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Popularized Abstract

Computers control a large part of modern life despite being a (very) small
part of history. And while exotic new applications such as ChatGPT attract
most of the interest from both consumers and practitioners, the first principles
underlying our world’s digital infrastructure remain timeless. This thesis studies
the following such principles through the lens of energy consumption and memory
footprint: (i) a central aspect of program behavior is its dynamic requests for
memory, (ii) approximately optimal solutions to memory allocation can be
computed offline and (iii) software is the result of iterative decision-making over
source code transformations.

Along the way, we make a series of original contributions. We show the
complex impact that specific dynamic memory allocation implementations
have on the extremely popular Python programming language; we describe
a principled methodology for capturing program-allocator interaction and
quantifying memory fragmentation; we contribute a static memory planning
implementation outperforming the SOTA in a wide range of heavyweight,
challenging benchmarks; and we demonstrate a flexible, agnostic framework for
improving software.

Join us in a thrilling intellectual adventure spanning several levels of abstraction,
featuring arcane algorithms and data structures, and introducing an entire new
interpretation to the term deep learning! At the end of this text, we promise to
have enlightened you with a satisfying conclusion to the Holywood-scale story
starting with:

Once upon a time, three allocators walked into a bar...
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Gepopulariseerde
Samenvatting

Computers beheersen een groot deel van het moderne leven, ondanks dat
ze slechts een (zeer) klein deel van de geschiedenis uitmaken. En hoewel
exotische nieuwe toepassingen zoals ChatGPT de meeste interesse wekken bij
zowel consumenten als professionals, blijven de basisprincipes die ten grondslag
liggen aan de digitale infrastructuur van onze wereld tijdloos. Dit proefschrift
bestudeert de volgende principes vanuit het perspectief van energieverbruik
en geheugenvoetafdruk: (i) een centraal aspect van programmagedrag is de
dynamische geheugenaanvraag, (ii) bijna-optimale optimale oplossingen voor
geheugentoewijzing kunnen offline worden berekend en (iii) software is het
resultaat van iteratieve besluitvorming over broncodetransformaties.

Onderweg leveren we een reeks originele bijdragen. We laten de complexe impact
zien die specifieke implementaties van dynamische geheugentoewijzing hebben op
de extreem populaire programmeertaal Python; we beschrijven een principiële
methodologie voor het vastleggen van de interactie tussen programma’s en
geheugentoewijzers en het kwantificeren van geheugenfragmentatie; we een
statische geheugenplanningsimplementatie die de bestaande literatuur overtreft
in een breed scala aan zware, uitdagende benchmarks; en we demonstreren een
flexibel, agnostisch raamwerk voor softwareverbetering.

Ga met ons mee op een spannend intellectueel avontuur dat verschillende
abstractieniveaus beslaat, met mysterieuze algoritmen en datastructuren, en een
geheel nieuwe interpretatie van de term deep learning introduceert! Aan het
einde van deze tekst beloven we u te hebben geïnformeerd met een bevredigende
conclusie van het verhaal op Holywood-schaal, beginnend met:

Er waren eens drie toewijzers die een bar binnenliepen...

ix





Abstract

The fact that modern society depends on computers in order to function may
obscure the fact that computer science, and consequently computer engineering,
is a young discipline. Each decade since the 1990s has captivated the public’s
attention with yet another digital miracle, starting with the Internet, then
social media, and now artificial intelligence. The ever growing impact of
each aforementioned advancement on the economy has in return directed the
respective research spotlights: the Web spawned parallel processing, Facebook
spawned cloud computing, and though the dust has yet to settle, one cannot
deny the push that LLMs have given to hardware accelerators and novel memory-
centric technology such as CXL and compute-in-memory.

On the one hand, a scientific discipline being driven by its applications is a most
natural phenomenon. It is after all the degree to which it benefits the public
from where a breakthrough draws its value. On the other hand, we cannot
help but wonder: could this progress be happening too fast? How can we be
certain that all fruits have been reaped before moving on to the next paradigm?
Intuition suggests we cannot. But each next paradigm is built on top of the
previous one. This thesis is founded upon the belief that meaningful work
remains to be done in the fundamentals of computer systems.

Let us begin with a definition of what we mean with the term “computer system”.
At the bottom of the abstraction hierarchy lies the “hardware”, which we view
as a compute unit interacting with a memory module. At the top we find a
user application consisting of (i) source code that a developer wrote and (ii)
third-party libraries imported as dependencies, written by other developers.
Collectively, the application’s source code is turned into executable binary
instructions via the help of a compiler. In between the executable and the
system’s hardware lies the OS, which provides the illusion that this is a dedicated
machine, hides the hardware’s actual complexity behind interfaces, and takes
care of running everything safely and efficiently.
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xii ABSTRACT

For a long time now, the above definition has been a comfortable fabrication:
compute units are many and heterogeneous, memory could encompass address
spaces in other machines and/or be heterogeneous itself, and so on. But a
second necessary remark is that, nevertheless, the simplified computer system
remains the model used (if any) by most developers. A reasonable means to
resolve this tension is to incorporate in our view the specific effects that
an application’s execution brings upon aspects of the system that we
care about; in other words, its behavior. Modern system architects should let
laymen developers retain their simplified model, while working underground
to deliver infrastructure that adapts to its tasks in real time. This idea may
sound synonymous to that one of abstraction, which is as old as computing
itself—and rightfully so. Our emphasis regards what aspects of the system
should the aforementioned abstractions adapt toward.

Energy consumption and memory footprint are often overlooked in the race
to minimize execution time, which is the chief concern of all users. To give a
concrete example, consider the ubiquitous dynamic memory allocation interface
comprising GNU’s malloc family of functions. By first principles, memory
fragmentation is the main enemy of any allocator. But little work on defining
fragmentation has been conducted, and allocator designers prefer to focus
on problems impacting latency or security. Another example stems from
the deep learning domain, where workloads are facing a so-called “memory
wall”—apart from excessive energy requirements. This is mostly about memory
bandwidth but partly also about the massive storage capacity needed, especially
for exploding demand for machine learning-powered services.

Thus, we are brought to the research objectives of this dissertation, all of
whom can be viewed as operations at a relatively high abstraction level where
application programmers do not want to “see” the complex synergy between
their code, the OS and the physical hardware:

• Objective A: Conduct a principled, informed study of workload-allocator
interaction and memory footprint.

• Objective B: Deliver a scalable SOTA implementation for static memory
planning.

• Objective C: Provide application developers with assistance to better
evaluate the impact of source-to-source transformations.

Keywords: static memory planning, dynamic storage allocation, memory
management, energy accounting, software engineering



Beknopte samenvatting
Het feit dat de moderne samenleving afhankelijk is van computers om te
functioneren, kan het feit verhullen dat computerwetenschappen, en dus ook
computertechniek, een jonge discipline is. Elk decennium sinds de jaren negentig
heeft de aandacht van het publiek getrokken met weer een nieuw digitaal
wonder, beginnend met het internet, vervolgens sociale media en nu kunstmatige
intelligentie. De steeds grotere impact van elke bovengenoemde vooruitgang
op de economie heeft op zijn beurt de respectievelijke onderzoeksspots in de
schijnwerpers gezet: het web bracht parallelle verwerking voort, Facebook
bracht cloud computing voort, en hoewel het stof nog moet neerdalen, kan
men niet ontkennen dat LLM’s hardwareversnellers en nieuwe geheugengerichte
technologieën zoals CXL en compute-in-memory hebben gestimuleerd.

Aan de ene kant is het een heel natuurlijk fenomeen dat een wetenschappelijke
discipline wordt gedreven door haar toepassingen. Het is immers de mate waarin
het publiek er baat bij heeft, waaraan een doorbraak zijn waarde ontleent. Aan
de andere kant kunnen we ons niet onthouden afvragen: gaat deze vooruitgang
misschien te snel? Hoe kunnen we er zeker van zijn dat alle vruchten geplukt
zijn voordat we naar het volgende paradigma gaan? Intuïtie suggereert dat dit
niet mogelijk is. Maar elk volgend paradigma bouwt voort op het vorige. Deze
these is gebaseerd op de overtuiging dat er nog zinvol werk verricht moet
worden in de basisprincipes van computersystemen.

Laten we beginnen met een definitie van wat we bedoelen met de term
“computersysteem”. Onderaan de abstractiehiërarchie bevindt zich de
“hardware”, die we zien als een rekeneenheid die interageert met een
geheugenmodule. Bovenaan vinden we een gebruikersapplicatie die bestaat uit
(i) broncode die een ontwikkelaar heeft geschreven en (ii) bibliotheken van derden
die als afhankelijkheden zijn geïmporteerd, geschreven door andere ontwikkelaars.
Gezamenlijk wordt de broncode van de applicatie omgezet in uitvoerbare binaire
instructies met behulp van een compiler. Tussen het uitvoerbare bestand en de
hardware van het systeem bevindt zich het besturingssysteem, dat de illusie
wekt dat het om een speciale machine gaat, de werkelijke complexiteit van de
hardware achter interfaces verbergt en ervoor zorgt dat alles veilig en efficiënt

xiii



xiv BEKNOPTE SAMENVATTING

verloopt.

De bovenstaande definitie is al lange tijd een comfortabele constructie:
rekeneenheden zijn talrijk en heterogeen, geheugen kan adresruimten in
andere machines omvatten en/of zelf heterogeen zijn, enzovoort. Maar een
tweede noodzakelijke opmerking is dat het vereenvoudigde computersysteem
desalniettemin het model blijft dat de meeste ontwikkelaars (indien van
toepassing) gebruiken. Een redelijke manier om deze spanning op te lossen,
is om naar onze mening de specifieke effecten te integreren die de
uitvoering van een applicatie heeft op aspecten van het systeem die
ons belangrijk lijken; met andere woorden, het gedrag ervan. Moderne
systeemarchitecten zouden onbekende ontwikkelaars hun vereenvoudigde model
moeten laten behouden, terwijl ze ondergronds werken om infrastructuur te
leveren die zich in realtime aanpast aan de taken. Dit idee klinkt misschien
synoniem aan dat van abstractie, dat net zo oud is als het computergebruik
zelf – en terecht. Onze nadruk ligt op welke aspecten van het systeem de
bovengenoemde abstracties zich moeten aanpassen.

Energieverbruik en geheugengebruik worden vaak over het hoofd gezien in de
race om de uitvoeringstijd te minimaliseren, wat de belangrijkste zorg is van alle
gebruikers. Om een concreet voorbeeld te geven, neem de alomtegenwoordige
interface voor dynamische geheugentoewijzing, die bestaat uit GNU’s malloc-
functiefamilie. Volgens de basisprincipes is geheugenfragmentatie de grootste
vijand van elke geheugentoewijzer. Maar er is weinig onderzoek gedaan naar
de definitie van fragmentatie, en ontwerpers van geheugentoewijzers richten
zich liever op problemen die van invloed zijn op latentie of beveiliging. Een
ander voorbeeld komt uit het deep learning-domein, waar workloads te maken
hebben met een zogenaamde “geheugenmuur” – afgezien van de overmatige
energiebehoefte. Dit gaat vooral over geheugenbandbreedte, maar deels ook
over de enorme opslagcapaciteit die nodig is, met name voor de exploderende
vraag naar diensten die draaien op machine learning.

Zo komen we bij de onderzoeksdoelstellingen van dit proefschrift, die allemaal
gezien kunnen worden als bewerkingen op een relatief hoog abstractieniveau,
waarbij applicatieprogrammeurs de complexe synergie tussen hun code, het
besturingssysteem en de fysieke hardware niet willen ‘zien’:

• Doelstelling A: Een principieel, geïnformeerd onderzoek uitvoeren naar
de interactie tussen werklast en toewijzer en de geheugenvoetafdruk.

• Doelstelling B: Een schaalbare meer optimale implementatie leveren
voor statische geheugenplanning.

• Doelstelling C: Applicatieontwikkelaars ondersteunen bij het beter
evalueren van de impact van bron-naar-bron-transformaties.



Extended Abstract in Greek

Το γεγονός ότι η σύγχρονη κοινωνία εξαρτάται από τους υπολογιστές για να

λειτουργήσει μπορεί να συσκοτίζει το γεγονός ότι η επιστήμη των υπολογιστών,

και κατ΄ επέκταση η μηχανική υπολογιστών, είναι ένας νέος κλάδος. Κάθε

δεκαετία από τη δεκαετία του 1990 έχει αιχμαλωτίσει την προσοχή του κοινού

με ένα ακόμη ψηφιακό θαύμα, ξεκινώντας από το Διαδίκτυο, στη συνέχεια τα

μέσα κοινωνικής δικτύωσης, και τώρα την τεχνητή νοημοσύνη. Ο συνεχώς

αυξανόμενος αντίκτυπος κάθε προαναφερθείσας προόδου στην οικονομία έχει με

τη σειρά του κατευθύνει τα αντίστοιχα ερευνητικά φώτα: ο Παγκόσμιος Ιστός

γέννησε την παράλληλη επεξεργασία, το Φαςεβοοκ γέννησε το υπολογιστικό

νέφος, και παρόλο που η σκόνη δεν έχει καταλαγιάσει ακόμα, δεν μπορεί κανείς

να αρνηθεί την ώθηση που τα LLM έχουν δώσει στους επιταχυντές υλικού και

στη νέα τεχνολογία με επίκεντρο τη μνήμη, όπως το CXL και ο υπολογισμός-
εντός-μνήμης.

Από τη μία πλευρά, το να καθοδηγείται ένας επιστημονικός κλάδος από τις

εφαρμογές του είναι ένα απολύτως φυσικό φαινόμενο. Σε τελική ανάλυση, η

αξία μιας ανακάλυψης πηγάζει από τον βαθμό στον οποίο ωφελεί το κοινό.

Από την άλλη πλευρά, δεν μπορούμε παρά να αναρωτηθούμε: μήπως αυτή η

πρόοδος συμβαίνει υπερβολικά γρήγορα· Πώς μπορούμε να είμαστε βέβαιοι ότι

όλοι οι καρποί έχουν συλλεχθεί πριν προχωρήσουμε στο επόμενο παράδειγμα·

Η διαίσθηση υποδηλώνει ότι δεν μπορούμε. Αλλά κάθε επόμενο παράδειγμα

χτίζεται πάνω στο προηγούμενο. Αυτή η διατριβή βασίζεται στην πεποίθηση

ότι απομένει σημαντικό έργο να γίνει στα θεμελιώδη των

υπολογιστικών συστημάτων.

Ας ξεκινήσουμε με έναν ορισμό του τι εννοούμε με τον όρο ‘υπολογιστικό

σύστημα’. Στο κάτω μέρος της ιεραρχίας αφαίρεσης βρίσκεται το ‘υλικό’

(hardware), το οποίο θεωρούμε ως μια υπολογιστική μονάδα που αλληλεπιδρά με
μια μονάδα μνήμης. Στην κορυφή βρίσκουμε μια εφαρμογή χρήστη που αποτελείται

από (ι) πηγαίο κώδικα που έγραψε ένας προγραμματιστής και (ιι) βιβλιοθήκες

τρίτων που εισάγονται ως εξαρτήσεις, γραμμένες από άλλους προγραμματιστές.

xv



xvi EXTENDED ABSTRACT IN GREEK

Συλλογικά, ο πηγαίος κώδικας της εφαρμογής μετατρέπεται σε εκτελέσιμες

δυαδικές εντολές με τη βοήθεια ενός μεταγλωττιστή. Ανάμεσα στο εκτελέσιμο

αρχείο και το υλικό του συστήματος βρίσκεται το λειτουργικό σύστημα, το οποίο

παρέχει την ψευδαίσθηση ότι πρόκειται για μια αποκλειστική μηχανή, κρύβει την

πραγματική πολυπλοκότητα του υλικού πίσω από διεπαφές και φροντίζει για την

ασφαλή και αποδοτική εκτέλεση των πάντων.

Για μεγάλο χρονικό διάστημα, ο παραπάνω ορισμός ήταν μια βολική επινόηση:

οι υπολογιστικές μονάδες είναι πολλές και ετερογενείς, η μνήμη θα μπορούσε

να περιλαμβάνει χώρους διευθύνσεων σε άλλες μηχανές ή/και να είναι η ίδια

ετερογενής, και ούτω καθεξής. Αλλά μια δεύτερη απαραίτητη παρατήρηση

είναι ότι, παρ΄ όλα αυτά, το απλοποιημένο υπολογιστικό σύστημα παραμένει το

μοντέλο που χρησιμοποιείται (αν χρησιμοποιείται κάποιο) από τους περισσότερους

προγραμματιστές. ΄Ενας λογικός τρόπος για να επιλυθεί αυτή η ένταση είναι να

ενσωματώσουμε στην οπτική μας τις συγκεκριμένες επιδράσεις

που έχει η εκτέλεση μιας εφαρμογής σε πτυχές του συστήματος

που μας ενδιαφέρουν· με άλλα λόγια, τη συμπεριφορά της. Οι σύγχρονοι

αρχιτέκτονες συστημάτων θα πρέπει να αφήνουν τους απλούς προγραμματιστές

να διατηρούν το απλοποιημένο μοντέλο τους, ενώ εργάζονται υπογείως για να

παρέχουν υποδομή που προσαρμόζεται στα καθήκοντά της σε πραγματικό χρόνο.

Αυτή η ιδέα μπορεί να ακούγεται συνώνυμη με εκείνη της αφαίρεσης, η οποία είναι

τόσο παλιά όσο και η ίδια η πληροφορική—και δικαίως. Η έμφασή μας αφορά προς

ποιες πτυχές του συστήματος θα πρέπει να προσαρμόζονται οι προαναφερθείσες

αφαιρέσεις.

Η κατανάλωση ενέργειας και το αποτύπωμα μνήμης συχνά παραβλέπονται

στον αγώνα για την ελαχιστοποίηση του χρόνου εκτέλεσης, που αποτελεί

το κύριο μέλημα όλων των χρηστών. Για να δώσουμε ένα συγκεκριμένο

παράδειγμα, ας εξετάσουμε την πανταχού παρούσα διεπαφή δυναμικής εκχώρησης

μνήμης που περιλαμβάνει την οικογένεια συναρτήσεων malloc της GNU. Εξ
ορισμού, ο κατακερματισμός της μνήμης είναι ο κύριος εχθρός οποιουδήποτε

εκχωρητή. Αλλά λίγη δουλειά έχει γίνει στον ορισμό του κατακερματισμού, και οι

σχεδιαστές εκχωρητών προτιμούν να εστιάζουν σε προβλήματα που επηρεάζουν

τον λανθάνοντα χρόνο ή την ασφάλεια. ΄Ενα άλλο παράδειγμα προέρχεται από

τον τομέα της βαθιάς μάθησης, όπου οι φόρτοι εργασίας αντιμετωπίζουν το

λεγόμενο ‘τείχος της μνήμης’—πέρα από τις υπερβολικές ενεργειακές απαιτήσεις.

Αυτό αφορά κυρίως το εύρος ζώνης της μνήμης αλλά εν μέρει και την τεράστια

χωρητικότητα αποθήκευσης που απαιτείται, ειδικά για την εκρηκτική ζήτηση για

υπηρεσίες που βασίζονται στη μηχανική μάθηση.

΄Ετσι, φτάνουμε στους ερευνητικούς στόχους αυτής της διατριβής, οι οποίοι όλοι

μπορούν να θεωρηθούν ως λειτουργίες σε ένα σχετικά υψηλό επίπεδο αφαίρεσης

όπου οι προγραμματιστές εφαρμογών δεν θέλουν να ‘βλέπουν’ την πολύπλοκη

συνέργεια μεταξύ του κώδικά τους, του λειτουργική συστήματος και του φυσικού
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Chapter 1

Introduction

The fact that modern society depends on computers in order to function may
obscure the fact that computer science, and consequently computer engineering,
is a young discipline. To the extent that one can trust Wikipedia1, we know for
example that humans have been studying numbers for more than 5,000 years;
geometry 4,000 (though it took more than the first thousand before flourishing);
anatomy 3,000 and so on. However, the paper which introduced the notion of
the computer in the sense of a flexible information-processing machine, i.e., Alan
Turing’s seminal work on Hilbert’s Entscheidungsproblem [118], needs another
eleven years to become a century old. And as a reminder of the non-trivial
amount of effort separating the world of notions from the physical world, almost
a decade had to pass before the genius of John von Neumann turned Turing’s
concepts into a real machine [120].

But reality did not give our discipline time to mature before the popularity
of its applications exploded. Each decade since the 1990s has captivated the
public’s attention with yet another digital miracle, starting with the Internet,
then social media, and now artificial intelligence. The ever growing impact of
each aforementioned advancement on the economy has in return directed the
respective research spotlights: the Web spawned parallel processing, Facebook
spawned cloud computing, and though the dust has yet to settle, one cannot
deny the push that LLMs have given to hardware accelerators and novel memory-
centric technology such as CXL and compute-in-memory. Note that providing
and accurate history of progress in computing is out of this dissertation’s scope.
The claims in this paragraph stem from our judgement, to the extent that it
has been informed from spending the past few years thinking about computers.

1https://en.wikipedia.org/wiki/Timeline_of_scientific_discoveries
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Figure 1.1: Popularity comparison of the terms “Computer”, “Instagram” and
“Artificial Intelligence”, as searched on Google worldwide. Chart extracted via
Google Trends.

One cannot deny, however, that there have been trends and attractors of the
community’s collective interest.

On the one hand, a scientific discipline being driven by its applications is a most
natural phenomenon. It is after all the degree to which it benefits the public
from where a breakthrough draws its value. On the other hand, we cannot
help but wonder: could this progress be happening too fast? How can we be
certain that all fruits have been reaped before moving on to the next paradigm?
Intuition suggests we cannot. But each next paradigm is built on top of the
previous one. So who is to blame for the fact that training ChatGPT-3 requires
as much energy as 130 American homes consume in a year [16]? If it were
something inherent in deep learning, DeepSeek would not have been able to
make headlines all around the world with a model both better and 10x more
efficient than its competition2.

According to Figure 1.1, ten years have passed since computers themselves
were as interesting to the world as Instagram. At the time of writing, AI is
as popular as the machines it runs on were fifteen years ago. In fact one can
observe a slow yet steady decline in the amount of attention that we pay to
what has become the world’s infrastructure. This thesis is founded upon the
belief that meaningful work remains to be done in the fundamentals of

2https://www.tomshardware.com/tech-industry/artificial-intelligence/deepseeks-ai-
breakthrough-bypasses-industry-standard-cuda-uses-assembly-like-ptx-programming-instead

https://trends.google.com/trends/
https://www.tomshardware.com/tech-industry/artificial-intelligence/deepseeks-ai-breakthrough-bypasses-industry-standard-cuda-uses-assembly-like-ptx-programming-instead
https://www.tomshardware.com/tech-industry/artificial-intelligence/deepseeks-ai-breakthrough-bypasses-industry-standard-cuda-uses-assembly-like-ptx-programming-instead
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Figure 1.2: A (simplified) model of a computer system.

computer systems.

1.1 Scientific Approach

Let us begin with a definition of what we mean with the term “computer
system”. Figure 1.2 serves as an aid. At the bottom of the abstraction hierarchy
(right side of the figure) lies the “hardware”, which we view as a compute
unit interacting with a memory module. At the top (left side) we find a
user application consisting of (i) source code that a developer wrote and (ii)
third-party libraries imported as dependencies, written by other developers.
Collectively, the application’s source code is turned into executable binary
instructions via the help of a compiler. In between the executable and the
system’s hardware lies the OS, which provides the illusion that this is a dedicated
machine, hides the hardware’s actual complexity behind interfaces, and takes
care of running everything safely and efficiently.

The first remark to be made at this point is that, for a long time now, the above
definition has been a comfortable fabrication [30]: compute units are many
and heterogeneous, memory could encompass address spaces in other machines
and/or be heterogeneous itself, and so on. But a second necessary remark is
that, nevertheless, the simplified computer system of Figure 1.2 remains the
model used (if any) by most developers today [12]. A reasonable means to
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resolve this tension is to incorporate in our view the specific effects that
an application’s execution brings upon aspects of the system that we
care about; in other words, its behavior. Modern system architects should let
laymen developers retain their simplified model, while working underground
to deliver infrastructure that adapts to its tasks in real time. This idea may
sound synonymous to that one of abstraction, which is as old as computing
itself—and rightfully so. Our emphasis regards what aspects of the system
should the aforementioned abstractions adapt toward.

