with («, ) € [0,1]2 . The level A, is the
weighted average of the a posteriori Xy and a priori X4 state estimates. The trend By is a weighted

average of the estimated trend based on the level change A — A, _; and the previous estimate of the

trend B,_;. Via mathematical manipulations (4.114) becomes [81]:

>A(k+]Jk =Fy )A(k|k + 0k

F.=a(l+p)I

g = A+ B)L- ) Xy — BAG + (- B)By 4 (4.115)
A = aXg + (- o) Ky

By = S(Ac - A1) +1-8)B 4

4.10.3.4 Extended Kalman filter-based FASE

FASE can be perceived as an extended WLS estimation, in the sense that the received measurements
are processed together with the available a priori estimated (forecasted) state to produce the a poste-
riori estimated (filtered) state [75], [81].

We consider again the nonlinear FASE state space model of (4.112) and (4.113). The initial state

vector X, with mean gy = E [x,]= X, and covariance Py =Cov(Xy) = E[(Xo — RXo)(Xo — Xo)' ] needs

to be provided by the conventional SSE. In the following we assume that the random vectors w, and
e, are temporally uncorrelated (white noise), zero-mean random sequences with known covariances

and both of them are uncorrelated with the initial state X, .
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1) Prediction step:

Let X, and P, be the a posteriori estimates of the state vector and its covariance matrix, respec-
tively, at time t, . By applying the conditional expectation operator on (4.112), the a priori estimate of
the state vector X,y = X,y and its covariance matrix P,.; are calculated as follows:

X1 = DX 1 2] = B[R X + Gy + Wi [ 2] = E[F Xy + 9k 12 ] = Fie X + 9 (4.116)

Thus, the forecasting error is calculated as:

€1 = Xie1 — Kt = FicXic + Oy + Wy — (R R + 9) = Fie (% = X ) + Wy (4.117)
and the forecast error covariance is expressed as:

Pt = Eley (8¢ 11) " 1= FELX — R ) (X = % )TIR +E[wwy 1= F PR +Q, (4.118)

2) Correction step:

Using the measurement set z, and the a priori state vector X, , the a posteriori estimated state
vector X, may be obtained by solving the following WLS optimization problem with objective func-
tion J(X,), at time instant t, [81]:

Xy =argminJ (x,) = (2 - he (%)) Ret (2 —he (50)) + (R = % )" Bt (R = X, ) (4.119)

k
For the case of an overdetermined nonlinear measurement model, that is, z, =h(x,)+e€, with

Z,,6, €R™, x, e R" and m>n, the first order optimality conditions will have to be satisfied at the

minimum of J(X,):

o0J (X _ 5 1/
V() =% =—H" (xR (zy =h(%)) =P (R =%, ) =0 (4.120)
k
oh(x) . . : . .
where H(X) =———= is the Jacobian matrix of h(X). Expanding the gradient VJ(X,) around a cur-

rent estimate Xlgi) using a first-order Taylor series expansion, yields:

VI (%) = VIOP) + V23 () (35 - X (4.121)

2
where V2J(x) = 0 ; (2X) is the Hessian matrix of J(X) . Ignoring the second-order derivatives of h(x)
X

in calculating V2J (X) results in the following approximation:
V2I(x) = HT (x )RH (%, )+ B! (4.122)
Using the Gauss-Newton iterative solution scheme, yields:

(G(x,ﬁ”) + 5k—1)Ax|§‘+1> =HT (xS))R-l(z - h(xlﬁi)))+ ﬁk—l(xk - xS)) (4.123)
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where superscript (i) denotes the iteration index, subscript & denotes the current time instant, XS) is
the estimated state vector at the i-th iteration, AX,E”l) = XS“) - X,Ei) is the i-th incremental correction,
and G(XS)) =H" (XS)) Rlle (XS)) is the SSE gain matrix.

Equation (4.123) corresponds to the Iterated Extended Kalman Filter (IEKF). The complete IEKF
correction process for solving the FASE problem is presented in Algorithm 4.3. The Kalman gain

K, € R™™ and the covariance matrix of X,, P, = E[(X, — & )(X, —X)"], are obtained post-estima-

tion by:
(G(R)+ Pt Ky = HT (RR;! (4.124)

Algorithm 4.3: Iterated extended Kalman filter correction step at instant #;

1) Initialize the iteration index i <0 and use Xlgo) <« X, as initial guess.

2) Calculate the inverse of the sparse a priori covariance matrix Isk’l

3) Calculate matrix G(XS)) + Isk_1

4) Calculate the right-hand side of (4.123), H” (xlgi))R—l(z - h(xp)) + |5|;1(>~<k —x® ) .
5) Decompose G(XS)) + If’k_1 and solve (4.123) for Axlg”l) .

6) Check for convergence:

If HAxS“’

<&, where ¢ is the convergence tolerance, then X, <« Xlgi) + AXSJ&) and terminate the al-
gorithm. Else, x{™ « x{ + Ax(" | i «~i+1 and return to Step 3.
7) Calculate the Kalman gain by solving (4.124) for K, .

8) Use (4.125) to calculate the a posteriori covariance matrix P, .
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5. HYBRID POWER SYSTEM STATE ESTIMATION

In contemporary electric power transmission systems, the primary data sources for SE are the
SCADA and WAMS systems. As outlined in Chapter 4, Conventional State Estimation (CSE) algo-
rithms utilize voltage and current magnitude, as well as active and reactive power injection/flow meas-
urements, gathered by the SCADA system via RTUs deployed at substations across the grid. While
SCADA systems have relatively long data update intervals by today’s standards and offer moderate
measurement accuracy, their maturity, reliability, and widespread deployment make them a cornerstone
of ECC operations [5], [94].

WAMS generally comprise dispersed PMUs and PDCs. Since their emergence in the 1980s, PMUs
have evolved into indispensable tools for WAMS, delivering high-resolution GPS-synchronized snap-
shots of bus voltage and branch current phasors, along with measurements of frequency and ROCOF.
The reporting rates of PMUs, which range from 10 to 240 frames per second depending on system
specifications and manufacturer, far exceed those of SCADA systems [6], [95]. The inclusion of syn-
chrophasor data in SE has been transformative, enhancing accuracy and performance for several rea-
sons [95]:

o Improved state estimate quality: PMUs provide exceptionally accurate measurements, with mag-
nitude errors around 0.1% and phase angle errors of approximately 0.001 radians, in steady-state
conditions [4]. This precision enhances the reliability of SE results, offering operators better con-
fidence in security assessments and providing higher-quality data for downstream control functions
within the EMS.

e Direct measurement of state variables: Unlike RTUs, PMUs directly measure state variables, that
is, the bus voltage phasors. This capability simplifies the mathematical formulation of the SE prob-
lem into a linear model, thereby reducing computational complexity and improving algorithmic
efficiency.

o  Measurement synchronization: GPS-synchronized timestamps ensure that measurements from dif-
ferent regions align temporally, enabling precise system-wide snapshots of operating conditions.

o High reporting rates: By leveraging advanced communication protocols, PMUs offer reporting
rates up to 100 times faster than traditional RTUs. This rapid reporting is essential for monitoring
fast-evolving system dynamics and improving operator responsiveness.

Despite these undisputable advantages, the deployment of PMUs or PMU-enabled IEDs remains
somewhat limited, primarily due to economic and technical constraints — interoperability with legacy
systems and costs related to hardware, installation, and communication infrastructure are all significant
factors. Consequently, in most transmission systems, synchrophasor measurements alone are insuffi-
cient to attain full network observability for linear PMU-based SE. This has led to a continued reliance
on SCADA systems, with synchrophasor data serving as complementary information. The coexistence
of SCADA and WAMS thus remains a practical necessity, with hybrid approaches integrating RTU
and PMU measurements to develop viable SE algorithms [9].

In this context, Hybrid State Estimation (HSE) techniques, which merge SCADA and PMU data,
have garnered substantial research interest, reflected in an extensive body of literature. This Chapter
provides an in-depth examination of the arising challenges and recent research advancements in the
development and implementation of HSE algorithms for transmission systems. Furthermore, it identi-
fies key research gaps and explores future opportunities in this evolving field.
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5.1 Challenges in integrating multi-source data into state estimation

Integrating measurements from multiple systems notably improves the performance of SE, enhanc-
ing both precision and the handling of erroneous measurements, due to increased measurement redun-
dancy. However, combining data from diverse sources is far from straightforward. Research on HSE
identifies two primary categories of challenges:

1) Different reporting rates and time-inconsistent data: PMUs report measurements at significantly
higher rates than SCADA systems. Moreover, data from different sources often arrive unsynchro-
nized, a phenomenon known as measurement asynchronization or time skewness. This misalign-
ment means that field measurements typically fail to represent a single, consistent time instance.
Beyond the lack of synchronized timestamps in SCADA data, additional timing inconsistencies
arise from communication delays that vary among sensors [8], [9].

2) Variability in measurement types and accuracy levels: The two measurement systems collect dif-
ferent types of data, creating implementation challenges as existing SE software often requires
modifications to accommodate these variations. Numerical issues may also occur, for example
during the initialization of the SE algorithm, when current phasor measurements are expressed in
polar coordinates [96]. Furthermore, differences in sensor accuracy complicate the assignment of
measurement weights; significant discrepancies in accuracy levels can adversely affect gain matrix
conditioning and SE reliability [97].

To address these challenges, a variety of methods have been proposed. The subsequent Sections
delve into these methods, providing detailed discussions of their strategies and effectiveness. Figure
5.1 illustrates the hierarchical classification of HSE methodologies, as proposed in [98]. SSE methods
are categorized based on their scope and algorithmic processes relative to the challenges discussed
above. Meanwhile, DSE methods are primarily classified according to their state space models, with
further subcategories reflecting their unique contributions and mathematical foundations.

Hybrid State Estimation Algorithms

Hybrid Dynamic

Hybrid Static State Estimation R
State Estimation

Integration of Integration of Different
Multi-Rate Data Measured Quantities Dynamic
State / Measurement Integrated Methods

Reconstruction Forecasting-Aided

Post-processing Methods

Measurement 3
Buffering Data Fusion Methods Tracking

Figure 5.1: Proposed categorization of HSE methods.

5.2 Hybrid static state estimation

As discussed in Section 4.8.1, SCADA-based SSE remains the most widely implemented SE ap-
proach for transmission systems, being “static” in the sense that it disregards temporal correlations
between measurements and states. By incorporating both SCADA and WAMS measurements, Hybrid
Static State Estimation (HSSE) leverages RTUs as the primary data source, while the limited number
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of PMU measurements improves redundancy. Various HSSE methods have been developed to address
the challenges highlighted in the previous Section, and these methods can be categorized based on
their targeted issues.

5.2.1 |Integration of asynchronous and multi-rate data

PMUs operate at significantly higher reporting rates than SCADA systems, resulting in multiple
PMU scans being available between two consecutive SCADA updates, as illustrated in Figure 5.2.
However, the system will likely be unobservable when only PMU measurements are available, on
account of the limited number of PMUs installed. To address this, several methods have been proposed
to mitigate the impact of measurement time skewness and restore system observability between suc-
cessive SCADA measurement updates.

PMU Data arrival
I : i i
— L | | | S
: Y # A 4 + l
‘»|  HSSE HSSE HSSE
SE execution Time

Figure 5.2: Effect of measurement asynchronization on state estimation.

5.2.1.1 Measurement reconstruction techniques

One common solution involves measurement reconstruction, wherein linear PMU-based SE is em-
ployed to track network states between SCADA updates, while nonlinear SE is executed when data
from both PMUs and RTUs become available [99]-[103]. For instance, in [99], a linear SE approach
combines refreshed synchrophasor data with power and voltage pseudo-measurements. These pseudo-
measurements are derived from either fixed values — obtained during the last HSSE execution with
both PMU and SCADA information — or recursively calculated values from the most recent PMU-
based SE. In [100] and [101] PMU measurements are processed alongside voltage and current phasor
pseudo-measurements from the PMU-unobservable subnetwork, calculated using the most recent state
estimates. An alternative approach, proposed in [102], employs a hybrid estimation strategy that alter-
nates between a WLS estimator (for simultaneous SCADA and PMU updates) and a robust Weighted
Least Absolute Value (WLAV) estimator (for PMU-only updates). This method leverages PMU data
and a minimal set of reconstructed RTU measurements to ensure full observability, similar to the strat-
egies in [100] and [101]. To further enhance SE performance, [103] proposes a decentralized frame-
work that partitions the network into phasor measurement islands — with a common GPS reference —
and SCADA-observable sub-islands, comprising critical RTU measurements. This setup streamlines
the application of robust HSSE methods to counter bad data and cyberattacks.

Alternative methods for addressing the limited PMU data between SCADA scans are presented in
[104]-[107]. Work [104], introduces a distributed compressive sensing method to reconstruct RTU
measurements using spatial and temporal correlations among recent state estimates. A classic WLS-
based SE algorithm is then used to solve the SE problem, incorporating PMU-derived power flows,
PMU-measured voltage magnitudes, and RTU data. In a robust HSSE approach uses processed PMU
data as a priori information in a modified WLS-based SE. During intervals without SCADA updates,
PMU-unobservable bus states are inferred using an interpolation matrix, while measurement weights
dynamically adjust to changes in system conditions. In [106], a real-time recursion-correction linear
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HSSE method processes asynchronous RTU and PMU data in a continuous stream. Between SCADA
updates, PMU data and the latest SE results are recursively corrected, using multithreaded processing
to optimize performance for large-scale systems. Another innovative method, proposed in [107], ap-
plies Sequential Quadratic Programming (SQP) to HSSE, leveraging reconstructed line-current
pseudo-measurements from recent SE results to maintain observability when only PMU data are re-
freshed. By efficiently managing nonlinearities, SQP demonstrates strong performance in high-dimen-
sion, equality-constrained SE problems.

5.2.1.2 PMU data buffering

Buffering PMU measurements offers another solution to the challenges posed by multi-rate data. By
leveraging the statistical properties of a set of consecutive PMU measurements, this approach aims to
“sanitize” the PMU data within a specific time window (buffer), reducing the impact of noise and
deviations caused by variations in system states on the processed measurements. The filtered PMU
data is then used to perform SE upon receiving new SCADA measurements, making buffering partic-
ularly effective for periodic HSSE executions with intervals longer than the SCADA reporting period
[108]-[111].

Recent studies have explored optimization strategies for PMU data buffering. In [108], the optimal
buffer length is determined using hypothesis testing, while [ 109] evaluates three methods for optimiz-
ing buffer length by analyzing mean and variance shifts in PMU measurements. In [110], a procedure
for considering temporal and spatial correlations in PMU measurement datasets for HSSE is proposed.
Time series of PMU data are modeled using stationary vector autoregressive (VAR) models to filter
out measurement noise. Similarly, [111] introduces a robust HSSE method that considers correlations
among diverse measurement types to improve SE accuracy. This method applies the UT to calculate
both self- and cross-correlations among SCADA measurements, with PMU correlations modeled as in
[110].

5.2.2 Integration of different measured quantities

A crucial aspect of HSSE formulations involves the integration of phasors and conventional meas-
urements into a unified estimator. Due to the inherent differences in the characteristics of each meas-
urement type, directly incorporating phasor data into existing state estimators necessitates substantial
modifications to EMS software. The various methods proposed for integrating data from different sen-
sor types are generally categorized into three main groups, as outlined in [9] and illustrated in Figure
5.1: Integrated HSSE methods (ISE), Post-processing HSSE methods (PSE), and Fusion HSSE methods
(FSE).

5.2.2.1 Integrated hybrid methods

ISE methods directly combine SCADA and PMU measurements into a single measurement model,
as shown in Figure 5.3. Beyond the necessary modifications to existing SE algorithms within the EMS
to incorporate phasor measurements, ISE approaches introduce several additional challenges, as de-
tailed in the following.

The inclusion of current phasor measurements and substantial variations between SCADA and PMU
measurement weights may lead to ill-conditioning of the gain matrix at flat start and cause poor algo-
rithm convergence, or even divergence in extreme cases [97]. Various methods have been proposed to
address these numerical issues [100], [112]-[115]:

e Processing current phasors in rectangular coordinates: In [112], SCADA and PMU measurements
are jointly processed, with branch current phasors converted from polar to rectangular coordinates,
thereby improving the conditioning of the gain matrix. This approach includes detailed descriptions
of the employed state space model and covariance matrix calculation for current measurements
based on error propagation theory. Similarly, a nonlinear WLS formulation of the ISE problem is
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presented in [113], which avoids numerical problems encountered at flat start or for lightly loaded
lines, by representing current measurements in rectangular coordinates when necessary. Building
on these works, [100] applies the matrix inversion lemma (Sherman-Morrison-Woodbury formula)
to retain the structure of the conventional SCADA-based state estimator, while representing current
phasors in rectangular form.

Conversion of current phasors to voltage phasor measurements: In [114], the authors propose an
approach of including only voltage phasor measurements, by expressing current measurement
functions in terms of bus voltage phasors adjacent to PMU-measured buses. The state vector com-
prises bus voltage phasors and the branch currents measured by PMUSs in polar form, while equality
constraints are used to link PMU buses to their respective neighboring buses.

Regularization techniques: To address numerical instability in WLS, [115] employs a regulariza-
tion method based on least squares optimization, using the L-curve method for parameter selection,
providing robustness and correlation management across measurements. Zero injections are treated
as equality constraints in a post-estimation step.

PMUs

—
State Estimated

Estimator States

SCADA

Figure 5.3: Structure of integrated hybrid state estimation methods.

Numerous formulations contribute to the applicability of ISE and improve its performance by lev-

eraging linear models, decentralized approaches, or solutions in the complex domain:

Linear models: Work [116] proposes converting power measurements into equivalent current phas-
ors, forming a linear iterative WLS-based ISE with constant Jacobian and gain matrices, thereby
reducing SE execution time. A non-iterative linear WLS approach in [117] transforms SCADA
measurements into voltages and currents in rectangular form, with equality constraints modeling
zero injections. Robust linear methods have also appeared, such as those in [118]-[120]. In [118]
a robust, linear LAV-based ISE is presented, solved non-iteratively through linear programming.
Work [119] also introduces a linear robust ISE, employing a Schweppe-type M-estimator with
Huber loss function. The method of iteratively reweighted least squares (IRLS) is used to maximize
the likelihood function in the M-estimator. In [120], the authors propose two LAV-based robust
ISE methods, both leveraging linear measurement models. The first method is formulated as a
single linear programming problem, while the second builds upon an alternative LAV-based esti-
mator that can be solved by gradient-based methods. The equivalent circuit formulation (ECF) in
[121] represents SCADA and PMU measurements using linear circuits, allowing SE to be calcu-
lated through a linear system of optimality conditions. Further enhancements of this method in
terms of practical implementation are presented in [122], including circuit models for all possible
combinations of RTU measurements, zero injections, and cases with unmonitored buses.

Multi-area approaches: Decentralized methods like [123] propose multi-area ISE, in which bound-
ary bus state estimates are obtained through PMU-based SE, and are then incorporated as con-
straints in the local SCADA-based SE of each area. A decentralized solution using the gossip-
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based Gauss-Newton algorithm is proposed in [124], enabling parallel computation across subar-
eas, with dynamic adjustment of measurement weights to improve robustness against bad data. In
[125] the authors propose a fully distributed Gauss-Newton approach, in which each area carries
out the SE locally and independently, relying on local measurements and limited communication
with neighboring areas. Alternatively, [126] proposes an iterative multi-area ISE, which executes
SE sequentially across subareas, addressing the problem of slack bus angle referencing with
pseudo-measurements from boundary bus state estimates.

o  Complex domain solution: Various papers have also addressed the solution of the ISE problem in
the complex domain, which has been proven to be computationally advantageous. Publication
[127] first presents an implementation of the WLS-based ISE problem using complex Taylor series
expansion, based on Wirtinger calculus. It is worth noting that current measurements do not require
any special handling, unlike ISE implementations over the real domain. Subsequent works [128]
and [129] extend these formulations to include equality constraints and nonlinear least-squares
methods.

5.2.2.2 Post-processing hybrid methods

Post-processing HSSE (PSE) methods strategically decouple RTU and PMU measurements in the
SE problem. This typically involves executing a conventional SCADA-based SE followed by a linear,
PMU-based SE — or vice versa — ensuring the two datasets are represented in distinct measurement
models (Figure 5.4). By separating the different measurement sets, PSE approaches enable the incor-
poration of phasor measurements with minimal modification to existing SE frameworks.

PMUs /SCADA

3 First Estimation Post-processing Estimated
Stage Stage States

SCADA / PMUs

Figure 5.4: Structure of post-processing hybrid state estimation methods.

Several studies propose innovative ways to integrate phasor data into a post-processing SE phase
[130]-[135]. Works [130]-[133]suggest embedding the estimated states from SCADA-based SE into
the measurement vector of a subsequent PMU-based linear SE, using rectangular coordinates for
phasor measurements. Building on this concept, [134] experiments with hybrid configurations that mix
polar and rectangular representations for measurements and states. In [135], a similar cascaded archi-
tecture is employed, where the initial SE results serve as a priori state information for the post-pro-
cessing PMU-based estimation phase.

An alternative approach in [136] proposes a PSE scheme, in which a linear state estimator first
processes only synchrophasors in rectangular coordinates to estimate the states of the PMU-observable
subnetwork. These results are then incorporated as either highly accurate measurements or equality
constraints, along with available RTU data, into a nonlinear WLS SE in polar form to compute the
system-wide state vector. Expanding on this framework, [137] directly incorporates PMU-observable
bus states into the final estimated state vector. Additionally, [97] addresses potential numerical chal-
lenges by executing a LAV-based SE with PMU measurements only, and then a WLS-based post-
processing step, as in [136].

110



A decentralized approach to PSE is explored in [138] partitioning the network into “linear” and
“nonlinear” areas based on the prevalence of PMUs and RTUs, respectively. For “linear” areas, a linear
WLS PMU-based SE is employed to estimate local states, leveraging the faster reporting rate of PMUSs.
Conversely, conventional SCADA-based SE methods are applied in “nonlinear” areas. As the linear
SE is solved at a higher rate, the estimated states of boundary buses in “linear” areas are treated as
highly weighted pseudo-measurements for the nonlinear SE.

5.2.2.3 Fusion hybrid methods

The fusion HSSE (FSE) share structural similarities with PSE algorithms, as both utilize separate
SE modules for different measurement sources. However, unlike PSE, FSE executes these estimators
in parallel and combines their outputs through a post-estimation fusion scheme to derive the final state
estimate (Figure 5.5). The two state estimates are typically fused using the Bar-Shalom-Campo for-
mula [139]:
where Xg and Xp are the estimated state vectors from the SCADA- and PMU-based modules, respec-
tively; Wg and W, are the weighting factors derived from the covariance matrices of SCADA and

PMU measurements, respectively, and X is the fused state vector. The primary advantage of FSE for-
mulations lies in the ability to execute both modules in parallel, thereby reducing SE execution times.
However, the approach is contingent on complete PMU observability, a condition that remains imprac-
tical in most power systems.
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Figure 5.5: Structure of data fusion-based hybrid state estimation methods.

Work [140] introduces a multi-stage parallel SE architecture that optimally combines SCADA- and
PMU-based estimation outputs using (5.1) that incorporates a priori information to attain complete
PMU observability. Work [141] builds on this approach, presenting an accelerated FSE algorithm that
improves execution times by leveraging parallel processing of RTU and PMU measurements and ex-
pediting the bad data handling process. References [142], [143] propose robust FSE methods. In [142],
a data fusion architecture is developed where SCADA and PMU measurements are separately pro-
cessed by BD-resilient maximum correntropy-based estimators. Work [143] has devised a robust FSE
framework that accounts for non-Gaussian measurement noise and the issue of measurement time
skewness. This method employs robust Mahalanobis distances in conjunction with a statistical test to
optimize buffering length and weight assignment for PMU measurements. A Schweppe-type Huber
generalized MLE is then used to filter out non-Gaussian noise and suppress the effects of measurement
outliers. In [144], a distributed FSE strategy is introduced using a multi-stage approach, where
SCADA- and PMU-based SE modules compute local state vectors separately and in parallel. To ad-
dress PMU-observability limitations, a local state vector extension is applied, enabling both SCADA -
and PMU-based estimators to obtain SE results for the same bus sets within each sub-area. Consistency
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in SE results is maintained across overlapping regions through state estimate exchanges between
neighboring estimators.

5.2.3 Summary

This Subsection reviewed the development and implementation of various HSSE methods. One of
the primary challenges addressed by these methods is the issue of incomplete observability, which
arises from the limited availability of PMU measurements, between successive SCADA scans. To en-
able rapid SE execution, most approaches leverage either linear WLS-based algorithms or alternative
non-WLS methods optimized for faster processing. When gaps in observability arise, predictions or
reconstructions of unobservable states and SCADA measurements from prior SE executions are em-
ployed to restore full system observability, thus ensuring that SE results remain accessible within the
EMS. Additionally, measurement buffering methods can be applied when both SCADA and PMU data
are available.

The various HSSE techniques have also been categorized based on their mathematical modeling and
strategies for integrating different measurement types, into ISE, PSE and FSE methods. Although ISE
methods may encounter numerical instability under certain conditions and require significant modifi-
cations to existing SE software, extensive research has produced formulations that are easier to imple-
ment, numerically stable, and computationally efficient. PSE approaches effectively process PMU
measurements separately from SCADA-based SE algorithms, using pre- or post-processing estimation
modules. These methods are well-suited for decentralized implementations, although challenges re-
lated to data exchange between estimation stages or across substations and ECCs can hinder their
efficiency. FSE approaches integrate outputs from SCADA- and PMU-based modules via a post-esti-
mation fusion process. While these methods demonstrate strong potential for parallel processing, their
reliance on complete PMU observability — a condition rarely achieved in practice — presents a signifi-
cant limitation. To mitigate this, historical (a priori) data or pseudo-measurements are often employed
to fill observability gaps, though this can complicate implementation.

5.3 Hybrid dynamic state estimation

The majority of state estimators currently used in modern ECCs rely on steady-state power system
models, which do not account for time-dependent system operating conditions and dynamics. This
constraint stems largely from the unsynchronized and low-resolution data provided by traditional
SCADA systems [62]. However, the growing deployment of PMUs now enables the development of
Hybrid Dynamic State Estimation (HDSE) techniques that combine both conventional SCADA and
synchrophasor measurements, while capturing the temporal dependencies of system states [145].

The HSSE methods examined in Section 5.2 are static in the sense that a) each estimate of the state
vector corresponds to a single system-wide measurement set, b) they are executed no faster than the
SCADA reporting rates, and c) they neglect dynamic modelling of power system components. HSSE
is generally effective under quasi-steady conditions, where system changes occur gradually; in these
scenarios, conventional SCADA measurements are sufficient for SE, with PMU measurements en-
hancing accuracy and robustness as needed [60]. However, under transient or rapidly changing condi-
tions, PMUs often become the primary reliable measurement source for SE, while low-resolution
SCADA data can still be integrated to enhance measurement redundancy [61].

Implementing HDSE methods presents several challenges similar to those encountered in HSSE,
namely the integration of asynchronous measurements with varying reporting rates, robustness against
corrupted or delayed data, and the handling of heterogeneous and potentially correlated data sources.
In the following, HDSE methods have been divided with respect to the inclusion of power system
dynamics in their adopted state space model into the three major categories, according to Chapter 4.10:
DSE, FASE and TSE methods.
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5.3.1 Hpybrid dynamic state estimation methods

DSE aims to model and track the internal state dynamics of power system components, particularly
under transient operating conditions. To achieve this, the DSE framework employs a state transition
model that captures the electromechanical or electromagnetic processes involved in these dynamics.
PMUs play a critical role in DSE due to their high reporting rates, which are ideal for observing elec-
tromechanical transients [145].

In typical DSE approaches, the state vector is augmented to include the internal states of various
system components, such as synchronous machines and dynamic loads. The continuous-time nonlinear
state space model used in DSE is commonly employed in transient stability analysis and incorporates
control inputs, network parameters, and (in)equality constraints. The discretized DSE state-space
model is rewritten here for convenience:

Xk+1=f(Xk,uk,p)+Wk (52)
z, =h(X, U, p)+e (5.3)

where the quantities in (5.2) and (5.3) have already been defined in Subsection 4.10.2.2.

The estimation of dynamic states and system parameters in DSE frequently relies on the KF frame-
work. UKF-based approaches [146]-[149] have established DSE frameworks under the presence of
multi-rate data from RTUs and PMUs for tracking the dynamic system state during transient operating
conditions. In [146], the dynamic state space model is discretized with sampling periods tailored to the
reporting rates of each measurement system. The SCADA and PMU measurement models are then
decoupled, allowing distinct estimators to be applied to each model, and the final estimated state is
derived using a fusion process, such as (5.1). In [147], a UKF-based covariance intersection method is
utilized to perform multi-rate data fusion.

Reference [148] introduces a discrete-time state transition model derived from an ANN trained for
short-term load forecasting. Here, the DSE problem is solved using a dual-UKF approach, considering
the interactions between the state vector and the dynamic power system model. The different reporting
rates of SCADA and PMUs are addressed using a parameterized process model and a state reconstruc-
tion technique. Extending this method, [149] incorporates the dynamic state variables of synchronous
machines and distributes the DSE solution across a multi-agent system, to improve scalability for
large-scale power systems.

In [150], a multi-scale SE framework is proposed, which effectively enables the integration of SSE
and DSE in EMS. The system is monitored in real-time through Singular Spectrum Analysis (SSA)-
based change point detection, enabling the dynamic transition between static and dynamic estimation
processes. A robust HSSE algorithm is initially applied for baseline monitoring, and, if a disturbance
is detected by the SSA, the HSSE results are used to initialize a PMU-based DSE algorithm for real-
time monitoring of transient conditions.

5.3.2 Hpybrid forecasting-aided state estimation methods

Although they share mathematical foundations with DSE, FASE methods are designed to analyze
quasi-steady operating conditions rather than capturing dynamic states, as elaborated in Section 4.10.3.
The primary objective of FASE is to incorporate temporal correlations between state estimates into the
SE problem. Pioneering work on hybrid FASE methods is presented in [151], combining the concepts
of unscented filtering and SE. This derivative-free FASE approach updates the state transition model
parameters using Holt’s linear exponential smoothing algorithm and applies the UT to improve esti-
mation accuracy.

Papers [152]-[156] address the synchronization of diverse data sources in FASE methods. Ref. [152]
proposes a robust UKF algorithm that combines maximum correlation and interpolation techniques to
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synchronize PMU and SCADA data and leverages a strong tracking UT algorithm to handle gross
measurement errors. In [153], an EKF-based time-alignment algorithm addresses irregular sampling
and random delays. In [154], the unscented Rauch—Tung—Striebel (URTS) optimal smoothing algo-
rithm is used to mitigate the effects of time skewness by efficiently re-estimating past states based on
more recent measurements. Paper [155] introduces a two-stage framework where an initial SCADA-
based SE provides a baseline state estimate, followed by the update of posterior distributions with
PMU data, based on Bayesian inference. In [ 156], random delays between SCADA updates are handled
by fusing unsynchronized SE outputs through a covariance intersection approach.

Papers [157]-[160] address FASE methods designed to handle missing data. In [157], an EKF-based
FASE framework is proposed to handle missing RTU data. The SE problem is formulated as a con-
strained optimization task, with PMU measurements treated as inequality constraints, and solved using
the Particle Swarm Optimization (PSO) algorithm. A multi-area FASE approach for large power grids
is proposed in [158], where a modified distributed KF independently estimates local states while ac-
counting for missing measurements. Inter-subsystem communication is achieved through internodal
transformation theory. Work [159] presents a CKF-based FASE for state prediction during periods of
missing PMU data, employing Holt’s smoothing technique. In [160], spherical cubature and Gaussian
quadrature rules are applied to estimate prior and posterior probability densities of state and measure-
ment spaces. Between SCADA scans, state forecasting is conducted similarly to [159].

Efficient computational strategies for large-scale systems are discussed in [161]-[163]. In [161], a
GPU-based massively parallel FASE is introduced to expedite FASE solution for large-scale systems,
applying a two-level EKF approach. Work [162], presents an ANN-assisted dual-UKF FASE algorithm
using a multi-agent framework, where a dynamic ANN develops a discrete-time state transition model
for short-term load forecasting. The UKF estimates both the state vector and dynamic ANN parame-
ters. Similarly, [163] proposes a distributed CKF algorithm for FASE in large-scale systems, enabling
parallel SE execution in non-overlapping sub-areas to reduce computational and communication de-
mands, eliminating the need for a central coordinator.

Post-processing FASE methods are explored in [164], [165]. In [164], a KF-aided sequential FASE
method is proposed, where a PMU-based linear SE serves as the first stage, followed by an iterative
stage combining SCADA data with pseudo-measurements from the first stage. A recursive KF uses
consecutive PMU scans to increase pseudo-measurement accuracy. Likewise, [165] proposes a two-
stage FASE, where PMU data along with a UKF-based prediction of SCADA measurements are uti-
lized to obtain the SE solution at intervals between two successive SCADA scans.

5.3.3 Hybrid tracking state estimation methods

Tracking SE (TSE), often discussed alongside FASE, is a simplified variant that assumes minimal
random deviations in the state vector over time. In [166] the effects of time skewness between simul-
taneously processed RTU and PMU data are addressed for TSE implementation. This approach com-
prises three main steps: prediction, innovation analysis, and correction. Predicted SCADA measure-
ments are employed to ensure system observability, while a combined analysis of PMU measurement
variations and innovation vectors distinguishes abrupt system state changes from gross measurement
errors. The correction step then solves a constrained least-squares optimization problem to refine state
estimates.

