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Περίληψη

Ο καρκίνος του εγκεφάλου παραμένει μία από τις πιο επιθετικές και θανατηφόρες μορφές

κακοήθειας, με σημαντική ετερογένεια και ελλιπή πρόγνωση. Η αξιόπιστη πρόβλεψη της επι-

βίωσης είναι κρίσιμη για τον σχεδιασμό εξατομικευμένης θεραπείας και τη βελτιστοποίηση της

λήψης κλινικών αποφάσεων. Στην παρούσα εργασία προτείνεται ένα πλαίσιο βασισμένο στη

βαθιά μάθηση, το οποίο ενσωματώνει ιστοπαθολογικές εικόνες και RNA sequencing δεδομένα,

με στόχο την πρόβλεψη επιβίωσης σε ασθενείς με γλοιώματα διαφόρων βαθμών. Το σύνολο

δεδομένων αντλήθηκε από τον Καρκινικό Γονιδιωματικό ΄Ατλαντα (TCGA) και περιλάμβανε

περιπτώσεις γλοιοβλαστώματος και γλοιώματος χαμηλότερου βαθμού. Αφού εφαρμόστηκαν τε-

χνικές προεπεξεργασίας, χρησιμοποιήθηκε το μοντέλο DeepSurv για την πρόβλεψη του χρόνου

επιβίωσης. Το συνδυασμένο μοντέλο ενσωματώνει και τα δύο είδη δεδομένων και επέδειξε

ανώτερη απόδοση από τα μονοτροπικά μοντέλα, όπως φάνηκε μέσω του δείκτη συμφωνίας (C-

index), επιτυγχάνοντας τιμή 0.91, έναντι 0.80 (μόνο εικόνες) και 0.89 (μόνο γονιδιακά δε-

δομένα). Επιπλέον, χρησιμοποιήθηκε η μέθοδος SurvLIME για την ερμηνεία των προβλέψεων,

αναδεικνύοντας σημαντικά γονίδια και μονοπάτια που σχετίζονται με την πρόγνωση. Τα αποτε-

λέσματα δείχνουν ότι ο συνδυασμός ετερογενών βιοϊατρικών δεδομένων με επεξηγήσιμα μοντέλα

βαθιάς μάθησης ενισχύει την πρόβλεψη επιβίωσης και την υποστήριξη κλινικών αποφάσεων για

ασθενείς με κακοήθεις εγκεφαλικούς όγκους.

Λέξεις-κλειδιά: Καρκίνος Εγκεφάλου, Γλοίωμα, Πρόβλεψη Επιβίωσης, Βαθιά Μάθηση, Ι-

στοπαθολογία, RNA-sequencing, DeepSurv, SurvLIME
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Abstract

Brain cancer remains one of the most aggressive and lethal forms of cancer, with lim-

ited prognosis and high inter-patient variability. Reliable survival prediction is essential for

personalized treatment planning and improved clinical decision-making. In this thesis, we

present a deep learning-based framework that integrates histopathological whole-slide images

(WSIs) and RNA-sequencing (RNA-seq) data to predict survival in patients with gliomas

of varying grades. The dataset was derived from The Cancer Genome Atlas (TCGA) and

included both glioblastoma and lower-grade glioma cases. For each data modality, we devel-

oped specialized preprocessing pipelines: patch-level feature extraction and attention-based

aggregation for WSIs, and TPM normalization with dimensionality reduction for RNA-seq

data. Deep autoencoders were used to compress each modality into a low-dimensional la-

tent space, and the resulting representations were input to the DeepSurv model for survival

prediction. The fused model, which fuses image- and gene-based features, achieved superior

performance compared to unimodal models, as measured by concordance index (C-index),

achieving a score of 0.91, compared to 0.80 for the image-only model and 0.89 for the

RNA-sequencing based model. We further employed SurvLIME to interpret the model’s

predictions, offering insights into biologically relevant genes and pathways associated with

survival. Overall, this work demonstrates the value of multimodal data integration and

explainable AI techniques for risk stratification in brain tumor patients.

Keywords: Brain Cancer, Glioma, Survival Prediction, Histopathology, RNA-sequencing,

Deep Learning, DeepSurv, Multimodal Learning, Autoencoders, Explainable AI, SurvLIME
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1

Κεφάλαιο 1

Εκτενής Ελληνική Περίληψη

1.1 Εισαγωγή και Κίνητρο

Ο καρκίνος του εγκεφάλου, και ειδικότερα τα γλοιώματα, συγκαταλέγεται στις πιο επιθετικές

και θανατηφόρες μορφές κακοήθειας, με εξαιρετικά χαμηλά ποσοστά επιβίωσης. Η αξιόπιστη

πρόβλεψη του χρόνου επιβίωσης των ασθενών αυτών είναι ζωτικής σημασίας για τον σχεδιασμό

εξατομικευμένων θεραπειών και τη βελτιστοποίηση της κλινικής αντιμετώπισης.

Στην παρούσα εργασία προτείνεται ένα πολυτροπικό σύστημα πρόγνωσης βασισμένο σε με-

θόδους βαθιάς μάθησης, το οποίο συνδυάζει δύο ετερογενείς πηγές δεδομένων: αφενός τις

ψηφιοποιημένες ιστοπαθολογικές εικόνες ολόκληρης διαφάνειας (Whole Slide Images, WSIs)

εγκεφαλικών όγκων και αφετέρου τα προφίλ γονιδιακής έκφρασης (RNA-seq) των αντίστοιχων

δειγμάτων.

Ο συνδυασμός των μορφολογικών χαρακτηριστικών του όγκου (από τις ιστολογικές εικόνες)

με τα μοριακά δεδομένα (RNA) προσφέρει μια πιο ολοκληρωμένη περιγραφή της νόσου, με στόχο

τη βελτίωση της ακρίβειας και της αξιοπιστίας της πρόγνωσης.
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1.2 Περιγραφή της Μεθοδολογίας

1.2.1 Δεδομένα και Στόχος

Το σύνολο δεδομένων προήλθε από τον οργανισμό TCGA και περιλάμβανε συνολικά 583

περιπτώσεις γλοιοβλαστώματος (GBM) και γλοιωμάτων χαμηλότερου βαθμού (LGG), για τις

οποίες ήταν διαθέσιμα τόσο ιστοπαθολογικά δείγματα όσο και δεδομένα γονιδιακής έκφρασης

(RNA-seq). Από τα αντίστοιχα κλινικά δεδομένα ελήφθησαν πληροφορίες σχετικά με την επι-

βίωση των ασθενών και τον χρόνο επιβίωσης ή τον χρόνο έως την αποχώρηση από τη μελέτη.

Σχήμα 1.1: Παράδειγμα ιστοπαθολογικής εικόνας από το τελικό σύνολο δεδομένων.

1.2.2 Επεξεργασία Ιστοπαθολογικών Δεδομένων

Αρχικά, εντοπίστηκαν οι περιοχές ιστού στις εικόνες και ακολούθησε εξαγωγή patches

υψηλής ανάλυσης. Κάθε patch μετατράπηκε σε διάνυσμα χαρακτηριστικών μέσω ενός προεκ-

παιδευμένου CNN. Εξετάστηκαν τέσσερα διαφορετικά προεκπαιδευμένα μοντέλα: KimiaNet,

EfficientNet-B0, EfficientNet-B1, ResNet-50 .
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Στη συνέχεια, εφαρμόστηκε μηχανισμός attention για την ανάδειξη των σημαντικότερων

patches και τη μετάβαση από χαρακτηριστικά επιπέδου patch-level σε sample-level. Δεδομένου

ότι κάθε ασθενής μπορεί να διέθετε πολλαπλά ιστολογικά δείγματα, εφαρμόστηκε mean pooling

στα sample-level χαρακτηριστικά για την εξαγωγή ενός τελικού διανύσματος ανά ασθενή (case-

level feature vector). Η διαδικασία απεικονίζεται συνοπτικά στο Σχήμα 1.2.

Σχήμα 1.2: Σχηματική απεικόνιση της προεπεξεργασίας των ιστοπαθολογικών εικόνων.

Πριν την εισαγωγή των χαρακτηριστικών στο μοντέλο επιβίωσης, εφαρμόστηκε συμπίεση

των διανυσμάτων μέσω ενός autoencoder. Τα αρχικά διανύσματα περιείχαν περίπου 1000 fea-

tures, ανάλογα με το εκάστοτε προεκπαιδευμένο μοντέλο, και εξετάστηκαν τέσσερα μεγέθη

εξόδου: 32, 64, 128 και 256. Η καλύτερη απόδοση επιτεύχθηκε με μέγεθος 32.

Το συμπιεσμένο διάνυσμα για κάθε ασθενή εισήχθη στο μοντέλο επιβίωσης DeepSurv, μαζί

με τα αντίστοιχα δεδομένα επιβίωσης (event, time until event). Η συνολική αρχιτεκτονική του

πιπελινε των εικόνων παρουσιάζεται στο Σχήμα 1.2.
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1.2.3 Επεξεργασία Δεδομένων RNA

Τα δεδομένα RNA-seq που χρησιμοποιήθηκαν ήταν ήδη κανονικοποιημένα με τη μέθοδο

Transcripts per Million (TPM). Αρχικά, εφαρμόστηκε λογαριθμικός μετασχηματισμός, ενώ

στη συνέχεια έγινε φιλτράρισμα με βάση τη χαμηλή διακύμανση, μειώνοντας τον αριθμό των

γονιδίων από περίπου 60.000 σε 20.000.

Ακολούθησε z-μετασχηματισμός και χρήση autoencoder για μείωση της διαστασιμότητας.

΄Οπως και στην περίπτωση των εικόνων, το τελικό συμπιεσμένο διάνυσμα 32 διαστάσεων χρη-

σιμοποιήθηκε ως είσοδος σε ανεξάρτητο μοντέλο DeepSurv. Η αρχιτεκτονική του μοντέλου

που βασίζεται αποκλειστικά σε δεδομένα γονιδιακής έκφρασης παρουσιάζεται στο Σχήμα 1.3.

Σχήμα 1.3: Μοντέλο πρόβλεψης επιβίωσης βασισμένο αποκλειστικά σε δεδομένα RNA.

1.2.4 Συνδυαστικό Μοντέλο

Στο επόμενο στάδιο, αναπτύχθηκε ένα συνδυαστικό μοντέλο που ενσωματώνει χαρακτηρι-

στικά τόσο από τις ιστολογικές εικόνες όσο και από τα γονιδιακής έκφρασης δεδομένα. Τα

δύο συμπιεσμένα διανύσματα (32 διαστάσεων το καθένα) συνενώθηκαν (concatenation) δη-

μιουργώντας ένα ενοποιημένο διάνυσμα 64 διαστάσεων, το οποίο χρησιμοποιήθηκε ως είσοδος

στο μοντέλο DeepSurv. Το συνολικό pipeline του συνδυαστικού μοντέλου απεικονίζεται στο

Σχήμα 1.4.
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Σχήμα 1.4: Συνδυασμένο πολυτροπικό μοντέλο με ενοποιημένα χαρακτηριστικά εικόνας και

RNA.

1.3 Αποτελέσματα και Συμπεράσματα

Στον Πίνακα 5.1 παρουσιάζεται η απόδοση του μοντέλου ιστοπαθολογικών εικόνων με διαφο-

ρετικούς προεκπαιδευμένους εξαγωγείς χαρακτηριστικών. Το μοντέλο KimiaNet υπερίσχυσε,

επιτυγχάνοντας τις υψηλότερες τιμές C-index, και επιλέχθηκε για το συνδυαστικό μοντέλο.

Πίνακας 1.1: Cross-validation and final test set C-index for each pretrained feature extractor.

Pretrained Model Mean CV C-index Final Test C-index
EfficientNet-B0 0.79 0.78

EfficientNet-B1 0.76 0.74

ResNet-50 0.79 0.73

KimiaNet 0.80 0.80

Στο Σχήμα 1.5 απεικονίζεται η συγκριτική απόδοση των τριών μοντέλων. Το συνδυαστικό

μοντέλο σημείωσε την υψηλότερη επίδοση με C-index ίσο με 0.91.
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Σχήμα 1.5: Σύγκριση δείκτη συμφωνίας (C-index) για κάθε μοντέλο.

Για την περαιτέρω αξιολόγηση του συνδυαστικού μοντέλου χρησιμοποιήθηκαν καμπύλες

επιβίωσης Kaplan–Meier, καθώς και η γραφική απεικόνιση της σχέσης μεταξύ προβλεπόμενου

risk score και πραγματικού χρόνου επιβίωσης.

