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ITepirndm

H poalu viodétnon twv cuoxeucv IoT amoutel 1oyupd uétpa aopoulelag yia ) dlao-
PANOY TNG AXEPALOTNTAS TOUG XU TNV OMOTEOTY| Blartapory@y. AVTWETwTI{ovTag auTh
NV TEoXANOT, 1) TapoVoa epyacio Tapouctdlel éva ehappy, TAaiolo Yuhhoyixic Ano-
woxpuopévne Enairideuonc (Collective Remote Attestation) oyedioouévo yio cuoxeuée
UE TEQLOPLOUEVOUC TTOPOUS. LTOYEVEL OTNY EUXOAT LIOVETNOT), ACLOTOLOVTOC TOV UNYAVIOUO
Physical Memory Protection (PMP) tnc opyrtextovixric RISC-V w¢ Pilo Epmio-
T000UVNE LAXOU. T TEOTEWOUEVO AMOXEVTPWUEVO TPMTOXOANO Bieddryel ouolBaio eTepo-
yevy| enadlevon pe tomixy| enahdeuon tng axepondtnTag e uviung flash. H yerion
nonces xa. HMAC Swogariler T @peoxdda xon TV oauleVTIXOTNTA TV UNYUULTGLY,
uetetdlovtag Tic emiéoeic emavdindne. To mhalolo vAomoleiton YeNoOTOLOVTIS TO
FreeRTOS xou o&tohoyelton 010 younhod x60TOUC, €UREWS BLAECIUO UXPOEREYXTN
ESP32-C3, to omnolo unootnpilet ta avaryxala yopaxtnetoxd acporelog. H oll-
ohoyMon anédoong emPeBaiwoe oL 1 yeron e CPU xAuaxcveTon yoouuxd ovdAoya
UE TOV aptid TWV GUGKEUMY XL TN LY VOTN T TV enainiclocwy. To mhaiclo mopéyet
wta Baomn Yo LEANOVTIXY| EPELVAL XAl ETEXTAGELS OF AOPUAEIC ATOXEVTRWUEVOUS UNY AVLO-
noug eumiotoolvng o dixtua IoT e meploptopévoug tépoug.

Ageic KAslowd

Yuloyur Anopgoxpuouévn Enodfdevon, Acgpdieia [oT, ESP32, FreeRTOS, RISC-V






Abstract

The mass adoption of Internet of Things devices necessitates robust security mea-
sures to ensure their integrity and prevent widespread disruption. Addressing this
challenge in IoT networks, this work presents a lightweight Collective Remote At-
testation framework designed for resource-constrained devices. It targets real-world
adoption by leveraging the RISC-V Physical Memory Protection mechanism as the
Hardware Root of Trust. The proposed decentralized protocol conducts mutual het-
erogeneous attestation with local verification of flash integrity. The use of nonces and
HMAC ensures message freshness and authenticity, mitigating replay attacks. The
framework is implemented using FreeRTOS and evaluated on the low-cost, readily
available ESP32-C3 chip that supports the necessary security features. Performance
testing confirmed CPU utilization scaling linearly with device count and attestation
frequency. The framework provides a basis for future research and extensions on
secure, decentralized trust mechanisms in resource-constrained IoT networks.

Keywords

Collective Remote Attestation, IoT Security, ESP32-C3, FreeRTOS, RISC-V
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Chapter 1

Extetapevn Ilepiindn ota
EAAN VI

1.1 Ewcaywyn

To Awdixtuo tov Hpayudtwy (IoT) avagpépeton ot éva §ixTuo SUGUVOEBEUEVHV GUGXELGY,
aoInTAewY, avip®TWY Xl UTNEECLOY, OL OTOIEC EMXOWVMYVOUY Xl AVTUAAIGOOLY Ot-
OOUEVOL UE OXOTIO TNV ETUTELET XOWVKY 0TOYWY e Towiha medio eqapupoyhc. H eupela
0LdB00T YUUNAO) KOG TOUG UXPOEAEY TGV X0k OVNTALWY EYEL XATACTACEL DUVATH TNV
evowpdtwon tou IoT oe mAfdoc topéwy, 6mne 1 uyetovouxy tepibaidr, 6mou yenot-
HOTOLELTOL Y10t ATOMAXEUOUEVY) TORoXOAOLUNCT) A VEVEY XL XAUTATUOUEVES LATOIXES
ouoxeUEg: Tor €Cumval dixTua eVERYELNG, OTou GUUPEAAEL oty opdohoyixy Suiyeipion
OVAVEWCHIWY TNYWY Xal TNV €ELC0PEOTNOY TNG TURUYWYNG Xl XUTUAVIAWONS: O olU-
TOUOTIOUOG XATOWUMY, YL TOV EAEY YO XAUATOS, PWTIOHOU, ACPIAELNG XAl EVEQYELUXTC
otayelprong: 1 Broumnyavic auToXVATLY, HEGW GUGTNUATKY ao@aielag, Tapaxololinong
xo dveong: xS ot oL ECUTVES TOAELS, UE EQUPUOYES GTY) Dloyelplon) amopEUIUSTGLY,
™ PektioTonolnon tng xuxhogoplag xar NG dnuootag ouyxowvwviag. Tlupd to ornuoy-
TG 0@EAN, 1N parydada eEdmAmon Twv cuoxeuny [T cuvendyeton coPapéc mTpoxAfoeic
Ao PAAELAS, XS OL EUTAVELEG OE BIXTUWHUEVA CUC TAUXTA UTOPOVY VoL EXUETUAAEUTOVY
O PEYAAN ¥Alaxa, UE EVOEYOUEVEG GUVETELES TNV TopaSiaoT TNE WIWTIXOTNTAUS TOV
acVevmy, Tov x«ivouvo Yo T Cwh TwV avipdTenv OTIC UETAPORES, TNV UTOVOUEUOT
NG OnubdoLag uTodouhc N TN yenon Toug oe exTeTopévES xUPepvoemiéoels, OTwe ot
emiéoeic DDoS. Enopévee, xadiotatar avaryxala 1) eQapuoy ) auoTnemy TeoTITwY oo-
PANELAS HOL OTEATNYIXOV UETPLAOUOV TGV XIVOUVGY. XT0 TAdo0 auTo, 1) ATouaxpuo-
uévn Enoideuon (Remote Attestation) amotehel xplown teyvixt yio tnyv enaiideuon
TNG OXEROLOTNTAC TV CUGXEUMY, EVG 1) Lulhoyixh Aropaxpuouévn Enakfdevon (Col-
lective Remote Attestation) ovTETLTICEL eMTAEOV TEOXAACELC OYETIXEC UE TT) OLED00T
EUTLOTOOUYNG XAl TNV ATOTEASOUUTIXY ETXOWVwVia o€ peydha dixtua IoT.

H mopoloo SImAeUatiny epyacta GUVEIGPEREL UE TOV OYEBLIOUS XalL TNV LAoTolNo
evog mhanctou Yuihoywrc Anopaxpuouévne Enaiidevong, to onolo extehel apolPala
xou €TeEPOYEVY| awto-emoldeuon oe Bixtua tou Adxtiou twv Ipayudtwy (IoT),
ywelc va amonteiton 1) Umopén xevipol Enoindeuts. To mhaiclo €yel oyediaotel yia
VoL GUVOBEVETAL O EYYUNOES 0 LAXO: secure boot, secure storage xou Ilpootaota
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Puowhic MviAune (PMP) tne apyttextovixric RISC-V. T tnv vhonoinon emhéydnxe
o uxpoeieyxtic ESP32-C3, ue oxond 1o mhalolo va elvon dUECH TEOGUPUOGIIO GTN
Brounyavia xou vor amoTteAécel T Bdom yio TEpanTéR EpEuval 0To TeEdlo TNg ATouoxpuo-
uevng Emahfdevong.

1.2 YTroBadpo

Auth n evotnta mapouctdlel ta Baowd teyvixd Vegéhar Yo TNV XaTavonon Tng oo-
pdAelog O EVOLUUTOUEVY cucTANTA [0T, XaAUTTOVTAS EVOWUATOUEVY CUC THUNTA,
IoT, xpuntoypapla xou amoyuxpuoUEVY ETaileuoT).

1.2.1 Evooupatwpéva XuoctApota xou Atadixtuo tTwy ITpay-
RATWY

To evowpatouévo cuoThdaTa efval eZEBIXEVPEVOL UTOAOYLIOTEC OYEDIAOUEVOL Yol CUY-
XEXPWEVES AetTovpYieg péoa o€ ueyahiTepa cuoTAUATA. ALoPEEouy amd TOUG UTOA-
0YW0TEG YEVTNS Yenone xadwg extelolv mpoxooploueveg epyaoiec und cuvirixeg
meaypatixol ypovou. H dixtiwon eivon xplown yia v emxowvwvio: Aixtumvovto
1600 pe evovppata mpwtdxorho (I2C, SPI xaw CAN) 600 xou pe actppata (Wi-Fi,
Bluetooth/BLE, Zigbee, Z-Wave, Thread) yiw tnv ouvepyoaoio xat emxowvovia pe
dMhec ouoxevéc. EZomhiCovton tumnd pe Acttovpywd Xuothuata Hoaypatixod Xeo-
vou (RTOS) eacgarilouy ypovixd meoBrédiun extéheon epyaotay uéow ahyopiiuwy
Ypovompoypoppotiogol (pre-emptive, round-robin). Ilopadeiypota eivor to FreeR-
TOS, Zephyr xou VxWorks.

To IoT avagépetar og BixTUN GUGKELMY TOL EMITEETOUY ATOUOXQUCUEVT TapaxoroinoT
1 Eheyyo.Ta tumxd enineda plog cuoxeuric IoT etvor To entinedo aodntpwy, To eninedo
OutOoU, To enidnEdo eneepyaciog HEBOUEVWY Xal TO ENEINESO EQUPUOYTC.

Yrtpopa AoINTApwY XUCKEVEC TOU GUAAEYOUY 1) EVEQYOUY GTo DEBOUEVAL.

Awxtuaxd Ntpwuo Metogopd 6edouévenv péow mpwtoxdiwy otwne Wi-Fi, Lo-
RaWAN 1 »xwvntd.

Yrpopa Enelepyaciog Acdopévwyv Anodrixeuon xa avdiuon oto cloud 1| oe
edge servers.

Yrpopa Egapuoyne Opatd otoug yeroteg, yio dashboards xa €heyyo cuoxeucy

[20].

1.2.2 RISC-V xouw Physical Memory Protection

To RISC-V etvon avory o0 xeddixa ISA, mou €yl eioywerioet otic IoT ocuoxeuéc yauniol
x6otoug [17]. H Ilpootacia Puowic Mviunc (PMP), wio dnuoguhr enéxtacr tou
RISC-V emtpéner amopdvewon uviune pe éheyyo npéoPuone avd neptoyt [19] péow et-
BV AATAYWENTWY OTwe @aiveton oTo LyAue 1.1, amhodoteen ané TDX/AMD SEV
1 TrustZone yio cucthuata ywelic MMU.
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Figure 1.1: ITupdderypa Swapbdppwone PMP [19]

1.2.3 Kpuntoypagpia

H xpurtoypagio eCac@ahiCel eumoTEUTIXOTNTA, AXEQUUOTNTO XU AUVEVTIXOTNTU UECW
TOV UNYAVICUOV:

Koataxeppatiowds Metatpénet dedouéva onoloudrnote yeyédoug oe otodepol péye-
Youg mepthndn, m.y., SHA-256, yia €éheyyo axspoudTnrag.

Aoctppeten Kpuntoypapio Zedyn dnudotou/idiotixod xAetdlod yio ao@ahn xpu-
Toypdenon xou nelaxéc uroypapéc (RSA, ECC).

Kodwa Avdeviixonoinong Mnvopatog MACs xoo HMACs mistonololy un-
VOUOTOL UE CUPUETEIXE XAELOLLL.

1.2.4 Epmotoobvn xaw Secure Boot

H Root of Trust (RoT) eivon éunioto vhixd mou emtpénel v ahuocido eumoToovVNG
(CoT) yu emoddeuon ocuotatixdy cucthgatoc. To Secure Boot enakndeter diado-
Y3 TO NOYIOUIXO TPOC EXTEAECT) YENOUIOTOLOVTAS XPUTTOYRAUPIXOUS EAEYYOUS EEX-
wovtae ond e Pila Euniotootvne (RoT).

1.2.5 Arnopoaxpucuevrn Enairdcsuon

H Arnopoxpuopévn Enahfdevon (RA) emitpéner oe évav enodndeuty| va ehéy&et tny
OXEQAULOTNTAL L0 amopoxpUOoPéVNG ouoxeuric, Bactlopevn oe wa Root of Trust (RoT)
mou mpoototelel xploes Aettovpyiec. O prover petpd (hash) ) Swudppwon # ™
ouumepLpopd. Tou oe mpaypatixd yeoévo (PM, DM, EM, CF, SF) [23] xou otéhvet
avopopd (attestation report) pall pe évav nonce xon unoypagr) i MAC yua va va Sioo-
polotel N avdevtixotnta. O enaindeutic eAéyyel TV eyxupdTnTa cuYXEivovTog TOV
hash 7 enondedovtoc tnv unoypapr)/ MAC. Xe yeydheg anoxevipwUéves UAOTOLGEL,
n enahfdeuon xatavéueton eite pe Self mpwtdxola (Self-V, Self-L, Self-LC) eite pe
External npowtéxorha (Neighbor, Jury). Tawxéc RoT, 6nwe TPM, DICE, TrustZone,
Intel SGX/TDX xou RISC-V PMP, eCao@aiilouv 6Tl To Aoylouxd EToAlEVOTS Xou Ta
HLOTXE XIS Tapopévouy aopard [2], [13], [14], [18], [25]. Téhog, n Bulhoy RA
(CRA) pewdver 10 umohoyloTixd xou Sixtuaxd PopTio GUYXEVTEMVOVTAS emohnleloels
OUGBWY CUCXEURY, EVEM T HOVTENN ATELAGY TERLAAUPAVOUY AOYIoUIX0UEC avTITIAOUG,
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XVNTOUG aVTITEAOUG, Un-TopepBatols xou Topepfoatixole @uools emtiéuevoug,
xode o avtindhoue tonou Dolev-Yao pe mhen éheyyo tou dixtou 9], [23].

1.3 XYyetwxn BiAoypopio

1.3.1 PMP oce RTOS xow Anopaxpucuévn BeBalwaon

Yto mhodotor g SimAwpotixc Tou, o Larmann [24] tpomonoince tov muprivar tou
FreeRTOS wote va puiuiler duvauixd tig eyypagpéc PMP oe xdide evahhayr oiep-
yaotog, arogovemvovTag Tig xo Tov muprva. Ot teployéc uviune oplotnxay péow linker
scripts xou yapToypaphiinxay ue tn Aettovpyio Top-of-Range eved urtostnpiydnxe xou n
Ao A duvax xatavoun uviung péow PMP. Télog evonuoatwminxe to oyfua xpur-
toypagpriong PRINCE vy tnv puviurn, eAeyyouevo and deopcuuéva bits otig eyypagpec
PMP.

To LIRA-V [16] napouctdlet to PMP w¢ RoT yu amopoxpuopévn emoidevon
oe wxpoereyxtéc RISC-V. O xihdwog ROM qrholevel xAeldLd xon Tig XpUTTOYRapIXES
poutiveg, ev 1 PMP dnuiovpyel teployéc uovo-exTEAEoNS Yia TNV TROGTAGIN TOV XAEL-
oLy unoypagrc. Metd tny emavexxivnon, n PMP puduileton xon xhewdwveton. Katdmy
UTAUATOS, METEATAL 1) VAT X0 UTOYEAPETOL YL THY Topory wyT| amddeiine Befalwong.
To mpotewoduevo mpwtoXoMO auotBaioc enoifleuone dnuloupyel 6Tn cuvéyela ao-
qaréc xovah pe yeron ECDH xou xpuntoypagpnuévey anodellewy.

1.3.2 Pileg Euniotoocbvng and tnv TCG

[Tépo omé v PMP, n Trusted Computing Group (TCG) éyet oploet evolhaxtixég
eilec epmiotootvne vAxol. To Trusted Platform Module (TPM) [3] napéyet aopoln
onutoveyla, amoUixeucT) xon YeNRoT XPUTTOYRUPIXMY XAEOLOY, DIATNEMOVTAS UETEYOELS
firmware xou Aertoupyixol cuctruatog oe Platform Configuration Registers. Yuctr-
wotot 6mwe to TRAP [2] yenotpwonootv TPM yio aviyveuon ahholwong xdduxor xou
enaldeuon xOuLov.

H Device Identifier Composition Engine (DICE) eivor pia ehagppitepn pila eumio-
TOGOVNG TOU TURAYEL EQHUEPES XPUTTOYRAUPIXES TAUTOTNTEG XaTd TNV exxivnon cuv-
oualovtog €va Lovadxd PUoTIXG ouoxeurc Ue petprioelc firmware. To MATCH-
IN o&ronotel DICE yia apotBaio Befaiwon oe IoT dixtua, exdldoviac moTtonotuéveg
TAUTOTNTEC CUOXELGY xou emiTeénovTog apolBaio avdevtixoroimnuéva TLS xavdha mou
amodeXVOoLY TNV A€LOTUOT{O TV CUOAEUOV.

1.3.3 Evaiioxtixég Pileg Eumiotoobvng tng Axadnuaixnc
Kowoétnrag

IolAéc dnuoctetoelc TPOTEVOUY EAUPPUES, TROCUPUOOUEVES PILEC EUTIOTOCUVNS Yid
uxpoeheyxtéc. To GAROTA eiodyel éva ehdytoto, Tumixd enaindeupévo uAxd Tou
Teéy el mapdhinia pe v CPU, dacgoaiiCovtog Tny exTéAeoT xplowuwy EVERYELDY axdun
xou untd mopoftacuévou hoylouxol. To PRoM otoyeler xoxdouro hoyiouwd mou
pETonvelToL BUVOUIXY, UETEWVTAG Tuyoda ETIAEYUEVA TUAUATO UVAUNG Tapdhhnha ot
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TOMOTAOUC TUPTVES, UEKOYOVTAC TOV Olotdéotuo ypeovo amdxeudng ot BlaTnemvTog
upnAt Stdeotudtnta. Téhog, To RATA avtipetonilel o npéfinua TOCTOU xoto-
YedpovTag Ue acQIAELL TOV YPOVO TEAELTALAC TPOTIOTOINONE TNG UVAUNG TEOYEAUUATOC,
EMUTEETOVTUC EX TWY UOTEPWY AVEY VEUTT) AAAXY WV X0 UELWDVOVTUC TO UTOAOYLO TIXO XOO-
TOG OTAY 1) HVAUT Efval YVeOoTO OTL glvor xordopy).

