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IHeptinyn

Iepinyn

21NV Tapovco SITA®UOTIKY EPYACTI0 LEAETAE TOV GYESIOGUO KAVOVOY YNPOQOPIag Y10 TV EKAOYT
EMTPOTNG VIO UETPIKEG TPOTIUNGELS, VIOAOYILOVTOG TN UETPIKN TAPAUOPPEOOT] AVTMV ATV TO VITO-
Keipevo TpOPANH Opad0TOINGNG IKOVOTTOLEL TV WO1OTNTA TNG 0TAOEPOTHTOS O10TAPAYHG.

Bempolpe £va GHVOLO 1 YNEOPOPOV KoL EVO, GUVOLO 11 VTOYNPI®V, 01 070101 Eivart TomoBeTnévol
G€ KAMOLOV UETPIKO XDPOo. XTdyog Hag eivar 1 ekhoyn H0G EMTPOTTNG K LEADY TTOV EANYIOTOTOLEL
TO KOIVWVIKO KOOTOG, ONAAON TO AOPOIGLO TOV OTOGTACEDY TOV YNEOPOp®Y amd TO TANGCIEGTEPO
puérog g emitponng. 2616060, vTobitovpe OTL £xovpe TpdsPact HOVO GE KOTATAEELS TPOTIUNCEWDY
TOV YNQoPoOpmV Kal Oyl 6TIS AKPPEIG ATOCTACELC.

H uperpixn mopoudppwon evoc kavovo yneoeopiag Hetpd to Adyo Tov KOGTOVG TNG AVGNG TOoL
EMAEYETOL OO TOV KOVOVA, GTN YEPOTEPT| TEPIMTWOOT), TPOG TO EAIYIOTO OLVOTO KOIWVMOVIKO KOGTOC.
[Hopovoidlovpe yvootd amoteAéopato amd ) PifAoypapio Tov TOPEYOVY AVM Kol KATM GPAYLLOTH
YloL T LETPIKT] TOPOUOPPMON KOl TEPTYPAPOVUE KAVOVEG TOV TETLYAIVOLV GTAdEPT] LETPIKT TP~
LOPPMOT| LLE TEPLOPIGUEVO OPLOUO EPOTNUATOV OTOGTAGEWDV.

311 cuVEYELD, PEAETOVUE TTMG OOUIKEG 1O1OTNTES TTOL TPOKOTTOVY O TN 6TAdEPITNTO JloTAPa-
NS wropovv va a&lomomnBobv 6tov 6yedlaGHO TTo amodoTik®y adyopifumv. Ectidlovpe oty nepi-
oo 0mov k > 3 kot to kdoTog KAbe Yyneoeopov opiletal g n omdoTAC TOV AMd TO TANGLE-
o1epo HEAOC TG emitponng. [Iponyodueveg epyacieg Exovv deilel OTL 1 HETPIKN TOPAUOPPOOT Elval
YEVIKA U1 @payrévn o€ avutd 10 TAAIo10, dlYMC EPOTAIATA Y10 TIC ATOCTUCELS, KAl OTL AIOITOVVTOL
O(poly(logn, k)) epotiuata yio akpiPeic anootdoes dote va emtevydei otabepn Topandopeon.
Ot alydp1Buot mov TaPoLGLAlovE ETITVYYAVOLY GTADEPT LETPIKT] TOPALOPPDCT] YPTCLLOTOLDVTOGC
uohig O(2F) epotipata amdotacng, Miady apldud aveldpTo amd Tov apldud TOV YNeoeopmY.
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Abstract

In this thesis, we study the design of voting rules for committee selection under metric preferences,
and we analyze their metric distortion when the underlying clustering problem satisfies the property
of perturbation stability.

We consider a set of n voters and a set of m candidates, both embedded in some metric space. Our
goal is to elect a committee of £ members that minimizes the social cost, defined as the sum of the
distances of all voters to their closest committee member. However, we assume that we only have
access to the voters’ preference rankings and not to the exact distances.

The metric distortion of a voting rule measures, in the worst case, the ratio between the cost of
the committee selected by the rule and the minimum possible social cost. We present known results
from the literature that provide upper and lower bounds on metric distortion, and we describe rules
that achieve constant metric distortion using a limited number of distance queries.

Subsequently, we study how structural properties arising from perturbation stability can be ex-
ploited in the design of more efficient algorithms. We focus on the case where k£ > 3 and each voter’s
cost is defined as their distance to the nearest committee member. Previous work has shown that
metric distortion is generally unbounded in this setting without access to distance queries, and that
O(poly(logn, k)) distance queries are required to guarantee constant distortion. The algorithms we
present achieve constant metric distortion using only O(2¥) distance queries, i.e., a number indepen-
dent of the number of voters.

Key words

Computational Social Choice, Multi-winner Election, Committee Election, Voting Rules, Metric Dis-
tortion, Perturbation Stability.
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CHAPTER 1

Exteviic EAnvikn Hepiinyn

H 6ewpio T KoOvoviKNG EMAOYNG LEAETA TAG Ol ATOMUKEG TPOTIUNGELG LTOPOVY VO GUYKEVTP®OOUV
o€ pia cvAloyikn omdeaon [28]. Av kot dev omoteAel To Lovadikd mAaicto, Eva dtaitepa d100ed0UEVO
HOVTEAO YlOL OOTH TNV OVAAVOT gival ol EKAOYEG, OOV Ol GUULETEYOVTEG, YVMGTOL O WHPOPOopol,
eKQPALovV TPOTIUNAGEIS TAVD GE £VO, COVOAO EVOALUKTIK®V, OV OTOKAAOVVTOL vowHpiol. "Evog
Kavovog yneopopias MUPAveL oG {6000 TI TPOTIUNGELS TOV YNOOPOP®V KOl ETAEYEL EVOV DTTOYNPLO
(M e k-peAn emrponn)) g viknt.

2V 100vVIKN TEPImT®mON 6oL KAOE YNPopdpog avabétel o€ KAOE VITOYNPLO Lo oplOUNTIKT (Kapdtvaiio)
APNOOTITA, EVOG PUGIKOS OTOYOG £ival Vo, ETIAEYEL 0 VTOYNPLOG (1] 1) ENLTPOTT) TOV UEYICTOTOLEL TN
KOWwVIKY eonuepio—OomAadn To ABpoioua TV XPnoOTHTOV OADV TOV YNEoeopwv. Agdopévng
TAPOVE TPOGPaCNC OTIC TIHEG VTEG, 1 EXIAVGT TOV TPOPANUATOG VAL VITOAOYIGTIKA TETPLUUEVT):
apkel va vToAoyicovpe To cuVOAKS Gfpolcpa Yo kKibe vToyNELo (N emttpomny) Kot vo emtiéEovpe
ovtév (] AVTAV) PE TN HEYIOTN TIUN.

Q610060, OTIC TEPIGGOTEPES PEUMOTIKES EQUPHOYES, ) AKPPG ATOTOTMOGT UPLOUNTIKAOV ¥PTCGILOTHTOV
glvar avEQIKTN AOY® YVOOTIKOV KO YPOVIKAOV TEPLOPICUAV. (UG ATOTEAEGLO, Ol TEPICCOTEPOL UNYOVIGLLOL
ymoooopiag Bacifovtor oe diataxtirkés 16600V, OTOV 01 YNEOPOPOL TOPEYOLY LOVO KATOTAEEIS TV
VIOYNOLOV, avTi Yio pnTéG oplOuUnTIKEG 0EI0AOYNGELS. AT 1) ATOAELD TANPOQOPiag GuveERAyETaL OTL
KAVEVOG KOVOVOG 08V LTOPEL, YEVIKA, Va, eyyunOel Tnv emtloyn Tov vwoyneiov (1 TG EXLTPOMNC) TOV
peylotomotet TNV kowvwviky evnuepia. H mpoxinon avt mapovoidlel avaroyieg pe mpofAnota omd
™ Bewpio TV Tpooeyyiotikdy alyopiBuwv [[14] kou tov online alyopiBuwyv [23], 6mov 0 6TOY0C Elvar
N Myn amoice®V Le TEPLOPIGUEVN ) ATEAN TTANPOPOpia.

I'o v T0c0TIKOTTOINGT TNG ATMAELNG ATAd00NG AOY® TNG SUTAKTIKNG TANpOoQopiag, ot Procac-
cia kot Rosenschein [69] swonyayov v évvola g Tapaudppwons. H mapapdppoon evog kavova
ymoeopopiog opiletar mg 0 PEYIOTOG AOYOG, 0TI YEPOTEPT TEPITTOOT, TNG KOWVOVIKNG ELNLUEPING TOV
Béltiotov vroyneiov (1 €mMTPOTN) TPOG TNV EVTUEPID TOV LIOYNPIOV (1] EXTPOTNG) TOL EMAEYEL
o kovovag. H petpucy avtr éxet avadeydei og Oepeliddeg epyoireio yio TNV avdAvoT SLOTOKTIKMV
UNYOVIGH®V, KOODG EMTPENEL TN GUYKPLOT] KOVOVOV MG TPOG TNV KavoTnTd Toug va mpoceyyilovv
T0 BEATIOTO AMOTEAEGLO, Kot EXEL 0ONYNOEL GTOV OXESAGLO VEDV KOVOVAOV LLE GTOYO TN UEIOT TNG
mapopopeoong. Iap’ 6lo avtd, wyvpd anoteAéopata advvapiog delyvouy OTL 1 TAPAUOPPOOT)
umopet vo, ivot onUaVTIKE VYNAY, KO KOl Yio TUYO0TomUEVOVS Kavoveg [26, BO].

I'o vo amoK TGOV LE To 0LGLUCTIKEG EYYVUNGELS, ot Anshelevich et al. [8] mpdtevay éva o dopnpévo
LOVTELO, GTO OTLOI0 TOGO 01 YNPOPOPOL AGO KOl 0L VITOYH(PLOL TOTOHBETOVVTUL OE EVOV LETPIKO YMDPO. XE
oVTO TO TAIG10, 1) ATOCTUCT) LETOED EVOC YNPOPAPOD KOt EVOG LITOYT POV aVATOPIOTA TO KOGTOC TOL
VEIGTATOL O YNPOPOPOC OV EKAEYEL O GLYKEKPILEVOG VITOYNPLOG, Kot VTOHETOVUE OTL OL YNPOPOPOL
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TPOTILOVV DTTOYNPIOVG OV v 10 KOVTA TOVS. To HoVTELD aVTO Elval 131TEPO EVGTOYO GE EPUPHOYES
OGS 01 TOMTIKEG EKAOYEG, OOV Ol TPOTIUNGELS OLOUOPPDVOVTOL BAGEL 10c0A0yiKNS amdoToonc—
OnAad1| Tov Babpov 6Tov 0moio o1 ATOYELS TOL VTTOYNPIOL TAVTILOVTOL [IE TIG TEMOBNGELS TOV YNPOPOHPOV.
Y716 avtd to mpicpa, 1 KOWOVIKY EUNUEPIN avVTIKOOIGTATOL OO TO KOIVWVIKO KOGTOS, TOL opileTal
®G TO AOPOIGHO TOV ATOCTACEDYV OAWV TOV YNPOPOP®V OTd TOV EKAEYUEVO VITOYN QL0 (1] ETLTPOTN),
Kol 0 0TOYOG YIVETOL 1] EAAYLGTOTOINGT| TOV.

Av Kol TO HETPIKO HOVTEAO 00MYEL € QVOTNPOTEPH AV® Kol KAT® QPAYLOTO TAPAUOPPMONSG G
OY£0T LLE TO YEVIKO SLOTAKTIKO TANIG10, TO eumdS0 Topapévouv. Eival yvmotd 0Tt kavEVag VIETEPUIVIOTIKOG
STAKTIKOG UNYOVIGUOG deV UTOpEl VoL EMTOYEL TAPAUOPOWOT| LIKPOTEPT] amd 3 0TV EKAOYY| EVOG
viknt [8], evod Yo k > 3 n mapapdpemon propei va gival anepiopiotn [33]], akoun kot o€ HETPIKA
nepifairiovta. To Topamdved KoTadEKVOouV £va Babv YAoUo aVAULESH GE AVTO TOV EVOL EPIKTO HE
HUOVOo STOKTIKY TANPOoPOpia Kol 6 avtd Tov popel va emitevydet pe kapdivdiia dedopéva.

INo v urépPoon avTdv TV TEPLOPIGLOV, EXELTPOTADEL N EVIGYLON TOV LOVTEAOV LIE TEPIOPIOUEVH
TPOGPaon o€ OTOOTATELS, VIO T LOPPT] CTOXEVUEVOV EpwTHUaTMY omootachs. H 1déa eivar va dtatnpnOel
1N ATAOTNTO TOV SOTAKTIKOV KOVOVOVY, OAAN VO ETITPATEL 1] GTPOTNYIKN XPNOT EVOG UIKPOV aptOpov
EPOTNUATOV, OOTE Vo feATINOET onuavTiKd 1 akpifela Tov amoteléopatos. O cuvdVAGIOC AVTOD TOV
TEPLOPIGUEVOD KAPIIVAALOL HOVTEAOL UE HETPIKEG TPOTIUNGES GLYKPOTEL TO PUCIKO TAMIGIO QLTS
™G SMAOUATIKNG EpYACiNG, EVTOS TOV 0010V LLEAETOVUE TMG 1| TANPOPOPia Kot 1) SO HTOPovV Vo
a&lomon0ovv amd Kool Y10 TOV GYESUGUO UNYOVICU®MY LE ATOOEOELYLUEVO YOUNAT TOPAUOPPOCT).

A&iler va onuelwbel 0Tt T0 HETPIKO AVTO TAAIGLO VTOONADVEL L0 PUGIKT YEDOUETPLKT OOUN TOL
gvBvypappilerar pe £vo vokeipevo mpofAnua opadoroinons: oLYNPEOPOHPOLTEIVOLY VO GUYKEVTPHOVOVTIL
YOP® A6 TOLES VITOYNPIOVE TTOL TPOTLLOVV, KOl O GTOYOG TG EAUYLIOTOTOINONG TOV KOWVMVIKOD KOGTOVG
OVTIOTOLYEL OTNV EMAOYT AVIUTPOCOTEVTIKMOV KEVIP®V (VITOYNPImV) Y10 0V TEG TIG OUAdEG. YO vtV
TNV OTTIKN, 1 EMAOYY VITOYMioL (1] EMLTPOTNG) Umopel va OempnBel og éva TpoPANLa opadomoinong
LLE TEPIOPIOUEVH] TANPOPOPNON, avAAoYO LE TpoPAnuate k-median Kot k-center.

Xg autd 10 TAaicto, dedopévou Ot Ta TpoPAnpata opadonoinong avikovy otn kKhdon N P, givat
€0A0Y0 va e£eTdoovE TOPadOYES TOL EKPPALOVY PEOAMGTIKEG SOMIKES IOLOTITEG TOV TPOTIUNGEWDY, OL
omoigg d1evkOAVVOLY GtV emilven avtdv. Mia tétolo Tapadoyn eivarn arabepotnta daropoyns [21,
2(], n omoia vTOdNADVEL OTL M| BEATIOTI ADOT TOPAEVEL QUETAPANTN VIO LUKPES TOPALOPPDGELS OTIG
OTOGTAGEIC. XTO TEPPAALOV TNG KOWMVIKNG ETAOYNG, OVTO AVIOVOKAG TNV 10£0 OTL Ol EKAOYIKEC
Baoeic v vroymeioy eival cae®mg SIOPIGUEVEG Kot avOEKTIKEG e BOpLPO 1 LuKpég peTaforég
avTIANYNMG. OLyMEeoedpoL TOPAUEVOLY KOVTIH GTOVE TPOTIUMIEVOVE DITOYNPIOVE TOVE AKOMT Kot VITO
UIKPEG LETABOAEC, YEYOVOG TTOL EMLTPENEL TNV OVOATTUEN TTLO GTAOEPDOV Kol OTOSOTIKMV OAYOpiOL@V.

O o16)0¢ VTG TG dmAopatikig gival vo eEepeuvioel TG Tétoleg VTobécels otabepodTnTOg
pmopovv va a£1omomBovv yio TNV KATUOKELT KOVOVOV LE LIKPT| TOPALOPOMOT) Kol EAGYICTEG AMOITCELS
TANPoPopiag, 1Bimg 6TO TOA-VIKNTNPL0 TAAIGIO OTTOV Ol KAOGIKEG TPOGEYYIGELS OTOTVYYAVOLV.

1.1 Kavoveg Ynoogopiog ko lapopopemon

Ta KhaoKd povtéda otV Bempio KOWVOVIKNG ETA0YNG ovVamapIoToHV TNV 16000 KABE YNEOPOPOL MG
pio avotnpn KatdTaén TAVE 6TO GLVOAO TMV VIOYNEI®V, KAl 0 POLOG TOV KAvOVa Yneopopiag eivat
va enegepyaotel auTéC TIg KatatdEelg Kot vo emotpéwet Evay viknty. H dtoatdnwon avt| avtovakid
TOV PUGIKO TPOTO LLE TOV 07010 01 AvBpTol EKPPALOVY TPOTIUNGEIC—LE TNV S1ATAEN EVOANOKTIKOV—
avti vo amodidovv akpiPeig apBuntucég Tinéc. EAleiyel kapdivdiiov xpnolloTHToV, o KAACIKN
puebodoroyia yio v a&loloynon kavovev sival 1 adiwuatixy poccyyion, OTOL eMBLUNTEG apyEg
TUTOTOLOVVTOL MG OEIMLOTO KO Ol KOVOVEG ELOAOYOVVTOL OVAAOYA, LLE TO TTOLOL OTO CTA LKOVOTOLOVV.
Eupinpatikég ouvelspopés oe avtd to mAaioto meptlapufdavouy ta Bewpnpota aduvatdtnTag TV Ar-
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row [|14] xon Gibbard [49], tov yapoktnpiopd tov May [64], To amotéiecpa tov Satterthwaite [[72],
kabmg kar v epyacia tov Young [[78]. 'Eva evputepo mepiypoppo g aSlopatikng Topadoong
TOPEYETAL OTNV EMOKOTN G Tov Zwicker [[79].

Ye avtibeon pe v aSlOPaTIK GKOTTIE, 1) TOPOVGH SITA®UOTIKN VI0OETEL TV wpeliuioticy OTTIKN,
ue pilec ot Bewpia moryviov [76] kot tov adkyoptOuikd oyedacpud unyovicumv [68]. Topemva pe
oLTHY, M TPOTIUNOoT KABE YyNeoedpov HovVTEAOTOLEITAL OC Lo cOVAPTHON YPHOIUOTHTAS TTOV® GTO
GUVOAO TV VTOYNPI®V 1 0Toio AAUPBEAVEL TPOYLOTUCES TILES, KO O GLALOYIKOG GTOYOG eival 1 ETAOYN
TOV OMOTEAECUATOG TOV LEYICTOTOLEL T GLUVOALKY| YPNCIUOTNTA—TINV KOIVWVIKY EVHUEPLA. AV Kol
TO HOVTEAO aVTO OeV €lval KATAAANAO Yo KAOE eKAOYIKO GEVAPLO—IdImG OTAV Ol YPNOIUOTNTES dEV
glval ovykpioyeg HeTalld ATOUOV—TOPUUEVEL OLAITEPU OYETIKO GE TOAAEC TPUKTIKEG EQPOPUOYEC.
[opadelypoto omotelohv GUOTAUNTO CUCTACEMY Kol TAATPOPLES NAEKTPOVIKOD EUTOPiov, OOV 01
YPNOTES OELOAOYOVV ECOTEPIKE TIC EMAOYEG LE KOPOVAALL KPITNPLO, CKOUT KL OV OEV TO. OVAPEPOVY
pnta. Onmg emonuaivouv ot Boutilier et al. [27], mapdtt avtég ot ypnoipudmmres cuvindwg Tapopévovy
«KPLOEGY, Ol TPAKTOPEG UTOPOVY VAL TAPEXOLV SIOTOKTIKESG KaTatdéelg mov evbuypappilovtar pe Tic
vRoKeipeveg mpoToels Tovg. EmumAéov, svpripato amd T GUUTEPLPOPIK EMGTHN VIOGTNPilovV
011 o1 GvBpwTot ducKoAEHOVTAL Vo ATodDdcoVY aKkpIPeic aplBLovg oTIg EMAOYEG TOVS, YEYOVOS TOL
EVIOYDEL TNV TPAKTIKN OVAYKOOTNTO EPYUCIAG LE OLOTAKTIKA OESOUEVA.

Orav dabétovpe poOVO S1ATOKTIKEG KATATAEELS, EIVOL YEVIKE 0dVVATO £Vag KOVOVOS Vo avayvepilet
TAVTOTE TOV VTOYNPLO TTOV LEYICTOTOLEL TNV KOW®VIKY gunpepia AMdy® EAdenyng manpogopioc. To
YEYOVOC 0V TO VITOJEIKVVEL Lo AAYOPIOUIKT] EpuMVEin TV KavOvmY yneoeopiag: umopobv vo BewpnBodv
WG alyopiBuotl mpooeyyions TOL EMOUDKOVY ATOTEAEGLOTA GYEOOV BEATIOTO VIO TEPLOPIGUEVT TTATPOPOPIa.
Tn okomid awtn etonyoyav ot Procaccia kot Rosenschein [69], mpoteivovtag tnv €vvola g mopauoppmaons
Y0 TNV TOGOTIKN 0E0AOYNON TNG OMOTEAECHATIKOTNTAG £vOG Kavova. H mapapodpewon opiletal
®G 0 AOY0G, Ot XEPOTEPN TEPINTMOOT], LETOED TG KOWVMVIKNAG EVNUEPTIag Tov PEATIGTOV VITOYNPiOL
(M emTponng) Kot ekeivng Tov VoYM Piov (1] EMLTPOTNG) MOV EMAEYEL O Kovovos. To miaiclo avtd
EMTPEMEL QLOTNPT, OPLOUNTIKT GVYKPLOT] KOVOVOV—OTOV LIKPOTEPT TAPAUOPPMST CTLLAIVEL KAADTEPN
00006, AVOALTIKT EMCKOTNOTN TV KOpLov e&elieny Tapéyetal oto survey Tov Anshelevich et
al. [9].

Tomkog opiopdg kot oporoyia. Eotm V 10 cuvolo tov n yneoeodpwv kot C' 10 Guvoro Tov m
vroyneiov. Kébe yneopodpog v € V dwbétel suvdptnon ypnowomrag u, : C — Rsg, kou
KOW@VIKT gvnuepio evog vroymeiov ¢ € C opiletor og

W(e) = > uy(c).

veV

"Evo, Tpo@ik KatatdEemV == (- ) ey Eivar ooufatd pe Tig xpnooTTeS (Uy ) ey av Yo Kabe v kot
e, d € Choyberc =, = uy(c) > uy(d). Agdopévou ot o1 ypnopdnteg givar opiopéveg uéypt
BETIKO YPOIIKO PHETACYNUATIONO, ATALTEITON oL Kavovikomoinan (T.y,. unit-sum: Y. u,(c) = 1y
KGOg v, | unit-range: max. u,(c) — min. u,(c) = 1) dote 0 Aoyog va givar vonuatodotnuévoc.

Hapapépemon Evagvretepuiviotikds kavovag f mov 6&xetor Tpo@il KatatdEemy > Kol ETOTPEPEL
vroynoeo f(>) € C éxel mapaudppwon

dist(f) = sup sup maxcec W(c)
= (uy) ovup. pe > W(f(>))

KOl KOAVOVIK.
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Mo toyatomompévo kovove R mov apdyet kotavoury R(>=) ndve oto C, | topapdpewon opiletot
g
max.cc W(c)

dlSt(R) = sup sup '
() oo e = EX~R () [W(X)]

KOl KOVOVIK.

H xavovikomoinom sivor kpiciun: yopic avtiv, [o oA opotOLopen KMUAK®OGCT TV YPNCLLOTHTOV
TOV EVOG YNEoeOpov Ba pmopodoe va ekTiva&el owbaipeta Tov Adyo, KaOIGTOVTAG TV TaPAUOPPOOT)
anpocdopiotn. Ta cuvnOn ntpwtdkorra (unit-sum, unit-range) BETOLV OAOVS TOVS YNPOPOPOVS CTIV
O «ickipakon, emTpETovTag Hikatn GUYKPLON KAVOVOV.

10 YeVIKOTEPO MEPIPAAAOV—OTOV Ol ¥pnolpudtnTeg eivar avbaipetec—ot Procaccia kot Rosen-
schein [69] €dei&av OTL M| TOPAUOPP®OT UTOPEL VO, EIVOL OTEPLOPLOTN, AKOUT KOL Y10 OTAOVS Kot
EVPEMG YPNOLOTOLOVUEVOLG Kavdves. o Tnv amoguyn avtg g nabdoyévelag, eilonyayay vTofEcelC
KOvoVIKOToinong (m.y. unit-sum). AKOUN KoL TOTE, 1] TAPALOPPOGCT] TOPAUEVELVYNAN: Y10 VIETEPUIVIGTIKOVS
Kovoveg, 1o BéATIoTO eQiktod eivar téEng ©(m?) [B2, B1], evéd ot Tuyatomompévot Kavéveg umopodv
Vo TN LEIOGOLV G€ O(\/TTL) [27]. To amoteléouato avTd OvVOIEKVOOLV TO OPLO TOV JIUTOKTIKOV
KavOvmV 6€ amePLoplota TEPIPAALOVIA KOl KIVTPOSOTOUY T GTPOPT| TPOG TLO SOUNUEVO, LOVTELO—
OT®G T0 PETPIKO TANIC10 TOV e£€TALETAL GTN GUVEYELD GE ATV TN SUTAMUOTIKY.

Hopoamépa mhaicro kot exektdosic. o mAnpdmra, avaeépovie 0TI Tapapudpemon £xetl pehetn el
Kol o€ TANOOPO CLVOEOY PLOUICEWDV: TPOTOKOAAN LLE TEPIOPIoUEV EmKOIVWVIa [62, 63]], KoTaveunuévo,
nepiBdrrovta [46], uepixéc mpotyunoers (incomplete/partial preferences) [24], kaBd¢ kot grdyovg
Oka1oovvyG Kol TOIKIMOG [B9]. Orypaptéc avTég evioyhouy TNV EIKOVA OTL N TAPUUOPPOOT) AELITOVPYEL

¢ evinio epyareio aE10AOYNONG KAT® 0md TOAAATAOVE ENLYEIPTCLUKOVG TEPLOPLO LOVC—TANPOPOPLAKOVC,
EMKOIVOVIOKOVG 1 VTOAOYIGTIKOVG.

Yovoeon pe peTpikéc mpotTiunoees. H petdPoon os petpixd LOVTEAN TPOTIUNCEDY EMITPETEL THV
eMPoAN YE®UETPIKNG SOUNG (ATOCTAGELS) TOV GLYVA OVTOVUKAG PEAAGTIKA GEVAPLA (TT.Y. 10E0LOYIKEC
amootdoelc). H opeipuctikn omotipnon (LEyiotn sunpepia) £xel Eva GUOIKO avAA0YO K0oTovS (EAAYIOTO
KOW®OVIKO KOGTOG) KOl AVTIOTOLYT £VVOL0 TOPAUOPO®ONG PACIGUEVNC GE KOGTN. 2T ETOUEVO KEQAAOLM,
a&lomolovpe avtn TN doun—xkat, 6mov ypeldletal, meplopiouévn TpocPacn og KapdtvaAio otorygio
UECH EPOTNHATOV—Y10, VO ETTVYOVUE OVGIUGTIKA KOADTEPESG EYYVNOELC.

1.2 Merpun lopapopeoon Kabapd Awotoxktikov Kavovov
¥noeogopiag

H mopodco SImMAOUATIKY €pYacio EMKEVIPMVETAL GTO TANICIO TNG UETPIKHG TOPOUOPPWONS, OTMG
avtd elonyOn amd tovg Anshelevich et al. [§], to omoio poviehomolel TOVG YNPOPOPOLE KOl TOVGS
VoYM eiovg g onueio o€ Evav agnpnuévo LeTptko yopo. H Pacukn) vrobeon givar 6TL o1 yneopdpot
TPOTILOVV DTOYNPIOVG TOV PPICKOVTOL TANGIECTEP GE AVTOVS GTOV UETPIKO YDPO, AVTIKOTOTTPIlovTog
NV St OnTikn 18€a 6T EYYOTNTO AVTIOTOLXEL GE PEYOADTEPT) ELOVYPAUUICT OTOYEDY 1) TPOTUTCEDV.
Y7r6 avtd 1o mpicpa, o 6tdyog T0v Kébe YNneoedpov—mn elayloTomoinot ¢ andoTACNS Ao TOV
EKAEYHEVO VoYM PL0—oLUPadilel pe TNV OEEAMUIOTIKY eMOIOEN TG HEYIOTNG Ypnowdttag. H
omTIKN vt gvBvypappileTal Pe TNV TOPAOOCT) TOV YWPIKDY UOVTIEAWY WHRPOPOPLAS, TO. OTOL0L EXOVV
peretnOel eKTEVAOC 0TV TOMTIKY emotiun [42, 13, 65, 38, [73], 6mov N oTdon evog yneoeodpov 6g
£va ToAMTIKO 1 KOmVviKO (T Ha avTioTotyel og pia 0éon Tdve og évav aEova, T.y. VAV LoVodLIeTATO
10eoloyikd aEova apiotepd—oesid. Evd ta kAaoikd LoVTELN QVTNE TG KATYOPIiaG L1I0OETOVY gukAeideta
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YeoUETPio YOUNANG S1AoTUOTS, TO TANIGL0 TOV e£ETALOVIE EMTPETEL TTLO YEVIKOVG PUETPIKOVS YDPOVG,
MOOTE VO OVATOPICTOTOL TTO EVEAMKTO KOl PEOAGTIKA 1) TOIKIAOLOPPIL TV TPOTYUNGEWDV.

