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Hepirngn

O pédodor Padide ydinone €youv yetopop@®oel TAHYOC TOUEWY AELOTOLWVTAS UE-
YIAEC TOGHTNTES BEBOUEVLV X0l TONDTAOXES UPYLTEXTOVIXES VELPWWIXGWY BxTUWY. Tlo-
EEAATAGL Ol UTOAOYIO TIXEC AMOUTAHCELS TWV CUYYPOVWY HOVIEAWY GUY VA UTEpBaivouy
TIC OUVITOTNTEG EVOC UOVO UTIOAOYLIG TT], OO YWVTUS GE AVAYXT| YOl XUTUVEUNUEVT) EXTIO-
{devom. Xty noapodoa dateld e€etdlouue TNy achyyeovn exnaidevon und To Telopa
TNG UEYLTEXTOVIXTC TOU DLUXOULO TH) TURUUETEWY, UE EupaoT 6T Behtinon Tng anddo-
ong xan e otoepotnTag. Katapyryv, uéow ulag ouyxpitinn a&lohdynong oto tAolota
e SteBrc amodevieTal OTL 1) JEYLTEXTOVIXY) TOU EEUTNEETNTY| TOPUUETEWY TTEO-
GQEPEL ONUOVTIXA LPNAOTERT AOBOGCT, 0T TAXUCLY EXTAUBEVCTIC VEUPWVIXDY OIXTUMY
0€ OYEOT) UE YEVIXOU GXOTOU APYITEXTOVIXES ETeEepyaciog HEYIAwY Bedouévwy ot xa-
Taveunuéva mepBdihovia. Méow cuotruatixnc BBMOYpapIXAC avaoxoTnong yiveto
TEOVGLAGT] TOV EEELVNTIXWY UEOVKY TOL GYETILOVTOL UE TNV OEYLITEXTOVIXT| TOU EEUTN-
eetnTh mopopétewy. ‘Evag and toug mo xployoug dEoveg peuvag anoTteAel 0 EAEY Y0
TNC CUVETELNS %Ol TO TROBANUO TWV TAALOY SLOVUCUAT®Y XAlone ot YohapoTepd Uo-
vTéAa ouyyeoviopol. o TNy avtetonion avtoy, tpoteiveton 1 uPBEWwxy pédodog
exnaidevone Evalhayhc - Ltpotnywic (Strategy-Switch), n onola Eexwvd e obyypo-
V1| ETOVGLVIA o 0T GLUVEYELX UETOPalveL OE oYy povr exTtoldeuoT BAotl EUTELpLOU
xputnelou petdfaorng, emTuyydvovtoag Toyeio olyxhion xou oxplBela povtéhou. Emi-
TAEOV, TEOTEIVOUUE TEYVIXES EX TWV TROTEQMY XATAVOUNC OEDOUEVLY TIOU GTOYEVOLY
GTNVY LOOPEOTIA TN BLVOUNC TWV BELYHATOV UETAE) TwV EpYALOUEVOY UNYUVIUATODY
TOL GUUPETEYOLY OTNV EXTDEVO, UE amoTéheoya T Beltiwon Tng CUVETELNG TNG X~
Taidevong ywels Ty Omapdn ouyyeoviowol. Ta mepapotixd antotehéoyota detyvouy
petwon tne petoBAntoTnToc oto peTed exnaidevong xat afloAdynong €ng 8 QopEg
xa 2 Qopég avTioTolyd OE GUYXELOT) UE TNV TUY LA XUTOVOUT| OEBOUEVLV. XUVOAXY,
oL TpoTevOUEVES PEY0BOL EVIGYLOUY TNV 0oLy POV XaTAVEUNUEVT exnaideuorn Badidc
pdinong, tpoc@épovtag TeaxTixég AUGELC ToU GUVBLALOLY TayUTNTO XU G THdERHTNTA
YL THO XALUOXOUPEVT] Xk A€LOTILO T1) EXTABEVCT) UEYSAWY VELEWVIXDY BIXTOWY.
A€Zeig-KAedid: eCunnpetntric napouétewy, Bodid unyovixy) uddnor, xotove-
UNUEVT EXTIUOEUGT), AUy POV EXTAidEVDT), Blaryelplon Sedouévwy, ueydha’ dedouéva






Abstract

Deep learning has transformed numerous fields by leveraging vast datasets and
complex neural architectures, but the computational demands of modern models of-
ten exceed single-node capabilities, prompting distributed training solutions. This
thesis investigates asynchronous training under the parameter server paradigm,
focusing on enhancing both performance and stability. First, a thorough com-
parative analysis demonstrates that specialized distributed architectures deliver
substantially higher throughput than general-purpose data-processing frameworks
at large scales. Following a systematic literature review, consistency control and
the mitigation of stale gradients as pivotal challenges in asynchronous setups are
identified. To address these, a hybrid Strategy-Switch approach is introduced that
begins with synchronous communication to identify a promising solution region be-
fore transitioning to asynchronous updates based on an empirically derived switch-
ing criterion, achieving both rapid convergence and model accuracy. Building on
these insights, offline data-sharding techniques are then proposed, designed to pre-
emptively balance sample distributions across workers, thereby reducing gradient
variance and improving training consistency. Experimental results show that the
proposed data distribution strategies decrease variability in training and validation
metrics by up to eightfold and twofold, respectively, compared to random assign-
ment. Collectively, these contributions advance asynchronous distributed deep
learning by offering concrete methods to reconcile speed and stability, supporting
more scalable and reliable large-scale neural network training.

Keywords: parameter server, deep learning, distributed learning, asynchronous
learning, data management, big data
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Chapter 1

Introduction

1.1 Motivation

Over the last decade, deep learning has emerged as a highly popular and influ-
ential field, primarily due to its success in numerous big data applications. Neural
networks have been adopted in image classification |1, 2|, speech recognition |3, 4],
and natural language processing [5, 6], among other domains |7, 8|. This uptake
is largely attributed to the growing availability of massive datasets and ever more
powerful computational resources.

Traditional machine learning algorithms often saturate in performance once the
available training data surpasses a certain volume [9], whereas deep neural networks
consistently demonstrate improved performance with increasing data [10, 11]. As
one of the leaders of the Google Brain Project figuratively remarked, “the analogy
to deep learning is that the rocket engine is the deep learning models and the fuel is
the huge amounts of data we can feed to these algorithms” [12]. This combination
of large-scale data and advanced computational power has propelled deep learning
to the forefront of many domains.

A compelling example of deep learning’s growth trajectory is Microsoft’s ResNet
architecture [13], introduced in 2015, which achieved a top-1 accuracy of 78% on
the ImageNet dataset [14]. More recent models now contain hundreds of millions or
even billions of parameters and can reach 90% accuracy or higher on ImageNet [15—-
19]. A summary of key models over the past decade—including their parameter
counts, benchmark performance, and origin—is provided in Table 1.1. In parallel,
large-scale networks for natural language processing have also grown dramatically.
In the same year ResNet was proposed, Digital Reasoning introduced a 160-billion-
parameter network [20] for language tasks. Over the past decade, deep learning
models have scaled from architectures with tens of millions of parameters to state-
of-the-art systems containing hundreds of billions or even trillions of parameters.
GPT-4 is a prominent example of this trend [21, 22|. Notably, the most recent
years have witnessed an accelerated proliferation of large language models (LLMs),
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Table 1.1: Key Deep Learning Models and Their Characteristics (2015-2025)

Model Year Parameters Performance Proposed By Ref.
ResNet-152 2015  ~60M Top-1: 78.57% (Ima- He et al. [13]
geNet)

ResNeXt-101 2017 ~44M Top-1: 78.8% (Ima- Xie et al. [23]
geNet)

BERT-Large 2018  340M GLUE: 80.5 Devlin et al. [24]
GPT-2 2019  1.5B Perplexity: 18.34  Radford et al. [25]

(WikiText-2)

T5-11B 2019 11B GLUE: 89.7 Raffel et al. [26]
ViT-L/16 2020  307M Top-1: 85.59% (Ima- Dosovitskiy et al. [27]
geNet)

GPT-3 2020 175B LAMBADA: 76.2% Brown et al. [21]

(few-shot)
LLaMA 65B 2023  65B Beats GPT-3 on Touvron et al. [28]
multiple NLP bench-
marks
Falcon-180B 2023 180B Near PaLM-2 Large Almazrouei et al. [29]
performance
Mistral 7B 2023 7B Beats LLaMA- Jiang et al. [30]
13B on reason-
ing/math/code
GPT-4 2023  ~1.8T (est.) Bar Exam (top 10%)  OpenAl [31]
Claude 2 2023  Not disclosed ~MMLU: 78.5 (5-shot)  Anthropic [32]
Gemini 1.5 Pro 2024 Not disclosed 1M token context Google DeepMind [33]
window
Gemini 2.0 Flash 2025 Not disclosed  2x speed, strong mul-  Google DeepMind [34]

timodal

including Claude 2, Gemini, Falcon, LLaMA, and Mistral-—each exemplifying dif-
ferent strategies in scaling, training regimes, and accessibility (see Table 1.1).

Despite the remarkable performance gains offered by these large models, train-
ing them is increasingly compute-intensive. According to Stanford’s 2024 Al Index
Report [22], Google’s Gemini Ultra required around 100 billion petaFLOPS (with
an estimated cost of $200M), while OpenAI’s GPT-4 required 10 billion petaFLOPS
(costing about $80M). Modern hardware accelerators, such as GPUs, have proven
essential to make neural network training feasible [35, 36]. Still, as datasets and
models continue to expand, single-machine training becomes prohibitively time-
consuming, prompting the use of distributed training approaches [37].

To handle this growing complexity, distributed deep learning typically adopts
either model parallelism (38, 39| or data parallelism [40, 41]. In model parallelism,
different parts of a network’s layers or parameters are spread across multiple ma-
chines. In contrast, data parallelism splits the dataset into shards, each assigned
to a particular machine, allowing every worker to train the same global model
on a disjoint subset of data. Data parallelism has become the most widely used
strategy, as it can be applied irrespective of the neural network architecture and
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Figure 1.1: Taxonomy of different parallelization strategies in distributed
deep learning. Hybrid strategies are also supported. Data Parallelism is
highlighted, since it is under the scope of this thesis.
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Figure 1.2: Taxonomy of different communicaton architectures in distributed
deep learning. Hybrid strategies are also supported. Parameter server is
highlighted, since it is under the scope of this thesis.

readily exploits large datasets for performance improvements. Other well-known
parallelization strategies include pipeline parallelism [42-44|, where a pipeline of
microbatches is executed across shards of model layers, and hybrid approaches [44],
where two or more parallelism strategies can be combined. Different parallelization
strategies for distributed deep learning are depicted in Figure 1.1.

Apart from the parallelization strategy, another important aspect of distributed
learning is related to the choice of communication architecture, where available op-
tions are outlined in Figure 1.2. Worker machines that participate in model training
can be organized to communicate through collective operations like ring, tree or
hierarchical All-Reduce. Another choice includes totally decentralized networks of
workers, like peer-to-peer approaches with stochastic or cyclic data exchange with
neighbors. Another very well-known and widely reserched and used communication
approach is the centralized parameter server. In a parameter server setup, multiple
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Figure 1.3: Number of publications containing the exact term (“parameter
server”) or (“data parallel”) learning according to Google Scholar search en-
gine.

workers compute gradient updates on distinct data shards and communicate these
gradients to centralized parameter servers, which maintain the global model. By
focusing on efficient gradient exchange and synchronization, the parameter server
approach can handle massive networks and datasets.

From the various approaches that can be adopted for distributed deep learning,
this thesis dives into the prime example of the data-parallel parameter server |39,
57-59]. It is important to mention that parameter server can also support model
parallelism or hybrid parallelization strategies, but these paradigms are out of
scope of this thesis. As shown in Figure 1.3, according to Google Scholar searches,
research interest in parameter server architectures has risen steadily over the past
decade. The same constant increase in research interest is identified while searching
about data parallelism, which is expected in an era where data volume is exploding.
Parameter servers are also widely used in various deep learning systems over the
last decade following various synchronization approaches. Prominent examples are
outlined in Table 1.2.

1.2 Research Direction for the Remainder of
the Thesis

The thesis starts with examining the need for specialized architectures, like
the parameter server, in data parallel setups. Specifically, the thesis evaluates the
performance of both the synchronous and asynchronous version of the Parameter
Server architecture with general-purpose approaches. Having acknowledged the
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Table 1.2: Prominent Data-Parallel Parameter-Server Systems (2012-2024)

System Year Mode / Fea- Key Contribution Proposed By Ref.
ture
DistBelief 2012 Async First large-scale PS; hundreds  Google [39]
Downpour- of CPU workers; template for
SGD modern designs
Petuum /2014 SSP consis-  Stale-Synchronous Parallel CMU / Petuum [45]
Bosen tency trades throughput for accu-
racy guarantees
TensorFlow PS 2015 Sync/Async, Canonical production PS with  Google [46]
Strategy Elastic fault-tolerant checkpoints
MXNet KVS- 2015 Per-layer Highly-tuned C++ KV PS us- DMLC [47]
tore / ps-lite Sync/Async able on CPU or NVLink GPU
islands
PaddlePaddle 2016  Geo- Industrial trainer/PS split; hy-  Baidu [48]
Fleet distributed brid PS + collective modes
PS
CNTK (legacy) 2016  Block- Early deep-speech networks  Microsoft [49]
Momentum before CNTK moved to collec-
PS tives
SageMaker Pa- 2018  Managed, Elas- One-flag cloud PS; auto- AWS [50]
rameter Server tic placement and spot-aware
checkpoints
BytePS 2019  GPU Relay PS  Overlaps comm/compute; ByteDance [51]
near-linear BERT-Large scal-
ing to 256 GPUs
MindSpore PS 2021  Ascend NPU Trained 200 B-param PanGu- Huawei [52]
mode PS « on 2048 NPUs
Ray PS (ac- 2021 Actor-based PS  ~100 LOC reference; hot- UC Berkeley [53]
tors) scales across heterogeneous  Anyscale
nodes
SageMaker 2022 Elastic, Revamped library with  AWS [54]
Distributed PS Telemetry throughput dashboard
Elastic PS 2022 Runtime  re- Grow/shrink PS & workers Tencent [55]
(EPS) scaling without restart; hyper-param
sweeps
ACK Elastic 2024 KS8s Spot-  Adds/removes PS workers on-  Alibaba Cloud [56]
PS tolerant the-fly for cost-aware training

need for such an approach, the thesis dives into existing research related to the
parameter server. Asynchronous training typically achieves faster convergence,
whereas synchronous approaches provide greater stability. Many intermediate
strategies have been proposed to balance these extremes, primarily aiming to mit-
igate the negative impact of stale gradients by reducing synchronization overhead.
This thesis proposes novel techniques specifically designed to leverage asynchronous
training, while systematically addressing and minimizing the adverse effects asso-
ciated with gradient staleness. Specifically, the following question is aimed to be
answered by this thesis:

How far can we push the efficiency and stability of large — scale distributed
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asynchronous deep-learning in the parameter server architecture?

1.3 Main Contributions

The main contributions of this thesis are the following:

1. The performance gap of the specialized distributed deep learning Parameter
Server architecture compared to a widely used distributed processing frame-
work, e.g., MapReduce is evaluated. By comparing representative systems
for each approach, namely Google TensorFlow and Apache Spark, an average
performance gap of 8.23x when scaling to 140 nodes is observed.

2. A comprehensive systematic literature review (SLR) of research scopes under
the parameter server architecture is presented.

3. Strategy-Switch is being introduced. This approach uses All-Reduce to iden-
tify a better local minimum to start asynchronous parameter server training.

4. Data distribution strategies that can further benefit parameter server train-
ing are discussed.

5. The impact of systematic data sharding approaches rather than random
sharding is measured. Using systematic sharding, training and validation
metrics exhibit up to 8x and 2x less variance, respectively, across multiple
training runs, indicating improved training stability.

1.4 Document Outline

Below is a brief overview of the remaining chapters of this document.

e Chapter 2 discusses MapReduce as a general-purpose architecture in the
machine learning context and compares it with the specialized Parameter
Server Architecture. It also provides a detailed experimental evaluation of
MapReduce versus Parameter Server, highlighting the need for specialized
architectures.

e Chapter 3 presents a systematic literature review on the parameter server
architecture, focusing on five different areas: consistency control, network
optimization, parameter management, straggler problem and fault tolerance.

e Chapter 4 introduces Strategy-Switch, a hybrid communication architecture
strategy that uses an empirical rule to initiate asynchronous parameter server
training, after some warm-up training with All-Reduce.
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e Chapter 5 outlines the vision for exploiting data properties in asynchronous
learning, while Chapter 6 measures the effects of sharding data according to
their distribution prior to training.

e Chapter 7 presents any ideas for extending this research, and Chapter 8 enu-
merates the articles published throughout the research that was performed
to write this thesis.
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Chapter 2

Distributed Architectures:
Quantifying the performance gap
between general purpose to
machine learning specifics

The continuous growth in the volume of available data has prompted researchers
to develop new data-parallel system architectures capable of handling big data
workloads. Various systems now implement data parallelism under different para-
digms. Some of these architectures are designed to be general-purpose, making
them suitable for various workloads such as relational, graph, or machine learn-
ing tasks. One of the most widely adopted programming models for general big
data processing is MapReduce, which is integrated into numerous general-purpose
systems, such as Apache Spark [60], which employs libraries like MLIlib [61] and
BigDL [62] for distributed machine learning.

However, different types of workload often necessitate specialized architectures.
In the context of distributed training for machine and deep learning models, mul-
tiple solutions have been proposed, with the parameter server emerging as one of
the most prominent in well-known deep learning systems, such as TensorFlow [63]
and PyTorch [64].

These developments collectively highlight how distributed deep learning —
whether implemented in general-purpose engines or specialized frameworks — aims
to scale neural network training efficiently to tackle growing model sizes and in-
creasingly large datasets.

In order to understand the benefits from using specialized machine learning ar-
chitectures compared to general-purpose ones, a detailed experimental evaluation
between representative systems is performed in this Chapter. The Chapter begins
with an overview on how a general-purpose big data architecture, like MapReduce,
can be applied on learning context and then the specialized architecture of param-
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eter server is presented. The two distributed architectures are benchmarked on
a wide variety of workloads. In particular, Spark’s MLlib module, following the
general-purpose Map-Reduce architecture, is compared with TensorFlow, which
follows the parameter server architecture. The choice of this systems is related to
the time this experimental evaluation was performed. Specifically, when this evalu-
ation started, TensorFlow was the most popular machine learning library based on
job advertisements [65]. On the other hand, Apache Spark was one of the most im-
portant tools for data scientists [66] and, in parallel, a general-purpose framework
with a very actively contributing community.

The main contribution of the experimental evaluation provided in this Chapter
are the following:

e The performance gap between rerpresentative generalized and specialized
ML systems is quantified.

e Experiments with both real and synthetic datasets using up to 140 nodes are
performed.

e A thorough analysis of the experimental results is performed, focusing on
both the architectural and the implementation differences of the systems
and major insights are presented.

2.1 Overview of Distributed Architectures

2.1.1 Map-Reduce: Machine Learning Applications

Google first introduced the Map-Reduce programming model in 2004 [67] to
facilitate big data processing. Applications that use this model typically consist of
two primary functions: map and reduce. The map function transforms the input
data into a set of key-value pairs (either simple or complex), designed according to
the specific requirements of the application. These key-value pairs are then passed
to the reduce function, which aggregates all values corresponding to the same key.

Figure 2.1 provides an overview of the Map-Reduce programming model. The
input data is split into small chunks (commonly 128 MB), which are processed by
map tasks that generate key-value pairs as intermediate results. Depending on the
implementation, these intermediate results may be stored in memory or written
to a file system. Next, each reduce task retrieves data with matching keys and
combines their associated values. The final outputs are then written back to disk.
Big data solutions based on Map-Reduce typically include a sequence of map and
reduce functions that iteratively transform the original dataset into the desired
result. Common distributed file systems used in conjunction with Map-Reduce
include the Google File System [68], the Apache Hadoop File System [69, 70|, and
Amazon S3 |71].
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Figure 2.1: The Map-Reduce programming model.

The Map-Reduce programming model was first applied to machine learning
problems in 2006 [72|. The authors demonstrated that, by adhering to the Statis-
tical Query Model [73|, many algorithms can be re-expressed in a form suitable for
Map-Reduce (see Figure 2.1). Neural network backpropagation [74] and a range
of simpler machine learning algorithms (e.g., logistic regression |75], K-Means [76],
etc.) are among those that fit the Statistical Query Model.

Since then, Map-Reduce has gained considerable attention in the machine learn-
ing community. For example, in 2009, researchers |77] proposed training conditional
maximum entropy models at scale by using one Map-Reduce job per training it-
eration. However, concerns arose regarding the scalability of this approach and
whether the resulting models matched the performance of single-node training.
Motivated by these issues, Yahoo proposed a parallelization of Stochastic Gradi-
ent Descent [78] under the Map-Reduce framework in 2010, offering an alternative
strategy for scaling machine learning tasks.
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Figure 2.2: Different types of distributed model training.

2.1.2 Specialized Architectures and the Parameter Server

While various MapReduce-based approaches have been explored in the learning
domain, their iterative nature contrasts with the core principles of the MapReduce
paradigm [79]. Consequently, specialized architectures more suitable for machine
learning have emerged. Generally, learning-oriented distributed architectures rely
on two types of parallelism: model parallelism and data parallelism.

Model parallelism [38, 39] applies when a model is too large to fit into a single
machine’s memory. In this setup, each worker in the training process holds only
part of the model, as shown in Figure 2.2a. Conversely, data parallelism [40] is
used to handle large datasets by splitting them into shards assigned to different
machines. As illustrated in Figure 2.2b, each machine trains the same global model
using only its assigned data. Many modern distributed deep learning systems
support data parallelism, which can be applied regardless of the model [41].

Data-parallel training can follow one of two main architectures. One approach
uses All-Reduce techniques [80] within a peer-to-peer network [81-83], as depicted
in Figure 2.3. Another approach differentiates the participating workers into servers
and workers according to the parameter server architecture. In this thesis, the
focus is given on studying and optimizing the parameter server architecture, which
is discussed in detail in the rest of this Section.

The Parameter Server [39, 57-59, 84, 85] is a widely used data-parallel archi-
tecture for training deep learning models in a distributed manner. This design
targets machine learning algorithms that minimize a given optimization function,
and is integrated into many state-of-the-art deep learning systems, such as Tensor-
Flow [46, 86] and MXNet [47]—while others, such as PyTorch [64, 87|, provide the
necessary building blocks for engineers to implement it.

Within this architecture, each machine is designated either as a parameter
server or a worker. Parameter servers store the model’s parameters; one or more
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Figure 2.3: All-Reduce model training.

parameter servers may be used to mitigate communication bottlenecks on a sin-
gle server node. Meanwhile, workers are tasked with gradient computation. The
parameter servers update the global model by applying these gradients.

Figure 2.4 illustrates the training process with parameter servers and workers.
The parameter servers divide (shard) the global model among themselves, with
each server responsible for maintaining a subset of the parameters. The training
dataset is similarly split among the workers, each of which keeps a local copy of
the model and computes gradients using a mini-batch of its assigned data. These
gradients are then sent (pushed) to the servers, which use the selected optimization
algorithm to update the global model. After pushing their gradients, the workers
pull the updated model to continue training. This procedure repeats until the
model converges or reaches a user-specified number of iterations.

Hyperparameter Tuning

Choosing hyperparameters for deep learning models is a challenging process
because the best values often depend on the characteristics of the dataset [88]. Key
hyperparameters include those that affect the network architecture (e.g., number
of layers) and those that influence training (e.g., mini-batch size B and learning
rate ).

Even if optimal hyperparameters are identified for single-node training, these
values may not be directly applicable to distributed training. However, when using
the parameter server architecture, crucial hyperparameters, can be further derived
to a per-worker level. For instance, this stands for the mini-batch size per worker
(WB) and the learning rate per worker (o), which can be derived from their
single node counterparts [89].

Suppose that the best hyperparameters for single-node training are a mini-batch
size B and a learning rate .. Consider a cluster that employs the parameter server
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Figure 2.4: Parameter Server Architecture.

architecture with n workers. Since the product of the mini-batch size per worker
W B and the number of workers must remain constant, the following equation can
be derived:

B
B=n-WB <+—= WB=—. (2.1)
n
Similarly, the learning rate «,, for the distributed setup can be calculated from
a by:
Example 2.1 (Practical calculation) Assume single-node tuning yields a mini-
batch size B = 128 and a learning rate o = 0.10. Deploying the same model on a
cluster with n = 4 workers gives
B 128

o= =

0.10

2 w=— = —— = 0.025.
32, o 1 0.025

SH e
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Each worker therefore processes 32 data points per step while using a quarter-
sized learning rate, preserving the effective 128-data batch and keeping gradient
magnitudes comparable to the single-node run.

Synchronization

In a parameter server setup, training can be performed either synchronously
or asynchronously. Under the synchronous protocol, the system follows the Bulk
Synchronous Parallel (BSP) model [90], where there is a barrier at the end of each
iteration. This barrier ensures that parameter servers have received gradients from
all workers before updating the global model. Consequently, at the beginning of
the next iteration, each worker pulls a model copy that reflects all updates from
the previous iteration.

Without synchronization constraints, the parameter server can also operate in
an Asynchronous Parallel (ASP) manner. In this scenario, each worker computes
gradients based on the most recently received global parameters. As a result,
during the same training step, different workers may be using different versions
of the global parameters. Formally, if wy denotes the parameters retrieved from
the server by a worker, and W, W1 are the current and the updated global
parameters, respectively, then equation A.2 is rewritten as:

WB

o o «Q o

Wgt1 = Wk — iw% : E Vg, L(Wo; Zs, ys), (2.3)
i1

where a,, and W B are adapted as described in Section 2.1.2.

2.2 Architecture of Representative Systems

In this section, an overview of the architectures of TensorFlow and Spark MLIlib
is presented. Table 2.1 presents the basic features of the two systems that are
discussed in more detail in the following paragraphs.

2.2.1 Google TensorFlow

TensorFlow [63] is an open-source, scalable machine learning platform devel-
oped by Google. TensorFlow is the successor to DistBelief [39], a distributed system
for neural network training used by Google since 2011.

Abstract Programming Model

TensorFlow operates on top of dataflow graphs that represent both the compu-
tation in the machine learning algorithm as well as the state on which the algorithm
operates. The edges of the graph carry data modeled as tensors (multi-dimensional
arrays) between different nodes in the graph. The nodes in the graph represent
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Table 2.1: TensorFlow vs. Spark MLIib

TensorFlow Spark MLIib
Abstract DAG -based DAG -based
Programming Model
Execution Model Long-running Spark jobs with
parameter server short-running map
and worker tasks and reduce tasks

Training Modes Synchronous /
Synchronous
Asynchronous
Data Access Can avoid fetching  Fetches the whole
unnecessary data training set from

from disk/ disk/
Supports caching Supports caching

units of local computation on the input tensors, called operations. Examples of
operations are matrix multiplication and convolution among others.

Execution Model

TensorFlow is deployed as a set of tasks which are processes that can communi-
cate over a network following the parameter server architecture, which is thoroughly
described in section 2.1.2. The parameter server tasks maintain the current version
of the globally shared model parameters. The worker tasks, on the other hand, are
responsible for performing the bulk of the computation on top of their local training
data.

For example, in the context of SGD with a minibatch of T training examples
and N worker tasks, each worker task computes gradients based on a local sub-
batch consisting of T'/N local training examples, as explained in section 2.1.2,
and then updates the shared parameters hosted by M parameter server tasks.The
process is depicted in Figure 2.5. Steps 1-3 and 4-5 are executed in parallel on the
worker and the parameter server tasks respectively. Each worker gets the latest
model parameters from the parameter server (Step 1), performs the local gradient
computation (Step 2) and then sends the updated gradient to the parameter server
tasks (Step 3). Sequentially, parameter servers update the model parameters with
the received gradients (Step 4) and evaluate convergence (Step 5).

Training Modes

TensorFlow supports both asynchronous and synchronous training. In asyn-
chronous training, each worker task performs the local training computation in-
dependently without coordinating with the remaining worker tasks and updates
the global shared model parameters without using any locking mechanism. In syn-
chronous training, on the other hand, workers read the same values for the current

47



Parameter

Server Task M @ Evaluate
L Y convergence

Parameter
Server Task 1

@ Update model
Model partition

values

@ Get current Send local
model values gradients
Worker Task 1
Training data Gradient

partition computation and
aggregation on

local sub-batch

Figure 2.5: TensorFlow Execution Model.

model parameters until the parameter server receives the necessary user defined
number of gradients to perform an update. At this point, the parameter server
tasks aggregate all the computed gradients together.

Asynchronous Training is performed by allowing Step 4 in Figure 2.5 to be
executed by the parameter server tasks whenever a worker task sends a new gradient
update (Step 3). On the other hand, in the Synchronous mode, Step 4 is executed
only when the parameter server has received one gradient update from each worker,
which it aggregates into one using a sum operator. For this case study, TensorFlow
was configures in an appropriate way to perform updates only after it receives one
local update from each worker.

Data Access

In order to fetch data from disk, TensorFlow comes with an API, called Dataset
API which provides a set of functions that can be sequentially used to create a
pipeline that fetches, decodes and creates data batches, which are subsets of the
data. These batches will be consumed from each worker to compute the next
gradient updates.

The pipeline operates as follows: First, data is loaded from disk as raw bytes.
Afterwards, the data rows are mapped to their decoded Tensor format in parallel.
Finally, a batch is created. During these operations, caching, batch prefetching and
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data shuffling is performed. These operations and their performance implications
are discussed in the following sections. Among those three utilities, the first two
crucially affect the performance, as will be described in Section 2.3.2, while the last
one is used in SGD for random batch extraction.

2.2.2 Spark MLIib

Spark MLIib [91] is Spark’s scalable machine learning library. Its basic features
are described in this subsection.

Abstract Programming Model

Since MLIib is part of the Spark framework, it employs Spark’s computation
model. More specifically, Spark operates on DAGs whose nodes represent compu-
tations and edges represent Resilient Distributed Datasets (RDDs). More specifi-
cally, Spark performs a series of computations following the Map Reduce model,
described in Section 2.1.1, upon Resilient Distributed Datasets (RDDs). The RDD
is a basic abstraction in Spark that represents an immutable distributed collection
of data.

Execution Model

As opposed to TensorFlow that employs long-running processes, the machine
learning algorithms executed through MLIib are deployed as a sequence of Spark
jobs that consist of map and reduce stages whose corresponding tasks are launched
by Spark executors. State is maintained across jobs through the Spark driver which
is the main program of the Spark application. The Spark driver makes use of
broadcast variables [92] to transfer state across the launched Spark jobs. The
training data is typically represented as a partitioned RDD which is a collection of
elements that can be operated on in parallel [93].

In the context of the SGD algorithm, a sequence of Spark jobs are launched,
each one processing a minibatch, until the algorithm converges. The process is
depicted in Figure 2.6, where dashed and solid arrows denote the control flow
and data flow respectively. First, the Spark driver initializes a Spark broadcast
variable that contains the current values of the model parameters (Step 1). In the
next step, a Spark job is launched which is responsible for generating a minibatch
by randomly selecting a subset of training examples from the partitioned RDD
and processing the selected minibatch (Step 2). In particular, the Spark executors
launch the map and reduce tasks across the nodes of the cluster. The map tasks
compute the gradients on top of their local RDD partitions (Step 3). Note that
during the gradient computation, the map tasks consider only the local training
examples that belong to the selected minibatch as depicted by the black lines in
Figure 2.6. After all the local gradients have been computed, the reduce tasks
perform an aggregation of the partial gradients (Step 4). The Spark driver collects
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Figure 2.6: Spark MLIib Execution Model.

the output of the reduce tasks, performs the global aggregation and maintains
the updated model parameters (Step 5). Finally, the Spark driver evaluates the
convergence criteria and repeats the above steps if needed (Step 6).

Training Modes

MLIib supports only synchronous training in contrast with TensorFlow, because
of its MapReduce-based execution model.In particular, the output of all the map
tasks is required before the reduce tasks perform any aggregation and before the
Spark driver updates the model parameters.

Data Access

Since Spark employs lazy evaluation [93|, the partitioned RDD that points
to the training data will be fetched from disk only when the map tasks perform
their local computations. In particular, every time a new Spark job is launched
to process a minibatch, the map tasks fetch their local RDD partitions from disk
while performing the gradient computations. Note that as opposed to TensorFlow
where the built-in input pipeline fetches only the local sub-batches accessed by the
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worker task, Spark requires the RDD partition to be fully read even if the map task
will eventually perform computations based on a subset of the training examples
(minibatch). To avoid the overhead of repeatedly fetching the data corresponding
to each RDD partition from disk every time a new Spark job is launched, the local
RDD partitions are cached in the memory of each node. As a result, the subsequent
map tasks launched at the node will read the data from local memory.

2.3 Experimental Evaluation between Map-Reduce
and Parameter Server

2.3.1 Experimental Setup
Hardware and Software Configuration

The experiments are performed on a cluster of 141 virtual machines (“nodes”)
in Okeanos public cloud (94, 95|. Each virtual machine has 2 virtual CPUs @
2.1GHz, 8 GB of RAM and 20 GB of hard disk storage. One of these nodes is
used as master node and the remaining ones as worker nodes. Thus, the worker
nodes provide a total of 280 virtual CPUs, 1 TB of RAM and 2.8 TB of hard disk
storage.

The operating system used is Debian Jessie 8.10. TensorFlow version 1.13 and
Spark version 2.4 are used , which were the latest available versions at the time of
running the benchmarks. In the case of TensorFlow, one worker task is deployed
on each of the 140 worker nodes. One parameter server task is deployed at the
master node. In the case of MLlib, one Spark executor is deployed on each of the
140 worker nodes. The Spark driver is located at the master node.

Machine Learning Models

Three models for predictive analysis, namely linear regression [96], binary logis-
tic regression (97|, and the multilayer perceptron (MLPC) classifier [98] are being
used.

The linear regression model is frequently used for regression problems where
the goal is to model the relationship between a scalar dependent variable and a
set of independent variables. The binary logistic regression model is a regression
model with a categorical dependent variable which is used to solve classification
problems. Finally, the perceptron classifier is a binary classifier based on a feedfor-
ward artificial neural network that consists of multiple layers of nodes.

