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ITepiindn

H épeuva otov topéa tne Avaxtnone Iinpogopiac and Movowr| (Music Information Retrieval —
MIR) éyel mapadootond enxevipwiel oTic BUTIXEC LOUOIKEC TUPADOOELS, DNULOUPYDVTUC EVOL OV~
b XEVO OTIC UTOAOYIOTIXEC Tpooeyyioels yia Ti¢ mowlieg Youaixéc xouhtolpee Tou xoécouou. H
Topoloa dlotelBY) oToyevEl aTNY xdALYY AUTOU TOU XEVOU, AVATTOGGOVTAG ol alohoYwVTaG Ueldd-
B0UC YLl TNV TOAUTOALTIOULXY] AVATOPEC TUOY) TNG LOUCIXAS, UE OXOTO TN dnutovpyla o “molTiomxd
eEVAUEP®Y” UTOMOYLO TIXDV TROCEYYIOEWY TOU UTOPOVUY VO OOTUTVOUY oL Vo AVOADOUV OOTEAEC-
HOTLXE ToL LOLOETEPAL YOPOXTNELO TIXE BLUPORETIXDY LOUGIXMY TORUBOTEWY.

H épeuva Eexwvd pe v avdmtuén tou cuvohou dedopévwy Lyra, yiac ohoxAnpwuévng culhoytc
eMnvixrc mapodoaotaxic pouoixrc, 1 onolo tepthopPBéver 1570 xopudtio (tepimou 80 tpeg) e ouvent
noloTNTaL fiyou xou mAolola petodedopéva. To cOvolo Sedopévwv autd hettovpyel we Bdom yia Tig
endpevee Ueléteg, mapéyovtag évay TOAUTIHO THEO YA TNV UTOAOYLOTIXY AVAAUCY WS HOUCLXNAG
TpdBOONE TOL EVOWUATAOVEL oTOLYElL TG0 amd To BuTd! 660 xou amd TO PECAVATOAXS /UECOYELND
povowd cbotnua. Ilepdpoarta tavéunone Bdone emPefoucdvouy T yenoydnTa Tou GUVOROL Be-
BOUEVWV YO TNV OVOLYVORLOT] LOUCLXOAOYIXWY YORUXTNEIO TIXWY OTwe To €ldog, Ta Opyova ol 1|
YEWYPAUPXY TEOEAEUOT).

AZonowdvroc ) Bdomn auty, 1 SlotplB] e€epeuVd TN BLUMOALTIOUXT] HETAPOEA YVHOOTS OTN LOUCIXY
HESL cLOTRUATIXAC AELOAOYNONG TELOY POVTENY Bothodv avanapaotdoewy Yyou (deep audio embed-
dings) ot €& ohvoha BEBOUEVHV TTOU XUAITITOUY BUTIXES, LEGOYELOXES oL IVIXES HOLUCIXES TopUdOTELC.
Méoo and meipduoto YeTapopds udinong, avadetxvieTol ToleC TNYES BEBOUEVWY TTROGPEROLY TNV TILO
AMOTEAEGUATIXNY HETAPOPA YVWONE Ot xdde TEPINTOO, TUPEYOVTAS UTOAOYLOTIXEC EVOEIEELC Yl TG
HOUCIXEC opoLOTNTEG YETOED xoUATOVpwY. To anoteléopata delyvouv 6Tl umopel vo emiteuydel ov-
TaywVo Ty enidoon oe 6Aoug TOUC TOMTIOUOUS UESW UETAPORdS pddnone, e diagpopetind pot{Bo
HETOUPOPAS TTOL AVTUVOXAOUY TLS HOUCIXES OYETELS.

[l vy avtwetdmon 1y tpoxAfoeny mou oyetilovial UE TOV TEPLOPLOUEVO OYXO ETLONUEL-
WUEVWY BESOUEVWY OTOV YWOEO TNg €EELVAC YLOL TN HOUoLX) Tou xdopovu, 7 dlateldh) elodyel To
Label-Combination Prototypical Networks (LC-Protonets), pio xouvotépo npocéyyion pddnone
and Aiyo mopodelyyota TOU BNULOVEYEL TEWTOTUTO YLol CUVBUAOUOUE XATNYOPUDOY OVTL YLl UEHOV-
wpévee xotnyopiec. H pédodoc outh Pehticdvel onuavtind tnv anddocr oe BlapopeTixd chvVoa
HOUGXOY BEBOUEVWV XAl GEVARLNL EXTAUBEVOTC, EMUTEETOVTOG TNV EVTUEY) UTOEXTPOCWTOVUEVWY AT
YOPLMY X0l LOUGIXMY THPUBOCEWY OTO UTONOYLOTLXA LOVTER, oxOUn Xol Ue eAdyloTa TopadelypartoL.
H evowudtwor npoexnoudeuUévwy LoVTEA®Y VoY VEL TEQAULTER TNV Andd0aT), BelyVoVTag T1 BuVaLXT)
TOU GUVBUAGHOU PETAPOEAS uddnong xat uddnong and Alya Topadelyata Yio TOAUTONTIOWXT avahuoT
pouoLxic.

Zn ouvéyewa, 1 St ofohoyel tévte olyypova Veuehiddn povtéha (state-of-the-art founda-

tion models) oe &1 povowd clvola BeBOUEVWY TOU XOANITTOUY BUTIXEC, HECOYELUXES/UECUVATOMNES

13ty mopoloa SlateBh, o 6poc “BuTindc” avapépeTon GUYXEXEIUEVO OE WOUCIXES TUPABAOELS TOU avaTTUXINXKoY
EVTOC TWV ELPWTUIXDV XAACIXDVY, AELTOUPYIXMOV Xl TUPASOCLAXMOY CLGTNUATWY, To oTold dpYdTEPA ENEXTAINXAY UE
npocapuoYéc otn Bopea Auepixh, xou xopaxtnellovton amd CUYHEXPLLEVOUS LEAMDBIXOUE TROTOVE, dAPUOVIXES DOUES KoL
NOEAXTNELOTIXES OPYAVONOYIXES DOLOPPMOELS.



Iepiindn

O LVOXES TIORABOTELS, YPTNOULOTOLWVTAS CUUTANpwUATIXES pedodoloyies 6mwe probing, emBAenduevn
exnaldevon (supervised fine-tuning) xou uddnon and Myo nopadelyporo. H extevic owth aflohéynon
AMOXUAUTTEL TOCO UTOCYOUEVES DLATOATIOMXES BUVATOTNTEC OGO XAl CNUAVTIXOUE TEPLOPLOUONS, UE
TNV Anod00T) VoL UELWVETOL YOl TOATIOUXE ATOUOXPUOUEVES TORADOCELS, EWBIXA OE CEVAQLOL YOUNALY
mopwyv. H épeuva emtuyydvel xopugaia amoteAéopota o mévte and tor €€l aglohoyolueva chvoha
OEBOUEVLV, HATADEVVOVTUC TNV ANOTEAECHATIXOTNTA TWV VEUENODWY LOVTEAWY YLOL TNV XATAVONOT
NG LOUOWNC TOU XOOUOU, £V TAUTOYPOVA OVUDEXVUEL UPICTAMEVA XEVE OTNV DLUTONTIOULXY] arval-

TP TAGT TG HOUCLXNAS.

Me Bdon autd to evpuota, 1 datpeBr mapovoldlelt to CultureMERT, éva mohumoMtiomxd
TPOGUPUOCUEVO VEUELMOOES LOVTENOD, TTOL avamTUYUNXE Héow Wag oTpatnyixic cuVeEXIOUEVNG TPOEX-
naidevone dVo otadiny oe éva pelypa 650 weodv eAANVIXAC, ToupxxAc xou wixrc povoixic. H
Tpoaéyyion auty BeATdvEL otadepd TNV anddoon ot TeofAfuaTe TaEvounong U SUTIXAC HOUoIXNS,
neploptlovtac mapdhhnha ) Uelwon tne anddoone o dutixéc mapaddoec. E&epeuvdrton emione 1
xeron Tou task arithmetic wg evolhoxtnr) mpocéyyion molumolitiouxic TpooapuoYng, 1 omola
CUYYWVEVEL ATOTEAECUATIXG UOVTEND TPOCOQUOCUEVY OF UEUOVWOUEVEC XOUATOVREC GTOV YWEO TWV
Bapwyv, emituyydvovtag cuyxplown anddoon Ye 0 cuveytl{OUeVr Tpoexaldeuon), ywelc va amaitelta

ToUTOY POV TEOSPBaoT o GAA TO TOAMTIOUIXA GUVOA BEDOUEVWYV.

H teheutalo perétn nopouotdlet tio OAOXANROUEVT AVEAUOT) TG BIUTOMTIOUXAC LOUGIXY S OUOLOTT-
TAC TOL YEQUEAOVEL TNV avipdmive avtiindn, Ta yapaxtnelo Tixd enc€epyaciog ouatog xon Ta YeUeAidon
povtéha. Méow twv anavtioewy 125 CUUHETEYOVIWY amd BLapopETXES YWEES, CUANEYDTXaY T
opototnTa 1130 Leuydv NyMTUGOY ATOCTUOUITOY omd EVVEN LOUGLXE GUVOh BESOUEVKY TOU XOAUT-
Touv JduTxée, Pecoyelaxés, ixée xon xwvelxéc xouhtolpec. H epyooia auvth mapéyel eumeipuer
Bdon vy v unoloyio Ty a€lohdynor e Youowxrc opototntac. Kdde Lebyoq afiohoyhinxe and
TOUG CUPUETEYOVTES OF TEELS DLUCTAOEIC: GUVORLXY) HOUGLXY] OUOLOTNTO, TOALTIOUXY] OUOLOTNTO XAl
opot6tnTa ot eninedo npotdoewy (recommendation-level). Yuotnuotind clyxpon Twv avlpdrivey
a&lohoyNoEWY UE YopaxTNElo Td eneEepyaoiag ONUATOS TOU XUAUTTOUY BLac Tdoel pudunol, pehwdiog,
apHOVIOG XAl MY OYPOUATOG, XoHOE Kol UE AVITapao TdoelS omnd entd Yepehddr wovtéla, delyvel dtL ta
TeAeuTOloL ETULTUY YAVOUY TNV Loyupdteen euduypdumion pe tny avdpdrvn avtiindn (triplet agreement
~ 0.65), evéd 1 pehwdia napouctdlel otadepd Ty xohUTepn anddoon UETHE) TV YUPUXTNPLO XMV
ofpatoc. H avdhuon twv avipdnivev oflohoyhoewy ovadeeviel Tn HEAWDIX OC TN ONUAVTIXOTERT
(pEEOUCA BLACTACT] TNG OUOLOTNTOC, EVE OTo VEUEALOBN HOVTENX TO Ny OYpwua eupavileton e&loou 1

X0l TLO ONUOVTIXO OE OPLOHEVES TEPLTTWOELS.

KoadoAn ) didpxelor teov gpeuvady, 1 dlotelf3n uviodetel pio utohoylotixt, Baciopévn oo dedopéva,
TPOGEYYLOT YLl TN UEAETY TWV BLATONTIGUIXODY LOUGIXDY GYECEWY, YENOULOTOLOVTAS HoVTELA Bortidc
pdinong dote ta mpdTUTOL Vo TeoxdnTouy ameudelag and Ta Ny MTIXG dedouéva, ywelc TNV emBoin
Teoxooplopévwy avaAuTiXwY TAoolnv. H pedodoloyia auth xoadhotd duvath tny avdntuln uroho-
YIo TV EpYAUAEIWY XAVOY Vo Tpocopldlovial 6T LBLUTERO YUpUXTNELO TLXS DLUPOPETINY LOVGLXADY
CUCTNUATKY, Ywelc Vo amonteiton exTETOPEVY OyYedlaon YopoxTNEIo T Ue Bdor ewixés yvwoelc. Me
NV 16080 GTNY avanTuén GUVORKY BedoUEVLY, TN UETAPORd pdinong, tn uddnon and Ayo delypora
exmaldevone, TNV TREocupUOY T VeEUEAWOOY HOVTEAWY ol TNV afloAdYNoY PE ETiXEVTPO TOV dvipwno
Y10 TNV TOMUTIOATIOIXT] OVATAPEo TAOT) TNG HOVGXAG, 1) StotplBr) cupBddhel oTny avdmtuérn uToloYLo-
TIXWY UETOBOAOYLOY Lo TNV OVIAUCT] TOLXIAWY HoLoXDY Topaddcewy. To €pyo autd dieuxohivel T
BLAMOMTIOWXT] OOYXELOT Xal UETAPOPE YVOONE OTou efval e@XTd, TPOCPELOVTASC TEAXSE TANPOYOPiEg
yioo T oyéon Uetald TN avlpdmivng SLUmOMTIOUXAS HOVCWAC avTAndMg xou TNg UTOAOYIo TIXAC

XATAVONONG TN HOVOLXNS.
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Abstract

Music Information Retrieval (MIR) research has traditionally focused on Western musical tra-
ditions, creating a significant gap in computational approaches to diverse world music cultures.
This dissertation addresses this gap by developing and evaluating methods for multicultural music
representation learning, aiming to create more culturally aware computational approaches that can
effectively capture and analyze the distinctive characteristics of various musical traditions.

The research begins with the development of the Lyra dataset, a comprehensive collection of
Greek traditional and folk music comprising 1,570 pieces (approximately 80 hours) with consistent
audio quality and rich metadata. This dataset serves as a foundation for subsequent investigations,
offering a valuable resource for computational analysis of a musical tradition that incorporates ele-
ments from both Western” and Middle Eastern/Eastern Mediterranean musical systems. Baseline
classification experiments demonstrate the dataset’s utility for recognizing musicological attributes
including genre, instrumentation, and geographical origin.

Building on this foundation, the dissertation explores cross-cultural knowledge transfer in music
through systematic evaluation of three deep audio embedding models across six datasets spanning
Western, Eastern Mediterranean, and Indian musical traditions. Through transfer learning exper-
iments, this research reveals which source domains provide the most effective knowledge transfer
for each target domain, offering insights into computational similarities between musical cultures.
Results demonstrate that competitive performance can be achieved across all domains via transfer
learning, with varying patterns of transferability that reflect musical relationships.

To address the challenges of limited annotated data in world music research, the dissertation
introduces Label-Combination Prototypical Networks (LC-Protonets), a novel approach to multi-
label few-shot learning that creates prototypes for label combinations rather than individual labels.
This method significantly improves performance across diverse music datasets and training setups,
enabling the inclusion of underrepresented tags and musical traditions in computational models
even with minimal examples. The integration of pre-trained models further enhances performance,
demonstrating the potential of combining transfer learning with few-shot learning for multicultural
music analysis.

The dissertation then evaluates five state-of-the-art foundation models across six musical cor-
pora spanning Western, Greek, Turkish, and Indian classical traditions, employing complementary
methodologies including probing, supervised fine-tuning, and few-shot learning. This comprehen-
sive evaluation reveals both promising cross-cultural capabilities and significant limitations, with
performance declining for culturally distant traditions, particularly in low-resource scenarios. The
research achieves state-of-the-art performance on five out of six evaluated datasets, demonstrating
the effectiveness of foundation models for world music understanding while highlighting remaining
gaps in universal music representation.

Building upon these findings, the dissertation introduces CultureMERT, a multi-culturally

2In this dissertation, “Western” refers specifically to musical traditions that developed within European classical,
liturgical, and folk traditions, later extending to North American adaptations of these systems, characterized by
particular tonal organizations, harmonic structures, and instrumental configurations.



Abstract

adapted foundation model developed through a two-stage continual pre-training strategy on a 650-
hour mix of Greek, Turkish, and Indian music. This approach consistently improves performance
across diverse non-Western music tagging tasks while minimizing regression on Western bench-
marks. The research also explores task arithmetic as an alternative approach to multi-cultural
adaptation, effectively merging single-culture adapted models in weight space with comparable
performance to continual pre-training but without requiring simultaneous access to all cultural
datasets.

The final investigation presents a comprehensive analysis of cross-cultural music similarity that
bridges human perception, signal processing features, and foundation models. Through collection
of human annotations from 125 participants across diverse backgrounds, evaluating 1,130 unique
audio pairs from nine musical datasets spanning Western, Middle Eastern, Indian, and Chinese
cultures, this work provides empirical grounding for computational music similarity assessment.
Each pair was assessed along three dimensions: overall musical similarity, cultural similarity, and
recommendation-level similarity. Systematic comparison of human judgments against signal pro-
cessing features covering rhythm, melody, harmony, and timbre dimensions, as well as representa-
tions from seven foundation models, reveals that foundation models achieve the strongest alignment
with human perception (triplet agreement & 0.65), while melody consistently demonstrates supe-
rior performance among signal processing features. Analysis of human ratings identifies melody as
the most important perceptual dimension, while different patterns emerge for foundation models
with timbre being equally or even more important in some cases.

Throughout these investigations, the dissertation employs a data-driven computational ap-
proach to studying cross-cultural musical relationships, using end-to-end deep learning models to
allow patterns to emerge directly from the audio data rather than imposing predefined analyt-
ical frameworks. This methodology enables the development of computational tools capable of
adapting to the distinctive characteristics of different musical systems without requiring exten-
sive domain-specific feature engineering. By advancing dataset development, transfer learning,
few-shot learning, foundation model adaptation, and human-centered evaluation for multicultural
music representation learning, this dissertation contributes computational methodologies for an-
alyzing diverse musical traditions. The work facilitates cross-cultural comparison and knowledge
transfer where appropriate, ultimately providing insights into the relationship between human

cross-cultural music perception and computational music understanding.

Key Terms: Music Information Retrieval (MIR), Multicultural Music Representation Learn-
ing, Computational Ethnomusicology, Cross-Cultural Transfer Learning, Foundation Model Adap-
tation, Few-Shot Learning, Cross-Cultural Music Similarity, Human perception, Culturally aware

systems
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Euyoeiotieg - Avtt [IgoAoyou

Hrav mpwv and 7 yedvia 6Ttav, xotdS TEOOYELWVOTAY TO AEPOTAAVO TN EMOTEOPNS amd TNV
Kinpo, anogdotoo va xdve aitnomn vy va Eextvion didaxtopixd. Epyalduouv Hdn ahhd xdtt Hdeha
v aAAGEw. T dporye; Aev elyo 1déa Yot to TaEldL mou da Eextvoloo...

Yto ofuepa xan Bélovtac Tic teheutaieg mveAiéc oto xelyevo tne datprc, owcddvouon ToAd
BLAPOPETIXOC amd TOTE, MO OXENTOUEVOS GAAG Xal TLo OXENTIXOS. Boadalvovtog xavels ) yvoon tou
dev umopel mopd vor el TNV TOAUTAOXOTNTO TOU OTOLOU UXPOXOCHOU 6TOV 0Ttolo eoTLdLEL.

H peydhn owth odhory?, ave&dptntn twv Slaotdoewy Tou BoAixol xat Tou dBohou, eivon pia Evdelln
pdinomne xou dpo Lwne. Kou to peyolirepa pordpora yio uéva épyovton and avipemdnoug xou T Yetadd
pag oyéon. To xelyevo autd avagépetar oe TOAOUE amd AUTONG OAAG APLERWVETOL oL OE EXE(VOUG
TOUg “avOVUPOUS” OV TEOGPEPOLY GVEL GXOTOV AlYT Omd TNV V0T TOUC GToUS JAAOUC.

Eexivw e tov emPBAénovtd pov, Aré€avdpo Ilotawdvo, nou elvon avolytdc oe véeg Weg, ETOWOG
vo motéel oty Tpoon Tt evOg avipidnou Tou Tig exppdletl. Kpotdw moAAd npdyuoto alhd meplo-
c6TERO ambd 6o TN Biddeon yia UEAETY £TEROYEVADY VeUdTWY YE EUPooT) o exelva Tou apopoly Tov
dvidpwno. Keoatdw enlone tn cbunvola 1o y1obuop mou loopponel UeToE) pOUAVTIOHOU Xl XUVLGUOU,
elpon Mtpng!

Yuveyllw ye tov Egpavouhh Mrevéto, mou unhpée xaloplotinde 6to vo uhonolndoly ol 1éeg xou
v yetwdel, 600 yvotay, 1 eviponior toug. H mpoonvic xou peahiotinr] potid Tou Aettolpynoe ooy
@dpoc oe xalplo onuela e épeuvac Tou yopaxtneilovtay and afefoudtnra.

Huouv e€oupetixd tuyepodg mou elyo otevy ouvepyacio e Toug 800 autolg eXTANXTX00E ETOTH-
HOVES, oL omoloL APLEPWoAY aUETENTO YPOVO e GLLNTHOELC OYETXEG PE TNV TapoLoa epyaoia.

Euyopioto eniong tov INdvvn BaAwdtlo, tov ©odwen INavvaxdrouvio xou tov Mé&iwo Kahoxdtoo-
Iomoxwota yia T cuvepyooio pog ota Tpwta otddla Tne épeuvag. Tn Xelotiva Avayvemototodiou
xat to Turua Movoixoroyioc tou EKIIA yio t Bordeia Toug. Toug gortntée tne Lyornc HMMTYT
mou eniong pog Borinoav e€aipetind otn cuunAfewon cpwtnuoatoroyiny. Ta dhka S0o uéin tng
Terperolg enttponrc, Ilétpo Mapayxd xan Ayyeho Iixpdxr, ahhd xon tar péhn tne entapeholc EMLTEOnAS
ToU pE Tol oY OAE Toug BeATinoay To THpPOY TOVNUAL.

Touc poltNTéC TOU CUVERYAUC TAXOUE XUTA TNV EXTOVNOY TNS BimAwuatixig Toug epyacioc. Apua,
Iavorywdtn, ‘Olya, Depdowe, ‘Ayyehe, Avdpéa, ANéEavdpe, 1 emagpy| wou woli cag HTay omd TG mo
Yetxée euneipleg Tou BduxTopixol. Avlp®droug TN epEUVNTIXTC XOWOTNTAG TTOL AELTOURYNOUY XOU-
Bwd oty mpodinon g epyaciog 1§ oty dlthenon g emuovig Y T ouvéyloh tne.  Rafael,
Emilia, Yiit, Nazif, Sertan, Alastair, Shangda, Daniel, Iran, thank you!

ITpwv tepdow oTo Mo TPOCWTIXG U£EOG, EVal UEYAAO ELYAPLO T TNV xowvotnta Tou Hohuteyvelou,
epyalouevol otn Ipayporteio, oty BiBhotdxn, otnv Kabopiomro, yio ) @uiogevia otic eyxataotd-
OELC TOU WBPUMATOS Xalk TO PLAGTIUS TOUC Yo TNV ETAUCY ontoloudhTote Vepdtog.

Oewpd TO GNUAVTIXOTERO Yid EVay vipwTo, To TAEYHO TV OYECEWY TOU ToV TERBEANOUY GTNV
xadnuepvotnto. Exel yevviolvtar ol xupatioyol tng eutuylog xou Tng EUTVEUONC X0l OMOPEOPHVTAL
oL xpadaoUol TV TEOBANUATWY X0l TOV AVNoLUYLOY. Zextvdn pe tov Eudiun tou polpactixoue 6to

epyaotiplo 2.1.2, ta Lopta xou Tic ehnldec Tou Biduxtopxol. Toug cuvadéhpoug and epyacThpLo-
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Euyopiotiec - Avti ITpordyou

EadépepLar Tou Bixol poc, Xeroto xou Bacihn yio tic xouPévieg méve ot wouotxn xaL Ty TexvVoloyia.
Tov "Apn yio to aotela TOL X T YeVvaLodwpla Tou 6To vo Bondroet texvixd onoudrrote tou {ntniel.
Tov H\a yio tnv iy urtootipiln, g Bokteg oe Adva, Ivdio xan O&pdedn. Tnv “Initech” oudda
(Baoihn-Tiévvn-Tudpyo) yio tor gnvipatd Toug enl Tovtde e TNToU Tou AElTolpyNoay ooy 6o oplo-
péveg 8oxohec pépec. Tov Bayyéhn, ylo Toug anoyeupativols nepindtoug otnyv Ilohuteyveloinoy,
WADVTOC YLt TLg oToudEég, T Bovkeld, Tic oyéaoels, 0 LoN.

Evuyaplote toug yoveig wou, Xtégavo xou Aéta yio TV avahuTixr) xou Ty xolteyvixr oxédn
ToU Uou Yetédwoay. Tnv adeppr| wou ‘Een yia tn Swipxn euniotochvy g o 6ol TEOCWTXY LOU
anégaor. Tov abeppd pou XpRoto Yo To auéTenTa TNAEPOVAUTA, TN oTheEY Tou, TV xadapy| Tou
oxédn xan ) dddeotr; Tou va Bondrioel ue Ty epmelpior Tou xon TRV %Ak TOL TEOLPEST).

Kielvew ye v "HPn - 67 euyaplotdd yio 1o xodnuepivd mapdy, Ty mlotn cou ot péva, Ty neepla
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I Evcaywyn »xa Kivntea

H povowny| anotehel deyelddeg otolyelo tov ovlpdmivey TOATIOU®Y, avTxatonteilovTag Ty
TOUTOTNTA XAk TIC TOPABOCEL XOVOTATWY o€ Ao Tov xbdopo. Ilapd tnv xevipwr tne Véon otnv
avidpwmvn eumelpla, 1 uToAoylo T avdAucT NG pouotxic €xel emxevipnidel napadocioxd ot du-
TIXEC LOUOIKES TOPABOCELS, DNULOURYWVTUC ONUAVTIXG XEVE GTNY XATAVONON KoL OVAUTUEIG TACY TNG

Ty XOOULNG LOUCIXAC ToLLAOpop@lag.

I.1 To Iledio tng Avdxtnong Mouowwy ITAnpogopiedv

H Avéxtnon Mouvoway IThnpogopeisv (Music Information Retrieval - MIR) éyet avadewydel we
€vag SuVOUIXOC BIETULO TNUOVIXOC TOULOS TOU £QopUOlEL UTOROYLOTIXEC uelddoug Yo TNV xatavénot),
opydvwaon xou mpécBacy oto youowd mepieyouevo. Ou teyvoloyiec MIR €youv petapoppnoet tov
TeOTO oAANAETBpOoHC UoC UE TN Houoxt|, emitpénoviac eEaToUXEVUEVES UTtNpeoie streaming, au-
TOUATOTOLNUEVY) XATNYORLOTOMGT) HOUGLXS Xal VEo BnuLovpyid pyaheia.

Qo1600, Tapd TRV TepdoTia TEdoBo Tou €xel onuewwdel o MIR xAdboc Tic teleutaieg dexaetieg,
Evag oNUAVTIXOC TIEPLOPIOUOS TUPUUEVEL: 1) CUVTELTTIXY TAELOVOTNTA TV UTOAOYLOTIXWY UOVTIEAWY,
cLVORwY dedopévwy xan Thauoiwy adlohdynong elvon xuplwg ETXEVTIPOUEVO OTIC SUTIXEC UOUOIXES
Topad6oelc.  Mia TedoQaTn CUCSTNUATIXY AVIAUCY TNS TEEYOLOUS XATACTACNEC TWV UOUGIXWY CUA-
Aoyav emBeBarcdvel autr TNV TEoxatdANdT), Belyvovtag 4Tl oL SUTIXEC HOUGIXES TIUPADOGELS XUPLIEY OV

oto uTdipyovta oOVola BEBOUEVLY e WO 5,7% avTLTpOoOTEUCT) UN-BUTiXdY EBOV.

1.2 H IIpoxAnon tng IHowchowoppiog twv Mouvowxwy Yuotnudtwy

H xvplopyn eotioon otic Evpwnoixéc xan Bopelo-Apepuovinés povonés napadooels dnuiovpyet
oNUoYTIXES UEVOBOAOYINES TPOXAACELS YLOL TNV UTOAOYIC TIXT| AVOTOREC TUOT] SLOUPORETIXCY OUGIXDY
CUCTNUATKY Tayxoouiwe. Auth 1 Tpoxatdindy, 6mou oL BUTIXEC UOUCIXEC EVVOLEG oL OVONUTIXG
Tho{olol YENOWEVOUY WS TPOETMAEYHEVOS QOXOC Yiot OAN TN Wouoixy, éyel eletaotel xplund omd
HEAETNTEC OTNY UTOAOYLO TIXY| edvopoucixoloyia.

H nopoadootaxt xow Aoiixr) pouotx)| and dapopeTixé Teployéc oLy vé eppavilel dlaxpltd yopoxTnet-
OoTd oL Unopel Vo uny evduypouplovtal Ue TI TUpABOYES TOU EVOWUATWVOVTAL 0TS TREYOUCES UTO-
hoylotxée npooeyyloeic. Ol TpoXANOELS TNE TOLXUAOUOPHIUS TV LOUCLXWY GUC TNUATKY EXONAGVOVTAL

oe TOAATAES TEYVIXES BLOC TAOELS, TTOL TEELYPApOoVTAL axohovdwe.

I.2.1 Tovixd XvothApata xow Mehwdixry Opydvwon

H Sutixn povour ouvidwg yenowonoiel éva obotnua 12-tovev (00U BICTALATOC UE TUTOTOL-
uévee xhlaxeg xou apuovia Bactouévr oe Tpladixéc douéc. Evtoltolg, moléc dhheg pouvoixéc napado-

OELC YPNOWOTOLOUY BLAPORETIXEC BLoUPETELC DU TNUATWY, ULXPOTOVIXA UeNOUATO Xt EVOANOXTIXES
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7

apyéc opydvwone. H tovpxinr) pououxy| “poxdy” yenoweonotel yia dalpeon 53-Tovev, eved 1 iy
xhoony| pouotny| Aettoupyel EVTOC EVOC GUOTAUATOC PAYHAS YLal T MEAWDLXY) 0pYEVWOT).

I.2.2 Pudpwxég Aopég

Ta Evpwnoixd xon Bopeto-Apepixavind povoixd yétpa yopoxtnellovtoar cuvidwe and anhéc douég
(4/4, 2/4, 3/4). TIoAéc GAReS LOVOWES TUPABOOELS YENOLOTOLOUY TOAITAOXOUS PUIIXOUE XOXAOUC,
acOupETEa pétpa xou Tohvputuxéc opyavooes (7/8, 9/8, 10/8). H pecoyewomxd pouoind, cuune-
prhoBavouévng tng eAAnvixrg mapddoong, yapaxtneiletar and puduolc pe acUUPETEES OUAdOTOGELS

XTUTTWV.

I.2.3 ITpaxtixéc Extéleone xaw Evapuovion

Aidpopeg pouoixég tapaddoelg yopoxtnellovial and e€elnTnUéves TRoXTIXES EXTENECT)C TTOU TTHPOL-
otdlouv TEOXAACELS YLt Tic LEVOBOUS UTOAOYLOTIXAG avdAuome Tou ava Ty Uy yia SUTxd GUGTH-
pota onuetoypapiag. O autooyediaopds nallel xevipxd pOAO G TOAEC XOUATOURES, EVE TOAES

UN-BUTIXEC TOPABOCELS YENOWOTOLOUY TNV ETEPOPLVI we VeUeAwdr) apy | EVapUOVIoTC.

I.3 Awxtinwor Tou IpoBAruatog

H xevtpun npdxinon mou avtipetwnileton oe quth ) Sotpl) elvar 1 TeEpLoplopévn ixavoTnTa
TV TPEYOVTWY UTOAOYIOTIXDV HOVTEAWY VO OVOTAELETOUY X0 VoL AVIAUOLY UTOTEAECUATING LOUCIXES
Topadooelg Tépa and Tic SuTixég cupPdoeic. Tlapd tig e€ehi€elq oTNV avdXTNON LOUGLXEDY TANEOPORLADY,
Ol TIEPLOCOTEPEC UTONOYLOTIXEG TIEOGEYYIOELS XATABELXVIOLY UELWUEVT] anddoa 6Tay e@upuélovTal oe
HOUCIXA CUOTAUATA YE VEUEAWDNOC SLUPORETIXES dPYES 0PYAVLOTS.

Mo xplown didotoon autic g Tedxinong nepthaBAvel TNV XaTavdnoy) TOU TS To UTOAOYLOTIXG.
ocvotiyota evduypopuiCovtar ye v avipdmvy avtiAndn avapopixd Ye T SLATOATIOUXT] LOUCLXT
opolotnTa. Ot Tpé€y 0ouceg UTOAOYLOTIXES TPOGEYYIOELS GUYVE AMOTUYYAVOUV VoL GUNAABOLY TIC AETTEG
oyéoelc HETAED UOUGXY GTUR, 0pYAVKY Yol ALaUNTIXDY apyY®V Tou 0p(louv BLPORETIXEC HOUGIXES
xovAtolpec. To npdBinua exdnidveton otic axdrouteg xlpleg TeployEée.

I.3.1 MdOnon Avanapdoctacng

Ta undeyovta cOVOha SESOUEVWY KoL LOVTENN EVOWHUATOVOUY CUCTNUATIXES TEOXATUANPELS TTOoU
EUYOOUY OPLOHEVOL LOUGLXA YOEoXTNELOTIXG EvavTt dAAwy. H omovidtnto dedopévev yia TOANS me-
PLPEPELAXE. Xol TIORUBOGLAXE. HOUCLXE CUGTAUATO DNULOVEYEL OUCLUGTIXEC AVICOPEOTIHEC GE GUYXELOT UE

ToL EpTOpELd xuplopya eldN.

I.3.2 Katavénon IloAunoltiouixrc Mououxnig

H tagvounon povouxric oe mohunoMtiopixd mhaiota cuvABwe cuvavtd TEoXANoel AOYwW TwY
HOXEUIY XOTOVOUWY XATNYOPLOY OTOU TOANE, TOMTIOMIXA ONUOVTIXG, YOEoXTNELOTIXE €YOUV TOAY
Ay mopadelyparto. O neptopiopol e adloldynone avidvovton 6tav Angdel vddn bt Ta tapadoot-

oxd pétpa anodotxdtnTog dev CUMNAUBEVOUV ETUEXGOS TNV TOMTIoUIXT onuacia.

1.3.3 Evduypduuion Aviponou-TroloyiotH

Mo xplown npdxhnon nepthaBaveL TNV xATAVONOY) TOU XATE TOCO Ol UTOAOYIC TIXES TpOooeYYi-

oelg dovovTton vor UAEBouy Ty avilp®drive avtiindn avapoptxd Ue TN HOUCIXH OHOLOTNTA AVAHETH
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oe nohtiopolc. H avdpdmvn avtiindn tne pouoixic oyoldtnrag mowihier onuavtixd oe Slopope-
Tixd TohlTiouixd TAokol, Ue axpoaTtés amd BlapopeTnd Houaxd untdPoudpo SuvnTixd Vo axolV xaL va
a&tohoyolv Tic (Bleg povoixée oyéaclc pe Vepehwdne Slopopetinols Tednoue.

I.3.4 IToAunmoAiTiowixry Mddnom

O andtepog 0toY0¢ TS AVETTUENS UTOAOYLOTIXDY LOVTEAWY IXAVEV VO OVATOPLOTOOY ATOTEAE-
opaTIXd TOWX(AEC LOVOHES TOPUBOCELS, AMALTEl TNV AVTLIETWTLOT TWV TOAOTAOXWY TEOXAACEWY TNG

TOAUTOMTIOUXNC TEOCUPUOYNC LOVTEAWY XL TG EVOWUATWOONS YVOOTS.

I.4 Epevvntixd Epwtripata

Avth 7 St avtietwnilel €61 BlacuVOESEUEVA EPEUYNTIXG EPWTAUATA OV TPOOdEUTXE Pooi-
Covtar to éval 6Tto dhNo:

EP1: Iloc propolv vo avartuydolv uhnirc moidtntoc oOvoha SEBOUEVODVY YLal UTOEXTPOGWTOU-
HEVEC LOUGLXES TUPABOTELS UE OXOTO TNV UTOCTARIEN TNG UTOAOYLOTIXAC OVEAUGTC X0l DLUTOATLIOUIXAC
oUYXELoNG;

EP2: e nowo Badpo unopel 1 yvdon va yetapepiel oamoteAeoportind YeTal) SLUQOPETINDY LOUCLXEDY
CUCTNUATOY, xa ol LoTifo Uepapopds TopatneolvTol OE TOXIAES HOUCIXES TIOPAUOOTELS;

EP3: Ilog pnopoly ta LTOAOYLo TS HOVTEA Vo HAdouV ANOTEAECUATIXNG and TEPLOPLOUEVA TTo-
podElYHaTO OF TOAUTOATIOULXS Houatxd Thaiota, WlalTtepa yior OVl ahAG TOATIOULXE CNUAVTIXG.
HOUGIXA YOeaX TNELo TIXG,;

EP4: Iloweq elval oL SUVATOTNTES X0l Ol TEPLOPLOUOL TWY GUYYPOVWY VEUEAOBOY HOVTEAWDY OTaY
epapudlovtal o Toihec LoUoXES TaPABOTELS;

EP5: lloc ymopodv 1o Yeehicddn HOVTEAL VO TROGUOUOGTOOY Yol VAl OVATIELOTOOY XUALTERX
nowxihec Louoég TapaBOTELS BATNEOVTAS TUPIAANAC T1 YEVIXT] LOUGLXT TOUC YVOOT);

EP6: Ilo¢ ouyxpivovton oL untohoyitixég uedodol gousinic opoldTnTog e TNV avipdrivn ouaix)

avtiindm, xou motol napdyovieg xadopilouy TNy opoldTNTa avduesa oe TouxiAoug ToMTouolg;

1.5 Yuvelopopég

Avuth 7 St mpodyer TRV exUdineY TOAUTOMTIOUXEDY LOUCIXMDY OVATORUCTACEWY HECW EVOC
OMOXATNPWUEVOL EPELVNTIXOU TEOYPAUUNTOSC ToU avTiwetwnilel dusoa xdde évo amd To epeuvnTLXd

EPWTAUTO TOU TEYNXAY TRV,

I.5.1 AvTipetdnion tnc Endpxeiac Acsdopévoyv yia ITowxihee Movoixég ITapado-
ceic (EP1)

To X0volo Acdopévwy Lyra aviimpoownelel ty andvinon pog ot Heuehiddn npdxinom
NG OTOVIOTNTOG DEGOUEVMV GTNY UTOAOYLC TIXT| AVIAUGT) Tapad0ootax i HoLang. AuTh 1 ohoxhnpwue-
V1 cLAAOYY EAANVIXAC Tapadootaxhc pouotxic, tou tepthopfdver 1570 xopudtio ye mepimouv 80 tpeg
vPNAfic Told TG NYOYpEaPRoEWY, XortadevieL piot pedodohoyia yior Tn dnuiovpyio ToATIoUIXE Veueht-
WUEVWY CUVORWY BEBOUEVKV.

I.5.2 Katavonon tng Awanohtiopwixfic Metagopdc I'vbone (EP2)

To IThaioro AranoAiticpuixnic Metagopdc MdOnong nupéyel TNy Tp@Tn CUGTNUOTIXY
BlEPEUVNOT TWV TEOTUTWY UETAPORAS YVOONS HETAUED BLUPORETIXWY HOUCIX®Y cLoTNUdTWY. H é-

PEUVOL XATABEXVOEL OTL T UTOAOYLOTIXG HOVTEAA UTOROVY TRyt Vo enwperndoly and T ueTapopd
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YVOONG PETOED DLUPOPETIXOV HOUGIXMDY CUCTNUATWY, EVEH OTMOXUAVTTEL EMlONG TNV ACOUUETEN XOoL

TOAUTAOXT QOO AUTWY TWY CYECEMV.

1.5.3 MdOnon and Ilepropiopéva Iapadeiypata o Mouvowxd ITAaicwa (EP3)

H avdntuén twv LC-Protonets avtipetwnilel duecoa 1o EP3 elodyovtag wa véa npocéyylon o
udrdnon ToAATAOY xatNYopLdy pe Alya mapadelypota, n anoteAeouatinéTnTa TG omolag eEAEY Y dnxe o
oevdpla povowrc Tadvéunonec. H yedodoroyia emexteiver to Prototypical Networks yux va yetplotel

ToL TOANOTAOX L GEVEPLOL TOAAWDY XATNYOELWY OV (VL XOLVE GT1 LOUCIXY| AVAAUGT).

I.5.4 AZwoNdymor Ocepeliwdody Movtédwy o Mououxég ITapaddoeig (EP4)

To IThaicwo AZLoAoymong OcspuelMwddy MovTEAwY TopéyEl TNV TEWTN OMOXANEWUEVY
aELONOY MO OOYYEOVKY HOUCIXMY LOVTEAWY o€ Toxiheg wovoxég topaddoels. H ouotnuating olbyxe-
o mévie VeUeAwdwY HOVTEAWY Nou ot €€l UOUCIXEC GUANOYES AMOXAUAUTITEL TOCO EVIUTWOLAXES

OLUTONTIOUIXES IXOVOTNTES OO Xl ONUAVTIXOUS TEPLOPLOUOUC.

1.5.5 Ilpocoppoy? Oespeiiwdndv Moviéhwyv yia IToAunoAiticuixr) Evooudtwon
(EP5)

To CultureMERT ovtnpocwredel v andvinot yag oto EPS péow pag véag otpatnyxnc
ouveylouevne mpo-exnaidevong Vo oTadlwy oL EMTEENEL TN oTotept] TPOCUPUOYY TWV EUEAODWY
povtéhwy oe mowiiec povoirée mopaddoelc. H ovotnuatind) allohéynon oe molhamAd npofliuoTa
Tagvounong wouoixre emBefoudvel cuvenel BeATdoELS.

1.5.6 T'egVpwon Aviponivne AvTtiAndneg xo TrohoyicTixic Mouvoixrc Opoidtn-
tac (EP6)

H Meiétn Awanoiitiowixric Movoixrg Opoldtntag aviinpocwnelel TNy TpmTr TAHEN
o&LOAGYNOT LTOAOYLO TV PEVOBWY HOUGIXHS OpoLdTNTAC EvavTt TG avip®drivng Lovotxic avtiindne.
H pehétn culhéyel enionueldoels ogototnTog omd 125 cuypetéyovtes pe diapopetixd unoBadpa, ofL-
ohoywvtog 1130 povadixd Lebyn fyou and evvéa Youcixd cOVORA SESOUEVLV.

Ta anoteréopata xoTadeVOOUY OTL Tar VEUEMWDT HOVTERNX YEVIXA ETUTUYYAVOLY LOYUROTERT] EU-
Yuypduuion pe v avdpwmvn avtiindn oe oyéon pe to nopadoctaxd yopoxtnelo Txd encéepyaciog
pouotxol ofipatoc, ue To CLAP-Music&Speech vo ¢tdver 1o 64,9% triplet agreement. Metaf) tov
YOEUXTNELO XDV ETEEERYACING CHUATOC, 1) LEAWDIAL avoBEXVIETOL UE CUVETELX WS 1) O XA0PLo TIXT
vl Tig avdponiveg xploelc ogoldtnTag.

AZilel va onpeiwdel 6T 1 épeuva anoxahintel onuavTixée dlapopéc oTic oTpatnyixés eneepyaoiog
HETOED avDpOTLY X0l UTONOYIGTIXWY UOVTEAWY: oL dvilpwrol 3ivouv TpoTEPUOTNTA GTO UEADIXO
TEQLEYOUEVO, EVE TOAAG VeUelmddn LovTéAo Blvouv EUQacT) aTo NYOoYEWUATXd YapaxTnploTixd. Ou
pédodor cuvdrou (ensemble) mou cUVBUELOUY TO EPUNVEVCLUO YOPOXTNEIOTIXG UE TIC AVOTOPUC T8~
OEIC TWY HOVTENWY ETUTUYYEVOUY ouctaoTixés Behtidoels (67,0% triplet agreement, 25-30% peiwon
GQPANIATOC).

II Oswentind YTréBadpo xaw Medodohoyla

H avdntun amoteAeOUOTIXGY UTONOYIO TV TEOCEYYIOEWY YLoL TNV AVIAUGCT] SLUPORETIXDY OG-

%WV mopaddceny tpolnodétel éva Yewentnd unéBaldpo mou cuvdudlel apyéc and v eneepyaoia
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pouotxol ofpatog, T Podid wddnon xow Ty umohoyloTixy edvopovowxoroyioc.  Auth n evotnTa
Topouctdlel Ta xevtewxd Yewentd mhalolo xou pedodohoynés tpoceyyioelg mou anoteAoly T Bdon
e mopoloog dlatelBhc.

I1.1 Enegepyacia xouw Avanapdctacn Mouoixold Xuatog

H napadooiaxry enelepyooio povowxol ofuatoc otnpiletar oty eEoymY CUYXEXPUEVKDY Y opo-
XTNELOTXDY TIoU oyedlalovTaL Yiot vor oviyVeloLuy BLAPOPETIXéS TTUYES TNE HoLatxic TAnpogoploc.
Avutd o yapaxtnpiotixd, tou avantiydnxay Bacioyévo ot wouoixy Yewplio, €xouv yenotwomoindet

evpéwe ota napadootoxd cuothuata MIR.

II.1.1 ITapadootaxd Mouvoixd XapaxtneltoTixd

To perwdixd yapoaxtneiotixd Posilovia oty elaywyh e Jephiddous ouyvotntag FO
and TOAUPVIXG Y0, aVTETOTILOVTAS TNV we Tov xuplapyo Uehwdwd oxeletd. Aedopévng tng
FO0, ou tovixéc whdoeic (pitches) avayvwpilovton xou ev cuveyela ta povowxd dothuarta dovorta vo
vty veudoly xou vor avahuGoly Yiot TOV YApaxTNELOUS EVOE LOUCIXOU XOUUATLOD.

Ta puOUIXE YapaxTneLo Tixd nepthaudvouy ahyopliuouc extiunone tempo, tapoxorobinong
xtonou (beat) xan aviyvevong évapine yeyovdtog (onset) yia Ty eEoywYn TANPOPOELOY GYETIXY UE
TN XPOVIXY 0PYAVWAY TNS HOUCIXTG.

To LEUOVINA YALAXTNELOTIXG AVATAPLOTOOY TNV dpuovia Héow TEo(IA TOVLY, ovaryvapet-
oNng oLYYoEBLWY xat extiunong xiewtol. Tao mpogih mou aviyvedovtol 6 cUVBUUCUS PE Ta Poacixd
chromagrams, TapéyouV UL AMEXOVION TWY UPUOVIXWY TOVWY TOU XOUHATION.

TanyoxpeUaTixd Yopaxtneto Tixd, onwe to Mel-Frequency Cepstral Coefficients (MFCCs),
€youv amotehéoel Vepehiddr) epyaheio YLl THY oVl VEUGT] YUPUXTNELOTIXGY OYETIXE UE TO MY OYPWUL,
70 onolo mowlAel avdhoOYa UE T HRYOVO TOU CUUUETEYOLY, TOUS XUANTEYVEC GANE XaL TOU TEOTOUS
NYOYEAPNONG XA CUYXEQLUEVAL MY NTIXA EQE ToL umopel vor AauBdvouy ydea.

Ta Sopixd yopaxTneELo TLxd avay veopilouy T Laxpoconixy| Souf Tne LOUCIXAS Xolt TLS ETOVONA-
Jeie, aviyvebovtag T wopet| xou T didtaln (chorus, verse, bridge).

ITopdro mou Tor MOPATAVE YoEAUXTNEICTIXG €youv amodelyVel anoteAeouotixd yiot TOANE mEopB-
Muato MIR, cuyvd evomUatdvouy UOUCIXEC THPABOYES AMd EVPWTOIKES HAACIUES Xl ONUOPLAELC
pouowég mapaddoelc. T'a mopdderypa, Ta yopaxTneloTixd chromagram umodniovouv éuueca 12-
Tovind oVoTNUd, XaHoTOVTIG ToL AlYOTERO XATAAANAA Yidl TUPUBOCELS UE DLUPOPETIXA TOVIXE GUCTYH-

parToL.

I1.2 Badid Mddnor otnv Avdxinon Mouowxov ITAnpogopiov

O\ mpooeyyloeg Pohdc udidnong éxouv odrdéet to MIR nedio emtpénovtog tny autdpory wdinon
avonapao tdoewy aneudeloc and dedouéva, pewdvovtag Ty e&dpTnor and YELPOTOlNTa YopaxXTNeLo-
Tixd. H e€€h&n e Padide pddnone oto MIR éyel nepdoel and didpopec dlaxpltés gdoelc, xodeulo

yopoxtNEtloPevn amd SaPoPETIXE UTONOYIC TIXd TopadEly AT

I1.2.1 EEENEN tne Badide Mdadrnonc oto MIR

Yy enoyy| g napadootaxic eEoywYNS YAPUXTNELOTIXGY, Tou extelveTon and TN dexoetion Tou
1990 péypr tic apyée tne dexaetiog tou 2010, xuptapyoloay yelponolnTa YoEUXTNELOTXE OIS T
MFCCs, ta chroma vectors xou didpopot ypovixol xou gacyatixol neptypageic. Iapdro mou autég ol

npooeyyloeig mapelyoy epunvedoLues xou LOLOIXE VEYENWUEVES AVATAPATTAGELS, CUY VA EVOOUATLVON
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CUYXEXPWEVES LOLOIXEC TapadoyEC oL TEPLOELLOY TNV UTOTEAECUATIXOTNTA TOUG OE TOWIAES LOVGIXES
TapadOoELS.

O mpwteg eapuoyéc tne Bohde pdinone oto MIR emxevtp@idnxay otny TEOCUQUOYT apyLTe-
ATOVIXGY amd dAhoug Toyelc, Wiaitepa Ty dpaon unohoylotwy. To Xuvehixtnd Nevpwvixd Alxtuo
(CNNs), mou apyxd avamtOydnuay yioe avdAuon Exdvog, TpocapuoésTixay i Vo enelepydlovon
poopatoypaphuata fyouv e 2D ewdvec. Autég ol tpoceyyioelg avtipetwnilovy Tic Slactdoels xpd-
VOU X0l CUYVOTNTAS OTWE TLC YWELXES DLOC TAGELS TWVY ELXOVOV.

Kodoe 1 Bodid pddnon oto MIR wpluale, ol epeuvntéc avéntuov opyltexTovixég ewdixd oye-
BloPEVES Yol LoUoIXd ohpaTa. AUTEC Ol TEOCEYYIOELS EVOWUATOOAUY YVOOY TOU TOPEN CYETIXE YE
TN povouxr] dour) xou avtiAndm evéd a€lonololooy TNy avamapaoTotixny| SOvaun Twv BothdV VEUROVIXGY
dwtOwv. To Musicnn elorjyarye oplldvtio xou xddeta cuvexTixd gihtea yia TNy EexwpeloTr aviyveuon
YOOVIXGV 0L NYOYPWUATIXWY YULOXTNRLOTIXMY.

Ohotinée mpooeyyioeic mou padaivouy aneuldelag and xugoTowop@és fiyou avadliinxay, eEolel-
povTog TNV avdyxrn yio tpoxodoplouéves avanapactdoel. Movtéha 6nwe to SampleCNN xau to
TCNN Aettoupyolv aneuvdelag oe delyparta you, podaivovtog xatdhAnhes lepopyies YapaxTNELo TIXGY
and Ta (B Tar dedopévoar.

o npbdogorta, poviéla Bactouéva oe unyoviopols tpocoyfc (attention), Wiitepa ot Transform-
ers, epopuélovion otn govowr| avdiuon. O Audio Spectrogram Transformer (AST) mpoocopudlet
Vv opyttextovixy] evoc Vision Transformer oe gacuyatoypoghuota ¥you, avietwnilovids to we
axoloudiec amd patches.

H tpéyovoa enoyy| GeueMwdndy HoVTEAWY oVTITPOCWTEVEL TN TO TEOGQITY dAhayY), UE HOVTEAA
onwe 1o MERT xou to CLAP vo xotadetxviouy mewto@ovelc XxavoTnteg ot BlapopeTind TpoBir-
paTor avdhuong wouoixic. Autd to YovTéla afloTololy UEYAANC XA{Hoxas auTo-emPBAETOUEVT, TPO-
exmaidevon yior var udiouy avamopos TAES YEVIXOU 0X0To0 TOU UTopOLY VoL TPOCUPUOCTOUY GE Bid-

(POPES EPOPUOYEC.

I1.3 X 0vola Acdopévwy xou Movtéha tou XernoilhonoloOvIol O AUTH
v Epyacia

Do Ty €peuvd hoc oyeTxd e T padnom LoVoLXAS avanapdo TooTG o€ TowiAeS Tapadooels, Yenol-
MOTIOLOUUE [iot GUARNOYT) GUVOALY BEBOUEVGY TTOU XAUAOTITOUY BLUPORETIXEC YEWYPAUPLXES TIEQLOYES XAl
povod cuoThato. Autd Tor GUVola BEBOUEVLY ETUAEYOVTUL TTPOGEXTIXY YLOL VAL OVTITPOCWTEVOLY
TEELS BLoxpLTéC YewYpupnég meptoyés: Bupwnn xaw Bégeio Auepiny), Meodyelog, Méorn Avotohy) xau
n Ivbixy| unorjrelpog.

I1.3.1 X0volo AcSouevwy

To ohvoha Sedouévwy mou yenotwonototvton 6Ty dlately) avantdocovtal oxolovdne.
AvTtixd Movowxd XOvoha Acdopevev: To olvolo dedouévewv MagnaTagATune yenot-
poToLElTOL EVPEMS VLol EPEVUVOL HOVGIXAC TagvouNoNGE, amoteholuevo and teplocdtepeg and 25000 nyo-

Yeaproelc pe cuvolixy| didpxela mepinouv 210 wpdyv. To FMA-medium nepihoyfBdver enlone 25000

xoppdtia Twv 30 deuteporénTwy To xoéva, cuvolxhc Bidpxetag 208 wpwv.

Meocoyeiaxd JOvola Acdopévwy: To alvoho dedopévwy Lyra, nou avantiydnxe we uépog

QUTAC TNG BLATEIBAC, ETUXEVTPWVETOL OTNV EAAVIXY Topadoactan] xan Adixy| wououxn, nepthauBdvovtag
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1570 xoypdtior e cuvohix) dudpxeta 80 wpwv. To toupxixd corpus makam mepthoyudvel yLAddeS

NYOYPAUPNOELS TOL XUAUTTOLY Teploadtepa and 5000 Epya.

IvEuxd Khaowd Mouvowxd XOvola Aedopevwy: To Hindustani corpus avtinpoownelel
Y xAooixt| nopddoor tng Bépelog Ivdiog ue 1204 nyoypaproeic, eved To Carnatic corpus avtinpoco-
meVel TNy xhaowr nopddoor tne Nétuog Ivdlag ue 2612 nyoypagprioeic.

Dot yerétn g dlamoMtiomxic HoUoIXC OPOLOTATAS, EMEXTEVOUPE QUTH TN GUAROYT Yial Vol
oupnepthdBoupe emnhéov GOVoAa BESOUEVRLY TOU AVTLTPOCKTEVOLY TNV XLvellxT] ToEUBoCLAXT| LOUCLXT
(Jingju), pecavatohxéc napadboeis xou ecoyetoxy povowt| tne Ipneudic yepoovioou (Arab-Andalusian,
corpusCOFLA).

11.3.2 Movtéla

Ye 6hn auth) T dlatelPn), yenoiwonololue BLdpopeg apyttexTovixég Boadide wddnong yia povouxr
avdhuot), ecTidlovTac ot HOVTENX oL Unopoly va eneéepydlovTal 0 Ue EASYLOTY EMOY WYIXT| TROXUTH-

angm.

VGG-ish: Baoileta oty apyrtextovixt| Visual Geometry Group (VGG), nou apyixd avortiydnxe
yioo avayvopior exoévac.  H viomoiney poc nepilaufdver entd cuvelxtixd oTpouota Ye @ikt

ocLVENENC 3X3 xou max-pooling 2x2, axohoudolyeva and 300 TAApWS CUVOESEUEVE O TEMOUATA.

Musicnn: M apyrtextoviny CNN ebind oyedioouévn yia pouowxr], avy vo aviyvedoel 1660
YEOVIXA 6CO0 X0 NYOYPWUNTIXA YoPUXTNELOTIXG and poouatoypeapiuoata yov. H xevtpur] xoauvotoulo
tou Musicnn elvon T0 TEHOTO CUVENXTIXG CTEMUA TOU YENOWoTolEl 1600 xdleta b0 xar opllovTia

plATpo.

Audio Spectrogram Transformer (AST): Avunpocwnedet o apyLtextovixn tou Poaocileton €€
ohoxhfipou oe unyaviodolg npocoyfc. llpocapuoouévo and tnv agyitextovixy Vision Transformer
ot paopatoypaphpata fyou, To AST yovtélo xatadeviel nie ta povtéla Transformer ynopolv va

eneepydlovTal AmOTENECUATIXG LOVUGIXS GRUOTAL.

I1.3.3 Ocpeiwddn Movieia

Ity epyacio poc oyetid ye v aloAdynomn xo Teocoppoy T VEUEAWOOY LOVTEA®Y, XeNot-

HOTOLOVUE Bldpopa GUYYPOVO LOVTENA:

MERT-95M xoe MERT-330M: To “Music undERstanding model with large-scale self-supervised
Training” (MERT) yenowonotel pa mpooéyyion masked acoustic modeling nopduoia pe to BERT
oty ene€epyoacio puoric YAdooos. O topariayés 95M xou 330M npoc@épouv mhfidog napauétpnv

TOU UoVTEAOU.

CLAP-Music xaw CLAP-Music&Speech: To Contrastive Language-Audio Pre-training npo-
copuolet to mhaioo CLIP otov topéa tou you. Autd to povtélo podaivouy EVOOUOTOUEVES ava-

TUEAC TAGELS LOUGIXOD HYOU XU XEWWEVIXDV TEQLYRAPWY UE€C avTWETIXC Ldnong.

Qwen2-Audio: Avtunpoownelel éva eVOToNUEVO VeUEMMBES LOVTEAD XATAVONCNC )Y OU LXAVE VOl

eneepydletan 1600 oWhior 660 xat LoLGIXT.
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CultureMERT: Avtnpoownelel 10 TOMTIOUIXE TEOCUPUOOUEVO VeUERLOOES LOVTEND [aC, TOUL
avantOydnxe péow ouveyolg mpo-exmaldeuong oe mowiheg poucixéc mopaddoelc. XTIOPEVO OTNV
apyttextovixy MERT-95M, to CultureMERT evowyotdver ydinon and eAAnvixég, Toupxixéc xal
LWOES LOUCIXEC TIORUBOCELS BLATNEWVTOS TNV AmOB00Y) 08 SUTXE OMUEld oVopORdc.

Avuth n ohoxdinpwpévn cUAOYT GUVOAWY BEBOUEVKY Xat HOVTEAWY TOREYEL TN Bdom yiot TN GUG TN
patier] BlEpelvNoT TNS EXUAINONC TOAUTOMTIOWXGOY LOUCIXOVY AVATHPAUC TACEWY oL TopouatdleTtal

oTa endpEVA XEQPIANA TNS SotelPrc.

IIT To X0Ovolo Aedopévwyv Lyra yia tnv EAAnvixn Tlopo-

doclaxn xou Actxy Mouvouxn

H avdntuén udgmirc moldmntog cUVOL®Y SEBOUEVLV VL0l UTOEXTIPOCWTOVUEVES UOUCIXES TTHpadod-
oelg anoterel Baoxr) mpolnddeon yia Ty mpdodo oty urohoyioTixy edvououcixoroyio. Autd to
xePdAono mapouctdlel To cUvoho dedouévwy Lyra, wa oAoxhnowuévn cuUAhoYT eAANVIXNC Tapado-
otaxhc xou hiixic povoxic Tmou avantdyUnxe eWdxd vy va uTooTNEiZeL TNV LTOAOYIo T avdAuoT
HLOG HOUCIXNC TORdBOONE TOU EVOWUAT®VEL oTolyelol T600 amd BUTE 600 ol amd UEGOUVUTOMXS

HOUCLXE GUC THUATAL.

ITI.1 ITpoxAroeig xouw MeéJodol EEaywync Acdouevwy

H mindopa nototixdyv dedopévwy elvar Pooix| tpotinddeon yio va avamtdEouy to abyypova o-
VIERa TEYYNTAC YONUOGUVNG TO GOVOAD TNG BUVIIXOTATAC TOUC. XTNV TEPIMTWoN TNg EAANVIXAC
ToEadOCLoXE o AXXAC HoUCLXNC, UTdEYoLY AlYEC TEPLTTMOELS 6Tou Ta PeTadESouéva cuvBLAlo-
vta Ue nyoypaproelc ue dounuévo teémo. Emmiéov, undpyer {Atnua moldnTog TwV NY0YeAPHoEDY
xadde emnpedleton onuavTixd and Sidpopous tapdyovies, GuUTEpLAUBovopEVoL Tou EEOTALGUOY TOU
YETOUWOTOLEITOL, TNG XOLVOVIXTG TIERIGTUONG XAk TNG YPOVIXAC TEPLOBOL 5TV oTtola TpoyUaTOTOIUNXE.

IMpoxewévou va meploploovye TV emiBpaoy TOL TAEAYOVTA TOLOTNTAS NYOV, ATOQPUCICOUE Vol
EVOWUATMOOOVUE To ENEIGOB oS TNV ey oelpd vioxtavtép “To ANdtt tne I'nc” mou petadddnxe
an6 v EPT, émou nopoucidleton xuplwe mapadoaotaxt) xou Aoixy| pouoixy. To eneicddia yuplotnxay
xaTd TN Odpxela plog 10etolg mepLOdOL LTS aUCTNEES TEOBLAY PUPES TURPAYWYTNS, UE ATOTEAECUN VAL
TOAD xodapd %L OPOLOYEVES MYNTIXO TEQIEYOUEVO, EVE ONUAVTIXOS TAOUTOC TANROPOELOY Tapéye-
TOL OO TOV TOEOUCLACTY) XL TOUS XUAECUEVOUC UE TN UOPPY APNYAOEWY UETAE) TWV LOUGIXODVY
napaotdoewy. H enayyelpatinn noidtnta nopoywyhc mou yapouxtnellel To mnyoio ukixd e&oopaiilet

HOUGXONOYIXY) 0PVOTNTA X GUVETY) NYNTIXA YAUEUXTNELOTIXG GE OAN TN GUANOYY.

ITI1.2 TIepiypapn Tou Xuvoiou AcdopEVmY

To clUvoho dedouévwv Lyra opyaviveton oe évav eviaio mivaxa 6mou xdde ypopur avtioTolyel
o€ €Vol Louond xouUdTL eV oL athieg tepthauBdvouy Tic Sdpopec mAnpogoples petadedouévwy. To
cUVoho Bedouévwy anoteleltar amd 1570 xopudtio e cuvolxt| Sidpxela tepinou 80 wEWY, TUPEYOVTAS

ULOL ONUAVTIXN TTNYT YLOL TNV UTOANOYLOTIXT) AVAAUGT] TNS EAANVIXAC Tapadootaxnc LoVGLXC.

II1.2.1 Katnyopicg Metadedopévemy

H todvopla anotelelton omd: (1) tor poucixd Gpyavo, TOU GUUMETEYOUV oTNV extéleon xdde

pouotxol xoppatiot (1 pwvh Yewpeiton dpyavo), (ii) ta pouoixd eidn xou vro-eldn mou avoryvepel-
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Lovtan and Louotxohéyous otny eAAnvixy| pouotxy, (iil) toug témoue mpoéheuonc xou (iv) to av To

HOUCLXS XOPUATL YOpEVETAL XAUTA TN BidpXEld TNE EXTEAECHC TOU.

‘Opyavo:  X10 chvolo dedopévav, 1 euv epgavileta ot oyeddy 75% Twv TporyoudLOY Xou GpYaveL
6mw¢ BLoAl, xpouoTd xou Aao’To, ToL £Y0UV TAEOLGiA TOCO GTA VNOLd 660 Xon 0TV NrelEwTIXH EANESa,
axoloudolv. Ymdpyouv 296 BlaPOPETIXEC OUADES OpYdvVWY OTO GUVOAO DEBOUEVWY, UE AUTY TOU
amoteheitar and Pwvi, Blokl, xpousTd, AaolTo o Xxhopivo Vo elvor 1) o SNHOPINAC CUUUETEYOVTOC

oty extéleon nepinou 12% 1oV HOUGIXMY XOUPATIOV.

Eidn: H talwounon e eNnvixfic povownc ot “eldn” elvon yio epyaoia mou anawtel va Angdolyv
UTOYN OPLOUEVOL XOLVOVIXO-TOMTIOMIXE Xl avilpwro-yewypapxd xpithpla. Ev yével, unopolue va
OlaplvouUe TN LOUOIXY) TWV OOTIXWV XEVTPWY e avTidean UE TN HOUCIXH TWV AYPOTIX(DY TEQLOYWY
e ENAGBoc. To 32 yovadixd eldn ywellovton oe 5 dlaxpitd eldn xon 27 uno-ldn, pe 1o “napadoctoxd”

vo elvan To xuplapyo anotehdvtoac oyeddv to 78% tou cuvéiou.