Ac opicovpe Tumikd o facikd cuoTatikd Tov o xpnoiporonfovy 6g OAN T S1EPKELN TG EPYOCING.
‘Eoto V kot C' 1o TENEPAGUEVO GOVOADL TOV WHPOPSPDY KOLTOV DTOWHPImY, AVTIGTOIY®G, pen = |V|
kot m = |C|. Ovyneoeodpot cupPoriloviar cuvibwg pe u, v € V kot ot voyfetot pe ¢, z,y € C.

YnoBétovpe 6Tt OA0L 01 YNeoeoOPOL Kot LITOYN POt ToTobeTovvVTOL G Evav HeTpikd xdpo (X, d),
omov d : (VUC) x (VUC) — Rxp givar cuvaptnon andctacng mov tkovomotel Tig 8t0tnTeg g
HETPKNG (Un-apvnTikdTTa, coppetpia, tpryovikny avicdmta). H andotaon d(v, ¢) epunvedetorl g
TO KOOTOG N JVOYEPELD. TIOV BUDVEL O YNPOPOPOG v OV EKAEYEL O VITOYNPLOG C.

INa éva vrocovoro W C C peyéBoug k, 0 onoio amoKaroVLLE EXITPOTH, TO KOIVWVIKO KOOTOS TNG
emrponng W opileton og:

SC(W,d) = m%/lr} d(v,c),

ce
veV

dNAadn| kdBe YNeopopog avTioTol ileTol GTOV TANGIEGTEPO VITOYNPLO TNG EMLTPOTNG. OTOv 1 HETPIKN
d givar capng and ta cvpepalopeva, ypaeovps animg SC(W).

Mia tpuhéta (V, C, d) ovopdleton ouyudromo (instance). T kdBe 00 vroyneiovg ¢, ¢’ € C,
Mépe 0tL 0 Yyneoeopog v € V mpotiud tov ¢ amd tov ¢, Kot ypagovpe ¢ =, ¢, av woydel d(v, ¢) <
d(v,d).

Mpoeik Mpotyiosowv 'Evo mpogil mpotiuioewv == (=, )yey €ivar pia n-G30 avoTnp®V OMKOV
dtdEewv Tavm 6To cHVOLO TV VITOYNEi®Y. Andadn, Yo Kabe v € V, 1 oyxéon >, eivar po TAnpng
KOt 0oOUPETP KoTdtaén tov vroyneiov C, 6mov ¢ =, ¢ onuoivel 6Tt 0 Yyneoedpog v TPOTIUG
aveTNPA TOV ¢ amd tov .

Aépe o6t pla petpwn d etvan ooufory pe 1o mpoik >, kot ypdpovpe d > >, av yw kbe v €
V,c =y ¢ = dv,e) < dv,d). Anladi, n HeTpikn anotondvel enakpipdg Ty KoTaTasn Tov
TPOTIUNGEDV.

To Baocud TpOPANUa oL pag evilaeépet etvar To €ENG: évag akydpiBuog ALG, yvmoTog Kot g
Kavovog ynpopopiog, happavel og €lcodo éva mpopik > mov eivar copPatd pe kamowa dyveort
uetpkn d, kot koAeiton vo emaé€el emitpomy W C C peyéboug k, pe otdyo v elayiotonoinon
10V Kowmvikobd koctoug SC(W, d), mapdtt dev Exet mpdoPacn 6TiS TPAyUATIKEG ATOGTAGELS.

H wapouoppwon evog aiyopibpov/kavova ALG opiletal g o Adyog g xeypotepNS SLVOTNHG AmTOO0GNG
TOV TPOg T0 BEATIOTO. ZVYKEKPIUEVO,

)

distortion(ALG) = sup sup SC(ALG(>-),d)
= dD> > SC(W*(d)7 )
OmOV TO sup,_ TPEYEL TAVM G OAAL TO TPOPIA TPOTIUNGEWY KL TO SUP. . TAVOD GE OAEG TIG HETPIKEG d
mov givar soufatéc pe 1o Tpoik . Edd W*(d) dnkdver v emtpomni| peyéBoug k mov ehayiotomoret
TO KOW®VIKO KOGTOC VIO TN UETPIKT d.

1o Kepdroto , AVOADOLLLE TIG OLVOTOTNTES KOl TOLG TEPLOPICLOVG KABOPA SUTUKTIKGOV KOVOV®V
YMeoeopiag VITd UETPIKEG TPOTIUNOELS, E0TIALOVTAG GTO MANIGLO TOPULUOPPOONC TOV TPATEVAV Ol
Anshelevich et al. [8]. O akydpiBuog dev €xel TPOGPAON GTIC ATOCTAGELS OAAY OQEILEL VO EMAEEEL
L0 ETLTPOTN HE KPS KOWMVIKO KOGTOC, KOl TO YAGLLO amtd TO PEATIOTO LETPATAL LEG® TNG LETPIKNG
TAPAPOPPOOTG—TNG POCIKNG LETPIKNG LEAETNG TNG TAPOVGUG EPYACIOS.

H mepintoon evog viknti). Eekwvdpe and v anin nepintoon k = 1. Ot Anshelevich et al. [8]
£0€150V OTL KOVEVOG VIETEPUIVIOTIKOG KOVOVOG OEV LITOPEL VAL ETITUYEL LETPLIKN TAPOUOPPOOT) LUKPOTEPT)
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oo 3, aKOUN Kol 6TV TEPITTMON HE HOALG SVDO LTOYNPIOVG. ZVYKEKPIUEVE, TOTOOETOHY TOLS VTTOYNPIOVE
oe [ gvbeia, £T01 MGTE 01 Pooi YNneoeopot vo. tautilovtal pe tn €61 Tov TPMOTOV VITOYNPIoL, EVD

ot vdéhowmot pcol va Ppickovtal o Béon 1€T0100 DoTE VO améyovy katd € > 0 Aydtepo and tov
devTEPO LVIIOYNELO o€ oyéom pe Tov Tpwto. Kabdg e — 0, 0 AOYog TOv KOWVWOVIKOD KOGTOVG OTN
YEWPOTEPT TEPIMTMOT OTOLACINTOTE VIETEPULVIOTIKNG EMAOYNG TPOG TO PEATIOTO TEIVEL GTO 3, KABDS

TO TPOPIA TPOTIUNCEMV > eV EMTPEMEL SLAKPLON LETOED TV 600 vroyMeiov. To kdT® avTd PPy
glvan Pértioto: o1 Gkatzelis, Halpern kot Shah [50] oyediacav Kavova mov emrvyydvel akplpog
TAPAPOPPMOOT| 3, YPNOLUOTOIDVTOS CUVOVOCTIKA EMLYEPNUATE. EVIVTOGI0KE, 0 AmAdg Kot TPOKTIKOG
kavovag [eioynpio-Arayopevon (Plurality-Veto), mov tpdtetvay o1 Kizilkaya ko Kempe [59], emttoyydver
emiong Topapope®on 3 Kot TapovstdleTol avorvtikd pall e andn anddeln.

H ngpintoon morlhov vikntav. H molvmAokdtnto avaveTol dpaoTikd otny mepintoon k > 2.
[TAéov vrapyovV S10pOPETIKOL TPOTOL VO OPIGOVLLE TO KOGTOG EVOS YNPOPOPOV OTEVAVTL GE EMITPOTN:
afpoiopa amocTdoe®v, EAIYIOTI ATOGTUCT), K.AT., L€ OLUQOPETIKES EppNVEies Kot 1O10TNTEC [A1], 44].
21V Tapovca epyacio, 0TIALOVNE GTO LOVTELO OTTOVL TO KOGTOG KAOE YNeOPOPOL Eival 1) 0TOGTOOT
07t0 TO TANGLEGTEPO PEAOG TNG EMLTPOTNG, GE GLUPOVia e Tovg Kovoveg Tmv Chamberlin—Courant [34]
Kot Monroe [66].

H dvoxoria tov mpofinpatog ivar eppavic. Ot Caragiannis, Shah kot Voudouris [33] avédeiEav
W0 TPLyoTOUia TNV TUPOUOPPOOT|, AVAAOYX UE TOV TPOTO VTOAOYIGHOD TOV KOGTOVG YNPOPOPOL.
[pocappodlovtog ta amoTEAESHOTA TOVG GTNV TEPITTOOT TOL TO KOGTOG Kabe Yneopdpov opiletan
®¢ M 0TAGTACT TOV ATO TO KOVIIVOTEPO Y10, AVTOV LEAOG TNG EMLTPOTNG, ATOOEIKVVETOL OTL:

o [a k > 3, n mapapdpPmon KAOE VIETEPLUVIGTIKOD KavOVe VoL un ppayuevy.

o [a k = 2, n mopapdpewon eival epaypévn oAAd avEdvetor YPOUUIKG He Tov aplud tov
Yneoedpwv: mopovcidlovpe tov adkyopiduo PolarOpposites, mov emituyydvel Tapapdpemon
O(n).

e Emum\éov, amodetkvietor 0Tt aKOUO Kot TOYooTomuévol Kavoveg xouvv mopapdpemon 2(n)
Yok = 2.

To gvpr ot LV TA AVASELKVOOUY TO YAC O, OVALEST, GTNV EKAOYT EVOC KL TEPLGGOTEPMOV VTOYNPIV
KOl KATAOEIKVOOLV Ta OgpeAdon opia Tov Kobopd dtotoktikov HeBodmv. Xtnv anddeitn tov K4Tm
QPAYHAT®V, TOGO Y10, TNV TEPINTTOOT dVO VIKNTOV OGO KOl Y0 TPELG 1| TEPIGGOTEPOVS, 1 PUGTKN
duoKoMa EYKEITOL OTO OTL OTOLOGONTOTE VIETEPUIVIOTIKOG 0AYOP1OL0G oV PacileTonl 0mOKAEIGTIKA
o7 SWTAKTIKN TANpoPopia > dev UTOPEL VoL SIUMIGTOCEL 0V —KOL TOLOL— VIOYNPLoL BpickovTol
otV 1010 B¢om. To 1010 TPOEIA TpoTIUAGEMY LITOPEl VAL TPOKVTTTEL AT SLAPOPETIKEG LETPLKES VAOTOUOEL,
OT1G 0Toieg 01 BETELS d1POPETIKMV VYDV 1] LTOGVVOA®V VoYM PiwV Tovtilovtal. Avti 1 advvapio
S1aKpLoNG VIOYPOUUIZel TNV avaykn yio ELTAOVTIGHEVA LOVTEAQ LE TPOCPOOT OE LEPIKN KAPOVAALL
TANPOPOPIa 1Y/KaL TN YP1OT| TUYALOTOINGNC.

Toyaromoinon 6Tov povo-vikntipro kavove. Ioapdtin mapapdpemon 3 etvot 0uaTnpN Y10 VIETEPLUVIGTIKOVG
KavOVES, £va oNUAVTIKO avotyTo TpoAnpa eivar to BEATIOTO TOL umopel va emttevyBel amd TuYOTOINUEVOLS
kavovec. Or Anshelevich kou Postl [[L1[] €é6ecav kdto epdypa 2, kKot £de1&av 6Tt o kovovag Random
Dictatorship &yet mapapdpemon < 3, av kot aAnctalel 1o 3 6tav 10 n avédvetal. Metayevéotepa

épyo [43, 58] TpoTEVaY EVOAAAKTIKODS TUYOLOTOUNLEVOLG UNYOVICLOVC [LE TAPAULOPPDGT TOV GUYKAIVEL

670 3 kaBdg To TANO0C VoYM PiwY avidvertal.
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Mo mpoésata, or Charikar kow Ramakrishnan [35] avéBacav to kdt® epayua oto 2.1126, evd
ot Charikar et al. [36] oyediacov unyavicpud He Topapdpemcn 10 ToAd 2.753, ordlovtag To 16TopiKd
opayna tov 3.

IMopaxdtom cuvoyilovie Ta YVOOTH ATOTEAECUATOL:

Méye0oc Emtpomiig k MM\aicto Koibdtepn Hopopdpomon
k=1 Nrtetepuviotikd 3 (awompo)
k=1 Toyaomompévo 2, 3— %}
k=2 Nrtetepuviotikd O(n)
k=2 Toyoonompuévo Q(n)
k>3 Nretepviotid Mn ppayuévo
k>3 Toyoromompévo Mn ppayuévo

Table 1.1: I'vootd epdypoata Topapdpemong Yoo Kabopd JSOTOKTIKOVG KOVOVES VIO UETPIKEC
TPOTIUNGELC.

Hepartépo enektaoers. [Iépa amod Tig facikég puBuicel, Exovv mpotabel mowkileg emekTAoELS TOV
miansiov mapapodpewons. Ot Goel, Lee kou Shah [51]] e€etdlovv vPpidcd poviéla mov cuvovdlovv
UETPIKN TOPAUOPPMON LE KAPIVAAIOVG 6TOYO0VS. AAAES epYOTies, OTmG avtég TV [[I, 58], digpguvoidv
TO EUTOPLO AVAUESH OE OTOS0GT] KOl TAT|POPOPIAKT TOAVTAOKOTNTA.

EmmAéov, N mapapdpomon £xel peretn el oe koataveunpéva mepipdirova [[L0], vwd TepLopiopovg
gukpivelag [45], 1 oe mhaicta pe eAmn 1 peptkn TAnpogopia mpotipnicewy [[11], 55, 43, 25, 6]. Okec
ovTEG 01 emektdoelg vroypaupiloov ™ Pabid oAAnAenidpaon avdpecso og vTtodeon TANPoopiag,
VITOAOYIGTIKT] TOAVTAOKOTITO, KOL EYYVTGELS AmOS0GNC GTIV KOWVMVIKT EMAOYT.

1.3 Metpu) mapopopemon aryopifumyv pe npocpaocn og Kapowvaro
EPOTNNOTO

To 1oyvpd amoteléopata advvapiog Tov £xovv edpaiwbel yio Tovg kabapd dtoTakTikovs odyopifpov—
WOLTEPOL 1) U1 PPAYUEVT TOPAUOPO®SN Yo k > 3—B£TOVV TO PLGIKO EPAOTNUA: UTOPEL N TEPLOPIGUEVN
TPOGPROOT OTN UETPIKN TANPOPOPIO VO OTOKATAGTI|GEL OVGLUGTIKEG EYYVTGELG GE EKAOYEC TOALUTAGDY
vikntov; [Hopakvodpevor amd Tpodceatn Tpdodo ota povtéra e epotipata [3, 5, 4], peketovpe v
EMIOPOOT) TOV EUTAOVTIGHOV TOV EKAOYIKAOV aAyopiBmv e Evay pukpd apBud epatqudtoy axootaons
TPOC TOVG YNEOEOPovG. O gUTAOVTICUOG OVTOG EMITPEMEL GTOV AAYOPIOUO VO £YEL TEPLOPICUEVT|
pocPaocn o€ axpiPeic amootdosls, evmd cuveyilel va AelTovpyel KUPIOE TV 0 SIUTUKTIKES TPOTLUNGELS.

Y10 Kepdhoto f eEetalovpe mpdspatn epyosio tov Fotakis et al. [47], n omoio peretd v avtiotédpion
peTa&d TapapdpPMOOTg Kot TOATAOKOTNTOG EPOTNUATOV 01N povodidototn EvkAeideia nepintoon,
OTOV TO GUVOAO TV YNPOEOPV dev YPelAleTAL VO, GUUTINTEL e TO GUVOAO TV Lroymeinv. To
eliowtiko koorog (egalitarian cost) piog emtponng opileTol ®g T0 PEYIGTO KOGTOG TOV LPIGTATOL
OTOLOGONTOTE YNPOPOPOS, SNAASN 1 OTOGTACT TNG YEPOTEPA EEVTNPETOVUEVIG YNPOPAPOL OO TO
TANGIECTEPO UEAOG TNG EMLTPOTNG.

To TpdTO TOLG ATOTELEC LA EOPALDVEL EVAL LGYVPO KATM PPAYLLO: KADE VIETEPLUVIGTIKOG OAYOP1O|LOC
IOV YPNOOTOLEL AlydTEPA OO k—2 EPOTILLOTA OTOGTACTG UTOPEL VOL EXEL 1] PPOayueEVH TAPUUOPPMOT),
OG0 Y10, TO KOW®VIKO KOGTOG 0G0 Kot Yo T0 e£lomTikd K6oT1oC. To amotéleoua avtd vroypappilet
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TOVG EPPVTOVE TEPLOPLGHOVS TV KAOAPE SIOTAKTIKOV UNYAVIGUDV, AKOUT KoL GE EEALPETIKA SOUNUEVOLS
LETPLKOVG YDPOVG.

Ot ovyypaeeic delyvouv €nerta OTL T0 EUTOOI0 qVTO popel vo Eemepactel e Evay TEPLOPICUEVO
apBud epomudtov. Ipocappolovy Evav ATAncto alyoptOpo EUTVEVGIEVO OO TV 2-TPOCEYYIoN
tov Gonzalez yio 10 k-center, amodeKvOOVTAG OTL EMLTLYYAVEL TOPAUOPO®OT TO TOAD 5N Yyl TO
KOW®VIKO KOGTOG Kot To oA 5 Yo 10 €E160TIKO KOGTOG, ypnotponotdvag povo O(k) epotipota
anootaons. Ta 6pla avtd nepriapPfdvovy TpocsheTikodg 6povg 3n Kot 3, aVTIGTOLYM, TOV TPOKVITOVV
0O TO YEYOVOG OTL TOL GUVOLD, YNPOPOP®V KO DITOYNPIOV €V GUUTITTOLV.

Baocilopevot og autd, iodyovv pia mo eEelypévn pnébodo Paoiopévn oty évvola tov (4, 5)-
SKPUTNPLOKAOV AVCEWDY, ONAAST IKP®Y VITOGLVOA®Y vIToYNeioV TV onoimv 1 doun mpoceyyilet
exeivn pog BEATIoTNC emTponne. Méowm piag tepapytkng dtadikaciog Stapépiongs, Katackevalovy pio
(O(klogn), 2)-dwprnpuakn AMon ypnowonowdvtag povo O(klogn) epotinoata. H peioon avth
EMTPENEL TNV EQUPLOYN SVVOLLKOD TPOYPUUUATIGHOD GE £VOL TEPLOPIOUEVO TTEDTI0, 00N YDVTAC GE pia
eMTPOTN LE 6TafEPN TOPALOPO®AST (TO TOAD 5) S10TNPADOVTOG TOAVMVVLIKY YPOVIKT TOAVTAOKOTI T
KOIL DITOYPOLLLLIKT] AP0 EPOTNUATOV.

Y10 Kepdhoto P eéetalovpe npdspam epyosia tov Burkhardt et al. [29], n omoio peketd v
avTIoTadoT HETOED TOPALOPPMONS KoL TOADTAOKOTTOG EPOTNHATMV GE YEVIKOVG LETPIKOVS YDPOLG,
OTOL deV PITOPOoVV va Yivouy dopikég Tapadoyés (0mmg 1 Evkieidela yempetpia). Xe avtd to mhaicto,

N éAhewym olkng dtdtaéng emPAALEL TO GUVOAO TOV VITOYNQI®V VO, CUUTITTEL LE TO GHVOLO TMOV
YNEOPOPOV TPOKEYEVOD VO TPOKLYOLV OVCIMON OOTEAECUATO, KO OAEG Ol OTOGTACELS HETOED
TPOUKTOPWV TPEMEL VO OTOKTNOOVY pNTA LEGH EPOTNLATOV.

ITopdTi dev avOADOVLE AETTOUEPMG TA KAT® OPAYLATA TOVG GE 0vTh T dtaTpifny, a&ilel va onpetmbel
OTL €5POLOVOLV 1GYVPA OTOTEAEGUATO OOVVOUING: KAVEVOG OAYOPIOIOG TOV YPTOLUOTOLEL AyOTEPQL
and O(k) epotpota andctacng dev pmopet va eyyon0ei epaypévn mopapdpe®on yio 0molovonmoTe
(k, z)-otdy0 opadonoinong. Emmiéov, n enitevén otabepnic mapapopemons o€ 6YEoN LE TO KOWOVIKO
k6otog amartel tovAdyiotov Q(k + loglog n) epotipata dtav 1o k givar petafAntd, kot TovAd oTov
Q (k~21°g* ) 6tav 10 k givan otabepd. Ta amoteAEoHaTo VT EVIGHOVV TV OVOYKOLOTNTO TTEPLOPLOUEVIG
TPOGPaong ot LETPIKN TANPOPOpPTa, aKOUN Kol OTAV GUVOILALETAL Le TATPT| OLOTAKTIKN TANPOPOPNON.

v Betikn Thevpd, Kot pe aitepn onuacio yio n dwatpiBn o, deixvoov 6t O (k) epotpato
OTOGTAONG EXOPKOVV VIO TNV EMITEVEN PPOYUEVNG TUPALOPPOONG. XVYKEKPIUEVO, IO TPOGEKTIKA
oyxedloopévn Aminotn Sadkacia, EUTVELGUEVT omtd Tov adyopBuo tov Gonzalez yio 1o k-center,
e&ooparilel mapapdpemorn 10 TOAL 4 yio T0 €I0MTIKO KOGTOG Kot 4n Yol TO0 KOW®OVIKO KOGTOG,
EKTEADVTOG LOVO 2k EpOTALOTA.

Baoldpevot og avtd to mAaicto, ol cuyypageig Tpoteivouv Evay o eEelypévo alyopBpLo yio Tov
610y0 oV k-median, a&lomoidvTag TV Evvola tev (¢, 3)-3kpttnplokdv AVGE®MV Kot £Va SOKTUAMOEDEG
oA tepapytkng dwapéptong. H kevipikn copfoln givar évac alydpiBpog mov emtuyydvel otabepn
OVOUEVOLEVT TTAPOUOPO®OT Ypnotpomotdvtag povo O (k* log® n) gpotuate andotacns. H facwn
10€0 elval vo TpocopHoldcEL T dtadikacio derypatoinyiog tov k-median++ mpoceyyilovtag Ty KaTovoun
nov Paciletal oTig amooTdoels LEG® SUKTVALOEDDV amocVVHESEW®Y, OTTOV Y10 To. oneia KaBe daxTuAiov
OTONTEITOL LOVO €val pMdTNpa amdotacns. 'Eva evioyvpévo oynua detypatoinyiog dtoceolilel 6t
TEPLOYEG He LYNAO KOGTOG gival mhavo va emideyoldy, Kol pio YE®UETPIKN ovAALoT Uei®oNg Tov
AKIALTTOL KOGTOVG EyyvaTat Toeio cvykAlon. TéXog, Eva fripa peimong amd SIKpITNPLOKT GE KAVOVIKN
ADo”N UETATPENEL TO TPOKVTTOV GUVOLO GE £yKvpn emitpont| peyéboug k, dtutnpmdvrtag ) otabepn
pocéyyion. O teAKOg alyoplOpogc eivot amodoTIKOC MG TPOG TO EPMTALLATO KO AELTOVPYEL ATOKAEIGTIK
VO SLOTAKTIKY TPOGPOCT) e TEPLOPICUEVT] LETPIKT TANpOQOPiaL.

2UVOMKG, TOL ATOTEAEGLATO AVTA OELYVOLV OTLT) GTPATNYIKN ¥P1ON EVOS LKPOD apBOd EpOTNUATOV
OTOGTAONG EMOPKEL YIoL VO EEMEPUOTEL TO EUTAOI0 TNG U1 PPOAYLEVIC TOPAUOPPOONG GE EKAOYEC
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TOAATADY VIKNTOV. AVOSEIKVOOLV T dOVAUN TOV VEPOIKOV LOVTEA®Y TTOV GLVOVALOVV SLOTAUKTIKES
TPOTIUNGELG IE TEPLOPICUEVT KapdVOALL TPOGPACT, Kol TAPEYOVY VOV GUYKEKPIUEVO SPOUO TTPOG
TOV GYESOUO EKAOYIKDV KOVOV®V TTOV £IvOl TOVTOYPOVA TANPOPOPLOKOL Kol 0rod0TIKOl.

1.4 Opodomoinon kot Xrabdepotnro

AopBavovtag vToyn T YEMUETPIKT EPUNVEIN TOV PHETPIKDV TPOTIUNGE®DY, TO TPOPAN L TNG EKAOYNG
HL0G KOWVIKG BEATIOTNG emtTpomig Umopel vo. 1m0el puoikd w¢ Eva TpdPAnua opadonoinong: kabe
YMEoeOPog avtioTotyiletal 6To TANGLEGTEPO LEAOG TG ETLTPOTNG, KO GTOYOG vl 1) EAay1oTOTOIN O
TOV GUVOMKOU KOGTOVG OLTAOV TOV OVTIOTOWICE®V. AVTH 1| TPOOTTIKY| OTOKAAVTTEL EVOV 1GYVPO
deopd petalhd g TOAVUEAOVG EKAOYNC KOl T®V KAAGIKGV OTOY®V TNng opadomoinone, onwe to k-
median kot to k-center, Kot TopEYEL KIVITPO Y100 TN XPNOT EPYUAEiV amd T Bewpia TG opadomoinong
GTOV OYEOIAGIO KOt TV 0VAAVGT KAvOVmY Yyneopopiag.

AVeTUYMG, 0VTOL 01 GTOYOL EIVaL VTTOAOYIOTIKA 0VGKOAO va. BeATioTomomBobv (NP-hard) o€ yevikovg
LETPKOVS YDPOVS, EVAD M TAPOULOPP®OOT) UTOpel va givarl ameptOplotn oI XEWPOTEPT TEPITTMOOT —
aKopo Ko pe TANpT tpocPacn otig amootdoels. o va Eemepdoovpe avtodg TOVG TEPLOPIGHOVG,
V100ETOVLE L0 TPOGEYYION TEPQ OO TH YEWPOTEPN TEPITTWOH PACIGUEV OE OOUIKEG VTTOOEGELS. ZVYKEKPIUEVAL,
eotidlovpe ot arabepotnta darapoyns (perturbation stability), pio gupémg pedetnuévn veobeon
otV opadonoinom, n onoio anaitel 1 fEATIOTN ADoN Vo TOpapEVEL AUETAPANTN VIO TEPLOPICUEVEC
TOALOTTAOCIOOTIKEG dratapayés TG petpikne. H vmdbeon ovt avikatontpilel ) dwaicOnon o1t
TOALEC TPULYLOTIKEG TEPITTMOGELS £XOVV 1GYVPT] VITOKEIUEVT OOUN, TNV OTOI0, LITOPOVLLE VO, EKUETUAAEVTOVLLE
oAyoplOpIKA.

Y10 Kepdhawo [, efetdlovpe Tig cuvénelec Tg otafepdnTac dratapoynig otV enilvon tov k —
median TpoPAnuatog opadomoinons. ZEekivdpe opilovtag emionuo Ty Evvola TG y-oTafepoTnTOoC
JTOPOYDOV Kol LEALETAUE TIG OOUIKEG 1O1OTNTES TOV AVTH GUVENAYETOL, OTMG:

o NV y-gyydTnTa 0TO KEVIpo (y-center proximity), n onoio e&ac@arilel 6tL kdbe onueio sivon
GNUOVTIKG TLO KOVTO 6TO KO TOV KEVTIPO 0O OTOL0dNTOTE GALO:

o TV aobevy eyyotnra oto kévipo (weak center proximity), puo YoAGp®on mov 1GYVEL Y10, TO
TEPLOCOTEPQ ONUELN, AALA OYL amapoiTnTa Yiow OAQL

® OV draywpiouo twv opddwv (cluster separation), o omoiog dStacPAAilel OTL 01 OpAdEG Elvar KoAd
OTTOLLOVOLLEVES:

e Kot TNV W0t TG eldytotne arabepotnrac (min-stability), n omoia onuaivel 6ti 1 BéATIO
opadonoinon avtictoyyel o€ Eva «kAASepa» Tov dévipov single-linkage.

Agiyvoope 6Tl 1 Y-gyydTNTA GTO KEVTPO pe ¥ > 2 + /3 cvvendyston ehdyiot otodepdTnTa,
OLVOEOVTAG £TGL TOTIKES GUVONKEG AMOCTAONG LE TOYKOGLLES SOUIKEG EYYVTOELS.

AVTEG 01 SOUKEG IOLOTNTES UG EXTPETOVY VO, GYESLACOVLE ATOSOTIKOVG OAYOPIOLLOVE TOV OVOKTOVV
™ BéATio emitporni) vVd oTafepdTNTA SLOTAPAYDY. TVYKEKPIUEVE, TOPOVGLALOLUE 0VO0 aAYOPIOpKd
TAOIG10 TOV EMTVYYAVOLV € 6TABEPH CTLYHLOTVTA:

e Single-Link++: O alyopiBuog avtdg kataokevalel éva ehdyioto dévipo kalvwewg (MST)
TAV® OTOV PETPIKO Ydpo Ko eEeTdlel OAEG TIG k-OLLOOOTOMGELS TOV TPOKVTTOLV CPOLPDOVTAG
k— 1 akpés. Avapeod toug, emA&yel ekeivn Tov edaylotonolel 1o k-median kdotog. Aglyvovpe
OTL Y10 GTIYUIOTLTO, TTOV KAVOTTOLOVV 2-0TafepOTnTo dtatapoydv, 1 PEATIOTN opadomoinon
OVTIOTOLYEL OE TETOLO JLAYWMPIGLO, EXITPEMOVTOC TNV OVAKTIOT TNG O€ TOAVMVUUKO YPOVO.



o Igpapyuci Opadomoinon pe Avvapké Mpoypappatiops: To nepurtdosc pe v > 2 + /3,
Kataokevdlovpe Eva tepapyiid dEvipo opodomoinong pe single-linkage. H Béltiotn opadomroinon
gyyvatot 6t Ba gppaviotel g Eva «ikAAdepoy» ovtov Tov dévTpov. 'Evag duvapudg adyopidpog
avalnté amodotiké to BELTIoTO KAASENa, 0modidovTag akpiPy Ao pe torvmhokdmnto O (nk 2+
nT'(n)), 6mov T'(n) givar T0 K66T0G 0ELOAOYNONG TOL GTOXOL OULAIOTOINGNG GE VITOSEVTPAL.