Στο Σχήμα 5.2, παρατηρείται σαφής αρνητική συσχέτιση μεταξύ κινδύνου και επιβίωσης,

όπως αναμενόταν. Ωστόσο, εντοπίζονται περιοχές επικάλυψης, ιδιαίτερα σε ενδιάμεσες τιμές

κινδύνου, υποδηλώνοντας περιορισμούς στην προγνωστική βεβαιότητα του μοντέλου.



7

Σχήμα 1.6: Σχέση μεταξύ προβλεπόμενων τιμών κινδύνου και πραγματικών χρόνων επιβίωσης.

Οι ασθενείς του συνόλου ελέγχου διαχωρίστηκαν σε ομάδες υψηλού και χαμηλού κινδύνου

βάσει της διάμεσης τιμής του risk score. Οι καμπύλες επιβίωσης των δύο ομάδων παρουσιάζονται

στο Σχήμα 1.7. Η διαφορά μεταξύ των καμπυλών είναι σημαντική, ιδίως στα πρώτα χρόνια μετά

τη διάγνωση, επιβεβαιώνοντας την κλινική χρησιμότητα του μοντέλου. Ωστόσο, η σύγκλιση

των καμπυλών μετά το τέταρτο έτος υποδεικνύει περιορισμούς στην πρόβλεψη μακροπρόθεσμης

επιβίωσης.
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Σχήμα 1.7: Καμπύλες επιβίωσης Kaplan–Meier ανά ομάδα κινδύνου.

1.4 Ερμηνευσιμότητα

Η κατανόηση των παραγόντων που συμβάλλουν στις προβλέψεις των μοντέλων αποκτά ο-

λοένα και μεγαλύτερη σημασία για την υποστήριξη της εξατομικευμένης ιατρικής. Στο πλαίσιο

αυτό, εφαρμόστηκε η μέθοδος SurvLIME, η οποία επέτρεψε την αποτίμηση της σημασίας των

γονιδίων στο εκτιμώμενο ρίσκο επιβίωσης.

Η τεχνική βασίστηκε στη δημιουργία τοπικών γραμμικών μοντέλων γύρω από κάθε πρόβλε-

ψη, εντοπίζοντας τα χαρακτηριστικά που επηρέασαν περισσότερο το αποτέλεσμα και αποδίδοντας

αντίστοιχες τιμές σημαντικότητας (importance scores). Η μέθοδος εφαρμόστηκε αρχικά στο

μοντέλο RNA-only και στη συνέχεια στο πολυτροπικό μοντέλο, επιτρέποντας την εξαγωγή των

σημαντικότερων γονιδίων για κάθε περίπτωση.

Παρατηρήθηκε ότι τα δύο μοντέλα ανέδειξαν διαφορετικά γονίδια ως σημαντικότερα, γε-

γονός που καταδεικνύει τη συνεισφορά των μορφολογικών χαρακτηριστικών των εικόνων στη
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διαδικασία πρόγνωσης. Εξετάστηκαν σε βάθος τρεις περιπτώσεις ασθενών:

- ΄Ενας ασθενής με χαμηλό εκτιμώμενο κίνδυνο, ο οποίος κατέληξε κατά το δεύτερο έτος

της περιόδου παρακολούθησης (Ασθενής 1).

- ΄Ενας ασθενής με χαμηλό εκτιμώμενο κίνδυνο, ο οποίος δεν παρουσίασε κάποιο συμβάν

και λογοκρίθηκε στο πέμπτο έτος της περιόδου παρακολούθησης (Ασθενής 2).

- ΄Ενας ασθενής με υψηλό εκτιμώμενο κίνδυνο, ο οποίος κατέληξε κατά το πρώτο έτος

της περιόδου παρακολούθησης (Ασθενής 3). Για την εξαγωγή βιολογικά ουσιαστικής ερμηνε-

ίας, οι τιμές σημαντικότητας των γονιδίων χαρτογραφήθηκαν σε γνωστά βιολογικά μονοπάτια

(pathways) μέσω της βιβλιοθήκης gseapy. Με αυτόν τον τρόπο, υπολογίστηκαν συνολικά

importance scores για κάθε pathway.

Μεταξύ των pathways που έλαβαν υψηλή αρνητική τιμή, αναδείχθηκαν εκείνα που σχετίζο-

νται με τον κυτταρικό πολλαπλασιασμό και τη διηθητικότητα των όγκων, όπως:

• MET promotes cell motility (R-HSA-8875878)

• Basigin interactions (R-HSA-210991)

Τα ευρήματα αυτά ενισχύουν τη σύνδεση μεταξύ μοριακών μηχανισμών και πρόγνωσης επι-

βίωσης σε γλοιογενείς όγκους, και υποδεικνύουν τη χρησιμότητα επεξηγήσιμων τεχνικών τε-

χνητής νοημοσύνης στην ανάδειξη πιθανών θεραπευτικών στόχων. Τα αντίστοιχα γραφήματα

που απεικονίζουν τα σημαντικότερα γονίδια και pathways παρατίθενται στο τέλος του παρόντος

κειμένου.

1.5 Συμπεράσματα και Μελλοντικές Επεκτάσεις

Η παρούσα διπλωματική εργασία επικεντρώθηκε στην ανάπτυξη ενός μοντέλου πρόβλεψης

επιβίωσης για ασθενείς με γλοιώματα, μέσω της συνδυαστικής αξιοποίησης ιστοπαθολογικών

εικόνων και δεδομένων γονιδιακής έκφρασης. Η ολιστική προσέγγιση της νόσου μέσω δια-

φορετικών τύπων δεδομένων κρίθηκε αναγκαία, καθώς τα γλοιώματα παρουσιάζουν έντονη

ετερογένεια τόσο σε μορφολογικό όσο και σε μοριακό επίπεδο.
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Τα αποτελέσματα ανέδειξαν την υπεροχή του συνδυαστικού μοντέλου έναντι των επιμέρους

(RNA-only ή μόνο εικόνας), επιτυγχάνοντας υψηλή ακρίβεια στην πρόγνωση της επιβίωσης.

Επιπλέον, μέσω ερμηνευτικών τεχνικών, αναδείχθηκαν συγκεκριμένα γονίδια και μοριακά μονο-

πάτια με ισχυρή συσχέτιση προς τον εκτιμώμενο κίνδυνο, ενισχύοντας τη βιολογική αξιοπιστία

των ευρημάτων.

Η εργασία αυτή υπογραμμίζει τη σημασία των πολυτροπικών μοντέλων στην ογκολογική

πρόγνωση και θέτει τις βάσεις για τη μελλοντική ανάπτυξη εξατομικευμένων συστημάτων υπο-

στήριξης απόφασης στην κλινική πράξη.

Προτεινόμενες μελλοντικές επεκτάσεις περιλαμβάνουν:

1. Ενσωμάτωση κλινικών μεταβλητών, όπως η ηλικία του ασθενούς, ο δείκτης λειτουργικότη-

τας ή μοριακοί δείκτες, με στόχο τη βελτίωση της ακρίβειας και της κλινικής χρησιμότητας

του μοντέλου.

2. Διερεύνηση προχωρημένων στρατηγικών συγχώνευσης των δεδομένων για την αποτε-

λεσματικότερη μοντελοποίηση των αλληλεπιδράσεων μεταξύ των διαφορετικών μορφών

πληροφορίας.

3. Εφαρμογή του μοντέλου σε εξωτερικά σύνολα δεδομένων και βιολογική επιβεβαίωση των

σημαντικών μοριακών μονοπατιών που αναδείχθηκαν, ώστε να ενισχυθεί η μεταφραστική

του αξία.

Η μεθοδολογία που προτείνεται μπορεί να λειτουργήσει ως αφετηρία για τη βελτίωση της

πρόγνωσης και την προώθηση της εξατομικευμένης ιατρικής σε ασθενείς με όγκους του εγκε-

φάλου.
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Chapter 2

The Brain and Gliomas: Clinical and

Biological Foundations

2.1 Introduction to Brain Anatomy and Physiology

The human brain is a highly complex organ responsible for regulating perception, move-

ment, cognition, and homeostasis. It contains approximately 86 billion neurons and a com-

parable number of glial cells [1]. Structurally, the brain is divided into the cerebrum, cerebel-

lum, and brainstem, each mediating sensorimotor integration, coordination, and autonomic

control [2].

Neurons are the primary signaling units, while glial cells, including astrocytes, oligo-

dendrocytes, and microglia, support brain function through metabolic assistance, synaptic

regulation, and immune defense. Astrocytes also maintain blood–brain barrier (BBB) in-

tegrity by regulating endothelial permeability and ion balance. [3]

The brain is protected by the skull, meninges, and cerebrospinal fluid. The BBB acts

as a selective interface that prevents toxins from entering the brain while allowing essential

nutrients to pass [4]. However, this barrier also impedes drug delivery in central nervous

system diseases, including brain tumors [5].
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2.2 Classification of Brain Tumors

Brain tumors are generally categorized as either primary, arising within the central ner-

vous system, or secondary, originating from metastatic spread of cancers from other organs.

Primary brain tumors are further classified by the World Health Organization (WHO) based

on histopathological and molecular features [6]. Tumors are assigned a grade from I to IV,

reflecting increasing levels of malignancy.

Gliomas, which arise from glial cells, are the most prevalent type of primary malig-

nant brain tumors. These include astrocytomas, oligodendrogliomas, and ependymomas.

Glioblastoma (GBM), also known as grade IV astrocytoma, is the most aggressive subtype,

characterized by rapid proliferation, necrosis, and extensive invasion into surrounding tissue

[7].

2.3 Diffuse Gliomas: Classification, Epidemiology, and

Clinical Challenges

Lower-grade gliomas (WHO grade II and III), including diffuse astrocytomas and oligo-

dendrogliomas, exhibit slower growth and occur more frequently in younger adults. Although

they are less aggressive than GBM, LGGs often progress over time and share some of the

same genetic and molecular alterations, including IDH mutations and 1p/19q codeletion.

They remain clinically significant due to their variable prognosis and the potential for ma-

lignant transformation [8].

Glioblastoma accounts for approximately 14–15% of all primary brain tumors and more

than 50% of malignant gliomas in adults [9]. The annual incidence of GBM is estimated at

3.2 per 100,000 population, with peak incidence in individuals aged 45–70 years. The tumor

demonstrates a slight male predominance and occurs more frequently among individuals of

Caucasian ethnicity [10].
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Figure 2.1: Distribution of malignant primary brain and other central nervous system tumors
in adults. [9].

Despite aggressive multimodal therapy, including maximal safe surgical resection, radio-

therapy, and temozolomide chemotherapy, the prognosis for GBM remains poor. Median

survival is approximately 14 to 16 months, with fewer than 7% of patients surviving beyond

five years post-diagnosis [11]. Recurrence is nearly universal and typically occurs within

months following initial treatment. Recurrent tumors are often more resistant to conven-

tional therapies [12].

In addition to its clinical severity, GBM imposes a substantial socioeconomic burden,

owing to high healthcare utilization, progressive neurological decline, and the requirement

for long-term supportive care and rehabilitation [13].
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2.4 Diagnosis and Imaging Techniques

Clinical Presentation and Imaging

The diagnostic process for diffuse gliomas, encompassing both lower-grade gliomas (LGG)

and glioblastoma (GBM), typically begins with a thorough clinical evaluation prompted by

neurological symptoms. Common presenting signs include persistent headaches, seizures,

cognitive dysfunction, and focal neurological deficits such as hemiparesis or aphasia. The

nature and severity of these symptoms are closely related to the tumor’s size, anatomical

location, and associated mass effect or edema. While LGGs often develop slowly and may

be discovered incidentally, GBMs tend to present more abruptly due to their rapid growth

and necrotic core [14].

Magnetic Resonance Imaging (MRI) remains the cornerstone of both initial diagnosis

and follow-up of gliomas. LGGs are typically seen as non-enhancing, T2-hyperintense lesions

with poorly defined borders, whereas GBMs often demonstrate ring-enhancing lesions with

central necrosis on T1-weighted post-contrast sequences. Additional sequences such as T2-

weighted and FLAIR are critical in delineating tumor infiltration and peritumoral edema.

Advanced modalities including magnetic resonance spectroscopy (MRS), diffusion tensor

imaging (DTI), and positron emission tomography (PET) provide complementary insights

into tumor metabolism, microstructural integrity, and therapeutic response [15, 16].

