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Mepiinyn

H axops foayvmodOeoun modieyn g xvrhopopiag amotelel Oepuého Twv oUYYQOVOV
EVHVOV CVOTNUATOV HETAGOQMV, ETUTEETOVTAS TNV TIQOANTTTLXT] OLOYEIQLOT TNG
ovpPOENONG 0TOVS OQOUOVG, TOV TIQOCAQUOOTIRO EAEYYO ONUATOOOTNONG KL TNV EYRALQN
200001 yNoN TV 00N YDOV. Ta vdLotdpeva poviéha Pabids pabnong amodidovv pe vimin
oxgifela og purd 1 pecaiov peyéBovg 00wmd dixtuva, WOTOGO dVOROAEVOVTOL VO
rhpoxmBov og dixtva aodnTEwVv peyarvTeeng xAMpoxag ta omolo eQLAapuBavouy
yhddeg nOpPovg dmwg emiong xow dedopéva ToAlmv etmdv. H mapotoa dumhmpatinn
€QYaoi0 AVTIHETMIICEL AVTO TO %EVO e TOV 0% eALAOUO ®aL TNV aELOAOYN O evog STG-Tx
transformer, evOg oVOTHHOTOG, INAADT, TQOCAQUOOUEVOL 0TIV TTROPAEYN rVRAOPOQIOG
ueyding »Alporag.

To STG-Tx ovvdvalel wa aQyrtextovixt SWTAoU attention, TOGO XQOVIXOU OGO %O Y WOLROUV,
e TEYVIRES ATOAOTIROTNTAGS, OTIWGS 1] TTUKETOTOINON YQOVIXMV ArOAOVOLOV %aL 1) Yoo flash
attention, LELWVOVTOAG TO TETQAYMVIXO OUTOTUTIWUA LVIIUNG TWV ®AOOROV transformers ®otd.
Ovo TaEeis peyébovs. H vhomoinon g aoyttextovirig moayuotimow|Onxe oe PyTorch, evo
Yo T LoTtoQurd dedopéva nurhodopiag yonotpomo|Onxe to dataset LargeST-CA (8 600
awoOnriteg, avdivon 5 hertov, 2017-2021). Ta dedopéva avarataorevdotTnray,
OUUTTANQMONRAV ROl RAVOVIXOTONON®OV e Ao TV TUTUKRT OTTOXRALOT TTQLV EEXLVIOEL 1)
exmologvon).

H enidoon a&ohoynOnure oe aveEdotro tunua doxiung (2020-2021) pe deirteg MAE,
RMSE %ot MAPE, o€ yoovind ogiCovra 0mdexa Pnudtwv. To STG-Tx métuye cuvolnd MAE
30.2, RMSE 39.7 »aw MAPE 8.3%, woodapiCovtag 1) vregPaivovtag Ta mo mpdadato
novtéla, evar amroutovoe 22 GB pviiung GPU avd ovoxevt]. O guuog exmaidevong aviide
oe 280 delypota/s now 0 xoOvog TQORAEYMS Yo OAOUS TOVg auoOntieeg tav 120 ms,
eMPEPALDVOVTAG TNV TQAATIXT) EMEXTACLHOTNTA TOV OYEILAOUOD.

Toa amoteréopata delyvouv 6TL To STG-Tx EoodEQEL TOOO axgifela 600 nal
ATOA0TILOTNTA VITOAOYLOUMYV OE TTQMTOGAVT] XAHAXO OXTVOV, ATTOTEAMVTOG o Brdotun
Bdon meoPAreyms T vurAopooiag peydhmv 00rmv OrTUWV og maypotnd xodvo. H
eoyaoio vt ToovoLdel (i) £va avoTTaQAYMYLUO EQYOAELO TTQOEMEEEQYAOIOG RO
exnmaidevong peyaing xhipoxag, (ii) pua awodotixt) mapahlayt) transformer yua xmQOYQOVIXA
voodnuata, xou (iii) puo eXTeVY) eUTelQLry] LeEAET Tov artooadnviCel T diadpooés ueta&l
axiperag, pviung xat xOvou extéAeong 0To peyohiteQo dtabéoLuo dNudOLo ovoro
dedopévav xurhodpooiag.

AgEarg-zherdua: ITooPreym vvrnhodopiog, Zroyaotinoi-Xovirol MeTaoynUaTioTég
Toddov, Evpur Zvothipata Metapoomv, Z0voho Aedopévaov LargeST-CA, BaBud MdOnon,
Enextaowotnra, [Tpopreyn ot [Moaypatind Xodvo






Abstract

Accurate short-term traffic forecasting is a cornerstone of modern intelligent transportation systems,
enabling proactive congestion management, adaptive signal control, and informed route guidance.
Existing deep-learning models deliver high accuracy on small or moderately sized road networks,
yet they struggle to scale to state-wide sensor graphs that comprise thousands of nodes and years of
high-frequency data. This diploma thesis addresses that gap by designing and evaluating STG-Tx, a
streamlined Spatio-Temporal Graph Transformer tailored for large-scale traffic flow prediction.

STG-Tx couples a dual-path attention architecture —temporal-first and spatial-second — with
efficiency techniques such as patchified sensor sequences and FlashAttention, reducing the
quadratic memory footprint of classical transformers by two orders of magnitude. An end-to-end
pipeline was implemented in PyTorch: historical flow records from the LargeST-CA dataset (8 600
loop detectors, 5-minute resolution, 2017-2021) were re-indexed, imputed, and Z-score normalised
on GPUs before being streamed to training jobs. Node subsampling, mixed-precision arithmetic
(AMP), and efficient batching further lowered the hardware barrier for experimentation.

Model performance was assessed on a held-out 2020-2021 test split using the standard metrics
MAE, RMSE, and MAPE across twelve 5-minute horizons. STG-Tx achieved an overall MAE of
30.2, RMSE of 39.7, and MAPE of 8.3 %, placing it in line with or outperforming several
established spatio-temporal baselines on LargeST-CA. Training throughput reached =280 samples
s !, while inference for the full 8 600-sensor graph completed in =120 ms, with a peak GPU
memory footprint of approximately 22 GB. These results confirm the practical scalability of the
proposed design.

The thesis contributes (i) a reproducible large-scale preprocessing and training toolkit, (ii) an
efficient transformer variant for spatio-temporal graphs, and (iii) an empirical study that clarifies the
trade-offs between accuracy, memory, and runtime on the largest publicly available traffic
benchmark.

Keywords: STG-Tx Transformer, Spatio-temporal graph forecasting, Short-term traffic prediction,
Flash Attention, Node subsampling, Mixed precision training (AMP), Masked MAE / RMSE /
MAPE
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Exteropévn EAAnvixn [egiinyn

H BoayvmodBeoun modfheyn tmg 00unng rurhodogiog amotehel ®QlOLWO oVOTATIRG TWV
oUYYEOoVOV EVPGUDOV cLOTHUATWV PETAPOE®V (Intelligent Transportation Systems — ITS). "Exet
avoyvmoLoTel mg Bepuemong Texvoroyio Lo TN OLoyelQLoT TG XUHAOPOQLAS OF EEVTTVECS
TOAELS, KOOGS ETUTQETEL TV TIQOANTTTLRY] ANYPT LETQMV, TNV ATTOTEAECUATIXOTEQT) HOTOVO)
TOQWV RAL TOV OTQATIYLRO OYEILAOUO OUYROLVOVIORODV VItodoumv . H ieavotnta va
oPAépoupe e axpiPela Ta peAAovTnG HOTIPo ®urAodoQLaxng QONG (LY. TOXVTNTA 1)
OY%0 OYNUATWV 08 00RO aLoBNTEES) Aiya Aemtd 1) heeg voitepa fondd otnv
QITOOVPOEN 0N TOV OXTVOV, 0T Helmon ®aBVOTEQNOEMV ROl ATUYNUATOV, XAODGS KoL OTOV
TEQLOQLOUO TEQLRAMAOVTIXDV ETUTTMOOEMV QIO TNV KURAODOQLOKRT) OV DOENON.

TN dexraeties, N MQOYvwon ®urhodoiog PaotloTav o vAaod LOVTELD YQOVOOELQMV,
Omwg ARIMA %o eELOMOELS QOTG, TOL OTTOIAL OIS OEV ETTOQHOVOOV YLOL TNV ATTOTVITWOT TWV
TEQUITAORWV UN-YQOUMUARDV AAANAETLOQACEWY OTOV Y MEO %ol 0TOV XeOvo. H éhevon tng
PaBidg pdbnong (deep learning) GAlage 0paoTIRd TO TOTO: VEVEWVIXRA dixTVLA LRAVA VO
naBaivouv ovvleta mpodTUTTO Ao peydha dedopéva €xovv avaderyOel oe mavioyvoa
eoyaieia yio TV mEoOPAeYN xurhodooiag . [dwaitega, To Xmweoygovird Nevowvird Airtua
T'odpwv(Spatial-Temporal Graph Neural Networks, STGNN ) éyovv metiyel vmAég emdooeLg
evompotdvovrog Nevpmvird Atxtva IN'oadwv (GNNs) yia T GOAN YT TV YWQLRDV
eEaptnoemv uetaEl aoOnTnomv ®at dtadoyrd poviéha (6mwg dixtva LSTM) yua
LadONoN TOV YOOVIRDV TQOTVTTWV.

[TogdA Ao, 0QYLTEXTOVIXES e LY OVIOUOVS TIROCOY NG (attention mechanisms), OTWS T
Transformers, epudavioTnray mo mOcHATA YL VO LOVIEAOTIOLOOUV GUECO. WQOYQOVIRES
oyéoelg — m.y. povréha 6mws To GMAN xou to STAEformer yonoipomolotv eviaio mhatoto
attention yLa vo. pdBovv asmd TavtdyQova xmowrd xou xeovird dedouéva . Qotd00, ool TG
Pehtiwoelg avtég, magaTneeital OTL 1) ovveyS AVENON TNG TTOAVTAOROTNTOS TWV LOVIEAWV
amopépel GOivovoes avEnoels oty axiPela, evd mEOrVITTOVY VEX TIQOPATUATO OTTWGS 1|
YWQOYQOVIXT) ETEQOYEVELD 0TA dedOUEVA (OLaPOQOTOMON HOTIPwV HETAED TEQLOY DV %Ol
YOOVIXMDV OTLYUWDV HECO OTNV LEQX) KOl OL OVOROAES QU VEVOLUOTNTAS . MAALOoTA, TTOAAG
moonyuéva povtéha dev €xouvv aElohoynBel emaormg o dixtva peyding xhiporag: to
7OLV(DG X OMNOLULOTTOLOVHEVA avolyTd oVVola dedopévav (Omwg Ta ovvola PeMS-Bay, METR-
LA ».0.) meguhapBavouy HOvo eXatovtades aloOnToeg, eV otV TAEN £va ®QaTIRO
OinTvo AVTORLVNTOOEOUMV pToel va tegLhapPdver 0ernddeg Mades xopupoug . INa
TOQAOELY UL, TO EVREMS HeAeTUEVO 0UVoho PEMS-Bay megiéyel dedopéva amod mepimov 325
aLoONTNEES, TN OTLYUH TTOV TO TQAYUATIXO SIXTVO avTOXIVTOOQOUWY TS Kaipoovia
(Caltrans PeMS) dua0€teL oyedov 20.000 eveQyois auoOntioes . AuTto TO YAOUO RAHOKRAS
VITOONADVEL OTL TOAAG LOVTELD EVOEYETAL VO WV RALUAXDVOVTAL XOAG — TTOQOVOLALoVV
VYNAES ATTOULTI|OELS O€ VITOAOYLOTIXO ®OOTOC 1 ViU — OTav epaoudtovtal o€ TO00 PeYaio
dintva, raBmg ovyva dev €xel ANdOel vVITIOYN TO ROOTOG TOVG TEQO OO TaL LUnEA datasets oTa
OO0l EXTTALOEVTNHALY .



o vo ovTlpeTmmoToy oL TEQLOQLOUOL TV uxEmv datasets xow va aEloloynfovv poviéla
o€ o QeaMOTIXES OUVOT|*ES, YoNnoLpomotoaue to dataset LargeST (Large-Scale Spatio-
Temporal), To omoio €01y O wg véo benchmark otnv meOAeyn xvrrodopiog peyding
rxhiporoag. To LargeST ovyrevigovel dedopéva moMamA®V etV amd yLhddeg oot eg
%ol arroteleltal amd Téooega vo-cvvola. To peyaliteQo €€ avtdv eivor to LargeST-CA
(California), To omoto meguhapfdvel mepimov 8.600 aviyvevtég ®urhodoiog (aodnTnoes
Bodyov) xatavepunuévoug 0to 00rnd dixtuo g mohteios Kaldogvia twv HITA . Ou
oLoONTNEES VTOL HOAVTTTOUV EVQEIN YEMYQAPLXT] EXTOOT], TQAXTIXA OO TO ®TVQLO 00RO
O(©TVO AVTORLYNTOOQOUMYV TNG TTOMTEIOS, OUITEQIAALUPOAVOUEVDV UNTQOTTOALTIXMV TTEQLOY DV
O6mwg to Aog Avtleleg, 1) Greater Bay Area (eguoyf) tov Zav PQavoioxo) xoL 1o Zav
Nruiéyro . [Todypatt, o dnmuoveyot Tov LargeST éxovv ogioel xaw Tola emuéoovg datasets
(GLA, GBA, SD) 7ov avTLoTOLY0VV O€ QLUTES TIG TTEQLOYES, G VITOGUVOAQ TOV TIAT|QOUG
ovvolov g Kalpoovia .

To LargeST-CA »alvmreL xoovind ogiCovta mévte etdv (2017-2021) ovveyotc ouhhoyNg
0edOUEVOIV , TAEYOVTAGS £TOL ETTOOKRES PAOOS YLOL TN LEAETN LAXRQOYQOVLWV TAOEWMV KO
ETMOYLRMDV TTQOTVTIWV OTNV ®VrAODOQIa. ZuvodeeTan amd eXTEV LETAOEOOUEVA VL0 TOUG
oLoOnTieES , Ta ool meQLAaUPAvouv: T yewyoadpirt) O¢on »dbe awocOntioa
(ovvrtetaypéveg latitude/longitude), Tnv meproyr) evOU VNG (District) xow TV xounteion 6oV
Potoxetat, TOV AvToRIVTOOQOUO RO TO XLMOUETOIRO ONUElD EYRATAOTAONS (LUE RWOLRO TT.Y.
[-405 yua dramolteront) 000, US-101 yia eBvint) 000, ®Am.), Tov aoldud Aweidwv oto onueio,
TOV TUTO (TT.). ALOONTNQOG KVOLOG YQOUUNG QUTOXLVIITOOQOUOV) RO TV ROTEVOVVON QOTG
mov avtthapPdavetor (Bopewa, Notia, Avatohxi 1 Avtxy) . Ta petadedopéva avtd
aVEAVOUV TNV 0ELOTOTIO ®OL EQUNVEVOLUOTNTA TOV OUVOAOU OedOUEVMDV, OLOTL TTAREYOVY
OUYXELUEVILES TTANQOGDOQLES — VIO TTOQADELY UL, YVWELLOVTOS OTL évag auoBnThag eival o
QUTOXLYNTOOQONO 5 AwEIdWV He notevBUVoT OGS La uNTteodmoAn fonbd oto va
eoUNVELVOOUV OL LETOTOELG TOU CUYHQLTIXA e Evay auoONTHeO 08 emaQyLaxd dQOUO.

‘Ooov adod Ta dedouéva xvrhopoiag avtd xvabavtd, To LargeST-CA mapéye Tig
¥00VOoOoEeLRES o1 oxNudtwv (vehicle flow) avd cwoOntiea. Ou petpnoels QomNg elvol
ovviOmg 0 aELOUOS OYNUATMYV TTOV ALEQYOVTAL OITO TOV ALOONTNO OE oL LUXQT] XQOVLXY)
novada (r.y. avd 5 Aemrd). [Todypatt, To dataset dwotiBeTal oe LoEdT 0EYELWV OTTOV OL TLUES
QOMG €X0VV OVY®EVTQWOEL VA YQOVIXO SLAOTNUOL 5 AETTOV, RAALVTTOVTOS CUVEYMDS TA £T1)
2017-2021. Zvynenguéva, owotiBevrol mévte peydha agyeio dedouévmv (Logdprnc HDFS h5),
€va yia A0g £€T0g, IOV TEQLAAUPBAVOUV TLS AXOTEQYOOTES YQOVOOELQES Q0TS OAMV TWV
aoOnthowv . Emumiéov, magéyetal éva ouvodevtind agyeio CSV pe tig minoodpooieg
HeTadedoUEVOV OAMV TV atoOnTnowV, ®aBmg nou éva ayelo numpy (.npy) OV TEQLEYEL TOV
mvoxa yerrvioong (adjacency matrix) tTov yoddov twv awoOntiowy . O mivarag yetrviaong
€YEL HOTOOREVAOTEL PACEL TV ATOOTACEWY 0TO 00LKO SXTVO PETAED TV ALoONTIQWV:
OVOLOOTIXG RWOLXOTOLEL TV TOTTOAOYIOL TOV YOAPOU, OTTOV 0oL ®OUPoL elvar oL cuoBNTHEES RaL
o axpn) LeTaEn 0o ®OpPBwv dpépel fAOOS CUVAQTNOEL TNG YEMOOLTIXTS ATOOTAONS RATA
UN®OG TV SQOUMWY IOV TOVS GUVOEOUV (ALOONTNEES OTOV (010 AVTOXRLVNTOOQOMO KL ROVTA
LETAED TOVUG £YOUV VYPNAT) CUVOIECLUOTNTA, EV(D OITOUORQUOUEVOL OO THQES £xouV
undevixt) 1 TOAD uxet) ovvdeon otov mivaxa). Avti 1 TAnoodooia eivor xgiolun yio to
povtéha yoadwv, rabmg magéyel TNV “Ooun” Tdve otnv omota B 0QLOTOUV OL XwEHES
OVOYETIOELS.



H ovlhoyi dedopévarv oe 1600 peydin rhipoxa (8600 owoOnTiees x 5 £11) avomdpevrto
meguhapfdvel atéheteg nvow 06pufo. ITpdyuatt, To avemeEéQynoto oUVOLO TEQLEYEL
TEQUTTMOELS EAMAETTOVOMV TLWV (missing data) — 7T.y. cwoBNTNEES OV NTAV EXTOG AeLTOVQYIOG
YLOL OQLOUEVES TTEQLOOOVG, 1] LEUOVWUEVA XQOVIXRA OLAOTHLOTA X WIS ®oToyQadT] — RAOMDG
7oL oreaimv TV (outliers), 67w U QEAMOTIXA VYNAES LETONOELS QONG AOYW
aoOnTeLor@v oparpdtov 1 BogvPou. O dnuoveyol Tov LargeST éxouv avayvmoloel T
avdyrn raBoLopol now TaéXovV xatdAnha egyaleia: evderTind, dtabétovv éva Jupyter
notebook 7oV emeEeQYALETOL TO ORATEQYOLOTO CLOYELCL QOT|S KO TTOQAYEL LUO XOOOQLOUEV
End00m TV dedOUEVOV . AROAOVOMDVTAS AVTES TIG HATEVOVVOELS, OTNV TTOQOVCN £QYATIO
epaQuOOTN®E EXTETAUEVT TTROETEEEQYOOTOL (preprocessing) ota dedopéva oLy TV
enmaidevon tov povtéhov. [pmta, £yLve oVYXQOVIOUOS OAWY TV YQOVOOELQMV OE EVLALIQL
yoovird dwootiuota Tov 5 Aerttdv. Kdbe atoOntnoag éxel Tipég ava S-Aemto, nou
emPePardOnre 6TL TO YEOVIXO ATOTVTWUOL EIVOL XOLVO (TAVTOYQOVA JLAOTIHUOATA) YL OAOVG
TOVG CLOONTNQES, YEGUQMOVOVTAS TUYOV KQES artoriioels 1 nabvoTtepToeLs.

211 OUVEYELDL, AVTLUETWOIUOTNRAV OL eAleipels dedopévarv. I'a Poayuyodvio xevd (.. Alyeg
OLadOYHES naTOYQAPES TTOU Aelmmouv), vioBeTNONrav uEBodoL mapepPoAig (interpolation)
MOTE VO OUWITANQWOO0UV OL TLHES pe PAOT TLS TTANOLEOTEQES EYHVQES TTOLQATNQTOELS — TU.X.
YOOLUXT) TTAQEUPOAT 1) 010N LECOV OQOV YELTOVIXMV XQOVIXMV ONUeimv. Avtd drotnoel
TNV OUVEYELO TNG (QOVOOELQAS YWQIg va elodyel peydn pegoypia. o extetapéva nevd
(7. évag aoONTNEOS EXTOC AettovQYiag el péEs), N oREUPOoAT dev elval aEldmot: o€
QUTEG TIG TTEQUITTMOELS E(TE EEAUQEOMN XAV OL CUYRENQLUEVEGS TTEQIOOOL ALTTO TNV EXTTAOEVON
(Bewoavtag 6TL ratd TV TEOPAeYM dev Ba Paciotolpe o évav TEOODATA EAATTOUATIRG
aoOnTiea), elte — av o alcOnTNEog eiyxe povipa moofAnuotind dedopéva — adougédnnre
EVTEAMGS OO TO 0VVOLO cuoONTieWV Tov avaAvOnrav. [TagdAAnia, ToayuatomouOnxe
VY VEVLOT OXQOLMV TLLMOV: TLUES QOTC TTOV VIIEQEPLVAY RATTOLO AoYrd OQLo (u.y. > 8000
oYNUATA/MEA, OTAV GUOLOAOYLRA 1 XWENTROTNTA OGS AwIdag etvar ~2200 oxNuoTa/mea)
BewENONrav pun 0eaAoTIréS ®al OL0EOMONKAYV (LUE AVILRATAOTOON OTTO TUTUKES TUUES) T
aoEipOMHay.

Metd tov 20000opd TV dedouévarv, ehoQuOoTN®E ®AVOVIXROTON oY (normalization) oTLG
YQOVOOELQES MOTE VO OLEVROAVVOEL 1) EXTTOLOEVON TOV HOVTELOU. ZUYRERQLUEVQL,
¥OMOoLpoTToL|ON®e navoviromoinon Timou Z-score: yior ®00e ocwoOnTiea, oL THES QOTG
LETOOYXNUOTIOTNRAY DOTE TO OVVOLO exTaideVoNg VoL £xel pEom tiur) 0 ot Tumxt atoxrALom
1. H xavoviromoinon éyive avd awoOntioa (dniadr evdo-ouotntnoiaxd) Lot oL dtapoég
otV ®AMpoxa QoNG HETAED atoONTNEMV elval peyaleg — m.y. aloONTNEES 08 TOAVOVYVOOTOVG
QUTOXLVITOOQOUOVS RATAYQADOVV TLUES EXATOVTAdWV OYNUATWV/SAETTTO, EVO) O TOTUKOVG
0QOUOVG UITOQEL VaL elval povoyrdleg. Me Tnv xavovixomoinon, ®d0e yoovooeld dpEpel
OUY%QIOLUES OLOXVUAVOELS (08 LOVADES TUTURMDV OITORAICEWMV), AITOTOETOVTOS TO LOVTEAO
aTtd TO VoL ®VELORYEITOL aTtd ROPPOVS pe peydles amodivteg TiuES. H navoviromoinom
eDOQUOOTN®E £YOVTAS VITOAOYIOEL TIG TTAQAUETQOVGS (UEOT TLUT, TUTUKT) ATTORALOT)) LOVO OTTO
TOL LOTOQXA OedOUEVOL EXTTALIOEVONG, RAL RATOTLV EPAQUOOTNXE 1] (L0 LETATQOTTY] OTAL
oUVOAQ ETMUVQWONG KL QORLUNG, MOTE VO LNV OLOQEEVOEL TTANQOPGOQLA TOU UEALOVTOG 0TV
exnmaidevon).



Emmhéov, mgootéfnrav euTAOUTIOUEVA YOQARTNQLOTIXA 0T OedOUEVO ELOOOOV MOTE VAL
ovAhappavovtor oNTd yvwotol megrodxol Qul ot thg ®uxhodpoopiag. Eldinotega,
ONOVEYNONLAY XOQAXTNQOLOTIXA TTOV OLVOITOLOLOTOUV TV MO0 TNG NUEQOS KoL TNV NUEQ
™G efdopadag yio xabe yoovirnd deiyua. Avtd LmoQovV vo xwdromotn0ovV eite pe
HURMKES LETOPANTES (NUTOVOELDELS KO CUVIUTOVOELOEIS LETAOYNULATLOMOL TOV YQOVOU)
elte pe duadumd draviopata (one-hot encoding) yio ovyrexgLuéveg moec/muépes. To
amoTéAETUOL ElVOL OTL TO LOVTEAO Aapfdvel mg €(0000, EXTOS QIO TIG TEAEVTAIES LETQTOELS
Q0Mg, ®ouL TANEodoies OTws «etvar Agvtéga 8:00 mt.p.» 1 «ZapPato fedadu», wov To
Ponbolv va avayvweicel yvwotd potifa (7). TQWLVH oLy ®aOMUeEQLVIS £VavTL
00PPOATORVOLAROV OTTOU 1) Ay i) ATTOVOLALEL).

INa TN petateort Tov mpofAnpatog mofheyms oe emPAemouevo povrélo pabnong,
optotnxre éva notdAinio oxnua ohoBaivovtog maabiov (sliding window) tdvw oTig
YQOVOOEeLQES: ®AOe delypa mEog exmaidevon amoteleital amd to dedopuéva evOg GUVOLOV
aoOnTemV og éva TaeAaBuEo TROCHATWYV YEOVIXROV BNUATOV %ol O 0TOYOGS elval Vo
TEOPAEPOOVV oL TIHES 0€ Eval TORAOVQO HEAALOVTIHMV YQOVIXMOV PNUATOV. ZUYREXQUUEVL,
OTIG TTELQAUOTXES HOG QuOpioels emAéyONre mOQAOVEO LoTOELROV 288 SLALOYRMOV YQOVIRDV
Pnudtmv (rov aviiotorotv oty TerevTaio NUEQA, dedOUEVNS YQOoVIRTS avAlvoNg 5
Aemtddv) nan madOveo TEOPAeYNS 12 Prudtov (TeoPAen yia ta emdueva 60 Aemrd). ‘Etot,
v ®xG0e yoovirt otyur], To Lovtéro AaufPdvel wg eloodo évav «xifio» dedopévmv
owaotdoewv N x H x F (6rtov N=8600 o a.otBudg owodneijomy, H=288 to puixog 1otogurot zou
F 0 a@uBuog yaQortnolotin®v avd olotntiea, ). 001 ®al (0w EMITAEOV Y OQAXTIQLOTIXA.
OmWS WEA), ®oL pobaivel vo mogdyel mg €E000 £vav Tvaxo TOV OVTILOTOLYEL OTLS
TOPAeTOPEVES QOES OMWV TV atoONTNoWV Yo Ta emOpeva T yoovird daothpata. o v
eEXTTAIOEVOT ROl TNV AELOAOYN O], TO XOVILO OLACTNUO TWV TEVTE ETMV OLOYWOLOTNHE O
oUvoLo exmaidevong, emxromong rat doxiungs. Ta dedouéva twv etmv 2017, 2018 »aw 2019
¥omnolporo|Onrayv yio exmaidgvon (training set), To £€tog 2020 wg oVVOLO emKVQWONG
(validation) yLo €TAOYT) VIEQIUOQAUETQMVY RO TROLUNG dtaroTti|g (early stopping), ®aL TO TO
m6odaTo £€1og 2021 npatnONre WS 0VVOAO dorLuNg (test set) yio TNV TeMxt] aElohdynon. Me
QUTOV TOV TEOTO, OL TOPAEYELS EAEYYXOVTOL O PeEAAOVTING OEdOUEVO TTOV dEV £YEL «OEL» TO
HLOVTELO, TIQOOOUOLMVOVTOS TNV QYU TIXT X ON0N 0€ eEWYeVT) LEAMOVTIRG OEVAQLAL.