Kat ot 600 akydpiBpot eKpeTaALEHOVTOL TN GLVOVACTIKY OOWUT TOL GUVERAYETAL 1| GTAOEPOTNTA
doTapaydv Yo, vo vepPodv Ta ePAYILOTA TNG VTOAOYIGTIKNG SUCKOAING OTN YEPOTEPT TEPIMTMON).
210 TAOUG10 TNES YNEOPOPiag, anTd delyvel 0TL 6TAOEPH TPOPIA TPOTIUNGEDY ENLTPETOVY TNV ATOJOTIKY|
KOl LLE TEPLOPIOUEVA EPOTAUATO ETIAOYT VYNANG TOLOTNTOG ENLTPOTAOV, KON Kot OTov 1) Tpdsfaon
GTLG AMOCTAGELG Elvar Lepik).

1.5 ZXvvewo@opad

Y10 Kepdhono [A, peretdpe mdg n otabepdtnro Srotapaydv pmopei vo afomomel yio Tov oxedacud
OTOOOTIKMV MG TPOG TO, EPOTHUATO AAYOPIOU®Y EKAOYNG EXTPOTAOV GE UETPIKOVS YDpovs. Bacilopevol
6€ VIAPYOVoEG dOUIKES TapaTPNoEls amd ) PBiAloypapio TS opadomoinong, TepypapovpEe Eva
omAO OAAG YEVIKO oy o pLeiwong wov evtomilet va LiKpd VTTOGVUVOAO LITOYNPIWV—TO 0010 UTOKAAOVILE
uétawmo (frontier)—r0o 0moio, vId KATAAANAEG VTOBEGELS oTABEPOTNTAS, EYYLATOL OTL TEPLEYEL TN PEATIOTN
Avo.

H Bacikn mopatipnon eivar 6Tt o€ y-otadepd oTiypdTvmo—ding dtav v > 2 + v/3—n Pédtiot
opadomoinon eueavilel woyvpés W10TTEG draywplopov kot devdpikng (laminar) dopnc. Avtég ot
WOLOTNTEG LLOG EMTPETOVV VAL EVIOTICOVUE TO UETMTO YPNCILOTOIDVTOS LOVO JULTAKTIKY TANpOPopia
(ordinal information), ywpig va ypelactovpe KABOAOV EPOTNLATA OTOGTAGE®Y. 26 €K TOVTOV, UTOPOVLE
VO KOTOOKEVAGOVLE L0 GUUTOYT AVOTOPAGTACT TOL YDPOL AVGE®V, TO éEyeBog T omoiag eaptdton
uovo amod to péyebog tng emTpomng k, Ko Oyl and o TAN00g TV vIoYnPimV n.

Amewcovifovpe ovto To oy peimong e 600 SPopETIKA TEPIPAAlovTaL:

e 1oV povodidotato Evikheidelo ydpo, deiyvovpe 6Tin peddpiog odnysi og wa (28 —1, 1)-ducpiry
Moo (bicriteria solution). Epappoloviog Evay yvmotd Suvoptkd aAyOplOHo TpoypoLoTIGIOD
OTO PEWWUEVO OTIYUIOTUTO, AAUPAVOVUE EVOV VIETEPULVIOTIKO OAYOPIOLO [LE TOALTAOKOTNTA
O(2F) wg mpog T epmTLATO Kot GTEHEPT TAPAUOPOOGT).

® Y& YeVIKOUG HETPIKOVS YDPOLGS, OTAV 01 YNPOPOPOL KAl 01 LITOYNPLOL TAVTILOVTAL, XPTCLLOTOOVUE
T0 PETOMO Y10 VoL KoTackevdoovpe wa (28 — 1, 3)-Supirh Avon. Zvvdvalovidg ) pe évav
TUTTIKO OAYOPLOUO TPOGEYYIONG, TPOKVMTEL (O TPOGEYYIOT GTAfEPTG TAPAUIPPOOTG LLE O(4k )
EPOTNLATO OTTOGTAGEDV.

Hopott ot odyop1Opot ToL TaPOLGIALOVUE ATOTEAOVY TPOGUPHOYES VTTAPYOVI®V HEBOS®YV, GTOYOC
pog etvor vo avadeifovpe mmg ot SOUIKES IOOTNTEG TOV GTIYHMOTOTOV HE oTAfepOTNTO SoTapOyng
UTOPOovV Vo KaBod1 YN GouV TOV GYESACHO OTOSOTIKMV MG TPOG TO EpMTALLATO aAYopiBL®mY yneopopiag.
AvTd 10 0TOTEAECLLATO GUVIGTOVV £va PETPLOTABES POl TTPOG T YEPUP®GT TOL YAGLOTOS HETUED
BepNTIKNG SUGKOAING OTN YEPOTEPT TEPIMTMOT KOl TNG TPOUKTIKNG SOUNG, KO VTOSELKVOOVY EVPVTEPES
duvatotnTeg 0&lomoinong e otafepOTNTOC 6€ TPOPANLOTO LETPIKNG KOWVMOVIKNG ETIAOYNG.



CHAPTER 2

Introduction

Social choice theory studies how individual preferences can be aggregated into a single collective
decision [28]. Although not unique, a common framework for this analysis is the setting of elections,
where participants, referred to as voters, express preferences over a set of alternatives, referred to
as candidates, and a function, referred to as a voting rule, selects one candidate or a k-committee
as the winner based on the reported preferences. In the idealized case where each voter assigns a
cardinal utility to each candidate, a natural objective is to select the candidate that maximizes the
social welfare—the sum of utilities across all voters. Given access to these cardinal utilities, this
problem is computationally trivial: we simply compute the sum for each candidate (committee) and
output the one with the maximum value.

However, in most real-world scenarios, eliciting precise numerical utilities is infeasible due to
cognitive and practical limitations. As a result, voting mechanisms typically operate on ordinal inputs,
where voters provide rankings rather than explicit utilities. This informational constraint implies that
voting rules cannot, in general, guarantee the selection of the candidate (committee) with maximum
social welfare. This challenge is reminiscent of settings in approximation algorithms [[74] and online
algorithms [23]], where the goal is to approximate optimal solutions.

Distortion, introduced by Procaccia and Rosenschein [69], is used to quantify how well a voting
rule approximates the optimal outcome in terms of social welfare. It is defined as the worst-case
ratio between the maximum possible social welfare and the social welfare of the candidate selected
by the voting rule. This metric has become a standard tool for analyzing the performance of ordinal
mechanisms, motivating both theoretical investigations of existing rules and the design of new rules
that aim to minimize distortion. Unfortunately, strong impossibility results show that distortion can
be large in the general case [30], even when using randomized mechanisms [26].

To obtain more meaningful guarantees, Anshelevich et al. [§] proposed a more structured model
in which both voters and candidates are embedded in a metric space. In this setting, the distance
between a voter and a candidate represents the cost to the voter if that candidate is elected, and voters
are assumed to prefer candidates that are closer to them. This model is well-motivated in many real-
world applications—such as political elections—where a voter’s preferences are often determined by
an ideological distance between themselves and the candidates, capturing how closely a candidate’s
positions align with their own beliefs. Under this interpretation, the objective naturally shifts from
maximizing social welfare to minimizing social cost, defined as the sum of distances between all
voters and the selected candidate.

Although the metric setting allows for significantly better approximation guarantees compared to
the unrestricted case, strong lower bounds still apply even here. For instance, no deterministic ordinal
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mechanism can achieve distortion better than 3 in single-winner elections [8]. The situation becomes
even more severe in the multi-winner setting: it is known that for £ > 3, the distortion of purely ordinal
mechanisms can be unbounded [33], meaning that such rules may select committees with arbitrarily
high social cost compared to the optimum. These lower bounds highlight a fundamental gap between
what can be achieved using only ordinal information and what is attainable with access to cardinal
utilities. To overcome these limitations, we consider augmenting the algorithmic model with limited
access to cardinal information, in the form of distance queries. This enhancement enables the design
of voting rules that retain the simplicity of ordinal inputs while strategically using a small number of
metric queries to substantially improve performance. The combination of a metric preference model
with limited query access forms the central framework of this thesis, within which we study how
structure and information can be jointly exploited to design mechanisms with provably low distortion.

This metric setting induces an underlying geometric structure that naturally defines a clustering
problem: voters tend to form groups around their preferred candidates, and the objective of minimizing
social cost aligns with identifying such candidate-centered clusters. From this perspective, selecting
an approximately optimal candidate (or committee) can be viewed as a clustering task, where each
cluster is centered around a candidate and consists of voters who are close to them in the metric space.

In light of this connection, it becomes natural to consider structural assumptions that reflect realistic
features of voter distributions. One such assumption is that of perturbation stability [21, 20], which
states that the optimal solution remains invariant under small changes to the distances. In the context
of social choice, this captures the idea that voters are meaningfully and consistently grouped around
candidates in a way that is resilient to small changes in perception or positioning. That is, the support
bases of candidates are well-separated, and the relative proximity of voters to their favored candidates
is robust.

The goal of this thesis is to explore how stability assumptions can be leveraged to match or even
improve the performance of existing voting rules while requiring significantly less access to distance
information, particularly in the multi-winner setting.

2.1 Voting Rules and Distortion

Traditional models in social choice theory represent each voter’s input as a strict ranking over the set
of candidates, and the role of a voting rule is to process these rankings and return a winning candidate.
This formulation reflects how people naturally convey their preferences—by ordering alternatives—
rather than assigning them precise numerical values. In the absence of cardinal utilities, one classical
method for assessing the quality of voting rules is the axiomatic approach, where desirable princi-
ples are formalized as axioms. Voting rules are then judged based on which of these axioms they
satisfy. Seminal contributions to this framework include the impossibility theorems of Arrow [[14]
and Gibbard [49], the characterization by May [64], the result of Satterthwaite [72], and the work of
Young [[78]. A broader overview of this axiomatic tradition is provided in the survey by Zwicker [[79].

In contrast to the axiomatic framework, this thesis adopts the utilitarian perspective, a viewpoint
rooted in game theory [[76] and algorithmic mechanism design [68]. According to this approach,
each voter’s preference is modeled as a real-valued utility function over the set of candidates, and
the collective goal is to select the outcome that maximizes the aggregate utility—commonly referred
to as social welfare. Although this model does not suit all voting scenarios—particularly those in
which utility values are not comparable across individuals—it proves highly relevant in many practical
domains. For example, applications such as recommender systems and e-commerce platforms often
rely on agents or users who internally evaluate options using cardinal utility, even if this information
is not explicitly reported. As Boutilier et al. [27] point out, while these utilities typically remain
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hidden, agents are still able to provide ordinal rankings that align with their underlying preferences.
Moreover, behavioral research supports the idea that individuals generally find it difficult to assign
exact numerical values to choices, reinforcing the practical necessity of working with ordinal data in
many real-world settings.

When only ordinal rankings are available, it is generally impossible for a voting rule to always
identify the candidate that maximizes social welfare. This observation motivates an algorithmic inter-
pretation of voting rules: they can be viewed as approximation algorithms that aim to select outcomes
that are near-optimal despite limited information. This perspective was introduced by Procaccia and
Rosenschein [69], who proposed the concept of distortion to quantify the effectiveness of a voting
rule. Distortion is defined as the worst-case ratio between the social welfare of the optimal candidate
and that of the candidate selected by the rule. This framework enables a rigorous, numerical compar-
ison of voting rules—where smaller distortion indicates better performance. A detailed overview of
major developments in this line of work can be found in the survey by Anshelevich et al. [9].

Let V be the set of n voters and C' the set of m candidates. In the most general setting—where vot-
ers have arbitrary utilities—Procaccia and Rosenschein [69] showed that distortion can be unbounded,
even for simple and widely-used voting rules. To mitigate this, they introduced a normalization as-
sumption, such as requiring that each voter’s total utility over all candidates sums to one. Even un-
der this assumption, distortion remains high: for deterministic rules, the best achievable distortion is
©(m?) [32, B1]], while randomized rules can reduce this to O(+/m) [27]. These results illustrate the
limitations of ordinal voting rules in unrestricted environments and motivate the shift toward more
structured models such as the metric setting considered in this thesis.For completeness, we note that
distortion has also been studied in a variety of other settings, including communication-bounded pro-
tocols [62, 63], distributed environments [46], partial preferences [24], and fairness-oriented objec-
tives [39].

2.2 Metric distortion of Purely Ordinal Rules

This thesis focuses on the framework of metric distortion, introduced by Anshelevich et al. [8], which
models both voters and candidates as points in an abstract metric space. The core assumption is
that voters favor candidates who are closer to them in this space—reflecting the intuitive idea that
proximity corresponds to alignment of preferences. In this context, a voter’s objective of minimizing
the distance to the elected candidate naturally parallels the utilitarian goal of maximizing utility. This
view aligns with the tradition of spatial voting models widely studied in political science [42, 13|, 65,
38, 73], where a voter’s stance on an issue can be mapped to a point, such as a position along a left-
right ideological spectrum. While such models often assume a one-dimensional Euclidean structure,
the metric spaces considered in this work are more general, allowing for a richer and more flexible
representation of preferences.

We begin by formally introducing the main components and definitions used throughout this thesis.
Let V and C be finite sets representing the set of voters and candidates, respectively, with n = |V/|
and m = |C/|. Voters are typically denoted by u,v € V, and candidates by ¢, z,y € C.

We assume that all voters and candidates are located in a metric space (X, d), where d : (VUC) x
(V UC) — Ry is a distance function satisfying the metric properties. This distance represents a
disutility or cost that a voter experiences when a particular candidate is elected.

Given a subset W C C of'size k, called a committee, the social cost of W under metric d is defined
as

C(W,d) = Z min d(v,c),

veV
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that is, each voter is assigned to their nearest committee member. We will write SC(WW') when the
metric d is clear from the context.

A triplet (V, C, d) is called an instance. For any two candidates ¢, ¢’ € C, we say that voter v € V
prefers c over ¢, denoted ¢ >, ¢, if d(v, ¢) < d(v, ).

Definition 2.2.1 (Preference Profile). A preference profile =:= (>,),cv is an n-tuple of strict total
orders, one for each voter. That is, for each v € V, >, is a ranking over the candidates C, where
¢ >, ¢ means that v strictly prefers c to .

We say that a metric d is aligned with a preference profile >, and write d>> >, if for all voters
v eV, e, d implies d(v, ) < d(v, ). That is, the metric reflects the preference orders.

We now define the central problem of interest. An algorithm ALG, also referred to as a voting rule,
receives as input a preference profile > that is consistent with an unknown metric d. The algorithm
must select a committee W C C of size k£ with the aim of minimizing the social cost SC(W, d), even
though it has no access to the actual distances in d.

The distortion of ALG is defined as the worst-case approximation ratio it may incur over all pref-
erence profiles and all metrics aligned with them:

)

distortion(ALG) = sup sup SC(ALG(-), d)
P D SCw(d),d)
where W*(d) denotes an optimal committee of size £ minimizing the social cost under the metric d.

In chapter [J, we analyze the power and limitations of voting mechanisms that operate solely on
ordinal preference information, within the metric distortion framework introduced by Anshelevich et
al. [8]. While the algorithm does not have access to the underlying distance function, it must still
strive to select a high-quality committee—one whose total distance to the electorate is close to the
optimum. The gap between the performance of a voting rule and the true optimum is captured by the
notion of distortion, a central metric studied in this work.

We begin with the single-winner setting (k = 1), where a tight characterization of deterministic
distortion is known. A seminal result of Anshelevich et al.[§] shows that no deterministic rule can
achieve distortion better than 3, even in the simplest possible setting with two candidates. This lower
bound is tight: Gkatzelis, Halpern, and Shah [50] construct a deterministic algorithm achieving dis-
tortion exactly 3, relying on deep combinatorial structure. Remarkably, a significantly simpler voting
rule known as the Plurality-Veto rule, introduced by Kizilkaya and Kempe [59], also matches this
bound and is presented in detail, along with an elementary proof of its performance guarantee.

We now turn to the more general and practically significant case of multi-winner elections (k > 2).
Unlike the single-winner setting, there are several natural ways to define a voter’s cost for a committee,
each giving rise to distinct models of representation with different normative properties [41, 44].

One widely studied approach, considered by Goel et al. [52] and Chen et al. [37], defines a voter’s
cost as the sum of her distances to all members of the committee. In this framework, Goel et al. [52]
showed that applying a single-winner rule with distortion « independently % times yields a multi-
winner rule with the same distortion bound «. Consequently, the optimal distortion of 3 established
for the single-winner case [50] can also be achieved under this additive cost model. However, such
rules tend to select committees that reflect the preferences of majority voters, often at the expense of
diversity.

In contrast, our focus lies on the setting where a voter’s cost is determined by her distance to the
closest committee member. This formulation aligns with the objectives of the Chamberlin—Courant [34]
and Monroe [66] voting rules, which seek to elect representative and diverse committees that reflect
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the distribution of the entire electorate. Under this cost model, the problem becomes significantly
more challenging, both in terms of algorithm design and in establishing tight distortion bounds.
Caragiannis, Shah, and Voudouris [33] provide a structural framework revealing a trichotomy in
distortion depending on how voter costs are defined. Adapting their insights to the standard model
where each voter is assigned to their nearest committee member, we derive the following lower and
upper bounds.
Specifically, we prove that:

e For k > 3, the distortion of every deterministic voting rule is unbounded.

e For k = 2, the distortion can be bounded but grows linearly with the number of voters. We
describe and analyze the PolarOpposites algorithm, which achieves distortion O(n).

e Finally, we show that even randomized rules cannot circumvent this limitation: for k = 2, the
distortion of every (possibly randomized) rule remains 2(n) in the worst case.

These findings highlight a sharp contrast between the single-winner and multi-winner cases, and
illustrate fundamental limits of ordinal-only decision making. They motivate further exploration of
enhanced models incorporating cardinal feedback or randomization, which are taken up in subsequent
chapters.

Following the resolution of the optimal distortion bound for deterministic voting rules, a key open
problem remains: determining the best possible distortion achievable by randomized algorithms. An-
shelevich and Postl [[11] established a foundational lower bound of 2, and showed that the Random
Dictatorship rule achieves distortion strictly less than 3, although this value converges to 3 as the
number of voters increases. Subsequent work by Fain et al. [43] and Kempe [58] introduced alter-
native randomized mechanisms whose distortion also approaches 3, but in this case as the number of
candidates grows.

More recently, Charikar and Ramakrishnan [35] improved the known lower bound to 2.1126, and
Charikar et al. [36] designed a randomized rule with distortion at most 2.753, thereby breaking the
long-standing barrier of 3 for the first time. Nonetheless, the exact optimal distortion for randomized
single-winner rules remains unresolved.

The results above are summarized in the following Table.

Committee Size k Setting Best Distortion
k=1 Deterministic 3 (tight)
k=1 Randomized 2,3 — 2]
k=2 Deterministic O(n)
k=2 Any randomized rule Q(n)
k>3 Deterministic Unbounded
k>3 Any randomized rule Unbounded

Table 2.1: Distortion bounds for purely ordinal voting algorithms under metric preferences.

Additional lines of research have explored connections and generalizations of the metric distortion
framework. For example, Goel, Lee, and Shah [51] consider hybrid models that combine metric
distortion with utilitarian objectives, where agents’ valuations are arbitrary normalized utilities. Other
works examine enriched informational models, such as [[l]], which allows access to more than just
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ordinal preferences, and [58], which investigates the trade-off between achievable distortion and the
communication complexity of voting rules.

Metric distortion has also been studied in more constrained settings: in distributed environments [[10],
under the requirement of truthfulness [43], or when preference information is even more limited than
standard rankings [|L1, 55, 43, 58, 25, §]. These extensions highlight the rich interplay between infor-
mational assumptions, algorithmic complexity, and efficiency guarantees in social choice.

2.3 Metric Distortion of Algorithms with access to cardinal queries

The strong impossibility results established for purely ordinal algorithms—particularly the unbounded
distortion for £ > 3 raise a natural question: can limited access to the underlying metric information
restore meaningful guarantees in multi-winner elections. Motivated by recent progress on query-
based models [3, 5, 4], we study the impact of augmenting voting algorithms with a small number
of distance queries to voters. This enhancement allows the algorithm to occasionally access exact
distances, while still operating primarily on ordinal preferences.

In Chapter [, we review recent work by Fotakis et al. [47], which investigates the trade-off between
distortion and query complexity in the 1-dimensional Euclidean setting, where the set of voters need
not coincide with the set of candidates. The egalitarian cost of a committee is defined as the maximum
cost incurred by any voter, i.e., the distance from the worst-off voter to her closest committee member.

Their first result establishes a strong lower bound: any deterministic algorithm that uses fewer than
k — 2 distance queries might incur unbounded distortion, both for the social cost and the egalitarian
cost. This result highlights the inherent limitations of purely ordinal mechanisms, even in highly
structured metric spaces.

The authors then demonstrate that this barrier can be overcome with a modest number of queries.
They adapt a greedy algorithm inspired by Gonzalez’s 2-approximation for k-center, showing that it
achieves a distortion of at most 5n for the social cost and at most 5 for the egalitarian cost, using only
O(k) distance queries. These bounds include additive factors of 3n and 3, respectively, which arise
from the fact that the voter and candidate sets do not coincide.

Building on this, they introduce a more sophisticated method based on the concept of (¢, 5)-
bicriteria solutions, small subsets of candidates whose structure approximates that of an optimal com-
mittee. Through a hierarchical partitioning procedure, they construct an (O(k logn), 2)-bicriteria
solution using only O(klogn) queries. This reduction enables the use of dynamic programming
over a restricted domain, yielding a committee with constant distortion (at most 5) while maintaining
polynomial-time complexity and sublinear query usage.

In Chapter B, we review recent work by Burkhardt et al. [29], which investigates the trade-off
between distortion and query complexity in general metric spaces, where no structural assumptions
(such as Euclidean geometry) can be made. In this setting, the lack of total order forces the candidate
set to coincide with the set of voters, and all inter-agent distances must be obtained explicitly through
queries.

While we do not detail their lower bounds in this thesis, it is worth noting that they establish strong
impossibility results: no algorithm using fewer than O(k) distance queries can guarantee bounded
distortion for any (k, z)-clustering objective. Moreover, achieving constant distortion with respect to
the social cost requires at least Q(k + loglogn) queries when k is variable, and at least Q(k - 2°¢" ")
when £k is fixed. These results reinforce the necessity of limited metric access, even when paired with
full ordinal information.

On the positive side, and of particular relevance to this thesis, they show that O (k) distance queries
suffice to achieve bounded distortion. In particular, a carefully designed greedy procedure, inspired
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by Gonzalez’s algorithm for k-center, yields distortion guarantees of at most 4 for the egalitarian cost
and 4n for the social cost, while issuing only 2k queries.

Building on this scaffold, the authors propose a more sophisticated algorithm for the k-median
objective, leveraging the concept of (¢, 3)-bicriteria solutions and a ring-based hierarchical partition-
ing scheme. The central contribution is an algorithm that achieves constant expected distortion using
only O(k* log® n) distance queries. The key idea is to emulate the k-median++ sampling procedure by
approximating the distance-based distribution over points via ring decompositions, where each ring
requires only one distance query. A boosted sampling scheme ensures that high-cost regions are likely
to be sampled, and a geometric decay analysis of the uncovered cost guarantees rapid convergence.
Finally, a bicriteria-to-true reduction step converts the resulting set into a valid committee of size &,
preserving the constant-factor approximation. The resulting algorithm is robust, query-efficient, and
operates entirely under ordinal access with limited metric information.

Together, these results demonstrate that strategic use of a few distance queries suffices to overcome
the unbounded distortion barrier in multi-winner elections. They highlight the power of hybrid models
that combine ordinal preferences with limited cardinal access, and provide a concrete path forward
for designing voting rules that are both informative and efficient.

2.4 Clustering and Stability

In light of the geometric interpretation of metric preferences, the task of selecting a socially optimal
committee can be naturally viewed as a clustering problem: each voter is assigned to their closest
committee member, and the goal is to minimize the total assignment cost. This perspective reveals a
strong connection between multi-winner voting and classical clustering objectives such as k-median
and k-center, and it motivates the use of algorithmic tools from clustering theory in the design and
analysis of voting rules.

Unfortunately, these objectives are NP-hard to optimize in general metric spaces, and distortion can
be unbounded in the worst case—even with full access to distance information. To go beyond these
limitations, we adopt a beyond worst-case viewpoint grounded in structural assumptions. In particular,
we focus on perturbation stability, a widely studied condition in clustering which assumes that the
optimal solution remains unchanged under bounded multiplicative perturbations of the metric. This
assumption reflects the intuition that many real-world instances possess a strong underlying structure
that can be algorithmically exploited.

In Chapter f, we explore the implications of perturbation stability for k& — median clustering. We
begin by formalizing the notion of ~y-perturbation stability and studying the structural properties it
implies, such as:

e -center proximity, which guarantees that each point is significantly closer to its own cluster
center than to any other;

e weak center proximity, a relaxation that holds for most points but not necessarily all;
o cluster separation, ensuring that clusters are well-isolated;

o and the min-stability property, which implies that the optimal clustering corresponds to a pruning
of the single-linkage tree.

We show that ~y-center proximity with v > 2 4 /3 implies min-stability, thereby connecting local
distance conditions to global structural guarantees.



These structural insights enable the design of efficient algorithms that recover the optimal com-
mittee under perturbation stability. In particular, we present two algorithmic frameworks that succeed
on stable instances:

e Single-Link++: This algorithm constructs a minimum spanning tree (MST) over the metric
space and evaluates all k-clusterings formed by removing £ — 1 edges. Among these, it selects
the one minimizing the k-median objective. We show that for instances satisfying 2-perturbation
stability, the optimal clustering corresponds to such a partition, allowing the algorithm to recover
it in polynomial time.

e Hierarchical Clustering with Dynamic Programming: For instances with v > 2 + /3, we con-
struct a hierarchical clustering tree using single-linkage. The optimal clustering is guaranteed
to appear as a pruning of this tree. A dynamic programming routine efficiently searches for
the optimal pruning, yielding an exact solution with runtime O(nK? + nT'(n)), where T'(n)
denotes the cost of evaluating the clustering objective on subtrees.

Both algorithms exploit the combinatorial structure implied by perturbation stability to overcome
worst-case hardness barriers. In the context of voting, this demonstrates that stable preference pro-
files allow for efficient and query-efficient selection of high-quality committees, even when metric
information is only partially accessible.

2.5 Contribution

In chapter [, we investigate how perturbation stability can be leveraged to design query-efficient
algorithms for committee selection in metric spaces. Building on existing structural insights from
the clustering literature, we describe a simple yet general reduction framework that identifies a small
candidate set—referred to as the frontier—which is guaranteed to contain the optimal solution under
suitable stability assumptions.

The key observation is that in y-stable instances—particularly when v > 2 4 /3—the optimal
clustering exhibits strong separation and laminarity properties. These properties allow us to identify
the frontier using only ordinal information, without relying on any distance queries. As aresult, we can
construct a compact representation of the solution space whose size depends only on the committee
size k, rather than the total number of candidates n.

We illustrate this framework in two settings:

e In one-dimensional Euclidean spaces, we show that the frontier-based reduction yields a (2% —
1, 1)-bicriteria solution. Applying a known dynamic programming algorithm on this reduced
instance leads to a deterministic algorithm with query complexity O(2*) and constant distortion.

e In general metric spaces, when voters and candidates coincide, we use the frontier to obtain a
(2% — 1, 3)-bicriteria solution. We then combine this with a standard approximation algorithm,
resulting in a constant-factor approximation using O(4*) distance queries.

While the algorithms we present are adaptations of existing methods, our goal is to demonstrate
how the structural properties of stable instances can guide the design of query-efficient algorithms
in voting. These results offer a modest step toward bridging the gap between worst-case hardness
and practical structure, and they point to broader opportunities for leveraging stability in metric social
choice problems.



CHAPTER 3

Metric distortion of Purely Ordinal
Algorithms

In this chapter, we study what can be achieved by voting mechanisms under metric preferences, as-
suming access only to ordinal information. Voters and candidates are modeled as points in a metric
space, where each voter prefers candidates that are closer to them over those that are farther away.
The goal is to select a set of k candidates that minimizes the social cost, defined as the total distance
from all voters to the chosen committee.

A key concept for evaluating voting mechanisms under metric preferences is metric distortion.
This measures the worst-case ratio between the social cost of the committee selected by a voting rule
and the social cost of the optimal committee, which minimizes the total distance from all voters. In
other words, distortion quantifies how far a rule’s outcome can be from the best possible, assuming
only access to ordinal information—that is, rankings over candidates—rather than the exact distances.

This concept is especially relevant in real-world scenarios where voters may find it difficult to
assign exact numerical values to their preferences but can still rank candidates in order of desirability.
Metric distortion helps us evaluate how much efficiency is lost when decisions are made using only
rankings instead of full (cardinal) preference data.

We begin by presenting a result from Anshelevich, Bhardwaj, Elkind, and Postl [8], which estab-
lishes a lower bound of 3 on the distortion of any deterministic voting rule in the single-winner set-
ting. The authors also conjectured that the bound of 3 is tight. This conjecture was later confirmed by
Gkatzelis, Halpern, and Shah [5(0], who presented a polynomial-time deterministic algorithm achiev-
ing distortion 3. Their approach builds on a structural result known as the Ranking-Matching Lemma,
whose proof relies on a combinatorial conjecture originally posed by Munagala [67)]. Although the al-
gorithm of Gkatzelis et al. is more involved, a significantly simpler rule achieving the same distortion
was subsequently proposed and analyzed by Kizilkaya and Kempe [59]. In this chapter, we present
their version, known as the Plurality-Veto rule, along with a simple proof of its distortion guarantee.