Parallelization and performance improvements for TSE are explored in [167], presents a decentral-
ized UKF-based method incorporating a consensus algorithm for multi-area TSE. The UKF performs
TSE locally within each non-overlapping power system subarea, while the consensus algorithm ena-
bles information exchange between neighboring subareas, ensuring cohesive SE results across the en-
tire system.
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A TSE approach considering the temporal aspects on the estimation process within a maximum
correntropy-based EKF is proposed in [168]. Using a nonparametric probabilistic model to represent
state variables within the kernel density estimation framework, this method incorporates sudden state
transitions as non-Gaussian process noise. To mitigate the impact of suspect BD, a novel strategy to
adjust the size of Parzen windows in the kernel estimation is introduced.

The issue of correlated prediction and measurement errors is addressed in [169], which proposes a
KF-based TSE method for joint state and parameter estimation, This approach uses adaptive filtering
to enhance its adaptability in dynamic conditions. The estimation problem is formulated as two inter-
linked linear subproblems focused on state and parameter tracking, respectively.

5.4 Overview of literature gaps

This Section identifies key challenges in current hybrid static and dynamic SE research and suggests
potential directions for future advancements.

1) Numerical stability and convergence: Despite significant progress in HSE methods, critical chal-
lenges remain in ensuring numerical stability and convergence. Differences in data fidelity and
measurement variances can affect HSE algorithms, particularly under low-observability or weak
redundancy scenarios. Decoupling SCADA and PMU measurement models — within static or dy-
namic SE frameworks — has shown to enhance convergence and numerical conditioning. How-
ever, this introduces trade-offs in terms of optimality, increased inter-process communication, and
complexity in maintaining system observability. There is a pressing need to develop robust HSE
frameworks that address these trade-offs holistically, particularly for multi-area grids with limited
PMU penetration.

2) Diverse reporting rates: The fusion of multi-rate SCADA and PMU measurements remains a piv-
otal challenge. Since SCADA and other unsynchronized data sources (e.g., from FACTS control-
lers and DERSs) rarely provide updates at regular intervals, SE methods must adapt to unsynchro-
nized, multi-rate, and multi-sensor environments. Existing HSE algorithms are largely developed
for either synchronized or uniformly sampled data streams, making them unsuitable for such ap-
plications. Promising approaches include designing HSE algorithms that operate independently of
reporting rates or utilizing measurement buffering and statistical trend analysis to integrate low-
resolution data into real-time SE. Foundational work leveraging extreme learning machines and
Bayesian SE offers a strong starting point [170], [171].

3) Robustness: The increasing reliance on HSE frameworks introduces heightened vulnerability to
Bad Data (BD), cyberattacks, and communication failures. Traditional WLS-based estimators are
ill-equipped to handle such anomalies, often resulting in incorrect or divergent estimates. [172].
While robust estimation methods and anomaly detection techniques — such as LAV, Huber esti-
mators, and machine learning classifiers — offer promising results, they often face scalability, la-
tency, and integration issues within the EMS [102], [115]. There is a critical need for lightweight,
real-time-capable robust HSE frameworks that maintain compatibility with existing WLS archi-
tectures while providing strong resilience against malicious data injection and systemic sensor
failures [173]-[175].

4) Performance optimization: Real-time SE in modern power systems must scale to handle massive
measurement volumes generated by SCADA and PMU deployments. Centralized HSE frame-
works often struggle with computational delays and fail to meet timing constraints in large-scale
or multi-area systems. Distributed SE architectures offer a promising solution by parallelizing
estimation across subareas, yet face challenges in maintaining estimation quality under commu-
nication delays, missing data, and subarea observability constraints. Future research should focus
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5)

6)

on developing effective coordination at boundary buses, resilient data exchange protocols, and
adaptive subarea communication schemes [176], [177].

Measurement model: Enhancing the HSE measurement model is a key area for future research.
Traditional measurement models assume Gaussian, stationary, and uncorrelated noise, which is
often invalid in real-world settings, with noise statistics becoming even more complex when mul-
tiple data sources are integrated [178]-[180]. Additionally, the increasing integration of FACTS,
HVDC, and DERs introduces new network modeling challenges, necessitating adjustments in both
measurement models and parameter estimation techniques. Advanced mathematical formulations
are needed to accommodate diverse combinations of system components and measurement data,
broadening the scope of current SE modeling frameworks.

State transition models: DSE methods should evolve with more accurate and detailed state transi-
tion models. To obtain more reliable state estimates, state prediction and filtering must be made
robust against the uncertainties inherent in power systems. Techniques like pattern recognition
could help capture the effects of stochastic components, such as DERs. Multi-area, numerically
robust, and efficient data-driven DSE methods represent promising directions for future explora-
tion [181], [182]. Testing and validating DSE methods with real-world field data is also impera-
tive, particularly under transient conditions where PMU accuracy can decline. Existing static state
estimators could benefit significantly in terms of measurement redundancy by incorporating sim-
ple state space models, derived from TSE or FASE methods. To improve upon such methods,
future research could consider the simultaneous topology and parameter estimation, the correla-
tion between different PMU channels and successive measurement scans, as well as more ad-
vanced techniques for state forecasting and state transition modeling.
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6. HYBRID STATIC STATE ESTIMATORS UNDER LIMITED PMU AVAILA-
BILITY

According to Chapter 5, it has now been well-established that the enrichment of the existing meas-
urement profile of SE with PMU data significantly enhances its performance by improving precision
and measurement redundancy. However, integrating data from diverse sensors is a non-trivial process.
The integration of SCADA and WAMS measurements in HSE algorithms has been extensively re-
searched, resulting in a variety of formulations designed to combine phasor measurements with con-
ventional data. These methods can be broadly classified into three categories, as outlined in Subsection
5.2.2, namely integrated SE (ISE), post-processing SE (PSE), and fusion SE (FSE) methods.

ISE methods directly combine SCADA and PMU measurements into a single SE problem [112].
The concept of PSE is often employed as an alternative to ISE, aiming to decouple the RTU and PMU
measurements using a cascaded SE architecture, which usually requires minimal modification of the
existing SE software. However, PSE methods yield suboptimal results compared to their ISE counter-
parts, as they do not process SCADA and PMU measurements simultaneously. Similar to PSE, the
FSE algorithms also utilize separate SE modules for each measurement type, and their estimates are
combined in a post-estimation fusion scheme to produce the final solution. The main advantage of
these methods is the ability to execute the two modules in parallel, leading to reduced computation
times. Nevertheless, these methods operate under the assumption that the network is entirely observa-
ble through PMU measurements, otherwise the inclusion of pseudo-measurements or a priori state
information is necessary to attain PMU-observability.

This Chapter first presents an equality-constrained WLS-based HSSE algorithm that focuses on ad-
dressing the challenge of simultaneous utilization of diverse measurement types. The method builds
on the well-established Hachtel’s augmented matrix approach [183], and the SE framework of [100],
offering several notable advantages [184]:

1) The SCADA and PMU measurement models are formulated independently; thus, the proposed
method is flexible in the sense that it is suitable for ISE, PSE, and FSE implementations, depend-
ing on the capabilities and requirements of the EMS.

2) Certain assumptions regarding the optimality and practical implementation of PSE and FSE meth-
ods are alleviated by using the proposed formulation of the HSE problem: the PSE algorithm
retains its optimal estimation property, as it derives directly from the ISE algorithm, and the FSE
algorithm is viable even in partially PMU-observable systems, without necessitating the inclusion
of forecasts, pseudo-measurements or any changes to the existing conventional state estimators.

3) The devised method delivers promising results, on par with the optimal ISE methods [112], [113],
in terms of accuracy and convergence, while providing state estimates of the highest quality
among recently proposed WLS-based PSE and FSE methods, without significantly increasing
computational demands.

4) The FSE implementation can leverage the linear formulation of the PMU measurement model in
rectangular coordinates to reduce the nonlinearity and nonconvexity of the problem.

Subsequently, with respect to power system modeling and measurement model refinement, this

Chapter discusses:

e A unified equality-constrained HSSE algorithm that explicitly models classic HVDC links and
integrates them into the measurement model, using SCADA and PMU measurements from the AC
network and measurements from the DC link [185].

e The impact of including different current phasor measurement schemes on the equality-constrained
WLS HSSE method, by investigating its performance in terms of convergence and accuracy when
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using current flow or injection data, as well as a mix of both. Additionally, practical considerations
related to technical installation issues, such as the circuit-level measurement point and the utiliza-
tion of instrument transformers, are elaborated [186].
6.1 Classic hybrid state estimation state space model
Assuming an N -bus power system and a measurement set (MS) comprising m; SCADA measure-
ments (bus voltage magnitudes, branch power flows, and bus power injections), m, PMU measure-
ments (complex bus voltages and currents) provided by PMUs, and m, zero injections, the HSE meas-

urement model is formulated as [32], [38]:

BIRIEIR

Z, h, (X) (6.1)
0=c(x)

where z, e R™ (zp € R™) represents the vector of SCADA (PMU) measurements, hs(x) (h,(x))

is the vector of functions relating SCADA (PMU) measurements to the unknown state vector X € R",
with m=mg+m >n=2N, ecR" is the vector of normally distributed and uncorrelated measure-

S

ment errors with E(e) =0 and Cov(e) =R :[ 0 R
p

}, where Ry (R;) is the diagonal covariance

matrix of the SCADA (PMU) measurements, and ¢:R" —R™ denotes the vector of functions mod-
eling zero current injections.

Assuming additive Gaussian measurement noise, the solution of the SE problem, that is, the esti-
mated state vector X, is obtained via maximization of the log-probability function of the observations
z, resulting in the following WLS optimization problem with objective function J(X) [38]:

K:=argminJ(x)=e'R %
x (6.2)
s.t.c(X)=0
The state vector x is expressed in either polar or rectangular coordinates, with its i-th entry written as
T . ~ .
x =[V; 5,]T or X =[VR|i V,’i] =[V; cos s, V;sing, ]T , where V, =V, /&, is the voltage phasor at bus
i, and subscripts R and | denote its real and imaginary parts, respectively.
6.2 Proposed hybrid static state estimation formulation
The classic HSE model (6.1) can be equivalently written as:
z, = hy(x) +¢e
z,=h,(x)+e, (6.3)
0=c(x)
where vectors e, € R™ and e, € R™ are now the normally distributed SCADA and PMU measure-
ment errors, with zero mean and diagonal covariance matrices R; and R, respectively.

The solution of estimation problem (6.3) can be obtained according to Section 4.8, as follows:
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%:=argmin J(x) = (z, —hy(x))' R*(z, —hs(x))+(zp —hlo(x))T Rgl(zp —hp(x))

xeR"

st. ¢(x)=0

(6.4)

By applying the Hachtel’s augmented matrix method [183] only for the PMU measurements, the
objective function of (6.4) now includes the weighted sum of the squared PMU measurement residuals

r,» while the constraints obeyed by r, and c(x) are introduced, as follows:

X :=arg )r(n]ier J(x,ry) =(z —hs(X))T R (z —hs(x))+rg R;lrp

c(x)=0
According to Section 4.9.4, (6.5) is solved via the method of Lagrange multipliers. The correspond-
ing Lagrangian function £(X,r,,4, #) is defined as:

) p 1

L(X, 1y, 4, 4) =a)(x,r,) + Ae()+u' (rp —zp +h, (x)) (6.6)
where 4 and u are the Lagrange multipliers, and coefficient a is the scaling factor of the objective
function. The first order optimality conditions are obtained as follows:

oL

== —aH] (X)R;* (2, —hy(x))+CT (X)A+ H} (x)p =0 (6.7)
ﬁzaRglr +u=0cr,=-a ‘Ryu (6.8)
ar,

oL
—=¢c(x)=0 6.9
7 (x) (6.9)
%:rp—zlﬁhp(x):o (6.10)
yZ,

where Hg, H,and C are the Jacobian matrices of h, hp, and c, respectively.

The system of nonlinear equations (6.7)—(6.10) are solved iteratively using the Gauss-Newton
method, as follows:

a6, (x) €T (x) HE(X™)|[ 4] [aH] (x)R; Az

c(xM) 0 0 20— —(x") (6.11)
H,x™) 0 -a'r, || p®Y Az
where (i) is the iteration index, Gg = HSTR;lHS , AZ(' -h (X(')) AZS) =2, —hp(x(')) ,

AXD = x0T _ 5@ For convenience and consistency, we shall adopt this notation throughout the
remainder of this thesis, wherein the superscript (7) indicates the value of each matrix at the i-th itera-

tion. Hence, Gs(i) = (X(')) c®: C(X(')) and so forth. Thus, (6.11) can be written as:
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g aen] [a(HO) R

S CTN .

()1 A0 - —c(xM) (6.12)
I ' — ————————— ——— . mm = - - - ———— ——

szé_a Rp (i+1) Az(pi)

where ng) =[H |(oi) 0} , GS(;) =

(i+1)
Using (6.8) to eliminate ry, in (6.12) and solving for l: e ] , yields:

. N T .

(i+1) (i) —1x5(1)

sz 2(i+1) pz 0
—c(x™)

I:Ax(i+1):|:(G(i))1 a(Hgi))T R'Az(M _(G(i))’l(HSZ) )T Gy

Z(H—l) (i)
c(x) -
_ AX(i+1) ) )
(i) _ a1 (i+1) _ A, ()
i [ PIC 8 Rop™ = Az
. AT .
(i+1) O] “14-()
AX :(G(I) )—1 a(HS ) RS AZS —(G(I) )—1(H (i))T ”(i+1)
z(|+l) SZ (|) SZ pz
—c(x™)
=

X a(HO) Rz | (

i) (G i\ i+ Ap (il i
HO (60 HOY 9 |2, = ac)

_e(xy

[T oo
o (6.13)

o, T o a(H(‘))TR—lAz(‘) _
(2R, +H(00 ) (MY |t = ()| ) R BaT

_e(x)

(i+) Cala(HO) RAAZD
Setting{ )Zm) }:—(GQ) ( s ) ° 7 in (6.13) yields:
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— _(c® (i) (i+1)
(i+1) | | G+ (GSZ) (HPZ) #
A iy

6.14
i . 0 ( i\ L T -1 " Ay(l+1) 0 ( )

i+) _ [ 5— I ! ! ! !

U _(a R, +H, (Gsz) (sz) j Hy; PIGEY —A%p

y
Finally, by setting:
AU(I+1) =1 AT .
() (i) (i+1)

e [l ) 619

(i+1)
and simplifying H gz)[ e ]: HI(O')Ay(”l), (6.14) gives the following system of linear equations:
y
. T .
Ayt ~-1la(HD) RAAZD
o |-ley ) 16
y —(xM)
Aut Nl T : N N I L
—(c () -1 0) () (i) () (1) Ay (i+1)
Lﬁiﬂ) (%) (HY) (a Ry +HP(GY) (HY) j (A2 - HPay) (6.17)
AX(i+1) Ay(i+l) Au(i+1)
i || 0 [T (6.18)
4 Ay 4

Equations (6.16)—(6.18) define the iterative scheme employed in solving the proposed HSE formu-
lation. It is worth noting that the SCADA and PMU measurement models appear separately; at each
4D relies only on the SCADA measurement vector Z,, while AUt s

(i+1)

iteration, calculation of Ay
then updated using vector Ay and the PMU measurement vector z, . The state estimate incremen-

tal correction AXx"™? and the Lagrange multipliers A0 corresponding to zero injection constraints,
are updated using Ay(”l) and AUCY until convergence. Convergence is generally attained when

HAX(M)

<& ,where ¢ is a predetermined convergence threshold.

0

It should also be noted that, as we deal with indefinite matrices, we utilize an LDL" factorization
algorithm using block decomposition with pivoting to ensure numerical stability. This approach de-
composes a symmetric matrix A into three factors, represented as A= PTLDL' P, where L is a lower
triangular matrix with unit diagonal elements, D is a block diagonal matrix containing 1x1 or 2x2
diagonal blocks, and P is a permutation matrix to manage row and column interchanges [187]. The
decomposition is implemented through MATLAB software and is based on a combination of proprie-
tary routines and well-established external libraries for matrix decompositions [188].

If we assume that the entire power system is SCADA-observable, then G, is of full rank. The

reasoning behind this assumption lies in existing SCADA metering infrastructures providing high RTU
measurement redundancy to satisfy complete system observability even under severe measurement

loss. Then the indefinite matrix G, can be decomposed into LDL" factors for solving the sparse linear
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-1
equations (6.16) and (6.17). In (6.17), we set Gs_le;Z =D ((PT L) H;Zj and calculate matrix

-1
(PT L) H EZ efficiently by applying sparse vector techniques [189], exploiting the very sparse struc-

ture of Hp, - This also allows efficient calculation of

-1 T -1
H .G H, =((PTL) ngj D‘l((PTL) ngj. The indefinite matrix a 'Ry +H ,Gg'H], is

dense and is also decomposed into LDL' factors to solve
(a_lRIO +H szs_le-Ir;z ),u(”l) = (HpAy('+1) —Az8+l)) for pt*D

In the following, the iterative scheme (6.16)—(6.18) is used to formulate three different HSE algo-
rithms classified into the three different HSE categories.

6.2.1 Proposed integrated hybrid state estimation algorithm

Based on (6.16)—(6.18) an ISE algorithm can be devised and is presented in Algorithm 6.1 and the
respective flowchart of Figure 6.1. For the purposes of this work, SE is assumed to be solved upon
arrival of SCADA measurements, utilizing the most recent PMU dataset available to the EMS, based
on measurement timestamps. To mitigate errors stemming from measurement time skew, buffering
techniques can be utilized [108], [109]. The SE software is to receive the m; (mp) SCADA-measured

(PMU-measured) values z; (z,), along with the RTU (PMU) measurement locations and accuracies,
from the SCADA system (PDC).

(i+1)

Incremental correction Ay of (6.16) is calculated by the conventional SE iterations, whereas the

incremental correction AU/ in (6.17) can be computed by modifying the existing SE software within
the EMS. As both Ay(i+1) and AU are updated at each iteration, the ISE implementation retains its
joint optimality property, that is, the calculation of the best solution that fits both measurement sets
simultaneously.

6.2.2 Proposed sequential hybrid state estimation algorithm

Let us now examine the SCADA- and PMU-based SE stages separately. To accomplish this, we first
write the incremental correction (6.17) assuming a nonlinear PMU measurement model, as follows:

Aut O (@) (4L O (O gV ) (i) (i) Ay (D)

_ | I - | | | | I 1+

o ~(69)(HY) (a R, +HO(GO) " (HY) j (25 -y (x®) ~ HOAY D)

(6.19)

Expanding the — generally — nonlinear PMU measurement function h, () around the current esti-
mate X1 using a Taylor series, yields:

hp(X) =N, (xO)+ H  (xP)(x—x®) +%(x —xN)THL(x)(x=xD) +... (6.20)

where H}, is the Hessian matrix of h,(X).

Considering that at each iteration (i) of the ISE algorithm the calculation of Ay(i+1)

relies only on
the SCADA measurement vector zZ; and the zero injection information according to (6.16), the state

vector incorporating the SCADA-based incremental correction is defined as:
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y(i+1) — x® +Ay(i+l) (6.21)
and

he (V) =hy (xD) + H , (xP)ay ) +%(Ay('+1)) Hy (x)ay 4. (6.22)

Algorithm 6.1: Proposed ISE algorithm.

1) Initialize the iteration index i <—0 and set the state vector x© at flat start.

(i)

2) Calculate the gain matrix GS(;) and the augmented PMU Jacobian H; .

0\ R-TAz0)
N a(HO) Rz
3) Calculate the right-hand side of (6.16), .

—e(xM)
A (i+1)

(4

4) Decompose Gs(;) and solve (6.16) for [
y

} using forward-backward substitution.

5) Calculate Gs_le;Z , a_lRp +H szs_leEz and H pAy(i) —Azg) _

6) Solve (a 'R, + HyGatHY, | u®™ =(H,a9® ~ Ac) for ut0.

i Ayl 7 _
7) Calculate <« _Gs—le -gz:”(Hl) '

)15i+1)

[ Ax (D] [Ay(iﬂ)} [Au(iﬂ):l
8) Calculate <« : + _ .
i+1 1 1
] Z(H ) | l)(/H ) }15|+ )

9) Check for convergence: If the convergence criteria are satisfied for all state variables, then
% < xB 4+ AxU and terminate the algorithm. Else, x(™ «— x® + Ax(™ j «j+1, return to Step 2.

As the iterative process (6.16)—(6.18) converges (X(i) — X), then incremental correction Ay(i+1) be-

comes increasingly small. Thus, as xW 5 %, higher-order terms in (6.22) become negligible and the

measurement function can be approximated by a linear function of Ay(i+1) :

ho (y0) = hy (xO) + H  (xP) Ay (6.23)
Using (6.23), near convergence (6.19) is written as:
Aul+D =L T : -1, T :
—(c® () -1 ) () () _ (i+1)
LS”” =(69) (HY) (a R, +HY(GY) (sz)j (2o -he(v*)) (624
For the ISE algorithm it also holds that:

AX(i+l) :Ay(i+l) +AU(i+1) _ y(i+1) _ X(i) +Au(i+l) PN X(i+1) _ y(i+l) +Au(i+1) (6.25)
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Figure 6.1: Flow diagram of the proposed ISE algorithm.

Thus, at the terminal iteration (¢#) where y(t) =V, x® = & we can write:

Au® DY g\ [ oot () (~ D\ -\ - .
t ~(640) (HED) (a R, +HED (642) " (HE) j (25— ny(D) (6.26)
% =9 +Au® (6.27)

Therefore, close to the SE solution, where (6.23) holds, a PSE scheme is applicable and is presented
in Algorithm 6.2 and in the flowchart of Figure 6.2. Using i; to denote the iterations of the SCADA-

based stage, Ay(is) and ZSS) are calculated iteratively until convergence by the conventional SE itera-

tions (6.16) (Step 1 of Algorithm 6.2), yielding § and ):y. Then, as the SCADA-based SE has con-
verged to an optimal estimate Y of the system-wide state vector, we can formulate an iterative post-

processing step to incorporate the PMU measurements z, via Step 2 of Algorithm 6.2:

p
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(i +1) -1
Au‘® Nl G (L . vl e T .
. =(c&) () [a 'Ry + H{? (67 (Hé'z"))) (25 =y x*)) (6.28)

WD) _ o Gp)

ip+1)

+ AuteH (6.29)
with x©@ =§.

It is worth noting that in contrast to PSE methods found in literature, this PSE architecture keeps the
existing SCADA-based SE module completely unmodified in the EMS and does not require augment-

ing the PMU measurement vector z, with information from the SCADA-based stage. Hence, imple-

mentation of the proposed PSE in the EMS is significantly easier.

Even though the proposed PSE scheme is derived from the respective ISE algorithm as the iterative
process converges, this is not proof that the ISE and PSE methods are equivalent. The final result is
typically not the same local minimum of the WLS objective function as if both measurement sets were
jointly processed in each iteration, as is the case with all PSE methods found in literature [130]. This
becomes clear when considering that in the PSE the matrices of the SCADA-based iterations (6.16)
and the PMU-based stage (6.28) are evaluated at y(is) = y(is_l) +Ay(i5) and X('p) = X("’fl) +Au("’) , re-
spectively, with x© = Y. In iteration i of the ISE algorithm, when calculating

XD = x4 Ay(i+1) +AuY | the Jacobian and the gain matrices of (6.16) and (6.17) are evaluated at
x® = (D 4 Ay(i) +Au® Thus, one can view the PSE formulation as an equivalent ISE, in which:

1) the effect of Au® on Ax® s negligible for all iterations until HAy(i)H <g, i.e., the SCADA-

based SE has converged on its own, and
2) after this point, only AUt is calculated iteratively, until HAX(i)H :HAu(i)H <eg.

For the PSE solution to be close to the optimal ISE solution, i.e., X;sg = Xpgg (disregarding devia-

tions caused by arithmetic operations), Step 1 of Algorithm 6.2 must converge unproblematically. If
there are large discrepancies between the SCADA-based SE solution and the true state vector, e.g., in
the presence of undetected bad data in the SCADA dataset that negatively affect the estimate of the
first stage, then the PSE algorithm may provide suboptimal, or even unreliable results in extreme cases.

In this context, it is essential to prove that the resulting PSE optimal state estimate Xpge will gener-

ally be closer to the true state than ¥, i.e., that the proposed post-processing stage actually improves
the quality of the state estimate of the SCADA-based stage. Ignoring zero injection constraints for
convenience, at iteration I of the SCADA-based SE we can write:

Ay =(6M )_1 (HE )T R Az() =
Cov(ay®?) = (6% )_1 (H& )T Ry'RR;TH (G )_1 &
Cov(ay®?) = (6 )_l(HSS) )T R;"HEY (G )_1 -(6& )_1 (6.30)

As the iterations progress and y(is) — ¥, we can assume that the uncertainty in y(is) is small relative

(D) “and that the errors in y{) and Ays™ are uncorrelated. Hence, according

(is+1)

to the uncertainty in Ay

to Subsection 4.8.4, the covariance of y can be approximated as:

- , , : -1
Cov(y®™) = Cov( y(s) 4 Ayl ) ~ Cov(ay®™) = (Gg's) ) (6.31)
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Algorithm 6.2: Proposed PSE algorithm (nonlinear PMU measurement model).
1) SCADA-based estimation:

a. Initialize the iteration index iy <— 0 and set the state vector y(© at flat start.
b. Calculate the augmented gain matrix Ggs) .
a(H) Rytazfh

—c(y)

. Decompose Gs(is) and solve (6.16) for Ay(i5+l).

d

. Calculate the right-hand side of (6.16),

=7

e. Check for convergence: If the convergence criteria are satisfied for all state variables, then

§ <y + Ay and terminate the algorithm. Else, y®**™ « y0) 4 AyGs™ i i +1 and
return to Step (b).

2) PMU-based post processing stage:

a. Initialize the iteration index i, < 0 and the state vector X0 « §.

p

b. Calculate Gg”) and HSZ").
; i\ -1 ST ; -1 ST
. Caleulate AZy", (6] (H) and a 'R, +HE (G%) " (HEY) .
. a1 T . . .
d. Solve [a—lRp +HEE (68) " (HE) jﬂ"“” — Az for u®.

(i, +1)

}'L(Jip+l)

f. Check for convergence: If the convergence criteria are satisfied for all state variables, then
(ip) (ip+D) (i, +D)

N T L
e. Calculate{ ](——(Gs(;p)) (ngp)) ”('pﬂ)‘

X« X" +Au and terminate the algorithm. Else, x )  xUp) | Ay , Iy <y +1and

return to Step (b).

-1
At the terminal iteration t; we have Cov(y) = (Gs(ts)) =Gt

In the SCADA-based SE, the initial estimate y(o) is set at the flat voltage profile and thus is con-
sidered to have negligible covariance. However, this is untrue for the PMU-based post-processing
stage, as x© = Y. Therefore using (6.31) may introduce significant errors in the calculation of

COV(X('PH)) . For a more accurate calculation of this covariance matrix, which propagates the uncer-

tainties of X('p)

using:

at each iteration, we employ the EKF-based calculation, which updates the covariance

Cov(x®™) =

. _ . _ _ N _ (6.32)
Cov(x('p))—Cov(x('P))(ng)) (Rp+HSP)Cov(x('P))(HSP)) ] ng)COV(X(Ip))

Considering that COV(X(i”)) =Cov(y) = Gs_l, we write:
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-1
(i)Y _ n1 1y G\ (i) -1y i)\ (ip)
Cov(xm) =61 -G (H{) [Rp+Hp'P G (HE") j H{PG;? (6.33)
Using the matrix inversion lemma (Sherman-Morisson-Woodbury formula) [100], yields:
a1V ) ot ooty i)\ 1y ()| ot
(Rp+prGs (HS) j =R =R, (6,60 ) (R R; (6.34)

. T .
() _ (14 ) Rty )
where Gy =(H{” ) RIHEY.

Substituting into (6.33) yields:
. . . N R
Cov(x"™) =G, -G, 66,  +G; G (GS +G§p)) TP
, : -1
Cov(x®™?) =G, -G, 6 (GS +G§p’) (6.35)

: 1 a1 (i) i)\ (ip) -
Observing that [GS -Gy GyP (Gs+Gpp ) j(Gs+Gp” ): I, we derive:

: -1
Cov(xP*Y) = (GS +G§p)) (6.36)

For positive definite (PD) matrix G, and positive semidefinite (PSD) Ggp) , in the Loewner ordering
sense it holds that:

-1
(GS +G|(D"’)) <G (6.37)
and equivalently:
Cov(x"*™y < Cov($) (6.38)

In the context of estimation theory, this ordering asserts that the estimator with covariance

COV(X("’+1)), and by extension Cov(X), is more accurate (or less uncertain) because it reduces or
maintains the same variance for any linear combination of the estimated states, compared to the esti-
mator with covariance Cov(y) [190].

Finally, we should note that the aforementioned PSE formulation holds for the nonlinear PMU meas-
urement model. If the state vector is expressed in rectangular coordinates, then hp(-) is a vector of

linear functions, and thus H , is a constant matrix. In this case, the post-processing stage is formulated

pz
as detailed in Algorithm 6.3. All the properties of the iterative PSE also hold for the linear PSE formu-
lation.

6.2.3 Proposed data fusion-based state estimation algorithm

As discussed in Subsection 5.2.2.3, in FSE methods the SCADA- and PMU-based SE are solved
separately and their outputs are combined using the Bar-Shalom-Campo formula [139] in a post-esti-
mation fusion scheme to obtain the final state estimate. Even though such methods can be executed
within a parallel computational framework to enhance efficiency and reduce processing time, they are
only applicable under the assumption of complete PMU-observability of the network, which is still not
feasible in most power systems.
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Figure 6.2: Flow diagram of the proposed PSE algorithm.
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Algorithm 6.3: Linear post-processing stage of proposed PSE in rectangular coordinates.

1) PMU-based post processing stage:
a. Evaluate G, at y.

b. Caleulate Gg'HT,, a 'R, + H,,G'HT, and H ¥ -2

pz> pz p-

e

Solve (&R, +H,Gg'HY, ) =(H 5~z ) for ji.
d AT .
d. Calculate «——Gg Hpyp.

% y a
g. Calculate A}—{A ]+|:A }
4] A LA

Let us assume a network with complete SCADA observability and limited PMU deployment and,
thus, partial PMU observability. Figure 6.3 depicts an example of partitioning such a system into two
overlapping observable subsystems: one that is both SCADA- and PMU-observable, and one that is
observable using only SCADA measurements. A PMU-observable bus is termed as a PMU boundary
bus if it is connected to at least one PMU-unobservable bus; otherwise, it is called a PMU internal bus.

SCADA-observable
System

SCADA boundary bus ’

Iy e

PMU-observable
Subsystem

SCADA boundary bus
—T g el
\
Boundary flow
L measurement
Boundary injection SCADA boundary
measurement ‘ / bus

_I_—_r

Figure 6.3: Power system partitioning according to SCADA and PMU observability.

Let X, € R" denote the state vector of the entire system obtained from the SCADA-based SE. The
SCADA-based SE problem is solved via the following iterative scheme:

aG{) (c(‘>)T {Axg”l)}: a(Hs(i))T R (2,—h(x{"))

_ (6.39)
c o LA —(x{")
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The estimated state vector X, can be partitioned as:

X

R=| . (6.40)
Xsp

where X € R™ and Xsp € R™ denote the estimated state vectors of the SCADA-only observable

system and the PMU-observable subsystem, respectively.

If X, € R™ is the state vector of the PMU-observable subsystem (np <n), then the equality-con-
strained PMU-based linear SE is solved by:

T % Tp-1
aG, C, )fp _ aH, Rz, (6.41)
C, 0|4 0

where G, = Hg R;lH p and C  is the constant Jacobian matrix of ¢, (-) modelling zero current injec-

tion constraints that pertain to PMU-observable zero injection buses.

A post-processing fusion stage is then employed to fuse the two SE solutions into a single state
vector, which relies on a minimum variance criterion, thus providing an unbiased, minimum variance
final estimate [140]:

(G +Gp) Xt =(GypRep +Gp %, ) (6.42)
where Gg, is the corresponding n, xn, submatrix of G¢(X,), and X¢ is the fusion state vector with

-1
R =Cov(X;)= (Gsp +G p) f Ggp +G,, is invertible, then (6.42) can be solved by sparse triangular
factorization and forward/back substitution. If inclusion of equality constraints C, () is mandatory to

achieve observability, then R; =Cov(X;)=E (Gsp +Gp) ET and X is calculated according to:

R¢ =E(Gg+G,)ET (Gyp&ep +G, %, ) (6.43)

C 0

a(Gsp +Gp)+ Cy ]l
p

where E is the ny xn, upper-left submatrix of {

Now, a post-processing step can be formulated to propagate the refined state estimates of the PMU
boundary buses contained in X, < X; , as additional information to the SE problem of the subsystem

that 1s not observable by PMUs. We use z,,  z¢ to denote the vector that incorporates measurements

from the SCADA-only observable subsystem. Using Xy to denote the vector of the SCADA-only

observable states, and X, € R" to denote the state vector of the PMU boundary buses, then the SE

problem for the PMU-unobservable subsystem including information from the boundary PMU buses
can be written as:

Iyg = hss (Xspb) + €

)A(pb = hpb (Xspb) + epb (6'44)

0=cg (Xspb)
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T
where X, = [X; ng] , hys < hy is the vector of functions modeling measurements zy with meas-

urement error €, Ny, (Xgpp) = H pp Xgpp 18 the vector of linear functions mapping a priori information

)A(pb t0 Xgpp » with H ob & constant matrix of ones and zeros, and €pb is the Gaussian estimation error

of X, with Ry, =Cov(ey,) the corresponding Ny, x Ny, submatrix of Ry . Cg () includes relevant

pb >
zero current injection information from the SCADA-only observable network.