The perceptron classifier is chosen, since it is a representative from the deep
learning subdomain and is implemented in both systems. Specifically, the corre-
sponding artificial neural network consists of 4 layers, two of which are the hidden
ones, with 28, 15, 15 and 2 neurons respectively. GD and SGD optimizers were
used in the training, since they are widely used and supported by both systems.
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Table 2.2: Real datasets

Dataset # Examples # Features Size
HIGGS 10,500,000 28 2.7 GB
Year Prediction MSD 470,000 90 0.391 GB

However, for perceptron, only GD is used, since SGD is not supported by MLIlib
for this algorithm.

Note that as opposed to MLIib which provides an out-of-the-box implementa-
tion of the above models, TensorFlow also provides the building blocks for writ-
ing machine learning algorithms. While it provides implementations of the two
regression algorithms, they differ from the MLIib ones and also do not support
convergence check. To perform a fair comparison between the two systems, these
building blocks were utilized to implement all the models in TensorFlow in the
same way that they are implemented in MLlib. To compute the model parameters,
an optimization algorithm is used to minimize a loss function. The GD and SGD
optimization algorithms are used since they are widely used and they are supported
by both systems. For the linear and logistic regression models, experiments with
both GD and SGD are conducted, while for the perceptron classifier only the GD
algorithm is used as SGD is not supported in MLIib for this model.

Methodology

The provided experimental evaluation consists of two parts. First, synthetic
data are generated, on which a series of experiments is performed in a 141-node
cluster, in order to examine how both systems operate at large scale. Since eval-
uating convergence on top of synthetic data is not recommended, the number of
minibatches that the algorithms process before terminating is fixed. Furthermore,
experiments using real datasets in a 5-node clusterare conducted in order to study
convergence. Note that a small cluster is used, since real datasets are not large
enough to fully utilize a larger one. For TensorFlow, both the synchronous and the
asynchronous training modes are examined in each experimental section.

Datasets

For the experiments with real data, datasets from the UCI Machine Learning
Repository [99] are used, which are stored as comma separated text files. More
specifically, the HIGGS [100] dataset for the logistic regression and perceptron models
and the Year_Prediction_MSD [101] dataset for the linear regression model are
used, which were the largest real ones without missing values in the repository.
Table 2.2 presents the characteristics of these datasets.

To generate the synthetic data, each real dataset is replicated multiple times so
that the resulting dataset barely fits in the memory of the cluster (see Table 2.3).
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Table 2.3: Synthetic datasets

ML Model # Examples # Features Size

Logistic Regression 980,000,000 28 252 GB
Linear Regression 280,000,000 90 238 GB
Perceptron 441,000,000 28 110 GB

©
~

©
~

<
n
=~

]

]
3
n
~

[))
=
)
~
]

w
~

(1
=

O
=
=
=

(=)
(=)

Computation Time/Minibatch (in msecs)
N
W
=~
Computation Time/Minibatch (in msecs)
N
W
~

980 9.8K 98K 980K 9.8M 980M 980 9.8K 98K 980K 9.8M 280M
Minibatch Size Minibatch Size

[JMLIib ] Sync. Tensorflow [ Async. Tensorflow [JMLIib ] Sync. Tensorflow [ Async. Tensorflow

(a) Logistic Regression (b) Linear Regression

Figure 2.7: Computation time per minibatch in MLlib and TensorFlow (syn-
chronous and asynchronous) on a 141-node cluster.

This is because, for the GD algorithm, TensorFlow requires the whole dataset to
fit in the aggregate memory of the cluster in contrast with Spark.

The datasets are stored in HDFS when MLIib is used and are split into equal
parts that are uniformly distributed across all the cluster nodes when TensorFlow
is used.

2.3.2 Experiments on Large Synthetic Datasets

In this section, experiments on the 141 node cluster using synthetic data are
presented (Table 2.3), to identify the performance bottlenecks of each system by
carefully profiling them on a large-scale. As described in Section 2.3.1, the training
process is terminated after the algorithms process a fixed number of minibatches,
which are set to 100 for the logistic and linear regression models and to 20 for the
perceptron model.

Logistic and Linear Regression

Figure 2.7 shows the average time spent by each system in performing gradi-
ent computations when processing a minibatch using logistic and linear regression.
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Figure 2.8: Cluster CPU usage for Logistic Regression (minibatch=980K)

Three bars are presented for each minibatch size, referring to Spark MLIlib, syn-
chronous and asynchronous Tensorflow.

As shown in Figure 2.7, TensorFlow spends always less time for computing gra-
dients regardless of the training mode. As minibatch size decreases, TensorFlow
is more computationally efficient than Spark MLIib. Moreover, when decreasing
the minibatch size, TensorFlow achieves up to 14X speedup, whereas Spark be-
comes faster up to 1.36X. Compared to TensorFlow’s long-running processes,
Spark launches a new Spark job every time a new minibatch is processed. This
introduces task scheduling and initialization overheads (especially when the mini-
batch decreases and map tasks become much shorter (~100msecs)), and low CPU
utilization, as confirmed in Figure 2.8. The same figure suggests that synchronous
TensorFlow also suffers from some overheads but these are mostly synchronization
overheads. Despite these overheads, it still has better CPU utilization than Spark.

Figure 2.9 show the average time spent by each system in reading data (fetch,
deserialize and decode raw bytes) when processing a minibatch using logistic and
linear regression. Reading time is presented for MLIlib and TensorFlow irrespective
of its training modes, since it does not depend on them.

Regarding the average reading time per minibatch, Spark MLIib spends the
same amount of time reading data irrespective of the minibatch size, as it reads
the whole RDD partition in all cases. TensorFlow on the other hand, fetches only
the data needed for the current gradient computation. As a result, in TensorFlow
the average reading time drops when the minibatch sizes decreases. However, in
the linear regression case, Tensorflow spends almost the same time reading each
minibatch for both GD and SGD (minibatch size 9.8M) as shown in Figure 2.9b.
Since each algorithm runs until the system processes 100 minibatches, the full
dataset is read by both algorithms (see dataset size in Table 2.3). In SGD, each row
is cached after it has been decoded and before it is used for minibatch creation. On
the contrary, in the case of GD, it is optimal to cache the whole minibatch instead
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Figure 2.9: Reading time per minibatch in MLlib and TensorFlow on a 141-
node cluster

Table 2.4: Read Throughput of Spark MLIib and TensorFlow

Read Throughput (training examples/sec)

ML Model

Spark MLIlib TensorFlow
Logistic Regression 6,533,333 785,323
Linear Regression 2,000,000 456,774
Perceptron 1,986,486 788,048

of a row-at-a-time, resulting in 1.62X speedup in reading time and achieving a
similar performance as SGD.

Perceptron

Figure 2.10 presents the computation and reading time spent per minibatch
for perceptron. Since the full dataset is used as a minibatch (GD), TensorFlow
spends more time reading data than Spark. As shown in Figure 2.11, TensorFlow,
especially in synchronous mode, suffers from reading the whole dataset before the
first gradient computation: unlike asynchronous mode, the system is blocked until
all their workers finish reading their local data depicted by the CPU usage drop
between 500 and 700 sec.

Read Throughput

To better understand the reading performance, the read throughput of each
system is computed and presented in Table 2.4. As shown in the table, the through-
put varies across different algorithms depending on the number of features and the
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Figure 2.11: Cluster CPU usage for Perceptron

transformations required for each dataset. However, Spark always reads data faster
and has up to 8X better reading throughput than TensorFlow.

2.3.3 Experiments on Real Datasets

In this section, experiments using the real datasets are presented in Table 2.2
on a b-node cluster. As noted before, experiments on a larger cluser could not be
run as the real datasets are generally small. All the algorithms are executed until
they have converged.
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Figure 2.12: Logistic and linear regression performance of Spark MLIib, syn-
chronous (Sync TF) and asynchronous TensorFlow (Async TF) on a 5-node
cluster

Table 2.5: Number of minibatches processed per system for logistic and linear
regression to converge

# Minibatches Processed

ML Model Minibatch Size
MLIlib Sync TF Async TF
10,500,000 317 317 137
Logistic Regression 2,000 774 737 1006
500 1375 1644 2449
470,000 3104 3104 1328
Linear Regression 2,000 2678 2773 1042
500 2438 2540 1121

Linear and Logistic Regression

Figures 2.12a and 2.12b present the total execution time of TensorFlow and
Spark MLIib for the logistic regression and linear regression algorithms respectively,
including the portion of the time spent in reading data and performing computa-
tions in each system. The various minibatch sizes are selected to be realistic [102].

As shown in the figures, TensorFlow is faster than Spark MLIib by up to 16X
when the SGD algorithm is used (Figure 2.12a, minibatch size 500). This behaviour
is mainly attributed to architectural differences of the two systems, as explained in
Section 2.3.2. Regardless of the training mode, TensorFlow presents at worst the
same performance as MLIlib, with the asynchronous mode being faster.

Table 2.5 shows the number of minibatches that each system processes before
the algorithm converges.While the number of minibatches is the same between
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synchronous TensorFlow and MLIib in the case of GD as expected, a small deviation
is observed in the SGD case. This is due to the fact that each system performs
batch selection differently as explained in Section 2.2, resulting to dissimilar data
per minibatch.

Another interesting observation is that the number of minibatches processed
by GD and SGD is different for the same machine learning model, as SGD might
need to process more minibatches until convergence [102]| (see logistic regression).

As explained in section 2.3.2, TensorFlow has different behaviour in the two
training modes when the minibatch size decreases. For instance, as shown in Fig-
ure 2.12a in the context of logistic regression, asynchronous training is 1.72.X faster
when reducing the minibatch size from 2000 to 500, since the system processes
1.65X fewer rows in total. On the contrary, synchronous training needs almost the
same time to converge with the two batch sizes. Similar trends are noticed in the
case of Spark MLIib. For example, in the case of linear regression, Spark needs
almost the same time to process 4.02.X more rows until convergence, when increas-
ing the minibatch size from 500 to 2000. This behavior is attributed to reading
the whole dataset at every gradient computation irrespective of the minibatch size
and to various other computational overheads as discussed in Section 2.3.2.

However, Figures 2.12a and 2.12b show that SGD with a minibatch size of
2000 is 1.29X and 2.43X faster than when GD is used. Thus, Spark meets its best
performance when the batch size is such that the overheads mentioned above do
not dominate the execution time.

Perceptron

2000

Async

] Compute TF

[ Read
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4001
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10,500,000
Minibatch Size

Figure 2.13: Perceptron performance of Spark MLIib, synchronous (Sync TF)
and asynchronous TensorFlow (Async TF) on a 5-node cluster.

Figure 2.13 presents the total execution time of the systems on the perceptron
classifier. Note that only the GD optimization algorithm is used as discussed in
Section 2.3.1.
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Table 2.6: Number of minibatches processed per system for perceptron to
converge

ML Model Minibatch Size MLIib Sync TF Async TF

Perceptron 10,500,000 72 72 118

As Figure 2.13 outlines, Spark MLIib is 1.2X faster than asynchronous Ten-
sorFlow for this algorithm. However, by taking a closer look at the number of
minibatches processed in Table 2.5, TensorFlow appears to have processed almost
twice the number of minibatches that Spark MLIib processed before converging.
This behavior is due to the asynchronous training of TensorFlow: since the worker
tasks might overwrite each other’s work, more computation steps are required be-
fore the algorithm can converge.

In synchronous mode, TensorFlow needed 1.2X less time to converge with the
same number of minibatches with MLIib, while its reading phase is 7.2X slower,
which confirms its computational efficiency.

2.4 Key findings and conclusions

Overall, the general-purpose engine Spark is superior during data reading (load-
ing raw bytes, decoding and deserializing). The specialized engine (TensorFlow)
outperforms Spark’s MLIib during gradient computation, mainly due to the fun-
damental architectural differences of the two systems. in further detail, the key
findings of this experimental evaluation are the following:

1. TensorFlow is more computationally efficient than Spark MLIib regardless
of the training mode (see Figures 2.7 and 2.10a), but Spark has better read
throughput (see Table 2.4).

2. Spark’s short-running tasks, that perform computations and model updates,
introduce scheduling and initialization overheads, especially for small mini-
batches (see Section 2.3.2). TensorFlow’s long-running processes avoid such
overheads under the parameter server approach.

3. TensorFlow needs less time to converge than Spark MLIib in almost all the
machine learning models that were examined (see Figure 2.12.

4. Spark meets its best performance when the minibatch size is such that the ini-
tialization overheads of Spark are amortized. (see Figures 2.12a and 2.12b).

5. Spark reads more data than TensorFlow when the SGD algorithm is used
which further hurts its performance (see Figure 2.9)
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Chapter 3

Diving into the Parameter Server:
A survey on recent advances

The experimental evaluation of the Parameter Server architecture in Chapter 2,
proved its computational efficiency in training workflows, in contrast with using
general-purpose architectures. The rest of this thesis will focus in researching and
optimizing the Parameter Server architecture.

This chapter provides an extensive survey of the parameter server architecture,
including a historical overview and an examination of existing approaches that
address its various challenges. By analyzing the vulnerabilities of the architecture
and how they arise, the groundwork for Chapters 4-6 is laid, where optimizations
for the Parameter Server architecture are introduced.

Several existing surveys have addressed specific aspects of distributed training
systems and parameter server architectures. For example, Ratnaparkhi et al. [103]
and Zhang et al. [104] provide an overview of distributed learning frameworks, but
their treatment of parameter servers is limited to brief mentions. Later works,
such as Verbraeken et al. [105], focus on synchronization techniques (e.g., BSP,
ASP, and SSP) and their trade-offs, while Shi et al. [106] examine communication
optimizations in parameter servers. Other studies delve into specialized topics, such
as gradient compression [107]. Despite these contributions, there remains a gap in
providing a holistic review of parameter server architecture. Specifically, existing
surveys tend to focus on narrow subfields, lacking a comprehensive examination of
its key aspects, such as:

e Consistency Control: Methods for balancing synchronization and effi-
ciency.

e Network Optimization: Techniques to mitigate communication bottle-
necks.
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e Parameter Management: Strategies for efficient storage and load balanc-
ing.

e Straggler Problem: Solutions to address task delays in heterogeneous en-
vironments.

e Fault Tolerance: Approaches for maintaining reliability under node fail-
ures.

In this survey, these gaps are addressed by systematically reviewing the lit-
erature on parameter server architectures. It highlights key advancements in the
field, identifies open challenges, and provides future research directions. By offering
a unified perspective, this survey positions itself as a comprehensive resource for
researchers and practitioners interested in distributed learning. More specifically,
research topics and advances related to the parameter server architecture are de-
scribed and presented as the primary focus. The main contributions of this work
are the following:

e After a thorough bibliographical study following the SLR methodology [108],
the research works that study and optimize the parameter server approach
are categorized into five large general topics.

e An extensive literature review is provided for each of the identified parameter
server research topics.

The rest of this chapter is organized as follows: Section 3.1 presents some
historical information regarding the evolution of parameter servers. Section 3.2
presents the surveyed literature grouped by the improved aspect into categories.

3.1 Parameter server history

Before parameter server was proposed as an architecture, Smola introduced a
general architecture for parallel models in 2010 [57], where key-value storage was
used to maintain some global state of a problem. A variety of workers synchronized
periodically to keep up to date the global state based on their computations. A year
later, Hogwild! [109] was proposed as an approach to run SGD in parallel without
synchronization in multicore environments. However, Hogwild! faced gradient
collisions, where the movement of the network parameters attributed to a set of
gradients was overwritten by another set.

Considering Smola’s parallel architecture and Hogwild! as its ancestors, param-
eter server as a specialized distributed learning architecture finds its roots back in
2012 when Google Research proposed DistBelief [39], as a "software framework
that can utilize computing clusters with thousands of machines to train large mod-

els". In the context of DistBelief, the authors proposed an alternative to the
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Table 3.1: Well-known systems adopting the parameter server architecture
System Developed Since Language APIs Parameter Sync. Level
By Server De-
velopment
Level
Petuum Carnegie Mel- 2015 CH++ CH+, Implemented (Bounded)
lon University Java Asynchronous
PyTorch Meta Al 2016 C++, C++, Building Synchronous,
Python Python Blocks Asynchronous
TensorFlow Google Brain 2015 CH++, Python, Experimental Asynchronous
Team Python Go, Java, (up to latest),
C++ Synchronous
(v1 only)
MXNet Carlos 2015 C++, C++, Implemented Synchronous,
Guestrin Python, Python, Asynchronous
(University of Perl Scala,
Washington) Java, etc.
DeepSpeed  Microsoft 2020 Python Python Complementary Primarily
to PS Archi- Asynchronous
tectures
Ray Anyscale, 2019 Python, Python, Hybrid with  Synchronous,
founded by Java Java PS Function- Asynchronous
Berkeley’s ality
RISELab
Horovod Uber 2017 CH+, CH+, Compatible Synchronous
Python, Python, with PS Ar- (via Ring All-
Go Tensor- chitectures Reduce)
Flow APIs

classical SGD algorithm, namely Downpour SGD, which exploits the parameter
server architecture, but in an asynchronous manner, as described in Section 2.1.2.
As discussed, workers replicate locally the global model copy by fetching the latest
model parameters, where they compute a set of gradients based on a local data
shard. Afterwards, the workers push the gradient updates back to the servers over
the network to update the global model. Asynchrony, as a state, is mentioned to
result in computing gradients based on slightly outdated, or stale, model parame-
ters, leading to the later known stale gradients effect, but is much faster and more
fault tolerant in comparison with synchronous distributed SGD setups. Both the
observations from the DistBelief and Hogwild! authors indicate that, while lacking
synchronization can provide faster results, it may crucially affect the model quality
opening the way to discuss various possible optimizations.

Over the last decade, parameter server is being widely adopted in many deep
learning related systems. Table 3.1 highlights a range of real-world systems that im-
plement the parameter server architecture, showcasing its adoption across academia
and industry. These systems underline the flexibility and scalability of the param-
eter server paradigm, particularly in addressing the needs of large-scale distributed
training.
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TensorFlow [63, 86] and PyTorch [64, 87|, developed by Google and Meta,
respectively, incorporate parameter server functionalities to facilitate distributed
training. TensorFlow includes experimental implementations of parameter servers,
supporting both asynchronous and synchronous modes in earlier versions, whereas
PyTorch provides building blocks for customization, enabling synchronous and
asynchronous execution. These frameworks are widely used in industries for tasks
like image recognition and natural language processing, demonstrating their broad
applicability. MXNet [47], supported by AWS, offers robust parameter server im-
plementations, focusing on scalability and performance in cloud-based machine
learning pipelines. Similarly, Petuum [85], developed at Carnegie Mellon Univer-
sity, emphasizes efficient and scalable machine learning applications, leveraging
bounded asynchronous synchronization for optimized training performance.

Recent frameworks such as Microsoft’s DeepSpeed [44, 110] and Ray [53| have
further enhanced distributed learning, integrating complementary functionalities
for parameter server setups. DeepSpeed optimizes large-scale distributed train-
ing with features like ZeRO (Zero Redundancy Optimizer) [110, 111], while Ray
provides a hybrid framework that supports parameter server paradigms through
its task orchestration capabilities. Additionally, Horovod [112], a TensorFlow ex-
tension developed by Uber, introduces distributed gradient aggregation using Ring
All-Reduce, which can complement parameter server architectures by decentralizing
gradient synchronization.

The table encapsulates the progression and versatility of parameter server sys-
tems, demonstrating their integral role in modern distributed learning frameworks.
From academic prototypes like Petuum to production-grade platforms like Ten-
sorFlow, these implementations highlight the practical effectiveness of parameter
server architectures in diverse domains. This description integrates real-world per-
formance and use cases, reflecting the architecture’s industrial relevance.

3.2 Proposed Approaches

In the last decade, a wide variety of research works have attempted to enhance
the parameter server architecture in various ways. This section presents works of
high interest grouped by the aspect of the parameter server they aim to improve.

3.2.1 Systematic Literature Review on the Parameter
Server

Parameter server, as proposed by DistBelief, is a very prominent approach to
training large models with big data for a variety of reasons:

1. This architecture can support enormous models since the corresponding pa-
rameters can be split between the various deployed servers.

63



Consistency

Control

Parameter
Management

Parameter Server
Optimizations

Straggler
Problem

Communication
Related
Optimizations

Fault
Tolerance

Figure 3.1: Parameter server research areas

2. Data parallelism can speed up the whole process of completing a training
epoch.

For all the aforementioned reasons, parameter server is of high interest to re-
searchers studying distributed systems and are interested in the learning domain.
Depending on the field of interest, researchers can dive into various aspects that
emerge from using this architecture. Figure 3.1 outlines the main research topics
for optimizing the performance of the architecture, in which the rest of the current
Section dives into.

To ensure a comprehensive and methodical review of this field, a systematic
literature review (SLR) [108] is conducted, which involves the following steps:

1. Defining research questions (RQs): The SLR is designed to answer key
research questions that align with the core themes of parameter server advance-
ments:

¢ RQ1: What are the major synchronization strategies proposed for consis-
tency control in parameter servers?

¢ RQ2: How have communication optimizations evolved to enhance scalability
and efficiency?

e RQ3: What are the primary approaches for addressing the straggler problem
and improving fault tolerance?
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2. Literature search strategy: Research databases (e.g., IEEE Xplore, ACM
Digital Library, Scopus) are systematically queried using the following search terms:
"parameter server," "distributed machine learning," "synchronization protocols,"
"oradient compression," and "fault tolerance." The search covered peer-reviewed
articles published between 2010 and 2024, as this period represents the emergence
and maturation of parameter server architectures.

3. Inclusion and exclusion criteria Clear criteria to select relevant studies are

established:

e Inclusion criteria: Peer-reviewed articles, studies focusing on parameter
server architecture or its applications, contributions to consistency control,
communication efficiency, or scalability.

e Exclusion criteria: Articles focusing solely on federated learning or unre-
lated distributed training architectures, non-English publications or inacces-
sible full-text articles.

4. Data extraction and categorization: The following data points are ex-
tracted from each selected study:

e Title, year, and venue.
e Proposed methodologies and experimental results.
e Key contributions to the parameter server field.

These findings were categorized into thematic areas, as outlined in the subsec-
tions below.

3.2.2 Consistency Control

One of the most important topics regarding the parameter server is to identify
how strict control needs to be applied in the model consistency. Basic approaches,
as discussed back in Section 2.1.2, include the parameter server training working
at the extremities of model consistency:

e A fully consistent model via synchronizing all participating workers at the
end of each iteration using a BSP approach.

e A possibly inconsistent model with totally asynchronous workers per itera-
tion utilizing an ASP approach.

In the opposite direction of BSP, ASP removes any synchronization constraint.
As indicated in Figure 3.2b, whenever a worker completes an iteration, they push
the computed gradients to the servers. Sequentially, the servers immediately up-
date the global parameters, which are then pulled by the worker that pushed the
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Table 3.2: Consistency Control Algorithms

Algorithm

Description

BSP (Bulk Synchronous
Parallel) [90]

ASP (Asynchronous Par-
allel) [109]

k-BSP [89]

k-Batch-BSP [89)]

k-ASP [89]

k-Batch-ASP [113]

SSP (Stale Synchronous
Parallel) [45]

All workers synchronize at the end of every iteration, ensuring a fully consistent
model. Delays may occur due to stragglers. (Figure 3.2a)

Workers push gradients and pull updated parameters asynchronously, improving
speed but risking model inconsistency. (Figure 3.2b)

The server waits to collect gradients from k workers before updating the global
model. Stalled workers’ gradients are ignored. (Figure 3.3a)

Similar to k-BSP, but the server waits for k gradient batches, potentially from
the same worker, improving flexibility. (Figure 3.3b)

The server collects k gradients asynchronously without canceling stalled work-
ers, balancing speed and gradient utilization. (Figure 3.3c)

Extends k-Batch-BSP by allowing asynchronous updates and retaining gradi-
ents from slower workers. (Figure 3.3d)

Introduces bounded staleness where workers can lag behind the fastest worker
by a predefined threshold, balancing consistency and speed. (Figure 3.4)
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(a) BSP (b) ASP

Figure 3.2: Sequence diagram presenting 3 workers training under a BSP
(left) and ASP (right) Parameter Server for k global iterations

gradient. In general, in this setup, 3k different model parameters will be computed
during training, as k global iterations are needed. Although this setup is free of
any overhead related to synchronization, workers can compute gradients from stale
parameter values. An example could be provided using worker #2. When pulling
wy from the servers, worker #2 stalls and pushes the computed gradients back
after the server(s) are located in version 4 of the parameters. Therefore, the model
might be inconsistent and less accurate than in the BSP case.

In the past decade, multiple systems have chosen to deploy the parameter
server using either one of the BSP [114-121] and ASP [58, 59, 84| schemes or
providing both for the user to choose [122-127|. While baseline techniques, these
two approaches have inspired researchers to propose some alternatives that find
similarities either to BSP or the ASP. Four variants directly inspired by these
two synchronization schemes are the k-BSP, k-batch-BSP [89], k-ASP [89] and k-
batch-ASP [113]. Figure 3.3a, Figure 3.3b, Figure 3.3c and Figure 3.3d outline the
process of training under k-BSP, k-batch-BSP, k-ASP, k-batch-ASP for 3 workers
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Figure 3.3: Sequence diagram presenting 3 workers training under k-batch-
BSP (upper left), k-batch-BSP (upper right), k-ASP (down left) and k-batch-
ASP (down right) for k = 2.

with k£ = 2.

k-BSP: Figure 3.3a presents this case. Parameter servers need to collect
gradients from k = 2 different workers before proceeding with updating the
global model. Stalled workers in an iteration (e.g., worker #3 after w; and
worker #2 after wsy) are canceled from the parameter servers and their gra-
dients are lost for this iteration.

k-batch-BSP: Figure 3.3b outlines this approach, which is almost the same
with k-BSP, with the difference that the servers wait to get k£ = 2 different
batch gradient updates, which might not be necessarily from different work-
ers. For example, after wy, two update batches from worker #1 complete
the first iteration, and both workers #2 and #3 are canceled for this step.
On the contrary, the next iteration is fulfilled with the contributions of the
two workers canceled before.

k-ASP: Same as k-BSP. However, stalled workers are not canceled and their
update might be one of the k gradients completing some of the next itera-
tions, as shown in Figure 3.3c.

k-batch-ASP. Equivalent to k-batch-BSP with the difference of not cancel-
ing the stalling worker (Figure 3.3d).
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Figure 3.4: Sequence diagram presenting 3 workers training under different
SSP for sipres = 2.

One of the most prominent synchronization approaches to handle model consis-
tency comes back in 2013, when Ho proposed the alternative of a stale synchronous
parallel (SSP) approach [45]. This research work introduces the concept of bounded
staleness. Followed by these principles, given each worker preserves a clock ¢; in-
dicating the moment j and a staleness threshold sipes:

1. The clocks of the fastest (¢fqstest) and the slowest (tsiowest) Wworker must differ
at most by s, i.e., tfastest — tslowest < Sthres-

2. Each gradient update pushed to the servers gets a timestamp ¢; indicating
the corresponding time from the worker 5 when the update is performed.

3. A worker i at a given timestamp ¢; must have pulled from the server model
parameters that have accumulated gradients from every other worker j with
timestamp t;» < t; — Sthres — 1.

4. The read-my-writes property should be satisfied, i.e., a worker will see all
previous updates accumulated in the model parameters.

Figure 3.4 fully illustrates the SSP paradigm. Suppose that the three workers
start together at the i-th global parameters (w;) and need to preserve sippes <= 2
and worker #2 is stalling compared to the others. After two updates, worker
#1 computes its third gradient update but has to wait for worker #2 to pull the
next set of model parameters and continue the training. In this way, the bounded
staleness condition is satisfied. After worker #2 pushes its gradient update and the
server applies it, the pulling process for both workers #1 and #2 will be unblocked
and they will both begin their next iteration with parameters w;;4. Since its
proposition, SSP has been widely adopted in most of the research works utilizing
the parameter server paradigm, either alone [85, 128-132| or by letting the user
choose between it and BSP [114, 123] or ASP [58, 59, 123].

Having presented all the basic consistency-related variations of the SGD al-
gorithm, it is worth noting that researchers have also proposed other protocols
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based on these variations. Back in 2015, Zhang [133] proposed an alternative of
k-batch-ASP, the n-softsync protocol. Having set the parameter n in a setup with
I workers, the parameter server will wait to average the first {/n gradient updates
it will receive, just like k-batch-ASP. However, the difference is that each one of the
l/n gradients will be weighted under a staleness-dependent learning rate. Smaller
staleness will provide a larger gradient weight, while if an update occurs from
very old model parameters the weight will approximate zero values. One inter-
esting outcome from this research work is that they found that under n-softsync,
which lacks synchronization, the model could converge at the same rate as SGD,
due to the staleness-dependent learning rate. In the same spirit as Zhang and by
performing runtime analysis on the four BSP and ASP variants outlined in Fig-
ure 3.3a, Figure 3.3b, Figure 3.3c and Figure 3.3b Dutta [134] also proposed a
staleness-dependent learning rate per worker. However, in case the learning rate
becomes too slow when dealing with large staleness values, Dutta proposes to use
a minimum-value learning rate on such gradients. In the same year, an interest-
ing approach was discussed regarding the framework Litz [135], where they model
the training procedure as a task graph providing causal consistency, i.e., only if a
task j depends on task i, then 7 should be executed first compared to j. Moving
on 2019, Wang [136] proposed the overlap synchronous parallel (OSP) approach.
Wang’s idea is to preserve two separate threads, one for communication and one for
computation purposes, in each worker. Local computations in workers will resume
either for a predefined number of iterations or until another model pulls new global
model parameters. Local computations will be accumulated in local caches, from
where the parameter servers will synchronize at the right time according to the
above conditions. Apparently, 2019 was a year when researchers attempted vari-
ations of the common consistency protocols, since the dynamic stale synchronous
parallel [137] (DSSP) was also proposed. DSSP is a variant of SSP with a dynamic
bounded staleness threshold. Given beforehand the minimum and maximum pos-
sible threshold values, simulations on runtime are used to collect statistics and
determine the appropriate threshold value at a given time. Sequentially, MLFab-
ric [138] came out in 2020 where they accelerated BSP, by attempting to minimize
the average update transfer time from the workers to the servers. Adopting a
shortest-job-first approach, they prioritize the transfer of updates that will be fast,
unless an update is about to exceed the staleness value. In that case, this update
comes first.

Comparative Effectiveness: BSP is suitable for tasks demanding high accuracy
and consistency but suffers from straggler-induced delays. ASP excels in environ-
ments prioritizing speed but requires tasks tolerant to inconsistencies. SSP offers
a middle ground, combining speed with controlled staleness, but demands care-
ful parameter tuning and monitoring. These trade-offs highlight the importance
of tailoring consistency control mechanisms to specific system and application re-
quirements. Consistency control advances are fully summarized in Figure 3.5
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Figure 3.6: Network related optimizations for the parameter server

3.2.3 Network Related Optimizations

Network-related optimizations are critical for addressing the communication
bottlenecks inherent in parameter server architectures. As shown in Figure 3.6,
the key areas of network optimization include compression techniques, local
gradient aggregation, prioritization, local KV-stores and caching, and
pipelining and overlapping. Each approach has its strengths and limitations,
which are analyzed below.
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Compression techniques such as sparsification and quantization, are widely
used to reduce the size of gradient updates exchanged between workers and servers.
Sparse gradients were proposed from the initial research works discussing the pa-
rameter server [58, 59|, as a solution for gradient compression. KunPeng [130] as
a system also proposed the use of sparse representations. In 2018, Wu proposed
a gradient compression technique adopting the Top-1% sparsification approach,
where only the top 1% of the parameters deemed most important are forwarded to
the servers for updates. This method significantly reduces communication overhead
while retaining model performance. Similarly, another sparsification technique in-
troduced in 2019 compresses gradients by preserving their original magnitude using
a sign operator over groups, enabling training on the ImageNet dataset to complete
in 46% less time.

DoubleSqueeze [119] adopts Top-K sparsification, another prominent method,
which retains the K largest gradient values during the update process. To further
enhance the performance of sparsification methods, researchers have also explored
using Top-K sparsification in combination with a low-pass filter, aiming to reduce
the noise induced by the sparsification process. An important contribution to this
domain is the work by Stich et al. (2018), which introduced the sparsified SGD with
error compensation approach [139]. The authors analyze k-sparsification techniques
such as top-k or random-k, and demonstrate that by leveraging error compensation
mechanisms, where accumulated errors from sparsification are tracked and incor-
porated into future updates, the convergence rate of sparsified SGD matches that
of vanilla SGD. This reduces communication by a factor proportional to the di-
mensionality of the problem, or even more, without sacrificing convergence speed.
Numerical experiments confirm the scalability and efficiency of this method in
distributed applications, illustrating its theoretical findings and practical applica-
bility. These advancements demonstrate how sparsification and related techniques,
such as error compensation, can significantly reduce communication overhead while
maintaining the performance of distributed machine learning systems.

Apart from sparsification, quantization is also a well-known approach used
for gradient compression. For example, in Bosen [129] 16-bit quantization is used.
In 2017, TernGRAD [140] and QSG [141] were proposed. TernGRAD is used to
quantize the gradients to ternary precision, while QSGD proposes a lossy stochas-
tic quantization and coding scheme. In 2018, ATOMO [142| was a superclass of
TernGRAD and QSGD offering an unbiased estimator using atomic decomposi-
tion and sparsification. In the same year, a more complex approach was proposed
by Cui [143], who introduced MQGrad. MQGrad utilizes a reinforcement learning
model, which is trained in parallel with the network and according to the network’s
loss it aims to find the optimal bit size that should be used for quantization. 1-
bit Quantization scheme is also used by DoubleSqueeze [119], apart from adopting
the Top-K sparsification discussed above. Moreover, a more recent example is the
idea of quantized preconditions [144|. Sketching [145] is an interesting similar
approach. In this technique, the server receives gradient sketches from which they
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infer the gradients they will use for updating. Another prominent example seems
to be the use of autoencoders [146], which are exploited to discover gradient cor-
relations and compress them accordingly. It is worth noting that a wide variety
of such algorithms exists. A survey regarding sparsification or quantization algo-
rithms has already been performed in [147] (refer to Table 1 of the aforementioned
publication) and therefore this section does not provide a more extensive view of
this aspect.

