
 

 

 

National Technical University of Athens 

School of Electrical and Computer Engineering 

Division: Communication, Electronic and Information 

Engineering 

 

 

 

Edge Computing Real-Time Deployment of Anomaly Detection  

Machine Learning Algorithms 

 

Diploma Thesis 

 

Dimitriadis Michail Panagiotis 

 

 

Supervisors: Dr. Theodora Varvarigou, Professor, ECE-NTUA professor 

  Dr. Chondrogiannis Efthymios, ICCS-NTUA Researcher 

  Dr. Lataniotis Christos, Irmos Technologies AG, CTO 

 

 

 

Athens, February, 2024 

  



 

 

 

 



 

 

 

National Technical University of Athens 

School of Electrical and Computer Engineering 

Division: Communication, Electronic and Information 

Engineering 

 

 

 

Edge Computing Real-Time Deployment of Anomaly Detection  

Machine Learning Algorithms 

 

Diploma Thesis 

 

Dimitriadis Michail Panagiotis 

 

Supervisors: Dr. Theodora Varvarigou, Professor 

  Dr. Chondrogiannis Efthymios, ICCS-NTUA Researcher 

  Dr. Lataniotis Christos, Irmos Technologies AG, CTO 

 

Approved by the three-member scientific committee on 15/02/2024  

 

.................................... 

Dr. Emmanouil Varvarigos 

Professor, ECE-NTUA 

.................................... 

Dr. Symeon Papavassiliou 

Professor, ECE-NTUA 

.................................... 

Dr. Theodora Varvarigou 

Professor, ECE-NTUA 

 

 

Athens, February, 2024 

  



 

 

 

 

 

................................... 

Dimitriadis Michail Panagiotis 

Graduate of School of Electrical and Computer Engineering, National Technical University 

of Athens 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright © Dimitriadis Michail Panagiotis, 2025 

All rights reserved. 

 

You may not copy, reproduce, distribute, publish, display, modify, create derivative works, 

transmit, or in any way exploit this thesis or part of it for commercial purposes. You may 

reproduce, store or distribute this thesis for non-profit educational or research purposes, 

provided that the source is cited, and the present copyright notice is retained. Inquiries for 

commercial use should be addressed to the original author.  

 

The ideas and conclusions presented in this paper are the author’s and do not necessarily 

reflect the official views of the National Technical University of Athens.  



 

Page | 1 
 

Περίληψη 
 

Η αξιοπιστία των δεδομένων από αισθητήρες είναι κρίσιμη σε τομείς όπως η 

παρακολούθηση της υγείας κτιριακών κατασκευών. Με την πάροδο του χρόνου, οι 

αισθητήρες μπορεί να παρουσιάσουν δυσλειτουργίες, παράγοντας ανώμαλα δεδομένα 

που οδηγούν σε λανθασμένα συμπεράσματα. Η Μηχανική Μάθηση (ML) και ειδικότερα 

η Ανίχνευση Ανωμαλιών προσφέρει λύση, εντοπίζοντας ελαττώματα και 

διασφαλίζοντας την ποιότητα των δεδομένων. Η υλοποίηση τέτοιων αλγορίθμων σε 

απομακρυσμένα σημεία απαιτεί λύσεις edge computing. Αναπτύσσοντας 

ενσωματωμένα συστήματα ανά κτίριο σε τοπικό επίπεδο, οι αλγόριθμοι ML μπορούν να 

εκτελούνται επιτόπου, εντοπίζοντας ανωμαλίες τοπικά, μειώνοντας την ανάγκη για 

κεντρική επεξεργασία. 

Λέξεις Κλειδιά 
Μηχανική Μάθηση, Ανίχνευση Ανωμαλιών, Συνεχής Ενσωμάτωση/Συνεχής 

Ανάπτυξη (CI/CD), Ανάπτυξη Ιστοσελίδων Full Stack, DevOps, Docker, Ανάπτυξη σε 

Κλίμακα, Portainer, Raspberry. 
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Abstract 
 

The reliability of sensor data is critical in fields such as structural health monitoring. Over 

time, sensors may malfunction, producing anomalous data that can lead to incorrect 

conclusions. Machine Learning (ML), and specifically Anomaly Detection, offers a solution by 

identifying faults and ensuring data quality. Implementing such algorithms in remote 

locations requires edge computing solutions. By deploying embedded systems locally at each 

building, ML algorithms can run on-site, detecting anomalies in real time and reducing the 

need for centralized processing. 
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Machine Learning, Anomaly Detection, Continuous Integration/ Continuous 

Deployment (CI/CD), Full Stack Web Development, DevOps, Docker, Deployment at 
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Εκτενή Περίληψη στα Ελληνικά 
 

Η εξασφάλιση της αξιοπιστίας των δεδομένων από αισθητήρες είναι κρίσιμη σε 

τομείς όπως η παρακολούθηση της υγείας των κατασκευών, η περιβαλλοντική 

παρακολούθηση και η βιομηχανική αυτοματοποίηση. Με την πάροδο του χρόνου, οι 

αισθητήρες ενδέχεται να παρουσιάσουν δυσλειτουργίες ή να επηρεαστούν από 

εξωτερικές παρεμβολές, με αποτέλεσμα δεδομένα χαμηλής ποιότητας που εμποδίζουν 

την ακριβή ανάλυση και τη λήψη αποφάσεων. Στο πλαίσιο της παρακολούθησης της 

υγείας των κτιρίων, όπου οι μετρήσεις δονήσεων είναι κρίσιμες για την αξιολόγηση της 

σταθερότητας των κατασκευών, η ακεραιότητα των δεδομένων από τους αισθητήρες 

γίνεται εξαιρετικά σημαντική. Οι ελαττωματικοί αισθητήρες μπορούν να παράγουν 

ανώμαλα δεδομένα, οδηγώντας σε λανθασμένα συμπεράσματα σχετικά με την 

κατάσταση της κατασκευής. 

Για την αντιμετώπιση αυτής της πρόκλησης, μια προσέγγιση βασισμένη σε δεδομένα 

που αξιοποιεί τη Μηχανική Μάθηση (ML), και συγκεκριμένα τους αλγορίθμους 

Ανίχνευσης Ανωμαλιών, είναι απαραίτητη. Αυτοί οι αλγόριθμοι μπορούν να εντοπίσουν 

ελαττωματικούς αισθητήρες διακρίνοντας ανώμαλα πρότυπα δεδομένων από την 

αναμενόμενη συμπεριφορά, εξασφαλίζοντας ότι μόνο αξιόπιστα δεδομένα 

χρησιμοποιούνται για περαιτέρω ανάλυση. Ωστόσο, η ανάπτυξη τέτοιων εξελιγμένων 

αλγορίθμων σε απομακρυσμένα σημεία παρακολούθησης δημιουργεί ζήτημα 

δυνατότητας διάθεσης. 

Αυτό το πρόβλημα διάθεσης μπορεί να λυθεί αποτελεσματικά με τη χρήση 

Συσκευών Edge Computing. Με την ανάπτυξη μίας συσκευής ανά κτίριο, η επεξεργασία 

των δεδομένων μπορεί να γίνει τοπικά, με κάθε συσκευή να τρέχει τους αλγορίθμους 

Ανίχνευσης Ανωμαλιών βασισμένους στη ML. Αυτή η προσέγγιση εξασφαλίζει ότι μόνο 

τα ενδιαφέροντα και σχετικά δεδομένα μεταδίδονται στη κεντρική βάση δεδομένων για 

περαιτέρω ανάλυση, μειώνοντας σημαντικά τον όγκο δεδομένων που πρέπει να 

διαχειριστεί κεντρικά. 

Συνεπώς, τα δύο κύρια σημεία που θα διερευνηθούν σε αυτή τη διατριβή είναι:  

● Η διαχείριση πολλαπλών αναπτύξεων συσκευών edge computing σε μεγάλη 

κλίμακα.  

● Η ενσωμάτωση αλγορίθμων Ανίχνευσης Ανωμαλιών ML σε κάθε συσκευή για 

έξυπνη ανίχνευση και απόρριψη ανώμαλων δεδομένων από ελαττωματικούς 

αισθητήρες, εξασφαλίζοντας την αξιοπιστία και την ακρίβεια των 

συλλεγόμενων δεδομένων. 
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Chapter 1 

1. Introduction 
 

1.1. Objectives 
The objective of the current thesis is to present different anomaly detection methods 

and algorithms, then compare the results of some of them, analyze the importance of 

the metrics used, and finally implement the most suitable of them to operate in real-

time and in an on-line manner. 

For the last task, the deliverable monitoring system will be using a wide range of 

technologies and techniques, in order to achieve all of the following live capabilities: 

● Edge Computing Anomaly Detection (1, 2) 

● Health monitoring of fleet deployed 

● Over the air (OTA) reprogram of deployed fleets 

● Anomaly report from sensor data to my custom application 

● Display and browsing of anomaly reports for further study (Frontend) 

● Application access control 

● Security, Scalability, Maintainability, Efficiency 

The following diagram shows an overview of the system to be created 

 

Figure 1 System Overview 
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1.2. Thesis Outline 
In Chapter 2 we will define the fundamental terminology, conventions, as well as the 

classification of some of the most popular Machine Learning algorithms. We will also use 

3 of them to test them against a common dataset and compare them using their key 

metrics. The best one will be used in my fleet. In Chapter 3 we will talk about the various 

components that a modern web application consists of, the way they interact with each 

other and in general the Full Stack Applications approach. Finally, in Chapter 4, we will 

show an overview of how edge computing devices work, why they play an important role 

in my system and how we will be able to control all my fleet easily and remotely. 

 

Chapter 2 

2. Background 
 

2.1. What is Machine Learning 
 

Machine learning (ML) is the scientific study of algorithms and statistical models that 

computer systems use to perform a specific task without being explicitly programmed. 

Learning algorithms in many applications that we make use of daily. These algorithms are 

used for various purposes like data mining, image processing, predictive analytics, etc. to 

name a few. The main advantage of machine learning is that we can produce algorithms 

that can perform potentially complex tasks without explicitly stating how to do so. 

Instead, they learn by examples (data-driven) through the so-called training process. (3) 

 

The process of creating a mathematical model is called training, and the sample data 

used for this purpose are called training data. There are three primary Machine Learning 

paradigms, each with a distinct approach to "learning" or training: (4) 

● Supervised Learning: Supervised learning is the machine learning task of learning a 

function that maps an input to an output based on example input-output pairs. It 

infers a function from labelled training data consisting of a set of training examples. 

