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ITepiAndm

O xopxivog Tou eyxe@diou mapouéver uio and Ti¢ mo emeTinég xan VovaTnpOeeS HOopPES
o0 IELG, UE ONUUVTIXT ETEPOYEVEL Xal EAMTY Tpdyvwon. H aliémotn mpdPfiedn tng emi-
Blwong eivon xplown yio Tov oyedlaoud eCotouixeupévng Yepaneiog xan T Bektiotonoinom tng
AN HAVIXOY amopdoeny. LNy tapovo epyacio Tpoteiveton éva TAdiolo Baciouévo ot
Borhd pdinom, to omoio evowpat®vel lototadoroyixés exdveg xan RNA sequencing dedopéva,
ue otoyo TNV TEdPAedn emPBiwone oe aclevelc ye yrowwpata dapodpny Baduny. To cdvoro
oedouévev avtafinxe and tov Kapxvixd Fovidiopatixd ‘Athavto (TCGA) xo mepthdufove
TEPLTTWOELS YAOLOBAAC TOUATOS XAl YAOLWUATOC YounhoTEEOL Barduol. Aol epapudo Ty Te-
Yvwéc mpoenelepyaoiog, yenoyonojinxe to poviého DeepSurv yio tnv mpofiedn tou ypdvou
emPBiwons. To cuvbuaouévo POVTEAD EVOWUUTOVEL xou Tor 000 £l Bedouévewy xou emEdelle
OVOTEPT Am6GB00T O ToL LOVOTEOTUXE. HOVTENX, OTWS QavXe uéow Tou deixtn ouugwviag (C-
index), emtuyydvovtac TR 0.91, évavtt 0.80 (ubvo exdvec) xou 0.89 (udvo yovidloxd de-
Souéva). Emmiéov, yenowonotinxe n pédodoc SurvLIME yio tnv epunveio tov tpofrédeny,
OVABELXVUOVTUC OTUAVTIXG YOoViBla xat povordtio Tou oyetilovton Ye Ty mpdyvwor. Ta anote-
Aéopata Selyvouv OTL 0 GUVBUNOUOS ETEPOYEVMY BLOTATEIXGDY DEBOUEVWY UE ETEENY OO LOVTEAN
Bordidic pdinone evioy Vet Ty TedBredn emBiwone xan TNV UTOCTARLEY XAWVIXWY ATOPICENDY YL

acVevelg pe xoxoflelg eyxePaAxols dYxoug.

A€&eig-xhedid: Kopxivoc Eyxegdiou, IMNolwpa, [Tpdfredn Embiwone, Badd Mddnon, I-

otonadoloyia, RNA-sequencing, DeepSurv, SurvLIME






Abstract

Brain cancer remains one of the most aggressive and lethal forms of cancer, with lim-
ited prognosis and high inter-patient variability. Reliable survival prediction is essential for
personalized treatment planning and improved clinical decision-making. In this thesis, we
present a deep learning-based framework that integrates histopathological whole-slide images
(WSIs) and RNA-sequencing (RNA-seq) data to predict survival in patients with gliomas
of varying grades. The dataset was derived from The Cancer Genome Atlas (TCGA) and
included both glioblastoma and lower-grade glioma cases. For each data modality, we devel-
oped specialized preprocessing pipelines: patch-level feature extraction and attention-based
aggregation for WSIs, and TPM normalization with dimensionality reduction for RNA-seq
data. Deep autoencoders were used to compress each modality into a low-dimensional la-
tent space, and the resulting representations were input to the DeepSurv model for survival
prediction. The fused model, which fuses image- and gene-based features, achieved superior
performance compared to unimodal models, as measured by concordance index (C-index),
achieving a score of 0.91, compared to 0.80 for the image-only model and 0.89 for the
RNA-sequencing based model. We further employed SurvLIME to interpret the model’s
predictions, offering insights into biologically relevant genes and pathways associated with
survival. Overall, this work demonstrates the value of multimodal data integration and

explainable AI techniques for risk stratification in brain tumor patients.

Keywords: Brain Cancer, Glioma, Survival Prediction, Histopathology, RNA-sequencing,

Deep Learning, DeepSurv, Multimodal Learning, Autoencoders, Explainable AI, SurvLIME
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Kegdiouo 1
Extevric EAAnvixn Tlepiindn

1.1 Ewoayowyn xou Kivnteo

O xaprivog Tou EYXEPEAOU, o ELOLXOTERPA T YAOLOUATO, CUYXATUAEYETOUL OTIC THO ETLIETIXEG
xan Vavatnpopes Hop@ec xoxonletag, Ue e€apeTind younid tocootd emBiwone. H olidmiot
TeOBAedn Tou Yeovou eTPBlwong TV acVevdy auT®y eivar {wTiX\C ONUACIAS Yo TOV GYEOLIOUO
eCOTOUXEVUEVLY VEQATELDY Yo T1) BEATIOTOTOMGT TNG XAWIXAG AVTLIETOTLONG.

Yy nopoloa epyacio npoteivetar Eva TOAUTEOTIXG GUGTNUA TEOY VKON BACIOUEVO OE UE-
V6o0ug Padide udinong, to omoio cuVBLALeL BUO ETEPOYEVELS TNYEC DEDOUEVMV: AUPEVOS TIG
Imeromotnuévee totonaoroyixée emdvec ohdxinene dagpaveac (Whole Slide Images, WSIs)
EYXEPAUNXDY OYXWV X APeTEEOL Tar TRoGik yovidtorc éxgpaone (RNA-seq) twv avtioTolywy
OELYMATOY.

O GUYBUOOUOC TWY HOPPONOYIXMDV YAPUXTNELGTIXMDY TOL GYX0U (A6 TIC LIGTOAOYIXES ELXOVES)
ue ta poptoxd dedouéva (RNA) mpoo@épel pia mo ohoxhnewpévn Teptypopn Tne vOoou, Ue GTOY 0

™ Bertinon tne axpifelag xan tng allomioTlog TS TEOYVWOTS.



1.2  Ilepiypap?r tne Mebodohoyiag

1.2.1 Acdopéva xou 3tdyY0g

To olOvoho dedopévwy mpoRhie amd tov opyaviopd TCGA xar mepthduBave cuvohxd 583
Teptnwoels yhowoBhao twpatog (GBM) xou yhowwudtwy younhdtepou Baduol (LGG), v tic
omoleg ftav dodeoiua 16o0 toTonadohoyind Selyuato G0 Xo BEBOUEVA YOVIOLUXNG EXPRUCTIC
(RNA-seq). Ané to avtiotoryo xhvixd dedopéva elfginooy mhnpogopleg oyeTd Ye TV EML-

Blwon twv ao¥eviv xal Tov yedévo emBlwong 1 ToV Yeovo €we TNV AToYMENoT RO TN HEAETY.

Yyfuo 1.1: Topdderypo tototadohoyinric emdvag and To TEAXO GUVOAD BEBOUEVLV.

1.2.2 Enelepyacia Iotonadoroyixedv Acdouevwy

Apyixd, evtomiotnxay ol Teployéc 1oTo0 OTIC EIXOVES Xl axololinoe efaywyr| patches
umAing avdhuone. Kde patch petatpdmnxe oe Sidvuoua YapaxTELO TIXGY PHECK EVOS TEOEX-
moudeuuévou CNN. Eletdotnray téocepa Slopopetind mpoextoudeupéva povtéio: KimiaNet,

EfficientNet-B0, EfficientNet-B1, ResNet-50.



3

TN CUVEYELNL, EQPUPUOOTNXE UNYOVIOUOS attention yior TNV avAOEIEN TWV ONUAVTIXOTERGY
patches xou T yetdBoon and yapoxtneioTind eminédou patch-level oe sample-level. AeSouévou
OTL %de aoVevric umopel var SLévete TOAATAG LOTOAOY XS DElY YT, EQUEUOCTNXE mean pooling
ota sample-level yapoxtneiotind yior Ty e€aywyn evéc tehixol Slaviouotog ovd acdevr| (case-

level feature vector). H Swdixaota ancixovileton ouvontixd oto Lyfua 1.2.

Patch-level
feature vector

Feature extraction
— >

Sample-level

Samples feature vector

TCGA-06-0208-01Z-00-DX5

Attention layer

Y

Case-level
feature vector

Cases

Mean pooling
TCGA-06-0208 —_— 3

Feature extraction
| Fealure extraction |

Attention layer

Yoyfuar 1.2: Eynuotin aneodvion TN Teoenelepyaolas TwV IoTOTadoAOYIXDY EXOVWLY.

Hpw TNy elooywyy| TV YapaxTELo TIXGY 0T0 UovTéRo emBlnong, EQapuoOcTNXE cuuTieon
TV SLYUOUATOY PEow evog autoencoder. To apywd Swoviouata teptetyav mepirou 1000 fea-
tures, ovdhoyo UE TO EXACTOTE TEOEXTUOEUUEVO UOVTEND, ol ECETAOTNXAY TEOGEQY PEYEUT
eZodou: 32, 64, 128 xou 256. H xolbtepn anddoon emtebydnxe pe péyedog 32.

To cuymieouévo didvuoua Y xdde actevy| eiorytn oto woviéro emPBiwone DeepSurv, pall
ue o avtioTouya Sedopéva emPBinone (event, time until event). H cuvolunn apyttextoviny| tou

4 7 /
TUTEAVE TV EXOVOY TCO(pOUOLO(CETO(L OoTO EXT][J.O( 1.2.



1.2.3 Enelepyacia Acsdouevwyv RNA

To 6edopéva RNA-seq mou yenoylomoudnxay oy Non xovovixomolnuévo Ue tn Yédodo
Transcripts per Million (TPM). Apyixd, epopudotnxe hoyaptuixdc UETAOYNUATIOUOS, EVE
oTN CuVEYEL EYWVE QUATEPIoN UE Ao TN YOoUNAT DLUXOUOVOT), HELOYVOVTOG TOV aptdud ToV
yovdlwy anéd nepinou 60.000 o 20.000.

Axoholinoe z-petacynuatiopos xat yeron autoencoder yio Uelwon TS BLoG TACWUOTNTAC.
‘Onwe xou oTNY TEPITTWOT TV EXOVKY, TO TEAMXO CUUTIECUEVO OLEVUCUA 32 BLuC TUOEWY YET
owonotinxe we elcodog oe aveddptnto woviého DeepSurv. H opyitextovixs| Tou poviélou

mou Baocileton anoxheloTind oe Sedouéva Yovidlaxhc Exppaons TopouotdleTon oTo Ly fua 1.3.

Gene
Expression
gene_id tom unstranded
ENSG00000000003.15 613.677
ENSG00000000005.6 8593
ENSG00000000419.13 834.367
ENSG00000000457.14 6.6339
ENSG00000000460.17 7.2377

Preprocessing

x32 —>

nngdeaQ

Jepoousoiny

Eyfuo 1.3: Movtého npdfiedne emfBlwone Boaociouévo anoxheiotind oc dedopéva RNA.

1.2.4 Yvuvovaoctixd Movtélo

270 eMOPEVO GTABL0, avamTUYUNXE EVaL CUVBUAG TG HOVTENO TIOU EVOWUATOVEL YAURUXTTPL-
O TOGO amd TG LOTOANOYIXEG EOVEC GO0 ol amd To YOVdLoxng Exgppaong dedopéva. Ta
800 ouumieouéva dtaviopata (32 duotdoewy To xadéva) cuvevdinxay (concatenation) on-
ULOURYOVTOC €VOL EVOTIONUEVO BLdvucua 64 Slac Tdoenmy, To omolo yenotonolinxe we elcodog

oto povtéro DeepSurv. To cuvohxd pipeline tou cuvbuocTixol Yovtéhou anewxovileton 6To

Lyfuo 1.4



Whole-slide
Image

Case-level
Feature
Vector

Patches

Preprocessing

lepoousoiny

nnsdeag

Gene
Expression
tom unstranded
613677
8593 Preprocessing

834.367 —>»

6.6339

7.2377

gene_id
ENSG00000000003.15

ENSG00000000005.6

ENSG00000000419.13
ENSG00000000457.14
ENSG00000000460.17

18podusoINY

Yo 1.4: Xuvduoouévo TOAUTEOTUIXG UOVTEAD UE EVOTOLNUEVOL YUQUXTNOLOTIXG ELXOVOC XAl
RNA.

1.3 AmnoteAéouata Xl LUUNECACUATA

Yrov Iivoxa 5.1 napouctdletar 1 amd500T) TOU HOVTEAOU LG TOTOOAOY XMV EXOVKY |UE Blapo-
PETIXOUC TPOEXTAUOEVUEVOLS eCaywYels yopuxtneoTixwy. To poviého KimiaNet uneployvoe,

emTuyydvovtag Tic udmiotepeg Tiwég C-index, xou emAéydnxe yior 10 GUVBUUCTIXG HOVTENO.

[Mivoxac 1.1: Cross-validation and final test set C-index for each pretrained feature extractor.

