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[TeptAngm

To tehevtaior ypdvia, 1 porydobor avdmTudn Twv YeYdhowv Yhwoowoy wovtédwy (LLMs) éyel auvihoer
{hmnom v anodotx) eXTERECT] TOC0 GE LUTOBOUEC XEVTPWY OeBOPéVWY G0 XaL OE TAATPOPUES TEPL-
opopévwy Tépwy. Ilapého mou 1 xBavtonoon (quantization) peidver 10 LTOAOYIOTIXG XOGGTOS XOU
TNV omOUTOUUEVT WvAun, oL uxthc oxpifetac mpdelc, 6mou oL evepyomotfoels datnpolvton oe LYNAGTERN
axpifela eved Ta Bdpn mocotixomolodvtol ot WxedTEPo £0po¢ bit, TUPAUEVOUY AVUTOTEAEGUAUTIXES OTO
yevixol oxomol Lhxd. Ou uédodor mou Baotlovtan oe Ilivaxee Avalfmmone (LUT) npoogépouy pia
TOAAG UTOOYOUEVY] EVAAhAXTXH AVom: woT6c0, 1 enlteun g PéATiotng ooppotiag petall yerong
puviung, euehilag xou TEOCUPUOCTIXOTNTIC 0TO PopTo epyaoioc moapopuével tedxinon. Ilpoteivoupe to
LUMAX, évav TAfp6C EVOOUATWUEVO ETTAYLVTY WxThS axpifetag todlamhaciaoyod mvixwy ye Bdon
LUT, vy evepyelond anodotixh eEXTEAEDT] PEYSAWY YAwoow®y povtélwy. To LUMAX Swdétel enovor-
Bl opPOGLUO LVAXS, eTTEETOVTAS TNV amodotixt| UToaTHELET BlapopeTixy edpwy bit yia evepyomolfoeic
xou Béen. Tt pelwon tou x6otoug twv LUT, yenowwonootue LUT tetoptnuopiou peyédouc (3-LUT)
e amodotixy BewxtoddTNnom xou cuunicon Sedouévwy, EAUYLO TOTOWBVTAS TNV ATOUXEUCT Xl TN LETUPOEd
dedopévwy. To LUMAX éyel uhoromdel we ouveneZepyootic RocketChip (RoCC), emtpénovtag étot
anpboxonty evowpdtwon pe tuphvec RISC-V. Enextelvovtog Boaoixég 1déec and npdogata oyédia Boaocio-
péva o LUT xou ouvdudlovtde teg Ye mAYpn EVOWUETWoT 6ToV ETEEEpYUoTH Xo ETOVASLOUOPPUOOULO
vhxd, to LUMAX npoopépel évay cuéAxTo, evepYeElaxd amodoTnd EMTUYUVTY VLol TOCOTIXOTOMNUEVT
extéheon LLM, ouvbudlovtag TpocapuooTixoTnTa UAX0U, YeNoTXOTNTA AOYICUXOU Xol dEYITEXTOVIXT
anodotixdTnta. Amoteléopata agloAdynong delyvouv 6t to LUMAX, npwtotunonowmuévo oe
FPGA ZCU106, pewdver t xprion LUT xoa DSP éw¢ xou 33% xou 96% avtiotouya, emituyydver pe 79%
My6tepouc x0Oxhoug xoun Tpoo@épel émg xou 4.7x emtdyuvon oto LLaMA2, ue éw¢ xou 70% Behtiwon
TNV EVERYELOXY) AMOBOTXOTNTA OE GOYXELON UE TEOTYOUUEVOUS ETUTAYUVTES TOANATAACLAGUOD TLVEXWY
6mwe To Gemmini.

AéEeig Khewdd — ITivaxoag Avalrtnone (LUT), Muxthc Axpifeiog Ipdiec, Eni-
TaxLVTAG, IToANarAaciopmdg Iivixwy, Xopuninie AxpiBeioag Meydia F'Awoowxd Mov-
TENA.






Abstract

In recent years, the rapid growth of large language models (LLMs) has increased demand for efficient in-
ference on both datacenter and edge platforms. While quantization reduces computation and memory
costs, mixed-precision operations, where activations remain in higher precision while weights are quan-
tized to lower bitwidths, remain inefficient on general-purpose hardware. Lookup Table (LUT)-based
methods offer a promising alternative, yet achieving an optimal balance of memory usage, flexibility,
and workload adaptability remains challenging. We propose LUMAX a fully integrated LUT-based
mixed-precision GeMM accelerator for energy-efficient LLM inference. LUMAX features a reconfig-
urable hardware design, allowing for efficient support of different activation and weight bitwidths.
To reduce LUT overhead, we employ a quarter-size LUT (3-LUT) with efficient indexing and data
packaging, minimizing storage and data transfer. LUMAX has been implemented as a tightly coupled
RocketChip Co-processor (RoCC), thus enabling seamless processor integration with RISC-V cores.
By extending key ideas from recent LUT-based designs and combining them with full processor integra-
tion and reconfigurable hardware, LUMAX provides a flexible, power-efficient accelerator for quantized
LLM inference, blending hardware adaptability, software usability, and architectural efficiency. Eval-
uation results show that LUMAX, prototyped on a ZCU106 FPGA, reduces LUT and DSP usage
by up to 33% and 96%, achieves 79% fewer cycles, and delivers up to 4.7x speedup on LLaMA2, with
up to 70% improved energy efficiency over prior GeMM accelerators such as Gemmini.

Key words — LUT, Mixed-Precision, Accelerator, GeMM, Low-bit LLM.






Euyaplotieg
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Chapter 1

Extetopévn EAAnvixA Tlepiindn

1.1 Ewayoyn

Y onuepwvh enoyy, to Bathd Nevpwvixd Aixtua (DNNs) éyouv yivel avandonaoto pépoc TONNGY
AVUBUOUEVLY EPELVNTIXAY BRACTNELOTATWY, TEOXAADVTUC TOUS OUYYPOVOUS JPYLTEXTOVEC GUOTNUATWY
VoL TeoGopp6LovTal GUVEYKDC Xal Vol BEATIOTOTOLO0Y TO oyedlaoud yio TayUtepes xou mo oxplBelc Aloelg
[1, 2, 3, 4, 5, 6]. Metd anotéreoya, oL GUYYPOVES EREUVNTIXEC TPOoEYYIoELS Blepeuvoly AGELS TOL
dapépouy and to amhd poviého extéleonc oe CPU [7], emixevipdvovtae elte o Aoelg Poaotopéves o
GPU eite oc axdpn mo eZedixevyévoue emtayuvtée, n.y. Tensor Processing Units (TPUs) ¥ Neural
Processing Units (NPUs) [8, 9, 10, 7].

O olyypovee edge avantiZels egopuoydy texvnthc vonuooivne Bactopévwy oe LLMs [11, 12, 13, 14]
wobv axdur TEPLoaOTEPO To Oplol TNE EVepYElaxhc amodoTixdtnroc. MéJodol dnwe 1 xBavromoinon
veupwvixdyv dxtiny (NN quantization) [15, 16, 17, 10, 18] éyouv eugoviotel Yl vor ovamaploTody Ta
Bden xou/f Tic elo6douc oplogévwy emimédwy Ue Ayotepa bits and v mAren avamapdotoaon xvntig
UTOBLAGTOANG, EEOLXOVOUDVTAS TOGO EVEPYELN, OGO XAl YOEO XA UTOAOYLOTIXOUS TOROUC.

H e&edixeuon viixol péow emdetixdv teyvixedyv oyedlaone 6mwe o nollamhaolaopds Bactoyévoc oe
LUT [19, 20, 21] ypnowonoteitar yior TEpouTéRe BEATIGTONONON TOV EMLTOYUVTOY OGOV 0Popd TOL YopoX-
metotxd Anédoon-Evépyeio-Xapoe (Performance-Power-Area, PPA). "Etol, nopatnpeiton auavouevo
EVOLAPEROY YLOL EMTAYUVTES ELBXOV TOUEN TOU EXPETUAREVOVTOL UELUEVT aptdunTen axpifeia oTig ovo-
Tapao tdoels 0edouévwy. Tetoleg oyedldoelc EMTUYXAVOLY ONUAVTIXES PEATIOCELS OTNY OnOdOGT, TNV EV-
epYELOX AMOBOTIXOTATA Xou TNV XoAUTepn adlonolnom Twy mépwv VAol (1, 15, 22, 23, 24, 25, 26, 27, 28|.
Avtideta, ot yevixol oxomol emitayLVTéc Tou unootneilouv xuplwe urtohoylopolc LPnirc axplBeloc dev
elvan xatdAAnhot yio peydha yYhwooind poviého (LLMs) nov Boacilovton oe inferencing pe younhy axp{Beio
bit [21, 29].

Ta cUyypova LLMs, mou cuvidwe cuvdudlouv evepyomowfoelc LdmAirc axp(Beloc pe Bden youniic
axp(Beloc, €youv odNYNOEL OTO OYEBLIOUS VEWY OOYLTEXTOVIXMV EMITAYUVIWY. Autol oL emToyLVTEG
otoyevouy otnv anoteeopatixy utooTiplrn Aettoupywhv mixed-precision evdy peyiotonowolv T
enavayenoylonoinon dedouévov [1, 15, 22].

Metagl twv mo unooyduevwy teyvixwy oyedioone elvan oo LUT-based wédodoil. Autd cuyPBaivel
nupleg eneldy), 6tay xdnola woviéha tpoonadolv Vo Aettovpyfoouy ot yauniotepo bitwidths, to x€pdn
and ) xenon avalrtnong wéow LUT eivan onuavtind oe obyxplon pe v extélecn) Tou tolamhactacpol.
Ye auth TNV TRocEYYLo, oL emTaYUVTES elte anodnxebouy 6Toug Tivaxeg GAo TOV YWEo TECIOVIWY Yo
evepyomolfoele xou Bdprn youniic axpiBetoc [16], elte doatnpolv éva peiwpévo cOvoho Tdy yia éva
CUYXEXPWEVO ToEdUEO EVERYOTIOINONEC EXTEADVTAS TEO-UTOAOYLOWS Tivaxa on-the-fly yia xdde povdda
LUT. Ta avtiotouya Bden avoxtidvrar xou cuvdudlovton yia va mapoydoly ta tTeAixd anotehéoparto. Auth
1 uevodoroylo elvon Wiaitepa amoteAeopatiny poévo dtav ta Bden elvar xBavrononuéva o YoaunioTeEn
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oxpifeta, eVe oL evepyorolfioelc apopévouy LPNAAc axpifelac T.y. 8-16 bits [19, 21].

To xlplo yetovéxtnua mponyoluevey vhonotfoewy [19, 21| elvon 1 neploplopévn xAWdXwon TV xEESHY
an6doong xodwg avgdveton 1 axpifelor Twv bit twv Bapdv Aoyw g yerione bit-serial opyitextovixnc.
Ye auth v epyaoia, nopouotdloupe o LUMAX, évav LUT-based GeMM emnitoyuvtr tou unootneilel
mixed-precision eicé68oug xou Bdpn, otoyebovtag otov topéa twv LLM xou mapéyovtog uior youniic
HOTAVIAWONG EVERYELOG X0 EVEAXTY AUoT) Yo inferencing olyypovwy veupwvixdy dxtiwy atnyv edge.

Ye avtideon ye mponyoluevouc LUT-based emtoyuvtée, ol onolot mpobnoloyilouv xou amodnxedouv
oLVBUUOUOUE EVERPYOTIOCEWY ot oT1 cuvéyel Bacilovton oe bit-serial hoywr; xou shift-accumulate
Bruarto v Ty avaxataoxeun teotoviny, o LUMAX uodetel wio Yepehinmdog Slapopetiny) otpatnyixn
arotixevong. T'a xdde tiuy) evepyomnoinong, to LUMAX oanodnxelel aneudeiog oha to midovd npoidvta
olppwva e TV axpifeia Tou Bdpouc, opyavwdvovtds to xau opadonolwdvtag to oe MEMs. Koatd tnv
eEXTENEDT), TO PBdpoc Aettovpyel amhide we Belxtne Yo TNV emAoyr Tou avtioTolyou mpoldvtog ot évay
HOVO ®0OXAO, ETUTEENOVTAC TAUTOYPOVY) CUCCWREUCT| Xwele TNV avdyxn emavohauBovéuevwy bit-serial
Aeltoupyiy. Autdg o oyedlooudg Yeudvel Oyt Uovo Ty xaduoTtéenan ahhd xon BEATIOVEL TNV XAUAXWGOT
vio. mixed-precision workloads.

Emniéov, autd 1o mhaloo emtoyuvTy ebvan eovd vor oavoblaop@ovel duvopxd Ty axelBela elo6dwv
xa Bopddv, mopéyovtag éva euéhixto meplBdhhov, mou umopel vor xohler ToANEC amd TIC GUYYPOVES
xouvotoueg xPavrononuéves epapuoyéc LLM. O emtayuvthc vhomoteiton w¢ RocketChip Co-processor
(RoCC), yenowonowsvtog évav RISC-V nuprivar we host processor. Emniéov, n uédodoc nolomiaot-
acuol Bactouévn oe LUT Beltiotonolel mepantépm TNV EVERYELOXY AMOBOTIXOTNTA TOU EMLTOUYLVTY €&-
EPELVAOVTAS TNV avalHTNOT OPIOUEVKY YOEAUXTNELE TIXGDY Boptdv/eloédwy avtl Yl ToV UTOROYIOUO TOUC.
Ewduéc Behtio TonolAoelg apyttextovixfic eival eTlong EVOOUATWUEVES OTO TAAIOLO EMTAYLVONG, OTWE TEO-
avaxTnoT Bapdy o CUUTIEST) BESOUEVMY.

‘Eva SoC Paociopévo oto LUMAX mpwtotunfidnxe ypnowonowdvtag to Chipyard [30], yoetoypapnuévo
oto FPGA ZCU106 [31]. EZetdotnxay Siaupopetixée pixpo-apyltextovixéc dapoppnoelc tou LUMAX,
deiyvovrac pewdoeic ot yehion LUT xou DSP éwe 33% xou 96% avtiotoya, oe cOyxpion Ue Tov 160~
nopo emitayuvth TPU-based SoC Bootouévo otny apyitextovixf Gemini [2]. Xpnowonowdvrag 1o dixtuo
LLaMA2 [32] w¢ eqoppoyt| odfiynone, emtelydnxay énc xau 4.7 pelworn xOxhwy xou 70% Behtiwon oty
EVERYELOXNY) OmOBOTIXOTNTA O GUYXELOT UE Tponyoluevoue GeMM emtoyuvtéc.

1.2 Yyetwn BiAoypapia

1.2.1 Agiepwpévolr Emtayuviéc yia KBavtiopéva Nevpwvind Alxtuo
Gemmini: Apyittextovixr Xuctolxol Ilivaxa yioo GEMM

Ot ouctohixol mivoxeg efvor plar SNUOPIAC CEYITEXTOVIXY YL TNV EMTAYUVOT TOU TOMAATAUGCLACUOV
VeV, Bacinic tedEne ota Badid veupwvixd dixtua (DNNs). Anoteholvron and TAEYUa ETEEERY OO TIXGDY
oTolyelwy Tou AelToupyoly ToEdAANAA oL GUYYPOVICUEVA, UETAPEROVTAC Bedouéva cwhnvwtd. H npocéy-
yion auTY| BEATIOTOTOLEL TN XPHON TOPWY XOl PELOVEL THY ovay XY TedoBaong oe uvhun extog ToLr, auEAVOov-
TAC TNV AMOBOTIXOTNTA Xl amddooT).

H ypefion ouvotohxdy mvixemy eivon avixy| yia Tl enavaiaufovoueves xou napahAnionotiolles TedEels
noAamhaotlacpol mvaxey ota DNNs, pe younhy xaduotépnomn xatd tic Aettoupyieg torhamiooiaouol-
adpolopatoc.

To Gemmini [2] elvor évag emtoyuvThc avoxtol xMdxa tou Baciletu o oloToAxd Tivoxa, péoa 6To
owooclotnua Chipyard. Trootnpeilel hettoupyiec Output Stationary (OS) xou Weight Stationary (WS),
mou xoopilouy Tde anovnxedovtal To dedouéva ata oTolyela xotd Ti¢ Tpdelc. Lty OS Aettovpyia, ol
Tipéc e€600L Tapoapévouy otadepéc, eved ot WS ta Bdpen elvon otardepd, yewdvovtog tny xivnor dedouévoy.

To Gemmini unoctneilel xBavtiopéva TomouC int xou uint, xododg xou xvnthg uTodlac ToAfc fp32, xahbn-
Tovtog eupd Qdopa epapuoywy and xBavtiouéva DNN éwg mirfpoug axpelfBetlag povtéha. Idwitepa, 1 un-
ooTHplEr int8 to xadoTd anodoTind Yio Ypyopn xou eVEpYELOXd omOBOTIXH EXTEREDT).
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Figure 1.2.1: Yiotolxéde ivaxac Gemmini.

Etvar euéhixto, emtpénovtog evodloyr uetoald OS xaw WS dataflows oe mpaypatind yedvo xou
TopapeTponoion oxpifela aptdudv (int8, intl16, int32 xou ta unsigned oavticTtorya, xoddc xou
mpooupeTxd float). Emnhéov, urootneilel Baowéc hettovpyiec Barthde pdinone 6nwe ReLU, ReLU6, max
pooling, average pooling, xou eyyevi UTOCTARIEN YLl LETATEOTY TVEXWY/Slavuoudtony péow Lhxol. H
OTEVY EVOWUATWOT) Ue To 60voro eviohev RISC-V yéow npocapuoouévwy eviohdy SleuxollveL T cUVER-
ool AoYLoPxoU-UAXOoU.

Carat: Apyitextovixyy Enitayuvtd pe ITolhaniaciacpolc yweic Xerorn Iloi-
AATAACLACT TGOV

To Carat [22] elvon pror xouvotdpog apyLtextoviny| emitoy LVt oyedlaouévn eldxd yia Aettovpylee yevixol
rolamhactacpol mvdxwy (GEMM). Ewsdyel o tpocéyyion ywelc ToNOTAICLIO TES TOU HELIVEL OTUoV-
TG TNV XATAVEAWOT) EVERYELNG Xl TNV TOALTAOXOTNTA UAXOU, e€ahelpovtac Tic Topadootonés Lovades
nohhamhootaopol. Avtideta, to Carat petatpénel Toug noloamhaclacpols o TpocVeTinée Aettoupyieg
YENOWOTOLOVTOC Wiol VEX TEXVIXY YVWo TH ¢ parallelism emmédov tiudy (VLP).

H Boowd éa niow and to VLP elvar 1 a&lonoinon g TAEOVAoUATIXOTNTAC 0TS TYWES EL0OB0U — 8L
altepa oLYVH oE Lop@éc younhnc axpeifeloc omwe INT4, FP8 1 BF16. Avt{ va exteheiton évog Eexwplotog
nohhamAootaopds yio xdde Lebyoc tehectéwy, to Carat unoloy(lel xdde povadixd ywépevo pévo pio
popd. To enavahaufovoyevo TEAECTEN CUVOEOVTOL GTY) CUVEXELDL UE OUTE TA YIVOUEVA UECEL WLOG UOP-
QNS XPOVIKNS KwdKoTmoinong, OTOU CHUATA YEOVIOUOUD UTOBEXVOOUY TOHTE €Val YIVOUEVO TOU EYEL 1M
unoloyloTel mpénel va enavayenoyonomndel. o mopddetyua, oe évay mivaxa eloddwv INT4, unopel vo
UTdEYOUV UOVO 16 Yovadixd YIVOUEVA AVAUETH OE YIAAOES TOANATAAGIACUOVE, OBNYWVTAUSC GE CNUAVTLXY
e€0oVOUNGCT| UTONOYIGUOU.

Apyitextovind, to Carat uiodetel o oyt eunvevouévn and Toug oLloToAxols Ttivaxes, 6mou to Enelep-
yoaotixd Btovyeio (Processing Elements - PEs) eivou Swatetaypéva oe éva diodidotato mAéypo mhodiov.
Autd tor mhox(BLor Aettovp YoV TAVw GE ELOEPYOUEVOUS TAVUCTES X0 ETUXOWVMVOUY HEGE) UNYOVICUMOY UETH-
Boomg xou oLYYEoVIoUoU Tou e£aaaiilouV TN CUVETY| ENAVAYENOLLOTONGCT TWY UEPIXMOY ATOTEAECUATOV.
H apyrtextoviny) unogel vo xhoxwiel oe morhaniolg x6pfoug yéow evoc mhéyuatog Awxtbou ent Toun
(Network-on-Chip - NoC), xoahotevrac tny xatdhAnhy yio epyoaoies uPnifc andoone xon xaTaveunuévo
poptia.
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Figure 1.2.2: Emioxénnon opyitextovixfc emtoyuvty Carat.

H apyttextoviny| etvon WBialtepa Bertiotonomnuévn yia gpyaoiec inference youniic axeiBeiag xon »Borv-
Tiopéveg ot Padd veupwvixd dixtua, 6oL 1) EvepyElax)| amodoTIXOTNTA Xou 1) anddoor avd Watt etvou
xploweg. O euneipixéc aélohoyfoelg avapépouy Behtiwon tne dlapéoou anddoong and 1.02 éwg 3.2 popéc
xou %x€pdn evepyelaxnc anodotixotntog and 1.06 éwg 4.3 gopéc oe clYxELoN Ue GUUBATIXOUE ETUTAYUVTES
oo ToAxo) mivoa.

TATAA — MevtaBarropevog Emtayuviic yia Transformers

Ta yovtéha transformer, nou anoteholv 11 Bacuer) utodoun Twv clyyeovwy Meydiwy I'woouyv Mov-
éhwv (LLMs), anatodv t600 yeouwxés 600 xou un ypoppés Aettovpyiec. Evd ol ypauuixés het-
ToupYleg XVpPLIPYOLY GTO GUVOAXS POETO UTOAOYLOUOU, OL Un YeoUXES Aettoupyieg — 6mwe ol Softmax
xo xavovixonoinorn — anoutodv vmAidtepn axplBela. 2otdoo, oL TEPloGHTEROL EMTAYUVTES £0TIALOUV
oyedbv anoxhelotxd ot Aertovpyiec GEMM, nopauehdvtog ouyvd T un yeouuxr enelepyooia.

To TATAA [1] avtipetonilel auth 0 SIEOTOOT ELGEYOVTIC Lo URYLTEXTOVIXY ETUTOYUVTY TpoYpouuatilo-
HEVY) OE TRAYUATING XPOVO, VT VoL EXTENEL ATOBOTING Ol YROUMIXES Xa U1 YRuUUXES AetTovpYle péoa o
povtéla transformer. O Bacuxég Tou txavoTNTES TERLAOUBAVOUY Uil EVENXTY), EVIaa oEYLTEXTOVIXY) UMXOU
oYEBLOUEVN Yia ATOBOTIXNY UTOCTARIEN TWV LTOAOYIoUOY wovtéhwy transformer, cupnepihouBoavouévey
TOGO TWV YPUUUXOV TOANATAACLACUDV TUVEXWY 0G0 Xl TV GUVIETWVY U1 YEOUMXOV Aettoupytoy. Kev-
Tt xouvotopio anoterel  Aertoupyion Dual Mode Processing Unit (DMPU), n onola unopel vor evah-
Nooeton opold LeTaZl Tng Aertoupylag molhamhaotoopod mvdxwy int8 (MatMul) xou tne Aettovpryiog
un yeouuxhc encéepyaoioc bfloatl6. Auth n euehi&la emtuyydvetal U€ow TEOCUPUOCUEVOU GUVOAOU EV-
oAV (ISA) xou mhauoiov petayAdTtione mou petapedlet tic udnrol emnédou hertoupyiec transformers
oe Baowés vnootNElduevee Aettoupyieg, EMITEETOVTAS OAOXANEWUEVY, EXTEAEDT Ywpelc avdyxn ex vEou
exmaiBevone 1 ONUAVTIXDY TEOTOTOCEWY VAIXOD.

To cbotnua Slrdétel pla TpoY P UATILOUEYT AR LTEXTOVIXY) eEnedepyaciog mTou enLTRENEL Eu-
ENXTYN ETOVAYENOLWOTOINCT TV Hovidwy unohoyiodol. Ou povddeg encéepyaciog eivon Slacuvdedepéveg
®ote vo urnootneilouy t6c00 éva gioTodikd mivaka vPnAnc ambdoone yio GEMM 6co xau yia apyitek-
tovikry SIMD vy yn yeouuxée Aettovpyleg. Trootnellovtan to mpdtuna int8 xon bfloatl6, pall e
EVOLUATOUEVN TocOoTIXOoTolnoY enl Tou Toun, elolelpovtag Ty avdyxn yia e€wtepnt| Tpoeneiep-
yooio.

H petdBoaon yetadd twv 800 Aettovpyidy yiveton duvauixd oe mpoyuatxd xpovo péow tov Mode MUX
XL QoG eAApELdc povddog eAéyyou.  Autd emitpénel otov emToyLVTA Vo yetaoynuatiletor yetald
Behtiotomoinuévng Yoo yeopuxée Asttovpyiee oloTohc extéheonc xou cuéhxtne SIMD extéheonc,
avdhoya YE TIC anatTAOEL Tou QopTiov pyaoiag — mpoo@épovTas T600 amodoTxdtnta 660 xou evehi&io
otnv eneepyaoia transformer.
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Figure 1.2.3: Apyttextovixry Aixol tou TATAA xou povdda Simhic Aettovpyioc enelepyaoiog

Yy apyrtextovixy TATAA, 1 urtootiplln un yeouuxay Aettoupyidy ot Aettoupyioa SIMD pe bfloat16
ETUTUY YAVETOL UEGL TTPOCEY YO TLXMY TEXVIXMY Xat €dxoV UAxoU. Aettovpyies ontwe GELU, SoftMax »ou
LayerNorm npoceyy(lovTton ue TOAVWVLUIXES 1) AOYLOUIXEC CUVAPTACELS YAUNAAC TdENg, ot onoleg amodi-
dovton amodotixd o axépateg TEGEES. AUTEC OL TEOCEYYIOELS EXTEAOUVTOL UEGE QUPOCLOUEVHY CWANVWTMOY
OTAdICV X0 AELTOURYIXODY UOVEDWY, EMTEENOVTAS ATEOGKOTTY) EVOWUATWOT| UE YRAUUUX00E UTOAOYIOHOUS.
H yprion vdnirc axpBeiag bfloat16 eaoporilel tny anoutodyevn axpifela, eved 10 UETUBUAAOUEVO apl-
Buntxd cdoTnua xou 0 TopdAANAog unoroyloude dlatneoly LPNAY amddoor. O oyedlaouds AUTOC ETLTEENEL
TNV anodoTixy) eXTEAEST OOVIETOV U1 YRUUUXOY AELTOLVEYL®Y, EmToyLVOVTaC To wovtéAa transformer
ywelc oupPiBacpoic oty eveM&la.

LeOPard — Exupddnon Katwphiov pe Baduideg v Extéleon Ilepixonrc xatd to
Runtime

Yo unyoaviopols mpocoyhc (attention) mou yenouwlomolodvtar oe peydho YAwooixd povtého (LLMs)
xotd T ddpxela tne extéreonc (inference), wévo éva puxpd utooivoho twyv tokens mapouctdler UPNAA
cuoyétion ue to token umd mpocoyN, xou AUTO TO LuTocUVoho xadopileTon XATd TO YEOVO EXTEREOTC.
Q¢ ex T00UTOU, UEYANO U£ROC TWV UTOAOYLOUMY YIVETHL AOUAVTO AOYW YoUNAGY Bodtuohoyidy mpocoyhc.
Yta otpdpata autonpocoyfic (self-attention), to xOpLo vtoloyioTind Bépoc cUVBEETIL PE TOV UTONOYLOUS
Tou Tvonca Bardporoyiay, Scores = Q - KT xou tov unohoyiopd twv Tov npocoyhc, Atts = P - V.

To LeOPard emtoaylvel touc untohoylopolc npocoyc oe Yovtéha transformer ye tn yehorn TeyVIXGV
TEPIXOTAG XTIV xotd To runtime Baciopévev oe Thnpogopiec PBoduidwv (gradients) xou npdwpou
TeppATIooy uoloylopol ot eninedo bit. Me autdv tov tpémo, meplopiler duvopuxd o U onuavTixd
péern TV Baduohoyidy TpocoY NS, UELDVOVTISC TOV UTOAOYLOTIXO PORTO, TNV XATAVAAWGCY) EVEQYELNG XL TN
Aovddvouoa ywelic vo Yuotdler axpifeo. H otpotnywd expdinong xdde otpmduatog enitpénel ny emhoym
BLOPOPETIXMY XATWPAWY TPOCOYNG, EVEM 0 TEOWEOS TEPUITIONOS CTOHATE TEQLTTOUC UTOAOYLIOHOUS OE
T oTAdLaL, avEdvovtag TNy anodotxdtnta. Ol toAlamhaclaoyol mvdxwy oto Atts = P -V ylvovtow
pe Tov mepopuévo mivaxa Softmax P, eved 1 ouvdptnon Softmax egapudleton povo ota Swtnenuéva
otouyela Baduoroyiac.
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1 Po=0 My=(9+5(27'+27%2+27%) =1225 | P +M, =12.25 > 5.X
2 Po=P+(5-T)27 1 =1 M, =(9+5)(272+2%) =525 CP2+M2:4,25<5;/

3 Py=P2+(5-2)272=-025 | Ms=(9+5)(27°) =175 Py +M;=1.5<5;
4 P,=P:+(9+5)2° =15 My=0 Po+MM,=15<5;

Figure 1.2.4: X0Ovodr npdnpou tepuatiogol VToAOYLoRoD Yol T1) AELTOUEYId ECWTERIXOU YLVOUEVOU
Q x K. Y7o mopdderype, To K napovoidleton oe pop@n bit-serial, eved to @ oe axépann ohoxhripwon ue
nhen axpiPeta. O othhes (a-d) anewxovilouv pepovouéva ototyeia Tou davbouatog K xou ol yeouués
ta avtiotouya bits (MSB — LSB). To ofjue K unodnhédver to bit npdonuo. T amhonoinon, to
ototyelo Tou K etvon xhipoxwpévo yeta€d -1.0 xou +1.0. O nivaxog epgaviler tic pepixée Twég
adpolopatoc petd and xdde xOxro.

To LeOPard vrootneilet xuplwg bit-serial enelepyacio yia Toug uToloylopoVE Twy Baduohoyidy npoco-
xfc (Q x K1) xon v oy nodhamhacwaopot (-V). To ulixéd Aertovpyel pe oxpifela oe eninedo bit
(m.y. povddec 12-bit oelploxés), EmTEETOVTUC AETTOUEPH Xl TEOMPO TEQUATIOUS TWV UTOAOYIOUOV PdoEL
TV anogdoewy meponhic. O oyedlaopoc anevdiveton oe povtéha transformer 6nwe BERT xou Vision
Transformers, mou cuvitwe yenotworololy 16-bit xwvntrc unodiac Tolrig 1) pop@éc yaunidteenc axplBelag.
Qotéc0, N apyitextovixt) Tou LeOPard eivan BeAtiotonoumnuévn yia bit-serial aprduntixn dote vo vhonotel
anodoTXd TOGO TNV TMEPIXOTY) 6GO XL TOV TPOWEO TEPUATIOUO.

Y10 mhaioto autd, ol evepyonooels xou to Bdpn avanaploTavTo UE Lop@E TocoTixononang otadeprq
unodlactorrc. H emhoyh e axpifetag 12-bit xadopileton and tnv cupBatétnta ye 10 LAXS xan Tnv
emduunty toopponio uetall axpiBelac UTOAOYIOUWY XaL ATOBOCT.

To LeOPard extehel opudunuxéc mpdleic oeiploxd oe bit yio peyoahdtepn eueh&lo xou evepyelaxh
anodotixénta. O Baowde tou muphvae, To QK-DPU, duwyepiletor nolhaniootacpols bit-serial ye
Aoy EAEYYOU TOU ETUTEETEL TOV MPOWPO TEPHATIOHUOS OTAY TOL EVOLIUECH AMOTEAEGUAT UTOAE(TOVTOL TWV
EXPAINUEVLY HOTOQAWV.

Bdipn xou evepyomoroelc anodnxebovton oe bit-serial buffers, xon ta yepixd anoteléopata cucowpebovtal
oe x0xhoug. Mohig éva anotéheoua Yewpniel apxetd axpBéc, o umoAoylouds oTaLaTd vewpitepa Yio
eZowovounor evépyelag.

‘Onwe gaivetar oto Uyhua 1.2.5, nunpoctvr uovida QK-PU nepixdntet tic youniéc faduoroyieg npoco-
YHhc xatd Tov unohoyiopd Q x KT ofiohoydviag pepind amoteréopata bit-serial. Mévo ol Bodpohoyiec
mou unepPatvouy Ta xatd@Ata Tpowdolvtal oty povdda V-PU yia v eneepyacio Softmax xa P - V.
H mepucony| aut] UEWOVEL TOUG TEELTTONE UTOAOYLOMOUS, BekTitdvovTag Téco TNy ToyUTnTta 600 XaL Thv
EVEPYELOXY) OTOBOOT).
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Figure 1.2.5: T'evuxr| yixpoopyitextovixr] evoc mhaxidiou LeOPard.

To chotnuo TPocPépel apxetd mheovexthpata. Yrootnellel hettovpyies énwe Q@ x KT, Softmax, o
P x V. Moévo o nivaxec @ xa V omodnxedovion oe eowtepixolg buffers. Egapudler mepixony
OE MEAYUATIXO YEOVO Ue BLUQOopeTind xatwehla avd otpwua. O oyedluoude Sivel éugoor otnv
HALLAXKWOLLOTNTA xat T0 UPNAG Topdhinho eninedo uéow apyttextovixnic Paclouévng oe mAox(Bia.
Yuvohixd, emituyydvel emtdyuvor 1.9 éng 2.4 gopéc o olyxplon pe amiég uetddoug bit-serial, xododg
xou Yeloon xatavdiwong evépyelag 3.9 €wg 4.0 @opéc.

Apyrtextovixn Soft SIMD upe Evepyeiaxy AnodotixdTtnTo

H vhonoinon xBavtiopévevy CNN oe cuoxevéc dxpne (edge devices) omoutel evélxto xan evepyetoxd
anodotixd Lhixd. Ou napadootaxéc apyrtextovixée SIMD ye otadepd elpog bit mepropillouv v and-
doom xou TV xhpaxwoodta. H npotewouevn uixpoapyitextovixy) Soft SIMD avtiyetwniler autd to
npoBinua, urnootneilovtac avdaipeta edpn bit xou anotekeopatiée aprduntixéc npdéelc ototephc UTOBL-
acTolrg, emtpénovtag uPnic anddoonc inference und meploploud GE YWEO XL XATAVEAWOT| Loy VOC.

H apyitextovinr| vhomotel Sudpopec Bacixéc teyvixés: guardbits ypnoylomootvton avti yio mohumhéxteg
Yiot ToV Sloywetopd Twv utoréEewv SIMD pe ehdyloto x60T0¢ UAXOU- xwdixoroinon CSD peldvel
Tov aptdud TV xOXAwV TolanAaclocpol- wovtEAa SIMD napiheTEOTOLCLAO OE TEAY LATLXO
xeovo cmtpénouy avdaipeta cdpn bit (r.x. 3-24 bits)- unyovh shift-add napéyet arodotxoic nok-
Aomhaolaopole: xa 1 wovédda Data Pack (DPU) enavacuoxeudler Suvoixd o dedopévor petodd
dlapopeTixwy popponotioewy SIMD yio euélxto LTOAOYIGUO.

H apyitextovin) unooteller xupiwe aprduntind évtova épyo omopaitnta yio to inference twv CNN,
OTWS OTOLYEWDDELS TPOGVETELS X aPaLpéatls, hertoupyleg petotémong (shift), molhamhaoioouoies Po-
owopévoue oe shift-add, xou Aettovpyiec nodhamiaotaopot-adpoiopatoc (MAC) pe aopalt cucohpeuon
v unepyeihon péow guardbits. Avtipetwniler anodotxd to tuxvéd (fully-connected) xou cuvehixtixd
otpwpata péow MAC dugpopetindv ebpwy bit, ahhd dev ulomolel dueco un YEOUUIXEC EVERYOTOATELS
onwe ReLU oto uhixd, xadde autéc ouvidwe eréyyovton and meplpepetony hoywr| 1 cuvdudlovtal oe
O TEOUOTA.