Torow Ilpoéhevong: And pouvoixohoywnr dmodm, 1 ehhnvixr| mapodoctoxy Louoixy| uropel vo
YWELoTel o 800 YEYIAES YEWYPAPMES TEQLOYES, ONAAOY TN VNOLWTXH Xou TNV NReElpn T EAAGSq.
H »dde po dnwoveyel éva dlaxettéd pouoixd alodnua xodog yapaxtnellovtar 1600 and ) putuxt
Tpocéyylon 600 xat and T xAyaxec mou ypnowonotoUvtor cuvidwe. Arnéd toug 81 témouc oto
olvolo debouévwy, 20 elvon evplTepeg TEPLOYES XU HOVO Ol ULoEC and auTéc TepLhafBdvouy Tig u-

nohoineg 61.

Xopodc: H duaduen xatnyopia “is-danced” evnuepdvel Yot To av €Vl LOUGIXO XOUMATL YOPEVETAL
and Toug XAAECPEVOUG TNE exoUTnc. To pouoixd xopudtia tou emonueldInxay ye “1” elvon tepinou

51% eved ota undhoina dev hopfdver ywdpo Y0pode.

ITI1.3 Baowxy] Taguvounon

Tty o€lohdynom e xenoteéTntag tou cuvérou dedouévwy, Tpaypatonoidnxay tela Pootxd
TpofAnuato Taglvounong Bactouévng o fyo: avay VopeLaT 0pYavmy, TOTOU TEOENEUGTE Yol TAELVOUNOT)
eldoug. H mymtued nyoyedenon xdde pouoixol xouyotiob avamaplotdton yenotponolnvios éva Mel-
scaled Spectrogram (mel-spectrogram), urohoylépevo avé turfuo otadepric didpxetac twv 10 deu-
TEPOAETTWV.

Q¢ Baowr mpocéyyion Tagvounong, xdde mel-spectrogram 10 deuteporéntwy todivopeitan oTa
Tpoavapepdévta npofhfuata yenouworotdvtog éva Luvehxtixd Nevpwvixd Aixtuo (CNN). Ta CNNs
€youv yenotdonoiniel evpéne oe meoffuata Taglvounong yYevixol fyou, ouhlac xou yovowxrc. H
apyttextovix) mou voVethHdnxe mepthaufBdvel 4 cuvehxTnd oTpdpaTa XaL 3 TARewS cUVBEBEUEVYL
OTEWUATA.

To anoteréopota Tou TapoustdaTnXay delyvouy dTL e€eidixeupéva TpoBAY AT, TOL YENCULOTOLOVY
TO NYNTWO ONUAL, UTopolY BUVNTXE Vo TOEEYOUY TOAUTIUN YVMOT Yo BIAPOPES TTUYEC QUTAC TNG
pouvoxic. O ouvbuaopoe Bivieo xar NNy onudtoy emteénel mdavolc UeAAOVTIXOUS TELPUUA-

Tiopolg ot pedddouc mou eneepydlovion TohUTpOTXS dEBOUEVA.

III.4 Yvunepdopata XL LUVELCPORES

H ehAnvixr| napadootony) xan Aolixt| LoUCLXT] EVOWUNTMVEL GUCTATIXG AVATOMXDY XAl DUTIXDV LOL-

OUATWY, TAEEYOVTAS EVOLAPEPOUCES EQEUVNTIXEC XUTEVDUVOELC OTOV TOUEN TN LTOAOYIOTIXHC edvo-
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pouoworoyioc. To obvolo dedouévwy Lyra nepihoufdver Aixd mou emTEEREL dueca TN YENHOT €p-
yohelwv MIR yio v enlteudn nohdTiuwyY HOUGIXONOYIXGY ATOTENECUATWY Xou Pmopel duvnTxd va
Tpowioel TNy enéxtoot Twv uedédwyv MIR cuvolixd.

To mAeovéxtnuo owTol TOL GUVOROU Bedopévwy elvor 6TL OO TO TEPLEYOUEVO GUAAEYETAUL oo
BB TLOXOUE TOEOUS WA EANANVIXAC GELRAS VToXavTép Tou Tophydn and axadnuoixols ue e&et-
dixeuon o€ AUTH TN HOUCIXT| X0, CUVETKS, TEQLAAUBAVEL AETTOUERE(S ETUONUEWDTELS TTOV EEQyOVTaL OO
TO MEPIEYOUEVO TWV EXTOUTWY. Emimhéov, 1 mopaywy nyoyeapioEmY Xol OTTLXOUXOUC TIXOU UALXOU
elvon emoryyeAuatino) emnédou, TapEyovTag xowr Bdor 6cov apopd Ty ToldTNTA TOU Y)ou.

[Iépa amd TNV dueon YenowoTNTd Tou Yiot TNV EEELVa EAANVIXTIC HOUGXAC, TO GUVORO BEBOUEVKY
Lyra yenoweler o¢ Bdorn yio Tig eupltepeg SlepeLVAOELS TOU TopoLCLELoVTaL OTo ENOUEVA XEQANoLOL
oawthg e SatpBrc. Xenowonotelton woli ge dAhor ohvoha BEBOPEVLY TAYXOOULOG HOUGIXAS VLol TN
BlepelvNoT TREOTUTILY UETAPORAS YVMONG UETUED BLOPOPETIXWY HOVUGIXMY TOpAdOTEWY, Xl XL ot
ohoxAnpwuéveg agloroyrfoelc YeueMwddy LoVTEAWY 6 TOAAATAOUE HOUGIXOUE TOMTIGHOVS.

H pedodoroyla mou avantdydnxe yia ) dnuiovpyio Tou cuvoiou dedouévwy Lyra omoteel avo-
TEAY YO TAOLO Yo TNV OVATTUEY) TUEOUOLWY TOPKY VLol GAAEC UTOEXTPOCWTOUUEVES UOUCIXES
Topad6oELC. AUTH 1) cUVELSQOEA UTEPBalVEL TNV GUEST) YENOLOTNTA Yiot TNV EAANVIXY pouotxy|, Tapéyo-
VTOC €vol TEATUTO Ylol T Snuiovpyla ToAMTIoUXd FEUEMWUEVKDY CUVOAKY BEBOUEVHY TIOU PUTOPOUY VoL
UTOG TNEIEOLY Lol XAUVOTOUO UTOAOYLOTIXY AVAAUCY) BLatne®VTaS ToedAANha TNy TOATIoWXY oulde-

VUXOTNTA.

IV Mddnon Metag IloAttiouwy

[t Ty avTETOToN TN TEOXANONE AVATTUENC UTOAOYLOTIXMY HOVTEAWY YLoL TNV OVEAUGCT] Blo-
(POPETIXMY UOUCIXWY TUPABOCEWY, 800 GUUTANPOUITIXES TEOCEYYIoEIS EEEpELVMVTOL: 1) UETAUPOPA
yvoone (transfer learning) petadl SLa@opeTix®dY HOUGIXOY CUGTNUETLY Xou 1 wddnon ond Ayo mo-
podelypato yio oevdpta Ye meploploéva dedopéva. Kou ol 0o npooceyyioec cupfdhhouy otov otdyo
HOC VoL BNULOVEYNOOUUE TiLO EVEAIXTES UTOAOYIC TiXES UEVOBOUC TROG(PEROVTAS TORIAANAL EVPHUATA Lot
TO TOC 1) UTOAOYLTIXY YVWOT) UTOPEL VoL UETUPEPETAL ATOTEAECUATING OE TOLX{AES LOVOIXES TIURUDOCELS.

IV.1 AwaroAitiopixyy Metagopd I'virong

H ocvotnuatixn Siepedvnon Woc ylo T UETopopd YVoOone UeTafl HOUCIXMY TUpAdO0EDY EYEL
anogépel dldpopa onuavtxd evpruata. Hpdtov, xatadel€oue 6TL to Barhd povtéda evowpdtwong Hyou
umopolV va ENKPEANTolY amd TN UETUPORE YVOOTNE and BUTIXEC OE UN-DUTXEC UOVOIXES TopadOCELS
xat avtiotpopa. Auth 1 oppidpoun petagpepodtnta xatodexviel adolBaio dpehog uetalld Slopope-
TIXWY LOUCIXODY CUCTNUATWY XAl UTOBNADVEL OTL ToL LOVTEAD TTOU EXTIUDBEVOVTAL O TOWHAEC LOVOIXEG
TPABOTELC UTOPOVY VO GUVELTQEEOLY TOAUTIUT YVOoY oTta cuothpata MIR.

YUYXEVTRPOVOVTAS TNV On6B00Y GE TEELS UPYLTEXTOVIXES UOVTEAWY X0l DLUPOPETIXEC CTRAUTNYIXEG
TpocopUoYRS Toug, evTonioope HoTiBa UeTagpepodtnTog Tou uropel vor avtixatonteilouy untoxelueves
opotoTNTES YeTa€l HOUCIXWY TOMTIONOY. Autd tar tpdTuTa Yol umopoloay SuVNTLXS Vo EQUNVEUTOVY
(S UTONOYLOTIXG UETPO OMOLOTNTAS UETAE) TUPUBOCEWY, TPOGPEROVTUC YVWGCELS VLo LOUCIXES OYETELS

mou avTixatontelouy LoTopxéc oLVBETELS, YEwYpUPXT eYYOTNTA N} TOEEAANAY eEEMEN TOMTIOUMY.

IV.1.1 Baocwd Evprpata tng Alanoltiowixrc Metagopdg

To yevixd urjvupa mou meénet vo anoxoyioel xavelc elvon ot aveEdptnTa amd TNV dEYLTEXTOVIXY

TOU UOVTENOU, OAa Tal GUVOAXL BEBOUEVKY EYOUV T1 BUVATOTNTO VO CUVELGPEQOUY WS TINYT YVOONG
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oe €vav TOMTIONS 0ToY0 Tapéyovtos Tic Botiéc avamapaoctdoeig fyov touc. Ilo ocuyxexpiéva, ta
duTtnd olvoha dedopévev énwe (MagnaTagATune xou FMA-medium) anédwooay xahd e nnyéc oe
BLdpopeS ToPABOCELC-OTOYOVG.

Emuniéov, mopatnprioape 6Tt xadde YETOXIVOOUAOTE TPOG UECOYELXES/UECAVUTONNXES Xl LVOIXES
HOUCIXEC THPABOOELS, GANES UM-OUTIXES TINYES YVWOOTE SUVEBUANY TUPOUOLL 1 UEPIXES (POREC TILO ATOTE-
Aeopatind o autolg Toug otéyous. H ohoTiny) ewdvo Tng BLATOMTIOUXAC LOVOIXAC PETAPORAS
pdinomng amoxahOTTEL OTL 1) OUOLOUORPIN TWYV ETUBOGEWY SLOPORETIXDY TINY KV GE Xdle cOVOAO dedoue-
VWV-0TOY0 TOXIAAEL, X0l GUVETHOC Xdmoleg TopadOoELS efval o XATIAANAES antd GANEC Yid VoL GUVELC-

(QEPOLY YVWOT| OE XATOLA CUYXEXPLUEVY] HOLGLXT] ToREBOsT).

IV.2 Label-Combination Prototypical Networks (LC-Protonets)

o var avTietonicovye TNy TEOXANGCT TWV TEPLOPLOUEVWY ETUOTUELWUEVWY DEBOUEVLV GTI GUA-
Noyéc toryxdoplag pouoinic, npoteivouye ta Label-Combination Prototypical Networks (LC-Protonets),
Lot véoL TpocEy Lo yia TN Wddnon tolhamhddy xatnyoptwy and Aiyo napodelypota. Ta LC-Protonets
UTEPTEPOUY EVAVTL TWV CUYXPLTXOY Tpooeyyioewy, 6tav afloloyhinxav oe Bidpopa cOvolo Oe-
dopévewy xaL TeoBAuaTa, UEcw NG dNULoVEYINC TEWTOTITWY Yiot GUVBLUCUOUE XATHYOELOY avTl Yid

HEUOVOUEVES oTNYOoplES.

IV.2.1 Medodoroyioe LC-Protonets

H pdidinon mohhamhadv xatnyoplodv amd Aiyo mapadelyudtey Tapouctdlel il onNuavTixy TpdxAno,
Wiodtepa emeldy) ol xotnyopiec ocuoyetilovton xou xdde delyyo unopel vo avrixel oe ToAAEC and auTéC.
INo v to avtigetownicovye autd, npoteivouye to LC-Protonets, uia npocéyylon mou emexteivel ta
Prototypical Networks pe évov anhé ahAd anoteAeopatind TpoéTO.

Oewpolpe NV ToEvOUNoN TOMNATAGY XATNYORLOY WS TEORANUa 6mou xdde cuvduaoude xatn-
yopty elvor plar tepLypopixn xotnyopla. Autol ol cuvduoouol eivor dAol ToL UTOGUVORA TWYV XATNYORLOV
nou Beloxovtoan ota meploptopéva dedouéva udinong, CUUTEPLAUBAVOUEVLY TWV TANEOY GUVORLY
xotnyoptdv. ‘Evo otowyeio unoothplne pe xatnyoplec {A, B, C} opilel xan cupfdihel oe dhoug toug
cLYBLACHOUEC XATIYOPLY TTOU TPOXUTTOLY OO TO SUVIHOGUVORO TMV XATNYOELDY TOU, EEUEOUMEVOU
Tou xevov ouvérou: {A}, {B},{C},{A4, B},{B,C},{A4,C},{A,B,C}.

Avt n mpocéyyion avtwetonilel To nEoBAnua TAEVOUNONS TOAITADY XATNYOEWOV w¢ Ulyud
oevoplwv udinone AMywv mopadelyudtoy xou undevixmy mopadetypdtwy. o éva dyvwoto delyya,
unoloyilovtol oL anocTdoelg and OAo To SNULOVEYNUEVO TEWTOTUTA. XE TEPLTTWOELS TTOL €V &Y VWG TO
Oelypa €yel (oec amooTdoelc amd TOMATAYL TEMOTOTUTY, EMAEYETOL OWUTO TOU OVILTPOCWTEVEL TOV
peyahUTepO apldud xotnyopLdy, unootnellovtag ETol LEpUPYIXES OYETELS XL Loy UET CUCYETION UETAED

TOV XATHYOPLOV.

IV.2.2 Anoteléopata xow AZLoOANOYTOT

Ta mewpdpotd pog €deav 6t ta LC-Protonets emtuyydvouv aéloonueinwtes Behtidoels oe oyéon
ME TiC ouyxelTég uevddouc. Emmiéov, Swmotadidnxe 6Tl n yprion mpo-exnadeupévwy HOVTENGY
o@elel onuavtixd Ti¢ uedodoug udinong and Alya mopadeiypata. To yeyovog autd odhynoe otny
avantuén poc yedddou udinone 0o Brudtwy mou Pnopel Vo EMEXTEIVEL EMTUYWS TO GUVOAO XOTY-

YopLHY evHC cuVOROL Bedouévev aftomolnvtas npo-extaudeupéva povtéha pall pe ta LC-Protonets.
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IV.3 Y 0OvOeomn xow MeAhovtixég Kateudivoelg

O\ Vo mpooeyyioelc mou e&epeuvilnuay GTNY EVOTNTA AUTH, 1 UETAPOPS YVMOoNS xou 1 wdinon
amd AMyo mopadelypota, CUUTANEWYOUY 1) pla TNY GAAT OTNY OVTIUETMTLOT BLOPORETIXWY TTUYWY TNG
uddnong oe noixiheg pouoixée mopaddoelg. Evdd 1 uetagopd yvoone aflonotel T yvoon and napado-
oelc Thololeg oe dedopéva yiol vo eVioyOoEL TNV anédooT o TEOPAAHAT YE EMAEXY| TopadelyUaTa,
N pdinon and Alyo mopadelyUator EMTEETEL TNV ATOTEAEOUTLIXY EXUAINCT oXOUN Xou UE EAAYLOTO
ETUONUELWOUEVA BEQOUEVA, YEYOVOS LOLATEQO OTUAVTIXO VLol UTOEXTPOCWROVUEVES TORUBOTELS.

A&ilel va onuewwdel 6T xou ot d0o mpooeyyioel avadeviouy TNV adiol TWV TEO-EXTOUSELUEVGY
HOVTEAWY OTN BLATOAMTIOULXY) LOUGLXY| AVEAUGT), AV X0l YENOLLOTOLO0Y QUTA TO LOVTEAN DLOPORETIXG.
H yetagpopd yvohong opyixonolel To JoVTENR Ye TapaéTeous Tou yadaivovtor and évay Tnyolo chvolo
dedouévev, vy ta LC-Protonets ymopolv va aflomolAcouy GUECH TOV Y(OPO AVATUPACTICEWY TV
TPO-EXTIAUBEVHEVLV HOVTEAWY Ywpelc ETLTAEoY exmaldeua,.

Ot Behtidoeic anddoong mou napatneridnxay 6tav cuvdudlovtal xou ol dlo mpooeyyioels, yenot-
HOTIOLOVTOC T HETAPORA Y VOO YL VO ATOXTHOOUY XOADTEPES OVOTOPOC TACELS YUQAUXTNELO TIXWY XAl
N pddnon and Ayo mopadelypato Yo VoL TpoGopUOCOoUY AUTES TG OVATUPUC TAGELS OF VEEG XATNYOopleg
e meploplopéva mapadelypata, delyvouv tpog evonoinuéva mhaioio tou Yo unopobouy VoL avTETK-

0oLV TO TApEC Qdoua oeVopiwY ETdEXELNS BEBOUEVHY OTNV TOAUTOALTIOUIXY HOUGLXY) OVEAUGT).

V Ocueiwon Movtéla yia ITowxiAouvg IToAtiopoig

H evéotnto autr Slepeuvd Tig SUVATOTNTES Yol TOUG TEPLOPLOUOUE TWV GUYYPOVWY LOUCIX®Y Jepe-
NSOV LOVTEAWY 6Tav e@opuolovial ot TOIAES HOUOIXES TORUBOCELS, Xl AVATTOCCEL OTRUTNYIXES
TpocopUoYRS Yl TV evioyuon Tne ToATiopxhc Toug avtidndne. Méow uoc ohoxinpwuévng adlo-
AoYMone xou tne avantuéne tou CultureMERT, auty 1 épeuva npoo@épet npaxtixéc npoceyyloels yio

TN OnNuLovpYia TO TOMTIOUXE EVIUEROUEVDY LOUCIXMY CUOTAUATOY TEYVNTAS VONUOCUVTC.

V.1 IThaiocro AZioroynong IToAhanAody Medodwy yio Ocspeiiwdn Mo-
VTEAX

It vor eXTWACOUPE PE CUCTAHATIXG TEOTO TS BLATOMTIOUXES LXAVOTNTES TV VEUEAWDINOY Uo-
VTEAWY, ovomtOlope éva oOhoXANPwUEVo UedodohoyYixd TAXCLO TOU YENOLLOTOLEL TEELC CUUTANPG-
patxég npooeyyioelg aglodynong. To mhalold pag emtpénel T cuo ATy oOYXELON GUYYPOVELY
VEUEAMWODV LOVTENWY OE BUTIXES ol UN-BUTIXES HOUCIXES TOPABOTELS, TaPEYOVTUSC YVOOELS TOGO YLo

To BuVATA Toug omMueior OGO XoL YLl TOUG TEQLOPIGHOUS TOUC YLoL T1) DLATOALTIOUXT] LOUGLXY| AVIAUGT).

V.1.1 Me9odohoyieg AZLoNbéynoTNe

Probing: H npdtn yedodoroyia a€lohoyel 160 xohd tar Yeuelddn HOVTENA AVITapLE TOOY EYYEVHS
HOUoWE yopoxTneloTixd oe mowxihoug molTiopols.  Xpnowomololue probing, émou To UovtéLo
TOPOPEVEL TTAYWUEVO EVE EXTIOUSEVOUUE LOVO Evay TaglvounTy] Tdvw ond Tig eEoyOUEVES OVATOPAO Td-
oelc. Buyxexpiuéva, vhomolovue éva pnyd Multi-layer Perceptron (MLP) pe éva xpupd otpdua 512

Hovadwyv axolouoluevo amd €va OLlYUoEDEC oTpMua TaEVoUNoNG.

EnBrensdpevn Ilpoocappoyr (Supervised Fine-Tuning): T vo a€lohoyfiooupe tn duvatd-
TNTA TEOGUPUOYHC, UAOTIOLOVUE O TOYELUEVT EMBAETOUEVT Udinom Eemary dvovTag €Vl UTOGUVOAO TUPAUUETOWY

tou povtéhov. T to MERT-95M, Eenarydvouue tar teleutaio dVo transformer otpduata, evéd yio

42



Extetopévn EXAnvixd epiindm

Tot UtdAoLTtaL ovTéAa HOvo To Tereutafo oTpdpa. AuTéc ol emhoYég TEploplo TNXAY amd TEPLOPIOUOVE

RAM nou ennpedlouv 1660 TI¢ eXToudedOUIES TOPUUETEOUS 6G0 ot T1) PUOULOY) UTERTORUUETEWY.

Md&Onon IToAhaniwy Katnyopiodv and Alya ITapadeiypata (Multi-Label Few-Shot
Learning): H tpitn pedodoroyia adioloyel Ty anddoon o cevipla yoaunhodv ndpwy YenoLoroL-
ovtag to LC-Protonets. E&dyouue avanapaotdoelc and tela dlapopetind mhaioto: oaneuvdeiog and
TO TPO-EXTAUOEVPEVO LOVTEND, amd TO XxpuPd oTpWU Tou exmoudevpévou MLP Probe, xou ané to

TPOGOPUOCUEVO LOVTERO.

V.2 Aroteréopata xar Avaluon AZohoynorng OcspeAwdwny Movtélwy

V.2.1 Probing xouw Enirenduevn Ilpocapuoyi

Ta anoteréopata anoxolbmtouv 6Tt To Qwen2-Audio emituyydvel tnv vdPnAdtepn anddoon pe
88,59% ROC-AUC xa 56,48% mAP oto probing, Behtidvovtac nepoutépw oe 89,37% ROC-AUC
xot 58,73% mAP petd tny emPrenduevn npocappoyy. To poviéro avtd axoroudeiton oand to MERT-
95M xou to CLAP-Music&Speech ye cuyxplown anddoon, eved to CLAP-Music delyvel onupovtixd
YOUNAOTERY amddOoaT).

IMopatneolue éva GUVETES TEOTUTO UELWUEVNE ATOBOOTC Yiol LOUCIXES TTHPABOOELS TOU (VAL TTOALTL-
OUXE OTOUOXPUOHEVES amtd Tal BEQOUEVO TIOU YEMOUWOTOLOUVTOL YLl TNV TEOo-eXToddEUoY) TwV avti-
ool WV VePeMndOY povtéhwy. Ta dutixd pouoixd olvola dedopévwy (MagnaTagATune xou FMA-
medium) emtuyydvouv cUVETHS TNy LPNAGTEEY anddoot ot Gha Tor YePENLODN HOVTERD, HE TUWECS
ROC-AUC nou gtévouv 10 96,60% yio to Qwen2-Audio oto FMA-medium. To eAdnvixd (Lyra) xou
Touvpxxd (makam) pouoxd cUvoha dedouévwy deiyvouv pétplo amddoom, eved Ta oUVOR SEBOPEVLV

wiurc povowfic (Hindustani xou Carnatic) ouvidwe epgaviCouv ) younhdtepn anédoon.

AZ{ler va onuewwlel 6T oL tpooeyyioelc pag emtuyydvouy Ty xahltepn enidoon mou €xel avapep-
Vel oe mévte and ta €L ohvoha Bedopévev, pe To MagnaTagATune va etvan 1 uévn e€alpeon. Qotdoo,
1N oLVETHC pelwor TNE amdBocrc Toug Yial ToIAOUE TOALTIOHOUE, UTOBNAWYVEL OTL Ol AVUTAEC TACELS

Toug elvon axduU” TEOXATELANUUEVES TEOC TLC BUTIXES LOUOIXES TUPAUBOTELS.

V.2.2 Mé&dnon IToAhaniov Katnyoeiov pue Alya Iapadeiypota

To Qwen2-Audio xatadexviel, xan €8¢, TV xahltepn cuvohxy anddoon pe 32,00% macro-F1
xou 56,85% micro-F1 petd v emPhendyevn npocopuoyh. Evtolvtolg, axdun xou n anddoon tou
xohOtepou Yepehiddoue poviéhov (Qwen2-Audio pe nepiocdtepec and 600M nopapétpouc Yoo TNy
eneepyacio Tou Ayov) elvon ouyxpiown ye évav poviého VGG-ish tou anoteleiton and ubdhic 3,6M
Topopéteous. Autd unodnhwvel T n pdinon ond Alya mopadelyuota Topadével TEdOXANCT Yiol T
Veuehlodd” HovTéNa.

‘Ortav e€etdlovye to amoteréopato ovd mopddoot, mapatneolue 6T H6Vo oTo duTIXd GUVOAX
dedouévwyv (MagnaTagATune xou FMA-medium) to xahitepo depeiiddec povtéro (Qwen2-Audio)
emituyydver onuavtxd xalvtepy oanoédoon and to VGG-ish baseline. Autd to elpnua mopéyel plo
emmhéov €VOelln TNS BUTIXOXEVTEIXAC TpoXATAANdNE Tou €xel evowuatwie!l oTo LOVTEAX VT AOYW

TV BEBOPEVLV TRO-EXTABELCHC TOUG.
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V.3 CultureMERT: 'Eva IToAunoAitiopixd Ilpocoppoouévo Ocspehiwdeg
Movtélo

Baowlépevol oig YVOOELS amd TNV 0OAOXANEOUEVT aELOAGYNOT TV VEUEMMBDY LOVTEAWY, THPOLCLY-
Coupe Wwa véa mpocéyyiomn Yol TNV evioyuorn tne moltiowxhc toug aviiindne. Ta anoteréoparta
a&lohdynong €xouv xatadellel capds 1660 TN SuVITOTNTA GO XU TOUG TEPLOPLOUOUE TWY LUTdPY -
VIV YeueMwdOY YoVTEAWY 6Tay e@apuéloviol ot TOWIAEC UOUCIXEC TUPAUDOOELS.  LUYXEXPUUEVA,
TOEATNEHOOUE Lol CUVETH PElwoT TNG AmddooNE YLl TOMTIOUXE OTOUOXPUOHUEVES TURABOCELS XAl OF

oEVEpLAL YUUNADY TOpwY, UTOYRoUiloVTaS TNV avdyXn YL EWIXEC OTEATNYIXES TPOCUPUOYNS.

V.3.1 Ztpatnywxn Xuveyxlouevne Ipo-exnaidesvong Avo Xtadiny

I va mpooappbéoouye to Yeuehinddeg poviého MERT oe mouxihec pouoixée napaddoele, yenot-
ponotolue cuVELLOUEVT TTRO-EXTA(BEVGT), 1| OTolol EMEXTEIVEL TNV EXTIUBEVGT] EVOC TPO-EXTAULOEVPEVOU
HovTENOU oe Véo BEBOUEVY, UE GTOYO VO TO TEOCUPUOCEL GE €Vay VEO cUVOAO Sedopévwy 1 ot Lo
véa gpyacia BlatnedvTac TaedAAnha TNV TeonYolUevn Yvaor. Aedouévne auThc NS YETATOMONG
Tou YovTéhou, 1 culeior CUVEYLOY TNC EXTTAUBEUCTC Tou oTo VEd Bedouéva pnopel vo odnyRoel oe
xUTAG TEOPUC ARUT) xa %o TEOGUpUOYY.

o vor avTEeTOTIOOVHE TO PUVOPEVO QUTO, TEOTEIVOUUE [iat aTeATnYXr 800 oTadlwy Tou GTo-

Yepornolel Ty exnaldevor| Tou.

¥tddio 1 - Pdom Stadepornoinone: Exnaldevorn oe éva uixpdtepo unocivoro dedouévwy,
EVNUEPOVOVTUC HOVO GUYXEXQOLIEVO TUNUOTA TOU LOVTEAOU EVEG dLatneolpe tov xwdixomointy| Trans-
former naywyévo. I'iot var HEWWOGOVPE TO ATOXALOY GTNY XATAVOUY TLV DEDOUEVLV KO VO UETPLACOUYE

™ M7, evowuatdvoupe 20% dedopéva Music4All (xuplwe Sutind) oto uelyua Tpo-exnaidevone.

Ytddwo 2 - IIAfene Ilpoocaproyn: Eecnaywvoupe Tov xwdixoromtr Transformer xou cuveyi-
Coupe v exmaldeucy oto TAHPEC GUVONO BEBOUEVLV.

Avth n npocéyyion eioopponel TRV TAAGTIXOTHTA (TPOCUPUOYY| O UN-duTiXéS TapaddoELS) ot
™ otodepbdtnTa (Slathenon Yvoone ot dutixd cOvoha Sedouévwy), avtiuetenilovias anoTeENEoHOTIXS

T0 diAnupa otodepdTNTAUC-TAACTIXOTNTAC.

V.3.2 Apuduntixn Epyooidv yia Atanoiitiopxr Ilpocappoyy

Q¢ evalhoxtixf; ot ouvexllouevr tpo-exnaideuot), e€epeuvolue Ty aptdunting epyaotdv (task
arithmetic), n onola cuvdudlel ToMTiownd eZeldixeupéva LovTéda aTov Yo Popdy. Aaufdvouue
dlavbopara epyaotody uroloyilovtag 1 Slaopd otolyelo mpog otolyelo Yeta€ld Yovtéhwy mpocop-
HOOUEVRY O Uiat XOUATOVpa xou Tou Baoixol yovtéhou MERT. I'o toAunoAitiouiny| mpocopuoy),

AAUTOOHEVALOUPE EVOL EVOTIONUEVO LOVTENO CLYYWVEVOVTOG OAa Ta DlavOOUATO EQYATLOV.

V.4 AZohoynorm Anddoorng xow Alanolitiopix) Avaiuorn tou Culture-
MERT

To CultureMERT, npocoppocuévo uéow nolumohitiopinic cuveyllouevne npo-exnaideuong, u-
neptepel Tou apyxol poviéhou MERT oe dheg ta un-dutind mpoPfAruarta xou yetpixés alohdynong,
emTUYYGvovtag wo péon Behtioon 4,9%. Treptepel enione TwV YOVTEADY TEOCUPUOOUEVGY OE Lol

%x0UATO0PA XATd UECO GO, UTODNAWLYOVTS OTL 1] EVOWOUATNOT TOAUTOATIOUWXMY dEBOUEVLY PeRE

44



Extetopévn EXAnvixd epiindm

OAeC TIC UN-OUTIXES ToPABOCELS BEATLOVOVTOC TNV TOLOTNTO TV AVATUPACTICEWY Yo XJUE EMLUEPOUS
ToAMTIOUO.

AZ{ler va onpeledel 6tu o CultureMERT 1o emituyydver awtd pe ehdytotn Mdn oe dutixd onuela
avapopds (0,056% péon ntdon oto ROC-AUC xou AP), xotaBetuviovTag TNV dmoTEAESHATIXOTNTOL TNS
TROGEYYLoNG YaC.

Emniéov, n oprdunuxy epyaotdyv anodidel cuyxplowoa pe to CultureMERT oe un-dutixd npoBin-
portor xou oxOuT) To Eenepvd oe BuTixd onueio avapopds xo 6To ohvolo dedouévwy Lyra, xatadetnviov-
ToG OTL 1) GUYYWVEUOT GTOV YDRO0 Bapddy TOMTIOUIXS EEEBIXEUUEVLY LOVTENWY UTOREL VoL YpNotUevoEL

¢ YAl ATOTEAEOUOTIXT EVOUAAAXTIXY Yiot EXUAUNTY) TOAUTOATIOUXY OVOTOQROGC TACEWY.

V.4.1 Awanohitiopixr Metagopd

H ouveywlouevn mpo-exmaldeuon o pa gouotxy| mopddoon umopel Vo w@eAfioel dhhec ot O
apopeTxole Boduole, omoxoAOTTOVTOG ACUUUETEIEC TNV OMOTEAECUUTIXOTNT TNG SLUTOATIOUXNAS
petagopds. o mapddelypa, mopotneodue Loyupt Letopopd uetalld Tovpxixov-makam xou Carnatic
HoLGWAC, YEYOVOG Tou evduypauuiletar Ye To xowvd Vewpntixd Yepéhior TV HOUGIXMDY TOUS GUC T
pdtwyv. Emmiéov, n woyuer anddoon tou poviéhou npocappocpévou oto Carnatic otnyv xouktolpa
Hindustani edpdleton otn YEOYQUPIXH %ol LOUCIXH EYYUTNTA TWV TUPASOCEMY AUT®Y, WBlaltepa oTNV

xown yefon twyv raga (Uehwdinde tpénoc) xou tala (puduind Thaioto).

V.5 Yvunepdopata xow MeArovtixég Katevdivoeig

H o€ioh6ynom| pac twv YeteMmddy HoVTEAWY Yo SLapope Tino0E LOUCIXOUE TOMTIOHOVS ATOXUAUTTEL
TOG0 TS BUYATOTNTEG GO0 XAl TOUC TEPLOPLOUOVS TOUG, EVE) XUTADELXVIEL ATOTEAECUATIXEG OTRATIYIXESG
yioe TV evioyvuon tne svehi&lag ot Ydinomn Louoxic avanpdo TaoTS.

Y10 ohoxhnpwpévo mhalolo aflohdynong moa avantOEoUE, BLAMICTMOOUUE OTL AUTE T HOVTERD
eMETUYAY XUAUTERT] ANOBOOY OO TEONYOUUEVES TEOCEYYIOELS Yiot TNV AVAAUGCT] TAYXOOWULAS LOUCIXNS,
XOTABEXVOOVTAS EVIUTWOLOXES LXAVOTNTES DIAMOMTIOWIXAC PETAPoRds. doT600, evioTioaue capelc
evdelZelg Sutioxevtpixic TpoxatdAndng, WLdtepa G GEVARLAL YOUUNADY TORMV.

Iot vor v TIHETWTICOUPE TOUE TEPLOPLOUOUE TTOU EVTOTLOTIXAY OTNY 0ELOAGYNOT ac, avamTOEAUE TO
CultureMERT, évo tohunoMTiomxd ntpocopuoouévo Yepehiddee ovtéro mou dnuiovpyridnxe Yéow
ouveytloUevne Tpo-exTalBeuone oe BlaPOPETIXEC UN-OuTixéc Youotxéc napaddoel. H Biamohitiopnr)
a€loroynom xatédee 6t to CultureMERT uneptepoloe tou apyixol wovtéhou oe moxiia Un-dutixd
TpoPBAfuata povohic tadivéunone datnpdvtac tapdAinio Ty anddoon ot dutixd onuein avapopdc.
Avuto to elpnuo emBefoucdvel T dBuvaToOTHTA TNE CLUVEYOUE TRO-EXTAUBEVGNE Ylot TNV evioyuon Tng
TohTioxc ouunepiAndng Twv YedeMwdody HOVTEA®Y Ywelc Vo YUGLELEL TG YEVIXES TOUC IXUVOTNTEC.

Q01600, éva Bacixd epOTNHUA TUPAUUEVEL AVATAVTINTO: TGO XUAS AUTEC OL UTOAOYLOTIXEG pédodol

evduypopuifovton pe TV avipdmivy avtihndn avapopixd Ye T OYECELS DIUPOPETIXWY TOATIGHNOV;

VI AwanoAiticuix) Mouvowxyr; Opoldtnto: I'epupvdyvovtacg
v AvOponivny Avtiindn xow tig YTroloyioTixée Medo-
oouc

Avuty) n evotnta nopouctdlel TNV TeWTY OAOXANEWUEVY) AELOAGYTOT) UTOAOYLO TIXGMY UEVHBRY LOVOIXTG
opotoTNToG Evavtt TS avlpdmivng Stamoltioxic povohc avtiAndne, mtopéyovtag xplown eumelpinn
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eMUUPWOY TWV TPOCEYYIoEWY EXUSUNCTC TOAUTOATIOUIXGY LOUCLXMY UVOUTUPAUC TUACEWY TOU oV~
oy Onxay o 6An owth N dateBn. Méow cuotnpatinic oUYXELoNG TG0 EQUNVEUCLUWY YAPUXTNEL-
oty eneepyaoiog 0UaToc 660 xo cUYYEOVLY VePEAWdOY LovTEA®Y évavtl avipdmivey xploewy
ouoLOTNTOC OE EVVEN TOIAEC HOVOIXEC TORADOTELS, AUTH 1) LEAETY) BLUTUTLAVEL €VaL VEO OTUELD avapOpdiS
v TNV aLOAGYNOT TNG AMOTENECUATIXOTNTAS TWV DATOMTIOIXOY LOUOIXDY GUOTNUATLY TEXVNTAS

vonpoouvne.

VI.1 MeAétn AvOpwnivng Opolotntag

I vou xotavofooupe g or dvdpwnol avTAouBEvovTol Tn Lousxy) OUoLOTNTO OE DLOPOPETIXES
TOMTIOULXES TOPABOCELS, BlevepYNoaue (i Bladuxtuoxy| épeuva cUAREYOVTOS Xploelc opotdTnTag amd

GUUUETEYOVTES UE BLopopETXd Louaxd LToBardpo xou TOATIOUXES XOTAYWYES.

VI.1.1 ¥yediacwoc 'Epsuvag xow MeBodohoyio

H perétn pac nepthapPdvel evvéa pouotxd cOVolo SESOUEVRY TIOL AVTITPOCWTEVOUV SLUPORETINEG
TOMTIOUXES Tapaddoel. Amd xdde ohvolo Bedouévev, emAEEoUEe 52 AVTITPOCWNEUTIXA XA 1) 0U
Oudpxetag 20 SeuTEPOAENTWY, UE amOTEAECUO GUVOAMXE 468 MyNTixd amooTdcuaTo Tou XOAOTTOUV
OLAPOPETIXA OPYOVAL, POVNTIXG OTUN X0 HOUCLXES DOUECS.

Axohloudovtag xadepnuéveg pedodoroyleg otny €peuva povoixic avtiindne, yenotuonotiooue
po tpoogyyion avd Lebyrn obyxplone 6mou ot cuupeTtéyovies allohdynoay Tuyaio emheypéva (elym
TGOV anoonacudtwy 20 deuteporéntwy. Kdle ocuppetéywv allohéynoe 10 povadd Ledym,
napéyovtag Badpoloyieg o Tpelc dlaxpltéc Bl TEoES OUOLOTNTAS YENOULOTOWVTAS o xAluaxa Lik-

ert 9 onuelwv:

1. Zuvolwxr) Movowxr OpordétnTon “lIéco duola elvor to 8U0 NYNTXS ATOCTAGUATA GUVO-

Axd;”

, , WTTA o ; , . . .
2. ITohtiopix”) OporotnTor “Ildco dpola elvar Tar 5UO NYNTHE ATOCTIACUATA GTA TOALTLOULXAL

TOUG YOEOXTNELOTIXG;”

3. Oporotnta Emnédou Ybotaong: “Iléco mdavé elvar vo fdiete ta 0o nyntind anoond-

opato oty (Do Moto avamapoywyhc;”

To nopomdve mAoiolo emTeeénel TNy e€ETAOT TOU TOC SLPORETIXEG TTUYES TNG opoloTNTaC evdu-
yooppilovton 1 amoxAivouv, Wlodtepa onpavTixd yio TN dAmoMTIoMXY avdhuon OTou 1| LoUCIXT) Xal

TOAMTIOULXY) OUOLOTNTA UTOPEL VL (U1) CUUTITTOUY.

VI.1.2 Anpoypapixd Stoiyeiot ZUUUETEXOVT®WY %ol LTATIOTIXA AcSouéva

H perétn pag ouvélele amavtioec amd 125 cupuetéyovteg, pe anotéieoua 1130 diapopetixd
emonuewwpéva Levyn mov amoteholvtal and 463 diapopetixd xMr fyou. Ou oyohootég mponivay
and 21 ydpeeg xon avopépouy 13 dlaxpttd enineda povoixic exnaldeuong, evéd 58 Siapopetixol povaixol
ToAMTIoUol avaryvoploTnxay w¢ oxelol amd Toukdylotov évav cupuetéyovta. Ioapd tny eAknvuc
mhelovotnta (62,4%), n exnpootdnnoy and Siopopetinés Teployéc ouumepthauBavouévne tne Aoiog,
e Eupdmng xan tne Bépetag Apepiniic e€aopauiilel ) Slamohitiowiny| eyxupdtnrol.

H xotovoun nhuady twv cugueteyoviwy extelveton and 18-64 £tddv, Ye TNy TAELOVOTNTO Vo EY-
ninTel oty Nhuaox| opddo 25-44 etdv. H opdda 25-34 avtimpoonnelel To peyahitepo tuhpa (50
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oLUUETEYOVTES), oxoloudoluevn and v 35-44 (37) xan tnv 18-24 (29). ‘Oocov agopd to @iNo, U-
Tdpyovy 75 &vdpec ouppetéyovies (60,0%), 42 yuvaixec ouppetéyouoee (33,6%), xou 8 cupueTéyovTes
Tou andvinoay ‘Ao A npotipncay va pn dniaoouy to @ilo toug (6,4%).

VI.2 Xapaxtneiotixd Encfepyaciog LAuatog xow Ocpeiieddn Movté-
Ao évavtt AvOpwnivng AvTidndng

AZohoyroaue cLGTNUATING TOGO Ta YAPUXTNELGTIXE encEepyaciog GHHATOC 6G0 XaL To VEUEALDD
povTéha Evavtl Twv avipdTvwy XploEwY OUOLOTNTAS XENOLLOTIOLOVTAS TEVIE CUUTANOWUATIXG LT
yio xdde pio amd Tig Tpelg SlaoTdoelc ogoldTNTAC. ATy 1) OAOXANEWHUEVN AELONOYNOT) TIOREYEL YVOOELS
Y10 TO TOLES UTONOYLOTIXEC TpooeYYioels euduypoyupilovton xahbTepa e TNV avlp®TLvy SlamoTLowxy
povoh| avtiAndm.

VI.2.1 OhoxAnpwpévn AZtohdynor Anddoong

Ta anoteréopato amoxahOTTOLY Sloxpltd TEdTUTH amddooNne UEToD YUpaXTNELOTIXWY ENEEep-

yoolog OAUATOS Xl VEUEAWDDV LOVTEAWY.

Anddoon Xoapaxtneiotixwv Enelepyaciog Irpatoc: Metald tov YopoxTnplo XY
eneepyaoiog oRuatog, 1 HEAMSiO XAUTOUBEXVUEL YUE CUVETELR TNV ovOTEPY anddoor oe Oha Tor pé-
TpoL xou TL¢ Soo tdoelc opodtnTag. H pehwdla emtuyydver Tic xahbtepee Tiwéc MAE (29,5-30,9%) %o
deiyvel Tic Loyupdtepes ouoyetioeic ye tic avlphnives xploelc (Spearman p = 0,14-0,15 o Kendall ©
= 0,12-0,13). Autd emBeBouciver Tov xevipixd pdho e wehwdiog otny avlpdmvy avtiindn wouoixic
opoldtnTog o€ 6Aoug Toug Tohttiopols. Avtileta, ta yapaxtnelo Tind pudpol, apuovicg xan NYoyen-
patog delyvouv meploplopévn evduypdumon pe Ty avlpdmvy avtiindn, ue cuoyetioelc xovtd oto
UNOEY 1 EAAPPWS APVNTIXEC.

Arnodoon Ospeliwdhdy MoviéAwy: To Jeyehinddn Loviéha YEVIXE UTERTEPOLY TWV Yopd-
xTNplo Ty encéepyaotog ofuaTtog oTig Teploaotepec Yetpxée, e To CLAP-Music&Speech va avadet-
XVOETOL WS TO X0puYaoc POVTENO, EMTUYYEVOVTOS Tic LPnhdTepes Twée triplet agreement (62,6-
64,9%) xow NDCG (88,0-89,8%). Qot600, 1ol YopaxTnelo Tixd UEAMDIOC THPUUEVOLY OVTOLY VIO TIXYL,
emTuydvovtog Tic xohUTepeg wéc MAE xau toyupt| anddoorn cuoyétiong.

H avatepn anddoor tou CLAP-Music&Speech évavti tou CLAP-Music unoypopuilet tn cuvépyela
HETAED UEAWOIXWY TEOTWY xa oWthiog, xoddC xaL oL 800 GUUTERLAUBAVOUY GUUTANCOUTIXEC TTUYES
NE Hovonc éxppaong mou etvan Wiaitepa TOAITIUES Yial T DIAMOMTIOUXT] LOUCIXT] XUTAVOTON).

To MERT-95 xatadeixviel GUVETT anddooT o€ OAEC TLC BLAC TATELS OPOLOTNTAS, EVE TO HEYUAUTERO
povtého MERT-330 delyvel uxtd anoteréopata, Yeprés (QPOpEC UTOATOBIBOVTNS TOU UIXPOTEPOU
OUOAGYOU TOU, YEYOVOS oL elye Tapotnenlel xou oTa anoTeAéoUaTa TNG TRoNYoLupevNng evotntag. Ot
ToATlouxd tpocdppocuéves topolhayéc CultureMERT unoanodiSouv tou Bacixod poviéhou toug,
MERT-95, x4t mou eivar Aoyixd dedouévou Tou xupiwe dutixol pouoixol unofddeou Tou delyuatog

GUUHETEYOVTWY UOG.

VI.2.2 AvdAvorn ALanoATIoRIXAC ALaXelToTNTog

I v extigiooupe 660 xahd oL UToROYLo TiXES YéYodoL dlaxplvouy PeTadl BLUPOPETIXDY LOVOLXWY
TEABOCEWY, AVOADOUUE TN DLUTOAMTIOHXY] TOUS BLUXELTOTNTA YENOULOTOLOVTAS AGYOUS BLoywpeLoUol

Baolouévoug oe andoTaoy. Luyxplvoupe auTolS Toug AOYoug e T avtioTolyeg Tiwée avipdmvng
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avTiAndme yiow vor TopE YOUUE EVPTUATA OYETIXG UE TO TOGO OMOTENEGHUATIXG OL UTONOYLC TIXEC TPOGEY-
yioelg Umopolv va avory vwploouy Ta TOATIoULX HpLa.

Or avipomniveg xploelc ouoldOTNTAS XATABEXVOOUY OVOTERY TOMTIOUIXY Sldxplon, pe T didoTtoo
ITolTiouxAC OPOLOTNTAC VoL EMLTUY YEVEL Tov LPNASTEPO AoYO Blaywpiowol (2,361), axorovdoluevn
ané 1o Eninedo clotaone (2,106) xou ) Xuvokxr| povowxy| opotdtnta (1,803). Autd emfBefancive
6Tl oL dvipwol avaryvwpllouv xat Sloxplvouy Ye cUVETELX TLC ToLX{AES LOUCIXEC TIoEABOTELS.

MeTall tov yapaxtneloTixdy enelepyooioc oRUatos, 1) Uehwdio xow TdAL avadexviEToL WS 1) O
droprtind (1,276), oe oupgovia ye ty avodtepn anédoot; tne. To Yeuehiddn poviéha uneptepolv
ONUOYTIXE TOV YAROXTNELOTXGDY ETEEEPYATIUC GUATOS GTNY TOAMTIGUXT DIAXELOT), OAAS avadEVOOUY
évay onuavtind cuulBiBacud peta€l xadoMUAC LOUCIXNEC XATAVONONC Xol TONTIOUXTG BlaxeLlTdTNTAC.

To Qwen2-Audio emtuyydvel Toug LPNAGTEROUC AEYOUE BLotyWELoUOU PETOEY OOV TKV UTOAOYL-
oty pedddwy (1,579), xotabetnviovTag avmTeEN ovOTNTa SLdXELoNE UETOED LOUGIXOV TORAdGGEWY.
Avtideta, to CLAP-Music&Speech, v dianpénel otny evduypduuion pe v avdpdnivny avtiindn
opoldtnac, delyver mo pétplor anddoon didxpione (1,366), urtodnimvoviae 6Tl T povtéha oy el
vou BedtioTonomnuéva yior xa§ohxr SIUmONTIOUXT HOUCIXY xoTavonoT uropel vor Yucoldlouy xdmota

BlaELTxy) BUVAUT OYETING UE TNV AVIYVEUST] TWV TOMTIOMXOY oplwy.

VI.3 Mé9odot Juvohou yia ITpbBAedn Avipdmivng OpotdtnTog

I var o€lonotioouye Ta GUPTANEWUATIXG SuVATE oNuela TV YAPAXTNPLOTIXWY enelepyasiag o
HOTOC X0l TOV oVOTORAC TAoEWY VEPENWIOY LovTiéhwy, avantilope uedddouc cuvérou (ensemble)
mou oUVBLALoUV OheC TIC uTohoyloTXéC mpoaeYyioels yia vo mpoPBAédouv Tic avipdmives xpioeic
opototnTag. Auty 1 avdhuor e€epeuvd edv 0 GUYBUAGHOE EPUNVEVGULMY LOUGIXMY YORUXTNELO TIXOVY
HE ovomopolo Tdoels YeUeAmBWY LoVTEAWY dUvaTal vor eTLTOYEL avdTERT, ELHUYEGUULOT HE TNV avipdTivy

dlamoMTiopx] wouoxr avtiAndn.

VI.3.1 AnoteAécpata Anédoorng Luvoiou

Ou pédodol cuVOROL ETULTUYYAVOLY aEloONUEIWTES BEATIOCEL 08 CUYXELOTN HE TIC UEUOVWUEVES
npooeyyioes. To alvolo ypoppunhc mokvdpdunong emtuyydver Tiwée triplet agreement 65,1-67,0%
ot olUyxplon pe Ty xahitepn pepovouévn pédodo (CLAP-Music&Speech) oto 62,6-64,9%. Iopd-
powa, ot tée NDCG gtévouv to 90,9-92,5% évavti Tou nponyoluevou xolitepou 88,0-89,8%.

Emniéov, ol yédodol cuVOAOU EMTUYYAVOUV ONUAVTIXEC UEIDCELS OTO o@dhua tpofBiedng, pe
Tpéc MAE 19,7-23,2% mou avtintpocnnelouy Behtidaotle nepinov 6-7 nocootialny povedwy évavtt
TWY XOADTEPWV PEROVOUEVLY LEDEBwY (yapoxtnplotind pehwdioc oto 29,5-30,9% MAE). Autéd o-
VITPOOWTEVEL YLal OYETXY| Uelwon opdhpatoc mepinou 25-30%, xotadewviovtac 6Tl 0 cuVBLUoUOS
TOMNATAGY UTONOYLIOTIXWY TPOCEYYIOEWY TAUPEYEL CUUTANOWHATIXES TANEOYORIES Yiot TNV TROPBAed

VIpOTVOY XElGEWY OPOLOTNTOG.

VI1.3.2 AvdAvorn Yuveiocpopds YroloyioTtixwdy Moviédwy

H avdhuon oroudodtntog anoxahOnTeL T oYETINY oNpacior SLPopETIXMDY UTONOYLO TIXWY UETOdwY
evto¢ TV TpooeyYioewy cuvélou. To CLAP-Music&Speech avadeixvietal wg 0 x0plog GUVELTPERKY
xat oTig 800 uedédoug cuvdlou mou avarTdy UKy, Ye ToV LYNAOTERO GUVTEAES T YEUUUXAG TTathLv-
dpbunonc (23,5%) xon v uPnidtepn T xépdouc Light GBM (89,3). Autd to elpnuo emxuptvel
TNV TEONYOUUEVY TopatheNon Hac OTL To YoVTéAO owTd EMTUYYAVEL TNV XoAUTERY eudUYEdUULOT UE
Ty avidennivy Slanoltiopxy povoixn avtidndn. Metall twv yopoxtneio iy enelepyooiog orfua-

T0¢, N pehwdia dtatnpel T Véom e we To O SNUAVTIXG YAPUXTNELOTIXG (YEUUUIXOC CUVTEAES THC:
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19,2%, xépdoc Light GBM: 58,6), emPefoucivovtoc tov Yepehddn pbro tne otny avipdrivny avtiindn

HOUCXNG OHOLOTNTOG OE OAOUG TOUC TOMTLOHOUC.

VI.4 Yvunepdopata

Autd to xepdlono mapovsiace TNV TENOTN OAOXANEWUEVT AELOAGYNOY UTOAOYLOTXGDY PEFOd0Y
HoUCXC opoldTNTAG EvavTl TG avipdmvng dlamoAitiouixic povotxic avtiAndng, napéyovtag xployn
EUTELRIY) ETIXVPWOT TWV TPOCEYYICEWMY EXUAINCTC TOAVTOATIOUXDY LOUCLXMY AVATUPUCTAGEWY TOU
avoartOydnxoav oe 6An T STl

To Baowd suphuota and autr TN Blepedvnon EMXVEWVOUY Xl ETEXTE(VOUY BLAPOPES YVOOELC
and mponyolueva xepdiota. H avdteprn anédoorn twv Jeuelmdoy HOVIEAWY EVavTL TwV Topadoot-
XY yopaxTnelo Ty enelepyacioc ofuatoc emPBefoudvel T SUVITOTNT TV TEOCEYYIGEWY TOU
a&rohoyinxav oto Kepdhouo 5, eved 1 avaxdAudm 6tL 1 yekwdio ovadetxvietal CUVETHE ¢ TO O
mpoPhentnd yopaxtnelo Tnd eneepyaciug onpatog evuyeauileTal UE TN OUGLXOROYIXTH XATAVONOY).

H anoxdhudn 6t o pyédodol cuvélou Tou GUVBLALOLY EPUNVEUCLUN YOPUXTNELOTIXG UE Ovo-
TAPAC TACELS YEUEAWBDV HOVTEAWY ETULTUYYAVOUY TNV xoh0TERY eLILYPAUULON HE TNV ovDpOTVY o-
vtidndn, xatodexviel T GUUTANEOUOTIXY afld TV SLUPOPETIXDY UTOAOYLOTIXDY TROCEYYICEWY TOU
avamTOyUnxoy oTn Slatel3n.

H pehétn anoxolUntel, enlong, onuavtixés dlapopéc PETAED avlpOTVLY Xol UTOAOYLO TIXWY GTROTY-
yixwyv ene€epyaciog mou €xouv oNuavTiXéS EmNT®oelS yio Tov Topéa. To ebpnua 6Tl oL dvipwrot
Blvouv TPEOTEPUOTNTA GTO UEAWDIXO TEPLEYOUEVO EVE TOMAS Vepehicddn wovtéla divouy éugacT oTa
NYOYEWHATXE YopaxTneloTxd emonuolvel wia xplowrn avavtiotolyio mou extelveton mépo ombd TNV
ey VY| BEATIOTOTOMNOY OE EpWTAUNTA OYETIXA PE TOUG GTOYOUS Xal Ta Xplthplal a€loAdYNOoNE Yid To
GUO TAUATO LOUGLXNAS TEYVNTAS VONUoGOVNC.

Ou pedodoroyinée ouvelo@opés autiC TG MEAETNG, OoUUTEQLAUUPBOVOUEVOU TOU TOAUBLEG TOTOU
mhatoiou a€loAdYNoNC OUOLOTNTOC, TV OAOXATOWUEVKY UETELXWY 0ELOAGYNOTC XAl TWY TPOCEYYIoEWY
oUVOAOL, ToPEYOUV TEOTUTIOL Yio HEANOVTIXY €peuva oL Urmopel Vo cuveyioel Vo Tpodyel TNV gu-
Yuypduuion PeTaEd UTOAOYLOTIXNG Louatxric avdAluong xou avipmdrvng avTIANTTIXAS XoTavonong oe

OLAPOPETIXA TOALTIOULXE TThadoLaL.

VII Yvurepdopata xow MeAhovtixegs Katevddvoeig

Avut) 1 SwtpBy) Siepebvnoe ) expdinocT avamapac TACEWY Ot TOWIAEC LOUCIXEC TOPADOOELS YLot
VALY LOUCLXOU CHUATOC UECE WLOG OELRAS BLUOLVOEBEUEVWY UEAETOY. ZEXWVOVTIC UE TNV ovVi-
ntuén Tou GUVOAoU dedouévwy Lyra yia ehknvixy) mopaBootoxt] Lousoixy), TeoYwemVTIG GE SLEREUVHTELS
TPOGCEYY(OEWY UETAPORAS YVHOONG Xt uddnong and Aiya mopadelyyato, a&loAoYMVTIG Xol TEOCupUd-
Covtag Geuehlcddn povtéha yia ToIAES HOUCLXES TORABOGELS, Kol XOPUPKVOVTOC GE L0 ONOXATIOWUEVT]
0LONOY MO LTOAOYLOTIXWDY UEFOBWY LOUCIXAC OPOLOTNTAS EVavTl NG avilp®dmivng SLUmOATIoUXS
povohc avtidndng, auth 1 épeuva cUVEBae oty TEOWUNOY TNC EXPAINONG OVATUPUC TECEWY Yia

Towxihat LoVOIXE GUOTHUUTA.

VII.1 Y0vodn Yuvelcpopwv

O x0pieg ouvelo@opéc auThE TNS BLaTEBNE XUADTTOUY TNV AVATTUEN GUVOAWY dedoUEVWLY, uedodo-
hoywée xauvotopies, aglohdynon YOVTEAWY, oTEATNYIXES TpooupuoYNC xou Uehétee evduypduplong
avp®TOU-UTOAOYLOTH, AVTWETOTILOVTOG To EQEUVATIXG EQOTAUATA Tou BlaTunwdnxay oTnyv €loa-

Ut
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VII.1.1 AvTiwpetonion tng Endpxeiac Asdopevey yia ITowxileg Mouvowxég ITopado-
ceic (EP1)

To olvolo Bedouévwv Lyra avtinpoownelel Tnv ohoxhnowuévr andvinor uac otn Yeuehiddn
TEOXANCT TNG OTOVLOTNTAS OEBOUEVWY GTNY UTOAOYLOTIXY avdAUGT Topadoataxhc wouotxic. Auth 1)
cLANOYT eNAnVXTC Tapadootoc xou hdixig Louoxrc, mou nepthapBdvel 80 dpec uPnAAc moldtnTag
NyoyeapHoeny, xotadelxviel wa yedodoroyia yio Tn dnuovgyio ToMTIoWXE VEUEMWUEVLDY CUVORLY
dedouévmv Tou umopoly va LTooTNEEoUV TNV UTOAOYLOTIXY avdAUGY CEBOUEVO TN LOUCIXONOYIXT

AXEQUUOTNTAL.

VIIL.1.2 Katavonor tne AtanoAitiopixic Metagopds I'vong (EP2)

H cuotnuatic Slepebvnot Yag Yio T BETOPORA YVOOTE UETAED LOUGLXDY TORUOOCEWY TAREYEL TNV
TEAOTN OAOXANEWUEVT, AVAAUGCY) TOU TG 1) UTOAOYLOTIXT| YVOOY] UETAXIVEITOL OE BLUPOPETIXG LOUGLXS.
ocuvothuato. H augidooun @bon tng anotehecyatinic UETAPORAC YVOONS aupiolnTel Tig mopadoyég
Yot TNV Tpwtoxadedpla TV SUTIXG EXTULBEVUEVLV LOVTEAWY Yid TNV AVEAUGT] TayXOOULAS LOUGLXAC.
Autd T eupridator EBpotdVoUY OTL Tal UTOAOYLO TiX HOVTEAA UTOPOVY VoL amoXahOPOUY GNUAVTIXES TyE-
oelg HETAED LOUOIXMY GUC TNUATKY TOU GUUTANEMVOLY TIC TORUBOCLUXES LOUCLXOAOYIXES CUYXPLTIXES

MEAETEC YE TTOCOTIXG, Bocioyéva o BESOUEVA, EUPHUOTA.

VII.1.3 MdOnon arnd Ilegropiopéva Iapadeiypata oe Mouvowxd IThaicia (EP3)

H avdntuén twv LC-Protonets avtiyetonilel v npdxAnoyn tng omovidTntas BedOUEVOY oTNY
€PEUVOL TTAYXOCULNG HOUCIXTG UECW WULUG VEUC TROCEYYIONG OTN USUNGCT TOAADY XATNYopLdy Ue Alya
ropodelyoTo. ANUIOUEYOVTOC TEWTOTUTOL YIo GUVOLAGUOUS XATYORIOY OVTl YL UELOVWUEVES AT
yopleg, avth 1 yedodoloyia emtpénel ota UTOAOYICTIXE povVTERA Vo Uddouv and To BuVopochVOAO
TV Sldéoluwy emonueidoewy. Ot ouvenelc BeATidoelg anédoone oe SLapopeTnd Louoixd cOVOA
OEBOUEVLV XATABEXYOOUY TN YEVIXEUCILOTNTO TNG TPOCEYYIONG TEEA Amd To CUYXEXPWEVAL TAaloLaL

oto omola avantOyINXeE.

VIIL.1.4 ASiorbynomn Ocspehiwddy Moviéhwv o Mouvoixég Ioapaddoeic (EP4)

H oloxhnpouévn a€lohdynot pog Twv cOYYeovwyY Uouoixmy Vepehnddy wovtéhwy ot mouxiieg
HOUCXES TopadOOELS TOREYEL Xploldo EVPNUATA TOCO YLoL TS BUVATOTNTEG OGO %Ol YLO TOUS TEPLOPLO-
polc TV TEEYOVTILY TpoceyYloewy otny xadohixy pouoix avanopdotacy. To noAudidotato mAal-
ot0 afloAdYNoNG amoxahOTTEL OTL Tol VEUENLDOT) LOVTENS XAUTADELXVIOLY EVTUTWOLOXES DIATOMTIOMXES
IXAVOTNTES OE GUYXEION UE TEONYOVUEVES TROCEYYIOELS VK Tautoypova epavilovy cagelc dutixo-
xevipixég mpoxatahidec. To mpoBiruato udldnone mAAUTAGY xoTnYopldy omd Alyo mapaderypdta
anodeviovtol Wiaitepa anoxalutTixéc, delyvovtag 6Tt tor Yepehiddn poviéha duoxohebovTol Ue TO

eldog Twv oevapiny YouNAGY Tépwv Tou Elvol XOLVE GTNY €PELVA TYXOOULNG LOUGIXAS.

VII.1.5 Ilpocoppoy? Ocpeliwddv Movtédwy yvia ITIoAvnoAitiopixry Katavonon
(EP5)

To CultureMERT avtinpoownelel Tn GUC TNUOTIXH TEOGEY YION UOG Yia TNV EVIGYUGOT TNG TOAUTOAL-
TIOWXAC XATVONoNS TeV JEUeMWdnOY LOVTEADY UEow cuveyt{ouevng Tpo-exmaldeuang oe mouxiieg
pouoixéc napadoceic. H otpatnyns| tpocopuoyhc 80o otadiwy aviyetonilel tn Yeuehlddn npdxinon
NS XAt TEoPAC AINE eved emiteénel T otadepr| andxtnoy véoug ToATiomwxnc Yvoong. Ol cuvenelg
Behtidoeis oe dlapopeTind TpofAiuata Louoxhc Tadivéunong, we o péor Pedtioon ROC-AUC 4,43%
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oe olYXpLoN PE TO apYixd VEUEMMOES HOVTEND, XATABEXVVOUY TNV TpoxTxh o&la Tne ToATIouXAS

TEOCUPUOYTS.

VII.1.6 Teplpwon Avipanivng AviiAndne xaw Ynoloyiotixric Movoixrg Opoidtr-
zac (EP6)

H ohoxhnpwpévn Uehétyn SLATOMTIOUXAC LOUCIXTC OUOLOTNTOC AVTITPOCKWTEVEL TNV TEWTH CUCTY-
pater) a€LOAGY MO UTOAOYIC TGV PEFOBWY LOUGIXAS OPOLOTATAS EVAVTL TG aviIpmdTVNG SLUTONTIOMXG
povowhc avtidndne. H afiordynomn amoxahintel wa capr| epapyio 6Tic UTOhOYIo TIXEC TPOTEYYioEL:
Tot DeUENLODN LOVTERA YEVIXE UTEPTEPOVY TMV TORABOCLAXDY YopUXTNELO TGOV enelepyaoioc ofuatoc,
pe To CLAP-Music&Speech va emtuyydvel v udmhotepn puepovwuévn anddoon.

QoT600, Ta EVUPHPATA Wog amoxahinTouy évay Baoixd cupPiBacud peTa€ld xadohxhAc HoUsIXAC
XATOVONONG XA TOMTIOXAS DAXELTOTNTOC GTa UToAOYLo Tixd ovtéha. Eved to CLAP-Music&Speech
Eeyopllel otny evtuypduwion pe Ty avdpdnivr avtiindn opotdtntac, to Qwen2-Audio xatadexviel
AVEITEPY) OVIYVEUCT] TONTIOUIXOV 0plwV.