The supervised machine learning algorithms are those algorithms which needs 

external assistance. The input dataset is divided into train and test dataset. The train 

dataset has output variable which needs to be predicted or classified. All algorithms 

learn some kind of patterns from the training dataset and apply them to the test 

dataset for prediction or classification. (3) 
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● Unsupervised Learning: These are called unsupervised learning because unlike 

supervised learning above there is no correct answers and there is no teacher. 

Algorithms are left to their own devises to discover and present the interesting 

structure in the data. The unsupervised learning algorithms learn few features from 

the data. When new data is introduced, it uses the previously learned features to 

recognize the class of the data. It is mainly used for clustering and feature reduction. 

(3) 

 

 

● Semi Supervise Learning: Semi-supervised machine learning is a combination of 

supervised and unsupervised machine learning methods. It can be fruit-full in those 

areas of machine learning and data mining where the unlabeled data is already 

present and getting the labeled data is a tedious process. With more common 

supervised machine learning methods, you train a machine learning algorithm on a 

“labeled” dataset in which each record includes the outcome information. (5) 

 

● Reinforcement Learning: Reinforcement learning is an area of machine learning 

concerned with how software agents ought to take actions in an environment in 

order to maximize some notion of cumulative reward. Reinforcement learning is one 

of three basic machine learning paradigms, alongside supervised learning and 

unsupervised learning. (3) 

 

 

● Ensemble Learning: Ensemble learning is the process by which multiple models, such 

as classifiers or experts, are strategically generated and combined to solve a 

particular computational intelligence problem. Ensemble learning is primarily used to 

improve the performance of a model, or reduce the likelihood of an unfortunate 

selection of a poor one. Other applications of ensemble learning include assigning a 

confidence to the decision made by the model, selecting optimal features, data 

fusion, incremental learning, nonstationary learning and error-correcting. (6) 
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2.2. Anomaly Detection 
 

Anomaly detection refers to the problem of finding patterns in data that do not 

conform to expected behavior. These non-conforming patterns are often referred to as 

anomalies, outliers, discordant observations, exceptions, aberrations, surprises, 

peculiarities, or contaminants in different application domains. Of these, anomalies and 

outliers are two terms used most in the context of anomaly detection, sometimes 

interchangeably. Anomaly detection finds extensive use in a wide variety of applications 

such as fraud detection for credit cards, insurance or health care, intrusion detection for 

cyber-security, fault detection in safety critical systems, and military surveillance for 

enemy activities. (7) 

The importance of anomaly detection is due to the fact that anomalies in data 

translate to significant (and often critical) actionable information in a wide variety of 

application domains. For example, an anomalous traffic pattern in a computer network 

could mean that a hacked computer is sending out sensitive data to an unauthorized 

destination. An anomalous MRI image may indicate presence of malignant tumors. 

Anomalies in credit card transaction data could indicate credit card or identity theft or 

anomalous readings from a space craft sensor could signify a fault in some component of 

the space craft. 

 

    Figure 2: Anomalies in a simple 2-dimensional data set illustration (8) 
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The data has two normal regions, N1 and N2, since most observations lie in these two 

regions. Points that are sufficiently far away from the regions, e.g., points o1 and o2, and 

points in region O3, are assumed anomalies. Anomalies might be induced in the data for a 

variety of reasons, but all the reasons have a common characteristic that they are 

interesting to the analyst. In Figure 2, an example visualization of 2-dimensional dataset is 

shown. Points in different regions of the 2D space are denoted using different symbols, 

based on the group (a.k.a. cluster) that they belong to. (8) 

 

2.3. Anomaly Detection Techniques 
 

At an abstract level, an anomaly is defined as a pattern that does not conform to 

expected normal behavior. A straightforward anomaly detection approach, therefore, is 

to define a region representing normal behavior and declare any observation in the data 

which does not belong to this normal region, as an anomaly. But several factors make this 

apparently simple approach very challenging. 

Defining a normal region which encompasses every possible normal behavior is very 

difficult. In addition, the boundary between normal and anomalous behavior is often not 

precise. Thus, an anomalous observation close to the boundary can be normal and vice-

versa. When anomalies are the result of malicious actions, the malicious adversaries often 

adapt themselves to make the anomalous observations appear like normal, thereby 

making the task of defining normal behavior more difficult. In many domains normal 

behavior keeps evolving and a current notion of normal behavior might not be sufficiently 

representative in the future. The exact notion of an anomaly is different for different 

application domains. For example, in the medical domain a small deviation from normal 

(e.g., fluctuations in body temperature) might be an anomaly, while a similar deviation in 

the stock market domain (e.g., fluctuations in the value of a stock) might be considered as 

normal. Thus, applying a technique developed in one domain to another is not 

straightforward. Availability of labeled data for training/validation of models used by 

anomaly detection techniques is usually a major issue. Often the data contain noise which 

tends to be similar to the actual anomalies and hence is difficult to distinguish and 

remove. Due to the above challenges, the anomaly detection problem, in its most general 

form, is not easy to solve. In fact, most of the existing anomaly detection techniques solve 

a specific formulation of the problem. The formulation is induced by various factors such 

as nature of the data, availability of labeled data, type of anomalies to be detected, etc. 

Often, these factors are determined by the application domain in which the anomalies 

need to be detected. Researchers have categorized the anomaly detection techniques 

according to several major pattern approaches. (7) (9) 
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2.3.1. Classification Based (8) 
 

Classification-based anomaly detection is a supervised method that involves training 

a classification model on labeled data, where anomalies are typically the minority class. 

The model learns to distinguish between normal and anomalous instances based on 

features extracted from the data. Once trained, the model can predict whether new 

instances are normal or anomalous based on their feature representation. Common 

classification algorithms used for anomaly detection include logistic regression, decision 

trees, support vector machines (SVM), and random forests. (8) 

● Support Vector Machine (SVM) 

A Support Vector Machine (SVM) is a powerful supervised machine learning 

algorithm used primarily for classification tasks. It is especially effective in scenarios 

where data is not linearly separable and needs to be transformed into a higher-

dimensional space for separation. SVMs are a type of supervised learning algorithm, 

meaning they require labeled data for training. 

Some common uses and applications of the SVM algorithm include image 

classification, text classification and sentiment analysis, bioinformatics, handwriting 

recognition, face detection and recognition, anomaly detection, remote sensing, and 

satellite image analysis, as well as gesture recognition. The basic idea behind SVM is to 

find the optimal hyperplane that maximally separates the data into different classes, 

similarly to figure 2. To achieve that we follow these steps: 

 

o Data Preparation: The dataset is split into training and testing sets and 

anomalies are labeled as such in the training set. 

o Training the Model / Find the Optimal Hyperplane: The goal is to 

compute the optimal hyperplane that separates the normal and 

anomalous classes with the maximum margin. Mathematically, the 

hyperplane can be expressed as: 

 

𝑤 ∙ 𝑥  + 𝑏  =  0 

Equation 1: Optimal Hyperplane 

 

Where w denotes the weight vector 

𝑥 is the input feature vector and 

𝑏 is the bias term. 
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o Margin Maximization: The margin is defined as the distance between the 

hyperplane and the nearest data points from either class, called support 

vectors. The objective is to maximize the margin, which is given by 2/|𝑤|  

o Formulating the Optimization Problem: To maximize the margin, we need 

to solve the following optimization problem: 

𝑚𝑎𝑥 (2/|𝑤| ) 

Equation 2 Optimization problem 

 

 

Figure 3: support vector machines that define a splitting line among datapoints (10) 

 

The trained model is then used to predict the class labels of new data instances. 

Instances classified as anomalies are flagged for further investigation. 

 

2.3.2. Tree based (11) 
 

Tree-based machine learning algorithms are a powerful and versatile class of models 

used for both classification and regression tasks. Their defining characteristic is the use of 

decision trees, a flowchart-like structure where data is continuously split into subsets 

based on specific features. The primary strength of these models lies in their 

interpretability, as the decision-making process can be visualized and easily understood. 

These algorithms mimic human decision-making processes, where a sequence of 

yes/no questions about the features leads to a final decision. The flow through the tree 

from the root to a leaf represents the decision-making path. Tree-based algorithms are 

widely used across industries, from finance to healthcare, because they handle diverse 

data types, including categorical and numerical data, and require little data preparation. 
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● Isolation Forest 

Isolation Forest is an unsupervised, decision-tree-based algorithm originally 

developed for outlier detection in tabular data, despite often being classified under the 

umbrella of classification-based algorithms. The key principle behind the Isolation Forest 

algorithm is that anomalies, or outliers, are few and different in ways that make them 

easier to isolate from the majority of the data points. The algorithm works by recursively 

partitioning the dataset into smaller segments through a series of binary splits, with each 

split being selected randomly based on a feature and a split value.  

For example, in a dataset containing annual incomes and total assets of individuals, 

the algorithm might randomly choose the feature "Net worth" and select a split value of, 

say, $2 billion. It then partitions the data based on whether an individual's worth is above 

or below this threshold. The process continues, with each tree randomly choosing 

features and split values, until all data points are isolated. Outliers, such as someone with 

an income of $10 billion, would be isolated faster because they differ more from the bulk 

of the population, whereas more common observations require more splits to be 

distinguished from the rest of the data. 

The key steps in the Isolation Forest process can be summarized as: 

● Random Feature Selection: A feature (e.g., "annual income" or "total assets") 

is chosen at random for splitting the data. 

● Random Split Value: A random threshold value is chosen for the selected 

feature to divide the data into two branches. 

● Recursive Partitioning: The process is repeated, recursively partitioning the 

data into smaller and smaller subsets. 

● Isolation of Data Points: The recursion continues until each data point is 

isolated in its own partition, or until a stopping criterion is reached (e.g., the 

maximum depth of the tree). 
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Figure 4: Shows how a random tree isolates an Outlier (12) 

 

2.3.3. Clustering Based (8) 
 

Clustering-based anomaly detection is an unsupervised method that involves 

grouping similar data points into clusters and identifying instances that are distant from 

their respective clusters. Anomalies are typically those data points that do not belong to 

any cluster or belong to sparse clusters. Common clustering algorithms used for anomaly 

detection include k-means, DBSCAN, and hierarchical clustering. (8) A presentation of one 

of the most simple algorithm follows: 

● DBSCAN 

It is a method that identifies distinctive clusters in the data, based on the key idea 

that a cluster is a group of high data point density, separated from other such clusters by 

regions of low data point density. The main idea is to find highly dense regions and 

consider them as one cluster. It can easily discover clusters of different shapes and sizes 

from a large amount of data, which contains noise and outliers.  