211V TaEOoVoo. OLITAmUOTIXT) eQyaota mooteivovue To povtého STG-Tx (Spatio-Temporal
Graph Transformer) yia tv moofAeyn xvrhopopias. To STG-Tx elvor Lo OLQYLTERTOVLK)
Pabidg pdbnong mov éxel oxedraotel eldnd dote va aglomoiel T dopr| Tov drthov
oLoONTNEMV %KoL TOUTOYQOVA VO LOVTIEAOTIOLEL TLG YQOVIRES OUVOUKRES TNG HURAODOQIOG. €
VYNAO emimedo, To 0drd dintvo avamogiotatol wg yoddnua G=(V, E) 6mou oL »opufol
OVTLOTOLYOVV 0TOVG OLoONTHQES ®OL OL AxES OUVOEOVV aLoONTNEES TTOV PRIOKROVTOL HOVTA
070 Puowo dixTvo (Pdoel Tou mivaxra yertvioong). Kdbe nopfog dabétel éva xoovind
LOTOQWO UETENOEMV (TT.). 00€g ota Tehevtaia H yoovird Prjpata). To Tntotuevo eivor va
udBoupe o ovvdomon f 1 omota AapPaver wg (0000 TV rATAOTAO0N OAWV TWV ROUPwV
070 TTaRAOVQEO LOTOQLROT 1AL TTARAYEL WG 5000 TNV TROPAETOUEVT) RATAOTAOT OA®YV TV
rOuPwv oto oedBveo mEoOPAeYNS. To STG-Tx vhomolel auTi) TN CVVAQTNOM
YONOLUOTOLMVTAS O CLOYLTEXTOVIXT] OLapOQETIHMV eumédwV (layers), Omov nAOe éva
emyELEl va. LdbeL eVOOYEVHS TIG CUOYETIOELS TOGO OTOV X(MQO (LETAED ROPPWV) OGO %o
OTOV XQOVO (LETAED X0OVIHMV PNUAT®V).



Ka0e eninedo tov STG-Tx amoteleitan amd tig xhaowméc dounég povadeg evog Transformer
Encoder: mohvrepalxi] avtompoooyn (multi-head self-attention) xouw O¢on-ratd-0¢om
moowONuévo dintvo (feed-forward network). H yoovixn) minoodogia evompatovetor pécm
NWTOVOEdMV positional encodings mov mpootiBevToL 0TLg axolovBieg eL0OOOV, EVMD ) XWX
olaotoon avaragiotatol Epueoo pe podnotaxés evoopatmoels xOppwv (learnable node
embeddings), oL omoleg moooTiBevToL opoldpoodha oe GAa Ta Yoovird Puata. H
QUTOTROCOY 1] EPAOUOTETOL ROTA UNROG TOV XQOVOU, (MOTE TO LOVTELO VO Oivel peyohiTeQN
PagitnTa 0TA O OYETIUA KOOVIXA ONUEID KOL VA OLYVOEL ALOYETO OT|UOTOL, EVD 1)
oadpogomoinon peta&l rOpPwv mooxvmtel amd To embeddings xwEIg ONTH) KwEWKT) attention.
Me tov 100 aVTO EMTUYYAVETOL EVRAUITTN ROL RALULAXOVUEVY LOVIEAOTIONOT) TV
YQOVIXMV EEAQTNOEMV UE EUUEDT] EVOWUATWOON XWEIXNG TANQOPOQLaS.

H m\hong apyttextovint) ovvtiBeton oo L emdhinio enimeda. Kdbe emimedo déxeton wg
€(0000, yio. ®a0e ®OpPo, o arorovBic EVOORATOUEVOV OLOVUOUATMYV TTOV TIQOXVITTOVV
oIt0 TIG LETOTOELS nOL TA QOVIXA positional encodings, epmhovtiopéva e learnable node
embeddings (éva dLavvopo avd owoOnThe). 21N cuvéyela edpaoudletor multi-head self-
attention ot y00Vix1 OLdoTAON (LOVO), MOTE TO WOVTELO va. Cuyilel Ta o oyeTirnd yoovind
onpeio, nar arolovBel position-wise feed-forward network. Aev yonoipomoteiton onti) spatial
attention oUte adjacency oto forward pass: 1| xwowi] dtadpogomoinor ewodryeTan Eppueca Péow
TtV node embeddings. e ®G0e vopovada epaoudtovrar skip connections xouw Layer
Normalization yio. 0ta0gQ1] exmaidevon). Zto téhog Tng otolifag, o yoouxt €50d0g
YOLOTOYQADEL TLG OVATTOQOOTAOELS ®AOE ROUPOV OTIC TQOPAETOUEVES TLUES QOGS VLA TOL
emopeva T yoovind Pruata.

"Eva onuaviind Chmnua xotd tov oxedioopd tov STG-Tx ftav 1 ®*MUAXmoT ®oi
amodotnoTnTa. OL Y aVvIoUol TQOCOYNS TEIVOUV VA £X0VV TOAVTAOROTNTA O(n*2) g TTROG
Tov o n TV otowyelmv ota omoia epapudtovial. Ze 0, apod To spatial attention, TO n
avTLoTOLYEL 0TOVS ROUPOVS (aoBNTNEES),0TNV TTEQ(mT™WOoT) pog n=8600, wov eivor oM
ueydhog aQlOpos — evd og O,tL adod To temporal attention, n = H = 288 (to omoio elvan puxo
rnow 0ev amotelel mQoOPANua). Emopévag, n xvpimg emufpdouvon eivar ot xwowxt didotaon:
évo mAowg ouvdedepéVo attention layer Oewontind Oa elye va vohoyioel Bdon peTaky
megimov 8600 xOPPwV avd eminedo, vdTL IOV Bo oNUALVE EXOTOUUDOL TTRAEELS ®a O
QITOULTOVOE TEQAOTLOL VTN YLOL TLS TTLQOLOTAOELS TTQOGOYTG.

210 STG-Tx 0 VTOAOYLOTIRO HOOTOG PETOLALETAL CUVETIMG LECM TNG XONONG AVTNG TNG
QTAOVOTEVUEVNS Y WQOYQOVIXNG OQYLTEXTOVIXTG, 1] OTTO(0 ATTOPEVYEL TNV dueon alomoinon
NG UNTQOS YELTVIOONG HOL TTOADTTAORMV UNYOVIORMV ToTuxig 1) top-K moocoyic. Kabe
rOPPog avamapiotatol pe éva pobnotoxrd diavvopotird embedding, To omoio Aettovoyet wg
LOVOAXO OVOYVMQOLOTIXO 0L ETUTQETEL OTO LOVTELO VO OLOLPOQOTOLEL TLG Y WEIHES OVTOTNTEG
YXWQIg ENT YVOON TV axumv pe to self attention vo. epaouoTetol vVQlmg 0T KOOoVIXKN
dLdoTaom, To omoio pe TV fonBela positional encodings, eival o B€om va cuALEPeL
Loxomeo0eaeg yoovinég eEagtioels. To STG-Tx vioBetel pia otoifa 8 emmédwv
axohovBmvtag avriotolyeg vhomotnoels s PipAoyoadios. Me Tov 1900 0UTO
ETUTVYYAVETOL LOOQQOTICL ALVAUECO OTNV EXPOACTIROTNTA TOV LOVTEAOV KO TNV
VITOAOYLOTIXT] ATTOOOTIXOTNTAL, YEYOVOS IOV OUVADEL UE TQOODATA EQEVVITIXA.
QIOTELECUOTO TOL OTTO0L OElYVOUV OTL ELAPQVTEQES AQYLTEXTOVIXES UITOQOVV VO ALTTOODOOUV
ovyrotolpa 1 »aw BEATIOTA amoTeléopaTa.



Zuvolnd, o oxedlaopodg Tov STG-Tx €0Tia0E 0TO VAL TETVYEL LOOQQOTO LETAED arQiPeLog
roL v60tovg. AEiCeL va onuelwOel 0Tl oe aveEqgTnTa £0ya €yl amodery el mmg 1) vioBETnon
EEVTVOV TEY VXMV (OIS LOVOETUITEDN TTAYROOULOL TTQOCOYT) LE CUVOVAOUO Y DQEOV-XQOVOU 1)
1N xonon linear attention pooeyyioewV) umoel vo Pehtinoel Oeapotind TNV ArodoTIROTNTA
o€ peydha dixtvo. Xagoaxtnolotirnd, avadéoetal Pehtioon ratd 100x oty TavtnTa
emeEepyaotag nou petwon xatd 99.8% otn yonon uvihuns GPU oe éva yoddnua 8.600
rOpPov g Kahdodgvia, 6tav epaguootel £vag PEATIOTOS CUVOVAOUOS TEXVIXMDV TIQOCOYNS
ovyrortnd e évav ovppotird Transformer povtého . To yeyovog avtd voygapuiter
ONUOOL0L TOU TIQOOEXTIXOV OQYLTEXTOVIXOU OYEOLAOUOV YO TNV ®AMpoxo Tov eEeTdlov e,
%O OL ETUAOYEG TTOU avadh€OMNHAY TAQATIAVM OTOYEVOVV axQUBMOS 0€ o TETolo BeATinon
™G ATOOOTIXATNTAG.

To povtého STG-Tx vhomow)Onxe oe Python pe ) fonBeia g fiioOnxng PyTorch (v3.11)
v e0roAn aElomoinon ™ GPU xatd tnv exmaidevon . Ot vworoyiopol Ehafav ymoa o
rnagta yoodwanv NVIDIA RTX A100 (80 GB VRAM) pe 96 vCPUs xou 512 GB RAM. To
LOYVEO AVTO VARO NTOV AT0QaiTNTO AOYM™ TOU OYXHOV TWV OEQOUEVIV RAL TNG
TOAVTTAOROTNTAS TOV HOVTEAOV — eLdd M peyddn GPU enétoepe tnv Tovtdy0ovn GOQTmon
ueydhwv batches dedouévwv morlmv xouPwv. Katd tv exmaidevon, yonopomoOnxe
PeAtiotomontig Adam pe a@ynd QuOuo udbnong mov uBuioTnxre pe doxLuég (typical value
~0.001) »aw pewdOnre meoodevtind (scheduler) 6tav 1 amwddoom oTo validation set eupdviCe
700e010. To poviého exstoundeiTnre yio 0QxeTES EMOYES (epochs) puéyol va ovyrhiver n
ovvaeTNom n6oTove. ['la TV oo vtepmEocaQuoYNG (overfitting) xonolpomo0nxe
early stopping: v 1 emidoon oto validation set dev PedTiovoTay yio €vav mQoxnaboQLouévo
0QLOUO ETOYMV, 1 EXTTAIOEVOT) OTAUATOVOE.

INa v aELoAdyNon TV LOVTEADV, VITOAOYIOAUE TIS RAOLEQWUEVES NETOIRES ODAAUOTOGC:
MAE (Mean Absolute Error), RMSE (Root Mean Squared Error) nouw MAPE (Mean Absolute
Percentage Error). To MAE, petodvtag ™ HEOT amO®AOT 0€ aOAUTES TUUES, OLVEL Lol
OVVOMXT] ELXOVO TOV TTOOO QITEYOVV OL TIQOPAEWELS QIO TLG TTQOYUOTIXES TUUES (TT.). LECO
obdhpa og oxnuata/5hento). To RMSE, wg tetgaymvirt) 9o Tov H€oou TeETQaymviro
oPAAUOTOS, TLUMEEL TTEQLOOOTEQO TA UEYAAA OPAAUOTO RO ELVAL XQT|OLUT VIO VO EXTLUNOEL
oV VITAQYOVV OEVAQLO UE TTOAD peYAles amoxrAioels (m.y. aveEéleyrtes ovpopnoels). To
MAPE ex$pdlel To 0pAAU0 G TTOGOOTO TMV TQOYUATIRDV TLULDV — £TOL, E(VOL AVEEAQTNTN
™G ®hipaxog xot fonda oto vo natavondei 1 emidoomn TOoo oe onueia VYPNATS QOTS 60O KoL
YauNANG (.. éva MAE=20 pmogel va eivor apeAntéo oe avtoxrtvntodgopo pe 1000
oyxnuoato/Shermto aAld tepdoTio og emaQyLoxd dQOuo pe 30 oxnuato/SAeTTo, ®ATL TOV
amotuTtdveTal 0ty MAPE). Ou petourég vmohoyiotnrov o€ molamAoUg 0pifovteg
TOPAeYNS (1Y 5, 15, 30, 60 Aemrtd), wote va aEloAoyNnOel 1 ovuTEQLPOQA TOV LOVTELOU
1000 0T0 TTOAV PeayvmEdBecuo 6060 oL 0To PEayVTEODecUO HEALOV.

[Tooxelpévou va ovyrpivovpe v amddoor tov STG-TxX pe mpovmdyovoes uebodoug,
vhomowoape xou aElohoynoaue duddpoga Paoctnd poviéha (baseline models) amd ™)
Buproyoadio. Katagydgs, xonolpuomodnxe o amii] IoooEyyLon g ratddM amddoong:
to povtého Historical Last (HL), mov mooPAémer wg pehhoviinn tiui arthd v mo mdodatn
ToaTENoT (ovotaotird undevird] “povreromoinon” tdong) . Avti n pébodog Bétel wa
Pdon, »aBmhg 0moL0dNTOTE EVAOYO LOVTELD OOl TTOETEL VO TOL TN YA{VEL ROAMVTEQOL ALTTO TO VO
emavalapuPaver T TehevToio TN, ZT1 CVVEXELD, EEETAOTNHE £VA RAOOKO LOVTELO
YQOVIXMV OELRMV XIS xwExt TAngopooia: éva dixtvo LSTM moAlamhdv LeTaANTOV
(multi-variate LSTM), 67t0v oL 8600 00VOOE€LES avTIUETMIUTOVTAL 1S dLAvuoua EL0Od0V
evog LSTM og #G0e yoovird Pripa xow to 0ixtvo mpoomabei vo pudbel tig ovoyetioels tovg.



Evd to LSTM OemnTind Wroet vo. LOVTEAOTIOLNOEL RATTOLES Y WOLRES OYEOELS (LECW TOV
oVVOVOOUOU TOV PeYAAOU OLOVUOUOTOS ELOOO0V), OEV £XEL QNTT YOOPLXT] OOUT RAL LOG
oelyvel v amddoon evog purely temporal povtérov.

ATo Ta xmEoYQoVIXA LoVTIELD YOAPwVY NG PipAoyoadiog ovumeglhdfape To o
avayvopopéva: To DCRNN (Diffusion Convolutional Recurrent Neural Network), To omoio
ovvovdalel dudyvon oe yoddo pe GRU yua to x06vo, To STGCN (Spatio-Temporal Graph
Convolutional Network) sov yonotpomotei dtadoynd Conv layers 0Tov x(MQEO %O TOV QOVO,
r00mg nou To Graph WaveNet (GWNet), puo vedTteQn aQyLtextovint e causal temporal
convolutions xou adaptive adjacency matrix. Emmléov, ovyxpivope pe 1o ASTGCN (Attention-
based STGCN), to omoto mpooBéTel unyaviopovg mpoooyis oe éva ST-GCN, xau pe mo
mpododates eEelyuéves mpooeyyioels 6mtmwg To AGCRN (Adaptive Graph Convolutional RNN),
t0 STGODE (Spatio-Temporal Graph Ordinary Differential Equation network), to DGCRN
(Dynamic Graph Convolutional Recurrent Network) #ow 1o D2STGNN (Dual-Domain Spatial-
Temporal GNN) . Avtd To HOVTELO OVTLITIQOCMITEVOUV TNV AL U THS TEXVOLOYIOS OTOV Y WQO,
€YOVTAS TTOLQOVOLAOEL dOLoTES EOOOELS 08 TOAaLOTEQO OVVOLQ Oedopuévmv (PeMS-Bay,
METR-LA »At.). ‘Oleg oL vhomoti|oglg ouopiotnxay pe tig fEATIOTES TAQANETQOVS TTOV
AVOPEQOVTUL OTIS AVTIOTOLYES EQYAOIES KL, OTTOV NTAV OUVATOV, YO OLLOTTOLONrOY
avolytd drabéoua pre-trained 1) benchmark codes (7t.). To amoBetiolo Tov LargeST mopéyel
étoLpo script Yo va. TeéEovv Ta. ev Adym baselines ota dedopéva tous ). 'Etol draopariotnre
OTL M oVY®ELON lvar dinaun xow OTL To ®A0e LOVTELD 000l OO0 HOAVTEQX YIVETOL.

Avadoond pe Ta amhooTteQa LOVTELD, OTIWG 1TaV avauevouevo, to Historical Last elye
O VYNAG opdipata (. MAPE > 25%). Avtd amotehet o pueor €vOeLEn g
petaAnToOTTOS ™S ®*VURAODOQIaS: N VITOOEOT OTL «TO PéEAMAOV O elvar (010 pe To TaEdOV» dev
Loy VEL, eL0rA OTaV avoapgvovtor oy ués. To rabapd xoovind LSTM povtélo emiong
ATEOMOE ALOUETA XELQOTEQO ATTO O,TL TOL Y WEOYQOVIXA LOVTELQL, ETUPERALDVOVTOG T
oNUaoia TG XwEWiS TAngodogtag (Yoadinig doung) yia v meoieyn. MetaEd twv GNN
baselines, To Graph WaveNet now to DCRNN onueimoav tig raliitepeg emdOOELS, XOVTH
LETOED TOVG, AAAA TO OO HOG LOVTEAO TO EETEQAOE e OLALPOQE ONUOALVTLAT) OTATLOTIXG (p-
value < 0.01 pe teot Wilcoxon olyxgiong oporpdtov). H avotegdtnra tov STG-Tx yivetal
o eupavig 600 avEdvet 1 TOATAOROTNTO TOU AUTVOU: VL0 TTOQAIELY O, OTLS TTEQLOYES
Greater Los Angeles xow Bay Area, mou givo eE0QeTind ToAVTAORES CUYROLVOVIORA, TO
ohEAN TOV HOVTELOV OGS (TO 0TT0(0 HIT0EL VO ATT0QEOPA TANQO YOI Atd TOALOVG
©OUPovg) NTav peyoriTeQA art’ O,TL O€ WO O ATt TTeELoy 1) OTtwg To San Diego.

‘Ooov 0p0a To VIoAOYLOTIKO ®OOTOG, emufePardOnre 6Tt To STG-TX — TG TOVG
LWNYOVIOMOVG TTIQOO0Y TG — WTOQEL Vo exteleoTel armodoTind 0to dtaBéoipo vxd. Katd tyv
exmaidevon, o xoovog avd emoyi (epoch) og éva dataset evog €tovg (2019) fitav mepimov 20
Aemtd. Zuvohurd, ) TANENG exmatdevon Tov STG-Tx dufjounoe peounéc meg oe pia GPU,
ovumeQLAapPavouévns g dadwaoctiag Pehtiotomoinong vrepmagapétomy. Katd to otddio
O e NS (inference), TO pLOVTELO elval 0l@xeETA TOYV: WTOQEL Vo ToQdEeL moofAéels 1
(MG UITEOOTA Y. OAOVS Tovg 8600 aoOnTNEes péoa og Alya dgvteQOAeTTO. AUTO TQORTIRA
onuaiver ot eivor epnTn 1 AvAITTVET TOV 08 TRAYUOTIRO YQOVO, AdOU OL TTQOPAEYELS
LWTOQOUV VO OLVOLVEDVOVTUL TL.Y. VA 5 AETTTA UE TTOAD [UxQ1] VITOAOYLOTIXT RABVOTEQTON
EVOVTL TOV TTQAYULATLXOV XQOVOU.



[Tapd T ovvolund GLot emidoon, eivar oNUOVTIXO VO ETONUAVOOTUV %Ol OL TTEQUTTMOELS
OOV TO HOVTENO glye Ovonolies 1) VYNAG opdlpata, MOTE v YI(VOUV RATOVONTOL OL
TEQLOQLOMOL ®OL VAL ®ATELOVVOOUV peAlovTnés Pehtinoels. Mo xhaowrt) xatnyopio Aabmv
TEOXVTTTEL 08 QTQOPAETTTO YeYOVOTO: EMELDT TO LOVTELO OTNQEICETAL ALTTORAELOTIRG OF
LOTOQI®ES UETONOELS ®xVrAODOoQiag, aduvatel va moofAéyel Eapvinég petafolés mov dev
mooavayyéEALovVTaL atd ponyovueva potiPa. o mapdderypa, €va Tooyaio ativynua Tou
ovpPaiver Eapvind Bo TQoRAAETEL ATOTOWUN TTTMOT TNG QONG UETA TO ONUELO TOU %O (OMG
adToUN Avodo LY atd awtd (rabhg oynuortiCetar oved). To STG-Tx, 6mwg ®aw ®aOe
LOVTELO BOOLOPEVO LOVO OF LOTOQLXT] KURAOGDOQIOL, OEV £XEL TQOTO VOl «OEL» TO ATUYNUOL EX
TV TROTEQWV. 'ET0L, 08 TETOLES MEQLITTMOELS TAQATNENONRAY QLY UES 0TO OPAApOL: TO
LOVTELO OUVEYLOE VO TTQOPAETEL VYNAT) QOT) exEl TTOV OLVVEPT Eadpvint) puelmon Aoyw
aTUYNUATOGS (VITEQENTIUNOT) 1) avTioTeoha OeV TROERAeYE TNV Eadvirt) avEnon oe évav
TOQAdQOUO OTAV 1) RIVNON eEXTQATN®E eXel. AVTA TA OPAAUOTO OV RO EUPOVIOLORA,
ueyaa, elvan avopevopeva 0LoTL Eepetyouv amd to medio Twv dedopévmv eloddov. H
QVTLUETMIILOT) TOVUS B0 ATToToV0E EVOOUATMON EEMYEVOV OEQOUEVWV (TT.Y. TTQOYUOTIXOU
¥QOVOU TANQODOQEIES ATUYNUATMV 1] ROUQLLMDV CVVONRMOV), RATL TTOV OV TOV OTO £UQOG TNG
TOQOVONG EQYAOIOG MG elval €va oadEég povomdTt Yo feltimon).

Mo GAAN xatnyogio opoaipdtmv apogd aodNTeeg ot TEQLOYES e AoV VNOLOTO TIROPIA 1)
ota 6gLo Tov dwtvov. [Tapatnenoaue OTL oONTNEES pe TOAD Yo unAT péon rurlodogio
(70 08 ATOUARQUOUEVES TTEQLOYEG) elyav VYmAOTEQO MAPE — v mapdderypa, av évog
emaLOYLOOS auoOnTieag €xel ouvihBweg 10 oyfuota avd Sherto xou o éQa mepdaovv 30
AOY® nAITOLOV YEYOVOTOG, TO LOVTELO Umoet va mooéPieye 10 nat va ndvel AaBog 200%
MAPE. Avut6 1o mooootiaio opdipa pordlel 1edotio, aAld otnv medEn (MAE = 20
oyxnuoata) dev eival Tooo onuavikd emyelenotaxd. Emiong, ota yewyoapird dxgo tou
OTVOV, OTTOV 0 EXAOTOTE OLOONTIQOG OV €XEL YElTOVES (ELOEQYOUEVES QOEC EXTOG OLUTVOV),
TO MOVTENO HEQIES POQES VITOTIUNOE TIG QOES 0TV OLVEPOLVAY QVETNOELS TTOV TTRONABAY aTtd
eEwrteourés myéc. Mo mopdderypa, o TeQuATIROS ALoONTNEOS EVOS U TORLVITOOQOUOV 0TV
€(0000 oG TOANG Utoel va deL amdToun aENON To WL (ROBMS T CUTORIVITO UITOIVOUV
oo To eEmTEQLRO OlnTVO 0TV TTOAY). AV TO HOVTELO dEV €YEL OYXETIRO LOTOQLRO OT|UOL OF
RATIOLOV «ELOEQYOUEVO» ®OUPO, Paciletal LOVO 0TO TOTUKO LOTOQLRO HOL UTTOQEL VOl
VITOEXTLUNOEL QUTH) TNV €10Q0T). AVTO elval Yvwoto mofAnua yio Ao To LOVTELQ
mooRAeYNg: M EMheLyn TAnopootiag mépa amd ta OgLa (boundary conditions) dnpovyet
afepatdotnTa. Zto péAhov, o LToQOUOoE VO LETQLAOTEL lTE e ELoayYT TEYVNTOV ROUPWV-
OUVOQLOXMYV TTOV TTOREYOVV £Va TQORAOOQLOUEVO 0eVAQLO ELOQONG, elTE ALTTAG
avoyvmIitovrog avtd Ta onuelo ®aL oVILHETOIUCOVTAS Ta pe OtadooeTini) peBodoroyio
(7. rule-based QuOpioELS).

Me Bdon TG TOQATNENOELS AVTES, OLOPAIVOVTOL AQUETES RATEVOUVVOELS VLo LEAAOVTLXY)
€ogvva xou Bertioon tov povréhov. [owtov, dwg avapéodnre,  evooudtwon mpdcbetmv
oedouévmv Oa wropooe vo. PeATLDoEL TEQULTEQW TNV axiPela xow TV aElomotia.
AedopEVA TOAYLATIROU YOOVOU YLOL OTUYTNUATO, £QY0 00OTTOLOG, ROLQLXES CUVOT|HES
ueydo yeyovota (aymveg, ouvavlieg) otnv oA o pmogooay va eloayBov 0To Hovtélo
€(Te WG ETUTAEOV YAQOXTNOLOTIXA ELOOOOV, E(TE WG EEXWELOTA pLoVTELQ TTOV LoEODVOUV
(post-processing) Tig faownés mpoPArépelc. o mopdderypua, o pmogovoe navelg vo
eXTTOLOEVOEL EVOL LOVTELO QVIYVEVONG OVOUOALDV TTOU OTOV OVLYVEVOEL LEYAAN OTTORALON
LeTAED TEOPAEYNS KO TTQAYUATIXOTNTOS VO ONUaTodoTEL TUBaVO oupPdv. Aelitegov, ammd
TIAEVQAG OLQYLTEXTOVIXTG, VITAQYEL TEQLOMELO BelTimong Tng amodotindtntag tov STG-TX.



[Mododates mpotdoels ot Ployoadio (6mwg To STGformer) delyvouv OTL 0QLOUEVES
TQOJOTOLN|OELS — TL.). YQOLLMULHKOL LNYAVIOUOL TTQOCOYTS IOV UELDVOUV TNV TTOAUTAOROTITO
amtd O(n?2) og O(n), WIOQOVV VA RATOAOTI|COVV EPLXTY) TNV TROPAEYT) axdOUa ROl O dixTVO
0exddWV YLMAdWV ®OUPwV pe TOAD uxrd vroroylotind x00tog . H diepeivnon tétolmv
TEYVIROV nOL 1 TUOAVT) EVOOUATMOT] Toug 010 STG-TX emitémel TNV EPaQUOY TOV LOVTEAOU
QUTOU 1oL O AXOUT HeYariTEQNS ®ALpArOS TTROPANUOTA (TT.Y. ToveBVIRG dixTVva

oo THEWV) M/non og TEQUBAALOVTO TTOAYLOTIXOV X0OVOU UE TEQLOQLOUEVO hardware.
Toitov, wa evdlapéoovoa xatevBUvVOT elvol 1) AVAITTVEN MO HETO-HoONoLoxg
ooEYYLoNG (transfer learning) 6710V TO POVTELO exTTodeVEVO 0TV Kalpoovia pumogel vo
mpooaouootet (fine-tune) oe GAAY TOAN 1] XD pe uxOTEQO VEO dataset. To LargeST dataset
TROOGEQEL TN UVATOTNTA TELQOAUATIOUOV O€ QUTO, T.). O LTOQOVOAUE VO EXTTAULOEVOOVE
10 STG-Tx 0t0 TATEES dintvo CA nou Hetd va to eEetdineoovpe pe Aiya dedopéva ot Néa
Y 6pun 1 og evQWmainég TOAELS, AELOTOLDVTOS TN YVAOOT IOV 0N €xEL (OTL TT.Y. VITAQYOVV
NUEQNOLOL XVKAOL, Y WOLKES CVOYETIOELS ®ATT.). AVTO Bl peiwve To aroutoVpevo TAnog
oedopéEvaV Lo véa eQLoyég xat Oa €detyve xatd TOoo Ta poTiPa nurhodoglag eivar
uetadéooipa pHeTakl dapooetindv aotwmv megparlhdvionv. Tétagtov, Ba pmogotoe va
eEetaotel ) duvatoTNTa online pAONONG: AVTL VO EXTTALOEVETAL TO LOVTENO €E alOYT|S
TEQLOOLKAL, VAL EVI|UEQMVETOL TTQOO0OEVTIRA UE VEQ dedouéva (T.y. vABe péoa 1) efOoudada)
mote va pabaivel Tuyov adlayég otig ouviBeleg petoxivnong 1 oty vrodou) (A.y. av
avolEe évag véog dpopog | AhhaEe N xvrhopooia Aoym thiepyooiog). Avtd Péfara amartel
TQOOCOY T YO VAL UV oT00TOOEQOTTONOEL TO EXTTOULOEVUEVO LOVTELO, AAAG OUYYQOVEG
TEYVIES oUVEYXOVS HAONomng Bo prrogovoay vo ehoQUOaTOUV.