Pretrained Model

Mean CV C-index

Final Test C-index

EfficientNet-B0 0.79 0.78
EfficientNet-B1 0.76 0.74
ResNet-50 0.79 0.73
KimiaNet 0.80 0.80

Y10 Yyfuo 1.5 anexovileton 1 cuyxELTixy amodoon Tov Ty Yoviéhwy. To cuvduactind

wovtého omnueiwoe v udnioteen enidoon ye C-index ico pe 0.91.




Model Performance Comparison
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Yyhuo 1.5: Boyxpeton Seixtn oupgwviog (C-index) yua xéde poviéro.

[oe v mepoutépe aloAdYNon TOU GLUVBUAGTIXOU UOVTEAOU YENOUOTOLUNXOY XOUTOAES
emPiwone Kaplan-Meier, xoadog xon 1 ypapur) aneixovion tne oyéong Hetald mpoAenouevou
risk score xou mporypoTixol yedévou emBlwong.

Y10 Tyfua 5.2, mopatneeiton cagnc apvnTixy) cLoYETION UETOEY xvdUvou xou emBinong,
omwe avopevotay. {lotéoo, evionilovian mEpoyEg emxdAuNG, WOLiTEPa O EVOLGUECES TYIES

XVOUVOU, UTOONAMVOVTAS TEPLORIOUOVE GTNY TEOY VRO T BefondTnta Tou povtélou.



Predicted Risk Score vs Actual Survival Time

10
7 | e 8
B - =
- 0.8
- =
5 2
L] =
= 0G0
2 4 s a8 - ] - =
= -]
= m
= &
£ 3] = s le I
w -4 2
g
E 2 2 2 = oS e 2 = L]
- 0.2
1 1 L] 2 2 L ] [ ] ] ] [ ] 2 S8 =
0 s e e 28 = R ] s o8
T T T T T I}.':I
-3 -2 -1 0 1 2

Predicted Risk Score

Yo 1.6: XNyéon Yetald TEoPAETOUEVLY TWOY XVOUVOU X0l TEOYUATIXOY YeOVKY ETBIKoNG.

Ov aoeveic Tou cuvolou eéyyou dlayweloTnxay oe oUddeS LPNAOY xaL Younhol xvdvvou
Bdoer tng Bidpeone TwhC Tou risk score. O xauniieg emBinong Twv 500 ouddnv tapovotdlovto
oto Lyfua 1.7. H Sapopd ueta€d 1wV XoumuAody eivon onpovTixd, Wiwg oo TenTa Yeovio: UETd
N Oy vwor), emBERu®VOVTIS TNV XAixY| YenoyoTnta Tou poviélou. otdco, 1 clyxhion
TWY XOPUTUAGDY PETA TO TETUPTO €TOC UTOBEXVUEL TEPLOPLOUOUS 0TV TEoBAEm waxponpddeoung

emPBiwong.



Kaplan-Meier Survival Curves by Predicted Risk Group
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Yyfua 1.7: Kopmiieg emPilwone Kaplan-Meier avd oudda xvoivou.

1.4 EppnvevouudtnTo

H xatavonon tov mapayéviwy mou cupfdiiouy oTic TeoPAédels TV HoVTEAWY amoxTd o-
hoéva xou peyahlteprn onuacta yiot TNV UToo THELEN TNG EEUTOUXEVUEVNC taTpix|C. 2To TAdlGLo
aUTo, EQapuooTxe 1 wévodoc SurvLIME, n onola enétpede v anotiunon g onuaciog tewv
YOVBIKY 0T eEXTYWUEVO pioxo emPBlwong.

H teyvinr| Boaoiotnxe otn onuiovpyio TOTXOY YROUUUXOY LOVTEAWY YU and xdie TpoBhe-
(b, evromiCovTag Ta YopoX TNELO TIXE TTOL ETNEENCAY TEQLOCOTERO TO UTOTEAEGUA X0 ATOBIBOVTOG
aVTIO TOLYES TUES ONUAVTIXOTNTOG (importance scores). H UEV0BOC EQUPUOCTNUE 0PY XA GTO
uovtého RNA-only xou otn cuvéyeior 610 TOAUTROTIXG HOVTEND, ETITEENOVTAC TNV EEAYWOYT) TV
ONUOVTIXOTERWY YOVBIWY Yio xdle TepinTwon.

Hapatnehdnxe 6Tt tor 800 povTEAX avEDELEaY DLAPOPETIXG YOVIOLL G ONUAVTIXOTERX, YE-

YOVOC TOU XATUDEVUEL T1) CUVELGPOEE TV UOPPOROYIXOY YULUXTNELO TIXMY TOV EXOVKY O



dtadixaota Tedyvwone. Eletdotnray oe Bddog tpeic nepimtwoelg acdevov:

- 'Evac acVevic pe younho eXTIUGUEVO xVOUVO, 0 oTolog xaTéANEE xaTd To BEUTEQD €T0C
¢ mept6dou mapaxorovinone (Acdevic 1).

- 'Evog aotevic ue yoaunid extipopevo xivduvo, o omolog dev napouciooe xdmoto cuu3dy
xou hoyoxplinxe oto néunto étoc e meptddou mapoxorotinone (Acldevrc 2).

- 'Evoc aclevic ue uPnhoé extyumuevo xivduvo, o omolog xatéAnie xatd To TEMTO £T0G
e mept6dou mapoxorovinone (Aodevic 3). Ia tnv eZoywyt Brohoyixd ouclac TixNg EpunVve-
fog, oL TWES oNuavVTIXOTNTOC TWV YOVIBIwY YapToypaphunxay ot YVwoTd Bloloyixd povondTia
(pathways) péow tne BiProdrxne gseapy. Me outdv tov TpdTO, UTOLOYIGTNXAY GUVOAIXS
importance scores yta x&dec pathway.

Meta€l twv pathways mou éhafoy udmin apvnTua Tiur, avadetydnxay exciva tou oyetilo-

VTOL [E TOV XUTTOPIXO TOAAATAACIOGUO Yo T1) BINUNTIXOTNTA TWV 6YXWY, OTWC:

e MET promotes cell motility (R-HSA-8875878)

e Basigin interactions (R-HSA-210991)

To evpruorTar aUTd EVIoY VoLV TH GUVOEST) UETUED LOPLAXWDY UNYAVIOUMY Xl TEOY VWO ETL-
Blwong oe yAowoyevelc 6yxoug, xou UTOBEWYUOUY TN YENOWOTNTU EREENYACIUWY TEYVIXOY TE-
VNS vonuoolvng otnv avadelln mavey Yepameutiney otoywy. To aviictolya yeuphuota
oL ameEXovViCouv ToL oNUUVTIXGTERA YoV{DLa xou pathways napatidevioar 6To T€h0C TOL TaPOVTOC

HEWEVOL.

1.5 Xvprnepdopoata xor MeAloviixeég Enextdoeig

H mopoloa dimhwpotind epyacia emxevip@inxe oty avdntuln evog poviéhou mpoBiedng
emBlwone vy aodevelc pe yrouduota, HEcw NS cLVOLACTIXTS alloTolnomg o ToTadoNOYIXGDY
EOVOY X BEDOUEVWY Yovdloxrg Exgppacnc. H ohotin mpooeyyion tng vocou péow dlo-
POPETIXWY TUTWY OEBOUEVRV XplUnxe avoryxola, xadde Ta YAOLOUUTA TUEOoUGCLACouY €VTovn

ETEQOYEVELN TOOO GE UOPPOAOYIXO OGO Xou OE Loptaxd ETnEDO.



10

To amoteAéopoto avédEIEay TNV UTEEOY T TOU GUVBUAC TIXO) UOVTEAOU EVAVTL TMV EMIEPOUS
(RNA-only % pévo emédvog), emtuyydvovtag uPniy axpifewa otnv tpbdyvwon tne enBiwong.
Emuniéov, U€06 EpUNVELTIXGDY TEYVIXWY, aVadelyInpay cuyxexpLuéva Yovidio xat Loptaxd. Lovo-
TATIOL UE LOYURT| CUOYETION TEOG TOV EXTIUWPEVO %iVBUVO, evioylovTag Tn Bloloywr| adlomotia
TWV EVENUATOV.

H epyacio auth utoypoupiler T onuoacio Twv TOAUTEOTUXOY UOVTEAWY OTNV OYXOAOYIXY
TEOYVKOT xon VETEL Tig BAOELS Yiol T1) LEANOVTIXT aVATTUE T EEUTOULXEVUEVLY GUO TNUATWY UTO-
OTHRENG AmOPACTC OTNY XAIXT TEAET.

ITpotewoueveg uehhOVTIXEG EMEXTACELS TEQLAUUBEVOUY:

1. Evooudtonon xAvixoy YETABANTOY, 6Twe 1 nhxda Tou aclevoic, o Seixtng Aettoupyixotr-
T 1) hoproxol deixteg, pe otdyo T Peltivon Tng axplBetag xan TG XAVixAg yenoyoTnTag

TOU UOVTEAOUL.

2. Alepelvnom TREOYWENUEVWY CTRATNYIXMY CUYYWVEUCTC TWV OESOUEVKY YL TNV ATOTE-
AECUUTIXOTEQRY) HOVIEAOTIOMGCT TWV OAANAETOPACENY UETALY TWY OLOUPORETIXOV LOPPEY

TAnpogoplog.

3. Egopuoyn tou yovtéhou ot e€wtepind olvola Sedouévmy xou Broloyu emBefalwon tewv
ONUOVTIXGDY HOPLIXODY LOVOTIOTIWY TToU ovadelyInxay, woTe vo evioyuiel 1 HETapEaoTIX

Tou aia.

H pedodoroyio mou mpotelveton umopel va Aettovpyfioel wg agetneio yioo T Behtiwon tng
TEOYVWONS Xl TNV TEowINCT TNG ECATOUXEVUEVNG LoTEIXAC O aoVEVEIC UE GYXOUC TOU EYXE-

pdAou.



11

Chapter 2

The Brain and Gliomas: Clinical and

Biological Foundations

2.1 Introduction to Brain Anatomy and Physiology

The human brain is a highly complex organ responsible for regulating perception, move-
ment, cognition, and homeostasis. It contains approximately 86 billion neurons and a com-
parable number of glial cells [1]. Structurally, the brain is divided into the cerebrum, cerebel-
lum, and brainstem, each mediating sensorimotor integration, coordination, and autonomic
control [2].

Neurons are the primary signaling units, while glial cells, including astrocytes, oligo-
dendrocytes, and microglia, support brain function through metabolic assistance, synaptic
regulation, and immune defense. Astrocytes also maintain blood-brain barrier (BBB) in-
tegrity by regulating endothelial permeability and ion balance. [3]

The brain is protected by the skull, meninges, and cerebrospinal fluid. The BBB acts
as a selective interface that prevents toxins from entering the brain while allowing essential
nutrients to pass [4]. However, this barrier also impedes drug delivery in central nervous

system diseases, including brain tumors [5].



12
2.2 Classification of Brain Tumors

Brain tumors are generally categorized as either primary, arising within the central ner-
vous system, or secondary, originating from metastatic spread of cancers from other organs.
Primary brain tumors are further classified by the World Health Organization (WHQO) based
on histopathological and molecular features [6]. Tumors are assigned a grade from I to IV,
reflecting increasing levels of malignancy:.

Gliomas, which arise from glial cells, are the most prevalent type of primary malig-
nant brain tumors. These include astrocytomas, oligodendrogliomas, and ependymomas.
Glioblastoma (GBM), also known as grade IV astrocytoma, is the most aggressive subtype,

characterized by rapid proliferation, necrosis, and extensive invasion into surrounding tissue

7).

2.3 Diffuse Gliomas: Classification, Epidemiology, and
Clinical Challenges

Lower-grade gliomas (WHO grade II and III), including diffuse astrocytomas and oligo-
dendrogliomas, exhibit slower growth and occur more frequently in younger adults. Although
they are less aggressive than GBM, LGGs often progress over time and share some of the
same genetic and molecular alterations, including IDH mutations and 1p/19q codeletion.
They remain clinically significant due to their variable prognosis and the potential for ma-
lignant transformation [8].

Glioblastoma accounts for approximately 14-15% of all primary brain tumors and more
than 50% of malignant gliomas in adults [9]. The annual incidence of GBM is estimated at
3.2 per 100,000 population, with peak incidence in individuals aged 45-70 years. The tumor
demonstrates a slight male predominance and occurs more frequently among individuals of

Caucasian ethnicity [10].
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Figure 2.1: Distribution of malignant primary brain and other central nervous system tumors
in adults. [9].

Despite aggressive multimodal therapy, including maximal safe surgical resection, radio-
therapy, and temozolomide chemotherapy, the prognosis for GBM remains poor. Median
survival is approximately 14 to 16 months, with fewer than 7% of patients surviving beyond
five years post-diagnosis [11]. Recurrence is nearly universal and typically occurs within
months following initial treatment. Recurrent tumors are often more resistant to conven-
tional therapies [12].