We then discuss results by Caragiannis, Shah, and Voudouris [33], who generalize this framework
to the multi-winner case. They characterize the best possible distortion guarantees for both determin-
istic and randomized algorithms that rely solely on ordinal information.
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3.1 Definitions and preliminaries

We now formalize the key components of our model, including the notion of metric spaces, voter
preferences, and the definition of social cost. These definitions lay the foundation for the distortion
framework discussed in later sections.

Let V and C be two finite sets, representing the set of voters and the set of candidates, respectively.
We denote n = |V| as the number of voters and m = |C| as the number of candidates. Throughout
this work, individual voters are typically denoted by u or v, and candidates by ¢, x, or y.

We now recall the formal definition of a metric. Given a non-empty set X, a functiond : X x X —
R is said to be a metric if it satisfies the following conditions:

(i) Non-negativity and identity of indiscernibles: For all a,b € X, d(a,b) > 0, and d(a,b) = 0
ifand only if a = b.

(ii) Symmetry: Forall a,b € X, d(a,b) = d(b,a).
(iii) Triangle inequality: Forall a,b,c € X, d(a,c) < d(a,b) + d(b, c).

A pair (X, d) satisfying these properties is called a metric space.
In our setting, we assume that the sets V' and C are embedded in a common metric space (X, d),
meaning that the distance d(a, b) is well-defined for all pairs a,b € V U C.

Definition 3.1.1 (Social cost). For a voter u € V and a set S C C of candidates, we define the cost
experienced by u from the set S, denoted by cost,(.5), as:

cost, (S) = mind(u,c),
ceS
which represents the distance from w to her closest representative in .S, under the metric d.
The social cost of the set S, denoted SC(.S), is then defined as the sum of the individual costs over
all voters:

SC(S) = ) costy(S).

Definition 3.1.2 (Preference Ranking). A triplet (V,C,d) as described above is referred to as an
instance. The value d(v, ¢) represents how much a voter v € V prefers a candidate ¢ € C’; smaller
distances indicate stronger preferences. We say that voter v prefers candidate ¢ over candidate ¢’ if
d(v,c) < d(v, ), and denote this by

¢y C.

Each instance (V, C, d) induces a preference ranking for every voter, defined as a strict total order
>, over the candidates C'. We write ¢ =, ¢’ if v ranks c strictly above ¢’.

Definition 3.1.3 (Preference Profile). A preference profile =:= (>,),cv is an n-tuple of strict total
orders, one for each voter. That is, for each v € V, >, is a ranking over the candidates C, where
¢ >, ¢ means that v strictly prefers ¢ to .

We are now ready to describe the k-Committee Election Problem. An algorithm ALG receives as
input a preference profile =, which is induced by an instance (V, C, d) and a positive number k. The
algorithm does not have access to the underlying distance function d. The goal is to select a subset
S C C of candidates, called a committee, of size |S| = k < m — 1, that minimizes the total social
cost:

SC(S) = costy(S).

veV
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We refer to such an algorithm as a voting rule, and to its output as the winning committee (or winner,
in the single-candidate case) under that rule. The quality of a voting rule is evaluated using the notion
of distortion, introduced by Procaccia and Rosenschein (2006).[69]. Distortion measures how well a
rule approximates the optimal solution using only ordinal information.

Given a preference profile >, a committee size k, the distortion of a rule R is defined as the worst-
case ratio between the social cost of the committee selected by R and that of an optimal committee:

SC(R(>,k))

dist k) =
ist(R, >, k) = sup ming. s SC(5)’

(D

where the supremum is taken over all metric embeddings of voter and candidate locations that are
consistent with the preference profile . That is, the metric must satisfy d(v, ¢) < d(v, ) whenever
c =y C.

The distortion of a deterministic k-committee rule R is then defined as the maximum value that
dist(R, >, k) attains over all preference profiles > with n voters and m candidates.

3.2 Electing a single candidate

We start our investigation with the simplest possible setting: choosing a single candidate (k = 1) to
minimize total distance to the voters. Despite its simplicity, this case already exhibits strong impos-
sibility results, as well as tight algorithmic guarantees.

3.2.1 Lower Bound for Deterministic Voting Rules

We now present a foundational result from [8], which establishes that no deterministic single-winner
voting rule can achieve distortion strictly less than 3. While randomized mechanisms are known to
achieve lower distortion in the single-winner setting, we primarily focus on deterministic algorithms
in this work and therefore only mention this fact without analyzing it further.

Theorem 3.2.1 (Anshelevich-Bhardwaj-Elkind-Postl-Skowron). Any deterministic algorithm has worst-
case distortion at least 3 for the social cost.

Proof. We analyze a scenario with exactly two candidates,  and w. Suppose the voter population is
evenly split: half prefer x over w, and the other half prefer w over z. In other words, the voter set V'
can be partitioned into two equal subsets, V1 and V3, with |V1| = [V3| = §. The preference profile -
is defined as follows:

— For every voter v € V7, their ranking is =, (z) = 1 and =, (w) = 2.
— For every voter v € V5, their ranking is =, (z) = 2 and =, (w) = 1.

Now, consider any algorithm ALG, and assume without loss of generality that the algorithm selects
w as the winner on this profile. We construct a distance function d that is consistent with the preference
profile > as follows:

Each voter in V7 (who prefers x) is located at zero distance from z, i.e., d(v, ) = 0, and at distance
2 from w, i.e., d(v, w) = 2.

Each voter in V5 (who prefers w) is located approximately halfway between the two candidates,
with d(v,z) = 1 + eand d(v, w) = 1 — ¢, for some small € > 0.



24 - Metric distortion of Purely Ordinal Algorithms
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5 voters (V1) 5 voters (V3)

Figure B.1: Example for Theorem B.2.1.

We compute

SC(z,d) = > d(v,2) = (1+¢) =

2
veV

and " "
SC(w,d) =Y _ d(v,w) =25+(1-¢ 5

veV

This shows that
2n+(1—€en  3—¢

(I+¢)n T l+e

which tends to 3 as e — 0. O

distortion(ALG) >

Remark: In the example used in the proof of Theorem B.2.1], we set d(z, v) = 0 even though z # v,
meaning that the function d is technically a pseudometric rather than a true metric. However, this
is not a significant violation, as the value 0 could just as well be replaced with any arbitrarily small
positive number without affecting the core argument. Throughout the rest of the thesis, we will adopt
this convention when convenient.

Having established that no deterministic algorithm can achieve distortion better than 3 in the single-
winner setting, a natural question is whether this bound is tight. This conjecture, posed by Anshele-
vich et al.[8], was later resolved by Gkatzelis, Halpern, and Shah[50], who presented a determinis-
tic algorithm with distortion exactly 3. Their construction relies on a structural result known as the
Ranking-Matching Lemma, whose proof builds on a combinatorial conjecture originally formulated
by Munagala [67].

While this result provides a tight upper bound, the algorithm itself is relatively complex. Fortu-
nately, Kizilkaya and Kempe [59] later showed that an extremely simple rule—called the Plurality-
Veto rule—also achieves distortion 3. In the remainder of this section, we describe this rule and present
their concise and elegant proof of its distortion guarantee.
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3.2.2 A Simple Rule with Optimal Distortion: The Plurality-Veto Rule

Algorithm 1 PLURALITY VETO (Kizilkaya, Kempe)
Input: An election & = (V, C, >)

Output: A winning candidate ¢ € C

Initialize score(c) < plu(c) for each ¢ € C'
Let (v1,...,vy,) be an arbitrary ordering of V'
For:=1,2,...,n

A; < {c e C|score(c) > 0}

¢; < bottomy, (v;)

decrement score(c;) by 1

N R

return ¢, {the candidate remaining at the end}

We now show that this rule achieves distortion at most 3, matching the lower bound. The argument
follows a careful use of triangle inequalities and veto mechanics.

Proof. Let j, denote the candidate vetoed by voter u, and let j* be the final chosen candidate. Fur-
thermore, for each candidate j € C, let P; be the set of voters who rank j in first place, and define
plu(j) = |F;].

Since j* maintains a strictly positive score until the final step of the algorithm, it must be that
J* =u Ju for every voter u € V; in other words, each voter weakly prefers j* to the candidate j,, that
they vetoed.

Now consider any candidate ¢ € C'. We will compare the total distance cost of the selected candi-
date j* to that of .

D d(iTv) <Y d(e,v) (G = o)
veV veV
< Z i,v) 4+ d(i, jv)) (triangle inequality)
veV
= Z d(i,v) + Z plu(j) - d(i,7) (j is vetoed plu(j) times)
veV jec
=Y d(i,v)+ > > d(i,j)
veV JEC vEP;
< Zd i,v) + Z Z (i,v) +d(j,v)) (triangle inequality)
veV jeC veP;
<> dio)+ Y0 2d(6,v) (v € Pj implies j =, i < d(j,v) < d(i,v))
veV jeC veP;
=3 _d(i,v)
veV
Since this holds for any candidate, it must also hold for the optimal candidate. O

The Plurality-Veto rule thus provides a remarkably simple yet provably optimal deterministic so-
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lution in the single-winner setting, achieving the minimum possible distortion of 3. However, many
real-world applications—such as parliamentary elections, committee formation, or recommendation
systems—require selecting not just a single candidate, but a set of representatives. This naturally leads
us to the multi-winner setting, where the goal is to select a committee of size k£ > 1 that minimizes the
total social cost. In the following subsection, we extend our focus to this more general and practically
relevant problem, and explore how ordinal algorithms perform in the multi-winner case.

3.3 Multi-winner Voting

To address the general multi-winner setting, Caragiannis, Shah, and Voudouris [33] utilized a model
in which each voter’s cost is determined by the distance to their ¢-th closest candidate in the elected
committee. Within this framework, they established a striking trichotomy in the distortion of multi-
winner voting rules, depending on the relationship between the committee size k£ and the parameter

q:
e When g < %, the distortion is unbounded;
e When § < q <k, the distortion grows asymptotically linearly with the number of voters;
e When q > %, the distortion is bounded by a constant.

In the following section, we instantiate the general framework of Caragiannis et al. [33] to the
special case where each voter’s cost is defined as the distance to their closest representative in the
committee, that is, we set ¢ = 1. Since this is a direct specialization of their model, all of their
structural insights and distortion bounds apply without modification. Having already established the
tight distortion bounds for the single-winner case (k = 1), we now present their results for the multi-
winner setting with k = 2 and k£ > 3.

Unbounded distortion for k£ > 3

Theorem 3.3.1 (Caragiannis, Shah, Voudouris). For every deterministic multi-winner voting rule, the
worst-case distortion is unbounded when k > 3.

Proof. Let k > 3 be the committee size, and let f be a deterministic multi-winner voting rule. Define
L=k+12>4.

We set L = k + 1, so that the number of voters and candidates exceeds the committee size by
one. This ensures that at least one candidate must be excluded from any selected committee, which is
crucial for our construction.

We construct an instance with n = L agents, partitioned into two groups:

V=A{v,...,vry2}, U=A{ur,...,urpo}-
The set of candidates consists of m = L alternatives, divided into:
X =A{z1,22,...,2 121}, Y ={y1.v2,-- . y[rso
We now define a preference profile consistent with the following:

e Every agent in V ranks all candidates in X above those in Y.
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e Every agent in U ranks all candidates in Y above those in X.

e For each ¢ € [|L/2]], agent v, ranks z; > x; whenever [¢ — i| < |¢ — j|, and ranks the
Y -candidates in the fixed order y1 > y2 > -+ >y /2]

e For each ¢ € [[L/2]], agent uy ranks y; > y; whenever [¢ — i| < |¢ — j]|, and ranks the
X-candidates in reverse order: |1/ > - > x1.

Since m = L > k, not all alternatives can be included in the committee. We distinguish between
two exhaustive cases:

[ Voter Candidate ranking )
U1 T1 = T2 = Y1 > Y2
V2 To > T1 > Y1 > Y2
U1 Y1 > Y2 = To = X1
U Y2 = Y1 = T2 - X1

\ J

Table 3.1: Example preference profile for Theorem B.3.1], instantiated with committee size k = 3 and
four alternatives.

V1,21 UL, Y1

V2, T2 Ui, Y1 Uz, Y2 V1,21 Vg, To ug, Y2
+ + + > + + +
©)

(a) The metric space in Case 1. (b) The metric space in Case 2.

Figure B.2: The two metric spaces illustrated correspond to the construction used in the proof of
Theorem B.3.1], for the case & = 3. Both metrics are consistent with the ordinal preferences given
in Table . In the first metric, if the committee fails to include both alternatives in Y = {y1, 92},
then either u; or up will incur a positive social cost. However, selecting {y1,y2} along with any
one alternative from X = {x1,z2} results in a total social cost of zero. On the other hand, if all
alternatives from Y are included in the committee, then only one alternative from X can be selected.
This means that in the second metric, either v; or vo will incur a positive cost. Since in this case, the
optimal committee {x1, z2} together with any single alternative from Y also achieves zero cost, the
distortion remains unbounded.

Case 1: At least one candidate in 'Y is excluded from the committee.
Suppose that some alternative yy~ € Y is not selected, for some ¢* € [[L/2]]. Consider the
following one-dimensional Euclidean embedding that respects the given rankings:

e All agents in V' and all candidates in X are located at position 0.
e Foreach ¢ € [[L/2]], agent uy and candidate y, are placed at position [L/2] + £.

Since yy+ is excluded from the committee, agent uy« must be matched to a farther candidate, in-
curring strictly positive cost. Which implies that the total social cost under f is also strictly positive.
However, we can achieve zero social cost by selecting all alternatives in Y, and filling the remain-
ing k — [L/2] committee spots with any subset of candidates from X. This is feasible under the
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assumption k > 3, since it guarantees k — [L/2] > 1. Hence, in this case, the distortion of f is
unbounded.

Case 2: All candidates in Y are included in the committee.
Now suppose that f selects all candidates in Y. Consider a different one-dimensional Euclidean
embedding consistent with the same rankings:

e Foreach ¢ € [| L/2]], agent v, and candidate x, are placed at position —L + /.

o All agents in U and all candidates in Y are placed at position 0.

Since the committee includes all of Y, at least one alternative from X must be omitted (as |Y| =
[L/2] > k — 1). Therefore, some candidate xy € X is excluded, and the corresponding agent vy
incurs a cost of at least 1. Consequently, the total social cost is at least 1.

On the other hand, selecting all alternatives in X, along with any k£ — | L /2] candidates from Y/,
yields zero social cost. Again, this is feasible since K — | L/2| > 1 under the assumption & > 3. Thus,
the distortion of f is unbounded in this case as well.

We conclude that for any deterministic voting rule f, if £ > 3, the worst-case distortion can be
made arbitrarily large. O

Remark. While the proof above is tailored to deterministic voting rules, the lower bound remains valid
even for randomized algorithms. In particular, if a randomized rule fails to include some alternative
from Y with non-zero probability (as in Case 1), or fails to include some alternative from X with non-
zero probability (as in Case 2), then there exists a consistent metric embedding in which the expected
social cost is strictly positive—while the optimal solution achieves cost zero. Hence, the distortion
remains unbounded in expectation.

Linear Distortion for k = 2

We now focus on the case where & = 2. In this setting, Caragiannis, Shah, and Voudouris [33]
demonstrated that although the distortion can be bounded, it remains linear in the number of agents,
which may be very large in practice.

To address this, they introduced a deterministic multi-winner voting rule called PolarOpposites,
which runs in polynomial time and achieves a distortion of O(n). In what follows, we present the
PolarOpposites algorithm—a conceptually simple yet effective rule—and provide an analysis of its
distortion guarantee. While the algorithm itself is relatively straightforward, the upper bound analysis
requires a more delicate argument.

Algorithm 2 Constructing the set .S for structural guarantee

Input: Voters V' and optimal committee O
Output: A subset S C V

1: Initialize S < 0

2: Sort the voters in V' in non-decreasing order of ¢;(O)
3: For each voter ¢ in this sorted order:

4:  If $5 € S such that top;(O) = top,(O):

5 Addito S

6

: return S
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To that end we first present a structural lemma of [33] which is useful to the proof of the upper
bound.

Lemma 3.3.2. Let I = (V,C,d, k) be an instance with a set of voters V, candidates C, a metric d,
and a desired committee size k. Let O C C be an optimal committee of size k, minimizing the total
cost SC(O). Then, there exists a subset of voters S C V with |S| < k, such that for every voteri € V,
there exists a voter j € S satisfying:

e t0p;(0) = top;(0), and
e ¢;(0) <¢(0),

where top,(A) is the most-preferred candidate by voter i among a subset A C C, and define the
corresponding cost as ¢;(A) = d(i,top;(A)). When the subset under consideration is the entire set of
candidates C, we simplify the notation and write top; instead of top;(C'), and similarly ¢; = d(i, top;).

Furthermore, for any committee C' 2 {top;(A) : j € S}, it holds that

¢i(C) <3-¢i(0), forallieV.

Proof. We construct the set S C V using Algorithm Pl Since we are only interested in proving the
existence of such a set, we assume access to the underlying cost values.

By construction, for each voter i € V, either ¢ € S, in which case the condition in the lemma
holds trivially for j = 4, or there exists a voter j € .S who was considered before ¢ in Algorithm P and
satisfies top;(O) = top;(0) and ¢;(0) < ¢;(0).

Since each voter j € S contributes a distinct top choice from the optimal committee O, and each

such choice belongs to O, we must have |S| < |O| = k.

For the second claim, consider any committee C’ D {top;(C) : i € S}. Clearly, ¢;(C") < ¢;(O)
for every i € S, since top,;(C') € C” and C is the candidate set.

By the property of .S established above, for any voter i € V' \ S, there exists a voter j € .S such
that top; (O) = top;(O) and ¢;(O) < ¢;(O). Let x = top,(0) = top;(O), and let y = top,;(C") € C’
be the most-preferred candidate of j in the committee C’. We make the following observations:

e Since z = top,(0), it follows that d(i, z) = ¢;(O),
e Since x = top;(0), we have d(j, ) = ¢;(O) < ¢;(0),
e Sincey = top;(C’) € C"and top,;(C) C ¢, it follows that d(j, y) < ¢;(C") < ¢;(0) < ¢;(0).

By the triangle inequality:
ci(C') <d(i,y) < d(i, x) +d(j,x) + d(G,y) < 3-ci(0).

This concludes the proof. O
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Algorithm 3 PolarOpposites for k£ = 2

: Choose an arbitrary voter i € V'

: Choose an agent j € arg max,cy (3 ¢i({top,})
: If top; # top;, then

W < {top;, top; }

: Else

Choose an arbitrary candidate a € C'\ {top;, }
W <« {top;,a}

: return W

Theorem 3.3.3 (Caragiannis, Shah, Voudouris). The distortion of PolarOpposites for k = 2 is O(n),
where n is the number of voters.

Proof. LetI = (V,C,d, k = 2) be an instance. Let ¢ and j be the agents chosen by PolarOpposites
on I, let W be the committee returned by it, and let O € argmincy,|cvj—o SC(C”) be an optimal
committee for 1.

We will show that for every agent ¢ € V, it holds that

ce(W) < ¢(O) +4-SC(0).
By summing over all agents, we obtain that
SC(W) < (4n+1) - SC(0),

thus implying an upper bound of 4n + 1 on the distortion of PolarOpposites.
We distinguish between the following two cases:

Case 1: top;(O) = top;(0) = z.
For any agent ¢ € V, since top; € W, we have

co(W) < d(¢, topj).
Using the triangle inequality,
d(l,topj) < d(€,tope) + d(i,tope) + d(i, ) + d(j, ) + d(j, top;).

Now observe:

® d(,topy) = cp < ¢i(O).

e d(i,tope) < d(i,topj), since j was chosen to maximize c;(top;).

e d(i,z) = ¢;(0), and similarly d(j, z) = ¢;(O).

o d(j,topj) = ¢j < ¢;(0).

So
(W) < ¢(O) + d(i,topj) +¢i(0) + QCJ‘(O).
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Again by the triangle inequality,
and hence

ce(W) < ¢(0)+2¢;(0) +4¢;(0).
Finally, since SC(O) > ¢;(0O) + ¢;(0), we get

(W) < ¢(0O) +4SC(0).

Case 2: top,(O) # top,(0).

Consider the set S guaranteed to exist by Lemma B.3.2. Since k& = 2 we have that | S| < 2.

If |S| = 1, then there exists a single agent u € S such that for every voter ¢ € V/, it holds that
top,(O) = top,,(O). In this case, the proof is immediate.

If |S| = 2, we claim that there exists a function g : V' — S such that for every agent £ € V, it
holds that top,(O) = top,y(O), and moreover, that S = {g(i), g(j) }-

Lemma guarantees the existence of a function g satisfying the first condition. Suppose for
the sake of contradiction that there exists an agent u € S such that top, (O) ¢ {top;(O),top;(O)}.
Then, top,(O), top;(O), and top,,(O) would all be distinct elements of O, contradicting the fact that
0] = 2.

Therefore, such a function g exists and maps every agent £ € V' to either g(i) or g(j), with top,(O)
equal to one of top;(O) or top;(O).

Now consider any agent ¢ € V, and suppose that g(¢) = g(j) = u € S. (The case where
g(¢) = g(i) is analogous and handled similarly.)

By the properties of S, there exists an alternative x such that

2 = topy(0) = t0p,(0) = top; ().

Since top; € W, it follows that
e(W) < d(,top,).

Applying the triangle inequality, we have:
d(¢,top;) < d(¢,z) + d(z,j) + d(j, top;).
Next, we bound each term individually:
o d(l,x) = ¢(0),
e d(z,j) < ¢;(0),
® d(j,top;) = ¢; < ¢;(0).
Combining these inequalities, we obtain:
ce(W) < ¢(O) + 2¢;(0).
Since SC(O) > ¢;(0), it follows that:

Cg(W) S Cg(O) + QSC(O)
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Finally, noting that 25C'(0) < 45C(0O), we obtain:

cl(W) < (0) +4SC(0),

as desired.

~

iw}‘
U} ({w.2}) ((via}]) (1) (w2}
© © @

(a) The metric space in Case 1. (b) The metric space in Case 2.

The two metric spaces considered in the proof of Theorem B.3.1].

Theorem 3.3.4 (Caragiannis, Shah, Voudouris). For k=2 the distortion of every (even randomized)

multi-winner voting rule is Q(n).

Proof. Let f be an arbitrary multi-winner voting rule. We consider instances with n = 2z + 1 agents,
partitioned into two sets V and U of size = each, and a singleton set {w}.

There are 3 alternatives, named x, y, and z.

Consider any preference profile subject to the following rules:

e Every agent in V has the ranking x > y > z.
e Every agent in U has the ranking y > = > z.
e Agent w has the ranking z > y > x.

Since m = 3 > k, the committee returned by f cannot include every alternative.
We now distinguish between the following two cases. Figure 2 depicts the two metric spaces

considered in these cases.

Case 1: The committee chosen by f does not include alternative z.
Consider the following metric, which is consistent (up to tie-breaking) with the preference profile

defined above:

e The agents in V' U U and the alternatives = and y are all located at 0.

e Agent w and the alternative z are located at 1.

Since alternative z is not included in the chosen committee, the expected cost of agent w, and thus

the social cost under f, is strictly positive.
However, the committee that includes z and any of the alternatives x and y has social cost 0.

Therefore, the distortion of f is unbounded in this case.



Case 2. The committee chosen by f includes alternative z.
Consider the following metric, which is again consistent (up to tie-breaking) with the preference
profile defined above:

e The agents in V' and the alternative x are located at 0.
e The agents in U and the alternative y are located at 1.
e Agent w and the alternative z are located at 2.

Since f selects a committee that includes alternative z, any such committee can include at most
one of {z,y}.

If it does not include alternative x, then the cost of every agent in V' is at least 1. Conversely, if it
does not include alternative y, then the cost of every agent in U is at least 1.

Either way, f selects a committee with social cost at least n.

On the other hand, the committee that includes both alternatives x and ¥ social cost 1, since only
agent w incurs a cost of 1.

Thus, the distortion of f is at least z = (n) in this case.

O

In summary, this chapter established tight distortion bounds for deterministic ordinal voting mech-
anisms under metric preferences. While deterministic rules achieve optimal constant distortion in the
single-winner scenario, our results reveal inherent limitations in the multi-winner context, including
linear and even unbounded distortion. These findings naturally motivate an exploration of random-
ized mechanisms or mechanisms enhanced with limited cardinal information, which we explore in
subsequent chapters
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CHAPTER 4

Committee Selection with Metric
Preferences on the real line and Query
Access

The previous chapter highlighted the limitations of purely ordinal algorithms in the context of com-
mittee selection under metric preferences. While constant distortion is achievable in the single-winner
setting, the multi-winner case suffers from inherent gaps between ordinal information and social cost,
leading to linear or even unbounded distortion.

In this chapter, we explore how access to partial metric information, through selective distance
queries, can overcome these limitations. Specifically, we focus on the one-dimensional Euclidean
setting, where voters and candidates lie on the real line, and distances correspond to absolute differ-
ences in position.

We present a sequence of results by Fotakis, Gourves, and Patsilinakos [48], who study the trade-off
between distortion and query complexity in this setting. They first show that any deterministic algo-
rithm achieving bounded distortion must make at least (k) distance queries, where k is the desired
committee size. They then match this lower bound with a simple greedy algorithm that achieves linear
distortion using only O(k) queries. Finally, they propose an improved algorithm that increases the
query complexity to O(klogn), where n is the number of voters, but guarantees constant distortion.

These results demonstrate that even limited access to distance information, when carefully lever-
aged, enables the design of algorithms with strong performance guarantees, significantly improving
over what is possible in the purely ordinal model.

4.1 Model and Preliminaries

We considerasetC' = {cy, ..., cn} of mcandidatesand aset V' = {vy,..., v, } of n voters. As inthe
previous chapter, we assume that voters and candidates are located in a metric space, and each voter
prefers candidates that are closer to her. Here, we enrich this model by assuming a one-dimensional
Euclidean structure and allowing limited access to cardinal information through distance queries.

Formally, each candidate ¢ € C and each voter v € V is associated with a location z(c), z(v) € R
on the real line. For simplicity, we often identify each agent with her location. Candidates are indexed
so that x(c1) < x(c2) < - -+ < x(cm ), which defines the candidate axis, a fixed left-to-right ordering
consistent with the embedding.
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The cost for a voter v € V to be represented by a candidate ¢ € C' is given by their distance:
cost,(c) = d(v,c) = |z(v) — x(c)|. Foraset S C C, we define cost,(S) = min.cg d(v, ¢), and the
social cost of a committee S C C of size k is

SC(S) = ) costy(S).

veV

We also consider the egalitarian cost EC(S) = max,cy cost,(S).

Each voter provides only a strict total order >, over the candidates, consistent with her costs; that
is, ¢ =, ¢ if and only if d(v,¢) < d(v,c). The profile == (>1,...,>,) is called a I-Euclidean
ranking profile, and is assumed to arise from some fixed—but unknown—embedding of voters and
candidates on the real line. As is standard, we assume all rankings are strict (no ties).

In addition to the ranking profile >, the algorithm has access to a distance oracle: a query of the
form (v, c) € V' x C reveals the true distance d(v, ¢). A deterministic algorithm receives the profile
>, the committee size k, and a query budget ¢, and may adaptively issue up to ¢ distance queries. The
algorithm must then return a committee S C C of size k.

We assume that the candidate axis (i.e., the ordering of candidates on the real line) is known. This
assumption is without loss of generality, since the axis can be reconstructed in polynomial time from
the ranking profile and is unique up to reflection as shown by Elkind and Faliszewski [40]

Distortion. We evaluate the performance of a committee election rule R (also referred to as an
algorithm or mechanism) in terms of its distortion, i.e., the worst-case approximation ratio it achieves
with respect to the social cost under limited metric access. Given a 1-Euclidean ranking profile >,
committee size k, and a query budget ¢, the distortion of R is defined as

SC(R(~, k. q))
minsgc,‘s‘:k SC(S) ’

dist(R, -, k,q) = sup

where the supremum is taken over all collections of voter and candidate locations on the real line that
are consistent with > and with the answers to the ¢ distance queries made by R.

The distortion of a deterministic k-committee rule is the maximum of dist(R, -, k, ¢) over all 1-
Euclidean ranking profiles > with n voters and m candidates. We also consider the distortion with
respect to the egalitarian cost EC(S) by explicitly referring to it when needed.

Additional Notation. Recall that for a voter v € V, top(v) denotes the candidate ranked first in >,
The cluster of a candidate ¢ € C, denoted Cluster(c), is the set of all voters who rank c as their top
choice. A candidate is said to be active if Cluster(c) # 0, i.e., if some voter ranks ¢ first.

We assume that algorithms operate only on the set of active candidates, i.e., those who are the
top choice of at least one voter. An instance is said to be candidate-restricted if every candidate is
active and each voter is placed at the location of her top-ranked candidate. Such instances can be
compactly represented by m pairs (¢;, n;), where n; denotes the number of voters co-located with
candidate ¢;. This simplification is justified by Fotakis et al. [47] (see Proposition 3), who show that
for candidate-restricted instances inactive candidates can be eliminated without increasing the social
cost. Additionally, relocating each voter to her top candidate increases the distortion by at most a
factor of 3 for the social cost (see Theorem §.3.2), and a similar bound holds for the egalitarian cost
(see Theorem }#.2.4).

Although our analysis sometimes refers to candidate-restricted instances for simplicity, the algo-
rithms work for general 1-Euclidean inputs and do not rely on any such structural assumptions. The
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distortion guarantees we prove always compare against the optimal committee in the original (possibly
unrestricted) instance.