Emuniéov, unootmpilel etepoyeV xPavTixonoinorn avd cTedpa, 6Tou Bden xal EVERYOTOOELS
umopoLY va €youv xatd to runtime Siapopetnd €bpn bit, axdua xou péoa oto Blo CNN avd otpwyo.
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Figure 1.2.6: Aiudypoppa pmhox tng npoteivouevne mxpoapyttextovixic Soft SIMD. To npdto otddio
elvan 1 Movéda Aprdunuxdv (Arithmetic Unit - AU), o to dedtepo 1 Movédda Enavacuoxevasiog
Acdopévev (Data Pack Unit - DPU). R1 éw¢ R4 elvan xataywpentéc.

Architecture Datatype / Precision | Linear Ops | ReLU | Softmax | Multipliers | Reconfigurable

Gemmini int8/16/32, uint, float v v X v WS / OS mode

Carat FP8 (low precision) v X X X X

TATAA int8 /bfloat16 v v v v SA / SIMD mode

LeOPArd int12 v X v X X

Soft SIMD Arbitrary bits (3-24) int v X X X Precision
(bitwidths)

Table 1.1: Comparison of architectures and supported operations/features.

1.2.2 Enwtayvvtéc Baocwopévolr oe LUT vy Muxtig AxpifBeiag KBav-
Tiopéva Nevpwvind Alxtua

Méypet oTiyUnc, TOEOUCIACUUE CNUAVTIXE €070 GTOV TOMEN TWV ETUTOUYUVIMY YLo UEYIAS YAWOOLXA UOV-
éha (LLMs), mou ouyvd ofonotolv texvixés xBavtiopol xat xahOTToUV IAPOPES APYLITEXTOVIXES XOl
otpatnyixéc Pehtiotonolnong. Xt CUVEYELN, EMXEVIPWVOUACTE oE eMTayLVTEC Pactouévoug oe LUT
(Lookup Table), ot onolot oyetilovial 0TEVE UE TNV HPYLTEXTOVIXT| TTOU TPOTEVETAL 0T Buxt| pog epyaoio.
Avutéc oL mpooeyyioeic avTimpoowTEvoLY Yiol eVBLUPEROUTA XUTNYORld, XAVOS ETMTEETOLY T CUYXELON Ko
a&lohbY Mo UE TOV o)EdLIoUS Wog, 0 omolog elodyel Aettovpyiec GEMM Booiwouévec oe LUT.

FIGLUT: Enwtayuvtic Baciwouévog oe LUT vy GEMM FP-INT

O FIGLUT [19] eivar évac evepyetoxnd anodotinds oyedloaopdc EMTUYUVTY TROCUPUOCHEVOS YL AEL-
toupyiec Tevixol Iolamhaciacpod IIvdxwy (GEMM) pe elocodo xvnthc unodiaotorfic (FP) xou
Bden axépoua (INT), yenowonowbdvtac Hivaxee Avalimnone (LUTs). Xtoyelel oTny oavTWETOTLON TWY
TPOXAAOEWY TTOL dNovpYoUVToL omd Peydha Yhwoowd povtéha (LLMs), yewbvovtog Ty Tolvmhoxdtnta
TWV UTOAOYIOHAOY PEak avdxtnong dedouévwy and LUT avti yia napadooioxéc apliunuxéc Aettovpylec.
IToAAéc undpyovoeg pédodol anocuuniélouy to Bdpn o€ Lopdh xVNTHG UTOBLHC TOAAS TTELY TOV UTOAOYIGUO,
EXYETOAAEVOUEVES OUWE AVETAEXWS TNV YounAn axplBeta, pewdvovtoe €tol Ty anodotxdtnta. Emniéov,
vhomowoels Poaotopévec o LUT oe GPUs cuyvd avupetonilovy cuyxpovoeis tpanelwy (bank
conflicts) xotd vy npbdoPoon otn wvhAun, mou eunodilovy Ty anodotxy| TapdAANAY eXTELEDT.
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Shared Shared “— Thread
memory memory ¢
< ' ' ' '
B e ey
w';k e | Bank conflict O |
4_I 1 1 1 1
Total access time : 1 Total access time : 4
(a) Ideal case (b) Worst case

Figure 1.2.7: Xiyxpion ouyxpoloewy tpancloy xotd TNy TeocBact o€ Xl UvAun

H vlornoinon e uvrune LUT yiveton pe apyrtextoviny| Flip-Flop LUTs (FFLUT), avti vy xhooixoic
HATOUYWENTES, EMTEETOVTONC TUPAAANAES avaryvwoele and molhamiéc povadec RAC ywele ouyxpoloelg
Tpanelwy, pe younhh xaduotépnon xou ywelc avdyxn dtautnotag. Autéd diatneel vdnhé pudud extéreonc
yplc va augdvel Ty xatavdhwor Loy 0og ¥ TNV TOATAOXOTHTA GTOV TROYPOUUATIONO.

H apyrtextovin| Baciletan oe Bididotato olotolnd mivaxa, epnvevcpévo and to TPU tne Google, ue
otpatnyx otadeponoinone Bapdv (weight-stationary), emtuyydvovtoag anodotxy| pon eloédwy xivnthc
UTOBLAGTOANG, UEYLOTOTIOLOVTAS TNV EXAVAYENOT TV BapldV, EAXYICTOTOLOVTAS TIC TROCPBACELC OTT UViun,
0L ETUTEENOVTOG TNV dUEOT evowudtwon Ty Twdy LUT ywelc xaduoteprioeic.

Input buffer : : :

= [

LUT| [LUT LUT]| 3 i :

gen. gen.| " Jgen|w{{_ “HPLRAC H+:

O | == e T T Y I : E"’

£ PE |+ PE |- PE°‘=E 5 HIPLRACH?:

;L_ 11 1 J,Activatm?l l §ﬂg | ¥

8[: L PE | PE |-~ PE I3[ |5 iL:
= || [ Weight o| & A —%
! 4 3 3 ;
PE |» PE |»: = PE |—|? P
-MPU b e '.PE .............

Figure 1.2.8: Yuvohun apyitextovixy MPU touv FIGLUT

To FIGLUT nogovoudler uPnhy evepyetanf anodotixdtnrta, e Pedtiowon TOPS/W éwe 59% oe xBav-
Tomoinon 3-bit xou éwc 98% oe 2.4-bit, oe olyxplon pe nponypéves hoewc. Iupéyer evehiEia vrootnelov-
Tag mowxiheg pedodoug xBavronoinong 6nwe FP-INT, BCQ, uwtrc oxp{Belog, xododg xat ogolduoppn xou
un ouoldpopen xBavtonoinon. Xdern ot yeron Flip-Flop LUTs, anogebyovto ol cuyxpoloelc tpanelnv,
EMTEENOVTAC AMOBOTIXO CLOTONXO TAEYUA XL ETAVEYENOY) OESOUEVV.

Qo1600, ta mheovexTiuata cuvodebovton and neploplopols, onwe N avénon e uviung LUT ye exdenuxd
pLUUO WE TEOC TO fi, AMAUTOVTOG TEOCEXTIXES oYEdloTIXéC emhoyéc. Eniong, n apyitextoviny elcdyel
noAuTAoxSTHTA LAV, xupiwe Adyw Bloyelplone tdoewy xon 080V oNudTteny, YEYOVOS Tou Bucyepaivel
™ @uowt| Soppliuion. Télog, to FIGLUT eivan eZewbixeupévoc emtoyuvthc, BehtioTonomuévos xuping
Yo oVTEAA HOVO UE Bdpm, xon PUTopel Vo uny elval amodoTindg 6 YEVXOTERES epyaoieg UTOAOYLOWOU.
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Figure 1.2.9: Baow apyttextovixy CLM yia toAlamiociacud 4-bit

KBavtiomég CNN 4-bit ue Jvpnayeic ITIoAaniaociactéc Baociopévoug oe LUT

Y epyooio twv Zhao et al. (2023) [16] avtipetonileton n npdxhnomn e VAOTOINOTNG CUVENXTIXGOY
veupwIKAY dxtlwY (CNN) 08 EVOWRATOUEVES CUCKEVES LE TEPLOPLOREVOUC TOEOVG, TKS
FPGAs ywpic apxetéc povddec morhamhactacuol (DSPs). Ta napadootaxd CNN anoutodv peydin
umoloytoTx 1oy xou €0pog UVAUNG, xadioTdvtog ta Un omodotxd v edge cuoxevée (m.y. drones,
Blounyoavixole anodntiipes).

O1 Baowréc mpoxhfioelg ebvou:
1. H pelwon e apuduntiic axpeiBelag yopic amdieo axpifBetog.
2. H vhonoinon anodotixol tolarhaciacpol oe FPGAs ywelc yerion umhox DSP.

H vlonoinon ctoyelel apyxd uévo cto inference, 6mou to povtého exnoudeveton Ye oxplBelar £p32 xon
ot ouvéyela epopudleton 1 Threshold-Aware Quantization (TAQ) oe Bdprn xou evepyonolfoels,
»PBavtilovtac ta ot 4-bit axéponous yweic npdonuo (0 éwe 15) [8, 33, 17].

H pédodoc TAQ oavixer otov xAddo tng post-training quantization, emdudxoviag amodotixt
vhornoinon o FPGA ywplc ex véou exnaldeuvor. Xpnouwonolel un ogoldpoppo xdetn TV e custom
thresholds yio ehaytotonoinon opdipatoc ®Boavtiogol, xou REWXTY OTEOYYLAOTONGT oL EVUA-
Nooel pedtédouc énwe round-nearest xou floor avéhoyo ye TNV ey YOTNTA OE XATWOALOL XL TNV XATAVOUT
OeBopEVLV.

Kpeiowo xau xouvotdpo otolyelo tng apyitextovixhc elvor 1 TAYENG ATORAXEUVCTY] TGOV AplIUNTIX®Y
TOAAATTAACLAC TAOV antd T0 LVAXO. Avtl yia mopadooiaxolc tolanhactactées (.. DSPs), vionotei-
T TARENS Tpo-LToAoviowods ot Iivaxee Avalhitmone (LUT) Aoyw tou meploplopévou cuvehou
BUVITWY TOAATAACLICUOY TOU TeoxUTTOLY and TNy 4-bit xBavtonoinom.

Kdde Lebyoc iy (0-15) odnyel oe 256 duvatéc exPdoeic modhamhactacuol. H apyitextovins exuet-
oalhedeton awtd, anolnxedovtag 6ha to duvatd ywopeva o LUTs vhonowuévoug e povddeg LUTE,
Baowob otoiyelo oe obyypova FPGAs. To tehx6 anotéhecpa ebvar o Compact LUT-based Mul-
tiplier (CLM), mou yenowonotel péhic 13 blocks LUT6 avé nolomAaclac T, eTTUYYdvovtag Uhny
ATOBOTIXOTNTA OE YWPO X EVEQYELO.

Kotd tnv extéheon, o CLM rnodpver Tic 4-bit tipéc evepyomnoinong xan Bdpoug w¢ diethduvon yia yeryoen
avéxtnor Tou npotnoroyiopévou yivopévou and tov LUT, avuxodiotodvtoc mhipwe tov tohhaniactacud
pe tory 0Tt wviun.

H teyvind yewdver mohdmhoxo xOxhwyoe, eloheiper tnv avdyxn DSP xoa emitpéner pallixn moe-
aAAnhornoinoyn toANaTAxclacm®V, xplown yio inference oe CNNs.
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Figure 1.2.10: ITapddhnhot morhamiactoopol yiot cuveAixtixols unohoyiopols oe FPGA emitoyuvty

O povddec CLM avtixadiotody nogadoactoxolc todaniactactés omwe DSPs, ye xdlde noAaniaclocuoc
va Srayetpiletan avedptnta 1 Sux) Tou povéada CLM. Io napdderypa, yia mopddupo 3X3 oe cuvehxTnd
oTptuo amoutovvtal 9 povadee CLM.

H nopdhinin oyedlaom anotpénet ouyxpoloel; dedopévev, xodne xdie (ebyoc evepyonoinonc-Bdpouc Exel
N 81} Tou povdda CLM nou avaxtd to mpobnoloylouévo yivouevo, dacgarilovtos vdniy Siopéoou xou
TARpwWS TaEEAANAY exTéAeDT).

LUT Tensor Core

H epyaoio napovoidlel to LUT Tensor Core, plo 0pyLlTEXTOVIXY] GUV-CYEBLAOUOU UAXOV-AOYLIOUIXOV
TREOCUPUOCUEVT] Yia anodotxég Aettovpyiee GEMM younihc axpifelag oe inference yeydhwv yAwooixwy
povtéhwy (LLMs). Xenowonotel tpobnoloyiopévous Hivaxes AvalAtnone (LUTS) yio vor avTixotactThHoe
TEABOCLOKOVUE TOMNATAUCLAGTES, 1WBlwg ot TepBdAlovTta uixtrg axpifelag.

O nopadootaxéc Aoelc Boaoiopéveg o LUT avtigetonilovy TpoxAfoele 0TS AVATOTENECUOTIXY oTo-
xBavtonoinom, neploptopévn unoothelln wxtic axpifBetag and to LAXS, peydho xdotog amodixevone xou
urohoytlopoU yua Toue mivaxee LUT, xou unoféltiotec otpatnyixéc tonodétnone (tiling). Emmiéov, n
EMELPT) EBIXWY CUVOAWY EVTOAGDY ot UTOGTARENG PETAYAWTTIOTH Teplopilel Ty anddoon.

H mpotewoduevn apyttextovin) AOver autd Ta mpoPBAfuota, unoctnellovtag evepyomoioeic UPmAng
axpifelac (my. FP16, INT8) xau Bdpn mold youniic axplPeiac (1-4 bits). Eivor mopdAAnia
TOEALETPOTOLYCLILY] OE TRUYUOTIXG YEOVO, EMTRETOVTOG EVEAXTY] UTOC THELEY SLOPOPOTONUEVRY GUV-
duaopdy axplBelac avdloyo e to pdeTo.

H Boow 16€a eivon 1 popTwom evog BlaviCUITOS EVERYOTIOLHOEWY XAl O TTROUTOAOYIOUOSC OAWY TV TWIoVHY
EOWTEPXOV Yvopévwy Bdoel tne axplBeloc Papdyv. Katd to runtime, ta Bden emiéyouv ta xotdAinia
uepwd adpolopata and tov LUT, anogpedyoviac 1oV UTOAOYIOUS TOMMATAACIACUMY O TEAYUATIXG YEOVO.
Ta yepind amoteréopata CUCCHEEVOVTAUL GE EEGB0UC, Ol OTOLES THPUUEVOUY EVTOS TOLT PEXEL TNV ONOX-
Mpwor), axohoudnviag To TeoTUTO dedouévey output-stationary.
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Figure 8: Optimized LUT unit with bit-serial.

Figure 1.2.12: Bektiotonownuévn yovdda LUT pe bit-serial npocéyyion

INT1 Weights (4xN)

0 0
FP16 Activations (1x4) ——o FP16 Outputs (1xN )

[alB[c]po]® Z ; - E[wm Jwna [ [wna]
1 1

Lookup Table (LUT) _/

Index 0000 0001 1110 1111
Result 0 D A+B+C | A+B+C+D

Figure 1.2.11: Iapdderyuo otoiyeiou LUT-based mpGEMM vy evepyonowfoeic FP16 xan Bden INT1.
H ovalAtnon otov nivaxo avtixadiotd 10 e0TERXO YIVOUEVO 4-aTolyelnv.

Do peioon e ywentwdmtag anodixevong tou LUT, n apyitextovins| exyetalheVetar T cLUppETRIN
TV TROV Bopdv: my. duadikd Bden {0,1} uropoldv va avanapaotadolv e {—1,1}, pewdvovtog
0TS TO HULOU TLG XUTAUY WENOELC.

It vrootiplEn audaipetou ebpoug bit Boapnv (1-4), yenowonoleitan bit-serial apyttexTovixy, énou
x&e Bdpoc enelepydletan oe Wrrr x0xhoug, emTEENOVTAC OElploxsd LUToAoyloud wxtic axpelfBetag ye
tooppomio EVEAEINS XOU ATOBOTIXOTNTOC TEPLOYHG.

H eixdvo 3.2.10 napouoctdlel tn cupPotind Tetdyv rudtwy dwdoasio LUT-based mpGEMM: (1) npobnok-
oylopée ivaxa, (2) avdxnomn pdy, xa (3) cucodpevon pepay oadpolopdteny. Toavtdypova, emorn-
potvovton Teploplopol mee avdyxn LeYding anoVixeuons Ue auinuévn Teployh xal XoLoTEENOT], TOAL-
mhoxétna oe uToaTARIEN TOMATAGY ebpwy bit, un Béitiotn tonoVétnon mvdxwy xou élhewpn e&et-
BIXEVUEVLY EVTONGY o compiler, SuoyEpAlVOVTAC TNV EVOWHUATWOT XAl ATOBOTIXG TEOYPUUUATIONO.

H apyitextoviny) goptdvel davbopota K evepyonooewy, anatdyvtag évay nivoxa LUT avd didvuopa.
T M Swvdopata, onoutodvton M mivaxee LUT, xadévoc pe 2K-1 9éoeic (pe Bertiwon ouppetploc),
TpooTENdoIES PEow hoyuhic emhoyhic (MUX) nou ehéyyeton and duadxd Bden.

o M: apudude yeaupdyv evepyonotjoewy — xoopilel ndéool LUT mivaxeg yeetdlovta,

o N: opdude Baptdv avd evepyonoinon — xdde LUT tpogodotel N umoloyiouolc Baptv (uéow
povédwv MUX),

o K: apiudc bit duadindyv Baptv — xadopilel ebpog dievduvone LUT xau yeauuée emhoyrc MUX
(Bddoc xBavtiouon).

O apdudc duadixdy opddwy Boap®v (bit depth) opilel ta bits avd ouddo Bapnv. Kdde bit yenot-
pomoteiton yioo emhoyy and tov LUT péow MUX.

O LUT Tensor Core uneptepel onuovtixd évavtl vhonotjoewy LUT xadupd hoyiopxol, emtuyydvovtag
1.44x Behtiwon otny TUXVOTNTA UTOROYLOUMOY XL EVERYELXY| amddOCT and MEONYUEVOUC ETULTAUYUVTEG
Baotopévoug oe LUT.
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Figure 1.2.13: Emunxupévn tontodétnon MNK tov LUT-based Tensor Core. Amoutel peydho N (m.y.
64/128) yio uéylotn emavaypnoponoinon xou xatédinia K (m.y. 4) v anodotnd péyedoc nivaxa.

Table 1.2: LUMAX compared to LUT-based accelerators

LUT Tensor [21] FIGLUT [19] CLM [16] LUMAX
Act. FP/INTS, FP/INT16 FP16 INT4 INT16,INT8
Wgt. INT1-INT4 INT1-INT4 INT4 INT1-INTS

Bit-serial \/ \/ X X
Generate \/ \/ X \/

Stationary Output Weight Weight Output
Platform ASIC ASIC FPGA FPGA
LUT entries 2(N—1) 2(N-1) N x 64 N x 2(W_width—-2)

1.3 Oewentixd YTroBadeo
1.3.1 To IlepBdArov AvdntuEne Chipyard

To Chipyard eivar éva avowtod xoddixa mhaiolo oyedaopol LAixol [7] Baciouévo otn yhdooo xao-
Yopiopol vlixol Chisel [30]. AvormtOydnre eldd vy Tnv LTOCTARIEY ELEMXTOU X0l XAYLAXOVUEVO
oyediaopol apyrtextovixwy SoC Baciouévev otov RISC-V. To Chipyard cuvdudlel didgpopa epyoheio
xou Biphiotdineg oe éva evialo TepBdihoy Tou BleuxoAUVEL TOV YPHYORO TEWTOTUTOTONGT|, TEOCOUOlWaT),
obvieon xar avdntuén Aoylouxo.

o Yyediaocumdg e Badom to Chisel: Xpnowonowel to Chisel, wa oyver| YAdooo neptypapnc
VALOU evowpatwuévn oty Scala, emitpénovtog T dnwovpyio aplpwTiy, TUPUUETROTOMCHIWY ol
ETAVOLY PNOWLOTOLACULLY UTOGUOTNHUATOV.

o Anutovpyioe RISC-V SoC: Trootneiler ) dnwovpyio mAhipwy oyedinvv SoC pe yevvhtpleg
onwe 1o Rocket Chip xou BOOM, ye mopae Toonotioltous TUpYVES Xl GUVIGTWOES.

o Evoopatwpévo epyaleio avdntuing: Iepiaufdvel epyoheio yio:

— RTL mpooopoiwon: YTmootpiEn péow Verilator xou eunopix®dv epyolelnv 6mme Synopsys
VCS.

— Eéopoiwon FPGA: Emutayuvéuevn npocouolwon péow FireSim oe cloud FPGA.
— VLSI poés: Tlepiopfdver Hammer yiol autoUato @UoXd OYEBLACHS Xl TOTOVETNON).

— Kavtaokevrj Aoyiopcot: To FireMarshal Bondd oty avéntugn bare-metal xou Linux-based
EQPUPUOY V.
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o Entttdyuvon YAuxoU: AlcuxohlveL TNV EVOWUATWOY Xt dOXILY| TROCUPROCUEVGDY ETLTUYUVTOY
(n.x. Hwacha, Gemmini), emtpénovtog 1o cuv-oyediooud UAxo) xat Aoyiouixol.

o Avowxtdg xauw enextdoipoc: Awneeiton oand to Berkeley Architecture Research Group xou
UTOoTNEILEL CUVELGPORES Amd TNV XOLVOTNTA AVOIXTOU DI

o Evowpdtwon oto owoocVotnua RISC-V: Evoopoatdvetan ougord oto  €uplTeERO
owooclotnua RISC-V, nopéyovtag et TAATQOPUO YLl EQEUVA X0 TELRUUATIOUO.

o ITowtoTunonoinon xo emixlpwor FPGA: To FireSim emtpéner ypryopn mnpwto-
Tunonoinom xou €keyyo ot eninedo cuoThuatog yenoiwonowwvtog cloud FPGA.

e TroothpeiEn cuv-oyediacuol: Emtpénel mopdAnin avdntun uleod xa hoyiopxou, eviop-
PUVOVTOC ONOTIXT] TEOGEYYLOY) OYEBLIGHOV.

Yuvoifovtac, to Chipyard Aettoupyel we ohoxAnpwuévo mepBdAlov yio to oyedaoud, v TpwTo-
tunonoinon xou v a€lordynorn SoC RISC-V, xadiotdvtag 10 1oyupd epyaheio t660 Yo oxadnuolxr
€PELVOL 6GO XOUL VLol BLOPMYAVIXT] AVETTUEY UALXOU.

1.3.2 Chisel

To Chisel dev etvon o napadootoxt| yAdooo chvieone uhnrod emnédov (HLS), olte pa younhol emmné-
dou yhdooo neptypapiic ulixotb (HDL) énwe 1 Verilog y VHDL. Avudétncg, elvon uio xaTaoxevactiny
YAOooA TERLYPAP|S LALXOU, evowuatwuévn otr Scala, mou telxd nopdyet xddixa Verilog B Sys-
temVerilog yio oOvieon.

To Chisel emitpénel otouc oyedlaoTtéc va Teptypdpouy Pmeloxd LAXG oe UPNAG eminedo, dlaTnewdvTag
TapdAANAa TN Sopy) xou Tov Aemtouepn EAeyyo mou mopéyouv ol mapadoctaxéc HDL yiwooee. Ilapéyet
mhovowa API, avuxeevootpoagpelc xatooxeuég xou AeLToupYieg AEITOURYIXOU TROYPUUUTIONOU Yden ot
Scala. ‘Otav evowyatdvetar oto tepi3dhhov Chipyard, xodiotaton edxoln 1 elcaywyy 1 tpononoinon
oxediwy, 6mwe N dnwovpyia tpocapuocuévou cuveneéepyaots) RISC-V pe Ay Brpato.

To Chisel npodyet Tov oyedaoud Bacioyévo oe cUVIGTHOOES, 6Tou xdte module €yel xoAd oplopévee el06-
douc xou e€6bouc. Emmiéov, unootneilel ) yprion Hdn unopyovtwy Verilog modules péow nepituhiZewy
BlackBox, dleuxohbvovtog TNy emavayenotuonoinor mahaol xwoixo HDL.

1.3.3 RocketChip

O RocketChip [20] etvou évog muprivag Bactopévos oto RISC-V xau Aty T0 mpdto €pyo neptypaphic LAX00
v to ISA RISC-V. Ipdxeitan yio évav mopapetponotioldo avorxtol xoddxa yevvhteto SoC, oavd v
evowuatdvel tTAdog muprvev xon emtayuvtedv. H Swpdepwon tou RocketCore eivon Wlaitepa apdpnt),
dlvovtog TN BuvaTdTNTa TapAUETEOTONONC VP VWY o oTolyelwy. Xdpn oe auth TNV apdenTtoTNTA,
umopolv va dnuovpy oy eqopuoyoxevtpol emtoyuvtég Ye dlapopeTixée puluioec. H apyttextoviny
unootneilel enlong emextdotua urhox mépav Tou mupva, omwe L1 xou L2 xpugéc uvhpes, povdda dayelp-
one uvhune (MMU), povéda xwvntic vrodotorfic (FPU), povddec extéheone Sioavuopdtwy, povida
ATMOCQPUAUETWONS, UETPNTEC AmOB00NG, EAEYXTEC SlaxOmY, Xt xou LTOBOPES emxowvmviog UeTaEl
AUTAV.

To RocketTile elvan to emduevo eninedo dopdppworng péoa oto RocketChip, emtpénovtoc npocopuoyég
onwe cache, MMU, FPU xau dAha otouyeio ehéyyouv. To RocketTile anotehel 1 Poownr| povdda tou

RocketChip xau pnogel va Siopoppwiel ¢ povombpenvo, mohlumbenvo ¥ mohhaniol cluster. Baouwég
BLaoPPOOELS Efvo:

e BigCore: T{mirc andédoorng pe 16 KiB 4-way set-associative cache xau vnootipiEn FPU.

e MediumCore: Me uixpédtepec 4 KiB direct-mapped caches xou ywplc unootipin FPU and
TEOETUAOYT).

e SmallCore: Xounhric anddoong pe nepropiopéva cache xou ywpic FPU and npoemhoy.
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e TinyCore: Aiyotepo Sbedouévn dlaudppwon), urtootneilet uévo 32-bit opyttextovixy.

1.3.4 Emnwtayuvvtig RoCC

O RoCC (Tightly-Coupled Rocket Custom Coprocessor) eivou €voc TpoCcuplooUEVOS ETLTUYUVTAC OTEVE
evowpatouévos e toug ntuphvec RISC-V oe éva SoC, npoc@épovtoc uPnir anddoon y€ow oTevrg ETLXOLY-
wviag pe ) CPU. Xopoxtnpelotixd:

e Emuxowvovia péow npocaprochéevmy evtol®v: RoCC ehéyyeto ye eldixéc eviohég uop-
ghc customX rd, 1rs1, rs2, funct, 6tou X (0-3) xadopilet Tov emtayuvthi-otdéyo (Ewc 4 RoCCs),
xau to nedio funct (7-bit) Soyweilel dapopetinéc Aettoupyiec.

o '‘Apeom npdéoPaocr o népouvg CPU: Awpopdleton xatoywentéc (rsl, rs2, rd) xou cache L1
pe Tov muphva. Méow tne dienaghic mem, unopel vo extelel load/store ameudeiog otn uviun, eved
1o ptw nopéyel mpdoPaon otov page-table walker yio Suayeipion ewovierc uviung. Mnogel enlong
vo. tpogodotel interrupt oty CPU petd v oloxhipwon epyasiog.

e Evowupdtwon oto cVotnpo: Xuvdéetor ye to dixtuo TileLink yéow tINode 1) atlNode.

o ITpoocuppoopeévo epyareio avantuEng: Anoutel npocupuocpévn ahuaida epyaheiwy, xadoe
ol customX evtolég bev elvon atdvtap oto ISA tou RISC-V. H yperion yiveton Yéow Uaxpoevtohmy
(macros).

YOyxpion we nepipepelaxés cuoxeveég MMIO: O MMIO nepipepetanéc cUOKEVES ETUXOLV-
®VOUV PECW UVNUOVIXE YUPTOYRUPNUEVOV XUTAYWENTWY XAl ANATOOY GTAVTOE ohucida epyahelwy, evd
ot RoCC npooc@épouv uixpdtepn xaduotéenon xar otevotepn ohoxipwon ye v CPU, anotdvtog e&et-
dixeupévn yvaon vhixol (Chisel) xow Aoylopxod (Uaxpoevtohés).

RISC-V Rocket | (“RoCC )
Interface
cmd >
Processing | resp
core busy
interrupt Accelerator
P mem.req
L1 cache mem.resp
: P
\____/

Figure 1.3.1: Amlorownpévn dnodm e denogpric RoCC

1.3.5 TileLink »xow Diplomacy

To TileLink [21] elvon éva avolytéd mpwtéxohho Slacivieong yio oyedaopole SoC, apynd avarntuyuévo
yioo RISC-V adAd aveldptnro and ouyxexpyévo ISA. Tlpoogépel ouveny|, uvnuovixd yopToypa@nuévn
emxovevia petall TohGkY masters (m.y. enclepyactdv, DMA) xou slaves (m.y. pviues, neplpepeloxd),
uE €upoot oe younhy xaduotéenot, UPNAT BIUECOU Xol XAUOXWOLUOTNTA.

Trootpiler TAfipn cuvoyh wviAune péow mpwtoxdéihou tonouv MOESI (27,28, Swtnpdvtag v
EYXVEOTNTA TWV YeuUpwY cache ye mévte xotaotdoeic — Modified, Owned, Exclusive, Shared xou In-
valid. Auté emtpénel anodotixéc yetopopés cache-to-cache xou pewdvel tepitts xivnon uvAung, eve etvan
eyyevoe anodfxevon omopuyt adielodwy (deadlock-free). Tmnootneiler extéleon mopayyehmdy extde
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oelpde, amoouvdedeuéva interfaces xou tepopyixf) cbvleon duxtOwy point-to-point, emitpénovtog xALudx-
wor omd anAéc oe TOAOTAOXES dpyttexTovixéc. Emmiéov, yenowwomolel teyvixéc younhic toybog omwg
anodoTiXd xWOXOTONoT ONUATHDV.

To mpwtdxohho vhomoleiton Yéow tou Diplomacy, mou auvtoyatonolel Tn cUVIEST) XAl TUPOHUETEOTOING
TWY CUCTNUXGOY oUNeTHo®OY (T.y. cache L1, eheyxtéc uviAunc) xou 0 Swyelpon devdivoewy. To
TileLink opilet mévte xavdha emxowvoviae (A, B, C, D, E) pe cuyxexpwévec dieudivoeic xou mpo-
tepanotnTeg, eloogaiilovtac obdxonn por) dedouévwy uetald masters xou slaves, émwe @oivetow oTO
Eyuo 4.0.2.

Ta Diplomatic Widgets mou mogéyelr 1 Bi3hodxn RocketChip Sieuxoldvouv tn SlacOvdeoT €Tepo-
YEVOY GUVIO TWOGY, Tapéyovtag Aettoupyiee buffering, avadidtalng, xotaxeppatiopot, yetatponés petalld
TileLink xou AXI4 [29,30], xou tnv xataoxevf obvietwv cuotnudtwy SoC péow crossbars, FIFOs xou
HETATPOTEWY TpwToxOAwY. To npoéxtacio Advanced eXtensible Interface (AXI) eivon éva eupéwc yenot-
HOTOLOVUEVO TPWTOXOANO emxowveviag el Tolm, mou unootneilet UPnAY arnddoor, younhy xoduotéenon
xou UETopopég ot burst, emtpénovioag amodoTiny xon eV TY emxovwvia oe ohvieta SoCs.

Module Module

Agent I Agent

Link

V_—

Ch: B

Master Slave

Interface

I

v

S I

Figure 1.3.2: Ta névte xavdha TileLink petafd master xou slave. H epopyixnf) npotepononoinom
anotpénel adlé€odo xan Slacpolilel por| deSOoUEVLY.

1.3.6 Xuyypoviocuéves MvAueg Avdyvwone (Sync Read Memories)

H yh&ooo Chisel nopéyer AP yio optoud povddwy uviune étoluwy npog yeron, unootnpilovtac t6c0
ROM 600 xon uviues avéryvwone/eyypaphc.

ROM: O ypriotec pnopolv va oplcouv ROM xatacxeudlovtag Vec ye VecInit, deyduevo elte Mota
oTadepnv dedopévey elte axohoudia Seq[Datal yio apyixonoimon. I napddelyuo, urnopel vo dnuloveyn-
Vel wixpd ROM pe néc 1, 2, 4, 8xo npéofBaon péow yevvAtetag Sleudivoewy 6mwe vag anoptdunthg.

MvAues Avayvoons/Evyeagphs:  Ouvionorioeic uviung noxirouy petadd FPGA xou ASIC. To
Chisel mapéyel to xataoxevdopoto Mem xou SyncReadMem:

e Mem: Xuvduootxy (acUyypovn avdyvwor), oelplaxt| (clyypovn eyypopr)
e SyncReadMem: X0yypovr avayVvmoTn xol €YYy

Ytov oyedoud pog, ypnowonoovue SyncReadMem we Ilivoxec Avolitnone (LUT) v anodfixevon
HERIUAY TEOLOVTWV XATA TOUS UTOAOYLOUOUC.

Yuunepipopd SyncReadMem: To SyncReadMem elvon X0TAOXEVAGUA UE GUYYPOVIGHEVT] OVAY VOGT] Xol
eyyeapr. Oupviues autég avauéveton vor Aomotolvtal xuplws we SRAM edixfic teyvoloyiag xou oyt flip-
flop banks. Edv yiveton eyypagr xou avdyvemon otny (dla axpn pohoytod ¥ av 1 evepyonolnor avdyvwong
avoupe(ton, 1 T avdyvwong elvon un xadopiouévr. Emiong, n 90pa avdyvwone dev diatnpel dedouéva
HETOEY XOXAWY EXTOC av xaTarypapel eEwTEPLXEL.
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Aentoph Avéyveons/Evyeaphs: HnpdoPoon yiveton uéow deixtn UInt. Hopadelypotog ydpewv,
oplote SRAM 1024 9éoewv pe pla Yopa avdyvwong xar eyypapric:

1.3.7 Oewpntxd YTroPadpo: LLMs xouw KBavtiopog

O porog twv DNN xou twv IToAaniaciacusy ITivédxwy ota LLMs

To Borhd veupwvind dixtuo (DNNs) €xouv pépet ETAVEAGTACT OTHY AVTIETOTLOY SUVIETWY EPYUOLOV OTIWS
6pao), avoryvodpLon odihlag, pourotixg xou eneepyaocia guotxic YAdooos. Ao moapadootoxnd CNN €ng
oy ypeoveg apyttextovixéc transformer, Ta DNN anoteholv 1o Booind atoiyeio tng olyypovng Texvntic
vonpooLYng.

To Meydha Mhwoowd Movtéha (LLMs) énwe GPT, BERT, PaLM xou LLaMA avadetxviouy eopetixéc
XavoTNTES 0T dnutovpyio xewévou, tepihndr, UETAPEAUCT Kol ATEVTNOTY OE EPWTAUATO, EMITUY YAVOVTOG
ToAéC popéc avdphmiva entinedo anddoone. Buoilovton otny apyttextovixy transformer [12], exnoudedov-
TolL o€ TePdoTIeG CUANOYES Bedouévey xau padaivouy otatioxd wotifa yhwooog.