1.3.4 XuvAhoywd ITowtoxoAha Anopoaxpuouevng Enoln-
Yevong

H enextacudtnta eivan xplown yio palixd dixtuo cuoxeunv. To SEDA opyovovel Tic
CGUOXEVEG OE ETUXOAUTTOUEVO BEVOPR0 (OTE Vot BEfodvouy avadpouxd Toug YEITOVES ot
VO GUYXEVTPOVOLY OMOTEAECUATA, EMLTEETOVTNG OTOV ENAANIELTY Vo emBefonwoet Tny
OXEQPAUOTNTOL OAOXANPOU TOU OUYvoug Ue pla umoyeypouuévn avagpopd. To HEALED
enexteivel N Befoiwon mpoodétovtag amoxatdotaon: evionilel ahhOLUEVA TUAUOTA
uvAune ue yenon Merkle Hash Tree, avtiel owotd xohdwxa and allomoto xoufBo xou
eTOLOPUMVEL T GUOKELT, ETAVAPEPOVTAS TNV OF a&LOTLOTY XATAGTACT).

1.4 To IThaloto Anopoaxpuouevng Enairdevorg
Mo

1.4.1 Kivnteo xow Anautrostg
Kivnteo

ITolhéc umdpyouoeg MIGELS amopaxEUOUEVNC ETUAIEVOTC AmatToY ECEWBIXEUMEVO LALXO
1 un tumononuéva eapthpata, meploptlovtag Ty vovétnor| toug. H epyaoio pog
otoyeVel o1 dnuovpyio evog meaxTtixol mhauctov RA yia mpaypatinée, younhol xbo-
toug mhatgopues 10T, ofonowdviac to RISC-V PMP wc¢ pila eumiotootvne (RoT),
ToEEYOVTG et BAoT yia ueAhovTIXY| €pEuva xou Lo¥ETNOoT).

Yootnpa, Movtého AnelA®y xou AT oeLg

To mhaiclo pog vnovétel avanTuln ue évay LOVo WBoXTATY, 0 omtolog exTehel wior pdom
exTOC OUVOEOTC, XATd TNV OTOlo Ol CUOXEVES TROYROUMATICOVTAL UE XOOXA, HAELDLA
xou unoypaéc.  OL cUOXEUES AELTOUPYOUY TOGO (¢ ATOOEIXTEC OGO X W ETOAT-
Veutée, mporyUaTtomoldvTag opolBola auTO-ETOAUEUCT) OTE VoL ETULTUY Y EVETOL OTOXEY-
TEWHEVN TapaxorolUNnoT axcpondtnTag. TiodeTo0Ue TO HOVTELO XvNTOU avTindAou Ao-
YiouxoU, utodétovtag 6T 0 emTiéuevog umopel va Exel TAYIeN EAEY YO TWV EVEAOTODVY
EQUOUOY(OY X0l CUPPETEYEL 0TO O{xTLO, 0AAG bev umopel va mopaxduder t RoT, to
secure boot 7 vo ondoel Ta xpuntoypapwd oyruata. H RoT elvor 1 amoudvemon
uvAune péow PMP, evéy to secure boot xou 1 ac@orfic amovixeuon xAewidy dlao-
paAilouv OTL 0L CUOXEVES EEXIVOUY GE ETUTPETOUEVT] XUTAG TUCT) X0 TROGTATEVOUV TO
HPUTTOYRUPIXO UMXO, TOREYOVTAG EVAL LOYUEO X0k EMEXTAOLUO VEUEMO EUTLOTOGOVIG.
XprnotuonotodvTon nonces yLo. TNy anoTeony emIEcewy eTavainng xou Tuyoieg teplodot
enaideuong yio T peiwon xvdivewy TOCTOU. H ermarfievon axcpardtnTog axolou-
Vel v mpooéyyion Program Memory Attestation ce Harvard opyitextovixéc, un-
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oloy(Covtag hash tng uvAune mpoyedupatog yio Tnv aviyveusr ahholdoeEwy, avtl yia
emolfdevon e poric extéheonc (control-flow attestation) i evodhonctid| pedddovu.

Extég Ilediov E@oappoyng

Puonég eméoeic, xoxOBOVAOS XWBIXAUG TOU TUPUUEVEL UOVO GTN UVAUN Yweic YoV-
o fyvn, emiéoelg mheupol xavohol xou DDoS e€otpolvton amd to poviého pog.
H enahideuon poric extéheong 0ev vAoToLElTon AOY L TOAUTAOXOTNTAG XAl ATAULTHOEWY
TopwY. AV xou To secure boot, 1 ac@QUAfc amoVAXEVCT) KAl 1 ATOUOVWOT UVAUNG
uéow PMP oev viomololvtoan oto mhaloto authc tne epyaociog, To mhaiclo €yel oyEdL-
a0 TEl WOTE VoL UTOPEL VoL TOL EVOWUATWOEL OE HEAAOVTIXEC EMEXTUOELS, OLUTNEWVTAS TNV
EUQaOT Ot ONULoUEYol LG ETEXTACIUNG X0t XAWAXOVUEVTS BAOTC ATOUUXQUOUEVNC
enairdevong.

1.4.2 Xyedlaon IlpwtoxdAAov
ITpoxatapxtixég Xxédeig Yyediacpmo

Mio apehric mpocéyyiam, 6mou o Anodewtric anhodg emoteéget Ty twwh Hash(Flash),
elvon evdhwtn ot eméoelg enavdAndng. H eioaywyr| evog Tuyadouv Nopee omd Tov Emo-
nUeuTH PELOVEL TOV %iVOUVO o eMPBARAEL ppecHddo oTNY amodellr), oaAld 1 Vo
tou oto hash €yet onuoocia. O tpec unodgpiec popgéc etvon Hash(Nopcee||Flash),
Hash(Flash||Nopee), xon Hash(Hash(Flash), Noyee). H mpdytn omantel omé tov Eno-
nUeuTh vo yvwpeiler ohdxinpo to mepieyduevo tou flash yia v enahndeuon, xdtt mou
0EV XALAXWDVETAL EXTOC oV OAEC Ol cuoxeVES ebvar (Blec. Ot 600 TeheuTaiec amauntoly
uévo v anodrixevon tou Hash(Flash) ¥ tng evildueonc xatdoToong TOU XoToXER-
uotiopol, unodétovtag Twe yenotwonoteltar xataoxeur) Merkle-Damgard, enopévec
ebvor eudhwteg ot emiéoelg TOmou TOCTOU edv évag emtidéucvog unopet vo enéufet
METE Ao YEPXO UTOAOYIOUO. € OAES TIC TEQITTWOELS amonte(ton ey yUimnon audevtixdTn-
T ETOPEVKS, 1) ontolal uropet va emteuydel péow HMAC ye xowvé puotind xheldi mou
meoxUntel ané ECDH ¥ RSA key exchange. Ta dnudoto xAeldid mpénet vor elvan utoye-
YOUUUEVOL OO TOV XUTUOXEVAOTY, EVM TOGO To XAEWIA 650 xou 1) pouTtiva entoAfleucne
TEETEL Vo amoUNXEVOVTUL O ACQUAT UVAUY XOL VoL TEOC TOTELOVTHL amd secure boot.
Me autéc Tic eyyurioeic, o AmodexTic Unopel Tomixd va cuyxplvel To hash tou flash
ue to Golden Hash xou vo otelhet pévo évor hoyxd omotéleopo (emtuylo/amotuyla)
Ywelc vo exdétel 1 acpdheio Tng Anopaxpuouévne Enaiidevong.

Enwoxénnon IlpwtoxdAAou

To mpotewduevo mpwtoxohho Tpayuatonolel Anoxevipnuévn Aupoala Atopaxpuo-
uévn Enodfdevon ye Tomuxd ‘Eheyyo Axepondtnroc flash xou mephauBdver:

o ®dorm Extog XOvdeong: Ilpourleia cuoxeumy ye firmware, 18w tind,/dnudoia
HAEWOLL, UTOYQAUPES HUTACHEVAGTT KOl AGPUAT| ATOVUEUTT] HAELDLOV.

e 3tddio Exxivnong: To secure boot emahnieler to firmware, amoxpur-
Toypapel To xAewud, umohoyilel xo amoUnxelel o éyxupo Golden Hash tng
flash, xou mpooTatelel TeEpLOYES UVANUNG XKoL HAEWBLOV.
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o ®don Elepebvnong: Ou cuoxevéc avaxaibmtouv yeltoveg péow TEImhig
yerpalac (avaxolvwon, avoryvoplon, emPefoiwon), enahniedouy utoyeypauuévo
xhewdd xou urohoyilouvv xowvd xhewi HMAC péow ECDH-+HKDE (EyAua 1.2).

Yuoxevn 1 (Ilpootiveton) Yuoxeun 2

Avaxolvewon

NOHCG? Pkla SignVendor(Plﬁ)

S < ECDH(SkQ, Pk’l)

Avoyvéspion k <— HKDF(s)
S < ECDH(SIﬁ, Pk'Q) | Noncen Pk2? SignVendor(PkQ)
k <+ HKDF(s)
HMACy(Nonce) Enefoiwon

NOHC67 HMACk (Nonce)

Figure 1.2: Awdypopua oxoroudiac tne Pdong EEepetvnong ue 2 cuoxeuég

e I'pou Enarvj¥csuong: Kdie cuoxeur| dpa wg Enoindeutrc otéhvovtag auth-
HorToL UE (peéoxa nonces o€ GAoUS Toug Yeltoveg, eAéyyel Tig anavtioes e HMAC
eVTOC Ypovixol oplou xou xatoypdpel To anotéAeopa. (d¢ ATOOETAS, 1) CLUOXEUN
extelel auto-enahfdevon ovyxpivovtoc Hash(Flash) ye to Golden Hash xou
OTEAVEL UTOYEYPUUUEVT avTomdXpLon e To amoTtéheopa (Lyfua 1.3).

Yuoxev 1 (Emokndeutic) Yuoxeun 2 (Anodeixtic)

Aftnua !
Nonc67 HMACk (Nonce)

3>
>

h < Hash(Flash)

?
Avtoméupion b < h = Golden Hash

Nonces b, HMACy (Nonee| D)

<
<

Figure 1.3: Audrypoupo oxoroudiog evog I'ipou Enairifevong e 2 cuoxeuég

‘Okeg oL cuoxevég alhnho-enahndebovta ye doeg Bploxovton evidg euPéelag, oy
potiovTtag TANPWS CUVBESEUEVO YRAPO EUTLOTOGUVNS GTNY XOWVY| TERITTWOT).

Figure 1.4: Tonoloyla dixtiou: Kéufol 1,2,3,4, ..., N eivon 6hot cuvdedeuévol

1.4.3 YAlomoinonm
YA IThatpdpuag

[a v avdmtuén tou IMhawsiov Anouaxpuouévne Enaiidevone emiéydnxe to toin
ESP32-C3 tne Espressif Aoyo yaunAod x66ToUE, Uxp®V BICTACEDY Xol TAOUGLKY
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OUVATOTATOV.

Table 1.1: Specifications of ESP32-C3

’ Xapaxtnplotnd \ Twur/IInpogopiec ‘
Apyrtextovind 32-bit RISC-V Movonienvog
Pipeline 4-stage, in-order, scalar
Méyiotn Yuyvotnta 160 MHz
Wi-Fi Xuvdeowdtnta 2.4 GHz Wi-Fi (802.11b/g/n)
Bluetooth Yuvdeowédtnra Bluetooth 5 (LE)

Eowtepuy ROM 384 KB

Eowtepiy SRAM 400 KB

Mvrun RTC (Xounirc Ioyboc) 8 KB

Méyiotn Trootnelduevn E€wtepiny MvAun | Up to 16 MB

IIvdoc GPIO 16 or 22

Tdon Ewcbdou 3.0Vto3.6V

Kpuntoypaguol Emtayuvtéc AES, SHA, RSA, HMAC, RNG

Yrov mivaxa 1.1 mopotidovton xdmow amd tor yapaxtneloTind tou. Ilpdxeitan yio
évav 32-bit single-core enelepyacth) RISC-V pe ouyvétnta éwe 160 MHz, 4 MB flash,
400 KB SRAM, Wi-Fi 2,4 GHz, Bluetooth 5 LE, xadc¢ xou emitoyuvtéc UAxol yia
RSA, SHA, HMAC, AES xot acgaréc RNG. Trootnpilet secure boot, xpuntoypapn-
uévn anovfxeuvon flash xow PMP, ixavomolcyvtog Tig anonthoelg pog.

Figure 1.5: IMaxéta ESP32-C3 Supermini

Y10 Eyfua 1.5 epgaviCeton n mhaxéta ESP32-C3 Supermini tou ypnowwonotiinxe
oty avdntuln. Anotelel pa TAéov oixovouixr) emhoyT, xaddg elvon diodéoiun oe
TWH WxeoTEREN TV 2 evpd [30].

Aoyiouixd

To mhaiclo vhomofinxe e C yia TNV EUXONOTERY EVOWUATWOT UE TIC UTOAOLTES [Bif3-
MoOrixec Tou ollomotinxoy:

FreeRTOS To FreeRTOS efvar €vag muprivag AEiToupyino) GUC THUNTOS TRy UATIXO00
xeovou (RTOS) avorytol x@dixa amd tny AWS, oyedlacUévog YL EVOWUOTOUEVA
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CLCTAUNTOL UE TIEPLOpLoPEVOUC hpouc. Alodétovtag mohudiepyaoio (multitask-
ing), emxowvwvio uetall epyaotdv xat Uixpd anotinwuo uvAung, to FreeRTOS
elvon eCoupeTnd popntd xan €xel uiodetniel evpéwe oto IoT, ota cus THUATA oL-
TOXWATWY X0 OTOV BLOUNyovViXG AUTOUITIONOG, OTIOU 1) amodoTIXY Xt TEOBAEYUN
am6d0oT elvor xployng onuactog.

ESP-IDF To Espressif IoT Development Framework (ESP-IDF) etvot évo ohoxhnpouévo,
avowtol xwdwo SDK yia toug pixpoeheyxtéc tne Espressif, dounuévo néve oto
FreeRTOS. Evowuotdver mAndopa BiAodnxoy, cuunepthopfovouéveny TpmToXOrmY
OTOWONG, EMTEDLY agaipeong VAxoU. H oyediaor tou framework xou To cbotnua
uetayAodTTiong mou Bacileton 6to CMake BieuxoADVEL TNV AVATTUEY ETEXTACIUGY
xou opnTey cuoTrudteny. H arndgacn yio tny viodétnon tou ESP-IDF ennpedotnxe
ONUOVTIXG Ad TOV EYYEVY avOXTO TOU YopoxTrpa, 0 onolog emTeénel T Pordid
TOEUUETEOTOINCT BACIXOY AELTOLEYIOY—amd TN Olyelplon uviune tou FreeR-
TOS xou v mdovy| ulormoinon amoudvwong cpyootdy Yéow g Ilpootaciog
Puowc Mviune (Physical Memory Protection - PMP), éw¢ v tpononoinon
g Sadasioe Aogaroive Exxivnong (Secure Boot) yio tnv evioyuon tng Aluat-
dac Eymiotootvne (Chain of Trust) tou cuothuotoc.

MbedTLS H MbedTLS, uo ehagpeid, avorytol xwdixa xpuntoypapixy| Bi3hiodrxm
mou avartUyUnxe and v ARM. [Tapéyetl pia 0AoXANEOUEVT COLITAU XPUTTOYRAUPIXWY
TEWTOYEVHOY CUVIPTACEMY XAl TROTOXOMWY, ot oToleg adlomotiinxay 6Tny Topoloa
epyaoio yia TNy vhonolnon aulevTiXOTNTA Xou YYNOoLOTNTA GTNY eMxovewvia. Emi-
TAEOV, Ol XPUTTOYQROUPIXES TNG CUVOIPTNOELC YeNoWoTotfinxay yiot TNV EToAf-
Yevor tne axepondtnTog TN VNG flash évavt un e€ouvclodotnuévne Tpononoinone
xou ahholwong dedouevev. H evowpdtwon tng oto ESP-IDE moapéyel edxohn
YENON TV ETTOYLYTOY UAIXOU.

Aouq touv 'Epyou

To éoyo oxoloudel o Tumxr) Sour) ESP-IDF, enextetopévn yio vae unootnpilet bench-
marking, apUpwtd cTotyelor xaL aUTOPATIOUO.

IInyaioc Koduxag

components Ilepiéyetl aplpwtd mnyalo xHOxa: my_attest yio tn Pooixd Aoyixy
attestation, my_benchmarking ylu tn pétenon anddoong, my_crypto yio
xpumoypo«pmég )\ewoup\{ieg, my_flash_hash yix pétpnon axspouémwg
¢ flash, xou my_net yia 0 dixtiwon.

scripts M oulloy#| ond scripts yio doxipée, anoogaludtoon (debugging)
X0l qUTOUATOTOMOT).

IMapayoupeva Apyeia

benchmark Ilepiéyel dho tor auTOPATH TToEAYOUEVY amoTeAEcUata Tou bench-
marking, cuunepthopfavouévey twv dedouévov CSV (cpu_usage_time_series,
results.csv), TV napayduevemy plots xou twv debug logs.

build ITepiéyer ta noparydueva omd to ESP-IDF exteréowa (binaries) xou op-
yelor petayhotuone (build files) yio to flashing twv cuoxeudv.
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keys Amoldnxelel To ToporyGUEVA XPUTTOYRAUPXE XAEWOLS TOGO Yiot ToV vendor
OGO %Ol Yo TIC UELOVWUEVES devices, CUUTEQLAUUBOVOUEVGLY TWV UTOYQUPOV.

logs Ilepiéyetr opyeio xatorypagrc (logs) omd tn puetaryhdTtion xou TNy mopaxoholinon
NG CUGKELYC.

Apyeia Pudpicewy

CMakeLists.txt To x0plo script petayAottiong yw to obotnua build tou
ESP-IDF.

partitions.csv & .in O mivoxag xatdtunong tng puvAung flash tng cuoxeur|c
X0l TO TPOTUTO TOU.

sdkconfig & .defaults Hapayépeveg WOl Tcpoxocﬁoptapéveg ano Tov TEOY PO~
wotio T Tée puduioewy yuo to framework xan to ESP-IDF.