The DBSCAN algorithm uses two major parameters: 

minPts: The minimum number of points (a threshold) clustered together for a region 

to be considered dense i.e., the minimum number of data points that can form a cluster 

eps (ε): A distance measure that will be used to locate the points in the neighborhood 

of any point. 
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The algorithm takes care of three concepts called Core Points, Density Reachability 

and Density Connectivity. 

● Core Points: A point p is a core point if within its eps neighborhood, there are at least 

minPts points. Formally, 

|𝑁_𝜀 (𝑝)| ≥ 𝑚𝑖𝑛 𝑃 𝑡𝑠 

Equation 3: Minimum points to be considered core point 

where Nϵ (p) denotes the number of points within eps neighborhood of p 

● Density Reachability: A point p is density reachable from a point q if: 

 

𝑑𝑖𝑠𝑡(𝑝, 𝑞) ≤ 𝜀 𝑎𝑛𝑑 |𝑁_𝜀 (𝑝)| ≥ 𝑚𝑖𝑛 𝑃 𝑡𝑠 

Equation 4: Density reachability 

● Density Connectivity: Points p and q are density connected if there exists a sequence 

of points 𝑝_1, 𝑝_2, … , 𝑝_𝑛  such that: 

●  

𝑝_1  =  𝑝,  𝑝_𝑛  =  𝑞,  𝑎𝑛𝑑 ∀𝑖  ∈  {1,2, … , 𝑛 − 1},  𝑑𝑖𝑠𝑡(𝑝_𝑖, 𝑝_(𝑖 + 1) ) ≤ 𝜀 

Equation 5:Density Connectivity 

Additionally, p and q must be density reachable from some core point o. 

 

 

Figure 5 : p and q are Density Reachable (13) 
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Figure 6: Here p and q are Density Connected (13) 

 

In this method, there are three different types of data points: 

Core data point: A data point which has at least ‘minPts’ within the distance of ‘ε’. 

Border data point: A data point which is in within ‘ε’ distance from core data point 

but not a core point. 

Noise data point: A data point which is neither core nor border data point 

 

 

Figure 7: Core, Border and Noise points visualized (14) 

 

Algorithmic steps for DBSCAN clustering 

Initially, it starts with a random unvisited starting data point. All points within a 

distance ‘ε’ classify as neighborhood points. 
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It needs a minimum number of ‘minPts’ points within the neighborhood to start the 

clustering process. Otherwise, the point gets labeled as ‘Noise.’ 

All points within the distance ‘ε’ become part of the same cluster. Repeat the 

procedure for all the new points added to the cluster group. Continue till it visits and 

labels each point within the ‘ε’ neighborhood of the cluster. 

On completion of the process, it starts again with a new unvisited point thereby 

leading to the discovery of more clusters or noise. At the end of the process, you ensure 

that you mark each point as either cluster or noise. 

 

Figure 8: A visual representation of how DBScan works (15) 

2.3.4. Nearest Neighbor Based (8) 
 

● K-nearest neighbors (KNN) 

K-nearest neighbors (KNN) is a type of supervised learning algorithm used for both 

regression and classification. KNN tries to predict the correct class for the test data by 

calculating the distance between the test data and all the training points. Then select the 

K number of points which is closest to the test data. The KNN algorithm calculates the 

probability of the test data belonging to the classes of ‘K’ training data and the class that 

holds the highest probability will be selected. In the case of regression, the value is the 

mean of the ‘K’ selected training points. Let's see the below example to make it a better 

understanding. (8) 

Unlike many other machine learning algorithms, KNN does not create an explicit 

model or learn patterns from the data. Instead, it simply stores all the training data and 

makes predictions by comparing the test data to the stored points during inference. This 

is why KNN is often referred to as a lazy learner. KNN makes predictions by using the 

entire training dataset at prediction time. This can be memory-intensive because it 

requires storing all the data points and computing distances for each new prediction. 
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As a result, KNN can be computationally expensive for large datasets because it 

requires calculating distances between the test data and all training points. As the size of 

the dataset increases, the prediction time also increases significantly. In high-dimensional 

spaces, KNN can struggle because distance measures become less meaningful, a problem 

known as the curse of dimensionality. This can degrade the accuracy of the algorithm. 

To address issues with large datasets, techniques such as data sampling, 

dimensionality reduction (e.g., PCA), or approximate nearest neighbor search can be used 

to reduce the dataset size while still maintaining the accuracy of KNN predictions. (16) 

 

 

Figure 9: 1st step of K-nearest neighbors (17) 

 

 

Figure 10: 2nd step of K-nearest neighbors (17) 
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Figure 11: 3rd step of K-nearest neighbors (17) 

 

 

Figure 12: 4th step of K-nearest neighbors (17) 

In Figure 9 we want to classify the gray point. In Figure 10 we measure the distances 

to the closest neighbors. In the next Figure we sort the neighbors from the closest to the 

furthest and finally we choose the right class for out gray point 

 

● Local Outlier Factor (LOF) 

Local Outlier Factor (LOF) is another popular anomaly detection algorithm, 

particularly useful for identifying outliers in a dataset, taking into advantage the K-nearest 

neighbors algorithm. LOF works by measuring the local density deviation of a given data 

point with respect to its neighbors. It then assigns an anomaly score to each data point 

based on how isolated the point is from its surrounding neighborhood. The key idea is 

that outliers are points that have a substantially lower density than their neighbors. These 

are the steps that are typically used 
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STEP 1: Determine the Neighborhood: For each data point in our dataset D, identify 

its k-nearest neighbors. The parameter k is typically chosen by the user and determines 

the size of the neighborhood. the k-distance of p is defined as: 

 

𝑑_𝑘 (𝑝) = 𝑑𝑖𝑠 𝑡𝑎𝑛 𝑐 𝑒(𝑝, 𝑘 − 𝑡ℎ 𝑛𝑒𝑎𝑟𝑒𝑠𝑡 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 𝑜𝑓 𝑝) 

 

The k-distance neighborhood of a point p, denoted as 𝑁_𝑘 (𝑝), includes all points 

whose distance to p is less than or equal to the k-distance of p: 

 

𝑁_𝑘 (𝑝)  =  {𝑑𝑖𝑠 𝑡𝑎𝑛 𝑐 𝑒(𝑝, 𝑞) ≤ 𝑑_𝑘 (𝑝)} 

Equation 6: Determining neighborhood 

Where  𝑞  ∈  𝐷   

 

STEP 2:  Calculate Local Reachability Density (LRD): 

Reachability Distance: For a point q and one of its neighbors o, the reachability 

distance of q with respect to o is the maximum of the Euclidean distance between q and o 

and the distance to the k-th nearest neighbor of o. 

 

𝑟𝑒𝑎𝑐ℎ − 𝑑𝑖𝑠𝑡_𝑘 (𝑝, 𝑜)  =  𝑚𝑎𝑥 {𝑑_𝑘 (𝑜), 𝑑𝑖𝑠 𝑡𝑎𝑛 𝑐 𝑒(𝑝, 𝑜)}  

Equation 7: Calculating reachability distance 

 

Local Reachability Density (LRD): This is the inverse of the average reachability 

distance of the point from its k-nearest neighbors. Points in dense regions will have high 

LRD values, whereas points in sparse regions (potential outliers) will have low LRD values. 

 

𝑙𝑟𝑑_𝑘 (𝑝)  =  ((∑_( _(𝑜 ∈ 𝑁_𝑘 (𝑝))^ )▒𝑟𝑒𝑎𝑐ℎ − 𝑑𝑖𝑠𝑡_𝑘 (𝑝, 𝑜))/|𝑁_𝑘 (𝑝)| )^(−1) 

Equation 8: Calculating LRD 

STEP 3: Compute LOF Score: The LOF score for a point is the average ratio of the LRD 

of the point’s neighbors to the LRD of the point itself. If the LRD of a point is significantly 

lower than the LRDs of its neighbors, it is considered an outlier. 

 

𝐿𝑂𝐹_𝑘 (𝑝)  =  (∑_( _(𝑜 ∈ 𝑁_𝑘 (𝑝))^ )^ ▒〖𝑙𝑟𝑑_𝑘 (𝑜) 〗 \/𝑙𝑟𝑑_𝑘 (𝑝))/|𝑁_𝑘 (𝑝)|  

Equation 9:Calculating LOF 
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2.3.5. Statistical Based (8) 
 

Statistical-based anomaly detection involves modeling the statistical properties of the 

data and identifying instances that deviate significantly from these properties. Common 

statistical techniques used include Gaussian distribution modeling, z-score calculation, 

and hypothesis testing. (8) 

● z-score calculation 

A Z-score or standard score describes the measurement of distance between a data 

point and the mean using standard deviations. 

The mean, often denoted by the Greek letter μ (mu), is a measure of central 

tendency in a dataset. You may often heard as, the mean represents the “average” value 

of a set of numbers. 

 

The standard deviation, often represented by the Greek letter σ (sigma), quantifies 

the amount of variation or dispersion in a dataset. In other words, it tells us how spread 

out the data points are from the mean. A smaller standard deviation indicates that the 

data points are close to the mean, while a larger standard deviation suggests greater 

variability.  

𝜎  =  √((∑_ ^ ▒(𝑥_𝑖 − 𝜇)^2 )/𝑁) 

Equation 10: Standard deviation (σ) 

Where: 

σ = standard deviation 

N = size of population 

Χi = each value from population 

μ = the mean 

The formula to calculate the Z-score for a data point (X) in a dataset with a mean (μ) 

and standard deviation (σ) is as follows: 

z = (x — μ) / σ 

Equation 11: z-score calculation 

In simple terms, the Z-score is the result of subtracting the mean from the data point 

and then dividing the difference by the standard deviation. Datapoints that have Z-score 

above 3 (meaning the are more the 3 σ from the mean) are considered outliers. 



 

Page | 28 
 

 

          Figure 13: Z-score distribution diagram (18) 

 

2.3.6. Information Theoretic Based (8) 
 

Information-theoretic anomaly detection is rooted in the principles of information 

theory, where data points are evaluated based on the amount of information they carry 

relative to others in a dataset. This method seeks to quantify and analyze the 

informational content of each point to identify anomalies that deviate from the expected 

informational patterns. Techniques such as entropy, mutual information, and 

compression-based methods are commonly used to measure the complexity or 

uncertainty of data points. Entropy, for example, measures the level of unpredictability or 

disorder in a dataset, while mutual information quantifies the amount of shared 

information between different variables. Anomalous points are typically those that exhibit 

either unusually high or low information content compared to the rest of the data. 

The process begins by calculating information-theoretic metrics for each data point. 