H ¢dom inference — émou exnotdeuyéve LOVTEND YPNOULOTOLOUVTAL YLOL TIORAY WY | ATOTEAECUETWY — Elva
xplown yia epapuoyéc 6nwe chatbots, unyovéc yetdgppaong xou é€unvoug Bondole. Qotdoo, to inference
ota LLMs etvon Lol tepa UTohoyLoTixd amottnTed Aoy Pey€3ouc LOVTENOL Xol TeV UTOXEUEVWY TRdEewy
TOANATAAGLAGHOU TVAXWY.

O npd&eic GEMM (Tevixde IMorhamhoaotooude IIvdxwy) eivon o muphivae twv vtoroyiopdv oe DNNs,
onwe oe fully connected layers, unyaviopolc Tpocoyfhc xaL CTPMUATA TEOCOUOIWONS BIACTAGEWY.

O npdéelc GEMM eudivovton yior 10 HEYUAITERO TUNHA TOU YEOVOU LTOAOYLOUOD YOl TNG XATUVIAWMGTS
evépyelog ota LLMs. Ilpbogateg ueréteg delyvouv éti Tar otpiduota Tpocoyric — nou otneilovton Bapld
oe GEMM — xatavokeyvouv 70-90% tou ypbdvou inference oe CPUs [14]. "Eto, n Behuotonoinon twv
muphivey GEMM elvor xplown yior Ty emiTdyuvon xou Thy eVERYELOXY| AmodoTIXOTNTA.

Scaled Dot-Product Attention Multi-Head Attention

Linear

t

Scaled Dot-Product h
Attention
| | |
[ Linear [ Linear [ Linear
\% K Q

Figure 1.3.3: Mmhox auTompocoyAc Xl TOAUXEPUAXNAS TEOCOYHC

MatMul

-

H anodotuery uhonolnon twv GEMM eivan Baocixde otdyog yio tny emtdyuvon tou inference, Wuitepa
oc oevdpla edge computing pe meploplouévoug Tépoug Loy YOS xal UWVAUNG.

KBavTiopnég yia Anodotixy) Extéleon

O »Pavtiopode anotehel Paownr| tey vt yelwong Tou unoloylotixod xéotoug e DNNs xou LLMs. Avti
yior 32-bit xivnthc unodiaotorfic (FP32), Bden xou evepyonotioelc LETATEENOVTOL O LOPQEC YoUNAdTEPNS
axpifBetag onwe INTS, FP16, FP8 § INT4. Ilpbogateg épeuves e€etdlouy poppéc unepyopuninc axplBetag
yia aOEnom anodotixdtnTac ywelc andieto axpifetoc.
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H yelwon tou yeyédoug Twv dedopévwy BeATdVEL TO amoUnxeuTind Yo, TOUS YPOVOUC UETAUPORAC XAl
™ havldvouoa TwV UTOROYLGUMY, WBlaltepa o anoxheloTixolg emttayuvté 6mwe GPUs, TPUs xau eduxd
AT chips.

O »Pavtioudg elvon avayxaiog yio Tnv extéheor LLMs pe Sioexatouubpla TapauéTpous 08 TEPLOPLOUEVL
ocuoThuota, Behtiwvovtog eniong ™ Aavidvouca ot real-time epapuoyéc.

Avo Baowéc tpooeyyioei elvan 1 Post-Training Quantization (PTQ), tou egopudleton Yetd Ty
exnaldeuot) ywelc emavexnaideuon, xou n Quantization-Aware Training (QAT), nou evowpatdvel
Tov xBovtiopd xotd Ty extaldeuon yia auEnpévn oxplBela, eldixd oe youniéc oxp{Beiec.

Iponyuévee teyvinée, nwe o xBavtiowde avd xavdhl xou wxthc oxplBeloc, Beitidvouy Ty anddoo.
O PTQ pe otodepd onpelo elvon mo ouyPoatdc ye vhixd, eved ol uxthc axpifelag uédodol anaitolv o
olvietn dayelplon.

H uwtic axp(Betag xPovronoinon avadétel Swopopetind eninedo oxpifBeiog oe didpopa pépn tou dixtbou
Yo BédTiotn toopponia petall anddoone xaw oxpifelac. ILy., Bden pe mohd younhh axpifeiar (INT4 A
INT2) xou evepyomofoeic pe vdgmiotepn (INTS, FP16).

Yuvolxd, o xPovtioudg arotehel VePeAdd CTRUTNYIX YL TNV oToBOTIXY EXTEAEST) XOU TEAXTIXT| XPHOoN
HEYSAWY YAWOOIX®Y LOVTEAWY GE THpOoUE TEPLOPLoUEV TieplBdAlovTaL.

1.4 Xyewdacpog Emttayuvin

O emtoyuvtic LUMAX anotekeiton amd SLoxpltéc povadeg uToAoyLolol xon UVAUNG, UE TNV CUVORLXY dp-
yrtextovix va amewovileton oto Eyfua 5.1.1. Thomoteiton we ouvenelepyoaotric RocketChip, pe doyeip-
lo7 EVIOA®Y Uéow g demoprc RoCC xou petapopés dedouévmy uéow xoavardy DMA. To dedoyéva eloo-
dou eneepydlovron wote vo amodnxedovtal pévo ol Yetixol dptiol tolhamiaotacpol xdde evepyomnoinong,
EVE UNYOVIOUOC ETAOYNC AvAoUVIETEL TN oWoTH axoloudia UepUOY YIVOUEVLY Xal Xxwdxonolel TAnpo-
popiec yio TeprtTols /dpTious ToAamAacilacpols xou npdonua. To anotéheopo tpowdeiton otov adpoloti
yior T0 TehxO Tpoldy. ‘Ohec oL Aettovpyieg eioddou xou e€6dou drayetpllovtar and agiepnuévouc buflers
OTOV ETUTAYUVTH.

H epyaocila eotdler oto oyedaoud cuvothuatoc emitayuvty VAxol DNN mou unootnpller wixt?hg
axpifelog xBaviicuéva Sedouéva, emttpénovtog audaipeToug ouvduaopole bitwidth yetald Bapdyv
xat evepyomoioewy. Auth 1 evehi&ia Bondd otov BérTioTo cuvtoviopd mapauétery yia Bedtinon tne
an6doong. Ilapéyetan oet cuvapthoewy oe C mou YENoLOTOVV TIC TPOGUPUOCUEVES EVIOAES ENEYYOU
Yo euxoMa yenong.

O emtoyuvtic avantdydnxe pe ) yhwooo neptypaprc VAol Chisel yéoa oto ouxoctotnua Chipyard.
H opyitextovint| Poaocileton o véo pédodo molhamhaotacpol mvdxwy pe Hivaxee Avalitnone (LUT),
TpooupUooUEVY ot wxThg axplBetag xBavtiouéva povtéla drou ta Bden éxouv younhdtepn axplBeto (m.y.
int8/int4/int2) oe oyéon pe Tic evepyornotfoels (m.y. intl6/int8).

To cUotnua nepthouBdvel évay Rocket Core, pio povédo DMA ye vAind emxowvwviog Bdoel npwtoxdi-
Aou TileLink xou tov emtoyuvtr) RoCC. T v anodrixeuon twv noptidwy dedopévev undpyouv buffers
v tic evepyonotfoelc (Input Buffer), ta Bden (Weight Buffer) xou ta anoteréopato (Output
Buffer).

Xenowomnowolvtar Ping-Pong Buffers yua to den dote va yedpovron twéc ot uvrun eved dBdlovton
TopdAAnAa yio deixtodotnon. O Product Generator nopdyet ta yivoyevo ye tpocdéaels, o anovnxedel
oe block pviAune (oewproxfic avdyvoone), pe xaduotépnon evoc xOxhou.

H povédo Select Module evrtonilelr tov Seixtn Bdpouc xou V€on mpoibvtoc oe xdde pvAun, v o
Accumulator Block adpoilel 6ha ta mpotévta oynuotiCovrog owotd tehxd otoiyeia e€6dou. Téhog,
1 povédo Scale Factor xhpaxdvel ypopuéc e€68ou pe otadepd onuelo.

O Rocket Core eléyyer ye mpooappoouévec RoCC evioréc mou duyepilovton ofuota eAéyyou,
npoxataBdriouy Sieudivoels dedouévmv xan Slayetpillovton Ty extéleon.
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Figure 1.4.1: The Proposed LUMAX Architecture

Joje|nwinooy

Yo hoyiouxd, napéyeton API oe C e Boowéc Aettovpyieg preload (pOduion mopapétpmy xow gpdptwmon
Bopv), start (évopln umohoyiogol) xou fence (ovopovr) ohoxhipwong).

1.4.1 3X0Ovodn tou oxediacrol

‘Onwe avagépdnue, o emtayuvtAc amoteAel eméxtaor tng apyttextovixic RISC-V Rocket Chip ¢
RoCC emtoyuvtic, Ue TNV emxowvwvia HE TOV EMELEPYUOTH Vo YIVETOL PECH TPOCUPUOCUEVWY EV-
oAV, O emToyLVTAC CUVDEETAL PE TNV UTdEY0oUsa LEpapy (ol UVARNG TOU CUCTAUNTOC UECEL CUVEXTIXAC
owenapric TileLink, mou unootneilel opolr] Yetopopd SEBOUEVLV UE XOLVMOE YENOWOTOOVUEY UVHUT).
I ehaytotonoinon xaductépnong xa Behtiotonoinon ebpouc Lwvrng, yenowonotettan ehagped DMA yia
0pY VLo YeYSANG xAlwaxos petoxvioewy dedouévwy uetadd xdplac UvAUNG xat ecwtepxdy buffers

H apyitextovinn utootneilet ToAOmAACIAGUS TVEXWY UE UETUBANTH axpiBela evepyomolhoewy xou Bopy,
optopévn xatd to runtime. Xpnowwonotolvton teyvixéc Poctouévee oe LUT yia mpo-umoloylopd xou
AmoUAXEVTT) DUVUTWV YIVOUEVWV, ToL OTOLOL AVAXTWOVTAL UEGL BEXTOBOTNONG, AVTIXAIOTOVTAS XAAGIXOUS
TOAMATAOCLACTES.

To cbotnua nephapfdvel évav Rocket Core, ula povédo DMA xoa tov RoCC emitayuvtr. o
anotixevon dedopévwy evepyonojoewy, Bopwy xou e€68ou, yenowonototvtan buffers: Input Buffer
Y Tpoowpelvy) anotixeuor evepyonojoewy, Weight Buffer yia Bden and napddupo evepyonoioewy,
xar Output Buffer yia cuyxévtpwon anotelecudtwy, nepiopilovtog tig emotpopéc atov Rocket Core.

INo o Bdpn yenowwonowotvtar Ping-Pong Buffers wote va ypdpovtoaw twéc oe évav buffer xo va
drafdlovta Tautdypovo and dAlov Yo detxtoddtnon. O Product Generator mopdyel npoiévta yéow
npoo¥écewy, o anodnxelel oe block uviueg oelplaxfc avayvwong, ue xoduotépnon evog x0xAou.

H povéda Select Module evtonilet otic uvipes ta avtiotorya Bden xou uroroyilet tn ¥éon twv npoldy-
v, eved 0 Accumulator Block culiéyer xon adpoiler 6ha to yivoueva yia tic dileg ypouués eloddou,
anodnxevoviag 10 6woTo anotéheoua atny €£0d0. Tny xhipdnwon tewv dedouévwy avahouBdvel 1 Lovida
Scale Factor.

H emxowvovio tou Rocket Core pe tov emtoyuvty] yiveton yéow eddv RoCC evtoldv mou eléyyouv
To ofjpaTe, Tpoxatafdihouy dievdivoelg xau SlayelpllovTal TO POT| UTOAOYLOUWY.

Y10 hoyioud, to API oe C nopéyel Baowés ouvaptroeis: preload yio phduion mapopétemy xou popTwon
Bapdyv, start yio évapdn UTOROYLOUGDY, Xou fence yiol avaov ohoxhipwong.
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1.4.2 Pov} Acdopéveyv Enttayvviy

Avutéc o emtayuvtic yenowonotel teyvixée Baotouéves oe Ilivaxee Avalitnone (LUT), édnou optopéva
npolévta npobnoroyilovta xou anodnxedovial, anoedyovTag TOMATAACIUCUOVS OE TEAYHATIXG YPOVO.
Ouwe, o mpolmoroyionds OAwY TV duvaTt®dy YIVOREVeY yia xdde mdavé cuvduooud bitwidths elvou
ATy OPEVTIXGS AOY W LTERBOAMXAC YeNoNg TORWY, EBIXd GTAY OL EVERYOTOLAGELS amontoly UPNAT oxplBeia
(.. 16 7 32 bits). Auvto npoxahel exdetinh adEnon oe hoyixh xou uvhun.

INo ™ pelwon autol Tou TEOBAAUATOS, O ETULTUYULVTINAG POPTWVEL VOl TOEGIUEO EVEQYOTIOLCEWY GTNV
gowTep|) uviur xan tpolnoloyilel Meploplopévo GUVORO UEPIX®Y YLVOUEVWY avdhoya pe To bitwidth
TV Popov. Ta Bden @optivovTol xoTd OTANES Kol YENOULOTOLOOVTOL Yol TNV ETAOYT TWV XATIAANAWY
TpoUToAOYLOUEVWY TEOldVTWY Yio To Tpéyov mapddupo evepyomooewy. Kdlde Bdpoc emiéyer pla 7
TEPLOGOTERES TIHES TOU AmoUNXeloVTOL X0l GUGCWEEVOVTOL GTO XATIAANA oTolyEla eEHBoU.

H )ewtoupyia povrtelonoleiton we TOMATAACLOUOS TWVAXWY 6Tou ot elcodot elvon ivoxas dlaotdoewy
Rir, X Cip,, tolhamhooialouevog ye Bapn yeyédoug Ciy X Coyr. To mapditupa encéepyaciog opiovton and
Tic apopétpouc XS xou YS, mou xabdopilouv ndoa otoiyela evepyomoinone goptddyvovion avd Sdvuoua
xat néoeg oelpés enelepydlovtan TauTtdypova, avioTolya.

O emtayuvthc extelel névte Baoixd otédia (ov o oty VAOTOMON UTopoly var exTEROUVTAL TopdAANAL):

Ac neprypdipoupe 0 por| Bedouévemy Tou LAXOU e Baor Tic TeonYOUUEVES UTAOTIOLAOELS Xol OVOPOEE GTO
Syfua 5.2.2. Apywd, Swofdlouue éva mapddupo 2 x 2 otoiyelwv evepyomoinone. I xdide otouyelo,
Topdyoude xon anodnxebouue oTic UvAUeS dha Tor davd yivoueva ye Bden e xatdAAnAng oxplBelag.
Elvon epgoavég mog yio yaunhoteen oxplBeta Bopdv nopdyovton Aydtepa mpoldvTa.

‘Emncita, goptidyvoupe Bdpn avd othAn, e xdde Bdpog vo emAéyel Ti¢ exdoTote amoUNXELUEVES TIIES
TEOXELWEVOL Vol ETUAEEEL TO WO TH TPOL6Y. Xto Mupddetypa, @optdvovton 2 Bden avd oThAn xou mpory-
patonotovTal 2 eThoYEC TEOOVTWY and B0 SlapopeTnd unAox, émou To xdde unhox avtioToyel o pia
gvepyonolno.

Eexwvdye pe ta d0o mpddta Bden tne mpdtng othing xou ouveyiloupe ot debtepn othAn SwoBdlovtac Bden
Yior TIC 10N popTwpéves evepyomoioels atny Bla oelpd. Xuveyilouge oThHAN-oTAAN uéypl Vo pTdcouUE
oto téhoc. Méypl to1e, Ta Tpwtal BV0 GTOLKEld €EHBOU EYOUV GUCTLWEEVCEL TYES, AAAd BeV elvan AR
UTIONOYLOPEVOL.

TN CLVEYELX, PEPVOVPE TO ETOUEVO TapdYUPO EVERYOTOIACEWY Xt eTavahauBdvouue tn Stadixacta. ‘Otay
by v , v v A v oL O
(pTdooLUE 6T0 TEAeUTOLO ToPdLEO TwWY BUO TEWTWYV Cel®Y, dlaBdloupe ta Teleutaia Bdpn xdVe oTHANG
%ol EXTEAOUUE TIC TEAXEC GUOCLPEUCELS.

Ot 800 mpitee ypopués e e€680u €youv mhéov umohoylotel TAfpwe. Av undpyouv emimhéov GelpEC
elobdov, enavahauBdvoupe T dtadixaocto yio autée, ye Ta (Bl Bdpn oAAd véec evepyomnotioels.

Fevixdtepa, unotdétouye 6Tt xdde umhox pviung umopel vor xpatrioel Ta tpotévta Yo [N EVEQYOTOLOELS,
ouvohxd N x Y_slice otowyelo. H mapduetpoc X_slice oyetiCeton pe to N xaw Yo avahudel apydtepa.

Do xéde umhox N x Y_slice, goptidvouue yio xdde oThAn Bopcdv Coyr axpBddc N Bden and tic oeipég
oL XOAUTTEL TO umhox. Auto Slacahilel 6Tt dha Ta anapaitnTo fden elodyovTol Yot 6woTH EMAOYT XaL
CUGGMPEVDTY) TV TPOUTOAOYLOUEVWY TROIOVTWY.

Ac e&nynoouye cOvTopa 11 pon Sedouévewy Tou LA BACLOUEVOL GTIC ATAOTIONCELS Xt TO Lyhua 5.2.2.
DopTivoupe €va Tapddupo 2 X 2 EVERYOTOLACEWY Xalt TopdYOUPE Ohat T Tdovd YIVOUEVA e ToL ovTiaToLy
Bdpn. Poptwvouue Bdpn oTAAN-0TAAY, Ue xdle Bdpoc va emAéyel Ta 0WOTE TEOLOVTA amd TG UVAUES.
H Swidixacio cuveyiletor othAn-othin xon mopddupo-napddupo, e ta anoteréouata Vo cUCCWEEDOVTL
ota 6wotd atolyelo e€ddou. H pon yevixeletan oe umhox uvriung mou xpoatobv uepxd mpotdvta yio N
evepyonooelg xou eaoporilel 6t Ao o amapaltnta Bden PORTMVOVINL GWOTE Ylot TNV €TAOYN Xou
CUCOWEEVTT) TWV TEOLOVTWY.

This section describes the most important hardware components of the accelerator and how they
interconnect. Furthermore, it explains how different generator parameters modify the RTL of the

40



1.4. Eyewoopdc Emtoyuv

olon | Toud

Figure 1.4.2: Simplified Example of the Hardware Dataflow

design, enabling flexible customization according to these parameters. In this way, developers can
experiment with and evaluate various design trade-offs easily.

We will discuss the following key components of the accelerator architecture:
e Product generator component
e memory Blocks (On-chip memories)
e Select and accumulate component

These elements form the core of the hardware structure and determine how data is stored, transferred,
computed, and accumulated within the accelerator.

1.4.3 TITapaywyr Ipotéviwy

‘Eva onuovtixd otouyelo etvor o Product Generator, o onoloc napdyel tic Suvatég Tpée yio xdde evep-
yorolnon yéoa oto mapditupo evepyomoloewy. ‘Onwe €xel o1 avagepdel, autéc ol Tée anodnxedovia
oe pviues pe ouyypoviouévn avdyvworn (Sync Read Mems). E8¢ nepiypdgpoupe i napdyovion. To
OTOLYElO AVATORIC TAVTOL WS TPOCTUAUCUEVOL OXEQOULOL.

Ioe vor mapoydoly dho tor mdavd mpotdvta pog evepyonoinong, unohoyilovion mpo-umtohoYlouéva Oha
Tol Suvatd anoteAéopato ToAaTAdolaouol pe xdde mdavh Ty Bdpouc, clugwva ye to bit width twv
Bopdv.

Eqgopuolovta ot axdhovdes Behtiotonocels:

1. AréAuta mpotovta: Iupaydueves elvor p6vo oL amOAUTES TWES TWV YVOUEVWY, BNhadY TOA-
hamhootdleton To andAUTO TN EVEPYOTOINONG UE TO amOhuTO SV Tewv Tdavey Bapwy. Enedy ta
TEOCNUACHEVO YIVOUEVA Elvol CUMPETEXE K¢ Tpog To PNdév (t.y. 8 X 2 xau 8 X (—2) éxouv {on
ambALTH TWR), PE THY anoOixEUsT) H6VO TEV ATOAUTKV UEIDVETAL XATd TO HUIoL 0 apiduds Tev
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npolmoloyiopévmy Twov. Apyodtepa, uéow eldxfc Aoyixhc unoloyileton t0 owotd TEGOMUO TOU
telxol mpotdvTog, AauPdvovtag unddn Ta tpdomua evepyonoinong xou Bdpoug.

2. IIpotovTa we detia Bden: IlpolmoloyiCovtan puévo Ta yvéuevo mou TEOXVUTTOUV omd EV-
gpyononon moAhamiaclolouyevn pe detior Bden.  Anhadn, dev umohoyilovton Sk tor mbavd
evepyonoinon-Bdpog mpotdvta, ohhd uévo autd mou avTioTolyolv ot detia Bdern. H uédodog auty
MELOVEL ETUTAEOV XAUTA TO HULOU TNV TOCOTNTA TV TPoUToAOYIoHEVLWY dedopévwy. Tao mpoidvta mou
apopoVy TEpLTTd Bdpn unohoyilovton 6T GUVEXELX PE EWBXH Aoy xoT’ anaitnoy), OhoXANpdvovToC
T0 TATIPEC GUVORO TROLOVTWY.

Kot ) pdon moporywyhc npoidviwy, utoBdiheton ot eneepyaoia evepyomomtnd didvuoua N atolyeiov.
Ye xdde x0xho, edixd LVAS yio xdde MEM nopdyet éva npoiov pe teyvixy| shift-and-accumulate, nou
YedgpeTo oEplXd, YRUUU-YeouuY), otn oxet wvAun. H Swbixacio cuvey(leton péypl vo anotnxeu-
To0v 6o Tol TpotovTa. Avodutind, yia xdde evepyomoinon tou diaviouoatos mopdyoviar Ao o YeTLXd,
dpTio Yivoueva olugwva Ye To puduouévo bit-width Bdpouc. O ouvolixde aprude twv TeoldvTwy eival
2QWwian=2 . N émou Wiiaen €ivon to bit-width v Bopdv.

1.4.4 TuApata MvAung

Ou MEMSs elvou xpioo otolyelo Tou oxediaouol, xadne anodnxedouy T TpoUnoloYIoHEVES TWES YLo
x&e evepyomoinon xo xadopilovv to yéyedoc tou mapalipov evepyomomoewy, dnhadh to TAflog Twv
EVERYOTIOMOEWY 1oL ene€epydleTal TUPEAANAL O ETUTOYUVTAC.

H uviun opyavévetan Baciouévn oe teeig mopapéteous: M, Y xa Rows Factor (RF). To M un-
odnhvel Tov apldud TV UVNUGY avd SLEVUCUO EVERYOTIOLCEWY, TO Y TOV optdud Twv SLoVUCUETWY Tou
unootneilovtal TauTOYEOoVA Xal 0 CUVOAXOC apltdudc uvnuoy eivan M x Y, 6tou Y pvruec potpdlovton
™V Bla pn Bdpoug yio avdxtnor dedouévwv. O Rows Factor xadopilel noéoec popéc nohhamhaotdleton 1
TPOETUAEYUEVY) YWENTIXOTNTO YEOUUWOY XAde UvAung, EMTEENOVTAS Ano¥iXEVOY) TEOLOVTWY Yid TOAUTAES
EVERYOTIOAGELS, DATNRMOVTAS TAUTOYPOVA TN Bidtagn mou xadopiletan and to péyloto bit-width Bdpoug.

Ta npoiévta xdlde evepyonoinong, 1 activation blocks, Swavépovtar oopepde ot M uviuec. Edv to
oUvolo Twv blocks elvol pxpdTERO Ad TN GUVORIXT YWENTIXOTNTA, APHVETAL XEVOS YWEOS YId SLEUXOALVST
TUEEAANAWY avoryveoewy. Av yeplioouv TAfpwe, xdde uvhAun anodnxedel 60a YWEUEL, UEYICTOTOLOVTAS
T0 péyevog mopodipou EVERYOTOCEWY XL TNV ATOSOTIXOTNTO TWV UVNUWMYV.

Or eyypagéc avd block expetalhebovton cuupetpla dedouévmv: anodnxebovTon UOVO U1 dEVNTIXES GETIEC
TWECS, oL TEPLTTES TIEC Bapdv avTieTwRlovTal UE TEOCUPUOYT] OTN XOVTLVOTERY UXEOTERY dETLOL TULT Xol
010p00oN €S TENETTY TPOGTUOU, EVE) OL UNBEVIXES TES VEWPOVUVTOL UNBEVIXES Ywplg avdxAnon HvAUnC.
Me autév TOV TPOTO UELDOVOVTOL OL AMOLTHOELS UVAUNG avd evepyoTolnoy xatd To éva TETAPTO.

"Eva axoyur optimization agopd to mhdtog xdde ypouuunc UvAUNG, OOTE Vo Ywed To YIVOUEVO TNG UEYLIOTNG
evepyonoinong enl To uéyioto Bdpoc. ‘Otav yenoiwomoteiton younhotepn oxplBela eVERYOTOLACE®Y, TO TAY-
To¢ NS Yeopuhc dev yepilel ohdxAnpo, ondte datpe(ton o8 TUAUATA MOTE VoL YwpolY ToAATAS activation
blocks otr oeipd, avidvovtag Ty exyetdihevon didpxetag xou to puéyedog mapabpou.

Eote Imax xot Wiax to péytota bit-width yio evepyonowjoeic xon Bdpen, xon Thits, Whits Tot Tp€)Y0oVvTa
bit-widths. H ywenuxdtnta twv evepyonooewy nou unopel va anovnxedoel pla pviun diveton and tov
ToTo:

1 .
0ax 9 (Wmax—Whits) . Rows Factor,
Ibits
o omnolog molhamhaoidleton ue M, tov apdud evepyonoiioewy avd didvuoua. H mapduetpoc Y avdvel
TOV CUVOAMXO aIATOVPEVO YMOPO UVAUNG, GAAS ETLTEETEL TTopd AN enelepyaoia TOMNNATAGY DAVUOUATELV
EVEQYOTOLNOEWY %O ETOVOYENCHLOTOMNGT Bopcdv, 18avixd Yol TOMATAACLAGUOUE TLVAXWY.
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Figure 1.4.4: Detailed Representation of the Select Module for Y =1
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Figure 1.4.3: Mapping of activation blocks onto physical memory blocks, where each color
corresponds to a different activation block.

1.4.5 Emnuhoyy IlpotévTog - Yuococwpeuon

'Onwe gaiveton oto Lynpa 77, to module emhoyc tpogodoteitan ye Bdpn xou €xel TNy eudivy Vo avTio-
Touyloel ) owo ™ yeouun pviune ota MEMs 6mou amodnxebeton to emduuntd npotdv. Mo avohutixy
avonapdo ooy tou module topouotdleton xar oto Lyhuo 1.4.4.

Kéte MEM anoutel évo module emhoyric mou Aaufdvel wg elcodo to Bdpog mou avToToLyel 6TO TEEYOV
activation block xou to ypnowonotel wg deixtn Yl TOv eviomiopd Tou meoiévtog. Auth 1 dwdxacio
ywetleton oe tplo oTddaL:

Ipdta, to Mydtepo onpavuxd bit (LSB) tou Bdpouc yenowomoteiton yia v amogactotel av o Bdpoc

43



Chapter 1. Extetouévn ENinvuc Ilepiindn

elvon meptttd, eneldy| anodnxedovton wovo mpotdvta yia dptio Bdern. Av to Bdpoc elvon meptttd, emhéyeTon
) XOVTLVOTEQT UXEOTEPT dETLAL TUT) HELWVOVTAS TO BApog xatd €val, SlapopeTind To Bdpog yernolonolelTal
¢ EYel. LT CUVEYELR, TO eTAEYUEVO Bdpog peTatpéneton o8 owoTd delxtn anoldrxeuong Yéow deldg
petatomone (shift right). Téhoc, yia mepittd Bdpm, ov evepyornolfoelc mpootidevion oTo emheyuévo
Tpoldv Hote vo tpoxUel 1 owoTH TEAXY T

To deltepo oTddlo elvan 1 emhoy NS Ypophc wviung, tou exteheitar and to modules emhoyhc (pe pof
yeopo oto Lyfua 7?7). Autd xadopilouv tn cwoth yeouur wéoo oto activation block, yenotiponoudvtoc
évav xotopetenty offset mou delyvel Ty mped TN Yeouuy Tou Teéyoviog evepyomointixol block evtéc g
uviAung. O xotauetentic autog elvar xowvog yio 6ha to MEMs xou audveton oe xdde x0xho emhoyic.

Téhoe, To mpdonuo tou mpotdvtoc Tpoxintel and to XOR twv mo onuavuxay bit (MSB) tou Bdpouc
xoL Tne evepyomolnong, xodog amodnxedovion povo andruteg Tiwée. Av xar 1 npocdrixn Tou adpoloth
Yior TEQLTTE TEOLOVTA AUEAVEL TO UAXS eNdyloTa, 1) eE0ixovounan xheou anotixeuong Tou TpoxOnTEL and
N pelwomn xoTd To RUIoL TV ATOUNXEVPEVKDY TEOLOVTWVY lvol GNUVTLXY.

Moéhic npocdloplo el 1) GTOYELOUEVN YROUUY UVAUNG, OTOCTEAAETOL afTNUa OTNY UVAUN YEOVIXNC ovay'V-
wone (synchronous memory) xou 1 andxpion yiveton diodéouun uetd and évay xOxho. Ta ) doyeipion
authg g xoduo Tépnong, elodyovta xataywentés xaduotépnone (delay registers) oto avtiotolya oriuota
EAEYYOL WOTE VO THPUUEVOUY LY YPOVIOUEVA UE To ETLo TpEPOUEVa Bedouéva. To oynua autd epapudleton
ouoldpopga oe xdde MEM ywpic va mpootétel xaduotépnor pipeline, xadde 1o chotnua eivon TAHEwS
pipeline.

Metd tn dnuovpyia Twv onudtenv emhoyic xou Tpdonuou, ta Tpo-enciepyaopéva dedopéva tpomdov-
T otov adpoloTh, o onolog yenowonoel dévdpo adpootdv (adder tree) yio va mopdyel to TEMUS
anotéAeoua, OTwe GolveTal Ue UTAe Ypdua ota Lyfuota 5.1.1 xou 1.4.4.

1.4.6 BeAtiotonowioeilc X yediacpo

Ye autd T0 XePEAoLO TEPLYPAPOLE TIEPAUTERPL ONUVTIXES BEATIO TOTOOELS TTOL EQoPUOLOVTOL GTOV TYE-
Blaop6 TOL EMTAYUVTYH Wog He oTdyo Ty adinom tne anddoong. Xuyxexpuylévo, culntdye:

o N cLWAAVLOT emAoyis ka1 ovoodpevons (Select-and-Accumulate Pipeline),
o Ty eVt Ping-Pong Buffer vt @dptwon Bapdv (Load Weights Ping-Pong Buffer Technique),

o xou TNV avénon tov peyédous tns pvniuns (Increasing Memory Size).

YwAvwon Enihoyng xaw Yvcowpevong

‘Onweg avagépope vwpltepa, oNuUovTixd oTolyelo Tou oyedlaopol Wog elvan 1 povdda Emiloyns kai
Yvoodpevong, tne onolag 1 dopr avolbinxe ota Nyruato 4.3.13 xou 4.3.14 TV TEONYOUUEVLY EVOTATWY.
H povdda auth Aettoupyel oe dVo gdoeic: 1 Pdon Emihoyng, unediduvn yia tnv mpodinon twv
otouyelwv TwV Bop®y 0TIC PUOKES UVAUES (OOTE VoL ETAEYOVTOL (AVOLYLY VIIOHOVTOL) To OLOTE TROTOVTA, Kol
n ®domn Yvocowpesuorng, mou adpollel auTd T TEOLOVTA o ATOUNUEVEL Tl CUCCWEEVUEVA ATOTEAED-
HOTOL OTOV XaTowENTH €€630L.

Aedopévou 4Tt YpNOoYLOTOOVUE CUYYPOVIOUEVES UVANES, UTdpyel xaduotépnon evée xOxhou dtav dlo-
Bélovue and autéc. T vo amogiyoupe amwieles anddoons, cwhnvidvoupe (pipeline) auvtéc g dvo
pdoeic. Anhodr, ovtl va exdidouue Eva oftnuo avdyvewong xaL vo TapauéVvoude adpavels €vay x0xho Tty
TN CUCGMPEVUCT), ETUXAAUTITOUUE TOL GTADLO ALTAUATOS X CLGCWEEVONG. MeTd TNy apyixr xaductéenon,
To pipeline Siotnpel xou to 800 GTEdLAL evepYd oE Xdde endUEVO X0XAO.

Me 1 6wAveon auToY Twy 800 oTadlwy, ano@ebyouye TNy enavohauBovéuevn xaduotéenor evog xUxhou
avd avdyvwor. Avtdétwe, HETE Tov Tp@To X0XA0, To choTnua cuveylel Vo cUCOWEEVEL DESOUEVD Xou
TOWTOY POV EXDIBEL TO EMOUEVO OUTNUO AVAY VWO, UEYLOTOTOLOVTOS TNV Amdd00T).
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Figure 1.4.5: Select-and-Accumulate Phases: (a) Without Pipelining, (b) With Pipelining

Eivow onuavtind va toviotel 6tL oauth 1) BeAtiotonoinon e cwhivewong Sev auédvel ToUS amatToUIEVOUS
T6pOLE UAOU, xadtdg ot xdle xOxho exteheiton pla povo @don Emioyrg xou pla pdvo @dorn Xuoowpeuone.
H uévn adhayt) ebvan 1 tpocdnxn hoyinAc er€yyou Yla TNV ETUXAAUTTOUEVY) EXTEAEOT TKV BUO PACEWY,
pe amoTéAecpa Vo emavayenotwonolelton To (Blo LA péoa oTtov (Blo xixho. Etol, av anoutolvto va
dlaBactody 1 otolyela avd umhox, 1 cuVoAY) xaducTéenon UeldveTo and Tepitou 2n xUxhoug ot POAG
n + 1 x0xhoug Yden 0T CWAAVLON,.

Buffers Ping-Pong yio ta Bden

H Baour Aertoupyla Tou emitoyuvth elvon var Qoptddvel tor Bden, vou Tol YenoUloToLel Yo detxTodoTNno, Vo
dlafBdler o owoTtd Tpolnoloylouéva TEolovTa Xou Vo T cUoowpelel. Autd to 800 GTddLa TEPLYPAPOVTAL
we Péptwon Bapdv o Emdoyn & Yvoodpevon.

Kot’ apyde, mpénel vo poptwdoldy and tny xeto uviun uéow DMA ta Y% Bden mou avtieTolyolv ot plo
oA e pRteac Bapdv. Auth 1 Sladasia 8ev oloxinpwvetal oe évay x0xAo, ahAd amoutel ToANoOC
xOxhoug avdhoya pe o IV, T0 Yg, 10 tp€yov bitwidth twv Bapdv xou tic napauétooug DMA. Mévo agol
ohoxhnpwiel auTY 1 POETWOY), Ta Sedopéva UTopoLy va yenoulonotndoly we delxteg ot @don Emhoyrc
& Yvoompevong.

O apriudc x0xA0V TOL ATALTOUVTAL YL T1 POPTWOT AVTAY TwV Popdv oto buffer xou o aprludg xOxhwv
Y TV TATen Yeron Toug we JelxTeC BNULoupYolY Eva XAAoO TEOBANU THEAY Y OU-XATAVOAWTY. X
auTH TO GEVEELO, 0 TaEAYWYOS elvan M @don Péptwone Bapdv xou o xatavolwtic 1 ¢don Emhoyhc &
Yuoowpeuong, pe to Weight Buffer vo hertouvpyel w¢ xowvog anodnreutindg yweoq.