.last_build_time 'Evo opyeio ypovooppayidac (timestamp) tou yenowponolei-
Tou Yo Tn Behtiotonoinon tne enavotonodétnone (redeployment).

AvTopatonoinor Avarntuing

[oe v emitdyuvorn tou xOxhou avamTuing, OnuioveYHUNXE W OEWRd amd TEOYEG-
uotor bash yior v avtoyatomoinon NG UETAYAMTTIONS, TOU TEOYQUUUATIONO) XAl
NG TUEAXOAOVUNCNE TOMATADY GUOXELUMY TAUTOYEOVY. XENOWOTOLOVTUS Tor Tmux,
Openssl xau TV cpyoleto¥rinxn ESP-IDF, awtd to scripts SwayelpiCovton tar v, and
N OnuLoupYlar XAEWBLOY Ewe Tr) ualxr avAmTUET Yo TNV AVIAUCT] ARy EIWY XoTorypapnc
(logs).

Avddeon Khewdiwv Xevdpla yioo T dnuiovpyio xou doyelplon XpURTOYpapxey
XAEWOLDY YIOL TOV TPOUNUEUTA Xl TIC GUOXEVEC.

e generate_vendor_keys.sh: Autopatornott tn Snuoupyla (euydv xpun-
TOYRUPIXOY XAEWLOY Tou Tpoundeuty (vendor).

e generate_sign_device_keys.sh: Anuovpyel éva (ebyog xAeduwy yio
ULO CUOXELY| XL UTOYQRAPEL TO ONUOCLO XAEWL UE TO WOWWTIXG XAEWL Tou
TpoundeuTH.

e generate_device_partition_binary.sh: Arnuoupyel éva duadixd par-
tition mou mepiéyet 1 SievYuvon MAC tng cuoxeurc, Ao Tar XAEWBLd xa
TIC UTIOYQAUPEC.

e flash_attestation_partition.sh: Anuovpyel To Tehixd apyelo partitions.csv,
unoloyilovtag To péyedog xou T Véon tou attestation partition.

Avdntugr Xevdpla yio ToV TpoYpopuaTiond Tou firmware xou Ty mopaxohovinon
TOAATAWY CUGXEVMV.

e find_esp32_dev.sh: XopmVeL TIC CUOXEVEC TOU CUOTAHUNTOC Yial Vo BpEL
xou VoL eUpavioel OAEG TIg cLVBEdEUEVES ThaxéTeg ESP32.

e run_device.sh: Ilpoypoupotiler pio uévo cuoxeur] ye to amoutoUUEevVa
HAEWOLE o BLADLXGL aEyElaL, XOU GTT GUVEYELOL AVOLYEL VOV GELRLOXG monitor.
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e run_all.sh: Kdével build to project xou evopynotpwvel Tov Tpoypouua-
TIOUO XL TNV THEOXOA0UINGT OAWY TWY GUVOEBEUEVV GUOXEVWY TOHUTOY POV,
YENOWOTOLOVTOS TO tmux.

Métpnorn Emddoewy Xevdpio Yo Ty aUTOUATOTOINGCT| BOXIUGOY amOBOCTS XoL TNV
OTTXOTIOINOT) TWV ATOTEAECUATWY.

e benchmark.sh: Exteiel auvtopatonoimnuévee Soxéc xat GUAAEYEL UETEY-
oewc (CPU, RAM, x.An.) o€ éva opyeio CSV.

e plot.py: AwfBalet apycio CSV amd ta benchmarks xon dnutovpyel yoapn-
MOTOL UE T DEBOUEVAL AOOOOTG.

Adpopa Bondntd scripts yla mopopetoonolnon xon anoc@uiudtenon).

e update_sdkconfig_from_defaults.sh: Evnuepnvel éva umdpyov apycio
sdkconfig ond éva apyeio mpoemhoyov (defaults).

e generate_partitions.sh: Anuoupyel To TeAx6 apycio partitions.csv
yioo T Sudtaln e pvhAung flash tng cuoxeurc.

e find_errors.sh: Xopovel apyeio xatoypaprc (logs) yi vo Bpet xou vo
e&dyer unvopota 'Guru Meditation Error’.

e print_keys.sh: Eugavilel to xAeldid and éva Suadixd apyelo partition oe
avary vaotun and dvitpwro Sexac&adixr| Lop®t).

Apyitextovixy ITAawcliou

To mhalolo oyedidotnxe yOpw and tasks xar queues Tou FreeRTOS vy modularity
xou real-time améxplon. Katd tny exxivnorn goptwvovtar ta credentials tng cuoxeurg,
Eexwvd 1) duxtlwon xan ot tasks yioa Amouaxpuopévn Eralfieuon xon eqopuoy.

To xOpta Tasks omwe gatvovton xou oto Nyfua 1.6.

e Network Sending Task: Anooctéliet toxéta (ESP-NOW) ané tic Siepyooieg
¢ Amopaxpuouévne Enaiidevone A tneg epappoyrc oto dixtuo, ntpociétovog
AVEAOYO OVOLY VOELOTLXO. .

e Network Receiving Callback: Kateulivel eloepydueva moxéta oTiC 6woTéS
0VEEC avd TUTO UNVOUATOG.

o Attestation Sending Task: Sexivd avoxolvaoelg xon autruato enoAfeucTC.

o Attestation Receiving Task: Avtidpd o awtruata etodfleuong xon xoto-
YEdpEL AMOTEAECUUTA OO UVTUTOXPIOELC.
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Figure 1.6: Awdrypopua Tasks RTOS vy to Ihaloto Arnopoxpuouévne Enaifieuone

Enuhoyéc POOpiong tou IThowciou

To mhalowo €yel napapetponotniel ue otoepéc Ypovou UETAYAWTTIONG Tou pLUUL-
Covtan oto apyeio sdkconfig.defaults ¥ uéow tou menuconfig. O emhoyég xatr-
YOPLOTIONUEVES:

PUdprorn Luoxevdv Opiletan o aprdudc twv ovoxeudv (CONFIG_MY_NUM_DEVICES),
1 TOWON UETA TNV avoxdAudT YEITOVWY xou timeout yio emavacivoeon yeltova
(CONFIG_MY_NEIGHBOURS_FOUND_WAIT_MS, CONFIG_MY_TIME_FROM_LAST_ATT_RES_TO_RERECO(

POOpion Awtbwone Kodopilet to péyedoc noxétou (CONFIG_MY_PACKET_DATA_MAX_LENGTH),
TN AOYXN ENAVATOO TOAC UNVUUSTWY (CONFIG_MY_OFFLINE_RESEND_MAX_COUNT,
CONFIG_MY_RESEND_DELAY_MS) XL TNV TEEpiOBO VOXOLVWOCEWY (CDNFIG_MY_MSG_ANNDUNCE_SEND

ITeplodo Enalrp¥cuorng Ot otadepéc CONFIG_MY_ATTESTATION_INTERVAL_MIN_MS
xow CONFIG_MY_ATTESTATION_INTERVAL_MAX_MS opilouv to Tuyaio ypovixd £0pog
Yo TV €vopgn VEwv yOpwy enaiiieuonc (attestation rounds).

Emhovéc Kataypagphe M oeipd and onuaiee (flags) (CONFIG_MY_LOG_. . .) yu
TNV EVERYOTOMGOT)/AMEVERYOTOINGT TNE oVaAUTIXAG XaTarypapric yior cuUBdvTa
OL(TOOU, UNVOUNTA, OTATIOTIXE YELTOVWY %ot YOPOUS TLOTOTOINGNG, 6LV TNV TERiodo
xotorypopric otatio iy e CPU (CONFIG_MY_LOG_CURRENT_STATS_PERIOD_MS).

Enuhoyéc AZoNoynong Anddoorng H emhoyry CONFIG_MY_BENCHMARKING ev-
epyomotel T GUAROYT| PETENOEWY amoBoomg Yl didpxela Tou opileton amd TNy
CONFIG_MY_BENCHMARK_RUNTIME_MS.

Avayvopion Mnvupdtwy OutCONFIG_MY_ATTESTATION_MAGIC xon CONFIG_MY_APP_MAGIC
ebvar «yaryixof oprduol» (magic numbers) mou yenotwonooUvtar ylo T Spo-
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HOAGYNOT ELOERYOUEVWY TAXETWY EITE 0TN Wovdda enahrcuong elte otny eqogp-
poY.
Enuloyéc Kpuntoypapiog Xnualec énwe n CONFIG_MY_PK_USE_EC_SECP192R1

EMAEYOLY TNV EAAELTTIXA XOUTOAY) TTOU YENOWLOTOLELTAL Yot OAEC TIG AELTOURYIEC
ONUOGLOU HAEWBLOV.

ITpoxAfoeig TAormoinorng xou Iapaieiderg

Kot tnyv avdmtuln avtipetonio tnxay tpoBAfuata OTwe Un TeoyeduatiCOUEVES GUOXEVEC,
actadelc USB hubs, o@dhuata ypoviopol dixtbou, cuyxpovoeic MAC dievdivoewy,
aouupwvieg xataxepuatiopol flash xau buffer overflows, ta onola avtipetonio oy

UE ETMAVAOYEDIAOUO WO xa EAEY YO uviAung. Oplouéveg Aettovpyleg ao@dhetag Tou
UAxo0 (secure boot, xpuntoypognuévn amodfxeuon, anoudvwon tasks péow PMP)

€y ouv eqapuoctel aveldptnTa Trg epyaciag auThg oTo TapeAIGVY xou dev uhoTot dxay
070 TANUOLO AUTAG TNG OLTAWUATIXNAG GAAS 1) EVOWUATWOT] TOUG ATOTEAOLY UEANOVTIXT)
epyooto.

1.5 A&ioAoymon

Avuth) 1 evotnTa Tapouotdlel TV alloAOYNOT TOU GUCTHUUTOS UAC OE OLUPORETIXES Ol-
apoppwaoelg xat goptia, eoTidlovtag ot yeron CPU, otnv xatavdhwon pviung, otoug
YEOVOUG ATOXELONG KoL GTOUG YPOVOUS OROXANPMCTS XOXAWY OTOUUXPUOUEVNG ETOAT-
Yevong.  To dedopéva CUAAEYINXAY YENOLLOTOLOVINUS TO QUTOUATOTOMNUEVO script
benchmark.sh oe 10 ESP32-C3 Supermini Boards, ue extehéoeic mou dlag@opomolody
1600 ToV aptlUd TV cuaxeuy (2-10) 6o xou Ty TEEindo T' TV YORMV UTOPIXEUC-
uévng emahridevong (2-20s). T eivon 1 UEoT TWT| TN TEELOBOU Xad(S YLl TNV ATOQUYT)
eMUECEWY YPOVIOUOD X0t GUUPOENCT TOL BLXTUOL, N TEaypaTXT| TEpiodog xdie yipou
x&de ouoxeuric emhyotay oto T £ 0.55. Kdie extéleon difpxnoe 100s, ye xatorypapn
¢ CPU xdde 100ms xan cuALOYY| HECWY OTATIOTIXGY ovd cuoxeur). O ypovixég uT-
epPdoelc (timeouts) oudPatvouv av 1 amdxplor utepBel T — 1s, v oL GUYXEXPIUEVES
avtomoxploelg dev Apinxay uTdd 6ToUC UTOAOYLOHOUS YPOVKY UTOXPLOTG.
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1.5.1 Xpron CPU ue tnv ndpodo tou ypdvou

CPU Usage over Time (Period 12 40.5s)
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Figure 1.7: Xpnon CPU ot Bddoc ypbdvou pe meplodo 12s.

CPU Usage over Time (Period 6 £0.5s)
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Figure 1.8: Xprion CPU ot ddog ypdvou pe meplodo 6s.

‘Onwg gotvetan ota Myfuota 1.7,1.8, n CPU napouoidlel meptodinés xopugéc mou
euduypoppilovtar ue toug xOxAoug RA. H didpxeior twv xopupov avldvetar ue tov
ot TV CUOXELGOY, xaOS aLEAvETAUL 0 dPIIUOC TWY UTNUETWY TEOS AMAVINOY) Xol
oL xoTaxeppatiopol Tng uviung. Kotd tnv didpxeia Tou xataxepuatiopol i yerion etvor
100%.
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1.5.2 Avdivorn Khpdxwong Aptdpod Yuoxeuwy

Metprioeic ouvapThioet Tou oprluo) GUOXELKDY TOU GUUUETEYOUY GTO BIXTUO.

Scaling: Average CPU Usage
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.
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Figure 1.9: Méon yeron CPU vs aprdudc cuoxeumy.

Y10 Eyruo 1.9 yiveton exddapo mwe n uéomn yerion tou enelepYaoTr, and TIC
poutivec TN Amouoxpuouévne Enoifdeuonce, avgdveton oyedov yoouuxd xat topatneei-
TOL XOPECHOS OE TEPLTTOOEIS TOAAWY GUOXEUMY UE UPNAT oUYVOTN T

Scaling: Max RAM Usage
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Figure 1.10: Méyiot yefion RAM vs apriudc cuoxeuov.
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‘Onwe avagévouue 1 yeron wviune (oAdxAnpou tou cuoTAuaTtoc) uével mepitou
otadepr) xatd Ty adinon Tou TANHucUoD, xS TO UEYUAUTERO ATOTUTLUN OQelAeTon
OTIC UTIOAOLTES AglTouRYiEC TOU UxpolToAOYIOTH).
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Scaling: Response Time
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Figure 1.11: Xpévoc andxpione ploc aftnone RA vs aprdudc cuoxeudy.
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Scaling: Round Completion Time
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©
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Figure 1.12: Xpbvoc oloxhpwone xOxhou RA vs apriude cuoxeuov.

Or ypdvoL amdxeLomg aTNUATOY %ot ¥ eOVOL 0OAOXA PWoNG YUEoL ETaineloewy and
x&de cuoxeur] ALEAVOVTOL XATA TNV TEOCU AT CUCXEUMY GTO BiXTUO OTKC (QalveTol
oto Uyfuata 1.11, 1.12. Autd ogeileton 0T0 OTL 1) BlaoTopd PETAL) TWV TEPLOBKY THV
AUTNUETWY omtd OAEC TIC CUOXEVES Elvol UIXEY|, UE AMOTEAEOUO TOL ALTHUNTA XATE HEGO
6p0 VoL GUYYEOVILOVTOL Yo Vol TEOXAAOUV GUUPOENOT] OTIC CUCKEVES.
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1.5.3 Avdivon Xuyvotntag 'tpwyv Enairylsvong

Metprioeic ouvaptioel Tng péong mepLodou uetall dlaxpitoy I'"pwv Enaidevonc.

Round Frequency: CPU Usage

e —8— 4 devices
—8— 7 devices
10 devices
80

60

40

Average CPU Usage (%]

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Attestation Period [s]

Figure 1.13: Méon yenon CPU vs neplodog RA. H CPU pewwveton ye adénon tng

TEELODOU.

To oyfua 1.13 emPBefoucdver mwg 1 péon ypriorn Tou enclepyaoTs| yYiol TNV ETAUEVOT
elvan avTIoTEOYOC avdhoY T TN TEELOBOU, BNAUDY| AVAAOYY TNG CUYVOTNTUS TV YURMV
ATOUAXEUOUEVNC ETOUAAUEVCTC TTOU EXTEAOUVTAL.
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Round Frequency: RAM Usage
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Figure 1.14: Méyiot yprion RAM vs nepiodoc RA. To anotinmua uviung
TORUUEVEL GYEDOV AVETNEEAGTO.

Ané 1o oyfua 1.14 ernlong emPefoucdvetar TS TO AMOTOTWHUN UVAUNG TOU TEwW-
Tox6AoL Bev emnpedletar amd TNy tepiodo. H auloueunoelg mou mopatneolvtal ogethov-
TOL OTOV TUYOLO TUUTOYEOVIOUO TGV BLAPORETIXMY YLPNOEWY TNG 0wWE0U, Xl G GYEOT
UE TNV GUVONXT XUTUVIAWOT UVAUNG elvol oeAnTEN.

Round Frequency: Request Timeout

100 o— —0— 4 devices
—8— 7 devices
10 devices
80
o
o
jg 60
5}
o
—
5]
[a W)
+
3 40
Q
=
20
0 - —e
2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Attestation Period [s]

Figure 1.15: ITocootéd ypovixav unepBdocwy vs tepiodog RA. Mixpéc neplodot
au&dvouv Tig uTepPdoELC.
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To Xyhuo 1.15 pavepmvel autd Tou TopaTneUNXE oL 0T TEONYOVUEVY YEAUPAUITA
O€ TMEQITTMOEL TOAADY GUOXEURDY X0l IXETHC TEpLodou. O GUVOOTIONOS AUTNUATWY OE
QUTEC TIC XATAOTACELS Tpoxahel utepBdoelg ypdvou (timeouts) ue onnotéheoua To
enaAndeuTtAc va unv amoxtd yvoon e xatdotoaong Tou omodeixtn.  Iopatneolue
emmpocVETOE WS Yo xde apriud cuoxeL®Y, UTEEYEL UL OpLUXT TWT TNG TEELODOU,
dvey tng omolog To cloTnua elvar otadepd xan AetToupyixd.
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Figure 1.16: Xpovoc andxplone uiog altnone RA vs meplodoc. Xtodepomoleitar ndve
a6 xployn nepiodo.
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Figure 1.17: Xpbvoc oloxhrpwone xOxhou RA vs meplodoc. Mtadeponoteiton dtav 1
neplodog Eemepvd To xplowo dpto.

Yo Myfuata 1.16, 1.17 mopatneolue Tog 1 avTandxplon TV CUCXEUKY, TOCO
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OTOUIXd 600 xaL CLAROYWE, elvon aveldoTntn Tne péong mEELOdoU, BeBOPEVOL TS
auTY| EEmEEVE TNV oploxy| T Yo 6TadEpdTNTO TOU GUOTHUNTOC.

1.6

Yvunepdopata xou Meilovtixy) Egyaoia

1.6.1 Xvunepdopata

H nopotoa epyasio napovoiace éva amhéd xou emextdoipo Ihaloio Amouaxpuopévng
Enoifideuone yia ouvoxeuég IoT, adomoidyvtog tnv Hpootacio Puowric Myvrung tou
RISC-V w¢ vy PiCo Euniotocivne. To miaicio cuvbudlet unyaviouolc Yo mpootacio
amo enavahfbels, ey yurioelc peeoxddag ue nonces xon anoxevipwuévn RA peer-to-peer,
ETUTEETOVTUG GUAAOYIXO EAEY YO AXEQUOTNTAS YwElg povadind onueio eumioToolvng.