These metrics reflect how much information or complexity each point holds within the 

context of the dataset. Points with high entropy, indicating a high degree of disorder, or 

points that significantly deviate from typical mutual information values, are flagged as 

potential anomalies. Compression techniques can also be applied, as anomalous data is 

often harder to compress due to its distinct or unpredictable nature. Ultimately, this 

method is effective in fields like network intrusion detection, where unusual data patterns 

signal potential security threats, or in biological data analysis, where atypical gene 

expression levels might indicate anomalies in biological processes.  
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2.3.7. Spectral Based (8) 
 

Spectral-based anomaly detection involves transforming data into a spectral domain 

to analyze its underlying structure using mathematical techniques such as eigenvalue 

decomposition. This method is particularly effective in identifying hidden patterns and 

detecting anomalies by examining the spectral properties of the data. By applying 

transformations such as Principal Component Analysis (PCA) or Singular Value 

Decomposition (SVD), spectral features like eigenvalues and eigenvectors can be 

extracted to represent the most dominant patterns in the dataset. Anomalies are 

identified based on deviations in these spectral features. 

In the spectral domain, data points are projected onto a set of axes defined by the 

eigenvalues and eigenvectors. The key idea is that anomalies disrupt these dominant 

patterns, making them distinguishable when analyzed spectrally. For instance, outliers 

may appear as extreme values in the eigenvalue spectrum, or as deviations in the 

principal components that capture the majority of the variance in the data. The 

transformation into the spectral domain allows for a compact representation of complex 

data, which can be highly effective in identifying subtle anomalies that are not easily 

detectable in the original space. This approach is widely applied in domains such as 

network traffic monitoring, image data analysis, and sensor networks, where spectral 

properties can reveal deviations in normal patterns indicative of anomalies. (8) 

 

2.3.8. Ensemble Based 
 

Ensemble machine learning methods have emerged as powerful techniques for 

improving the predictive performance and robustness of models across various domains 

and tasks. In traditional machine learning, a single model is trained on a dataset to make 

predictions. However, ensemble methods take a different approach by combining the 

predictions of multiple base models to produce a final prediction, often achieving higher 

accuracy than any individual model alone. (3) 

The underlying principle of ensemble methods is rooted in the concept of "wisdom of 

the crowd," where aggregating the opinions of multiple models can lead to more accurate 

and reliable predictions. By leveraging diversity among base models, ensemble methods 

can effectively capture different aspects of the data and reduce the risk of overfitting, 

leading to improved generalization performance. 

Ensemble methods can be broadly categorized into two main types: bagging and 

boosting. Bagging methods, such as Random Forests, train multiple base models 

independently on different subsets of the training data and combine their predictions 

through averaging or voting. Boosting methods, such as AdaBoost and Gradient Boosting 
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Machines (GBM), sequentially train base models, with each subsequent model focusing 

on correcting the errors of its predecessors. 

In addition to bagging and boosting, other ensemble techniques include stacking, 

where the predictions of base models serve as input features for a meta-model, and 

ensemble pruning, which aims to select a subset of base models for aggregation to 

improve computational efficiency. 

Ensemble methods have demonstrated remarkable success across various machine 

learning tasks, including classification, regression, and anomaly detection. In 2021, an 

ensemble method called SAND was proposed, that could detect anomalies in timeseries 

datasets.  

 

● The Subsequence Anomaly Detection (SAND) Method 

To leverage the advantages of the previous technique, the method SAND was 

developed, suitable for subsequence anomaly detection in data streams. SAND builds a 

dataset of subsequences representing the different behaviors of the data series. These 

subsequences are weighted using statistical characteristics such as their cardinality (i.e., 

how many times the subsequence occurred) and their temporality (i.e., the time 

difference this subsequence has been detected for the last time). SAND enables this data 

structure to be updated from one batch to another, while being able to compute an 

anomaly score at every timestamp. Thus, SAND proposes a solution to the subsequences 

anomaly detection task on streaming data. SAND benefits from 𝑘-Shape , a state of the 

art data-series clustering method, which is extended to enable the clustering result to be 

updated without storing any of the previous subsequences. (19) 

 

 

Figure 14: A graphical representation of how SAND works (19) 
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2.3.9. The Contestants 
 

From the wide selection of machine learning algorithms, three have been selected to 

be used on my time series datasets. Each algorithm represents a different category of 

anomaly detection techniques, ensuring a comprehensive comparison. The chosen 

algorithms are: 

● Isolation Forest (Classification based) (20) 

● Local Outlier Factor (Nearest Neighbor based) (21) 

● Subsequence Anomaly Detection (Ensemble) (19) 

The selection of these algorithms ensures that we will have a representative from 

each of the most promising categories in anomaly detection. While the comparison 

results against a common dataset offer a general overview of the algorithms' efficiency, 

they cannot definitively classify their performance in all scenarios. Instead, they provide 

insight into how these methods might perform in similar contexts. 

 

2.3.10. The Datasets 
 

The datasets play a crucial role in testing, serving as the basis for evaluating the 

performance of the selected algorithms. In this project, we utilize multiple time series 

datasets to ensure a robust and comprehensive evaluation. 

Description of Datasets  

Our datasets consist of time series data collected from various sources. Each dataset 

includes many datapoints consisting of a value and a label (0 for normal, 1 for anomaly). 

The data spans a significant period, allowing us to capture various patterns and anomalies 

over time. 

Typical Preprocessing Steps (22) 

Data Cleaning: This involves handling missing values, removing duplicates, and 

filtering out irrelevant data points. Clean data is essential for accurate analysis. This step 

in our occasion is not needed. 

Normalization: To ensure that the features are on a comparable scale, normalization 

is applied. This step is particularly important for algorithms like LOF, which rely on 

distance measures. This process takes place in the algorithm. 

Segmentation: The time series data is segmented into smaller subsequences to 

facilitate analysis. This segmentation allows us to apply the Subsequence Anomaly 

Detection algorithm effectively. This process also takes place in the algorithm. 
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Labeling: For supervised evaluation, anomalies within the datasets are labeled. This 

labeling can be based on historical data, expert knowledge, or a combination of both. The 

labeling is achieved by using 1 and 0 flags . 

 

 

Figure 15: A graphical representation of a timeseries dataset with anomalies 

 

Types of Anomalies 

In time series data, anomalies can manifest in various forms. Identifying and 

categorizing these anomalies is crucial for a comprehensive evaluation of the algorithms 

used in this project. Below, we describe the common types of anomalies that are typically 

encountered in time series data: 

Point Anomalies (Global Outliers): A point anomaly occurs when a single data point 

significantly deviates from the rest of the data. In time series datasets, this could be a 

sudden spike or drop in value at a particular timestamp that does not align with the 

expected pattern. For example, in a financial dataset, a sudden and large withdrawal or 

deposit might be flagged as a point anomaly. Algorithms like Isolation Forest are 

particularly effective at detecting such anomalies because they isolate these points in 

fewer splits compared to normal points. 

Contextual Anomalies (Conditional Anomalies): Contextual anomalies occur when a 

data point is considered anomalous only in a specific context but normal in another. In 

time series data, context is typically defined by time or seasonality. For instance, an 

unusually high temperature might be anomalous in winter but normal during summer. 

Detecting contextual anomalies requires understanding the broader context in which the 

data point occurs, making it more complex than point anomaly detection. Time series 

models such as LSTM and algorithms considering seasonality are more suited for 

detecting contextual anomalies. 
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Collective Anomalies: Collective anomalies refer to a sequence or group of data 

points that together represent an anomaly, even though individual points within the 

sequence may appear normal (figure 15). These often arise in time series data when the 

relationship between consecutive points exhibits an abnormal trend or pattern over time. 

For instance, a sudden, consistent increase in network traffic over a few minutes might 

signal an attack, even if each individual point is within normal range. Detecting collective 

anomalies often requires algorithms capable of analyzing patterns across time, such as 

subsequence anomaly detection methods. 

Transient Anomalies (Short-Lived Anomalies): Transient anomalies are anomalies that 

last for a short period and then return to normal. In time series datasets, these could be 

caused by temporary system malfunctions or brief environmental changes. Detecting 

transient anomalies is challenging because the anomaly could blend in with the normal 

pattern when considering long-term trends. 

 

2.3.11. Algorithm Evaluation  
 

Basic Evaluation Metrics: The metrics are based on these 4 datapoint 

characterizations after the evaluation of the algorithm.  

True Positive (TP): The datapoint is correctly found as an anomaly 

True Negative (TN): The datapoint is correctly found as normality 

False Positive (FP): The datapoint is falsely found as an anomaly 

False Negative (FN): the datapoint is falsely found as a normality 

 

To compare the performance of the algorithms, several key metrics are used: 

● Recall or TPR (True Positive Rate):  

The ratio of true positive anomalies to the total number of actual anomalies. High 

recall means the algorithm successfully identifies most of the anomalies present in 

the dataset. 

𝑇𝑃𝑅  =  𝑇𝑃/(𝑇𝑃  +  𝐹𝑁) 

Equation 12: The Recall Equation 

● FPR (False Positive Rate) 

The False Positive Rate measures the proportion of negatives incorrectly identified as 

positives by the classifier. It is calculated as: 

𝐹𝑃𝑅  =  𝐹𝑃/(𝐹𝑃  +  𝑇𝑁) 

Equation 13: The FPR Equation 
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● Receiver Operating Characteristic (ROC) curve 

 

ROC analysis is a graphical approach for analyzing the performance of an algorithm. 

This methodology plots FPR on the x-axis and TPR on the y-axis for various values of 

anomaly threshold that a datapoint score must. The resulting plot can be used to 

compare the relative performance of different algorithms and to determine whether 

an algorithm performs better than random guessing. 

 

Figure 16: Comparing 4 algorithms (classifiers) against a random one (23) 

 

● AUC (Area Under the Curve) 

The AUC measures the area under the ROC curve. It quantifies the overall ability of 

the model to discriminate between positive and negative classes. A higher AUC 

indicates better performance. 

 

● Precision (P):  

Precision is the ratio of true positive anomalies to the total number of anomalies 

detected. High precision indicates that the algorithm accurately identifies anomalies 

without many false positives. 

 

𝑃  =  𝑇𝑃/(𝑇𝑃  +  𝐹𝑃) 

Equation 14: The Precision Equation 

● F1 Score (F1): 

The harmonic mean of precision and recall, providing a balanced measure of an 

algorithm's performance. 

 

𝐹1  =  2 ⋅ (𝑃 ⋅ 𝑇𝑃𝑅)/(𝑃  +  𝑇𝑃𝑅) 

Equation 15: The F1 Score Equation 
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● AP (Average Precision) 

Average Precision summarizes the precision-recall curve and gives a single value that 

combines precision and recall across different thresholds. It is a more comprehensive 

measure than just precision or recall. 