Histopathology and Digital Slide Analysis

Histopathological examination of biopsy or surgically resected tissue remains the gold

standard for confirming glioma diagnosis. All diffuse gliomas are assessed microscopically

for nuclear atypia, mitotic activity, necrosis, and microvascular proliferation. These features

help distinguish lower-grade lesions from high-grade tumors. LGGs typically exhibit lower

mitotic rates and a lack of necrosis, while GBMs show extensive mitoses, palisading necrosis,

and abnormal vascular proliferation [6].
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Hematoxylin and eosin (H&E)-stained sections are routinely used in this process. In mod-

ern workflows, these glass slides are digitized into whole-slide images (WSIs), enabling the

integration of computational pathology. Artificial intelligence (AI) tools now assist in tumor

segmentation, classification, and prediction of molecular subtypes, making histopathology a

foundation for both diagnosis and machine learning-based research [17].

Molecular Profiling

Molecular diagnostics have become a central component of glioma classification, progno-

sis, and treatment planning. Key molecular markers include mutations in IDH1 or IDH2,

MGMT promoter methylation, and 1p/19q co-deletion. The presence of an IDH mutation is

associated with better prognosis and defines a major molecular subtype of gliomas. MGMT

promoter methylation predicts improved response to temozolomide chemotherapy, especially

in GBM. The 1p/19q co-deletion is a defining hallmark of oligodendrogliomas and correlates

with favorable outcomes and chemosensitivity [8, 6].

2.5 Standard Treatment Strategies

Treatment approaches for diffuse gliomas differ significantly by grade and molecular pro-

file. In LGGs, management may range from active surveillance in asymptomatic, low-risk

patients to surgery followed by radiotherapy and chemotherapy in high-risk or progressive

cases. In contrast, GBM treatment typically involves a more aggressive multimodal approach

aimed at maximizing tumor control and prolonging survival despite the poor prognosis [18].

Surgical Resection

Surgical resection serves both diagnostic and therapeutic purposes in glioma care. In

LGG, early and extensive resection has been associated with delayed malignant transforma-

tion and prolonged survival. For GBM, maximal safe resection is standard practice and has
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been linked to improved outcomes. However, due to the infiltrative nature of gliomas and

their proximity to eloquent brain regions, complete resection is often not feasible [19].

Radiation Therapy

Postoperative radiotherapy is a mainstay of treatment in both LGG and GBM. In LGGs,

radiotherapy may be deferred in younger patients with favorable prognostic features, while

it is routinely administered in high-risk or progressive cases. In GBM, radiotherapy typically

consists of fractionated external beam radiation therapy totaling 60 Gy over six weeks. It

targets both the tumor bed and surrounding tissue at risk for microscopic disease spread [20].

Chemotherapy

Temozolomide (TMZ) is the most commonly used chemotherapeutic agent in glioma

treatment. In LGGs, chemotherapy may follow radiotherapy in high-risk patients or be used

alone in select cases. In GBM, TMZ is administered concurrently with radiotherapy and

continued as adjuvant therapy. The benefit of TMZ is significantly influenced by MGMT

promoter methylation status, with methylated tumors demonstrating better responses [21].

Tumor Treating Fields (TTFields)

TTFields represent a novel adjunctive treatment modality currently approved for GBM.

These wearable devices deliver alternating electric fields that disrupt mitotic spindle forma-

tion, thereby inhibiting tumor cell division. Clinical trials have shown modest improvements

in progression-free and overall survival when TTFields are combined with maintenance temo-

zolomide. This approach is not used for LGG at present due to a lack of evidence and lower

aggressiveness of the disease [12].
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Limitations and Treatment Resistance

Diffuse gliomas are notorious for their resistance to treatment. In LGG, disease pro-

gression and malignant transformation pose long-term management challenges. In GBM,

recurrence is almost universal and occurs within months of treatment. Contributing fac-

tors include the blood-brain barrier, which limits drug delivery; tumor heterogeneity, which

promotes adaptation and resistance; and glioma stem-like cells, which exhibit heightened

resilience to therapy [14].

2.6 Challenges and Prognostic Factors

Both lower-grade and high-grade gliomas present distinct but overlapping challenges in

their clinical management. While GBMs are acutely aggressive and rapidly fatal, LGGs pose

long-term risks due to their unpredictable progression and potential for transformation.

Tumor Heterogeneity and Invasiveness

Intratumoral heterogeneity is a hallmark of diffuse gliomas. Genetic, epigenetic, and phe-

notypic variability exists not only between tumors but within individual tumors. In GBM,

this leads to rapid development of treatment-resistant clones. LGGs also exhibit heterogene-

ity, though generally at a slower pace. Moreover, gliomas infiltrate adjacent normal brain

tissue, complicating complete surgical resection and contributing to recurrence [22].

Therapy Resistance

Resistance to therapy is a multifactorial phenomenon in gliomas. It is driven by enhanced

DNA repair mechanisms, activation of redundant signaling pathways, evasion of immune

detection, and the presence of a treatment-resistant subpopulation of glioma stem-like cells.

The blood-brain barrier further complicates systemic therapy by impeding drug penetration.

These mechanisms are present in both LGGs and GBMs but are particularly prominent in
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recurrent high-grade tumors [23].

Prognostic Biomarkers

A variety of molecular and clinical markers have prognostic relevance across the glioma

spectrum. IDH mutations are associated with improved prognosis and are more frequent

in LGGs. MGMT promoter methylation is predictive of temozolomide responsiveness and

improved survival in GBM. The 1p/19q co-deletion is a favorable marker found in oligoden-

drogliomas. Additional factors such as patient age, functional status, tumor location, and

extent of resection are also used for risk stratification and therapeutic planning [21, 24].

Recurrence and Lack of Curative Therapies

Recurrence remains a significant obstacle in glioma management. In GBM, recurrence

is almost inevitable and typically occurs within a few months of completing initial therapy.

Recurrent tumors are often more aggressive and resistant to further treatment. In LGG,

recurrence and progression to higher-grade gliomas may occur over a period of years, under-

scoring the importance of long-term monitoring. At present, there are no curative options

for diffuse gliomas, and research continues to explore immunotherapy, molecularly targeted

therapies, and personalized treatment approaches [14, 12].
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Chapter 3

Theoretical Background Information

3.1 Introduction

This chapter provides the necessary theoretical foundation to support the methods and

models developed in this thesis. It introduces core concepts in machine learning and deep

learning, with a focus on the architectures and techniques most relevant to biomedical data

analysis and survival prediction tasks.

The chapter begins with a general overview of machine learning paradigms, including

supervised and unsupervised learning, followed by an introduction to deep learning and

its most commonly used architectures. Special attention is given to convolutional neural

networks (CNNs) and transfer learning techniques, which play a key role in image-based

feature extraction. Pre-trained models such as ResNet-50, EfficientNet, and KimiaNet are

discussed due to their relevance in histopathological image analysis.

Next, we turn to the processing of biological data, specifically RNA-sequencing, and

review how machine learning methods are applied to high-dimensional omics datasets. We

then outline classical and modern approaches to survival analysis, including the DeepSurv

model, which is used in this work.

The chapter also presents the Optuna framework for automated hyperparameter opti-
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mization, and discusses various feature fusion strategies for integrating image and genomic

data. Lastly, we introduce explainability methods such as LIME, and review evaluation

metrics used to assess the performance of survival models.

Together, these sections aim to equip the reader with a clear understanding of the theo-

retical principles that inform the design and implementation of the proposed methodology.

3.2 Machine Learning Models

In 1956, a group of computer scientists introduced the foundational idea that computers

could emulate human thought and reasoning. They proposed that “every aspect of learning

or any other feature of intelligence can in principle be so precisely described that a machine

can be made to simulate it” [25]. This idea marked the formal birth of the field of arti-

ficial intelligence (AI), dedicated to automating cognitive tasks traditionally performed by

humans.

Within the broader scope of AI, machine learning (ML) and deep learning (DL) have

emerged as core subfields that enable systems to learn from data and improve performance

over time. ML algorithms leverage historical data to perform tasks such as prediction,

classification, clustering, and dimensionality reduction. These algorithms iteratively refine

their performance as more data become available, making them powerful tools across various

industries [26].

For example, recommendation systems used by e-commerce platforms, social media, and

news aggregators rely on ML to personalize content based on users’ behavioral history. In

the context of autonomous driving, ML models, often in combination with computer vi-

sion, are essential for object detection, decision-making, and navigation. In biomedical

research, ML facilitates the analysis of high-dimensional, complex datasets, identifying non-

linear associations, interactions, latent structures, and subgroups that might be missed by

traditional parametric statistical methods. Unlike classical models, which typically require
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explicit assumptions and predefined relationships, ML algorithms are often more flexible and

data-driven.

There are four primary types of learning in ML: supervised, unsupervised, semi-supervised,

and reinforcement learning [26].

Figure 3.1: Types of Machine Learning

3.2.1 Supervised and Unsupervised Learning

The two most commonly used learning paradigms in machine learning are supervised and

unsupervised learning, each addressing different types of problems based on the availability

and structure of labeled data.

In supervised learning, the model is trained on a labeled dataset, where each input

sample is paired with a corresponding target output. The objective is to learn a mapping

from inputs to outputs that generalizes well to unseen data. Supervised learning is widely

used in classification tasks (e.g., predicting cancer subtypes from histopathological images)

and regression tasks (e.g., predicting patient survival time from genomic features). Common

algorithms include support vector machines (SVMs), decision trees, random forests, and

various types of neural networks [26].
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On the other hand, unsupervised learning deals with unlabeled data, aiming to un-

cover hidden patterns, structures, or groupings within the dataset. Since no ground-truth

labels are provided, the algorithm attempts to organize the data in a meaningful way based

solely on its internal structure. This paradigm is commonly used for clustering (e.g., group-

ing patients based on gene expression profiles), dimensionality reduction (e.g., PCA, t-SNE,

or autoencoders), and anomaly detection. Unsupervised learning is particularly useful in

exploratory data analysis and in domains where labeling is expensive or infeasible.

These two learning paradigms serve as the foundation for many real-world machine learn-

ing applications, and more advanced approaches, such as semi-supervised learning and self-

supervised learning, seek to combine their respective advantages. [27]

3.2.2 Introduction to Deep Learning

Deep learning is a subfield of machine learning that focuses on neural network architec-

tures with multiple layers, enabling the automatic learning of hierarchical representations

from data [28]. While traditional machine learning often relies on handcrafted features and

domain-specific preprocessing, deep learning methods can learn both low-level and high-level

abstractions directly from raw inputs.

The defining characteristic of deep learning models is the presence of multiple layers,

typically composed of linear transformations followed by non-linear activation functions,

which allow the network to progressively capture more complex patterns. These models are

particularly effective for tasks involving unstructured data such as images, audio, and text.

Deep learning has demonstrated remarkable success in areas including computer vision,

natural language processing, and biomedical data analysis [26]. In image-based tasks, con-

volutional neural networks (CNNs) are often employed due to their ability to capture spatial

hierarchies and local dependencies. In other domains, architectures such as recurrent neural

networks (RNNs), transformers, and autoencoders are commonly used.

The strength of deep learning lies in its scalability, flexibility, and ability to generalize
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from large volumes of data. However, it often requires extensive computational resources

and careful tuning of hyperparameters to achieve optimal performance.

3.3 Neural Networks

A foundational understanding of neural networks and deep learning models is essential

for comprehending the concepts and methodologies presented in this work. Therefore, it is

appropriate to first outline the fundamental theory of neural networks along with an overview

of the main architectures commonly used in image processing.

3.3.1 Artificial Neural Networks

The term Artificial Neural Networks (ANNs) refers to a class of artificial intelligence

algorithms inspired by the structure and information processing mechanisms of biological

neural networks in the human brain. ANNs are composed of interconnected nodes, analogous

to neurons, which are linked by weighted connections. By adjusting these weights through

training, the network learns from input data via activation functions that govern the output

of each node.

The concept of artificial neural networks was first introduced in 1943 by neurophysiolo-

gist Warren S. McCulloch and mathematician Walter Pitts in their seminal paper A Logical

Calculus of the Ideas Immanent in Nervous Activity [29]. For several decades following their

introduction, ANNs showed limited practical success. However, in recent years, the field

has experienced remarkable progress due to the development of more sophisticated archi-

tectures, such as Convolutional Neural Networks (CNNs) [30, 31], as well as advancements

in computational hardware, including powerful Graphics Processing Units (GPUs) and spe-

cialized accelerators like Tensor Processing Units (TPUs) [27]. These developments have

significantly enhanced the performance and applicability of neural networks across a wide

range of domains.
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3.3.2 Network Architecture and Forward Propagation

An ANN typically consists of an input layer, one hidden layer, and an output layer. Each

neuron in a given layer is connected to every neuron in the next layer through weighted

connections. The forward propagation process involves computing a weighted sum of the

inputs and applying an activation function to produce the neuron’s output. Mathematically,

the output a
(l)
j of a neuron j in a layer l is given by:

a
(l)
j = ϕ

(∑
i

w
(l)
ji a

(l−1)
i + b

(l)
j

)
(3.1)

where w
(l)
ji are the weights, b

(l)
j is the bias, and ϕ is the activation function.