In addition to its clinical severity, GBM imposes a substantial socioeconomic burden,
owing to high healthcare utilization, progressive neurological decline, and the requirement

for long-term supportive care and rehabilitation [13].
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2.4 Diagnosis and Imaging Techniques

Clinical Presentation and Imaging

The diagnostic process for diffuse gliomas, encompassing both lower-grade gliomas (LGG)
and glioblastoma (GBM), typically begins with a thorough clinical evaluation prompted by
neurological symptoms. Common presenting signs include persistent headaches, seizures,
cognitive dysfunction, and focal neurological deficits such as hemiparesis or aphasia. The
nature and severity of these symptoms are closely related to the tumor’s size, anatomical
location, and associated mass effect or edema. While LGGs often develop slowly and may
be discovered incidentally, GBMs tend to present more abruptly due to their rapid growth
and necrotic core [14].

Magnetic Resonance Imaging (MRI) remains the cornerstone of both initial diagnosis
and follow-up of gliomas. LGGs are typically seen as non-enhancing, T2-hyperintense lesions
with poorly defined borders, whereas GBMs often demonstrate ring-enhancing lesions with
central necrosis on T1-weighted post-contrast sequences. Additional sequences such as T2-
weighted and FLAIR are critical in delineating tumor infiltration and peritumoral edema.
Advanced modalities including magnetic resonance spectroscopy (MRS), diffusion tensor
imaging (DTI), and positron emission tomography (PET) provide complementary insights

into tumor metabolism, microstructural integrity, and therapeutic response [15, 16].

Histopathology and Digital Slide Analysis

Histopathological examination of biopsy or surgically resected tissue remains the gold
standard for confirming glioma diagnosis. All diffuse gliomas are assessed microscopically
for nuclear atypia, mitotic activity, necrosis, and microvascular proliferation. These features
help distinguish lower-grade lesions from high-grade tumors. LGGs typically exhibit lower
mitotic rates and a lack of necrosis, while GBMs show extensive mitoses, palisading necrosis,

and abnormal vascular proliferation [6].
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Hematoxylin and eosin (H&E)-stained sections are routinely used in this process. In mod-
ern workflows, these glass slides are digitized into whole-slide images (WSIs), enabling the
integration of computational pathology. Artificial intelligence (AI) tools now assist in tumor
segmentation, classification, and prediction of molecular subtypes, making histopathology a

foundation for both diagnosis and machine learning-based research [17].

Molecular Profiling

Molecular diagnostics have become a central component of glioma classification, progno-
sis, and treatment planning. Key molecular markers include mutations in IDH1 or IDH2,
MGMT promoter methylation, and 1p/19q co-deletion. The presence of an IDH mutation is
associated with better prognosis and defines a major molecular subtype of gliomas. MGMT
promoter methylation predicts improved response to temozolomide chemotherapy, especially
in GBM. The 1p/19q co-deletion is a defining hallmark of oligodendrogliomas and correlates

with favorable outcomes and chemosensitivity [8, 6].

2.5 Standard Treatment Strategies

Treatment approaches for diffuse gliomas differ significantly by grade and molecular pro-
file. In LGGs, management may range from active surveillance in asymptomatic, low-risk
patients to surgery followed by radiotherapy and chemotherapy in high-risk or progressive
cases. In contrast, GBM treatment typically involves a more aggressive multimodal approach

aimed at maximizing tumor control and prolonging survival despite the poor prognosis [18].

Surgical Resection

Surgical resection serves both diagnostic and therapeutic purposes in glioma care. In
LGG, early and extensive resection has been associated with delayed malignant transforma-

tion and prolonged survival. For GBM, maximal safe resection is standard practice and has
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been linked to improved outcomes. However, due to the infiltrative nature of gliomas and

their proximity to eloquent brain regions, complete resection is often not feasible [19].

Radiation Therapy

Postoperative radiotherapy is a mainstay of treatment in both LGG and GBM. In LGGs,
radiotherapy may be deferred in younger patients with favorable prognostic features, while
it is routinely administered in high-risk or progressive cases. In GBM, radiotherapy typically
consists of fractionated external beam radiation therapy totaling 60 Gy over six weeks. It

targets both the tumor bed and surrounding tissue at risk for microscopic disease spread [20].

Chemotherapy

Temozolomide (TMZ) is the most commonly used chemotherapeutic agent in glioma
treatment. In LGGs, chemotherapy may follow radiotherapy in high-risk patients or be used
alone in select cases. In GBM, TMZ is administered concurrently with radiotherapy and
continued as adjuvant therapy. The benefit of TMZ is significantly influenced by MGMT

promoter methylation status, with methylated tumors demonstrating better responses [21].

Tumor Treating Fields (TTFields)

TTFields represent a novel adjunctive treatment modality currently approved for GBM.
These wearable devices deliver alternating electric fields that disrupt mitotic spindle forma-
tion, thereby inhibiting tumor cell division. Clinical trials have shown modest improvements
in progression-free and overall survival when TTFields are combined with maintenance temo-
zolomide. This approach is not used for LGG at present due to a lack of evidence and lower

aggressiveness of the disease [12].
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Limitations and Treatment Resistance

Diffuse gliomas are notorious for their resistance to treatment. In LGG, disease pro-
gression and malignant transformation pose long-term management challenges. In GBM,
recurrence is almost universal and occurs within months of treatment. Contributing fac-
tors include the blood-brain barrier, which limits drug delivery; tumor heterogeneity, which
promotes adaptation and resistance; and glioma stem-like cells, which exhibit heightened

resilience to therapy [14].

2.6 Challenges and Prognostic Factors

Both lower-grade and high-grade gliomas present distinct but overlapping challenges in
their clinical management. While GBMs are acutely aggressive and rapidly fatal, LGGs pose

long-term risks due to their unpredictable progression and potential for transformation.

Tumor Heterogeneity and Invasiveness

Intratumoral heterogeneity is a hallmark of diffuse gliomas. Genetic, epigenetic, and phe-
notypic variability exists not only between tumors but within individual tumors. In GBM,
this leads to rapid development of treatment-resistant clones. LGGs also exhibit heterogene-
ity, though generally at a slower pace. Moreover, gliomas infiltrate adjacent normal brain

tissue, complicating complete surgical resection and contributing to recurrence [22].

Therapy Resistance

Resistance to therapy is a multifactorial phenomenon in gliomas. It is driven by enhanced
DNA repair mechanisms, activation of redundant signaling pathways, evasion of immune
detection, and the presence of a treatment-resistant subpopulation of glioma stem-like cells.
The blood-brain barrier further complicates systemic therapy by impeding drug penetration.

These mechanisms are present in both LGGs and GBMs but are particularly prominent in
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recurrent high-grade tumors [23].

Prognostic Biomarkers

A variety of molecular and clinical markers have prognostic relevance across the glioma
spectrum. IDH mutations are associated with improved prognosis and are more frequent
in LGGs. MGMT promoter methylation is predictive of temozolomide responsiveness and
improved survival in GBM. The 1p/19q co-deletion is a favorable marker found in oligoden-
drogliomas. Additional factors such as patient age, functional status, tumor location, and

extent of resection are also used for risk stratification and therapeutic planning [21, 24].

Recurrence and Lack of Curative Therapies

Recurrence remains a significant obstacle in glioma management. In GBM, recurrence
is almost inevitable and typically occurs within a few months of completing initial therapy.
Recurrent tumors are often more aggressive and resistant to further treatment. In LGG,
recurrence and progression to higher-grade gliomas may occur over a period of years, under-
scoring the importance of long-term monitoring. At present, there are no curative options
for diffuse gliomas, and research continues to explore immunotherapy, molecularly targeted

therapies, and personalized treatment approaches [14, 12].
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Chapter 3

Theoretical Background Information

3.1 Introduction

This chapter provides the necessary theoretical foundation to support the methods and
models developed in this thesis. It introduces core concepts in machine learning and deep
learning, with a focus on the architectures and techniques most relevant to biomedical data
analysis and survival prediction tasks.

The chapter begins with a general overview of machine learning paradigms, including
supervised and unsupervised learning, followed by an introduction to deep learning and
its most commonly used architectures. Special attention is given to convolutional neural
networks (CNNs) and transfer learning techniques, which play a key role in image-based
feature extraction. Pre-trained models such as ResNet-50, EfficientNet, and KimiaNet are
discussed due to their relevance in histopathological image analysis.

Next, we turn to the processing of biological data, specifically RNA-sequencing, and
review how machine learning methods are applied to high-dimensional omics datasets. We
then outline classical and modern approaches to survival analysis, including the DeepSurv
model, which is used in this work.

The chapter also presents the Optuna framework for automated hyperparameter opti-
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mization, and discusses various feature fusion strategies for integrating image and genomic
data. Lastly, we introduce explainability methods such as LIME, and review evaluation
metrics used to assess the performance of survival models.

Together, these sections aim to equip the reader with a clear understanding of the theo-

retical principles that inform the design and implementation of the proposed methodology.

3.2 Machine Learning Models

In 1956, a group of computer scientists introduced the foundational idea that computers
could emulate human thought and reasoning. They proposed that “every aspect of learning
or any other feature of intelligence can in principle be so precisely described that a machine
can be made to simulate it” [25]. This idea marked the formal birth of the field of arti-
ficial intelligence (Al), dedicated to automating cognitive tasks traditionally performed by
humans.

Within the broader scope of AI, machine learning (ML) and deep learning (DL) have
emerged as core subfields that enable systems to learn from data and improve performance
over time. ML algorithms leverage historical data to perform tasks such as prediction,
classification, clustering, and dimensionality reduction. These algorithms iteratively refine
their performance as more data become available, making them powerful tools across various
industries [26].

For example, recommendation systems used by e-commerce platforms, social media, and
news aggregators rely on ML to personalize content based on users’ behavioral history. In
the context of autonomous driving, ML models, often in combination with computer vi-
sion, are essential for object detection, decision-making, and navigation. In biomedical
research, ML facilitates the analysis of high-dimensional, complex datasets, identifying non-
linear associations, interactions, latent structures, and subgroups that might be missed by

traditional parametric statistical methods. Unlike classical models, which typically require
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explicit assumptions and predefined relationships, ML algorithms are often more flexible and
data-driven.
There are four primary types of learning in ML: supervised, unsupervised, semi-supervised,

and reinforcement learning [26].

Machine Learning

Unsupervised Supervised Semi-Supervised Reinforcement
Learning Learning Learning Learning
Ve |
:: //’ T Agent E onment
s * b
Lo "

Figure 3.1: Types of Machine Learning

3.2.1 Swupervised and Unsupervised Learning

The two most commonly used learning paradigms in machine learning are supervised and
unsupervised learning, each addressing different types of problems based on the availability
and structure of labeled data.

In supervised learning, the model is trained on a labeled dataset, where each input
sample is paired with a corresponding target output. The objective is to learn a mapping
from inputs to outputs that generalizes well to unseen data. Supervised learning is widely
used in classification tasks (e.g., predicting cancer subtypes from histopathological images)
and regression tasks (e.g., predicting patient survival time from genomic features). Common
algorithms include support vector machines (SVMs), decision trees, random forests, and

various types of neural networks [26].
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On the other hand, unsupervised learning deals with unlabeled data, aiming to un-
cover hidden patterns, structures, or groupings within the dataset. Since no ground-truth
labels are provided, the algorithm attempts to organize the data in a meaningful way based
solely on its internal structure. This paradigm is commonly used for clustering (e.g., group-
ing patients based on gene expression profiles), dimensionality reduction (e.g., PCA, t-SNE,
or autoencoders), and anomaly detection. Unsupervised learning is particularly useful in
exploratory data analysis and in domains where labeling is expensive or infeasible.

These two learning paradigms serve as the foundation for many real-world machine learn-
ing applications, and more advanced approaches, such as semi-supervised learning and self-

supervised learning, seek to combine their respective advantages. [27]

3.2.2 Introduction to Deep Learning

Deep learning is a subfield of machine learning that focuses on neural network architec-
tures with multiple layers, enabling the automatic learning of hierarchical representations
from data [28]. While traditional machine learning often relies on handcrafted features and
domain-specific preprocessing, deep learning methods can learn both low-level and high-level
abstractions directly from raw inputs.

The defining characteristic of deep learning models is the presence of multiple layers,
typically composed of linear transformations followed by non-linear activation functions,
which allow the network to progressively capture more complex patterns. These models are
particularly effective for tasks involving unstructured data such as images, audio, and text.

Deep learning has demonstrated remarkable success in areas including computer vision,
natural language processing, and biomedical data analysis [26]. In image-based tasks, con-
volutional neural networks (CNNs) are often employed due to their ability to capture spatial
hierarchies and local dependencies. In other domains, architectures such as recurrent neural
networks (RNNs), transformers, and autoencoders are commonly used.

The strength of deep learning lies in its scalability, flexibility, and ability to generalize
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from large volumes of data. However, it often requires extensive computational resources

and careful tuning of hyperparameters to achieve optimal performance.

