£5

AVPPopos

EeNiko MET=0BIO [IOATTEXNEIO
YX0AH HAEKTPOAOTON MHXANIKON KAI MHXANIKON YTIOAOTIETON
ToMEAE TEXNOAOTIAE ITAHPO®OPIKHE KAI YTTIOAOTIETON

AvATITUEN POPN TG EQEAPUOYNS VLA TNV KOLVT] XPT10N EMPATNYWV
OQUTOKLVT) TWV

ArmAwpatikny Epyaocia
TOov

KITZH ©EOAQPOY-IQANNH

EmAénwv: Navayiwtg Toavdkag
Ka®nyntrg EMII

ABnva, AVyovotog, 2025

EeNiko MET=0BIO IIOAYTEXNEIO
YX0AH HAEKTPOAOTON MHXANIKON KAI MHXANIKON YTIOAOTIETON
TOMEAY TEXNOAOTIAE ITAHPO®OPIKHY KAl YTIOAOTIETON

AvATITUEN POPN TG EQEAPUOYNS VLA TNV KOLVT] XPT10N EMPATNYWV
OUTOKLVT) TWV

AmAwpatikny Epyaoia
TOVL

KITXH OEOAQPOY-IQANNH

EmBAénwv: Havayuntng Toavakag
Kabnyntng EMII

EyxpiOnke amd tnv tpiueAn e€etaoTikn emitpot| T 241 Avyovotov 2025.

(Ymoypagn) (Ymoypagn) (Ymoypaqpm)

[Mavaywwtng Toavdakag A.Zta@uiomdng B.Beokoukng

Kabnynmg EMII Ouotog Kabnyntig Kabnyntg EMII
EMII

Abnva, Avyovotog 2025

Kitong Oe6dwpog Iwavvng

AtmAwpatovyos HAektpoAdyog Mnxavikog kat Mnxavikog Ymodoylotwy E.M.II.
24 AvyovoTtov 2025

Copyright © Be66wpog Iwavvng Kitong, 2025
Me emiUAagn mavtog Sikaiwpatog. All rights reserved.

Amayopegvetal) avtiypa@n, amobnkeuon kat Stavoprn tng mapoVoag epyaciog,
€€ 0AOKAT POV 1] TUIUATOG AVTIG, YIX ELTIOPLIKO OKOTIO. ETITpEMETAL 1
AVATUTIWOT), ATT0BKEVON KAl SLAVOUT YLt OKOTIO [T) KEPSOOKOTILKO,
EKTIALSEVTIKN G 1] EPEVVNTLKIG (PUOTG, UTIO TNV TTPOUTOOECT) VX aVAPEPETAL T
TN YN TPOEAEVON G KoL va SLaTnpeltal To mTapov unvupa. Epotiuata mov
a@OPOVV TN XP1OT TNG,EPYACIAG YIX KEPSOOKOTILKO OKOTIO TIPETIEL VO
ameLOVVOVTUL TTPOG TOV CLYYPAPEQ.

OL amOYELG KL TO CUUTIEPACUATA TIOV TIEPLEXOVTAL OE AVTO TO EYYPUPO
EKPPALOVY TOV CLUYYPAPEN KL SEV TIPETIEL VA EPUNVEVOEL OTL AVTITIPOCWTIEVOVV
TIG emionpeg B€oelg tov EOvikov Metoofov MoAvuteyvelov.

AjAwon Mn AoyokAomig kat AvaAnymg Atopukrig EvBivng

Me TAN)p1) EMYVWON TWV CUVETELWV TIOV ATOPPEOVV Ao TN VopoBeaia mepl
TIVEVUATIK®WV SIKAUWUATWVY, SNAOVE®W VTTEVOUVA OTL E(LAL O ATTOKAELOTIKOG
oLYYPAPEAS TNG TIHPOVCAS SIMAWUATIKNG Epyaciag. Omoladnmote BonBetan
OUVELO@OPA TIOV Ao KATA TN SLAPKELX TNG EKTTOVNONG avayVwPILleTaL A pWwG
KQAL QVOQEPETAL AETITOUEP WS EVTOG TNG EPYATLAG. Avadapdvw TANpwS TNV
TPOOWTILKN EVOVVT OTL, 0€ TEPIMTWOT TAPABiaoNS TWV AVWTEPW INAWCEWY, Ba
ElLAL VTTOAOYOG YLt AOYOKAOTIN, KATL TTOV CUVETAYETAL TNV ATOPPLM TNG
SUMAWUATIKNG LoV EPYACIAG KAL, KAT EMEKTAOT], TNV aduVaAic ATIOKTNOTG TOV
TITAOV OTIOVS WV, TTEPAV TWV AOLTIWV CUVETIELWV TIOV TIPOBAETOVTAL ATIO TN
vouoBeaoia. Zuvemws, SnAwvw OTL N TTapovoa epyacia cuvtdyxOnke Kal
OAOKANPWONKE ATTOKAELOTIKA KL TIPOOWTILKA ATIO EUEVA, KL ATIOSEXO AL

TANP WS KABe eVOVVN o€ TTEP(TTTWOT TOV ATOSELXOEL, GE OTTOLOSNTTOTE XPOVIKO
onuelo, OTL TUUA 1) TO GUVOAO QUTNG ATOTEAEL TTPOIOV AOYOKAOTING AAANG
TIVEVUATIKN G LSLOKTNOlag.

IepiAnym

H oVyyxpovn paypatikdmra,) omola xapaktnpiletal amd TNV EVTELVOUEVT
QOTLKOTIO(N O, TNV KUKAO@OPLAKT CUUEOPTON KAL TNV KALULATIKT) 0AAay,
KOOLOTA EMITAKTIKN TNV AVAYKT YL VIOBETNON TTLO BLWOCLUWY KL OLKOVOULK®V
AVoewv petakivnong. Zto mAaiolo auto, o cuvvemiBatiopog (carpooling)
aVASEIKVVETAL WG PLX TIOAAG VTTOOYOUEVT TIPAKTLKT), LKOVT] VO LELWOEL TO
TEPLBAAAOVTIKO ATOTUTIWUA, TO KOGTOG LETAKIVIOTMG KAL TOV aplOpo Twv
OXMUATWV 0TOoVG §popovs. H mapovoa SImMAwpaTik epyacio e0TLAlEL OTOV
OXESLAOUO KAL TNV AVATITUEN ULOG OAOKATPWHEVTIG (POPTTIG EQAPLOYNS TIOU
ATOOKOTIEL 0TIV TIPOoWBN O™ KoL SLIEVKOAUVVET] TNG KOV XPTIoNG EMLPATN YWV
QUTOKLVNTWV Yl Stadpopég puetadd modewv. KOplog otoxog g mAAT@Opuag
elvat va SnULovpynoeL Pl aglomioTn Pn@Lokn KovoTnTa, QEPVOVTAS OE ETTAPT)
08nyoUG Tov StaBétouv eAeBePEG BEGELS OTA OXNLATA TOUG UE ETILRATEG TIOU
avalnTovv ao@aAels, @ONVES Kal BoAlkEG AVOELS YId TIG LETAKIVIIOELS TOUG. [l
TNV VAoToinom Tov cuotuatog oto backend, emAéxOnke to Django REST
Framework, éva evéAikto kat emektaoipo framework tg Python, to omoio
emeTpePe TV Taxela avATITUEN EVOG KO@AAOUG Kol KOAA Tekpunplwpévov RESTful
API I to frontend, mpotiunOnke n BLAoOMkn React o€ cuvSvaoud pe v
TypeScript, pia emdoyn mov Stac@aiilel T Snuovpyia SUVAUIK®Y, ATTOKPLTIKWY
Kal cuvtnpnouwy dtema@wv xpriotn (User Interfaces) xdpn otnv apyLteKTOVIKY
TV components Kol TV aoc@AAEL TUTTWV ToL Tipoo@EpeL 1 TypeScript. H
QPYLTEKTOVIKY] TOU CUGTHLATOG OAOKANPWVETAL LLE T1 XPTOT LLXG OXECLOKNG
Bdong 8edopévwv, n omoia eyyvdtal TV akepALOTNTA, TN GUVOXT KAL TNV
ATOTEAECUATIKY] Slayelplon TwV §€60UEVWVY TTOV APOPOVV XP1OTES, SLASPOLES,
Kpatnoels Kal afloAoynoels. H epyacia eivat Sopnpévn wote va TapEXEL pa
O@ALPLKT ELKOVA TOV £pY0V. ApYLKA, Ttapatifetal To OewpnTikd vVITOLabdpo Kol
YIVETAL EMIOKOTNON TWV VPLOTAUEVWV AVCEWV GTOV XWPO TOV GUVETILRATIGUOV.
211N oLVEXELX, AVAAVOVTAL EKTEVWS OL TEXVOAOYLIKEG ETAOYEG KA TILPOVOLALETAL I
QPXLTEKTOVLIKT TOU OCUCTHHATOG, CUUTEPLAAUBAVOUEVOU TOV OXESLAOHOV TNG
Baong dedopevwy kat Twv endpoints Touv APL. AkoAovBel) Aemtopepng
TEPLYPAPT] TNG VAOTIOMOTNG TV Bacikwv AelTovpylkotTwy. TEAOG,
TAPATIOEVTAL TA ATOTEAETUATA TWV SOKIUWV EAEYYOL (unit, integration, and
user acceptance tests) mov Sievepynnkav yia tnv emaAnbevon g opONig
Agttovpylag, TG amoS00MG KAL TNG AOPAAELAG TNG EQAPUOYNS, ETLRELALWVOVTAS
TNV ETLTUXT OAOKAT|PWOT TWV APYLKWV OTOXWYV TOU EYXELPTLATOG.

A€Eeg-kAel8L1d — carpooling, mobile app, Django REST Framework, React,
TypeScript

Abstract

The modern reality, characterized by intensifying urbanization, traffic congestion,
and climate change, makes the adoption of more sustainable and economical
transportation solutions imperative. In this context, carpooling emerges as a
highly promising practice, capable of reducing the environmental footprint, travel
costs, and the number of vehicles on the road. This thesis focuses on the design
and development of a comprehensive mobile application aimed at promoting and
facilitating the sharing of passenger cars for inter-city journeys. The main
objective of the platform is to create a reliable and user-friendly digital
community, connecting drivers with available seats in their vehicles with
passengers seeking safe, affordable, and convenient travel solutions.

To implement the system, a modern technological approach was adopted, based
on established and robust software development tools. For the backend, Django
REST Framework, a flexible and scalable Python framework, was chosen, which
allowed for the rapid development of a secure and well-documented RESTful API.
For the frontend, the React library was selected in combination with TypeScript, a
choice that ensures the creation of dynamic, responsive, and maintainable User
Interfaces, thanks to its component-based architecture and the type safety
offered by TypeScript. The system's architecture is completed by the use of a
relational database, which guarantees the integrity, consistency, and efficient
management of data concerning users, routes, bookings, and reviews.

The thesis is structured to provide a holistic view of the project, from its
theoretical foundation to its practical implementation and final evaluation.
Initially, the theoretical background is presented, along with a review of existing
solutions in the carpooling domain. Subsequently, the technological choices are
analyzed in detail, and the system's architecture is presented, including the
database schema and API endpoints. This is followed by a detailed description of
the implementation of core functionalities, such as user registration and
authentication, route creation and search, the booking system, and the mutual
rating system for drivers and passengers. Finally, the results of the control tests
(unit, integration, and user acceptance tests) that were conducted to verify the
application's correct functionality, performance, and security are presented,
confirming the successful achievement of the project's initial objectives.

Keywords — carpooling, mobile app, Django REST Framework, React,
TypeScript

Table of Contents

Extensive Overview

Chapter 1: Introduction

1.1 - The Issue

1.2 - Carpooling Overview

1.3 - Application Goals and Features
1.4 - Application Functionality

Chapter 2: Theoretical Background and Technological Foundations

2.1 - Carpooling and Shared Mobility Principles
2.2 - Technological Foundations of the Application
2.3 - Software Design Principles

2.4 - Summary

Chapter 3: Frontend System Design and Implementation

3.1 - Overall Frontend Architecture

3.2 - Component Design and Code Examples

3.3 - Routing, State Management and API Integration

3.4 - Entire User Journeys, and Well-connected Web Flow

Chapter 4: Backend Architecture and Core Logic

4.1 - Django Project Structure Overview

4.2 - Models: The Data Blueprint

4.3 - Serializers: The Data Translators

4.4 - Views: The Business Logic Engine

4.5 - Permissions, Utilities, and Supporting Logic

4.6 - Authentication, Database Relationships, and Data Flow

Chapter 5 : Development Reflections and Engineering Insights

5.1 - Development Challenges
5.2 - Summary of Lessons Learned and Developer Growth
5.3 - Overall Reflection

Chapter 6: Code Technical Specifications

6.1 - Introduction
6.2 - Frontend in detail
6.3 - Backend in detail

10

11

Extevi|g ITep{Anym

H mapovoa SIMAwUATIKY epyacia amoTEAEL Lot OAOKANPWUEVT) HEAETT), oXESION,
VAOTIOMOT KAl ATTOTIUN O™ LG CUYXPOVNG EQAPLOYNG CUVETILRATIOUOU
(carpooling) yia Stadpopeg HeTaV MOAEWV. ZTOX0G TNG EVAL VO AVTIUETWTILOEL
TIG OUYXPOVEG TIPOKATOELG TNG AOTIKNG KL TTEPLACTIKNG LETAKIVIONG —OTIWG 1
KUKAO@OPLAKT] CUILPOPTOT), TO VPYNAO KOGTOG KAVG LWV KAL TO AVUEAVOUEVO
TEPLBAAAOVTIKO ATOTUTIWUA— PECW TNG SMULoVPYLaG plag agloTio TG Kot
E0XPNOTNG YNPLAKIG TTAATPOPHAG.

To Ke@dAaio 1 0¢tet ta OspuéAia Tov eyxelpjuatos. Apyikd, avaAdel To TpdRANpa
(1.1) ot oVYXPOVEG KOLVWVIKOOLKOVOULKEG TOU SLAOTACELG. ETT) CUVEXELQ,
Tapovolalel Tov cuvemIBatiopd (1.2) wg o TPAKTIKY e TTOAAXTIAG 0PEAT,
OLKOVOULKQ, KOLVWVLIKA Kol 0tkoAoykd. To ke@dAaio El8IKEVEL TOVG GTOXOUG TNG
e@appoyng (1.3), ot omoliot meptAapfavouv tn Snuovpyia Ao@AAwVY TPOEIA
XPNOTWV, TNV TTAPOXT) EVOG EVEALKTOU GUOTIHATOS avalTNonG Kal SUocievong
SLadpopwy, TNV EVOWUATWOT EVOG UNXAVIOUOV KPATNOEWVY OE TIPAYUATIKO
XPOVO, KAL TNV AVATITUEN EVOG GUOTNLATOS AP SpouwV agloAoy1CEWY YLa TNV
evioyuom NG EUTILOTOOVVNG EVTOG TNG KOLWVOTNTAG. TEAOG, TTEPLYPAPETALT) BAOLKY)
Asttovpykotnta (1.4), oKlaypa@wvTtag Tn pon aAANAeTiSpacn g LeTay odnywv
Kal EMPaATwv.

To Ke@dAawo 2 tapéxel tn OewpnTiKy KAl TEYVOAOYLKT TEKUNPIwoT TOV £pyov.
Eppabivel otig apyeg s kowvng kivntikotntag (shared mobility) kot g
olkovouiag Tov dtapolpacpov (sharing economy) (2.1). AvaAvovtat Ste€odika ot
TeXVoAoyieg o emAéxOnkav (2.2): yia to backend, to Django REST Framework
Yl TNV TV TNTA AVATITUENG, TNV EVOWUATWUEVT] AOPAAELN KOL TNV
EMEKTACLUOTNTA TOV: Yl TO frontend, n BiBAoOMkn React yia) Snuovpyia
SUVAULK®V SLETAPWV HECW TN G APXLTEKTOVIKTG components kot 1) TypeScript ywx
TNV TPOGHNKN OTATIKIG TUTIOTIOMONG, IOV SLac@AAilel TN oTIRapOTNTA KoL TN
oLVVTNPNOLUOTNTA TOU KwdiKa. ETimAgov, e€etalovtal ol OepeAlwdels apxEg
oxedlaopov Aoylopkov (.., SOLID, DRY) mou vioBetBnkav yia) Stac@daiion
evog kaBapov kal apBpwTtoL kwdika (2.3).