Local gradient aggregation: Besides compressing techniques, it is important
to outline further approaches that could achieve better network utilization. Mi-
crosoft’s project Adam [84| discussed the idea of performing several local gradient
aggregations in workers and asynchronously updating the servers using the aggre-
gated values, with similar patterns followed by MLFabric [138].

Prioritization: Bosen [129] assigns priority values, using various techniques, to
the computed updates. Prioritizing the update seems to avoid network saturation.
The idea of prioritizing is also discussed in [148] where both the pushed updates
and the pulled parameter are given priority for transfer according to when they
will be reused again, reducing idle time dedicated to communication.

Local KV-Stores and caching: FlexRR [114] examines a different perspective,
where the authors reduce cross-node traffic by including a client-side cache for
model parameter entries in the parameter servers. Cached values contain iteration
numbers for easy read access. According to the desired staleness threshold, a read
either returns directly or accesses the appropriate server shard to retrieve the cor-
rect value. Proceeding on FlexPS [123], this system proposes a stage abstraction
for SGD-related algorithms, where a step is considered a stage. To avoid com-
munication between the workers and the server, each worker contains also a local
KV store, utilized as a local parameter server, providing direct memory access. In
this setup, according to which worker will be responsible for the next step, the
first worker will forward the model directly to the second, instead of pushing the
gradients to the server and then having a pull operation from another worker.
Pipelining and overlapping: Another possible solution includes hiding commu-
nication behind computation time. To this end, Poseidon [115] proposes a pipeline
where the push operation on gradients of iteration 7 will be performed in paral-
lel with the gradient computations of iterations ¢ + 1. Wang [149] also discusses
the pipeline idea, extended to overlap parameter pulling with the forward pass of
the training and gradient pushing with the backward pass. The OSP consistency
protocol [136], discussed in Section 3.2.2, naturally favors the network in an equiv-
alent way, as communication comes in parallel with computation. It is worth to
underline that it also follows the same pattern as project Adam on local gradient
aggregation, but also performs accumulations whenever a gradient is pulled.
Parameter servers usually become communication hotspots since all workers
need to communicate with this centralized service. The idea of a load balancer
seems a natural selection in off-loading hot-spot servers. To this end, the idea of
exploiting proxy parameter servers is proposed in Herring [150]. To avoid hot-
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spots, there exist also various techniques regarding how the servers shard, store
and manage the parameters. However, since parameter management is a large and
important topic of discussion, it is presented individually in Section 3.2.4.
Comparative effectiveness: Each of these approaches addresses specific aspects
of network optimization, and their effectiveness depends on the workload and sys-
tem configuration. Compression techniques are most effective in reducing commu-
nication overhead but may impact convergence accuracy. Local gradient aggrega-
tion and caching are beneficial for tasks with high parameter reuse but require ad-
ditional resources. Prioritization and pipelining improve communication efficiency
but introduce coordination complexity. The choice of optimization strategy should
consider the trade-offs between communication reduction, computation overhead,
and model convergence. All the ideas and concepts behind network optimizations
are summarized in Figure 3.6.

3.2.4 Parameter Management

Parameter servers are usually key-value stores [45, 58, 59, 84, 114, 115, 122,
123, 125-127, 129, 130, 148| in various formats, as DHTs [58|, LazyTable [114]
or SSPTable [45] (designed for SSP protocol). Another approach proposed by
Petuum [85] is the use of a consistent distributed shared memory, which is also uti-
lized in [151]. However, how parameter values are distributed between the available
servers can crucially affect the performance due to frequent and concurrent access
to them [152], especially as the number of workers increases. Therefore, there has
been a large effort over the last years to identify problems in parameter storage
and management and propose meaningful solutions.

Parameter storage techniques: Initial parameter storage methods relied on
simple hashing techniques to distribute parameters across servers [59]. While this
method is straightforward, it fails to account for skewed access patterns, which can
lead to imbalanced workloads and reduced performance. For instance, parameters
accessed concurrently by many workers create hotspots, slowing down the train-
ing process. To address this, Bosen introduced access-pattern-based partitioning,
grouping parameters with similar access patterns into the same server [129]. Simi-
larly, in the context of the latent Dirichlet allocation (LDA) algorithm, skewness-
aware parameter storage was proposed, distributing parameters based on their
usage frequency [151]. While effective for specific applications, these methods re-
quire a detailed understanding of parameter access patterns, which may not always
be feasible.

Static load balancing: Static load balancing techniques aim to distribute param-
eters evenly among servers at the start of training. For example, Optimus minimizes
imbalances in parameter sizes, update requests, and access patterns through a pa-
rameter assignment algorithm that uses a combination of best-fit policies and chunk
partitioning [122|. Similarly, FlexPS enables user-defined load balancing policies
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Figure 3.7: Parameter management for the parameter server. Whitesmoke
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area (down) indicates load balancing approaches

by providing logs for performance analysis [123|. Other methods, like round-robin
assignments of parameter slices [148| or uniform splits across network layers [132],
offer simplicity but may fail to adapt to dynamic changes during training.

While the above load balancing approaches are static, Renz discussed in 2020
the idea of dynamically assigning parameters to the server while the model is
trained. This idea gave birth to Lapse [125, 126] and its extension Nups [127].
Lapse exploited parameter access locality (PAL) techniques to provide relocation
mechanisms and location control. NuPS exploit sampling techniques for specialized
applications where different parts of the data distribution need to access different
parameters. Dynamic allocation was also proposed by Chen [153| in 2020, who
proposed to assign dynamic shards to servers according to skewness and the per-
formance of each available server.

Dynamic parameter management: Dynamic approaches adjust parameter as-
signments during training to adapt to evolving access patterns. Lapse and its
extension NuPS dynamically reassign parameters based on parameter access lo-
cality (PAL) and sampling techniques, respectively [125, 127]. These methods are
particularly effective in heterogeneous environments where parameter access varies
widely across workers. Similarly, Chen proposed dynamically sharding parame-
ters based on server performance and skewness, improving resource utilization and
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reducing hotspots [153].

Skewness mitigation via network offloading: To further alleviate the effects
of parameter skewness, some approaches offload hot parameter reads and writes
from servers to programmable network switches [152]. This method leverages spe-
cialized hardware to handle frequently accessed parameters, reducing server load
and improving overall throughput. However, the deployment of such specialized
hardware introduces additional costs and complexity, limiting its applicability to
well-funded, large-scale systems.

Comparative effectiveness: The choice of parameter management technique de-
pends on the workload and system configuration. Static load balancing approaches,
such as round-robin or uniform splits, are simple and effective for homogeneous
environments but struggle with dynamic workloads or skewed access patterns. Dy-
namic methods, like Lapse and NuPS, excel in heterogeneous and high-skew scenar-
ios but require additional computation and monitoring. Network offloading offers
significant performance gains in handling hot parameters but may not be feasible
for smaller or resource-constrained setups. As shown in Figure 3.7, parameter man-
agement strategies are categorized into two key areas: storage techniques and load
balancing approaches. The figure highlights how innovations like skewness-aware
partitioning and dynamic reassignment complement traditional methods, offering
a comprehensive view of the solutions available for parameter server optimization.

3.2.5 Straggler Problem

In cloud environments, the term stragglers refers to tasks stalling other tasks [154].
In the parameter server context, a task is the iteration part of some iterative opti-
mization algorithm, executed on a worker. A stalling task could also exist in the
servers, during updating or pulling the global parameters.

An interesting classification of stragglers is provided in [155]. In this paper, they
distinguish straggler appearance as random and deterministic. Random stragglers
may occur in cases of temporary events, such as garbage collection or OS-related
tasks. To the contrary, deterministic stragglers are attributed to machine hetero-
geneity. Therefore, there are works that either cover the topic of stragglers in
general or propose specialized solutions for heterogeneous environments.

Systems implementing the SSP protocol (discussed in Section 3.2.2) provide
some general control over stragglers. Compared to BSP, the performance is par-
tially hurt, since the fast worker will wait for the straggler only upon the staleness
threshold. In contrast to ASP, SSP will ensure convergence due to bounded stale-
ness. [45, 156|. However, apart from the SSP protocol, further optimizations have
been proposed to mitigate the straggler effect.

For instance, a stop epoch earlier approach is followed in project Adam [84],
the authors propose to consider an epoch completed on stragglers when they have
performed 75% of the epoch training. They claim to preserve the same levels of
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Figure 3.8: Straggler handling approaches in the parameter server

accuracy in resulting models with up to 20X speedup.

Work stealing / reassignment is also a prominent approach discussed FlexRR
in [114]. In this case, workers can self-identify whether they are stalling. If this
happens, they offload work to the faster trainers.

Focused on GPU environments, Poseidon [115] simply chooses to drop strag-
glers when they occur, since the authors claim do not want to hurt the performance
capabilities offered by accelerators. Furthermore, Optimus [122] finds stragglers us-
ing statistics and replaces the worker with a new one. Recently, Li et al. proposed
the Sync-Switch approach, which offers an online version changing from BSP to
ASP when stragglers are detected.

While the above optimizations are general and could be applied regardless
of the homo- or the heterogeneity of the cluster, environments with non-uniform
hardware types could benefit from further optimizations. The most prominent so-
lution to exploit all workers in heterogeneous environments seems to appropriately
adapt SGD [116, 117, 155, 157, 158] through dynamic adjustment of learn-
ing rate, batch size and parallelism. Jiang et al. proposed two variants of
SSP, the CONSGD and DYNSGD, which do learning learning rate assumptions,
to smooth stragglers. CONSGD proposes a global learning rate, while DYNSGD
considers heterogeneity via staleness to design a per worker learning rate. Zhou
et al. in Falcon [116, 117] discussed the idea of adapting BSP and SSP into an
elastic-parallelism synchronous parallel, which adapts the worker parallelism level
according to straggler appearance and reassigns task from stragglers to fast work-
ers. In 2019, Yu et al. [158] proposed to adjust the batch size per worker to handle
stragglers, by giving them less work. A year later, Chen et al. proposed LBBSP
following the same paradigm, but with different protocols on CPU and GPU clus-
ters.

Comparative effectiveness: The effectiveness of these approaches depends heav-
ily on the system configuration and workload. Work reassignment, elastic paral-
lelism, and batch size adjustments are particularly effective in heterogeneous en-
vironments, where they balance the workload dynamically. Straggler dropping,
while straightforward and efficient, is better suited for homogeneous systems with
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high-performance workers. Approaches like dynamic learning rate adjustment of-
fer a middle ground but may slow convergence under extreme straggler scenarios.
Figure 3.8 recaps this section, outlining all the techniques mentioned.

3.2.6 Fault tolerance

Fault tolerance refers to how capable the parameter server setup is on handling
possible node failures, either on the training or the inference process. Since training
neural networks is a very time consuming task and in distributed systems one
should consider the case of node failure, one research topic in such setups refers to
how one could resume the training in case of failures. As discussed in Section 3.1,
the parameter server in asynchronous mode is by default more tolerant in node
failures compared to synchronous distributed setups. However, this section surveys
proposed approaches for fault tolerance in the parameter server regardless of the
training mode.

Since fault tolerance is an important factor for distributed systems and archi-
tectures [159-161], multiple researchers have proposed ways of improving the toler-
ance of the parameter server over the years. Influenced by other works starting to
propose the parameter server architecture, Carnegie Mellon University researchers
cooperated with Google’s Smola, who proposed the general architecture for paral-
lel models (Section 3.1), to specialize the parameter server for distributed machine
learning in training mode [58, 59|. Among other optimizations, they discuss the
fault tolerance issue, where they propose to store model parameters in distributed
hash tables replicated in more than one server, guaranteeing fast recovery in case
of node failures.

A year later in 2014, Microsoft launched project Adam [84] as their distributed
deep learning system, which is also based on the parameter server paradigm. Re-
garding fault-tolerance. Microsoft adopts the paxos algorithm in a cluster of con-
troller machines. In further detail, parameter shards are replicated between
the servers, which send periodic heartbeats to the controllers. In case of failure,
controllers relocate the latest shards to live replicas. Later on 2017 [130], Alibaba
designed and implemented KunPeng, which is a parameter-based system, with ex-
tended fault-tolerant mechanisms compared to Petuum for industrial environments
where multiple job types are executed. KunPeng’s servers back up their parameter
shards in a distributed file system and simultaneously cache them in memory for
quick recovery in case of a failover.

Periodic checkpoints have been discussed in various manuscripts in the years
following the above research works. For instance, Poseidon [115] encapsulated
this technique to handle failures. In 2018, Optimus [122] and FlexPS [123| have
been proposed, where they also use checkpoints to resume training in case a node
crashes, with the former performing the checkpoints in an external system and
the latter exploiting user-defined policies in performing checkpoints. According
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to Alibaba researchers [131], Petuum [85] was proposed by their team in 2015
following the design of a communication efficient parameter server [128]. While
these papers claim the importance of fault tolerance, Petuum creators argue the
need for fine-grain fault tolerance, since in terms of machine learning optimization
fast convergence is needed to be ensured. Therefore, they offer reliability in terms
of system failure with often model checkpoints, by continuing the training process
from the last checkpoint available.

However, apart from these baseline techniques, more advanced fault-tolerant
techniques have been discussed. An interesting approach referring to parameter
server’s straggler problem is FlexRR [114], where they propose an algorithm named
approximate snapshot to support training after failures. Approximate Snap-
shot will lead servers to checkpoint data at a specific timestamp after they have
received the corresponding clock-related messages from all workers. Parameters
written on checkpoints are approximate, since due to the SSP consistency model
FlexRR offers, they may have been updated by future gradients with respect to
the checkpoint time. Moving on in 2020, MLFabric [138] has alternate base chain
data replication discussed earlier, with discussing bounded consistency between
one parameter server and another containing its replicas. Since they built ML-
Fabric for multi-tenant environments, the author addresses that it is important to
find a tradeoff between the bandwidth and time consumed in chain replication and
the quality of the parameter backups, and, therefore propose bounded consistency
between the original parameter and the replica values.

Comparative effectiveness: Parameter replication offers high reliability but
comes with heavy resource demands, making it suitable for critical systems. Check-
pointing provides a balance of reliability and performance but may be less effective
for systems with frequent failures. Advanced techniques like approximate snapshot-
ting and bounded consistency are resource-efficient but require careful implementa-
tion to avoid compromising accuracy. In Figure 3.9, all the above are summarized
in a diagram outlining the various techniques proposed related to fault tolerance
issue.

78



3.3 Discussion

The parameter server architecture has emerged as a foundational framework
in distributed machine learning, enabling scalable and efficient training for mod-
ern applications. Over the years, various optimizations have been proposed to
address challenges in consistency control, network utilization, parameter manage-
ment, straggler handling, and fault tolerance. These optimizations not only show-
case practical effectiveness but also highlight the metrics used to evaluate their
performance.

Consistency control techniques like stale synchronous parallel (SSP) and dy-
namic stale synchronous parallel (DSSP) balance staleness and throughput while
maintaining accuracy. Performance evaluation often includes metrics such as train-
ing convergence time, throughput (iterations per second), and model accuracy. For
example, DSSP dynamically adjusts staleness thresholds, improving throughput
without degrading model performance [137].

Network optimizations are commonly evaluated using metrics such as band-
width utilization, communication overhead, and time to convergence. DoubleSqueeze,
through Top-K sparsification, reduced ImageNet training time by 46%, demonstrat-
ing significant communication efficiency [119]. Similarly, TernGRAD’s quantization
methods minimized bandwidth usage while maintaining accuracy levels comparable
to uncompressed training [140].

Parameter management solutions, such as Optimus and NuPS, are assessed us-
ing metrics like load imbalance, latency, and system throughput. Optimus achieved
even workload distribution across servers, minimizing latency and improving over-
all throughput in heterogeneous environments [122]. NuPS dynamically assigned
parameters during training, addressing skewed workloads and optimizing resource
utilization [127].

Straggler handling approaches utilize metrics such as task completion time,
worker utilization, and system efficiency. elastic-parallelism synchronous paral-
lel (EPSP) demonstrated reduced delays caused by slow workers, redistributing
workloads dynamically to enhance system efficiency [116]. Batch size adjustments,
as seen in LBBSP, further improved straggler performance by adapting workloads
based on worker capabilities [155].

Fault tolerance mechanisms, like checkpointing in KunPeng and MLFabric’s
bounded consistency replication, are evaluated using metrics such as recovery time,
checkpointing overhead, and training robustness. KunPeng’s parameter backups
ensured seamless recovery during node failures, minimizing downtime and main-
taining training continuity [130].

These metrics provide a comprehensive framework to assess the practical effec-
tiveness of parameter server optimizations. By examining factors such as through-
put, communication efficiency, workload distribution, and fault recovery, these
techniques demonstrate measurable improvements across diverse distributed learn-
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Table 3.3: Surveys on parameter server architecture.

Ref. Year Title Focus Area Limitations

[103] 2016  Survey of scaling plat- Mentions parameter server as a Only a brief mention; lacks dis-
forms for deep neural method for scaling CPUs for cussion of synchronization modes,
networks learning workloads, among other communication optimization, or

accelerators like GPU clusters or hyperparameter tuning.
quantum computing.

[104] 2016  Parallel processing Discusses big data processing Focuses on big data processing;
systems for big data: systems, mentioning parameter lacks in-depth discussion of pa-
A survey server adoption by Petuum and rameter server-specific synchro-

describing its basic capabilities. nization protocols or distributed
learning strategies.

[162] 2018 A Quick survey on Reviews distributed deep learning Provides limited details on ad-
large scale distributed approaches, including parameter vanced synchronization strate-
deep learning systems  server architecture. Discusses ba- gies, communication optimiza-

sic synchronization modes (BSP tions, or scalability challenges.
and ASP) and hyperparameter

considerations (e.g., batch size

and learning rate).

[105] 2020 A survey on dis- General survey on distributed Lacks coverage of hyperparame-
tributed machine machine learning. For parame- ter tuning, worker-server interac-
learning ter server, covers synchronization tion optimization, or model par-

modes (BSP, ASP, stale synchro- allelism techniques.
nization) and their trade-offs in

terms of model consistency and

communication overheads.

[106] 2021 A quantitative survey Explores communication opti- Narrow focus on communication
of communication mizations in distributed training, aspects; does not address syn-
optimizations in dis- focusing on parameter partition- chronization or hyperparameter
tributed deep learning ing, fusion, and scheduling within adaptation in depth.

a parameter server network.

[107] 2021 Commaunication opti- Discusses communication op- Focuses exclusively on commu-
mization strategies for timizations, including gradient nication optimization; lacks cov-
distributed deep neural compression techniques (e.g., erage of synchronization proto-
network training: A sparsification, quantization) and cols, scalability, or model-parallel
survey overlapping computation and training considerations.

communication.

ing systems. The performance benchmarks, including faster convergence times and
improved resource utilization, highlight their practicality in both academic and
industrial applications. But why was it important to perform such an extensive
survey in the context of this thesis? While researching the parameter server do-
main, there was no existing survey that comprehensively covers the Parameter
Server architecture. Existing surveys cover specific parts of the Parameter Server
architecture, and are briefly presented in Table 3.3

In 2016, Ratnaparkhi [103] examined scaling techniques for deep learning (men-
tioning Parameter Server only tangentially), and Zhang et al. [104] listed the Pa-
rameter Server as one of many big data systems adopted by Petuum. A concise
overview by Zhang et al. [162] described BSP and ASP synchronisation in the
Parameter Server, while Verbraeken et al. [105] analysed trade-offs around stale
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synchronisation. More recently, Shi et al. [106] studied communication optimiza-
tions as the number of server shards grows, and Ouyang et al. [107] focused on
gradient compression and compute/communication overlap.

Although these works illuminate individual facets—communication, synchro-
nisation, or partitioning—they lack a holistic view. Chapter 3’s survey fills that
gap by systematically covering Parameter Server synchronisation strategies (BSP,
ASP, SSP), hyper-parameter adaptation, worker—server interaction, and model-
scalability issues, while drawing practical lessons from TensorFlow, MXNet, Deep-
Speed, Ray, and Horovod.

3.3.1 Exclusion of federating learning

Parameter-server architectures and federated learning (FL) both employ dis-
tributed computation, yet their goals diverge sharply. As described by McMahan
et al. [163], cross-silo FL targets privacy-sensitive, non-IID, and often unbalanced
data across thousands of devices, emphasising communication efficiency via model-
parameter exchange. In contrast, the Parameter Server assumes IID, balanced
shards and relies on gradient exchange for rapid convergence in cluster environ-
ments.

Modern FL research spans communication efficiency [164-166|, scalability [167—
169], personalisation [170-172|, and security & privacy [173-175|. Several recent
surveys [176-188] offer deep dives into one or more of these aspects. Because this
thesis focuses on the internal mechanics of the Parameter Server, FL is treated as
a distinct paradigm and its specialised challenges are left outside the scope of this
survey and the thesis overall.

3.4 Focus on Consistency Control

The survey provided in this chapter has given a deeper understanding of the
Parameter Server architecture. However, the research question set to be answered
in this thesis (Section 1.2) was related to optimizing the asynchronous learning in
the parameter server architecture. In this direction, Sync-Switch [189] proposed to
initially perform some training epochs under BSP to initialize model weights near
the local minimum and then finalize the process faster using ASP for the remaining
epochs. Sync-Switch discovers its switching point from BSP to ASP via an offline
binary search across multiple runs.

Considering all the analysis and the findings from the survey in Section 3.2,
BSP usually comes with network hotspots, due to the synchronous gradient pushes
to centralized servers. For synchronous training, All-Reduce seems to be a more
prominent approach. Recent work in both All-Reduce and Parameter Server train-
ing explicitly balances consistency and runtime. For example, Prague [190] trans-
fers the async semantics of AD-PSGD [191] to an All-Reduce setting, while SSP [45]
and its adaptive variant DSSP [137] bound staleness in the Parameter Server.
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Worker-selection or pruning mechanisms—fedPAGE [192], FEDL [193], PFL [194],
PruneFL [195|—further reduce straggler impact with minimal accuracy loss.

Apart from architectural and consistency policies, data-related policies are also
widely used to help the training process in relaxed training approaches, like ASP.
As discussed in Section 3.2, Damaskinos et al. [196] apply a staleness-decay factor
within SGD; Dutta et al. [134] and Huang et al. [123] vary learning rate or exploit
ageing parameters; Viswanathan et al. [197] propose MLFABRIC, a communication
layer that accelerates gradient flow and handles stragglers. Apart from these ad-
vances, related to weighting parameters and gradients differently, the concept of
stratification is also widely used in learning concepts. For example, it is long used
to reduce variance in single-node cross-validation [198] and re-appears in domain-
specific models [199], distributed graph partitioning [200], and data-sensitive hash-
ing [201]. In single-node contexts, Polyzotis et al. [202] flag data skew as a source
of bias, while Hsieh et al. [203] propose advanced generation techniques when data
shards are physically disjoint.

Inspired by all the above contributions and the overall findings and under-
standing of the parameter server provided through this extensive survey, the rest
of this thesis will focus on two different approaches that aim to help ASP. Chap-
ter 4 will discuss Strategy-Switch that follows the paradigm of Sync-Switch, by
replacing BSP Parameter Server with All-Reduce approaches. Furthermore, in-
stead of using an offline rule for the switching point, Strategy-Switch extends this
line by demonstrating that an inexpensive online switch can match the accuracy
of fully synchronous training while approaching the speed of ASP. Especially, un-
der heterogeneous clusters with constant stragglers, Sync-Switch would default to
BSP Parameter Server, while the Strategy-Switch will exploit ASP in any case.
The second approach that aims to aid the training process under ASP Parameter
Server follows data-related policies and specifically stratification techniques, as in
the novel works presented above. Specifically, in Chapters 5 and 6 this thesis is the
first to examine whether data sharding can stabilize learning in an asynchronous
Parameter Server. Prior work tackles other ASP challenges, while in this thesis
a shared file system is leveraged to deploy simpler—but effective—stratification
schemes, yielding up to 8x lower training-loss variance.
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Chapter 4

Synergizing All-Reduce and
Asynchronous Parameter Server
via Strategy-Switch for Training
Efficiency

Chapter 4 classified PS optimisations into five domains (Consistency Control,
Network Optimization, Parameter Management, Straggler Problem and Fault Tore-
lance). This chapter picks up the thread by targeting the first two domains —
Consistency Control and Straggler mitigation — through a hybrid approach called
Strategy-Switch.

The preceding survey in Chapter 3 highlighted the central role of consistency
control in balancing these trade-offs. In particular:

e Bulk Synchronous Parallel (BSP) enforces full synchronization each
iteration, ensuring model consistency but suffering from straggler-induced
stalls [45, 90].

e Asynchronous Parallel (ASP) removes synchronization barriers, acceler-
ating training but introducing unbounded parameter staleness [109].

Moreover, the survey provided in Chapter 3 showed that synchronous Param-
eter Server (i.e. BSP-PS) often incurs higher network hotspots and server con-
tention, due to all workers pushing gradients to a central server. In contrast,
another synchronous data parallel paradigm, named All-Reduce leverages decen-
tralized ring or tree aggregation, avoiding a single point of congestion and yielding
up to 20-30% lower network traffic under BSP, as shown through benchmarking
(Section 4.2, Figure 4.4). This makes All-Reduce the preferred BSP strategy to
minimize communication overhead.

83



Building on these insights, and inspired by Sync-Switch [189], Strategy-Switch
is introduced, a hybrid framework that:

1. Starts with All-Reduce to reliably guide the model toward a strong optimum;

2. Automatically switches to asynchronous Parameter Server once the training
dynamics stabilize, governed by an empirical rule based on validation-loss
fluctuations (Section 4.3.3).

The key points of this Chapter are the following:

e A benchmarking analysis comparing convergence and performance of All-Reduce
vs. asynchronous PS (Section 4.2).

e The design and evaluation of the Strategy-Switch algorithm on standard
image-classification benchmarks (Section 4.4).

e An empirical transition rule that optimally determines the switch point (Sec-
tion 4.3.3).

The remainder of this chapter is organized as follows: Section 4.1 briefly recalls
the key properties of All-Reduce and Parameter Server; Section 4.3 details the
Strategy-Switch methodology; Section 4.4 evaluates its performance and transition
rule.

4.1 Theoretical Background

In this section, the necessary background on the two distributed training para-
digms is established, i.e. the All-Reduce and Parameter Server integrated into the
Strategy-Switch training methodology. Parameter Server is thoroughly discussed
in Chapter 2, but is also summarized in this section for sake of completeness.

4.1.1 All-Reduce

All-Reduce [81, 83, 204] embodies a decentralized training methodology where
all workers engage in gradient exchange. This process is illustrated in Figure 4.1a.
At the onset of a training step, each worker extracts a mini-batch from their local
data partition, where they compute gradient vectors. Synchronous all-reduce tech-
niques facilitate the exchange and aggregation of these gradients among workers
and subsequently update each worker’s local model for the next iteration. This
synchronous nature ensures uniformity across local models when the next iteration
is initiated. A widely adopted All-Reduce approach within various learning systems
like TensorFlow [63] is the Ring All-Reduce [82] method.

84



Data Partition

ﬁ Data Partition

Worker

Local
Model @
A Copy . Local
% X Model {:o:} Worker
7 ) Copy

Worker g/ \“! Worker

v

Local H \ Local
Model 4--->{ Model @ Worker Parameter Servers Worker
.| Copy \ [ Copy i Local Local
Data Partition % A A Data Partition % Nodol @ VVVVV >l Model {6} ‘_ﬁ
| Copy Global Copy
Data Partition Model Data Partition
v u R ¥
Local Local e 4
Model [<--->» Model {:CE} Local Local
Copy Copy Worker | Model Model @ Worker
[
Worker 'Worker COD% Py
Data Partition Data Partition Data Partition Data Partition
(a) All-Reduce (b) Parameter Server

Figure 4.1: Distributed training architectures: (a) All-Reduce; (b) Parameter
Server. Dashed lines indicate communication, while solid lines indicate data
extraction.

4.1.2 Parameter Server

Parameter Server [39, 57-59] constitutes a centralized approach for distributed
model training. In this setup, servers maintain a global model, whereas workers
compute gradients on local model copies, using data from a data partition assigned
to them, as depicted in Fig. 4.1b. Parameter Server training can operate either in
bulk synchronous (BSP) or asynchronous parallel (ASP) mode. During a training
step, workers retrieve the latest model parameters from servers, compute gradients
using their local data, and push these gradients back to update the global model
on the servers. In ASP, servers update the global model upon receiving new gra-
dients, whereas in BSP, they wait for gradients from all workers. Throughout this
paper, any reference to Parameter Server without specifying the training mode
refers to ASP. Although ASP is faster since it lacks synchronization-related per-
formance overheads, it may suffer from stale gradients, potentially compromising
model accuracy.

4.1.3 Hyperparameters in Distributed Settings

In these training paradigms, hyperparameters such as mini-batch size and learn-
ing rate are adjusted to emulate equivalent single-node setups [205]. To mirror
single-node training, the global batch size should match the single-node counter-
part, resulting in a scaled per-worker size based on the worker count. In asyn-
chronous Parameter Server, the learning rate is also adjusted since each worker
contributes independently to the global model located on the servers.
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Table 4.1: Benchmark Overview

Benchmark Dataset Network #Epochs Hyperparameters

#B1 CIFAR-10 ResNet-20v1 182 SGD, mini-batch size 128, mo-
(0.27TM params) mentum 0.9, step decay

#B2 CIFAR-100 ResNet-32v1 200 LR initial 0.1, divided by 0.1 at
(0.48M params) epochs 82 and 133
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Figure 4.2: Examples of CIFAR-10 images for each category.

4.2 Benchmarking baseline strategies (network
& straggler sensitivity)

This section presents an experimental evaluation of training using the All-
Reduce and Parameter Server paradigms to delve deeper into their characteristics.

4.2.1 Experimental Setup

The evaluation involved two benchmarks utilizing CIFAR datasets [206] and
ResNet-based neural networks [13] as outlined in Table 4.1.

CIFAR-10 [206] is a set of labeled images. The CIFAR-10 dataset consists of
60000 32x32 color images divided into 10 classes, with 6000 images per class. The
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Table 4.2: VM Specifications in Clusters

VM Flavor vCPUs RAM HDD Storage

m1l.xxlargel 8 32GB 100GB
ml.large3 4 16GB 60GB
regale-small 2 8GB 30GB

Table 4.3: Clusters used for Experiments

Cluster Code Cluster Type ml.xxlargel ml.large3 regale-small

#C1 Homogeneous 5 - -
#C2 Heterogeneous 5 2 2

dataset is divided into 50000 training data and 10000 test data. The dataset is
divided into five training batches and one control batch, each of which consists of
10000 images. The control batch contains exactly 1000 randomly selected images
from each class. Training batches contain the remaining images in random order,
but some training batches may contain more images from the same class. In total
the training batches contain exactly 5000 images of each class. The classes into
which the data is divided are: plane, car, bird, cat, deer, dog, frog, horse, ship,
and truck. In Figure 4.2 examples of images from each class! can be found. The
CIFAR-100 dataset is similar to CIFAR-10, but it contains 100 classes with 600
images each. For each class, there are 500 training images and 100 testing images.
The 100 classes in CIFAR-100 are organized into 20 superclasses. Each image has
both a "fine" label, indicating its specific class, and a "coarse" label, representing
its superclass.

The hyperparameters referenced in Table 4.1 are adjusted for distributed se-
tups, as explained in Section 4.1.3. Virtual machines from a private Openstack
cloud cluster are used to setup the evaluation infrastructure. The infrastructure
consists of a homogeneous cluster (i.e., the cluster nodes hardware configuration
is the same) and a heterogeneous cluster (i.e., the cluster nodes hardware con-
figuration varies between the nodes). Table 4.2 details the specifications of the
Openstack cluster virtual machine flavors utilized in the clusters. In Table 4.3 an
overview of the clusters utilized in the experiments is provided. TensorFlow v2.6.2
for both All-Reduce and asynchronous Parameter Server training is employed in
each cluster. Runs are capped at 182 and 200 epochs, the standard horizon for
ResNet on CIFAR-10/100 [13].

tdownloaded from https://www.cs.toronto.edu/ kriz/cifar.html
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Figure 4.4: #C1 Cluster Network Utilization for training the benchmarks
under All-Reduce and Parameter Server (a) #B1 -All-Reduce (b) #B1 -
Parameter Server (c) #B2 -All-Reduce (d) #B2 -Parameter Server

4.2.2 Homogeneous #C1 Cluster Benchmarking

Figure 4.3 illustrates the CPU utilization of All-Reduce and Parameter Server
training in the homogeneous #C1 cluster. For both benchmarks, #B1 and #B2,
All-Reduce and Parameter Server display similar CPU utilization in this environ-
ment. All-Reduce hovers around 65%, while Parameter Server peaks at approx-
imately 75%. The All-Reduce strategy exhibits lower performance due to syn-
chronization overheads, whereas Parameter Server demonstrates improved cluster
utilization as workers update the model independently.

The network traffic in #C1 (Figure 4.4) confirms similar levels of incoming and
outgoing traffic for All-Reduce across both benchmarks, approximately 50 MB /sec.
In contrast, Parameter Server manifests higher network usage with approximately
65 MB/sec for #B1 and 70 MB/sec for #B2. This disparity results from the
increased complexity of the ResNet-32 model used in #B2, leading to a greater
exchange of gradients and model parameters.
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4.2.3 Heterogeneous #C2 Cluster Benchmarking

Figure 4.5 displays the CPU utilization of All-Reduce and Parameter Server
training in the heterogeneous #C2 cluster. Compared to the homogeneous cluster,
All-Reduce and Parameter Server showcase significantly divergent CPU utiliza-
tion. All-Reduce demonstrates lower CPU usage at ~ 50% for both benchmarks,
while Parameter Server exhibits much higher usage (~ 80%). The synchronous
nature of All-Reduce results in varied worker speeds, impacting performance sig-
nificantly in the heterogeneous environment. This impact is due to the different
computing capabilities of the participating nodes and the requirement for synchro-
nization. The synchronization requirement stalls faster nodes that need to wait for
the slower nodes computation to finish. Conversely, Parameter Server, operating
asynchronously, presents consistent utilization irrespective of worker differences,
making it more adaptable to cluster heterogeneity. This utilization consistency is
the result of the asynchronous computation: faster nodes do not need to wait for
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slower nodes to finish their computations before gradient updates. Nevertheless,
this speed comes at the expense of slower convergence, since “stale” computations
of slower nodes diverge the gradient computation away from its correct value by
adding noise at every computation step.