3.3.3 Deep Neural Networks

The term Deep Neural Networks (DNNs) refers to a subclass of Artificial Neural Net-

works (ANNs) characterized by the presence of multiple hidden layers between the input

and output layers [28]. This architectural depth enables DNNs to learn increasingly abstract

and hierarchical representations of data, making them particularly effective for tasks involv-

ing high-dimensional inputs such as image and speech recognition [32], natural language

processing [33], and biomedical data analysis [34].

In DNNs, each hidden layer applies a linear transformation followed by a nonlinear acti-

vation function, allowing the network to progressively extract higher-level features from the

input. Compared to shallow networks, which contain only one or two hidden layers, DNNs

are capable of modeling more intricate patterns and dependencies [26], although they also

require more computational resources and are more susceptible to overfitting if not properly

regularized.

The widespread adoption and success of DNNs have been facilitated by the availability

of large-scale annotated datasets, substantial computational power through modern GPUs

and TPUs, and key algorithmic advancements. These include improved weight initializa-
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tion methods [35], adaptive optimization algorithms such as Adam [36], and regularization

techniques like dropout [37]. Together, these developments have solidified deep learning as

a foundational approach in fields ranging from computer vision and genomics to survival

prediction in clinical settings.

Figure 3.2: Visual comparison between a shallow Artificial Neural Network (ANN) and a
Deep Neural Network (DNN) [38].

3.3.4 Activation Functions

To enable the network to capture complex, non-linear relationships in the data, activation

functions are used after each neuron’s linear transformation. Activation functions introduce

non-linearity into the network, enabling it to learn complex patterns. Common choices

include:

• Sigmoid: σ(x) = 1
1+e−x

• Hyperbolic Tangent (tanh): tanh(x) = ex−e−x

ex+e−x

• ReLU (Rectified Linear Unit): ReLU(x) = max(0, x)

• Leaky ReLU: Leaky ReLU(x) = max(αx, x) where α is a small constant
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ReLU and its variants are commonly used in deep networks due to their efficiency and

ability to mitigate vanishing gradient issues [39].

3.3.5 Loss Functions and Optimization

Training a neural network involves adjusting its parameters to minimize the discrepancy

between predictions and ground truth. This is quantified using loss functions. The most

common loss functions are:

• Mean Squared Error (MSE): used for regression tasks.

• Cross-Entropy Loss: used for classification problems.

To minimize the loss function, optimization algorithms such as Stochastic Gradient De-

scent (SGD) or Adam [36] are employed. These algorithms update the network weights

iteratively through the process of backpropagation.

3.3.6 Backpropagation and Learning

Backpropagation is the core algorithm used for training neural networks. It calculates

the gradient of the loss function with respect to each weight using the chain rule of calculus,

and then applies the optimizer to update the weights in the direction that reduces the loss.

3.3.7 Regularization and Overfitting

One of the main challenges in training neural networks is overfitting, where the model

learns the training data too well and fails to generalize to unseen data. Several regularization

techniques are commonly employed:

• L1/L2 Regularization: Add penalty terms to the loss function based on the magni-

tude of weights.
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• Dropout: Randomly deactivates neurons during training to encourage redundancy

and robustness [37].

• Early Stopping: Terminates training when the performance on a validation set starts

to deteriorate.

3.3.8 Depth and Expressive Power

Deeper neural networks can model more complex functions but are also more prone to

issues such as vanishing gradients and increased training times. The Universal Approxi-

mation Theorem shows that even a single hidden layer can approximate any continuous

function, given sufficient neurons, but in practice, deeper architectures often yield better

performance [40].

3.3.9 Convolutional Neural Networks(CNNs)

Convolutional Neural Networks (CNNs) were developed to address the growing com-

plexity of data and the increasing size of datasets. They have become the foundational

architecture for image processing tasks [20], replacing earlier neural networks that relied on

fully connected layers, which were inefficient and computationally expensive due to their

dense connectivity. CNNs are specifically designed to automatically learn patterns and fea-

tures from images and other grid-like data through the use of convolutional and pooling

layers. This hierarchical feature extraction makes them particularly effective for tasks such

as image classification, object detection, and facial recognition [5].

The typical architecture of a Convolutional Neural Network [4] includes the following

components:

• Input layer: Receives the raw image data.

• Convolutional layers: Apply filters (kernels) to extract local features.
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• Pooling layers: Downsample the feature maps to reduce dimensionality and compu-

tational load.

• Fully connected layers: Perform high-level reasoning based on the extracted fea-

tures.

• Output layer: Produces the final prediction.

Figure 3.3: Example of a Convolutional Neural Network architecture.

The most important and unique parts of a CNN are the Convolution Layers, the Pooling

Layers and the Fully connected Layers. The functionality and usage of those types of layers

are analyzed below.

Convolutional Layer (or Kernel)

The convolutional layers of a CNN operate on the basis of a defined algorithm. Let h,

w, and c represent the height, width, and number of channels of the input feature map,

respectively, and let K denote the convolutional kernel (or filter), a matrix with dimensions
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k × k. A convolutional operation is applied to each k × k submatrix of the input with a

sliding step determined by the stride S. For instance, if S = 2, the kernel is applied to every

other k × k region, effectively reducing the spatial dimensions of the input by a factor of

two. This downsampling is performed while attempting to preserve the most informative

features, thanks to the learned values of the kernel.

Mathematically, the 2D convolution operation between an input feature map X and a

kernel K can be expressed as:

Y (i, j) =
k−1∑
m=0

k−1∑
n=0

K(m,n) ·X(i+m, j + n) (3.2)

where Y (i, j) is the output feature map at position (i, j), and (m,n) iterates over the

elements of the kernel. This operation slides the kernel over the input feature map to compute

localized feature responses.

When the number of input channels c is greater than 1, as in the case of RGB images

(c = 3), the kernel K must also have the same depth. In such cases, a 3D kernel of shape

k× k× c is used to perform the convolution across all channels simultaneously. The outputs

from all channels are summed to produce a single response per spatial location.

To control the spatial dimensions of the output, it is common to apply padding to the

input. Padding involves adding rows and columns of predefined values (typically 0, 1, or the

average of neighboring pixels) around the input feature map. This technique ensures that

the output dimensions are not reduced after convolution.

Figure 3.4 illustrates the convolution process described above. The kernel K has dimen-

sions 3 × 3 and depth 3, matching the depth of the input image. After the convolution is

applied to each channel, the results are summed and passed through a non-linearity after

adding a bias term. In this example, zero-padding of one row and column is applied around

the input.

The main target of the convolution layer is to obtain high-level features from the input

image. High-level features can be lines, edges, or blobs, but also more abstract patterns such
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Figure 3.4: An example of a convolution operation.

as tires in cars or windows in buildings. In addition, the layer captures low-level features

such as color gradients and orientation, which are essential for early visual understanding.

Pooling Layer

Pooling layers operate in a manner similar to convolutional layers but do not involve the

application of a kernel for convolution. Instead, a pooling layer replaces each sub-region

(typically a small square matrix) of the input with a single representative value. The specific

value depends on the type of pooling operation used. The two most common types are:

• Max Pooling: Returns the maximum value from each sub-region.

• Average Pooling: Returns the average value of the elements in each sub-region.

Typically, the input to a pooling layer is the output of a preceding convolutional layer.

The primary function of pooling is to reduce the spatial dimensions of the input, thereby
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Figure 3.5: Example of a Pooling Layer architecture.

decreasing the computational and memory complexity of subsequent layers. Moreover, pool-

ing helps in extracting dominant features that are invariant to small transformations such as

rotation and translation. This invariance enhances the robustness of the model. Max pool-

ing, in particular, is often used as a noise-suppressing operation, as it discards low-activation

(and often noisy) values while preserving the most prominent features.

Fully Connected Layers

Fully connected (FC) layers, also known as dense layers, are typically used in the final

stages of a Convolutional Neural Network. These layers receive flattened inputs, often feature

maps resulting from convolutional and pooling layers, and perform high-level reasoning to

produce the final output, such as class scores or regression values.

Mathematically, a fully connected layer performs a linear transformation followed by a

non-linear activation:
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y = f(W · x+ b) (3.3)

where x is the input vector, W is the weight matrix, b is the bias vector, and f is a

non-linear activation function (e.g., ReLU, sigmoid, or softmax). Every neuron in an FC

layer is connected to all neurons in the previous layer, making it dense in connectivity but

computationally expensive.

Although fully connected layers offer high expressiveness, they also introduce a large

number of parameters and are prone to overfitting. In modern architectures, their use is

sometimes minimized or replaced entirely by global average pooling layers, especially in

lightweight or fully convolutional designs.

Modern Advances in Convolutional Neural Networks

In recent years, Convolutional Neural Networks (CNNs) have made substantial progress

both in architectural design and overall performance. The availability of larger and more

diverse datasets has played a crucial role in training more robust and generalizable models.

Furthermore, techniques such as batch normalization, data augmentation, and the implemen-

tation of regularization methods have significantly improved the learning process, enhancing

both generalization and robustness. The development of deeper network architectures has

enabled CNNs to capture increasingly complex patterns and hierarchical features from in-

put data. Additionally, the introduction of deep pre-trained models, such as ResNet [41],

Inception [42], and EfficientNet [41], has transformed the field. These architectures allow

researchers to leverage transfer learning, where models trained on large-scale datasets can be

fine-tuned for different but related tasks, reducing training time and improving performance.
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3.3.10 Transfer Learning and Pre-trained Models

Transfer learning is a powerful technique in deep learning that enables models trained on

a large, generic dataset to be repurposed for a different but related task with limited data.

This approach is especially advantageous in biomedical applications, where labeled data

are often scarce or expensive to obtain. In the context of Convolutional Neural Networks

(CNNs), transfer learning typically involves reusing a model that has been pre-trained on a

large-scale dataset such as ImageNet [43]. The lower layers of these networks are capable

of capturing general features such as edges, textures, and basic shapes, which are broadly

useful across various visual recognition tasks.

By initializing a model with pre-trained weights instead of training from scratch, transfer

learning reduces the computational cost and shortens the convergence time during train-

ing. Moreover, it improves performance in domains where the amount of training data is

insufficient to support the full training of deep architectures. Fine-tuning, where selected

layers of the pre-trained model are updated during training, allows the network to adapt its

parameters to the specific characteristics of the target dataset while still benefiting from the

knowledge encoded in the original weights.

In this work, transfer learning was applied by employing several widely used pre-trained

CNN architectures, each with different design philosophies and parameter capacities. These

models include ResNet-50, EfficientNet-B0 and B1, and KimiaNet, a model specifically de-

signed for histopathological image analysis. The subsequent subsections provide a brief

overview of each architecture and discuss their relevance and performance in the context of

the current study.

3.3.11 ResNet-50

ResNet-50 is a 50-layer deep convolutional neural network introduced as part of the

Residual Network (ResNet) family by He et al. [41]. The key innovation behind ResNet

is the introduction of residual connections, or skip connections, which allow the network
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to learn residual mappings instead of direct mappings. These connections help mitigate

the vanishing gradient problem commonly encountered in very deep architectures, thereby

enabling the effective training of networks with substantially more layers.

The ResNet-50 architecture consists of an initial convolutional layer followed by four

stages, each containing multiple bottleneck residual blocks. These blocks comprise a series

of convolutional layers with identity shortcut connections that bypass one or more layers.

This design facilitates efficient gradient flow and improves convergence during training.

Due to its strong representational power and stability during optimization, ResNet-50

has become a widely adopted backbone in computer vision tasks, including those in the

biomedical imaging domain. The architecture of ResNet-50 is shown in Figure 3.6, illustrat-

ing its residual block structure with skip connections that facilitate gradient flow and enable

training of deeper networks.

Figure 3.6: Schematic representation of the ResNet-50 architecture. Residual blocks with
identity shortcut connections allow for deeper network training by mitigating the vanishing
gradient problem. [44]

3.3.12 EfficientNet

EfficientNet is a family of convolutional neural networks introduced by Tan and Le [45],

based on the idea of optimizing model performance through compound scaling. Unlike tra-

ditional approaches that scale network dimensions (depth, width, resolution) independently,

EfficientNet employs a compound coefficient to uniformly scale all three dimensions in a

balanced manner. This results in a family of models that achieve state-of-the-art accuracy
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while maintaining high computational efficiency.