Ranking at Candidate Locations. A subtle but important technical challenge arises when using
rankings in algorithm design: for a voter v, the ranking >, may differ from the ranking > (,,), which
orders candidates by increasing distance from top(v) instead of v. This discrepancy—due to the fact
that v and top(v) may be at different locations—limits the ability to infer rankings at other points
on the line from a single voter’s perspective. This issue marks a key difference from the clustering
models studied in related work [29], where such location-based discrepancies are not present.

4.2 Bounded Distortion

4.2.1 Lower bound for the number of queries required for bounded distortion

First we note that there are 3 types of queries:

Regular queries: Given a voter v € V and a candidate ¢ € C, we ask for the distance d(v,c) =
lv — cl.

Candidate queries: Given two candidates ¢, ¢ € C, we ask for the distance d(c, ¢) = |c¢ — ¢/|.

Voter queries: Given two voters v, v’ € V, we ask for the distance d(v,v’) = |[v —V/|.

Following the approach of Fotakis et al. [47], we focus primarily on candidate queries when de-
signing and analyzing committee election rules.It was shown in Appendix E of [47] that both candidate
queries and voter queries can be simulated using a small, constant number of regular queries in the
1-Euclidean setting (at most 6 and 2, respectively). Thus, from an asymptotic perspective, these query
types are interchangeable. For clarity and simplicity, we therefore assume access to candidate queries,
while noting that equivalent results can be obtained using regular queries with only a constant-factor
overhead.

Before designing algorithms with limited metric access, it is important to understand the minimal
amount of information required to guarantee reasonable performance. The following theorem, due
to Fotakis, Gourves, and Patsilinakos [48], provides a tight lower bound on the number of distance
queries needed to ensure bounded distortion.

Theorem 4.2.1 (Fotakis-Gourvés-Patsilinakos). For any k > 3, the distortion of any deterministic
k-committee election rule that uses at most k — 3 distance queries and selects k out of at least 2(k — 1)
candidates on the real line cannot be bounded by any function of n, m, and k (for both the social cost
and the egalitarian cost).

Proof. Let k > 3 and consider m = 2(k — 1) candidates ¢; < ¢g < - -+ < cgx_2 located on the real
line. Fix a constant D large enough such that D? > max{2D + 1, k}, and a small € € (0, 1/k).
We construct a basic instance as follows. For each i € [k — 1], set:

d(cgi—1,c2i) = 1,
and for each i € [k — 2], define:

d(C2i702i+1) = D2 + (Z — 1)6.
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Letn = m, and assign each of the n voters to be co-located with a distinct candidate (their top choice).
Thus, all voters have unique top preferences, and the ordinal rankings are identical across all instances.
We now define 2(k — 1) variants of the basic instance. In the j-th variant:

e If j is odd, move candidate c; left by D, so that d(c;j,cj+1) = D + 1.
e If j is even, move candidate ¢; right by D, so that d(¢;_1,¢;) = D + 1.

All other candidates remain fixed. Thus, each variant introduces exactly one distant pair of candidates
(at distance D + 1), while all other original pairs (cg;_1, c2;) remain close (at distance 1).

In each variant, the optimal committee (with respect to both social and egalitarian cost) includes
the two candidates in the distant pair:

e If j is odd, the optimal committee includes {c;, cj11};
e If j is even, the optimal committee includes {c;_1, ¢;}.

The remaining k — 2 candidates can be selected arbitrarily, one from each of the remaining close pairs.
This yields:

e Social cost: k — 2,
e Egalitarian cost: 1.

Any committee that does not include the distant pair causes at least one voter to be at distance > D
from the committee, resulting in a social and egalitarian cost of at least D, which is arbitrarily worse
due to our choice of D > k.

Crucially, the ordinal rankings of the voters are identical across all variants, since each voter re-
mains co-located with their top candidate. Therefore, no deterministic rule can distinguish between
the variants based on ordinal information alone.

Now suppose that the algorithm uses at most &k — 3 distance queries. Observe that:

e Each variant differs from the basic instance in only the distances involving one candidate c;.

e Any distance query not involving c; confirms the basic structure and can eliminate at most two
variants.

Thus, in order to identify which of the 2(k — 1) variants is the true instance, the algorithm must use
enough queries to rule out all others. Since each query rules out at most 2 variants, it must make at

H’f—l)—ﬂ_kd

least:

2

queries in the worst case. But this contradicts the assumption that at most k£ — 3 queries are allowed.
Therefore, any deterministic rule making at most k — 3 distance queries cant not guarantee bounded
distortion in both social and egalitarian cost. U

1 D? 1 D? +¢ 1 D? + 2¢ 1 D? + 3¢
c1 C2 c3 4 cs Ce cr cg Co

Figure j.1]: The basic instance used in theorem fork =6

C10
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D+1 D? 1 D?+4¢ 1 D? 4 2¢ 1 D? + 3¢ 1
c1 C2 C3 C4 Cs Ce cr cs Cy C10
D+1 D?*-D 1 D? +¢ 1 D? + 2¢ 1 D? + 3¢ 1
C1 C2 C3 C4 Cs Co cr C8 C9 C10
1 D?>-D D+1 D?+¢ 1 D? + 2¢ 1 D? + 3¢ 1
C1 C2 C3 Cyq Cs Ce Cr (&} Co C10
1 D? D+1 D?—D+e 1 D? + 2¢ 1 D? + 3¢ 1
C1 C2 C3 Cq Cs Ce Ccr Cg Cg C10
1 D? 1 D?—-D+e D+1 D? + 2¢ 1 D? + 3¢ 1
C1 C2 C3 C4 Cs Ce cr Cg C9 C10
1 D? 1 D?+¢ D+1 D?>—D+ 2 1 D? + 3¢ 1
C1 C2 C3 Cy4 Cs Ce Cr (] Co C10
1 D? 1 D%+ 1 D?—-D+2 D+1 D? + 3¢ 1
C1 C2 C3 Cq Cs Ce C7 (&3] Cg C10
1 D? 1 D?+4¢ 1 D? 4 2¢ D+1 D?>-—D+3e 1
C1 C2 C3 Cq Cs Ce Cr Cg Co C10
1 D? 1 D? 4 ¢ 1 D? 4 2¢ 1 D?*-D+3 D+1
C1 C2 C3 Cy4 Cs Ce Cr (&} Co C10
1 D? 1 D%+ 1 D? + 2¢ 1 D? 4 3¢ D+1
&1 C2 C3 Cq Cs Ce Ccr Cg Cg C10

Figure #.2:The 2(k — 1) = 10 variants obtained from the basic instance used in the lower bound of

Theorem fork=6

4.2.2 Bounded distortion with O(k) queries

In this section, we show that bounded distortion can be achieved using only ©(k) distance queries,

thereby asymptotically matching the lower bound established in Theorem §.2.1|. This result is accom-

plished through a query-efficient implementation of the classical 2-approximation algorithm for the

k-center problem, originally introduced by Gonzalez [53]] and later presented in a simplified form by
Williamson and Shmoys [[77].

Specifically, we show that the well-known greedy 2-approximation algorithm for k-center can be

executed using only a small number of distance queries. The greedy algorithm iteratively constructs a

set S of centers: it starts by choosing any candidate (typically at random), and then, in each subsequent

iteration, adds the candidate ¢ that maximizes the minimum distance d(c, S) to the current set S. For

linear instances, the algorithm can be further optimized by initializing with the leftmost candidate

c1 and the rightmost candidate c,,, then repeatedly adding the candidate ¢ € C with the maximum

distance to S, until k& centers have been selected.
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Algorithm 4 Query-efficient implementation of the greedy k-Center algorithm

Input: Candidates C = {c1,...,cn}, integer £ € {2,...,m — 1}, ranking profile >= (>
)
Output: A set S C C of size k

1: Initialize S < {c1, ¢} {pick leftmost and rightmost}
2: C' + Distant-Candidate(Clc1, ¢])
3: while |S| < k do

4: Letcbest. (¢,8) € Candd > & forall (¢,8) € C

5 S+« Su{c}

6: C« C\{(c,0)}

7. if |S| < k then

8 Let ¢; be the rightmost candidate in S to the left of ¢

9: Let ¢; 1 be the leftmost candidate in S' to the right of ¢

10 C « C U {Distant — Candidate(C|[c;, ¢])} U {Distant — Candidate(C/c, ¢;11])}
11:  endif

12: end while

13: return S =0

To implement the greedy algorithm in this model (Algorithm [), we need an efficient method to
identify the candidate that is farthest from the current set of selected centers S = {¢y,...,¢/} C C,
where the candidates are indexed from left to right along the candidate axis. Here, ¢; and ¢, denote
the leftmost and rightmost candidates in .S and C, respectively.

For each 1 < i < ¢ — 1, we define ¢; as the candidate in the interval C[c;, ¢;11] that is maximally
distant from its two endpoints ¢; and ¢; 1 € S. Formally, we define

¢ = arg max d(C, {C’ia Ci+1}) (4'1)

c€Cleiycit]

and we let
0; = d(¢i, {ci, civ1})-

the distance of ¢; to the endpoints of the interval C|[c;, ¢;41]. This information is provided by the
Distant-Candidate algorithm (Algorithm ). We now show that the candidate in S that is farthest from
the rest can be identified as the ¢; with the maximum distance §;.

Proposition 4.2.2. Let S be the current set of selected candidates in Algorithm{, and let ¢, . . ., ¢o—1
be defined as in Equation §.1. Then,

maxd(c,S) = max d(¢,{c, ¢ .

el ( ’ ) 1<i<i—1 (za{za z+1})

Proof. Since c; is the leftmost candidate and ¢y is the rightmost candidate in C, every candidate in
C'\ S lies within one of the intervals Ccy, o], . . ., C[cp—1, ce]. Suppose the farthest candidate ¢ from
S lies in the interval C|[c;, ¢;+1]. By construction, the candidate in this interval that is farthest from
both endpoints is ¢;, and therefore:

d(C, S) = d(C, {Cz‘, Ci+1}) S d(éi, {Ci, Ci+1}) = d(éi, S)

Hence, the maximum distance from any candidate to .S is achieved by some ¢;, and the claim follows.
O
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Algorithm 5 The Distant-Candidate algorithm

Input: Candidate interval Clc, ¢'], a voter v € Cluster(c¢”) for every ¢’ € Clc, ']
Output: Candidate ¢ € C|e, ¢/] with maximum d(¢, {c, c'})

1: if |C[c, ]| = 3 then

2: "+ Cle,d)\ {ce, '}

3:  return (", min{d(c”",c),d(c",)})

4:Let ¢ be the leftmost candidate in C|c, ] \ {c}
5:while ¢’ € Cle, ] do

6: Let > be the ranking >, of any v € Cluster(c”)
7. if ¢ = cthen

8: Let ¢, be ¢ and ¢y be next candidate on ¢’’s left {¢; and ¢, found, while-loop terminates}
9: break

10: else

11: ¢’ «+ the next candidate on ¢’’s right {proceed to the next candidate on the right}

12: if d(c,cg) > d(cyp, ) then

13:  return (cg, min{d(c, c;),d(c, co)})
14:else

15:  return (¢, min{d(c,, c),d(c,,c)})

Consider any interval C|e, ¢/] with |Cle, ¢]| > 3, defined by two consecutive centers ¢, ¢’ € S.
Algorithm 3 then computes ¢ = argmax,eci.| d(z,{c,c'}),and obtains d(¢, {c,¢'}) = d(¢,S).
Moreover, each invocation of Algorithm [§ uses at most three distance queries.

Lemma 4.2.3. Let ¢, € C with ¢ < . Then Algorithm [3 correctly returns the candidate ¢ €
Cle, ] satisfyingé = argmaxrecie d(c”,{c,c'}), and also provides the distance d(¢,{c,c'}) =
d(e, S).

Proof. Base case. If |C[c, ¢'|| = 3, the unique interior candidate is returned and its distance to {c, ¢'}
is obtained with two queries.

General case |C|c, ]| > 4. Let m := (¢ + ¢)/2 and define
F(@) = min{d(z, ¢),d(z, )}, Ax) = d(z,¢) — d(z, ).

On the line, A is strictly monotone non-decreasing, with A(¢) < 0 < A(c); hence it crosses 0 exactly
once. Set

ce :=max{z € Cle,c] : A(z) < 0}, ¢ :=min{z € Cle,d] : A(z) > 0}.

Then ¢, < m < ¢, (with at least one of the two inequalities being strict) and no candidate lies strictly
between them. Moreover,

r<c= f(x) < fler), x>c¢ = fx) < fle), (4.2)

so ¢ € {cy, ¢} and f(é) = max{f(cy), f(cr)}.

Locating the border via the first flipping voter. Traverse candidates from left to right. For each
candidate x, fix one voter u, whose top candidate is x (so u, € Cluster(z)). Let u, be the first
encountered with ¢’ >, ¢, and let ¢ be the top candidate of w,.. Write p and s for the predecessor and
successor of ¢t (when they exist). Exactly one of the following holds:
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(i) t <m < s(i.e.,t is the rightmost candidate on or before m);
(i) p £ m < t(i.e., t is the leftmost candidate after m).

Indeed, a voter prefers ¢’ to c iff the voter lies to the right or on top of the perpendicular bisector of
{c, '}, i.e., to the right or on top of m. By minimality of u,. in the left-to-right scan over candidates,
the first cluster that contains such a voter must be anchored either at the rightmost candidate < m or
at the leftmost > m.

Case (i): t < m < s. Because u, ranks ¢t above s and u, lies to the right of m, we must have
m < u, < s (ifu, > s, then d(u,, s) < d(u,,t), a contradiction). Then

d(uy,t) = d(up,m) + d(m,t), d(ur, s) = d(m,s) — d(uy,m),
and d(uy,,t) < d(uy,, s) implies
d(m,t) +2d(u,,m) < d(m,s) = d(m,t) <d(m,s).

Thus t is strictly closer to the midpoint than its right neighbour s. Since ¢ is the rightmost candidate
on/before m, every candidate left of ¢ is at least as far from m as ¢, and every candidate right of s is
at least as far from m as s (and therefore farther than ¢). Hence ¢ is the unique closest-to-midpoint
candidate in C|c, ¢'], equivalently ¢ = ¢.

In the algorithm we name ¢, := ¢ and ¢, := p (the predecessor of t). Note that

d(cy,d) —d(c,c) =2(m—1t) >0, d(cp,c) —d(cg,c) =t —p >0,

s0
d(cy, ) > d(cp, ) > d(cg, ).

Therefore Line 12’s comparison d(c, ¢g) versus d(c,, ') selects ¢, = t = ¢, and the returned value
equals d(¢é, {c,c'}).

Case (ii): p < m < t. Here the only candidates that can maximise f are the adjacent pair {p, ¢}:
any candidate right of ¢ is farther from m than ¢, and any candidate left of p is farther from m than p.
The algorithm sets ¢, := t and ¢, := p, and then compares

d(e.c)) = f(p) and d(c,.d) = f(t).

Thus Line 12 computes max{ f(p), f(¢t)} = f(¢) and returns ¢ € {p,t} with the correct distance
d(é, {c,c'}).

Combining the base case with the two cases above, Algorithm [ always returns the farthest candi-
date and its distance. O

Theorem 4.2.4 (Fotakis-Gourvés-Patsilinakos). Let (C, V') be an instance of the k-committee elec-
tion. Let S C C (respectively, S* C C) be a S-approximate (vespectively, an optimal) k-committee
with respect to the egalitarian cost for the candidate-restricted instance (respectively, the original
instance). Then,

EC(S) < (1+28)EC(S*).

Proof. Recall that for each voter v € V, top(v) denotes v’s top-ranked candidate in C. By the triangle
inequality,
d(v,S) < d(v,top(v)) + d(top(v),S).
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Taking the maximum over all v € V" yields
EC(S) < EC(C) + EC(Cq, S), (4.3)
where

EC(C) = maxd(v,top(v)) = maxd(v,C), EC(Cq,S) = maxd(top(v),S).

veV veV veV

EC(Cq, S) denotes the egalitarian cost of S on the candidate-restricted instance Cy, induced by C.
Since S is a S-approximate k-committee for the candidate-restricted instance Cy,

EC(Cer, S) < BEC(Cq, S*) < BEC(Cq,S*), (4.4)

where S* is an optimal solution on C,. For the second inequality we use the fact that S* is also an
alternative to S as optimal solution for C;. Therefore, using the optimality of S* for the C., instance
with respect to the egalitarian cost we get 5 EC (Ccr, S ti) < BEC (C’cr, S *)

On the other hand, applying the triangle inequality to each top(v) and S* gives

EC(Ce, S*) < EC(C) + EC(S™).
Substituting (#.4) and this bound into (§.3) yields
EC(S) < (1+ B)EC(C) + BEC(S") < (1+2B)EC(S"),
as required. O

Theorem 4.2.5 (Fotakis-Gourvés-Patsilinakos). For any k > 3, Algorithm B achieves a distortion of
at most bn for the social cost, and at most 5 for the egalitarian cost, for k-Committee Election on the
real line using at most 6k — 15 candidate distance queries.

Proof. We first bound the number of distance queries. In Algorithm [, the Distant-Candidate subrou-
tine is invoked once in Step 2, and then twice in each iteration of the while-loop from |.S| = 3 up to
|S| = k — 1. Hence there are 1 + 2(k — 3) calls in total, and since each call uses at most three
distance queries, the overall query complexity is

3(1+2(k—3)) = 6(k—3)+3 = 6k — 15.

Correctness follows from Lemma and Proposition §.2.2, which guarantee that each iteration
indeed adds the candidate ¢ maximizing d(c, .S). The Williamson-Shmoys greedy algorithm is a 2-
approximation for the egalitarian cost on candidate-restricted instances (see [[77, Theorem 2.3]), and
thus by Theorem the resulting distortion on the original instance is at most 5.

Finally, since for any committee S C C' we have

EC(S) < SC(S) < nEC(S),

it follows that if S* is optimal for the egalitarian cost and S** is optimal for the social cost, then

sc(s) . EC(S) _ EC(S) | EC(SY) _
sc(s=) = "EC(s™) ~ "EC(SY) EC(S™) "

where we used EC(S*) < EC(S**) and the bound EC(.S)/EC(S*) < 5. O
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Thus, the greedy center selection strategy achieves strong distortion guarantees for both objectives
with only O(k) queries, matching the information-theoretic lower bound. While the distortion for the
social cost scales linearly with the number of voters, this is unavoidable without additional access to
distances or additional assumptions about the instance.

4.3 Constant Distortion with O(klogn) queries

4.3.1 Constant Distortion with O(klogn) queries

We now turn our attention to the complementary result of Fotakis, Gourvés and Patsilinakos, who give
an algorithm that guarantees a constant distortion bound in the one dimensional model. Their method
incorporates a careful selection and merging strategy to control the worst-case distance error. In what
follows, we outline the main steps of this constant-distortion algorithm, explain how it leverages the
structure of (¢, 3)-bicriteria solutions, and sketch the proof of its constant-factor performance.

Definition 4.3.1 ((¢, 3)-bicriteria solution). Let C' be a set of candidates and let S* be an optimal
k-committee that minimizes the social cost SC(S*). A subset C' C C' is said to be (¢, 3)-good, for
some { > k and B > 1, if the following conditions hold:

() |C'| =4 and

(ii) The social cost incurred by representing each voter by her top candidate in C' satisfies:
SC(C") < B-8C(S)

In other words:

o (' is (-sparse, meaning it contains only { candidates (ideally ¢ < |C|), and

e (' is 3-good, achieving a social cost within a factor 3 of the optimal.
Note:

o The original candidate set C' is trivially (m, 1)-good, where m = |C/|.

o Any k-committee with distortion (3 is (k, B)-good.

This notion formalizes the idea of a small representative subset of candidates that approximates
the performance of the optimal committee. By focusing on such subsets, we reduce the complexity of
the original instance while preserving enough structure to enable efficient optimization.

Given an (¢, 3)-good subset of candidates C’, we define the candidate-restricted instance induced
by C’ as

Cér = {(01, nl), ceey (Cg, ng)}

where ¢; < --- < ¢y denote the positions of the candidates in C’ along the real line, and n; =
|Cluster(c;)| is the number of voters who rank ¢; as their top choice in C’. By construction, we have
ny + -+ -+ ngy = n, and each n; > 0, since we discard any inactive candidates from C".

We will show that an optimal k-committee for the restricted instance CY, achieves a distortion of
at most 1 + 23 when measured against the original instance.

Theorem 4.3.2 (Fotakis-Gourvés-Patsilinakos). Let (C, V') be an instance of the k-committee elec-
tion, let C' C C be an (¢, B)-bicriteria solution, and let C!. be the candidate-restricted instance
induced by C'. Let S (resp. S*) be an optimal k-committee for C., (resp. for (C,V')). Then, SC(S) <
(14 2p8)SC(S5%).
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Proof. For each voter v € V, let top’(v) € C’ denote their top-ranked candidate within the set C".
By the triangle inequality, we have

d(v, S) < d(v,top’(v)) + d(top'(v), S).
Summing over all voters gives:
SC(S) < SC(C") + SC(C¢,, S), (4.5)

where:

e SC(C") =Y,y d(v,top’(v)) = oy, d(v,C”), and

e SC(Cl,S) = > ey d(top'(v),S) is the social cost of S in the candidate-restricted instance
C/. induced by C".

Since S is the optimal k-committee for C, S#). for any feasible

cro

we have: SC(CY

cro

$) < SC(CL,
solution S* on the candidate-restricted instance.

However, S* may not be feasible for C, as it can include candidates not in C’. To address this,
we argue that S* can be transformed into a valid committee S* C C’ without increasing the social
cost.

If S* includes an inactive candidate ¢ ¢ C’, and no voter is assigned to ¢, we can safely remove
it without affecting the cost and replace it by any active candidate. If ¢ does have assigned voters,
we divide them into two groups: those to the left of ¢ (Vier) and those to the right (Vign). Since all
voters in CY, are collocated with their top candidates, we can find a candidate in C’ who is collocated
with a voter in the larger group. Specifically, if [Vien| > |Viignt|, we replace ¢ with the candidate
collocated with the rightmost voter in Vies; otherwise, we use the one collocated with the leftmost
voter in Viigne. This replacement ensures that the maximum increase in distance (if any) affects fewer
voters and that the total cost does not increase. Repeating this process for all inactive candidates in
S* yields a feasible committee S* C C” with:

SC(CL,, S*) < SC(CL, S*).

ors
Combining this with the optimality of S, we conclude:
SC(CY, S) < SC(CL, S%) < SC(CY,, 5¥).
Finally, by the triangle inequality again,
d(top’(v), S*) < d(top’(v),v) + d(v, S*),
so summing over all voters gives:
SC(CL,, S*) < SC(C") 4 SC(S*).
Substituting this into (4.3), we obtain:
SC(S) < SC(C") + SC(C¢;, S) < SC(C”) + SC(C") + SC(S*) = 2SC(C”) + SC(S™).
Finally, since C" is an (¢, 3)-bicriteria solution, we have SC(C") < 8 SC(S*), and thus:

SC(S) < (1 + 28) SC(S*).
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O

This theorem justifies our overall strategy: if we can find a good representative subset C' then we
can solve a much smaller problem and still retain strong approximation guarantees.

As soon as we have the distances between all candidates in an (¢, §)-bicriteria solution C’ which
requires [ — 1 candidate queries an optimal k-committee for the C”,. instance can be computed in
polynomial time by the dynamic programming algorithm of [56] as mentioned by Fotakis et al. [47]

The next challenge is to efficiently construct such a good subset using limited distance information.
To this end, we now describe how to construct an (O(k logn), O(1))-bicriteria solution of candidates
using hierarchical partitioning of the candidate axis. This is implemented by Algorithm |, which
computes such a set using only O(k logn) distance queries.

In this approach, we maintain a collection Z of intervals over the candidate axis C' = {cy,...,cn}.
Each interval C'[c,, ¢p] € Z is annotated with: (i) the number n;, of voters whose top-ranked candidate
lies in C|[cq, cp), and (ii) the length d(c,, cp) of the interval. We define the weight of an interval as
Wt(Cq, Cp) = Ngp - d(Cay Cp).

Algorithm f begins with a partitioning of C' into k regions based on a reference committee S =
{c',...,c*}, computed via Algorithm . For each i € [k], we define an interval C[cl, ci] containing
all candidates closer to ¢* than to any other member of S. Let n; denote the number of voters whose
top choice lies in C[c}, ¢}], and let d(c’, c}) be the interval’s length. We define

§* = max{d(c’,c})}.
i€[k]
Since the committee S has distortion at most 5 for the egalitarian cost and all candidates are assumed
to be active, we obtain the lower bound SC(S5*) > §*/5, where S* is an optimal k-committee for the
original instance.

The partition Z is then refined iteratively. In each step, the interval in Z with the largest weight
and at least four candidates is split into two subintervals. This is done using a subroutine called
Partitioning (Algorithm [7), which extends the Distant-Candidate approach from Section 6. For an
interval C|c,, cp), the algorithm identifies the midpoint m = (¢, + ¢3)/2, and splits the interval into
two: Ceq, ¢¢] and Cle,, ¢p], where ¢y is the rightmost candidate to the left of m, and ¢, is the leftmost

candidate to the right. The algorithm uses at most 4 distance queries per split. Notably, the union of
these subintervals exactly covers the original interval, i.e.,

C[Caa CZ] U C[CT7 Cb] = C[Caa Cb]7

so the invariant that 7 is a partition of C' is preserved throughout.

After at most O(klogn) such splits, the algorithm terminates with a partition Z of size at most
7k(log,(5nk) + 2). From this partition, we extract a candidate set C'(Z) C C as follows: for each
interval Clc,, ] € Z,

e If the interval contains more than 3 candidates, include only its endpoints ¢, and ¢, in C'(Z),
e Otherwise, include all candidates in the interval.
Since | Z| = O(klogn), the size of C'(Z) is also O (k log n). We will nextshow that this set satisfies

SC(C'(T)) < 28C(5%),
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where S* is the optimal committee with respect to the original instance. Hence, C’(Z) isan (O(k logn), O(1))-
bicriteria solution.

Algorithm 6 Hierarchical partitioning of C' = [c1, ¢;p,]

Input: Candidates C= {C4,...,Cp, }, k € {2, ..., m — 1}, voter ranking profile == (>1,..., =)
Output: Partiotioning Z of C into O(klogn) intervals

1: Let S = {c', ..., ¢*} be the output of Algorithm }

2: T+ {(Clek, ct]yna,d(ct, eb)), ..., Cck, b my, d(ck, )} {Start with the partiotioning of C, V
induced by S

3: 6% < mazepy{d(cs, c})}

4:while |Z|< 7k(log2(5nk) + 2) do

5:  Let (Clcq, Cb)s Map, d(ca, cp) €T with |Cleq, ¢p]| > 4 and maximum weight wi(cq, cp) =
Napd(Ca, Cp)

6: if wit(cq,cp) < 6*/(5k) then break-while-loop

7. I <+ (Z\{(Clcacp], nap, d(cqa,cp))}) U Partitioning(Clcq, b))

8:end while

9:return Z

Theorem 4.3.3 (Fotakis-Gourvés-Patsilinakos). Let Z be the partition of the candidate set C computed
by Algorithm [l Then, the resulting set of candidates C'(Z) C C is an (O(klogn),2)-bicriteria
solution.

Proof. Let S* C C denote an optimal committee of size k, and let Z be the final partition of candidates
produced by Algorithm . Let C” (Z) be the set of endpoints of all intervals in Z. We aim to show that
C'(Z) is an (O(klogn), 2)-bicriteria solution.

We organize the proof into three parts: bounding the social cost, bounding the number of intervals,
and bounding the query complexity.

v
(%] SJ/
U1

-7 expensive & close
cheap & far
cheap & close
Cc1 ® ® L Cm
st 85 53

Light: wt(I) < SC(S*)/k
Heavy: wt(I) > SC(S*)/k

Interval classification with regards to whether they are cheap or expensive and far or close. We note
that far/close term classifies heavy intervals

1. Bounding the social cost. Each voter v belongs to a unique interval I = [c,, ¢p] € Z, determined
by the position of their top-ranked candidate. We define two types of intervals(see Figure H.3):

e Aninterval I is cheap if it contains no candidate from S*,

e Otherwise, it is expensive.
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In a cheap interval, the closest candidate from S* lies outside the interval. Since C’(Z) contains
both endpoints of I, we have:
d(v,C"(T)) < d(v,S").

In an expensive interval, the distance from v to C’(Z) is at most:
d(v,C"(T)) < d(v,8*) + d(cq, cp)-

Let wt(I) = ny - d(cq, cp) denote the weight of interval I, where ny is the number of voters with
top-ranked candidate in /. Then:

SC(C'(Z)) <SC(S™) + > wi(I).

expensive [

We now show that the total additional cost is at most SC(S™*), once enough intervals have been
created.

2. Bounding the number and weight of expensive intervals. To bound this cost, we analyze the
structure of the partitioning process.

Interval levels. We group intervals by /evel, based on their diameter. A level-: interval satisfies:
20715* < d(cq, cp) < 2007,

where 0* is the maximum diameter among the initial & intervals.
As the algorithm recursively splits intervals, the length of each resulting subinterval is halved. The
smallest level produced corresponds to intervals of diameter at most:

K
5nk’

which occurs at level i = — log, (5nk).
Each such interval contains at most n voters, so its weight is bounded by:

5§ SC(S%)
<n- = — < A
will) <o = S Tk

Therefore, at level — log,(5nk), all intervals are light, and further splitting is not permitted. Since
levels range from ¢ = 0 to i = — log,(5nk), the total number of levels is at most log, (5nk) + 1.

3. Bounding the number of heavy intervals. We distinguish two types of heavy intervals (see

Figure §.3):
e A heavy interval is far if d({ca, cp}, S*) > d(cq, cp),

e Otherwise, it is close.