 

● Processing Time:  

The time taken by the algorithm to process the dataset. This metric is crucial for 

applications requiring real-time anomaly detection. (24) 

 

2.3.12. Results 
 

The results of our analysis are based on the performance of the three selected 

algorithms Isolation Forest, Local Outlier Factor, and Subsequence Anomaly Detection 

across multiple metrics. Each algorithm was tested on our time series datasets and 

produced a txt file that were populated with logs like that:  

 

fileName:001_UCR_Anomaly_DISTORTED, AUC:0.38, Precision:0.03, Recall:0.08, F1:0.05,  

AP:0.01, tn_count:77712, fn_count:571, fp_count:1462, tp_count:50, elapsed_time:18.58 

seconds, datapoint_count:79795 

The results were evaluated using the performance metrics: AUC, Precision, Recall, F1 

Score, Average Precision, and Elapsed Time. For our case we will demonstrate the most 

simple ones as follows: 

 

 Was anomaly Was not anomaly Alorithm 

 Predicted anomaly 6013 
 

182355 
 

Isolation Forest 

Predicted anomaly 14922 
 

188260 
 

Local Outlier Factor 

Predicted anomaly 12423 
 

116462 
 

Subsequence 
Anomaly Detection 

Did not predict 
anomaly 

39345 
 

14198233 
 

Isolation Forest 

Did not predict 
anomaly 

30436 
 

14192328 
 

Local Outlier Factor 

Did not predict 
anomaly 

32935 
 

14264126 
 

Subsequence 
Anomaly Detection 

 

Table 1: The results of the algorithms upon the same  234 datasets 
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Table 1 presents the performance of three anomaly detection algorithms—Isolation 

Forest, Local Outlier Factor, and Subsequence Anomaly Detection—evaluated across 234 

datasets. The table shows the number of instances where each algorithm predicted an 

anomaly correctly (true positives), incorrectly predicted an anomaly when none existed 

(false positives), failed to predict an actual anomaly (false negatives), and correctly 

identified non-anomalies (true negatives). 

Isolation Forest predicted 6,013 actual anomalies but incorrectly identified 182,355 

normal instances as anomalies, yielding a very low precision of 0.032. This suggests that 

the model produces a high number of false positives, leading to inefficiencies in 

identifying relevant anomalies. Despite its low precision, the recall value of 0.13 shows 

that the algorithm has a reasonable ability to capture actual anomalies, although this still 

leaves many anomalies undetected (39,345 instances). The F1 score of 0.05 reinforces the 

observation that Isolation Forest is not particularly effective in this dataset. 

Local Outlier Factor demonstrates a noticeable improvement over Isolation Forest, 

with 14,922 true positives and a relatively smaller number of false positives (188,260). Its 

precision, calculated at 0.073, while still low, is more than double that of Isolation Forest. 

More importantly, the recall of 0.33 indicates that the algorithm captures a much higher 

proportion of actual anomalies. With a false negative count of 30,436, it misses fewer 

anomalies than Isolation Forest. The F1 score of 0.12 suggests a more balanced 

performance but still highlights that the algorithm struggles with precision. 

Subsequence Anomaly Detection shows the best balance between precision and 

recall, predicting 12,423 true anomalies while incorrectly flagging 116,462 normal 

instances. Its precision of 0.096 is the highest among the three algorithms, demonstrating 

a better ability to minimize false positives. The recall of 0.27, though lower than that of 

Local Outlier Factor, indicates that it still captures a substantial number of anomalies. The 

F1 score of 0.14, the highest among the three, suggests that Subsequence Anomaly 

Detection offers a more reliable trade-off between precision and recall in these datasets. 
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Figure 17: Precision Distribution 

The precision distribution across the three algorithms is further visualized in the 

boxplot, which offers additional insights into the consistency and reliability of the models’ 

performance across datasets. 

Isolation Forest shows a tight clustering of precision values near the lower end, with 

very few outliers reaching higher precision levels. This indicates that the algorithm 

consistently struggles with precision across different datasets, further confirming its 

tendency to generate a high rate of false positives. The interquartile range is very small, 

highlighting that the variability in precision is minimal, but unfortunately skewed towards 

poor performance. 

Local Outlier Factor presents a broader interquartile range in the boxplot, suggesting 

more variability in its precision across datasets. While the median precision remains 

relatively low, the wider spread shows that the algorithm performs better on some 

datasets compared to others. This variability points to a potential for tuning the model or 

selecting it for specific types of datasets where its performance could be optimized. The 

presence of numerous outliers, some with relatively high precision, indicates that while 

the overall performance is still suboptimal, there are instances where the model 

successfully minimizes false positives. 

Subsequence Anomaly Detection displays the widest interquartile range and the 

highest median precision, signaling that this algorithm consistently performs better than 

the others in terms of precision. The distribution also includes several outliers reaching 
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significantly higher precision, suggesting that in certain datasets, the algorithm is capable 

of very strong performance. The broader spread of the boxplot compared to the other 

algorithms, however, indicates that the precision can vary substantially between datasets, 

meaning it is not uniformly reliable. Nonetheless, it offers the most promising balance 

between minimizing false positives and correctly identifying anomalies. 

 

 

Figure 18: Elapsed Time Distribution 

Figure 18 illustrates the distribution of elapsed time (in log scale seconds) for the 

three algorithms. The log scale of the y-axis emphasizes the differences in execution time, 

even for small variations. 

Isolation Forest algorithm shows a relatively tight distribution of elapsed time, with 

most runs taking between 1 and 10 units of time (log scale). The median elapsed time is 

positioned around 1 unit, suggesting that the algorithm is the fastest of the three across 

the datasets. The absence of significant outliers implies consistent performance across 

datasets, with minimal variability in execution time. 

Local Outlier Factor algorithm demonstrates a broader distribution of execution 

times compared to Isolation Forest. The median execution time lies around 10 units, 

indicating that LOF tends to take significantly longer than Isolation Forest on average. 

However, the presence of several outliers above 100 units shows that LOF can sometimes 

be inefficient or perform poorly on certain datasets. The wider interquartile range (IQR) 
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indicates a higher variability in its performance, with times ranging from 1 unit to over 

100. 

Subsequence Anomaly Detection algorithm has the widest distribution of elapsed 

times, with a median close to 10 units, similar to LOF. The larger spread in the boxplot, 

particularly the longer upper whisker, suggests that this algorithm often takes longer to 

run on some datasets, with several runs extending up to 100 units or beyond. Like LOF, it 

has multiple outliers, indicating that its execution time is less predictable and more 

dependent on the dataset characteristics. 

 

The results provide a comprehensive comparison of the selected algorithms, 

highlighting their strengths and weaknesses across different metrics: 

Isolation Forest is quick and computationally efficient but struggles with precision, 

leading to lower overall performance metrics. It may be suitable for applications where 

speed is critical and some trade-off in accuracy is acceptable. 

Local Outlier Factor offers a balanced approach with moderate performance in both 

precision and recall. It shows variability across datasets but generally performs well, 

making it a versatile choice for various applications. 

Subsequence Anomaly Detection consistently performs the best across most metrics 

but at the cost of longer processing times. Its robust detection capabilities make it ideal 

for scenarios where accuracy is paramount and computational resources are sufficient. 

Based on the analysis, Subsequence Anomaly Detection emerged as the most 

effective algorithm for anomaly detection in my time series datasets. It provided the best 

balance of precision, recall, and overall performance metrics, despite its higher 

computational demands. Given enough computational power this is the preferred choice 

for deployment in my fleet monitoring system. The other algorithms also have their 

merits and could be considered depending on specific application requirements and 

constraints. 
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2.4. Applications 
 

The aforementioned Machine Learning techniques offer us a more concise way to 

extract hidden information from large datasets and can be implemented in various fields, 

for example: 

● Social Media Features 

Social media platforms use machine learning algorithms and approaches to create 

some attractive and excellent features. For instance, Facebook notices and records your 

activities, chats, likes, and comments, and the time you spend on specific kinds of 

posts. Machine learning learns from your own experience and makes friends and page 

suggestions for your profile 

● Product Recommendations 

Product recommendation is one of the most popular and known applications of 

machine learning. Product recommendation is one of the stark features of almost every e-

commerce website today, which is an advanced application of machine learning 

techniques. Using machine learning and AI, websites track your behavior based on your 

previous purchases, searching patterns, and cart history, and then make product 

recommendations. 

● Image Recognition 

Image recognition, which is an approach for cataloging and detecting a feature or an 

object in the digital image, is one of the most significant and notable machine learning 

and AI techniques. This technique is being adopted for further analysis, such as pattern 

recognition, face detection, and face recognition 

● Sentiment Analysis 

Sentiment analysis is one of the most necessary applications of machine learning. 

Sentiment analysis is a real-time machine learning application that determines the 

emotion or opinion of the speaker or the writer. For instance, if someone has written a 

review or email (or any form of a document), a sentiment analyzer will instantly find out 

the actual thought and tone of the text. This sentiment analysis application can be used to 

analyze a review based website, decision-making applications, etc. 

● Automating Employee Access Control 

Organizations are actively implementing machine learning algorithms to determine 

the level of access employees would need in various areas, depending on their job 

profiles. This is one of the coolest applications of machine learning. 

 

https://www.simplilearn.com/tutorials/machine-learning-tutorial/introduction-to-machine-learning
https://www.simplilearn.com/artificial-intelligence-ai-and-machine-learning-trends-article
https://www.simplilearn.com/pattern-recognition-and-ml-article
https://www.simplilearn.com/pattern-recognition-and-ml-article


 

Page | 41 
 

●   Marine Wildlife Preservation 

Machine learning algorithms are used to develop behavior models for endangered 

cetaceans and other marine species, helping scientists regulate and monitor their 

populations.  

● Regulating Healthcare Efficiency and Medical Services 

Significant healthcare sectors are actively looking at using machine learning 

algorithms to manage better. They predict the waiting times of patients in the emergency 

waiting rooms across various departments of hospitals. The models use vital factors that 

help define the algorithm, details of staff at various times of day, records of patients, and 

complete logs of department chats and the layout of emergency rooms. Machine learning 

algorithms also come to play when detecting a disease, therapy planning, and prediction 

of the disease situation. This is one of the most necessary machine learning applications. 

● Predict Potential Heart Failure 

An algorithm designed to scan a doctor’s free-form e-notes and identify patterns in a 

patient’s cardiovascular history is making waves in medicine. Instead of a physician 

digging through multiple health records to arrive at a sound diagnosis, redundancy is now 

reduced with computers making an analysis based on available information. 