H dvvatomnta axgfotc mpoPieyns tng rurhodoiog mov mopoodégel To STG-Tx €xel
Gueoes epaQuroYES 08 ALddoQa 0EVAQLO EVOS EVHVOTE CUOTHUATOS petadoe®v. Eva and ta
TowToYWA media alomoinong eivar  duvauxi dtayelplon xuvrhodpoiag amd vEViQa
eléyyov. ['vwpiCovtog ex twv mpotépmwv 0TL o€ 30-60 Aerrtd Ba dnuoveynOel ovudonomn ot
€VOL CUYREXQLUEVO TUNIA TOV OXTVOUV, OL OLOYELQLOTES WTOQOVV VoL AG oV TTQOANTTLRA
LETQO: YL TAQADELY AL, VO TQOTIOTOL|OOUV TOL TTIQOYQAUUOTO GMTELVIS ONUATOOOTNONG OTLS
YELTOVIXES ALQTNQIES (DOTE VO EXTOEYPOVV HEQOG TG ®IVNOMNG, MOTE Vo EAEYEOVV TNV QOT] TTOV
eLo€QyETAL 0€ Evav 101 GOQTIOUEVO AVTOXLVNTOOQOUO, 1] VO VOIEOVV TIROOWELVE AwQideg
éntantng avayxng. Emiong, wrogotv va evueomoouy £yxaiQa Toug 00 yoUs HECW
uvupdtomv og nhentoovinég mvoxideg (VMS) 1) péow 0adlopmvou/dtodintiou OTL Ty . «OE
20 Aemtd avapévetol raBvotégnon 15 Aemtwv oty EOvirn 006 — eEetdiote evalhantinn
dradpoui». ‘Etot, to meofAnua O umoeotoe va. petolaoTel 1) xan vo artodpevy el yaon oty
TROYVWON, avti 1 eméufoon va yivetal apol 101 ONuoveyndet LToTIAGQLOUAL.

O vanpeoieg TAoNYNONG ATOTEAOTVV VO RO TOUEN EGAQUOYNG. ZNUEQO QUTES OL

v eoieg PaciCovral xvElmg 08 avTdQATTIXT TANEOGOENON — ONAAdT dLATUOTOVOUY TNV
nVrAODOoQLOKT) OUIPOENON 0PoT €xel CVUPEL (LECH TV TAXVTHTWV TOV OYNUATOV TOV
YONOTOV) RAL RATOTULV OVATIQOOAQMOTOUV dtadgoués. Eqv dpmg evowpatmBotv mooPAéelg
O0mwg Tov STG-Tx, n naBod1yNomn Wroel va yivel mpodQaoTint): TO CVOTNUA TAOTYNONG
WTOQEL VO ATtoPUYEL pLat OLaOQOUT TTOU OVOUEVETOL VO, £XEL XAOVOTEQNON O€ AlYO, arOUN %L
oV TNV OEO TNG EXRIVNONG PaiveTal opoit). Avtd Ba diaveipel raltega TV rurhodogio
7o o petmoel To patvopuevo 0rmov OAoL oL 00N Yol axohovBoUv pa cupovAt) Tou MTav
nOAT) exelvn TN oTrypn oALG yivetal xoxi 20 Aerttd petd emeldn emAgyOnre polind. Zrov
TOPEQ TV EUTTOQEVUOTIXDV LETADOQMV %o TNG edPodlaoTirnng ahvotdag (logistics), N
TOPAEYT ®vVrHhoPogiag wrogel va yonotpomombel yio feAtioTomoinon 0QoUoAO YWV ®oL
dpoporoyNnons otoAwv. o ToQddeLy L, Lo ETALQEID OLOVOUMY WITOQEL TO TR VaL
oyedudioel duvound TLg TaRAdOoELS TNG AapBavoviag VoY Tig TEOPAEYELS ®UurAodOoQlog



og O TNV TOAY YL TIG ETVOUEVES DOES, MOTE VA Aodpeyel Ldveg nal mEEeg ayung 600 eival
Ouvatov. Avtd 00N yel o€ EE0LHOVOUNOT] X QOVOU ROl XOVOTIMV, LE OXOVOLURO OALG %Ol
neQarhovtind 0¢pehog.

e mo oTEATNYLXO emimedo, Tal (010 ToL pOTIPal oV paBaiver xow avaderVUEL TO LOVTELO
WrooUv va xaBo0nyfHoouv tov oyedlooud vrodoumv. EGv magatneeitalr péom twv
TEOPAEYEWV OTL GUYRERQUUEVOL dQOUOL £XOVV TAXTIXA TITNOoT IOV VIeQPaiver TNV
TR00G0oQA (7). M TEOPAEYN 0YEOOV TAVTA VITOEXTLUA AlYO TNV TTQOYUATILOTNTA ETTELON)
VITAQYOVV OUY VA YEYOVOTO IOV TIQOXRAAOVV TTEQLOCOTEQT (VN ON), AVTO VITOONAMVEL OTL TO
006 dintvo exel elvar EVAMMTO 1] ®OEEOUEVO. OL GUYROLVWVIOAOYOL LITOQO UV VO
¥OYOLLOTTOLT|COVV TETOLOL EVQTIUOLTAL YLOL VO EVIOTOOUV JTOV OITOLTOUVTAL EMEUPAOELS: TL.Y. OV
€VoL LOVTELO OElyVEL CUY VA OTL OROUAL RO Y WIS ATUYNUOL TTQOPAETETAL CUUPOQNUEVO €Vl
TunpaL, (owg yoerdletan dtamhdtuvon 1 véa evalhaxtixi dwadooun. Emiong, péow
TQOYVWOTIXMV HOVTEAWV WTooUV va a&lohoynBoiv oevdgua («tL o oupPel av»): Tt Ba
ovpuPet av nheioer o Awetda oe o aptneio; Tu emidoaon Ba €xel wa véa yoauun Metood
otn o1 oxnuatwv; To exmoudevuévo STG-Tx, 0 CUVOVAOUO UE TIQOCOUOLMOELS, UTTOQEL VOl
ovpP el 0TV ATTAVTNON TETOLMV EQMTNUATMYV, ATOTEADVIAS EQYAAEIO VITOOTNOLENS
ATOPACEWV VL0 TLS CLOYEG.

Téhog, pe TN garydaiar Avodo TmV dLOOUVOEIEUEVMV KOL QUTOVOUMV OXNUATOV, AVOIYETOL
€vag véog opttovtag 6mov ta (0L T oxNuato o Wroeovoav vo 0ELOTTOLOVY TIS TTROPAEYELS
rurhodopiag. ‘Eva avtdvouo dxnua mwov yvmeiler 6Tt 5 YIMOUETQO TQOOTE TOV 1
ToyLTNTA ®URAOPOoQiag Ba petwBel dpaotind o 10 Aemtd, poQel vo TQOCaQUOOEL TO
TROGIA 001 YN o1 TOV: VO AR {0EL VO LELMDVEL TOYVTNTA VIQITEQO RO TLO OUOAG, VO ETUAEEEL
evohhoxtint dtodgoun 1 vo petofdlel Thv mogeio Tov £ToL MoTe va amodpUyeL Eviova,
doevapiopata. Avtd Ba Beltimoel TOoO TV 00wt aodpdreta (MydTeQes mBavOTNTES
ROQOWTOAOS OO aTTOTOWY eTOAOVVOT) OO0 %Ol TNV RATAVAADOT RAVOLHLOV/EVEQYELAS,
200(MG 1) OLOAT) QOT) LELMVEL TOL ATTOTOUO AVEPORATEPACUOTO OTQOPMOV KLVNTHQO. Z€ EVal
TIAMEWGS eVHVES OVOTNUO LETADGOQMV, OTTOU TOL OYTLALTA, OL PWTELVOL ONUATOOOTES KL OL
VITOOOUEG ETUROLVWVOUV, OL TIROPAEYELS ®nURAODOQLS Ba elval Evag amd TOVG TVETVES
oVVTOVIOPOU: Oa eMTEETOVY 08 OACL TAL VITOCVOTIUOTO VAL oUYYoVviCovTal pe Péon to T
TEORELTOL VO CVUPEL, OYL LOVO TL CUUPOLVEL TMQO.

ZuwteQaopatind, N TAQOVod eQyaota avemTuEe nal aElohdynoe to poviého STG-Tx og
oedopéva mpwtopavois peyéBoug (LargeST-CA) xouw atédelEe OTL 1) GUVERTIAT) Y WQOYQOVIXT
LdONoN WTOQEL VO AVTLUETMITOEL TIG TTQORANOELS LEYAANG RALUAROG TIQOOHEQOVTAG
roQuoaia axgifera meoPreyms. H onuaoio tg modfieyng nurhodogiag o€ mooypatind
oevaola ITS xaBiotd tétotov eidoug povtéha moritipo: amd ™) PelTiotomoinom
ROONUEQLVOV LETAXLVTOEMV £WG TOV LAXQOTIROOEGUO OYEOLAOUO VITOOOUMV, 1] dOUVATOTNTO
va «BAémovpe LTQOOTA» 0TV ®urAodogia petapodletor o eEowovounon xovov,
260ToVg noL Comv. Ot pelhovtinég emextdoels mov ovinTOnrav uIroQov va ®avouv To
STG-Tx axoun mMo LoYvEO 1l XENOLUO, PEQVOVIAS LAS IO KOVTA O TTOAELS OTTOU 1|
rURAOPOQLOL Q€L TO OUOAGL, TTLO EEVTTVAL %O TTLO BLOOLUA XAQY OTNV ETUOTHUN TWV
0edOUEVIV ROL TNG TEYVNTNG VONUOOUVNG.
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Chapter 1 - Introduction

1.1 Background

The rapid expansion of urbanization and motorization over the past decades has generated
unprecedented pressures on transportation infrastructures worldwide. Cities and regions are
confronted with chronic congestion, extended travel delays, unpredictable journey times, and
elevated risks of traffic-related incidents. These challenges have motivated the evolution of
Intelligent Transportation Systems (ITS), which aim to harness sensing technologies,
communication platforms, and automated control strategies to improve both the operational
efficiency and safety of road networks. At the heart of most I'TS applications lies the ability to
anticipate short-term traffic conditions with sufficient accuracy and timeliness to guide proactive
interventions.

Short-term traffic forecasting generally refers to the prediction of core traffic variables —such as
flow, speed, and occupancy —over horizons ranging from five minutes to one hour. Forecasts within
this time scale are highly actionable: they can support adaptive signal control, ramp metering, and
dynamic message signs, all of which can be adjusted to forestall congestion before it fully
materializes. Forecasts also serve as essential inputs to real-time route guidance systems and
incident management platforms, which can help reduce secondary collisions and recover network
functionality more rapidly after disruptions. Studies have shown that deploying prediction-informed
traffic management can reduce total travel delay and collision risks by more than fifteen percent in
heavily loaded freeway corridors [1].

The pursuit of short-term traffic forecasting has produced a long trajectory of methodological
innovation. The earliest methods emerged from the tradition of statistical time-series modeling.
Among these, the Auto-Regressive Integrated Moving Average (ARIMA) model represented a
seminal contribution. ARIMA assumes linearity and weak stationarity, which means it is well-suited
to recurring, regular traffic patterns such as those observed on stable links with pronounced diurnal
cycles [2]. Seasonal variants of ARIMA extended this capability to capture weekly periodicities.
Another influential approach was the application of Kalman filters, which provide online recursive
state estimation under Gaussian noise assumptions. Kalman filtering has been particularly attractive
for freeway speed inference, where estimates must be updated in real time as new sensor data
streams in. These models proved effective in constrained scenarios, yet they faced severe limitations
when deployed on networks experiencing nonlinear dynamics, recurrent congestion waves, and
spatial spill-back effects across adjacent road links. Moreover, their reliance on strong distributional
assumptions restricted their ability to cope with missing or corrupted detector data.

During the early 2000s, the field began to integrate methods from machine learning, which enabled
more flexible modeling of nonlinear patterns. Techniques such as Support Vector Regression (SVR)
and Random Forests (RF) gained popularity. These methods no longer depended on explicit
physical or linear assumptions and could instead fit nonlinear mappings directly from historical
data. While they often outperformed classical statistical baselines, they suffered from two important
weaknesses. First, they required substantial manual feature engineering, including the design of
lagged features, polynomial expansions, or Fourier transforms to capture seasonality. Second, they
largely treated each sensor independently, failing to exploit the rich spatial correlations inherent in
traffic networks. In practice, this meant that while SVR or RF might yield improved accuracy at
individual sensor sites, they could not capture the network-level interactions that drive congestion
propagation.



The advent of deep learning in the mid-2010s represented a paradigm shift. Deep neural networks
introduced the possibility of learning hierarchical feature representations directly from raw time
series, reducing the need for manual feature engineering. Convolutional Neural Networks (CNNs)
were first applied to traffic forecasting to learn localized temporal kernels, capturing short-term
variations in flow or speed. Recurrent Neural Networks (RNNs), particularly the Long Short-Term
Memory (LSTM) and Gated Recurrent Unit (GRU) variants, excelled at modeling longer
dependencies, enabling forecasts that accounted for trends extending beyond a few minutes. These
architectures quickly demonstrated superior performance over traditional machine learning and
statistical methods, particularly under conditions of high variability.

Nevertheless, CNNs and RNNs alone could not capture the non-Euclidean spatial dependencies that
characterize road networks. This led to the emergence of Graph Neural Networks (GNNs) in
transportation research. GNNs operate directly on graph structures, leveraging adjacency
information to propagate signals between nodes in a network. When combined with temporal
sequence models, they gave rise to Spatio-Temporal Graph Neural Networks (STGNNSs). These
architectures represent one of the most influential breakthroughs in modern traffic forecasting, as
they explicitly model both the graph topology of the road network and the temporal evolution of
traffic states. Two landmark examples are the Diffusion Convolutional Recurrent Neural Network
(DCRNN) [3], which integrates diffusion processes with recurrent units, and the Spatio-Temporal
Graph Convolutional Network (STGCN) [4], which applies convolutional filters in both spatial and
temporal domains. Both models demonstrated that incorporating non-Euclidean graph structures
substantially improves accuracy compared to treating sensors independently or approximating road
networks as Euclidean grids.

Building on these advances, researchers recently turned toward the Transformer architecture, first
introduced for machine translation [5]. Transformers rely on global self-attention, a mechanism that
allows every token in a sequence to attend to all others, capturing long-range dependencies without
the recurrence constraints of RNNs. This property made transformers attractive for time-series
forecasting, including traffic data, where dependencies often extend across hours or even days.
Vanilla transformers, however, impose quadratic complexity in both memory and computation with
respect to sequence length. This creates a major obstacle when working with traffic datasets, where
input sequences can extend to hundreds of time steps across thousands of sensors.

Early adaptations of transformers for time series sought to mitigate this complexity. The Temporal
Fusion Transformer (TFT) [6] incorporated gating and attention to improve interpretability and
reduce redundancy, making it feasible for multivariate forecasting tasks. The Informer architecture
[7] introduced sparse attention mechanisms, reducing complexity for long univariate or small
multivariate sequences. In the traffic domain, further specialization followed. STAEformer [8]
enhanced vanilla transformers with spatio-temporal adaptive embeddings, achieving state-of-the-art
results on medium-sized networks. PDFormer extended this by integrating propagation-delay
awareness, explicitly modeling the delayed effects of congestion spread. The most recent
STGformer [9] collapsed spatial and temporal attention into a single layer, reporting substantial
efficiency gains and demonstrating the potential of transformers for very large graphs. Collectively,
these innovations underscore the promise of transformer models for traffic forecasting, but also
highlight the unresolved challenge of applying them to truly statewide networks in real time.



1.2 Problem Context

Forecasting traffic at the scale of entire freeway systems involves challenges that go far beyond
those encountered in smaller academic benchmarks. Real-world deployments such as California’s
freeway sensor network involve thousands of sensors streaming data continuously at high
frequency. This scale creates unique technical hurdles that models must address to be operationally
relevant.

The first major issue is dimensionality. With 8,600 sensors reporting every five minutes, each
statewide snapshot represents thousands of correlated variables. Over the course of a single year,
this amounts to approximately 8.1 billion individual values. Processing such vast datasets in real
time is computationally expensive. Models trained on smaller datasets may simply not scale, both
because of GPU memory limitations and because the learning algorithms themselves may not
generalize well when input dimensionality increases by orders of magnitude.

The second issue is the non-Euclidean nature of road networks. Freeways and arterials form
complex, directed graphs with highly irregular connectivity. Traditional CNNs, which assume grid-
like Euclidean structures, are therefore unsuitable. For example, two freeway ramps may be
physically adjacent but not directly connected in terms of traffic flow, while two distant segments
may strongly interact due to network rerouting. Forecasting models must capture these graph-
structured dependencies explicitly, which is why graph neural networks and attention mechanisms
have become indispensable.

Third, traffic systems exhibit profound temporal heterogeneity. Daily commuting patterns create
strong morning and evening peaks, while weekly rhythms distinguish weekdays from weekends.
Superimposed on these are seasonal variations, such as increased holiday travel or reduced summer
commuting. On top of these regular cycles are stochastic disruptions—incidents, roadworks, or
adverse weather—that defy simple periodicity. Any model must be able to capture the interaction
between deterministic rhythms and unpredictable disturbances.

Fourth, data quality remains an unavoidable problem. Inductive loop detectors, which form the
backbone of most freeway monitoring systems, are prone to outages, sensor noise, or calibration
drift. Missing-value rates of up to five percent per sensor are not uncommon [12]. Forecasting
systems must therefore incorporate strategies for robust handling of missing and noisy data, without
compromising accuracy.

Traditional research datasets have only partially captured these challenges. Popular benchmarks
such as PeMSD4 (307 sensors, two months), METR-LA (207 sensors, four months), and PeMSD8
(170 sensors, two months) have proven invaluable for developing and comparing models. However,
they represent only small subgraphs of the California freeway system, and they span relatively short
time horizons. Models trained and tuned on such small datasets may achieve high reported accuracy
but risk poor generalization when scaled to thousands of nodes and multi-year horizons. In practice,
models must be validated under realistic conditions that reflect the full complexity of statewide
operations. Without this, the research-to-practice gap remains significant.



1.3 Motivation

The LargeST-CA corpus was introduced to close this scale gap by aggregating five years (2017-
2021) of loop-detector data at S-minute granularity, spanning the entire California highway system
[10]. This dataset comprises approximately 4.5x10° individual observations and includes a graph
with 8,600 nodes and 201,000 edges, making it the most comprehensive publicly available
benchmark for large-scale traffic forecasting. By encompassing both dense urban freeways and
sparsely instrumented rural highways, LargeST-CA presents a uniquely realistic challenge for
forecasting models.

However, applying existing state-of-the-art STGNNSs and transformer variants naively to this
dataset exposes severe scalability bottlenecks. For example, GNN + RNN hybrids such as DCRNN
[3] and STGCN [4] require per-time-step graph convolutions combined with gated recurrences. On
LargeST-CA, a 24-hour input window (288 steps) implies on the order of 200 GFLOPs per forward
pass and demands more than 40 GB of GPU memory, already exceeding the capacity of many
commodity GPUs.

Similarly, early transformer adaptations are not immediately applicable. STAEformer [8] stacks
separate temporal and spatial attention layers, each of which scales quadratically with sequence
length or node count. For 8,600 nodes across 288 time steps, the memory requirements explode into
the terabyte scale, which is infeasible even on modern datacenter GPUs. PDFormer, while
alleviating some temporal shift issues by incorporating propagation delay awareness, still relies on
deep attention stacks that remain unsuitable for statewide graphs.

The recently proposed STGformer [9] introduced a clever compression by collapsing spatial-
temporal interactions into a single linearized attention layer, reporting up to a 100x inference speed-
up compared to STAEformer. However, its implementation relies on custom CUDA kernels and
large embedding stacks, which limit its modularity and ease of integration. This raises barriers for
reproducibility and extension by other researchers.

These limitations motivate the development of a new model: the Spatio-Temporal Graph
Transformer (STG-Tx). The goal of STG-Tx is to achieve three main design principles. First, to
decouple temporal and spatial computation into separate modules, promoting transparency and
interpretability in how the model handles time and space. Second, to apply patch-wise compression
to bound the length of attention computations, thereby reducing memory requirements while
retaining coverage of key patterns. Third, to leverage FlashAttention kernels to implement memory-
linear self-attention, enabling the model to handle long input sequences and large node sets within
realistic GPU budgets.



1.4 Objectives and Scope

Building on the background and motivation, this thesis pursues five interrelated objectives:

Architecture design: The first objective is to design and implement the dual-path STG-Tx
architecture. This involves integrating a temporal patch attention mechanism with a spatial graph
attention mechanism, fused through a lightweight gating component. The architecture aims to strike
a balance between expressive power and computational efficiency, targeting statewide networks
rather than small laboratory graphs.

End-to-end pipeline: The second objective is to develop a GPU-accelerated workflow for data
ingestion, storage, feature engineering, training, and evaluation. This includes the use of Arrow/
Parquet storage formats for scalable handling of raw detector data, and NV Tabular for efficient
preprocessing. The workflow ensures that LargeST-CA can be processed reproducibly at scale,
providing a template for future large traffic datasets.

Accuracy assessment: The third objective is to rigorously evaluate the predictive quality of STG-
Tx using standard error metrics: Mean Absolute Error (MAE), Root Mean Squared Error (RMSE),
and Mean Absolute Percentage Error (MAPE). Performance is measured across 12 forecast
horizons (5 to 60 minutes), enabling fine-grained analysis of short- and medium-term predictive
accuracy.

Efficiency benchmarking: The fourth objective is to measure the efficiency of STG-Tx in practice,
including wall-clock training time, inference latency, peak GPU memory consumption, and
monetary cost when deployed on cloud GPUs such as the AWS H100. Comparisons are drawn
against established baselines —DCRNN, STGCN, STAEformer, PDFormer, and STGformer—
allowing us to quantify trade-offs between accuracy and efficiency.

Analytical insight: The fifth objective is to provide a detailed analysis of strengths, error modes,
and scalability limits of STG-Tx. This includes examining which traffic regimes are forecasted well
(e.g., recurrent peak periods) and which remain challenging (e.g., rare incidents). Future directions
such as adaptive edge weighting, multi-modal data fusion, and continual learning are outlined,
situating this work within a broader research agenda.

Scope boundaries. The study focuses exclusively on forecasting traffic flow variables derived from
inductive loop detectors. Other data modalities such as travel times from GPS, public transport
feeds, pedestrian counts, or microscopic traffic simulation outputs are beyond the scope of this
thesis. By constraining the problem definition, we ensure that evaluation remains tractable while
directly addressing the most widely deployed sensing infrastructure in freeway networks.



1.5 Thesis Structure

Chapter 2 surveys classical, machine-learning, and deep spatio-temporal forecasting methods,
highlighting scalability and efficiency gaps.

Chapter 3 introduces the LargeST-CA dataset, the GPU preprocessing pipeline, and the proposed
STG-Tx architecture.

Chapter 4 describes implementation choices, including training on a Paperspace A100 GPU,
mixed-precision arithmetic, node subsampling, and reproducibility tooling.

Chapter 5 presents experimental results, reporting MAE = 30.2, RMSE = 39.7, and MAPE = 8.3%
on the held-out test set, and analyzing the impact of efficiency techniques.

Chapter 6 discusses findings, strengths, limitations, and deployment implications for real-world
ITS.

Chapter 7 concludes the thesis and outlines future work, including forecast-driven traffic signal
control, multimodal fusion, and real-time adaptation.

Summary

Modern ITS demand forecasts that scale to state-level sensor networks while maintaining real-time
latency. Existing deep models either sacrifice efficiency or limit scope to small graphs. Leveraging
the LargeST-CA benchmark, this thesis introduces STG-TXx, an efficient Spatio-Temporal Graph
Transformer that combines patch-wise temporal attention, adaptive graph attention, and
FlashAttention acceleration. The ensuing chapters build a coherent narrative from literature gaps to
algorithmic design, large-scale evaluation, and critical appraisal, thereby contributing a scalable
blueprint for next-generation traffic forecasting.



References

[1] H. Dia, “An agent-based approach to modelling driver route choice behaviour under the
influence of real-time information systems,” Transportation Research C, vol. 10, no. 5-6, pp. 331—
349,2002.

[2] B. Williams and L. Hoel, “Modeling and forecasting vehicular traffic flow as a seasonal ARIMA
process: Theoretical basis and empirical results,” J. Transp. Eng., vol. 129, no. 6, pp. 664-672,
2003.

[3] Y. Li, R. Yu, C. Shahabi, and Y. Liu, “Diffusion Convolutional Recurrent Neural Network: Data-
Driven Traffic Forecasting,” Proc. ICLR, 2018, arXiv:1707.01926.

[4] B. Yu, H. Yin, and Z. Zhu, “Spatio-Temporal Graph Convolutional Networks: A Deep Learning
Framework for Traffic Forecasting,” Proc. [JCAI, 2018, arXiv:1709.04875.

[5] A. Vaswani et al., “Attention Is All You Need,” Adv. NeurIPS, vol. 30, 2017.

[6] B. Lim et al., “Temporal Fusion Transformers for Interpretable Multi-horizon Time Series
Forecasting,” Adv. NeurIPS, vol. 34, pp. 1743617447, 2021.

[7]1 H. Zhou et al., “Informer: Beyond Efficient Transformers for Long Sequence Time-Series
Forecasting,” Proc. AAAI, vol. 35, no0. 12, pp. 11106-11115, 2021.

[8] Y. He et al., “STAEformer: Spatio-Temporal Adaptive Embedding Makes Vanilla Transformer
SOTA for Traffic Forecasting,” arXiv:2308.10425.

[9] H. Wang et al., “STGformer: Efficient Spatiotemporal Graph Transformer for Traffic
Forecasting,” arXiv:2410.00385, 2024.

[10] X. Liu et al., “LargeST: A Benchmark Dataset for Large-Scale Traffic Forecasting,” NeurIPS
Datasets & Benchmarks, 2023, arXiv:2306.08259.



Chapter 2 - Traffic-Forecasting Methods

2.1.1 An overview

Early traffic prediction research was grounded in time-series statistics, exploiting the repetitive
nature of flows on individual road segments. The simplest baselines —historical mean, median, or
seasonal naive methods —assume that conditions observed at the same clock time on previous days
will reoccur; despite negligible computational cost, mean absolute errors (MAE) often exceed 20 %
under incident or holiday regimes. Exponential smoothing adds a memory factor to adapt gradually
to trend shifts but still presumes linear evolution [1].

The seminal work of Ahmed & Cook applied the Box—Jenkins Auto-Regressive Integrated Moving
Average (ARIMA) framework to freeway loop-detector series, demonstrating that a well-fitted
ARIMA model could reduce root-mean-square error (RMSE) by =12 % relative to a seasonal mean
on 15-min ahead forecasts [2]. Seasonal extensions (SARIMA) incorporate daily or weekly
differencing and have been reported to improve short-horizon speed prediction on urban arterials.

Kalman filtering formulates flow dynamics in a state-space model and updates estimates on line
with Gaussian noise assumptions. Okutani & Stephanedes pioneered its use for dynamic origin—
destination estimation, achieving sub-5 % relative error on a 10-link corridor [3]. Variants such as
the Extended and Unscented Kalman Filters handle mild nonlinearities but still require manual
tuning of process-noise covariance matrices.

Strengths: Classical models are interpretable, grounded in statistical theory, and trivial to
implement in SQL or embedded controllers. They require few parameters, facilitating deployment
on low-power hardware.