The baseline model, EfficientNet-B0, is discovered using neural architecture search and

serves as the foundation for the scaled-up variants (B1, B2, etc.). Each successive variant

increases the model capacity and input resolution, enabling better performance on more com-

plex tasks. All EfficientNet models use a series of inverted bottleneck blocks with depthwise

separable convolutions, which contribute to both parameter efficiency and representational

power.

EfficientNet models have been widely adopted in computer vision due to their excellent

trade-off between accuracy and computational cost. Their design makes them particularly

suitable for applications where resource constraints are important, such as mobile or embed-

ded systems, as well as in domains like medical imaging, where processing high-resolution

data efficiently is essential. The architecture of EfficientNet is shown in Figure 3.7, show-

casing the compound scaling approach and the use of inverted bottleneck MBConv blocks

throughout the network.

Figure 3.7: Overview of the EfficientNet architecture. The network scales depth, width,
and resolution in a compound manner and uses MBConv blocks to balance efficiency and
performance. [46]
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3.3.13 DenseNet-121

DenseNet-121 is a deep convolutional neural network introduced by Huang et al. [47],

known for its unique connectivity pattern where each layer receives input from all preceding

layers. This dense connectivity leads to several advantages: improved gradient flow, en-

hanced feature reuse, and reduced parameter count compared to traditional architectures of

similar depth. DenseNet-121 has been widely adopted in medical imaging tasks due to its

efficiency and strong performance in capturing complex visual patterns. The architecture of

DenseNet-121 is shown in Figure 3.8, highlighting its dense block structure and the flow of

feature maps across layers.

Figure 3.8: Schematic representation of the DenseNet-121 architecture. The network is com-
posed of dense blocks with direct connections between all layers, interleaved with transition
layers that reduce spatial dimensions. [47]

KimiaNet

KimiaNet is a customized version of DenseNet-121 fine-tuned specifically for histopatho-

logical image analysis. It was trained on the Kimia Path24 dataset [48], which consists of

whole-slide histopathology images from a diverse set of tissue types. By leveraging domain-

specific data, KimiaNet captures morphological features that are unique to histopathology,

such as cellular architecture, texture, and staining variations.

Unlike standard DenseNet-121 models pre-trained on natural image datasets like Ima-

geNet, KimiaNet is better aligned with the distributions and semantics of medical images.
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This makes it particularly well-suited for downstream tasks in computational pathology, such

as cancer detection, subtype classification, and image retrieval. Its success illustrates the

importance of domain adaptation in transfer learning, especially when dealing with highly

specialized data types like histological slides.

3.3.14 Encoder-Decoder Architectures and Autoencoders

Encoder-decoder architectures are a fundamental framework in modern deep learning,

widely employed in tasks that involve transforming input data into structured or mean-

ingful output formats. These models are composed of two main components: the encoder,

which compresses the input into a lower-dimensional latent representation, and the decoder,

which reconstructs or transforms this representation into the desired output. This separa-

tion between encoding and decoding stages enables efficient representation learning, as well

as flexible adaptation to various modalities, including images, text, audio, and time-series

data [49, 50]. The encoder is designed to extract the most informative features from the

Figure 3.9: Example of an Autoencoder architecture.

input while filtering out irrelevant or noisy components. Depending on the data type, this

can be achieved using different neural layers, such as convolutional layers for spatial data
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(e.g., images), recurrent or transformer-based layers for sequential data (e.g., text or sig-

nals), or fully connected networks for tabular data. The resulting latent space captures a

compact summary of the input and serves as a bottleneck that encourages generalization

and information compression.

One of the most prominent uses of this architecture is in the form of autoencoders, which

are trained to reconstruct the original input from its compressed representation. Autoen-

coders are typically trained in an unsupervised manner, minimizing a reconstruction loss

(such as mean squared error) between the input and the output. The goal is not merely

to memorize the data but to discover an efficient encoding that captures its underlying

structure.

Autoencoders are widely used in a variety of applications, including dimensionality reduc-

tion, denoising, anomaly detection, and unsupervised feature learning. In many pipelines,

they are employed as a preprocessing step to transform raw, high-dimensional input into

compact, informative features that can be used for downstream tasks such as classification

or survival analysis.

Several variants of autoencoders have been proposed to enhance their capabilities:

• Denoising Autoencoders (DAEs): Trained to reconstruct clean inputs from noisy

versions, improving robustness.

• Sparse Autoencoders: Encourage sparsity in the latent representation, leading to

more interpretable features.

• Variational Autoencoders (VAEs): Extend autoencoders into a probabilistic frame-

work by learning distributions over the latent space, enabling generative modeling and

sampling [51].

Beyond autoencoders, encoder–decoder models are widely applied in supervised learning

tasks such as machine translation, image segmentation, text summarization, and time-series

prediction. In these cases, the decoder is trained to generate task-specific outputs conditioned



39

on the encoded representation. This general architecture has also been adopted in more

complex models, such as sequence-to-sequence transformers and U-Net for biomedical image

segmentation.

Overall, encoder–decoder architectures, including autoencoders and their variants, pro-

vide a powerful and flexible framework for learning meaningful representations and perform-

ing complex data transformations across a wide range of domains.

3.4 RNA-Sequencing and Gene Expression Data

RNA sequencing (RNA-seq) is a widely used technology for profiling gene expression in

biological samples [52].

It involves converting RNA molecules into complementary DNA (cDNA), sequencing the

cDNA fragments, and mapping the resulting reads to a reference genome or transcriptome.

This enables the quantification of transcript abundance across thousands of genes simulta-

neously [52, 53].

One commonly used unit for quantifying expression is Transcripts Per Million (TPM),

which normalizes for both gene length and sequencing depth [54]. TPM values allow for

within-sample and between-sample comparisons of gene expression levels, making them suit-

able for downstream statistical or machine learning analyses [55].

In this context, the term *unstranded* refers to a preprocessing mode in which the RNA

strand information is not preserved during sequencing or alignment, simplifying the analysis

when strand specificity is not essential [56].

Gene expression datasets derived from RNA-seq are typically high-dimensional, often con-

taining tens of thousands of genes per sample. This high dimensionality presents challenges,

including multicollinearity, sparsity, and overfitting. To overcome these issues, preprocessing

steps such as normalization, transformation, and dimensionality reduction are commonly

applied before applying statistical or machine learning models. RNA-seq data has been used
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extensively in biomedical research to identify disease subtypes, uncover molecular biomark-

ers, and predict clinical outcomes [53].

3.5 Survival Analysis

Survival analysis refers to a set of statistical methods used to analyze the time until

the occurrence of an event of interest, such as death, disease recurrence, or progression.

A key challenge in this domain is the presence of censored data, where the outcome is

not observed for all subjects during the study period. This phenomenon—referred to as

censoring—occurs because not all individuals have experienced the event by the end of the

observation period [57].

Several types of censoring may occur in practice:

(a) The patient has not yet experienced the event (e.g., relapse or death) by the time the

study ends.

(b) The patient is lost to follow-up during the study period, making further observation

impossible.

(c) A competing event occurs that precludes continued follow-up for the original event of

interest.

In such cases, the recorded survival time reflects only a lower bound on the true time-to-

event. This form of incomplete observation, where the event is expected to occur after the

follow-up window, is known as right censoring. Conceptually, one can imagine the survival

time as a timeline extending beyond the study horizon, the actual event lies beyond the point

of observation. Other types of censoring include left censoring and interval censoring, though

they are less frequently encountered in biomedical research.

Unlike standard regression techniques that assume fully observed outcomes, survival anal-

ysis models must jointly account for the time-to-event and the censoring indicator. This



41

requirement gives rise to specialized estimators and models, which form the foundation of

both classical and modern survival analysis.

Survival analysis methods are generally used for three main purposes [58]:

• To describe the distribution of survival times within a group, using tools such as life

tables, Kaplan–Meier estimators, survival functions, and hazard functions.

• To compare survival experiences between groups, often with statistical tests like the

log-rank test.

• To model the relationship between covariates (categorical or continuous) and survival

time, using regression-based techniques such as the Cox proportional hazards model,

parametric survival models, or tree-based approaches like survival trees and random

survival forests.

This section outlines the main classical survival models and introduces DeepSurv, a deep

learning-based framework that enables flexible and data-driven survival modeling.

3.5.1 Classical Methods of Survival Analysis

Kaplan–Meier Estimator

The Kaplan–Meier (KM) estimator is a non-parametric method used to estimate the

survival function from censored data [59]. It computes the probability of survival past a

certain time point and generates a step-wise survival curve. The KM estimator is widely

used for visualizing survival distributions and comparing groups (e.g., treated vs. control),

often with the log-rank test [60].

While intuitive and widely applicable, the KM estimator does not account for covariates.

This limits its use when individual-level characteristics are expected to influence survival

outcomes [57].
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Cox Proportional Hazards Model

The Cox proportional hazards model is a semi-parametric approach that incorporates co-

variates into the survival analysis [61]. The hazard function for an individual with covariates

X is modeled as:

h(t|X) = h0(t) exp(β
⊤X) (3.4)

where h0(t) is the baseline hazard function, β is a vector of coefficients, and exp(β⊤X)

models the relative risk. This formulation does not require a parametric form for h0(t),

which makes the model flexible and interpretable.

However, the model relies on the proportional hazards assumption, which implies

that the effect of covariates on the hazard is constant over time. Violations of this as-

sumption, as well as the presence of complex non-linear interactions, limit the Cox model’s

performance, especially in high-dimensional or multi-modal biomedical datasets [62].

3.5.2 Deep Learning for Survival Analysis: The DeepSurv Model

To overcome the limitations of classical models, deep learning methods have been intro-

duced into survival analysis. Among them, DeepSurv is one of the most widely adopted

neural architectures for learning non-linear risk functions [63].

DeepSurv extends the Cox model by replacing the linear term β⊤X with a learned func-

tion fθ(X), represented by a fully connected neural network with parameters θ:

h(t|X) = h0(t) exp(fθ(X)) (3.5)

This formulation maintains the interpretability of risk scores while enabling the modeling

of complex, non-linear dependencies in the data. The network is trained by minimizing the

negative log partial likelihood:
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L(θ) = −
∑
i∈D

fθ(Xi)− log
∑

j∈R(Ti)

exp(fθ(Xj))

 (3.6)

where D is the set of uncensored cases, and R(Ti) is the risk set of individuals still at

risk at time Ti.

Model Architecture and Training

DeepSurv typically consists of multiple dense layers with non-linear activations (e.g.,

ReLU or LeakyReLU). To avoid overfitting, especially in small sample settings, regularization

techniques such as L2 weight decay, dropout, and early stopping are commonly applied.

Training can be optimized using stochastic gradient descent (SGD) or its variants (e.g.,

Adam).

Because hyperparameters such as learning rate, hidden layer size, and number of layers

significantly affect performance, DeepSurv is often combined with hyperparameter optimiza-

tion frameworks such as Optuna.

Figure 3.10: The Deepsurv architecture.
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3.6 Optuna Hyperparameter Optimization Framework

Optuna is an open-source framework for automated hyperparameter optimization, widely

used in machine learning and deep learning workflows [64]. It follows a define-by-run ap-

proach, allowing dynamic and flexible construction of the hyperparameter search space. Op-

tuna is framework-agnostic, meaning it can be integrated with any model implementation,

regardless of the underlying ML library.

To use Optuna, the user defines an objective function that wraps the model training and

evaluation logic. A trial object is used within this function to suggest hyperparameter

values, and the function returns a metric (e.g., accuracy, AUC, MSE) to be optimized. A

study object manages the overall optimization process, including the direction (minimization

or maximization), the number of trials, and storage options.

Optuna also supports advanced features such as pruning of unpromising trials, check-

pointing, and resuming interrupted studies. Additionally, it provides visualization tools to

analyze optimization history and hyperparameter importance.

3.7 Feature Fusion Techniques

In multimodal learning tasks, such as those involving gene expression profiles and histopatho-

logical images, the integration of heterogeneous data sources is a crucial step toward improv-

ing predictive performance. Feature fusion refers to the process of combining features derived

from different modalities into a unified representation, enabling models to capture comple-

mentary information.

Feature fusion strategies are generally classified into three categories: early fusion (feature-

level), intermediate fusion, and late fusion (decision-level). Early fusion involves the direct

concatenation of feature vectors extracted from each modality into a single vector before

feeding it into a learning algorithm [65]. This approach is simple and efficient, but may

suffer from differences in data scale, modality-specific noise, and varying dimensionalities.
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Intermediate fusion methods aim to learn joint representations through specialized archi-

tectures such as co-attention mechanisms, multimodal autoencoders, or neural tensor fusion

layers [66]. These methods seek to model complex cross-modal relationships during feature

learning, which can enhance the interaction between modalities but often require careful

design and more computational resources.