H viornoinon oty miatgopuo ESP32-C3 anédeile afiomotn hettovpyio oe dixtua
OLUPOPETIXAY MEYEVWY Xou oLy voTNTeS enodleuone. H allohdynor €deile 6TL 1 yerion
CPU eivan 0 xuptdtepog mopdyoviag ambd00G, EVEM 1) XATAVIAWGCT) UVAUNG TUPUUEVEL
otadepr). O 0woTtog xadoplonds Tev dlac TpdTwy enaliieuong eacpahilet TeoBAE)-
LLOUS YPOVOUS OMOXANRMOTNS X0l YUUNAG TOCOGTE YEOVIXWY ECAPECEMY. DUVOMX, TO
TAUUGIO YEQPUEOVEL TO YAoUo UETAE) VEMPNTIXWY CUALOYIXOY oYediny RA xou mpox-
Tig vhonolnong oe cuoxeuég ToT neproplouévwy tépwy e Prounyavioc.

1.6.2 MeAlovtixr, Epyacia

Avvatéc emextdoelg yio Peitiowon tou IThawciov Anopoxpuopévne Enoifdevorc pog
TepL opfdvouv:

Pila Epniotoolvng oto YTAwxd: Evowudtwon secure boot xon acporhoic
amo¥xeuong xAeWwLwy, oc cuvduaous pe PMP yia Staywpelioud epyaoiny oto
FreeRTOS oty ulonoinon [24].

Egunvétepn Enalnicuon: Evowudtonon teplodinol eh€yyou oaxspaldTnTag
avtl eAéyyou peTd and xde eloepyduevo altnua emahidevong.

BeAtiotonoinon Anédoong: Meiwon yerone uviune xou CPU péow evah-
AoXTIXOY OAYORIIUWY XATAXEQUATIONOU %ot THIAVOTIXWY UETEYOEWY OXEQAULOTT-
TOC.

Kpuntoypagpio: Oloxirpwon vroothieine RSA yua dnudoia emahrdevon,
ToEdAANAa Ue TNV uTdpyouca vhomoinom pue ECC.

AvTotaon: Auvvatdnta ao@arhols xal CUTOUATOTONUEVNS UTOXATAC TUONG LO-
AUGPEVODY GUOXELWY eumveuouévn arndé to HEALED [].

KA pdxwon: Trnootheiln oynuatiolod anodotxdtepny Totoloytody (T.y. dev-
o) yroo Dulhoy) Anopaxpuouévn Enodfdevon énwe to SEDA [4].

ITpootacia and DDoS: Afwonoinon challenge-response xou @iAtpev yior orv-
tlotaon oe eméoelg uTEPPOETWOTS.

Avutéc ol BerTitdoeic Ya evioy 0oLy TepunTépe TNY aVIEXTIXOTNTA, TNV ATOBOTIXOTNTA
xou TN BuvaTdTNTA LIoYETNONS GLAAOY OV Thauoiwy RA oe ueyding xhipoxag dixtua
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IoT neplopiouévmy mopwy.
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Chapter 2

Introduction

2.1 IoT

Humans have always used technology as a tool, to improve and optimize our society.
Internet of Things is no different case than that. Internet of things (IoT) is a
collection of many interconnected objects, services, humans, and devices that can
communicate, share data, and information to achieve a common goal in different
areas and applications. These devices are in essence tiny computers, embedded in
our society and lives.

2.1.1 Applications of IoT

The recent emergence of low cost interconnected chips, sensors has allowed many
industries to adopt IoT and improve their operations. Common examples are |11]:

Healthcare IoT devices are used for remote health monitoring, such as with heart
beat and respiration sensors, fall detection for the elderly, accelerometers, and
pedometers. Devices have even been used inside the body, with pill-sized
devices to examine the digestive system, and the acquired data is then trans-
mitted to other devices for processing, filtering, and visualization.

Smart Grids and Metering IoT plays a crucial role in the transition to a green
grid, where renewables make the majority of energy sources. All sources have
to be able to monitor their potential output power, communicate it to the grid
administrators which meter all consumer and industry needs concurrently.
Admins dispatch quotas of power output distributed sources have to meet,
and all that in a matter of milliseconds, in order to keep the grid stable, with
minimal voltage and frequency deviations, or in the case of failure, to bring
parts of the grid back up to speed quickly [20].

Home Automation Most modern homes are equipped with interconnected AC,
fridges, heating, dehumidifiers, lighting, EV chargers and of course a variety
of humidity, brightness, temperature, and air composition sensors. These can
all be organized into smart systems, to provide a comfortable home e.g. with
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ambient lighting, constant humidity and temperature, and smart charging dur-
ing cheap electricity hours. Even more, intrusion or smoke detectors connected
to the internet can notify absent home owners in critical moments.

Automotive Industry A plethora of IoT is used in the cars of the 21st century,
from temperature, acceleration, wear, oil level sensors to critical safety systems
like the ABS, tranction control, the airbags and to the more optional and
comfort features like climate control, seat heating, infotainment, navigation

[22].

Smart Cities Modern cities can be equipped with trash and recycling bins that
have weight sensors and notify the waste management authorities which have
the information available to optimize waste retrieval only where and when
it’s needed, reducing the necessary man-hours and fuel of their trucks. At
the same time smart traffic lights that can sense the number of cars in each
intersection and any incoming buses or trams can optimize their schedule to
prioritize public vehicles and optimize car flow. This can improve or even solve
congestion, and, together with bus/trolley /tram GPS tracking and monitoring
through the internet [6], they can drastically increase the quality of the public
transportation resulting in reduced travel times for all!

2.1.2 The Challenge of Security

n recent years, the proliferation of Internet of Things (IoT) devices has increased
dramatically due to their widespread availability, low cost, and diverse applications.
However, this rapid growth introduces significant challenges, particularly in the
domain of security. The responsibility of ensuring the security and integrity of these
devices becomes critical as their numbers continue to escalate.

Experience in the field of computer engineering has consistently demonstrated
that any computational system inherently possesses vulnerabilities. When such
systems are network-connected, these vulnerabilities become considerably more ex-
posed and accessible to malicious actors. The security of IoT devices is of particular
concern given their massive scale of deployment. A single exploited vulnerability or
compromised entry point has the potential to affect millions of devices simultane-
ously, leading to widespread disruption.

Hijacked IoT devices can pose a big threat, dependent on the industry the are
applied in. Compromised health monitors pose a huge privacy concern for all pa-
tients while the can result in life or death situations for much of the elderly clientele
of this industry. Furthermore, in the automotive industry attacks can lead to deadly
accidents and rogue cars, while the same goes for the rest of the transportation sec-
tor; Smart traffic lights are credible attack vectors for adversaries to sabotage one’s
roads [15] while cyberattacks on rail, public transportation systems and airports are
far and wide in the age of IoT (e.g. [21], [26]). A compromised electric grid is also a
major strategic liability for any country as it can be a very useful asset in the hands
of a rival state [5]. Finally a network of compromised IoT devices can be used as a
botnet for DDoS attacks or to infect an even wider range of devices.
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It is for this reason crucial to not only have rigorous standards and security
best practices in the development of such IoT Solutions, but also greater mitigation
strategies. Such a mitigation technique could be the detection of intrusion in IoT
during their operation.

Such a method, of ensuring security and trust in networks of interconnected
[oT devices is Remote Attestation. It enables a single verifier device, or multiple
verifiers, to be sure at a given time that their peers, are not compromised and
working as meant. Scale this to tens or thousands of devices and Collective Remote
Attestation brings challenges of it’s own, for efficient communication, aggregation,
and propagation of this trust.

This thesis contributes to the field by designing and implementing a Collective
Remote Attestation framework, performing mutual heterogenous self-verifying at-
testation in IoT networks without a central Verifier. It is designed to be accompanied
by hardware guarantees through secure boot, secure storage and RISC-V PMP. The
implementation targeted the ESP32-C3 microcontroller, in order for the framework
to be easily adaptable to industry and serve a basis for future research in the field
of Remote Attestation.
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Chapter 3

Background

To understand the security challenges at the heart of this work, we must first estab-
lish a technical foundation. This chapter introduces the core technological domains
involved: the specialized nature of embedded systems, the interconnected world of
the Internet of Things (IoT), the fundamental cybersecurity principles that protect
them, and the critical process of remote attestation.

3.1 Embedded Systems

An embedded system is a specialized computer—a combination of a processor, mem-
ory, and I /O peripherals—designed for a dedicated function within a larger electronic
or mechanical system. Unlike a general-purpose PC, an embedded system performs
predefined tasks, often with strict real-time computing requirements. These systems
are ubiquitous, powering everything from consumer electronics like digital watches
to industrial machinery and automotive systems.

3.1.1 Networking

Networking is crucial for modern embedded systems, enabling them to communicate
with other devices and central servers. The choice of technology hinges on the
application’s requirements for range, bandwidth, and power consumption.

Wired Protocols For on-board communication, protocols like 12C (Inter-Integrated
Circuit) and SPI (Serial Peripheral Interface) connect microcontrollers to pe-
ripherals [1|. In robust industrial and automotive applications, CAN (Con-
troller Area Network) bus is prevalent due to its noise resistance .

Wireless Protocols The rise of IoT has spurred wireless adoption. Wi-Fi (IEEE
802.11) is used for high-bandwidth applications where power is readily avail-
able. For low-power, short-range communication, several protocols compete:
Bluetooth and its low-energy variant, BLE, are standard for point-to-point
connections in wearables and personal gadgets. For creating robust mesh
networks, particularly in smart home automation, protocols like Zigbee, Z-
Wave, and the IP-based Thread are common choices. In long-range, low-
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power (LPWAN) scenarios, cellular technologies like NB-IoT and LTE-M,
alongside protocols like LoORaWAN, allow battery-powered devices to send
small amounts of data over several kilometers [7].

3.1.2 Real Time Operating Systems

A Real Time Operating System (RTOS) is an operating system intended to serve
real-time applications that process data and events as they come in, typically with-
out buffering delays. The key characteristic of an RTOS is not high speed, but
determinism: the ability to process and respond to events within a predictable and
guaranteed time frame. This is critical in systems where a delayed response could
lead to a system failure, such as in an automobile’s braking system or a medical
device.

An RTOS manages the system’s resources (CPU time, memory) through a
scheduler. Common scheduling algorithms include pre-emptive scheduling, where
a higher-priority task can interrupt a lower-priority one, ensuring that critical tasks
are always executed first. When multiple equal-priority tasks have to be scheduled,
the scheduler can allow any task to run uninterrupted, until it yields, which can lead
to starvation. Alternatively it can adopt a round-robin approach, where every task
is given a time slot to process in

Popular examples of RTOS include FreeRTOS, Zephyr, and VxWorks.

3.1.3 Internet of Things

As mentioned before, the Internet of Things (IoT) refers to the vast network of
physical devices, vehicles, home appliances, and other items embedded with elec-
tronics, software, sensors, actuators, and connectivity which enables these objects
to connect and exchange data. The goal of IoT is to create a seamless fabric of
interconnected objects that can be monitored, controlled, and optimized remotely,
leading to improvements in efficiency, accuracy, and economic benefit.

An ToT architecture is typically composed of four main layers [20]:

Sensing Layer This consists of the "things" themselves—the physical devices with
sensors and actuators that collect data from their environment (e.g., temper-
ature, motion) or act upon it (e.g., turning on a light).

Network Layer This layer is responsible for transmitting the data collected by the
sensing layer to a central processing platform. It includes gateways and the
communication protocols (e.g., Wi-Fi, LoRaWAN, cellular).

Data Processing Layer This layer, often located in the cloud or on an edge server,
is where the data is stored, processed, and analyzed.

Application Layer This is the user-facing layer, where the processed data is pre-
sented in a meaningful way, such as through a dashboard, and where users can
control the IoT devices.
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3.1.4 RISC-V

RISC-V [17] is an open standard instruction set architecture based on the principles
of reduced instruction set computing (RISC). Unlike proprietary ISAs like x86 or
ARM, RISC-V is free and open-source, allowing researchers, companies, and hobby-
ists to design and implement processors without licensing fees. Its modular design
enables a small, simple base ISA that can be extended with optional features such as
integer multiplication, floating-point operations, or vector processing. Its openness
has spurred innovation, transparency, and a rapidly growing ecosystem of hardware,
software, and development tools.

RISC-V has become especially popular in IoT because of its flexibility, scalabil-
ity, and cost-effectiveness. Manufacturers can customize the ISA to include only the
instructions they need, minimizing power consumption and silicon area—critical
factors for low-cost, battery-powered devices. Its open-source nature removes li-
censing costs, making it attractive for startups and small companies developing IoT
solutions. Additionally, the growing ecosystem of RISC-V development boards, com-
pilers, and operating system support (like FreeRTOS and Zephyr) makes it easier
for engineers to adopt. As a result, RISC-V is increasingly being used in microcon-
trollers, smart sensors, and edge devices where efficiency, affordability, and security
are top priorities.

Physical Memory Protection

Physical Memory Protection (PMP) is a standard feature in RISC-V architecture
designed for memory isolation in security-critical systems. In essence it consists
a simple Memory Protection Unit (MPU) as it enables firmware to define specific
physical memory regions and control the associated access permissions. PMP plays
a crucial role in protecting memory for high-privilege binaries, such as firmware, and
in trusted execution environments, where it isolates enclaves and manages shared
memory regions. |19
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2 I 1
5| Lpmecfal |pmpaddri| !
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Figure 3.1: PMP Configuration Example [19]

PMP is configured using per-hardware-thread machine-mode control registers,
with each core potentially having up to 16 PMP registers. Each PMP entry com-
prises a configuration register (pmpcfg) and an address register (pmpaddr). The
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pmpcfg register specifies the addressing mode and permission bits (read, write, ex-
ecute), while the pmpaddr defines the address range using one of three addressing
modes: 4-byte aligned word (NA4), naturally-aligned power-of-two (NAPOT), or
top-of-range (TOR). PMP entries operate as a whitelist, meaning memory is inac-
cessible by default unless explicitly defined by an entry. Entries are statically prior-
itized, where the lowest-numbered entry that matches a memory access (including
the privilege mode) dictates whether the access succeeds or fails. The PMPChecker,
a core hardware module, implements these rules, taking the memory address, ac-
cess size, PMP register states (including lock bits and permissions), and the current
privilege mode as inputs to determine the access permissions. Exceptions include
denying permissions for partial matches within a region and granting default full
access for high privilege modes or no access for low privilege modes when an address
is not covered by any PMP region [19)].

Analogous technologies in rival architectures are TDX/AMD SEV for x86 and
TrustZone for Arm, which are richer in capabilities, able to provide TEEs but more

costly. PMP provides a simpler solution that them, for systems without a Memory
Management Unit (MMU).

3.2 Cryptography

Cryptography provides the essential tools to achieve confidentiality, integrity, and
authenticity in communications and data storage.

3.2.1 Hashing

A cryptographic hash function is an algorithm that takes an input of arbitrary size
(e.g., a file, a message) and produces a fixed-size string of characters, which is called
a hash value or digest. A key property of these functions is that they are one-way:; it
is computationally infeasible to reverse the process and derive the original input from
its hash. They are also designed to be collision-resistant, meaning it is extremely
difficult to find two different inputs that produce the same hash value. Common
hashing algorithms include SHA-256 (Secure Hash Algorithm 256-bit) and SHA-3.

SHA-256 first pads the input to a multiple of 512 bits by appending a ’1’ bit,
followed by enough ’0’ bits, and then the 64-bit message length; it then processes
the message in 512-bit blocks using the Merkle-Damgard construction, chaining a
compression function to produce the final 256-bit hash. Each block is combined
with the hash of the previous block, ensuring that the output depends on the entire
message.

Hashing is widely used to verify data integrity; if the hash of a received file
matches the hash computed by the sender, the receiver can be confident the file was
not altered in transit.
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3.2.2 Asymmetric Cryptography

Also known as public key cryptography, this system uses pairs of keys: a public key
Kpup, which may be disseminated widely, and a private key Ky, which is known
only to the owner. The two keys are mathematically linked.

If the public key is used to encrypt data, only the corresponding private key can
decrypt it. Formally, if M is a message:

C:EK

pub (

M)

where E is the encryption function and C' is the ciphertext. Decryption is then
performed using the private key:

M = Dy, (C)

where D is the decryption function. This process provides confidentiality.

Conversely, a message can be “signed” using the private key to create a digital
signature:

priv

Anyone with the public key can then verify this signature:

Verify (M, S) = True

This confirms both the authenticity of the sender and the integrity of the
message.

Prominent algorithms include RSA (Rivest-Shamir-Adleman) and Elliptic Curve
Cryptography (ECC).

3.2.3 Message Authentication

Message authentication is the process of verifying that a received message comes
from the alleged source and has not been altered. While digital signatures (using
asymmetric cryptography) provide this, a more lightweight method is a Message
Authentication Code (MAC). A MAC is generated using a symmetric key (a single
key shared between the sender and receiver) and the message content. The sender
computes the MAC and sends it along with the message. The receiver performs the
same computation on the received message using the shared key and compares their
result to the received MAC. If they match, the message is authenticated.

A common implementation is HMAC (Hash-based Message Authentication Code),
which enhances the security of basic MACs by combining a secret key with a cryp-
tographic hash function in a carefully structured way that resists common attacks.
It works by hashing the message together with the key twice; once with an “inner”
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key and once with an “outer” key, providing strong integrity guarantees even if the
underlying hash function has some weaknesses. Formally, HMAC is defined as

HMACK(M) = H((K @ opad) || H((K @ ipad) || M))

where H is the cryptographic hash function, K is the secret key (padded to the
block size), M is the message, and opad and ipad are fixed outer and inner padding
constants. This double application of the hash function ensures that even if part
of the message is modified, the computed HMAC will no longer match, providing
message authentication.

3.3 Trust

In cybersecurity, trust is not an assumption but a property that must be established
through verifiable mechanisms. It is the foundation upon which secure operations
are built.

3.3.1 Root of Trust

The Root of Trust (RoT) is a component or set of components within a system
that is inherently trusted and cannot be compromised. All other secure operations
depend on it. An RoT is typically implemented in hardware to make it immutable.
For example, a hardware module containing an unchangeable cryptographic key can
serve as an RoT. All subsequent software and operations rely on this initial anchor
of trust. Building upon the RoT, a Chain of Trust (CoT) is a sequential process
that verifies the integrity of a system’s components, one after another.