To Ke@dAaio 3 eivat agplepwpévo oty €15 BdBog avdAvon touv Frontend.
[Mapovotaletat ouvoAikn apyltektovikn Tumov Single Page Application (SPA)
(3.1). AvaAvetat o oxedlaopdg Twv facikwv components (3.2), OTwg 1 @OpUA
avalntnong, N KaApta eu@davions SLedpouns KaL To TIPo@IA xprotn,
mapabetovtag kat Tapadelypata kwdika. EEnyovvtal ot texvikég vAomoinong
™G Spoporoynong (routing) pe n xprion s BiAodNkng React Router,n

12

oTpatnyKn Slaxeiplong g katdotaong (state management) yla Tov
OUYXPOVLIOUO TwV SeSOUEVWVY 0€ 0AOKAT PN TNV £@apuoyn (.., ue Context API 1
Redux), ka1 acvyxpovn emikowvwvia pe to backend API (3.3). To ke@aAato
KOPUPWVETAL LLE TNV TTAPOUGLAOT) OAOKAN PWHEVWVY oevapiwy xprong (user
journeys), amo TNV eyypa@1] KL TNV avalitnor LEXPL TNV KPATN oM KAl TNV
agloAoynomn pag Stadpoung (3.4).

To Ke@dAaio 4 sotidlel 6NV apyLTEKTOVIKY KoL TV vAoToinon tov Backend.
[Teprypdpetatn apBpwtn doun tou project oe Django "apps” (m.x., users, rides,
bookings) (4.1). Opilovtat ta Models ™ Bdong dedopévwy (4.2), dTwg to User,
to Ride, xat to Booking, padi pe tig petagl toug oxéoels (Foreign Keys,
Many-to-Many). Eme€nyeitat o péAog twv Serializers (4.3) ot petatpomy Twv
Python objects o€ JSON kat 6TV eMKOPWOT TWV ELCEPXOUEVWV SESOUEVWV.
AvoAveTal 1 eTXEPNOLOKT AOYLKT IOV evowuatwveTatl ota Views (4.4), ta
omola ekBEtovv Ta endpoints tov RESTful API (m.x., GET /api/rides/, POST
/api/bookings/). ISwaitepn éu@aon Sivetatl 0ToOUG UNXAVIGHOUE ACPAAELXG, OTIWS
T0 cvoTnua avBevtikomoinong faciopévo oe tokens (.., JWT) kat ot KAGoELg
Permissions mov opiouv ta Sikatwpata TpdoBacng Twv XpnoTwy 6TOUG TTOPOUG
tou API (4.5, 4.6).

To Ke@dAaio 5 tpoodidel pia Stdotaon kprtikol avactoxacpuov. Kataypdgel Tig
TEXVIKEG IPOKANOELS TToL avTipetwioTnkav (5.1), 6Ttwe n Staxeipion wvwv
wpag N 1N emiAvon nnuatwv CORS petadv frontend kat backend. Zuvoilel ta
oAV T SIBdypata kot tnv €EEAEN Tov mpoypappatiot (5.2) péoa amd mv
eMiAvon TPOLANUATWY KAL TNV EQAPUOYT) VEWV TEXVOAOYLWV. To KEQAANLO
KAgivel pe évav ouvoAlk6 amodoylopd tov £pyou, a€loAoyOVTAS TO TEALKO
ATIOTEAEG X O€ OXEOT] E TOUG apXLlkoVS atoyoug (5.3).

TéAog, To Ke@dAawo 6 Asitovpyel wg éva mANpeg TeEXVIKO TTapaptnua. [apExeL TIg
Aerttopepels Tpodiaypapés Tov kwdika, Téco yia to Frontend (6.2) 600 kat yw
to Backend (6.3). Auto eptlapfavel Tnv tekunpiwon twv API endpoints
(Stadpopeg, uéBodot HTTP, avapevoueva payloads) kat pia avaivon twv
KupLOTEPWV components Tov React kal Twv props Toug, KABLOTOVTAG TOV KOSIKA
KATOVOTTO, EMEKTACLIO KXL GUVTNPTOLLLO.

13

Chapter 1: Introduction

The demand for sustainable, efficient, and affordable transportation solutions is a
pressing challenge in modern society. Increasing traffic congestion, rising fuel
prices, environmental concerns, and limited access to flexible transportation
options make it necessary to explore alternative mobility strategies. Carpooling
— the practice of sharing a vehicle among multiple passengers traveling in the
same direction — has emerged as one of the most promising solutions to address
these issues.

This thesis focuses on the design, development, and evaluation of a mobile
application for passenger carpooling. The application allows drivers to offer
available seats on their trips and enables passengers to search for and book these
seats for intercity travel. By facilitating organized carpooling, the application
aims to reduce transportation costs, improve travel accessibility, and promote
environmentally responsible mobility.

In recent years, technological advancements and the widespread use of
smartphones have created new opportunities for implementing and scaling
carpooling services. Mobile applications provide a user-friendly platform that
enables real-time ride sharing, secure communication between users, and
efficient coordination of trips. By leveraging geolocation, data analytics, and
modern UI/UX practices, such platforms can enhance user trust and streamline
the process of matching drivers with potential passengers. This thesis aims to
harness these capabilities to deliver a reliable and scalable solution that supports
the growing demand for smarter urban and intercity transportation.

14

1.1 The Issue

There are several lingering problems in intercity transportation. The high
number of individual car owners results in a significant percentage of empty
seats, with most vehicles carrying only the driver. This situation is a key
contributor to the growing traffic congestion, excessive fuel consumption, and the
consequent increase in carbon emissions. On the other hand, public
transportation alternatives might not cater to the specific needs of all passengers
in terms of scheduling, convenience, and frequency of service, especially on the
less popular routes.

Carpooling can be a way to solve these problems by connecting drivers who have
vacant seats with people going the same way. However, unofficial carpooling
arrangements are challenged by several factors: problems with finding a suitable
match, lack of organization tools, and trust issues among participants. A specially
designed mobile platform can be a solution to these problems by providing
organized matching features, secure user accounts, and an embedded feedback
system.

1.2 Carpooling Overview

Carpooling means using a private car by the driver and one or more passengers.
Besides the ecological and money-saving aspects, carpooling has social benefits
as well, as it helps people to communicate and establishes a shared sense of
responsibility for reducing the negative impact of traffic.

The carpooling applications of today have revolutionized the old carpooling
concept into a new, digital version. With these apps, the drivers are able to
publish offers for their trips, specifying the starting point, destination, and time
of the journey, the number of available seats, and any other relevant data. The
passengers, in turn, can check the available trips, set filters, make bookings, and
communicate with the drivers. To ensure the security of the participants and to
foster trust among them, such systems usually employ user verification, profile
management tools, and review functions.

15

1.3 Application Goals and Features

The following features are proposed to be implemented in the mobile
application for this thesis: User Sign Up and User Sign In: Protected registration
and login, creation of a profile and sign in/log out of data in a user's space.

Driver Module: Drivers can offer trips by adding sets of information such as
specific routes, the number of available seats, and time slots. Passenger Module-
To let your passengers able to search for rides, filter by date and location, then
reserve seat.

Vehicle Management: Offers drivers the capability to input vehicle information
like make, model, year, license plate, and seating.

Review and Ratings: This feature utilizes the feedback and ratings component, so
users can share their experience and makes the platform trustworthy.

This first chapter on structures the chapters to come, in range of background
literature, system design and implementation, and reaches a concluding
Application. Overall, our endeavor is to provide a functional and scalable answer
to the nuance of shared mobility and the promise it holds for long distance
carpooling.

1.4 Application Functionality

The app operates around the aim of connecting drivers and riders as efficiently
as possible. Like all gig-economy jobs, drivers sign on and enter their car’s
specifications. They will then be able to post available trips and include the
route, departure and arrival times and number of seats available. Riders,
meanwhile, can find a ride by browsing using a number of filters (like date,
location, or how many seats are available), where they can see they can-see the
detail of a trip before making a booking. Once there is a match, the system
manages also the process for booking so that drivers and passengers can contact
each other confidentially. Once the trip is over, users can review and rate one
another, which become part of the platform’s reputation system, creating trust for
future transactions. It also has automated reminders like reminding people of
their next trips and a dashboard for users to keep track of and manage trips,
bookings, and feedback. This chapter forms the basis of subsequent sections,
which will detail some of the background research, system design, development
methodology, and performance evaluation. The aim will be to provide a practical,
scalable and user centric solution to stimulate intercity carpooling and
sustainable mobility.

16

Chapter 2: Theoretical Background and
Technological Foundations

This chapter introduces the theory and technology based techniques for the
development of carpooling mobile application as elaborated in this thesis. It
explains the car pooling systems and the social and environmental justifications
for shared mobility before discussing the architectural frameworks,
programming languages, and design tools used in production, and namely the
Shadcn component library.

2.1 Carpooling and the Shared Mobility Principles

Carpool is a mode of travel in which organizes people use private vehicles when
travelling close to each other. The system is intended to promote ridesharing
(reducing the number of vehicles on the road), and more efficient use of
transportation capacity. The concept of carpooling and shared mobility are
based on sustainability, efficiency, and community involvement.

Eco Friendliness: Carpooling greatly reduces the CO, emissions, fuel
consumption and air pollution. Research demonstrates that increasing the
average vehicle occupancy could reduce the carbon emission rate per capita by a
significant gap, which can help to reach the global climate targets while
improving the urban air quality problems.

Cost Savings: By sharing direct travel expenses (fuel, tolls, and vehicle
maintenance) among a larger group of passengers, the overall cost per person
drops for drivers and passengers. This sharing-of-cost element is ideally suited
for students, commuters, and those with restricted travel budgets.

Reduced congestion: Raising the average occupancy of cars reduces the total
number of cars on the roads, alleviating congestion, shortens travel time and
makes transportation networks more efficient at peak times. Community and
Social You and Me Benefits: Besides eco and economic advantages, carpooling
promotes social behavior, and forms the basis of community for everyone
providing and needing travel. It has potential to enhance network and
cooperation and enhance social networking.

Resource Utilisation: A city-level approach will be able to more efficiently utilise
the available-infra such that it is not over-exerted, relieving pressure from public
transportation systems, the roads and the parking spaces. However, research

17

emphasises potential barriers to the introduction of the programme, including
schedule matching, safety concerns, and trust between strangers. To overcome
these challenges and fully harness the benefits of carpooling, the magic of digital
applications unfold. Apps like these modernize the process of identifying,
booking, and assembling shared rides. To achieve this, they use such
functionality as real-time changes, automatic alerts, user library, scorecards, user
rankings and feedback to improve visibility as well as trust and experience. This
work is based on these ideas and intends to provide a sound,

scalable implementation which is friendly to the environment and convenient for
future users.

2.2 Technological Foundations of the Application

The technological stack chosen for this application is carefully designed to
balance performance, scalability, security, and maintainability:

e Backend (Django REST Framework): DRF provides a structured
framework for creating RESTful APIs in Python. It handles serialization
(converting database objects to JSON and back), authentication, and
request handling. By using DRF, the backend can implement robust APIs
that support complex data relationships, manage user sessions securely,
and integrate permission systems to control access.

e Frontend (React + TypeScript): React enables the construction of
interactive Uls through reusable components, while TypeScript adds type
safety, making the codebase more predictable and easier to debug.
Together, they improve maintainability and reduce runtime errors. React’s
ecosystem also offers a rich set of libraries for state management, routing,
and hooks, enhancing development speed.

e Tailwind CSS for Styling: Tailwind CSS brings a utility-first approach to
styling. Instead of writing custom CSS, developers apply predefined utility
classes directly in the markup, creating highly customizable and
responsive layouts. Tailwind'’s flexibility allows for theming and consistent
design across the entire app.

18

Shadcn Component Library: Shadcn offers high-quality, customizable React
components such as drawers, modals, forms, buttons, and dropdowns,
saving developers time and ensuring visual consistency. These components
integrate seamlessly with Tailwind CSS, enabling a polished, professional
Ul without the need to design every element from scratch.

Relational Database (PostgreSQL/MySQL/SQLite): The system uses a
relational database to store structured data — including user profiles,
vehicle details, ride listings, passenger bookings, and reviews. Django’s
ORM (Object-Relational Mapping) provides an abstraction layer, making it
easier to query, update, and migrate data without writing raw SQL.

API Communication: The frontend and backend communicate over HTTP
using RESTful API principles. This approach ensures a clean separation of
concerns, with the frontend focused on user interaction and the backend
responsible for data processing and business logic.

Development Workflow and Tools: Modern tools such as Git (for version
control), GitHub (for collaboration), and Visual Studio Code (for coding)
are essential for efficient teamwork, code management, and debugging.
These tools also support continuous integration practices, allowing for
rapid deployment and testing.

Django

Django is a high-level Python web framework that encourages rapid development

and clean, pragmatic design. It provides built-in features for authentication,

database management, and security, making it an excellent choice for building
robust backend systems.

Django REST Framework (DRF) builds on Django, adding a layer for creating
RESTful APIs. DRF simplifies serialization, viewsets, authentication, and
permission handling, letting us create a powerful API backend efficiently.

19

Key advantages

Built-in admin interface.

Secure and scalable.

Strong community support and extensive documentation.
Excellent integration with databases like PostgreSQL.

React and TypeScript

React is a JavaScript library for building interactive user interfaces. Its
component-based architecture enables modular, reusable Ul elements, speeding
up development and improving maintainability.

TypeScript extends JavaScript by adding static typing, which reduces runtime
errors and improves developer productivity. By combining React with TypeScript,
we ensure a safer and more scalable frontend codebase.

Key advantages

Declarative and flexible UI building.

Strong ecosystem with thousands of libraries.
Enhanced code safety with TypeScript’s type checking.
Easier refactoring and collaboration in larger teams.

Tailwind CSS and Shadcn Ul

Tailwind CSS is a utility-first CSS framework that allows rapid, responsive design
without writing custom styles. By using predefined utility classes, developers can
quickly compose complex layouts.

Shadcn Ul provides a set of accessible, beautifully designed React components
(like buttons, drawers, modals) that integrate smoothly with Tailwind. This
combination accelerates Ul development while maintaining design consistency.

20

Key advantages

Rapid prototyping and iteration.

Fully customizable styles.

Built-in accessibility features.

Seamless integration with React projects.

FULL STACK DEVELOPMENT ()

React JS
Node JS nede NEXT.
Next JS

Typescript
@basir1937

2.3 Software Design Principles

Principles of Software Design Technology is at the center of this project, but it is
for people — the students, drivers and ride customers who will use the app.
That’s why the software design principles go above and beyond simple technical
considerations - they represent a fundamental investment in crafting something
meaningful, dependable, and human.

Separation of Concerns: We separate the system into 3 obvious pieces —
backend, frontend, and database — so that each can evolve without taking down
the rest. It's why maintenance is now easier, and why the team can concentrate
on making one piece better at a time.

21

Scalability: Platform needs to scale up effortlessly while more and more users
are moving onto the platform. Here, the modular design means that we can add
new features (like notifications or payment systems) without having to
re-architect the entire application. Scalability here is not just a matter of size —
it is about keeping the user experience smooth, even at large scales.

Security: We care about the trust users place in us. All the sensitive information,
such as passwords and personal information, are taken care of securely using
encryption and authentication. The app was created “specifically to defend
against ordinary cyber threats” and “to give people peace of mind when

sharing rides with others.”

User-Friendly Layout: The app is laid out to be intuitive, particularly for

those who will access it on mobile devices the most. By adhering to established
UI/UX patterns as well as to Shadcn’s beautiful and consistent components, we
ensure the experience is intuitive and enjoyable — because people should notice
the journey but don'’t fight the app.

Maintainability: Code is not only for machines, but for humans — developers of
the future that will read, improve, and extend it. Ultimately using TypeScript
and Django’s patterned structure for clarity keeps the system easy to understand
and maintain as it grows. Unit tests and code reviews keep the quality high and
the WTF /min low.

Extensibility: There is a lot of future in the system. New features, integrations, or
enhancements can be built upon without rebuilding everything from scratch,
because of the modular backend and frontend architecture. In other words, our
design principles seek a balance between technical power and human empathy,
and hope this balance results in not just powerful and efficient but also friendly
and trustworthy end product for all users.