Energy consumption and memory footprint are often overlooked in the race to
minimize execution time, which is the chief concern of all users [104, 10]. To give
a concrete example, consider the ubiquitous dynamic memory allocation interface
comprising GNU’s malloc family of functions. The largest part of the research
presented in this thesis was sparked by a seminal survey on malloc published
thirty years ago [121]. The main point of that survey was that, by first principles,
memory fragmentation is the main enemy of any allocator. Moreover, it is a
consequence of the particular interaction between the program and the allocator.
Last but not least, a quantitative definition of it is elusive. But little work on
defining fragmentation has been conducted ever since, and allocator designers
prefer to focus on problems impacting latency such as thread contention [25, 89],
producer-consumer relationships [79], and language runtimes [76]. And yet,
as both this thesis and other works have shown, the interaction between a
specific application and a memory allocator significantly impacts the resulting
energy consumption and process memory footprint. Another example stems
from the deep learning domain, where workloads are facing a so-called “memory
wall” [39]—apart from the excessive energy requirements mentioned already.
This is mostly about memory bandwidth but partly also about the massive
storage capacity needed, especially for exploding demand for machine learning-
powered services.

At this point we have laid the ground to elaborate on the terms comprising
the title of this thesis. By doing so, we hope to achieve a clear description
of our scientific approach. Let us start parsing in reverse: the title suggests
that our work takes place in native contexts. We are interested in no further
virtualization than that imposed by the OS on a single machine. Higher-level
abstractions such as virtual machines and distributed computation will be viewed,
if present, as traditional OS processes interacting with the host’s hardware. It
was this narrow scope that we were referring to earlier as “fundamentals”; in
other words, operations and interfaces that are ubiquitous in computing. By
positioning our research in this way, we hope to provide insights and tools with
as wide an applicability as possible.

In this context, we want to enable optimizations. We have witnessed more
than once during the course of our studies the presentation of research that
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takes imaginary capabilities as a given. We have done so ourselves as the second
Chapter will show. But there is a world of difference between building what
one imagined and building on top of it. We are interested in the first half. Our
claim of “enabling” optimizations is a subtle way of acknowledging our failure
to complete building what we imagined, but we nevertheless deliver a couple of
concrete first steps.

The optimizations at hand will be behavior-based. We allude here to the
notion that there is no free lunch in today’s systems, and probably there never
was. Workloads have characteristics that make them distinct from one another.
When expressed on different hardware platforms, their impact on performance is
also different. It is our firm belief that such characteristics have to be exploited
en route to optimization. The main characteristic we will be dealing with is
dynamic memory allocation.

The rest of the title, i.e., specific ties to energy consumption and memory
footprint, will be unpacked in the background sections of each Chapter.

1.2 Research Objectives

Thus, we are brought to the research objectives of this dissertation, all of
whom can be viewed as operations at a relatively high abstraction level where
application programmers do not want to “see” the complex synergy between
their code, the OS and the physical hardware.

Objective A

Conduct a principled, informed study of workload-allocator interaction and
memory footprint.

Dynamic memory allocation is a both ubiquitous and fundamental operation. It
is telling of our epistemic status around it that in performance-critical situations
such as real-time embedded systems, dynamic memory allocation is avoided
as if it posed existential risks. The mystery at the heart of the problem is
memory fragmentation, the amount of memory beyond a program’s needs that
was wasted. Very little work around taming or even defining fragmentation
exists. We ascribe this situation to an up-to-now lack of tools for describing the
source of fragmentation, which is the interaction between a workload’s requests
for memory and the corresponding allocator’s placement policy. We show that
the bin-packing variant of DSA is a perfect fit for the task, and propose a novel
fragmentation measure on top of it.
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Figure 1.3: Computer system model extended with components and relationships
that this thesis treats. Bold arrows stand for I/O relationships. Dotted arrows
for assistance. Objective A focuses on malloc, a fundamental operation closely
tied to program behavior and affecting both energy consumption and memory
footprint. Objective B offers a tool for investigating the theoretical limits
of malloc by providing a scalable, SOTA off-line oracle for it. Objective C
adopts a bird’s eye view of the application development lifecycle and proposes
an agnostic decision-making framework for source-level code transformations
leveraging lower-level information.

Objective B

Deliver a scalable SOTA implementation for static memory planning.

Future allocators must be informed by “perfect” solutions to the allocation
patterns of the workloads they face. These solutions must by definition have
access to the entire allocation history of a process. The task of producing such
solutions is static memory planning. Existing implementations are either not
scalable or excessively wasteful. We come up with an implementation that
exhibits none of those hindrances. We achieve this goal by (i) building on top
of the best known algorithm to date, (ii) discovering and reinforcing its weak
spots, and (iii) leveraging modern systems programming techniques to deliver a
safe, parallel implementation.

Our implementation’s source code and the benchmarks used for evaluation are
publicly available on GitHub.

https://github.com/cappadokes/idealloc
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Objective C

Provide application developers with assistance to better evaluate the impact of
source-to-source transformations.

Developers writing software for a specific computer system do not have the
ability to change the system itself. They thus embark on optimizing applications
through source-to-source transformations. Due to the underlying complexity of
both the system and the application, these transformations are bound to affect
energy consumption and memory footprint in non-trivial ways. But additional
goals may be put on the optimization task, such as technical debt elimination
or security enhancements. To make their final decision, the user must operate
on information linking each candidate transformation to changes in each aspect
of interest. We provide a structured way of handling such information.

1.3 State of the Art

We will describe the state of the art per objective, and identify the gaps addressed
in each case. Be advised that parts of the following sections have been copied
from the author’s list of publications.

1.3.1 Objective A

For this objective, we aim to open the black box standing between workload-
allocator interaction and memory fragmentation. This link was first put to
paper by Wilson et. al in their seminal 1995 survey on dynamic memory
allocation [121]. A couple of years later, some of the authors returned with the
most comprehensive study of fragmentation to date [57]. While acknowledging
that many possible definitions exist, they focused on two and concluded that
fragmentation is practically “solved”. Their experiments, however, were trace-
based simulations operating entirely on virtual memory and did not take physical
memory into consideration.

In most recent times, practitioners have converged to a coarse view of
fragmentation which is based on RSS, that is, the amount of physical memory
consumed by a process (which is different from the amount of memory it
allocated due to demand paging). Using two different allocators on the same
workload, they conclude that the one yielding less fragmentation is the one
resulting in smaller peak RSS [106, 81, 50]. We find this stance rather hazardous,
since it (i) obscures the fact that allocators operate on virtual memory, (ii) and
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mixes together the impact of an allocator’s policy and its implementation, i.e.,
the data structures it internally uses for book-keeping.

Yet, as novel work occasionally shows, fragmentation remains elusive [87]:
lacking a principled methodology to quantify it, we are adopting indirect
approaches to merely inspect its effects. Chapter 2 motivates our focus on
dynamic memory allocation by showing the impact of different allocators on
the CPython runtime’s energy consumption and memory footprint. Chapter 3
proposes a novel, structured view of workload-allocator interaction based on
DSA, and a fragmentation measure which demonstrably correlates with RSS
without sacrificing placement policy observability.

• Gap in the SOTA: An agreed-upon representation of memory
fragmentation as incurred by dynamic memory allocators.

• Contribution: A demonstration of the suitability of DSA to capture
fragmentation, and open source tools to study it further.

1.3.2 Objective B

The mathematical formulation of dynamic memory allocation is DSA. It is an
NP-complete combinatorial optimization task that is a variation of bin packing.
Our goal in this objective is to implement a golden standard for DSA.

A summary of theoretical work on DSA up to two decades ago can be found in
the Introduction section of Buchsbaum et al. [13] The same paper presents the
SOTA algorithm for the general case. Kierstead and Saoub have introduced
generalized DSA, which allows some spatial overlap between rectangles [62].
Related but different problems are the Storage Allocation Problem [91], 2D
Geometric Knapsack [45] and Unsplittable Flow on a Path [42].

As far as implementations go, Maas et al have proposed hybridizing heuristics
and meta-optimization with TelaMalloc [83]. Moffitt improved upon TelaMalloc
with an isomorphism between DSA and lattice theory [90]. Lamprou et al.
introduced a heuristics-based solution with additional constraints [73].

Such recent efforts have been motivated by the memory-saving benefits of
applying DSA to deep learning compilers for both training and inference. As
a result, evaluation sections are always limited in that context. A rigorous
evaluation with a focus on general-purpose DSA has not been conducted. We
undertake this task in Chapter 4, along with contributing a golden standard
implementation.
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• Gap in the SOTA: A scalable, efficient and effective implementation
for static memory planning. A rigorous evaluation of existing solutions.
Necessary conceptual and technical insights for future work.

• Contribution: All of the above.

1.3.3 Objective C

The task at hand is evaluating a set of candidate code changes under a set of
oftentimes conflicting criteria of software quality.

The term “software quality” refers to a program’s characteristics outside its
functional specification. Several standards have been proposed, the most popular
of which is ISO/IEC 250103. Prior art does not exhibit any consensus on the
meaning of the term. In their 1996 survey on software quality, Osterweil et al.
limit its notion to the consistency between a program’s intended and actual
behavior [98]. Cavano and McCall recognized as early as 1978 the inherent
difficulty in both defining and measuring software quality, which should in their
opinion be application-specific [15]. Since we shall be taking software quality
criteria as a given, the key insight from this paragraph is that the process we
are after must be extremely flexible.

In particular, we are interested in the impact that source code changes, i.e.,
source-to-source transformations, have on aspects orthogonal to the program’s
function. Such aspects have been named NFRs in the literature [41, 86, 5, 54].
We treat the problem of deciding upon a pool of heterogeneous code changes,
i.e., not all of them improving the same NFR. Similar works exist. For instance,
Ouni et al. perform an automated search in refactoring space, adopting a genetic
algorithm to evaluate possible code changes [99]. Such search-based formulations
have evolved to incorporate LLMs in the decision making process [33]. We
refrain from automated methods since it is a known fact that teams of developers
prefer manual actions when refactoring [93].

Our work in Chapter 5 thus provides decision support for the manual application
of NFR-targeting code changes. To the best of our knowledge, the closest
intellectual relative is Zhao and Hayes’ work on rank-based decision support [124].
The key difference of our contribution is that it does not subscribe to any
particular type of NFR, and formulates the problem as an instance of MCDM [55].
For instance, there is a whole line of work focusing on the economic impact of
refactoring, mostly technical debt [14, 28, 29, 26, 32].

3https://iso25000.com/index.php/en/iso-25000-standards/iso-25010

https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
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• Gap in the SOTA: Generic formulation of source-to-source
transformations targeting arbitrary criteria.

• Contribution: View refactoring as MCDM.

1.4 A Note on Memory Fragmentation

A main theme across a large portion of this text is memory fragmentation.
As already noted, multiple quantitative definitions of it exist. A commonly
agreed upon qualitative definition is “memory that is available in aggregate,
but not contiguous”. In order to avoid developing further confusion around the
phenomenon, we give here a brief descriptions of the two perspectives from
which we approach fragmentation in this dissertation. Chapter 3 introduces an
aggregate, page-local definition aligned with the demand paging mechanism of
Linux. In that context, we were interested in summarizing workload-allocator
interaction across time into a single number, which would hopefully correlate
with the real memory footprint. Our definition is good to the extent that the
expected monotonic relationship does indeed appear, but better alternatives
could always exist. Chapter 4 adopts a much more conservative approach,
measuring the amount of memory wasted as the difference between maximum
memory allocated and maximum memory usage. This definition is useful
for contexts such as the real, contiguous, physical address space of hardware
accelerators with no virtualization. For the reasons explained in that Chapter,
we are confident that this definition is the most appropriate for setups where
memory is not virtual, i.e., contiguous memory pages correspond to contiguous
memory.

1.5 Remaining Text Organization

The main body of this dissertation is organized as follows. Chapter 2 describes
the case study initializing Objective A, and Chapter 3 demonstrates the core of
our work there. Chapter 4 is an extensive account of how we achieved Objective
B. Chapter 5 showcases our work on Objective C. A global discussion on the
above and proposed future work are the matter of Chapter 6.

We depict the relationships between objectives, chapters and stages during our
research trajectory on Figure 1.4. In the beginning, our intention was to (i) study
the memory footprint and energy consumption of some fundamental operation
and (ii) investigate ways of assisting the integration of systems-derived insights
to the application development lifecycle. This spawned Objectives A and C, on
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START CHAPTER 1
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CHAPTER 2
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CHAPTER 6 FUTURE

Figure 1.4: An illustration of the organization of this text, annotated with extra
information. Ellipses are initial and “terminal” states. Circles are research
objectives. Rectangles are thesis chapters. Black arrows represent logical
implication. Red arrows indicate the research trajectory followed. Last but
not least, green arrows indicate synergies between objectives. For instance
Objective A can, by assisting the construction of high-level models around
different malloc implementations, inform Objective C.

which we worked in parallel. The motivational study of malloc and CPython
(Chapter 2) led us to the bin packing representation of workload-allocator
interaction (Chapter 3). We were then led to investigate the malloc-related bin
packing SOTA, and our work there is presented in Chapter 4.





Chapter 2

The Impact of Dynamic
Storage Allocation on
CPython Execution Time,
Memory Footprint and Energy
Consumption: An Empirical
Study

This Chapter is a verbatim copy of the author’s publication cited below:

Lamprakos, C. P., Papadopoulos, L., Catthoor, F., and Soudris, D.
The impact of dynamic storage allocation on cpython execution time, memory
footprint and energy consumption: An empirical study. In Embedded Computer
Systems: Architectures, Modeling, and Simulation (Cham, 2022), A. Orailoglu,
M. Reichenbach, and M. Jung, Eds., Springer International Publishing, pp. 219–
234

CPython is the reference implementation of the Python programming language.
Tools like machine learning frameworks, web development interfaces and
scientific computing libraries have been built on top of it. Meanwhile, single-

13
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board computers are now able to run GNU/Linux distributions. As a result
CPython’s influence today is not limited to commodity servers, but also
includes edge and mobile devices. We should thus be concerned with the
performance of CPython applications. In this spirit, we investigate the impact of
dynamic storage allocation on the execution time, memory footprint and energy
consumption of CPython programs. Our findings show that (i) CPython’s
default configuration is optimized for memory footprint, (ii) replacing this
configuration can improve performance by more than 1.6x and (iii) application-
specific characteristics define which allocator setup performs best at each case.
Additionally, we contribute an open-source means for benchmarking the energy
consumption of CPython applications. By employing a rigorous and reliable
statistical analysis technique, we provide strong indicators that most of our
conclusions are platform-independent.

2.1 Introduction

Today Python is one of the most popular high-level programming languages1. Its
reference implementation is CPython2. Python source code is usually compiled
to bytecode and executed on the CPython virtual machine, which is implemented
in C.

CPython is often criticized for its performance, which has previously been
compared to that of other programming languages [103]. The results do
indeed validate the criticism, but Python’s extreme popularity cannot be
ignored. Several Python libraries have dominated the programming landscape.
SciPy [119] has democratized scientific computing, scikit-learn [102] has done
the same for introductory machine learning projects, Pytorch [8] has almost
monopolized deep learning pipelines in both academia and the industry.

CPython is not deployed just on servers or home computers, but is becoming
all the more present on embedded systems34. This is largely owed to the
availability of cheap single-board computers (SBCs) like the Raspberry Pi5 and
the BeagleBone6, which are capable of running GNU/Linux.

We thus consider improving the execution time, memory footprint and energy
consumption of CPython applications a worthwhile endeavor. We believe low-
hanging fruit should be reaped before having to examine CPython’s internals.

1https://insights.stackoverflow.com/survey/2020/
2https://github.com/python/cpython
3https://wiki.python.org/moin/EmbeddedPython
4https://www.zerynth.com/blog/the-rise-of-python-for-embedded-systems/
5https://www.raspberrypi.com/
6https://beagleboard.org/bone

https://insights.stackoverflow.com/survey/2020/
https://github.com/python/cpython
https://wiki.python.org/moin/EmbeddedPython
https://www.zerynth.com/blog/the-rise-of-python-for-embedded-systems/
https://www.raspberrypi.com/
https://beagleboard.org/bone
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Consequently, we focus on configurations exposed by the language runtime that
cause observable, non-random effects on performance7.

As regards the particular configuration under study, we picked DSA8 for the
following reasons: firstly, CPython does provide the option of configuring it.
Secondly, DSA is a cornerstone operation used by most real-world programs
and as a result demands attention. Finally, it is not well-understood [121], so
treating it as a black box and benchmarking several versions of it may yield
useful results.

2.1.1 Contributions

We conducted a reliable, statistically rigorous empirical study of DSA’s impact
on the execution time, memory footprint and energy consumption of CPython
programs. Our first contribution is providing quantitative answers to the
research questions: (I) to what extent can a CPython application’s performance
with respect to execution time, memory footprint and energy consumption be
improved by modifying the runtime’s DSA configuration? (II) how much do
optimizations in the runtime itself affect the expected improvement? (III) are
performance improvements sensitive to application-specific characteristics? By
addressing these questions, we pave the way towards predicting the optimal DSA
configuration for a given application without resorting to brute-force methods.
Note, however, that for the purposes of this Chapter, we are only interested
in acquiring a coarse impression of whether DSA can have substantial impact.
Transitioning from such an epistemic status to a methodology for picking the
optimal allocator per case is non-trivial and, as our results show, extremely
case-sensitive. Future practitioners’ best hopes lie, in our opinion, in solutions
that adapt in a fully dynamic way to the characteristics of the access patterns
in the currently present application phase.

Our second contribution is an open-source modification of the pyperformance
and pyperf packages, which enables the benchmarking of Python programs with
respect to energy consumption. It can be used on all Linux-running machines
featuring Intel’s RAPL power capping interface [22, 47]. All of our results and
accompanying code are publicly available on GitHub9.

7From this point onward, we will use the term "performance" to refer collectively to the
set of execution time, memory footprint and energy consumption. See Section ?? for details.

8In this Chapter, DSA stands for “traditional” dynamic memory allocation in operating
systems.

9https://github.com/cappadokes/cpythondsa

https://github.com/cappadokes/cpythondsa
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Figure 2.1: The method followed to produce this Chapter’s results.

2.2 Method

Figure 2.1 summarizes the general flow of our work. We used pyperformance10

for data collection and the HPT method [19] for statistical performance analysis.

pyperformance is the official benchmark suite of the Python community.
It contains a variety of real-world applications, which is a necessity when
studying DSA (synthetic benchmarks have long been known to be unreliable in
characterizing allocator performance [121]). pyperformance also offers utilities
for the reproducibility and stability of results, like commands for system tuning
and compiling isolated versions of CPython, test calibration and warmup, as well
as automatic identification of unstable benchmarks. We used pyperformance
to collect raw benchmark data, and filter unstable applications out (first and
second boxes in Figure 2.1).

HPT is a statistical analysis method for reliable performance comparison
of systems. It is integrated in the PARSEC benchmark suite [11]. HPT
employs hypothesis testing in order to answer questions of the form "X
has better/worse performance than Y with a confidence of Z". It also
computes quantitative, single-number speedup11 comparisons (again, including
the respective confidence)12. We used HPT to process the benchmark data
recorded by pyperformance and derive fair, informed answers to the research
questions stated in Section 2.1.1. This constitutes boxes 3-5 in Figure 2.1.

Our method rests upon the fact that HPT allows cross-application deductions
stemming from application-specific data13. The flow is repeated for each metric
of interest (execution time, memory footprint, energy consumption):

10https://github.com/python/pyperformance
11The term "speedup" normally hints toward improvement in execution time. For this

Chapter, we extend the term’s semantics so as to include memory footprint and energy
consumption as well. Thus a speedup of 1.2x should be interpreted as achieving 1.2 times
less execution time, memory footprint, or energy consumption with respect to some baseline.

12According to the authors of HPT, merely relying on the geometric mean for summarizing
computer performance is problematic [19].

13The curious reader is encouraged to consult [19] for a complete treatment of why this is
feasible.

https://github.com/python/pyperformance
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• Benchmarking: each application is calibrated and a warmup value is
computed and discarded. 60 values per application are then measured.
A suite consisting of B benchmarks thus produces 60 ·B values. All this
work is conducted by pyperformance. This step is repeated for all the
DSA configurations that we want to compare. A dataset corresponding
to N configurations contains 60 ·B ·N values.

• Outlier filtering: pyperformance prints warnings for potentially
unreliable benchmarks, if they include outlier values different than the
mean by a multiple of the standard deviation. We discard such cases and
normalize the remaining ones as speedups over a reference configuration.
We propagate forward the greatest subset of benchmarks common across
all configurations.

• In-app comparison: the qualitative aspect of HPT is employed for
this step. Each candidate configuration C is compared to the reference
configuration R over each benchmark T . The comparison tests the
hypothesis "C has better performance than R on benchmark T ". The
result is summarized as a confidence value. If this confidence is lower than
a predefined threshold (e.g. 95%) the comparison is discarded.

• Common app extraction: not all (C, R) pairs end up having identical
sets of benchmarks with high-confidence comparisons. To mitigate this,
we again identify the greatest subset of common benchmarks. We end up
with a dataset that, for all configurations, (i) is stable and (ii) guarantees
statistically significant comparisons.

• Cross-app analysis: in-app comparison is now conducted for the set
of stable benchmarks. The result is used as input to a quantitative
computation: each candidate configuration C is assigned a cross-
application speedup S over the reference configuration R, along with
a confidence value as usual. S has three possible types of values:

– a floating point number denoting actual speedup, which states that
C performs better than R across all benchmarks with high confidence.
The speedup is a lower bound on the expected impact to an arbitrary
application’s performance14.

– an "MI" placeholder denoting Marginal Improvement. The candidate
configuration C might improve an application’s performance, but to
a negligible degree. Cases may exist where C performs worse than
the reference. No horizontal conclusion should be drawn.

14No speedup value stands on its own, but must be co-interpreted with the respective
confidence value.
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Figure 2.2: Experimental setup summary. Note the different symbols for: trusted
data (cylinders), software operations (rectangles), scripts, environment variables
(flags), binary files (3D rectangles), raw data (cloud), machines (hexagons).

– a "PD" placeholder denoting Performance Degradation. This implies
that C will cause worse performance for an arbitrary application
compared to the reference configuration.

2.3 Experimental Setup

Figure 2.2 encapsulates our tools, experiment workflow and results generation
process. In the next few paragraphs, we describe it in further detail. A
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Table 2.1: Hardware and software used for the study.

Component Machine A Machine B Machine C
Type Server Embedded SoC PC

Processor 8x Intel Core i7-6700 4x ARMv8 Processor rev 1 12x Intel Core i7-8750H
Clock frequency 3.4 GHz 1.5 GHz 2.2 GHz
System memory 32 GiB 4 GiB 16 GiB

Operating system Ubuntu 20.04.4 LTS Ubuntu 16.04.7 LTS Ubuntu 20.04.3 LTS
Linux kernel version 5.13.0-35-generic 4.4.38-tegra 5.13.0-37-generic
GNU glibc version 2.31 2.23 2.31
Energy interface Intel RAPL [47, 22] N/A Intel RAPL

CPython 3.10.2
pyperformance 1.0.4 (modified)

pyperf 2.3.1 (modified)
mimalloc [76] 2.0.5
jemalloc [25] 5.2.1

comprehensive list of materials can be found at Table 2.1. With regard to the
benchmarked applications, we mention ∼ 1

3 of them15 in Table 2.2. Our main
method, as described analytically in Section A.2, is implemented by a Python
script which processes the raw benchmarking data offline.

We are interested in cross-application conclusions on the impact of DSA on
CPython’s performance. We define conclusions as answers to our research
questions (Section 2.1.1). We define performance as the set of execution time,
memory footprint and energy consumption (T, M, E). We used the default
version of the pyperformance run command to measure execution time, and
the –track-memory option for memory footprint. We modified pyperformance
so as to report energy consumption readings in Linux machines which feature
Intel’s RAPL [47] power-capping interface. E is the sum of core and DRAM
energy consumption, EC and EM . According to RAPL’s documentation, the
core part includes caches and the MMU. Note that EC + EM < ET if ET is the
total energy consumption of the platform. We define impact as the speedup
S achieved by configuration C against a reference measurement R. Formally,
S = R

C . This is also the metric used by our main statistical analysis tool, the
HPT method [19].