In terms of network traffic (Figure 4.6), All-Reduce exhibits similar levels com-
pared to the homogeneous cluster, while Parameter Server doubles the network
traffic on #C2 compared to #C1. The higher traffic validates the effect of stale
value updates of slower nodes, as more message exchanges (therefore more network
traffic) between nodes are needed in order to come to the same conclusion with the
homogeneous setup.

4.3 Strategy-Switch: adaptive consistency con-
troller

In this section, a hybrid train strategy for distributed training, i.e. the Strategy-
Switch, is proposed. An extensive discussion on the design of Strategy-Switch is
provided and finally an empirical rule on the switching point is provided.

4.3.1 Approach

In order to combine both the benefits of the two distributed training setups
discussed in Section 4.1, Strategy-Switch is proposed. Strategy-Switch is a hybrid
distributed setup, which performs the model training in an All-Reduce approach
up to a specific epoch and then proceeds with training under an asynchronous
Parameter Server setup. Strategy-Switch-a% is illustrated in Algorithm 4.7, where
a% represents the percentage of epochs performing All-Reduce training.

After the completion of the last All-Reduce epoch, Strategy-Switch dumps
(saves) the global model on a Distributed File System (DFS), so that the parameter
servers (PS) can load it as the initialization point for the subsequent asynchronous
training stage. In practice, this model exchange procedure requires minimal over-
head, as the corresponding checkpoint is copied to the DFS and then broadcast by
the servers.

4.3.2 Theoretical Explanation
Convergence in Strategy-Switch

In Sync-Switch [189], the authors provide a detailed theoretical explanation on
why changing training in the Parameter Server architecture from BSP mode to
ASP could benefit the training process (Section IV-A). In the proposed Strategy-
Switch, the BSP Parameter Server phase is replaced with an All-Reduce phase.
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1: procedure STRATEGYSWITCH-a%(m,d, hp, e, &)

2 > m: trainable model

3 > d: training and validation data

4: > hp: global hyperparameters

5: > e: total number of epochs

6: > «: percentage of epochs under All-Reduce
7 Deploy set of All-Reduce workers: w__allred

8 fori=1to axedo

9: train(w__allred, m, d, hp, i)

10: end for

11: Dump model m on DFS

12: Initiate parameter servers: ps

13: ps.load(m)

14: Deploy set of Parameter Server workers: w_ps
15: fori=axe+1toedo

16: train(w__ ps, ps, m, d, hp, i)

17: end for

18: return trained model m

19: end procedure

Figure 4.7: StrategySwitch-a%

Therefore, in Strategy-Switch, All-Reduce training can be considered as a stable
approach to lead the model parameters closer to the optimization point, simil-
lar to the approach of the Sync-Switch [189]. When gradients are small, smaller
movements to the model parameters are caused. Hence, the model is not crucially
altered and the small change of the model parameters render it less vulnerable to
stale gradients that may occur in asynchronous learning setups.

Why All-Reduce over BSP Parameter Server

As shown in Section 4.2, asynchronous Parameter Server consumes more net-
work compared to All-Reduce. However, the higher CPU utilization attributed to
the lack of synchronization leads to faster training. When using BSP Parameter
Server, the synchronization will impact cluster utilization and the training will
also be prone to possible network bottlenecks. Such bottlenecks may be attributed
to either server hotspots [207] and network waiting time for synchronization [45].
Therefore, for synchronous training, it is more efficient to exploit All-Reduce in-
stead of BSP Parameter Server, since network hotspots will be avoided, due to
All-Reduce being decentralized. Various studies [208-210| discussing the network
efficiency of All-Reduce compared to Parameter Server support this claim.
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4.3.3 Empirical rule for the switching point

1: procedure EMPIRICAL RULE STRATEGYSWITCH(m,d, hp, €)
2 > m: trainable model

3 > d: training and validation data

4: > hp: global hyperparameters

5: > e: total number of epochs

6: Deploy set of All-Reduce workers: w__allred

7 val _window = rolling window(6)

8

: § =400
9: 1 =0
10: while s > 1% do
11: train(w__allred, m, d, hp, i)
12: roll(val _window, epoch val loss)
7 .y - o
13: s = ijo ||“lo~sg;’jl)o:zf(l;i;(iz)ﬂ_l)u x100%
14: t=1+1

15: end while
16: start epoch ps = ¢
17: Dump model m on DFS

18: Initiate parameter servers: ps

19: ps.load(m)

20: Deploy set of Parameter Server workers: w__ps
21: for i = start_epoch _ps to e do

22: train(w__ps, ps, m, d, hp, i)

23: end for

24: return trained model m

25: end procedure

Figure 4.8: Empirical Rule StrategySwitch

The design of Strategy-Switch raises one important question: When is it the
right time to change from All-Reduce to Parameter Server training? In this section,
an empirical rule is discussed which decides online throughout the training process
whether it is the right time to proceed with Parameter Server training. Suppose
U0ss(1) 1s the validation loss in epoch ¢ and k is the last training epoch finished,
then when the boolean expression in 4.1 becomes true, the training continues under
an asynchronous Parameter Server setup.

4 . .
|Vi0ss (B — 1) — vjoss(k — i — 1)|| - 100%
= 1 4.1
’ ; 5 Vioss(k — 1 — 1) <% (4.1

The idea behind this empirical rule lies on changing to asynchronous training
when the training process has become more stable, i.e., the loss does not present
very radical changes. In order to measure how stable the training is at a specific
epoch, a 5-window running average over the percentage change of the validation
loss is used (value s in 4.1). When the mean percentage change becomes small and
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less than 1%, this epoch is considered a good switching point. Both the window
size and the percentage threshold were found empirically. Larger window sizes were
found sensitive to previous epochs with larger values of validation loss, leading the
training to switch to asynchronous mode at the very last few epochs. Smaller
window sizes might lead to earlier switching points, affected by smaller loss change
between less successive epochs. The choice of the 1% threshold is further explained
in Section 4.4.2

Strategy-Switch enriched with the empirical rule (ER-SS) is described in Algo-
rithm 4.8. A detailed example on how ER-SS algorithm operates is provided in
example 4.1.

Example 4.1 (Strategy-Switch Decision Example) Consider the Empirical
Rule Strategy-Switch criterion given by equation 4.1.
Assume validation losses over epochs 1 through 6 are:

Epoch k  Validation Loss (vss)

0.500
0.450
0.420
0.415
0.413
0.412

SN N S

FEvaluating at epoch k = 6:

s |0.412 — 0.413| x 100% n |0.413 — 0.415| x 100%

5 x0.413 5 x 0.415
|0.415 — 0.420] x 100%  ]0.420 — 0.450| x 100%
5 x 0.420 5 x 0.450
|0.450 — 0.500| x 100%
5 x 0.500

~ 0.0484% + 0.0964% + 0.2381% + 1.3333% + 2.0000%

= 3.7162% > 1%.

Thus, the criterion is not met and Strategy-Switch is not activated at epoch 6,
continuing the training with All-Reduce to find a better starting point for Parameter
Server.

Now consider validation losses at epochs 10 through 15:
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Epoch k  Validation Loss (vjpss)

10 0.4000
11 0.3998
12 0.3997
13 0.3996
1 0.3995
15 0.399/

Evaluating at epoch k = 15:

5 % |0.3994 — 0.3995| x 100%
S =
5 x 0.3995

~ 5 x 0.0050% = 0.0250% < 1%.

In this case, the Strategy-Switch condition is fulfilled, and thus the switch is
triggered at epoch 15, initiating asynchronous training with Parameter Server at a
point where it will be less vulnerable to staleness.

4.4 Evaluation under network /straggler scenar-
i0s

In this section, a detailed experimental evaluation on Strategy-Switch is pro-
vided, compared to All-Reduce and Parameter Server training on homogeneous
and heterogeneous clusters. While the experiments focus on ResNet-based archi-
tectures for CIFAR datasets, the proposed approach is not restricted to ResNets.
The primary reason for choosing these networks is the wealth of published results
and well-understood convergence properties, making them particularly suitable for
demonstrating the effects of switching strategies.

4.4.1 Experimental Setup

The clusters and benchmarks used are the same as the ones used in the bench-
marking analysis in Section 4.1. For ease of reading, #B1 and #B2 benchmarks
refer to training CIFAR-10 on ResNet-20 and CIFAR-100 on ResNet-32 respec-
tively. #C1 and #C2 refer to the homogeneous and heterogeneous clusters used
(see Table 4.3 in Section 4.2 for cluster structures). As global hyperparameters,
the ones discussed in the official ResNet paper [13]| and also mentioned in Table 4.1
are used. Every experiment has been executed 3 times and error bars outline
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Figure 4.9: Accuracy vs. time trade-offs in #C1 cluster for each benchmark
when using All-Reduce, Parameter Server and Strategy-Switch-a% with vari-
ous switching points. Percentage in Strategy-Switch labels indicates the value
of a%. (a) #B1 - Training Acc. (b) #B1 - Validation Acc. (c) #B2 - Train-
ing Acc. (d) #B2 - Validation Acc.

the statistical information (i.e., average and min/max values) for every experi-
ment. The collected metrics for each experiment run were consistently close to
each other, mainly due to the fact that the selection of dataset sizes and cluster
resources resulted in sufficient execution times, minimizing statistical errors that
may occur when the execution times are negligible. In sections 4.4.2 and 4.4.3,
tradeoffs in Strategy-Switch-a% and the empirical rule based on the validations
loss of the All-Reduce training on the benchmarks in the homogeneous cluster are
discussed. In sections 4.4.4 and 4.4.5 All-Reduce, Parameter Server and Empirical
Rule Strategy-Switch are evaluated on both the benchmarks and on both clusters.

4.4.2 Trade-offs when using Strategy-Switch-a% on the
homogeneous #C1 cluster

Figure 4.9 presents the trade-offs regarding accuracy and execution time be-
tween All-Reduce, Parameter Server and Strategy-Switch-a% strategies in the ho-
mogeneous #C1 cluster.
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As observed from Figure 4.9 All-Reduce achieves the highest train and valida-
tion accuracy for both benchmarks #B1 and #B2 in the homogeneous #C1 cluster.
This can be attributed to the synchronous nature of All-Reduce. Therefore, the
convergence of the optimization algorithm used in the training remains the same as
the one of the single node. However, All-Reduce appears to be the slowest approach
compared to the other experiments, due to the synchronization-related overheads
present throughout the training process.

Unlike All-Reduce, Parameter Server achieves the lowest accuracy for both
benchmarks #B1 and #B2 in the homogeneous #C1 cluster. The lack of syn-
chronization in the Parameter Server harms the convergence of the optimization
algorithms, due to stale gradients mentioned in Section 4.1.2. In further detail,
when training is completed under the Parameter Server, model parameters might
have been updated in various steps with gradients computed on outdated model
parameters. On the other hand, asynchronous training gives an advantage to Pa-
rameter Server, compared to the synchronous approach in terms of the training
speed. Each worker trains the model completely independently at its own high-
est pace leading to the fastest possible training in the Parameter Server for both
benchmarks #B1 and #B2.

Strategy-Switch-a% proposed in this paper, achieves a balance between All-
Reduce and Parameter Server by exploiting the advantages of both strategies. In
Strategy-Switch, the training of the model starts with the All-Reduce and ends with
the Parameter Server strategy. Therefore, the first a% slower epochs following the
All-Reduce paradigm lead the model to a set of parameters closer to the optimiza-
tion point, which is less prone to stale gradients of the Parameter Server training
of the last epochs. Thus, similar levels of accuracy to All-Reduce can be achieved
faster. « is a hyperparameter in Strategy-Switch, which is studied by tuning « in
the range [10,90] with step 10. Irrespective of the value of «, Figure 4.9 indicates
that, in Strategy-Switch, the accuracy metrics are higher than the Parameter Server
and the training time is shorter compared to All-Reduce. Furthermore, the larger
the value of «, the slower the training process is, due to more epochs performed
under All-Reduce. In general, larger values of a indicate models that approach the
convergence point of the All-Reduce training.

4.4.3 Explaining the s value of the empirical rule on the
homogeneous #C1 cluster

As explained in Section 4.4.2, « is a hyperparameter in Strategy-Switch. To
identify a proper switching point, the empirical rule discussed in Section 4.3.3 is
proposed, leading to Empirical Rule - Strategy-Switch. In this section, the evolution
of the s value of the empirical rule per training epoch is discussed. In Figure 4.10 the
s value is presented per train epoch on the All-Reduce training for both benchmarks.
The vertical dashed line indicates the switching point according to the empirical
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Figure 4.10: Value used in the empirical rule per training epoch on All-Reduce
setups for both benchmarks. Vertical dashed line indicates the switching
point according to the empirical rule. (a) #B1 - Validation Loss (b) #B2 -
Validation Loss.

rule.

Figure 4.10a outlines the evolution of the s value for the #B1 benchmark. The
validation loss drops to lower values rapidly and is stabilized early in the training
process. Specifically, in epoch 26, the s value appears to satisfy the threshold of 1%
in the empirical rule presented in Equation 4.1 of Section 4.3.3. For ~ 50 epochs,
the value of s is at the same levels, presenting some spikes later on some epochs.
Larger s values indicate larger validation loss change. Attributed to the tuning of
the learning rate (Table 4.1), which is decreased at epoch 81, the validation loss
presents a larger variation at this point. However, the earlier steady state of the
model renders epoch 26 a good switching point, since the spikes attributed to the
decrease of learning rate in the s value, are smoothed after a few epochs.

Similar observations are made in Figure 4.10b regarding benchmark #B2. How-
ever, the training appears to be stabilized at epoch 109, since benchmark #B2 is
more complex to converge compared to benchmark #B1.

In the following sections 4.4.4 and 4.4.5 Empirical Rule - Strategy-Switch is
evaluated in contrast with All-Reduce and Parameter Server for both benchmarks
in the homogeneous #C1 and the heterogeneous #C2 clusters respectively.

4.4.4 Strategy-Switch in the homogeneous #C1 cluster
using the empirical rule.

Figure 4.11, Figure 4.12 and Figure 4.13 present the results of Strategy-Switch
in the homogeneous #C1 cluster when using the empirical rule and compares them
with All-Reduce and Parameter Server training. It can be observed that in both
benchmarks #B1 and #B2 Strategy-Switch has the best trade-off between accuracy
and execution time.

When reaching convergence, training, and validation accuracy are shown in
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Figure 4.11: Training time under All-Reduce, Strateqy-Switch and Parameter
Server in the homogenous #C1 cluster (a) #B1 benchmark (b) #B2 bench-
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Figure 4.12: Training and validation accuracy values at convergence, when
training in the homogenous #C1 cluster for the benchmarks (a) #B1 bench-
mark (b) #B2 benchmark

Figure 4.12a and Figure 4.12b. Training accuracy presents almost identical values
between All-Reduce and Strategy-Switch, while smaller values are observed under
Parameter Server. The same patterns are also identified regarding validation ac-
curacy under convergence. Figure 4.11a and 4.11b present the execution time of all
distributed training approaches for benchmarks #B1 and #B2 in the homogeneous
#C1 cluster. Parameter Server strategy is the fastest one as expected. Strategy-
Switch is clearly faster than All-Reduce strategy for both benchmarks #B1 and
#B2. In further detail, for the #B1 benchmark, the converged Strategy-Switch
model presents only a loss of 0.05% and 0.1% in the training and validation ac-
curacy respectively compared to the All-Reduce model, while it is trained 1.14X
faster. Regarding the #B2 benchmark, with a loss of 1% and 0.06% in the training
and validation accuracy, the resulting model in Strategy-Switch is training with
1.1X speedup.

Figure 4.13c and 4.13d outline the training and validation accuracy at each
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Figure 4.13: Loss and accuracy, when training in the homogenous #C1 clus-
ter for the benchmarks. Black lines indicate training metrics and gray lines
indicate validation metrics. (a) Loss - #B1 benchmark (b) Loss - #B2 bench-
mark (c) Accuracy - #B1 benchmark (d) Accuracy - #B2 benchmark

epoch during training the benchmarks #B1 and #B2. It can be observed that
when training under Strategy-Switch, training loss follows the same pattern as the
case of training under All-Reduce, while in Parameter Server the loss presents a
different evolution. The training setups have the same behavior regarding valida-
tion accuracy, as further outlined in Figure 4.13. The evolution of the training and
validation loss across epochs for benchmarks #B1 and #B2 are illustrated in Figure
4.13a and 4.13b. It is important to note that validation loss under Strategy-Switch
evolves into smaller values across epochs compared to All-Reduce and Parameter
Server. Regarding training loss, under Strategy-Switch similar trends to Parameter
Server training are achieved, which evolves better compared to All-Reduce.

4.4.5 Strategy-Switch in the heterogeneous #C2 cluster
using the empirical rule

Figure 4.14, Figure 4.15 and Figure 4.16 present the results of Strategy-Switch
when using the empirical rule in the heterogeneous #C2 cluster in comparison
with results from models trained under All-Reduce and Parameter Server. As in
Section 4.4.4, Strategy-Switch presents the best trade-offs between the two baseline
distributed approaches.

Figure 4.16 indicates similar trends in the evolution of loss and accuracy metrics
to the ones derived from training in the homogeneous cluster. Specifically, Strategy-
Switch models follow similar trends to the ones of the All-Reduce models regarding
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accuracy. In terms of training and validation loss, Strategy-Switch finally reaches
lower levels compared to the other training setups.

The greatest difference between the results of the heterogeneous #C2 cluster
and the homogeneous #C1 cluster is related to the execution time. Let us discuss
in further detail the trade-offs between accuracy and training time in the heteroge-
neous #C2 cluster. For the benchmark #B1, Figure 4.14a and Figure 4.15a present
the execution time and resulting accuracy values when training models under the
three distributed approaches. Strategy-Switch completes the training 2.07.X faster
compared to All-Reduce. Strategy-Switch also appears to present the greatest value
in both training and validation accuracy (~ 0.05% greater than All-Reduce). In
Strategy-Switch the model parameters are initialized by All-Reduce for the rest of
the training to be performed under the Parameter Server. Due to the heterogeneity
of the cluster and the lack of synchronization in the Parameter Server, the faster
workers will dominate the training until they finish, leading to fewer stale param-
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eters in the slow machines. On the contrary, the slow machines will continue the
train at their own pace when the faster machines have finished, without the stale
gradients effect. This observation can explain the slight increase in the accuracy
values in Strategy-Switch. Similar trends are observed in the #B2 benchmark. In
this case, execution time and accuracy values are provided in Figure 4.14b and
4.15b respectively. The model derived from Strategy-Switch is created 1.4X faster
than the All-Reduce one, with a validation accuracy slightly enhanced by 0.19%.
In both benchmarks Parameter Server is the faster (2.48X for #B1 and 2.28 for
#B2 speedup compared to All-Reduce), but lacks in models quality (validation
accuracy harmed by 0.9% for #B1 and 2.88% for #B2 compared to All-Reduce).
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Chapter 5

Data Distribution for the
Parameter Server

As demonstrated in Chapter 3, a significant challenge associated with asyn-
chronous training in parameter server architectures is the presence of stale gradi-
ents, which negatively impact training stability and convergence accuracy. The sys-
tematic literature review highlighted various consistency control approaches aimed
at addressing this issue, primarily through synchronization techniques. Building
upon these insights, this chapter explores a complementary strategy: leveraging
intelligent data distribution methods to mitigate the adverse effects of gradient
staleness by maintaining asynchronous training. By carefully examining how data
is assigned to workers, it becomes possible to improve the consistency of updates,
thus enhancing overall training performance and stability in asynchronous param-
eter server environments.

In this Chapter [211, 212|, a vision on how the distributed deep learning process
could benefit from the distribution of the training data is discussed, under the
asynchronous parameter server architecture. Data preprocessing techniques can be
used to obtain an a-priori knowledge of the data domain, which could be beneficial
in the training process. The target is to study and propose systematic ways on how
the data should be assigned to the available training worker nodes. Furthermore,
random or algorithmic access patterns on data during asynchronous training will
be discussed. Considering such techniques, the goal is for the training to be less
sensitive to undesirable effects that appear in asynchronous distributed learning
setups.

5.1 Why studying data assignment to workers?

As stated in Chapter 3, the parameter server training is usually harmed from
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the stale gradients effect. Stale gradients occur when a worker computes a gradient
update using old model parameters. In research works stated in the aforementioned
chapter, algorithmic solutions in the parameter server or learning rate level are
proposed to smooth the staleness effect. However, if the data part that can be
accessed from each worker is not representative on the whole dataset, this may
further harm the staleness effect, since a common approach is to randomly shard
the data to workers. For instance, TensorFlow uses a modular sharding approach
based on the training example index to assign it to a worker.

20001
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Figure 5.1: Class Population Histogram of Imagenet data obtained from
Flickr.

To further support this claim, an example based on an Imagenet [14, 213]
subset with images from Flickr (approx. 60GB size) will be discussed. Figure 5.1
presents a histogram with the image population in each class. In this figure, it
can be observed that that most of the classes consist of approximately 100 images,
while some of them consist of more than 1000 (and even more than 1500 images).
Thus, it is possible that a random data assignment approach could not provide a
worker with data of some of the less populated classes or bias another towards a
highly populated class (data skew on some workers). Having trained on a stale
parameter set on some iteration, such worker could direct the weight not towards
the direction of the true optimization point, but possibly to another one which
will better optimize this part of data, due to lack of knowledge regarding the data
space. Part of this research aims to study whether systematic approaches in data
sharding to workers could be facilitated in order to smooth the effects of staleness.

5.2 Data Modelling and Data Patterns
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5.2.1 Data Modelling

Datasets that are defined as a set of characteristics with continuous values in
a given space, can be defined with the help of normal distribution [214]. Normal
Distribution is symmetric around a centroid mean value, while the probability of
encountering a given point becomes less as the distance from the centroid grows.
In a n-dimensinal space, the pdf of the normal distribution is given from the equa-
tion 5.1, where [i is the centroid mean vector and 3 denotes the covariance table.
If a vector Z belongs in this normal distribution, it can be written as & ~ N, (i, X).

1 1

BAY) = ——————exp- (- Q)N T - [ 5.1
f(Z [, %) bl p 5 (@~ 1) (@ — A) (5.1)
According to definitions below, normal distribution can be used to describe
datasets that are located aroung a centroid vector in the n-dimensional space and
the corresponding data points are more dense closer to centroid. However, real
datasets do not often comply with this structure in the multidimensional space.
A usual way to describe an arbitrary dataset is using a composition of multiple
normal distributions. Specifically, it can be considered that data are divided into
subsets where each subset could be generated from a normal distribution. A model
capable of describing this dataset modelling is named a Gaussian Mixture Model

(GMM) [215, 216], which is defined in Definition 1.

Definition 1 (Gaussian Mixture Model) A Gaussian Mizture Model (GMM)
defines a distribution with a probability density function P(x), as a mizture of n
normal distributions with mean value vectors [i; and covariance tables ¥; , i €
{1,2,...,n}, according to the equation

P(z) = Zm - Ni(jdi, 2i)
i=1

where m; > 0 and Y ;- m = 1.

Increasing the number of normal distributions used in the GMM can model
more complex data structures, since the multidimensional space is divided in even
smaller parts with similar data according to the generator distribution. The pa-
rameters m; represent the probability that a specific data point comes from the i-th
normal distribution of the GMM.

Suppose that the exact normal distribution that generates each data point of the
dataset is known. Then the concept of a data point neighborhood can be defined,
which can be considered the spherical area across the centroid of the distribution
that includes all the data points from this part of the GMM. Formally, the definition
of the neighborhood is provided in Definition 2. Having defined a neighbourhood,
this context can be used to define when two data points are considered equivalent
(Definition 3).
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Definition 2 (Neighbourhood) Let Py € R™ a multidimensional point and r €
R*. The neighbourhood of the point Py is defined as the set of points {x1,xa, ..., T}
present in the multidimensional R™ space which satisfy the condition

x; € C(Py,r),Vie{1,2,...,k}

where C(Py,r) represents the spherical area with Py as a center and radius r. The
point Py is considered the center of the neighbourhood.

Definition 3 (Equivalent points) Let P,Q € R™ and N a neighbourhood in R™.
P and Q are considered equivalent in respect to N if and only if

PeNand Q e N

5.2.2 Pattern I: Stratification

Stratification describes the way of sorting the data points into distinct groups.
It is a widely used technique which is adopted in various tasks and is usually of
high interests when the computing task cannot view entirely the data. For example
in an approximate query processing problem [217]. Another field of interest that
has expolited stratification patterns is graph partitioning [200], where the patters
are exploited to isolate disjoint subgraphs.

While the aforementioned works focus on solving problems from other domains,
stratification is widely used in the machine learning domain. Specifically, strati-
fication is used to achieve more stable classification results. For instance, it is
widely used in cross validation techniques for standard single node machine learn-
ing, where it reduces the metrics’ variance [198|. Furthermore, in the context of
learning, it is also used to facilitate lear/ning from heterogeneous databases [218|.

Considering as a stratum a whole class in a classification problem, in the con-
text of the data model described in Section 5.2.1, each stratum can represent a
neighbourhood, since a spherical area that could contain all the examples from a
class could always be found. Therefore, taking as an example the data assignment
problem, discussed in Section 5.1, stratification could provide each training worker
with an equivalent view from the data. An example is provided in Figure 5.2, where
two workers participate in the training of a 4-class dataset, where the data present
skew. In random assignment, there is the possibility that class 1, which contains
only three training samples, might be assigned only to one worker (Worker 1),
while the other worker (Worker 2) focuses more on another class, e.g., class (class
4), from which Worker 1 is assigned only one sample. On the contrary, stratification
ensures that both workers can study all the classes in a similar manner.

5.2.3 Pattern II: Hidden Stratification

Hidden stratification can be used to reveal how the data are organized in the
distribution into non predefined subgroups. A proper example to explain hidden
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Figure 5.2: Random (right) versus Stratified (left) Assignment. Workers have
access to all classes in stratified assignment, while in random each worker has
a different view on the dataset.

stratification is the CIFAR-100 [206] image classification benchmark, which comes
with a set of both coarse-grain and fine-grain labels.

CIFAR-100 is an image classification dataset, which comes with both a coarse-
grained and a fine-grained class label for image. Figure 5.3 presents some of the
coarse-grained labels of the datasets, which are analyzed in the fine-grained labels.
The tree structure in the figure presents training examples from each fine-grained
label. Imagine the dataset is available only with the coarse-grained labels. Accord-
ing to the Figure, multiple different images are characterized in the same manner,
e.g., both beavers and dolphins are considered aquatic mammals. However, since
they are totally different animals, images from dolphins and beavers are expected
to have pixel values, which come from different distributions representing different
colors and formed shapes. Therefore, in case hidden stratification is explored, the
fine-grained labels and the corresponding distributions could be discovered.

According to various research works, hidden stratification plays a crucial role
in many machine learningrelated problems. For example, in a 2020 research [219],
hidden stratification appeared to crucially affect the quality of classification models
for medical images. In [220], the authors propose to explore, identify and use
fine-grained labels in classification problems where only coarse-grained labels are
available, achieving greater accuracy in the resulting model.

A common approach to discover hidden patterns in the data distribution is the
use of unsupervised learning techniques, as clustering. Since data can be considered
vectors from a multidimensional space, that are generated from a GMM, clustering
can divide the space into subgroups (neighborhoods in the context of Section 5.2.1),
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Figure 5.3: Three of CIFAR-100 coarse-grained labels split into the corre-
sponding fine-grained labels. For each fine-grained label two example images
are provided.

where it can be considered that each one is generated from one of the GMM’s
normal distributions.

In the big data context, multiple clustering techniques have been proposed.
For instance, in [221] they have designed a clustering framework for big data,
which is able to discover multiple distribution types. Others propose approximate
and distributed versions of common clustering algorithms, as KMeans [222], DB-
SCAN |223] etc.

Apart from unsupervised learning, it would also be efficient to utilize functions
that cluster together equivalent points, in the same manner as hash functions do.
Towards this approach and in the spirit of Locality Sensitive Hashing, Gao proposed
in [201] Data Sensitive Hashing (DSH), where he facilitates data distribution to
hash together close data points in a high dimensional space. DSH is a special case
of the Locality Sensitive Hashing. More information is provided in Appendix B.

5.3 Mini-batch selection: From single-node train-
ing to asynchronous distributed training

Mini-Batch SGD does not move the weights of the neural network directly
to the minimization point due to the restricted view it has on the data on each
iteration. However, it is known that Gradient Descent is able to move directly
towards the optimization point. A usual approach to overcome such problems
when training deep learning models is to randomly shuffle the data before each
mini-batch extraction in order to obtain a mini-batch with less correlated data [9].
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Therefore, it is reasonable to state the question what will happen if the mini-
batch is chosen such that it is actually representative of the whole dataset. Will this
either result to a more accurate model or to a faster training process in respect to
the random sampling techniques used? Is it important to perform some preprocess
to the training data in order to understand their structure and determine the
sampling process during the mini-batch selection?

In 2009, Bengio proposed Curriculum Learning [224| as an approach towards
this direction and proved that the training was able to converge to better local min-
ima when he decided to use traits of the data to help the network training process.
For instance, in an image classification case of categorizing shapes into elliptical,
triangular and rectangular, he decided to use only some easily distinguished data
at first, and then include more complex images.

Researchers from Germany have also proposed in 2016 the idea [225] of online
batch selection in the training process. In this case, each training example is
modelled with a probability to be selected according to its loss and the recency of
its last selection. This idea enhanced the loss and accuracy on the MNIST [226]
dataset. In this same spirit in 2019, the authors in [227] propose a submodular mini-
batch selection method, where the model various scores that lead to which data
points are selected for each mini-batch. Latest works [228, 229| attempt mini-batch
selection using sliding windows on the correct predictions per sample. Depending
on how accurate the model is on predicting each sample, the corresponding data
point is preferred to be selected on the next mini-batch. Since mini-batch selection
can boost the learning process, this technique will be able to smooth the effects of
staleness in asynchronous learning setups.
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Chapter 6

Offline Data Sharding for
Stabilizing Parameter Server
Training

In Chapter 5, the potential of systematic data distribution to mitigate the
negative effects of gradient staleness in asynchronous parameter server training
was identified. Building upon these conceptual foundations, this chapter delves
into practical data sharding strategies aimed explicitly at stabilizing the train-
ing process. Specific offline data-sharding approaches are proposed and rigorously
evaluated, contrasting them with traditional random methods (Section 6.1). By
strategically organizing data before training commences, the aim is to further re-
duce gradient variability, improve training stability, and ultimately achieve more
consistent convergence outcomes in parameter server architectures.

As a motivation experiment, a simple CNN network over the CIFAR-10 dataset
is trained multiple times, having randomly distributed the data to the workers
before each run. Figure 6.1 describes the architecture of the simple CNN network
used. The network consists of three sequences of 2D convolutional, 2D Max Pooling,
batch normalization and dropout layers and concludes some dense and dropout
layers. Figure 6.2 presents the training and the validation loss per experiment. In
this figure, the existence of variance between the loss values from the subsequent
runs can be noticed. This observation further motivated this research over whether
various sharding techniques lead to more stable results. Note that when machine
learning is applied in domains, as health applications, it is important that the
resulting model presents small variance in the classification accuracy. For instance,
in the case of predicting the risk of diabetes, reliability model metrics depend on
the standard deviation, and therefore the variance, of the model’s accuracy [230].
Thus, to make more reliable models under asynchronous learning, it is crucial to
further reduce the variance in the resulting metrics.
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Figure 6.1: CNN Architecture

0.84 1.14
0.82 112
w
(080 8110
o -
0.78 S 1.08
£ 2"
£ ©
©0.76 21.06
= 3
074 1.04
0.72 1.02
0.70 1.00
6 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80
Epochs Epochs
(a) Training Loss (b) Validation Loss

Figure 6.2: Loss of multiple distributed training runs of a simple CNN net-
work over CIFAR-10 dataset.

The main contributions of this Chapter are the following:

e Two systematic sharding approaches are proposed, the Stratified and the
Distribution Aware approach.

e A detailed experimental evaluation on how and why systematic data sharding
can stabilize the asynchronous learning process is provided. When stratifica-
tion is considered, variance of validation metrics can be reduced by up to 6.X.
Distribution Aware sharding can enhance training and validation metrics in
most cases with up to 8X and 2X less variance respectively.
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6.1 Data Sharding Techniques

In distributed learning, under the data parallelism approach, workers contribute
to the global model with gradients computed using different subsets of the data,
as it was decribed in Section 2.1.2. Currently, distributed deep learning systems
randomly assign data to workers. TensorFlow, for instance, uses the shard mech-
anism in its data pipeline [231], which assigns training examples to workers in a
round-robin fashion. Since the purpose is to compare the effect of data assignment
techniques to workers, a custom mechanism that creates the shards offline accord-
ing to the method the user prefers is created. Note that it is safe to create the
shards beforehand, since the equivalent mechanism of TensorFlow described, sug-
gests to be applied at first. Thus, the data assignment is static upon the training
process.

train - -> Worker #0
dataset I' v
number of - -/ \
workers () \.__ [l ~~ " _ L= ) Worker #1
algorithm - :
name =~ :
algorithm Data Se oo <:>
parameters Splitter ) Worker #N
- Assign Shard #i to Worker #i Input assignment
with corresponding label related information

Figure 6.3: Offline Data Splitter

In this chapter, propose an offline data assignment system is proposed, outlined
in Figure 6.3. This system takes as input the data set, located in a shared or
distributed file system, from which the various shards shall be created, the number
of workers (V) that participate in the training process and the algorithm that will
assign training examples to workers followed by any related parameters. Having
provided this information, the related algorithm is used to create N shards from
the dataset, by assigning worker indicative labels to each training example.