Secure Boot

A typical Chain of Trust for computers can be described by the Secure Boot process.
It describes the method through which a single computer can boot securely and
verifiably the correct software stack. The process starts with the RoT, which is
some type of ROM with boot code, which is guaranteed the first piece of machine
code that is run during boot, and an immutable public key of the computer’s vendor.
These two guarantees are set in hardware and thus trusted. The ROM code (e.g.
Lst boot stage) verifies the integrity of the next component in the boot sequence, by
taking its hash and verifying the vendor’s signature of that hash. If the bootloader
is valid, execution is handed over to it and it is itself trusted to verify the next
component (e.g. the operating system kernel), and so on. This ensures that every
piece of software loaded onto the system has been authenticated and is in a known,
trusted state. If any link in the chain is broken (i.e., a component’s integrity check
fails), the boot process can be halted to prevent the execution of compromised code.

3.3.2 Remote Attestation

Remote Attestation (RA) is an effective solution to detect software compromises on
remote devices. RA schemes allow a verifier to assess the integrity of the code and
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configuration of a remote prover. In a typical RA protocol the prover, upon request
delivers a proof of its configuration to the verifier who compares it against an a
priori defined set of correct configurations [9]. It is essentially a method of building
out the Chain of Trust across a network of devices, and ensure their integrity.

This section will elaborate on the mechanics of this process, including hash ac-
quisition, delivery, authenticity, alternative verification models and the foundational
Root of Trust in such systems.

Acquisition of Configuration Hash

Typically a proof takes the form of a hash, which summarises the configuration of
the device. The acquisition of the hash (measurement) of a device’s configuration
is typically performed by the prover itself, often within a trusted environment. The
target of attestation can vary, including program memory (PM), which generates a
measurement for the entire region where program instructions reside; data memory
(DM), aimed at protecting against compromise of runtime data; or entire memory
(EM), which measures all memory, including data, program, and free space, to detect
malicious code injection. Some advanced protocols also perform control-flow (CF)
attestation to protect the runtime control-flow of instructions against tampering
without altering binaries, or service-flow (SF) attestation to verify the flow of data
communicated between devices, ensuring actions are not based on malicious services

[23].

Delivery of Configuration Hash

Once acquired, the hash is delivered as an "attestation report" from the prover to
the verifier through an interactive protocol. In a widely used method known as Type
1 Interactive Remote Attestation, the verifier sends a challenge (a nonce N) to the
prover’s RoT. The RoT responds with a proof, which is usually a hash of the prover’s
configuration (c), concatenated with the nonce N. This proof is then signed using
public key cryptography or tagged with a Message Authentication Code (MAC) in
symmetric cryptography.

Authenticity and Trust Verification

The authenticity of the delivered hash is paramount and is established through
cryptographic means, relying on a RoT within the prover device. The verifier
proves authenticity by recomputing and comparing the expected hash or by ver-
ifying the cryptographic signature/ MAC. For symmetric cryptography, the verifier
uses a shared key to recompute the MAC over the expected configuration and nonce
and compares it with the received value. In public key cryptography, the verifier
uses the prover’s public key to verify the signature on the report. This process en-
sures that the measurement genuinely originated from the attested prover and has
not been tampered with. CRA protocols assume that provers are equipped with a
Root of Trust to protect against software attacks, often implemented through hy-
brid architectures combining minimal hardware (like Read-Only Memory (ROM)
and Memory Protection Unit (MPU)) with software. The RoT ensures that the
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attestation code itself cannot be altered and that secret keys are accessible only by
genuine attestation code.

Decentralized Verification Models

When the verifier is not a central entity, CRA protocols adopt various decentralized
approaches to distribute the verification task. In Self Protocols the measurement is
validated by the prover device itself. This can be Self-Verifier (Self-V), where a ver-
ifier sends expected measurements to provers, or Self-Local (Self-L), where expected
measurements are stored locally within the prover. Some protocols also employ Self-
Local Consensus (Self-LC), where all provers share attestation results and converge
to a collective decision, allowing any prover to be queried by a relying party. On
the other hand, provers in External Protocols send their measurements to a third
party for validation. This can involve Neighbor protocols, where measurements are
validated by a prover’s neighboring devices, or Jury protocols, where a group of
provers acts as a jury.

Root of Trust in Remote Attestation

The Root of Trust (RoT) is a fundamental component for establishing and main-
taining security in RA systems. In IoT devices, the RoT is typically realized by
leveraging hardware providing minimal security capabilities, such as code and mem-
ory isolation. Examples include commercial solutions like TPM |2], DICE [25] ARM
TrustZone, Intel SGX/TDX and of course the case of RISC-V PMP, but research
platforms too like GAROTA [18], RATA [I1], PRoM [13] and many more. This
hardware-based RoT is assumed to be trusted and serves as the endpoint of the
attestation protocol. It protects critical functions and secrets from software-based
attacks.

Collective Remote Attestation

While traditional remote attestation works well for a single device, it presents sig-
nificant scalability challenges in large-scale IoT environments, such as smart grids or
swarms of drones, which may consist of thousands or millions of devices. Attesting
each device individually would generate a massive amount of network traffic and
computational overhead for the central verifier.

Collective Remote Attestation (CRA), also known as Swarm Attestation, refers
to a class of protocols designed to efficiently verify the integrity of a group of devices
simultaneously. The objective is to produce a single, aggregated attestation result for
the entire group, or large subgroups, without requiring the verifier to interact with
each device individually. This approach aims to achieve scalability and efficiency in
more complex networks.

Various architectural approaches to CRA have been proposed and will be dis-
cussed in the next chapter.
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Threat Models

Threat models are essential for systematically comparing and assessing the security
guarantees of Collective Remote Attestation (CRA) protocols. The overall goal of
adversaries is to compromise IoT network services to execute attacks against service
integrity, network availability, and authentication while evading detection by CRA
mechanisms. The literature on CRA [9][23]) identifies specific kinds of attackers
based on their level of access and capability: Software Adversary, Mobile Software
Adversary, Physical Non-Intrusive Adversary, Physical Intrusive Adversary, Stealthy
Physical Intrusive Adversary and Dolve-Yao Adversary.

A Software Adversary (Advsw) can execute malicious code or firmware on a
device and modify any memory in the untrusted environment, though they cannot
restore it to the original, expected state. A stronger software threat is the Mobile
Software Adversary (Advysw), who shares the capabilities of Advsw but can
restore the device’s memory to its original state, often attempting to eliminate any
traces of its presence (e.g., erasing malware) to evade detection between successive
attestation periods. Moving beyond software, Physical Adversaries are categorized
into two types: the Physical Non-Intrusive Adversary (Advpyp), who operates
in proximity to infer information, perhaps through side-channel attacks; and the
intrusive variant, the Physical Intrusive Adversary (Advp;), who is capable of
capturing a device, introducing external hardware, and reading or writing to any
memory location, even in the trusted environment, by taking the device offline for a
non-negligible duration. A related type is the Stealthy Physical Intrusive Ad-
versary (Advgspr), who attempts to exfiltrate information after capturing the device
without leaving traces behind [9]. Finally, the Dolev-Yao Adversary (Advpy) has
full control over the communication network, enabling network attacks such as drop-
ping reports, delay attacks, and recording and replaying healthy results [23].
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Chapter 4

Related Work

4.1 Previous Uses of PMP in RTOS and Remote
Attestation

PMP in RISC-V processors provides a lightweight mechanism for enforcing mem-
ory access control and isolation in resource-constrained systems. By enabling fine-
grained permissions on memory regions, PMP enhances the security of RTOS and
supports trusted computing functionalities, such as remote attestation, without re-
quiring a full MMMU or dedicated security hardware. In RTOS environments,
where tasks typically execute in a flat memory model, PMP can isolate tasks from
one another and from the kernel, preventing unauthorized read, write, or execute op-
erations. Similarly, in remote attestation, PMP can protect sensitive cryptographic
keys and measurement routines, establishing a minimal hardware root of trust on
constrained devices. The following subsections review representative approaches
that exploit PMP in these contexts, highlighting its use for task isolation in FreeR-
TOS and for lightweight remote attestation on RISC-V microcontrollers.

4.1.1 Secure Task Management in FreeRTOS: A RISC-V Core
Approach with Physical Memory Protection

The thesis by Christian Larmann [24] addressed the inherent lack of security in the
flat memory model of FreeRTOS when running on RISC-V platforms, particularly
against malicious third-party applications. The primary contribution was the en-
hancement of FreeRTOS security by dynamically managing memory access rights
using the PMP feature of RISC-V. This mechanism serves to isolate user tasks from
one another and from the FreeRTOS kernel itself, preventing unauthorized read,
write, or execute operations between tasks and into critical kernel memory regions.
This implementation leveraged the CV32E40S RISC-V core, chosen specifically for
its PMP capabilities, and aimed to drastically improve security without resorting
to a full Memory Management Unit, which is typically too resource-intensive for
embedded systems.

Task isolation relied on fundamental modifications to the FreeRTOS kernel and
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toolchain usage. To define protected memory spaces, the approach ensured that
a task’s executable code, data, and stack resided in contiguous memory regions
through the use of linker scripts and compiler attributes. This memory encapsulation
allowed the entire region to be defined and controlled using a minimal number of
PMP entries, primarily leveraging the Top-of-Range addressing mode to handle
arbitrary memory sizes. The crucial management step occurs during a task context
switch: the kernel is modified to save the PMP configuration of the interrupted task
and dynamically load the new PMP settings associated with the next scheduled
task from its Task Control Block. This dynamic reconfiguration ensures the PMP
hardware restricts memory access only to the memory and peripherals explicitly
designated for the currently running task.

To further solidify the security architecture, the implementation included support
for secure dynamic memory allocation and selective memory encryption. When a
task allocates memory on the heap, the system dynamically assigns unused PMP
regions to the newly allocated range, ensuring that this memory is also protected
and exclusive to the task. Furthermore, the platform integrated an external memory
encryption unit using the Prince encryption scheme. This hardware feature was
cleverly combined with PMP control by utilizing reserved bits within the PMP
configuration registers to selectively enable the encryption or decryption logic for
external memory accesses pertaining only to certain tasks. The kernel was also
protected from unauthorized privilege escalation attempts by malicious user tasks
by implementing robust checks in the trap handler to verify that environment calls,
used for kernel service requests, originated exclusively from the legitimate system
call address space.

LIRA-V: Lightweight Remote Attestation for Constrained RISC-V De-
vices

LIRA-V [16] is a lightweight system designed for performing remote attestation be-
tween constrained devices that use the RISC-V architecture. The system is specifi-
cally tailored for environments such as microcontroller units (MCUs) which possess
limited computing power, may lack a MMU, and may only operate using a single
CPU protection mode (M mode). The overall goal is to assess the platform operat-
ing state of a proving device by a remote verifier, and to use this process to establish
trusted communication between devices.

The design of LIRA-V relies on leveraging two specific hardware components
already present in many RISC-V systems to build its trust anchor: ROM and the
RISC-V PMP primitive. The ROM is utilized to host the Core RoT for Measurement
and associated cryptographic algorithms, ensuring the integrity of the measurement
and reporting procedures. The PMP primitive is used to create execute-only memory
regions as a lightweight mechanism for protecting the secrecy of the quote signing
key. This approach allows the system to operate without requiring dedicated security
hardware, such as Trusted Platform Modules, or separate CPU privilege modes
associated with fully-fledged Trusted Execution Environments.

The measurement procedure begins immediately after a device reset when the
ROM code executes. This code performs the PMP configuration, locking a PMP
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entry to assign X-only permissions to the region containing the signing key and its
signing method. After an attestation request is received, the RoT measures the tar-
get memory region by computing an aggregated hash of the memory contents. This
aggregated measurement is then signed using the ROM signing key to produce an
attestation quote. LIRA-V further supports secure device-to-device communication
through a mutual attestation protocol, which uses the quotes to bootstrap a secure
channel. This protocol involves a three-message exchange that incorporates ECDH
key exchange to derive an ephemeral session key, which is then used to encrypt the
signed attestation quotes securely.

4.2 Alternative Roots of Trust by TCG

Except for the hardware guarantees that RISC-V PMP provides, the Trusted Com-
puting Group (TCG) has defined 2 alternatives RoTs which some publications have
adopted to achieve remote attestation.

4.2.1 Trusted Platform Module as RoT

A TPM (Trusted Platform Module) as defined by the Trusted Computing Group
(TCG) [3] is a secure hardware chip that generates, stores, and uses cryptographic
keys entirely inside the chip, protecting them from the OS or software attacks. It can
encrypt, decrypt, sign, and verify data, and it includes a hardware random number
generator for secure operations. During boot, the TPM measures the firmware,
bootloader, and OS by hashing each component and storing the results in Platform
Configuration Registers (PCRs). It can then seal data so it can only be decrypted
if the system is in a trusted state and attest to other systems that the device is
secure without exposing secrets. When a request is made—like decrypting a disk
or signing data—the TPM first checks the PCRs to ensure the system hasn’t been
tampered with; only if the measurements match expected values does it release keys
or perform cryptographic operations. In essence, the TPM acts as a secure vault
and trust anchor, enforcing hardware-based security, verifying system integrity, and
protecting sensitive operations.

TRAP [2], a hardware-based security solution, uses a Trusted Platform Module
(TPM) on each sensor node in a Wireless Sensor Network (WSN) to detect unautho-
rized changes in the running application code. The verification is prepared during
the node’s bootloader stage as explained previously. During the application stage, a
Challenger node initiates the process by sending an encrypted, random message as
a challenge to the Attestor node. The Attestor’s TPM retrieves the stored finger-
print and uses the challenge to generate a specific, signed response. This response
includes the integrity fingerprint and other security checks, and is digitally signed
by the Attestor’s TPM using its private key. Finally, the Challenger verifies this
signature and confirms that the fingerprint in the response matches the expected
value for the application, ensuring that the remote node’s program code has not
been tampered with.
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4.2.2 Device Identifier Composition Engine as RoT

A DICE (Device Identifier Composition Engine) by TCG [12] is a lightweight,
hardware-rooted security module embedded in an SoC or microcontroller that es-
tablishes a chain of trust from the very first instruction at boot. Unlike a TPM,
which is a general-purpose security chip providing persistent keys, sealed storage,
and broad attestation services, DICE focuses on boot-time device identity and
measurement-based, ephemeral key derivation. It contains an immutable Root of
Trust, device-unique secrets stored in fuses or secure memory, cryptographic accel-
erators, and measurement/hash logic. During boot, the DICE engine generates a
device-specific identity by combining the device secret with firmware measurements,
deriving ephemeral keys for secure boot, encryption, and attestation. Each subse-
quent software stage is measured and verified, ensuring only trusted code executes,
and the device can cryptographically prove its integrity to remote verifiers without
exposing permanent secrets, providing a minimal, firmware-bound, hardware-backed
security foundation.

A simple implementation of DICE for a RA is proposed in MATCH-IN (Mutual
Attestation for Trusted Collaboration in Heterogeneous IoT Networks) [25]. It in-
volves implicit mutual attestation in dynamic networks of IoT devices. The process
begins with device bootstrapping, where the immutable Boot ROM and DICE Core
enforce secure boot and utilize a Unique Device Secret (UDS) to generate layered
cryptographic identities. Through measurement and derivation steps, the device cre-
ates Compound Device Identifiers (CDIs) and ultimately generates a Local Device
Identity Key (LDevID), which represents the cryptographic identity of the running
application. Next, an external application provider runs an "attestation provision-
ing service" to verify the trustworthiness of the device’s hardware and firmware by
checking the full attestation certificate chain against stored reference measurements;
if validated, the service issues an externally certified LDevID certificate to the de-
vice. Finally, when two unknown I[oT devices need to communicate, they establish
a mutually authenticated TLS channel using their certified LDevID keys and cer-
tificates. The successful establishment of this channel provides implicit evidence of
the trustworthiness of the application and the underlying device; if any component
has been compromised, the LDevID key will not match the certified key, preventing
the connection and seamlessly isolating the untrusted device.

4.3 Alternative Roots of Trust in Academia

A selection of alternative hardware RoTs for academia is presented which are lightweight
although non standard in industry.

4.3.1 GAROTA: Generalized Active Root-Of-Trust Architec-
ture

GAROTA [18] is the first clean-slate Generalized Active Root-Of-Trust Architecture
designed for low-end micro-controller units, intended to guarantee that a desired
action will be performed, even under full software compromise. Its mechanism relies
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on a minimal, formally verified hardware component that runs in parallel with the
CPU, monitoring signals to detect security violations. The core security features are
"Guaranteed Triggering," ensuring the Trusted Computing Base (TCB) executes
based on arbitrary hardware peripherals like timers or network events, and "Re-
Triggering on Failure," which immediately resets the MCU if TCB execution is
illegally interrupted, guaranteeing the RoT is the first component to run upon re-
initialization. While primarily active, GAROTA enables security services such as
enforcing memory integrity through timer-based triggering of TCB functions.

4.3.2 PRoM: Passive Remote Attestation against Roving Mal-
ware

PRoM [13], a Passive Remote Attestation technique designed for multi-core IoT
devices, aims to detect roving malware while ensuring high device availability by
relying on minimal secure hardware for secret key storage and True Random Num-
ber generation. The attestation mechanism is lightweight and avoids calculating
a hash digest of the entire memory, instead using a randomized approach where
the prover’s memory is divided into blocks. PRoM exploits the multi-core archi-
tecture by scheduling a batch of blocks (equal to the number of cores ) to be
measured in parallel using a random permutation sequence A determined by secure
seeds. This parallelism minimizes the adversary’s evasion time. Crucially, the non-
interruptibility requirement is relaxed, applying only when measuring a single block,
thus enabling high availability for safety-critical applications.

4.3.3 RATA: Remote Attestation with TOCTOU Avoidance
Remote Attestation with TOCTOU Avoidance (RATA) [11] addresses the Time-

Of-Check-Time-Of-Use problem, preventing transient malware from hiding memory
modifications made between attestation measurements. RATA integrates a formally
verified hardware module that provides historical context by monitoring program
memory modifications and securely logging the event of the Latest Modification
Time (LMT) into a protected memory region, which itself is covered by the attesta-
tion integrity check. RATA offers two techniques: RAT' A, (RTC-based), which logs
a synchronized Real-Time Clock timestamp, and RAT Ag (Clockless), which logs the
authenticated attestation challenge. This logging mechanism allows the Verifier to
retrospectively detect unauthorized changes. Furthermore, if the attested region
is known to be clean, RATA enables constant-time remote attestation by verifying
only the small LMT region, drastically reducing runtime overhead.