Noticing that problem (6.44) is similar to (6.3), using the same solution process and similar mathe-
matical manipulations we can write:

K . AT _ B AT o]
acl) (c®) HY, [[axt] |a(HY) Real

p spb
C s(;) 0 0 20| = —Css (xggb) A
H o 0 _a—lpr ﬂ(i+1) AZ(')
(i+1) DY -1 Ao
Mew | ( (i))—l a(HY) RIAz® 645
404D ssz 0 '
y _Css(xspb)
(i+1)
Algpi” | _ (G(i) )‘1 HT [a'R. +H (G(')) HT (Az(') H. Ay® ) (6.46)
}_S”l) ssz phz pb pbz \ ~ssz pbz pb=Yspb
AxG || Ay Gy N Augy (6.47)
PG - 2§|+1) 23”1) )
. AT
_ ach (¢ :
where G{) =| 7% ( * ) » Hop, = [ ob O] Azl =z —hss(X§L)b) and AZ(I) = Xpp _hpb(xg:))b)'

ch o
All the properties of the proposed ISE and PSE algorithms of the previous Sections, are retained for
the iterative scheme (6.45)—(6.47). Hence, the post-processing stage of the proposed FSE can be solved
using either Algorithm 6.1 or Algorithm 6.2 to calculate )A(pb . The complete FSE scheme is presented

in Algorithm 6.4

In implementing the proposed two-stage fusion SE process, the SCADA-based and PMU-based SE
modules can be effectively executed within a parallel computational environment, as these two tasks
are inherently independent. By exploiting the parallel computing capabilities available in modern
multi-core processors, each estimation process can be allocated to distinct computational threads or
processing units. This parallel implementation capitalizes on the modular nature of the estimation
tasks, significantly reducing the total computation time compared to conventional sequential ap-
proaches. Upon completion of the parallel estimations, the individual results are synchronized, and the
Bar-Shalom-Campo fusion formula is applied to integrate the estimates of the overlapping state vari-
ables associated with PMU-observable buses. The resultant fused estimate subsequently serves as input
to the post-estimation refinement step to enhance the accuracy of the SCADA-only observable sub-
system. The parallel execution framework thus enables efficient utilization of computational resources,
improves scalability for large-scale power systems, and aligns with the overall objective of enhancing
SE accuracy while minimizing additional computational overhead.
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Algorithm 6.4: Proposed FSE algorithm (linear PMU measurement model).
1) SCADA-based estimation:

a. Initialize the iteration index iy <— 0 and set the state vector x§°> at flat start.

b. Calculate the augmented gain matrix Ggs) .

a(H®) R (2, -h(x))
Calculate the right-hand side of (6.45), .

(")

e

d. Decompose Gs(is) and solve (6.45) for AXSSH).

e. Check for convergence: If the convergence criteria are satisfied for all state variables, then

R, « x8) + Ax{™ and terminate the algorithm. Else, x{s™ « x{) + Ax{s*D

to Step (b).

2) PMU-based estimation:
a. Calculate G = HTp Rng pand Cp.

aG, C! || X aHTR 1
b. Solve PRl P PP | por | L7
c, 0|4, 0 i

3) Post-processing state fusion:
a. Form vector X, and matrix G, .

, Iy <= ig +1 and return

>>

sp
b. Solve (Gg, +Gy )& =(GgpXep +Gy X, ) for Xy .

¢. Solve (6.45)—(6.47) using either Algorithm 6.1 or Algorithm 6.2.

6.2.4 Summary

This Section introduced an improved HSE method based on Hachtel’s augmented matrix approach,
designed to decouple and process independently the available SCADA and PMU data in the EMS. The
modular architecture of the proposed HSE algorithm makes it suitable for ISE, PSE, and FSE imple-
mentations, with partially PMU-observable network, while dealing with the suboptimality of PSE for-
mulations and eliminating the need for pseudo-measurements of FSE methods.

6.3 Hybrid state estimation for networks including classic HVDC links

While AC grids form the backbone of traditional power systems, HVDC transmission is an advanced
technology that enables efficient bulk power transport with enhanced controllability [191]. The major-
ity of SE research has focused on AC systems, with limited studies addressing AC/DC networks. The
first integration of HVDC links into SE algorithms, using conventional RTU measurements on both
AC and DC sides, dates back to the early 1980s [192].

SE algorithms for AC systems incorporating classic HVDC links — often referred to as Line Com-
mutated Converter (LCC) or Current Source Converter (CSC)-HVDC- are well-documented. A PMU-
only state estimator in polar coordinates for AC systems with LCC-HVDC links is introduced in [193],
later expanded in [194] to accommodate various control modes. A PMU-based equality-constrained
WLS state estimator in rectangular coordinates is described in [185], while [195] presents a robust
two-stage least-trimmed squares-based SE algorithm for HVAC/HVDC systems.
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With the rise of Voltage Source Converter (VSC) technology in HVDC transmission, SE models
have evolved accordingly. Reference [196] introduces a PMU-based SE model for VSC-HVDC links,
while [197] proposes an HSE combining SCADA and PMU measurements for HVAC/VSC-HVDC
networks. A distributed SE algorithm for HVAC/VSC-HVDC grids is presented in [198], and a WLS-
based SE model using pseudo-measurements for converter modeling is detailed in [199]. Reference
[200] proposes the integration of multi-terminal VSC-HVDC links in a Hachtel-based SE framework
incorporating SCADA and PMU measurements.

This Section introduces a unified HSE algorithm that simultaneously estimates AC and DC states
by incorporating SCADA and PMU measurements from the AC network alongside DC link data. The
main contributions of the proposed HSE algorithm are as follows:

1) AC and DC measurements are modeled independently and processed simultaneously as functions
of AC and DC states, respectively. AC and DC states are also estimated simultaneously.

2) The relationship between AC and DC states is expressed by a set of three nonlinear equality con-
straints.

3) Fewer real-time measurements are required for the HVDC links to be observable, compared to
similar methods found in the literature.

6.3.1 Proposed classic HVDC link model

A classic HVDC link between AC buses i and j is shown in Figure 6.4, where the subscripts 7 and j
refer to the rectifier and inverter side of the DC link, respectively. In order to model the interconnection
of the DC link with the AC system, a virtual AC bus ci (¢j) is introduced between the converter trans-
former and the rectifier (inverter).

I~ ch Tji 1 I~ VJ
cji ji
«— -«

cj j

el

Vdi

——o0

Figure 6.5: Transformer model at the rectifier side of the classic HVDC link.

The symbols appearing in Figure 6.4 are defined as follows: \7k =V, £Léy, k=i,ci,cj, j are AC line-
to-line voltage phasors, I, =1,,28,, m=ij,cij,cji, ji are AC line current phasors, T, Tji and Xj,
X i are the off-nominal turns ratios and the reactance values of coupling transformers, respectively.
Vi and Vy; are DC voltages, 1g;; =—lg; 1is the DC current, and Ry; is the resistance of the DC line.

Based on the equivalent circuit of the transformer at the rectifier side (Figure 6.5) we obtain:
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_— é _ Vi< . Vi =TyVi (6.48)
YV vigs 54 =6
ioLse [l =Tilg
Tij _ # __ ij — 1 B 1 7ciy (6.49)
ICij |cij49cij O = ecij
Using (6.48) and (6.49), the following AC/DC coupling equations can be derived:
|eij = K3Byj i (6.52)

where g;; is the firing angle, B; represents the number of rectifier bridges, k; = 32 / 7, k,=3/x,

and Kk, Z\/E/ﬂ'

The relationship between current and voltages at the DC line is expressed by:

Vg —Vyi
lgij = dIR d (6.53)
dij
Combining (6.50) with (6.51) yields:
Paij =Vai g = V3V 1 cos(5; — 6;) (6.54)
Ry = NEY Ieij COS(S; — i) = Py (6.55)

under the assumption that the active power losses at the rectifier and transformer are negligible.
Combining (6.51) and (6.53) we obtain the following equality constraint:

Vi — kg By TV cos gy +

iVi (Vgi —Vg;) =0 (6.56)

dij

Given that P; = Py; = ViV sin(dg — &)

= Py; , combining (6.48), (6.49) with (6.53) yields:

ij Xij
Vg TiViV, sin(5; — J
ﬁ(\/di _Vdj)_ ijVivei ( i CI) ~0 (6.57)
Rai Xi
Based on the transformer model of Figure 6.5 we obtain:
j
|cij < Ori :_\/gxij (TiViLd -V L) (6.58)
Combination of (6.52) and (6.58) gives:
2R2vy 2
As2 2 3k3 Blj XI] 2
T Vi® + Vg —2TViV,; €08(8; — ) ———— (Vi —Vgj)“ =0 (6.59)
dij

To convert the equality constraints (6.56), (6.57) and (6.59) to the per unit system, the following
base quantities are chosen, where actual and per unit variables are represented by capital and lowercase
letters, respectively:
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Vi ViZg
e For the AC side the base quantities chosen are: base impedances Z,; = % Ly = % in Q, and
b b

base currents Iy ; =—— in A, where S, is the three-phase base power in MVA

Iy o __ Sy
> Ci
NEY, NEYA

and Vy;, Vp . are the line-to-line base voltages in kV at buses i and ci, respectively.

Sb
b,i

e For the DC side the base quantities chosen are: base power B, =S, base voltage V, 4 =V, in
P .
kV, base current | 4 = —b_ - S in A, and base impedance R 4 = oAl Zy i in Q.
Vb,di Vb,ci b,di
After some algebraic transformations the AC/DC equality constraints (6.56), (6.57) and (6.59) are
expressed in per unit as:

. t.viv.. Sin(S; — O

i (v —vg) — Gi7%) (6.60)
dij X
i —kiByjtijV; cos g LB vy =0 6.61
le 1) |JV| Cosalj + r (le Vdj)_ ( . )
dij

3kZBZx2

tiJgVi2 "'Vsi — 2t;;V;V; €0S(J; — J) _%(Vdi _Vdj)2 =0 (6.62)
dij

where t;; is the off-nominal tap ratio in p.u.

Via similar mathematical manipulations, AC/DC coupling equality constraints are obtained for the
inverter side:

Vi tiVivg Sin(o; — oy
L (v — V) - Vi7%) (6.63)
dij Xji
Vgj — ki Bjitjivj cosyji — (Vg —Vgi) =0 (6.64)
dij
2.2 2 7B 2
| |
t5V] + Vg — 2tV COS(5; — 5y) ———— (Vg — Vi )* =0 (6.65)
di

where y;; is the inverter extinction angle.

6.3.2 HVAC/HVDC state estimation formulation

Let zeR™ denote the measurement vector, X €R" the vector of state variables, h(-) the vector of
non-linear functions relating measured and state variables, ¢(-) the vector of non-linear functions mod-
eling zero power injections and AC/DC coupling equality constraints (6.60)—(6.62) and (6.63)—(6.65)

,and e e R™ the measurement error vector normally distributed with zero mean and diagonal covari-
ance matrix R.
As in Section 6.1, the equality-constrained nonlinear HSE problem is solved based on the WLS
criterion:
5. . T 5-1
X:=arg Q;er J(x)=(z—-h(x)) R™(z-h(x)) (6.66)
s.t. ¢(x)=0

By applying the Gauss—Newton method to the first-order optimality conditions of the resulting
Lagrangian function, the state estimate is obtained by iteratively solving:
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o (e [axev] (e ek 6

ch ¢ A0 _e(x)
where i is the iteration index, A4 is the vector of Lagrange multipliers, H® :6‘h(x(i))/6'X and
. . . T .
c® =ac(xM)/ox are Jacobian matrices, and GO = ( H (')) RIH® is the gain matrix. The conver-

<&, where ¢ is a pre-specified convergence

o]

gence of the iterative procedure is attained when HAX(M)
threshold.

T
When enough measurements are available so that rank {[ HT CT ] ; =N at each iteration (7) to guar-

antee solvability of (6.67) for a state estimate, the system is said to be numerically observable, under
the assumption that the rows of matrix C are linearly independent. If there are no phasor measurements,
then an artificial zero valued phase angle measurement is introduced at reference bus to make column

rank of[HT cT ]T full,

The AC/DC measurement model can be expressed with respect to Figure 6.6, illustrating a generic
AC bus i of the network, including generator, load, shunt, branch (transmission line or transformer),
and converter (rectifier or inverter). In general, one or more branches and converters may be connected
to bus i. A branch i— j between any two AC buses 7 and j €{k, |} is represented with the two-port -
model, where ¥; = gj; + jby is the series admittance, and Vg; = Ogj + j0g; (Vi = Ogji + Jbg;i) s the
shunt admittance between bus i (j) and the ground.
ci di dk

Fdik
~/ |

Yik

Vsl Yaii

Figure 6.6: A generic AC bus connected to an AC branch and a DC link.

For a line Vg = Vi, and for a transformer ¥g; =t;(t; —1)Vj; and Yg; = (1-t;) ¥, where t; is the
off-nominal p.u. tap ratio at side j of the transformer. A capacitor or reactor is represented with an
admittance ¥; = g; + jb, connected to bus i. All electrical quantities are expressed in the per-unit sys-

tem.
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Consider that B; is the set of AC buses connected to bus i through branches (lines or transformers),
G, is the set of secondary AC buses of the converter (rectifier or inverter) transformers connected to
busi, N, =B, UC, ke B, cie(C,and di (dj) is the sending (receiving) end of the DC line di—dj .
The AC measurements associated with bus i are described in detail in Sections 4.6 and 4.7, for the
SCADA and PMU measurement systems, respectively. For a DC transmission line, the DC voltage is

usually obtained using a resistive-capacitive (RC) voltage divider, while for the DC current various
current sensor technologies can be used [201]. Generally, the respective DC measurements include:

e Voltage magnitude at bus di:

Vi =V +8y, (6.68)
e Current magnitude from bus di to bus dj:
e Active power from bus di to bus dj:

The subvector X; of state vector X associated with generic bus i of Figure 6.6, includes the following
AC and DC state variables in polar coordinates:

T
Xi :[Vi 9 Vi 0j Vi i Vai Vaj %j 7ij] (6.71)

6.4 Inclusion of current injection phasors in hybrid state estimators

The exploitation of synchronized phasor measurements for enhancing the capabilities of the modern
EMS has been a topic of extensive research. In particular, the availability of both current magnitudes
and angles is a differentiator for SE-based real-time situational awareness, as conventional metering
systems typically provide only power and ampere measurements [38]. Current phasor data can be lev-
eraged for various applications, including detecting reverse power flow, outage management, topology
detection, model validation, fault location, as well as disturbance detection and classification [202].

The incorporation of line current flow phasors in HSE algorithms has been thoroughly investigated
for transmission [9], [203], [204] and distribution systems [204]-[208]. Many works have also ad-
dressed the inclusion of current injections in SE, typically in the form of pseudo-measurements derived
from forecasted SCADA (power injection) measurements, in order to linearize the measurement model
[205]-[208]. However, currently, the option of utilizing PMUs to directly measure complex bus current
injections for SE has received only rudimentary consideration and has not yet been adequately ex-
plored from either an algorithmic or practical perspective. Motivated by this literature gap, the main
goal of this Section is to analyze the mathematical model and investigate the impact of both current
flow and injection measurements on the performance of HSE. Furthermore, technical issues related to
the implementation of the examined configurations, such as the measurement point in the circuit, the
use of instrument transformers, and cost parameters, are discussed.

6.4.1 Current measurement configurations

Let us rewrite here the HSE measurement model as formulated in Section 6.1, for an N -bus power
system and an MS comprising m; SCADA measurements, m, PMU measurements, and m, zero

injections:
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zg | | ho(x)
2, || hoo | (6.72)

0=c(x)
Assuming additive Gaussian measurement noise, the estimated state vector X, is obtained by solv-
ing the following WLS optimization problem with objective function J(X):
K:=argminJ(x)=e'R %
X (6.73)
s.t.c(X)=0
The state vector x is expressed in either polar or rectangular coordinates, with its i-th entry written as
T . ~ .
X, =[V; 6 ]T or X; = [VR’i V,)i] = [Vi cosd; V;sin o, ]T , where V; =V, £¢; is the voltage phasor at bus
i, and subscripts R and I denote its real and imaginary parts, respectively.

Consider now a bus i with an installed PMU and the current measurement configurations illustrated
in Figure 6.7, obtained via CTs. The term PMU is used here to refer to any device capable of recording
phasors at either power transmission or distribution level, encompassing IEDs, micro-PMUs, or any
other synchrophasor-enabled devices. In the following, the functions hIRij (x), hII ! (x), hIRi (x), and

hIIi (X) of h,(x), are used to model the current flow and injection phasors depicted in Figure 6.7.

Possible CT connection
point (flow measurement)

v v
Possible CT connection point

(injection measurement)

Figure 6.7: Different obtained current phasor measurements depending on CT configuration.

The complex current flow measurement is written as:
i =10260 =185 + il (6.74)
The respective measurement functions have already been defined in Section 4.7, as follows:
h,, (X)= tv; ((gsij + ;) €0s 6 — (bg;; +by)sin g, )_tijtjivj (gij cos(0; —Ag;) —by; sin(d; — Agy ))
(6.75)
hy,, (X) = v, ((gsij +0j;)sin &; + (b +by;) cos 5 )_tijtjivj (gij sin(d; —Agy) +1y cos(5; — Agy ))
(6.76)
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h, (0= Jhe,, 09+hE, ()

hy,, (%)
hgu_ (x) =arctan [h—(x)J

IRji

where gsij, giji bsij’ (/R

Therefore, the terms of (6.74) are written as:
|FT,ij = hIR,ij (x)+ €
| Ir,?j = h,“j (X)+ i
IiT = h|ij (x) &,
49,;“ = h@.j (xX)+ €,
The complex current injection measurement can be expressed as:
M =1"28" =18 + jI]}

According to (4.24), it holds that:

by, G, tji, and Ay =@; —@;; have been defined in Chapter 4.

(6.77)

(6.78)

(6.79)
(6.80)
(6.81)
(6.82)

(6.83)

(6.84)

jea(i)
jacent to bus i. The real and imaginary parts of [, are written as:
hIRi (xX) =V, (Gii cosg; — B;; sin 5i)+ Z \Z (Gij cosd; — By sin J; )
| jeat)
hy, (X) =V; (Bj cos &, +Gysin s )+ > Vj(B; cosd; +Gy sin5; )
| j<ati)

h, 00 =1, ()+h? ()

h
hgi (x) =arctan Lh::—((xx))}

The terms of (6.83) are thus expressed as:
IFTJ = hIR,i (x) +e,
I ,”: = hll,i (x) +e
1" =h, (x)+e,

(6.85)

(6.86)

(6.87)

(6.88)

(6.89)
(6.90)
(6.91)
(6.92)

where subscripts R and I denote the real and imaginary parts of a phasor, respectively and variables e
denote the additive random Gaussian noise of each measurement. The rest of the symbols shown in
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Figure 6.7, V, =V, /6, \7j =V;£6; and Vi =V, Z 6, , are the voltage phasors at buses i, j and &, re-

spectively.
Assuming that at each PMU-monitored bus, a single device with one current measurement channel
connected to a CT is installed, there are two possible current measurement configurations, according

T T
to Figure 6.7: z; = [ IRjj Ilr,T;j] and z; = [IFTJ I,'ﬂ . Bach configuration contributes to the formation

TT T i L.
of the PMU measurement vector z,, :[ZV Z; Z; ] , with z, :[Vim é}m] or 2, :[VF?"i V,T] being

the vector of voltage phasor measurements at bus i expressed in either polar or rectangular coordinates,
respectively.
6.4.2 Impact of current injection information on the SE solution

Let us assume that the state vector is expressed in rectangular coordinates, with its entry pertaining
. T . . .
to bus i written as X; = [VRJ Vl,i:l . It is known that by expressing the state vector in rectangular co-

ordinates, the functions hy(x) and c(x) become linear, and their respective Jacobian matrices

m,xn

H,eR™" and CeR™" are constant [113]. This is found to hold when incorporating current in-
jection phasor measurements in z,, where IFT ; and Im can be written as linear functions of the state
variables, using (6.85), (6.86):
IR = (GiiVR,i - BV )+ > (GijVR,j - BV, ; )+ €, (6.93)
jea(i)
jea(i)
Table 6.1 demonstrates the structure of matrices H, and C, with j k ea(i), where Z denotes the

set of zero injection buses.
By applying the Gauss—Newton method to the first-order optimality conditions of the resulting La-
grangian function:

L(x,2) =3 (x)+ 2" e(x) (6.95)

and the solution is obtained by the iterative scheme:

G0 (C(i))T Ax (D (H(i))T R-A7 (M
o= (6.96)
ch o A0 _cx®
: HO ohy(X)/oX|.
where superscript i is the iteration index, H® =| 'S |=| ° [ ey , C=adc(x)/ox,
H, oh, (x)/ox

(i)
0 :(H(i))T RAIHO az® | 5 || OO AxED — 60y
z p H p X(I)

The state estimate X and Lagrange multipliers A0 corresponding to zero injection constraints,
are updated using (6.96) until convergence, which is attained when HAx(i) H < ¢, where ¢ is the con-

vergence threshold.
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Table 6.1: Structure of Jacobian matrices H, and C including current injection phasors.

VRi Vii o VR Vi o Vek Vik
Y O Y TV Y V2]
0 1 0 0 0 0 VT
H,= <o 15 (045 + G5) —t (b +by) - —ttDy ttyEy - 00 éllr?n,ij igZ
o thlog +hy) t5(ag +0y) o —ttEy —titiDy - 0 0 I|n:j
Gii —B; Gjj —B; - Gy _Bikéllg,i
B Gii Bj Gj - By Gy i
Ve M Ve Vg Ve Vi
C=|- Gj —Bj -+ Gj —By -~ Gy —Byilg;=0],ieZ
- Bi Gy - Bij Gij - By Gy §|m=0
Djj = gj; cos(A(pij)+bij Sin(A(o,j)
Eij =Dy cos(Ag;) — gj; Sin(Ag;;)

6.4.3 Practical considerations

The majority of studies regarding the deployment of synchrophasors for SE purposes assume that
the current measurements pertain to line current flows [4]. At power transmission level, all lines are
equipped with switching devices at their ends, thus providing the necessary equipment, i.e., VTs, CTs
and communication channels, for PMU installation. This setup is also applicable to all power system
substations where the units can be installed at transformers or switchgear. In addition to commercially
available dedicated PMU devices, existing digital relays and other IEDs, can be upgraded to integrate
synchrophasor capability [202]. Overall, using a PMU to measure line current flows is indeed the most
practical and economical solution for power transmission systems.

Contrariwise, measuring current phasors in distribution grids is a more complicated task. It is prac-
tically infeasible to obtain synchronized measurements of line current flows downstream primary sub-
stations, since the available switching and protection devices which could host PMUs, are limited. The
required facilities must be constructed from scratch, thus, inferring high cost, mainly referring to the
purchase of VTs/CTs, and unreasonable labor effort, that involves cabinet installation and space ar-
rangements at overhead or underground locations, ad-hoc configuration of instrument transformers
etc. [209].

As reported in [202], the most convenient option in case of distribution networks is to place PMUs
at locations with pre-existing instrument transformers, such as the secondary, low voltage side of ser-
vice transformers. In this case, low-cost PMU devices can be utilized, thus, reducing the related ex-
penses. Further, by employing a unit with analog front-end interface as in [210], the use of VTs is not
required, which not only eliminates the related cost but also mitigates the measurement errors. There-
fore, by adopting this solution, the current measurements delivered by an installed PMU refer to bus
injected/ absorbed currents.

Considering this analysis, the study of both current flow and injection phasor measurements is of
major importance, since, currently, the latter are more easily acquirable in real-world deployment of
PMUs at power distribution.
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6.5 Numerical simulations

The accuracy, convergence properties, and computational efficiency of the proposed HSE methods
of Sections 6.2—6.3 are investigated and compared to those of different HSE algorithms found in recent
literature. This is accomplished via numerical simulations conducted using several IEEE test systems,
with their data available in [211]. The networks under examination are simulated using the
MATPOWER toolbox [212], and all the algorithms under investigation are implemented in MATLAB,
on a computer with Intel Core 15-10400 processor and 16 GB of RAM.

6.5.1 Measurement errors

In the conducted simulations, the true values of states and measurements are derived by a power
flow solution. The actual measurement values are generated by adding random Gaussian noise to the
true measurements. The actual measured value of the i-th measurement is calculated as:

z, =2 +Vxo; (6.97)

where 7™ is the true value provided by the load flow solution, v is a A" (0,1) random number, and

o; is the standard deviation of z;, i=1,2,...,m.

Assuming that each metering device involves a maximum percentage error €, around each meas-

max

ured value z;, and given that z; ~ N/ (Zitr”e,aiz) with a +30; deviation around z™® covering more than

99.7% of the Gaussian curve, the standard deviation of the i-th measurement may be calculated as
follows:

true true true true
Zi —emaxzi < Zi < Zi +emaxzi —
true
€ Z;
o =l (6.98)

The following e, values are considered for each measurement type [8], [113]:

e for SCADA measurements, ef{qax =2%,

e for PMU magnitude measurements, e’ =0.1%,

e for PMU angle measurements, e o, =0.35 mrad.

e for HVDC-related measurements, eﬁ';x =5%.

In all cases where error-free measurements are considered, (6.97) becomes z; = z/™®. The values and

standard deviations of phase angle measurements are expressed in radians, while for all other meas-
urements they are expressed in per-unit.
6.5.2 State estimation performance metrics

Several well-established metrics are calculated to assess the performance of SE procedures in terms
of convergence rate of the solution algorithm and accuracy of the state estimates, under controlled
testing. Estimation errors can be compared separately for voltage magnitudes and phase angles, using
the mean absolute errors MAEy and MAE 4, respectively. Generally, the mean absolute error (MAE) is
given by [213]:

N
MAE = %Z| XM — R | (6.99)
i=1

where Xitr”e is the true value of voltage magnitude or phase angle of bus i obtained by the power flow

solution, X; is its corresponding estimation, and N is the total number of buses.
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The Macc, metric is defined as the Euclidean norm of the difference between the true and estimated

complex bus voltages, and is utilized to assess the combined effect of magnitude and angle errors on
SE accuracy [213]:

Maccv — ‘Ntfue _\7 est 2

N
= Jz ‘vi“”e —Vt (6.100)
i=1
where V™ and V*' are the vectors of all true and estimated complex bus voltages in per-unit.
To evaluate the capability of the SE method to produce an estimate of the complex power flow on
each branch, the Maccg metric can be calculated as [213]:

M. ~oct |2
Maccg = \/Z‘st{ﬁe—sﬁ
i1

where the summation index i ranges over all the M network branches, $"™¢ and S®' are the true and
estimated complex power flows, and the sending and receiving ends of each branch are denoted by
subscripts f'and ¢, respectively.

For assessing each estimator’s ability to accurately calculate power system quantities that appear in

~ ~ et |2
+[Se s (6.101)

the MS within the expected error margins indicated by the error variances aiz , we introduce the error
estimation index (EEI):

i=1 Oj

my+Mg /* _true o\
EEl = Y [Z'_—h'(x)j (6.102)

The number of iterations and the execution time of each algorithm are used as convergence and
timing metrics, respectively. Note that these metrics are used to assess the computational complexity
of each method, and to indicate any convergence problems or numerical instability issues; they do not
necessarily represent the actual performance of the estimator deployed in the EMS.

For the cases where the HSE solution is carried out using an iterative scheme, several indices can
be calculated to quantify the estimator’s ability to converge, by ascertaining that no significant changes
in the state variables or the objective function occur at the terminal iteration [213]:

__3(xY)
Mconv; = 1—m (6.103)
_ Vi(t) _Vi(t—l)
Mconv, = rlrl?\lx W (6.104)
Mconv :=max|s - 5| (6.105)

ieN
where superscript t denotes the terminal iteration of the iterative scheme (6.96).The Mconv; metric

calculates the relative change of the value of J(X), while Mconv, (Mconvs) measures the largest

relative (absolute) change in bus voltage magnitude (angle) over all N buses, at the final iteration.

Finally, to investigate the degree of suboptimality of the proposed PSE (and by expansion, FSE)
algorithm compared to the ISE approach, we can use the following suboptimality index, based on the
objective function of the SE problem:

_ Jpse (%) —Jise (X)
Jise (%)

Hs (6.106)
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where Jpge (X) and J gz (X) are the optimal (minimum) values of the objective function, for the ISE

and PSE implementations, respectively. By comparing the final objective function value (i.e., the sum
of squared weighted residuals) for the ISE vs. that obtained by the PSE approach, we can quantify how
well each approach fits the measurement data.

6.5.3 ISE, PSE and FSE numerical simulations

In the following, we compare the performance of the proposed algorithms of Section 6.2, with the
ISE of [113], the PSE of [130], the FSE of [140], and the SCADA-based CSE of [183]. The ISE pro-
posed in [113], is a conventional SE where the measurement vector is augmented to include all avail-
able phasor measurements in a unified estimator. The PSE algorithm of [130], treats the RTU-based
estimates produced by the first SE stage as pseudo-measurements, jointly processed with PMU data in
the second stage. The FSE method proposed in [140], involves a multistage architecture that combines
results obtained from independent RTU- and PMU-based SE modules running in parallel, and a flat

voltage profile (1.0 puZ0°) is assigned to PMU-unobservable buses as a priori state information to

guarantee complete PMU observability.

Regarding the FSE methods, the MATLAB Parallel Processing Toolbox was utilized to carry out all
simulations by leveraging parallel computing resources on a multicore CPU, without relying on CUDA
or MPI programming [214]. By dividing the SE task into smaller, independent subtasks (functions),
the PMU-only and SCADA-based algorithms can be executed concurrently on multiple processing
units. The Toolbox allows for synchronization and coordination of the two algorithms, as well as the
propagation of the produced state vector estimates to the post-estimation fusion stage. More specifi-
cally, a parallel pool of three workers (MATLAB computational engines) is utilized, with each worker
assigned to a physical CPU core. This guarantees that no two processes share the same floating-point
unit, which would significantly hinder calculations. Two workers are utilized to compute Steps 1 and
2 of Algorithm 6.4 in parallel. The third worker waits to receive the state estimates and necessary
matrices from Steps 1 and 2, to compute Step 3, thus producing the fused state vector.

6.5.3.1 Measurement configuration

The numerical studies are conducted on the IEEE 14-,118-, and 300-bus transmission systems. Ta-
bles 6.2 — 6.4 present the three different MSs considered for each test system. Each MS has a higher
SCADA measurement redundancy m¢/n and contains a larger number of deployed PMUs than the

previous MS. The RTU (PMU) measurements pertaining to a network bus consist of bus voltage mag-
nitudes and power injections (bus voltage phasors), along with power flows (current phasors) recorded
over all incident branches.

Modern PDCs can provide voltage and current phasors in both polar and rectangular forms to the
EMS. For the numerical simulations, current phasors are always expressed in rectangular form, as this
has been proven to be optimal for HSE implementations [96]. Voltage phasors can be processed in
either form, depending on the employed SE method.

Assuming that (6.98) gives the standard deviations o

mi» Oaji Of the magnitude and angle measure-

ments Z of a phasor expressed in polar form, then the standard deviations o, ;, o,; of the real

m,i> Za,i

and imaginary parts Z.;, Z,; of the phasor transformed to rectangular form are calculated based on

rio»
the uncertainty propagation theory [114]. The 2x2 covariance matrix of z.; =z, ;c0s(z,;) and

Zyi =Zny;SiN(Z,;) is calculated as:

Cov([zr,i zX’i]T):JCov([zm’i za,i]T)JT (6.107)
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0z,; Oz
oz . Oz, cos(z.:) —z... sin(z. ; o2, 0
where J:=| ™ =7 (2a;) ~2m;Sin(Za;) and Cov([zmi zai]T)= m.i )
azx,i azx,i Sm(za,i) Zpii COS(Za,i) ' ' 0 O,
0z 0z

ri

m,i a,i |

Thus:
2 2 2 2 a2 2 2 2 -
Opmi COS (Za,i)+zm,i0a,i sin (za,i) (Cfm,i—Zm,an,i)COS(Za,i)S'n(Za,i)

.
Cov( Z,i Zy: )= (6.108)
[ " X'Ijl (O-ri,i_Zr%],iazii)COS(Za,i)Sin(Za,i) Gri,i Sinz(za,i)"'zr%],io-g,i COSZ(Za,i)

Table 6.2: Measurement configurations for the IEEE 14-bus test system.

MS1 MS 2 MS 3
SCADA buses 2,6,9 2,4,6,9,10 2,4,6,8-10
PMU buses 3 5,14 3,5, 14
SCADA measurements 33 53 58
PMU measurements 6 16 22
mg/n 1.179 1.893 2.071

Table 6.3: Measurement configurations for the IEEE 118-bus test system.

MS 1 MS 2 MS 3
3,8, 11, 12, 17, 21, | 3,4,7,8, 11, 12,17, 21,22, | 2-4,7.8, 11,12, 16, 17,21, 22,
22,27,31,32,34,35, | 27, 28, 31, 32, 34, 35, 40, | 27, 28, 31, 32, 34, 35, 40, 41,
SCADA b 40, 45, 49, 53, 56, 62, | 44-46, 49, 53, 56, 62, 65, | 44-46, 48-50, 53, 56, 57, 62,
USeS 165,72, 73, 75,77, 80, | 72, 73, 75, 77, 78, 80, 85, | 65, 72, 73, 75, 77, 78, 80, 84—
85, 86, 91, 92, 94, | 86, 91, 92, 94, 101, 102, | 87, 91, 92, 94, 95, 101, 102,
102, 105, 106, 110 105-107 105-107, 109111
19, 23, 33, 54, 59, 61, 69, | 1, 6, 19, 23, 33, 42, 51, 54, 59,
PMU buses 6,23,33,59,69,89 | ¢9 100 61, 69, 70, 89, 96, 100, 103
SCADA 375 433 506
measurements
PMU 66 112 176
measurements
my/n 1.59 1.835 2.144

Table 6.4: Measurement configurations for the IEEE 300-bus test system.