In further detail, three different algorithms regarding the data shard creation
process are examined. As a baseline, a random data assignment to workers is used.
Furthermore, the two other techniques proposed are discussed in subsections 6.1.1
and 6.1.2 respectively, where the intuition behind them is also discussed.

6.1.1 Stratified Sharding

Random data assignment cannot ensure that each worker will have an equiva-
lent view on the train data set. For instance, let us present a scenario where only
two classes are present in the train data set, where each class represents half of
the available data. Depending on the order of the training examples, some workers
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Figure 6.4: Stratified assignment: Half of the points from each class are
assigned to each shard.

may well have available more examples from the one class compared to those from
the other. Thus, the workers will not have a representative view of the world that
these data describe, but each one will recognize one class as dominant regarding
its frequency. In the aforementioned scenario, workers may attempt to lead the pa-
rameters of the global model to a different direction from each other, such that the
model will more efficiently categorize the examples available in their local shard,
affecting the efficiency of the resulting model.

Inspired from machine learning basics, discussed in section 5.2, stratified as-
signment is proposed as another technique, which is able to guarantee that each
worker will be provided with a data shard that is equivalent to the world the whole
train set describes. The aforementioned equivalence refers to each shard consisting
of the same percentage from each class compared to the one on the whole train
data set. The result of creating shards using the stratified approach is illustrated
in Figure 6.4, where 2-dimensional data forming two classes are split into two
distinguished shards.

Figure 6.5 outlines the algorithm used to perform a stratified assignment. The
first step is to find the set of distinct classes, given the array of labels (line 5).
Sequentially, the set of training examples from each class is retrieved (line 7).
Finally, for every such set the data are given in a round robin manner to the workers
(lines 9 - 13). This approach guarantees that each class percentage remains intact
in the sample compared to the one on the whole train set.

6.1.2 Distribution Aware Sharding

Stratified assignment is an obvious way to provide the participating workers
with an equivalent view of the data. However, apart from the obvious class strat-
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procedure STRATIFIEDSHARDING(z,y,n)
> x is an array of multidimensional tensor representing

training examples
> y is the correspongin array of labels

> workers have identifiers 0, 1, ..., n-1
> Identify available classes

B

3
4
5 classes = unique(y)

6: for each class in classes do
7 x_class,y_class =in_class(x,y, class)
8 class_size = length(y_class)

9: for © =0 to class size —1 do
10: > Round Robin split for each class
11: worker _id =1 mod n

12: Assign example z_ class(i) to worker _id
13: Assign label y class(i) to worker _id

14: end for

15: end for

16: end procedure

Figure 6.5: Stratified data sharding to workers using mod
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Figure 6.6: Example of 2-dimensional points organized in dense (A, B) and
sparse (C, D) neighbourhoods.

ification, hidden stratification may also exist in the data set. Data can be further
categorized to neighbourhoods (clusters), based on their position in respect to other
data points.

Distribution aware sharding takes into account the neighbourhoods, in the con-
text of Definition 2 given in Section 5.2.1, in the same manner the stratified one
uses the classes. Before this type of assignment is described, an example of neigh-
bourhoods from the 2-dimensional space is provided (Figure 6.6). While some
neighbourhoods (A, B) consist of adequate equivalent points, others (C, D) consist
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: procedure DISTRAWARESHARDING(z, ¥, n, classes)
2: > x is an array of multidimensional tensor representing
training examples

3: > y is the correspongin array of labels
4: > workers have identifiers 0, 1, ..., n-1
5: > classes is the number of classes for the KMeans algo-
6: x_ flattened = f latten(x)rlthm > Flatten each example
7 x_distribution = PCA(z_ flattened)
8: cluster _ids = K Means(z_distribution, classes)
9: clusters = unique(cluster _ids) > Identify clusters
10: for each cluster in clusters do
11: x_cluster,y cluster =in__cluster(z,y, cluster)
12: cluster _size = length(y_cluster)
13: if cluster size > n then
14: for i =0 to cluster _size —1 do
15: > Round Robin split for each cluster
16: worker id =1 mod n
17: Assign example x_ cluster(i) to worker id
18: Assign label y_ cluster(i) to worker _id
19: end for
20: else
21: Assign each x(i) in = __cluster to all workers
22: Assign each y(i) in y_ cluster to all workers
23: end if
24: end for

25: end procedure

Figure 6.7: Distribution aware data sharding to workers using mod

of isolated examples. It is important to mention that it cannot be determined
whether these isolated points are outliers or if the available data set does not con-
sist of more equivalent points. Since such knowledge is not available, outlier points
forming sparse neighbourhoods should be handled in a different way from this type
of assignment. Thus, the algorithm distinguishes two different cases:

1. Densely populated neighbourhoods: Data points from such neighbourhood
shall be assigned in a round robin fashion to workers. This assignment pro-
vides each worker an equivalent view of this neighbourhood.

2. Sparsely populated neighbourhoods: FEach worker should be also provided with
a view from such neighbourhoods. Since the data points are insufficient to
split, the whole neighbourhood is broadcasted to all workers.

Distribution aware assignment is fully outlined in Figure 6.7. First, in order to
have data points in R", each training example is flattened (line 6). KMeans algo-
rithm [232, 233] is used to identify the various neighbourhoods that can be formed
by the available data (line 8). Note that the algorithm takes as input the number
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of neighbourhoods that data are organized to. In order to speed up the KMeans
algorithm, each data point is transformed beforehand to a format that will contain
its important information summarized. A state of the art approach is to apply the
PCA algorithm [234], which minimizes the information loss by maximzing variance
(line 7). Finally, a round robin assignment is performed for each densely populated
neighbourhood (lines 11-19), while sparsely populated neighbourhoods are broad-
cast to all workers (lines 21-22). Note that sparsely populated neighbourhoods are
considered those with less points than the number of workers. This assumption is
made, since otherwise each worker cannot have a distinct and equivalent view on
this neighbourhood.

6.1.3 Time Complexity

Having presented the sharding approaches, it is important to identify their
time complexity. Suppose a dataset of n training examples in the d—dimensional
space is available. The baseline random assignment can be implemented in O(n),
by choosing to assign each example to one of the workers with the less assigned
data. Stratified sharding is implemented with two nested for loops, passing the
data points once (see Figure 6.5). Thus, stratified sharding also is a O(n) algo-
rithm. Regarding the distribution aware approach, its computational complexity
is determined by applying the PCA and KMeans algorithms, which are used from
the scikit-learn library in this implementation. PCA has a O(n - d?) [235] time
complexity. KMeans, since the number of maximum iterations T is fixed to 150,
becomes a O(k - n) [236] algorithm, where k is the desired number of neighbour-
hoods. Therefore, the distribution aware sharding is a O(n-max{d?, k}) algorithm.

6.2 Experimental Setup

The experimental evaluation is conducted on a cluster consisting of 15 virtual
machines. Each virtual machine has 4 CPUs and 16GB RAM and operates with
Ubuntu 16.04.6 LTS. TensorFlow in version 2.3 is used to build and train the
models under the parameter server architecture, which was the latest stable one
when performing the experiments. As a common distributed file system, where the
workers save checkpoints and summaries Apache Hadoop [69] is deployed with 1
namenode and 14 datanodes.

Regarding the tasks that participate in the training, each one is deployed in
a different VM. In further detail, 2 servers, 12 workers and 1 evaluator task are
deployed. In the training process, each worker exploits only data assigned to them
from the sharding algorithm.

Note that there are no GPUs available on this experimental cluster. However,
since it is needed to evaluate how the model quality under an asynchronous training
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Table 6.1: Dataset Characteristics

Dataset Name Image Size Train Size Test Size +#Classes

CIFARIO  (36,36,3) 50,000 10,000 10
CIFAR100 (Coarse)  (36,36,3) 50,000 10,000 20
CIFAR100 (Fine)  (36,36,3) 50,000 10,000 100

Table 6.2: Resnet-56v1 Singlenode Training Configuration

Configuration Name Value

Epochs / Optimizer 182 / SGD with momentum 0.9
Learning Rate Initial 0.1, divide with 10 after 90 and 135 epochs

Normalize Dataset Subtract Mean of Training Images

setup is affected from the algorithm used to create the data shard, the lack of such
accelators is not crucial for the quality of the experiments.

6.2.1 Datasets, Networks and Training Setup

fThe proposed data sharding schemes are evaluated with benchmarks from the
Image Classification domain. The experimental evaluation for the different data
assignment strategies is performed on training the ResNet-56v1 network [13]| with
the CIFAR-10 and CIFAR-100 [206] respectively. CIFAR-100 is examined both
with the coarse and fine grain labels available. More details regarding these data
sets are presented in Table 6.1. Regarding the network configuration, [13] clearly
proposed a set of hyperparameters for training on the CIFAR datasets in the single
node case (outlined in Table 6.2). Taking the aforementioned single node training
configuration into account, all the necessary hyperparameters aere adjusted for the
distributed setup as explained in section 2.1.2.

For each experiment five runs are performed and the mean values and the
variance of the final loss and accuracy over the training and the validation set are
used. Any effects that occur by using each sharding approach are further discussed.
Regarding the Distribution Aware technique, the same global data set size as the
baseline is considered. In this way, the model is not further trained with more mini
- batches per epoch, but study how sparse neighbourhoods can affect the training
results.
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Table 6.3: Statistics (5 runs) of final Training and Validation Loss / Accuracy
on the CIFAR-10 dataset per method

Training Metrics

Method Loss Accuracy
Mean Variance  Mean Variance

Random 0.165786  0.001567  0.920000  0.001086

Stratified 0.165751  0.001312  0.922397 0.000736

20 0.165237  0.002471  0.921583  0.004059
0.165166  0.001270  0.922218  0.000128
40 0.165046 0.000761 0.921884  0.000851

Distribution Aware

Class
Number
w
o

Validation Metrics

Method Loss Accuracy
Mean Variance  Mean Variance
Random 0.442370  0.006174  0.935489  0.000863
Stratified 0.444076  0.005401  0.935396  0.000284
. & 20 0.445127  0.004059  0.935291  0.000648
Distribution Aware éé:% 30 0.442075  0.003431 0.935885 0.000550
Z 40 0.441692 0.011402  0.935127  0.001358

6.3 Experimental Evaluation

6.3.1 CIFARI10

Metrics and Variance.

Table 6.3 outlines the mean and variance of training and validations metrics for
each sharding approach applied on the CIFAR-10 dataset. While using stratified
sharding led to similar reduction of the train loss, it is important to notice its
effect on the variance of the metrics. Stratified sharding concludes in training and
validation accuracy with 1.47X and 3.03X less variance compared to the baseline.
Loss values also follow similar patterns.

Distribution aware mechanism leads to a slight enhancement in the metrics and
might further the decrease of the variance. For instance, when sharding using 30
neighbourhoods, the validation accuracy meets the best value of 0.9359. Training
accuracy is enhanced by 0.22% with a 8.48X less variance compared to random.
Compared to the baseline, variance of validation metrics is also enhanced by up to
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Table 6.4: Sparsely populated neighbourhoods through Distribution Aware
Algorithm (various cluster sizes as input) with the resulting validation met-
rics for 3 of the runs (CIFAR-10). Mean Size refer to the mean population
of all those neighbourhoods.

Run #1 Run #2 Run #3

#Clusters

Sparse Mean  Valid. Sparse Mean  Valid. Sparse Mean  Valid.

Neighb.  Size  Accuracy Neighb. Size Accuracy Neighb. Size Accuracy
20 2 1 0.9352 1 1 0.9345 3 1 0.9361
30 6 2.83 0.9351 6 1.17 0.9361 4 1.25 0.9364
40 7 1.57 0.9370 8 1 0.9345 11 1.56 0.9330

1.57X.

Overall, in the CIFAR-10 series of experiments, the variance of the metrics,
when using the baseline random approach, appears to be greater than the one
from the proposed approaches. This observation is explained if the data distribu-
tion per worker is examined. This issue will be further discussed in section 6.3.2.
Distribution Aware approach only presents greater variance in the validation met-
rics compared to the baseline if a large number of neighbourhoods compared to
the number of classes in the dataset is used. This effect is discussed in the next
subsection (6.3.1).

Effect of Sparsely Populated Neighbourhoods.

Another interesting insight comes from examining how the model metrics are
affected when increasing the number of classes provided in the distribution aware
algorithm. The training loss and its variance are constantly decreasing with the
increase of the proposed number of neighbourhoods. However, according to the
validation metrics of Table 6.3, if the algorithm is provided with a large number
of neighbourhoods, their variance becomes larger, indicating that the model might
slightly overfit. Since sparsely populated neighbourhoods are broadcasted to all
workers, it is more likely that a greater number of examples will be reused from
all workers while increasing the number of neighbourhoods. For example, in the
case of 40 neighbourhoods, a more closer look on each distinct run asserted the
above statement. During one of the runs, as shown in Table 6.4, 11 sparsely
populated neighbourhoods appear to slightly harm the validation accuracy which
concluded in a value of 0.9330. On the other hand, when 7 sparsely populated
neighbourhoods occurred, the validation accuracy managed to reach 0.9370. Note
that the validation loss on this case was 0.4329 leading to a 2% enhancement from
the results of the baseline method. Overall, while the distribution aware sharding
can enhance the value of the metrics, a large number of neighbourhoods should not
be examined to avoid the case of multiple sparsely populated ones.
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Table 6.5: Statistics (5 runs) of final Training and Validation Loss / Accuracy
on the Coarse CIFAR-100 dataset per method

Training Metrics

Method Loss Accuracy
Mean Variance  Mean Variance
Random 0.352169  0.004761  0.811742  0.003103
Stratified 0.346032 0.001903  0.814008 0.000766
L5 30 0349379 0.003350  0.812987  0.002031
Distribution Aware (%@% 40 0.350087  0.001738 0.812330 0.000535
Z 60 0.347240  0.001893  0.812624  0.001138
Validation Metrics
Method Loss Accuracy
Mean Variance = Mean Variance
Random 1.216487  0.010065  0.805993  0.004452
Stratified 1.232794  0.006096 0.805841  0.000728
L& 30 1.219970  0.009967  0.806072  0.000931
Distribution Aware é@% 40 1.211612  0.008745  0.806237 0.002374
Z 60 1.209313 0.021793  0.805775  0.003009

6.3.2 Coarse - Grain CIFAR-100

Metrics and Variance.

Table 6.5 presents the final training and the validation metrics of training the
Resnet-56v1 network of the CIFAR-100 dataset with the coarse - grain labels, hav-
ing the data sharded to workers with all the aforementioned techniques. Stratified
sharding led to results that minimize the training metrics and the variance of the
validation metrics. Specifically, the variance of the validation loss and accuracy
was 1.65X and 6.11X smaller than the baseline. Training loss was also minimized
by 2% from the one emerging from the baseline sharding.

While stratified sharding manages to minimize the variance, the actual value
of the validation metrics is minimized when using the distribution aware sharding
algorithm. In 6.3.1 the experimental evaluation indicated that distribution aware
sharding, when given the appropriate number of clusters as input, could provide
the model with the best validation metrics and smaller variance than the baseline.
Table 6.5 can further support this claim. Providing the algorithm with twice the
number of classes, appear to have an enhanced validation loss with 1.21X less
variance from the round - robin sharding. The same applies for the validation
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accuracy, which meets its best value of 0.806237 in this setup. Note that validation
loss is minimized when the number of clusters in the algorithm is set to three times
the number of classes (60). However, the variance in this setup appears to suffer
from the sparse neighbourhoods effect discussed in 6.3.1.
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Figure 6.8: Box plots representing the number of class examples in each shard
created randomly for 3 of the runs.

Random Sharding Weakness.

Having discussed the variance minimization that can be achieved from the
stratified sharding algorithm, it is important to further understand why the default
random approach results to larger variance in the validation metrics. Figure 6.8
presents a group of box plots for 3 of the runs of the random sharding approach.
Each box plot describes the number of training examples from each class that is
assigned to each worker. CIFAR-100 consists of 20 equally populated coarse grain
labels. Sharding the data set into 12 workers should provide each with approx-
imately 208 training examples from each category. Most workers have a median
number of examples per class close to this value and overall (200,215) as a 50%
confidence interval in most cases. However, the box plots indicate that several
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Table 6.6: Statistics (5 runs) of final Training and Validation Loss / Accuracy
on the Fine CIFAR-100 dataset per method

Training Metrics

Method Loss Accuracy
Mean Variance  Mean Variance
Random 0.512164  0.009550  0.744448  0.007855
Stratified 0.516125  0.009296  0.744203  0.003107
. B 50  0.513846  0.004085 0.746785  0.000764
Distribution Aware égé 100 0.521913  0.008164  0.743808  0.005842
Z 200 0.510340 0.006247 0.746949 0.001134

Validation Metrics

Method Loss Accuracy
Mean Variance  Mean Variance
Random 1.841267  0.026051  0.704707  0.002222
Stratified 1.817435 0.011633 0.708432 0.001225

50  1.835961  0.019680  0.707048  0.004526
1.851682  0.015945  0.703488  0.003561
200 1.839176  0.013421  0.708234  0.002264

Distribution Aware

Class
Number
=
o

classes are distributed unequally to the workers. For instance, a closer look on the
box plots referring to the second and third runs (Figures 6.8b and 6.8¢c) indicates
that most of the workers have 180 — 230 and 175 — 235 training examples from
each category respectively, leading to unbalanced sharding for some classes. Thus,
a worker will try to adjust the model more on one specific class leading to greater
variance in both training and validation metrics between the training attempts. Of
course, an outlier number of examples per class could further hurt the variance, as
for instance in the case of workers 2 and 7 from the second run (Figure 6.8b) and
worker 2 from the third run (Figure 6.8c), since the divergence of the class size
compared to the rest will further create dominant or subdominant classes.

This non - uniform view each worker has on the data, is not met on the pro-
posed algorithms. Stratfied shards preserve the percentage of each class size from
the whole dataset. Distribution aware technique, considers further hidden strati-
fication, which also avoids this problem, if the appropriate number of clusters is
given as input (Section 6.3.1).
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6.3.3 Fine - Grain CIFAR100

Metrics and Variance

Table 6.6 reveals some interesting findings regarding the validation metrics. To
begin with, as discussed in 6.3.1 and 6.3.2, the variance of the validation metrics
is minimized when using stratified shards. Specifically, both validation loss and
accuracy are less variant by 2.23X and 1.81.X respectively. Apart from the variance,
this series of experiments shows shards derived from the stratified algorithm, also
manage to slightly enhance the values of the validation loss and accuracy to 1.81X
and 70.84% respectively.

As it is shown in Table 6.6 training loss is not minimized by shards created
from the stratified approach. When distribution aware shards are used, the model
appears to minimize the training loss and maximize the training accuracy, followed
by similar validation accuracy to the one of the stratified case. While the distri-
bution aware case does not minimize the variance of the validation metrics, it also
presents lower values of variance compared to the baseline method.
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Figure 6.9: Average Sharding Technique Time per Dataset

6.3.4 Time Ovehead of Data Sharding

Figure 6.9 presents the average execution time in seconds for creating shards
with technique. For the distribution aware technique the mean execution time
over all classes examined for each dataset is presented. Stratified and Mod shard-
ing techniques, as same complexity algorithms (see Section 6.1.3), induce almost
the same time overhead to the whole training process, which is less than 1 sec.
Distribution aware’s overhead is ~ 100 seconds, which does not burden the whole
training process, since the ResNet-50 network needed approximately 4 hours to
converge in the cluster.
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Since GPUs are not used to train the models, it shall be ensured that the time
overhead induced from the sharding algorithms is not important in case accelera-
tors are available. Let us take as an example the family of CIFAR datasets. As
mentioned in 6.2.1, each of these datasets is used to train a model following the
ResNet-50 architecture with the proposed hyperparameters, i.e a global mini-batch
size of 128 training examples. Thus, according to 2.1.2, W B is approximately 10
training examples. Benchmarking indicated that TensorFlow needs approximately
0.11 seconds to train a ResNet-56v1 network with a W B mini-batch on a Tesla
GPU [237]. In such case, each worker will need 7800 seconds and, therefore, the
overhead of the distribution aware approach is insignificant.

6.4 Discussion and Conclusions

Having presented a detailed evaluation on sharding algorithms, in this section
the findings are discussed to help the reader understand the benefits and the draw-
backs of each one. Random sharding approach appears to have large variance in the
training and validation metrics in general. As discussed in 6.3.2, workers appear to
be biased towards one or more classes, which will affect the resulting global model.
Stratified sharding comes as a solution to this problem, since each worker has a
uniform distribution over the population of each class and, therefore, an equivalent
view to the data.

Distribution Aware approach appears to be further useful when the train set
presents further hidden stratification (coarse CIFAR-100). It is crucial to set the
correct number of neighbourhoods in the algorithm, in order to avoid the sparse
neighbourhoods effect (see Section 6.3.1). Considering the results obtained from
all the CIFAR family datasets that were examined, it is recommended to set the
number of neighbourhoods twice the number of classes. However, if prior knowledge
indicates no hidden stratification patterns, stratified sharding should be preferred.

To generalize the results, it is important to observe the structure of each dataset.
CIFAR-10 contains a few classes (10) with multiple points each (5000). On the
contrary, fine-grain CIFAR-100 has multiple classes (100) which are less populated
(500 data points / class). Coarse-grain CIFAR-100 is an example of a dataset
with hidden patters. These different structures encapsulated by the CIFAR family
datasets could allow us to generalize the findings, regarding how each sharding
technique affects the variance in the metrics.

In case of applying the Distribution Aware algorithm in much larger datasets,
distributed PCA and KMeans should be preferred to minimize the time over-
head [222, 238|.
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Chapter 7

Conclusions and Future
Directions

In this chapter, the contributions of this thesis are summarized and possible
directions on how the data distribution could be further exploited to enhance less
consistent parameter server approaches are discussed.

7.1 Conclusions

7.1.1 Revisiting the Research Question

This thesis set out to answer a single overarching question: How far can we push
the efficiency and stability of large —scale distributed asynchronous deep-learning in
the parameter server architecture?

To answer this research question, this thesis has contributed in the following
direcitons:

e understanding issues related to the architecture

e adapting training consistency control levels on the fly

e letting the data itself guide scheduling decisions

Specifically, this thesis initially contrasted general-purpose distributed training
architectures with the Parameter Server to showcase the power of this specialized
training architecture. Moreover, it dissected the Parameter Server (PS) design
space, and finally proposed two complementary techniques—Strategy-Switch

and data-aware sharding—that together shrink time-to-accuracy while stabilis-
ing convergence.

124



7.1.2 Summary of Contributions

1. Large-scale benchmark of MapReduce vs. Parameter Server (Chap-
ters 2 and ?7). On a 140-node synthetic workload an 8.23x speed-up
was measured in wall-clock time and markedly higher hardware utilization
for TensorFlow’s Parameter Server over Spark MLIlib, pinpointing scheduler
overheads and extra I/O as the root causes.

2. Holistic survey of PS optimizations (Ch. 3). The thesis classified more
than 110 papers into five domains— Consistency Control, Network Optimiza-
tion, Parameter Management, Straggler Mitigation, Fault Tolerance—providing
a unified map that guided the subsequent design chapters.

3. Strategy-Switch: adaptive consistency controller (Chapter 4). A
hybrid schedule that begins with synchronous All-Reduce, then automati-
cally flips to asynchronous PS once loss fluctuations fall below an empirical
threshold. Across CIFAR-10/ResNet benchmarks Strategy-Switch sustained
All-Reduce-level accuracy while cutting training time by up to 2.1 X on het-
erogeneous clusters.

4. Systematic data sharding for variance reduction (Chapters 5 and 6).
Stratified and Distribution- Aware sharding were introduced that respect class
labels and hidden neighbourhoods, respectively. On asynchronous PS they
lowered validation-metric variance by up to 8X and 2X without extra com-
munication.

7.1.3 Synthesis and Key Insights

Taken together, the results reveal a coherent arc:

e The architectural choice (PS > MapReduce) delivers the first order of mag-
nitude efficiency gain.

e Dynamic protocol switching then re-allocates that efficiency budget into
straggler tolerance—Strategy-Switch finishes first even on skewed hardware.

e Finally, data-centric placement converts remaining runtime slack into
metric stability, a dimension often ignored in pure speed papers.

These levels (system, protocol, data) are orthogonal and thus composable: future
work can also mix-and-match them to suit cluster heterogeneity and domain con-
straints.

7.1.4 Limitations

1. Scale realism. Synthetic workloads mimic Imagenet-size tensors but not
the resource fragmentation typical in shared clouds.
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2. Domain scope. Experiments center on computer-vision tasks (CIFAR-10/100);

NLP transformers may exhibit different communication /sparsity patterns.

3. Offline sharding. Both sharding schemes run as a pre-processing step;
online re-sharding overheads remain unexplored, which is presented as a
direction for future research.

4. Heuristic switch criterion. The empirical 5-epoch moving-variance rule,
though robust in tests, lacks a convergence proof under non-IID data.

7.2 Future Directions

The main ideas include the following :

e Online data sharding approaches for mini-batch selection in the parameter
server architecture

e A Data-Aware Parameter Server

7.2.1 Explore Online Sharding Techniques for mini-batch
selection.

In chapter 6, two offline data sharding techniques that aim to stabilize the
learning process were proposed. However, it is more promising, as discussed back
in Section 5.3, to adapt data selection according to the training. To this end,
information could be exploited from:

e the selected minibatch

e the model parameter it affects

The idea to exploit the training batch and the model parameters it affects, could
open the way to creating DSH functions useful for the ML case. Such functions
could be used to boost training acoordingly, in case the model presents inconsis-
tencies in some classes.

7.2.2 Vision on Data Aware Parameter Server

The ultimate goal of this research is to propose a data-aware parameter server
for more efficient asynchronous or stale synchronous training, adopting data related
information in the mini-batch selection process as described in Section 5.3. The
proposed architecture will take into account the neighborhoods, according to the
definition provided in Section 5.2.1, and the training and validation metrics to
create the next mini-batch. Therefore, each worker will focus on the neighborhoods
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Worker #1 Worker #2 Worker #M

Mini-Batch Service

Evaluator Process

Analyze Data To neighbourhoods - Happens only ones before @

S Servers update the latest model with the received gradients
training

@ Mini-Batch Service streams Mini-Batch to worker @ Servers update the latest model on cloud storage

@ Workers fetch latest model from servers @ Evaluator fetches latest model from cloud

Evaluator computes validation metrics and writes them to the
@ Workers compute gradients P

cloud storage

Workers send gradients to servers @ Mini-Batch Creator

Figure 7.1: Vision of Data Aware Parameter Server Approach.

in which the model is vulnerable. The combination of these approaches will actually
smooth out the effects attributed to staleness.
Figure 7.1 illustrates the data-aware parameter server that is described.

7.3 General Research Directions Based on the
Thesis Survey

Chapter 3 has performed an extensive systematic literature review on the Pa-
rameter Server architecture by systematically categorizing and analyzing research
advancements across five critical areas: consistency control, network optimization,
parameter management, straggler handling, and fault tolerance. By synthesizing
insights from a diverse range of studies, the trade-offs and practical effectiveness
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of various optimization techniques have been outlined, providing researchers and
practitioners with a foundational understanding of this domain. Looking ahead,
several promising research directions emerge:

Scalability: Addressing the scalability of parameter servers in increasingly hetero-
geneous and large-scale environments is a critical area of ongoing research. Tech-
niques that adapt to dynamic workloads and resource heterogeneity are becoming
ever more significant. Recent advancements exemplify this trend. For instance,
Megatron-LM [239] integrates inter-node pipeline parallelism, intra-node tensor
parallelism, and data parallelism to optimize training across a cluster of approx-
imately 3,000 GPUs. This approach achieves a 10% improvement in throughput,
highlighting the potential of hybrid parallelism techniques. Building on these foun-
dations, MegaScale [240] further pushes scalability boundaries by training large
language models (LLMs) on a cluster of 10,000 GPUs. By improving the effi-
ciency of Megatron-LM by a factor of 1.34X, MegaScale achieves a Model FLOP
Utilization (MFU) of approximately 55%. This demonstrates that efficient techni-
cal approaches can significantly enhance scalability and resource utilization, sug-
gesting that continued innovation in this direction is both feasible and necessary.
Additionally, Microsoft’s DeepSpeed team continues to extend the scalability of
distributed learning frameworks. Their recent solution, ZeRO++ [110], introduces
novel optimizations that improve performance and scalability in large-scale dis-
tributed training setups. These advancements underscore the ongoing effort to
develop more efficient and scalable approaches, paving the way for future break-
throughs in parameter server architectures.

Standardized benchmarking: Finally, the standardization of benchmarking
frameworks for evaluating parameter server optimizations is crucial to gaining
clearer insights into their performance under diverse conditions. Standardized
benchmarks foster meaningful comparisons and drive progress in this field. Recent
findings from Stanford’s AI Index Report [22| highlight a saturation of legacy Al
benchmarks such as ImageNet [213], SQuAD [241], and SuperGLUE [242]. Modern
models often achieve near-perfect scores on these benchmarks, rendering them less
effective for evaluating current state-of-the-art systems. Notably, between 2023 and
2024, approximately 15 benchmarks were deprecated for this reason (Figure 2.1.17
in [22]). To address these challenges, new benchmarks have emerged to provide
more comprehensive and specialized evaluation criteria. Generic large language
model (LLM) benchmarks, such as Stanford’s HELM [243] and HEMM [244], have
been introduced to assess models across broader and more diverse domains. For
language understanding, specialized benchmarks like MMLU [245] are gaining trac-
tion. Crowdsourced benchmarks, where human participants vote for their preferred
models, represent another innovative approach, with Chatbot Arena [246] serving
as a prominent example. Truthfulness evaluation is an increasingly active area of
research, with benchmarks like Truthful QA [247] and HaluEval [248] assessing mod-
els’ accuracy in generating factually correct information. Reasoning benchmarks
have also gained attention, exemplified by MMMU [249] and BigToM [250], which
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focus on evaluating models’ logical and inferential capabilities. For models func-
tioning as agents that interact with and perform actions in dynamic environments,
specialized benchmarks have been proposed. AgentBench [251] is a representative
example, offering tools to evaluate models’ performance in action-based scenarios.
These advancements in benchmarking not only provide robust tools for assessing
the performance and applicability of AI models but also underscore the need for tai-
lored benchmarks in distributed learning and parameter server optimizations. By
aligning benchmarking efforts with evolving research needs, the field can continue
to advance meaningfully and sustainably.

Energy Efficiency: As environmental and economic considerations become in-
creasingly significant, developing energy-efficient and cost-effective solutions for
distributed training has become a critical research priority. The energy demands
for training large-scale models are staggering; for example, Google’s Gemini Ultra
incurred training costs of approximately $200M USD, while OpenATl’s GPT-4 re-
quired about $80M USD [22|. Addressing these challenges effectively is essential
for sustainable Al development. Recent studies reveal that a substantial portion of
this energy is "lost" to unnecessary computations rather than directly contributing
to training. Perseus [252] identifies these inefficiencies and proposes a system to
mitigate sources of energy bloat, achieving energy consumption reductions of up to
30% without compromising training throughput or efficiency. Similarly, Argerich et
al. [253] focus on measuring energy consumption during model inferencing, provid-
ing insights into energy efficiency across different deployment scenarios. Zeus [254]
introduces an online exploration-exploitation approach, combined with just-in-time
energy profiling, to automatically determine optimal job and GPU-level configura-
tions for recurring deep neural network (DNN) training tasks. This adaptive scheme
significantly enhances energy efficiency without degrading performance. Another
innovative approach, EnvPipe [255], leverages idle time ("bubbles") created during
pipeline parallelism by strategically scheduling pipeline units to align these bub-
bles with reduced frequency operations. This method achieves up to 25% energy
savings while maintaining training efficiency. These advancements underscore the
importance of optimizing both training and inference processes to minimize en-
ergy waste, demonstrating that substantial energy savings are achievable through
innovative system designs and adaptive strategies.

Closing Remarks

This thesis demonstrates that marrying system-level insight with data-centric
scheduling yields both faster and more reliable distributed training. By step-
ping beyond one-off optimisations and treating architecture, protocol, and data
as a unified design space, the thesis lays a foundation for the next generation of
data-aware Parameter Servers. It is believed that the methods and empirical
evidence presented here will inform—and inspire—future work toward ever-larger,
ever-more-efficient learning at scale.
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Chapter 8

Publications

This chapter outlines any research work published with the participation of the
author of this document. Publications are organized and presented by decreasing
chronological order.

2025

e N. Provatas, I. Konstantinou and N. Koziris, A Survey on Parame-
ter Server Architecture: Approaches for Optimizing Distributed
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From All-Reduce to Parameter Server for Faster Efficient Training,
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2024

e N. Chalvantzis, A. Vontzalidis, E. Kassela, A. Spyrou, N. Nikitas, N. Provatas,
I. Konstantinou, N. Koziris IW-NET BDA: A Big Data Infrastructure
for Predictive and Geotemporal Analytics of Inland Waterways In
IEEE Access, vol. 12, pp. 52503-52523, 2024

2021

e A. Krisilias, N. Provatas, I. Konstantinou and N. Koziris. A Perfor-
mance Evaluation of Distributed Deep Learning Frameworks on
CPU Clusters Using Image Classification Workloads. In proceedings
of the Fifth IEEE International Workshop on Benchmarking, Performance
Tuning and Optimization for Big Data Applications (BPOD 2021 in conjuc-
tion with IEEE BigData 2021), December 2021

e N. Provatas, [. Konstantinou and N. Koziris. Is Systematic Data Shard-
ing able to Stabilize Asynchronous Parameter Server Training? In
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proceedings of the 2021 IEEE International Conference on Big Data (Big-
Data 2021), December 2021

e N. Provatas. Exploiting data distribution in distributed learning
of deep classification models under the parameter server architec-
ture. Proceedings of the VLDB 2021 PhD Workshop (VLDB-PhD 2021),
Copenhagen, Denmark. Vol. 2971. 2021.