3.3 Neural Networks

A foundational understanding of neural networks and deep learning models is essential
for comprehending the concepts and methodologies presented in this work. Therefore, it is
appropriate to first outline the fundamental theory of neural networks along with an overview

of the main architectures commonly used in image processing.

3.3.1 Artificial Neural Networks

The term Artificial Neural Networks (ANNs) refers to a class of artificial intelligence
algorithms inspired by the structure and information processing mechanisms of biological
neural networks in the human brain. ANNs are composed of interconnected nodes, analogous
to neurons, which are linked by weighted connections. By adjusting these weights through
training, the network learns from input data via activation functions that govern the output
of each node.

The concept of artificial neural networks was first introduced in 1943 by neurophysiolo-
gist Warren S. McCulloch and mathematician Walter Pitts in their seminal paper A Logical
Calculus of the Ideas Immanent in Nervous Activity [29]. For several decades following their
introduction, ANNs showed limited practical success. However, in recent years, the field
has experienced remarkable progress due to the development of more sophisticated archi-
tectures, such as Convolutional Neural Networks (CNNs) [30, 31], as well as advancements
in computational hardware, including powerful Graphics Processing Units (GPUs) and spe-
cialized accelerators like Tensor Processing Units (TPUs) [27]. These developments have
significantly enhanced the performance and applicability of neural networks across a wide

range of domains.
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3.3.2 Network Architecture and Forward Propagation

An ANN typically consists of an input layer, one hidden layer, and an output layer. Each
neuron in a given layer is connected to every neuron in the next layer through weighted
connections. The forward propagation process involves computing a weighted sum of the
inputs and applying an activation function to produce the neuron’s output. Mathematically,

the output ag.l) of a neuron j in a layer [ is given by:

ag-l) =¢ (Z wj(.?al(l_l) + b§l)> (3.1)

0

where w;;” are the weights, bgl) is the bias, and ¢ is the activation function.

3.3.3 Deep Neural Networks

The term Deep Neural Networks (DNNs) refers to a subclass of Artificial Neural Net-
works (ANNs) characterized by the presence of multiple hidden layers between the input
and output layers [28]. This architectural depth enables DNNs to learn increasingly abstract
and hierarchical representations of data, making them particularly effective for tasks involv-
ing high-dimensional inputs such as image and speech recognition [32], natural language
processing [33], and biomedical data analysis [34].

In DNNs, each hidden layer applies a linear transformation followed by a nonlinear acti-
vation function, allowing the network to progressively extract higher-level features from the
input. Compared to shallow networks, which contain only one or two hidden layers, DNNs
are capable of modeling more intricate patterns and dependencies [26], although they also
require more computational resources and are more susceptible to overfitting if not properly
regularized.

The widespread adoption and success of DNNs have been facilitated by the availability
of large-scale annotated datasets, substantial computational power through modern GPUs

and TPUs, and key algorithmic advancements. These include improved weight initializa-
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tion methods [35], adaptive optimization algorithms such as Adam [36], and regularization
techniques like dropout [37]. Together, these developments have solidified deep learning as
a foundational approach in fields ranging from computer vision and genomics to survival

prediction in clinical settings.

Figure 3.2: Visual comparison between a shallow Artificial Neural Network (ANN) and a
Deep Neural Network (DNN) [38].

3.3.4 Activation Functions

To enable the network to capture complex, non-linear relationships in the data, activation
functions are used after each neuron’s linear transformation. Activation functions introduce
non-linearity into the network, enabling it to learn complex patterns. Common choices

include:

_1
1+e—=

Sigmoid: o(z) =

ef—e” "

et4e

Hyperbolic Tangent (tanh): tanh(z) =

ReLU (Rectified Linear Unit): ReLU(z) = max(0, x)

Leaky ReLU: Leaky ReLU(z) = max(ax,z) where « is a small constant
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ReLU and its variants are commonly used in deep networks due to their efficiency and

ability to mitigate vanishing gradient issues [39].

3.3.5 Loss Functions and Optimization

Training a neural network involves adjusting its parameters to minimize the discrepancy
between predictions and ground truth. This is quantified using loss functions. The most

common loss functions are:

e Mean Squared Error (MSE): used for regression tasks.

e Cross-Entropy Loss: used for classification problems.

To minimize the loss function, optimization algorithms such as Stochastic Gradient De-
scent (SGD) or Adam [36] are employed. These algorithms update the network weights

iteratively through the process of backpropagation.

3.3.6 Backpropagation and Learning

Backpropagation is the core algorithm used for training neural networks. It calculates
the gradient of the loss function with respect to each weight using the chain rule of calculus,

and then applies the optimizer to update the weights in the direction that reduces the loss.

3.3.7 Regularization and Overfitting

One of the main challenges in training neural networks is overfitting, where the model
learns the training data too well and fails to generalize to unseen data. Several regularization

techniques are commonly employed:

e L1/L2 Regularization: Add penalty terms to the loss function based on the magni-

tude of weights.



27

e Dropout: Randomly deactivates neurons during training to encourage redundancy

and robustness [37].

e Early Stopping: Terminates training when the performance on a validation set starts

to deteriorate.

3.3.8 Depth and Expressive Power

Deeper neural networks can model more complex functions but are also more prone to
issues such as vanishing gradients and increased training times. The Universal Approxi-
mation Theorem shows that even a single hidden layer can approximate any continuous
function, given sufficient neurons, but in practice, deeper architectures often yield better

performance [40].

3.3.9 Convolutional Neural Networks(CNNs)

Convolutional Neural Networks (CNNs) were developed to address the growing com-
plexity of data and the increasing size of datasets. They have become the foundational
architecture for image processing tasks [20], replacing earlier neural networks that relied on
fully connected layers, which were inefficient and computationally expensive due to their
dense connectivity. CNNs are specifically designed to automatically learn patterns and fea-
tures from images and other grid-like data through the use of convolutional and pooling
layers. This hierarchical feature extraction makes them particularly effective for tasks such
as image classification, object detection, and facial recognition [5].

The typical architecture of a Convolutional Neural Network [4] includes the following

components:

e Input layer: Receives the raw image data.

e Convolutional layers: Apply filters (kernels) to extract local features.
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e Pooling layers: Downsample the feature maps to reduce dimensionality and compu-

tational load.

e Fully connected layers: Perform high-level reasoning based on the extracted fea-

tures.

e Output layer: Produces the final prediction.

fc_3 fc_ 4
Fully-Connected Fully-Connected
Neural Network Neural Network
Conv_1 Conv_2 RelU activation
Convolution Convolution A /—R
{5;_(:] k:;l:lel Max-Poolin (S:ds) k:;r-\el Max-Pooling (with
valid padding 2x2) valid padding (2x2) .‘ - dropout)
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Figure 3.3: Example of a Convolutional Neural Network architecture.

The most important and unique parts of a CNN are the Convolution Layers, the Pooling
Layers and the Fully connected Layers. The functionality and usage of those types of layers

are analyzed below.

Convolutional Layer (or Kernel)

The convolutional layers of a CNN operate on the basis of a defined algorithm. Let h,
w, and ¢ represent the height, width, and number of channels of the input feature map,

respectively, and let K denote the convolutional kernel (or filter), a matrix with dimensions
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k x k. A convolutional operation is applied to each k x k submatrix of the input with a
sliding step determined by the stride S. For instance, if S = 2, the kernel is applied to every
other k x k region, effectively reducing the spatial dimensions of the input by a factor of
two. This downsampling is performed while attempting to preserve the most informative
features, thanks to the learned values of the kernel.

Mathematically, the 2D convolution operation between an input feature map X and a
kernel K can be expressed as:

k-1 k-1

Y(i,j)=> Y K(mn) X(i+m,j+n) (3.2)

=0 n=0

where Y'(i,7) is the output feature map at position (i,75), and (m,n) iterates over the

elements of the kernel. This operation slides the kernel over the input feature map to compute
localized feature responses.

When the number of input channels ¢ is greater than 1, as in the case of RGB images
(¢ = 3), the kernel K must also have the same depth. In such cases, a 3D kernel of shape
k x k x ¢ is used to perform the convolution across all channels simultaneously. The outputs
from all channels are summed to produce a single response per spatial location.

To control the spatial dimensions of the output, it is common to apply padding to the
input. Padding involves adding rows and columns of predefined values (typically 0, 1, or the
average of neighboring pixels) around the input feature map. This technique ensures that
the output dimensions are not reduced after convolution.

Figure 3.4 illustrates the convolution process described above. The kernel K has dimen-
sions 3 x 3 and depth 3, matching the depth of the input image. After the convolution is
applied to each channel, the results are summed and passed through a non-linearity after
adding a bias term. In this example, zero-padding of one row and column is applied around
the input.

The main target of the convolution layer is to obtain high-level features from the input

image. High-level features can be lines, edges, or blobs, but also more abstract patterns such
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Figure 3.4: An example of a convolution operation.

as tires in cars or windows in buildings. In addition, the layer captures low-level features

such as color gradients and orientation, which are essential for early visual understanding.

Pooling Layer

Pooling layers operate in a manner similar to convolutional layers but do not involve the
application of a kernel for convolution. Instead, a pooling layer replaces each sub-region
(typically a small square matrix) of the input with a single representative value. The specific

value depends on the type of pooling operation used. The two most common types are:

e Max Pooling: Returns the maximum value from each sub-region.

e Average Pooling: Returns the average value of the elements in each sub-region.

Typically, the input to a pooling layer is the output of a preceding convolutional layer.

The primary function of pooling is to reduce the spatial dimensions of the input, thereby
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max pooling

112

average pooling

Figure 3.5: Example of a Pooling Layer architecture.

decreasing the computational and memory complexity of subsequent layers. Moreover, pool-
ing helps in extracting dominant features that are invariant to small transformations such as
rotation and translation. This invariance enhances the robustness of the model. Max pool-
ing, in particular, is often used as a noise-suppressing operation, as it discards low-activation

(and often noisy) values while preserving the most prominent features.

Fully Connected Layers

Fully connected (FC) layers, also known as dense layers, are typically used in the final
stages of a Convolutional Neural Network. These layers receive flattened inputs, often feature
maps resulting from convolutional and pooling layers, and perform high-level reasoning to
produce the final output, such as class scores or regression values.

Mathematically, a fully connected layer performs a linear transformation followed by a

non-linear activation:
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y=f(W-x+Db) (3.3)

where x is the input vector, W is the weight matrix, b is the bias vector, and f is a
non-linear activation function (e.g., ReLU, sigmoid, or softmax). Every neuron in an FC
layer is connected to all neurons in the previous layer, making it dense in connectivity but
computationally expensive.

Although fully connected layers offer high expressiveness, they also introduce a large
number of parameters and are prone to overfitting. In modern architectures, their use is
sometimes minimized or replaced entirely by global average pooling layers, especially in

lightweight or fully convolutional designs.

Modern Advances in Convolutional Neural Networks

In recent years, Convolutional Neural Networks (CNNs) have made substantial progress
both in architectural design and overall performance. The availability of larger and more
diverse datasets has played a crucial role in training more robust and generalizable models.
Furthermore, techniques such as batch normalization, data augmentation, and the implemen-
tation of regularization methods have significantly improved the learning process, enhancing
both generalization and robustness. The development of deeper network architectures has
enabled CNNs to capture increasingly complex patterns and hierarchical features from in-
put data. Additionally, the introduction of deep pre-trained models, such as ResNet [41],
Inception [42], and EfficientNet [41], has transformed the field. These architectures allow
researchers to leverage transfer learning, where models trained on large-scale datasets can be

fine-tuned for different but related tasks, reducing training time and improving performance.
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3.3.10 Transfer Learning and Pre-trained Models

Transfer learning is a powerful technique in deep learning that enables models trained on
a large, generic dataset to be repurposed for a different but related task with limited data.
This approach is especially advantageous in biomedical applications, where labeled data
are often scarce or expensive to obtain. In the context of Convolutional Neural Networks
(CNNs), transfer learning typically involves reusing a model that has been pre-trained on a
large-scale dataset such as ImageNet [43]. The lower layers of these networks are capable
of capturing general features such as edges, textures, and basic shapes, which are broadly
useful across various visual recognition tasks.

By initializing a model with pre-trained weights instead of training from scratch, transfer
learning reduces the computational cost and shortens the convergence time during train-
ing. Moreover, it improves performance in domains where the amount of training data is
insufficient to support the full training of deep architectures. Fine-tuning, where selected
layers of the pre-trained model are updated during training, allows the network to adapt its
parameters to the specific characteristics of the target dataset while still benefiting from the
knowledge encoded in the original weights.

In this work, transfer learning was applied by employing several widely used pre-trained
CNN architectures, each with different design philosophies and parameter capacities. These
models include ResNet-50, EfficientNet-BO and B1, and KimiaNet, a model specifically de-
signed for histopathological image analysis. The subsequent subsections provide a brief
overview of each architecture and discuss their relevance and performance in the context of

the current study.