Av yenowonowmdel poévo évac Weight Buffer, n gdon Enhoyrc & Xuoodpeuong mpénet vo ohoxhnpoet
TNV XATOVAAWGT, TV dedouévwy mpy 1 gdon Péptwone Bapdv uropéoel vo yeuioel Eavd to buffer.
Auto mpoxael tadoelg xou utoyenoonoinoy tewv Tépwy LAY, I v enfluon autol, yenoonotodue
™ teyvixf Buffers Ping-Pong (enionc yvwot) we duthé buffering), émouv 80o buffers, Wiy s fer(0)
xot Wiy trer(1), Aertovpyoly evodhdE. ‘Oco o évac buffer ypnowonoweitan v avdyvewon and ) ¢don
Emuhoyrc & Xuoompeuong, o dhhoc yepilel tavtodypova pe véa Bden amd tn @don Péptwone Bopdv.

H teyvinr| buffering ping-pong elvon xohd edpouwpévrn atoug touelc tou LPNATC anddoonc UTOAOYLIOUOV
xon Tne enedepyaoiag onpatog, yroth xpUBel TNy xouoTépnNoN UETUPORAC SESOUEVWY XL EMLTRETEL GUVEYT)
por) dedouévamv ywplc Swoxonée. Toupldlet Wovind oTov oyedlaoud Hoc, GToU 1) avdy Voo Bapdy amd uviun
e petoAnT xaduotéenon neénel vo cuvduaotel ue éva pipeline Enhoyric & Yvoohpevong uhnifc porc.
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Figure 1.4.6: Load Weights and Select & Accumulate phases: (a) without double buffering, (b) with
double buffering where Load Weights and Select & Accumulate require the same number of cycles,
(¢c) with double buffering where the Load Weights stage needs more cycles than the Select &
Accumulate stage.

Ané v drodn tng anddoong, elvor GNUAVTING VO XATAVOHGOUUE OTL OL X0OXAOL TTOU AIMALTOUVTOL YIo T1|
pbpTwon Twv Bopdv (c1) xa oL xUxAoL Tov amoutovvTan Yio T @don Emloyhic & Xuoohpevong (c2) elvan
yevixd SlapopeTixol xou e€dpTOVTAL TOCO UMb TIC TOPUUETEOUS TOU YEVVATELE OGO Xl Omd TN YEOVIXT
pUwon bitwidth. Av onpewdoovye pe Couy TOv aprdpd twv Topadlpny evepyoToinone mou TEémeL Vo
ene€epyaotoly, toTe oe glotnua Ywelc dimhé buffer o cuvolixde yedvoc extéreons Vu elvou

Cout X (Cl + C2>7

eved pe drhoé buffering pewdveton oe
Cout x max(cy, ¢2).

Enopévwe, elvan xplowo, énwe Yo avoludel mepoutépw, o Adyoc c1/ca va napopéver 6oo to duvatdy
o xoVTd ot wovdda. ‘Otav ¢1 > ¢z, 0 EMTAYLYTAG YoeaxTNRI(ETOL OUCLICTIXG WG TEPIOPITHEVOS ATo
0 uvijun (memory-bound), eve dtav co > ¢ elvan mepopiopéros and tny emroyn (Select-bound),
TOU 6NV TEAET oNUAiVEL TEPLOPLOUOE AT TIG CUYYPOVIOUEVES AVAYVOOELS UVAUNG. LUVETKS, and dnodn
BehtioTomoinong xOxAwy, elvar TOAD onuavtxd va loopponntoly owotd autég oL 800 QAacELS.

1.5 A&ioloynorn xow AnoteAécpata
1.5.1 ITeipapotixry POOuion

'Onwe teprypdpnxe tponyouuévns, o emttayuvtic LUMAX xataoxeudotnxe wg RocketChip Co-processor
(RoCC), mou onuoiver 6t elvan vhoTomuévos we cbotnua SoC ue to RocketChip w¢ xplo enelepyaoth
xou emxovwvel ye tov LUMAX péow 8iéxtntou npwtoxdihou (TileLink). To odvoho tou SoC pali pe
Tov enttayuvt LUMAX npocopoudveton otny nhatpoppo ZCU106 Baciopévn oe Zyng(31]. H vhonoinon
DMA tou LUMAX yenowponotel v e€wtepiny DRAM tou ZCUL06 yio TV avdxTtnon twv eloepyo-
HEVWY EVEPYOTOLoEWY Xou Bapdv xat mopéyel é€0do. H olvldeon tou vhixob xau 1 avdhuor toybog
Tparypotomotfidnxay ye to epyahelo Vivado 2022.1. Ou oyedioopol a&lohoyridnxay ye dapopetind aptdud
EVEQYOTOLACEWY TIOL (popTivovTal avd didvuoyua evepyonoinone (MEM € {4,8,16,32}) xau aprdud ypoy-
uov avé MEM (Row Factor, RF € {1,8}). Ou 800 autéc napduetpotl eivar xplotues yio T hettovpyia
Tou oyedlaopol, xotie To péyedoc tou Blaviopatog evepyomoinong egaptdton 600 and to MEM 6co
xou To RF. To MEM avanoplotd tov aptdud Tev EEYWELoTOV Hvnuoy, evéd 1o RFE elvon to yéyedoc xdie
uviune. To cuvolnd péyedoc Gy twv pvnudy xadopiler Tov Sladéoito Ympo yio Ta TEOIGVTO Xolt, O
cuvduaoud e to Teéyov bit-width Bdpoug, ndoeg evepyomolfoelc uropoly va yweéoouy, evéd To MEM
xadopilel eniong ndoa otolyeio UToEOLY Vol ETAEYOUY X0l VA GUGGLEEVTOUY ovd X0UXAO.

O Iivaxag 1.3 cuvoiler to ywpo oyedoouod yia tnv e€epetvnor e apyttextovixric LUMAX, ue
ox0md Vo xaTahAEOVUE 0TOUS XANDTEPOUS GLUVBUAGHOUS IOV UTOPOUKE VoL TETUYOUPE O GUYXELOT UE TO
TponyUEvo €pyo Tou emtoyuvth Gemmini[2], o onoloc yenoworoteiton xou we Bdon avopopdc.
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Table 1.3: Design Space Definition

Parameter ‘ Values
MEM 4, 8, 16, 32
Row Factor 1,8

Q¢ Bdon v T cuyxprtied| o uehétn oploaue to nponyuévo €pyo tou emtayuvtf Gemmini [2]. Tuy-
XEXPULEVAL, yiot dixanee ouyxploeic, vionotioae Tic Siapoppdoclc Tou Gemmini [2] pe woondpous Tpoug
oe oyéon pe Tov LUMAX. Ot uhonotioeic Gemmini €youv eniong to loodlvopa yopoxtneto Tixd dtemapic
pe tov LUMAX, 6nwe etpog Lidvne dedopévmv xo eheyxtéc DMA.

O yetprioeig loylog xon emtdyuvone avapépoviar oc oyéon He auth T Bdom, xan ol Yetenuévol xOx-
Aot avTloToly oy oty extéheon 6Awv Twv Aettovpyidv GEMM (rolamhactaoude Siaviopatog-nivoxa
oty mepintwon pac) oty vhonoinon vdnhod emnédov LLaMA2(32] ue yefion tou dataset TinyStories-
15M[34]. H vlonoinon LLaMa2 éyel petayhwtuotel otov enelepyacth RocketChip, pe evowpdtwon
intrinsics ylo xotdAAnAN emxovevio ue tov LUMAX.

1.5.2 TITeipapatixdt AnoteAéopata

Table 1.4: Power gains and Speedup comparison to Gemmini 4x4 PEs for different bitwidths

Config Power Cycles Speedup Per Config (Lyiatn, Wwidth)

MEM-RF | Gain | (16,8) | (16,4) | (16,2) | (8.8) | (8,4) | (8,2)
| 0291 | 02 17 | 173 | 04 | 1.7 | 1.82
81 0317 | 04 | 235 | 356 | 0.73 | 2.29 | 3.6
16-1 0329 | 0.72 | 236 | 456 | 1.17 | 24 | 4.63
321 0402 | 1.21 | 238 | 456 | 1.21 | 24 | 4.64
48 0329 | 1.05 | 1.79 | 1.83 | 1.13 | 1.80 | 1.81
8-8 0382 | 1.12 | 235 | 355 | 1.17 | 2.38 | 3.6
16-8 0462 | 1.15 | 237 | 456 | 1.21 | 24 | 4.63
32-8 0683 | 1.2 | 237 | 456 | 1.22 | 24 | 4.73

Ye ITivaxo 6.4 mapovoidloupe v aglordynon tou LUMAX unéd Sidpopec Slopoppioelc uvhung, 6Tou o
aprdude 1wy MEMs (MEM) xow o Hoapdyovrac Teappric (RF) xadopilouv to mpaypatixd péyedoc twv
buffer cavtionddwy. To anoteAéopato cuyxplvovTon Ue TNV TEOETAEYHEVY Dlaudppuworn Gemmini pe pio
ovotolyla systolic 4x4 PE mou unooctneilel evepyomoinon xou Bden INTS, diatnewvtog otadepés tig
TPAUETEOUS ETxoveviog xou T Slopdppwon DMA yio dha tar oyédia. ‘Onwe galveton, 1 xotavdhwon
loyVog audvetar T6C0 PE TOV opliud TwV Uvnuov 6co xou Ye tov Hoapdyovta Ioouunie, xadoeg meplo-
OOTEPES UVANES amouToVY TEOGUETN AOYIXY] XOL ETUTEEMOUY TEQLOCOTEPES TOPBAANAES AetToupyiee, €V
évac uhniotepoc Hoapdyovtac Npopurc anartel peyolltepn ywenuxdtnta anodixeLons 6Tov cavTlonddo.
I’ 6N autd, oxdpor xou OTIC UEYAAVTERES DOXLUACUEVES DLUUOPPWTELS, 1) XUTAVIAWGT) LoYVOS TUPAUUEVEL
ototepd younhotepn and tou Gemmini, xugouvéuevn nepinov amd 0.3x €wg 0.6x. Autd avadexviel T
evepyetoxy) amodotixétnta tou LUMAX oe éva euph oyedlac tixd gdoua.

‘Ocov agopd v anddoar, oL PeTeroel XOxAwY Tapouctdlouy mo cUVIeTN ouuneplpopd. ‘Onwe enlong
gaivetan oty e&lowon (1), to uéyedoc Tou moapadlpou evepyonoinone — xau emOPEVKS 0 aptdude TwV
otolyelwv evepyonoinone mou unopel vo enelepyaotel mopdAnha to LUMAX — eloptdton ond to
MEMxRF xou to mhdtog bit twv Bapdv, cuuneplipopd cuufoth Ue Ty Telpapatixy] wag oa&lohoynao.

YuveyiCovtag tnv avdiuon pe tnv enldpaor Tou TAdToug TV bit Twy Bapdy, delyvouue dTL Ta uPnidTERY
mhdtn bit (m.y. 8 bit) pewdvouv v amddoon AOYw TOU OTL AmOUTOVVTAL TEPLOGGTEROL XUXNOL YioL TNV
TPy WY1 LEYOAUTEROU aplduol yYivouévwy, evog Teploptopévou Tapadpou evepyonolnong mou teplopilel
TOV TOPOAANNOPS Xou aLENuévey petagopdy DMA, eved ta younidtepa mAdtn bit (r.y. 2 bit) empépouy
onuoavtixés emtayvvoele (Eng xou 4.73x). H adZnon tou Hapdyovta Tpopuhc (RF) oe otadepd aprdud
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Figure 1.5.1: Normalized utilization of resources on the Xilinx ZCU106 FPGA for different M-RF
configurations of LUMAX and the Gemmini 4x4 (GMN) baseline. Each resource type is normalized
with respect to its maximum across all designs, enabling a fair comparison of resource usage
distribution rather than absolute counts.

MEMs (M) Beltudver v emtdyuvon BleuplvovTtog To SLdvuouo EVEPYOTOINoNG, EMTEENOVTNG TEPLO-
OOTEREC YPUUMES OVE UTAOX YLol TNV amoUNXEUCT] TV YIVOUEVKVY EVERYOTONONG: auTH 1) w@éAela elvol Lo
eppovic Yo Bépous uhniic axpifela (m.y. 16x8, emitdyuvon and 0.2 oe 1.05 6tav RF = 1 éwe 8, M = 4),
eved ta Bdpr yopunihc oxpifelac (.. 8x2) napouctdlouvy eNdyiotn Bedtimwon (1.81-1.82) xadde oe autéc
TG TEPLTTAOOELS TO Tapdiupo evepyomoinong éxel 1o xhyoxwdel. H avénon twv MEMs oe otodepd RF
Behtudvel otardepd TNy emtdyuvon yiot GAo Toe Tt bit twv Bapdy, enitpénovtag TV eTAOY T TOAUTAGOY
otolyelwv avd x0xho avtl vo neptuével xOxho-x0xho yia var petoxvndel oe dha Tar umhox evepyomoinome.
Ané v dAhn, auTh 1 eniBpoon pewdveton yia Bdpn younhfic axpiBeloc B ueydro RFE (n.y. RF = 8), énou
10 TaEdupo evepYoToMomng XALHAXWOVETOL Ot Bortud TOU EYOUUE TEQLTTWOELS TEQLOPLOUEVES AT T1) UVAKY).
‘Otav nepautépw avéfoeic tov MEM A tou RF 8ev Beltihvouv mhéov v emitdyuvorn, o oyediaouoc
yiveTtal TEPLOPIOUEVOC amd TN UVAUY), TOU ONUNVEL OTL Tot TAdLa ETAOYNC xou adpoloewy XATAVAUAWGVOUY
neploc6Tepa Bdpn avd xUxho amd doa umopel va tapéyel to DMA, ondte emnpbéoietn emtdyuvon amontel
peyahbtepo ebpog Lwvng wviung Y taydtepn avdxtnon Popdyv

Yrov Ilivaxa 6.4, dopopetind yeouoata emonuoivouy T 6plo xAldxwong. Tao mpdotva xeMd delyvouv
nepinTdoelc 6mou 1 adEnon povo tou Hapdyovta Ipopuric Bertidvel Ty emtdyuvon AoYw HeEYOAITERWY
Topodpwy evepyornoinong, Wialtepa yio Bdpn 8-bit, 6mou to mapdiupo evepyonoinong SopopeTtind Yo
CUEEVLVOTAY ETELDY) AMAUTOVVTOL TEPLOCOTERA YIVOUEVAL avd evepyorolnor. Tao moptoxahl xehd delyvouy
ot 1 adénon povo tou Iapdyovta I'oopuric dev elvon mhéov apxetd anoteheopotixy, xou yeetdlovial -
whéov MEMs yio va emitpanel neplocdtepes EMAOYES avd xOXA0 0T0 o TddLo emhoyNc xat adpolopatoc. Tao
UTTAE XEAG OVTIG TOLYOUV GE GYEBLACUOVS TEPLOPIOUEVOUS Amtd TN UVHUY), OTIOU TEPULTERL ETULTAYUVOY) TEQL-
optleton amd v emxowwvia DMA, napdho mou to mapdlupo evepyonolnong elvor Yeydho xou Ldpyouv
dtardéotpa mtolhamhd MEMs.

‘Ocov apopd v anodotxdtnta ndpwy, to Lyhua 6.2.2 tapovoldlel v afionolnon ndépwv FPGA tou
oyediov LUMAX ot dlagopetixéc dlapoppaoeig otny mhaxéta ZCU106, oc olyxpion pe tnyv vhomoinon
Gemmini. Apywd, to LUMAX yenowonotel ehdyioto DSP, pévo 8 DSP aveloptitwe Siopdppwong, o
avtideon ye to Gemmini mou xotavokdver 197 DSP axdpo xan yio g oyetind puxey) custotyia systolic.
Enopévwe, n éugoon otov oyediooud yag divetar oto LUTs xan T BRAMS, nou efvon ol Bacixol mopol
TIOU Y PNOLLOTOLOVVTOL.

O téooepic mpwteg umdpeg oto Yyfua 6.2.2 avtiotoiyolv ot daopphoelg pe Hapdyovta INpauurc =
1, 6mou xdle pviun €yer povo 64 yeoppée. Kotd ouvénewa, n uviun urnopel va uhonoiniel eZohoxifipou
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pe LUTs avti yio BRAMs. Avtideta, ol enduevec téooepic undpeg avtiotouyolv oe Hoapdyovta I'poy-
e = 8, émou xdde uviun éxel 512 ypoppés. e auth v meplntwor, yenotwwonoovvtar BRAMs yia
Vv anodnxeuon 1600 TV YouEvwy oo xou Twv buffer evepyonoinong xou Bapddv, xadig to uéyedog
Tou mapatipou evepyonolnong avgdveton xou amarteltar peyohitepn anodixevon evidc tou chip yia tov
unohoyloud evéc moapatlpou evepyoTolnong.

Ye aupodtepes Tic TEPTTHOOELS, 1 abEnomn tou apiuod twv MEMs odnyel oe peyolltepn yerion LUTs,
xodwg amontelton moAamAr Aoy yio xdde MEM wote va uhonoindel 1600 0 YeEVvATORASC YLIVOUEVLY
600 xoL TO OTEOL0 EMAOYHAC Xt odpoloUATOS VLol TORIAANAY BELXTOBOTNON XoL AVAXTNGCY YLVOUEVOV.
O xatoaywentés avédvovtal enlong avaloyixd, anoUnxebovTaS TEOCWELVES TWES Xal BLATNEOVTIS TNV
ouyyEOVXOTNT UETAED TwV TorhanAdv MEMs.

Yuvoluxd, xadde auEdveton o aptiude twv MEMs, 1 yerion tewv LUTS xou tewv xatoywentdv tpoceyyilel
T emineda TV unohoinwy tépwy Tou Gemmini (extég Twv DSPs), adhd o oyedioaoude pag emtuyydvel
oauTAY TNV an6doon Ue BehTiwuévn anddoon xol YauUNnAGTERT XUTAVAAKGT 1oy 00g.
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Chapter 2

Introduction

Nowadays, Deep Neural Networks (DNNs) have become an integral part of many emerging research
activities, challenging modern system architects for continuous adaptation and design optimizations
of faster and more accurate solutions [1, 2, 3, 4, 5, 6]. Following this explosion, modern research
approaches investigate solutions that differ from the simple CPU execution model[7], by focusing
either on GPU-based solutions or on even more specific accelerators, i.e. the Tensor Processing Units
(TPUs) or Neural Processing Units (NPUs) [8, 9, 10, 7].

Modern edge deployments of LLM-based [11, 12, 13, 14] AT applicatios are pushing even more the en-
ergy efficiency envelope. Methods like NN quantization [15, 16, 17, 10, 18] have emerged to represent
the weights and/or the inputs of certain layers with fewer bits than the fully floating point repre-
sentation, saving both power, area, and computational resources. Hardware specialization through
aggressive design techniques like LUT-based multiplication [19, 20, 21] are utilized to further optimize
the accelerators in terms of Performance-Power-Area (PPA) characteristics. Thus, we are witnessing
a growing interest in domain-specific accelerators that exploit reduced numerical precision in data
representations. Such designs achieve significant performance improvements, energy efficiency, and
better utilization of hardware resources [1, 15, 22, 23, 24, 25, 26, 27|. In contrast, general-purpose
accelerators that primarily support high-precision computations are not well-suited for large language
models (LLMs) that rely on low-bitwidth inference [21, 29].

Modern LLMs, typically featuring high-precision activations combined with low-precision weights, have
motivated the design of novel accelerator architectures. These accelerators aim to efficiently support
mixed-precision operations while maximizing data reuse [1, 15, 22]. Among the most promising
design techniques are LUT-based methods. This is mainly because when some models try to
operate in lower bitwidths, then the gains of utilizing LUT-based fetching come as a great optimization
compared with doing the multiplication operation itself. In this approach, accelerators either store in
tables the complete product space for low-precision activations and weights [16], or maintain a reduced
set. of values for a specific activation window performing table precomputation on-the-fly for each
LUT unit. The corresponding weights are then fetched and combined to generate the final outputs.
This methodology is particularly effective only when the weights are quantized at lower precision,
while activations remain at higher precision e.g. 8-16 bits [19, 21|. The primary disadvantage of
previous implementations [19, 21] is its limited scalability in performance gains as weight bit-precision
increases because the use of bit serial architecture. In this work, we present LUMAX, a LUT-based
GeMM accelerator that supports mixed-precision inputs and weights, targeting the LLM domain and
providing a low-energy and flexible solution for inferring modern NN models on the edge.

In contrast to prior LUT-based accelerators, which precompute and store combinations of activations
and then rely on bit-serial logic and shift-accumulate steps to reconstruct products, LUMAX adopts
a fundamentally different storage strategy. For each activation value, LUMAX directly stores all
possible products according to weight precision, organizing them and grouping them into memory
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blocks(MEMs). During execution, the weight simply serves as an index to select the corresponding
product in a single cycle, enabling concurrent accumulation without the need for iterative bit-serial
operations. This design not only reduces latency but also improves scalability for mixed-precision
workloads.

Moreover, this accelerator framework is capable of dynamically reconfiguring the input and weights
precision, providing a flexible environment, which can fit many of the modern novel quantized LLM
applications. The accelerator is being built as a RocketChip Co-processor (RoCC), using a RISC-V
core as its host processor. Furthermore, a LUT-based multiplication approach further optimizes the
energy efficiency of our accelerator by exploring indexing certain weight/input features, instead of
computing them. Architecture-specific optimizations are also built upon the acceleration framework,
such as weights pre-fetching and data compression.

A LUMAX-based System-on-Chip was prototyped using Chipyard [30], mapped to the ZCU106 [31].
Different micro-architectural configurations of LUMAX were explored, showing reductions in LUT
and DSP utilization up to 33% and 96% respectively, when compared to its iso-resource counterpart
of TPU-based SoC based on Gemini accelerator architecture [2]. Using the LLaMA2 [32] network as
our driver application, up to 4.7x cycle reduction and 70% improved energy efficiency was achieved
compared to prior GeMM accelerators.
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Related Work

3.1 Dedicated Accelerators for Quantized Neural Networks

3.1.1 Gemmini: Systolic Architecture for GEMM

Systolic arrays are a popular architecture for accelerating matrix multiplication, a fundamental oper-
ation in deep neural networks (DNNs). Their structure is based on a grid of processing elements that
operate in parallel and in synchronization, transferring data across the array in a pipelined manner.
This architecture enables high resource utilization and reduces the need for off-chip memory access,
significantly improving energy efficiency and performance.

The use of systolic arrays in DNNs is ideal, as matrix multiplications are repetitive and can be effectively
parallelized. Additionally, their topology facilitates the execution of multiple multiply-and-accumulate
operations with low latency.

However, systolic arrays also present several limitations. Their implementation typically relies on
multipliers and DSP units, which are energy-intensive and limited in availability — especially on
resource-constrained FPGA platforms. Furthermore, their fixed topology hinders flexibility in adapting
to different matrix sizes or data formats, and scaling up to larger configurations may increase power
consumption and area overhead significantly.

Gemmini [2] is an open-source matrix multiplication accelerator based on a systolic array architecture,
developed within the Chipyard ecosystem. It supports two main operational modes: Output Stationary
(OS) and Weight Stationary (WS), which define how data is held within the array elements during
the multiply-accumulate operations. In OS mode, output values are held stationary in the compute
elements, while in WS mode, weights remain fixed throughout computation, reducing data movement
overhead.

Gemmini supports both quantized (int and uint) and floating-point (fp32) arithmetic representations,
making it versatile for a wide range of neural network applications — from quantized DNNs to full-
precision models. Its int8 support, in particular, makes it well-suited for fast and energy-efficient
inference on quantized networks.

Gemmini is a highly flexible accelerator based on a systolic array architecture. It supports both Output
Stationary (OS) and Weight Stationary (WS) dataflows, with the ability to switch between them at
runtime, allowing it to efficiently adapt to different types of deep learning workloads. The arithmetic
precision is configurable, supporting int8, int16, int32, as well as their unsigned counterparts (uint8,
uint16, uint32), and optionally floating-point numbers. Beyond basic matrix multiplication, Gemmini
supports key deep learning operations including ReLU and ReLLU6 activations, as well as max pooling
and average pooling. Matrix and vector transposition are also supported natively through dedicated
hardware paths. The accelerator integrates tightly with the RISC-V instruction set through custom
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Figure 3.1.1: Gemmini Systolic Array.

instructions, enabling streamlined software-hardware interaction.

Although Gemmini offers high performance and integrates seamlessly with RISC-V processors via
the Rocket Custom Coprocessor (RoCC) interface, it relies heavily on DSP units and multipliers.
This reliance may limit efficiency in low-cost or resource-limited systems, such as small FPGAs. In
contrast, alternative approaches, such as LUT-based accelerators, aim to reduce power consumption
and hardware complexity by avoiding multipliers altogether.

3.1.2 Carat: Accelerator Architecture with Multiplier-Free GEMMs

Carat [22] is an innovative accelerator architecture designed specifically for general matrix multipli-
cation (GEMM) operations. It introduces a multiplier-free approach that significantly reduces energy
consumption and hardware complexity by eliminating traditional multiplication units. Instead, Carat
transforms multiplications into additive operations using a novel technique known as value-level par-
allelism (VLP).

The key idea behind VLP is to exploit the redundancy in input values—especially prevalent in low-
precision formats such as INT4, FP8, or BF16. Rather than performing a separate multiplication for
every operand pair, Carat computes each unique product only once. Repeated operands are then linked
to these products through a form of temporal coding, where timing signals indicate when a previously
computed product should be reused. For instance, in a matrix of INT4 inputs, there may be only 16
unique products out of thousands of multiplications, leading to substantial computational savings.
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To implement this principle, Carat dynamically generates partial products during processing and
associates them with input values using temporal signals. These signals act as temporal subscriptions
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that determine when a product should be accessed and combined with corresponding data. This reuse
at the value level enables Carat to process large volumes of data with significantly fewer multiplications.

Architecturally, Carat adopts a structure inspired by systolic arrays, where Processing Elements (PEs)
are arranged in a 2D tile-based grid. These tiles operate on input tensors and communicate through
broadcast and synchronization mechanisms that ensure coherent reuse of partial results. The archi-
tecture is scalable across nodes through a mesh-based Network-on-Chip (NoC), making it suitable for
high-throughput and distributed workloads.
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Figure 3.1.3: Carat accelerator architecture overview.

Carat also incorporates pipelining mechanisms that allow for concurrent processing of input data and
reuse of partial products. This design choice improves throughput and allows multiple computation
stages to proceed simultaneously, further reducing idle cycles and boosting overall efficiency.

The architecture is particularly optimized for low-precision, quantized inference tasks in deep neural
networks (DNNs), where energy efficiency and performance per watt are crucial. Empirical evaluations
report a throughput improvement of 1.02x to 3.2x and energy efficiency gains ranging from 1.06 x to
4.3x compared to conventional systolic array accelerators.

Advantages. Carat’s tile-based architecture is inherently scalable, supporting both single-node and
multi-node deployments. The use of temporal coding and value reuse reduces redundant computation
and improves energy efficiency. Additional benefits include minimized switching activity, efficient
hardware utilization, and high compatibility with quantized DNN workloads.

Limitations. Despite its strengths, Carat presents several challenges. Its scheduling and control logic
are relatively complex, introducing design overhead. The architecture is limited to GEMM operations
and does not natively support non-linear layers such as activations or pooling. Its performance is
sensitive to input data patterns, and improper workload alignment can degrade efficiency. Finally,
managing multiple temporal signals may introduce energy and synchronization overheads that must
be carefully tuned during implementation.

3.1.3 TATAA — A Transformable Accelerator for Transformers

Transformer models, which form the computational backbone of modern Large Language Models
(LLMs), require both linear and non-linear operations. While linear operations dominate the overall
compute load, non-linear functions—such as Softmax and normalization—demand higher precision.
However, most accelerators focus almost exclusively on GEMM operations, often neglecting non-linear
computation.

TATAA [1] addresses this gap by introducing a runtime programmable accelerator architecture capable
of efficiently executing both linear and non-linear operations within Transformer models. Its key
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capabilities include.The TATAA accelerator is a flexible, unified hardware architecture designed to
efficiently support transformer model computations, including both linear matrix multiplications and
complex non-linear functions. Its core innovation is a runtime-configurable, dual-mode Processing
Unit (DMPU) that can switch seamlessly between int8 matrix multiplication (MatMul) mode and
bfloat16 non-linear processing mode. It achieves this flexibility through a customized instruction set
architecture (ISA) and a compilation framework that maps high-level transformer operations into
basic supported operations, enabling end-to-end transformer inference without retraining or extensive
hardware modifications.

The system features a programmable processing architecture that allows flexible reuse of compute
units. Processing units are interconnected to support both a systolic array for high-throughput GEMM
and a SIMD architecture for non-linear operations. It includes hardware support for int8 and bfloat16
formats, along with integrated on-chip quantization, removing the need for external preprocessing.

At the heart of TATAA as we can see in figure 3.1.4 lies its dual-mode processing unit architecture.
Each Dual Mode Processing Unit (DMPU) can dynamically switch between two execution modes,
adapting to the operation type without requiring hardware reconfiguration:

e In int8 systolic mode, the DMPUs form a W x 4N systolic array, where Processing Elements
(PEs) perform multiply-accumulate (MAC) operations. These are optimized for high-throughput
linear functions such as matrix multiplications. The interconnect is configured via a Mode MUX,
enabling efficient data flow between rows of PEs.

e In bfloat16 SIMD mode, each DMPU operates independently as a vector processing unit.
The PEs are organized into pipelined stages (SO to S3), leveraging the internal register file (RFY)
to execute floating-point operations with higher precision—ideal for non-linear operations like
activations or normalization. Up to W x N vector elements can be processed in parallel.

The transition between the two modes is performed dynamically at runtime via the Mode MUX and
a lightweight control unit. This allows the accelerator to morph between linear-optimized systolic ex-
ecution and flexible SIMD execution, depending on workload requirements—delivering both efficiency
and versatility in transformer processing.
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Figure 3.1.4: TATAA hardware architecture and dual-mode processing unit

In the TATAA architecture, support for non-linear functions within the SIMD mode using bfloat16
is enabled through approximation techniques and specialized hardware. Functions like GELU, Soft-
Max, and LayerNorm are approximated using low-order polynomial or rational functions, which are
efficiently mapped to integer operations. These approximations are executed via dedicated pipeline
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stages and functional units, allowing seamless integration with linear computations. The use of high-
precision bfloat16 ensures sufficient accuracy, while the transformable arithmetic system and par-
allelism maintain high performance. This design enables efficient execution of complex non-linear
functions, accelerating transformer models without compromising flexibility.

The TATAA accelerator offers several significant advantages that make it a compelling architecture
for transformer model acceleration. Firstly, it supports both linear and non-linear operations,
addressing a common limitation in existing accelerators that often prioritize only matrix computa-
tions. It offers mixed-precision capabilities, with support for both int8 and bfloat16 formats. In
terms of performance, TATAA achieves high throughput, reaching up to 2935.2 GOPS for int8
operations and 169.8 GOPS for bfloatl6 computations. A key innovation is its transformable
architecture, which allows dual-mode execution within a unified processing pipeline. This design
maintains minimal accuracy loss, typically ranging between 0.14% and 1.16%, while remaining
power efficient—delivering up to 2.19x better efficiency compared to an RTX 4090 GPU. Further-
more, it includes a custom Instruction Set Architecture (ISA) tailored for efficient transformer
execution.

However, the architecture is not without drawbacks. Omne of the primary challenges is compiler
complexity, particularly when mapping complex non-linear operations into the supported instruction
primitives. Additionally, TATAA has limited native support for certain specialized functions, which
could require software-level approximations or workarounds. There may also be runtime overhead
due to frequent switching between execution modes, potentially affecting latency in tightly-coupled
workloads. Lastly, while TATAA offers a flexible and general solution, highly specialized hardware
might still outperform it in terms of area efficiency or peak performance for narrowly focused
applications.

3.1.4 LeOPard — Gradient Based Learned Run time Pruning

In attention mechanisms used in large language models (LLMs) during inference, only a small subset of
tokens highly correlates with the token under attention, and this subset is only determined at runtime.
Therefore, a significant portion of the computations becomes inconsequential due to low attention
scores. In self-attention layers, the main computational burden is associated with the score matrix
calculation, Scores = @ - K7, and the computation of attention values, Atts = P - V.

The main idea of LeOPArd is to accelerate transformer attention computations by integrating gradient-
based learned runtime pruning and bit-level early compute termination techniques. This approach
leverages gradient information to dynamically determine which parts of the attention scores can be
pruned during inference, significantly reducing computational energy and latency without sacrificing
accuracy. The hardware is designed to support efficient, adaptive, and energy-conscious processing of
transformer models, especially focusing on multi-head self-attention mechanisms.

An innovative pruning strategy is applied using algorithmic advancements that enable the model
to learn self-attention thresholds in a gradient-based fashion. This allows the model to be jointly
fine-tuned for both parameter optimization and sparsity, ensuring minimal accuracy degradation
while substantially reducing computational load. The approach removes unimportant computa-
tions—specifically targeting score calculations in the attention mechanism, where the score matrix
(Scores = @ - KT) is computed. The Softmax function is applied only to the retained (non-pruned)
score elements, further reducing workload. Moreover, the matrix multiplication in the attention output
computation (Atts = P - V) is performed using the pruned Softmax matrix P. This pruning strategy
is implemented on a per-layer basis, allowing each layer to utilize a different learned threshold. Addi-
tionally, LeOPArd introduces the concept of early-compute termination as clear seen in Figure 3.1.5,
which halts unnecessary computation at earlier stages—improving efficiency without compromising
output quality.
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Figure 3.1.5: High-level overview of early-compute termination for dot-product operation Q x K . In
this example, K is represented in bit-serial format, whereas Q is in full-precision fixed-point format.
In Figure (a-d) each column illustrate one element of K vector and each row represents its
corresponding bits (MSB — LSB). K indicates the sign bit. For simplicity, K elements are scaled to
be between -1.0 and +1.0. The table shows the partial sum values after each cycle.

Every Cycle C:
1. Partial Sum:

P.=P. 1+ (i Kbits) -27¢ (311)
2. Conservative Margin:
BITS—1
M, = Largest(q1 + ¢2) Z 2" (3.1.2)

3. Stopping Condition:
After each cycle, calculate how much value could potentially contribute to the final sum. Stop
at cycle C when:
P, + M, < Threshold (3.1.3)

LeOPArd primarily supports bit-serial processing for the attention score computations (Q x K*) and
value multiplications (V). The hardware operates with bit-level precision (e.g., 12-bit serial units),
enabling fine-grained early termination of computations based on pruning decisions. The design targets
transformer models such as BERT and Vision Transformers, which typically employ 16-bit floating
point or lower-precision formats. However, LeOPArd’s architecture is optimized for bit-serial arithmetic
to efficiently implement both pruning and early stopping.

In this setup, activations and weights are represented using fixed-point quantization formats. The
choice of 12-bit precision is motivated by compatibility with the hardware and the desired balance
between computational accuracy and performance efficiency.

LeOPArd performs arithmetic bit-serially for greater flexibility and energy efficiency. Its core module,
the QK-DPU, handles bit-serial multiplication with control logic that enables early termination when
intermediate results fall below learned thresholds.

Weights and activations are stored in bit-serial buffers, and partial results are accumulated across
cycles. Once a result is deemed sufficient, computation stops early to save energy.

As illustrated in Figure 3.1.6, the front-end QK-PU prunes low attention scores during @ x K7
computation by evaluating bit-serial partial results. Only scores exceeding thresholds are sent to the
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back-end V-PU for Softmax and P -V processing. This pruning reduces unnecessary computation,
improving both speed and energy efficiency.
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Figure 3.1.6: Overall microarchitecture of a LeOPArd tile

The system offers several advantages. It supports operations such as @ x K7, Softmax, and P x V.
Only the @ and V matrices are stored in on-chip buffers. It employs runtime pruning with different
thresholds per layer. The design emphasizes scalability and high parallelism through a tile-based
architecture. Overall, it achieves a speedup of 1.9 to 2.4 times compared to simple bit-serial methods,
along with a 3.9 to 4.0 times reduction in energy consumption. On the downside, the system incurs
a maximum accuracy loss of 2.2%. It requires approximately 15% increased area on the chip. There
is limited generalizability for deep learning networks (DLNs), and performance depends on workload
characteristics.