15For the full catalogue, please consult https://pyperformance.readthedocs.io/benchmarks.html.

https://pyperformance.readthedocs.io/benchmarks.html
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2.3.1 PGO, LTO sensitivity

Profile-guided and link-time optimizations (PGO, LTO) are available when
compiling the CPython runtime. We want to investigate how these affect the
performance impact caused by DSA–a sensitivity check between two extremes:
a “standard” version which is the one built by default, and a “release” one that
uses the –enable-optimizations and –with-lto options to enable PGO and
LTO.

2.3.2 Configuration points

CPython DSA may be configured with two degrees of freedom:

• enabling/disabling the use of CPython’s internal allocator pymalloc.
When enabled, it is invoked for request sizes up to 512 bytes. Controlled
via the PYTHONMALLOC environment variable16. Enabled by default.

• selecting the malloc implementation which CPython invokes when
requesting memory from the operating system. Controlled via the
LD_PRELOAD17 trick. The default one is the system’s allocator, which
is normally glibc in GNU/Linux-running machines.

Thus N allocators produce 2 ·N candidate configuration points. In the case
of this Chapter, N = 3 [malloc (glibc), mimalloc, jemalloc] and as a result
we have 6 configuration points available. The aforementioned allocators were
selected as popular representatives of the state of the art in DSA. Our process
can be extended to other allocator libraries with minimal effort.

We refer to the pymalloc-enabled, malloc-linked configuration as reference,
since it is the default setting.

2.3.3 Benchmarking script

Batches of data are collected via a shell script which repeatedly executes
pyperformance run commands18, each time for a different configuration point.
When available, pyperf system tune is used prior to data collection for
ensuring more stable measurements. Raw benchmarking measurements are

16https://docs.python.org/3/c-api/memory.html
17https://man7.org/linux/man-pages/man8/ld.so.8.html
18https://pyperformance.readthedocs.io/usage.html

https://docs.python.org/3/c-api/memory.html
https://man7.org/linux/man-pages/man8/ld.so.8.html
https://pyperformance.readthedocs.io/usage.html
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Table 2.2: Some of the benchmarked applications.

Name Description
chameleon HTML/XML template engine.
django_template High-level Python web framework.
dulwich Implementation of the Git file formats and protocols.
fannkuch From the Computer Language Benchmarks Game.
float Artificial, floating point-heavy benchmark originally

used by Factor.
genshi Library for parsing, generating, and processing

HTML, XML or other textual content..
html5lib Library for parsing HTML.
json API to convert in-memory Python objects to a

serialized representation known as JavaScript Object
Notation (JSON) and vice-versa.

pathlib Tests the performance of operations of the pathlib
module of the standard library.

pickle Uses the cPickle module to pickle a variety of
datasets.

regex_compile Stresses the performance of Python’s regex compiler,
rather than the regex execution speed.

richards The classic Python Richards benchmark. Based on
a Java version.

spectral_norm MathWorld: “Hundred-Dollar, Hundred-Digit
Challenge Problems”, Challenge #3.

telco Benchmark for measuring the performance of
decimal calculations. From the Computer Language
Benchmarks Game.

tornado_http Web framework and asynchronous networking
library, originally developed at FriendFeed.

saved in compressed JSON format (the resulting files correspond to the arrow
leaving the BENCHMARKING box in Figure 2.1).

2.3.4 Platform independence

Our experiments are conducted on three platforms: a server-class workstation,
an embedded SoC and a laptop PC. In each case, we follow the method described
in Section A.2 to compute the cross-application speedups of all configuration
points on all performance metrics.
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Figure 2.3: ECDF of speedup over memory footprint (embedded SoC, release
version). The baseline configuration outperforms all alternatives in almost all
cases. This figure partly supports our first finding according to which CPython’s
default DSA is optimized for memory footprint. See Table 2.5 for details.

If (i) similar speedups are computed for the same configuration on different
platforms and (ii) this holds true for both the standard and release versions
(Section 2.3.1), we may consider our experiments platform-independent. This
test relies on mere common sense and must not be taken for a formal method;
its validity lies in the multiplicity of the tested machines and the reliability of
our analysis method (Section A.2).

2.4 Results

This section presents our study’s findings. Before we proceed, however, we shall
do our best to accustom the reader’s intuition with our results’ format. Let us
thus map the research questions stated in Section 2.1.1 to suiting structures:

I. To what extent can a CPython application’s performance with respect to
execution time, memory footprint and energy consumption be improved by
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Figure 2.4: ECDF of speedup over execution time (embedded SoC, standard
version). All DSA configurations that make exclusive use of some external
allocator outperform the ones employing CPython’s pymalloc. This partly
supports our finding that in builds without PGO and LTO, discarding pymalloc
almost always improves performance. See Table 2.5 for details.

modifying the runtime’s DSA configuration? We need to reason about an
arbitrary application (not necessarily one included in the benchmark suite).
As explained in Section A.2, the HPT method computes cross-application
speedups and the respective confidence values. We thus create a table of
(speedup, confidence) tuples with configurations as rows and performance
metrics as columns, like Table 2.3.

II. How much do optimizations in the runtime itself affect the expected
improvement? We create tables as the one described above for both the
standard and release CPython builds (Tables 2.3, 2.4, 2.5).

III. Are performance improvements sensitive to application-specific characteris-
tics? We summarize a configuration’s performance in a single benchmark as
the geometric mean of all measured speedups. We attain visual answers to this
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Figure 2.5: ECDF of speedup over DRAM energy consumption (server-class
workstation, release version). An horizontal solution is impossible to find.
Impact against the baseline is marginal at best. This partly supports our finding
that the energy consumption of a PGO-LTO optimized CPython runtime is very
hard to improve upon, and is sensitive to application-specific characteristics.
See Table 2.3 for details.

question by printing the ECDF of geometric mean speedups (Figures 2.3-2.5)19;
if variability exists in the best-performing allocator setup per benchmark, the
answer is positive.

2.5 Discussion

We now proceed with the findings extracted from the collected data. We shall
refer to the non-optimized CPython build as "standard" and to the PGO-LTO

19A previous footnote mentions the inadequacy of performance summarization via the
geometric mean. It refers, however, to cross-application results. In the present case, we are
interested in application-specific speedups, which the geometric mean is normally used to
summarize. Note that the harmonic mean could prove closer to the ground truth in special
circumstances [53].
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Figure 2.6: ECDF of speedup over core energy consumption (laptop PC,
standard version). The configurations featuring exclusive use of jemalloc
and malloc yield significant improvements across most cases. This figure
partially supports our finding that cross-application performance enhancement
can be achieved in standard builds by discarding CPython’s pymalloc. It also
shows that core energy consumption can at times be extremely counterintuitive,
as happens in the case of pymalloc_jemalloc. See Table 2.4 for details.

one as "release". Although we display ECDF graphs for all three machines
and both types of CPython, not enough space exists for including everything.
The complete code and data can be found at our accompanying repository20.
For now, we limit ourselves to representative cases that partially support our
findings and reveal the broadest possible area of our experiments’ space.

Degree of influence: modifying CPython’s DSA has considerable impact
when using the standard build (see “Standard” sections of Tables 2.3, 2.4 and
2.5 as well as Figures 2.4 and 2.6). Particular gains can surpass 1.6x. To the
contrary, performance is very hard to improve in the case of a release build–yet
if constraints are tight, marginal improvements could be gained for specific
applications (see for example Figure 2.5).

20https://github.com/cappadokes/cpythondsa

https://github.com/cappadokes/cpythondsa
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External allocator optimality: in the standard case performance across
all metrics of interest will be improved by disposing of pymalloc and using
an external allocator for all request sizes (Tables 2.3-2.4, Figures 2.4 and 2.6).
This is possibly owed to the fact that a standard runtime introduces substantial
overheads compared to native allocator code. An unresolved question here
is why memory footprint is also better without pymalloc. We suspect but
have not investigated a potential impact of PGO and LTO themselves on the
runtime’s final memory layout.

Footprint optimality: if a release CPython is employed the default
configuration (pymalloc+glibc) will achieve the best memory footprint with
very high certainty (e.g. Figure 2.3). If no other metrics are of interest, all
alternatives should be avoided.

Platform independence: execution time and memory footprint impacts for
all configurations in both standard and release builds are very similar across
all three tested machines, as shown in Tables 2.3, 2.5 and 2.4. We consider
this a very strong indicator that conclusions involving these two metrics are
platform-independent.

Energy complexity: a weaker statement on platform indpendence can
be made about DRAM energy consumption, since it is supported by two
out of three machine datasets (Tables 2.3 and 2.4); the only outlier here is
pymalloc_jemalloc in the release case. Core energy consumption on the other
hand seems to be tied to each platform’s microarchitecture (Tables 2.3 and
2.4, Figure 2.6). Decisions involving it should always be driven by extensive
profiling and careful study. Both DRAM and core energy are very difficult to
improve in the release case21.

2.6 Limitations

The allocators used for our study are not the only ones available–though they
are popular enough to represent the state of the art. Options like Hoard [9],
supermalloc [64] and others should be evaluated too for completeness.

We use Intel’s RAPL tool [22] for making energy measurements. RAPL does
not report true energy consumption, but is rather a hardware model that has
been shown to possess adequate accuracy [24]. There do exist methodologies for

21Recall that “core” energy includes cache memories and the MMU apart from the actual
processor cores. Access to direct measurements from these subsystems would be very
interesting for the scope of this Chapter, but the RAPL implementations we used did
not expose such an option.
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Table 2.3: Cross-application speedup and confidence values from the server experiment. MI
stands for Marginal Improvement, PD for Performance Degradation. Note that MI results have
the lowest confidence, which signifies to sensitivity application-specific characteristics. Also note
that the reported speedups are lower bounds on the expected performance improvements. It is
natural for cases like Figure 2.6 to contain benchmark-specific speedups that are higher than their
cross-application counterparts.

Configuration Execution time Memory footprint Core energy DRAM energy
Standard

pymalloc_mimalloc MI (58%) PD (100%) PD (100%) MI (27%)
pymalloc_jemalloc MI (48%) PD (100%) PD (100%) MI (15%)

mimalloc 1.125 (93.96%) 1.035 (92.98%) 1.135 (93.2%) 1.115 (90.31%)
jemalloc 1.105 (92.73%) 1.075 (93.41%) 1.09 (93.32%) 1.1 (94.97%)
malloc 1.115 (91.29%) 1.11 (89.79%) 1.12 (89.27%) 1.1 (94.8%)

Release
pymalloc_mimalloc MI (35%) PD (100%) MI (45%) MI (21%)
pymalloc_jemalloc MI (21%) PD (100%) PD (99.58%) PD (95.44%)

mimalloc PD (99.99%) PD (100%) MI (11%) PD (98.84%)
jemalloc PD (100%) PD (100%) PD (99.95%) PD (99.99%)
malloc PD (100%) PD (100%) PD (99.99%) PD (99.99%)

ensuring minimal error when using RAPL to measure the energy consumption
of short code paths [47]; we did not implement them due to lack of time. As a
result, the subsets of common stable benchmarks across configurations for core
and DRAM energy were smaller than the ones for execution time and memory
footprint. Future work should focus on producing more stable measurements
across all metrics.

We showed in our findings that, particularly for release builds of CPython,
performance improvements in some respects are possible yet marginal and
sensitive to application-specific characteristics. Our work devotes no effort on
actually defining these characteristics; an idea we did not manage to realize is to
integrate analytical heap profiling to pyperformance and pyperf. Even if we
had done this, however, more complex methods than HPT should be employed
to analyze and categorize the collected profiles since heap behavior cannot be
summarized with a single number. Static analysis methods are another idea.
Future research must consider both of these routes.
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Table 2.4: Cross-application speedup and confidence values from the PC experiment. All comments
on Table 2.3 apply here as well.

Configuration Execution time Memory footprint Core energy DRAM energy
Standard

pymalloc_mimalloc MI (82%) PD (100%) PD (99.95%) MI (8%)
pymalloc_jemalloc MI (7%) PD (100%) MI (18%) MI (10%)

mimalloc 1.125 (93.97%) 1.03 (94.81%) MI (10%) 1.12 (93.55%)
jemalloc 1.115 (99.3%) 1.03 (89.65%) 1.11 (94.21%) 1.11 (93.55%)
malloc 1.115 (91.39%) 1.11 (90.96%) 1.11 (94.21%) 1.11 (93.55%)

Release
pymalloc_mimalloc MI (66%) PD (100%) MI (17%) MI (30%)
pymalloc_jemalloc MI (89%) PD (100%) 1.005 (83.71%) MI (56%)

mimalloc PD (99.99%) PD (100%) MI (7%) PD (99.76%)
jemalloc PD (100%) PD (100%) MI (99.76%) PD (99.98%)
malloc PD (100%) PD (100%) PD (100%) PD (99.99%)

Table 2.5: Cross-application speedup and confidence values
from the embedded SoC. Energy measurements not available
for this platform. The N/A entries denote corrupt data which
we could not refine.

Configuration Execution time Memory footprint
Standard

pymalloc_mimalloc MI (84%) N/A
pymalloc_jemalloc MI (19%) N/A

mimalloc 1.12 (94.66%) N/A
jemalloc 1.11 (94.66%) N/A
malloc 1.095 (93.13%) N/A

Release
pymalloc_mimalloc 1.01 (76.09%) PD (100%)
pymalloc_jemalloc MI (93%) PD (100%)

mimalloc PD (99.87%) PD (100%)
jemalloc PD (99.99%) PD (100%)
malloc PD (100%) PD (100%)

2.7 Conclusions

This work explored the impact of configuring CPython’s dynamic storage
allocation mechanism on execution time, memory footprint and energy
consumption. It is motivated by Python’s wide adoption in systems spanning
from the edge to the server domain.
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We used and extended the official benchmark suite of the language, pyperformance,
to collect our measurements. We analyzed the data with HPT [19], a statistically
rigorous method for making cross-application deductions.

According to our findings, the performance of standard CPython can be improved
in all three performance aspects by exclusively using an external allocator (e.g.
jemalloc) for all request sizes. Gains can surpass 1.6x. Moreover, a runtime
built with PGO and LTO provides optimal memory footprint out of the box.
Energy consumption in the PGO-LTO case can only be improved marginally, and
the suiting DSA configuration is sensitive to application-specific characteristics.

Our experiments took place in three different platforms. We show strong
evidence that DSA’s impact on execution time and memory footprint is platform-
independent. Slightly weaker evidence for the independence of DRAM energy
consumption is also provided. As regards core energy consumption (processor,
caches, MMU) no similar statement can be made. To the best of our knowledge,
this is the first rigorous study of the relationship between CPython and DSA.



Chapter 3

Beyond RSS: Towards
Intelligent Dynamic Memory
Management

This Chapter is a verbatim copy of the author’s publication cited below:

Lamprakos, C. P., Xydis, S., Kourzanov, P., Perumkunnil, M.,
Catthoor, F., and Soudris, D. Beyond rss: Towards intelligent dynamic
memory management (work in progress). In Proceedings of the 20th ACM
SIGPLAN International Conference on Managed Programming Languages and
Runtimes (New York, NY, USA, 2023), MPLR 2023, Association for Computing
Machinery, p. 158–164

The main goal of dynamic memory allocators is to minimize memory
fragmentation. Fragmentation stems from the interaction between workload
behavior and allocator policy. There are, however, no works systematically
capturing said interaction. We view this gap as responsible for the absence of a
standardized, quantitative fragmentation metric, the lack of workload dynamic
memory behavior characterization techniques, and the absence of a standardized
benchmark suite targeting dynamic memory allocation. Such shortcomings are
profoundly asymmetric to the operation’s ubiquity.

This Chapter presents a trace-based simulation methodology for constructing

30
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representations of workload-allocator interaction. We use 2DBP as our
foundation. 2DBP algorithms minimize their products’ makespan, but virtual
memory systems employing demand paging deem such a criterion inappropriate.
We see an allocator’s placement decisions as a solution to a 2DBP instance,
optimizing some unknown criterion particular to that allocator’s policy. Our
end product is a data structure by design concerned with events residing entirely
in virtual memory; no information on memory accesses, indexing costs or any
other factor is kept.

We bootstrap our contribution’s utility by exploring its relationship to maximum
RSS. Our baseline is the assumption that less fragmentation amounts to smaller
peak RSS. We thus define a fragmentation metric in the 2DBP substrate and
compute it for both single- and multi-threaded workloads linked to 7 modern
allocators. We also measure peak RSS for the resulting pairs. Our metric
exhibits a monotonic relationship with memory footprint 94% of the time, as
inferred via two-tailed statistical hypothesis testing with at least 99% confidence.

3.1 Introduction

In their 1995 survey, Wilson et al. contributed a comprehensive taxonomy and
a grounded critique of dynamic storage1 allocation (DSA) [121], noting the
inherent difficulty in defining fragmentation, the inadequacy of basing designs on
synthetic workloads, and the lack of novelty in new allocator policies. To this day,
we have not converged to a single, measurable definition of fragmentation [84],
neither do we possess a method for workload characterization–despite the fact
that program behavior partly controls fragmentation.

Most noticeably, there is no standardized memory allocation benchmark suite.
Motivation sections often adopt synthetic test cases [79] even though we
know such practices to be inadequate. Applications used for evaluation are
selected on intuitive grounds of being “dynamic enough”. Certain classes,
such as database and web browsing workloads, are preferred over others with
no proper justification. Worse, “internal” workloads are at times used [81],
obstructing transparency and reproducibility. We claim that hidden costs, such
as scarce physical memory contiguity [123], are imposed to systems from the
aforementioned gaps, and amplified by the ubiquitous nature of DSA.

This Chapter introduces a systematic methodology for representing workload-
allocator interaction as instances of two-dimensional rectangular bin packing
(2DBP) [21, 13]. To conclude whether any information of practical value is

1We use “storage” instead of “memory” as a tribute to Paul R. Wilson et al. [121] The
matter at hand is non-moving virtual memory allocation.
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captured, we explore our product’s relationship to maximum RSS. We define
fragmentation as the ratio between gaps and used memory in the 2DBP
space, and measure it for 34 real workloads linked to 7 modern allocators.
94% of the time, 2DBP-based fragmentation and maximum RSS exhibit a
monotonic relationship–as found by conducting statistical hypothesis tests with
a significance value of at least 99%. Our contributions can thus be summarized
as:

• a novel perspective emphasizing the need for a principled study of workload-
allocator interaction

• a methodology for constructing 2DBP representations of arbitrary
workloads and non-moving allocators

• a first empirical study of 2DBP’s informational content

• a novel definition of memory fragmentation

• a discussion on our results’ implications for DSA, motivating future
research

Section A.1 elaborates on our representation and 2DBP-based fragmentation.
Section A.2 describes the mechanisms implemented to actualize our methodology.
We present our results in Section 3.4 and discuss their implications in Section
4.7. Related work is presented in Section 3.5, and Section A.4 closes the main
text with an overview of our conclusions.

3.2 Background

Allocators receive a series of requests from the programs they are linked to.
Two main request types exist: allocation of n bytes and deallocation of a
previously allocated object. The requests’ creator may range from application
developers, as happens in C, to garbage-collected language runtimes (CPython),
to compiler-injected directives (Rust).

Real allocation requests come in several variations. A program may need
specifically aligned objects, or objects initialized as a zero-valued array. It may
even ask for an object to be resized. Upon successful allocation, a pointer to the
newly acquired memory is returned. Deallocation requests are straightforward.
The program informs the allocator via a previously obtained memory pointer
that it does not need the corresponding object any more.
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Figure 3.1: A simple 2DBP example. External fragmentation is marked in red;
internal in magenta (assume that the allocator decided to put object C in the
3-byte size class, despite the program requesting only 2 bytes).

An allocator’s decisions on object placement and free memory management
form its policy. On the program’s side, the distribution of allocation sizes
requested as well as the particular sequence of requests jointly form its
behavior. The goal of a good policy is to minimize fragmentation2, which
means to waste minimal amounts of extra memory beyond what the program
requested. Two types of fragmentation exist: internal fragmentation treats
wasted memory within objects (i.e., returning more bytes than requested);
external fragmentation focuses between objects (e.g., putting objects that die
together in non-consecutive places). Both types are functions of the interaction
between allocator policy and program behavior [121]. Several definitions have
been proposed over the years [57, 84, 9].

A 2DBP instance comprises a series of unplaced objects in the form of
(start, end, height) tuples. An acceptable solution to 2DBP is a placement

2We remain aware of the complex memory/performance tradeoffs faced by allocator
designers. We focus on memory explicitly because (i) viewing DSA from first principles
automatically makes memory a first-class citizen and (ii) most research over the past decades
targets performance already [78].
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with no overlapping objects. For the purposes of our Chapter there is no need
to distinguish between placed and unplaced objects, so with the term “2DBP”
we refer both to the requests and the allocator’s responses to each request (all
objects are already placed by the time we depict them). The concepts involved
are best described by example. Let us consider the below requests sequence:

1. A = malloc(1)

2. B = malloc(2)

3. free(A)

4. C = malloc(2)

5. free(B)

6. free(C)

Figure 3.1 combines these requests with an imaginary allocator’s responses,
placing object A at virtual address 0x01, object B at 0x03 and object C at 0x00.
Each object is formed by pairing two requests, one for allocation and one for
deallocation, involving the same memory pointer (stored in A/B/C variables in
this example). The figure’s horizontal axis measures time in allocated bytes.
Time progresses forward after each allocation request, and remains unaltered
after each deallocation request.

Normally 2DBP algorithms optimize a placement’s make-span, meaning the
total address range used (in Figure 3.1 the makespan equals to 5). We have
already emphasized that in the scope of this Chapter, the allocators are the
ones producing the placements; we are merely recording their decisions as if
they were solving a 2DBP problem. We cannot know the precise criterion that
each allocator optimizes, but it is probably not makespan; disjoint virtual pages
may be mapped to contiguous physical ones and vice versa.

There is thus no point in restricting the range of virtual addresses used. There
is quite a point, however, in restricting overall memory usage–or to minimize
physical memory fragmentation. So the question is, in the context of the
representation we are constructing, what could fragmentation look like? Our
proposed answer is indicated by the three shaded rectangles in Figure 3.1. Recall
that one description of fragmentation is “memory wastage”; the shaded areas
are like gaps in a Tetris game. They represent segments which the allocator left
unused, thus reserving higher addresses in order to handle all requests.

One might judge our formulation as too strict, since a non-moving allocator
could not break object B in two and slide the left part down to cover the top
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Figure 3.2: An overview of our method to produce 2DBP representations and
to compute their fragmentation. Bold arrows are inputs and dotted arrows are
outputs.

fragmented area. Two points must be raised here: fragmentation is partly
defined by the program’s behavior, and it thus makes sense for portions of it
to be inevitable. Moreover, what matters most is 2DBP itself. Computations
performed on it, fragmentation included, are secondary. This statement does
not mean to devalue fragmentation as a phenomenon–such a stance would go
against our own motivation. It just stresses the importance of first establishing
a useful substrate. In our Chapter, fragmentation plays the crucial role of
bootstrapping 2DBP in the sense of a 2DBP-derived signal correlating with the
real world. But again, nothing else must be considered more primary than the
representation itself.

3.3 Proposed Method

Our goal is to represent arbitrary pairs of Linux binaries and malloc
implementations as 2DBP instances. An overview of our method is shown
at Figure 3.2. Inspired by [121] and [57] we aimed for trace-based simulation.

3.3.1 2DBP construction

We log all of a program’s calls to allocation functions. The resulting trace,
along with the malloc implementation of interest, feeds our simulation module.
The 2DBP component produces the final representation. Our architecture is
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Table 3.1: Rules for unpacking request traces to malloc and free operations.
s stands for “size”, p for “pointer”, n for “number”, a for “alignment”.

Original Operation Transform
malloc(s) malloc(s)
free(p) free(p)

calloc(s,n) malloc(n∗s)
realloc(p,s) free(p); malloc(s)

posix_memalign(p,a,s) malloc(s)
aligned_alloc(a,s) malloc(s)

valloc(s) malloc(s)
memalign(a,s) malloc(s)

pvalloc(s) malloc(s)

modular to enable optimizations in each stage, since it must eventually handle
realistic workload sizes.

Requests tracing

A reasonable question is why did we not leverage existing solutions such as
mtrace3, heap- track4, or tracing capabilities built in malloc implementations.
Our decision was driven by the below points:

• mtrace demands that the program be modified so as to initialize the tool,
while access to the application source code may not be feasible in practice.

• heaptrack and similar alternatives are extra dependencies which the user
may want to avoid.