MS1 MS 2 MS3

SCADA measurements 829 1063 1283
PMU measurements 148 270 420

mg/n 1.382 1.772 2.138
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6.5.3.2 State vector formulation

For all SE formulations, the state vector x can be expressed in either polar or rectangular coordinates.
Table 6.5 provides the coordinates of the state vector and the solution method of each proposed SE
formulation. As observed from Table 6.5, considering the state vector in rectangular coordinates for
the PMU stage of FSE, along with phasors processed in rectangular form, linearizes the measurement
model and results in non-iterative solution of the SE problem. In all the following simulations, rectan-
gular coordinates were used to express the state vector.

Table 6.5: State vector and solution formulation for each proposed algorithm.

;;zz;she:l Stage Set;;‘:_:s:(t::lr Solution method
ISE — Polar or rectangular Iterative
PSE SCADA Polar or rectangular Iterative
PMU Same as SCADA Iterative or non-iterative
SCADA Polar or rectangular Iterative
FSE PMU Rectangular Non-iterative
Fusion Same as SCADA Iterative

6.5.3.3 Evaluation of simulation results

For each MS and test system, 1000 Monte Carlo (MC) trials were conducted to obtain an average
of the performance metrics, which are provided in Table 6.6 for CSE, in Table 6.7 for ISE, in Table 6.8
for PSE, and in Table 6.9 for FSE. We refer to our proposed methods as ISE 1, PSE 1, and FSE 1. The
ISE of [113], the PSE of [130], and the FSE of [140], are referred to as ISE 2, PSE 2, and FSE 2,
respectively. The convergence tolerance for the SE iterations was set to & = 10 for all algorithms.

As regards PSE methods, the rows of Table 6.8 corresponding to the number of iterations have been
omitted, as the SCADA-based module is the only iterative process, with the respective metrics pro-
vided in Table 6.6, while the PMU-based post-processing stage is non-iterative. For the same reason,
only CPU times corresponding to the PMU-based stage are provided. As for FSE methods, we compare
the convergence and timing metrics of the fusion stage of each method. The more computationally
demanding iterative SCADA-based SE (running in parallel with the linear PMU-based SE of each
method) is again the same for both methods.

Table 6.6: Conventional (SCADA-based) SE accuracy and performance metrics.

Metric IEEE 14 IEEE 118 IEEE 300
MS1|MS2 | MS3| MS1 | MS2 [ MS3 | MS1 | MS2 [ MS3
MAEy (x10° pu) | 2.920 | 1.246 | 1.206 | 1.064 | 0.737 | 0.651 | 0.633 | 0.445 | 0.356
MAEA (x10% deg.) | 8.035 | 2.683 | 2.601 | 11.550 | 10.950 | 9.811 | 6.791 | 4.375 | 3.739

Maccy (pu) 0.013 | 0.005 | 0.005 | 0.036 | 0.033 0.029 0.034 | 0.022 0.017

Maccs (pu) 0.045 | 0.013 | 0.012 | 0.582 0.420 0.375 0.771 | 0.542 0.439

EEI 23.95 | 24,90 | 24.27 | 211.93 | 210.13 | 210.92 | 458.05 | 456.02 | 458.19
Iterations 4 4 4 5 4,70 4,75 5 5 5

CPU time (ms) 400 | 3.70 | 410 | 11.00 | 10.70 | 13.00 114 120 135
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Table 6.7: Proposed ISE accuracy and performance metrics.

. SE
Metric G| IEEE 14 IEEE 118 IEEE 300
MS1 | MS2 | MS3 MS 1 MS 2 MS 3 MS 1 MS 2 MS 3
MAEy ISE 1 0.826 | 0.478 | 0.404 | 0.329 0.256 0.182 0.271 0.186 0.127
(<107 pu) ISE 2 0.827 | 0.487 | 0.434 | 0.324 0.225 0.173 0.260 0.179 0.129
MAEA ISE 1 3.231 | 0.687 | 0.378 1.467 1.063 0.570 2.189 1.275 0.782
(%102 deg.) ISE 2 3.910 | 0.889 | 0.729 1.557 1.092 0.621 3.117 1.795 0.867
Macey (pu) ISE 1 0.005 | 0.002 | 0.001 | 0.007 0.005 0.003 0.015 0.009 0.005
ISE 2 0.005 | 0.002 | 0.002 | 0.007 0.005 0.003 0.017 0.010 0.005
Maccs (pu) ISE 1 0.027 | 0.007 | 0.004 | 0.125 0.096 0.067 0.411 0.312 0.139
ISE 2 0.027 | 0.007 | 0.004 | 0.125 0.097 0.069 0.409 0.304 0.139
EE| ISE 1 2448 | 23.46 | 23.70 | 208.33 | 204.35 | 199.22 | 452.11 | 446.51 | 446.23
ISE 2 25.09 | 24.07 | 24.10 | 209.41 | 205.29 | 204.75 | 451.91 | 452.82 | 449.81
lterations ISE 1 4 4 4 4 4 4 5 5 5
ISE 2 4 4 4 4 4 4 5 5 5
Time (ms) ISE 1 3.00 4.00 3.00 26.00 28.00 28.30 241 305 299
ISE 2 3.10 3.20 4.30 16.00 17.00 17.00 149 161 204
Table 6.8: Proposed PSE accuracy and performance metrics.
Metric SE |EEE 14 IEEE 118 IEEE 300
method
MS1 | MS2 | MS3 MS 1 MS 2 MS 3 MS 1 MS 2 MS 3
MAEy PSE 1 0.781 | 0.517 | 0.408 | 0.327 0.241 0.179 0.265 0.184 0.123
(%107 pu) PSE 2 1.613 | 0.552 | 0.504 | 0.622 0.424 0.338 0.359 0.299 0.216
MAEA PSE 1 3.214 | 0.691 | 0.379 1.506 1.056 0.569 2.169 1.285 0.774
(%102 deg.) PSE 2 6.407 | 1.687 | 1.535 6.059 5.625 4.329 4,891 2.605 1.700
Maccy (pu) PSE 1 0.005 | 0.002 | 0.001 | 0.007 0.005 0.003 0.015 0.009 0.005
PSE 2 0.008 | 0.003 | 0.002 | 0.020 0.019 0.015 0.027 0.019 0.010
Maccs (pu) PSE 1 0.027 | 0.007 | 0.004 | 0.127 0.096 0.068 0.413 0.310 0.142
PSE 2 0.088 | 0.023 | 0.022 0.471 0.327 0.367 1.256 0.925 0.486
EE| PSE 1 24.30 | 23.92 | 23.56 | 208.10 | 205.23 | 199.78 | 449.86 | 448.02 | 445.02
PSE 2 26.81 | 26.32 | 26.81 | 223.15 | 244.75 | 245.08 | 595.14 | 556.93 | 541.53
PMU stage PSE 1 0.4 0.6 0.9 4.2 7.1 11 26 29 31
time (ms) PSE 2 1.2 1.4 1.7 15 1.4 1.3 2 5 10
Table 6.9: Proposed FSE accuracy and performance metrics.
Metric oE |IEEE 14 |IEEE 118 IEEE 300
method
MS1 | MS2 | MS3 MS 1 MS 2 MS 3 MS 1 MS 2 MS 3
MAEy FSE 1 0.918 | 0.558 | 0.480 0.504 0.339 0.267 0.510 0.411 0.237
(><10'3 pu) FSE 2 0.879 | 0.549 | 0.483 0.531 0.351 0.273 0.534 0.435 0.318
MAEA FSE 1 3.329 | 1.719 | 1.357 2.280 1.830 1.540 2.805 2.047 1.616
(><10’2 deg.) FSE 2 3.273 | 2.019 | 1.355 2.353 1.899 1.567 3.472 2.508 1.945
FSE 1 0.007 | 0.003 | 0.002 0.013 0.009 0.006 0.045 0.033 0.010
Maccy (PU) ~FSE2 [ 0.007 | 0.003 | 0.002 | 0014 | 0.009 | 0.006 | 0050 | 0038 | 0014
FSE 1 0.057 | 0.015 | 0.009 0.270 0.204 0.159 1.479 1.368 0.441
Maccs (PU) ~FSE2 [ 0.057 | 0.015 | 0.009 | 0282 | 0207 | 0.168 | 1515 | 1392 | 0648
EEI FSE 1 25.03 | 25.18 | 24.68 | 212.32 213.66 209.70 464.77 470.54 | 466.68
FSE 2 24.42 | 26.61 | 24.73 | 214.59 217.68 214.07 487.84 482.37 | 473.24
Fusion stage FSE 1 1 1.6 1 2 2 2 2 2 2
iterations FSE 2 - - - - - - - - -
Fusion stage FSE 1 0.4 0.6 0.9 4.2 7.1 11 26 29 31
time (ms) FSE 2 1.2 1.4 1.7 1.5 1.4 1.3 2 5 10
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From the results presented in Table 6.6—Table 6.9 we may deduce the following:

All the proposed HSE methods provide more reliable state estimates versus the CSE approach,
with higher RTU and PMU measurement redundancy leading to improvement in overall SE quality.

Both ISE methods provide accurate state estimates with slight differences across all metrics. This
is to be expected as the proposed ISE 1 has the same mathematical derivation as ISE 2, with the
only difference being that ISE 2 does not include information from zero injections modeled in the
form of equality constraints.

The largest improvements can be found when comparing the PSE methods. Errors MAE,, , MAE
, and Macgc, , show a decrease of 65.4%, 67.8%, and 68.9% on average, across all MSs and test

systems. The proposed PSE 1 is also found superior in terms of its ability to produce an approxi-
mation of the power flow solution, when compared to PSE 2, as Maccg values are much lower for
all simulations. Bearing in mind that PSE schemes only approach the optimal ISE solution near
convergence and therefore generally provide suboptimal SE solutions compared to ISE methods,
the metrics of PSE 1 are almost identical (within the margins of statistical error) compared to those
of ISE 1, validating the effectiveness of the proposed PSE algorithm.

The performance of the FSE approaches is almost equivalent, as far as the 14-bus system is con-
cerned. For the 118-bus system there is a notable 6% improvement on average regarding MAE,,

as well as a 3.5% reduction in MAE, and Macc, errors. For the 300-bus system, these improve-

ments increase to 18.2%, 11.8%, and 17.2%, respectively. Convergence of the proposed FSE 1 is
unproblematic, with any increase in execution time compared to FSE 2 being attributed to the
iterative scheme implemented after calculating X; .

Generally, it is found that EE/ values are lower for the proposed HSE methods. The calculated EET
values may be compared against a theoretical maximum value:

m, +m 2
EEl, . = pz [&J =9(m, +m,) (6.109)

i=1 Oj

The simulations for all MSs return good (low) EE! values, which fall within 3.5%—7% of EEI
for the 14-bus system, 3.5%-5.5% of EEl,, for the 118-bus system, and 3%—5.6% of EEI
for the 300-bus system.

The proposed methods return low Maccg values, proving the capability of the algorithms to deliver
an estimation of the power flow solution. Note that the calculated Maccg values in p.u. correspond

to a maximum deviation of 0.7% from the true total branch power flow for the 14-bus system, and
around 0.2% for the 118- and 300-bus systems (base value of 100 MVA).

As for the convergence rate, the required iterations are the same for ISE 1 and ISE 2. As expected,
differences are observed between PSE 1 and PSE 2, as the latter employs a linear (non-iterative)
post-processing stage, while the proposed PSE 1 requires an iterative procedure when the PMU
measurement model is nonlinear. The same holds true for FSE methods, as FSE 1 performs an
additional iterative process after calculating X; . Note that for all PSE and FSE methods, conver-

gence of each individual stage is required to achieve convergence to the optimal SE solution.

Additional remarks are also in order concerning the optimality of the multistage (PSE) estimator. In
order to measure possible performance degradation over the proposed ISE algorithm, we make use of
the degree of suboptimality . Via Table 6.10-Table 6.12 it is evident that the average value of us
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across all MC simulations is only 0.6%, with the highest value of 2.56% observed for the IEEE 14-bus
network with a single deployed PMU. In terms of Mconvy and Mconvs, the ISE algorithm is found to
converge satisfactorily. The Mconvy and Mconvs values for the PSE algorithm are calculated using the
difference between the SCADA-based and the final estimates, instead of the estimates from the last
two iterations, as the post-processing stage is not necessarily iterative. Thus, the obtained values can
be used to quantify the effect of the post-processing step on the SCADA-based state estimates.

Table 6.10: Convergence metrics for the ISE and PSE methods — IEEE 14-bus system.

MS Metrics
] 3 Mconv, Mconvy Mconvs (rad)
ISE | PSE | A ISE PSE ISE PSE ISE PSE
MS 1| 13.66 | 13.72 |0.0044| 8.192x107 - 1.584x10% | 1.893x103 | 9.482x10° | 2.183x107
MS 2| 42.74 | 43.41 |0.0157| 2.565x10° - 1.685x10° | 1.188x10° | 3.854x107 | 6.650x10*
MS 3| 53.52 | 53.55 |0.0006| 1.315x107 - 9.543x107 | 1.215x10% | 1.926x107 | 7.022x10*
Table 6.11: Convergence metrics for the ISE and PSE methods — IEEE 118-bus system.
MS Metrics
] ] Mconvy Mconvy Mconv; (rad)
ISE | PSE | M ISE PSE ISE PSE ISE PSE
MS 1| 218.6 | 218.7 |{0.0005| 1.911x10* - 5.681x10° | 3.658x10° | 1.099x10° | 1.545x10%
MS 2| 318.2 | 318.6 |{0.0013| 1.399x10°® - 6.850x107 | 2.328x10° | 1.285x10° | 8.931x103
MS 3| 449.7 | 451.2 |0.0033| 3.205x107’ - 3.692x107 | 2.141x10° | 6.457x107 | 1.040x10
Table 6.12: Convergence metrics for the ISE and PSE methods — IEEE 300-bus system.
MS Metrics
3 3 Mconv, Mconvy Mconv; (rad)
ISE | PSE | #s ISE PSE ISE PSE ISE PSE
MS 1| 491.6 | 491.7 |0.0002| 1.393x10°® - 5.236x107 | 4.310x10° | 2.710x10° | 9.105x10°3
MS 2| 837.3 | 842.2 |0.0059| 2.884x10® - 9.812x107" | 2.228x10° | 3.903x10° | 6.440x103
MS 3| 1192 | 1194 |0.0016| 5.365x10° - 5.934x10° | 1.705x10° | 6.160x10° | 4.277x103

It would also be useful to assess the system-wide accuracy of the proposed HSE algorithms. The
mean absolute errors of voltage magnitudes and angles are calculated for each bus of the 118- and 300-
bus systems, averaged from the same 1000 MC trials conducted for MS 3. The results are presented in
the plots of Figure 6.8—Figure 6.9 for ISE, Figure 6.10-Figure 6.11 for PSE, and Figure 6.12—Figure
6.13 for FSE. In Figure 6.8-Figure 6.9, no noteworthy differences appear between ISE methods, as
expected according to the results of Table 6.7. Figure 6.10 and Figure 6.11 demonstrate that the results
of PSE 1 are closer to the power flow (true) values, than those of PSE 2 for all state variables. In Figure
6.12, one observes that the errors of FSE 2, which correspond to subareas with few or no PMU meas-
urements (e.g., buses 103—112), are significantly increased. The same can be observed in Figure 6.13,
for buses 170-230. In these parts of the network, the high density of complementary data used to
artificially restore PMU-observability seems to negatively impact the accuracy of FSE 2. By avoiding
usage of pseudo-measurements and by utilizing the post-estimation iterative scheme of Algorithm 6.4,
FSE 1 manages to enhance SE quality in these subareas.
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6.5.3.4 Conclusions

Extensive numerical studies conducted on the 14-, 118-, and 300-bus IEEE test systems verify the
reliability of the obtained SE results, while various performance metrics are compared with those ob-
tained from similar approaches found in recent literature. The presented HSE scheme provides highly
accurate results across all alternative formulations, while demonstrating improvements to SE quality
over established PSE and FSE methods. In terms of convergence rate and execution time, the proposed
algorithms are found to be well-performing and on par with the existing methods.

6.5.4 HVAC/HVDC network simulations

To demonstrate the performance and effectiveness of the proposed HVAC/HVDC SE methodology,
simulation results obtained from the 14-bus and 30-bus IEEE benchmark systems are provided. The
networks under examination were simulated in PSS®E [215], by integrating one CSC-HVDC link into
the 14-bus system and two CSC-HVDC links into the 30-bus system. For the added HVDC links be-

tween AC buses i and |, the number of bridges is B =Bj; =1, the off-nominal turns ratios and re-

actance values of coupling transformers are T;; =T; =0.975 and X = X;; =5.95Q, respectively,

and Ry; =1.13 Q). Measurement data are generated using the power flow solutions obtained from

PSS®E. Several scenarios are examined for each test network, including cases with error-free meas-
urements and cases with measurements corrupted by random Gaussian noise. The performance evalu-
ation focuses on the accuracy, convergence speed, and overall computational execution time of the
proposed SE algorithm.

In the following, it is assumed that a single RTU (PMU) installed at a network bus can record the
voltage magnitude (voltage phasor) of the respective bus and the power flows (current phasors) over
all branches incident to that bus. For each simulation, the state vector is initialized at flat start, i.e.,
Vi =vg =1pu, & =a; =y; =0° Vi, j, and the convergence threshold is set to 10,

6.5.4.1 IEEFE 14-bus test system

In the modified version of the IEEE 14-bus system (Figure 6.14), the AC transmission line between
buses 1 and 2 has been replaced with a classic HVDC link. Buses 1, 2, 6, 8, and 9 are equipped with
RTUs and buses 4, 11, 12, and 14 are equipped with PMUs. The AC measurement setup comprises 40
SCADA and 30 PMU measurements.

For the case of error-free measurements, the estimated states are compared to the power flow solu-
tion in Table 6.14 to validate the applicability of the proposed AC/DC measurement model and the
associated coupling equality constraints. Here, the MAE index is given by:

N
MAE := %Z| XM — R | (6.110)
i=1

where X" is the true value of AC (DC) voltage magnitude or voltage phase (firing/extinction) angle

of AC (DC) bus i obtained by the power flow solution, X; is its estimation, and N is the total number

of AC and DC buses. In each scenario presented in Table 6.14, a different set of DC measurements is
considered, as specified in Table 6.13. It should be noted that the coupling buses ¢l and c2 of the
proposed HVDC network model cannot be directly simulated within the PSS®E software. Therefore,
the true values of V, 0y, Vo, and O,, were calculated using (6.49) and (6.58), combined with the

power flow solution obtained from PSS®E. The largest deviations from the true states occur when only
one DC measurement is utilized and progressively decrease with the incorporation of additional DC
measurements (MS 2—MS 4). Additionally, it is important to emphasize that the SE problem is solvable
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provided there is at least one DC measurement along with RTU or PMU measurements available from
both AC terminals of the HVDC link.

12 _TL 13 14-T-
(jj- 11 —%— 1i }T_
8 ~

1-2— 5 — @ 7 4 l

Figure 6.14: IEEE 14-bus test system single-line diagram.

Table 6.13: Sets of DC measurements for the IEEE 14-bus system.
MS MS1 MS 2 MS3 MS 4

DC Measurements Va1 Va1 Va2 Varr lg1-o Va1 Va2, Pg1-2

Table 6.14: AC/HVDC ISE — Performance metrics for the IEEE 14-bus system (error-free measurements).

Metric MS1 MS2 MS3 MS 4
MAEy (pu) 1.429%10° 4.358x10° 2.153x10%0 5.321x10*
MAEAa (deg) 3.225%10°3 1.635%10% 3.145%10° 6.223x10™"!

Subsequently, simulations with measurements contaminated with random Gaussian noise are carried
out. The following three cases were examined, with the inclusion of only one DC measurement (Vy;) :

e RTUsatbuses 1,2, 6,8, and 9.
e PMUsatbuses 1,2,4,8, 11,12, and 14.
e RTUsatbuses 1, 2, 6, 8, 9 and PMUs at buses 4, 11, 12, and 14.

In Table 6.15, the number of iterations, the MAE, and the CPU time for each case are presented,
calculated as an average from 500 MC simulations performed for each case. As is evident from the
results, there are notable differences in the MAE among different estimation scenarios, with SCADA-
based and PMU-based estimation solutions exhibiting the lowest and highest accuracy, respectively.
The MAE values of voltage magnitude and angle achieved by the HSE method are approximately 27%
and 40.5% times lower, respectively, than those obtained using SCADA-based estimation. This high-
lights the significant improvement in SE accuracy provided by the additional PMU measurements,
albeit with a slight increase in computational burden. Moreover, minor differences in the average ex-
ecution times of the three cases are observed, with the PMU-based estimation being the fastest. Given
that RTU measurements typically have sampling periods of several seconds, the HSE execution time
of approximately 20 ms does not impede the estimation process.
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Table 6.15: AC/HVDC ISE — Performance metrics for the IEEE 14-bus system (Gaussian noise).

SCADA-based PMU-based Hybrid
MAE Magnitudes (pu) | Angles (°) | Magnitudes (pu) | Angles (°) | Magnitudes (pu) | Angles (°)
0.0015 0.028 0.0007 0.002 0.0011 0.019
Iterations 4 2 3
Time (ms) 12.90 8.62 17.64

Following the validation of the proposed method, its robustness against bad data is further examined.
The subsequent tests rely on the principle that, in the presence of single or multiple non-interacting
bad data, the largest normalized residual typically corresponds to the erroneous measurement [38].
Thus, the Largest Normalized Residual Test (LNRT) is conducted iteratively using successive cycles
of the proposed HSE, progressively removing suspect measurements from the MS, until all normalized
residuals fall below a predefined threshold, indicating no remaining bad data (see Chapter 8). This
threshold is set to 3, corresponding to approximately a 0.1% probability of false detection.

Two LNRT sets are considered:

e Test set 1: MS 4 with gross errors of —20c and 150 added to active power flow measurement
Pe_1; and voltage measurement Vg, , respectively.

e Test set 2: MS 4 of Table I with gross errors of =150 and 200 added to voltage measurements
v, and V,,, respectively.

The two largest magnitudes of the normalized residuals of each cycle are shown in Table 6.16. The
measurement with the highest normalized residual is removed from the MS at the end of each cycle
and a new SE is conducted with the updated MS. After two estimation cycles, the erroneous measure-
ments are successfully identified as bad data.

Table 6.16: AC/HVDC ISE — Normalized residual tests for the IEEE 14-bus system.

Test Set 1
Cycle 1 2 3
Meas. Pe-11 Va1 Va1 Va2 O Prs
Irell, | 19.9829 | 10.9854 | 10.9854 | 10.9489 | 1.7312 | 1.6894
Test Set 2
Cycle 1 2 3
Meas. Vgo Vy Vy 04 P s Va1
Irel,, | 15.9780 | 13.4706 | 13.4720 | 9.0196 | 1.6932 1.582

6.5.4.2 IEEFE 30-bus test system

To further demonstrate the efficacy of the proposed method, the HSE algorithm is applied to a mod-
ified version of the IEEE 30-bus test system (Figure 6.15). Lines 1-2 and 4-6 are substituted with two
CSC-HVDC links. RTUs are located at buses 3, 5, 7, 13, 20, 24, and 30, while PMUs are placed at
buses 1, 2, 4, 6, 10, 12, 15, 18, and 27. There are 42 RTU and 98 PMU measurements, as well as 10
zero injection buses (9, 22, 25, 27, and 28). Only one DC measurement (v4) is taken for each DC line,
and all measurements are assumed with random noise. The estimation process converges in 3 itera-
tions, with average MAE equal to 1.422x107 and 2.696x10! for magnitudes and angles, respectively,
and an average CPU time of 43.5 ms, obtained from 500 MC simulations. The above estimation results
are presented in the box plots of Figure 6.16—Figure 6.19, along with the true values obtained from a
power flow solution. Observe that the interquartile range is around 5x107 and 5x10°! for AC voltage
magnitudes and angles, respectively, which is acceptable with the given emax values. It is also apparent
that the median is equally close to the first and third quartiles, indicating that the distribution of the
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estimated states has no skew. The maximum number of outliers of the estimated states, after 500 sim-
ulation runs, is only 7 (1.4%) and 11 (2.2%) for magnitudes (bus 29) and angles (bus 13), respectively.
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Figure 6.16: IEEE 30-bus system — Estimated voltage magnitudes of AC buses.

156



— i+
= =+
— =+

Voltage Angle (deg)
S
T

T T T 19

|- True Value |

H— [+
+— (B 1+
+— [+
— - -
— {{F+ -~
+—0F +
+— O +
I

T 1
E i éé+$T$TT$*¢TTTTT T
aiV78eRa abdaghpl o)
! i ol g
201 L R i A A B i
1 1 +
+ 1 + + * L
+ +
1
25 kl | 1 L 1 1 | 1 1 | 1 | | 1 | 1 1 | 1 1 | 1 | | 1 | 1 1 | | 1 | 1 (|
MY XS LA DIV IEOL I RP PP AFPRARNAPPND Db
Bus Number
Figure 6.17: IEEE 30-bus system — Estimated voltage phase angles of AC buses.
T T I
— —
1.4 - | —
|
|
|
13+ :
| T
| |
1.2 1 _
=
NS
1.1 —
-
L | | |
| | —
T
0.9 F | ! -
1 —4—
1 | 1
Vdi Vdj cosa cosy

DC State Variables
Figure 6.18: IEEE 30-bus system — Estimated DC states for HVDC link 1-2.

157



I I I I
— .
14+ : I i
. | |
' N
1.3 ; .
! |
' |
1.2 [ [ _
= — 1
N
1.1} |
+
| |
1 _ | | =
T T
0.9 | | -
L 1
| 1 1 1
Vdi Vdj cosal cosy

DC State Variables
Figure 6.19: IEEE 30-bus system — Estimated DC states for HVDC link 4-6.

6.5.5 Inclusion of current injection measurements in HSE

To test the various combinations of PMU current measurement configurations, numerical studies are
conducted on the IEEE 118-bus transmission system [211] and on the UKGDS 95-bus distribution
benchmark system (Figure 6.20) [216]. To obtain the true system state vector, the Newton-Raphson
load flow is solved using the MATPOWER toolbox [212]. A total of 500 MC trials is carried out for
each test system.

G: Gy
33/11kV %4 External Grid Q
1 88 87 05
85 89 86 82
31 =84 =83 80 490 8l
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38 56 =55 75 78 4 | i
37 34 53 54 ==79 74
36 a5 239 M-a0 oo o0 —Hrstr
_________ J 42 41 62 61 71
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51

Figure 6.20: UKGDS 95-bus distribution benchmark system [216].
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6.5.5.1 Measurement configuration

Initially, we determine which buses are equipped with SCADA and which ones with PMUs. The
related information for both systems is provided in Table 6.17. As observed, 25 PMUs are assumed to
be installed at the IEEE-118 system, while 30 PMUs are placed at the UKGDS 95-bus grid, which is
a realistic scenario provided that low-cost PMUs are deployed. For the 118-bus transmission system,
it is assumed that for each SCADA-monitored bus, the bus voltage magnitude and power injection,
along with power flows recorded over all incident branches, are measured. For the 95-node feeder, the
voltage magnitude of the slack bus and the power flows at the feeder head are telemetered, along with
real-time voltage and injection data of PV buses 18 and 95. A bus voltage phasor and a complex current
flow or injection measurement are obtained from each available PMU.

6.5.5.2 Evaluation of simulation results

In the sequel, we compare the HSE results obtained from utilizing three different configurations of
PMU current measurements. The simulation scheme, applied to both test systems, is described below.
We consider three configurations for the available PMU measurements. In the first configuration (C1),
each PMU measures a single line current phasor of an incident branch. In the second one (C2), each
PMU measures the complex current injection at the corresponding bus. In the third one (C3), half of
the deployed PMUs (chosen randomly) record current flow phasors, while the other half measure com-

plex current injections. The convergence threshold is set to £ =10 for all simulations.
The obtained accuracy (Macc) and convergence (Mconv) metrics, as well as the required iterations

and total HSE execution time (averaged based on the conducted MC trials) for both systems, are pro-
vided in Table 6.18.

Regarding the IEEE-118 bus system, the usage of C3 outperforms the other two configurations,
yielding better accuracy and convergence metrics. Moreover, using C2 is more advantageous than C1
in terms of both precision and convergence. The CPU time and number of iterations remain the same
for all cases. Hence, configuring PMUs to record a mix of line current flows and bus current injections
is the most efficient solution to boost HSE performance.

Concerning the UKGDS 95-bus network, the obtained results are less straightforward. Considering
the accuracy aspect, the introduction of current injections into the MS by using C2 and C3, improves
both Macc, and Maccy . In fact, exclusively measuring current injections via C2 leads to better HSE

accuracy. As for the convergence rate, the corresponding metrics become slightly worse in the case of
C2 and C3, while the CPU time and iterations remain unchanged for all configurations. Therefore, the
convergence properties practically are unaffected.

For both systems, the positive impact of utilizing current injection data on HSE accuracy is con-
firmed. Additionally, the convergence metrics are favorably affected in the case of the IEEE-118 sys-
tem. Given the moderate size of the tested systems and the high number of PMUs considered, these
findings are noteworthy; they suggest that the use of current injection synchrophasors, either exclu-
sively or in combination with current flows, can comprise an effective scheme to leverage PMU meas-
urements for HSE purposes.

6.5.5.3 Conclusions

Numerical studies conducted on two test systems were used to assess the utilized HSE methodology,
focusing on accuracy and convergence metrics. The findings reveal that the type of current measure-
ments (flow or injection) significantly influences the quality of SE. Notably, incorporating current
injections into SE proves advantageous for enhancing accuracy. Furthermore, a brief analysis of prac-
tical considerations related to PMU installation suggests that measuring injected currents at buses is
more convenient and cost-effective than measuring line flows at the power distribution level.
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Therefore, relying solely on current flow measurements from PMUs is a limited approach. Instead,
careful planning of PMU-based current metering schemes is essential to ensure high-quality SE.

Table 6.17: Measurement configuration for the 95- and 118-bus test systems.

Measurements
Network SCADA-measured buses PMU-measured buses No. of SCADA No. of PMU
measurements measurements
3,8,11,12,17,21,22,27, 1,6,10,15,19,23,28,33,42,
IEEE 31,32,34,35,40,45,49,53,56, 44,46,51,54,59,61,69,70, 375 100
118-bus 62,65,72,73,75,77,80,85,86, 78,82,89,96,100,101,103,
91,92,94,102,105,106,110 107
3,7,12,16,19,22,24,28,
UKGDS 32,34,37,39,43,49,52,56,
95-bus 1,18,95 58,61,64,66,68,69,74,77, 1 120
79,81,83,87,90,94

Table 6.18: ISE accuracy and convergence metrics for different current measurement configurations.

Metric IEEE 118-bus UKGDS 95-bus

C1 C2 C3 C1 C2 C3
Maccy(x107? pu) 4.50 420 4.00 5.10 2.20 2.80
Maces(x102 pu) 8.70 7.90 7.60 2.20 0.30 0.80
Mconvy (<10 pu) 0.76 0.47 0.39 3.98 4.46 4.40
Mconvy (x10°) 2.17 1.93 1.61 3.73 3.81 3.79
Meconvs (<107 rad) 4.17 4.54 3.05 0.05 0.14 0.10
Iterations 4.00 4.00 4.00 3.00 3.00 3.00
CPU time (ms) 17.00 | 17.00 | 17.00 7.00 7.00 7.00
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7. FORECASTING-AIDED STATE ESTIMATION USING MULTI-SOURCE,
MULTI-RATE MEASUREMENTS

The application of DSE to quasi-steady state operating conditions, where changes in the power sys-
tem are driven mainly by slow load fluctuations and gradual adjustments in generation, leads to the
formulation of FASE. In this context, generators and other controllers can rapidly accommodate these
slow variations, resulting in negligible changes in dynamic states [62]. FASE methods provide signif-
icant enhancement over SSE by incorporating predictive information about the system’s state evolu-
tion, linking successive snapshots of the system state through a state space model, leveraging both
measured and forecasted data. By integrating such data into the estimation process, FASE increases
the robustness and accuracy of the classic SSE, particularly in situations with poor data redundancy or
when the system is operating under quasi-steady conditions, whilst maintaining relatively low imple-
mentation complexity and computational requirements compared to DSE.

FASE approaches employ variants of the Kalman filter (KF), within the Bayesian framework, to
combine real-time measurements with a linear state transition model informed by prior knowledge of
the system's states accumulated over time and calculate an optimal state estimate. This process typi-
cally involves two stages: prediction (time update) and correction (measurement update). Various KF
techniques — including the extended Kalman filter (EKF), unscented Kalman filter (UKF), cubature
Kalman filter (CKF), and ensemble Kalman filter (EnKF) — can be used, each using a different ap-
proach to propagate state statistics [62].

Pioneering work on FASE methods utilizing multi-rate measurements is presented in [151], com-
bining the concepts of unscented filtering and SE. Works [157], [160], address the issue of missing
measurements over unreliable communication networks using EKF-based and CKF-based FASE
methods, respectively. Various FASE methods focus on time-alignment of different data sources: in
[153] an EKF-based algorithm is used for time-alignment of measurements, while [217], [154] propose
the use of the Rauch—Tung—Striebel (RTS) smoothing algorithm, to reduce the effects of time skew-
ness. Works [165], [218] make use of KF-based prediction of SCADA measurements to conduct SE
with a limited number of PMUs between SCADA scans. Neural network-based FASE method [219]
utilizes deep reinforcement learning to optimally predict slow-rate SCADA measurements and inte-
grate them with real-time PMU data.