● Banking Domain 

Banks are now using the latest advanced technology machine learning has to offer to 

help prevent fraud and protect accounts from hackers. The algorithms determine what 

factors to consider to create a filter to keep harm at bay. Various sites that are 

unauthentic will be automatically filtered out and restricted from initiating transactions. 

● Language Translation 

One of the most common machine learning applications is language translation. 

Machine learning plays a significant role in the translation of one language to another. 

The technology behind the translation tool is called ‘machine translation.’ It has enabled 

people to interact with others from all around the world; without it, life would not be as 

easy as it is now. It has provided confidence to travelers and business associates to safely 

venture into foreign lands with the conviction that language will no longer be a barrier. 
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Chapter 3 

3. The Web Application 
 

3.1. General overview 
 

Building a web application involves several key components, each playing a crucial 

role in ensuring the application runs smoothly and efficiently. These components include 

the frontend, backend, database, cloud deployment, and version control. Understanding 

how these parts work together is essential for creating a successful web application. 

● Frontend: The User Interface (UI) 

The frontend is like the face of a watch – it's what users interact with directly. It 

includes everything you see and click on in a web application, such as buttons, forms, and 

images. The main technologies used for the frontend are HTML, CSS, and JavaScript, along 

with modern frameworks like React, Angular, and Vue.js. 

 

User Experience (UX): The frontend aims to provide a smooth and easy-to-use 

experience. This means designing a clear layout, making sure the application loads 

quickly, and ensuring it responds to user actions in real-time. 

Responsive Design: With users accessing web applications on various devices, from 

phones to desktops, it's important that the application looks good and works well on all 

screen sizes. 

Performance Optimization: Techniques like lazy loading (loading content only when 

needed) and code splitting (dividing the code into smaller parts) help make the frontend 

faster and more efficient. 

● Backend: The Server-Side Logic 

The backend is like the internal mechanism of a watch – it powers the application 

behind the scenes. It processes data, handles business logic, and manages server-side 

operations. The backend ensures that data is processed correctly and sent to the frontend 

when needed. 
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Server-Side Logic: This includes processing user inputs, managing user authentication 

(login and security), and handling requests between the client (user's browser) and 

server. 

APIs (Application Programming Interfaces): APIs allow different parts of the 

application to communicate and share data. They make it easier to develop and manage 

the backend by breaking it into smaller, reusable pieces. 

Performance and Scalability: The backend must be able to handle many users at once 

and scale up as needed to maintain performance. 

● Database: The Data Storage 

The database is like the memory of a watch – it stores all the data that the 

application needs to function. Choosing the right database and organizing it effectively is 

crucial for the application's efficiency. 

Data Storage and Retrieval: Databases store user information, application data, and 

other important information, making it available when needed. 

Types of Databases: Depending on the application, different databases can be used, 

such as relational databases (e.g., PostgreSQL, MySQL) or NoSQL databases (e.g., 

MongoDB, Firebase). 

Real-Time Data: For applications needing instant data updates, databases with real-

time capabilities (e.g., Firebase, Supabase) are used to ensure data is always up-to-date. 

● Cloud Deployment: Hosting and Scaling 

Cloud deployment is like the watchmaker who assembles, maintains, and ensures the 

watch runs smoothly. It involves hosting the web application on cloud servers, providing 

the infrastructure needed to run, scale, and manage the application efficiently. 

Scalability and Flexibility: Cloud platforms like Vercel, AWS, and Google Cloud allow 

the application to handle varying loads and grow as needed. 

Continuous Deployment (CI/CD): With cloud deployment, automated systems can be 

set up to deploy updates and changes seamlessly. 

Cost Efficiency: Cloud services often offer cost-effective solutions with pay-as-you-go 

models, reducing the need for significant upfront investment in infrastructure. 

● Version Control: Managing Code Changes 

Version control is like the record-keeper for your watch assembly process – it tracks 

all changes made to the application's code over time. This is essential for collaboration, 

backup, and recovery. 
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Git: The most widely used version control system, Git allows developers to track 

changes, collaborate on code, and revert to previous versions if needed. 

Repositories: Platforms like GitHub, GitLab, and Bitbucket host code repositories, 

making it easy to share code, manage contributions from multiple developers, and 

maintain a history of changes. 

Branching and Merging: Developers can create branches to work on new features or 

fixes without affecting the main codebase. Once the changes are ready, they can be 

merged back into the main branch. 

● Integration of Components 

Just as the precise interaction of gears, springs, and other parts is necessary for a 

watch to keep accurate time, the integration of the frontend, backend, database, cloud 

deployment, and version control is essential for a web application to function smoothly. 

Each part must communicate effectively to ensure data flows seamlessly and the 

application remains responsive and reliable. 

Data Flow: Ensuring data moves smoothly between the frontend, backend, and 

database is crucial. APIs and data-fetching mechanisms play a key role in this process. 

Synchronization: Real-time synchronization between components ensures that all 

parts of the application are up-to-date, providing a consistent user experience. 

Monitoring and Maintenance: Continuous monitoring and maintenance of the cloud 

infrastructure and application components ensure optimal performance and quick issue 

resolution. 
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3.2. Advanced Architectural Models, different topics for 

consideration and Emerging Trends in Web Application 

Development 
 

3.2.1. Advanced Architectural Models 
 

● Cloud Service Models 

 

 

Figure 19: Levels of Architectural Models (25) 

Cloud service models have revolutionized how web applications are developed, 

deployed, and maintained. Understanding the differences between Software as a Service 

(SaaS), Infrastructure as a Service (IaaS), and Platform as a Service (PaaS) is crucial for 

selecting the right solution for specific application needs. Each model offers unique 

benefits and challenges, influencing the scalability, cost, and management of web 

applications. 

 

o Software as a Service (SaaS) 

SaaS provides software applications over the internet on a subscription basis. 

Users can access these applications via a web browser, without worrying about the 

underlying infrastructure. Examples of SaaS include Google Workspace, Microsoft 

365, and Salesforce. The primary advantages of SaaS are reduced time to benefit, 

lower costs, scalability, and accessibility from any location. However, SaaS also has 
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disadvantages such as limited control over the software, potential security concerns, 

and dependency on internet connectivity. 

 

o Infrastructure as a Service (IaaS) 

IaaS offers virtualized computing resources over the internet. It provides the 

basic building blocks for cloud IT and typically includes servers, storage, and 

networking. Examples of IaaS providers are Amazon Web Services (AWS), Microsoft 

Azure, and Google Cloud Platform. The main advantages of IaaS are high scalability, 

cost  efficiency, flexibility, and full control over the infrastructure. On the 

downside, IaaS requires in-depth technical knowledge to manage the infrastructure 

and poses potential security risks. 

 

o Platform as a Service (PaaS) 

PaaS provides a platform allowing customers to develop, run, and manage 

applications without dealing with the underlying infrastructure. Examples include 

Heroku, Google App Engine, and Microsoft Azure App Service. The advantages of 

PaaS are simplified development, reduced management burden, and support for 

multiple programming languages. However, PaaS users may experience limited 

control over the environment and potential vendor lock-in. 
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● Popular Architectures: Monolithic vs. Microservices 

 

  

           Figure 20: Distribution of the percentage of each algorithm to the total AUC (26) 

The architecture of a web application significantly impacts its development, 

deployment, and scalability. Monolithic and microservices architectures represent two 

contrasting approaches. Monolithic architecture is a traditional, single-unit approach, 

while microservices architecture breaks down the application into smaller, independent 

services. Understanding these architectures helps in choosing the right approach based 

on application requirements, team structure, and long-term maintenance considerations. 

o Monolithic Architecture 

Monolithic architecture is a traditional model of software development where all 

components of an application are bundled together into a single package. The 

advantages of this approach include simplicity in development and deployment, as 

well as easier debugging and testing. However, monolithic architecture also has 

disadvantages, such as limited scalability, difficulty in maintenance and updates, and 

the potential for a single point of failure. 

o Microservices Architecture 

Microservices architecture structures an application as a collection of loosely 

coupled services, each of which implements a specific business capability. The 

benefits of microservices include improved scalability, easier deployment and 

maintenance, and better fault isolation. However, this architecture also introduces 

increased complexity, a need for robust monitoring and management, and potential 

latency issues due to inter-service communication. 
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3.2.2. Topics for consideration 
 

● Security: Safeguarding the Application 

Security is a fundamental aspect of web application development, protecting both 

user data and the application itself from potential threats. Implementing robust security 

measures, such as data encryption, strong authentication, and regular security audits, is 

essential to prevent breaches and ensure user trust. Best practices in web application 

security include implementing SSL/TLS for data encryption, using strong authentication 

mechanisms, regularly updating dependencies, and performing security audits. 

 

● DevOps Practices: Enhancing Development and Operations 

 

Figure 21: : DevOps Steps (27) 

 

DevOps is a set of practices that combines software development (Dev) and IT 

operations (Ops) to shorten the software development lifecycle while delivering high-

quality software continuously. It emphasizes collaboration and communication between 

developers and operations teams, automation of processes, and continuous integration 

and continuous delivery (CI/CD). The goal of DevOps is to improve the speed, efficiency, 

and reliability of software deployment, ensuring that updates and new features can be 

released frequently and with minimal disruption. This approach enables organizations to 

respond quickly to market changes and customer needs, maintaining a competitive edge. 

o Plan: Develop a strategy, define objectives, create timelines, and allocate 

resources for the project. 

o Code: Write and review the source code using version control systems, 

collaborating with team members 
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o Build: Compile source code into executable formats using build automation 

tools, integrating contributions from different developers. 

o Test: Conduct automated and manual testing to identify bugs, ensuring code 

quality and security while validating requirements. 

o Release: Prepare software for deployment with final quality checks, deploying 

to production or staging environments. 

o Deploy: Roll out software to live environments using deployment automation 

tools, ensuring minimal downtime and rollback capabilities. 

o Operate: Maintain and manage the live software, monitoring performance, 

and ensuring smooth operation. 

o Monitor: Continuously observe system performance, logging, and analyzing 

data to identify and resolve issues proactively. 

 

3.2.3. The Future of Web Applications 
 

The landscape of web application development is continually evolving, driven by 

emerging trends and technologies. Progressive Web Apps (PWAs) and serverless 

computing are two significant innovations shaping the future of web applications. PWAs 

combine the best of web and mobile apps, offering features like offline access, push 

notifications, and fast loading times, which enhance user experience, cross-platform 

compatibility, and performance. Serverless computing allows developers to build and run 

applications without managing the underlying infrastructure, with examples including 

AWS Lambda, Azure Functions, and Google Cloud Functions. The advantages of serverless 

computing include reduced operational complexity, cost efficiency, and automatic scaling. 