• existing tracers impose larger overheads to store additional data, e.g.,
stack traces and call site addresses

Our tracer is required to be complete, catching allocations and deallocations
all across the program’s call stack. It must also be non-intrusive, that is to
imply zero actions regarding code instrumentation and compilation. It finally
needs to be correct: logged calls should belong to the traced program only,
and not be polluted by dynamic memory operations of the tracer itself. To
satisfy these requirements we target typical Linux processes forking no children.
We also make use of several Linux and GNU utilities reported in the following

3https://linux.die.net/man/3/mtrace
4https://github.com/KDE/heaptrack

https://linux.die.net/man/3/mtrace
https://github.com/KDE/heaptrack
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Table 3.2: Trace file structure. The els_num field is used for tracing calloc,
which returns a number of elements, each element of a certain size. To facilitate
the study of multi-threaded programs, we record the caller thread’s ID in the
call_tid field.

CSV Field Request 1 Request 2 Request 3
req_type malloc free calloc

in_address (nil) 0x55A (nil)
out_address 0x55A (nil) 0x63B

el_size 12 (nil) 128
els_num 1 (nil) 1000
call_tid 26 36 31

paragraphs. Our mechanism is general enough to operate on any program in
this context, from command line tools to application virtual machines.

The tracer is a shared library employing dlsym5 to interpose calls to malloc,
free, calloc, realloc, posix_memalign, memalign, aligned_alloc, pvalloc
and valloc. These were selected according to GNU’s guidelines on replacing
malloc6. Beyond interposing the allocation interface, our tracer spawns a new
process which writes the actual logs to a CSV file. The structure of the stored
tracing data is shown at Table 3.2.

Placement simulation

2DBP perceives only two kinds of requests, namely allocation of n bytes and
deallocation of occupied memory. But a real trace file may include operations
with more complex semantics, such as calloc. We thus unpack all calls
to combinations of the two elementary operations, malloc and free. The
counterargument to address is the proposed unpacking’s effect on original
program behavior. A short yet concise answer is that if along our course we
distorted program behavior more than we should, no connection with RSS
would have been uncovered. The unpacking scheme is described in Table 3.1.

Policy simulation does not reproduce the original program’s RSS waveform,
since no memory access information is stored during the tracing stage. 2DBP
lives entirely in virtual, not physical, memory. This works to our advantage,
since it enables us to examine the extent to which events in virtual memory
affect real-world performance.

5https://man7.org/linux/man-pages/man3/dlsym.3.html
6https://www.gnu.org/software/libc/manual/html_node/Replacing-malloc.html.

https://man7.org/linux/man-pages/man3/dlsym.3.html
https://www.gnu.org/software/libc/manual/html_node/Replacing-malloc.html
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To record block sizes we use the values returned by malloc-_usable_size7. If
the simulated allocator includes metadata in its block layout (like the GNU
implementation does), this is also taken into account. Our decision to record
both the amount of memory requested by the program and the final size of the
block returned by the allocator incorporates a significant aspect of allocator
policy, that is, the size classes that it uses. It also allows us to measure
internal fragmentation. Memory mappings are consulted via the process-specific
/proc/[PID]/maps8 file. A good discussion of why modern allocators spawn
memory mappings under the hood may be found on StackOverflow9. Thus our
simulator must keep track of object traffic within said mappings if we want it
to capture the complete picture. Hence another aspect of allocator design is
captured. However, apart from the workload and the allocator, the OS itself
is a major factor in the eventual memory footprint, and there are aspects of
its interaction with the other two that are crucial and yet not captured. The
most self-evident such aspect is memory access information. Thanks to the
demand paging mechanism, we know that allocated memory is not mapped
until the first time that the program attempts to access it. By omitting such
information, we overestimate fragmentation because we consider memory to be
mapped earlier than what it actually is.

Time is updated whenever a malloc request has been scanned. The final
placement data is also structured as CSV.

3.3.2 Fragmentation

We define fragmentation as the area of unused memory within occupied virtual
pages, divided by the area of allocated memory. We compute it across all M
mappings spawned by a workload-allocator pair via Equation 3.1:

FT =
∑M

i=1 Fmi∑M
i=1 Lmi

(3.1)

Recall that by design our representation captures virtual memory across time;
that is, one can by traversing it track virtual pages getting occupied, emptied,
or loaded with more allocated objects. The term Fmi is derived by summing
the spatiotemporal areas of unused memory belonging to occupied virtual pages

7https://man7.org/linux/man-pages/man3/malloc_usable_size.3.html
8https://man7.org/linux/man-pages/man5/proc.5.html
9https://stackoverflow.com/questions/64029219/why-does-malloc-call-mmap-and-brk-

interchangeably

https://man7.org/linux/man-pages/man3/malloc_usable_size.3.html
https://man7.org/linux/man-pages/man5/proc.5.html
https://stackoverflow.com/questions/64029219/why-does-malloc-call-mmap-and-brk-interchangeably
https://stackoverflow.com/questions/64029219/why-does-malloc-call-mmap-and-brk-interchangeably
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Figure 3.3: Gap identification algorithm. Axes are identical to those of Figure
3.1. Horizontal dashed lines are page boundaries. White rectangles are objects,
i.e., allocated memory. Gaps contributing to external fragmentation are marked
with red, internal with purple.

within each mapping. Lmi stands for total allocated memory–again, across
time.

We illustrate our algorithm in Figure 3.3: gaps between and inside objects
are shown as lightly and darkly shaded areas. Our plot is drawn in medias
res–lightly shaded areas were and will be accounted for in previous and future
iterations, while darkly shaded ones are captured by the present iteration. To
this we focus. It involves a vertical slice that we call a lane. Lanes are delimited
by object beginnings and endings. Within them nothing new happens; thus
they can be traversed vertically for new gaps to be found.

Virtual page boundaries are drawn as horizontal dashed lines. We do not
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allow gaps to cross those boundaries, since there is no guarantee of maintained
contiguity between virtual and physical memory. Gaps must always have a
same-page object as their ceiling. This puts more pressure on the allocator’s
placement decisions and discounts the effect of limitations it cannot overcome.

3.4 Evaluation

We have proposed a methodology that captures workload-allocator interaction.
To evaluate our claim, a connection between our representation and a valuable
physical memory-based measure must be made. We select maximum RSS as
our target and assume that the cost of high fragmentation is most evident at
the moment of highest memory usage [121], i.e., at peak RSS. If 2DBP actually
captures workload-allocator interaction, then computing fragmentation on it
yields a good approximation of real10 fragmentation. Consequently, 2DBP-based
fragmentation correlates with peak RSS if and only if 2DBP as a whole is a
valid representation.

Allow us to further clarify our reasoning before proceeding. On the practitioner’s
side, the meaning of focusing on peak RSS is self-evident. Now one could ask
why we went for an aggregate measure in the 2DBP plane: why not follow the
same rationale and focus on the moment of maximum fragmentation? Earlier
research has indeed suggested that we could do so [57]. A leap of intuition
is required here, and we hope that the text helps the Reader do it. We want
to compress as much information about workload-allocator interaction in our
metric as possible. Decisions are made all across a program’s lifetime, not only
at its peak allocation/usage point in time. By aggregating fragmentation, our
hope was to capture the effect of all those decisions (with all of the implied
noise and probability of error). Whether such an expectation is reasonable
remains to be backed or falsified by the experiments themselves. Nevertheless,
by this decision our method remains aligned with our aforementioned desire for
dynamically adaptive systems.

The correlation we are looking for is monotonically increasing; we expect higher
fragmentation to cause higher peak RSS. We thus conduct two-tailed statistical
hypothesis testing [7], the null hypothesis being that 2DBP-based fragmentation
and peak RSS do not correlate monotonically. Before proceeding to the results,
let us elaborate a little more on our experiments’ procedure.

First we traced all workloads with the mechanism described in Section 3.3.1.
The simulator of Section 3.3.1 was then fed with trace-allocator pairs to collect

10Recall that the hardness and ambiguity of measuring real fragmentation was this Chapter’s
starting point.
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Figure 3.4: Hypothesis testing results. We studied 34 workloads in total. We
associate 2 bars to each workload, i.e., Spearman correlation of external (left)
and internal (right) fragmentation with peak RSS. Bar heights signify correlation
strength, while colors signify confidence: 99.95% (green), 99.9% (cyan), 99.75%
(orange), 99.5% (yellow), 99% (brown). Red bars validate the null hypothesis
of no existing correlation. Purple bars are counterintuitive cases of negative
monotonicity. 32 out of 34 workloads exhibit correlation between peak RSS
and at least one type of fragmentation, with at least 99% probability that said
correlation was not a matter of chance.

placement data, on top of which we measured fragmentation. In parallel,
we executed each workload-allocator pair 10 times and measured peak RSS;
each bar in Figure 5.2 stems from 70 data points. That way, we both take
non-determinism into account, and reinforce the validity of the hypothesis
testing procedure. Unlabeled bar pairs correspond to running the last-labeled
application with different inputs/configurations, e.g., x264 was run with 2
inputs, multitrace with 1, system- libxml2 with 3 and so on. Last but not
least, we computed workload-specific Spearman correlation coefficients for peak
RSS and fragmentation and compared them to corresponding significance values
of at least 99% confidence [6].

All experiments were run on a commodity x86_64 Ubuntu 20.04 machine with 16
GiB DRAM. All workloads are real applications from OpenBenchmarking.org11

and include both single-threaded and multi-threaded programs. The allocators
used were the GNU malloc implementation12, jemalloc [25], mimalloc [76],
tcmalloc 13, snmalloc [79], rpmalloc14 and the Hoard allocator [9].

11https://openbenchmarking.org/
12https://www.gnu.org/software/libc/manual/html_node/The-GNU-Allocator.html
13https://github.com/google/tcmalloc
14https://github.com/mjansson/rpmalloc

https://openbenchmarking.org/
https://www.gnu.org/software/libc/manual/html_node/The-GNU-Allocator.html
https://github.com/google/tcmalloc
https://github.com/mjansson/rpmalloc
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As can be seen on Figure 5.2, most of the time there is at least one type of
fragmentation per workload which correlates with memory footprint across
the allocators tested. This Chapter being a work-in-progress submission, we
cannot elaborate further on the presented results; nevertheless, we consider
them interesting enough to attract future research interest. In the following
section we list some ideas on what said research could be concerned with.

3.5 Related Work and Comparison

Wilson et al. have written the seminal treatment on DSA and the central
role of fragmentation [121]. Johnstone and Wilson conduct the first study
of RSS-based fragmentation definitions [57]. Berger et al. show that modern
allocators perform acceptably well with respect to RSS-based fragmentation [10].
Maas et al. propose a novel fragmentation definition incorporating chances of
immediate memory reuse [84]. Powers et al. and Maas et al. contribute notably
unorthodox ways to deal with fragmentation [106, 81].

On the theoretical side Robson has computed worst case fragmentation bounds
for the best fit and first fit placement policies [109]. Optimal placement is
reported as NP-complete by Garey and Johnson [?]. Chrobak and Ślusarek
formulate it as a 2DBP instance [21]. Buchsbaum et al. develop the state-of-the-
art ϵ-optimal algorithm for solving the general case with minimal makespan [13].
Given our focus on 2DBP, we do not mention other formulations such as graph
coloring [60].

Tracing workload dynamic memory behavior correctly and efficiently has been
tackled in the context of garbage collection research [49]. The closest real-world
example of capturing workload-allocator interaction as bin packing comes from
Maas et al [83]. 2DBP is there viewed as a useful tool for the specific case of
ML compilers, where all dynamic memory requests are known in advance. With
this Chapter we hope to convince the reader that the general case of DSA has
much to benefit from 2DBP as well. The logical conclusion of using 2DBP has
been explored by Lamprakos et al. [69]

3.6 Conclusion

This Chapter forms a connection between theoretical dynamic memory allocation
and its real-world counterpart. It is motivated by a profound asymmetry between
dynamic memory allocation’s omnipresence and the scarcity of principled
methods for understanding workload-allocator interaction. It describes a
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mechanism for extracting representations of workload-allocator pairs in the
form of two-dimensional bin packing, and then proposes a novel fragmentation
definition built on top. Despite operating on entirely virtual, simulation-
generated data, our measure correlates with the memory footprint of a variety
of workloads. Our study serves as a first piece of empirical evidence towards
adopting bin packing-based methods for dynamic memory allocation.



Chapter 4

Futureproof Static Memory
Planning

This Chapter is a verbatim copy of the author’s submission to ACM
Transactions on Programming Languages and Systems, currently under review.

The NP-complete combinatorial optimization task of assigning offsets to a set
of buffers with known sizes and lifetimes so as to minimize total memory usage
is called dynamic storage allocation (DSA). Existing DSA implementations
bypass the theoretical state-of-the-art algorithms in favor of either fast but
wasteful heuristics, or memory-efficient approaches that do not scale beyond one
thousand buffers. The “AI memory wall”, combined with deep neural networks’
static architecture, has reignited interest in DSA. We present idealloc, a
low-fragmentation, high-performance DSA implementation designed for million-
buffer instances. Evaluated on a novel suite of particularly hard benchmarks from
several domains, idealloc ranks first against four production implementations
in terms of a joint effectiveness/robustness criterion.

44
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4.1 Introduction

Deep learning is causing significant shifts in professional and civilian life.
Several technical challenges, however, remain open. For instance, there is
a profound asymmetry between progress in compute capability and memory
capacity/bandwidth [40]. This so-called “AI memory wall” has sparked
substantial research and engineering efforts targeting the memory effectiveness
of deep learning. The particular line of work in scope for this Chapter deals with
assigning offsets to a set of buffers with known sizes and lifetimes in order to pack
them in as small an address space as possible [90, 83, 73, 116, 2, 51, 77, 105, 125].
In deep learning such problems appear thanks to (i) neural networks’ static
architecture and (ii) hardware accelerators’ physical memory contiguity.

Nevertheless, beyond providing motivation for what shall be presented, deep
learning is not of the essence here. The problem is old and well-studied [34, 61,
60, 37, 38, 13]. It is known as dynamic storage allocation (DSA), a variation of
two-dimensional bin packing. DSA has been proven NP-complete.

4.1.1 Against a Common Misunderstanding

Despite its name, DSA is a static problem, in the sense of having available all
the information that it needs from the outset. “Dynamic storage allocation”
has also been used for the dynamic variant (what malloc implementations
deal with) [122, 107, 108], causing considerable confusion. We shall be using
“DSA”, “memory planning”, “static offset assignment” and “static memory
allocation” interchangeably in this text. In a similar vein, we will be referring
to DSA implementations, i.e., programs solving DSA instances, as “allocators”.
Dynamic non-moving virtual memory allocators such as GNU’s malloc are out
of scope—we use “OS allocators” in the few times that we must mention them.

4.1.2 Motivation and Related Work

We are concerned with real-world implementations of DSA, their effectiveness,
efficiency and robustness in the face of arbitrarily large inputs. Our founding
assumption is that sooner or later, in deep learning or elsewhere, DSA instances
comprising millions of buffers will emerge. For instance, large language models
are already pushing compiler engineers to come up with ever more aggressive
optimizations, yielding complex and massive memory allocation patterns in
return [51, 43]. Another example is the Linux user applications domain, where
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malloc traces are used for off-line analysis and/or optimization [72, 111, 70, 82,
97, 94].

Our main observation after surveying the SOTA was that allocators are
bypassing the algorithms published in the DSA literature in favor of schemes that
are simpler to implement. Alternatives can be sorted in two broad categories:
heuristics [105, 73, 114, 77] and isomorphisms [90, 83, 112], e.g., integer linear
programming, machine learning regression, simulated annealing, and hill-climb
optimization. We ask what costs accompany circumventing the decades-old
literature around an NP-complete problem for which one seeks a practical,
general solution. The only way to find out if such costs exist would be to build
an allocator informed by that literature, and then evaluate it rigorously against
the SOTA. Hence idealloc, the allocator at this Chapter’s center, was born. In
terms of the heuristics/isomorphisms dichotomy, it is a stochastic bootstrapped
heuristic.

A second observation was that apart from the micro-benchmarks published by
the authors of minimalloc, a SOTA allocator [90], no DSA benchmark suites
exist. We thus formed a novel set of benchmarks ranging from hundred- to half-a-
million buffers and used it, along with the aforementioned micro-benchmarks, for
evaluation. From a strict effectiveness-only perspective idealloc rarely beats all
of its competition, comprising minimalloc and three other production allocators.
But from a robustness and efficiency perspective that same competition (with one
exception) rarely manages to even produce a solution in reasonable time. Under
a joint ranking criterion incorporating both perspectives idealloc achieves top
score.

4.1.3 Contributions

Along the course of designing, developing and testing idealloc, we gathered a
multifaceted set of insights. On the algorithmic front, we identified and fixed
several blind spots of the original theorems, published by Buchsbaum et al.
in 2003 [13] 1. We also devised a second set of algorithms, related not to the
DSA core itself, but to forming a scalable infrastructure around it. On the
benchmarks front, we collected a novel suite of challenging, large-scale inputs
from domains such as Linux databases, parallel training of deep learning models,
and distributed inference.

All in all, our contributions are:
1We have exchanged emails with the algorithm’s original authors, who have validated that

(i) transition from theory to practice always involves trickiness and (ii) there are no other
known implementations of their work.
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1. idealloc, a DSA implementation designed to handle inputs of arbitrary
size and complexity

2. crucial theoretical extensions to the algorithms on which idealloc is
based

3. various insights and techniques of general applicability to future DSA
design tasks

4. the first rigorous evaluation of the DSA DSA

Section 4.2 provides background knowledge on DSA. Section 4.3 describes the
core algorithm powering idealloc. The design of our allocator is exposed
in detail in Section 4.5, and the experiments conducted for evaluating it are
reported in Section 4.6. Section 4.7 discusses limitations and ideas for future
work, and Section A.4 concludes our exposition.

4.2 Dynamic Storage Allocation
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Figure 4.1: A more detailed illustration
of the dynamic storage allocation (DSA)
problem. This instance comprises five
buffers and a (suboptimal) solution, i.e.,
offset assignment to each of the buffers,
is depicted.

Rectangle packing [63] is the com-
binatorial optimization problem of
placing rectangles of various widths
and heights into arrangements where
(i) no two rectangles overlap and (ii)
the arrangement’s enclosing rectangle
has minimum height. Rectangles
may move in two degrees of freedom
(vertically or horizontally). This
problem is NP-complete.

DSA is a constrained variation of
rectangle packing. It owes its name to
the interpretation of one dimension as
available address space, and the other
as time. Each rectangle encodes a
pair of requests for the allocation and
deallocation of some specific amount
of memory at specific points in time.
Allocators have no power over the
timing of incoming requests, so the
only degree of freedom they have is
the spatial one. DSA is NP-complete
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in the general case of non-uniform request sizes. A toy illustration comprising
three rectangles is shown at Figure 4.1. If the horizontal axis represents time,
the allocator may move rectangles vertically.

A DSA input comprises buffers defined as (h, ts, te) tuples, where h stands for
buffer size. All of the data involved are discrete, more precisely non-negative
integers. A buffer is live in the open interval (ts, te). We refer to (ts, te) as the
buffer’s lifetime. We refer to ts and te as allocation time and de-allocation
time respectively. A buffer’s lifespan, i.e., the size of its lifetime, i.e., the total
number of time units at which the buffer is live, is computed as below:

l = te − ts − 1 (4.1)

Two buffers overlap if their respective lifetimes overlap. An input’s load at
moment t is the size sum of all buffers live at t. We refer to the maximum load
measured across all t as max load (L). In Figure 4.1, the max load is the
length of the cross-hatched stripe. The small gap between the two pieces does
not contribute to it because it does not belong to any buffer, it’s just unused
space. By placement we mean annotating an input’s buffers with valid offsets.
A placement’s makespan or max memory usage (M) is the address space
size needed to fit all buffers. Fragmentation (F ) is the difference between an
input’s max load and the actual makespan of some placement (7− 6 = 1 byte
in Figure 4.1):

F = M − L (4.2)

The NP-completeness of DSA has led researchers toward approximation
algorithms. The quality of each algorithm is expressed as upper bounds for
fragmentation. For instance, a 6-approximation algorithm guarantees that it
will never produce a makespan six times bigger than the max load. The current
SOTA in DSA is a (2 + ϵ)-approximation algorithm by Buchsbaum et al [13]. ϵ
is described as a “sufficiently small” real number and is input-dependent.

4.2.1 Elementary Cases

There are certain instances of the problem which can be solved optimally, i.e.,
with zero fragmentation. One can recognize such instances in linear time. It
suffices to traverse the input once, and check if (i) any overlapping buffers, or
(ii) more than one buffer sizes exist. If no buffers overlap, they can all be placed
at offset zero.
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1 Function IntervalGraphColoring(B)
input : B = { b | b = (h, ts, te) }
output : O = { o | o ∈ N :

OffsetsValid(B, O) }
2 O ← HashMap.new();

// Buffer-row mapping.
3 l ← HashMap.new();
4 free ← PriorityQueue.new();
5 next_row ← 0;
6 evts ← GetEvents(B);

// Each .pop() spawns an “e”.
// Each “e” holds a “buff”.

7 while evts.pop() do
8 if IsAlloca(e ) then
9 if free.empty() then

10 offset ← next_row;
11 next_row += 1;
12 else
13 offset ← free.pop();
14 end
15 l.insert((buff, offset));
16 O.insert((buff, offset));
17 else
18 freed ← l.remove(buff);
19 free.push(freed_row);
20 end
21 end
22 return O;
23 end

Figure 4.2: Interval Graph Coloring.

If all buffers share the same
size, the problem is reduced
to meeting room scheduling
and can be solved with
greedy interval graph color-
ing (IGC). Since we shall
make use of IGC later, we
remind it to the reader via
Figure 4.2.

4.2.2 Heuristics

In Section 4.1 we claimed
that existing DSA imple-
mentations can be catego-
rized as either heuristics or
isomorphisms. While “iso-
morphisms” is a deliberately
vague term, by “heuristics”
we mean a specific family of
solutions.

In this Chapter, we define
a heuristic as a two-phase
operation comprising (i) a
sorting step and (ii) a
fitting step. In the first
step, buffers are ordered
according to some arbitrar-
ily complex criterion, e.g.,
decreasing size, increasing
allocation time, etc. Then,
during the fitting step, the
sorted buffers are traversed
and assigned an offset in a
best- or first-fit fashion. These fits differ from what the corresponding terms
mean in the OS allocators context, since DSA also cares about lifetimes. By
rejecting gaps lower in the address space for better-sized gaps higher up, DSA
best-fit risks being unable to fill the lower gaps later because of conflicts in the
temporal domain. A counterintuitive fact stemming from this is that first-fit
often incurs less fragmentation than best-fit. Figure 4.3 describes first-fit in
detail.
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4.3 The Boxing Algorithm by Buchsbaum et al.

1 Function FirstFit(B)
input : B = { b | b = (h, ts, te) }
output : O = { o | o ∈ N :

OffsetsValid(B, O) }
2 O ← HashMap.new();

// Each .pop() spawns a “buff”.
3 while B.pop() do

// For traversing the
address space.

4 run ← 0;
// Scan placed, conflicting

buffers
// in ascending offset

order.
5 for conf in GetConflicts(O,

buff) do
// conf.offset - run ≥

buff.size
6 if Fits(buff, run, conf) then
7 break;
8 else

// conf.offset +
conf.size

9 run ←
GetNextAddr(conf);

10 end
11 end
12 O.insert((buff, run));
13 end
14 return O;
15 end

Figure 4.3: First-fit placement.

The best known DSA “algo-
rithm” is a 2-approximation
technique published more
than two decades ago [13].
We put quotes around the
term since, as will be shown
in this section, we are
dealing in fact with a com-
plex system of interacting
algorithms. From now on
we will be referring to that
original paper as “BA”.

We have studied BA once
more in the past [70].
Our previous implementa-
tion, despite being an in-
dispensable research mile-
stone, carried serious weak-
nesses. First of all, we
never published its source
code. Moreover, it suf-
fered from severe instability,
e.g., yielding out-of-memory
errors for two thousand
buffers, but converging as it
should for twenty thousand.
Most importantly, it was
incorrect: BA has latent
invariants which we had
not discovered back then.
Violating those invariants
may lead to convergence,
but the converged-upon out-
put will be far from ideal.
In consequence, we were
getting nonsensical results
where on-line algorithms
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Figure 4.4: An illustration of BA’s main idea, that is, boxing buffers into
Matryoshkas. The buffers on the left have 4! = 24 possible orderings. By
boxing them into two distinct groups the number of possible orderings has been
reduced by a factor of 3. In their paper, Buchsbaum et al. do not care about
this reduction in complexity; they use the boxes to reason about worst-case
fragmentation.

were incurring less fragmentation than our off-line, supposedly SOTA allocator 2.