Far heavy intervals. Let v be a voter in a far heavy interval I = [¢,, ], and let ¢; € S* be the
closest candidate to v. Using the triangle inequality, one can show:

1
d(v,c;) > §d(c“’ ).
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Since wt(I) > SC(S™*)/k, voters in I contribute at least SC(S*)/(2k) to the optimal cost. Therefore,
there can be at most 2k such intervals per level, and at most:

2k(logy(5nk) + 1)

in total.

Close heavy intervals. Fix ¢* € S* and a level i. A close heavy interval I = [c,, | satisfies:
d({cq,cp}, ) < d(ca,cp).

This implies that I lies within a ball of radius 2°5* centered at c*, since both endpoints are closer to
c* than they are to each other. Also, the length of each level-i interval is at least 2/ ~1§*, by definition
of levels.

Hence,as shown also in the figure @] the number of such disjoint intervals that can fit within a ball

of radius 2¢6* is at most: ,
2.2 | |40 _,
giige | | o | T

Allowing for overlaps and rounding, we conservatively upper bound this number by 5. Thus, at most

5 disjoint close heavy intervals at level ¢ can be associated with any candidate c* € S5*.
Therefore, the total number of close heavy intervals is at most:

5k(log,(5nk) + 1).

4. Bounding the total number of intervals. Only heavy intervals are split. The total number of
heavy intervals (close and far) encountered is:

(2k 4 5k)(logy (5nk) + 1) = Tk(logy (5nk) + 1).
Starting with k intervals and adding one per split, the total number of intervals is at most:
Tk(logy(hnk) + 1) + k+ 1 < Tk(logy(5nk) + 2) = O(klogn).

Since C’(Z) includes two candidates per interval, its size is O (k logn).

Moreover, once only light intervals remain, each expensive interval has weight at most SC(S*)/k,
and there can be at most & such intervals, since there are k candidates on the optimal solution. There-
fore, the total additive cost from expensive intervals is at most SC(S™), yielding:

SC(C'(Z)) < 2-SC(S%).
O

Algorithm [ performs O(klogn) splits throughout its execution. Since each invocation of the
Partitioning algorithm requires at most 4 distance queries, the total number of distance queries used by
Algorithm [ is bounded by O(k log ). Combining Theorem (and the accompanying discussion)
with the analysis of Algorithm f in Theorem }.3.3, we obtain the following result:

Theorem 4.3.4 (Fotakis-Gourvés-Patsilinakos). There exists a deterministic polynomial-time rule for
the k-Committee Election problem that uses O(klogn) distance queries and achieves distortion at
most 5.
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In Ig Ic Ip
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Diameter 2 - 216*

Packing argument for close heavy intervals. A 1D “ball” of radius 2'6* (the horizontal segment)
centered at ¢* can contain at most 2212155* 4 disjoint level-i intervals of length > 2/=15*. We
conservatively bound the number by 5 to account for slight variations in interval lengths and ensure

robustness.

To conclude with this chapter we are left to state the Partitioning algorithm and verify its properties
used by Algorithm |§

Algorithm 7 Partitioning of interval C|c, /]

Input: Candidate interval (Cc, ¢],n, d(c, ¢)), and for each ¢’ € C|e, ¢] aranking >, of any voter
v € Cluster(c”)

Output: Two subintervals (Clc, ¢],ng,d(c,c¢)) and (Cley, ], ny,d(cr, ') subdividing
(Cle, ], m, d(e, )

1: Let ¢” be the leftmost candidate in C[e, ¢/] \ {c}
2: while ¢’ € C[c, ] do
3:  Let >, be the ranking of any v € Cluster(c)
4: if ¢ =, c then
5: cr < ", ¢y + candidate immediately left of ¢’ {¢; and ¢, found, while-loop terminates}
6: break-while-loop
7:  else
8: ¢’ + next candidate to the right of ¢’ {proceed to the next candidate on the right }
9: endif
10: end while
11: if d(c,cg) > d(cp, ) then

12:  {¢ is the most distant candidate to {c, ¢’ }}

13: if d(c,¢f) > d(ce, ) then

14: ¢ — ¢y {cy is the first candidate on the right of (¢ + ¢’)/2
15: c¢ < candidate immediately left of ¢,

16:  endif

17: else

18:  {c¢, is the most distant candidate to {c, ¢} }

19:  ifd(c,¢r) < d(cr, ) then

20: ¢ < ¢ {c, is the first candidate on the left of (¢ + ¢’)/2
21: ¢, < candidate immediately right of ¢,

22:  endif

23: end if

241 g 4= Y zelee) [Cluster(C)|

25: ny Zcec[cT ¢ [Cluster(¢)|

26: return (Clc, ¢g], ng, d(c, cp)), (Cler, ], np, d(cr, )

Lemmad4.3.5. Letc,d € Cwithc < ¢ and |Clec, ]| > 4. Algorithm [} returns two candidates ¢ and
¢y that partition C|c, | into two disjoint intervals C|c, ¢;| and Ccy, '], with the following properties:

e [f'no candidate lies exactly at the midpoint | = CECI, then:
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— ¢y is the rightmost candidate in C|c, ¢'] strictly to the left of p,
— ¢, is the leftmost candidate in C|c, '] strictly to the right of pu.

o [f there exists a candidate ¢ € C|c, ] located exactly at the midpoint p, then the algorithm

assigns ¢ as follows:
— If'the voter v € Cluster(¢) given as part of the input ranks ¢’ =, ¢, then ¢ is assigned to
the right interval (i.e., becomes c;),
— Ifc =, C, then ¢ is assigned to the left interval (i.e., becomes cy).

Thus, the midpoint candidate is consistently assigned based on voter rankings, ensuring a valid par-

tition of the interval.

Proof. We note that if |C[c, /]| > 4, the first ten steps of Algorithm 5 [] are identical to the first ten
steps of Algorithm 3 (i.e., steps 5 to 14, applied to this case). Therefore, by the proof of Lemma §.2.3,
when Algorithm [7 reaches step 10, either ¢; or ¢, is the candidate é € C|c, ¢/] with the largest distance
to {c,'}.

Then, by the proof of Lemma @#.2.3:

e Ifd(c,¢;) > d(cy, (), then é = ¢.
e Otherwise, ¢ = ¢,.

In both cases, ¢ is the candidate in C'[c, ¢] closest to or on to the midpoint y = CZC'. In each case

(i.e., either if ¢ = ¢;, where steps 13—16 are executed, or if ¢ = c¢,, where steps 19-22 are executed),
Algorithm 5 distinguishes two subcases depending on whether ¢ is on the left or on the right of .

Case 1: d(c,¢) > d(c,, ) and ¢ = ¢

e Ifd(c,c;) > d(e, ), then ¢ is on the right of the midpoint x. In this case, ¢; is in fact ¢, (i.e.,
the leftmost candidate on the right of 11; so the value of the algorithm’s variable ¢, is set to ¢; in
step 14), and ¢; (i.e., the rightmost candidate on the left of 1) is the first candidate on the left of
¢, on the candidate axis (step 15).

e Otherwise (i.e., if d(c, ¢;) < d(cy, '), since ¢ = ¢; and ¢; and ¢, are consecutive on the candi-
date axis, ¢; is indeed the rightmost candidate on the left of 1 and ¢, is the leftmost candidate
on the right of p. Thus, the values of the corresponding algorithm’s variables are set correctly.

Case2: d(c,¢) < d(c¢p,d)and é = ¢,

e Ifd(c,c,) < d(cp, ), then ¢, is on the left of the midpoint 4. In this case, ¢, is in fact ¢ (i.e.,
the rightmost candidate on the left of i; so the value of the algorithm’s variable ¢; is set to ¢, in
step 20), and ¢, (i.e., the leftmost candidate on the right of ) is the first candidate on the right
of ¢; on the candidate axis (step 21).

e Otherwise (i.e., if d(c,¢,) > d(er, ), since ¢ = ¢, and ¢; and ¢, are consecutive on the
candidate axis, ¢, is indeed the leftmost candidate on the right of © and ¢; is the rightmost
candidate on the left of u. Thus, the values of the corresponding algorithm’s variables are set
correctly.



Therefore, when Algorithm [] reaches step 23, the value of the variable ¢; corresponds to the right-

most candidate on the left of (or exactly at) the midpoint u = C‘ECI , and the value of the variable c,

corresponds to the leftmost candidate on the right of (or exactly at) the midpoint ¢ = Cgcl of the

interval Ce, ¢/]. In the case where there exists a candidate exactly at p, it is assigned consistently

to either ¢; or ¢, according to the algorithm’s tie-breaking rule (e.g., axis ordering), ensuring that the
partition remains correct.
O]

The number of voters n; and n,. associated with the subintervals C|c, ¢;] and C/c,, (] are correctly
computed in steps 24 and 25 using the voters’ preference profile .

Regarding the distances d(c, ¢;) and d(c,, ¢’), which represent the lengths of the two subintervals,
one additional distance query may be needed depending on whether steps 14—15 or 20-21 are executed:

e If steps 1415 are executed, then d(c,, ¢') is already known from step 13 (since ¢, = ¢; at that
point), and the algorithm performs an extra query to compute d(c, ¢;).

e If steps 2021 are executed, then d(c, ¢;) is already known from step 19 (since ¢; = ¢, at that
point), and an additional query is made to obtain d(c,, ).

In every case, Algorithm ] successfully partitions the interval Cle, ¢/] into Cle, ¢;] and C[c;., ¢/],
where ¢; (respectively, c,) is the rightmost (respectively, leftmost) candidate strictly to the left (re-
spectively, right) of the midpoint y = %C/ If a candidate lies exactly at y, it is assigned to either
c; or ¢, based on the algorithm’s selection logic, but never to both. Thus, at most one of ¢; or ¢, can
coincide with the midpoint. The algorithm ensures that n;, n,, d(c, ¢;), and d(c,, ) are computed
correctly using no more than four distance queries in total.

Conclusion. In this chapter, we investigated the power of limited distance information in the com-
mittee election problem under metric preferences. Building on the candidate-restricted model, we
established that strong guarantees on social cost distortion can be achieved even with a sublinear num-
ber of queries. Specifically, we presented a deterministic algorithm that uses only O(k logn) distance
queries and attains constant worst-case distortion. This result demonstrates that carefully selected
queries can significantly enrich the ordinal model, enabling near-optimal outcomes while respecting
communication constraints. These findings complement the purely ordinal results of the previous
chapter and highlight the benefits of modest access to metric structure in collective decision-making.
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CHAPTER 3

Committee Selection with Metric
Preferences in General Metric Spaces
and Query Access

In this chapter, we consider the problem of committee selection under metric preferences in general
metric spaces, where access to exact distances is restricted and ordinal information is freely available.
We focus on the recent work of Burkhardt et al. [29], who study this setting in the context of clustering
and propose algorithms with provable guarantees under limited query access.

Their results address both the k-center problem and the broader (k, z)-clustering framework, which
generalizes several classical clustering objectives. Of particular relevance to our setting is the case z =
1, corresponding to the k-median objective and the committee election problem studied throughout
this thesis.

A key contribution of their work is an algorithm that achieves constant distortion using only
O(k*log® n) distance queries, where n is the number of agents. This query complexity is sublin-
ear in n, highlighting the power of combining ordinal information with a small number of carefully
chosen distance queries. While we do not detail their lower bounds in this thesis, it is worth noting
that they establish strong impossibility results: no algorithm using fewer than O(k) distance queries
can guarantee bounded distortion for any (k, z)-clustering objective. Moreover, achieving constant
distortion with respect to the social cost requires at least Q(k + loglogn) queries when k is variable,
and at least Q(k - 2'°2" ") when F is fixed.

We now formalize the model and present the algorithmic framework and analysis.

5.1 Preliminaries and Specifics of this model

In general metric spaces, we cannot infer distances between candidates by querying voters about their
distances fo candidates, unlike in the one-dimensional Euclidean setting where a common total order
enables such reconstruction. Ordinal rankings {7, },cx are inherently local to each voter x and need
not embed into a single global order over candidates. Consequently, we adopt the standard variant in
which the committee is selected from the ground set X itself (candidates coincide with voters), so any
required inter-point distance can be queried directly.

Formally, let (X, d) be a finite metric space with | X | = n, where d : X x X — R satisfies the
metric axioms. The algorithm has query access to d: a query on (x, y) returns d(x, y) at unit cost, and
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the total number of queries is bounded by a budget. In contrast, ordinal information remains free: for
each z € X, we are given a ranking 7, : [n] — X such that for all i < 7,

d(z, (1)) < d(z,m(4)),

with ties broken arbitrarily. We refer to P = {7, },cx as the ordinal profile, and write P(d) for the
collection of ordinal profiles consistent with d.

Definition 5.1.1 (Ordinal (k, z)-Clustering Problem). Given positive integers k and z, and a set X
of n points forming a metric space (X, d), the goal is to select a subset C C X of k centers that
minimizes a cost function. Each point x € X provides a ranking m, over all points in X, where the
ranking is consistent with the metric d, i.e., d(x,m, (1)) < d(z,7(7)) for all i < j.

Let P = {m, } e x denote the set of all such rankings (the ordinal profile). For any subset S C X
and candidate solution C C X, the cost of serving S with centers in C is defined as:

¢C(S7d) =7 Zd(m,C)Z,
V zes

where d(z,C) = min.ec d(x,c) denotes the distance from x to its closest center in C. The k-
Committee Election Problem is a special case of Ordinal (k, z)-Clustering Problem where the cost
function is that of the well-studied k-median problem.

Unified objective notation. For the special case where S = X, we drop explicit dependence on .S
and write the objective as

1/z
$.(C) = (Z d(x,c>Z> . $oo(C) := maxd(z, C).

zeX
zeX

We use <;5(()ng := min|c|—, ¢-(C) to denote the optimal cost.

The objective is to identify a subset C' C X of k centers that minimizes the relevant objective
value ¢, (C') (or ¢oo(C) for k-center). We drop the explicit dependence on d when clear from context
z) 00) .
and use ¢pr (resp. ¢ppr) for the optimal value.

Terminology and conventions. Throughout this chapter we work on a single ground set X endowed
with a metric d. To avoid ambiguity across clustering and committee-selection language, we fix the
following usage.

e Points / agents. Elements of X. We use “point” and “agent” interchangeably.

e Voters (committee view). When we interpret the problem as committee selection, the elements
of X are the voters. Each € X provides an ordinal ranking 7.

e Clients (clustering view). In clustering arguments we call the same elements “clients.” Thus,
voters and clients both refer to X.

e Centers / representatives / committee members. The selected set C' C X of size k is the set
of centers; in the committee interpretation these are the representatives or committee members.
We use these three terms interchangeably for elements of C'. (Note: an element of X can be
both a client/voter and a center/representative; if z € C then d(x,C) = 0.)
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e Candidate (avoid ambiguity). We do not maintain a separate external candidate set. When
the word “candidate” appears in this chapter it always means “prospective center” (i.e., an el-
ement of X being considered for addition to C'). To prevent confusion, we otherwise prefer
“center/representative.”

5.2 Bounded Distortion with O (k) Distance Queries

Before aiming for constant distortion with sublinear query complexity, it is useful to establish a strong
baseline that uses very few distance queries. In this section we show that a carefully guided farthest-
first procedure, steered by ordinal information and sparingly augmented with distance queries, yields
a 4-approximation for ordinal k-center while using only 2k queries. This construction will serve as a
scaffold for the more elaborate constant-distortion algorithm later on.

Theorem 5.2.1 (Deterministic Ordinal k-Center Approximation). There exists a deterministic algo-
rithm for the ordinal k-center clustering problem that achieves a distortion of at most 4 with respect
to the optimal solution and makes at most 2k distance queries.

Proof sketch. At iteration i, let C; be the current centers and QQ; C C; the query set. For eachy € Cj,
write S ; = {x € X : d(z,y) = minec, d(z,c)} and let z;(y) € argmax,es, ; d(y, ) be its
farthest client (identified ordinally). In round ¢ we query only the distances {d(y, z;(y)) : y € Qi},
add the client attaining the maximum, and update @); via an ordinal dominance rule; no additional
queries are made during this update.

Lemma (stability) implies that z; (y) does not change unless it is picked as a center, so each y €
Q; is queried at most once per (re)appearance; this yields the 2k bound (Lemma .2.3). Moreover, the
chosen point constitutes a 1/2-approximate farthest-first step (Lemma [5.2.4). Applying the standard
argument (Lemma [5.2.5) then gives a 4-approximation for k-center, proving the theorem. O

The procedure performs a greedy traversal in which preference rankings determine the evolving
cluster structure, and exact distances are queried only for a small query set of centers in each round.
The full algorithm is given below.
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Algorithm 8 Ordinal k-Center with 2k Queries

Input: Point set X, metric d, ordinal profile P = {m, },cx, integer k
Output: A set C C X of k centers

1: Pick an arbitrary point z € X

2: C«+{z, m(n)}, Q<+ {z, m(n)}

3: Define S, = {x € X | zranks z above 7.(n)}, Sr (n)0 =X \S5:0
4:fori=1,...,k—2do

5 Omax <0
6: foreachy € (@ do
7: Let z; < argmaxuegs, ; d(y, )
8: Query 6 « d(y, z;)
9: if 6 > dmax then
10: Omax < 0, T 2;, V¥
11: end if
12:  end for

13: C«+«CU{r}, Q+ Q\{v}
14: R+ C\Q
15: foreachu € R do

16: add < true

17: Let w < argmaxyes, ,,, d(u, x)
18: for each p € () do

19: q < argmaxges, ;. , d(p, )
20: if d(p, q) > d(u, q) then

21: add « false

22: end if

23: end for

24 if add then

25: Q + QU {u}

26: end if

27:  end for

28: end for

29: return C

Implementation note. Cluster assignments (.5, ;) and the farthest clients z;(y) are read off from the
ordinal profile. The update of @; (the “ordinal dominance” test) checks, for each p € @); with bottle-
neck client g,,, whether g, ranks a candidate u ahead of p; if not, u is dominated and not inserted. No
extra distance queries are needed for this check.

We now turn to the formal analysis, beginning with the structural invariant that keeps the number of
queries small.

Stability of farthest clients. The next lemma states that once we have queried a center y € Q; for its
farthest client, that client remains farthest for ¢ unless it is added as a center; thus we never need to
re-query y while that client is unselected.

Lemma 5.2.2. Forany y € Q; let z; = argmaxyes, ; d(y,x), and suppose z; ¢ Ciy1. Then

argmaxes, ; d(y, ) = argmaxzes, ;. d(y, ).

Proof. We proceed by induction on . The base case ¢« = 0 is immediate. Now suppose the claim
holds for iteration 7. Let w be the new center added, and u the center whose cluster contained w.
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Consider any y € Q;. If y was already in @); before u was added, then

d(zi,w) > d(y,z) = arg max d(y,z) = z;.
:EESy,HJ
If instead y joined @); after u, we again conclude z; remains the farthest due to the relative distances,
completing the proof. O

Bounding the number of queries. Using Lemmal5.2.2, each removal from Q; corresponds to a single
past query, and each insertion leads to at most one future query. Since there are at most k£ removals
and k insertions, the total number of queries is at most 2k.

Lemma 5.2.3. The total number of distance queries performed by the algorithm is at most 2k.

Proof. By Lemma [5.2.2, each time a center is removed from Q); it must have been queried once, and
there are k£ such removals. Each addition to () also incurs a query, and at most & such additions occur.
Thus, the total number of queries is at most 2k. O

We now argue that the algorithm performs an approximate farthest-first traversal: in each iteration,
the selected point is not much closer than the true farthest point in the space.

Lemma 5.2.4. At iteration i, let z be the newly chosen center (so z € Sy ; for some y € Q;), and let
u€ Gy, w e Sy Then

1
d(y,z) > 5 d(u,w).

Proof. Since z maximizes d(y, x) over clusters in @Q;, for any u ¢ Q; there exists some 3’ € @; such
that
d(y,2") > d(u,w), withz =arg max d(y/,x).

xGSy/’i

Applying the triangle inequality gives
d(u,w) < d(y',2") +d(',w) < 2d(y', 2') < 2d(y, 2),

so d(y,2) > 3 d(u,w). O

Finally, we show that an approximate farthest-first traversal suffices to guarantee a constant-factor
approximation to the optimal cost.

Lemma 5.2.5. Suppose we iteratively select points such that, in each iteration, the newly selected
point z € X satisfies
d(z,C;) > o - maxd(z, C;),
zeX
for some o € (0, 1], where Cj is the set of centers selected so far. Then, after k-2 iterations, the set
Cy, satisfies

ng{cd(x,Ck_l) < '¢§)OPOT)>

e

SHEN

where qﬁgf% 1= min|¢|—j, maxzex d(x, C) denotes the optimal cost for the k-center objective.

Proof. Let C* = {A1,..., Ay} be the optimal clustering of X
We consider two cases:
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Case 1: Each optimal cluster A; contains at least one point from Cj_». In this case, for every
point x € X, the triangle inequality yields:

d(w, Ch_s) < d(x, ) +d(c5, ) < 6S5) + pSs) =2 ¢2).

So we obtain a 2-approximation.

Case 2: Now consider the case where C;,_ includes two points x1, 9 € A; from the same optimal
cluster. By the triangle inequality and the definition of the optimal clustering, we have:

d(wz,21) < (@3, ¢}) +d(c,01) < 2- G55
Moreover, since xo was selected by the greedy rule,

1
d(z2,C;) > a-maxd(z,C;) = maxd(x,C;) < —d(x2,C}).
zeX rzeX (0%
But z; € C;, so:
d(z2,C;) < d(x2,71) < 2- <Z>(()°§T).

Combining,

max d(z,C;) < ~¢(()°;T).

zeX

SN

O

This lemma formalizes a key intuition: as long as each new center reaches sufficiently far into
unserved areas (i.e., is not too close to the existing centers), the algorithm makes meaningful progress
in reducing the maximum client distance. Even though we never know the true distances for all
points, using approximate farthest-first steps based on sparse queries still ensures that we don’t miss
large uncovered regions. This is why a small number of well-guided queries can lead to strong global
guarantees.

With Lemma we obtain a k-center bound: the a-approximate farthest-first procedure returns
a set (), with

2
max min d(z,c) < — min maxmind(z,c),

z€X ceCly, a |C|=k z€X ceC

i.e., a (2/«)-approximation for k-center (setting o« = % yields the 4-approximation we use as a scaf-
fold). To leverage this for other clustering objectives, we relate the k-center objective to the (k, 2)
cost via norm inequalities: for any center set C' and 2z > 1,

. 1/z . . 1/z
(g{d(x,c*)) < n'* maxd(@,C),  and  maxd(z,C) < (;(d(x,c*)) .

Thus an approximation for k-center immediately translates into a corresponding bound for (k, 2),
yielding the following translation from k-center to (k, z).

Lemma 5.2.6 (From k-center to (k, z)-clustering). Fix z > 1. Let S C X with |S| = k. If

maxd(z,S) < «- min maxd(z,C),
rzeX |Cl=k z€X

then
6:(5) < an'? ¢
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In particular, for z = 1 (the k-median objective), ¢1(S) < an gbggT.

Proof. First, for any S,

.(5)* = Z d(z,S)* < Z (max d(y, S))Z =n (maxd(y,S))z,

eX eXx
reX cex Y Y

so taking z-th roots yields

< pl/* .
¢2(8) < n'/* maxd(z,5)

By the hypothesis on .5,
max d(z,S) < «- min maxd(z,C).
zeX |Cl=k z€X

Moreover, for every C' we have max, d(z,C) < ¢,(C) (since || - |0 < || - ||2), hence

in, maxd(z,C) < min ¢.(C) = o

Combining the above gives ¢.(S) < an!/? ¢gP)T. For z = 1, this is ¢1(S) < an quP)T. O

The power of this reduction lies in the relationship between different clustering norms: while the
k-center objective minimizes the worst-case distance, k-median minimizes the average. Bounding the
maximum distance immediately bounds the average — up to an n'/# factor — which means that any
approximate k-center solution can serve as a useful (though loose) approximation for k-median. This
justifies our use of the low-query k-center scaffold as a safe starting point for further refinement.

Combining Lemma with Lemma (with o = %) gives a 4-approximate k-center solution
using only 2k queries. By Lemma [.2.4, this immediately yields a 4n-approximation for k-median.
This k-center scaffold provides a bounded-cost starting point with very few distance queries, which
we leverage next to obtain a constant-distortion algorithm using only O(k* log® n) queries.

5.3 Constant Distortion with O(k*log’ n) queries

To achieve constant distortion with a sublinear number of distance queries, Burkhardt et al. [29] emu-
late the distance-proportional sampling of k-median++ [|L5] without access to the full distance matrix.
Their method partitions each current cluster into O(logn) ordinal rings and issues just one distance
query per ring, enabling an approximation of the true sampling distribution up to constant factors. This
allows them to sample new centers with probabilities that remain within a constant factor of those in
the original full-information scheme, ensuring that each optimal cluster is hit with sufficiently high
probability in expectation. Iterating this process for 7" = ©(k logn) rounds leads to geometric decay
of the uncovered cost, culminating in a solution with constant distortion and polylogarithmic query
complexity However, unlike the aforementioned works, they cannot guarantee an upper bound on the
cost when relying solely on the sampling guarantee provided by Claim [5.3.3: there remains a nonzero
probability of repeatedly sampling from the same clusters, which may lead to arbitrarily large distor-
tion. To sidestep this issue, they employ the deterministic k-center solution developed in the previous
section, which achieves a 4-approximation using only 2k distance queries. This initialization ensures
that the total cost is at most O(n) times the optimal (k, z)-cost. As a result, the low-probability event
that previously implied unbounded distortion now only results in an O(n)-approximation, signifi-
cantly strengthening the robustness of the overall algorithm.
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First, we present some new notation and definitions that are going to be necessary for the under-
standing of their algorithm that follows.

Definition 5.3.1. For any set of points S C X and any point ¢ ¢ S, we define a partition of S U {c}

into disjoint subsets
{Sea,...,Sc0}, where (= |log|S|].

This partition is constructed recursively, starting from S. . We let S. ¢ be the singleton set containing
the point in S that is farthest from c. Then, for each { > j > 1, we define S, ; to consist of the 2t=i

farthest points from c in the set S\ Uf Se,i. Finally, we set

=j+1

L
Sea =8\ [ Ses-

=2

Furthermore, given a current set of centers C, we define an estimated cost for each ring .S; ; in the

hierarchical partition as 50(52-,]’) = |S; ;| -mingeg

. ;1 d(z, ¢;).To evaluate this estimate, it suffices to

determine the distance between c¢; and the top-ranked point in its preference list 7, that lies in S; ;1.
We then emulate the k-median++ algorithm by defining a probability distribution D over candidate

points. Forany c € S, ;, its sampling probability is given by: p(c) := | Slj| . E”bcés’“(’g ) x
™ i,j PO Wi

a valid distribution, since the total probability mass sums to one. While the distribution p defines a
valid sampling probability over candidate points, in the algorithm, they amplify the probability mass

which forms

by a factor of 7', and sample each point ¢ with adjusted probability pr(c) := min{1l, T - p(c)}.
This boosted sampling scheme increases the likelihood of selecting points from high-cost regions,
effectively emulating the geometric convergence of the original k-median++ sampling process, while
enabling them to control the number of queries performed in each round.

Definition 5.3.2 (Covered Optimal Cluster). Let C* = {Aq, ..., A} denote the optimal clustering,
and let C be the clustering induced by the algorithm under consideration. For each i € [k|, we say
that the optimal cluster A; is covered if

dc(A;) <10 - o= (As),

and uncovered otherwise. Throughout, ¢c(A;) denotes the cost of serving the subset A; using the
centers in C, that is,

1/z
dc(Aq) = (Z d(x,C)z> :
TEA;

For ease of notation, we let Uncovered (U ) denote the set of all points contained in uncovered clusters.

Having defined the key components — the hierarchical partitioning, cost estimates, and a method to
evaluate coverage — we now present the full algorithm. This algorithm iteratively samples candidate
centers using the approximate distribution p, while initializing with a robust k-center solution to ensure
bounded cost even in worst-case sampling scenarios.
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Algorithm 9 k-median with O(k* log® n) queries

Input: Point set X, ordinal profile P = {7, },cx,and k € N
Output: A set C C X of size k

1: Initialize C' + Cy where Cy is the output of Algorithm §
2: Sample a point ¢ uniformly at random from X; set C' < C' U {c¢}
3:fort=1toT do
4: foreach cc Cdo

(@) Sc+ {x € X : c=argmingeco my(c)}

(b) Partition S, per Definition

(c) Compute ac(Sc,j) for all j

end for

5:  Sample ¢ € S;; with probability:

P + min {1, T | _dclSeg) }
’S%j‘ Zw‘ ¢C(Si,j)
6: setC «+ CU{c}
7: endfor
8: Approximate C' with a committee C” of size k
9: return C’

We now analyze the performance of Algorithm P. Our goal is to show that the uncovered cost de-
creases geometrically across iterations, culminating in a constant distortion approximation. To do so,
we first establish that the emulated sampling distribution retains a constant fraction of the probability
mass of the ideal k-median++ distribution. Then, we show that uncovered optimal clusters are likely
to be hit in each round, and finally, we prove that the expected uncovered cost shrinks by a constant
factor in each iteration.

Claim 5.3.3. Given a current set of centers C, let p(c) denote the probability that the standard k-
median++ algorithm adds point c to C, and let p(c) denote the probability that c is sampled under
the distribution D. Then,

ple) = 5 - p(e).

N | —

Proof. We begin by recalling the expressions for the sampling probabilities in the standard k-median++
algorithm and in our modified distribution D.
In the standard k-median++ algorithm, the probability of adding point c to the set C'is
d(c,C d(c,C
ooy = O _deO)
ZIEX (l‘, C) QSC'(X)

where ¢c(X) = > .y d(z,C) denotes the total cost with respect to the current centers C'.