Late fusion, on the other hand, combines the outputs (e.g., risk scores or class proba-

bilities) of separate unimodal models through methods such as averaging, majority voting,

or meta-learners [67]. This approach is modular and robust to modality-specific failure, but

may miss fine-grained interactions between modalities.

In the context of survival analysis, where the objective is to model time-to-event data,

feature fusion plays a critical role in capturing both morphological and molecular deter-

minants of patient prognosis. Recent studies have demonstrated that combining features

from histopathological images and genomic data can significantly improve survival predic-

tion models for cancer patients [68, 69].

Choosing the appropriate fusion strategy depends on the nature of the modalities, the

size of the dataset, and the complexity of the relationships between features. While simple

concatenation is widely used due to its straightforward implementation, more advanced

fusion techniques are actively being explored to better exploit multimodal information.

3.8 Explainability in Deep Learning

Deep learning models have shown remarkable success in a wide range of biomedical

applications, including image classification, genomics, and survival prediction. However,

their “black-box” nature raises significant concerns regarding interpretability, especially in

critical domains such as healthcare, where transparency is essential for trust, validation, and

clinical adoption [70].

Explainable AI (XAI) refers to a set of techniques designed to interpret and understand
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the decision-making processes of complex models. In the context of deep learning, XAI

methods aim to highlight which input features contribute most to a specific output, enabling

insights into the model’s behavior and promoting fairness, accountability, and reproducibil-

ity [71].

Among the most widely used model-agnostic approaches are LIME and SHAP, which

provide local explanations by analyzing the influence of features on individual predictions.

3.8.1 Local Interpretable Model-agnostic Explanations (LIME)

LIME (Local Interpretable Model-agnostic Explanations) is an approach that approx-

imates a complex model locally with an interpretable surrogate model, typically a linear

regressor or decision tree [72]. For each prediction, LIME perturbs the input data around

the instance of interest and observes how the black-box model’s output changes. By fitting

a simple, interpretable model to this neighborhood, LIME identifies which features have the

most significant impact on the prediction.

In biomedical applications, LIME has been applied to tasks such as gene expression

classification, histopathological image analysis, and survival modeling, where understanding

local decision boundaries helps clinicians validate model predictions and identify relevant

biological markers [73].

Despite its utility, LIME has limitations, including sensitivity to sampling noise and

inconsistency across runs. Additionally, the quality of its explanations depends heavily on

how well the surrogate model fits the local decision boundary.

SurvLIME A notable extension of LIME tailored to survival analysis is SurvLIME [74].

Traditional LIME is designed for models with scalar outputs, such as probabilities or risk

scores. However, survival models often produce more complex outputs, such as time-

dependent survival probabilities or hazard functions. SurvLIME adapts the LIME framework

to this context by perturbing input features and observing the corresponding changes in sur-
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vival risk estimates or predicted survival curves. It then fits a local interpretable model to

approximate the behavior of the survival model around each instance.

This approach allows researchers to identify which features most influence the predicted

survival outcomes at the individual level. SurvLIME has been used to interpret both classical

and deep survival models, helping bridge the gap between model predictions and clinical

understanding. It is particularly useful in high-stakes settings, such as oncology, where

explaining why a patient is assigned a higher risk can guide treatment decisions and foster

trust in AI-assisted prognostics.

3.9 Evaluation Metrics

Evaluating the performance of machine learning models is a critical component of the

modeling process, as it provides insights into the model’s generalization ability and helps

guide decisions during development and optimization. Different types of problems, such as

classification, regression, and survival prediction, require different evaluation metrics, each

tailored to the structure of the outputs and the goals of the analysis.

3.9.1 General Evaluation Metrics in Machine Learning

In supervised learning, evaluation metrics vary depending on the nature of the target

variable. For classification tasks, metrics such as accuracy, precision, recall, F1-score, and

area under the Receiver Operating Characteristic curve (AUC-ROC) are commonly used [75].

For regression problems, mean squared error (MSE), mean absolute error (MAE), and the

coefficient of determination (R2) are typical choices [76].

3.9.2 Challenges in Survival Analysis

Survival analysis differs from traditional regression or classification in that it deals with

time-to-event data, where some observations may be censored. This renders many standard
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evaluation metrics inapplicable, as they assume fully observed outcomes. Consequently,

specialized evaluation metrics are employed to assess the performance of survival models,

accounting for both the time-to-event nature of the data and the presence of censored cases.

3.9.3 Concordance Index (C-index)

The most commonly used metric in survival analysis is the Concordance Index (C-index),

which generalizes the AUC-ROC to censored data [77]. It measures the model’s ability to

correctly rank survival times: a higher predicted risk score should correspond to a shorter

observed survival time. Formally, the C-index is defined as:

C =
1

|P|
∑

(i,j)∈P

I (r̂i > r̂j) (3.7)

where P is the set of comparable pairs (i.e., pairs for which the order is known despite

censoring), r̂i is the predicted risk score for individual i, and I is the indicator function. A

C-index of 1 indicates perfect concordance, while 0.5 corresponds to random guessing.

3.9.4 Integrated Brier Score (IBS)

The Brier score evaluates the accuracy of probabilistic predictions over time by comparing

predicted survival probabilities with actual outcomes. The Integrated Brier Score (IBS) is

the time-integrated version of the Brier score, taking into account censoring through inverse

probability of censoring weights (IPCW) [78]:

IBS =
1

T

∫ T

0

BS(t) dt (3.8)

where BS(t) is the Brier score at time t, and T is a pre-defined maximum follow-up time.

Lower IBS values indicate better performance, with 0 being a perfect score.
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3.9.5 Time-dependent ROC Curves

Time-dependent ROC analysis extends classical ROC curves to survival data by evalu-

ating the true positive and false positive rates at specific time points [79]. For each time

t, the sensitivity and specificity of the model in discriminating between individuals who

experience the event before t and those who survive beyond it are computed. The area

under the time-dependent ROC curve (AUCt) provides a dynamic assessment of predictive

performance.

3.9.6 Calibration Measures

In addition to discrimination (e.g., C-index), survival models should also be evaluated for

calibration, the agreement between predicted and observed survival probabilities. Calibration

curves compare predicted survival probabilities with empirical estimates, often using Kaplan-

Meier curves within predicted risk strata [80].

In survival analysis, evaluation metrics must reflect both the discriminatory power of the

model and its ability to correctly estimate survival probabilities in the presence of censored

data. The Concordance Index, Integrated Brier Score, and time-dependent ROC analysis

are the most frequently used tools for this purpose. A comprehensive evaluation involves

multiple metrics to assess different aspects of model performance, such as ranking accuracy,

probability estimation, and calibration.
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Chapter 4

Methodology

4.1 TCGA Dataset

The primary dataset utilized in this study is derived from The Cancer Genome Atlas

(TCGA), a comprehensive and publicly available repository of molecular and clinical data

across a wide range of cancer types [81]. Specifically, this work focuses on patients diag-

nosed with primary brain tumors, including glioblastoma multiforme (GBM) and lower-grade

glioma (LGG). These datasets provide multi-modal data comprising genomic measurements,

histopathological whole-slide images, and detailed clinical information.

The TCGA repository offers standardized and curated data, making it particularly suit-

able for integrative analyses and machine learning applications. For each patient, clinical

variables such as survival time, event status (i.e., alive or deceased), age at diagnosis, and

tumor grade are available.

In this thesis, the data set was filtered to include only patients for whom all three data

modalities, RNA-sequencing, histopathological images, and survival annotations, were avail-

able. Data preprocessing steps, including normalization and dimensionality reduction, are

described in the following sections.
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4.2 Data Overview

This study integrates two complementary data types: histopathological whole-slide im-

ages (WSIs) and RNA-sequencing gene expression profiles. These two modalities offer dis-

tinct insights into tumor biology, capturing both visual tissue architecture and intracellular

molecular activity. Together, they provide a rich foundation for building multi-modal models

for survival prediction.

RNA-Sequencing Data

The RNA-sequencing data provide a transcriptomic snapshot of the tumor’s molecular

profile. Each patient’s sample contains expression levels of thousands of genes, quantified

in terms of transcripts per million (TPM). These measurements allow us to infer biological

pathways, signaling mechanisms, and gene activity patterns associated with disease progres-

sion. The RNA-seq data used in this study were collected from the TCGA project and

matched to the same patients for whom histopathological images were available.

Histopathological Images

Histopathological images are digitized slides of tissue sections stained with hematoxylin

and eosin (H&E), revealing important structural features such as cell morphology, tissue

organization, and presence of necrosis or infiltration. In this work, we utilize H&E-stained

slides from brain tumor patients in the TCGA database.

These high-resolution images, typically scanned at 40× magnification, are stored in the

SVS format and may exceed several gigabytes in size.
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Figure 4.1: Example of an H&E-stained histopathological slide from a glioblastoma patient.

4.3 Preprocessing Steps

To ensure consistency across patients and extract meaningful representations from both

data modalities, a series of preprocessing steps were applied prior to model development.

These steps were tailored to the unique properties of histopathological images and RNA-

sequencing data, enabling robust feature extraction and harmonized survival label compu-

tation. Each case was linked to clinical metadata obtained from TCGA’s JSON records.

The fields submitter id, vital status, days to death, and days to last follow up were used to
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define survival outcomes as follows:

• Event: A binary indicator set to 1 if the patient was deceased (vital status = Dead),

and 0 otherwise.

• Time until event: The survival time in years, computed from diagnosis to either

death (for uncensored events) or last follow-up (for censored observations).

This processing step ensured consistency between the image data and survival labels used

for model training and evaluation.

4.3.1 Histopathological Image Preprocessing

To construct case-level representations from whole-slide histopathological images (WSIs),

we implemented a multi-stage preprocessing pipeline. This pipeline included the parsing of

clinical metadata, detection of tissue regions, extraction of high-resolution patches, and

transformation of each patch into a fixed-length feature vector using deep convolutional

neural networks (CNNs). The resulting vectors were aggregated into a single representation

per patient, suitable for downstream survival analysis.

Tissue Mask Generation and Patch Extraction

To isolate informative tissue regions from WSIs, a color-based tissue detection algorithm

was applied. Each slide was downsampled and converted from RGB to HSV color space.

Tissue presence was inferred using Otsu’s thresholding on both the RGB and saturation

channels, followed by RGB-based minimum intensity filtering to suppress background noise.

Morphological operations (dilation and erosion) were then applied to refine the resulting

binary tissue masks, removing isolated pixels and smoothing tissue contours.

Using the final tissue mask, up to 1000 patches of size 224×224 pixels were extracted per

WSI at the highest available resolution. Patch coordinates were recorded for downstream

analysis. Only patches that passed both a tissue coverage threshold and a contrast-based
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filter were retained, ensuring that low-content or background regions were excluded from

feature extraction.

Feature Extraction Using CNN Backbones

To embed each patch into a lower-dimensional representation, we used several pretrained

CNNs as feature extractors. The tested architectures included EfficientNet-B0, B1 [45],

ResNet-50 [41], and KimiaNet [48]. All models were used without their classification heads.

Input patches were normalized with ImageNet statistics and passed through the convolutional

backbone. Features were then extracted from the final convolutional layers using global

average pooling (GAP).

Attention-Based Aggregation at the Sample Level

For each sample (i.e., whole-slide image), the extracted patch-level feature vectors were

further processed using a self-attention mechanism to emphasize the most informative re-

gions. Specifically, scaled dot-product attention was computed across all patch features

within the same sample:

Attention(Q,K, V ) = softmax

(
QK⊤
√
dk

)
V (4.1)

where Q, K, and V denote the matrices of patch features and dk is the dimensionality

of the feature vectors. In this implementation, Q = K = V , allowing the model to learn

contextual relationships among patches.

The attention-weighted patch features were subsequently averaged to obtain a single

aggregated vector per sample. Additionally, prior to attention computation, dimensions

that were empirically found to be consistently uninformative were removed to reduce noise

and improve interpretability.
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Mean Pooling Across Samples to Form Case-Level Representations

Each patient case may consist of multiple WSIs (samples). Following attention-based

aggregation at the sample level, the resulting sample vectors were combined using mean

pooling to form a unified case-level representation:

fcase =
1

N

N∑
i=1

fsamplei (4.2)

where N is the number of samples associated with the patient. This final case-level

feature vector served as the input for the autoencoder architecture that was used after.

Figure 4.2: Overview of the histopathological image preprocessing pipeline. Tissue masks
are generated from WSIs, followed by patch extraction, feature encoding, and aggregation.
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4.3.2 RNA-sequencing Data Preprocessing

RNA-sequencing (RNA-seq) data was processed to generate standardized numerical rep-

resentations of gene expression for each patient. In contrast to histopathological image pro-

cessing, RNA-seq preprocessing was more direct and computationally efficient. The primary

goal was to extract transcript abundance measurements in the form of TPM (Transcripts Per

Million) values, followed by appropriate normalization and dimensionality reduction steps to

enable robust survival modeling.