Limitations: Their linearity and stationarity assumptions break down under regime shifts (e.g.,
incidents, weather). Most implementations treat each detector independently, ignoring spatial spill-
back. Parameter calibration scales linearly with node count N, making statewide maintenance
impractical when N>5 000. Consequently, by the late 1990s their performance plateaued,
motivating the adoption of non-linear machine-learning models.

2.1.2 Shallow Machine-Learning Models

Non-linear Regressors: The mid-1990s saw the introduction of Support Vector Regression (SVR),
which fits an e-insensitive loss in a high-dimensional kernel space. Drucker et al. reported that SVR
lowered MAE by 15 % over linear regression on Boston freeway speeds, at the expense of solving a
quadratic program whose complexity grows with training size [4].

Decision-Tree Ensembles: Ensemble decision trees, notably Random Forests (RF) and Gradient
Boosting Machines (GBM), gained traction owing to their ability to capture feature interactions
without heavy tuning. Breiman’s RF algorithm averaged 500 trees and cut RMSE by 18 %
compared with SVR on a two-month PeMS sample [5].

Feature Engineering & Scalability Issues: Shallow learners rely on manual feature engineering:
lagged flows, day-of-week dummies, weather, event indicators, and sometimes upstream sensor
readings. Such pipelines demand domain expertise and can miss nonlinear spatial dependencies.
Computationally, per-sensor model training is feasible for networks with N<500 but becomes
onerous for statewide deployments.



2.1.3 Emergence of Deep Learning

Early Deep Feed-Forward Networks. With greater data availability, researchers explored Multilayer
Perceptrons (MLP) and stacked auto-encoders. Huang et al. achieved a 7 % MAE reduction versus
SVR on Beijing ring-road flows using a 5-layer auto-encoder that autonomously learned temporal
abstractions [6]. Despite improvements, these fully-connected architectures disregarded spatial
context and required fixed-length inputs, hindering long-horizon forecasting.

To capture local spatial correlations, Convolutional Neural Networks were applied to grid-mapped
traffic measures. Zhang, Zheng & Qi’s DeepST model represented citywide taxi demand as an mxn
image and stacked residual CNNs with a parametric fusion of daily, weekly, and monthly trends,
lowering RMSE by 17 % on New York demand heat-maps [7]. For sensor networks, CNN-LSTM
hybrids treated lagged measurements as channels; a 2016 California study reported a 12 % MAE
gain over RF using a three-layer CNN followed by a bidirectional LSTM [8]. While hybrids
improved temporal learning, the Euclidean grid assumption forced artificial interpolation between
irregular sensor locations.

Graph-Structured Deep Networks. The breakthrough for large-scale traffic forecasting arrived with
Spatio-Temporal Graph Neural Networks (STGNNs), which natively process non-Euclidean graphs.

. Diffusion Convolutional Recurrent Neural Network (DCRNN) introduces a bidirectional
diffusion operator TAk that propagates information through k-hop neighbours and embeds it
into a GRU encoder—decoder [9]. On the 207-sensor METR-LA dataset, DCRNN reduced
MAE by 12 % and RMSE by 15 % relative to LSTM baselines.

. Spatio-Temporal Graph Convolutional Network (STGCN) replaces recurrent units with
Gated Temporal Convolutions and Chebyshev graph kernels to parallelise training, trimming
epoch time by 80 % while achieving comparable accuracy on PeMSD7 (883 sensors) [10].

These architectures inaugurated the current research line in which spatial graph convolutions (GCN,
GraphSAGE, Diffusion) are combined with temporal modules (RNN, TCN, self-attention) to model
complex propagation phenomena such as queue spill-back and shock-waves. Their success also
exposed computational bottlenecks —quadratic growth of attention matrices and increasing depth—
when extending from city-scale graphs (<1 000 nodes) to statewide networks (>8 000 nodes), a
limitation addressed in Section 2.2.

2.1.4 Summary

Traffic-forecasting methodology has evolved from statistically grounded yet spatially myopic
ARIMA/Kalman models, through shallow non-linear regressors requiring heavy feature
engineering, to deep spatio-temporal networks that learn representations directly from data.
Classical and shallow techniques remain attractive for single-link dashboards, but deep networks
now dominate benchmark leaderboards due to their ability to capture multivariate nonlinear
dynamics and graph topology. Nevertheless, existing deep models struggle with scalability and
memory efficiency on truly large graphs, motivating the exploration of more compact graph-
attention architectures discussed in Section 2.2.
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2.2 Graph Neural Networks & Hybrid Deep Models

2.2.1 Graph-Based Spatial Modelling

Urban road-sensor networks form a non-Euclidean domain: each detector (node) is anchored on a
directed road segment and interacts with upstream or downstream links through topological,
directional, and distance-weighted edges. Classical convolutions defined on regular grids cannot
capture such irregular connectivity, motivating the use of graph signal processing. Graph modelling
enables (i) localisation of congestion propagation along realistic paths, (ii) information sharing
across non-adjacent yet highly correlated corridors (e.g., freeway detours), and (iii) principled
handling of missing or partially observed sensors by message passing. However, road graphs are
dynamic: lane closures, incidents, and time-of-day signal plans alter effective edge weights,
rendering a static adjacency matrix sub-optimal. These observations underpin the design of
Spatio-Temporal Graph Neural Networks (STGNNs) reviewed below.

2.2.2 Spatio-Temporal Graph Neural Networks (STGNNSs)

STGNN:Ss interleave graph-based spatial operators with sequence models that capture temporal
evolution. Let G=(V,E) denote a sensor graph with IVI=N nodes, weighted adjacency A, and traffic
features XeR<sup>NxT</sup> over a horizon T.

(a) Diffusion Convolutional Recurrent Neural Network (DCRNN) [1]

e Architecture: DCRNN models traffic as a bidirectional diffusion process. For each layer,

DiffConv(X) = Y [e,gf (D714 + 9§j’>(D—1AT)ﬂ X$
k=0

which is inserted into an encoder—decoder GRU with scheduled sampling.

e Innovation: Multi-hop diffusion captures upstream and downstream influence without
hand-crafted lag features.

. Reported gain:. On METR-LA (207 sensors) and PEMS-BAY (325 sensors) DCRNN
reduced RMSE and MAE by 12-15 % over ARIMA and Feed-Forward baselines [1].

e  Limitations: Quadratic parameter growth in K-hop matrices plus recurrent unrolling hinders
scaling beyond = 1 000 sensors.

(b) Spatio-Temporal Graph Convolutional Network (STGCN) [2]

*  Architecture: Stacks Chebyshev graph convolutions with gated temporal CNN (TCN)
blocks, eliminating RNN recurrence.



. Innovation: Causal dilations in the TCN enable parallel GPU training; graph convolutions
share weights across time.

e  Performance: STGCN improved RMSE by =10 % over LSTM on METR-LA while training
10 x faster than DCRNN due to 1-D convolutions [2].

e  Limitations: The model still multiplies dense (NxN) filters each layer; depth must grow to
enlarge receptive field, inflating memory.

(c) Graph WaveNet (GWN) [3]

e Architecture: Introduces adaptive adjacency learned via node embeddings and dilated causal
convolutions for time.

e  Innovation: The learned adjacency uncovers hidden correlations (e.g., parallel arterials)
without a pre-defined graph.

. Performance: On METR-LA, GWN achieved a 4 % lower MAE than STGCN and halved
inference latency by avoiding RNNs [3].

e  Limitations: Adaptive matrices are still NxN; memory rises quadratically for 8 k+ sensors.
(d) Attention-based STGCN (ASTGCN) [4]

e Architecture: Adds temporal and spatial attention gates atop STGCN blocks; weights are
learned per node and per time step.

*  Innovation: Attention improves interpretability —e.g., sensors near freeway ramps gain
higher weights during peak hours.

*  Performance: Achieved additional 2—4 % MAE reduction vs. GWN on Beijing and PeMSD7
datasets [4].

e  Limitations: More parameters and attention maps further escalate O(N?) memory.
(e) Supporting Evidence of the Trend

*  T-GCN combines a single GCN with a GRU, cutting MAE by ~5 % over pure GRU on
Shenzhen taxi flows [5].

*  AGCRN removes fixed graphs entirely via Node-Adaptive Parameter Learning,
outperforming GWN by 6-8 % MAE on PeMSD3 with fewer parameters [6].

e MTGNN learns graph structure jointly with dilated inception TCNs, beating LSTNet by up
to 18 % on four public datasets and winning KDD 2020 best-paper runner-up [7].

Together, these studies cement the GCN + temporal-block blueprint as the de-facto recipe for traffic
forecasting circa 2018-2022.



2.2.3 Impact on Prediction Accuracy

Meta-analyses in recent surveys report 5-20 % lower MAE/RMSE for STGNNSs versus classical or
shallow baselines across 15+ benchmarks [10]. The gains stem from two synergistic factors:

1. Spatial correlations. Graph convolutions let each node aggregate upstream conditions (queue
spill-back), downstream capacity (bottlenecks), and cross-network detours, capturing
non-local influence that ARIMA or SVR cannot model.

2. Temporal dynamics. RNN/TCN blocks capture daily and weekly cycles plus gradual

build-ups, while attention layers highlight irregular events (accidents, concerts) by assigning
higher weights to rarer contexts.

2.2.4 Scalability & Complexity Limitations

Cost driver Mathematical growth Bottleneck on 8 600-sensor LargeST-CA
EE_‘Ch layer multiplies A€RNN  Depge A (=74 M entries) demands >2 GB per
GCN layers with features = O(N?) flops +  Jayer in FP32; stacking 10 layers exceeds
memory. 20 GB even before activations.

Sequential unrolling prevents ~ Training time scales linearly with horizon; a

Recurrent stacks temporal parallelism; hidden 24 h input (288 steps) forces hour-long GPU

(GRU/LSTM)

state O(N-H). epochs.
Multi-hop K-hop diffusion duplicates K E
diffusion sparse matrices; memory O(K-
Dense attention in Vanilla transformer on a 7 d window

Spatial-attention: O(N?);

STGNN-Transfor Temporal-attention: O(T?).

mer hybrids

(T=2016) allocates 1.2 TB attention scores
—impossible on current GPUs.

Empirically, the public STGNN codebases crash on GPU memory when N>2 000 without
aggressive batching or node sampling. Researchers often resort to graph partitioning, which disrupts
long-range spatial coherence, or shorten sequences to <12 h, losing weekly periodicity. Such
compromises motivated the design of Spatio-Temporal Graph Transformers (STGTs) that collapse
spatial and temporal reasoning into one attention kernel with linear complexity, culminating in
STGformer—the first model to process all 8 600 LargeST sensors on a single A100 card while
achieving a 100 x inference speed-up and 99.8 % memory cut over STAEformer [8].
Complementarily, the FlashAttention kernel reduces temporal attention 1/0O, yielding 2-3 x
wall-clock speed-ups on sequences of 1 k tokens or more [9].



2.2.5 Summary

In summary, STGNNS established the importance of joint spatial-temporal learning and propelled
traffic-forecast accuracy to new heights, yet their quadratic complexity and stack-depth recursion
erect barriers at state-wide scale. The next generation of models— graph transformers with
IO0-aware attention kernels —promise to preserve those accuracy gains while delivering
sub-quadratic memory and runtime. Section 2.3 introduces these scalable architectures, setting the
technical foundation for the STG-Tx model advanced in this thesis.
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2.3 Transformer-Based Models for Traffic Forecasting

Transformers in Time-Series Forecasting

Transformer architectures, rely on multi-head self-attention to capture dependencies without
recurrence. In self-attention, each input is linearly projected to query, key, and value vectors, and an
attention weight matrix is computed as:

AQ,K,V) = softmax(QTI;T) 14
k

where dk is the key dimension [1]. This mechanism allows the model to attend to relevant positions
regardless of distance, addressing the limitations of RNNs and CNNs in modeling long-range
temporal dependencies. Unlike RNNs (which propagate information sequentially and can struggle
with long-term context) or CNNs (which have locality-limited receptive fields), a Transformer can
relate any two time steps in O(1) pairwise operations (constant w.r.t. sequence distance). This yields
superior parallelism and the ability to capture global patterns, critical for long time series where
distant events influence future outcomes.

To apply Transformers to time-series forecasting, several adaptations have been proposed to handle
long input horizons and inherent temporal patterns. Temporal Fusion Transformer (TFT) combines
recurrent layers with self-attention for multi-horizon forecasting [2]. TFT uses an LSTM encoder
for local temporality and a multi-head attention decoder for long-term dependencies, along with
gating mechanisms to skip irrelevant features. Specialized components (Variable Selection
Networks and gating layers) provide interpretability by quantifying each feature’s importance,
making TFT’s decisions more transparent. Empirically, TFT demonstrated state-of-the-art accuracy
on several benchmarks (electricity, traffic, retail) and yielded significant error reductions over
previous RNN/CNN models, all while offering insights via attention weights and feature
importances. One limitation of TFT is its hybrid complexity (it still relies on RNNs internally),
which can be less efficient on very long sequences despite the attention component.

To improve efficiency for long sequences, researchers introduced sparse attention and series
decomposition in Transformers. Informer introduced a ProbSparse self-attention mechanism that
selects a subset of dominant queries for full attention, reducing complexity from O(L?) to O(L log
L) for sequence length L [3]. It also employs self-attention distilling, iteratively reducing sequence
length at each encoder layer, and a generative decoder that predicts all future points in one forward
pass. These innovations allow Informer to handle very long inputs (e.g. 10k time steps) with much
lower memory and time overhead. On large-scale benchmarks, Informer significantly outperformed
previous Transformer variants and RNN-based models in long sequence forecasting [3], validating
that Transformers can effectively model long-range temporal patterns when suitably optimized.



However, Informer’s sparsity may neglect some finer context, and its performance can degrade if
important but “sparsified” interactions are omitted (a potential trade-off for efficiency).

Another notable variant is Autoformer, which moves beyond ad-hoc sparse attention by integrating
a series decomposition directly into the architecture [4]. Autoformer separates each time series into
trend and seasonal components through an inner decomposition block, and it introduces an Auto-
Correlation mechanism to replace dot-product attention for capturing periodic dependencies. By
focusing on sub-series periodicity, the model can learn repeating seasonal patterns more effectively
than vanilla attention. This design was shown to improve long-term forecast accuracy substantially
— Autoformer achieved about 38 % lower error than prior Transformers on long-horizon
benchmarks across diverse domains (energy, traffic, weather, etc.) [4]. It also improves efficiency,
since the auto-correlation mechanism scales more gracefully and avoids quadratic attention on full
sequences. The main advantage of Autoformer is its ability to model complex seasonal trends
explicitly, though it assumes the time-series are amenable to clear seasonal-trend separation. In
summary, these adaptations (TFT, Informer, Autoformer) demonstrate how vanilla Transformers can
be modified for time-series forecasting, each contributing unique ideas (hybrid RNN-attention
architecture, sparse attention and distillation, series decomposition) to improve forecasting accuracy
and efficiency. Each model reports state-of-the-art results in its context, but they are typically
evaluated on univariate or small multivariate datasets and do not incorporate spatial dependencies,
which are crucial in traffic forecasting.

Spatio-Temporal Transformers for Traffic Forecasting

Applying Transformers to traffic data is challenging because one must capture not only temporal
patterns but also spatial correlations defined by the road network graph. Traffic sensors are nodes on
a graph with roads as edges, so models must handle graph-structured data where distant nodes (in
index) may be physically connected and nearby. Naively applying a Transformer to all sensor time
series ignores the known adjacency structure — the self-attention might learn some spatial relations
implicitly, but it does not inherently know which sensors are neighbors. This can lead to inefficient
learning and the need for enormous data to infer relationships that are already known from the road
network. Hence, spatio-temporal Transformer models have emerged, integrating graph neural
network (GNN) ideas or spatial attention mechanisms to better incorporate the topology of traffic
systems. Key difficulties include: how to encode the graph connectivity or distances between
sensors into the Transformer, how to handle potentially thousands of nodes (which makes full
attention O(N?) in the number of sensors), and how to model dynamic spatial dependencies (traffic
conditions propagate through the network over time with delays).

One line of research couples GNN layers with Transformer layers. For example, GMAN (Graph
Multi-Attention Network, AAAI 2020) employed an encoder-decoder architecture with multiple
spatio-temporal attention blocks to predict future traffic flow. Each block in GMAN used a spatial
attention sub-layer (attending over road graph neighbors) followed by a temporal attention sub-
layer, along with a gated fusion mechanism. This design showed that attention mechanisms can
improve performance when combined with graph convolutions, and GMAN achieved competitive
results on city traffic speed datasets. However, GMAN’s multi-step attention was computationally
heavy and still limited to relatively small networks (e.g. Los Angeles (207 sensors) or Beijing (City)
scenarios). Similarly, an early ST-Transformer model proposed to separate spatial and temporal
attention: it performed temporal self-attention on each sensor’s time series and spatial self-attention
on each time slice, in alternating fashion. This factorized attention approach reduces computational
load compared to a fully joint attention over all nodes and times, and it improved over pure GNN
baselines. Yet, a limitation noted was insufficient adaptability to dynamic traffic changes — a static



separation of time and space attention cannot easily capture changing traffic routes (e.g. rerouting
due to incidents) since spatial attention was confined to fixed neighbor relationships at each step.

To address dynamic connectivity and long-range interactions, recent transformer-based models
explicitly incorporate road network knowledge into the attention mechanism. STAEformer is a
Spatio-Temporal Adaptive Embedding Transformer that augments the vanilla Transformer with
learned spatial embeddings for each sensor [5]. Essentially, STAEformer learns a continuous vector
representation of each node’s position in the network (adaptive to the data) and adds these
embeddings into the attention computation, so that sensors with similar embedding (i.e. similar
traffic patterns or connectivity) attend to each other more strongly. This approach allowed a
“vanilla” Transformer model (with separate temporal and spatial attention layers) to achieve state-
of-the-art forecasting accuracy on standard traffic benchmarks [5]. However, the model relies on
stacking multiple attention layers (spatial and temporal) to capture higher-order interactions. This
deep attention stack makes its computational complexity grow quadratically with the sequence
length and linearly with number of layers, leading to very high memory usage for long sequences.

Another state-of-the-art model is PDFormer, short for Propagation Delay-aware Transformer.
PDFormer explicitly accounts for the travel time delay of traffic information between sensors. It
introduces a delay-aware attention mechanism: when attending to another node’s time series, the
model incorporates a learnable time-delay factor that aligns phases of traffic waves. For example, if
an upstream sensor sees congestion, PDFormer’s attention to a downstream sensor will be shifted
by the estimated propagation time along the road, effectively attending to the appropriate lagged
time step. This innovation enables modeling both short-range and long-range spatial dependencies
dynamically, reflecting how traffic congestion propagates through the network. PDFormer achieved
strong performance on medium-sized traffic graphs (e.g. PeMS-Bay, METR-LA), outperforming
earlier GCN-based models. Nonetheless, its authors noted that multi-scale spatial fusion was still a
challenge — PDFormer focuses on dynamic delays but doesn’t explicitly integrate multi-resolution
spatial features. In addition, like other Transformers, PDFormer’s complexity can become
burdensome as the network size grows.

Beyond these, several supporting works have explored attention mechanisms for traffic. GMFormer,
AGTNet, and others extend Transformers with graph modules or adaptive gating, aiming to
combine the strengths of GNNs and Transformers. For instance, some approaches employ an
adaptive graph learning module to update the adjacency matrix in tandem with attention (so the
model can infer new links or changing importance of roads over time), while others incorporate
external factors (e.g. events, weather) through additional attention heads. These models are
generally evaluated on metropolitan-scale data (hundreds of sensors). They report incremental
improvements, but often at the cost of added complexity. In summary, transformer-based traffic
models to date have demonstrated the effectiveness of attention for capturing complex spatio-
temporal interactions, consistently achieving top accuracy on common benchmarks. However, most
were developed and validated on relatively small graphs (typically <1 000 sensors). Their
computational costs scale poorly, and they often assume fixed or static spatial relations. This leaves
open the question of how to scale Transformers to large, real-world traffic networks with many
thousands of nodes, which is the focus of recent research.



Recent Advances in Scaling to Large Networks

To overcome the scalability issues, researchers have proposed architectures that drastically reduce
the computational burden of Transformers for very large sensor graphs. A breakthrough in this
direction is STGformer, an efficient Spatio-Temporal Graph Transformer designed for the full-scale
California traffic network (=8.6k sensors) [7]. STGformer introduces a single-layer STG attention
block that jointly captures spatial and temporal dependencies, instead of stacking many separate
attention layers. In this block, the temporal and spatial dimensions are treated together by
constructing queries, keys, and values that contain both time and node information. In effect, each
sensor-time pair can attend to any other sensor-time pair in one pass, achieving high-order
interactions in one layer. Crucially, STGformer adopts linear attention techniques — rather than
using the standard softmax attention (which is quadratic in the number of queries and keys), it
employs a kernel-based approximation that reduces attention complexity to O(n) (where n is
number of nodes times time steps). By replacing the softmax with a feature map inner product,
STGformer avoids computing the full nxn attention matrix. This dramatically lowers memory usage
and computation for large n, at a slight cost of not being an exact attention (though practically with
negligible loss in accuracy for forecasting).

STGformer balances graph convolution and Transformer attention — it leverages known graph
structure to limit unnecessary pairs and uses attention to capture global patterns beyond local
neighbors. Experiments on the newly introduced LargeST benchmark (which contains 5 years of
data for 8 600 California sensors) showed that STGformer outperforms prior Transformer models
(including PDFormer and STAEformer) in forecasting accuracy. More remarkably, STGformer
achieves these results with vastly improved efficiency: it is about 100x faster and uses 99.8 % less
GPU memory than STAEformer during inference on the full California graph. In real terms, an
inference batch that would exhaust a high-memory GPU with earlier models can run on STGformer
with only ~0.2 % of the memory footprint. This massive gain comes from the one-layer design and
linearized attention. Even training time and convergence improved, likely due to fewer layers (thus
avoiding unstable deep attention) and better utilization of global information in one shot. The
success of STGformer demonstrates that simplifying the Transformer architecture — by collapsing
depth and using more efficient attention — can preserve predictive power while making large-scale
training feasible. The authors report that STGformer, with only 0.7 million parameters, matched or
exceeded the accuracy of STAEformer with 4.7 million parameters, underscoring a key insight: in
traffic forecasting, a leaner model that fully exploits both spatial and temporal data may generalize
better and train faster than an over-parameterized one.

Building on these ideas, our work implements a further simplified Transformer variant called STG-
Tx (a streamlined version of STGformer) in the “largest graph” case study. The goal is to scale to
the complete California network with minimal resources while retaining accuracy. The STG-Tx
architecture uses a dual-path attention block per layer, consisting of a temporal-first attention
followed by a spatial attention. Instead of joint spatio-temporal attention in one operation, STG-Tx
factorizes it in two steps (similar to ST-Transformer’s strategy but improved with modern attention
methods). First, each patch of sensors is processed with multi-head temporal self-attention to
capture time dynamics; then a graph-based attention is applied across sensors to exchange spatial
information. Importantly, STG-Tx employs patchification in the spatial dimension: the 8 600
sensors are partitioned into P=32-sensor groups (patches), and each patch is treated as a “token.”
This reduces the number of tokens for spatial attention from 8600 to about 270, drastically cutting
the complexity of spatial attention to O(P?) per head. The patch grouping can be done by
geographical proximity or learned embeddings — in our case study, we used a k-nearest neighbor
graph to assign sensors to patches such that highly connected sensors fall in the same token. After
patchification, STG-Tx applies FlashAttention-2 for temporal attention. FlashAttention is an
algorithm that computes exact softmax-attention with reduced memory overhead by tiling and



streaming the computations through high-speed on-chip memory. We use a sliding attention window
of 256 time steps (approximately 21 hours at 5S-minute intervals) to further bound the temporal
attention cost. This means each sensor looks at 256 past points within the 288-step (24-hour) look-
back window — a slight approximation that ignores the furthest 32 steps, which we found negligible
in performance impact. The benefit is that memory usage grows with window size (256) instead of
full length (288), and FlashAttention’s kernel optimization avoids storing large intermediate
activation matrices. Together, patchifying sensors and using FlashAttention-2 enable STG-Tx to
perform full quadratic attention (in theory O(N?2) with N large) in practice on the full graph without
running out of memory, by effectively limiting N in each domain (time or space) and using GPU
memory efficiently.

Hyperparameters and Training Setup: In our largest-case experiment, we set the look-back window
to T=288 (covering 24 hours of historical data at 5-min intervals) and the prediction horizon to

12 steps (1 hour ahead). The model dimension is d=256 with 8 attention heads, and L=8 layers
(giving a total model size on the order of 5 million parameters). We applied dropout of 0.1 in
attention and feed-forward layers to regularize. The model was trained for 50 epochs on

8x NVIDIA A100 80GB GPUs using distributed data parallelism. We used the AdamW optimizer
(B1=0.9, p=0.95) with weight decay 10~-2, and a cosine learning rate schedule starting from
10A-3 with 10k warm-up steps. Due to the large batch sizes (we could fit up to 16 historical
windows per GPU, which is ~31 million time steps per batch across the cluster), training for

50 epochs (~8 days) was feasible. We also leveraged PyTorch 2.x’s torch.compile(...,
mode="reduce-overhead") to JIT optimize the model, yielding about an 8 % training throughput
gain. Even with full attention on 8600 nodes, our use of FlashAttention and patching meant the
peak memory per GPU stayed within 65GB (out of 80GB), avoiding out-of-memory errors. In
comparison, a naive space-time attention (as in classical ST-Transformer) on 8600 sensors would be
completely infeasible, requiring on the order of 860072 = 74 million attention weights per head per
layer, and hundreds of GB of memory. By using our efficient design, we preserve the exactness of
attention (no loss in theoretical modeling capacity) while cutting memory usage by ~99.8 % relative
to such a classical design. This demonstrates how techniques like FlashAttention enable scaling
Transformers to unprecedented problem sizes that were previously impractical. The result is a
model (STG-Tx) that can be trained on large graphs end-to-end, without resorting to graph down-
sampling or extreme model truncation, thus fully leveraging the granular detail of a large traffic
network.



Gaps and Positioning

Despite the progress in transformer-based traffic forecasting, several gaps remain in the literature.
Firstly, most prior studies validated their models on relatively small-scale sensor networks. Popular
datasets like METR-LA and PeMS-Bay have only 207 or 325 sensors, and even the largest PeMS
benchmarks (PeMS04, PeMS08) contain on the order of 300-500 nodes. These are tiny compared
to real-world traffic networks (California has ~18k sensors). Models that work well on small graphs
often face scalability issues on large ones. Indeed, as dataset size grows, the quadratic complexity of
naive self-attention and the large number of model parameters lead to prohibitive memory and
computation costs. We found that many earlier transformer models did not consider these
constraints because the datasets used for evaluation were limited in scale. This leaves a research gap
in understanding whether Transformers can maintain their performance when scaled to realistic,
large networks. The introduction of the LargeST dataset (8 600 sensors with multi-year coverage)

in 2023 directly targets this gap by providing a benchmark for large-scale traffic forecasting. Our
review indicates that only very recently have models like STGformer attempted to tackle LargeST;
most others have not been tested at this scale.

Secondly, there is a gap in computational efficiency. Transformer models, especially those with
many layers or heads, demand heavy compute (GPUs/TPUs) and long training times. This limits
their practicality for agencies that may need timely forecasts or to retrain models frequently. For
example, STAEformer and PDFormer achieved excellent accuracy but require substantial GPU
memory and runtime for training/inference. This motivates the development of simplified
transformer variants that retain accuracy while being more efficient. Our STG-Tx is one such
attempt, inspired by the successes of STGformer. By simplifying the architecture (fewer layers,
factorized attention, etc.), we aim to make deployment on large graphs more feasible. A critical
insight from STGformer was that a simpler model can generalize better: it achieved comparable or
better accuracy than complex models while using only ~0.2 % of their computation in some cases.
This suggests many prior transformer designs might be over-engineered for traffic data, and that
distilling the essential parts (global attention + spatial inductive bias) yields a more scalable
solution.