This Chapter aims to establish an open-source reference implementation that is
correct, robust and fast. The present section handles the part about correctness.
We shall do a guided tour of BA, which is idealloc’s beating heart. We will
clarify which parts of it we kept, which ones we modified and how, and what
novel additions we had to make in order to bring it to life.

4.3.1 Overview

The most important thing to understand about BA is that it is incomplete. In
the heuristics terminology introduced in Section 4.2.2, BA is a partial sorting
step. It accepts a set of buffers as input, and yields a set of Matryoshka doll-like

2This was an “intellectual abstract” paper, with the focus being on the ideas instead of
the experiments. The main idea was to view OS allocators as black-box DSA agents and see
how they fare against a “standard” DSA solution.
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boxes as output. These boxes contain other boxes, and so on until some level of
depth where subsets of the original input’s buffers reside (see Figure 4.4). To
keep consistent with BA’s terminology, we will be referring to both the input’s
buffers and the output’s boxes as jobs. The key characteristic of the outermost
jobs is that they all share the same size, and as Section 4.2.1 notes, they can
be optimally placed with IGC. How offsets given to the top-level Matryoshkas
should bleed through each boxing layer, eventually to reach the original buffers
at the bottom, is not treated by BA’s authors. We shall return to this question
in Section 4.4. For now, let us focus on the process followed to convert BA into
source code.

Like any mathematics paper, BA comprises lemmas, theorems and corollaries.
We will be referring to these constructs collectively as functional units (FUs).
FUs are numbered in the order that they appear in the paper: Lemma 1 is
followed by Theorem 2, then comes Lemma 3 and so on.

Each FU comprises a statement, and a proof testifying to the correctness of the
statement. The rather convenient characteristic of BA is that all of its proofs
are made by construction. Every step of every proof either calculates something
(e.g., “compute the min/max ratio of input job sizes”) or invokes some other
FU. Thus, to implement BA it suffices to view each FU as a program function,
and each proof as the corresponding function body. To give a concrete example,
consider Corollary 17, which we initially took to be BA’s “entry point”:

COROLLARY 17. There exists a polynomial-time algorithm that takes an
arbitrary set X of jobs as input and produces a feasible solution to DYNAMIC
STORAGE ALLOCATION on X with makespan at most (1+O((hmax/L)1/7))L.

Proof. Apply Theorem 16 to X with ϵ = (hmax/L)1/7.

Recall from Section 4.2 that L stands for the input’s max load. Thus if Corollary
17 were a function, its input would be a set of jobs, and its output would be a
set of valid offsets with which to annotate the input. Moreover, its body would
comprise (i) a computation of ϵ and (ii) an invocation of Theorem 16.

Though Corollary 17 proved inappropriate as an entry point, it was useful in
the sense of fixing our attention to Theorem 16. To that FU we now turn 3. As

3The numbering of FUs in the original BA publication carries an implicit indication of
strength, i.e., width of applicability and/or degree of approximation. Lemma 1 operates on
unit-size jobs that are all live at the same time. Theorem 2 treats unit-size jobs with arbitrary
lifespans, thus removing the simultaneous liveness constraint and widening its applicability.
Theorem 16 deals with arbitrary input sets and guarantees solutions with makespan at most
(1 + cϵ)L + O(hmax/ϵ6) for some constant c and some real ϵ. The strongest algorithm in the
paper is featured in Theorem 19, which nevertheless cannot be implemented as a computer
program (see the Appendix for an elaboration).
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regards its proof, we omit mathematical arguments in between computational
steps. We make omissions explicit via the symbol “[...]”.

THEOREM 16. Let ϵ ∈ (0, 1]. There exist a constant c and a polynomial-time
algorithm that takes ϵ and an arbitrary set X of jobs as input and produces a
feasible solution to DYNAMIC STORAGE ALLOCATION on X with makespan
at most (1 + cϵ)L + O(hmax/ϵ6).

Proof. [...] We are going to apply Corollary 15 repeatedly, boxing the smallest
jobs so as to increase the minimum job height hmin until it gets close enough
to the maximum job height hmax that we can finish with a last application of
Corollary 15.

[...] Let r denote the ration hmax/hmin. Assume first that (log2r)2 ≥ 1/ϵ,
and set µ = ϵ/(log2r)2 and H = ⌈µ5hmax/(log2r)2⌉. Consider the partition
X = Xs ∪ Xl, where Xs denotes the jobs of height at most µH and Xl = X \ Xs.
Now apply Corollary 15 to Xs with box-height parameter H and error parameter
µ. This yields a set Bs of boxes of height H into which the jobs of Xs fit such
that [...].

Now consider Bs as a set of jobs and the revised problem on X ′ = Bs ∪ Xl.
[...] Iterate the above boxing of small jobs, each time using new error parameter
µ′ = ϵ/(log2r′)2 until it yields a problem X∗ with minimum job height h∗

min

for which the ratio r∗ = hmax/h∗
min is such that (log2r∗)2 < 1/ϵ. [...]

Now apply Corollary 15 to all of X∗ with box-height parameter H = hmax/ϵ
[...] and error parameter ϵ; this is the “last application” of Corollary 15 to which
we alluded earlier. [...]

It must now be obvious that Theorem 16 is the crux of BA, i.e., its “main”
function. It accepts an arbitrary set of jobs and a real number, and produces
the corresponding DSA solution. The following remarks apply:

• the execution of Theorem 16 is governed by ϵ, hmin and hmax. Everything
else is a function of these three quantities.

• the actual output of Theorem 16 is not a complete DSA solution. As we
can see, the proof is built around repeated applications of Corollary 15,
and terminates with such an application. According to the proof’s own
phrasing, however, Corollary 15 produces boxes; not offsets.

• the loop that is executed while (log2r)2 ≥ 1/ϵ demands that hmin ≤ µH,
else Xs turns out empty. Then Bs is empty as well, the ratio r remains
unchanged, and the loop never ends.
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Figure 4.5: T16 flow diagram.

The first remark is self-explanatory.
As regards the second remark,
its validity does not harm the
purpose of BA’s authors. Their
argument rather exploits the fact
that Corollary 15 produces same-
height boxes. Recall from Section
4.2.1 that IGC applied on identical
sizes yields zero fragmentation, i.e.,
the solution’s makespan equals
the input’s max load. In the
parts of the proof that we have
omitted for brevity, the authors
bound the max load of Corollary
15’s output, thus bounding the
makespan of the boxes’ contents as
a result. From the perspective of a
programmer who wants to actually
solve DSA, implementing Theorem
16 is insufficient. Hence the first
paragraph of the present subsection.

The final remark is in fact the
opening of the rabbit hole which
led us to discovering BA’s latent
invariants.

Interlude: Programming as Archaeology

Allow us to clarify our stance before proceeding. From the outset of our efforts
to this day, we have put our ultimate trust on BA’s superiority. We view its
FUs as priceless ancient artifacts buried in the sands of abstract thought, and
our work as that of an archaeologist who must unearth those artifacts in the
most intact form possible. This act of excavation, this transition from theory
to practice, from the abstract to the executable, unavoidably entails points of
necessary intervention. Our unshakeable trust on BA dictates (i) minimizing
the number and degree of said interventions, as well as (ii) being certain about
their soundness. It is these two implications that the following Section serves.
A formal treatment of our findings is beyond both our powers and intentions.
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4.3.2 Latent Invariants

By this Section’s title we are referring to the following non-trivial conclusions:

1. the real-valued ϵ of Theorem 16 has an input-dependent range of “legal”
values which can be greater than 1.

2. the real-valued µ of Theorem 16 has a universal upper bound equal to√
5−1
2 .

3. it is necessary that every input satisfies the inequality hmax ≥ ⌈2216.53 ·
hmin⌉.

We shall show that all three invariants can be derived from BA’s original text
without any additional moves. Let us start with some definitions from the proof
of Theorem 16, particularly that branch of execution where (log2r)2 ≥ 1/ϵ:

r = hmax

hmin
(4.3)

µ = ϵ

(log2r)2 (4.4)

H = ⌈µ5hmax/(log2r)2⌉ (4.5)

As we have already remarked, in order for that branch to avoid looping forever,
it should hold that hmin ≤ µH. Let us unwrap this expression:

hmin ≤ µH
(4.5)===⇒

hmin ≤ µ⌈µ5hmax/(log2r)2⌉ µ > 0====⇒

hmin

µ
≤ ⌈µ5hmax/(log2r)2⌉ =⇒

hmin

µ
− 1 < µ5hmax/(log2r)2

To the last equation, we can without loss of generality tighten its left hand:
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hmin

µ
− 1 < µ5hmax/(log2r)2 =⇒

hmin

µ
≤ µ5hmax/(log2r)2 (4.3)=====⇒

log2r>0

(log2r)2

r
≤ µ6 (4.4)===⇒

(log2r)2

r
≤ ϵ6

(log2r)12 =⇒

ϵ ≥ 6

√
(log2r)14

r
(4.6)

We have arrived at a condition for ϵ which, given the fact that Theorem 16
operates on arbitrary sets of jobs, i.e., for any r, does by no means guarantee
that ϵ ∈ (0, 1]. Let us move forward. Recall that we are undergoing this
investigation in order to arrive at conditions which guarantee that the algorithm
described in the proof of Theorem 16 runs “as it should”. Also recall that we
are for now focusing on the top branch of said proof, namely that one where
(log2r)2 ≥ 1/ϵ. There, Corollary 15 is called on Xs with box-height parameter
H and error parameter µ. Here’s Corollary 15:
COROLLARY 15. Let H be a positive integer box-height parameter and ϵ > 0
be a sufficiently small error parameter. Given a set Z of jobs, each of height
between hmin and ϵH, there exist a set B of boxes, each of height H, and a
boxing of Z into B such that for all x-coordinates t,

LB(t) ≤ (1 + 9ϵ)LZ(t) + O(H(log2(H/hmin))2

ϵ4 )

Proof. We construct such a boxing. First, round the job heights: each height h
is rounded up to ⌊(1 + ϵ)i⌋, where i is defined by (1 + ϵ)i−1 < h ≤ (1 + ϵ)i. Let
Y denote the resulting set of rounded jobs.

Now, partition the jobs according to their heights. For each rounded height h,
let Yh denote the set of jobs of height h. Divide the heights of all jobs in Yh by
h; apply Theorem 2 with box-height parameter ⌊H/h⌋; and then multiply all
box heights by h to get a set Bh of boxes of height at most H. The output is a
set B =

⋃
h Bh of boxes, which we can assume are all of height H. [...]

A non-obvious yet key detail is that we must not call Theorem 2 with a box-
height parameter equal to zero (since zero-height boxes do not make sense). We



THE BOXING ALGORITHM BY BUCHSBAUM ET AL. 57

see from the proof that that box-height parameter is determined by the size
classes to which the input jobs have been rounded up. We know that there
exists a imax for which the largest jobs in Z are rounded to hm = ⌊(1 + ϵ)imax⌋.
It suffices to ensure ⌊H/hm⌋ ≥ 1:

⌊H/hm⌋ ≥ 1⇒

H/hm ≥ 1⇒

hm ≤ H ⇒

⌊(1 + ϵ)imax⌋ ≤ H ⇒

(1 + ϵ)imax < H + 1 ϵ = µ====⇒

(1 + µ)imax < H + 1 (4.7)

Due to the fact that Corollary 15 is called on Xs (Z = Xs), we know that for
all sizes h in Z:

hmin ≤ h ≤ ⌊µH⌋ (4.8)

We can thus expand Inequality 4.7 with another branch on its left side, since
⌊µH⌋ ≤ hm:

⌊µH⌋ ≤ (1 + µ)imax < H + 1⇒

⌊µH⌋ < H + 1⇒

µH < H + 1⇒

H(1− µ) > −1

The above is always true as long as 1 − µ ≥ 0 ⇒ µ ≤ 1. A rather sensible
requirement given the fact that, overall, Corollary 15 boxes jobs of height up to
µH into H-sized boxes.

Before examining Theorem 2, let us backtrack to consider the second execution
path of Theorem 16, that where (log2r)2 < 1/ϵ. BA’s authors suggest to invoke
Corollary 15 one last time, with box-height parameter H = hmax/ϵ and error
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parameter ϵ. Our analysis, however, forces us to reject this course of action.
We have already shown that (i) ϵ may end up greater than 1 and (ii) Corollary
15 demands an error parameter that is at most 1. An alternative is necessary.

The repeated applications of Corollary 15 during the top branch of Theorem 16
increase the minimum job height to h∗

min. We thus know that r∗ = hmax/h∗
min

is smaller than all the previous values of r. As a result, µ∗ = ϵ/(log2r∗)2 is
the maximum value for µ. What if we used µ∗ in the place of ϵ for the last
invocation of Corollary 15? Similarly with before, we would have:

(1 + µ∗)imax−1 < hmax ≤ (1 + µ∗)imax (4.9)

Demanding that the largest size class does not yield a zero box-height parameter
for Theorem 2 leads us to:

⌊(1 + µ∗)imax⌋ ≤ H ⇒

(1 + µ∗)imax < H + 1 H=hmax/µ∗

========⇒

(1 + µ∗)imax <
hmax

µ∗ + 1

To simplify our algebra, we can once again without loss of generality prune
the last inequality to (1 + µ∗)imax ≤ hmax

µ∗ . Dividing all members of Inequality
(4.9) with µ∗ and keeping the left side, we have (1+µ∗)imax−1

µ∗ < hmax

µ∗ . We must
now decide about the relation between (1 + µ∗)imax and (1+µ∗)imax−1

µ∗ . Nothing
obstructs us from declaring the below:

(1 + µ∗)imax ≤ (1 + µ∗)imax−1

µ∗ ⇒

(1 + µ∗)µ∗ ≤ 1⇒

µ∗2 + µ∗ − 1 ≤ 0

The corresponding equation has roots µ∗
1,2 = −1±

√
5

2 . Since µ∗ is by definition
positive, the only way for the inequality to be less or equal than zero is:
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µ∗ ≤
√

5− 1
2 ≃ 0.618033... (4.10)

This is a very convenient result. First of all, it abides to our requirement with
respect to the error parameter given to Corollary 15. In other words, we can
use µ∗ instead of ϵ for the last invocation of Corollary 15, as long as Inequality
4.10 holds. Secondly, it is independent from the input. The only problem is,
µ∗ is a quantity “from the future”: BA has to execute properly and reach
the low branch of Theorem 16 before r∗—and thus µ∗—becomes available. In
contrast, we want to control BA’s execution via configuring quantities that
are available from the outset, like ϵ and r. Thankfully, µ∗ is a function of ϵ.
Having decided to use µ∗ for the last Corollary 15 invocation, and knowing the
necessary condition for this to work (Inequality 4.10), we can impose it to ϵ in
the here and now:

µ∗ ≤
√

5− 1
2

µ∗= ϵ
(log2r∗)2

=========⇒

ϵ ≤
√

5− 1
2 (log2r∗)2 r∗ < r=====⇒

(4.6)

6

√
(log2r)14

r
≤ ϵ ≤

√
5− 1
2 (log2r)2 (4.11)

There is, however, no reason to believe that Inequality 4.11 will be valid for all
possible inputs. In order to be certain we must make one last demand:

6

√
(log2r)14

r
<

√
5− 1
2 (log2r)2 ⇒

(log2r)14

r
< (
√

5− 1
2 )6 · (log2r)12 ⇒

(log2r)2

r
< (
√

5− 1
2 )6 (4.12)

According to WolframAlpha, an approximate solution for Inequality 4.12 is
r > 2216.53. This concludes our design. Inequalities 4.11, 4.10 and 4.12
correspond to each of the three invariants listed in the beginning of this Section.
Incorporating them to our source code has allowed idealloc to treat a wide
variety of inputs without any unexpected behavior.

https://www.wolframalpha.com/input?i=log2%28x%29%5E2%2Fx+%3C+%28%28sqrt%285%29-1%29%2F2%29%5E6
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4.3.3 Critical Point Injection

The latent invariants of the preceding Section do the “heavy lifting” of ensuring
that BA works as it should. Our tour, however, is not over. There is one last
intervention that we needed to make. It is time to visit Theorem 2:

THEOREM 2. Given a set Z of jobs, each of height 1, an integer box-height
parameter H, and a sufficiently small positive ϵ, there exist a set B of boxes,
each of height H, and a boxing of Z into B such that for all x-coordinates t,

LB(t) ≤ (1 + 4ϵ)LZ(t) + O(Hlog2H

ϵ2 log2
1
ϵ

)

Proof. We are going to apply Lemma 1 many times, boxing the unresolved jobs
into additional boxes as we go along. Our general goal is to keep the wasted
load (free space) in those additional boxes small at any x-coordinate.

We use the following recursive method. Given are

• A set X of jobs and an open bounding interval I, such that ∀j ∈ X, Ij ⊆ I.

• A nonempty finite set of critical x-coordinates T = {infI = to <
t1 < ... < tq < tq+1 = supI} ⊆ I ∪ {infI, supI}.

• A set F of free spaces. Each free space is an open sub-interval of I of
height 1 having endpoints in T . Any free space f ∈ F is called spanning
if f = I and non-spanning otherwise.

Initially, X = Z, I = (0, 1), T = {0, t, 1} for some arbitrary t at which some
job from Z is live, and F = ∅. Recall that Ij = (xj , yj) denotes the interval of
job j. With the help of T , define partition

X = (R1 ∪ R2 ∪ ... ∪ Rq) ∪ (X0 ∪ X1 ∪ ... ∪ Xq)

as follows. First, define Xi = {j ∈ X : Ij ⊆ (ti, ti+1)} for 0 ≤ j ≤ q.

Then define the Ri’s recursively. Define X ′ = X \ (X0 ∪ X1 ∪ ... ∪ Xq).
Note that q ≥ 1. Define R⌈q/2⌉ = {j ∈ X ′ : t⌈q/2⌉ ∈ Ij}. Define P to be
the set of remaining jobs j of X ′ with yj < t⌈q/2⌉, and define Q to be the set
of remaining jobs j of X ′ with t⌈q/2⌉ < xj . If P ̸= ∅, recursively partition P
using {t1, t2, ... , t⌈q/2⌉−1}. Afterward, if Q ̸= ∅, recursively partition Q using
{t⌈q/2⌉+1, t⌈q/2⌉+2, ..., tq}.
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Now to each Xi associate a set Fi of intervals (free spaces), initially empty.
As sections of free spaces in F are used to box jobs in the Ri’s, the unused
fragments will be deposited into the appropriate Fi’s for use deeper in the
recursion (to box jobs in the Xi’s).

To box the jobs in the Ri’s, first apply Lemma 1 to each Ri, 1 ≤ i ≤ q, in any
order; note that all jobs in Ri are live at ti. For each i, this boxes all the jobs
of Ri except for at most 2H⌈1/ϵ2⌉ unresolved jobs. Now consider the set U of
all the unresolved jobs from all the Ri’s. Derive an optimal packing of U using
interval graph coloring (Recall that all jobs are of height one). This packing
has makespan LU .

Let s(F ) denote the subset of spanning free spaces of F . If |s(F )| < LU , create
⌈(LU − |s(F )|)/H⌉ boxes of height H and horizontal extent I. This yields
H⌈(LU − |s(F )|)/H⌉ new spanning free spaces; add them to F . Now there are
at least as many spanning free spaces in F as rows of the packing of U .

For each 1 ≤ j ≤ LU , remove one spanning free space from F , and use it to place
all the jobs in row jof the packing. This creates gaps, or unused portions, in the
original free space, each of the form [α, β] where for some i, j: ti < α < ti+1
and tj < β < tj+1; recall that t0 = infI and tq+1 = supI. For each such [α, β],
if i ̸= j then split [α, β] into (α, ti+1), (ti+1, ti+2), ..., (tj−1, tj), (tj , β); and
add (α, ti+1) to Fi, (ti+1, ti+2) to Fi+1, ..., (tj−1, tj) to Fj−1, and (tj , β) to
Fj . Otherwise (i = j), simply deposit (α, β) into Fi. This fragments the gaps.

Now all the jobs in all the Ri’s are boxed. Consider the unused free spaces in
F , if any. Each is of the form (ti, tj) for some i ̸= j. Split each such (ti, tj)
into (ti, ti+1), (ti+1, ti+2), ..., (tj−1, tj). Add (ti, ti+1) to Fi, (ti+1, ti+2) to
Fi+1, ..., and (tj−1, tj) to Fj−1. This passes down the remaining unused free
spaces to the sub-problems.

In parallel for each ℓ = 0, 1, 2, ..., q, if Xℓ ̸= ∅, recursively apply the
construction with new X ← Xℓ, new free space set F ← Fℓ, new bounding
interval I ← (tℓ, tℓ+1) and new criticall x-coordinate set T ← {endpoints of
elements of Fℓ} ∪ {tℓ, tℓ+1}. [...]

By now our initial point that BA is not simply an “algorithm” must be obvious.
We discourage the reader from devoting excess effort to grasping every last word
of Theorem 2 (as we shall show in Section 4.5, some parts of it are redundant).
For the time being, it suffices to pay attention to the fact that in order for the
boxing procedure to advance, there must exist at least one critical x-coordinate
in T at which at least one job in Z is live. In other words, there must exist
at least one Ri. At each recursion level, it is only jobs in Ri’s that are being
boxed, some via Lemma 1, and others via IGC. This need is made explicit at
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Table 4.1: Findings and remedies applied to BA’s FUs.

BA FU Finding Remedy

Corollary 17 Incompliant with latent invariants
of Theorem 16 and Corollary 15.

Input preprocessing, ϵ-calibration
(Section 4.5.6).

Theorem 16

1. Last Corollary 15 invocation
uses ϵ (unsafe).

2. Yields boxes instead of offsets.

1. Use µ∗ instead (Section 4.3.2).

2. Unbox and place (Section 4.4).

Theorem 2 R can be empty. Critical point injection (Section
4.3.3).

Corollary 15 As is. N/ALemma 1

the start of the proof, where attention is drawn to “some arbitrary t at which
some job from Z is live”. In our experience, however, it is possible deeper in
the recursion for critical point sets T to appear carrying no such t. In those
cases, we append one more (appropriate) time point to T .

The only remaining FU in BA’s chain is Lemma 1. To keep the main body of
our Chapter as short as possible, and due to the fact that Lemma 1 works “out
of the box”, we have moved its definition to the Appendix.

To summarize, the entire Section 4.3 demonstrates our approach as regards
idealloc’s core component, namely the boxing algorithm by Buchsbaum et
al. [13]. We have gone through the algorithm’s parts and limitations, and have
either presented, or hinted toward, ways to overcome said limitations. The main
takeaways are listed in Table 4.1.

4.4 Unboxing and Final Placement

We have already mentioned that BA does not produce offsets, as would normally
be the case if one wanted to solve DSA. Instead Theorem 16 returns a set of
equal-height, Matryoshka doll-like boxes. The problem addressed by the present
Section can be stated as: how can the outer Matryoshkas’ IGC-derived offsets
be diffused all throughout the boxing’s hierarchy until the original buffers are
found and accordingly placed?

The process is sketched in Figure 4.6. We will be using “buffers” to refer to
original buffers and “boxes” for the Matryoshkas. Like boxing, this is a recursive
procedure. Two questions are driving decisions at each level of recursion:
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• Line 3: do input elements share the same size?

• Line 5: are input elements non-overlapping?

1 Function UnboxAll(J , w)
input : J = {j|j = (h, ts, te)}, w
output : O = {o|o ∈ N :

OffsetsAreValid(J, O)}
2 O ← Init();
3 if SameSize(J) then
4 return PlaceSameSizes(J ,w);
5 else if not Overlap(J) then
6 for job in J do
7 placed ← UnboxAll(Unbox(J),

w);
8 O ← MergeOffsets(O, placed);
9 end

10 else
11 for jobs in PartitionBySize(J) do
12 placed ← PlaceSameSizes(jobs,

w);
13 w ← MaxAddr(placed);
14 O ← MergeOffsets(O, placed);
15 end
16 end
17 return O;
18 end
19 Function PlaceSameSizes(J ,w)

input : J = {j|j = (h, ts, te)}, w
output : O = {o|o ∈ N :

OffsetsAreValid(J, O)}
20 O ← Init();
21 for row in IGC(J) do
22 placed ← UnboxAll(row,w);
23 w ← MaxAddr(placed);
24 O ← MergeOffsets(O, placed);
25 end
26 return O;
27 end

Figure 4.6: Unboxing pseudocode.