22

2.4 Summary

In conclusion, Chapter 2 set the stage to understand the dual foundation of this
project: the human reasons that under the need of a carpooling application and
the technical decisions to make it real. We examined the environmental,
economic, and social impact of shared mobility, and the modular,

nested architecture that forms the app’s foundation. We underscored the ways in
which every design decision — from the infrastructure to the tiniest button in
the frontend — is underpinned by a dedication to technical fortitude and human
empathy. This set of tools acts as an operational model, guaranteed to make the
application practical, relevant and viable. In the following chapter, we further
explore how these systems work together, profiling the architecture of the full
system along with diagrams and real-world examples. the same seat. It's a space
in which technical precision can mean the difference between a user experience
that feels stable and trustworthy and one that doesn’t — because when it comes
to sharing a car with strangers, trust is everything.

23

Chapter 3: Frontend System Design and
Implementation

When you load the carpooling app, what you see — the screens, buttons, forms
and interactions — is the result of hundreds of design and development choices.
And the frontend is where the UX magic really happens. It is the layer that
transforms raw data and complex backend logic into something meaningful,
beautiful and easy to use. In this chapter, you'll get acquainted with how we built
the frontend, not as code, but as a human-centered system that fit the needs of
drivers and passengers. We'll take a look at the high level architecture, real pieces
of code, reasons why we made specific technology choices and touch on the user
experience decisions that guided the final result. We don’t just want to throw
technical terms at you, we want to keep you entertained, tell you the story of the
frontend: why React and TypeScript, and of course, how did Shadcn and Tailwind
CSS give us a one heck beautiful and consistent design system, how did we
structured the app in simple modular and reusable components and why every
click, swipe, or tap you made felt smooth and chill, Because feeling reliable isn’t
just sex, it’s good sh*t! In this chapter, we will illustrate with some real code
snippets of the project, the decisions that were made and why, during this choice.
Let's just not only explain the frontend of the system, but provide you insight how
to think about building web applications in a modern, maintainable and
user-friendly way!

24

3.1 Overall Frontend Architecture

The frontend of the Carpool Application was developed with a singular objective:
To offer an intuitive, seamless user experience, while significantly reduced the
response time. At its core, there are some main principles making it: modular,
maintainable, scalable, and user oriented. We chose React as our

main framework due to its flexible component-based architecture. With React,
we can decompose the user interface into small, composable building blocks —
components like buttons, ride cards, booking forms, or profile drawers. For
instance, in our PastBookings. tsx component we have created a reusable Card
component that can be used to show old rides in a consistent, good looking way:

Card key={ride.id} className="min-w-[250px] flex-shrink-@ shadow-md border rounded-1g"
CardHeader className="flex flex-col items—center text-center"
CardTitle className="text-1g font-semibold"
{ride.start_location} - {ride.end_location}
CardTitle

p className="text-sm text-gray-500"
{new Date(ride.departure_time).toLocaleDateString()}{" "}
|{II II}
{new Date(ride.departure_time).tolLocaleTimeString([], { hour: '2-digit', minute: '2-digit' })}

P
CardHeader

25

We started with React and then added TypeScript on top to provide strong typing
and clarity in our code. We may define TypeScript interfaces like these, to keep a
data structure consistent:

export interface Ride {
id: number;
vehicle: number;
start_location: string;
end_Llocation: string;
date: string;

departure_time: string;
arrival_time: string;
driver: number;
passengers: number/[];
available_seats: number;
created_by: number;

For styling, we used Tailwind CSS paired with Shadcn, a modern React
components library. With Tailwind’s utility-first approach we have the freedom to
style elements in the markup, ensuring that our design tokens stay fast and
flexible. Shadcn adds to this with pre-styled Ul components - drawers,

modals, tooltips and the like, ready to drop into your app’s visual identity. lL.e.,
our drawer elements that are in pastBookings. tsx look like this:

Drawer open={isOpen} onOpenChange={(open) => { setIsOpen(open); if (!open) setSelectedRide(null);
DrawerContent
div className="mx-auto w-full max-w-sm"
DrawerHeader
DrawerTitle
Review the rides' users

DrawerTitle
DrawerDescription>It will be anonymous</DrawerDescription
DrawerHeader
ReviewForm ride={selectedRide} userId={userData?.id} closeDrawer={() => { setIsOpen(false); setS
div
DrawerContent
Drawer

26

Structurally, the frontend has a number of nice layers: Components Layer: All
visual objects with which we construct Ul, starting from simple buttons up to
principally sized layout containers.

Pages and Views Layer: Primary application screens such as the home screen,
search results, ride details, booking process and user profile. State Management
Layer - For local state we are using hooks in React (such as useState and
useEffect) and context to share state (for example, whether the user is logged
in).

API Integration Layer: Makes requests to the backend using fetch() or by using
libraries, such as Axios, to bring in ride, user, and booking data.

Routing Layer: Manages page navigation via React Router,; noting that transitions
between pages are seamless with no full reload. This architecture was not just a
technical strategy for the app, but also an experience we wanted for our users —
one in which actions feel immediate and the interface feels clean and coherent,
where every interaction — from searching for a ride to booking a seat — feels
smooth and reliable. The rest of this guide dissects such specific pieces,
demonstrates additional use-cases and explains how each piece helps in creating
a frontend system that is not only technically sound but deeply user-oriented.

3.2 Component Design and Code Examples

In this chapter, we further explain the design and implementation details of some
of the frontend components of the carpooling application. One benefit of React’s
modular approach is that it lets us divide our Ul into little, reusable bits, and
each one is responsible for a single function or visual. One of the advantages of
this approach is that it is reusable. For instance, the Button component from
Shadcn is applied across pages seamlessly, be it for form submits, drawer opens,
or other actions — promoting visual conformance and behavioral expectations.

Example: Ride Card Component Search results and past and upcoming bookings
use the ride cards; they're an implementation of the shared Card component.
Here’s an example code snippet:

27

Card key={ride.id} className="min-w—-[25@px] flex-shrink-@ shadow-md border rounded-1g"
CardHeader className="flex flex-col items-center text-center"
CardTitle className="text-1g font-semibold"
ride.start_location} - {ride.end_location
CardTitle
p className="text-sm text-gray-500"
new Date(ride.departure_time).tolLocaleDateString()}{" "

new Date(ride.departure_time).toLocaleTimeString([], { hour: '2-digit', minute: '2-digit' })

p
CardHeader

CardContent className="space-y-2"
div className="flex justify-between items-center"
span className="font-medium text-gray-600">Arrival:</span
span className="text-base"
new Date(ride.arrival_time).toLocaleTimeString([], { hour: '2-digit', minute: '2-digit' })
span

Card
THESSALONIKI — ATHENS
08/04/2025 | 10:00
Arrival: 18:20
Driver: Theo Kitsis
Seats: 1/3
Vehicle: BENTLEY-X

Leave a review

Example: TimePicker Component TimePicker It is used to select ride
departure/arrival times. The following is an example of this that uses the React
State and, as such, uses controlled inputs:

28

interface TimePickerProps H
value: string;
onChange: (value: string) => void;
minuteStep?: number;l

H

export const TimePicker: React.FC<TimePickerProps> = ({
value,
onChange,
minuteStep = 5,

D =A

const [hour, setHour] = React.useState<string>("00");
const [minute, setMinute] = React.useState<string>("00");

React.useEffect(
if (value) {
const [h, m] = value.split(":");
setHour(h);
setMinute(m);

b

, [valuel);

React.useEffect(=>
onChange(" ${hour}:${minute}");
, [hour, minute, onChange]);

const hours = Array.from({ length: 24 },
i<10 ? "03${i}" : “${i}’
)i

const minutes = Array.from({ length: Math.ceil(6@0 / minuteStep) },
const m = i * minuteStep;
return m < 10 ? ‘0%{m}> : “${m} ;
);

Briefly, the “Publish a Ride” form offers to drivers a user-friendly tool that will
allow easy formulation and immediate sharing of new ride offers with
prospective passengers. There is a toggle at the top for the user to indicate if
they are posting the ride as a Driver or a Passenger. The form will gather all info
related to the trip, such as departure and arrival addresses, departure date and
time, selected vehicle and number of total seats available. Dropdowns, pickers
Date picker and time picker Material Design time picker and date picker help to
prevent errors Provides a more intuitive user experience by enabling faster
entry. After filling out the form, you can click the "Publish ride! button, you can
make the ride available for reservation. This feature is at the core of the app’s
mission to create efficient, eco-friendly and organized shared transportation.

29

Publish a Ride

Please fill in the form below to publish a new ride.

Publish ride as a driver

Turn this off if you want to ride as a passenger ()
Origin Destination

Athens C loannina C
Date of ride Time

May 10th, 2025 B 07 ~ : 00 v
Vehicle Available Seats

Select vehicle... C Select a number... v

How many passengers can you take?

Publish ride!

This piece kind of demonstrates where we start meshing Ul elements with logic
to bring everything together in a smooth, easy to understand experience. All
over the frontend, this component-based system means we can scale the app,
add features, and keep things consistent. In next article we will see how these
things work together in an real-application with state management and api
integration.

30

Upcoming Bookings

Personal Details Vehicles Upcoming bookings Past bookings

Upcoming Rides

ATHENS — IOANNINA
17/05/2025 | 18:00

Arrival: 01:00
Driver: Theo Kitsis
Seats: 0/3

Vehicle: ACURA-APAP

You are the driver

The Upcoming Bookings interface is a critical piece of the application’s frontend
architecture and is important because it will help improve user experience
overall. This component shows a high-level view of all the scheduled rides for
the logged-in user.

The layout is based on cards - great for an instant visual identification where
each ride is separate, and provides all necessary information: journey (e.g.
Athens — loannina), departure date, time and expected arrival time, driver’s
name, available seats, and a type of car. A status text like "You are the driver" is
dynamically displayed when a user is the creator of the ride and thus, the
knowledge and use of the system would increase. Such a format is not only
aesthetically tidy but is also operationally efficient, focusing on ease of use and
instant access to information. Technically, the component is receiving booking
data as a JSONAPI response from the backend and rendering that using React's
rendering, such as. map() method in order to process the ride entries.
Conditional rendering is used to display alternative views based on user role
(driver or passenger) and booking state.

This implementation also encourages reusability and maintainability, since we
enclose each ride card inside of its own subcomponent. Athough they are sleek
and responsive on tablets and desktop, the theme still maintains super quick
load times on smaller screens and has been designed with ‘touch’ in mind. This is
a great example of what we're aiming for with the application's interface
strategy: straightforward frontend logic, and a clean Ul design.

31

An example of the code for Upcoming Bookings :

div className="flex space-x—4 overflow-x—-auto pb-2 min-h-[200px]"
{upcomingRides !== undefined && upcomingRides.length === 0 && (
div className="flex justify-center items-center w-full min-h-[200px] text-x1"
No upcoming rides found.
div
)}
{upcomingRides ! undefined && upcomingRides.length > @ && upcomingRides.map((ride) => (
Card key={ride.id} className="min-w-[250px] flex-shrink-@ shadow-md border rounded-1lg
CardHeader className="flex flex-col items-center text-center"
CardTitle className="text-1g font-semibold"
{ride.start_location} - {ride.end_location}
CardTitle
p className="text-sm text-gray-500"
{new Date(ride.departure_time).toLocaleDateString()}{" "}
{" "}
{new Date(ride.departure_time).toLocaleTimeString([], { hour: '2-digit', minute: '2-digit'
p:
CardHeader
CardContent className="space-y-2"
div className="flex justify-between items-center"
span className="font-medium text-gray-600">Arrival:</span
span className="text-base"
{new Date(ride.arrival_time).toLocaleTimeString([], { hour: '2-digit', minute: '2-digit' }
span
div

Personal Details

Theo Kitsis

Driver Total Kilometers: 0

Personal Details Vehicles Upcoming bookings Past bookings

First Name Last Name

Theo Kitsis
Username Phone Number

theo +306971792273
Email

theo.kitsis.2001@gmail.com
Privacy Driving License Number

| want to keep my name private XXXXXX

Review Summary
3.8/5

5 reviews

32

L
s

On the driver profile of Theo Kitsis, the Personal Details tab gives an organized
overview of Theo's most important user info, such as first name, last name,
username, phone number, email and a filled with love just for his driving license
number. The interface is pretty neat and easy to use with the driver able to easily
access his/her personal information as well as update it. And there's a privacy
checkbox so the author can be private if he/she wants, allowing more control
over personal visibility.

The thing that makes this tab unique is it has a section for Review Summary too
which serves as a proof and authority. Theo overall rating 3.8 of 5 5 reviews The
brief is star rated and quantitized, providing quick-witted feedback for other
users or potential passengers somehow. Displaying members' reviews on their
public profile page provides users with more transparency and confidence in
the platform this is really important in ride share environments. This makes the
profile more than just a static page and more of a living, breathing view of a
driver’s activity and reputation.

Past Bookings
Personal Details Vehicles Upcoming bookings Past bookings
.ONIKI — ATHENS ATHENS — IOANNINA ATHENS — LARISA ATHENS — THESSALONIKI
)4/2025 | 10:00 10/04/2025 | 05:00 18/04/2025 | 03:00 20/04/2025 | 10:00
18:20 Arrival: 12:00 Arrival: 05:30 Arrival: 18:20
Theo Kitsis Driver:giorgos papadopoulos Driver:Giorgos Gratsonis Driver: Ntinos Athanasiadis
113 Seats: 1/4 Seats: 1/4 Seats: 171
BENTLEY-X Vehicle: BMW-X6 Vehicle: SEAT-ibiza Vehicle:LAMBORGHINI-aventador svj

bave a review Leave a review Leave a review Leave a review

Past Bookings’ gives users a structured view of their pastrides. Here, every past
ride is presented in a card view which includes details such as route, date/time of
departure, arrival time, driver’s, report time, no of seats occupied and the car
used.

This is not only a trip history log, but it also includes a 'user touch' via the "Leave
areview" button which allows the passenger to give feedback. This feature
promotes transparency and trust in the platform by

promoting community-based rating. It is styled to match the rest of the

33

interface, and adds to a smooth and informative user experience—one that
doesn’t need you to rack your brain or dive into deep historical stats to remember
or reproduce an old ride.

3.3 Routing, State Management and API Integration

Components make up the appearance of the app, but the power of the app is in
the way they work together — the way they handle data, respond to user input,
and interact with the backend. This part dives deep into routing, state
management, and API integration, with real code taken from the project—this
part explains how it all fits together under the hood.

Routing with React Router React Router is used for navigation so I can keep
pages from having to force full page reloads. For instance, when a user clicks on a
ride card in the SearchResults. tsx file, the app is dynamically pushing them to
/rides/:id with useParams:

// See this in SearchResults.tsx
import { useParams } from 'react-router-dom';

function RideDetail() {
const { id } = useParams();

useEffect(() => {
fetchRideDetails(id);
Y, [id]);

return <div>/% Ride details x/</div>;

by

In the project, nested routes organize subpages (e.g., showing booking details
inside a ride page) and protected routes restrict access to pages like the user
profile.

State Management with React Hooks and Context

The app relies on React’s useState and useEffect hooks, as seen in components
like UpcomingBookings.tsx, where we manage the loading state:

34

// From UpcomingBookings.tsx
const [loading, setLoading] = useState(true);

useEffect(() => {
async function fetchUserData() {

setLoading(true);

try {
const data = await me();
setUserData(data);
catch (error) {
console.error(error);
finally {
setlLoading(false);

fetchUserDatal();
yo[1);

For global state (like the logged-in user), we use React Context, typically set up in
UserProvider.tsx:

const UserContext = React.createContext();

function UserProvider({ children }) {
const [user, setUser] = useState(null);

useEffect(() => {
async function loadUser() {
const data = await fetchCurrentUser();
setUser(data);
b
loadUser();
o)

return (
<UserContext.Provider value={{ user, setUser }}>
{children}
</UserContext.Provider>

);

Any child component can then consume the context using useContext.

35

API Integration: Communicating with the Backend

Our app communicates with the Django backend via REST API calls, typically
handled in utility files like me.ts or vehicles.ts.

Example from me.ts:

export async function me() {
const token = localStorage.getItem("token");
const response = await fetch("http://localhost:8000/user
headers: {
Authorization: ‘Token ${token}’,

if (!response.ok) {

throw new Error("Failed to fetch user info");
1
I

return await response.json();

Example POST request from vehicleForm.tsx:

async function addVehicle(vehicleData) {
const response = await fetch('/api/vehicles/', {
method: 'POST',
headers: {
‘Content-Type': 'application/json',
Authorization: “Token ${localStorage.getItem('token’
}l
body: JSON.stringify(vehicleData),
1

if (response.ok) {
const newVehicle = await response.json();
setVehicles(prev => [...prev, newVehicle]);
} else {
console.error('Failed to add vehicle');

1
Ir

}

36

http://me.ts

Vehicle

Add a Vehicle

Please fill in the form below to add a new vehicle.