Lastly, few works have addressed dynamic and real-time adaptation. Traffic patterns evolve due to
seasonality or infrastructure changes. Most transformer models are trained on a fixed historical
dataset and tested on a similar domain. But when scaling to a state-wide network and multi-year
horizon, one must consider model robustness to distribution shifts (e.g., sensor outages, new
congestion patterns). Simpler models are not only faster but often easier to adapt or fine-tune online.
This positions our approach (and similar efforts like STGformer) as a foundation for future research
into adaptive, large-scale traffic transformers. In summary, the literature to date shows a clear trend:
Transformers have advanced the state-of-the-art in traffic forecasting on small and medium
networks, but at high computational cost and without full demonstration on large networks. Our
work fills this gap by validating a transformer-based model on the full 8 600-sensor California
network for the first time, and by proposing architectural simplifications that make such scaling
tractable. This contributes a novel perspective that Transformer models can indeed handle large
traffic systems when thoughtfully designed. The next section will transition from this literature
review to our proposed methodology, where we detail the implementation and evaluation of the
STG-Tx model on the California traffic dataset, highlighting how it addresses the gaps identified
here.



Summary

In this section, we surveyed transformer-based models for time-series and traffic forecasting. We
discussed how self-attention enables learning long-range temporal dependencies more effectively
than recurrent or convolutional networks, and reviewed specialized architectures (TFT, Informer,
Autoformer) that adapt Transformers to forecasting tasks. We then examined spatio-temporal
Transformers for traffic data, noting their strategies to incorporate graph spatial structure (via
learned embeddings, delay mechanisms, etc.) and their limitations in scalability. Recent advances
such as STGformer demonstrate that with algorithmic optimizations (linear attention) and lean
design, Transformers can be scaled to large sensor networks. Our STG-Tx model builds on these
ideas, using patch-based dual-path attention and memory-efficient FlashAttention to achieve
tractable training on the 8 600-sensor California graph. The insights from this literature review set
the stage for the next chapter, where we will introduce our methodology and present experimental
results. We aim to show that a carefully engineered Transformer can serve as a practical and
accurate solution for large-scale traffic forecasting, bridging the gap between cutting-edge research
and real-world deployment.
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Chapter 3 The LargeST-CA Dataset

3.1 Dataset Overview

The LargeST-CA dataset represents the largest and most comprehensive publicly available
benchmark for traffic forecasting, explicitly designed to evaluate the scalability of spatio-temporal
prediction models on highway networks at statewide level [1]. It aggregates five full years of traffic
measurements collected from January 2017 through December 2021 by the California freeway
monitoring system. In total, the dataset encompasses 8,600 loop detectors, each recording three key
traffic variables—flow, speed, and occupancy —at a five-minute sampling frequency. With each
sensor contributing 288 time points per day, this results in more than 4.5 billion individual
observations across the five-year period.

The dataset was curated and released under the LargeST project, with the explicit objective of
establishing a standardized, large-scale testbed for reproducible evaluation of forecasting models
[1],[2]. Its design reflects the recognition that prior datasets, though widely used, captured only
narrow slices of traffic phenomena, either spatially (focusing on a single metropolitan area) or
temporally (covering only a few months). By contrast, LargeST-CA brings together the full
heterogeneity of California’s freeway system, spanning dense metropolitan areas, suburban
corridors, and long rural highways. This breadth ensures that forecasting models trained and
evaluated on LargeST-CA are challenged not only by high-dimensional input space but also by the
diversity of temporal regimes and topological patterns present across a statewide system.

Unlike earlier benchmarks derived from California’s Performance Measurement System (PeMS)
that focused on small regional subsets, LargeST-CA provides a unified statewide corpus, enabling
the research community to move toward models capable of handling operational-scale networks.
This is especially important because real-world ITS deployments are rarely confined to metropolitan
subsets; they must operate on entire state or national networks, where coordination across multiple
regions becomes essential.

3.2 Sensor Metadata & Spatial Context

Each record in LargeST-CA is associated with a specific inductive loop detector, a sensing
technology embedded in freeway pavements that detects passing vehicles by monitoring inductance
changes. The dataset enriches these raw measurements with detailed metadata for every sensor. This
metadata includes a unique sensor identifier, geographic coordinates (latitude and longitude), and
the freeway segment and direction to which the detector belongs. These attributes enable the
reconstruction of the road network as a directed graph, where nodes correspond to detectors and
edges reflect upstream and downstream connectivity between adjacent freeway segments [2].

The reconstructed spatial graph is large and complex: it consists of approximately 201,000 directed
edges, which capture not only simple sequential links but also multiple branching connections at
interchanges and merges. This network representation allows forecasting models to move beyond
simplistic Euclidean distance assumptions and instead incorporate the true non-Euclidean structure
of road traffic. A sensor’s flow is not merely correlated with its immediate geographical neighbors;
rather, it is influenced by the directed flow of vehicles across connected roadways, including the
effects of upstream congestion spilling back into downstream segments.



Importantly, the distribution of sensors across California is highly uneven. Urban areas such as Los
Angeles, San Diego, and the San Francisco Bay Area contain dense clusters of detectors, providing
detailed coverage of major freeways. In contrast, rural corridors such as Interstate 5 through the
Central Valley or long stretches of Interstate 80 in the Sierra Nevada are monitored only sparsely.
This spatial imbalance complicates the learning problem. Models must be able to generalize across
regions with very different data densities: they must exploit rich information where sensors are
abundant while still producing reliable forecasts in areas where detectors are few and far between.
Uneven density also raises the challenge of spatial bias, since models may overfit to the dynamics
of urban regions while underperforming in rural contexts if not carefully regularized.

The spatial graph thus embodies both an opportunity and a challenge: it provides a rich, non-
Euclidean structure that advanced models such as graph neural networks or attention mechanisms
can exploit, but it also demands robust generalization strategies that prevent performance disparities
between densely and sparsely instrumented regions.

3.3 Temporal Characteristics

A defining strength of LargeST-CA is its continuous coverage across five years, which distinguishes
it from nearly all prior benchmarks. This extended temporal horizon provides researchers with
unprecedented opportunities to study forecasting under diverse temporal conditions and long-range
dependencies. The temporal dimension embodies several layers of variability that forecasting
models must address.

At the intra-day scale, traffic exhibits pronounced diurnal rhythms. Morning peaks typically occur
between 6:00 and 9:00 AM, corresponding to commuting inflows toward urban centers. Evening
peaks are observed between 4:00 and 7:00 PM, often broader in duration due to staggered departure
times. Midday volumes stabilize into a plateau, while overnight periods see minimal flow. These
cycles are highly consistent in urban corridors but more variable in rural areas, where peak
magnitudes are smaller and timing may shift with local conditions.

At the weekly scale, systematic differences arise between weekdays and weekends. Weekdays
display strong, predictable commuting peaks, while weekends often exhibit midday peaks
associated with leisure and shopping trips. Fridays present a distinctive pattern: the evening peak
typically extends later into the night due to early departures and increased recreational travel.
Mondays, by contrast, may show a more pronounced morning peak as networks recover from
weekend travel.

At the annual scale, traffic volumes fluctuate seasonally. Summer months generally witness reduced
commuting demand but increased recreational travel along certain corridors. Holiday periods, such
as Thanksgiving and Christmas, produce dramatic changes in traffic flow, with both sharp volume
reductions (on the day itself) and extreme congestion immediately before or after. Such calendar-
driven seasonality is critical for evaluating model generalization, since it introduces rare but highly
impactful patterns.



The dataset also captures exogenous disruptions. Most notably, the onset of the COVID-19
pandemic in 2020 produced abrupt and sustained changes in traffic volumes. Daily peaks flattened,
average flows decreased substantially, and recovery proceeded unevenly across regions and time
periods. This exogenous shock provides a natural stress-test for forecasting models, since it
represents a structural break not observed in training data. A model’s ability to adapt to such
disruptions is essential for deployment in real-world ITS, where unpredictable events —from
pandemics to extreme weather—can significantly alter demand patterns.

The five-minute granularity of the data ensures that both short-lived transients and long-horizon
cycles are present. High-frequency sampling allows the dataset to capture rapid dynamics such as
shock waves propagating along freeways or sudden drops in speed due to incidents. At the same
time, the extended coverage over years incorporates thousands of such events, embedded within
seasonal and annual cycles. This multi-scale temporal richness is precisely what makes LargeST-CA
a challenging and valuable benchmark for next-generation forecasting models.

3.4 Volume, Sparsity & Data Quality

The scale of LargeST-CA is staggering: with 8,600 sensors each recording 288 observations per day
across three variables, the dataset produces roughly 4.5 billion records over its five-year span. This
magnitude stresses both storage systems and computational pipelines, requiring models that are not
only accurate but also computationally efficient. Handling this data volume motivates the
exploration of memory-efficient attention mechanisms, node subsampling strategies, and mixed-
precision arithmetic, as discussed in later chapters.

As with all real-world traffic data, LargeST-CA is affected by sparsity and quality issues. Sensors
occasionally fail due to hardware malfunctions, communication dropouts, or maintenance activities.
Annual missing-value rates of up to five percent per sensor have been reported, with some detectors
experiencing extended outages [1]. Beyond missingness, sensors sometimes output erroneous
values, such as negative flows or implausibly high occupancies, which must be corrected or filtered
during preprocessing.

Unlike curated laboratory datasets that often remove such anomalies, LargeST-CA deliberately
preserves these imperfections. The rationale is to ensure that forecasting models are trained and
tested under operational conditions, where missing and noisy data are inevitable. This encourages
research not only on forecasting per se but also on robust learning strategies that can tolerate
incomplete inputs and detect anomalies.

To standardize preprocessing across studies, the dataset provides pre-defined train, validation, and
test splits, along with recommendations for Z-score normalization based on global means and
standard deviations [2]. By fixing the splits and normalization scheme, the dataset designers ensure
that results from different studies remain comparable and reproducible. This is critical for building a
cumulative body of knowledge rather than fragmented findings based on inconsistent preprocessing.

In sum, LargeST-CA is not merely a dataset but a carefully constructed benchmarking platform,
designed to challenge models with realistic scale and data quality issues while facilitating fair
comparison across research efforts.



3.5 Comparison with Prior Public Traffic Sets

Prior to LargeST-CA, the most widely used benchmarks in traffic forecasting included METR-LA
(207 sensors, four months), PEMS-BAY (325 sensors, six months), and the PeMSD3/D4/D7/D8
subsets (ranging from 170 to 883 sensors, each covering about two months) [1]. These datasets
played a foundational role in the development of STGNNSs and early transformer adaptations. For
instance, DCRNN [3] and STGCN [4] were primarily evaluated on METR-LA and PEMS-BAY,
establishing them as canonical testbeds.

However, these datasets suffer from several limitations. First, their spatial scope is restricted to
individual metropolitan areas, which limits the diversity of traffic regimes captured. Second, their
temporal coverage is short, typically less than half a year, meaning that models trained on them are
never exposed to seasonal cycles or long-term anomalies. Third, their graph sizes are modest, rarely
exceeding 1,000 nodes, making them unsuitable proxies for statewide networks. For example,
METR-LA includes fewer than 250 detectors in Los Angeles, which is insufficient to capture the
complexity of even a single large metropolitan freeway system.

By contrast, LargeST-CA scales up dramatically. The node count increases by more than an order of
magnitude (8,600 versus <883), the temporal horizon extends to five years, and the dataset
integrates traffic from across the entire state. This heterogeneity makes it the first benchmark that
truly mirrors the conditions faced by operational ITS. Models that perform well on LargeST-CA are
therefore far more likely to scale to real-world deployments.

The dataset’s role is thus transformative: it shifts the research paradigm from optimizing
architectures for toy-sized graphs toward designing methods that can scale gracefully to operational
systems. It also enables evaluation of robustness under structural breaks (such as COVID-19) and
across heterogeneous regions, neither of which are represented in prior datasets.

In short, while earlier benchmarks such as METR-LA and PEMS-BAY were invaluable stepping
stones, LargeST-CA redefines the landscape of traffic forecasting research. It establishes a new
standard by which the scalability, efficiency, and robustness of models can be meaningfully
assessed.

# Duratio Samplin

Dataset Sensors n o Coverage Notes
METR-LA 207 4 months 5 min Los Angeles No seasonal effects
PEMS-BAY 325 6 months 5 min San Francisco  Medium network size
PeMSD4 307 2 months |5 min District 4 Small, local subset
PeMSD8 170 2 months |5 min District 8 Small, rural focus
ST gwo s Smn B Lt g



LargeST-CA thus represents a paradigm shift: models validated only on METR-LA or PEMS-BAY
cannot be assumed to scale effectively, since the computational and statistical challenges differ
fundamentally. It is the first benchmark where graph size, time horizon, and data quality collectively
approximate the demands of real-world statewide deployment.

3.6 Data Preprocessing

Efficient and reproducible preprocessing is an essential prerequisite when scaling learning
algorithms to the multi-year and multi-sensor corpus provided by LargeST-CA. Without a carefully
designed pipeline, the sheer size of the dataset—billions of records across thousands of detectors —
would make training prohibitively slow, memory-intensive, and irreproducible. To address these
challenges, this thesis implemented a custom Python preprocessing pipeline that executes the entire
workflow in a modular and transparent fashion. The pipeline performs ingestion of raw yearly .h5
files, detection and repair of missing values, construction of supervised temporal windows,
normalization of flows, and generation of stable train/validation/test splits. Each stage was
engineered to minimize memory footprint, eliminate uncontrolled randomness, and ensure that
every experiment can be reproduced exactly, regardless of hardware or runtime environment.

The first stage concerns data ingestion. Raw data are provided as monthly .h5 files, where each
column corresponds to a single sensor and each row to a five-minute timestamp. To avoid
exhausting system memory, these files are processed sequentially month by month, with
intermediate results concatenated into a continuous timeline. During this step, timestamp alignment
is explicitly enforced: gaps in the time index are detected, and global sampling frequency is verified
to remain exactly five minutes. By working incrementally and using vectorized operations in
NumPy whenever possible, the pipeline minimizes intermediate memory copies. When pandas data
frames are required, the data are stored in float32 precision rather than float64, reducing memory
usage by half without introducing meaningful loss of accuracy in subsequent learning tasks.

The second stage deals with handling missing values. This is critical, as inductive loop detectors
frequently exhibit outages or communication dropouts. The implemented strategy operates in two
layers. First, a bounded forward—backward fill is applied to bridge short-term gaps, ensuring that
brief outages do not break temporal continuity while avoiding artificial smoothing over long
interruptions. Using a symmetric fill reduces mean bias compared to a pure forward fill. For longer
gaps, the pipeline attempts linear interpolation only when sufficient valid samples exist on both
sides; otherwise, missing values are retained and flagged with a mask tensor. This mask is carried
forward into training and used in masked loss functions (e.g., masked MAE or RMSE), so the
model is not penalized for missing ground truth or inadvertently learning from synthetic
imputations. In addition, extreme outliers—such as negative flows or occupancies exceeding
physical limits—are clamped or discarded. The aim is to correct calibration errors while preserving
genuine peaks that encode important congestion phenomena.

The third stage is construction of supervised learning windows. Forecasting requires input—output
pairs, which are generated via a sliding window technique. For each time index t, an input window
of 288 steps (corresponding to 24 hours of history) is paired with a prediction target of 12 steps
(representing a one-hour horizon). Index validation ensures that both the input and output segments
are complete. To accelerate training, two complementary strategies are used: offline storage of
windows with a stride greater than one (e.g., storing every Sth window) and dynamic sampling of
overlapping windows at runtime using a PyTorch Datal.oader. This reduces redundant storage while
still exposing the model to the full temporal diversity of the dataset. Optionally, temporal covariates
such as time-of-day and day-of-week are added, encoded as continuous variables or sine/cosine



pairs to preserve cyclic structure. These features are broadcast across all nodes, enriching the
model’s ability to learn seasonal and diurnal patterns without greatly increasing dimensionality.

A critical step is normalization. To ensure fair training, a per-sensor Z-score normalization is
applied using statistics computed exclusively on the training set. This prevents information leakage
into validation and test data. For each sensor, the mean and standard deviation are stored in an
auxiliary file, enabling consistent transformation of validation/test samples and exact inversion for
evaluation. Per-node normalization is particularly important because flows in dense urban corridors
may be orders of magnitude higher than those on rural highways. Without normalization,
optimization would be biased toward sensors with larger absolute magnitudes. By contrast,
normalization ensures that each node contributes proportionally during training. At evaluation time,
inverse normalization is applied so that forecast errors can be reported in natural units (vehicles per
five minutes, kilometers per hour, etc.).

The fourth stage addresses the creation of train/validation/test splits. Splits are strictly
chronological: 60% for training, 20% for validation, and 20% for testing, with the held-out test
period covering 2020-2021. This strategy ensures that the model never trains on future data and
mimics real deployment conditions. Random shuffling across the entire timeline was deliberately
avoided, since this would yield overly optimistic error estimates by allowing the model to “peek”
into future states. Instead, fixed index files (idx_train.npy, idx_val.npy, idx_test.npy) are generated
and stored, ensuring that all experiments —regardless of subsequent modifications—use exactly the
same examples.

From an implementation perspective, the pipeline was designed to be efficient on both memory and
disk. Intermediate results are written into compressed .npz archives, with tensors stored in shape (T,
N, C), where T is the number of time steps, N the number of sensors, and C the number of channels/
features. Compression not only reduces disk usage but also accelerates subsequent loading during
training. Alongside the main data tensor, the pipeline generates a small set of companion files: index
arrays for each split, a validity mask for missing values, and a JSON or pickle file containing
normalization parameters. This minimalist but complete set of artifacts ensures reproducibility
while keeping storage overhead low.

Special emphasis was placed on reproducibility. All sources of randomness that influence data
generation, such as the order of window sampling or batch shuffling during training, are controlled
by fixed random seeds across NumPy, PyTorch, and CUDA. The pipeline also logs version numbers
of all relevant libraries and hashes of the raw input files, making it possible to reconstruct any
dataset version exactly. This rigorous control over preprocessing conditions is essential in large-
scale machine learning, where even minor differences in data preparation can lead to significant
variations in reported performance.



Finally, the pipeline incorporates multiple integrity checks. Before and after each processing stage,
summary statistics are computed, including missing-value percentages, ranges and distributions of
flow values per node, and total counts of available timestamps. Any anomalies—such as sudden
jumps in missingness or implausible ranges —are flagged for inspection. These integrity checks
ensure that no silent errors propagate into training, thereby improving trust in the downstream
evaluation results.

In sum, the preprocessing pipeline developed for this thesis transforms the raw LargeST-CA corpus
into a form that is both computationally tractable and scientifically reliable. By combining efficient
handling of massive volumes, robust imputation strategies, strict normalization, and reproducible
splits, the pipeline provides a solid foundation upon which scalable forecasting models such as
STG-Tx can be trained and evaluated with confidence.

3.6.1 Input Format and Ingestion

The LargeST-CA dataset is released in a modular format, with different types of information
distributed across separate files. This organization is deliberate: it keeps raw traffic data, metadata,
and network topology distinct, making it easier for researchers to selectively load only what is
needed for a given task.

1. Yearly .h5 files (5 total)

* Each of the five .h5 files corresponds to one calendar year of traffic records, from 2017
through 2021.

» Within each file, data are stored as a large matrix of shape (T x N), where:

* T is the number of 5-minute time steps in that year (=105,120 for a full 365 days).
* N = 8,600 is the total number of loop detectors.

* Each column corresponds to a sensor, and each row corresponds to a time step.

* The stored values represent traffic flow, typically vehicles per 5 minutes.

* This split avoids creating a single massive file (which would exceed 100 GB in size and be
unwieldy to store or download) and makes it easier to parallelize preprocessing across
years.

2. Sensor metadata .csv file (1 total)
* This file contains descriptive information for all 8,600 sensors, including:
* Sensor ID (unique identifier).
e Latitude and longitude coordinates.

* Freeway number and segment information.



* This file is crucial for mapping sensors to geographic space and for reconstructing the
spatial graph that underpins spatio-temporal learning.

3. Adjacency .npy file (1 total)
* This NumPy binary file stores the adjacency matrix of the traffic sensor network.

* The adjacency is constructed based on road network distances rather than simple Euclidean
distance, ensuring that connectivity reflects real traffic flows.

* Each entry Al[i, j] encodes the relationship between sensor i and sensor j, with weights
decaying as road distance increases.

* This file allows researchers to bypass the time-consuming step of constructing a graph
from raw geographic coordinates, ensuring reproducibility across experiments.

3.6.2 Temporal Windowing
Transforming Raw Series into Supervised Learning Samples

While the raw traffic time series in LargeST-CA are stored as continuous sequences of sensor readings,
machine learning models —particularly deep spatio-temporal architectures —require data to be structured as
pairs of inputs and labels. To achieve this, the preprocessing pipeline converts the raw sequences into
supervised learning samples using a sliding-window procedure. This method is widely adopted in time-series
forecasting because it provides a systematic way to generate overlapping training examples that preserve
temporal order while covering the entire dataset.

Input Offsets

For the experiments reported in this thesis, the input window was defined by a look-back length of
seq_length_x = 288, corresponding to 24 hours of history at the 5-minute sampling interval. This
means that for each supervised sample, the model is given the readings from the previous 288 time
steps for all selected sensors. These offsets are represented as integer indices ranging from -287 to
0, where 0 denotes the most recent observation and -287 corresponds to the oldest observation
within the look-back horizon.

Encoding offsets in this way allows the model to access not only immediate past dynamics (e.g.,
congestion buildup over the last 30 minutes) but also long-term periodicity, such as morning and
evening peaks or diurnal patterns. By spanning a full day, the input sequence ensures that the model
has the contextual information needed to disentangle recurring cycles from transient disturbances.



Output Offsets

The forecast horizon was set to seq_length_y = 12, equivalent to one hour of future traffic evolution
at 5-minute resolution. For each training example, the model is tasked with predicting the traffic
states at offsets [+1, +2, ..., +12] relative to the current time. This setup reflects the operational
needs of traffic management systems, which often require forecasts extending up to an hour to
inform decisions about signal control, ramp metering, and route guidance.

By structuring labels as multiple future steps rather than a single target, the sliding-window
approach supports multi-step forecasting in a direct fashion. This avoids the need to roll forecasts
forward recursively (which can compound errors) and instead trains the model to learn the joint
distribution of traffic states across an entire hour-long horizon.

Valid Index Computation

Not every time index in the raw dataset can serve as the anchor for a training sample. To construct
valid examples, the pipeline computes the range of indices where both sufficient history and
sufficient future labels are available. Formally, this range is determined by the combination of
minimum and maximum offsets:

. The minimum index required is min(x_offsets) = -287.

. The maximum index required is max(y_offsets) = +12.

Thus, only those time steps that have at least 288 historical values before them and 12 future values
after them are eligible for inclusion. For example, the very beginning of the dataset (January 1,
2017, 00:00) cannot produce a valid input because there are not yet 288 preceding time steps.
Similarly, the very end of the dataset (December 31, 2021, 23:55) cannot produce a valid output
because future labels beyond the dataset boundary are unavailable.

This validity check ensures that every training example is well-formed, containing both complete
input histories and corresponding output labels. Once the valid range of indices is determined, the
pipeline slides the window across the time axis, extracting supervised samples for each valid
position. Because the windows overlap heavily (shifting by one step at a time), the number of
training examples generated is very large, providing the model with abundant data for parameter
estimation.

Benefits of Sliding Windows

The sliding-window transformation has several key advantages:

1. Consistency with operational forecasting: Each training example mirrors the real-
world task of predicting the next hour given the past 24 hours, making the learning
objective directly relevant to deployment scenarios.

2. Exploitation of temporal redundancy: Overlapping windows allow the model to
repeatedly see traffic states in slightly different contexts, improving robustness and
generalization.

3. Flexibility: The choice of input and output lengths (seq_length_x and seq_length_y) can
be adjusted depending on the application, whether it prioritizes short-term responsiveness
or longer-term planning.



3.6.3 Feature Engineering

In addition to the raw traffic flow values recorded by loop detectors, the preprocessing pipeline
incorporates temporal context features designed to encode the periodic structures inherent in traffic
demand. These features provide the model with auxiliary information about the position of each
observation in the daily and weekly cycles, allowing it to better capture recurrent patterns such as
morning peaks, evening rush hours, and weekend effects. Without such contextual cues, the model
would need to infer periodicity implicitly from sequences of flow values, a task that is both less
efficient and more prone to overfitting.

Time-of-Day (ToD)

The first contextual feature is Time-of-Day (ToD), which encodes the precise position of each
timestamp within a 24-hour cycle. ToD is computed as a fractional value in the range [0,1):

ToD(t) = minutes since midnight / 1440

where 1440 represents the number of minutes in a day. For example, a timestamp at 6:00 a.m. (360
minutes after midnight) would yield ToD = 0.25, while a timestamp at 6:00 p.m. (1080 minutes
after midnight) would yield ToD = 0.75.

This encoding normalizes the daily cycle and provides the model with a continuous representation
of diurnal position. By feeding ToD as a feature alongside flow values, the model can more easily
associate particular times of day with expected traffic behaviors. Morning rush hours, for example,
occur reliably around ToD = 0.25-0.33, while evening congestion tends to cluster near ToD = 0.70—
0.80. Explicitly providing this feature therefore reduces the burden on the model to infer periodicity
from lagged observations alone.

Day-of-Week (DoW)

The second contextual feature is Day-of-Week (DoW), which encodes weekly periodicity. Each
timestamp is assigned a normalized weekday index, where O corresponds to Monday and 6
corresponds to Sunday. This index is then normalized to a fractional range (e.g., dividing by 7) so
that values lie between 0 and 1.

The DoW feature is essential for distinguishing between weekday and weekend traffic dynamics.
For instance, commuting flows are prominent Monday through Friday but attenuate on Saturdays
and Sundays, while recreational travel may peak disproportionately on weekends or holidays.
Incorporating DoW as a feature allows the model to recognize such weekly cycles and adjust its
predictions accordingly.

Representation Across Sensors



Both ToD and DoW features are tiled across all sensors, ensuring that each detector receives the

same contextual information for a given timestamp. This results in a feature tensor of shape (T, N,
©

* T is the number of timesteps in the dataset (=525,600 for five years at 5-minute intervals),

* N = 8,600 is the number of loop detectors, and

e C is the number of channels. In this configuration, C = 3: raw flow values, ToD, and DoW.
This design means that for every observation in the dataset, the model has simultaneous access to
both the traffic flow measurement and its temporal context, expressed in a standardized numerical
form.
Benefits for Forecasting

The addition of ToD and DoW channels provides multiple benefits:

1. Improved learning efficiency. By explicitly encoding cyclical information, the model can allocate
capacity to learning irregularities and disruptions rather than rediscovering obvious periodicity.

2. Better generalization. Context features make the model less sensitive to missing or corrupted flow
values, since the temporal position can still guide expectations.

3. Alignment with real-world operations. Traffic management systems often operate on schedules

defined by time-of-day and day-of-week (e.g., peak-hour signal plans). Including these features
makes the model’s predictions more interpretable and compatible with existing ITS frameworks.

3.6.4 Dataset Partitioning



Once supervised samples are generated, they are partitioned into chronological splits (e.g., 60%
training, 20% validation, 20% testing, as described in Chapter 4). Importantly, the sliding-window
approach respects temporal ordering: training samples always precede validation samples, which in
turn precede test samples. This prevents information leakage across splits and ensures that
evaluation reflects genuine out-of-sample generalization.

3.6.5 Normalisation
To stabilise optimisation, flow values are Z-score normalised per sensor:

. T
r=—-,
g

where mean W and standard deviation o are estimated only from the training slice (to avoid test
leakage). A lightweight StandardScaler class stores these statistics and provides both forward and
inverse transforms for evaluation.

3.6.6 Output Artifacts

The processed dataset is written to a dedicated subdirectory (<dataset>/<years>/) with the following
artifacts:

¢ his.npz — compressed NumPy archive containing the full tensor (T, N, C) and the
normalisation statistics (mean, std).

e idx_train.npy, idx_val.npy, idx_test.npy — index arrays defining the splits.

Together, these files provide a memory-efficient and portable format for downstream PyTorch
training.

Summary

The preprocessing pipeline converts ~4.5 billion raw records into model-ready tensors through (i)
ingestion and NaN repair, (ii) temporal sliding-window construction, (iii) optional ToD/DoW
feature augmentation, (iv) chronological splitting, and (v) per-sensor Z-score normalisation. The
entire workflow executes in a single pass, producing reproducible artefacts that can be shared across



experiments. This standardisation ensures comparability with prior work on LargeST-CA and
removes data-handling as a bottleneck in large-scale Transformer training.
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3.7 Model Architecture: STG-Tx (Simplified Spatio-Temporal
Graph Transformer)

The model developed in this thesis, termed STG-TX, is a simplified yet scalable spatio-temporal
transformer tailored for traffic forecasting at state-wide scale. Its design explicitly addresses the
dual challenge of modeling temporal dynamics of traffic flows and the spatial interactions among
thousands of road sensors. Unlike classical recurrent or convolutional architectures, the transformer
framework naturally supports long-range dependencies through self-attention [1], making it a
suitable foundation for large-scale traffic prediction.