2020

e N. Provatas, E. Kassela, N. Chalvantzis, A. Bakogiannis, I. Giannakopou-
los, I. Konstantinou and N. Koziris. SELIS BDA: Big Data Analytics
for the Logistics Domain. In proceedings of the 2020 Applications of Big
Data Technology in the Transport Industry Workshop (in conjuction with
IEEE BigData 2020), December 10-13 2020
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e E. Kassela, N. Provatas, I. Konstantinou, A. Floratou and N. Koziris.
General-Purpose vs. Specialized Data Analytics Systems: A Game
of ML & SQL Thrones In proceedings of the 2019 IEEE International
Conference on Big Data (BigData 2019), Los Angeles, CA, USA December
9-12 2019

e [. Kassela, N. Provatas, A. Tsiourvas, I. Konstantinou, and N. Koziris.
BigOptiBase: Big Data Analytics for Base Station Energy Con-
sumption Optimization In proceedings of the 2019 IEEE International
Conference on Big Data (BigData 2019), Los Angeles, CA, USA December
9-12 2019

e N. Provatas, 1. Konstantinou and N. Koziris. Towards Faster Dis-
tributed Deep Learning Using Data Hashing Techniques In pro-
ceedings of the 2019 IEEE International Conference on Big Data (BigData
2019), Los Angeles, CA, USA December 9-12 2019
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Appendix A

Background on Machine Learning

Deep neural networks [9] aim to approximate some function f : R” — R. In
the context of classification problems, this function is used to classify a feature
vector T to a category y, i.e. y = f(Z;wW), where w is used to denote the neural
network parameters. Neural networks are organized as a sequence of layers, which
are sequentially connected. Thus, the output of one layer becomes the input of the
following one. Depending on the task, different layer types have been proposed, as
convolutional layers for image classification [1].

Using neural networks for classification, requires that the neural network is
trained to provide the best approximation of the aforementioned function f in
respect to its parameters w. The set of model parameters w that can provide such
approximation is the minimizer of a loss function, which describes the error of a
model given a set of example feature vectors &1, ¥s, ..., T, and the corresponding
predictions y1,¥ya, ..., Yn. Since the minimizer of a function is needed, finding the
best network parameters is actually an optimization problem on the loss function.

Gradient Descent is considered to be among the most popular algorithm used
in optimization problems [256]. However, considering both the size of deep neural
networks and the vast amount of data usually available, Gradient Descent is not
preferred, since each iteration will be too slow. A quicker approach is iits stochastic
version, the Stochastic Gradient Descent (SGD). Therefore, this set of parameters
W is located by the SGD algorithm.

Let L : R®™ — R be the loss function used on training a model with parameters
w. The k-th iteration of SGD [257], based on a randomly selected training example
(Zk, Yk ), is mathematically formulated as follows:

W1 = Wy, — o - Vg, L(Wy; Tg, yi) (A1)

where w; and a stand for the model parameters in the i-th iteration of the SGD
and the learning rate respectively.

SGD is more commonly used in the form of mini-batch SGD. In mini-batch
SGD, a random set of n training examples (Z1,y1), (Z2,Y2), -, (Zn, yn) is used to
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— Gradient Descent

— — — » Mini-Batch Stochastic
Gradient Descent

Figure A.1: Contour Plot outlining Gradient Descent and Mini-Batch Gra-
dient Descent while converging to a local minimum point.

update the model parameters in each training iteration. The update is performed
based on the average of the gradients computed by each training example and
equation A.1l is rewritten as follows:

n

- - « oo

Wg41 = W — n E Vka(wk;ﬂﬁz’ayz‘) (A.2)
i=1

The number of training examples that the mini-batch consists of is called mini-
batch size.

While an iteration of Mini-Batch SGD is still faster than the one of GD, it is
important to note that it usually needs more iterations to converge. Figure A.1l
presents a contour plot, which outlines how the gradients move the weights towards
the optimization point. Gradient Descent takes into account the whole data distri-
bution in each training step and thus continuously moves towards the optimization
point. However, mini-batch SGD computes the gradient of a training step with
only B examples, directing the weights to various directions before converging.
The aforementioned algorithms cannot guarantee convergence to the global mini-
mization point, as optimization functions in neural network training are non-convex
and they may stuck on local minima. Alternatives, as Adam [258], RMSProp [259]
and others, have been proposed as less vulnerable to such phenomena [256].

When training neural networks, both SGD and mini-batch SGD can be ac-
celerated by the momentum method [260], by integrating a velocity vector in the
learning process.

134



Appendix B

Locality Sensitive Hashing

Considering that each data point can be presented as a d-dimensional vector in
R? and |Is, t|| is a distance between the vectors s,t € R?, the e-approximate near-
est neighbour search (e-ANN) problem is mathematically formulated in Definition
4 [261].

Definition 4 (e-approximate Nearest Neighbour Search) Given a set S C
R?, preprocess the set S to efficiently locate a point qy € S, such that for any query
point s:

<(1 - mi t
lao, 51l < (1-+€) - min s, ]

The e-ANN problem can be generalized to the e-approximate k-Nearest Neigh-
bours (e-kNN) problem. The generalized problem is formulated in Definition 5.

Definition 5 (e-approximate k Nearest Neighbour Search) Given a set S C
R? and any query point s € S, preprocess the set S to efficiently provide a sequence
of data points qu, q2, ..., qx € S, s.t. the point q; is not further from the query
point s than 1 + € times the distance of s from its i-th nearest neighbour.

One of the state-of-art methods to solve the aforementioned problems in sub-
linear time is the Locality Sensitive Hashing (LSH) [262, 263]. LSH uses a family
of functions, named LSH family, to hash a set of data points to ensure that similar
points will collide with greater probability than dissimilar points. The formulation
of an LSH family is provided with the conditions given in Definition 6.

Definition 6 (Locality Sensitive Hashing (LSH) family) A family H = {h :
S — U} is called (r1, 72, p1,p2)-sensitive for a similarity measure D if for any data
points q1,qe € S, the following conditions are satisfied:

o if |lq1, 2|l < 71, then Plh(q1) = h(q2)] > p1
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o if ||q1, q2|| > 7o, then P[h(q1) = h(q2)] < p2

A common problem when using the LSH families is that the probabilities p1, p2
used in Definition 6 might not create strict enough conditions to achieve a proper
hashing. A common technique to overcome this problem is to concatenate hash
functions from a given hash family, as defined in Definition 7. Thus, dissimilar
points are more unlikely to be in the same bucket.

Definition 7 (AND-Concatenation of LSH Functions) Given an (r1,72,p1,p2)-
sensitive LSH family H : S — U and a positive integer m, a set of concatenated
hash functions G : S — U™ can be defined. Specifically, each hash function g € G

on a data point p € S is formulated as

9(p) = (h1(p), h2(p), ..., hm(p))

where hy, ha, ..., hy are randomly chosen from the hash family H with replacement.
Thus, G, satisfies for any data points q1,qo € S the properties

o if [|q1, q2|| < 71, then Plg(q1) = g(q2)] > pT*
o if ||q1, q2|| > 72, then Plg(q1) = g(q2)] < p¥’

and is an (r1,72, pi*, ph')-sensitive LSH family.

£T00A30g
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Appendix C

Extended Abstract in Greek

C.1 Ewaywyn

C.1.1 Kivnteo

Trv teheutala dexaction, 1 Bordid unyavier udinon €yel avaderydel wg Eva taite-
eoL ONUOPAES xou ETBPACTIXG TEDLO, xLplwe AoYw TN emtuylag Tng o TohudpLiueg
EQAPUOYES UEYAAOL OYXOoL Bedouévmy. To veupwwixd dixtua €youv uvodetniel yia
epyaoiec omwe N tavounon exovey [1, 2], n avayvopon eovic [3, 4], xou n ene-
Eepyoaoio guoxrc Yhwooog [5, 6], petald ddwv [7, 8]. Auty n vodétnon ogelheton
oe peydho PBodud otn cuveyduevn adEnom Tou OYxoL OEBOUEVLY XIS XaL GTNY
otadeotuoTnTa TANYWEUC UTOAOYLIO TIXMY TOPMY.

O nopadootaxol ahydpriuor unyavixic uddnong cuyvd @Tdvouy o X0pECUs o-
T6d0omMe GTay 0 GYx0c TV dedopévrv extaidevone uepBel Eva cuyxexpévo Gplo [9],
eved T Bardd veupmvixd dixtua mopoustdlouv cuveyn Bedtivon tng anédoong ye TV
avénomn tov dedouévemy [10, 11]. Onwe yapoaxtneiotixd Shhwoe éva amd o NyeTixd
oteréym tou Google Brain Project, «n avadoyia ya tn fathd punyavikn udonon eivar
ot n unxavn €vés mupavdov eivar to povtédo Pathds udnons kair ta kavoyua eivar
01 TEPAOTIES TOTOTNTES OEOOUEVWY TOU UTOPOUUE VA TPOPOOOTNTOUHE TTOUS aAyopiD-
pous avtolsy [12]. Autdc o cuvduaopds UEYSANG Xhipoxos dedopévev xau toyuphc
UTOAOYLO TIXAC Loy Log Exel pépel T Pardid uddnomn otny Te T YeouUY) TOAAGDY TEdwY.

‘Eva yapaxtnelotixd mapdderyuo tne toryelac avdntuing tou deep learning etvan n)
apyttextovix) ResNet tne Microsoft [13], n onola mopoucidotnxe to 2015 xar tétuye
top-1 accuracy 78% oto clvolo dedopévev ImageNet [14] . Tho npbdogata povtéha
TEPLAUBAVOUY EXATOVTABES EXATOUULPLAL 1) OXOUOL X0l DIOEXATOUMOPLO TORUUETEOUS X ol
ayyilouv ¥ Eemepvoiv 10 90% axpiBetac oto ImageNet [15-19].Iepthndn onuavtixdvy
povtéhwy tng teheutalag dexaetiog mopéyeton otov Ilivoxa IV.1. Ty Bl ypowid e
to ResNet, n Digital Reasoning npétewve éva dixtuo pe 160 dioexatoupiota mopo-
pétpoug [20]. To povtéda Badidic pnyovixhc udinone éyouv eZehuyel and apyrtexto-
VIXEG UE OEXAOES EXATOUMUQLN TUPUUETEOUC OE GUGC TAHUATO OLYUNG UE EXATOVTAOES OLoE-
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Hivoxag IM.1: Baowd Movtéra Badde Mdinong xou ta Xopaxtnpiotixd toug
(2015-2025)

Model Year Parameters Performance Proposed By Ref.
ResNet-152 2015  ~60M Top-1: 78.57% (Ima- He et al. [13]
geNet)

ResNeXt-101 2017  ~44M Top-1: 78.8% (Ima- Xie et al. [23]
geNet)

BERT-Large 2018  340M GLUE: 80.5 Devlin et al. [24]
GPT-2 2019 1.5B Perplexity: 18.34  Radford et al. [25]

(WikiText-2)
T5-11B 2019 11B GLUE: 89.7 Raffel et al. [26]
ViT-L/16 2020  307M Top-1: 85.59% (Ima- Dosovitskiy et al. [27]
geNet)
GPT-3 2020 175B LAMBADA: 76.2% Brown et al. [21]
(few-shot)

LLaMA 65B 2023  65B Beats GPT-3 on Touvron et al. [28]
multiple NLP bench-
marks

Falcon-180B 2023  180B Near PaLM-2 Large Almazrouei et al. [29]
performance

Mistral 7B 2023 7B Beats LLaMA- Jiang et al. [30]
13B on reason-
ing/math/code

GPT-4 2023  ~1.8T (est.)  Bar Exam (top 10%)  OpenAl [31]

Claude 2 2023  Not disclosed ~MMLU: 78.5 (5-shot)  Anthropic [32]

Gemini 1.5 Pro 2024 Not disclosed 1M token context Google DeepMind [33]
window

Gemini 2.0 Flash 2025 Not disclosed  2X speed, strong mul-  Google DeepMind [34]
timodal

xaToupLeta 1) oxdpa xan Teroexatopuvpla tapauéteous. To GPT-4 arotehel xopugaio
Topdderypo authc Tne tdomne [21, 22]. Ta teleutala ypdvia, TopATNEETL ETLTEYUVOT
oY avanTUEn PEYIAWY YAWSOoX®OY Hoviélwy (LLMs), énwe ta Claude 2, Gemini,
Falcon, LLaMA xou Mistral — to xadévo e BlapopeTinéc oTpatnyXée ¢ TEOg TNV
XNdxwo, Ty exnaidevon xan v tpooBoctudtnta (BA. ivaxa IM.1).

Iopd tar eviumwotaxd x€pdTn AmddOoNG AUTOY TWV UEYOAWY UOVIEAWY, T EXTO-
(8euor| Toug amoutel GAO XU TEPLOCOTEPOUS UTOAOYIO TIXOUS TOPOUS. LUUPOVA UE TNV
éxeon Al Index tou Stanford yio to 2024 [22], to Gemini Ultra tne Google amaitn-
oe mepinov 100 Swwexatopplpeta petaFLOPS (ue extmpevo xdotoc $200M), vy to
GPT-4 nepinou 10 dwoexatoppdpla petaFLOPS ($80M). Ov olyypovol emtoyuvtéc,
onwe ot GPUs, elvan xplowol ylor voo xatac TACOLY €QIXTH TNV EXTOUBEUCT) VEURMVL-
%V dixtiwy [35, 36]. Qotdoo, xadide o SEBOUEVEL X0 ToL LOVTEND UEYOADVOUY, 1|
EXTIUOEVOT) OE EVal UOVO UNY VN YIVETAL AmayOpEUTIXG YPovoBopa, 00NYMVTIS GTNY
LIOVETNON XATAVEUNUEVLY LEVODWV eEXTTABEUOTC VELPOVIXWY dxTlwV [3T7].

[oe v avTWEeTOToN aUTAS TS TOAUTAOXOTNTOG, 1) XAUTAVEUNUEVT Bardid unya-
vy udinon oxoloudel eite tov mapaddnlioud povtédov - model parallelism [38,
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39] eite tov napaAdnhioud 6edopévawr - data parallelism [40, 41]. Xtov topahhnhiopd
HOVTENOU, ToL EMLTEDA 1| OL TUPAUETEOL EVOS LOVTEAOU XATAVEUOVTAL GE TOAAAUTASL U1y 0-
vApota. AvTd€Tng, oTov TUpaAANAMORG BEG00UEVWY TO GUVOAO BedoUEVKV Blatpe(ton
oc TUAUATA, TO xoEva avatlieTon o Evor Uy dvnUo EQYATY, X OGAOL EXTILOEVOLY TO
{8l xadohixd povtéro oe Blaxpttd utocUVola Bedouévewy. O mapaAANMopos 6edo-
HEVOLY €yEl xuplopyNoeL AoYw TNg avelapTNnolog Tou amd TNV apYLTEXTOVIXT Xl TNG
BUVITOTNTAC VoL EXUETAAAEUTEL YEY AN GUVOAA BEBOUEVLV Yial XUAUTERT ambd00T. AX-
AN Yvwo T otpatnyy elvon o mapaAAnhiouds dwyétevons- pipeline parallelism [42—
44], 6mou pxpéc ouddes dedouévwy TEEVOUV GELPLIXE and ETUEPOUS TUALOTO TOU LO-
vtéhou. Iopddhhnha yenowonowotvton xon UBpdixé tpooeyyioelc [44] twv mopamdve
pedodwy.

[Iépo and N oTpaTnYX: TUEAAANMOROY, EVag axoun Baoxos TopdyovToS GTLC
XATAVEUNUEVES TEYVIXES pdinong elvan 1 emhoyr apyitextovinic emxovmviog. Ot
EPYYTEC UTOPOUV VAL EMIXOVOVOLY UE UNXarioHoUs oAikns pelwons - all-reduce, T.y.
TOU Soy TUALBLOY, Tou BEVTEOUL 1) dhheC tepapyixéc Tpooeyyioeic. ‘AN emhoyy| ebvon
TOL AMOXEVTPWUEVA BIXTUA, OTWE AUTO TV OUOTIHWY xOuBwy. Mo Toh) Bladedopévn
TEOGEYYION Elval 1) XEVTELXY) AEYLTEXTOVIXY TOU €EuTnpeTr) mapapétpwy - parameter
server.Xe oqUTO To HOVTERO, ToANOL epYdteg UTohOYI oLV SlaviouoTa XACEWY TdvVw Ge
OloxELTd TeUd ol BEBOPEVGY Xa Tt GTEAVOLY GE XEVTEX0UE EEUTNRETNTES TORUUETEWY,
oL omofol dlatneoLy To xevtpixd yoviéro. H apyttextovind auth elvon xotdhAnin yia
ueydhar dlxtua xan GOVORA BEDOUEVHV.

Ané ug didpopeg drardéoyles Tpooeyyloelg yia xotaveunuévn Bordid wnyovixt| uddn-
ONC TOU TUPOUCLAG TNXAY, 1) ToeoVo SlaTel3h €0 TIELEL GTO YOPUXTNELO TIXO TOPADELY-
oL TOU TapdAANhoL 0 TTpog T Sedouéva ebunnpetntr) tapapétpwy (39, 57-59]. Ailet
vo onuelwdel 6Tl 1 apytteExTOVIXT aUTY UTopel Vo uTooTNE(EEl xou TUPUAANAIOUS Uo-
VTEAOUL 1) UPBEWOWES GTRUTNYXES, Ol OTIoleg OUWE BEV ATOTEAOUY UEQ0S TNG TOPOUGCUS
perétne. H SateiPr) Eexavd mopovoidlovtog Ty ovdyxr Yo eCEOIXEVUEVES opYITE-
XTOVXEG OTWG O EEUTNEETNTAS TAUPUUETEMY, X0l ToEOoLCLALEL BU0 cuyXexpéves Beh-
TIGTOTOLNOELS YLl AUTY) TNV OPYLTEXTOVLXY).

C.1.2 Kipieg Yuvelcpopég
O xlpleg ouvelogopéc autrc e dlateBng eivon ol e€rg:

1. Tiveton a€lohbdynom tng anddoong tTng eEEIBIXEUPEVNS R YITEXTOVIXAC TOU eEUTN-
PETNTY| TUPUUETEWY OE GUYXELOT) UE EVal YEVIXO OXOTOU HOVTEAO emelepyaoiag,
onwe 1o MapReduce. H anédoor dwugpeper xatd yéco dpo xautd 8.23x 6ty
xhpoxoveton oe 140 xouBoug.

2. Tapovoidleton yior cuotnuotixy BIBALOYROPIXY avaoxoTNan TG €pEUVIS Y0OP®
ATO TNV AEYLITEXTOVIXT| TOU ECUTNEETY TOQUUETEMY.

3. Ewdryeton n teyvinr) Evodhayfic Etpatnywhc (Strategy-Switch), tou yenowo-
motel All-Reduce yuo vo Eexwvrjoel Ty exmaldeuon ye tov eEUTnEeThTn mopa-
HETPWY amd éva xahiTepo onucio ehayloTou.
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4. Yulnrobvton oTpatnyiXés dlavourc dedouévmy yia Tn BeAtinon Tne extaldeuong
ue eEUTNEETNTY TUPUUETEMV.

5. Metpdton 1 enidpoom TNG CUCTNUATIXNS XATUVOURC OEBOUEVLV EVAVTL TNG TU-
yotog. H yehorn cusTnuotinc Xatavounc UEWOVEL €Ewe xat 8X TNy dlaxLuovo
OTIC UETEIXEC EXTIAUOELONG XU 2X ETXVPWOTC.

C.2 Kotaveunuéveg Apyttextovixes: Amno
YEVIXOU OXOTOU GTLE ECELOLXEVUEVES AOYLTE-
XTOVIXEG UNYAVIXNG exdInong

H ocuveync adénon tou peyédoug twv dlrdéoiunmy 6edouévmv 0d1ynoe Toug epeu-
VNTEC VAL TPOTEVOUY BLAPORES UPYLTEXTOVIXEC CLUOTNUATWY Ttou Yo elvon oe V€on va
YEWRLOTOUY UEYdAO OYxo Oedouévwy. Tétoleg apyitextovinée unopel va elvar yevi-
%00 0%0To0 ou Vo Eival EQUPUOCIIES OE Lol TANUMEOL SLUPORETIXDY TUTWY EQYAOL-
ov. 'Eva yopaxtneio 1ixd TeoYpouUatio Tixd LovTEAoU YEVIXOU oxomol elvon To Map-
Reduce,mou uodeteitan and Sdpopa cucTnudTa YeEVIX0) 6x0mol. 201600, avaAoYd
UE Tov TUTO Tou PoETOL gpyaciaug, £xouv TeoTalel GANES EEELBIXEUUEVES OOYLTEXTOVL-
%€, LNy TERINTOON TV HOVTEAWY UAINONE UE XATAVEUNUEVO TEOTO, EXOLY TEOTHEL
TOMOATAES TROCEYYIOELS, UE TOV OLOUXOULO TY) TORUUETEWY Va €lvot €vag amd uio and Tig
mo e€éyovoeg. Xe autd To xePdloto, topouotdletar 1o Map-Reduce xou méde ymopet
VoL EQapUOC TEL 6TO TAALOLO TEOBANUATLY udinonc. Emniéov, napéyeton €vo Aentoye-
P€c UTOPoPO OYETIXG UE TNV TPOCEYYLOT TOU OLUXOULO T TURAUUETOMY.

C.2.1 Map-Reduce: I'esvixd xou @apoYES OTN UN-
YOVIXTY] padnon.

To 2004, n Google [67] mpdtewve To povtéro tpoypaypatiopod Map-Reduce yio e-
popuoYEs enelepyaciog UEYIA®Y BeBOUEVODV. OL EQUOUOYES TOU EXPETAMAEDOVTOL AUTO
TO HOVTENO TROYEUUMUATIONOU AmOTEAOUVTAL ot €var GOVORO GUVORTACEWY avTioToly1-
ong - map xa. petwons - reduce. H Ewéva 1.1 napoucidlel 10 Tpoypopuatio Tixd
wovtého tou Map-Reduce. To dedopéva etcbbou / e€66ou ouvidne amotnxedovtat
OE X3MOLO XATAVEUNUEVO GUO TN apyElwy, dtwe to Apache Hadoop [69, 70].

To mpoypaupatio o poviého tou Map-Reduce oulntiinxe oe npofifuato udidn-
o”Ng, OTOL ATOOEWVVETAUL OTL UTO TI TPOUTOVECELS TOU OTATIGTIXOU HOVTEAOU EpWTT
wdtov (t.y. ohyoplduwy K-Kévtpwyv, akydprduoc avdotpopne diddoone ota veupw-
VIXOY OXTOnV), éva tpofinuo uddnone umopel vo ypagel oc uio tepAnmTiny Lopen
Xt yio ene&épyaoia péow tou Map-Reduce [73, 77, 78|.
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Ewoéva I".1: To npoypappatiotind yoviého Map-Reduce.

C.2.2 Koataveunuéveg dpylTEXTOVIXES LAUNoNG

ITopd: T Bidpopeg TpoTelVOUEVES TEOGEYYIOELS, 1) EMAVAANTTIXT TEOCEYYLOT) AUTWY
v ohyoplduwy épyetar ot avtideon e tn @lon tou napadelypatoc MapReduce [79)].
(d¢ ex TOUTOU, €xEl TEOXVPEL 1) AVAY XN VLol EEELOIXEVUEVES UPYITEXTOVIXES XATIANNAES
yioo Tov Topéa unyavixig udinong, ol onoleg axoioudoly 6U0 BlaPopeTIX0NE TOTOUG
TOUEUAANALIOUOV: TOV TUEUAANAIGUG BEBOUEVOY X0l TOV TUPUAANAIOUS povTEAWY. O
oo nAopds povténv [38, 39] utodetelton otny tepinTtwor eZoupeTind UEYSAWY Uo-
VIEAWY TIOU OEV UTOPOUV VO YWEECOLY GTY UVAUY EVOS UELOVWUEVOU UMY OVAUATOS
mou poxerton va exnandeutel. O napalhnhiouds dedopévmv [40] yenotpomnoteiton yio
1) Sy elplon Tou aUEaVOUEVOU OYXOU TKV BEBOPEVLY, OTOL Ta dedoUEva ywpilovTal ot
TURAAT TOU €Y0LV exyweniel ot BlapopeTixéc UTOAOYLOTIXES dopéc ulag ouoToyiog
UTIOAOYLOTWY. LAUEREA, TOMATAL xoTaveunuéva cuo thpato Badide pdinong unoctn-
etlouv TovV ToEAAANALOUO BEBOPEVLY, EVG UTopel Vo e@apuocTel ue Tov (Blo TpdTo
ave&dptnta and To povtého ou yenotponote(tar yio Ty exnaidevon [41].

Me 70 povtého TapahAnAGUO) BEBOUEV™Y, 1) XATAVEUNUEVT EXTIUOEUCT| UTOREL Vol
exteleoTEl ®dTW amd BLO dlapopeTinée apyitextovixéc. Mia mpooéyyion Boocileton
otn yeron teyvixdv All-Reduce [80] oe évo peer-to-peer dixtuo xéufwv [81-83].
Mo dhAn Tpocéyyion €yxelton 6T BLdxELom TwV xOUBwY UETAZ) 5V0 BLUPORETIXWDY
OUGBWY, TWV BLOXOULOTOY X TWV ERYULOUEVWY, AXOAOUVMVTAS TNV ORYITEXTOVIXT
TOU BlaxoUloTy| 1 EEUTNEETNTY) ToEOUETPWY. e auTh TNV dlatet), cotdloupe o1
MEAETH %ou T BEATIOTOTOMON TNG UEYLTEXTOVIXNC TOU OLUXOULOTY| TURUUETEMY, TNV
omota Yo GULNTACOUUE EXTEVHC OTNV ETOUEVT EVOTNTO.
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C.2.3 H cpyltexTOVIXN SLAXOULOTH TUEAUETEWYV

O Swxopto thc Topapéteny [39, 57-59, 84, 85] elvon Uil EUPENS Y ENOWOTOLOVUEYY
TUEAAANAT, aEYLTEXTOVIXY) OEBOUEVWLY, 1) oTtola umopel v axolouvdndel yio Ty exmo-
(deuom povtéhwy Bathide exudinong Ye XATAVEUNUEVO TEOTO.

--------- » Fetch Global Parameters

- = = = 9 Forward Computed Gradients

1
Parameter Parameter Parameter Parameter
isener Al gserverB! ysgrerg!  gserverd!

Worker 1

i

Data Shard 1

Local
Model
Copy

Ewodva I".2: H apyttextoviny SLoxoutoTy| TopopuéTemy.

H Ewoéva V.2 neprypdgel tn dtadixaoior exmaldeuone oTny apyttextovixy] dlaxo-
wo Ty mopouétery. Ou Blaxouotég €youv potpaoTel éva xodoAxd HOVTEAO XaL O
xadévag elvon ueduvog Yo TNV EVNUERKGT Tou aVToTOLYOU PEEOUE TOU X OALXOU
uovtéhou yovtélou. To oet exnaldcuong potpdleton PETUED TWV CUUUETEYOVIWY Ep-
yalouévev ot dadxacio, 6mou o xadévag Eyel éva TomxO avTlypapo Tou UoVTEAOU
yior va utohoyloel €vol GUVOAO BLVUCHUATOY XAICEWY YEMOWOTOIWVTAS TO UTOGUVO-
Ao Twv dedopévwy ou toug éyel exywenidel. To dviopata xhioewy wiolvtou Tiow
OTOUC OLUXOULOTES, OL OToloL PE TOV ETAEYUEVO alyoprluo Bedtiotomoinong Yo evr-
UEPWGOLY TO XAJOAXO YoVTELND. LNy apyn xde enavdindng, ot epyalouevol {ntdve
TNV EMXAUPOTOMNUEVT €XB0GT TOU XxaJOALX0U UOVTEAOU.

H pddwon tov unepnapauétony exnoldeuons tou dixtiou Tpoypatonoleito ou-
TopaTa, OGOV apopd To pEyedog TNg uxpo-ouddas mou Yo yenouylorotel o xde epyo-
Louevoe oe xdle enavdhndn xar to puiud pdidnone [88], olupwve e TIC UTEPTUPO-
ué€tpoug exmaidevong oe Eva xouSo.

Avagopind ue T0 cuYYEOVIoUO, oT1) Bactxr| EX00) T TNG, 1) VEYLTEXTOVIXY] OLUXOUL-
O T1) TOPUUETEMY UTOPEL VoL TEAYUATOTOLACEL TNV EXTALOEUOT) ElTE UE TATRT GUY YEOVL-
oud petodh Tov epyalopévewy ot xdle enavdhndn eite ye mhren amovoia avtod. Xtny
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[Mivoxac I'.2: TensorFlow vs. Spark MLIib

TensorFlow Yrapx MAMS
Agmenuévo DAG AAT
ITpoypappatictind Moviéro
Movtého Extéleong Moxpdig didpxelag epyaoieg Yivtopeg epyaoieg avtioToryiong
BLotoo Ty xou epyaldueEvwY xau pelwong oto Spark
Yuyyeoviocpog XOyypovn xou

N Yiyypeovn exnaidevon
aclyyeovn exnaideuon

ITpb6oPBaom octa Acsdopéva Amoguyt| Yetagopds dyenotwy Metagopd 6Aou Tou Glvohou
Bedopévemv and to dioxo / exnaibevong ond to dloxo /
Caching Caching

anoucio GUYYEOVICHOU EVOEYETAL Ol ERYULOUEVOL VO YENOWOTOLOUY SLUPORETIXES To-
PoPETEOUS GTO (B0 Bra VLol TOV UTOAOYIOUO TV BLAVUOUATOY XACEWY.

C.3 Toatl elvon anopoltnteg oL clOoWxEg op-
yitextovixeg: Mia cuyxentixy) agloAoynon
tou Map-Reduce pe tov Aivoxouict? IHapo-
LETEWY OE UEYAAN XAlpaxa

Yopgpova pe 6o culNTHUNXOY TUEATAV, TOCO ARYITEXTOVIXES YEVIXOU 60O XAl €-
EEWBIXEVPEVOL OXOTIOU UTOROVY VO YeNOWOTOI00Y VLol TNV XATAVEUNUEVT EXTOLBEUOT)
HOVTEAWY. e auTAHY TNV evOTNTa YiveTon plar ouyxentixy atohdynon tou Map-Reduce
HE TOV SLoxouto T apauétewy. o TNy olyxpelor ¥enoyonolodvVIoL GUG TAHUATO TOU
aZlomololy Tig apyttextovixés: to Apache Spark yia 1o Map-Reduce xou to Google
TensorFlow yia Tov Sloxoulo Ty TopouéTewmy.

C.3.1 Apyitextovixég JuoTNUATWY

O Iivaxag I.2 mapouotdler tig Baonés Slapopés twv 800 alotnuatny [63, 264].
Ta 800 cucThpata axorou oy Eva aPNENUEVO TTEOYPOUUATIOTIXG LOVTEAO TIOU G T
elletan o xatevuvouevoug oxuxhixolg Yedgouc. Idwitepo evilagpépov Tapouotdle-
TolL OTA LOVTEA EXTEREOTC TwV 800 CUCTAUATWY, To OTOLA TOEOVCLELOVTOL OVIAUTIX
oty Ewdva I.3.

Yy nepintwon tou TensorFlow (Ewdéva I7.38"), to Bruarta 1-3 xou 4-5 extero-
OVToL TOEIAANAL OTIG ERYAOIES TOU EQYATN X0 TOU OLUXOULO TY) TUEUUETEWY AVTIOTOL-
yo. Kdde epyalouyevog hopfdver to mo mpodo@ato TORUUETEOUS LOVTEAOU Omd TOV
drocouto T mopapétenmy (BAua 1), extelel tov unoloyioud tou Tomxol daviouatog
xhone (BApa 2) xou ot cuvéyelar oTéhvel T0 OYETXS BLEVUOUO GTOUS DIUXOUO TES
nopapéteny (Brpa 3). Axoholing, ol Sloxoplo Tég TopauéTemY EVUERMDVOUY TIC TURO-
Hé€TEOLC TOU LoVTELOU UE Tol Slaviopato xAloewy tov éhaPay (Bhua 4) o aZiohoyoly
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@ Initialize broadcast variable
with current model parameters

Parameter

Server Task M @ Evaluate
eee convergence

Launch new Spark job to
process the minibatch

[——

Parameter

|

|
@ Globally aggregate gradients <__’:\_
® 4

|
I and update model parameters Server Task 1 @ Updj;eur;odel
Model partition
[ Evaluate convergence — =
@,
| Spark Job
Send local
| Local gradient Partial aggregation Get current :
| @ computation of local gradients @ model values gradients
Map Task 1
I RDD partition
N Worker Task 1
= Training data Gradient
Map Task N partition computation and
RDD partition aggregation on
Reduce Task M | local sub-batch
(o) Movtého Extéheonc Spark (B") Movtého Extéheone TensorFlow

Ewoéva I.3: Movtéha Extéleone Spark xou TensorFlow

™ olyxhion Tou pyovtélou (Bhua 5).

Yy nepintwon tou Spark (Ewéva I.3), ot akybprduor pnyavixic pdinong, mou
exterolvTalL péow g PBAodnAne MLIb avantiocovtar we wa axohoudio epyaolny
Spark mou armotehobvton and otddl map xou reduce. H xotdotaon tng exnaldeuong
dtatnpeiton o€ OAeg TiC epyaocieg péow tou Spark driver mou etvor To xVplo TEOYEOUUA
¢ egapuoyhc Spark. O Spark driver ypnowonotel tic petofintéc broadcast [92]
YioL VoL HETAPEREL TNV XATAoTAOT) O0TIC epyaoieg Spark mou €youv Eexwviioet. Ta dedo-
uéva exmaidevong avTimpocwreLovTal cLYHwS we éva dapepiouévo RDD mou etvon
wtor cUANOYY oToLyElwY Tou Uopoly va AettoupyRoouy Topdhhnia [93]. Xto mhaicto
Tou akyoplduou SGD | exaaveltan pio axoloudio epyooiov Spark IM.3, xodeulo amd
Tic omnoleg enelepydleTon YLor Uixpo-ouddo SEBOUEVKVY, PEyel Vo GUYXAIVEL 0 olyopLd-
woc. Ilpcdtov, o Spark driver mpoetowdlet wa broadcast yetoBAnt mou nepiéyet Tic
TEEYOUOES TWES TV TopoUETEWY Tou povtéhou (BrAua 1). Xto emduevo Brua, Zext-
vé o epyooio Xmopex 1 omolo elvon uTEdYLUYY Yior TN SnutovEYia WaG PXEd-0uddaC,
emAéyovTag Tuyola £vol UTOGUVORO TUEABELYUATWY EXTIUOEUOTC AT TO XATAVEUNUEVO
RDD, xa tnv enelepyooio tne (BAua 2). Ou epyooiec map vnohoyilouv ta Sio-
voopata xAoewy tdve ond ta tomxd tphpate tou RDD toug (BAua 3). Agol uro-
hoytoToOv OAeg oL ToTuxé xAloelg, ol epyaoieg reduce exteloly wa GUVEDEOLOT TV
uepyv davuoudtov (Bua 4). O Spark driver culkéyel tnv é€080 twV epyaoLdy
reduce, extelel TNy xordohxr) cuvdipolon xon SLATNEEL TIC EVNUEPWUEVES TURAUUETEOUG
oL povtéhou (BAua 5). Téhoc, o Spark driver aZiohoyel to xpLthpLor GOYXNONG ol
emovahauBdvel Tor Tapomdve Briuata edv ypetdleton (Bhuo 6).