Metadata Parsing and File Matching

RNA-seq files were organized according to patient identifiers provided in TCGA meta-

data files. Using the JSON records, the submitter id and associated file name fields were

extracted. Only files with the .tsv extension and containing the tpm unstranded column

were retained for analysis.

A patient-to-file mapping was constructed to ensure consistent and accurate retrieval of

the correct RNA-sequencing data for each case. This mapping allowed automated loading of

RNA-seq measurements and alignment of molecular data with corresponding survival labels

and histopathological samples.

Transformation and Filtering

For each matched RNA-seq file, expression values from the tpm unstranded column were

extracted. To prepare the RNA-seq data for survival modeling, the TPM values underwent

the following transformation and filtering steps:

• Log transformation: TPM values were log-transformed to reduce right-skewness and

stabilize variance across gene expression levels.

• Imputation: Missing values, if present, were imputed using the median expression

value of the corresponding gene across the cohort.



57

• Low-variance filtering: Genes with variance below a fixed threshold (0.1) were

removed to eliminate uninformative features and reduce dimensionality.

• Z-score normalization: The remaining gene expression values were standardized

across patients to have zero mean and unit variance.

The final preprocessed RNA-seq dataset consisted of 583 samples in rows and nearly

20,000 selected genes as columns, with all values normalized and suitable for downstream

modeling. The submitter id column was retained to enable alignment with clinical and

image-based data, as well as for cross-modal feature fusion.

4.4 Histopathological Image-based model

Following preprocessing and feature extraction of histopathological images, a complete

analytical pipeline was constructed to perform survival prediction using image-derived rep-

resentations. This framework incorporated dimensionality reduction via autoencoders and

survival modeling using the DeepSurv architecture, whose theoretical foundations were dis-

cussed in previous chapters.

4.4.1 Dimensionality Reduction with Autoencoders

The extracted case-level features, obtained through attention-based aggregation of patch-

level CNN representations, were typically high-dimensional. To reduce noise, alleviate over-

fitting, and improve interpretability, we employed a fully connected autoencoder to project

the input features into a lower-dimensional latent space.

The autoencoder architecture consisted of an encoder and a decoder with symmetrical

fully connected layers. The encoder compressed the input into a bottleneck layer of prede-

fined size, while the decoder attempted to reconstruct the original input. The model was

trained using mean squared error (MSE) loss and optimized with the Adam optimizer.
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Several bottleneck sizes were evaluated (32, 64, 128, 256) to identify the optimal latent

dimensionality for survival prediction. After cross-validation and downstream evaluation

with DeepSurv, the bottleneck size of 32 consistently yielded the best performance in terms

of validation concordance index. Therefore, it was selected as the final dimensionality for all

subsequent survival modeling.

Feature standardization was applied using statistics computed from the training set, and

the same transformation was applied to the test set. The encoded representations with 32

dimensions were saved and used as input to DeepSurv and multimodal fusion experiments.

4.5 RNA-sequencing based model

A parallel analytical pipeline was developed for the RNA-sequencing data, following the

same structure as described in the histopathological Image-based model. As previously

discussed, the pipeline included dimensionality reduction via an autoencoder, followed by

survival modeling using DeepSurv, with hyperparameter optimization performed using Op-

tuna.

4.5.1 Dimensionality Reduction with Autoencoders

The input to the model consisted of preprocessed and normalized TPM (Transcripts Per

Million) gene expression values, as described in Section 4.3.2. Each patient was initially

represented by tens of thousands of genes, which were filtered to retain only those exhibiting

sufficient variance across the dataset.

To reduce dimensionality and denoise the high-dimensional RNA-sequencing data, a deep

fully connected autoencoder was implemented. The architecture used for RNA-sequencing

was deeper than the one used for image-derived features, incorporating additional hidden

layers, batch normalization, and dropout to better handle the increased complexity and

potential noise inherent in transcriptomic data.
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Several bottleneck sizes were evaluated (32, 64, 128, 256) to identify the optimal latent

representation for survival prediction. Based on cross-validation results and subsequent

evaluation with DeepSurv, a bottleneck size of 32 yielded the highest validation concordance

index and was therefore selected as the final dimensionality for all downstream modeling.

Feature standardization was applied using statistics from the training set, and the same

transformation was consistently applied to the test set. The resulting 32-dimensional encoded

representations were used as input to the DeepSurv model and for multimodal integration

with image-based features.

4.6 Framework for Histopathological Image and RNA-

sequencing data fusion

To leverage complementary information from both imaging and transcriptomic data, a

feature-level fusion strategy was implemented. After independently extracting and reducing

the dimensionality of each modality using autoencoders, the resulting latent representations

were concatenated to form a unified feature vector for each case.

4.6.1 Feature Concatenation

Let zimage ∈ Rd1 denote the bottleneck representation derived from histopathological

images and zgene ∈ Rd2 the corresponding representation from RNA-sequencing data. The

fused feature vector zfused was constructed via:

zfused = [zimage ∥ zgene] ∈ Rd1+d2 (4.3)

where ∥ denotes vector concatenation. Each modality was independently standardized

using training set statistics prior to fusion.
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Figure 4.3: Fused Data Framework

4.7 Common Survival Modeling Strategy

4.7.1 Data Splitting and Stratification

For all three survival prediction models—image-based, RNA-seq based, and the fused

model—the same data splitting and stratification strategy was applied to ensure robust

evaluation and fair comparison. Initially, 10% of the data was held out as an independent

test set, never used during training or hyperparameter tuning. The remaining 90% was used

for training and validation within a 10-fold stratified cross-validation framework. In each

fold, a further 10% of the training data was set aside as a validation set to support early

stopping and performance monitoring.

Stratification was applied both during the initial test split and throughout the cross-

validation procedure to preserve the distribution of key clinical variables across all subsets.

Specifically, stratification was based on tumor grade, patient age, and survival time, ensuring

balanced representation of prognostic factors. This approach helps reduce sampling bias and
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enables consistent model comparison across different data modalities.

4.7.2 Hyperparameter Optimization

All three survival prediction models—image-based, RNA-seq based, and the fused model—employ

the same downstream modeling strategy once feature vectors have been extracted. In each

case, the low-dimensional representations, are used as input to a DeepSurv model [63]. As

discussed in the previous chapter, DeepSurv is a deep neural network that generalizes the

Cox proportional hazards model by learning a nonlinear risk function from covariates.

Each model variant was trained using the same pipeline: 10-fold stratified cross-validation

on the training set, coupled with hyperparameter optimization via Optuna [64], a Bayesian

optimization framework for efficient automated search. The following hyperparameter space

was defined:

• Number of hidden layers: 1 to 3

• Nodes per hidden layer: 16 to 128

• Learning rate: log-uniform in the range 10−6 to 10−3

• Learning rate decay: 0 to 0.01

• Momentum: 0.8 to 0.95

• L2 regularization coefficient: 0.001 to 1.0

• Dropout rate: 0.0 to 0.5

The objective function maximized the average concordance index (C-index) across folds.

Early stopping and validation-based monitoring were used during training to prevent over-

fitting. The best-performing configuration identified by Optuna was retained and evaluated

on the hold-out test set. This consistent modeling framework enables fair comparison across
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modalities and isolates the contribution of each data source to survival prediction perfor-

mance.

4.8 Interpretability

4.8.1 Interpretability of the RNA-sequencing based Model

For the interpretability analysis of the RNA-seq based model, SurvLIME was applied by

perturbing the original gene expression values (prior to any transformation). To evaluate

the model’s behavior in a clinically meaningful and representative manner, we selected three

test cases for SurvLIME analysis:

• One patient assigned a high risk score that experienced a death event in the first year

of the observation period,

• One patient assigned a low risk score that was right-censored at year 5 of the observa-

tion period without experiencing any event,

• One patient assigned a low risk score that experienced a death event in the second year

of the observation period.

These cases were chosen to capture both successful and erroneous predictions. The

interpretability pipeline described below was applied separately to each of the three selected

cases.

Specifically, for each test case, we generated 100 synthetic variants by randomly per-

turbing subsets of gene expression values. Each perturbed sample was then passed through

the entire survival prediction pipeline, including log transformation, Z-score normalization,

dimensionality reduction via autoencoder, and finally DeepSurv, to obtain a corresponding

risk score.

To estimate gene-level importance, we fitted a linear regression model using the perturbed

gene values as input features and the resulting DeepSurv risk scores as the target variable.
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Since the DeepSurv model outputs higher scores for worse prognosis, we transformed the

predicted risk scores by multiplying them by −1 prior to fitting the regression model. This

transformation allowed us to interpret the SurvLIME coefficients in terms of survival rather

than risk:

• A positive importance score indicates that the gene contributes to higher survival

probability (i.e., it is protective).

• A negative importance score indicates that the gene is associated with lower sur-

vival probability (i.e., it is unprotective).

This interpretation convention was applied consistently across all cases.

The learned regression coefficients were used as importance scores, quantifying the con-

tribution of each gene to the model’s prediction for the selected case. The 30 most influential

genes, ranked by the absolute value of their coefficients, were visualized to highlight those

with the strongest local effect on the survival prediction.

4.8.2 Interpretability of the Fused Model

To assess how the inclusion of histopathological image features influences survival predic-

tions, we extended the SurvLIME analysis to the fused model. In this combined architecture,

features extracted from H&E-stained whole-slide images using a pretrained convolutional

neural network (KimiaNet) were concatenated with encoded gene expression features from

the RNA-seq based pipeline. The resulting fused feature vector was then fed into DeepSurv

for risk prediction.

For interpretability, SurvLIME was applied by perturbing only the original gene ex-

pression values, while keeping the image-derived features fixed. Each perturbed sample

was processed through the full multimodal pipeline, including autoencoder compression and

DeepSurv inference, to generate a new risk score. A linear regression model was then fitted

to estimate the local importance of each gene feature.
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Chapter 5

Results

This chapter presents the experimental results obtained from the developed survival

prediction models. Three distinct pipelines were evaluated: the histopathological image-

based model, the RNA-sequencing based model, and the fused model that combines both

data types.

Each model was trained and validated using 10-fold cross-validation, and final perfor-

mance was assessed on a held-out test set. The main evaluation metric employed was the

Concordance Index (C-index), which quantifies the agreement between predicted and actual

survival rankings.

Additionally, we examine the correlation between predicted risk scores and actual sur-

vival times, visualize survival stratification using Kaplan–Meier curves, and provide inter-

pretability analyses using SurvLIME to identify key predictive features and pathways in each

modality. The results collectively demonstrate the predictive value of each data modality

and the added benefit of multimodal fusion.
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5.1 Performance Evaluation of Investigated Feature Ex-

tractors for the Histopathological Image-based Model

The concordance index (C-index) was used to evaluate model performance in terms of

survival prediction. Initially, four different pre-trained CNN backbones were compared for

histopathological image feature extraction. Table 5.1 summarizes the mean C-index across

10-fold cross-validation as well as the final test set C-index for each backbone.

Table 5.1: Cross-validation and final test set C-index for each pretrained feature extractor.

Pretrained Model Mean CV C-index Final Test C-index
EfficientNet-B0 0.79 0.78
EfficientNet-B1 0.76 0.74
ResNet-50 0.79 0.73
KimiaNet 0.80 0.80

Among the tested backbones, KimiaNet achieved the highest average performance and

generalization ability. Given its domain-specific training on histopathological slides, Kimi-

aNet was selected as the image feature extractor for the remainder of the study.

5.2 Obtained Performance using Different Data Modal-

ities

Following the model selection, three pipelines were developed and compared: an image-

only model using KimiaNet features, an RNA-seq based model using gene expression data,

and a fused model combining both data types through feature concatenation. Figure 5.1

presents the C-index distributions across 10-fold cross-validation, along with the dashed

lines indicating test set performance.

While the fused model achieved the highest test set C-index (0.91), the RNA-seq

based model demonstrated slightly superior median performance across cross-validation
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Figure 5.1: C-index distributions across 10-fold cross-validation for the three models. Dashed
lines represent the final test set performance.

folds. This indicates that gene expression features alone carry strong prognostic value and

generalize well across different subsets of the data.

The image-based model showed higher variance and lower overall C-index, which is ex-

pected due to the complex nature of histopathological images and their sensitivity to intra-

tumoral heterogeneity and tissue artifacts. Nevertheless, the superior performance of the

fused model on the test set confirms that integrating complementary modalities can improve

overall generalization and robustness in survival prediction.