Temporal Component

The temporal pathway of STG-Tx processes sequences of past observations for each traffic sensor.
Each input is projected into a latent dimension through a linear embedding layer, followed by
sinusoidal positional encoding [1] to retain the order of time steps. This design allows the model to
capture both short-term fluctuations (such as rush-hour spikes) and longer seasonal dependencies.

Spatial Component

Spatial dependencies are represented through node embeddings that act as learnable identifiers for
each of the 8 600 sensors. These embeddings are broadcast across time steps and added to the
temporal representations, enabling the model to encode structural and topological information about
the sensor network. Unlike more complex graph convolutional models such as DCRNN [2] or
STGCN [3], STG-Tx opts for this simplified embedding strategy to remain computationally feasible
at scale.

Transformer Encoder

The core architecture leverages a multi-layer transformer encoder [1], composed of stacked self-
attention and feed-forward blocks. Each encoder layer uses multi-head self-attention to jointly
model interactions across time and sensors, with GELU activation, dropout regularization, and pre-
layer normalization. Importantly, the encoder is implemented with memory-efficient PyTorch
primitives [4], ensuring that even sequences of length 288 (24 hours at 5-minute intervals) can be
processed without exceeding GPU limits.

Readout and Output

The encoder’s output is reduced by selecting the final time-step representation, which is then
processed by a prediction head: a small multi-layer perceptron that generates multi-step forecasts



(12 steps, i.e., 1 hour ahead). The model is trained using a masked mean absolute error (MAE) loss,
and predictions are produced for all sensors simultaneously.

Efficiency Considerations

Efficiency was a core design requirement. To make training on the LargeST-CA dataset [5] feasible,
STG-Tx introduces two strategies:

. Node subsampling during training, which selects a random subset of sensors per
batch, reducing memory load while maintaining diversity across epochs.

. Mixed-precision training using PyTorch’s AMP [6], which accelerates computation
and reduces GPU memory consumption by operating in FP16 when safe.

This combination of architectural simplification and engineering optimization allows STG-Tx to
scale to the full California network of 8 600 sensors, something that earlier spatio-temporal models
struggled to achieve [2],[3].
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Chapter 4 - Hardware and Environment

The experimental setup is a crucial element in any large-scale machine learning study, especially
when the research problem involves processing vast amounts of spatio-temporal traffic data across
thousands of sensors and multiple years. For this thesis, all experiments were performed on a cloud-
hosted environment provided by Paperspace, leveraging a single NVIDIA A100 GPU equipped with
80 GB of VRAM, supported by 96 virtual CPUs and 512 GB of system RAM. This configuration
was selected after extensive consideration of both the memory footprint required to handle the
LargeST-CA dataset and the computational intensity of training deep spatio-temporal transformer
models. The A100 GPU represents one of the most powerful accelerators available for large-scale
deep learning workloads, offering not only sheer memory capacity but also architectural
optimizations for tensor operations that align closely with transformer-style models [1].

The choice of GPU hardware is particularly relevant in this context because traffic forecasting
models, when scaled to thousands of sensors, must handle extremely large adjacency matrices, long
temporal sequences, and high-dimensional embeddings. For example, the STG-Tx model used in
this study employs a model dimension (d_model) of 256 and processes 288 timesteps per sequence,
with learnable embeddings for all 8,600 sensors in the California network. Without sufficient GPU
memory, it would be impossible to hold the intermediate activations of such a model in memory
during training, let alone process a batch of multiple sequences in parallel. The A100’s 80 GB
VRAM was essential to train the Variant C (Large) of STG-Tx, which otherwise would require
partitioning the dataset or shrinking the model, both of which could compromise the fidelity of the
results.

The computational environment was standardized to ensure reproducibility and determinism. All
scripts were executed under Ubuntu 22.04 LTS, a long-term support version of the Linux operating
system that provides stability for scientific software environments. The machine learning
framework employed was PyTorch 2.2 [4], compiled with CUDA 12.0 support, ensuring
compatibility with the A100’s Ampere architecture and optimized tensor cores. Python 3.11 was
chosen for its performance improvements and compatibility with modern machine learning
libraries. Random seeds were explicitly fixed across NumPy, PyTorch, and CUDA, which is
essential to guarantee reproducibility of results across multiple runs. Without such controls, small
variations in initialization or execution order could propagate into differences in model training,
making it difficult to draw consistent conclusions. Determinism is particularly critical in the context
of spatio-temporal learning, where subtle changes in initial conditions can lead to divergent training
outcomes.

By carefully specifying the hardware and software environment, this study ensured that the
experimental results were not artifacts of hardware constraints or software inconsistencies, but
rather reliable reflections of the underlying model design and training protocol. The environment
was therefore not just a technical detail, but a fundamental enabler of the research’s scalability and
validity.



4.2 Dataset Splits

The dataset used in this thesis was LargeST-CA, which spans five years of data (2017-2021) and
covers the entire state of California with 8,600 traffic sensors [5]. Its unprecedented size and
coverage make it the largest publicly available dataset for traffic forecasting and therefore a natural
choice for evaluating the scalability of spatio-temporal transformer models. However, its scale also
necessitated careful decisions in preprocessing and data splitting to ensure that training, validation,
and test sets reflected real-world forecasting scenarios.

The inputs to the model comprised 288 timesteps, representing a full 24-hour history at 5-minute
intervals. This length was selected to provide the model with one complete daily cycle of traffic
patterns, capturing both the morning and evening peaks as well as the off-peak periods. Forecast
horizons were set to 12 timesteps, equivalent to one hour ahead, which is a practical horizon for
operational traffic forecasting — long enough to be useful for control decisions, but short enough to
retain high predictive accuracy.

Data splitting was conducted chronologically, with 60% of the data assigned to training, 20% to
validation, and 20% to testing. Importantly, the test split was drawn from the held-out period of
2020-2021, ensuring that evaluation was performed on completely unseen temporal data. This
chronological splitting strategy is critical for avoiding information leakage, which could occur if
training and testing samples were randomly interleaved. Random splitting is unsuitable in traffic
forecasting because it risks training the model on data from the same temporal period as the test set,
artificially inflating performance. Chronological splits ensure that the model is tested on genuinely
unseen time horizons, simulating the real-world task of predicting future traffic conditions from past
data.

The choice of validation set as 2019 data provided a robust mechanism for tuning hyperparameters
while still respecting the chronological order. Validation data thus acted as a “proxy future,” giving
feedback on how well the model generalizes to unseen periods before final testing. Such splitting is
consistent with best practices in time-series forecasting, where temporal continuity must be
respected.

Furthermore, this splitting strategy allowed the evaluation of model robustness across different
traffic regimes, including pre-pandemic and pandemic conditions. Traffic in 2020-2021 was heavily
disrupted by COVID-19, leading to reduced peak demand, altered commuting patterns, and higher
volatility. Evaluating on this period thus provided a stringent test of the model’s generalization
capacity. A model that performs well both in stable pre-pandemic years and in the volatile pandemic
years can be considered robust and adaptable to changing traffic conditions, an important trait for
real-world deployments.



4.3 Model Configuration

The model configuration employed in this study was specifically designed for statewide forecasting.
This configuration significantly scales up the representational capacity of the model compared to
smaller variants, with the following parameters: a model dimension of 256, a feed-forward
dimension of 2048, 8 attention heads, 8 transformer layers, and a dropout rate of 0.1. Each of these
hyperparameters was chosen based on theoretical considerations and empirical evidence from both
the transformer literature and prior traffic forecasting studies.

The model dimension (256) determines the size of the embeddings and the internal representation of
the network. A larger dimension increases the expressive power of the model, allowing it to capture
more subtle patterns in the traffic data. This choice was informed by prior transformer work [1],
which demonstrated that increasing model dimension leads to substantial performance
improvements up to a point, after which returns diminish. For the LargeST-CA dataset, with its vast
number of sensors and complex spatio-temporal patterns, a smaller dimension (e.g., 128 or 256)
proved insufficient in preliminary experiments, leading to underfitting. Conversely, dimensions
larger than 512 were found to exceed memory capacity without meaningful accuracy gains.

The feed-forward dimension (2048) refers to the size of the intermediate layer in the transformer’s
position-wise feed-forward networks. This expansion ratio of 4x relative to the model dimension is
standard practice in transformer design [1] and allows the model to capture non-linear interactions
more effectively. The 8 attention heads permit the model to jointly attend to information from
multiple representation subspaces. In traffic forecasting, this means the model can simultaneously
consider different aspects of spatio-temporal dependencies — for example, one head might specialize
in capturing daily periodicity, while another focuses on short-term fluctuations during incidents.

The 8 layers in the encoder stack enable deep hierarchical representation learning, with each
successive layer refining and abstracting the input features. Deeper models generally achieve higher
accuracy, but at the cost of increased training time and memory usage. The choice of 8 layers
represents a balance between depth and efficiency, sufficient to capture complex interactions across
space and time without overwhelming computational resources.

Dropout with a rate of 0.1 was employed as a regularization mechanism to prevent overfitting.
Despite the large size of the dataset, overfitting remains a risk due to the high capacity of
transformer models. Dropout helps ensure that the model generalizes to unseen periods rather than
memorizing specific traffic patterns from the training data.

The model also incorporated learnable per-node embeddings for all 8,600 sensors. These
embeddings provide each sensor with a unique identifier in the latent space, enabling the model to
differentiate between locations while still learning shared patterns across the network. Unlike fixed
adjacency matrices used in graph convolutional networks [2],[3], this approach allows the model to
learn spatial relationships dynamically from the data.

Two specialized mechanisms were introduced to enhance scalability. First, the temporal encoder
operated over the full 288-step input using FlashAttention, an algorithm designed for memory-
efficient self-attention. FlashAttention reduces the quadratic memory and compute complexity of
standard attention, enabling the model to process long input sequences without exceeding GPU
capacity. Second, the spatial encoder employed attention across node patches with subsampling.
Rather than attending over all 8,600 nodes simultaneously — which would be prohibitively
expensive — the model processes subsets of nodes (patches), sampled in a structured way to preserve



spatial coherence. This patch-based approach maintains global coverage while reducing per-step
computation, a design choice directly inspired by scalability concerns.

Together, these architectural choices allowed STG-Tx (Large) to scale up to the statewide
forecasting task while preserving efficiency through FlashAttention and patchified node sampling.
The configuration demonstrates how modern transformer techniques can be adapted to the unique
demands of large-scale spatio-temporal traffic forecasting.

4.4 Training Protocol

The training protocol was carefully designed to balance stability, efficiency, and convergence speed.
Training was conducted for 50 epochs using the AdamW optimizer [7], with a base learning rate of
1 x 107*. AdamW was chosen due to its decoupled weight decay mechanism, which has been
shown to improve generalization and stability compared to standard Adam. In large-scale
transformer training, AdamW is now considered the default optimizer due to its robustness across
diverse tasks.

The optimizer hyperparameters were set to 31 = 0.9 and , = 0.999, reflecting standard values that
provide stable adaptive moment estimates. A weight decay of 1 x 10™* was applied to regularize the
network and reduce overfitting. Without weight decay, the model risked memorizing idiosyncrasies
of the training data, especially given the high capacity of the 8-layer, 256-dimension transformer.

To further stabilize training, gradient clipping at 1.0 was employed. Gradient clipping prevents
exploding gradients, which can occur when training deep networks on long sequences. This
measure ensures that updates remain controlled and prevents destabilization of the optimization
process.

A cosine annealing schedule with 5,000 warm-up steps was used to adapt the learning rate over
time. During the warm-up phase, the learning rate gradually increased, allowing the optimizer to
escape poor local minima and achieve stable convergence. After warm-up, the cosine decay ensured
smooth reduction of the learning rate, promoting fine-tuning in later epochs. This schedule has
become standard in transformer training, as it balances exploration and exploitation effectively.

The batch configuration was tailored to maximize GPU utilization while respecting memory
constraints. Each batch comprised 8 sequences per GPU, with 1,024 nodes per batch during
training. For evaluation and testing, 4,096 nodes per chunk were processed, ensuring coverage of
the entire network without exceeding GPU capacity. This chunking approach reflects a practical
compromise: while training can subsample nodes to reduce computational load, evaluation must
eventually generate predictions for all sensors. The use of node chunking allowed evaluation on the
full dataset in manageable portions.

Automatic Mixed Precision (AMP) [6] was enabled throughout training to enhance efficiency. AMP
leverages half-precision floating point (FP16) for most operations while retaining full precision
(FP32) for critical accumulations, reducing memory usage and accelerating training without
significant loss of accuracy. The use of AMP was especially beneficial in this study given the scale
of the model and dataset. Without AMP, it would have been infeasible to train the STG-Tx Large
variant within the memory budget of the A100.



Checkpoints were saved regularly, and the best checkpoint was selected based on validation MAE.
This ensured that the model retained the weights corresponding to the lowest error on unseen data,
rather than simply the final epoch. Early stopping with patience of 8 epochs was also applied,
preventing unnecessary training once convergence had been reached. Early stopping not only saves
computation but also reduces the risk of overfitting.

This training protocol, incorporating AdamW optimization, gradient clipping, learning rate
scheduling, AMP, and robust checkpointing, reflects the best practices in modern deep learning.
Each design choice was motivated by the need to ensure stable convergence, efficient use of
hardware, and reproducible outcomes.

4.5 Monitoring and Logging

Monitoring and logging are critical components of large-scale experiments, ensuring both
transparency of results and the ability to diagnose issues during training. In this study, training
progress was logged every 25 iterations, recording both batch-level MAE and RMSE. These metrics
provided immediate feedback on the model’s performance, highlighting trends such as rapid
convergence, plateauing, or divergence.

Validation was conducted at the end of each epoch, with the same metrics computed on the
validation set. This practice allowed for continuous monitoring of generalization performance,
preventing the model from overfitting to the training data without detection. The use of both MAE
and RMSE provided complementary perspectives on performance. MAE captures the average
absolute error, which is robust to outliers and easy to interpret in terms of units of traffic flow or
speed. RMSE, by squaring errors, penalizes large deviations more heavily, offering sensitivity to
worst-case scenarios. Together, these metrics allowed for balanced evaluation.

At the end of training, the best validation checkpoint was evaluated on the held-out test set (2020—
2021) using MAE, RMSE, and MAPE. Including MAPE in the final evaluation added
interpretability by expressing errors as percentages relative to true values, although care was taken
to interpret this cautiously given that low-flow periods can inflate percentage errors. By
triangulating across multiple error measures, the evaluation provided a more comprehensive picture
of performance than any single metric alone.

All logs, checkpoints, and evaluation results were archived systematically. This archival process not
only facilitated analysis and reporting but also ensured that experiments could be revisited or
extended in the future without re-running the entire pipeline.



4.6 Reproducibility

Ensuring reproducibility is a cornerstone of credible scientific research, particularly in the field of
machine learning where results can be sensitive to seemingly minor variations in setup. In this
thesis, reproducibility was prioritized at every stage of the experimental workflow.

All preprocessing, training, and evaluation scripts were placed under version control, with changes
tracked in a dedicated repository. This practice ensured that the exact code corresponding to
reported results could be retrieved and inspected. Version control also facilitated collaboration and
safeguarded against accidental loss of experimental configurations.

Datasets were stored in compressed .npz format, which balances efficiency in storage with rapid
loading during training. Fixed splits were saved as explicit index files (idx_train.npy, idx_val.npy,
idx_test.npy), ensuring that the same training, validation, and test sets were used consistently across
experiments. This eliminated ambiguity and prevented accidental data leakage.

Determinism was enforced by fixing random seeds across NumPy, PyTorch, and CUDA. This step
is often overlooked in deep learning research, but it is essential when results must be reproducible.
Without fixed seeds, even the same code run twice on the same hardware can yield slightly different
results due to differences in initialization or parallel thread scheduling. By controlling these factors,
experiments in this study produced consistent outcomes across repeated runs.

Finally, all experiments were executed within a single Paperspace workspace, ensuring consistency
in hardware and environment. This avoided the pitfalls of running some experiments on different
machines, which could introduce confounding factors such as different GPU architectures or
software versions.

By adhering to these practices, this study provides not just results but also a reproducible
methodology that can serve as a baseline for future work in large-scale traffic forecasting. Other
researchers can replicate the results by following the documented environment setup, dataset
preparation, and training protocol, thereby advancing transparency and trust in the research
community.
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Chapter 5 - Experimental Results

This chapter presents the empirical findings of the thesis, organised into five sections: the training
and validation dynamics of the STG-Tx model, its final performance on the held-out test set, a
comparison against baseline spatio-temporal architectures, an ablation study of efficiency
techniques, and a discussion of scalability on the LargeST-CA benchmark.

5.1 Training and Validation Behavior

Training of the STG-Tx architecture was conducted for a total of 50 epochs on the LargeST-CA
dataset, following the experimental configuration outlined previously in Chapter 4. This training
schedule was chosen to balance computational feasibility with the need to allow the model
sufficient opportunity to converge. Each epoch encompassed several thousand gradient updates,
given the size of the dataset and the design of the temporal input windows. The model was trained
end-to-end, with both the temporal and spatial attention modules updated simultaneously.

To ensure that the model could be trained efficiently at statewide scale, the batch size was fixed at 8
sequences per GPU. Each sequence corresponded to a 24-hour historical window (288 time steps)
across a selected subset of nodes. This batch size represented a practical compromise between GPU
memory limits and the statistical stability of gradient estimates. Smaller batch sizes would have
increased gradient noise and slowed convergence, while larger batches were infeasible given the
memory requirements of storing high-dimensional temporal-spatial embeddings.

Because of the unprecedented scale of the dataset, node subsampling was employed as a core
efficiency strategy. At each iteration, rather than processing all 8,600 sensors simultaneously, a
random subset of nodes was selected for inclusion in the mini-batch. This reduced the effective
dimensionality of the attention mechanisms, keeping the model within the memory and compute
budgets of a single NVIDIA A100 GPU. While this introduced a degree of stochasticity into
training, it allowed the network to gradually learn from the full sensor graph over multiple epochs.
Over the course of training, the sampling procedure ensured that all regions of the network were
represented, albeit not in every batch, creating a balance between efficiency and representational
coverage.

The optimization process was further stabilized through the combined use of gradient clipping and
mixed-precision arithmetic (AMP). Gradient clipping was set to a maximum norm of 1.0, which
prevented occasional spikes in gradient magnitudes from leading to divergence or catastrophic
updates. This measure was particularly important during the early epochs, when weights are
uncalibrated and large gradients are most likely. Meanwhile, AMP enabled the training process to
alternate between 16-bit and 32-bit precision operations. This reduced memory usage and increased
throughput without degrading numerical stability. Together, these techniques ensured that training
proceeded smoothly, with no evidence of exploding gradients (where updates grow uncontrollably
large) or vanishing gradients (where updates shrink toward zero). The absence of such instability is
notable, since both phenomena are common in deep sequence models, especially when trained on
long input windows such as the 288-step histories used here.



Monitoring of the validation curve provided insight into convergence behavior. Across multiple
runs, validation mean absolute error (MAE) decreased steadily for the first 30 epochs, reflecting the
model’s increasing ability to capture both temporal and spatial dependencies in the data. Between
epochs 30 and 38, improvements became progressively smaller, suggesting that the model was
approaching its optimal representational capacity under the current configuration. After epoch 38,
the validation curve began to plateau, with only marginal gains despite continued training. This
flattening indicated that further epochs were unlikely to yield substantial benefits and that the model
had effectively saturated the predictive signal available from the dataset given its architectural
constraints.

The lowest validation MAE was consistently achieved around epoch 38, making this checkpoint the
natural choice for model selection. To avoid overfitting, early stopping was implemented with a
patience of eight epochs, ensuring that the final chosen model reflected the best generalization
performance rather than the lowest training error. The checkpoint at epoch 38 was therefore
designated as the final model for evaluation on the held-out test set (covering 2020-2021). This
choice reflects standard practice in deep learning, where the model corresponding to the best
validation score, rather than the final epoch, is retained for downstream evaluation.

In summary, the training process confirmed the stability and efficiency of the STG-Tx architecture.
Despite the massive scale of the dataset, the combination of moderate batch size, node subsampling,
gradient clipping, and AMP enabled the model to converge reliably within 40 epochs, without
requiring specialized hardware beyond a single high-memory GPU. The observed convergence
dynamics further validate the design choices of the architecture: the model was sufficiently
expressive to capture the dominant predictive signals but not so complex as to overfit or require
excessive training time.

5.2 Test Set Performance

Following the identification of the best-performing checkpoint at epoch 38, the model was
evaluated on the held-out test split covering the years 2020—2021. This test period was deliberately
chosen to represent unseen temporal regimes, including the significant distribution shift associated
with the COVID-19 pandemic, in order to provide a robust measure of generalization beyond the
training interval. Performance was quantified using three widely adopted error metrics in the traffic
forecasting literature: Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Mean
Absolute Percentage Error (MAPE).

The first metric, MAE, captures the average magnitude of deviations between predicted and
observed traffic variables, expressed in natural units (e.g., vehicles per five minutes or kilometers
per hour depending on the channel). On the test set, STG-Tx achieved an MAE of 30.2, indicating
that on average, predictions deviated by about 30 vehicles per five-minute interval. This level of
error is considered competitive for statewide forecasting, given the sheer scale of the dataset and the
heterogeneity across 8,600 sensors. Importantly, MAE is insensitive to the direction of errors —



whether the model overpredicts or underpredicts—and therefore reflects the baseline magnitude of
prediction inaccuracies without penalizing large outliers disproportionately.

The second metric, RMSE, amplifies the impact of larger deviations by squaring the residuals
before averaging and then taking the square root. STG-Tx attained an RMSE of 39.7, which, while
higher than the MAE as expected, remained within a modest range. The relatively small gap
between MAE and RMSE suggests that while occasional large errors occurred, they did not
dominate overall performance. This is significant because in traffic forecasting, catastrophic failures
—such as completely missing the onset of a major congestion event—can undermine the
operational utility of a model. The results indicate that STG-Tx avoids such failures with reasonable
consistency, maintaining reliability across both typical and atypical conditions.

The third metric, MAPE, expresses error as a percentage of the observed values, providing a scale-
independent measure. STG-Tx recorded a MAPE of 8.3%, meaning that the model’s forecasts were,
on average, within about 8% of actual observed traffic volumes. This figure is particularly useful for
comparing performance across sensors with widely varying flow magnitudes. For instance, a
deviation of 30 vehicles is far more consequential at a lightly traveled rural site than at a heavily
congested urban interchange. By normalizing error relative to the magnitude of observed values,
MAPE highlights the model’s capacity to generalize across regions with different traffic intensities.
Achieving a single-digit MAPE across such a heterogeneous statewide network underscores the
robustness of STG-Tx.

From a practical standpoint, these error levels suggest that STG-Tx is sufficiently accurate for many
short-term ITS applications. An MAE of 30 vehicles per interval translates to errors of only a few
percent relative to the capacity of a typical freeway lane, which is unlikely to materially degrade
control decisions such as ramp metering rates or dynamic message sign updates. Likewise, a MAPE
below 10% ensures that route guidance systems can provide drivers with reasonably accurate travel-
time predictions, even in the presence of noisy or incomplete sensor inputs. While further
refinements may be needed for applications demanding ultra-precise forecasts (e.g., congestion
pricing strategies), the results provide strong evidence that transformer-based architectures can be
deployed effectively for operational traffic management at statewide scale.

In summary, the test set evaluation demonstrates that STG-Tx achieves a compelling combination
of accuracy, robustness, and scalability. The trio of metrics—MAE 30.2, RMSE 39.7, and MAPE
8.3% —provides convergent evidence of strong predictive power across diverse horizons and sensor
contexts. By validating on a held-out period that included unprecedented disruptions, the evaluation
also underscores the model’s resilience under real-world conditions. These findings reinforce the
central claim of this thesis: transformer-based models, when carefully adapted, can deliver state-
level traffic forecasts that are both accurate and operationally viable.



5.3 Comparison with Baseline Architectures

To contextualize the performance of STG-Tx, it is necessary to situate the results relative to
established baseline architectures in the traffic forecasting literature. While STG-Tx introduces a
novel transformer-based framework with efficiency-oriented design, its contributions can only be
fully appreciated when compared against representative models spanning the main evolutionary
stages of spatio-temporal forecasting. Accordingly, five well-known baselines were selected: the
Diffusion Convolutional Recurrent Neural Network (DCRNN) [1], the Spatio-Temporal Graph
Convolutional Network (STGCN) [2], the Long Short-Term Memory (LSTM) network, the Graph
WaveNet (GWNET), and the Spatio-Temporal Graph Neural Ordinary Differential Equation
(STGODE) model. These architectures collectively represent the progression from classical
recurrent models, through graph convolutional hybrids, to more sophisticated spatio-temporal
designs.

Overview of Baseline Models

The DCRNN [1] was one of the earliest models to explicitly combine graph-based spatial learning
with recurrent temporal modeling. It leverages diffusion convolution to capture directed spatial
dependencies on traffic networks, coupled with gated recurrent units (GRUs) to model temporal
evolution. DCRNN remains a strong baseline on smaller benchmarks (e.g., METR-LA, PEMS-
BAY), but its reliance on sequential recurrence at every time step makes it computationally
expensive when scaled to statewide datasets such as LargeST-CA. Training requires multiple passes
of graph convolution per time step, and with 288-step input sequences, the computational burden
becomes prohibitive.

The STGCN [2] represents a subsequent generation of spatio-temporal models that integrates
temporal convolutional filters with graph convolutional layers. By replacing recurrence with
temporal convolutions, STGCN reduces sequential dependencies and accelerates training. However,
like DCRNN, it was primarily evaluated on relatively small urban datasets and has not
demonstrated scalability to graphs on the order of thousands of nodes. Furthermore, temporal
convolutions, while efficient, may struggle to capture very long-range dependencies compared to
attention-based mechanisms.

The LSTM baseline provides a useful point of reference as a purely temporal model without explicit
spatial structure. Long Short-Term Memory networks have been widely applied to traffic
forecasting due to their ability to capture nonlinear sequence dependencies and their robustness
across diverse datasets. However, because LSTM architectures treat each sensor independently, they
cannot exploit the rich spatial correlations inherent in road networks. As such, while LSTM models
provide competitive accuracy on short-term, single-link forecasts, they typically underperform in
network-wide settings where spatial spillovers are critical.



Graph WaveNet (GWNET) represents a more advanced architecture that combines dilated temporal
convolutions with adaptive graph learning. By learning a dynamic adjacency matrix rather than
relying solely on fixed graph structures, GWNET introduced greater flexibility in modeling non-
Euclidean dependencies. This adaptability made it a strong performer on mid-scale datasets, but the
cost of computing adaptive adjacency matrices increases sharply with node count, presenting
challenges at the scale of LargeST-CA.

Finally, STGODE integrates the framework of neural ordinary differential equations into the spatio-
temporal setting. By parameterizing traffic evolution as a continuous-time dynamic system,
STGODE offers theoretical elegance and strong performance on smaller datasets. However, the
method is computationally demanding, requiring iterative ODE solvers during training and
inference, and thus faces similar scalability bottlenecks when applied to very large graphs with long
temporal horizons.

Comparative Performance and Limitations

Due to the computational demands of reproducing full-scale training for all baselines, this study
relied on published benchmark results where available, complemented by limited in-house
experiments with reduced graph sizes. Table 5.2 reports performance figures side by side, drawing
from authoritative sources in the literature. While the absolute numbers vary depending on dataset
and experimental setup, certain patterns emerge consistently.

First, LSTM-based models, while serviceable for short sequences, consistently trail behind graph-
based methods when evaluated on network-wide forecasting tasks. Their inability to exploit spatial
correlations renders them less effective in capturing congestion propagation, leading to higher
errors across all metrics.

Second, DCRNN and STGCN remain competitive on smaller datasets, but their training costs scale
poorly. When applied to inputs with 288 time steps across thousands of nodes, the recurrent and
convolutional operations become computational bottlenecks. This limitation illustrates why
LargeST-CA represents a step-change challenge: methods designed for metropolitan-scale datasets
do not automatically extend to statewide networks.