Avagopnd ue v tpdofoor ota dedopéva, to TensorFlow oflomolel to Dataset
API nou mopdyet pixpo-ouddec dedouévewy mpoc enelepyaoctia, eve to Spark MLIib
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Mivaxag I7.3: Xopoxtnpeto Tixd

11§ 4. ¥ f
Ewovixav Mnyovev taxoe Voot

Spark TensorFlow
XoapaxtneloTind T "Exdoan 924 1.13
vCPUs 2 KopBog Agévn 1 Spark Driver 1 Awoxouotric Hapapétpemy
RAM 8GB Avd KépBo Epydtn | 1 Spark Executor 1 Képpo Epydtn
HDD 20GB

Acttovpyxd Xootnua | Debian Jesse 8.10

Hivoxag IM.6: Xopoxtnetotind Xuvietinwy

Hivaxac  I7.5: Xapaxtnplo Tixd Acedoyéva avd Movtého Mddnorng
Hporyportixwy Aedouévmy

Movtého | Ppappéc | Xapaxtneiotixd | Méyedog
Tovoho Aedopévav | Teoppés | Xapaxtneiotixd | Méyedog Aoyiotih Tlahvdpbunon | 980.000.000 28 252GB
Higgs | 10.500.000 28 2.7GB Tpoppixy) Iahwdpounon | 280.000.000 90 238GB
Year Prediction MSD | 470.000 90 0.391GB Perceptron | 441.000.000 28 110GB

(POPTWVEL GAO TO GUVOAO BEBOUEVWYV UE TNV LOPYPT| EVOS xataveunuévou RDD.

C.3.2 Ileipopotinny Aldtadn

To 6UVorO TWV TEWAUETWY EXTEAOUVTOL GE €VoL GUUTAEY U 141 Eovixmy unyovody
- x6uPwv oto dnudclo alvvepo tou Okeanos (94, 95|, Yewpdvtag 1 we apéven xou
140 w¢ epydreg. Ta yopoxTNEIOTIXG TV EXOVIXMY UMY OVOY XAl TWV CUCTAUATOY TOU
yenuorotovvton divovton otoug mivaxeg 1.3 xan 1.4 avtiotouya.

Avagopixd pe tar Jovtéra unyavixic pudinong yenoionootvon Teio SLopopeTL-
%4 TO HOVTENO AOYLOTIXAG TUAVOROUNONE, TO YRUUUXAC TOUALVOROUNOTS oL EVOL per-
ceptron 4 emmnédwv. Extoc tou teheutaiou, mou 1o Spark €yel dirdéowo udvo tov
ahyoprduo Bertiotonoinong xadodou xhicewy, oo utdhoLTo eEETAlETOL KoL 1) GTOY -
oTXN ex00Y T Tou e dldpopa YeYEDN wixpo-ouddwy. H pedodoroyio extéleong twv
TELRUUATLY Oloxplvetar o 800 pépn. Apywd, yiveton a€loAdYNoT TwV CUC TAUATWY
oe OAn TN cucTolyio e cuVIETING BEGOUEVOL YLl GUYXEXPWEVO aptdud emavahipewy
- 100 vy tor povtéha makivdpounone xou 20 yio To perceptron. ‘Emeita, oe ulo pixen
cucTotyiot 5 UTOAOYIGTHOY 0ELOAOYOUVTAL TOL CUG THUATO AVOPOEIXE. UE TN BuvATHTNTA
oUYXNONE TOug O TEayPaTxd cUvVola dedopévwy. To dedopéva mou adlomotfinxay
OtvovTtal oTouc Tivoxec.

C.3.3 Ileipopoatinn AEoAdynon Meyding Kilpoxoag
oe 2uvieTixd AcboueEva

e auTAV TNV EVOTNTA YIVETOL TUPOUGLACT] TWV EUPTUATMY GYETIXA UE TNV ATOB0O0T)
TWV GUOTNUATWY OE UEYUAT| XALLAXA, UTO TNY EXTEAECT] TNV EXTAUOEUOTC TWV LOVTEAWY
Tohvdpounong xou perceptron yior 100 xou 20 emavolfdel ota cuvietind dedouéva
Tou ivaxo I7.6.

H ewoéva IV.4 Selyvel tov p€oo ypdvo mou aglepmvel xdle cOoTNU Yol TNV €-
XTENEOT) UTONOYIOUMY BLOVUOUATOV XACEWY XoTtd TNV eMedepyaalar ULog Uxpo-0Uddas.
[Topoucialovton Teelg pdfodol Yo xde Yéyedog Uxpo-ouddos, Tou avapépOVToL GTNY
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Ewéva I".4: Xpdvog Troloyiopol avd Muxpd-oudda otnv MLIib xou oto Ten-

sorFlow (oUyypovn xar aclyyeovn exdoyr|) oe pia cuctowyio 141 unohoyloti-
AWV HOUPwV.
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Ewéva I".5: CPU ocuctouylag 141 »x6ufwv v tnv MLIib xaw to TensorFlow
(o0yyEoVN o aolyyEoVH EXBOYY).

Spark MLIib, cto olyypovo xa 6to aclyypeovo Tensorflow, extoc tou perceptron
ToL exTEAE(TOL UOVO O TAYENG alYOELILOC Xardbdou XAicewY e uéyedog uxpo-ouddag
(oo pe to péyevoc tou dataset.

To TensorFlow Zobelel mévta AydTERO YEOVO Yiol TOV UTOAOYIOUO XAOCEWY 0-
veldptnta and 1N Aettoupyio exmoideuone. Xto npofhuata modvdpdunone (Ewdva
I 4o xon IV.4B"), xondde to puéyedog tne pixpo-opddag pewwvetor, to TensorFlow etvan
o amodoTO UTohoYloTixd and To Spark MLIib.Emniéov, 6co pewdvetar to puéyevog
e pixpo-opddag, to TensorFlow emituyydivel emtdyuvon €wg xan 14X, evéd To Xmapx
yivetan TayUtepo €wg xou 1,36 X. Xe obyxplon ue Ti¢ poxpdc-OLdoxelag Slepyacieg Tou
TensorFlow, to Spark Aavodpel plo véa epyacio xdie @popd mou encéepydleton i vEa
Uxpo-oudda. AuTO €LGGYEL YEVIXY ETUTAEOV XOOTOC TROYEUUUATIONOD EQYUCLIY Xol
apyxonoinone (eWdwd dtav 1o péyedoc TNe Uxpo-oUddos UELOVETAL XL OL ERYUOIES
YT yivovton mold mio olvtopeg(~100msecs)) xar odnyel oe yoaunhh yehon e
CPU, onwe emPefardvetan otny Ewdva 2.8. To (Bio oyruo unodnidvel 6T 1) enido-
omn tou olyyeovou TensorFlow eivan pewwpévn, yeyovog mou anodideton xuplwg oto
%°6070¢ oLYYEoviouoL. (261600, eaxoloviel va €yel xahbtepn yerorn tne CPU and
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Figure C.6: Xpovoc Avdyvwone avé Mixpé-oudda otnv MLIib ot 6to Tensor-
Flow (c0yypovn xaw aclyypeovn exdoyr|) oe uio cuctolyio 141 utohoylo Ty
XOUP V.

to Spark.

H Ewéva C.6 ety vel Tov p€oo ypdvo mou aplepmvel xdde 0o TNUa oTNY ovey vewon
dedouévmy (amdxtnom, amocelponoinon xo amoxwdxonoinon axatépyaotwy Brec)
xatd Ty eneepyoaoio wog pxpo-ouddac. O ypdvog avdyvmaong tapouctdleton Yol To
MLIib xou TensorFlow aveldptnrta tov 1pom0 cuYYpoVIoHo0, apol dev edapTdtal and
autole. ‘Ocov apopd Tov PEGO YEdVO avdyvwons avd wxpeo-oudda, to Spark MLIib
Eobelel To Tov (B8lo yEévo avdyvwong Sedouévmy, aveldptnta and to uéyevog Tng
uxpo-opddag, apol dwBdletar oAdxAneo To RDD oe dhec Tic mepintwoeic. To Ten-
sorFlow oamd tnv dAAn @épvel uOVO Tar BEBOUEVA TTOU TNV UXEO-0Udd TTOU amonte(Ton
Y10 TOV UTOAOYLOWO Tou dlaviopatog xhiong. (¢ amotéheoya, oto TensorFlowo pécoc
YEOVOC aVEY VWO HELWVETAL OTOY UEWWVETHL TO PEYEVOS TNG UXpo-ouddag. 261600,
TNV TEPIMTWON TNS YeouuixAc Takvdpodunong, to Tensorflow ypeidleton oyeddv ToOV
B0 ypedévo aviyvwong avd uxed-oudda t6co Yo TNy TEpintworn tou GD dco xou
yior awthy Tou SGD (péyedoc pivt maptidac 9,8M) 6nwe gaivetar oty Ewxdéva C.6b.
Acedopévou 6Tt xdde olydpripog TaAvdpounone exTereital €we 6ToU TO GUCTNUA €-
nelepyootel 100 wxpd-ouddes, To TAHEEC avVolo dedouévwy drafBdleton xat and Toug
0vo olyopripoue.

Y1y nepintwon Tou perceptron, 6e60pEVou OTL TO TANPES GUVOAO BEBOUEVWY YT
owonote{tar w¢ pixpo-oudda (GD),to TensorFlow agiepmver teploodtepo ypdvo otny
avdyvwor dedousvey and to Spark. ‘Omwe gaiveton oty Ewdva I7.53°, o Tensor-
Flow, ewdwd oe olyypovn Aertoupylo, anoxieletar and LTOAOYIOHOUC €W GTOL OAOL
Ol ERYATEC TOU OAOXANEWOOLY TNV VY VOO TV TOTUXGY Toug dedopévev, (Ueiwon
CPU peto&t 500 xar 700 sec), yeyovic mou dev napoatnpeitar otny aclyypovn exdoy .

C.3.4 Ilepopoatinny ASiohdynor o Ipayuatind Ae-
OOoUEVA

H Ewéva I'.7 napouoidlel tov cuvolixd ypovo extéreone twv TensorFlow xou
Spark MLIib, potpacuévo ctov ypdvo mou doamavdtal yia TNV avay Voo OEBoUEVmY
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ivoncag IM.7: TIM 9 og pixpo-ouddev mou eneéepydotnxe To xdle cUoTNU HéyEL
N OUYXALON.

Meéyedog Enciepyacpéveg Muxpo-opddeg
Movtého Mny. Mdidnong | Muxpo-ouddag | MLIib | X0yypovo TF | AcUyypovo TF
Aoyotu 10,500,000 317 317 137
Hovdpdunor 2000 774 737 1006
500 1375 1644 2449
oo 470,000 3104 3104 1328
TTavdpdunon 2000 2678 2773 1042
500 2438 2540 1121
Perceptron 10,500,000 72 72 118
1500 T 2000
[ Compute [ Compute = [ Compute A“iF"c
2 1200 Read 7 [ Read 7 [ Read
3 MLiib g 1200 g 1600
é 300 i *H é 900 Elzoc
= i 5 =
5 ] 5 600y ML sy 5 800
e E
% Syne Syne Asyne 5 300 Sine S T 5 400
TF . TF TF )

0

500 2,000 10,500,000 500 2,000 470,000 0 10,500,000
Minibatch Size Minibatch Size Minibatch Size
(o) Aoy. TTahwvdpounon (') Teay. IToAwdpdunon (v’) Perceptron

Ewoéva I.7: Enidoon tnc Spark MLIib xou tou TensorFlow (aUyypovn xou
aclyypeovn exdoyn) Yo exnaidevarn péypl tn obyxiion oe pio oustotyla 5 uto-
AOYLOTIXOY XOUPBOV.

xaL TNV extéAeot) utohoylopwy o xdde cbotnua. Ta didpopa YeyEedn wxpo-ouddwy
emAéyovton MoTE Vo ebvon peakiotixd [102].

Avagopnd pe to meofhruota Tokivopdunong, to TensorFlow eivon toyltepo and
to Spark MLIib ém¢ xat 16X 6tav yenowonoteiton o ohyoprdupoc SGD (Ewdva IV. 70,
uéyedoc pxpo-ouddac 500). Auth 1 ouunERLPOEd ATOBIBETUL XUPIWS OE UPYLTEXTO-
VIXEC BLoPOREC TV 600 CUCTNUATKY, OTKS EENYAOUUE GTNY TEONYOVUUEVT EVOTNTOL.
AveZapthitog ouyypeoviopol, to TensorFlow nopouctdlel otn yepdtepn Ty O a-
nodoor pe to MLIib oto mpofiAuata toiwdpdunone. Emmiéov, nopatneeitor 61t 1
MLIib mapoustaler v xahbtepn enldoon g yia péyedog uixpo-ouddog 200 xar oy
otny mepintwon yenone tou GD. Enouévee mpoxintel to ouunépaoua Tt 1) xoAUTE-
e enldoorn tou Spark mpoxOnTEL 6TAY TO XOOTN TOU ELCAYOVTAL YLOL GUYYQOVIGHO,
EXXIVNOT| EQYAOLOY XAT. OEV UTEEXOAUTITOUY TOV YEOVO UTONOYLOUWY.

O nivaxag I7.7 Belyver tov apriud TV Uxeo-ouddwy mou enelepydletar xdie
oLoTNUA eV cuYXAiveEL 0 exdoTote ahyopriuoc. O aptiudg TwV UXEo-ouddwy etval
o Blog petagh tou olyypovou TensorFlow xau tng MLIib otnv nepintwon tou GD,
OTw¢ avopéveTal. 20TOC0, TUPATNEELTAL Uial IXET| ATOXALCT TN TepinTtwon Tou SGD.
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oTIC OUYYPOVES EXTEAETEIS. AUTO OgelleTon GTO YEYOVOS OTL xGUE GUOTNUO EXTEAEL
TNV ETMAOYY| ULXPO-OUADONS DLUPORETIXY, UE ATOTEAEGUN OVOUOLNL DEQOUEVA AVE UXEO-
oudda. Emnlong, a&ilet vo avagepdet 6Tt o GD pe tov SGD enelepydlovtat SlopopeTind
TAR00C Uixpd-0UddmY UYL Vo GUYXAVOULY.

Y1y mepintwon tou perceptron n MLIib etvor mo yehyoern avoloyixd ye to o-
oUyypeovo TensorFlow. QQotéco, autd ogelleton 6T0 6TL Tl BLarviopaTa XAlOTG EVOS
€pY 4T Umopel vor EXOADPOLY AUTE XATOLOL GANOU UE AMOTEAEGHA VOL ATOLTOVVTOL To-
pamdve enavadidelc Yo oOyxhon. XtV oUyyeovn exdoyy| Tou 6ung to TensorFlow
elvon TayOtepo and v MLIib emBefoumvovtac Ty uTohoYLoTIXY| TOU UTEROYT|, ELOLX
O€ TMEPITTWOELS VEUPWVIXGDY OIXTUWV.

C.4 Eppaddvoviag oTtny ooy lTEXTOVLXY| OLd-
xoulo Y nopaueETewy: Mioa €psuva YUpw anod
TeOCYATES BEATIC TOTOLOELS.

H opyitextoviny| Sloxoplo T Topouétewy anoTeAel ohucpa To xuplapyo TEdTUTO
yior xhpoxolpevn extaldeuon Badidv povtéhwy xou tpoéxude and 500 TEodyYEAOUS:
™V TapEAANAY apyttexTOVIXT ¥AeBtol-Tuhc Tou Smola (2010) xou to aclyypeovo Hog-
wild! (2011). To 2012 n Google napouciooce to DistBelief, xohepivovtac tnv 16¢a
TWV ATOXEVTIPOUEVLY TUNUATWY TUPUUETOWY TOU EVNUELOVOVTUL Ad TAHVOC EQYATOY
péow tou Downpour SGD (xotopaxtdddne otoyaotinde alydprduoc xodddou xhioe-
ov)" autd édeoe Tic Bdoeic yia Plounyoavixée mhatpdpues énwe TensorFlow, PyTorch,
MXNet, Petuum, DeepSpeed, Ray xa Horovod, ot onolec uiotetodv tov Soxout-
o T TapoPETEWY elte auToVolo Elte oe LPBEWXH HoPYY| UE YPNoN Doy TUALDLLY OMXTAC
uetwone.

Tapd Tic TEdOBOLE, oL UTdEYOLoES BIBANOYEAUPIXES AVUOXOTNOELS XUAUTITOUY TN
poted To Vépor xou yio auté oty TapoLoa dlateldh €xel dievepyniel cuoTruoTix
BiBAoypapxr) avaoxéTnon o dedpa TOU €Y0UV SNUOGIEUTEL GTO YPOVIXO OLAC TNU
2010-2024, omouovevovTog €pyacieg TOU XaTNYOoplOTOOUYTAL OE TEVTE GEoVeES TNg
QPYLTEXTOVIXHC TOU ECUTNEETY| TOUEOUETEWY.

® £AEYYOC GUVETELOC

e [eltioTonoinon dixtbou

o JLoyelplon ToEOUETEWY

® AVTWETOTIOT XOUPWY Ue xouoTépnoN
® VoY1 OE GPIAUATOL

IMo v Btaopahlo Tel ot OAoXANEWUEVT ot UedodLxy| EToXOTNOY Tou Tediov, Ole-
vepyelton pio ouo tnuatx BiBhoypagix avaoxénnon (SLR) [108], n onola tepthay-
Bdver Tor axdhovda Priparta:
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1. Opiopdg epeuvnTixodv epwtnudtoy (RQs): H SLR éyet oyedootel wote
VoL oV THOEL GE BACINE ERELVITIXG EQWTAUNTA TTOU CUVABOLY UE TOUC XUPLOUC JEOVES
eZENENC TNS AEYLTEXTOVIXTC TOU EEUTNEETNTY| TUPUUETEWY.

e RQ1: TIloweg cbvar ou xOpleg otpatnyikés ouyxpoviouol mou €youv mpotadel
YioL TOV €AeyX0 OUVETEIRS 0TOVG EEUTNEETNTES TOUEUUETEWY

e RQ2: Il éyouv elehiydel ov BeAtiotonomjoes otny emkowwyia HOTE Vo
BEATLOOOLY TNV KAUAKWOILOTNTA XL TNV ATOTEAEOHUATIKOTNTA"

e RQ3: Iloweg ebvan o1 xlpieg mpoceyYloelg Yot TNV AVTWETOTLOT TOU TPoPAuUa-
T0S§ apywy pnxavnudtwv - stragglers xou tn Pehtinon tne g avoxns ota
opdApata

2. Zrpatnywxr avalrtnone PiBioyeagiag: O epeuvntinés Bdoelg dedo-
uévov (6noc .y JEEE Xplore) epwtdvior custnuotixd yio v avalhtnon epeu-
VITIXOY ONUOCLEVCENY PE Toug axdhovdoug dpoug avalitnong: “parameter server”,
“distributed machine learning”, “synchronization protocols”, “gradient compression”
xou “fault tolerance”. H aval¥tnon xoiinter dpdpa mou €youv allohoyndel amd xpt-
€ xou dnuootevTnxay Yetagl 2010 xou 2024, xadde 1 nepiodog auTh onuatodoTel TNV
EUPAVIOT| X0l WELIAVOT) TNS APYITEXTOVIXTC TOU EEUTNEETNTY TUEAUUETEWY.

3. Keutrera evtagng xaw anoxieicpoV: Kadoplotnxay copr xpitrpla yior tny
ETUAOYT) OYETIUODV UEAETWV:

o Kpttripia evtagng: dpldpa mou €yxouv altohoyniel and xpitég, ueAéteg mou
£0TLLOUY GTNV APYITEXTOVIXT] EEUTNEETNTY TUEUUETEMY 1| EQPUPUOYEC QUTAG UE
OUVELO(ORES OTOUG TOUElC Tou €youv avapepdel Topamdve.

o Kputrpia amoxAetopon: dpioa ToU EMLXEVTPWVOVTOL ATOXAELC TIXE OTOo fed-
erated learning, un ayylAogwveg dnpootedoelc 1 dptpa yweic Swdéoo to
TApeC xeluevo.

4. EZaywyr xou xatnyoplonoinocy dedopévwy: Ano xdle emheypévn e-
AT e€dryovTan o TITAOG, TO €T0¢ X 0L XVPLEC GUVELGPORES GTO eSO Tou EEUTNEETNTH
TUPUUETEWY.

EXéyyog Xuvéneiag

O €heyyoc oLVETELNG LOVTEAOU GTNV ORYLTEXTOVIXT| TOU ECUTNEETNTY TAUROUETEMY
elvon xplowog yia v toopponion ueTaly cuyyeoviopol xou anddoone. O Bacixég
oTpatnyixég Peloxovion ota 600 dxpa:

e BSP (Bulk Synchronous Parallel) [90]: Andlutoc cuyypoviopds oto

Téhog xde enoavdindng - H pédodog cuvendyeton mArieng cuvénela ahhd eivou
eudhwtn oe xaduotephoels (otporyyieps) [114-121].
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ASP (Asynchronous Parallel) [109]: AcOyypovec evnuephoeic ywplc avo-
uovy) - H pédodoc awZdver tnv taydtnta ye x6otog miovic acuvénetag (amap-
youmuéva daviopata xhiong) [58, 59, 84].

[N evdidueoee Aoelg, Tpotdiinxay TopoAlaYES k-CuyYypOVIoUOU:

k-BSP [89]: O eZumnpetntic nepwéver k Sapopetixolc epydtes - oy voel dio-
voouarto xhiong mou Yo xaduc TepHoouy.

k-Batch-BSP [89]: Ilepiuével k daviouata xhiong, avelopThtwe ond moLov
€pYATN.

k-ASP [89]: Aclyypovo, ahhd aiontotel xaduotepnuéva Staviopoto xhiong.

k-Batch-ASP [113]: ‘Onwc mopandve odd pe evel&io ot opddec.

Mio Sradedopévn evodhaxtixd| eivor 1o SSP (Stale Synchronous Parallel) [45],
ToL ETUTEETEL optoletnuérn maAaidtnta YETUED TWV PONOYLOV TV EQYUTWY UE XATOLO
xotpht. Eyer uiodetniel eupénc [85, 128-132] xou o cuVOUNOUS UE TIC TEYVIXES
BSP/ASP [114, 123].

Yougwvo ue v BIBMOYRUPIXT AVIeXOTNCT SAAES ONUAVTIXES TEOTACELS OYETIXG.
HE TOV EAEY YO CUVETELNC AMOTEAOUV:

To n-softsync [133]: pe [ epydrec o efunnpetntrc mepipével ta tpwta I/n
dtavOopato xhiong: xdie didvuoua xhiong otaduileton pye puiud ydinone mou
oyetlleton ye 10 M6CO OO elvan To Odvuoua. IIio mpdopata Swviouata
xhiong Ya divouv peyaiibtepo Bdpoc.

O Dutta [134] yenowonotel puduéd udinone e€aptduevo and v mahudtnTo
HE EAGYIOTY TWT) OOTE Vo amoTEENETAL ECUPETIXG UXEO B 6Ty 1) ToAondTN T
elvan peydn.

To cVotnua Litz [135] yovtelomolel v Sodixacio exmaidevone g ypedpo
EPYUOLOV UE AITIAKT) OUVETE.

Y10 Overlap Synchronous Parallel (OSP) [136] xdle epydinc €yet viua
ETXOLVWVIOG X0l UTOAOYLOUOU® ToTixol uTohoylopol cucowpedovTol Y€yl va
iovorotnUel GUYXEXPIIEVO XEITHELO XL XATOTLY GLY Y EOVILOVTAL.

To Dynamic SSP (DSSP) [137], émou nouxiher duvouixd t0 xothd@AL ToU
EXII Bdoel oVAVE CTATIGTIXMY.

To MLFabric [138], to onofo emttayver to BSP npotepatonotdvtag v ano-

GTONY] UXQPOY EVNUEPWOEWY UE YP1oN aAYopilUmY EVPECTC TG GUVTOUOTERNS
gpyaotag, EXTOC €4V Uiot EVNUERWOTT) TANGIALEL TO OPLO TUAULOTNTAS TOV THIWYV.
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Yuyxeitixn anoteAecpatixotnta: To BSPevoeixvuton yia epapuoyéc mou o-
TuToOV PEYIO TN oxpBeElal xou CUVETEL, ahAd LTOXELTAL O XAJUOTERHOELS ATO UMy o-
vipato Tou elodyouy xoduotépnon. To ASP unepéyel oe cevdpia 6mou 1 TaydTnTa
elvon mpwTtedouoa xan 1 epopuoyY| aviéyel mavi| acuvénelo. ToSSP npoogépel Evay
ouuPBooud, cuvdudlovtog aUENUEVN Tay OTNTA UE EAEY Y OUEVO Bardud ToAodTNTOC OTA
OLovOoATO XAOTG, ATMATOVTAS OUWS TROCEXTIXG PUUULOUO Xl GUVEY Y| ToEUXOA0UI T
orn. H emhoy? unyoviopod eEAEYy0ou GUVETELNS TRETEL GCUVETKOC VO TROCUPUOLETAL GTIC
WOLodtepeg amaToES (AVE CUCTAUATOS KoL EQUPUOYTC.

BeAtiotonowjoelg oyeTIXEG UE TO BIXTULO

Ou BedtioTonooeic oyeTxéc Ye To BixTUO OTOUC EEUTNEETNTES TUPUUETRPWY €-
fvou amapaTNTES VLol TNV AVTIUETWTLOY TG CUPPOENONS Xt TNV PElwoT Tou xOGToug
emxovwviog. O Bacixéc xatnyopleg elvon:

o Yvuunicon Baduidwv: Ilepurayfdver teyvinés apainong xou xBavionoinong.
Teyvinée 6nwe Top-k apaiwon [119, 132, 139] xou anolnuiwon o@dhpatos [139]
UELOVOUV TOV GYX0 ETXOVWVIAS Ywelc amwieta axpiBelac. AvtioTouya, xBovto-
nolnon yenowonoteiton oe dnuooteupéves epyaoie 6nwe ot TernGRAD [140],
QSGD [141], ATOMO [142]|, MQGrad [143]. Eminkéov, €youv npotadel evah-
hoxtixée 6mwe 1 oyedlaor - sketching [145] ¥ autoxwdixonointés - autoen-
coders [146]. Avooxdnnon oyetixdv uedddwy vrdpyet oto [147].

e '"AYpoiom Sravuopdtwy xhiong oe Tomxd eninedo: Ilpotdinxe oto
Project Adam [84] o enextddnxe oto MLFabric [138], emitpénovtoc Tomxéc
CUGOWEEVCELC TV BLIVUOUATOV XAONC TEY TNV AmOGTOAY TOUC UE Tov eEuTn-

eETNTY.

o Evnuepwoelg e npotepaiotnta: Evnuepwoelg xa mapopéteol tpowmdo-
OVTOL avaAOYoL UE TN ONHACLol TOUG, UEWWVOVTAS TN CUUGORNOT), OTwe YiveTton
oto Bosen [129)].

e Tonuxd KV-stores xow Caching: To FlexRR [114] xau to FlexPS [123]
EVOOUATMOVOLY TOTUXT| TROcweWT anolrixeucT) nopauéteny 1 KV stores otoug
epydTeS, TepopllovTag TNV ETXOWVMVIX UE TOV OLUXOULOTH.

e Awyétevon xou Emuxdiudr: To Poseidon [115],t0 OSP [136],xo 10
épyo tou Wang [149] emxodUtouv LTOROYIOUS o1 ETUXOWVMVIX YIoL YElWOoT TNS
ATOXELONG, EVE axohoudoly TeaxTixég dlpolong xon TaURSAANANG EMLXOVWViaG
OTwe xou to Project Adam.

Yuyxpertix) Anoteheopatixotnto: H ouunieon peidver v emixowvwvio ahhd
umopel vo ennpedoel T ovyxAon. H ddpoiorn dlavuoudtwy xiione oe tomixd eninedo
xaL N Yenon xeughc UWVAUNG BEATUOVOLY TNV ETaVOyENOWOTONoT dAAd €youy amal-
Thoelg uviune. H npotepatomoinoy xou n emxdAudn evioybouv Tny anodoTixoTnTo ahhd
TpocéTouy ToAuThoxdTNTa TNV LAomoinon. H otpatnyw emioyrc e€optdtan and
TNV 100pEOTA HETAEY ETUXOVGVIAXO) XOGTOUS, UTOAOYLOTIXMY TOPKY Xt axpifBetag.
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Alayeiplon nopauétpwy

H emdoyn tne teyvixrc doyelpione mapauétenv eaptdton and To @opTio epyo-
olag xou N Sodppwaon tou cucsthpatoc. O otatixég npooeyyioelg e€lcoppdTNong
(poETOL, OTKC 1 xUXAXY avdieon (round-robin) ¥ oi opoldpoppes xatavoués, etvon
AmAEC O AMOTEAEOUATIXEC O OUOLOYEVY TEQIBAAAOVTA, AAAd BUOXOAEVOVTOL GE BU-
vopxd poptia 1) OTOY UTEEYOLY UEQOANTTIXG HOT{Bol OE CUYXEXPWEVES XATNYOplES
oedouévey. O duvouixée uédodol, omwg ou Lapse xou NuPS, Swmpénouv oe etepo-
YEV) TEQIBAANOVTA XU GEVAPLA HEPOANPIAS OE CUYXEXEWEVT XaTnYyoplo SEGOUEVWY,
ATAUTOVY OUWE ETLTALOV UTOAOYIG T Loy ) xou Tapaxololinon.

Or otpatnyxég Sayeipiong mopauétewy xatnyoptonoolvtou oe 600 Bacols do-
veg: TEYVIXEC anoxeuong xou tpoceyyioelg e€locopponnong Twy TopouéTewy. Kotvo-
Touieg TS N xoTovour| pe enlyvwon tne pepolndlac (skewness-aware partitioning)
X0l 1) SUVOULXY) ETAVOYOELOT] CUUTANEWVOLY TIC THEadOCLoXéS UeUOB0US, TPOCYERO-
VTOG L0 OANOXATIPOUEVT] ELXOVA TV OldEoenv AIoERY Yo T BehtioTonolnon evég
eUTNEETNTY| TOEOUETEWY.

AvTipetonion xouPBwy we xaduotépnon

H anoTteAeogotixdTnTo dUTOY TWV TEOCEYYIoEWY e€upTdton ot UeYdAo Podud and
T SLoWORPWST TOLU GUGTAUATOS ot To (Blo To @optio epyacioc. H ex véou avdideon
EPYUOLWY, 1) EAACTIXY TUEAAANALL XL Ol TROGUPUOYES TOU UEYEVOUS UXEO-OUBONS
TOU Yenoulornoteitar 6TNY exTaldeucT] elvon LOIETEQO ATOTEAEOUATIXEC TEYVIXESG OF €-
TepoyeVT TepBdihovta, xolie e€looppomoly To poptio duvouxd. H andppeudm «xodu-
otepnUévwyy dilepyaouwy (straggler dropping), ov xou amhry xou amodotixt|, touptdlet
XAANUTEPA O OHOLOYEVY CUCTAUATY Ue xOpufouc uPnirc anddoone. Médodol dmwe 7
ouvopry pOduiom tou puipoL exudinong TEOoPEPOLY Evay EVOLUECO GuUBIBaoud,
oA evdEyeton va emPBpadivouy T oUyxAloT oe axpalo oevdplo ue stragglers.