Car Brand Model
Audi C R8
Year Seats
2025 v 4 v

Do not include the driver's seat.

License Plate

Add vehicle

Error Handling and Improvements

In the app generally, we catch errors, and are optimistic using book, and review
actions where we show the result to the user on the Ul before the server sends a
confirmation. From this you can observe this pattern in inside joinRide function
in SearchResults. tsx. We also debounce calls so we don’t hit the API every time
we type in search, use pagination to deal with large search results, do local
caching when possible (e.g. save fetched user details) to make the app faster.

Summary

A Fully Connected Frontend With React Router, React Hooks, React Context and
direct API integration, the frontend becomes a powerful, smooth and interactive
application. You can feel safe letting users take a spin through trips, book travel,
edit their profiles, and engage with the app without feeling like it'll come back to
haunt you in a coupla years with code that’s both maintainable and follows best
practice patterns. In the following, we will discuss full user journeys and
demonstrate how these technical components serve practical use cases.

37

3.4 Entire User Journeys, and Well-connected Web Flow

In this file, let’s get out of individual components and learn how our app ties
everything up into real, actual user journeys! By this, [mean critical thinking
about how the user clicks around and uses the app on different pages, clicks and
navigates, how the data flow between different components and server and how
the whole thing feels cohesive. Time to unpack this by walking through the
important user actions and hopping between the code and the structures.

Trip 1: Rides Quest

Upon arrival to the search page, a user enters their origin, available on this
upcoming web page, and destination and date. We will take care of this

in SearchPage. tsx, with a search form that takes the input and sends a search
request to the backend:

// In SearchPage.tsx
async function handleSearch() {
const response = await fetch(/api/rides?from=${origin}&

const results = await response.json();
setSearchResults(results);

}

The results are passed down to the SearchResults.tsx component, which displays
a list of ride cards:

<SearchResults searchResults={searchResults} />

Each card is clickable, taking the user to the detailed ride page using React
Router.

38

SearchResults

Origin Destination Day of Travelling

Athens < loannina C May 10th, 2025 ()

Search Results

ATHENS — IOANNINA
10/05/2025 | 10:00

Arrival: 17:00
Driver: Theo Kitsis
Seats: 0/3
Vehicle: BENTLEY-X

Join this ride

Search Results

The Search Results is a primary component of the rides discovery flow, allowing
for filtering and browsing through the available rides according to
pre-determined criteria. The three fields Origin, Destination and Day of Travelling
in top search bar are created using controlled dropdowns and date picker
component. When the user selects these values and clicks on the Search button,
arequest is sent to the backend to retrieve data using these values. The reply is
used to dynamically display cards of matching rides below. The details of the
trip, like the departure and arrival times, the driver’s itinerary and rates, the
number of seats available and the vehicle model are printed on each card, as is a
large “Join this ride” button to begin booking. The component uses useState to
handle search form inputs and useEffect to update results when a change is
made.

Trip 2: Booking a Ride

On the ride detail page (RideDetail. tsx), users can book a seat. When they press
the Join Ride button, we trigger the joinRide function like so:

39

// From RideDetail.tsx
async function joinRide(rideId) {
const token = localStorage.getItem('token');
await fetch(/api/rides/${rideId}/ ", {
method: 'PATCH',
headers: {

'Content-Type': 'application/json',

Authorization: “Token ${token}’,
},
body: JSON.stringify({ passengers: [...currentPassenge
);

After a successful booking, we optimistically update the UI by updating the local
state so the user sees themselves as part of the ride immediately.

Join

You joined this ride!

You can view the ride in your profile.

When the user join the ride an email is sent to the driver

onthegoapp2024@gmail.com
New Passenger Joined Your Ride
alkmini kitsi has joined your ride from

ATHENS to IOANNINA on 10/05/2025 at

Trip 3: Adding a Vehicle

For drivers, adding a new vehicle is done via the Add Vehicle drawer, which you
can find in Vehicles.tsx. This drawer opens a form from VehicleForm.tsx, which on
submission triggers:

40

async function addVehicle(vehicleData) {
const response = await fetch('/api/vehicles/"', {
method: 'POST',
headers: {
'Content-Type': ‘'application/json',
Authorization: “Token ${localStorage.getItem('token'
}
body: JSON.stringify(vehicleData),
);

if (response.ok) {
const newVehicle = await response.json();
setVehicles(prev => [...prev, newVehicle]);
1
J

¥

This keeps the driver’s vehicle list updated without needing to reload the entire
page.

Trip 4: Leaving a Review

After completing a ride, users can leave a review from the Past Bookings page
(PastBookings.tsx). Clicking the Leave a Review button opens a drawer where the
ReviewForm.tsx component is loaded. Submitting the review triggers:

async function submitReview(reviewData) {
await fetch('/api/reviews/', {
method: 'POST',
headers: {
‘Content-Type': 'application/json',

Authorization: "Token ${localStorage.getItem('token'
}
body: JSON.stringify(reviewData),

);

41

THESSALONIKI — ATHENS
08/04/2025 | 10:00

Arrival: 18:20

Driver: Theo Kitsis

Seats: 1/3
Vehicle: BENTLEY-X

Upon submission, the app refreshes the local list of reviews so the user can easily
sees their feedback appear.

Connecting the Pieces Every trip is enabled by: React Router managing the flow
of pages. Manage local and global data with react state and context. Tailwind and
Shadcn having the relatively same Ul elements. API calls that keep the frontend
and backend in sync. By partitioning the app into distinct pieces

with unidirectional data flow, we’ve built a frontend system that is modular,
maintainable, and very easily extended. This architecture allows the addition or
modification of features to other parts of the application with no side-effects.

Developers can work on separate parts of the application with little overlap, and
debugging is simplified with encapsulated logic. Additionally the collection of
reusable components and centralised data fetching leads to a coherent and
seamless user experience across the full platform. Also, the separation of
concern for Ul rendering, state control and backend communication leads to
cleaner development flow. This structure not only speeds up development
process, but also allows the future contributors to work on the system with
understanding. In practice, this results in a more stable and scalable offering that
can gracefully mature as the needs of the user evolve.

42

Chapter 4: Backend Architecture and Core Logic

The back end of the carpoolings app is more than just a server, it is the essential
engine powering every aspect of the experience — transactions, business logic,
data security, connections with the front end and more. Based on Django and
Django REST Framework (DRF), the backend is modularized, maintainable, and
sturdy — serving as a secure base for the entire platform. In this chapter, we will
start by presenting what the backend is supposed to do, how it is organized
inside and why each pieces of it is relevant, before diving into its flows and logic.

4.1 Django Project Structure Overview.

The backend is broken up into a few crucial files and folders, each with a unique
and crucial role:

models. py — contains the database tables and object relations. That’s where
User, Ride, Vehicle, and Review models live, and dictate how the data is stored
and related to one another.

serializers. py — Django models transform into a json, to communicate over an
API. It’s the one that determines which fields are exposed, and how they are
formatted.

views. py — Everything related to core API logic to search rides, update bookings,
or manage user profile.

urls. py = maps APIs routes (such as /rides/ or /users/me/) to specific view
functions, and defines the entire API structure.

permissions. py — defines custom access rules, so only authorized users can edit
rides or submit reviews.

43

utils. py — homes Ditto for helper functions such as the custom email system
being used when a new passenger joins a ride. This modular and that

re-usable nature design pattern conforms to Django’s principles of separation of
concerns (each components are specialized), whereby the backend architecture
is a snap to develop, maintain and extend.

For example: models. py which describes the format of the data in the system.
serializers. py to see what it is sending or receiving data through the API. views.
py decides how business logic and user actions work against the data. It all
works together seamlessly.

Let’s trace a simple flow: A user searches for rides: The frontend makes an API
call to the endpoint /rides/ (in urls. py). The request is sent to RideViewSet at
views. py. The view looks up the Ride objects with the given ID in the model. py.
The serializers.py is where the data is serialized using RideSerializer. py. The
JSON response is sent back to the frontend. This chain leads to clean, organized
back-end flow that is the basis for the scalable solution we're creating. Each

is inextricably linked. when a frontend component asks for a user’s previous
bookings, the system works through these links: The frontend calls the api route
defined in urls. py. The route directs to a view in views. py. The view pulls in
data from the models in models. py. Here the view is passing the data through a
serialiser in serializers. py. The answer is then returned to the frontend in

the form of a json. Below we will dissect these files, discussing what their main
contents are, and display real code examples of how they work together to
support the system.

4.2 Models: The Data Blueprint

For the modeling of the data a blueprint is used. The models. py is the heart of
the backend data layer. This is where we’ll establish, how the app is going to
store and organize all of its important information through users and rides, to
vehicles and reviews. Each model corresponds to a table in the database, and
Django provides us with a great facility for interacting with these tables as
though they were Python objects, allowing us to easily read, write, and
manipulate the data. For instance, the Ride model captures a trip that users can
start, join or comment:

44

class Ride(models.Model):
created_by = models.ForeignKey(User, on_delete=models.CASCADE, related_name='rides_created")
driver = models.ForeignKey(User, on_delete=models.CASCADE, related_name='rides_driven', null=True, blank=Tr
vehicle = models.ForeignKey(Vehicle, on_delete=models.CASCADE, null=True, blank=True)
start_location = models.CharField(max_length=255)
end_location = models.CharField(max_length=255)
departure_time = models.DateTimeField()

arrival_time = models.DateTimeField()
available_seats = models.IntegerField(null=True, blank=True)
passengers = models.ManyToManyField(User, related_name="joined_rides", blank=True)

def __str_ (self):
return f"{self.start_location} to {self.end_location} on {self.departure_time.strftime("'%Y-%

Key points

We associate the ride to its creator (once it's put up), along with its driver and
vehicle using ForeignKey fields. Passengers is the passengers field as we had a
passengers methid to the Ride model. We save trip information such as start and
end point, time and number of available seats.

The User model likewise inherits from Django’s AbstractUser and

supplements the following: phone_number privacy_enabled is_driver
total_kilometers driving_license_number Those fields customize the user object
itself to the needs of any ride sharing platform, such as verifying drivers or caring
about user privacy.

Why it matters:

1. Modeling the entire structure and consistency of all of the app’s data.
2. Models allow you to query powerfully, such as finding rides on a
given date or counting passengers. 3) Models are the beating heart
serializers, views, and permissions are built on. On top of all of this,
Django’s ORM gives us the ability to write easy-to-read,
easy-to-maintain queries that don’t run the risk of injection attacks, as
they don’t rely on raw sql. For example:

my_rides = Ride.objects.filter(passengers=user)

completed_rides = Ride.objects.filter(driver=user).count()

45

This means the app can evolve without major rewrites — adding new fields or
relationships is straightforward thanks to Django’s migration system.

4.3 Serializers: The Data Translators

Serializers in Django REST Framework are the interface through which the
database models are exposed to the outside world, that is, the frontend and the
other systems interacting with the backend API. The serializers reside in the
serializers. py files, and do two things:

Serialize > A complex Django model instance (Python object) would then be

converted into JSON, which can then be very simply sent to the front end over
HTTP.

Deserialize — The incoming JSON data that comes from the frontend is validated,
and it is then converted back to Django models, which can be saved to the
database.

serialization FLE tleserialization

MEMORY

This dual role makes serializers one of the most important components in the
system, as they control exactly what data flows in and out of the backend.

Let’s look at some concrete examples from the project.

46

Example 1

class RideSerializer(serializers.ModelSerializer):
class Meta:
model = Ride
fields = [
'id', 'created_by', ‘'driver', ‘'vehicle',

'start_location', 'end location',
'departure_time', ‘'arrival_time',
'available_seats', 'passengers'

This serializer:

e Exposes only selected fields to the frontend — keeping sensitive or
internal data hidden.

e Automatically handles nested relationships (like users and vehicles)
thanks to DRF ModelSerializer features.

e Enables the frontend to create or update rides by sending a JSON payload
that the backend will validate.

Example 2 is the UserSerializer:

class UserSerializer(serializers.ModelSerializer):
password = serializers.CharField(write_only=True)

def create(self, validated data):
password = validated_data.pop('"password")

user = User(**validated_data)
user.set_password(password)
user.save()

return user

The password is write-only, and will never be returned in API responses (for
security reasons). What is done here is that the password is hashed when saving
through the create method so it doesn't store the password in plain-text.

47

Serializers :

They are the contract between frontend and backend. They also blockade user
data by adding controls to what is exposed. They enable you to create or update
complex data (such as many to many relationships) cleanly. You can centralize
validation; so the backend can remain strong against bad or nefarious input. In
reality, when the frontend wants to ‘pull down data’ (in this example, past rides),

the backend: Queries the models. Passes the data to the proper serializer.
Returns a neat and tidy JSON response that you can easily visualize on
your front-end application.

And when a user sends a form (e.g. adding a new vehicle),

the frontend: Sends JSON data. The data is validated by the serializer. The
serializer will, if valid, turn it into a Django object and then save it. If there

is failure, the serializer provides clear error messages. This combination of
transformation, validation and security makes serializers one of the genuine
backbones of a backend system.

4.4 Views : The Business Logic Engine

The Business Logic Engine The views. py file is the one where the logic of the
backend resides. It’s how we specify what the backend should do when a user
makes an action in our system, like searching for rides, creating a booking,
updating user information, or leaving a review. In Django REST Framework, we
make use of viewsets, a concept that groups all related actions (like list, retrieve,
create, update, delete) in a concise manner. It makes the code a lot clearer and it
"feels" nice and resty to me. Let’s break it down. Example from views.py:

48

class RideViewSet(viewsets.ModelViewSet):
queryset = Ride.objects.all()
serializer_class = RideSerializer
permission_classes = [IsAuthenticated]

def get_queryset(self):
queryset = super().get_queryset()
origin = self.request.query_params.get('from')
destination = self.request.query_params.get('to")
date_str = self.request.query_params.get('date"’)

if origin:
queryset = queryset.filter(start_location=origin)
if destination:
queryset = queryset.filter(end_location=destination)
if date_str:
date_obj = parse_date(date_str)
if date_obj:
queryset = queryset.filter(departure_time__date=date_obj)

user_id = self.request.query_params.get('user_id")

if user_id:
queryset = queryset.filter(Q(driver__id=user_id) | Q(passengers__id=user_id)).distinct()

return queryset

What this does:
1) It’s responsible for incoming requests to the /rides/ endpoint.

2) Filters the rides using query params, like origin, destination or date of the
ride.

3) Returns the correct rides list to the frontend (via the RideSerializer) Another
essential piece are custom actions, which are RESTful endpoints that go beyond
the basic CRUD methods. Like for instance, the /users/me/ endpoint:

action(detail=False, methods=['get'], url_path='me', perm
def me(self, request):

serializer = self.get_serializer(request.user)
return Response(serializer.data)

This lets the frontend make a term for the current user and fetch their
information in a neat single call. We also specify custom update logic:

49

def update(self, request, *args, *kkwargs):

instance = self.get_object()
original_passengers = list(instance.passengers.all().values_list('id"', flat=True))
original_driver = instance.driver.id if instance.driver else None

response = super().update(request, *args, skkwargs)
instance.refresh_from_db()

new_passengers = list(instance.passengers.all().values_list('id"', flat=True))
new_driver = instance.driver.id if instance.driver else None

departure_time = instance.departure_time
date_str = departure_time.strftime("%d/%m/%Y")

time_str = f"{int(departure_time.strftime('%I"'))}{departure_time.strftime('sp').lower()}"

This both refreshes the ride and infuses a bit of behavior, like sending email
notices when new passengers hop on.

Views They are a way to connect a user request with the business logic that
operates on the data — when a user clicks a button, or submits a form, a view
handles that. They handle data flow between models, serializers, and the
frontend, and make sure everything is in sync and coherent. They are the
enforces of permissions and business rules, only allowing allowed things to
happen. They allow custom behavior on a feature-by-feature basis, such as
sending email, running analytics, or adding specialized filters. In other words,
views aren’t just plumbing — they actively influence the behavior of the app,
what the users’ experience, and the seamless integration of backend and
frontend.