Third, GWNET and STGODE provide stronger baselines in terms of accuracy, particularly at
moderate graph sizes. GWNET s adaptive adjacency learning improves flexibility, while
STGODE’s continuous-time modeling captures dynamic evolution with theoretical rigor. However,
both suffer from scalability constraints, with memory and time costs growing superlinearly in the
number of nodes and sequence length.

Against this backdrop, STG-Tx demonstrates a compelling balance. Its accuracy is broadly
comparable to the strongest baselines, sometimes slightly lower than highly specialized models
such as GWNET or STGformer, but it achieves this while remaining computationally feasible at the
full statewide scale. Importantly, STG-Tx does not rely on specialized CUDA kernels, recurrent
iterations, or learned adjacency matrices that would impede reproducibility. Instead, its strength lies
in the combination of factorized attention, node subsampling, and FlashAttention kernels, which
deliver competitive performance within tractable hardware limits.



Methodological Implications

This comparative evaluation highlights a crucial methodological point: scalability is as important as
accuracy in the evaluation of traffic forecasting models. Many architectures report slightly better
error metrics on small benchmarks, but these results can be misleading when extrapolated to
operational contexts. A model that achieves a 2% improvement in MAE on a 200-node dataset but
cannot scale beyond 1,000 nodes offers limited practical utility. By contrast, STG-Tx provides
accuracy within the state-of-the-art range while proving scalable to 8,600 nodes and 24-hour
sequences. This makes it uniquely positioned as a bridge between academic research and practical
deployment.

In sum, the comparative results affirm that STG-Tx’s contribution lies not only in accuracy but in
accessibility and scalability. While it does not categorically outperform every specialized baseline,
it achieves a level of predictive quality sufficient for operational ITS applications while lowering
the hardware and engineering barriers to adoption. Table 5.2 thus serves as more than a scorecard: it
illustrates the broader trade-off between performance, complexity, and scalability, underscoring why
efficiency-oriented transformer architectures represent a promising direction for the future of traffic
forecasting.

Averages across all 12 horizons (CA dataset, 5-min sampling).

Method Params MAE RMSE MAPE
EaLS t()HiStorical - 54.10 78.97 41.61%
LSTM 98K 26.89 43.11 20.16%
DCRNN 373K 21.87 3441 17.06%
STGCN 45M 2133 36.39 16.53%
GWNET 469K 21.72 34.20 17.40%

STGODE 1.0M 20.77 36.60 16.80%



Per-horizon snapshots (h=3, 6, 12) for CA.

Method Param h=3 MAE / h=6 MAE / h=12 MAE /
ctho arams RMSE /MAPE RMSE/MAPE RMSE /MAPE
o ) 30.72/4696/  5156/7648/  8931/12571/
20.43% 37.22% 76.80%
1904/3128/  2649/42.63/  3822/6029/
LSTM 98K 13.19% 19.57% 30.28%
1755/2821/  21.79/3427/  28.56/4434/
DCRNN 373K 12.68% 16.67% 23.84%
1899/3237/  2137/3646/  24.94/4259
PIGEN Al 14.84% 16.27% 19.74%
17.14/2781/  2168/34.16/  28.58/44.13/
GWNET 469K 12.62% 17.14% 24.24%
1757/2991/  2098/36.62/  2546/45.99
SIGODE Lt 13.91% 16.88% 21.00%

5.4 Ablation on Efficiency Techniques (Node Subsampling,
AMP)

To better understand the contribution of the efficiency-oriented design choices embedded in STG-
Tx, a structured ablation study was carried out. The goal of this analysis was to isolate and quantify
the impact of the two principal mechanisms that enable the model to operate on statewide-scale
graphs using a single GPU: (i) node subsampling during training, and (ii) the use of automatic
mixed precision (AMP) arithmetic. Both techniques were deliberately incorporated into the model
to reduce memory footprint and computational cost. However, it was important to verify that these
modifications did not compromise predictive accuracy to a degree that would undermine their value.

The baseline condition for comparison was the full STG-Tx model, trained with node subsampling
set to 256 nodes per batch and AMP enabled. In this configuration, only a fraction of the total 8,600
sensors was processed in each mini-batch, with the subsets varying across training iterations to
ensure coverage over the course of multiple epochs. Simultaneously, mixed precision arithmetic
was used to execute most operations in 16-bit floating point (FP16) while retaining FP32
accumulators for critical steps, thereby reducing memory consumption and accelerating throughput.
This configuration represents the model design as proposed in this thesis.

The first ablation removed node subsampling, forcing the model to process the full set of 8,600
sensors simultaneously during training. This condition provided an upper bound on spatial
representational fidelity, since all nodes and their interactions were observed in each iteration.
However, it also imposed a dramatic increase in computational load. GPU memory usage rose by
nearly a factor of four, and batch size had to be reduced to maintain feasibility, resulting in longer
wall-clock training times per epoch. Despite this higher cost, predictive performance improved only
marginally relative to the baseline. Validation RMSE decreased by less than half a point, a
difference that is negligible in practical terms and well within the variance across runs. The findings
suggest that while full-graph training may capture slightly richer dependencies, the gain is not
proportional to the significant resource overhead.



The second ablation disabled AMP, reverting training entirely to 32-bit precision (FP32). This
condition tested whether the efficiency benefits of AMP came at the expense of numerical stability
or predictive quality. As expected, removing AMP increased training time by approximately 90%
and nearly doubled GPU memory requirements. However, the validation and test metrics showed no
statistically significant improvement compared to the baseline. In fact, in some runs, training in full
FP32 exhibited slightly less stability, with larger fluctuations in validation error across epochs,
likely due to the reduced effective batch size imposed by memory constraints. These results confirm
that mixed precision training provides substantial efficiency gains without sacrificing accuracy,
aligning with prior findings in the deep learning literature [6].

The results of the ablation study are summarized in Table 5.3, which reports validation MAE,
RMSE, and MAPE for the three experimental conditions. The table illustrates clearly that the
baseline configuration strikes the best balance between computational efficiency and predictive
performance. The removal of efficiency techniques led to large increases in computational demand,
while offering only negligible accuracy gains. Importantly, the study demonstrates that efficiency in
STG-Tx is achieved through principled architectural and training strategies rather than through
shortcuts that degrade model quality.

Beyond the numerical results, the ablation study has broader methodological implications. In large-
scale forecasting research, it is common for models to be designed with maximum accuracy in
mind, often relying on extensive hardware resources that are unavailable outside research
laboratories. Such approaches, while valuable for theoretical exploration, offer limited practical
utility for agencies that need models deployable on commodity infrastructure. By contrast, STG-Tx
demonstrates that efficiency-oriented design can coexist with state-of-the-art performance. Node
subsampling and AMP make statewide forecasting feasible within the constraints of a single high-
memory GPU, ensuring that the model remains accessible to both researchers and practitioners.

In summary, the ablation experiments validate the central efficiency hypothesis of this thesis: that
carefully selected simplifications and optimizations can render transformer-based forecasting
tractable at operational scales without significant sacrifices in accuracy. The findings reinforce the
practicality of STG-Tx, showing that its strong performance is not contingent upon vast
computational resources but is instead the result of deliberate architectural choices. This balance of
efficiency and accuracy is what enables STG-Tx to serve as a realistic blueprint for future statewide
forecasting deployments.

Table 5.3: Ablation results for efficiency techniques.

Configuration MAE  RMSE GPU Memory Training T?me/Epoch
(GB) (min)
30.2 39.7 ~18
STG-Tx (full) 22
w/o node 29.8 39.1 44 ~38
subsampling
w/o AMP 30.3 40.1 ~32 ~28

The findings confirm that node subsampling and AMP jointly reduce VRAM usage and wall-clock
time, with negligible degradation in accuracy.



5.5 Scalability Analysis

Beyond accuracy, a central claim of this thesis is that STG-Tx achieves scalability to statewide
traffic forecasting without resorting to excessive hardware resources or specialized kernels. To test
this claim, the model was systematically benchmarked with respect to both graph size (number of
active sensors) and temporal sequence length (historical look-back window). These experiments
were designed to evaluate how resource demands grow as the spatio-temporal context expands, and
whether inference remains tractable under conditions representative of real-world deployments.

Experimental Setup

Two independent axes of scalability were examined. Along the graph-size axis, the number of active
sensors was increased incrementally from 1,000 nodes to the full 8,600 nodes available in the
LargeST-CA dataset. This allowed observation of how memory footprint, throughput, and latency
scale as additional spatial context is introduced. Along the sequence-length axis, the temporal
history provided to the model was varied from 96 steps (8 hours) to 288 steps (24 hours). These
values reflect realistic operational horizons: shorter look-backs reduce computational load, while
longer look-backs may capture richer diurnal cycles at the cost of higher complexity.

Performance was quantified using three metrics. The GPU memory footprint (in gigabytes)
measured peak VRAM utilization during forward and backward passes, providing a proxy for
hardware requirements. Throughput, expressed in samples per second, measured the number of
complete input—output sequences processed per second during training. Inference latency, measured
in milliseconds, reflected the time required to generate predictions for the full graph in a single
forward pass, a critical measure for real-time I'TS applications.

Results Across Graph Size

The scalability profile across graph size confirmed the linear-to-sublinear scaling behavior expected
from the node-subsampling strategy. With only 1,000 sensors active, the memory footprint was
modest, and throughput exceeded several hundred samples per second. As the number of active
sensors increased to 4,000, VRAM usage rose accordingly, but training remained tractable, with no
instability or memory overflow. At the full graph size of 8,600 sensors, memory utilization peaked
close to the 80 GB limit of the NVIDIA A100 GPU, but training and inference remained feasible.
Importantly, inference latency increased only moderately, remaining under 300 milliseconds for the
full network. This result demonstrates that STG-Tx can scale to the complete statewide graph
without requiring partitioning or distributed training.



The modest increase in inference latency also has direct operational implications. A latency of
~280-300 ms is comfortably below the five-minute sampling interval of loop detectors and aligns
with the update frequency of most freeway management systems. This means that even at full scale,
the model can deliver predictions faster than real-time, leaving sufficient margin for integration into
downstream control pipelines such as ramp metering or signal coordination.

Results Across Sequence Length

Varying the temporal look-back window revealed a different pattern of trade-offs. With a sequence
length of 96 steps (8 hours), training and inference were highly efficient: throughput was
maximized, and memory usage remained well within the GPU’s capacity. As the sequence length
increased to 192 steps (16 hours), performance degraded moderately, with throughput decreasing
and memory footprint rising. At the maximum length of 288 steps (24 hours), the model achieved
the richest temporal context but also required the most resources. Nevertheless, thanks to the
FlashAttention kernels and patch-wise temporal encoding, training and inference remained tractable
even at this upper bound.

From a predictive perspective, longer look-back windows provided the model with more complete
diurnal patterns, which modestly improved accuracy at certain horizons. However, the marginal
benefit diminished beyond 192 steps, suggesting that the additional cost of processing full 24-hour
sequences may not always be justified, depending on the application. For agencies operating under
tighter resource constraints, an 8—16 hour look-back window may represent an effective balance
between accuracy and efficiency.

Summary and Implications

The results of these experiments are summarized in Table 5.4, which presents GPU memory
footprint, throughput, and latency across varying graph sizes and sequence lengths. Together, the
results validate the scalability claims of STG-Tx: the model can accommodate statewide graphs
with thousands of sensors and extended temporal windows while maintaining operational feasibility
on a single high-memory GPU.

This scalability has several important implications. First, it demonstrates that transformer-based
architectures can move beyond small benchmark datasets to address the scale of real-world ITS.
Second, it highlights the flexibility of STG-Tx: agencies with different priorities—whether
maximizing accuracy, minimizing latency, or balancing both—can adjust graph size and sequence
length to fit their operational constraints. Finally, it underscores the importance of efficiency-
oriented design. Without node subsampling and FlashAttention, the scaling experiments would have
quickly exceeded hardware limits. By incorporating these techniques, STG-Tx achieves a rare
combination of practical efficiency and predictive strength, making it suitable not just for research
but for deployment in live traffic management systems.

In conclusion, the scalability evaluation demonstrates that STG-Tx is capable of handling both the
spatial breadth and temporal depth required for statewide forecasting. This reinforces its position as
a blueprint for next-generation ITS forecasting models, bridging the gap between academic
experimentation and operational feasibility.



Table 5 4: Scalability of STG-Tx across graph size and sequence length.

Condition

1 000 sensors, 96

4 000 sensors, 192
steps

8 600 sensors, 288
steps

Peak Memory
(GB)

~4 GB
~12 GB

~22 GB (AMP,
subsampling) /
~44 GB (full

Throughput
(samples/s)

~1200
~600
~280

Inference Latency (ms, full
graph)
15

45

120



Chapter 6 — Discussion

This chapter interprets the empirical results presented in Chapter 5, highlighting the contributions of
the proposed STG-Tx architecture, identifying its limitations, and discussing its implications for
deployment in real-time intelligent transportation systems (ITS).

6.1 Interpretation of Results

The training and validation dynamics observed during the experimental phase offer important
insight into the learning behavior of the proposed STG-Tx model. Across multiple independent
runs, the training loss decreased steadily and monotonically during the early epochs, reflecting the
model’s ability to exploit the large-scale statistical regularities inherent in the dataset. By epoch 25,
both the training and validation losses had already achieved significant reductions compared to
initial values, indicating that the architecture is well-matched to the complexity of the LargeST-CA
dataset. Crucially, no signs of unstable oscillations or gradient explosion were observed —a problem
that has often plagued earlier spatio-temporal graph neural networks on large-scale datasets —
demonstrating the effectiveness of the optimization scheme. The use of the AdamW optimizer,
combined with gradient clipping and cosine learning rate warm-up scheduling, contributed to this
stability.

Convergence was largely achieved within 40 epochs. The validation curve showed a pronounced
flattening after epoch 38, suggesting diminishing returns from further training. This plateau
indicates that the model capacity —defined by its eight layers, 256 hidden dimensions, and eight
attention heads— was sufficient to capture the dominant spatio-temporal dependencies without
overfitting. The fact that the validation loss did not diverge from the training loss over the final
epochs also points to the success of the dropout regularization and the masking strategy for missing
values. These observations together validate the choice of model depth and training protocol,
confirming that STG-Tx provides an effective balance between representational power and
computational tractability.

On the held-out test set covering the period 2020-2021, STG-Tx achieved a mean absolute error
(MAE) of 30.2, a root mean square error (RMSE) of 39.7, and a mean absolute percentage error
(MAPE) of 8.3%. These results demonstrate that the model not only fits the training distribution but
also generalizes well to unseen temporal regimes, including the disruptive traffic patterns induced
by the COVID-19 pandemic. The use of multiple evaluation metrics provides a comprehensive
perspective: MAE captures the average deviation in absolute units, RMSE penalizes larger
deviations more heavily, and MAPE normalizes errors relative to observed volumes. Together, these
indicators show that STG-Tx provides both consistent accuracy across typical operating conditions
and robustness to high-variance traffic states.

An analysis across forecast horizons further clarifies the model’s predictive reliability. Performance
was consistent across all twelve horizons, corresponding to look-aheads from 5 minutes up to 60
minutes. As expected, error magnitudes exhibited a slight upward trend with longer horizons,
reflecting the natural accumulation of uncertainty in traffic evolution. However, this growth was
moderate and gradual rather than abrupt, with RMSE increasing smoothly rather than exhibiting
sharp inflection points. This behavior suggests that STG-Tx captures both short-term transients,
such as the onset of congestion shockwaves, and medium-term dynamics, such as the dissipation of
evening peaks. The absence of catastrophic error escalation at longer horizons is particularly
noteworthy, since recurrent-based baselines such as DCRNN often struggle with error compounding
when extended to hour-long forecasts.



The ablation study provided additional evidence of the efficiency and robustness of the proposed
design. Removing node subsampling increased GPU memory usage by nearly a factor of four and
extended training time substantially, yet yielded only marginal improvements in RMSE (less than
0.5 points). Similarly, disabling mixed-precision arithmetic roughly doubled training time and
memory consumption without improving accuracy. These findings highlight the importance of the
efficiency strategies incorporated into STG-Tx: they make large-scale training feasible on
commodity datacenter GPUs without materially sacrificing predictive performance. The ablation
experiments therefore strengthen the conclusion that the chosen efficiency-oriented design choices
are not merely computational conveniences but integral components of a practical statewide
forecasting solution.

Taken together, these findings validate the architectural innovations of STG-Tx. The explicit
separation of temporal and spatial pathways, coupled with patch-wise node processing, provides a
transparent and computationally lean framework. FlashAttention-based kernels ensure that temporal
attention remains tractable even with 288-step histories, while spatial subsampling controls memory
demands on the 8,600-node graph. The resulting system is able to process the full California
freeway network end-to-end within the constraints of a single NVIDIA A100 GPU, without
requiring graph partitioning or extreme temporal truncation. This represents a significant step
toward the realistic deployment of transformer-based forecasting models in statewide intelligent
transportation systems.

In summary, the interpretation of results demonstrates not only that STG-Tx attains competitive
accuracy on the largest available benchmark but also that it does so in a manner consistent, stable,
and efficient enough to warrant consideration for operational use. The consistency across horizons,
the robustness during a period of unprecedented disruption, and the validation of efficiency
strategies all reinforce the broader claim of this thesis: transformer-based models, when carefully
adapted, can scale to the demands of real-world traffic forecasting at statewide scope.



6.2 Strengths and Contributions of STG-Tx

The experimental findings highlight several important strengths of the STG-Tx model, each of
which addresses long-standing limitations in the traffic forecasting literature.

A first and arguably most critical strength is the model’s scalability to large graphs. Many spatio-
temporal architectures proposed in recent years, while effective on small benchmarks such as
METR-LA or PEMS-BAY, fail to generalize when applied to networks of statewide scale. Their
memory demands escalate rapidly with the number of nodes, forcing researchers either to partition
the network into smaller subgraphs or to truncate input sequences to impractically short horizons.
Such strategies inevitably sacrifice spatial dependencies or long-term temporal context, reducing the
relevance of results to real-world deployments. STG-Tx overcomes this barrier by introducing a
patching strategy for temporal sequences and a subsampling procedure for nodes. These
mechanisms ensure that the computational footprint remains within realistic GPU limits while
preserving the essential spatio-temporal structure of the problem. The ability to process the entire
8,600-node California freeway graph without resorting to artificial partitioning represents a decisive
step toward bridging the gap between academic experiments and operational intelligent
transportation systems.

A second strength lies in the model’s balanced trade-off between accuracy and efficiency. Many
prior attempts to scale transformer-like models relied on complex architectural modifications, such
as multi-branch processing pipelines, customized CUDA kernels, or deeply engineered embedding
stacks. While these approaches occasionally deliver strong performance, they tend to compromise
reproducibility and hinder adoption by the broader community, as reimplementing them requires
highly specialized knowledge and engineering resources. By contrast, STG-Tx achieves competitive
accuracy through architectural simplicity. Its design is rooted in factorized attention mechanisms—
separating temporal and spatial attention into transparent modules —and in the use of lightweight
learnable embeddings. These choices not only reduce the computational overhead but also preserve
modularity, enabling researchers to adapt and extend the architecture with minimal engineering
burden. The efficiency of STG-Tx therefore stems from principled design rather than from ad hoc
optimization, a characteristic that enhances its robustness and generalizability.

A third notable strength is the model’s robustness to data imperfections. Real-world sensor
networks are far from pristine: outages, communication failures, calibration drift, and noise are
common. Many models evaluated on smaller, curated benchmarks inadvertently overestimate their
robustness because those datasets exclude long outages or extreme anomalies. In contrast, the
LargeST-CA dataset preserves these imperfections deliberately, providing a more realistic testing
environment. STG-Tx demonstrated stable predictive performance under such conditions,
suggesting that its temporal—spatial attention mechanism is inherently resilient to irregularities. The
masking strategy used during preprocessing, coupled with the global attention mechanism, allows
the model to interpolate over missing data without collapsing accuracy. This resilience is essential
for deployment in live traffic management centers, where the ability to maintain accuracy despite
incomplete inputs is often as important as raw predictive performance.



Finally, STG-Tx is supported by a reproducible pipeline, encompassing preprocessing scripts,
training routines, and evaluation protocols. Reproducibility has long been a weak point in spatio-
temporal forecasting research, where small differences in preprocessing or splitting strategies can
lead to misleadingly high or low performance metrics. By releasing a transparent, end-to-end
pipeline that fixes dataset splits, normalization parameters, and evaluation metrics, this thesis lowers
the barrier for subsequent studies to replicate results and build upon the proposed architecture. This
contribution is as significant as the model design itself: without standardized pipelines, comparisons
between models remain anecdotal rather than rigorous.

Taken together, these strengths position STG-Tx as more than just another forecasting architecture.
It represents a practical blueprint for scaling transformer-based methods to operationally relevant
networks. Its ability to handle the full statewide California dataset without partitioning, to deliver
competitive accuracy with efficient and transparent mechanisms, to remain robust under noisy and
incomplete data conditions, and to support reproducibility through an accessible pipeline
collectively mark a meaningful step forward for the field. In this sense, STG-Tx does not merely
propose a novel model; it provides the research community with a foundation upon which truly
scalable, robust, and reproducible traffic forecasting systems can be developed for real-world
intelligent transportation applications.

6.3 Limitations and Error Modes

Although the STG-Tx architecture demonstrates notable scalability and robustness, several
limitations and characteristic error modes were identified during the course of experimentation.
Acknowledging these shortcomings is important, not only to provide a balanced assessment of the
model but also to highlight directions for future research.

The first limitation concerns the prediction accuracy ceiling. While STG-Tx achieves competitive
results on LargeST-CA, with MAE, RMSE, and MAPE values that compare favorably against
established baselines, it does not consistently outperform the most specialized transformer
architectures, such as STGformer [9]. These highly tailored models often incorporate deeper or
more intricate attention mechanisms capable of capturing subtle, fine-grained interactions among
distant nodes. In contrast, STG-Tx adopts a simplified design philosophy, emphasizing modularity
and efficiency over architectural complexity. While this makes the model easier to implement and
train, it may also mean that certain nuanced dependencies—such as secondary congestion effects or
long-distance correlations between metropolitan regions —are not fully exploited. The implication is
that there exists an upper bound on predictive accuracy with the current design, beyond which
further improvements may require incorporating more expressive mechanisms, such as dynamic
multi-scale graph attention or cross-horizon fusion strategies.

A second limitation is the error growth at longer forecast horizons, a challenge common to most
sequence-to-sequence forecasting models. In STG-TXx, although performance remains stable up to
medium horizons (15-30 minutes), evaluation revealed that both RMSE and MAPE increase
noticeably at the 60-minute horizon. This phenomenon reflects the cumulative uncertainty inherent
in traffic evolution: small deviations in predicted flow or speed at early steps propagate forward and
compound over successive time steps, leading to larger discrepancies by the end of the forecasting
window. Such behavior constrains the model’s suitability for tasks that require accurate long-range
planning, such as anticipating congestion several hours in advance for proactive diversion
strategies. While STG-Tx maintains moderate robustness compared to RNN-based baselines, the



persistence of this error growth highlights the need for alternative forecasting paradigms that
explicitly incorporate uncertainty estimation or ensemble methods to mitigate horizon-dependent
degradation.

The third limitation relates to sensitivity introduced by node subsampling, a core efficiency
mechanism of STG-Tx. By randomly selecting subsets of nodes during training, the model reduces
computational load and ensures tractable attention operations across the 8,600-node graph.
However, this strategy inevitably introduces variance: different subsets of nodes emphasize
different local structures, leading to fluctuations in performance across training runs. Although this
variance can be partially mitigated by averaging predictions over multiple epochs or random seeds,
it remains a source of stochasticity that may complicate reproducibility. More critically, it raises the
possibility that certain regions of the network —particularly those with sparse sensor coverage —
may be underrepresented in the training process, limiting the model’s ability to generalize uniformly
across the state. A more adaptive sampling procedure, or a hybrid strategy that prioritizes coverage
of uderrepresented nodes, may be necessary to reduce this sensitivity.

A fourth limitation is the model’s restricted ability to adapt to distribution shifts. STG-Tx was
trained on data from 2017 to 2019 and evaluated on 2020 to 2021. While it successfully captured
major traffic trends, it exhibited reduced accuracy in the face of unprecedented events such as the
COVID-19 pandemic, which dramatically altered travel demand patterns. This highlights a broader
limitation of models trained in an offline, one-shot fashion: they lack mechanisms for continual
learning or online adaptation. As a result, when the underlying data distribution changes abruptly —
due to policy interventions, natural disasters, or social events—the model may underperform until it
is retrained on the new regime. For real-world deployment, this rigidity is problematic, since traffic
dynamics are constantly evolving under the influence of construction projects, land use changes,
and long-term shifts in commuting behavior. Addressing this limitation will require integrating
continual learning methods, domain adaptation, or transfer learning strategies into the forecasting
framework.

Taken together, these limitations point to clear avenues for future research. Enhancing prediction
accuracy may require richer representations of spatial interactions, such as dynamic graph learning
where edge weights evolve with traffic conditions. Containing error growth at long horizons could
benefit from the integration of uncertainty estimation techniques, enabling the model to
communicate confidence intervals rather than single-point predictions. Mitigating sensitivity to
subsampling may involve adaptive or stratified node selection strategies that balance efficiency with
representational fidelity. Finally, overcoming rigidity to distribution shifts will require embedding
continual learning mechanisms, enabling models to update incrementally as new data arrives
without retraining from scratch.

In summary, while STG-Tx demonstrates strong baseline performance, its limitations underscore
the inherent challenges of statewide forecasting. Recognizing these error modes not only
contextualizes the present results but also provides a roadmap for subsequent work aimed at
developing more accurate, adaptive, and resilient transformer-based traffic forecasting systems.



6.4 Practical Implications for Real-Time ITS

The findings of this study carry significant implications for the future deployment of predictive
models in operational intelligent transportation system (ITS) environments. Beyond benchmarking
performance on a large dataset, the experiments with STG-Tx provide concrete evidence that large-
scale, transformer-based forecasting can be both feasible and practically useful when aligned with
the computational and operational constraints of transportation agencies.

One of the most notable outcomes is the demonstrated feasibility of statewide forecasting on
commodity hardware. By successfully training and running inference on a single NVIDIA RTX
A100 GPU, the experiments show that models of this scale no longer require supercomputing
clusters or specialized distributed infrastructures. This has important policy and operational
ramifications: transportation agencies, which often operate under tight budgetary constraints, can
consider deploying advanced predictive analytics without prohibitive capital investment. The
reduced cost barrier opens the door to broader adoption of data-driven traffic forecasting tools, not
just in major metropolitan regions but also in states or countries with more limited technical
infrastructure. This democratization of large-scale forecasting capabilities could lead to more
equitable improvements in traffic management across diverse jurisdictions.

Equally important is the potential for real-time forecasting demonstrated by STG-Tx. The model
achieved an inference latency of approximately 280 milliseconds for all 8,600 sensors in the
California freeway network, producing network-wide forecasts at 5S-minute intervals. This speed
places the model well within the operational envelope of many ITS applications. For example,
adaptive ramp metering systems require timely predictions of upstream congestion to adjust inflow
rates dynamically. Similarly, dynamic route guidance services depend on short-term forecasts of
travel time and congestion to suggest optimal alternatives to drivers. Even congestion alert systems,
which notify operators or travelers of impending bottlenecks, rely on the ability to anticipate traffic
conditions before they materialize. The ability of STG-Tx to provide statewide forecasts in near
real-time suggests that transformer-based models can meaningfully enhance such applications
without introducing latency that would compromise decision-making effectiveness.

Another strength with direct deployment relevance is robustness to noisy and incomplete data. Real-
world traffic sensor networks are plagued by imperfections: detectors malfunction, communication
links fail, and calibration errors generate anomalous readings. Many academic models achieve high
accuracy only on carefully curated datasets, but their reliability deteriorates in operational settings
where imperfections are the norm rather than the exception. The fact that STG-Tx maintained stable
predictive accuracy despite the inherent sparsity and noise of the LargeST-CA dataset indicates that
it can be integrated into ITS workflows without requiring excessive manual intervention for data
cleaning. This reduces the operational burden on agencies, which often lack the resources to
perform extensive preprocessing on live streams. Robustness to noise therefore not only improves
technical performance but also lowers the practical barriers to real-world adoption.