Emnpboteta, n avdAucT GUVELG(PORAS YoLOXTNELOTIXWY ATOXUADTTEL Slopopég UETOED avipdTivey
X0 UTOAOYLOTIXOY oTeatnyey enelepyaoioc povowric. Ou avipwrol divouv mpotepadtTnTa 010
HEAWBXO TEQIEYOUEVO OE OAEC TIC DLCTACELS OUOLOTNTAG, EVE) TOAAG VeUEA®BT LoVTERA Telvouy va
BlvouV EUQAOT) OTA NYOYPWHATIXG. YOLUXTNELOTIXG.

To mo eviappuvtind evpnua g perétng tepthauBdvel uedddoug cuvdrou tou cuvBUELouy Yopo-
xtnploxd enedepyaoiac oNUotog pe ovomapao tdoels Yeyehlwdny poviéhwy. Autéc ol mpooeyyioelg
GUVOAOU ETUTLY YAVOUY OTUaVTIXES BEATIOOELS, PTdvovTog Tés 65,1-67,0% otn petpw triplet agree-

ment xou LEWVOVTS To opdhparta TedBhedne xotd 25-30% o oOyxpion Ue Tic Hepoveuéves uedddoue.

VII.2 X0vieorn Evpnudtwy

E€etalovtac tig epeuvnTixés GUVELGPOPEC OMOTIXG, ATOXOAUTTOVTOL SLEPOopa EUPHUTA OYETIX
HE TN PUOT TNS EXUSINCTC TOAUTIOALTIOUXDY HOUGIXY UVOUTUPAUCTAGEWY KOl TS TPOXANGELS oV Elval
eyyevelc oty avdnTuEr UTOAOYLIOTIXOY TPOCEYYICEWY TIOL PTOPOVY VoL YEQUEDGOUY OTOTEAEGHUATIXG.

TOL TOALTLOUIXE 6pLOL BTN HOUGLXY) OVEAUGT).

VII.2.1 H IIgbéxAinon tns Mouvowxric Metagopdc I'voong

H Biepedvnon g SAmOMTIOUXNC PETAPORAS amoXaAOTTEL OTL 1) LOUGLXY| PETAPOPS YVOONC AEL-
TovpYel clppwva pe toAbmhoxo potiBa mou avtioTéxovial oe anhéc e&nyNoelc PAoloUEVES ATOXAEL-
OTIXA OTN YEWYPAPXN eYYOTNTA 1) T W0 TopéC ouvdéoelg. H aoclupeten @bon ToAAGY oyéoewy
peTapopdc Selyvel 6t oL povoixée mapadocels UTopel Vol totpdlovTal OpLOUEVO UTOAOYLOTIXG Yoea-

ATNELOTIXG EVE) DLOPEPOLY GE GAAQL

VII.2.2 ITepropiopol ITopwy xow MeBodoroyixry Kowvotopia

To mpOBANUA TWV TEPLOPIOPADY TOPWY OE SLUPOPETIXES TTUYES TNG TOAVTOMTIOUXNG HOUCIXAC €-
peuvag €xel odnyHoel oe edodoloyixéc xatvotopleg mou enextelvovtol Tépa and TIC GUETES EQUPUOYES
toug. Ou mpooeyyloeg pddnong and Alya nopadelypata 6nwe T LC-Protonets xatadewcviouy 6t

oNUavVTLX TP60d0¢ Unopel va emiteuy el oxdun xon YE TEQLOPLOUEVO ETLOTUELUEVH BESOUEVA.
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VII.2.3 To Epdtnpa tng Mouoixig Kadohuxdtntog

H épeuva mopéyel anoyp®oelq anodelewy oxetxd Ye T duvatdtnta xadoMxOY HOUGIXOY Vo=
TOEAC TAGEWY TOL UnopolV Vo teptypdouy anotehecpatixd moixieg pouoixég mapaddoelc. Ta tpéyovta
VEUEALOON LOVTERA XATADEXVIOUY EVTUTICLAXES DIUTOATIOUIXES IXAVOTNTES TOL UTOBNADYVOUY XETOLES
XOLVEC OVOTOPOC TOTIXES DOUES AVAUETH OTIC WOLOIXEC xouhtolpec Tou xdopou. H emtuyla twv
TOAUTOMTIOUXOY TpooeYYioewy exmaldeuone otny evioyuon tng dlamoMtomxic Yevixeuong umo-
ONADVEL 6Tl M xooAxdTNTOL OTN HOUCLXY) avamapdoTaon UTopel vou elvol e@ixtr, ohhd uévo péow

OXOTUNG EVTAENE BLUPOPETIXWY LOUCIXODY Topaddoewy oTr dladixaoio exmaldevonc.

VIIL.2.4 EvQuyeduuion AvOipwnouv-Troloyiot ce AlanoAitiopuixd IThaioia

H cvotnuatxd a0yxpion UTohoYLoTIXDY TEOCEYY(oEWY PE TNV avp®dTivy SLUTOMTIOMXY) LOVGLXY
avtiindm anoxolintel oo eviappuvtixéc evduypauuioslc 660 xon onpovTind xevd. To ebpnuo 6TL Ta
VePEADOOY LOVTERA YEVIXA UTERTERPOUY TWV YoRoXTNELOTXOY encéepyaciog onfuatog otny npofBiedn
VlpOTLVOY XPIOEWY OPOLOTNTOC EMLXVPWYVEL TNV GUYYPOVY TAOY OTN UOUGLXTY] TEXVNTY VONUOCUVY.

Qo1600, 1 avoxdhudn dtL oL dvipwrol divouy TEOTEPAUOTNTH GTO PEAWDIXO TEQIEYOUEVO EVE TA
UTOAOYLOTIXG LOVTEN BIVOUV EUQOOT) OTA MY OYPWUTIXG YOPUXTNELOTIXG ETULONUOLVEL ULl VeEUEALDDT
avavTioTolyla oTig oTpatnyixéc enelepyaociag. Auth 1 avavtiotolylo €yel TEOXTIXES EMUTTWOOELS YLo
TO GUGTAUATO HOUGIXAC TEYVOROYIOC TTOU GTOYEVOLY Vo EEUTNEETHGOLY BlapopeTixéc TANYUCUAXES

OUGDES YENOTHOV.

VIL.3 Ilegropiopol xou ITpoxArioetg

ITopd Tic cLUVELGPORES TOU TERLYEAPNXAY TUPATAVL, AT 1) SlotelBY) eunepiéyel apxetd {nThgaTa
mou Teplopllouy TN YEVIXEUCLUOTNTO TWV EVPNUATWY TNG Xol ETUONUALVOUY TEPLOYES TOU AmatTOUv
TEPAUTERE EPEUVOL.

H perétn avipomivne avtiindng, eved mepihopfBdvel cugpetéyovieg and 21 ywpec Ye SlapopeTind
pouoixd vnéBadpa, eugaviler alloonueiwtn avicopponior ye v thewovétnta (62,4%) and v El-
NaBat ol GANES ELPWTOIXES YWPES, XA UE OYETIXA AlYOUS CUUUETEYOVTES OO TOUG TOALTIOMOVS TOU
AVTITPOCWTEVOVTOL GTA HOUCLXA GUVONA DEDOUEVWYV.

Ta Jepehiddn poviéha mov aftohoyHinxoy exTudelTnXoY XxUple ot EUTOPIXd HoLGLXd GUVOA
dedopévey, TeplopilovTag SUVNTIXE TNV XATAVONGT) TOUS VLol TOEAUS0GLAXE. Y oPUXTNELOTIXG TAYXOGULOC
pouoxic. Oplouéva yapaxtnelotixd enelepyosiog ofuatog eppavilouy Tdoelc Tpog SUTIXES LOUOLXES

évvoleg Tou Unopel Vo Uny avory veellouy endpxcc OYECELC ONUAVTIXEC OF UN-BUTIXEC ToPUBOCELS.

VII.4 MeAhovtixéc Kateuddvoelc

Baoilopevol otic oUVEIGQORES Xat AvTIIETOTILOVTOC TOUG TEQLOPLOUOUS TOU EVIOTUGTNXAY OF
auTH TNV €peuva, avadlovTaL dLdpopes UTooyOUEVES XaTteLivoelC Yol TNV Tpodnon Tne exudinong
TOAUTIOALTLGIXEY LOUGIXY oVIopdo TacenY xou Tn Bedtinon tng euduypduuiong avipdtou-unoloyi-
o OTY) BLUMOATIOWXT| LOUGLXT| XATAVONOT).

H enéxtoon e xdhudng cuvdreov Bedouévwy avTinpoonrelel ta YEUEADDY) TPOTEROOTNTA YL
Y Beltinon tng expdinong avanapaoTdoewy ToryxOoULoS Bouotxhc. Melhovtixt] avdntuén cuVORwY
dedouévev Vo mpénel vo divel EUpooy oe TOAUTEOTIXEC GUANOYEC TOU EVOWUATWVOUY )0, PBivteo,
otiyoug xadme xou TOATIOUXS TAXLCLO.

H avdyxn vyl eVOWUATWOT TOMTIOUXE BIUQPOPETIXGY CUUHETEYOVTWY Ot UEAETEC avilp®dmvNng o-
viilndne avtitpocwnedel wa xplown xateduvon yio pehhovtiny) épeuva. Me peyahltepous xou mo
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AVTLTEOCWTEUTIXOVE TANYUCHOUC CUUPETEYOVTWY antd TOWIAES LOUCIXES TTapadOTELS, oL EpeuVTES Dot
HTTOPOVGOY VO UETEHOOLY TNV TOALTICUXY] TROXATIANYY TWV UTOAOYLOTIXWY HOVTEAWY OELONOYOVTOC
Y eVUYPGUULEY| TOUG PE aXPOUTEC oMo BlapopeTixd uTOBadpa.

Medodohoywée xawvotopiec mov Bacilovtan otic mpooeyyloe mou avartiydnxay ce ouTH T
dlatelP) mpoopépouy Bildpopeg utocyoueves xateudivoeic. To edpnua 6TL oL dvdpwrol divouv Teo-
TEPOUOTNTOL OTO PEAWDLXO TEQIEYOUEVO EVE TOL VeUEALDOY LoVTERD BivOuV EUpUoT) OTO NYOYPWHATIX
YOPAUXTNELO TIXG UTOBNAMVEL TNV avdyxT) Yl 0TdYoug Tpo-exnaidevong mou avayveweilouy xoAbtepa
T YehWBXES oyéoelc oe ToAOUC TOATIoHOUC.

H emtuyio twv yedodwyv cuvérou otny enltevén avodtepng eviuypeduuions avipdrou-utohoyioTy
uTodNAWVEL OTL 1) ueAhovTixy| €peuva Bo TEEneL var e€epeLVAoEL To eEEYUEVES TPOoEYYIOELS Ylal TOV
GUVBLAOUS BLAPORETIUCY UTOAOYLOTIXWY UEFOBwWY.

H ovémtugn deueMwddy Hoviehwy edixd oYEBIAoUEV®Y Y TOAUTONTIOUIXY] LOUGLXT| oVOTapd-
otaon omoutel Yeuehddelg oahhayég oTic Tpéyouoec mpooeyyioel avdntuéne wovtéiwy.  Avtl va
Tpocapolouy SUTIXOXEVTEIXS HOVTEND EX TWV LOTEPWY, N UEANOVTIXY epyaoia o Tpénel vo emxeEY-
TewVel TNV avanTuén VeUeAdBOY LOVTEADY TRO-EXTIUSEVUEVWY amtd TNV apyY) OE SLOPOPETIXES LOUCL-
XEC TOPADOTELC.

H ofionoinon tov teyvixdv e€eMEewv Ot TEUXTIXES EQUPUOYES HE TOMTIOWXO X0 XOWOVIXO
aviixtuno avtimpoownelel wia xplown xotebduvon yia uehhovuxt| epyacio. Eqoapuoyéc dwathenong
TOATLOUNC XANEOoVOuLEE Yol UTopoUGoY VoL AELOTIOLHCOUY T UTOAOYLO TiXd epyokelol Tou avamtiydnxoy
OE QUTY) TNV EEEUVA YLl VoL UTOC TNEEOUV TNV TEXUNREIWOT XAl AVAAUGT] HOUCLXMY TORUBOCEWY TOU Xiv-
duvetouy pe eEopdvion.

ALOTOMTIOUIXE CUCTARATY CUGTACE®Y TOL BIEUXOMOVOUY TNV €0PECY) HOUCLX®Y amd Toxiieg
TPABOTELS, UE OEBAOUS OTO BLAXELTIXG TOUC YUROXTNELO TIXA, AVTITPOCWTEVOLY ULd AVUDUOUEVY) TIEpL-
oy €EELVOC OTNV TOAUTOMTIOUIXY) OVEXTNOT LOUGIXWY TATROPORLAOV.

Anuiovpyd epyoheia mou unootneilouv TN Blamolltiogxy] pouctxy) dnwouveyio xou cuvepyooia
anoteloly, eTlONG, Wo AVITTUGCOUEVY] TIEQLOYT] £QEUVOE OTY| dMuLovpYdTHTA Tou unofBorndeito and

Y TEYYNTH Vool

VIL5 Tehuxég Xxédeig

Avuth n datpBh avupetdnioe Yepehddels TEOXAACELS GTNY AvamTUEY UTOAOYLO TUXEV AVATOPAO TS
GEWYV TIOU UT0POVY VAl ATEXOVIGOUY AMOTEAEGUATIXG TOV TAOUGLO TOMTIOUO TWY LOUCIXK)Y TORUBOCEWY
nayxoopiwe evduypauuloyevee pe v avipodnivy Swmohitiouny| gwouowr) avtidndn. Méow cuvotn-
HaTXNC BlEPEVNONE TOL XAUAUTITEL TNV avanTUEN GUVOAWY Bebopévwy, pedodoloyinés xavotoyieg,
ohoxAnpwuévn afloAdYNoT, TEOCUEHOYY HOVTEA®Y Xou Emxlpwon évavtl Tne avlpdmivne avtiindng,
1 mapoloa €peuva GUVEBUAE GTNY TEOWYNGCT TOU TOUEN TN EXUAINCNE TONUTOMTIOUIXWY LOUCLXWY
QVOTOPAC TACEWY ATMOXOAVTTOVTOS TUPIAANAL TGO TS BUVATOTNTEG GO XA TOUS TEPLOPLOUONS TWV
TEEYOVTWV UTOAOYIO TIXWY TEOCEYY(oEWY.

To evphjuata aUTAG TNG EEEUVAIS EYOUY EMNTOGCELS TEEA AMd TOV TEYVIXO TOUEN TNG AVAXTNOTNG
povav TAnpogopeldy. Koddg ol poucixéc teyvohoyleg dlauecohaBolyv 6ho xal TeploGOTERO GTOV
TEOTO TOU AVAXOAUTTOUKE, ONUtovpYOoUUE ol UOlpalOUOCTE HOUCIXY) TAYXOOWWS, 1 AvanTUEn Tlo
TOMTLOWUIXE EVAUERMY UTONOYIC TIXWY TpooeYYioewy mou evduypapuilovton ge Ty avipdrvn avTihn-
T xaTavonorn xadlotator ouclddng Yo TN BlaTheNncy Tou TAoVCLOU TOATIOUOL TN avipdmivng
povowhc éxgpoong. To umoloyloTnd epyohela, tor uedodoroyixd mAolola xou oL TPoceYYioES o-
Elohdynong mou avamtuyUnxay o auTh TN SlTE3Y) TOEEYOUY LOVOTATIAL Yidl VoL BLoPAALTEL OTL oL
TEYVOAOYWES eEEMEEIC 0T HOUOLXY) TEYYNTY VONUOoUVY evioy 0oLV ToEd OUOYEVOTIOLOVY TNV oY X6-

oW gouotxr xhnpovould eEumneeT®VToC Tapdhinho Toug yeNoTeC Ue TpoTOUG mou céBovial TNV
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TOALTIOWXY) TOUS avTihndn.

Kowtdlovtag npog to péhhov, 1 épeuva mou mopouctdleton €86 aVTITEOCWREVEL plal VeUEALDO
epyaoia oe évay avadudpevo Topga Tou Peloxeton 0T cOVBEST) TNE UTOAOYLOTIXAS YOTLOCUYNG, TNG
TOATIoUMC xoTavonong xou tne avdpdmivng avtidndne. Ov yedodohoyieg, to eupruota xaL oL ToEoL
VoL TOU %MOBXAL TTOL CUVELGPEREL aUTY 1) BlaTe3T| Taeéyouv dopxd oTotyelo Yo HEAAOVTLIXY épeuval
TOU UTopel VoL TPOdYEL TEQAULTERE TNV LXUVOTITE LS VO AVATOELOTOVUE YOl VOl AVUAVOUUE UTOAOYLIOTING
T0 TAipES PAoUa TNG aVUPOTILYNG HOVCXAC EXPEACTG.

EXniCw 6t auth n epyaoio Go eunvedoel Tn cuVEYLON NG EPELVOC TIEVK GTNY EXUEUNCY TOAUTOALTL-
UV JOUCIXADY UVATOQUC TICEWY UE E0TIOOT GTNY ELVLYRAUUICT, aVvP®TOU-UTOAOYLOTY, TEOdYO-
VTOG TOOO TIC TEXVIXES DUVATOTNTES OGO XoU TNV TOAMTIOUXT| XUTAVONOT| OTO TEEYOV ToyEws EEEMOOO-
pevo teyvoroyixod tomio. Ilépa and Tic teyvinés cuvelo@opés, eAtilew dti auty 1 epyoaoio Ya cuuBdel
070 va avadelyVel o Vepehliddng pdrog mou Tallel 1 ovotxr oty avilp®mive avdanTugT, pla xo oA

ahfdelo mou unepPalvel Tol TOAMTIOWXE GpLaL.
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Chapter 1

Introduction

What is music? What is its purpose in human civilization? Is there an apparent survival value
in musical behavior? Charles Darwin was not sure about the role of music when writing his book
“The Descent of Man, and Selection in Relation to Sex” in 1871 [1]. Although such profound
questions do not have simple answers, contemporary theories converge toward the social aspect of
music, recognizing it as a fundamental component of human cultures [2—4].

In this work, we recognize the diversity of music and its connection with culture that is shared
by small and large groups of people, by experiencing and analyzing the available data. While we
may not have definitive answers about what music constitutes in human civilization, we attempt to
shift the attention of the research community toward an aspect that mirrors the sounds expressing
the identity of human communities around the world.

This work approaches the musical understanding of artificial intelligence (AI) models as anal-
ogous to human learning of the same concepts. It then evaluates model performance not merely
to achieve optimal results, but rather to understand the inherent limitations of the task while
employing current technology.

Throughout this dissertation, we will examine several methodologies unified by the common
goal of achieving understanding across various musical contexts. We will observe how state-of-the-
art approaches perform at inadequate levels when large amounts of data are unavailable. We will
propose methodologies that extend the limits of current best-performing models in addressing these
challenges and we will evaluate the computational realm against human cross-cultural perception.

Ultimately, the observed inadequacy of current technology to understand the refined aspects of

human civilization should lead us to greater respect for both ourselves and our societies.

1.1 Motivation and Context

1.1.1 Music as Cultural Expression and Perceptual Experience

Music, often described as a universal language, holds a distinctive place among human cultural
expressions. Its pervasiveness across societies and cultures makes it a fascinating subject for both
cultural studies and computational analysis. Throughout human history, music has served as a
medium for cultural identity, social cohesion, emotional expression, and historical documentation
[5—7]. The rich tapestry of global musical traditions reflects the diverse ways in which different
cultures have developed unique approaches to melody, harmony, rhythm, timbre, and form.

This dissertation addresses the challenge of multicultural music representation learning, which
encompasses both cross-cultural adaptation, enabling computational models to transfer knowledge

across different musical traditions, and cross-cultural music understanding, i.e., developing the
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capacity to analyze and interpret the distinctive characteristics of diverse musical systems. These
complementary aspects together constitute our broader goal of creating computational approaches
that can effectively represent and analyze world music traditions.

Critically, music exists for the listener, it is fundamentally a perceptual and experiential phe-
nomenon that lives in the interaction between acoustic signals and human cognition [8]. This
perceptual dimension introduces unique challenges for computational approaches, as musical mean-
ing emerges not merely from acoustic properties but from the complex interplay between sound,
cultural context, and listening experience [3, 9]. Unlike other domains where computational anal-
ysis can rely primarily on structural features, music representation learning must account for the
subjective, culturally-situated nature of musical understanding.

The question of music’s universality remains contested among scholars [2, 10]. While certain
musical elements may transcend cultural boundaries, such as the recognition of emotional expres-
sions or the use of discrete pitches, musical traditions have evolved with distinct characteristics that
reflect their cultural contexts. These differences manifest in various aspects: scale systems (e.g.,
Western 12-tone equal temperament versus Indian 22-shruti systems), rhythmic organizations (e.g.,
symmetrical Western meters versus complex asymmetrical patterns' in Eastern Mediterranean tra-

ditions), instrumental timbres, performance practices, and semantic associations.

1.1.2 The Field of Music Information Retrieval

Music Information Retrieval (MIR) has emerged as a vibrant interdisciplinary field that applies
computational methods to understand, organize, and access musical content. Drawing from com-
puter science, signal processing, musicology, psychology, and information science, MIR research has
developed algorithms and systems for tasks such as music transcription, recommendation, genre
classification, beat tracking, chord recognition, structural analysis, and music similarity assessment
[11, 12]. These technologies have transformed how we interact with music, enabling personalized
streaming services, automated music categorization, and novel creative tools.

However, while tremendous progress has been made in MIR over the past decades, a significant
limitation persists: the vast majority of computational models, datasets, and evaluation frame-
works are predominantly centered on Western musical traditions [13]. A recent systematic analysis
of the current state of musical corpora confirms this bias, showing that Western musical traditions
dominate existing datasets with only 5.7% representation of non-Western genres [14]. This spe-
cific focus has created analytical challenges in MIR research [15], where computational systems
optimized for Western popular and classical music conventions often perform less effectively when

applied to diverse musical traditions from other regions of the world.

1.1.3 The Challenge of Musical System Diversity

The predominant focus on European and North American musical traditions in MIR research
creates substantial methodological challenges for computational representation of diverse musical
systems worldwide. This “American/Eurocentric” bias, where Western musical concepts and ana-
lytical frameworks serve as the default lens for all music, has been critically examined by scholars
in computational ethnomusicology and corpus studies [16]. Such frameworks often inadequately

represent the rich diversity of global musical expressions and may inadvertently prioritize certain

!n this computational context, the terms “pattern” and “structure” refer to recurring regularities/motives iden-
tified through algorithmic analysis, distinct from the musicological concepts that encompass culturally meaningful
melodic, rhythmic, or formal units with specific aesthetic and theoretical significance within musical traditions.
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Figure 1.1. Global Distribution of Datasets in MIR research. Regional and genre-
wise distribution of dataset corpus showing the overwhelming predominance of Western musical
traditions. The bottom left pie chart shows the global distribution of genres, while each pie chart
on the map shows the distribution of genres in different regions, with the size proportional to their
contribution to the data corpus. Adapted from [14].

musical features while marginalizing others, such as rhythmic complexities found in non-Western
traditions.

Recent comprehensive analysis of music datasets reveals the stark extent of this representa-
tional bias. As illustrated in Figure 1.1, approximately 94% of the total hours in available music
datasets are dedicated to music from the Western world, while only 5.7% are devoted to South
Asian, Middle Eastern, Oceanian, Central Asian, Latin American, and African music combined
[14].? This dramatic imbalance in dataset composition naturally leads to disparate performance of
computational models across genres, with models tending to rely on Western tonal and rhythmic
structures when processing non-Western musical traditions.

Traditional and folk music from different regions often exhibits distinctive characteristics that
may not align with the assumptions embedded in current computational approaches. For instance,
Greek traditional music incorporates elements from both European and Eastern Mediterranean
musical practices, creating a distinctive musical landscape that requires specialized computational
consideration [17]. Similarly, Turkish makam music and Indian classical traditions feature complex
melodic structures, modal systems, and microtonal intervals that differ significantly from the equal-
tempered scales and harmonic progressions common in European classical and popular music [18,
19].

The challenges of musical system diversity manifest in multiple technical dimensions:

Tonal Systems and Melodic Organization

Western music typically employs a 12-tone equal temperament system with standardized scales

and harmony based on tertian structures. In comparison, many other musical traditions utilize dif-

2This 94% figure includes East Asian music datasets, as the vast majority of this music falls within pop and rock
genres that are considered Western in their musical structure and organization, despite their geographic origin.
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ferent interval divisions, microtonal inflections, and alternative organizational principles. Turkish
makam music employs a 53-tone division with characteristic melodic progressions and modulations
[20]. Indian classical music operates within a system of ragas, each with specific melodic move-
ments, emphasized notes, and expressive characteristics [21]. Greek traditional music incorporates
both European and Eastern Mediterranean elements, with regional variations in scale systems and

ornamentations [17].

Rhythmic Structures

European and North American musical meters predominantly feature simple (2/4, 3/4) or
compound (6/8, 9/8) structures with regular accent patterns. Many other musical traditions
employ complex rhythmic cycles, asymmetric meters, and polyrhythmic organizations. Eastern
Mediterranean music, including Greek tradition, features rhythms with irregular beat groupings
(e.g., 7/8 grouped as 3+2+2). Indian classical music employs elaborately organized talas that can

span multiple measures with specific accent patterns [19].

Performance Practices and Ornamentation

Various musical traditions feature distinctive performance practices that present challenges for
computational analysis methods developed for Western notation systems. Improvisation plays a
central role in many traditions, including Indian classical music (alap and taan)?, Turkish taksim?,
and Greek taximi®.

Many non-Western traditions also employ heterophony as a fundamental textural principle,
where multiple performers simultaneously present variations of the same melodic line [22]. Un-
like Western polyphony with its emphasis on harmonic progression through distinct melodic lines,
or strict monophony with identical performance, heterophonic textures create rich, fluid sonori-
ties through subtle variations in timing, ornamentation, and articulation. This practice is preva-
lent across diverse cultures including Arabic, Turkish, Southeast Asian, and East Asian musical
traditions, presenting distinct challenges for computational models trained primarily on Western
harmonic structures.

Ornamentation techniques, such as gamaka® in Indian music, various glissandi in Eastern
Mediterranean traditions, and melismatic embellishments in Greek folk singing, are integral to

musical expression rather than optional additions [23].

Instrumental Timbres

The timbral characteristics of region-specific instruments, such as the Greek lyra, Turkish ney,
or Indian sitar, present technical challenges for audio analysis algorithms calibrated primarily on
orchestral and popular music instrumentation. These instruments often produce complex spectra
with distinctive attack-decay profiles and harmonic structures that may require specialized com-
putational approaches different from those optimized for common European and North American

instruments [24].

3 Alap refers to the unmetered, rhythmically free improvisation that opens a performance, while taan consists of
rapid melodic passages demonstrating technical virtuosity.

4Taksim is an improvised instrumental introduction that explores the melodic and modal characteristics of a
specific makam.

5Taximi (ta&fu) is the Greek equivalent of the Turkish taksim, featuring similar modal improvisation but often
incorporating distinct regional stylistic elements.

6Gamaka can be understood as embellishment done on a note or between two notes.
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Figure 1.2. Cultural Discriminability Under Tag-Based Filtering. t-SNE visualization of
MERT-95M embeddings showing how filtering audio samples by musical attributes (Voice, Violin,
Percussion) affects the separation and clustering of different cultural traditions. The bottom panel
shows all audio samples, while the top three panels demonstrate how specific musical content
influences cross-cultural discriminability in the embedding space.

1.1.4 World Music Representation Learning: Unique Challenges Be-
yond Language

To understand why multicultural music representation presents distinctive challenges, it is
instructive to contrast music with natural language processing (NLP), where cross-lingual transfer
has achieved remarkable success. The situation in music Al is comparable to the historical lack
of cultural and linguistic diversity in NLP research [25-27], though music presents additional
unique challenges. In NLP, languages share fundamental structural similarities: discrete symbolic
systems, compositional semantics, and relatively stable mappings between linguistic units and
meanings. Transfer learning between languages often leverages shared conceptual structures, even
when surface forms differ, underlying semantic relationships can be aligned through techniques like
cross-lingual word embeddings [28] or multilingual pre-training [29].

Music, however, presents fundamentally different challenges that make direct adaptation of
NLP cross-cultural methodologies insufficient:
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Figure 1.3. Cross-Cultural Representations Across Foundation Models. Comparison of
t-SNE projections from four music foundation models (MERT-95M, MERT-330M, CLAP-Music-
and-Speech, Qwen2-Audio) applied to the same cross-cultural audio samples. Each model demon-
strates different organizational principles and varying degrees of cultural separation, highlighting
the model-dependent nature of musical representation learning.

Continuous vs. Discrete Representations: Unlike language’s discrete symbolic nature,
music operates in continuous acoustic space with culture-specific discretizations. A “note” in West-
ern equal temperament represents a different acoustic and conceptual unit than a microtonal
inflection in Turkish makam or a gamaka ornament in Indian classical music. These differences
cannot be easily mapped through simple transformations.

Culturally-Embedded Semantic Spaces: Musical meaning emerges from gestalt properties
that are conditioned by cultural context rather than following universal compositional rules. The
semantic spaces of different musical traditions could be viewed not merely as different vocabularies
expressing similar concepts, but as fundamentally distinct organizations of acoustic, temporal, and
cultural dimensions. A Greek taximi improvisation and an Indian alap, though both non-metrical
modal explorations, operate within entirely different conceptual frameworks that structure their
respective musical spaces, reflecting distinct theoretical systems and performance traditions.

Perceptual and Experiential Grounding: Music is tied to embodied perception and cul-
tural conditioning from the listener’s perspective [3, 8, 30]. The same acoustic signal can evoke
entirely different emotional, aesthetic, and semantic responses across cultural contexts depending
on the listener’s background. This perceptual variability makes the creation of universal semantic
representations more challenging than in language, where reference and meaning maintain more
stable relationships across different linguistic communities.

To empirically demonstrate these challenges, we present three complementary visualizations us-
ing t-SNE [31] projections of foundation model embeddings (see Section 2.7). Figure 1.2 illustrates
how musical content filtering affects the discriminability of different cultural traditions within a
single foundation model’s representation space.

The visualization reveals that while cultural traditions maintain some separation in the full

60



1.1.4 World Music Representation Learning: Unique Challenges Beyond Language

No-Violin Western (MTAT)
~ Greek (Lyra)
Turkish (Makam)
Indian - Carnatic
Violin
No-Violin
Voice

Drums

No-Voice Violin A
: ¥

No-Drums ‘VOICE
_— . A No-Voice
No-Violin No-Voice Percussion
9 [
No-Percussion

— Antonym Connections

I>PrOQemuoeece

No-Drums Voice
A @
Violin EIViolin

Drums B
A

No-Drums
No-Voice

®oce No-Violin

No-Drums
A

- @& e No-Voice
Violin ) A

\ Drums
\ A
\
\

iNo-Violin

-15 -10 -5 0 5

Figure 1.4. Cross-Cultural Semantic Divergence in Musical Concept Organization.
Tag centroids computed from average MERT-95M embeddings for audio samples containing specific
musical attributes (Voice, Violin, Percussion) and their negations across four musical traditions.
The varying distances and orientations between concept pairs demonstrate that even fundamental
musical categories are culturally conditioned in their semantic organization, complicating cross-
cultural alignment efforts.

audio space, this discriminability varies significantly when filtering by specific musical attributes.
This suggests that certain musical concepts may be more culturally distinctive than others, com-
plicating efforts to develop universal musical representations.

Figure 1.3 extends this analysis by comparing how four different foundation models (Section 2.7)
organize the same musical content across cultures, revealing both capabilities and limitations in
current approaches to musical representation. While some models (e.g., Qwen2-Audio) show clear
cultural clustering, others (e.g., MERT-330M) exhibit more distributed representations with less
obvious cultural boundaries. This model-dependent variation underscores the challenge of achiev-

ing consistent cross-cultural musical understanding across different architectural approaches.

Perhaps most critically, Figure 1.4 demonstrates the fundamental challenge of cross-cultural se-
mantic alignment by examining how seemingly universal musical concepts occupy different seman-
tic positions across traditions. Even for fundamental musical concepts like “Voice,” “Violin,” and
“Percussion,” the semantic positioning and relational structures vary significantly across musical
traditions. In Western music (yellow), these concepts and their negations form one organizational
pattern, while Greek (blue), Turkish (red), and Indian (green) traditions each exhibit distinct
semantic arrangements.

The varying distances between antonym pairs (e.g., Violin/No-Violin) across cultures reveals
that binary musical concepts are not universally organized, but the challenge extends even deeper:
the semantic vectors themselves exhibit cultural inversions. For instance, the direction of the
vector from No-Voice to Voice, representing the semantic transformation from absence to presence
of vocal elements, points in different directions across traditions. For Western (yellow) and Greek
(blue) music, it points to the left while in the other two traditions it points to the right. These
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directional inversions indicate that the very meaning of vocal presence and absence is culturally
conditioned, reflecting different aesthetic priorities and theoretical frameworks.

This empirical evidence demonstrates that musical semantic spaces resist the kind of cross-
lingual alignment successful in natural language processing. Unlike linguistic concepts that main-
tain relatively stable referential relationships across languages, musical concepts are fundamentally
shaped by the theoretical, aesthetic, and performance frameworks of their respective traditions.
The Voice concept in Indian classical music, embedded within a context of gamakas (ornamenta-
tions) and raga-specific melodic movements, occupies a different semantic position than the Voice
concept in Western popular music, which operates within harmonic progressions and regular met-
rical structures.

These distinctions necessitate specialized approaches for multicultural music representation

learning that go beyond straightforward adaptation of cross-lingual techniques.

1.1.5 The Path to Multicultural Representations

Creating computational representations that effectively capture diverse musical traditions re-
quires addressing multiple interconnected challenges. The semantic divergence and model-dependent
variations illustrated in the previous section motivate the development of specialized strategies for
multicultural music representations:

Cross-Cultural Transfer Learning and Model Adaptation: Investigating how knowledge
learned from one musical tradition can inform understanding of another, while respecting the
distinctive characteristics of each system. At scale, this includes enhancing large-scale pre-trained
models and foundation models to better represent diverse musical traditions through continual
learning, fine-tuning, and novel adaptation strategies that prevent catastrophic forgetting while
acquiring new cultural knowledge.

Low-Resource Learning Approaches: Developing methods that can learn meaningful rep-
resentations from limited examples, crucial for underrepresented musical traditions where anno-
tated data is scarce. Few-shot and meta-learning approaches become essential for including diverse
musical cultures in computational models.

Human-Centered Evaluation: Integrating human perception studies to validate computa-
tional approaches, ensuring that similarity measures align with how listeners from diverse cultural
backgrounds actually perceive musical relationships. This human-in-the-loop validation becomes
crucial for developing culturally aware music technology systems.

Multi-Task and Multi-Modal Learning: Integrating information from multiple sources,
audio, metadata, cultural context, performance practices, to create richer representations that
capture both acoustic and cultural dimensions of musical expression.

The central premise of this dissertation is that achieving truly multicultural music represen-
tation requires not simply scaling existing approaches, but developing new methodologies that
account for the unique properties of musical expression across cultures, as empirically demon-
strated by the distinct semantic organizations and model-dependent variations observed across

musical traditions.

1.1.6 Computational Ethnomusicology and Dataset Development

The field of Computational Ethnomusicology applies computational methods to study diverse
musical traditions [32]. This emerging discipline combines ethnomusicological knowledge with MIR

techniques to develop culturally appropriate computational approaches to world music analysis.

62



1.1.7 The Rise of Deep Learning and Foundation Models

Creating structured datasets of traditional music from various cultures is vital for enabling com-
putational analysis and cross-cultural musical comparisons.

A pivotal development in this field was the CompMusic project [33], which created the corpora,
and set the criteria for doing so, for five distinct musical cultures: Hindustani (North Indian),
Carnatic (South Indian), Turkish-makam, Beijing Opera, and Arab-Andalusian traditions. This
project was further supported by the establishment of the Folk Music Analysis (FMA) workshops”,
established in 2011, which created a dedicated community and scholarly forum for computational
approaches to traditional music.

Building on these foundations, several efforts have been made to develop specialized datasets,
including collections of Dutch melodies [34], Indian art music [19], Arab-Andalusian and Flamenco
music [23, 35], Georgian vocal music [36], and Chinese traditional music [24]. However, these
collections remain underrepresented in mainstream MIR research and applications, and their lim-
ited size and scope compared to Western music datasets present challenges for developing robust

computational models.

1.1.7 The Rise of Deep Learning and Foundation Models

Recent advances in deep learning have revolutionized MIR by introducing pre-trained models
that provide informative audio embeddings applicable to various tasks. Models such as VGG-ish
[37], Musicnn [38], and Audio Spectrogram Transformer (AST) [39] have demonstrated impressive
performance across multiple MIR tasks. However, the majority of these models have been trained
predominantly on Western musical data, raising important questions about their effectiveness when
applied to different musical cultures.

The emergence of foundation models in music [40-42] presents both opportunities and challenges
for multicultural music analysis. Following the paradigm established in natural language processing
and computer vision, music foundation models are trained on large-scale data to learn general-
purpose representations applicable to diverse downstream tasks. Models such as MERT [40],
CLAP [41], and Qwen-Audio [42] have demonstrated state-of-the-art performance across various
MIR benchmarks.

However, the implicit universality claims of these foundation models deserve critical exami-
nation, particularly in light of their predominant training on Western-centric data [14, 43]. The
extent to which these models can represent and analyze diverse musical traditions beyond their
training distribution remains an open question that this dissertation systematically addresses (see
Section 5.2).

1.1.8 The Need for Cross-Cultural Computational Methods

The technical challenges outlined above highlight the need for adaptable computational ap-
proaches to music representation learning that can accommodate diverse musical systems. Such

approaches require:

1. Development of comprehensive, high-quality datasets representing multiple regional musical
traditions

2. Methods for effective knowledge transfer between different musical systems

3. Techniques for learning from limited examples, addressing the data scarcity common in many

regional musical traditions outside mainstream commercial genres

"https://www.folkmusicanalysis.org/
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4. Systematic evaluation of existing models across different musical systems to identify domain-

specific limitations

5. Approaches for adapting foundation models to better represent the distinctive characteristics

of world music traditions

6. Human-centered evaluation frameworks that validate computational approaches against cross-

cultural music perception

This dissertation addresses these methodological needs through a series of interconnected stud-

ies that collectively advance the field of multicultural music representation learning.

1.2 Problem Statement

1.2.1 Core Research Problem

The central challenge addressed in this dissertation is the limited ability of current computa-
tional models to effectively represent and analyze musical traditions beyond Western conventions.
Despite advances in music information retrieval, most computational approaches demonstrate re-
duced performance when applied to musical systems with fundamentally different organizational
principles. This performance gap stems from several interconnected methodological factors rooted
in the predominant development of MIR around specific musical paradigms common in European
and North American traditions [15].

A critical dimension of this challenge involves understanding how computational similarity
measures align with human cross-cultural music perception. Current computational approaches
often fail to capture the nuanced relationships between musical styles, instruments, and aesthetic
principles that define different musical cultures, a limitation that becomes evident when these
approaches are evaluated against human judgment.

The goal of developing culturally appropriate computational models extends beyond technical
considerations to encompass broader questions about representation, accessibility, and preservation
of cultural heritage. As digital technologies increasingly mediate our musical experiences, through
streaming platforms, recommendation systems, and analysis tools, the underrepresentation of non-
Western traditions in these technologies risks marginalizing important aspects of global musical

culture and perpetuating existing biases in musical representation [44].

1.2.2 Specific Challenges

This core technical problem manifests in several interconnected challenges that span from fun-
damental data and modeling issues to practical implementation concerns. These challenges can be

organized into four primary areas that this dissertation addresses systematically.

1) Representation Learning

The foundation of effective multicultural music analysis lies in developing computational rep-
resentations that can capture the distinctive characteristics of diverse musical traditions while

enabling meaningful comparison and knowledge transfer across systems.
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Representational bias. Existing datasets and models embed systematic biases that favor cer-
tain musical characteristics over others, primarily those aligned with Western analytical frame-
works. The predominance of harmonic structures and regular meters in training data creates
models that excel at recognizing chord progressions and simple rhythmic patterns but struggle
with modal music, microtonal inflections, and complex asymmetrical rhythmic cycles common in
many traditional music systems. Scale systems that assume 12-tone equal temperament inade-
quately represent the rich microtonal traditions found in Turkish makam, Indian classical music,
or Arab magam systems. Furthermore, annotation schemes designed for commercial music often
fail to capture culturally relevant attributes of traditional music, such as the specific ornamenta-
tions that define regional styles or the improvisational practices that are central to many musical

traditions.

Data scarcity. Many regional and traditional musical systems face substantial imbalances in
data quantity compared to commercially dominant genres, with some traditions having only hun-
dreds of annotated examples compared to millions available for popular Western music. This
scarcity extends beyond mere quantity to encompass diversity within traditions, where available
datasets may inadequately represent regional substyles, historical periods, or different performance
contexts. The resulting data limitations create fundamental bottlenecks for supervised learning
approaches, necessitating specialized methods that can learn effectively from minimal examples

while avoiding overfitting to the limited available data.

Cross-cultural transfer and semantic spaces. Unlike natural language processing, where
cross-lingual transfer can leverage shared conceptual structures, musical semantic spaces are not
easily alignable across traditions. The semantic organization of musical elements is deeply shaped
by cultural conditioning, creating distinct conceptual frameworks that resist simple transforma-
tion or alignment. A Greek taximi improvisation and an Indian alap, while both representing
non-metrical modal explorations, operate within fundamentally different musical and cultural
paradigms that structure their respective semantic spaces. The challenge lies in identifying which
aspects of musical representation are transferable across systems while preserving the culture-

specific elements that define each tradition’s distinctive character.

2) Music Understanding Tasks

The representation learning challenges described above manifest concretely in the computa-
tional tasks used to evaluate musical understanding, particularly in classification scenarios that

are central to music information retrieval.

Classification challenges. Musical classification tasks in multicultural music contexts typically
exhibit extremely long-tailed label distributions where many culturally significant attributes have
very few examples. This creates scenarios where traditional supervised learning approaches either
exclude rare categories entirely or perform poorly due to class imbalance. The hierarchical and
overlapping nature of musical categories adds additional complexity, as regional substyles, perfor-
mance practices, and cultural contexts create intricate relationships that resist simple categorical
organization. Consider the challenge of distinguishing between a Greek bouzouki and an Irish
bouzouki, while sharing structural similarities and even a name, they operate within entirely dif-
ferent musical contexts, employ distinct playing techniques, and carry different cultural meanings
that computational models must learn to differentiate.
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Multi-label scenarios. Musical pieces simultaneously belong to multiple overlapping categories
spanning genre, instrumentation, regional style, and performance context, further complicating the
classification tasks. Unlike single-label classification problems, these scenarios require models to
capture complex co-occurrence patterns while handling the sparse annotation patterns common
in traditional music datasets. The challenge intensifies when considering that the relevance and
interpretation of musical labels can vary significantly across cultural contexts, requiring models
that can adapt their understanding of categorical relationships based on the musical tradition

being analyzed.

Evaluation complexity. Traditional classification accuracy measures may not adequately cap-
ture the cultural significance of correctly identifying rare but important musical attributes, while
cross-cultural evaluation requires developing metrics that can assess model performance across dif-
ferent musical systems without imposing inappropriate external standards. The perceptual and
experiential nature of musical meaning adds another dimension to evaluation, as computational
success should ideally align with culturally informed musical understanding rather than purely

statistical optimization.

3) Human-Computational Alignment

A critical challenge involves understanding how computational approaches to music similarity
align with human cross-cultural music perception, requiring systematic evaluation frameworks that

bridge algorithmic processing and perceptual understanding.

Cross-cultural similarity perception. Human perception of musical similarity varies signifi-
cantly across cultural contexts, with listeners from different musical backgrounds potentially hear-
ing and evaluating the same musical relationships in fundamentally different ways. Traditional
computational similarity measures, typically developed and validated on Western musical content,
may not capture the perceptual dimensions that are most salient to listeners from diverse cultural
backgrounds. The challenge involves developing evaluation frameworks that can systematically as-
sess how different computational approaches align with human similarity judgments across multiple
cultural traditions.

Multi-dimensional similarity assessment. Musical similarity encompasses multiple overlap-
ping dimensions including overall musical characteristics, cultural identity, and personal preference,
each of which may be weighted differently across cultural contexts. Computational approaches must
account for these multi-dimensional aspects of similarity while handling the inherent subjectivity
and cultural conditioning that shapes human musical perception. The development of appropriate
evaluation frameworks requires careful consideration of how to elicit and analyze human similar-
ity judgments in ways that respect cultural differences while enabling systematic comparison of

computational approaches.

Signal processing versus learned representations. Understanding the relative strengths
and limitations of interpretable signal processing features compared to learned representations from
foundation models requires systematic evaluation against human perception. While signal process-
ing features offer interpretability through their connection to established music theory concepts,
they may incorporate Western musical assumptions that limit their cross-cultural validity. Con-
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versely, foundation models may capture complex patterns that align better with human perception

but lack interpretability regarding which musical dimensions drive their similarity assessments.

4) Multicultural Learning

The goal of developing computational models that can effectively represent diverse musical tra-
ditions requires addressing the complex challenges of multicultural model adaptation and knowl-

edge integration.

Model adaptation. Adapting foundation models to better represent diverse musical traditions
must navigate the risk of catastrophic forgetting, where learning new cultural knowledge degrades
performance on previously acquired traditions. The challenge lies in developing adaptation strate-
gies that can acquire tradition-specific representations while preserving the general musical knowl-
edge that enables cross-cultural understanding. This requires careful balancing of plasticity and
stability, allowing models to learn new cultural patterns while maintaining their ability to recognize

universal musical elements that transcend cultural boundaries.

Cultural authenticity and computational efficiency. Adaptation strategies must preserve
the integrity of distinctive musical characteristics rather than homogenizing different traditions
toward a common representation. This cultural preservation requirement often conflicts with com-
putational efficiency goals, as maintaining separate representations for different traditions increases
model complexity and resource requirements. The challenge involves developing approaches that
can capture cultural specificity while remaining computationally tractable for practical deployment

across diverse musical contexts.

Knowledge integration across traditions. It represents the most ambitious aspect of mul-
ticultural learning, requiring models that can leverage similarities between musical systems while
respecting their distinctive characteristics. This involves developing sophisticated understanding
of which musical concepts transfer across cultures and which require culture-specific modeling.
The goal is not to create a single universal musical representation, but rather to develop adap-
tive systems that can dynamically adjust their processing based on the cultural context while
maintaining the ability to identify meaningful relationships and patterns across different musical
traditions. Success in this area would enable computational tools that can support cross-cultural

musical understanding while preserving the rich diversity that defines global musical expression.

1.2.3 Practical Implications

These technical challenges have significant practical implications for the development and de-

ployment of music technologies. Current limitations affect:

e Music Recommendation Systems: Existing platforms may demonstrate reduced per-
formance when representing and recommending music from diverse traditions, potentially
reinforcing cultural biases in music consumption patterns and limiting exposure to diverse

musical cultures.

e Music Education Tools: Educational technologies based primarily on Western music con-
cepts may provide inadequate support for learning in diverse musical traditions, failing to

recognize culturally appropriate pedagogical approaches or assessment criteria.
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e Cultural Heritage Preservation: Digital archives and computational analysis tools may
have technical limitations in capturing and preserving the nuances of less-documented musical
traditions, potentially losing important cultural information during digitization and analysis

processes.

e Creative Technologies: Music production tools and algorithmic composition systems of-
ten reflect specific musical conventions, potentially limiting their technical applicability for
creators working in different traditions and constraining creative expression within Western

musical frameworks.

e Music Similarity and Search Systems: Current similarity-based search and discovery
systems may fail to capture the perceptual dimensions that are most relevant to listeners
from diverse cultural backgrounds, leading to suboptimal user experiences and reduced ef-

fectiveness in cross-cultural music discovery.

e Global Applicability: The technical capabilities of music Al technologies may be unevenly
distributed across musical traditions, with users interested in less-represented traditions re-

ceiving less effective technological support.

These challenges call for innovative approaches to multicultural music representation learning
that can overcome data limitations, leverage knowledge transfer across different musical systems,
develop more versatile computational models capable of representing diverse musical traditions,
and ensure that computational approaches align with human cross-cultural music perception. Ad-
dressing these challenges requires interdisciplinary collaboration between MIR researchers, ethno-

musicologists, cultural heritage specialists, and practitioners from diverse musical backgrounds.

1.3 Research Questions

1.3.1 Central Research Question

How can computational approaches be developed to effectively understand music from diverse
cultures worldwide, and how well do these approaches align with human cross-cultural music

perception?

1.3.2 Primary Research Questions

This dissertation addresses six interconnected research questions that progressively build upon
each other, from fundamental data availability to advanced model adaptation and human-computational

alignment:

1. RQ1l: How can high-quality datasets for underrepresented musical traditions be

developed to support computational analysis and cross-cultural comparison?

2. RQ2: To what extent can knowledge be effectively transferred between different
musical systems, and what patterns of transferability exist across diverse musical

traditions?

3. RQ3: How can computational models learn effectively from limited examples
in multicultural music contexts, particularly for rare but culturally significant

musical attributes?
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4. RQ4: What are the cross-cultural capabilities and limitations of state-of-the-art

music foundation models when applied to diverse musical traditions?

5. RQ5: How can foundation models be adapted to better represent diverse mu-
sical traditions while preserving their general musical knowledge and avoiding

catastrophic forgetting?

6. RQ6: How do computational music similarity measures compare to human cross-
cultural music perception, and what factors drive similarity judgments across
different musical traditions?

1.3.3 Supporting Research Questions

In addition to these primary questions, this dissertation explores several supporting inquiries:

1. How can evaluation frameworks be designed to appropriately assess cross-cultural music

representation learning while accounting for human perceptual validation?

2. What computational resources and strategies are required for effective multicultural model

adaptation?

3. What specific transfer patterns exist between particular musical traditions, and how do they

reflect cultural and historical relationships?

4. Which musical dimensions (melody, rhythm, harmony, timbre) are most predictive of human

similarity judgments across different cultural contexts?

5. How can ensemble methods combining interpretable features and learned representations

improve alignment with human cross-cultural music perception?

6. How can open science principles be applied to enable reproducible research in multicultural

music analysis?

Through addressing these research questions systematically, this dissertation contributes to
a more comprehensive understanding of multicultural representation learning for music and its

relationship to human cross-cultural music perception.

1.4 Contributions

This dissertation advances multicultural music representation learning through a comprehensive
research program that directly addresses each of the research questions posed above. The contri-
butions span from fundamental dataset development to sophisticated model adaptation techniques
and human-computational alignment studies, providing both theoretical insights and practical so-

lutions.

1.4.1 Addressing Data Availability for Diverse Musical Traditions (RQ1)

The Lyra Dataset [45] represents our response to the fundamental challenge of data scarcity
in computational analysis of traditional music. This comprehensive collection of Greek traditional
music, comprising 1,570 pieces with approximately 80 hours of high-quality recordings, demon-
strates a methodology for creating culturally-grounded datasets that can support sophisticated
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computational analysis. The dataset addresses RQ1 by establishing consistent recording quality
through systematic collection from academic documentary sources, developing rich metadata an-
notations that capture musicologically relevant attributes including instrumentation, geographic
origin, and genre classification, and providing structured access through timestamped multime-
dia links. Expert validation throughout the collection and annotation process ensures cultural
authenticity, while baseline classification experiments establish performance benchmarks for key
musicological attributes, providing a foundation for future computational research on Greek tra-

ditional music.

1.4.2 Understanding Cross-Cultural Knowledge Transfer (RQ2)

Our Cross-Cultural Transfer Learning Framework [46] provides the first systematic in-
vestigation of knowledge transfer patterns between diverse musical systems. This comprehensive
methodology directly addresses RQ2 by evaluating multiple deep audio embedding models across
musical corpora spanning Western, Mediterranean, and Indian traditions, revealing previously
unknown patterns of cross-cultural musical relationships. The framework enables systematic com-
parison of single-domain versus cross-domain learning approaches, establishing quantitative metrics
for measuring transfer effectiveness across different musical systems. The research demonstrates
that computational models can indeed benefit from knowledge transfer between diverse musical
systems, while also revealing the asymmetric and complex nature of these relationships. These
findings provide new insights into computational similarities between musical cultures and estab-
lish that bidirectional knowledge transfer is possible, though effectiveness varies significantly based
on the specific traditions involved.

1.4.3 Learning from Limited Examples in Musical Contexts (RQ3)

The development of LC-Protonets [47] directly tackles RQ3 by introducing a novel approach
to multi-label few-shot learning specifically designed for musical classification scenarios. This
methodology extends Prototypical Networks to handle the complex multi-label scenarios common
in music analysis, creating prototypes for label combinations rather than individual labels. The
approach significantly improves performance across diverse music datasets and enables the inclusion
of rare but culturally significant musical attributes in computational models. Integration with
pre-trained embedding spaces enhances performance while maintaining computational efficiency,
and comprehensive evaluation across diverse music datasets demonstrates consistent improvements
over existing few-shot learning methods. The two-step learning framework shows particular efficacy
for imbalanced datasets, enabling the expansion of tag sets to include underrepresented musical

categories that would otherwise be excluded from computational analysis.

1.4.4 Evaluating Foundation Models Across Musical Traditions (RQ4)

Our Foundation Model Evaluation Framework provides the first comprehensive assess-
ment of state-of-the-art music foundation models across diverse musical traditions, directly ad-
dressing RQ4. This multi-faceted evaluation employs complementary methodologies including
linear probing, supervised fine-tuning, and few-shot learning to assess model capabilities under
different resource constraints. The systematic comparison of five state-of-the-art audio founda-
tion models across six musical corpora representing different traditions reveals both impressive
cross-cultural capabilities and significant limitations, particularly in low-resource scenarios and for
culturally distant traditions. The research establishes benchmarks for future foundation model
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1.4.5 Adapting Foundation Models for Cultural Inclusivity (RQ5)

development while identifying specific areas where current models exhibit Western-centric biases.
These findings provide crucial insights into the current state of universal music representation and

highlight the need for more inclusive training approaches.

1.4.5 Adapting Foundation Models for Cultural Inclusivity (RQ5)

CultureMERT, developed in collaboration with Angelos-Nikolaos Kanatas, represents our
comprehensive answer to RQ5 through a novel two-stage continual pre-training strategy that en-
ables stable adaptation of foundation models to diverse musical traditions. This approach addresses
the fundamental challenge of catastrophic forgetting by carefully balancing plasticity and stability
during adaptation. Training on a 650-hour diverse data mix comprising Greek, Turkish, and In-
dian music demonstrates that foundation models can be effectively enhanced to better represent
non-Western traditions while preserving their general capabilities. Systematic evaluation across
multiple music tagging tasks confirms consistent improvements, while analysis of catastrophic for-
getting provides insights into effective mitigation strategies. Additionally, our exploration of Task
Arithmetic for Music Models provides an alternative adaptation approach that merges inde-
pendently adapted models in weight space, offering a resource-efficient method that eliminates the

need for simultaneous access to all cultural datasets.

1.4.6 Bridging Human Perception and Computational Music Similarity
(RQ6)

Our Cross-Cultural Music Similarity Study provides the first systematic evaluation of
computational music similarity methods against human cross-cultural music perception, directly
addressing RQ6. This comprehensive investigation collected human similarity annotations from
125 participants across diverse backgrounds, evaluating 1,130 unique audio pairs from nine musical
datasets across three similarity dimensions: overall musical similarity, cultural similarity, and
recommendation-level similarity. The systematic comparison of both traditional signal processing
features and seven state-of-the-art foundation models using five complementary evaluation metrics
reveals that foundation models achieve superior alignment with human perception, with melody
consistently emerging as the most predictive traditional feature across all cultural contexts.

The research uncovers fundamental differences between human and computational processing
strategies, demonstrating that humans prioritize melodic content while foundation models empha-
size timbral characteristics, a misalignment with significant implications for music Al system design.
Cross-cultural discrimination analysis reveals substantial gaps between human cultural awareness
and computational capabilities, while the apparent underperformance of culturally adapted models
reflects the influence of listener cultural background on evaluation outcomes. Most encouragingly,
ensemble methods combining interpretable features with learned representations achieve substan-
tial improvements, reducing prediction errors by 25-30% and demonstrating the complementary
value of diverse computational approaches. This study establishes both a comprehensive evaluation
framework for cross-cultural music similarity assessment and actionable insights for developing cul-

turally aware music technology systems that align with human cross-cultural music understanding.

1.4.7 Integrative Insights and Open Science Contributions

Beyond addressing individual research questions, this dissertation provides integrative contri-

butions that span multiple aspects of multicultural music representation learning. Our Cross-
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Cultural Transferability Amnalysis quantifies transfer effectiveness between Western, Greek,
Turkish, and Indian musical traditions, identifying asymmetries in cross-cultural transfer patterns
and revealing insights into shared musical characteristics across different traditions. These findings
contribute to theoretical understanding of computational relationships between musical cultures
while providing practical guidance for future cross-cultural music research.

The Human-Computational Alignment Analysis bridges the gap between algorithmic
processing and perceptual understanding by systematically evaluating how different computational
approaches align with human cross-cultural music similarity judgments. This work provides em-
pirical evidence for the complementary strengths of interpretable signal processing features and
learned foundation model representations, while establishing that ensemble approaches can achieve
superior alignment with human perception.

Recognizing the importance of reproducible research and community engagement, we have
made substantial Open-Source Contributions including public release of the Lyra dataset
with structured metadata, open-source implementations of LC-Protonets, comprehensive evalu-
ation frameworks and benchmarks for cross-cultural model assessment, public release of adapted
foundation models, and the cross-cultural music similarity dataset with human annotations. These
resources enable the broader research community to build upon our work and advance the field of
multicultural music representation learning.

Through this integrated approach to addressing fundamental research questions in multicul-
tural music analysis, the dissertation provides both theoretical insights into the nature of musical
representation across cultures and practical tools that advance the state-of-the-art in computa-
tional music analysis. The contributions collectively demonstrate that while significant challenges
remain in developing universal music representations, substantial progress can be achieved through
systematic research that combines dataset development, methodological innovation, comprehensive

evaluation, adaptive model enhancement, and human-centered validation.

1.5 Associated Publications

The work presented in this dissertation has been shared at international peer-reviewed con-
ferences and journals, or is currently under review. The following list includes all publications
associated with this dissertation, followed by their correspondence to the dissertation chapters and

a description of the author’s contributions to each.

Peer-reviewed Publications (First Author)

1. Charilaos Papaioannou, Ioannis Valiantzas, Theodore Giannakopoulos, Maximos A.
Kaliakatsos-Papakostas, and Alexandros Potamianos, “A Dataset for Greek Traditional and
Folk Music: Lyra”, in Proceedings of the 23rd International Society for Music Information Re-
trieval Conference (ISMIR 2022), Bengaluru, India, 2022, pp. 377-383 [45].

2. Charilaos Papaioannou, Emmanouil Benetos, and Alexandros Potamianos, “From West
to East: Who can understand the music of the others better?”, in Proceedings of the 24th
International Society for Music Information Retrieval Conference (ISMIR 2023), Milan, Italy, 2023,
pp. 311-318 [46].

3. Charilaos Papaioannou, Emmanouil Benetos, and Alexandros Potamianos, “LC-Protonets:
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Multi-Label Few-Shot Learning for World Music Audio Tagging”, IEEE Open Journal of
Signal Processing, vol. 6, pp. 138-146, 2025 [47].

4. Charilaos Papaioannou, Emmanouil Benetos, and Alexandros Potamianos, “Universal
Music Representations? Evaluating Foundation Models on World Music Corpora”, to
appear in Proceedings of the 26th International Society for Music Information Retrieval Conference
(ISMIR 2025), Daejeon, Korea, 2025 [48].

Peer-reviewed Publication (Corresponding Author)

5. Angelos-Nikolaos Kanatas, Charilaos Papaioannou, and Alexandros Potamianos, “Cul-
tureMERT: Continual Pre-Training for Cross-Cultural Music Representation Learn-
ing”, to appear in Proceedings of the 26th International Society for Music Information Retrieval
Conference (ISMIR 2025), Daejeon, Korea, 2025 [49].

Publication Under Review (First Author)

6. Charilaos Papaioannou, Emmanouil Benetos, and Alexandros Potamianos, “Cross-
Cultural Music Similarity: Bridging Human Perception, Signal Processing, and Foun-
dation Models”, under review for the Transactions of the International Society for Music Infor-
mation Retrieval (TISMIR) journal.

Chapter 3 is based on publication [1], which introduced the Lyra dataset for Greek traditional
and folk music. As the first author, I led the dataset development, system design, experimen-
tal evaluation and manuscript preparation. loannis Valiantzas contributed to data annotation
and musicological analysis, Theodore Giannakopoulos and Maximos A. Kaliakatsos-Papakostas
assisted with technical implementation and manuscript preparation respectively, and Alexandros
Potamianos provided supervision and guidance throughout the project.

Chapter 4 draws from publications [2] and [3]. For publication [2], I was the lead contributor,
developing the transfer learning framework and conducting all experiments on cross-cultural music
understanding. Emmanouil Benetos provided guidance on experimental design and manuscript
revision, while Alexandros Potamianos offered supervision and feedback on the research direction.
For publication [3], I was responsible for the development of the LC-Protonets method, imple-
mentation, experimental evaluation, and manuscript preparation, with Emmanouil Benetos and
Alexandros Potamianos providing theoretical guidance and critical feedback.

Chapter 5 incorporates content from publications [4] and [5]. For publication [4], I led the
research as first author, designing the evaluation framework, conducting the experiments, and
writing the manuscript, with guidance from Emmanouil Benetos and Alexandros Potamianos. For
publication [5], I contributed to the conceptual framework, experimental design, and data analysis,
providing guidance on cultural adaptation strategies and evaluation methodologies, while Angelos-
Nikolaos Kanatas led the implementation as first author, developing the continual pre-training and
task arithmetic approaches.

Chapter 6 is based on manuscript [6], which presents the comprehensive cross-cultural music
similarity study. As the first author, I led the research design, human annotation study coor-
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dination, computational analysis implementation, and manuscript preparation. I designed and
conducted the large-scale human perception study involving 125 participants, implemented all
computational similarity measures including signal processing features and foundation model eval-
uations, developed the comprehensive evaluation framework, and performed all statistical analyses
and ensemble method evaluations. Emmanouil Benetos and Alexandros Potamianos provided the-
oretical guidance, methodological feedback, and critical review throughout the research process.

1.6 Dissertation Structure

The remainder of this dissertation is organized as follows:

Chapter 2: Background This chapter provides a comprehensive background on the concepts,
methods, and related work relevant to this dissertation. It covers fundamental concepts in music
signal analysis and representation learning, examines foundation models in music, reviews literature
on cross-cultural music analysis and computational ethnomusicology, and synthesizes relevant work
from all included papers. This chapter establishes the conceptual and methodological foundation
for the research presented in subsequent chapters, spanning topics from music signal processing

fundamentals to world music datasets, annotation challenges, and human perception studies.

Chapter 3: The Lyra Dataset: A Resource for Greek Traditional and Folk Music This
chapter presents the development, structure, and analysis of the Lyra dataset for Greek traditional
music. It details the data collection process, metadata structure, and distribution of pieces across
genres, instrumentation, and geographic origins. The chapter concludes with baseline classification
experiments for genre, instrument, and regional classification, demonstrating the dataset’s utility
for computational analysis and establishing performance benchmarks for future research on Greek

traditional music.

Chapter 4: Learning Across Cultures This chapter explores approaches for transferring
knowledge between musical traditions, combining transfer learning and few-shot learning method-
ologies. The first part investigates knowledge transfer patterns between different musical systems
using deep audio embedding models, while the second part introduces LC-Protonets, a novel multi-
label few-shot learning method designed for scenarios with limited annotated data. Together, these
approaches address complementary aspects of the challenge of learning across diverse musical tra-

ditions with varying amounts of available data.

Chapter 5: Foundation Models for Diverse Music Traditions This chapter evaluates
the capabilities of state-of-the-art music foundation models across diverse musical traditions and
explores approaches for enhancing their representational capacity. It presents a comprehensive
evaluation framework assessing multiple foundation models across varied musical corpora using
three complementary methodologies. It then introduces CultureMERT, an adapted foundation
model developed through a two-stage continual pre-training strategy, along with an exploration of

task arithmetic as an alternative approach to model adaptation.

Chapter 6: Cross-Cultural Music Similarity: Bridging Human Perception and Com-
putational Methods This chapter presents the first comprehensive evaluation of computational

music similarity methods against human cross-cultural music perception. It details a large-scale
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human annotation study involving 125 participants evaluating 1,130 audio pairs from nine diverse
musical traditions across three similarity dimensions. The chapter systematically compares human
judgments against both signal processing features and foundation model representations, reveals
fundamental differences in processing strategies between humans and machines, and demonstrates
the effectiveness of ensemble methods that combine interpretable features with learned represen-
tations.