Apart from buffers/boxes,
a watermark is also given
as input—initialized at
zero before the first ever
call. It signifies the
starting offset from which
placement should com-
mence. The watermark
is updated and inherited
by deeper recursion levels.
Hence we ensure that the
contents of each box end
up placed within their
container’s boundaries.

Let us now visit all possi-
ble answers to the above
questions. If jobs share
the same size, we exploit
the fact that DSA for
uniform sizes is optimally
solved with IGC. The
role of PlaceSameSizes
is to traverse all IGC-
produced rows, place the
contents of each at the
current watermark, and
bump the watermark at
the row’s tip. If the jobs
don’t overlap in time, the
decision is trivial. We
unbox each input element
and recursively call the
procedure with the same
watermark (lines 7, 8).

Finally, if none of the
above conditions hold, we
partition the jobs by size
and place each subset
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Figure 4.7: idealloc flow diagram.

independently (lines 12-14). But we are not done yet! Due to the repeated
round-ups of box sizes in Corollary 15, as well as the recursive nature of Theorem
16, the offsets produced by the above procedure are sparse. So we view all work
up to this point, i.e., BA-derived boxing and the offsets produced by unboxing,
as an intricate sorting step according to the terminology of Section 4.2.2. To
finalize the output, we “squeeze” the buffers via first-fit placement, traversing
them in increasing offset.

4.5 Design and Implementation

Figure 4.7 gives an overview of idealloc. Its design is owed (i) to our goal of
robust and high performance, and (ii) to the inherent stochasticity of BA, due
to the critical points of Theorem 2 (see Section 4.3.3). Though we have more
to say on this later, keep in mind that even the simplest of operations, namely
sorting by size, is stochastic: how should one break ties between equal sizes?
Enforced determinism, i.e., using some unique ID for such occasions, may help
with data visualization but harms best-case fragmentation. One does not tame
randomness by putting it under the rug.

4.5.1 Interface

idealloc accepts the following parameters:
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• original input: a collection of jobs to place.

• worst-case fragmentation: an upper bound for the quality of the
output. If that amount or less fragmentation is achieved at any point, the
execution terminates early.

• start address: base location S to which all offsets refer. The address of
a buffer with offset O is S + O.

• iterations: an upper bound for the total number of times the box-and-
place kernel is allowed to run. If exhausted and worst-case fragmentation
is not yet beaten, the next-best result is returned.

Note that, as regards fragmentation, in our opinion the only optimal value is
zero. But we have included the respective parameter in response to allocators
like minimalloc [90] and the one featured in Apache’s TVM compiler, who
include a “maximum makespan” parameter to their interfaces. We find it
erroneous to decouple worst-case storage from the input, since it is the input
itself, and specifically its max load, which bounds makespan (from below, not
from above). Certain maximum makespans may not be achievable for certain
inputs.

4.5.2 Input Representation

The fundamental data structure of idealloc is the Job. Its fields are:

• allocated size: self-explanatory.

• (start, end): the respective allocation and deallocation times. In line
with DSA theory, we adopt exclusive lifetime semantics in idealloc. This
means that a job is not live at neither its start, nor its end. Numerous
bugs have crunched our nighttime due to ours not being strict enough
about lifetime semantics.

• alignment: if any, the final address of the buffer is guaranteed to be a
multiple of this value.

• requested size: owed to the beginnings of idealloc being in studying
malloc traces, kept because someone else may decide to do so in the
future. By knowing the difference between requested and allocated size
one can measure internal fragmentation, out of scope for this paper.
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• contents: a job may be a box spawned by BA, holding other jobs inside.
Both such boxes and the original buffers of the input are represented with
the same struct.

• id: self-explanatory.

Some further remarks on how we handle the input. First of all, there is a list of
security checks that must be conducted before idealloc is invoked. Zero-valued
sizes are not allowed. Start- equal or greater than end-times are not allowed.
Zero-valued alignment (different than no alignment) is not allowed. Non-empty
contents are not allowed. Last but not least, we do not allow allocated sizes to
be smaller than requested sizes.

4.5.3 Event Traversal

A common situation in idealloc is that of computations operating on subsets
of buffers. In our experience, avoiding quadratic complexity in such cases is
crucial to the allocator’s execution time and scalability. Take the max load L
of Section 4.2 as an example. Recall that L amounts to the maximum amount
of memory that is concurrently live at any time. A naive quadratic solution is
to traverse all allocation and deallocation times of all buffers, and for each one
traverse the buffers themselves, and aggregate the sizes of those that are live.
Luckily there is a better approach.

Imagine a priority queue consisting of events: each event carries (i) a timestamp,
(ii) a type, i.e., whether it marks the allocation or deallocation of a job, and (iii)
a reference to the job itself. Earlier events have precedence over later ones, and
deallocations have precedence over allocations. The max load L of N buffers
can be computed by consuming this priority queue once, thus by processing 2N
events. We make heavy use of event traversal across idealloc and consider it
a fundamental operation. Its underlying principle is that no change of any kind
occurs between consecutive events.

4.5.4 Working with Different Lifetime Semantics

Fellow allocators and/or benchmarks ascribe different interpretations to buffers’
intervals. For instance, XLA’s best-fit heap simulator views jobs as live at the
endpoints as well as the in-between. minimalloc is start-inclusive end-exclusive.
idealloc adopts exclusive semantics for its internal operation.

Suppose the very real scenario of needing to conduct the experiments
accompanying this paper. Given the aforementioned variety of semantics in
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the SOTA, one needs to be certain that they are comparing apples to apples.
In other words, allocators with different semantics must agree, regarding the
buffers described by a specific input benchmark, on which pairs of buffers do or
do not overlap. A necessary but not sufficient condition when pursuing such
an agreement is that the reported max load of the same dataset expressed in
exclusive semantics be equal to the one reported when using any other semantics.
We make active use of this check in our measurement scripts.

Assume we are in possession of a benchmarks suite employing start-inclusive,
death-exclusive semantics. We will be referring to this interpretation as InEx
from now on, and will be using In and Ex for start-inclusive-end-inclusive and
start-exclusive-end-exclusive semantics respectively. Assume, further, that we
want to evaluate on this suite three allocators: the first uses InEx, the second
In, and the last one Ex. Last but not least, assume that the task of reading a
DSA solution, validating its feasibility, and reporting statistics of interest such
as its max load and makespan, is carried out by an analyzer program also using
Ex semantics. This description largely resembles our real experiments setup.

The missing component is an adapter, its input being (i) a DSA solution file,
(ii) the semantics of that file and (iii) the semantics to which the file’s contents
must be transformed. By making use of this adapter, we can for example start
from an InEx dataset, feed it to the In-allocator, and then pass its output to
the Ex-analyzer. Regardless from the point of departure, the analyzer must
always report the same max load and the same number of conflicts (i.e., distinct
pairs of overlapping buffers) for the same benchmark. The idealloc source
code includes such an adapter. Its operating principles are:

• In ←→ InEx: add or subtract one from the buffer’s de-allocation time,
depending on the direction of the arrow

• InEx ←→ Ex: the two types are equivalent. The condition for conflict
with a buffer allocated at a and de-allocated at b is in both cases ¬(x ≤
a ∨ y ≥ b), where x, y stand for the respective endpoints of some other
buffer

4.5.5 Bootstrapping and Early Stopping

Due to its stochastic nature, the quality of solutions that idealloc may yield at
each iteration exhibits great variety. In order to waste as little time as possible
on sub-optimal solutions, we use a simple bootstrapping scheme: we keep a
record of the smallest makespan achieved up to now. During final placement’s
first-fit, we check whether the resulting offset drives the buffer at hand to exceed
our record. In that case, we stop, discard the present boxing, and start anew.
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We initialize our bootstrapping value with what we consider to be the best
heuristic available: sort by size, break ties by lifespan, and do first-fit. A fitting
name for it would be “big-rocks-first”. The bootstrapping value is updated
whenever idealloc yields a smaller makespan.

4.5.6 Prelude Analysis

Certain tasks need take place only once across idealloc’s flow. Before doing
anything else, we bundle the following tasks into a single event traversal: (i)
check for elementary cases (Section 4.2.1), (ii) compute max load, minimum
and maximum height, and (iii) construct the interference graph (Section 4.5.7).

If any of the elementary cases holds, execution proceeds accordingly and an
optimal solution is found in minimum time. Else, idealloc must prepare to
iterate on its box-and-place core (Sections 4.3, 4.4). More specifically:

• if the max-to-min height ratio r does not comply with Inequality 4.12, a
“dummy” job of height equal to ⌈2216.53 · hmin⌉ and lifetime spanning all
of the input is added to the buffers to be boxed

• bootstrapping takes place as described in Section 4.5.5

• the real number ϵ governing the boxing algorithm is configured as described
below

Recall that according to Inequality 4.11, it is only within a specific range that
ϵ may move. A simple iterative process is followed to pick the final value:
we initialize ϵ to be equal to the left arm of Ineq. 4.11. We run the boxing
algorithm up to the point where r∗ is computed (see Section 4.3.1). Next, we
increase ϵ by 1% of the remaining range and repeat. We keep that value which
yields the smallest r∗.

4.5.7 Fast and Correct Final Placement

Two extra operations to what was described in Section 4.4 are necessary: if a
“dummy” job was inserted during prelude analysis, we ignore it during unboxing,
i.e., we do not assign it any offset and proceed as if it did not exist. Secondly,
we ensure that offsets calculated in the final first-fit pass are compliant with
each job’s potential alignment requirements. Recall that we know both the start
address of the range as well as each buffer’s alignment (Sections 4.5.1, 4.5.2).
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SIZE CLASS
SPLITTING

THEOREM 2

LIVENESS
SPLITTING

Ri BOXING ALLOCATE GAPS
TO Xis

THEOREM 2

Figure 4.8: Illustration of parallelism opportunities as thick red dashed curves.
The light blue box (left) is Corollary 15. Theorem 2 is invoked on each size
class independently. The light green box (right) is a simplified unpacking of
Theorem 2. Recursive calls to self are issued for each Xi once all Ris are boxed
and gaps shared. Each call is independent from the rest.

One further optimization we introduce is an interference graph, i.e., a hash map
with job IDs as keys, and vectors of concurrently live buffers as values. We use
this graph during the first-fit stage, to avoid an otherwise quadratic-complexity
overlap check (to be precise, worst-case complexity is still quadratic but in
practice rarely does every buffer overlap with everyone else).

4.5.8 Theorem 2 Simplification

The one thing to keep in mind as regards Theorem 2 is that it is expected to
box all jobs it is given by Corollary 15 into boxes of size H. For reasons tied
to their mathematical arguments, Buchsbaum et al. must pretend that first,
Corollary 15 scales jobs down to unit height and then passes them to Theorem
2 with height parameter ⌊H/h⌋, before scaling the returned boxes up back to
H. idealloc is concrete evidence that the process can both be simplified and
remain correct.

The actual interface used by Theorem 2 comprises: (i) the set of buffers to be
boxed, (ii) the quantity ⌊H/h⌋, (iii) box size H, (iv) the usual error parameter ϵ,
(v) the definition’s bounding interval, and (vi) the definition’s vector of critical
coordinates. There are no “free spaces” needed. Boxing happens in two places
only: Lemma 1 (see Appendix) and after grouping its unresolved jobs to rows
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via IGC. As long as idealloc asserts when boxing that the load of the jobs to
be boxed does not exceed the expected box height H, execution may proceed.

Also note that, when either initializing the critical coordinates vector or injecting
points to it as per Section 4.3.3, it suffices to consider only those points that
appear during event traversal.

4.5.9 Parallel Boxing

There are two opportunities for coarse-grain parallelism in the boxing flow.
Both are shown on Figure 4.8. The first opportunity appears in Corollary 15:
the buffers of each size class can be boxed by Theorem 2 independently. The
second opportunity appears in Theorem 2, where the recursive calls for each Xi

can also be made in parallel. In both cases, no dependencies between parallel
tasks exist. We exploit them accordingly to minimize execution time.

4.5.10 Doors to Randomness

Apart from the critical coordinate selection in the context of Theorem 2, there
are numerous other spots in our source code that behave non-deterministically
in a baked-in manner. For instance, there are places where jobs have to be
sorted according to some arbitrary criterion, e.g., in reverse de-allocation time.
In each such case, again to minimize execution time, we utilize unstable sorting,
which may re-order equal elements. Another example is the priority queue we
are using for event traversal, which does not guarantee that the insertion order
of equal elements is preserved.

It is the systemic interaction of all these random effects that gives idealloc its
stochasticity.

4.6 Evaluation

We ask the following research questions:

1. Superiority against toy heuristics

We have characterized idealloc as a “stochastic bootstrapped heuristic”. Does
it outperform the simplest of heuristics in terms of fragmentation?
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Table 4.2: Experimental setup used for evaluating idealloc.

ALLOCATORS
Compiler Algorithm Commit Build Remarks

XLA Some complex
best-fit heuris-
tic.

896c02 -O3 flag worsened performance.

MindSpore SOMAS [73] 4308a56
CMake build type “Release”
improved performance, so we
kept it.

TVM hillclimb cfe1711 Same as SOMAS, Triton.
N/A minimalloc [90] 987b3c1 None.
N/A idealloc (this

paper)
N/A Cargo –release flag and LTO

enabled.
BENCHMARK SUITES

Name Type # of
Bench-
marks

(Smallest,
Largest) # of
Buffers

Retrieved Via

minimalloc TPU Inference 11 (154, 454)
minimalloc
GitHub repo
(“challenging”
suite).

MindSpore NPU Training 2 (1042, 18692) Emails with the
authors of SO-
MAS [73].

In-house ASPLOS Con-
test Track, Lev-
elDB tracing

4 (816, 567573) Custom code.

2. Degree of randomness

Given the high degree of stochasticity elaborated in Section 4.5.10, how probable
is that event where applying first-fit to a completely random permutation of
the input yields less fragmentation than idealloc?

3. Competence against the SOTA

Allocators must (i) produce solutions (ii) of low fragmentation (iii) in reasonable
time. We encode this requirement in the following per-benchmark grading
scheme: if for any reason (e.g., segmentation fault, floating point exception) an

https://github.com/openxla/xla/tree/896c0289645e87e42d2e552c0be2b41d0b886adb
https://github.com/mindspore-ai/mindspore/tree/4308a56eab21700459c61db290f47e7e50f4b7f6
https://github.com/apache/tvm/tree/cfe1711934f82e56f147f2f5f9f928b5a9b92b3e
https://github.com/google/minimalloc/tree/987b3c1f9fefe3538ddffa5dc08836831efd3915
https://github.com/google/iopddl/tree/main/benchmarks
https://github.com/google/iopddl/tree/main/benchmarks
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allocator crashes, it loses as many points as the allocators that did not. The
same if it has not terminated after 15 minutes. In the rest of cases, the allocator
earns as many points as the allocators that it outperformed. How many points
does idealloc earn under this grading scheme?

4. Core latency

The interface of idealloc exposes the total number of iterations over its box-
unbox-place core as a user option (Section 4.5.1). How cheap is each such
iteration?

5. Futureproofness

From the outset we have emphasized our interest on DSA instances of arbitrary
size and complexity. We want idealloc to fare well against the hardest of
possible inputs. If we define hardness as the bootstrap heuristic’s fragmentation
(we will be calling that heuristic “SLFF” from this point onwards), how much
better than SLFF is idealloc as hardness grows?

The materials used for our experiments are listed in Table A.1. Note that it
was particularly difficult to find non-trivial benchmarks in the sense of SLFF
yielding non-zero fragmentation.

Our measurements took place on a commodity workstation with eight Intel
i7-6700 cores clocked at 3.4 GHz, 128 KiB L1 data and instruction caches, 1 MiB
L2 and 8 MiB L3. The machine had 32 GiB DRAM and was running Ubuntu
22.04 inside a privileged-mode Docker container. We instrumented all allocators
to report allocation time in microseconds excluding I/O. Max memory usage was
computed by processing each run’s output files and measuring makespan 4. We
executed each benchmark-allocator pair 10 times to ensure statistical integrity.
We assigned a maximum allowable time window of 15 minutes per individual
run. All measurement scripts were run with a niceness value of −20 and minimal
background noise.

In addition to the SOTA allocators, we fed each benchmark to idealloc and
configured it to run for 100 iterations—except for the LevelDB benchmark, due
to whose size we used 10 iterations. In all cases, we repeated our measurements
100 times to let idealloc’s stochasticity express itself as much as possible.

4We assume that the target device has no virtual memory and its addresses are physically
contiguous. Thus measuring max memory usage offline is accurate. Fellow publications, e.g.,
minimalloc [90], follow the same practice.
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(a) iopddl-G (b) ResNet-50 (c) Pangu-2.6B

(d) iopddl-S (e) iopddl-Y (f) LevelDB

Figure 4.9: Fragmentation histograms against heuristics.

4.6.1 Questions 1 and 2

In Figure 4.9 we are comparing idealloc’s fragmentation with four heuristics:
the first heuristic (sizefirst) sorts the buffers by decreasing size and then
applies first-fit. It is stochastic since, as mentioned, size ties had better be
solved at random. The second heuristic (randomfirst) again applies first-fit,
but this time on a random permutation of the input buffers. sizebest and
randombest are the corresponding best-fit flavors. idealloc’s superiority in
all cases is evident.

As a side note, there is no clear indication w.r.t. the superiority of some heuristic
over the others. Which one is best, and how they compare to each other
varies wildly across benchmarks. Thus using the same heuristic horizontally is
guaranteed to waste memory.

4.6.2 Question 3

From the opponent allocators, XLA uses In semantics, and minimalloc, SOMAS
and TVM use InEx. idealloc, on the other hand, uses Ex. To ensure fairness
we conducted the analysis described in Section 4.5.4 and decided to assume that
all of our benchmarks use InEx semantics. We then took our measurements
and plotted fragmentation histograms like the ones shown in Figure 4.10. The
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Table 4.3: Fragmentation measurements and corresponding points.

Benchmark (#bufs.) Allocator Fragmentation Points

MINIMALLOC POINTS

XLA

N/A

1
TVM 39

SOMAS 11
minimalloc 36
idealloc 18

iopddl-G (816)

XLA 54.9 MiB 1
TVM 0 MiB 4

SOMAS 8 MiB 2
minimalloc FAILED -4
idealloc 81 KiB 3

ResNet-50 (1042)

XLA 6.4 MiB 1
TVM 946 KiB 4

SOMAS 9.5 MiB 0
minimalloc 6.1 MiB 2
idealloc 5.5 MiB 3

Pangu-2.6B (18692)

XLA 322.8 MiB 2
TVM FAILED -3

SOMAS 40 MiB 4
minimalloc FAILED -3
idealloc 135.2 MiB 3

iopddl-S (28526)

XLA 42.5 MiB 3
TVM FAILED -2

SOMAS FAILED -2
minimalloc FAILED -2
idealloc 18.9 MiB 4

iopddl-Y (62185)

XLA 1.6 GiB 3
TVM FAILED -2

SOMAS FAILED -2
minimalloc FAILED -2
idealloc 771.7 MiB 4

LevelDB (567573)

XLA 160 KiB 4
TVM FAILED -2

SOMAS FAILED -2
minimalloc FAILED -2
idealloc 198 KiB 3

REST POINTS

XLA

N/A

14
TVM -1

SOMAS 0
minimalloc -11
idealloc 20

TOTAL POINTS

XLA

N/A

15
TVM 38

SOMAS 11
minimalloc 25
idealloc 38
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(a) iopddl-G (b) ResNet-50 (c) Pangu-2.6B

(d) iopddl-S (e) iopddl-Y (f) LevelDB

Figure 4.10: Fragmentation histograms against the SOTA.

respective rankings are listed in Table 4.3. The same table includes a summary
of the rankings formed for the minimalloc micro-benchmarks.

4.6.3 Question 4

Figure 4.11: idealloc’s single-iteration
latency versus its competition, as a function
of total buffer count. Note the interference
graph’s impact at the far end of the curve.

We plot allocation time as a
function of the buffer count in
Figure 4.11. Particularly w.r.t.
idealloc we have plotted single-
iteration latency, which includes
one prelude analysis (Section
4.5.6) and a single box-unbox-
place pass (Sections 4.3, 4.4).
Regardless from the size of the
input, idealloc’s core latency is
faster than any alternative.

4.6.4 Question 5

We see in Figure 4.12 that
idealloc outperforms SLFF in
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a steady fashion as the input hardness increases. The ideal but impossible
scenario would be for the drawn line to coincide with y = x, i.e., for boxing to
always eliminate fragmentation completely. It nevertheless stays close enough.

4.7 Discussion

Figure 4.12: idealloc’s mean improvement
over its bootstrap heuristic as a function of
the bootstrap heuristic’s own fragmentation.

We began our exposition by
declaring our interest in real
allocators and how they behave
under pressure. We have now
presented evidence that (i) there
is a gap in the SOTA as
regards effective and scalable
solutions, and (ii) idealloc fills
that gap. That said, we are
aware of the subtleties involved
in the process toward making
such strong statements. The first
half of this Section examines said
subtleties from close distance. We
then discuss meaningful future
activities to either improve or
utilize our allocator.

4.7.1 Results and Their Interpretation

An important point to agree on is whether the selected allocators listed in
Table A.1 reflect what we mean by “DSA SOTA”. Our initial measurements also
included three greedy algorithms from LiteRT (formerly TensorFlow Lite) [105]
and one from OpenAI’s Triton [116]. Furthermore, XLA features a second
allocator based on heap simulation5, mimicking an on-line OS allocator. TVM
has heuristics similar to sizefirst besides the hillclimb algorithm6. IREE’s
one and only algorithm is a sort-by-allocation-time best-fit heuristic7. We
included all these as well, but their performance was poor and we decided to

5https://github.com/openxla/xla/blob/main/xla/service/heap_simulator/heap_
simulator.h

6https://github.com/apache/tvm/blob/cfe1711934f82e56f147f2f5f9f928b5a9b92b3e/
src/tir/usmp/algo/greedy.cc

7https://github.com/iree-org/iree/blob/15ca58e19ec76fab94c4aba8f75091c532282d51/
compiler/src/iree/compiler/Dialect/Stream/Transforms/LayoutSlices.cpp

https://github.com/openxla/xla/blob/main/xla/service/heap_simulator/heap_simulator.h
https://github.com/openxla/xla/blob/main/xla/service/heap_simulator/heap_simulator.h
https://github.com/apache/tvm/blob/cfe1711934f82e56f147f2f5f9f928b5a9b92b3e/src/tir/usmp/algo/greedy.cc
https://github.com/apache/tvm/blob/cfe1711934f82e56f147f2f5f9f928b5a9b92b3e/src/tir/usmp/algo/greedy.cc
https://github.com/iree-org/iree/blob/15ca58e19ec76fab94c4aba8f75091c532282d51/compiler/src/iree/compiler/Dialect/Stream/Transforms/LayoutSlices.cpp
https://github.com/iree-org/iree/blob/15ca58e19ec76fab94c4aba8f75091c532282d51/compiler/src/iree/compiler/Dialect/Stream/Transforms/LayoutSlices.cpp
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keep our tables and figures from getting too crowded. The only “popular” deep
learning compiler we did not inspect was Meta’s Glow, an omission owed to
lack of time, not of meticulousness. ILP formulations of DSA are known to be
inferior due to poor scalability [83, 90]. We thus believe to have cast a wide
and informed enough gaze.

Let us now visit some more specific issues:

Grading System Fairness

Since the crux of our argument is the rankings of Table 4.3, asking if our grading
system is fair is a fair question. We used a tournament comprising many races
as a model. The results of each race, i.e., benchmark, are translated to points
for each allocator. Whoever has collected the most points after the last race
is the tournament’s winner. This model is fair to the extent that the points
translation scheme is.

Our scheme rewards allocators with as many points as the allocators they beat.
The number includes both those that yielded worse fragmentation and those that
failed. The only objection we can think of is that differences in fragmentation
are not accounted for. However, the same holds in an actual racing tournament:
individual times don’t matter.

Moreover, our scheme punishes failing allocators with as many points as the
allocators that did not fail. Why did we not use a fixed punishment, i.e., losing
one point at each failure? Imagine a tournament of N contestants. Focus on
contestants A and B. In the first race of the tournament, A finishes first and B
is the only contestant that did not finish at all. In the second race, B is the
only finisher. Under a fixed-punishment scheme, A and B would end up with
N − 2 points. Under our scheme, the respective points would be N − 2 and
zero. Which one is fairest?