Recall that the estimated cost, used in Algorithm [ is defined as

60(Sej) = |Sesl- min d(g,C).
qES.

z,j—1

By construction, for every c € S ;, we have

min d(q,C) > d(c,C),

q€Sz 51
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which implies
¢c(Sz,5) = [Se,j - d(c, O).

Substituting this into the expression for p(c), we obtain:

Be) > I ‘Sz,j|/‘\d(6, C) _ d(i’ C) |
= ’SI,j| Zi,j gﬁc(Si’j) Zi,j ¢C(Si,j)

Thus, to prove that p(c) > 5 - p(c), it suffices to show that

Z bc(Sij) <2 do(X).

i?j
To see this, observe that for all 7, j,

oc(Si;) = 1Si4| » min d(q,C) <28 j-1]- min d(q,C) <2 ¢c(Sij-1),

€94,5—1 qES; j—1
where the inequality follows from the fact that each ring \S; ; contains at most twice as many points
as S; j—1 by construction.

Summing over all 7, j, we obtain:

> 60(Sig) <23 be(Sijo1) <2 (X)),
(] i,J

which completes the proof. O

Having established that our sampling distribution p(-) approximates the standard k-mediant+
probabilities up to a constant factor, we can now leverage this bound to argue about the likelihood

of covering uncovered optimal clusters.

Lemma 5.3.4. Let C be the current set of centers and let A be an optimal cluster from the optimal so-
lution C* that is not yet covered by C. Then, after sampling a new center (according to the distribution
described in Algorithm |9), the probability that A remains uncovered is at most

T'ef)c(A)),

Pr[ A remains uncovered| < exp | —
| )< p( 10- 6o (X)

where ¢pc(A) denotes the total cost of points in A under the current center set C, and ¢¢c(X) is the
total cost over all points.

Proof. Burkhardt et al. [29] (Claim B.3) first prove that for the £-median objective, sampling a point
¢ € A according to the distribution D™ (induced by the standard k-median++ algorithm) leads to

Ep++[pcufe(A)] < 4 - de=(A).

By Markov’s inequality, this implies

Pr [poue(4) 25+ go-(4)] < ¢

D++

Therefore, with probability at least %, the cluster A becomes covered when a center is sampled from
Ausing DT,
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This means there exists a subset A’ C A such that:
(i) Sampling any point ¢ € A’ makes A covered, and
(ii) The total cost of A" under C satisfies ¢c:(A') > £ - pc(A).

Now since we sample a center according to distribution D, amplified 7" times, using the boosted
lower bounds from Claim .3.3, we have:

Pr[A remains uncovered| < H (1-T-p(c)) < H <1 — Tg(c)) .
ceA’ ccA’

T

Applying the inequality 1 — z < e™ %, we get:

T.
Pr[A remains uncovered] < exp (— Z g(c)) :
ceA’

Recalling that )~ 4, p(c) = (Zg((?(/)) > 1. %, it follows that
. T ¢C(A')> < T $c(A) >
Pr[A remains uncovered] < exp [ —— - <exp| ————m~ |,
| 1< exp ( 2 9c(X)) = TP\ T10 60 (X)
which completes the proof. O

This lemma shows that, in expectation, uncovered optimal clusters—especially those with non-
negligible cost—are likely to be covered in each iteration. This insight is the key to showing geometric
decay in the uncovered cost, which we pursue next.

To formalize this decay, we now partition the uncovered optimal clusters into those that contribute
significantly to the cost (heavy) and those that do not (/ight). This separation enables us to argue that,
even if some low-cost clusters remain uncovered, the bulk of the cost decreases sharply.

Lemma 5.3.5. Let ¢popr be the cost of an optimal k-median clustering, and let t be a round such that
the cost of the current solution C} satisfies

bc,(X) > 20 - dopr.

Then, the expected cost of the uncovered clusters after the next iteration satisfies:

14 exp (—%)

]E[(Z)Ct-i,-l(U)] < )

’ (Z)Ct(U)

Proof. We begin by observing that the assumption ¢¢, (X) > 20 - popr implies

oc,(U) > = - ¢c, (X),

N | =

since otherwise the total cost of the covered clusters would exceed % - ¢c, (X), implying that

¢c,(X) <2-¢c,(U) <2-10- popr = 20 - dpopr,

which contradicts the assumption.
We now partition the uncovered optimal clusters U into two collections:
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e The heavy clusters:

Hym {A c U se(4) 2 2V }

e The light clusters: Ly := U \ H;.

Let A € H;. By Lemma 5.3.4, the probability that such a heavy cluster A remains uncovered in
round ¢ 4 1 is at most

T- ¢Ct (A) T- ¢C’z (U) T
0 (i o) =2 (o) =0 (o)
where the last inequality uses ¢¢, (U) > 3 - dc, (X).

Therefore, the probability that a heavy cluster gets covered is at least 1 —exp (— 40%) . This implies
that the expected decrease in total uncovered cost satisfies:

T
6, 0) ~ Eloe (0] 2 (1-ew (— 1)) - 3 sl
But the total cost of the light clusters is at most:

> de <k 21w,

AeLy
so the heavy clusters contribute at least:
1 1
Z oc, (A) > ¢Ct(U) D) ’ ¢Ct(U) = 2 ) d)Ct(U)
AE'Ht

Hence,

Elpc,,,(U)] < Z o, (A) + Z Pr[A remains uncovered] - ¢¢, (A) .
AeLly AeH,

~~

<3¢c, (U) <exp(— 05 ) L aen, ¢ (4)

which simplifies to

E[¢Ct+1 (U)] <

This completes the proof. O

Theorem 5.3.6 (Burkhardt et al.). Algorithmdachieves an expected O(1)-distortion for the committee
election problem using O(k* log® n) distance queries.

Proof. Algorithm [J invokes Algorithm [§ as a subroutine, which yields a 4-approximation to the opti-
mal k-center cost. By Lemma .2.6, this implies:

E[¢c, (U)] < 4n - ¢opr-
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Then, applying Lemma iteratively, we obtain the recurrence:

1 +exp (—
Elpc, . (U)] <20 gopr + - E[pc, (U)], where a := 2(40k>.
Unfolding this recurrence for 7" rounds gives:

T-1

Elpo, (U)] < o™ - 4n - gopr + 20 - dopr - » _ .
t=0

Letting T' > 40k log n, we ensure that

L+exp (—qp) _nt1

T 1
exp (— ) < —, whichimplies « =

40k ) — n’ 2 = 2n
which yields:
n -+ 1 40k logn 2n
Elpc,(U)] < 5y, -4n - gopt + 20 - Popr - —3 S 2 gopr + 40 - popr = 42 - popT-
Thus,
Elpc, (U)] < 42 - ¢opr.
which then yields:

E[pcr (X)] < Elpc, (U)] + 10 - ¢opt < 52 - dpopr-

Since the algorithm runs for 7" rounds and adds ©(T") ,in expectation, centers per round, the total
number of centers opened is O(k? log® n).

Therefore Algorithm J at the end of step 7 has created an (O(k? log® n), 52)-bicriteria solution,
meaning it uses O(k? log? n) as many centers and achieves an approximation (distortion) of 52

Finally, applying any constant-factor approximation algorithm to select k centers from the commit-
tee C' produced by Algorithm P (e.g., the 2.613-approximation of Gowda et al. [54]), and leveraging
claim (Stated below) which incurs an additional factor of 4, we get a final distortion bound of:

4.52-2.613 < H44.

The algorithm runs for 7' = O(k log n) rounds. In each round, it adds ©(7") new centers in expec-
tation, resulting in a total of T2 = O(k? log? n) candidate centers over the course of the algorithm.

To select each new center, the algorithm samples one client from every ring of the current center set.
Each center defines O(logn) rings (as per Definition 5.3.1)), so at each round, it samples O(7 logn)
clients. Across all T rounds, this leads to a total of

O(T?logn) = O(k?log® n)

sampled clients.

For the final reduction step, which transforms the bicriteria solution into a true k-clustering, we
need to know the distances between all sampled clients and all candidate centers. This results in

O(k*log®n) - O(k*log?n) = O(k*log® n)



distance queries in total. These queries suffice both for computing the sampling probabilities during

the algorithm and for executing the reduction step.
O

Claim 5.3.7 (Approximation from bicriteria solution to true k-clustering Solution). Let X be a point
set in a metric space, and let C' C X be an («, 3)-bicriteria solution for the (k, z)-clustering problem.
Construct a multiset X' by assigning each point x € X to its closest center c,, € C', and replicating c,
once per assigned point. Let C C C' be any y-approximate solution for the (k, z)-clustering problem
on X'. Then C' is a 4ary-approximate solution for X.

Proof. Let Copr C X be an optimal solution of size k, and foreachx € X, letc, = argmin.ccr d(z, ¢).
We begin by bounding the cost of clustering X’ with respect to Copr:

D d¥(ca, Copr) <2771 ) (d(cay ) + d7(x, Copr)) = 27 (¢2(C") + 6-(Copr)) < 277 (”+1)-¢.(Copr),
zeX zeX

where the first inequality follows from the Minkowski inequality for z > 1, and the last from the fact
that C” is an c-approximate solution.
Now, since C is a y-approximate solution on X', we have:

@ (e, C) <47+ Y d¥(ca, Copr) <7727 (o + 1) - 6.(Copr).
zeX reX

Finally, using the triangle inequality again, we bound the total cost of clustering X with respect to
C:

Y &, 0) <27 (dF(w,c0) + d¥(cr, ©))

zeX zeX

=271 (@(0’) + Y d (e, C)>
reX
< 2z71 .af - d’z(COPT) + 2z71 . ,Yz . 2z71(az 4 1) . sz(COPT)‘
Combining both terms:

¢:(C) < (2710 + 27729 (0® + 1)) - ¢-(Copr) < 2°% 77 - a* - $.(Copr),

where the last inequality holds for a, v > 1.
Taking the zth root yields:

P(C) <22 -y -a- ¢(Copr) = 4ya - ¢(Copr).
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CHAPTER O

Stability on Clustering and Voting
Mechanism

A standard approach in the design and analysis of computational problems is worst-case analysis, and
voting mechanisms is no exception. While this framework provides a comprehensive measure of a
problem’s computational complexity, it imposes a constraint: we must consider a single algorithm to
handle all possible instances, even when our interest lies primarily in certain ’special” or structured
cases that might admit more efficient solutions.

This issue is particularly relevant in problems like clustering and the k-committee election prob-
lem, both of which involve optimization tasks that are generally NP-Hard in arbitrary metric spaces
[2, 57]. That is, there is no known polynomial-time algorithm that can solve all instances of these
problems exactly. As a result, a significant body of work has focused on developing approximation
algorithms that compute near-optimal solutions with provable guarantees, particularly for problems
like k-median, k-means and facility location and other objective functions []12, 61|, 75]. However,
in real-world applications, our concern is rarely with all theoretical inputs, but rather with those that
reflect meaningful, structured data.

In the context of clustering, this distinction is elegantly summarized by Bilu, Daniely, Linial, and
Saks, who argue that “clustering is either easy or pointless” [22], and echoed by Roughgarden, who
observes that “clustering is hard when it doesn’t matter” [[7Q] [71]. These perspectives suggest that
hard instances may be of limited practical relevance, whereas instances encountered in the real world
often exhibit features that make them tractable.

Clustering aims to partition a dataset into groups such that elements within the same group are
“similar,” while those in different groups are “dissimilar.” In real-world scenarios, it is usually as-
sumed that such clusters are well-defined—that is, similar items are located close together and are
clearly separated from other clusters. This intuition carries over to k-committee election, where vot-
ers or agents often form communities with clear boundaries. These well-separated structures simplify
the identification of cohesive groups and their representative candidates.

In the following sections, we refer to such instances—where the problem exhibits sufficient internal
structure—as stable instances, and we explore the interesting properties of stability.
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6.1 Stable Clustering

6.1.1 Definitions and Preliminaries

First of all, we will define the components of the classic clustering problem.

Definition 6.1.1 (Clustering Problem). A clustering problem is defined by a tuple ((X,d),H,k),

where:

e (X,d) is a metric space, with X being a set of data points and d a distance function defined on

pairs of points in X,

o H is an objective function that assigns a nonnegative real-valued cost to any partition of X into
k subsets C1, . .., C}, based on the metric d,

o k > 1is the number of clusters.

The goal is to find a partition {C1, ...,Cy} of X that minimizes the cost given by H.

Definition 6.1.2 (Center-based and Separable Objectives). A clustering objective is center-based if
the optimal solution can be defined by k points cy, ..., ci in the metric space, called centers, such that
every data point is assigned to its nearest center. Such a clustering objective is separable if it further
satisfies the following two conditions:

o The objective function value of a given clustering is either a (weighted) sum or the maximum of
the individual cluster scores.

e Given a proposed single cluster, its score can be computed in polynomial time.

The most well-studied and, perhaps, most interesting clustering objectives are k-means, k-median,
and k-center. These objectives are defined as follows. Given a clustering C1, . .., Cy, the objective
is the minimum over all choices of centers ¢; € C1,. .., c; € Cy of the following functions:

k
Hmeans(ch ooy Ok d) = Z Z d(u, Ci)2

i=1 ueC;
k
Himedian(C1, -+, Crid) = > d(u, ;)
i=1 ueC;
Hcenter(Cb ooy Cs d) = ZE?Il’aX’k} {géag,i d(ua Cl)}

It is evident that the Hmeans Objective corresponds to the social cost, and the Hcenter Objective cor-
responds to the maximum cost for any voter in the k-committee election problem.

Several studies have explored different formalizations of szability in the context of clustering. One
such notion, approximation stability, was introduced by Balcan, Blum, and Gupta [[17]. In their frame-
work, a clustering instance is said to exhibit approximation stability if any solution that approximates
the objective function well is also close to a desired ground-truth clustering. More precisely, a k-
median instance is said to be (¢, €)-approximation stable if every c-approximate k-clustering is e-
accurate, meaning that it agrees with the target clustering on at least a 1 — € fraction of the data points.
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In this work, however, we focus on a different notion known as perturbation stability, originally
proposed by Bilu and Linial and subsequently studied in [21]], [[16], [[19], and [7]. The motivation
behind perturbation stability arises from the observation that, in practical applications, pairwise dis-
tances between data points are often determined using heuristics such as Euclidean distance. As such,
if the optimal clustering under a given distance function is meaningful, then it should remain opti-
mal under small perturbations of the input distances, unless the correct solution is obtained merely by
chance.

Definition 6.1.3 (y-perturbation). Given a metric space (X, d) and a parameter v > 1, we say that a
function d' : X x X — Rsq is a y-perturbation of d if, for all z,y € X, the following holds:

d(z,y)
v

< d(x,y) < d(z,y).

Definition 6.1.4 (y-stability). Suppose we have a clustering instance composed of n points residing
in a metric (X, d) and an objective function H we wish to optimize. We call the clustering instance
~y-perturbation stable for H if for any d’ which is a y-perturbation of d, the (only) optimal clustering
of (X, d") under H is identical, as a partition of points into subsets, to the optimal clustering of (X, d)
under H.

A related but weaker notion of stability is known as ~y-metric perturbation stability. In contrast to
general perturbation stability—where the perturbed distance function d’ need not be a metric (i.e., it
may violate the triangle inequality )—y-metric perturbation stability restricts attention to perturbations
that do preserve the metric properties. Specifically, an instance is said to be y-stable if it admits the
same optimal solution under every y-perturbation of the original distance function. For y-metric sta-
bility, this requirement is relaxed: the optimal clustering must remain unchanged only under ~-metric
perturbations, which form a subset of all y-perturbations. Consequently, the set of y-metric stable
instances strictly contains the set of ~y-stable instances. We refer to y-metric perturbation stability as
a weaker notion because it imposes less stringent conditions, making it applicable to a broader class
of instances.

Definition 6.1.5 (y-metric perturbation and ~y-metric stability). Let (X, d) be a metric space and let
~ > 1. A metric d' is called a ~y-metric perturbation of d if for all u,v € X, it holds that

d(u,v)

< d'(u,v) <d(u,v),
~

and d’ satisfies the properties of a metric (including the triangle inequality).
An instance (X, d), H, k) is said to be v-metric perturbation stable if, for every y-metric pertur-
bation d' of d, the optimal clustering for ((X,d'), H, k) is identical to that of (X, d), H, k).

6.2 Properties Of Perturbation Stable Instances

In any ~-stable instance, the optimal clustering satisfies the center proximity property, which ensures
that every point is at least -y times closer to its assigned center than to any other center in the optimal
solution. This captures the idea that points are most strongly associated with their own cluster.

Definition 6.2.1 (y-center proximity). Let v > 1, and let ((X,d), H, k) be a y-stable clustering in-
stance with unique optimal clustering {C1, . . ., Cy. } and corresponding optimal centers {ci, . .., cy}.
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Then the instance satisfies the y-center proximity property: for all i # j and for every point x; € C;,
it holds that
d(zi, cj) > v-d(xi, ).

Proof. Lety > 1, and let C; and C}; be any two clusters in the optimal clustering, with centers ¢; and
c; respectively. Let x € C; be an arbitrary point.
Define a perturbed distance function d’ such that:

o d(x,¢) =d(z,¢),

e All other distances are scaled down by a factor of y: forall other u, v € X, d'(u,v) = =-d(u, v).

1,
&t

Since the instance is y-stable, the optimal clustering must remain unchanged under any ~y-perturbation,
including this one. In particular, z must remain assigned to C}, so:

d(z,¢;) < d'(z,cj).
Substituting in the values from d’, we have:
1
d(z,¢;) < —-d(z, ¢ ),
Y

which implies:
d(z,cj) > v-d(z,c).

Thus, the instance satisfies the y-center proximity property. O

An immediate consequence of the ~y-center proximity property is that any ~y-stable instance with
v > 2 satisfies the weak y-center proximity condition. Specifically, for any pair of clusters C; and C}
with ¢ # j, and for any points x € C;, y € Cj}, it holds that:

d(ZL‘, y) > ('Y - 1) : d(l‘a Ci)a
where ¢; is the center of cluster C; in the optimal clustering.

Proposition 6.2.2 (Weak ~y-center proximity). Lety > 2, and let ((X, d), H, k) be a y-stable instance
with unique optimal clustering {C1, . .., Cy} and corresponding optimal centers {ci, ..., c}. Then,
forall i # j, for all points x € C; and y € Cj, it holds that:

d(z,y) > (y—1) - d(z, ).

Proof. Letx € Cjand y € Cj for i # j, and let ¢; and ¢; be the centers of clusters C; and C},
respectively. We consider two cases based on the relative distances from x and y to their respective
centers.

e Case (a): d(y,c;) > d(z, ¢;).
By the triangle inequality, we have:

d(z,y) > d(y, ) — d(z, ).

Since the instance is y-stable, it satisfies the y-center proximity property, which implies:

d(y,ci) > -d(y,cj).
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Substituting, we get:
d(x,y) > - dly,c;) —d(z,¢i) 2 v-d(y, ;) = d(y, ¢;) = (y = 1) - d(y, ¢j).
e Case (b): d(y,cj) < d(z,c;).
Again, by the triangle inequality:
d(z,y) = d(z,¢;) — d(y, ¢;)-
Using ~y-center proximity for x, we know:
d(x,cj) > -d(z,c;),
and since d(y, ¢;) < d(z, ¢;), it follows that:

d(z,y) >v-d(z,¢) —d(y,cj) >v-dz,¢) —d(z,¢) = (y—1)-d(z, ¢).

In both cases, the inequality d(z,y) > (v — 1) - d(z, ¢;) holds. O

We now state a central implication of stability: the cluster separation property. In any ~y-stable
instance, the distance between any two points assigned to different clusters is bounded below by a
function of =, ensuring that inter-cluster distances are sufficiently large.

Lemma 6.2.3 (Cluster separation property). Let v > 2, and let ((X,d),H, k) be a ~y-stable instance
with unique optimal clustering {C1, . . ., Cy} and corresponding centers {ci, . . . , ¢ }. Letz;, x}; € Cy,
and xj € Cy for k # k. Then:

(v —1)?

> d(x;, ).

i

d(.m, .Z‘j) >

Proof. Let ¢, and ¢i denote the centers of clusters Cj and C}, respectively. Since the instance is
~-stable, it satisfies the y-center proximity property:

d(@i, crr) >y - d(@i, ).
Applying the triangle inequality:

d(z, ci) + d(ck, crr) > 7y - d(z4, cg)
= d(cg,cpr) > (v — 1) -d(zi, ).

We also have, from the triangle inequality:
d(ck, Ck/) < d(ck, :Ul) + d(xi, xj) + d(a:j, Ck/).
Next, by the weak y-center proximity property (which holds for v > 2), we know:

1 1
d(.%'j,Cy) > 71 . d(afi,xj)a and d(a;i,ck/) > 71 . d(.%'i,.%'j).



72 - Stability on Clustering and Voting Mechanism

Substituting into the earlier inequality, we obtain:

1 1 v+1
r—1 d($17$3) +d($i7xj) + v -1 : d(.l‘i,.%'j) = v —1 : d(.%'z,l'])

d(ck, Ck/) <
Finally, apply the triangle inequality again to relate d(x;, x7):

d(z;, @) < d(z, ) + d(cg, o)) < 2 d(x;,cx)

< ﬁ . d(xi,xj) + P -d(ck,ck/)
2 2(v+1) 2

< — d(xg,25) + 5 - d(xi,x5) = ~d(zi, zj).

7_1 ( ]) (’y—l)Q ( ]) (7_1)2 ( j)

Rearranging gives:
—1)2
d(xi, xj) > (727) d(my, xh),
which concludes the proof. O

The three properties—Definition [6.2.1], Proposition .2.2, and Lemma [6.2.3—provide useful in-
equalities that characterize the inter- and intra-cluster distances of a «y-stable instance.lt is important
to note that the three properties presented above are necessary for y-stability but not sufficient. That
is, an instance may satisfy all three properties and still fail to be -stable.

As illustrated in Figure .1, we can construct such a counterexample. In this instance, all the
inequalities corresponding to the «y-center proximity, weak ~y-center proximity, and cluster separation
properties hold for v = 4 and any € > 0. However, if we apply a vy-perturbation that scales down
the distances between agents x1 — x3, x2 — x3, T3 — x4 and x4 — x5 by a factor of -, the optimal
clustering changes.

In the middle configuration (Figure .14), the clustering remains the same as in the original in-
stance, and its cost is g + 4 = 5.5. In contrast, the configuration on the bottom (Figure b.1d) has a
lower cost of 5 + ¢, due to the new center placements. If the original instance were truly ~y-stable, the
optimal clustering would remain unchanged under all valid -perturbations. Therefore, this instance
is not 4-stable.

1 (NN 1 W 4+44e ( 141 |
x ry w3 14 x5j kz'e x7  rg X
(a) Original instance.

1 1 1 1
o147 1 [l+d 1+ 1

L1 T2 T3 T4 T L6 g s T9

(b) Perturbed Instance with original Clustering
1 1 1 1
o241 1 1+e |1 ¥

T1 T2 T3 T4 Ts Z6 7 g8 T9

(¢) Perturbed Instance with different Clustering

1.1 An instance where the three geometric properties hold but the instance is not ~y-stable.

We now formally introduce the Min-stability property, first defined by [|18] and later applied in the
context of perturbation-stable clustering by [[16]. This property plays a central role in our approach,
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as it underlies the hierarchical structure we exploit to design efficient algorithms for the k-committee
election problem under perturbation stability.

Lemma 6.2.4 (Min-Stability [[16]). Let v > 2 + /3, and let ((X,d),H, k) be a ~y-stable instance
with unique optimal clustering {C1, ..., Cy}. Let C,C" € {C1,...,Cy} be two distinct clusters, and
let A C C be a proper subset. Then:

xeAr,rglllenC\A dl,y) < seA seC d(z, z).
Proof. Let Cf and C7 be any two distinct clusters in the optimal clustering, and let A C C7, A C Cr.
Letp € Aandp’ € A’ bethe pair realizing the minimum inter-set distance d(p, p’) = mingec 4, e’ d(z, 2).
Let g € C} \ A be the point in the rest of C; closest to p, and let ¢, c; be the centers of € and C7,
respectively.
By the ~y-center proximity property:

d(p,p") +d(p, c;) >~ - d(p,c}) (1)
d(p,p") +d(p,c;) > v -d(p',c}) 2)
d(p,p") +d(p', ;) + d(p,q) > v - (d(g,p) — d(p, c})) A3)
Multiplying first inequality by 1 — ﬁ — #, the second one by #, the last one by ﬁ and
summing all three inequalities, we get:
N 1T *
d(p,p') > 1 d(p, c;) +d(p, q)

For y > 2 4 /3, this implies d(p, p’) > d(p, q). Therefore:

min d(x < min d(z,z
z€A, yeCr\A (z,y) z€A, 2€C] (@,2),

which concludes the proof. O

In words, the Min-stability property states that for any strict subset A C C' of a cluster C' in the
optimal clustering, the point closest to A lies in C'\ A, rather than in any other cluster.

6.3 Algorithms for Perturbation Stable Instances

On this section, we present algorithmic frameworks that leverage the structural guarantees provided
by perturbation-stable instances to recover optimal clusterings efficiently. Specifically, we show that
under appropriate stability conditions—such as y-perturbation stability for sufficiently large y—it is
possible to design polynomial-time algorithms that solve otherwise intractable clustering problems.

Single-link clustering is a classical and extensively studied hierarchical clustering algorithm. It
models the input metric space (X, d) as a complete weighted graph, where vertices represent data
points in X, and edge weights correspond to the pairwise distances d(x,y). The algorithm proceeds
by executing Kruskal’s algorithm to construct a minimum spanning tree (MST) of the graph, but ter-
minates once exactly k£ connected components have been formed.This process corresponds to halting
the MST construction just before the final £k — 1 edge insertions, thus producing a partition of the
dataset into k clusters.
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An alternative yet equivalent perspective is to view the algorithm as starting with each data point
in its own singleton cluster. At each iteration, the algorithm merges the pair of clusters that are closest
together—i.e., those with the smallest inter-cluster distance—until precisely k clusters remain.

At first glance, one might expect that single-link clustering would recover the optimal solution
for sufficiently stable instances, as it proceeds by repeatedly merging the pair of clusters with the
smallest inter-cluster distance. However, this intuition fails even in relatively simple instances that
exhibit strong stability properties. The fundamental limitation lies in the algorithm’s disregard for
the underlying clustering objective—such as the Hyeans cost—during its execution. Since cluster
merges are determined solely based on local pairwise distances, without considering their impact on
the overall clustering cost, the resulting partition can be significantly suboptimal with respect to the
intended objective function.

To illustrate this limitation, consider a simple instance consisting of a single data point located at
x1 = 0, along with three dense clusters of points: 7" > 1 data points located at xo = 2, T" data points
at x3 = 40, and another 7" data points at x4 = 41. Suppose the goal is to produce k£ = 3 clusters.
In the optimal clustering, the centers are placed at positions x2, x3, and x4, with the isolated point at
x1 assigned to the center at xo, resulting in a total cost of 2. In contrast, single-link clustering merges
the two closest dense clusters—those at x3 and x4—and chooses either x3 or x4 as the center of the
merged cluster . This leads to a significantly higher cost, denoted by 7', which can be made arbitrarily
large relative to the optimal cost.

O O—— 00O

X1 X9 T3 T4

An example instance illustrating the failure of single-link clustering on a stable input.

It is important to note that the instance, by construction, satisfies y-stability for arbitrarily large
values of v, provided that the cluster size parameter 7" is chosen appropriately.

The issue of single-link Clustering was that it paid no mind to the objective cost function. Single-
link++ is a more sophisticated version of single-link clustering.

6.3.1 Single-link++

Having seen it’s predecessor single-link Clustering, it is now easier to understand the motivation be-
hind the following algorithm. Single-link++ is a clustering algorithm designed for use on ~y-stable
instances with respect to the Hyeans Objective. It is capable of recovering the optimal clustering in
polynomial time.

Algorithm 10 Single-link++

Input: Metric space (X, d)
Output: The corresponding clustering

1: Create a complete graph with vertices X and edge weights given by d

2: Run Kruskal’s algorithm to compute the minimum spanning tree 7" of the complete graph

3: Among all (Zj) subsets of £k — 1 edges in 7T, consider the induced k-clusterings (one cluster
per connected component)

4: Compute the clustering with the minimum k-median objective value

First, we need a way to verify that our algorithm not only has a way to validate the existence of an
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optimal clustering but can also produce it as an output.

Lemma 6.3.1. Single-link++ recovers the optimal solution of a k-median instance (X, d) if and only
if every optimal cluster C;" induces a connected subgraph of the minimum spanning tree.

Proof. The Single-link++ algorithm generates clusterings by removing k — 1 edges from the minimum
spanning tree 7, resulting in k£ connected components. Consequently, any clustering it outputs must
consist of clusters that form connected subgraphs of 7'. Therefore, if some optimal cluster C* does
not induce a connected subgraph in 7', then Single-link++ cannot recover the optimal solution.
Conversely, any partition of X into k£ non-empty connected subgraphs of 7" can be realized by
deleting k — 1 edges from 7', specifically the edges that connect points in different clusters. Since the
algorithm considers all such possible edge removals and evaluates the clustering cost for each, it is
guaranteed to find the optimal solution provided that the optimal clustering corresponds to such a par-
tition. Thus, if the optimal clustering forms connected components in 7, the Single-link++ algorithm
will correctly identify it. O

We now have a method to distinguish optimal clusterings in our induced MST. We only have to
apply our core stability properties on the induced instance to receive the following result:

Theorem 6.3.2. In every 2-perturbation-stable k-median instance, the single-link++ algorithm re-
covers the optimal solution (in polynomial time).