Chapter 7: Conclusions This chapter summarizes the key contributions and findings of this
dissertation, synthesizes insights across the various studies, acknowledges limitations, and discusses
future directions for music representation learning across diverse traditions. It highlights how
the dissertation has advanced dataset development, methodological innovation, model evaluation,
adaptation techniques, and human-computational alignment, while identifying promising research
avenues and potential applications that could further expand the technical capabilities of music

information retrieval systems worldwide.
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Chapter 2

Background

This chapter provides a comprehensive overview of the fundamental concepts, methods, and
existing research relevant to representation learning across diverse musical traditions for music
signal analysis. Beginning with a concise overview of theoretical frameworks for comparative
music analysis, it progresses through detailed coverage of music signal processing fundamentals
and deep learning approaches in Music Information Retrieval (MIR). The chapter then examines
methodological challenges in MIR when analyzing diverse musical systems, world music datasets,
computational ethnomusicology, transfer learning, few-shot learning, and foundation models in mu-
sic. Additionally, it explores the intersection of computational approaches with human perception,
particularly in the context of cross-cultural music similarity assessment. Throughout, we empha-
size a data-driven approach to studying relationships between musical systems using end-to-end
deep learning models with minimal inductive bias, avoiding explicit feature extraction to let the

models discover relevant patterns directly from the data.

2.1 Theoretical Frameworks for Comparative Music Analysis

While our research takes a primarily technical approach to music representation learning across
different traditions, it is informed by several theoretical perspectives from musicology, cognitive
science, and cultural studies. This section briefly summarizes key theoretical frameworks that
contextualize our computational approaches.

The field of comparative music analysis has historically considered both universalist perspec-
tives, which seek common elements across musical traditions, and relativist views, which emphasize
the distinctive characteristics of each tradition [10, 50]. Recent research suggests a nuanced view
that recognizes both shared constraints and regional diversity in music [2], with certain statistical
features appearing across traditions while manifesting in regionally specific ways.

From cognitive perspectives, music perception involves both domain-general processes shared
across populations and specific knowledge acquired through exposure [3]. This suggests potential
for both transferable and tradition-specific aspects of computational music representation. Infor-
mation theory provides additional insights by framing music as a communication system balancing
predictability and surprise [51], with statistical patterns that vary across traditions.

The question of musical universality versus cultural specificity has profound implications for
computational approaches. While certain musical elements may transcend cultural boundaries,
such as the recognition of emotional expressions or the use of discrete pitches, musical traditions
have evolved with distinct characteristics that reflect their cultural contexts [2, 10]. The assumption
of music as a “universal language” is challenged by research showing that cultural context influences
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auditory perception and aesthetic appraisal, leading to diverse “listening frameworks” and “musical
ontologies” that shape how different communities understand and categorize musical experience.

These theoretical frameworks inform our technical approach through several key principles. We
adopt a computational perspective that uses data-driven methods while maintaining awareness of
cultural context, rather than imposing predetermined analytical frameworks. Our research pursues
adaptive representation approaches that can adjust to the distinctive characteristics of different
traditions rather than applying a single universal framework. Given the data scarcity common
in many musical traditions outside the commercial mainstream, we emphasize resource-conscious
methods that work effectively with limited annotated data. Throughout this work, we maintain
awareness of the technical challenges in computational music analysis, working to create more
broadly applicable approaches that respect cultural diversity.

Most importantly, our approach emphasizes studying relationships between musical systems
through end-to-end deep learning models. By minimizing inductive bias and avoiding explicit
feature extraction for specific musical attributes (melody, rhythm, harmony), we allow the models
to discover relevant patterns directly from the data. This approach reduces the risk of imposing
assumptions from any particular musical system and enables more flexible representation learning

across diverse traditions.

2.2 Music Signal Processing and Representation

2.2.1 Fundamentals of Audio Signal Processing

Music, at its most basic computational level, is represented as a digital audio signal, a one-
dimensional sequence of amplitude values sampled at regular time intervals. Typical music record-
ings are sampled at rates of 44.1 kHz or 48 kHz, resulting in 44,100 or 48,000 amplitude values per
second of audio [12]. This raw waveform representation contains all the acoustic information but
presents challenges for direct analysis due to its high dimensionality and the complex encoding of
musical information.

Various signal processing techniques transform these raw waveforms into more tractable rep-
resentations. The Short-Time Fourier Transform (STFT) is fundamental, decomposing the signal
into its frequency components over short time windows to create a time-frequency representation

known as a spectrogram [52]:

=

N
X(n,k) = > a(m+n)w(m)e2*m/N, (2.1)
m=0
where x(m) is the input signal, w(m) is a window function of length N, n is the frame index,
and k is the frequency bin index. The resulting spectrogram represents the magnitude of different
frequency components over time, providing a two-dimensional visualization of the audio’s spectral
content.

For music analysis, the mel-spectrogram has become particularly important [53]. It applies
mel-scale filterbanks to the STFT to compress the frequency axis in a way that approximates

human auditory perception:

N/2
k=0
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Figure 2.1. Mel-Spectrograms of Traditional Greek Music. Time-frequency representa-
tions of four songs from the Lyra dataset (Chapter 3).

where Hy(k) represents the triangular mel-scale filters and b is the mel-band index. The mel scale

converts frequencies f in Hz to mel units:

mel(f) = 25951log, (1 + £/700) (2.3)

This transformation emphasizes perceptually relevant frequency regions while reducing dimen-
sionality, making it well-suited for machine learning approaches. Figure 2.1 shows four mel-
spectrograms of songs from the Lyra dataset (see Chapter 3), revealing both temporal patterns
(horizontal axis) and frequency content (vertical axis).

Other common time-frequency representations include:

Constant-Q Transform (CQT): Provides logarithmically spaced frequency bins aligned with
musical scales [54]. The frequency resolution A f; at center frequency fj maintains a constant ratio

Q = fr/Afk, matching the logarithmic nature of musical pitch organization:

n+ Ny /2] }
Xeglhn)= > a(m)-wp(m—n+ [Ng/2|)- e 72mQm/N, (2.4)
m=n—|Ny/2]

where Ny, is the variable window length for each frequency bin k.

Chromagrams: Project the spectrum onto 12 pitch classes representing the chromatic scale,

capturing harmonic and tonal content while discarding octave information [55]:

o
L

C(n7p) = |X(n,p + 12(I)|27 (25)

Q
Il
<

where p € {0,1,...,11} represents the 12 pitch classes and @ is the number of octaves.

Log-Mel Spectrograms: Apply logarithmic compression to mel-spectrograms, further aligning

with human perception of loudness:

L(n,b) =log(l + a - M(n,b)), (2.6)
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where « is a scaling factor. This representation has become particularly important for deep learning
approaches.

These time-frequency representations form the foundation for both traditional feature extrac-
tion and modern deep learning approaches. They encode different aspects of the signal, with
varying trade-offs between temporal and frequency resolution, and different alignments with mu-

sical organization principles.

2.2.2 Traditional Musical Feature Extraction

Building upon basic time-frequency representations, various higher-level features have been
developed to capture specific musical characteristics. These features, designed based on music

theory and perceptual principles, have been widely used in traditional MIR systems:

Melodic Features: Melody analysis focuses on extracting the fundamental frequency (F0) as
the primary carrier of melodic information. The PYIN algorithm [56] provides robust FO ex-
traction from polyphonic audio by treating the fundamental frequency as the dominant melodic
skeleton. Following FO detection, pitch classes are recognized to enable cross-cultural melodic
analysis through dual-resolution representations.

Given the extracted fundamental frequency f in Hz, MIDI-like pitch numbers are computed as:

m = 121log, (410) +69. (2.7)

Pitch classes are then calculated as pc = [m mod 12], typically providing 12 bins for traditional
Western analysis.

Melodic intervals between consecutive pitch classes can, in turn, be computed. These inter-
vals, along with pitch class distributions and contour analysis, characterize the music’s melodic

movement.

Rhythmic Features: Tempo estimation, beat tracking, and onset detection algorithms extract
information about temporal organization [57]. Onset detection functions identify points where new
events begin in the signal:

K
ODF(n) =Y H(IX(n,k)| - |X(n - 1,k))), (2.8)
k=1

where H(z) = I'glzl is a half-wave rectifier function. Tempo is typically estimated through peri-
odicity analysis of these onset functions, while beat tracking aligns a regular grid to these onsets
using techniques like dynamic programming or hidden Markov models.

Harmonic Features: Harmony can be represented through pitch class profiles, chord recogni-
tion, and key estimation [58]. Harmonic Pitch Class Profiles (HPCP) enhance basic chromagrams

by weighting frequency bins based on their harmonic relationship to the fundamental:

HPCP(n,p) = th C(n, (p-h) mod 12), (2.9)

where h is the harmonic index and wy, is a weighting function.
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2.2.3 Challenges in Analyzing Diverse Musical Systems

Timbral Features: Mel-Frequency Cepstral Coefficients (MFCCs) have been fundamental for
capturing timbral characteristics [59]. Derived by applying the Discrete Cosine Transform to the

logarithm of the mel-spectrogram, MFCCs represent the spectral envelope shape:

B-1
MFCC(n,c) = Z log(M (n, b)) cos(c(b + 0.5)7/B), (2.10)
b=0

where ¢ is the cepstral coefficient index and B is the number of mel bands. Additional spectral
features include spectral centroid (the “center of mass” of the spectrum), flux (the rate of spec-
tral change), and rolloff (the frequency below which a specified percentage of spectral energy is
contained) [60].

Structural Features: Segmentation algorithms identify structural boundaries and repetitions,
capturing form and arrangement [61]. These often employ self-similarity matrices S computed
from frame-level features:

S(i,j) = sim(v;, v;), (2.11)

where v; and v; are feature vectors at frames 7 and j, and sim is a similarity measure like cosine
similarity.

While these hand-crafted features have proven effective for many MIR tasks, they often embed
musical assumptions from European classical and popular music traditions. For instance, chroma-
gram features implicitly assume 12-tone equal temperament, making them less suited for traditions
with different tuning systems or microtonal inflections. Similarly, conventional beat tracking algo-
rithms often assume metrical structures common in European and North American music, facing

challenges with complex rhythmic cycles or asymmetrical meters found in other traditions.

2.2.3 Challenges in Analyzing Diverse Musical Systems

Computational analysis presents several challenges when applied to diverse musical systems

due to fundamental differences in musical organization:

e Tonal Systems: Many musical traditions employ microtonal intervals, non-equal tempera-
ment, and modal systems not well-captured by conventional features [13]. For example, Turk-
ish makam music uses intervals as small as a comma (approximately 22.6 cents, compared
to 100 cents in the semitone), creating 53 divisions of the octave instead of 12 [20]. Simi-
larly, Indian classical music employs 22 microtonal divisions (shruti) and complex melodic

ornamentation (gamaka) that confound equal-tempered representations [21].

e Rhythmic Complexity: Asymmetrical patterns, complex cycles, and flexible timing present
challenges for conventional rhythm analysis [62]. Greek traditional music often uses meters
like 7/8 (grouped as 3+242) or 9/8 (grouped as 2+2+2+3), while Indian classical music em-
ploys complex tala cycles with internal hierarchical organizations. These structures present

difficulties for algorithms expecting regular beat divisions or simple duple/triple meters.

e Timbre and Instrumentation: Traditional instruments from various regions produce tim-
bral qualities not well-represented by features optimized for modern orchestral or electronic
instruments [33]. The Greek lyra, Turkish ney, and Indian sitar each produce distinctive
spectral patterns with unique attack characteristics, sustained resonances, and harmonic
structures that may be mischaracterized by standard timbral features.
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e Performance Practices: Improvisation, ornamentation, and tradition-specific performance
techniques may not be adequately captured by standard feature extraction [33]. Indian clas-
sical music employs complex ornamentation like meend (gliding between notes), Turkish
makam features distinctive microtonal inflections, and Greek traditional music includes tax-

imi (non-metrical improvisation) that challenge conventional analysis.

These challenges have motivated two different approaches. One direction involves developing
specialized representations for specific traditions, such as a MIDI-based representation for Turkish
makam [18], specialized models for makam music lyrics-to-audio alignment [63], and methods for
identifying asymmetric rhythms in Greek music [17]. While effective for specific traditions, these
specialized approaches lack scalability across multiple musical systems.

The alternative direction, and the one pursued in this dissertation, involves end-to-end learning
approaches that minimize inductive bias. Instead of designing specialized features that might em-
bed particular musical assumptions, we employ deep learning techniques that can learn appropriate
representations directly from data. This approach allows the models to discover relevant patterns
without imposing predefined notions of what musical characteristics are important, potentially

providing more flexible and adaptable representations.

2.2.4 Representation Learning Approaches: Traditional Features vs. End-
to-End Methods

The limitations of many traditional features for analyzing diverse musical systems motivate a
systematic investigation of representation learning approaches. This dissertation employs primarily
end-to-end models that learn directly from minimally processed audio representations, while also
evaluating the cross-cultural effectiveness of traditional signal processing features (see Chapter 6).

As illustrated in Figure 2.2, these two approaches differ fundamentally in how they process
musical information. Traditional feature extraction relies on explicit feature engineering where
musical theory assumptions are embedded at multiple stages, from the choice of spectral features to
the design of higher, level descriptors like chroma vectors or beat tracking algorithms. These hand-
crafted features, while interpretable and grounded in music theory, impose fixed representations
that may not adequately capture the characteristics of diverse musical traditions. In contrast, end-
to-end learning employs data-driven feature discovery, allowing models to learn representations
directly from minimally processed audio without imposing predetermined musical categories.

This end-to-end approach offers several key advantages for analyzing diverse musical systems.
First, it provides reduced methodological bias by avoiding feature engineering based on particu-
lar music theories, thereby reducing the risk of imposing inappropriate analytical frameworks on
various traditions while allowing models to potentially learn tradition-specific patterns directly
from the data. Second, deep learning models can develop adaptive representations that adjust to
the distinctive characteristics of different musical traditions without requiring explicit modeling of
those differences. Third, with reduced inductive bias, models might discover unexpected patterns
and similarities or differences between musical systems that wouldn’t be captured by predefined
feature sets.

Furthermore, end-to-end approaches offer scalability across traditions, potentially generalizing
across diverse musical traditions without requiring specialized knowledge about each tradition’s
unique characteristics. However, our systematic evaluation reveals important nuances: some tra-

ditional features, particularly melody-based descriptors, retain significant value across cultural
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Figure 2.2. Traditional Feature Extraction vs. End-to-End Learning Approaches.
Comparison of computational pathways showing where musical assumptions and cultural biases can
be introduced in traditional approaches versus the more culturally neutral end-to-end methodology
employed in this dissertation.

contexts and can complement learned representations, challenging the assumption that newer ap-
proaches are universally superior.

Focusing on the end-to-end learning, our approach uses minimally processed audio represen-
tations, primarily log-mel spectrograms, as input to deep neural networks. While these represen-
tations still embed some perceptual assumptions (the mel scale approximates human frequency
perception), they maintain much of the original signal information without imposing explicit musi-
cal categories. The deep learning models can then learn task-relevant patterns directly from these
representations through supervised, self-supervised, or transfer learning objectives.

However, by adopting a comprehensive evaluation framework that includes human perception
studies, our research demonstrates that the most effective approach combines the flexibility of
end-to-end learning with the interpretability and surprising cross-cultural robustness of select tra-
ditional features. This integrated perspective validates which computational approaches align best

with cultural understanding.

2.3 Deep Learning in Music Information Retrieval

2.3.1 Evolution of Deep Learning in MIR

Deep learning approaches have revolutionized MIR by enabling the automatic learning of repre-
sentations directly from data, reducing the reliance on hand-crafted features. This section traces the
evolution of deep learning in MIR, from early applications to current state-of-the-art approaches.
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Figure 2.3. Methodological Evolution in Music Information Retrieval. Timeline showing
the progression from traditional hand-crafted features to foundation models, highlighting the major
paradigm shifts in computational music analysis.

As illustrated in Figure 2.3, the field of MIR has undergone several distinct evolutionary phases,
each characterized by different computational paradigms and methodological approaches. The
traditional feature extraction era, spanning from the 1990s through the early 2010s, was dominated
by hand-crafted features such as MFCCs [64], chroma vectors [65], and various temporal and
spectral descriptors. Many of these features were initially developed in the 1980s or earlier for
speech and audio processing applications, but were subsequently adopted and adapted for music
analysis from the 1990s onwards. While these approaches provided interpretable and musically
grounded representations, they often embedded specific musical assumptions that limited their
effectiveness across diverse musical traditions.

Early applications of deep learning in MIR focused on adapting architectures from other do-
mains, particularly computer vision. Convolutional Neural Networks (CNNs), originally developed
for image analysis, were adapted to process spectrograms as 2D images [66, 67]. These approaches
treated time and frequency dimensions analogously to the spatial dimensions of images, enabling
the extraction of patterns across both dimensions.

As deep learning in MIR matured, researchers developed architectures specifically designed
for music signals. These approaches incorporated domain knowledge about music structure and
perception while leveraging the representational power of deep neural networks. For instance,
the authors of [68] introduced Musicnn, which uses horizontal and vertical convolutional filters to
separately capture temporal and timbral features before combining them for music classification.

Besides the models that process time-frequency input data, end-to-end approaches that learn
directly from raw audio waveforms emerged, eliminating the need for pre-defined representations.
Models like SampleCNN [69] and TCNN [70] operate directly on raw audio samples, learning
appropriate feature hierarchies from the data itself. Additionally, the success of Recurrent Neural
Networks (RNNs) and Long Short-Term Memory (LSTM) networks in sequence modeling led to
their application in MIR tasks requiring temporal understanding, such as structural segmentation
and beat tracking [71].

More recently, attention-based models, particularly Transformers, have been applied to music
analysis [39]. The Audio Spectrogram Transformer (AST) adapts the Vision Transformer architec-
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ture to audio spectrograms, treating them as sequences of patches. This approach has demonstrated
state-of-the-art performance on various audio classification tasks, including music auto-tagging.

The current foundation model era represents the most recent paradigm shift, with models like
MERT [40] and CLAP [41] demonstrating unprecedented capabilities across diverse MIR tasks.
These models leverage large-scale self-supervised pre-training to learn general-purpose musical
representations that can be adapted to various downstream applications.

This evolutionary progression reflects a shift from manually engineered approaches toward data-
driven methods, though our research demonstrates that hybrid approaches combining traditional
and learned features can be most effective in some cross-cultural applications. This transition di-

rectly motivates the multicultural representation learning approaches explored in this dissertation.

2.3.2 Deep Audio Embeddings

Deep audio embeddings, dense vector representations learned by deep neural networks, have
become fundamental tools in MIR. These embeddings capture musically relevant information in a
compact form that can be used for various downstream tasks, including similarity search, clustering,
and classification.

Several approaches exist for learning deep audio embeddings. Supervised learning involves
training networks on labeled data for tasks like genre classification or auto-tagging, then using in-
termediate layer activations as embeddings [72]. Self-supervised learning takes a different approach
by learning representations without explicit labels through solving pretext tasks like reconstruct-
ing corrupted inputs, predicting future frames, or contrastive prediction [73]. Transfer learning
adapts embeddings learned on one dataset or task to new domains, leveraging knowledge from
resource-rich areas to enhance performance in limited-data scenarios [74].

Deep audio embeddings offer several key advantages over traditional hand-crafted features.
They can capture complex patterns and hierarchical structures in music that might be difficult to
define explicitly, while being learned directly from data, potentially reducing methodological biases
embedded in hand-crafted features. Additionally, they can be fine-tuned or adapted for specific
tasks and musical traditions, and they provide a unified representation that can support multiple
downstream tasks.

In Sections 4.2-4.4, we explore the transferability of deep audio embeddings between musical
traditions, investigating how well embeddings learned from one musical tradition can represent
and analyze music from different traditions. This work provides insights into the similarities and
differences between musical systems from a computational perspective and informs the development

of more broadly applicable embedding models.

2.4 Methodological Limitations in Current MIR Systems

The field of MIR has made remarkable progress in developing computational approaches to
music analysis, but it also faces important methodological limitations when analyzing diverse
musical systems. These limitations manifest at multiple levels, from low-level feature extraction
to high-level task formulation and evaluation. Music representation approaches, both traditional
feature extraction and modern representation learning, embed specific musical assumptions that
can limit their effectiveness across diverse traditions. For example, chroma features implicitly
assume 12-tone equal temperament, making them less suited for traditions with different tuning
systems [75], while rhythmic features often assume certain metrical hierarchies, struggling with
complex cycles of traditions like Carnatic music [76]. Additionally, learned representations from
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deep models inherit biases from their training data, which predominantly consists of Western
commercial music [13, 14].

Task formulation in MIR often reflects specific musical priorities that may not generalize across
traditions. Genre classification typically employs commercial music categories, while chord recog-
nition assumes harmonic principles common in European traditions that may not apply to modal
or heterophonic traditions [15]. Similarly, evaluation metrics may not capture all musically relevant
aspects of model performance, potentially rewarding systems that exploit dataset artifacts rather
than meaningful musical understanding [77]. The predominance of certain musical traditions in
research datasets [14] can create a “self-reinforcing cycle” in which established datasets lead to
specialized algorithms, which in turn encourage more similar data collection.

These challenges are illustrated by specific examples from diverse musical traditions. Indian
classical music employs a complex system of ragas that define specific melodic movements, em-
phasized notes, and expressive associations that differ from concepts of scales or modes in other
traditions. Standard tonal analysis tools face challenges because pitch tracking algorithms opti-
mized for certain musical contexts often perform less effectively with the continuous pitch move-
ments (gamaka) central to Indian classical music, and equal-tempered pitch representations cannot
adequately capture the subtle microtonal intervals used in raga performance [21]. Similarly, tradi-
tional Eastern Mediterranean music employs complex rhythmic cycles with distinctive structural
characteristics that confound conventional beat tracking algorithms. These patterns often feature
asymmetrical beat groupings (e.g., 9/8 grouped as 2+2+2+3) that differ from the patterns ex-
pected by algorithms designed for regular beat divisions [17]. Early research demonstrated this
challenge quantitatively, with algorithms achieving less than 80% performance on non-Western
datasets compared to more than 90% for popular music with regular metrical structures [62].

As demonstrated in Section 5.4, evaluations of foundation models show similar limitations
despite their more flexible representation learning capabilities. These challenges reflect not inherent
limitations of computational approaches but rather the methodological assumptions embedded in
both explicit feature design and implicit biases in the training data used for representation learning.
Such limitations highlight the need for more culturally aware computational approaches that can

adapt to the distinctive characteristics of diverse musical traditions.

2.5 World Music Datasets and Computational Ethnomusi-
cology

2.5.1 Computational Ethnomusicology

Computational ethnomusicology represents the intersection of ethnomusicology, the study of
music in its cultural context, and computational methods [32]. This emerging field applies digital
tools and computational analysis to study diverse musical traditions, complementing traditional
ethnomusicological approaches with data-driven insights.

The field pursues several interconnected objectives that span preservation, analysis, and tool
development. A primary focus involves preservation and documentation through digitizing, or-
ganizing, and analyzing recordings of traditional music, particularly from endangered musical
traditions [33]. Computational ethnomusicology also enables comparative analysis by identify-
ing similarities and differences between musical traditions through computational comparison of
acoustic features, structures, and patterns [78, 79]. The field’s analytical capabilities extend to

pattern discovery, uncovering structures within specific musical traditions that might not be im-
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mediately apparent through traditional analysis methods [80]. Additionally, researchers in this
domain focus on tool development, creating specialized computational tools that can effectively
capture the unique characteristics of different musical traditions [81].

Despite its promise, computational ethnomusicology faces several significant challenges. These
include the need for appropriate computational representations that can accommodate diverse mu-
sical systems, the scarcity of structured datasets for many traditions, and the critical importance
of accounting for tradition-specific musical characteristics that may not align with conventional
computational approaches. These challenges have motivated the development of specialized ap-
proaches and datasets for various musical traditions, as well as the exploration of more culturally

adaptive computational methods.

2.5.2 World Music Datasets

Several datasets have been developed to support computational analysis of diverse musical
traditions. These datasets vary in size, scope, and annotation depth, reflecting the diversity of the
traditions they represent and the specific research questions they aim to address. Table 2.1 presents
representative examples of world music datasets, illustrating their characteristics and availability.

These datasets represent important contributions to computational analysis of diverse musical
traditions, enabling both culture-specific studies and cross-cultural comparisons. The CompMusic
project stands out as a particularly comprehensive effort, providing structured access to multiple
traditions through the Dunya platform, while more recent datasets like Erkomaishvili and Lyra
focus on specific traditions with detailed musicological annotations. However, many musical tradi-
tions worldwide remain underrepresented in available datasets, highlighting the ongoing need for
continued efforts in data collection and annotation, particularly for musical cultures from Africa,

Southeast Asia, and indigenous traditions globally.

The CompMusic Project

The CompMusic (Computational Models for World Music) project represents the most signif-
icant initiative in computational ethnomusicology to date, focusing on developing computational
approaches for analyzing five music traditions: Hindustani and Carnatic classical music from India,
Turkish makam music, Beijing Opera, and Arab-Andalusian music [33].

The project made several groundbreaking contributions that have shaped the field. It devel-
oped comprehensive tradition-specific corpora containing audio recordings, scores, and contextual
information for each tradition [19, 23, 84-86], providing researchers with unprecedented access to
structured collections of world music. The project also created specialized computational tools
and algorithms for analyzing tradition-specific aspects such as raga and tala in Indian music,
makam and usul in Turkish music, enabling culturally appropriate computational analysis [20, 21].
Additionally, CompMusic developed sophisticated knowledge representations and ontologies that
capture the conceptual structures of each tradition [87], while building user-friendly applications
like Dunya that provide accessible interfaces to the collections and computational tools [88].

The CompMusic approach emphasizes tradition-centered design, developing computational
methods that respect and capture the unique characteristics of each tradition rather than im-
posing external frameworks. This methodology has significantly influenced subsequent research in
computational ethnomusicology and provided valuable resources for comparative music analysis,
establishing a model for culturally sensitive computational musicology.
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Dataset Musical Size Key Annotations Availability Year
Tradition
Dutch Folk Songs Dutch folk ~200,000 Melody, lyrics, Public 2019
Database [34] melodies metadata
CompMusic Hindustani, Varies by Raga, tala, makam, Public 2014
Corpora [33] Carnatic, tradition usul, instruments (Dunya)
Turkish
makam,
Beijing Opera,
Arab-
Andalusian
COFLA Dataset Flamenco ~95 hours  Hierarchical style Public 2016
[35] labels, artists,
transcriptions
Erkomaishvili Georgian ~100 Three-voice Public 2020
Dataset [306] traditional record- polyphony, lyrics,
ings, 7 transcriptions
hours
ChMusic [24] Chinese 55 Instruments, artists Public 2021
traditional recordings
Greek Audio Greek popu- 1,000 Genre, mood, lyrics Public 2014
Dataset (GAD) [82] lar/traditional  tracks, ~8
hours
Greek Music Greek popu- 1,400 Extended GAD Public 2015
Dataset (GMD) lar/traditional  tracks, annotations
[83] ~12 hours
Lyra Dataset [45] Greek 1,570 Instruments, Public 2022
traditional/folk  pieces, 80 geography, genre
hours

Table 2.1. Representative World Music Datasets. Selected datasets for computational
analysis of diverse musical traditions, highlighting the variety in scope, size, and annotation ap-
proaches. Size information is approximate where not precisely reported in original sources.

2.6 Transfer Learning and Few-Shot Learning in MIR

2.6.1 Transfer Learning Fundamentals

Transfer learning aims to improve model performance on a target task by leveraging knowledge
from a related source task [89]. This approach is particularly valuable when the target task has
limited data or computational resources, allowing it to benefit from knowledge gained in data-rich
domains.

In the context of deep learning, transfer learning typically involves pre-training a model on a
source task with abundant data, then adapting it to a target task through fine-tuning, updating
some or all of the model parameters using the target data. The underlying assumption is that the
representations learned for the source task capture generalizable patterns that are relevant to the
target task.

Several interconnected factors influence the effectiveness of transfer learning. Task similarity, or
the degree of relatedness between source and target tasks, fundamentally affects how well knowledge
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transfers [90]. Domain shift, referring to differences in data distributions between source and target
domains, can limit transfer effectiveness even when tasks are conceptually similar [91]. The choice of
model architecture also plays a crucial role, as some architectures may facilitate transfer better than
others depending on how they structure and abstract knowledge [92]. Finally, fine-tuning strategy,
decisions about which layers to freeze or fine-tune, can significantly impact transfer performance,
with different strategies being optimal for different degrees of domain similarity [93].

In MIR, transfer learning has been applied to various tasks, including genre classification [72]
and music recommendation [74]. These applications typically transfer knowledge from large-scale
datasets like MagnaTagATune or Million Song Dataset to more specialized or limited-data scenar-

108.

2.6.2 Transfer Learning Across Musical Traditions

Transfer learning can be applied to bridge different musical traditions, leveraging knowledge
from one musical domain to enhance performance in another. This approach aligns with our goal of
studying relationships between musical systems using data-driven methods, as it enables quantita-
tive assessment of knowledge transferability without requiring explicit modeling of tradition-specific
features.

The transfer learning approach offers several interconnected benefits for analyzing diverse musi-
cal traditions. Data efficiency represents a primary advantage, as many traditional musical systems
have limited annotated datasets that make direct training challenging, while transfer learning al-
lows these traditions to benefit from models pre-trained on larger datasets. Through feature
discovery, models pre-trained on one tradition may identify features that are relevant to other
traditions, potentially revealing shared musical elements without explicitly engineering those fea-
tures. Adaptation efficiency is another key benefit, as adapting existing models through transfer
learning is generally more computationally efficient than training from scratch, making it practical
to develop specialized models for diverse traditions. Perhaps most importantly for comparative
musicology, the effectiveness of knowledge transfer between specific traditions can provide a quan-
titative measure of their computational similarity, potentially revealing relationships that might
not be apparent through traditional musicological analysis.

This data-driven approach to comparative music analysis avoids the need to explicitly model
tradition-specific features, instead allowing patterns of knowledge transfer to emerge naturally from
the data. This methodology reduces the risk of imposing inappropriate analytical frameworks while
still providing insights into relationships between different musical systems. By examining which
source domains provide the most effective knowledge transfer for each target domain, we can
identify potential relationships between musical traditions from a computational perspective. For
instance, stronger transfer between geographically or historically connected traditions might reflect
shared musical elements, while asymmetric transfer patterns might reveal directional influences or
overlapping musical concepts.

In Sections 4.2-4.5, we investigate transfer learning between different musical traditions, in-
cluding both Western and non-Western regions, exploring the extent to which musical knowledge

can be transferred effectively across different musical systems.

2.6.3 Few-Shot Learning Approaches

Few-shot learning addresses the challenge of learning from limited examples, aiming to gener-
alize to new classes based on only a few available instances [94]. This capability is particularly
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valuable for world music research, where annotated examples for many traditions or specific musical
attributes may be scarce.

Several approaches to few-shot learning have been developed:

Metric-Based Methods: These approaches learn a similarity metric that can compare new
examples to a small set of labeled instances. Prototypical Networks [95] represent each class by a
prototype computed as the mean of its examples in an embedding space, then classify new instances
based on their distance to these prototypes:

exp(—d(fy(x), cx))

Py = k) = S b d(fo (), ) (212)

where fy is an embedding function, cj, is the prototype for class k, and d is a distance function.

Model-Based Methods: These approaches use memory mechanisms or recurrent architectures
to rapidly adapt to new tasks. Memory-Augmented Neural Networks [96] incorporate external

memory that can be quickly updated with new information.

Optimization-Based Methods: These approaches learn an initialization that can be rapidly
fine-tuned to new tasks with minimal data. Model-Agnostic Meta-Learning (MAML) [97] optimizes

for quick adaptation by explicitly training for few-shot fine-tuning performance:

r@nﬂ%ﬂ L7(fo-aVoer,(in): (2.13)
where 7; are tasks sampled from a distribution p(7), and £ is a loss function.

Few-shot learning has been applied to various MIR tasks, including drum transcription [98],
source separation [99], and single instrument recognition [100]. These applications demonstrate
the potential of few-shot learning to address data scarcity challenges in specialized music analysis
tasks.

Few-shot learning is particularly relevant for analyzing diverse musical traditions because it
addresses the data scarcity common in many traditional musical systems. It enables the inclusion
of under-represented tags and musical elements in computational models, even when only a few ex-
amples are available. This capability aligns with our goal of developing more adaptable approaches
to music representation learning that can work effectively across diverse traditions with varying
data availability.

2.6.4 Multi-Label Few-Shot Learning

While conventional few-shot learning frameworks focus on multi-class classification (where each
instance belongs to exactly one class), many music analysis tasks, including auto-tagging, require
multi-label classification (where each instance can be associated with multiple labels simultane-
ously). This introduces additional challenges for few-shot learning.

Several approaches have been proposed to address multi-label few-shot learning:

Sample Synthesis: The LASO method [101] synthesizes samples with multiple labels by com-

bining pairs of examples in the feature space:

fmia (i, 75) = af (2:) + (1 = a) f(z;), (2.14)
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where f is an embedding function and « is a mixing coeflicient.

Label Count Prediction: The approach introduced in [102] predicts the number of labels

assigned to an item, enabling multi-label predictions.

Attention Mechanisms: Attention-based approaches [103] integrate label-specific attention to

handle multiple labels per instance.

Hierarchical Label Structures: Some methods [104] leverage taxonomic hierarchies between

tags to improve few-shot performance.

Binary Reformulation: The “One-vs.-Rest” approach [105] reformulates multi-label problems

into multiple binary classification tasks.

These methods address various aspects of multi-label few-shot learning but often introduce ad-
ditional complexity during training. The LC-Protonets approach, see Section 4.6, takes a different
approach by creating prototypes for label combinations derived from the power set of labels present
in support samples, providing a novel extension of Prototypical Networks to the multi-label setting.

Multi-label few-shot learning is particularly relevant for world music research, where music
pieces often have multiple overlapping tags related to instrumentation, region, genre, and other
attributes. The ability to learn from limited examples with multiple labels enables more compre-
hensive modeling of diverse musical traditions, even with the limited annotated data available for

many traditional musical contexts.

2.7 Foundation Models in Music

2.7.1 The Rise of Foundation Models

Foundation models represent a paradigm shift in artificial intelligence, featuring large-scale
models pre-trained on vast datasets that can be adapted to various downstream tasks [106]. Orig-
inally pioneered in natural language processing with models like BERT (Bidirectional Encoder
Representations from Transformers) [107] and GPT (Generative Pre-trained Transformer) [108],
the foundation model approach has expanded to other domains, including computer vision, speech
processing, and music.

Foundation models are characterized by several key features that distinguish them from tradi-
tional deep learning approaches. Scale represents a fundamental aspect, as these models typically
feature large architectures with millions or billions of parameters, trained on massive datasets
that were previously impractical to utilize. Most foundation models employ self-supervised pre-
training objectives that don’t require explicit labels, enabling them to leverage vast amounts of
unlabeled data and learn rich representations from the underlying structure of the data itself.
These models are specifically designed for transfer learning, with the ability to transfer knowledge
to diverse downstream tasks through fine-tuning or prompting, making them remarkably versa-
tile across applications and domains. Perhaps most intriguingly, foundation models often exhibit
emergent capabilities, sophisticated behaviors that were not explicitly designed but emerge from
the combination of scale and architecture, such as few-shot learning and cross-domain transfer
abilities.

91



Chapter 2. Background

Model Architecture Parameters Pre-training Training Year
Approach Data
JukeMIR Transformer 5B Derived from Jukebox 1.2M songs 2021
[109] generative model [110] from many
genres and
artists
MULE [111] Transformer  100M Self-supervised masked 1.7M tracks 2022
prediction from a private
catalog
Music2Vec Transformer  90M Masked prediction with 1k hours of 2022
[112] student-teacher collected
music audio
files from the
Internet
MusicFM Transformer  330M / Masked token modeling ~ 160k hours of 2023
[113] 660M in-house
music data /
FMA dataset
[114]
MERT [40] BERT-style  95M / Masked acoustic ~1,000 hours 2023
Transformer  330M modeling music
CLAP [41] Unified 194M Contrastive audio-text Audio-text 2024
Transformer learning dataset with
total duration
of ~4,3k
hours
Qwen2-Audio  Unified 8.4B Multi-task training Large-scale 2024
[42, 115] Transformer framework for multi-dataset

multi-modal audio
understanding

co-training

Table 2.2. Representative Music Foundation Models. Key foundation models developed for
music understanding, showing the evolution of architectural approaches and pre-training strategies
in the field.

Foundation models for music have emerged in recent years, applying similar principles to audio
understanding and music analysis. These models leverage large-scale self-supervised or contrastive
learning on extensive audio datasets, enabling them to capture rich musical features applicable

across diverse tasks.

2.7.2 Music Foundation Models

Several foundation models have been developed specifically for music understanding, employ-
ing diverse architectural approaches and pre-training strategies. Table 2.2 presents key music
foundation models, highlighting their architectural characteristics and training approaches.

These models demonstrate the evolution of foundation model approaches in music Al, pro-
gressing from early explorations like JukeMIR [109] to large-scale unified models like Qwen-Audio
[42]. Most employ Transformer-based architectures with various pre-training objectives including
masked prediction, contrastive learning, and multi-modal training. They are typically pre-trained

on large collections of music recordings, often focusing on popular and classical music from com-
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mercial sources, though some recent models incorporate more diverse training data.

The MERT model [40], which is central to this dissertation’s foundation model work, exem-
plifies the masked acoustic modeling approach. It uses a BERT-style architecture [107] with 12
Transformer encoder layers and approximately 95 million parameters (with a larger 330M vari-
ant also available). Pre-training involves the employment of masked acoustic modeling, using an
acoustic and a musical teacher, encouraging the model to learn coherent representations of musical
structure. The model has been pre-trained on approximately 1,000 hours of music, primarily from

commercially available genres.

2.7.3 Evaluation of Foundation Models

Foundation models are typically evaluated through a combination of approaches that assess

different aspects of their learned representations and adaptation capabilities:

Probing Freezing the pre-trained model and training only a classification layer on top, assessing
how well the learned representations capture relevant features without adaptation:

§ = softmax(W - frozen(x) + b), (2.15)

where ffozen is the frozen pre-trained model and W, b are the trainable linear layer parameters.

Fine-Tuning Adapting some or all of the model parameters to specific downstream tasks, eval-

uating the model’s ability to transfer knowledge through parameter updates:

oﬁne—tuned == epre—trained - UVgﬁ(e, Ddownstream)a (216)

where 0 represents the model parameters, 7 is the learning rate, and £ is the loss function on the

downstream dataset Dyownstream -

Few-Shot Evaluation Assessing performance with limited labeled examples, testing the model’s

ability to generalize from minimal task-specific data.

Zero-Shot Evaluation Evaluating performance without any task-specific training, typically

through prompting or other mechanisms that leverage the model’s pre-trained knowledge.

Benchmarks for evaluating music foundation models include MARBLE [116], mir_eval [117],
and mir_ref [118|. However, these benchmarks predominantly feature Western music, raising im-
portant questions about how well foundation models generalize to diverse musical traditions, a gap
that this dissertation addresses through comprehensive cross-cultural evaluation (see Section 5.2)

and by measuring their alignment with human perception of musical similarity (see Section 6.6).

2.7.4 Adaptation Challenges and Approaches

Despite their impressive performance on standard benchmarks, music foundation models face
several interconnected challenges when applied to diverse musical traditions. Training data lim-
itations represent a fundamental issue, as most foundation models are trained predominantly on
commercial music from major markets, potentially limiting their ability to represent characteristics
of other musical traditions [13]. This limitation is compounded by the presence of tradition-specific
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elements, musical characteristics like melodic structures, modal systems, and rhythmic patterns in
traditions such as Turkish makam, Indian classical, and Greek folk music may not be adequately
captured by models trained primarily on commercial music [21]. Evaluation gaps further compli-
cate the assessment of these limitations, as the scarcity of benchmarks for traditional music from
various regions makes it difficult to systematically assess model capabilities across diverse musical
systems [15]. Additionally, tokenizer constraints present technical challenges, as audio tokeniz-
ers trained on certain musical traditions may not optimally encode the acoustic characteristics of

traditional instruments and performance practices from other regions.

Addressing these challenges requires sophisticated approaches for adapting foundation models
to better represent diverse musical traditions. Fine-tuning represents the most straightforward
adaptation strategy, involving supervised fine-tuning of pre-trained models on tradition-specific
data (see Section 5.2). Continual pre-training (Section 5.5) offers a more comprehensive approach
by further pre-training foundation models on data from diverse musical traditions, incrementally

adapting the representations while avoiding catastrophic forgetting [119]:

Lcopt = Ly (0, Diradition) + A - R(0, Opre-trained ) (2.17)

where Lyvm is the masked language modeling loss on the tradition-specific dataset Dyradition, R
is a regularization term to prevent catastrophic forgetting, and X is a weighting coefficient. Task
arithmetic provides an alternative approach by merging tradition-specific adaptations in weight

space to create unified models that represent multiple musical traditions [120]:

ecombined - epre—trained + Z (o738 (91 - 9pre—trained)7 (218)

K2

where 6; represents the parameters of a model adapted to tradition i, and «; are weighting coeffi-
cients. Finally, diverse pre-training represents a proactive approach, involving the development of

new foundation models pre-trained from the outset on more diverse collections of musical data.

These adaptation strategies align with our data-driven approach to studying relationships be-
tween musical systems, allowing us to quantitatively assess how well foundation models can gener-
alize across diverse traditions and how they can be enhanced to better represent characteristics of
various musical traditions without requiring explicit modeling of tradition-specific features. The
evaluation and adaptation of foundation models across diverse musical traditions represent impor-
tant directions for advancing music representation learning, working toward more versatile and
effective computational approaches to music understanding that balance tradition-specific charac-

teristics with cross-traditional generalization.

2.8 Human Perception and Cross-Cultural Music Similarity

Understanding how humans perceive musical similarity has been a central question in music
cognition and MIR research, with particular importance for developing computational approaches
that align with human musical understanding. This section reviews the existing literature on
human music similarity perception and its relationship to computational approaches, with special
attention to cross-cultural contexts.
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2.8.1 Foundations of Music Similarity Perception

Early research in music similarity perception established fundamental insights into how humans
process and categorize musical relationships. Pioneering work [121] investigated statistical features
and perceived similarity of folk melodies, finding that frequency-based musical properties could
account for moderate amounts (40%) of listeners’ similarity ratings, with descriptive variables like
melodic predictability and rhythmic variability achieving slightly better performance (55%). This
research suggested that while acoustic features provide some predictive power for human similarity
judgments, substantial variance remains unexplained by traditional computational measures.

Research examining similarity perception across musical styles [122] found that human judg-
ments were context-specific and roughly equivalent between trained musicians and non-musicians,
with ratings primarily based on surface features such as dynamics, articulation, texture, and con-
tour rather than deeper structural relationships. These findings highlighted the importance of
immediately perceptible musical characteristics in human similarity assessment, suggesting that
computational approaches emphasizing surface-level features might align better with human per-
ception than those focusing on abstract structural analysis.

The multifaceted nature of human music similarity perception has been consistently demon-
strated across studies. Similarity judgments involve both immediate surface features and deeper
structural relationships, with significant individual and cultural variation in how these different
dimensions are weighted and interpreted. This complexity suggests that effective computational
approaches to music similarity must account for multiple perceptual dimensions while recognizing
that the relative importance of these dimensions may vary across cultural contexts and individual

listeners.

2.8.2 Computational Approaches to Music Similarity

The relationship between computational approaches and human perception has been a per-
sistent concern in MIR research. Large-scale evaluations have provided crucial insights into this
alignment, with comprehensive cross-site evaluations [123] comparing acoustic techniques against
subjective measures across hundreds of popular artists. These studies demonstrated that acous-
tic measures could achieve agreement with ground truth data comparable to internal agreement
between different subjective sources, suggesting that computational approaches can capture mean-
ingful aspects of human musical understanding when properly designed and evaluated.

More recent work has explored how different types of computational representations align with
human perception [124]. Audio representations were evaluated against human timbre similarity
ratings, with the style embeddings from foundation models achieving superior performance com-
pared to traditional signal processing features. This research suggests that modern foundation
models may capture aspects of musical similarity that align more closely with human perception
than traditional hand-crafted features, though questions remain about their effectiveness across
diverse musical traditions.

The evolution from traditional signal processing features to learned representations reflects
broader trends in the field toward more data-driven approaches. While hand-crafted features offer
interpretability and direct connections to music theory concepts, learned representations from deep
neural networks may capture complex patterns and relationships that better align with human
perceptual processing, even if these patterns are less immediately interpretable from a theoretical

perspective.
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2.8.3 Cross-Cultural Dimensions of Music Similarity

Understanding similarity across cultural boundaries presents particular challenges for both
human perception studies and computational approaches. Cultural context influences auditory
perception and aesthetic appraisal, leading to diverse “listening frameworks” that shape how dif-
ferent communities understand and categorize musical experience. These culturally-conditioned
perceptual frameworks suggest that similarity judgments may vary significantly across cultural
contexts, with listeners from different musical backgrounds potentially emphasizing different as-
pects of musical relationships.

Research on the universality of music demonstrates cultural specificity in musical perception
and understanding [2, 10]. While certain musical elements may transcend cultural boundaries,
such as the recognition of emotional expressions or basic rhythmic patterns, the interpretation and
evaluation of musical similarity appears to be significantly influenced by cultural background and
musical training within specific traditions.

This cultural conditioning of musical perception has profound implications for the develop-
ment of computational approaches to cross-cultural music similarity. Traditional MIR approaches,
developed primarily within Western musical frameworks, may not capture the perceptual dimen-
sions that are most salient to listeners from other musical traditions. Similarly, foundation models
trained predominantly on commercial Western music may not align with human similarity judg-
ments across diverse cultural contexts, highlighting the need for more culturally inclusive evaluation
frameworks and training approaches.

Addressing these challenges requires careful methodological considerations including diverse
participant populations representing multiple musical traditions, evaluation frameworks that as-
sess different dimensions of similarity (overall musical characteristics, cultural identity, personal
preference), systematic comparison of computational approaches ranging from traditional signal
processing to modern foundation models, and metrics that capture both absolute performance
and relative alignment with human judgment patterns across cultural contexts. This comprehen-
sive approach to cross-cultural similarity evaluation provides the foundation for the systematic
study presented in Chapter 6, which compares computational methods against human similarity
judgments across diverse musical traditions, contributing new insights into the effectiveness and

limitations of current approaches for cross-cultural music understanding.

2.9 Automatic Music Tagging

Automatic music tagging, or music auto-tagging, is the task of automatically predicting tags
(such as genre, mood, instrumentation) from audio signals and has become a central task in MIR
[125]. Tt represents a multi-label classification problem, where each music piece can be associated
with multiple tags simultaneously.

This task serves as the primary evaluation context for the multicultural music representation
methods developed in this dissertation. As a multi-label classification problem that captures
multiple aspects of musical content, auto-tagging provides an ideal framework for assessing how
well computational models represent diverse musical characteristics across traditions.

Several deep learning architectures have been proposed for music auto-tagging. Convolutional-
based models, such as VGG-ish [37] and Musicnn [38], extract features from time-frequency repre-
sentations, while end-to-end models like SampleCNN [69] and TCNN [70] process raw audio signals.
Transformer-based approaches like AST [39] have recently demonstrated competitive performance
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on auto-tagging benchmarks.

The evaluation of auto-tagging systems typically employs metrics designed for multi-label clas-
sification, including area under the receiver operating characteristic curve (ROC-AUC), average
precision (AP), macro-F1, and micro-F1. These metrics account for both the binary nature of
tag presence/absence and the potential imbalance in tag distributions across different musical
traditions.

While auto-tagging has been extensively studied for commercial music, its application to tra-
ditional music from various regions presents additional challenges, including limited data, unique
musical characteristics, and regionally specific tagging systems. In Chapter 4, we develop spe-
cialized approaches for tagging diverse musical traditions, exploring both transfer learning and
few-shot learning, in order to address these challenges.

The auto-tagging task provides a practical framework for the cross-cultural representation learn-
ing approaches presented in subsequent chapters, allowing us to quantitatively assess how well

different models capture the distinctive characteristics of diverse musical traditions.

2.10 Datasets and Models Used in this Work

This section presents the specific datasets and models used throughout this dissertation. By
providing a comprehensive overview here, we can avoid duplicating this information in subsequent

chapters.

2.10.1 Datasets

For our research on music representation learning across diverse traditions, we utilize a col-
lection of datasets spanning different geographical regions and musical systems. These datasets
are carefully selected to represent three distinct geographical regions: Europe and North America,
the Eastern Mediterranean, and the Indian subcontinent, with each region represented by multiple
datasets.

Figure 2.4 provides visual examples of the acoustic diversity captured in our dataset collection.
The mel-spectrograms demonstrates some distinct patterns across musical traditions. Western
music datasets (MagnaTagATune and FMA-medium) typically exhibit clear harmonic structures
with regular temporal patterns, while Eastern Mediterranean music (Lyra and Turkish-makam)
shows more complex modal characteristics with distinctive microtonal inflections visible in the
frequency domain. Indian classical music recordings (Hindustani and Carnatic) demonstrate unique
spectral signatures with prominent drone characteristics, complex ornamentations, and tradition-
specific timbral qualities that reflect the use of traditional instruments and performance practices.
These differences underscore the importance of developing computational approaches that can
adapt to diverse musical characteristics rather than imposing uniform analytical frameworks.

For the cross-cultural music similarity study presented in Chapter 6, we expand this collection
to include additional datasets representing Chinese traditional music (Jingju), Middle Eastern tra-
ditions (Arab-Andalusian), and Mediterranean music (CorpusCOFLA), providing a comprehensive
sample of nine diverse musical traditions spanning Western, Middle Eastern, Mediterranean, In-
dian, and Chinese musical cultures.

As illustrated in Figure 2.5, the datasets that are utilized for automatic tagging exhibit char-
acteristic long-tailed distributions, where a small number of tags account for the majority of anno-

tations while many culturally significant attributes appear infrequently. This distribution pattern
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Figure 2.4. Mel-Spectrograms Across Musical Traditions. Representative mel-
spectrograms from each dataset used in this dissertation, illustrating the diverse acoustic charac-
teristics and temporal patterns across Western music (MagnaTagATune, FMA-medium), Eastern
Mediterranean traditions (Lyra, Turkish-makam), and Indian classical music (Hindustani, Car-
natic).

presents fundamental challenges for computational music analysis, as traditional supervised learn-
ing approaches often struggle with rare but important musical categories. The steep decline in tag
frequencies across all traditions, from Western commercial music to traditional world music, mo-
tivates the development of few-shot learning methodologies that can effectively learn from limited
examples, as explored in Chapter 4. Detailed information about the top 50 tags for each dataset
can be found in Appendix A.

Western Music Datasets

MagnaTagATune (MTAT) The MagnaTagATune dataset [126] is widely used for music auto-
tagging research. It consists of more than 25,000 audio recordings, with a total duration of ap-
proximately 210 hours. Each recording is annotated with a subset of 188 unique tags, though most
research focuses on the top 50 most frequent tags, which include annotations for genre, instruments,
and mood. This dataset primarily represents Western popular and classical music traditions.

FMA-medium The Free Music Archive (FMA) [114] is an open and accessible dataset used for
various MIR tasks. The complete collection contains over 100,000 tracks organized in a hierarchical
taxonomy of 161 genres. In our research, we use the FMA-medium subset, which consists of 25,000
tracks, each 30 seconds long, for a total duration of 208 hours. Like MTAT, FMA-medium primarily
contains commercial music styles, including pop, rock, jazz, and electronic music.

Eastern Mediterranean Datasets

Lyra The Lyra dataset (see Chapter 3), developed as part of this dissertation, focuses on Greek
traditional and folk music. It comprises 1,570 pieces with a total duration of 80 hours, making it

98



2.10.1 Datasets

MagnaTagATune FMA-medium

-
3

[N)

o

-
o

Tag Frequency (%)
o o
Tag Frequency (%)

(=]
o

h HH T —

20 50 100 20 50 - 100

Lyra Turkish-makam

@

S
o
=]

=3

S
S
(=

[N)
=]

Tag Frequency (%)
) S
. 2

Tag Frequency (%)

(=]
o

20 50 100 50 100

Hindustani Carnatic

=]
S
©
=]

=
S
o
=]

[N)
=3
[N)
o

Tag Frequency (%)
g

Tag Frequency (%)
~
S

o
o

20 50 100 50 100

Figure 2.5. Tag Distribution Patterns Across Datasets. Frequency distribution of the
most common tags in each dataset, demonstrating the long-tailed nature of musical annotations
across all traditions. The steep decline in tag frequencies highlights the data scarcity challenges
for rare but culturally significant musical attributes, motivating the few-shot learning approaches
developed in this dissertation.

smaller but more focused than the other datasets in our collection. Lyra includes rich metadata
regarding instrumentation, geography, and genre, with particularly fine-grained labeling focused
on musicological aspects.

A distinguishing feature of the Lyra dataset is its homogeneous recording quality, as all content
was collected from a documentary series presented by academics on Greek television. This ensures
musicological soundness and consistent audio characteristics across the collection. The dataset
focuses specifically on traditional and folk music, which offers unique perspectives by combining

characteristics of both European and Eastern Mediterranean musical traditions.

Turkish-makam The Turkish makam corpus [84, 85] is part of the CompMusic project and
includes thousands of audio recordings covering more than 5,000 works from hundreds of artists.
For our research, we accessed 5,297 recordings with a total duration of 359 hours through the Dunya
interface [88]. To maintain balance with other datasets, we limit each recording to a maximum of
150 seconds, resulting in a total duration of 215 hours. The annotations contain tags related to

“makam” (modal structures), “usul” (rhythmic patterns), and “instruments.”

Indian Classical Music Datasets

Hindustani The Hindustani corpus [19], also part of the CompMusic project, represents the
classical tradition of North India. It includes 1,204 audio recordings with a total duration of 343
hours. To maintain consistency with other datasets, we limit each recording to a maximum of
780 seconds, resulting in approximately 206 hours of audio. The respective tags are related to
“raga” (melodic frameworks), “tala” (rhythmic cycles), “instruments,” and “form” (compositional

structures).
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Carnatic The Carnatic corpus [19] represents the classical tradition of South India and comprises
2,612 audio recordings with a total duration exceeding 500 hours. By limiting each recording to
a maximum of 330 seconds, we reduce the total duration to 218 hours. As with the Hindustani

dataset, the tags contain information about “raga,” “tala,” “instruments,” and “form.”

Additional Datasets for Cross-Cultural Similarity Study

For the comprehensive cross-cultural music similarity evaluation presented in Chapter 6, we

incorporate additional datasets to provide broader cultural representation:

CorpusCOFLA The CorpusCOFLA dataset [35] focuses on flamenco music, a tradition with
origins in Andalusia and diverse influences from Jewish, Arab, and Andalusian Gypsy cultures. The
dataset consists of more than 1,800 audio recordings (95 hours) and contains metadata including

a rich hierarchy of styles, performers, and editorial information.

Arab-Andalusian The Arab-Andalusian corpus [23] represents the musical tradition that de-
veloped in medieval Islamic territories of the Iberian Peninsula. This tradition combines Western
and Eastern Mediterranean musical traits and has been preserved in North African countries. The
dataset comprises 164 long recordings totaling approximately 125 hours with metadata including

“nawba” (metrical mode), “tab” (melodic mode), and instrumentation.

Jingju The Jingju (Beijing Opera) corpus [127] represents a Chinese traditional performing
art form combining musical and theatrical elements. It contains 864 recordings (71 hours) with

metadata related to “shenggiang” (modal system) and “banshi” (metrical patterns).

Dataset Balance and Preprocessing

To ensure fair comparisons across datasets, we have taken several steps to balance and standard-
ize our data. The Western datasets (MTAT and FMA-medium) have comparable total durations
of approximately 210 hours, while the datasets from other regions (excluding Lyra) have been
balanced to approximately 200-215 hours each by limiting individual recording lengths. We use
consistent data splits across all experiments, following the protocol we establish in Section 4.3.

For our foundation model adaptation experiments, we further prepare the data by extracting
30-second segments from each training split of the traditional music datasets. To ensure balanced
representation across traditions, we extract 200 hours each from the Turkish-makam, Carnatic, and
Hindustani datasets, and 50 hours from Lyra (due to its smaller size), to create a combined 650-
hour dataset integrating all four traditional music collections, which we utilize for multi-traditional
continual pre-training.

For the cross-cultural similarity study, we select representative audio clips from each tradition,
ensuring coverage across different musical characteristics while maintaining manageable dataset

sizes for human annotation studies.

2.10.2 Models

Throughout this dissertation, we utilize several deep learning architectures for music analysis,
focusing on models that can process audio spectrograms with minimal inductive bias. These
models represent different architectural paradigms in deep learning: convolutional neural networks,

musically-informed convolutional architectures, and Transformer-based approaches.
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VGG-ish

VGG-ish is based on the Visual Geometry Group (VGG) network architecture [128], which was
originally developed for image recognition. Our implementation follows the version described in
[129], consisting of seven convolutional layers with 3 x 3 convolution filters and 2 x 2 max-pooling,
followed by two fully-connected layers.

This model accepts mel-spectrograms as input, corresponding to 3.69-second audio chunks.
Despite being adapted from computer vision, VGG-ish has proven effective for various MIR tasks,
demonstrating the transferability of CNN architectures to audio spectrograms treated as image-like
inputs.

The architecture consists of:
e Seven convolutional layers with increasing filter counts (32, 64, 128, 128, 256, 256, 512)

e 2 X 2 max-pooling after each convolutional layer

Two fully-connected layers (2048 units and the output layer)

ReLU activations and batch normalization throughout the network

Mousicnn

Musicnn [68] is a music-specific CNN architecture designed to capture both temporal and
timbral features from audio spectrograms. Unlike general-purpose CNN architectures adapted for
audio, Musicnn incorporates domain knowledge about music signal characteristics directly into its
architecture.

The key innovation of Musicnn is its first convolutional layer, which employs parallel vertical
and horizontal filters:

e Vertical filters (with shapes like M x 1, where M is the frequency dimension) capture timbral

features across the frequency spectrum

e Horizontal filters (with shapes like 1 x N, where N spans the time dimension) capture tem-

poral features and rhythmic patterns

These parallel filter paths are then concatenated and processed through additional 1D convolu-
tional layers, followed by a pair of dense layers that summarize the extracted features and predict
the relevant tags. Musicnn processes mel-spectrograms from 3-second audio chunks, capturing

musically relevant patterns across both time and frequency dimensions.

Audio Spectrogram Transformer (AST)

The Audio Spectrogram Transformer (AST) [39] represents a more recent architectural paradigm
based entirely on attention mechanisms. Adapted from the Vision Transformer architecture to au-
dio spectrograms, AST demonstrates how Transformer models can effectively process music signals
without relying on convolutional operations.

The key components of AST include:

e Spectrogram patching: The input mel-spectrogram is divided into 16 x 16 patches in both

time and frequency dimensions

e Linear projection: FEach patch is flattened and projected to a 768-dimensional embedding
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e Positional encoding: A learnable positional embedding is added to each patch embedding to

preserve spatial information

e Transformer encoder: The sequence of patch embeddings is processed through a standard

Transformer encoder with multi-head self-attention
e Classification head: The encoder output is passed through a linear layer for final predictions

Following the recommendations of the original authors, we set the input length to 8 seconds
for all AST experiments, allowing the model to capture longer-term temporal relationships than
the CNN-based approaches.

2.10.3 Foundation Models

For our work on foundation model evaluation and adaptation, we utilize several state-of-the-art

models to provide a comprehensive assessment of capabilities across diverse musical traditions:

MERT-95M

The Music undERstanding model with large-scale self-supervised Training (MERT) [40] em-
ploys a masked acoustic modeling approach similar to BERT in natural language processing [107].
The MERT-v1-95M variant has 12 Transformer encoder layers with approximately 95 million pa-
rameters. It is pre-trained on approximately 1,000 hours of music, primarily from commercial
genres, using a masked spectrogram prediction objective. MERT accepts log-mel spectrograms as
input and produces contextual representations that capture musical features at multiple levels of

abstraction.

MERT-330M

The larger variant of MERT [40] scales up the model architecture to approximately 330 million
parameters, with 24 Transformer encoder layers and wider attention heads. This model maintains
the same masked acoustic modeling approach as MERT-95M but offers increased capacity for
learning complex musical representations. The expanded parameter count potentially enables

more nuanced modeling of diverse musical characteristics, though at increased computational cost.

CLAP-Music

Contrastive Language-Audio Pre-training for Music (CLAP-Music) [41] adapts the CLIP (Con-
trastive Language-Image Pre-training) framework to the audio domain, specifically focused on
music. This model learns joint embeddings of music audio and textual descriptions through con-
trastive learning, aligning representations from both modalities. The audio encoder is based on a
Vision Transformer architecture that processes mel-spectrograms, while the text encoder processes
natural language descriptions of musical content. This multimodal approach offers advantages for
analyzing diverse musical traditions, as the textual descriptions may help bridge gaps between

different musical systems.

CLAP-Music&Speech

This variant of CLAP [41] extends the training data to include both music and speech content,
creating a more generalized audio-language model. By incorporating speech alongside music during

pre-training, this model potentially develops more robust representations of human-produced audio,
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including singing and vocal techniques that vary across musical traditions. The additional speech
data also provides broader exposure to diverse languages and acoustic environments, which may

benefit generalization across different musical systems.

Qwen2-Audio

Qwen2-Audio [42] represents a unified audio understanding foundation model capable of pro-
cessing both speech and music. This model employs a Transformer-based architecture with custom
adaptations for audio signal processing. Qwen2-Audio is pre-trained on a diverse collection of au-
dio data using multiple objectives, including masked acoustic modeling and contrastive learning.
Its unified approach to audio understanding potentially enables better transfer between different

audio domains, including across musical traditions.

CultureMERT

CultureMERT represents our culturally-adapted foundation model, developed through contin-
ual pre-training on diverse musical traditions (see Chapter 5). Built upon the MERT-95M archi-
tecture, CultureMERT incorporates learning from Greek, Turkish, and Indian musical traditions
while maintaining performance on Western music benchmarks. This model serves as an example of

how foundation models can be systematically adapted to better represent diverse musical cultures.

2.11 Summary

This chapter has provided a comprehensive background for the research presented in this dis-
sertation, covering theoretical frameworks for comparative music analysis, fundamental concepts
in music signal processing, deep learning approaches in MIR, methodological challenges in ana-
lyzing diverse musical systems, world music datasets and computational ethnomusicology, transfer
learning and few-shot learning, foundation models in music, human perception and cross-cultural
music similarity, and the specific datasets and models used throughout this dissertation.

Several interconnected themes emerge from this background that inform the subsequent chap-
ters. Our approach emphasizes data-driven comparative analysis, focusing on studying relation-
ships between musical systems using end-to-end deep learning models rather than imposing prede-
termined analytical frameworks. This methodology enables reduced methodological bias by avoid-
ing feature engineering based on particular music theories and using data-driven approaches that
minimize the risk of imposing inappropriate analytical assumptions on diverse musical traditions.

Central to our research is balancing specificity and generalization, exploring how to respect
the distinctive elements of diverse musical traditions while enabling meaningful comparison and
knowledge transfer across cultural boundaries. Given the data scarcity common in many traditional
musical systems, we emphasize resource-conscious design through approaches like transfer learning
and few-shot learning that can work effectively with limited annotated data, making it practical to
develop models for diverse traditions. Our methodology pursues adaptive representation learning
rather than imposing a single representational framework, developing approaches that can adjust to
different musical traditions by learning appropriate representations from data rather than relying
on predefined musical features.

A crucial aspect of this work involves human-centered evaluation, integrating human perception
studies to validate computational approaches and ensure that similarity measures align with how
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listeners from diverse cultural backgrounds actually perceive musical relationships. This human-
in-the-loop validation becomes essential for developing culturally aware music technology systems
that respect the perceptual dimensions most relevant to different cultural contexts.

Finally, we explore foundation model adaptation strategies for enhancing the capabilities of
large-scale music models across diverse traditions, addressing their methodological limitations while
leveraging their powerful representational capabilities. This includes systematic evaluation of how
foundation model representations align with human cross-cultural music perception, providing
crucial insights for developing more effective and culturally aware music Al systems.

These themes inform the research presented in subsequent chapters, which addresses the chal-
lenges of music representation learning across diverse traditions through dataset development,
transfer learning, few-shot learning for low-resource scenarios, foundation model evaluation and
adaptation strategies, and comprehensive evaluation against human cross-cultural music percep-
tion. By building on this background, the dissertation aims to advance more versatile and effective
approaches to computational music analysis across diverse traditions while ensuring alignment with

human perceptual understanding of musical similarity across cultures.
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Chapter 3

The Lyra Dataset: A Resource for Greek Traditional
and Folk Music

3.1 Motivation

As established in the previous chapters, computational approaches to music analysis have been
predominantly developed for and evaluated on Western music traditions, creating significant gaps
in our understanding and representation of diverse musical cultures. While several datasets for
non-Western traditions have emerged in recent years, as discussed in Section 2.5, Greek traditional
and folk music remains notably underrepresented in structured, high-quality datasets suitable
for computational analysis. This gap is particularly significant given Greece’s unique geographical
and cultural position at the crossroads of Eastern and Western musical traditions, offering valuable
perspectives that could inform computational approaches to cross-cultural music analysis.