3.3.11 ResNet-50

ResNet-50 is a 50-layer deep convolutional neural network introduced as part of the
Residual Network (ResNet) family by He et al. [41]. The key innovation behind ResNet

is the introduction of residual connections, or skip connections, which allow the network
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to learn residual mappings instead of direct mappings. These connections help mitigate
the vanishing gradient problem commonly encountered in very deep architectures, thereby
enabling the effective training of networks with substantially more layers.

The ResNet-50 architecture consists of an initial convolutional layer followed by four
stages, each containing multiple bottleneck residual blocks. These blocks comprise a series
of convolutional layers with identity shortcut connections that bypass one or more layers.
This design facilitates efficient gradient flow and improves convergence during training.

Due to its strong representational power and stability during optimization, ResNet-50
has become a widely adopted backbone in computer vision tasks, including those in the
biomedical imaging domain. The architecture of ResNet-50 is shown in Figure 3.6, illustrat-
ing its residual block structure with skip connections that facilitate gradient flow and enable

training of deeper networks.

ResNet50 Model Architecture
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Figure 3.6: Schematic representation of the ResNet-50 architecture. Residual blocks with
identity shortcut connections allow for deeper network training by mitigating the vanishing
gradient problem. [44]

3.3.12 EfficientNet

EfficientNet is a family of convolutional neural networks introduced by Tan and Le [45],
based on the idea of optimizing model performance through compound scaling. Unlike tra-
ditional approaches that scale network dimensions (depth, width, resolution) independently,
EfficientNet employs a compound coefficient to uniformly scale all three dimensions in a

balanced manner. This results in a family of models that achieve state-of-the-art accuracy
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while maintaining high computational efficiency.

The baseline model, EfficientNet-B0, is discovered using neural architecture search and
serves as the foundation for the scaled-up variants (B1, B2, etc.). Each successive variant
increases the model capacity and input resolution, enabling better performance on more com-
plex tasks. All EfficientNet models use a series of inverted bottleneck blocks with depthwise
separable convolutions, which contribute to both parameter efficiency and representational
power.

EfficientNet models have been widely adopted in computer vision due to their excellent
trade-off between accuracy and computational cost. Their design makes them particularly
suitable for applications where resource constraints are important, such as mobile or embed-
ded systems, as well as in domains like medical imaging, where processing high-resolution
data efficiently is essential. The architecture of EfficientNet is shown in Figure 3.7, show-
casing the compound scaling approach and the use of inverted bottleneck MBConv blocks

throughout the network.
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Figure 3.7: Overview of the EfficientNet architecture. The network scales depth, width,
and resolution in a compound manner and uses MBConv blocks to balance efficiency and
performance. [46]
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3.3.13 DenseNet-121

DenseNet-121 is a deep convolutional neural network introduced by Huang et al. [47],
known for its unique connectivity pattern where each layer receives input from all preceding
layers. This dense connectivity leads to several advantages: improved gradient flow, en-
hanced feature reuse, and reduced parameter count compared to traditional architectures of
similar depth. DenseNet-121 has been widely adopted in medical imaging tasks due to its
efficiency and strong performance in capturing complex visual patterns. The architecture of
DenseNet-121 is shown in Figure 3.8, highlighting its dense block structure and the flow of

feature maps across layers.
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Figure 3.8: Schematic representation of the DenseNet-121 architecture. The network is com-
posed of dense blocks with direct connections between all layers, interleaved with transition
layers that reduce spatial dimensions. [47]
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KimiaNet

KimiaNet is a customized version of DenseNet-121 fine-tuned specifically for histopatho-
logical image analysis. It was trained on the Kimia Path24 dataset [48], which consists of
whole-slide histopathology images from a diverse set of tissue types. By leveraging domain-
specific data, KimiaNet captures morphological features that are unique to histopathology,
such as cellular architecture, texture, and staining variations.

Unlike standard DenseNet-121 models pre-trained on natural image datasets like Ima-

geNet, KimiaNet is better aligned with the distributions and semantics of medical images.
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This makes it particularly well-suited for downstream tasks in computational pathology, such
as cancer detection, subtype classification, and image retrieval. Its success illustrates the
importance of domain adaptation in transfer learning, especially when dealing with highly

specialized data types like histological slides.

3.3.14 Encoder-Decoder Architectures and Autoencoders

Encoder-decoder architectures are a fundamental framework in modern deep learning,
widely employed in tasks that involve transforming input data into structured or mean-
ingful output formats. These models are composed of two main components: the encoder,
which compresses the input into a lower-dimensional latent representation, and the decoder,
which reconstructs or transforms this representation into the desired output. This separa-
tion between encoding and decoding stages enables efficient representation learning, as well
as flexible adaptation to various modalities, including images, text, audio, and time-series

data [49, 50]. The encoder is designed to extract the most informative features from the

Input image Reconstructed image
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~._ Representation Lo
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Figure 3.9: Example of an Autoencoder architecture.

input while filtering out irrelevant or noisy components. Depending on the data type, this

can be achieved using different neural layers, such as convolutional layers for spatial data
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(e.g., images), recurrent or transformer-based layers for sequential data (e.g., text or sig-
nals), or fully connected networks for tabular data. The resulting latent space captures a
compact summary of the input and serves as a bottleneck that encourages generalization
and information compression.

One of the most prominent uses of this architecture is in the form of autoencoders, which
are trained to reconstruct the original input from its compressed representation. Autoen-
coders are typically trained in an unsupervised manner, minimizing a reconstruction loss
(such as mean squared error) between the input and the output. The goal is not merely
to memorize the data but to discover an efficient encoding that captures its underlying
structure.

Autoencoders are widely used in a variety of applications, including dimensionality reduc-
tion, denoising, anomaly detection, and unsupervised feature learning. In many pipelines,
they are employed as a preprocessing step to transform raw, high-dimensional input into
compact, informative features that can be used for downstream tasks such as classification
or survival analysis.

Several variants of autoencoders have been proposed to enhance their capabilities:

e Denoising Autoencoders (DAEs): Trained to reconstruct clean inputs from noisy

versions, improving robustness.

e Sparse Autoencoders: Encourage sparsity in the latent representation, leading to

more interpretable features.

e Variational Autoencoders (VAEs): Extend autoencoders into a probabilistic frame-
work by learning distributions over the latent space, enabling generative modeling and

sampling [51].

Beyond autoencoders, encoder—decoder models are widely applied in supervised learning
tasks such as machine translation, image segmentation, text summarization, and time-series

prediction. In these cases, the decoder is trained to generate task-specific outputs conditioned
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on the encoded representation. This general architecture has also been adopted in more
complex models, such as sequence-to-sequence transformers and U-Net for biomedical image
segmentation.

Overall, encoder—decoder architectures, including autoencoders and their variants, pro-
vide a powerful and flexible framework for learning meaningful representations and perform-

ing complex data transformations across a wide range of domains.

3.4 RNA-Sequencing and Gene Expression Data

RNA sequencing (RNA-seq) is a widely used technology for profiling gene expression in
biological samples [52].

It involves converting RNA molecules into complementary DNA (¢cDNA), sequencing the
cDNA fragments, and mapping the resulting reads to a reference genome or transcriptome.
This enables the quantification of transcript abundance across thousands of genes simulta-
neously [52, 53].

One commonly used unit for quantifying expression is Transcripts Per Million (TPM),
which normalizes for both gene length and sequencing depth [54]. TPM values allow for
within-sample and between-sample comparisons of gene expression levels, making them suit-
able for downstream statistical or machine learning analyses [55].

In this context, the term *unstranded™ refers to a preprocessing mode in which the RNA
strand information is not preserved during sequencing or alignment, simplifying the analysis
when strand specificity is not essential [56].

Gene expression datasets derived from RNA-seq are typically high-dimensional, often con-
taining tens of thousands of genes per sample. This high dimensionality presents challenges,
including multicollinearity, sparsity, and overfitting. To overcome these issues, preprocessing
steps such as normalization, transformation, and dimensionality reduction are commonly

applied before applying statistical or machine learning models. RNA-seq data has been used
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extensively in biomedical research to identify disease subtypes, uncover molecular biomark-

ers, and predict clinical outcomes [53].

3.5 Survival Analysis

Survival analysis refers to a set of statistical methods used to analyze the time until
the occurrence of an event of interest, such as death, disease recurrence, or progression.
A key challenge in this domain is the presence of censored data, where the outcome is
not observed for all subjects during the study period. This phenomenon—referred to as
censoring—occurs because not all individuals have experienced the event by the end of the
observation period [57].

Several types of censoring may occur in practice:

(a) The patient has not yet experienced the event (e.g., relapse or death) by the time the

study ends.

(b) The patient is lost to follow-up during the study period, making further observation

impossible.

(c) A competing event occurs that precludes continued follow-up for the original event of

interest.

In such cases, the recorded survival time reflects only a lower bound on the true time-to-
event. This form of incomplete observation, where the event is expected to occur after the
follow-up window, is known as right censoring. Conceptually, one can imagine the survival
time as a timeline extending beyond the study horizon, the actual event lies beyond the point
of observation. Other types of censoring include left censoring and interval censoring, though
they are less frequently encountered in biomedical research.

Unlike standard regression techniques that assume fully observed outcomes, survival anal-

ysis models must jointly account for the time-to-event and the censoring indicator. This
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requirement gives rise to specialized estimators and models, which form the foundation of
both classical and modern survival analysis.

Survival analysis methods are generally used for three main purposes [58]:

e To describe the distribution of survival times within a group, using tools such as life

tables, Kaplan—Meier estimators, survival functions, and hazard functions.

e To compare survival experiences between groups, often with statistical tests like the

log-rank test.

e To model the relationship between covariates (categorical or continuous) and survival
time, using regression-based techniques such as the Cox proportional hazards model,
parametric survival models, or tree-based approaches like survival trees and random

survival forests.

This section outlines the main classical survival models and introduces DeepSurv, a deep

learning-based framework that enables flexible and data-driven survival modeling.

3.5.1 Classical Methods of Survival Analysis
Kaplan—Meier Estimator

The Kaplan-Meier (KM) estimator is a non-parametric method used to estimate the
survival function from censored data [59]. It computes the probability of survival past a
certain time point and generates a step-wise survival curve. The KM estimator is widely
used for visualizing survival distributions and comparing groups (e.g., treated vs. control),
often with the log-rank test [60].

While intuitive and widely applicable, the KM estimator does not account for covariates.
This limits its use when individual-level characteristics are expected to influence survival

outcomes [57].
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Cox Proportional Hazards Model

The Cox proportional hazards model is a semi-parametric approach that incorporates co-
variates into the survival analysis [61]. The hazard function for an individual with covariates

X is modeled as:

h(t|X) = ho(t) exp(8' X) (3.4)

where ho(t) is the baseline hazard function, 3 is a vector of coefficients, and exp(8'X)
models the relative risk. This formulation does not require a parametric form for hg(t),
which makes the model flexible and interpretable.

However, the model relies on the proportional hazards assumption, which implies
that the effect of covariates on the hazard is constant over time. Violations of this as-
sumption, as well as the presence of complex non-linear interactions, limit the Cox model’s

performance, especially in high-dimensional or multi-modal biomedical datasets [62].

3.5.2 Deep Learning for Survival Analysis: The DeepSurv Model

To overcome the limitations of classical models, deep learning methods have been intro-
duced into survival analysis. Among them, DeepSurv is one of the most widely adopted
neural architectures for learning non-linear risk functions [63].

DeepSurv extends the Cox model by replacing the linear term 37X with a learned func-

tion fp(X), represented by a fully connected neural network with parameters 6:

h(t|X) = ho(t) exp(fo(X)) (3.5)

This formulation maintains the interpretability of risk scores while enabling the modeling
of complex, non-linear dependencies in the data. The network is trained by minimizing the

negative log partial likelihood:



43

£0) ==Y | folX) —log 3 explfo(X;) (36)

i€D JER(T;)
where D is the set of uncensored cases, and R(T;) is the risk set of individuals still at

risk at time 7.

Model Architecture and Training

DeepSurv typically consists of multiple dense layers with non-linear activations (e.g.,
ReLU or LeakyReLU). To avoid overfitting, especially in small sample settings, regularization
techniques such as L2 weight decay, dropout, and early stopping are commonly applied.
Training can be optimized using stochastic gradient descent (SGD) or its variants (e.g.,
Adam).

Because hyperparameters such as learning rate, hidden layer size, and number of layers
significantly affect performance, DeepSurv is often combined with hyperparameter optimiza-

tion frameworks such as Optuna.
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Figure 3.10: The Deepsurv architecture.
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3.6 Optuna Hyperparameter Optimization Framework

Optuna is an open-source framework for automated hyperparameter optimization, widely
used in machine learning and deep learning workflows [64]. It follows a define-by-run ap-
proach, allowing dynamic and flexible construction of the hyperparameter search space. Op-
tuna is framework-agnostic, meaning it can be integrated with any model implementation,
regardless of the underlying ML library.