4.4 Established Collective Remote Attestation Pro-
tocols

Till this point RoTs were discussed that ensure that Remote Attestation is guaran-
teed to complete correctly between a single prover and verifier. In this section two
established protocols are discussed, which tackle the challenges of massive networks
of devices that need to be attested and managed safely.
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4.4.1 SEDA

SEDA (Scalable Embedded Device Attestation) [1] was the first attestation scheme
for large-scale device swarms to efficiently verify their overall software integrity. The
process is divided into an offline and online phase. In the offline phase the swarm op-
erator (OP) initializes each device (D;) with its software configuration (¢;), identity
certificates, and signing keys; devices then execute a join protocol with neighbours
to establish shared symmetric attestation keys (k;;) and verify each other’s code
certificates. The on-line phase begins when a verifier (V) contacts an arbitrary ini-
tiator device (D;). Using a global session identifier (¢q), the swarm constructs a
spanning tree, and devices recursively execute the attdev protocol. Each device
attests its children, accumulates the results, including the number of successfully
attested devices (/) and the total devices (7) in its subtree, and reports this accu-
mulated outcome along with its own attestation status to its parent. The initiator
(D1) eventually receives the aggregated report for the entire swarm, digitally signs
it, and sends the result to V. V authenticates the report using the OP’s public key
and accepts the attestation if the signature verifies and the accumulated counts (3
and 7) confirm that all devices (s — 1 devices besides D;) were successfully attested.

4.4.2 HEALED

HEALED (HEaling & Attestation for Low-end Embedded Devices) |¢] introduced a
mechanism for not only detecting, also disinfecting software compromises on embed-
ded devices. The foundation of HEALED’s software measurement is a Merkle Hash
Tree (MHT) construction, which allows the verifier to pinpoint the exact software
blocks that have been modified. In the attestation protocol, a verifier device (D,)
periodically sends a request containing a random nonce (NN,) to a prover device (D,).
D,, measures its software state by generating the root (c;) of its MHT and computes
a MAC over ¢, and N, using a shared symmetric key, sending the MAC back to
D, for verification against the expected benign software configuration (c,). If the
MAC verification fails, D, deduces that D, is compromised and initiates the healing
protocol. This requires identifying a benign healer device (D},) that has an iden-
tical reference software configuration to the compromised device (D). Once Dy, is
identified and its trustworthiness is proven, it compares D,.’s software configuration
(cl) with its own, recursively requesting child hash nodes from D, down the MHT
until the specific compromised memory regions (leaf nodes) are identified. Dy, then
compiles a patch (L) containing the correct code segments for the modified regions,
authenticates it with a MAC based on a shared key (kp.), and sends it to D., which
verifies and installs the patch to restore its software to a benign state.
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Chapter 5

Our Framework

5.1 Motivation

It is no question that enabling mechanisms that can verify the integrity of our in-
terconnected devices is crucial, in order to avoid bad actors in a world that is only
getting more interconnected. This challenge is tall, and although there has been
a lot of research, while studying the aforementioned publications and background
theory, some worrying trends emerged. It is our opinion that these trends are serious
limiting factors in the application of Remote Attestation in the IoT industry.

5.1.1 Need for Special Purpose Hardware

One of the key design decisions of a Remote Attestation protocol is where to put
the Root of Trust (RoT). Software RoTs as discussed before rely inherently on
weak assumptions but does however also provide limited security and subsequently
Hardware RoTs are the preferred way. Still, in order to offer the security that is
sought, many solutions rely on new specialized hardware modules ([25], [2], [18], [13])
or non-standard Memory Protection Units (MPU) ([14]). This in turn too limits
adoption since the IoT industry relies heavily on chips that are already developed,
readily available, and most importantly, low-cost.

5.1.2 Addressing RTOS Configuration

Proposed RA protocols do not address systems in which a Real Time Operating
System is in use. Mono or multicore that run concurrent or parallel tasks have a
much more complex runtime and memory structure that poses o new challenge in
the field of Remote Attestation.

Conclusion

Thus we decided to create a framework for Remote Attestation, targeted at a plat-
form with real adoption in the IoT, leveraging among others RISC-V PMP as our
root of trust, in the context of a RTOS, similarly to most low-end IoT applications.
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This would form a basis for future research and expansions of remote attestation
protocols.

5.2 Requirements

5.2.1 System and Security Model

A clear definition of the system and attacker model is necessary to scope the guar-
antees provided by our remote attestation framework. This section outlines the
operational assumptions of the system as well as the adversarial capabilities consid-
ered in our design.

System Model

We consider a deployment managed by a single Owner, who performs an offline
setup phase in which devices are flashed with firmware, cryptographic keys, and
signatures. Once deployed, devices form a network where each node acts as both
Prover and verifier, engaging in mutual self-attestation. As a Prover, each device
measures its own integrity on demand and produces a signed attestation report that
is verified by its peers. As a verifier, each device can make attestation request to
its peers and become aware of their state. This decentralized approach removes
the need for a central verifier and allows scalable integrity monitoring across the
network. We assume devices possess a hardware Root of Trust and that secure
channels can be established after successful attestation.

Threat Model

The attacker is assumed to adhere to the Mobile Software Adversary Threat
Model, and can have full control over vulnerable application code running on the
device. In addition he is allowed network access, allowing arbitrary message injec-
tion, modification, delay, and replay. Physical tampering that bypasses the hardware
root of trust, secure boot, or key storage is out of scope, as are attacks that break
underlying cryptographic primitives. This model focuses on logical compromise and
network-level threats, ensuring the framework primarily defends against software-
level attacks with stronger hardware protections.

5.2.2 General Requirements

The remote attestation framework should target a microcontroller that is low-cost,
widely available, and supported by a mature open ecosystem, ensuring flexibility,
extensibility and ease of adoption by the industry. Critical hardware security fea-
tures, including secure boot, secure storage, hardware random number generation,
and cryptographic accelerators, are required to strengthen integrity of the Attesta-
tion Framework. Furthermore, the framework must work along side a RTOS and
implement mechanisms to mitigate replay attacks, such as nonces, to prevent unau-
thorized message reuse. Furthermore, in order to combat Time of Check - Time of
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Use (TOCTOU) attacks, randomness should be embedded in the Attestation Pe-
riod. Collectively, these requirements ensure the framework is secure, practical, and
accessible for both research and industrial applications.

5.2.3 Hardware Root of Trust

A fundamental component of any attestation protocol is the Root of Trust (RoT),
which establishes the foundation for system security. To provide strong guarantees,
the RoT must be implemented in hardware rather than software, as software-based
solutions are inherently vulnerable to compromise. Hardware-based RoTs ensure
that critical operations, such as cryptographic routines and key management, can be
trusted even if other parts of the device are compromised. This hardware foundation
is essential for the integrity and trustworthiness of the remote attestation framework.

We choose the RISC-V architecture for our framework due to its open-source na-
ture and widespread interest in both academia and industry. RISC-V’s open design
allows for transparent verification and modification, which is crucial for security-
critical applications. As part of our RoT, we leverage the Physical Memory Pro-
tection (PMP) mechanism in RISC-V to enforce strict access controls on memory
regions. PMP ensures that the operations of the remote attestation framework re-
main isolated from potentially compromised components of the IoT device such as
the main vulnerable application.

In addition to RISC-V and PMP, the hardware RoT must include components
that support secure boot. This requires immutable storage elements, such as on-
chip ROM and efuses, to hold the vendor’s public key and track version revisions.
These mechanisms guarantee that only authenticated and untampered firmware is
executed during device startup, preventing unauthorized code from compromising
the attestation process. Secure boot forms a critical anchor for the system’s trust
chain and ensures that the device starts from a known good state.

Finally, the hardware RoT must support secure storage for the encryption key of
the device’s flash storage. This key, accessible only by code either in ROM or that
has been verified will used to encrypt other sensitive cryptographic keys and data.

All these characteristics together will form a strong foundation of trust.

5.2.4 Targeting Harvard Architectures

Remote Attestation Protocols are categorised by the way integrity is verified. Pro-
tocols that belong to the category of Control Flow Attestation, attest follow the
program through its execution, either with checkpoints or graph based schemes.
Control Flow Attestation protocols are few, since they typically can not be applied
to complex applications without a huge overhead in computing resources, hardware,
or power consumption.

Unlike the dynamic nature of Control Flow Attestation, Program Memory At-
testation is static hardware security, which focuses on integrity measurement of the
program memory. This implies checking if the program memory has been tampered
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with or not, e.g. by measuring the hash of the memory and comparing it against a
set of known allowed values. This is the more popular among publications and it
is the approach chosen for the proposed Remote Attestation Framework: integrity
measurement will assume a Harvard Architecture, where mutable data and code are
not intertwined in flash.

5.2.5 Outside of our Scope

Although the proposed Remote Attestation Framework is designed to provide a
robust foundation for verifying the integrity of IoT devices according to the afore-
mentioned Threat Model. Classes of attacks and security mechanisms that are
outside the capabilities of the Threat Model include physical attacks, such as di-
rectly flashing the device memory or tampering with hardware components. Attacks
that manipulate data in memory without leaving a footprint on persistent storage,
such as certain forms of in-memory malware or transient fault injections, are also
excluded. Additionally, the framework does not address distributed denial-of-service
(DDoS) attacks or side-channel attacks, including power analysis or electromagnetic
monitoring, which require specialized hardware defences and mitigation strategies
beyond the focus of this study. As such, Runtime and Control Flow attestation,
which would involve monitoring program execution paths in real time to detect de-
viations are not considered.

In terms of hardware security features, mechanisms such as secure boot, secure
storage, and RISC-V Physical Memory Protection (PMP) for memory isolation will
not be implemented within the scope of this work. Nonetheless, the framework
and underlying platform are explicitly designed to be compatible with these mech-
anisms. This ensures that, while they are not part of the current implementation,
secure boot processes, tamper-resistant key storage, and memory isolation can be
incorporated in future extensions. By explicitly delineating these boundaries, the
framework maintains a clear focus on attestation operations while remaining exten-
sible, providing a foundation that can accommodate more comprehensive security
measures in subsequent work.

5.3 Preliminary Cryptographic Design Considera-
tions

In the suggested Remote Attestation Protocol, it was concluded that the Integrity
Measurement would consist of the hash of the device’s Program Memory or Flash.

5.3.1 Basic Hash-Based Attestation

Suppose a naive Remote Attestation Protocol, in which upon request the Prover
calculates the hash of his flash and transmits that. An attacker can, of course,
intercept this message, and thus commit replay attacks, where he resends the same
attestation response and convinces the verifier of the Provers integrity. In conclusion
such a protocol is not secure and needs a replay attack mitigation mechanism.
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5.3.2 Incorporating Nonces for Replay Attack Mitigation

Consider the case of one verifier and one prover device, without any authenticity
requirements for now, but with the need for replay attack mitigation. To achieve
this, the protocol has to be interactive, i.e. the verifier has to send a unique, uni-
formly randomly picked number -a N,,.- to the prover, which has to include this
Nonee in the calculation of his proof of integrity, or in other words, his attestation
response/report. The attestation routine on the Prover’s side is responsible for con-
ducting the integrity measurement, which is sent there after as proof to the Verifier.

With these requirements in mind, let us analyze three possible ways of incorpo-
rating the NV,,. in the Attestation Responses. Specifically the Proof could take the
form of either:

o Hash(Nopee||Flash) or
e Hash(Flash||Nypee) or
o Hash(Hash(Flash), Nonce)

Implications of Concatenation of Flash to Nonce
Consider the case when the proof has the form:

Hash(Nopee||Flash)

The diagram of this hash calculation is visible in Figure 5.1.

My Datapr,asn M, Nonce

\

l Hl anl Hn l Hﬁnal
1A H@—> s —— Proof

Figure 5.1: Hash Diagram of Hash(Nypce||Flash)

Suppose an attacker is capable of running rogue code inside the Prover’s device.
This of course would cause a modification in the flash’s contents and a correct
Attestation Response would not be able to be constructed from the compromised
device. In this case, the bad actor could only forge a correct Attestation Response if
he had access to the entirety of the Flash’s (or Program Memory’s) contents. This is
indeed very difficult, since, excluding the scenario of a supply chain attack, in order
to extract all the flash’s contents one would have to introduce code into the device,
responsible for extracting and sending the flash’s contents. However, this action
itself would corrupt the flash’s contents and thus they would not be recoverable.

Nonetheless, the Verifier would only be able to verify an Attestation Response
if he himself had access to the entirety of the Prover’s flash’s contents, in order to
be able to compute Hash(Nyyee||Flash) for an arbitrary Ny,e. This limits us to
networks where a central Verifier is present, capable of holding all possible flashes’
contents of every Prover device, or network of identical devices with identical code.
Hence this method is not desirable.
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Figure 5.2: Hash Diagram of Hash(Flash||Nopce)
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Figure 5.3: Hash Diagram of Hash(Hash(Flash), Nopce)

Implications of Concatenation of Nonce to Flash

Consider the cases when the proof has either one of the below forms:
Hash(Flash||Nonee)

or

Hash(Hash(Flash), Nonee)

In these 2 cases, the verifier is assumed to hold either the entire contents of the
Flash, or the Hash(Flash) for the 1st case, or the or the internal state of the hash
algorithm during the calculation of Hash(Flash || X) before including X (X is a
placeholder for any value). This is necessary in order to be able to verify the proof
received from a Prover, by combining the aforementioned with the fresh N,,.. The
calculation of the hashes and intermediate states are visible on the Figures 5.2 and
5.3.

It is however crucial to note that the attacker too with access to the hash of
the flash or the internal state during the hashing, could forge a correct Proof. This
could be achieved through compromising an application on the device at the right
moment, after most of the flash has been hashed during a normal Attestation Re-
sponse computation. This is a type of Time of Check - Time of Use (TOCTOU)
attack.

5.3.3 Concluding Design Remarks

In conclusion, any use of N, is not enough on its own. The verifier must be able
to verify the authenticity of the Attestation Response as much as its freshness.

In order to verify authenticity, a Hash Message Authentication Code (HMAC)
can be used. The creation and verification of the HMAC requires the two parties,
Prover and Verifier, share a common secret key. This can be achieved by a public
key cryptography, either through Elliptic Curve Diffie Hellman Key Exchange or
through a RSA Key Transfer. As such, both devices need to be equiped with a
private and public key.
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In addition, the inclusion of the Vendor’s signature of each devices public key
ensures the verifiable authenticity of these public keys that are used for the key
exchange.

Another requirement would be for both the share common secret and the device’s
private key be kept in sort of secure memory/storage. If it can be guaranteed
that the Attestation Routine has exclusive access to the aforementioned keys, then
any message accompanied by such an HMAC can be trusted to originate from the
Attestation Routine.

The Attestation Routine itself must operated without any corruption, and thus
it would have to be included in a Secure Boot chain, and it’s program memory
protected from any modifications, similarly to the keys in memory.

Assuming all the above, trust is based on authenticity the message and the
correct operation of the Attestation Routine. Additionally, the Prover can himself
store the expected hash or integrity measurement and conclude its state. It is thus
redundant for the integrity measurement to be transmitted to the Verifier and to
externally verify the Integrity Measurement, i.e. that the configuration hash belongs
to an allowed configuration. It suffices for the Integrity Measurement to be compared
to a correct measurement internally to the Prover. The final Attestation Response
must of course contain the result of this comparison in the form of a boolean value
that indicates success or failure of attestation.

5.4 Protocol Overview

Our Remote Attestation Protocol does mutual heterogenous attestation with local
verification of flash integrity. The protocol consists the following phases.

5.4.1 Offline Phase

The offline phase is defined as the period of setting up the device before final de-
ployment in a controlled environment. During this stage the Vendor assigns private
and public key pairs to each device, signs the public keys. The firmware, with the
application and attestation code, together with the encrypted keys are flashed on
each device. The hash of the Vendor’s public key is written in a One Time Pro-
grammable (OTP) memory, while the encryption key is stored in secure storage,
that is only accessible by ROM boot code. Then the devices are deployed in the
outside world.

5.4.2 Online Phase

The online phase is defined as the operation phase after deployment and consists of
the Boot Stage, the Ezploration Phase and the Attestation Rounds
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Boot Stage

The device follows the Secure Boot process, ensuring the validity of the entire
firmware. It then decrypts the device’s keys from flash in memory and boots the
RTOS kernel as well as the attestation task. The attestation task takes the hash of
the flash, before any application code has executed. This is stored in memory as the
Golden Hash. The Golden Hash, the device keys, the kernel and attestation code
and their data memory are all protected against reads and writes from the vulner-
able application’s code through a Memory Protection Unit. Finally the application
is invoked in order to enable the intended operation of the IoT device.

Golden Hash < Hash(Flash;—o)

Exploration Phase

After the Boot Stage, and thereafter in predefined intervals, the device seeks new
neighbours. Essentially a triple handshake occurs:

1. Announcement: The device announces its presence by a broadcast message.
The announcement contains the sender’s public key Pk and the vendor’s sig-
nature

2. Recognition: A neighbour who has not registered the device as neighbouring
and who receives the announcement verifies the authenticity of the public
key and replies a unicast message, recognizing his presence. The recognition
contains the sender’s public key and vendor’s signature. The neighbour can
complete the ECDH Key Exchange and compute the shared secret through a
Hash Key Derivation Function (HKDF) compute the HMAC key.

3. Acknowledgment: The device, upon receiving the recognition and verifying
its public key’s authenticity, computes in turn the shared HMAC key. Finally
it replies with an Acknowledgment, which is accompanied by an HMAC.

All the above messages are accompanied by a nonce to identify the session. Recog-
nition messages may have to be resent if the appropriate Acknowledgements are
not received in time. After the mutual recognition, peers add each other to their
respective neighbour lists for future attestation requests. The sequence diagram of
Figure 5.4 shows the triple handshake.
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Figure 5.4: Sequence diagram of Ezploration Phase with 2 devices

Attestation Rounds

The protocol is decentralised and conducts mutual attestation. As such every device
acts both as a Prover and a Verifier.

As a Verifier, the device conducts "Attestation Rounds", who’s frequency is ran-
dom, in order to mitigate TOCTOU attacks. At the start of an Attestation Round
the Verifier sends an Attestation Request to each of its neighbours, containing a fresh
Nonce- He expects Attestation Responses within a predefined timeout period. Once
the response arrives, the HMAC and N,,.. are verified, and the result -successfull
attestation or failed attestation or request timeout- is logged by the verifier.

As a Prover, the device listens to Attestation Requests. Upon receiving a request
the Prover from a known neighbour conducts Self Attestation: It hashes the con-
tents of its flash and compares the resulting measurement to the Golden Hash. An
Attestation Response is sent back, indicating success if the flash has stayed intact
and failure otherwise, including an HMAC of the message.