The existing datasets for Greek music, such as the Greek Audio Dataset (GAD) [82] and its
expanded version, the Greek Music Dataset (GMD) [83], have several limitations that hinder
comprehensive computational analysis of Greek traditional music. First, these datasets cover
a broad spectrum of Greek music, including contemporary pop and rock, rather than focusing
specifically on traditional and folk genres. Second, they employ relatively coarse categorical labels
that don’t capture the rich musicological aspects of traditional music. Finally, the audio quality
varies significantly across recordings, potentially introducing confounding factors in computational
analysis that could mask the actual musical characteristics of interest.

To address these limitations and advance multicultural music representation learning, we devel-
oped the Lyra dataset [45], a focused collection of Greek traditional and folk music with consistent
audio quality and fine-grained musicological annotations. This chapter describes the creation,
structure, and characteristics of this dataset, which serves as a foundation for the cross-cultural
music analysis approaches explored in subsequent chapters.

The Lyra dataset aims to make several specific contributions:

e Provide a high-quality resource for computational analysis of Greek traditional and folk
music, enabling more inclusive approaches to music information retrieval that extend beyond

Western-centric paradigms

e Capture the rich musicological diversity of Greek traditional music through fine-grained an-

notation of instrumentation, genres, geographical origins, and performance contexts

e Ensure consistent audio quality across the collection, minimizing technical variations that

could interfere with the analysis of musical characteristics
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Figure 3.1. Documentary Series Screenshot. Representative frame from “To Alati tis Gis -
Salt of the Earth” showing the quality of the source material used for the Lyra dataset.

e Enable exploration of the unique aspects of Greek music that blend Eastern and Western
influences, potentially revealing insights about musical characteristics that bridge different
cultural traditions

e Support baseline computational tasks including genre, instrument, and regional classification,

establishing performance benchmarks for future research

The development of the Lyra dataset represents the first step in our research agenda on mul-
ticultural music representation learning. By creating a structured, high-quality resource for an
underrepresented musical tradition, we establish the foundation for subsequent investigations into
cross-cultural knowledge transfer, few-shot learning for cultural adaptation, and foundation model
evaluation and enhancement. The dataset’s focus on Greek traditional music, with its blending of
Eastern and Western characteristics, makes it particularly valuable for cross-cultural investigations,
serving as a potential bridge between these broader musical spheres.

Unlike previous collection efforts [82, 83|, our approach emphasizes musicological soundness,
homogeneous recording quality, and detailed annotation, addressing the specific challenges that
have limited computational analysis of non-Western traditions. The following sections detail our
methodology for extracting and annotating this dataset from a documentary series, the resulting
characteristics of the collection, and baseline classification experiments that demonstrate its utility
for computational musicology.

3.2 Dataset Extraction and Description

3.2.1 Challenges and Methods

Large amounts of clean data is fundamental for current AI models to achieve their full potential.
In this Chapter, we walk all the way, from the “data in-the-wild” multimedia content of a TV
show to a fully annotated dataset, through a combination of machine automation and human
evaluation/annotation processes. The consistency of the dataset and the richness of information
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it provides are tested by developing and training models that perform three different classification
tasks.

In the case of Greek traditional and folk music, there are few cases where metadata is combined
with recordings in a structured manner. Additionally, there is a matter of quality of recordings
as it is significantly affected by various factors, including the equipment used, the social occasion
(e.g., during a festival or inside a studio) and the time period in which it took place, i.e., older
recordings tend to be of lower quality.

An integration of dissimilar recordings, in terms of quality, can introduce significant deficiencies
towards studying the musicological characteristics of world music with computational tools. In
order to truncate the effect of the audio quality factor, we decided to incorporate the episodes
from the Greek documentary series “To Alati tis Gis - Salt of the Earth” broadcasted by ERT
(Hellenic Broadcasting Corporation), where primarily traditional and folk music is presented. The
episodes were filmed during a 10 year period under strict production-level specifications, resulting
to very clean and homogeneous audio content while significant wealth of information is provided
by the presenter and the guests in the form of narrations between music performances. Figure 3.1
shows a representative frame from the documentary series, illustrating the professional production
quality that characterizes the source material.

The presented dataset consists of both the multimedia content and the annotations of interest.
The multimedia content is provided as start and end timestamps that correspond to a single
music piece, as parts of a longer episode, which is available online. Regarding the annotations,
a taxonomy of labels is defined, based on the potential purposes of studies that might involve
this dataset, considering also what metadata information can be retrieved either directly from the
source or be integrated by volunteer annotators during the data collection process.

The study of Greek traditional and folk music involves knowledge about (i) the instrumentation,
(ii) the genres, (iii) the places of origin and (iv) the way listeners perceive this music in terms of
“danceability”, among others. While musical instruments, genres and geography are semantically
well-defined, the same can not be claimed for listeners’ perception. Having at hand the multimedia
content, i.e., audio and video, can be helpful to this end. Annotation about whether a music piece
is being danced during its live performance can reveal cultural characteristics regarding the way
this piece is perceived by the community, because body movements play an important role in music
perception [30].

As a result, the taxonomy consists of (i) the musical instruments participating in the perfor-
mance of each music piece (singing voice is considered an instrument), (ii) the musical genres and
sub-genres that are identified by musicologists in Greek music, (iii) the places of origin and (iv)
whether the music piece is being danced during its performance.

Volunteer annotators, students of the Department of Music Studies, undertook the task of
separating each episode in music pieces and also labeling each one of them according to the specified
taxonomy. A helper website was utilized where the respective category labels were added. An
account was created for each annotator for the label assignment task. Every piece was labeled
by two annotators and the final labels are the set of them where both annotators agree. At the
end, the dataset that contains the aforementioned annotations along with the timestamps and the

respective video id for each music piece was extracted from the database of the helper site.

3.2.2 Dataset description

Lyra dataset is organized into a single table where each row corresponds to a music piece while
the columns include the various metadata information. Table 3.1 demonstrates the metadata
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name # unique multi-label description
id 1570 No unique identifier of the music piece
instruments 32 Yes instruments participating in performance
genres 32 Yes music style annotations
place 81 Yes (tq contain full hierarchy of the place of origin
regions)
coordinates 81 No latitude and longitude
is-danced 2 No binary value (0 or 1)
youtube-id 74 No id of the episode available online
start-ts 1570 No start timestamp of the piece
end-ts 1570 No end timestamp of the piece

Table 3.1. Metadata in the Lyra Dataset. Description of fields and content structure, showing
information about the respective annotations.

categories.

Beginning with the simplest metadata categories, in terms of description, “id” is a unique
identifier for each piece, generated by its title, replacing Greek with Latin characters and spaces
with dashes. As expected, the number of unique values will be the same with the number of pieces,
namely 1570. The same stands for “start-ts” and “end-ts” that denote the exact time (second) that
a song starts and ends in the corresponding video. The duration of the music pieces sums to

approximately 80 hours.

Traditional

Newer
Urban-folk

9.17%
? Laiko

Rebetiko

Figure 3.2. Genre Distribution in the Lyra Dataset. Relative frequencies of music genres,
showing the predominance of traditional songs in the dataset.

The column “youtube-id” contains the id under which the video of the full episode is available
online. The count of unique values are essentially the number of episodes that were used for the
creation of the dataset. A typical duration of an episode is roughly a hundred minutes. The
“is-danced” binary label informs about whether a music piece is being danced by the guests of the
show. The music pieces annotated with “1” are approximately 51% while in the rest of them no
dance performance occurs.

The classification of Greek music in “genres” is a work that requires one to take into account a
number of socio-cultural and anthropo-geographical criteria. At an abstract level, we can distin-
guish the music of urban centers in contrast to the music of rural areas of Greece, with the former
including rebetiko, laiko, urban-folk among others, while the latter, the music of rural areas, is
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Figure 3.3. Geographical Distribution of Music Origins. Map visualization of all places
represented in the dataset, highlighting the regional diversity of Greek musical traditions.

what we generally call traditional music. Figure 3.2 shows the frequencies of the genres in the
dataset, with “traditional” being the dominant one constituting almost 78% of the total. Depend-
ing on the place of origin, the style of a traditional music piece varies accordingly and, thus, several
sub-genres flourish, such as Epirotic for the songs originated from Epirus. The 32 unique values in
this metadata category are separated into 5 distinct genres and 27 sub-genres.

From a musicological perspective, Greek traditional music can be divided into two large ge-
ographic areas, i.e., the island and the mainland Greece. Each one creates a distinctive musical
feeling as there are large variations both on the rhythmic approach and the scales that are com-
monly used. For example, in islands we frequently come across music pieces with simple, fast
rhythms while in the mainland more complex, slow rhythms are the norm.

The “place” (of origin) metadata category can be annotated with (i) a single label when the
region from which a song derives is known, (ii) two labels when both region and a specific place
are known and (iii) “None” denoting that there is not a specific place of origin for this piece. As an
example, a music piece can be annotated with the region “Aegean sea” or with both “Aegean sea”
and “Naxos”, an island of the Aegean sea, if this knowledge is available. Specifically, from the 81
unique places in the dataset, 20 are regions and only half of them include the remaining 61. The
most represented regions can be seen in Figure 3.4.

The exact latitude and longitude of each place is also available at the “coordinates” column.
The music pieces that do not have an explicit place of origin, such as the ones that belong to the
“laiko” genre, are accounted for approximately 23% of the total. Figure 3.3 shows the location of
the 81 places that exist in the dataset. We may notice the constant ability of music to excess the
borders; places where Greek culture thrived in the past and neighboring countries that share the
same tradition, form a mosaic of people that communicated freely with each other in a musical
way that has reached towards us.

Analogous connections, like the ones between genres and places, one expects to be observed
between places and instruments as well. Indeed, for over 100 years, the established music ensembles

of Greek traditional music are generally two, namely (i) those with the violin as leading instrument
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Aegean sea 17.64%
Epirus 13.69%

Asia Minor 10.19%
Macedonia 5.35%
Pontus 5.16%
Central Greece=4.78%
Peloponnese 4.71%
Crete 3.12%

Thrace 2.87%
Ionian sea 2.80%
Figure 3.4. Regional Representation in the Dataset. Relative frequencies of the most

represented geographical regions, demonstrating the distribution of musical samples across cultural
areas in Greece.

(often substituted by lyra and santouri), which have a greater presence in island Greece and
(ii) those with the klarino (Greek clarinet) as the leading instrument, which is dominant in the
mainland.

In the popular and modern music domain, there is a great variety of instruments, but in
most cases bouzouki, guitar, accordion and bass are common members of a laiko or rebetiko
music ensemble. In the traditional music groups, the percussion and the laouto (Greek lute)
are permanent companions of the leading instruments, offering melodic-harmonic background and

rhythmic support. Of course, voice holds the main role in all kinds of performances.

74.39%

32.17%

accordion 22.68%
bass 22.68%
santouri 19.30%
bouzouki 14.01%

Figure 3.5. Instrument Frequency Distribution. Relative frequencies of the most common
musical instruments in the dataset, illustrating the instrumental palette of Greek traditional music.

In Figure 3.5 one can see the frequencies of the most popular instruments in the dataset. Singing
voice is evident in almost 75% of it and instruments like violin, percussion and laouto, that have
presence in both islands and mainland as well, are following.

With regards to the music ensembles, it should be noted that 296 unique groups of instruments
exist in the dataset, with the one constituted by voice, violin, percussion, laouto and klarino being

110



3.2.2 Dataset description
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Figure 3.6. Instrument Co-occurrence Network. Graph visualization showing relationships
between the fourteen most common instruments, with edge width proportional to co-occurrence
frequency in music pieces.

by far the most popular by participating in the performance of around 12% of the music pieces.
The co-occurrences of the most popular instruments can be seen in Figure 3.6 where the width
of the graph edges is proportional to the number of pieces a pair of instruments co-occur in the
dataset.

Sample rows of the dataset can be seen in Table 3.2. The dataset along with the baseline

classification methods and the trained models are available online.'

The shared metadata should be considered as the version 1.0 of the dataset. In the next versions,
it will be evolved towards two main directions, namely (i) the incorporation of more metadata
categories such as annotations according to the content of the lyrics, the lyrics themselves as well
as information about the types of the dances that occur and (ii) the addition of more music pieces
by following the same process either for next episodes of the same documentary series or for other

series that have a similar theme.

Thttps://github.com /pxaris/lyra-dataset
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id instruments genres place coordinates is-danced youtube-id start-ts end-ts
voice|violin|
percussion| Traditionall Epirus| 39.8648|
alexandra 1aoutol| Epirotic Zagori 20.9284 0 qrOwcimLFUk 749 927
klarino
choros-tix | Percussionl | Traditionall 4, . 409863 1 AwsOY3aLals 1731 1886
lyra Pontian 39.7270
voice|violin]|
agiothodo- santouri| A .
s . Rebetiko None None 1 0cj8BNcAhgd 2632 2853
ritissa percussion|
laouto|guitar
voice|pianol
einai-arga- | guitar|bass| Laiko None None 0 zkoqg3VRVLA 2365 2614
poly-arga bouzouki |
accordion

Table 3.2. Sample Entries from the Lyra Dataset. Representative rows demonstrating the
multi-valued field structure with pipe-delimited values.

3.3 Baseline Classification

The audio recording of each music piece is represented using a Mel-scaled Spectrogram (mel-
spectrogram): this is a spectrogram whose frequencies are converted to the mel scale according to
the equation:

f

i) =1127In(1 + =),

1
700 700 (8-1)

m = 2595log,(1 +

where m is the frequency in Mels and f is the frequency in Hz. Mel-spectrograms are calculated
per fix-sized segment duration of 10 seconds. A non-overlapping window of 50 milliseconds has
been applied, therefore the Mel-spectrogram size is 200 windows x 128 frequency bins.

As a baseline classification approach, each 10-second Mel-spectrogram is classified to the afore-
mentioned tasks (genre, place and instruments) using a Convolutional Neural Network (CNN).
CNNs have been widely used in general audio [130], speech [131, 132] and music [133] classification
tasks. In particular, we have adopted the following architecture: 4 convolutional layers of 5 x 5
kernels, single stride, and max pooling of size 2. The number of convolutional kernels (channels)
are for the first layer 32, for the second 64, for the third 128 and for the fourth 256. The final
output of the convolutional layers is passed through 3 fully connected layers, with the first having
an output dimension of 1024, the second 256 and the third equal to the number of classes.

Note that fix-sized duration of segments is necessary, since audio recordings do not share
the same size. Adopting a much longer segment would require zero padding for several mel-
spectrograms and probably more CNN parameters. In addition, splitting the song into non-
overlapping segments achieves some type of data augmentation. For two of the adopted classi-
fication tasks (namely genre and place), we have trained the CNNs using a multiclass, single-label
setup, while for the instrument task, which is multi-label, we have trained multiple binary CNNs,
one for each instrument, which have been evaluated separately.

After the training and validation procedure of each of the aforementioned CNNs, final testing
was applied on the respective test recordings. For the test set, to avoid spreading pieces from the
same broadcast across data splits, we separate training and test data on an episode level. From
the 74 unique episodes, we randomly split 20% of them and use all the music pieces they include,
namely 330, to form the test data. Obviously, this final testing needs to be carried out on a “song-
level”, not a 10-sec segment level. Towards this end, a simple aggregation method was adopted,

by just averaging the posteriors of the individual segment decisions of the CNNs. This aggregated
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Classifiers type Task F1 (%)
Multiclass Genre 82.3
classifiers Place 85.5
voice 75.8
Binary violin 86.3
classifiers percussion 97.1
for laouto 96.7
Instruments guitar 80.2
klarino 95.0

Table 3.3. Classification Performance on Training Data. F1 scores of various classifiers on
10-second segments using a 20% validation subset.

estimate was used as the final prediction and evaluated in the final testing.

3.4 Results

The performance results during the training of the baseline classifiers are shown in Table 3.3,
computed on a validation subset that corresponds to 20% of the segments. For the multi-label task
(instrument recognition), we show the F1 metric for each binary subtask separately, while for the
single-label tasks (genre and place) we show the overall macro F1 for all classes. We remind that

this evaluation is performed on the validation split of the 10-second data.

As soon as the 10-second classifiers are trained, they are applied on the whole recordings of
the testing data, and a simple majority aggregation is performed to extract the final decision, as
described in the previous Section. For the instrument classification task, we compute the Area
Under the Curve (AUC) metric per label (binary classification subtask). The results are shown in
Table 3.4.

Instrument | AUC (%)
voice 68.9
violin 85.2

percussion 95.1
laouto 93.8
guitar 73.5
klarino 90.9

Table 3.4. Instrument Classification Performance. Area Under the Curve (AUC) scores for
instrument classifiers on the test data, showing recognition accuracy for different traditional Greek
instruments.

Finally, the confusion matrices along with the respective F1 measures for the multiclass, single-
label classification tasks of “genres” and “places” are shown in Figures 3.7 and 3.8. All genres have
been taken into account for the respective classification, but not the sub-genres. On “places” task,
the pieces have been classified to the 10 most common regions (including “None”) plus the “other”
category for the remaining. Genres classifier macro F1-score is 39.9% and micro F1-score is 87.2%,
while for the places classifier the macro Fl-score is 34.4% and the micro Fl-score is 42.4%.
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Figure 3.7. Genre Classification Performance. Confusion matrix for genre classes on test
data, yielding Macro Fl-score of 39.9% and Micro Fl-score of 87.2%.

3.5 Discussion

A reason that the “voice” classifier has lower performance compared to the other ones may be
of a musicological character. Indeed, while the presence of the rest of the instruments can depend
significantly on the music style of a piece, the same does not apply to “voice” as it is the dominant
musical instrument in any genre. Given the fact that the binary classifier is trained to recognize
an instrument (evident in a part of a music piece) in each of the 10-second segments, regardless if
it is present on it or not, we expect to move towards a space with latent musical features such as
the music style, where “voice” may not be as discriminative as the rest of the instruments are.

With regards to confusion matrices, the misclassifications can be either due to imbalance be-
tween classes or statistical correlations across them. Specifically, for the “places” task, the confu-
sions between regions that are geographically near may be justifiable, while for “genres” task the
imbalance between the classes seems to have significantly affected the performance of the model
at the least represented ones.

The classifier performance is improved in the work presented in Chapter 4, where a wide
spectrum of models are utilized along with a cross-cultural transfer learning framework to further
enhance their performance across diverse musical traditions.

3.6 Conclusions

Greek traditional and folk music integrates components of Eastern and Western idioms, pro-
viding interesting research directions in the field of computational ethnomusicology. We present
“Lyra”, a dataset of 1570 traditional and folk Greek music pieces that includes audio and video
(timestamps and links to YouTube videos), along with annotations that describe aspects of par-
ticular interest for this dataset, including instrumentation, geographic information and labels of
genre and subgenre, among others. The advantage of this dataset is that the entire content is
harvested from web resources of a Greek documentary series that was produced by academics with

specialization in this music and, therefore, includes high-quality and rich annotations extracted
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Figure 3.8. Geographical Classification Performance. Confusion matrix for place classes
on test data, achieving Macro Fl-score of 34.4% and Micro Fl-score of 42.4%, showing regional
identification challenges.

from the content of the shows. Additionally, the production of recordings and video material is
professional-level, providing a common ground in terms of audio quality. Three baseline audio-
based classification tasks are performed, namely instrument identification, place of origin and genre
classification.

The presented results indicate that specialized tasks, that use the audio signal, can potentially
provide valuable insight about several aspects of this music. The combination of video and audio
signals allows possible experimentation on methods that process multimodal data. The Lyra
dataset includes material that readily allows MIR tools to be employed for reaching valuable
musicological results, and can potentially foster the expansion of MIR methods altogether.

Beyond its immediate utility for Greek music research, the Lyra dataset serves as a foundation
for the broader investigations presented in subsequent chapters of this dissertation. In Chap-
ter 4, we utilize Lyra alongside other world music datasets to investigate cross-cultural knowledge
transfer patterns between diverse musical traditions. Chapter 5 further employs the dataset in
comprehensive evaluations of foundation models across multiple musical cultures, demonstrating
how datasets like Lyra can be integrated into computational approaches for music representation

learning.
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Chapter 4

Learning Across Cultures

4.1 Motivation

As discussed in Chapters 1 and 2, the field of Music Information Retrieval (MIR) has tradition-
ally focused on Western musical traditions, creating systems that may not adequately represent
or analyze the distinctive characteristics of diverse musical systems worldwide. This chapter ad-
dresses this limitation through two complementary approaches to learning across musical cultures,
each targeting different aspects of the challenge. The work presented here draws from our investi-
gations into cross-cultural transfer learning [46] and multi-label few-shot learning for world music
[47], which together provide comprehensive strategies for addressing the challenges of multicultural

music representation learning.

4.1.1 Cross-Cultural Knowledge Transfer

The majority of pre-trained models in MIR have been developed on Western musical datasets,
raising important questions about their applicability to diverse musical cultures. When analyzing
world, folk, or traditional music, we must consider: what is the potential of models trained on
Western music when applied to different musical cultures, and can models trained on specific
non-Western traditions provide meaningful embeddings for cross-cultural analysis?

Transfer learning offers a promising approach for leveraging knowledge across musical traditions,
potentially enabling models to benefit from patterns learned in different cultural contexts. While
transfer learning has shown significant benefits in various domains, its effectiveness for cross-
cultural music analysis remains largely unexplored. Prior research has shown that transfer learning
can lead to significant performance improvements compared to training from scratch [134], but the
patterns of transferability across diverse musical traditions have not been thoroughly examined.

The auto-tagging task, predicting tags related to genre, instrumentation, mood, and other
attributes from audio signals, provides an ideal context for investigating cross-cultural knowledge
transfer, as it captures multiple aspects of musical content [125] that may transfer differently across
cultural boundaries.

Previous studies have applied deep learning models to specific musical traditions, including
Indian classical music classification [135], Turkish makam recognition [136, 137], and Western
music auto-tagging [66, 68]. However, comprehensive cross-domain knowledge transfer analysis
across diverse musical cultures has been missing. This gap is particularly significant given the
growing availability of datasets representing various musical traditions, including the Lyra dataset
for Greek traditional music described in the previous chapter.

By systematically evaluating knowledge transfer across Western, Eastern Mediterranean, and
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Indian musical traditions, we can derive insights about computational relationships between these
cultures. These patterns may reveal which musical traditions share underlying features that fa-
cilitate knowledge transfer, potentially reflecting historical connections, geographic proximity, or
parallel musical developments. This approach also addresses the Western-centric bias in MIR re-
search, moving toward more versatile computational approaches that recognize the value of diverse

musical knowledge.

4.1.2 Learning from Limited Examples

While transfer learning can effectively leverage knowledge when substantial annotated data is
available, many musical traditions from various regions face significant challenges of data scarcity
and tag imbalance. These challenges limit the applicability of conventional deep learning ap-
proaches, including transfer learning, which typically require abundant labeled examples. This
is particularly problematic for underrepresented tags within established music domains and for
emerging or niche musical traditions where comprehensive annotated datasets may be unavailable.

The ability to learn from limited examples is a remarkable feature of human cognition that
enables rapid adaptation to new concepts and contexts [138]. Few-shot learning aims to bridge the
gap between human and machine learning capabilities by developing methods that can generalize
effectively from minimal examples [94]. Although few-shot learning has been applied in various
domains including computer vision [96, 139], natural language processing [140, 141], and acoustic
signal processing [142, 143], its application to multi-label music classification represents a novel
contribution to the field.

In the cross-cultural transfer learning work presented in Section 4.2, we demonstrate that
knowledge can be effectively transferred between musical traditions, but this approach remains
limited to frequently occurring tags with sufficient training examples. Traditional multi-label
classification methods [144], while effective in many scenarios, are not specifically designed for the
extreme data scarcity often encountered in world music research. Few-shot learning [95, 145, 146]
addresses these limitations by enabling the inclusion of underrepresented tags and musical cultures
in computational models, even with minimal annotated examples.

The multi-label nature of music tagging presents additional challenges for few-shot learning,
as each music piece can be associated with multiple tags simultaneously (genre, instrumentation,
regional style). Existing approaches to multi-label few-shot learning often introduce significant
complexity to the training process through additional modules [101, 102] or complex episode for-
mation [105]. By developing more streamlined multi-label few-shot learning methods, we can
improve the versatility of computational music analysis, enabling the representation of diverse
musical characteristics that might otherwise be excluded due to data limitations.

Together these approaches, transfer learning and few-shot learning, provide complementary
tools for cross-cultural music analysis, offering different strategies for addressing the challenges of
learning across diverse musical traditions with varying data availability. This combined approach
aligns with our goal of developing more inclusive and adaptive music representation learning meth-

ods that can effectively capture the rich diversity of global musical expressions.

4.2 Cross-Cultural Transfer Learning: Methodology

Building upon the motivations outlined in the previous section, we now detail our systematic
approach to investigating knowledge transfer between musical traditions. This section describes
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our experimental design, dataset selection, model architectures, and transfer learning methodology.

The implementation of our work is available online.

4.2.1 Experimental Setup

We selected six datasets representing three distinct geographic regions, with each region rep-
resented by two corpora. These datasets were described in detail in Chapter 2 and are briefly

summarized here:

e Western music: MagnaTagATune [126] (25,000+ recordings, 210 hours, 50 most popular
tags) and FMA-medium [114] (25,000 tracks, 208 hours, 20 hierarchical genre tags)

e Eastern Mediterranean music: Lyra (see Chapter 3; 1,570 pieces, 80 hours, 30 tags re-
lated to genre, place, and instruments) and Turkish-makam [84, 85] (5,297 recordings reduced

to 215 hours, 30 tags related to makam, usul, and instruments)

e Indian classical music: Hindustani [19] (1,204 recordings reduced to 206 hours, 20 tags
related to raga, tala, instruments, and form) and Carnatic [19] (2,612 recordings reduced to
218 hours, 20 tags with similar categories)

To ensure consistency, we balanced the datasets to have similar durations (except for Lyra) by
setting maximum duration limits for recordings in the larger collections. We selected the top 50
tags for MagnaTagATune, 30 for Lyra and Turkish-makam, and 20 for the rest of the datasets. A
detailed list of the most frequent tags per dataset can be seen at the Appendix A.

4.2.2 Models

We employed three model architectures that represent different approaches to music audio rep-

resentation learning, all using mel-spectrograms as input but with varying architectural paradigms:

e VGG-ish: A 7-layer CNN with 3 x 3 convolution filters and 2 x 2 max-pooling, followed by
two fully-connected layers, processing 3.69-second audio chunks [129].

e Musicnn: A music-inspired convolutional model with specialized vertical and horizontal
filters in its first layer to capture timbral and temporal features respectively, processing 3-

second audio chunks [68].

e Audio Spectrogram Transformer (AST): An attention-based model that splits mel-
spectrograms into 16 X 16 patches, projects them to embeddings, and processes them through

a Transformer encoder, with an input length of 8 seconds [39].

These diverse architectures allow us to investigate whether patterns of cross-cultural knowledge

transfer are consistent across different model designs or are model-dependent.

4.2.3 Transfer Learning Approach

The purpose of transfer learning is to improve the performance of models on target domains
by transferring knowledge from different but related source domains [89]. In our study, we utilized

parameter sharing, a model-based transfer learning technique [92], where a network trained on a

Thttps://github.com /pxaris/ccml
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Model VGG-ish Musicnn AST

Metric /
ROC-AUC PR-AUC ROC-AUC PR-AUC ROC-AUC PR-AUC

Dataset
MagnaTagATune 0.9123 0.4582 0.9019 0.4333 0.9172 0.4654
FMA-medium 0.8889 0.4949 0.8766 0.4473 0.8886 0.5024
Lyra 0.8097 0.4806 0.7391 0.4042 0.8476 0.5333
Turkish-makam 0.8696 0.5639 0.8505 0.5299 0.8643 0.5669

Hindustani 0.8477 0.6082 0.8471 0.6016 0.8307 0.5786

Carnatic 0.7392 0.4278 0.7496 0.4182 0.7706 0.4394

Table 4.1. Single-Domain Auto-Tagging Performance. ROC-AUC and PR-AUC scores of
models trained and evaluated on the same musical tradition.

source task shares its parameters with a target network, which is then fine-tuned on the target
task.

Our transfer learning methodology involved the following steps:

1. Train each model architecture on each single dataset to establish baseline performance for

within-domain learning

2. For each source-target domain pair, initialize the target model with the parameters of the

source-trained model

3. Apply two fine-tuning strategies: (a) fine-tuning only the output layer, which tests the direct
transferability of learned representations, and (b) fine-tuning the whole network, which allows

for more adaptation to the target domain
4. Evaluate performance on the target dataset using ROC-AUC and PR-AUC metrics
5. Compare cross-domain transfer performance to single-domain baseline performance

6. Aggregate results across all models and fine-tuning strategies to identify robust patterns of

cross-cultural knowledge transfer

Following the domain adaptation literature [91, 147], we hypothesized that transfer learning
performance would correlate with the similarity between musical traditions, with better transfer
between more similar domains. By systematically evaluating all possible source-target pairs across
our datasets, we could analyze which musical traditions show stronger knowledge transferability,
potentially reflecting underlying similarities in musical characteristics.

This comprehensive approach allows us to investigate both the potential of Western-trained
models when applied to different musical cultures and the capability of models trained on specific

non-Western traditions to provide meaningful representations for cross-cultural analysis.

4.3 Cross-Cultural Transfer Learning: Experiments

As already mentioned, we use mel spectrograms as the input of all our models. In order to
convert the audio recordings of the datasets to this representation, we use Librosa [148] to re-sample
them to 16 kHz sample rate. Then, 512-point FFT with a 50% overlap is applied, the maximum
frequency is set to 8 kHz and number of Mel bands to 128. Our intention, in this study, is not
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the optimization of the performance of the single-domain tasks but rather studying the knowledge
transfer across the domains. So, we keep our training setup as close as possible to the literature,
at each single domain task, in order to have a sanity check for the implementation.

For VGG-ish and Musicnn models, we use a mixture of scheduled Adam [149] and stochastic
gradient descent (SGD) for the optimization method, identical to what the authors at [129] have
used. The batch size is set to 16 and the learning rate to le —4 for both models while the maximum
number of epochs are 200 for VGG-ish and 50 for Musicnn. With regards to the AST model, we
follow the setup proposed in [39], namely batch size 12, Adam optimizer, learning rate scheduling
that begins from le — 5 and is decreased by a factor of 0.85 every epoch after the 5th one as well
as pre-trained on Imagenet Transformer weights.

All our models accept a fixed size audio chunk at their input but need to predict song-level tags.
During the evaluation phase, we aggregate the tag scores across all chunks by averaging them to
acquire the label scores for the whole audio. We use the area under receiver operating characteristic
curve (ROC-AUC), a widely used evaluation metric on multi-label classification problems and the
area under precision-recall curve (PR-AUC), a suitable metric for unbalanced datasets [150].

During transfer learning, we initialize all parameters of the target model, except for the output
layer, from each source dataset and (i) allow only the output layer to be trained and (ii) train the
whole network. In both settings, we use the same hyper-parameters and evaluation procedure with

the single-domain setups across all datasets for each model architecture.

4.4 Cross-Cultural Transfer Learning: Results

The performance of the three models on all single-domain tasks can be seen in Table 4.1. The
performance of the Musicnn and VGG-ish models on MagnaTagATune is similar to the reported
metrics in [129], which indicates the validity of our implementation. In general, the AST model
shows the best performance followed by VGG-ish and then Musicnn. This result should not be
taken into account solidly, because no hyper-parameter tuning has been taken place for each domain
and in order to keep the duration of the training to less than 24 hours for each task, the number of
epochs for Musicnn was significantly less than VGG-ish. On the other hand, one should consider
that the AST [39] and VGG-ish [129] models may, indeed, perform better for limited time resources.

In Table 4.2, one can see the ROC-AUC scores in all single-domain and cross-domain setups.
The rows are the source datasets while the columns are the target datasets. A sub-table is con-
structed for each model architecture and for a transfer from domain A to B, the result of the
fine-tuning of only the output layer (‘output’) as well as all the layers (‘all’) are reported. The
single-domain setup is when source and target is the same dataset and, thus, only training of the
whole network has meaning. The table is better parsed column-wise, e.g., by inspecting the results
of VGG-ish model on MagnaTagATune when transferring knowledge from the other domains at
the upper-left pair of columns in the table.

In order to aggregate all the cross-domain knowledge transfers, we follow the subsequent proce-
dure: for each target task that consists of a specific model, target dataset and fine-tuning method,
min-max normalization is applied to the N — 1 transfer learning results, where N is the number of
all datasets. The previous step leads to the construction of M x F' matrices, M the number of the
models and F' the number of fine-tuning methods, where rows are the source domains, columns
the target domains and diagonal elements are empty. Each cell has a value in the range [0, 1], as
a result of the normalization step, while the value 1 corresponds to the knowledge transfer that
led to the best performance in the target domain. By calculating the element-wise mean of the

121



Chapter 4. Learning Across Cultures

MagnaTag- FMA- Turkish-
agnaTag Lyra TS Hindustani Carnatic

Target domain .
ATune medium makam

trainable layer(s
v ( )/ output all output all output all output all output all output all
Source domain

VGG-ish
MagnaTagATune - 91.23 88.11 92.39 74.69 85.40 76.79 86.84 76.09 85.04 67.19 74.71
FMA-medium 85.82 91.29 - 88.89 68.56 84.04 75.40 87.78 75.77 84.39 67.03 74.56
Lyra 84.34 90.93 82.84 92.10 - 80.97 76.98 87.21 77.41 84.24 67.30 73.52
Turkish-makam 85.19 90.90 84.41 91.74 70.93 82.38 - 86.96 77.54 85.32 67.16 73.50
Hindustani 84.24 91.02 83.83 91.91 66.27 79.71 77.25 87.63 - 84.77 66.72 74.63
Carnatic 84.18 91.00 82.62 91.73 61.59 76.72 77.07 87.40 78.19 84.81 - 73.92
Musicnn
MagnaTagATune - 90.19 87.34 91.03 71.79 78.74 74.72 85.96 75.87 84.18 66.12 75.57
FMA-medium 85.52 90.35 - 87.66 65.94 77.59 75.51 85.13 73.16 85.49 66.38 75.77
Lyra 81.38 90.03 82.23 90.80 - 73.91 74.11 85.20 78.10 83.29 65.09 75.51
Turkish-makam 84.35 90.11 83.79 90.81 61.87 79.83 - 85.05 75.67 83.75 67.49 74.09
Hindustani 82.38 89.86 83.42 90.85 64.48 78.95 74.60 85.58 - 84.71 65.25 76.95
Carnatic 83.02 90.05 82.78 90.74 61.83 77.92 75.09 85.43 75.34 84.19 - 74.96
AST
MagnaTagATune - 91.72 89.25 91.99 75.68 83.77 76.28 87.20 74.67 86.57 66.03 75.43
FMA-medium 88.63 91.62 - 88.86 65.72 82.17 76.37 87.43 74.51 85.76 67.33 75.98
Lyra 87.49 91.44 87.44 92.43 - 84.76 77.08 86.80 72.24 83.73 68.47 76.59

Turkish-makam 87.33 91.40 86.31 91.95 72.70 77.95 - 86.43 70.13 83.56 67.10 75.23
Hindustani 87.40 91.35 87.11 92.26 71.74 84.60 75.70 86.90 - 83.07 67.75 75.85
Carnatic 87.42 91.45 86.83 91.75 63.33 81.44 76.87 87.14 74.11 8291 - 77.06

Table 4.2. Cross-Domain Transfer Learning Performance. ROC-AUC scores (%) when
applying transfer learning using three model architectures. Rows are the source domains and
columns the target domains. After initializing the network with the parameters of the trained
(at the source dataset) model, fine-tuning on the output layer as well as on the whole network is
applied. The diagonal values (under the “all” columns) correspond to the respective single-domain
models (no transfer learning) where the experimentation with only the output layer trainable has
no meaning.

produced M x F matrices, we reach to the result that can be seen in Figure 4.2.

4.5 Cross-Cultural Transfer Learning: Analysis and Discus-
sion

The results indicate that knowledge transfer both from Western to non-Western cultures and
the opposite can be beneficial when deep learning models are used to perform automatic music
tagging. Indeed, by inspecting Table 4.2, the general take-home message one should acquire is that
regardless of the model architecture, all datasets have the potential to contribute as a source to a
target domain by providing their deep audio embeddings. To investigate how valuable knowledge
transfers from widely used datasets to non-Western music cultures can be, we focus on the last four
datasets, i.e., the last eight columns of the table, and parse the two first rows, corresponding to
MagnaTagATune and FMA datasets, at each model architecture. For instance, we notice that for

Lyra, when Musicnn is used and fine-tuning only of the output layer is applied, the model coming
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Source domains
MagnaTagATune
FMA-medium
Lyra
Turkish-makam
Hindustani
Carnatic

ROC-AUC (%)

MagnaTagATune FMA-medium Lyra Turkish-makam Hindustani Carnatic
Target domains

Figure 4.1. Cross-Domain Transfer Performance. Average ROC-AUC scores across three
models for all cross-domain transfers with output layer fine-tuning, with highest bars in each group
representing single-domain baseline performance.

MagnaTag- FMA- Turkish-
ATune  medium Lyra makam Hindustani Carnatic

MagnaTag-
ATune

FMA-
medium

Lyra -

Turkish- |
makam

Hindustani -

Carnatic -

Figure 4.2. Cross-Cultural Transfer Learning Patterns. Heatmap of normalized knowledge
transfer between source datasets (rows) and target datasets (columns), normalized and averaged
across all models and fine-tuning methods to reveal cultural transferability.

from MagnaTagATune has the greater ROC-AUC score, namely 71.79%. Additionally, the AST
model trained on the FMA-medium dataset, outperforms the others when totally fine-tuned to the
Turkish-makam dataset, scoring 87.43%.

In order to study the inverse transfer direction, we center our interest to the first four columns of
the entire table. Even though MagnaTagATune and FMA are almost always the best source for each
other, the deep audio embeddings provided by the other datasets achieve competitive performance.
For example, when MagnaTagATune is the target domain and fine-tuning is restricted to the output
layer of the network, we observe that transferring from Turkish-makam leads to a performance that
is comparable to the best source (FMA-medium) for all models.

By considering all cross-domain knowledge transfers, one can specify the best candidate to
provide a trained model, with a specific architecture, for each target dataset. We, thus, notice that
the model that is transferred from Hindustani outperforms the others at the Carnatic dataset, when
fine-tuning on the whole Musicnn architecture is applied. A holistic picture of the cross-cultural
music transfer learning is depicted in Figures 4.1 and 4.2.

In Fig. 4.1 the scores of all cross-domain transfers when fine-tuning the output layer, can be
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seen, averaged across the three models. The uniformity of the performances of different sources at
each target dataset can be examined. We, thus, recognize that the most unbalanced performances
are spotted on the Lyra target domain, a result that is probably related to the smaller size of this
dataset compared to the others. By exploring Fig. 4.2 in a column-wise fashion, we observe that
for MagnaTagATune as the target domain, FMA-medium is the best source with a value equal to
1. This means that in all transfer learning setups, this source performed better than the others in
this domain.

Both figures show that MagnaTagATune and FMA-medium perform consistently well across
the domains, something that possibly indicates their appropriateness for the auto-tagging task.
However, as we move to the Eastern cultures, we notice that their contribution is somehow de-
creased and other domains tend to contribute similarly or even more in those targets. The values
at Fig. 4.2 should not be considered solidly as similarity metrics between the domains because
other factors may also affect the results we notice. It is, although, a first step towards studying

different music cultures using deep learning methods.

4.6 Label-Combination Prototypical Networks for Few-Shot

Learning

Having explored cross-cultural transfer learning as one approach to learning across musical
traditions, we now turn to the challenge of learning from limited examples, a critical issue for
many world music contexts where annotated data is scarce. While transfer learning leverages
knowledge from data-rich domains, it still requires sufficient examples of the target tags. For
underrepresented tags or niche musical traditions, we need methods that can learn effectively from
just a few examples.

In this section, we present Label-Combination Prototypical Networks (LC-Protonets), a novel
approach designed specifically for multi-label few-shot learning scenarios. We first describe the
foundation of our approach, Prototypical Networks, and their adaptation to multi-label settings,

before introducing our proposed method. The implementation is available in an online repository.>

4.6.1 Prototypical Networks

Prototypical networks [95] are widely used in few-shot learning (FSL) and function by com-
puting a prototype for each class, which represents the average embedding of the support items
belonging to that class. Let S denote the support set, consisting of N x K examples, where N is
the number of unique classes (referred to as the N-way) and K is the number of examples per class
(referred to as the K-shot). The prototype for a class ¢, denoted as p., is computed as the mean
of the embedded support examples for that class:

Pec = % Z fQ(Xi) . ]]-yi:m (41)

(xi,yi)€S

where fy(x;) represents the embedding of input x; through a mapping model, and 1,,—. is an
indicator function that equals 1 if the label y; of x; belongs to class c.
Once the prototypes are computed, a query set ) consisting of unseen examples is used to test

the model. Each query item is classified based on the similarity to the prototypes, typically using

2https://github.com /pxaris/LC-Protonets
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Euclidean or cosine distance. Specifically, the query sample x, € @ is assigned to the class whose

prototype is the closest in the embedding space:

Uq = arg1rncind(f9(xq),pc)7 (4.2)

where d refers to the chosen distance function. During training, cross-entropy loss and a Softmax
function over the computed distances are used to learn the embeddings.

Episodic learning: Prototypical networks are trained using episodic learning, progressing
through N-way K-shot episodes. In each episode, IV classes are randomly sampled, and K support
examples are drawn for each class to form the support set .S. The query set () consists of additional
examples drawn from the same N classes. The model computes the prototypes from the support
set, and the loss is calculated based on the classification accuracy of the query set. This episodic
approach encourages the model to generalize better in few-shot settings by simulating small training
tasks during learning.

Extension to multi-label setting: We adopt the term “ML-PNs” (multi-label Prototypical
Networks) to refer to the extension of Prototypical Networks for the multi-label setting. This
method follows the extension published in [104], where it is referred to as “Baseline”; however, we
prefer a more explicit name here to enhance clarity. In this setting, where each sample may belong
to multiple classes, each support item contributes to multiple prototypes. Let y; be the set of labels
for a given sample x;. For each label y; ; € y;, where j ranges from 1 to the number of classes
N, the embedding fg(x;) is used to update the prototype corresponding to y; ;. Consequently, the
prototype for each class ¢ is computed by averaging the embeddings of all support examples that
belong to class ¢, even if they have additional labels.

In this setting, the Softmax function is replaced by a Sigmoid function, allowing the model to
predict multiple labels for each query item. Binary cross-entropy loss is then used to optimize the
model:

L==3" ygelog(ige) + (1 = yg.e) log(l — go.c), (4.3)
qeQ ¢
where y, . represents the true label for class ¢ for query ¢, and g, . is the predicted probability for
that class.

4.6.2 LC-Protonets

Adapting few-shot learning to the multi-label regime presents a significant challenge, particu-
larly because classes are correlated and each sample may belong to multiple classes. To address this,
we propose Label-Combination Prototypical Networks (LC-Protonets), an approach to multi-label
classification that extends Prototypical Networks in a simple yet effective way.

We consider multi-label classification as a problem where every combination of labels is a
descriptive label. These combinations are all subsets of the label sets found in the support data,
including the full label sets themselves. Hence, a support item (x;,y;) with y; = {A, B, C}, defines
and contributes to all the label combinations derived from the power set P of y;, excluding the

empty set:

P({A’ B, C}) = {{A}7 {B}7 {0}7 {A7 B},

(4.4)
{A,C},{B,C},{A,B,C}}.

Figure 4.3 illustrates an indicative example. The support set S consists of four items, each
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LC-Prototypes| .-~ ‘
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Figure 4.3. Label Combination Prototype Formation. Visualization of support set items
(bottom) and derived LC-classes (top), with concentric circles showing equidistant LC-Prototypes
representations from a query item ¢ in the embedding space.

associated with a distinct set of labels. The set of label combinations, henceforth referred to as
LC-classes, is defined as the union of the power sets of each y; in the support set. Each LC-class
is represented by an LC-Prototype (LCP), whose representation is computed by averaging the
embeddings of the support items that include the corresponding LC-class in their power set, as
shown in the color-coded example in the figure.

This approach addresses the multi-label classification problem as a mixture of few-shot and
zero-shot learning scenarios. For instance, in Figure 4.3, the {B, D} LC-class does not directly
correspond to any support item, but its representation is inferred from items (one in this example)
that include it in their label power sets. This introduces a zero-shot learning aspect. Meanwhile,
the {B, D, F'} class has one corresponding item in the support set, enabling a few-shot scenario.

For a query item ¢ € @, the distances to all LCPs are computed. Figure 4.3 provides a concep-
tual 2D representation of the embedding space, where concentric circles indicate equal distances
from q to different LCPs. In the actual space, the LCPs with identical representations will occupy
the same point.

In cases where a query item has equal distances to multiple LCPs, the one representing the
largest number of labels is selected. That way, hierarchical relationships and strong correlation
between the labels are supported. In the depicted example, both the {E} and {C, E} LCPs have
the minimum distance to ¢, and the query is assigned to the {C, E} LC-class. If E is hierarchically
subordinate to C, the LCPs for { E} and {C, E'} will share the same representation, but the model
will consistently select the {C, E'} class. Even if C' and E are not part of a formal hierarchy but
they co-occur in the same support items, it is rational to assume strong correlation between them
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and, again, assign the query to the {C, E'} class.

Training phase: Training is conducted using an episodic “N-way K-shot” approach. Here, N
refers to the number of active labels (i.e., the number of singleton LC-classes in an episode) and
K represents the number of items supporting each singleton LC-class. To prevent oversampling,
an item sampled for a singleton class is also counted for any other active classes it belongs to,
ensuring that the number of items for each class stays close to K.

Given the support items (x;,y;) € S, the set of all LC-classes L is computed as:

(xi,y:)€S

where P(y;) is the power set of the labels of the i-th support item, excluding the empty set. The
total number of LC-classes is given by the cardinality |L| of the computed set?.

We denote an LC-class as L;, where j = 1,2,...,|L|. For each LC-class, one or more support
items include it in the power set of their labels, forming the set S; C S, defined as: S; = {(x;,y:) €
S| L€ Py}

The LCP representation p; for the corresponding class is computed by averaging the embed-
dings of the items in S:

p; = |Slj| > folxi), (4.6)
(x4,y:)€S;
where fy is the embedding mapping model with 6 trainable parameters.

In each episode, a specified number of query items for each active label is sampled to form
the query set Q. Given a query item x; with a label set y;, its initial multi-hot label vector
z; € {0,1}" is constructed such that z;(k) = 1 if k € y;,Vk = 1,2,...,N. The expanded
multi-hot vector z,,p, € {0, 1}‘L| is then constructed by assigning a value of 1 to each of the item’s
LC-classes: zp,m,(j) =1 if L; € P(yi;), Vj =1,2,..,]L|. The loss function is based on the
binary cross-entropy:

Loss(xi\zmm,, P) = —2zmm, log(o(—d(fo(x:), P)))+

(4.7)
(1 - zmHi) IOg(l - 0(_d(f9(xi)v p)))a

where d is the distance function, ¢ the sigmoid function and p the LCPs representations. We
minimize the loss for all items in the query set Q.

Inference phase: At the inference phase, the support set S is created following a similar
“N-way K-shot” setup used during training. The LC-classes L and their corresponding LCPs
representations p; (for j = 1,2,...,|L|) are computed. For a query instance, the distances to all
LCPs are calculated, and the instance is assigned to the LC-class represented by the nearest LCP:

yi = arg ingi d(fo(xi), Pj)- (4.8)

It is important to note that the training phase of LC-Protonets closely follows the extension
of Prototypical Networks [95] for the multi-label setting. However, in the latter, only singleton
LC-classes are considered in L, making it a special case of the LC-Protonets approach. Another
difference lies in the inference process, where the probabilities after a Sigmoid layer have to be
utilized for classification as opposed to the direct approach adopted by the proposed method. LC-

Protonets transforms the multi-label task to a single-label problem, where every combination of

3The scalability issues of the method in terms of LC-classes are being discussed in detail in Section 4.8.3
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dataset # recordings | # total tags it £(%)
MagnaTagATune 25863 188 50t 1.89%
FMA-medium 25000 151 200 2.68%
Lyra 1570 146 30th: 4.78%
Turkish-makam 5297 217 30th: 2.83%
Hindustani 1204 273 20*0: 2.49%
Carnatic 2612 283 200 2.03%

Table 4.3. Dataset Statistics and Tag Distribution. Number of recordings, total tags, and
the relative frequency of the i** most frequent (and last well-represented) tag for each dataset.

labels L; is a descriptive label.

4.7 LC-Protonets: Experimental Design

4.7.1 Datasets and metrics

We incorporate a range of datasets from both mainstream and world music traditions for our
study. For Western music, we use the MagnaTagATune dataset [126], a standard for auto-tagging,
and the medium version of FMA [114]. For world music, we utilize the Lyra dataset (Chapter 3),
along with the three datasets from the CompMusic Corpora [33]: Turkish-makam corpus [84, 85],
Hindustani and Carnatic [19].

ML-FSL task 5-way 3-shot 15-way 3-shot
classes type Base Novel Base Novel
method / metric M-F1 m-F1 M-F1 m-F1 M-F1 m-F1 M-F1 m-F1
ML-PNs 65.21435 66.12,41 | 46.32385 45.92353 | 39.31166 44.23511 | 21.4515 | 21.021 29
One-vs.-Rest 64.694.19 65.844.16 | 42.69353 42.53.4 | 3544164 394179 | 18.81.45 | 18.5671 .41
LC-Protonets (ours)| 62.6593 66.26457|47.89¢.69 49.346.19|42.84571 56.285 55| 28.5361 [31.373.74
ML-FSL task 30-way 3-shot 45-way 3-shot 60-way 3-shot
classes type Base Base € Nowvel Base € Nowel Base € Novel
method / metric M-F1 m-F1 M-F1 m-F1 M-F1 m-F1 M-F1 m-F1
ML-PNs 29.84114 325712 | 24.61p.83 29.261.97 | 19.740.66 23.051.02 | 17.499.62 | 19.45¢ 67
One-vs.-Rest 25.641.21 27.81135 | 21.749.9s 25.361.29 | 17.060.76 19.5810 | 14.7906s | 16.170 56

LC-Protonets 36.772'44 50.771'79 31.312‘14 52.651‘95 28.091,76 50.282,06 28.451‘87 46.481,82

Table 4.4. Performance Across ML-FSL Task Configurations. Macro-F1 (M-F1) and
micro-F1 (m-F1) scores (%) with subscripted 95% confidence intervals for various “N-way” tasks,
aggregated over all datasets and training setups with a consistent “3-shot” approach.

Table 4.3 provides details on the number of recordings, total tags, and the relative frequency of
the last well-represented label for each dataset. We consider as well-represented the ¢ most frequent
tags for each dataset based on their successful inclusion in the supervised learning approach we
followed in Section 4.2: 50 for MagnaTagATune, 30 for Lyra and Turkish-makam, and 20 for FMA-
medium, Hindustani, and Carnatic. The data preparation for the automatic audio tagging task

followed the same process described in Section 4.3. To use these datasets for few-shot learning, we
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split the labels for training and testing, and we provide those splits to the public repository for
reproducibility.

Since our method directly predicts a set of labels without assigning probabilities to individual
labels, calculating metrics like Area Under the Curve (AUC) is not straightforward. Therefore,
we selected Macro-F1 and Micro-F1 scores for evaluation. F1 score is the harmonic mean of the
precision and recall scores and in its Macro- setting, the mean of the individual label scores is
calculated. Micro-F1 computes metrics globally by aggregating true positives, false negatives, and

false positives across all samples.

4.7.2 Backbone model

In few-shot learning, each sample is embedded into a feature space by a backbone model. Given
the VGG-ish [151] model’s ease of training and proven effectiveness in both supervised learning [46,
129] and ML-FSL tasks [104], we selected it as our backbone model. The architecture consists of a
7-layer Convolutional Neural Network (CNN) with 3 x 3 convolution filters and 2 x 2 max-pooling
layers, followed by a couple of fully-connected layers. The model processes log mel-spectrograms

as input features.

4.7.3 Comparative approaches

ML-PNs: Our method is compared to the extension of Prototypical Networks for multi-label
classification, referred to as “ML-PNs”. As described in Section 4.6.1, this approach uses a Sigmoid
layer instead of Softmax for classification, and binary cross-entropy loss instead of categorical
cross-entropy during training, compared to the standard single-label Prototypical Networks [95].

One-vs.-Rest: Another comparative approach is the “One-vs.-Rest” strategy introduced in
[105]. In this method, the support set is divided into several subsets during training, where each
subset focuses on a query’s label along with N — 1 other classes in an “N-way K-shot” format. The

goal is to decompose the multi-label problem into multiple binary classification tasks.

4.7.4 Experimental setup

We split the labels of each dataset into training and testing sets. The training set is used both
during the training phase of ML-FSL models and for pre-training the backbone VGG-ish model
via supervised learning, while the testing set is used to form the novel classes for evaluation. For
the audio recordings, we use the same splits as in previous studies [46, 129], with a split ratio of
0.7, 0.1, and 0.2 for the training, validation, and test sets, respectively.

To train the ML-FSL models, we employ three setups: (i) training from scratch with random
weight initialization, (ii) full fine-tuning of a pre-trained backbone model, and (iii) fine-tuning
only the last layer of the pre-trained backbone model. The model architecture remains the same
across all setups, except in the fine-tuning cases where a VGG-ish model pre-trained on the well-
represented tags is transferred as the backbone, excluding only the final classification layer.

In few-shot learning, base classes are those seen during training, while nowvel classes are unseen.
We evaluate ML-FSL models on “Base”, “Novel” and “Base & Novel” classes, with the latter includ-
ing an equal mix of unseen and seen tags. This allows us to assess how well the model handles both
seen and unseen classes during inference. Various values of N (the number of classes) are tested,
while K is kept constant (3-shot) across the “N-way K-shot” ML-FSL tasks. Importantly, the same
base classes used for training an ML-FSL model from scratch are also used for pre-training the
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Figure 4.4. Two-Step Learning Framework. Process diagram showing supervised learning
on well-represented tags in the first step, followed by LC-Protonets extension of the tag set using
the previously trained model as backbone.

backbone model via supervised learning, ensuring that the novel classes remain unseen for models
with a pre-trained backbone.

Cosine distance is used as the distance metric, and all methods are trained using episodic learn-
ing with a 10-way 3-shot setup. This setup is chosen to accommodate the low-resource nature of
music data, as the absolute number of labels differs across domains. For instance, Hindustani, Car-
natic, and FMA-medium datasets have only 20 labels in the training split. Additionally, selecting
3 examples per label allows under-represented labels to be included. 50 episodes are sampled for
each epoch and 3 query items per label are utilized to compute the loss in each one of them.

The validation set is formed by holding out 5 classes from the training set during learning. The
Adam optimizer [149] is used, and early stopping is applied based on the Macro-F1 score on the
validation set. Regarding the input, the audio signal is sampled at 16 kHz, and a 512-point FFT
with a 50% overlap is applied while the Mel bands are set to 128. During training, a random chunk
of each audio recording is selected, while during testing, the average embedding of all chunks forms

the representation of an instance.

4.7.5 Two-step learning method

In imbalanced datasets, it is common to encounter a large number of labels that occur in-
frequently, leading to a long-tailed label distribution. When training models using supervised
learning, a threshold is often set to include only the most frequent categories. To address this
limitation, we propose a two-step method that combines supervised and few-shot learning. Unlike

ML-FSL setups that fine-tune a pre-trained backbone, this approach requires no fine-tuning.

As illustrated in Figure 4.4, the first step involves training a deep learning model on well-
represented tags using supervised learning. The model is optimized with a Sigmoid classification
layer and binary cross-entropy loss. In the second step, the pre-trained model is frozen and used
as a backbone to map data samples into an embedding space defined by its penultimate layer. We
extend the tag set and perform inference on any query item by applying LC-Protonets on top of
the pre-trained model. Without additional training, LC-Protonets can classify previously unseen,
under-represented labels, including those from the long tail of world music datasets, using just a

few examples per label. In our experiments, we use 3 examples per label.
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dataset MagnaTagATune FMA-medium Lyra
metric M-F1 m-F1 M-F1 m-F1 M-F1 m-F1
method training from scratch
ML-PNs 19.899.72 21.331.03 18.320 54 20.049.6 31.41.98 375171
One-vs.-Rest 16.72¢ 86 17.361.13 13.73¢.84 14.82¢ 51 29.05¢.41 33.91.32
LC-Protonets (ours) 21.58; 56 29.49, 1 18.91 54 34.75; 73 39.47, 57 59.825 76
method pre-trained backbone and full fine-tuning
ML-PNs 25.00.35 27.630.57 22.08p.4 23.71¢.67 35.641 31 41.721 59
One-vs.-Rest 19.821 g9 20.961 44 18.70.48 19.64¢ 88 29.02¢.24 33.360.43
LC-Protonets 33.661 41 43.375.35 33.370.908 48.831 36 45.295 40 65.99; o5
method pre-trained backbone and fine-tuning of the last layer
ML-PNs 24.45¢ 59 26.940.91 20.88¢.37 22.65¢.46 36.720.01 43.16¢.95
One-vs.-Rest 19.865.31 20.829 38 19.230.44 20.520.64 31.751 18 37.031.65
LC-Protonets 33.51.33 43.271 98 33.04, 73 48.681 94 47.313 16 68.581 01
method pre-trained backbone without any fine-tuning
ML-PNs 13.62¢.01 14.30.01 10.58¢.01 11.180.01 28.93¢.09 33.250.11
One-vs.-Rest 13.62¢.01 14.310.02 10.58¢.01 11.190.01 28.90.1 33.22¢.12
LC-Protonets 33.521.19 43.245 33.731.27 49.21 g7 47.323 76 68.95, ¢
dataset Turkish-makam Hindustani Carnatic
metric M-F1 m-F1 M-F1 m-F1 M-F1 m-F1
method training from scratch
ML-PNs 20.299.15 22.12¢.16 18.16¢.6s 23.891.81 20.12¢.92 30.117.39
One-vs.-Rest 20.30.15 22.120.14 17.860 .56 22.771.79 20.231 53 27.641 07
LC-Protonets 21.525 95 37.415 65 2471483 50.823 49 17.960 47 54.631 4
method pre-trained backbone and full fine-tuning
ML-PNs 32.191 43 32.721 46 23.1¢.53 30.40.92 22.049.79 3141538
One-vs.-Rest 26.051.42 28.081.63 18.360.93 23.521 66 20.72¢.44 28.45¢ .97
LC-Protonets 38.595 45 57.312.15 35.073.63 59.035.33 23.161 63 63.695 57
method pre-trained backbone and fine-tuning of the last layer
ML-PNs 28.529 66 30.732.97 22.84¢.43 31.161 43 21.38¢.77 29.469 64
One-vs.-Rest 28.955 19 30.771.89 20.181.78 26.292 42 20.730.8 28.441 36
LC-Protonets 38.525 s 57.99; 45 34.645 13 60.044 44 23.25¢ 69 63.92; o5
method pre-trained backbone without any fine-tuning
ML-PNs 20.28¢.1 22.11¢.12 17.490.12 21.83¢.15 20.88¢.07 27.760.05
One-vs.-Rest 20.25¢.06 22.070.05 17.69.12 21.94¢ 15 20.91¢.05 27.80.07
LC-Protonets 37.231.11 56.830 .53 35.092 83 59.69; g1 22.42 75 63.661 30

Table 4.5. ML-FSL Performance Under Different Training Conditions. Macro-F1 (M-
F1) and micro-F1 (m-F1) scores (%) with subscripted confidence intervals for a “30-way 3-shot”
task across training scenarios: training from scratch, pre-trained backbone with full or partial
fine-tuning, and no fine-tuning. Rows represent the multi-label few-shot learning methods, and
columns correspond to the datasets.
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4.8 LC-Protonets: Performance Evaluation

4.8.1 ML-FSL tasks

In Table 4.4, the aggregated results of the LC-Protonets method and the two comparative ap-
proaches are presented. These results were calculated by averaging performance across all datasets
and training setups: from scratch, full fine-tuning, and fine-tuning of the last layer. Each ex-
periment was run five times with different random seeds, and the 95% confidence intervals are
reported. While label splits remained consistent across runs, different active classes were sampled
at each epoch during training, and different support items were selected in each run. We present
both macro-F1 and micro-F1 scores for different numbers of labels, ranging from 5 to 60. The
evaluations were performed on “Base” and “Novel” classes for smaller numbers of classes, and on

“Base & Novel” classes for larger numbers.
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Figure 4.5. Prototype Embedding Visualization. t-SNE visualization of query items (in
grey) and prototype embeddings (in distinct colors) for a “12-way 5-shot” ML-FSL task on the
MagnaTagATune dataset; the left panel shows prototypes generated by the “ML-PNs” method
(one per class), while the right panel displays those formed using the “LC-Protonets” method,
where different colors within each prototype indicate the specific label combination it represents.

LC-Protonets outperformed other methods in nearly all tasks, except for the 5-way 3-shot task
with base classes, where ML-PNs performed better in terms of macro-F1 score. In the 15-way 3-
shot task, LC-Protonets showed superior performance on base classes and widened this gap further
when novel classes were used. As the number of classes increased, LC-Protonets demonstrated
substantially better performance compared to the other approaches.

In terms of confidence intervals, we observed wider ranges for few-shot conditions, such as the
5-way task, due to the random sampling of a small number of active classes in imbalanced datasets.
Additionally, LC-Protonets’ reliance on support set sampling for deriving LC-classes leads to wider
confidence intervals compared to the other methods.

Figure 4.5 highlights the differences between the prototypes formed by ML-PNs and LC-
Protonets. While ML-PNs create one prototype per class, LC-Protonets populate the embedding
space with representations derived from the power sets of the support item labels. We believe
this enhanced positive sampling of the feature space contributes to the significant performance
improvement seen in the results.

Table 4.5 presents the results of the 30-way 3-shot task on “Base & Novel” classes for each dataset
and training setup. When training from scratch, the LC-Protonets method showed improvement in
all cases except for the macro-F1 evaluation on the Carnatic dataset, where One-vs.-Rest performed
better. The difference between LC-Protonets and the comparative approaches was more evident
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in the micro-F1 scores, as also noted in the aggregated results.

When using a pre-trained backbone model followed by full fine-tuning with episodic learning, the
performance of all methods significantly improved across all datasets. However, the gap between
LC-Protonets and the comparative approaches widened further. For instance, in MagnaTagATune,
ML-PNs improved from 19.89% to 25.0%, while LC-Protonets increased from 21.58% to 33.66%
in macro-F1 score. When only the last layer of the pre-trained model was fine-tuned, performance
remained similar across datasets, with the exception of Lyra, where this approach led to slightly
better results.

Finally, the last three rows of the upper and lower parts of Table 4.5 report the performance
when a pre-trained backbone model was used without any fine-tuning. Interestingly, LC-Protonets
maintained performance levels similar to those seen in the fine-tuning setups. This suggests that
the method relies more on the quality of the representations provided by the backbone model
than on episodic learning. By contrast, the performance of the comparative approaches dropped
significantly, as they encountered challenges with multi-label classification without training, often
assigning all labels to all samples. This can be seen in the very narrow confidence intervals of
ML-PNs on the FMA-medium dataset, for example. More results, with regards to the proposed
method and the comparative approaches, can be found at Appendix B.

Comparisons with state-of-the-art methods are not possible due to the lack of ML-FSL results
for MIR and these datasets. Moreover, the literature commonly reports ROC-AUC for multi-label
tasks instead of Macro-F1. State-of-the-art models also focus on top-N labels, unlike our method

which targets under-represented classes.

dataset MagnaTagATune FMA-medium
# tags: original / extended 50 80 20 40
method / metric M-F1 m-F1 M-F1 m-F1 M-F1 m-F1 M-F1 m-F1
VGG-ish 26.740.63 42.290.58 - - 36.900.76 59.610.84 - -
VGG-ish & LC-Protonets 33.090.83 39.281.77 26.40.26 37.310.47| 40.942.0 53.510.73 29.121.44 45.371.71
dataset Lyra Turkish-makam
# tags: original / extended 30 60 30 60
method / metric M-F1 m-F1 M-F1 m-F1 M-F1 m-F1 M-F1 m-F1
VGG-ish 30.481.23 67.141.17 - - 44.950.82 79.110.98 - -
VGG-ish & LC-Protonets 47.32376 68.952.0 46.052.8 69.032.21 |37.231.71 56.830.83 30.071.63 56.221 42
dataset Hindustani Carnatic
# tags: original / extended 20 35 20 40
method / metric M-F1 m-F1 M-F1 m-F1 M-F1 m-F1 M-F1 m-F1
VGG-ish 46.071.12 76.601.29 - 35.491 .54 84.821.71 -

VGG-ish & LC-Protonets 40.691,33 64.381‘2 31.332,01 58.382,41 32.11,47 64.841,51 18.130,6 64.250,82

Table 4.6. Two-Step Learning Method Performance. Macro-F1 (M-F1) and micro-F1
(m-F1) scores (%) with subscripted 95% confidence intervals, comparing the “VGG-ish” model
on well-represented tags against the “VGG-ish & LC-Protonets” method on both standard and
extended tag sets.