3.1.5 An Energy Efficient Soft SIMD Microarchitecture

Deploying quantized CNNs on edge devices requires flexible and energy-efficient hardware. Tradi-
tional SIMD architectures with fixed bitwidths limit performance and scalability. The proposed soft
SIMD microarchitecture as illustrated in Figure 3.1.7 addresses this by supporting arbitrary bitwidths
and efficient fixed-point operations, enabling high-performance inference under tight area and power
constraints.

The architecture employs several key techniques: guardbits are used instead of multiplexers to sep-
arate SIMD subwords with minimal hardware cost; CSD encoding reduces the number of multi-
plication cycles; runtime-configurable SIMD modes allow arbitrary bitwidths (e.g., 3-24 bits);
a shift-add engine enables efficient multiplications; and a Data Pack Unit (DPU) dynamically
repacks data between SIMD formats for flexible computation.
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Figure 3.1.7: Block scheme of the proposed Soft SIMD microarchitecture. The first stage is an
Arithmetic Unit (AU), and the second stage is a Data Pack Unit (DPU). R1 to R4 are registers.

The architecture supports signed fixed-point integers in 2’s complement Q1.X format, en-
abling efficient arithmetic with varying precision. It allows arbitrary bitwidths from 3 to 24 bits,
with tested configurations including 3-, 4-, 6-, 8-, 12-, 16-, and 24-bit subwords. Precision is layer-
dependent, and experiments show negligible errors (e.g., 0.2% for 8-bit multiplication), keeping
overall CNN accuracy loss under 1% compared to floating-point baselines.

The architecture primarily supports arithmetic-heavy operations essential for CNN inference, including
element-wise addition and subtraction, shift operations, shift-add based multiplication, and multiply-
accumulate (MAC) with overflow-safe accumulation using guardbits. It efficiently handles dense (fully-
connected) and convolutional layers through variable bitwidth MACs but does not implement non-
linear activations like ReLLU directly in hardware, as these are usually managed by surrounding logic
or fused layers.

It also support eterogeneous quantization per layer with weights and activaions can have at
runtime differnt bitwiths even in the same CNN per layer.

In the following Table 3.1, we observe and compare the above architectures related to GEMM or LLM
acceleration for quantized parameter representation.

Architecture Datatype / Precision | Linear Ops | ReLU | Softmax | Multipliers | Reconfigurable

Gemmini int8/16/32, uint, float v v X v WS / OS mode

Carat FP8 (low precision) v X X X X

TATAA int8 /bfloat16 v v v v SA / SIMD mode

LeOPArd int12 v X v X X

Soft SIMD Arbitrary bits (3-24) int v X X X Precision
(bitwidths)

Table 3.1: Comparison of architectures and supported operations/features.
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3.2 LUT-Based Accelerators for Mixed-Precision Quantized
Neural Networks

So far, we have presented important and notable works in the field of accelerators for large language
models (LLMs), which often leverage quantization techniques and span a wide range of architectures
and optimization strategies. In the following, we focus on LUT-based (Lookup Table) accelerators,
which are closely related to the architecture proposed in our work. These LUT-based approaches
represent an interesting category, as they enable direct comparison and evaluation with our design,
which introduces LUT-based GEMM operations.

3.2.1 FIGLUT: LUT-based Accelerator for FP-INT GEMM

FIGLUT [19] is an energy-efficient accelerator design specifically tailored for FP-INT (floating-
point input, integer weight) General Matrix Multiplication (GEMM) operations using Look-Up Tables
(LUTS). It aims to address the computational challenges of deploying large language models (LLMs)
by reducing computational complexity through LUT-based data retrieval instead of traditional arith-
metic operations. Many existing approaches decompress weights back to floating-point format before
computation, missing the opportunity to exploit their low precision and resulting in reduced efficiency.
Meanwhile, LUT-based implementations on GPUs often suffer from bank conflicts as shown in Figure
3.2.1 during memory access.

Shared Shared “— Thread
memory memory ¢
<+ ' ' ' '
Bank DI YNV DUVN UM
COHX e | Bank conflict O |
4_ 1 1 1 1 I
Total access time : 1 Total access time : 4
(a) Ideal case (b) Worst case

Figure 3.2.1: Comparison of bank conflicts during shared memory access

In FIGLUT, the activation elements are not quantized and remain in full precision (FP32), while the
weights undergo aggressive quantization with a maximum bit-width of 4 bits. Ideally, the weights
could be constrained to binary values {—1, 1} to further simplify computations.

The architecture follows a weight-stationary approach, meaning that the neural network’s weights
are loaded into the processing units and remain fixed, or "stationary," in place for an extended period.
Instead of moving the weights for each computation, the activations, which are the inputs to the net-
work, are streamed through these stationary weights. This design choice is crucial because it allows
the system to precompute all potential partial products between the fixed weights and the incoming
activations. These precomputed values are then stored in Look-Up Tables (LUTSs). Consequently, the
actual runtime computation is significantly simplified to efficient LUT reads and subsequent accumu-
lations, thereby drastically reducing computational complexity and energy consumption compared to
traditional methods that would perform multiplications on the fly.

e Replaces multiply-accumulate (MAC) units with Read Accumulate (RAC) operations using
precomputed values stored in a Look-Up Table (LUT).

e For each binary weight pattern of length u, a key is generated to retrieve the corresponding sum
of floating-point (FP) inputs.

In FIGLUT, model if weights are quantized into binary values 0 or 1. The architecture processes
weights in groups of size u. A pattern of length p is a sequence of p binary weights.

There are 2 possible patterns. As we can see, for example, ¢ = 3 in Figure 3.2.2.
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{-1,41, -1} 2 (b’010) —z1 + x9 — x3
{-1,+1,+1} 3 (b’011) —x1 + x2 + 23
{+1,-1,-1} 4 ®'100) Hz1 —x2 —x3
{+1,-1,+1}  S®101)  +z1 —z2 + 3
{+1,+1, -1} 6 (b’110) H4x1 + x9 — 23
{+1,+1,+1} 7 ®111) H=z1+z2+ x3

Figure 3.2.2: Example Of look-up Table when p = 3

Binary Coding Quantization (BCQ)

Binary Coding Quantization (BCQ) represents weights as a linear combination of binary basis vectors
scaled by learnable coefficients. This reduces multiplications to simple additions and sign operations,
enabling efficient execution. A constant offset can be added for accuracy. BCQ supports both uniform
and non-uniform quantization, balancing low-precision efficiency with sufficient representational power,
making it well-suited for energy-efficient accelerators.

LUT Memory Architecture with Flip-Flop LUTs (FFLUT)

The LUT memory architecture replaces register files with Flip-Flop LUTs (FFLUT), allowing conflict-
free, parallel reads by multiple RAC units. Unlike conventional storage requiring arbitration, FFLUT
offers simultaneous low-latency access, preserving throughput without added power or scheduling cost.
This compact, table-based design matches quantized and LUT-driven computation, offering a scalable
and energy-efficient memory solution.

© Generate FFLUT ® Accumulate the LUT-read value

]
]
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Figure 3.2.3: Architecture of the Flip-Flop based Look-Up Table (FFLUT)

Systolic Array-Based Architecture: A 2D systolic array inspired by Google’s TPU employs a
weight-stationary strategy for efficient FP input streaming as illustrated in Figure 3.2.4 , maximizing
weight reuse, minimizing memory access, and enabling delay-free LUT value integration.
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Figure 3.2.4: Overall MPU architecture of FIGLUT

FIGLUT offers several key advantages alongside a few important limitations. One of its most notable
strengths is high energy efficiency, achieving up to 59% higher TOPS/W at 3-bit quantization
and up to 98% improvement at 2.4-bit when compared to state-of-the-art solutions. It also provides
flexibility, supporting a wide range of quantization schemes such as FP-INT, Binary Coding Quanti-
zation (BCQ), mixed precision, as well as both uniform and non-uniform quantization. Additionally,
FIGLUT benefits from parallelism, enabled by its use of Flip-Flop LUTs (FFLUTSs) which eliminate
bank conflicts and support efficient systolic tiling and data reuse.

However, these advantages come with trade-offs. One major limitation is the LUT memory over-
head, which grows exponentially with the pattern length parameter p\mu, necessitating careful design
choices. The architecture also introduces hardware complexity, particularly due to challenges in
managing signal fan-out and routing, which complicates physical layout. Lastly, FIGLUT is a spe-
cialized accelerator, primarily optimized for weight-only models, and may not generalize well to
broader computational workloads.

3.2.2 4-bit CNN Quantization with Compact LUT-Based Multipliers

The work of Zhao et al. (2023) [16] addresses the significant challenge of implementing convolutional
neural networks (CNNs) on resource-constrained embedded devices, such as FPGAs that lack
sufficient hardware multipliers (DSPs). Traditional CNN models demand substantial computational
power and memory bandwidth, making them inefficient for deployment on edge devices (e.g., drones,
industrial sensors, inspection systems).

The key challenges include:
1. How to reduce numerical precision without sacrificing accuracy.
2. How to implement efficient multiplication on FPGAs without using DSP blocks.

Initially, the implementation targets only inference, where the model is first trained using £p32 preci-
sion, followed by the application of Threshold-Aware Quantization (TAQ) to both weights and
activations. As a result, weights and activations are quantized to 4-bit integers (ranging from 0 to
15) [8, 33, 17].

Specifically, the authors propose a quantization method for CNNs using the Threshold-Aware Quan-
tization (TAQ) technique. This method belongs to the category of post-training quantization,
aiming for efficient deployment on FPGAs without retraining the model.
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TAQ employs a non-uniform value mapping mechanism where weights and activations are transformed
into 4-bit integers using custom thresholds to minimize quantization error. Additionally, a mixed
rounding strategy is applied, alternating between methods such as round-nearest and floor, depend-
ing on proximity to thresholds and data distribution.

A critical and innovative aspect of the proposed architecture is the complete elimination of arith-
metic multipliers in hardware. Instead of using traditional multipliers — such as the DSP blocks
typically found in FPGAs — the implementation exploits the fact that both weights and activations are
quantized to 4-bit precision, resulting in a limited set of possible arithmetic combinations.
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Figure 3.2.5: Basic CLM architecture for 4-bit multiplication.

Each input value can range from 0 to 15, leading to only 16 x 16 = 256 possible multiplication
outcomes. The architecture takes advantage of this by constructing a fully precomputed Look-Up
Table (LUT) that stores all possible products of any 4-bit activation and weight pair as shown in
Figure 3.2.5.

This LUT is implemented on the FPGA using LUT6 logic units, which are fundamental six-input
logic resources available in modern FPGAs. The final result is a Compact LUT-based Multiplier
(CLM), requiring only 13 LUT6 blocks per multiplier, making it highly efficient in terms of both
area and power consumption.

During inference, the CLM operates by taking a pair of 4-bit values (one activation and one weight)
and using them as an address to fetch the precomputed product from the LUT. Thus, the
arithmetic operation is fully replaced by a single, fast memory access as we clealry seen in Figure 3.2.6.
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Figure 3.2.6: Peripheral RTL logic of the CLM implementation.
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Figure 3.2.7: Multiple parallelism for convolution computation in FPGA accelerator.

This technique greatly reduces circuit complexity, eliminates the need for DSPs, and allows for massive
parallelization of multiplications, which is particularly beneficial for CNN inference workloads.
TThe complete architecture design is illustrated in Figure 3.2.7.

The CLM (Compact LUT-based Multiplier) units effectively replace traditional arithmetic multipliers
such as DSP blocks. This means that for every multiplication that would normally require a DSP, a
dedicated CLM unit is used instead. As a result, the architecture achieves M AC-level parallelism,
since each multiplication is handled independently by its own CLM. For example, in the case of a
typical 3x3 convolution window, we would need 9 CLM units — one for each element in the window.

This parallel design eliminates data access conflicts, as each activation-weight pair is processed through
its own CLM, which retrieves the precomputed product from a dedicated LUT. By allocating a separate
LUT path for each activation window pair, the system avoids contention and ensures high-throughput,
fully parallel inference execution.

Table 3.2: Advantages and Disadvantages of the TAQ Approach

Advantages Disadvantages

(1) Improved performance in terms of area | (1) Applicable only to high quantiza-
and energy efficiency through the use of | tion levels, i.e., 4-bit precision for both
LUT-based multipliers. weights and activations.

(2) Lightweight implementation suit- | (2) Supports only 4-bit quantization,
able for edge devices with limited hard- | limiting flexibility for other precision lev-
ware resources (e.g., no DSPs). els.

3.2.3 LUT Tensor Core

This work introduces the LUT Tensor Core, a hardware-software co-designed architecture tailored
for efficient low-bit GEMM operations in LLM inference. It leverages precomputed Lookup Tables
(LUTS) to replace traditional multipliers, especially useful in mixed-precision settings.

Conventional approaches to LUT-based GEMM face significant challenges, including inefficient de-
quantization logic, limited hardware support for mixed-precision operations, high storage and compu-
tation overhead for LUT tables, and suboptimal tiling strategies. Additionally, the lack of specialized
instruction sets and compiler support further limits performance.
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The proposed design addresses these limitations by supporting high-precision activations (e.g., FP16,
INT8) and very low-bit weights (14 bits). It is runtime reconfigurable, allowing dynamic support
for different precision combinations depending on the workload.

The core idea is to load a vector of activations and precompute all possible combination these act-
vations. At runtime, weights bit by bit are used to indexers to select the appropriate partial sums
from the LUT and via shift and accumuluate opeation combine them, avoiding real-time multiplica-
tion. These partial results are then accumulated into output elements, which remain on-chip until
computation completes, following an output-stationary dataflow pattern.

INT1 Weights (4xN)

0 0
FP16 Activations (1x4)

0
[aTelc o]+t
1 1

ﬂPrecompute

Lookup Table (LUT) /

Index 0000 0001 1110 1111
Result 0 D A+B+C | A+B+C+D

FP16 Outputs (1xN )
S[wm [wna [ . Jwma]

Figure 3.2.8: A naive LUT-based mpGEMM tile example of FP16 activations and INT1 weights.
With the precomputed table, a table lookup can replace a dot product of 4-element vectors.

To reduce LUT storage overhead, the architecture exploits the symmetry of weight values as
shown in Figure 3.2.9 . For instance, binary weights {0,1} can be reinterpreted as {—1,1}, enabling a
symmetric representation. This effectively halves the number of required LUT entries by eliminating
redundant computations. Additionally, to support arbitrary weight bit-widths (14 bits), the design
utilizes a bit-serial architecture. Each weight is processed across W _BIT cycles, allowing serialized
computation of mixed-precision dot products. This approach balances flexibility and area efficiency
without requiring dedicated logic for each bit-width combination.
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Figure 8: Optimized LUT unit with bit-serial.

Figure 3.2.9: Optimized LUT unit with bit-serial

Figure 3.2.10 illustrates the conventional three-step process for LUT-based mpGEMM: (1) table pre-
computation, (2) table lookup, and (3) partial sum accumulation. However, several limitations re-
duce the overall performance. First, precomputed tables require substantial storage, introducing
area and latency overhead. Second, supporting multiple bit-width combinations (e.g., INT1/2/4 x
FP16/FP8/INT8) increases complexity and chip area. Third, suboptimal LUT tiling shapes hinder
table reuse and inflate storage costs. Finally, the lack of a dedicated instruction set and the mismatch
with conventional compiler stacks make integration and efficient scheduling challenging.
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Figure 3.2.10: Conventional LUT hardware in three steps. Table precomputation and storage
introduce heavy overhead.

The architecture loads a vector of K activations, requiring one table per activation vector. If M
activation vectors are processed in parallel, M LUT tables are needed. Each table holds 25~ entries
(with symmetry optimization), and these are accessed using MUX-based selection logic controlled by
the binary weights.

e M: Number of activation rows — defines how many LUT tables are needed.
e N: Number of weights per activation — each LUT feeds N weight computations (MUX units).

e K: Number of binary weight bits — defines the LUT address width and MUX select lines
(quantization depth).

Number of binary weight groups (bit depth) Defines the number of bits per weight group, i.e., the
quantization depth. Each of the K bits is used to select from the LUT using a MUX. Figure 3.2.11
illustrates the data flow of the design along with the interpretation of its parameters.
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Figure 3.2.11: Elongated MNK tiling of LUT-based Tensor Core. LUT-based Tensor Core requires a
larger N (e.g., 64/128) to maximize table reuse, along with a suitably sized K (e.g., 4) for a
cost-eflicient table size.
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The LUT Tensor Core significantly outperforms existing software-based LUT implementations, achiev-
ing a 1.44x improvement in both compute density and energy efficiency compared to prior state-of-
the-art LUT-based accelerators.

Despite their effectiveness [19, 21|, this approach requires several cycles proportional to the weight
bitwidth (W _width), making it prohibitive for higher-precision scenarios. Consequently, these imple-
mentations are typically restricted to 4-bit weights. Although they achieve favorable performance at
low bit-widths, scaling to higher bit-widths remains limited, even if technically feasible.

Table 3.3 presents a quantitative comparison among all the related work observations with the LUMAX
accelerator. In contrast, LUMAX proposes a less-complex yet fundamentally different approach. For
each activation window, LUMAX generates, through successive shifts and accumulations, every pos-
sible product that can arise from combining the activation with all potential weight values, forming
distinct activation blocks, with the number of elements in each block determined by the current weight
bit-width. A key advantage of LUMAX approach is that the LUT space scales linearly with the size
of the activation window, in contrast to previous implementations [19, 21] where LUT size scales ex-
ponentially. Furthermore, each activation maintains its products independently, such that W __width
does not affect the cycles required to select values, which can be done in a single cycle. Although the
activation window decreases for high W _width, the LUMAX design supports up to 8-bit weights, pro-
viding satisfactory performance for certain configurations. Consequently, this approach offers greater
flexibility in scaling weight bit-widths compared to earlier LUT-based methods.

Table 3.3: LUMAX compared to LUT-based accelerators

LUT Tensor [21] FIGLUT [19] CLM [16] LUMAX
Act. FP/INTS, FD/INT16 FP16 INT4 INT16,INT8
Wgt. INT1-INT4 INT1-INT4 INT4 INT1-INTS

Bit-serial \/ \/ X X
Generate \/ \/ X \/

Stationary Output Weight Weight Output
Platform ASIC ASIC FPGA FPGA
LUT entries 2(N—1) 2N —1) N x 64 N x 2(W_width—=2)
N = number of elements in the activation window (i.e., how many activations are supported simultaneously)

Weiath = current bitwidth (precision) of the weight element)
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Background

4.0.1 The Chipyard Development Environment

Chipyard is an open-source hardware design framework [7] built on the Chisel hardware construction
language [30]. It is specifically developed to support flexible and scalable design of RISC-V-based
System-on-Chip (SoC) architectures. Chipyard combines various tools and libraries into a unified
environment that facilitates rapid prototyping, simulation, synthesis, and software development.

e Chisel-Based Design: Built on Chisel, a powerful hardware description language embedded
in Scala, enabling modular, parameterizable, and reusable hardware components.

e RISC-V SoC Generation: Supports the creation of complete SoC designs using generators
like Rocket Chip and BOOM, with customizable cores and components.

e Integrated Toolchain: Chipyard bundles multiple tools into a consistent environment for:
— RTL Simulation: Supports Verilator and commercial tools like Synopsys VCS.
— FPGA Emulation: Accelerated simulation via FireSim on cloud FPGA instances.
— VLSI Flows: Includes Hammer for physical design and layout automation.
— Software Build: FireMarshal helps build bare-metal and Linux-based software workloads.

e Hardware Acceleration: Facilitates integration and testing of custom hardware accelerators
(e.g., Hwacha, Gemmini), enabling software-hardware co-design.

e Open-Source and Extensible: Maintained by the Berkeley Architecture Research Group,
Chipyard is actively developed and supports contributions from the open-source community.

e Deep RISC-V Ecosystem Integration: Seamlessly integrates with the broader RISC-V
ecosystem, providing a flexible platform for research and experimentation.

e FPGA Prototyping and Validation: FireSim enables fast prototyping and system-level val-
idation using cloud FPGA instances.

e Co-Design Support: Enables parallel hardware/software development, encouraging a holistic
system-level design approach.

In summary, Chipyard serves as a comprehensive environment for designing, prototyping, and eval-
uating RISC-V SoCs, making it a powerful tool for both academic research and industrial hardware
development.
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4.0.2 Chisel: Constructing Hardware

Chisel is not a traditional high-level synthesis (HLS) language, nor is it a low-level hardware description
language (HDL) like Verilog or VHDL. Instead, Chisel is a constructive hardware description
language, embedded in Scala, that ultimately generates Verilog or SystemVerilog code for synthesis.

Chisel enables designers to describe digital hardware at a high level while preserving the structural and
low-level control that traditional HDLs offer. It comes with a rich API, object-oriented constructs, and
functional programming features thanks to Scala. When integrated with the Chipyard ecosystem, it
becomes easy to plug in your own designs or modify existing ones, such as creating a custom RISC-V
co-processor in just a few steps.

Chisel encourages component-based design, where each module (component) has well-defined inputs
and outputs. Additionally, it supports wrapping existing Verilog modules using BlackBox wrappers,
allowing for seamless reuse of legacy HDL code.

Chisel, like other digital design languages, works with binary signals that can be either 0 or 1. These
are often referred to as low/high, false/true, or deasserted/asserted. At the core of digital
design are combinational circuits and registers (flip-flops), which Chisel supports through a variety of
abstractions.

4.0.3 RocketChip

The RocketChip [35] is a RISC-V based core that was also the first hardware description project
developed for the RISC-V ISA. It is a highly parameterizable open-source SoC generator capable of
integrating a wide variety of cores and accelerators. The configuration of the RocketCore is highly
modular, allowing the end-user to configure the cores, building blocks, and capabilities of the core.
Taking advantage of this modularity, various application-specific accelerators can be constructed with
different configurations. The RocketChip architecture can also provide reconfigurable extension blocks
beyond the core, such as L1 and L2 caches, memory management unit (MMU), floating-point unit
(FPU), vector execution units, debug unit, performance counters, and interrupt controllers, as well as
communication infrastructure between all of these components.

The RocketTile represents the next level of configuration within RocketChip and allows tuning of all
aspects of the core, such as L1 and L2 caches, MMU, FPU, debug unit, performance counters, and
interrupt controller. The RocketTile is the basic building block of the RocketChip and is used to
construct the final SoC. It can be configured for a single core, a multicore, or even a multi-cluster
multiprocessor configuration. The main RocketTile configurations are:

e BigCore: A high-performance core with 16 KiB, 4-way set-associative instruction and data
caches that supports FPU by default.

e MediumCore: A core with smaller 4 KiB direct-mapped caches that does not support FPU by
default.

e SmallCore: A low-performance core with highly limited cache that does not support FPU by
default.

e TinyCore: A less commonly used configuration that supports only 32-bit architecture.

4.0.4 RoCC Accelerator

The RoCC (Tightly-Coupled Rocket Custom Coprocessor) Accelerator is a custom accelerator tightly
integrated with RISC-V cores in an SoC, offering high performance through close communication with
the CPU. It features the following characteristics as represent in Figure 4.0.1 :

e Communication via Custom Instructions: RoCC accelerators are controlled using special
instructions of the form customX rd, rs1, rs2, funct, where X (0-3) specifies the target accelerator
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(a core may connect up to 4 RoCCs).The 7-bit funct7 field enables the accelerator to differentiate
between multiple operations.

e Direct Access to CPU Resources: RoCC shares resources with the RISC-V core, such as
registers (rsl, rs2, rd) and the L1 cache. Through the mem interface, it can perform load/store
operations directly to memory, while the ptw interface gives it access to the page-table walker
for virtual memory management. It can also interrupt the CPU upon task completion using the
interrupt signal.

e System Integration: RoCCs connect to the TileLink network through tlNode (direct connec-
tion to L1-L2 crossbar) or atlNode (connection via an arbiter).

e Custom Toolchain: Using RoCC requires a custom toolchain, as the customX instructions are
not standardized in the RISC-V ISA. To invoke an accelerator operation, the programmer uses
special macros that compile to customX instructions.

Comparison with MMIO Peripherals: While MMIO peripherals communicate through memory-
mapped registers (requiring only standard toolchains), RoCC accelerators offer lower latency and
tighter integration with the CPU, but require expertise in both hardware (Chisel) and software
(macros).

RISC-V Rocket | ( RoCC )
Interface
cmd >
Processing |4 1eop
core |q busy
< interrupt Accelerator
< mem.req
L1 cache mem.resp
- P>
I\ J

Figure 4.0.1: A simplified view of the RoCC interface

4.0.5 TileLink & Diplomacy

TileLink [36] is an open interconnect protocol for System-on-Chip (SoC) designs, originally developed
for RISC-V but independent of any specific instruction set architecture (ISA). It provides coherent,
memory-mapped communication between multiple masters (e.g., processors, DMA engines) and slaves
(e.g., memories, peripherals), with an emphasis on low latency, high throughput, and scalability.

TileLink supports full memory coherence using a MOESI-style protocol [37, 38|, which maintains cache
consistency by defining five states—Modified, Owned, Exclusive, Shared, and Invalid—that track the
ownership and validity of cache lines across multiple caches. This protocol enables efficient cache-to-
cache data transfers and reduces unnecessary memory traffic, ensuring coherence while being inherently
deadlock-free. TileLink also allows out-of-order execution of transactions, decoupled interfaces, and
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hierarchical point-to-point network composition, enabling scalability from simple to highly complex
architectures. Additionally, it employs low-power techniques, such as energy-efficient signal encoding,
to enhance power efficiency.

The protocol is implemented through the Diplomacy framework, which automates the connection and
parameterization of system components (such as L1 caches and memory controllers), as well as address
space management. TileLink defines five communication channels (A, B, C, D, E), each with specific
directions and priorities, ensuring uninterrupted data flow between masters and slaves, as shown in
Figure 4.0.2.

The Diplomatic Widgets provided by the RocketChip library facilitate the interconnection of het-
erogeneous components. They support transaction buffering, reordering, fragmentation, conversions
between TileLink and AXI4 [39, 40], and the construction of complex SoC systems through crossbars,
FIFOs, and protocol converters. The Advanced eXtensible Interface (AXI) is a widely used on-chip
communication protocol that supports high-performance, low-latency, and burst-based data transfers,
enabling efficient and flexible communication in complex SoCs. As a result, the design process and
scalability of SoC architectures are significantly improved.

Module Module

Channel B

[ Chamec >
T E—

[ e >

Figure 4.0.2: The five TileLink channels between master and slave agents. Hierarchical prioritization
prevents deadlocks and ensures directed data flow.

4.0.6 Sync Read Memories

Chisel provides an API for defining memory elements with ready-to-use memory components. It
includes support for both read-only memories (ROM) and read/write memories.

Read-Only Memories (ROM): Users can define ROMs by constructing a Vec with VecInit.
VecInit can accept either a variable number of Data literals or a Seq[Datal sequence to initialize the
memory content.

For example, one can create a small ROM initialized to values 1,2,4,8 and access them via an address
generator such as a counter.

Read-Write Memories: In hardware, memory implementations vary widely between FPGAs and
ASICs. Chisel abstracts this by providing the Mem and SyncReadMem constructs:
e Mem: Combinational (asynchronous-read), sequential (synchronous-write)

e SyncReadMem: Synchronous-read, synchronous-write
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In our design, we use SyncReadMem as look-up tables (LUTS) to store partial products during compu-
tation.

Behavior of SyncReadMem: SyncReadMem is a construct in Chisel for defining synchronous-read,
synchronous-write memories. These are likely to be mapped to technology-specific SRAMs rather
than flip-flop banks.

If a memory address is written and read on the same clock edge, or if the read enable is de-asserted,
the read value is undefined. Also, the read port does not hold data across cycles unless you explicitly
register it outside the memory block.

Read/Write Interface: Access to a SyncReadMem memory block is done via indexing with a UInt.
The following example shows how to define a 1024-entry SRAM with one write and one read port:

import chisel3._

class ReadWriteSmem extends Module {
val width: Int = 32
val io = IO0(new Bundle {
val enable = Input(Bool())
val write = Input(Bool())
val addr = Input (UInt(10.W))
val datalIn = Input(UInt(width.W))
val dataOut = Output(UInt(width.W))
b

val mem = SyncReadMem (1024, UInt(width.W))
// Write operation
when (io.write) {

mem.write(io.addr, io.dataln)

}
// Read operation
io.datalOut := mem.read(io.addr, io.enable)

Listing 4.1: Single-Port SyncReadMem Example

Waveform Behavior: Figure 4.0.3 shows the typical waveform of a SyncReadMem block with a
single read/write port. Note that actual RTL signal names may vary. If masking is used, Chisel may
generate multiple RTL arrays to implement the desired logic.

clk
waddr 77\__waddr_Y777 7 777, 7
raddr 770 raddr ¥/

Figure 4.0.3: Waveform of SyncReadMem with one write and one read port.

Summary: A SyncReadMem memory must be parameterized at elaboration time with the desired
number of rows (depth) and the bit-width of each row (data width). At runtime, you control whether a
read or write operation occurs by setting mode signals, selecting an address (i.e., a row), and optionally
providing data (for write). Only one operation (read or write) can be performed per memory per cycle,
and read data becomes available in the next cycle after issuing the read command.
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4.0.7 Theoretical Background: LLMs and Quantization
The Role of DNNs and Matrix Multiplication in LLMs

Deep Neural Networks (DNNs) have revolutionized how we tackle complex tasks across computer
vision, speech recognition, robotics, and natural language processing. From traditional CNNs to
modern transformer-based architectures, DNNs lie at the core of today’s artificial intelligence systems.

Among the most impactful developments are Large Language Models (LLMs), such as GPT, BERT,
PaLM, and LLaMA. These models demonstrate exceptional capabilities in text generation, summariza-
tion, translation, and question answering, often achieving human-level performance in specific tasks.
LLMs are based on transformer architectures [41] where their architecture can been sheen in Fig-
ure 4.0.4 and are trained on massive corpora to learn statistical patterns in language, enabling them
to generate coherent and contextually relevant text.

The inference phase—where trained models are deployed to generate outputs—is particularly critical
for real-world applications such as chatbots, translation engines, and intelligent assistants. However,
inference in LLMs is extremely computationally expensive due to the model size and the underlying
matrix operations.

At the heart of LLM computation are matrix multiplications as is seen Figure 4.0.5, formally known
as General Matrix-Matrix Multiplication (GEMM) operations. These operations are fundamental
to the core building blocks of DNNs, including fully connected layers, attention mechanisms, and
dimensionality projection layers.
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Figure 4.0.4: Transformer model architecture

GEMM operations are responsible for the majority of compute time and energy consumption in LLMs.
According to recent studies, attention layers—which rely heavily on GEMM operations—can consume
70-90% of inference time on CPUs [41]. As a result, optimizing GEMM kernels is essential for speeding
up model inference and improving energy efficiency.
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Figure 4.0.5: Self-attention and multi-head attention blocks

This makes the efficient implementation of GEMM operations a critical goal for accelerating inference,
particularly in edge-computing scenarios where power and memory resources are limited.

Quantization for Efficient Inference

Quantization is a key technique used to reduce the computational cost of DNNs and, more recently,
LLMs. Instead of using 32-bit floating-point (FP32) representations, model weights and activations
are transformed into lower-precision formats such as INT8, FP16, FP8, or even INT4 as we can see
in Figure 4.0.6 . Recent research [42] is pushing these limits further, investigating ultra-low-precision
formats to improve efficiency without sacrificing accuracy.

The core motivation behind quantization is efficiency: smaller number formats reduce memory foot-
print, data transfer times, and computation latency. This is especially beneficial on specialized accel-
erators such as GPUs, TPUs, or custom AI chips.
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Figure 4.0.6: Quantization and De-quantization of a FP16 tensor

Quantization is particularly critical for LLMs, which can contain billions of parameters. Without
quantization, deploying these models—especially on edge devices—would be impractical due to the
high energy and compute demands. Moreover, quantization helps reduce latency, which is crucial for
real-time applications such as conversational agents and recommender systems.
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Figure 4.0.7: Decoder-only transformer blocks in LLMs. The primary computations are GEMM
operations (or mpGEMM operations with weight quantization).

There are two primary approaches to quantization:

e Post-Training Quantization (PTQ): Applied after model training, without retraining the
model. It is fast, simple, and hardware-friendly.

e Quantization-Aware Training (QAT): Incorporates quantization effects during training, re-
sulting in higher accuracy, especially at low bit-widths.

Advanced techniques like per-channel quantization and mixed-precision quantization further improve
accuracy and performance. While fixed-point PTQ (e.g., uniform INT8 or INT4) is most compatible
with hardware, mixed-precision schemes typically require more sophisticated scheduling and memory
handling.

From a hardware perspective, PTQ with uniform quantization is highly efficient, as it aligns with most
existing accelerator designs (e.g., NVIDIA Tensor Cores, Google Edge TPU [43, 44]). In contrast,
mixed-precision methods offer higher performance but demand more complex hardware support.

Mixed-precision quantization is a technique that assigns different numerical precisions to different
parts of a neural network in order to optimize performance and efficiency. Instead of using a single
fixed bit-width for all tensors, such as uniform INTS8 quantization, mixed-precision allows certain
tensors—typically the weights—to be represented with very low precision (e.g., INT4 or even INT2),
while more sensitive components like activations retain higher precision such as INT8, INT16, or FP16.
This approach is especially useful in large language models (LLMs), where massive matrices dominate
both computation and memory usage. For example, it is often possible to quantize weights to INT4
without significant accuracy loss, while keeping activations at FP16 or INTS8 ensures that intermediate
computations remain stable and robust. This balance provides a practical tradeoff between model
size and predictive accuracy. Mixed-precision quantization has several advantages: it reduces memory
footprint and bandwidth requirements, speeds up inference by using lower-precision arithmetic for
parts of the computation, and takes advantage of modern hardware accelerators that natively support
multiple precisions. However, it also introduces challenges such as the need for careful scheduling,
custom hardware or kernel support, and managing on-the-fly conversions between formats. Despite
these challenges, mixed-precision quantization has become a widely adopted strategy for deploying
LLMs efficiently, particularly in scenarios where computational resources are limited, such as in edge
computing or latency-critical cloud applications.

In conclusion, quantization is not merely a compression technique [10, 7] ; it is a foundational strategy
for computational efficiency. It enables the practical deployment of LLMs like GPT-4, LLaMA, and
Mistral [45, 46] on resource-constrained environments. Without quantization, the use of such models
would remain confined to high-end data centers with vast computational resources.
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Chapter 5

Accelerator Design

The LUMAX accelerator consists of distinct computational and memory units, with its overall archi-
tecture illustrated in Fig. 5.1.1. It is integrated as a RocketChip coprocessor, managing instructions
through the RoCC interface and handling Input/Weight/Output transfers via DMA channels. The
input data are processed such that only the positive even multiplications for each activation are stored
in the memory blocks. Subsequently, a selection mechanism reconstructs the correct sequence of partial
products, while also encoding information about odd/even multiplications and operation sign. These
are then forwarded to the accumulator, which produces the final output product. All I/O operations
are managed by dedicated buffers inside the accelerator.

This work focuses on the system-level design of a DNN hardware accelerator for mixed-precision
quantized datatypes, enabling arbitrary bitwidth combinations between activations and weights.
Such flexibility allows architects to explore how different parameters interact and can be tuned to
optimize overall performance. To support integration with high-level applications, a set of C functions
has been developed that leverage custom instructions for accelerator control.

The LUMAX accelerator has been developed within the Chipyard ecosystem using the Chisel hard-
ware description language. Its architecture employs a novel LUT-based approach for matrix multi-
plication, tailored to mixed-precision quantized models where weights often use lower precision (e.g.,
int8/int4 /int2) compared to activations (e.g., int16/int8).

The remainder of this work is organized to progressively describe the hardware algorithm underlying
the accelerator, its architectural design, the generator parameters, and its major components. The dis-
cussion concludes with the specification of the accelerator’s ISA and the supporting software functions,
demonstrating compatibility with high-level software integration.