To use Optuna, the user defines an objective function that wraps the model training and
evaluation logic. A trial object is used within this function to suggest hyperparameter
values, and the function returns a metric (e.g., accuracy, AUC, MSE) to be optimized. A
study object manages the overall optimization process, including the direction (minimization
or maximization), the number of trials, and storage options.

Optuna also supports advanced features such as pruning of unpromising trials, check-
pointing, and resuming interrupted studies. Additionally, it provides visualization tools to

analyze optimization history and hyperparameter importance.

3.7 Feature Fusion Techniques

In multimodal learning tasks, such as those involving gene expression profiles and histopatho-
logical images, the integration of heterogeneous data sources is a crucial step toward improv-
ing predictive performance. Feature fusion refers to the process of combining features derived
from different modalities into a unified representation, enabling models to capture comple-
mentary information.

Feature fusion strategies are generally classified into three categories: early fusion (feature-
level), intermediate fusion, and late fusion (decision-level). Early fusion involves the direct
concatenation of feature vectors extracted from each modality into a single vector before
feeding it into a learning algorithm [65]. This approach is simple and efficient, but may

suffer from differences in data scale, modality-specific noise, and varying dimensionalities.
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Intermediate fusion methods aim to learn joint representations through specialized archi-
tectures such as co-attention mechanisms, multimodal autoencoders, or neural tensor fusion
layers [66]. These methods seek to model complex cross-modal relationships during feature
learning, which can enhance the interaction between modalities but often require careful
design and more computational resources.

Late fusion, on the other hand, combines the outputs (e.g., risk scores or class proba-
bilities) of separate unimodal models through methods such as averaging, majority voting,
or meta-learners [67]. This approach is modular and robust to modality-specific failure, but
may miss fine-grained interactions between modalities.

In the context of survival analysis, where the objective is to model time-to-event data,
feature fusion plays a critical role in capturing both morphological and molecular deter-
minants of patient prognosis. Recent studies have demonstrated that combining features
from histopathological images and genomic data can significantly improve survival predic-
tion models for cancer patients [68, 69].

Choosing the appropriate fusion strategy depends on the nature of the modalities, the
size of the dataset, and the complexity of the relationships between features. While simple
concatenation is widely used due to its straightforward implementation, more advanced

fusion techniques are actively being explored to better exploit multimodal information.

3.8 Explainability in Deep Learning

Deep learning models have shown remarkable success in a wide range of biomedical
applications, including image classification, genomics, and survival prediction. However,
their “black-box” nature raises significant concerns regarding interpretability, especially in
critical domains such as healthcare, where transparency is essential for trust, validation, and
clinical adoption [70].

Explainable AT (XAI) refers to a set of techniques designed to interpret and understand
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the decision-making processes of complex models. In the context of deep learning, XAI
methods aim to highlight which input features contribute most to a specific output, enabling
insights into the model’s behavior and promoting fairness, accountability, and reproducibil-
ity [71].

Among the most widely used model-agnostic approaches are LIME and SHAP, which

provide local explanations by analyzing the influence of features on individual predictions.

3.8.1 Local Interpretable Model-agnostic Explanations (LIME)

LIME (Local Interpretable Model-agnostic Explanations) is an approach that approx-
imates a complex model locally with an interpretable surrogate model, typically a linear
regressor or decision tree [72]. For each prediction, LIME perturbs the input data around
the instance of interest and observes how the black-box model’s output changes. By fitting
a simple, interpretable model to this neighborhood, LIME identifies which features have the
most significant impact on the prediction.

In biomedical applications, LIME has been applied to tasks such as gene expression
classification, histopathological image analysis, and survival modeling, where understanding
local decision boundaries helps clinicians validate model predictions and identify relevant
biological markers [73].

Despite its utility, LIME has limitations, including sensitivity to sampling noise and
inconsistency across runs. Additionally, the quality of its explanations depends heavily on

how well the surrogate model fits the local decision boundary.

SurvLIME A notable extension of LIME tailored to survival analysis is SurvLIME [74].
Traditional LIME is designed for models with scalar outputs, such as probabilities or risk
scores. However, survival models often produce more complex outputs, such as time-
dependent survival probabilities or hazard functions. SurvLIME adapts the LIME framework

to this context by perturbing input features and observing the corresponding changes in sur-
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vival risk estimates or predicted survival curves. It then fits a local interpretable model to
approximate the behavior of the survival model around each instance.

This approach allows researchers to identify which features most influence the predicted
survival outcomes at the individual level. SurvLIME has been used to interpret both classical
and deep survival models, helping bridge the gap between model predictions and clinical
understanding. It is particularly useful in high-stakes settings, such as oncology, where
explaining why a patient is assigned a higher risk can guide treatment decisions and foster

trust in Al-assisted prognostics.

3.9 Evaluation Metrics

Evaluating the performance of machine learning models is a critical component of the
modeling process, as it provides insights into the model’s generalization ability and helps
guide decisions during development and optimization. Different types of problems, such as
classification, regression, and survival prediction, require different evaluation metrics, each

tailored to the structure of the outputs and the goals of the analysis.

3.9.1 General Evaluation Metrics in Machine Learning

In supervised learning, evaluation metrics vary depending on the nature of the target
variable. For classification tasks, metrics such as accuracy, precision, recall, Fl-score, and
area under the Receiver Operating Characteristic curve (AUC-ROC) are commonly used [75].
For regression problems, mean squared error (MSE), mean absolute error (MAE), and the

coefficient of determination (R?) are typical choices [76].

3.9.2 Challenges in Survival Analysis

Survival analysis differs from traditional regression or classification in that it deals with

time-to-event data, where some observations may be censored. This renders many standard
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evaluation metrics inapplicable, as they assume fully observed outcomes. Consequently,
specialized evaluation metrics are employed to assess the performance of survival models,

accounting for both the time-to-event nature of the data and the presence of censored cases.

3.9.3 Concordance Index (C-index)

The most commonly used metric in survival analysis is the Concordance Index (C-index),
which generalizes the AUC-ROC to censored data [77]. It measures the model’s ability to
correctly rank survival times: a higher predicted risk score should correspond to a shorter

observed survival time. Formally, the C-index is defined as:

1
—l— > I(F > ) (3.7)

(i,5)eP
where P is the set of comparable pairs (i.e., pairs for which the order is known despite
censoring), 7; is the predicted risk score for individual 7, and I is the indicator function. A

C-index of 1 indicates perfect concordance, while 0.5 corresponds to random guessing.

3.9.4 Integrated Brier Score (IBS)

The Brier score evaluates the accuracy of probabilistic predictions over time by comparing
predicted survival probabilities with actual outcomes. The Integrated Brier Score (IBS) is
the time-integrated version of the Brier score, taking into account censoring through inverse

probability of censoring weights (IPCW) [78]:

IBS — % /0 " Bs(t) dr (3.8)

where BS(t) is the Brier score at time ¢, and T is a pre-defined maximum follow-up time.

Lower IBS values indicate better performance, with 0 being a perfect score.
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3.9.5 Time-dependent ROC Curves

Time-dependent ROC analysis extends classical ROC curves to survival data by evalu-
ating the true positive and false positive rates at specific time points [79]. For each time
t, the sensitivity and specificity of the model in discriminating between individuals who
experience the event before ¢ and those who survive beyond it are computed. The area
under the time-dependent ROC curve (AUC;) provides a dynamic assessment of predictive

performance.

3.9.6 Calibration Measures

In addition to discrimination (e.g., C-index), survival models should also be evaluated for
calibration, the agreement between predicted and observed survival probabilities. Calibration
curves compare predicted survival probabilities with empirical estimates, often using Kaplan-
Meier curves within predicted risk strata [80].

In survival analysis, evaluation metrics must reflect both the discriminatory power of the
model and its ability to correctly estimate survival probabilities in the presence of censored
data. The Concordance Index, Integrated Brier Score, and time-dependent ROC analysis
are the most frequently used tools for this purpose. A comprehensive evaluation involves
multiple metrics to assess different aspects of model performance, such as ranking accuracy,

probability estimation, and calibration.
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Chapter 4

Methodology

4.1 TCGA Dataset

The primary dataset utilized in this study is derived from The Cancer Genome Atlas
(TCGA), a comprehensive and publicly available repository of molecular and clinical data
across a wide range of cancer types [81]. Specifically, this work focuses on patients diag-
nosed with primary brain tumors, including glioblastoma multiforme (GBM) and lower-grade
glioma (LGG). These datasets provide multi-modal data comprising genomic measurements,
histopathological whole-slide images, and detailed clinical information.

The TCGA repository offers standardized and curated data, making it particularly suit-
able for integrative analyses and machine learning applications. For each patient, clinical
variables such as survival time, event status (i.e., alive or deceased), age at diagnosis, and
tumor grade are available.

In this thesis, the data set was filtered to include only patients for whom all three data
modalities, RNA-sequencing, histopathological images, and survival annotations, were avail-
able. Data preprocessing steps, including normalization and dimensionality reduction, are

described in the following sections.
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4.2 Data Overview

This study integrates two complementary data types: histopathological whole-slide im-
ages (WSIs) and RNA-sequencing gene expression profiles. These two modalities offer dis-
tinct insights into tumor biology, capturing both visual tissue architecture and intracellular
molecular activity. Together, they provide a rich foundation for building multi-modal models

for survival prediction.

RNA-Sequencing Data

The RNA-sequencing data provide a transcriptomic snapshot of the tumor’s molecular
profile. Each patient’s sample contains expression levels of thousands of genes, quantified
in terms of transcripts per million (TPM). These measurements allow us to infer biological
pathways, signaling mechanisms, and gene activity patterns associated with disease progres-
sion. The RNA-seq data used in this study were collected from the TCGA project and

matched to the same patients for whom histopathological images were available.

Histopathological Images

Histopathological images are digitized slides of tissue sections stained with hematoxylin
and eosin (H&E), revealing important structural features such as cell morphology, tissue
organization, and presence of necrosis or infiltration. In this work, we utilize H&E-stained
slides from brain tumor patients in the TCGA database.

These high-resolution images, typically scanned at 40x magnification, are stored in the

SVS format and may exceed several gigabytes in size.
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Figure 4.1: Example of an H&E-stained histopathological slide from a glioblastoma patient.
4.3 Preprocessing Steps

To ensure consistency across patients and extract meaningful representations from both
data modalities, a series of preprocessing steps were applied prior to model development.
These steps were tailored to the unique properties of histopathological images and RNA-
sequencing data, enabling robust feature extraction and harmonized survival label compu-
tation. Each case was linked to clinical metadata obtained from TCGA’s JSON records.

The fields submitter_id, vital status, days_to_death, and days_to_last_follow_up were used to
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define survival outcomes as follows:

e Event: A binary indicator set to 1 if the patient was deceased (vital_status = Dead),

and 0 otherwise.

e Time until event: The survival time in years, computed from diagnosis to either

death (for uncensored events) or last follow-up (for censored observations).

This processing step ensured consistency between the image data and survival labels used

for model training and evaluation.

4.3.1 Histopathological Image Preprocessing

To construct case-level representations from whole-slide histopathological images (WSIs),
we implemented a multi-stage preprocessing pipeline. This pipeline included the parsing of
clinical metadata, detection of tissue regions, extraction of high-resolution patches, and
transformation of each patch into a fixed-length feature vector using deep convolutional
neural networks (CNNs). The resulting vectors were aggregated into a single representation

per patient, suitable for downstream survival analysis.

Tissue Mask Generation and Patch Extraction

To isolate informative tissue regions from WSIs, a color-based tissue detection algorithm
was applied. Each slide was downsampled and converted from RGB to HSV color space.
Tissue presence was inferred using Otsu’s thresholding on both the RGB and saturation
channels, followed by RGB-based minimum intensity filtering to suppress background noise.

Morphological operations (dilation and erosion) were then applied to refine the resulting
binary tissue masks, removing isolated pixels and smoothing tissue contours.

Using the final tissue mask, up to 1000 patches of size 224 x 224 pixels were extracted per
WSI at the highest available resolution. Patch coordinates were recorded for downstream

analysis. Only patches that passed both a tissue coverage threshold and a contrast-based
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filter were retained, ensuring that low-content or background regions were excluded from

feature extraction.

Feature Extraction Using CNN Backbones

To embed each patch into a lower-dimensional representation, we used several pretrained
CNNs as feature extractors. The tested architectures included EfficientNet-B0, B1 [45],
ResNet-50 [41], and KimiaNet [48]. All models were used without their classification heads.
Input patches were normalized with ImageNet statistics and passed through the convolutional
backbone. Features were then extracted from the final convolutional layers using global

average pooling (GAP).

Attention-Based Aggregation at the Sample Level

For each sample (i.e., whole-slide image), the extracted patch-level feature vectors were
further processed using a self-attention mechanism to emphasize the most informative re-
gions. Specifically, scaled dot-product attention was computed across all patch features

within the same sample:

Attention(Q, K, V) = soft (QKT) % (4.1)
ention(Q, K, V) = softmax | —=— .
Vdy,

where (), K, and V denote the matrices of patch features and dj is the dimensionality
of the feature vectors. In this implementation, ) = K = V, allowing the model to learn
contextual relationships among patches.