5.2.1 Comparison with State-of-the-Art Models

To evaluate the effectiveness of our proposed fused approach, we compared it against

state-of-the-art models combining histopathology and genomic data, as well as relevant uni-

modal baselines (Table5.2). Our model demonstrated a C-index of 0.91 on the TCGA GBM

+ LGG cohort—a notable improvement over the image-only baseline (0.80) and even sur-
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passing the RNA-seq based model (0.89). In comparison, Chen etal. (2020) using Pathomic

Fusion achieved 0.826 on TCGA-GBM by integrating WSI and genomic data [82]. Fan etal.

(2023) applied a Convolutional MIL framework on WSIs only, with a C-index of 0.67 [83].

Steyaert etal. (2022) combined TCGA and CPTAC data (WSI + genomic) and reached

0.822 [84]. The integrative PAGE-Net model (Hao etal., 2020) reported a C-index of ap-

proximately 0.702 on TCGA-GBM, outperforming its image-only (0.509) and Cox-PASNet

genomic (0.640) variants [85]. In broader cancer analysis, Chen etal. (2022) reported a

0.821 C-index for LGG using pan-cancer integrative modeling [86], while Zhang etal. (2024)

demonstrated a C-index of 0.849 on TCGA-LGG with CATFusion, a cross-attentional pan-

cancer framework [87]. These results underscore the superior performance of our explainable

fused model, confirming that fusing WSI and genomic features—when implemented with

effective architectures—leads to substantial improvements in survival prediction for glioma

patients.

Table 5.2: Comparison of the proposed model with state-of-the-art survival prediction mod-
els.

Model Dataset C-index

Proposed Fused Model TCGA GBM, LGG (WSI + Genomic) 0.91
Image-based TCGA (WSI) 0.80
RNA-seq based TCGA (Genomic) 0.89
Chen et al. (2020) [82] TCGA-GBM (WSI + Genomic) 0.826
Fan et al. (2023) [83] TCGA (WSI) 0.67
Steyaert et al. (2022) [84] TCGA, CPTAC (WSI + Genomic) 0.822
Hao et al. (2020) [85] TCGA GBM (WSI + genomic) 0.70
Chen et al. (2022) [86] TCGA LGG (WSI + genomic) 0.821
Zhang et al. (2024) [87] TCGA LGG (WSI + genomic) 0.849

5.3 Evaluation of Fused Model

5.3.1 Predicted Risk Scores vs. Survival Time

Figure 5.2 illustrates the relationship between predicted risk scores from the fused model

and actual survival times. As expected, a general inverse trend is observed: patients with
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higher predicted risk tend to have shorter survival durations. This negative correlation

confirms that the model captures clinically meaningful information when ranking patients

by risk.

Figure 5.2: Predicted risk scores vs. actual survival times for the fused model. A negative
correlation confirms the model’s ability to rank patients according to survival risk.

Nonetheless, some degree of overlap is evident, particularly among patients with interme-

diate risk scores, highlighting regions where the model’s predictive certainty is lower. This

variability may reflect underlying biological heterogeneity or limitations in the representa-

tional capacity of the fused feature space.

5.3.2 Kaplan–Meier Curves by Predicted Risk

To evaluate the clinical utility of the predicted risk scores, patients in the test set were

stratified into low- and high-risk groups using the median predicted risk score from the fused

model as a threshold. Figure 5.3 presents the Kaplan–Meier survival curves for both groups.

As expected, the high-risk group exhibited significantly reduced survival durations com-

pared to the low-risk group, indicating that the model’s risk stratification aligns with clin-

ically relevant outcomes. However, the two curves intersect around year four, suggesting
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Figure 5.3: Kaplan–Meier survival curves for low- and high-risk groups (defined by the
median predicted risk from the fused model).

diminished discriminative ability at longer time horizons. This could be attributed to late-

occurring adverse events in patients initially predicted as low-risk, or to limitations in the

model’s long-term predictive capacity. Future work could incorporate time-dependent AUC

analysis or alternative stratification schemes to further investigate this phenomenon.

5.4 Interpretability

5.4.1 Pathway Interpretations of RNA-sequencing based Model

and Fused Model

To move beyond individual gene-level insights and explore broader biological mechanisms,

we selected the top 1000 genes ranked by their absolute SurvLIME importance scores. These

genes were mapped to curated biological pathways using the Reactome database [88]. For

each pathway, we computed a pathway-level importance score by averaging the importance

values of all constituent genes associated with that pathway.

This analysis enabled us to identify the 20 most influential pathways contributing to

the model’s survival risk predictions. These results offer a biologically meaningful context



70

for understanding the collective impact of gene sets rather than isolated genes. The top

pathways are visualized in the figures presented below.

Subsequently, we repeated the pathway-level analysis using the gene importance scores

derived from the multimodal setting. Interestingly, the set of top-ranked pathways shifted

when image features were introduced, suggesting that morphological information can mod-

ulate the model’s reliance on certain molecular pathways. This result underscores the com-

plementary nature of imaging and transcriptomic modalities in capturing survival-relevant

patterns in glioma.

5.4.2 Biological Interpretation of Important Pathways Across Cases

To further interpret the internal decision mechanisms of the models, we analyzed the

most important biological pathways identified by SurvLIME for each of the three represen-

tative cases. This analysis highlights how the model’s focus shifts across scenarios and data

modalities.

Patient assigned a low risk score that experienced a death event in the sec-

ond year of the observation period (Patient 1) In the RNA-seq based model, the

top pathways included MAP2K and MAPK activation (R-HSA-5674135) and Signaling by

BRAF and RAF1 fusions (R-HSA-6802952), both exhibiting negative importance scores.

These are central components of the MAPK cascade, a signaling axis frequently dysregu-

lated in glioblastoma and associated with enhanced cell proliferation, survival, and therapy

resistance [89, 90]. Their contribution to increased predicted risk aligns with their oncogenic

roles.

Interestingly, the pathway p130Cas linkage to MAPK signaling for integrins (R-HSA-

372708) showed a positive importance score, suggesting a protective effect in this case, po-

tentially reflecting context-specific modulation of integrin signaling [91].

In the fused model, the influence of molecular features was altered. The top-ranked
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pathway was Synthesis of bile acids and bile salts (R-HSA-192105), which does not have a

known role in brain tumors and may reflect incidental metabolic variation. Notably, the

p130Cas linkage to MAPK signaling for integrins pathway reappeared, but with a negative

importance score, indicating a shift toward an hazardous interpretation in the presence of

histopathological features. Another high-ranking pathway, COPI-dependent Golgi-to-ER

retrograde traffic (R-HSA-6811434), has been implicated in stress responses and protein

homeostasis and may reflect tumor adaptation mechanisms [92].
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(a) Top genes (RNA-seq based model)

(b) Top pathways (RNA-seq based model)

Figure 5.4: SurvLIME-based gene and pathway importance for the RNA-seq based model
in patient 1.
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(a) Top genes (fused model)

(b) Top pathways (fused model)

Figure 5.5: SurvLIME-based gene and pathway importance for the fused model in patient
1.
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Patient assigned a low risk score that was right-censored at year 5 of the observa-

tion period without experiencing any event (Patient 2) In both the RNA-seq based

and fused models, highly protective pathways included CD28 dependent PI3K/Akt signal-

ing (R-HSA-389357) and CD28 co-stimulation (R-HSA-389356), which are immune-related

pathways involved in T-cell activation and survival [93]. Their association with reduced

predicted risk may indicate a favorable immune surveillance state in this patient.

The NIK to noncanonical NF-κB signaling pathway (R-HSA-5676590) also ranked among

the top features in both models. Although this pathway has been linked to inflammatory

responses and tumor progression [94], its positive importance here suggests a protective role,

possibly reflecting its complex regulatory functions.

Notably, the pathway Signal transduction by L1 (R-HSA-445144) was the only negative

pathway among the top-ranked features in the RNA-seq based model and one of two in the

fused model. L1CAM, the protein encoded by this pathway, is known to promote glioma

invasion and is associated with poor prognosis [95].

Figure 5.6: Top genes (RNA-seq based model) in patient 2.
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Figure 5.7: Top pathways (RNA-seq based model) in patient 2.

Figure 5.8: Top genes (fused model) in patient 2.
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Figure 5.9: Top pathways (fused model) in patient 2.

Patient assigned a high risk score that experienced a death event in the first year

of the observation period (Patient 3) This case corresponds to a high-risk patient who

experienced an event and was correctly classified by both models. In the RNA-seq based

model, the most hazardous pathways (i.e., with negative importance scores) were Intrin-

sic Pathway for Apoptosis (R-HSA-109606) and TP53 regulates metabolic genes (R-HSA-

5628897). While both pathways are canonically tumor-suppressive, promoting programmed

cell death and regulating metabolism, their negative scores here likely reflect reduced activity

in this patient, consistent with hallmark glioblastoma features such as impaired apoptosis

and disrupted p53 signaling [96].

The most protective pathway in the RNA-seq based model was Reduction of cytosolic

Ca++ levels (R-HSA-418359). Although calcium signaling is highly context-dependent, re-

ductions in intracellular calcium have been associated with decreased glioma cell proliferation

and enhanced differentiation, potentially explaining the pathway’s protective role [97].

In the fused model, the inclusion of histopathological features shifted importance toward

pathways associated with tumor invasion and immune modulation. Among the most haz-
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ardous features were MET promotes cell motility (R-HSA-8875878) and Basigin interactions

(R-HSA-210991), both involved in enhancing glioma cell migration and invasiveness. MET

signaling is a key driver of cell motility and therapeutic resistance [98], while basigin (CD147)

facilitates extracellular matrix degradation and angiogenesis [99].

The most protective pathway in the fused model was TNF receptor superfamily (TN-

FSF) members mediating non-canonical NF-κB signaling (R-HSA-5676594). Although this

pathway is often linked to pro-tumor inflammation, its protective interpretation here may

indicate activation of anti-tumor immune responses in specific cellular contexts [94].

Figure 5.10: Top genes (RNA-seq based model) in patient 3.
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Figure 5.11: Top pathways (RNA-seq based model) in patient 3.

Figure 5.12: Top genes (fused model) in patient 3.



79

Figure 5.13: Top pathways (fused model) in patient 3.
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Chapter 6

Conclusion

The primary objective of this thesis was to develop and evaluate a multimodal deep learn-

ing framework for survival prediction in glioblastoma patients by integrating histopathologi-

cal whole-slide images and RNA-sequencing data. We constructed parallel pipelines for each

data modality that included preprocessing, dimensionality reduction via autoencoders, and

survival modeling using DeepSurv. The pipelines were subsequently fused at the feature

level to assess whether combining morphological and molecular information could enhance

prognostic accuracy.

Comprehensive experiments demonstrated that the gene expression model achieved high

predictive performance across cross-validation and generalization to unseen test cases. Al-

though the image-based model exhibited higher variance, it still captured meaningful prog-

nostic patterns. Most notably, the fused model achieved the highest test set concordance

index, suggesting that the integration of transcriptomic and histological features provides

complementary information for survival prediction.

In addition to performance evaluation, we incorporated model interpretability via SurvLIME,

enabling case-wise and pathway-level explanations for model decisions. This allowed us to

investigate the biological relevance of important features and provided insight into the mech-

anisms associated with high- and low-risk profiles.
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Overall, this work contributes to the growing field of multimodal learning in compu-

tational oncology by proposing a modular and interpretable survival prediction framework

applicable to large-scale cancer datasets.

6.1 Future Work

While the framework demonstrated promising results, several directions remain open for

future research. Incorporating clinical variables such as patient age, performance status, or

molecular markers could further improve performance and clinical utility. More advanced

fusion strategies may also enhance interaction modeling between modalities. Finally, apply-

ing the model to external datasets and validating the identified pathways biologically could

strengthen its translational relevance.

In summary, this thesis presents a robust and interpretable deep learning pipeline for sur-

vival prediction in glioblastoma, offering a foundation for future developments in multimodal

modeling for cancer prognosis.
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List of Abbrevations

AI Artificial Intelligence

AUC Area Under the Curve

C-index Concordance Index

CNN Convolutional Neural Network

DL Deep Learning

GSEA Gene Set Enrichment Analysis

Gy Gray

H&E Hematoxylin and Eosin

ML Machine Learning

MLP Multilayer Perceptron

mRNA Messenger Ribonucleic Acid

RNA Ribonucleic Acid

RNA-seq RNA Sequencing

TCGA The Cancer Genome Atlas

TMZ Temozolomide

TPM Transcripts Per Million

TTFields Tumor Treating Fields

UMAP Uniform Manifold Approximation and Projection

WSI Whole Slide Image

WSIs Whole Slide Images
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