It depends on the type of tournament winner we are searching for. Since almost
everyone finished it, the first race of our example was rather easy (think about
iopddl-G in Table 4.3). The converse holds for the second race (think LevelDB).
So do we want to incentivize “laziness” in easy races for the sake of potential
triumph in hard ones? To the authors of this paper, a positive answer sounds
like gambling.
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On Normalized Fragmentation

Despite including normalized values for fragmentation in Table 4.3, i.e., absolute
fragmentation divided by the benchmark’s max load, we do not encourage their
use. In the age of “memory walls” [40] memory savings are valuable regardless
from necessary memory investment. The reason is simple: most of the time,
memory is shared. Savings that look insignificant in proportion to max load
can still be used to host data that is foreign to the problem at hand. Only when
considering things in isolation do absolute quantities lose their weight.

Figure 4.13: idealloc’s total latency versus
its competition.

If the above was not convincing
enough, consider that by rely-
ing on normalized fragmentation,
wasting 1 KiB under a max load of
10 KiB looks identical to wasting
1 GiB under a max load of 10 GiB.
Both cases have 10% normalized
fragmentation, but the second
case is clearly more damaging.

Core vs. Total Latency

As noted by Figure 4.11’s caption,
the plotted blue line stands
for idealloc’s single-iteration
latency. For LevelDB, however,
we configured idealloc to repeat
10 iterations, and for the rest of
the benchmarks 100. The following remarks apply:

• our intention was to highlight the fact that each idealloc iteration takes
minimum time compared to the SOTA

• even when scaled to its real latency (Figure 4.13), idealloc (i) is up to
two orders of magnitude faster than TVM, and (ii) ends up faster than
XLA in LevelDB’s context

• if total allocation time is the user’s main concern, off-the-shelf heuristics
are the way to go. Otherwise trading off latency for lowering fragmentation
stands to reason
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Hardness Definition

While forming our research questions for Section 4.6, we did not explain our
decision to define hardness as SLFF’s fragmentation. We hope to give a
convincing answer here.

The context was that of “futureproofness”: that arbitrarily hard DSA instances
will emerge was, as stated in Section 4.1, our founding assumption. Our prime
interest is to ensure that idealloc will be able to deal with them. The hardness
we have in mind concerns the topology of an instance, that is, the complexity
of the landscape formed by the co-existence of a given set of buffer conflicts
and the corresponding buffer sizes. For example, an instance where all buffers
overlap is not at all hard/complex/non-trivial: even bump allocation would
yield zero fragmentation!

We posit that a reasonable way to gauge the hardness of an instance is to
measure the fragmentation incurred by a simple yet decent heuristic. Consider
the problem of packing one’s suitcase before a long trip: does it not make sense
to start with the biggest of items, and work our way down? If we place all of
our items in this fashion, our baggage was not hard to treat. If on the other
hand the “big-rocks-first” strategy fails, our baggage is as hard as the total
size of items that we were forced to leave out. Choosing SLFF as our hardness
measure is the DSA equivalent of what we described.

4.7.2 Proposed Future Work

Sampling Many ϵ-values

idealloc’s boxing core is governed by the error parameter ϵ (Section 4.3.1),
which must be confined into an input-specific range of values (Section 4.3.2).
Our current approach is to conduct a preprocessing step where we iterate on
the aforementioned range and finally set ϵ to that value which minimizes the
resulting boxing’s max-to-min height ratio (Section 4.5.6). There is no concrete
reason behind this strategy, only the intuition that deeper boxing recursions
lead to lower fragmentation. A promising alternative would be to sample ϵ at
random, thus eliminating significant overhead from our prelude analysis and
adding more variety to the placements explored.
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Statistical Inference

Given idealloc’s stochastic nature (Section 4.5.10), it would be good to have
an estimate of how many iterations are needed to become certain that most
of the solution space has been explored. This implies a statistical inference
component observing each iteration’s makespan and using it to refine an on-line
distribution. However, such observability would incur performance overhead: to
monitor all makespans we would have to remove early stopping (Section 4.5.5).
Moreover, extra time would be needed for ste statistical inference core itself.

Randomness Taming

It is tempting to think of some meta-optimization over (i) the selection of ϵ
(Sections 4.3.1, 4.5.5) and (ii) Theorem 2 critical points (Section 4.3.3). This
would help us avoid “useless” iterations. The main problem with setting up such
a mechanism is that our current implementation has non-deterministic elements
that are outside our control (Section 4.5.10). On top of that, meta-optimization
would need to keep and act on some global state, which would need to be
synchronized between threads. In turn this would make everything slower.

4.7.3 A Note on Time and Space

For the entirety of this text we have been interpreting the horizontal dimension
as “time” and the vertical one as “space”. We owe this to the fact that our
research has its roots in computer systems’ memory allocation. Nevertheless,
other interpretations could enable using idealloc (or any similar piece of
related work) in completely different contexts. For instance, one could view the
horizontal axis as a spectrum of frequencies, and the vertical one as time. Each
“buffer” could thus encode a radio host’s request to broadcast over a specific
band of frequencies for a specific amount of time. Solving DSA in that context
would ensure that (i) all hosts receive a slot for their show and (ii) the overall
spectrum is “reserved” for as little time as possible.

Room for nuance exists even within the standard time/space interpretation.
Whether the vertical axis stands for physical or virtual addresses is left to
the hands of the end user. Whether time is wall clock time or, e.g., the total
number of bytes allocated by a program, or the indices of a topologically sorted
computation graph’s nodes, again this decision belongs to the user. DSA itself
is indifferent to these decisions. In order for its output to be useful, however,
the following invariants must hold: (i) both dimensions must be contiguous,
i.e., elements that overlap in one dimension cannot do so in the other and (ii)
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elements are fixed in one dimension, and are allowed to “slide” only along the
other.

4.8 Conclusion

Static memory planning is an NP-complete problem with applications of great
potential. Existing solutions are either scalable or memory-efficient. We have
presented idealloc, an implementation designed with low fragmentation, high
performance and scalability in mind. Along the way we have reported numerous
insights that may prove useful to practitioners and theorists in the future.

We have open-sourced idealloc and the benchmarks used 8.

8https://github.com/cappadokes/idealloc

https://github.com/cappadokes/idealloc


Chapter 5

Translating Quality-Driven
Code Change Selection to an
Instance of Multiple Criteria
Decision Making

This Chapter is a verbatim copy of the author’s publication cited below:

Lamprakos, C. P., Marantos, C., Siavvas, M., Papadopoulos, L.,
Tsintzira, A.-A., Ampatzoglou, A., Chatzigeorgiou, A., Kehagias,
D., and Soudris, D. Translating quality-driven code change selection to
an instance of multiple-criteria decision making. Information and Software
Technology 145 (2022), 106851

The definition and assessment of software quality have not converged to a
single specification. Each team may formulate its own notion of quality and
tools and methodologies for measuring it. Software quality can be improved
via code changes, most often as part of a software maintenance loop. This
Chapter contributes towards providing decision support for code change selection
given a) a set of preferences on a software product’s qualities and b) a pool
of heterogeneous code changes to select from. We formulate the problem as
an instance of MCDM, for which we provide both an abstract flavor and a
prototype implementation. Our prototype targets energy efficiency, technical
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debt and dependability. This prototype achieved inconsistent results, in the
sense of not always recommending changes reflecting the decision maker’s
preferences. Encouraged from some positive cases and cognizant of our
prototype’s shortcomings, we propose directions for future research. This
Chapter should thus be viewed as an imperfect first step towards quality-driven,
code change-centered decision support and, simultaneously, as a curious yet
pragmatic enough gaze on the road ahead.

Our main contributions are: (i) quality-driven code change selection is defined
as a MCDM problem and an abstract, extensible methodology built around
the MCDM core is presented, (b) a prototype focusing on energy efficiency,
technical debt and dependability, is described and evaluated, (c) related future
work is proposed through a qualitative critique of the prototype’s shortcomings.

5.1 Main Approach

The abstract form of our methodology is depicted in Figure 5.1. A DM wants
to select one or more code changes that will be applied to a software project
in order to improve one or more quality attributes, as those are defined in the
project’s NFRs. The proposed methodology requires the following:

• a set of NFRs1

• a set of code change2 recommender processes, each targeting a separate
non-functional requirement3

• a uniform set of impact models for quantifying the degree to which a code
change could affect a quality attribute

• a set of functions that map candidate code changes to expected impacts
on all quality attributes

• an MCDM algorithm
1From this point, we will use the term “non-functional requirements” for both the quality

attributes’ definition and the means for their assessment (metrics, thresholds, combination of
metrics, etc.

2We define a code change as a single, contiguous edit in the source code. Thus, removing
two unused variables from two non-neighboring spots of a program equals to two different
code changes.

3Keeping a generic point of view, we do not impose any limitations on what these processes
could look like. Maybe they are part of a static analysis tool, or an expert’s opinion. The
only invariant should be that each process generates a set of code change suggestions.
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Figure 5.1: Functional diagram of the proposed method.
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Each distinct quality attribute-centered recommender process generates a list
of code change suggestions. Each candidate code change is given as input to all
of the change impact functions, and thus estimates of how this change would
affect each quality attribute are computed4 Thus we get a design space on which
the trade-offs between each candidate change are imprinted. A more concrete
example can be seen in Table 5.1, created in the context of the prototype that
we present in Section 5.2.

This design space and the DM’s preferences are the inputs to the MCDM
algorithm comprising our methodology’s decision-making core.5 The final
output is a ranking of the code changes, based on each change’s fitness to the
DM’s preferences, captured by the “Decision Value” field.

5.1.1 Decision-Making Core

We define two discrete spaces X and Ψ, comprising quality attributes and code
changes respectively. We also define the set of real numbers R as the range of the
change impact models. Each model is expressed by a function fn∈X : Ψ→ R.
We denote each set of code change recommendations with Ψi, i ∈ (1, 2, ..., N).
There could exist empty sets or sets with overlapping elements but in any case,
we are concerned with the union of all suggestion sets, which will be a subset of

Ψ: Ψp :=
N⋃

i=1
Ψi.

One can now visualize a table of |Ψp| rows and N + 1 columns like Table 5.16.
This can be viewed as the Design Space block shown in Figure 5.1.

Table 5.1: A sample from the design space generated by this Chapter’s prototype.
Impacts on qualities were based on empirical measurements.

Code Change Energy Technical Debt Dependability
Fix input/out-
put issues No Impact Improve Improve

Eliminate dead
code segments No Impact Hinder Improve

... ... ... ...

4An alternative wording is the notion of “trade-off analysis”.
5MCDM is related to whatever scenario requires decision support given a list of available

options, and multiple criteria based on which the options are evaluated.
6This table was developed for our prototype instance. Things left abstract in Section 5.1

are here specified. For example, we treat refactoring operations instead of generic code
changes. We pick fuzzy sets as the range of the change impact functions. Further details are
provided in Section 5.2.
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The value of each suggested change (that is, its fitness to the DM’s preferences)
can be expressed as:

Vj := w1 · f1(j) + w2 · f2(j) + ... + wN · fN (j)

:=
N∑

i=1
wi · fi(j)

j ∈ Ψp, i ∈ X

(5.1)

For Eq. 5.1 to be evaluated, the key component missing is the N-dimensional
weight vector −→w . This corresponds to a quantitative representation of the DM’s
preferences7. To compute −→w , most MCDM algorithms require from the user to
provide a form of her preferences with respect to the criteria under discussion.
In our case, these criteria are the chosen quality attributes.

5.2 Prototype

This section describes an elementary implementation (prototype) of the abstract
methodology presented above. Our prototype was developed in the context of
the Horizon H2020 project SDK4ED—see Section ??. The specific software
qualities chosen are energy efficiency (E), technical debt (TD) and dependability
(D). It is not possible to elaborate on the details of our prototype’s setup
(metrics and derivation of each quality, change recommender processes, etc.).
We do however provide a compact list of design decisions below8:

• NFRs: Energy consumption (milliJoules), principal technical debt (U.S.
dollars), dependability (custom index). These were selected in the context
of SDK4ED, the pilot use cases of which were either embedded, IoT
or safety-critical applications. Technical debt aside (which could be
considered universally important), the needs for high energy efficiency
and optimal dependability are evident for such applications.

• Code change format: Refactoring. Architectural changes do not belong
in this Chapter’s scope9.

7Strange as it may sound, a central problem addressed by MCDM is precisely this
quantification of preferences, which according to the literature is non-trivial if consistency
and reliability are sought after.

8For further information, please feel welcome to consult the project’s publicly available
deliverable 6.4 at https://sdk4ed.eu/documents/.

9That said, we see no particular reason why the abstract version of our methodology could
not be applied to architecture-oriented changes.

https://sdk4ed.eu/documents/
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• Change recommender process: Automatic identification of refactoring
opportunities via static (technical debt, dependability) and dynamic
(energy efficiency) analysis tools.

• Impact models: Lexicographical categories mapped to fuzzy sets. As
already mentioned, a sample of the design space may be seen in Table 5.1.

• Derivation of impact functions: Static empirical analysis via iterative
application of refactoring operations on several open-source code segments,
and subsequent quality assessment on the SDK4ED platform10.

For the MCDM component, we implemented the FBWM algorithm by Guo
and Zhao [44]. Like other MCDM algorithms, its inputs are an encoding of the
DM’s preferences and the impact-annotated design space of available options (in
our case, refactoring opportunities). fbwm is flexible enough to support a wide
spectrum of preference scenarios, ranging from single objective optimization
(improve only one non-functional requirement) to joint, three-way optimization
(improve all NFRs).

For the impact models’ range, we defined three triangular membership functions
in [−1, 1] with equal overlaps of 0.5 units (Hinder, No Impact, Improve). For
more details on FBWM (preference encoding, mathematical description), the
reader may consult [44].

5.3 Results

We devised 3 ‘preference scenarios’, each with a different ordering of importance
on the qualities. The software project used for evaluation was Rodinia [17],
a widely-used benchmark suite for heterogeneous computing. It comprises
both CPU and GPU implementations of a wide array of computational kernels,
from backpropagation to video editing. The data depicted below are average
improvements measured after applying, for each benchmark, the proposed
top-ranked refactoring11.

10See Footnote 8.
11The SDK4ED platform provides analysis infrastructure for direct measurement of the

stated software qualities. We performed measurements both before and after applying the
MCDM-proposed code change.
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Figure 5.2: Experimental results: Average improvement (i.e. across all
Rodinia benchmarks) of qualities after implementing the prototype’s top-ranked
suggestions.

5.3.1 Threats to Validity

• Construct Validity: To counteract the ambiguity of this manuscript’s
claims, we explicitly describe the proposed architecture components and
we demonstrate results obtained through a first proof of concept. We
take care to map all the proof of concept’s components to the ones of the
general architecture.

• Internal Validity: to ensure a cause-and-effect relationship in our
findings, we isolate open-source benchmark applications and perform
precisely what changes the analysis toolboxes suggest. We do this by a)
choosing (mostly) refactoring operations as a means of code maintenance,
b) adhering to well-known definitions for each refactoring and c) for Energy
Toolbox’s Acceleration (which is not a refactoring in the traditional sense)
we stick to implementations contained in the benchmarks themselves.

• External Validity: the results and ideas in this Chapter ought to be
generalizable. We thus define our experimental part as nothing more than
a proof of concept. We list potential limitations, and provide a future
work section.

Figure 5.2 displays the results retrieved from applying the top-ranked refactoring
operations in three usage scenarios. Usage Scenario is a tuple showing the
hierarchy of quality attribute importance as provided by the DM. From left
to right, the elements denote a best-worst-remaining sequence. A result is
positive if it respects the hierarchy posed by the DM, in the sense of improving
the best NFR most and the remaining NFR less. As regards the worst NFR (in
which the DM is the least interested), it is irrelevant whether it gets improved
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or not by the made decision. A result is negative if it does not respect the
imposed preference hierarchy in any way.

According to Figure 5.2, our results are inconsistent. We provide brief comments
for each scenario in a left-to-right fashion.

• (TD,E,D): negative. The best criterion (TD) is indeed improved, but
as regards the other two qualities, the hierarchy is reversed (worst gets
improved, remaining gets hindered). The respective percentages also do
not follow the hierarchy (TD should see the biggest improvement).

• (E,D,TD): mostly negative, in a similar vein with the above. A hopeful
detail is that percentages are more fitting here, since the best criterion
(E) does indeed see the biggest improvement.

• (D,TD,E): mostly positive. Best criterion (D) gets improved, worst
criterion (TD) gets hindered. Of course, E should have seen smaller
improvement than D. But having both of the top qualities improved, just
in inverse proportions, is in our opinion the least painful of all possible
headaches.

5.4 Discussion and Future Work

Refactoring is known as a controversial means of quality improvement. We
selected this code change paradigm due to our funding project’s specifications.
Future research could focus on alternative methods.

Moreover, a decision process is only as good as its inputs. We consider the
main culprit behind our results’ inconsistency the fact that our prototype uses
a static, empirical model for the expected impact of refactoring on software
quality. In this way it ignores the interdependencies in a specific project, which
as a result distorts the design space (values in Table 5.1).

Existing works in the field of CIA can be used for locating which parts of
code would be affected by a candidate refactoring, making a first step towards
shedding the coarseness of our fuzzy impact model. The next step would then
be to develop fine-grained local impact models. Such an approach would add
a far greater amount of information in the design space, and the user could
receive heterogeneous sequences of refactoring. This direction is orthogonal to
the choice of the particular MCDM algorithm.

Last but not least, no comparison of our proposal with relevant works in the
literature is presented. Acknowledging the issues discussed above does not
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leave any room for sparring with the state-of-the-art, even if similar tools exist
(inconsistent results appear for the simplest of baselines).

5.5 Conclusion

This work concerns quality-driven decision making in the source code level during
the maintenance and evolution stages of an application’s development lifecycle.
We presented an abstract methodology for integrating arbitrary software quality
definitions in a workflow producing a ranked list of quality-enhancing code
changes. The central component of our proposal is the multiple-criteria decision
making theory and family of algorithms.

We also presented a prototype of our methodology targeting the overall security,
technical debt and energy efficiency of the Rodinia benchmarks. Even though
our experimental results proved to be inconsistent, we believe our main idea
to be worthy of further exploration—particularly its coupling with existing
techniques of CIA.



Chapter 6

Conclusion

6.1 Summary of Presented Work

The central thesis of this text claims that meaningful work remains on the
fundamentals of computer systems. Chapter 2 set the stage by demonstrating
the impact of dynamic memory allocation, a fundamental operation, on the
energy consumption and memory footprint of the CPython runtime. Chapter 3
proposed a mathematical representation of workload-allocator interaction and
demonstrated its utility by defining a novel fragmentation measure on top of
it, shown to correlate with actual memory footprint. Chapter 4 made a deep
dive in the theoretical limits of malloc by delivering a high-performance, low-
fragmentation solution for static memory planning, outperforming corresponding
implementations from companies such as Google and OpenAI. Last but not
least, Chapter 5 zoomed out from any particular optimization domain, adopting
the perspective of application developers—it is them, after all, who are expected
to apply the results of any deeper insights in practice and en mass.

Numerous other examples exist in the literature of researchers andor
practitioners studying and advancing elementary operations: Colton, Krapivin
and Kuszmaul recently proved that the insertion of elements in hash tables can
be made much faster [27]. Haeupler et al. showed Dijkstra’s algorithm to be
universally optimal roughly a year ago [46]. If these sound too theoretical, the
reader can instead contemplate how the Rust programming language, which
enabled most of the work described here, is taking the world by storm1.

1https://rustfoundation.org/members/
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6.2 Future Work

Let us conclude with how the research described in this thesis could be utilized
and extended in later efforts.

6.2.1 Dynamic Memory Allocation

Chapter 3 forms a connection between theoretical dynamic memory allocation
and its real-world counterpart. It is motivated by a profound asymmetry between
dynamic memory allocation’s omnipresence and the scarcity of principled
methods for understanding workload-allocator interaction. It describes a
mechanism for extracting representations of workload-allocator pairs in the
form of two-dimensional bin packing, and then proposes a novel fragmentation
definition built on top. Despite operating on entirely virtual, simulation-
generated data, our measure correlates with the memory footprint of a variety
of workloads. Our study serves as a first piece of empirical evidence towards
adopting bin packing-based methods for dynamic memory allocation.

Before proceeding, let us emphasize that the study described in Chapter 3 is
incomplete and amenable to significant future extensions. For the moment we
cannot answer precisely why some workloads exhibit negative correlation with
2DBP fragmentation. Noise is being added from (i) our transformations of
complex calls to elementary malloc/free pairs, and (ii) noise from the OS.
Extracting useful features from 2DBP representations is an important piece of
future research. Another direction would be to incorporate, as mentioned, more
fine-grain information such as a program’s memory access trace.

Assume, now, that we know DSA to capture workload-allocator interaction. How
does one capitalize on this knowledge? A first application would be identifying
workloads that are provably sensitive to allocator policy–that is, workloads
where significant savings in physical memory are expected if better placements
are found. Such workloads would be perfect candidates for a benchmark suite
evaluating placement policies. Next, assume a sensitive workload that is to be
executed on a memory-constrained machine. It is critical to ensure that when
deployed, the workload’s peak RSS (or some other metric) is the minimum
possible. A sandbox could be set up where different policies are iteratively tried
on the workload’s request trace, until the best one is found. The whole process
would run offline, and not even access to the executable itself would be needed.
Its request trace and a modifiable allocator would be the only required elements.

The generation of (approximately) optimal placements with respect to some
more relevant criterion than the classical makespan could also be studied. Lower
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bounds would then be assigned to sensitive workloads’ achievable fragmentation.
If the distance between said bounds and the top performing allocator were
small, exploring custom policies for a particular workload would not be worth
the effort. In the opposite case sandbox approaches like the one mentioned
above could be explored.

Most importantly, DSA could yield more complex products: it could assist in
performing feature extraction of workload-allocator pairs, for use in relevant
machine learning tasks. We wonder what such tasks would look like; can,
for instance, an allocator’s policy be “learned”? Can similarity measures for
allocators or workloads be established? We find great value in exploring such
questions.

Last but not least, the same qualitative reasoning must be applied to
quantitatively different contexts. The use of huge pages both on the OS
and the allocator’s side is common practice at the time of writing. To present a
coherent view across as many allocators as possible, we decided to refrain from
huge page-based experiments in the context of this dissertation (some allocators
do not still support them). But exploring that space in the future would be
more than useful. Our expectation is that fragmentation would correlate with
peak RSS even more then, since page boundaries would be further apart.

6.2.2 Static Memory Planning

As regards Chapter 4, the most immediate domain of applying idealloc apart
from the OS allocators research path mentioned above is deep learning compilers,
where requests for memory are known in advance due to the fixed nature of
neural networks. A particularly interesting fact is that DSA can be applied not
only in “classical” deep learning workloads, but up to the immensely popular
tasks of LLM inference and training as well [126, 43, 52].

As recent research has shown, there is also space for static methods in the
context of dynamic, i.e., real-time, optimization. For instance, the DDTR
framework [58] contains a static memory optimization step. We argue that the
main consideration for such applications are the latency constraints imposed by
each individual application enclosing this dynamic refinement step. We have
already shown that idealloc features extremely low and configurable latency.

On the front of extending and optimizing idealloc, we find the task of making
it even faster and memory-efficient in itself both interesting and valuable. The
most evident weakness in our current implementation is that the interference
graph quickly reaches gigabytes of required size. More compact data structures
with the same function should be explored. Moreover, due to the boxing
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algorithm’s semantics, additional constraints could be introduced. For example,
buffers that for any reason must be placed in contiguous memory (SOMAS
introduces such constraints in the context of parallel training [73]) could be
boxed together as a pre-processing step and viewed as an “original” job.

Another interesting piece of future work would be to enlarge the domain of shapes
that idealloc handles. For instance, De Greef et al. have shown that array
storage in embedded applications often exhibits trapezoid overall patterns [23].
Could the boxing semantics of idealloc be made so as to accommodate such
shapes? Of course, this would imply the need for new theory as well, since DSA
is by definition limited to rectangles.