So far, the approaches that aim to integrate asynchronous SCADA and PMU measurements into
FASE, have not necessarily prioritized ease of implementation within the EMS, requiring either sub-
stantial modifications to existing SSE software or necessitating entirely new implementations. Fur-
thermore, the joint processing of SCADA and PMU data can lead to numerical issues, due to signifi-
cant differences in measurement accuracy. Aiming to partially alleviate these drawbacks, several
multi-stage (also referred to as sequential or post-processing [9]) FASE approaches have been pro-
posed, where state information from separate PMU- and SCADA-based estimators is inferred in the
form of pseudo-measurements or a priori information [164], [155]. In [146], PMU and SCADA data
are processed by separate estimators, and a UKF-based data fusion framework is used to optimally
combine the results.

In this context, this Chapter introduces a multi-stage EKF-based FASE method applicable to par-
tially PMU-observable systems, which enhances EKF performance in the presence of multi-rate data,
while requiring minimal modifications to the existing SSE framework. The key contributions of this
work are outlined as follows [220]:

1) Prediction (time update) step: Traditional EKF implementations rely predominantly on fixed pre-
diction-based state transition models, often limiting their responsiveness to real-time conditions.
In contrast, the proposed method leverages the linear relationship between PMU-observable states
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and real-time PMU measurements to continuously update the state transition model. This approach
relies on multi-sensor data fusion theory to provide an optimal a priori estimate of the PMU-
observable states, based on both forecasts and available PMU data.

2) Forward correction (measurement update) step: In typical FASE implementations, PMU and
SCADA measurements are processed jointly, necessitating substantial modification or replace-
ment of existing SE software. In the proposed method, the a priori state information, along with
the synchrophasor measurements, are processed separately from the SCADA measurements, in
two distinct stages of the SE process. This approach leaves the conventional SCADA-based SSE
software unmodified and requires minimal interaction between the separate SE stages, simplifying
integration into the EMS.

3) Backward correction step: Addressing the prevalent challenge of measurement asynchronization,
the proposed approach incorporates a backward correction stage based on a fixed-interval smooth-
ing technique. Fixed-interval smoothing has not been widely explored for power system FASE,
while the RTS smoother employed in prior works generally imposes several strict assumptions of
quasi-steady-state operating conditions and requires multiple matrix inversions. The MBF
smoothing algorithm implemented in this work, significantly enhances computational efficiency
and reduces reliance on operational assumptions [221]. Additionally, updating state transition
model parameters after each FASE execution using the MBF algorithm provides a viable method
for leveraging future measurements to reduce estimation errors injected by the EKF prediction
models.

Finally, as demonstrated via extensive numerical simulations on IEEE benchmark networks, the
proposed FASE method surpasses conventional EKF and RTS smoother-based approaches in accu-
racy, with computational requirements comparable to those of traditional SSE techniques.

7.1 Conventional FASE problem

By neglecting the dynamics of the system under quasi-steady operating conditions, the FASE ap-
proach linearizes the state transition model, resulting in the following discretized state space represen-
tation [75]:

X1 = Fye Xy + Gy + W

(7.1)

Z, = h (%) +e

where subscript k denotes the discrete time step t,, F, € R™" is the diagonal state transition matrix
for transition t, —t,,;, vector g, € R" captures the trend of the state trajectory, h, :R" — R™ is the
vector of nonlinear functions relating the measurement vector z, € R™ to the state vector X, e R",
with n<m, random vectors e, and w, are the independent Gaussian measurement and transition

errors, respectively, with E(w, ) =E(e,) =0, Cov(w, ) =Q, and Cov(e,) = R, . The state vector X,

T T
can be expressed in either polar or rectangular coordinates, as X, = [VkT o ] or X, = [VRT‘ K V,Tk] ,

respectively, where V, , J, are the vectors of magnitudes and angles, and Vi, V| are the vectors of
real and imaginary parts of bus voltage phasors.
The state transition matrix F, and the trend vector ¢, , are the parameters of the transition model,

conventionally derived from historical information. A prevalent technique for determining these pa-
rameters is Holt’s two-parameter exponential smoothing regression method, owing to its straightfor-
ward implementation [75]. Adopting the state space model (7.1) and Holt’s forecasting method, the
FASE problem is solved using the EKF, in two steps.
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e Prediction step: Let X, and P, be the a posteriori estimates of the state vector and its covariance
matrix, respectively, at time t, . By applying the conditional expectation operator on (7.1), the a

priori estimate of the state vector X, = X,y and its covariance matrix P,,; are given by:
X1 = FiXy + Ok

. (7.2)
P = FPFY +Q

e Correction step: Using the measurement vector z, and the a priori (forecasted) state vector X,
the estimated state vector X, may be obtained by solving the following WLS optimization problem
with objective function J(x,) [75]:

. . T o o T 5-1/¢
k
The Kalman gain K, e R™™ and the covariance matrix of X, P, = E[(xk — X ) (X — X )T} are

~ ~ -1 ~
obtained by evaluating Ky = BHy (H PHy +Ry )~ and B = (1 —KHy ) B at %, where

H, is the Jacobian matrix of h, (-).

7.2 Formulation of the proposed FASE algorithm
Assuming m; SCADA measurements (bus voltage magnitudes, branch power flows, and bus power

injections), m, PMU measurements (bus voltage and branch current phasors) provided by PMUs, and
m, zero injections, the state space model at instant t, is given by:

Xii1 = FeXie + Oy + Wy

Zg i = Ng i (X)) +eg g

Zpk =hg (%) +ep

0=c, (%)

(7.4)

where z,, € R™ represents the vector of SCADA measurements, Zyk € R™ is the vector of PMU

measurements, with hg, () and hy () being the vector functions relating SCADA and PMU meas-

urements to the state vector X, € R", respectively, €k € R™ and epk € R™ are the normally dis-
tributed SCADA and PMU measurement errors, with zero mean and diagonal covariance matrices
Rsx and Ry, respectively, and Cy : R" — R™ denotes the vector of functions modeling zero current
injections.

7.2.1 Proposed prediction step

In this study the power system is assumed to be completely SCADA -observable and partially PMU-
observable. The propagation of the EKF one-step-ahead (tk — t,.,1) predictions for the entire power

system is accomplished via Holt’s linear exponential smoothing method, which involves the forecast
equation and two smoothing equations [75]:

Xis1 = A+ By

By = S(Ac— A1)+ (- B)By
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where A, and B, are the estimates of the level and the trend of the state variables, respectively, «

and f are the corresponding scalar smoothing parameters, with (&, f) € [0,1]%. The level A, is the
weighted average of the a posteriori X, and a priori X, state estimates. The trend B, is a weighted
average of the estimated trend based on the level change A, —A,_; and the previous estimate of the
trend B,_;. Via mathematical manipulations (7.5) becomes [75]:

X1 = FiXi + 9

Fe =al+ )l

9 =1+ A)A-a) % - AL +1-B)B 4 (7.6)
A =aX +[1-a)X,

By = B(A - A1) +(1-5)B

For the purposes of FASE, the application of Holt’s method requires the smoothing parameters o
and S to be optimally estimated. Generally, these values may be reliably obtained from an analysis of

the trajectory of the system states, based on available historical data [222]. Assuming a sequence of

ny available historical data points {Xk }Eil , let the one-step-ahead forecast be X, (¢, f) = A4+ By ;.
The forecasting error vector at time t, is [223]:
er (@, ) = X —(Ac1+By1) (1.7)

The parameters a and f can be chosen to minimize the sum of squared forecasting errors (SSFE)
weighted by a decaying factor to prioritize recent observations [223]. The resulting optimization prob-
lem is defined as:

n
min’" Mk [ (A + B )

)
st. O<axl
0<p<1 (7.8)

By = B(A - A1) +(1-5)B 4
with y €(0,1) controlling the decay rate.

The limited availability of synchronized, high-resolution PMU data can be utilized to formulate a
transition model that closely tracks the incremental changes of the subvector of PMU-observable states

Xpk € R" across successive FASE executions.
When the state vector is expressed in rectangular coordinates, the linear PMU-based WLS problem
closed form solution at time t,,; is given by [113]:
o 1T p-1
XpM k+1 :Gp HpRp Zpk+l (7.9)
Pow ki1 = COV(Rpy 1) =Gp (7.10)

where subscript p denotes the m, PMU measurements and corresponding constant matrices

p
H, =0h,/0x, and G, = H; Rng p» pertaining to the n, PMU-observable states Xy . Xpy i1 de-

notes the optimal estimate of X, ; obtained via (7.9). Note that heuristic or systematic selection

algorithms (e.g., greedy selection, rank-revealing decompositions, or convex optimization methods)
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can be employed to identify the set of state variables that yield a numerically stable solution of (7.9)
[224].This subset of PMU-observable states is determined at the start of the FASE process, and the
associated matrices remain static unless the network topology or the PMU configuration change.

At transition t, —t,_;, the transition model for the PMU-observable states depending on Holt’s

smoothing method is written as:
Xp k1 = Fpr kXpk + 9pr k +We k (7.11)

with the a priori estimate of X, given by:

Xpn k1 = Fpn kXpk + pH

Forx =a+ ﬂ)lnpxnp

Ipr k = L+ A)A—) Xy k = BPpH k1 + (L= B)Bpp k1 (7.12)
App k = a)A(p’k +(1—a)Xpy k

Ben k = B(Aph k = Apr k1) + (1= B)Bpp k1

with covariance matrix:

5 . < T
Pori ki1 = COV(Xpy ki1) = Fen k Pok Fpr ik + Qpri i (7.13)
Via (7.9)~(7.13), it is evident that Xpy; 4 and Xpy 4 are uncorrelated Gaussian variables with

known covariances. The Bar-Shalom-Campo formula is a well-known method for providing an opti-
mal linear unbiased minimum variance estimate when combining two or more independent state esti-
mates with known error covariance matrices [139], [140]. Thus, an optimal fusion estimate )N(p’k .1 and

an associated covariance |5ka .1, Which contain the combined information from both the temporal fore-

casting model and the PMU-based measurement model, can be calculated as follows:

Xoke1 = |5p,k+l ( Pt i1 Xem ket + Peri i Xen ,k+1) (7.14)
5 . o 5-1 5-1 \*t

Pkt =Cov(Xp 1) = ( Pem k1 + Per ,k+1) (7.15)

Thus, by rewriting (7.14), the fusion a priori state estimate is given by:
Kok = FpkXpk +Ypk (7.16)

where:
Fox = F~)p,k+1F3I;é,k+lFPH,k (7.17)
5 5-1 5-1 o

Ipk = Pp,k+1(PPH,k+1gPH,k +Pom k11 Xpm ,k+1) (7.18)

This approach harnesses the properties of both estimates:
e The estimate Xpy \,; leverages real-time measurement data to quickly capture recent transitions
that adhere to the physical network equations.

e Holt’s method provides a data-driven forecast informed by the temporal evolution of the states,
capturing longer-term trends that may not be directly evident from the PMU measurements.

For the set of SCADA-only observable states X, € R"™, Holt’s method yields:

165



Xs k1 = Fsp X + sk

Fo =al+ p)1, .

Osk = A+ B)L-a) X — BA k1 + (L= B)Bsx 1 (7.19)
A =aXg +(1-a)X

Bk = B(Ak — Aska) + (1= B)Bg 4

with covariance matrix:

. o T
Ps a1 = COV(Xs 1) = By P P + Qs i« (7.20)
Finally, the prediction step of the entire power system —illustrated in Figure 7.1— can be written as:

X =FX+ 9 &

X F 0 X
~s,k+1 _ s,k As,k " gs,k (7.21)
Xp,k+l 0 I:p,k Xp,k gp,k

. y P 0
Py = Cov(xk+1):{ s’(')“l 5 } (7.22)
p,k+1

The statistical properties of the process noise W, , used to quantify the accuracy of the adopted state
transition model, are not as straightforward to estimate compared to those of the measurement noise,
since this requires quantifying the impact of unmodeled dynamics and time discretization on the FASE
results. According to [2], a good estimate of the variance of the process noise W, (i), pertaining to the

i-th state variable x, (i), can be calculated over a specified window of state changes as:
) 2
max {‘A(Axk (|))‘}

Var (w (i) = 5 ,i=12,...,n (7.23)

where Ax (i) = X (i) — X1 (i), A(Ax% (i) =A%, (i) —Ax (), 3<k<ny,and n, is the length of the

data window.
In turn, the covariance matrix is:

Q, =diag {Var (w (1)) Var (w(2)) --- Var (w,(n))} (7.24)
. Qs O
with w, =[WST,k WEH’k ]T and Q ={ 0’k QPH,k:|.

Eq. (7.23) and (7.24) corroborate that matrix Q, should contain low values while remaining rela-
tively constant during consecutive FASE executions. Excessively large or fluctuating values in Q,

indicate that there may be significant difference between the forecasted states and the measurements,
meaning that the forecasting model needs refinement and/or that the actual system states are changing
rapidly, i.e., the assumption of quasi-steady operating conditions is not met.
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Figure 7.1: Flow diagram of the proposed prediction step.

7.2.2  Proposed forward correction step

The solution of the estimation problem (7.4) is obtained by applying the Hachtel’s augmented matrix
method [183]. The objective function is augmented with the weighted sum of the squared PMU meas-
urement residuals ry ., as well as of the a priori state information expressed via Iy, and the con-

straints obeyed by I, It and ¢, (X, ) are introduced, as follows:

%, =argminal (x,) =ael  Rieg +ary [Ryyro, +arf P,
Iy ks ks, kRpkTp, , ,

St o =2k — ok (%) (7.25)
Mk = X —Xg
(%) =0

Optimization problem (7.25) is solved via the method of Lagrange multipliers. The Lagrangian func-
tion at t, is defined as follows:

LXK oo T o Ao Mir6k) =
ael (Royey +ary [RoLr, +arf B + A e (x) (7.26)
+ﬂl I:rp,k —Zpk thy (xk)]+§|1 ("f,k - X +xk)
where 4, g, and &, are the Lagrange multipliers.
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Iteratively solving the system of nonlinear equations derived from the first-order optimality condi-
tions of (7.26) via the Gauss-Newton method, yields the following linear system at iteration (i ):

268 (CO) (HA) 1 [t [a(HO) R,
e o oo AT w0l
HO o0 calr,, o | af™ Az,
e 0 00 LET T
| (Ax( ] [aH ] RexAz |
0 (1] ] 0 || oy .
W ey || T |
. ] é‘é”l) | AZgi’)k
where Hg,, H,\, and C, are the Jacobian matrices of hy, (), h, () and ¢, (), respectively,
T
H ot k :H‘X’: g} Gy {agzk C(k) } and Ry {ng Ff)j, with Gy = HI RiEH,,,

a8 = 2~y O60). 820 = 25~y ), = 5, 5 and A =D )

(i+1)
Solving for { ; |£i+1) ], (7.27) yields:
i AT .
Ayt ala(H®D) RLAzD
{ {:11) =(G§?,k) ( S"‘) SISk (7.28)
4 (i
vk —C (X”)
oy - (i) (i+1)
(6 1 (i) [ 25 -
A5 N i PRt T o Az N VI
(7.29)
ax 7 [ay@d ] [aug
2041) R R (7.30)
k y.k Ak

Eq. (7.28)—(7.30) represent the iterative solution of (7.25), which can be obtained by employing a

post-processing scheme, as reported in [184]. One observes that calculation of incremental correction
Ay|£'+l) in (7.28), relies only on the SCADA measurement vector zg, and the zero injection infor-
i+1)

mation. The state vector incorporating the SCADA-based incremental correction Ay|£ can be de-

fined as y&”l) = XS) + Aylg”l) . By expressing the state vector X, in rectangular coordinates, the PMU
measurement model becomes linear, i.e., H  \ is a constant matrix, and thus we can write the incre-

mental correction (7.29) as follows:

Aulgi+l) o B 4 -1 Zp,k —H ok yI£i+1)
i1 |~ (Gg)k) H o (a "Ret e+ Hope i (Gs(?k) H o ,k) o D) (7.31)
Ak X = Yk
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For the iterative scheme (7.28)—(7.30), it holds that:
AXD — Ay D LAY oy (D) (4 | p (4D (7.32)

At the terminal iteration (f) where y(t) =Y, x® = X we can write:

A

Al -1 1 -1 ~H_.¥
_ p,k p.k Yk
s = (Gs(?k) H;T)f K (a 1Rpf Kk Hpek (Gs(;)k ) H -Ip-f ,kj { . } (7.33)
Ak X — Yk

{Xk} :Pk }Fuk} (7.34)
Ay Ay k Ak

According to the analysis of Section 6.2.2, an equivalent SE formulation can be devised in which:
1) The effect of Au{’ on Ax{" is considered negligible for all iterations until the SCADA-based SSE

has converged on its own. Ayéi) and Z)(/i}( are calculated by the conventional SSE iterations, until
convergence, which is attained when HAyS) H <&, where ¢ is the convergence threshold, yielding

¥, and iy,k.
2) Ina post-processing step, as H, is constant, AU, can be calculated non-iteratively using (7.33),
and X, is then given by (7.34).
According to the above analysis, we can formulate a non-iterative post-processing step to incorpo-

rate the PMU measurements Zok s and the state predictions X, , as:

AG, 1| Zpx —Hpi ¥
_ _ p.k p.k Yk
5 }zeszl,kH-[Ef,k (Rpf,k + pr,stzl,kH-gf,k) { L } (7.35)
Ak Xk — Yk

{Xk} :Pk }Fuk} (7.36)
Ay Ay k 2k

where all Jacobian matrices are evaluated at the SCADA-based estimate Y, .

The forward transition step of the proposed FASE is presented in the flowchart of Figure 7.2. In the
first stage, the algorithm iteratively calculates ¥y, and in the second stage, uses (7.35) and (7.36) to

calculate AU, (PMU-based correction) and the final state vector X, . Upon convergence of the forward

< < -1 -
correction step, K, =P H, (HkPk H, + Rk) and P, =(1,,, — K H, )P are evaluated at X, with

Hg Ry O
He=| "~ Ro=| .
‘ {HPJ‘} e R { 0 RP'J

7.2.3  Proposed backward correction step

After the EKF has been used to propagate the state statistics forward in time and compute estimates
based on arriving measurements, the results are processed by the MBF smoother in a backward cor-
rection step, to refine the estimates throughout a specific time interval.
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Figure 7.2: Flow diagram of the proposed forward correction step.

The MBF algorithm is a fixed interval smoother, derived from the RTS algorithm [221], [225]. Let
the MBF smoother be applied to an interval [t;, ty] with N available measurement vectors, at instants

t,1,,...,ty. Note that the dimension of the measurement vector at each instant may vary. After com-
pleting the EKF forward correction step at ty , the MBF backward correction starts from ty and pro-

ceeds backwards in time for k = N —1,N —2,...,1, to recursively calculate the filter variables @, and
¢y [2217:

&, =H, N ‘H, +5, DS,
¢k = FI(Tstk+1Fk
b, =0
N - . (7.37)
o =—Hy Ny (Zk _hk(xk))+ Sy @
& =F D
(bN =0

In [154], it is found that increasing the length of the smoothing interval, i.e., the number of backward

time steps, yields quickly diminishing improvements to SE results for the recursive RTS smoothing
algorithm. Thus, to maintain the complexity of the smoothing process at a minimum and ensure near-
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real-time monitoring of the system, we consider a single backward transition t,,; —t, . The corre-

sponding recursive scheme for the smoothing interval [t,,t,,,] is written as:
~ T T a1
P = F¢ Hy Ny Hy o Fy (7.38)
- TyT N-L o
& =—F HiaNga (21 — e ((,4)) (7.39)

The smoothed state vector and its covariance matrix (denoted by superscript S) at time step t, can

then be calculated by substituting (7.38) and (7.39) in the following equations:

(7.40)

The proposed backward transition step is presented in the flowchart of Figure 7.3. Two significant
properties of the proposed method may be observed here:

1) The MBF smoother uses quantities directly from the forward correction step (F,, H,;, and N, il

, avoiding matrix inversions in the backward pass. Instead, it relies exclusively on matrix multipli-
cations, which are computationally efficient, particularly because the matrices involved are sparse.
The sparsity of these matrices is preserved throughout the backward correction step, ensuring that
the computational cost O(n,,) scales with the number of non-zero elements n,. This property

greatly improves the performance of the proposed FASE algorithm as compared to the RTS
smoother (~ O(nﬁz) for sparse matrices) and is valid even if the covariance matrix I5k is ill-condi-

tioned, which can occur under rapid changes in system states or significant mismatch between the
state transition model of the EKF and the real-time measurements.

2) Considering that F, 1s derived from Holt’s method, the smoothed estimates of vectors

T AT T T T : g
A :[A&k APH,k] and By =[Bs’k BPH’k] of (7.6) may be obtained after calculating X, as

follows:

{Ak =aX +[1-a)X; (7.41)

B = B(A - AL)+(1-B)B
This, in turn, means that during the next transition t,,; —t,,, the corresponding parameters A, ;
and B,,; will be calculated using A¢ and By by:
{Akﬂ =aXsyq+1-a)Xg
Bl = B(Ac— A +(1-B)B;

This way, if one observes the trajectory of system states across a certain period, apart from enhancing
the accuracy of the k-th FASE solution by leveraging any available data at t, ,, the smoothed state

(7.42)

vector X is also propagated forward in time, through the state transition model (7.6).

N z
Start )/ o ket ket [ Calculate | B % /> CalcuIAate ., Calculate |
PR A B

A, End
X1 Hi D P

Figure 7.3: Flow diagram of proposed backward correction step.
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7.3 Proposed FASE framework

The following assumptions are made regarding the execution of the FASE algorithm in the EMS, as

illustrated in Figure 7.4, with respect to the discretized time:

The first assumption is that the existing conventional SSE runs periodically in the EMS and utilizes
SCADA measurements with random delays. This SSE is augmented with additional capabilities as
per Subsection 7.2.2, effectively becoming a sequential hybrid FASE (HFASE) method. This
HFASE is assumed to be executed in Tyease intervals, based on the requirements of the operators

and the computational capabilities of the EMS.

At the time of HFASE execution, the SCADA measurements utilized may or may not have been
updated in the T, gaqe Interval. This randomness applies to each SCADA measurement individu-

ally, meaning that the dataset of SCADA measurements can contain both recent measurements, as
well as outdated information that does not describe the current operating conditions of the network.
Contrariwise, PMU measurements can be safely assumed to be updated at each and every discrete
time step, as 50 fps (or 60 fps, depending on nominal system frequency) are now the norm for
PMU reporting rates. Thus, at the time of HFASE execution, the PMU measurements are assumed
to form a complete snapshot of the quasi-steady operating conditions.

In between successive HFASE executions, it is possible to solve a non-iterative PMU-based FASE
(PFASE), based on the limited PMU information and the state forecasts provided by the state tran-
sition model of the EKF, which are necessary to achieve full observability. The PFASE is a PMU-
based linear WLS state estimator with the inclusion of the EKF predictions [81], [130], and serves
as a complementary way to exploit the available PMU measurements between HFASE executions.
In the forward correction step, the PFASE closed-form solution is given by:

T Rl 5-1icT Mg T p-1 5-1g
aHp Ry Hpy +aP” 59&}[“ } _ {aH o RokZpx + 8P

N R 7.43
Cy 0| A 0 (7.43)

PFASE can be executed at fixed Tppage intervals, which, without loss of generality, are assumed to

remain constant and equal to At, =t, ; —t, (Figure 7.4). The execution frequency of PFASE de-

pends on the PMU reporting rates, the size of the network, and the computational capabilities of the
EMS.

The flowchart of the complete proposed FASE framework is illustrated in Figure 7.5.

Real-time measurements

Zs,k Zp,k Zp,k+:L Zp,k+2 Zs,k+3 Zp,k+3
A 4
5 |
23! |
o (2] . I >
EASE i A4 A4 A4 : A4
= '] HFASE | | PFASE | | PFASE |- HFASE |
execution ’J_‘ /L J\ JJ_>
ﬁ ter— Terase — tao s Time
< THFASE >

Figure 7.4: Sequence of measurement arrivals and FASE executions in the EMS.
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Figure 7.5: Flow diagram of the complete FASE framework.

7.4 Numerical simulations and results

The accuracy, convergence, and computational efficiency of the proposed FASE scheme are evalu-
ated through numerical simulations conducted on the IEEE 14-, 118-, and 300-bus test systems [211].
The quasi-steady operating conditions of the networks, i.e., the slow fluctuation of the power system
demand and generation, are simulated by varying the loads at randomly selected buses at each time
step t, . Load variations are applied within a band of £30% of the base case value, with a mean fluctu-

ation of £0.5% at each transition. The generator participation factors, calculated for the base case of
each network, are used to adjust the generator outputs to meet the load changes. This approach avoids
the overload of the swing bus and provides more realistic system operation. The true system state
vector is obtained by solving the Newton-Raphson load flow at each time step using the MATPOWER
toolbox [212], and all the algorithms in question are implemented in MATLAB. A total of 500 MC
trials is carried out for each system, with each trial spanning 200 discrete time steps.

7.4.1 Measurement and parameter configuration

The SCADA (PMU) measurements associated with a network bus consist of bus voltage magnitudes
and power injections (bus voltage phasors), along with power flows (current phasors) recorded over
all incident branches. Table 7.1 lists the MSs considered for each test system, providing the SCADA
and PMU measurement locations in the form of SCADA- and PMU-measured buses, the SCADA
measurement redundancy rscaps =My /N, as well as the values of parameters o and 3 of the prediction

step, calculated from offline simulations using (7.8). The information of Table 7.1 is also visualized in
Figure 7.6 and Figure 7.7, which illustrate the measurement type and redundancy at each bus of the
IEEE 14- and 118-bus systems. Finally, Table 7.2 provides the PMU-unobservable buses of each test
system, given the PMU measurement allocation of Table 7.1.

The true measurement values are derived from a power flow solution and are then corrupted with
random additive Gaussian noise, so that the actual measured values are given by:

meas true
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where z;*® is the true measurement vector derived from the load flow solution at t, , v, isa N(0,1)

random vector, and ¢ is the vector of measurement standard deviations, with the following values [2],
[113]:

o for SCADA measurements, oscapa =0.01 pu,

e for PMU magnitude measurements, opy,y,, = 0.001 pu,

o for PMU angle measurements, opy,, =0.35 mrad.

Both voltage and current phasors are represented in rectangular coordinates, to linearize the PMU
measurement model [113]. As the phasor measurements are converted from polar to rectangular form,
their corresponding standard deviations need to be reevaluated according to error propagation theory
[184].

Table 7.1: FASE simulations — Measurements and parameters for the IEEE test systems.

IEEE SCADA |PMU
Network SCADA buses PMU buses meas. |meas. f'scapa| @ |
14-bus 2,4,6,8-10 3,5, 14 58 22 | 2.071 |0.97{0.15
2-4,7,8,11, 12,16, 17, 21, 22, 27, 28, 31,
32, 34, 35, 40, 41, 44-46, 48-50, 53, 56, 57, | 1, 6, 19, 23, 33, 42, 51, 54, 59,
118-bus | 65" 65, 72, 73, 75, 77, 78, 80, 84-87, 91, 92, | 61, 69, 70, 89, 96, 100,103 | °0° | 176 | 2144 0.920.08
94, 95, 101, 102, 105-107, 109-111
1-3,9, 11, 15, 17, 21, 23, 26, 27, 33, 37, 41, | 5, 8, 10, 14, 20, 25, 38, 52, 58,
43, 44, 47, 49, 51, 53, 55, 57, 61, 63, 70-73, | 89, 91, 92, 94, 107, 112, 122,
76,77, 79, 80, 84, 97, 98, 102-105, 108, 109,| 123, 138, 141, 145, 146, 148,
114, 119-121, 124-126, 135-137, 139, 140, | 149, 152, 167, 171, 176, 180,
143, 153-157, 159, 161-163, 170, 172, 173, | 181, 185, 186, 191, 200-202,
300-bus | 177-179, 182-184, 188-190, 196-199, 203- | 207, 220, 221, 319, 320, 322- | 1283 | 420 | 2.138 |1.00|0.06
206, 208, 209, 211, 213-218, 222-225, 227- | 324, 526, 528, 531, 664, 1190,
236, 238, 239, 241-243, 245-250, 281, 552, | 1200, 7001-7003, 7011, 7012,
562, 609, 7023, 7024, 7039, 7071, 7130, | 7017, 7044, 7049, 7055, 7057,
7139, 7166, 9002-9004, 9021, 9025, 9026, | 7061, 7062, 9022, 9024, 9031-
9043, 9051-9055, 9071, 9072, 9121 9038, 9041, 9042, 9533
Table 7.2: FASE simulations — Regions unobservable by PMUSs in each test system.
Total unob-
IEEE
PMU-unobservable buses servable
Network
buses
14-bus 7,8,10,11,12 5
118-bus 4,8-14, 16, 17, 21, 26-31, 35, 36, 38, 39, 43-46, 48, 50, 57, 66, 67, 72, 73 52
4,16, 34-36, 39, 40, 42, 46, 47, 53, 54, 71, 73, 74, 76-78, 80, 81, 84, 88, 98, 100, 109, 113,
117,118, 127-129, 132, 134, 135, 139, 142, 151, 154-156, 158-166, 168, 170, 182, 183, 189,
300-bus | 190, 193, 195-197, 203, 205, 208, 209, 212-216, 219, 222, 224, 226-247, 249, 250, 281, 552, 122
562, 609, 1201, 2040, 7023, 7039, 7071, 7130, 7139, 7166, 9001, 9005-9007, 9012, 9023,
9025, 9026, 9043, 9051, 9052, 9054, 9055, 9071, 9072, 9121
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@® SCADA-measured bus
—— PMU-measured branch
—— SCADA-measured branch
—— SCADA- & PMU-measured branch

Figure 7.7: Measurement configuration for the IEEE 118-bus network.

7.4.2 FASE initialization

At time t;, it is assumed that a conventional hybrid SSE is carried out, and thus a first estimate of
the state vector is available, to be utilized in the prediction step of transition t; —t,. The corresponding
covariance matrix P, can be initialized as P, = Cov(% ) =G;}(%,), the trend vector g, is initialized at
0, =0,and A/ =%;, B;=0.Att,, g, and A, are calculated via (7.6), with B, = A, — A,.

7.4.3 Comparison metrics

To assess the performance of FASE algorithms in offline simulations, the mean absolute error
(MAE) of voltage magnitudes and phase angles can be calculated as [213]:
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1 N
MAE =~ D) - R ()| (7.45)
i=1
where x{“®(i) is the true value of the i-th state variable obtained by the power flow solution, and
X (1) is its corresponding estimation. In the following, the MAE, and MAE, metrics correspond to

voltage magnitude and angle states, respectively.
The Macc, metric is utilized to capture the effect of both magnitude and angle errors in a norm

metric, and is defined as [213]:

N

Macc, = H\iktrue _\7kest

L t|2
_ Ftrue \7es
, = Z‘Vi,k —Vik
i-1

where V"™ and V*' are the true and estimated complex phasor voltages of bus i, reported in p.u., and

J (7.46)

N is the total number of buses.
To determine each method’s capability of estimating the complex power flow on each branch, the
Maccg metric is computed as [213]:

M ctrte on Zest ol | 2true sex Sest oex]?
Maccs =\/Z\S¥?f(n)—8?%tk(n)\ +[Se iy - S¢3 i) (7.47)
i=1

where the summation index i ranges over all the M network branches, S™° and S®' are the true and
estimated complex power flows, and the sending and receiving ends of each branch are denoted by
subscripts f'and 7, respectively.

7.4.4 Evaluation of simulation results

In the following, the performance of the proposed FASE method, referred to as the MBF method for
convenience, is compared with the conventional EKF method [75] and the RTS method [217]. All
three methods use the same optimally estimated smoothing parameters o and S, based on (7.8). In all
RTS and MBF simulations, a single backward correction step is applied. The state vector X is ex-

pressed in rectangular coordinates, and a convergence threshold of ¢ =10"* is used for all iterative
algorithms.

TH FASE

Each set of MC trials is conducted for a different integer value of Ty = , ranging from 1

PFASE
(ideal scenario) to 20 (worst-case scenario), to gain a better understanding of how each method behaves

under varying assumptions of SE execution in the EMS. As the value of Ty increases, the Tpaqe
interval becomes larger, with Tppage remaining constant and equal to At, =t, ., —t, . Of course, Tppase
could be set equal to a multiple of At , and the parameters of the state transition model should then be

adjusted accordingly to account for the potentially larger changes in state variables between consecu-
tive PFASE executions. The graphs of Fig. 6 show how the MAE,, and MAE, metrics change with

respect to Ty . The analysis reveals that the proposed MBF method handles time skew in SCADA
measurements more effectively. This becomes particularly evident for larger values of Ty , demonstrat-

ing the ability of the proposed state transition, model in combination with the MBF smoother, to ef-
fectively utilize available state predictions and measurements to fill in inconsistent SCADA infor-
mation. In order to explicitly show the contribution of each stage of the proposed MBF method to the
accuracy of the state estimate, Figure 7.11-Figure 7.13 juxtapose its MAE metrics with those of the a
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priori estimate of the state vector, obtained according to Subsection 7.2.1, as well as of the a posteriori
estimate of Subsection 7.2.2, prior to the application of the MBF smoothing algorithm.

%1073

MAE, (pu)

0.04

0.03

0.02

MAE A (deg)

0.01

MAE,, (pu)

MAE A (deg)
=)
8

Figure 7.9: IEEE 118-bus system — MAE of the EKF, RTS and MBF methods for various values of Tx.
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Figure 7.11: IEEE 14-bus system — MAE of the predicted and the estimated states using the MBF method
without the backward correction (smoothing) step, for various values of 7.