4.8.2 Two-step learning method

The results of the proposed two-step learning method are shown in Table 4.6. For each dataset,
two tag counts are used. The smaller number, such as 20 for FMA-medium, corresponds to the well-
represented tags on which the VGG-ish model was trained, while the larger number, 40, represents
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the extended tag set. The performance of both the “VGG-ish” model and the “VGG-ish & LC-
Protonets” method on the well-represented tags is reported, and for the latter, its performance on
the extended tag set is also included.

When examining the macro-F1 scores for both methods on the smaller set of tags, we observe
similar performance across most datasets. The key architectural difference between the two ap-
proaches is the replacement of the VGG-ish Sigmoid classification layer with the LC-Protonets
framework, which classifies an unknown sample to the label combination represented by the near-
est LCP. The utilization of the LCPs offers a straightforward way to expand the number of labels.
For instance, the tags in MagnaTagATune can be extended from 50 to 80, in Hindustani from 20
to 35, and doubled for the other datasets.

There is a relatively small drop in macro-F1 performance as the number of tags increases
significantly. For example, in the Turkish-makam dataset, the macro-F1 score drops from 37.23%
to 30.07% as the number of tags rises from 30 to 60. An exception is the Lyra dataset, where
performance on the extended tag set remains nearly identical to the well-represented tags, likely

due to stronger correlations between tags in Lyra compared to the other datasets.

4.8.3 Scalability

As the LC-classes are derived from the power sets of the sample labels, the number of LC-
Prototypes increases significantly as the number of classes N grows. This results in a corresponding
increase in inference time, as the distances from all LCPs must be computed for each query item.
In Figure 4.6, the number of classes N is shown on the z-axis, while the left y-axis represents
the number of LC-Prototypes, and the right y-axis shows the inference time per query item (in
milliseconds), averaged across all datasets.

When we focus on the dashed blue line in the figure, showing the original method’s inference
time, we observe that when IV increases from 20 to 30, the number of LCPs rises by a factor of
about 15, from 487 to 7853, while inference time increases from 21 to 306 milliseconds. As the
number of classes continues to grow, the number of LCPs increases substantially, reaching 53640
for 60 tags, and the inference time also rises to 2170 milliseconds.

Optimization approach: To address these scalability issues, we have developed an opti-
mization that significantly improves inference efficiency while maintaining identical classification
results. Our key insight is that multiple LC-classes often share identical LCP representations de-
spite representing different label combinations. This occurs because the same set of support items
contributes to multiple label combinations derived from their power sets. For example, if a support
item with labels {4, B,C} is the only item contributing to both {4, B} and {B,C} LCPs, these
LCPs will have identical representations.

We exploit this redundancy by maintaining a dictionary structure that maps unique LCP

representations to their corresponding sets of LC-classes:
UniqueLCPs = {p,, = {L; | P; = Pm}}, (4.9)

where j = 1,2, ...,|L| and m = 1,2, ..., M with M being the number of unique LCPs and M < |L]|.

During inference, instead of computing distances between a query item and all possible |L]
LCPs, we only compute distances to the M unique LCP representations. For the nearest unique
LCP, we then select the label combination with the maximum cardinality, consistent with our
original approach.

As shown with the solid blue line in Figure 4.6, this optimization yields dramatic speed im-
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Figure 4.6. LC-Protonets Scalability Analysis. Relationship between number of labels (-
axis), LC-Prototypes (left y-axis), and inference time per item (right y-axis) on logarithmic scale.
The dashed blue line shows the original method’s inference time, while the solid blue line shows
the optimized approach, demonstrating significant computational improvements.

provements: for datasets with 20 labels, inference time drops from 21ms to just 2ms (a 10x
improvement), and for 60 labels, from over 2,000ms to only 17ms (over 100x improvement), all
while producing identical classification results. We believe that this optimization addresses the
primary scalability limitation of the method, making it practical for deployment across a wider
range of application scenarios.

The inference process runs only during testing and not during model training. The average
training time across all three methods was under an hour, with no significant differences between
them. The trainable parameters amount to 3.66 million for training from scratch or full fine-tuning,
and 262,000 for fine-tuning only the last layer. The experiments were conducted on an NVIDIA
RTX A5000 GPU.

4.9 Conclusions

This chapter has explored two complementary approaches to address the challenge of developing
computational models for analyzing diverse musical traditions: transfer learning across different
musical systems and few-shot learning for scenarios with limited data. Both approaches contribute
to our goal of creating more versatile computational methods while offering insights into how

knowledge can be effectively shared across different musical traditions.

4.9.1 Cross-Cultural Transfer Learning

Our systematic investigation of knowledge transfer between musical traditions has yielded sev-
eral important findings. First, we demonstrated that deep audio embedding models can benefit
from knowledge transfer from Western to non-Western musical traditions and vice versa. This
bidirectional transferability demonstrates mutual benefit between different musical systems and
suggests that models trained on various musical traditions can contribute valuable knowledge to
MIR systems.

By aggregating performance across three model architectures and different fine-tuning strate-
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gies, we identified patterns of transferability that may reflect underlying similarities between mu-
sical cultures. These patterns could potentially be interpreted as computational similarity metrics
between traditions, offering insights into musical relationships that reflect historical connections,
geographic proximity, or parallel developments.

While Western datasets like MagnaTagATune and FMA-medium performed consistently well
as source domains across various target traditions, we also observed that as we moved to Eastern
Mediterranean and Indian musical traditions, other non-Western domains contributed similarly or
sometimes more effectively to these targets. This suggests that the suitability of source domains
varies across musical traditions, and that leveraging knowledge from diverse traditions may lead

to more robust and broadly applicable computational models.

4.9.2 Label-Combination Prototypical Networks

To address the challenge of limited annotated data in world music collections, we introduced
Label-Combination Prototypical Networks (LC-Protonets), a novel approach for multi-label few-
shot learning. LC-Protonets consistently outperformed comparative approaches across diverse mu-
sic datasets and ML-FSL tasks by creating prototypes for label combinations rather than individual
labels.

Our experiments with different training setups revealed that utilizing pre-trained models as
backbones significantly benefits all ML-FSL methods. Notably, LC-Protonets showed particu-
lar strength in using pre-trained embeddings even without fine-tuning, unlike comparative ap-
proaches. This enabled the development of a two-step learning method that can successfully
expand a dataset’s tag set by leveraging models pre-trained on well-represented tags, providing a
practical pathway for including underrepresented musical characteristics in computational models.

Regarding the method’s scalability issues, our optimized implementation addresses its com-
putational complexity challenges by efficiently identifying unique prototypes, significantly reduc-
ing inference time while maintaining identical classification results. This optimization makes the
approach practical for large label sets typically encountered in world music collections, though
opportunities remain for further enhancing robustness against support set sampling variability in

future work.

4.9.3 Synthesis and Future Directions

The two approaches explored in this chapter, transfer learning and few-shot learning, com-
plement each other in addressing different aspects of learning across different musical traditions.
Where transfer learning leverages knowledge from data-rich domains to enhance performance on
common tasks with sufficient examples, few-shot learning enables effective learning even with min-
imal annotated data, particularly for underrepresented tags and traditions.

Interestingly, both approaches highlight the value of pre-trained models in cross-cultural music
analysis, though they utilize these models differently. Transfer learning initializes models with pa-
rameters learned from a source domain, while LC-Protonets can directly leverage the embedding
space of pre-trained models without additional training. This suggests that end-to-end deep learn-
ing models with minimal inductive bias can learn representations that transfer effectively across
different musical traditions and learning paradigms.

The performance improvements observed when combining both approaches, using transfer
learning to obtain better feature representations and few-shot learning to adapt these representa-
tions to new tags with limited examples, point toward integrated frameworks that could address
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the full spectrum of data availability scenarios in multicultural music analysis.

Future research directions include exploring semantic similarities between labels across do-
mains, incorporating additional datasets and model architectures, and investigating different tasks
such as mode estimation that may reveal deeper cross-cultural musical connections. For few-shot
learning, exploring different backbone architectures would further enhance the applicability of the
LC-Protonets method to diverse musical contexts.

Together, these approaches advance computational methodologies for analyzing diverse musical
traditions while facilitating cross-cultural comparison and knowledge transfer. By enabling effec-
tive learning across cultural boundaries and from limited examples, these methods enhance the
versatility of music representation learning, making computational approaches more accessible for
underrepresented musical traditions and characteristics.

The emergence of foundation models in music presents both new opportunities and challenges
for multicultural representation learning. While the approaches developed in this chapter demon-
strate effective strategies for working with conventional deep learning models, the next chapter
investigates how these principles extend to large-scale foundation models and explores novel adap-
tation strategies that can enhance their cross-cultural capabilities while preserving their general
musical knowledge.
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Chapter 54

Foundation Models for Diverse Music Cultures

5.1 DMotivation

The question of music’s universality has long been debated among scholars. While certain
musical elements appear to transcend cultural boundaries, musical traditions have evolved with
distinctive characteristics and semantic content that reflect their cultural contexts [2, 5, 9, 10]. This
tension between universal features and cultural specificity presents a complex challenge for com-
putational music analysis, particularly as foundation models emerge as a transformative paradigm
in artificial intelligence.

Foundation models have revolutionized multiple AT domains by learning general-purpose repre-
sentations from large-scale data that can be adapted to diverse downstream tasks [106]. In music
and audio, models like MERT [40], CLAP [41], and Qwen-Audio [42] have demonstrated impressive
capabilities across various MIR tasks, from beat tracking to automatic tagging [43, 113]. These
models implicitly claim a form of universality through their general-purpose nature, yet they have
been predominantly trained on Western-centric data, raising critical questions about their ability
to represent diverse musical traditions effectively.

The research presented in previous chapters has demonstrated both the potential and limita-
tions of cross-cultural knowledge transfer in music analysis. Transfer learning revealed patterns
of knowledge transferability between musical traditions, while few-shot learning provided strate-
gies for addressing data scarcity in world music collections. Foundation models potentially offer
more powerful general-purpose representations that could enhance cross-cultural music analysis,
but their effectiveness across diverse traditions remains largely unexplored.

This chapter addresses this gap through two complementary investigations, drawing from our
comprehensive evaluation of foundation models across world music corpora [48] and the collab-
orative development of CultureMERT for cross-cultural adaptation! [49]. First, Sections 5.2
through 5.4 present a systematic evaluation of foundation models across culturally diverse music
corpora, assessing their cross-cultural capabilities under different resource constraints. By sys-
tematically evaluating these models’ performance on Western popular, Greek traditional, Turkish
makam, and Indian classical music traditions, we quantitatively assess their cross-cultural capa-
bilities and contribute to broader discussions about the universality of musical representations.
This evaluation employs three complementary methodologies that assess foundation models under
different conditions: probing (using models as frozen feature extractors with trainable classifiers),
supervised fine-tuning (adapting specific model layers to target domains), and multi-label few-shot

learning (testing performance in low-resource scenarios common with world music collections).

1My contributions to this collaborative work focused on experimental design, cultural adaptation evaluation, and
cross-cultural analysis frameworks.
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Building on the insights from this evaluation, Sections 5.5 through 5.6 explore adaptation
strategies to enhance the cultural inclusivity of foundation models. Despite their advances in
music understanding, most existing foundation models have been trained primarily on Western-
centric datasets, limiting their ability to represent diverse musical styles [13]. Many musical tradi-
tions, including Turkish makam, Indian classical, and Greek traditional music, feature distinctive
melodic structures, modal systems, and rhythmic patterns that may not be adequately captured
by Western-trained models [152-154].

This limitation has significant implications beyond academic interest. The inadequate rep-
resentation of diverse musical traditions narrows the applicability of music foundation models
for practical applications like region-specific recommendation systems [155] and cultural heritage
preservation. It also overlooks the rich, culturally specific knowledge embedded in diverse musical
traditions that could advance MIR research more broadly [43]. There is thus an urgent need to
develop more inclusive and culturally aware computational models capable of generalizing beyond
Western-centric traditions [44, 156].

To address these challenges, we introduce CultureMERT, a culturally adapted foundation model
developed through continual pre-training (CPT), which has shown effectiveness in adapting large
language models to new domains and languages [119, 157]. By enabling incremental adaptation
without full retraining, CPT offers a computationally efficient pathway for enhancing cultural
inclusivity while mitigating catastrophic forgetting [158]. We also explore task arithmetic [120]
as an alternative approach, which combines domain-specific adaptations in weight space without
requiring additional training or access to the original training data.

Together, these investigations contribute to our understanding of foundation models for mu-
sic representation learning across cultures and advance toward more inclusive computational ap-

proaches to music analysis that respect and preserve the rich diversity of global musical expressions.

5.2 Multi-Method Evaluation Framework for Foundation Mod-

els

Having established the importance of evaluating foundation models across diverse musical cul-
tures, we now present our comprehensive methodological framework for assessing these models’
cross-cultural capabilities. This framework enables systematic comparison of state-of-the-art foun-
dation models across Western and non-Western musical traditions under varying resource con-
straints, providing insights into both their strengths and limitations for cross-cultural music anal-
ysis.

Our methodological framework systematically evaluates whether foundation models can effec-
tively represent musical characteristics across diverse cultural traditions. As shown in Figure 5.1,
we employ three complementary methodologies: probing (Prob.), supervised fine-tuning (SE'T),
and multi-label few-shot learning (ML-FSL). Probing trains only an MLP classifier on frozen model
representations, while SF'T makes the model’s last layers trainable alongside the MLP. ML-FSL
extracts representations from three contexts, i.e., pretrained model (PT), trained probing model
(Prob.) and fine-tuned model (SFT') to evaluate performance on extended tag sets under data
scarcity conditions.

The implementation is being made available? for reproducibility and to promote research on

world music.

2https://github.com/pxaris/FM-music-tagging
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5.2.1 Models

Foundation Model - MLP Probe
(1) Prob.
(2)SFT

' frozen last
layers layers

(3) ML-F'S L o s s prob.

tags

PT SFT
[J
frozen extended wﬂ V “'.;W
& trainable tags 1010 0011

Figure 5.1. Multi-Method Evaluation Framework. Architectural overview showing three
methodologies: (1) Probing (Prob.), (2) Supervised Fine-Tuning (SFT), and (3) Multi-Label Few-
Shot Learning (ML-FSL). The diagram indicates feature extraction points used by ML-FSL from
either Pre-Trained (PT'), trained Prob. or SFT models.

5.2.1 Models

For our evaluation, we selected five state-of-the-art audio models spanning different architec-
tures, pre-training approaches, and parameter scales:
MERT. We evaluate two variants of MERT [40]: MERT-95M? and MERT-330M* with 95M and
330M parameters respectively. These transformer-based models employ masked acoustic modeling,
using an acoustic and a musical teacher, during pre-training. MERT-95M consists of 12 layers,
while MERT-330M has 24 layers.
LAION-CLAP. We include two variants: CLAP-Music® (CLAP-M), trained exclusively on music
data, and CLAP-Music&Speech® (CLAP-M&S), which incorporates additional speech data [41].
Both utilize HTS-AT [159] for audio encoding, a transformer-based model with 4 groups of swin-
transformer blocks [160], with 68M audio-specific parameters within a larger 194M parameter
model.
Qwen2-Audio. The largest model in our evaluation framework, Qwen2-Audio” [115], contains
637M audio-specific parameters within an 8.4B parameter architecture and features 32 transformer
layers [161] in its audio tower.
VGG-ish. As a baseline comparison, we include VGG-ish [128, 129], a 3.6M parameter end-to-
end model trained via supervised learning on mel-spectrograms to predict tags. For VGG-ish, we
report results from Chapter 4, where the same experimental setup is used, rather than running

new experiments.

5.2.2 Datasets

Our evaluation spans diverse traditions from six music datasets. As in the previous chapter, we
utilize MagnaTagATune [126] (25,863 clips) and FMA-medium [114] (25,000 tracks) for Western
music. For world music traditions, we incorporate the Lyra dataset (see Chapter 3) with 1,570

recordings of Greek folk music, and three collections from the CompMusic project [33]: the Turkish-

Shttps://huggingface.co/m-a-p/MERT-v1-95M

4https:/ /huggingface.co/m-a-p/MERT-v1-330M
Shttps://huggingface.co/laion/larger clap _music
Shttps://huggingface. co/laion/larger clap music and speech
"https://huggingface.co/Qwen/Qwen2-Audio-7B
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makam corpus [84, 85] (5,297 recordings) as well as Hindustani [19] (1,204 recordings) and Carnatic
[19] (2,612 recordings) of Indian classical music.

Following the same process with Chapter 4, we set maximum audio durations to achieve similar
sizes between datasets and prepare their metadata for the auto-tagging task. For Probing and
Supervised Fine-Tuning, we use the standard tag sets, i.e., 50 tags for MagnaTagATune, 30 for Lyra
and Turkish-makam, and 20 for the rest of the datasets. Our ML-FSL experiments use extended
tag sets that include previously unseen classes, summing up to: 80 tags for MagnaTagATune, 60
for Lyra and Turkish-makam, 40 for FMA-medium and Carnatic, and 35 for Hindustani, consistent
with Section 4.7.

5.2.3 Evaluation methodologies

Probing. Our first methodology (Prob.) evaluates how well foundation models inherently repre-
sent musical characteristics across cultures. We employ probing, where the model remains frozen
while only training a classifier on top of the extracted representations. Specifically, we implement a
shallow Multi-layer Perceptron (MLP) with a single hidden layer of 512 units followed by a sigmoid
classification layer, optimized with binary cross-entropy loss.

Supervised Fine-Tuning. To evaluate adaptation potential, we implement targeted supervised
fine-tuning (SFT) by unfreezing a subset of model parameters. For MERT-95M, we unfreeze the
last two transformer layers, while for MERT-330M only the last layer. For both CLAP models, we
unfreeze the last group of swin-transformer blocks of the audio encoder along with the normalization
and two projection layers. In Qwen2-Audio, we fine-tune the last layer of the audio tower along with
the normalization layer before multi-modal projection. These choices were constrained by RAM
limitations affecting both trainable parameters and hyperparameter tuning. We use the same
trainable MLP Probe architecture as in the Probing experiments, initializing it with the weights
learned during that phase. This weight initialization strategy helps maintain previously learned
knowledge while adapting to new domains, mitigating potential catastrophic forgetting issues [162].
We also employ learning rate warmup and cosine scheduling to ensure stable adaptation [163].
Multi-Label Few-Shot Learning. Our third methodology (ML-FSL) evaluates performance
in low-resource scenarios by employing the optimized version of LC-Protonets that is detailed
in subsection 4.8.3. We extract representations from three different contexts: directly from the
pre-trained model (PT), from the hidden layer of the trained MLP Probe (Prob.), and from the
fine-tuned model (SEF'T). Notably, this methodology involves no additional training during few-
shot evaluation; the model acts as a frozen feature extractor that maps both the few examples and
the unknown items to an embedding space where classification occurs utilizing the LC-Protonets

approach.

5.3 Foundation Models Evaluation: Experimental Setup

Experiments and resources. We conducted 5 runs with different random seeds for both Probing
and ML-FSL tasks, but a single run for SFT due to computational constraints. SEFT trainable
parameters varied: 14M for MERT-95M, 13M for MERT-330M, 25M for CLAP models, and 56M
for Qwen2-Audio. All experiments ran on an NVIDIA RTX A5000 GPU, and we used Qwen2-
Audio in half-precision (FP16) in all our methodologies to fit in this card. Most SFT training
completed within 24 hours, with only 3 out of 30 experiments extending to about 36 hours.

Dataset processing. We standardized Turkish-makam, Hindustani, and Carnatic datasets to
approximately 200 hours each, matching MagnaTagATune and FMA-medium durations, while
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Figure 5.2. Model Size vs. Performance Relationship. Correlation between model size
(audio-specific parameters on logarithmic scale) and mean ROC-AUC (%) across all datasets,
revealing efficiency-performance trade-offs in foundation models.

Lyra remained at its original 80 hours. We followed the training, validation, and test splits from
[46, 129]. For ML-FSL, evaluation items came exclusively from test sets to prevent data leakage,
as in Section 4.7.

Model-specific configurations. Each foundation model required specific preprocessing: MERT
models use 30-second windows at 24kHz, CLAP models 10-second windows at 48kHz, and Qwen2-
Audio 30-second windows at 16kHz. All audio was converted to mono and resampled to the model’s
required rate.

Representation extraction strategies. For MERT models, we extract representations by sum-
ming the average, across time, hidden states of the last four layers of the models. For CLAP models,
we extract them from the audio projection layer which takes as input the average pooled layer rep-
resentation of the last hidden state. For Qwen2-Audio, we use the last hidden state embeddings
averaged across all layers of the whole model, when passing a simple text prompt that includes
nothing but the respective tags for audio processing, i.e., <|audio_bos|><|AUDIO|><|audio_eos|>.
These representation extraction strategies, number of fine-tuned layers, and other design choices
of our method were optimized through preliminary experiments.

Hyperparameters. For Probing, we used Adam optimizer [149] (8; = 0.9, B2 = 0.999, ¢ = 10~%)
with learning rate 1073, batch size 16, early stopping patience 10, and maximum 200 epochs. For
SFT, we used AdamW [164] with identical 3 parameters but learning rate 10~%, model-specific
batch sizes (to fit maximum available resources) with gradient accumulation to simulate batch size
16 across all setups, patience 5, and maximum 30 epochs. We applied learning rate warmup and
cosine scheduling for the first 5% of SFT epochs. ML-FSL evaluations used cosine distance with
an N-way K-shot setup, with N being the number of extended tags per dataset and K equal to 3
examples per label in all experiments. We also attempted Low-Rank Adaptation [165] initially but
abandoned it due to extensive hyperparameter tuning requirements across our 5 x 6 experimental
matrix.

Evaluation metrics. For the Probing and SFT methodologies, we report area under the receiver
operating characteristic curve (ROC-AUC) and mean average precision (mAP). These metrics are
particularly well-suited for multi-label classification tasks [150] and are consistent with prior work
in music tagging [46, 129]. For ML-FSL evaluation, we report macro-F1 (M-F1) and micro-F1
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Model Params | poc.AUC (%) mAP (%)
Audio/Total

VGG-ish [46] 3.6M/3.6M 84.45 50.56

Prob. SFT Prob. SET
MERT-95M 95M/95M 87.250.30  87.26 | 52.25p5.42  52.68
MERT-330M 330M/330M 85.400.68 85.69 49.62¢ g3 50.47
CLAP-M 68M /194M 71.521 14 78.96 29.98, 97 40.41
CLAP-M&S 68M/194M 86.7809.31  86.15 | 53.12587 51.99
Qwen2-Audio | 637M/8.40B | 88.59p 47 89.37 | 56.48p43 58.73

Table 5.1. Foundation Model Performance Comparison. Average Probing and SFT task
performance across all datasets, with values averaged over multiple runs (standard deviations as
subscripts). Bold values indicate best performance per column.

(m-F1) scores, which align with the LC-Protonets evaluation framework (Section 4.6). F1 score is
the harmonic mean of the precision and recall scores. Macro-F1 gives equal weight to all classes,
while micro-F1 accounts for class imbalance by calculating metrics globally across all instances.

5.4 Foundation Models Evaluation: Results and Analysis

5.4.1 Probing and Supervised Fine-Tuning

Table 5.1 presents the performance of the evaluated foundation models averaged across all
datasets for both Probing and SF'T tasks. Overall, Qwen2-Audio achieves the highest performance
with 88.59% ROC-AUC and 56.48% mAP in Probing, further improving to 89.37% ROC-AUC
and 58.73% mAP after fine-tuning. This is followed by MERT-95M and CLAP-Music&Speech
with comparable performance, while CLAP-Music shows significantly lower performance without
speech data in its training corpus.

Figure 5.2 illustrates the relationship between model size (audio-specific parameters) and ROC-
AUC performance, averaged across datasets and both Probing and SFT tasks. A generally positive
correlation is revealed, with similar trends observed in both methodologies. Qwen2-Audio (637M
parameters) consistently outperforms smaller models, achieving 88.98% average ROC-AUC score.
Surprisingly, MERT-95M (87.25%) outperforms the much larger MERT-330M (85.55%). This is
worth noting as [116] reported that both models performed on par for auto-tagging tasks, suggesting
that our common representation extraction strategy for both MERT models may not optimally
leverage the larger model’s capacity. Another potential explanation is that MERT-95M has been
trained on open data whereas MERT-330M has been trained with additional proprietary data with
a strong Western bias [40].

When examining Probing performance across individual datasets, in Table 5.2, we observe a
consistent pattern of decreasing performance for music traditions that are culturally distant from
the data used to pre-train the respective foundation models. Western music datasets (MagnaTa-
gATune and FMA-medium) consistently achieve the highest performance across all models, with
ROC-AUC values reaching 96.60% for Qwen2-Audio on FMA-medium. Greek (Lyra) and Turkish
(makam) music datasets show moderate performance, while Indian classical music (Hindustani and
Carnatic) datasets typically exhibit the lowest performance. This cultural performance gap is espe-

144



5.4.1

Probing and Supervised Fine-Tuning

Model MagnaTagATune FMA-medium Lyra
ROC-AUC mAP ROC-AUC mAP ROC-AUC mAP
VGG-ish [46] 91.23 45.82 88.89 49.49 80.97 48.06
Probing (Prob.)
MERT-95M 90.460.10 44.160.21 91.680.08 51.430.43 85.610.66 53.340.61
MERT-330M 89.660.16 41.730.59 90.780.11 48.850.32 84.650.78 51.810.59
CLAP-M 80.070.21 25.820.13 77.420.15 22.89¢.38 64.181.29 31.160.43
CLAP-M&S 92.410.05 48.540.16 94.050.08 59.130.54 87.250.18 56.940.51
Qwen2-Audio 91.170.13 45.580.21 96.600.07 73.380.28 86.440.81 53.500.65
Supervised Fine-Tuning (SFT)
MERT-95M 90.62 44.52 91.70 51.74 84.89 53.62
MERT-330M 89.55 41.93 91.12 49.56 84.74 52.54
CLAP-M 88.54 39.26 88.37 42.04 71.97 38.14
CLAP-M&S 91.77 47.54 92.86 57.11 85.35 52.86
Qwen2-Audio 92.03 48.27 97.02 75.94 87.57 57.04
(Previous) SOTA 92.7 46.54 92.4 53.7 85.4 54.3
Model Turkish-makam Hindustani Carnatic
ROC-AUC mAP ROC-AUC mAP ROC-AUC mAP
VGG-ish [46] 86.96 56.39 84.77 60.82 73.92 42.78
Probing (Prob.)
MERT-95M 88.22¢.23 57.890.34 86.590.52 60.260.56 80.96¢.35 46.410.35
MERT-330M 85.370.64 52.451.12 84.231.36 58.782.08 77.731.03 44.070.31
CLAP-M 77.310.51 38.771.00 68.694.05 33.434.91 61.470.60 27.830.30
CLAP-M&S 86.49¢.27 54.690.36 82.611.14 55.703.20 77.850.13 43.730.35
Qwen2-Audio 86.640.42 53.380.79 88.450.53 62.42¢.99 82.220.56 50.590.88
Supervised Fine-Tuning (SFT)
MERT-95M 87.50 57.91 88.20 61.47 80.64 46.83
MERT-330M 86.17 53.80 85.49 61.33 77.05 43.66
CLAP-M 79.82 42.49 75.65 45.01 69.39 35.51
CLAP-M&S 86.69 54.93 83.73 56.91 76.51 42.58
Qwen2-Audio 87.95 56.10 88.32 64.35 83.35 50.66
(Previous) SOTA 87.7 57.7 86.5 63.1 77.0 43.9

Table 5.2. Dataset-Specific Model Performance. Detailed ROC-AUC and AP scores for each
dataset-model combination. For Probing, values are averaged over multiple runs with subscripted
standard deviations, while SF'T results are from single runs. Bold values indicate best performance
per metric and dataset. SOTA values are from [166] for MagnaTagATune and [46] for the rest of

the datasets.
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Model M-F1 m-F1
VGG-ish [47] 30.18 55.09
PT Prob. SFT PT Prob. SFT

MERT-95M | 23.9015, 28.05174 28.281.80 | 46.59157 52.161.45 52.561.63
MERT-330M | 23.03115 2848149 2851105 | 45.111.09 51.781.51 51.801.46
CLAP-M 1771150 1843140 2158113 | 38.801.37 39.97190 46.571.90
CLAP-M&S |28.23155 29.22109 30.27190 | 51.59154 53.32,31 54.431 07
Qwen2-Audio | 2598135 30.961 2 32.001.4 | 49.97,4 55.6605 56.85 93

Table 5.3. ML-FSL Performance on Extended Tag Sets. Macro-F1 (M-F1) and micro-F1
(m-F1) scores averaged across datasets (with subscripted standard deviations) in three contexts
(PT, Prob., SFT), demonstrating how foundation models perform with limited supervision on rare
tags. Bold indicates best performance per column.

cially pronounced for CLAP-Music, where the ROC-AUC drops from 80.07% for MagnaTagATune
to 61.47% for Carnatic.

Applying Supervised Fine-Tuning (SF'T) generally improves performance across all models and
datasets, with an average gain of 1-2% in ROC-AUC for most models. Notably, CLAP-Music shows
the largest improvement with SF'T, indicating greater adaptation potential despite lower absolute
performance. For other models, the modest gains suggest that they require broader fine-tuning to
further shift their pre-trained representations towards different cultures.

Importantly, our approaches achieve state-of-the-art performance in five out of six datasets,
with MagnaTagATune being the only exception. However, their consistent performance decrease
towards diverse cultures, suggests that their representations are still biased toward Western musical

traditions.

5.4.2 Multi-label few-shot learning

Table 5.3 presents the ML-FSL evaluation results averaged across all datasets using extended
tag sets. The results show consistent performance improvements moving from pre-trained models
(PT) to trained probing models (Prob.) and then to supervised fine-tuned models (SFT) across
all foundation models. The substantial gap between macro-F1 and micro-F1 metrics indicates
considerable class imbalance in the extended tag sets, while the increased standard deviation stems
from the support set sampling which can significantly impact the classification performance.

Qwen2-Audio demonstrates the best overall performance in the ML-FSL task with 32.00%
macro-F1 and 56.85% micro-F1 after fine-tuning, followed closely by CLAP-Music&Speech with
30.27% macro-F1 and 54.43% micro-F1. Notably, even the best foundation model’s performance
(Qwen2-Audio) is comparable to a VGG-ish feature extractor trained via supervised learning on
standard tags for each dataset. This stands in contrast to the Probing and SFT settings (Table
5.1), where foundation models clearly outperform VGG-ish, showing that ML-FSL tasks remain
challenging for them despite their extensive pre-training. Supervised learning of a VGG-ish model
on extended tag sets has not been conducted in the literature, likely due to the scarcity of examples
for infrequent tags.

When examining the ML-FSL results per dataset in Table 5.4, we observe that only on Western
datasets (MagnaTagATune and FMA-medium) does the best foundation model (Qwen2-Audio)
achieve significantly better performance than the VGG-ish baseline. For Turkish-makam, VGG-ish
representations actually outperform foundation models, while for Lyra, Hindustani, and Carnatic,
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Model MagnaTagATune FMA-medium Lyra

M-F1 m-F1 M-F1 m-F1 M-F1 m-F1
VGG-ish [47] 26.40 37.31 29.12 45.37 46.05 69.03

Pre-Trained models (PT)
MERT-95M 18.761.04 28.371.38 16.240.64 35.370.94 46.872.59 66.072.25
MERT-330M 18.170.78 26.991 .36 16.24¢.69 31.151 51 44.221 45 65.481 57
CLAP-M 13.100.84 20.001.15 9.650.29 19.771.31 33.562. 88 57.141.49
CLAP-M&S 25.900.55 36.550.61 28.781.66 42.952.02 48.032.02 69.041 .54
QwenZ-Audio 21.290,51 32-090426 29.762,23 47-501486 39.991,05 64.241‘07
Trained Probing models (Prob.)
MERT-95M 23.770.85 34.711.03 24.621.19 42.961.30 45.802.76 68.161.81
MERT-330M 24.480 59 34.781 45 25.210.76 40.651.7¢ 47.923.26 70.155.18
CLAP-M 14.840.49 22.671.00 11.55¢.50 22.721 48 34.854.03 57.731.37
CLAP-M&S 26.900.47 37.620.93 31.141 28 46.531.50 47.100.89 69.770.53
Qwen2-Audio 26.790.40 37.650.21 39.491 02 56.300.82 42.521 81 67.101.13
Supervised Fine-Tuned models (SFT)

MERT-95M 24.46¢.79 35.280.90 24.941 18 42.781.44 45.513.74 67.932.72
MERT-330M 23.780.65 33.670.01 24.941 21 39.951.77 48.502.75 70.062.23
CLAP-M 22.150.51 32.671.22 19.610.79 34.810.99 30.462.04 55.862.02
CLAP-M&S 26.280.50 37.231.09 30.271 56 46.571.61 48.094.74 69.932.28
Qwen2-Audio 27.670.05 38.570.18 40.107 29 57.170.05 44.132.45 68.345 38

Turkish-makam Hindustani Carnatic
Model

M-F1 m-F1 M-F1 m-F1 M-F1 m-F1
VGG-ish [47] 30.07 56.22 31.33 58.38 18.13 64.25

Pre-Trained models (PT)
MERT-95M 20.691.77 40.951.80 25.872.45 51.501.92 14.970.64 57.261.10
MERT-330M 20.142.01 39.711.95 25.081.40 50.141.08 14.320.41 57.210.28
CLAP-M 14.331.10 32.121.37 21.061.63 47.381.60 14.550.43 56.421.30
CLAP-M&S 24.191 73 47.132.92 26.291 .20 54.501.57 16.191.02 59.381.30
Qwen2-Audio 19.891.71 42.271 88 28.421.96 55.921.70 16.550.69 57.821.67
Trained Probing models (Prob.)
MERT-95M 26.141 .73 50.000.70 30.752.05 56.412 18 17.250.98 60.701 .55
MERT-330M 26.971.61 50.471.13 29.251 55 53.771.82 17.06¢.61 60.850.69
CLAP-M 16.680.81 36.001.22 18.771.42 44.960.95 13.871.16 55.741.15
CLAP-M&S 25.581.59 49.701 .39 28.111 38 56.432.19 16.460.92 59.881.25
Qwen2-Audio 26.091.65 51.591.20 31.621.26 60.080.40 19.251.40 61.241 .14
Supervised Fine-Tuned models (SFT)

MERT-95M 26.161.87 49.761.54 30.402.15 56.391.6s 18.181.08 63.191.48
MERT-330M 26.841 51 50.291.25 30.561.31 55.251 58 16.43¢.27 61.571.04
CLAP-M 20.661.69 45.801.13 21.951.31 50.741.14 14.630.45 59.530.67
CLAP-M&S 28.911.75 53.871.56 31.272.47 57.410.74 16.82¢.37 61.550.34
Qwen2-Audio 27.612 37 53.981 55 32.521 03 60.260. 89 19.97¢.57 62.761.43

Table 5.4. Dataset-Specific ML-FSL Performance. Detailed macro-F1 (M-F1) and micro-
F1 (m-F1) scores on extended tag sets for each individual dataset across three contexts. Values
are means with subscripted standard deviations. Bold indicates best performance per column.
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the results are comparable. This pattern provides additional clear evidence of the implicit Western-

centric bias integrated into models due to their pre-training data.

5.5 CultureMERT: A Multi-Culturally Adapted Foundation
Model

Building upon the insights from our comprehensive evaluation of foundation models, we now
present a novel approach to enhance their cultural inclusivity developed in collaboration with
Angelos-Nikolaos Kanatas. The evaluation results have clearly demonstrated both the potential
and limitations of existing foundation models when applied to diverse musical traditions. In partic-
ular, we observed a consistent performance gap for culturally distant traditions and in low-resource
scenarios, highlighting the need for dedicated adaptation strategies.

The technical implementation of the continual pre-training methodology presented in this sec-
tion was primarily developed by Angelos-Nikolaos Kanatas, with my contributions focusing on
the experimental design, cultural adaptation evaluation framework, and cross-cultural analysis
presented in Sections 5.5.4 and 5.6.

The overall framework is illustrated in Figure 5.3, which depicts the two-stage continual pre-
training strategy for CultureMERT. In the following section, we first review the architecture and
pre-training objective of MERT, and then present our CPT strategy for cultural adaptation. Fi-
nally, we investigate task arithmetic, an alternative approach to multicultural adaptation that
merges culturally specialized models in weight space to construct a unified multicultural model,
CultureMERT-TA.

To support research on world music representation learning, we publicly release Cul tureMERT-95M°
and CultureMERT-TA-95M°, fostering the development of more culturally aware music foundation

models.

5.5.1 MERT Pre-Training Objective

Our continual pre-training follows the self-supervised masked language modeling objective of
MERTRVO-VAE 40|, which uses two teacher models: (i) an acoustic teacher (EnCodec codec model
[167]) that discretizes audio into tokens from K = 8 residual vector quantization codebooks, and
(ii) a musical teacher based on Constant-Q Transform spectrogram reconstruction.

MERT-v1-95M follows the HUBERT architecture [168] with a CNN-based feature extractor and
12-layer Transformer encoder. The training objective combines masked acoustic token prediction
and spectrogram reconstruction:

L= OZER\/Q + LCQT, (5.1)

where Lryq is the acoustic MLM loss using Noise Contrastive Estimation, and Lcoqr is the CQT
reconstruction loss minimizing mean squared error between predicted and ground-truth features.

5.5.2 Two-Stage Continual Pre-Training Strategy

To adapt the MERT foundation model to diverse musical traditions, we employ continual pre-
training, which extends the training of a pre-trained model on new data, aiming to adapt it to

a shifted domain or task while retaining prior knowledge, without re-training from scratch. In

8https://huggingface.co/ntua-slp/CultureMERT-95M
9https://huggingface.co/ntua-slp/CultureMERT-TA-95M
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5.5.2 Two-Stage Continual Pre-Training Strategy
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Figure 5.3. Two-Stage Continual Pre-Training Strategy for CultureMERT. In Stage 1,
a subset of parameters is trained on 100h of multi-cultural data with 20% Western music for
stabilization. In Stage 2, all parameters are unfrozen and trained on the full 650h dataset. Learning
rate re-warming and re-decaying is applied in both stages.

our case, this involves continually pre-training the MERT-v1-95M model on culturally diverse data
that introduce a significant distribution shift, as it was initially trained on predominantly Western
music [40, 169].

Given this shift, naively continuing to train the model can lead to catastrophic forgetting [162]
and poor adaptation [119], as confirmed by preliminary experiments (see Table 5.5). To address
this, we propose a two-stage strategy that stabilizes training through: (i) learning rate re-warming
and re-decaying [119, 163, 170], and (ii) staged adaptation.

To mitigate the stability gap observed during continual pre-training [171, 172], we split training
into two stages, as illustrated in Figure 5.3:

Stage 1 - Stabilization Phase: Train on a smaller data subset, updating only the CNN-based
feature extractor and codeword embedding layer while keeping the Transformer encoder frozen.
To reduce distribution gap and mitigate forgetting [170], we incorporate 20% Music4All data [173]

(primarily Western) into the pre-training mix.

Stage 2 - Full Adaptation: Unfreeze the Transformer encoder and continue training on the
full dataset.

This approach balances plasticity (adaptation to non-Western traditions) and stability (retain-
ing knowledge on Western datasets), addressing the stability-plasticity dilemma [174, 175].

Learning Rate Re-Warming: We apply learning rate re-warming and re-decaying in both
stages, as prior work has shown this is crucial for preventing poor convergence and mitigating
catastrophic forgetting during continual pre-training [119, 163, 170].

Following this strategy, we develop: (i) a multi-culturally adapted model, CultureMERT,
trained on a diverse mix spanning all four non-Western musical traditions; and (ii) single-culture
adapted models (MakamMERT, HindustaniMERT, CarnaticMERT, LyraMERT).
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CPT Strategy ‘Western Replay‘Turkish-makam MTAT
MERT-v1 (Baseline) | _ | 83.2 89.6
Single-stage v 83.8 86.0
Single-stage (no re-warm) v 83.0 87.5
Two-stage (Ours) Stage 1 89.6 89.2
Two-stage (Ours) Both stages 88.6 89.4

Table 5.5. CPT Strategy Comparison. ROC-AUC scores on Turkish-makam and MTAT
datasets. Two-stage CPT outperforms single-stage adaptation, with Western replay limited to
Stage 1 yielding the best trade-off between cultural adaptation and knowledge retention.

5.5.3 Task Arithmetic for Cross-Cultural Adaptation

As an alternative to continual pre-training, we explore task arithmetic [120], which combines
culturally specialized models in weight space. We obtain task vectors by computing the element-

wise difference between single-culture adapted models and the base MERT-v1 model: 7; = 6; — 6.

For multi-cultural adaptation, we construct a unified model by merging task vectors:
N
9 = Oy + Z)\ﬂi, (52)
i=1

where \; controls each task vector’s contribution. When A = 1/N, this simplifies to weight aver-
aging [176, 177].

5.5.4 Experimental Implementation

Implementation Details: We initialize models from the publicly available MERT-v1-95M pre-
trained checkpoint. Training uses 5-second audio segments randomly cropped from 30-second pre-
training data, with the EnCodec neural codec model [167] remaining frozen throughout continual
pre-training [40]. We apply in-batch noise mixture augmentation and pre-layer normalization [178]
for stable training.

Probing-Based Evaluation: Following [40, 109, 113], we adopt probing-based evaluation, keep-
ing pre-trained models frozen while training only a shallow MLP for sequence-level tasks. Our
evaluation follows the MARBLE protocol [116] for both Western and non-Western music tagging

tasks. Audio files are segmented into 30-second chunks with predictions aggregated by averaging.

Training Configuration: We develop both multi-culturally adapted models (CultureMERT)
trained on diverse mixes spanning all four non-Western traditions, and single-culture adapted
models for each tradition individually. Training follows the two-stage approach with appropriate
data allocation: 100 hours in Stage 1 and the full 650-hour dataset in Stage 2 for multi-cultural
adaptation, with proportionally scaled configurations for single-culture models.
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5.6 CultureMERT: Performance Evaluation and Cross-Cultural Analysis

Dataset ‘ MagnaTagATune ‘ FMA-medium ‘ Lyra ‘ Aveg
vg.
Metrics | ROC AP | ROC AP | ROC AP |
MERT-v1 | 896007 359015 | 907004 481011 | 85.7010 565015 | 66.1
MakamMERT 89.00.07 35.60.12 90.30.12 47.10.16 | 84.60.12  53.20.17 | 67.5
CarnaticMERT 89.20.10 35.3011 90.20,10 46.70_09 85.40.11 55.80,16 68.3
HindustaniMERT 89.10.09 35.80_13 90.20,13 46.10,10 84.20,13 52.00,15 67.6
LyraMERT 88.90,05 35.10,14 90~00.08 46.00,15 85.00,11 53.50,14 66.8
CultureMERT 89.40,09 35-9016 90.70,09 48.1043 86.9()‘10 56.7020 69.3
CultureMERT—TA 89.60,10 36.4014 90.80,06 49.10_15 87.30_08 57.30_19 691

(Previous) SOTA | 92.7 [166] 41.4 [109] | 92.4 [46] 53.7 [46] | 85.4 [46] 54.3 [46]

Dataset ‘ Turkish-makam ‘ Hindustani ‘ Carnatic ‘ Aveg
veg.
Metrics | ROC AP | ROC AP | ROC AP |
MERT-v1 | 83.200s 533012 | 824001 529010 | 749005 397015 | 66.1
MakamMERT 88-70.11 58.8022 84.50,16 57.8018 77.60.14 42-70.16 67.5
CarnaticMERT 88.40.06 58.40.16 87.00.06 60.20.14 78.80.13 44.0p.17 | 68.3
HindustaniMERT 88.30.12 58.20.16 87.40.11 60.30.16 77.00.12 42.70.16 | 67.6
LyraMERT 86.70,07 56.80,13 85.90,08 57.40,13 76.40,09 40.10,13 66.8
CultureMERT 89.60_09 60.6021 88.20_20 63.5024 79-20&8 43.10.22 69.3
CultureMERT-TA 89.00.12 61.00.15 87.50.10 59.30.13 79.10.11  43.30.13 | 69.1

(Previous) SOTA | 87.7 [46]  57.7 [46] | 86.5 [46] 63.1 [46] | 7.0 [46] 43.9 [46] | -

Table 5.6. Evaluation Results of Pre-Trained and Adapted MERT Models. ROC-AUC
and AP scores across datasets (with standard deviations as subscripts), highlighting the impact of
multi-cultural CPT (CultureMERT) and task arithmetic on cross-cultural adaptation and transfer.
The “Avg.” column represents the average performance across all datasets and evaluation metrics
for each model.

5.6 CultureMERT: Performance Evaluation and Cross-Cultural
Analysis

The following analysis examines the cross-cultural capabilities and transfer patterns of the
adapted models, building on the evaluation framework developed for assessing cultural adaptation
effectiveness.

As shown in Table 5.6, CultureMERT, adapted via multi-cultural continual pre-training, con-
sistently outperforms the original MERT-v1 model across all non-Western tasks and evaluation
metrics, achieving an average improvement of 4.9%. It also surpasses the single-culture adapted
models on average, suggesting that incorporating culturally diverse data during CPT benefits all
non-Western traditions by improving the quality of representations for each individual culture,
thereby enhancing generalization. Notably, CultureMERT achieves this with minimal forgetting on
Western benchmarks (0.05% average drop across ROC-AUC and AP), demonstrating the efficacy
of our approach. We further observe that single-culture adapted models tend to perform best
on their respective in-domain tasks for well-resourced traditions, reaffirming the effectiveness of

CPT for domain-specific adaptation [157]. However, even low-resource adaptation, as in the case
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—— MERT-v1
CultureMERT

—— MakamMERT

CarnaticMERT

HindustaniMERT

LyraMERT

—— CultureMERT-TA

Carnatic Hindustani

Lyra Turkish-makam

FMA-medium MagnaTagATune

Figure 5.4. Cross-Cultural Transferability. Relative ROC-AUC performance across datasets,
highlighting key trends in cross-cultural transfer. CultureMERT generalizes well to non-Western
datasets, while task arithmetic performs on par in these settings and even surpasses both the pre-
trained and multi-culturally adapted models on Western benchmarks (FMA-medium, MTAT) and
Lyra.

of LyraMERT trained on just 50 hours, leads to noticeable gains across other non-Western tasks,

indicating that even limited cultural exposure can significantly boost cross-cultural generalization.

Moreover, task arithmetic performs comparably to CultureMERT on non-Western tasks and
even surpasses it on Western benchmarks and Lyra, demonstrating that weight-space merging of
culturally specialized models can serve as an effective, training-free alternative to multi-cultural
CPT—provided such models are available. Interestingly, it also outperforms the unadapted base
model by 0.4% on average across Western tasks. Notably, only the multi-cultural models, CultureMERT
and CultureMERT-TA, outperform MERT-v1 on Lyra, where the latter already serves as a strong
baseline. This further underscores the effectiveness of multi-cultural adaptation, particularly in
low-resource and transfer settings. Finally, CultureMERT and CultureMERT-TA surpass previous
state-of-the-art (SOTA) results on all non-Western music tagging tasks, with the best task arith-

metic variant obtained using A = 0.2.

Cross-Cultural Transfer

As illustrated in Figure 5.4, continual pre-training on one musical tradition can benefit others
to varying degrees, revealing asymmetries in cross-cultural transfer effectiveness. For instance, we
observe strong transfer between Turkish-makam and Carnatic music, with models adapted to either
tradition generalizing well to the other. This aligns with their shared theoretical foundations as
modal frameworks that emphasize microtonality and improvisation, serving similar roles in their
respective cultures [179]. Additionally, the strong performance of the Carnatic-adapted model on
the Hindustani domain reinforces the musical proximity between these traditions, particularly in
their shared use of raga (melodic mode) and tala (rhythmic framework) [154]. Interestingly, the
model adapted to Carnatic music appears to be the most consistently transferable among single-
culture adaptations, achieving strong results not only within Indian classical traditions but also

generalizing well to Turkish-makam and Lyra.
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Figure 5.5. Token Similarity Across Cultures. Pairwise similarity between token distri-
butions extracted from the EnCodec codec model [167]. Similarity scores are averaged across 8
codebooks, each containing 1024 discrete codewords (acoustic pseudo-tokens).

Token-Level Culture Similarity

To further examine cross-cultural similarities in our data, we analyze token overlap across musi-
cal traditions using both the Jensen-Shannon divergence (JSD) and cosine distance between token
distributions extracted from the EnCodec model [167], which serves as our audio tokenizer. Lower
values in both metrics indicate greater similarity. Our analysis, as shown in Figure 5.5, reveals
strong token-level similarity among non-Western traditions, particularly between Hindustani and
Carnatic music. In contrast, Western datasets (MTAT, FMA-medium) are highly similar to each
other but notably dissimilar from non-Western traditions. Greek traditional music (Lyra), while
distinct, aligns more closely with non-Western traditions than Western ones.

Interestingly, these findings correlate with our results on cross-cultural transfer, suggesting
that token-level similarity metrics can serve as predictors of positive cross-cultural transfer. This
insight has practical implications: such similarity metrics can guide the selection and refinement of
pre-training data mixtures during CPT, or inform the adjustment of arithmetic operations when
merging models via task arithmetic. Similar approaches for quantifying language similarity and
predicting positive cross-lingual transfer, based on the similarity of extracted linguistic or acoustic
tokens, have been explored in both the text [180, 181] and speech domains [182].

5.7 Conclusions

Our investigation of foundation models for diverse music cultures has revealed both the potential
and limitations of current approaches, while also demonstrating effective strategies for enhancing

versatility in music representation learning.

5.7.1 Foundation Models Evaluation: Key Findings

In our comprehensive evaluation of state-of-the-art foundation models across culturally diverse
music corpora, we found that these models achieved better performance than previous approaches
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for world music analysis, demonstrating impressive cross-cultural transfer capabilities. However,
we also identified clear indicators of Western-centric bias, particularly in challenging low-resource
scenarios.

The multi-label few-shot learning tasks particularly revealed these limitations. When faced
with these challenging scenarios, foundation models performed on par with significantly smaller
and simpler models, with performance notably degrading further on non-Western datasets. This
finding underscores the limitations of current foundation models in representing the distinctive
characteristics of diverse musical traditions, despite their general-purpose capabilities.

5.7.2 CultureMERT: Advancing Cross-Cultural Adaptation

To address the limitations identified in our evaluation, we developed CultureMERT, a multi-
culturally adapted music foundation model created through continual pre-training on diverse non-
Western musical traditions. Our two-stage CPT strategy, incorporating learning rate re-warming
and staged adaptation, enabled stable training even under constrained computational resources.

Cross-cultural evaluation demonstrated that CultureMERT consistently outperformed the origi-
nal pre-trained model across diverse non-Western music tagging tasks while preserving performance
on Western benchmarks. This finding confirms the potential of continual pre-training for enhancing
the cultural inclusivity of foundation models without sacrificing their general capabilities.

We also explored task arithmetic as an alternative approach to cross-cultural adaptation, finding
that it offers a strong alternative to multi-cultural CPT by effectively merging culturally specialized
models in weight space and mitigating catastrophic forgetting. This computationally efficient
approach to model merging provides another pathway for enhancing the versatility of foundation
models, particularly in scenarios where access to original training data or computational resources

is limited.

5.7.3 Synthesis and Future Directions

Both approaches, foundation model evaluation and adaptation, have advanced our understand-
ing of cross-cultural music representation learning. Our evaluation framework provides a systematic
methodology for assessing the universality of music representations, while our adaptation strategies
offer practical approaches for enhancing the cultural inclusivity of foundation models.

Despite these advances, several limitations and challenges remain. The frozen EnCodec to-
kenizer, trained on Western music, may be suboptimal for encoding culturally diverse musical
languages, motivating future work on adapting or re-training audio tokenizers for diverse tradi-
tions. Additionally, future research could extend our methodological framework by incorporating
Low-Rank Adaptation (LoRA) and implementing broader supervised fine-tuning to investigate
further cultural adaptation.

Other promising directions include scaling to additional musical cultures, extending evaluation
beyond sequence-level classification tasks, exploring mode estimation tasks that compare key in
Western cultures with makam or raga recognition in other traditions, and conducting fine-grained
ablations to better understand the adaptation process.

The work presented in this chapter contributes to the development of more inclusive and cultur-
ally aware computational models for music analysis, advancing toward the goal of truly universal
music representations that can respect and preserve the rich diversity of global musical expressions.
By combining the powerful representational capabilities of foundation models with effective adapta-

tion strategies, we can enhance cross-cultural music understanding while maintaining performance
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across diverse musical traditions.

However, a fundamental question remains unanswered: how well do these computational ad-
vances actually align with human perception of musical relationships across cultures? While our
technical evaluations demonstrate improved performance on standardized benchmarks, the ul-
timate validation of cross-cultural music representation learning lies in its alignment with how
humans actually perceive and understand musical similarity across diverse traditions. The next
chapter addresses this crucial gap by presenting the first comprehensive evaluation of computa-
tional music similarity methods, including both the foundation models evaluated in this chapter

and traditional signal processing approaches, against human cross-cultural music perception.
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Cross-Cultural Music Similarity: Bridging Human

Perception and Computational Methods

The preceding chapters have developed a comprehensive framework for multicultural music
representation learning, from dataset creation and methodological innovations to foundation model
evaluation and adaptation. While these technical advances demonstrate improved computational
performance across diverse musical traditions, a fundamental question remains: how well do these
computational approaches align with human perception of musical relationships across cultures?

This chapter addresses this crucial validation gap by presenting the first systematic evaluation of
computational music similarity methods against human perception. Building upon the foundation
models evaluated in Chapter 5, the transfer learning insights from Chapter 4, and the diverse
musical datasets established throughout this dissertation, we provide empirical evidence of how
well computational approaches capture the nuanced ways humans perceive musical similarity across

cultural boundaries.

6.1 Motivation

The assessment of musical similarity across cultural boundaries represents one of the most
fundamental yet challenging problems in music information retrieval and computational music
analysis. Music similarity assessment underlies numerous MIR applications, from recommendation
systems and playlist generation to musicological analysis and content organization [11, 183, 184].
The complexity of this task becomes particularly pronounced when considering diverse cultural
traditions, where conventional Western-centric approaches may fail to capture the nuanced rela-
tionships between musical styles, instruments, and aesthetic principles that define different musical
cultures [15, 32].

Traditional computational approaches to music similarity have predominantly relied on either
signal processing features or learned representations from deep neural networks. Signal process-
ing features offer the advantage of interpretability through their connection to established music
theory concepts such as rhythm, melody, harmony, and timbre [185, 186]. These features provide
direct insights into which musical dimensions drive similarity assessments, enabling musicologists
and system developers to understand and validate computational decisions. However, they of-
ten incorporate Western musical assumptions that may not generalize effectively across cultures.
For instance, standard chroma features assume 12-tone equal temperament, potentially missing
the microtonal ornamentations essential to many non-Western traditions [32]. Similarly, conven-

tional rhythmic features may struggle with the complex asymmetrical patterns found in Eastern
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Mediterranean and Indian music traditions.

Conversely, deep learning approaches have demonstrated impressive performance on various
MIR tasks [109, 129], leveraging large-scale datasets to learn complex patterns that traditional
hand-crafted features might miss. Recent advances in foundation models for audio and music,
including models like MERT [40], CLAP [41], and other large-scale pre-trained architectures, offer
new possibilities for cross-cultural music understanding. These models, trained on diverse audio
data, potentially capture richer and more culturally aware representations compared to traditional
approaches. However, such learned representations often lack interpretability and may inadver-
tently perpetuate cultural biases present in their training data [14, 44], which predominantly
consists of Western commercial music. This creates a potential “self-reinforcing cycle” where es-
tablished Western-centric datasets lead to specialized algorithms, which in turn encourage more

similar data collection patterns [77].

The emergence of foundation models in music Al has introduced both opportunities and chal-
lenges for cross-cultural music similarity assessment. While these models demonstrate impressive
capabilities across various MIR benchmarks, their alignment with human perception of musical
similarity, particularly across cultural boundaries, remains largely unexplored. Most existing
benchmarks and evaluation frameworks focus on Western musical contexts, an issue addressed
in Chapter 5, with crucial questions remaining about how well these sophisticated computational
approaches capture the nuanced ways humans perceive musical relationships across diverse tradi-

tions.

A critical gap exists in current MIR research: the systematic evaluation of computational sim-
ilarity measures against human perception across diverse musical cultures. While several studies
have examined specific aspects of cross-cultural music analysis [78], comprehensive comparisons
between human judgments, interpretable signal processing features, and state-of-the-art founda-
tion models are lacking. This gap is particularly problematic because the ultimate goal of music
similarity systems is to align with human perception and serve users across different cultural con-
texts. Without empirical validation against human cross-cultural music perception, we cannot
assess whether computational advances actually improve our ability to capture meaningful musical

relationships as understood by human listeners.

The challenge is further complicated by the multi-dimensional nature of musical similarity.
Research examining similarity perception across musical styles [122] has found that human judg-
ments are context-specific and roughly equivalent between trained musicians and non-musicians,
with ratings primarily based on surface features such as dynamics, articulation, texture, and con-
tour rather than deeper structural relationships. Early work investigating statistical features and
perceived similarity of folk melodies [121] found that frequency-based musical properties could
account for moderate amounts (40%) of listeners’ similarity ratings, with descriptive variables
like melodic predictability and rhythmic variability achieving slightly better performance (55%).
These findings suggest that humans may perceive similarity along various dimensions, including
overall musical characteristics, cultural identity, personal preference for recommendations, timbral
qualities, melodic relationships, or rhythmic patterns, while that each of these dimensions may be

weighted differently across cultural contexts.

The assumption of music as a “universal language” has been increasingly challenged by research
demonstrating cultural specificity in musical perception and understanding [2, 10]. Cultural context
influences auditory perception and aesthetic appraisal, leading to diverse “listening frameworks”
and “musical ontologies” that shape how different communities understand and categorize musi-

cal experience. This cultural conditioning of musical perception has profound implications for
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developing computational approaches that can effectively assess similarity across diverse musical
traditions.

Moreover, the question of which musical dimensions are most predictive of human similarity
judgments across cultures remains open. While musicological theory suggests the importance of
melody, rhythm, harmony, and timbre, empirical validation of these theoretical frameworks across
diverse cultural contexts is limited. Large-scale evaluations have provided some insights into the
relationship between computational approaches and human perception. A comprehensive cross-
site evaluation [123] compared acoustic techniques against subjective measures across 400 popular
artists, demonstrating that acoustic measures could achieve agreement with ground truth data
comparable to internal agreement between different subjective sources. Recent work [124] evalu-
ated audio representations against human timbre similarity ratings, finding that style embeddings
from foundation models like CLAP achieved superior performance compared to traditional signal
processing features.

The research presented in this chapter addresses these fundamental challenges by providing the
first comprehensive evaluation of computational music similarity methods against human cross-
cultural music perception. Building upon the foundations established in previous chapters, we
provide crucial empirical validation of how well computational approaches to multicultural music
representation actually align with human perceptual understanding.

The contributions include: (1) a novel dataset of human similarity judgments across multi-
ple cultural dimensions collected from 125 participants with diverse backgrounds, evaluating 1,130
audio pairs from nine musical datasets; (2) systematic evaluation of both traditional signal process-
ing features and modern foundation models against human perception using multiple evaluation
metrics; and (3) analysis of the interpretable factors that drive similarity perception across cul-
tures, providing insights for developing more effective music Al systems. The complete dataset
and implementation are made available for reproducibility’.

This human-centered evaluation represents an essential step toward developing culturally aware
music Al systems that can effectively serve diverse global populations while enhancing rather than

diminishing musical cultural diversity.

6.2 Human Similarity Study

To understand how humans perceive musical similarity across different cultural traditions, we
conducted a comprehensive online survey collecting similarity judgments from participants with
diverse musical backgrounds and cultural origins. This section describes our survey methodology,

the summary statistics of our study, and the participant demographics.

6.2.1 Survey Design and Methodology

Audio Dataset Selection: Our study encompasses nine musical datasets representing diverse
cultural traditions as described in Section 2.10. From each dataset, we selected 52 representative
audio clips of 20-second duration, resulting in 468 total clips spanning diverse instrumentation,
vocal styles, and musical structures. The selection process prioritized musical diversity within
each tradition while ensuring audio quality suitable for perceptual evaluation.

Pairwise Comparison Framework: Following established methodologies in music percep-

tion research [187, 188], we employed a pairwise comparison approach where participants evaluated

Ihttps://github.com/pxaris/CCMSim
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Category Count
Total Participants 125
Unique Annotated Audio Pairs 1,130
Unique Annotated Audio Clips 463
Annotated Audio Pairs per Participant 10
Annotated Similarity Types per Audio Pair 3
Participants Unique Countries Of Origin 21
Participants Unique Music Training Levels 13
Participants Unique Familiar Music Cultures 58

Table 6.1. Summary Statistics of the Human Annotation Study. Comprehensive overview
of participant demographics, study design parameters, and data collection metrics.

randomly selected pairs of 20-second audio clips. Each participant assessed 10 unique pairs, with
pairs distributed to ensure comprehensive coverage across all dataset combinations while avoiding
participant fatigue.

For each audio pair, participants provided ratings on three distinct similarity dimensions using
a 9-point Likert scale, from 1 to 5 with step 0.5:

1. Overall Musical Similarity: “How similar are the two audio clips overall?”
2. Cultural Similarity: “How similar are the two audio clips in their cultural characteristics?”

3. Recommendation-level Similarity: “How probable is it for you to put the two audio clips

in the same playlist?”

The three-dimensional framework allows examination of how different aspects of similarity align
or diverge, particularly important for cross-cultural analysis where musical and cultural similarity
may not coincide [189].

Survey Implementation: The survey was implemented as a web-based application ensuring
cross-platform compatibility and ease of access. Participants were recruited through academic net-

works, social media, and music communities, with an emphasis on achieving demographic diversity.

6.2.2 Participant Demographics and Data Statistics

Our study collected responses from 125 participants, resulting in 1,130 unique annotated pairs
covering 463 unique audio clips. Each participant annotated 10 audio pairs on three similarity
dimensions. As shown in Table 6.1, the annotators came from 21 countries and reported 13
distinct levels of music training, while 58 different music cultures were identified as familiar by at
least one participant.

Age and Gender Distribution: Figure 6.1 shows the participants’ age distribution spanning
from 18-64 years, with the majority falling within the 25-44 age range. The 25-34 group represents
the largest segment (50 participants), followed by 35-44 (37) and 18-24 (29). With regards to the
gender, there are 75 male participants (60.0%), 42 female participants (33.6%), and 8 participants
identifying as other or preferring not to disclose (6.4%).

Musical Training and Expertise: Figure 6.2 presents the distribution of participants’ mu-
sical backgrounds. Participants selected from predefined categories designed for this study, with
an additional free-text option for custom responses. Music enthusiasts (18.2%), advanced amateur
musicians (17.5%), and amateur musicians (16.9%) represent the largest groups. Notably, 13.0% of
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Figure 6.1. Age Distribution of Study Participants. Demographic breakdown of the 125
participants across different age ranges.

Music Training Levels

Music Enthusiast 18.2%
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Figure 6.2. Distribution of Participants by Music Training Level. Participants’ self-
reported musical background and experience levels.

participants had no formal musical training, while 26.0% were professional musicians, musicologists,

or ethnomusicologists, providing both expert validation and general population perspectives.

Cultural and Geographic Diversity: There are 21 unique countries of origin for the partic-
ipants. Greece provided the largest group (62.4%), followed by China (5.6%), Italy (4.8%), France
(4.0%), and the United Kingdom (4.0%). Despite the Greek majority, representation from diverse
regions including Asia, Europe, and North America ensures cross-cultural validity.