In addition, the integration of STG-Tx outputs with existing ITS infrastructure appears natural and
straightforward. The model produces full-network forecasts every five minutes, which corresponds
exactly to the sampling interval used by most freeway management systems, including California’s.



Many control strategies—such as traffic signal timing updates, dynamic message sign adjustments,
or variable tolling mechanisms —operate on similar five-minute control cycles. The alignment
between model output frequency and operational decision cycles simplifies integration: forecasts
can be ingested directly into existing control software without requiring resampling or aggregation.
This compatibility reduces the technical friction of deployment and increases the likelihood that
agencies can adopt the system without substantial redesign of their operational workflows.

That said, while the experimental results highlight strong potential, several critical steps remain
before practical adoption can be realized. First, the model must be validated under live streaming
conditions. The current experiments relied on offline datasets, which, while comprehensive, do not
fully capture the idiosyncrasies of real-time data pipelines, such as delayed packet arrivals, out-of-
order timestamps, or sudden communication outages. Stress-testing the model under these
conditions will be essential to ensure operational reliability.

Second, strategies for continuous retraining and adaptation must be established. Traffic patterns
evolve over months and years due to changes in infrastructure, land use, and societal behaviors. As
demonstrated during the COVID-19 pandemic, sudden shocks can dramatically alter demand
patterns, invalidating models trained on historical data. For practical deployment, agencies will
need retraining pipelines that allow the model to be updated incrementally without excessive
downtime or computational expense. This may involve online learning strategies, periodic
retraining on rolling windows, or transfer learning techniques that adapt the model efficiently to
new distributions.

Finally, the integration of exogenous data sources will be critical to unlock the full potential of
predictive forecasting in ITS. Traffic dynamics are strongly influenced by factors that extend
beyond sensor measurements, including weather conditions, planned construction activities, and
incidents such as accidents or lane closures. While STG-Tx demonstrated robustness and scalability
using loop detector data alone, its predictive value could be significantly enhanced by incorporating
these additional modalities. Multimodal integration would allow forecasts not only to extrapolate
from historical trends but also to anticipate disruptions based on known external events, thereby
increasing accuracy and usefulness for operators.

In summary, the findings of this thesis suggest that STG-Tx represents a viable blueprint for
operational traffic forecasting. Its computational feasibility, real-time inference capability, resilience
to data imperfections, and alignment with existing infrastructure all indicate that deployment is
within reach. However, realizing this potential will require additional research and development to
ensure robustness under live data conditions, to enable adaptive retraining, and to incorporate
exogenous signals. By addressing these challenges, transformer-based forecasting models like STG-
Tx can transition from research prototypes to integral components of next-generation intelligent
transportation systems, delivering tangible benefits in congestion mitigation, travel time reliability,
and overall network efficiency.



Summary

This chapter discussed the implications of the empirical results. STG-Tx demonstrates that
transformer architectures can be scaled to state-wide traffic forecasting, delivering competitive
accuracy within constrained GPU budgets. Its strengths lie in efficiency and robustness, while its
limitations — particularly in long-horizon accuracy and adaptation—highlight opportunities for
future improvements. The next and final chapter concludes the thesis and outlines directions for
further research.



Chapter 7 — Conclusion and Future Work

This thesis has explored the challenging task of forecasting traffic conditions at a statewide scale
using the LargeST-CA dataset. The proposed STG-Tx architecture demonstrated that transformer-
based models can achieve competitive accuracy while remaining computationally feasible on a
single NVIDIA RTX A100 GPU. By introducing node subsampling, mixed-precision arithmetic,
and an efficient spatio-temporal attention mechanism, STG-Tx was able to process five years of 5-
minute interval data from 8,600 sensors without resorting to graph partitioning or extreme data
truncation. This is a significant achievement given that LargeST-CA covers the entire California
highway network with comprehensive metadata and long-term coverage . Prior public traffic
datasets were much smaller in scale or shorter in duration , so handling the full statewide network
over multiple years represents a substantial step forward in scalability and realism.

The results underscore three key contributions of this work. (i) We designed a simplified yet
scalable spatio-temporal transformer tailored for large graphs. Unlike more complex or memory-
heavy architectures, our design focuses on essential components (attention across space and time)
optimized for efficiency, proving that “less can be more” when modeling very large networks. (ii)
We developed a reproducible preprocessing and training pipeline for LargeST-CA, which can serve
as a solid baseline for future studies. This pipeline addresses data quality issues, sensor metadata
integration, and training at scale, providing a reference point for other researchers to build upon.
(111) We conducted an empirical evaluation that clarifies the trade-offs between accuracy, efficiency,
and robustness in large-scale traffic forecasting. By experimenting with different model settings and
stress-testing the system (e.g., with varying input lengths and sensor outages), we illuminated how
certain design choices impact performance. Together, these contributions advance the feasibility of
deploying transformer-based traffic forecasting at the scale required by real-world intelligent
transportation systems (ITS) [1],[2]. In other words, this thesis brings transformer models a step
closer to practical use in state or nationwide traffic management, where both high accuracy and high
efficiency are paramount.

7.1 Beyond Forecasting: Toward Traffic Signal Control

While accurate forecasting is a critical enabler of ITS, its full utility is realized when predictions
actively inform control strategies. In current traffic management practice, forecasts alone do not
reduce congestion — they must trigger proactive interventions. One natural extension of this work is
therefore to couple traffic forecasts with adaptive traffic signal control systems to actively mitigate
congestion in real time. By using the predictive insights from STG-TX, traffic signals could be
adjusted before severe bottlenecks occur, rather than simply reacting to congestion after the fact.
This proactive approach has the potential to smooth traffic flows, prevent queues from spilling back,
and improve travel time reliability across the network.



Proposed Control Architecture

To achieve this integration of prediction and control, we propose a two-stage pipeline combining
our forecasting model with a decision-making module:

Forecasting Module (STG-Tx): As developed in this thesis, the forecasting module ingests recent
sensor histories (e.g. speeds, flows, occupancies from the past 1 hour) and outputs network-wide
predictions for these variables over the next 1-12 time steps. In our case, with 5-minute intervals,
this corresponds to up to one hour of forecast horizon [2],[9]. The STG-Tx model provides a high-
fidelity look-ahead into the near future traffic state, predicting where congestion is likely to build or
dissipate. These predictions are not limited to a single location, but rather cover the entire sensor
network, which is crucial for downstream control to consider system-wide conditions. Because
STG-Tx is designed to handle large graphs, it can forecast simultaneously for thousands of
locations, ensuring that the control module has a complete picture of the upcoming traffic
conditions across the state.

Control Module (Neural Decision Network): The forecasted traffic state is then passed to a
control policy network, which outputs optimal traffic signal phase and timing adjustments for
signalized intersections. A promising design for this decision-making module is a Graph-based
Reinforcement Learning Transformer (GRLT) architecture, which merges concepts from graph
neural networks, transformers, and reinforcement learning (RL). In the proposed GRLT:

Graph Representation: Each signalized intersection in the traffic network is represented as a node
in a graph, and road segments connecting intersections are represented as edges. This graph
captures the physical connectivity of the road network (e.g., adjacency of intersections) and allows
the model to understand how traffic flows from one junction to another. We use the forecasted traffic
flows and densities from STG-Tx as features for each node and edge, essentially giving the control
agent foresight about impending traffic conditions on each approaching road . For example, if STG-
Tx predicts a surge of vehicles on a particular arterial road in the next 10 minutes, that information
becomes a feature for the corresponding intersections and road segments in the graph. This advance
knowledge would enable the control policy to prepare, perhaps by extending green times on that
arterial or coordinating upstream signals. By embedding the forecast information into the graph, the
controller operates on a prediction-enhanced state of the traffic network. (This approach extends
prior works like CoLight [5], which enabled communication between neighboring traffic lights via
graph neural networks, by additionally providing global predictive information to each node).

Transformer Backbone: On top of this graph representation, we employ a transformer-based
neural network as the backbone of the control policy. Multi-head self-attention layers allow the
model to capture dependencies not only between neighboring intersections, but also across distant
yet correlated junctions [8],[10]. This means the controller can learn patterns such as “Intersection A
and Intersection B, though miles apart, often experience linked congestion due to an alternate route
or network effect.” Traditional multi-agent systems might limit communication to immediate
neighbors, but a transformer can learn long-range interactions by assigning attention weight to far-
away nodes when relevant. This global perspective is important in a large-scale network — for
instance, an incident on a highway might cause rerouting that affects traffic signals in a distant
district, and the transformer’s attention mechanism can theoretically catch such connections.
Moreover, the multi-head attention provides a form of dynamic communication, where the
importance of other intersections can be different for each situation and each decision step, rather
than a fixed communication structure.



Reinforcement Learning Objective: The control module is trained using reinforcement learning in
a simulated traffic environment (such as SUMO or Aimsun). Each intersection (or a centralized
agent controlling all intersections) learns a policy that selects signal phase timings (e.g., how long
each light stays green and which movements get green) based on the current state and the forecasted
near-future state. The training uses a reward signal designed to capture traffic performance metrics —
for example, a weighted combination of average vehicle delay, queue lengths, and throughput
across the network. The goal is to maximize throughput and minimize delays and queue spillbacks,
which translates to improved travel times for drivers. By using these metrics as the reward, the RL
algorithm will naturally try to reduce congestion. Importantly, because the policy’s input includes
the predictions from STG-Tx, the agent is encouraged to take preemptive actions. For instance, if a
large queue is predicted to form, the agent could proactively allocate more green time to that
approach before the queue actually builds up. The reinforcement learning setup allows the system to
learn from experience in simulation: over many episodes of simulated rush hours, the controller
refines its strategy to achieve lower average delays. Eventually, the learned policy can be applied to
the real world. This Graph RL Transformer (GRLT) approach draws inspiration from recent
successes in deep RL for traffic signals [5],[6],[7],[10], combining them in a novel way. In
particular, prior studies have shown that allowing traffic lights to communicate and cooperate (for
example, via graph neural networks) yields better global traffic flow , and that attention mechanisms
can improve coordination and even provide interpretability in multi-intersection control policies [8].
Our proposed architecture builds on these insights by using a transformer to facilitate both local and
long-range cooperation, with the added advantage of predictive input.

In summary, the two-stage system works as follows: the forecasting module gives a glimpse of the
future traffic state, and the control module uses that information to decide on signal plans that will
optimize traffic flow in anticipation of those future conditions. By decoupling prediction and
decision-making into separate modules, we leverage the strengths of each: STG-Tx excels at
modeling complex spatio-temporal traffic patterns, while the GRLT excels at making sequential
decisions to optimize an objective. This modular design also makes the system more interpretable
and maintainable — the forecasting model can be improved or retrained independently of the control
logic, and vice versa.

Why a Transformer?

Transformers are a core component of both our forecasting and control modules, and they offer
several distinct advantages for this traffic control task:

Modeling Long-Range Dependencies: Transformers are inherently designed to capture long-range
dependencies in data through the self-attention mechanism [1]. In the context of traffic signal
control, this means a transformer-based policy can coordinate city-wide or region-wide traffic
signals in a way that accounts for far-reaching effects. It can learn that an intersection’s optimal
signal plan may depend on traffic conditions many miles away (e.g., downstream bottlenecks or
upstream metering) — something that traditional localized controllers or even moderate-range graph
convolution methods might miss. Modeling these long-range dependencies is crucial for network-
level optimization, as it helps avoid strategies that solve congestion at one intersection only to push
the problem further down the road. Instead, the controller can make globally informed decisions,
balancing the needs of different areas of the network.



Attention Interpretability: The attention weights in a transformer provide a form of built-in
interpretability. For each decision (e.g., how to adjust the lights at a given intersection for the next
cycle), we can inspect which other intersections or roads the model was “paying attention” to. If the
transformer assigns a high attention weight to a particular upstream intersection when deciding the
action for a downstream one, it implies a strong influence or dependency. This can give traffic
engineers insight into which intersections exert the strongest influence on each control decision
(e.g., perhaps a usually distant but critical junction is often considered in the decisions of a
downtown intersection) [10]. Such interpretability is valuable when deploying Al in transportation
systems because it builds trust — city traffic operators can understand and validate that the system’s
actions make sense (for example, seeing that during a baseball game event, the model pays attention
to intersections near the stadium when controlling freeway ramp meters). It also helps in debugging
and refining the system, as unusual attention patterns might flag model behaviors that need
correction.

Adaptive and Robust Decision-Making: Coupled with reinforcement learning, transformer-based
controllers can adapt to dynamic changes in traffic patterns [6]. Thanks to their sequence modeling
capability, transformers can effectively integrate not just the current state, but also trends and
recently observed patterns, as well as the forecasts, to adjust to new situations on the fly. For
example, if an incident or road closure occurs (an exogenous shock to the traffic system), a
transformer can rapidly adjust coordination across many signals because it can quickly re-evaluate
which parts of the network are now most relevant. The ability to handle sequences also means the
controller can plan multi-step strategies (implicitly, via the learned policy) rather than greedy one-
step decisions. All of these factors contribute to a more robust control policy that can handle
incident scenarios, atypical surges (like holiday traffic), or shifts in driver behavior, better than a
static or myopic controller would.

In essence, the transformer serves as the “brain” of the control policy, enabling both a broad and
deep perspective: broad in that it sees and considers the whole network’s state (current and
predicted), and deep in that it can infer complex cause-effect chains over space and time. These
properties align perfectly with the needs of a next-generation traffic signal control system that must
coordinate hundreds or thousands of intersections in real time.

Workflow Integration

We envision the integrated forecast-control system operating in a closed-loop workflow, repeatedly
cycling through forecasting and control actions. A typical cycle (which could repeat, for example,
every 5 minutes to match the data update rate of LargeST-CA [2]) would involve the following
steps:

1. Data Collection: Field sensors (inductive loops, cameras, speed detectors, etc.)
continuously collect traffic data such as vehicle counts, speeds, and lane occupancies. At the end of
each interval (e.g., every 5 minutes), the recent sensor readings are aggregated. These recent
observations form the input to the forecasting module. For instance, the system might take the last
hour of data (12 time steps of 5 minutes each for all sensors) as the context for prediction.

2. Traffic Forecasting (STG-Tx): The STG-Tx model consumes the recent sensor
history and computes short-term traffic evolution predictions for the entire network. This could be a



prediction of how the traffic speed and volume on every road segment will change over the next 5,
10, ... up to 60 minutes (12 steps). The output is essentially a forecasted traffic state for the near
future. This forecast can be thought of as a dynamic map of anticipated congestion — highlighting,
for example, that “in 10 minutes, a queue is likely to build up on highway segment X and spill onto
arterial Y unless mitigated.” These predictions are then passed along to the control module.

3. Adaptive Signal Control (GRLT Policy): The Graph RL Transformer-based control
module takes in the latest forecasts (along with the current state) and computes the optimal
adjustments to traffic signal timings. This could mean deciding the duration of green for each
approach at each intersection, or deciding offset adjustments for coordinated corridors, depending
on the level of control. The policy essentially answers: “Given what the traffic is expected to be in
the next few minutes, how should we set the signals now and over the next cycle to best
accommodate the flow?” The GRLT might output, for every intersection, the plan for the next cycle
(e.g., extend north-south green by 10 seconds at intersection A, start the east-west phase 5 seconds
earlier at intersection B, etc.). These control decisions are then transmitted to the traffic signals (via
the traffic management system’s communication network).

4. Traffic Response and Data Update: As the adjusted signal timings take effect on the
road network, drivers respond — traffic flows change, hopefully with reduced congestion as a result
of the proactive control. This leads to a new set of sensor readings (e.g., vehicles experience less
delay at previously congested spots, or are rerouted by the signal changes). The system then collects
the next batch of sensor data (back to step 1), and the cycle repeats. In this closed loop, the real-
world traffic outcomes influence the next round of predictions, creating a feedback loop. Over time,
the system continuously adapts, and because it is always looking ahead via forecasts, it operates in a
predictive feedback control mode rather than a purely reactive mode.

This entire cycle is designed to be fast — ideally completing within a 5-minute window so that
predictions are fresh and control actions are timely. Modern computation allows the STG-Tx
forward pass and the GRLT policy evaluation to be done in seconds or less on adequate hardware,
making real-time implementation feasible. Operating in tandem, the forecasting and control
modules ensure that every control action is taken with foresight into the future traffic conditions,
aligning the system’s behavior with how traffic actually evolves.

7.2 Anticipated Benefits

An integrated forecast—control architecture as described above would offer several important
benefits over traditional traffic management or standalone forecasting:

Proactive Congestion Mitigation: Perhaps the most significant advantage is the ability to mitigate
traffic congestion proactively. Instead of waiting for queues to build up and then reacting (which is
what most adaptive signal control systems do today, using current measurements or short-term
occupancy triggers), a forecast-informed system can take action before congestion fully
materializes. For example, if a sudden influx of vehicles is predicted on a certain corridor (such as
traffic leaving a big event or a surge due to an accident diversion), the system could preemptively
extend green times on that corridor or activate flush plans to accommodate the surge, thereby
preventing or lessening the congestion that would have occurred. By acting on forecasts rather than
only on current states, traffic signals can divert or smooth flows in advance [5]. This leads to more
stable traffic conditions with fewer stop-and-go waves. Proactive control also helps in avoiding



gridlock scenarios: if a downstream intersection is forecasted to become saturated, upstream signals
can hold traffic for a cycle to prevent spillback. Overall, travelers would experience shorter delays
and more reliable trip times, since the system is always one step ahead of problems.

Network-Level Coordination: The proposed system inherently performs network-wide optimization
rather than isolated intersection control. Traditional traffic signal optimization might optimize
timings for a single intersection or a local corridor, which can lead to suboptimal outcomes system-
wide (a classic example is when uncoordinated signals cause a series of stops along a main road —
each signal might be locally optimal, but the lack of coordination produces a poor experience for
drivers along the route). In our architecture, the attention mechanisms in the transformer-based
controller allow simultaneous consideration of many intersections across the city or state. This
means the controller can find strategies that improve global traffic flow, not just local conditions. It
avoids local optima that could increase overall congestion [7],[8]. For instance, the policy might
decide that one intersection should endure a slightly longer red if it prevents a downstream
bottleneck from cascading. This kind of decision requires a cooperative, system-level view —
something enabled by our network-level approach. Prior research has shown that such cooperation
(through communication between agents or centralized coordination) significantly outperforms
independent control of lights . By coordinating multiple intersections, the system can implement
green waves over longer distances, balance traffic loads between parallel routes, and ensure that
when one intersection releases vehicles, the downstream signals are ready to receive them. The
result is a more harmonious flow of vehicles through the network, with fewer stop-start cycles and
reduced overall delays.

Scalability to Real-World Networks: The graph-transformer design we propose is inherently
scalable and can handle thousands of intersections, aligning with the scale of statewide deployments
[6]. Scalability is a critical concern: many Al-based traffic control solutions have only been tested
on small grids or a dozen intersections in simulations. In contrast, our approach, building on the
LargeST-CA dataset and our efficient STG-Tx model, is aimed at high-dimensional settings. By
using strategies like node subsampling and efficient attention, the computational load increases
gracefully as more intersections are added. The transformer’s ability to focus attention means it
doesn’t unnecessarily blow up in complexity for large networks — it can attend selectively to the
most relevant signals. Moreover, the modular two-stage pipeline allows for parallel development
and possibly distributed deployment (e.g., one server could handle forecasting, another the control
decisions, or different regions could be managed semi-independently with occasional coordination).
This scalability is crucial for real ITS, because a city-wide or state-wide traffic optimization system
must cope with the full breadth of the network. Our design takes into account the need to operate
under such large-scale scenarios, and the use of a state-of-the-art benchmark like LargeST-CA
ensures that experiments and results are grounded in a realistic scale. This gives confidence that the
approach can transition from a research prototype to a deployed system covering entire
metropolitan regions or states.

In summary, the integration of forecasting with control promises proactive, coordinated, and
scalable traffic management. Drivers would experience less unexpected congestion, city operators
could better handle events and disruptions, and the transportation network as a whole would be
utilized more efficiently. Over the long term, such systems could also contribute to secondary
benefits like reduced vehicle emissions (through smoother flows and less idling) and improved road
safety (by preventing chaotic congestion-induced maneuvers), although realizing those benefits
would require careful implementation and is an area for further study.



7.3 Limitations and Future Directions

While the proposed forecast-driven control architecture is promising, several challenges and open
issues must be addressed before it can be practically deployed in real traffic systems. We discuss
some key limitations and directions for future work:

Simulation-to-Reality Gap: One fundamental challenge is the gap between simulation and reality.
Our control policy would likely be trained and tested extensively in simulation (using tools like
SUMO or Aimsun) before any field deployment. However, policies that work well in a simulated
environment may not immediately generalize to the real world due to differences in driver behavior,
unforeseen events, sensor noise, and other complexities not perfectly captured in simulators. For
instance, a simulator might assume drivers react uniformly to a yellow light or drive at the speed
limit, whereas real driver behavior can be unpredictable. Thus, a policy trained in simulation might
face degraded performance or unexpected outcomes when first implemented on real streets. To
bridge this gap, techniques like transfer learning or online fine-tuning could be employed [6]. In
practice, this might involve slowly introducing the Al controller in a real environment in a safe
manner (e.g., in shadow mode or during off-peak hours) and updating it with real data. Another
approach is to make the simulation more realistic by calibrating it with real data and even
introducing random perturbations during training (domain randomization) so the policy learns to
handle variability. Ensuring a smooth transfer from simulation to reality is essential for any real-
world deployment — it is a step that would likely require close collaboration with traffic engineers
and possibly regulatory approval before an Al controls public infrastructure.

Reward Engineering and Objective Trade-offs: Designing the reward function (or objective) for the
reinforcement learning controller is non-trivial, especially when balancing multiple criteria. In a
traffic network, we care about multiple objectives: reducing delays, preventing long queues,
minimizing stops, reducing emissions, and ensuring fairness (so that one neighborhood or corridor
is not consistently favored at the expense of another). Crafting a single reward that captures all
these goals is difficult. If we weight everything equally, the agent might learn a mediocre policy that
satisfies none optimally; if we weight one metric too strongly (say, minimizing total delay), the
agent might exploit that at the cost of something else (like creating one very long queue on a minor
road to serve a major road’s flow). Balancing these objectives requires careful tuning and perhaps
dynamic adjustment. Prior works [5],[7] have highlighted that reward engineering is an art: for
example, Wei et al. [5] had to consider throughput and fairness in their multi-intersection control,
and Chen et al. [7] discuss fairness across a thousand lights scenario. One future direction is to
explore multi-objective reinforcement learning, where instead of combining objectives into one
scalar reward, we let the agent explicitly consider trade-offs (perhaps using Pareto optimization or
having a vector reward). Another direction is incorporating input from human stakeholders — for
instance, city officials might set certain policies (like “limit queue spillover into residential areas” or
“prioritize transit vehicles”) that need to be reflected in the reward or as constraints on the policy.
Ongoing calibration of the reward function in deployment (to adjust to evolving city priorities or
seasonal changes) is also likely necessary. Thus, future research should focus on developing robust
reward frameworks and perhaps self-tuning or adaptive reward weights that can ensure the
controller’s actions remain aligned with complex, real-world definitions of optimal traffic flow.

Computational Constraints: Although we have emphasized the efficiency of our approach,
deploying a transformer-based forecasting and control system in real time still presents
computational challenges. Real-world traffic control systems operate under strict latency budgets —
decisions often need to be made within seconds, and reliably so (missing a cycle update could cause
unsafe or chaotic situations). STG-Tx and the GRLT policy must therefore produce results very
quickly for potentially thousands of intersections. While a powerful GPU (like the RTX A100 used



in our experiments) can handle the load in a research setting, a traffic management center might not
have such hardware for continuous operation, or it might need to allocate resources to many tasks
simultaneously. Further efficiency gains will be necessary to ensure real-time inference. Possible
future work includes model compression techniques such as knowledge distillation (to create a
smaller model that approximates the large one), quantization of the model weights to run on edge
devices or lower-power processors, or specialized hardware (like FPGAs or Al accelerators) for
inference. In addition, one could explore hierarchical control to reduce complexity — for example,
grouping intersections and having multiple local controllers plus a coordinator, which could reduce
the size of the problem each controller solves. Another aspect is reliability: the system must not
only be fast but also have fail-safes. If the AI model fails to produce an output in the allotted time
(or produces an obviously flawed output), the system should gracefully fall back to a safe default
(like reverting to a fixed-time plan temporarily). Research into worst-case execution time and
guaranteeing response times will be important. Ensuring that the whole pipeline (data ingest —
prediction — decision) can run within, say, a 5-minute window (or faster if using shorter intervals)
consistently, even as traffic conditions and volumes fluctuate, is a critical deployment consideration.

Robustness and Reliability: The integrated system must be robust to a variety of real-world issues:
missing or noisy data, sensor outages, and even adversarial conditions. Missing data could occur if
some sensors fail or communication is lost; our forecasting model and controller should be able to
handle that gracefully, perhaps by imputing values or relying more on spatial neighbors’ data.
During this research, we assumed data is mostly available, but in practice, redundancy and data
validation are necessary — future extensions could incorporate fault-tolerance mechanisms (for
example, using additional data sources like probe vehicles or designing the model to infer missing
sensor readings from neighboring ones). Adversarial conditions refer to either malicious attacks
(e.g., someone hacking into the sensors or signals to feed wrong data or cause harmful actions) or
extreme unusual events (like a pandemic changing traffic patterns overnight). The system should
remain stable and not yield erratic control actions under such stress. This might involve adding
robust training scenarios (to teach the model not to overreact to spikes that could be errors) or
integrating rule-based overrides for safety (for example, ensuring the controller never creates a
situation that violates traffic rules, and always allowing human override). Another angle for
robustness is distributional shift — over years, traffic patterns may change (new roads, population
growth, etc.). The models may require periodic retraining or adaptation. Future research should
explore online learning or continual learning approaches so the system can update itself with new
data without needing a complete overhaul. In summary, extensive testing under various scenarios,
stress tests in simulation (like shutting off a percentage of sensors, simulating cyber-attacks with
falsified data, etc.), and developing mitigation strategies are important future steps to ensure the
controller is reliable and safe for real-world use.

Given these limitations, future work should aim to unify the forecasting and control components in
a robust framework and validate the approach in increasingly realistic settings. For instance, one
research direction is to train the forecasting and control models jointly or in an end-to-end fashion —
this could potentially align the predictions even better with control needs. Another direction is to
incorporate additional data sources (like weather, events, or connected vehicle data) into the
forecasting model to further improve prediction accuracy and control performance under various
conditions. Ultimately, before large-scale deployment, pilot studies are essential: testing the system
in high-fidelity traffic simulators that emulate entire cities (as a stepping stone), and then conducting
field trials on urban arterial networks or specific corridors [5],[7]. Such pilot deployments would
provide insight into real-world performance and uncover any issues not seen in simulation. They
would also help in refining the system with feedback from traffic operators and the public. This



phased approach — from simulation to small-scale pilots to full deployment — will increase
confidence that the integrated forecast-control system can deliver on its promises in practice.



Summary

In conclusion, this thesis demonstrated that transformer-based architectures can scale to the largest
publicly available traffic dataset, delivering accurate short-term forecasts across a state-wide sensor
network [2],[8]. The STG-Tx model’s ability to handle massive spatio-temporal data and produce
timely predictions was a key enabler for considering wider applications. Building on this
foundation, we proposed an integrated forecasting—control architecture in which the predicted traffic
flows from the transformer model are used to drive a transformer-based reinforcement learning
policy for adaptive traffic signal management [5],[6]. By coupling foresight (from the predictor)
with intelligent decision-making (in the controller), such systems can move beyond passively
predicting congestion to actively reducing congestion. The anticipated outcome is a new generation
of traffic management systems that reduce travel delays, improve travel time reliability, and better
utilize existing road infrastructure. There is a clear pathway from the research presented here to
real-world impact: as computing capabilities and data availability continue to grow, the approach
outlined in this chapter could pave the way for intelligent, data-driven transportation infrastructure
where Al-driven forecasts and controls work hand-in-hand to make our roads safer and more
efficient. The journey from accurate prediction to effective action represents a significant stride
toward truly smart cities and intelligent transportation systems of the future.
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