Proof. Itis enough to show that the correctness condition in holds—that is, in every 2-perturbation-
stable H,,cqdiqn instance, every optimal cluster C" induces a connected subgraph of T. We proceed by
contradiction. If not, there is a point x € C; such that the (unique) ¢;-x path in T concludes with the
edge (y, x) withy ¢ C7. Atthe time (y, x) was added by Kruskal’s algorithm, x and ¢; were in different
connected components (otherwise the addition of (y, x) would have created a cycle). Thus, Kruskal’s
algorithm also had the option of including the edge (X, ¢;) instead. Since the algorithm chose (y, X)
over (X, ¢;), d(x, y) < d(x, ¢;). But then x is as close to y ¢ C7 as its own center, contradicting the
weak 2-center proximity property. O

To the extent that we believe that “real-world” clustering instances with “meaningful solutions” are 2-
perturbation-stable, gives a formal sense in which clustering is hard only when it does not matter.
It is a largely open research direction to prove robust versions of Theorem [6.3.2, where perturbations
can cause a small number of points to switch clusters, while still preserving the optimal clustering of
the instance, a property called approximation stability.

6.3.2 Single-Linkage with Dynamic Programming

When clustering instances are assumed to be y-perturbation stable for v > 2+1/3, it becomes possible
to recover the optimal solution without exhaustively enumerating all k-clusterings derived from MST
cuts. In this section, we describe an algorithmic framework that leverages this structural property,
following the approach of Balcan et al [[I18] and Awasthi et al. [[16]. This framework relies on a
hierarchical clustering procedure based on Single-Linkage, followed by a dynamic programming (DP)
routine that identifies the optimal pruning corresponding to the target number of clusters.

The first step is to construct a hierarchical clustering tree via Single-Linkage. The procedure is
summarized in Algorithm [L1].
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Algorithm 11 Hierarchical Clustering via Single-Linkage

Input: Metric space (X, d)
Output: A hierarchical clustering tree

1: Initialize each point in X as a singleton cluster

2: While more than one cluster remains:
(a) Find clusters C, C" minimizing diin(C, C") = mingec yecr d(z, y)
(b) Merge C' and C” into a single cluster

3: Record each merge as an internal node in a binary tree

4: Return the full tree with original points as leaves

We now show that when the instance satisfies the min-stability property (Lemma [.2.4), the tree
returned by Algorithm [L1| contains the optimal clustering as a pruning.

Theorem 6.3.3. Let v > 2 + /3, and let (X, d), H, k) be a y-stable instance with unique optimal
clustering {C1, . . ., Cy}. Then the hierarchical tree produced by Algorithm 1 contains {C4, . ..,Cy}
as a pruning.

Proof. We prove that at every step of the single-linkage algorithm, the resulting clustering remains
laminar with respect to the ground-truth clustering C = {C1,...,Cy}. That is, each cluster formed
during the execution is either a subset of some C,. € C, equal to C,., or a union of such clusters.

Initially, the algorithm begins with n singleton clusters (one for each data point), and this collection
is trivially laminar with C, since every singleton is a subset of some C.

Assume inductively that at a given step the current clustering is laminar with C. The algorithm
chooses to merge the pair of clusters C' and C’ minimizing the minimum pairwise distance dpi, (C, C”),
and creates a new node in the tree representing their union.

Suppose, without loss of generality, that C' is a strict subset of some cluster C,. € C. By the min-
stability property, the point in X \ C that is closest to any point in C must lie in C,. \ C. Therefore, if
the algorithm chooses to merge C with some C’, it must be that C’ C C,. as well. Hence, C' U C" is
still contained in C'., and the resulting clustering remains laminar with C.

By induction, this property holds throughout the execution of the algorithm. Thus, the final hier-
archical clustering forms a tree where each node is either a subset, equal to, or union of clusters in
C. O

The existence of such a laminar structure enables an efficient search for the optimal k-clustering
via dynamic programming. The DP routine operates on the binary tree and recursively evaluates the
best way to partition each subtree.

Algorithm 12 Recovering Optimal Clustering via Tree Pruning

Input: Metric space (X, d), number of clusters k
Output: Optimal k-clustering

1: Run Algorithm [11] to construct a full binary tree 7" over the dataset
2: Use dynamic programming to find the optimal k-pruning of T" using:

best-k-pruning(7T") = ming«, < { best-ko-pruning(Tie) + best-(k — ko)-pruning(Trign) }
3: Return the clustering induced by the selected & pruned subtrees

The correctness of the dynamic programming algorithm follows from the recursive structure of the
binary tree and the assumption that the overall clustering cost can be computed in terms of the costs



of individual clusters. Specifically, for each node 7" in the tree and each integer 1 < k < K, we
define a table entry DP[T][k], representing the optimal cost of partitioning the subtree rooted at 7" into
k clusters. The computation proceeds in a bottom-up fashion. If k& = 1, the base case simply treats the
entire subtree as a single cluster and computes its associated cost, denoted Cost(7"), which depends
solely on the points within the subtree. If £ > 1, the optimal k-clustering is obtained by distributing
the clusters between the left and right children of node 7', denoted Tieq and Tyigh. For each valid split
ki + ko = k, where ki, ks > 1, the DP value DP[T']|[k] is computed either as the sum of the two
subproblems for sum-based objectives (such as k-median or k-means), or as their maximum in the
case of max-based objectives (such as k-center).

Since the tree contains at most 2n nodes and up to K clustering options must be evaluated per node,
the total number of table entries is O(nK). Each DP entry for £ > 1 involves considering O(K)
ways of splitting k clusters between the two children, resulting in O(K?) time per node. The base
case DP[T'][1] = Cost(T') requires evaluating the cost of treating the subtree as a single cluster, which
depends on the chosen objective. For instance, in the k-median problem over a finite metric space, this
can be done by computing distances to all candidate centers in O(n?) time; in Euclidean k-means,
the optimal center is the mean, allowing the cost to be computed in linear time using precomputed
statistics; and in k-center, the cost is the maximum distance to a center, which can also be found in
linear time. As a result, the total runtime of the algorithm is

O(nK> + nT(n)) = O(n(K> + T(n))),

where T'(n) denotes the time required to compute the cost of clustering any subtree of size n as a single
cluster. This completes the description of the algorithm’s correctness and computational efficiency.






CHAPTER '/

Metric Distortion on Stable Instances

In this chapter we study how to obtain constant-distortion solutions under y-perturbation stability.
As discussed in Chapter [, stability lets us bypass worst-case hardness by exposing combinatorial
structure in the metric. Our approach is to exploit this structure to build a small candidate set that is
guaranteed to contain an optimal clustering, and then solve only on that reduced ground set.

Concretely, we identify (using only ordinal information) a hierarchical decomposition of well-
separated groups that forms a laminar family. We then define the fiontier: the deepest nodes that
can still be reached with a budget of k centers. Intuitively, each node represents a feasible “cluster at
some resolution,” and the frontier captures the smallest clusters that could still appear in an optimal
k-clustering. A key structural bound we prove is that the frontier size depends only on %k (and not on
n); in fact, it is at most 2~ 1. This gives us a compact candidate set to work with.

We instantiate this framework in two models:

1-Dimensional case. Following the model of [47], we use the frontier to form a reduced 1-D instance
and run a Hassin—Tamir style dynamic program [56]. Crucially, we query distances only along frontier
nodes, yielding a constant-distortion solution with just O(2*) distance queries.

General metric case. Inthe model of [29] (where candidates and agents coincide), we first pick one
representative per frontier node using only ordinal information, which yields a (2!, a)-bicriteria
solution for a constant «v (we instantiate o« = 3). We then restrict the instance to these 25~1 centers,
query only their pairwise distances, and run an off-the-shelf k-median approximation on this S-point
metric (e.g., the 2.613 bi-point rounding of [54]). This standard “bicriteria = true” reduction converts
the bicriteria solution into a true k-solution with constant distortion, using O(4*) distance queries—
independent of n.

We begin with the necessary definitions and preliminaries (well-separated groups, laminarity),
describe the frontier construction and its size bound, and then present the two instantiations above
together with their query and distortion guarantees. We first start with some definitions and prelimi-
naries that are necessarry for our latter theorems

Definition 7.0.1 (Well-Separated Groups). 4 set of clusters C = {C1,Ca,...,Cy} in a metric space
(X, d) is said to be well-separated if for every cluster C; € C, the following holds:

diam(C;) < in  d(z,y),
iam(C;) peliin, (z,y)
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where the diameter of a cluster is defined as

diam(C;) = max d(x,y).

fE,yGCi
In other words, each cluster is tighter (smaller in diameter) than its closest distance to any point
outside the cluster.

Lemma 7.0.2. Let (X, d) be a metric space, and suppose the instance is ~y-perturbation stable with
Y > 2+ /3. Then, the clusters C* = {C5,C3,...,C;} of the optimal clustering solution form
well-separated groups.

Proof. Let C* = {C{,C5,...,C}} be the unique optimal clustering of the y-perturbation stable
instance with v > 2 + /3. Fix any cluster Cf,andletz,z’ € Cfandy ¢ C}.
By Lemma .2.3, for any =, 2’ € C} and y € CF with j # 7, we have:

0-1U° 4

z, ).
2y

d(z,y) >

Taking the maximum over all pairs in C; for the right-hand side and the minimum overallz € C},y ¢
C; for the left-hand side, we obtain:

. (7 - 1)2 : *
min  d(z,y) > ——F—— - diam(C;).
W (z,9) 2 (C7)

When v > 2 4 /3, it can be verified that

(v — 1)

1.
27y =

Hence,
min  d(x,y) > diam(C}),
redtin (z,y) (C7)

which shows that each cluster is well-separated from the rest of the dataset. Thus, the optimal clusters
form well-separated groups. O

Definition 7.0.3 (Laminar Family). A laminar family on an underlying set X is a collection F of
non-empty subsets of X such that for any pair of sets S, S’ € F, one of the following holds:

e SCJY,
e S'CS, or

e SNS =10
Claim 7.0.4. Well-separated groups in a general metric space (X, d) form a laminar family.

Proof. A subset G C X is well-separated if and only if for every two distinct candidates a,b € G
and every candidate c € X \ G:

d(a,b) < d(a,c) and d(a,b) <d(b,c).

Suppose for the sake of contradiction that there exist two well-separated subsets A, B C X which
violate laminarity. This means that:

AZB, BZA and ANB#0.
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Then, there exist candidates:
xr€ANB, ac€A\B, beB\A.
Since A is well-separated, it follows that:
d(z,a) < d(x,b).
Similarly, since B is well-separated, we must have:
d(z,b) < d(z,a).

These two inequalities clearly contradict each other. Thus, our initial assumption must be false,
and there can be no two well-separated groups violating laminarity.
Therefore, the set of well-separated groups forms a laminar family. O

We next describe an algorithm that identifies well-separated groups using only the ordinal prefer-
ences of the candidates. Although our 1-Dimensional model assumes access to voters’ rankings over
candidates rather than candidates’ rankings, this limitation can be bypassed using the same technique
employed in Chapter [ during the analysis of the Distant-Candidate Algorithm (Algorithm [). In con-
trast, in the model of [29], the sets of voters and candidates coincide, and thus this issue does not
arise.

Algorithm 13 Find well-separated groups from ordinal preferences

Input: Set of candidates X = {cy,. .., ¢y}, each with a strict ranking over X \ {¢;}
Output: Family S of well-separated groups

1: Initialize S < 0
2: for each a € X do

3:  LetPref, = [p1,...,pn—1] {a’s preference list}
4: fork<+ 1ton—1do
5: Let G < {a} U{p1,...,pk}
6: Let valid < true
7 for each x € GG do
8: Let r = min{rank,(y) | y ¢ G}
9: if »r < k then
10: valid < false
11: break
12: endif
13: end for
14: if valid then
15: S+ SU{G}
16: endif
17:  end for
18: end for
19: Remove duplicates from S
20: return S

Algorithm [13 generates at most O(n?) candidate groups, since for each of the n candidates, it
considers up to n top-k prefixes. Verifying whether a given group is well-separated requires O(n?)
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time in the worst case, as it involves checking the preference list of each member of the group against
all other candidates.

Therefore, the total complexity of the algorithm is O(n*), and it operates using only ordinal infor-
mation.

Having computed the family of well-separated groups using only ordinal preferences via Algorithm 13,
we now leverage their laminar structure (Claim [7.0.4) to organize them into a hierarchical tree. This
tree captures the containment relationships among the well-separated groups and serves as a founda-
tion for further algorithmic processing.

Definition 7.0.5 (Hierarchy Tree of Well-Separated Groups). Given a laminar family S of well-
separated groups containing the full set X, we define a rooted tree T whose nodes correspond to
the sets in S, and where an edge from node G to node G' is present if and only if:

e GC &, and
o there exists no H € S such that G ¢ H C G'.

This construction naturally induces a tree rooted at the node corresponding to the full set X, where
edges represent immediate containment between well-separated groups. Crucially, this hierarchical
structure reflects the laminar nature of the family: any two groups are either nested or disjoint. Fig-
ure [7.1 illustrates an example of such a hierarchy built from a laminar family of well-separated groups.

{{a, b,c,d,e, f,g}}

{d.e, f}

Hierarchical tree corresponding to the laminar family of well-separated groups:

{{a}, {tHa, b}, {c} {a,b,c} {d}, {eHd, e}, {f}.{d,e, f}. {g}, {a, b,c.d,e, f, g} }.

Claim 7.0.6. For ~-stable instances with v > 2 + \/3, the optimal clusters correspond to nodes in
the hierarchical tree described above.

Proof. For such instances, all optimal clusters are well-separated. Algorithm [13 enumerates all pos-
sible groups that may form a well-separated group and identifies those that do. Consequently, any
optimal cluster must be included in the output of the algorithm and thus appears as a node in the
hierarchical tree constructed as described above. O

Now that we have established that each optimal cluster corresponds to a node in the hierarchical
tree, our next goal is to understand how these nodes relate to one another within the tree. In particular,
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we seek structural constraints that govern which combinations of nodes can be part of a valid cluster-
ing. To that end, we prove the following claim, which describes how optimal clusters may (or may
not) overlap within the tree.

Claim 7.0.7. Let G be a node in the hierarchical tree of well-separated groups with children G+, . . . , G,
Then, in an optimal clustering solution:

e cither all of G (i.e., all of its leaves) are clustered together in a single optimal cluster corre-
sponding to G or one of its ancestors,

e or each optimal cluster intersects candidates from at most one child G;.

Proof. Since the instance is y-stable with v > 2 + /3, all optimal clusters are well-separated and, by
construction, correspond to nodes in the hierarchical tree produced by Algorithm [13.

Let GG be a node in the tree with children G, G, . .., Gp,. Suppose, for contradiction, that there
exists an optimal cluster C* that contains candidates from more than one child — say, both G; and
G with i # j — but not the entire set G, and not any of its ancestors.

We make three key observations:

1. Path coverage. Since the optimal clustering forms a partition of the ground set X, each candi-
date must belong to exactly one cluster. In the tree, this means that for every leaf (candidate), there is
exactly one selected node along its path to the root that covers it. Thus, optimal clusters correspond
to non-overlapping nodes in the tree that together cover all leaves.

2. Laminarity contradiction. Since / = C* intersects both G; and G, and G;, GG are disjoint
children of GG, the laminar property implies that ' must be a superset of both. Hence, G; UG; C H.

Now, if H C G, then H is strictly between G and its children in the tree — i.e., it lies *between*
G and its descendants. In that case, the algorithm should have discovered H as a well-separated group
during its bottom-up construction and added it to the tree. This contradicts the assumption that GG; and
G are direct children of G, since they would have instead appeared as descendants of H.

On the other hand, if H O G, then H must be an ancestor of GG, again contradicting the assumption
that C* is not equal to G or one of its ancestors.

In either case, we reach a contradiction: the structure of the tree is inconsistent with the existence
of a cluster C"* intersecting multiple children of G without fully containing G.

Therefore, in the optimal clustering, for any internal node G in the tree, one of the following must
hold:

e All of GG is assigned to a single optimal cluster corresponding to GG or one of its ancestors, or

e Each optimal cluster intersects at most one of the children G;, with no cluster spanning across
multiple children.

This concludes the proof. See figure [/.2 below for examples O

This structural constraint implies that any optimal clustering corresponds to a selection of nodes
in the tree that are pairwise non-overlapping (i.e., no node is an ancestor or descendant of another)
and together cover all the leaves. This tree-based perspective allows us to significantly narrow down
the search space for optimal clusters: rather than considering all possible subsets of the input, we can
restrict our attention to certain nodes of the hierarchical decomposition tree. Our goal is to identify a

small collection of such nodes that is guaranteed to contain all optimal clusters. In other words, we
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{a7b7c7d7e7f7g} {a7b7c7d7e7f7g}

(a) Highlighting {g}, {a,b,c}, {d, e}, {f}. (b) Highlighting {g}, {d,e, [}, {a, b}, {c}.

Two example selections of & = 4 clusters (four red nodes) on the hierarchical tree from Figure 7.1].
Each subfigure highlights a valid clustering: exactly four non-overlapping nodes covering all leaves.

aim to construct a set of at most ¢ candidate clusters such that every optimal cluster intersects at most
one of them — that is, an (¢, 1)-bicriteria solution.

To achieve this, we ask the following question: How many nodes in the hierarchical tree could
possibly correspond to optimal clusters? Intuitively, if the number of leaves n is much larger than the
number of clusters &, then optimal clusters must be relatively “high” in the tree. Selecting clusters
that are too deep in the tree would leave too many leaves uncovered, violating the requirement that the
clustering covers all candidates using only £ disjoint groups. We formalize this notion by introducing

the concept of the frontier, which intuitively captures the set of nodes that might serve as candidates
for optimal clusters under a size constraint.

Definition 7.0.8. Let T be a hierarchical decomposition tree. The frontier is the set of nodes in T that
could potentially be selected as part of an optimal clustering of size at most k. Its size serves as an
upper bound on the number of candidate clusters that must be considered.

We now describe a recursive procedure for identifying the frontier — the set of nodes in the hier-
archical clustering tree that are the deepest reachable under a clustering budget of k centers.

Intuitively, the procedure performs a depth-first traversal from the root of the tree. At each internal
node with multiple children, we are allowed to use part of our budget to cover all but one of the
children, and recursively explore the remaining child. This models the idea that to go deeper into the
tree (i.e., to cluster smaller groups), we must “pay” at each branching point by assigning clusters to
the sibling groups we choose not to explore.

Formally, the algorithm proceeds as follows:
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Algorithm 14 Depth-first traversal to compute the frontier

Input: Rooted tree (V, E') with root 7, integer k£ (number of centers)
Output: Frontier set ' C V'

1: Initialize F < ()
2: procedure DFS(v,t)
3:  Let children < Children(v)

4:  Letm <« |children|

5: ifm=0o0rt¢ <m then

6: F «+ FU{v} {addv to frontier}
7: return

8: endif

9: for each u € children do
10: DFS(u, t — (m — 1))
11:  end for

12: end procedure

13: DFS(r, k)

14: return F’

To analyze the size of the frontier computed by Algorithm [14, we define a recursive function that
models its behavior. Specifically, for any node j in the tree and budget &, let f;(k) denote the number
of nodes in the frontier of the subtree rooted at j when at most k centers are available. This function
captures the structure of the recursive exploration performed by the algorithm: at each internal node
J, we must allocate k& — |C;j| + 1 centers to each of the |C;| children if we choose to explore them.
If the budget is insufficient to do so, the node is added to the frontier and recursion terminates at that
point. The following theorem formalizes this recurrence relation and shows that it accurately reflects
the output of the algorithm.

Claim 7.0.9. Let f;(k) denote the size of the frontier of the subtree rooted at node j when a clustering
budget of at most k centers is available. Then, the function f;(k) computed by the depth-first traversal
algorithm described in Algorithm |14 satisfies the following recurrence:

Y filk=[Cil+1) ifk>|Cy
fi(k) = {i€C;
1 otherwise

where C; denotes the set of children of node j, and |C}| its cardinality.

Although the algorithm proceeds in a top-down recursive manner, our proof will use structural
induction on the tree, which is conceptually bottom-up. This allows us to reason about the correctness
of the recurrence relation by assuming it holds for the children of a node and verifying it for the parent.
The direction of the induction does not affect the validity of the proof, since it is a mathematical
argument about the values computed by the algorithm, rather than the control flow itself. Note that
although the algorithm only recurses into the children of a node j when £ > |C}|, the structural
induction assumes that the recurrence holds for all subtrees in the tree structure, independently of
whether they are visited in a particular run of the algorithm. In the inductive step, we only apply the
hypothesis to the children that the algorithm actually recurses into, ensuring that the analysis precisely
matches the algorithm’s behavior.

Proof. We prove the theorem by structural induction on the subtree rooted at node j.
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Base Case: Suppose node j is a leaf, i.e., it has no children (|C;| = 0). Then the algorithm directly
adds j to the frontier (line 6 of Algorithm [14)), since the condition m = 0 is satisfied. No recursive
calls are made. Therefore, the size of the frontier of the subtree rooted at j is exactly f;(k) = 1 for
all £ > 0, which matches the second case of the recurrence.

Inductive Step: Suppose the recurrence holds for all subtrees rooted at the children of a node j,
and let |C';| be the number of children of node j.

e If k& < |C}], then the clustering budget is insufficient to cover |C;| — 1 sibling groups and
explore the remaining child. According to Algorithm [[4, this triggers the base case (line 5),
and node j is added directly to the frontier. No recursion is performed. Thus, f;(k) = 1, which
corresponds to the second case of the recurrence.

e If £ > |C}|, then the algorithm proceeds to explore all children i € C}, deducting |C;| — 1
centers from the budget to conceptually cover all but one child at each branching point. Each
recursive call to a child ¢ receives the reduced budget k' = k — |C;| 4+ 1. By the inductive
hypothesis, the size of the frontier in each child subtree is correctly given by f;(k — |C;| + 1).
Therefore, the total frontier size for the subtree rooted at j is:

fik) =" filk —|Cjl + 1)

eC P
which matches the first case of the recurrence.

By structural induction, we conclude that the size of the frontier computed by Algorithm [14 coin-
cides with the value of f;(k) as given by the recurrence.
0

Next we define a global recursvive function F'(k) independent of the structure of the hierarhical
tree that upper bounds the value of f;(k) for every node j of the hierarchical tree and any positive
value of k.

Lemma 7.0.10. Let f;(k) denote the size of the frontier of the subtree rooted at node j under a
clustering budget of k, as defined in Claim [7.0.9,
Define the function F : N — N recursively by

®) 1 ifk <2,
F(k) =

o ——

gfgk{J Flk—=j+1)} ifk=>2

Then for any hierarchical decomposition tree and any node j, we have:
fi(k) < F(k) forallk € NT.

Proof. Let T be an arbitrary rooted tree. For each node j in T, let C; denote its set of children, with
|C;| denoting the number of children.
Recall that f;(k) is defined recursively by:

D filk=1Cil+1) itk > |Gy,
fi(k) = i€C;
1 otherwise.
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We prove the desired bound by induction on k.

Base Case: £ < 2.
For any node j, we distinguish two cases: If k& < |C}|, then by definition f;(k) = 1 = F(k). If
k > |C}], then since |Cj| > 2, this case cannot occur for k < 2.

Hence, fj(k) < F(k) holds for all k < 2.

Inductive Step: Suppose the inequality holds for all smaller values of &, i.e., for all £’ < k and all
nodes j, we have f;(k") < F(k'). We prove it for k.

Let j be an arbitrary node.

If £ < |Cj|, then again f;(k) = 1 < F(k) by definition. If k& > |C};|, then by the recursive
definition:

Fik) =Y filk =Gl +1).

iECj
By the inductive hypothesis, for each child ¢ € C.;,
filk =1Cjl +1) < F(k = [Cj| +1).
Therefore,
fi(k) <|C5] - F(k = [Cj] +1).
By the definition of F'(k), we have:

F(k) = max {7 Fk—j +1)} > [yl F(k — |G| +1).
2<5'<k

Hence, f;(k) < F(k), as required.

Conclusion: By induction on k, the inequality holds for all k € N* and all nodes j in the tree. [

Although the function F'(k) provides a tree-independent upper bound on the size of the frontier, it
is defined recursively and remains somewhat opaque. To better understand the asymptotic behavior
of the algorithm, we now analyze the growth of F'(k) directly. In particular, we show that F'(k) grows
at most exponentially with &, by proving that F((k) < 2* for all k € NT. This explicit bound will
allow us to derive a clean worst-case guarantee on the frontier size and will play a central role in the
proof of our main result.

Lemma 7.0.11. Let F' : N — N be the function defined recursively by:

1 ifk <2,
F) =1 max {(j-Flk—j+1)} ifk>2
22k J yE=
Then, for all k > 1, we have:
F(k) < 2FL.

Proof. We prove by induction on k£ > 1 that

Base case: For k = 1, we have

so the base case holds.
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Inductive hypothesis: Suppose that for all integers &’ < k, we have
F(K') < 2F -1,
Inductive step: From the recurrence definition of F'(k),

F(k) = max {j-F(k—j+1)}.

For each such j, we have k' = k — j + 1 < k, so by the inductive hypothesis:
F(k—j+1) <27,

Thus,

F(k) < {'.2’“3}.
( )_gjagk J

Now define g (j) := j - 2k=J and we want to show:
gr(j) < 2871 forall j € [2,k].

We rewrite:
gr(j) =287 g 27t
—
h(j)

To analyze the behavior of g (j), we fix & and study its maximum over j. We define
h(j) :=j-279%,

and observe that this function controls the shape of g (7). To show that gx(j) is maximized at j = 2,
we analyze the monotonicity of A(j) via its derivative.

This derivative is negative for j > ﬁ ~~ 1.44, so h(j) is strictly decreasing for j > 2. Thus, its
maximum on j € [2, k] is attained at j = 2, giving:

h(j) <h(@2) =2-271=1.

Therefore,
gr(j) =271 - h(j) < 2,
and hence:
F(k) < maxgi(j) < 257"
j
Conclusion: By induction, F(k) < 281 forall k > 1. O

Since the set of optimal clusters is guaranteed to be a subset of the frontier, the Frontier Set F' forms

a collection of at most 2F~1

clusters that contains the optimal ones. Thus, by selecting the median
candidate from each cluster in F', we obtain a (25!, 3)-bicriteria solution. Applying the dynamic
programming algorithm of Hassin and Tamir [56] on the reduced candidate-restricted instance yields

the following result:

Theorem 7.0.12. There exists a polynomial-time deterministic algorithm for k-committee election in
the one-dimensional Euclidean space that, under ~-perturbation stability with v > 2 + /3, uses at
most O(2F~1) distance queries and achieves a distortion of at most 7.



Proof. The distortion guarantee follows from Theorem §.3.2), since the selected set of medians con-
stitutes a (2%~1, 3)-bicriteria solution. To reconstruct the candidate-restricted instance, it suffices to

2]4:71

perform — 1 distance queries to locate the medians of the clusters in F', on which the dynamic

programming algorithm is then applied. O

Having established our main result in the one-dimensional Euclidean setting, it is natural to ask
whether the frontier-based approach can also be applied in arbitrary metric spaces. While the lack
of geometric structure prevents us from directly using the dynamic programming method, the crucial
property that the frontier contains all optimal clusters still holds. In this setting, we follow the model
and techniques of [29], where the sets of candidates and voters coincide. This framework suggests
that by selecting suitable representatives from the frontier and subsequently applying known approxi-
mation techniques for the k-median problem, we can still achieve constant-distortion guarantees with
a small number of distance queries. In the following, we outline how this adaptation can be carried
out and present the resulting bounds on query complexity and distortion.

Lemma 7.0.13. There exists a polynomial-time deterministic algorithm for k-committee election in
general metric spaces where the sets of candidates and voters coincide, that under ~y-perturbation
stability with v > 2 4 \/3 uses at most O(4%) distance queries and achieves a constant distortion
of at most 3 - «, where « is the approximation factor of the underlying k-median subroutine (e.g.,
a = 2.613 from [54]).

Proof. By Lemma [7.0.11], the frontier computed by Algorithm [14 contains all possible optimal clus-
ters, and its size is at most 2°~1. We can therefore select a single representative from each frontier
cluster. Using the single-winner rules of either [50] or [60], each representative can be chosen so
that it is within a factor of 3 of the optimal choice for that cluster. This yields a (2¥~1, 3)-bicriteria
solution, which we denote by C’ C X.

Following [29], we interpret C” as a multiset: for every point z € X, we add to C’ the representa-
tive ¢ € C’ assigned to z in the bicriteria solution. Thus, the multiplicity of each ¢ € C” corresponds
exactly to the number of points assigned to it. This interpretation produces a reduced k-median in-
stance defined over C’ in which all distances are inherited from the original metric space.

On this reduced instance of size at most 2+~
k-median, such as the 2.613 bi-point rounding of [54]. This converts the (2¥~1, 3)-bicriteria solution

, We run a constant-factor approximation algorithm for

into a true k-median solution with constant distortion.

The approximation algorithm requires access to the pairwise distances between the points of C”.
Since |C’| < 2%, we need at most (Qk; 1) = O(4*) distance queries. Therefore, the overall algorithm
achieves constant distortion while using only O(4*) queries, completing the proof. O

Conclusion and Open Questions In both the one-dimensional and general metric settings, pertur-
bation stability allowed us to design algorithms whose query complexity is independent of the num-
ber of candidates n and depends only on the committee size k. This stands in sharp contrast to the
worst-case setting, where the number of required queries typically scales with n, and highlights the ef-
ficiency gains attainable under ~y-perturbation stability. Several natural questions remain open. A first
direction is to establish lower bounds on the query complexity under perturbation stability. Another,
raised in [48], is to determine bounds and algorithms whose complexity depends on both n and &k but
remains significantly better than in the general case, thereby enabling a principled choice between
n-dependent and n-independent approaches based on the values of n and k. Finally, an intriguing
avenue is to explore learning-augmented algorithms that leverage predictions to further reduce query
complexity while preserving robustness guarantees.
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