178



MBF no smoothing
MBF prediction

S
S
%)
T
|
1
|
1
|
£
w
-

MBF no smoothing
MBF prediction

S
o
X

—
Ll
—m - ———
= ——

MAE A (deg)
(e
4

e
=
o

2 4 6 8 10 12 14 16 18 20

Figure 7.12: IEEE 118-bus system — MAE metrics of the predicted and the estimated states using the MBF
method without the backward correction (smoothing) step, for various values of 7x.
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Figure 7.13: IEEE 300-bus system — MAE metrics of the predicted and the estimated states using the MBF
method without the backward correction (smoothing) step, for various values of Tx.
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Table 7.3 summarizes the MAE, Macc, and Maccg accuracy metrics averaged over the MC trials

of the EKF, RTS, and the proposed MBF estimators, as well as the average total time required by each
algorithm to process the MS, including the application of the fixed-interval smoothing algorithms
(RTS or MBF). The computation times of the backward correction (smoothing) steps are also provided
separately for easier comparison. It is observed that the proposed MBF method consistently produces
the most accurate results for all test systems. More specifically, we may deduce the following:

e As expected, both RTS and MBF methods utilizing a backwards smoothing technique provide
more accurate state estimates compared to the standard EKF approach.

e Substantial improvements over the EKF method are obtained using the proposed MBF algorithm.
Metrics MAE,, , MAE,, and Macc,, decrease by 68%, 30.5%, and 34.5% on average, respectively,

across all simulations. Compared to the RTS method, the MBF algorithm achieves improvements
of 50%, 19%, and 20% in MAE,, MAE,, and Macc, , respectively.

e The proposed algorithm is also found to provide a more reliable estimation of branch power flows,
as its Maccg values are lower for all simulations. With a base value of 100 MVA, the Maccg

values provided by the MBF method in p.u. correspond to a maximum deviation of 3.2%, 2.1%,
and 3.4% from the true total branch power flow for the 14-, 118-, and 300-bus systems, respec-
tively.

e The HFASE step of the MBF method incurs a slight increase in computation time for the 14- and
118-bus systems compared to the other methods, primarily due to the computational cost of calcu-
lating the transition matrix. However, for the larger 300-bus system, the MBF method achieves
significantly lower HFASE execution times, as the EKF and RTS algorithms require more itera-
tions to converge as Ty increases. The PFASE stage exhibits no significant differences in execution

time among the three methods. Notably, the time required for the backward filtering (correction)
step is substantially reduced with the MBF smoothing algorithm, owing to the properties discussed

in Subsection 7.2.3. Note that calculation of vectors A and By is included in the smoothing stage

of the proposed method. From a practical standpoint, the MBF method effectively handles the rapid
arrival of PMU data (25-50 frames/s) for the 14- and 118-bus systems, enabling more frequent
PFASE executions between consecutive HFASE stages. For larger networks, such as the 300-bus
system, parallelization techniques may be required to achieve desired performance, particularly for
the RTS and MBF methods [161].

It is also important to investigate the performance of the proposed method in terms of its capability
to provide reliable state estimates for the PMU-unobservable buses. For this purpose, Figure 7.14—
Figure 7.16 illustrate the average MAE metrics of the states unobservable by PMUs, calculated over
the 500 MC simulations, with T =10, for both the RTS and MBF methods, and all three test systems.

One observes that the MAE values of the PMU-unobservable states for the MBF method are only
slightly larger than the averages of Figures Figure 7.8—Figure 7.10, and overall lower than those of the
RTS. This is attributed to the refined state transition model proposed in Subsection 7.2.1, as well as
the propagation of the smoothed transition model parameters, described in Subsection 7.2.3, neither of
which are employed by the RTS approach.
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Table 7.3: Accuracy and performance metrics of FASE methods.

Metric IEEE 14 IEEE 118 IEEE 300
EKF RTS MBF EKF RTS MBF EKF RTS MBF
MAEy (%107 pu) 2.80 1.60 1.50 10.30 4.00 1.70 2.00 1.60 0.86
MAE (%1072 deg.) 3.10 2.04 1.18 3.77 3.16 3.07 9.70 8.89 8.52
Maccy(x1072 pu) 1.32 0.92 0.87 16.66 6.49 2.83 7.50 6.31 5.47
Maccs(pu) 0.10 0.09 0.09 6.61 2.63 0.92 21.51 19.09 16.87
HFASE time (ms) 5.40 5.99 8.30 23.20 21.50 25.84 200 19490 | 177.80
PFASE time (ms) 2.20 2.49 2.40 8.30 9.00 10.24 42.80 51.10 55.00
Smoother time (ms) - 0.19 0.10 - 1.40 0.84 - 12.90 9.80
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Figure 7.14: IEEE 14-bus system — MAE metrics of states unobservable by PMUs.
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Figure 7.15: IEEE 118-bus system — MAE metrics of states unobservable by PMUs.
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Figure 7.16: IEEE 300-bus system — MAE metrics of states unobservable by PMUs.

Finally, the performance of the three FASE methods in question is also tested under an abrupt dis-
turbance of the quasi-steady system operating conditions. Figure 7.17 presents the Macc, metrics of

the three methods for each test system, specifically focusing on the occurrence of a sudden generator
outage at instant t;,,, with respect to T =1,2,...,20. It is interesting to observe that the EKF exhibits

significantly less reliable performance in comparison to the RTS and MBF methods, even for small
values of Tg. It is also found that the smoothing-algorithm-based methods display similar trends in

their Macc, values with respect to Ty ; however, the MBF consistently delivers superior estimation

accuracy over the RTS. This improved performance of the proposed method can be attributed to its
enhanced prediction step, which effectively incorporates real-time measurements, thereby enabling a
dynamic adjustment of the state transition model in response to evolving system conditions.

7.5 Summary

This Chapter presented a novel and practical EKF-based FASE framework designed to address the
challenges of processing SCADA measurements with random delays and synchronized PMU data. The
proposed framework leverages Hachtel’s augmented matrix method to enhance the state estimation
process without requiring modifications to the existing SCADA-based SE process. The HFASE stage
integrates phasor data and a priori state information into the conventional SE via a non-iterative post-
processing phase, while the linear PFASE stage utilizes synchrophasor data and state predictions be-
tween consecutive HFASE executions.
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The framework adapts the conventional FASE state transition model using real-time information
derived from the optimal fusion of PMU-based and forecasting-based state estimates. An additional
backward correction step based on the MBF fixed-interval smoothing algorithm is incorporated into
the EKF of both HFASE and PFASE formulations, mitigating errors caused by measurement time
skew. Comprehensive numerical simulations on IEEE test systems validate the efficacy of the proposed
method, demonstrating superior performance compared to other FASE approaches. Overall, the pro-
posed framework offers a practical, scalable, and computationally efficient enhancement to conven-
tional state estimation algorithms, addressing critical challenges posed by multi-source, multi-rate
measurements in modern power systems.

This study lays the groundwork for future research to further improve the robustness and applica-
bility of the framework. The integration of bad data detection and identification algorithms should be
explored to further enhance the robustness of the framework. Additionally, investigating the applica-
tion of the UKF as an alternative to the EKF could address the challenges posed by non-Gaussian
measurement noise and enhance the framework’s applicability to more complex system dynamics.

_EKF 1.5 [
—RTS

Maccv(tloo) (pu)

10 15 20

Figure 7.17: Maccy metrics of the EKF, RTS and MBF methods with generator outage at 100 for various values
of Tr: (a) 14-bus system; (b) 118-bus system; (c) 300-bus system.
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8. BAD DATA PROCESSING IN STATE ESTIMATION

Accurate state estimation relies on effectively detecting, identifying, and eliminating erroneous
measurements. Measurement errors can stem from various sources, including:

e Random errors: caused by meter inaccuracies or communication noise, typically mitigated through
redundancy in measurements.

e Systematic errors: biases, drifts, or incorrect meter connections can cause significant deviations.
Telecommunication failures or interference may also corrupt data.

e Topology errors: incorrect network topology information can mislead the estimator, complicating
error detection. These errors are handled by the network parameter estimation process, which is
outside the scope of the thesis.

While some anomalies are easily detected through plausibility checks (e.g., negative voltage values
or improbable bus current imbalances), others require advanced detection techniques. The WLS-based
SE method, processes measurement residuals post-estimation to identify suspicious data based on their
statistical properties.

Bad data can manifest in different ways, depending on the number, location, and relationships be-
tween erroneous measurements:

1) Single bad data: a single measurement exhibits a large error.

2) Multiple bad data: multiple measurements are erroneous, whose residuals can be strongly or
weakly correlated. Strongly correlated measurements are those whose errors affect the estimated
value of each other significantly, causing the valid one to also appear in error when the other con-
tains a large error. Estimates of measurements with weakly correlated residuals are not significantly
affected by the errors of each other. When measurement residuals are strongly correlated their er-
rors may or may not be conforming. Conforming errors are those that appear consistent with each
other. Multiple bad data can therefore occur in three distinct patterns:

e Non-interacting: errors in weakly correlated measurements, where residuals remain largely in-
dependent.

e Interacting, non-conforming: errors in strongly correlated measurements that appear incon-
sistent with one another.

e Interacting and conforming: consistent gross errors in measurements with strongly correlated
residuals.

The degree of interaction between measurement residuals, as determined by their sensitivity to
measurement errors, provides valuable insights for error detection. In this Chapter, we will explore the
techniques used in WLS-based SE to handle various forms of bad data, and develop bad data detection
and identification algorithms appropriate for the hybrid SE methods proposed in Chapters 6 and 7.

8.1 Properties of measurement residuals

Letx and X be the true and the estimated state vector, respectively, and dX := X — X . The measure-
ment residuals can be expressed as follows:

r=z-2=z-h(x) (8.1)
Expanding A(x) in a first-order Taylor series around X, yields:
h(x) =h(X)+H (X)ox (8.2)
Substituting (8.2) into (8.1), yields:
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r=z—h(x)+H(X)ox =e+H(X)oX (8.3)

Let us recall the solution of the NE, using the iterative scheme (4.70):

G(xM)Aax® = HT (x(i))R‘l(z —h(x(i))> (8.4)
which can be rewritten as:
G(x)(-0x)=HT ()R (z=h(x)) (8.5)
and, thus:
Sx=-GH(x)HT (x)R%e (8.6)
Using (8.6), eq. (8.3) yields:
r =(| ~H (x)G‘l(x)HT(x)R‘l)e (8.7)

Matrix K = HG*HTR™ is often called the hat matrix. A rough idea about the local measurement
redundancy around a given meter can be obtained, by checking the corresponding row entries in matrix
K. A large diagonal entry relative to the off-diagonal elements in K, will imply that the estimated value
corresponding to that measurement is essentially determined by its measured value, i.e., the local re-
dundancy is poor.

The measurement residuals can be expressed as follows:

r=(1-K)e=Se (8.8)
Matrix § is the residual sensitivity matrix and represents the sensitivity of the measurement residuals
to the measurement errors.

WLS estimation assumes that the measurement errors are distributed according to a Gaussian dis-
tribution given as below:

e~ N (0,R) (8.9)

Using the linear relation between the measurement residuals and errors given by (8.8), the mean and
the covariance, and hence the probability distribution of the measurement residuals can be obtained as
follows:

E(r)=SE(e)=0 (8.10)
Cov(r)=Q=E[rr']=SRS" =SR (8.11)

Therefore:
r~N(0,9Q) (8.12)

The oft-diagonal elements of the residual covariance matrix € can be used to identify those strongly
versus weakly interacting measurements.

8.2 Bad data detection and identification

Power systems include various types of measurements distributed across the network without a con-
sistent topological pattern. The influence of each measurement on the state estimation depends not
only on its value but also on its location. Measurements can be categorized as follows [38]:

e C(Critical measurement: A measurement whose removal renders the system unobservable. The cor-
responding column in the residual covariance matrix € is identically zero, and its residual is always
Zero.

185



¢ Redundant measurement: A non-critical measurement. Only redundant measurements can exhibit
nonzero residuals.

e C(ritical pair: A pair of redundant measurements whose simultaneous removal causes the system to
become unobservable.

e Critical k-tuple: A set of k redundant measurements whose collective removal results in system
unobservability. No subset of fewer than k measurements within this group is critical. The corre-
sponding k columns in the residual covariance matrix € are linearly dependent.

Bad data detection determines whether the MS contains erroneous data, while identification aims to
locate the specific faulty measurements. The ability to detect and identify bad data depends on the
measurement configuration within the system. Bad data can be detected only if removing the affected
measurement does not make the system unobservable. Thus, bad data in critical measurements is in-
herently undetectable. A single bad measurement can be uniquely identified if:

1) It is not critical, and
2) it does not belong to a critical pair.

Bad data processing algorithms must account for these fundamental limitations. When the above
conditions are met, single bad data can be detected and identified using the methods described in sub-
sequent sections.

8.2.1 Bad data detection using the Chi-squares test

One common method for bad data detection is the Chi-squares or ;(2 -test. Once bad data are suc-

cessfully detected, they must be identified and either removed or corrected to ensure an unbiased state
estimate.
Considering a set of &k independent random variables X;, X,,..., X, where each X; is distributed

according to the standard normal distribution:

X~ /\/(0,1) (8.13)
The random variable Y defined as:
k
Y => X} (8.14)
i=1

will follow a 2 distribution with k degrees of freedom, i.e.

Y~z (8.15)
The degrees of freedom £ represent the number of independent variables in the sum of squares. This
value will decrease if any of the X; variables form a linearly dependent subset.
Now, let us consider the function f{x) written in terms of the measurement errors:

m

2
f(x) =) Rile’ = Z{%J => (")’ (8.16)
i=1 ii i=1

i=1
where €; is the i-th measurement error, R;; is the diagonal entry of the measurement error covariance
matrix and m is the number of measurements. Variables eiN follow the standard normal distribution:
e ~N(0,1) (8.17)
In a power system, since at least » measurements will have to satisfy the power balance equations,

at most m—n of the measurement errors will be linearly independent. Thus, f{x) will follow a ;(2
distribution with k =m—n degrees of freedom (df).
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A plot of the ;(2 -probability density function (pdf) is shown in Figure 8.1. The area under the pdf
represents the probability of finding X in the corresponding region, for example:
Pr{X >x}= j 7% (u)du (8.18)
X
represents the probability of X being larger than a certain threshold x;. This probability decreases with

increasing values of x;, due to the decaying tail of the distribution. Choosing a confidence of p, the
threshold x; can be set such that:

P{X=2x}=1-p (8.19)
The threshold x, = ;(ri_n’p represents the largest acceptable value for X that will not imply any bad
data. If the measured value of X exceeds this threshold, then with probability p, the measured X will

not have a ;(2 distribution, i.e., presence of bad data will be suspected.
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Figure 8.1: Chi-squared probability density function.
A bad data detection test, referred to as the Chi-squares test, can be devised based on the properties

of the y? distribution, as follows:
1) Solve the WLS estimation problem and compute the objective function:

m 5\12
. [z —hi(X)]
="
i=1 i
2) Look up the value from the Chi-squares distribution table corresponding to a detection confidence
with probability p (e.g., 95%) and k=m—n degrees of freedom. This value is the threshold

X = Zr%—n,p , such that p=Pr{J(X) < ;(rzn_n’p}.
3) Checkif J(X)> Zr%—n, p- If yes, then bad data is suspected, else the MS is assumed free of bad data.

8.2.2 Bad data detection using normalized residuals

The approximation of measurement errors by residuals in (8.16) may result in the Chi-squares test
failing to detect certain bad data cases. A more accurate approach involves the use of normalized
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residuals, where the residual of measurement z; is divided by the square root of the corresponding
diagonal element of the residual covariance matrix:

N |r|| _ |r,|
i = =
\/Qii \/ RiiSii
The normalized residual vector rN will then have a standard normal distribution:

i~ N(0,) (8.21)

The largest normalized residual can be compared against a statistical threshold to determine the
presence of bad data. This threshold is selected based on the desired detection sensitivity. If a single
bad data point exists in the MS — and it is neither critical nor part of a critical pair — the largest nor-
malized residual will correspond to the erroneous measurement. This property can also hold in some
multiple bad data scenarios, particularly when the problematic measurements are weakly correlated,
i.e., non-interacting. Using (8.8) it can be proven that the normalized residual for the erroneous meas-
urement £ is expected to be the largest among all residuals from error-free measurements, i.e.:

(8.20)

<, j=12..m (8.22)

The inequality becomes a strict equality when measurements j and k£ form a critical pair, as their cor-
responding columns in the residual sensitivity matrix € are linearly dependent. In such cases, the nor-
malized residuals are always equal, making it impossible to identify which measurement is erroneous,
even though bad data can still be detected. The same limitation applies to any subset of k —1 measure-
ments within a critical A-tuple: errors can be detected but not uniquely identified.

8.2.3 Bad data identification using the Largest Normalized Residual Test

Upon detection of bad data in the MS, their identification can be accomplished by further processing
of the residuals. The characteristics of normalized residuals in the presence of a single bad measure-
ment can be used to design a detection and elimination test known as the Largest Normalized Residual

Test (LNRT) or r... -test. The procedure involves the following steps:

1) Solve the WLS estimation and obtain the elements of the measurement residual vector:
h=z—-h(X),i=12,...,m

2) Compute the normalized residuals:

r-N ::ﬂ, i:1,2,...,m

I
Vi
3) Find & such that rkN is the largest among all riN L 1=12,...m.

4) If rkN > C, then the £-th measurement will be suspected as bad data. Else, stop, no bad data will be
suspected. Here, c is a chosen identification threshold, for instance 3.0.
5) Eliminate the k-th measurement from the MS and go to step 1.

Implementing the LNRT may require multiple identification and elimination cycles. Each cycle in-
cludes two computationally intensive steps:

e Compute normalized residuals using the diagonal elements of the residual covariance matrix
Q=SR=R-HG™H". Note that only the diagonal entries of Q are required, which can be effi-
ciently calculated by exploiting the already calculated Cholesky factorization of matrix G and the
sparse structure of H.
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e Suppress the measurement with the largest normalized residual, then repeat the state estimation
process. Instead of actually removing the bad measurement, its estimated error can be subtracted
to correct it, as described below. The measurement corrupted with large error can be written as:

2P =7 4e
where Zibad is the measured value, z; is the true value and €, is the gross error associated with the

i-th measurement. Using the linearized residual sensitivity relation of (8.8), the residual of the bad
measurement and the corresponding error can be approximated by:

. R.
P =20~y (R) = S = ¢ = L™
i
Subtracting the error €; from the bad measurement yields:
z, = 7 _Ry rad (8.23)

State estimation can be repeated after correcting the bad measurement. This yields an approximate
state estimate comparable to that obtained by removing the measurement entirely. However, when
the linear residual sensitivity model fails to capture the impact of large errors, the approximation
may be inaccurate. In such cases, iterative correction is necessary to reduce the residual error.

It should also be noted that the performance of the LNRT depends on the type and configuration of
bad data. Its behavior under different scenarios is summarized below:

e Single bad data: The LNRT reliably identifies the erroneous measurement, provided it is not critical
and its removal does not introduce new critical measurements.

e Multiple bad data:
1) Non-interacting: If S; =0, measurements i and k are non-interacting. In this case, even with

gross errors appearing simultaneously in both measurements, the LNRT can identify the bad
data sequentially, one at a time.

2) Interacting, non-conforming: If S, is large, then measurements i and k are interacting. How-
ever, if their errors are inconsistent, the LNRT may still correctly identify the bad data.

3) Interacting, conforming: When interacting measurements have consistent (conforming) errors,
the LNRT may fail to identify either measurement as bad.

8.3 Bad data handling in ISE and PSE methods

In this Section, the process of bad data analysis will be explicitly formulated for the HSE methods
proposed in Section 6.2. For all SE implementations, the measurement residual vector can be defined

as:
ry z, —h(X)
plEBE 20

and the vector of normalized residuals is given by:

1 (8.25)

Jdiag(Q)

8.3.1 Bad data analysis for the ISE algorithm
Denoting the true and the estimated state vectors by x and X respectively, we define dx =x—x.
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The measurement function h(x) can be expressed as a function of dx by expanding h(x) in a first-
order Taylor series around X:

hy(X) | | hs(X) | | Hs(X)
09| lmto Lo o
The error vector e can be partitioned as follows:
€ z, —h(x)
Substituting (8.26) f S 8.24) yields:
ubstituting (8.26) for hy (%) in (8.24) yields:

|| () +H(X)ox || eg+ H(x)ox
r= r - z, —hy(x)+ Hp(X)ox B e, + H (%)ox (8.28)

Using the iterative Gauss-Newton method, the following system of linear equations is to be solved at
each iteration (i):

aG,(x®) cT(x®) Hy(xV) [[axFD ] [aHT (xP)R 1Az
c(xM) 0 0 A= —c(x") (8.29)
Hx®) 0 -a'r, || 4™ Az

It has already been proven in Section 6.2 that the above expression is equivalent to:

SR =

- -1

—9y|_|aG, CT | |aH/Re, | _| E; E; || aH R, 8.31)
—ou| - ~ -1
Lu =G Hp, (a 'R, + H G H | (e, +H o) (8.32)

where dy=y—y,and ou=u—u.
According to [226], (8.31) yields:

—dy = aE,H! R e, (8.33)
Observing that:
T HT E.HT
Gy Hyp, = | S (8.34)
E, Es ]| 0 | |EH,
AT _ T
HpGs Hp, =H EiHy (8.35)
we obtain:
_ -1
~ou=EH{ (a'R,+ H,EHY) (e, +Hoy) (8.36)
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Substituting (8.33) into (8.36) gives:
-1
~ou=EH{ ('R, + HyEH}) (e, —aH E\H] R} 'e,) (8.37)
Given that —0x =—dy—odu:
_ -1 B _ -1
6x:—a[E1—E1H,TJ (a™R, + H EH) HpEl)HSTRsleS—Elyg(a "Ry +H,EH,) e, (8.38)
Setting:
T (-1 T\? - -
Alza(El—Eal (a'R,+H,EH}) HpElj and A, =EjH (a7 'Ry +HEH )

equation (8.38) becomes:
ox=—-AH! R 'e,— Aye, (8.39)

Substituting (8.39) into (8.28) yields:

{rs} es—Hs(AleTRs‘les+Azep) I-HAHIR?® —HA, {es} (8.40)
o] e, —Hy (AHIR e + A, )| | —HoAHIRT 1-HyA ||
Given that r = Se it is obvious that:
I -HAHIR?' —-H
S: SA’i TS 751 SA2 (841)
~H,AHIR? 1-H_A,
and thus:
R,—HAH!. -H/AR
Q=Cov(r)=SR=| =~ _° P (8.42)

T
~H,AH]  (1-H, AR,
with R = 0 R, |

The complete bad data detection, identification and removal process for the proposed ISE method is
presented in Algorithm 8.1.

8.3.2 Bad data analysis for the PSE method

For the PSE method of Subsection 6.2.2, the bad data detection and identification process can be
split into two distinct stages. For the 1% estimation stage, the classic bad data detection method for
equality-constrained WLS-based SE [226] is implemented. For the 2" estimation stage, using (8.36)
we obtain:

~ou=EH) (a‘lRIO +H EH] )_l (ep+H y0p) (8.43)

Given that sy = y— p =0, (8.43) becomes:
T (-1 T\?
~ou=EH ('R, + HEHY ) e, (8.44)

and the measurement residual vector is given by:
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ox=0y+ou T a T 1
fp=ep+Hydx = o —H,EH(a 'R, +H EH ) e,
» (8.45)
T (4-1 T\
=(I—HpEal(a R, +H,EHp) jepzspep

Therefore, we have:
T (a1 T\t
Q, =Cov(r,)=S,R, :(l —H,EH] (a'R,+H EH) jRp (8.46)

The complete bad data detection, identification and removal process for the proposed PSE method is
presented in Algorithm 8.2.

Algorithm 8.1: Bad data analysis for the proposed ISE algorithm.

. M7 —h (X 2
1) Solve the WLS estimation problem and compute the objective function J(X) = ZM
i=1 Oi

2) Obtain threshold value x; = ;(ri_n’p corresponding to a detection confidence with probability p (> 99%)

and k =m-—n degrees of freedom, such that p =Pr{J(X) < ;(ri_n’p}.

3) Checkif J(X) = Z%—n,p . If yes, then bad data is suspected, else the MS is assumed free of bad data, and
the algorithm terminates.

4) If there are suspect measurements:

. . fs Zy— hs ()A()
a. Obtain the elements of the measurement residual vector: r = = N
M Z, - hp (X)

b. Calculate A4i, A, and the diagonal elements of € from (8.42).

|r|
Jdiag(Q)

d. Find & such that rkN is the largest among all riN ,1=12,...m.If rkN > 3, then the k-th measurement

¢. Compute the normalized residuals: r™ =

will be flagged as bad data.

R
e. Attempt to correct the k-th measurement: 7, < ZEad - Qi I, and go to Step 1.

kk

8.4 Bad data handling in the proposed FASE method

When state forecasting schemes are implemented in SE, one can use the forecasted state variables
to calculate the forecasted measurements and use innovation analysis to determine if the measurement
dataset contains erroneous information, before the forward correction step [227]. The innovation vec-
tor is given by:

Vit = g1 — Zk+l =Ly~ h()~(k+1) (8.47)

Note that Vy; is approximately a white Gaussian process with zero mean and covariance matrix:

. 3 T
N k+l = COV(Vk+1) = Rk+l + Hk+lpk+lH k+1 (8.48)

At time step (k+1), the i-th component of the normalized innovation vector is calculated as:
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Vv (l).—m,l

=1,2,...,m (8.49)

and is tested against an adopted anomaly detection threshold ¢, which for the Gaussian distribution is

set to 3.

Algorithm 8.2: Bad data analysis for the proposed PSE algorithm.

a.

a.

b.

1) Stage 1: SCADA-based equality-constrained WLS estimation problem

L : o Tz —hg (9]
Solve the WLS SE and compute the objective function J,(y) = Z—z

i=1 Oi
Obtain threshold value X, = lr%s—n,p corresponding to a detection confidence with probability p (>

99%) and k =mg —n degrees of freedom, such that p=Pr{J(Jy) < ;(%S_nyp} .

Check if J(y)> Zr%s—n, o - If yes, then bad data is suspected, else the MS is assumed free of bad data,
and the algorithm terminates.
If there are suspect measurements:

i)  Obtain the elements of the measurement residual vector: r, =z, —h(Y) .

ii)  Calculate the diagonal elements of € = Cov(r,) = R, — H,E;H/ .

K |

iii) Compute the normalized residuals: rSN =
Jdiag(€,)

iv)  Find & such that rS"\'k is the largest among all I’s']\‘i ,1=12,...,mg . If I’S"\'k >3, then the k-th meas-

urement will be flagged as bad data.

bad _ Rskk
v)  Attempt to correct the k-th measurement: Zg) < g ———

Isx and go to Step a.
s,kk

2) Stage 2: PMU-based correction

Calculate the measurement residual vector: r, =2z, —h,(X)

-1
Calculate the diagonal elements of Q, = (I -H, ElH; (a_lRp +H, ElHiT) ) j Ry .

"y |
Compute the normalized residuals: 1) = ———.
P Jdiag(Q,)
Find k such that rgk is the largest among all rg\fi ,i=12,...,m, If r;\fk >3, then the k-th measurement

will be flagged as bad data. Else, the PMU measurements are free of bad data, and the algorithm
terminates.

bad _ Rpkk
Attempt to correct the k-th measurement: 7,y <z ——

I,k and go to Step a.
p,kk
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Innovation analysis thus provides an a priori assessment of measurement quality. If the normalized
innovation of a measurement is below a given threshold ¢, the measurement is considered consistent
and its quality flag is set to 1. Otherwise (i.c., if the vV -test is positive), the measurement is marked as
suspicious, with quality flag set to 0. In the context of the proposed FASE method (Section 7.2), inno-
vation analysis can be applied to both SCADA and PMU data, though it is particularly useful for
SCADA measurements, as they are affected by time skewness and are forecasted using only the con-
ventional Holt’s transition model, without incorporating additional real-time information. Conversely,
the prediction step for PMU-observable states combines forecast and real-time data, mitigating the
effect of inaccurate forecasts or erroneous PMU readings.

If no anomaly is detected, the forward correction step proceeds as described in Subsection 7.2.2. If
any of the forecasts are unavailable or deemed invalid through the vN -test, then they are excluded from
this correction step. After the filtering step, residual analysis is conducted to generate a posteriori
quality flags. Measurements with a negative LNRT result are flagged as valid (flag = 1), while those
with a positive result are flagged as bad (flag = 0).

By combining a priori (innovation-based) and a posteriori (residual-based) flags, an integrated
anomaly diagnosis can be performed when forecasts are available. The diagnosis framework identifies
three types of anomalies:

1) Gross measurement errors (bad data),
2) Bad data smearing effect,
3) Sudden shifts of the system operating point.

The diagnosis scheme uses a threshold of two or more suspicious normalized innovations (above ¢)
to indicate a possible sudden change in system operating conditions. The following cases may arise:

1) No suspicious normalized innovations and negative residual tests: No bad data present; all quality
flags set to 1.

2) One suspicious normalized innovation: in this case, suppose that the i-th measurement associated

to VN(@i)>C is a priori indicated as BD. The residual analysis complements the diagnosis with
three possibilities:

a) No suspicious residuals: occurs only if the bad measurement is critical. Due to limited redun-
dancy, the residual test cannot detect bad data in such measurements. The innovation analysis
alone flags the measurement as bad (flag = 0).

b) One suspicious residual: the LNRT confirms that the i-th measurement is BD (flag=0).

¢) Multiple suspicious residuals: indicates bad data smearing. The initially flagged i-th measure-
ment will have the highest residual and is confirmed as bad (flag = 0); others are likely false
positives.

3) Two or more suspicious normalized innovations: in this situation, the results of the residual analysis
lead to two possibilities:

a) No suspicious residuals: suggests a sudden system change (e.g., in bus injections or topology),
rendering forecasts invalid. In this case (positive vN -test and negative r" -test) only the a pri-
ori information (forecasts) is inconsistent. Affected measurements are flagged with 2, indicat-
ing forecast inconsistency rather than bad data.

b) Suspicious residuals present: confirms multiple bad measurements. Those flagged by both in-
novation and residual tests are confirmed as bad (flag = 0). Residual-only outliers not matched
by innovation flags are considered valid but affected by smearing (flag = 1).

Figure 8.2 presents the process of bad data detection and identification for the proposed FASE
method. Table 8.1 summarizes the steps involved with the assignment of quality flag values to the
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measurements. For measurements confirmed as bad (flag = 0), as both measured and forecasted values
are available, the FASE can either attempt to correct the measurement using (8.23), or replace it with
its forecasted value — an option often favored for its computational simplicity.

Innovation analysis Start Residual analysis
quality flags (IQFs) l quality flags (RQFs)

1 Number of IQFs 22

l equalto 0

°)

0 > 0 >0
Number of RQFs N Number of RQFs
equal to 0 equal to 0
'
Bad data in Bad data Bad data with Sudden change Multiple bad data
critical meas. smearing effect (invalid forecasts) with smearing effect

Figure 8.2: Bad data detection and identification flowchart for the proposed FASE method.

Table 8.1: Quality diagnosis of each measurement.

Quality flags Diagnosis
Innovation Residual Final
analysis (IQF) analysis (RQF)
0 0 0 Measurement has gross error (bad data).

If this holds for only one measurement, then it is a
0 1 0or2 critical measurement cqntaminated with large error
(flag = 0). Else, there is an unexpected change in
system states (flag = 2).

1 0 1 The measurement is valid and affected by bad data
smearing.
1 1 1 The measurement is valid
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9. LABORATORY-SCALE PMU-BASED POWER SYSTEM MONITORING
PLATFORM

The capability for large-scale, real-time power system simulation is essential for utilities to test,
calibrate, and validate network performance across a wide range of scenarios and contingencies before
deploying new technologies in mission-critical operations. This capability has become increasingly
important with the adoption of smart grid technologies, which inherently alter the dynamic behavior
and performance of the electric grid. Consequently, leading utilities are adopting integrated simulation
frameworks to support the development, evaluation, and demonstration of emerging technologies.
These frameworks enable comprehensive assessment of system performance in applications such as
wide-area protection and control, renewable energy integration, and the coordination of distributed
smart grid components [228], [229].

The advancement of modern real-time simulation hardware, collectively referred to as Real-Time
Digital Simulators (RTDSs), has made it feasible to implement and test prototype technologies within
controlled laboratory environments. Typically, an RTDS simulates electrical power systems in real
time, enabling the testing of physical equipment, as well as software implementation and validation,
through Hardware-in-the-Loop (HIL) and Software-in-the-Loop (SIL) configurations. These ap-
proaches provide a robust and reproducible framework for developing, validating, and certifying novel
solutions [10].

Various synchrophasor applications — including SE, stability monitoring, and wide-area control al-
gorithms — can be effectively designed, tested, and validated through the use of HIL and SIL architec-
tures. Specifically, the testing of synchrophasor-based software applications with an RTDS enables
utilities to visualize and analyze signals in real-time for validation purposes, assess performance under
simulated conditions, and evaluate grid behavior using key power system metrics such as phase angle
differences, grid stress levels, inter-area and local oscillations, voltage sensitivities, and frequency re-
sponse characteristics. Compared to offline software-based simulation, HIL and SIL configurations
offer several significant advantages:

1) Model-based design flexibility: Modern RTDS platforms support a wide spectrum of power system
configurations, utilizing both generalized and highly detailed component models. Some platforms
provide open development environments that allow for collaborative development among multiple
stakeholders throughout various project stages.

2) Improved efficiency, repeatability and test coverage: PMU-based applications rely on precise, real-
time data and must respond effectively to dynamic system conditions. RTDS platforms facilitate
the creation of diverse operating scenarios, enabling comprehensive testing and broader coverage
of potential events. Since system models can be modified in real time, testing is highly efficient
and repeatable under controlled laboratory conditions.