4.5 Permission, Utilities and Supporting Logic

Beyond models, serializers, and views, the backend has a set of important
supporting layers to keep the application secure, flexible, and operational. These
are a combination of permission classes, utility methods, helper modules, and
routing definitions all working together to enforce the app’s business logic and
ensure that the entire application is maintainable.

Permissions: Regulating Access And Limiting Rules Permissions are described in
permissions. py and attached directly to viewsets. They specify the groups of
individuals who are allowed to read or change some set of data, and what types
of users are permitted to access or change it. This is the layer where we did
things like we must only allow sensitive operations to be performed by privileged
users.

50

For example, by using: permission_classes = [IsAuthenticated]

We make sure unauthenticated users have no access to the protected API
endpoints like creating rides, updating profiles or posting reviews. If you need
more fine grained control, we’ll need to create custom permission classes.

For example: Only the driver can accept new passengers. A ride can only be
updated by the user that created the lift. Users can only leave a review on aride
they participated in. These rules of the road are critical in order to keep a level
playing field and build a community that can be trusted for both consistency and
fairness. Permissions

1. To secure the sensitive operation from unauthorized users.

2. Implement role-based access control (drivers and riders). Implement
vital business rules on the backend.

3. Push security checks that are to be strictly enforced to the server
to minimize front-end superuser privileges. Utilities - Helpers to keep
your logic clean. The utils. When I give the above pstools code, the
entire code is well over 1000 lines, but, if you haven't already, you could
try refactoring myapp/util. To illustrate, at a fundamental level, you
could understand the email notification system as:

from django.core.mail import send_mail

def send_email(to, subject, message):
send_mail(subject, message, 'noreply@carpoolapp.com',

51

This helper is used in response views when certain types of actions have been
performed. A passenger requesting a ride (the driver is notified). The driver
confirming a job (the passenger is alerted). Putting that logic in a utility function,
and the main bussiness logic in views. py keeps extremely focused, readable, and
maintainable.

Other potential utilities are: Date/Time format helpers (normalised display of
date/time). Logging or tracking (e.g. for analytics, monitoring). Setup hooks
for third-party APIs (eg. maps or payment services).

As always keep your core code DRY. Collect popular commands into one place.
Ease the ability to scale the system by factoring out special cases.

The Backing Logic: Routing and API Structure Supporting files like urls. py are
responsible for configuring how the API is organised, and to determine how
requests subsist their way through the system. For example:

router.register(r'rides', RideViewSet)
router.register(r'vehicles', VehicleViewSet)

router.register(r'users', UserViewSet)

This maps predictable, RESTful API endpoints such as /api/rides/ and
/api/users/ to the appropriate viewsets, so the frontend always knows where to
direct its requests. The nice URL syntax also allows you to be able to:

Aging View the structure of the system complete. Extend functionalty by
creating new routes. Connect the backend to other tools or services.

Routings
1) The outwardly facing principle-part of the API.

2) Wires everything (views, models, serializers) together into a
functioning system.

3) Greater ease of maintenance and clarity.

4) It gives a clean contract for the frontend to deal with. We then get to the
backend's authentication system, the data relationships that's gluing our data
together and we finished with a detailed step-by-step guide of what happens
when a user interacts with our backend.

52

4.6 Authentication, Database Relationships, and Data Flow

In this part, we concentrate on how the backend enforces secure access, governs
the relations between different data and orchestrates the step-by-step workflow
of data among components. These are important elements which form the app’s
trustworthiness and reliability.

How Authentication Works: What Does It Mean To Have Permission? The app
utilizes Django’s builtin authentication system along with Django REST
Framework’s token authentication. On the login, the user is given an access
token, that they add into the header of every API call they make thereafter.

Login Sign Up
Username

johndoe

Password

Your password

On The 6o

Example :

Select Token to change

Search

USER CREATED

b512285e10276dfba5ad0697a0a336d5de79ddd4 ntinosath April 15, 2025, 7:21 p.m.

1 Token

53

The above approach, which is token-based, lets the backend to fetch the user
issuing a request, and apply necessary permission policies.

Authentication

1. The verification process, so that private/sensitive endpoints can only
be access by verified users.

2. Provides user-related functionality (accessible booking details or
writing reviews).

3. Prevents unauthorized operations, information disclosure or a
malicious attack. In the project that [have the authentication is handled
by Django’s REST framework token system — it generates a token when
a user logs in and automatically checks it on each API request. Database
Relationships: One To Many And Many To Many Relationships With
Data Joining together data with Database Relationships To join two
database relations (a table is a relation, remember from the definition of
a database above) you need to have a relationship from one to many or
many to many between the relations in you database.

The value of Django's ORM is in the way it models the relationships between the
models.

Key relationships in the app: A User can have multiple Vehicle entries
(one-to-many). A Ride is made by a User, has one driver (a User), and can have
many passengers (many-to-many). A Review ties two users together (the
reviewer and the reviewed) and points to a specific Ride. These connections are
described by models. py You can use Django fields such as ForeignKey and
ManyToManyField and they are essential for representing real-world
connections.

Example: passengers = models.
ManyToManyField(User, related_name="joined_rides", blank = True)

This corresponds to the fact that one ride can be shared by multiple passengers
and one user can join multiple rides, reflecting the nature of carpooling.

54

Relationships

1) Make the system extensible and capable enough to model the complex real

world scenarios.

2) Support fast querying (e.g. get all rides a user participated in).

3) Secure data integrity by using the relational constraints in Django.

Flow of Data: A full Backend Travelogue

So, let me go through how this works when a person joins a ride:

1.

Frontend Action — The user presses "Join Ride" in the mobile app.

API Request — The frontend sends a PATCH request to
/rides/{ride_id}/ with the user’s token.

View Logic — RideViewSet. update() Validates the request, user and
updates the passengers.

Database Update = DUpdated passenger list is updated in the database.

Utility Trigger — The system invokes the send_email() method to notify
the driver.

API Response — Backend returns a JSON response acknolwedging the
successful update.

Frontend Update — Mobile app reflects new Ul state for joined ride.
This multi-stage flow illustrates one of the examples of just how closely
coordinated the different backend components are — every piece has its
role, from implementing access management, through data mutations
and up to user tracking.

55

Chapter 5 : Development Reflections and
Engineering Insights

5.1 Development Challenges

During the development of the application, a series of technical and architecture
challenges appeared. These difficulties were actually teaching moments on the
road to creating a full-stack web app with Next. js, Tailwind CSS, ShadCN UI for
frontend and Django REST Framework for backend. The aim was to build a
responsive modern carpooling solution.

Synchronize Frontend and Backend

In the beginning, one of the biggest challenges was to make them (frontend and
backend) talk to each other. Manipulating user authentication tokens properly —
especially on login and retrieving data (/users/me/) — required a bit of work.
And in many of those cases it was an API-related problem like CORS errors or
"401 Unauthorized" errors caused by wrong headers and / or fail to store tokens
in localStorage etc. There would have to be a reliable, secure way of sending
requests to the authenticated API.

State Management & Data Refresh

Even though there is no great state management libraries involved such as
Redusx, it employs React’s useState, useEffect and context API to manage the local
and global state. But things got complicated to keep the frontend state in sync
with backend changes. For instance, when a ride was updated (PATCH
/rides/:id/), the changes were sometimes not shown right away in the Ul This
involved manually re-fetching data after those actions and being very careful
with something like the dependency array within useEffect.

Reuseable and structured component

Since the early days, the application has strived for a modular and
component-based frontend architecture. But how to correctly define props for
dynamic components was not so easy - especially when you start to reuse Ul
components such as a Card component in different contexts (upcoming vs. past
rides). A few other parts needed to be reconfigured to prevent code-duplication
while keeping everything clear and maintainable.

56

Ul Consistency with ShadCN and Tailwind

The Ul component library that [used was ShadCN Ul, developed with Radix Ul
alongside Tailwind CSS, and it allowed for rapid prototyping with

visual coherence. It did however take a while to figure out how to modify
components such as Tabs, Badge and Drawer for use with dynamic content. Being
able to adhere to accessibility and responsiveness, while embracing the
utility-first mindset of Tailwind, was very important for a consistent
user-interface experience.

Debugging and Testing

Because there were no automated tests (neither unit nor integration) debugging
was rather manual and subjective. Many of the bugs originated in nuanced
factors—Ilike not accounting for null drivers or improperly formatted date
strings. Browser dev tools, console logs, and server-side logging proved
invaluable in debugging and resolving these types of bugs during development.

5.2 Summary of Lessons Learned and Developer Growth

The learning process was more than just programming during the

development of the carpooling application. It was a holistic exercise which
challenged my knowledge of full-stack application development, made me more
adaptable as a developer, and bolstered my capability to translate real-world
problems to software engineering solutions.

One of the main learnings was the necessity to write maintainable and modular
code. The methodology of Extracting reusable & well-isolated components was
the key to developing a scalable app (especially in frontend). Libraries such as
ShadCN UI made development speedy without sacrificing flexibility, and Reacts
component-based design pattern taught me to build with structure and
reusability in mind.

On the back end, Django’s Model-View-Serializer pattern helped me
understand a clean way to do RESTful design. Serializers’ role as a middleman
between Python objects and JSON-formatted API responses taught me about
data abstraction and verification. Also, while working with custom views,
permissions, and actions I got a better sense of the tradeoff between backend
control and frontend flexibility.

57

[faced difficulties along the way such as fetching data asynchronously, token
based authentication, conditional Ul rendering according to user role. These
problems were solved by using React hooks (useEffect,state), dynamic routing
and authenticating protected API calls using headers. So I learned more out of
necessity, which not everyone would expect of me: JavaScript, TypeScript,

and HTTP protocol logic.

From a program management standpoint, [understood the importance of
planning and testing in increments. Writing and testing each feature, ride
requests, user authentication and profile viewing, piece by piece, helped to avoid
unstable, un-testable code. In addition, separately testing each module before
combining the code into an entire flow meant fewer bugs, and a higher chance of
being able to deploy the system.

Finally, this study reiterated the importance of UX thinking. By structuring tabs
(personal details, upcoming/ridden rides, etc) and conditional views (if you are a
driver or no) I provided user friendly but clear navigation, with attention to the
overall feel.

Altogether, this project actually helped me to grow as a student to be more
patient and solve a hard challenge in the most ideal way. It was a "hands on"
class where theory and engineering decisions were blended, this is exactly what
I needed to prepare for real world development processes and team based
software design.

5.3 Overall Reflection

Throughout the development of this carpooling application, the process has been
both technically challenging and deeply rewarding. What began as a concept —
connecting drivers and passengers to promote shared transportation — evolved
into a full-stack solution, complete with authentication, dynamic frontend views,
backend logic, and real-time data flow.

Technical Growth

From a technical standpoint, this project offered an invaluable opportunity to
work with a modern tech stack. On the frontend, using React, TypeScript, and
Tailwind CSS (with ShadCN UI) taught me how to build responsive and scalable
user interfaces. Managing state and routing, especially through tools like React
Context and React Router, gave me hands-on experience with modular

58

application design. On the backend, I gained deep exposure to Django and the
Django REST Framework, learning how to model data with precision using
serializers and how to enforce permissions and roles securely. I also learned to
integrate third-party tools, handle asynchronous actions, and set up safe API
endpoints. Connecting the frontend and backend seamlessly via token-based
authentication and structured RESTful APIs was one of the most gratifying
accomplishments of the project.

Design and Usability Insights

Beyond code, I also gained a stronger appreciation for user experience (UX) and
interface design (UI). It wasn’t enough for the app to simply function — it had to
be intuitive, accessible, and pleasant to use. This led to several design iterations
and usability refinements, including cleaner layout structures, visual feedback
during loading, and a clear separation between driver and passenger roles.

Moreover, testing the app under realistic conditions helped reveal user flows that
needed improvement. Implementing features like "Upcoming Bookings," "Past
Rides," and "Leave a Review" added depth and completeness to the user
experience.

Project Management and Discipline

One of the biggest takeaways from this thesis was the discipline of managing a
long-term project: organizing tasks, debugging under pressure, and breaking
large goals into smaller; actionable items. The experience of documenting,
maintaining clean code, and testing features thoroughly offered a clear sense of
how software is built professionally.

Personal Takeaways

This project reinforced the importance of end-to-end thinking — understanding
not just how a component works but also how it integrates into the broader
system. It also reminded me that every problem has multiple solutions, but
clarity, maintainability, and user-centric design should always guide the final
decision. In conclusion, this application is more than just a functional piece of
software — it represents a journey of learning, building, and refining. It stands as
a solid foundation that could be extended and deployed to support real users in
real cities, solving real transportation challenges.

59

Chapter 6:

Code Technical Specifications

6.1 Introduction

In this section we further analyze the codebase for the carpooling application.
We dissect the architecture, components, modules and high level logic that spans
through backend and frontend on a road to understand how things work under
the hood. The purpose of this section is not to provide code snippets alone, but
to expatiate on their end, meaning, and even reason for existence — and this is
what I believe is sorely missing from most tutorial-like materials. In doing so, we
bring to the fore the technical depth, difficulties, and solutions involved in

the project. This chapter is organized into two main sections:

Frontend Code: This includes all user facing react and typescript components,
hooks and different styling System (Tailwind css) etc and how they
integrated with the shadcn- ui components.

Backend Code: Including Django models, serializers, viewsets, permissions,
custom logic, and in general the structure of the Rest API.

We're going to show the interesting parts of the code here.

60

6.2 Frontend in detail

v frontend
.next

app
components

>
>
>
> hooks
> lib
> node_modules
> public
> utils

.gitignore
{} components.json
Js eslint.config.mjs
TS middleware.ts

TS next-env.d.ts

TS next.config.ts

{} package-lock.json
package.json
postcss.config.mjs

i) README.md
tailwind.config.ts
tsconfig.json

<> wise-badger - Botpress St..

.gitignore
= python
(® README.md

= source

61

‘app- login — page.tsx

import LoginForm from "@/components/forms/loginForm";
import SignUpForm from "@/components/forms/signupForm";
import { Tabs, TabsContent, TabsList, TabsTrigger } from
"@/components/ui/tabs"

import Image from "next/image";

export default function Login() {
return (
<div className="flex h-screen">
<div className="w-1/2 h-full bg-[#009ADC] items-center justify-center
flex">
<Image
src="/onthegoblue.svg"
alt="0On The Go logo"
width={500}
height={500}
priority
/>
</div>
<div className="w-1/2 items-center justify-center flex p-8">
<Tabs defaultValue="login" className="">
<TabsList>
<TabsTrigger value="login">Login</TabsTrigger>
<TabsTrigger value="signup">Sign Up</TabsTrigger>
</TabsList>
<TabsContent value="login">
<LoginForm />
</TabsContent>
<TabsContent value="signup" className="">
<SignUpForm />
</TabsContent>
</Tabs>
</div>
</div>

)

62

Explanation:

The react component (Login. tsx) that performs the initial
authentication interface.

Imports: We import the LoginForm and SignUpForm components, which
contain the actual login and registration logic, respectively. We import
Shadcn's Tabs modules for the UL

Layout: This components splits the screen in two halves - left side displays the
project logo using the Next. js’s Image component, and right-hand side, with the
login/signup forms inside a tabbed interface.

Tabs: With the use of TabsList, TabsTrigger and TabsContent, we offer a nice
switch between login and sign-up views without the need for a page-load (better
for users).