The attention-weighted patch features were subsequently averaged to obtain a single
aggregated vector per sample. Additionally, prior to attention computation, dimensions
that were empirically found to be consistently uninformative were removed to reduce noise

and improve interpretability.
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Mean Pooling Across Samples to Form Case-Level Representations

Each patient case may consist of multiple WSIs (samples). Following attention-based
aggregation at the sample level, the resulting sample vectors were combined using mean

pooling to form a unified case-level representation:

1 N
fcase == N ; fsamplei (42)

where N is the number of samples associated with the patient. This final case-level

feature vector served as the input for the autoencoder architecture that was used after.

Patch-level
feature vector

Feature extraction

Sample-level
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Samples
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Attention layer
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Figure 4.2: Overview of the histopathological image preprocessing pipeline. Tissue masks
are generated from WSIs, followed by patch extraction, feature encoding, and aggregation.
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4.3.2 RNA-sequencing Data Preprocessing

RNA-sequencing (RNA-seq) data was processed to generate standardized numerical rep-
resentations of gene expression for each patient. In contrast to histopathological image pro-
cessing, RNA-seq preprocessing was more direct and computationally efficient. The primary
goal was to extract transcript abundance measurements in the form of TPM (Transcripts Per
Million) values, followed by appropriate normalization and dimensionality reduction steps to

enable robust survival modeling.

Metadata Parsing and File Matching

RNA-seq files were organized according to patient identifiers provided in TCGA meta-
data files. Using the JSON records, the submitter_id and associated file_name fields were
extracted. Only files with the .tsv extension and containing the tpm_unstranded column
were retained for analysis.

A patient-to-file mapping was constructed to ensure consistent and accurate retrieval of
the correct RNA-sequencing data for each case. This mapping allowed automated loading of
RNA-seq measurements and alignment of molecular data with corresponding survival labels

and histopathological samples.

Transformation and Filtering

For each matched RNA-seq file, expression values from the tpm_unstranded column were
extracted. To prepare the RNA-seq data for survival modeling, the TPM values underwent

the following transformation and filtering steps:

e Log transformation: TPM values were log-transformed to reduce right-skewness and

stabilize variance across gene expression levels.

e Imputation: Missing values, if present, were imputed using the median expression

value of the corresponding gene across the cohort.
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e Low-variance filtering: Genes with variance below a fixed threshold (0.1) were

removed to eliminate uninformative features and reduce dimensionality.

e Z-score normalization: The remaining gene expression values were standardized

across patients to have zero mean and unit variance.

The final preprocessed RNA-seq dataset consisted of 583 samples in rows and nearly
20,000 selected genes as columns, with all values normalized and suitable for downstream
modeling. The submitter_id column was retained to enable alignment with clinical and

image-based data, as well as for cross-modal feature fusion.

4.4 Histopathological Image-based model

Following preprocessing and feature extraction of histopathological images, a complete
analytical pipeline was constructed to perform survival prediction using image-derived rep-
resentations. This framework incorporated dimensionality reduction via autoencoders and
survival modeling using the DeepSurv architecture, whose theoretical foundations were dis-

cussed in previous chapters.

4.4.1 Dimensionality Reduction with Autoencoders

The extracted case-level features, obtained through attention-based aggregation of patch-
level CNN representations, were typically high-dimensional. To reduce noise, alleviate over-
fitting, and improve interpretability, we employed a fully connected autoencoder to project
the input features into a lower-dimensional latent space.

The autoencoder architecture consisted of an encoder and a decoder with symmetrical
fully connected layers. The encoder compressed the input into a bottleneck layer of prede-
fined size, while the decoder attempted to reconstruct the original input. The model was

trained using mean squared error (MSE) loss and optimized with the Adam optimizer.
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Several bottleneck sizes were evaluated (32, 64, 128, 256) to identify the optimal latent

dimensionality for survival prediction. After cross-validation and downstream evaluation
with DeepSurv, the bottleneck size of 32 consistently yielded the best performance in terms
of validation concordance index. Therefore, it was selected as the final dimensionality for all
subsequent survival modeling.

Feature standardization was applied using statistics computed from the training set, and
the same transformation was applied to the test set. The encoded representations with 32

dimensions were saved and used as input to DeepSurv and multimodal fusion experiments.

4.5 RNA-sequencing based model

A parallel analytical pipeline was developed for the RNA-sequencing data, following the
same structure as described in the histopathological Image-based model. As previously
discussed, the pipeline included dimensionality reduction via an autoencoder, followed by
survival modeling using DeepSurv, with hyperparameter optimization performed using Op-

tuna.

4.5.1 Dimensionality Reduction with Autoencoders

The input to the model consisted of preprocessed and normalized TPM (Transcripts Per
Million) gene expression values, as described in Section 4.3.2. Each patient was initially
represented by tens of thousands of genes, which were filtered to retain only those exhibiting
sufficient variance across the dataset.

To reduce dimensionality and denoise the high-dimensional RNA-sequencing data, a deep
fully connected autoencoder was implemented. The architecture used for RNA-sequencing
was deeper than the one used for image-derived features, incorporating additional hidden
layers, batch normalization, and dropout to better handle the increased complexity and

potential noise inherent in transcriptomic data.
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Several bottleneck sizes were evaluated (32, 64, 128, 256) to identify the optimal latent

representation for survival prediction. Based on cross-validation results and subsequent
evaluation with DeepSurv, a bottleneck size of 32 yielded the highest validation concordance
index and was therefore selected as the final dimensionality for all downstream modeling.
Feature standardization was applied using statistics from the training set, and the same
transformation was consistently applied to the test set. The resulting 32-dimensional encoded
representations were used as input to the DeepSurv model and for multimodal integration

with image-based features.

4.6 Framework for Histopathological Image and RNA-
sequencing data fusion

To leverage complementary information from both imaging and transcriptomic data, a
feature-level fusion strategy was implemented. After independently extracting and reducing
the dimensionality of each modality using autoencoders, the resulting latent representations

were concatenated to form a unified feature vector for each case.

4.6.1 Feature Concatenation

Let Zimage € R% denote the bottleneck representation derived from histopathological
images and Zgene € R% the corresponding representation from RNA-sequencing data. The

fused feature vector zge.q Was constructed via:

Ztused = [Zimage || dene] S Rd1+d2 (43)

where || denotes vector concatenation. Each modality was independently standardized

using training set statistics prior to fusion.
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Figure 4.3: Fused Data Framework

4.7 Common Survival Modeling Strategy

4.7.1 Data Splitting and Stratification

For all three survival prediction models—image-based, RNA-seq based, and the fused
model—the same data splitting and stratification strategy was applied to ensure robust
evaluation and fair comparison. Initially, 10% of the data was held out as an independent
test set, never used during training or hyperparameter tuning. The remaining 90% was used
for training and validation within a 10-fold stratified cross-validation framework. In each
fold, a further 10% of the training data was set aside as a validation set to support early
stopping and performance monitoring.

Stratification was applied both during the initial test split and throughout the cross-
validation procedure to preserve the distribution of key clinical variables across all subsets.
Specifically, stratification was based on tumor grade, patient age, and survival time, ensuring

balanced representation of prognostic factors. This approach helps reduce sampling bias and
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enables consistent model comparison across different data modalities.

4.7.2 Hyperparameter Optimization

All three survival prediction models—image-based, RNA-seq based, and the fused model-—employ
the same downstream modeling strategy once feature vectors have been extracted. In each
case, the low-dimensional representations, are used as input to a DeepSurv model [63]. As
discussed in the previous chapter, DeepSurv is a deep neural network that generalizes the
Cox proportional hazards model by learning a nonlinear risk function from covariates.

Each model variant was trained using the same pipeline: 10-fold stratified cross-validation
on the training set, coupled with hyperparameter optimization via Optuna [64], a Bayesian
optimization framework for efficient automated search. The following hyperparameter space

was defined:

e Number of hidden layers: 1 to 3

e Nodes per hidden layer: 16 to 128

e Learning rate: log-uniform in the range 107% to 1073
e Learning rate decay: 0 to 0.01

e Momentum: 0.8 to 0.95

e L2 regularization coefficient: 0.001 to 1.0

e Dropout rate: 0.0 to 0.5

The objective function maximized the average concordance index (C-index) across folds.
Early stopping and validation-based monitoring were used during training to prevent over-
fitting. The best-performing configuration identified by Optuna was retained and evaluated

on the hold-out test set. This consistent modeling framework enables fair comparison across
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modalities and isolates the contribution of each data source to survival prediction perfor-

mance.

4.8 Interpretability

4.8.1 Interpretability of the RN A-sequencing based Model

For the interpretability analysis of the RNA-seq based model, SurvLIME was applied by
perturbing the original gene expression values (prior to any transformation). To evaluate
the model’s behavior in a clinically meaningful and representative manner, we selected three

test cases for SurvLIME analysis:

e One patient assigned a high risk score that experienced a death event in the first year

of the observation period,

e One patient assigned a low risk score that was right-censored at year 5 of the observa-

tion period without experiencing any event,

e One patient assigned a low risk score that experienced a death event in the second year

of the observation period.

These cases were chosen to capture both successful and erroneous predictions. The
interpretability pipeline described below was applied separately to each of the three selected
cases.

Specifically, for each test case, we generated 100 synthetic variants by randomly per-
turbing subsets of gene expression values. Each perturbed sample was then passed through
the entire survival prediction pipeline, including log transformation, Z-score normalization,
dimensionality reduction via autoencoder, and finally DeepSurv, to obtain a corresponding
risk score.

To estimate gene-level importance, we fitted a linear regression model using the perturbed

gene values as input features and the resulting DeepSurv risk scores as the target variable.
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Since the DeepSurv model outputs higher scores for worse prognosis, we transformed the
predicted risk scores by multiplying them by —1 prior to fitting the regression model. This
transformation allowed us to interpret the SurvLIME coefficients in terms of survival rather

than risk:

e A positive importance score indicates that the gene contributes to higher survival

probability (i.e., it is protective).

¢ A negative importance score indicates that the gene is associated with lower sur-

vival probability (i.e., it is unprotective).

This interpretation convention was applied consistently across all cases.

The learned regression coefficients were used as importance scores, quantifying the con-
tribution of each gene to the model’s prediction for the selected case. The 30 most influential
genes, ranked by the absolute value of their coefficients, were visualized to highlight those

with the strongest local effect on the survival prediction.

4.8.2 Interpretability of the Fused Model

To assess how the inclusion of histopathological image features influences survival predic-
tions, we extended the SurvLIME analysis to the fused model. In this combined architecture,
features extracted from H&E-stained whole-slide images using a pretrained convolutional
neural network (KimiaNet) were concatenated with encoded gene expression features from
the RNA-seq based pipeline. The resulting fused feature vector was then fed into DeepSurv
for risk prediction.

For interpretability, SurvLIME was applied by perturbing only the original gene ex-
pression values, while keeping the image-derived features fixed. Each perturbed sample
was processed through the full multimodal pipeline, including autoencoder compression and
DeepSurv inference, to generate a new risk score. A linear regression model was then fitted

to estimate the local importance of each gene feature.
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Chapter 5

Results

This chapter presents the experimental results obtained from the developed survival
prediction models. Three distinct pipelines were evaluated: the histopathological image-
based model, the RNA-sequencing based model, and the fused model that combines both
data types.

Each model was trained and validated using 10-fold cross-validation, and final perfor-
mance was assessed on a held-out test set. The main evaluation metric employed was the
Concordance Index (C-index), which quantifies the agreement between predicted and actual
survival rankings.

Additionally, we examine the correlation between predicted risk scores and actual sur-
vival times, visualize survival stratification using Kaplan—Meier curves, and provide inter-
pretability analyses using SurvLIME to identify key predictive features and pathways in each
modality. The results collectively demonstrate the predictive value of each data modality

and the added benefit of multimodal fusion.
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5.1 Performance Evaluation of Investigated Feature Ex-

tractors for the Histopathological Image-based Model

The concordance index (C-index) was used to evaluate model performance in terms of
survival prediction. Initially, four different pre-trained CNN backbones were compared for
histopathological image feature extraction. Table 5.1 summarizes the mean C-index across
10-fold cross-validation as well as the final test set C-index for each backbone.

Table 5.1: Cross-validation and final test set C-index for each pretrained feature extractor.

Pretrained Model | Mean CV C-index | Final Test C-index
EfficientNet-B0 0.79 0.78
EfficientNet-B1 0.76 0.74
ResNet-50 0.79 0.73
KimiaNet 0.80 0.80

Among the tested backbones, KimiaNet achieved the highest average performance and
generalization ability. Given its domain-specific training on histopathological slides, Kimi-

aNet was selected as the image feature extractor for the remainder of the study.

5.2 Obtained Performance using Different Data Modal-

ities

Following the model selection, three pipelines were developed and compared: an image-
only model using KimiaNet features, an RNA-seq based model using gene expression data,
and a fused model combining both data types through feature concatenation. Figure 5.1
presents the C-index distributions across 10-fold cross-validation, along with the dashed
lines indicating test set performance.