Incorporating these emerging trends and technologies can significantly enhance the 

functionality and user experience of modern web applications. 
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3.3. My Cool Dashboard 
 

3.3.1. Front-end Back-end 
 

The Web Application which was created for the needs of this thesis, is based on the 

Next.js framework. This framework is an evolution of the React.js Library, which uses 

JavaScript as main language. The selection of this framework is personal, as we want to 

discover and leverage the advantages Next.js has to offer. Some of them are: 

● Server-Side Rendering (SSR):  

Enhances performance and SEO by generating pages on the server, ensuring faster 

load times and better indexing by search engines. 

● Static Site Generation (SSG):  

  Creates static HTML at build time, improving performance and scalability. 

● Hybrid Approach:  

Combines SSR and SSG, allowing pages to be statically generated or server-rendered 

as needed. 

● Automatic Code Splitting:  

Loads only the necessary code for each page, reducing load times. 

● Image optimization:  

Automatically optimizes images on-demand. This includes resizing, format 

conversion, and lazy loading. 

● Server Actions:  

Server Actions are asynchronous functions that are executed on the server, 

substituting on some degree the API calls 

● API Routes:  

Integrates backend functionality within the same project, simplifying development. 

● File-Based Routing:  

Easy to manage routes without additional configuration. 

● Developer Experience:  

Hot-reloading, TypeScript support, and extensive plugin ecosystem streamline 

development. 
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● Optimized for deployment on Vercel:  

Seamless deployment and hosting integration with Vercel. 

By using this framework, the Developer can work both on front and back end in the 

same time. This approach results in a more monolithic architecture compared to a 

microservices-based one.  

  

3.3.2. Database 
The next crucial component is the Database. The choice of database is personal and 

subjective. We opted for Supabase due to its versatile and user-friendly integration with 

my development environment, facilitated by the Supabase library. Some of the 

advantages are: 

● Versatility and Ease of Use:  

Supabase provides a straightforward API and real-time capabilities, making it a 

powerful choice for modern web applications. 

● Seamless Integration:  

The Supabase library integrates effortlessly with various development environments, 

reducing setup complexity and enhancing productivity. 

To further streamline database development, we utilize ORM (Object Relational 

Mapping) technology. ORM tools create a bridge between object-oriented programming 

and relational databases, making database interactions more seamless. One of the most 

widely used ORM tools is Prisma, which simplifies database management and enhances 

development efficiency. The main reasons to choose this technique are: 

● Simplified Database Interactions:  

ORMs allow developers to interact with the database using their preferred 

programming language's syntax, abstracting complex SQL queries. 

● Consistency and Maintainability:  

ORMs help maintain consistency in database operations and improve code 

maintainability by using a unified interface for database interactions. 

● Prisma:  

Prisma stands out as a popular ORM tool, offering robust features like type-safe 

database access, an intuitive query language, and seamless integration with various 

databases. 
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3.3.3. Cloud Deployment 
 

Deploying a web application is a critical step that ensures your app is accessible to 

users globally. Vercel is an exceptional platform for this purpose, especially for 

applications built with Next.js, because this Platform as a service (PaaS) ensures: 

● Seamless Integration with Next.js: 

Vercel is designed to work effortlessly with Next.js, offering built-in support for 

server-side rendering (SSR) and static site generation (SSG). 

Automatic optimizations for Next.js applications enhance performance and scalability 

without additional configuration. 

● Scalability and Performance: 

Vercel's global content delivery network (CDN) ensures fast load times by caching 

static assets at the edge, close to users. 

The platform automatically scales your application to handle increased traffic, 

maintaining performance during high-demand periods. 

● Continuous Deployment (CI/CD): 

Integration with GitHub, GitLab, and Bitbucket allows for continuous integration and 

deployment. Changes pushed to the repository are automatically deployed, ensuring your 

application is always up-to-date. 

Vercel’s preview URLs feature enables you to review changes in a live environment 

before merging them into the production branch. 

● Serverless Functions: 

Vercel supports serverless functions, allowing you to deploy backend logic without 

managing servers. This includes API routes and other server-side functionalities, enabling 

a full-stack development experience within a single platform. 

● Developer Experience: 

Vercel’s CLI and dashboard provide intuitive tools for managing deployments, 

environment variables, and project settings. 

Automatic HTTPS, custom domains, and advanced security features ensure your 

application is secure and accessible. 

● Optimizations and Analytics: 

Built-in performance analytics offer insights into your application's performance, 

helping identify and address potential issues. 
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Automatic image optimization and lazy loading improve load times and user 

experience. 

 

3.3.4. Version Control: GIT as Remote Repository 
 

Version control is a fundamental aspect of modern software development, and Git is 

one of the most popular systems for this purpose. Utilizing Git as a remote repository 

offers several advantages, particularly when integrated with platforms like GitHub, GitLab, 

or Bitbucket. The Advantages of Git as a Remote Repository are: 

 

● Distributed Version Control: 

Git allows every developer to have a complete copy of the project history on their 

local machine. This distributed nature means you can work offline and commit changes 

locally, syncing with the remote repository when you're back online. 

● Collaboration: 

Git supports collaborative workflows, enabling multiple developers to work on the 

same project simultaneously. Features like branching, merging, and pull requests 

streamline collaboration and code review processes. 

● Branching and Merging: 

Git's branching model allows developers to create isolated environments for new 

features, bug fixes, or experiments. Branches can be merged back into the main codebase 

once the work is completed and reviewed, ensuring that the main branch remains stable. 

● History and Version Tracking: 

Git maintains a detailed history of all changes made to the codebase. Each commit 

records who made the change, when it was made, and what was changed, providing a 

comprehensive audit trail. 

● Integration with CI/CD Pipelines: 

Git integrates seamlessly with Continuous Integration and Continuous Deployment 

(CI/CD) pipelines. Changes pushed to the repository can trigger automated builds, tests, 

and deployments, ensuring that code is continuously tested and delivered. 

● Issue Tracking and Project Management: 

Platforms like GitHub, GitLab, and Bitbucket offer integrated issue tracking, project 

boards, and other management tools. This integration helps teams track progress, 

manage tasks, and address issues within the same ecosystem. 
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● Security and Permissions: 

Git repositories hosted on platforms like GitHub provide robust security features, 

including branch protection, code review requirements, and fine-grained access controls. 

These features help safeguard the codebase and ensure that only authorized changes are 

made. 

The main actions we can use to achieve version control are: 

 

● Clone: Copy a remote repository to your local machine. 

● Commit: Save changes to your local repository with a message. 

● Push: Upload local commits to a remote repository. 

● Pull: Fetch and merge changes from a remote repository to your local branch. 

● Branch: Create a new branch to work on a feature. 

● Merge: Combine changes from one branch into another. 

● Status: Check the current state of your repository. 

● Add: Stage changes for the next commit. 

● Log: View the commit history. 

● Revert: Undo a specific commit. 

 

3.3.5. Messaging System 
 

Until now we have presented the main components that comprise the Web 

Application. The system, except from the central hub that will store and show the 

anomaly events, has to be able to communicate with the sensors that will be planted in 

remote places. This could be implemented via APIs and http requests, but a better 

method exists that is more suitable for our use case 

MQTT (Message Queuing Telemetry Transport) is a lightweight messaging protocol 

designed for low-bandwidth, high-latency, or unreliable networks. It operates on a 

publish/subscribe model, where devices (clients) can publish messages to specific topics 

and subscribe to topics to receive messages. This decouples the message producers from 

the consumers, enhancing flexibility and scalability. 
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Figure 22: Messaging system overview (28) 

Choosing MQTT over traditional APIs can be advantageous in certain scenarios, 

particularly in IoT and real-time communication applications. Here are some reasons why 

you might choose MQTT: 

● Low Bandwidth Usage: 

MQTT is lightweight and minimizes network bandwidth usage, making it ideal for 

environments with limited resources. 

● Real-Time Communication: 

It supports real-time communication with low latency, ensuring quick delivery of 

messages. 

● Scalability: 

Efficiently handles many devices and high-frequency messaging, scaling better in IoT 

environments. 

● Reliability: 

Offers various levels of Quality of Service (QoS), ensuring message delivery reliability. 

● Efficient Battery Use: 

Suitable for battery-powered devices due to its low power consumption. 

● Publish/Subscribe Model: 

Decouples senders and receivers, simplifying the architecture for complex messaging 

patterns. 
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In my case, the temperature sensor of the image will be my Anomaly Report Fleet 

(raspberries), the MQTT Broker of my choice will have to be configured, and the messages 

receiver will be my Web Application. 

 

Figure 23: Messaging system integration with my Web App 
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3.3.6. How the App works 
 

The main point of my thesis is to build a Web App that will display the anomalous 

data found by my sensor fleet, while being as simple as possible to use. The App is hosted 

on this Link and its purpose is only to give a visual representation of all the anomalies that 

have been found and reported to the backend, and sequentially to the database. Firstly, 

we are greeted from the signup/login page as figure 24 shows: 

 

 

Figure 24: Sign In page 

 

 

 

 

 

 

https://thesis-gray.vercel.app/
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After a successful signin (or signup if this is the first time using the App), we will be 

redirected to the Dashboard as figure 24 shows: 

 

 

Figure 25: Web App dashboard 

In the Web App Dashboard, we see that we have 1 report from agent 1 which is the 

name of one edge device from the fleet. In the top diagram we see 2 areas of the batch 

that were characterized as anomalies, and on the second diagram we see the 



 

Page | 59 
 

corresponding anomaly scores. The orange horizontal line is the threshold that separates 

the normal and anomalous values. 

 

Chapter 4 
 

4. Deployment at Scale 
 

4.1. What is Deployment at Scale 
 

Deployment at scale means putting software applications or services into a large and 

flexible infrastructure that can handle heavy workloads and support rapid growth. Unlike 

traditional methods suitable for smaller projects, deploying at scale requires careful 

management of resources. This involves using containerization for consistent application 

delivery, load balancing to distribute traffic and avoid bottlenecks, and auto-scaling to 

adjust resources based on demand. A microservices architecture can improve both 

scalability and maintainability, while effective monitoring and logging help identify 

performance issues. Continuous integration and deployment (CI/CD) pipelines streamline 

updates and version control. While many organizations choose Kubernetes for resource 

management, this thesis suggests using Portainer to effectively orchestrate resources and 

achieve the necessary scalability for complex systems. By scale we refer to the scalability 

of number of devices we use, rather than the resource percentage of each device itself 

In the landscape of modern software development, where agility, resilience, and 

scalability are paramount, deployment at scale holds immense significance. Several 

factors contribute to its importance: 

● User Expectations: In an era where users expect seamless experiences and 

uninterrupted service availability, deploying at scale ensures that applications can 

handle increased user loads without compromising performance or reliability. 