‘ app— profile - page.tsx ‘
"use client";

import { useEffect, useState } from "react";

import Loading from "@/components/loading";

import { me } from "®@/utils/me";

import { Avatar, AvatarFallback, AvatarImage } from
"®/components/ui/avatar";

import { UserRound } from "lucide-react";

import { Badge } from "®/components/ui/badge";

import { Tabs, TabsContent, TabsList, TabsTrigger } from
"®/components/ui/tabs"

import PersonalDetails from "@/components/personalDetails";
import Vehicles from "@/components/vehicles";

import UpcomingBookings from "@/components/upcomingBookings";
import PastBookings from "@/components/pastBookings";

export default function Profile() {

const [loading, setlLoading] = useState(true);

const [firstName, setFirstName] = useState("");

const [lastName, setLastName] = useState("");

const [isDriver, setIsDriver] = useState<boolean | undefined>(undefined);
const [totalKilometers, setTotalKilometers] = useState("");

useEffect(() => {
async function fetchMe() {
try {

63

const data = await me();
setFirstName(data.first_name);
setLastName(data.last_name);
setIsDriver(data.is_driver);
setTotalKilometers(data.total_kilometers);
} catch (error) {
console.error(error);
} finally {
setLoading(false);
}
}
fetchMe();
b LD

if (loading) {
return <Loading />;

}

return (
<div className="min-h-screen relative">
<section className="relative w-full h-[15vh] flex gap-2 items-center
border-b gap-8 p-8">
<Avatar className="w-24 h-24 border-2 border-primary">
<AvatarImage src="" alt={ ${firstName} ${lastName} '} />
<AvatarFallback>
<UserRound className="w-8 h-8 text-primary" />
</AvatarFallback>
</Avatar>
<div>

<h2 className="text-x1 font-bold text-base text-left">
{firstName} {lastName}

</h2>

<div className="flex space-x-2 my-2">
<Badge variant="outline">
{isDriver ? "Driver" : "Passenger"}
</Badge>
{isDriver &§§& (
<Badge variant="outline">

Total Kilometers:{" "}

{totalKilometers === null ? "0" : totalKilometers}
</Badge>
)}
</div>
</div>
</section>

<Tabs defaultValue="personal-details" className="">
<TabsList className="flex justify-center w-full gap-4">
<TabsTrigger value="personal-details"
className="text-md">Personal Details</TabsTrigger>
{isDriver && (

64

<TabsTrigger value="vehicles"
className="text-md">Vehicles</TabsTrigger>
)}
<TabsTrigger value="upcoming-bookings"
className="text-md">Upcoming bookings</TabsTrigger>
<TabsTrigger value="past-bookings" className="text-md">Past
bookings</TabsTrigger>
</TabsList>
<TabsContent value="personal-details" className="flex justify-center
items-center">
<PersonalDetails/>
</TabsContent>
{isDriver &§& (
<TabsContent value="vehicles"><Vehicles/></TabsContent>

)}

<TabsContent value="upcoming-bookings">
<UpcomingBookings/>

</TabsContent>

<TabsContent value="past-bookings">
<PastBookings/>

</TabsContent>

</Tabs>
</div>
)i
}

Explanation:

This React Profile component (Profile. tsx) is the primary user dashboard where
users can see details about his account, the cars and the bookings.

State management: We fetched user (first name, last name, driver status, total
kilometers) details with the help of React useState and useEffect, and we also
called the me() utility which hits the backend API.

Loading state: When fetching data we show Loading component to provide a
better user feedback. Depending on the user’s role (Driver/Passenger) and if
they already traveled or not, we display badges to show that so the passenger
knows.

Components: The dashboard is a composition of reusable and configurable
components such as PersonalDetails, Vehicles, UpcomingBookings and
PastBookings components, and each component is responsible for rendering its
own data and layout. This being gateways the user has to everything in order to
manage their profile and activity within the platform.

65

‘app— utils » me.ts ‘

export async function me() {
const token = localStorage.getItem("token");
const response = await fetch("http://localhost:8000/users/me/", {
headers: {
"Content-Type": "application/json",
"Authorization": “Token ${token}",
}1
});
if (!response.ok) {
throw new Error("Failed to fetch user data");
}
const data = await response.json();
return data;

}

export async function getUserById(id: number) {
const token = localStorage.getItem("token");
const response = await fetch(http://localhost:8000/users/${id}/", {
headers: {
"Content-Type": "application/json",
"Authorization": “Token ${token}’,
}'
});
if (!'response.ok) {
throw new Error("Failed to fetch user info");
}
const data = await response.json();
return data;

}

66

http://me.ts

Explanation:

These two are some basic async functions in typescript that we need to grab user
data securely from backend_api.

me(): This method returns the user profile of the currently logged in user. It
takes the token that is stored in localStorage (after login) and adds it to the
Authorization header. It queries the /users/me/ endpoint with a GET request and
receives the name, driver status and profile data. If the request is rejected
(occupied token, server error), itis rejected.

getUserByld(id): This method returns information about any user, by their ID.
Like me(), it relies on token in localStorage, and performs a GET to /user/{id}/.
This comes handy when client wants us to showcase public profiles or retrieve
details of other kind of users (say drivers, passengers in a ride).

As far as components concerned we’ll show the 2 basic:
upcomingBookings , pastBookings

upcomingBookings
import { useEffect, useState } from "react";
import { Button } from "./ui/button";
import { Card, CardContent, CardHeader, CardTitle } from "./ui/card";
import { Separator } from "./ui/separator";

import { getVehicles } from "@/utils/vehicles";

import Loading from "./loading";

import { me } from "®@/utils/me";

import VehicleInfo from "./vehicleInfo";

import UserInfo from "./userInfo";

import { Drawer, DrawerContent, DrawerDescription, DrawerHeader,
DrawerTitle, DrawerTrigger } from "./ui/drawer";

import DriverRequestForm from "./forms/driverRequestForm";
import { useToast } from "@/hooks/use-toast"

import { Ride } from "./searchResults";

export default function UpcomingBookings() {
const { toast } = useToast();
const [rides, setRides] = useState<Ride[] | undefined>(undefined);
const [userData, setUserData] = useState<{ id: number; is_driver:
boolean } | undefined>(undefined);

const [loading, setLoading] = useState(true);

useEffect(() => {

67

async function fetchMeData() {
setLoading(true);

try {
const data = await me();
setUserData(data);

} catch (error) {
console.error(error);
} finally {
setLoading(false);
}
}
fetchMeData();
b, LD

useEffect(() => {
if (luserData?.id) return;
async function fetchUserRidesData(userId: number) {
setLoading(true);
try {
const token = localStorage.getItem("token");
const response = await
fetch(http://localhost:8000/rides/?user_id=${userId}", {
method: "GET",
headers: {
"Content-Type": "application/json",
"Authorization": “Token ${token}",
}1
});
if (!response.ok) {
throw new Error("Failed to fetch user rides");

}

const ridesData: Ride[] = await response.json();
setRides(ridesData);

} catch (error) {
console.error(error);

} finally {
setLoading(false);

}

}

fetchUserRidesData(userData.id);
}, [userDatal);

if (loading) {
return <Loading />;

}

const upcomingRides = rides?.filter(
(ride) => new Date(ride.departure_time).getTime() > Date.now()

);

68

return (
<div className="mx-8">
<div className="flex justify-between items-center">
<hl className="text-2x1 font-bold">Upcoming Rides</h1>
</div>

<Separator className="my-2"/>

<div className="flex space-x-4 overflow-x-auto pb-2
min-h-[200px]">

{upcomingRides !== undefined && upcomingRides.length === 0 && (
<div className="flex justify-center items-center w-full
min-h-[200px] text-x1">
No upcoming rides found.
</div>
)}
{upcomingRides !== undefined && upcomingRides.length > 0 &&

upcomingRides.map((ride) => (
<Card key={ride.id} className="min-w-[250px] flex-shrink-0
shadow-md border rounded-1g">
<CardHeader className="flex flex-col items-center
text-center">
<CardTitle className="text-1lg font-semibold">
{ride.start_location} > {ride.end_location}
</CardTitle>
<p className="text-sm text-gray-500">
{new Date(ride.departure_time).toLocaleDateString()}{"
"}
1" ")
{new Date(ride.departure_time).tolLocaleTimeString([], {
hour: '2-digit', minute: '2-digit' })}
</p>
</CardHeader>
<CardContent className="space-y-2">
<div className="flex justify-between items-center">
<span className="font-medium
text-gray-600">Arrival:

{new Date(ride.arrival_time).toLocaleTimeString([], {
hour: '2-digit', minute: '2-digit' })}

</div>
<div className="flex justify-between items-center">
<span className="font-medium
text-gray-600">Driver:

{ride.driver === null ? "Not
found yet" : <UserInfo userId={ride.driver}/>}
</div>

<div className="flex justify-between items-center">

69

<span className="font-medium
text-gray-600">Seats:
{ride.available_seats ===
null ? "N/A" : ride.passengers.length + "/" + ride.available_seats}
</div>
<div className="flex justify-between items-center">
<span className="font-medium
text-gray-600">Vehicle:

{ride.vehicle === null ?
"Not defined yet" : <VehicleInfo vehicleId={ride.vehicle} />}
</div>
</CardContent>

<div className="p-4 pt-0">
<Button className="w-full" disabled>

{ride.driver === userData?.id ? "You are the driver"
"You are a passenger"}
</Button>
</div>
</Card>
)}
</div>
<Separator className="my-2"/>
</div>
);
b
Explanation:

This UpcomingBookings component shows all of the future rides that have been
created by the logged-in user. State management: It manages rides and user data
and fires off backend API calls (me()and /rides/).

Fetching Data: After the user has loaded, it fetches their rides associated with
them, and filters out for only those rides with a departure_time in the future.

Display: It uses components created by Shadcn Card for showing details of each
ride like origin and destination, date, time, driver etc with empty seats.

Conditional rendering: If you don’t have any upcoming rides it should display a
nice message, otherwise, it maps over the rides array and render each ride as a
card. Ul components: Employs custom subcomponents (UserInfo, Vehiclelnfo) to
retrieve and display counterpart information.

70

pastBookings

import { useEffect, useState } from "react";

import { Button } from "./ui/button";

import { Drawer, DrawerClose, DrawerContent, DrawerDescription,
DrawerFooter, DrawerHeader, DrawerTitle, DrawerTrigger } from
"./ui/drawer";

import UserInfo, { User } from "./userInfo";

import { me } from "®@/utils/me";

import { Separator } from "./ui/separator";

import { Card, CardContent, CardHeader, CardTitle } from "./ui/card";
import VehicleInfo from "./vehicleInfo";

import { Ride } from "./searchResults";

import ReviewForm from "./forms/reviewForm";

export default function PastBookings() {

const [loading, setlLoading] = useState(true);

const [userData, setUserData] = useState<{id: number; is_driver:
boolean} | undefined>(undefined);

const [rides, setRides] = useState<Ride[] | undefined>(undefined);

const [isOpen, setIsOpen] = useState(false);

const closeDrawer = () => setIsOpen(false);

const [selectedRide, setSelectedRide] = useState<Ride | null>(null);

useEffect(() => {
async function fetchMe() {
const data = await me();
setUserData(data);
}
fetchMe();
setLoading(false);
b, LD

useEffect(() => {
if (luserData?.id) return;
async function fetchUserRidesData(userId: number) {
setLoading(true);
try {
const token = localStorage.getItem("token");
const response = await
fetch(http://localhost:8000/rides/?user_id=${userId}", {
method: "GET",
headers: {
"Content-Type": "application/json",
"Authorization": “Token ${token}’,
}l
});
if (!response.ok) {
throw new Error("Failed to fetch user rides");

71

}

const ridesData: Ride[] = await response.json();
setRides(ridesData);
} catch (error) {
console.error(error);
} finally {
setLoading(false);
}

}

fetchUserRidesData(userData.id);

}, [userDatal);

// palia rides
const filteredRides = rides?.filter(
(ride) => new Date(ride.departure_time).getTime() < Date.now()

)

return (
<div className="mx-8">
<div className="flex justify-between items-center">
<h1l className="text-2x1 font-bold">Search Results</h1>
</div>

<Separator className="my-2"/>

<div className="flex space-x-4 overflow-x-auto pb-2
min-h-[200px]">
{rides === undefined &§& (
<div className="flex justify-center items-center w-full
min-h-[200px] text-x1">Your search results will appear here!</div>
)}
{filteredRides !== undefined &§& filteredRides.length ===
<div className="flex justify-center items-center w-full
min-h-[200px] text-x1">
No rides found. Try another search.
</div>
)}
{filteredRides !== undefined &§& filteredRides.length > 0 &&
filteredRides.map((ride) => (
<Card key={ride.id} className="min-w-[250px] flex-shrink-0
shadow-md border rounded-1g">
<CardHeader className="flex flex-col items-center
text-center">
<CardTitle className="text-1lg font-semibold">
{ride.start_location} » {ride.end_location}
</CardTitle>
<p className="text-sm text-gray-500">
{new Date(ride.departure_time).tolLocaleDateString()}{"

72

")

{new Date(ride.departure_time).toLocaleTimeString([], {
hour: '2-digit', minute: '2-digit' })}
</p>
</CardHeader>
<CardContent className="space-y-2">
<div className="flex justify-between items-center">
<span className="font-medium
text-gray-600">Arrival:

{new Date(ride.arrival_time).toLocaleTimeString([], {
hour: '2-digit', minute: '2-digit' })}

</div>
<div className="flex justify-between items-center">
<span className="font-medium
text-gray-600">Driver:

{ride.driver === null ? "Not
found yet" : <UserInfo userId={ride.driver}/>}
</div>

<div className="flex justify-between items-center">
<span className="font-medium
text-gray-600">Seats:
{ride.available_seats ===
null ? "N/A" : ride.passengers.length + "/" + ride.available_seats}
</div>
<div className="flex justify-between items-center">
<span className="font-medium
text-gray-600">Vehicle:

{ride.vehicle === null ?
"Not defined yet" : <VehicleInfo vehicleId={ride.vehicle} />}
</div>
</CardContent>
<div className="p-4 pt-0">
<div>
<Button

className="w-full"

onClick={() => {
setSelectedRide(ride);
setIsOpen(true);

1}

Leave a review
</Button>
</div>
</div>
</Card>
)}

</div>

73

<Separator className="my-2"/>

{selectedRide && (
//review apo ta rides
<Drawer open={isOpen} onOpenChange={(open) => { setIsOpen(open); if
('open) setSelectedRide(null); }}>
<DrawerContent>
<div className="mx-auto w-full max-w-sm">
<DrawerHeader>
<DrawerTitle>
Review the rides' users
</DrawerTitle>
<DrawerDescription>It will be anonymous</DrawerDescription>
</DrawerHeader>
<ReviewForm ride={selectedRide} userId={userData?.id}
closeDrawer={() => { setIsOpen(false); setSelectedRide(null); }} />
</div>
</DrawerContent>
</Drawer>

)}

</div>

);

Breaking down The PastBookings Segment

This component will show all rides that have occurred and for the user to leave a
review. State management: React useState and useEffect hooks to manage user
data, ride data, loading state and drawer state (for the review form).

Data fetching: It calls me() in a first place to get some details about the current
authenticated user (user ID, driver status). When the user is established, you
make API request (/rides/? user_id={id}) to gather all rides, which belong to
this particular user.

Filtering logic: Only trips where the departure time is in the past(out of Date.
now()) ensuring the user only sees finished trips.

Display: Displays the details of each ride (start/end location, departure,

and arrival time, driver information with the UserInfo component, vehicle
information with the VehicleInfo component, seat details) using the Shadcn
CardWithImg component. If there are no past rides, a smiley face is drawn (with
messages like Bruno hasn't given any rides yet or Flora has no past rides and very
little ego) otherwise past rides are listed in a horizontally scrollable fashion.

74

Review system integration: There's a “Leave a review” button on each ride card.
When clicked it opens a component Shadcn Drawer and it has the

component ReviewForm. That allows the user to submit feedback for that ride
specifically, and improves accountability and quality.

Styling: Styling is consistent and responsive (Tailwind CSS), the scrollable Nature
of the layout allows for smooth scan through previous rides. This aspect is
important for engaging users as it promotes reminiscence and user-generated
reviews on which the platform becomes more interactive and credible.

Explanation : Forms

What Are Forms?

LoginForm: It is the form by which the old user can login by user name or
password. It does input validation, presents an error message in case of login
failure, and saves the auth token upon successful login in manner that the auth
token can be utilized in a secure way to access protected routes.

SignUpForm : Registration form, where the new users can sign up for an account
by submitting basic info like their username, email, password, and if they are
driver or not. It does input validation for strong password and data

format before the sending the data to backend.

ReviewForm: Users can fill this form after they finish a trip to provide reviews on
the other members. The form usually has one or more fields: one for a rating,
and an optional field for a comment, which helps build trust and accountability
on the platform.

DriverRequestForm: This form is for users who wish to volunteer to be a driver
for a ride that does not currently have one. It gives the user a way to verify that
they are in fact driving and that their vehicle is assigned to the requested ride.

75

This allows for adaptable and on-the-fly matching of the drivers and the ride
requests.

VehicleForm: Drivers enter or update information about their vehicles such

as the brand, model, year, license plate, and the number of available seats. "Users
being able to trust that the vehicle information is correct is of utmost importance
for a secure carpooling experience."

Common Features Across Forms: All the shapes use the Shadcn Ul components
for consistent Ul templates and behaviour. They have validation errors, ensuring
the user is told there is an error with their input! Forms speak to the backend
through AJAX requests so they both update in real-time, with no full page
reloads. It uses TailwindCss across all aspects of the forms to keep them
responsive, accessible and looking great.