5.1 Hardware Design Overview

As previously mentioned, this accelerator is an extension of the RISC-V Rocket Chip architecture as a
RoCC accelerator, which implies that its communication with the processor is carried out via custom
instructions. This approach has been chosen to control and re-configure the accelerator with custom
instructions (e.g., specifying the operation to be performed by the accelerator or defining the precision
of the activation and weight data). This environment is highly programmer-friendly, as appropriate
functions have been developed in C to make use of the accelerator easier for the end-user, without the
need to have hardware knowledge of the implementation.

The accelerator integrates with the existing system’s memory hierarchy through a coherent TileLink
interface, enabling seamless data transfers with shared memory. To reduce latency and improve band-
width utilization, a lightweight Direct Memory Access (DMA) engine is employed to orchestrate bulk
data movements between the main memory and the accelerator’s internal buffers. This memory hier-
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Figure 5.1.1: The Proposed LUMAX Architecture

archy, combined with DMA support and TileLink connectivity, ensures efficient and scalable commu-
nication for the execution of quantized GEMM workloads

This work proposes an accelerator capable of performing matrix multiplication while supporting vari-
able precision for activations and weights, which is defined at runtime. To achieve this, it uses LUT-
based techniques to compute and store possible products in advance, then retrieves them through
appropriate indexing, thus replacing conventional multipliers.

The system consists of one Rocket Core, one Direct Memory Access (DMA) module with proper
communication hardware description based on the TileLink protocol and the RoCC accelerator.

To store the batches of data for activation’s ,weights and output we use buffers, described below.
e Input Buffer to temporarily store the activation values of the currently loaded window.

e Weight Buffer, which actually to one weight buffer, storing the corresponding weights of a
window of activation’s from one column.

e Output Buffer to store some of the output elements that accumulate values, so there is no need
to send the products back to the Rocket Core constantly.

Figure 5.1.1 summarizes the general accelerator build and communication principles.We use Ping-
Pong Buffers for weight elements so that we can write values from main memory to one buffer
while reading values from the other buffer for indexing purposes. Additionally, we have a Product
Generator that generates products through addition, stores them, and writes them to block memories.
Each physical memory block is n a synchronous-read memory that enables one read/write operation per
cycle and has a one-cycle delay for reading a value. We also have a Select Module that is responsible
for finding, for each physical (synchronous-read) memory block, the index of the weight that must be
read from this memory block, and for determining the row and offset where the product is located
according to the weight. Furthermore, an Accumulator Block accumulates, using reduction, all the
products selected from weights in the same column that correspond to the same input row, storing
them into the correct output element. Finally, we have a Scale Factor module that can be enabled to
scale one output row by a fixed-point number, using the same scale factor if uniform scaling per vector
is applied. In later sections, we will describe each of these modules with more precision. However, it is
important to mention now that the Rocket Core communicates with the accelerator via custom RoCC
instructions. These instructions handle control signals, preload addresses of matrices, and manage
other control tasks, such as when to start fetching weights or when to initiate the computation flow.

Along with our hardware stack, starting in the software implementation, a C API uis sed to interface
with our custom ROCC hardware accelerator. The API includes three main functions:
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e A preload function to configure runtime parameters and initiate weight fetching.
e A start function to issue the control signal for processing.

e A fence function implementing a busy-wait to ensure the accelerator completes its computation
before software execution continues.

The preload_hw function is responsible for computing in advance, on the software side, all the nec-
essary control parameters that govern the iteration bounds and repetition counts of each dataflow
stage within the hardware accelerator. These parameters depend on the generator-defined micro-
architectural factors, the runtime matrix dimensions, and the current activation and weight precisions.
By performing these calculations in software, we avoid costly hardware computations such as divisions
or modulo operations during execution. This approach minimizes control-path complexity and ensures
that the hardware focuses solely on efficient data processing with ready-to-use parameters, without
the need for dynamic reconfiguration logic.

5.2 Hardware Dataflow

This accelerator employs LUT-based techniques, where certain products results are precomputed and
later retrieved through indexing to avoid costly runtime multiplications. However, precomputing all
possible products for every potential bitwidth combination is impractical, as it would lead to excessive
resource usage, especially when activations require higher precision (e.g., 16 or 32 bits). This would
cause a combinatorial explosion in the number of possible products, significantly increasing the logic
and memory footprint.

To mitigate this, the accelerator loads a window of activation elements into its internal memory.
Based on the bitwidth of the weights, it precomputes and stores a limited set of partial products for
this specific batch of activations. Once this precomputation is complete, the corresponding weights
— fetched column-wise from the weight matrix — are used to select the appropriate precomputed
products for the current activation batch. Specifically, each weight selects (depending on the number
of activation rows) one or more values from the precomputed set. These selected values are then
accumulated into the corresponding output elements, which are located at the intersections between
the current weight column and the activation rows.

Throughout this work, the accelerator’s operation is modeled on a matrix multiplication framework.
The inputs (activations) are represented as a matrix of size R;, X Ci,, which is multiplied by a weight
matrix of size Cj, X Cyys. This multiplication produces the output matrix, leveraging the parallel
processing windows defined by Xg and Yg to compute and select partial results efficiently.

Before proceeding, it is important to clarify the notation and symbols that will be used throughout this
work. Specifically, Inyax and W,ax denote the maximum bitwidths of the activations and weights,
respectively. Conversely, in_bits and w_ bits refer to the current bitwidth of the activations and
weights during a given operation or configuration.

The parameters x_slice (XS) and y _slice (YS) define the processing window dimensions. In partic-
ular, XS does not directly represent the number of activation elements loaded, but acts as a parameter
influencing how many activation elements are loaded per activation vector. This quantity may vary
depending on the bitwidth of the activations, although the value of XS itself remains fixed across
bitwidths. The parameter YS determines how many activation rows are processed concurrently —
in other words, it defines the number of rows from which N elements are simultaneously taken. To-
gether, these two parameters describe the processing window, that is, the subset of activation elements
processed in parallel.

As described in Figure 5.2.1, the operation of the accelerator is based on a well-defined sequence of
steps that can be divided into five distinct states. Although in the implementation, many of these
steps can overlap in time (pipeline or parallel execution), here they are described as separate stages to
clearly present the basic data and computation flow. The five stages are as follows:
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1. Load Activations (Load X)

In this stage, the elements of the input matrix/vector (activations) are transferred from the
processor’s external memory to the accelerator via direct memory access (DMA), following the
communication protocol provided and recommended by the Chipyard environment (TileLink
protocol). The transfer occurs in (often) 64-bit blocks, transferring a total of N input elements
per row, repeated for y_slice rows. Essentially, depending on the bitwidth of both the activation
and weight elements, a different number of activation elements are loaded from memory each
time, specifically as many as can be simultaneously stored along with their possible products
that arise when (conceptually) multiplied by different weights. Depending on the input bitwidth
(e.g.16, 8, 4 bits), the same number of bits may correspond to different numbers of elements.
Loading the required number of input elements often requires multiple memory requests, so
critical parameters for this stage are how many requests can be active simultaneously (Dma_Ids)
and the data width supported per request channel ( eg. 64 bits). Obviously, this process repeats
as needed until a total of Cin elements are loaded for each input vector.

2. Product Generation (Generate BRAMs)
Once the input activation elements are loaded, the accelerator generates, for each input element,
all possible product values that could result from multiplication with every even possible weight
value within the supported bitwidth range (w_bits). These products are stored in dedicated on
chip memory , so they can be reused later. How these values are placed and generated is critical
and will be further analyzed. This process is implemented using add and store operation only,
completely eliminating the need for multiplier units. However, this requires additional cycles to
generate these values, depending on the available hardware resources dedicated for this purpose.

3. Load Weights (Load W)

In this stage, the accelerator loads the weight elements corresponding to the already loaded
activation elements so the weigth can uses as index to read the appropriate products fron memory
blocks. Since these products are precomputed from the previous stage, it suffices to load from
memory only the weights associated with the input elements whose products have been generated.
Specifically, N weights are required each time (same as actvations window per row), regardless of
the number of rows (y_slice) of the activation elements, as each weight corresponds to y_slice
different input/activation elements. The weights are transferred in segments by column of the
weight matrix and only the necessary elements corresponding to active input values are loaded.
This achieves efficient bandwidth use and limits unnecessary transfers. This stage repeats Cout
times for each new load of activation’s window, so efficient execution is important to avoid
bottlenecks caused by weight transfers.

4. Select & Accumulate

This is the core operation of the accelerator. For each weight element, the accelerator uses
its value as an index to select the corresponding precomputed product value from the on chip
memory. The selected product is then added to the corresponding output element. If multiple
rows ( input vectors) are processed simultaneously (indicated by the y_slice parameter), the
same weight element is used to select multiple products, each contributing to a different output
element (as they belong to different output neurons), and these are then summed in the final
result. This enables reuse of the weight matrix elements, as weights directly select their products
without recomputing the same product multiple times. This stage also repeats Cout times for
each new segment of input elements, and as will be shown later, there is a producer-consumer
relationship between this stage and the weight loading stage.

5. Store Outputs (Store O)
The final stage concerns transferring the computed output values back to main memory via
direct memory access (DMA). Writing occurs only after y_slice rows of output have been fully
computed. The data is temporarily held in output buffer and transferred only when computation
is complete (Output Stationary), so communication and data transfer are not burdened by many
small write operations from the processor to main memory.
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Figure 5.2.1: Accelerator States Diagram

Next, we present a simplified example to illustrate the concept. In this example, we make the same
assumptions as before but omit any hardware logic details for clarity. We consider memories with 64
rows each, where each row can store exactly one product — an assumption that will be justified later.
For simplicity, we ignore bitwidth considerations. Here, X_slice (XS) and Y_slice (YS) are both set to
2, meaning we process a window of 4 activation elements — 2 elements per row. Additionally, we assume
that all possible products for a single activation require one dedicated memory each. Consequently,
for one activation, all its generated products occupy XS x Y'S physical memory units.

For the following example, we assume a weight bitwidth of 8 bits and, for reasons to be discussed later,
we only generate absolute values and only use even weights (2, 4, 8, ..., 128). As we will see later we
handling the logic the products when weights are odd, so for now is like every logical block containing
all products of one activation element is assumed to have the same size as one physical memory.

Let us now explain more specifically the hardware dataflow according to the simplifications previously
assumed and using the 5.2.2 as a reference.

At the beginning, we read a 2 x 2 window of activation elements. For each one of these elements, we
generate and store in memories (blocks) all the possible products that could result from multiplying
an in_bit activation with a weight of w_bit precision. It is clear that for lower weight precision, there
are fewer products to generate.

Then, we load all the corresponding weights column by column so that they can select (read) the
products they need, depending on which activation element (from those we have already brought in)
is routed to the appropriate memory block, and then acts as an index to choose the correct product.

We must note that in this example we load only 2 weights, for every weight column, there are 2 selection
operations from two different blocks, with each block corresponding to one activation element.

As shown in part (1) of the figure, we start by bringing in 2 weights from the first column of the weight
matrix, and because we are at the start, these are the first 2 elements of that column. Then, as we see
in step (2) of the example, the next weights corresponding to the activations we have already loaded
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Figure 5.2.2: Simplified Example of the Hardware Dataflow

and whose already products have been generated, are located in the next column of weight matrix,
specifically on the same rows as before.

Thus, we move column-wise, reading repeatedly from the same rows — in our case 2 rows — until we
have read all columns, as shown in step (3) of the example. Up to this point, all the output elements of
the first two output rows have received and accumulated some values, but are not yet fully computed.

Then, since there are no further weights associated with these activations, we bring in the next acti-
vation window and repeat the same procedure.

When the activation window reaches the last elements of the first two rows of the activation matrix,
the hardware reads the final two weights of each column. These weights are then used in the last
read-and-accumulate operations, producing the complete first two rows of the output matrix.

Once this step is completed — as shown in part (5) of the example — the computation for these rows
is finalized. If the input matrix contains additional rows, the same procedure is repeated with the new
activation elements, while the weight elements remain unchanged.

To generalize, we extend the hardware dataflow to a more flexible form. Each memory block can
hold the partial products of N activations, thus accommodating N x Y_slice elements in total. The
parameter X_slice is directly related to N; their connection will be examined later.

In the general case, for every N x Y_slice activation block (spanning columuns 4 through j), the system
loads exactly N weight values per column of the weight matrix (Cout columns in total), located from
row ¢ to j. This guarantees that all required weights are available, allowing the precomputed products
for the activations to be properly selected and accumulated.
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Hardware Dataflow

Algorithm 1 Accelerator Dataflow

i

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:

Activations[Rin, Cin]

: Weights[Cin, Cout]

Output [Rin, Cout]

elemers_per_row — activation_elements / YS
// === Outer loop over activation rows ===

for row = 0 to Rin/YS - 1 do
start < O

for columns = 0 to Cin/elemers_per_row - 1 do

for ys = 1 to YSdo //

for elems =

Loop over elements per row
1 to elemers_per_row do

Load Activations[row X YS + ys, start + elems]
end for// — End elements per row loop —

end for

# Generate products for every activation

Generate_Products ()

// — Loop over weight columns —
1 to Cout do //
1 to elemers_per_row do

for columns_w =
for elems =

Load Weights[start + elems, columns_w]
end for// — End elements per row loop —

Select products and accumulate them to outputs

Select_and_Accum()

end for// — End weight columns loop —
start < start + elemers_per_row

end for

1 to YSdo //
1 to Cout do

for ys =
for ¢ =

Write Output[row x YS + ys, cl

end for// — End output channels loop —

end for
end for// === End outer loop ===

— Loop over output channels —

— Loop over elements per row for weights —

Table 5.1: Repetition counts of accelerator dataflow stages

Stage Repetitions
Load Activations and Generate Products
Ys  elements_per_row
Load Weights and Select& Accumulate X Cout
Ys elements_per_row

R
Store Output o

Ys
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Generator Parameters

The Design of the accelerator have some parameters that can change some critical hardware modules
dimensions or even change other aspects so a more specific and more hardware friendly design wil be
generated using less resources or even to see how different component parameters of the system change
the performance.

First, it is important to present the design parameters as shown in Table 5.2 that determine the dimen-
sions and characteristics of the accelerator. These parameters serve as the foundation for conducting

Design Space Exploration (DSE).

Parameter Description

In_max Maximum supported bitwidth for input activations

W_max Maximum supported bitwidth for weights

OutBitWidth Bitwidth of the accumulated output values

In_min Minimum supported bitwidth for activations

W_min Minimum supported bitwidth for weights

x_slice Specifies the minimum number of elements that can be processed in parallel per
activation row (horizontal parallelism), guaranteed even under the maximum
supported bitwidth for activations and weights.

y_slice Number of input rows loaded and proccesing simultaneously (vertical paral-
lelism)

bankMergeFactor | Factor that reduces the number of memory banks by merging them, increasing
the row count per bank to maintain total capacity

Row Factor Factor that increases the number of rows per memory bank, expanding total
memory capacity without changing the number of banks

Dma_Ids Maximum number of in-flight DMA requests supported

Dma_buswidth Maximum number of bytes transferred per DMA request

SCALE Flag to enable applying a fixed-point scaling factor on the output

Simple cache Flag to Enable pre-computed memory blocks for very low activation precision

Table 5.2: Generator Parameters defining the design space of the accelerator

Variable Precision Support

The parameters In_max and W_max define the maximum bit width that the accelerator can process for
activations and weights, respectively, while In_min and W_min define the minimum supported precision
as illustrated in Figure 5.2.3. For example, if In_max = 8 and In_min = 4, then each activation
register can store either one 8-bit element or two 4-bit elements, thereby fully utilizing its capacity. In
this design, an input (activation) register has a bit width of In_max, while a weight register has a bit
width of W_max.

Register Precision

n bits

Elements precision

n bits Tij
2 bits Zi,;j Zi,j+1
2 bits Tij | Tig+l | Tig+2 | Tij+3

Figure 5.2.3: Elements packing for different precision
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The design supports run time activation’s and weight of different precision, allowing the accelerator
to adapt not only during memory reads and register storage, but also during product generation, on
chip Memory distribution, and parallelism degree. When the data has lower precision, the number of
parallel operations increases, leading to higher throughput and better hardware utilization.

Parallelism and Memory Blocks Usage

The parameters x_slice and y_slice define the number of activation elements for which products can
be generated and processed in parallel, and indirectly determine the amount of memory Blocks required
(x_slice x y_slice). The x_slice parameter relates to the number of Memory Blocks per row of
matrix , while y_slice sets how many rows of matrix are processed simultaneously. Each memory
block (in default configuration) can stores all possible products for the worst-case precision scenario
(In_max, W_max). When data of lower precision is used, the memory blocks can be partitioned (by rows
or columns) to maximize capacity utilization. Therefore, with x_slice and y_slice, and assuming
enough storage in the memoy blocks, it is possible to store products for x_slice activation’s with bit
width In_max and weights of bit width W_max. As can be understood, this is only one scenario and
actually the worst and slowest case, since if either the activation bits or the weight bits are reduced, it
becomes possible to store products for even more activation’s within each memory Block. This allows
the processing of more elements in parallel and effectively scales up the size of the activation window
that is read in each step.

Memory Bank Structure Scaling Factors The parameters bankMergeFactor and Row_Factor
are scaling factors that modify the organization of the on-chip memory banks. The bankMergeFactor
reduces the number of physical memory banks by merging them, proportionally increasing the number
of rows per bank in order to preserve the total memory capacity. In contrast, the Row_Factor increases
the number of rows in each memory bank without reducing the number of banks, effectively expanding
the total memory capacity. These two parameters can also be used simultaneously — for instance,
each memory block can be both deeper (more rows) and merged (fewer total banks) depending on the
selected configuration.

By default, each memory block is provisioned with a number of rows sufficient to store all the inter-
mediate products generated by one activation when multiplied with all weights, assuming the highest
supported precision for both activations and weights. This baseline configuration ensures compatibil-
ity with all lower-precision modes. Tuning the memory scaling factors allows exploration of different
memory hierarchies, offering trade-offs between parallelism, memory reuse, and hardware area.

DMA Requests and Data Flow

The accelerator implements a DMA mechanism to move data from the main memory to the acceler-
ator’s local memory (registers or scratchpad), as well as to transfer accumulated results back to the
main memory. The size of these DMA transactions is determined by the DMA parameters. These
DMA parameters are tightly coupled to the Rocket Chip SoC system; in particular, the DMA_buswidth
parameter is associated with the SystemBusKey.beatBytes configuration.

The parameter Dma_Ids defines how many outstanding requests the DMA can issue without waiting for
responses. The higher this value, the greater the overlap between read /write operations and processing,
leading to faster execution. Maximum performance is observed when all required low-precision data
can be transferred simultaneously.

Cache for low activation’s precision
The Cache flag determines whether a cache logic based on LUTs is used for low-bitwidth activation’s
and weights. Since the design is optimized for low weight bit width and higher activation bit width,
performance may degrade when activation’s also have low precision . For example, with 4-bit activa-
tion’s and 8-bit weights, it is not efficient to generate products for each 4-bit activation independently,
since 8-bit weights require storing at least 128 products. A better approach is to use a precomputed
LUT that contains all 4-bit x 8-bit products (about 5-6 KB) as we can see in Figure 5.2.4 , allowing
both the activation and the corresponding weight to act as indices for selecting products. Then, using
the same accumulation flow as the general design, these products are summed into the output elements.
Because in this scheme there is no need to store a window of activation elements in memory blocks
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(since the products are already precomputed in the cache logic memory), the activation window can be
maximized, as activation’s are only used for indexing. This can outperform the non-cache approach,
provided there is sufficient data bandwidth to support efficient loading of the larger window. Of course,
this technique is not efficient for activation’s with 8 or 16 bits, since the required number of products
would be too large, increasing storage demands and adding indexing complexity.

4 bit indexing
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Figure 5.2.4: Cache 4 -8 precision

Output Scaling (Dequantization)

The SCALE flag determines whether dequantization is performed at the output. When enabled, the
results are converted to fixed-point format with an appropriate scale factor (e.g., 32-bit) per output
vector. When disabled, the output is stored as integer (INT) values in memory.

5.3 Major Components

This section describes the most important hardware components of the accelerator and how they
interconnect. Furthermore, it explains how different generator parameters modify the RTL of the
design, enabling flexible customization according to these parameters. In this way, developers can
experiment with and evaluate various design trade-offs easily.

We will discuss the following key components of the accelerator architecture:
memory Blocks (On-chip memories)

Direct Memory Access (DMA) module

Product generator component
e Select and accumulate component

These elements form the core of the hardware structure and determine how data is stored, transferred,
computed, and accumulated within the accelerator.

5.3.1 Memory Blocks

In our design, a very important aspect is how and where to store the partial products in a way that is
both performance-efficient and hardware-friendly. We have chosen to implement a synchronous read -
write memory with single-cycle read and write latency, featuring a single read/write port that allows
one data word to be accessed per cycle. These memories are implemented using Chisel’s SyncReadMem
primitive, which is a synthesizable, ASIC- and FPGA-friendly synchronous memory structure. These
memories are referred to as Physical Memory or Physical Memory Blocks within our architecture. Of
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course, it is necessary to organize and partition each Physical Memory Block into different logical
sections as illustrated in Figure 5.3.1 in order to fully exploit the available storage resources and
maximize utilization among the different precision in activation’s and weights .

Now that the accelerator parameters have been introduced, we proceed to describe in detail the data
flow and how synchronous memory usage changes across different bit width configurations.This includes
the parallel processing of activation and weight elements, and how the activation window adapts to
the current precision. Furthermore, we analyze how the size of the synchronous memory affects the
placement of product values within the dedicated memory blocks.

Assume bankMergeFactor = 1 and Row_Factor = 1. Under this configuration, there are exactly
x_slice X y_slice synchronous read memories ( physical memory blocks). Each block contains
2Wmae=2 1ows, where Wnqe, denotes the maximum supported weight bit width. For instance, with
Winae = 8, each physical memory block provides 64 rows. This capacity ensures that each block
can store all positive products that may result from even-valued weights of a single activation in the
worst-case precision scenario, where the weights use their maximum supported precision.

It is important to note that only absolute weight products are generated and stored, since signed
representations are used and negative values are handled during run time. To further optimize storage,
only products for even weights are stored; odd weights are reconstructed by adding the product of the
closest even weight with the activation, as detailed later.

Row-wise partitioning of Synchronous Memory (Rows) : For every activation element, we
must allocate a logical memory block containing its associated products (as dictated by the weight
precision). These logical blocks are then packed into the available physical memories. The height in
rows of a logical block, denoted as block_rows, is computed as

block _rows = 2%bits—2 (5.3.1)

where w_bits is the active weight precision at run time.

With bankMergeFactor — 1, each physical memory contains 2"Vma= =2 rows, sufficient to accommodate

the entire logical block of products for a single activation in the worst-case precision. At lower weight
precision’s, these logical blocks are smaller and multiple blocks can be packed sequentially within the
same physical memory.

The bankMergeFactor parameter scales the row capacity of each physical memory block. For ex-
ample, if bankMergeFactor — 2, each physical memory will contain 2"mas=2 x 2 rows, allowing the
same product capacity to be supported with fewer physical memories.This provides a flexible trade-off
between memory size and the number of memories required.

Also Row_ Factor just scales the numbers of rows per psycial memory block so can increase actvations
products per memory with out dealing with extra indexing logic what every memory need.

In summary, the number of physical memories and their characteristics are given by:

Tslice
M = slice 5.3.2
s bankMergeFactor X Yelic ( )
Mem_Rows = 2Wmax=2 » hankMergeFactor x Row_Factor (5.3.3)

This strategy enables flexible and efficient placement of logical product blocks within physical memories
depending on run time bit widths and configuration parameters.

Horizontal Partitioning of Synchronous Memory (Width )
Another important optimization is horizontal partitioning of the memory. Each row of a synchronous
memory has a fixed bit width, sized to hold the widest product possible under maximum precision.
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However, in practice the active bit widths (in_bits and w_bits) can be typically lower, reducing the
actual product width. This allows multiple logical product blocks to be packed side-by-side within the
same memory row, improving resource utilization. Each product block is stored as a concatenated bit
vector, and masking with offset selection allows retrieval of the appropriate product segment during
execution. This technique supports increased parallelism for higher activation precision’s combined
with moderate or low weight precision’s.

Hence the physical memory width is:

I max
Mem_ Width = (Inmim + Winax) ¥ I” . (5.3.4)
Nmin
while the width of each logical block is:
block_width = in_bits + w_bits. (5.3.5)

By doing this we can have full memory blocks utilization and increase activation window parallelism,
memory efficiency, and area as is we clear can see in Figure 5.3.2.
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Figure 5.3.1: Memory Block dimension and logical block for different actvations and weights
precision’s
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Figure 5.3.2: Mapping of activation blocks onto physical memory blocks, where each color
corresponds to a different activation block.
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In the 5.3.1 as a reference, we observe that a synchronous memory is essentially one physical Memory
Block with a fixed number of rows and a fixed width, effectively forming a one-dimensional array. This
dimension can be configured in the generator using the parameters described earlier, but it remains
fixed for each generated design. On the other hand, the logical blocks depend on the precision of
activations and weights. Since the design supports variable bitwidths at runtime, the logical blocks
can vary in the number of rows and their width. Recall that a logical block essentially stores the
products for a single activation element. As a result, a logical block may occupy fewer rows than
a physical block, a smaller width than a physical block, or both fewer rows and a smaller width.
We have ensured that logical blocks fit neatly within a single physical memory block. This way, no
logical block needs to be split across multiple physical memories, which would otherwise increase the
complexity of later selecting the correct elements. Finally, in 5.3.2, we illustrate how logical blocks
are mapped within a physical memory block when, for example, the block_width equals half of the
physical memory width, and the block_rows equals half of the physical memory rows.

Now that we have described how the products for each activation element are stored in logical blocks,
and how these blocks are placed within synchronous memories (physical on-chip memories), we can
examine how, for different precision levels of both activations and weights, the degree of parallelism
achieved during processing varies. The maximum number of activation elements (activations window
elements) the accelerator can handle is given by

Mem_Rows Mem_Width
N = Mems X X - . (5.3.6)
block_rows block_width
This window of activation elements is distributed across Yg activation rows, resulting in
1 N (5.3.7)
elems_per_row = — 3.
P YS

Logical Blocks mapping to Synchronous Memories

In this section, we complete the discussion of the structure of the synchronous on-chip memories (Sync
Memories), by explaining how the logical blocks containing the partial products for each activation
element are organized and mapped. In particular, it is necessary to clarify how each logical block is
associated with a specific activation element within the loaded activation window, where exactly it is
placed in memory, and how it is indexed so that the corresponding weights can later access it correctly.

As previously described, the activation window of N activation elements is loaded into a register
vector, with each register having a bitwidth equal to the maximum supported activation precision,
denoted Impya.x. This guarantees that the accelerator can handle any possible bitwidth configuration.
A key question is: how many registers are required to handle every possible bitwidth? The answer
is determined by considering the worst-case scenario, namely when activations use their maximum
precision while weights use their minimum precision. This configuration allows the largest number of
activations to be processed in parallel, and thus requires the maximum number of registers.

Accordingly, the maximum number of activation registers per actvation vector can be expressed as:

max_activation_regs = 2"Wmax=Wmin » X' g (5.3.8)

Each register is Inyax bits wide, and there are such registers for each of the Yg activation rows.
Therefore, the total register file capacity is max_activation_regs X Yg.

I max
max_weights regs = max _activation regs X <In) (5.3.9)
Nmin

Each register is Wi ax bits wide.
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Within each register, the number of activation elements that can be stored depends on their bitwidth.
Specifically, each activation register can store Inyax/inbits activation elements.

Because the block width is smaller than the product width, it is possible for multiple logical blocks to
share the same row in a Sync Memory, each located at a different offset along that row. Therefore, the
position of each activation element within its register determines the offset of its corresponding logical
block inside the memory. Our accelerator, as previously mentioned, can load up to IV activation ele-
ments per window, corresponding to % elements per activation vector, as discussed in equations 5.3.6
and 5.3.7.

We now examine how many registers are required, and how each register is associated with a register
block. As mentioned earlier, a register block contains -%ax Jogical blocks. This implies that each

in_bits
block either holds the partial products of one activation element or multiple elements. For example, if
Inmax = 16 and in_bits = 8, then each register block holds data for two activation elements. These
logical registers are concatenated row-wise.

In theory, we can load up to Yls elements. However, if the input dimension C'in is smaller, the actual
number of elements loaded is limited to:

N
Nreal = min (Y—Sa Cln) (5310)
Thus, per vector row (Y'S), the required number of activation and weight registers becomes:

Nreal Nreal

Activation regs = Weight regs = Wi Jw_bils (5.3.11)

Inmax/in_bits’

Next, we must determine how to distribute register blocks across the available memory banks. To
maximize performance, it is essential to balance the usage across all available memories. For instance,
if we have 2 memory banks, each capable of holding 4 register blocks, and we require 4 total blocks,
then it is preferable to distribute them evenly (e.g., 2 per memory) rather than fully utilizing one and
leaving the other idle. This ensures we exploit the hardware’s capability of one read per cycle per
memory.

To compute how many register blocks each memory will manage at runtime, we group them as follows:

_Activation_regs

G = Noms/V 5 (5.3.12)

where G is the number of register blocks per memory.

The first Sync Memory holds the Register blocks and their associated registers for the activation row
ys = 0, covering block indices from 0 to G — 1, then the subsequent group from G to 2G — 1, and
so forth. This systematic allocation defines exactly which logical blocks are assigned to each physical
memory and how they are mapped to their corresponding activation registers.

After filling the first Xg registers, the dataflow moves to the next activation register row, incrementing
ys until ys = Yg — 1. Within each of these activation rows, the block assignments repeat in the same
ranges 0 to G — 1, G to 2G — 1, etc., ensuring a consistent and predictable layout of blocks across the
physical memories. This can become clear by seen the Figure 5.3.3

90



5.3. Major Components

Wae-2
- % Ron
P

XS/Row_tactor Sync Memories

(0,0) (0,0-1-G)

2 X 1) ©,n-G)

©0) ©.1) 02) (0,max)
0,G-1) (on-1)
vs (1.0 1 (12) (1,max) |

(451.0) | (1) || (ys1,2) (ys-1.max) XS/Row_factor Sync Memories

W2 0 (1,01-G)
n = — x X,

a1 (1,n-G)

©00) o) ©2) | eee | @O0

(1,6-1) 1)

(1,0) (1,1) (1.2) (1.n-1)

XS/Row_tactor Sync Memories

(ys-1,0) (ys-1,-1-G)

(ys-1,1) (ys-1,n-G)
(ys-1,0) (ys-1,1) (ys1,2) (1,n-1) o — e

(ys1,G-1) (ys-1,n-1)

Figure 5.3.3: Block indexing across registers and physical memories.

Having established how many activation registers each synchronous memory needs, we now consider
the vertical arrangement of these memories — namely, how they can be partitioned along the vertical
axis. This partitioning is possible because each logical block has iZ;“:x distinct offsets. As described

earlier, the partial products are generated and stored contiguously within each memory row, with the
offsets encoding different activation elements. Thus, by reading an entire row of physical memory and
applying a specific offset mask, the design can retrieve the partial products associated with any desired
activation. This strategy enables vertical partitioning of the physical memories while still supporting
efficient and flexible access to partial products.

As previously discussed, the architecture manages two levels of logical blocks: register logical blocks,
which correspond to each allocated register, and element logical blocks, which represent each acti-
vation element stored within a register.

Each register logical block internally holds multiple element logical blocks. The number of elements
it can hold depends on the register packing factor, which is given by Inpax/inpits. In other words,
a single register can store multiple activation elements depending on their bit-width. These element
blocks are logically independent, although they are physically concatenated within the same register
logical block.

Register logical block mapping We define a register location by its coordinates (z¢p, ytn), where
Zn € [0,max_activation_regs — 1], 1w € [0,Ys —1].

Each such register corresponds to a dedicated register logical block.

The total number of physical synchronous memories (Sync Memories) in the system is denoted Mems,
with each containing Mem_Rows rows of storage. Note that, for each activation row gy, there are M;zs
physical memories available.

Furthermore, as calculated earlier, each Sync Memory can store up to G register logical blocks, indexed
from 0 to G — 1.

Given this structure, the mapping of each register block is determined as follows:
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1. Physical Memory ID where the register block is placed:

Mems Tth
memory_id = X —— {—J 5.3.13
y Yth Yo e ( )
2. Index of the register block inside the assigned Sync Memory:
register_block_id_in_mem = zy, mod G (5.3.14)
3. Starting row inside the Sync Memory for this register block:
block_row_start = register_block_id_in_mem X block_rows (5.3.15)

This mapping scheme provides a systematic placement of register logical blocks across Sync Memories,
ensuring predictable addressing and efficient memory partitioning.

Inmax

Finally, each register logical block contains 7> element logical blocks, each corresponding to a
different offset within the same physical memory row. These offsets allow the accelerator to selectively
retrieve partial products for each activation element while supporting flexible precision.

5.3.2 Communication Architecture

The design supports two types of communication: between the RISC-V processor and the accelerator,
and between the accelerator and external memory.

e RISC-V « Accelerator Communication:
The processor and the accelerator communicate through custom instructions over the RoCC
(Rocket Custom Coprocessor) interface. Specifically, the Rocket core:

sends the addresses of the matrices,

provides the dimensions of these matrices,

specifies the bitwidths of activations and weights,
— issues a start-processing signal to trigger computation,

— and receives busy/ready signals from the accelerator, so that the accelerator can notify the
processor when the computation has completed.

e Accelerator <+ Memory Communication:
Beyond the RoCC interface, the accelerator exchanges data with the main memory using DMA
(Direct Memory Access) over the TileLink protocol. This mechanism allows the accelerator to
autonomously read activation and weight matrices from memory and to write back the output
matrix after processing is complete.

RoCC Custom Instruction

The accelerator communicates with the processor via the standard RoCC interface, which provides
two 64-bit source registers (rsi, rs2) to send data to the accelerator, and one 64-bit destination
register (rd) to receive data from the accelerator. Each custom instruction is uniquely identified by its
function code, which the accelerator uses to interpret the operation and process the transferred data
accordingly.

We define the following control instructions for setting up the accelerator:
e set_activations(activation_address, R;,, Cin)
e set_weights(weights_address, Cyyt)

e set_output (output_address)
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e set_bitwidths(activation_bits, weight_bits, output_bits)
In addition, we provide execution controls:
e start_calculation() — sends a signal to begin computation.

e wait_until_not_busy() — a blocking instruction that stalls further code execution until the
accelerator finishes its matrix multiplication.

DMA Communication

Since using the RoCC interface to directly transfer large matrix data would be extremely inefficient,
the design instead implements a classic Direct Memory Access (DMA) interface. Here, the accelerator
operates as the bus master, issuing read and write requests directly to main memory. This is far more
efficient for high-volume data.

The DMA interface has two key configuration parameters:

e DMA Id: the maximum number of concurrent memory requests (in flight) that the accelerator
can issue. If this limit is reached, the accelerator must wait for one or more responses before
issuing new requests.

e DMA bytes: the data width of each memory request (commonly 64 or 128 bits).
For each matrix, the accelerator maintains two small internal counters to track the current position:
o (iz,Jz): coordinates for the activation matrix
® (iw,juw): coordinates for the weight matrix
e (i,,j0): coordinates for the output matrix

Additionally, there is a start_counter variable to track how many elements of the current row for
activations or column for weights have already been read and processed in previous activation windows.

The DMA using the simple TileLink Uncached Lightweight (TL-UL) protocol that have two channels
the A channel that master (Accelerator) send a read/write request and and D channel where slave
send a responce data/acknowledgement.

Activation Data Transfer Protocol

This section describes in detail how the accelerator loads activation data from memory using the DMA
interface. The process is divided into two phases: the request mechanism and the response mechanism.

(1) Request Mechanism

To load an activation window starting at coordinates (i, j.), the linear base address is calculated as
linear_addr = activation_addr + (iy X Cj, + jz) X in_bits.

For each window, the accelerator needs to load elements_per_row activations across Yg rows. There-
fore, the total amount of bits per row group is

activation_data = elements_per_row X in_bits.