Figure 5.5 contains the sequence diagram of an Attestation Round with 2 devices.

Device 1 (Verifier) Device 2 (Prover)

Request !
Nonce7 HMACk(Nonce) [

h < Hash(Flash)

?
Response b <— h = Golden Hash

Nonc67 b7 HMACk(NonceHb)

<
<

Figure 5.5: Sequence diagram of an Attestion Round with 2 devices
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5.4.3 Network Topology

Since there is no central Verifier, every device in the network attests all its available
neighbours within communication range and thus trust is established between them.

The network topology is arbitrary and in the simplest case of N devices, they
are all within range of each other and neighbouring as shown in Figure 5.6. We
evaluated with this common case topology, but the framework is also orthogonal to
any other node topology.

Figure 5.6: Network Topology: Nodes 1,2,3,4,..., N are all connected

5.5 Implementation

5.5.1 Hardware Platform

After careful consideration of the goals of this work, it was concluded that a fitting
platform to develop the Remote Attestation Framework would be the ESP32-C3
chip by Espressif.
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Table 5.1: Specifications of ESP32-C3

| Specification | Value/Detail |
Architecture 32-bit RISC-V Single-Core
Pipeline 4-stage, in-order, scalar
Max Speed Up to 160 MHz
Wi-Fi Standard 2.4 GHz Wi-Fi (802.11b/g/n)
Bluetooth Standard Bluetooth 5 (LE)
Internal ROM 384 KB
Internal SRAM 400 KB
RTC Memory 8 KB
Max External Flash Support | Up to 16 MB
GPIO Count 16 or 22
Recommended Input Voltage | 3.0 V to 3.6 V
Cryptography Hardware AES, SHA, RSA, HMAC,

Table 5.1 provides the major specifications of this chip. Most importantly in
our context, the chip is conforming to the 32 bit RISC-V architecture, has a single
pipelined core that can be clocked up to 160 MHz. It contains an antenna in it’s tiny
package and the hardware to support 2.4 GHz Wi-Fi (802.11b/g/n) and Bluetooth 5
(LE). It includes 4MB of flash, 400KB or SRAM, as well as a 4096 bit efuse memory,
of which 1792 can be used by the developer. This device is suitable for ultra low
power applications, as it consumes <5uA in sleep mode. It can be flashed, monitored
and powered by a USB Type C port, through which the device can communicate
debug information through JTAG.
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Figure 5.7: ESP32-C3 Functional Block Diagram [10]

Crucially for our application, except for its exceptional networking capabilities,
it is also equipped with cryptographic accelerators for RSA, SHA256, HMAC, AES
and a secure RNG, as well as 16 regions for the RISC-V Physical Memory Protection
Extension. Finally It has support for secure storage (encrypted flash) and secure
boot [10].

Figure 5.8: ESP32-C3 Supermini Board

All these features add up in a board that is very low cost, readily available at
less than $2 per piece [30] in a small package, like the development board used
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for evaluation, visible in Figure 5.8. This makes it a very attractive option for
any [oT developer and a prime subject for this work, whose goal was to build the
foundations of a solution that can be adopted in the real world, not just in the
laboratory. In conclusion, a total of 10 chips were acquired for the development,
testing and evaluation.

5.5.2 Software Stack

All the code for this project was written in the C language since it gives the most
control to the developer and integrates the best with the rest of the software stack.
Specifically:

FreeRTOS

FreeRTOS is an open-source, real-time operating system (RTOS) kernel designed
for resource-constrained embedded systems and microcontrollers. Developed and
maintained by Amazon Web Services (AWS), FreeRTOS provides deterministic task
scheduling using a preemptive, priority-based scheduler, ensuring that high-priority
tasks meet strict timing requirements. It supports multitasking, inter-task communi-
cation, synchronization primitives (queues, semaphores, and mutexes), and memory
management, thereby enabling efficient utilization of limited hardware resources.
FreeRTOS is highly portable and modular, supporting a wide range of processor
architectures and toolchains, which makes it suitable for diverse embedded applica-
tions. Due to its small footprint, real-time performance, and reliability, FreeRTOS
has become a widely adopted kernel in industrial automation, consumer electronics,
automotive systems, and IoT applications, where predictable task execution and
efficient resource management are critical.

Espressif IoT Development Framework

The Espressif IoT Development Framework (ESP-IDF) is the official open-source
Software Development Kit (SDK) for Espressif’s series of microcontrollers, includ-
ing the ESP32, ESP32-S, and ESP32-C families. ESP-IDF is built upon FreeRTOS,
providing a real-time operating system environment that supports multitasking,
inter-process communication, and deterministic execution essential for time-critical
embedded applications. The framework incorporates a wide range of software com-
ponents such as network protocol stacks (TCP/IP, HTTP, MQTT, Bluetooth Clas-
sic, and BLE), hardware abstraction layers (HAL), peripheral drivers, and security
libraries (TLS/SSL, cryptography, secure boot, and flash encryption). Its modu-
lar architecture facilitates scalable system design, enabling the integration of cus-
tom components and third-party libraries while maintaining code portability across
hardware variants. Furthermore, ESP-IDF utilizes a CMake-based build system and
Python-based project configuration tools, ensuring cross-platform development sup-
port. With comprehensive debugging capabilities, continuous integration support,
and adherence to industry standards, ESP-IDF is widely employed in both academic
research and industrial IoT solutions, where reliable wireless communication, low-
power operation, and secure edge processing are critical.
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The openness of the framework with which applications for the ESP32-C3 chip
played a big part in our decision, as it allows us to not only develop using established
libraries, but to customize everything, from the memory allocation of FreeRTOS,
with the ability of possibly adding task isolation through PMP, to the Secure Boot
mechanism that can progress our Chain of Trust.

MbedTLS

MbedTLS is a lightweight, open-source cryptographic library developed by ARM,
specifically designed for embedded systems with constrained computational resources.
It provides a comprehensive set of cryptographic primitives and protocols, includ-
ing symmetric encryption algorithms, asymmetric encryption and digital signature
schemes, hashing algorithms, message authentication codes, and key derivation func-
tions. Its modular and portable architecture allows it to be easily integrated into
microcontroller-based platforms, and Espressif has ported MbedTLS to the ESP32-
C3 and related SoCs as part of the ESP-IDF framework, providing seamless access
to hardware-accelerated cryptographic functions when available.

In this work, MbedTLS was employed to implement custom secure communica-
tion protocols, ensuring integrity, and authenticity of transmitted data. Addition-
ally, its cryptographic primitives were used to verify the integrity of flash storage,
enabling detection of unauthorized modifications and data corruption. The library’s
lightweight design, compliance with established cryptographic standards, and ease
of integration make it particularly suitable for embedded IoT applications, where
both security and computational efficiency are critical.

Networking

For the physical layer of our Remote Attestation Protocol WiFi. In fact, for reasons
of development speed and power efficiency the open-source protocol ESP-NOW de-
veloped by Espressif in the ESP-IDF was used [29]. This consists simply of custom
vendor WiFi frames. It is important to note that any other physical layer could be
used in place of ESP-NOW like Bluetooth, Zigbee or other custom WiFi frames,
and in fact our framework allows for this change.

5.5.3 Project Structure

The Attestation Framework project, follows the standard ESP-IDF structure but
extends it to support benchmarking, key management, and modular attestation
components, custom configuration options and deployment automation. The fol-
lowing is a hierarchical overview of the folder and file organization:

Source Code

components Part of the ESP-IDF project structure, it contains different software
modules that interact with each other, allows for compartmentalizing code.

my_attest Contains all the core logic of the Attestation Framework. It makes
use of all its sibling components.
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my_benchmarking Contains device-side code for benchmarking, i.e. collecting
and formatting CPU and RAM usage and various other statistics about
the performance of the Remote Attestation Protocol.

my_crypto Contains functions for signing /verifying digital signatures, Elliptic
Curve Diffie Hellman Key Exchange, Hash Message Authentication Code
etc., utilizing the MbedTLS API of the ESP32-C3.

my_flash_hash Abstraction layer for flash operations, such as integrity mea-
surement of device i.e. taking the hash of the entire flash and retrieval of
vendor assigned keys.

my_net Here in the tasks and interface for networking is defined, that is used
by the (vulnerable) application as well as the attestation protocol to
communicate with peers.

scripts Contains a variety of scripts for testing, debugging, showcasing and bench-
marking. We will expand in a following section.

Generated Artifacts

benchmark This folder holds data about benchmarks, that were used for the Eval-
uation chapter of this thesis. Automatically generated by our scripts.

cpu_usage_time_series Contains CSV files that hold data about the CPU
usage of the attestation related tasks over time, in different configurations
and devices.

fail_logs This is mainly used for debugging as it contains logs of benchmark
runs that did not produce results successfully.

plots Contains all plots drawn from the benchmark data.
errors.txt Contains any logged errors of benchmark runs.

results.csv All benchmark results (CPU usage, RAM usage, request /response
delays, timeouts).

build Contains all build files, binaries of ESP-IDF that will be used to flash the
chips. This is automatically generated by the ESP-IDF toolchain.

keys Contains all generated keys:

device Public, private keys of each device, as well as the vendor’s signatures
proving the validity and authenticity of the devices’ public keys.

vendor Public and private keys of the vendor (issuer of the devices).
logs Contains all logs, including the output of the compilation toolchain of ESP-
IDF and the output log of every device that is flashed and monitored.
Configuration Files

.last_build_time Used for redeployment optimization and speedup.
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CMakeLists.txt Instructs CMake build system integrated into ESP-IDF.

partitions.csv Generated partition table for device, after appropriate allocation
for device cryptographic keys.

partitions.csv.in Template for the above partition table.
sdkconfig Generated configuration setting values, managed by ESP-IDF.

sdkconfig.defaults Holds the ESP-IDF configuration setting values that are of
interest to the Attestation Framework, as well as the values to all our custom
compile-time settings, managed by the developer.

This modular structure allows for maintainability, clear separation of concerns,
and automated benchmarking.

5.5.4 Deployment Automation and Scripts

During the framework’s development a lot of challenges arose, and it became appar-
ent that a quick development cycle had to be adopted. This is why in order to flash
and monitor multiple devices concurrently multiple USB hubs were used to connect
all the devices to the deploying computer.

A series of bash scripts were used in order to automate the build cycle, including
compilation, flashing of the program binaries to the devices, and creation and popu-
lation of a custom partition on the devices’ memories with the unique MAC address,
cryptographic keys and the vendor’s signature assigned to each device. In addition
Tmux was used in these scripts in order to be able to monitor all logs and outputs
of all 10 devices. Finally Openssl was used in order to create the public/private key
pairs that would be assigned to each device and sign them using one vendor key.

Following are the scripts developed for the suggested Attestation Framework
grouped by operation, in greater detail. Note some scripts depend on others and
the framework user does not have to interact with all of them.

Key Assignment
Script to assist with key assignment to the devices.

generate_vendor_keys.sh This script automates the generation of cryptographic
vendor key pairs based on the selected option in sdkconfig.defaults, ensur-
ing consistent key management for the project. It safely handles existing keys
by renaming old ones with timestamps, generates new private and public keys
in DER format, and cleans up outdated device keys.

generate_sign_device_keys.sh Generates a cryptographic key pair for a device
based on the algorithm specified in sdkconfig.defaults and outputs them in
DER format. It then signs the device’s public key with the vendor’s private key,
producing a signature file that can be used to verify the device’s authenticity.

generate_device_partition_binary.sh Creates a binary package containing a
device’s assigned MAC address, private key, public key, its signature, and the
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vendor’s public key, all serialized with length-prefixed fields in little-endian
format. The resulting binary file can be directly flashed or used by firmware
to provision secure device identity and authentication data.

flash_attestation_partition.sh.sh Generates a final partitions.csv file con-
tianing the partition table that will be flashed on the device, by calculating
the attestation partition’s offset and size according to sdkconfig.defaults
and filling them into a template CSV. It ensures the partition size is aligned
to 4 KB and correctly positioned at the end of the flash memory

Deployment
Script to assist with deployment and monitoring.

find_esp32_dev.sh Scansall /dev/ttyUSB* and /dev/ttyACM* devices, walks their
sysfs paths to find USB vendor and product IDs, and checks them against
known ESP32 chipsets. If a match is found, it prints the device path (e.g.,
/dev/ttyUSBO) for easy identification of connected ESP32 boards.

run_device.sh Prepares and flashes an ESP32 device with attestation keys and
partition binaries, generating missing device or vendor keys if necessary. After
flashing, it opens the monitor on the specified PORT and allows the user to
interact with the device.

run_all.sh Orchestrates building the project, regenerating partitions if needed,
and launching one process per connected ESP32 device using either tmux win-
dows or silent background processes. It verifies the expected number of devices,
logs output for each device, and provides a control pane or signal handler to
terminate all running instances at once.

Benchmarking
Script to assist with benchmarking of the framework.

benchmark.sh This Bash script automates running benchmarking tests across mul-
tiple device counts and period configurations, collecting CPU, RAM, timeout,
and response metrics. It manages log collection, retries on failures, updates
results in a CSV file, and gracefully handles cleanup on errors or interruptions.

plot.py This Python script reads benchmark result CSVs and generates plots for
CPU usage, RAM usage, timeout rates, response times, and round comple-
tion times across different device counts and periods. It automatically creates
organized output folders and saves time series, scaling, and round frequency
visualizations as PNG files.

Miscellaneous
Other scripts.

update_sdkconfig_from_defaults.sh Updates an existing sdkconfig file by merg-
ing and applying configuration values from a given defaults file, reporting any
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changes made. A dependency of run_all.sh.

generate_partitions.sh Generates a final partitions.csv file containing the
partition table that will be flashed on the device, calculating the offset and
size of the attestation partition according to sdkconfig.defaults and filling
them into a template CSV. It ensures the partition size is aligned to 4 KB and
correctly positioned at the end of the flash memory.

find_errors.sh Scans log files for ’Guru Meditation Error’ entries and extracts
each error with its surrounding context into a consolidated output file.

print_keys.sh Extracts and displays device and vendor key sections from a binary
partition file and corresponding DER /signature files in a human-readable hex-
adecimal format.

5.5.5 Framework Architecture

The architecture of the Attestation Framework was designed in order to be simple
and extensible. It is designed around FreeRTOS, utilizing its Task and Queue con-
structions among others. Tasks are similar to processes as defined in Unix, and are
switched by the RTOS scheduler, although because of the lack of memory transla-
tion in low-end IoT chips, they lack memory isolation by default. Queues are FIFO
structures through which different tasks can send and receive items to and from each
other.

Once booted, the Framework’s startup sequence will complete the following op-
erations:

1. Read the MAC address, private key, public key and the vendor’s signature
assigned to the device.

2. Register the Network Receiving Callback and start the Network Sending Tasks.
3. Start the Attestation Sending and Receiving Tasks.
4. Start the Vulnerable Application Task.

The main framework consists of teh following four tasks: Network Sending Task,
Network Receiving Callback, Attestation Receiving Task and Attestation Sending
Task. Figure 5.9 shows the architecture of the framework and how its tasks interact
with each other, the WiFi Driver and the Application Task. All the tasks are run
concurrently by the RTOS scheduler, be it with different priority values. Network
related tasks have the highest priority of all, in order to be able to respond to
incoming /outgoing messages, while attestation related tasks have higher priority
than the Application Task, in order to ensure that in a case of a rogue application,
it can never disallow the Attestation to operate.

The Network Sending Task is essentially an abstraction over the networking
implementation, which in our case is ESP-NOW (Custom WiFi frames) but can be
replaced with any other backend. It receives packets to be sent from the Attestation
and Application Task through queues. Depending on the source of the packet,
whether it was sent from the Application Task or an Attestation Task, it adds
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Figure 5.9: RTOS Task Diagram for the Attestation Framework [10]

a suiting magic number to the packet for differentiation. Finally it forwards the
packets to the Wifi Driver via the API provided by ESP-IDF for the specific chip.

The Network Receiving Callback is registered with the Wifi Driver of the
chip and is called similarly to an interrupt, anytime the device receives a WiFi
frame. It’s responsibility is to only check the packet’s magic number, and forward
the received packet to the correct queue, either for consumption by the Attestation
Receiving Task or the Application Task.

The Attestation Sending Task is responsible for the initiation of all attesta-
tion related communication with neighbours. It will send the announcements during
the Fxploration Phase, start attestation rounds and send all attestation request.

The Attestation Receiving Task is responsible for receiving any attestation
related messages and responding accordingly. As such it responds to announcement
messages with recognition messages, to recognition messages with acknowledgments
and to attestation requests with attestation responses, after completing the integrity
check. It will also log any incoming attestation responses to the global state.

5.5.6 Framework Configuration Options

As noted before, the user can tweak many compile time constants that affect the
timing, the behaviour and more specific technical details of the Attestation Frame-
work. Many options concern the configuration of ESP-IDF and FreeRTOS, while
others were defined just for this Framework. These options lie and should be con-
figured in the sdkconfig.defaults. Additionally they can be configured through
the command line graphical interface of menuconfig, but the user must opt to save
the changes to sdkconfig.defaults. Some notable configuration options:
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Device Configuration

CONFIG_MY_NUM_DEVICES The number of devices. Used in run_all.sh. In the
current version of the framework, each device, after boot, attempts to find
the according number neighbours. The framework can support more dynamic
topologies with changing number of neighbours per device however the current
behaviour is desirable for testing.

CONFIG_MY_NEIGHBOURS_FOUND_WAIT_MS How much time (ms) to wait after the de-
vice’s neighbours have been found before starting Attestation Rounds. This
induced delay proved useful to combat timing related issues.

CONFIG_MY_TIME_FROM_LAST_ATT_RES_TO_RERECOGNIZE_MS How much time must
pass from the last successful attestation response from a neighbour to conclude
that they have restarted and that their announcement needs to be replied.

Networking Configuration

CONFIG_MY_PACKET_DATA_MAX_LENGTH Maximum size in bytes of a packet sent through
our custom networking interface that can be sent or received by either the (vul-
nerable) app or the attestation routines.

CONFIG_MY_OFFLINE_RESEND_MAX_COUNT The number of times a Recognition mes-
sage is (re)sent while an Acknowledgement has not been received.

CONFIG_MY_RESEND_DELAY_MS Delay before resending a message.
CONFIG_MY_MSG_ANNOUNCE_SEND_PERIOD_MS Period of new broadcast announcements.

Attestation Timing

CONFIG_MY_ATTESTATION_INTERVAL_MIN_MS, CONFIG_MY_ATTESTATION_INTERVAL_MAX_MS
The time period before the next Attestation Round is initiated by the device
is chosen uniformly randomly in this range.