76

6.3 Backend in detail

v backend

v SIC

v config

__init__.py
settings.py
urls.py
v core
__pycache__
auth
migrations
__init__.py
admin.py
models.py
serializers.py
urls.py
utils.py
views.py
db 2.sqlite3
db.sqglite3
manage.py
venv
.env
.gitignore
db.sqlite3

requirements.txt

7

‘ core = models.py *

from django.contrib.auth.models import AbstractUser
from django.db import models
from django.contrib.auth.models import Group, Permission

class User(AbstractUser):

phone_number = models.CharField(max_length=15, blank=True, null=True)

privacy_enabled = models.BooleanField(default=False)

is_driver = models.BooleanField(default=False)

total_kilometers = models.DecimalField(max_digits=10, decimal_places=2,
default=None, blank=True, null=True)

driving_license_number = models.CharField(max_length=20, blank=True,
null=True)

groups = models.ManyToManyField(

Group,
verbose_name="'groups',
blank=True,
help_text='The groups this user belongs to. A user will get all

permissions granted to each of their groups.',
related_name="%(app_label)s_%(class)s_related",
related_query_name="%(app_label)s_users",

)

user_permissions = models.ManyToManyField(
Permission,
verbose_name='user permissions’',
blank=True,
help_text='Specific permissions for this user.',
related_name="%(app_label)s_%(class)s_related",
related_query_name="%(app_label)s_users",

def __str_ (self):
return self.username

class Vehicle(models.Model):

owner = models.ForeignKey(User, on_delete=models.CASCADE,
related_name='vehicles')

make = models.CharField(max_length=255)

model = models.CharField(max_length=255)

year = models.IntegerField()

license_plate = models.CharField(max_length=20)

seats_available = models.IntegerField()

def __str__ (self):
return f"{self.make} {self.model} - {self.license_plate}"

78

http://models.py

class Ride(models.Model):

created_by = models.ForeignKey(User, on_delete=models.CASCADE,
related_name='rides_created')

driver = models.ForeignKey(User, on_delete=models.CASCADE,
related_name='rides_driven', null=True, blank=True)

vehicle = models.ForeignKey(Vehicle, on_delete=models.CASCADE,
null=True, blank=True)

start_location = models.CharField(max_length=255)

end_location = models.CharField(max_length=255)

departure_time = models.DateTimeField()

arrival_time = models.DateTimeField()

available_seats = models.IntegerField(null=True, blank=True)

passengers = models.ManyToManyField(User, related_name="joined_rides",
blank=True)

def __str_ (self):
return f"{self.start_location} to {self.end_location} on
{self.departure_time.strftime('%Y-%m-%d %H:%M')}"

class Review(models.Model):

ride = models.ForeignKey('Ride', on_delete=models.CASCADE,
related_name='reviews', null=True, blank=True)

reviewer = models.ForeignKey(User, on_delete=models.CASCADE,
related_name="'given_reviews')

reviewed_user = models.ForeignKey(User, on_delete=models.CASCADE,
related_name='received_reviews', null=True, blank=True)

rating = models.IntegerField()

comment = models.TextField(blank=True, null=True)

created_at = models.DateTimeField(auto_now_add=True)

def __str_ (self):
return f'Review by {self.reviewer.username} on

{self.created_at.strftime("%Y-%m-%d")}

79

Explanation : Models
What Are Models?

User Model: This model is derived from Django's AbstractUser to ensure the
fields in the user model suit a carpooling system. It logs information such as the
user’s phone number, privacy settings (whether they want to show their real
name), whether they are a driver, how many kilometers in total they have driven,
and their driving license number. It further tailors the group and permission
relationships to control the access and roles of the users.

Vehicle Model: This model depicts every registered vehicle in in the system. It’s
related to a user (the owner) and has some important information such as make,
model, year, license plate number, and how many seats are available. It makes
sure every vehicle in the system can be matched with a real driver and shown on
ride offerings.

Ride Model: The carpool ride is modelled in the Ride model. It keeps track of the
creator of the ride, its assigned driver, the vehicle used, its starting and ending
locations, departure and arrival times, the number of available vacant positions,
and a list of passengers. This design supports many-to-many relationship (for
passengers) and all ride details are recorded for matching and booking.

Review Model: This model makes the review and rating system to work. It links a
reviewer (the user who left the review) with a reviewed user (driver or rider),
attaches the review to a ride, and record a numeric rating, an optional comment,
and a time when the created the review. It is a trust-building and the

overall platform quality-advancing measure by promoting responsibility.

80

‘ core — serializers.py
from rest_framework import serializers
from .models import User, Vehicle, Ride, Review
class UserSerializer(serializers.ModelSerializer):

password = serializers.CharField(write_only=True)

class Meta:
model = User

fields = [
'id', 'username', 'password', 'first_name', 'last_name',
'email', 'phone_number',
"privacy_enabled', 'is_driver', 'total_kilometers',
'driving_license_number', 'groups', 'user_permissions'
]

def create(self, validated_data):
password = validated_data.pop("password")
user = User(**validated _data)
user.set_password(password)
user.save()
return user

class VehicleSerializer(serializers.ModelSerializer):
class Meta:
model = Vehicle
fields = ['id', 'owner', 'make', 'model', 'year',6 'license_plate',
'seats_available']

class RideSerializer(serializers.ModelSerializer):
class Meta:

model = Ride

fields = [
'id',
'created_by',
'"driver',
'vehicle',
'start_location',
'end_location',
"departure_time',
'arrival_time',
'available_seats',
'passengers’,

]

read_only_fields = ['created_by']

81

http://serializers.py

def create(self, validated_data):
validated_datal'created_by'] = self.context['request'].user
return super().create(validated_data)

class ReviewSerializer(serializers.ModelSerializer):
class Meta:
model = Review
fields = ['id', 'ride', 'reviewer', 'reviewed_user', 'rating',
'comment', 'created at']

Explanation : Serializers

What Are Serializers?

Serializers do the job of translating model instances (Python objects) into a
format (such as JSON, but not necessarily) that can be sent to the frontend in an
API response, and of validating and converting incoming data from JSON into
Python objects, where they can be saved to the database.

UserSerializer: this serializer deals with the user model. It also makes sure, that
sensitive inputs (like passwords) can’t be read, but they can be written, that way
one can set a password, but not retrieve it in plaintext. It contains all of the basic
user information (username, email, name, phone, driver status, etc.) and has a
custom create method to hash and save the password.

VehicleSerializer : This manages the vehicle model and it maps fields such as the
owner of the vehicle, the type of vehicle (i.e. make), model, year and license plate
as well as the available seats. This makes it possible for the system to serialize
vehicle data and the ability to deserialize it conveniently while

communicating with the frontend.

RideSerializer: This serializer is bound to the ride model and contains the main
ride attributes: creator, the driver, the vehicle, the location, the time, the number
of seats and the passengers. It sets the created_by field by default as it should be
read-only and clients can’t decide who created the ride and overrides the create
method to automatically set this field from the request context.

ReviewSerializer: Helps in handling the review model, by including various fields
such as the ride with which the review is associated, reviewer and the reviewed
user, rating, comment and created. It makes sure that the review data is
transferred in and out of the backend and frontend cleanly.

82

Serializers

They promote integrity and security of data (hiding sensitive fields,

preventing what can be written). They make sure only valid data gets through to
the database. Here they take care of an API response pattern, so the frontend
integration easier. They offer the ability for data transformation logic to be
customized for special cases (e.g., automagically populating fields, nested
serialization).

‘ core - views.py ‘

from .utils import send_email

from rest_framework import viewsets, permissions

from rest_framework.permissions import IsAuthenticated, AllowAny
from rest_framework.decorators import action

from rest_framework.response import Response

from django.utils.dateparse import parse_date

from django.shortcuts import get_object_or_404

from .models import User, Vehicle, Ride, Review

from .serializers import UserSerializer, VehicleSerializer, RideSerializer,
ReviewSerializer

from django.db.models import Q

class UserViewSet(viewsets.ModelViewSet):
queryset = User.objects.all()
serializer_class = UserSerializer

def get_permissions(self):
Instantiates and returns the list of permissions that this view
requires.
if self.action == 'create':
permission_classes = [AllowAny]
else:
permission_classes = [IsAuthenticated]
return [permission() for permission in permission_classes]

daction(detail=False, methods=['get'], url_path="me',
permission_classes=[permissions.IsAuthenticated])
def me(self, request):
serializer = self.get_serializer(request.user)
return Response(serializer.data)

83

http://serializers.py

daction(detail=True, methods=['get'], url_path='public',
permission_classes=[permissions.AllowAny])
def public(self, request, pk=None):
Returns public information for a given user.
Only returns: isPrivacy, username, first_name, and last_name.

user = self.get_object()

data = {
"isPrivacy': user.isPrivacy,
'username': user.username,
'first_name': user.first_name,
'last_name': user.last_name,

}

return Response(data)

class VehicleViewSet(viewsets.ModelViewSet):
serializer_class = VehicleSerializer
permission_classes = [IsAuthenticated]

def get_queryset(self):
return Vehicle.objects.filter(owner=self.request.user)

daction(detail=True, methods=["GET"], permission_classes=[AllowAny])
def public(self, request, pk=None):

Bypass the owner filter for public info

vehicle = get_object_or_404(Vehicle, pk=pk)

serializer = self.get_serializer(vehicle)

return Response(serializer.data)

class RideViewSet(viewsets.ModelViewSet):
queryset = Ride.objects.all()
serializer_class = RideSerializer
permission_classes = [IsAuthenticated]

def get_queryset(self):
queryset = super().get_queryset()
origin = self.request.query_params.get('from')
destination = self.request.query_params.get('to')
date_str = self.request.query_params.get('date')

if origin:

queryset = queryset.filter(start_location=origin)
if destination:

queryset = queryset.filter(end_location=destination)
if date_str:

date_obj = parse_date(date_str)

if date_obj:

84

queryset = queryset.filter(departure_time__date=date_obj)

user_id = self.request.query_params.get('user_id")
if user_id:
queryset = queryset.filter(Q(driver__id=user_id) |
Q(passengers__id=user_id)).distinct()

return queryset
def update(self, request, xargs, =*xkwargs):

instance = self.get_object()

original_passengers =
list(instance.passengers.all().values_list('id', flat=True))

original_driver = instance.driver.id if instance.driver else None

response = super().update(request, *args, *xkwargs)
instance.refresh_from_db()

new_passengers = list(instance.passengers.all().values_list('id',
flat=True))
new_driver = instance.driver.id if instance.driver else None

departure_time = instance.departure_time
date_str = departure_time.strftime("%d/%m/%Y")

time_str =
f'{int(departure_time.strftime('%I'))}{departure_time.strftime('%p"').lower(
)}II

if getattr(request.user, 'privacyEnabled', False):
display_name = request.user.username
else:
display_name = f"{request.user.first_name}
{request.user.last_name}"

if (request.user.id not in original_passengers and request.user.id
in new_passengers) and (new_driver != request.user.id):
if instance.driver and instance.driver.email:
message = (
f"{display_name} has joined your ride from
{instance.start_location} "
f"to {instance.end_location} on {date_str} at
{time_str}."
)
subject = "New Passenger Joined Your Ride"
send_email(instance.driver.email, subject, message)

85

if (original_driver !'= request.user.id) and (new_driver ==
request.user.id):
message = (
f'"Driver {display_name} has joined your ride from
{instance.start_location} "
f"to {instance.end location} on {date_str} at {time_str}."

)

subject = "Driver Joined Your Ride"

for passenger in instance.passengers.all():
if passenger.email:
send_email(passenger.email, subject, message)

return response

class ReviewViewSet(viewsets.ModelViewSet):
queryset = Review.objects.all()
serializer_class = ReviewSerializer

def get_queryset(self):
queryset = super().get_queryset()
reviewed_user = self.request.query_params.get('reviewed_user')
if reviewed_user:
queryset = queryset.filter(reviewed_user=reviewed_user)
return queryset

def get_permissions(self):
if self.action in ['list', 'retrieve']:
return [AllowAny()]
else:
return [IsAuthenticated()]

86

Explanation: Views

What Are Views?

In Django REST Framework, views are the places which deal with the HTTP
methods (GET, POST, PATCH, ...). They manage the retrieval, processing, and
returning of data as a response. Views are an embodiment of the control
conventions for models, serializers, and permissions in the backend for what
kind of request is allowed and how it is interpreted. Our Project's ViewSets We
combine ModelViewSet classes (which implement the entire set of read and
write operations - list, retrieve, create, update, delete following RESTful pattern).

UserViewSet: Manages user accounts. Includes my custom actions such as me
(me returns the current logged in user data) and public (to get limited public
user data). Applies permissions: anyone can sign up (AllowAny), but other
actions must be signed (IsAuthenticated).

VehicleViewSet: Manages vehicles of all users. Filters queries the user see only
their own vehicles. Its public action to obtain anyone’s vehicle details.

RideViewSet: Manages carpool rides. Filters by origin, destination, date or user.
Overrides the update method to include more logic, like notify users of the
system (passengers and driver) by email when new passenger joins or the driver
is informed about the new route.

ReviewViewSet: Handles user reviews of drivers or passengers. Option to
filter reviews by reviewed user. Grants read access to everybody but write
access only to authenticate users.

Views

They bridge requests from the frontend to the backend. They describe how user
actions should be processed safely and efficiently. They link together models,
serializers and permissions to piece together all the bits of creating a complete
workflow. They enable behavior to be extended, such as by adding email
notifications or filtering results on the fly.

87

‘ core—»manage.py

#!/usr/bin/env python

"""Django's command-line utility for administrative tasks.
import os

import sys

def main():
"""Run administrative tasks."""
os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'config.settings')
try:
from django.core.management import execute_from_command_line
except ImportError as exc:
raise ImportError(
"Couldn't import Django. Are you sure it's installed and "
"available on your PYTHONPATH environment variable? Did you
"forget to activate a virtual environment?"
) from exc
execute_from_command_line(sys.argv)

if __name__ == '__main__

The file manage. py is quintessential for every Django project. It's a tiny Python
script that is created during the creation of a Django project and is used as a
command-line tool for interacting with and managing the project.

This script enables developers to perform administrative functions including:
Run the dev server Applying database migrations Creating new apps Running
the test suite Making a super user for your admin panel .

Without manage. py, it was not so easy to work with Django project or automate
backend tasks. It’s a centralized application to manage all of these: database
operations, testing, server operations and app scaffolding. this script is
responsible for setting up your local settings, environment vars, project
configuration in a correct way, each time you run anything from the backend;

it’s a basic tool necessary for working on Django.

88

http://manage.py

‘ core = admin.py

from django.contrib import admin
from django.contrib.auth.admin import UserAdmin
from .models import User, Vehicle, Ride, Review

class CustomUserAdmin(UserAdmin):

model = User

This defines the layout for editing existing users (no need to repeat
username and password here)

fieldsets = (

(None, {'fields': ('username', 'email', 'phone_number"',
"privacy_enabled', 'is_driver', 'total_kilometers',
'driving_license_number')}),

('Permissions', {'fields': ('is_active', 'is_staff', 'is_superuser',
'groups', 'user_permissions')}),

('"Important dates', {'fields': ('last_login', 'date_joined')}),
)
This defines the layout for adding new users
add_fieldsets = (

(None, {

'classes': ('wide',),

"fields': ('username', 'email', 'passwordl', 'password2',
"phone_number', 'privacy_enabled', 'is_driver', 'total_kilometers',
'driving_license_number'),

1),

)

Register your models with the admin site
admin.site.register(User, CustomUserAdmin)
admin.site.register(Vehicle)
admin.site.register(Ride)
admin.site.register(Review)

Explanation: Django Admin registering the model for the App.

The code snippet is part of the Django backend admin system. It explains how
the project’s data models (User, Vehicle, Ride, Review) are handled in the Django
Admin interface — a tool that is pre-built into Django and allows you to interact
with database data using a web interface.

CustomUserAdmin Class

This class is a subclass of Django’s provided UserAdmin class and it provides you
a way to customize how user objects are displayed and edited in the admin
system. The sections' fieldsets are the sections we see while editing the existing

89

http://admin.py

users. It groups together fields such as username, email, driver status, phone
number, license number, and total kilometers in an organized fashion.
add_fieldsets controls the layout of the fields when adding a user, it is also used
for the password reset form, and the user change form, this sets which fields are
displayed when creating a user this way including password fields and extra
profile fields.