Given that each DMA transaction transfers DMA_bytes bytes, the number of memory requests required
is

activat ion_data-‘

ackets_in =
P - ’V DMA_bytes x 8

Hence, the accelerator issues packets_in DMA requests to fetch the activation window. If the number
of required requests exceeds DMA_id, then the DMA signals busy, and the accelerator waits until a
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source ID becomes available before issuing the next request. After each request, the coordinates for
the activation window are updated as

iy < i + elements_per_row, j, unchanged.

When the current row is fully processed, the counters are reset to
iy ¢ start_counter, j, < j,+1

to continue with the next row of the activation matrix. Once all Yg rows of activations have been loaded,
the coordinates (is,j,) remain unchanged to indicate the next address for the following activation
window.

(2) Response Mechanism

While receiving responses, a register index counter register_idx = 0 tracks how many register vectors
have already been filled. Each DMA response contains a data packet with up to activation_data
bits, which may include multiple packed activation elements. This data is subdivided into chunks of

DMA_bytes x 8
In_max

so that each chunk fits exactly into a single activation register. The accelerator stores each chunk in
Activation (register_idx + 4) = Chunk(7)
for all ¢ corresponding to the chunks in that packet. The register index pointer is then incremented by

DMA_bytes x 8

In_max

register_idx < register_idx + (5.3.16)

Once an entire activation window is completely loaded, the register index counter is reset to zero, so
the next window begins loading from the first register.

Both the request and response mechanisms employ counters to ensure proper synchronization. The
request counter tracks how many DMA requests have been sent for the current activation or weight
window. Once all requests for the window have been issued, the accelerator halts further requests until
all corresponding responses have been received.

Similarly, the response counter monitors the number of DMA responses received. When all responses
for the current window are returned, the accelerator confirms that all necessary data is available
and proceeds to the subsequent computation stage. This coordination guarantees data integrity and
efficient pipelining of the accelerator’s workload.

Weights Data Transfer Protocol

The weights loading mechanism is largely analogous to the activation loading process described previ-
ously, with the following important distinctions:

(a) The weight matrix is accessed column-wise (transposed relative to activations), which affects the
linear address calculation.

(b) The linear indexing for weights is given by:
linear_addr = weight_addr + (j, X Cip + i) X w_bits,

where 4., and j, are the row and column indices within the weight matrix, respectively, and
w_bits denotes the bitwidth per weight element.

94



5.3. Major Components

write data

/ \ read/write mode

source |d

Request memory address
mechanism

Y vy

number of bytes >
busy

DMA

P source Id
)

Response < valid
mechanism A

<«—responce data

Figure 5.3.4: Request Responce DMA System

Aside from these differences, the number of DMA packets sent, the updating of indices, and the
response handling follow the same principles outlined for activation loading.

In in Fig. 5.3.4,, we illustrate the signals exchanged between the accelerator (acting as the DMA master)
and the DMA module. First, the accelerator sends a control signal to select whether it will write to
memory or read from memory.

Read from memory: The accelerator sends a source ID, identifying which DMA slot (among the
available DMA_id slots) is being used, along with the start memory address from which to read in main
memory and the number of bytes to read. The busy signal indicates that all available DMA source IDs
are currently occupied with in-flight requests, so the accelerator must wait until at least one response
returns and frees a source ID before issuing a new request. On the other hand, the accelerator monitors
the valid response signal from the DMA, which notifies when the requested data has been retrieved
from main memory. Upon receiving a valid response, the accelerator can then process the returned
data accordingly.

Write to memory: Similar to the read operation, the accelerator specifies the starting address for
the write as well as the number of bytes to store in memory. It then performs a concatenation of
the data into a single unsigned data packet and transmits it. A mask is also provided in case certain
intermediate data elements should not be modified. Subsequently, the accelerator begins issuing write
requests to memory until all data has been sent or until no available source ID exists. In that case,
it simply waits for a response message, confirming that specific data have been written to memory,
before proceeding with the next write request.

Request Mechanism (Read Mode). The request mechanism in read mode is divided into two
parts: a control part and a computation part.

e Control Part: This logic determines when to issue the next request. It uses a counter,
dma_counter, which tracks how many requests (for a specific window transaction) have already
been successfully sent to the DMA. This is compared with packets, a register storing the total
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number of requests needed to fully read the desired activation or weight elements. In addition, a
new request can only be issued if at least one source ID is available, indicated by the dma_busy
signal being low. In summary, a request is allowed to proceed if:

dma_counter < packets and dma_busy = 0.

When these conditions are met, the request is issued, dma_counter is incremented, and an enable
signal is asserted to trigger the computation logic.

e Computation Part: This logic calculates the memory address from which to read, based on
the current (i,j) coordinates and a base address register. It also determines how many bytes
should be read for the current request, according to the number of elements requested and their
bit-width. After calculating these parameters, the module updates the window counters:

— for activations, typically the ¢ coordinate is incremented
— for weights (due to their transposed storage), typically the j coordinate is incremented.

In this way, the hardware module as illustrated in Figure 5.3.5 handles reading data efficiently by
interleaving control logic (for managing DMA slots and in-flight requests) with address computation
(for correctly generating memory accesses).

Response Mechanism (Read Mode). The response mechanism in read mode is similarly divided
into two parts: a control part and a data storage part, as can be seen in Figure Figure 5.3.6 .
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e Control Part: This section uses a counter, dma_counter, which counts how many valid re-
sponses have been received from the DMA for the current transaction. Whenever the DMA
asserts a valid response signal, the counter is incremented, and an enable signal is asserted to
allow the data to be stored. The transaction is considered complete when:

response_valid = 1.

At that point, the module transitions to the next stage of processing.

e Data Storage Part: When a valid response arrives from the DMA, it contains DMA_bytes
worth of data, which is then split into chunks of In_max bits (for activations) or W_max bits (for
weights), depending on the data type. These n chunks

DMA_bytes x 8
n=—w"1——m—

In_max

are sequentially stored into n activation registers. To avoid overwriting existing data, a register
index pointer, register_idx, is maintained, and is incremented by n each time a response is
stored so that the next group of data will be placed in the next set of free registers. After all
packets of the current window are received and processed, this index can be reset to zero for the
next transaction.

Write Mode Request and Response Mechanism In write mode, the request and response
mechanisms operate similarly to the read mode as illustrated in Figure 5.3.7. However, in the request
phase, there is an additional step in which the accelerator concatenates data from multiple output
registers into a single packet before sending it to main memory. This packet includes all the data
to be written along with an optional write mask, in case some data within the packet should not be
modified. On the response side, the accelerator simply increments a received request counter whenever
a valid response signal is returned, confirming that the data has been successfully written to memory.

During the design of the DMA architecture, alignment-related issues may arise, especially when
the data width varies (2, 4, 8, 16, or 32 bits) as can been seen in Figure 5.3.8 . If the starting address
of the transfer is not aligned according to the word size supported by the bus (e.g., a 32-bit word on
a non-4-byte-aligned address), the TileLink UL protocol may either split the transfer across multiple
cycles—reducing throughput—or trigger an error in slaves that do not support unaligned accesses. To
mitigate such issues, an aligned transfer strategy is implemented: the DMA initiates the read from
an address aligned before the desired data, covering a sufficient length to fully include the requested
segment.
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Figure 5.3.8: Illustration of misaligned data fetching across columns. In (a), a larger activation
window reads almost an entire column, but in order to stay aligned with subsequent columns, it must
redundantly fetch the last element again, marked in red as a “dirty bit.” In (b), a smaller activation
window reads only a partial column at a time; as it slides down the column, it overlaps with
previously read elements, again introducing redundant or dirty bits to maintain proper data
alignment.

Then, with appropriate offsetting and masking, the unwanted data preceding the target location is
ignored, using dedicated “dirty bits” registers to track valid segments. In this way, full compatibility
with the TileLink bus is ensured, while maintaining optimal performance regardless of the element
width of the transferred matrix. So we use dirty bits as a mask , we already know what element we
have read so if we must read the same element we now how many bits is dirty so we read them to read
align the data via dma but we dont use them at all.

One important aspect to consider is that the request-response mechanism introduces logic that must
calculate the target address for read or write operations. This calculation may significantly increase the
critical path of the design. To address this challenge, we propose a simple yet effective solution based
on precomputing the request data one cycle ahead. This approach does not modify the data itself;
rather, one cycle before a transition stage (such as load activation or load weight), the target address
is precomputed so that it is immediately available in the following cycle. Consequently, the DMA can
receive the request without delay, while the next request is already being calculated. This reduces the
critical path associated with address generation. Similarly, for the response path, waiting to calculate
the register index in order to store the response can also increase the critical path. Therefore, we
precompute the register index one cycle earlier, so that as soon as a valid response arrives, the data
can be stored immediately while, in parallel, preparing the register index for the next valid response.
This approach improves timing closure and minimizes the critical path in both the request and response
flows.

5.3.3 Generate Products

Another important component is the Product Generator, which is responsible for producing the possible
values of each activation within the activation window. We have already discussed how these values are
stored in the synchronous read memories (Sync Read Mems); now we will describe how these values
are generated. As previously mentioned, the elements are represented using signed integer values. To
generate all possible products for a specific activation, it is necessary to precompute all the potential
results that may arise when this activation is multiplied by any possible weight value, according to the
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bit width of the weights. The following optimizations are applied:

1. Absolute Products: Only the absolute values of the products are generated, meaning that
the absolute value of each activation is multiplied by the absolute values of all possible weights.
Since signed products are symmetric around zero (for example, 8 x 2 and 8 x (—2) have the
same absolute magnitude), storing only the absolute results reduces the number of precomputed
products by half. Later, dedicated sign logic determines whether the final product should be
positive or negative depending on the sign of the activation and the weight.

2. Even-Weight Products: Only the products resulting from multiplying each activation value
by even-valued weights are precomputed. This means that not all possible activation-weight
products are generated, but only those that can arise if the weights are restricted to even values.
This approach further halves the amount of product data that needs to be precomputed. Later,
dedicated logic can handle any remaining products involving odd-valued weights, effectively
completing the full product space on demand.

As a result, for each activation, there are 2¥_b"s=2 different products to generate. Each register in
the memory stores a concatenation of In__max/in_ bits different activation elements.

Because each synchronous memory (Sync Mem) has only one write port, the logic is replicated and
unrolled so that one write can be performed on every Sync Mem in parallel. As a result, there is a
separate product-generation logic instance for each Sync Mem. The system begins to compute the
products and enables one write for each Sync Mem per cycle, proceeding row by row from the first
row of each memory to the last row.

At the start of the product generation process, the same activation register mapping described previ-
ously is reused. Specifically, according to the Sync Mem index and the current row, the system can
identify the corresponding activation register for each memory block. A row counter is maintained
for all Sync Mems, indicating which row is currently being written. Based on this row, the correct
activation register block can be easily selected according to the Sync Mem mapping.

Given: First, we define:
Mems

ys

mems_per Ys=

This value indicates how many physical Sync Memories are dedicated to each ys € [0,Y S — 1], that
is, to each row of the activation window.

Given:
e Constants (static):
— mem_idx: Index of the physical memory block.

— mems_per_ys: Number of physical memories allocated per input vector (per activation
window row).

e Runtime reconfigurable parameters (depend on weight bitwidth):
— G: Number of logical register blocks that put in one physical memory.
— block_rows: Number of rows in each logical register block.

e Indexing counters:

— block_counter: Current logical register block within each physical memory, ranges from 0
to blocks_per_mem - 1.

— block_row_counter: Current row inside the current logical register block, ranges from 0
to block_rows - 1.
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the coordinates of the corresponding activation register can then be calculated as:

Mem
1_block = = 3.1
total_blocks_per_y (YS) x G (5.3.17)
global block idx = mem idx x G + block counter (5.3.18)
xtn = global block idx mod total blocks per y (5.3.19)

lobal block id
yth:\\ e J (5.3.20)

total blocks per y

This selects the correct activation element corresponding to each block. For each block, an accumulator
register, called Product, is maintained, with the following sequence:

Product(sync_mem_idx) =0 (initialization)

Product(sync_mem__idx) = Product(sync_mem _idx) + Activation__reg(yen)(xen) X 2

This accumulation continues until the row_in_block_counter reaches the total number of block rows,
indicating that for this activation, all required products have been generated and stored. At that point,
the Product register is re-initialized to zero, and the row_in_block_counter is reset. However, the
row_counter is incremented, preparing the system to process the next activation block in the pipeline.

Another important aspect is the handling of multiple activation elements concatenated within the
same register. To manage this, both the activation register and the product accumulator register are
logically split into chunks, each corresponding to the individual concatenated elements. Accumulation
is then performed independently for each chunk, and the results are concatenated back together before
being written to memory.

The coordinate calculation for each activation chunk uses the same formulas for z;;, and ¥, as described
previously. However, the registers are now divided as follows:

Activation _reg(z,)(yin) = [chunky, ..., chunk,]

Product(sync_mem__idz) = [chunki, ..., chunk,]

The product update for each chunk 7 is computed independently as:

Product(sync_mem _idx)chunk; = Product(sync_mem _idz)chunk, +Activation _reg(xipn) (Yth) chunk; X2

Each Sync Memory block contains its own dedicated logic that performs the following steps: based on
the current block_counter within the Sync Memory and using the predefined mapping, it identifies
the corresponding activation register. According to the current activation bitwidth, it dynamically
splits the register and the accumulation logic at runtime into Z2—"%C parts. It then performs accu-

in_bits
mulation to compute the new product value by adding and shifting accordingly. Finally, it writes
the current product to the memory address corresponding to the previous block_row_counter (i.e.,
block_row_counter - 1).

To implement runtime splitting and accumulation for different activation precisions, each activation
register contains concatenated activation elements with maximum precision In,,q,. Each individual
activation element, however, has a runtime-configurable precision inp;¢s-

Given an activation register of width In,,.,, we create a bitmask

mask_in = 2'"bits — 1,
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which isolates the lower ing;s bits of a value. To handle the worst-case scenario, where an activation
register is split into multiple products, we define

nmaz

. 9
Mpits

max_parts =

representing the number of activation parts within a register.

For each part index part;q, € [0,max_parts — 1], the corresponding activation sub-value is extracted
from the register Activation Reg(y:n)(xh) as

value _part = |((Value > (part;q, X inpits)) &mask_in)|,

where the absolute value accounts for signed activations.

Similarly, the product accumulator register is split with a potentially different bit-width product _bits
and mask mask_product:

product_part = ((P_value > (part;q, X product bits)) & mask_product),

Accumulation is performed by

product _part = product _part + (value__part < 1),

where the shift by 1 corresponds to multiplication by 2, as required by the design.

This process is unrolled across all part;4,, and finally, all partial products are concatenated to form
the updated Product register:

Product = Concat(product _parto, product _party, ..., product _partnax_parts—1)-

Finally, all the individual product chunks are concatenated to form a single product register, which is
then written back to the corresponding Sync Mem at index sync_mem _idzx.

Lastly, when writing to the Sync Memories, the write operation must only occur if the
block_row_counter is not zero. This condition ensures that the first product (essentially the value
multiplied by 2) has already been produced. The data is then written to the memory row addressed by
block_row_counter - 1. The block_row_counter is a counter that increments every cycle during
the “Generate Products” stage.

Formally:

valid _write = (block _row _counter # 0)

Write  Address = mem_row counter — 1
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Figure 5.3.9: (a) Product Generator for one memory (b) Mask Split Unit

Poducts Generator Units for one Memory

In the above Figure 5.3.9, we see the logic needed to generate the products for a single Sync Memory.
There is an Indexer module, whose role is to determine, according to the current block counter and
some precomputed values (such as how many blocks fit into each memory and how many physical
memories exist per input vector), the corresponding activation element within the activation register
vector. Next, there is a Generator module, whose role is to fetch the activation register data and,
via a Mask Split Unit, dynamically split it into the required parts, doing the same for the product
register (each Sync Memory has its own product register, acting as an accumulator). The Mask Split
Unit, as shown in part (b) of the figure, computes the mask based on the current activation precision
and splits both the activation and product registers accordingly. The activation register also passes
through a multiplexer to take the absolute value of the activation, since, as described earlier, only
absolute products are written to memory.

It is important to note that the Mask Split Unit is replicated multiple times (unrolled) in case the
register must be split into more than one part; each part is processed with add-and-shift, and then
concatenated again. If the register is used fully, the same logic is effectively applied repeatedly, which
is equivalent to performing an OR of the identical binary value, preserving the same result. If, however,
the mask is smaller than the register width, the partial segments are ORed together to produce the
final concatenated binary value. Finally, in the Generator module, the newly computed product is
written back to the product register so that it can be stored to memory in the following cycle.

Additionally, there is a Counter Logic module responsible for updating all counters. In particular,
there is the block counter indicating which block is currently processed, and the block row counter
showing which row within the current block is active. When the block row counter reaches the last
row of the current block, the block counter is incremented, moving to the next block, and the block
row counter is reset to zero, since the next block starts from its first row.

Lastly, there is a Write module, which decides when and where to write to the Sync Memory. We also
have a memory row counter that counts the memory rows as they are written sequentially. A valid
write occurs only when the block row counter is not zero, because if it is zero, the new product value
has not yet been calculated. The written value comes from the product register and is stored to the
memory row indicated by the memory row counter.
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Figure 5.3.10: Product Generator for multiple Memories

Products Generator Units for Scratchpad Memory

In the Fig. 5.3.10 , we see the same product generation logic, but now scaled to handle multiple Sync
Memories, which together form a scratchpad structure. The same principles apply as in the single-
memory case, but in a more structured form, since some parts of the control logic are shared across
all Sync Memories. Specifically, there is a Controller module, which incorporates both the Counter
Logic and the Write Logic. This is because we traverse all memories row by row, meaning that in all
memories we are at the same row (so we need a global memory row counter), and likewise we are at
the same block across all memories (for example, block 0 of the first memory, block 0 of the second
memory, etc.). Consequently, all the control signals and counter signals are shared across all Sync
Memories.

On the other hand, the indexing logic is distinct for each Sync Memory, since each memory needs to
select its own corresponding activation element. Although we are in the same block for all memories,
the activation register stores first all activation elements of all blocks for the first memory, then for the
second memory, and so forth. Therefore, an offset must be applied depending on which Sync Memory
is addressed, to correctly index its elements.

Furthermore, each Sync Memory maintains its own product register (accumulator) and its own local
logic for accumulation, mask splitting, and concatenation, because it manages the accumulation of
its unique activation elements. Finally, the same control signals from the Controller (including the
counters) are used to coordinate writes to memory, but each Sync Memory writes its own product
value to its dedicated memory row. This means that, in the same cycle, all memories write to the
same row index, but with different product data as illustrated in Figure 5.3.11 .
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Figure 5.3.11: Example of product generation for 64 memory rows with 4-bit weights and
register-matched activation bitwidth. The diagram shows the cycle-by-cycle filling of memory blocks,
where each cycle writes one row into each block.

5.3.4 Select and Accumulate

The main processing module of the accelerator implements a select-and-accumulate procedure, where
precomputed products are selected and accumulated toward the corresponding output elements. An
essential part of this process is the indexing mechanism, which determines, for each activation (and
thus for each logical block), the corresponding weight to use as an index for selecting the correct partial
product. Each Sync Memory block has its own dedicated logic to retrieve the corresponding weight
value and select the correct memory address (row) to read from.

To begin, consider the Weight Register Vector, which acts as an on-chip buffer holding all the weights
for a current weight matrix column. This buffer stores N/YS elements, allowing every activation row
to select its corresponding weight value. Since each Sync Memory supports one read per cycle with a
one-cycle delay, the logic in each memory (Sync Memory) is responsible for fetching, cycle by cycle,
the required weight element. Consequently, the total number of reads per Sync Memory needed to
cover every activation element (logical block) is calculated as:

Inmax

reads_per_sync_memory = G X (5.3.21)

1Mbits

If the system is configured to support the maximum activation elements, it will require exactly this
number of reads (meaning this many cycles) to read all corresponding products. Afterward, the
architecture proceeds to load the next weight column, repeating the same read sequence.

This reading process is managed with two counters: a block counter indicating which block is currently
being processed (shared across all Sync Memories) and an offset counter indicating which portion of
the activation register is targeted (according to its precision). This means the read process can be
described as:

In_max

o for offset from 0 to - ——

e for block_counter from 0 to G
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In this way, the architecture traverses first all the offsets (i.e., all the columns) for a given
block_counter, and then increments the block_counter (moving to the next row) while resetting
the offset counter to zero. As a result, the logical blocks within each memory are read row by row.

There are two additional challenges to address:
1. Determining the sign of the product
2. Handling products for odd-valued weights

Since only absolute products for even-valued weights are stored in the scratchpad memories, a mixed
LUT-computation technique is applied. This technique stores absolute partial products for odd weights,
while dynamically managing the sign and handling even weights through additional logic. Although
there could be an interesting trade-off to shift more functionality toward the LUT (in order to pre-
compute and reduce sign and odd-weight handling logic), this trade-off is not further explored in this
work.

To handle the sign and odd-weight challenges, we must identify the corresponding activation element
for every entry in the activation register vector, as well as the corresponding weight in the same logical
position. The architecture relies on a set of counters for indexing the synchronous memories:

e block_counter indicates the current logical block (row-wise)
e offset_counter indicates the current offset within a block (column-wise)

To efficiently determine the position of data within the processing memory blocks, several runtime-
calculated parameters are defined.

First, the start row register stores the index of the starting row of the current logical block inside
memory. This is computed based on the current block counter, which tracks the block under processing,
multiplied by the number of rows that each block occupies. Formally, the calculation is expressed as

start_row = block_counter x 2!°82(block_rous) (5.3.22)

This allows the hardware to jump directly to the beginning of the memory block for faster addressing.
This defines how many activation elements can be streamed along the y vector dimension.

A crucial aspect is the packing of activations and weights within their dedicated registers. The number
of activation elements that can fit into a single activation register depends on the maximum width of
the register, denoted Inpay, divided by the bit-width of each activation element inp;s. This yields

I max
activations_per_reg = Tmax (5.3.23)
Mpits

Analogously, the number of weight elements that can be packed into a weight register is

Wmax
weights_per_reg = T (5.3.24)
its

Since bit-level operations are necessary to extract specific values from the registers, bit masks are also
defined. These masks isolate the relevant bits of the activation or weight, depending on the configured
bit-width. The mask for activations is

mask_in = 2/t — 1, (5.3.25)

while the mask for weights is
mask_w = 2Wbits — 1, (5.3.26)

These masks are applied using bitwise operations during register extraction to guarantee only the valid
data bits are propagated further in the pipeline.
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Overall, these runtime-calculated quantities provide the essential indexing and packing parameters for
efficient and correct register and memory operation.

For reference, note:
e The least significant bit (LSB) indicates parity:
— LSB=0 = even
—LSB=1 = odd
e The most significant bit (MSB) indicates the sign:
— MSB =0 = positive
— MSB =1 = negative
Now have logic for wil be needed for evey sync mem

First, to locate the corresponding activation element, we need to identify which memory we are cur-
rently accessing, how many blocks fit in each memory, and how many blocks have been processed so
far. This allows us to find the global logical block position within the synchronized memories.

Since the activation register is two-dimensional, we calculate which register contains the activation
element of interest based on the number of blocks available for each activation vector dimension Yg.

Using the global block index, we compute its coordinates (xyy, ytn) within the register array using the
same mapping scheme as Equations (5.3.17)—(5.3.20). Then, considering the offset counter and the
bitmask determined by the input bit-width, we extract the relevant bits from the register to obtain the
exact activation element. This approach takes into account that each register stores multiple activation
elements, depending on the precision configuration.

The activation value is then extracted by right-shifting the activation register at coordinates (yin, Ttn)
by the appropriate offset (multiplied by the input bit-width), and masking to keep only the relevant
bits:

activation value = (ActivationReg[yth] [z4n] > (offset _counter x I nbits)) & mask;, (5.3.27)

Finally, the sign bit of the activation is extracted by selecting the most significant bit according to the
input bit-width:

sign, = activation_ value[Inpis — 1] (5.3.28)

Next, we need to find the corresponding weight element that matches the activation element previously
extracted. Since weights and activations share the same element index, the n-th activation element
corresponds to the n-th weight element.

However, weights and activations typically have different bit-widths, so the location of the weight
element within the weight registers differs from that of the activation element. To find the exact
weight register and the offset within it, we perform the following calculations:

e Compute the linear index wjqx of the weight element within the flattened weight buffer, account-
ing for the xyy coordinate, the number of activations per register, the offset counter, and any
dirty (invalid) elements:

Widx = Typ X activations per reg + offset counter + dirty elements

e Determine the weight register index Wreg_idx by dividing wiqx by the number of weights per

register:
Widx
Wreg_idx =

weights per reg
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e Calculate the offset wogset Within the register using the modulo operation:

Wofiset = Widx Mod weights per reg

The weight value is then extracted by right-shifting the corresponding weight register by wostset X Whits
bits and applying a bitwise AND with the weight mask:
weight value = (WeightReg[wregiidx] > (Woffset X Wbits)) & mask,,
Finally, the sign bit of the weight is obtained by selecting the most significant bit of the extracted
value:
sign,, = weight value[Wh;ts — 1]

Finally, to read the desired product from Sync Memory, we must determine the exact memory row
and the offset within that row where the data resides.

Given the current logical block index block counter and knowing how many rows each block occupies
(which depends on the weight bit-width W), we first calculate the starting row (5.3.22) of the logical
block.

Next, to identify the exact row inside this block, we use the weight value as an index. Specifically, the
row inside the block is calculated differently depending on whether the weight value is even or odd.
This is because products exist only for even weights, and odd weights require special handling.

(w) —1,  if weight value(0) =0 (even)
row in block =

(w) —1, if weight value(0) =1 (odd)

In logic form, this can be expressed as:

row_in_block = (weight_value > 1) — (1 — weight_ value(0))

Finally, the absolute memory row is:

mem _row = start _row +row_in_block

The product is read from memory at (mem idx, mem row), shifted by the appropriate offset (de-
pending on offset _counter and product bit-width), and masked to extract the relevant bits:

Product = (Mem(mem_idx, mem_row) > (offset _counter x product_bits)) & mask,,

The sign of the product is determined by the XOR of the activation and weight signs:

product _sign = sign, & sign,,

Since the products exist only for even weights, when the weight is odd, the product corresponding to
weight value — 1 is selected, and the activation is added to correct the product:

0, if weight value(0) =0
sum =
product_sign X |activation value|, if weight value(0) =1
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Or equivalently, using logical operations:

sum = (product_sign x |activation_value|) & (—weight_value(0))

The final signed product value read from memory is:

& x >) (- m

Product Value = product _sign x Product + sum
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Figure 5.3.12: Select Stage Modules

In the Select stage, several cooperating modules as showed in in Figure 5.3.12 are responsible for
correctly retrieving and preparing the data required for computation:

Controller Module: This module is shared across all Sync Memories. Its main responsibility
is to update the block and offset counters, which essentially traverse the memory row by row. It
also updates the start_row register, which depends on the current block counter and determines
the starting row of products for the selected activation block.

Activation Indexer Module: Given the block and offset counters, together with the capacity
of each block (how many activation elements can fit inside), this module calculates the position
of the activation element of interest inside the activation register vector.

Weight Indexer Module: This module guarantees that for every fetched activation element,
the corresponding weight element is also retrieved. Since activations and weights may have
different runtime bitwidths, the module computes both the register index inside the weight
register vector and the offset within that register. Note that each weight register can store Vg;“::
weight elements, where wp;ts is dynamically reconfigurable at runtime.

Sign and Data Extractor Module: This module receives a register, the bitwidth of its
elements, and a precomputed mask, and extracts the relevant bits according to the current
runtime bitwidth. It uses the offset counter to determine which slice of the register to select (for
example, whether to extract the first 10 bits or the following 10 bits, and so on).

Memory Row Indexer: This module computes which row of the Sync Memory contains the
precomputed product needed, based on the weight value and the start_row, which indicates the
starting row of products corresponding to the activation element in memory.
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e Product Calculator: Finally, the Product Calculator takes the product retrieved from memory
and determines its correct sign, based on the signs of the activation and the weight. Additionally,
if the weight is odd, the module adjusts the product by adding the activation once more, because
the memory stores products only for even weights; therefore, odd-weight products are computed
by referencing the product for the preceding even weight plus one more activation term.

The overall calculation proceeds as follows: first, the Activation Indexer Module determines the corre-
sponding activation register that contains the required activation element. Then, using the Sign and
Data Extractor module, the system isolates both the actual activation value and its sign. This is also
illustrated in Figure 5.3.13

Next, the Weight Indexer Module identifies the corresponding weight register and its offset within the
register, again making use of the Sign and Data Extractor to extract the correct weight value and its
sign.

Using the obtained weight element, the Memory Row Indexer Module calculates which row in the
precomputed product memory must be accessed and issues a read request. Since the data from
memory arrives with a one-cycle latency, it is necessary to delay and synchronize the activation sign,
the weight sign, the least significant bit of the weight (to determine whether the weight is odd or
even), the offset counter and the activation value. This ensures that when the product data arrives
from memory, all required control signals are available in a consistent pipeline stage.

Finally, because each memory row may store multiple products depending on the runtime bitwidth,
the system uses the offset counter together with the Sign and Data Extractor to isolate only the
relevant portion of the memory row. The Product Calculator Module then finalizes the signed product,
applying the correct sign and handling the special case when the weight is odd, by selecting the product
corresponding to the previous even weight and adding once more the activation value.

To summarize for the select module implementation as seen from Figure 5.1.1, the select module is
fed with weights and is responsible to assign the proper memory row positions to the MEMs that
the desired product is stored. An analytical representation of the select module is also represented in
Figure 5.3.14.

Every memory block (MEM) needs one select module to take as input the weight, corresponding to
current activation block, and use it as an indexer to locate the product, a flow which can be broken
down to three discrete parts.

First, the weight LSB was used to decide if the weight is odd because only the products for even
weights were stored. If the weight is odd the nearest smaller even value is selected by decrementing
the weight by one, else the weight is used as is. After that we map the selected weight to the correct
storage index by executing right shift. Later, for odd weights the activations are accumulated to the
selected product to produce the correct final value.

The second part is the row selection, and it is performed by select modules highlighted in purple as
seen in Fig. 5.3.14. They determine the correct row inside the activation block according to the weight
value. In order to find the row an activation block offset counter that points to the start row the the
current activation block inside MEM is used. This counter is shared among all MEMs and icreases at
every select stage cycle.

As a final step, the product sign is given by the XOR of the weight and activation MSBs, since only
absolute values are stored. One critical observation of the select module is the hardware overhead
over the addition of the adder in case of odd products, which is yet minimal when compared with the
storage allocation optimization of storing half the generated products.

Once the target row of the MEM is determined, a request is sent to the synchronous memory, with
the response available one cycle later. To account for this latency, delay registers are inserted to the
corresponding control signals so that they remain synchronized with the returned data. This scheme
is applied uniformly to every MEM, without adding extra pipeline latency since the design is fully
pipelined.
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5.3. Major Components

After the generation of the selection and sign data, the pre-processed segments are propagated to the
accumulator which uses an adder tree to produce the final output as seen highlighted in blue in Fig.
5.1.1 and Fig. 5.3.14.
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Figure 5.3.14: Detailed Representation of the Select Module for Y =1

Accumulator System Also, we include the Accumulator Module, whose role is to combine the signed
products received from each memory. Once a signed product has been retrieved from each memory, it
must be accumulated toward its corresponding output element, which is located in the same column
as the weights that selected these products from memory.

If the parameter Ys > 1, meaning multiple activation vectors are being processed in parallel, then all the
signed products that belong to the same vector must first be combined. This is implemented through
a reduction operation (an adder tree), which efficiently sums the intermediate products belonging to
the same vector:

mems
3% 1

S
Accumulator(ys) = Z SignProduct(ys, mem)

mem=0
where the sum is taken over all products corresponding to the same activation vector ys.
Finally, these partial sums are accumulated into the output elements as
O(ys, column) = O(ys, column) + Accumulator(y,)

so that the contribution of each weight—activation pair is reflected in the correct output position. In
this way, all products for a given activation vector are efficiently combined and stored.
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In this design, we partition the total number of products, denoted by mems, among a set of YS accumu-
lators. Fach accumulator is assigned a fixed block of products of size mems/YS. Specifically, accumulator
0 sums the products in indices 0 to (mems/YS—1), accumulator 1 sums the products in indices mems/YS
to (2 X mems/YS — 1), and so forth, up to accumulator YS — 1 as illustrated in Figure 5.3.15 . This
static partitioning guarantees that each product is assigned to exactly one accumulator without any
overlap or dynamic selection, resulting in a simplified and efficient implementation.

Y

: Accumulator
mem (0)

7 >
mem
YsS
T
S ; Accumulator
g— ,. mem (1)
o YS
7]

mem
YS

mem — 1 —

Accumulator
(YS-1)

mem — 1

Figure 5.3.15: Accumulators Scheme

5.4 Design Optimizations

In this chapter, we further describe several optimizations used in our accelerator design to increase
performance. In particular, we discuss:

e Select-and-Accumulate Pipeline
e Load Weights Ping-Pong Buffer Technique

e Increasing Memory Size

5.4.1 Select-and-Accumulate Pipeline

As we mentioned earlier, an important component of our design is the Select-and-Accumulate unit.
This unit operates in two phases: the Select phase, which is responsible for drive weight elements to
the physical memories to select (read) the correct products, and the Accumulate phase, which sums
these products and stores the accumulated results in the output register.

Because we use synchronous memories, there is a one-cycle latency when reading from them. To avoid
performance loss, we pipeline these two stages. In other words, instead of issuing a read request and
then idling for one cycle before accumulating, we overlap the request and accumulation stages. After
the initial latency penalty, the pipeline keeps both stages active on each subsequent cycle.

Tt is important to recall that after loading the weights corresponding to an entire column N/YS weight
elements , we must perform Select-and-Accumulate operations for each of them. From equation (4.3.8),
we know that each memory contains G (groups) of register blocks, and each register block includes
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% logical blocks, with each logical block holding the products for one activation element. Therefore,

in total, there are
Inmaa:

G x

1Mpits
Select-and-Accumulate operations for a weight buffer (i.e., a specific weight column) before moving to
the next column.

By pipelining these two stages as we clear see in Figure 5.4.1 , we avoid repeatedly paying the one-cycle
read delay. Instead, after the first cycle, the system continues to accumulate data while simultaneously
issuing the next read request, thereby maximizing performance.

(0) (0) M (0) (n) (n)

(a) Select Accumulate Select Accumulate Select Accumulate

(b) (0) (1) (n)

Dela Accumulate Accumulate | Accumulate Accumulate
y ) (M (n-1) (n)

Select Select Select

Figure 5.4.1: Select-and-Accumulate Phases: (a) Without Pipelining, (b) With Pipelining

It is important to emphasize that this pipelining optimization does not increase the required hardware
resources, since in each cycle we still perform a single Select phase and a single Accumulate phase. The
only change is adding control logic to overlap the two phases, effectively reusing the same hardware
within the same cycle. As a result, if we need to read n elements per block, the total latency is reduced
from approximately 2n cycles to only n + 1 cycles thanks to the pipelining.

5.4.2 Weight Ping Pong Buffers

To improve hardware performance, we use double buffering for weight storage, enabling data transfer
and computation to overlap. For each activation window, weights from each column of the matrix are
fetched to index the correct products, forming a producer—consumer relationship: the producer loads
weights, while the consumer performs selection. Since selection usually takes fewer cycles than loading,
a single buffer would force the consumer to finish before the next column loads, causing slowdowns.
Double buffering allows one buffer to handle selection while the other loads the next column, then
swaps roles.

It is easy to see that the basic operation of the accelerator is to load weights, use these weights for
indexing, read the correct precomputed products, and accumulate them. We have described these two
stages as the Load Weights and Select € Accumulate stages.

First, we need to load from main memory via DMA the Y% weights for one column of the weight
matrix. This is not a one-cycle operation; it takes several cycles depending on N, Yg, the current
weight bitwidth, and the DMA parameters. Only after finishing this loading process can we use these

elements, stored in the Weight Buffer, as indices in the Select & Accumulate phase.