Musical Cultural Familiarity: Figure 6.3 shows participants’ self-reported familiarity with
different musical traditions. Each participant was able to select multiple cultures, and the result
is a long-tailed distribution with 58 distinct values. Greek music shows the highest familiarity
(19.6%, consistent with participant distribution), followed by United States (13.4%) and United
Kingdom (12.3%) music.
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Figure 6.3. Participants’ Familiarity with Musical Cultures. Distribution of participant
self-reported familiarity with musical traditions (top-15 values).

6.3 Signal Processing Features for Cross-Cultural Music Anal

ysis

Music similarity assessment across cultures requires capturing the multi-dimensional nature of

musical perception while addressing the inherent challenges of cross-cultural analysis. Traditional
approaches often focus on single dimensions or simple feature concatenation, missing nuanced
relationships between musical aspects [190]. In this work we utilize a multi-dimensional framework
treating rhythm, melody, harmony, and timbre as distinct but complementary dimensions, each
employing specialized feature extraction and similarity computation methods that preserve unique

characteristics and temporal dynamics. Complete mathematical formulations and implementation

details are provided in the Appendix C.

6.3.1 Multi-Dimensional Feature Framework

Our framework addresses the complexity of cross-cultural music similarity by utilizing four

musical dimensions:

Melody Analysis employs the PYIN algorithm [56] for robust FO extraction from polyphonic
audio, treating fundamental frequency as the dominant melodic skeleton. For robust cross-cultural

melodic analysis, we implement dual-resolution pitch class representations. Given clean F0 extrac-

tion f§l*a® from PYIN, we compute MIDI-like numbers as:

m = 12log, (42{)) 169,

(6.1)

where f represents the fundamental frequency in Hz. Quarter-tone and semitone pitch classes are

calculated as:
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where pcquarter Provides 24 bins per octave for microtonal analysis and pcgemi provides 12 bins
for traditional Western analysis. Melodic intervals I; are computed in quarter-tone units between

consecutive F0O values to capture microtonal ornamentations:

I; = 241log, (f()“) , (6.4)
fo,i
where fo; and fp ;41 are consecutive fundamental frequency values.

Rhythm Analysis combines tempo and beat tracking using dynamic programming-based algo-
rithms [60], onset detection through complex domain methods [191, 192], beat interval analysis for
rhythmic regularity assessment, and tempogram analysis [193] capturing tempo variations across
time. This unified approach measures both local rhythmic events and global temporal structure.

Harmony Analysis integrates CENS (chroma energy normalized statistics) features [194]
at both 24-bin (quarter-tone) and 12-bin (semitone) resolutions for cross-cultural harmonic anal-
ysis, chord recognition through major/minor triad template matching, key estimation via the
Krumhansl-Schmuckler algorithm [195], chord transition matrix analysis, and Tonnetz tonal cen-
troid features [196]. This combination captures both local harmonic content and global tonal
structure while accommodating different tuning systems.

Timbre Analysis combines 13 Mel-frequency cepstral coefficients (MFCCs) [59, 185] with
their temporal dynamics through delta features, spectral shape characteristics including centroid,
rolloff, bandwidth, and contrast [197], spectral flatness [198], and RMS energy analysis. Rather
than temporal averaging, we preserve timbral complexity through comprehensive statistical feature
vectors. For any time series s = [s1, S2,. .., Sn,] where N; represents the number of time frames,
we compute:

o (s) = [1s, 5, 3, G25(5), 4r5(5), A, min(s), max(s)] ", (6.5)

where pg is the mean, oy is the standard deviation, § is the median, go5(s) and g75(s) are the 25th
and 75th percentiles, Ay is the range, and min(s), max(s) are the minimum and maximum values.
This 8-dimensional representation captures distribution characteristics while avoiding information

loss from temporal averaging.

6.3.2 Similarity Computation and Integration

FEach dimension employs multi-component similarity measures using cosine similarity and sta-

tistical comparisons. Melody similarity Smeciody emphasizes interval patterns:

S, arter S, semi
Sinelody = 0.3 ( pe,quart ; Pe, ) +0.487 + 0.3Stats, (6.6)

where Spe quarter and Spesemi represent quartertone and semitone pitch class similarities, S7 mea-
sures melodic interval pattern similarity, and Sg;qts compares FO statistical characteristics. Weights
are designed to emphasize key-invariant interval patterns (0.4) while balancing pitch class and sta-
tistical similarities (0.3 each), with pitch class weight equally divided between quartertone and
semitone representations.

The rhythm similarity Sinythm combines four equally weighted components:

1
Srhythm — Z(Stempo + Sonset + Sbeat + Stempogram)7 (67)
where Stempo measures tempo similarity, Sonset captures onset pattern similarity, Sheat evaluates
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beat interval consistency, and Siempogram compares tempo evolution patterns.

Harmony similarity Sharmony integrates five complementary harmonic aspects:

1
y — ¥ (Pchroma €, chord dis chord trans onnetz /s .
Sharmon 5(Sh +Sky+Shddt+Shdt +St t) (68)

where Schroma compares chroma profiles, Si., measures key similarity, Schord dist €valuates chord
distribution similarity, Schord trans analyzes chord transition patterns, and Sionnet, compares tonal
centroid features.

Timbre similarity Stimbre prioritizes MFCC characteristics and temporal dynamics:
Stimbre = 0-45SMFCC + 0-45denamics + O-lsspectrala (69)

where Smrcc measures MFCC distribution similarity, Sdynamics captures temporal evolution pat-
terns through delta features, and Sgpectral compares spectral shape characteristics.

The overall signal processing similarity Ssp integrates all four dimensions with equal weighting:

1
Ssp = Z(Smelody + Srhythm + Sharmony + Stimbre)- (610)

This multi-dimensional framework establishes a way for comparing signal processing features
against both human perception and foundation model representations. It incorporates several
adaptations for cross-cultural analysis including quarter-tone resolution for microtonal systems,
statistical rather than averaged representations to preserve temporal complexity, and multiple
complementary features within each domain. However, limitations remain particularly regarding

Western bias in harmonic analysis components.

6.4 Foundation Models for Cross-Cultural Music Represen-

tation

We utilize the five state-of-the-art foundation models evaluated in Section 5.2 of the previous
chapter along with the culturally-adapted models we introduced in Section 5.5.

Specifically, we selected:

e the MERT-95M? and MERT-330M?® models, which employ masked acoustic modeling
with dual teacher supervision from both acoustic and musical perspectives [40];

e the CLAP-Music*, which specializes in musical content through music-only training data,
and the CLAP-Music&Speech®, which incorporates both music and speech data for po-
tentially more robust audio representations;

e Qwen2-Audio®, that represents the largest model in our evaluation; and

e CultureMERT-95M7, developed through a two-stage continual pre-training strategy start-
ing from MERT-95M, and CultureMERT-TA-95M?, its alternative that was created using
task arithmetic.

2https://huggingface.co/m-a-p/ MERT-v1-95M

Shttps:/ /huggingface.co/m-a-p/ MERT-v1-330M
/huggingface.co/laion/larger clap music
/huggingface.co/laion/larger clap music _and _speech
/huggingface.co/Qwen/Qwen2-Audio-7B
/huggingface.co/ntua-slp/CultureMERT-95M
8https://huggingface.co/ntua-slp/CultureMERT-TA-95M
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6.4.1 Similarity Computation from Foundation Model Representations

Regarding the audio preprocessing and the representation extraction strategies, we follow the

implementation described in Section 5.3 along with the existing research [199].

¢ MERT models (MERT-95M and MERT-330M): We use 30-second windows at 24kHz
sampling rate, converted to mono channel. Representations are extracted by averaging hidden
states across the middle four layers (layers 4-7 for MERT-95M, layers 10-13 for MERT-330M),

then computing temporal means.

e CLAP models (CLAP-Music and CLAP-Music&Speech): We employ 10-second win-
dows at 48kHz sampling rate. Representations are extracted from the audio projection layer

processing average-pooled final hidden states.

e Qwen2-Audio: We use 30-second windows at 16kHz sampling rate. Representations are ob-
tained by averaging last hidden state embeddings across all audio tower layers using minimal
text prompts (<|audio_bos|><|AUDIO|><|audio_eos|>) to activate audio understanding

while minimizing text biases.

e CultureMERT models (CultureMERT-95M and CultureMERT-TA-95M): We fol-
low the same preprocessing as MERT models with 30-second windows at 24kHz sampling
rate, converted to mono channel. Representation extraction follows the MERT strategy as
well, averaging middle-layer representations to leverage both original MERT capabilities and

learned cultural adaptations.

6.4.1 Similarity Computation from Foundation Model Representations

For each foundation model, we compute pairwise similarity between audio representations using
cosine similarity. Specifically, given foundation model representations ri,ry € R? for two audio
clips, similarity is computed as:

SFM(I‘l,I‘Q) = &
el - [lra]l2

This similarity measure is computed for all audio pairs in our dataset, enabling comparison
with human annotations across the three similarity dimensions (overall musical, cultural, and
recommendation-level).

The evaluation framework provides insights into how different foundation models capture cross-
cultural musical relationships, complementing the interpretable signal processing analysis and es-

tablishing a direct comparison with human similarity perception.

6.5 Methodology

This section details our experimental methodology for evaluating computational similarity mea-
sures against human perception across diverse musical cultures. We systematically compare signal
processing features and foundation model representations using multiple evaluation metrics and

comprehensive data preprocessing approaches.

6.5.1 Data Preparation and Normalization

Our experimental framework addresses individual rating scale differences and handles outliers
through a two-stage normalization process designed to ensure fair comparison across computational

methods and human judgments.
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Human Annotation Normalization

To mitigate individual participant biases in similarity rating scales, we apply mean-centering
normalization to human annotations. For each participant p, we compute their global mean rating

fip across all similarity dimensions and audio pairs:

N,
1 p
=5 ;%u (6.11)

where NV, is the total number of ratings provided by participant p, and s, ; represents their i-th

similarity rating. Each participant’s ratings are then mean-centered:

s;ffmmd = Spi — Up- (6.12)

This approach ensures that participants with consistently high or low rating tendencies con-
tribute equally to the evaluation, addressing systematic biases in individual rating behaviors [200].
After mean-centering, we aggregate multiple participant ratings for each audio pair by com-
puting the mean across annotators, then apply robust min-max normalization using the 5th and

95th percentiles (ps and pgs) of the mean-centered distribution:

scentered —ps

Spomman = clip <h“m“" 0, 1) : (6.13)
D95 — D5

where the clip function constrains values to the [0, 1] range, effectively handling outliers beyond

the percentile bounds.

Computational Similarity Normalization

For computational similarities from both signal processing features and foundation models, we
apply the same robust min-max normalization strategy. Foundation model similarities, originally

computed using cosine similarity in the [—1, 1] range, are first transformed to [0, 1] using:

scaled __ 1 + COS(G)

cosine 2 ’

(6.14)

where 6 represents the angle between feature vectors. This transformation preserves the relative
ordering while ensuring compatibility with human ratings.

Subsequently, all computational similarities undergo robust normalization using their respec-
tive 5th and 95th percentiles, ensuring consistent preprocessing across human annotations and

computational methods.

6.5.2 Evaluation Metrics

We employ a comprehensive evaluation framework using five complementary metrics, each
capturing different aspects of similarity alignment between computational methods and human
perception [124].

Kendall’s Tau (7): Measures rank correlation using concordant and discordant pairs, pro-

viding a robust estimate of ranking agreement that is less sensitive to outliers:

Ne —Ng

in(n—1)

(6.15)

T =

166



6.5.3 Feature Contribution Analysis

where n. and ng represent the number of concordant and discordant pairs, respectively, and n is
the total number of observations [201].
Spearman Rank Correlation (p): Evaluates monotonic relationships by comparing rank

orderings, making it robust to non-linear transformations of similarity scales:

63 d?

s (6.16)

p=1-

where d; represents the difference between ranks for the i-th observation [202].

Normalized Discounted Cumulative Gain (NDCG): Adapted from information retrieval,
NDCG evaluates the quality of similarity rankings by emphasizing correct identification of highly
similar pairs. For each query audio, we rank all other clips according to computational similarity

and compare against human similarity as relevance scores:

Zn greli _q
i=1 log, (i+1)
n oreli 1

Zi:l log, (i+1)

where rel; is the relevance of the item at position ¢ (computational method similarity), and rel}

NDCG = , (6.17)

represents the ideal ranking (human similarity) [203].

Triplet Agreement: Evaluates whether computational methods preserve relative similarity
orderings within triplets of audio clips. For each triplet (a,b, ¢) where human judgments indicate
Shuman(@,0) > Shuman(a,¢) by a margin ¢ = 0.1, we assess whether the computational method
produces the same ordering:

1
Agreement = N Z 1[sign(Ascomp) = sign(Ashuman)]s (6.18)
triplets
where AScomp = Scomp(aa b) - Scomp(aac) and ASpuman = Shuman (a7 b) - Shuman(aa C) represent

the similarity differences for computational and human judgments respectively, and N is the total
number of valid triplets. This metric is particularly relevant for retrieval applications where relative
ranking matters more than absolute similarity values [204].

6.5.3 Feature Contribution Analysis

To understand the relative importance of different musical dimensions in predicting human per-
ception and foundation model behavior, we employ linear regression analysis using signal processing

features as predictors.

Linear Regression Framework

We formulate the prediction task as a multiple linear regression problem where signal processing
features serve as independent variables predicting both human similarity ratings and foundation
model similarities as dependent variables:

Spredicted = BO + 61fmelody + 62frhythm

+ ﬁ3fharmony + ﬁ4ftimbre + €, (619)

where 3; represents the regression coefficients indicating feature importance, and e is the residual

error term.
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Multiple Random Split Strategy

To ensure robust coefficient estimates and assess the stability of feature importance rankings,
we employ multiple train-test splits with different random seeds. For each target variable (three
human dimensions and seven foundation models), we perform 5 iterations with different random
partitions of the data into training (80%) and testing (20%) sets.

For each iteration k, we train a linear regression model on the training set and evaluate it on
the held-out test set. We then compute coefficient means and standard deviations across the 5
iterations:

K

Bi=+ kz ks (6.20)

K
08, = | T 2_Bik — (6.21)
k:

where K = 5 represents the number of random splits, and f;  is the coefficient for feature ¢ in
iteration k. Model performance is assessed using Mean Absolute Error (MAE) on the held-out test

sets, averaged across all iterations:

K
1
MAE = - > MAE, (6.22)
1 Ntest,k )
MAEk = Ntest k Z |51()Zr)edicted,k arget k| (623)
esE =1

where nest ko is the number of test samples in iteration k.

6.5.4 Ensemble Methods

To investigate the potential for combining signal processing features and foundation model
representations for improved human similarity prediction, we implement ensemble regression using
both linear and gradient boosting approaches. We follow the same multiple random split strategy
as in the feature contribution analysis, performing 5 iterations with different random partitions of
the data into training (80%) and testing (20%) sets to ensure robust performance estimates.

Linear Regression: Serves as a baseline ensemble approach, combining all available signal
processing and foundation model features in a single linear model [205]. Feature importance is di-
rectly interpretable through regression coefficients, enabling analysis of which feature combinations
contribute most effectively to human similarity prediction.

LightGBM: A gradient boosting framework that can capture non-linear relationships between
features and targets [206]. We employ early stopping with validation monitoring to prevent overfit-
ting, using parameters optimized for regression tasks including a learning rate of 0.05 and maximum

of 1000 boosting rounds with early stopping after 50 rounds without improvement.

Performance Evaluation

Ensemble models are evaluated using the same comprehensive metric suite as individual compu-
tational methods (Kendall’s Tau, Spearman correlation, NDCG, and Triplet Agreement), enabling
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direct comparison of improvement over single-method approaches. Performance metrics are aver-
aged across the 5 random split iterations to provide robust estimates with confidence intervals.
Feature importance analysis identifies which combinations of signal processing and foundation
model features contribute most effectively to human similarity prediction. The ensemble frame-
work provides insights into the complementary strengths of interpretable signal processing features
and learned foundation model representations, establishing whether hybrid approaches can achieve
superior alignment with human cross-cultural music perception compared to individual computa-

tional methods.

6.5.5 Cross-Cultural Analysis Framework

To examine cross-cultural patterns in computational similarity measures, we aggregate individ-
ual pair similarities at the dataset level, creating 9 x 9 similarity matrices representing relationships
between musical traditions from both human and computational perspectives.

For each dataset pair (7,j), we compute mean similarity across all annotated pairs belonging
to those traditions, providing a macro-level view of cultural relationships. For computational
methods, we also evaluate cultural discrimination using the complete 468 x 468 similarity matrix
(approximately 100,000 unique pairs), which provides a more comprehensive assessment of cross-
cultural patterns beyond the human-annotated subset.

We analyze within-tradition versus between-tradition discrimination using a distance-based sep-
aration ratio that measures how well computational methods distinguish between different musical

cultures.

Distance-Based Separation Ratio

Since computational similarities are proximity measures, we convert them to distance measures
for more intuitive separation analysis. For a similarity matrix S, we compute the corresponding
distance matrix as D =1 — S, where 1 is a matrix of ones with the same dimensions as S.

We then calculate the mean intra-tradition distance (diagonal elements) and mean inter-

tradition distance (off-diagonal elements):

1 N
Dintra = — Y _ Dii, (6.24)
1 N
Dinter = m Z Z Dij7 (625)

where N is the number of musical traditions (datasets).
The distance-based separation ratio is defined as:
Ricparation = g—t (6.26)
intra
Higher separation ratios indicate better discrimination between musical cultures, as they reflect
larger distances between different traditions relative to cohesion within each tradition. Methods

that fail to capture cultural distinctions would show similar distances both within and between
datasets, yielding ratios close to 1.
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We compute separation ratios for both human-annotated pairs (to enable direct comparison
with human judgments) and all possible audio pairs (to better assess computational methods’

performance), providing complementary perspectives on cross-cultural discrimination capabilities.

6.6 Results and Discussion

This section presents our comprehensive evaluation of computational similarity measures against
human perception across diverse musical cultures. We begin with analysis of human similarity
judgments, followed by systematic comparison of signal processing features and foundation mod-

els, discriminability assessment, interpretable feature analysis, and ensemble regression results.

6.6.1 Human User Study Results

Our human similarity study collected 1,130 unique audio pair annotations from 125 par-
ticipants across three similarity dimensions: overall musical similarity, cultural similarity, and
recommendation-level similarity. The results reveal important insights into how humans perceive

cross-cultural musical relationships and the consistency of different similarity conceptualizations.

Inter-Dimensional Correlation Analysis

The Spearman correlations between the three human similarity dimensions reveal strong rela-
tionships, indicating substantial overlap while still allowing participants to distinguish meaningfully
between different aspects of similarity. Overall musical similarity correlates highly with both cul-
tural similarity (p = 0.78) and recommendation-level similarity (p = 0.77), while cultural and
recommendation-level similarities also show strong correlation (p = 0.74). These high correlations
demonstrate that while the three dimensions capture closely related aspects of musical similarity,
they also provide complementary information about human perception to a certain degree. This
can have potential benefits for music information retrieval systems that target specific dimensions

of similarity.

Cross-Cultural Dataset Relationships

Figure 6.4 presents the dataset-level cultural similarity matrix, revealing systematic patterns in
how participants perceive relationships between different musical traditions. We focus on cultural
similarity as it most directly captures participants’ perception of tradition-based relationships,
distinct from purely musical or personal preference considerations. Several notable clusters emerge
from the data:

Indian Classical Music Cluster: Hindustani and Carnatic traditions show the highest mu-
tual similarity (0.69), reflecting their shared historical and theoretical foundations. Both traditions
also show moderate similarity with other non-Western traditions.

Mediterranean/Middle Eastern Cluster: Arab-Andalusian, Lyra (Greek) and Turkish-
makam exhibit elevated mutual similarities, with Arab-Andalusian showing particularly strong
connections to Turkish-makam (0.65). This clustering reflects historical cultural exchanges across
the Mediterranean region.

Western Music Separation: MagnaTagATune and FMA-medium show high mutual simi-
larity (0.49) and generally lower similarities with traditional music datasets, suggesting that par-

ticipants clearly distinguish Western popular/commercial music from traditional world music.
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Cultural Similarities
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Figure 6.4. Cultural Similarity Matrix Across Datasets. Heat map visualization of human-
perceived cultural similarity ratings. Values represent mean cultural similarity ratings aggregated
across all participant annotations for pairs between and within datasets. Clear cultural clusters
emerge, with higher similarities (darker blue) indicating stronger cultural relationships.

Chinese Opera and Flamenco Distinctiveness: Jingju (Beijing Opera) shows the high-
est within-tradition similarity (0.91) and generally lower cross-cultural similarities, indicating its
unique characteristics that participants found difficult to relate to other traditions. Similarly, cor-
pusCOFLA (Flamenco) demonstrates high within-tradition similarity (0.75) while showing sub-
stantially lower cross-cultural similarities (0.40 or below), reflecting its distinctive musical charac-
teristics that participants perceived as culturally distinct from other traditions.

These patterns align with musicological understanding of cultural relationships and historical

influences, validating the meaningfulness of human cross-cultural similarity judgments.

Multidimensional Scaling Visualization

The MDS [207] visualization in Figure 6.5 provides a spatial representation of musical tradi-
tions based on recommendation-level similarity distances. The two-dimensional projection reveals
meaningful cultural groupings and relationships. The dotted circles around each point represent
the internal diversity of each musical tradition, with larger circles indicating datasets where partic-
ipants perceived greater variation within the tradition itself (diagonal elements on a cross-cultural
matrix).

The visualization shows clear separation between Western commercial music (MagnaTagATune,
FMA-medium) on the right side and traditional world music on the left. Within the traditional
music cluster, we observe sub-groupings that correspond to geographical and cultural relation-
ships: Indian classical traditions (Hindustani, Carnatic) cluster in the upper left, while Mediter-
ranean,/Middle Eastern traditions (corpusCOFLA, Arab-Andalusian, Lyra, Turkish-makam) group
in the center and lower left. Jingju appears distinctly separated at the top, consistent with its
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Figure 6.5. Multidimensional Scaling Visualization of Musical Datasets. 2D projection
based on recommendation-level similarity distances derived from human annotations, revealing
cultural clustering patterns across nine musical traditions. Dotted circles around each dataset
represent internal diversity (inverse self-similarity) within each musical tradition.

unique musical characteristics.

Within vs. Cross-Dataset Similarity Distributions

Figure 6.6 compares the distributions of similarity ratings for within-dataset pairs versus cross-
dataset pairs across all three similarity dimensions. The results demonstrate clear discrimination
between musical cultures.

For all three dimensions, within-dataset similarities show significantly higher means (Over-
all: p = 0.650, Cultural: p = 0.732, Recommendation: p = 0.701) compared to cross-dataset
similarities (Overall: p = 0.361, Cultural: p = 0.360, Recommendation: p = 0.368). Cultural
similarity shows the largest separation (Ap = 0.372), followed by recommendation-level similarity
(Ap = 0.333) and overall similarity (Ap = 0.289).

The clear separation between within and cross-dataset distributions confirms that participants
consistently recognize and distinguish between different musical cultures, providing a strong foun-
dation for evaluating computational methods’ ability to capture cross-cultural musical relation-

ships.

6.6.2 Signal Processing Features and Foundation Models vs. Human
Perception

We systematically evaluated both signal processing features and foundation models against hu-
man similarity judgments using five complementary metrics across the three similarity dimensions.
This comprehensive evaluation provides insights into which computational approaches best align

with human cross-cultural music perception.
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Human Annotations Distribution: Within vs Cross-Dataset Pairs
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Figure 6.6. Distribution Comparison of Human Similarity Ratings. Violin plots with
embedded box plots comparing within-dataset pairs versus cross-dataset pairs across the three
similarity dimensions. Statistical parameters (u: mean, o: standard deviation) demonstrate clear
separation between within and cross-cultural similarities.

Comprehensive Performance Evaluation

Table 6.2 presents the complete evaluation results for all computational methods across the five
metrics and three similarity dimensions. The results reveal distinct performance patterns between
signal processing features and foundation models.

Signal Processing Features Performance: Among signal processing features, melody con-
sistently demonstrates superior performance across all metrics and similarity dimensions. Melody
achieves the best MAE scores (29.5-30.9%) and shows the strongest correlations with human judg-
ments (Spearman p = 0.14 — 0.15, Kendall 7 = 0.12 — 0.13). This confirms melody’s central role
in human music similarity perception across cultures.

In contrast, rhythm, harmony, and timbre features show limited alignment with human percep-
tion, with correlations near zero or slightly negative. Rhythm and harmony features particularly
struggle, suggesting that our signal processing implementations may not adequately capture the
complex rhythmic and harmonic relationships that humans perceive across different musical tra-
ditions.

Foundation Models Performance: Foundation models generally outperform signal process-
ing features across most metrics, with CLAP-Music&Speech emerging as the top performer, achiev-
ing the highest triplet agreement (62.6-64.9%) and NDCG scores (88.0-89.8%). However, melody
features remain competitive, achieving the best MAE scores (29.5-30.9%) and strong correlation
performance. The superior performance of CLAP-Music&Speech over CLAP-Music highlights the
synergy between melody and speech modalities, as both capture complementary aspects of mu-
sical expression, melodic patterns and intonation patterns [3, 208], that are particularly valuable
for cross-cultural music understanding given the vocal traditions prominent in many world music
cultures.

This performance advantage, however, comes with a trade-off in cultural discriminability. While
CLAP-Music&Speech excels at aligning with human similarity judgments, Qwen2-Audio demon-
strates superior cultural boundary detection (Table 6.3), suggesting that models optimized for

universal musical understanding may sacrifice some discriminative power between cultural tradi-
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Method Triplet Agr. 1 (%) NDCG 1 (%) Spearman p 1 (-1, 1) Kendall 7 1 (-1, 1) MAE | (%)
Similarity type Overall Cultural Recomm. Overall Cultural Recomm. Overall Cultural Recomm. Overall Cultural Recomm. Overall Cultural Recomm.
Signal Processing Features

Melody 61.5 61.1 60.7 88.4 87.6 86.8 0.15 0.14 0.15 0.14 0.12 0.13 29.5 30.5 30.9
Rhythm 51.3 52.1 50.3 85.8 84.0 84.0 -0.00 -0.01 -0.02 -0.00 -0.01 -0.02 32.5 34.3 34.6
Harmony 51.8 50.8 50.7 85.3 83.4 83.6 0.02 -0.00 0.02 0.02 0.00 0.02 32.1 33.5 34.3
Timbre 54.2 54.7 55.6 86.1 84.8 85.3 -0.03 0.04 0.04 -0.03 0.03 0.03 35.2 36.4 36.3

Foundation Models

MERT-95 59.8 59.7 60.0 88.2 87.1 87.3 0.06 0.09 0.10 0.05 0.08 0.08 31.3 324 32.3
CultureMERT 56.3 57.0 57.4 86.8 86.2 86.4 0.04 0.08 0.08 0.03 0.06 0.07 33.0 34.1 34.4
CultureMERT-TA 55.1 55.8 56.5 86.6 86.0 86.4 0.02 0.06 0.06 0.01 0.05 0.05 33.6 34.6 34.8
MERT-330 57.6 57.3 58.7 87.8 86.5 86.9 0.08 0.05 0.09 0.06 0.04 0.08 35.0 35.6 35.7
CLAP-Music 55.6 56.0 54.8 86.8 85.3 84.8 0.05 0.03 -0.01 0.04 0.02 -0.01 40.9 41.7 41.6
CLAP-Music&Speech  64.9 62.6 64.9 89.8 88.0 88.6 0.16 0.11 0.14 0.14 0.09 0.12 29.6 30.8 30.9
Qwen2-Audio 58.4 58.0 59.5 88.0 86.5 86.9 0.05 0.06 0.08 0.04 0.05 0.08 36.7 37.3 37.3

Table 6.2. Comprehensive Evaluation of Signal Processing Features and Foundation
Models. Performance comparison against human similarity judgments across three similarity
dimensions (overall musical, cultural, and recommendation-level). Values are shown as percentages
(%) for Triplet Agreement, NDCG, and MAE, and as correlation values for Spearman and Kendall
metrics. Arrows indicate whether higher (1) or lower (|) values represent better performance, with
best performance within each similarity dimension and metric shown in bold.

tions.

MERT-95 demonstrates consistent performance across all similarity dimensions, while the larger
MERT-330 model shows mixed results, sometimes underperforming its smaller counterpart, consis-
tent with our findings in Section 5.4. The culturally adapted CultureMERT variants underperform
their base MERT-95 model, which is logical given our participant pool’s predominantly Western
musical backgrounds. Since CultureMERT was specifically adapted toward non-Western cultures
(Greek, Turkish, Indian traditions), its lower alignment with our listener judgments reflects the

influence of listener cultural background on evaluation results rather than model inadequacy.

Comparative Analysis Across Methods

Figure 6.7 provides a radar plot comparison of the top-performing methods, averaged across
similarity dimensions and normalized for visualization. The radar plot clearly illustrates CLAP-
Music&Speech’s superior performance across most metrics, particularly excelling in Triplet Agree-
ment and NDCG measures. Melody emerges as the strongest signal processing feature, showing
balanced performance across all evaluation dimensions. The plot also reveals that foundation mod-
els generally maintain more consistent performance profiles compared to signal processing features,
which show greater variability across different metrics.

The correlation-based metrics (Spearman p and Kendall 7) show lower absolute values across
all methods, reflecting the inherent challenges in capturing the complex, non-linear relationships
that characterize human cross-cultural music similarity perception. However, the relative rankings
remain consistent, with CLAP-Music&Speech and melody maintaining their leading positions.
These results demonstrate that while foundation models achieve superior alignment with human
perception, the gap between computational methods and human judgment remains substantial,

indicating significant room for improvement in cross-cultural music similarity modeling.

6.6.3 Cross-Cultural Discriminability Analysis

To assess how well computational methods distinguish between different musical traditions, we
analyze their cross-dataset discriminability using distance-based separation ratios. We compare
these ratios with the respective human perception values to provide insights into how effectively

computational approaches can capture cultural boundaries.
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Figure 6.7. Radar Plot Comparison of Top-Performing Computational Methods. Per-
formance visualization averaged across three similarity dimensions, with metrics normalized to [0,1]
scale where higher values indicate better performance (MAE is inverted).

Separation Ratio Results

Table 6.3 presents the distance-based separation ratios for humans and all computational meth-
ods across both annotated pairs and the complete audio dataset. The results reveal significant
differences in cultural discrimination capabilities between human perception and computational
approaches, highlighting a fundamental trade-off between universal musical understanding and
cultural discriminability.

Human Baseline Performance: Human similarity judgments demonstrate superior cul-
tural discrimination, with the Cultural similarity dimension achieving the highest separation ratio
(2.361), followed by Recommendation-level (2.106) and Overall musical similarity (1.803). This
confirms that humans consistently recognize and distinguish between different musical traditions,
with cultural similarity showing the strongest discrimination as expected.

Signal Processing Features: Among signal processing features, melody again emerges as the
most discriminative (1.276 for annotated pairs), consistent with its superior performance in direct
human alignment metrics. Rhythm, harmony, and timbre show limited discrimination capabilities,
with ratios close to 1.0, indicating they struggle to distinguish between musical cultures effectively.
Notably, rhythm shows a separation ratio slightly below 1.0 for annotated pairs (0.989), indicating
limited cultural discrimination capability in this subset.

Foundation Models Performance: Foundation models substantially outperform signal pro-
cessing features in cultural discrimination, but reveal an important trade-off between universal
musical understanding and cultural discriminability. Qwen2-Audio achieves the highest separation
ratios among all computational methods (1.579 for annotated pairs, 1.602 for all pairs), demonstrat-
ing superior ability to distinguish between musical traditions. In contrast, CLAP-Music&Speech,
while excelling at human similarity alignment, shows more modest discrimination performance
(1.366 for annotated pairs), suggesting that models optimized for universal cross-cultural musical
understanding may sacrifice some discriminative power between cultural boundaries.

The culturally adapted CultureMERT variants underperform their base MERT-95 model, which
may reflect the significant influence of listener cultural background on evaluation results. Since
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Method Annotated Pairs All Pairs
Human Similarities

Overall Music 1.803 —
Cultural 2.361 —
Recommendation-level 2.106 —

Signal Processing Features

Melody 1.276 1.180
Rhythm 0.989 1.037
Harmony 1.018 1.031
Timbre 1.025 1.018
Foundation Models

MERT-95 1.280 1.209
CultureMERT 1.259 1.180
CultureMERT-TA 1.262 1.169
MERT-330 1.401 1.298
CLAP-Music 1.415 1.217
CLAP-Music&Speech 1.366 1.318
Qwen2-Audio 1.579 1.602

Table 6.3. Cross-Cultural Discrimination Analysis Using Distance-Based Separation
Ratios. Comparison of cultural boundary detection capabilities between humans and all compu-
tational methods. Higher values indicate better discrimination between musical traditions. An-
notated pairs use only human-annotated audio pairs (1,130), while all pairs use the complete
similarity matrix (~ 100k pairs).

CultureMERT was specifically adapted toward non-Western cultures (Greek, Turkish, Indian tra-
ditions) and our participant pool predominantly consists of listeners with Western musical back-
grounds, this apparent underperformance could indicate that the models have developed different
similarity representations that may not align with our predominantly Western evaluation bench-
mark.

Cross-Cultural Similarity Patterns

Figure 6.8 presents the dataset-level similarity matrix for Qwen2-Audio, the best-performing
method in terms of cultural discrimination. This visualization can be directly compared with
Figure 6.4, which shows human cultural similarity perceptions for the same dataset pairs.

The Qwen2-Audio similarity matrix reveals several compelling patterns that partially echo hu-
man perception patterns. The model demonstrates strong within-tradition clustering (diagonal
values), with Jingju and Hindustani showing the highest self-similarity (0.89), followed by corpus-
COFLA (0.86), Turkish-makam (0.85) and Lyra (0.85). This ranking partially aligns with human
judgments, where these traditions also demonstrate high within-tradition similarity.

Notably, Qwen2-Audio shows exceptional discrimination for Jingju (Beijing Opera), which
emerges as the most distinctive tradition in the computational similarity space. Jingju’s cross-
cultural similarities are substantially lower than all other traditions, ranging from 0.57-0.67 com-
pared to the 0.75-0.85 range typical for other cross-cultural pairs. This strong discrimination may
reflect the model’s training on diverse audio data that includes Chinese traditional music, resulting
in embedding space organization that treats Chinese traditional opera as a distinct category. How-
ever, this specialization toward specific cultural discrimination may come at the cost of broader

cross-cultural alignment capabilities, as evidenced by its lower performance in human similarity
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Figure 6.8. Cross-Cultural Similarity Matrix for Qwen2-Audio Foundation Model.
Heat map visualization showing computational similarity patterns between musical traditions as
captured by the Qwen2-Audio model. Darker colors indicate higher similarities.

prediction compared to more universal models like CLAP-Music&Speech.

Mirroring human perception patterns, the Indian classical music pair (Hindustani-Carnatic)
shows elevated mutual similarity, the Mediterranean/Middle Eastern cluster (Arab-Andalusian,
Lyra, Turkish-makam) exhibits clear interconnections, and the corpusCOFLA shows more dis-
tinctive characteristics. In contrast to human perception, Western commercial music traditions
(MagnaTagATune-FMA-medium) demonstrate high similarity with non-Western traditions except
for Jingju.

The distance-based separation ratio, while providing valuable insights into cultural discrimi-
nation capabilities, treats all cross-cultural distinctions equally, which may be overly restrictive
for traditions that share significant musical characteristics. Future evaluation frameworks should
consider incorporating cultural proximity into discrimination metrics to provide more nuanced
assessment of cross-cultural music understanding.

Detailed results on cross-cultural similarity patterns for both human annotations and compu-

tational methods can be found in Appendix D.

6.6.4 Feature Contribution Analysis

To understand which musical dimensions drive similarity perception in both human judgments
and foundation model representations, we performed linear regression analysis using signal process-
ing features as predictors. This interpretability analysis reveals the relative importance of melody,
rhythm, harmony, and timbre in explaining similarity patterns across different evaluation contexts.

Figure 6.9 presents the linear regression weights when predicting human similarity judgments
and foundation model similarities using the four signal processing features. The analysis reveals
distinct patterns in how different targets weight various musical dimensions, providing insights into

177



Chapter 6. Cross-Cultural Music Similarity: Bridging Human Perception and Computational Methods

Feature Analysis - Human & Fi dation Model Similarities
62.5
0.6 58.7 Melody
[Human Similarities) [Foundation Model Similarities Rhythm
) } i = Harmony

40.9

Timbre

19.5

6.9 7.0 7.67.2

2.1

7.76.8

Linear Regression Weights (%)

44 38 3.8 X
3.5 23 2.9 1.5 1.7

-0.2

2.8 -1.8 -1.9 1.1

-6.4

-8.4

CLAP-Music CLAP-Music&Speech Qwen2-Audio
(MAE: 0.221) (MAE: 0.184) (MAE: 0.195)

Cultural Recommendation-level MERT-95
(MAE: 0.231) (MAE: 0.242) (MAE: 0.164)

Overall Music
(MAE: 0.208)

MERT-330
(MAE: 0.165)

CultureMERT  CultureMERT-TA
(MAE: 0.168) (MAE: 0.172)

Figure 6.9. Linear Regression Weights for Signal Processing Features. Bar charts show-
ing the contribution of signal processing features (melody, rhythm, harmony, timbre) in predicting
human similarity judgments and foundation model similarities. Positive weights indicate that
higher feature similarity contributes to higher predicted similarity, with MAE values in parenthe-
ses indicating prediction accuracy.

the underlying factors that drive similarity perception.

Human Similarity Patterns

Human similarity judgments across all three dimensions show remarkably consistent patterns in
their relationship to signal processing features. Melody emerges as the dominant predictive factor,
with weights of 31.0% (Overall Music), 34.3% (Cultural), and 34.0% (Recommendation-level),
confirming melody’s central role in human cross-cultural music perception. This consistency across
similarity dimensions suggests that melodic content serves as a fundamental basis for how humans
assess musical relationships, regardless of whether they focus on overall musical characteristics,
cultural identity, or personal preference.

Rhythm shows modest positive contributions (4.4%, 3.8%, 2.3%) across all human dimensions,
while harmony exhibits small negative weights (-2.8%, -1.8%, -1.9%), suggesting that harmonic
similarity may actually decrease perceived overall similarity in cross-cultural contexts. This coun-
terintuitive finding may reflect the Western bias inherent in our harmonic feature extraction, where
Western chord templates and key estimation algorithms may not adequately capture the harmonic
relationships that humans perceive in non-Western musical traditions.

Timbre contributes positively but modestly to human similarity perception (3.8%, 3.5%, 6.9%),
with the highest weight for recommendation-level similarity, suggesting that timbral characteris-
tics may play a larger role in personal preference judgments than in overall musical or cultural

assessments.

Foundation Model Patterns

Foundation models demonstrate markedly different feature weighting patterns compared to
human perception, revealing how learned representations prioritize different musical aspects when
operating in a multicultural similarity space.
factor for several foundation models, with particularly high weights for CultureMERT-TA (62.5%),
CultureMERT (58.7%), and MERT-330 (48.5%). This emphasis on timbral features reveals an

important insight: when computational models are required to establish similarity relationships

Most notably, timbre emerges as the dominant

across diverse musical cultures, they gravitate toward universal acoustic characteristics that remain
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Method Triplet Agr. 1 (%) NDCG 1 (%) Spearman p 1 (-1, 1) Kendall 7 1 (-1, 1) MAE | (%)
Similarity type Overall Cultural Recomm. Overall Cultural Recomm. Overall Cultural Recomm. Overall Cultural Recomm. Overall Cultural Recomm.
Linear Regression  67.0 66.7 65.1 92.5 91.4 90.9 0.19 0.15 0.18 0.18 0.14 0.17 19.7 22.2 23.0
Light GBM 67.2 63.8 64.4 92.2 90.6 90.1 0.19 0.12 0.13 0.19 0.12 0.13 19.8 22.2 23.2

Table 6.4. Ensemble Regression Results Combining Signal Processing Features and
Foundation Models. Performance evaluation of ensemble methods for predicting human simi-
larity judgments. Values are shown as percentages (%) for Triplet Agreement, NDCG, and MAE,
and as correlation values for Spearman and Kendall metrics. Arrows indicate whether higher (1)
or lower () values represent better performance, with best performance within each similarity
dimension and metric shown in bold.

consistent across traditions, rather than culture-specific patterns like the melodic ones, that may
vary significantly between musical systems.

MERT-95 shows a more balanced approach, equally weighting melody (42.5%) and timbre
(42.5%) contributions. CLAP models exhibit distinct behavior, with CLAP-Music&Speech showing
strong melody emphasis (40.9%) similar to human patterns, while CLAP-Music displays more
modest feature contributions overall. Qwen2-Audio presents an extreme pattern with a small
positive weight for melody (13.9%), a negative timbre weight (-6.4%), and near-zero rhythm and
harmony weights. This pattern may indicate that Qwen2-Audio’s representations capture musical
relationships through dimensions not adequately represented by our four-feature decomposition,

reflecting the model’s multimodal architecture and diverse training objectives.

6.6.5 Ensemble Methods for Human Similarity Prediction

To leverage the complementary strengths of signal processing features and foundation model
representations, we developed ensemble regression methods that combine all computational ap-
proaches to predict human similarity judgments. This analysis explores whether integrating inter-
pretable musical features with learned representations can achieve superior alignment with human

cross-cultural music perception.

Ensemble Performance Results

Table 6.4 presents the performance of both linear regression and Light GBM ensemble methods
across all evaluation metrics and similarity dimensions. The ensemble methods achieve remarkable
improvements compared to individual approaches shown in Table 6.2. Linear regression ensemble
achieves triplet agreement scores of 65.1-67.0% compared to the best individual method (CLAP-
Music&Speech) at 62.6-64.9%. Similarly, NDCG scores reach 90.9-92.5% versus the previous best
of 88.0-89.8%. The correlation metrics also show consistent improvements, with Spearman corre-
lations reaching 0.15-0.19 compared to individual method maximums of 0.11-0.16.

Most significantly, the ensemble methods achieve substantial reductions in prediction error, with
MAE values of 19.7-23.2% representing improvements of approximately 6-7 percentage points over
the best individual methods (melody features at 29.5-30.9% MAE). This represents a relative error
reduction of roughly 25-30%, demonstrating that combining multiple computational approaches
provides complementary information for predicting human similarity judgments.

Linear regression demonstrates superior performance across most metrics, particularly excelling
in ranking-based measures (NDCG, correlation metrics) and achieving the best MAE scores. Light-
GBM shows marginally better performance only in overall music similarity triplet agreement, with

differences being minimal across other metrics. This demonstrates that the different computational
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Figure 6.10. Computational Model Importance in Ensemble Methods. Feature impor-
tance visualization averaged across similarity dimensions and sorted by linear regression coeflicients.
The dual x-axes accommodate the different scales of coefficient values (linear regression) and gain
scores (Light GBM), showing the relative contribution of each computational method to ensemble
performance.

approaches provide complementary information that linear combination can effectively leverage to
predict human cross-cultural music similarity judgments.

Computational Model Contribution Analysis

Figure 6.10 reveals the relative importance of different computational methods within the en-
semble approaches, averaged across the three similarity dimensions and sorted by linear regression
importance. Linear regression coefficients represent the direct contribution of each feature to
the prediction, while Light GBM gain scores measure the total improvement in splitting criterion
achieved by each feature across all decision tree splits, providing a measure of feature utility in the
gradient boosting framework.

CLAP-Music&Speech emerges as the dominant contributor in both ensemble methods, with the
highest linear regression coefficient (23.5%) and highest Light GBM gain score (89.3). This finding
validates our earlier observation that this model achieves the best alignment with human cross-
cultural music perception. Among signal processing features, melody maintains its position as the
most important traditional feature (linear coefficient: 19.2%, Light GBM gain: 58.6), confirming
its fundamental role in human music similarity perception across cultures.

Foundation models show varied contributions, with CultureMERT (17.0%, 20.9) and Qwen2-
Audio (16.0%, 54.2) providing meaningful but secondary contributions. Interestingly, while MERT-
95 achieves reasonable individual performance, its ensemble importance is more modest (14.6%,
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32.4), suggesting its representations overlap considerably with other foundation models. The signal
processing features beyond melody show limited but non-zero contributions, indicating they provide
some unique information not captured by the foundation models.

These ensemble results demonstrate that combining diverse computational approaches yields
substantial improvements in predicting human cross-cultural music similarity judgments, achieving
performance levels that demonstrate the potential for practical culturally aware music Al applica-
tions.

6.7 Conclusions

This chapter has presented the first comprehensive evaluation of computational music similarity
methods against human cross-cultural music perception, spanning nine diverse musical traditions
and encompassing both interpretable signal processing features and state-of-the-art foundation
models. Our evaluation reveals that foundation models outperform traditional signal process-
ing features, with CLAP-Music&Speech achieving the highest individual performance (62.6-64.9%
triplet agreement, 88.0-89.8% NDCG). Among signal processing features, melody consistently
emerges as the dominant factor in predicting human similarity judgments, confirming its universal
importance across cultures and providing quantitative validation of musicological understanding.

However, our findings reveal a fundamental trade-off between universal musical understand-
ing and cultural discriminability in computational models. While CLAP-Music&Speech excels at
aligning with human similarity perception, Qwen2-Audio demonstrates superior cultural boundary
detection (separation ratios up to 1.60 vs. 1.37), suggesting that models optimized for universal
cross-cultural understanding may sacrifice discriminative power between cultural traditions. This
highlights the challenge of developing systems that can both capture cross-cultural musical rela-
tionships and maintain cultural distinctiveness.

The cultural discrimination analysis underlines significant gaps between human and computa-
tional approaches. While humans demonstrate strong cultural awareness with separation ratios of
1.80-2.36, computational methods achieve more modest discrimination (1.03-1.60). Importantly,
the apparent underperformance of culturally adapted models like CultureMERT reflects the influ-
ence of listener cultural background on evaluation results, as these models were adapted toward
non-Western cultures while most participants reported Western musical backgrounds.

Feature contribution analysis uncovers fundamental differences between human and compu-
tational processing strategies: humans consistently prioritize melodic content across all similar-
ity dimensions, while foundation models tend to emphasize timbral characteristics that remain
consistent across traditions. Most encouragingly, ensemble methods combining signal processing
features with foundation model representations achieve substantial improvements, reaching 65.1-
67.0% triplet agreement and reducing prediction errors by 25-30% compared to individual methods.

These findings establish human perceptual validation as an essential component of multicultural
music representation learning and provide actionable insights for developing more culturally aware
music Al systems. The comprehensive evaluation framework and ensemble approaches developed
in this study offer templates for future research advancing the alignment between computational

music analysis and human cross-cultural music perception.
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Chapter 7

Conclusions

This dissertation has explored representation learning across diverse musical traditions for mu-
sic signal analysis through a series of interconnected studies. Beginning with the development
of the Lyra dataset for Greek traditional and folk music, progressing through investigations of
transfer learning and few-shot learning approaches, evaluating and adapting foundation models for
diverse musical traditions, and culminating in a comprehensive evaluation of computational music
similarity methods against human cross-cultural music perception, this research has contributed
to advancing representation learning for varied musical systems. This concluding chapter synthe-
sizes the key contributions and findings, reflects critically on the research journey, acknowledges

limitations, and discusses future directions.

7.1 Summary of Contributions

The primary contributions of this dissertation span dataset development, methodological in-
novations, model evaluation, adaptation strategies, and human-computational alignment studies,

collectively addressing the research questions established in the introduction.

7.1.1 Addressing Data Availability for Diverse Musical Traditions (RQ1)

The Lyra dataset represents our comprehensive response to the fundamental challenge of data
scarcity in computational analysis of traditional music. This collection of Greek traditional and
folk music, comprising 1,570 pieces with approximately 80 hours of high-quality recordings, demon-
strates a methodology for creating culturally-grounded datasets that can support sophisticated
computational analysis while respecting musicological integrity. The dataset’s development pro-
cess emphasized consistent recording quality through systematic collection from academic docu-
mentary sources, ensuring that technical variations would not confound the analysis of musical
characteristics.

The rich metadata annotations covering instrumentation, geographic origin, genre, and sub-
genre provide a level of detail rarely available in world music datasets, enabling fine-grained com-
putational analysis of traditional music practices. The academic rigor embedded in the annotations,
derived from expert presentations and documentaries, ensures that the computational analysis is
grounded in authentic musicological knowledge rather than external categorizations. The multi-
modal access through timestamped YouTube links enables researchers to examine both audio and
video content, supporting analysis of performance practices and cultural contexts that are often
absent from purely audio-based datasets.
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Beyond its immediate utility for Greek music research, the Lyra dataset establishes a replica-
ble methodology for dataset development in computational ethnomusicology, demonstrating how
documentary sources can be systematically leveraged to create high-quality resources for under-

represented musical traditions.

7.1.2 Understanding Cross-Cultural Knowledge Transfer (RQ2)

Our systematic investigation of knowledge transfer between musical traditions provides the first
comprehensive analysis of how computational knowledge moves across diverse musical systems.
Through evaluation of multiple deep audio embedding models across musical corpora spanning
Western, Mediterranean, and Indian traditions, this research reveals that cross-cultural knowledge
transfer in music exhibits complex patterns that reflect both shared musical elements and culture-

specific characteristics.

The bidirectional nature of effective knowledge transfer challenges assumptions about the pri-
macy of Western-trained models for world music analysis. Models trained on traditional music
systems can provide valuable initializations for Western music tasks, demonstrating that diverse
musical traditions contain computational knowledge that benefits broader musical understanding.
The asymmetric patterns of transfer effectiveness reveal that geographic and historical proximity
often correlates with successful knowledge transfer, with Indian traditions showing particularly

strong bidirectional transferability.

These findings establish that computational models can reveal meaningful relationships between
musical systems that complement traditional musicological comparative studies with quantitative,
data-driven insights. The patterns of transfer effectiveness provide a new lens for understanding
musical relationships across cultures, suggesting computational approaches to comparative musi-

cology that could inform both technical and theoretical understanding of musical systems.

7.1.3 Learning from Limited Examples in Musical Contexts (RQ3)

The development of LC-Protonets addresses the pervasive challenge of data scarcity in world
music research through a novel approach to multi-label few-shot learning. By creating prototypes
for label combinations rather than individual labels, this methodology enables computational mod-
els to learn from the power set of available annotations, significantly expanding the effective training

signal from limited examples.

The integration with pre-trained embedding spaces demonstrates how few-shot learning can
leverage the representational power of models trained on larger datasets while adapting to the
specific characteristics of traditional music contexts. The two-step learning framework shows par-
ticular promise for expanding the coverage of computational models to include rare but culturally

significant musical attributes that would otherwise be excluded due to data limitations.

The computational optimization that addresses scalability concerns makes the approach practi-
cal for real-world deployment, while the consistent performance improvements across diverse music
datasets demonstrate the generalizability of the approach beyond the specific contexts in which
it was developed. This contribution provides a pathway for including underrepresented musical
elements in computational models, supporting more comprehensive and inclusive approaches to

music analysis.
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7.1.4 Evaluating Foundation Models Across Musical Traditions (RQ4)

Our comprehensive evaluation of state-of-the-art music foundation models across diverse musi-
cal traditions provides crucial insights into both the potential and limitations of current approaches
to universal music representation. The multi-faceted evaluation framework, employing probing, su-
pervised fine-tuning, and few-shot learning methodologies, reveals that foundation models demon-
strate impressive cross-cultural capabilities compared to previous approaches while simultaneously
exhibiting clear Western-centric biases.

The systematic comparison across six musical corpora representing different traditions shows
that larger models typically demonstrate better generalization capabilities, but performance con-
sistently declines for culturally distant traditions. The few-shot learning evaluation proves partic-
ularly revealing, showing that foundation models struggle with the kind of low-resource scenarios
common in world music research, often performing no better than much smaller, specialized models.

These findings establish important benchmarks for the field while highlighting the gap between
the universality claims of foundation models and their actual performance across diverse musical
contexts. The evaluation framework itself represents a methodological contribution, providing

templates for future assessment of cross-cultural music representation capabilities.

7.1.5 Adapting Foundation Models to Become Multicultural (RQ5)

CultureMERT represents our systematic approach to enhancing the cultural awareness of foun-
dation models through continual pre-training on diverse musical traditions. The two-stage adapta-
tion strategy addresses the fundamental challenge of catastrophic forgetting while enabling stable
acquisition of new cultural knowledge. Training on a carefully curated 650-hour dataset comprising
Greek, Turkish, and Indian music demonstrates that foundation models can be effectively enhanced
to better represent non-Western traditions while preserving their general capabilities.

The exploration of task arithmetic as an alternative adaptation approach provides a resource-
efficient method for combining cultural adaptations without requiring simultaneous access to all
datasets. This modular approach to cultural adaptation offers practical advantages for scenar-
ios where data sharing or computational resources are constrained, while achieving comparable
performance to continual pre-training approaches.

The consistent improvements across diverse music tagging tasks, with an average ROC-AUC
improvement of 4.43% compared to the original foundation model, demonstrate the practical value
of cultural adaptation while establishing that such improvements can be achieved without sacrific-
ing performance on Western benchmarks.

7.1.6 Bridging Human Perception and Computational Music Similarity
(RQ6)

The human perception study represents a crucial validation step for the computational advances
developed throughout this dissertation. By collecting similarity judgments from 125 participants
across diverse backgrounds on 1,130 audio pairs spanning nine musical traditions, this investiga-
tion provides the first empirical assessment of how well our multicultural representation learning
approaches align with human cross-cultural music perception.

The results validate several key hypotheses while revealing important gaps. The superior perfor-
mance of foundation models over signal processing features (with CLAP-Music&Speech achieving

62.6-64.9% triplet agreement) confirms the value of the approaches evaluated in Chapter 5. The
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emergence of melody as the most predictive traditional feature validates musicological understand-
ing of its central role in music.

However, the study reveals a critical tension in multicultural music representation: the trade-off
between universal musical understanding and cultural discriminability. This finding has profound
implications for how we conceptualize “universal” music representations, suggesting that truly ef-
fective cross-cultural systems may need to balance these competing objectives rather than optimize
for one.

The discovery that humans prioritize melodic content while foundation models emphasize tim-
bral characteristics represents a significant finding for the field. This misalignment suggests that
current pre-training objectives and evaluation metrics may not capture the perceptual dimensions
most salient to human listeners across cultures. This insight directly informs the design of future
foundation models and evaluation frameworks developed in this dissertation.

Most encouragingly, the success of ensemble methods (achieving 25-30% error reduction) demon-
strates that the diverse computational approaches developed throughout this dissertation can pro-
vide complementary information. The finding that interpretable signal processing features remain
crucial when combined with sophisticated learned representations points towards the usage of
hybrid approaches for music analysis.

This human-centered validation establishes that the technical advances explored in previous
chapters have genuine perceptual relevance while revealing the fundamental challenge of align-
ing computational optimization with human cross-cultural music understanding, a challenge that

defines the future research agenda for culturally aware music Al systems.

7.2 Synthesis of Findings

Examining the research contributions holistically reveals several cross-cutting insights about
the nature of multicultural music representation learning and the challenges inherent in developing

computational approaches that can effectively bridge cultural boundaries in music analysis.

7.2.1 The Challenge of Musical Knowledge Transfer

The investigation of cross-cultural transfer reveals that musical knowledge transfer operates
according to complex patterns that resist simple explanations based solely on geographic proximity
or historical connections. While Indian traditions do show strong bidirectional transferability, the
patterns of transfer effectiveness suggest that computational similarity between musical traditions
may capture aspects of musical relationships that are not immediately apparent through traditional
musicological analysis.

The asymmetric nature of many transfer relationships indicates that musical traditions may
share certain computational features while differing in others, creating selective patterns of knowl-
edge transfer that could inform our understanding of both musical universals and cultural speci-
ficity. The finding that models trained on multiple traditional musical systems show enhanced
generalization capabilities suggests that diversity in training data may be more important than
scale for developing broadly applicable music representations.

These patterns of computational knowledge transfer find validation in the human perception
study, where participants demonstrate sophisticated understanding of cross-cultural musical re-
lationships that may transcend simple geographic boundaries. The fact that ensemble methods

combining different computational approaches achieve superior alignment with human perception
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suggests that humans may integrate multiple types of musical information when making similarity

judgments across cultures.

7.2.2 Resource Constraints and Methodological Innovation

The consistent theme of resource constraints across different aspects of multicultural music
research has driven methodological innovations that extend beyond their immediate applications.
Few-shot learning approaches like LC-Protonets demonstrate that meaningful progress can be
achieved even with severely limited annotated data, while transfer learning shows that knowledge
from resource-rich domains can effectively bootstrap learning in low-resource contexts.

The exploration of continual pre-training and task arithmetic for foundation model adaptation
reveals different strategies for balancing computational efficiency with adaptation effectiveness.
Continual pre-training offers superior performance when computational resources are available,
while task arithmetic provides comparable results with significantly reduced resource requirements.

This methodological diversity suggests that successful multicultural music representation learn-
ing requires a toolkit of complementary approaches rather than a single universal solution. This
finding is reinforced by the human perception study, where ensemble models combining several
computational methods achieve superior alignment with human judgment compared to any indi-

vidual method.

7.2.3 The Question of Musical Universality

The research provides nuanced evidence regarding the possibility of universal music represen-
tations that can effectively capture diverse musical traditions. Current foundation models demon-
strate impressive cross-cultural capabilities that suggest some shared representational structures
across musical traditions, drawing from existing statistical universals in music. However, the consis-
tent performance degradation for culturally distant traditions, particularly in challenging few-shot
learning scenarios, indicates substantial culture-specific elements that resist universal representa-
tion.

The human perception study adds crucial perspective to this question by revealing that while
humans can make meaningful similarity judgments across diverse musical traditions, they also
demonstrate strong cultural awareness with clear discrimination between different musical sys-
tems. The finding that melody emerges as a universal predictor of human similarity judgments
across cultures supports the existence of some musical universals, while the cultural discrimination
patterns confirm the importance of culture-specific musical knowledge.

The success of multicultural training approaches in enhancing cross-cultural generalization sug-
gests that universality in music representation may be achievable, but only through deliberate
inclusion of diverse musical traditions in the training process rather than through post-hoc adap-
tation of Western-centric models. This finding has important implications for the development of
future music foundation models and suggests that achieving universal music representation requires

fundamental changes in how these models are conceived and trained.

7.2.4 Human-Computational Alignment in Cross-Cultural Contexts

The systematic comparison of computational approaches against human cross-cultural music
perception reveals both encouraging alignments and significant gaps that have implications across
all aspects of this research. The validation that foundation models outperform signal processing
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features confirms the value of learned representations explored in earlier chapters, while the discov-
ery of fundamental processing differences, i.e., humans prioritizing melodic content versus models
emphasizing timbral characteristics, reveals a critical misalignment that arises questions about the
optimization goals of music Al systems.

The tension between universal musical understanding and cultural discriminability emerges
as a central challenge for multicultural music representation. This trade-off manifests differently
across models: some excel at cross-cultural similarity alignment while others better maintain cul-
tural boundaries. This finding suggests that the pursuit of universal music representations may
inherently conflict with preserving cultural distinctiveness, requiring careful consideration of which
objective to prioritize in different application contexts.

The influence of evaluation context, particularly listener cultural background, adds complexity
to assessing multicultural music systems. The performance of culturally adapted models varies
significantly depending on the cultural context of evaluation, highlighting that effectiveness cannot
be measured independently of who the listener is. This finding has profound implications for how
we design evaluation studies and interpret results in cross-cultural music research.

These alignment challenges have immediate practical implications for music technology deploy-
ment. Current systems relying primarily on foundation model representations may miss perceptual
dimensions most salient to human listeners across cultures. However, the success of ensemble ap-
proaches in bridging this gap demonstrates that combining interpretable features with learned
representations offers a pathway toward more perceptually grounded systems.

The broader pattern that emerges is one of incomplete but improvable alignment: while com-
putational methods lag behind human cultural discrimination capabilities, the complementary
strengths of different approaches suggest that careful combination strategies can significantly ad-

vance human-computational alignment in cross-cultural music understanding.

7.3 Critical Reflection

This research journey has evolved from addressing practical challenges in computational anal-
ysis of traditional music to engaging with fundamental questions about the nature of musical
representation across cultural boundaries and its relationship to human perception. The progres-
sion from dataset development through methodological innovation to foundation model adaptation
and human-computational alignment studies reflects both the natural evolution of the research
questions and a deepening understanding of the complexity inherent in multicultural music repre-
sentation learning.

The methodological choices made throughout this research involved significant trade-offs that
shaped both the scope and the conclusions of the work. The decision to focus primarily on audio-
based representations, while enabling direct comparison across musical traditions, necessarily lim-
ited the depth of cultural understanding that could be incorporated into the computational models.
Similarly, the emphasis on classification tasks provided clear evaluation metrics but may have un-
derexplored other aspects of musical understanding that are equally important for cross-cultural
analysis.

The inclusion of human perception studies in the final phase of this research proved trans-
formative for understanding the effectiveness and limitations of computational approaches. The
discovery that current computational methods emphasize different musical dimensions than hu-
mans suggests that future research in multicultural music representation learning must consider

human perceptual validation as a central rather than peripheral concern.
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7.4 Limitations and Challenges

The evolution of my understanding throughout this research process reflects the inherent com-
plexity of bridging computational and cultural approaches to music analysis. Early assumptions
about the transferability of techniques from natural language processing proved insufficient for
addressing the unique challenges of musical representation across cultures. The recognition that
musical semantic spaces resist the kind of alignment successful in cross-lingual NLP led to the de-
velopment of more nuanced approaches that respect both shared and distinctive aspects of musical
traditions.

Perhaps most significantly, the research has highlighted the importance of approaching multicul-
tural music representation learning as both a technical and cultural challenge that must ultimately
be validated against human perceptual understanding. While computational advances can provide
powerful tools for music analysis, their effectiveness ultimately depends on their ability to capture
and respect the cultural knowledge embedded in different musical traditions while aligning with
how humans actually perceive and categorize musical relationships across cultures.

The human perception study revealed that achieving this alignment requires not just technical
sophistication but also careful consideration of which musical dimensions computational systems
prioritize and how these align with human perceptual strategies. The promising results of the
ensemble methods suggest that future advances may come from hybrid approaches that leverage
both the interpretability of traditional signal processing and the pattern recognition capabilities

of modern deep learning systems.

7.4 Limitations and Challenges

Despite the contributions outlined above, this dissertation faces several important limitations

that constrain the generalizability of its findings and highlight areas requiring further research.

7.4.1 Dataset and Cultural Representation Limitations

The Lyra dataset, while providing a valuable resource for Greek traditional music research,
reflects several constraints that limit its broader applicability. The reliance on documentary source
material, though ensuring musicological soundness, introduces potential selection biases toward
performances deemed worthy of documentation by the creators of the source material. This se-
lection process may inadvertently emphasize certain aspects of Greek traditional music while un-
derrepresenting others, such as informal or ritual contexts where much traditional music naturally
occurs. The geographic and genre categorizations employed in the dataset, while detailed and
musicologically informed, necessarily simplify the complex reality of regional variations and fusion
practices that characterize living musical traditions. Furthermore, the use of YouTube links for
audio access, while providing multimodal capabilities, creates potential sustainability issues if the
source videos become unavailable, highlighting the broader challenge of creating stable, long-term
resources for computational ethnomusicology.

Beyond the Lyra dataset specifically, this research faces broader limitations in cultural repre-
sentation and scope. While the cross-cultural similarity study expands coverage to nine musical
traditions, the investigation still focuses primarily on a subset of global musical diversity, leaving
vast areas unexplored. Major musical traditions from sub-Saharan Africa, indigenous Americas,
Southeast Asia, and other regions remain underrepresented, limiting the generalizability of find-
ings about cross-cultural transfer patterns and adaptation strategies. This limited scope reflects
broader challenges in computational ethnomusicology, where resource constraints and data avail-
ability often determine which traditions can be included in comparative studies.

189



Chapter 7. Conclusions

The framing of musical traditions within geographical and cultural categories, while necessary
for systematic investigation, risks oversimplifying the complex reality of musical cultures. The use
of terms like “Western” and “non-Western” music, though common in computational research, cre-
ates artificial dichotomies that may not reflect the fluid, interconnected nature of musical traditions.
Musical cultures exist on a continuum shaped by historical exchanges, migration patterns, and cul-
tural adaptation rather than strict geographical divisions. The computational approach employed
in this research, while providing valuable quantitative insights, operates within a data-driven frame-
work that may not capture the historical, theoretical, and cultural knowledge embedded within
specific musical traditions.

The human perception study, while including participants from 21 countries with diverse mu-
sical backgrounds, exhibits a notable imbalance with the majority (62.4%) from Greece and other
European countries, with relatively few participants from the cultures represented in the musical
datasets. This participant distribution limits the ability to measure computational models’ cultural
bias by evaluating their alignment with listeners from different musical backgrounds, an analysis

that a more culturally diverse participant pool would enable.