3) Interaction between RTDS, PMUs and other devices under test: RTDS platforms feature multiple
I/0 modules that integrate external hardware through analog and digital interfaces and support
communication protocols such as IEEE C37.118.2. These systems also provide continuous access
to simulation data, allowing for detailed, real-time analysis and application-specific diagnostics.

In line with the preceding discussion, this chapter presents a laboratory-scale WAMS that utilizes
commercial hardware and software. The proposed setup is designed for flexibility and scalability, sup-
porting the integration and evaluation of user-developed synchrophasor-based applications. In this
configuration, protection relays collect synchrophasor measurements from power systems simulated
in real time using RTDS hardware. These measurements are streamed to a software-based PDC, which
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performs data aggregation and enables real-time monitoring of the simulated system. Two experi-
mental use cases are explored:

1) The first use case integrates conventional measurements from virtual (software-based) RTUs with
synchrophasor measurements from physical PMUs, for the implementation and real-time evalua-
tion of the ISE algorithm proposed in Subsection 6.2.1.

2) The second deploys PMU-enabled SE algorithms for real-time monitoring of a transmission system
and an Active Distribution Network (ADN).

9.1 Background

Digital Real-Time Simulation (DRTS) has been used in the power industry for over 25 years, and is
a powerful tool for analyzing power system behavior under realistic and dynamic conditions [230].
Enabled by high-performance computing and parallel processing, DRTS solves power system differ-
ential equations in real time, an essential feature for evaluating time-sensitive applications, especially
when interfacing with physical hardware [231]. Nowadays, DRTS plays a central role in rapid proto-
typing, novel monitoring and control scheme design, and education and training, highlighting its in-
creasing relevance [232].

Different modeling approaches are used depending on the study objectives. Averaged models sim-
plify power system behavior by representing complex elements with average values, thus providing
computationally efficient representations for steady-state analysis and long-term planning (e.g., power
flow studies, load flow analysis, and steady-state stability assessments), where the variation in system
variables occurs over relatively long periods. Phasor-based simulation employs the phasor concept to
represent power system dynamics, striking a balance between fidelity and computational speed, and
making it suitable for medium-term stability analysis and control design. The phasor model is partic-
ularly effective for transient stability analysis and small-signal stability studies. Electromagnetic Tran-
sient (EMT) models provide a detailed representation of power system dynamics by considering the
actual physical behavior of individual components, capturing high-frequency phenomena and fast tran-
sients with greater accuracy but at increased computational cost. EMT simulations are essential for
analyzing power system responses to fast events such as faults, switching operations, and lightning
strikes, and are primarily used for short-term or event-specific studies [231].

Two main types of DRTS exist in power system studies:

1) Fully digital simulation — also referred to as Software-in-the-Loop (SIL), Model-in-the-Loop
(MIL), or Processor-in-the-Loop (PIL)) —simulates the entire system, including control, protection,
and auxiliary components, without requiring external interfacing or physical inputs/outputs.

2) In Hardware-in-the-Loop (HIL) simulation, portions of the system are replaced by physical hard-
ware connected through 1/O interfaces (e.g., filters, ADCs/DACSs, signal conditioners). HIL bridges
the gap between the simulated and physical systems, enabling integrated testing of controls and
communication layers.

Originally developed for aerospace applications, HIL simulation has since been adopted in automo-
tive and industrial sectors. In the power systems domain, it was originally developed as a solution for
flexibly testing control and protection schemes associated with HVDC projects [230]. HIL enables
real-time interaction between simulated power networks and physical devices, offering a safe, flexible,
and reproducible environment for testing and validation without the risks or costs of field deployment
[233]. Thus, it is now widely used by utilities, research institutions, and consultants for testing protec-
tion schemes, control strategies, and device behavior under real-world conditions, in various general-
purpose HIL test beds and cyber-physical platforms [229], [234]-[237].
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9.1.1 Real-time digital simulator capabilities [230], [233]

As power systems transition from synchronous machines to converter-based generation, EMT sim-
ulations have become increasingly essential, due to their ability to capture system behavior across a
wide frequency range, making them ideal for simulating modern grids. Phasor-based models often fall
short in scenarios with increased RES penetration, yielding overly optimistic results by failing to cap-
ture fast dynamics or low-level converter controls.

Many EMT tools, including RTDSs, employ the Dommel algorithm for network solution, and use
dedicated parallel processing hardware to execute simulations in real time. In the context of DRTS, the
term timestep refers to the interval between successive output calculations of the EMT simulation, and
defines the sampling frequency and determines the modeled signal frequency range. To maintain real-
time performance, all network calculations must complete within each timestep. The timestep should
be chosen based on the system dynamics under study and the desired fidelity of the results; for exam-
ple, for protection and control testing, typical timesteps are 30—60 ps.

RTDSs designed for HIL testing consist of three main components:

1) Parallel processing hardware to execute real-time simulations.
2) Input/output (1/0) interfaces that enable closed-loop testing with physical devices.

3) Graphical user interface (GUI) that provides real-time interaction with the simulation and houses
the power system modeling library.

As demand for real-time simulation grows, manufacturers must continuously advance the technol-
ogy to improve fidelity, expand application range, simplify interfacing, and enhance usability. These
improvements span across hardware capabilities, GUI features, and power system modeling tools. This
evolution is critical given the rapid changes in power systems, such as the rise of converter-interfaced
DERs, the increasing use of new communication protocols, and the decentralization of control archi-
tectures. Accurate modeling platforms that adapt to these trends are critical.

A key constraint in RTDS usage is the number of power system nodes that can be simulated per
timestep. Each node contributes to the size of the network admittance matrix, which must be solved
during each simulation cycle. Performing matrix decomposition dynamically at every timestep is com-
putationally intensive but allows for the inclusion of non-linear elements and dynamic models without
additional numerical interfaces. However, as the network size grows, the time required for matrix de-
composition increases exponentially. Thus, simulator performance often limits model size. Users with
limited hardware may need to simplify or reduce network models to fit within these constraints. There-
fore, innovations that reduce processing demands while maintaining accuracy are of significant interest
to the RTDS community.

In power-system research and practice, six vendors account for the vast majority of commercial
DRTS/HIL installations:

e RTDS Technologies Inc. (Winnipeg, Canada):

- RTDS Simulator (NovaCor series),
- RSCAD software.
e OPAL-RT Technologies Inc. (Montréal, Canada):
- XG Series real-time simulators (e.g. OP4512, OP4610XG, OP5705XG, OP5707XG),
- eMEGASIM™, HYPERSIM®, ARTEMIS™ platforms.
e Typhoon HIL GmbH (Graz, Austria):
- HIL Series (e.g. HIL 402, HIL 602, HIL 803),
- TyphoonSim, Typhoon HIL Control Center.
e dSPACE GmbH (Paderborn, Germany):
~  SCALEXIO® real-time systems, MicroLabBox development units,

198



- ConfigurationDesk and RTI configuration and implementation software.
e Speedgoat GmbH (Zirich, Switzerland):
- Real-Time Target Machines under Simulink Real-Time (Baseline, Performance, Pulse, Mo-
bile, Unit, Rack systems).

9.1.2 HIL and SIL testing of WAMPAC and synchrophasor applications

HIL simulation has become a valuable tool for studying different aspects of WAMPAC applications
in modern power systems. PMUs, which serve as the cornerstone of these applications, are commonly
integrated into HIL environments to support the development, testing, and validation of new tools.
This approach enables early-stage certification and pre-commissioning evaluations under realistic con-
ditions. The literature describes various HIL architectures designed for PMU integration, with the spe-
cific configuration typically chosen based on the test objectives, available infrastructure, cost con-
straints, and system complexity. Broadly, these configurations fall into three categories: basic setups
with a single PMU as the device under test, platforms designed for rapid control or protection proto-
typing using PMUs, and implementations involving virtual PMUs. In line with these frameworks, this
thesis focuses on laboratory environments that combine RTDS(s), physical and/or software-based (vir-
tual) PMUs, software or hardware PDCs, and synchrophasor-driven applications [10], [228], [238]—
[243].

Given the strict timing requirements of WAMPAC systems, latency and data delivery performance
must be carefully assessed to ensure dependable operation [244]. Several studies have leveraged DRTS
platforms in HIL configurations to assess operational delays, such as the affine modeling of commu-
nication latency in [245], [246], and the impact of quality-of-service degradation due to network con-
ditions in [240]. These works use PMUs as the hardware under test to analyze how latency, packet
loss, and data corruption affect synchrophasor-based applications. Communication delay impacts are
further analyzed in [247]-[249], with emphasis on real-time performance of wide-area protection and
monitoring systems. Further implementations of HIL and SIL setups have been employed to test pro-
tective schemes under transient conditions, support operator training, and facilitate cyber-physical se-
curity studies [250]-[253]. In one representative application [254], a Wide-Area Damping Controller
(WADC) is validated using HIL by closing the control loop between the controller and a commercial
excitation system (ABB Unitrol 1020), based on PMU measurements. Cybersecurity vulnerabilities,
particularly Time Synchronization Spoofing Attacks (TSSA), are examined in [255], where a HIL
setup emulates a GPS-based timing attack on a PMU. By spoofing time signals in real time, the study
demonstrates how falsified synchrophasor data can lead to WAMPAC malfunctions, violating standard
compliance and triggering erroneous trip signals. The experimental platform uses OPAL-RT, commer-
cial PMUs, and PDCs, integrating both real and spoofed timing signals to assess the system’s vulner-
ability and response.

In recent years, numerous laboratory-based studies have focused on the development and evaluation
of synchrophasor-based monitoring and control algorithms. These efforts include real-time implemen-
tations of PMU-based inter-area oscillation mode estimation [256], [257], as well as voltage stability
monitoring using both SIL and HIL platforms [258]-[261]. Under-frequency load shedding strategies
based on synchrophasor data have been explored in [262], [263], while system inertia estimation tech-
niques are presented in [264]. Islanding detection methods leveraging micro-PMU data have been ex-
plored in [265], alongside studies on power quality monitoring [266], and event detection using his-
torical and real-time data streams [267], [268]. Wide-area control strategies, including damping con-
trollers and protection schemes, have been developed and experimentally tested in [269]-[271]. Addi-
tionally, fault location and classification algorithms based on PMU data have been validated under HIL
configurations in [272]-[275]. Cybersecurity aspects of WAMS have also been examined, from an
algorithmic perspective, in [276]-[278].
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Finally, a prominent application of DRTS concerns the validation of state estimation [279]-[286],
as well as parameter identification [287] and topology estimation [288] algorithms, all of which lever-
age PMU measurements. In these studies, RTDS platforms either interface with physical PMUs or
generate phasor data streams to simulate synchrophasor inputs. While hardware PMUs may be present
in the test setup, the aim of such configurations is not to evaluate the metrological or communication
performance of the PMUs themselves, as is the case in conventional HIL testing where the device
under test is the primary focus. Rather, the objective is to assess and validate software-based monitor-
ing or control algorithms that rely on PMU data. Notably, many of these algorithms operate in an open-
loop configuration: for instance, SE or oscillation mode analysis tools process real-time measurements
but do not feed any control signal back into the simulated system. Therefore, while such testbeds may
adopt components of HIL or SIL architectures, they fall outside the strict definitions of these para-
digms, as the hardware is not under test, and the software often does not close the control loop. Instead,
these setups serve as measurement-driven algorithm validation environments, where the fidelity and
timing of real-time data are crucial for assessing algorithmic performance under realistic operating
conditions. This thesis adopts this perspective to support the systematic evaluation of synchrophasor-
based monitoring and control functionalities.

9.2 Hardware and software overview

This Section outlines the structure and development process of the experimental synchrophasor net-
work deployed at the Electric Energy Systems Laboratory of the School of Electrical & Computer
Engineering at the National Technical University of Athens (NTUA). A complete schematic of the
hardware configuration is provided in Figure 9.1.

Synchrophasor data in this setup is generated from current and voltage signals produced by a simu-
lated power system running on the NovaCor RTDS. Accordingly, the RTDS and its companion simu-
lation software RSCAD are introduced, and the simulated power system model and the method used
to generate properly scaled analog outputs, which are necessary for feeding data into PMUs, are de-
scribed. A description of the SEL-351A relays which are used here as PMUs, and their configuration
are presented next, followed by a description of the PDC software used in this research. The section
concludes with a description of the SEL-2407 satellite-synchronized clock, which provides GPS-based
time signals for PMU synchronization. All essential configurations for the full synchrophasor network
are included, making this section a practical reference for future users of the experimental testbed.

9.2.1 RTDS configuration

The RTDS used in this research is manufactured by RTDS Technologies Inc. and is designed spe-
cifically for real-time EMT simulations. The laboratory setup utilizes a single unit of the NovaCor™
[289] simulation hardware, powered by IBM®’s POWERS™ ten-core processor. A key feature of this
platform is that it runs the simulation executable code directly on the processor without an intermediary
operating system, enabling both high-speed execution and precise control over simulation tasks.

Typically, one processor core is dedicated to solving the power system network equations through
nodal analysis, while the remaining cores handle the parallel computation of individual component
models (for lines, transformers, machines, etc.). This architecture offers inherent scalability. First, the
number of licensed processor cores dictates the size and complexity of the network that can be mod-
eled. Second, for simulations exceeding this core-based capacity, the RTDS supports partitioning the
network into multiple subsystems. These subsystems can run in parallel, exchanging data in real time
via traveling-wave transmission line models, provided the travel time exceeds or equals the simulation
timestep. This technique allows a subsystem to be simulated either on a separate NovaCor unit or on
another core within the same hardware.

200



To interface with hardware PMUs, which expect analog inputs similar to those produced by physical
VTs and CTs, the RTDS must convert its internal digital simulation signals into analog outputs. This
is achieved using the 12 analog output channels on the front panel of the NovaCor chassis, and the
Giga-Transceiver Analog Output (GTAO) card [290]. The RTDS is also equipped with a Giga-Trans-
ceiver Network Communication Card (GTNETx2) [291], for interfacing various network protocols,
(TCP, UDP, IEC 61850, DNP3) with the RTDS. In the synchrophasor monitoring setup, the GTNET
is used to acquire RTU measurement signals, derived from virtual voltage magnitude, active and reac-
tive power meter components of RSCAD, and send them to a local workstation client over TCP. Figure
9.2 shows the front panel of the RTDS cubicle, with the analog outputs of the NovaCor simulator at
the bottom of the picture, and the GTAO card, which is used to generate analog voltage signals corre-
sponding to measured voltages and currents.
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Figure 9.1: Schematic diagram of the laboratory hardware configuration.

Simulation design and operation are managed through the RSCAD software suite, which serves as
the user interface for building, controlling, and analyzing simulations. RSCAD includes several inte-
grated modules that support end-to-end simulation workflows without requiring third-party tools. The
Draft module is used to construct simulation models using a comprehensive library of components that
span power systems, control systems, protection, and automation domains. Users can configure the
parameters for each component directly within this interface. Once the simulation model is complete,
RSCAD automatically compiles the design into executable code and assigns simulation tasks to the
appropriate processor cores. The compiled model is then uploaded to the NovaCor rack over an Ether-
net connection. During execution, the Runtime module allows users to interact with the system in real
time, by visualizing the real-time operation of the network and adjusting simulation parameters.
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Figure 9.2: Laboratory setup of the RTDS (left) and GTAO expansion card (right).

9.2.2 Hardware PMUs

The laboratory configuration includes three SEL-351A [292] distribution feeder distance protection
relays, depicted in Figure 9.3. In addition to their protection functions, these relays are capable of
providing synchrophasor measurements when synchronized to a high-precision time source such as a
GPS clock. The configuration of each relay begins with its Global Settings, which define parameters
such as device location and identification, nominal frequency, number of setting groups, and the ena-
bling and customization of synchrophasor output. All three relays are integrated into the local area
network (LAN) via a 24-port Ethernet switch.

y =7

Figure 9.3: SEL-2730M switch and three SEL-351A PMUs.

The SEL-351A relays used in this study are equipped with one 3-phase voltage input and one 3-
phase current input channel. Considering that the RTDS produces low-level analog signals (10 Vmax)
from the simulated cases, while the PMU voltage and current inputs are rated at 300V and 5A, respec-
tively. As a result, these signals require either amplification or an alternative method of connection to
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be compatible with the relay inputs. To avoid external amplification, the laboratory configuration uses
the low-level interface of the SEL-351A relays, which allows direct connection of the RTDS analog
outputs and the GTAO card, to the relay input terminals via ribbon cables. Access to the low-level
interface requires opening the front panel of the relay enclosure, as it is not exposed during standard
operation. When this connection method is used, the analog inputs bypass the relay’s internal instru-
ment transformers, which normally scale down CT and VT outputs for internal A/D conversion. There-
fore, it is essential to configure the RTDS analog output scaling appropriately to comply with the volt-
age levels of the low-level interface and ensure accurate signal representation. The following formulas
are used to calculate the scaling factors for the analog measurement signal outputs of the RTDS:

Vin
e for voltage measurements: Vo :L’
° P T VTR XVSE
e for current measurements: lg :I¢,
CTRxCSF

where V1 (155%) is the single-phase low-level voltage (current) measurement value fed to the

PMU inV (A), Vph (1 ph) IS the single-phase voltage (current) value produced during the real-time

simulation of the power system in V (A), VTR (CTR) is the voltage (current) transformer ratio set in
the relay software settings, and VSF (CSF) is the voltage (current) scale factor for the low-level input
module of the PMUs. For the SEL-351A devices VSF = 223.97 V/V and CSF = 110.6 A/V.

Relay settings and communication parameters are configured using AcSELerator QuickSet, the ven-
dor-provided software tool. In the laboratory synchrophasor network, all synchrophasor data is trans-
mitted over TCP/IP using the IEEE C37.118-2005 standard.

9.2.3 GPS-synchronized clock

All available PMUs need to be synchronized to a common time source, which is the UTC. The
synchronization is achieved with the SEL-2401 [293] device, which is a satellite-synchronized clock
that provides IRIG-B time-code format output for the SEL-351A relays. IRIG-B is a time data format
consisting of one-second frame that contains 100 pulses divided into a number of fields. A PMU can
decode the second, minute, hour and day fields and set its time clock after detecting valid time data in
the IR1G-B time code.

The SEL-2401 is connected via a TNC coaxial connector to a GPS antenna that receives the UTC
signal from at least four satellites. When the satellite clock is powered on, initially the IRIG-B outputs
are disabled until the clock locks with satellites to prevent sending incorrect time to the PMUs. The
GPS signal is then converted to IRIG-B time format with an average accuracy of £100 ns and is sent
through BNC cables to the PMUs. Note that the outputs of SEL-2401 exceed the required performance
specifications established by the synchrophasor standard IEEE C37.118-2005.

9.2.4 Phasor data concentrators

PDCs play a central role in synchronized measurement systems, enabling the aggregation, time
alignment, and real-time monitoring of high-resolution phasor data from geographically distributed
PMUs across the grid. In this experimental setup, two types of PDCs are employed: the commercial
SEL-5073 software PDC and the open-source openPDC platform. Both are used to collect, filter, and
synchronize incoming data streams from PMUs. Their core functionalities and internal structures are
illustrated in Figure 9.4. In accordance with the IEEE C37.118-2005 standard, PMUs act as servers,
continuously streaming real-time phasor data over Ethernet to the software PDCs, which function as
clients. Upon receiving these streams, the PDC aligns the data based on GPS-synchronized
timestamps. It can also perform user-defined calculations, including real and reactive power, sequence
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component analysis, and other algebraic operations. The processed, time-aligned data is then re-broad-
cast at rates of up to 100 messages per second, making it available for downstream synchrophasor
applications.

The PDC output streams support a variety of functions including system monitoring, real-time con-
trol, protection logic, and data archiving. Archiving options include both continuous recording and
trigger-based recording. When trigger-based archiving is selected, users can define the conditions that
initiate data capture, the duration of pre- and post-event recording, the maximum number of stored
events, and data retention parameters. Additional configuration settings allow users to specify the out-
put phasor format (polar or rectangular), angle units (degrees or radians), data formats such as CSV,
Binary COMTRADE, or ASCII COMTRADE, and archive naming conventions and storage intervals.
Configuration and diagnostic tools for each PDC are available via PDC Assistant (for the SEL-5073)
and openPDC Manager (for openPDC).

9.2.5 Local Workstation

All software components used in this experimental setup are hosted on a general-purpose personal
computer operating under the Windows platform. This workstation serves as the central node for man-
aging simulation, data processing and algorithm testing tasks, and is networked with both the RTDS
and the PMUs via LAN. It runs all critical software tools required for system operation and analysis,
including: RSCAD (power system modeling and interfacing with the RTDS), PDCs (SEL-5073, open-
PDC), SEL-5078-2 SynchroWAVe Central, and MATLAB R2022a (PMU-based algorithm implemen-
tation and testing), as well as any user-specific synchrophasor applications under testing.

Software PDC

PMUs
2 S —> Other
C37.118 Calculations IEEE C37.118 Server —» Sy
i application(s)
Client
D QJ  Configuration and ~ Archiving
/— ) - diagnostics (internal database,
CSV, COMTRADE
User 4—| J files)

Figure 9.4: Diagram of software PDC functionalities.

9.3 Verification of synchrophasor measurements

This section presents the verification process carried out to ensure the correct configuration and
functionality of the synchrophasor measurement network. The primary objective of these tests is to
confirm that all components, including hardware PMUs, PDCs, and all associated software, are
properly configured. Two key tools are employed: SEL-5078-2 SynchroWAVe Central, a dedicated
synchrophasor visualization platform, and the built-in real-time status display available in the SEL-
5073 PDC software. These tools are used to monitor system performance and assess the integrity of
time-synchronized phasor data streams in real time.

The SEL-5073 interface provides critical diagnostic information regarding system operation. It dis-
plays the connection status of PMU inputs, network latency, the rate and consistency of data frame
reception, and overall input/output activity. Figure 9.5 shows as an example of an input connections
status produced by the SEL-5073 PDC during testing of the actual synchrophasor network, with PMU
measurements collected from the IEEE 14-bus network simulated in the RTDS.
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Meanwhile, SynchroWAVe Central provides a graphical interface for viewing live PMU data trans-
mitted to the PDC. It interprets data stored in the PDC’s internal relational database, converting it into
user-friendly, real-time visualizations. The software connects directly to any PDC that complies with
the IEEE C37.118 protocol and stores the incoming phasor data in its proprietary Historian database.
Time-aligned measurements can then be displayed through SynchroWAVe Central’s web-based dash-
board in the form of dynamic plots and phasor diagrams.

In the representative example shown in Figure 9.6, the IEEE 14-bus system’s real-time behavior is
visualized during a simulation. The display includes live plots of frequency, bus voltages, and line
current magnitudes, as measured by the PMU installed at Bus 1. A phasor scope illustrates the phase
angles of all monitored voltages, using Bus 1 as the reference. To introduce dynamic behavior into the
simulation, all loads in the RTDS model are configured using Dynamic Load components within
RSCAD. This setup enables real-time external control of active and reactive power demand of each
load through a MATLAB script. At a randomly selected point in the simulation, the reactive power
load at Bus 2 is deliberately increased by the user. This event is immediately reflected in the Syn-
chroWAVe Central interface, as shown in the captured screenshot (Figure 9.6), verifying the system’s
responsiveness and the synchrophasor network’s integrity.
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Figure 9.5: SEL-5073 PDC real-time status and diagnostics tab.
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SYNCHROWAVE CENTRAL
6/12/2021)

Figure 9.6: SynchroWAVe Central snapshot (voltage, frequency, current, phasor scope) during load variation
at Bus 2 of the IEEE 14-bus network.

9.4 Online state estimation using PMU measurements

In the deployed laboratory setup, both hybrid and PMU-based SE algorithms are simulated in real
time, and their performance is assessed using various metrics (see Subsection 6.5.2). The RTDS is
used to emulate real-time operation of the IEEE 14-bus sub-transmission network, as well as a reduced
29-bus version of the 15-kV Active Distribution Network (ADN) of Kythnos island, Greece. Real-
time data are received from the RTDS and the physical PMUs and used as inputs to the online SE
algorithms. Finally, the SE results are presented via GUI, in the form of bus voltage phasors and line
power flows on the SLD of the simulated system.

9.4.1 Online hybrid state estimation: IEEE 14-bus network

An online implementation of the ISE method proposed in Subsection 6.2.1, utilizing both virtual
RTU and hardware PMU measurements, is developed and effectively validated in real-time, using the
configurations presented in Figure 9.7 and Figure 9.8. The first implementation (Figure 9.7) utilizes
the commercial software platform (SEL-5073 PDC) and relies on its internal database for exporting
PMU measurements to the MATLAB-based SE algorithm, as well as the SynchroWAVe Central soft-
ware for visualization purposes.

The second implementation is based solely on open-source tools. This setup utilizes openPDC (in-
stead of SEL-5073) to collect PMU data, mongoDB for data storage and transfer between applications,
and a python-based GUI that presents SE results in real-time on the SLD of the simulated network.
The open-source openPDC software developed by Grid Protection Alliance (GPA) [294], is used. For
the purposes of real-time applications, such as SE, openPDC has been configured to always supply the
most recent measurements both to its internal database and to an external database (mongoDB). The
use of a database to store the full set of PMU measurements offers the ability to retain historical data
for future analysis, while simultaneously allowing real-time applications to query its contents. This
role is fulfilled by mongoDB, an open-source, non-relational database. For real-time application de-
velopment, minimizing data-lookup time is of paramount importance. To this end, mongoDB provides
the “Change Streams” feature, which monitors the flow of data entering or exiting the database, ena-
bling client applications to access updates in real time. Specifically, an application can be automatically
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notified by the database of any changes to its contents at the moment they occur. Thus, real-time ap-
plications communicating with mongoDB need not spend time polling for data, as they always have
access to the latest records with minimal latency, leading to shorter execution times and reduced time-
skew. Leveraging this capability, mongoDB is used as the data-transfer mechanism between openPDC
and the state estimator.

The graphical user interface (GUI) serves as the HMI in the experimental setup and is intended to
visualize the SE outputs, enabling the power-system operator to monitor network variations in real
time. The GUI is implemented using Python’s Tkinter library. The application’s graphical interface
consists of two independent windows. The first displays a dynamic SLD of the power system, on which
the magnitude and angle of bus voltages, as well as active and reactive power flows of transmission
lines and transformers, are updated in real time according to the latest SE results. To facilitate the
identification of system disturbances, represented quantities change their display color to red if any
predefined safety limits are violated. The second window allows oversight of the temporal evolution
of the state variables, i.e., a real-time plot of the complex bus voltages versus time. In the open-source
platform, the estimated state variables are stored in mongoDB and subsequently retrieved by the graph-
ical display application.

Conventional measurements are recorded via software (virtual) RTUs implemented in RSCAD and
are made available directly to the MATLAB-based SE process via TCP. PMU measurements are avail-
able to the estimator at 50 fps, while the conventional (RTU) measurements are updated every 2 sec-
onds. The ISE process (Subsection 6.2.1) is executed automatically every 2 seconds, upon arrival of
the RTU measurements, incorporating the most recent set of PMU data. It is noteworthy that the RTU
measurements taken directly from the RTDS Runtime can be considered perfectly accurate (noise-

free) compared to PMU device readings. Thus, Gaussian noise rand xo;, rand beinga N (0,1) ran-
dom number, is added to the RTU measurements obtained from the GTNET card of RTDS, in order

to make them closely resemble real field measurements. The measurement uncertainties are assigned
as described in Subsection 6.5.1.
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Figure 9.7: Data flow sequence for the real-time simulation of the ISE algorithm.
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Figure 9.8: Alternative simulation setup of the ISE algorithm using open-source software.

A screenshot of the Draft module of RSCAD with the simulated IEEE 14-bus system is depicted in
Figure 9.9. The IEEE 14-bus test system contains 11 loads, and 5 generation buses: 1, 2, 3, 6, and 8.
The base case loading data for the IEEE 14-bus network and the two meter-placement schemes are
presented in Table 9.1. A different MS is considered in each of the two ISE simulation setups:

e MS 1 (Figure 9.7): PMUs at buses 1, 3 and 5, lines 1-2, 3-4 and 5-6. RTUs at buses 2, 6, and 9.
e MS 2 (Figure 9.8): PMUs at buses 2, 6 and 8, lines 2-1, 6-11 and 8-7. RTUs at buses 3, 5 and 9.

Each set of PMU measurements forwarded to the PDC consists of the positive sequence voltage
phasors at each monitored bus, and current phasors at each monitored line. Each set of RTU measure-
ments includes the voltage magnitude and power injections at each RTU-measured bus, as well as
power flow measurements over all incident branches.

In order to test the real-time static HSE implementation, 1000 Monte Carlo simulations are per-
formed, both with and without bad data involved. Bad data detection, identification and removal are
accomplished via Algorithm 8.1. The results of the ISE algorithm are compared with the true values
provided by the RSCAD runtime in Table 9.2, which presents various performance metrics (see Sub-
section 6.5.2) obtained from the simulations. It should be noted that SE is performed without a refer-
ence bus, whereas the true states in the runtime are reported with Bus 1 as the reference. Hence, the
estimation results are also presented using Bus 1 as the reference to enable direct comparison. A snap-
shot of the real-time supervisory application displaying the estimator results is shown in Figure 9.10.

As shown in Table 9.2, the ISE algorithm demonstrates strong performance across all evaluated
accuracy metrics, considering the specified error parameters. The minimal difference observed be-
tween the results obtained with and without bad data indicates that the implemented algorithm is ef-
fective in detecting and rejecting gross measurement errors. The slightly elevated average execution
time for the HSE in cases involving bad data can be attributed to the additional computational steps
required for bad data processing.
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Table 9.1: Online ISE — IEEE 14-bus network load data and measurement configuration.

Bus e Base Case Load MS1 MS 2
number P(MW) | Q(MVAr) Sensor Sensor
1 Slack - - PMU -
2 P-v 21.7 12.7 RTU PMU
3 P-v 94.2 19.0 PMU RTU
4 P-Q 47.8 -39 - -
5 P-Q 7.6 1.6 PMU RTU
6 P-V 11.2 7.5 RTU PMU
7 P-Q - - - -
8 P-v - - - PMU
9 P-Q 29.5 16.6 RTU RTU
10 P-Q 9.0 5.8 - -
11 P-Q 3.5 1.8 - -
12 P-Q 6.1 1.6 - -
13 P-Q 135 5.8 - -
14 P-Q 149 5.0 - -
Table 9.2: Online ISE — Performance metrics.
Metric MS1 MS 2
No bad With bad No bad With bad
data data data data
MAEy (%107 pu) 1.00 1.50 1.20 1.25
MAE,(x107" deg.) 3.03 3.12 2.42 2.64
Maccy (<1072 pu) 1.47 1.50 1.06 1.28
ISE time (ms) 2.30 9.20 2.20 9.00
. 5 | .
R

1

._7

Figure 9.9: IEEE 14-bus system modeled in RSCAD.
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An equally important parameter for real-time applications is latency — that is, the interval from the
moment measurements are sent to the estimator until its results appear on the HMI. To calculate this
duration, one must record the time when measurements occur and the time when the results are dis-
played on the computer screen, neglecting any transmission delay within the laboratory LAN. The
difference between these two timestamps constitutes the time skew of the results relative to real time.
The distribution of the supervisory application’s time skew over 19,281 estimation cycles — having a
mean skew of 120 ms — is presented in the plot of Figure 9.11.

A
Bus: 13
1.041 pu
L -8.66 deg Bue: 14
Us:
Bus: 12 205,
1.048 pu  E—— = 19 %ﬁdpeté
-8.59 deg D”ds -
0021
— Bus: 11
oot 1.043 pu
-8.06 deg
= Bus: 10
- 1.028 pu
-8.21 deg
2%
0
2, N Bus: 8
e - o
5 FI Tmtﬁg BN =>| fg 1.085 pu
zlfigg|'s  Buse Bus:9 s s -36.27 deg
T 1.085 pu 1.029 pu
-7.67 d -7.98 d -0.007
Bus: 1 €9 €9 ==
- h @ o | —
1.06 pu N‘I }F —
7.53 deg =L
Bus: 7
le H EH% cAlAe 1046 pu
\x\‘f) y 0471 0.121 Bus: 5 s 2 g g 633 deg
A 1.013 pu i
¢ -1.79 deg _osth
Py "
Bus: 4
1.011 pu
-3.27 deg
0.745
2.26 deg —_d 70,223[ Tn,nsa
] 0.033 Bus: 3
: 1.007 pu
-5.68 deg

.

Figure 9.10: Graphical interface for monitoring bus voltages and line power flows.
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9.4.2 Online PMU-based state estimation: IEEE 14-bus network

A MATLAB-based linear SE (LSE) algorithm is also implemented and validated using the devised
test bed. The IEEE 14-bus system is simulated using the RTDS, while synchrophasors are recorded by
the PMUs and collected via openPDC. The open-source MATLAB-based Synchrophasor Application
Development Framework (SADF) software is then used as interface between openPDC and the real-
time SE algorithm. During the simulations, the true state values are communicated from the RTDS to
the MATLAB environment of the local workstation. Figure 9.12 illustrates the data flow diagram of
the simulations.

In this setup we utilize the three commercial PMUs (SEL-351A), along with two low-cost prototype
PMUs, presented in [295], resulting in a total of 5 hardware PMUs, each providing one 3-phase voltage
and one 3-phase current phasor measurement channel. Thus, a maximum of 10 synchrophasors in total
(5 voltage phasors and 5 currents) are available. However, these 10 phasor measurements are not suf-
ficient to achieve complete observability for the 14-bus system. As the simulated network is symmet-
rical, i.e., phasor quantities are of equal magnitude and 120° apart in phase, and the impedances of the
three-phase circuits are of equal magnitude and phase angle, we may utilize each measurement channel
of the 5 hardware PMUs independently, to obtain a total of 3 voltage and 3 current phasor measure-
ments from each device.