● Business Agility: Rapid deployment and scalability are critical for businesses to stay 

competitive. With deployment at scale, organizations can quickly respond to 

changing market demands, roll out new features, and adapt to evolving customer 

needs without lengthy downtimes or disruptions. 

● Cost Efficiency: Efficient resource utilization is essential for optimizing costs, 

especially in cloud environments where resources are provisioned and billed based 

on usage. Deployment at scale allows for dynamic resource allocation, ensuring that 

resources are utilized optimally to minimize expenses. 
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● Resilience and Fault Tolerance: Large-scale deployments require robust architectures 

capable of withstanding failures and maintaining service continuity. By distributing 

workloads across redundant infrastructure and implementing failover mechanisms, 

deployment at scale enhances resilience and ensures high availability. 

● Global Reach: With the rise of global markets and distributed teams, applications 

need to be deployed across geographically dispersed regions to provide low-latency 

access to users worldwide. Deployment at scale facilitates the deployment of 

distributed architectures that can serve users from diverse geographical locations. 

● Support for Continuous Delivery: In the realm of continuous integration and 

continuous delivery (CI/CD), deploying at scale enables organizations to automate 

the deployment pipeline, from development to production, allowing for rapid and 

frequent releases while maintaining stability and reliability. 

 

4.2. Using Deployment at Scale for my Project 
 

Deploying machine learning software for anomaly detection on edge devices at scale 

requires a well-structured deployment strategy tailored to the specific challenges and 

constraints of edge computing environments. Implementing scalable deployment in my 

project allows for efficient management of a large fleet of edge devices while ensuring 

optimal performance, reliability, and scalability. By utilizing infrastructure orchestration 

tools and continuous integration and deployment pipelines, we can automate the 

deployment process, streamline updates, and maintain consistency across the distributed 

edge infrastructure. This approach facilitates rapid deployment of ML models to edge 

devices and enables seamless scaling to accommodate fluctuations in demand and the 

addition of new devices. Furthermore, incorporating security measures and monitoring 

capabilities into my deployment strategy ensures the integrity, privacy, and operational 

efficiency of the anomaly detection system deployed on edge devices. By effectively 

applying scalable deployment principles, my project can fully leverage the potential of 

edge computing for real-time anomaly detection and reporting, thereby providing 

organizations with actionable insights and enhanced operational efficiency. 

For my project, we considered several alternatives that provide the capability to 

manage a fleet with large numbers of edge devices: 

● AWS IoT Greengrass: AWS IoT Greengrass extends the capabilities of AWS to the 

edge, enabling devices to perform computing tasks locally. This allows devices to 

operate even without constant internet connectivity, which is crucial for IoT devices. 

However, the initial setup can be complex, and once implemented, the system is 

heavily integrated into the AWS ecosystem. 
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● Portainer: Portainer offers a user-friendly interface for managing Docker containers 

and clusters. It simplifies container management but may lack some advanced 

features required for large-scale deployments. Portainer is most suitable for projects 

that primarily use containers and require a straightforward management solution. 

● Balena: Balena provides comprehensive tools for deploying and managing IoT 

applications across various hardware types. It is highly versatile and feature-rich but 

can be costly for large-scale deployments and ties users into the Balena ecosystem. 

● Azure IoT Edge: Azure IoT Edge integrates seamlessly with Azure services, offering 

container-based deployment for edge applications. It is ideal for users already 

invested in the Azure ecosystem but may require additional effort to learn and 

implement. 

● AWS Fargate: AWS Fargate manages container infrastructure, allowing developers to 

focus on application deployment without worrying about the underlying 

infrastructure. It offers automatic scaling, but users may experience higher costs and 

reduced control over the environment. 

● Ansible: Ansible is an agentless tool that provides extensive capabilities for managing 

edge devices across diverse platforms. While powerful, it may require significant time 

to master, particularly for complex deployments. Ansible excels in deployment tasks 

but may need additional tools for monitoring and reporting. 

● Mender: Mender specializes in over-the-air (OTA) updates, ensuring IoT devices 

remain up-to-date and secure. While effective for updates, it may need to be 

supplemented with other tools for comprehensive device management. Some 

advanced features may incur additional costs. 

Each of these tools has distinct strengths and weaknesses, and the choice depends on 

specific needs and preferences. Considering the simplicity, community support, friendly 

UI, financial and time constraints of my project, we decided to use Portainer. This 

framework is suitable for the limited deployment scale of my thesis and offers a shallow 

learning curve, making it time-efficient and practical, by covering my requirements. 

 

4.3. Portainer overview 
 

Portainer is a user-friendly management platform designed to simplify the 

administration of Docker containers and clusters. It provides a graphical interface that 

abstracts the complexities of Docker's command-line interface, making container 

management accessible to users of all skill levels. With Portainer, users can efficiently 

deploy, monitor, and manage containerized applications across various environment 

platforms. Its intuitive interface allows users to perform tasks such as container creation, 
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image management, and resource monitoring with ease. Portainer's versatility and ease 

of use make it a valuable tool for developers, system administrators, and DevOps teams 

seeking to streamline their container orchestration workflows. It is important to say that 

for our case, the orchestration refers to the number of the devices we will use, and not to 

the resource allocation management of each device. 

At a first glance this framework seems complicated, but in the following sections we 

explain more thoroughly with images. First, the overviews will be simple, but as we 

progress, we will add even more details. The simplest way to describe how it works is 

shown in the following image: 

 

 

Figure 26: Portainer general idea 

According to figure 26: 

● Portainer Server Instance: This container will be the most crucial part of the system. 

Its responsibility will be to orchestrate the software deployment and update the 

remote edge devices, according to the Administrator’s commands.  

 

● CI/CD Administrator: The Administrator will be located remotely in relation to the 

server 

 

● Edge Device: This is the device deployed in the field that will run the software as 

independent as possible. The will be no direct communication between the edge 

devices and the administrator 
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4.4. Portainer at my service 
 

Now that you hopefully understood how this framework works, let’s see how to 

harness its potential for the distributed part of my system. As mentioned in Chapter 3, the 

Portainer Server and Portainer Edge devices will be Raspberry pies (aarch64 architecture). 

These devices will not be reachable from WAN, so we must find a way to connect to the 

Server remotely. Thankfully, Portainer has provided us (29) a secure and efficient way to 

deploy for my use case. The prerequisite for this is to buy a domain name with which we 

will be able to reach the remote Portainer Server. This domain will also make it possible 

for the Portainer Edge fleet to communicate with the Server and update their code from 

an online repository as instructed by the administrator. Figure 26 gives a visual 

representation of the connecting nodes. 

 

Figure 27: My CI/CD pipeline 

1. This is where we use the prerequisite domain. At first, we create a tunnel by running 

the docker run command we get from Cloudflare, in the Portainer Server Instance. 

The --Token argument we pass is enough for the container to create and establish 

the tunnel connection. 
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Figure 28: Tunnel configuration to reach effectively the Portainer Server Instance 

 

In Figure 29 we can see the 2 configured tunnels we have created (Their status will be 

DOWN, unless we run them on the Portainer Server Instance) 

 

 
Figure 29: The 2 active tunnels needed 

 

2. After a brief configuration on the Cloudflare service, when we visit my domain, a 

secure tunnel gets created to the running instance of the Portainer Server, giving me 

real time access to the Portainer UI, as if the server was locally deployed. 

3. In this step we let edge devices (agents) join my fleet.  Figure 30 in GIF format shows 

the UI of the Portainer Server. In the first frames you see we have access to the local 

(server) environment, as well as the environment of an Edge Device we have already 
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set up. To expand my fleet, we start by configuring the token and the container in 

general that will run in the remote Edge Device. The token has the addresses (the 

tunnel addresses from step 1) that are essential for the device to join our fleet. After 

a successful run of this container on an Edge Device, we will find this device in the 

waiting room (also shown in gif in the side panel), ready to be trusted. Once trusted, 

we will be able to access its environment through the server UI (by clicking on 

Edge_Agent_1) 

 
Figure 30: Enlisting an Agent in my Fleet 

 

The way this works is that every x seconds the edge devices poll the server the same 

way the administrator does (Portainer API server URL), and they ask if there is any 

update. If there is, the server responds with the changes that have to be done. In 

special cases and emergencies, another secure tunnel gets created from the edge to 

the server (Portainer tunnel server address), giving the administrator real time 

access. 

 

 

4. If after an update from the server there is need to pull a new image from the online 

image repository (dockerhub), this will be done in stage 4 

5. In this connection, the administrator will push the image with the software that 

needs to run on edge (my ML anomaly detection scripts), on the online repository, 

making it available for the edge devices to find when needed. 
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Chapter 5 
 

5. Summary 
 

Objectives Restated: This thesis aimed to present and compare various anomaly 

detection methods and algorithms, analyze the importance of the metrics used, and 

implement the most suitable one for real-time and online fleet in the field. 

Summary of Methodology: We selected three prominent anomaly detection 

algorithms: Isolation Forest, Local Outlier Factor (LOF), and Subsequence Anomaly 

Detection (SAND). We utilized multiple time series datasets, which were preprocessed to 

ensure clean, normalized, and segmented data. Each algorithm was tested using these 

datasets, and their performance was evaluated based on key metrics such as precision, 

recall, F1 score, and processing time. 

Key Findings: The comparative analysis revealed that the Subsequence Anomaly 

Detection algorithm consistently outperformed the other algorithms across most metrics, 

demonstrating high accuracy and robustness. However, it was also noted that SAND had 

higher computational demands. Isolation Forest was the fastest, making it suitable for 

real-time applications where speed is critical. LOF offered a balanced performance, 

suitable for a variety of applications. 

Challenges and Limitations: During the research, we faced challenges such as 

difficulties with the MQTT protocol. The webhost we used (vercel) may use a firewall that 

blocks this messaging protocol so we switched to REST API communication. Another 

challenge we faced was the cross compilation of the Machine Learning algorithms so they 

can run on the Raspberry edge devices (aarch64) 

Future Work: Future work should explore more ways to integrate automation and 

monitoring techniques. Also, we should enhance the efficiency of edge computing 

deployments, and develop more robust security measures for data processing. Cross-

domain applications and adaptation of these techniques to other fields offer exciting 

opportunities for further research. 

Conclusion: This thesis contributes to the field of anomaly detection by providing a 

comprehensive comparison of three significant algorithms, highlighting their strengths 

and limitations, and demonstrating their applications in real-world scenarios. The findings 

underscore the importance of selecting appropriate methods for specific use cases and 

pave the way for future advancements in this area. 
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