7.4.2 Methodological and Technical Constraints

The methodological approaches employed throughout this research reflect broader limitations
in current computational approaches to multicultural music analysis. The utilization of supervised
learning, particularly classification tasks, while providing clear evaluation metrics, may not cap-
ture the more nuanced aspects of musical understanding that are central to cross-cultural music
analysis. Many aspects of musical meaning, including improvisation, ornamentation, and con-
textual interpretation, resist categorical classification and may require alternative computational
frameworks that are not fully explored in this research. Furthermore, the traditional evaluation
metrics, designed primarily for commercial music applications, may inadequately reflect the cul-
tural significance of correctly identifying rare but important musical attributes in traditional music
contexts.

The cross-cultural similarity study, while providing valuable insights into human-computational
alignment, is constrained to three similarity dimensions (overall musical, cultural, and recommendation-
level) and may not capture other important aspects of cross-cultural music perception. The use
of pairwise similarity judgments, while enabling systematic comparison, may not fully capture the
complex, context-dependent nature of musical similarity perception that varies based on listening
purpose, cultural background, and individual experience.

The temporal constraints of the research necessitated certain simplifications that may have
limited the depth of investigation. Computational constraints required limiting the scale of fine-
tuning experiments and the exploration of alternative adaptation strategies. The context length
limitations during model training and evaluation, typically constrained to short audio segments
of 5-30 seconds, may prevent the capture of longer-term musical structures that are crucial for
understanding many traditional music forms. This limitation is particularly significant for musical
traditions that employ extended improvisational sections or complex structural organizations that
unfold over longer time periods.

The foundation models evaluated were primarily trained on commercial music datasets, poten-
tially limiting their understanding of traditional world music characteristics. Some signal process-
ing features exhibit tendencies toward Western musical concepts that may not adequately capture
relationships important in non-Western traditions. These limitations affect both individual model

performance and the ensemble methods that combine different computational approaches.
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7.4.3 Foundation Model Architecture Limitations

The foundation models evaluated and adapted in this research carry inherent limitations that
reflect broader challenges in developing universal music representations. The audio tokenizers
used in these models, such as EnCodec [167], are trained predominantly on commercial music and
may introduce systematic biases in the initial representation of diverse musical characteristics.
This limitation affects the representational granularity available for non-Western traditions, as
the tokenizer may not adequately capture microtonal inflections, complex rhythmic patterns, or
distinctive timbral characteristics of traditional instruments.

The models operate primarily at the audio signal level without incorporating the broader con-
textual knowledge, including performance practices, cultural meanings, and historical contexts,
that shapes musical understanding within specific traditions. This limitation reflects a funda-
mental challenge in current approaches to music AI, where models excel at pattern recognition in
acoustic signals but struggle to incorporate the cultural and contextual knowledge that is essential
for meaningful musical understanding across traditions.

The finding that foundation models tend to emphasize timbral characteristics while humans pri-
oritize melodic content reveals a fundamental architectural limitation that affects human-computational
alignment. Current pre-training objectives and architectures may be inherently biased toward
learning spectral patterns that are more easily captured through self-supervised learning objec-
tives, potentially missing the melodic relationships that are most salient to human perception
across cultures.

The adaptation strategies explored in this research, while effective within their scope, may be
insufficient for fully addressing the representational challenges posed by diverse musical traditions.
The two-stage continual pre-training approach, while computationally efficient and practically
necessary under resource constraints, may not be optimal for larger computational budgets or
different model architectures. The exploration of adaptation strategies was limited to specific
architectural approaches and may not generalize to other foundation model designs or scaling

regimes.

7.4.4 Evaluation and Validation Challenges

The evaluation frameworks employed in this research face fundamental challenges that limit the
confidence with which conclusions can be drawn about cross-cultural music representation learning.
The lack of standardized benchmarks for many musical traditions complicates comparative eval-
uation and may lead to conclusions that are not robust across different evaluation contexts. The
datasets used for evaluation, while representing diverse traditions, vary significantly in size, anno-
tation quality, audio quality, and cultural coverage, making direct comparisons across traditions
potentially misleading.

The human perception study, while providing crucial insights into human-computational align-
ment, faces limitations in participant recruitment, cultural representation, and evaluation scope.
The cross-cultural similarity task, while systematic and replicable, represents only some aspects of
musical understanding and may not capture other dimensions of cross-cultural music perception
that may be equally important for developing culturally aware music Al systems.

The influence of cultural background on evaluation outcomes represents a crucial finding that
affects the interpretation of all cross-cultural music research. The discovery that culturally adapted
models may appear to underperform when evaluated by participants from different cultural back-

grounds highlights the importance of considering participant demographics in cross-cultural eval-
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uation studies. This finding suggests that the effectiveness of computational approaches to mul-
ticultural music representation cannot be assessed independently of the cultural context of the
evaluation, adding another layer of complexity to developing universal music Al systems.

The risk of data leakage, even under seemingly valid experimental protocols, represents a signif-
icant concern for the validity of cross-cultural transfer learning results. Subtle overlaps in musical
artists, recording conditions, instrumentation, or cultural contexts between training and evalua-
tion domains may introduce spurious correlations that inflate performance estimates. The standard
practice of using dataset-provided train/test splits, while following established protocols, may not
adequately control for these forms of contamination in cross-cultural scenarios where the bound-
aries between musical traditions are often fluid and overlapping.

The representativeness of the datasets used for different musical traditions introduces additional
validation concerns. The utililzed datasets, while carefully curated and culturally informed, may
not fully capture the diversity within each tradition, potentially missing crucial aspects such as
regional variations, contemporary adaptations, or specific performance contexts. This limitation
affects the generalizability of findings and may lead to conclusions about musical traditions that

are based on incomplete representations of their full diversity.

7.4.5 Theoretical and Interpretive Limitations

This research operates within a computational framework that, while providing valuable quan-
titative insights, has inherent limitations in addressing the theoretical and interpretive aspects of
cross-cultural music analysis. The data-driven approach, while reducing certain forms of analytical
bias, may miss important aspects of musical understanding that require cultural knowledge and
theoretical frameworks specific to individual traditions. The computational patterns of similarity
and transfer identified in this research, while meaningful from a technical perspective, may not
align with musicological understanding of relationships between musical traditions.

The emphasis on automatic tagging tasks and similarity assessment, while providing clear
evaluation metrics, represents only a subset of musical understanding and may not capture other
dimensions of musical cognition and cultural meaning that are equally important for cross-cultural
music analysis. The research does not adequately address questions of musical aesthetics, spiritual
or ritual significance, or the social functions of music within different cultural contexts, all of which
are crucial for comprehensive understanding of musical traditions.

The temporal scope of this research, conducted over a specific period with particular datasets
and computational tools, limits the stability and generalizability of conclusions. The rapid evo-
lution of foundation models and computational approaches means that specific technical findings
may become obsolete, while the broader insights about cross-cultural representation learning and
human-computational alignment may have more lasting value. This limitation highlights the need
for continued research that can adapt to evolving computational capabilities while maintaining
focus on the fundamental challenges of multicultural music representation and its alignment with

human perception.

7.5 Future Directions

Building upon the contributions and addressing the limitations identified in this research, sev-
eral promising directions emerge for advancing multicultural music representation learning and

improving human-computational alignment in cross-cultural music understanding.
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The expansion of dataset coverage represents a fundamental priority for enabling world music
representation learning. Recent initiatives in computational ethnomusicology, such as the develop-
ment of large-scale traditional music corpora [33] and community-driven annotation projects [209],
provide models for creating more comprehensive datasets that include underrepresented musical
traditions from Africa, East Asia, and the Americas. Future dataset development should empha-
size multimodal collections that integrate audio, video, lyrics, cultural context, and performance
practice information, following emerging trends in multimodal machine learning [210]. The de-
velopment of annotation schemes that capture tradition-specific musical attributes and concepts,
moving beyond conventional commercial music categories, requires close collaboration between

computational researchers and cultural practitioners to ensure authenticity and relevance.

The need for more culturally diverse participant pools in human perception studies represents
a critical direction for future research. With larger and more representative participant popula-
tions from different musical traditions, researchers could measure computational models’ cultural
bias by evaluating their alignment with listeners from diverse musical backgrounds. This would
enable investigation of whether computational models exhibit systematic biases toward certain cul-
tural contexts and how these biases could be mitigated through improved training or adaptation
strategies.

Methodological innovations building upon the approaches developed in this dissertation offer
several promising directions. The finding that humans prioritize melodic content while foundation
models emphasize timbral characteristics suggests the need for pre-training objectives that bet-
ter capture melodic relationships across cultures. Self-supervised learning approaches specifically
designed for music understanding across different traditions could potentially reduce reliance on
annotated data while capturing the distinctive characteristics of diverse musical systems [211-213].
Recent advances in adaptive architectures, including mixture-of-experts models and dynamic neu-
ral networks [214, 215], suggest possibilities for developing models that can dynamically adapt to
different musical traditions while maintaining computational efficiency.

The success of ensemble methods in achieving superior human-computational alignment sug-
gests that future research should explore more sophisticated approaches to combining different
computational methods. Advanced ensemble architectures that can learn optimal combinations of
interpretable features and learned representations, rather than relying on simple linear combina-
tions, may achieve even better alignment with human perception while maintaining interpretability.
Multi-task learning approaches that simultaneously optimize for human similarity prediction and
traditional music analysis tasks could produce models that better balance multiple aspects of

musical understanding.

Cross-modal learning approaches that integrate audio analysis with contextual knowledge, vi-
sual information, and textual descriptions align with recent trends in multimodal foundation models
[216, 217] and could provide more comprehensive approaches to cultural music understanding. The
integration of cultural metadata, performance practice information, and contextual knowledge into
computational models represents a promising direction for developing more culturally aware music

AT systems that go beyond purely acoustic analysis.

The development of foundation models specifically designed for multicultural music represen-
tation requires fundamental changes in current approaches to model development. Rather than
adapting Western-centric models post-hoc, future work should focus on developing foundation
models pre-trained from the outset on diverse musical traditions, following recent trends in mul-
tilingual language models [29]. The creation of audio tokenizers specifically designed for diverse

musical traditions could address the limitations of current systems [167, 218] in representing micro-
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tonal inflections, complex rhythmic patterns, and distinctive timbral characteristics of traditional
instruments.

Advanced mechanisms that allow models to adapt to cultural context represent an emerging
area of research in culturally-aware Al systems [219]. Future foundation models could incorporate
explicit cultural conditioning mechanisms that enable them to adjust their processing based on the
cultural context of the input music, potentially improving both technical performance and cultural
appropriateness.

The development of evaluation frameworks that better capture the multi-dimensional nature
of cross-cultural music perception represents another important direction. Current evaluation ap-
proaches, while systematic, may not adequately assess the complex ways in which humans perceive
musical relationships across cultures. Future frameworks should consider incorporating cultural
proximity into discrimination metrics, recognizing that some cultural boundaries are more perme-
able than others, and developing evaluation approaches that can assess model performance across
different aspects of musical understanding beyond similarity assessment.

The translation of technical advances into practical applications with cultural and societal im-
pact represents a crucial direction for future work. Cultural heritage preservation applications
could leverage the computational tools developed in this research to support documentation and
analysis of endangered musical traditions, building upon recent initiatives in digital cultural her-
itage [220]. Educational applications that help students understand diverse musical traditions and
their relationships could democratize access to cross-cultural musical knowledge while respecting
cultural specificity.

Cross-cultural recommendation systems that facilitate meaningful discovery across musical tra-
ditions while respecting their distinctive characteristics represent an emerging area of research in
culturally aware music information retrieval [221, 222]. The insights from the human perception
study regarding the importance of melodic content and the effectiveness of ensemble methods could
inform the development of recommendation systems that better align with how humans actually
perceive musical relationships across cultures.

Creative tools that support cross-cultural music creation and collaboration, while preserving
distinctive cultural characteristics, represent an emerging area of research in Al-assisted creativity
[14]. Such tools could leverage the computational understanding of cross-cultural musical rela-
tionships developed in this research while ensuring that they enhance cultural diversity in music
creation.

Finally, the establishment of ongoing evaluation frameworks that can continuously assess the
alignment between computational approaches and human cross-cultural music perception repre-
sents an important infrastructure need for the field. Regular evaluation campaigns, similar to
those established in other areas of Al research, could track progress in developing more culturally
aware and perceptually aligned music Al systems while providing standardized benchmarks for

comparing different approaches.

7.6 Closing Thoughts

This dissertation has addressed fundamental challenges in developing computational represen-
tations that can effectively capture the rich diversity of musical traditions worldwide while aligning
with human cross-cultural music perception. Through systematic investigation spanning dataset
development, methodological innovation, comprehensive evaluation, adaptive enhancement, and
human perceptual validation, this research has contributed to advancing the field of multicul-
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tural music representation learning while revealing both the potential and limitations of current
computational approaches.

The journey from the Lyra dataset through cross-cultural transfer learning, few-shot learning
methodologies, foundation model adaptation, and human-computational alignment studies reflects
an evolving understanding of how computational models can bridge cultural boundaries in music
representation. The research demonstrates that while truly universal music representations that
perfectly align with human perception remain an aspirational goal, significant progress can be
achieved through approaches that respect both cross-cultural commonalities and culture-specific
characteristics.

The findings of this research have implications beyond the technical domain of music infor-
mation retrieval. As music technologies increasingly mediate how we discover, create, and share
music globally, the development of more culturally aware computational approaches that align with
human perceptual understanding becomes essential for preserving the rich diversity of human mu-
sical expression. The computational tools, methodological frameworks, and evaluation approaches
developed in this dissertation provide pathways for ensuring that technological advances in music
AT celebrate rather than homogenize the world’s musical heritage while serving users in ways that
respect their perceptual understanding of musical relationships.

Looking toward the future, the research presented here represents foundational work in an
emerging field that sits at the intersection of computational intelligence, cultural understanding,
and human perception. The methodologies, insights, and open-source resources contributed by
this dissertation provide building blocks for future research that can further advance our ability
to computationally represent and analyze the full spectrum of human musical expression while
ensuring that these representations align with how humans actually perceive and understand music
across cultures.

It is my hope that this work will inspire continued exploration of multicultural music rep-
resentation learning with explicit attention to human-computational alignment, advancing both
technical capabilities and cultural understanding in our rapidly evolving technological landscape.

Beyond the technical contributions, I hope this work serves to highlight the fundamental role
that music plays in human development, a universal truth that transcends cultural boundaries, as
Plato observed:

Ap” oly, fjy & éyd, & Ialkwy, toltwy éveka kupiwtdtn év povoikij tpoer), dt udliota
katadvetal €15 T évTog Tis Yuxiis 6 te puiuog kal appovia, kai éppwuevéotata dntetar avtiis pépovta
™y eboxnuoolvny, kai Tolel evoynuove, édv g dpdds tpagfy, € 6¢ urj, tovvavtiov;!

- IM\&twv, ToAitela, I'.401d

L«And is it not for this reason, Glaucon, that education in music is most sovereign, because more than anything
else rhythm and harmony find their way to the inmost soul and take strongest hold upon it, bringing with them and
imparting grace, if one is rightly trained, and otherwise the contrary?”, Plato, Republic, 3.401d
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Appendix A

Tags Distribution per Dataset

MagnaTagATune FMA-medium Lyra

guitar 18.76% Rock 28.41% genres—Traditional T1.71%
classical 16.52% Electronic 25.26% instrument—Voice 74.39%
slow 13.711% Punk 13.28% instrument—Violin 56.18%
techno 11.42% Experimental 9.0% instrument—Percussion 54.27%
strings 10.55% Hip-Hop 8.8% instrument-Laouto 49.81%
drums 10.05% Folk 6.08% instrument—Guitar 39.43%
electronic 9.74% Garage 5.67% instrument—Klarino 32.17%
rock 9.17% Instrumental 5.4% genres—Nisiotiko 25.29%
fast 8.92% Indie-Rock 5.17% place-None 23.76%
piano 7.95% Pop 4.74% instrument—Accordion 22.68%
ambient 7.56% Chip Music 4.12% instrument—Bass 21.97%
beat 7.37% International 4.07% instrument—Santouri 19.3%
violin 7.06% Ambient Electronic 4.02% genres—Aegean 17.64%
vocal 6.69% IDM 3.95% place-Aegean-sea 17.64%
synth 6.64% Soundtrack 3.28% instrument-Bouzouki 14.01%
female 5.7% Techno 3.21% genres-Epirotic 13.69%
indian 5.39% Downtempo 3.16% place-Epirus 13.69%
opera 5.01% House 2.79% genres—Mikrasiatiko 10.19%
male 4.95% Chiptune 2.78% place-Asia-minor 10.19%
singing 4.68% Trip-Hop 2.68% genres—Rebetiko 9.17%
vocals 4.58% Hardcore 2.63% instrument—Oud 8.15%
no vocals 4.48% Post-Punk 2.58% instrument-Lyra 7.83%
harpsichord 4.23% Psych-Rock 2.5% genres—Laiko 6.56%
loud 4.2% Classical 2.48% instrument-Kanonaki 5.8%
quiet 4.08% Dubstep 2.31% instrument—Piano 5.8%
flute 3.96% Metal 2.31% genres—Macedonian 5.35%
woman 3.93% Singer-Songwriter 2.3% place-Macedonia 5.35%
male vocal 3.87% Avant-Garde 2.24% genres—Pontian 5.16%
no vocal 3.85% Glitch 2.2% place-Pontus 5.16%
pop 3.85% Lo-Fi 2.2% genres—Central-Greek 4.78%
soft 3.81% Power-Pop 2.18% place—Central-Greece 4.78%
sitar 3.58% Loud-Rock 2.14% genres—Peloponnesian 4.711%
solo 3.19% Post-Rock 2.07% place—Peloponnese 4.71%
man 2.87% Experimental Pop 2.05% instrument—Mandolin 4.52%
classic 2.67% Old-Time / Historic 2.04% instrument-Ney 3.95%
choir 2.66% Dance 2.02% place—Smyrni 3.89%
voice 2.57% Noise 1.95% instrument-Baglamas 3.76%
new age 2.51% Ambient 1.63% genres—Urban-folk 3.69%
dance 2.51% Noise-Rock 1.58% instrument—Tambouras 3.31%
female vocal 2.49% Jazz 1.54% instrument—Tsampouna 3.18%
male voice 2.49% Chill-out 1.3% genres—Cretan 3.12%
beats 2.45% Rap 1.27% place-Crete 3.12%
harp 2.41% Electroacoustic 1.27% genres—Newer 2.87%
cello 2.22% Progressive 1.11% genres—lonian 2.8%
no voice 2.22% Sound Collage 0.97% place-Tonian-sea 2.8%
weird 2.15% Reggae - Dub 0.93% genres—Thracian 2.68%
country 2.09% Improv 0.92% place—Thrace 2.68%
female voice 1.95% Shoegaze 0.92% genres—Vlachic 2.61%
metal 1.95% Balkan 0.88% place-Metsovo 2.42%
choral 1.89% Drum & Bass 0.87% genres—Urban-light 2.36%

Table A.1. Top 50 Label Frequencies by Dataset (Part 1 of 2). Relative frequencies (%)
of the most common labels in MagnaTagATune, FMA-medium, and Lyra datasets, highlighting
the long-tailed distributions.
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Turkish-makam Hindustani Carnatic
instrument—Voice 63.33%|  instrument—Voice 83.9% instrument—Voice 82.35%
instrument-Kanun 31.09%| instrument-Tabla  53.03% instrument—Violin 78.45%
instrument-Tanbur 27.93% form-Khayal 41.33% instrument-Mridangam  75.65%

instrument—Ney 27.56% |instrument—Harmonium 39.25% form—Kriti 70.87%
instrument—performing orchestra 26.38% tala—Teentaal 35.35% tala—adi 51.88%
instrument—Oud 24.36%| instrument-Tambura 27.88% instrument-Ghatam 30.32%
instrument—Classical kemenge 22.79% tala—Ektaal 21.58% instrument—Khanjira 17.65%
instrument—Cello 17.83%| instrument-Pakhavaj 7.88% tala—rupaka 11.98%
instrument—Violin 17.62%| instrument-Sarangi  7.3% tala-mishra chapu 7.27%
makam—Hicaz 10.63% form-Dhrupad 7.05% | form—Varnam - Tana Varnam 5.21%
usul-Aksak 10.38% form—Thumri 5.56% form—Alapana 4.67%
instrument-Percussion 9.75% tala—Jhaptaal 4.98% tala-khanda chapu 3.22%
usul-Diiyek 8.61% instrument—Sitar 4.23% form—Pallavi 2.99%
usul-Aksaksemai 8.53% raga—Bhairabi 4.23% instrument—Morsing 2.91%
makam-Nihavent 6.85% form-Bhajan 4.07% raga-ragamalika 2.87%
makam-Hiizzam 6.3% | raga-Yaman kalyan  3.32% raga—thodi 2.6%
instrument—Clarinet 5.89% form-Tarana 3.07% form-Thillana 2.53%
usul-Curcuna 5.72% tala—Rupak 2.99% form-Mangalam 2.22%
instrument—Bendir 5.71% | instrument—Bansuri  2.9% raga—bhairavi 2.18%
makam-Ugsak 5.71% raga-Khamaj 2.49% raga—kalyani 2.03%
makam-Kiirdilihicazkar 5.39% raga-Bageshree 2.32% raga-kamas 1.99%
makam-Rast 5.0% raga—Malkauns 2.32% raga—saurashtram 1.95%
instrument-Kudiim 4.64% | instrument—Violin  2.07% raga—sankarabharanam 1.65%
instrument—Viola 4.36% raga-Des 2.07% raga-kamavardani 1.45%
usul-Yiiriiksemai 4.17% raga—Todi 1.99% tala—atta 1.45%
usul-Sofyan 4.13% raga—Marwa, 1.91% raga—behag 1.42%
makam—Segah 3.85% raga—Miya malhar 1.91% instrument—Thavil 1.38%
usul-Agiraksak 3.54% tala—Jhoomra 1.91% raga-begada 1.34%
makam-Hiiseyni 3.09% raga-Lalat 1.83% raga—mohanam 1.26%
usul-Devr-i Kebir 2.83% instrument-Sarod 1.74% form-Javali 1.23%
usul-Senginsemai 2.75% | raga—Ahir bhairav = 1.74% raga—sindhubhairavi 1.23%
instrument—Daire 2.64% tala—Sooltal 1.74% form—Thiruppugazh 1.19%
makam—Hicazkar 2.62% | instrument-Santoor  1.66% instrument—Tambura 1.19%
usul-Semai 2.51% | raga-Bilaskhani todi 1.66% raga-saveri 1.19%
makam—Mahur 2.47% raga—Darbari 1.58% raga—kamboji 1.15%
usul-Hafif 2.34% | raga-Mishra piloo  1.58% raga—kapi 1.15%
instrument—Double bass 2.19% raga—Bhairav 1.49% raga-riti gaula 1.15%
usul-Nimsofyan 2.1% raga-Hamsadhvani  1.49% form—Tani avartanam 1.11%
makam-—Suzinak 1.89% raga-Bihag 1.41% raga—Purvikalyani 1.11%
instrument-Strings 1.76% raga—Basant 1.33% raga-nata 1.11%
makam-Karcigar 1.68% |raga—Puriya dhanashree 1.33% raga—surati 1.11%
makam-Muhayyer 1.68% raga—Bhoop 1.24% raga—hamsadhvani 1.07%
usul-Tiirkaksag1 1.67% | raga—Mishra maand 1.24% raga-madyamavati 1.07%
makam—Saba 1.65% tala—Chautal 1.24% form—Bhajan 1.03%
usul-Muhammes 1.55% form-Dadra 1.16% raga—hindolam 1.03%
usul-Serbest 1.48% | instrument-Shehnai  1.16% raga-karaharapriya 1.0%
instrument—Accordion 1.4% raga—Abhogi 1.16% |form—Keertana (Devara nama) 0.96%
makam—Beyati 1.4% raga—Jog 1.16% raga—ananda bhairavi 0.96%
makam-Acemasgiran 1.37% raga—Madhuvanti 1.16% raga—kanada 0.96%
makam-Neva 1.35% raga—Sohini 1.16% raga-mukhari 0.96%

Table A.2. Top 50 Label Frequencies by Dataset (Part 2 of 2). Relative frequencies (%)
of the most common labels in Turkish-makam, Hindustani, and Carnatic datasets, showing similar
long-tailed patterns across non-Western traditions.
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The above tables present the relative frequencies of the top 50 labels in each of the six datasets
examined in this work. These distributions highlight the long-tailed nature of musical attributes
across diverse cultural traditions, with a small number of tags accounting for the majority of
annotations while many of them appear only rarely. This imbalance demonstrates the need for
specialized methods to handle rare but semantically important musical attributes.
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Supplementary Material for Multi-Label Few-Shot

Learning

The following table shows the number of: prototypes Np, unique items in the support set |S]
and query set |Q], true labels per item N,/item and predicted labels per item NN;/item across all
datasets and methods. The ML-FSL task follows a “30-way 3-shot” setup, including both “Base”
and “Novel” classes, with the model trained “from scratch” and evaluated on each dataset and
method. The table presents the average values over 5 runs, along with the standard deviation.
The variation in the number of prototypes Np for the LC-Protonets method arises from sampling
different support items at each run, as their label combination power sets result in varying LC-
Prototypes. Notably, the proposed method maintains the number of predicted labels N;/item close

to the true value across datasets, unlike the comparative approaches.

dataset method Np S| | |Q] ,NZ _Né
item item

MagnaTag- ML-PNs 30 15.8£1.6
ATune One-vs.-Rest 30 49 | 3761 2.3 18.842.2
LC-Protonets 708+366 2.31+0.2
FMA. ML-PNs 30 13.3+0.3
medium One-vs.-Rest 30 60 | 4669 1.8 17.440.9
LC-Protonets 115+11 2.2140.1
ML-PNs 30 22.44+3.8
Lyra One-vs.-Rest 30 32 298 6.0 27.3+4.4
LC-Protonets 33611831 5.240.1
Turkish. ML-PNs 30 30.0£0.0
makam One-vs.-Rest 30 42 | 1015 3.7 29.940.2
LC-Protonets | 158751+2647 4.0+0.4
Hindu ML-PNs 30 25.3+3.7
. One-vs.-Rest 30 51 186 3.7 27.8+3.2
stanl 1O Protonets | 1225+87 3.940.1
ML-PNs 30 19.4+4.3
Carnatic One-vs.-Rest 30 53 469 4.8 27.6+3.5
LC-Protonets 1438+113 4.840.1

Table B.1. ML-FSL Method Operational Metrics. Comparison of prototype count, support-
/query characteristics and number of predicted labels, across methods and datasets for a “30-way
3-shot” task with both base and novel classes.
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The following tables present the complete performance results for multi-label few-shot learning
methods across all six music datasets. Specifically, Macro-F1 (M-F1) and micro-F1 (m-F1) scores
(%) with 95% confidence intervals are reported, when utilizing (i) training from scratch, (ii) a pre-
trained backbone model followed by full fine-tuning, (iii) a pre-trained backbone model followed by
fine-tuning of the final layer, and (iv) a pre-trained backbone model without any fine-tuning. Rows
represent the multi-label few-shot learning methods, and columns represent the domains. For each
domain and method, evaluation is performed on a “15-way 3-shot” task with “Novel” classes, and a
“45-way 3-shot” task with “Base & Novel” classes. It is observed that using a pre-trained backbone
improves the performance of all methods, with LC-Protonets proving to be the best approach in
almost all setups and domains. Also, when no fine-tuning is performed, the comparative approaches
show a significant drop in performance, while LC-Protonets maintain similar or even better results

compared to the respective fine-tuned models.

dataset MagnaTagATune FMA-medium
ML-FSL task 15-way 3-shot 45-way 3-shot 15-way 3-shot 45-way 3-shot
metric M-F1 m-F1 M-F1 m-F1 M-F1 m-F1 M-F1 m-F1
method training from scratch

ML-PNs 20.9+1.61  20.53+1.9 15.69+0.71 16.89+0.91 | 23.58+1.2 22.61+1.06 13.67+0.44 14.91+0.41
One-vs.-Rest 19.16+£0.79  18.8+0.79  13.4£0.58 13.78+0.77 | 18.22£2.3  17.93+2.3  10.2+0.37  10.66£0.5
LC-Protonets 25.044+3.25 27.04+3.0 18.77+1.48 27.69+1.77| 20.01+2.28 23.424+2.1 14.1940.77 28.83+1.73

method pre-trained backbone and full fine-tuning

ML-PNs 28.514+0.36  27.264+0.43 21.02+0.16 22.71+0.11 | 26.34+1.42 25.39+1.39 16.63+0.42 17.5940.53
One-vs.-Rest 22.19+0.91 21.940.97 15.81+0.81 16.67+0.99 | 23.79+1.24 23.15+£1.74 13.814+0.44 14.274+0.76
LC-Protonets 40.41+1.33 42.8541.37 29.52+1.54 40.4+2.01 |{30.58+3.45 33.231+3.55 26.63+1.6 42.66+1.11

method pre-trained backbone and fine-tuning of the last layer

ML-PNs 28.14+0.72  26.884+0.8 20.52+0.37 22.02+0.58 | 25.39£1.16 24.55+1.14 15.940.32 17.05+0.45
One-vs.-Rest  24.5+3.3  23.82+£3.19 16.06+1.39 16.56+1.64 | 24.344+1.25 23.42+1.67 14.27+£0.43 15.18+0.67
LC-Protonets 40.68+1.46 42.994+1.09 29.14+1.62 40.11£2.09| 31.0+£2.47 33.68+2.41 26.3711.24 42.651+0.71

method pre-trained backbone without any fine-tuning

ML-PNs 14.57+£0.02 14.6+£0.01  10.9£0.02 11.4+0.02 | 13.71+£0.01 13.72+0.01  7.940.01 8.351+0.01
One-vs.-Rest 14.56+£0.06 14.594+0.06 10.9£0.02 11.39+0.02 | 13.71+0.03 13.72+0.03 7.894+0.01  8.35+0.01
LC-Protonets 40.610.88 42.954+1.13 29.194+1.65 40.13+2.02|31.52+2.45 33.81+£2.71 26.82+1.5 43.2310.8

dataset Lyra Turkish-makam
ML-FSL task 15-way 3-shot 45-way 3-shot 15-way 3-shot 45-way 3-shot
metric M-F1 m-F1 M-F1 m-F1 M-F1 m-F1 M-F1 m-F1
method training from scratch

ML-PNs 30.26+4.73  29.97+£4.77 26.22+1.39 30.82+1.72 | 13.35+0.11 13.424+0.11 14.96+0.08 16.58+0.09
One-vs.-Rest 24.994+3.54 25.0+3.41 24.084+0.98 27.67+1.54 | 13.244+0.09 13.314+0.11 14.854+0.07 16.43+0.06
LC-Protonets 46.3917.11 48.8248.16 42.81+5.47 60.47+5.99(14.39+2.93 17.391+2.66 18.854+1.93 37.01+2.59

method pre-trained backbone and full fine-tuning

ML-PNs 34.33+1.41 34.2+1.16 30.81+1.22 36.03+1.44 | 17.74+0.93 17.4+£0.63 23.89+0.52 24.26+0.5
One-vs.-Rest 26.02+3.95 25.774+3.51 24.224+0.72 27.324£0.86 | 15.22+0.7 15.124+0.57 18.494+0.88 20.41+1.16
LC-Protonets 57.24+6.75 59.6946.25 50.17+2.54 68.491+2.56(23.09+1.45 24.13+1.12 32.314+0.9 56.45+0.64

method pre-trained backbone and fine-tuning of the last layer

ML-PNs 35.52+2.09 35.34+£2.04 31.35+£0.4 37.15+0.51 | 16.35+1.44 16.15+1.23 21.05+£2.12 22.95+1.89
One-vs.-Rest 28.18+1.91 28.14+1.9 27.16+1.11 31.33£1.36 | 16.23+0.63 16.03£0.7  20.5+1.69 22.35+1.77
LC-Protonets 61.491+4.62 63.774+4.11 52.36+2.94 70.88+2.55(24.26+2.01 25.45+1.95 33.124+0.81 57.87+0.7

method pre-trained backbone without any fine-tuning

ML-PNs 23.45+0.08 23.53+£0.08 23.71+0.11 27.134+0.15 | 13.324+0.11 13.384+0.11 14.96+0.06 16.57+0.07
One-vs.-Rest 23.494+0.13 23.56+0.12 23.68+0.04 27.08+0.09 | 13.224+0.07 13.2840.07 14.844+0.04 16.4240.05
LC-Protonets 64.131+2.21 65.64+2.6 52.4+2.5 70.781+2.24(26.08+2.65 26.291+2.36 32.44+1.2 56.34+0.92

Table B.2. ML-FSL Performance Across Training Conditions (Part 1 of 2). Macro-F1
and micro-F1 scores (%) with confidence intervals for MagnaTagATune, FMA-medium, and Lyra
datasets across four training scenarios and three ML-FSL methods.
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dataset Hindustani Carnatic
ML-FSL task 15-way 3-shot 45-way 3-shot 15-way 3-shot 45-way 3-shot
metric M-F1 m-F1 M-F1 m-F1 M-F1 m-F1 M-F1 m-F1
method training from scratch
ML-PNs 13.34+0.98  13.5440.76 - - 12.87+1.16 13.05+1.18 14.181+0.48 22.48+1.66
One-vs.-Rest  13.03+0.4 13.1940.46 - - 12.79+0.14 12.86+0.17 14.05+1.12  19.71%0.69
LC-Protonets 20.184+7.89 25.74+8.76 - - 9.354+3.25  11.13+2.87  13.05+£0.9 54.64+1.65
method pre-trained backbone and full fine-tuning
ML-PNs 16.43+1.55 15.85+1.28 - - 13.134+0.41 13.16+0.41 15.23+0.45 22.72+1.77
One-vs.-Rest  14.4+2.24 14.1+1.57 - - 13.03+£0.21  13.08+0.2  14.664+0.28 20.81+1.28
LC-Protonets 21.82+43.78 29.7815.23 - - 10.13+4.22  11.86+4.57 17.18+1.35 62.7+2.95
method pre-trained backbone and fine-tuning of the last layer
ML-PNs 17.2+1.81 16.2+1.48 - - 12.83+0.34 12.914+0.29 14.98+0.81 21.51+2.65
One-vs.-Rest 15.61+£1.89  15.04+1.41 - - 13.440.62 13.44+0.62 14.37+0.53 20.52+0.91
LC-Protonets 26.081+3.08 32.22+4.42 - - 10.82+3.66  11.43+3.78 16.94+1.32 63.34+1.81
method pre-trained backbone without any fine-tuning
ML-PNs 12.740.47  12.854+0.48 - - 12.7240.2 12.774£0.2  14.474+0.06  19.824+0.09
One-vs.-Rest  12.844+0.21  12.9740.22 - - 12.7440.12 12.784+0.12 14.554+0.04 19.914+0.06
LC-Protonets 26.061+3.18 31.43+3.02 - - 11.3£3.91 10.91+3.34 17.02+0.94 62.35+2.36

Table B.3. ML-FSL Performance Across Training Conditions (Part 2 of 2). Macro-F1
and micro-F1 scores (%) with confidence intervals for Turkish-makam, Hindustani, and Carnatic

datasets. Note: “-” denotes that there are not enough data samples for the “N-way K-shot” setup
in the dataset.

205






Appendix C

Signal Processing Feature Implementation Details

This appendix provides complete mathematical formulations and implementation details for all
signal processing features described in the respective Section of the main paper.

A multi-dimensional framework is developed treating rhythm, melody, harmony, and timbre as
distinct but complementary dimensions. Each employs specialized feature extraction and similarity

computation methods preserving unique characteristics and temporal dynamics.

C.1 Melody Feature Analysis

Melody analysis extracts melodic content from polyphonic audio by treating fundamental fre-
quency (F0) as the dominant frequency skeleton capturing prominent melodic content. The frame-
work uses dual-resolution pitch class analysis with both semitone (Western music) and quarter-tone

(multi-cultural) representations for comprehensive melodic characterization.

C.1.1 Feature Extraction

Let y[n] denote the discrete audio signal with sampling rate f; = 22050 Hz and hop length
H = 512 samples.
FO0 Extraction: PYIN algorithm for robust FO estimation [56]:

anvyp:PYIN(yafmin7fmax7f57H)7 (Cl)

where fiin = 65.4 Hz (C2), finax = 2093 Hz (CT), v is voicing probability, and p contains confidence

values. Clean FO extraction:

foloan — f [v A isfinite(fy)). (C.2)
Dual-Resolution Pitch Class Analysis: For each frequency f € f(‘jlea“, compute MIDI-like
number: f
=121 - . .
m 0g, <440>+69 (C.3)

Quarter-tone pitch classes (24 bins per octave):
Pequaster = (2m) mod 24]. (C.4)
Semitone pitch classes (12 bins per octave):
PCsemi = |m mod 12]. (C.5)
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Appendix C. Signal Processing Feature Implementation Details

Waveform with FO Trajectory

Dataset: hindustani, audio: 8cee9d53-b105-45bc-bd1d-4a608d59b2fd Melody in MIDI Note Space
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Figure C.1. Melody Feature Extraction on Hindustani Classical Music. Comprehen-
sive visualization of melodic analysis components. Top left: waveform with FO trajectory (red)
capturing microtonal ornamentations. Top right: melody representation in MIDI space showing
pitch structure. Middle: 24-pitch class distribution with detected micro-tones and melodic interval
distribution dominated by small intervals. Bottom: pitch stability and contour analysis demon-
strating both local ornamental details and global melodic structure.

Normalized pitch class histograms:

|ggtean |
hpc,quarter [k] = Z 1[pcquarter,i = k‘], k=0,1,...,23 (06)
=1
|gglean |
hpesemilk] = > 1pCsemii = k], k=0,1,...,11 (C.7)
i=1
* h c,quarter * h c,semi
pc,quarter — A pe,semi R (CS)

| |hpc,quarter‘ |1 ’ | |hpc,semi| |1 '

Melodic Interval Analysis: Consecutive FO intervals in quarter-tone units:

I; = 24log, (f(}“) C =1, gl — 1. (C.9)
0,

Interval histogram h; € R*" for intervals [—48, +48] quarter-tones:

hrlk] =) 1lclip(I;, —48,48)| = k], k=0,1,...,48 (C.10)
h;

hf=—"—. C.11

T s (C1

Using absolute value |I;| creates symmetric representation focusing on interval magnitude and

we apply a rational clipping in a range of 4 octaves.
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C.1.2 Similarity Computation

Statistical Characterization: F0 distribution statistics:

‘fclean|
Hfo fclean| Z fO i mean);
1 |fclean‘
ofo = fclem Z (fo.i MfO (std),
i=1

Ago = max(f§°") — min(f§**")  (range),

fclean)

fo = median(fg (median).

C.1.2 Similarity Computation

Four weighted similarity components incorporating dual-resolution pitch class analysis:

Smelody =0.15- Sp,;’quarter +0.15- Spc,semi +0.4-S7r+0.3 Sstats- (C.lﬁ)

Pitch Class Similarities: Cosine similarity of normalized histograms for both resolutions:

S cor = h;c quarter,1 h;c quarter,2
c,quarter —
e | ‘hpc,quarter,l | |2 ‘ |hpc quarter, 2| |2

* . h
pc,semi, 1 pc,semi,2

- |[h

Spc,semi = | ‘h*

pc,semi, 2”2

(C.17)

(C.18)

Interval Similarity: Excluding zero interval for melodic motion focus:

famoren = [[hg 8

* *
hl,motion 1 h] ,motion,2

Sr =

2" H I7m0tion72”2'

Statistical Similarity: Normalized differences of FO statistics:

S, =1- |[Hp0,1 — Ko 7
max(ftf0,1, f450,2)

S, =1— \Ufo,l - Ufo,2| 7
max (0 fo,1,00,2)

o | fo.1 — fo,
! max(f0’17f0’2)7
[Afo,1 — Ayoz|

1—

S )
A maX(Afowl,AfO’Q)

1
Srange = §(SA + Su)v

1
Sstats = Z(S/L + Sa + Sf + Srange)~

(C.19)

(C.20)

(C.21)
(C.22)
(C.23)

(C.24)

(C.25)

(C.26)

The dual-resolution framework combines the robustness of semitone analysis for Western mu-

sical patterns with the sensitivity of quarter-tone analysis for microtonal ornamentations, making

it suitable for cross-cultural melodic similarity assessment. It handles, also, polyphonic FO chal-

lenges through statistical distributions and interval patterns, making it robust to discontinuous F0

trajectories while preserving melodic characteristics.

209



Appendix C. Signal Processing Feature Implementation Details

(green solid).
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Figure C.2. Rhythm Feature Extraction on Lyra Dataset Example. Multi-panel visual-
ization of rhythmic analysis components. Top: waveform with detected onsets (red dashed) and
beats (green solid). Middle: tempogram showing tempo consistency around 32-64 BPM. Bottom:
temporal intervals between onsets (red dots) and beats (green squares) demonstrating rhythmic

regularity and variation patterns.

C.2 Rhythm Feature Analysis

Rhythm analysis captures the temporal foundation of music through pulse, meter, timing pat-
terns, and rhythmic density. Our framework uses a four-component similarity measure combining

tempo tracking, onset detection, beat analysis, and tempogram features.

C.2.1 Feature Extraction

Let y[n] denote the discrete audio signal with sampling rate fs = 22050 Hz and hop length
H = 512 samples.

Tempo and Beat Tracking: We use librosa’s dynamic programming-based beat tracking [60]
to extract tempo T' (BPM) and beat locations B = {b1,bs,...,bn}:

T, B = beat_track(y, fs, H). (C.27)

Figure C.2 shows successful beat tracking on traditional Lyra music despite complex ornamental

patterns.

Onset Detection: Onset detection identifies musical event beginnings using the complex

domain algorithm [191, 192]:
O = ounset _detect(y, fs, H). (C.28)
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C.2.2 Similarity Computation

Key rhythmic features from onset times O = {01, 02,...,0n0}:

IOl ={0j41 —0;:i=1,...,M — 1} (inter-onset intervals), (C.29)
p M (onset density) (C.30)

= ¥), :

L/fs
| M=l
tror = 3y Z; (0i41 — 04), (C.31)
1 —1

_ o 2 32
o101 1 ; (0i+1 — 0i — pror)?, (C.32)

where L is audio length, p is onset density, u;o; is mean inter-onset interval, and o;o; measures

timing variability.

Beat Interval Analysis: Inter-beat intervals from detected positions:

tp = frames to_time(B, fs, H), (C.33)

IBI:{tB,i—i-l_tB,i :i:l,...,N—l}, (034)
;N

piBr = 7 ; (tBit+1 —tB.i)- (C.35)

Tempogram Analysis: Tempo information across time-frequency bins k [193]:
T(k,n) = tempogram(y, fs, H). (C.36)

We extract the tempo profiles by averaging across time:

1 &
pr(k) == ) T(k.n). (C.37)
Nt n=1
C.2.2 Similarity Computation
Four equally weighted similarity components:
1
Srhythm = Z(Stempo + Sonset + Sbeat + Stempogram)~ (038)
Tempo Similarity: Normalized difference:
Ty — T3
Stempo = 1 — —————. C.39
tempo InaX(Tth) ( )
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Appendix C. Signal Processing Feature Implementation Details

Waveform with Chord Annotations. Dataset: magnatagatune, audio: heavy_mellow-horizons-12-open_sea-204-233
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Figure C.3. Harmony Feature Extraction on MagnaTagATune Example. Compre-
hensive harmonic analysis visualization. Top: waveform with chord annotations from template
matching. Middle: 12-tone chromagram, 24-tone chromagram, and Tonnetz tonal centroids cap-
turing harmonic content. Bottom: key profile analysis (E:minor), chord transition matrix, and
chord distribution showing harmonic relationships and progressions.

Onset Pattern Similarity: Three onset measures:

lp1 — p2|
g _1_ =l C.40
’ max(p1, p2) ( )
S, =1 lror1 — pror,2| 7 (C.41)
max(iror,1, k101,2)
S —1- lorora — oror 2] 7 (C.42)
max(0701,1,0101,2)
1
Sonset = g(Sp + Sy +55). (C43)

Beat Pattern Similarity: Mean beat interval comparison:

Spont = 1 — lwrBra — prsr2| (C.44)
ea max(/rBr,1, HIBI,2)

Tempogram Similarity: Cosine similarity of normalized tempo profiles:

. P11 X P12
P = —— - , = —_— R (045
" ol P72 Tprall )
PT1 PTo
Stempogram = : ’ (046)

IIPTll2 - [IPTall2”

C.3 Harmony Feature Analysis

Harmony analysis captures vertical music structure through complementary representations
addressing local chord structures and global tonal relationships. The framework combines chroma
features, chord recognition, key estimation, and tonal centroids.
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C.3.1 Feature Extraction

C.3.1 Feature Extraction

Let y[n] denote the discrete audio signal with sampling rate fs = 22050 Hz and hop length
H = 512 samples.

Chroma Features: CENS features at 24-bin (quarter-tone) and 12-bin (semitone) resolu-

tions [194]:

Cy4 = chroma_ cens(y, fs, H,
bins per octave = 24,n_chroma = 24), (CA47)
C;5 = chroma_ cens(y, fs, H,n_ chroma = 12), (C.48)

where Cqy € R24xNt and Cyo € R12XNe,
Chord Templates: Major and minor triad templates for chromatic pitch classes N' = {C,

Ci#, D, D#, E, F, F#, G, G#, A, A#, B}:

1 iftke{i(t+4) mod12,(i+ 7) mod 12
ti,maj [k] = { ( ) ( ) } y (C49)
0 otherwise

1 if ke {i,(i+3) mod 12, (i + 7) mod 12}

ti,min[k] = (050)
0 otherwise
Plus no-chord template: ty = 1—12112.
Chord Recognition: Template matching for each time frame:
Cia(-,n)
= (C.51)
IC12(-, )11
* . t/L
P, =— : (C.52)
e llz - |[till2 + €
én = argmax P; p, (C.53)
where € = 1078 and 4 indexes 49 templates (24 major + 24 minor + 1 no-chord).
Key Estimation: Krumhansl-Schmuckler algorithm [195]:
1 &
Pobs = ﬁt ; Cl?('v n)ﬂ (054)
* Pobs
Pobs = : C.55
» = Tlpawell (€59
Theoretical key profiles:
kmaj = [6.35,2.23,3.48, 2.33,4.38, 4.09,
2.52,5.19,2.39, 3.66, 2.29, 2.88] 7, (C.56)
kmin = [6.33,2.68,3.52,5.38, 2.60, 3.53,
2.54,4.75,3.98,2.69,3.34,3.17]T. (C.57)
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Key estimation through profile correlation:

Timaj = COIT(Pgp,s, cireshift (ky ;. 7)),

Timin = COTT(Pyg, cireshift(ky ;. 4)),
k = argmaxr; m.
i,m

Chord Transition Matrix: From chord sequence {¢é1,¢éa,...,¢n, }:
Ny—1
Tij= > 1én =i Aéng1 = jl,
n=1
T
T =

Tonnetz Features: Tonal centroid mapping to geometric space [196]:

X = tonnetz(harmonic(y), fs, H) € ROVt

C.3.2 Similarity Computation

Five equally weighted harmony components:

1
Sharmony = E(Schroma + Skey + Schord_dist + Schord_trans + Stonnetz)~

Chroma Similarity: 24-bin chroma profiles:

Nt11 Nt,?

1 1
51:72024,1 5N Cy = 2024,2 N
Ny 2 Canalom)s €= =3 Cavali.
_ C1 s Co
C] = — Ch = —
el 7 el
ci-ch

Schroma —x ! 2

llegllz - [lesl]2
Key Similarity: Profile and estimated key combination:

pzbs,l ’ pzbs,2
||p:bs,1| 2" Hp:bs,QHQ’

Sestimated = SCOF(]Afla ]%2>7

Sproﬁle =

1
SkCy = i(sproﬁlc + Scstimatcd)-

Chord Distribution Similarity: Occurrence frequencies:

fnzénn =) lnzéan =)

W=y TN
d; -dy
Sehord_dist = T3
B il - Tlda

214

(C.58)
(C.59)
(C.60)

(C.61)

(C.62)

(C.63)

(C.64)

(C.65)

(C.66)

(C.67)

(C.68)

(C.69)
(C.70)

(C.71)

(C.72)



C.4 Timbre Feature Analysis

Waveform with RMS Energy Envelope - Dataset: corpusCOFLA, audio: 21 Manolo Caracol - Que grande es la pena mia (tangos)
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Figure C.4. Timbre Feature Extraction on CorpusCOFLA Example. Comprehensive
timbral analysis visualization. Top: waveform with RMS energy envelope. Middle: MFCC coef-
ficients and delta features capturing timbral evolution over time. Bottom: MFCC distributions
(left), spectral shape features (middle), and spectral contrast analysis (right).

Chord Transition Similarity: Transition pattern comparison:

f; = flatten(T7[M]), £ = flatten(T5[M)), (C.73)
fi - f
Schord_trans - ma (C74)
where M = (T} > 0) v (T3 > 0).
Tonnetz Similarity: Averaged tonal centroids across time:
1w 1 W
X = Nt71 ;X1(~,n), Xo = Nt,g ;Xg(',n), <C75)
Stonnetz = & (076)

%1l - [[%all2”

Note that the computed harmony features introduce a Western bias as a result of both the
utilized chord templates - i.e., major/minor triads - and the theoretical profiles that were used on
key estimation.

C.4 Timbre Feature Analysis

Timbre analysis captures perceptual qualities distinguishing sounds of equal pitch, loudness,
and duration. The framework preserves temporal complexity and statistical richness of spectral
features through statistical distributions rather than temporal averaging.

C.4.1 Feature Extraction

Let y[n] denote the discrete audio signal with sampling rate fs = 22050 Hz and hop length
H = 512 samples.
MFCC Features: 13 Mel-frequency cepstral coefficients for spectral envelope [59, 185]:

M = mfcc(y, fs, H,n_mfce = 13) € RNt (C.77)
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Appendix C. Signal Processing Feature Implementation Details

Temporal dynamics through delta features:

Ma = delta(M) (first-order differences),
Maa = delta(M, order = 2) (second-order differences).

Spectral Shape Features: Multiple spectral characteristics [197]:

cs = spectral _centroid(y, fs, H) (brightness),

rs = spectral _rolloff(y, fs, H) (85% energy point),

bs = spectral bandwidth(y, fs, H) (frequency spread),

K, = spectral _contrast(y, fs, H) € R™Nt  (peaks vs valleys).

Spectral Texture Features: Texture and energy characteristics:

f; = spectral _flatness(y, H) [198],

€rms = rms(y, H) (energy dynamics).

C.4.2 Statistical Feature Representation

Statistical feature vectors preserve temporal dynamics. For time series s = [s1, s9, . .

o (s) = [is, 0s, 8, q25(5), q75(5), As, min(s), max(s)]”,
where:
1
o= Do mean)
1 -
0y = A ;(sl — ps)?  (standard deviation),

= median(s) (median),

s
q25(8), q75(s) = percentile(s, 25), percentile(s, 75),

A,

max(s) — min(s) (range).

.,SNJi

(C.86)

(C.87)

(C.88)

(C.89)
(C.90)
(C.91)

This 8-dimensional vector o(s) € R® captures distribution characteristics while avoiding infor-

mation loss.

C.4.3 Similarity Computation

Three weighted timbre components focusing more on the MFCCs and their dynamics in contrast

to the spectral features that are better suited to monophonic signals:

Stimbre =0.45- SMFCC +0.45 - denamics +0.1- Sspectral-
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C.4.3 Similarity Computation

MFCC Distribution Similarity: For each coefficient i:

o =o(Mi(i,), o) =a(Ms(i,)),
o . 5@

o;
oMl

2 |l

Exponential weighting for lower-order coefficients as they are more important:

w =exp(—0.1-[0,1,2,...,12]7), w* = ,

12
*
SMrcc = E wy -8
i=0

MFCC Dynamics Similarity: Temporal evolution patterns:
Sa = cosine_sim(flatten(Ma 1), flatten(Ma 2)),
Saa = cosine_sim(flatten(Maa 1), flatten(Man 2)),

1
denamics = i(SA + SAA)~

Spectral Similarity: Six spectral characteristics:

(cs,2)),
(rs,2)),
a(bs1),0(bs2)),
flatten(K ) flatten(K, 2)),

Scentroid = cosine _sim(o(cs 1),
Srolloff = cosine_sim(o (rs1),
Shandwidth = cosine _sim (o (
Scontrast = Cosine_sim
Sﬂatness = COSil’le_Sim 0'( ) s 2))

(
(
(
(
(
(o

Sims = cosine _sim(o(epms,1), a(erms,g)),

1
Sspectral = B(Scentroid + Srolloff + Sbandwidth + Scontrast + Sﬂatness + Srms)-

Cosine similarity is computed as:

a-b

cosine_sim(a, b) = Talla T2

(C.93)

(C.94)

(C.95)

(C.96)

(C.97)
(C.98)

(C.99)

(C.107)

The cosine similarity range [—1, 1] is normalized to [0, 1] for consistency with other similarity

measures: . .
1 + cosine _sim(a, b)

2

normalized sim =

(C.108)
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Appendix D

Human Perception and Computational Methods Cross-

cultural Similarities - Detailed Results

We utilize 9 diverse musical datasets - MagnaTagATune, MagnaTagATune, FMA-medium,
corpusCOFLA, Arab-Andalusian, Lyra, Turkish-makam, Hindustani, Carnatic, and Jingju - and
we use a subset of 52 music pieces per dataset, keeping a 20-second clip for each one.

The unique audio pairs that were annotated through the user study were 1,130, and thus we
computed the dataset-level similarities for the human ratings and all the computational methods

used in our research.

D.1 Human Perception

The dataset-level similarity matrices of the Figures D.1, D.2 and D.3 show the human-perceived
relationships between musical traditions. The values represent the mean similarity ratings aggre-
gated across all participant annotations for pairs between different datasets and darker colors

indicate higher similarities.

Overall Music Similarities

MagnaTagATune - 0.46 0.33 0.31 0.25 0.23 0.30 0.27 0.23 0.24
FMA-medium- 0.33 0.39 0.25 0.26 0.23 0.18 0.19 0.22 0.15
corpusCOFLA - 0.31 0.25 0.34 048 0.44 0.39 0.41 0.24

Arab-Andalusian - 0.25 0.26 0.34 HoEP HH 0.50 m 0.42

Lyra- 0.23 0.23 | 0. g ¥ b 0.43 0.27

Turkish-makam - 0.30 0.18 ' 0. 0.44 oz H 0.49 0.37

Hindustani- 0.27 0.19 0. Wl 0.40 E 0.86 E 0.43

Carnatic- 0.23 0.22

0.41
Jingju- 0.24 0.15 0.24 0.42 0.27 0.37 0.43 0.41

2 Nl o <& QO & X
S 2 S RS N
& & q}o"\ > 6\5‘3’ £ < °
& & S X & <
& ‘(Q\V & ¥ & RS
‘@Q © & N

Figure D.1. Overall Music Similarity Matrix Across Datasets. Heat map visualization of
human-perceived overall musical similarity ratings aggregated across all participant annotations,
showing cross-cultural musical relationships as evaluated by human listeners.
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Appendix D. Human Perception and Computational Methods Cross-cultural Similarities - Detailed Results

Cultural Similarities

MagnaTagATune ﬂ. 0.33 0.22 0.21 0.25 0.17 0.21 0.23
FMA-medium .m 0.20 0.27 0.23 0.19 0.16 0.19 0.19
corpusCOFLA - 0.33 0.20 0.37 0.40 0.38 0.37 0.38 0.19

Arab-Andalusian - 0.22 0.27 0.37 . 0.42

Lyra- 0.21 0.23 0.40 .

Turkish-makam - 0.25 0.19 0. .ﬂ

38
Hindustani- 0.17 0.16 0.37

Carnatic- 0.21 0.19 0.38

S \3 & (" o‘ N
¢ 0&" oo“ @’v‘ o (@@ b&‘”" 0@0 -\&
& ¢ &S &
AP SN &
§ & & & S
«© o A

Figure D.2. Cultural Similarity Matrix Across Datasets. Heat map visualization of human-
perceived cultural similarity ratings, revealing how participants assess cultural relationships and
boundaries between different musical traditions represented in the study.

Recommendation-level Similarities

MagnaTagATune- 0.38 0.31 0.37 0.25 0.25 0.24 0.22 0.23 0.15

FMA-medium»0.310.24 0.27 0.16 0.18 0.17 0.17 0.14

corpusCOFLA - 0.37 0.24 0.40 . 0.40 0.35 0.45 0.27

0.40 o 0.34

Arab-Andalusian- 0.25 0.

N

Lyra- 0.25 0.16

Turkish-makam - 0.24 0.18

Hindustani- 0.22 0.17 0.35 0.42
Carnatic- 0.23 0.17 ' 0.45 ﬂ 0.41

Jingju- 0.15 0.14 0.27 0.41 0.24 0.34 54 044

< Q o X
& 6,(\? & \(_,b@ &8 &
Y & G I N
SIS s R S & @
& ¥ @ RN
S S & &8
N LS

Figure D.3. Recommendation-Level Similarity Matrix Across Datasets. Heat map
visualization of human-perceived recommendation-level similarity ratings, showing which musical
traditions participants would consider suitable for personal recommendation contexts.
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D.2 Signal Processing features

D.2 Signal Processing features

The Figures D.4, D.5, D.6, D.7 and D.8 show the dataset-level similarity for each Signal Pro-

cessing feature dimension computed in our research, as well as when averaging all dimensions.

Melody Features

MagnaTagATune—. 0.68 0.68 0.71 0.70 0.69 0.65 0.68 0.62

FMA-medium-0.68.0.69 0.68 0.70 0.71 0.67 0.68 0.63

corpusCOFLA - 0.68 0.69
Arab-Andalusian - 0.71 0.68

Lyra-0.70 0.70

Turkish-makam - 0.69 0.71

Hindustani- 0.65 0.67

Carnatic - 0.68 0.68 0

e < S L

& . \? IS S ¢

5 e,b\\) oé< Q}\’L’\ MR N
& & & &S

& KT &

& & N

Figure D.4. Melody Similarity Matrix Across Datasets. Computational similarity matrix
based on melody features extracted using pitch tracking and melodic analysis.

Rhythm Features

MagnaTagATune - 0.76 ... 0.77 0.74 0.76 0.75

FMA-medium ..

Turkish-makam 0.76 0.75 0.78 .

Hindustani- 0.74 0.75 0.760.75 0.76 0.75 0.75

Carnatic - 0.76 [ b 0.76 0.75 0.77

¢ o & Q¢ ow®
& N N S »
F T S F
@ X & % &
& & o&" & FOES
\‘@Q v‘ =~

Figure D.5. Rhythm Similarity Matrix Across Datasets. Computational similarity matrix
based on rhythm features extracted through onset detection and tempo analysis.
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Harmony Features

MagnaTagATune - 0.68 . . 0.71 0.71 0.69

FMA-medium

corpusCOFLA

Turkish-makam - 0.71 .
Hindustani- 0.71
Carnatic 4
Jingju - 0.69

< . \“ NS S §
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& & S
& ¥ @ s
s & & J
& @ N

Figure D.6. Harmony Similarity Matrix Across Datasets. Computational similarity matrix
based on harmony features including chromagrams and chord analysis.

Timbre Features

MagnaTagATune - 0.74 0.74 0.75 0.74 . 0.74 0.74 - 0.74

FMA—medium—0.740.74 0.74 0.75 0.75 0.74 0.74 0.75

corpusCOFLA-0.75 0.74 0.75 0.74 0.75 0.74 0.75 0.75 0.75

Arab-Andalusian - 0.74 0.74 0.7 .. 0.74 0.74 .
o o7 o o o T

Turkish-makam - 0.74 0.75 0.74 0.74 0.75 0.73 0.75 [0/7H 0.75

Hindustani- 0.74 0.74 0.75 0.74 . 0.75 .-.

Carnatic 0.74 0.75 [/ /5

Jingju-0.74 0.75 0.75 .
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Figure D.7. Timbre Similarity Matrix Across Datasets. Computational similarity matrix
based on timbral features including MFCCs and spectral characteristics.
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D.2 Signal Processing features

Overall Features

MagnaTagATune - 0.73 0.73 0.74‘. 0.74 0.73 0.71 0.73 0.70

FMA-medium - 0.73 [i OIS 0.72 |ONISEI0.73

corpusCOFLA - 0.74
Arab-Andalusian b

Lyra - 0.74

Carnatic - 0.73 0.73 b
-7 > (0 0 0
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Figure D.8. Overall Similarity Matrix Averaging Signal Processing Features. Compu-
tational similarity matrix combining rhythm, melody, harmony, and timbre similarities through
equal-weight averaging, providing a comprehensive signal processing perspective on cross-cultural

musical relationships.
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D.3 Foundation Models

Figures D.9, D.10, D.11, D.12, D.13, D.14 and D.15 show the dataset-level similarity matrices
for each Foundation model utilized in our research.

MERT-95 - Similarities

MagnaTagATune - 741 0.89 0.89 0.90 0.89
FMA-medium

corpusCOFLA - 0.91 0.90

Arab-Andalusian -. 0.91 [

Lyra -

Carnatic - 0.90 0.90 {0

Jingju-0.89 0.90

N

¢ & F & @S RN
< O 2 s & e
F & & & N
& ¥ @S SRS
S S ~ &
«© ¥ <

Figure D.9. MERT-95M Foundation Model Similarity Matrix. Computational similarity
matrix derived from MERT-95M embeddings.

MERT-330 - Similarities

MagnaTagATune

FMA-medium

Figure D.10. MERT-330M Foundation Model Similarity Matrix. Computational simi-
larity matrix derived from MERT-330M embeddings.
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D.3 Foundation Models

CultureMERT - Similarities

. 0.84 0.81 0.83 0.85 0.83
e} 0.84 . (OF:1:8 0.84 0.83 . 0.85
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FMA-medium

corpusCOFLA

Arab-Andalusian -

Turkish-makam - 0.81 0.84

Hindustani- 0.83 0.83

Carnatic - 0.85 .
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Figure D.11. CultureMERT Foundation Model Similarity Matrix. Computational simi-
larity matrix derived from CultureMERT embeddings.

CultureMERT-TA - Similarities

MagnaTagATune

7/ 0.83 082 0.83 0.84 0.83
FMA-medium - /{08

= - B

corpusCOFLA 7/ 0.84

Arab-Andalusian - 0.83 .
- (I m
Turkish-makam - 0.82 0.85 . 0.84 0.82 0.83 0.85 .
Hindustani- 0.83 0.83 E 0.85 0.83 ..
Carnatic - 0.84 - . 0.85 . 0 7
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Figure D.12. CultureMERT-TA Foundation Model Similarity Matrix. Computational
similarity matrix derived from CultureMERT-TA embeddings.
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CLAP-Music - Similarities

MegnaTeoATune ﬁﬂﬁﬁﬂﬁ 098 M
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Figure D.13. CLAP-Music Foundation Model Similarity Matrix. Computational simi-
larity matrix derived from CLAP-Music embeddings.

CLAP-Music&Speech - Similarities

MagnaTagATune . ~ 0.86 0.86 . 0.83
FMA-medium MOBG 0.88 1 0.86 0.83 0.86 0.85
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-~ (I
Turkish-makam - 0.86 0.86 M

Hindustani- 0.86 0.83 0.91

Carnatic - 0.86

o o Q LN
«0‘\ \0@ Q\y ECION %—"’@ F &S
O o N 2 o &N
§ & &L o P
SRR S
@ ST &
S <€ & & )N

Figure D.14. CLAP-Music&Speech Foundation Model Similarity Matrix. Computa-
tional similarity matrix derived from CLAP-Music&Speech embeddings.
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D.3 Foundation Models

Qwen2-Audio - Similarities
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Figure D.15. Qwen2-Audio Foundation Model Similarity Matrix. Computational simi-

larity matrix derived from Qwen2-Audio embeddings.
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Bidirectional Encoder Representations from Transformers
Chroma Energy Normalized Statistics
Contrastive Language-Audio Pretraining
Convolutional Neural Network

Continual Pre-Training

Constant-Q Transform

Fast Fourier Transform

Free Music Archive

Few-Shot Learning

Generative Pre-trained Transformer
Graphics Processing Unit
Label-Combination Prototypical Networks
Light Gradient-Boosting Machine

Long Short-Term Memory

Mean Absolute Error

Multidimensional Scaling

Music undERstanding model with large-scale self-supervised Training
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Musical Instrument Digital Interface
Music Information Retrieval

Multi-Label Few-Shot Learning

Masked Language Modeling

Multi-Layer Perceptron

Multi-Label Prototypical Networks
MagnaTagATune

Normalized Discounted Cumulative Gain
Natural Language Processing
Precision-Recall - Area Under Curve
Rectified Linear Unit

Recurrent Neural Network

Receiver Operating Characteristic - Area Under Curve
Research Question

Supervised Fine-Tuning
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