AvoyY, o cpdApoto

To avtiypogpa topauéteny (parameter replication) npoogépouy LPNAY altomotia,
GUVOBEVOVTOL OUMC AT UEYEAES UTAUTATCELS TOPWY, YEYOVOS TOU Ta XotG T XAUTHAAT
Aoyt xplowo custhpata. To checkpointing emtuyydver wa ioopporio uetal oto-
mo TG xou anodoong, oANd unopel va elvar AYOTERO AMOTEAECUATIXG OE GUC THUTA
ue ouyvég aotoylec. llpoywenuéves TeYVInES, OTWS AUTH TOU TEOGEYYLOTIXO) GTLY-
wotOnou - approximate snapshotting xou autr Tng @eaypévne cuvénelog - bounded
consistency, lvon amodoTixég G€ TOPOUS, ATAUTOUY OUWE TEOCGEXTIXY) UAOTIOINGT (OGTE
vo un YuotaoTel 1 axpifela.
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C.4.1 XvuvouvdlovTtag TEYVIXES OAXNG UELWONG ol
Ao VY YEOVY] EXTAUBELCT) OTOV EEUTNEETNTY TALAUETEWY
HECWL EVUAANAYNS CTRATNYIXNG EXTUUBELCTS YL ATTO-
OOTIXOTERPT EXTTADELOT

Lopgwvo pe v cua oty BBAOYpaQIX avaoXOTNoT TOU TRy UATOTOL T
% EYWVE QOVERH OTL 1 aoUYYEOVY EXTIUEBEUCT] GTNY UEYLTEXTOVIXY] TOU EEUTNEETNTY
TUPUUETEWY EVOEYETOL VO TUPOUCLAOEL UEWUEVT axpifela oe oyéomn pe Tnv oLYypeo-
v X80y 1} TNE AOY® TV TETUAUWUEVLY Blavuopdtwy xAiong mou eugaviCovton. o
Vo Uetwiel To avTIXTUTO TWV TETUAUOUEVLY BlavuoudTewy xhiong, otnv BiBAoypapia
€yet mpotodel 1 W6éa e Evalhoryie-Euyyeoviopol (Sync-Switch), n onolo Eexvder
TNV XATAVEUNUEVY EXTALBEVCT) UE GUYYPOVO TEOTO OTNV UPYLTEXTOVIXY| ToU eCUTNEE-
TNTY| TUEOUETEWY (OTE VO OL TUPHUETEOL TOU JOVTEAOU VO TROGEYYICOLY THO XOVTH
070 BéATIoTO onuelo. XTO onUElo AUTO, YEMOWOTOLWVTAS ACUYY POV EXTULBEUOT),
Ta StovOopata xhlong elvon o pixed o PETPO UE AMOTEAEOUA Vo €Vl UXPOTERN
1 eTdPACT) TWV TEMAAMWUEVWY BlovuoudTwy xAhiong. O evitomioudg tou onuciou e-
volhay g YivEToL UE GUANOYY| CTUTIOTIXWY OO BLAPOPES TPOYEVECTERES EXTAULOEVCTG
ToU povTéAoU. Q20TOGO, 1 XEVTEIXY| OEYLTEXTOVIXY) TOU EUTNEETNTY TUPUUETEWY, OTN
oy ypeovn exdOYY| TN, EXTOC TOU XOGTOUS CUYYPOVIGHUOU, EYEL VoL BLOYELPLO TEL XU TNV
oUENUEVT) o1} POETIOL GTOL TAULCLOL TOV XEVTPLXDY UNYAVNUATOVY TOU AELTOURYOUV WG
eCumneetntéc. T To oxdmo autod, mpotelvetan o alyodpripoc e Evaoyric Ytpo-
mywc (Strategy-Switch), o omolog avti yia ) obyypovn exdoyy tou e&unnpetnT
TUEUUETEWY, YPTOUOTOLEL 0Py X ATOXEVTPOTOINUEVO 6{XTUO, OTIOU Ol XOUPoL ETXOL-
VoVolv péow TeEXVIXWY olxic peiwone (All-Reduce).Kdvovtoc authv v emhoyn
UTOPOUUE VAl UELOCOLUE TO xOGTOC cuyypoviouol. Tlapdhinia, mpoteiveton xou €vag
EUTELPLXOC XAVOVOC YLOL TNV QUTOUTH EVOANXYT O acOYYe0oVr EXTALBEUaT), YWELS VL
elvon amapaiTnTn 1 CUANOYT CTATIOTIXWY EX TWV TEOTEPWV.

YuyxenTixnn afLoAoY N oY EXTABELCYG OAMXYG LELWOTNG Xou Ao VY-
XPOVOU EEUTNEETNTY NAPAUETEWY

[o Ty 0&lohoyNoT Ty 800 TEYVIXMY XATAVEUNUEVNS EXTIUOELOTC, TEAYUATOTOL-
AUnxe cuyxelitiny a€loAOYNOT YENOWOTOIOVTOS W TEOTUTAL o&loAGY oG Tal eEAC:

o Exnoideuon tou duxtbou ResNet-20 oto olvoho dedopévwv CIFAR-10 (#B1)
o Exnaideuom tou dixtiou ResNet-32 6to olvolo dedopéverv CIFAR-100 (#B2)

Or petprioeic €delav 611 to All-Reduce emtuyydvel tn peyohltepn oxplBelo ahd etvon
T0 o 0PYH, VG 0 aolyypovoe Parameter Server (PS) etvon toyOtepog ohhd utogépet
omo ToL TEMUANWUEVY Blaviouata xAlong, petwvovtag Ty axpifeio. EmPeBoidveton
€toL 1 opyw) Vewpnon. Xe etepoyevel ouotddeg o All-Reduce oflomolel nepinou 50
% tne CPU, eved otny nnepintwon tou eunnpetnti TopauéTemy 1 TEAEUTOLN PTAVEL
nepinou oo 80%. Qotdo0, oTov eEunnpeTNTA TapopéTery SithactdleTal 1) xivnorn 6To
oixtuo oe oyéon pe to All-Reduce.
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MeYodoloyiax

EmuBefoudvovtog toug apyxols Lloyuptolols PEow NG TELRUATXAC a&lohbGYNoNg,
npoteivetan To Strategy-Switch. T 1000016 a% TV GUVOMXOY ETOYOY 1 EXTO-
{devon mpaypatornoteitan pyéow All-Reduce xou xotémy 1o poviého anodnxeleton o
XATOVEUNUEVO Gl TNUA opyElwY, OoTe va cuveyioel 1 exnaidevong péow aclyEo-
VNS ToaéYylong oTov eEumneeTnTY Topouétowy. Lo va amogeuydel 1 yetpoxivntn
eVduton Tou T0600To0 A%, ELOdyETAL EVOC EUTEIPIXGS XAVOVOC WS TEOG TNV CPAUL
emixpwong: opoxohoudelton €va xuldpevo mapddupo 5 emoyOY TNE TOCOC Talug
petaBorfic Tou o@dhpatoc emxdpwone (s). ‘Otav n twh tou s téptel xdtw and o
pedrypor tou 1%, evepyornoteiton 1 evolhoyy — onuelo 6mouv emmiéov Bruata All-
Reduce Ho €youv peiwpévn anddoor ywelc vo mpocdidouv emmiéov otny oxplBela.
Me yerion tou eumelpol xavova, mapEyeTon Uit TpOTOTOINUEVT EXBOYY| TOU OAYO-
eldupou Strategy-Switch, o ahyoprduoc Evahhaync Etpatnywrc Eunepixod Kavova
(Empirical Rule Strategy-Switch / ER-SS), ntou nporypatonoel autdpota tnv ahhory
an6d AM-Peduce oe aolyypovn exnaideuon.

IMepapatixry Agwohdynon

To mepdyarta xohdntouy opoyeveic (#C1)xou etepoyevelc (#C2)ouvotddec. Ta
x0pLor EVEHUTA EVOL TAL TTOEUXATE:

1. Icopponia petagl Taybdtntac/axpiBeiag. Yt ouotdda #C1 to Strategy-
Switch ouyxiver 1,14 gopéc toyOtepa and to All-Reduce otny exnaideuon pe
CIFAR-10 (#B1) pe anodiew axpifetac péhc 0,10%. Ltnyv mepintwon exmno-
(deuomne pe CIFAR-100 (#B2) to Strategy-Switch eivon 1,10 @opéc tayitepo
e ammiela oxpifelac tne téEng tou 0,06%.

2. AvdextixdtnTtar wg mpog o Me tpéc tou nocootol o and 10% éwc
90% durtneeiton oxpifela avdTEEN TOU ACUYYEOVOU EEUTNEETNTY TUPOUETEWY
xal yedvog extaldeuone capns wxpotepog tou All-Reduce. Wnhotepee Tyuég
oL a% minotdlouv Ty axp{Beta tou All-Reduce ei¢ Bdpoc tou ypdvou.

3. Auvopixh evallayr évavte otadepod a%. O eunepxdc xovdvog
(ER-SS) wogopilet  unepPaivel 10 xolUtepo otadepd o ywplc Tpdtepn YvoHom
Tou BértioTou onueiov ahhayrg, emPBERuOdVOVTUC TNV TEAXTIXY YENOLOTNTA
Tou. LNV etepoyevh ouotdda (#C2), xo ota d0o mpdtuta aloAdynone o
ER-SSnetyouver v axpifeio tou All-Reduce,wotéc0 ohoxhnpnver tny exmna-
(deuon xatd 52% xou 28% yenyopdtepa ota mpdTUNA aflohdynone #B1 xo
#B2 avtictouya.
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C.5 A&omolodvtag TNV ®xATAVOUTY| TwV 0ESO0-
MEVWLY YL TNV XAEYLTEXTOVIXY| OLAXOULC TH Tot-
copetewv: logeg xou 'Evvolieg

‘Onwg €yer avagepiel, 1 TOLOTNTA TOV HOVIEAWY TOU TROXVUTTOUV and TNV ooy-
Xpovn exmaldevon ennpedleTon amd dlaviouaTa XAlong mou €youv LTOAOYLOTEL 0TOUg
epYdTEC OO €val MapwYNUEVO cUvolo mopopéTewy. Méypl otiyunc €youv mpotadel
Aooelg o€ auTO TO PorvopEVo elte ot ahyopriuixd eninedo elte ye xatdAAnAn pOduion
Tou puIYoY Ydinone. LNy evotTnTa aUTH TEOTEVETL 1) 0&LOTOMOT) TNE XATAVOUNG TV
0edoPEVLY OOTE Vo umtopet var e€oualuviel 1) eTiBEACT) TV EVAUERMTIXDY BLUVUCUSTWY
xhiong amd TOANOTERES TUPUUETEOUC.

‘Eva mopdderyua yioo va e€nyniel xahOTepa 1 Topamdve 1W0€a anoTteholv chvola
OEBOUEVLVY TOL €YOUY 0vouoLo TATI0C BEBOUEVKY avd xatryopla, OTwe To GUVOAO El-
x6vov Imagenet [14, 213]. Méypt thpa ta dedopéva avatidevtar otoug epyalduevous
xuplee ue tuyaio teomo. H avopotopoppia Tou mAfoug dedouévmv avd xatnyopia oe
cLVBUOCUO Ue TNV Tuyala avdideon Bedopévey, umopel va odnyroel ot epyalduevoug
TOU VoL EVOL ETNEEACUEVOL TIEPLOGOTERO 1) AYOTERO TEOC Xdmola HoT{Bo SeGoUEVwY.
Yy aolyyeovn exnaideuon, 6tav meoxdPel Eva TopwyNUEVO GOVORO TOQUUETEWY,
elvon mioavo €vac epyalouevog Vo UETAPEREL TIC TapaUéTeouc ot Addog xatebduvon
0E0OUEVOL OTL UTOPEL Var EYEL U1 AVTITPOCWTELTIXY EXOVA TOU GUVOAOU BEDOUEVLY,
AOY® TOU LUTOGUVOAOUL TIOU TOU avaTEVNXE TUYOLAL.

[o v e€opdhuvon autod Tou gorvopévou, eivar mavéd vo urnopel vo aglonotniel
CUC TNHATIXT] LY ElPLOT TWVY BEBOPEVWY TNV EXTIUUOEUCT), CUUPWVIL UE TNV XATAYOUTN
Touc. Av Jewpniel wg yertowd éva chvolo onueiwy mou mepieiovton evtog piog
ogaipac mou optleton péow evog xevTEXol onueiou xou uiog cuyxexpyévng oxtivag,
T0Te *qe epyalouevog meEmel vor Aopfdvel utddhy tou eicou xdde yertovid. Tétowou
TOTOL YELTOVIES UTopoVY Vo TpoxDouy T6c0 and Ty apy x| xatnyoplonoinon (Bio-
OTPWUETOOT) TV BEBOUEVWY 600 xou Ue ahyopiduous 1 cuvapTHoES opddonoinong
mou avaxahiTTovy Tétota potifo (xpugy| dlaotpwudtwon). Ot Topandve TEYVIXES
€y 0LV yernotonoinlel o8 TOAEG TEQLTTMONG TOL ToL OEdOPEVA OEY Efvar xadoAxd Tpo-
ofdotua [198, 200, 217-220] oe 6houc Toug cLUUETE OVTES EpYalOUEVOUC.

To mapandvew €yel onuacio olyoupa 6Gov apopd To dedouéva Tou €xel TEOGHuoT
évog epyalopevos, 660 xon mdovde xatd TV eMAOYY RS CUYXEXPWEVNS WXEO-
ouddag mou Ya yenotwormoiniel otny xdide emavdindn tne exnaidevong evog HovTENOL.
H emhoyy| dedopévmv yia Ty uxed-oudda piog emavdhndng eivon uio Swobixdota Tou
£y el DoxooTEL apXETd xon oTo TapeNDOY [224, 225, 227, 228|.
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1: procedure AIAMOIPASMOY AIATXTPOMATOQSHE(Z, Y, )

2: > x elvon mivoxag e TohuBLHoTdTOUE TavuoTés, Xdde €vog
ané Toug onoloug TAPLOTAVEL Evar delypa exnaideuon
3: >y ebvou o avtiotolyog mivaxag Ye Ti¢ xAAOELG TWV dely-
pdtov exnaidevong
4 ot epyaléuevol amaptdpoivton pe 0, 1, ..., n-1
5 classes = unique(y) > Evtomioude Slodéoipwy xhdoewy
6: for each class in classes do
7 x_class,y_class =in_class(x,y, class)
8 class_size = length(y_class)
9: for i =0 to class_size —1 do
10: > Kuxhixdg Slopolpacudg xdde xAdong
11: worker _id =i mod n
12: Assign example z_class(i) to worker _id
13: Assign label y_ class(i) to worker _id
14: end for

15: end for
16: end procedure

Ewoéva I.8: Awoporpacudc Alctpoudtwone

C.6 Xtodepomolnom Tng AeYLTEXTOVIXY| OLd-
XOULO TY) TALAUETE WY UE CUC TNLATIXO OLAULOL-
EUCUO BEBOUEVWY TELY TNV EXTAULOELOT)

Yopgpova ue 6co avapépdnxay oTny TeoNYoUUEYN EVOTNTA, O AUTAY TNY EVOTNTA
Tpotelvovtal 800 TEYVIXES SLoWolpaool BEBOPEVKLY 0TOUC EQYALOUEVOUS TPV TNV €X-
maidevorn. O otody0¢ TV TEXVIXOY elvan va emttebEouy oTadeponoinon tne dladixaciog
exnoidevong, N omolo elvor Ao TS xdTe amd TNV ALY YEOVN EXTENEST X e€opTdToL
dueca and To TOGO GUYVE BNULOVEYOUVTAL SLIVOCUTA XAIOC UE TTUPWYNUEVES OO~
uéTpoug.

C.6.1 Ilpotewdpevolr AAyopripol

H mpdTn teyvixr) Tou TpoTelveTon apopd TOV SLOHOLOUCUO TV GESOUEVLV GTOUC
epyalouevoug haufdvovTtag LTOPY TNV BICTEWUATWCT] TOU TUEEYETAL ATO TIC XAACELS
oTIC omoleg €youv avtioTolyloTel Ta dedouéva. O Awauoipaopés Aaotpopdtwons
otvetan otnv Ewdva I'.8 xou 6edopévou 6TL xdvel mpooméhaon uio gopd oe xdde Eva
dedopévo éyel tohvmhoxdtna O(n), 6mou n 1o TARYOC Tou cLVGAOU exTtaidEUOTC.

Mio 8e0tepn TEYVIXT| TOL TEOTEIVETAL APOEA GTOV EVIOTIOUO TNS XPLUPNC DlAC TEw-
HdTKONG TOL UTOEEL VoL UTAEYEL OTA OEBOUEVA GUUPWYA UE TNV XATAYOUT) TOUC OTOV
TOAUOLAG TaTO YOEo. O alyoprduog xdvel TEOBOAT TwV TOAUBIACTATWY TAVUCTOV OF
Y WO UixpdTeEENE SLdoTaong péow Tou alyopituou Avdivong Kupldoywy Xuvieto-
owv - AKY (PCA) xau evtomler v xpugn diao tpwpdtwon twy dedopévey omd
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1: procedure A1AMOIPATMOY ENHMEPOS KATANOMHE(z, ¥, 1, classes)

2: A . ST
x elvon mivoxag pe moAudLoTdTOUS TavuoTéS, xdde Evag
and Toug onoloUE TAPLOTAVEL €var Delypa exnaldeuong

3:

y elvaw o avtioToryog mivoxac pe TIC xAdoEC TWV Bely-

HdTov exnoafdevong
4: >
oL epyaloyevol anaprdupodvtar e 0, 1, ..., n-1

>
classes efvan To mAfidog tou ahyopiduou K-xévtpnv

o: ©_Jlattened = flatten(z) g Emunedonolnon delypatog exnaideu-
ong
7 x_distribution = PCA(z_ flattened)
8: cluster _ids = K Means(x_distribution, classes)
9: clusters = unique(cluster _ids) > Etpeon Kevpdy Opddey
10: for each cluster in clusters do
11: x_cluster,y_cluster = in_ cluster(x,y, cluster)
12: cluster _size = length(y_cluster)
13: if cluster size > n then
14: for i =0 to cluster size —1 do
15: > Kuxhixog Slopolpacuog xdde xpupic opddog
16: worker _id =1 mod n
17: Assign example z_ cluster(i) to worker _id
18: Assign label y_ cluster(i) to worker _id
19: end for
20: else
21: Assign each x(i) in & cluster to all workers
22: Assign each y(i) in y_ cluster to all workers
23: end if

24: end for
25: end procedure

Ewoéva I.9: Awporpdopog Eviuepog Kartavouric

TNV XoTavour] Toug Ue yerion tou ahyoplduou K-xévtpwv. O olyderduoc Awporpa-
ouos Evniuepos Katavoung diveton otnv Ewova IM.9. H mohumhoxdtnta Tou eivon
Gueoa emnpedouevn and TNy yenorn twv olyopliuwy AKY xou K-xévtpwv xau élvon
O(n - maz{d? k}), émou n 10 mhidoc Tou cuvblou exnaideuonc, d to TARYoC TV
YAUEAXTNELO TIXWDY TOL Tavuo Th xou k To {ntoduevo TARYOC xpup®Y ouddwy tou {nte-
{ton amd Tov alyopriuo K-xévtpwy.

H yprion tou K-xévtpwyv unopel vo 8ol xpupéc ouddeg mou va efvan elte muxvég
elte apauéc 600V aopd To TARUOS TwWV BEBOUEVLY IOV UTIERYOUY OE QUTES. OewpmvTog
WS OPUEC AUTEC TTOU T ONUEll OEV EMUEXOVY OOTE VO TEREL TOUAAYLOTOV €var 0 xdde
epyoalopevoe, o ahyopLiuoc oTEAVEL AUTES TIC OUADES auToLGLES Ot Xde pyalOUEVO.
O muxvée yertoviée potpdlovtan e&icou otoug epyalouevouc.
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Mivoxac I7.8: LOvoha Acdopévmy

Y0Ovolo Acdopévwyv | Méyedog Ewxovag | Méyedog Zuv. Exnaidevong | Méyedog Suv. AZwohdéynong | "Khdoeig
CIFARI10 (36,36,3) 50,000 10,000 10
CIFAR100 (Coarse) (36,36,3) 50,000 10,000 20
CIFAR100 (Fine) (36,36,3) 50,000 10,000 100

Hivoxag I7.9: Trepmapduetool extaldeuong evog xouBou yia to ResNet-56v1

POOuion | Ty

Enoyéc / Behnotonomuic | 182 / SGD with momentum 0.9

Pududg Mddnong | Apywxd 0.1, drodpeon ye 10 petd and 90 xou 135 emoyég

Kavovixonoinon Luvérou Aebouévov | Agaipeon Mécou Buvohou Exnaideuong

C.6.2 Ileipopotinny Aldtadn

H nepapatint| a€lohdynon yiveton oe pla custolyia 15 eiovixdy unyavaoyv. Kdde
excovixny unyovt| €xet 4 vCPUxow 16 GB RAM xau Aeitoupyel ye Ubuntu 16.04.6
LTS xou TensorFlow 2.3.€0¢ xowd xataveunuévo cOoTnua apyelwy, yenotuonoteitot
t0 Apache Hadoop [69] mou avorntiooeton ye 1 namenodexon 14 datanodes. Xt Sio-
Ouxaoior exnaideuone CUUPETEYOUY 2 BloaxOUo TéC TopauéTewy, 12 epyalouevol xau 1
epyaota altohoynt. Xt Swdixactio exnaidevong, xde epyalOUevos EXUETAANEDETOL
u6vo Sedouéva Tou Tou €xouv exyweniel and Tov ahyderiuo Swpolpacuol. H mer-
poportixr) agloAdY o Tparyatonoteiton ue yenom tou dixtiou ResNet-56v1 xou e to
oUvola Bedopévwy Tou divovton otov Iivaxa IV.8. Ou unepnopduetpol Tou SixTOOoUL
evduilovton xatdAAnAa, cUUPWVOL UE TIC TPOTEIVOUEVES Yo EXTaUdevaTn ot éva xouo
mou dtvovton otov Iivaxo I7.9.

C.6.3 Ileipopotixry AEwohdynon

CIFAR10. O IIivaxoc I".10 meptypdgpel Tov Y€co Opo xou T SLaxOPAvVoT TeV
METEHOEWY exTaldeUanE xou a&lohoYNoNg yiol xdde teyvixy Slauolpacuod Bedouévmy
mou egapudleton oto CIFARI0. Evdy n teyviny) Aopotpaouol Ao Tpwudtenong Ue-
{wvel ye mopouolo TpéTo To QAU EXTTULBEUCTG UE TOV TuYaio dlopolpaouo, ctval
onuavTixd vo topatnenlel 1 enldpacn g ot dlaxdpavor Twy peteroewy. O Alo-
potpaoudg Ao tpwudtwong diver 1, 47X xou 3, 03X Aryotepn Slaomopd otny axplBela
exmaldeuone xou afloAdynong oe cLyxpeior Ye TN Baoctxy| pédodo dopolpacuon.

O Awpopaoude Eviuepog Katavourc odnyel o wa ehagped Bedtiovon tov ye-
TENoEWY Xou Unopel Vo 0BnyHoel oc TepauTépw WElworn TN SlooTopds, Ye €var To-
pddelypa 6Tov eviomopo 30 xpuey yertowinmy. H axpelfBeia 6to olvoro exmaldeuong
evioyeton xatd 0,22% pe 8,48 X uixpdtepn Swonopd oe olyxplon pe Tov Tuyoio
dlopotpooud. H Saxduoavon tov YeTpxdv allohdynone BeAtidveton emiong €mg xou
1,57X.

O Aworpacuodg Eviuepog Katavourc nopouctdlet ueyaALTERT SlaoTopd OTIG UE-

159



Hivaxag 17.10: Ytamiotxd (5 extehéoelc) v TEAXOV TV LuvdpTtnong
Lpdhuatov xou AxpeiBeiac Movtehou oto LOvoho Exnaideuone xou allohdyn-
ong CIFAR-10 avd teyvixr Slopoloaoo.

Merpwxég Exnaidsuong

Teyvixyn Alopolpacol Yuvdptnorn Lediuatog AxpBera Movtéhou
M.O. Awonopd | M.O. Atwomopd

Tuyoda 0.165786 0.001567 0.920000 0.001086

Ao TpOUdTHONS 0.165751 0.001312 0.922397 | 0.000736

20 | 0.165237 0.002471 0.921583 0.004059
30 | 0.165166 0.001270 0.922218 0.000128
40 | 0.165046 | 0.000761 | 0.921884 0.000851

Eviuepoc Katavopr|c

ITh8oc
Teitovicdv

Metpuxég AZloNoYNomng

Teyvixn Awpolpacuo Yuvdptnorn Lgpdiatog AxpiBeia Movtéhou
M.O. Awonopd | M.O. Awomopd

Tuyaio 0.442370 | 0.006174 | 0.935489 | 0.000863

ALO(OTpcopohwor]q 0.444076 0.005401 0.935396 0.000284

20 | 0.445127 0.004059 0.935291 0.000648
30 | 0.442075 0.003431 | 0.935885 | 0.000550
40 | 0.441692 | 0.011402 0.935127 0.001358

Evuepog Kartavourg

IDwdoc
Tettoviddv

TEES aLONOYNONG OE CUYXELOT UE TOV TUYAO OLOUOLpaoUs UOVO EQV Y ENCLLOTOL-
AOOUUE PEYAAO aptiud XpuPGY YEITOVIOV G GUYXELOT UE TOV aptdud TWV XAACEWY
070 GUVOLO BEGOUEVWY. AuTO ogelleTon OTIC APAUEC YELITOVIES, oL oTtoleg avartidevton
oUTOVUGLES GE OAOUC TOUG pYUlOUEVOUS X0 EMOUEVC XATOLA DELYHOTA EXTIUOEVOTC
UTOPEL VoU ETOVOLYPNOWOTOOUYTOL amd GAOUC, 00NYOVTOS TIUVOV OE UTEPTROCURUO-
Y1 Tou dTLOL oTa dedouéva exmaldeuone. To TARUog TV dPUKOY YEITOVIWY artd 3
emheyuéveg enavohrfielc exmaldevong diveton otov Ilivao IV 11 poli ye tnv axplBela
070 6UVOAO G€LOAOYTIOMC.

COARSE-GRAIN CIFAR-100. O Ilivoxac I".12 mapouctdlel tic Yetpixéc
exnoldevone xou oloAOYNoNe Yol TNV TEPIMTMON YPNoNG TOU GUVOAOL BEBOUEVLY
Coarse-Grain CIFAR-100. Iopotneeiton xou mdht 6Tl 0 SLUOLAGUOS SLIC TEWHUATE-
onc odNYNoE GE HOVTENO GTO OTO0 EAAYLOTOTOLOUVTAL Ol UETENOELS EXTUBEUCTNC %ol
1 Bloomopd Twv Yeteroewy afloAdynong. §261dc0o, 0TV TERINTWoN auTr ehayloTo-
Tolo0VTOL Ol PETEXES aELOAOYNONG OTAY YENOWOoTOLE(ToL 0 dauolpacuds Eviuepog
Katavourc. Auté elvon ouufBatd ue dco avopépdnxay oTny TeonyolUevn evoTnTa, Ue
Tpolnoveon TNy xATIAANAT EMAOYY) TOU TARHOUC XEUPMY YEITOVIOV. LTNV CUYXE-
xpWEVN TepinTwoT), pio x| emhoyn ebvan ot 40 yertoviég, onhadn To Simhdolo amd
70 apy6 TANY0C *AdcEWY TOU GLVOAOL dedouévwy. Tlepautépw adEnon Tou TAfdoug
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Mivoocag IM.11: Apaée T'ertoviég amd tov Alapolpaoud Eviuepo Katavouric (e
rowiho mAloc yertoviidv) pe Tic avtioTolyes YeTpixée adlohdynong yio 3 eml-
heyuévee extéleoelg tng exnatdevone (CIFAR-10).To péoo péyedoc yertovide
aVaPERETAL GTO PEGO TAUOC GTOLYEIY 0PALY YELTOVLOV.

. , Extéheon#1 Extéheon#2 Extéheon#3
T'swtoviég
Apaéc Méoo | Axpifeior | Apouég Méoo | Axpife | Aponée Méoo | Axpifeia
lettoviég | Méyedoc Emx. Tertoviée | Méyedoc Emux. Tettoviég | Méyedoc Emx.
20 2 1 0.9352 1 1 0.9345 3 1 0.9361
30 6 2.83 0.9351 6 117 0.9361 4 1.25 0.9364
40 7 1.57 0.9370 8 1 0.9345 11 1.56 0.9330
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Ewéva I.10: Onxoypduuota avanapdotacng Tou TAJoug Twv BedouEvmy avd
xhdom oTar TPAATE ToL avatidevTan 6Toug EpYalOUEVOUC YId 3 OO TIC EXTE-
Moelc.

TWV XEUPOV YELTOVIOV QUVETOL VoL EYEL YELROTERT) ETUOOCT AOY L TOU (PUVOUEVOU TRV
QEOLWY YELTOVLOVY oL eENYHUNXE TapATdvV®.

‘Eyovtag oulnthAcet TNy ehaylotonolnoy tng SLoxOHavone Tou UTOoREl VoL ETLTEL-
yVUel and tov ahyopriuo SLouolpaouol BLaC TEMUATWOTNS, EVOL CTUAVTIXG VO XATOVO-
fioouye Tepantépw yiatl o Tuyaiog dlapolpacudg 0dNYel ot PEYAAITERT BLUXVUAVET) OTIC
uetpnoelc aglordynone. H Ewudva IM.10 napoucidlel pio ogddo 9nxoyeouudtemy yio 3
and Tig exteEAéoELC Ue Tuyalo dlapolpaoud. Kdlde dnxdypouua teprypdpet Tov mAfdog
0edouEvev exmaldeuone amd xdde xAdor mou €yet avatevel o xdde epyalouevo. To
Coarse-Grain CIFAR-100 amotekeiton and 20 wodpriueg etxétec. H xatavour; tou
cuvolou Bedouévwy ot 12 epyalduevouc Vo TEETEL VoL TOPEYEL OTOV XoEVa Tep(Tou
208 mopodelypato exnaidevong and xdde xatnyoplo. Ou meplocdtepol epyalduevol
€YOLY OLIUECO APLIUO TUQUDELYHATOVY OVE XAJOT) XOVTE OE QUTAY TNV TUY, EV® TO
(200, 215) etvou évar 50%-8.€. oTIC TEPLOOGTERES TEPITTWOELS. 20T600, Tor HNxoyEdu-
HoTar UTOBEXVUOUY OTL TOAEC XAAGELS XATAVEUOVTOL GVIOA OTOUC £0YAULOUEVOUC, T.).
otic Ewdveg I.10B" xou I".10Y". "Eto, évag epyalduevog Yo mpoonadnioel vo mpocop-
MOCEL TO HOVTENO TEPLOGOTERO OE UL CUYXEXQWEVY TAEN 0BNYWVTAG O PEYADTERT
ATOXALOT) TOCO OTIC PETENOELS EXTUUBEUCTC OGO %o OTIG PETENOELS AELOAOYNONG UETO-
&0 twv emuépoug exteréoewy. Puoind, évag axpalog apriudg TaEadELYUdTWY avd TN
Yo umopovioe va BAdder mepoutépn TN BloaduaveT, xadog 1 amoxAlon Tou peyédoug
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Hivaxag 17.12: Mtamiotwxd (5 extehéoelc) v TEAXOV TGOV Luvdpetnong
Lpdhuatov xou AxpeiBeiac Movtehou oto LOvoho Exnaideuone xou allohdyn-
orn¢ Coarse-Grain CIFAR-100 avd teyvixt| dlapolpaouou.

Merpwxég Exnaidsuong

Teyvixr Alopolpaciod Yuvdptnorn Lediuatog AxpBera Movtéhou

M.O. Awonopd | M.O. Atwomopd
Tuyado 0.352169 0.004761 0.811742 0.003103
Ao TEWUdT®oNS 0.346032 | 0.001903 0.814008 | 0.000766

30 | 0.349379 0.003350 0.812987 0.002031
40 | 0.350087 0.001738 | 0.812330 0.000535
60 | 0.347240 0.001893 0.812624 0.001138

Eviuepoc Katavopr|c

ITh8oc
Teitovicdv

Metpuxég Emuxdpwong

Teyvixr Awapolpaco Yuvdptnorn Lgpdiatog AxpiBeia Movtéhou

M.O. Awonopd | M.O. Awomopd
Tuyota 1.216487 | 0.010065 | 0.805993 | 0.004452
Ao TpoUdTOoNG 1.232794 0.006096 | 0.805841 0.000728

30 | 1.219970 0.009967 0.806072 0.000931
40 | 1.211612 0.008745 0.806237 | 0.002374
60 | 1.209313 | 0.021793 0.805775 0.003009

Evuepog Kartavourg

IDwdoc
Tettoviddv

TNe xhdong oc olyxplon e TIC uTololneg Yo dNULoVEYoEL TEpaUTEPW XUplapyEes N
umoxvplopyes xAdoelc. AuTh 1 Un ouolduopdr onTixr mou Exel xdde epyalduevog
yior ot 6EB0OEVA GTOV TUY LD BLUOLEAoUS, BeV EUPAVICETOL GTOUC TROTEWVOUEVOUS OA-
yopriuouc.
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Mivaxag 17.13: Etatiotmnd (5 exteléoelc) TV TEAXOY TGOV LuvEeTNong
Ypdhpatov xow AxpiBeioac Movtehou oto Xivoro Exnoideuong xou aflohdyr-
ongc Fine-Grain CIFAR-100 avd teyvixy| diouotpacuon.

MeTpixég Exnaidsuong

Teyvixr Alopolpacuol Yuvdptnon Lgedhpotog AxpiBero Movtéhou

M.O. Awornopd | M.O. Awomopd
Tuyada 0.512164 0.009550 0.744448 0.007855
Ao TpoUdTRoNg 0.516125 0.009296 0.744203 0.003107

50 | 0.513846 0.004085 | 0.746785 0.000764
100 | 0.521913 0.008164 0.743808 0.005842
200 | 0.510340 | 0.006247 0.746949 | 0.001134

Eviuepoc Kotavoprc

IDrdog
Tertovidv

Merpuxég Emxtpwoncg

Teyvixr Awopolpacpod Yuvdptnon Ledhpotog AxpiBero Movtéhou

M.O. Awomnopd | M.O. Awonopd
Tuyola 1.841267 0.026051 0.704707 0.002222
Ao TPWPETWONS 1.817435 | 0.011633 | 0.708432 | 0.001225

50 | 1.835961 0.019680 0.707048 0.004526
100 | 1.851682 0.015945 0.703488 0.003561
200 | 1.839176 0.013421 0.708234 0.002264

Eviuepog Katavopric

IIdog
Tettovidv

FINE-GRAIN CIFAR-100 O rivaxog [.13 anoxaAdntel yepind evolapépovta
EVPNUATA GYETIXA UE TIC HETPNOEL EMXUPWONG. Apyxd, OTws culnTRUNxE ToEaTdve,
1 OLXOUOVOT] TWV UETEIXWY EMXVPWOTNG ENXYICTOTIOLE(TOL OTAY Y ENOWLOTO00VTL O
OLIOLEACUOC DO TEWUATWONS. Extéc amd T dtaxbuaveT), eAapens BEATIOUEVT Elvor
X0 1) EXOVL TV DLWV TWV UETEIXMY OE QUTAY TNV TERITTWON.

'Oty yenowonolobvTol SLaUolpAoUos EVAUEROS XATAVOUNG, TO HOVTEAO (olveTal
vo. Bedtiotomolel Ti¢ ueTpXéC exnaidevong, ue Tapopol axpifBeia EmXpWOoNS UE AUty
NG TEYVXNC SO TEWHATWONS. AV xou 1) Tey Vx| mou Aowfdvel Loy TNV xoTavo-
un dev elayioTonolel TN BlaXOPAVOT) TWV HETPNOEWY EMXVPWONS, ToEOVCLALEL ETtiong
YOUNAOTERES TWES Bloxduavong o oUyxplom pe T Tuyola pédodo.
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