It is important to note that the number of cycles needed to load these weights into the buffer and
the number of cycles required to use all of these weights as indices form a classic producer-consumer
problem, where the producer is the Load Weight stage and the consumer is the Select & Accumulate
phase, with the Weight Buffer acting as their shared product store.

If we use only a single Weight Buffer, the Select & Accumulate stage must finish consuming its con-
tents before the Load Weight stage can refill it with the next data. This leads to idle periods and
underutilization of hardware resources. To solve this, we employ a Ping-Pong Buffer (also known
as double buffering). In this technique, two buffers, W _buf fer(0) and W _buf fer(1), are used in
an alternating fashion. While one buffer is in use for reading by the Select & Accumulate stage, the
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other buffer can simultaneously be filled with new weights by the Load Weight stage as illustrated in
Figure 5.4.2 .

Ping-pong buffering is a well-established technique in high-performance computing and signal process-
ing systems, precisely because it hides data transfer latency and allows continuous data flow without
stalling. It fits perfectly in our design, where reading weights from memory (which has variable latency)
must be matched with a high-throughput Select & Accumulate pipeline.

Load Weight Select&Accum Load Weight Select&Accum Load Weight Select&Accum (a)
(0) (0) (1) (1) (n) (n)

Load Weight Select&Accum Load Weight Select&Accum | Select&Accum
Buffer 0 © © ) @ (1) Delay

Load Weight Select&Accum Load Weight | . Load Weight Select&Accum
Buffer 1 Delay ) 1) ®) (0) )
Load Weight Select&Accum Load Weight | Select&Accum
Buffer 0 ) 0 Delay ) ) Delay (C)

BUff er 1 Del ay Load (¥;Ieight Select(::‘/)\ccum Del ay | eeeeeens Load (r\‘l;leight Select(s;;/)\ccum

(b)

Figure 5.4.2: Load Weights and Select & Accumulate phases: (a) without double buffering, (b) with
double buffering where Load Weights and Select & Accumulate require the same number of cycles,
(¢) with double buffering where the Load Weights stage needs more cycles than the Select &
Accumulate stage.

From a performance perspective, it is important to understand that the cycles required for loading
weights (1) and the cycles required for the Select & Accumulate phase (cg) are generally different, and
in fact depend both on generator parameters and on the runtime bitwidth configuration. If we denote
by Cout the number of activation windows to process, then in a system without double buffering the
total execution time will be

Cout % (Cl + 02)7

while with double buffering it is reduced to
Cout x max(cy, ¢2).

It is therefore crucial, as will be further analyzed, that the ratio ¢;/co remains as close as possible to
one. When ¢y > co, the accelerator becomes essentially memory-bound, whereas when cy > ¢ it is
instead Select-bound (which in practice means bounded by the synchronous memory reads). Hence,
from a cycle-optimization point of view, it is very important to balance these two phases appropriately.

5.4.3 Balancing Main Memory Loads and Sync Memory Reads

The final aspect we must consider is how to enforce an appropriate exploitation of the Sync Read
Memories so that the number of Select cycles (i.e., reading products from the Sync Memories) is
balanced against the cycles required to load the weights from main memory. This balancing strongly
depends on the bitwidth configuration. For example, when using weights with high precision (large
bitwidth), each Sync Memory can store only a limited number of activation products, since each
product occupies more memory. As a result, fewer products are stored, requiring fewer reads, and the
Select stage completes in a minimal number of cycles, essentially stalling until the next weights arrive
from main memory.

Conversely, with very low precision weights, products occupy less space, allowing us to store products
for many more activations. This means the Select stage will require significantly more reads and
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therefore more cycles. To achieve a balanced behavior, it is necessary to identify a switching point for
each bitwidth, which can then be enforced. For instance, we could design the Sync Read Memories to
be sufficiently large and leave them partially unused for small bitwidths, fully populating them only
when larger bitwidths justify it. In this way, the accelerator is forced to maintain higher parallelism
(more Select cycles) only when the bitwidth is high enough to benefit.

Similarly, we can artificially constrain the number of activation windows loaded into memory for small
bitwidths, preventing an excessive number of Select reads and cycles. Although this approach does
not fully exploit the theoretical maximum parallelism of the accelerator or the entire Sync Memory
capacity, it achieves a better balance between the latency of loading weights from the main memory and
the throughput of the Select stage. Consequently, this balanced approach leads to more consistent and
optimal performance without increasing the accelerator size (i.e., without adding more Sync Memories).
In other words, across all supported bitwidths, it is critical to match the bandwidth of the main memory
with the throughput of the Sync Memory reads to achieve the highest performance.

5.5 Cycle-Accurate Performance Model

According to the generator parameters, we succeeded in developing a cycle-accurate model. This model
is essentially based on a set of equations that describe how many cycles each stage requires, depending
on the design parameters, as well as how many times each stage must be repeated. In this way, we
obtain a performance model capable of accurately simulating the execution cycles for different inputs
and varying runtime bitwidths.

We define the following generator design parameters:
e XS, YS : activation vector tiling factors

e DMA_ID, DMA_bytes : DMA engine configuration

In_max, W_max : maximum input/weight bitwidths

e bankMergeFactor, Row_Factor : Memory Blocks architectural parameters
and the following runtime-configurable parameters:

® Rin, Cin, Cout = input/output activation dimensions

e in bits, w_bits : runtime bitwidths

First of all, according to these parameters, we determine how many elements per activation vector will
be consumed and processed simultaneously:

N’ = min(N, Ci,) X min(YS, Riy) (5.5.1)
where N is the ativation window as defined in Equation (5.3.6).

N/
N: = 3o (5.5.2)

where N, represents the number of elements per YS activation row.

Activation Loading Stage First, we must load the activation window. The total data in bits is
activation_data = N, X in_bits (5.5.3)

which requires

(5.5.4)

. activation_data
Packets_in =

DMA_bytes x 8
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DMA packets. Then, the number of cycles to load one activation vector is

Packets_in
1 = (DMA_ID+ HS) X | ———— YS 5.5.5
cycles, = (DMA_ID + HS) { DMA_ID -‘ ’ (5:5.5)
and this process repeats
Czn Rin
X 5.5.6
N, YS ( )

times to cover the entire activation window.

In order to load an activation window of elements, we must first calculate, according to the runtime
activation bitwidths, how many bits need to be transferred from main memory to the accelerator.
Since each DMA request transfers DMA_bytes, a total of Packets_in requests must be issued for
each activation row of size YS. After sending a request, there is a handshake latency, for example
around 6 cycles in a TileLink UL protocol, before the response returns. If the accelerator is capable
of sending up to DMA_ID requests in flight, then the responses arrive one after another, requiring
approximately DMA_ID plus handshake latency cycles to receive these responses, where each response
delivers DMA_bytes of data. If more data is needed than can fit within one group of requests, the
accelerator must wait for a previous response before issuing additional requests. This procedure repeats
for every activation row of size YS in order to load the N, activation elements. The same mechanism
continues each time a new activation window must be loaded, until all activation elements across the
input channels, namely C;, divided by INV,, and across the matrix rows, namely R;, divided by YS,
have been completely loaded.

Generate Products After loading activations, the next step is to generate the precomputed prod-
ucts. The products are stored row-by-row in Sync Memories. The cycles required are

cycles_2 = G x block_rows (5.5.7)

In this equation, G represents the number of register blocks that are grouped together into a single
physical memory, as defined in Equation (5.3.12). The term block_rows refers to the number of rows
contained in each register block, as defined in Equation (5.3.1).

and this is repeated for every activation window.

N, X s (5.5.8)
Load Weights and Select & Accumulate
(i) Load Weights
Next, we load into the weight buffer N, elements for the current column:
The total data is
weight_data = N, X Wpits (5.5.9)
requiring
Packets_w = ’VW—‘ (5.5.10)
packets. Hence the cycles to load one buffer are
cycles; | = (DMA_ID + HS) x [m—‘ (5.5.11)

Here, we load N, weight elements for one column, each corresponding to Yg activation elements, using
the same mechanism as for the activation loading, in order to store them in the weight buffer.

(ii) Select & Accumulate
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The next step processes the logical blocks (products) from the Sync Memories, accumulating them:

In_max

cycles_3_2=G x (5.5.12)

in_bits

Since these two stages (loading weights and Select & Accumulate) are pipelined via a ping-pong
buffering scheme, their effective latency is determined by the slower of the two. After loading N,
weight elements into the buffer, each of these elements must be used to select and accumulate the
products stored in the corresponding logical blocks. The number of logical blocks depends on the size
of the physical Sync Memory as well as the activation and, most critically, the weight bitwidths. For
simplicity, we can approximate that if we have N, weights, then we need to read N, products from
memory. Since each physical Sync Memory block can serve one read per cycle, and there are Mems
parallel Sync Memory blocks available, the total cycles required are (5.5.12) , assuming one read per
cycle per physical memory.

For a weight buffer with
cycles; = max (cycles3 1,cyclesg 2) . (5.5.13)

This combined stage repeats for every new activation window and for every output column, so it is
performed
Cin _ Rin
X
N, YS

% Cout (5.5.14)

times. This means it is the stage executed most frequently and therefore consumes the largest portion
of total accelerator cycles.

Because we previously discussed loading weights into a buffer and then using this buffer to read
out the values, we employ a ping-pong buffering mechanism with two alternating buffers in order
to support overlapped read and write operations. These two stages — weight loading and product
selection/accumulation — are therefore overlapped from a cycle perspective, so the total latency is
determined by the slower of the two stages. As a result, the effective latency for this combined operation
is taken as the maximum of these two stages, since this represents the performance bottleneck.

Output Store Finally, the accelerator stores the output results. The total number of output ele-
ments is

output_elements = Cpyyy X YS (5.5.15)

with data size

output_data = output_elements X out_bits (5.5.16)

and required packets

tput_dat
Packets_out = | —oPu-=02%8 (5.5.17)
DMA_bytes x 8
leading to cycles
Packets_out
1 = (DMA_ID+ HS _ 5.5.18
cycles, = (DHA_TD + HS) x | PR EEo0nt | (5.5.18)
This repeats every
Rin
5.5.19
Vs ( )

times, since results are collected per activation window row.
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Figure 5.5.1: Ratio between weight load cycles and select & accumulate (S&A) read cycles from
synchronous memories, for different ID and Row_factor parameters across various supported runtime
bitwidths.

Total Cycle Estimate Hence, the total estimated execution cycles of the accelerator are

C;

cycles, . = (N ) (cycles; + cycles,) + (Cm Bin

N, YS

Cout> cycles,; + <Ijlsn) cycles, (5.5.20)

It is evident from the above equation that the stage which repeats the most is the Load Weights and
Select & Accumulate stage. As discussed in the Optimizations section, it is important to align the
cycles used to read weights from memory—which are then written to the weight buffer—as closely as
possible with the cycles used to read the products from the synchronous read memory blocks.

The main challenge, however, lies in achieving balanced performance across different bitwidth config-
urations. Changing the bitwidth directly affects both the weight-loading cycles into the Weight Buffer
and the read cycles from the synchronous read memories. This happens because different bitwidths
effectively change the activation window depending on how many activation products can fit inside the
synchronous read memories.

For smaller bitwidths, more elements can fit in the same physical memory, since each element occupies
fewer bits. As a result, the data transfer required for loading weights from external memory is not
significantly affected becuase of the lower bitwidth. However, the number of distinct elements stored
in each physical memory increases substantially, which causes the number of synchronous read cycles
to rise markedly compared to the weight-loading cycles.

As we can see in the in Figure 5.5.1 , we analyze the ratio of the cycles spent on loading weights
to the cycles spent on select & accumulate (S&A) per weight buffer (meaning per weight column).
We examine how this ratio changes for different design parameters: the DMA_ID (which controls how
many requests can be sent on-the-fly) and different Row_factor values (where increasing Row_factor
reduces the number of synchronous-read memories, but increases the number of rows per memory).

The plots illustrate these ratios for various bitwidth pairs (in_bits,w_bits) and across different
configurations of ID and Row_factor.
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Experimental Setup and Evaluation

As described above, the LUMAX accelerator was designed as a RocketChip Co-processor (RoCC).
In this configuration, the accelerator is integrated within a System-on-Chip (SoC) architecture, with
RocketChip serving as the main processor and communication taking place over the TileLink propri-
etary protocol.

The complete SoC, together with the LUMAX accelerator, is emulated on the ZCU106 Zyng-based
FPGA platform [45]. Within this setup, the DMA engine of the LUMAX accelerator leverages the
external DRAM of the ZCU106 to fetch input activations and weights, as well as to store the produced
outputs.

Hardware synthesis and power analysis were performed using the Vivado 2022.1 tool flow. The eval-
uation of the design explores different architectural configurations, including the number of memory
blocks (MEM) allocated per activation vector where MEM =XS*YS (M EM € {4,8,16,32}), as well
as the number of rows per memory block, referred to as the Row Factor (RF € {1,8}).

Those two parameters are critical for the operation of our design, because activation vector size depends
on both MEM and RF-MEM represents the number of separate MEMs,while RF is the size of each
MEM. The total size of all MEMs determines the available space for products and, together with the
current weight bit-width, how many activations can fit,while MEM also dictates how many elements
can be selected and accumulated per cycle.

6.1 Experimental Setup

For our test case to evaluate the performance of the accelerator, we utilize the open-source LLaMA?2
[32] implementation written in pure C. The availability of its source code in plain C enables easy
integration into the Chipyard environment and straightforward conversion to RISC-V binaries. This
allows execution with Verilator and later on FPGA with our RISC-V processor enhanced with the
ROCC accelerator.

We have also modified the code to support scaling per vector , with per group scaling as the de-
fault. This approach allows us to clearly isolate and evaluate the accelerator’s performance without
the influence of output scaling, specifically to analyze how integer matrix multiplication operates in
our implementation. Additionally, scaling per output vector is more hardware-friendly, enabling us
to split the multiplication into integer matrix operations (accelerated by our hardware) followed by
dequantization in pure C.

The LLaMA2 [32] implementation performs vector-matrix multiplication, where an activation vector
is multiplied by a weight matrix to produce an output vector. For this use case, we set Yg = 1, as
multiple rows are not processed simultaneously. While the code might be adaptable for matrix-matrix
multiplication, this is outside the scope of the current work.
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The measured cycles correspond to the execution of all the GEMM operations (vector-matrix mul-
tiplication in our case) on our high-level implementation of LLaMA2 [32] using the TinyStories-15M
dataset [34].

The integer GEMM operations and their dimenions based on the TinyStories dataset are summarized
in Table 6.1. Note that R;, = 1 and the channel relationship ( vector-matrix) C;,, x C,y: describe the
input row factor and channel dimensions and int .

Table 6.1: Summary of GEMM operations in the TinyStories 15M parameters model.

Step Operation Matrix Dimensions | Repetitions
1 Q, K, V projections 288 x 288 3%
2 Output projection (attention) 288 x 288 1x
3 Feed-Forward Network (FFN) 288 x 768 2x
4 Output projection (FFN) 768 x 288 1x
5 Classifier 32000 x 288 1x

With a total of approximately 15 million parameters, the model requires 180 forward passes across 6
layers. The total number of cycles is calculated as:

total cycles = forward passes x num layers x cycles for steps 1-4 + forward passes x cycles for step 5.

The number of forward passes ultimately depends on the number of input tokens.

To measure execution cycles before the design is deployed on the the ZCU106 [31], a good approach is
to use Verilator, as it is easily integrated within the Chipyard environment.

6.2 Sensitivity Analysis on Generator Parameters

In this section, we perform a sensitivity analysis to evaluate how different generator parameters af-
fect both execution cycles and hardware utilization. The focus is specifically on the integer matrix
multiplication operations within one layer of LLaMA 2, based on the multiplications described in the
previous section.

We evaluate the accelerator using the following configuration: activation bitwidths of 8 and 16 bits,
weight bitwidths of 2, 4, and 8 bits, an input slice size (XS) of 16, and a row slice size (YS) fixed at 1.
Since Y is set to 1, each memory block (MEM) effectively corresponds to a single input slice (XS).

We will evaluate the impact of the following parameters:

Table 6.2: Explored design parameters of the LUMAX accelerator.

Parameter Description

XS Input slicing factor

Row Factor | Number of rows mapped per memory block
DMA IDs Number of DMA channels/identifiers used
Cache Mode | Cache mode enabled/disabled

The DMA interface has two parameters one that denotes how many bytes can be sent via the DMA
bus per data response and another that defines how many concurrent requests can be active at a
time. These two parameters are configurable in our generator. In our implementation the DMA
bus is configured to handle 64-bit transfers, and the maximum number of concurrent requests is set
to 4. Additionally, response FIFO has been added between the DMA inteface and the accelerator,
ensuring that responses are received in order. This analysis will help us understand which architectural
parameters most significantly influence performance and area, and guide optimal configurations for
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LLaMA 2 with 15M parameters during inference. In terms of execution cycles, we focus exclusively
on the integer vector-matrix multiplication, as the remaining operations do not vary with respect to
our accelerator and remain implemented in standard C code.

6.2.1 Gemmini as Baseline

We set as baseline for our comparative study, the state-of- the-art work of the Gemmini [15] accelerator.
More specifically, for fair comparisons, we implement Gemmini configurations in an iso-resource fashion
w.r.t. LUMAX. The Gemmini implementations also came along with LUMAX equivalent interface
characteristics, i.e. data bandwidth and DMA controllers.

However, Gemmini does not support mixed-precision execution, such as using different bitwidths
for activations and weights, nor does it allow for custom multipliers within processing elements to
efficiently handle low-precision data (e.g., 4-bit or 2-bit operands).

In this evaluation, we focus only on the number of cycles required for the integer vector-matrix multi-
plication in a single layer, based on the LLaMA2 15M TinyStory dataset workload.

Parameter(s) Description

tileRows, tileColumns

Dimensions of a tile (combinational systolic unit).

meshRows, meshColumns

Dimensions of the full mesh (with pipelining between tiles).

dataflow

Data movement pattern: output-stationary (OS), weight-

stationary (WS), or both.

sp_banks, sp_capacity,
acc_capacity

Number of banks and capacities (in KiB) for scratchpad and ac-
cumulator memories.

inputType, outputType, | Data types for input, output, and accumulation (e.g., SInt (8.W),
accType Float(8,24)).
pe_latency Latency of the processing element (MAC unit), important for

floating-point ops.

Queue lengths for load, store, execute operations, and reorder
buffer entries.

ld_queue_length,
st_queue_length,
ex_queue_length,
rob_entries

DMA configuration: max transfer size, bus width (bits), and mem-
ory pipeline depth.

dma_maxbytes,
dma_buswidth,
mem_pipeline

Input/accumulator scaling configuration for move-in operations;
optionally share scaling hardware.

mvin_scale_args,
mvin_scale_acc_args,
mvin_scale_shared

Table 6.3: Grouped Summary of Key Gemmini Generator Parameters

This is the dafault chosen parameters : In this configuration, the scratchpad and accumulator capacities
are set to 256 KiB and 64 KiB respectively, with 4 banks allocated to the scratchpad and 2 banks to
the accumulator. The lengths of the load, store, and execute instruction queues are configured to
8, 2, and 8 entries respectively. Additionally, the Translation Lookaside Buffer (TLB) is set with 4
entries. Scaling functionality on move-in operations is explicitly disabled, both for standard inputs
and accumulators, by setting mvin_scale_args and mvin_scale_acc_args to None.

We configure the dataflow to support both weight-stationary and output-stationary modes, allowing
us to experiment with and evaluate both execution styles. For the data types, we select a 32-bit signed
integer for the output type, matching the precision of the expected final results in our accelerator.
For the input types (both activations and weights), we evaluate 8-bit and 16-bit signed integers;
unfortunately, 4-bit inputs are not supported in this setup.
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1e6 LLaMA 3 (15M) TinyStories: Gemmini Cycle Comparison Across PE Configurations
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Figure 6.2.1: Gemmini int vector-matrix cycles for different PEs configurations

From the Fig. 6.2.1 above, it can be concluded that it is better to compare our design using the weight
stationary mode, as it requires fewer cycles than the output stationary mode. Additionally, we will
choose 16 PEs as the optimal solution for this dataset and test cases.

The cycle counts were obtained by running the testbench implemented in C from the Gemmini test-
bench in bare-metal mode, using the tiled_ws_matmul and tiled_os_matmul test cases. In the
following plots showing cycles for our design, a horizontal grey line indicates the cycles of Gemmini
for the specific configuration so 3,878,410 cycles.

6.2.2 Results and Discussion

6.2.3 Cycles Performace

In Table 6.4 we present the evaluation of LUMAX under different memory configurations, where the
number of XS (MEM) and the Row Factor (RF) determine the effective size of the scratchpad buffers.
The results are compared against the default Gemmini configuration with a 4x4 PE systolic array
support INTS8 activation and weights, while keeping the communication parameters and DMA con-
figuration constant for all designs. As shown, power consumption increases with both the number
of memories and the Row Factor, as a larger number of memories requires additional logic and en-
ables more parallel operations, while a higher Row Factor demands greater storage capacity in the
scratchpad. Nevertheless, even in the largest tested configurations, the power consumption remains
consistently lower than Gemmini, ranging from about 0.3x to 0.6x. This highlights the energy effi-
ciency of LUMAX across a wide design space.

The performance of the LUMAX accelerator is heavily influenced by the weight bitwidth, the Row
Factor (RF), and the number of memory blocks (MEM).

Table 6.4: Power gains and Speedup comparison to Gemmini 4x4 PEs for different bitwidths

Config | Relative Cycles Speedup Per Config (Lyidin, Wwidtn)

XS-RF | Power | (16,8) | (16,4) | (16,2) | (8,8) | (8,4) | (8,2)
4-1 0.291 0.2 1.7 1.73 0.4 1.7 1.82
8-1 0.317 0.4 2.35 3.56 | 0.73 | 2.29 | 3.6
16-1 0.329 0.72 2.36 4.56 1.17 2.4 4.63
32-1 0.402 1.21 2.38 4.56 1.21 2.4 4.64
4-8 0.329 1.05 1.79 1.83 1.13 1.80 1.81
8-8 0.382 1.12 2.35 3.55 1.17 | 2.38 3.6
16-8 0.462 1.15 2.37 4.56 1.21 2.4 4.63
32-8 0.683 1.2 2.37 4.56 1.22 | 24 | 4.73
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Impact of weight bitwidth: Higher weight bitwidths (e.g., 8 bits) generally degrade performance.
This is due to several factors: more cycles are required to generate the increased number of possible
products, the activation window is significantly reduced, limiting parallel computation, and additional
data transfers over DMA are needed. Conversely, reducing the weight bitwidth (e.g., 2 bits) pro-
vides substantial speedups, as the activation window is larger, fewer possible products are generated,
and data transfer cycles decrease because fewer elements must be moved per activation. In some
configurations, this results in speedups of up to 4.73x.

Effect of increasing the Row Factor (RF) at fixed XS: For configurations with a fixed number
of memory blocks, increasing the Row Factor improves speedup by enlarging the activation vector.
This is achieved by allowing more rows per memory block to store partial products. The benefit of a
larger RF is most evident for high-precision weights, where the activation window would otherwise be
small; for example, in a configuration with 16x8 weights, increasing RF from 1 to 8 (with MEM = 4)
improves speedup from 0.2 to 1.05. In contrast, for lower weight bitwidths, such as 8 x2, the activation
window is already sufficiently large, and increasing RF yields minimal improvement (1.81-1.82). These
observations indicate that further performance gains at low precision require either more memory blocks
or faster weight fetching from DMA.

Effect of increasing XS at fixed RF: When the Row Factor is held constant, increasing the number
of memory blocks consistently improves speedup across all weight bitwidths. This is because multiple
elements can be selected per cycle, reducing the need to wait cycle by cycle for all activation blocks
to be processed. However, the benefit diminishes for low-precision weights or very large RF (e.g., RF
= 8), where the activation window is already large, leaving memory bandwidth or weight fetching as
the limiting factor. For example, increasing MEM from 16 to 32 provides minimal additional speedup
under these conditions.

Memory-bound scenarios: When further increases in MEM or RF do not yield additional perfor-
mance gains, the design becomes memory-bound. In such cases, the selection and accumulation stages
consume weights faster than the DMA can supply them. Although the activation window is large and
multiple memory blocks are available, the system stalls waiting for additional weights. Essentially, a
very large activation window can saturate the pipeline, and further improvements require either faster
DMA transfers or additional parallel weight consumption.

Visualization of scaling limits: Table 6.4 highlights these effects using color coding. Green cells
indicate configurations where increasing RF alone provides additional speedup due to larger activation
windows, particularly for 8-bit weights. Orange cells indicate scenarios where increasing RF alone is
insufficient, and additional XS are needed to enable more selects per cycle in the select-and-accumulate
stage. Blue cells correspond to memory-bound designs, where further speedup is limited by DMA
communication, despite having a large activation window and multiple memory blocks available.

Overall, the analysis shows that performance is determined by a careful balance of weight bitwidth,
activation window size (RF), and the number of memory blocks (MEM). Optimizing one parameter in
isolation can provide improvements only up to a point, after which the design becomes memory-bound
and further enhancements require increased memory bandwidth or faster data movement.

6.2.4 Utilization Report

In terms of resource efficiency, Figure 6.2.2 shows the FPGA resource utilization of our LUMAX design
across different configurations on the ZCU106, compared with Gemmini implementation. Initially,
LUMAX is largely DSP-free, using only 8 DSPs regardless of the configuration, in contrast to Gemmini,
which consumes 197 DSPs even for a relatively small systolic array. Therefore, the emphasis in our
design is on LUTs and BRAMs, which are the primary resources utilized. The first four bars of Figure
6.2.2 correspond to configurations with Row Factor = 1, where each memory has only 64 rows (64 x 1).
As a result, the memory can be implemented entirely using LUTSs rather than BRAMSs. In contrast, the
next four bars correspond to Row factor = 8, where each memory has 512 rows (64 x 8). Here, BRAMs
are used to store both products as well as activation and weight buffers, as the maximum activation
window increases and more on-chip storage is needed for computing a single activation window.
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Figure 6.2.2: Normalized utilization of resources on the Xilinx ZCU106 FPGA for different XS-RF
configurations of LUMAX and the Gemmini 4x4 (GMN) baseline. Each resource type is normalized
with respect to its maximum across all designs, enabling a fair comparison of resource usage
distribution rather than absolute counts.

In both cases, increasing the number of MEMs leads to higher LUT usage, as replicate logic is required
for each MEM to implement both the product generator and the select-and-accumulate stage for
parallel indexing and retrieval of products. Registers also increase proportionally, storing temporary
values and maintaining synchronization across multiple MEMs. Overall, as the number of MEM
increases, LUT and register usages approach the levels of Gemmini’s other resources (except DSPs),
but our design achieves this with improved performance and lower power consumption.

6.2.5 Different Dma parameters

Different Dma IDs

Now we fix the configuration parameters (Row Factor = 1) and observe how the number of cycles
changes across different in-flight ID requests for all supported bitwidths. We evaluate two cases, with
XS = 16 and XS = 32. Increasing XS enlarges the activation window, which requires more data
transfers, but it also increases the number of products read per cycle in the select stage. In this
way, we can demonstrate how memory-bound problems can be mitigated simply by increasing DMA
throughput.

In this subsection, we fix the design parameters to XS = 16 (16 memory blocks) and a DMA bus width
of 8 bytes (64 bits per DMA request), and analyze the impact of increasing ID, which defines how
many requests can be issued in flight. Memory-bound cases occur when the weights corresponding to
the current activation window are transferred column-wise. Therefore, it is important to understand
the amount of data loaded into the weight buffer under different scenarios.

We estimate the required data bandwidth per column of weights for different activation and weight
precision combinations:

e Activation: 16 bits, Weight: 8 bits
With XS = 16, each column of weights requires transferring 16 x 8 = 128 bits. Since each DMA
transfer is 64 bits, an ID = 4 (i.e., 4 x 64 = 256 bits) is sufficient to transfer all required data in
a single cycle. Increasing ID beyond this does not improve performance.

e Activation: 8 bits, Weight: 8 bits
Here, each column requires 16 x 2 x 8 = 256 bits. Again, ID = 4 provides enough bandwidth.
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e Activation: 16 bits, Weight: 4 bits
Now, we require 16 x 16 x 4 = 1024 bits per column. Thus, the ideal ID would be % = 16.

e Activation: 8 bits, Weight: 4 bits
The requirement increases to 16 x 16 x 2 x 4 = 2048 bits, implying that an ideal ID would be 32.

e Activation: 16 bits, Weight: 2 bits
The required bandwidth grows even more: 16 x 64 x 2 = 2048 bits, leading again to an ideal ID
= 32.

The same logic applies when increasing XS (e.g., from 16 to 32), which directly increases the data
needed per column and thus raises the ideal ID accordingly.

However, in practice, we observe in Figure 6.2.3 that increasing ID beyond a certain threshold (e.g.,
above 16 or 32) no performance improvements. This is because the system’s bottleneck shifts from
weight loading (handled via DMA) to the select phase, where products are read from Sync Memories.
Once the DMA bandwidth is sufficient to fully feed the pipeline, further increases only accelerate a
non-critical path.

In other words, since the pipeline stalls waiting for slower operations (such as SyncMem read/select),
optimizing the already-fast weight-loading phase has no effect. Thus, it is not meaningful to keep
increasing ID beyond what is required to saturate the memory bus for the given precision configuration.

Increasing the DMA ID does not directly change the hardware resource utilization of the accelerator
itself, since the DMA interface primarily handles communication between the Rocket core and the
accelerator.

However, increasing ID increases the amount of data transferred per cycle, which can lead to higher
power consumption and increased activity on the Rocket core’s buses, as they must handle the larger
data throughput in real-time.

LLama 3 (15M) - Matrix-Vector Cycles Across DMA ID for XS = 16 and XS = 32 Bitwidth Config
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Figure 6.2.3: LUMAX Cycles for different DMA IDs and XS for activation’s 4bits and weights 8 bits

6.2.6 Cache mode

In this configuration (where Row Factor = 1 ,DMA ID is 4 and DMA bytes is 8), activation’s are
represented with lower precision (4 bits) compared to weights (8 bits). This enables the use of a
caching mechanism (cache_4_8), where activation’s and weights are used as indices to a precomputed
lookup table, avoiding the need to compute new products during execution. As a result, the activation
window can reach its maximum possible size under given hardware limits, since more activation values
fit into the same data footprint.

As shown in Figure 6.2.4 when the horizontal size of the compute array (XS) is small, the number of
available synchronous read memories is also limited. In such cases, the cache mechanism is particularly
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effective, allowing efficient reuse of activation-weight pairs without requiring additional logic or memory
ports. As long as the DMA channel ID count is sufficiently large to sustain high throughput, caching
leads to a significant reduction in total cycles and enhances overall performance.

Conversely, when XS is large, the hardware naturally supports a wider activation window due to
increased memory access parallelism. Therefore, the performance with or without the cache becomes
comparable. In this case, the benefit of caching is diminished, but the system still functions efficiently.

Overall, the cache strategy provides a low-cost and practical optimization, particularly beneficial for
small XS values. It improves performance by reusing data in memory rather than increasing hardware
utilization, making it an ideal solution in resource-constrained environments.

In utilization, enabling the cache uses just a little more resources — about 4% more LUTs and around
1% more FFs.All other resources remain essentially the same.

Total Execution Cycles for XS = 4, 16, 32
(Each bar is one combination of ID & cache)

Total Cycles for XS = 4 Total Cycles for XS = 16 Total Cycles for XS = 32
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3,170,196 3186372 3,187.508 3186372 3234940

»
3
S3
[6)
g 2,111,688 2,132,236 2,137,952 2,137,648
=2
. Loin.00 . . L oar.cos 1527351 vozlors
. B . B .
1
0
oy _ A0 © N s _ 6 SN s _ 146 © SN
ohon 0o oo \o,x & \0,3 \0,31 oo b \0, \04& <% \0,3 \0431 oo R oo \04& << \0,”5 \0431
¢ @c\‘a ¢ v <™ o g \‘ ¢ @ o0 \‘

Figure 6.2.4: Cache enable vs Disable Cycles
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Chapter 7

Conclusions - Future Work

This dissertation thoroughly investigated and developed LUMAX, a novel LUT-based mixed-precision
accelerator specifically tailored for the efficient edge inference of large language models (LLMs). Moti-
vated by the rising demand for deploying powerful yet resource-constrained Al applications at the edge,
LUMAX addresses critical challenges in achieving high performance, energy efficiency, and flexibility
for varying bit precisions.

At the core of LUMAX lies a reconfigurable quarter-size LUT architecture that significantly reduces
the memory footprint and computational resource consumption compared to existing systolic array
designs. By decomposing the general matrix multiplication into LUT-based product generation and
leveraging a hybrid storage strategy—memorizing only even weight products and compensating odd
weights via activation offsetting—LUMAX achieves notable scalability for quantized LLM workloads
without compromising throughput or accuracy.

Integration with the RocketChip RISC-V SoC ecosystem enables tight hardware-software co-design and
seamless deployment, while the fully pipelined, double-buffered hardware design maximizes utilization
and minimizes stalls even under demanding LLM inference workloads. Compared against the state-
of-the-art Gemmini systolic array accelerator, LUMAX demonstrates up to 4.7x speedup on realistic
benchmarks including the LLaMA2 model and reduces LUT and DSP consumption by up to 33% and
96%, respectively. These gains translate into an approximately 70% improvement in overall energy
efficiency, which is critical for deployment in energy-sensitive edge environments.

The LUMAX accelerator structure consists of three major components: the Product Generation Unit,
which precomputes and stores the partial products of activations and weights using the optimized
LUT scheme; the Memory Blocks (MEMSs), which efficiently store these precomputed products with
synchronous single-cycle read and write operations; and the Select and Accumulate Unit, responsible
for indexing the correct partial products from the MEMs according to the weights and performing the
final accumulation through an efficient adder tree. These modules are coordinated through buffers
for activations and weights, implemented with dedicated Block RAMs in a ping-pong configuration
to support double buffering and continuous data flow. This architectural decomposition supports
scalability and high throughput while maintaining flexibility for various mixed-precision configurations,
enabling real-time, energy-efficient LLM inference on edge devices.

This work not only advances the state of LUT-based accelerators by overcoming prior limitations
related to weight bitwidth scaling and hardware/software integration, but also proposes practical
design optimizations such as activation quantization alignment, flexible size configuration, and product
generation techniques. The analytical modeling and comprehensive evaluation of design space trade-offs
further provide valuable guidelines for future accelerator design tailored to emerging LLM workloads.

In conclusion, LUMAX offers a compelling combination of architectural innovation, practical hardware
implementation, and demonstrated application-level benefits. It sets a new benchmark in mixed-
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precision accelerators for large language models by providing a highly efficient, flexible, and scalable
solution particularly suited for edge deployment. This work paves the way for future research to further
optimize and extend LUT-based designs toward next-generation Al acceleration in resource-constrained
environments.

Future extensions of the LUMAX accelerator should focus on expanding activation support to include
FP16 and FP8 floating-point formats, complementing the current support for INT16 and INTS. This
enhancement would enable broader compatibility with modern mixed-precision LLM workloads, many
of which increasingly leverage reduced precision floating-point arithmetic to balance accuracy and
efficiency.

Additionally, it is imperative to evaluate LUMAX across a wider range of LLM applications that can
fully exploit low bitwidths and heterogeneous precision configurations between activations and weights.
Layer-wise experiments should be conducted to understand the precise impact of mixed bitwidths on
the accelerator’s performance and energy efficiency.

A complete end-to-end mapping of LUMAX onto FPGA platforms is also needed to obtain actual
inference latency and throughput metrics. This real hardware deployment would provide insight into
the true acceleration benefits beyond simulation and enable exploration of architectural optimiza-
tions, including support for select nonlinear operations common in LLMs, which may currently pose
bottlenecks.

Finally, a systematic and fair comparison against other state-of-the-art LUT-based accelerators that
utilize bit-serial architectures is necessary. Such benchmarking as a feature work will yield a clearer
understanding of LUMAX’s relative advantages and guide future improvements in scalability, flexibility,
and energy efficiency.
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