Model Registration

admin. site. register(User, CustomUserAdmin): It registers the User model with
the Django admin with the custom layout defined in CustomUserAdmin.

admin. site. register(Vehicle), admin. site. register(Ride), admin. site.
register(Review): Here you are telling Django that your Vehicle, Ride and Review
model can be listed, added, modified (in the next step) and deleted directly from
the Django admin interface.

‘auth->auth_views.py *

from rest_framework.views import APIView

from rest_framework.response import Response

from rest_framework.permissions import IsAuthenticated

from rest_framework.authentication import TokenAuthentication
from rest_framework import status

class LogoutAPIView(APIView):
authentication_classes = [TokenAuthentication]
permission_classes = [[sAuthenticated]

def post(self, request):

request.user.auth_token.delete()
return Response(status=status.HTTP_204_NO_CONTENT)

90

Explanation: LogoutAPIView (API Endpoint)

The LogoutAPIView is a Django REST Framework (DRF) view class which creates
a secure API endpoint for authenticating -

users. authentication_classes: This tells us that this endpoint itself employs
TokenAuthentication, i.e. the request that arrive to it must contain an
authentication token in the —

header. permission_classes: Makes sure that only registered users (with token)
can access this API. post: when a client makes a POST request to this
endpoint, the server invalidates the user’s token (request. user. auth_token.
delete()) which in turn would logout the user.

Response: 204 No Content (in the case of a successful logout with no other data).
This endpoint is a crucial part of the authentication flow, because it supervises
that users’ sessions are terminated in a secure manner. Old tokens are made
inactive, which decreases the chances of unauthorized access. Promotes good
security practice by allowing users to control their login state.

91

BiAwoypapia

Django. (n.d.). Django Project. https://docs.djangoproject.com

Home - Django REST framework. (n.d.). Www.django-Rest-Framework.org.

https://www.django-rest-framework.or

Mozilla. (2019, August 21). JavaScript Guide. MDN Web Docs.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide

React — A JavaScript library for building user interfaces. (2019). Reactjs.org.

https://reactjs.or

Vercel. (2024). Getting Started | Next.js. Nextjs.org. https://nextjs.org/docs

Documentation - Tailwind CSS. (n.d.). Tailwindcss.com.

https://tailwindcss.com/docs

The PostgreSQL Global Development Group. (2025). PostgreSQL:

Documentation. Www.postgresql.org. https://www.postgresgl.org/docs

Fireship. (2020, May 21). Node.js Ultimate Beginner’s Guide in 7 Easy Steps.

YouTube. https://www.youtube.com/watch?v=ENrzD9HAZK4

92

https://docs.djangoproject.com
https://www.django-rest-framework.org
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide
https://reactjs.org
https://nextjs.org/docs
https://tailwindcss.com/docs
https://www.postgresql.org/docs/
https://www.youtube.com/watch?v=ENrzD9HAZK4

freeCodeCamp.org. (2019). Python Django Web Framework - Full Course for

Beginners. In YouTube. https://www.youtube.com/watch?v=F5mRWO0jo-U4

Documentation - Tailwind CSS. (n.d.). Tailwindcss.com.

https://tailwindcss.com/docs

shadcn. (2024). shadcn/ui. Shadcn/Ui. https://ui.shadcn.com/

MDN Web Docs. (n.d.). MDN Web Docs. https://developer.mozilla.org

Christie, T. (2011). Django REST Framework. Django-Rest-Framework.org.

https://www.django-rest-framework.org/

93

https://www.youtube.com/watch?v=F5mRW0jo-U4
https://tailwindcss.com/docs
https://ui.shadcn.com/
https://developer.mozilla.org
https://www.django-rest-framework.org/

94

	Εγκρίθηκε από την τριμελή εξεταστική επιτροπή την 24η Αυγούστου 2025.
	(Υπογραφή) (Υπογραφή) (Υπογραφή)
	
	
	Παναγιώτης Τσανάκας Α.Σταφυλοπάτης Β.Βεσκούκης​​Καθηγητής ΕΜΠ Ομότιμος Καθηγητής Καθηγητής ΕΜΠ​ ΕΜΠ ​​​ Αθήνα , Αύγουστος 2025
	Κίτσης Θεόδωρος Ιωάννης ​​Διπλωματούχος Ηλεκτρολόγος Μηχανικός και Μηχανικός Υπολογιστών Ε.Μ.Π.​24 Αυγούστου 2025
	Copyright © Θεόδωρος Ιωάννης Κίτσης , 2025​Με επιφύλαξη παντός δικαιώµατος. All rights reserved.​
	Λέξεις-κλειδιά — carpooling, mobile app, Django REST Framework, React, TypeScript
	The modern reality, characterized by intensifying urbanization, traffic congestion, and climate change, makes the adoption of more sustainable and economical transportation solutions imperative. In this context, carpooling emerges as a highly promising practice, capable of reducing the environmental footprint, travel costs, and the number of vehicles on the road. This thesis focuses on the design and development of a comprehensive mobile application aimed at promoting and facilitating the sharing of passenger cars for inter-city journeys. The main objective of the platform is to create a reliable and user-friendly digital community, connecting drivers with available seats in their vehicles with passengers seeking safe, affordable, and convenient travel solutions.
	To implement the system, a modern technological approach was adopted, based on established and robust software development tools. For the backend, Django REST Framework, a flexible and scalable Python framework, was chosen, which allowed for the rapid development of a secure and well-documented RESTful API. For the frontend, the React library was selected in combination with TypeScript, a choice that ensures the creation of dynamic, responsive, and maintainable User Interfaces, thanks to its component-based architecture and the type safety offered by TypeScript. The system's architecture is completed by the use of a relational database, which guarantees the integrity, consistency, and efficient management of data concerning users, routes, bookings, and reviews.
	The thesis is structured to provide a holistic view of the project, from its theoretical foundation to its practical implementation and final evaluation. Initially, the theoretical background is presented, along with a review of existing solutions in the carpooling domain. Subsequently, the technological choices are analyzed in detail, and the system's architecture is presented, including the database schema and API endpoints. This is followed by a detailed description of the implementation of core functionalities, such as user registration and authentication, route creation and search, the booking system, and the mutual rating system for drivers and passengers. Finally, the results of the control tests (unit, integration, and user acceptance tests) that were conducted to verify the application's correct functionality, performance, and security are presented, confirming the successful achievement of the project's initial objectives.
	Keywords — carpooling, mobile app, Django REST Framework, React, TypeScript
	
	
	
	
	
	
	
	
	
	
	
	
	
	Table of Contents
	
	Extensive Overview​​Chapter 1: Introduction
	1.1 - The Issue ​1.2 - Carpooling Overview​1.3 - Application Goals and Features​1.4 - Application Functionality
	Chapter 2: Theoretical Background and Technological Foundations
	2.1 - Carpooling and Shared Mobility Principles​2.2 - Technological Foundations of the Application​2.3 - Software Design Principles​2.4 - Summary
	Chapter 3: Frontend System Design and Implementation
	3.1 - Overall Frontend Architecture​3.2 - Component Design and Code Examples​3.3 - Routing, State Management and API Integration​3.4 - Entire User Journeys, and Well-connected Web Flow
	Chapter 4: Backend Architecture and Core Logic
	4.1 - Django Project Structure Overview​4.2 - Models: The Data Blueprint​4.3 - Serializers: The Data Translators​4.4 - Views: The Business Logic Engine​4.5 - Permissions, Utilities, and Supporting Logic​4.6 - Authentication, Database Relationships, and Data Flow
	Chapter 6: Code Technical Specifications
	6.1 - Introduction​6.2 - Frontend in detail ​6.3 - Backend in detail
	
	
	Chapter 1: Introduction
	The demand for sustainable, efficient, and affordable transportation solutions is a pressing challenge in modern society. Increasing traffic congestion, rising fuel prices, environmental concerns, and limited access to flexible transportation options make it necessary to explore alternative mobility strategies. Carpooling — the practice of sharing a vehicle among multiple passengers traveling in the same direction — has emerged as one of the most promising solutions to address these issues.
	This thesis focuses on the design, development, and evaluation of a mobile application for passenger carpooling. The application allows drivers to offer available seats on their trips and enables passengers to search for and book these seats for intercity travel. By facilitating organized carpooling, the application aims to reduce transportation costs, improve travel accessibility, and promote environmentally responsible mobility.

	​​​​​
	
	1.1 The Issue
	There are several lingering problems in intercity transportation. The high number of individual car owners results in a significant percentage of empty seats, with most vehicles carrying only the driver. This situation is a key contributor to the growing traffic congestion, excessive fuel consumption, and the consequent increase in carbon emissions. On the other hand, public transportation alternatives might not cater to the specific needs of all passengers in terms of scheduling, convenience, and frequency of service, especially on the less popular routes.
	Carpooling can be a way to solve these problems by connecting drivers who have vacant seats with people going the same way. However, unofficial carpooling arrangements are challenged by several factors: problems with finding a suitable match, lack of organization tools, and trust issues among participants. A specially designed mobile platform can be a solution to these problems by providing organized matching features, secure user accounts, and an embedded feedback system.
	1.2 Carpooling Overview

	Carpooling means using a private car by the driver and one or more passengers. Besides the ecological and money-saving aspects, carpooling has social benefits as well, as it helps people to communicate and establishes a shared sense of responsibility for reducing the negative impact of traffic.
	The carpooling applications of today have revolutionized the old carpooling concept into a new, digital version. With these apps, the drivers are able to publish offers for their trips, specifying the starting point, destination, and time of the journey, the number of available seats, and any other relevant data. The passengers, in turn, can check the available trips, set filters, make bookings, and communicate with the drivers. To ensure the security of the participants and to foster trust among them, such systems usually employ user verification, profile management tools, and review functions.
	
	

	
	
	1.3 Application Goals and Features
	The following features are proposed to be implemented in the mobile application for this thesis: User Sign Up and User Sign In: Protected registration and login, creation of a profile and sign in/log out of data in a user's space.
	Driver Module: Drivers can offer trips by adding sets of information such as specific routes, the number of available seats, and time slots. Passenger Module- To let your passengers able to search for rides, filter by date and location, then reserve seat.
	Vehicle Management: Offers drivers the capability to input vehicle information like make, model, year, license plate, and seating.
	Review and Ratings: This feature utilizes the feedback and ratings component, so users can share their experience and makes the platform trustworthy.
	This first chapter on structures the chapters to come, in range of background literature, system design and implementation, and reaches a concluding Application. Overall, our endeavor is to provide a functional and scalable answer to the nuance of shared mobility and the promise it holds for long distance carpooling.
	1.4 Application Functionality
	The app operates around the aim of connecting drivers and riders as efficiently as possible. Like all gig-economy jobs, drivers sign on and enter their car’s specifications. They will then be able to post available trips and include the route, departure and arrival times and number of seats available. Riders, meanwhile, can find a ride by browsing using a number of filters (like date, location, or how many seats are available), where they can see they can–see the detail of a trip before making a booking. Once there is a match, the system manages also the process for booking so that drivers and passengers can contact each other confidentially. Once the trip is over, users can review and rate one another, which become part of the platform’s reputation system, creating trust for future transactions. It also has automated reminders like reminding people of their next trips and a dashboard for users to keep track of and manage trips, bookings, and feedback. This chapter forms the basis of subsequent
	Chapter 2: Theoretical Background and Technological Foundations
	
	This chapter introduces the theory and technology based techniques for the development of carpooling mobile application as elaborated in this thesis. It explains the car pooling systems and the social and environmental justifications for shared mobility before discussing the architectural frameworks, programming languages, and design tools used in production, and namely the Shadcn component library.
	2.1 Carpooling and the Shared Mobility Principles
	Carpool is a mode of travel in which organizes people use private vehicles when travelling close to each other. The system is intended to promote ridesharing (reducing the number of vehicles on the road), and more efficient use of transportation capacity. The concept of carpooling and shared mobility are based on sustainability, efficiency, and community involvement.
	Eco Friendliness: Carpooling greatly reduces the CO₂ emissions, fuel consumption and air pollution. Research demonstrates that increasing the average vehicle occupancy could reduce the carbon emission rate per capita by a significant gap, which can help to reach the global climate targets while improving the urban air quality problems.
	Cost Savings: By sharing direct travel expenses (fuel, tolls, and vehicle maintenance) among a larger group of passengers, the overall cost per person drops for drivers and passengers. This sharing-of-cost element is ideally suited for students, commuters, and those with restricted travel budgets.
	Reduced congestion: Raising the average occupancy of cars reduces the total number of cars on the roads, alleviating congestion, shortens travel time and makes transportation networks more efficient at peak times. Community and Social You and Me Benefits: Besides eco and economic advantages, carpooling promotes social behavior, and forms the basis of community for everyone providing and needing travel. It has potential to enhance network and cooperation and enhance social networking.
	Resource Utilisation: A city-level approach will be able to more efficiently utilise the available-infra such that it is not over-exerted, relieving pressure from public transportation systems, the roads and the parking spaces. However, research emphasises potential barriers to the introduction of the programme, including schedule matching, safety concerns, and trust between strangers. To overcome these challenges and fully harness the benefits of carpooling, the magic of digital applications unfold. Apps like these modernize the process of identifying, booking, and assembling shared rides. To achieve this, they use such functionality as real-time changes, automatic alerts, user library, scorecards, user rankings and feedback to improve visibility as well as trust and experience. This work is based on these ideas and intends to provide a sound, scalable implementation which is friendly to the environment and convenient for future users.
	
	2.2 Technological Foundations of the Application
	
	React and TypeScript
	Tailwind CSS and Shadcn UI

	
	
	
	
	
	
	
	
	
	Chapter 3: Frontend System Design and Implementation
	3.1 Overall Frontend Architecture
	3.2 Component Design and Code Examples
	State Management with React Hooks and Context
	
	
	API Integration: Communicating with the Backend
	
	Vehicle
	
	
	Trip 3: Adding a Vehicle
	Trip 4: Leaving a Review

	Upon submission, the app refreshes the local list of reviews so the user can easily sees their feedback appear.
	Connecting the Pieces Every trip is enabled by: React Router managing the flow of pages. Manage local and global data with react state and context. Tailwind and Shadcn having the relatively same UI elements. API calls that keep the frontend and backend in sync. By partitioning the app into distinct pieces with unidirectional data flow, we’ve built a frontend system that is modular, maintainable, and very easily extended. This architecture allows the addition or modification of features to other parts of the application with no side-effects.
	Developers can work on separate parts of the application with little overlap, and debugging is simplified with encapsulated logic. Additionally the collection of reusable components and centralised data fetching leads to a coherent and seamless user experience across the full platform. Also, the separation of concern for UI rendering, state control and backend communication leads to cleaner development flow. This structure not only speeds up development process, but also allows the future contributors to work on the system with understanding. In practice, this results in a more stable and scalable offering that can gracefully mature as the needs of the user evolve.
	
	
	
	 Chapter 4: Backend Architecture and Core Logic
	4.3 Serializers: The Data Translators
	This both refreshes the ride and infuses a bit of behavior, like sending email notices when new passengers hop on.
	Views They are a way to connect a user request with the business logic that operates on the data — when a user clicks a button, or submits a form, a view handles that. They handle data flow between models, serializers, and the frontend, and make sure everything is in sync and coherent. They are the enforces of permissions and business rules, only allowing allowed things to happen. They allow custom behavior on a feature-by-feature basis, such as sending email, running analytics, or adding specialized filters. In other words, views aren’t just plumbing — they actively influence the behavior of the app, what the users’ experience, and the seamless integration of backend and frontend.
	

	
	
	Explanation: LogoutAPIView (API Endpoint)
	The LogoutAPIView is a Django REST Framework (DRF) view class which creates a secure API endpoint for authenticating →
	users. authentication_classes: This tells us that this endpoint itself employs TokenAuthentication, i.e. the request that arrive to it must contain an authentication token in the →
	header. permission_classes: Makes sure that only registered users (with token) can access this API. post : when a client makes a POST request to this endpoint, the server invalidates the user’s token (request. user. auth_token. delete()) which in turn would logout the user.
	Response: 204 No Content (in the case of a successful logout with no other data). This endpoint is a crucial part of the authentication flow, because it supervises that users’ sessions are terminated in a secure manner. Old tokens are made inactive, which decreases the chances of unauthorized access. Promotes good security practice by allowing users to control their login state.
	