Of course, the hardest but most rewarding idealloc-related future research
path is that of taming randomness. Though we hold the belief that stochasticity
works to our allocator’s advantage, we find the idea of adding some on-line
statistical inference module for judging whether it makes sense to keep iterating
pretty interesting. Apart from that, one could try to decouple implementation-
generated randomness (e.g., Rust’s unstable sorting algorithm) to algorithm-
generated randomness, that is, the critical point selection of Theorem 2. The
reader should be warned, though, that our current intuition is that such
decoupling is impossible. If we’re wrong, researchers could proceed, once
the decoupling is made, to add some meta-optimization element controlling the
algorithm-generated randomness. The main difficulty we see in that enterprise
is the inability to maintain a coherent state space given the parallelism involved.

6.2.3 Source-level Model Construction

Chapter 5 formulates the task of improving software quality as an instance
of MCDM. It presupposes the existence of high-level models predicting the
impact of candidate refactorings on a predefined set of NFRs. Actualizing this
assumption is the most valuable piece of future work. For example, as regards
energy consumption, a high-level model could be built via utilizing low-level
information, e.g., context-aware consumption of basic blocks. In Appendix A
we demonstrate the feasibility of collecting such information.

Nevertheless, we must acknowledge that such expectations may not be feasible
to realize. The process of maintaining and refining large-scale software projects
involves iteration and manual actions instead of automation and reliance on
off-line oracles.



Appendix A

Reliable Basic Block Energy
Accounting

Our goal is to conduct energy accounting of basic blocks using commodity
hardware and software. With everyone nowadays carrying a small computer in
their pocket, as well as trends such as edge computing and the Internet of Things,
many researchers have turned to the energy efficiency of software [104, 36].

The term “energy accounting” refers to measuring the energy consumption of
an entity of interest. Neugebauer and McAuley, for example, proposed process-
level energy accounting in 2001 [95]. The further down the abstraction ladder
one climbs, the bigger problems they face due to the increased frequency of
events. The seminal work on the instruction level, conducted by Tiwari et al.
in 1996 [117], utilizes physical measurements of electrical current to that end.

We find basic blocks of machine instructions to be a reasonable compromise
residing in a low enough level to be exploitable by the compiler, while at the
same time being coarse enough in granularity to allow energy consumption
measurement. We are not the first to reach this idea. Ten years ago, Mukhanov
et al. presented a tool for basic block-level energy profiling [92]. Jayaseelan et al.
posited that a basic block’s energy consumption can be inferred without resorting
to measurements first, and based their derivation to instruction and architecture-
specific models [56]. Then they assigned worst-case energy consumption bounds
on basic blocks. A similar approach is followed by Pallister et al. [100] Chen et
al. operate on the basic block level but are interested in instruction throughput
instead of energy accounting [20, 88] (they also deal with steady-state blocks
while we are interested in monitoring them in the wild, i.e., along with their
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execution’s context).

Here, we show that it is possible to achieve reliable basic block energy accounting
with commodity equipment, just by utilizing existing technologies in the modern
software stack.

• Gap in the SOTA: Seamless energy consumption measurement at the
basic block level without any special equipment or software beyond what
modern computers offer as “batteries included”.

• Contribution: Open source methodology leveraging (i) integrated power
models like RAPL, (ii) modular compiler infrastructure like LLVM and
(iii) low-overhead processor tracing like PT.

This Chapter is a verbatim copy of the author’s publication cited below:

Lamprakos, C. P., Bouras, D. S., Catthoor, F., and Soudris, D.
Reliable basic block energy accounting. In Embedded Computer Systems:
Architectures, Modeling, and Simulation (Cham, 2023), C. Silvano, C. Pilato,
and M. Reichenbach, Eds., Springer Nature Switzerland, pp. 193–208

Modeling the energy consumption of low-level code will enable (i) a better
understanding of its relationship to execution time and (ii) compiler/runtime
optimizations tailored for energy efficiency. But such models need reliable
ground truth data to be trained on. We thus attack extracting machine-specific
datasets for the energy consumption of basic blocks–a problem with surprisingly
few solutions available. Given the impact of execution context on energy, we
are interested in recording sequences of basic blocks coupled to corresponding
energy measurements. Our design is lightweight and portable; no manual
hardware/software instrumentation is required. Its main components are an
energy estimation interface with sufficiently high refresh rate, access to an
application’s complete execution trace, and LLVM pass-based instrumentation.
We extract half a million basic block-energy mappings overall, and achieve a
mean whole-program error of ∼3% on two different machines. This Chapter
demonstrates that commodity resources suffice to perform a very crucial task
on the road to energy-optimal computing.

Recent years have witnessed a proliferation of low-power embedded devices [110]
with power ranging from few milliwatts (battery-powered) to microwatts
(batteryless), and a plethora of techniques have been produced that yield
significant results [1]. Furthermore, “green” commercial CPUs have become
more and more available on the market [48], especially for mobile phones due to



RELIABLE BASIC BLOCK ENERGY ACCOUNTING 97

their battery needs [85]. However, improvements in battery density and energy
harvesting have failed to mimic Moore’s law. Battery density has the slowest
improvement in mobile computing and it does not scale exponentially [101].
Battery capacity has increased very slowly, with a factor of 2 to 4 over the last
30 years, while computational demands have drastically risen over the same
time.

There is also a concern that energy efficiency improvements will not be sustained,
as the "low hanging fruit" have already been reaped, and that the continued
increase in compute demand might not be offset in the coming years. Thus,
energy remains a formidable bottleneck. The ability of energy efficient hardware
to satisfy the increasing computational needs of the market while keeping energy
and power stable has turned into an uphill battle. Thus more and more research
has turned towards energy efficient software [104, 36].

This Chapter’s premise is that existing commodity tools can be leveraged in
order to study the energy consumption of programs, without needing any special
instrumentation. The first step for such a study is the extraction of reliable data
in as low an abstraction layer as possible. We measure the energy consumption
of basic blocks; such fine-grain accounting is known to be of great value in profile-
guided optimization [92]. We build on the commercially available infrastructure
provided by Intel’s RAPL [22], the accuracy of which has been extensively
validated [59, 47]. Contrary to the state-of-the-art, our method is simpler, more
universal, and of equivalent effectiveness. It can be applied to any platform
exposing a RAPL-like interface and offering processor tracing functionality
(there already exists work replicating RAPL for AMD architectures [113], and
processor tracing has long been standardized via Nexus IEEE 5001 [115], with
two well-known instances being Intel’s PT and ARM’s CoreSight [4]).

Overall, our contributions can be summarized as:

• a lightweight, portable methodology for reliable basic block energy
accounting

• an open-source implementation1 of our method.

• an empirical evaluation on real programs for two x86_64 machines

The rest of this Chapter is organized as follows. Section A.1 exposes the necessary
background, while Section A.2 describes our measurement methodology. Section
A.3 presents our evaluation procedure and discusses the corresponding results.
Last but not least, Section A.4 draws our final conclusions.

1The source code is available at https://github.com/jimbou/energy_profiling

https://github.com/jimbou/energy_profiling
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A.1 Background

This section provides a concise exposition of all concepts related to the work
presented.

A.1.1 Basic blocks

A basic block is a straight line of machine instructions that are executed in
sequence. It includes no branches, jumps, function calls, and in general any
commands that disrupt normal control flow. Basic blocks usually contain few
instructions. Figure A.1 offers a handy example derived from the programs
used for evaluating this Chapter.

Basic blocks are a fundamental abstraction in compiler design [3]. They offer
opportunities for optimization via, for instance, basic block reordering [96].
As such, attempts of modeling basic block properties such as instruction
throughput [88] have been made.

A.1.2 RAPL

Intel’s RAPL tool was conceived toward power capping DRAM power [22].
As part of its functionality, it employs hardware counter-based modeling to
estimate a system’s energy consumption in real time. The model’s outputs
are integrated with Linux and exposed to users via a simple, hierarchical file
interface2. The files contain accumulated values of the energy consumed since
startup. A respective interface for power estimates is also available.

RAPL measurements come in four different granularities: (i) package, (ii) core,
(iii) DRAM and (iv) uncore. The package granularity is an aggregate of the
rest. The accuracy of the exposed data has been rigorously validated in prior
work [59, 47, 24].

A.1.3 PT

Intel’s PT is an architectural extension that collects information about software
execution such as control flow, execution modes and timings, and formats it
into highly compressed binary packets. Trace data is recorded and must then
be decoded, which amounts to walking the object code and matching the trace

2https://www.kernel.org/doc/html/next/power/powercap/powercap.html

https://www.kernel.org/doc/html/next/power/powercap/powercap.html
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Figure A.1: Histogram for the number of instructions per basic block. To draw
it, we traced all the basic blocks that got executed during our evaluation phase.
Note that most of the time, a basic block is expected to contain 10 instructions
or less.

data packets. PT has already been used as a basic building block of many
research works [35, 80, 18, 127].

The main distinguishing feature of Intel PT is that software does not need to
be recompiled, so it works with debug or release builds. A limitation is that it
produces huge amounts of data (hundreds of megabytes per second per core)
which takes a long time to decode–two to three orders of magnitude longer
than what it took to collect. The performance impact of tracing itself varies
depending on the use case and architecture.

A.1.4 Clang-enabled LLVM passes

LLVM is a compiler toolchain that can be used to develop a front-ends and back-
ends for various programming languages and instruction set architectures [75]. It
is designed around an agnostic IR that serves as a portable, high-level assembly
language to be optimized via a variety of transformations over multiple passes.
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Figure A.2: Consecutive RAPL reads between consecutive basic blocks measure
same energy due to RAPL’s low refresh rate.

Each LLVM IR instruction is in SSA form to simplify dependency analysis
between program variables.

Clang is a compiler for C, C++ and other C-derived languages and frameworks,
which operates in tandem with LLVM [74]. In this Chapter, Clang acts a
gateway to the LLVM Pass Framework. Passes perform the transformations and
optimizations, build the analysis products to be used by said transformations
and are, above all else, a structuring technique for compiler code. They can be
used to mutate the IR code, e.g. print a number upon entry to a basic block,
or compute properties, i.e. count the total number of function calls.

A.2 Method

The purpose of this work is to map energy consumption to basic blocks of
executed code. To achieve this, the main idea is to perform an energy read
before and after a basic block is executed. In theory, subtracting the two
measured values provides us with the consumed energy:

EBB = Eafter − Ebefore (A.1)

We implement our idea via writing an LLVM pass that instruments each basic
block’s entry point. The injected functionality amounts to opening the file to
which RAPL writes, reading its value, and noting that value down to another
file (created during the application’s runtime to hold all energy readings). Every
read value is accompanied by an identifier denoting the basic block that was
thereafter executed. We will be referring to this read-write process as "RAPL
reads" from now on.
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Figure A.3: Splitting energy between multiple basic blocks based on each block’s
total throughput. With the term “weight” the figures refer to the amount of
cycles needed to execute an assembly instruction. The weights are, of course,
instruction specific.

A.2.1 Obstacles and workarounds

Although at first glance the outlined strategy seems like a viable and simple
solution, it presents a number of issues that demand a different approach. We
now elaborate on these issues, and respective measures taken for mitigation.
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RAPL read granularity

Our basic block instrumentation scheme is based on the idea that the RAPL
energy registers are updated with higher frequency than that of basic block
execution. If this does not hold, it is possible to assign zero energy consumption
to basic blocks that execute faster than RAPL’s refresh rate.

As noted earlier, RAPL has a refresh rate of ∼1 kHz, and basic blocks are
most often sets of less than 10 instructions executed on processors with a clock
frequency in the GHz order of magnitude. This leads to situations like the one
illustrated in Figure A.2.

To deal with the coarse refresh rate of RAPL’s registers, we used the workaround
sketched in Figure A.3. Since RAPL updates occur slower than the retirement
of basic blocks, it is obvious that multiple blocks will have been retired until the
next time that the RAPL register is updated. To allocate this newly measured
energy, denoted as X to the intermediate basic blocks, we make two assumptions:
(i) the energy consumed by a basic block is analogous to its execution time and
(ii) we can trust the technical report in [31] to derive individual clock cycle
data per instruction.

Each of the above assumptions raises critical points to be addressed.
With respect to the validity of [31], we pose our empirical evidence as a
counterargument. If the instruction-specific clock cycle data we used were
erroneous, we would not have managed to measure such a small error in our
experiments. Note that the authors of [88] also use this resource. About
our treating energy and execution time as linearly dependent, we view it as a
heuristic rule that allows us to overcome a particular obstacle–not as an absolute,
universal fact. In a similar fashion, Tiwari et al. [117] do assign execution time
base costs on individual instructions, but at the same time emphasize that the
actual relationship between energy consumption and latency is not trivial to
formulate.

Thus a basic block comprising M instructions, each needing wiz cycles to execute,
has a total latency of ti =

∑M
z=1 wiz. N basic blocks execute in T =

∑N
i=1 ti

processor cycles. Figure A.3 dictates that from the initial energy measurement
X, each intermediate basic block gets the following quantity allocated to it:

EBB,i = X · ti

T
(A.2)
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Figure A.4: Measure the cost of a RAPL read via comparing a “bare”, i.e.
uninstrumented program’s energy consumption with that of an instrumented
one.

RAPL read imposed energy overhead

A second problem noticed early on was the unaccounted cost of the RAPL read
function itself, which could easily overshadow the basic block’s own cost. RAPL
reads amount to C functions doing file I/O to parse and record the model’s
measurements and as such are quite more complex than the basic blocks in
between which they are instrumented.

We quantified and validated the involved energy overhead of RAPL read
operations in two ways:

• do a RAPL read, execute a program that does a RAPL read N times,
then do a final RAPL read. Subtract the difference between the last and
the first reads with N to get a result.

• apply the method illustrated by Figure A.4. We execute 2 versions of
a program: a bare one, having undergone no transformations, and an
instrumented one on which our basic block-targeting pass has been applied.
By parsing the RAPL readings file created by the instrumented flavor,
we can deduce how many such reading were done in total. Dividing the
energy difference between the 2 versions with the number of readings done
provides a good approximation of a RAPL read’s cost.
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Figure A.5: Mitigation of external library code via Intel PT and two additional
RAPL read tags.

Shared library code

The most important issue is that an LLVM pass operates only on the basic
blocks of the application itself, and cannot reason about library functions linked
at a later stage of the compilation process. Given the fact that the bulk of
commands executed by applications are very often owed to external function
invocations, we cannot ignore this situation.

A first mitigation we tried was to statically link compiled applications and lift
the resulting binaries back to LLVM IR. We used revng3, llvm-mctoll4 and
mcsema5 but none of them proved to have plug-and-play compatibility with our
method. On the occasions that we managed to lift binaries back to LLVM IR
and apply the RAPL read pass, execution halted with segmentation fault.

To this end we devised the solution shown at Figure A.5. As a first step, we
defined three possible tags, i.e. names, for our RAPL read function:

3https://github.com/revng/revng
4https://github.com/microsoft/llvm-mctoll
5https://github.com/lifting-bits/mcsema

https://github.com/revng/revng
https://github.com/microsoft/llvm-mctoll
https://github.com/lifting-bits/mcsema
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• RAPL_read_A denotes readings taking place before normal basic blocks
local to the application code that is being compiled

• RAPL_read_B corresponds to readings happening right before calling some
external function

• RAPL_read_C represents, accordingly, readings made right after returning
from some external function

Then we compile the targeted application while also applying our LLVM pass
defining the three different RAPL read flavors. Note that the function body at
each time stays the same–we only introduce additional names to differentiate
between local and external cases.

Upon executing the instrumented binary via perf-intel-pt6, we collect the
total trace of its execution thanks to Intel PT. As a final step, we remove code
corresponding to the RAPL reads themselves from the trace, and as a result
receive a structure like the one at the far right of Figure A.5. Our final task
is to parse this trace and assign energy costs to basic blocks according to the
following procedure, the parts of which have been the subject of the present
section:

1. compute or retrieve from storage the estimated energy overhead of an
individual RAPL read.

2. begin parsing the trace.

3. in parallel, begin parsing the energy measurements file created by the
RAPL read functionality.

4. if the trace traversal has reached a RAPL_read_A call, what follows are
legitimate basic blocks. If it is a RAPL_read_B, what follows is external
function code ending at RAPL_read_C. Split this segment in basic blocks
by identifying branches, jumps etc.

5. stack parsed basic blocks for as long as the difference between consecutive
energy measurements is zero. When it becomes non-zero, subtract the
computed RAPL read energy overhead and allocate the rest between
parsed blocks as illustrated in Figure A.3.

6. keep parsing until reaching EOF.

The end product is a sequence of basic blocks, many of them duplicates, each
mapped to a particular energy cost. Repeating this process for many programs
yields our final dataset.

6https://man7.org/linux/man-pages/man1/perf-intel-pt.1.html

https://man7.org/linux/man-pages/man1/perf-intel-pt.1.html
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Figure A.6: Evaluation process based on whole-program error.

Execution context as inter-block effects

It is known that execution context heavily affects energy consumption. Via
maintaining a 1-1 relationship as well as the same ordering between executed
basic blocks and those stored by our method, execution context is made implicit.
Future work aiming to utilize what this Chapter produces must be careful and
model sequences instead of individual basic blocks.

A.3 Evaluation

Our claim is that the methodology described in Section A.2 yields a reliable
dataset of energy consumption at the basic block granularity. To evaluate this
claim, we must first define what reliability stands for. We thus borrow from the
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Table A.1: Machines used for evaluation.

Machine Spec Value

A

Cores 12
Clock frequency 2.2 GHz
Main memory 16 GiB

L1i cache 192 KiB
L1d cache 192 KiB
L2 cache 1.5 MiB
L3 cache 9 MiB

B

Cores 8
Clock frequency 3.4 GHz
Main memory 32 GiB

L1i cache 128 KiB
L1d cache 128 KiB
L2 cache 1 MiB
L3 cache 8 MiB

Both
OS Ubuntu 20.4 LTS

Architecture x86_64 (Skylake)
Page size 4096 B

state of the art [92], and assume that a dataset is reliable to the degree that it
achieves a low whole-program error.

We form our evaluation process as illustrated in Figure A.6. After extracting our
dataset from a set of programs, we aggregate duplicate entries via their mean
energy cost. We revisit each program and execute it repeatedly to derive an
average total energy measurement. In parallel, we trace it once more and count
how many times each individual basic block was executed. We lookup our mean-
aggregated dataset’s contents and form an energy "prediction", by summing the
corresponding frequency-energy products. The closer this prediction is to the
actual total energy measured, the more reliable our dataset is.

A.3.1 Experimental setup

To run our experiments, we utilized two different machines described in Table
A.1. A basic block energy dataset was formed by applying our method to 24 C
single-threaded microbenchmarks from real-world workloads. We selected the
core granularity exposed by RAPL, since it offered the highest refresh rate: the
energy measurements in question thus reflect CPU costs exclusively.
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(a) Machine A. Mean error is 3.43%.

(b) Machine B. Mean error is 2.66%.

Figure A.7: Main results. Vertical axes are measured in RAPL energy units. For
the machines tested, each unit is 61µJ. ALEA [92], the current state-of-the-art
in basic block energy accounting, reports a max error of 2%.
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Our method can be applied as-is to larger applications. However, given its
dependency to Intel PT execution traces, we opted for microbenchmarks in
order to restrict trace file size. Since we operate on the basic block granularity,
any potential shortcomings should be evident here too.

A.3.2 Results and discussion

The main result is depicted at Figure A.7. It is evident that our method
achieves a very low whole-program error across all test cases. We complement
our quantitative data with a qualitative comparison between the work presented
in this Chapter and the state-of-the-art for basic block energy accounting,
ALEA [92]:

Table A.2: A qualitative comparison of our tool versus the state-of-the-art.

Feature ALEA This work Practical consequences
Basic
measurement
domain

Power Energy By leveraging RAPL for direct
energy consumption data, we
avoid the need to profile and
integrate execution time. We
also better utilize existing infras-
tructure.

Basic block
identification

Disassembly LLVM pass
and execution
trace traversal

We have already mentioned the
problems that come with binary
lifting. Our framework is more
transparent and more general:
no access to statically linked
executables is assumed.

Instrumentation
procedure

Manual Automatic By avoiding manual instrumen-
tation, the proposed method is
significantly more user-friendly
and also less error prone.

Open-source
availability

No Yes Our tool is exposed to the world
for further experimentation,
modification, optimization.

Reliability
(whole-
program
error)

≤2%
everywhere

∼2.5-3.5%
mean

On average, our tool is of very
similar effectiveness compared
to the state-of-the-art.
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The above points vouch for the greater transparency and flexibility supported
by this Chapter’s contributions, as well as our method’s effectiveness in reliably
capturing basic block energy consumption.

A.4 Conclusions

This Chapter presented a flexible, reliable methodology for performing basic
block energy accounting. It leverages three commercially available tools: Intel’s
Running Average Power Limit and Processor Trace technologies, and the LLVM
compiler toolchain. Our method is empirically shown to be of close effectiveness
to the current state-of-the-art, while at the same time being more general in the
sense of imposing fewer constraints to the user and automating crucial involved
processes.

The main conclusion is that modern computing stacks expose all necessary
equipment to form energy consumption datasets on the basic block level. On
their own, these datasets have no practical value. The most obvious way forward
is to build context-aware, i.e., sequential, models for use either by the compiler
itself or higher in the abstraction hierarchy.

An ambitious direction would be to lower both the construction and the
utilization of the models closer to the hardware, like Intel does with
RAPL [22, 24]. Recall that the presented work relies on RAPL—a more
independent and open-source approach would be extremely valuable in the
RISC-V era.
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Chapter 4 Addendum

B.1 Lemma 1

What follows is a verbatim copy of Lemma 1 by Buchsbaum et al. [13]. As
in the main text, we represent parts of the proof that are of no concern to
implementing the FU with “[...]”.

LEMMA 1. Given a set Y of unit-height jobs, all live at some fixed x-coordinate
t, an integer box-height parameter H, and a sufficiently small ϵ > 0, there exist
a subset Y ′ of Y , |Y − Y ′| ≤ 2H⌈1/ϵ2⌉, a set B of boxes, each of height H,
and a boxing of Y ′ into B such that at any x-coordinate u,

LB(u) ≤ LY ′(u) + 4ϵLY (u)

Proof. [...] partition the jobs of Y into strips [...]. The first two strips are defined
as follows.

• Create a vertical strip consisting of the H⌈1/ϵ2⌉ jobs with the earliest
starting x-coordinates (or fewer if there are not enough jobs)

• If any jobs remain, create a horizontal strip consisting of the H⌈1/ϵ2⌉ jobs
that remain with the latest ending x-coordinates (or fewer if not enough
jobs remain)

111
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Define Y ′ to be the set of all jobs not in the first vertical or first horizontal
strip. [...] Now partition the jobs of Y ′ as follows. As long as there are jobs
remaining, repeat the following.

• Create a vertical strip consisting of the H⌈1/ϵ⌉ jobs that remain with the
earliest starting x-coordinates (or fewer if there are not enough jobs left)

• If any jobs remain, create a horizontal strip consisting of the H⌈1/ϵ⌉ jobs
that remain with the latest ending x-coordinates (or fewer if not enough
jobs remain)

Now, for every vertical strip of Y ′, take the jobs in order of decreasing ending
x-coordinate, in groups of size H (the last group of the last strip possibly
smaller), and box them. Similarly, for every horizontal strip of Y ′, take the jobs
in order of increasing starting x-coordinate, in groups of size H (the last group
of the last strip possibly smaller), and box them. [...]

We call the jobs in Y − Y ′ unresolved jobs.

B.2 The Impossibility of Theorem 19

As above, we begin with a verbatim copy of Theorem 19 [13]:

THEOREM 19. For all ϵ > 0, there exists a polynomial-time (2 + ϵ)-
approximation algorithm for DSA.

Proof. Consider some small positive δ to be determined. Let X = Xs ∪ Xl,
where Xs is the set of jobs of height less than δ7L and Xl = X \ Xs. Use
Theorem 16 with error parameter δ to pack the jobs in Xs, yielding a (1 + c′δ)-
approximation for some constant c′. Apply the (1 + δ)-approximation algorithm
implied by Theorem 12 with the same δ to pack the jobs in Xl, which is
possible because the load divided by the minimum height is at most 1/δ7,
which is certainly at most C log2n/log2log2n for C = 1/δ7; this yields a (1 + δ)
approximation. Choose δ so that δ(c′ + 1) = ϵ.

The impossibility of writing the above as a computer program function is
evident. The parameter δ governs all steps, but is only determined in the end.
Nevertheless, given the liberties we have taken with the rest of BA in order to
make it functional, future attempts to “hack” Theorem 19 might prove fruitful.
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