While the fused model achieved the highest test set C-index (0.91), the RNA-seq

based model demonstrated slightly superior median performance across cross-validation



66

Model Performance Comparison

0.95
0.911
0.90 —_!1 0-1:;2 —l—
0.85
*
il
he]
£ .
¥
080 -
0.75 -
0.70 T T
Image-based Gene-based Fused

Figure 5.1: C-index distributions across 10-fold cross-validation for the three models. Dashed
lines represent the final test set performance.

folds. This indicates that gene expression features alone carry strong prognostic value and
generalize well across different subsets of the data.

The image-based model showed higher variance and lower overall C-index, which is ex-
pected due to the complex nature of histopathological images and their sensitivity to intra-
tumoral heterogeneity and tissue artifacts. Nevertheless, the superior performance of the
fused model on the test set confirms that integrating complementary modalities can improve

overall generalization and robustness in survival prediction.

5.2.1 Comparison with State-of-the-Art Models

To evaluate the effectiveness of our proposed fused approach, we compared it against
state-of-the-art models combining histopathology and genomic data, as well as relevant uni-
modal baselines (Table5.2). Our model demonstrated a C-index of 0.91 on the TCGA GBM

+ LGG cohort—a notable improvement over the image-only baseline (0.80) and even sur-
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passing the RNA-seq based model (0.89). In comparison, Chen etal. (2020) using Pathomic

Fusion achieved 0.826 on TCGA-GBM by integrating WSI and genomic data [82]. Fan etal.
(2023) applied a Convolutional MIL framework on WSIs only, with a C-index of 0.67 [83].
Steyaert etal. (2022) combined TCGA and CPTAC data (WSI + genomic) and reached
0.822 [84]. The integrative PAGE-Net model (Hao etal., 2020) reported a C-index of ap-
proximately 0.702 on TCGA-GBM, outperforming its image-only (0.509) and Cox-PASNet
genomic (0.640) variants [85]. In broader cancer analysis, Chen etal. (2022) reported a
0.821 C-index for LGG using pan-cancer integrative modeling [86], while Zhang etal. (2024)
demonstrated a C-index of 0.849 on TCGA-LGG with CATFusion, a cross-attentional pan-
cancer framework [87]. These results underscore the superior performance of our explainable
fused model, confirming that fusing WSI and genomic features—when implemented with
effective architectures—leads to substantial improvements in survival prediction for glioma
patients.

Table 5.2: Comparison of the proposed model with state-of-the-art survival prediction mod-
els.

Model Dataset C-index
Proposed Fused Model | TCGA GBM, LGG (WSI + Genomic) 0.91
Image-based TCGA (WSI) 0.80
RNA-seq based TCGA (Genomic) 0.89
Chen et al. (2020) [82] TCGA-GBM (WSI + Genomic) 0.826
Fan et al. (2023) [83] TCGA (WSI) 0.67
Steyaert et al. (2022) [84] | TCGA, CPTAC (WSI + Genomic) 0.822
Hao et al. (2020) [85] TCGA GBM (WSI + genomic) 0.70
Chen et al. (2022) [86] TCGA LGG (WSI + genomic) 0.821
Zhang et al. (2024) [87] TCGA LGG (WSI + genomic) 0.849

5.3 Evaluation of Fused Model

5.3.1 Predicted Risk Scores vs. Survival Time

Figure 5.2 illustrates the relationship between predicted risk scores from the fused model

and actual survival times. As expected, a general inverse trend is observed: patients with
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higher predicted risk tend to have shorter survival durations. This negative correlation
confirms that the model captures clinically meaningful information when ranking patients
by risk.

Predicted Risk Score vs Actual Survival Time
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Figure 5.2: Predicted risk scores vs. actual survival times for the fused model. A negative
correlation confirms the model’s ability to rank patients according to survival risk.

Nonetheless, some degree of overlap is evident, particularly among patients with interme-
diate risk scores, highlighting regions where the model’s predictive certainty is lower. This
variability may reflect underlying biological heterogeneity or limitations in the representa-

tional capacity of the fused feature space.

5.3.2 Kaplan—Meier Curves by Predicted Risk

To evaluate the clinical utility of the predicted risk scores, patients in the test set were
stratified into low- and high-risk groups using the median predicted risk score from the fused
model as a threshold. Figure 5.3 presents the Kaplan—Meier survival curves for both groups.

As expected, the high-risk group exhibited significantly reduced survival durations com-
pared to the low-risk group, indicating that the model’s risk stratification aligns with clin-

ically relevant outcomes. However, the two curves intersect around year four, suggesting
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Kaplan-Meier Survival Curves by Predicted Risk Group
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Figure 5.3: Kaplan—-Meier survival curves for low- and high-risk groups (defined by the
median predicted risk from the fused model).

diminished discriminative ability at longer time horizons. This could be attributed to late-
occurring adverse events in patients initially predicted as low-risk, or to limitations in the
model’s long-term predictive capacity. Future work could incorporate time-dependent AUC

analysis or alternative stratification schemes to further investigate this phenomenon.

5.4 Interpretability

5.4.1 Pathway Interpretations of RINA-sequencing based Model

and Fused Model

To move beyond individual gene-level insights and explore broader biological mechanisms,
we selected the top 1000 genes ranked by their absolute SurvLIME importance scores. These
genes were mapped to curated biological pathways using the Reactome database [88]. For
each pathway, we computed a pathway-level importance score by averaging the importance
values of all constituent genes associated with that pathway.

This analysis enabled us to identify the 20 most influential pathways contributing to

the model’s survival risk predictions. These results offer a biologically meaningful context
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for understanding the collective impact of gene sets rather than isolated genes. The top
pathways are visualized in the figures presented below.

Subsequently, we repeated the pathway-level analysis using the gene importance scores
derived from the multimodal setting. Interestingly, the set of top-ranked pathways shifted
when image features were introduced, suggesting that morphological information can mod-
ulate the model’s reliance on certain molecular pathways. This result underscores the com-
plementary nature of imaging and transcriptomic modalities in capturing survival-relevant

patterns in glioma.

5.4.2 Biological Interpretation of Important Pathways Across Cases

To further interpret the internal decision mechanisms of the models, we analyzed the
most important biological pathways identified by SurvLIME for each of the three represen-
tative cases. This analysis highlights how the model’s focus shifts across scenarios and data

modalities.

Patient assigned a low risk score that experienced a death event in the sec-
ond year of the observation period (Patient 1) In the RNA-seq based model, the
top pathways included MAP2K and MAPK activation (R-HSA-5674135) and Signaling by
BRAF and RAF'1 fusions (R-HSA-6802952), both exhibiting negative importance scores.
These are central components of the MAPK cascade, a signaling axis frequently dysregu-
lated in glioblastoma and associated with enhanced cell proliferation, survival, and therapy
resistance [89, 90]. Their contribution to increased predicted risk aligns with their oncogenic
roles.

Interestingly, the pathway p130Cas linkage to MAPK signaling for integrins (R-HSA-
372708) showed a positive importance score, suggesting a protective effect in this case, po-
tentially reflecting context-specific modulation of integrin signaling [91].

In the fused model, the influence of molecular features was altered. The top-ranked
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pathway was Synthesis of bile acids and bile salts (R-HSA-192105), which does not have a

known role in brain tumors and may reflect incidental metabolic variation. Notably, the
p130Cas linkage to MAPK signaling for integrins pathway reappeared, but with a negative
importance score, indicating a shift toward an hazardous interpretation in the presence of
histopathological features. Another high-ranking pathway, COPI-dependent Golgi-to-ER
retrograde traffic (R-HSA-6811434), has been implicated in stress responses and protein

homeostasis and may reflect tumor adaptation mechanisms [92].
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Figure 5.4: SurvLIME-based gene and pathway importance for the RNA-seq based model
in patient 1.
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Figure 5.5: SurvLIME-based gene and pathway importance for the fused model in patient
1.
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Patient assigned a low risk score that was right-censored at year 5 of the observa-
tion period without experiencing any event (Patient 2) In both the RNA-seq based
and fused models, highly protective pathways included CD28 dependent PISK/Akt signal-
ing (R-HSA-389357) and CD28 co-stimulation (R-HSA-389356), which are immune-related
pathways involved in T-cell activation and survival [93]. Their association with reduced
predicted risk may indicate a favorable immune surveillance state in this patient.

The NIK to noncanonical NF-kB signaling pathway (R-HSA-5676590) also ranked among
the top features in both models. Although this pathway has been linked to inflammatory
responses and tumor progression [94], its positive importance here suggests a protective role,
possibly reflecting its complex regulatory functions.

Notably, the pathway Signal transduction by L1 (R-HSA-445144) was the only negative
pathway among the top-ranked features in the RNA-seq based model and one of two in the
fused model. L1CAM, the protein encoded by this pathway, is known to promote glioma

invasion and is associated with poor prognosis [95].
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Figure 5.6: Top genes (RNA-seq based model) in patient 2.
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Figure 5.7: Top pathways (RNA-seq based model) in patient 2.
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Figure 5.8: Top genes (fused model) in patient 2.
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Top 20 Pathways by Risk Score Contribution
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Figure 5.9: Top pathways (fused model) in patient 2.

Patient assigned a high risk score that experienced a death event in the first year
of the observation period (Patient 3) This case corresponds to a high-risk patient who
experienced an event and was correctly classified by both models. In the RNA-seq based
model, the most hazardous pathways (i.e., with negative importance scores) were Intrin-
sic Pathway for Apoptosis (R-HSA-109606) and TP53 regulates metabolic genes (R-HSA-
5628897). While both pathways are canonically tumor-suppressive, promoting programmed
cell death and regulating metabolism, their negative scores here likely reflect reduced activity
in this patient, consistent with hallmark glioblastoma features such as impaired apoptosis
and disrupted p53 signaling [96].

The most protective pathway in the RNA-seq based model was Reduction of cytosolic
Ca™ levels (R-HSA-418359). Although calcium signaling is highly context-dependent, re-
ductions in intracellular calcium have been associated with decreased glioma cell proliferation
and enhanced differentiation, potentially explaining the pathway’s protective role [97].

In the fused model, the inclusion of histopathological features shifted importance toward

pathways associated with tumor invasion and immune modulation. Among the most haz-



7
ardous features were MET promotes cell motility (R-HSA-8875878) and Basigin interactions

(R-HSA-210991), both involved in enhancing glioma cell migration and invasiveness. MET
signaling is a key driver of cell motility and therapeutic resistance [98], while basigin (CD147)
facilitates extracellular matrix degradation and angiogenesis [99].

The most protective pathway in the fused model was TNF' receptor superfamily (TN-
FSF) members mediating non-canonical NF-kB signaling (R-HSA-5676594). Although this
pathway is often linked to pro-tumor inflammation, its protective interpretation here may

indicate activation of anti-tumor immune responses in specific cellular contexts [94].
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Figure 5.10: Top genes (RNA-seq based model) in patient 3.
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Figure 5.11: Top pathways (RNA-seq based model) in patient 3.
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Figure 5.12: Top genes (fused model) in patient 3.
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Top 20 Pathways by Risk Score Contribution
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Chapter 6

Conclusion

The primary objective of this thesis was to develop and evaluate a multimodal deep learn-
ing framework for survival prediction in glioblastoma patients by integrating histopathologi-
cal whole-slide images and RNA-sequencing data. We constructed parallel pipelines for each
data modality that included preprocessing, dimensionality reduction via autoencoders, and
survival modeling using DeepSurv. The pipelines were subsequently fused at the feature
level to assess whether combining morphological and molecular information could enhance
prognostic accuracy.

Comprehensive experiments demonstrated that the gene expression model achieved high
predictive performance across cross-validation and generalization to unseen test cases. Al-
though the image-based model exhibited higher variance, it still captured meaningful prog-
nostic patterns. Most notably, the fused model achieved the highest test set concordance
index, suggesting that the integration of transcriptomic and histological features provides
complementary information for survival prediction.

In addition to performance evaluation, we incorporated model interpretability via SurvLIME,
enabling case-wise and pathway-level explanations for model decisions. This allowed us to
investigate the biological relevance of important features and provided insight into the mech-

anisms associated with high- and low-risk profiles.
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Overall, this work contributes to the growing field of multimodal learning in compu-
tational oncology by proposing a modular and interpretable survival prediction framework

applicable to large-scale cancer datasets.

6.1 Future Work

While the framework demonstrated promising results, several directions remain open for
future research. Incorporating clinical variables such as patient age, performance status, or
molecular markers could further improve performance and clinical utility. More advanced
fusion strategies may also enhance interaction modeling between modalities. Finally, apply-
ing the model to external datasets and validating the identified pathways biologically could
strengthen its translational relevance.

In summary, this thesis presents a robust and interpretable deep learning pipeline for sur-
vival prediction in glioblastoma, offering a foundation for future developments in multimodal

modeling for cancer prognosis.
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