Local workstation

RTDS

openPDC —>  SADE

RSCAD SE

El

===

Begin simulation, change
loading conditions, etc.

Figure 9.12: Data flow sequence for real-time PMU-based SE simulations.

To demonstrate the impact of PMU measurement redundancy to SE quality, we consider 2 MSs: MS
1 utilizes only 3 PMUs, while MS 2 uses measurements from all 5 available PMUs, as shown in Table
9.3. Each MS consists of:

e Complex voltages of phase A, at each monitored bus.

e Complex currents of phase A, at each monitored line.

To simulate the quasi-steady operating conditions, i.e., the slow fluctuation of the power system
demand and generation through time, the load profile of the power system is varied within a band of
+10% of the base case value. This is accomplished by modeling all loads using the Dynamic Load
component of RSCAD, which allows externally controlling the real and reactive power demand of
each load during the simulation. Synchrophasor data obtained from the PMUs are aggregated by the
openPDC, time-aligned, and forwarded to SADF at a reporting rate of 1 fps, so that they can be readily
accessed by the MATLAB-based SE algorithm, whilst also being archived in a database for future use.
The SE algorithm is implemented as a MATLAB callback function, which is executed automatically
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upon each new measurement acquisition. The total simulation time is 200 s, which means that the SE
algorithm is executed 200 times.

From Table 9.4, it is evident that the SE algorithm provides a reliable estimate of the system states,
for both MS 1 and MS 2, considering the given PMU measurement uncertainties. Even though the
difference between the respective accuracy metrics of MS 1 and MS 2 is marginal, there seems to be
some improvement to SE results with the addition of 16 PMU measurements. This improvement is of
course expected to be more significant in larger systems, particularly in cases where there is low PMU
measurement redundancy to begin with. The higher average execution time for MS 2 is due to the 16
additional measurements that need to be processed by the SE algorithm.

According to the box plots of Figure 9.13, for MS 1 the average interquartile range (IQR) is around
1.6x107 pu for voltage magnitudes, and 0.48° for voltage angles. Utilization of 16 additional PMU
measurements in MS 2 (Figure 9.14), reduces the IQR to 1.4x107 pu and 0.36°, for voltage magnitudes
and angles, respectively. For both MS 1 and MS 2, it is apparent that the median is equally close to the
first and third quartiles, indicating that the distribution of the estimated states shows no significant
skew. Finally, it appears that no more than 3 outliers are observed for each state variable, out of 200
simulations, validating that the standard deviations of the PMU measurements were selected appropri-
ately.

Table 9.3: Online PMU-based SE measurement configurations.

MS Voltage Current Total no.
Measurements (buses) Measurements (lines) | of measurements
1-5,2-1,4-3,6-11,8-7,
MS 1 1,2,4,6,8,9,10,12,13 9-14.10-9,12-13,13-14 36
MS 1 and 3-2,5-6,
MS 2 MS 1 and 3,5,11,14 11-10,14-9 52

Table 9.4: Online PMU-based SE accuracy and performance metrics.

Index
Test Case .
MAEy MAE, | Mace, | EXeCution
time
MS 1 1 x103 pu | 0.0143° 0.004 pu 1.5 ms
MS 2 8 x10*pu | 0.0131° 0.003 pu 2.3 ms
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Figure 9.13: Box plots of online LSE results for MS 1: (a) voltage magnitudes, (b) voltage angles.
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Figure 9.14: Box plots of online LSE results for MS 2: (a) voltage magnitudes, (b) voltage angles.

9.4.3 HSE in active distribution grids: a case study for Kythnos island, Greece

Distribution system state estimation (DSSE) has become an undisputed necessity in ECCs for real-
time monitoring and operation of ADNs, which are associated with bidirectional power flows, stochas-
tic RES, load flexibility, and topology changes. In particular, isolated electrical systems and microgrids
are among the main beneficiaries of the operation of state estimators. In this context, the implementa-
tion of DSSE tools is flourishing globally based on the long-standing academic research and field
testing.

In traditional distribution networks (DNs), telemetry via SCADA typically reduced to the medium
voltage (MV) busbar of primary substations, thus rendering all downstream buses unobservable unless
a large number of pseudo-measurements — to the detriment of accuracy — was used. The ongoing up-
grade of metering instrumentation of DN initiated in the past decade, creates favorable conditions for
implementing quality DSSE. Automated meter reading (AMR) systems and advanced metering infra-
structure (AMI) based on smart meters deliver ample measurement data from customers. Following
power transmission sector, synchrophasor technology gradually penetrates into distribution grids; dis-
tribution-level phasor measurement units (D-PMUs) can vitally boost the availability of actual meas-
urements, thus expediting the consolidation of DSSE. Motivated by this promising perspective, this
study showcases the exploitation of PMUs for HSE, using the ADN of Kythnos island as a testbed.

9.4.3.1 Active distribution network modelling

In order to implement the HSE algorithm in the SIL test bed, the non-interconnected 15-kV Kythnos
distribution network is modeled in RSCAD and simulated on the RTDS. Principally, the full model of
the Kythnos DN is represented by a 221-node grid, each one pertaining to one MV bus, and 220
branches, each one referring to one line connecting two buses. Due to hardware limitations imposed
by the RTDS, the DSE simulations calculate the state estimates for a subnetwork of the Kythnos power
system, comprising 29 buses and 28 branches. The network model includes the slack bus of the thermal
power station (TPS), along with reduced versions of the 4 main distribution feeders (R21, R22, R23,
and R24) originating from the TPS. The total number and type of each modeled bus is given in Table
9.5. The Kythnos distribution network modeled in RSCAD, is pictured in Figure 9.15.

Regarding the available measurements given the existing instrumentation of the DN, i.e., without
any PMUs, the voltage magnitude at the MV busbar along with the power flows at the top of each
feeder are the measurands acquired from the SCADA of the TPS. Also, real-time power injections at
the PV sites are available, while virtual measurements convey error-free information about zero injec-
tion buses. It is noted that all power measurements refer to a pair of active and reactive injection or
flow. In Table 9.7, a list of all measurement data utilized in the DSE simulations is provided. There is

213



a total of 12 RTU and 36 PMU measurements. Each PMU was assumed to record two phasors (1
voltage and 1 current).

Table 9.5: Description of buses of the Kythnos network modeled in RSCAD.

eeder
Slack bus RESunits = Load buses buses of buses

R21 1 0 3 3 7
Common

R22 with R21 2 3 4 7
Common

R23 with R21 1 3 > 8
Common

R24 with R21 0 3 4 7

Aggregate 1 3 12 16 29

The standard deviation o; of measurement z;, is given by the expression (6.98), which is repeated
here for reasons of convenience:

true
i

€

YA
o; = max

3

where €, 1S a percentage of maximum error about z;, given according to Table 9.6.

The reason for assuming a relatively large measurement error in voltage angle measurements lies in
the small differences between voltage angles of the Kythnos network, which is typical of distribution
systems. As already mentioned, PMUs need near-perfect synchronization (<1 ps) with reference to
UTC in order distinguish phase-angle differences lower than 0.02°. Taking into consideration the rel-
atively low loading of each distribution feeder, it is safe to assume that voltage phase-angle measure-
ment errors will correspond to a rather large percentage of the measured quantity. In general, by deriv-
ing the above emax values from the accuracy level we expect to achieve for each measurement type, we
are able to set realistic weights (standard deviations) for each measurement, which in turn greatly im-
proves the accuracy of the HSE algorithm. The standard deviation and the value of a phase-angle
measurement are expressed in radians. For all other measurements they are expressed in per-unit.

Table 9.6: Assumed maximum errors per measurement type for DN SE.

Measurement type emax (%0)
Voltage magnitude at TPS (SCADA) 1
Power flows at TPS (SCADA) 2
Power injections from PVs 5
Phasor magnitudes (PMUs) 0.1
Phasor angles (PMUs) 1
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Figure 9.15: RSCAD Draft model of the 29-bus Kythno; network.
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Table 9.7: Reduced Kythnos network — Type, number and source of measurements.

Network Available Measurements —
ocation
part Type No. Source
Voltage phasor 1 PMU #1 Bus 1
measurements
Local TPS
%“;;;’S:e‘r’::zg 1 PMU #1 Line 1-16
Voltage magni-
tude and power 1 RTU #1 Bus 156
injections
cooder | oMage phasor PMUs #2 and #3 MV/LV buses 146, 152
R2l Current phasor
measurerr)nents 2 PMUs #2 and #3 Lines 146-144, 152-150
Zer('}e((::l:[lil‘cl’)f]r;t in- 3 Zero injection buses Buses 142, 144, 150
Voltage magni-
tude and power 1 RTU #2 Bus 488
injections
Eeoder \ﬁ;zgfe"r’::sg 2 PMUs #4 and #5 MV/LV buses 471, 485
R22 Current phasor
measure?nents 2 PMUs #4 and #5 Lines 471-467, 485-469
Zer(}ec(:l:irgir;t n- 4 Zero injection buses Buses 454, 456, 467, 469
Voltage magni-
tude and power 1 RTU #3 Bus 611
injections
ooy | oMage phasor | PMUs #6 and #7 MV/LV buses 598, 607
R23 Current phasor
oot 2 PMUs #6 and #7 Lines 598-596, 607-605
Zero current in- . Buses 582, 594, 596, 601,
L 5 Zero injection buses
jections 605
Voltage magni-
tude and power 1 RTU #4 Bus 49
injections
Feeder \é]‘z';igfe‘r’::sg 2 PMUs #8 and #9 MV/LV buses 31, 36
R24 Current phasor
measureFr)nents 2 PMUs #8 and #9 Lines 31-29, 36-34
Zero current in- 4 Zero injection buses Buses 16, 18, 29, 34

jections
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For the purposes of this simulation, three different scenarios are considered, each under different
loading conditions, based on past measurement datasets gathered during actual operating conditions
of the Kythnos network. As regards the RES of the island, 3 photovoltaic (PV) units with total installed
power of 240 kW are in operation. With the island’s peak load for 2019 being approximately 3.5 MW,
the following simulations are executed considering a peak load of 3.5 MW:

e Case 1: No RES generation combined with peak load.
e Case 2: Maximum RES generation, peak load.
e Case 3: 50% of maximum RES generation, 75% of peak load.

It is worth noting that the total RES generation of feeder R23 is considered as an aggregate active
power generation on bus 611, simulating the existence of PV generation at downstream buses 679 and
892, which are not modeled in the reduced 29-bus system.

In short, the procedure of executing and validating the HSE algorithm is the following:

1) RTDS simulation of the DN is executed and measurements are obtained in real time, using the
configuration of Figure 9.7. For comparison purposes, the PMU-based SE configuration of Figure
9.12 is also utilized, referred to as Linear State Estimator (LSE) for convenience.

2) The (hybrid or PMU-based) state estimator solution is produced (300 simulations for each steady-
state test Case) and results are saved locally for further analysis. For the specific system conditions,
the actual state vector is also obtained and stored from RSCAD.

3) Evaluation of the state estimator’s accuracy and performance is conducted using various metrics.

Subsequently, all of the accuracy and performance metrics discussed above are derived as an average
from 300 simulations for each operating Case, and are presented in Table 9.8 for the nonlinear ISE and
the PMU-based LSE. Additionally, the results from the above simulations are depicted in the form of
box plots, in order to examine the symmetry and skewness of the distribution of the state estimates. In
the box plots of Figure 9.16 — 9.21, the estimation results of the ISE are presented for each simulation
Case.

Table 9.8: Reduced Kythnos network — SE accuracy and performance metrics.

System Loading
Case 1 Case 2 Case 3
ISE LSE ISE LSE ISE LSE
MAEvy (pu) | 0.0026 | 0.0009 | 0.0027 | 0.0010 | 0.0028 | 0.0009
MAEA (°) 0.0017 | 0.0023 | 0.0018 | 0.0021 | 0.0015 | 0.0021
Maccy (pu) | 0.0209 | 0.0131 | 0.0217 | 0.0142 | 0.0207 | 0.0130

Metric

EEI 20.786 | 15.737 | 18.638 | 15.153 | 19.949 | 15.239
MAPE (%) | 0.2625 | 0.0869 | 0.2682 | 0.0890 | 0.2783 | 0.0866
Time (ms) 2.7 0.9 2.7 1 2.8 0.9

Iterations 2 1 2 1 2 1
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9.4.3.2 Results evaluation
Judging by the accuracy metrics presented in Table 9.8, the following points are to be noted:

e According to MAE, and MAE , the proposed DSE algorithm can provide a reliable real-time snap-

shot of the power system states within a numerical tolerance of 3x107 pu and 2x107 degrees, for
ISE, and 1x107 pu and 2x10° degrees for LSE, independently of simulation Case. The marginal
improvement of the state estimate quality for the PMU-only SE over those of the HSE, is a direct
result of utilizing only high-accuracy PMU measurements, instead of incorporating both PMU and
RTU measurements. Note that the slight increase observed in MAE, could be attributed to reduced

measurement redundancy, as the PMU-only SE measurement quantity is reduced by 12, compared
to the hybrid method.

e Macc, is of the order of 2x1072 pu (1x1072 pu) for hybrid (PMU-based) SE, which is acceptable

considering the given meter uncertainties. Again, the accuracy metric shows minor improvement
when only synchrophasors are considered. From the two Tables, it is also evident that Macc, is

slightly higher for Case 2, which is expected, as according to literature estimation errors are usually
larger for maximum loading conditions.

e The theoretical maximum value of EEI is:
2

mg+m, _

EEI" - 3% | _g(m,. +m.)=09x48 =432, for ISE, and

max S p

i1 i
& ( 30 ?

EEIC., =Z(—'J =9m, =9x36 =324, for PMU-based LSE.
i1\ Oi

Notice that all EEI indices are very low, compared to their corresponding EEI,,, values (~5%
of EEl. ), which essentially confirms the accuracy levels for both PMU and RTU measurements,
as well as the good time quality (synchronization) of the obtained phasor angle measurements.

e Finally, the obtained MAPE values also aid in confirming the satisfactory quality of the state esti-
mates, with an absolute difference of around 0.27% between estimated and true values of voltage
magnitudes. This difference is even lower for the PMU-only SE module (~0.09%).

As far as the performance metrics are concerned, the ISE algorithm converges in 2 iterations, and
requires approximately 2.8 ms of execution time, which is very efficient for a 29-bus system. As ex-
pected, the linear PMU-only SE converges even faster (~1 ms). The total execution time of the SE is
of significant importance, as it should ideally be much lower than the measurement update period. In
our case, this holds true for both PMU (20 ms) and RTU (2 s) measurements. It should be noted,
however, that increasing the network size, i.e., simulating the entire 22 1-node Kythnos network, would
naturally result in longer computation times and potentially a higher number of required iterations.

The statistical evaluation using box plots further validates the accuracy of the estimation results.
Across all test cases, the interquartile range for voltage magnitude estimates is consistently around

107 pu, which is acceptable given the assumed measurement error bounds. A similar level of accuracy
is observed for most voltage phase angle estimates, although slight degradation is noted at buses ob-
servable only through RTUs. Importantly, the symmetry of the box plots — where the median lies ap-
proximately equidistant between the first and third quartiles — suggests that the distribution of the
estimated states demonstrates no significant skew. Furthermore, for all system states, the median aligns
closely with the true values obtained from RSCAD. Given the near-identical median and mean values,
this symmetry confirms that the implemented SE methods provide unbiased estimates of the system
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states. Finally, the number of outliers remains low for all Cases, being marginally higher for RTU-
observable buses.

9.4.4 Conclusions

In this Chapter, a laboratory configuration for implementing and testing various synchrophasor ap-

plications has been presented. Physical PMUs and software PDCs were used to obtain measurements
from power systems simulated in the RTDS, while hybrid and PMU-based SE algorithms were tested
in real time. At this stage, we can deduce two major factors that should be taken into consideration
when evaluating the SE results in terms of their accuracy and reliability, within the presented labora-
tory framework:

1)

2)

The measurement devices used (both hardware and software) are not connected to the simulated
power system using VTs or CTs. As such, the measurement errors typically introduced by instru-
ment transformers are not reflected in the current setup. As was clarified in Subsection 3.4, there
are two sources of error in instrument transformers, namely ratio error and phase angle error. In a
given transformer, the metering error is the combination of the two separate errors, which should
realistically be around 0.5%, and 0.344°, for modern high-accuracy ITs. The overall metering error
depends on the specific characteristics of the installed VTs/CTs and the error compensation algo-
rithms implemented by the PMU manufacturer. In real-world systems, these errors contribute to
small but non-negligible deviations in measurement accuracy, and, as they are absent from the
laboratory results, they should be considered when extrapolating findings to field deployments.

The SEL-351A PMUs used in the laboratory setup benefit from ideal time synchronization condi-
tions: all devices are placed in the same location, and share a common GPS antenna. This config-
uration ensures near-perfect synchronization accuracy, likely resulting in phase angle measurement
errors that are even lower than those expected in field installations. According to IEEE C37.118-
2011, phase angles should be ideally measured with an accuracy of around 0.02°, regardless of
location of the PMUs. This is of course considered under perfect (low-latency) synchronization of
the PMUs to the common time reference. That being said, in field conditions, synchronization
delays and signal propagation effects often introduce additional errors, meaning that real-world
phase angle measurements may be less precise than those recorded in the laboratory. Furthermore,
in distribution systems, voltage phasor angles tend to differ by only very small margins, making
them especially sensitive to synchronization errors. When applying WLS-based SE algorithms in
such contexts, it is crucial to assign appropriate weights to phase angle measurements to ensure
numerical stability and estimation accuracy.
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10. CONCLUSIONS AND PROSPECTS

The entirety of the research carried out within the scope of this dissertation is presented in detail in
Chapters 5 — 9. In this Chapter, a brief recap of the work is followed by a summary of the principal
research findings. Finally, the research prospects regarding power system state estimators are noted,
and a framework for future investigation is proposed.

10.1 Recapitulation and conclusions

The subject of this dissertation is the utilization of different measurement types with diverse char-
acteristics for conducting power system static and dynamic state estimation. The main criteria for eval-
uating the performance of the proposed methods pertain to three main objectives: a) improving state
estimation accuracy, b) being technically feasible within the existing EMS, ¢) forming a complete and
viable framework for continuous, real-time operation. In this context, the methods developed in this
thesis are essentially modified and enhanced versions of well-established WLS-based SSE and FASE
techniques, which are implemented so as to satisfy the three aforementioned criteria.

After expanding on the background and motivations of the thesis in Chapter 1, the 2" Chapter delves
into the fundamental functionalities and elaborates on the typical architecture of modern SCADA/EMS
systems. Chapter 3 then introduces the reader to the concept of synchrophasors and the broader
WAMS, highlighting the role of PMUs as the backbone of enhanced, dynamic and reliable power
system monitoring, and providing an overview of their functionalities. Chapter 4 performs an intro-
duction into power system monitoring and, specifically, the basics of WLS state estimation. The deri-
vation of the WLS formulation, along with all relevant mathematical modeling, in terms of power
system components and measurement functions, and the different solution methods of the SE problem
are provided here in detail, to serve as reference for the rest of the thesis. Chapter 5 specifies the focus
of the thesis, that is, the exploration of novel HSE methods, by presenting a thorough literature review,
and deducing several topics for future research.

The 6™ Chapter presents the main body of research of the thesis into hybrid SSE methods, split into
two parts: the first elaborates on the derivation of the proposed SE algorithms, and the second presents
their application to IEEE benchmark transmission systems and to distribution networks reported in
international studies. Here, the proposed methods refer to:

1) A novel multi-stage SSE framework, based on the Hachtel’s augmented matrix formulation, for
performing HSE with a limited number of PMU measurements.

2) An equality-constrained hybrid SSE formulation, for the inclusion of classic HVDC links into the
SE process.

3) The investigation of the inclusion of current injection phasor measurements into HSE algorithms,
focusing on its significance for distribution networks.

Chapter 7 continues with the contributions of this thesis, by presenting the detailed derivation of a
multi-stage EKF-based hybrid FASE framework, which utilizes the modified Bryson-Frazier smooth-
ing algorithm to refine the SE results, by calculating the temporal correlation of past and future meas-
urements. Extensive simulations on IEEE benchmark transmission systems are leveraged to evaluate
its performance, under varying system conditions. As bad data analysis is arguably one of the most
important functionalities of a state estimator, Chapter 8 crucially addresses the formulation of bad data
detection, identification and removal algorithms for the proposed HSE methods of Chapters 6 and 7.

Finally, Chapter 9 focuses on a more practical aspect of this research, by presenting the implemen-
tation process and utilization of a laboratory-scale platform built specifically to simulate the function
of a synchrophasor network, from the power system to the actual PMU-based application. In the con-
text of this work, the setup is used to test the real-time performance of hybrid and PMU-based SE
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algorithms presented in Chapters 4 and 6 of the thesis, on a transmission system, as well as on a reduced
version of the distribution network of Kythnos island.

In light of the research work summarized above, the principal conclusions of this PhD dissertation
are as follows.

10.1.1 Hybrid state estimation as reference

Based on the detailed literature review in Chapter 5, as the integration of PMUs increases, especially
in transmission sector, it necessitates implementation of some form of hybrid SE, which leverages the
recorded synchrophasor quantities as complementary information to the conventional SCADA meas-
urements. The relevant literature on HSE is now quite mature, and it can be confidently stated that
there has lately been a shift away from physics-driven towards data-driven methods. This is an ex-
pected and logical course, as there is an abundance of measurement points in power systems today,
with monitoring tools such as WAMS collecting hundreds of data points each second. As the compu-
tational capabilities of modern hardware increase, it is highly likely that the HSE problem will even-
tually be infused with big data analytics and will move away from the model-based methods used thus
far, such as the WLS formulation. Another key change to keep in mind is the decentralization of mon-
itoring and control functions, as a result of substation digitalization. The concept of HSE as described
and explored in this dissertation may become obsolete in the far future, as the centralized monitoring
paradigm moves away from the ECC towards substation-based distributed SE. Nevertheless, for now,
it is critical to continue enhancing the WLS model by leveraging synchronized phasor measurements
together with conventional measurements, as it is the most widely adopted and reliable implementation
of the SE algorithm.

10.1.2 Practical aspects of HSE

Although research on the integration of PMU data into SE now spans almost two decades, literature
has focused mainly on its theoretical aspects. Seeing that in many ECCs, the SE software is now dated,
having been developed for conducting SSE under SCADA information, with basic filtering and bad
data detection functionalities, it is of utmost importance to fill this practical gap. The enhancement of
SSE software with PMU measurements and additional capabilities, without altering it internally, which
is often impractical or impossible as the software is usually proprietary, is a sound and viable way to
modernize it and bring it up to speed with the dynamic nature of contemporary power networks. This
is why in this dissertation, apart from enhancing the accuracy of WLS SE, there is also the focus of
proposing practical algorithms, which attempt to avoid mixing the SCADA and PMU measurements,
thus circumventing various implementation issues that were highlighted in the literature review of
Chapter 5.

Furthermore, as mentioned in the Motivations of the thesis the inclusion of not only new measure-
ment systems, but also increasingly deployed power system components, is crucial to the topic of SE.
Under this premise, another practical aspect of SE explored in this thesis is the modeling of CSC-
HVDC links for integration into the widely adopted WLS-based HSE. It should be noted that, although
similar methods have been proposed in the literature, they do not devise as detailed a model of the
HVDC link, and the formulated SE models are linearized to reduce computational complexity, at the
cost of accuracy.

Last but not least, acknowledging that few suggestions have been made to the utilization of current
injection phasor measurements, a scheme for including these PMU measurements in HSE is proposed,
in terms of both the circuit-level measurement point, and the explicit mathematical modeling of these
measurements in the SE model. Simulation results indicate that, for transmission networks, a combi-
nation of line flow and bus injection current phasors may yield better SE results in terms of accuracy
and convergence, than exclusively allocating either type of current measurements to the available
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PMUs. Furthermore, the proposed measurement scheme is highly applicable to distribution networks,
in which case further research is necessary to solidify the impact of the different PMU configurations
in SE performance, due to the inherent complexities of modern ADNS.

10.1.3 Details in implementation of FASE

Thus far, even though the concept of FASE, and of DSE in general, has been extensively studied,
the relevant literature has not adequately addressed the actual implementation of FASE in a multi-
source and multi-rate measurement environment. Furthermore, there are several key topics of interest
for applying FASE methods that, to the best of the author’s knowledge, have not been investigated:
the origin and proper utilization of the historical information for constructing the state-forecasting
(transition) model, the optimal selection of parameters for the Holt’s model (many works simply men-
tion calculating them “from offline simulations”, without providing any further insights), as well as
the proper weighting of the a priori state information in the SE problem, i.e., selection of the values
of matrix Q (simply selecting “static, low values” of the order of 10 as proposed in several articles,
not only diminishes the information provided by assigning proper uncertainties to the forecasted state
variables, but is also found to negatively affect FASE results on several occasions). This PhD thesis
attempts to cover all the aforementioned topics and thus serves as groundwork for future research
endeavors on the topic of FASE.

10.1.4 Importance of DRTS in the deployment of synchrophasor applications

To improve the processes of conceptual design and validation of synchrophasor-based applications,
this thesis suggests that DRTS architectures constitute a robust and cost-effective way to test novel
methods prior to field deployment. Specifically, the most important HIL use cases include PMU com-
pliance testing, WAMPAC application validation, and time synchronization spoofing studies. Regard-
ing PMU functional testing, it can be expected that as synchrophasor applications evolve in scope and
capabilities, there will be more demanding requirements on harmonic filtering, frequency response
and sampling rate, which are not necessarily assessed in the standard PMU functional tests. An appli-
cation-specific functional test can be easily implemented using an RTS. As for testing WAMPAC
applications, the use cases show that DRTS provides confidence in deploying new applications and
accelerating the development and validation process, thanks to its capability of simulating power net-
work dynamics and its versatile interface to hardware devices and communication network. In addi-
tion, a validated system model could also be used directly in other studies, which would simplify the
modeling tasks and accelerate a study’s progress. From the cybersecurity perspective, a secure, fast
and reliable synchrophasor data communication network is needed. An RTS can be part of a cyber-
physical simulation setup to provide a closed-loop validation of the communication network reliability.
Moreover, for educational purposes, real-time simulation can provide operators, researchers and stu-
dents with adequate data to learn about the system behavior under different contingencies, with and
without the actions of the synchrophasor-based applications.

For the purposes of SE and other open-loop, real-time monitoring applications (oscillations moni-
toring, voltage stability monitoring, etc.) DRTS is found to offer a very flexible and appealing alter-
native to offline software-based simulations. In this thesis, a versatile laboratory-scale platform con-
sisting of an RTS, physical PMUs and software PDCs is used to validate HSE algorithms that were
only tested using offline simulations (with data generated from power flow studies) in previous Chap-
ters, utilizing open-loop DRTS. The findings confirm the performance of the proposed algorithms in
a miniature WAMS, highlighting the nuances that have to be considered when conducting HSE or
PMU-based SE in practice, particularly in distribution networks. In summary, it is concluded that
DRTS can and should be used in multiple ways in tandem with PMUs, to test existing and develop
novel synchrophasor applications.
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10.2 Prospects and future research

Even though substantial progress has been made in the field of HSE, several critical challenges and

open questions remain. In particular, the advancement of HSE is closely intertwined with emerging
developments in adjacent domains, such as power-electronics-dominated grids, integrated energy sys-
tems, cyber-physical infrastructures, and the Internet of Things (IoT). These intersections present both
opportunities and complexities that warrant deeper investigation. In light of this, the following direc-
tions are proposed to guide future research efforts:

1) Measurement model: Enhancing the HSE measurement model is a key area for future research.

2)

3)

4)

S)

Traditional measurement models assume Gaussian, stationary, and uncorrelated noise, which is
often invalid in real-world settings, with noise statistics becoming even more complex when mul-
tiple data sources are integrated. Additionally, the increasing integration of FACTS, HVDC, and
DERs introduces new network modeling challenges, necessitating adjustments in both measure-
ment models and parameter estimation techniques. Advanced mathematical formulations are
needed to accommodate diverse combinations of system components and measurement data,
broadening the scope of current SE modeling frameworks.

State transition models: Most of the existing DSE and FASE methods perform prediction by naive
heuristics such as weighted averages of preceding time-series data. The optimality of these tran-
sition models is neither theoretically justified nor based on sufficient empirical evidence, limiting
the performance especially with the uncertainty introduced by DERs. To obtain more reliable state
estimates, state prediction and filtering must be made robust against the uncertainties inherent in
power systems. Techniques like pattern recognition could help capture the effects of stochastic
components, such as DERs. Multi-area, numerically robust, and efficient data-driven DSE meth-
ods represent promising directions for future exploration. Testing and validating DSE methods
with real-world field data is also imperative, particularly under transient conditions where PMU
accuracy can decline. To improve upon TSE and FASE methods, future research could consider
simultaneous topology and parameter estimation, the correlation between different PMU channels
and successive measurement scans, as well as more advanced techniques for state forecasting and
state transition modeling.

Network model uncertainty and estimation: SE techniques operate under the assumption that the
underlying network model is fully accurate. However, in practice, both topology errors and pa-
rameter inaccuracies are common and can significantly degrade estimation quality. This challenge
is especially pronounced in distribution networks, where detailed and reliable system models are
often incomplete or unavailable. To address this, there is growing potential in physics-informed,
data-driven approaches that blend physical network knowledge with high-volume sensor data.

Integration of data from RES: One of the main drivers for advancing SE technologies is the grow-
ing variability introduced by renewable generation. Modern smart inverters are capable of report-
ing highly detailed measurements, offering a rich data source for enhanced observability. Addi-
tionally, under high renewable penetration, system states are often strongly linked to weather con-
ditions such as solar irradiance, wind speed, and temperature. However, current SE methods rarely
incorporate data from smart inverters or meteorological sources. Exploring ways to fuse these
non-electrical data streams could significantly improve estimation accuracy — particularly in sce-
narios where electrical measurements alone are insufficient.

Fusion of measurement data from different physical representations of the system: As power sys-
tems increasingly integrate inverter-based resources, the influence of fast-switching dynamics be-
comes more prominent. Notably, phasor data from PMUs are based on RMS models, while sam-
pled-value data from MUs, DFRs, and similar devices are derived from EMT models. Because
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6)

these models reflect different time scales and dynamic behaviors, integrating their respective data
streams within a unified dynamic state estimation framework remains an open and critical research
area.

Universal frameworks for integrating heterogeneous measurements: Most current approaches to
integrating multiple types of measurements (e.g., SCADA with PMU or SCADA with AMI data)
are highly case-specific. As more diverse and advanced sensors are deployed across the grid, such
ad-hoc solutions will not scale to meet future needs. To enable robust and flexible state estimation,
there is a clear need for generalized data fusion frameworks that can integrate any combination of
measurement types, regardless of source or format.
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APPENDIX A

In this Appendix, the mathematical expressions of the elements of the measurement Jacobian matri-

ces of Chapter 4 are provided.
e Voltage and current magnitude measurements — state vector in polar coordinates:

v,
Y
8Vi \/Cijviz + DUVJ2 =+ 2V|VJ (E” COS(é‘i —5j)+ F'] Sin(5i _§J))
olj; _ DyV; +V, (Eij cos(5; — ;) + F sin(6; _5j))
oljj _ ViV, (Eij cos(6; — ;) — K sin(,; —5,'))
o _ ViV; (Ejsin(3; - 8;) — Fj cos(3; - 5;))

e Active and reactive power flow measurements — state vector in polar coordinates:

oP; .
6_\; = 2ti?(gsij +0ij)Vi — itV (gij cos(9;; + Agy) + by sin(; +Ag0”-))

oP. |
a_vu- =—tt;V, (gij cos(dj; + Ag;) + Dy sin(5; +A¢ij))
j

oP. |
1

oP. _
8_;- =t;t;ViV; (I cos(8;; +Agy) — gy Sin(S; + Agy) )
j

Z—?/'IJ = —2tF (bg; +105 Vi + 1tV (bij cos(d;; +Ap;) — gj; sin(S;; + A(Dij))
g\,:_j =t;t;V; (by COs(S; +Agy) — gy Sin(;; + Agy))

aa_cézj = —ttViV (bij sin(d;; +Ag;;) + g5 COS(J;; + Ag; ))

% =t;t; ViV, (bij sin(&;; + Ag;) + G COS(6;; + Agy ))

j
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e Active and reactive power injection measurements — state vector in polar coordinates:

R
oV,
R

]
R
09
o

85,

Q
oV,
aQ
oV,
Q
25
aQ

j

jea(i)

jea(i)

jea(i)

jea(i)

(A.5)

(A.6)

e Voltage and current magnitude measurements — state vector in rectangular coordinates:

ol

jo_

8Vi _ VR,i
VR, \/VRZ,i +V|ﬁ
N _ Vii

CijVR,i + EijVR,j - Fijv|,j

(A.7)

Nei \/cij (fo,i +V3)+Dy (vé P V8 )+ 2B (VR j ViV )+ 2F; (ViVe  —VaiVi ;)

DIJVR,j + EIjVR,I + FIjV|,I

Npj \/Cij (Véi +V2 ) +D; (vay V2 )+ 2E; (Vo Ve *ViVi ; )+ 2F; (Vi Ve j ~VaVi )

ol

i

CijVLi + EljvlYJ + FIJVR,j
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Ny \/Cij (Viti +Vi3 )+ Dy (Vi +Vi3 )+ 2B (VaiV j +Vivi j )+ 2F; (Vi VeV )

ol

jo_

DV j + EiVii — FijVri
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e Active and reactive power flow measurements — state vector in rectangular coordinates:
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e Active and reactive power injection measurements — state vector in rectangular coordinates:

oP
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Voltage magnitude and angle measurements — state vector in polar coordinates:

%:1 and %zl
oV, 00;

Real and imaginary current flow measurements:
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