Logging Options
CONFIG_MY_LOG_RECV_CB Enables logging from the Network Receive Callback.
CONFIG_MY_LOG_MESSAGES Enables logging of all received and sent messages.

CONFIG_MY_LOG_NEIGHBOUR_INFO Enables logging of neighbours’ info and attesta-
tion stats.

CONFIG_MY_LOG_ATT_ROUNDS Enables logging of finishing and new Attestation Rounds.

CONFIG_MY_LOG_OK_RESP_INFO Enables logging of successful Attestation Responses.
Failed and timed out responses are always logged.

CONFIG_MY_LOG_CURRENT_STATS_PERIOD_MS Period (resolution) of CPU usage log-
ging.
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Benchmarking Options

CONFIG_MY_BENCHMARKING Enable benchmarking, with logging of CPU and RAM
usage, and other statistics.

CONFIG_MY_BENCHMARK_RUNTIME_MS Duration of benchmark, after which stats will
be logged by the devices.

Message Identification

CONFIG_MY_ATTESTATION_MAGIC, CONFIG_MY_APP_MAGIC Magic numbers that are
appended to the start of network messages, depending on their type/origin
(application or attestation module). Based on these the network module for-
wards each message to either the attestation module or the application.

Cryptography Options

CONFIG_MY_PK_USE_EC_SECP192R1/SECP224R1/SECP384R1/SECP521R1 Which ellip-
tic curve to use for the public key cryptography of the Framework (including
vendor and device keys).

5.5.7 Implementation Challenges

The implementation of this framework required addressing several technical ob-
stacles through extensive troubleshooting and iterative refinement. This section
summarizes the primary challenges encountered during development, along with the
strategies employed to resolve them.

Unflashable Chips

This issue is common with low-cost microcontrollers and was observed with the first
batch of ESP32-C3 boards used in this project. These boards could not initially
be flashed with new firmware using the ESP-IDF framework. The problem was
resolved by consulting multiple troubleshooting guides and performing a carefully
timed sequence of button presses on the boards, synchronized with flashing attempts
from the host computer.

Unreliable USB Hubs

The USB hubs used to control, flash, and monitor all ten ESP32-C3 boards were
sourced from a low-cost supplier. Their performance proved unreliable, frequently
causing intermittent failures and delays during development. The hubs’ inconsistent
functionality introduced significant overhead to both deployment and testing cycles.

Network Timing Bugs

It was observed that the retransmission of unacknowledged high-frequency messages,
combined with heavy incoming traffic during the FExploration Phase, occasionally
prevented some devices from completing the three-way handshake with their neigh-
bors. This caused a situation where some devices performed attestation rounds as
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expected, while others remained stuck in the Fxploration Phase. This was mitigated
by allowing devices to join the network dynamically, even after neighboring devices
had exited the Fxploration Phase, and by optimizing network-related code and in-
creasing message queue sizes to handle traffic bursts more effectively.

Messages Looping Back

An unexpected issue encountered during initial development was that devices were
unable to receive one another’s unicast messages. When Device A received a broad-
cast from Device B and attempted to send a unicast reply, the message failed to be
delivered. This was traced to the fact that all devices were configured with identical
default MAC addresses. As a result, when Device A attempted transmission, the
Wi-Fi driver interpreted the destination MAC address as its own and suppressed
the packet. The problem was resolved by assigning unique vendor-specific MAC
addresses to each device.

Unexpected Integrity Check Failures

During testing of an alternative mutual attestation protocol, devices running iden-
tical firmware produced inconsistent attestation results, incorrectly indicating flash
hash mismatches. Further investigation revealed that flashing new firmware did not
erase unused sections of flash memory, resulting in differing unused byte sequences
across devices. The issue was resolved by performing a complete flash erase on all
devices prior to testing. This protocol was later abandoned in favour of the final
attestation approach described in this thesis.

Memory Safety

The entire codebase was implemented in C, the language used by the ESP-IDF li-
braries, which does not provide memory safety guarantees. The most significant
memory safety issue encountered was a buffer overflow discovered in an early devel-
opment version, where certain devices failed their integrity check during attestation.
Upon inspection, it was determined that the flash contents and their computed
hashes were unchanged during runtime, but the reference Golden Hash stored in
memory had been partially overwritten, with only its first byte altered. This was
traced to a buffer overflow that occurred when reading ECC keys from flash into
global arrays that were located adjacent to the Golden Hash in memory. The max-
imum key length calculation was corrected, and explicit bounds checks were intro-
duced to prevent recurrence.

Iterations and Rewrites

Early versions of the framework were deliberately simplified to allow the develop-
ment team to build familiarity with the platform. When asymmetric encryption
and HMAC functionality were introduced, it became clear that a complete rewrite
of the codebase was necessary. The final implementation was redesigned to meet
cryptographic requirements while also providing greater modularity and flexibility
for future extensions.
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5.5.8 Implementation Omissions

The set goal of this Thesis was to build a working basis would easily be extended
to incorporate more optimizations, more complex topologies and other features,
and this project delivers by implementing all the core components and logic of the
proposed Framework. The hardware guarantees that ensure the integrity of the
attestation system—such as secure boot, secure storage, and FreeRTOS kernel and
task isolation via RISC-V Physical Memory Protection—have been implemented
previously and independently of the attestation context [27], [28], [24]. As such, they
are left out of this Diploma Thesis and constitute future work for the Attestation
Framework.
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Chapter 6

Evaluation

This chapter presents the evaluation of our system under different configurations
and workloads. The evaluation is divided into three main aspects: Time Series
Graphs, Scaling Graphs, and Round Frequency Graphs. Each of the latter sections
provides an analysis of system performance metrics such as CPU usage, RAM usage,
response time, and attestation round completion time.

6.1 Methodology

For the collection of the data, the automated benchmark in benchmark.sh was
used. The setup consisted of 10 purchased ESP32-C3 Supermini Boards, connected
via multiple USB hubs to a PC where the benchmark was initiated from. The
benchmarks explores every possible combination of number of devices (from 2 devices
to at most 10) and average attestation round period (from 2 seconds to 20 seconds).

Every combination is run for 100 seconds on the devices. The devices are con-
stantly logging their CPU usage attributed to the attestation related tasks, every
100ms, while at the end of the run their timeout percentage, their average CPU us-
age, RAM footprint, minimum, maximum, average round and response time. These
are collected by the benchmarking script, compiled into CSV files in order to be
processed into figures by a python script.

Note that for the purposes of benchmarking, during a run with e.g. an attesta-
tion round period (average) of T' seconds, the actual time between two consecutive
attestation rounds initiated by a device is picked randomly and uniformly from the
range (T'—0.5s, T+ 0.5s). For the benchmark, the maximum time allowed to elapse
between an attestation request and an attestation response before before it is re-
garded as timed out, is T' — 1s. If the response takes more than that time to arrive
then it counts as a timeout, and it’s response time is not taken into account in the
statistics collection of response time and attestation round time.
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6.2 CPU Usage Over Time

The following time series graphs illustrate the CPU usage over time for different
numbers of devices with fixed attestation round periods. The usage shown origi-
nated from the measurements on a randomly selected device of the network. The
attestation periods are configurable in the evaluation scripts. All period labels in-
dicate (£0.5s) to reflect the uniform random variation applied to the round period
selection.
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Figure 6.1: CPU usage over time for a round period of 12 seconds. Lines corre-

spond to 2, 4, 6, 8 and 10 devices.
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CPU Usage over Time (Period 6 +0.5s)
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Figure 6.2: CPU usage over time for a round period of 6 seconds. Lines corre-
spond to 2, 4, 6, 8 and 10 devices.

As depicted in Figures 6.1 and 6.2, the CPU usage exhibits distinct, periodic
spikes. These spikes directly reflect the configured attestation period, as each spike
corresponds to a group of closely timed attestation rounds of peers. The high-CPU
usage phases are caused by the system having to respond to concentrated attestation
requests, which include performing costly integrity measurements. Specifically, the
integrity check involves hashing the entire 4 MB flash memory for every single incom-
ing request, a computationally intensive task, even with the hardware acceleration
of SHA256 in the chip. During the intensive phases, the attestation is responsible
for effectively 100% CPU usage. It is also observable that as the number of devices
increases, the duration of these spikes increase, indicating that the system requires
more processing time to handle larger sets of devices concurrently.

Conclusions

These figures showcase the type of load the operation of the attestation framework
that is put on the devices. Since all devices initiate attestation rounds with periods
selected uniformly from a small range, all the requests the neighbours receive are
concentrated and thus the CPU usage of the attestation tasks follow this pattern,
of very high and enduring spikes, followed by near zero use.
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6.3 Scaling Graphs

Scaling graphs analyse system performance as the number of devices increases. We
tested with a variable number of devices in order to simulate small networks, in-
crementally increasing their size and observing the system’s overall responsiveness.
Different constant attestation round periods are compared.

Scaling: Average CPU Usage

—8— Period 4s —0 o— —0
—8— Period 12s
S0 —8— Period 20s

D
[a=)

Average CPU Usage [%]
=
[an]

20

2 3 4 5 6 7 8 9 10
Number of Devices

Figure 6.3: Average CPU usage versus number of devices for three different attes-
tation periods. As expected, CPU usage increases with the number of devices and
higher frequency rounds.

Figure 6.3 illustrates that average CPU usage scales approximately linearly with
the number of participating devices. The slope is steeper for shorter attestation
periods, reflecting the higher overall system load due to more frequent rounds. For
the shortest period of 4 seconds, CPU usage begins to plateau near saturation around
7-8 devices, indicating a potential performance bottleneck under high load.
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Scaling: Max RAM Usage
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Figure 6.4: Maximum RAM usage (stack + total heap) versus number of devices.
Three different attestation periods are shown. Memory usage remains relatively
stable with increasing devices.

The analysis of maximum RAM usage (Figure 6.4) reveals that memory con-
sumption is relatively insensitive to the number of devices. This suggests that the
system’s memory footprint is dominated by baseline requirements such as the oper-
ating system kernel and device drivers, rather than per-device overhead, which is a
positive indicator for scalability.
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Scaling: Response Time
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Figure 6.5: Response time statistics (average, minimum, maximum) of single at-
testation requests versus number of devices. The plot highlights how response
time grows with higher device counts.

Figure 6.5 demonstrates that both average and maximum response times increase
with the number of devices. The widening gap between minimum and maximum re-
sponse times, particularly for shorter attestation periods, reflects growing contention
and variability in system performance under increased load.
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Scaling: Round Completion Time
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Figure 6.6: Attestation round completion time (average, minimum, maximum)
versus number of devices. Completion time scales with device count and attesta-
tion frequency.

Figure 6.6 shows that the total attestation round completion time increases with
device count and attestation frequency. Timed out responses are excluded from this
metric, but round completion times approaching the configured period indicate a
strain on the system and potential instability.

Conclusions

The scaling analysis indicates that CPU usage grows approximately linearly with
the number of devices and the frequency of attestation rounds, while memory usage
remains relatively stable. High-frequency attestations combined with a large number
of devices can saturate the CPU and increase response times significantly, potentially
creating bottlenecks. The widening variability in response time under high load
highlights the limits of scalability and the importance of balancing device count
with attestation frequency in the current topology.

6.4 Round Frequency Graphs

Round frequency graphs explore system behaviour with varying attestation periods.
Period labels include (£0.5s) to reflect the randomized selection within the range.
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Round Frequency: CPU Usage
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Figure 6.7: Average CPU usage versus attestation period for 4, 7 and 10 devices.
CPU usage decreases as the attestation period increases.

Figure 6.7 demonstrates that average CPU usage decreases as the attestation
period increases. Longer intervals between attestation rounds allow the CPU to
remain idle for longer periods, reducing overall load. Short periods result in frequent,
concentrated processing of attestations, creating peaks in CPU usage similar to those
seen in the time series graphs.

85



Round Frequency: RAM Usage

—0— 4 devices
41.5 —0— 7 devices

10 devices

41.0

B
<
ot

40.0

39.5 o

Maximum RAM Usage [% of 400 KB

39.0

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Attestation Period [s]

Figure 6.8: Maximum RAM usage versus attestation period for 4, 7 and 10 de-
vices. Memory consumption remains mostly constant across periods.

Maximum RAM usage (Figure 6.8) remains largely unaffected by attestation
frequency, confirming that memory is dominated by baseline system requirements
rather than per-round allocations. The RAM footprint’s peaks visible in the graph
are minor in true scale and can be attributed to timing differences between different
benchmark runs, that result in fewer or more heap concurrent heap allocations and
thus affect the all time maximum RAM usage. It can be safely concluded that the
memory footprint of the attestation task is in fact independent independent from
the attestation round frequency.

86



Round Frequency: Request Timeout
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Figure 6.9: Request timeout percentage versus attestation period for 4, 7 and 10
devices. Higher frequency rounds increase the probability of timeouts.

Figure 6.9 reveals that short attestation periods, particularly with many devices,
dramatically increase the probability of request timeouts. Beyond a certain critical
period, timeouts drop sharply and system performance stabilizes.
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Round Frequency: Response Time

6000 —@— 4 devices
—@— 7 devices
10 devices

4000

Single Attestation Response Time [ms]

o WW

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Attestation Period [s]

Figure 6.10: Single attestation request response time (average, minimum, maxi-
mum) versus attestation period for 4, 7 and 10 devices. Times exceeding the time-
out are ignored.

Figure 6.10 critically does not include timed out responses. Thus it becomes clear
that once the attestation period is above the critical threshold for each configuration,
the average response time for a single request stabilizes.
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Figure 6.11: Attestation round completion time (average, minimum, maximum)
versus attestation period for 4, 7 and 10 devices. Completion times exceeding the
timeout are ignored.

Figure 6.11 shows that total round completion time also stabilizes once attesta-
tion periods exceed the critical value, further confirming that the system performs
reliably only above this threshold.

Conclusions

The round frequency analysis demonstrates that CPU usage is strongly dependent
on attestation frequency, while memory consumption remains largely unaffected.
Short attestation periods create high computational load, leading to increased re-
quest timeouts and longer round completion times. There exists a critical attestation
period for each device count, below which the system becomes overloaded and un-
reliable. Above this critical period, the system stabilizes, with predictable response
times and round completion times. These findings emphasize the importance of con-
figuring attestation periods to balance the trade-off between verification frequency
and system reliability.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

This thesis presented the design, implementation, and evaluation of a lightweight and
scalable Remote Attestation framework tailored for IoT devices, leveraging RISC-
V Physical Memory Protection (PMP) as the hardware Root of Trust. The core
contribution lies not only in the implementation but also in the protocol design,
which combines nonce-based freshness guarantees, replay-attack resilience, and de-
centralized peer-to-peer attestation to enable collective integrity verification without
relying on a single point of trust. The framework follows a two-phase approach, with
an offline setup for key provisioning and an online phase that performs periodic at-
testation rounds using a tree-based aggregation model to reduce communication
overhead.

Our implementation on the ESP32-C3 platform demonstrated that the frame-
work can operate reliably under varying network sizes and attestation frequencies,
providing predictable and reproducible results once the system operates above a
critical attestation period. The evaluation confirmed that CPU utilization is the
dominant performance factor influenced by attestation frequency, while memory
consumption remains relatively constant regardless of network scale. The findings
also highlight the importance of choosing appropriate round intervals: too frequent
attestations introduce congestion and missed deadlines, whereas appropriately tuned
intervals yield stable round completion times and low timeout rates.

By focusing on a design that is targeted on existing low-cost platforms, this work
establishes a practical foundation for building secure, decentralized trust mecha-
nisms in resource-constrained IoT networks with Remote Attestation. The protocol
and implementation together provide a bridge between purely theoretical collective
attestation schemes and deployable solutions, opening the way for further research
and extensions to this framework, that can be directly adopted by the IoT industry.
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7.2

Future Work

While the implementation and evaluation presented in this thesis demonstrate the
feasibility of collective remote attestation on low-cost IoT devices, there are sev-
eral directions for future work that can enhance security, scalability, and robustness.
These improvements span hardware-based isolation mechanisms, cryptographic sup-

port,

runtime protection, and overall system optimization.

Secure Boot and Secure Storage for Keys Extend the framework’s im-
plementation with hardware-backed secure boot and secure storage (utilizing
efuses, flash encryption) to verifiably setup the attestation tasks and correctly,
and providing exclusive access to encrypted keys to the attestation system.

RISC-V PMP for FreeRTOS Task Separation and Benchmarking:
Integrate Physical Memory Protection (PMP) additions to the FreeRTOS ker-
nel to isolate tasks and protect sensitive routines, keys, and memory regions
from untrusted code into the framework implementation. This addition, com-
plemented by the Secure Boot and Secure Storage mechanism would complete
all hardware guarantees of the protocol.

Incorporate Watchdog timer: Instead of performing an Integrity Measure-
ment on every incoming request.

Different Hash Implementaitons: Add support for SHA-3 and BLAKE3
in addition to the current implementation using SHA2 (256 bit).

Finalize RSA Support: As an alternative to ECC, fully integrate RSA-
based asymmetric cryptography for attestation signatures and verifier authen-
tication, providing a robust alternative to symmetric-key MAC-based schemes
and enabling public verifiability of attestation results. ECC was prioritized in
the current implementation due to it’s better performance on the ESP32-C3

Healing System: Implement a self-healing mechanism inspired by HEALED
[3], where compromised devices can securely receive and install verified patches
from trusted peers or a management node, reducing the need for manual in-
tervention.

Improve Protocol Scalability: Add support for automatic spanning tree
formation and other topologies for efficient attestation across massive net-
works, including but not limited to the mechanism in SEDA [1].

DDoS Protection: Introduce rate limiting, challenge-response mechanisms,
and distributed filtering strategies to mitigate flooding attacks that could dis-
rupt attestation rounds or saturate network resources.

Optimization:

— Heap/Stack Usage: Minimize memory footprint through careful allo-
cation strategies and compile-time optimizations, allowing the framework
to run on even more constrained devices.

— CPU, Hash Calculation, and Probabilistic Integrity Measure-
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ment: Explore faster hashing algorithms and probabilistic or incremen-
tal measurement techniques to reduce CPU cycles spent on attestation.

In summary, the work presented here serves as a robust foundation for future
research. Extending the framework with stronger isolation guarantees, adaptive
topologies, runtime monitoring, and self-healing mechanisms will further increase
its resilience against sophisticated adversaries. Additionally, continued performance
tuning will enable deployment in even more resource-constrained and large-scale [oT
environments, moving closer to practical, industry-ready collective attestation.
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